Spaces:
Build error
Build error
File size: 10,389 Bytes
45ee559 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
import os
import shutil
import unittest
import numpy as np
import torch
from torch.utils.data import DataLoader
from tests import get_tests_data_path, get_tests_output_path
from TTS.tts.configs.shared_configs import BaseDatasetConfig, BaseTTSConfig
from TTS.tts.datasets import TTSDataset, load_tts_samples
from TTS.tts.utils.text.tokenizer import TTSTokenizer
from TTS.utils.audio import AudioProcessor
# pylint: disable=unused-variable
OUTPATH = os.path.join(get_tests_output_path(), "loader_tests/")
os.makedirs(OUTPATH, exist_ok=True)
# create a dummy config for testing data loaders.
c = BaseTTSConfig(text_cleaner="english_cleaners", num_loader_workers=0, batch_size=2, use_noise_augment=False)
c.r = 5
c.data_path = os.path.join(get_tests_data_path(), "ljspeech/")
ok_ljspeech = os.path.exists(c.data_path)
dataset_config = BaseDatasetConfig(
formatter="ljspeech_test", # ljspeech_test to multi-speaker
meta_file_train="metadata.csv",
meta_file_val=None,
path=c.data_path,
language="en",
)
DATA_EXIST = True
if not os.path.exists(c.data_path):
DATA_EXIST = False
print(" > Dynamic data loader test: {}".format(DATA_EXIST))
class TestTTSDataset(unittest.TestCase):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.max_loader_iter = 4
self.ap = AudioProcessor(**c.audio)
def _create_dataloader(self, batch_size, r, bgs, start_by_longest=False):
# load dataset
meta_data_train, meta_data_eval = load_tts_samples(dataset_config, eval_split=True, eval_split_size=0.2)
items = meta_data_train + meta_data_eval
tokenizer, _ = TTSTokenizer.init_from_config(c)
dataset = TTSDataset(
outputs_per_step=r,
compute_linear_spec=True,
return_wav=True,
tokenizer=tokenizer,
ap=self.ap,
samples=items,
batch_group_size=bgs,
min_text_len=c.min_text_len,
max_text_len=c.max_text_len,
min_audio_len=c.min_audio_len,
max_audio_len=c.max_audio_len,
start_by_longest=start_by_longest,
)
dataloader = DataLoader(
dataset,
batch_size=batch_size,
shuffle=False,
collate_fn=dataset.collate_fn,
drop_last=True,
num_workers=c.num_loader_workers,
)
return dataloader, dataset
def test_loader(self):
if ok_ljspeech:
dataloader, dataset = self._create_dataloader(1, 1, 0)
for i, data in enumerate(dataloader):
if i == self.max_loader_iter:
break
text_input = data["token_id"]
_ = data["token_id_lengths"]
speaker_name = data["speaker_names"]
linear_input = data["linear"]
mel_input = data["mel"]
mel_lengths = data["mel_lengths"]
_ = data["stop_targets"]
_ = data["item_idxs"]
wavs = data["waveform"]
neg_values = text_input[text_input < 0]
check_count = len(neg_values)
# check basic conditions
self.assertEqual(check_count, 0)
self.assertEqual(linear_input.shape[0], mel_input.shape[0], c.batch_size)
self.assertEqual(linear_input.shape[2], self.ap.fft_size // 2 + 1)
self.assertEqual(mel_input.shape[2], c.audio["num_mels"])
self.assertEqual(wavs.shape[1], mel_input.shape[1] * c.audio.hop_length)
self.assertIsInstance(speaker_name[0], str)
# make sure that the computed mels and the waveform match and correctly computed
mel_new = self.ap.melspectrogram(wavs[0].squeeze().numpy())
# remove padding in mel-spectrogram
mel_dataloader = mel_input[0].T.numpy()[:, : mel_lengths[0]]
# guarantee that both mel-spectrograms have the same size and that we will remove waveform padding
mel_new = mel_new[:, : mel_lengths[0]]
ignore_seg = -(1 + c.audio.win_length // c.audio.hop_length)
mel_diff = (mel_new[:, : mel_input.shape[1]] - mel_input[0].T.numpy())[:, 0:ignore_seg]
self.assertLess(abs(mel_diff.sum()), 1e-5)
# check normalization ranges
if self.ap.symmetric_norm:
self.assertLessEqual(mel_input.max(), self.ap.max_norm)
self.assertGreaterEqual(
mel_input.min(), -self.ap.max_norm # pylint: disable=invalid-unary-operand-type
)
self.assertLess(mel_input.min(), 0)
else:
self.assertLessEqual(mel_input.max(), self.ap.max_norm)
self.assertGreaterEqual(mel_input.min(), 0)
def test_batch_group_shuffle(self):
if ok_ljspeech:
dataloader, dataset = self._create_dataloader(2, c.r, 16)
last_length = 0
frames = dataset.samples
for i, data in enumerate(dataloader):
if i == self.max_loader_iter:
break
mel_lengths = data["mel_lengths"]
avg_length = mel_lengths.numpy().mean()
dataloader.dataset.preprocess_samples()
is_items_reordered = False
for idx, item in enumerate(dataloader.dataset.samples):
if item != frames[idx]:
is_items_reordered = True
break
self.assertGreaterEqual(avg_length, last_length)
self.assertTrue(is_items_reordered)
def test_start_by_longest(self):
"""Test start_by_longest option.
