diff --git a/TTS/.cardboardlint.yml b/TTS/.cardboardlint.yml new file mode 100644 index 0000000000000000000000000000000000000000..4a115a37cddb065c76afebc905476e650f53d085 --- /dev/null +++ b/TTS/.cardboardlint.yml @@ -0,0 +1,5 @@ +linters: +- pylint: + # pylintrc: pylintrc + filefilter: ['- test_*.py', '+ *.py', '- *.npy'] + # exclude: \ No newline at end of file diff --git a/TTS/.dockerignore b/TTS/.dockerignore new file mode 100644 index 0000000000000000000000000000000000000000..8d8ad918c964012d81e3913af1a9ba76afa50140 --- /dev/null +++ b/TTS/.dockerignore @@ -0,0 +1,9 @@ +.git/ +Dockerfile +build/ +dist/ +TTS.egg-info/ +tests/outputs/* +tests/train_outputs/* +__pycache__/ +*.pyc \ No newline at end of file diff --git a/TTS/.github/ISSUE_TEMPLATE/bug_report.yaml b/TTS/.github/ISSUE_TEMPLATE/bug_report.yaml new file mode 100644 index 0000000000000000000000000000000000000000..34cde7e8448cf817dc00bdc3a116e64fed079284 --- /dev/null +++ b/TTS/.github/ISSUE_TEMPLATE/bug_report.yaml @@ -0,0 +1,85 @@ +name: "๐Ÿ› Bug report" +description: Create a bug report to help ๐Ÿธ improve +title: '[Bug] ' +labels: [ "bug" ] +body: + - type: markdown + attributes: + value: | + Welcome to the ๐ŸธTTS! Thanks for taking the time to fill out this bug report! + + - type: textarea + id: bug-description + attributes: + label: Describe the bug + description: A clear and concise description of what the bug is. If you intend to submit a PR for this issue, tell us in the description. Thanks! + placeholder: Bug description + validations: + required: true + + - type: textarea + id: reproduction + attributes: + label: To Reproduce + description: | + Please share your code to reproduce the error. + + Issues are fixed faster if you can provide a working example. + + The best place for sharing code is colab. https://colab.research.google.com/ + So we can directly run your code and reproduce the issue. + + In the worse case, provide steps to reproduce the behavior. + + 1. Run the following command '...' + 2. ... + 3. See error + placeholder: Reproduction + validations: + required: true + + - type: textarea + id: expected-behavior + attributes: + label: Expected behavior + description: "Write down what the expected behaviour" + + - type: textarea + id: logs + attributes: + label: Logs + description: "Please include the relevant logs if you can." + render: shell + + - type: textarea + id: system-info + attributes: + label: Environment + description: | + You can either run `TTS/bin/collect_env_info.py` + + ```bash + wget https://raw.githubusercontent.com/coqui-ai/TTS/main/TTS/bin/collect_env_info.py + python collect_env_info.py + ``` + + or fill in the fields below manually. + render: shell + placeholder: | + - ๐ŸธTTS Version (e.g., 1.3.0): + - PyTorch Version (e.g., 1.8) + - Python version: + - OS (e.g., Linux): + - CUDA/cuDNN version: + - GPU models and configuration: + - How you installed PyTorch (`conda`, `pip`, source): + - Any other relevant information: + validations: + required: true + - type: textarea + id: context + attributes: + label: Additional context + description: Add any other context about the problem here. + validations: + required: false diff --git a/TTS/.github/ISSUE_TEMPLATE/config.yml b/TTS/.github/ISSUE_TEMPLATE/config.yml new file mode 100644 index 0000000000000000000000000000000000000000..05ca7db6bd1c24907a0aeeb95d9ecec5271e7351 --- /dev/null +++ b/TTS/.github/ISSUE_TEMPLATE/config.yml @@ -0,0 +1,8 @@ +blank_issues_enabled: false +contact_links: + - name: CoquiTTS GitHub Discussions + url: https://github.com/coqui-ai/TTS/discussions + about: Please ask and answer questions here. + - name: Coqui Security issue disclosure + url: mailto:info@coqui.ai + about: Please report security vulnerabilities here. diff --git a/TTS/.github/ISSUE_TEMPLATE/feature_request.md b/TTS/.github/ISSUE_TEMPLATE/feature_request.md new file mode 100644 index 0000000000000000000000000000000000000000..941ab9b143c748eb1aea6237c09bfc08b675bce8 --- /dev/null +++ b/TTS/.github/ISSUE_TEMPLATE/feature_request.md @@ -0,0 +1,25 @@ +--- +name: ๐Ÿš€ Feature request +about: Suggest a feature or an idea for this project +title: '[Feature request] ' +labels: feature request +assignees: '' + +--- + +**๐Ÿš€ Feature Description** + + + +**Solution** + + + +**Alternative Solutions** + + + +**Additional context** + + diff --git a/TTS/.github/PR_TEMPLATE.md b/TTS/.github/PR_TEMPLATE.md new file mode 100644 index 0000000000000000000000000000000000000000..330109c3bc1c99134587537a0e8165ce63ca8103 --- /dev/null +++ b/TTS/.github/PR_TEMPLATE.md @@ -0,0 +1,15 @@ +# Pull request guidelines + +Welcome to the ๐ŸธTTS project! We are excited to see your interest, and appreciate your support! + +This repository is governed by the Contributor Covenant Code of Conduct. For more details, see the [CODE_OF_CONDUCT.md](CODE_OF_CONDUCT.md) file. + +In order to make a good pull request, please see our [CONTRIBUTING.md](CONTRIBUTING.md) file. + +Before accepting your pull request, you will be asked to sign a [Contributor License Agreement](https://cla-assistant.io/coqui-ai/TTS). + +This [Contributor License Agreement](https://cla-assistant.io/coqui-ai/TTS): + +- Protects you, Coqui, and the users of the code. +- Does not change your rights to use your contributions for any purpose. +- Does not change the license of the ๐ŸธTTS project. It just makes the terms of your contribution clearer and lets us know you are OK to contribute. diff --git a/TTS/.github/stale.yml b/TTS/.github/stale.yml new file mode 100644 index 0000000000000000000000000000000000000000..e05eaf0b571573cc505ab46eacd5cd87d05b6c60 --- /dev/null +++ b/TTS/.github/stale.yml @@ -0,0 +1,18 @@ +# Number of days of inactivity before an issue becomes stale +daysUntilStale: 30 +# Number of days of inactivity before a stale issue is closed +daysUntilClose: 7 +# Issues with these labels will never be considered stale +exemptLabels: + - pinned + - security +# Label to use when marking an issue as stale +staleLabel: wontfix +# Comment to post when marking an issue as stale. Set to `false` to disable +markComment: > + This issue has been automatically marked as stale because it has not had + recent activity. It will be closed if no further activity occurs. Thank you + for your contributions. You might also look our discussion channels. +# Comment to post when closing a stale issue. Set to `false` to disable +closeComment: false + diff --git a/TTS/.github/workflows/api_tests.yml b/TTS/.github/workflows/api_tests.yml new file mode 100644 index 0000000000000000000000000000000000000000..5a3baaad9ee9ebaaa84bf292b8be826063cfed53 --- /dev/null +++ b/TTS/.github/workflows/api_tests.yml @@ -0,0 +1,53 @@ +name: api_tests + +on: + push: + branches: + - main +jobs: + check_skip: + runs-on: ubuntu-latest + if: "! contains(github.event.head_commit.message, '[ci skip]')" + steps: + - run: echo "${{ github.event.head_commit.message }}" + + test: + runs-on: ubuntu-latest + strategy: + fail-fast: false + matrix: + python-version: [3.9, "3.10", "3.11"] + experimental: [false] + steps: + - uses: actions/checkout@v3 + - name: Set up Python ${{ matrix.python-version }} + uses: actions/setup-python@v4 + with: + python-version: ${{ matrix.python-version }} + architecture: x64 + cache: 'pip' + cache-dependency-path: 'requirements*' + - name: check OS + run: cat /etc/os-release + - name: set ENV + run: | + export TRAINER_TELEMETRY=0 + - name: Install dependencies + run: | + sudo apt-get update + sudo apt-get install -y --no-install-recommends git make gcc + sudo apt-get install espeak-ng + make system-deps + - name: Install/upgrade Python setup deps + run: python3 -m pip install --upgrade pip setuptools wheel + - name: Replace scarf urls + run: | + sed -i 's/https:\/\/coqui.gateway.scarf.sh\//https:\/\/github.com\/coqui-ai\/TTS\/releases\/download\//g' TTS/.models.json + - name: Install TTS + run: | + python3 -m pip install .[all] + python3 setup.py egg_info + - name: Unit tests + run: make api_tests + env: + COQUI_STUDIO_TOKEN: ${{ secrets.COQUI_STUDIO_TOKEN }} diff --git a/TTS/.github/workflows/aux_tests.yml b/TTS/.github/workflows/aux_tests.yml new file mode 100644 index 0000000000000000000000000000000000000000..f4cb3ecfe1ba25ac24ff395f690e334a394d9acc --- /dev/null +++ b/TTS/.github/workflows/aux_tests.yml @@ -0,0 +1,51 @@ +name: aux-tests + +on: + push: + branches: + - main + pull_request: + types: [opened, synchronize, reopened] +jobs: + check_skip: + runs-on: ubuntu-latest + if: "! contains(github.event.head_commit.message, '[ci skip]')" + steps: + - run: echo "${{ github.event.head_commit.message }}" + + test: + runs-on: ubuntu-latest + strategy: + fail-fast: false + matrix: + python-version: [3.9, "3.10", "3.11"] + experimental: [false] + steps: + - uses: actions/checkout@v3 + - name: Set up Python ${{ matrix.python-version }} + uses: actions/setup-python@v4 + with: + python-version: ${{ matrix.python-version }} + architecture: x64 + cache: 'pip' + cache-dependency-path: 'requirements*' + - name: check OS + run: cat /etc/os-release + - name: set ENV + run: export TRAINER_TELEMETRY=0 + - name: Install dependencies + run: | + sudo apt-get update + sudo apt-get install -y git make gcc + make system-deps + - name: Install/upgrade Python setup deps + run: python3 -m pip install --upgrade pip setuptools wheel + - name: Replace scarf urls + run: | + sed -i 's/https:\/\/coqui.gateway.scarf.sh\//https:\/\/github.com\/coqui-ai\/TTS\/releases\/download\//g' TTS/.models.json + - name: Install TTS + run: | + python3 -m pip install .[all] + python3 setup.py egg_info + - name: Unit tests + run: make test_aux diff --git a/TTS/.github/workflows/data_tests.yml b/TTS/.github/workflows/data_tests.yml new file mode 100644 index 0000000000000000000000000000000000000000..3d1e3f8c4d43669afe82810b46cd7b6babe59eef --- /dev/null +++ b/TTS/.github/workflows/data_tests.yml @@ -0,0 +1,51 @@ +name: data-tests + +on: + push: + branches: + - main + pull_request: + types: [opened, synchronize, reopened] +jobs: + check_skip: + runs-on: ubuntu-latest + if: "! contains(github.event.head_commit.message, '[ci skip]')" + steps: + - run: echo "${{ github.event.head_commit.message }}" + + test: + runs-on: ubuntu-latest + strategy: + fail-fast: false + matrix: + python-version: [3.9, "3.10", "3.11"] + experimental: [false] + steps: + - uses: actions/checkout@v3 + - name: Set up Python ${{ matrix.python-version }} + uses: actions/setup-python@v4 + with: + python-version: ${{ matrix.python-version }} + architecture: x64 + cache: 'pip' + cache-dependency-path: 'requirements*' + - name: check OS + run: cat /etc/os-release + - name: set ENV + run: export TRAINER_TELEMETRY=0 + - name: Install dependencies + run: | + sudo apt-get update + sudo apt-get install -y --no-install-recommends git make gcc + make system-deps + - name: Install/upgrade Python setup deps + run: python3 -m pip install --upgrade pip setuptools wheel + - name: Replace scarf urls + run: | + sed -i 's/https:\/\/coqui.gateway.scarf.sh\//https:\/\/github.com\/coqui-ai\/TTS\/releases\/download\//g' TTS/.models.json + - name: Install TTS + run: | + python3 -m pip install .[all] + python3 setup.py egg_info + - name: Unit tests + run: make data_tests diff --git a/TTS/.github/workflows/docker.yaml b/TTS/.github/workflows/docker.yaml new file mode 100644 index 0000000000000000000000000000000000000000..1f15159b42e8bf3d5077b1efbf81518b0dd13688 --- /dev/null +++ b/TTS/.github/workflows/docker.yaml @@ -0,0 +1,65 @@ +name: "Docker build and push" +on: + pull_request: + push: + branches: + - main + - dev + tags: + - v* +jobs: + docker-build: + name: "Build and push Docker image" + runs-on: ubuntu-20.04 + strategy: + matrix: + arch: ["amd64"] + base: + - "nvidia/cuda:11.8.0-base-ubuntu22.04" # GPU enabled + - "python:3.10.8-slim" # CPU only + steps: + - uses: actions/checkout@v2 + - name: Log in to the Container registry + uses: docker/login-action@v1 + with: + registry: ghcr.io + username: ${{ github.actor }} + password: ${{ secrets.GITHUB_TOKEN }} + - name: Compute Docker tags, check VERSION file matches tag + id: compute-tag + run: | + set -ex + base="ghcr.io/coqui-ai/tts" + tags="" # PR build + + if [[ ${{ matrix.base }} = "python:3.10.8-slim" ]]; then + base="ghcr.io/coqui-ai/tts-cpu" + fi + + if [[ "${{ startsWith(github.ref, 'refs/heads/') }}" = "true" ]]; then + # Push to branch + github_ref="${{ github.ref }}" + branch=${github_ref#*refs/heads/} # strip prefix to get branch name + tags="${base}:${branch},${base}:${{ github.sha }}," + elif [[ "${{ startsWith(github.ref, 'refs/tags/') }}" = "true" ]]; then + VERSION="v$(cat TTS/VERSION)" + if [[ "${{ github.ref }}" != "refs/tags/${VERSION}" ]]; then + echo "Pushed tag does not match VERSION file. Aborting push." + exit 1 + fi + tags="${base}:${VERSION},${base}:latest,${base}:${{ github.sha }}" + fi + echo "::set-output name=tags::${tags}" + - name: Set up QEMU + uses: docker/setup-qemu-action@v1 + - name: Set up Docker Buildx + id: buildx + uses: docker/setup-buildx-action@v1 + - name: Build and push + uses: docker/build-push-action@v2 + with: + context: . + platforms: linux/${{ matrix.arch }} + push: ${{ github.event_name == 'push' }} + build-args: "BASE=${{ matrix.base }}" + tags: ${{ steps.compute-tag.outputs.tags }} diff --git a/TTS/.github/workflows/inference_tests.yml b/TTS/.github/workflows/inference_tests.yml new file mode 100644 index 0000000000000000000000000000000000000000..d2159027b6ce983d0806c02dbc8dbd21cbcdf3d3 --- /dev/null +++ b/TTS/.github/workflows/inference_tests.yml @@ -0,0 +1,53 @@ +name: inference_tests + +on: + push: + branches: + - main + pull_request: + types: [opened, synchronize, reopened] +jobs: + check_skip: + runs-on: ubuntu-latest + if: "! contains(github.event.head_commit.message, '[ci skip]')" + steps: + - run: echo "${{ github.event.head_commit.message }}" + + test: + runs-on: ubuntu-latest + strategy: + fail-fast: false + matrix: + python-version: [3.9, "3.10", "3.11"] + experimental: [false] + steps: + - uses: actions/checkout@v3 + - name: Set up Python ${{ matrix.python-version }} + uses: actions/setup-python@v4 + with: + python-version: ${{ matrix.python-version }} + architecture: x64 + cache: 'pip' + cache-dependency-path: 'requirements*' + - name: check OS + run: cat /etc/os-release + - name: set ENV + run: | + export TRAINER_TELEMETRY=0 + - name: Install dependencies + run: | + sudo apt-get update + sudo apt-get install -y --no-install-recommends git make gcc + sudo apt-get install espeak-ng + make system-deps + - name: Install/upgrade Python setup deps + run: python3 -m pip install --upgrade pip setuptools wheel + - name: Replace scarf urls + run: | + sed -i 's/https:\/\/coqui.gateway.scarf.sh\//https:\/\/github.com\/coqui-ai\/TTS\/releases\/download\//g' TTS/.models.json + - name: Install TTS + run: | + python3 -m pip install .[all] + python3 setup.py egg_info + - name: Unit tests + run: make inference_tests diff --git a/TTS/.github/workflows/pypi-release.yml b/TTS/.github/workflows/pypi-release.yml new file mode 100644 index 0000000000000000000000000000000000000000..49a5b3004e7ed657b7edfcf1da27a4beb2285e97 --- /dev/null +++ b/TTS/.github/workflows/pypi-release.yml @@ -0,0 +1,94 @@ +name: Publish Python ๐Ÿ distributions ๐Ÿ“ฆ to PyPI +on: + release: + types: [published] +defaults: + run: + shell: + bash +jobs: + build-sdist: + runs-on: ubuntu-20.04 + steps: + - uses: actions/checkout@v2 + - name: Verify tag matches version + run: | + set -ex + version=$(cat TTS/VERSION) + tag="${GITHUB_REF/refs\/tags\/}" + if [[ "v$version" != "$tag" ]]; then + exit 1 + fi + - uses: actions/setup-python@v2 + with: + python-version: 3.9 + - run: | + python -m pip install -U pip setuptools wheel build + - run: | + python -m build + - run: | + pip install dist/*.tar.gz + - uses: actions/upload-artifact@v2 + with: + name: sdist + path: dist/*.tar.gz + build-wheels: + runs-on: ubuntu-20.04 + strategy: + matrix: + python-version: ["3.9", "3.10", "3.11"] + steps: + - uses: actions/checkout@v2 + - uses: actions/setup-python@v2 + with: + python-version: ${{ matrix.python-version }} + - name: Install pip requirements + run: | + python -m pip install -U pip setuptools wheel build + python -m pip install -r requirements.txt + - name: Setup and install manylinux1_x86_64 wheel + run: | + python setup.py bdist_wheel --plat-name=manylinux1_x86_64 + python -m pip install dist/*-manylinux*.whl + - uses: actions/upload-artifact@v2 + with: + name: wheel-${{ matrix.python-version }} + path: dist/*-manylinux*.whl + publish-artifacts: + runs-on: ubuntu-20.04 + needs: [build-sdist, build-wheels] + steps: + - run: | + mkdir dist + - uses: actions/download-artifact@v2 + with: + name: "sdist" + path: "dist/" + - uses: actions/download-artifact@v2 + with: + name: "wheel-3.9" + path: "dist/" + - uses: actions/download-artifact@v2 + with: + name: "wheel-3.10" + path: "dist/" + - uses: actions/download-artifact@v2 + with: + name: "wheel-3.11" + path: "dist/" + - run: | + ls -lh dist/ + - name: Setup PyPI config + run: | + cat << EOF > ~/.pypirc + [pypi] + username=__token__ + password=${{ secrets.PYPI_TOKEN }} + EOF + - uses: actions/setup-python@v2 + with: + python-version: 3.9 + - run: | + python -m pip install twine + - run: | + twine upload --repository pypi dist/* diff --git a/TTS/.github/workflows/style_check.yml b/TTS/.github/workflows/style_check.yml new file mode 100644 index 0000000000000000000000000000000000000000..c167f7ca444c7c4376e71d43c16b470138cb7d37 --- /dev/null +++ b/TTS/.github/workflows/style_check.yml @@ -0,0 +1,47 @@ +name: style-check + +on: + push: + branches: + - main + pull_request: + types: [opened, synchronize, reopened] +jobs: + check_skip: + runs-on: ubuntu-latest + if: "! contains(github.event.head_commit.message, '[ci skip]')" + steps: + - run: echo "${{ github.event.head_commit.message }}" + + test: + runs-on: ubuntu-latest + strategy: + fail-fast: false + matrix: + python-version: [3.9] + experimental: [false] + steps: + - uses: actions/checkout@v3 + - name: Set up Python ${{ matrix.python-version }} + uses: actions/setup-python@v4 + with: + python-version: ${{ matrix.python-version }} + architecture: x64 + cache: 'pip' + cache-dependency-path: 'requirements*' + - name: check OS + run: cat /etc/os-release + - name: Install dependencies + run: | + sudo apt-get update + sudo apt-get install -y git make gcc + make system-deps + - name: Install/upgrade Python setup deps + run: python3 -m pip install --upgrade pip setuptools wheel + - name: Install TTS + run: | + python3 -m pip install .[all] + python3 setup.py egg_info + # - name: Lint check + # run: | + # make lint \ No newline at end of file diff --git a/TTS/.github/workflows/text_tests.yml b/TTS/.github/workflows/text_tests.yml new file mode 100644 index 0000000000000000000000000000000000000000..78d3026d7f155d905786ae037376e99b21dce153 --- /dev/null +++ b/TTS/.github/workflows/text_tests.yml @@ -0,0 +1,50 @@ +name: text-tests + +on: + push: + branches: + - main + pull_request: + types: [opened, synchronize, reopened] +jobs: + check_skip: + runs-on: ubuntu-latest + if: "! contains(github.event.head_commit.message, '[ci skip]')" + steps: + - run: echo "${{ github.event.head_commit.message }}" + + test: + runs-on: ubuntu-latest + strategy: + fail-fast: false + matrix: + python-version: [3.9, "3.10", "3.11"] + experimental: [false] + steps: + - uses: actions/checkout@v3 + - name: Set up Python ${{ matrix.python-version }} + uses: actions/setup-python@v4 + with: + python-version: ${{ matrix.python-version }} + architecture: x64 + cache: 'pip' + cache-dependency-path: 'requirements*' + - name: check OS + run: cat /etc/os-release + - name: set ENV + run: export TRAINER_TELEMETRY=0 + - name: Install dependencies + run: | + sudo apt-get update + sudo apt-get install -y --no-install-recommends git make gcc + sudo apt-get install espeak + sudo apt-get install espeak-ng + make system-deps + - name: Install/upgrade Python setup deps + run: python3 -m pip install --upgrade pip setuptools wheel + - name: Install TTS + run: | + python3 -m pip install .[all] + python3 setup.py egg_info + - name: Unit tests + run: make test_text diff --git a/TTS/.github/workflows/tts_tests.yml b/TTS/.github/workflows/tts_tests.yml new file mode 100644 index 0000000000000000000000000000000000000000..5074cded6d0b7ffab940261cd904b5d2da586480 --- /dev/null +++ b/TTS/.github/workflows/tts_tests.yml @@ -0,0 +1,53 @@ +name: tts-tests + +on: + push: + branches: + - main + pull_request: + types: [opened, synchronize, reopened] +jobs: + check_skip: + runs-on: ubuntu-latest + if: "! contains(github.event.head_commit.message, '[ci skip]')" + steps: + - run: echo "${{ github.event.head_commit.message }}" + + test: + runs-on: ubuntu-latest + strategy: + fail-fast: false + matrix: + python-version: [3.9, "3.10", "3.11"] + experimental: [false] + steps: + - uses: actions/checkout@v3 + - name: Set up Python ${{ matrix.python-version }} + uses: actions/setup-python@v4 + with: + python-version: ${{ matrix.python-version }} + architecture: x64 + cache: 'pip' + cache-dependency-path: 'requirements*' + - name: check OS + run: cat /etc/os-release + - name: set ENV + run: export TRAINER_TELEMETRY=0 + - name: Install dependencies + run: | + sudo apt-get update + sudo apt-get install -y --no-install-recommends git make gcc + sudo apt-get install espeak + sudo apt-get install espeak-ng + make system-deps + - name: Install/upgrade Python setup deps + run: python3 -m pip install --upgrade pip setuptools wheel + - name: Replace scarf urls + run: | + sed -i 's/https:\/\/coqui.gateway.scarf.sh\//https:\/\/github.com\/coqui-ai\/TTS\/releases\/download\//g' TTS/.models.json + - name: Install TTS + run: | + python3 -m pip install .[all] + python3 setup.py egg_info + - name: Unit tests + run: make test_tts diff --git a/TTS/.github/workflows/tts_tests2.yml b/TTS/.github/workflows/tts_tests2.yml new file mode 100644 index 0000000000000000000000000000000000000000..f64433f8df6197dae1573e371f9c6e823990e312 --- /dev/null +++ b/TTS/.github/workflows/tts_tests2.yml @@ -0,0 +1,53 @@ +name: tts-tests2 + +on: + push: + branches: + - main + pull_request: + types: [opened, synchronize, reopened] +jobs: + check_skip: + runs-on: ubuntu-latest + if: "! contains(github.event.head_commit.message, '[ci skip]')" + steps: + - run: echo "${{ github.event.head_commit.message }}" + + test: + runs-on: ubuntu-latest + strategy: + fail-fast: false + matrix: + python-version: [3.9, "3.10", "3.11"] + experimental: [false] + steps: + - uses: actions/checkout@v3 + - name: Set up Python ${{ matrix.python-version }} + uses: actions/setup-python@v4 + with: + python-version: ${{ matrix.python-version }} + architecture: x64 + cache: 'pip' + cache-dependency-path: 'requirements*' + - name: check OS + run: cat /etc/os-release + - name: set ENV + run: export TRAINER_TELEMETRY=0 + - name: Install dependencies + run: | + sudo apt-get update + sudo apt-get install -y --no-install-recommends git make gcc + sudo apt-get install espeak + sudo apt-get install espeak-ng + make system-deps + - name: Install/upgrade Python setup deps + run: python3 -m pip install --upgrade pip setuptools wheel + - name: Replace scarf urls + run: | + sed -i 's/https:\/\/coqui.gateway.scarf.sh\//https:\/\/github.com\/coqui-ai\/TTS\/releases\/download\//g' TTS/.models.json + - name: Install TTS + run: | + python3 -m pip install .[all] + python3 setup.py egg_info + - name: Unit tests + run: make test_tts2 diff --git a/TTS/.github/workflows/vocoder_tests.yml b/TTS/.github/workflows/vocoder_tests.yml new file mode 100644 index 0000000000000000000000000000000000000000..6519ee3fefea171c22dc4eb7da58e0322afda1ed --- /dev/null +++ b/TTS/.github/workflows/vocoder_tests.yml @@ -0,0 +1,48 @@ +name: vocoder-tests + +on: + push: + branches: + - main + pull_request: + types: [opened, synchronize, reopened] +jobs: + check_skip: + runs-on: ubuntu-latest + if: "! contains(github.event.head_commit.message, '[ci skip]')" + steps: + - run: echo "${{ github.event.head_commit.message }}" + + test: + runs-on: ubuntu-latest + strategy: + fail-fast: false + matrix: + python-version: [3.9, "3.10", "3.11"] + experimental: [false] + steps: + - uses: actions/checkout@v3 + - name: Set up Python ${{ matrix.python-version }} + uses: actions/setup-python@v4 + with: + python-version: ${{ matrix.python-version }} + architecture: x64 + cache: 'pip' + cache-dependency-path: 'requirements*' + - name: check OS + run: cat /etc/os-release + - name: set ENV + run: export TRAINER_TELEMETRY=0 + - name: Install dependencies + run: | + sudo apt-get update + sudo apt-get install -y git make gcc + make system-deps + - name: Install/upgrade Python setup deps + run: python3 -m pip install --upgrade pip setuptools wheel + - name: Install TTS + run: | + python3 -m pip install .[all] + python3 setup.py egg_info + - name: Unit tests + run: make test_vocoder diff --git a/TTS/.github/workflows/zoo_tests0.yml b/TTS/.github/workflows/zoo_tests0.yml new file mode 100644 index 0000000000000000000000000000000000000000..13f47a938baff80f290af65fff78a4d792f7c3a8 --- /dev/null +++ b/TTS/.github/workflows/zoo_tests0.yml @@ -0,0 +1,54 @@ +name: zoo-tests-0 + +on: + push: + branches: + - main + pull_request: + types: [opened, synchronize, reopened] +jobs: + check_skip: + runs-on: ubuntu-latest + if: "! contains(github.event.head_commit.message, '[ci skip]')" + steps: + - run: echo "${{ github.event.head_commit.message }}" + + test: + runs-on: ubuntu-latest + strategy: + fail-fast: false + matrix: + python-version: [3.9, "3.10", "3.11"] + experimental: [false] + steps: + - uses: actions/checkout@v3 + - name: Set up Python ${{ matrix.python-version }} + uses: actions/setup-python@v4 + with: + python-version: ${{ matrix.python-version }} + architecture: x64 + cache: 'pip' + cache-dependency-path: 'requirements*' + - name: check OS + run: cat /etc/os-release + - name: set ENV + run: export TRAINER_TELEMETRY=0 + - name: Install dependencies + run: | + sudo apt-get update + sudo apt-get install -y git make gcc + sudo apt-get install espeak espeak-ng + make system-deps + - name: Install/upgrade Python setup deps + run: python3 -m pip install --upgrade pip setuptools wheel + - name: Replace scarf urls + run: | + sed -i 's/https:\/\/coqui.gateway.scarf.sh\//https:\/\/github.com\/coqui-ai\/TTS\/releases\/download\//g' TTS/.models.json + - name: Install TTS + run: | + python3 -m pip install .[all] + python3 setup.py egg_info + - name: Unit tests + run: | + nose2 -F -v -B TTS tests.zoo_tests.test_models.test_models_offset_0_step_3 + nose2 -F -v -B TTS tests.zoo_tests.test_models.test_voice_conversion diff --git a/TTS/.github/workflows/zoo_tests1.yml b/TTS/.github/workflows/zoo_tests1.yml new file mode 100644 index 0000000000000000000000000000000000000000..00f13397fa2509e2cbe57c2365462606bc6aad0f --- /dev/null +++ b/TTS/.github/workflows/zoo_tests1.yml @@ -0,0 +1,53 @@ +name: zoo-tests-1 + +on: + push: + branches: + - main + pull_request: + types: [opened, synchronize, reopened] +jobs: + check_skip: + runs-on: ubuntu-latest + if: "! contains(github.event.head_commit.message, '[ci skip]')" + steps: + - run: echo "${{ github.event.head_commit.message }}" + + test: + runs-on: ubuntu-latest + strategy: + fail-fast: false + matrix: + python-version: [3.9, "3.10", "3.11"] + experimental: [false] + steps: + - uses: actions/checkout@v3 + - name: Set up Python ${{ matrix.python-version }} + uses: actions/setup-python@v4 + with: + python-version: ${{ matrix.python-version }} + architecture: x64 + cache: 'pip' + cache-dependency-path: 'requirements*' + - name: check OS + run: cat /etc/os-release + - name: set ENV + run: export TRAINER_TELEMETRY=0 + - name: Install dependencies + run: | + sudo apt-get update + sudo apt-get install -y git make gcc + sudo apt-get install espeak espeak-ng + make system-deps + - name: Install/upgrade Python setup deps + run: python3 -m pip install --upgrade pip setuptools wheel + - name: Replace scarf urls + run: | + sed -i 's/https:\/\/coqui.gateway.scarf.sh\/hf\/bark\//https:\/\/huggingface.co\/erogol\/bark\/resolve\/main\//g' TTS/.models.json + sed -i 's/https:\/\/coqui.gateway.scarf.sh\//https:\/\/github.com\/coqui-ai\/TTS\/releases\/download\//g' TTS/.models.json + - name: Install TTS + run: | + python3 -m pip install .[all] + python3 setup.py egg_info + - name: Unit tests + run: nose2 -F -v -B --with-coverage --coverage TTS tests.zoo_tests.test_models.test_models_offset_1_step_3 diff --git a/TTS/.github/workflows/zoo_tests2.yml b/TTS/.github/workflows/zoo_tests2.yml new file mode 100644 index 0000000000000000000000000000000000000000..310a831a8b1a6c17c55524a84ffd7425d75ea2e7 --- /dev/null +++ b/TTS/.github/workflows/zoo_tests2.yml @@ -0,0 +1,52 @@ +name: zoo-tests-2 + +on: + push: + branches: + - main + pull_request: + types: [opened, synchronize, reopened] +jobs: + check_skip: + runs-on: ubuntu-latest + if: "! contains(github.event.head_commit.message, '[ci skip]')" + steps: + - run: echo "${{ github.event.head_commit.message }}" + + test: + runs-on: ubuntu-latest + strategy: + fail-fast: false + matrix: + python-version: [3.9, "3.10", "3.11"] + experimental: [false] + steps: + - uses: actions/checkout@v3 + - name: Set up Python ${{ matrix.python-version }} + uses: actions/setup-python@v4 + with: + python-version: ${{ matrix.python-version }} + architecture: x64 + cache: 'pip' + cache-dependency-path: 'requirements*' + - name: check OS + run: cat /etc/os-release + - name: set ENV + run: export TRAINER_TELEMETRY=0 + - name: Install dependencies + run: | + sudo apt-get update + sudo apt-get install -y git make gcc + sudo apt-get install espeak espeak-ng + make system-deps + - name: Install/upgrade Python setup deps + run: python3 -m pip install --upgrade pip setuptools wheel + - name: Replace scarf urls + run: | + sed -i 's/https:\/\/coqui.gateway.scarf.sh\//https:\/\/github.com\/coqui-ai\/TTS\/releases\/download\//g' TTS/.models.json + - name: Install TTS + run: | + python3 -m pip install .[all] + python3 setup.py egg_info + - name: Unit tests + run: nose2 -F -v -B --with-coverage --coverage TTS tests.zoo_tests.test_models.test_models_offset_2_step_3 diff --git a/TTS/.gitignore b/TTS/.gitignore new file mode 100644 index 0000000000000000000000000000000000000000..563040e8dac9d86ecde0ccfc43691ccff420e87d --- /dev/null +++ b/TTS/.gitignore @@ -0,0 +1,171 @@ +WadaSNR/ +.idea/ +*.pyc +.DS_Store +./__init__.py +# Byte-compiled / optimized / DLL files +__pycache__/ +*.py[cod] +*$py.class + +# C extensions +*.so + +# Distribution / packaging +.Python +build/ +develop-eggs/ +dist/ +downloads/ +eggs/ +.eggs/ +lib/ +lib64/ +parts/ +sdist/ +var/ +wheels/ +*.egg-info/ +.installed.cfg +*.egg +MANIFEST + +# PyInstaller +# Usually these files are written by a python script from a template +# before PyInstaller builds the exe, so as to inject date/other infos into it. +*.manifest +*.spec + +# Installer logs +pip-log.txt +pip-delete-this-directory.txt + +# Unit test / coverage reports +htmlcov/ +.tox/ +.coverage +.coverage.