Spaces:
Build error
Build error
File size: 10,876 Bytes
46a75d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
import unittest
import torch as T
from TTS.tts.layers.losses import BCELossMasked, L1LossMasked, MSELossMasked, SSIMLoss
from TTS.tts.utils.helpers import sequence_mask
class L1LossMaskedTests(unittest.TestCase):
def test_in_out(self): # pylint: disable=no-self-use
# test input == target
layer = L1LossMasked(seq_len_norm=False)
dummy_input = T.ones(4, 8, 128).float()
dummy_target = T.ones(4, 8, 128).float()
dummy_length = (T.ones(4) * 8).long()
output = layer(dummy_input, dummy_target, dummy_length)
assert output.item() == 0.0
# test input != target
dummy_input = T.ones(4, 8, 128).float()
dummy_target = T.zeros(4, 8, 128).float()
dummy_length = (T.ones(4) * 8).long()
output = layer(dummy_input, dummy_target, dummy_length)
assert output.item() == 1.0, "1.0 vs {}".format(output.item())
# test if padded values of input makes any difference
dummy_input = T.ones(4, 8, 128).float()
dummy_target = T.zeros(4, 8, 128).float()
dummy_length = (T.arange(5, 9)).long()
mask = ((sequence_mask(dummy_length).float() - 1.0) * 100.0).unsqueeze(2)
output = layer(dummy_input + mask, dummy_target, dummy_length)
assert output.item() == 1.0, "1.0 vs {}".format(output.item())
dummy_input = T.rand(4, 8, 128).float()
dummy_target = dummy_input.detach()
dummy_length = (T.arange(5, 9)).long()
mask = ((sequence_mask(dummy_length).float() - 1.0) * 100.0).unsqueeze(2)
output = layer(dummy_input + mask, dummy_target, dummy_length)
assert output.item() == 0, "0 vs {}".format(output.item())
# seq_len_norm = True
# test input == target
layer = L1LossMasked(seq_len_norm=True)
dummy_input = T.ones(4, 8, 128).float()
dummy_target = T.ones(4, 8, 128).float()
dummy_length = (T.ones(4) * 8).long()
output = layer(dummy_input, dummy_target, dummy_length)
assert output.item() == 0.0
# test input != target
dummy_input = T.ones(4, 8, 128).float()
dummy_target = T.zeros(4, 8, 128).float()
dummy_length = (T.ones(4) * 8).long()
output = layer(dummy_input, dummy_target, dummy_length)
assert output.item() == 1.0, "1.0 vs {}".format(output.item())
# test if padded values of input makes any difference
dummy_input = T.ones(4, 8, 128).float()
dummy_target = T.zeros(4, 8, 128).float()
dummy_length = (T.arange(5, 9)).long()
mask = ((sequence_mask(dummy_length).float() - 1.0) * 100.0).unsqueeze(2)
output = layer(dummy_input + mask, dummy_target, dummy_length)
assert abs(output.item() - 1.0) < 1e-5, "1.0 vs {}".format(output.item())
dummy_input = T.rand(4, 8, 128).float()
dummy_target = dummy_input.detach()
dummy_length = (T.arange(5, 9)).long()
mask = ((sequence_mask(dummy_length).float() - 1.0) * 100.0).unsqueeze(2)
output = layer(dummy_input + mask, dummy_target, dummy_length)
assert output.item() == 0, "0 vs {}".format(output.item())
class MSELossMaskedTests(unittest.TestCase):
def test_in_out(self): # pylint: disable=no-self-use
# test input == target
layer = MSELossMasked(seq_len_norm=False)
dummy_input = T.ones(4, 8, 128).float()
dummy_target = T.ones(4, 8, 128).float()
dummy_length = (T.ones(4) * 8).long()
output = layer(dummy_input, dummy_target, dummy_length)
assert output.item() == 0.0
# test input != target
dummy_input = T.ones(4, 8, 128).float()
dummy_target = T.zeros(4, 8, 128).float()
dummy_length = (T.ones(4) * 8).long()
output = layer(dummy_input, dummy_target, dummy_length)
assert output.item() == 1.0, "1.0 vs {}".format(output.item())
# test if padded values of input makes any difference
dummy_input = T.ones(4, 8, 128).float()
dummy_target = T.zeros(4, 8, 128).float()
dummy_length = (T.arange(5, 9)).long()
mask = ((sequence_mask(dummy_length).float() - 1.0) * 100.0).unsqueeze(2)
output = layer(dummy_input + mask, dummy_target, dummy_length)
assert output.item() == 1.0, "1.0 vs {}".format(output.item())
dummy_input = T.rand(4, 8, 128).float()
dummy_target = dummy_input.detach()
dummy_length = (T.arange(5, 9)).long()
mask = ((sequence_mask(dummy_length).float() - 1.0) * 100.0).unsqueeze(2)
output = layer(dummy_input + mask, dummy_target, dummy_length)
assert output.item() == 0, "0 vs {}".format(output.item())
# seq_len_norm = True
# test input == target
layer = MSELossMasked(seq_len_norm=True)
dummy_input = T.ones(4, 8, 128).float()
dummy_target = T.ones(4, 8, 128).float()
dummy_length = (T.ones(4) * 8).long()
output = layer(dummy_input, dummy_target, dummy_length)
assert output.item() == 0.0
# test input != target
dummy_input = T.ones(4, 8, 128).float()
dummy_target = T.zeros(4, 8, 128).float()
dummy_length = (T.ones(4) * 8).long()
output = layer(dummy_input, dummy_target, dummy_length)
assert output.item() == 1.0, "1.0 vs {}".format(output.item())