Ther first item of the fist batch must be longer than all the other items.
"""
if ok_ljspeech:
dataloader, _ = self._create_dataloader(2, c.r, 0, True)
dataloader.dataset.preprocess_samples()
for i, data in enumerate(dataloader):
if i == self.max_loader_iter:
break
mel_lengths = data["mel_lengths"]
if i == 0:
max_len = mel_lengths[0]
print(mel_lengths)
self.assertTrue(all(max_len >= mel_lengths))
def test_padding_and_spectrograms(self):
def check_conditions(idx, linear_input, mel_input, stop_target, mel_lengths):
self.assertNotEqual(linear_input[idx, -1].sum(), 0) # check padding
self.assertNotEqual(linear_input[idx, -2].sum(), 0)
self.assertNotEqual(mel_input[idx, -1].sum(), 0)
self.assertNotEqual(mel_input[idx, -2].sum(), 0)
self.assertEqual(stop_target[idx, -1], 1)
self.assertEqual(stop_target[idx, -2], 0)
self.assertEqual(stop_target[idx].sum(), 1)
self.assertEqual(len(mel_lengths.shape), 1)
self.assertEqual(mel_lengths[idx], linear_input[idx].shape[0])
self.assertEqual(mel_lengths[idx], mel_input[idx].shape[0])
if ok_ljspeech:
dataloader, _ = self._create_dataloader(1, 1, 0)
for i, data in enumerate(dataloader):
if i == self.max_loader_iter:
break
linear_input = data["linear"]
mel_input = data["mel"]
mel_lengths = data["mel_lengths"]
stop_target = data["stop_targets"]
item_idx = data["item_idxs"]
# check mel_spec consistency
wav = np.asarray(self.ap.load_wav(item_idx[0]), dtype=np.float32)
mel = self.ap.melspectrogram(wav).astype("float32")
mel = torch.FloatTensor(mel).contiguous()
mel_dl = mel_input[0]
# NOTE: Below needs to check == 0 but due to an unknown reason
# there is a slight difference between two matrices.
# TODO: Check this assert cond more in detail.
self.assertLess(abs(mel.T - mel_dl).max(), 1e-5)
# check mel-spec correctness
mel_spec = mel_input[0].cpu().numpy()
wav = self.ap.inv_melspectrogram(mel_spec.T)
self.ap.save_wav(wav, OUTPATH + "/mel_inv_dataloader.wav")
shutil.copy(item_idx[0], OUTPATH + "/mel_target_dataloader.wav")
# check linear-spec
linear_spec = linear_input[0].cpu().numpy()
wav = self.ap.inv_spectrogram(linear_spec.T)
self.ap.save_wav(wav, OUTPATH + "/linear_inv_dataloader.wav")
shutil.copy(item_idx[0], OUTPATH + "/linear_target_dataloader.wav")
# check the outputs
check_conditions(0, linear_input, mel_input, stop_target, mel_lengths)
# Test for batch size 2
dataloader, _ = self._create_dataloader(2, 1, 0)
for i, data in enumerate(dataloader):
if i == self.max_loader_iter:
break
linear_input = data["linear"]
mel_input = data["mel"]
mel_lengths = data["mel_lengths"]
stop_target = data["stop_targets"]
item_idx = data["item_idxs"]
# set id to the longest sequence in the batch
if mel_lengths[0] > mel_lengths[1]:
idx = 0
else:
idx = 1
# check the longer item in the batch
check_conditions(idx, linear_input, mel_input, stop_target, mel_lengths)
# check the other item in the batch
self.assertEqual(linear_input[1 - idx, -1].sum(), 0)
self.assertEqual(mel_input[1 - idx, -1].sum(), 0)
self.assertEqual(stop_target[1, mel_lengths[1] - 1], 1)
self.assertEqual(stop_target[1, mel_lengths[1] :].sum(), stop_target.shape[1] - mel_lengths[1])
self.assertEqual(len(mel_lengths.shape), 1)
# check batch zero-frame conditions (zero-frame disabled)
# assert (linear_input * stop_target.unsqueeze(2)).sum() == 0
# assert (mel_input * stop_target.unsqueeze(2)).sum() == 0
|