Spaces:
Build error
Build error
{ | |
"model": "Tacotron", | |
"run_name": "test_sample_dataset_run", | |
"run_description": "sample dataset test run", | |
// AUDIO PARAMETERS | |
"audio":{ | |
// stft parameters | |
"fft_size": 1024, // number of stft frequency levels. Size of the linear spectogram frame. | |
"win_length": 1024, // stft window length in ms. | |
"hop_length": 256, // stft window hop-lengh in ms. | |
"frame_length_ms": null, // stft window length in ms.If null, 'win_length' is used. | |
"frame_shift_ms": null, // stft window hop-lengh in ms. If null, 'hop_length' is used. | |
// Audio processing parameters | |
"sample_rate": 22050, // DATASET-RELATED: wav sample-rate. | |
"preemphasis": 0.0, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis. | |
"ref_level_db": 20, // reference level db, theoretically 20db is the sound of air. | |
// Silence trimming | |
"do_trim_silence": true,// enable trimming of slience of audio as you load it. LJspeech (true), TWEB (false), Nancy (true) | |
"trim_db": 60, // threshold for timming silence. Set this according to your dataset. | |
// Griffin-Lim | |
"power": 1.5, // value to sharpen wav signals after GL algorithm. | |
"griffin_lim_iters": 60,// #griffin-lim iterations. 30-60 is a good range. Larger the value, slower the generation. | |
// MelSpectrogram parameters | |
"num_mels": 80, // size of the mel spec frame. | |
"mel_fmin": 0.0, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!! | |
"mel_fmax": 8000.0, // maximum freq level for mel-spec. Tune for dataset!! | |
"spec_gain": 20.0, | |
// Normalization parameters | |
"signal_norm": true, // normalize spec values. Mean-Var normalization if 'stats_path' is defined otherwise range normalization defined by the other params. | |
"min_level_db": -100, // lower bound for normalization | |
"symmetric_norm": true, // move normalization to range [-1, 1] | |
"max_norm": 4.0, // scale normalization to range [-max_norm, max_norm] or [0, max_norm] | |
"clip_norm": true, // clip normalized values into the range. | |
"stats_path": null // DO NOT USE WITH MULTI_SPEAKER MODEL. scaler stats file computed by 'compute_statistics.py'. If it is defined, mean-std based notmalization is used and other normalization params are ignored | |
}, | |
// VOCABULARY PARAMETERS | |
// if custom character set is not defined, | |
// default set in symbols.py is used | |
// "characters":{ | |
// "pad": "_", | |
// "eos": "~", | |
// "bos": "^", | |
// "characters": "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz!'(),-.:;? ", | |
// "punctuations":"!'(),-.:;? ", | |
// "phonemes":"iyɨʉɯuɪʏʊeøɘəɵɤoɛœɜɞʌɔæɐaɶɑɒᵻʘɓǀɗǃʄǂɠǁʛpbtdʈɖcɟkɡqɢʔɴŋɲɳnɱmʙrʀⱱɾɽɸβfvθðszʃʒʂʐçʝxɣχʁħʕhɦɬɮʋɹɻjɰlɭʎʟˈˌːˑʍwɥʜʢʡɕʑɺɧɚ˞ɫ" | |
// }, | |
// DISTRIBUTED TRAINING | |
"distributed":{ | |
"backend": "nccl", | |
"url": "tcp:\/\/localhost:54321" | |
}, | |
"reinit_layers": [], // give a list of layer names to restore from the given checkpoint. If not defined, it reloads all heuristically matching layers. | |
// TRAINING | |
"batch_size": 1, // Batch size for training. Lower values than 32 might cause hard to learn attention. It is overwritten by 'gradual_training'. | |
"eval_batch_size":1, | |
"r": 7, // Number of decoder frames to predict per iteration. Set the initial values if gradual training is enabled. | |
"gradual_training": [[0, 7, 4]], //set gradual training steps [first_step, r, batch_size]. If it is null, gradual training is disabled. For Tacotron, you might need to reduce the 'batch_size' as you proceeed. | |
"loss_masking": true, // enable / disable loss masking against the sequence padding. | |
"ga_alpha": 10.0, // weight for guided attention loss. If > 0, guided attention is enabled. | |
"mixed_precision": false, | |
// VALIDATION | |
"run_eval": true, | |
"test_delay_epochs": 0, //Until attention is aligned, testing only wastes computation time. | |
"test_sentences_file": null, // set a file to load sentences to be used for testing. If it is null then we use default english sentences. | |
// LOSS SETTINGS | |
"loss_masking": true, // enable / disable loss masking against the sequence padding. | |
"decoder_loss_alpha": 0.5, // original decoder loss weight. If > 0, it is enabled | |
"postnet_loss_alpha": 0.25, // original postnet loss weight. If > 0, it is enabled | |
"postnet_diff_spec_alpha": 0.25, // differential spectral loss weight. If > 0, it is enabled | |
"decoder_diff_spec_alpha": 0.25, // differential spectral loss weight. If > 0, it is enabled | |
"decoder_ssim_alpha": 0.5, // decoder ssim loss weight. If > 0, it is enabled | |
"postnet_ssim_alpha": 0.25, // postnet ssim loss weight. If > 0, it is enabled | |
"ga_alpha": 5.0, // weight for guided attention loss. If > 0, guided attention is enabled. | |
"stopnet_pos_weight": 15.0, // pos class weight for stopnet loss since there are way more negative samples than positive samples. | |
// OPTIMIZER | |
"noam_schedule": false, // use noam warmup and lr schedule. | |
"grad_clip": 1.0, // upper limit for gradients for clipping. | |
"epochs": 1, // total number of epochs to train. | |