* +.cache +nosetests.xml +coverage.xml +*.cover +.hypothesis/ + +# Translations +*.mo +*.pot + +# Django stuff: +*.log +.static_storage/ +.media/ +local_settings.py + +# Flask stuff: +instance/ +.webassets-cache + +# Scrapy stuff: +.scrapy + +# Sphinx documentation +docs/_build/ + +# PyBuilder +target/ + +# Jupyter Notebook +.ipynb_checkpoints + +# pyenv +.python-version + +# celery beat schedule file +celerybeat-schedule + +# SageMath parsed files +*.sage.py + +# Environments +.env +.venv +env/ +venv/ +ENV/ +env.bak/ +venv.bak/ + +# Spyder project settings +.spyderproject +.spyproject + +# Rope project settings +.ropeproject + +# mkdocs documentation +/site + +# mypy +.mypy_cache/ + +# vim +*.swp +*.swm +*.swn +*.swo + +# pytorch models +*.pth +*.pth.tar +!dummy_speakers.pth +result/ + +# setup.py +version.py + +# jupyter dummy files +core + +# ignore local datasets +recipes/WIP/* +recipes/ljspeech/LJSpeech-1.1/* +recipes/vctk/VCTK/* +recipes/**/*.npy +recipes/**/*.json +VCTK-Corpus-removed-silence/* + +# ignore training logs +trainer_*_log.txt + +# files used internally for dev, test etc. +tests/outputs/* +tests/train_outputs/* +TODO.txt +.vscode/* +data/* +notebooks/data/* +TTS/tts/utils/monotonic_align/core.c +.vscode-upload.json +temp_build/* +events.out* +old_configs/* +model_importers/* +model_profiling/* +docs/source/TODO/* +.noseids +.dccache +log.txt +umap.png +*.out +SocialMedia.txt +output.wav +tts_output.wav +deps.json +speakers.json +internal/* +*_pitch.npy +*_phoneme.npy +wandb +depot/* +coqui_recipes/* +local_scripts/* diff --git a/TTS/.pre-commit-config.yaml b/TTS/.pre-commit-config.yaml new file mode 100644 index 0000000000000000000000000000000000000000..911f2a838ea4c598f83a415da5fd58e83dfc3659 --- /dev/null +++ b/TTS/.pre-commit-config.yaml @@ -0,0 +1,27 @@ +repos: + - repo: 'https://github.com/pre-commit/pre-commit-hooks' + rev: v2.3.0 + hooks: + - id: check-yaml + - id: end-of-file-fixer + - id: trailing-whitespace + - repo: 'https://github.com/psf/black' + rev: 22.3.0 + hooks: + - id: black + language_version: python3 + - repo: https://github.com/pycqa/isort + rev: 5.8.0 + hooks: + - id: isort + name: isort (python) + - id: isort + name: isort (cython) + types: [cython] + - id: isort + name: isort (pyi) + types: [pyi] + - repo: https://github.com/pycqa/pylint + rev: v2.8.2 + hooks: + - id: pylint diff --git a/TTS/.pylintrc b/TTS/.pylintrc new file mode 100644 index 0000000000000000000000000000000000000000..49a9dbdd2cb2c8d10173ea3e184788290480378c --- /dev/null +++ b/TTS/.pylintrc @@ -0,0 +1,599 @@ +[MASTER] + +# A comma-separated list of package or module names from where C extensions may +# be loaded. Extensions are loading into the active Python interpreter and may +# run arbitrary code. +extension-pkg-whitelist= + +# Add files or directories to the blacklist. They should be base names, not +# paths. +ignore=CVS + +# Add files or directories matching the regex patterns to the blacklist. The +# regex matches against base names, not paths. +ignore-patterns= + +# Python code to execute, usually for sys.path manipulation such as +# pygtk.require(). +#init-hook= + +# Use multiple processes to speed up Pylint. Specifying 0 will auto-detect the +# number of processors available to use. +jobs=1 + +# Control the amount of potential inferred values when inferring a single +# object. This can help the performance when dealing with large functions or +# complex, nested conditions. +limit-inference-results=100 + +# List of plugins (as comma separated values of python modules names) to load, +# usually to register additional checkers. +load-plugins= + +# Pickle collected data for later comparisons. +persistent=yes + +# Specify a configuration file. +#rcfile= + +# When enabled, pylint would attempt to guess common misconfiguration and emit +# user-friendly hints instead of false-positive error messages. +suggestion-mode=yes + +# Allow loading of arbitrary C extensions. Extensions are imported into the +# active Python interpreter and may run arbitrary code. +unsafe-load-any-extension=no + + +[MESSAGES CONTROL] + +# Only show warnings with the listed confidence levels. Leave empty to show +# all. Valid levels: HIGH, INFERENCE, INFERENCE_FAILURE, UNDEFINED. +confidence= + +# Disable the message, report, category or checker with the given id(s). You +# can either give multiple identifiers separated by comma (,) or put this +# option multiple times (only on the command line, not in the configuration +# file where it should appear only once). You can also use "--disable=all" to +# disable everything first and then reenable specific checks. For example, if +# you want to run only the similarities checker, you can use "--disable=all +# --enable=similarities". If you want to run only the classes checker, but have +# no Warning level messages displayed, use "--disable=all --enable=classes +# --disable=W". +disable=missing-docstring, + too-many-public-methods, + too-many-lines, + bare-except, + ## for avoiding weird p3.6 CI linter error + ## TODO: see later if we can remove this + assigning-non-slot, + unsupported-assignment-operation, + ## end + line-too-long, + fixme, + wrong-import-order, + ungrouped-imports, + wrong-import-position, + import-error, + invalid-name, + too-many-instance-attributes, + arguments-differ, + arguments-renamed, + no-name-in-module, + no-member, + unsubscriptable-object, + print-statement, + parameter-unpacking, + unpacking-in-except, + old-raise-syntax, + backtick, + long-suffix, + old-ne-operator, + old-octal-literal, + import-star-module-level, + non-ascii-bytes-literal, + raw-checker-failed, + bad-inline-option, + locally-disabled, + file-ignored, + suppressed-message, + useless-suppression, + deprecated-pragma, + use-symbolic-message-instead, + useless-object-inheritance, + too-few-public-methods, + too-many-branches, + too-many-arguments, + too-many-locals, + too-many-statements, + apply-builtin, + basestring-builtin, + buffer-builtin, + cmp-builtin, + coerce-builtin, + execfile-builtin, + file-builtin, + long-builtin, + raw_input-builtin, + reduce-builtin, + standarderror-builtin, + unicode-builtin, + xrange-builtin, + coerce-method, + delslice-method, + getslice-method, + setslice-method, + no-absolute-import, + old-division, + dict-iter-method, + dict-view-method, + next-method-called, + metaclass-assignment, + indexing-exception, + raising-string, + reload-builtin, + oct-method, + hex-method, + nonzero-method, + cmp-method, + input-builtin, + round-builtin, + intern-builtin, + unichr-builtin, + map-builtin-not-iterating, + zip-builtin-not-iterating, + range-builtin-not-iterating, + filter-builtin-not-iterating, + using-cmp-argument, + eq-without-hash, + div-method, + idiv-method, + rdiv-method, + exception-message-attribute, + invalid-str-codec, + sys-max-int, + bad-python3-import, + deprecated-string-function, + deprecated-str-translate-call, + deprecated-itertools-function, + deprecated-types-field, + next-method-defined, + dict-items-not-iterating, + dict-keys-not-iterating, + dict-values-not-iterating, + deprecated-operator-function, + deprecated-urllib-function, + xreadlines-attribute, + deprecated-sys-function, + exception-escape, + comprehension-escape, + duplicate-code, + not-callable, + import-outside-toplevel, + logging-fstring-interpolation, + logging-not-lazy + +# Enable the message, report, category or checker with the given id(s). You can +# either give multiple identifier separated by comma (,) or put this option +# multiple time (only on the command line, not in the configuration file where +# it should appear only once). See also the "--disable" option for examples. +enable=c-extension-no-member + + +[REPORTS] + +# Python expression which should return a note less than 10 (10 is the highest +# note). You have access to the variables errors warning, statement which +# respectively contain the number of errors / warnings messages and the total +# number of statements analyzed. This is used by the global evaluation report +# (RP0004). +evaluation=10.0 - ((float(5 * error + warning + refactor + convention) / statement) * 10) + +# Template used to display messages. This is a python new-style format string +# used to format the message information. See doc for all details. +#msg-template= + +# Set the output format. Available formats are text, parseable, colorized, json +# and msvs (visual studio). You can also give a reporter class, e.g. +# mypackage.mymodule.MyReporterClass. +output-format=text + +# Tells whether to display a full report or only the messages. +reports=no + +# Activate the evaluation score. +score=yes + + +[REFACTORING] + +# Maximum number of nested blocks for function / method body +max-nested-blocks=5 + +# Complete name of functions that never returns. When checking for +# inconsistent-return-statements if a never returning function is called then +# it will be considered as an explicit return statement and no message will be +# printed. +never-returning-functions=sys.exit + + +[LOGGING] + +# Format style used to check logging format string. `old` means using % +# formatting, while `new` is for `{}` formatting. +logging-format-style=old + +# Logging modules to check that the string format arguments are in logging +# function parameter format. +logging-modules=logging + + +[SPELLING] + +# Limits count of emitted suggestions for spelling mistakes. +max-spelling-suggestions=4 + +# Spelling dictionary name. Available dictionaries: none. To make it working +# install python-enchant package.. +spelling-dict= + +# List of comma separated words that should not be checked. +spelling-ignore-words= + +# A path to a file that contains private dictionary; one word per line. +spelling-private-dict-file= + +# Tells whether to store unknown words to indicated private dictionary in +# --spelling-private-dict-file option instead of raising a message. +spelling-store-unknown-words=no + + +[MISCELLANEOUS] + +# List of note tags to take in consideration, separated by a comma. +notes=FIXME, + XXX, + TODO + + +[TYPECHECK] + +# List of decorators that produce context managers, such as +# contextlib.contextmanager. Add to this list to register other decorators that +# produce valid context managers. +contextmanager-decorators=contextlib.contextmanager + +# List of members which are set dynamically and missed by pylint inference +# system, and so shouldn't trigger E1101 when accessed. Python regular +# expressions are accepted. +generated-members=numpy.*,torch.* + +# Tells whether missing members accessed in mixin class should be ignored. A +# mixin class is detected if its name ends with "mixin" (case insensitive). +ignore-mixin-members=yes + +# Tells whether to warn about missing members when the owner of the attribute +# is inferred to be None. +ignore-none=yes + +# This flag controls whether pylint should warn about no-member and similar +# checks whenever an opaque object is returned when inferring. The inference +# can return multiple potential results while evaluating a Python object, but +# some branches might not be evaluated, which results in partial inference. In +# that case, it might be useful to still emit no-member and other checks for +# the rest of the inferred objects. +ignore-on-opaque-inference=yes + +# List of class names for which member attributes should not be checked (useful +# for classes with dynamically set attributes). This supports the use of +# qualified names. +ignored-classes=optparse.Values,thread._local,_thread._local + +# List of module names for which member attributes should not be checked +# (useful for modules/projects where namespaces are manipulated during runtime +# and thus existing member attributes cannot be deduced by static analysis. It +# supports qualified module names, as well as Unix pattern matching. +ignored-modules= + +# Show a hint with possible names when a member name was not found. The aspect +# of finding the hint is based on edit distance. +missing-member-hint=yes + +# The minimum edit distance a name should have in order to be considered a +# similar match for a missing member name. +missing-member-hint-distance=1 + +# The total number of similar names that should be taken in consideration when +# showing a hint for a missing member. +missing-member-max-choices=1 + + +[VARIABLES] + +# List of additional names supposed to be defined in builtins. Remember that +# you should avoid defining new builtins when possible. +additional-builtins= + +# Tells whether unused global variables should be treated as a violation. +allow-global-unused-variables=yes + +# List of strings which can identify a callback function by name. A callback +# name must start or end with one of those strings. +callbacks=cb_, + _cb + +# A regular expression matching the name of dummy variables (i.e. expected to +# not be used). +dummy-variables-rgx=_+$|(_[a-zA-Z0-9_]*[a-zA-Z0-9]+?$)|dummy|^ignored_|^unused_ + +# Argument names that match this expression will be ignored. Default to name +# with leading underscore. +ignored-argument-names=_.*|^ignored_|^unused_ + +# Tells whether we should check for unused import in __init__ files. +init-import=no + +# List of qualified module names which can have objects that can redefine +# builtins. +redefining-builtins-modules=six.moves,past.builtins,future.builtins,builtins,io + + +[FORMAT] + +# Expected format of line ending, e.g. empty (any line ending), LF or CRLF. +expected-line-ending-format= + +# Regexp for a line that is allowed to be longer than the limit. +ignore-long-lines=^\s*(# )??$ + +# Number of spaces of indent required inside a hanging or continued line. +indent-after-paren=4 + +# String used as indentation unit. This is usually " " (4 spaces) or "\t" (1 +# tab). +indent-string=' ' + +# Maximum number of characters on a single line. +max-line-length=120 + +# Maximum number of lines in a module. +max-module-lines=1000 + +# List of optional constructs for which whitespace checking is disabled. `dict- +# separator` is used to allow tabulation in dicts, etc.: {1 : 1,\n222: 2}. +# `trailing-comma` allows a space between comma and closing bracket: (a, ). +# `empty-line` allows space-only lines. +no-space-check=trailing-comma, + dict-separator + +# Allow the body of a class to be on the same line as the declaration if body +# contains single statement. +single-line-class-stmt=no + +# Allow the body of an if to be on the same line as the test if there is no +# else. +single-line-if-stmt=no + + +[SIMILARITIES] + +# Ignore comments when computing similarities. +ignore-comments=yes + +# Ignore docstrings when computing similarities. +ignore-docstrings=yes + +# Ignore imports when computing similarities. +ignore-imports=no + +# Minimum lines number of a similarity. +min-similarity-lines=4 + + +[BASIC] + +# Naming style matching correct argument names. +argument-naming-style=snake_case + +# Regular expression matching correct argument names. Overrides argument- +# naming-style. +argument-rgx=[a-z_][a-z0-9_]{0,30}$ + +# Naming style matching correct attribute names. +attr-naming-style=snake_case + +# Regular expression matching correct attribute names. Overrides attr-naming- +# style. +#attr-rgx= + +# Bad variable names which should always be refused, separated by a comma. +bad-names= + +# Naming style matching correct class attribute names. +class-attribute-naming-style=any + +# Regular expression matching correct class attribute names. Overrides class- +# attribute-naming-style. +#class-attribute-rgx= + +# Naming style matching correct class names. +class-naming-style=PascalCase + +# Regular expression matching correct class names. Overrides class-naming- +# style. +#class-rgx= + +# Naming style matching correct constant names. +const-naming-style=UPPER_CASE + +# Regular expression matching correct constant names. Overrides const-naming- +# style. +#const-rgx= + +# Minimum line length for functions/classes that require docstrings, shorter +# ones are exempt. +docstring-min-length=-1 + +# Naming style matching correct function names. +function-naming-style=snake_case + +# Regular expression matching correct function names. Overrides function- +# naming-style. +#function-rgx= + +# Good variable names which should always be accepted, separated by a comma. +good-names=i, + j, + k, + x, + ex, + Run, + _ + +# Include a hint for the correct naming format with invalid-name. +include-naming-hint=no + +# Naming style matching correct inline iteration names. +inlinevar-naming-style=any + +# Regular expression matching correct inline iteration names. Overrides +# inlinevar-naming-style. +#inlinevar-rgx= + +# Naming style matching correct method names. +method-naming-style=snake_case + +# Regular expression matching correct method names. Overrides method-naming- +# style. +#method-rgx= + +# Naming style matching correct module names. +module-naming-style=snake_case + +# Regular expression matching correct module names. Overrides module-naming- +# style. +#module-rgx= + +# Colon-delimited sets of names that determine each other's naming style when +# the name regexes allow several styles. +name-group= + +# Regular expression which should only match function or class names that do +# not require a docstring. +no-docstring-rgx=^_ + +# List of decorators that produce properties, such as abc.abstractproperty. Add +# to this list to register other decorators that produce valid properties. +# These decorators are taken in consideration only for invalid-name. +property-classes=abc.abstractproperty + +# Naming style matching correct variable names. +variable-naming-style=snake_case + +# Regular expression matching correct variable names. Overrides variable- +# naming-style. +variable-rgx=[a-z_][a-z0-9_]{0,30}$ + + +[STRING] + +# This flag controls whether the implicit-str-concat-in-sequence should +# generate a warning on implicit string concatenation in sequences defined over +# several lines. +check-str-concat-over-line-jumps=no + + +[IMPORTS] + +# Allow wildcard imports from modules that define __all__. +allow-wildcard-with-all=no + +# Analyse import fallback blocks. This can be used to support both Python 2 and +# 3 compatible code, which means that the block might have code that exists +# only in one or another interpreter, leading to false positives when analysed. +analyse-fallback-blocks=no + +# Deprecated modules which should not be used, separated by a comma. +deprecated-modules=optparse,tkinter.tix + +# Create a graph of external dependencies in the given file (report RP0402 must +# not be disabled). +ext-import-graph= + +# Create a graph of every (i.e. internal and external) dependencies in the +# given file (report RP0402 must not be disabled). +import-graph= + +# Create a graph of internal dependencies in the given file (report RP0402 must +# not be disabled). +int-import-graph= + +# Force import order to recognize a module as part of the standard +# compatibility libraries. +known-standard-library= + +# Force import order to recognize a module as part of a third party library. +known-third-party=enchant + + +[CLASSES] + +# List of method names used to declare (i.e. assign) instance attributes. +defining-attr-methods=__init__, + __new__, + setUp + +# List of member names, which should be excluded from the protected access +# warning. +exclude-protected=_asdict, + _fields, + _replace, + _source, + _make + +# List of valid names for the first argument in a class method. +valid-classmethod-first-arg=cls + +# List of valid names for the first argument in a metaclass class method. +valid-metaclass-classmethod-first-arg=cls + + +[DESIGN] + +# Maximum number of arguments for function / method. +max-args=5 + +# Maximum number of attributes for a class (see R0902). +max-attributes=7 + +# Maximum number of boolean expressions in an if statement. +max-bool-expr=5 + +# Maximum number of branch for function / method body. +max-branches=12 + +# Maximum number of locals for function / method body. +max-locals=15 + +# Maximum number of parents for a class (see R0901). +max-parents=15 + +# Maximum number of public methods for a class (see R0904). +max-public-methods=20 + +# Maximum number of return / yield for function / method body. +max-returns=6 + +# Maximum number of statements in function / method body. +max-statements=50 + +# Minimum number of public methods for a class (see R0903). +min-public-methods=2 + + +[EXCEPTIONS] + +# Exceptions that will emit a warning when being caught. Defaults to +# "BaseException, Exception". +overgeneral-exceptions=BaseException, + Exception diff --git a/TTS/.readthedocs.yml b/TTS/.readthedocs.yml new file mode 100644 index 0000000000000000000000000000000000000000..266a2cdeb23d721424aa55c45d9f09440f9df11b --- /dev/null +++ b/TTS/.readthedocs.yml @@ -0,0 +1,23 @@ +# .readthedocs.yml +# Read the Docs configuration file +# See https://docs.readthedocs.io/en/stable/config-file/v2.html for details + +# Required +version: 2 + +# Set the version of Python and other tools you might need +build: + os: ubuntu-22.04 + tools: + python: "3.11" + +# Optionally set the version of Python and requirements required to build your docs +python: + install: + - requirements: docs/requirements.txt + - requirements: requirements.txt + +# Build documentation in the docs/ directory with Sphinx +sphinx: + builder: html + configuration: docs/source/conf.py diff --git a/TTS/CITATION.cff b/TTS/CITATION.cff new file mode 100644 index 0000000000000000000000000000000000000000..6b0c8f19af1b37607c3994abe28b8d362cbcb564 --- /dev/null +++ b/TTS/CITATION.cff @@ -0,0 +1,20 @@ +cff-version: 1.2.0 +message: "If you want to cite ๐Ÿธ๐Ÿ’ฌ, feel free to use this (but only if you loved it ๐Ÿ˜Š)" +title: "Coqui TTS" +abstract: "A deep learning toolkit for Text-to-Speech, battle-tested in research and production" +date-released: 2021-01-01 +authors: + - family-names: "Eren" + given-names: "Gรถlge" + - name: "The Coqui TTS Team" +version: 1.4 +doi: 10.5281/zenodo.6334862 +license: "MPL-2.0" +url: "https://www.coqui.ai" +repository-code: "https://github.com/coqui-ai/TTS" +keywords: + - machine learning + - deep learning + - artificial intelligence + - text to speech + - TTS \ No newline at end of file diff --git a/TTS/CODE_OF_CONDUCT.md b/TTS/CODE_OF_CONDUCT.md new file mode 100644 index 0000000000000000000000000000000000000000..b80639d63c29e902c547de347806651bcc9ad3b2 --- /dev/null +++ b/TTS/CODE_OF_CONDUCT.md @@ -0,0 +1,133 @@ + +# Contributor Covenant Code of Conduct + +## Our Pledge + +We as members, contributors, and leaders pledge to make participation in our +community a harassment-free experience for everyone, regardless of age, body +size, visible or invisible disability, ethnicity, sex characteristics, gender +identity and expression, level of experience, education, socio-economic status, +nationality, personal appearance, race, caste, color, religion, or sexual identity +and orientation. + +We pledge to act and interact in ways that contribute to an open, welcoming, +diverse, inclusive, and healthy community. + +## Our Standards + +Examples of behavior that contributes to a positive environment for our +community include: + +* Demonstrating empathy and kindness toward other people +* Being respectful of differing opinions, viewpoints, and experiences +* Giving and gracefully accepting constructive feedback +* Accepting responsibility and apologizing to those affected by our mistakes, + and learning from the experience +* Focusing on what is best not just for us as individuals, but for the + overall community + +Examples of unacceptable behavior include: + +* The use of sexualized language or imagery, and sexual attention or + advances of any kind +* Trolling, insulting or derogatory comments, and personal or political attacks +* Public or private harassment +* Publishing others' private information, such as a physical or email + address, without their explicit permission +* Other conduct which could reasonably be considered inappropriate in a + professional setting + +## Enforcement Responsibilities + +Community leaders are responsible for clarifying and enforcing our standards of +acceptable behavior and will take appropriate and fair corrective action in +response to any behavior that they deem inappropriate, threatening, offensive, +or harmful. + +Community leaders have the right and responsibility to remove, edit, or reject +comments, commits, code, wiki edits, issues, and other contributions that are +not aligned to this Code of Conduct, and will communicate reasons for moderation +decisions when appropriate. + +## Scope + +This Code of Conduct applies within all community spaces, and also applies when +an individual is officially representing the community in public spaces. +Examples of representing our community include using an official e-mail address, +posting via an official social media account, or acting as an appointed +representative at an online or offline event. + +## Enforcement + +Instances of abusive, harassing, or otherwise unacceptable behavior may be +reported to the community leaders responsible for enforcement at +coc-report@coqui.ai. +All complaints will be reviewed and investigated promptly and fairly. + +All community leaders are obligated to respect the privacy and security of the +reporter of any incident. + +## Enforcement Guidelines + +Community leaders will follow these Community Impact Guidelines in determining +the consequences for any action they deem in violation of this Code of Conduct: + +### 1. Correction + +**Community Impact**: Use of inappropriate language or other behavior deemed +unprofessional or unwelcome in the community. + +**Consequence**: A private, written warning from community leaders, providing +clarity around the nature of the violation and an explanation of why the +behavior was inappropriate. A public apology may be requested. + +### 2. Warning + +**Community Impact**: A violation through a single incident or series +of actions. + +**Consequence**: A warning with consequences for continued behavior. No +interaction with the people involved, including unsolicited interaction with +those enforcing the Code of Conduct, for a specified period of time. This +includes avoiding interactions in community spaces as well as external channels +like social media. Violating these terms may lead to a temporary or +permanent ban. + +### 3. Temporary Ban + +**Community Impact**: A serious violation of community standards, including +sustained inappropriate behavior. + +**Consequence**: A temporary ban from any sort of interaction or public +communication with the community for a specified period of time. No public or +private interaction with the people involved, including unsolicited interaction +with those enforcing the Code of Conduct, is allowed during this period. +Violating these terms may lead to a permanent ban. + +### 4. Permanent Ban + +**Community Impact**: Demonstrating a pattern of violation of community +standards, including sustained inappropriate behavior, harassment of an +individual, or aggression toward or disparagement of classes of individuals. + +**Consequence**: A permanent ban from any sort of public interaction within +the community. + +## Attribution + +This Code of Conduct is adapted from the [Contributor Covenant][homepage], +version 2.0, available at +[https://www.contributor-covenant.org/version/2/0/code_of_conduct.html][v2.0]. + +Community Impact Guidelines were inspired by +[Mozilla's code of conduct enforcement ladder][Mozilla CoC]. + +For answers to common questions about this code of conduct, see the FAQ at +[https://www.contributor-covenant.org/faq][FAQ]. Translations are available +at [https://www.contributor-covenant.org/translations][translations]. + +[homepage]: https://www.contributor-covenant.org +[v2.0]: https://www.contributor-covenant.org/version/2/0/code_of_conduct.html +[Mozilla CoC]: https://github.com/mozilla/diversity +[FAQ]: https://www.contributor-covenant.org/faq +[translations]: https://www.contributor-covenant.org/translations diff --git a/TTS/CODE_OWNERS.rst b/TTS/CODE_OWNERS.rst new file mode 100644 index 0000000000000000000000000000000000000000..768b573911eae8aeb229de6f56039deb9a64ce27 --- /dev/null +++ b/TTS/CODE_OWNERS.rst @@ -0,0 +1,75 @@ +TTS code owners / governance system +========================================== + +TTS is run under a governance system inspired (and partially copied from) by the `Mozilla module ownership system `_. The project is roughly divided into modules, and each module has its owners, which are responsible for reviewing pull requests and deciding on technical direction for their modules. Module ownership authority is given to people who have worked extensively on areas of the project. + +Module owners also have the authority of naming other module owners or appointing module peers, which are people with authority to review pull requests in that module. They can also sub-divide their module into sub-modules with their owners. + +Module owners are not tyrants. They are chartered to make decisions with input from the community and in the best interest of the community. Module owners are not required to make code changes or additions solely because the community wants them to do so. (Like anyone else, the module owners may write code because they want to, because their employers want them to, because the community wants them to, or for some other reason.) Module owners do need to pay attention to patches submitted to that module. However โ€œpay attentionโ€ does not mean agreeing to every patch. Some patches may not make sense for the WebThings project; some may be poorly implemented. Module owners have the authority to decline a patch; this is a necessary part of the role. We ask the module owners to describe in the relevant issue their reasons for wanting changes to a patch, for declining it altogether, or for postponing review for some period. We donโ€™t ask or expect them to rewrite patches to make them acceptable. Similarly, module owners may need to delay review of a promising patch due to an upcoming deadline. For example, a patch may be of interest, but not for the next milestone. In such a case it may make sense for the module owner to postpone review of a patch until after matters needed for a milestone have been finalized. Again, we expect this to be described in the relevant issue. And of course, it shouldnโ€™t go on very often or for very long or escalation and review is likely. + +The work of the various module owners and peers is overseen by the global owners, which are responsible for making final decisions in case there's conflict between owners as well as set the direction for the project as a whole. + +This file describes module owners who are active on the project and which parts of the code they have expertise on (and interest in). If you're making changes to the code and are wondering who's an appropriate person to talk to, this list will tell you who to ping. + +There's overlap in the areas of expertise of each owner, and in particular when looking at which files are covered by each area, there is a lot of overlap. Don't worry about getting it exactly right when requesting review, any code owner will be happy to redirect the request to a more appropriate person. + +Global owners +---------------- + +These are people who have worked on the project extensively and are familiar with all or most parts of it. Their expertise and review guidance is trusted by other code owners to cover their own areas of expertise. In case of conflicting opinions from other owners, global owners will make a final decision. + +- Eren Gรถlge (@erogol) +- Reuben Morais (@reuben) + +Training, feeding +----------------- + +- Eren Gรถlge (@erogol) + +Model exporting +--------------- + +- Eren Gรถlge (@erogol) + +Multi-Speaker TTS +----------------- + +- Eren Gรถlge (@erogol) +- Edresson Casanova (@edresson) + +TTS +--- + +- Eren Gรถlge (@erogol) + +Vocoders +-------- + +- Eren Gรถlge (@erogol) + +Speaker Encoder +--------------- + +- Eren Gรถlge (@erogol) + +Testing & CI +------------ + +- Eren Gรถlge (@erogol) +- Reuben Morais (@reuben) + +Python bindings +--------------- + +- Eren Gรถlge (@erogol) +- Reuben Morais (@reuben) + +Documentation +------------- + +- Eren Gรถlge (@erogol) + +Third party bindings +-------------------- + +Owned by the author. diff --git a/TTS/CONTRIBUTING.md b/TTS/CONTRIBUTING.md new file mode 100644 index 0000000000000000000000000000000000000000..ade35507d25415d657243709f12df00fd52686be --- /dev/null +++ b/TTS/CONTRIBUTING.md @@ -0,0 +1,136 @@ +# Contribution guidelines + +Welcome to the ๐ŸธTTS! + +This repository is governed by [the Contributor Covenant Code of Conduct](https://github.com/coqui-ai/TTS/blob/main/CODE_OF_CONDUCT.md). + +## Where to start. +We welcome everyone who likes to contribute to ๐ŸธTTS. + +You can contribute not only with code but with bug reports, comments, questions, answers, or just a simple tweet to spread the word. + +If you like to contribute code, squash a bug but if you don't know where to start, here are some pointers. + +- [Development Road Map](https://github.com/coqui-ai/TTS/issues/378) + + You can pick something out of our road map. We keep the progess of the project in this simple issue thread. It has new model proposals or developmental updates etc. + +- [Github Issues Tracker](https://github.com/coqui-ai/TTS/issues) + + This is a place to find feature requests, bugs. + + Issues with the ```good first issue``` tag are good place for beginners to take on. + +- โœจ**PR**โœจ [pages](https://github.com/coqui-ai/TTS/pulls) with the ```๐Ÿš€new version``` tag. + + We list all the target improvements for the next version. You can pick one of them and start contributing. + +- Also feel free to suggest new features, ideas and models. We're always open for new things. + +## Call for sharing language models +If possible, please consider sharing your pre-trained models in any language (if the licences allow for you to do so). We will include them in our model catalogue for public use and give the proper attribution, whether it be your name, company, website or any other source specified. + +This model can be shared in two ways: +1. Share the model files with us and we serve them with the next ๐Ÿธ TTS release. +2. Upload your models on GDrive and share the link. + +Models are served under `.models.json` file and any model is available under TTS CLI or Server end points. + +Either way you choose, please make sure you send the models [here](https://github.com/coqui-ai/TTS/discussions/930). + +## Sending a โœจ**PR**โœจ + +If you have a new feature, a model to implement, or a bug to squash, go ahead and send a โœจ**PR**โœจ. +Please use the following steps to send a โœจ**PR**โœจ. +Let us know if you encounter a problem along the way. + +The following steps are tested on an Ubuntu system. + +1. Fork ๐ŸธTTS[https://github.com/coqui-ai/TTS] by clicking the fork button at the top right corner of the project page. + +2. Clone ๐ŸธTTS and add the main repo as a new remote named ```upsteam```. + + ```bash + $ git clone git@github.com:/TTS.git + $ cd TTS + $ git remote add upstream https://github.com/coqui-ai/TTS.git + ``` + +3. Install ๐ŸธTTS for development. + + ```bash + $ make system-deps # intended to be used on Ubuntu (Debian). Let us know if you have a different OS. + $ make install + ``` + +4. Create a new branch with an informative name for your goal. + + ```bash + $ git checkout -b an_informative_name_for_my_branch + ``` + +5. Implement your changes on your new branch. + +6. Explain your code using [Google Style](https://google.github.io/styleguide/pyguide.html#381-docstrings) docstrings. + +7. Add your tests to our test suite under ```tests``` folder. It is important to show that your code works, edge cases are considered, and inform others about the intended use. + +8. Run the tests to see how your updates work with the rest of the project. You can repeat this step multiple times as you implement your changes to make sure you are on the right direction. + + ```bash + $ make test # stop at the first error + $ make test_all # run all the tests, report all the errors + ``` + +9. Format your code. We use ```black``` for code and ```isort``` for ```import``` formatting. + + ```bash + $ make style + ``` + +10. Run the linter and correct the issues raised. We use ```pylint``` for linting. It helps to enforce a coding standard, offers simple refactoring suggestions. + + ```bash + $ make lint + ``` + +11. When things are good, add new files and commit your changes. + + ```bash + $ git add my_file1.py my_file2.py ... + $ git commit + ``` + + It's a good practice to regularly sync your local copy of the project with the upstream code to keep up with the recent updates. + + ```bash + $ git fetch upstream + $ git rebase upstream/master + # or for the development version + $ git rebase upstream/dev + ``` + +12. Send a PR to ```dev``` branch. + + Push your branch to your fork. + + ```bash + $ git push -u origin an_informative_name_for_my_branch + ``` + + Then go to your fork's Github page and click on 'Pull request' to send your โœจ**PR**โœจ. + + Please set โœจ**PR**โœจ's target branch to ```dev``` as we use ```dev``` to work on the next version. + +13. Let's discuss until it is perfect. ๐Ÿ’ช + + We might ask you for certain changes that would appear in the โœจ**PR**โœจ's page under ๐ŸธTTS[https://github.com/coqui-ai/TTS/pulls]. + +14. Once things look perfect, We merge it to the ```dev``` branch and make it ready for the next version. + +Feel free to ping us at any step you need help using our communication channels. + +If you are new to Github or open-source contribution, These are good resources. + +- [Github Docs](https://docs.github.com/en/github/collaborating-with-issues-and-pull-requests/proposing-changes-to-your-work-with-pull-requests) +- [First-Contribution](https://github.com/firstcontributions/first-contributions) diff --git a/TTS/Dockerfile b/TTS/Dockerfile new file mode 100644 index 0000000000000000000000000000000000000000..30dfb23d0d1270cbb9991856585a8258b5cd4962 --- /dev/null +++ b/TTS/Dockerfile @@ -0,0 +1,13 @@ +ARG BASE=nvidia/cuda:11.8.0-base-ubuntu22.04 +FROM ${BASE} +RUN apt-get update && apt-get upgrade -y +RUN apt-get install -y --no-install-recommends gcc g++ make python3 python3-dev python3-pip python3-venv python3-wheel espeak-ng libsndfile1-dev && rm -rf /var/lib/apt/lists/* +RUN pip3 install llvmlite --ignore-installed + +WORKDIR /root +COPY . /root +RUN pip3 install torch torchaudio --extra-index-url https://download.pytorch.org/whl/cu118 +RUN rm -rf /root/.cache/pip +RUN make install +ENTRYPOINT ["tts"] +CMD ["--help"] diff --git a/TTS/LICENSE.txt b/TTS/LICENSE.txt new file mode 