Spaces:
Build error
Build error
File size: 3,908 Bytes
da0e3ab 73fd4c0 ed64e04 73fd4c0 cf7b168 7b3eb41 73fd4c0 2d49e86 73fd4c0 233c677 902b7eb 233c677 4eae89a 9462754 4eae89a 43edaa1 578e8ab 4eae89a 233c677 73fd4c0 4726977 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
import tempfile
import gradio as gr
import subprocess
import os, stat
from googletrans import Translator
from TTS.api import TTS
import ffmpeg
import whisper
from scipy.signal import wiener
import soundfile as sf
from pydub import AudioSegment
import numpy as np
import librosa
from zipfile import ZipFile
os.environ["COQUI_TOS_AGREED"] = "1"
ZipFile("ffmpeg.zip").extractall()
st = os.stat('ffmpeg')
os.chmod('ffmpeg', st.st_mode | stat.S_IEXEC)
def process_video(video, high_quality, target_language):
output_filename = "resized_video.mp4"
if high_quality:
ffmpeg.input(video).output(output_filename, vf='scale=-1:720').run()
video_path = output_filename
else:
video_path = video
# Debugging Step 1: Check if video_path exists
if not os.path.exists(video_path):
return f"Error: {video_path} does not exist."
ffmpeg.input(video_path).output('output_audio.wav', acodec='pcm_s24le', ar=48000, map='a').run()
y, sr = sf.read("output_audio.wav")
y = y.astype(np.float32)
y_denoised = wiener(y)
sf.write("output_audio_denoised.wav", y_denoised, sr)
sound = AudioSegment.from_file("output_audio_denoised.wav", format="wav")
sound = sound.apply_gain(0) # Reduce gain by 5 dB
sound = sound.low_pass_filter(3000).high_pass_filter(100)
sound.export("output_audio_processed.wav", format="wav")
shell_command = f"ffmpeg -y -i output_audio_processed.wav -af lowpass=3000,highpass=100 output_audio_final.wav".split(" ")
subprocess.run([item for item in shell_command], capture_output=False, text=True, check=True)
model = whisper.load_model("base")
result = model.transcribe("output_audio_final.wav")
whisper_text = result["text"]
whisper_language = result['language']
print(whisper_text)
language_mapping = {'English': 'en', 'Spanish': 'es', 'French': 'fr', 'German': 'de', 'Italian': 'it', 'Portuguese': 'pt', 'Polish': 'pl', 'Turkish': 'tr', 'Russian': 'ru', 'Dutch': 'nl', 'Czech': 'cs', 'Arabic': 'ar', 'Chinese (Simplified)': 'zh-cn'}
target_language_code = language_mapping[target_language]
translator = Translator()
try:
translated_text = translator.translate(whisper_text, src=whisper_language, dest=target_language_code).text
print(translated_text)
except AttributeError as e:
print("Failed to translate text. Likely an issue with token extraction in the Google Translate API.")
translated_text = "Translation failed due to API issue."
tts = TTS("tts_models/multilingual/multi-dataset/xtts_v1")
tts.to('cuda') # Replacing deprecated gpu=True
tts.tts_to_file(translated_text, speaker_wav='output_audio_final.wav', file_path="output_synth.wav", language=target_language_code)
pad_top = 0
pad_bottom = 15
pad_left = 0
pad_right = 0
rescaleFactor = 1
# Debugging Step 2: Remove quotes around the video path
video_path_fix = video_path
cmd = f"python Wav2Lip/inference.py --checkpoint_path '/Wav2Lip/checkpoints/wav2lip_gan.pth' --face {shlex.quote(video_path_fix)} --audio 'output_synth.wav' --pads {pad_top} {pad_bottom} {pad_left} {pad_right} --resize_factor {rescaleFactor} --nosmooth --outfile 'output_video.mp4'"
subprocess.run(cmd, shell=True)
# Debugging Step 3: Check if output video exists
if not os.path.exists("output_video.mp4"):
return "Error: output_video.mp4 was not generated."
return "output_video.mp4"
iface = gr.Interface(
fn=process_video,
inputs=[
gr.Video(),
gr.inputs.Checkbox(label="High Quality"),
gr.inputs.Dropdown(choices=["English", "Spanish", "French", "German", "Italian", "Portuguese", "Polish", "Turkish", "Russian", "Dutch", "Czech", "Arabic", "Chinese (Simplified)"], label="Target Language for Dubbing")
],
outputs=gr.outputs.File(),
live=False
)
iface.launch() |