"lr": 0.0001, // Initial learning rate. If Noam decay is active, maximum learning rate. | |
"wd": 0.000001, // Weight decay weight. | |
"warmup_steps": 4000, // Noam decay steps to increase the learning rate from 0 to "lr" | |
"seq_len_norm": false, // Normalize eash sample loss with its length to alleviate imbalanced datasets. Use it if your dataset is small or has skewed distribution of sequence lengths. | |
// TACOTRON PRENET | |
"memory_size": -1, // ONLY TACOTRON - size of the memory queue used fro storing last decoder predictions for auto-regression. If < 0, memory queue is disabled and decoder only uses the last prediction frame. | |
"prenet_type": "bn", // "original" or "bn". | |
"prenet_dropout": false, // enable/disable dropout at prenet. | |
// TACOTRON ATTENTION | |
"attention_type": "original", // 'original' , 'graves', 'dynamic_convolution' | |
"attention_heads": 4, // number of attention heads (only for 'graves') | |
"attention_norm": "sigmoid", // softmax or sigmoid. | |
"windowing": false, // Enables attention windowing. Used only in eval mode. | |
"use_forward_attn": false, // if it uses forward attention. In general, it aligns faster. | |
"forward_attn_mask": false, // Additional masking forcing monotonicity only in eval mode. | |
"transition_agent": false, // enable/disable transition agent of forward attention. | |
"location_attn": true, // enable_disable location sensitive attention. It is enabled for TACOTRON by default. | |
"bidirectional_decoder": true, // use https://arxiv.org/abs/1907.09006. Use it, if attention does not work well with your dataset. | |
"double_decoder_consistency": false, // use DDC explained here https://erogol.com/solving-attention-problems-of-tts-models-with-double-decoder-consistency-draft/ | |
"ddc_r": 7, // reduction rate for coarse decoder. | |
// STOPNET | |
"stopnet": true, // Train stopnet predicting the end of synthesis. | |
"separate_stopnet": true, // Train stopnet seperately if 'stopnet==true'. It prevents stopnet loss to influence the rest of the model. It causes a better model, but it trains SLOWER. | |
// TENSORBOARD and LOGGING | |
"print_step": 1, // Number of steps to log training on console. | |
"tb_plot_step": 100, // Number of steps to plot TB training figures. | |
"print_eval": false, // If True, it prints intermediate loss values in evalulation. | |
"save_step": 10000, // Number of training steps expected to save traninpg stats and checkpoints. | |
"checkpoint": true, // If true, it saves checkpoints per "save_step" | |
"keep_all_best": true, // If true, keeps all best_models after keep_after steps | |
"keep_after": 10000, // Global step after which to keep best models if keep_all_best is true | |
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging. | |
// DATA LOADING | |
"text_cleaner": "phoneme_cleaners", | |
"enable_eos_bos_chars": false, // enable/disable beginning of sentence and end of sentence chars. | |
"num_loader_workers": 0, // number of training data loader processes. Don't set it too big. 4-8 are good values. | |
"num_eval_loader_workers": 0, // number of evaluation data loader processes. | |
"batch_group_size": 0, //Number of batches to shuffle after bucketing. | |
"min_seq_len": 6, // DATASET-RELATED: minimum text length to use in training | |
"max_seq_len": 153, // DATASET-RELATED: maximum text length | |
"compute_input_seq_cache": true, | |
// PATHS | |
"output_path": "tests/train_outputs/", | |
// PHONEMES | |
"phoneme_cache_path": "tests/train_outputs/phoneme_cache/", // phoneme computation is slow, therefore, it caches results in the given folder. | |
"use_phonemes": false, // use phonemes instead of raw characters. It is suggested for better pronounciation. | |
"phoneme_language": "en-us", // depending on your target language, pick one from https://github.com/bootphon/phonemizer#languages | |
// MULTI-SPEAKER and GST | |
"use_d_vector_file": false, | |
"d_vector_file": null, | |
"use_speaker_embedding": false, // use speaker embedding to enable multi-speaker learning. | |
"use_gst": true, // use global style tokens | |
"gst": { // gst parameter if gst is enabled | |
"gst_style_input": null, // Condition the style input either on a | |
// -> wave file [path to wave] or | |
// -> dictionary using the style tokens {'token1': 'value', 'token2': 'value'} example {"0": 0.15, "1": 0.15, "5": -0.15} | |
// with the dictionary being len(dict) == len(gst_style_tokens). | |
"gst_use_speaker_embedding": true, // if true pass speaker embedding in attention input GST. | |
"gst_embedding_dim": 512, | |
"gst_num_heads": 4, | |
"gst_style_tokens": 10 | |
}, | |
// DATASETS | |
"train_portion": 0.1, // dataset portion used for training. It is mainly for internal experiments. | |
"eval_portion": 0.1, // dataset portion used for training. It is mainly for internal experiments. | |
"datasets": // List of datasets. They all merged and they get different speaker_ids. | |
[ | |
{ | |
"formatter": "ljspeech", | |
"path": "tests/data/ljspeech/", | |
"meta_file_train": "metadata.csv", | |
"meta_file_val": "metadata.csv" | |
} | |
] | |
} | |