100644 index 0000000000000000000000000000000000000000..14e2f777f6c395e7e04ab4aa306bbcc4b0c1120e --- /dev/null +++ b/TTS/LICENSE.txt @@ -0,0 +1,373 @@ +Mozilla Public License Version 2.0 +================================== + +1. Definitions +-------------- + +1.1. "Contributor" + means each individual or legal entity that creates, contributes to + the creation of, or owns Covered Software. + +1.2. "Contributor Version" + means the combination of the Contributions of others (if any) used + by a Contributor and that particular Contributor's Contribution. + +1.3. "Contribution" + means Covered Software of a particular Contributor. + +1.4. "Covered Software" + means Source Code Form to which the initial Contributor has attached + the notice in Exhibit A, the Executable Form of such Source Code + Form, and Modifications of such Source Code Form, in each case + including portions thereof. + +1.5. "Incompatible With Secondary Licenses" + means + + (a) that the initial Contributor has attached the notice described + in Exhibit B to the Covered Software; or + + (b) that the Covered Software was made available under the terms of + version 1.1 or earlier of the License, but not also under the + terms of a Secondary License. + +1.6. "Executable Form" + means any form of the work other than Source Code Form. + +1.7. "Larger Work" + means a work that combines Covered Software with other material, in + a separate file or files, that is not Covered Software. + +1.8. "License" + means this document. + +1.9. "Licensable" + means having the right to grant, to the maximum extent possible, + whether at the time of the initial grant or subsequently, any and + all of the rights conveyed by this License. + +1.10. "Modifications" + means any of the following: + + (a) any file in Source Code Form that results from an addition to, + deletion from, or modification of the contents of Covered + Software; or + + (b) any new file in Source Code Form that contains any Covered + Software. + +1.11. "Patent Claims" of a Contributor + means any patent claim(s), including without limitation, method, + process, and apparatus claims, in any patent Licensable by such + Contributor that would be infringed, but for the grant of the + License, by the making, using, selling, offering for sale, having + made, import, or transfer of either its Contributions or its + Contributor Version. + +1.12. "Secondary License" + means either the GNU General Public License, Version 2.0, the GNU + Lesser General Public License, Version 2.1, the GNU Affero General + Public License, Version 3.0, or any later versions of those + licenses. + +1.13. "Source Code Form" + means the form of the work preferred for making modifications. + +1.14. "You" (or "Your") + means an individual or a legal entity exercising rights under this + License. For legal entities, "You" includes any entity that + controls, is controlled by, or is under common control with You. For + purposes of this definition, "control" means (a) the power, direct + or indirect, to cause the direction or management of such entity, + whether by contract or otherwise, or (b) ownership of more than + fifty percent (50%) of the outstanding shares or beneficial + ownership of such entity. + +2. License Grants and Conditions +-------------------------------- + +2.1. Grants + +Each Contributor hereby grants You a world-wide, royalty-free, +non-exclusive license: + +(a) under intellectual property rights (other than patent or trademark) + Licensable by such Contributor to use, reproduce, make available, + modify, display, perform, distribute, and otherwise exploit its + Contributions, either on an unmodified basis, with Modifications, or + as part of a Larger Work; and + +(b) under Patent Claims of such Contributor to make, use, sell, offer + for sale, have made, import, and otherwise transfer either its + Contributions or its Contributor Version. + +2.2. Effective Date + +The licenses granted in Section 2.1 with respect to any Contribution +become effective for each Contribution on the date the Contributor first +distributes such Contribution. + +2.3. Limitations on Grant Scope + +The licenses granted in this Section 2 are the only rights granted under +this License. No additional rights or licenses will be implied from the +distribution or licensing of Covered Software under this License. +Notwithstanding Section 2.1(b) above, no patent license is granted by a +Contributor: + +(a) for any code that a Contributor has removed from Covered Software; + or + +(b) for infringements caused by: (i) Your and any other third party's + modifications of Covered Software, or (ii) the combination of its + Contributions with other software (except as part of its Contributor + Version); or + +(c) under Patent Claims infringed by Covered Software in the absence of + its Contributions. + +This License does not grant any rights in the trademarks, service marks, +or logos of any Contributor (except as may be necessary to comply with +the notice requirements in Section 3.4). + +2.4. Subsequent Licenses + +No Contributor makes additional grants as a result of Your choice to +distribute the Covered Software under a subsequent version of this +License (see Section 10.2) or under the terms of a Secondary License (if +permitted under the terms of Section 3.3). + +2.5. Representation + +Each Contributor represents that the Contributor believes its +Contributions are its original creation(s) or it has sufficient rights +to grant the rights to its Contributions conveyed by this License. + +2.6. Fair Use + +This License is not intended to limit any rights You have under +applicable copyright doctrines of fair use, fair dealing, or other +equivalents. + +2.7. Conditions + +Sections 3.1, 3.2, 3.3, and 3.4 are conditions of the licenses granted +in Section 2.1. + +3. Responsibilities +------------------- + +3.1. Distribution of Source Form + +All distribution of Covered Software in Source Code Form, including any +Modifications that You create or to which You contribute, must be under +the terms of this License. You must inform recipients that the Source +Code Form of the Covered Software is governed by the terms of this +License, and how they can obtain a copy of this License. You may not +attempt to alter or restrict the recipients' rights in the Source Code +Form. + +3.2. Distribution of Executable Form + +If You distribute Covered Software in Executable Form then: + +(a) such Covered Software must also be made available in Source Code + Form, as described in Section 3.1, and You must inform recipients of + the Executable Form how they can obtain a copy of such Source Code + Form by reasonable means in a timely manner, at a charge no more + than the cost of distribution to the recipient; and + +(b) You may distribute such Executable Form under the terms of this + License, or sublicense it under different terms, provided that the + license for the Executable Form does not attempt to limit or alter + the recipients' rights in the Source Code Form under this License. + +3.3. Distribution of a Larger Work + +You may create and distribute a Larger Work under terms of Your choice, +provided that You also comply with the requirements of this License for +the Covered Software. If the Larger Work is a combination of Covered +Software with a work governed by one or more Secondary Licenses, and the +Covered Software is not Incompatible With Secondary Licenses, this +License permits You to additionally distribute such Covered Software +under the terms of such Secondary License(s), so that the recipient of +the Larger Work may, at their option, further distribute the Covered +Software under the terms of either this License or such Secondary +License(s). + +3.4. Notices + +You may not remove or alter the substance of any license notices +(including copyright notices, patent notices, disclaimers of warranty, +or limitations of liability) contained within the Source Code Form of +the Covered Software, except that You may alter any license notices to +the extent required to remedy known factual inaccuracies. + +3.5. Application of Additional Terms + +You may choose to offer, and to charge a fee for, warranty, support, +indemnity or liability obligations to one or more recipients of Covered +Software. However, You may do so only on Your own behalf, and not on +behalf of any Contributor. You must make it absolutely clear that any +such warranty, support, indemnity, or liability obligation is offered by +You alone, and You hereby agree to indemnify every Contributor for any +liability incurred by such Contributor as a result of warranty, support, +indemnity or liability terms You offer. You may include additional +disclaimers of warranty and limitations of liability specific to any +jurisdiction. + +4. Inability to Comply Due to Statute or Regulation +--------------------------------------------------- + +If it is impossible for You to comply with any of the terms of this +License with respect to some or all of the Covered Software due to +statute, judicial order, or regulation then You must: (a) comply with +the terms of this License to the maximum extent possible; and (b) +describe the limitations and the code they affect. Such description must +be placed in a text file included with all distributions of the Covered +Software under this License. Except to the extent prohibited by statute +or regulation, such description must be sufficiently detailed for a +recipient of ordinary skill to be able to understand it. + +5. Termination +-------------- + +5.1. The rights granted under this License will terminate automatically +if You fail to comply with any of its terms. However, if You become +compliant, then the rights granted under this License from a particular +Contributor are reinstated (a) provisionally, unless and until such +Contributor explicitly and finally terminates Your grants, and (b) on an +ongoing basis, if such Contributor fails to notify You of the +non-compliance by some reasonable means prior to 60 days after You have +come back into compliance. Moreover, Your grants from a particular +Contributor are reinstated on an ongoing basis if such Contributor +notifies You of the non-compliance by some reasonable means, this is the +first time You have received notice of non-compliance with this License +from such Contributor, and You become compliant prior to 30 days after +Your receipt of the notice. + +5.2. If You initiate litigation against any entity by asserting a patent +infringement claim (excluding declaratory judgment actions, +counter-claims, and cross-claims) alleging that a Contributor Version +directly or indirectly infringes any patent, then the rights granted to +You by any and all Contributors for the Covered Software under Section +2.1 of this License shall terminate. + +5.3. In the event of termination under Sections 5.1 or 5.2 above, all +end user license agreements (excluding distributors and resellers) which +have been validly granted by You or Your distributors under this License +prior to termination shall survive termination. + +************************************************************************ +* * +* 6. Disclaimer of Warranty * +* ------------------------- * +* * +* Covered Software is provided under this License on an "as is" * +* basis, without warranty of any kind, either expressed, implied, or * +* statutory, including, without limitation, warranties that the * +* Covered Software is free of defects, merchantable, fit for a * +* particular purpose or non-infringing. The entire risk as to the * +* quality and performance of the Covered Software is with You. * +* Should any Covered Software prove defective in any respect, You * +* (not any Contributor) assume the cost of any necessary servicing, * +* repair, or correction. This disclaimer of warranty constitutes an * +* essential part of this License. No use of any Covered Software is * +* authorized under this License except under this disclaimer. * +* * +************************************************************************ + +************************************************************************ +* * +* 7. Limitation of Liability * +* -------------------------- * +* * +* Under no circumstances and under no legal theory, whether tort * +* (including negligence), contract, or otherwise, shall any * +* Contributor, or anyone who distributes Covered Software as * +* permitted above, be liable to You for any direct, indirect, * +* special, incidental, or consequential damages of any character * +* including, without limitation, damages for lost profits, loss of * +* goodwill, work stoppage, computer failure or malfunction, or any * +* and all other commercial damages or losses, even if such party * +* shall have been informed of the possibility of such damages. This * +* limitation of liability shall not apply to liability for death or * +* personal injury resulting from such party's negligence to the * +* extent applicable law prohibits such limitation. Some * +* jurisdictions do not allow the exclusion or limitation of * +* incidental or consequential damages, so this exclusion and * +* limitation may not apply to You. * +* * +************************************************************************ + +8. Litigation +------------- + +Any litigation relating to this License may be brought only in the +courts of a jurisdiction where the defendant maintains its principal +place of business and such litigation shall be governed by laws of that +jurisdiction, without reference to its conflict-of-law provisions. +Nothing in this Section shall prevent a party's ability to bring +cross-claims or counter-claims. + +9. Miscellaneous +---------------- + +This License represents the complete agreement concerning the subject +matter hereof. If any provision of this License is held to be +unenforceable, such provision shall be reformed only to the extent +necessary to make it enforceable. Any law or regulation which provides +that the language of a contract shall be construed against the drafter +shall not be used to construe this License against a Contributor. + +10. Versions of the License +--------------------------- + +10.1. New Versions + +Mozilla Foundation is the license steward. Except as provided in Section +10.3, no one other than the license steward has the right to modify or +publish new versions of this License. Each version will be given a +distinguishing version number. + +10.2. Effect of New Versions + +You may distribute the Covered Software under the terms of the version +of the License under which You originally received the Covered Software, +or under the terms of any subsequent version published by the license +steward. + +10.3. Modified Versions + +If you create software not governed by this License, and you want to +create a new license for such software, you may create and use a +modified version of this License if you rename the license and remove +any references to the name of the license steward (except to note that +such modified license differs from this License). + +10.4. Distributing Source Code Form that is Incompatible With Secondary +Licenses + +If You choose to distribute Source Code Form that is Incompatible With +Secondary Licenses under the terms of this version of the License, the +notice described in Exhibit B of this License must be attached. + +Exhibit A - Source Code Form License Notice +------------------------------------------- + + This Source Code Form is subject to the terms of the Mozilla Public + License, v. 2.0. If a copy of the MPL was not distributed with this + file, You can obtain one at http://mozilla.org/MPL/2.0/. + +If it is not possible or desirable to put the notice in a particular +file, then You may include the notice in a location (such as a LICENSE +file in a relevant directory) where a recipient would be likely to look +for such a notice. + +You may add additional accurate notices of copyright ownership. + +Exhibit B - "Incompatible With Secondary Licenses" Notice +--------------------------------------------------------- + + This Source Code Form is "Incompatible With Secondary Licenses", as + defined by the Mozilla Public License, v. 2.0. diff --git a/TTS/MANIFEST.in b/TTS/MANIFEST.in new file mode 100644 index 0000000000000000000000000000000000000000..321d3999c185a326a9d300451a3e732e4225f2e6 --- /dev/null +++ b/TTS/MANIFEST.in @@ -0,0 +1,15 @@ +include README.md +include LICENSE.txt +include requirements.*.txt +include *.cff +include requirements.txt +include TTS/VERSION +recursive-include TTS *.json +recursive-include TTS *.html +recursive-include TTS *.png +recursive-include TTS *.md +recursive-include TTS *.py +recursive-include TTS *.pyx +recursive-include images *.png +recursive-exclude tests * +prune tests* diff --git a/TTS/Makefile b/TTS/Makefile new file mode 100644 index 0000000000000000000000000000000000000000..ab992ec52e53363a5935f5d4e05524c6333319f7 --- /dev/null +++ b/TTS/Makefile @@ -0,0 +1,78 @@ +.DEFAULT_GOAL := help +.PHONY: test system-deps dev-deps deps style lint install help docs + +help: + @grep -E '^[a-zA-Z_-]+:.*?## .*$$' $(MAKEFILE_LIST) | sort | awk 'BEGIN {FS = ":.*?## "}; {printf "\033[36m%-30s\033[0m %s\n", $$1, $$2}' + +target_dirs := tests TTS notebooks recipes + +test_all: ## run tests and don't stop on an error. + nose2 --with-coverage --coverage TTS tests + ./run_bash_tests.sh + +test: ## run tests. + nose2 -F -v -B --with-coverage --coverage TTS tests + +test_vocoder: ## run vocoder tests. + nose2 -F -v -B --with-coverage --coverage TTS tests.vocoder_tests + +test_tts: ## run tts tests. + nose2 -F -v -B --with-coverage --coverage TTS tests.tts_tests + +test_tts2: ## run tts tests. + nose2 -F -v -B --with-coverage --coverage TTS tests.tts_tests2 + +test_aux: ## run aux tests. + nose2 -F -v -B --with-coverage --coverage TTS tests.aux_tests + ./run_bash_tests.sh + +test_zoo: ## run zoo tests. + nose2 -F -v -B --with-coverage --coverage TTS tests.zoo_tests + +inference_tests: ## run inference tests. + nose2 -F -v -B --with-coverage --coverage TTS tests.inference_tests + +api_tests: ## run api tests. + nose2 -F -v -B --with-coverage --coverage TTS tests.api_tests + +data_tests: ## run data tests. + nose2 -F -v -B --with-coverage --coverage TTS tests.data_tests + +test_text: ## run text tests. + nose2 -F -v -B --with-coverage --coverage TTS tests.text_tests + +test_failed: ## only run tests failed the last time. + nose2 -F -v -B --with-coverage --coverage TTS tests + +style: ## update code style. + black ${target_dirs} + isort ${target_dirs} + +lint: ## run pylint linter. + pylint ${target_dirs} + black ${target_dirs} --check + isort ${target_dirs} --check-only + +system-deps: ## install linux system deps + sudo apt-get install -y libsndfile1-dev + +dev-deps: ## install development deps + pip install -r requirements.dev.txt + +doc-deps: ## install docs dependencies + pip install -r docs/requirements.txt + +build-docs: ## build the docs + cd docs && make clean && make build + +hub-deps: ## install deps for torch hub use + pip install -r requirements.hub.txt + +deps: ## install ๐Ÿธ requirements. + pip install -r requirements.txt + +install: ## install ๐Ÿธ TTS for development. + pip install -e .[all] + +docs: ## build the docs + $(MAKE) -C docs clean && $(MAKE) -C docs html diff --git a/TTS/README.md b/TTS/README.md new file mode 100644 index 0000000000000000000000000000000000000000..720585dbc28f8a8230486d59240373bcc11d333f --- /dev/null +++ b/TTS/README.md @@ -0,0 +1,431 @@ + +## ๐ŸธCoqui.ai News +- ๐Ÿ“ฃ โ“TTS, our production TTS model that can speak 13 languages, is released [Blog Post](https://coqui.ai/blog/tts/open_xtts), [Demo](https://huggingface.co/spaces/coqui/xtts), [Docs](https://tts.readthedocs.io/en/dev/models/xtts.html) +- ๐Ÿ“ฃ [๐ŸถBark](https://github.com/suno-ai/bark) is now available for inference with unconstrained voice cloning. [Docs](https://tts.readthedocs.io/en/dev/models/bark.html) +- ๐Ÿ“ฃ You can use [~1100 Fairseq models](https://github.com/facebookresearch/fairseq/tree/main/examples/mms) with ๐ŸธTTS. +- ๐Ÿ“ฃ ๐ŸธTTS now supports ๐ŸขTortoise with faster inference. [Docs](https://tts.readthedocs.io/en/dev/models/tortoise.html) +- ๐Ÿ“ฃ **Coqui Studio API** is landed on ๐ŸธTTS. - [Example](https://github.com/coqui-ai/TTS/blob/dev/README.md#-python-api) +- ๐Ÿ“ฃ [**Coqui Studio API**](https://docs.coqui.ai/docs) is live. +- ๐Ÿ“ฃ Voice generation with prompts - **Prompt to Voice** - is live on [**Coqui Studio**](https://app.coqui.ai/auth/signin)!! - [Blog Post](https://coqui.ai/blog/tts/prompt-to-voice) +- ๐Ÿ“ฃ Voice generation with fusion - **Voice fusion** - is live on [**Coqui Studio**](https://app.coqui.ai/auth/signin). +- ๐Ÿ“ฃ Voice cloning is live on [**Coqui Studio**](https://app.coqui.ai/auth/signin). + +
+ + +## + + +**๐ŸธTTS is a library for advanced Text-to-Speech generation.** + +๐Ÿš€ Pretrained models in +1100 languages. + +๐Ÿ› ๏ธ Tools for training new models and fine-tuning existing models in any language. + +๐Ÿ“š Utilities for dataset analysis and curation. +______________________________________________________________________ + +[![Dicord](https://img.shields.io/discord/1037326658807533628?color=%239B59B6&label=chat%20on%20discord)](https://discord.gg/5eXr5seRrv) +[![License]()](https://opensource.org/licenses/MPL-2.0) +[![PyPI version](https://badge.fury.io/py/TTS.svg)](https://badge.fury.io/py/TTS) +[![Covenant](https://camo.githubusercontent.com/7d620efaa3eac1c5b060ece5d6aacfcc8b81a74a04d05cd0398689c01c4463bb/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f436f6e7472696275746f72253230436f76656e616e742d76322e3025323061646f707465642d6666363962342e737667)](https://github.com/coqui-ai/TTS/blob/master/CODE_OF_CONDUCT.md) +[![Downloads](https://pepy.tech/badge/tts)](https://pepy.tech/project/tts) +[![DOI](https://zenodo.org/badge/265612440.svg)](https://zenodo.org/badge/latestdoi/265612440) + +![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/aux_tests.yml/badge.svg) +![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/data_tests.yml/badge.svg) +![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/docker.yaml/badge.svg) +![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/inference_tests.yml/badge.svg) +![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/style_check.yml/badge.svg) +![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/text_tests.yml/badge.svg) +![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/tts_tests.yml/badge.svg) +![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/vocoder_tests.yml/badge.svg) +![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/zoo_tests0.yml/badge.svg) +![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/zoo_tests1.yml/badge.svg) +![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/zoo_tests2.yml/badge.svg) +[![Docs]()](https://tts.readthedocs.io/en/latest/) + +
+ +______________________________________________________________________ + +## ๐Ÿ’ฌ Where to ask questions +Please use our dedicated channels for questions and discussion. Help is much more valuable if it's shared publicly so that more people can benefit from it. + +| Type | Platforms | +| ------------------------------- | --------------------------------------- | +| ๐Ÿšจ **Bug Reports** | [GitHub Issue Tracker] | +| ๐ŸŽ **Feature Requests & Ideas** | [GitHub Issue Tracker] | +| ๐Ÿ‘ฉโ€๐Ÿ’ป **Usage Questions** | [GitHub Discussions] | +| ๐Ÿ—ฏ **General Discussion** | [GitHub Discussions] or [Discord] | + +[github issue tracker]: https://github.com/coqui-ai/tts/issues +[github discussions]: https://github.com/coqui-ai/TTS/discussions +[discord]: https://discord.gg/5eXr5seRrv +[Tutorials and Examples]: https://github.com/coqui-ai/TTS/wiki/TTS-Notebooks-and-Tutorials + + +## ๐Ÿ”— Links and Resources +| Type | Links | +| ------------------------------- | --------------------------------------- | +| ๐Ÿ’ผ **Documentation** | [ReadTheDocs](https://tts.readthedocs.io/en/latest/) +| ๐Ÿ’พ **Installation** | [TTS/README.md](https://github.com/coqui-ai/TTS/tree/dev#install-tts)| +| ๐Ÿ‘ฉโ€๐Ÿ’ป **Contributing** | [CONTRIBUTING.md](https://github.com/coqui-ai/TTS/blob/main/CONTRIBUTING.md)| +| ๐Ÿ“Œ **Road Map** | [Main Development Plans](https://github.com/coqui-ai/TTS/issues/378) +| ๐Ÿš€ **Released Models** | [TTS Releases](https://github.com/coqui-ai/TTS/releases) and [Experimental Models](https://github.com/coqui-ai/TTS/wiki/Experimental-Released-Models)| +| ๐Ÿ“ฐ **Papers** | [TTS Papers](https://github.com/erogol/TTS-papers)| + + +## ๐Ÿฅ‡ TTS Performance +

+ +Underlined "TTS*" and "Judy*" are **internal** ๐ŸธTTS models that are not released open-source. They are here to show the potential. Models prefixed with a dot (.Jofish .Abe and .Janice) are real human voices. + +## Features +- High-performance Deep Learning models for Text2Speech tasks. + - Text2Spec models (Tacotron, Tacotron2, Glow-TTS, SpeedySpeech). + - Speaker Encoder to compute speaker embeddings efficiently. + - Vocoder models (MelGAN, Multiband-MelGAN, GAN-TTS, ParallelWaveGAN, WaveGrad, WaveRNN) +- Fast and efficient model training. +- Detailed training logs on the terminal and Tensorboard. +- Support for Multi-speaker TTS. +- Efficient, flexible, lightweight but feature complete `Trainer API`. +- Released and ready-to-use models. +- Tools to curate Text2Speech datasets under```dataset_analysis```. +- Utilities to use and test your models. +- Modular (but not too much) code base enabling easy implementation of new ideas. + +## Model Implementations +### Spectrogram models +- Tacotron: [paper](https://arxiv.org/abs/1703.10135) +- Tacotron2: [paper](https://arxiv.org/abs/1712.05884) +- Glow-TTS: [paper](https://arxiv.org/abs/2005.11129) +- Speedy-Speech: [paper](https://arxiv.org/abs/2008.03802) +- Align-TTS: [paper](https://arxiv.org/abs/2003.01950) +- FastPitch: [paper](https://arxiv.org/pdf/2006.06873.pdf) +- FastSpeech: [paper](https://arxiv.org/abs/1905.09263) +- FastSpeech2: [paper](https://arxiv.org/abs/2006.04558) +- SC-GlowTTS: [paper](https://arxiv.org/abs/2104.05557) +- Capacitron: [paper](https://arxiv.org/abs/1906.03402) +- OverFlow: [paper](https://arxiv.org/abs/2211.06892) +- Neural HMM TTS: [paper](https://arxiv.org/abs/2108.13320) +- Delightful TTS: [paper](https://arxiv.org/abs/2110.12612) + +### End-to-End Models +- โ“TTS: [blog](https://coqui.ai/blog/tts/open_xtts) +- VITS: [paper](https://arxiv.org/pdf/2106.06103) +- ๐Ÿธ YourTTS: [paper](https://arxiv.org/abs/2112.02418) +- ๐Ÿข Tortoise: [orig. repo](https://github.com/neonbjb/tortoise-tts) +- ๐Ÿถ Bark: [orig. repo](https://github.com/suno-ai/bark) + +### Attention Methods +- Guided Attention: [paper](https://arxiv.org/abs/1710.08969) +- Forward Backward Decoding: [paper](https://arxiv.org/abs/1907.09006) +- Graves Attention: [paper](https://arxiv.org/abs/1910.10288) +- Double Decoder Consistency: [blog](https://erogol.com/solving-attention-problems-of-tts-models-with-double-decoder-consistency/) +- Dynamic Convolutional Attention: [paper](https://arxiv.org/pdf/1910.10288.pdf) +- Alignment Network: [paper](https://arxiv.org/abs/2108.10447) + +### Speaker Encoder +- GE2E: [paper](https://arxiv.org/abs/1710.10467) +- Angular Loss: [paper](https://arxiv.org/pdf/2003.11982.pdf) + +### Vocoders +- MelGAN: [paper](https://arxiv.org/abs/1910.06711) +- MultiBandMelGAN: [paper](https://arxiv.org/abs/2005.05106) +- ParallelWaveGAN: [paper](https://arxiv.org/abs/1910.11480) +- GAN-TTS discriminators: [paper](https://arxiv.org/abs/1909.11646) +- WaveRNN: [origin](https://github.com/fatchord/WaveRNN/) +- WaveGrad: [paper](https://arxiv.org/abs/2009.00713) +- HiFiGAN: [paper](https://arxiv.org/abs/2010.05646) +- UnivNet: [paper](https://arxiv.org/abs/2106.07889) + +### Voice Conversion +- FreeVC: [paper](https://arxiv.org/abs/2210.15418) + +You can also help us implement more models. + +## Installation +๐ŸธTTS is tested on Ubuntu 18.04 with **python >= 3.7, < 3.11.**. + +If you are only interested in [synthesizing speech](https://tts.readthedocs.io/en/latest/inference.html) with the released ๐ŸธTTS models, installing from PyPI is the easiest option. + +```bash +pip install TTS +``` + +If you plan to code or train models, clone ๐ŸธTTS and install it locally. + +```bash +git clone https://github.com/coqui-ai/TTS +pip install -e .[all,dev,notebooks] # Select the relevant extras +``` + +If you are on Ubuntu (Debian), you can also run following commands for installation. + +```bash +$ make system-deps # intended to be used on Ubuntu (Debian). Let us know if you have a different OS. +$ make install +``` + +If you are on Windows, ๐Ÿ‘‘@GuyPaddock wrote installation instructions [here](https://stackoverflow.com/questions/66726331/how-can-i-run-mozilla-tts-coqui-tts-training-with-cuda-on-a-windows-system). + + +## Docker Image +You can also try TTS without install with the docker image. +Simply run the following command and you will be able to run TTS without installing it. + +```bash +docker run --rm -it -p 5002:5002 --entrypoint /bin/bash ghcr.io/coqui-ai/tts-cpu +python3 TTS/server/server.py --list_models #To get the list of available models +python3 TTS/server/server.py --model_name tts_models/en/vctk/vits # To start a server +``` + +You can then enjoy the TTS server [here](http://[::1]:5002/) +More details about the docker images (like GPU support) can be found [here](https://tts.readthedocs.io/en/latest/docker_images.html) + + +## Synthesizing speech by ๐ŸธTTS + +### ๐Ÿ Python API + +#### Running a multi-speaker and multi-lingual model + +```python +import torch +from TTS.api import TTS + +# Get device +device = "cuda" if torch.cuda.is_available() else "cpu" + +# List available ๐ŸธTTS models and choose the first one +model_name = TTS().list_models()[0] +# Init TTS +tts = TTS(model_name).to(device) + +# Run TTS +# โ— Since this model is multi-speaker and multi-lingual, we must set the target speaker and the language +# Text to speech with a numpy output +wav = tts.tts("This is a test! This is also a test!!", speaker=tts.speakers[0], language=tts.languages[0]) +# Text to speech to a file +tts.tts_to_file(text="Hello world!", speaker=tts.speakers[0], language=tts.languages[0], file_path="output.wav") +``` + +#### Running a single speaker model + +```python +# Init TTS with the target model name +tts = TTS(model_name="tts_models/de/thorsten/tacotron2-DDC", progress_bar=False).to(device) + +# Run TTS +tts.tts_to_file(text="Ich bin eine Testnachricht.", file_path=OUTPUT_PATH) + +# Example voice cloning with YourTTS in English, French and Portuguese +tts = TTS(model_name="tts_models/multilingual/multi-dataset/your_tts", progress_bar=False).to(device) +tts.tts_to_file("This is voice cloning.", speaker_wav="my/cloning/audio.wav", language="en", file_path="output.wav") +tts.tts_to_file("C'est le clonage de la voix.", speaker_wav="my/cloning/audio.wav", language="fr-fr", file_path="output.wav") +tts.tts_to_file("Isso รฉ clonagem de voz.", speaker_wav="my/cloning/audio.wav", language="pt-br", file_path="output.wav") +``` + +#### Example voice conversion + +Converting the voice in `source_wav` to the voice of `target_wav` + +```python +tts = TTS(model_name="voice_conversion_models/multilingual/vctk/freevc24", progress_bar=False).to("cuda") +tts.voice_conversion_to_file(source_wav="my/source.wav", target_wav="my/target.wav", file_path="output.wav") +``` + +#### Example voice cloning together with the voice conversion model. +This way, you can clone voices by using any model in ๐ŸธTTS. + +```python + +tts = TTS("tts_models/de/thorsten/tacotron2-DDC") +tts.tts_with_vc_to_file( + "Wie sage ich auf Italienisch, dass ich dich liebe?", + speaker_wav="target/speaker.wav", + file_path="output.wav" +) +``` + +#### Example using [๐ŸธCoqui Studio](https://coqui.ai) voices. +You access all of your cloned voices and built-in speakers in [๐ŸธCoqui Studio](https://coqui.ai). +To do this, you'll need an API token, which you can obtain from the [account page](https://coqui.ai/account). +After obtaining the API token, you'll need to configure the COQUI_STUDIO_TOKEN environment variable. + +Once you have a valid API token in place, the studio speakers will be displayed as distinct models within the list. +These models will follow the naming convention `coqui_studio/en//coqui_studio` + +```python +# XTTS model +models = TTS(cs_api_model="XTTS").list_models() +# Init TTS with the target studio speaker +tts = TTS(model_name="coqui_studio/en/Torcull Diarmuid/coqui_studio", progress_bar=False) +# Run TTS +tts.tts_to_file(text="This is a test.", file_path=OUTPUT_PATH) + +# V1 model +models = TTS(cs_api_model="V1").list_models() +# Run TTS with emotion and speed control +# Emotion control only works with V1 model +tts.tts_to_file(text="This is a test.", file_path=OUTPUT_PATH, emotion="Happy", speed=1.5) + +# XTTS-multilingual +models = TTS(cs_api_model="XTTS-multilingual").list_models() +# Run TTS with emotion and speed control +# Emotion control only works with V1 model +tts.tts_to_file(text="Das ist ein Test.", file_path=OUTPUT_PATH, language="de", speed=1.0) +``` + +#### Example text to speech using **Fairseq models in ~1100 languages** ๐Ÿคฏ. +For Fairseq models, use the following name format: `tts_models//fairseq/vits`. +You can find the language ISO codes [here](https://dl.fbaipublicfiles.com/mms/tts/all-tts-languages.html) +and learn about the Fairseq models [here](https://github.com/facebookresearch/fairseq/tree/main/examples/mms). + +```python +# TTS with on the fly voice conversion +api = TTS("tts_models/deu/fairseq/vits") +api.tts_with_vc_to_file( + "Wie sage ich auf Italienisch, dass ich dich liebe?", + speaker_wav="target/speaker.wav", + file_path="output.wav" +) +``` + +### Command-line `tts` + + + +Synthesize speech on command line. + +You can either use your trained model or choose a model from the provided list. + +If you don't specify any models, then it uses LJSpeech based English model. + +#### Single Speaker Models + +- List provided models: + + ``` + $ tts --list_models + ``` + +- Get model info (for both tts_models and vocoder_models): + + - Query by type/name: + The model_info_by_name uses the name as it from the --list_models. + ``` + $ tts --model_info_by_name "///" + ``` + For example: + ``` + $ tts --model_info_by_name tts_models/tr/common-voice/glow-tts + $ tts --model_info_by_name vocoder_models/en/ljspeech/hifigan_v2 + ``` + - Query by type/idx: + The model_query_idx uses the corresponding idx from --list_models. + + ``` + $ tts --model_info_by_idx "/" + ``` + + For example: + + ``` + $ tts --model_info_by_idx tts_models/3 + ``` + + - Query info for model info by full name: + ``` + $ tts --model_info_by_name "///" + ``` + +- Run TTS with default models: + + ``` + $ tts --text "Text for TTS" --out_path output/path/speech.wav + ``` + +- Run a TTS model with its default vocoder model: + + ``` + $ tts --text "Text for TTS" --model_name "///" --out_path output/path/speech.wav + ``` + + For example: + + ``` + $ tts --text "Text for TTS" --model_name "tts_models/en/ljspeech/glow-tts" --out_path output/path/speech.wav + ``` + +- Run with specific TTS and vocoder models from the list: + + ``` + $ tts --text "Text for TTS" --model_name "///" --vocoder_name "///" --out_path output/path/speech.wav + ``` + + For example: + + ``` + $ tts --text "Text for TTS" --model_name "tts_models/en/ljspeech/glow-tts" --vocoder_name "vocoder_models/en/ljspeech/univnet" --out_path output/path/speech.wav + ``` + +- Run your own TTS model (Using Griffin-Lim Vocoder): + + ``` + $ tts --text "Text for TTS" --model_path path/to/model.pth --config_path path/to/config.json --out_path output/path/speech.wav + ``` + +- Run your own TTS and Vocoder models: + + ``` + $ tts --text "Text for TTS" --model_path path/to/model.pth --config_path path/to/config.json --out_path output/path/speech.wav + --vocoder_path path/to/vocoder.pth --vocoder_config_path path/to/vocoder_config.json + ``` + +#### Multi-speaker Models + +- List the available speakers and choose a among them: + + ``` + $ tts --model_name "//" --list_speaker_idxs + ``` + +- Run the multi-speaker TTS model with the target speaker ID: + + ``` + $ tts --text "Text for TTS." --out_path output/path/speech.wav --model_name "//" --speaker_idx + ``` + +- Run your own multi-speaker TTS model: + + ``` + $ tts --text "Text for TTS" --out_path output/path/speech.wav --model_path path/to/model.pth --config_path path/to/config.json --speakers_file_path path/to/speaker.json --speaker_idx + ``` + +### Voice Conversion Models + +``` +$ tts --out_path output/path/speech.wav --model_name "//" --source_wav --target_wav +``` + + + +## Directory Structure +``` +|- notebooks/ (Jupyter Notebooks for model evaluation, parameter selection and data analysis.) +|- utils/ (common utilities.) +|- TTS + |- bin/ (folder for all the executables.) + |- train*.py (train your target model.) + |- ... + |- tts/ (text to speech models) + |- layers/ (model layer definitions) + |- models/ (model definitions) + |- utils/ (model specific utilities.) + |- speaker_encoder/ (Speaker Encoder models.) + |- (same) + |- vocoder/ (Vocoder models.) + |- (same) +``` diff --git a/TTS/TTS/.models.json b/TTS/TTS/.models.json new file mode 100644 index 0000000000000000000000000000000000000000..a893f708f1338d4949bcda350a5da6b5353b643b --- /dev/null +++ b/TTS/TTS/.models.json @@ -0,0 +1,920 @@ +{ + "tts_models": { + "multilingual": { + "multi-dataset": { + "xtts_v1": { + "description": "XTTS-v1 by Coqui with 13 languages and cross-language voice cloning.", + "hf_url": [ + "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v1/model.pth", + "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v1/config.json", + "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v1/vocab.json" + ], + "default_vocoder": null, + "commit": "e9a1953e", + "license": "CPML", + "contact": "info@coqui.ai", + "tos_required": true + }, + "your_tts": { + "description": "Your TTS model accompanying the paper https://arxiv.org/abs/2112.02418", + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.10.1_models/tts_models--multilingual--multi-dataset--your_tts.zip", + "default_vocoder": null, + "commit": "e9a1953e", + "license": "CC BY-NC-ND 4.0", + "contact": "egolge@coqui.ai" + }, + "bark": { + "description": "๐Ÿถ Bark TTS model released by suno-ai. You can find the original implementation in https://github.com/suno-ai/bark.", + "hf_url": [ + "https://coqui.gateway.scarf.sh/hf/bark/coarse_2.pt", + "https://coqui.gateway.scarf.sh/hf/bark/fine_2.pt", + "https://app.coqui.ai/tts_model/text_2.pt", + "https://coqui.gateway.scarf.sh/hf/bark/config.json", + "https://coqui.gateway.scarf.sh/hf/bark/hubert.pt", + "https://coqui.gateway.scarf.sh/hf/bark/tokenizer.pth" + ], + "default_vocoder": null, + "commit": "e9a1953e", + "license": "MIT", + "contact": "https://www.suno.ai/" + } + } + }, + "bg": { + "cv": { + "vits": { + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.8.0_models/tts_models--bg--cv--vits.zip", + "default_vocoder": null, + "commit": null, + "author": "@NeonGeckoCom", + "license": "bsd-3-clause" + } + } + }, + "cs": { + "cv": { + "vits": { + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.8.0_models/tts_models--cs--cv--vits.zip", + "default_vocoder": null, + "commit": null, + "author": "@NeonGeckoCom", + "license": "bsd-3-clause" + } + } + }, + "da": { + "cv": { + "vits": { + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.8.0_models/tts_models--da--cv--vits.zip", + "default_vocoder": null, + "commit": null, + "author": "@NeonGeckoCom", + "license": "bsd-3-clause" + } + } + }, + "et": { + "cv": { + "vits": { + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.8.0_models/tts_models--et--cv--vits.zip", + "default_vocoder": null, + "commit": null, + "author": "@NeonGeckoCom", + "license": "bsd-3-clause" + } + } + }, + "ga": { + "cv": { + "vits": { + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.8.0_models/tts_models--ga--cv--vits.zip", + "default_vocoder": null, + "commit": null, + "author": "@NeonGeckoCom", + "license": "bsd-3-clause" + } + } + }, + "en": { + "ek1": { + "tacotron2": { + "description": "EK1 en-rp tacotron2 by NMStoker", + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/tts_models--en--ek1--tacotron2.zip", + "default_vocoder": "vocoder_models/en/ek1/wavegrad", + "commit": "c802255", + "license": "apache 2.0" + } + }, + "ljspeech": { + "tacotron2-DDC": { + "description": "Tacotron2 with Double Decoder Consistency.", + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/tts_models--en--ljspeech--tacotron2-DDC.zip", + "default_vocoder": "vocoder_models/en/ljspeech/hifigan_v2", + "commit": "bae2ad0f", + "author": "Eren Gรถlge @erogol", + "license": "apache 2.0", + "contact": "egolge@coqui.com" + }, + "tacotron2-DDC_ph": { + "description": "Tacotron2 with Double Decoder Consistency with phonemes.", + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/tts_models--en--ljspeech--tacotron2-DDC_ph.zip", + "default_vocoder": "vocoder_models/en/ljspeech/univnet", + "commit": "3900448", + "author": "Eren Gรถlge @erogol", + "license": "apache 2.0", + "contact": "egolge@coqui.com" + }, + "glow-tts": { + "description": "", + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/tts_models--en--ljspeech--glow-tts.zip", + "stats_file": null, + "default_vocoder": "vocoder_models/en/ljspeech/multiband-melgan", + "commit": "", + "author": "Eren Gรถlge @erogol", + "license": "MPL", + "contact": "egolge@coqui.com" + }, + "speedy-speech": { + "description": "Speedy Speech model trained on LJSpeech dataset using the Alignment Network for learning the durations.", + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/tts_models--en--ljspeech--speedy-speech.zip", + "stats_file": null, + "default_vocoder": "vocoder_models/en/ljspeech/hifigan_v2", + "commit": "4581e3d", + "author": "Eren Gรถlge @erogol", + "license": "apache 2.0", + "contact": "egolge@coqui.com" + }, + "tacotron2-DCA": { + "description": "", + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/tts_models--en--ljspeech--tacotron2-DCA.zip", + "default_vocoder": "vocoder_models/en/ljspeech/multiband-melgan", + "commit": "", + "author": "Eren Gรถlge @erogol", + "license": "MPL", + "contact": "egolge@coqui.com" + }, + "vits": { + "description": "VITS is an End2End TTS model trained on LJSpeech dataset with phonemes.", + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/tts_models--en--ljspeech--vits.zip", + "default_vocoder": null, + "commit": "3900448", + "author": "Eren Gรถlge @erogol", + "license": "apache 2.0", + "contact": "egolge@coqui.com" + }, + "vits--neon": { + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.8.0_models/tts_models--en--ljspeech--vits.zip", + "default_vocoder": null, + "author": "@NeonGeckoCom", + "license": "bsd-3-clause", + "contact": null, + "commit": null + }, + "fast_pitch": { + "description": "FastPitch model trained on LJSpeech using the Aligner Network", + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/tts_models--en--ljspeech--fast_pitch.zip", + "default_vocoder": "vocoder_models/en/ljspeech/hifigan_v2", + "commit": "b27b3ba", + "author": "Eren Gรถlge @erogol", + "license": "apache 2.0", + "contact": "egolge@coqui.com" + }, + "overflow": { + "description": "Overflow model trained on LJSpeech", + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.10.0_models/tts_models--en--ljspeech--overflow.zip", + "default_vocoder": "vocoder_models/en/ljspeech/hifigan_v2", + "commit": "3b1a28f", + "author": "Eren Gรถlge @erogol", + "license": "apache 2.0", + "contact": "egolge@coqui.ai" + }, + "neural_hmm": { + "description": "Neural HMM model trained on LJSpeech", + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.11.0_models/tts_models--en--ljspeech--neural_hmm.zip", + "default_vocoder": "vocoder_models/en/ljspeech/hifigan_v2", + "commit": "3b1a28f", + "author": "Shivam Metha @shivammehta25", + "license": "apache 2.0", + "contact": "d83ee8fe45e3c0d776d4a865aca21d7c2ac324c4" + } + }, + "vctk": { + "vits": { + "description": "VITS End2End TTS model trained on VCTK dataset with 109 different speakers with EN accent.", + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/tts_models--en--vctk--vits.zip", + "default_vocoder": null, + "commit": "3900448", + "author": "Eren @erogol", + "license": "apache 2.0", + "contact": "egolge@coqui.ai" + }, + "fast_pitch": { + "description": "FastPitch model trained on VCTK dataseset.", + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/tts_models--en--vctk--fast_pitch.zip", + "default_vocoder": null, + "commit": "bdab788d", + "author": "Eren @erogol", + "license": "CC BY-NC-ND 4.0", + "contact": "egolge@coqui.ai" + } + }, + "sam": { + "tacotron-DDC": { + "description": "Tacotron2 with Double Decoder Consistency trained with Aceenture's Sam dataset.", + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/tts_models--en--sam--tacotron-DDC.zip", + "default_vocoder": "vocoder_models/en/sam/hifigan_v2", + "commit": "bae2ad0f", + "author": "Eren Gรถlge @erogol", + "license": "apache 2.0", + "contact": "egolge@coqui.com" + } + }, + "blizzard2013": { + "capacitron-t2-c50": { + "description": "Capacitron additions to Tacotron 2 with Capacity at 50 as in https://arxiv.org/pdf/1906.03402.pdf", + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.7.0_models/tts_models--en--blizzard2013--capacitron-t2-c50.zip", + "commit": "d6284e7", + "default_vocoder": "vocoder_models/en/blizzard2013/hifigan_v2", + "author": "Adam Froghyar @a-froghyar", + "license": "apache 2.0", + "contact": "adamfroghyar@gmail.com" + }, + "capacitron-t2-c150_v2": { + "description": "Capacitron additions to Tacotron 2 with Capacity at 150 as in https://arxiv.org/pdf/1906.03402.pdf", + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.7.1_models/tts_models--en--blizzard2013--capacitron-t2-c150_v2.zip", + "commit": "a67039d", + "default_vocoder": "vocoder_models/en/blizzard2013/hifigan_v2", + "author": "Adam Froghyar @a-froghyar", + "license": "apache 2.0", + "contact": "adamfroghyar@gmail.com" + } + }, + "multi-dataset": { + "tortoise-v2": { + "description": "Tortoise tts model https://github.com/neonbjb/tortoise-tts", + "github_rls_url": [ + "https://app.coqui.ai/tts_model/autoregressive.pth", + "https://coqui.gateway.scarf.sh/v0.14.1_models/clvp2.pth", + "https://coqui.gateway.scarf.sh/v0.14.1_models/cvvp.pth", + "https://coqui.gateway.scarf.sh/v0.14.1_models/diffusion_decoder.pth", + "https://coqui.gateway.scarf.sh/v0.14.1_models/rlg_auto.pth", + "https://coqui.gateway.scarf.sh/v0.14.1_models/rlg_diffuser.pth", + "https://coqui.gateway.scarf.sh/v0.14.1_models/vocoder.pth", + "https://coqui.gateway.scarf.sh/v0.14.1_models/mel_norms.pth", + "https://coqui.gateway.scarf.sh/v0.14.1_models/config.json" + ], + "commit": "c1875f6", + "default_vocoder": null, + "author": "@neonbjb - James Betker, @manmay-nakhashi Manmay Nakhashi", + "license": "apache 2.0" + } + }, + "jenny": { + "jenny": { + "description": "VITS model trained with Jenny(Dioco) dataset. Named as Jenny as demanded by the license. Original URL for the model https://www.kaggle.com/datasets/noml4u/tts-models--en--jenny-dioco--vits", + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.14.0_models/tts_models--en--jenny--jenny.zip", + "default_vocoder": null, + "commit": "ba40a1c", + "license": "custom - see https://github.com/dioco-group/jenny-tts-dataset#important", + "author": "@noml4u" + } + } + }, + "es": { + "mai": { + "tacotron2-DDC": { + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/tts_models--es--mai--tacotron2-DDC.zip", + "default_vocoder": "vocoder_models/universal/libri-tts/fullband-melgan", + "commit": "", + "author": "Eren Gรถlge @erogol", + "license": "MPL", + "contact": "egolge@coqui.com" + } + }, + "css10": { + "vits": { + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.8.0_models/tts_models--es--css10--vits.zip", + "default_vocoder": null, + "commit": null, + "author": "@NeonGeckoCom", + "license": "bsd-3-clause" + } + } + }, + "fr": { + "mai": { + "tacotron2-DDC": { + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/tts_models--fr--mai--tacotron2-DDC.zip", + "default_vocoder": "vocoder_models/universal/libri-tts/fullband-melgan", + "commit": null, + "author": "Eren Gรถlge @erogol", + "license": "MPL", + "contact": "egolge@coqui.com" + } + }, + "css10": { + "vits": { + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.8.0_models/tts_models--fr--css10--vits.zip", + "default_vocoder": null, + "commit": null, + "author": "@NeonGeckoCom", + "license": "bsd-3-clause" + } + } + }, + "uk": { + "mai": { + "glow-tts": { + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/tts_models--uk--mai--glow-tts.zip", + "author": "@robinhad", + "commit": "bdab788d", + "license": "MIT", + "contact": "", + "default_vocoder": "vocoder_models/uk/mai/multiband-melgan" + }, + "vits": { + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.8.0_models/tts_models--uk--mai--vits.zip", + "default_vocoder": null, + "commit": null, + "author": "@NeonGeckoCom", + "license": "bsd-3-clause" + } + } + }, + "zh-CN": { + "baker": { + "tacotron2-DDC-GST": { + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/tts_models--zh-CN--baker--tacotron2-DDC-GST.zip", + "commit": "unknown", + "author": "@kirianguiller", + "license": "apache 2.0", + "default_vocoder": null + } + } + }, + "nl": { + "mai": { + "tacotron2-DDC": { + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/tts_models--nl--mai--tacotron2-DDC.zip", + "author": "@r-dh", + "license": "apache 2.0", + "default_vocoder": "vocoder_models/nl/mai/parallel-wavegan", + "stats_file": null, + "commit": "540d811" + } + }, + "css10": { + "vits": { + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.8.0_models/tts_models--nl--css10--vits.zip", + "default_vocoder": null, + "commit": null, + "author": "@NeonGeckoCom", + "license": "bsd-3-clause" + } + } + }, + "de": { + "thorsten": { + "tacotron2-DCA": { + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/tts_models--de--thorsten--tacotron2-DCA.zip", + "default_vocoder": "vocoder_models/de/thorsten/fullband-melgan", + "author": "@thorstenMueller", + "license": "apache 2.0", + "commit": "unknown" + }, + "vits": { + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.7.0_models/tts_models--de--thorsten--vits.zip", + "default_vocoder": null, + "author": "@thorstenMueller", + "license": "apache 2.0", + "commit": "unknown" + }, + "tacotron2-DDC": { + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.8.0_models/tts_models--de--thorsten--tacotron2-DDC.zip", + "default_vocoder": "vocoder_models/de/thorsten/hifigan_v1", + "description": "Thorsten-Dec2021-22k-DDC", + "author": "@thorstenMueller", + "license": "apache 2.0", + "commit": "unknown" + } + }, + "css10": { + "vits-neon": { + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.8.0_models/tts_models--de--css10--vits.zip", + "default_vocoder": null, + "author": "@NeonGeckoCom", + "license": "bsd-3-clause", + "commit": null + } + } + }, + "ja": { + "kokoro": { + "tacotron2-DDC": { + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/tts_models--ja--kokoro--tacotron2-DDC.zip", + "default_vocoder": "vocoder_models/ja/kokoro/hifigan_v1", + "description": "Tacotron2 with Double Decoder Consistency trained with Kokoro Speech Dataset.", + "author": "@kaiidams", + "license": "apache 2.0", + "commit": "401fbd89" + } + } + }, + "tr": { + "common-voice": { + "glow-tts": { + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/tts_models--tr--common-voice--glow-tts.zip", + "default_vocoder": "vocoder_models/tr/common-voice/hifigan", + "license": "MIT", + "description": "Turkish GlowTTS model using an unknown speaker from the Common-Voice dataset.", + "author": "Fatih Akademi", + "commit": null + } + } + }, + "it": { + "mai_female": { + "glow-tts": { + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/tts_models--it--mai_female--glow-tts.zip", + "default_vocoder": null, + "description": "GlowTTS model as explained on https://github.com/coqui-ai/TTS/issues/1148.", + "author": "@nicolalandro", + "license": "apache 2.0", + "commit": null + }, + "vits": { + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/tts_models--it--mai_female--vits.zip", + "default_vocoder": null, + "description": "GlowTTS model as explained on https://github.com/coqui-ai/TTS/issues/1148.", + "author": "@nicolalandro", + "license": "apache 2.0", + "commit": null + } + }, + "mai_male": { + "glow-tts": { + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/tts_models--it--mai_male--glow-tts.zip", + "default_vocoder": null, + "description": "GlowTTS model as explained on https://github.com/coqui-ai/TTS/issues/1148.", + "author": "@nicolalandro", + "license": "apache 2.0", + "commit": null + }, + "vits": { + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/tts_models--it--mai_male--vits.zip", + "default_vocoder": null, + "description": "GlowTTS model as explained on https://github.com/coqui-ai/TTS/issues/1148.", + "author": "@nicolalandro", + "license": "apache 2.0", + "commit": null + } + } + }, + "ewe": { + "openbible": { + "vits": { + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.2_models/tts_models--ewe--openbible--vits.zip", + "default_vocoder": null, + "license": "CC-BY-SA 4.0", + "description": "Original work (audio and text) by Biblica available for free at www.biblica.com and open.bible.", + "author": "@coqui_ai", + "commit": "1b22f03" + } + } + }, + "hau": { + "openbible": { + "vits": { + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.2_models/tts_models--hau--openbible--vits.zip", + "default_vocoder": null, + "license": "CC-BY-SA 4.0", + "description": "Original work (audio and text) by Biblica available for free at www.biblica.com and open.bible.", + "author": "@coqui_ai", + "commit": "1b22f03" + } + } + }, + "lin": { + "openbible": { + "vits": { + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.2_models/tts_models--lin--openbible--vits.zip", + "default_vocoder": null, + "license": "CC-BY-SA 4.0", + "description": "Original work (audio and text) by Biblica available for free at www.biblica.com and open.bible.", + "author": "@coqui_ai", + "commit": "1b22f03" + } + } + }, + "tw_akuapem": { + "openbible": { + "vits": { + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.2_models/tts_models--tw_akuapem--openbible--vits.zip", + "default_vocoder": null, + "license": "CC-BY-SA 4.0", + "description": "Original work (audio and text) by Biblica available for free at www.biblica.com and open.bible.", + "author": "@coqui_ai", + "commit": "1b22f03" + } + } + }, + "tw_asante": { + "openbible": { + "vits": { + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.2_models/tts_models--tw_asante--openbible--vits.zip", + "default_vocoder": null, + "license": "CC-BY-SA 4.0", + "description": "Original work (audio and text) by Biblica available for free at www.biblica.com and open.bible.", + "author": "@coqui_ai", + "commit": "1b22f03" + } + } + }, + "yor": { + "openbible": { + "vits": { + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.2_models/tts_models--yor--openbible--vits.zip", + "default_vocoder": null, + "license": "CC-BY-SA 4.0", + "description": "Original work (audio and text) by Biblica available for free at www.biblica.com and open.bible.", + "author": "@coqui_ai", + "commit": "1b22f03" + } + } + }, + "hu": { + "css10": { + "vits": { + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.8.0_models/tts_models--hu--css10--vits.zip", + "default_vocoder": null, + "commit": null, + "author": "@NeonGeckoCom", + "license": "bsd-3-clause" + } + } + }, + "el": { + "cv": { + "vits": { + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.8.0_models/tts_models--el--cv--vits.zip", + "default_vocoder": null, + "commit": null, + "author": "@NeonGeckoCom", + "license": "bsd-3-clause" + } + } + }, + "fi": { + "css10": { + "vits": { + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.8.0_models/tts_models--fi--css10--vits.zip", + "default_vocoder": null, + "commit": null, + "author": "@NeonGeckoCom", + "license": "bsd-3-clause" + } + } + }, + "hr": { + "cv": { + "vits": { + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.8.0_models/tts_models--hr--cv--vits.zip", + "default_vocoder": null, + "commit": null, + "author": "@NeonGeckoCom", + "license": "bsd-3-clause" + } + } + }, + "lt": { + "cv": { + "vits": { + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.8.0_models/tts_models--lt--cv--vits.zip", + "default_vocoder": null, + "commit": null, + "author": "@NeonGeckoCom", + "license": "bsd-3-clause" + } + } + }, + "lv": { + "cv": { + "vits": { + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.8.0_models/tts_models--lv--cv--vits.zip", + "default_vocoder": null, + "commit": null, + "author": "@NeonGeckoCom", + "license": "bsd-3-clause" + } + } + }, + "mt": { + "cv": { + "vits": { + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.8.0_models/tts_models--mt--cv--vits.zip", + "default_vocoder": null, + "commit": null, + "author": "@NeonGeckoCom", + "license": "bsd-3-clause" + } + } + }, + "pl": { + "mai_female": { + "vits": { + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.8.0_models/tts_models--pl--mai_female--vits.zip", + "default_vocoder": null, + "commit": null, + "author": "@NeonGeckoCom", + "license": "bsd-3-clause" + } + } + }, + "pt": { + "cv": { + "vits": { + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.8.0_models/tts_models--pt--cv--vits.zip", + "default_vocoder": null, + "commit": null, + "author": "@NeonGeckoCom", + "license": "bsd-3-clause" + } + } + }, + "ro": { + "cv": { + "vits": { + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.8.0_models/tts_models--ro--cv--vits.zip", + "default_vocoder": null, + "commit": null, + "author": "@NeonGeckoCom", + "license": "bsd-3-clause" + } + } + }, + "sk": { + "cv": { + "vits": { + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.8.0_models/tts_models--sk--cv--vits.zip", + "default_vocoder": null, + "commit": null, + "author": "@NeonGeckoCom", + "license": "bsd-3-clause" + } + } + }, + "sl": { + "cv": { + "vits": { + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.8.0_models/tts_models--sl--cv--vits.zip", + "default_vocoder": null, + "commit": null, + "author": "@NeonGeckoCom", + "license": "bsd-3-clause" + } + } + }, + "sv": { + "cv": { + "vits": { + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.8.0_models/tts_models--sv--cv--vits.zip", + "default_vocoder": null, + "commit": null, + "author": "@NeonGeckoCom", + "license": "bsd-3-clause" + } + } + }, + "ca": { + "custom": { + "vits": { + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.10.1_models/tts_models--ca--custom--vits.zip", + "default_vocoder": null, + "commit": null, + "description": " It is trained from zero with 101460 utterances consisting of 257 speakers, approx 138 hours of speech. We used three datasets;\nFestcat and Google Catalan TTS (both TTS datasets) and also a part of Common Voice 8. It is trained with TTS v0.8.0.\nhttps://github.com/coqui-ai/TTS/discussions/930#discussioncomment-4466345", + "author": "@gullabi", + "license": "CC-BY-4.0" + } + } + }, + "fa": { + "custom": { + "glow-tts": { + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.10.1_models/tts_models--fa--custom--glow-tts.zip", + "default_vocoder": null, + "commit": null, + "description": "persian-tts-female-glow_tts model for text to speech purposes. Single-speaker female voice Trained on persian-tts-dataset-famale. \nThis model has no compatible vocoder thus the output quality is not very good. \nDataset: https://www.kaggle.com/datasets/magnoliasis/persian-tts-dataset-famale.", + "author": "@karim23657", + "license": "CC-BY-4.0" + } + } + }, + "bn": { + "custom": { + "vits-male": { + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.13.3_models/tts_models--bn--custom--vits_male.zip", + "default_vocoder": null, + "commit": null, + "description": "Single speaker Bangla male model. For more information -> https://github.com/mobassir94/comprehensive-bangla-tts", + "author": "@mobassir94", + "license": "Apache 2.0" + }, + "vits-female": { + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.13.3_models/tts_models--bn--custom--vits_female.zip", + "default_vocoder": null, + "commit": null, + "description": "Single speaker Bangla female model. For more information -> https://github.com/mobassir94/comprehensive-bangla-tts", + "author": "@mobassir94", + "license": "Apache 2.0" + } + } + }, + "be": { + "common-voice": { + "glow-tts":{ + "description": "Belarusian GlowTTS model created by @alex73 (Github).", + "github_rls_url":"https://coqui.gateway.scarf.sh/v0.16.6/tts_models--be--common-voice--glow-tts.zip", + "default_vocoder": "vocoder_models/be/common-voice/hifigan", + "commit": "c0aabb85", + "license": "CC-BY-SA 4.0", + "contact": "alex73mail@gmail.com" + } + } + } + }, + "vocoder_models": { + "universal": { + "libri-tts": { + "wavegrad": { + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/vocoder_models--universal--libri-tts--wavegrad.zip", + "commit": "ea976b0", + "author": "Eren Gรถlge @erogol", + "license": "MPL", + "contact": "egolge@coqui.com" + }, + "fullband-melgan": { + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/vocoder_models--universal--libri-tts--fullband-melgan.zip", + "commit": "4132240", + "author": "Eren Gรถlge @erogol", + "license": "MPL", + "contact": "egolge@coqui.com" + } + } + }, + "en": { + "ek1": { + "wavegrad": { + "description": "EK1 en-rp wavegrad by NMStoker", + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/vocoder_models--en--ek1--wavegrad.zip", + "commit": "c802255", + "license": "apache 2.0" + } + }, + "ljspeech": { + "multiband-melgan": { + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/vocoder_models--en--ljspeech--multiband-melgan.zip", + "commit": "ea976b0", + "author": "Eren Gรถlge @erogol", + "license": "MPL", + "contact": "egolge@coqui.com" + }, + "hifigan_v2": { + "description": "HiFiGAN_v2 LJSpeech vocoder from https://arxiv.org/abs/2010.05646.", + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/vocoder_models--en--ljspeech--hifigan_v2.zip", + "commit": "bae2ad0f", + "author": "@erogol", + "license": "apache 2.0", + "contact": "egolge@coqui.ai" + }, + "univnet": { + "description": "UnivNet model finetuned on TacotronDDC_ph spectrograms for better compatibility.", + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/vocoder_models--en--ljspeech--univnet_v2.zip", + "commit": "4581e3d", + "author": "Eren @erogol", + "license": "apache 2.0", + "contact": "egolge@coqui.ai" + } + }, + "blizzard2013": { + "hifigan_v2": { + "description": "HiFiGAN_v2 LJSpeech vocoder from https://arxiv.org/abs/2010.05646.", + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.7.0_models/vocoder_models--en--blizzard2013--hifigan_v2.zip", + "commit": "d6284e7", + "author": "Adam Froghyar @a-froghyar", + "license": "apache 2.0", + "contact": "adamfroghyar@gmail.com" + } + }, + "vctk": { + "hifigan_v2": { + "description": "Finetuned and intended to be used with tts_models/en/vctk/sc-glow-tts", + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/vocoder_models--en--vctk--hifigan_v2.zip", + "commit": "2f07160", + "author": "Edresson Casanova", + "license": "apache 2.0", + "contact": "" + } + }, + "sam": { + "hifigan_v2": { + "description": "Finetuned and intended to be used with tts_models/en/sam/tacotron_DDC", + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/vocoder_models--en--sam--hifigan_v2.zip", + "commit": "2f07160", + "author": "Eren Gรถlge @erogol", + "license": "apache 2.0", + "contact": "egolge@coqui.ai" + } + } + }, + "nl": { + "mai": { + "parallel-wavegan": { + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/vocoder_models--nl--mai--parallel-wavegan.zip", + "author": "@r-dh", + "license": "apache 2.0", + "commit": "unknown" + } + } + }, + "de": { + "thorsten": { + "wavegrad": { + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/vocoder_models--de--thorsten--wavegrad.zip", + "author": "@thorstenMueller", + "license": "apache 2.0", + "commit": "unknown" + }, + "fullband-melgan": { + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/vocoder_models--de--thorsten--fullband-melgan.zip", + "author": "@thorstenMueller", + "license": "apache 2.0", + "commit": "unknown" + }, + "hifigan_v1": { + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.8.0_models/vocoder_models--de--thorsten--hifigan_v1.zip", + "description": "HifiGAN vocoder model for Thorsten Neutral Dec2021 22k Samplerate Tacotron2 DDC model", + "author": "@thorstenMueller", + "license": "apache 2.0", + "commit": "unknown" + } + } + }, + "ja": { + "kokoro": { + "hifigan_v1": { + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/vocoder_models--ja--kokoro--hifigan_v1.zip", + "description": "HifiGAN model trained for kokoro dataset by @kaiidams", + "author": "@kaiidams", + "license": "apache 2.0", + "commit": "3900448" + } + } + }, + "uk": { + "mai": { + "multiband-melgan": { + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/vocoder_models--uk--mai--multiband-melgan.zip", + "author": "@robinhad", + "commit": "bdab788d", + "license": "MIT", + "contact": "" + } + } + }, + "tr": { + "common-voice": { + "hifigan": { + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/vocoder_models--tr--common-voice--hifigan.zip", + "description": "HifiGAN model using an unknown speaker from the Common-Voice dataset.", + "author": "Fatih Akademi", + "license": "MIT", + "commit": null + } + } + }, + "be": { + "common-voice": { + "hifigan": { + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.16.6/vocoder_models--be--common-voice--hifigan.zip", + "description": "Belarusian HiFiGAN model created by @alex73 (Github).", + "author": "@alex73", + "license": "CC-BY-SA 4.0", + "commit": "c0aabb85" + } + } + } + }, + "voice_conversion_models": { + "multilingual": { + "vctk": { + "freevc24": { + "github_rls_url": "https://coqui.gateway.scarf.sh/v0.13.0_models/voice_conversion_models--multilingual--vctk--freevc24.zip", + "description": "FreeVC model trained on VCTK dataset from https://github.com/OlaWod/FreeVC", + "author": "Jing-Yi Li @OlaWod", + "license": "MIT", + "commit": null + } + } + } + } +} \ No newline at end of file diff --git a/TTS/TTS/VERSION b/TTS/TTS/VERSION new file mode 100644 index 0000000000000000000000000000000000000000..8b5334dc1759edacd9003157c01ef76755d75fae --- /dev/null +++ b/TTS/TTS/VERSION @@ -0,0 +1 @@ +0.17.5 diff --git a/TTS/TTS/__init__.py b/TTS/TTS/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..eaf05db1b950d82bfd7e20857e09a0fef45b430a --- /dev/null +++ b/TTS/TTS/__init__.py @@ -0,0 +1,6 @@ +import os + +with open(os.path.join(os.path.dirname(__file__), "VERSION"), "r", encoding="utf-8") as f: + version = f.read().strip() + +__version__ = version diff --git a/TTS/TTS/api.py b/TTS/TTS/api.py new file mode 100644 index 0000000000000000000000000000000000000000..1eb0b510668fc62909a58dee3d923ad865d1a726 --- /dev/null +++ b/TTS/TTS/api.py @@ -0,0 +1,476 @@ +import tempfile +import warnings +from pathlib import Path +from typing import Union + +import numpy as np +from torch import nn + +from TTS.cs_api import CS_API +from TTS.utils.audio.numpy_transforms import save_wav +from TTS.utils.manage import ModelManager +from TTS.utils.synthesizer import Synthesizer + + +class TTS(nn.Module): + """TODO: Add voice conversion and Capacitron support.""" + + def __init__( + self, + model_name: str = None, + model_path: str = None, + config_path: str = None, + vocoder_path: str = None, + vocoder_config_path: str = None, + progress_bar: bool = True, + cs_api_model: str = "XTTS", + gpu=False, + ): + """๐ŸธTTS python interface that allows to load and use the released models. + + Example with a multi-speaker model: + >>> from TTS.api import TTS + >>> tts = TTS(TTS.list_models()[0]) + >>> wav = tts.tts("This is a test! This is also a test!!", speaker=tts.speakers[0], language=tts.languages[0]) + >>> tts.tts_to_file(text="Hello world!", speaker=tts.speakers[0], language=tts.languages[0], file_path="output.wav") + + Example with a single-speaker model: + >>> tts = TTS(model_name="tts_models/de/thorsten/tacotron2-DDC", progress_bar=False, gpu=False) + >>> tts.tts_to_file(text="Ich bin eine Testnachricht.", file_path="output.wav") + + Example loading a model from a path: + >>> tts = TTS(model_path="/path/to/checkpoint_100000.pth", config_path="/path/to/config.json", progress_bar=False, gpu=False) + >>> tts.tts_to_file(text="Ich bin eine Testnachricht.", file_path="output.wav") + + Example voice cloning with YourTTS in English, French and Portuguese: + >>> tts = TTS(model_name="tts_models/multilingual/multi-dataset/your_tts", progress_bar=False, gpu=True) + >>> tts.tts_to_file("This is voice cloning.", speaker_wav="my/cloning/audio.wav", language="en", file_path="thisisit.wav") + >>> tts.tts_to_file("C'est le clonage de la voix.", speaker_wav="my/cloning/audio.wav", language="fr", file_path="thisisit.wav") + >>> tts.tts_to_file("Isso รฉ clonagem de voz.", speaker_wav="my/cloning/audio.wav", language="pt", file_path="thisisit.wav") + + Example Fairseq TTS models (uses ISO language codes in https://dl.fbaipublicfiles.com/mms/tts/all-tts-languages.html): + >>> tts = TTS(model_name="tts_models/eng/fairseq/vits", progress_bar=False, gpu=True) + >>> tts.tts_to_file("This is a test.", file_path="output.wav") + + Args: + model_name (str, optional): Model name to load. You can list models by ```tts.models```. Defaults to None. + model_path (str, optional): Path to the model checkpoint. Defaults to None. + config_path (str, optional): Path to the model config. Defaults to None. + vocoder_path (str, optional): Path to the vocoder checkpoint. Defaults to None. + vocoder_config_path (str, optional): Path to the vocoder config. Defaults to None. + progress_bar (bool, optional): Whether to pring a progress bar while downloading a model. Defaults to True. + cs_api_model (str, optional): Name of the model to use for the Coqui Studio API. Available models are + "XTTS", "XTTS-multilingual", "V1". You can also use `TTS.cs_api.CS_API" for more control. + Defaults to "XTTS". + gpu (bool, optional): Enable/disable GPU. Some models might be too slow on CPU. Defaults to False. + """ + super().