Spaces:
Build error
Build error
File size: 4,279 Bytes
9d72f44 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
from __future__ import print_function
import os
import sys
import cv2
import random
import datetime
import time
import math
import argparse
import numpy as np
import torch
try:
from iou import IOU
except BaseException:
# IOU cython speedup 10x
def IOU(ax1, ay1, ax2, ay2, bx1, by1, bx2, by2):
sa = abs((ax2 - ax1) * (ay2 - ay1))
sb = abs((bx2 - bx1) * (by2 - by1))
x1, y1 = max(ax1, bx1), max(ay1, by1)
x2, y2 = min(ax2, bx2), min(ay2, by2)
w = x2 - x1
h = y2 - y1
if w < 0 or h < 0:
return 0.0
else:
return 1.0 * w * h / (sa + sb - w * h)
def bboxlog(x1, y1, x2, y2, axc, ayc, aww, ahh):
xc, yc, ww, hh = (x2 + x1) / 2, (y2 + y1) / 2, x2 - x1, y2 - y1
dx, dy = (xc - axc) / aww, (yc - ayc) / ahh
dw, dh = math.log(ww / aww), math.log(hh / ahh)
return dx, dy, dw, dh
def bboxloginv(dx, dy, dw, dh, axc, ayc, aww, ahh):
xc, yc = dx * aww + axc, dy * ahh + ayc
ww, hh = math.exp(dw) * aww, math.exp(dh) * ahh
x1, x2, y1, y2 = xc - ww / 2, xc + ww / 2, yc - hh / 2, yc + hh / 2
return x1, y1, x2, y2
def nms(dets, thresh):
if 0 == len(dets):
return []
x1, y1, x2, y2, scores = dets[:, 0], dets[:, 1], dets[:, 2], dets[:, 3], dets[:, 4]
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
order = scores.argsort()[::-1]
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
xx1, yy1 = np.maximum(x1[i], x1[order[1:]]), np.maximum(y1[i], y1[order[1:]])
xx2, yy2 = np.minimum(x2[i], x2[order[1:]]), np.minimum(y2[i], y2[order[1:]])
w, h = np.maximum(0.0, xx2 - xx1 + 1), np.maximum(0.0, yy2 - yy1 + 1)
ovr = w * h / (areas[i] + areas[order[1:]] - w * h)
inds = np.where(ovr <= thresh)[0]
order = order[inds + 1]
return keep
def encode(matched, priors, variances):
"""Encode the variances from the priorbox layers into the ground truth boxes
we have matched (based on jaccard overlap) with the prior boxes.
Args:
matched: (tensor) Coords of ground truth for each prior in point-form
Shape: [num_priors, 4].
priors: (tensor) Prior boxes in center-offset form
Shape: [num_priors,4].
variances: (list[float]) Variances of priorboxes
Return:
encoded boxes (tensor), Shape: [num_priors, 4]
"""
# dist b/t match center and prior's center
g_cxcy = (matched[:, :2] + matched[:, 2:]) / 2 - priors[:, :2]
# encode variance
g_cxcy /= (variances[0] * priors[:, 2:])
# match wh / prior wh
g_wh = (matched[:, 2:] - matched[:, :2]) / priors[:, 2:]
g_wh = torch.log(g_wh) / variances[1]
# return target for smooth_l1_loss
return torch.cat([g_cxcy, g_wh], 1) # [num_priors,4]
def decode(loc, priors, variances):
"""Decode locations from predictions using priors to undo
the encoding we did for offset regression at train time.
Args:
loc (tensor): location predictions for loc layers,
Shape: [num_priors,4]
priors (tensor): Prior boxes in center-offset form.
Shape: [num_priors,4].
variances: (list[float]) Variances of priorboxes
Return:
decoded bounding box predictions
"""
boxes = torch.cat((
priors[:, :2] + loc[:, :2] * variances[0] * priors[:, 2:],
priors[:, 2:] * torch.exp(loc[:, 2:] * variances[1])), 1)
boxes[:, :2] -= boxes[:, 2:] / 2
boxes[:, 2:] += boxes[:, :2]
return boxes
def batch_decode(loc, priors, variances):
"""Decode locations from predictions using priors to undo
the encoding we did for offset regression at train time.
Args:
loc (tensor): location predictions for loc layers,
Shape: [num_priors,4]
priors (tensor): Prior boxes in center-offset form.
Shape: [num_priors,4].
variances: (list[float]) Variances of priorboxes
Return:
decoded bounding box predictions
"""
boxes = torch.cat((
priors[:, :, :2] + loc[:, :, :2] * variances[0] * priors[:, :, 2:],
priors[:, :, 2:] * torch.exp(loc[:, :, 2:] * variances[1])), 2)
boxes[:, :, :2] -= boxes[:, :, 2:] / 2
boxes[:, :, 2:] += boxes[:, :, :2]
return boxes
|