# test if padded values of input makes any difference
dummy_input = T.ones(4, 8, 128).float()
dummy_target = T.zeros(4, 8, 128).float()
dummy_length = (T.arange(5, 9)).long()
mask = ((sequence_mask(dummy_length).float() - 1.0) * 100.0).unsqueeze(2)
output = layer(dummy_input + mask, dummy_target, dummy_length)
assert abs(output.item() - 1.0) < 1e-5, "1.0 vs {}".format(output.item())
dummy_input = T.rand(4, 8, 128).float()
dummy_target = dummy_input.detach()
dummy_length = (T.arange(5, 9)).long()
mask = ((sequence_mask(dummy_length).float() - 1.0) * 100.0).unsqueeze(2)
output = layer(dummy_input + mask, dummy_target, dummy_length)
assert output.item() == 0, "0 vs {}".format(output.item())
class SSIMLossTests(unittest.TestCase):
def test_in_out(self): # pylint: disable=no-self-use
# test input == target
layer = SSIMLoss()
dummy_input = T.ones(4, 57, 128).float()
dummy_target = T.ones(4, 57, 128).float()
dummy_length = (T.ones(4) * 8).long()
output = layer(dummy_input, dummy_target, dummy_length)
assert output.item() == 0.0
# test input != target
dummy_input = T.arange(0, 4 * 57 * 128)
dummy_input = dummy_input.reshape(4, 57, 128).float()
dummy_target = T.arange(-4 * 57 * 128, 0)
dummy_target = dummy_target.reshape(4, 57, 128).float()
dummy_target = -dummy_target
dummy_length = (T.ones(4) * 58).long()
output = layer(dummy_input, dummy_target, dummy_length)
assert output.item() >= 1.0, "0 vs {}".format(output.item())
# test if padded values of input makes any difference
dummy_input = T.ones(4, 57, 128).float()
dummy_target = T.zeros(4, 57, 128).float()
dummy_length = (T.arange(54, 58)).long()
mask = ((sequence_mask(dummy_length).float() - 1.0) * 100.0).unsqueeze(2)
output = layer(dummy_input + mask, dummy_target, dummy_length)
assert output.item() == 0.0
dummy_input = T.rand(4, 57, 128).float()
dummy_target = dummy_input.detach()
dummy_length = (T.arange(54, 58)).long()
mask = ((sequence_mask(dummy_length).float() - 1.0) * 100.0).unsqueeze(2)
output = layer(dummy_input + mask, dummy_target, dummy_length)
assert output.item() == 0, "0 vs {}".format(output.item())
# seq_len_norm = True
# test input == target
layer = L1LossMasked(seq_len_norm=True)
dummy_input = T.ones(4, 57, 128).float()
dummy_target = T.ones(4, 57, 128).float()
dummy_length = (T.ones(4) * 8).long()
output = layer(dummy_input, dummy_target, dummy_length)
assert output.item() == 0.0
# test input != target
dummy_input = T.ones(4, 57, 128).float()
dummy_target = T.zeros(4, 57, 128).float()
dummy_length = (T.ones(4) * 8).long()
output = layer(dummy_input, dummy_target, dummy_length)
assert output.item() == 1.0, "1.0 vs {}".format(output.item())
# test if padded values of input makes any difference
dummy_input = T.ones(4, 57, 128).float()
dummy_target = T.zeros(4, 57, 128).float()
dummy_length = (T.arange(54, 58)).long()
mask = ((sequence_mask(dummy_length).float() - 1.0) * 100.0).unsqueeze(2)
output = layer(dummy_input + mask, dummy_target, dummy_length)
assert abs(output.item() - 1.0) < 1e-5, "1.0 vs {}".format(output.item())
dummy_input = T.rand(4, 57, 128).float()
dummy_target = dummy_input.detach()
dummy_length = (T.arange(54, 58)).long()
mask = ((sequence_mask(dummy_length).float() - 1.0) * 100.0).unsqueeze(2)
output = layer(dummy_input + mask, dummy_target, dummy_length)
assert output.item() == 0, "0 vs {}".format(output.item())
class BCELossTest(unittest.TestCase):
def test_in_out(self): # pylint: disable=no-self-use
layer = BCELossMasked(pos_weight=5.0)
length = T.tensor([95])
target = (
1.0 - sequence_mask(length - 1, 100).float()
) # [0, 0, .... 1, 1] where the first 1 is the last mel frame
true_x = target * 200 - 100 # creates logits of [-100, -100, ... 100, 100] corresponding to target
zero_x = T.zeros(target.shape) - 100.0 # simulate logits if it never stops decoding
early_x = -200.0 * sequence_mask(length - 3, 100).float() + 100.0 # simulate logits on early stopping
late_x = -200.0 * sequence_mask(length + 1, 100).float() + 100.0 # simulate logits on late stopping
loss = layer(true_x, target, length)
self.assertEqual(loss.item(), 0.0)
loss = layer(early_x, target, length)
self.assertAlmostEqual(loss.item(), 2.1053, places=4)
loss = layer(late_x, target, length)
self.assertAlmostEqual(loss.item(), 5.2632, places=4)
loss = layer(zero_x, target, length)
self.assertAlmostEqual(loss.item(), 5.2632, places=4)
# pos_weight should be < 1 to penalize early stopping
layer = BCELossMasked(pos_weight=0.2)
loss = layer(true_x, target, length)
self.assertEqual(loss.item(), 0.0)
# when pos_weight < 1 overweight the early stopping loss
loss_early = layer(early_x, target, length)
loss_late = layer(late_x, target, length)
self.assertGreater(loss_early.item(), loss_late.item())
|