__init__() + self.manager = ModelManager(models_file=self.get_models_file_path(), progress_bar=progress_bar, verbose=False) + + self.synthesizer = None + self.voice_converter = None + self.csapi = None + self.cs_api_model = cs_api_model + self.model_name = None + + if gpu: + warnings.warn("`gpu` will be deprecated. Please use `tts.to(device)` instead.") + + if model_name is not None: + if "tts_models" in model_name or "coqui_studio" in model_name: + self.load_tts_model_by_name(model_name, gpu) + elif "voice_conversion_models" in model_name: + self.load_vc_model_by_name(model_name, gpu) + + if model_path: + self.load_tts_model_by_path( + model_path, config_path, vocoder_path=vocoder_path, vocoder_config=vocoder_config_path, gpu=gpu + ) + + @property + def models(self): + return self.manager.list_tts_models() + + @property + def is_multi_speaker(self): + if hasattr(self.synthesizer.tts_model, "speaker_manager") and self.synthesizer.tts_model.speaker_manager: + return self.synthesizer.tts_model.speaker_manager.num_speakers > 1 + return False + + @property + def is_coqui_studio(self): + if self.model_name is None: + return False + return "coqui_studio" in self.model_name + + @property + def is_multi_lingual(self): + # TODO: fix this + if "xtts" in self.model_name: + return True + if hasattr(self.synthesizer.tts_model, "language_manager") and self.synthesizer.tts_model.language_manager: + return self.synthesizer.tts_model.language_manager.num_languages > 1 + return False + + @property + def speakers(self): + if not self.is_multi_speaker: + return None + return self.synthesizer.tts_model.speaker_manager.speaker_names + + @property + def languages(self): + if not self.is_multi_lingual: + return None + return self.synthesizer.tts_model.language_manager.language_names + + @staticmethod + def get_models_file_path(): + return Path(__file__).parent / ".models.json" + + def list_models(self): + try: + csapi = CS_API(model=self.cs_api_model) + models = csapi.list_speakers_as_tts_models() + except ValueError as e: + print(e) + models = [] + manager = ModelManager(models_file=TTS.get_models_file_path(), progress_bar=False, verbose=False) + return manager.list_tts_models() + models + + def download_model_by_name(self, model_name: str): + model_path, config_path, model_item = self.manager.download_model(model_name) + if "fairseq" in model_name or (model_item is not None and isinstance(model_item["model_url"], list)): + # return model directory if there are multiple files + # we assume that the model knows how to load itself + return None, None, None, None, model_path + if model_item.get("default_vocoder") is None: + return model_path, config_path, None, None, None + vocoder_path, vocoder_config_path, _ = self.manager.download_model(model_item["default_vocoder"]) + return model_path, config_path, vocoder_path, vocoder_config_path, None + + def load_vc_model_by_name(self, model_name: str, gpu: bool = False): + """Load one of the voice conversion models by name. + + Args: + model_name (str): Model name to load. You can list models by ```tts.models```. + gpu (bool, optional): Enable/disable GPU. Some models might be too slow on CPU. Defaults to False. + """ + self.model_name = model_name + model_path, config_path, _, _, _ = self.download_model_by_name(model_name) + self.voice_converter = Synthesizer(vc_checkpoint=model_path, vc_config=config_path, use_cuda=gpu) + + def load_tts_model_by_name(self, model_name: str, gpu: bool = False): + """Load one of ๐ŸธTTS models by name. + + Args: + model_name (str): Model name to load. You can list models by ```tts.models```. + gpu (bool, optional): Enable/disable GPU. Some models might be too slow on CPU. Defaults to False. + + TODO: Add tests + """ + self.synthesizer = None + self.csapi = None + self.model_name = model_name + + if "coqui_studio" in model_name: + self.csapi = CS_API() + else: + model_path, config_path, vocoder_path, vocoder_config_path, model_dir = self.download_model_by_name( + model_name + ) + + # init synthesizer + # None values are fetch from the model + self.synthesizer = Synthesizer( + tts_checkpoint=model_path, + tts_config_path=config_path, + tts_speakers_file=None, + tts_languages_file=None, + vocoder_checkpoint=vocoder_path, + vocoder_config=vocoder_config_path, + encoder_checkpoint=None, + encoder_config=None, + model_dir=model_dir, + use_cuda=gpu, + ) + + def load_tts_model_by_path( + self, model_path: str, config_path: str, vocoder_path: str = None, vocoder_config: str = None, gpu: bool = False + ): + """Load a model from a path. + + Args: + model_path (str): Path to the model checkpoint. + config_path (str): Path to the model config. + vocoder_path (str, optional): Path to the vocoder checkpoint. Defaults to None. + vocoder_config (str, optional): Path to the vocoder config. Defaults to None. + gpu (bool, optional): Enable/disable GPU. Some models might be too slow on CPU. Defaults to False. + """ + + self.synthesizer = Synthesizer( + tts_checkpoint=model_path, + tts_config_path=config_path, + tts_speakers_file=None, + tts_languages_file=None, + vocoder_checkpoint=vocoder_path, + vocoder_config=vocoder_config, + encoder_checkpoint=None, + encoder_config=None, + use_cuda=gpu, + ) + + def _check_arguments( + self, + speaker: str = None, + language: str = None, + speaker_wav: str = None, + emotion: str = None, + speed: float = None, + **kwargs, + ) -> None: + """Check if the arguments are valid for the model.""" + if not self.is_coqui_studio: + # check for the coqui tts models + if self.is_multi_speaker and (speaker is None and speaker_wav is None): + raise ValueError("Model is multi-speaker but no `speaker` is provided.") + if self.is_multi_lingual and language is None: + raise ValueError("Model is multi-lingual but no `language` is provided.") + if not self.is_multi_speaker and speaker is not None and "voice_dir" not in kwargs: + raise ValueError("Model is not multi-speaker but `speaker` is provided.") + if not self.is_multi_lingual and language is not None: + raise ValueError("Model is not multi-lingual but `language` is provided.") + if not emotion is None and not speed is None: + raise ValueError("Emotion and speed can only be used with Coqui Studio models.") + else: + if emotion is None: + emotion = "Neutral" + if speed is None: + speed = 1.0 + # check for the studio models + if speaker_wav is not None: + raise ValueError("Coqui Studio models do not support `speaker_wav` argument.") + if speaker is not None: + raise ValueError("Coqui Studio models do not support `speaker` argument.") + if language is not None and language != "en": + raise ValueError("Coqui Studio models currently support only `language=en` argument.") + if emotion not in ["Neutral", "Happy", "Sad", "Angry", "Dull"]: + raise ValueError(f"Emotion - `{emotion}` - must be one of `Neutral`, `Happy`, `Sad`, `Angry`, `Dull`.") + + def tts_coqui_studio( + self, + text: str, + speaker_name: str = None, + language: str = None, + emotion: str = None, + speed: float = 1.0, + file_path: str = None, + ) -> Union[np.ndarray, str]: + """Convert text to speech using Coqui Studio models. Use `CS_API` class if you are only interested in the API. + + Args: + text (str): + Input text to synthesize. + speaker_name (str, optional): + Speaker name from Coqui Studio. Defaults to None. + language (str): Language of the text. If None, the default language of the speaker is used. Language is only + supported by `XTTS-multilang` model. Currently supports en, de, es, fr, it, pt, pl. Defaults to "en". + emotion (str, optional): + Emotion of the speaker. One of "Neutral", "Happy", "Sad", "Angry", "Dull". Emotions are only available + with "V1" model. Defaults to None. + speed (float, optional): + Speed of the speech. Defaults to 1.0. + file_path (str, optional): + Path to save the output file. When None it returns the `np.ndarray` of waveform. Defaults to None. + + Returns: + Union[np.ndarray, str]: Waveform of the synthesized speech or path to the output file. + """ + speaker_name = self.model_name.split("/")[2] + if file_path is not None: + return self.csapi.tts_to_file( + text=text, + speaker_name=speaker_name, + language=language, + speed=speed, + emotion=emotion, + file_path=file_path, + )[0] + return self.csapi.tts(text=text, speaker_name=speaker_name, language=language, speed=speed, emotion=emotion)[0] + + def tts( + self, + text: str, + speaker: str = None, + language: str = None, + speaker_wav: str = None, + emotion: str = None, + speed: float = None, + **kwargs, + ): + """Convert text to speech. + + Args: + text (str): + Input text to synthesize. + speaker (str, optional): + Speaker name for multi-speaker. You can check whether loaded model is multi-speaker by + `tts.is_multi_speaker` and list speakers by `tts.speakers`. Defaults to None. + language (str): Language of the text. If None, the default language of the speaker is used. Language is only + supported by `XTTS-multilang` model. Currently supports en, de, es, fr, it, pt, pl. Defaults to "en". + speaker_wav (str, optional): + Path to a reference wav file to use for voice cloning with supporting models like YourTTS. + Defaults to None. + emotion (str, optional): + Emotion to use for ๐ŸธCoqui Studio models. If None, Studio models use "Neutral". Defaults to None. + speed (float, optional): + Speed factor to use for ๐ŸธCoqui Studio models, between 0 and 2.0. If None, Studio models use 1.0. + Defaults to None. + """ + self._check_arguments( + speaker=speaker, language=language, speaker_wav=speaker_wav, emotion=emotion, speed=speed, **kwargs + ) + if self.csapi is not None: + return self.tts_coqui_studio( + text=text, speaker_name=speaker, language=language, emotion=emotion, speed=speed + ) + wav = self.synthesizer.tts( + text=text, + speaker_name=speaker, + language_name=language, + speaker_wav=speaker_wav, + reference_wav=None, + style_wav=None, + style_text=None, + reference_speaker_name=None, + **kwargs, + ) + return wav + + def tts_to_file( + self, + text: str, + speaker: str = None, + language: str = None, + speaker_wav: str = None, + emotion: str = None, + speed: float = 1.0, + file_path: str = "output.wav", + **kwargs, + ): + """Convert text to speech. + + Args: + text (str): + Input text to synthesize. + speaker (str, optional): + Speaker name for multi-speaker. You can check whether loaded model is multi-speaker by + `tts.is_multi_speaker` and list speakers by `tts.speakers`. Defaults to None. + language (str, optional): + Language code for multi-lingual models. You can check whether loaded model is multi-lingual + `tts.is_multi_lingual` and list available languages by `tts.languages`. Defaults to None. + speaker_wav (str, optional): + Path to a reference wav file to use for voice cloning with supporting models like YourTTS. + Defaults to None. + emotion (str, optional): + Emotion to use for ๐ŸธCoqui Studio models. Defaults to "Neutral". + speed (float, optional): + Speed factor to use for ๐ŸธCoqui Studio models, between 0.0 and 2.0. Defaults to None. + file_path (str, optional): + Output file path. Defaults to "output.wav". + kwargs (dict, optional): + Additional arguments for the model. + """ + self._check_arguments(speaker=speaker, language=language, speaker_wav=speaker_wav, **kwargs) + + if self.csapi is not None: + return self.tts_coqui_studio( + text=text, speaker_name=speaker, language=language, emotion=emotion, speed=speed, file_path=file_path + ) + wav = self.tts(text=text, speaker=speaker, language=language, speaker_wav=speaker_wav, **kwargs) + self.synthesizer.save_wav(wav=wav, path=file_path) + return file_path + + def voice_conversion( + self, + source_wav: str, + target_wav: str, + ): + """Voice conversion with FreeVC. Convert source wav to target speaker. + + Args:`` + source_wav (str): + Path to the source wav file. + target_wav (str):` + Path to the target wav file. + """ + wav = self.voice_converter.voice_conversion(source_wav=source_wav, target_wav=target_wav) + return wav + + def voice_conversion_to_file( + self, + source_wav: str, + target_wav: str, + file_path: str = "output.wav", + ): + """Voice conversion with FreeVC. Convert source wav to target speaker. + + Args: + source_wav (str): + Path to the source wav file. + target_wav (str): + Path to the target wav file. + file_path (str, optional): + Output file path. Defaults to "output.wav". + """ + wav = self.voice_conversion(source_wav=source_wav, target_wav=target_wav) + save_wav(wav=wav, path=file_path, sample_rate=self.voice_converter.vc_config.audio.output_sample_rate) + return file_path + + def tts_with_vc(self, text: str, language: str = None, speaker_wav: str = None): + """Convert text to speech with voice conversion. + + It combines tts with voice conversion to fake voice cloning. + + - Convert text to speech with tts. + - Convert the output wav to target speaker with voice conversion. + + Args: + text (str): + Input text to synthesize. + language (str, optional): + Language code for multi-lingual models. You can check whether loaded model is multi-lingual + `tts.is_multi_lingual` and list available languages by `tts.languages`. Defaults to None. + speaker_wav (str, optional): + Path to a reference wav file to use for voice cloning with supporting models like YourTTS. + Defaults to None. + """ + with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp: + # Lazy code... save it to a temp file to resample it while reading it for VC + self.tts_to_file(text=text, speaker=None, language=language, file_path=fp.name) + if self.voice_converter is None: + self.load_vc_model_by_name("voice_conversion_models/multilingual/vctk/freevc24") + wav = self.voice_converter.voice_conversion(source_wav=fp.name, target_wav=speaker_wav) + return wav + + def tts_with_vc_to_file( + self, text: str, language: str = None, speaker_wav: str = None, file_path: str = "output.wav" + ): + """Convert text to speech with voice conversion and save to file. + + Check `tts_with_vc` for more details. + + Args: + text (str): + Input text to synthesize. + language (str, optional): + Language code for multi-lingual models. You can check whether loaded model is multi-lingual + `tts.is_multi_lingual` and list available languages by `tts.languages`. Defaults to None. + speaker_wav (str, optional): + Path to a reference wav file to use for voice cloning with supporting models like YourTTS. + Defaults to None. + file_path (str, optional): + Output file path. Defaults to "output.wav". + """ + wav = self.tts_with_vc(text=text, language=language, speaker_wav=speaker_wav) + save_wav(wav=wav, path=file_path, sample_rate=self.voice_converter.vc_config.audio.output_sample_rate) diff --git a/TTS/TTS/bin/__init__.py b/TTS/TTS/bin/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/TTS/TTS/bin/collect_env_info.py b/TTS/TTS/bin/collect_env_info.py new file mode 100644 index 0000000000000000000000000000000000000000..662fcd02ece0fad387b6bfc4bad9316c7e2a0bad --- /dev/null +++ b/TTS/TTS/bin/collect_env_info.py @@ -0,0 +1,48 @@ +"""Get detailed info about the working environment.""" +import os +import platform +import sys + +import numpy +import torch + +sys.path += [os.path.abspath(".."), os.path.abspath(".")] +import json + +import TTS + + +def system_info(): + return { + "OS": platform.system(), + "architecture": platform.architecture(), + "version": platform.version(), + "processor": platform.processor(), + "python": platform.python_version(), + } + + +def cuda_info(): + return { + "GPU": [torch.cuda.get_device_name(i) for i in range(torch.cuda.device_count())], + "available": torch.cuda.is_available(), + "version": torch.version.cuda, + } + + +def package_info(): + return { + "numpy": numpy.__version__, + "PyTorch_version": torch.__version__, + "PyTorch_debug": torch.version.debug, + "TTS": TTS.__version__, + } + + +def main(): + details = {"System": system_info(), "CUDA": cuda_info(), "Packages": package_info()} + print(json.dumps(details, indent=4, sort_keys=True)) + + +if __name__ == "__main__": + main() diff --git a/TTS/TTS/bin/compute_attention_masks.py b/TTS/TTS/bin/compute_attention_masks.py new file mode 100644 index 0000000000000000000000000000000000000000..9ab520be7d9f41ecf4f124446400b5e1b597ae8b --- /dev/null +++ b/TTS/TTS/bin/compute_attention_masks.py @@ -0,0 +1,165 @@ +import argparse +import importlib +import os +from argparse import RawTextHelpFormatter + +import numpy as np +import torch +from torch.utils.data import DataLoader +from tqdm import tqdm + +from TTS.config import load_config +from TTS.tts.datasets.TTSDataset import TTSDataset +from TTS.tts.models import setup_model +from TTS.tts.utils.text.characters import make_symbols, phonemes, symbols +from TTS.utils.audio import AudioProcessor +from TTS.utils.io import load_checkpoint + +if __name__ == "__main__": + # pylint: disable=bad-option-value + parser = argparse.ArgumentParser( + description="""Extract attention masks from trained Tacotron/Tacotron2 models. +These masks can be used for different purposes including training a TTS model with a Duration Predictor.\n\n""" + """Each attention mask is written to the same path as the input wav file with ".npy" file extension. +(e.g. path/bla.wav (wav file) --> path/bla.npy (attention mask))\n""" + """ +Example run: + CUDA_VISIBLE_DEVICE="0" python TTS/bin/compute_attention_masks.py + --model_path /data/rw/home/Models/ljspeech-dcattn-December-14-2020_11+10AM-9d0e8c7/checkpoint_200000.pth + --config_path /data/rw/home/Models/ljspeech-dcattn-December-14-2020_11+10AM-9d0e8c7/config.json + --dataset_metafile metadata.csv + --data_path /root/LJSpeech-1.1/ + --batch_size 32 + --dataset ljspeech + --use_cuda True +""", + formatter_class=RawTextHelpFormatter, + ) + parser.add_argument("--model_path", type=str, required=True, help="Path to Tacotron/Tacotron2 model file ") + parser.add_argument( + "--config_path", + type=str, + required=True, + help="Path to Tacotron/Tacotron2 config file.", + ) + parser.add_argument( + "--dataset", + type=str, + default="", + required=True, + help="Target dataset processor name from TTS.tts.dataset.preprocess.", + ) + + parser.add_argument( + "--dataset_metafile", + type=str, + default="", + required=True, + help="Dataset metafile inclusing file paths with transcripts.", + ) + parser.add_argument("--data_path", type=str, default="", help="Defines the data path. It overwrites config.json.") + parser.add_argument("--use_cuda", type=bool, default=False, help="enable/disable cuda.") + + parser.add_argument( + "--batch_size", default=16, type=int, help="Batch size for the model. Use batch_size=1 if you have no CUDA." + ) + args = parser.parse_args() + + C = load_config(args.config_path) + ap = AudioProcessor(**C.audio) + + # if the vocabulary was passed, replace the default + if "characters" in C.keys(): + symbols, phonemes = make_symbols(**C.characters) + + # load the model + num_chars = len(phonemes) if C.use_phonemes else len(symbols) + # TODO: handle multi-speaker + model = setup_model(C) + model, _ = load_checkpoint(model, args.model_path, args.use_cuda, True) + + # data loader + preprocessor = importlib.import_module("TTS.tts.datasets.formatters") + preprocessor = getattr(preprocessor, args.dataset) + meta_data = preprocessor(args.data_path, args.dataset_metafile) + dataset = TTSDataset( + model.decoder.r, + C.text_cleaner, + compute_linear_spec=False, + ap=ap, + meta_data=meta_data, + characters=C.characters if "characters" in C.keys() else None, + add_blank=C["add_blank"] if "add_blank" in C.keys() else False, + use_phonemes=C.use_phonemes, + phoneme_cache_path=C.phoneme_cache_path, + phoneme_language=C.phoneme_language, + enable_eos_bos=C.enable_eos_bos_chars, + ) + + dataset.sort_and_filter_items(C.get("sort_by_audio_len", default=False)) + loader = DataLoader( + dataset, + batch_size=args.batch_size, + num_workers=4, + collate_fn=dataset.collate_fn, + shuffle=False, + drop_last=False, + ) + + # compute attentions + file_paths = [] + with torch.no_grad(): + for data in tqdm(loader): + # setup input data + text_input = data[0] + text_lengths = data[1] + linear_input = data[3] + mel_input = data[4] + mel_lengths = data[5] + stop_targets = data[6] + item_idxs = data[7] + + # dispatch data to GPU + if args.use_cuda: + text_input = text_input.cuda() + text_lengths = text_lengths.cuda() + mel_input = mel_input.cuda() + mel_lengths = mel_lengths.cuda() + + model_outputs = model.forward(text_input, text_lengths, mel_input) + + alignments = model_outputs["alignments"].detach() + for idx, alignment in enumerate(alignments): + item_idx = item_idxs[idx] + # interpolate if r > 1 + alignment = ( + torch.nn.functional.interpolate( + alignment.transpose(0, 1).unsqueeze(0), + size=None, + scale_factor=model.decoder.r, + mode="nearest", + align_corners=None, + recompute_scale_factor=None, + ) + .squeeze(0) + .transpose(0, 1) + ) + # remove paddings + alignment = alignment[: mel_lengths[idx], : text_lengths[idx]].cpu().numpy() + # set file paths + wav_file_name = os.path.basename(item_idx) + align_file_name = os.path.splitext(wav_file_name)[0] + "_attn.npy" + file_path = item_idx.replace(wav_file_name, align_file_name) + # save output + wav_file_abs_path = os.path.abspath(item_idx) + file_abs_path = os.path.abspath(file_path) + file_paths.append([wav_file_abs_path, file_abs_path]) + np.save(file_path, alignment) + + # ourput metafile + metafile = os.path.join(args.data_path, "metadata_attn_mask.txt") + + with open(metafile, "w", encoding="utf-8") as f: + for p in file_paths: + f.write(f"{p[0]}|{p[1]}\n") + print(f" >> Metafile created: {metafile}") diff --git a/TTS/TTS/bin/compute_embeddings.py b/TTS/TTS/bin/compute_embeddings.py new file mode 100644 index 0000000000000000000000000000000000000000..5b5a37df736fd75c8228ceefd818c6ec4a63867f --- /dev/null +++ b/TTS/TTS/bin/compute_embeddings.py @@ -0,0 +1,197 @@ +import argparse +import os +from argparse import RawTextHelpFormatter + +import torch +from tqdm import tqdm + +from TTS.config import load_config +from TTS.config.shared_configs import BaseDatasetConfig +from TTS.tts.datasets import load_tts_samples +from TTS.tts.utils.managers import save_file +from TTS.tts.utils.speakers import SpeakerManager + + +def compute_embeddings( + model_path, + config_path, + output_path, + old_speakers_file=None, + old_append=False, + config_dataset_path=None, + formatter_name=None, + dataset_name=None, + dataset_path=None, + meta_file_train=None, + meta_file_val=None, + disable_cuda=False, + no_eval=False, +): + use_cuda = torch.cuda.is_available() and not disable_cuda + + if config_dataset_path is not None: + c_dataset = load_config(config_dataset_path) + meta_data_train, meta_data_eval = load_tts_samples(c_dataset.datasets, eval_split=not no_eval) + else: + c_dataset = BaseDatasetConfig() + c_dataset.formatter = formatter_name + c_dataset.dataset_name = dataset_name + c_dataset.path = dataset_path + if meta_file_train is not None: + c_dataset.meta_file_train = meta_file_train + if meta_file_val is not None: + c_dataset.meta_file_val = meta_file_val + meta_data_train, meta_data_eval = load_tts_samples(c_dataset, eval_split=not no_eval) + + if meta_data_eval is None: + samples = meta_data_train + else: + samples = meta_data_train + meta_data_eval + + encoder_manager = SpeakerManager( + encoder_model_path=model_path, + encoder_config_path=config_path, + d_vectors_file_path=old_speakers_file, + use_cuda=use_cuda, + ) + + class_name_key = encoder_manager.encoder_config.class_name_key + + # compute speaker embeddings + if old_speakers_file is not None and old_append: + speaker_mapping = encoder_manager.embeddings + else: + speaker_mapping = {} + + for fields in tqdm(samples): + class_name = fields[class_name_key] + audio_file = fields["audio_file"] + embedding_key = fields["audio_unique_name"] + + # Only update the speaker name when the embedding is already in the old file. + if embedding_key in speaker_mapping: + speaker_mapping[embedding_key]["name"] = class_name + continue + + if old_speakers_file is not None and embedding_key in encoder_manager.clip_ids: + # get the embedding from the old file + embedd = encoder_manager.get_embedding_by_clip(embedding_key) + else: + # extract the embedding + embedd = encoder_manager.compute_embedding_from_clip(audio_file) + + # create speaker_mapping if target dataset is defined + speaker_mapping[embedding_key] = {} + speaker_mapping[embedding_key]["name"] = class_name + speaker_mapping[embedding_key]["embedding"] = embedd + + if speaker_mapping: + # save speaker_mapping if target dataset is defined + if os.path.isdir(output_path): + mapping_file_path = os.path.join(output_path, "speakers.pth") + else: + mapping_file_path = output_path + + if os.path.dirname(mapping_file_path) != "": + os.makedirs(os.path.dirname(mapping_file_path), exist_ok=True) + + save_file(speaker_mapping, mapping_file_path) + print("Speaker embeddings saved at:", mapping_file_path) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser( + description="""Compute embedding vectors for each audio file in a dataset and store them keyed by `{dataset_name}#{file_path}` in a .pth file\n\n""" + """ + Example runs: + python TTS/bin/compute_embeddings.py --model_path speaker_encoder_model.pth --config_path speaker_encoder_config.json --config_dataset_path dataset_config.json + + python TTS/bin/compute_embeddings.py --model_path speaker_encoder_model.pth --config_path speaker_encoder_config.json --formatter_name coqui --dataset_path /path/to/vctk/dataset --dataset_name my_vctk --meta_file_train /path/to/vctk/metafile_train.csv --meta_file_val /path/to/vctk/metafile_eval.csv + """, + formatter_class=RawTextHelpFormatter, + ) + parser.add_argument( + "--model_path", + type=str, + help="Path to model checkpoint file. It defaults to the released speaker encoder.", + default="https://github.com/coqui-ai/TTS/releases/download/speaker_encoder_model/model_se.pth.tar", + ) + parser.add_argument( + "--config_path", + type=str, + help="Path to model config file. It defaults to the released speaker encoder config.", + default="https://github.com/coqui-ai/TTS/releases/download/speaker_encoder_model/config_se.json", + ) + parser.add_argument( + "--config_dataset_path", + type=str, + help="Path to dataset config file. You either need to provide this or `formatter_name`, `dataset_name` and `dataset_path` arguments.", + default=None, + ) + parser.add_argument( + "--output_path", + type=str, + help="Path for output `pth` or `json` file.", + default="speakers.pth", + ) + parser.add_argument( + "--old_file", + type=str, + help="The old existing embedding file, from which the embeddings will be directly loaded for already computed audio clips.", + default=None, + ) + parser.add_argument( + "--old_append", + help="Append new audio clip embeddings to the old embedding file, generate a new non-duplicated merged embedding file. Default False", + default=False, + action="store_true", + ) + parser.add_argument("--disable_cuda", type=bool, help="Flag to disable cuda.", default=False) + parser.add_argument("--no_eval", help="Do not compute eval?. Default False", default=False, action="store_true") + parser.add_argument( + "--formatter_name", + type=str, + help="Name of the formatter to use. You either need to provide this or `config_dataset_path`", + default=None, + ) + parser.add_argument( + "--dataset_name", + type=str, + help="Name of the dataset to use. You either need to provide this or `config_dataset_path`", + default=None, + ) + parser.add_argument( + "--dataset_path", + type=str, + help="Path to the dataset. You either need to provide this or `config_dataset_path`", + default=None, + ) + parser.add_argument( + "--meta_file_train", + type=str, + help="Path to the train meta file. If not set, dataset formatter uses the default metafile if it is defined in the formatter. You either need to provide this or `config_dataset_path`", + default=None, + ) + parser.add_argument( + "--meta_file_val", + type=str, + help="Path to the evaluation meta file. If not set, dataset formatter uses the default metafile if it is defined in the formatter. You either need to provide this or `config_dataset_path`", + default=None, + ) + args = parser.parse_args() + + compute_embeddings( + args.model_path, + args.config_path, + args.output_path, + old_speakers_file=args.old_file, + old_append=args.old_append, + config_dataset_path=args.config_dataset_path, + formatter_name=args.formatter_name, + dataset_name=args.dataset_name, + dataset_path=args.dataset_path, + meta_file_train=args.meta_file_train, + meta_file_val=args.meta_file_val, + disable_cuda=args.disable_cuda, + no_eval=args.no_eval, + ) diff --git a/TTS/TTS/bin/compute_statistics.py b/TTS/TTS/bin/compute_statistics.py new file mode 100644 index 0000000000000000000000000000000000000000..3ab7ea7a3b10ec3cc23d8a744c7bdc79de52dbf2 --- /dev/null +++ b/TTS/TTS/bin/compute_statistics.py @@ -0,0 +1,96 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- + +import argparse +import glob +import os + +import numpy as np +from tqdm import tqdm + +# from TTS.utils.io import load_config +from TTS.config import load_config +from TTS.tts.datasets import load_tts_samples +from TTS.utils.audio import AudioProcessor + + +def main(): + """Run preprocessing process.""" + parser = argparse.ArgumentParser(description="Compute mean and variance of spectrogtram features.") + parser.add_argument("config_path", type=str, help="TTS config file path to define audio processin parameters.") + parser.add_argument("out_path", type=str, help="save path (directory and filename).") + parser.add_argument( + "--data_path", + type=str, + required=False, + help="folder including the target set of wavs overriding dataset config.", + ) + args, overrides = parser.parse_known_args() + + CONFIG = load_config(args.config_path) + CONFIG.parse_known_args(overrides, relaxed_parser=True) + + # load config + CONFIG.audio.signal_norm = False # do not apply earlier normalization + CONFIG.audio.stats_path = None # discard pre-defined stats + + # load audio processor + ap = AudioProcessor(**CONFIG.audio.to_dict()) + + # load the meta data of target dataset + if args.data_path: + dataset_items = glob.glob(os.path.join(args.data_path, "**", "*.wav"), recursive=True) + else: + dataset_items = load_tts_samples(CONFIG.datasets)[0] # take only train data + print(f" > There are {len(dataset_items)} files.") + + mel_sum = 0 + mel_square_sum = 0 + linear_sum = 0 + linear_square_sum = 0 + N = 0 + for item in tqdm(dataset_items): + # compute features + wav = ap.load_wav(item if isinstance(item, str) else item["audio_file"]) + linear = ap.spectrogram(wav) + mel = ap.melspectrogram(wav) + + # compute stats + N += mel.shape[1] + mel_sum += mel.sum(1) + linear_sum += linear.sum(1) + mel_square_sum += (mel**2).sum(axis=1) + linear_square_sum += (linear**2).sum(axis=1) + + mel_mean = mel_sum / N + mel_scale = np.sqrt(mel_square_sum / N - mel_mean**2) + linear_mean = linear_sum / N + linear_scale = np.sqrt(linear_square_sum / N - linear_mean**2) + + output_file_path = args.out_path + stats = {} + stats["mel_mean"] = mel_mean + stats["mel_std"] = mel_scale + stats["linear_mean"] = linear_mean + stats["linear_std"] = linear_scale + + print(f" > Avg mel spec mean: {mel_mean.mean()}") + print(f" > Avg mel spec scale: {mel_scale.mean()}") + print(f" > Avg linear spec mean: {linear_mean.mean()}") + print(f" > Avg linear spec scale: {linear_scale.mean()}") + + # set default config values for mean-var scaling + CONFIG.audio.stats_path = output_file_path + CONFIG.audio.signal_norm = True + # remove redundant values + del CONFIG.audio.max_norm + del CONFIG.audio.min_level_db + del CONFIG.audio.symmetric_norm + del CONFIG.audio.clip_norm + stats["audio_config"] = CONFIG.audio.to_dict() + np.save(output_file_path, stats, allow_pickle=True) + print(f" > stats saved to {output_file_path}") + + +if __name__ == "__main__": + main() diff --git a/TTS/TTS/bin/eval_encoder.py b/TTS/TTS/bin/eval_encoder.py new file mode 100644 index 0000000000000000000000000000000000000000..60fed1393215cd5e2e349795b585ae12f2e227fa --- /dev/null +++ b/TTS/TTS/bin/eval_encoder.py @@ -0,0 +1,88 @@ +import argparse +from argparse import RawTextHelpFormatter + +import torch +from tqdm import tqdm + +from TTS.config import load_config +from TTS.tts.datasets import load_tts_samples +from TTS.tts.utils.speakers import SpeakerManager + + +def compute_encoder_accuracy(dataset_items, encoder_manager): + class_name_key = encoder_manager.encoder_config.class_name_key + map_classid_to_classname = getattr(encoder_manager.encoder_config, "map_classid_to_classname", None) + + class_acc_dict = {} + + # compute embeddings for all wav_files + for item in tqdm(dataset_items): + class_name = item[class_name_key] + wav_file = item["audio_file"] + + # extract the embedding + embedd = encoder_manager.compute_embedding_from_clip(wav_file) + if encoder_manager.encoder_criterion is not None and map_classid_to_classname is not None: + embedding = torch.FloatTensor(embedd).unsqueeze(0) + if encoder_manager.use_cuda: + embedding = embedding.cuda() + + class_id = encoder_manager.encoder_criterion.softmax.inference(embedding).item() + predicted_label = map_classid_to_classname[str(class_id)] + else: + predicted_label = None + + if class_name is not None and predicted_label is not None: + is_equal = int(class_name == predicted_label) + if class_name not in class_acc_dict: + class_acc_dict[class_name] = [is_equal] + else: + class_acc_dict[class_name].append(is_equal) + else: + raise RuntimeError("Error: class_name or/and predicted_label are None") + + acc_avg = 0 + for key, values in class_acc_dict.items(): + acc = sum(values) / len(values) + print("Class", key, "Accuracy:", acc) + acc_avg += acc + + print("Average Accuracy:", acc_avg / len(class_acc_dict)) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser( + description="""Compute the accuracy of the encoder.\n\n""" + """ + Example runs: + python TTS/bin/eval_encoder.py emotion_encoder_model.pth emotion_encoder_config.json dataset_config.json + """, + formatter_class=RawTextHelpFormatter, + ) + parser.add_argument("model_path", type=str, help="Path to model checkpoint file.") + parser.add_argument( + "config_path", + type=str, + help="Path to model config file.", + ) + + parser.add_argument( + "config_dataset_path", + type=str, + help="Path to dataset config file.", + ) + parser.add_argument("--use_cuda", type=bool, help="flag to set cuda.", default=True) + parser.add_argument("--eval", type=bool, help="compute eval.", default=True) + + args = parser.parse_args() + + c_dataset = load_config(args.config_dataset_path) + + meta_data_train, meta_data_eval = load_tts_samples(c_dataset.datasets, eval_split=args.eval) + items = meta_data_train + meta_data_eval + + enc_manager = SpeakerManager( + encoder_model_path=args.model_path, encoder_config_path=args.config_path, use_cuda=args.use_cuda + ) + + compute_encoder_accuracy(items, enc_manager) diff --git a/TTS/TTS/bin/extract_tts_spectrograms.py b/TTS/TTS/bin/extract_tts_spectrograms.py new file mode 100644 index 0000000000000000000000000000000000000000..9eadee070ed15283e4460331cbb48927392a2b12 --- /dev/null +++ b/TTS/TTS/bin/extract_tts_spectrograms.py @@ -0,0 +1,286 @@ +#!/usr/bin/env python3 +"""Extract Mel spectrograms with teacher forcing.""" + +import argparse +import os + +import numpy as np +import torch +from torch.utils.data import DataLoader +from tqdm import tqdm + +from TTS.config import load_config +from TTS.tts.datasets import TTSDataset, load_tts_samples +from TTS.tts.models import setup_model +from TTS.tts.utils.speakers import SpeakerManager +from TTS.tts.utils.text.tokenizer import TTSTokenizer +from TTS.utils.audio import AudioProcessor +from TTS.utils.generic_utils import count_parameters + +use_cuda = torch.cuda.is_available() + + +def setup_loader(ap, r, verbose=False): + tokenizer, _ = TTSTokenizer.init_from_config(c) + dataset = TTSDataset( + outputs_per_step=r, + compute_linear_spec=False, + samples=meta_data, + tokenizer=tokenizer, + ap=ap, + batch_group_size=0, + min_text_len=c.min_text_len, + max_text_len=c.max_text_len, + min_audio_len=c.min_audio_len, + max_audio_len=c.max_audio_len, + phoneme_cache_path=c.phoneme_cache_path, + precompute_num_workers=0, + use_noise_augment=False, + verbose=verbose, + speaker_id_mapping=speaker_manager.name_to_id if c.use_speaker_embedding else None, + d_vector_mapping=speaker_manager.embeddings if c.use_d_vector_file else None, + ) + + if c.use_phonemes and c.compute_input_seq_cache: + # precompute phonemes to have a better estimate of sequence lengths. + dataset.compute_input_seq(c.num_loader_workers) + dataset.preprocess_samples() + + loader = DataLoader( + dataset, + batch_size=c.batch_size, + shuffle=False, + collate_fn=dataset.collate_fn, + drop_last=False, + sampler=None, + num_workers=c.num_loader_workers, + pin_memory=False, + ) + return loader + + +def set_filename(wav_path, out_path): + wav_file = os.path.basename(wav_path) + file_name = wav_file.split(".")[0] + os.makedirs(os.path.join(out_path, "quant"), exist_ok=True) + os.makedirs(os.path.join(out_path, "mel"), exist_ok=True) + os.makedirs(os.path.join(out_path, "wav_gl"), exist_ok=True) + os.makedirs(os.path.join(out_path, "wav"), exist_ok=True) + wavq_path = os.path.join(out_path, "quant", file_name) + mel_path = os.path.join(out_path, "mel", file_name) + wav_gl_path = os.path.join(out_path, "wav_gl", file_name + ".wav") + wav_path = os.path.join(out_path, "wav", file_name + ".wav") + return file_name, wavq_path, mel_path, wav_gl_path, wav_path + + +def format_data(data): + # setup input data + text_input = data["token_id"] + text_lengths = data["token_id_lengths"] + mel_input = data["mel"] + mel_lengths = data["mel_lengths"] + item_idx = data["item_idxs"] + d_vectors = data["d_vectors"] + speaker_ids = data["speaker_ids"] + attn_mask = data["attns"] + avg_text_length = torch.mean(text_lengths.float()) + avg_spec_length = torch.mean(mel_lengths.float()) + + # dispatch data to GPU + if use_cuda: + text_input = text_input.cuda(non_blocking=True) + text_lengths = text_lengths.cuda(non_blocking=True) + mel_input = mel_input.cuda(non_blocking=True) + mel_lengths = mel_lengths.cuda(non_blocking=True) + if speaker_ids is not None: + speaker_ids = speaker_ids.cuda(non_blocking=True) + if d_vectors is not None: + d_vectors = d_vectors.cuda(non_blocking=True) + if attn_mask is not None: + attn_mask = attn_mask.cuda(non_blocking=True) + return ( + text_input, + text_lengths, + mel_input, + mel_lengths, + speaker_ids, + d_vectors, + avg_text_length, + avg_spec_length, + attn_mask, + item_idx, + ) + + +@torch.no_grad() +def inference( + model_name, + model, + ap, + text_input, + text_lengths, + mel_input, + mel_lengths, + speaker_ids=None, + d_vectors=None, +): + if model_name == "glow_tts": + speaker_c = None + if speaker_ids is not None: + speaker_c = speaker_ids + elif d_vectors is not None: + speaker_c = d_vectors + outputs = model.inference_with_MAS( + text_input, + text_lengths, + mel_input, + mel_lengths, + aux_input={"d_vectors": speaker_c, "speaker_ids": speaker_ids}, + ) + model_output = outputs["model_outputs"] + model_output = model_output.detach().cpu().numpy() + + elif "tacotron" in model_name: + aux_input = {"speaker_ids": speaker_ids, "d_vectors": d_vectors} + outputs = model(text_input, text_lengths, mel_input, mel_lengths, aux_input) + postnet_outputs = outputs["model_outputs"] + # normalize tacotron output + if model_name == "tacotron": + mel_specs = [] + postnet_outputs = postnet_outputs.data.cpu().numpy() + for b in range(postnet_outputs.shape[0]): + postnet_output = postnet_outputs[b] + mel_specs.append(torch.FloatTensor(ap.out_linear_to_mel(postnet_output.T).T)) + model_output = torch.stack(mel_specs).cpu().numpy() + + elif model_name == "tacotron2": + model_output = postnet_outputs.detach().cpu().numpy() + return model_output + + +def extract_spectrograms( + data_loader, model, ap, output_path, quantized_wav=False, save_audio=False, debug=False, metada_name="metada.txt" +): + model.eval() + export_metadata = [] + for _, data in tqdm(enumerate(data_loader), total=len(data_loader)): + # format data + ( + text_input, + text_lengths, + mel_input, + mel_lengths, + speaker_ids, + d_vectors, + _, + _, + _, + item_idx, + ) = format_data(data) + + model_output = inference( + c.model.lower(), + model, + ap, + text_input, + text_lengths, + mel_input, + mel_lengths, + speaker_ids, + d_vectors, + ) + + for idx in range(text_input.shape[0]): + wav_file_path = item_idx[idx] + wav = ap.load_wav(wav_file_path) + _, wavq_path, mel_path, wav_gl_path, wav_path = set_filename(wav_file_path, output_path) + + # quantize and save wav + if quantized_wav: + wavq = ap.quantize(wav) + np.save(wavq_path, wavq) + + # save TTS mel + mel = model_output[idx] + mel_length = mel_lengths[idx] + mel = mel[:mel_length, :].T + np.save(mel_path, mel) + + export_metadata.append([wav_file_path, mel_path]) + if save_audio: + ap.save_wav(wav, wav_path) + + if debug: + print("Audio for debug saved at:", wav_gl_path) + wav = ap.inv_melspectrogram(mel) + ap.save_wav(wav, wav_gl_path) + + with open(os.path.join(output_path, metada_name), "w", encoding="utf-8") as f: + for data in export_metadata: + f.write(f"{data[0]}|{data[1]+'.npy'}\n") + + +def main(args): # pylint: disable=redefined-outer-name + # pylint: disable=global-variable-undefined + global meta_data, speaker_manager + + # Audio processor + ap = AudioProcessor(**c.audio) + + # load data instances + meta_data_train, meta_data_eval = load_tts_samples( + c.datasets, eval_split=args.eval, eval_split_max_size=c.eval_split_max_size, eval_split_size=c.eval_split_size + ) + + # use eval and training partitions + meta_data = meta_data_train + meta_data_eval + + # init speaker manager + if c.use_speaker_embedding: + speaker_manager = SpeakerManager(data_items=meta_data) + elif c.use_d_vector_file: + speaker_manager = SpeakerManager(d_vectors_file_path=c.d_vector_file) + else: + speaker_manager = None + + # setup model + model = setup_model(c) + + # restore model + model.load_checkpoint(c, args.checkpoint_path, eval=True) + + if use_cuda: + model.cuda() + + num_params = count_parameters(model) + print("\n > Model has {} parameters".format(num_params), flush=True) + # set r + r = 1 if c.model.lower() == "glow_tts" else model.decoder.r + own_loader = setup_loader(ap, r, verbose=True) + + extract_spectrograms( + own_loader, + model, + ap, + args.output_path, + quantized_wav=args.quantized, + save_audio=args.save_audio, + debug=args.debug, + metada_name="metada.txt", + ) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("--config_path", type=str, help="Path to config file for training.", required=True) + parser.add_argument("--checkpoint_path", type=str, help="Model file to be restored.", required=True) + parser.add_argument("--output_path", type=str, help="Path to save mel specs", required=True) + parser.add_argument("--debug", default=False, action="store_true", help="Save audio files for debug") + parser.add_argument("--save_audio", default=False, action="store_true", help="Save audio files") + parser.add_argument("--quantized", action="store_true", help="Save quantized audio files") + parser.add_argument("--eval", type=bool, help="compute eval.", default=True) + args = parser.parse_args() + + c = load_config(args.config_path) + c.audio.trim_silence = False + main(args) diff --git a/TTS/TTS/bin/find_unique_chars.py b/TTS/TTS/bin/find_unique_chars.py new file mode 100644 index 0000000000000000000000000000000000000000..ea16974839df6cf9942ef24a5535597940fde5b2 --- /dev/null +++ b/TTS/TTS/bin/find_unique_chars.py @@ -0,0 +1,45 @@ +"""Find all the unique characters in a dataset""" +import argparse +from argparse import RawTextHelpFormatter + +from TTS.config import load_config +from TTS.tts.datasets import load_tts_samples + + +def main(): + # pylint: disable=bad-option-value + parser = argparse.ArgumentParser( + description="""Find all the unique characters or phonemes in a dataset.\n\n""" + """ + Example runs: + + python TTS/bin/find_unique_chars.py --config_path config.json + """, + formatter_class=RawTextHelpFormatter, + ) + parser.add_argument("--config_path", type=str, help="Path to dataset config file.", required=True) + args = parser.parse_args() + + c = load_config(args.config_path) + + # load all datasets + train_items, eval_items = load_tts_samples( + c.datasets, eval_split=True, eval_split_max_size=c.eval_split_max_size, eval_split_size=c.eval_split_size + ) + + items = train_items + eval_items + + texts = "".join(item["text"] for item in items) + chars = set(texts) + lower_chars = filter(lambda c: c.islower(), chars) + chars_force_lower = [c.lower() for c in chars] + chars_force_lower = set(chars_force_lower) + + print(f" > Number of unique characters: {len(chars)}") + print(f" > Unique characters: {''.join(sorted(chars))}") + print(f" > Unique lower characters: {''.join(sorted(lower_chars))}") + print(f" > Unique all forced to lower characters: {''.join(sorted(chars_force_lower))}") + + +if __name__ == "__main__": + main() diff --git a/TTS/TTS/bin/find_unique_phonemes.py b/TTS/TTS/bin/find_unique_phonemes.py new file mode 100644 index 0000000000000000000000000000000000000000..4bd7a78eef2c4850bca9369def55d68336cd53aa --- /dev/null +++ b/TTS/TTS/bin/find_unique_phonemes.py @@ -0,0 +1,74 @@ +"""Find all the unique characters in a dataset""" +import argparse +import multiprocessing +from argparse import RawTextHelpFormatter + +from tqdm.contrib.concurrent import process_map + +from TTS.config import load_config +from TTS.tts.datasets import load_tts_samples +from TTS.tts.utils.text.phonemizers import Gruut + + +def compute_phonemes(item): + text = item["text"] + ph = phonemizer.phonemize(text).replace("|", "") + return set(list(ph)) + + +def main(): + # pylint: disable=W0601 + global c, phonemizer + # pylint: disable=bad-option-value + parser = argparse.ArgumentParser( + description="""Find all the unique characters or phonemes in a dataset.\n\n""" + """ + Example runs: + + python TTS/bin/find_unique_phonemes.py --config_path config.json + """, + formatter_class=RawTextHelpFormatter, + ) + parser.add_argument("--config_path", type=str, help="Path to dataset config file.", required=True) + args = parser.parse_args() + + c = load_config(args.config_path) + + # load all datasets + train_items, eval_items = load_tts_samples( + c.datasets, eval_split=True, eval_split_max_size=c.eval_split_max_size, eval_split_size=c.eval_split_size + ) + items = train_items + eval_items + print("Num items:", len(items)) + + language_list = [item["language"] for item in items] + is_lang_def = all(language_list) + + if not c.phoneme_language or not is_lang_def: + raise ValueError("Phoneme language must be defined in config.") + + if not language_list.count(language_list[0]) == len(language_list): + raise ValueError( + "Currently, just one phoneme language per config file is supported !! Please split the dataset config into different configs and run it individually for each language !!" + ) + + phonemizer = Gruut(language=language_list[0], keep_puncs=True) + + phonemes = process_map(compute_phonemes, items, max_workers=multiprocessing.cpu_count(), chunksize=15) + phones = [] + for ph in phonemes: + phones.extend(ph) + + phones = set(phones) + lower_phones = filter(lambda c: c.islower(), phones) + phones_force_lower = [c.lower() for c in phones] + phones_force_lower = set(phones_force_lower) + + print(f" > Number of unique phonemes: {len(phones)}") + print(f" > Unique phonemes: {''.join(sorted(phones))}") + print(f" > Unique lower phonemes: {''.join(sorted(lower_phones))}") + print(f" > Unique all forced to lower phonemes: {''.join(sorted(phones_force_lower))}") + + +if __name__ == "__main__": + main() diff --git a/TTS/TTS/bin/remove_silence_using_vad.py b/TTS/TTS/bin/remove_silence_using_vad.py new file mode 100644 index 0000000000000000000000000000000000000000..a1eaf4c9a713e2e72a9e8434397ac430ff10aef1 --- /dev/null +++ b/TTS/TTS/bin/remove_silence_using_vad.py @@ -0,0 +1,124 @@ +import argparse +import glob +import multiprocessing +import os +import pathlib + +import torch +from tqdm import tqdm + +from TTS.utils.vad import get_vad_model_and_utils, remove_silence + +torch.set_num_threads(1) + + +def adjust_path_and_remove_silence(audio_path): + output_path = audio_path.replace(os.path.join(args.input_dir, ""), os.path.join(args.output_dir, "")) + # ignore if the file exists + if os.path.exists(output_path) and not args.force: + return output_path, False + + # create all directory structure + pathlib.Path(output_path).parent.mkdir(parents=True, exist_ok=True) + # remove the silence and save the audio + output_path, is_speech = remove_silence( + model_and_utils, + audio_path, + output_path, + trim_just_beginning_and_end=args.trim_just_beginning_and_end, + use_cuda=args.use_cuda, + ) + return output_path, is_speech + + +def preprocess_audios(): + files = sorted(glob.glob(os.path.join(args.input_dir, args.glob), recursive=True)) + print("> Number of files: ", len(files)) + if not args.force: + print("> Ignoring files that already exist in the output idrectory.") + + if args.trim_just_beginning_and_end: + print("> Trimming just the beginning and the end with nonspeech parts.") + else: + print("> Trimming all nonspeech parts.") + + filtered_files = [] + if files: + # create threads + # num_threads = multiprocessing.cpu_count() + # process_map(adjust_path_and_remove_silence, files, max_workers=num_threads, chunksize=15) + + if args.num_processes > 1: + with multiprocessing.Pool(processes=args.num_processes) as pool: + results = list( + tqdm( + pool.imap_unordered(adjust_path_and_remove_silence, files), + total=len(files), + desc="Processing audio files", + ) + ) + for output_path, is_speech in results: + if not is_speech: + filtered_files.append(output_path) + else: + for f in tqdm(files): + output_path, is_speech = adjust_path_and_remove_silence(f) + if not is_speech: + filtered_files.append(output_path) + + # write files that do not have speech + with open(os.path.join(args.output_dir, "filtered_files.txt"), "w", encoding="utf-8") as f: + for file in filtered_files: + f.write(str(file) + "\n") + else: + print("> No files Found !") + + +if __name__ == "__main__": + parser = argparse.ArgumentParser( + description="python TTS/bin/remove_silence_using_vad.py -i=VCTK-Corpus/ -o=VCTK-Corpus-removed-silence/ -g=wav48_silence_trimmed/*/*_mic1.flac --trim_just_beginning_and_end True" + ) + parser.add_argument("-i", "--input_dir", type=str, help="Dataset root dir", required=True) + parser.add_argument("-o", "--output_dir", type=str, help="Output Dataset dir", default="") + parser.add_argument("-f", "--force", default=False, action="store_true", help="Force the replace of exists files") + parser.add_argument( + "-g", + "--glob", + type=str, + default="**/*.wav", + help="path in glob format for acess wavs from input_dir. ex: wav48/*/*.wav", + ) + parser.add_argument( + "-t", + "--trim_just_beginning_and_end", + type=bool, + default=True, + help="If True this script will trim just the beginning and end nonspeech parts. If False all nonspeech parts will be trim. Default True", + ) + parser.add_argument( + "-c", + "--use_cuda", + type=bool, + default=False, + help="If True use cuda", + ) + parser.add_argument( + "--use_onnx", + type=bool, + default=False, + help="If True use onnx", + ) + parser.add_argument( + "--num_processes", + type=int, + default=1, + help="Number of processes to use", + ) + args = parser.parse_args() + + if args.output_dir == "": + args.output_dir = args.input_dir + + # load the model and utils + model_and_utils = get_vad_model_and_utils(use_cuda=args.use_cuda, use_onnx=args.use_onnx) + preprocess_audios() diff --git a/TTS/TTS/bin/resample.py b/TTS/TTS/bin/resample.py new file mode 100644 index 0000000000000000000000000000000000000000..a3f28485d1fb235ab0d521ee30318c64b48fbd5a --- /dev/null +++ b/TTS/TTS/bin/resample.py @@ -0,0 +1,90 @@ +import argparse +import glob +import os +from argparse import RawTextHelpFormatter +from multiprocessing import Pool +from shutil import copytree + +import librosa +import soundfile as sf +from tqdm import tqdm + + +def resample_file(func_args): + filename, output_sr = func_args + y, sr = librosa.load(filename, sr=output_sr) + sf.write(filename, y, sr) + + +def resample_files(input_dir, output_sr, output_dir=None, file_ext="wav", n_jobs=10): + if output_dir: + print("Recursively copying the input folder...") + copytree(input_dir, output_dir) + input_dir = output_dir + + print("Resampling the audio files...") + audio_files = glob.glob(os.path.join(input_dir, f"**/*.{file_ext}"), recursive=True) + print(f"Found {len(audio_files)} files...") + audio_files = list(zip(audio_files, len(audio_files) * [output_sr])) + with Pool(processes=n_jobs) as p: + with tqdm(total=len(audio_files)) as pbar: + for _, _ in enumerate(p.imap_unordered(resample_file, audio_files)): + pbar.update() + + print("Done !") + + +if __name__ == "__main__": + parser = argparse.ArgumentParser( + description="""Resample a folder recusively with librosa + Can be used in place or create a copy of the folder as an output.\n\n + Example run: + python TTS/bin/resample.py + --input_dir /root/LJSpeech-1.1/ + --output_sr 22050 + --output_dir /root/resampled_LJSpeech-1.1/ + --file_ext wav + --n_jobs 24 + """, + formatter_class=RawTextHelpFormatter, + ) + + parser.add_argument( + "--input_dir", + type=str, + default=None, + required=True, + help="Path of the folder containing the audio files to resample", + ) + + parser.add_argument( + "--output_sr", + type=int, + default=22050, + required=False, + help="Samlple rate to which the audio files should be resampled", + ) + + parser.add_argument( + "--output_dir", + type=str, + default=None, + required=False, + help="Path of the destination folder. If not defined, the operation is done in place", + ) + + parser.add_argument( + "--file_ext", + type=str, + default="wav", + required=False, + help="Extension of the audio files to resample", + ) + + parser.add_argument( + "--n_jobs", type=int, default=None, help="Number of threads to use, by default it uses all cores" + ) + + args = parser.parse_args() + + resample_files(args.input_dir, args.output_sr, args.output_dir, args.file_ext, args.n_jobs) diff --git a/TTS/TTS/bin/synthesize.py b/TTS/TTS/bin/synthesize.py new file mode 100644 index 0000000000000000000000000000000000000000..5ff1181f4e28a82fd557514ee05d574e0c8bac14 --- /dev/null +++ b/TTS/TTS/bin/synthesize.py @@ -0,0 +1,502 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- + +import argparse +import sys +from argparse import RawTextHelpFormatter + +# pylint: disable=redefined-outer-name, unused-argument +from pathlib import Path + +description = """ +Synthesize speech on command line. + +You can either use your trained model or choose a model from the provided list. + +If you don't specify any models, then it uses LJSpeech based English model. + +#### Single Speaker Models + +- List provided models: + + ``` + $ tts --list_models + ``` + +- Get model info (for both tts_models and vocoder_models): + + - Query by type/name: + The model_info_by_name uses the name as it from the --list_models. + ``` + $ tts --model_info_by_name "///" + ``` + For example: + ``` + $ tts --model_info_by_name tts_models/tr/common-voice/glow-tts + $ tts --model_info_by_name vocoder_models/en/ljspeech/hifigan_v2 + ``` + - Query by type/idx: + The model_query_idx uses the corresponding idx from --list_models. + + ``` + $ tts --model_info_by_idx "/" + ``` + + For example: + + ``` + $ tts --model_info_by_idx tts_models/3 + ``` + + - Query info for model info by full name: + ``` + $ tts --model_info_by_name "///" + ``` + +- Run TTS with default models: + + ``` + $ tts --text "Text for TTS" --out_path output/path/speech.wav + ``` + +- Run a TTS model with its default vocoder model: + + ``` + $ tts --text "Text for TTS" --model_name "///" --out_path output/path/speech.wav + ``` + + For example: + + ``` + $ tts --text "Text for TTS" --model_name "tts_models/en/ljspeech/glow-tts" --out_path output/path/speech.wav + ``` + +- Run with specific TTS and vocoder models from the list: + + ``` + $ tts --text "Text for TTS" --model_name "///" --vocoder_name "///" --out_path output/path/speech.wav + ``` + + For example: + + ``` + $ tts --text "Text for TTS" --model_name "tts_models/en/ljspeech/glow-tts" --vocoder_name "vocoder_models/en/ljspeech/univnet" --out_path output/path/speech.wav + ``` + +- Run your own TTS model (Using Griffin-Lim Vocoder): + + ``` + $ tts --text "Text for TTS" --model_path path/to/model.pth --config_path path/to/config.json --out_path output/path/speech.wav + ``` + +- Run your own TTS and Vocoder models: + + ``` + $ tts --text "Text for TTS" --model_path path/to/model.pth --config_path path/to/config.json --out_path output/path/speech.wav + --vocoder_path path/to/vocoder.pth --vocoder_config_path path/to/vocoder_config.json + ``` + +#### Multi-speaker Models + +- List the available speakers and choose a among them: + + ``` + $ tts --model_name "//" --list_speaker_idxs + ``` + +- Run the multi-speaker TTS model with the target speaker ID: + + ``` + $ tts --text "Text for TTS." --out_path output/path/speech.wav --model_name "//" --speaker_idx + ``` + +- Run your own multi-speaker TTS model: + + ``` + $ tts --text "Text for TTS" --out_path output/path/speech.wav --model_path path/to/model.pth --config_path path/to/config.json --speakers_file_path path/to/speaker.json --speaker_idx + ``` + +### Voice Conversion Models + +``` +$ tts --out_path output/path/speech.wav --model_name "//" --source_wav --target_wav +``` +""" + + +def str2bool(v): + if isinstance(v, bool): + return v + if v.lower() in ("yes", "true", "t", "y", "1"): + return True + if v.lower() in ("no", "false", "f", "n", "0"): + return False + raise argparse.ArgumentTypeError("Boolean value expected.") + + +def main(): + parser = argparse.ArgumentParser( + description=description.replace(" ```\n", ""), + formatter_class=RawTextHelpFormatter, + ) + + parser.add_argument( + "--list_models", + type=str2bool, + nargs="?", + const=True, + default=False, + help="list available pre-trained TTS and vocoder models.", + ) + + parser.add_argument( + "--model_info_by_idx", + type=str, + default=None, + help="model info using query format: /", + ) + + parser.add_argument( + "--model_info_by_name", + type=str, + default=None, + help="model info using query format: ///", + ) + + parser.add_argument("--text", type=str, default=None, help="Text to generate speech.") + + # Args for running pre-trained TTS models. + parser.add_argument( + "--model_name", + type=str, + default="tts_models/en/ljspeech/tacotron2-DDC", + help="Name of one of the pre-trained TTS models in format //", + ) + parser.add_argument( + "--vocoder_name", + type=str, + default=None, + help="Name of one of the pre-trained vocoder models in format //", + ) + + # Args for running custom models + parser.add_argument("--config_path", default=None, type=str, help="Path to model config file.") + parser.add_argument( + "--model_path", + type=str, + default=None, + help="Path to model file.", + ) + parser.add_argument( + "--out_path", + type=str, + default="tts_output.wav", + help="Output wav file path.", + ) + parser.add_argument("--use_cuda", type=bool, help="Run model on CUDA.", default=False) + parser.add_argument("--device", type=str, help="Device to run model on.", default="cpu") + parser.add_argument( + "--vocoder_path", + type=str, + help="Path to vocoder model file. If it is not defined, model uses GL as vocoder. Please make sure that you installed vocoder library before (WaveRNN).", + default=None, + ) + parser.add_argument("--vocoder_config_path", type=str, help="Path to vocoder model config file.", default=None) + parser.add_argument( + "--encoder_path", + type=str, + help="Path to speaker encoder model file.", + default=None, + ) + parser.add_argument("--encoder_config_path", type=str, help="Path to speaker encoder config file.", default=None) + + # args for coqui studio + parser.add_argument( + "--cs_model", + type=str, + help="Name of the ๐ŸธCoqui Studio model. Available models are `XTTS`, `XTTS-multilingual`, `V1`.", + ) + parser.add_argument( + "--emotion", + type=str, + help="Emotion to condition the model with. Only available for ๐ŸธCoqui Studio `V1` model.", + default=None, + ) + parser.add_argument( + "--language", + type=str, + help="Language to condition the model with. Only available for ๐ŸธCoqui Studio `XTTS-multilingual` model.", + default=None, + ) + + # args for multi-speaker synthesis + parser.add_argument("--speakers_file_path", type=str, help="JSON file for multi-speaker model.", default=None) + parser.add_argument("--language_ids_file_path", type=str, help="JSON file for multi-lingual model.", default=None) + parser.add_argument( + "--speaker_idx", + type=str, + help="Target speaker ID for a multi-speaker TTS model.", + default=None, + ) + parser.add_argument( + "--language_idx", + type=str, + help="Target language ID for a multi-lingual TTS model.", + default=None, + ) + parser.add_argument( + "--speaker_wav", + nargs="+", + help="wav file(s) to condition a multi-speaker TTS model with a Speaker Encoder. You can give multiple file paths. The d_vectors is computed as their average.", + default=None, + ) + parser.add_argument("--gst_style", help="Wav path file for GST style reference.", default=None) + parser.add_argument( + "--capacitron_style_wav", type=str, help="Wav path file for Capacitron prosody reference.", default=None + ) + parser.add_argument("--capacitron_style_text", type=str, help="Transcription of the reference.", default=None) + parser.add_argument( + "--list_speaker_idxs", + help="List available speaker ids for the defined multi-speaker model.", + type=str2bool, + nargs="?", + const=True, + default=False, + ) + parser.add_argument( + "--list_language_idxs", + help="List available language ids for the defined multi-lingual model.", + type=str2bool, + nargs="?", + const=True, + default=False, + ) + # aux args + parser.add_argument( + "--save_spectogram", + type=bool, + help="If true save raw spectogram for further (vocoder) processing in out_path.", + default=False, + ) + parser.add_argument( + "--reference_wav", + type=str, + help="Reference wav file to convert in the voice of the speaker_idx or speaker_wav", + default=None, + ) + parser.add_argument( + "--reference_speaker_idx", + type=str, + help="speaker ID of the reference_wav speaker (If not provided the embedding will be computed using the Speaker Encoder).", + default=None, + ) + parser.add_argument( + "--progress_bar", + type=str2bool, + help="If true shows a progress bar for the model download. Defaults to True", + default=True, + ) + + # voice conversion args + parser.add_argument( + "--source_wav", + type=str, + default=None, + help="Original audio file to convert in the voice of the target_wav", + ) + parser.add_argument( + "--target_wav", + type=str, + default=None, + help="Target audio file to convert in the voice of the source_wav", + ) + + parser.add_argument( + "--voice_dir", + type=str, + default=None, + help="Voice dir for tortoise model", + ) + + args = parser.parse_args() + + # print the description if either text or list_models is not set + check_args = [ + args.text, + args.list_models, + args.list_speaker_idxs, + args.list_language_idxs, + args.reference_wav, + args.model_info_by_idx, + args.model_info_by_name, + args.source_wav, + args.target_wav, + ] + if not any(check_args): + parser.parse_args(["-h"]) + + # Late-import to make things load faster + from TTS.api import TTS + from TTS.utils.manage import ModelManager + from TTS.utils.synthesizer import Synthesizer + + # load model manager + path = Path(__file__).parent / "../.models.json" + manager = ModelManager(path, progress_bar=args.progress_bar) + api = TTS() + + tts_path = None + tts_config_path = None + speakers_file_path = None + language_ids_file_path = None + vocoder_path = None + vocoder_config_path = None + encoder_path = None + encoder_config_path = None + vc_path = None + vc_config_path = None + model_dir = None + + # CASE1 #list : list pre-trained TTS models + if args.list_models: + manager.add_cs_api_models(api.list_models()) + manager.list_models() + sys.exit() + + # CASE2 #info : model info for pre-trained TTS models + if args.model_info_by_idx: + model_query = args.model_info_by_idx + manager.model_info_by_idx(model_query) + sys.exit() + + if args.model_info_by_name: + model_query_full_name = args.model_info_by_name + manager.model_info_by_full_name(model_query_full_name) + sys.exit() + + # CASE3: TTS with coqui studio models + if "coqui_studio" in args.model_name: + print(" > Using ๐ŸธCoqui Studio model: ", args.model_name) + api = TTS(model_name=args.model_name, cs_api_model=args.cs_model) + api.tts_to_file(text=args.text, emotion=args.emotion, file_path=args.out_path, language=args.language) + print(" > Saving output to ", args.out_path) + return + + # CASE4: load pre-trained model paths + if args.model_name is not None and not args.model_path: + model_path, config_path, model_item = manager.download_model(args.model_name) + # tts model + if model_item["model_type"] == "tts_models": + tts_path = model_path + tts_config_path = config_path + if "default_vocoder" in model_item: + args.vocoder_name = model_item["default_vocoder"] if args.vocoder_name is None else args.vocoder_name + + # voice conversion model + if model_item["model_type"] == "voice_conversion_models": + vc_path = model_path + vc_config_path = config_path + + # tts model with multiple files to be loaded from the directory path + if model_item.get("author", None) == "fairseq" or isinstance(model_item["model_url"], list): + model_dir = model_path + tts_path = None + tts_config_path = None + args.vocoder_name = None + + # load vocoder + if args.vocoder_name is not None and not args.vocoder_path: + vocoder_path, vocoder_config_path, _ = manager.download_model(args.vocoder_name) + + # CASE5: set custom model paths + if args.model_path is not None: + tts_path = args.model_path + tts_config_path = args.config_path + speakers_file_path = args.speakers_file_path + language_ids_file_path = args.language_ids_file_path + + if args.vocoder_path is not None: + vocoder_path = args.vocoder_path + vocoder_config_path = args.vocoder_config_path + + if args.encoder_path is not None: + encoder_path = args.encoder_path + encoder_config_path = args.encoder_config_path + + device = args.device + if args.use_cuda: + device = "cuda" + + # load models + synthesizer = Synthesizer( + tts_path, + tts_config_path, + speakers_file_path, + language_ids_file_path, + vocoder_path, + vocoder_config_path, + encoder_path, + encoder_config_path, + vc_path, + vc_config_path, + model_dir, + args.voice_dir, + ).to(device) + + # query speaker ids of a multi-speaker model. + if args.list_speaker_idxs: + print( + " > Available speaker ids: (Set --speaker_idx flag to one of these values to use the multi-speaker model." + ) + print(synthesizer.tts_model.speaker_manager.name_to_id) + return + + # query langauge ids of a multi-lingual model. + if args.list_language_idxs: + print( + " > Available language ids: (Set --language_idx flag to one of these values to use the multi-lingual model." + ) + print(synthesizer.tts_model.language_manager.name_to_id) + return + + # check the arguments against a multi-speaker model. + if synthesizer.tts_speakers_file and (not args.speaker_idx and not args.speaker_wav): + print( + " [!] Looks like you use a multi-speaker model. Define `--speaker_idx` to " + "select the target speaker. You can list the available speakers for this model by `--list_speaker_idxs`." + ) + return + + # RUN THE SYNTHESIS + if args.text: + print(" > Text: {}".format(args.text)) + + # kick it + if tts_path is not None: + wav = synthesizer.tts( + args.text, + speaker_name=args.speaker_idx, + language_name=args.language_idx, + speaker_wav=args.speaker_wav, + reference_wav=args.reference_wav, + style_wav=args.capacitron_style_wav, + style_text=args.capacitron_style_text, + reference_speaker_name=args.reference_speaker_idx, + ) + elif vc_path is not None: + wav = synthesizer.voice_conversion( + source_wav=args.source_wav, + target_wav=args.target_wav, + ) + elif model_dir is not None: + wav = synthesizer.tts( + args.text, speaker_name=args.speaker_idx, language_name=args.language_idx, speaker_wav=args.speaker_wav + ) + + # save the results + print(" > Saving output to {}".format(args.out_path)) + synthesizer.save_wav(wav, args.out_path) + + +if __name__ == "__main__": + main() diff --git a/TTS/TTS/bin/train_encoder.py b/TTS/TTS/bin/train_encoder.py new file mode 100644 index 0000000000000000000000000000000000000000..f2e7779c0c109a3ec78f1972ebf1147ec436048a --- /dev/null +++ b/TTS/TTS/bin/train_encoder.py @@ -0,0 +1,319 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- + +import os +import sys +import time +import traceback + +import torch +from torch.utils.data import DataLoader +from trainer.torch import NoamLR +from trainer.trainer_utils import get_optimizer + +from TTS.encoder.dataset import EncoderDataset +from TTS.encoder.utils.generic_utils import save_best_model, save_checkpoint, setup_encoder_model +from TTS.encoder.utils.training import init_training +from TTS.encoder.utils.visual import plot_embeddings +from TTS.tts.datasets import load_tts_samples +from TTS.utils.audio import AudioProcessor +from TTS.utils.generic_utils import count_parameters, remove_experiment_folder +from TTS.utils.io import copy_model_files +from TTS.utils.samplers import PerfectBatchSampler +from TTS.utils.training import check_update + +torch.backends.cudnn.enabled = True +torch.backends.cudnn.benchmark = True +torch.manual_seed(54321) +use_cuda = torch.cuda.is_available() +num_gpus = torch.cuda.device_count() +print(" > Using CUDA: ", use_cuda) +print(" > Number of GPUs: ", num_gpus) + + +def setup_loader(ap: AudioProcessor, is_val: bool = False, verbose: bool = False): + num_utter_per_class = c.num_utter_per_class if not is_val else c.eval_num_utter_per_class + num_classes_in_batch = c.num_classes_in_batch if not is_val else c.eval_num_classes_in_batch + + dataset = EncoderDataset( + c, + ap, + meta_data_eval if is_val else meta_data_train, + voice_len=c.voice_len, + num_utter_per_class=num_utter_per_class, + num_classes_in_batch=num_classes_in_batch, + verbose=verbose, + augmentation_config=c.audio_augmentation if not is_val else None, + use_torch_spec=c.model_params.get("use_torch_spec", False), + ) + # get classes list + classes = dataset.get_class_list() + + sampler = PerfectBatchSampler( + dataset.items, + classes, + batch_size=num_classes_in_batch * num_utter_per_class, # total batch size + num_classes_in_batch=num_classes_in_batch, + num_gpus=1, + shuffle=not is_val, + drop_last=True, + ) + + if len(classes) < num_classes_in_batch: + if is_val: + raise RuntimeError( + f"config.eval_num_classes_in_batch ({num_classes_in_batch}) need to be <= {len(classes)} (Number total of Classes in the Eval dataset) !" + ) + raise RuntimeError( + f"config.num_classes_in_batch ({num_classes_in_batch}) need to be <= {len(classes)} (Number total of Classes in the Train dataset) !" + ) + + # set the classes to avoid get wrong class_id when the number of training and eval classes are not equal + if is_val: + dataset.set_classes(train_classes) + + loader = DataLoader( + dataset, + num_workers=c.num_loader_workers, + batch_sampler=sampler, + collate_fn=dataset.collate_fn, + ) + + return loader, classes, dataset.get_map_classid_to_classname() + + +def evaluation(model, criterion, data_loader, global_step): + eval_loss = 0 + for _, data in enumerate(data_loader): + with torch.no_grad(): + # setup input data + inputs, labels = data + + # agroup samples of each class in the batch. perfect sampler produces [3,2,1,3,2,1] we need [3,3,2,2,1,1] + labels = torch.transpose( + labels.view(c.eval_num_utter_per_class, c.eval_num_classes_in_batch), 0, 1 + ).reshape(labels.shape) + inputs = torch.transpose( + inputs.view(c.eval_num_utter_per_class, c.eval_num_classes_in_batch, -1), 0, 1 + ).reshape(inputs.shape) + + # dispatch data to GPU + if use_cuda: + inputs = inputs.cuda(non_blocking=True) + labels = labels.cuda(non_blocking=True) + + # forward pass model + outputs = model(inputs) + + # loss computation + loss = criterion( + outputs.view(c.eval_num_classes_in_batch, outputs.shape[0] // c.eval_num_classes_in_batch, -1), labels + ) + + eval_loss += loss.item() + + eval_avg_loss = eval_loss / len(data_loader) + # save stats + dashboard_logger.eval_stats(global_step, {"loss": eval_avg_loss}) + # plot the last batch in the evaluation + figures = { + "UMAP Plot": plot_embeddings(outputs.detach().cpu().numpy(), c.num_classes_in_batch), + } + dashboard_logger.eval_figures(global_step, figures) + return eval_avg_loss + + +def train(model, optimizer, scheduler, criterion, data_loader, eval_data_loader, global_step): + model.train() + best_loss = float("inf") + avg_loader_time = 0 + end_time = time.time() + for epoch in range(c.epochs): + tot_loss = 0 + epoch_time = 0 + for _, data in enumerate(data_loader): + start_time = time.time() + + # setup input data + inputs, labels = data + # agroup samples of each class in the batch. perfect sampler produces [3,2,1,3,2,1] we need [3,3,2,2,1,1] + labels = torch.transpose(labels.view(c.num_utter_per_class, c.num_classes_in_batch), 0, 1).reshape( + labels.shape + ) + inputs = torch.transpose(inputs.view(c.num_utter_per_class, c.num_classes_in_batch, -1), 0, 1).reshape( + inputs.shape + ) + # ToDo: move it to a unit test + # labels_converted = torch.transpose(labels.view(c.num_utter_per_class, c.num_classes_in_batch), 0, 1).reshape(labels.shape) + # inputs_converted = torch.transpose(inputs.view(c.num_utter_per_class, c.num_classes_in_batch, -1), 0, 1).reshape(inputs.shape) + # idx = 0 + # for j in range(0, c.num_classes_in_batch, 1): + # for i in range(j, len(labels), c.num_classes_in_batch): + # if not torch.all(labels[i].eq(labels_converted[idx])) or not torch.all(inputs[i].eq(inputs_converted[idx])): + # print("Invalid") + # print(labels) + # exit() + # idx += 1 + # labels = labels_converted + # inputs = inputs_converted + + loader_time = time.time() - end_time + global_step += 1 + + # setup lr + if c.lr_decay: + scheduler.step() + optimizer.zero_grad() + + # dispatch data to GPU + if use_cuda: + inputs = inputs.cuda(non_blocking=True) + labels = labels.cuda(non_blocking=True) + + # forward pass model + outputs = model(inputs) + + # loss computation + loss = criterion( + outputs.view(c.num_classes_in_batch, outputs.shape[0] // c.num_classes_in_batch, -1), labels + ) + loss.backward() + grad_norm, _ = check_update(model, c.grad_clip) + optimizer.step() + + step_time = time.time() - start_time + epoch_time += step_time + + # acumulate the total epoch loss + tot_loss += loss.item() + + # Averaged Loader Time + num_loader_workers = c.num_loader_workers if c.num_loader_workers > 0 else 1 + avg_loader_time = ( + 1 / num_loader_workers * loader_time + (num_loader_workers - 1) / num_loader_workers * avg_loader_time + if avg_loader_time != 0 + else loader_time + ) + current_lr = optimizer.param_groups[0]["lr"] + + if global_step % c.steps_plot_stats == 0: + # Plot Training Epoch Stats + train_stats = { + "loss": loss.item(), + "lr": current_lr, + "grad_norm": grad_norm, + "step_time": step_time, + "avg_loader_time": avg_loader_time, + } + dashboard_logger.train_epoch_stats(global_step, train_stats) + figures = { + "UMAP Plot": plot_embeddings(outputs.detach().cpu().numpy(), c.num_classes_in_batch), + } + dashboard_logger.train_figures(global_step, figures) + + if global_step % c.print_step == 0: + print( + " | > Step:{} Loss:{:.5f} GradNorm:{:.5f} " + "StepTime:{:.2f} LoaderTime:{:.2f} AvGLoaderTime:{:.2f} LR:{:.6f}".format( + global_step, loss.item(), grad_norm, step_time, loader_time, avg_loader_time, current_lr + ), + flush=True, + ) + + if global_step % c.save_step == 0: + # save model + save_checkpoint(model, optimizer, criterion, loss.item(), OUT_PATH, global_step, epoch) + + end_time = time.time() + + print("") + print( + ">>> Epoch:{} AvgLoss: {:.5f} GradNorm:{:.5f} " + "EpochTime:{:.2f} AvGLoaderTime:{:.2f} ".format( + epoch, tot_loss / len(data_loader), grad_norm, epoch_time, avg_loader_time + ), + flush=True, + ) + # evaluation + if c.run_eval: + model.eval() + eval_loss = evaluation(model, criterion, eval_data_loader, global_step) + print("\n\n") + print("--> EVAL PERFORMANCE") + print( + " | > Epoch:{} AvgLoss: {:.5f} ".format(epoch, eval_loss), + flush=True, + ) + # save the best checkpoint + best_loss = save_best_model(model, optimizer, criterion, eval_loss, best_loss, OUT_PATH, global_step, epoch) + model.train() + + return best_loss, global_step + + +def main(args): # pylint: disable=redefined-outer-name + # pylint: disable=global-variable-undefined + global meta_data_train + global meta_data_eval + global train_classes + + ap = AudioProcessor(**c.audio) + model = setup_encoder_model(c) + + optimizer = get_optimizer(c.optimizer, c.optimizer_params, c.lr, model) + + # pylint: disable=redefined-outer-name + meta_data_train, meta_data_eval = load_tts_samples(c.datasets, eval_split=True) + + train_data_loader, train_classes, map_classid_to_classname = setup_loader(ap, is_val=False, verbose=True) + if c.run_eval: + eval_data_loader, _, _ = setup_loader(ap, is_val=True, verbose=True) + else: + eval_data_loader = None + + num_classes = len(train_classes) + criterion = model.get_criterion(c, num_classes) + + if c.loss == "softmaxproto" and c.model != "speaker_encoder": + c.map_classid_to_classname = map_classid_to_classname + copy_model_files(c, OUT_PATH) + + if args.restore_path: + criterion, args.restore_step = model.load_checkpoint( + c, args.restore_path, eval=False, use_cuda=use_cuda, criterion=criterion + ) + print(" > Model restored from step %d" % args.restore_step, flush=True) + else: + args.restore_step = 0 + + if c.lr_decay: + scheduler = NoamLR(optimizer, warmup_steps=c.warmup_steps, last_epoch=args.restore_step - 1) + else: + scheduler = None + + num_params = count_parameters(model) + print("\n > Model has {} parameters".format(num_params), flush=True) + + if use_cuda: + model = model.cuda() + criterion.cuda() + + global_step = args.restore_step + _, global_step = train(model, optimizer, scheduler, criterion, train_data_loader, eval_data_loader, global_step) + + +if __name__ == "__main__": + args, c, OUT_PATH, AUDIO_PATH, c_logger, dashboard_logger = init_training() + + try: + main(args) + except KeyboardInterrupt: + remove_experiment_folder(OUT_PATH) + try: + sys.exit(0) + except SystemExit: + os._exit(0) # pylint: disable=protected-access + except Exception: # pylint: disable=broad-except + remove_experiment_folder(OUT_PATH) + traceback.print_exc() + sys.exit(1) diff --git a/TTS/TTS/bin/train_tts.py b/TTS/TTS/bin/train_tts.py new file mode 100644 index 0000000000000000000000000000000000000000..bdb4f6f69122a4a9aa4e07695f1816ce9727f323 --- /dev/null +++ b/TTS/TTS/bin/train_tts.py @@ -0,0 +1,71 @@ +import os +from dataclasses import dataclass, field + +from trainer import Trainer, TrainerArgs + +from TTS.config import load_config, register_config +from TTS.tts.datasets import load_tts_samples +from TTS.tts.models import setup_model + + +@dataclass +class TrainTTSArgs(TrainerArgs): + config_path: str = field(default=None, metadata={"help": "Path to the config file."}) + + +def main(): + """Run `tts` model training directly by a `config.json` file.""" + # init trainer args + train_args = TrainTTSArgs() + parser = train_args.init_argparse(arg_prefix="") + + # override trainer args from comman-line args + args, config_overrides = parser.parse_known_args() + train_args.parse_args(args) + + # load config.json and register + if args.config_path or args.continue_path: + if args.config_path: + # init from a file + config = load_config(args.config_path) + if len(config_overrides) > 0: + config.parse_known_args(config_overrides, relaxed_parser=True) + elif args.continue_path: + # continue from a prev experiment + config = load_config(os.path.join(args.continue_path, "config.json")) + if len(config_overrides) > 0: + config.parse_known_args(config_overrides, relaxed_parser=True) + else: + # init from console args + from TTS.config.shared_configs import BaseTrainingConfig # pylint: disable=import-outside-toplevel + + config_base = BaseTrainingConfig() + config_base.parse_known_args(config_overrides) + config = register_config(config_base.model)() + + # load training samples + train_samples, eval_samples = load_tts_samples( + config.datasets, + eval_split=True, + eval_split_max_size=config.eval_split_max_size, + eval_split_size=config.eval_split_size, + ) + + # init the model from config + model = setup_model(config, train_samples + eval_samples) + + # init the trainer and ๐Ÿš€ + trainer = Trainer( + train_args, + model.config, + config.output_path, + model=model, + train_samples=train_samples, + eval_samples=eval_samples, + parse_command_line_args=False, + ) + trainer.fit() + + +if __name__ == "__main__": + main() diff --git a/TTS/TTS/bin/train_vocoder.py b/TTS/TTS/bin/train_vocoder.py new file mode 100644 index 0000000000000000000000000000000000000000..32ecd7bdc3652b3683be846bdd9518e937aee904 --- /dev/null +++ b/TTS/TTS/bin/train_vocoder.py @@ -0,0 +1,77 @@ +import os +from dataclasses import dataclass, field + +from trainer import Trainer, TrainerArgs + +from TTS.config import load_config, register_config +from TTS.utils.audio import AudioProcessor +from TTS.vocoder.datasets.preprocess import load_wav_data, load_wav_feat_data +from TTS.vocoder.models import setup_model + + +@dataclass +class TrainVocoderArgs(TrainerArgs): + config_path: str = field(default=None, metadata={"help": "Path to the config file."}) + + +def main(): + """Run `tts` model training directly by a `config.json` file.""" + # init trainer args + train_args = TrainVocoderArgs() + parser = train_args.init_argparse(arg_prefix="") + + # override trainer args from comman-line args + args, config_overrides = parser.parse_known_args() + train_args.parse_args(args) + + # load config.json and register + if args.config_path or args.continue_path: + if args.config_path: + # init from a file + config = load_config(args.config_path) + if len(config_overrides) > 0: + config.parse_known_args(config_overrides, relaxed_parser=True) + elif args.continue_path: + # continue from a prev experiment + config = load_config(os.path.join(args.continue_path, "config.json")) + if len(config_overrides) > 0: + config.parse_known_args(config_overrides, relaxed_parser=True) + else: + # init from console args + from TTS.config.shared_configs import BaseTrainingConfig # pylint: disable=import-outside-toplevel + + config_base = BaseTrainingConfig() + config_base.parse_known_args(config_overrides) + config = register_config(config_base.model)() + + # load training samples + if "feature_path" in config and config.feature_path: + # load pre-computed features + print(f" > Loading features from: {config.feature_path}") + eval_samples, train_samples = load_wav_feat_data(config.data_path, config.feature_path, config.eval_split_size) + else: + # load data raw wav files + eval_samples, train_samples = load_wav_data(config.data_path, config.eval_split_size) + + # setup audio processor + ap = AudioProcessor(**config.audio) + + # init the model from config + model = setup_model(config) + + # init the trainer and ๐Ÿš€ + trainer = Trainer( + train_args, + config, + config.output_path, + model=model, + train_samples=train_samples, + eval_samples=eval_samples, + training_assets={"audio_processor": ap}, + parse_command_line_args=False, + ) + trainer.fit() + + +if __name__ == "__main__": + main() diff --git a/TTS/TTS/bin/tune_wavegrad.py b/TTS/TTS/bin/tune_wavegrad.py new file mode 100644 index 0000000000000000000000000000000000000000..09582cea7c7962b098efcde5754a02573d18264a --- /dev/null +++ b/TTS/TTS/bin/tune_wavegrad.py @@ -0,0 +1,103 @@ +"""Search a good noise schedule for WaveGrad for a given number of inference iterations""" +import argparse +from itertools import product as cartesian_product + +import numpy as np +import torch +from torch.utils.data import DataLoader +from tqdm import tqdm + +from TTS.config import load_config +from TTS.utils.audio import AudioProcessor +from TTS.vocoder.datasets.preprocess import load_wav_data +from TTS.vocoder.datasets.wavegrad_dataset import WaveGradDataset +from TTS.vocoder.models import setup_model + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("--model_path", type=str, help="Path to model checkpoint.") + parser.add_argument("--config_path", type=str, help="Path to model config file.") + parser.add_argument("--data_path", type=str, help="Path to data directory.") + parser.add_argument("--output_path", type=str, help="path for output file including file name and extension.") + parser.add_argument( + "--num_iter", + type=int, + help="Number of model inference iterations that you like to optimize noise schedule for.", + ) + parser.add_argument("--use_cuda", action="store_true", help="enable CUDA.") + parser.add_argument("--num_samples", type=int, default=1, help="Number of datasamples used for inference.") + parser.add_argument( + "--search_depth", + type=int, + default=3, + help="Search granularity. Increasing this increases the run-time exponentially.", + ) + + # load config + args = parser.parse_args() + config = load_config(args.config_path) + + # setup audio processor + ap = AudioProcessor(**config.audio) + + # load dataset + _, train_data = load_wav_data(args.data_path, 0) + train_data = train_data[: args.num_samples] + dataset = WaveGradDataset( + ap=ap, + items=train_data, + seq_len=-1, + hop_len=ap.hop_length, + pad_short=config.pad_short, + conv_pad=config.conv_pad, + is_training=True, + return_segments=False, + use_noise_augment=False, + use_cache=False, + verbose=True, + ) + loader = DataLoader( + dataset, + batch_size=1, + shuffle=False, + collate_fn=dataset.collate_full_clips, + drop_last=False, + num_workers=config.num_loader_workers, + pin_memory=False, + ) + + # setup the model + model = setup_model(config) + if args.use_cuda: + model.cuda() + + # setup optimization parameters + base_values = sorted(10 * np.random.uniform(size=args.search_depth)) + print(f" > base values: {base_values}") + exponents = 10 ** np.linspace(-6, -1, num=args.num_iter) + best_error = float("inf") + best_schedule = None # pylint: disable=C0103 + total_search_iter = len(base_values) ** args.num_iter + for base in tqdm(cartesian_product(base_values, repeat=args.num_iter), total=total_search_iter): + beta = exponents * base + model.compute_noise_level(beta) + for data in loader: + mel, audio = data + y_hat = model.inference(mel.cuda() if args.use_cuda else mel) + + if args.use_cuda: + y_hat = y_hat.cpu() + y_hat = y_hat.numpy() + + mel_hat = [] + for i in range(y_hat.shape[0]): + m = ap.melspectrogram(y_hat[i, 0])[:, :-1] + mel_hat.append(torch.from_numpy(m)) + + mel_hat = torch.stack(mel_hat) + mse = torch.sum((mel - mel_hat) ** 2).mean() + if mse.item() < best_error: + best_error = mse.item() + best_schedule = {"beta": beta} + print(f" > Found a better schedule. - MSE: {mse.item()}") + np.save(args.output_path, best_schedule) diff --git a/TTS/TTS/config/__init__.py b/TTS/TTS/config/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..25b4baef81c1c957b336bb577b97702b608f7c1c --- /dev/null +++ b/TTS/TTS/config/__init__.py @@ -0,0 +1,138 @@ +import json +import os +import re +from typing import Dict + +import fsspec +import yaml +from coqpit import Coqpit + +from TTS.config.shared_configs import * +from TTS.utils.generic_utils import find_module + + +def read_json_with_comments(json_path): + """for backward compat.""" + # fallback to json + with fsspec.open(json_path, "r", encoding="utf-8") as f: + input_str = f.read() + # handle comments + input_str = re.sub(r"\\\n", "", input_str) + input_str = re.sub(r"//.*\n", "\n", input_str) + data = json.loads(input_str) + return data + + +def register_config(model_name: str) -> Coqpit: + """Find the right config for the given model name. + + Args: + model_name (str): Model name. + + Raises: + ModuleNotFoundError: No matching config for the model name. + + Returns: + Coqpit: config class. + """ + config_class = None + config_name = model_name + "_config" + + # TODO: fix this + if model_name == "xtts": + from TTS.tts.configs.xtts_config import XttsConfig + + config_class = XttsConfig + paths = ["TTS.tts.configs", "TTS.vocoder.configs", "TTS.encoder.configs", "TTS.vc.configs"] + for path in paths: + try: + config_class = find_module(path, config_name) + except ModuleNotFoundError: + pass + if config_class is None: + raise ModuleNotFoundError(f" [!] Config for {model_name} cannot be found.") + return config_class + + +def _process_model_name(config_dict: Dict) -> str: + """Format the model name as expected. It is a band-aid for the old `vocoder` model names. + + Args: + config_dict (Dict): A dictionary including the config fields. + + Returns: + str: Formatted modelname. + """ + model_name = config_dict["model"] if "model" in config_dict else config_dict["generator_model"] + model_name = model_name.replace("_generator", "").replace("_discriminator", "") + return model_name + + +def load_config(config_path: str) -> Coqpit: + """Import `json` or `yaml` files as TTS configs. First, load the input file as a `dict` and check the model name + to find the corresponding Config class. Then initialize the Config. + + Args: + config_path (str): path to the config file. + + Raises: + TypeError: given config file has an unknown type. + + Returns: + Coqpit: TTS config object. + """ + config_dict = {} + ext = os.path.splitext(config_path)[1] + if ext in (".yml", ".yaml"): + with fsspec.open(config_path, "r", encoding="utf-8") as f: + data = yaml.safe_load(f) + elif ext == ".json": + try: + with fsspec.open(config_path, "r", encoding="utf-8") as f: + data = json.load(f) + except json.decoder.JSONDecodeError: + # backwards compat. + data = read_json_with_comments(config_path) + else: + raise TypeError(f" [!] Unknown config file type {ext}") + config_dict.update(data) + model_name = _process_model_name(config_dict) + config_class = register_config(model_name.lower()) + config = config_class() + config.from_dict(config_dict) + return config + + +def check_config_and_model_args(config, arg_name, value): + """Check the give argument in `config.model_args` if exist or in `config` for + the given value. + + Return False if the argument does not exist in `config.model_args` or `config`. + This is to patch up the compatibility between models with and without `model_args`. + + TODO: Remove this in the future with a unified approach. + """ + if hasattr(config, "model_args"): + if arg_name in config.model_args: + return config.model_args[arg_name] == value + if hasattr(config, arg_name): + return config[arg_name] == value + return False + + +def get_from_config_or_model_args(config, arg_name): + """Get the given argument from `config.model_args` if exist or in `config`.""" + if hasattr(config, "model_args"): + if arg_name in config.model_args: + return config.model_args[arg_name] + return config[arg_name] + + +def get_from_config_or_model_args_with_default(config, arg_name, def_val): + """Get the given argument from `config.model_args` if exist or in `config`.""" + if hasattr(config, "model_args"): + if arg_name in config.model_args: + return config.model_args[arg_name] + if hasattr(config, arg_name): + return config[arg_name] + return def_val diff --git a/TTS/TTS/config/shared_configs.py b/TTS/TTS/config/shared_configs.py new file mode 100644 index 0000000000000000000000000000000000000000..7fae77d61361eff8c8fa521a0f4a90dc46f63c75 --- /dev/null +++ b/TTS/TTS/config/shared_configs.py @@ -0,0 +1,268 @@ +from dataclasses import asdict, dataclass +from typing import List + +from coqpit import Coqpit, check_argument +from trainer import TrainerConfig + + +@dataclass +class BaseAudioConfig(Coqpit): + """Base config to definge audio processing parameters. It is used to initialize + ```TTS.utils.audio.AudioProcessor.``` + + Args: + fft_size (int): + Number of STFT frequency levels aka.size of the linear spectogram frame. Defaults to 1024. + + win_length (int): + Each frame of audio is windowed by window of length ```win_length``` and then padded with zeros to match + ```fft_size```. Defaults to 1024. + + hop_length (int): + Number of audio samples between adjacent STFT columns. Defaults to 1024. + + frame_shift_ms (int): + Set ```hop_length``` based on milliseconds and sampling rate. + + frame_length_ms (int): + Set ```win_length``` based on milliseconds and sampling rate. + + stft_pad_mode (str): + Padding method used in STFT. 'reflect' or 'center'. Defaults to 'reflect'. + + sample_rate (int): + Audio sampling rate. Defaults to 22050. + + resample (bool): + Enable / Disable resampling audio to ```sample_rate```. Defaults to ```False```. + + preemphasis (float): + Preemphasis coefficient. Defaults to 0.0. + + ref_level_db (int): 20 + Reference Db level to rebase the audio signal and ignore the level below. 20Db is assumed the sound of air. + Defaults to 20. + + do_sound_norm (bool): + Enable / Disable sound normalization to reconcile the volume differences among samples. Defaults to False. + + log_func (str): + Numpy log function used for amplitude to DB conversion. Defaults to 'np.log10'. + + do_trim_silence (bool): + Enable / Disable trimming silences at the beginning and the end of the audio clip. Defaults to ```True```. + + do_amp_to_db_linear (bool, optional): + enable/disable amplitude to dB conversion of linear spectrograms. Defaults to True. + + do_amp_to_db_mel (bool, optional): + enable/disable amplitude to dB conversion of mel spectrograms. Defaults to True. + + pitch_fmax (float, optional): + Maximum frequency of the F0 frames. Defaults to ```640```. + + pitch_fmin (float, optional): + Minimum frequency of the F0 frames. Defaults to ```1```. + + trim_db (int): + Silence threshold used for silence trimming. Defaults to 45. + + do_rms_norm (bool, optional): + enable/disable RMS volume normalization when loading an audio file. Defaults to False. + + db_level (int, optional): + dB level used for rms normalization. The range is -99 to 0. Defaults to None. + + power (float): + Exponent used for expanding spectrogra levels before running Griffin Lim. It helps to reduce the + artifacts in the synthesized voice. Defaults to 1.5. + + griffin_lim_iters (int): + Number of Griffing Lim iterations. Defaults to 60. + + num_mels (int): + Number of mel-basis frames that defines the frame lengths of each mel-spectrogram frame. Defaults to 80. + + mel_fmin (float): Min frequency level used for the mel-basis filters. ~50 for male and ~95 for female voices. + It needs to be adjusted for a dataset. Defaults to 0. + + mel_fmax (float): + Max frequency level used for the mel-basis filters. It needs to be adjusted for a dataset. + + spec_gain (int): + Gain applied when converting amplitude to DB. Defaults to 20. + + signal_norm (bool): + enable/disable signal normalization. Defaults to True. + + min_level_db (int): + minimum db threshold for the computed melspectrograms. Defaults to -100. + + symmetric_norm (bool): + enable/disable symmetric normalization. If set True normalization is performed in the range [-k, k] else + [0, k], Defaults to True. + + max_norm (float): + ```k``` defining the normalization range. Defaults to 4.0. + + clip_norm (bool): + enable/disable clipping the our of range values in the normalized audio signal. Defaults to True. + + stats_path (str): + Path to the computed stats file. Defaults to None. + """ + + # stft parameters + fft_size: int = 1024 + win_length: int = 1024 + hop_length: int = 256 + frame_shift_ms: int = None + frame_length_ms: int = None + stft_pad_mode: str = "reflect" + # audio processing parameters + sample_rate: int = 22050 + resample: bool = False + preemphasis: float = 0.0 + ref_level_db: int = 20 + do_sound_norm: bool = False + log_func: str = "np.log10" + # silence trimming + do_trim_silence: bool = True + trim_db: int = 45 + # rms volume normalization + do_rms_norm: bool = False + db_level: float = None + # griffin-lim params + power: float = 1.5 + griffin_lim_iters: int = 60 + # mel-spec params + num_mels: int = 80 + mel_fmin: float = 0.0 + mel_fmax: float = None + spec_gain: int = 20 + do_amp_to_db_linear: bool = True + do_amp_to_db_mel: bool = True + # f0 params + pitch_fmax: float = 640.0 + pitch_fmin: float = 1.0 + # normalization params + signal_norm: bool = True + min_level_db: int = -100 + symmetric_norm: bool = True + max_norm: float = 4.0 + clip_norm: bool = True + stats_path: str = None + + def check_values( + self, + ): + """Check config fields""" + c = asdict(self) + check_argument("num_mels", c, restricted=True, min_val=10, max_val=2056) + check_argument("fft_size", c, restricted=True, min_val=128, max_val=4058) + check_argument("sample_rate", c, restricted=True, min_val=512, max_val=100000) + check_argument( + "frame_length_ms", + c, + restricted=True, + min_val=10, + max_val=1000, + alternative="win_length", + ) + check_argument("frame_shift_ms", c, restricted=True, min_val=1, max_val=1000, alternative="hop_length") + check_argument("preemphasis", c, restricted=True, min_val=0, max_val=1) + check_argument("min_level_db", c, restricted=True, min_val=-1000, max_val=10) + check_argument("ref_level_db", c, restricted=True, min_val=0, max_val=1000) + check_argument("power", c, restricted=True, min_val=1, max_val=5) + check_argument("griffin_lim_iters", c, restricted=True, min_val=10, max_val=1000) + + # normalization parameters + check_argument("signal_norm", c, restricted=True) + check_argument("symmetric_norm", c, restricted=True) + check_argument("max_norm", c, restricted=True, min_val=0.1, max_val=1000) + check_argument("clip_norm", c, restricted=True) + check_argument("mel_fmin", c, restricted=True, min_val=0.0, max_val=1000) + check_argument("mel_fmax", c, restricted=True, min_val=500.0, allow_none=True) + check_argument("spec_gain", c, restricted=True, min_val=1, max_val=100) + check_argument("do_trim_silence", c, restricted=True) + check_argument("trim_db", c, restricted=True) + + +@dataclass +class BaseDatasetConfig(Coqpit): + """Base config for TTS datasets. + + Args: + formatter (str): + Formatter name that defines used formatter in ```TTS.tts.datasets.formatter```. Defaults to `""`. + + dataset_name (str): + Unique name for the dataset. Defaults to `""`. + + path (str): + Root path to the dataset files. Defaults to `""`. + + meta_file_train (str): + Name of the dataset meta file. Or a list of speakers to be ignored at training for multi-speaker datasets. + Defaults to `""`. + + ignored_speakers (List): + List of speakers IDs that are not used at the training. Default None. + + language (str): + Language code of the dataset. If defined, it overrides `phoneme_language`. Defaults to `""`. + + phonemizer (str): + Phonemizer used for that dataset's language. By default it uses `DEF_LANG_TO_PHONEMIZER`. Defaults to `""`. + + meta_file_val (str): + Name of the dataset meta file that defines the instances used at validation. + + meta_file_attn_mask (str): + Path to the file that lists the attention mask files used with models that require attention masks to + train the duration predictor. + """ + + formatter: str = "" + dataset_name: str = "" + path: str = "" + meta_file_train: str = "" + ignored_speakers: List[str] = None + language: str = "" + phonemizer: str = "" + meta_file_val: str = "" + meta_file_attn_mask: str = "" + + def check_values( + self, + ): + """Check config fields""" + c = asdict(self) + check_argument("formatter", c, restricted=True) + check_argument("path", c, restricted=True) + check_argument("meta_file_train", c, restricted=True) + check_argument("meta_file_val", c, restricted=False) + check_argument("meta_file_attn_mask", c, restricted=False) + + +@dataclass +class BaseTrainingConfig(TrainerConfig): + """Base config to define the basic ๐ŸธTTS training parameters that are shared + among all the models. It is based on ```Trainer.TrainingConfig```. + + Args: + model (str): + Name of the model that is used in the training. + + num_loader_workers (int): + Number of workers for training time dataloader. + + num_eval_loader_workers (int): + Number of workers for evaluation time dataloader. + """ + + model: str = None + # dataloading + num_loader_workers: int = 0 + num_eval_loader_workers: int = 0 + use_noise_augment: bool = False diff --git a/TTS/TTS/cs_api.py b/TTS/TTS/cs_api.py new file mode 100644 index 0000000000000000000000000000000000000000..a36452abc95b1c250f514bbe180504372f21383f --- /dev/null +++ b/TTS/TTS/cs_api.py @@ -0,0 +1,338 @@ +import http.client +import json +import os +import tempfile +import urllib.request +from typing import Tuple + +import numpy as np +import requests +from scipy.io import wavfile + + +class Speaker(object): + """Convert dict to object.""" + + def __init__(self, d, is_voice=False): + self.is_voice = is_voice + for k, v in d.items(): + if isinstance(k, (list, tuple)): + setattr(self, k, [Speaker(x) if isinstance(x, dict) else x for x in v]) + else: + setattr(self, k, Speaker(v) if isinstance(v, dict) else v) + + def __repr__(self): + return str(self.__dict__) + + +class CS_API: + """๐ŸธCoqui Studio API Wrapper. + + ๐ŸธCoqui Studio is the most advanced voice generation platform. You can generate new voices by voice cloning, voice + interpolation, or our unique prompt to voice technology. It also provides a set of built-in voices with different + characteristics. You can use these voices to generate new audio files or use them in your applications. + You can use all the built-in and your own ๐ŸธCoqui Studio speakers with this API with an API token. + You can signup to ๐ŸธCoqui Studio from https://app.coqui.ai/auth/signup and get an API token from + https://app.coqui.ai/account. We can either enter the token as an environment variable as + `export COQUI_STUDIO_TOKEN=` or pass it as `CS_API(api_token=)`. + Visit https://app.coqui.ai/api for more information. + + + Args: + api_token (str): ๐ŸธCoqui Studio API token. If not provided, it will be read from the environment variable + `COQUI_STUDIO_TOKEN`. + model (str): ๐ŸธCoqui Studio model. It can be either `V1`, `XTTS`, or `XTTS-multilang`. Default is `XTTS`. + + + Example listing all available speakers: + >>> from TTS.api import CS_API + >>> tts = CS_API() + >>> tts.speakers + + Example listing all emotions: + >>> # emotions are only available for `V1` model + >>> from TTS.api import CS_API + >>> tts = CS_API(model="V1") + >>> tts.emotions + + Example with a built-in ๐Ÿธ speaker: + >>> from TTS.api import CS_API + >>> tts = CS_API() + >>> wav, sr = api.tts("Hello world", speaker_name=tts.speakers[0].name) + >>> filepath = tts.tts_to_file(text="Hello world!", speaker_name=tts.speakers[0].name, file_path="output.wav") + + Example with multi-language model: + >>> from TTS.api import CS_API + >>> tts = CS_API(model="XTTS-multilang") + >>> wav, sr = api.tts("Hello world", speaker_name=tts.speakers[0].name, language="en") + """ + + MODEL_ENDPOINTS = { + "V1": { + "list_speakers": "https://app.coqui.ai/api/v2/speakers", + "synthesize": "https://app.coqui.ai/api/v2/samples", + "list_voices": "https://app.coqui.ai/api/v2/voices", + }, + "XTTS": { + "list_speakers": "https://app.coqui.ai/api/v2/speakers", + "synthesize": "https://app.coqui.ai/api/v2/samples/xtts/render/", + "list_voices": "https://app.coqui.ai/api/v2/voices/xtts/", + }, + "XTTS-multilang": { + "list_speakers": "https://app.coqui.ai/api/v2/speakers", + "synthesize": "https://app.coqui.ai/api/v2/samples/multilingual/render/", + "list_voices": "https://app.coqui.ai/api/v2/voices/xtts/", + }, + } + + SUPPORTED_LANGUAGES = ["en", "es", "de", "fr", "it", "pt", "pl"] + + def __init__(self, api_token=None, model="XTTS"): + self.api_token = api_token + self.model = model + self.headers = None + self._speakers = None + self._check_token() + + @staticmethod + def ping_api(): + URL = "https://coqui.gateway.scarf.sh/tts/api" + _ = requests.get(URL) + + @property + def speakers(self): + if self._speakers is None: + self._speakers = self.list_all_speakers() + return self._speakers + + @property + def emotions(self): + """Return a list of available emotions. + + TODO: Get this from the API endpoint. + """ + if self.model == "V1": + return ["Neutral", "Happy", "Sad", "Angry", "Dull"] + else: + raise ValueError(f"โ— Emotions are not available for {self.model}.") + + def _check_token(self): + if self.api_token is None: + self.api_token = os.environ.get("COQUI_STUDIO_TOKEN") + self.headers = {"Content-Type": "application/json", "Authorization": f"Bearer {self.api_token}"} + if not self.api_token: + raise ValueError( + "No API token found for ๐ŸธCoqui Studio voices - https://coqui.ai \n" + "Visit ๐Ÿ”—https://app.coqui.ai/account to get one.\n" + "Set it as an environment variable `export COQUI_STUDIO_TOKEN=`\n" + "" + ) + + def list_all_speakers(self): + """Return both built-in Coqui Studio speakers and custom voices created by the user.""" + return self.list_speakers() + self.list_voices() + + def list_speakers(self): + """List built-in Coqui Studio speakers.""" + self._check_token() + conn = http.client.HTTPSConnection("app.coqui.ai") + url = self.MODEL_ENDPOINTS[self.model]["list_speakers"] + conn.request("GET", f"{url}?per_page=100", headers=self.headers) + res = conn.getresponse() + data = res.read() + return [Speaker(s) for s in json.loads(data)["result"]] + + def list_voices(self): + """List custom voices created by the user.""" + conn = http.client.HTTPSConnection("app.coqui.ai") + url = self.MODEL_ENDPOINTS[self.model]["list_voices"] + conn.request("GET", f"{url}", headers=self.headers) + res = conn.getresponse() + data = res.read() + return [Speaker(s, True) for s in json.loads(data)["result"]] + + def list_speakers_as_tts_models(self): + """List speakers in ModelManager format.""" + models = [] + for speaker in self.speakers: + model = f"coqui_studio/multilingual/{speaker.name}/{self.model}" + models.append(model) + return models + + def name_to_speaker(self, name): + for speaker in self.speakers: + if speaker.name == name: + return speaker + raise ValueError(f"Speaker {name} not found in {self.speakers}") + + def id_to_speaker(self, speaker_id): + for speaker in self.speakers: + if speaker.id == speaker_id: + return speaker + raise ValueError(f"Speaker {speaker_id} not found.") + + @staticmethod + def url_to_np(url): + tmp_file, _ = urllib.request.urlretrieve(url) + rate, data = wavfile.read(tmp_file) + return data, rate + + @staticmethod + def _create_payload(model, text, speaker, speed, emotion, language): + payload = {} + # if speaker.is_voice: + payload["voice_id"] = speaker.id + # else: + payload["speaker_id"] = speaker.id + + if model == "V1": + payload.update( + { + "emotion": emotion, + "name": speaker.name, + "text": text, + "speed": speed, + } + ) + elif model == "XTTS": + payload.update( + { + "name": speaker.name, + "text": text, + "speed": speed, + } + ) + elif model == "XTTS-multilang": + payload.update( + { + "name": speaker.name, + "text": text, + "speed": speed, + "language": language, + } + ) + else: + raise ValueError(f"โ— Unknown model {model}") + return payload + + def _check_tts_args(self, text, speaker_name, speaker_id, emotion, speed, language): + assert text is not None, "โ— text is required for V1 model." + assert speaker_name is not None, "โ— speaker_name is required for V1 model." + if self.model == "V1": + if emotion is None: + emotion = "Neutral" + assert language is None, "โ— language is not supported for V1 model." + elif self.model == "XTTS": + assert emotion is None, f"โ— Emotions are not supported for XTTS model. Use V1 model." + assert language is None, "โ— Language is not supported for XTTS model. Use XTTS-multilang model." + elif self.model == "XTTS-multilang": + assert emotion is None, f"โ— Emotions are not supported for XTTS-multilang model. Use V1 model." + assert language is not None, "โ— Language is required for XTTS-multilang model." + assert ( + language in self.SUPPORTED_LANGUAGES + ), f"โ— Language {language} is not yet supported. Use one of: en, es, de, fr, it, pt, pl" + return text, speaker_name, speaker_id, emotion, speed, language + + def tts( + self, + text: str, + speaker_name: str = None, + speaker_id=None, + emotion=None, + speed=1.0, + language=None, # pylint: disable=unused-argument + ) -> Tuple[np.ndarray, int]: + """Synthesize speech from text. + + Args: + text (str): Text to synthesize. + speaker_name (str): Name of the speaker. You can get the list of speakers with `list_speakers()` and + voices (user generated speakers) with `list_voices()`. + speaker_id (str): Speaker ID. If None, the speaker name is used. + emotion (str): Emotion of the speaker. One of "Neutral", "Happy", "Sad", "Angry", "Dull". Emotions are only + supported by `V1` model. Defaults to None. + speed (float): Speed of the speech. 1.0 is normal speed. + language (str): Language of the text. If None, the default language of the speaker is used. Language is only + supported by `XTTS-multilang` model. Currently supports en, de, es, fr, it, pt, pl. Defaults to "en". + """ + self._check_token() + self.ping_api() + + if speaker_name is None and speaker_id is None: + raise ValueError(" [!] Please provide either a `speaker_name` or a `speaker_id`.") + if speaker_id is None: + speaker = self.name_to_speaker(speaker_name) + else: + speaker = self.id_to_speaker(speaker_id) + + text, speaker_name, speaker_id, emotion, speed, language = self._check_tts_args( + text, speaker_name, speaker_id, emotion, speed, language + ) + + conn = http.client.HTTPSConnection("app.coqui.ai") + payload = self._create_payload(self.model, text, speaker, speed, emotion, language) + url = self.MODEL_ENDPOINTS[self.model]["synthesize"] + conn.request("POST", url, json.dumps(payload), self.headers) + res = conn.getresponse() + data = res.read() + try: + wav, sr = self.url_to_np(json.loads(data)["audio_url"]) + except KeyError as e: + raise ValueError(f" [!] ๐Ÿธ API returned error: {data}") from e + return wav, sr + + def tts_to_file( + self, + text: str, + speaker_name: str, + speaker_id=None, + emotion=None, + speed=1.0, + language=None, + file_path: str = None, + ) -> str: + """Synthesize speech from text and save it to a file. + + Args: + text (str): Text to synthesize. + speaker_name (str): Name of the speaker. You can get the list of speakers with `list_speakers()` and + voices (user generated speakers) with `list_voices()`. + speaker_id (str): Speaker ID. If None, the speaker name is used. + emotion (str): Emotion of the speaker. One of "Neutral", "Happy", "Sad", "Angry", "Dull". + speed (float): Speed of the speech. 1.0 is normal speed. + language (str): Language of the text. If None, the default language of the speaker is used. Language is only + supported by `XTTS-multilang` model. Currently supports en, de, es, fr, it, pt, pl. Defaults to "en". + file_path (str): Path to save the file. If None, a temporary file is created. + """ + if file_path is None: + file_path = tempfile.mktemp(".wav") + wav, sr = self.tts(text, speaker_name, speaker_id, emotion, speed, language) + wavfile.write(file_path, sr, wav) + return file_path + + +if __name__ == "__main__": + import time + + api = CS_API() + print(api.speakers) + print(api.list_speakers_as_tts_models()) + + ts = time.time() + wav, sr = api.tts("It took me quite a long time to develop a voice.", speaker_name=api.speakers[0].name) + print(f" [i] XTTS took {time.time() - ts:.2f}s") + + filepath = api.tts_to_file(text="Hello world!", speaker_name=api.speakers[0].name, file_path="output.wav") + + api = CS_API(model="XTTS-multilang") + print(api.speakers) + + ts = time.time() + wav, sr = api.tts( + "It took me quite a long time to develop a voice.", speaker_name=api.speakers[0].name, language="en" + ) + print(f" [i] XTTS took {time.time() - ts:.2f}s") + + filepath = api.tts_to_file( + text="Hello world!", speaker_name=api.speakers[0].name, file_path="output.wav", language="en" + ) diff --git a/TTS/TTS/encoder/README.md b/TTS/TTS/encoder/README.md new file mode 100644 index 0000000000000000000000000000000000000000..b38b20052b707b0358068bc0ce58bc300a149def --- /dev/null +++ b/TTS/TTS/encoder/README.md @@ -0,0 +1,18 @@ +### Speaker Encoder + +This is an implementation of https://arxiv.org/abs/1710.10467. This model can be used for voice and speaker embedding. + +With the code here you can generate d-vectors for both multi-speaker and single-speaker TTS datasets, then visualise and explore them along with the associated audio files in an interactive chart. + +Below is an example showing embedding results of various speakers. You can generate the same plot with the provided notebook as demonstrated in [this video](https://youtu.be/KW3oO7JVa7Q). + +![](umap.png) + +Download a pretrained model from [Released Models](https://github.com/mozilla/TTS/wiki/Released-Models) page. + +To run the code, you need to follow the same flow as in TTS. + +- Define 'config.json' for your needs. Note that, audio parameters should match your TTS model. +- Example training call ```python speaker_encoder/train.py --config_path speaker_encoder/config.json --data_path ~/Data/Libri-TTS/train-clean-360``` +- Generate embedding vectors ```python speaker_encoder/compute_embeddings.py --use_cuda true /model/path/best_model.pth model/config/path/config.json dataset/path/ output_path``` . This code parses all .wav files at the given dataset path and generates the same folder structure under the output path with the generated embedding files. +- Watch training on Tensorboard as in TTS diff --git a/TTS/TTS/encoder/__init__.py b/TTS/TTS/encoder/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/TTS/TTS/encoder/configs/base_encoder_config.py b/TTS/TTS/encoder/configs/base_encoder_config.py new file mode 100644 index 0000000000000000000000000000000000000000..ebbaa0457bb55aef70d54dd36fd9b2b7f7c702bb --- /dev/null +++ b/TTS/TTS/encoder/configs/base_encoder_config.py @@ -0,0 +1,61 @@ +from dataclasses import asdict, dataclass, field +from typing import Dict, List + +from coqpit import MISSING + +from TTS.config.shared_configs import BaseAudioConfig, BaseDatasetConfig, BaseTrainingConfig + + +@dataclass +class BaseEncoderConfig(BaseTrainingConfig): + """Defines parameters for a Generic Encoder model.""" + + model: str = None + audio: BaseAudioConfig = field(default_factory=BaseAudioConfig) + datasets: List[BaseDatasetConfig] = field(default_factory=lambda: [BaseDatasetConfig()]) + # model params + model_params: Dict = field( + default_factory=lambda: { + "model_name": "lstm", + "input_dim": 80, + "proj_dim": 256, + "lstm_dim": 768, + "num_lstm_layers": 3, + "use_lstm_with_projection": True, + } + ) + + audio_augmentation: Dict = field(default_factory=lambda: {}) + + # training params + epochs: int = 10000 + loss: str = "angleproto" + grad_clip: float = 3.0 + lr: float = 0.0001 + optimizer: str = "radam" + optimizer_params: Dict = field(default_factory=lambda: {"betas": [0.9, 0.999], "weight_decay": 0}) + lr_decay: bool = False + warmup_steps: int = 4000 + + # logging params + tb_model_param_stats: bool = False + steps_plot_stats: int = 10 + save_step: int = 1000 + print_step: int = 20 + run_eval: bool = False + + # data loader + num_classes_in_batch: int = MISSING + num_utter_per_class: int = MISSING + eval_num_classes_in_batch: int = None + eval_num_utter_per_class: int = None + + num_loader_workers: int = MISSING + voice_len: float = 1.6 + + def check_values(self): + super().check_values() + c = asdict(self) + assert ( + c["model_params"]["input_dim"] == self.audio.num_mels + ), " [!] model input dimendion must be equal to melspectrogram dimension." diff --git a/TTS/TTS/encoder/configs/emotion_encoder_config.py b/TTS/TTS/encoder/configs/emotion_encoder_config.py new file mode 100644 index 0000000000000000000000000000000000000000..5eda2671be980abce4a0506a075387b601a1596c --- /dev/null +++ b/TTS/TTS/encoder/configs/emotion_encoder_config.py @@ -0,0 +1,12 @@ +from dataclasses import asdict, dataclass + +from TTS.encoder.configs.base_encoder_config import BaseEncoderConfig + + +@dataclass +class EmotionEncoderConfig(BaseEncoderConfig): + """Defines parameters for Emotion Encoder model.""" + + model: str = "emotion_encoder" + map_classid_to_classname: dict = None + class_name_key: str = "emotion_name" diff --git a/TTS/TTS/encoder/configs/speaker_encoder_config.py b/TTS/TTS/encoder/configs/speaker_encoder_config.py new file mode 100644 index 0000000000000000000000000000000000000000..6dceb00277ba68efe128936ff7f9456338f9753f --- /dev/null +++ b/TTS/TTS/encoder/configs/speaker_encoder_config.py @@ -0,0 +1,11 @@ +from dataclasses import asdict, dataclass + +from TTS.encoder.configs.base_encoder_config import BaseEncoderConfig + + +@dataclass +class SpeakerEncoderConfig(BaseEncoderConfig): + """Defines parameters for Speaker Encoder model.""" + + model: str = "speaker_encoder" + class_name_key: str = "speaker_name" diff --git a/TTS/TTS/encoder/dataset.py b/TTS/TTS/encoder/dataset.py new file mode 100644 index 0000000000000000000000000000000000000000..582b1fe9ca35cb9afbc20b8f72b6173282201272 --- /dev/null +++ b/TTS/TTS/encoder/dataset.py @@ -0,0 +1,147 @@ +import random + +import torch +from torch.utils.data import Dataset + +from TTS.encoder.utils.generic_utils import AugmentWAV + + +class EncoderDataset(Dataset): + def __init__( + self, + config, + ap, + meta_data, + voice_len=1.6, + num_classes_in_batch=64, + num_utter_per_class=10, + verbose=False, + augmentation_config=None, + use_torch_spec=None, + ): + """ + Args: + ap (TTS.tts.utils.AudioProcessor): audio processor object. + meta_data (list): list of dataset instances. + seq_len (int): voice segment length in seconds. + verbose (bool): print diagnostic information. + """ + super().__init__() + self.config = config + self.items = meta_data + self.sample_rate = ap.sample_rate + self.seq_len = int(voice_len * self.sample_rate) + self.num_utter_per_class = num_utter_per_class + self.ap = ap + self.verbose = verbose + self.use_torch_spec = use_torch_spec + self.classes, self.items = self.__parse_items() + + self.classname_to_classid = {key: i for i, key in enumerate(self.classes)} + + # Data Augmentation + self.augmentator = None + self.gaussian_augmentation_config = None + if augmentation_config: + self.data_augmentation_p = augmentation_config["p"] + if self.data_augmentation_p and ("additive" in augmentation_config or "rir" in augmentation_config): + self.augmentator = AugmentWAV(ap, augmentation_config) + + if "gaussian" in augmentation_config.keys(): + self.gaussian_augmentation_config = augmentation_config["gaussian"] + + if self.verbose: + print("\n > DataLoader initialization") + print(f" | > Classes per Batch: {num_classes_in_batch}") + print(f" | > Number of instances : {len(self.items)}") + print(f" | > Sequence length: {self.seq_len}") + print(f" | > Num Classes: {len(self.classes)}") + print(f" | > Classes: {self.classes}") + + def load_wav(self, filename): + audio = self.ap.load_wav(filename, sr=self.ap.sample_rate) + return audio + + def __parse_items(self): + class_to_utters = {} + for item in self.items: + path_ = item["audio_file"] + class_name = item[self.config.class_name_key] + if class_name in class_to_utters.keys(): + class_to_utters[class_name].append(path_) + else: + class_to_utters[class_name] = [ + path_, + ] + + # skip classes with number of samples >= self.num_utter_per_class + class_to_utters = {k: v for (k, v) in class_to_utters.items() if len(v) >= self.num_utter_per_class} + + classes = list(class_to_utters.keys()) + classes.sort() + + new_items = [] + for item in self.items: + path_ = item["audio_file"] + class_name = item["emotion_name"] if self.config.model == "emotion_encoder" else item["speaker_name"] + # ignore filtered classes + if class_name not in classes: + continue + # ignore small audios + if self.load_wav(path_).shape[0] - self.seq_len <= 0: + continue + + new_items.append({"wav_file_path": path_, "class_name": class_name}) + + return classes, new_items + + def __len__(self): + return len(self.items) + + def get_num_classes(self): + return len(self.classes) + + def get_class_list(self): + return self.classes + + def set_classes(self, classes): + self.classes = classes + self.classname_to_classid = {key: i for i, key in enumerate(self.classes)} + + def get_map_classid_to_classname(self): + return dict((c_id, c_n) for c_n, c_id in self.classname_to_classid.items()) + + def __getitem__(self, idx): + return self.items[idx] + + def collate_fn(self, batch): + # get the batch class_ids + labels = [] + feats = [] + for item in batch: + utter_path = item["wav_file_path"] + class_name = item["class_name"] + + # get classid + class_id = self.classname_to_classid[class_name] + # load wav file + wav = self.load_wav(utter_path) + offset = random.randint(0, wav.shape[0] - self.seq_len) + wav = wav[offset : offset + self.seq_len] + + if self.augmentator is not None and self.data_augmentation_p: + if random.random() < self.data_augmentation_p: + wav = self.augmentator.apply_one(wav) + + if not self.use_torch_spec: + mel = self.ap.melspectrogram(wav) + feats.append(torch.FloatTensor(mel)) + else: + feats.append(torch.FloatTensor(wav)) + + labels.append(class_id) + + feats = torch.stack(feats) + labels = torch.LongTensor(labels) + + return feats, labels diff --git a/TTS/TTS/encoder/losses.py b/TTS/TTS/encoder/losses.py new file mode 100644 index 0000000000000000000000000000000000000000..5b5aa0fc48fe00aeedeff28ba48ed2af498ce582 --- /dev/null +++ b/TTS/TTS/encoder/losses.py @@ -0,0 +1,226 @@ +import torch +import torch.nn.functional as F +from torch import nn + + +# adapted from https://github.com/cvqluu/GE2E-Loss +class GE2ELoss(nn.Module): + def __init__(self, init_w=10.0, init_b=-5.0, loss_method="softmax"): + """ + Implementation of the Generalized End-to-End loss defined in https://arxiv.org/abs/1710.10467 [1] + Accepts an input of size (N, M, D) + where N is the number of speakers in the batch, + M is the number of utterances per speaker, + and D is the dimensionality of the embedding vector (e.g. d-vector) + Args: + - init_w (float): defines the initial value of w in Equation (5) of [1] + - init_b (float): definies the initial value of b in Equation (5) of [1] + """ + super().__init__() + # pylint: disable=E1102 + self.w = nn.Parameter(torch.tensor(init_w)) + # pylint: disable=E1102 + self.b = nn.Parameter(torch.tensor(init_b)) + self.loss_method = loss_method + + print(" > Initialized Generalized End-to-End loss") + + assert self.loss_method in ["softmax", "contrast"] + + if self.loss_method == "softmax": + self.embed_loss = self.embed_loss_softmax + if self.loss_method == "contrast": + self.embed_loss = self.embed_loss_contrast + + # pylint: disable=R0201 + def calc_new_centroids(self, dvecs, centroids, spkr, utt): + """ + Calculates the new centroids excluding the reference utterance + """ + excl = torch.cat((dvecs[spkr, :utt], dvecs[spkr, utt + 1 :])) + excl = torch.mean(excl, 0) + new_centroids = [] + for i, centroid in enumerate(centroids): + if i == spkr: + new_centroids.append(excl) + else: + new_centroids.append(centroid) + return torch.stack(new_centroids) + + def calc_cosine_sim(self, dvecs, centroids): + """ + Make the cosine similarity matrix with dims (N,M,N) + """ + cos_sim_matrix = [] + for spkr_idx, speaker in enumerate(dvecs): + cs_row = [] + for utt_idx, utterance in enumerate(speaker): + new_centroids = self.calc_new_centroids(dvecs, centroids, spkr_idx, utt_idx) + # vector based cosine similarity for speed + cs_row.append( + torch.clamp( + torch.mm( + utterance.unsqueeze(1).transpose(0, 1), + new_centroids.transpose(0, 1), + ) + / (torch.norm(utterance) * torch.norm(new_centroids, dim=1)), + 1e-6, + ) + ) + cs_row = torch.cat(cs_row, dim=0) + cos_sim_matrix.append(cs_row) + return torch.stack(cos_sim_matrix) + + # pylint: disable=R0201 + def embed_loss_softmax(self, dvecs, cos_sim_matrix): + """ + Calculates the loss on each embedding $L(e_{ji})$ by taking softmax + """ + N, M, _ = dvecs.shape + L = [] + for j in range(N): + L_row = [] + for i in range(M): + L_row.append(-F.log_softmax(cos_sim_matrix[j, i], 0)[j]) + L_row = torch.stack(L_row) + L.append(L_row) + return torch.stack(L) + + # pylint: disable=R0201 + def embed_loss_contrast(self, dvecs, cos_sim_matrix): + """ + Calculates the loss on each embedding $L(e_{ji})$ by contrast loss with closest centroid + """ + N, M, _ = dvecs.shape + L = [] + for j in range(N): + L_row = [] + for i in range(M): + centroids_sigmoids = torch.sigmoid(cos_sim_matrix[j, i]) + excl_centroids_sigmoids = torch.cat((centroids_sigmoids[:j], centroids_sigmoids[j + 1 :])) + L_row.append(1.0 - torch.sigmoid(cos_sim_matrix[j, i, j]) + torch.max(excl_centroids_sigmoids)) + L_row = torch.stack(L_row) + L.append(L_row) + return torch.stack(L) + + def forward(self, x, _label=None): + """ + Calculates the GE2E loss for an input of dimensions (num_speakers, num_utts_per_speaker, dvec_feats) + """ + + assert x.size()[1] >= 2 + + centroids = torch.mean(x, 1) + cos_sim_matrix = self.calc_cosine_sim(x, centroids) + torch.clamp(self.w, 1e-6) + cos_sim_matrix = self.w * cos_sim_matrix + self.b + L = self.embed_loss(x, cos_sim_matrix) + return L.mean() + + +# adapted from https://github.com/clovaai/voxceleb_trainer/blob/master/loss/angleproto.py +class AngleProtoLoss(nn.Module): + """ + Implementation of the Angular Prototypical loss defined in https://arxiv.org/abs/2003.11982 + Accepts an input of size (N, M, D) + where N is the number of speakers in the batch, + M is the number of utterances per speaker, + and D is the dimensionality of the embedding vector + Args: + - init_w (float): defines the initial value of w + - init_b (float): definies the initial value of b + """ + + def __init__(self, init_w=10.0, init_b=-5.0): + super().__init__() + # pylint: disable=E1102 + self.w = nn.Parameter(torch.tensor(init_w)) + # pylint: disable=E1102 + self.b = nn.Parameter(torch.tensor(init_b)) + self.criterion = torch.nn.CrossEntropyLoss() + + print(" > Initialized Angular Prototypical loss") + + def forward(self, x, _label=None): + """ + Calculates the AngleProto loss for an input of dimensions (num_speakers, num_utts_per_speaker, dvec_feats) + """ + + assert x.size()[1] >= 2 + + out_anchor = torch.mean(x[:, 1:, :], 1) + out_positive = x[:, 0, :] + num_speakers = out_anchor.size()[0] + + cos_sim_matrix = F.cosine_similarity( + out_positive.unsqueeze(-1).expand(-1, -1, num_speakers), + out_anchor.unsqueeze(-1).expand(-1, -1, num_speakers).transpose(0, 2), + ) + torch.clamp(self.w, 1e-6) + cos_sim_matrix = cos_sim_matrix * self.w + self.b + label = torch.arange(num_speakers).to(cos_sim_matrix.device) + L = self.criterion(cos_sim_matrix, label) + return L + + +class SoftmaxLoss(nn.Module): + """ + Implementation of the Softmax loss as defined in https://arxiv.org/abs/2003.11982 + Args: + - embedding_dim (float): speaker embedding dim + - n_speakers (float): number of speakers + """ + + def __init__(self, embedding_dim, n_speakers): + super().__init__() + + self.criterion = torch.nn.CrossEntropyLoss() + self.fc = nn.Linear(embedding_dim, n_speakers) + + print("Initialised Softmax Loss") + + def forward(self, x, label=None): + # reshape for compatibility + x = x.reshape(-1, x.size()[-1]) + label = label.reshape(-1) + + x = self.fc(x) + L = self.criterion(x, label) + + return L + + def inference(self, embedding): + x = self.fc(embedding) + activations = torch.nn.functional.softmax(x, dim=1).squeeze(0) + class_id = torch.argmax(activations) + return class_id + + +class SoftmaxAngleProtoLoss(nn.Module): + """ + Implementation of the Softmax AnglePrototypical loss as defined in https://arxiv.org/abs/2009.14153 + Args: + - embedding_dim (float): speaker embedding dim + - n_speakers (float): number of speakers + - init_w (float): defines the initial value of w + - init_b (float): definies the initial value of b + """ + + def __init__(self, embedding_dim, n_speakers, init_w=10.0, init_b=-5.0): + super().__init__() + + self.softmax = SoftmaxLoss(embedding_dim, n_speakers) + self.angleproto = AngleProtoLoss(init_w, init_b) + + print("Initialised SoftmaxAnglePrototypical Loss") + + def forward(self, x, label=None): + """ + Calculates the SoftmaxAnglePrototypical loss for an input of dimensions (num_speakers, num_utts_per_speaker, dvec_feats) + """ + + Lp = self.angleproto(x) + + Ls = self.softmax(x, label) + + return Ls + Lp diff --git a/TTS/TTS/encoder/models/base_encoder.py b/TTS/TTS/encoder/models/base_encoder.py new file mode 100644 index 0000000000000000000000000000000000000000..957ea3c4ca719c2a054c93382787909e418288b2 --- /dev/null +++ b/TTS/TTS/encoder/models/base_encoder.py @@ -0,0 +1,161 @@ +import numpy as np +import torch +import torchaudio +from coqpit import Coqpit +from torch import nn + +from TTS.encoder.losses import AngleProtoLoss, GE2ELoss, SoftmaxAngleProtoLoss +from TTS.utils.generic_utils import set_init_dict +from TTS.utils.io import load_fsspec + + +class PreEmphasis(nn.Module): + def __init__(self, coefficient=0.97): + super().__init__() + self.coefficient = coefficient + self.register_buffer("filter", torch.FloatTensor([-self.coefficient, 1.0]).unsqueeze(0).unsqueeze(0)) + + def forward(self, x): + assert len(x.size()) == 2 + + x = torch.nn.functional.pad(x.unsqueeze(1), (1, 0), "reflect") + return torch.nn.functional.conv1d(x, self.filter).squeeze(1) + + +class BaseEncoder(nn.Module): + """Base `encoder` class. Every new `encoder` model must inherit this. + + It defines common `encoder` specific functions. + """ + + # pylint: disable=W0102 + def __init__(self): + super(BaseEncoder, self).__init__() + + def get_torch_mel_spectrogram_class(self, audio_config): + return torch.nn.Sequential( + PreEmphasis(audio_config["preemphasis"]), + # TorchSTFT( + # n_fft=audio_config["fft_size"], + # hop_length=audio_config["hop_length"], + # win_length=audio_config["win_length"], + # sample_rate=audio_config["sample_rate"], + # window="hamming_window", + # mel_fmin=0.0, + # mel_fmax=None, + # use_htk=True, + # do_amp_to_db=False, + # n_mels=audio_config["num_mels"], + # power=2.0, + # use_mel=True, + # mel_norm=None, + # ) + torchaudio.transforms.MelSpectrogram( + sample_rate=audio_config["sample_rate"], + n_fft=audio_config["fft_size"], + win_length=audio_config["win_length"], + hop_length=audio_config["hop_length"], + window_fn=torch.hamming_window, + n_mels=audio_config["num_mels"], + ), + ) + + @torch.no_grad() + def inference(self, x, l2_norm=True): + return self.forward(x, l2_norm) + + @torch.no_grad() + def compute_embedding(self, x, num_frames=250, num_eval=10, return_mean=True, l2_norm=True): + """ + Generate embeddings for a batch of utterances + x: 1xTxD + """ + # map to the waveform size + if self.use_torch_spec: + num_frames = num_frames * self.audio_config["hop_length"] + + max_len = x.shape[1] + + if max_len < num_frames: + num_frames = max_len + + offsets = np.linspace(0, max_len - num_frames, num=num_eval) + + frames_batch = [] + for offset in offsets: + offset = int(offset) + end_offset = int(offset + num_frames) + frames = x[:, offset:end_offset] + frames_batch.append(frames) + + frames_batch = torch.cat(frames_batch, dim=0) + embeddings = self.inference(frames_batch, l2_norm=l2_norm) + + if return_mean: + embeddings = torch.mean(embeddings, dim=0, keepdim=True) + return embeddings + + def get_criterion(self, c: Coqpit, num_classes=None): + if c.loss == "ge2e": + criterion = GE2ELoss(loss_method="softmax") + elif c.loss == "angleproto": + criterion = AngleProtoLoss() + elif c.loss == "softmaxproto": + criterion = SoftmaxAngleProtoLoss(c.model_params["proj_dim"], num_classes) + else: + raise Exception("The %s not is a loss supported" % c.loss) + return criterion + + def load_checkpoint( + self, + config: Coqpit, + checkpoint_path: str, + eval: bool = False, + use_cuda: bool = False, + criterion=None, + cache=False, + ): + state = load_fsspec(checkpoint_path, map_location=torch.device("cpu"), cache=cache) + try: + self.load_state_dict(state["model"]) + print(" > Model fully restored. ") + except (KeyError, RuntimeError) as error: + # If eval raise the error + if eval: + raise error + + print(" > Partial model initialization.") + model_dict = self.state_dict() + model_dict = set_init_dict(model_dict, state["model"], c) + self.load_state_dict(model_dict) + del model_dict + + # load the criterion for restore_path + if criterion is not None and "criterion" in state: + try: + criterion.load_state_dict(state["criterion"]) + except (KeyError, RuntimeError) as error: + print(" > Criterion load ignored because of:", error) + + # instance and load the criterion for the encoder classifier in inference time + if ( + eval + and criterion is None + and "criterion" in state + and getattr(config, "map_classid_to_classname", None) is not None + ): + criterion = self.get_criterion(config, len(config.map_classid_to_classname)) + criterion.load_state_dict(state["criterion"]) + + if use_cuda: + self.cuda() + if criterion is not None: + criterion = criterion.cuda() + + if eval: + self.eval() + assert not self.training + + if not eval: + return criterion, state["step"] + return criterion diff --git a/TTS/TTS/encoder/models/lstm.py b/TTS/TTS/encoder/models/lstm.py new file mode 100644 index 0000000000000000000000000000000000000000..51852b5b820d181824b0db1a205cd5d7bd4fb20d --- /dev/null +++ b/TTS/TTS/encoder/models/lstm.py @@ -0,0 +1,99 @@ +import torch +from torch import nn + +from TTS.encoder.models.base_encoder import BaseEncoder + + +class LSTMWithProjection(nn.Module): + def __init__(self, input_size, hidden_size, proj_size): + super().__init__() + self.input_size = input_size + self.hidden_size = hidden_size + self.proj_size = proj_size + self.lstm = nn.LSTM(input_size, hidden_size, batch_first=True) + self.linear = nn.Linear(hidden_size, proj_size, bias=False) + + def forward(self, x): + self.lstm.flatten_parameters() + o, (_, _) = self.lstm(x) + return self.linear(o) + + +class LSTMWithoutProjection(nn.Module): + def __init__(self, input_dim, lstm_dim, proj_dim, num_lstm_layers): + super().__init__() + self.lstm = nn.LSTM(input_size=input_dim, hidden_size=lstm_dim, num_layers=num_lstm_layers, batch_first=True) + self.linear = nn.Linear(lstm_dim, proj_dim, bias=True) + self.relu = nn.ReLU() + + def forward(self, x): + _, (hidden, _) = self.lstm(x) + return self.relu(self.linear(hidden[-1])) + + +class LSTMSpeakerEncoder(BaseEncoder): + def __init__( + self, + input_dim, + proj_dim=256, + lstm_dim=768, + num_lstm_layers=3, + use_lstm_with_projection=True, + use_torch_spec=False, + audio_config=None, + ): + super().__init__() + self.use_lstm_with_projection = use_lstm_with_projection + self.use_torch_spec = use_torch_spec + self.audio_config = audio_config + self.proj_dim = proj_dim + + layers = [] + # choise LSTM layer + if use_lstm_with_projection: + layers.append(LSTMWithProjection(input_dim, lstm_dim, proj_dim)) + for _ in range(num_lstm_layers - 1): + layers.append(LSTMWithProjection(proj_dim, lstm_dim, proj_dim)) + self.layers = nn.Sequential(*layers) + else: + self.layers = LSTMWithoutProjection(input_dim, lstm_dim, proj_dim, num_lstm_layers) + + self.instancenorm = nn.InstanceNorm1d(input_dim) + + if self.use_torch_spec: + self.torch_spec = self.get_torch_mel_spectrogram_class(audio_config) + else: + self.torch_spec = None + + self._init_layers() + + def _init_layers(self): + for name, param in self.layers.named_parameters(): + if "bias" in name: + nn.init.constant_(param, 0.0) + elif "weight" in name: + nn.init.xavier_normal_(param) + + def forward(self, x, l2_norm=True): + """Forward pass of the model. + + Args: + x (Tensor): Raw waveform signal or spectrogram frames. If input is a waveform, `torch_spec` must be `True` + to compute the spectrogram on-the-fly. + l2_norm (bool): Whether to L2-normalize the outputs. + + Shapes: + - x: :math:`(N, 1, T_{in})` or :math:`(N, D_{spec}, T_{in})` + """ + with torch.no_grad(): + with torch.cuda.amp.autocast(enabled=False): + if self.use_torch_spec: + x.squeeze_(1) + x = self.torch_spec(x) + x = self.instancenorm(x).transpose(1, 2) + d = self.layers(x) + if self.use_lstm_with_projection: + d = d[:, -1] + if l2_norm: + d = torch.nn.functional.normalize(d, p=2, dim=1) + return d diff --git a/TTS/TTS/encoder/models/resnet.py b/TTS/TTS/encoder/models/resnet.py new file mode 100644 index 0000000000000000000000000000000000000000..5eafcd6005739fcdc454fb20def3e66791766a53 --- /dev/null +++ b/TTS/TTS/encoder/models/resnet.py @@ -0,0 +1,198 @@ +import torch +from torch import nn + +# from TTS.utils.audio.torch_transforms import TorchSTFT +from TTS.encoder.models.base_encoder import BaseEncoder + + +class SELayer(nn.Module): + def __init__(self, channel, reduction=8): + super(SELayer, self).__init__() + self.avg_pool = nn.AdaptiveAvgPool2d(1) + self.fc = nn.Sequential( + nn.Linear(channel, channel // reduction), + nn.ReLU(inplace=True), + nn.Linear(channel // reduction, channel), + nn.Sigmoid(), + ) + + def forward(self, x): + b, c, _, _ = x.size() + y = self.avg_pool(x).view(b, c) + y = self.fc(y).view(b, c, 1, 1) + return x * y + + +class SEBasicBlock(nn.Module): + expansion = 1 + + def __init__(self, inplanes, planes, stride=1, downsample=None, reduction=8): + super(SEBasicBlock, self).__init__() + self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=False) + self.bn1 = nn.BatchNorm2d(planes) + self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1, bias=False) + self.bn2 = nn.BatchNorm2d(planes) + self.relu = nn.ReLU(inplace=True) + self.se = SELayer(planes, reduction) + self.downsample = downsample + self.stride = stride + + def forward(self, x): + residual = x + + out = self.conv1(x) + out = self.relu(out) + out = self.bn1(out) + + out = self.conv2(out) + out = self.bn2(out) + out = self.se(out) + + if self.downsample is not None: + residual = self.downsample(x) + + out += residual + out = self.relu(out) + return out + + +class ResNetSpeakerEncoder(BaseEncoder): + """Implementation of the model H/ASP without batch normalization in speaker embedding. This model was proposed in: https://arxiv.org/abs/2009.14153 + Adapted from: https://github.com/clovaai/voxceleb_trainer + """ + + # pylint: disable=W0102 + def __init__( + self, + input_dim=64, + proj_dim=512, + layers=[3, 4, 6, 3], + num_filters=[32, 64, 128, 256], + encoder_type="ASP", + log_input=False, + use_torch_spec=False, + audio_config=None, + ): + super(ResNetSpeakerEncoder, self).__init__() + + self.encoder_type = encoder_type + self.input_dim = input_dim + self.log_input = log_input + self.use_torch_spec = use_torch_spec + self.audio_config = audio_config + self.proj_dim = proj_dim + + self.conv1 = nn.Conv2d(1, num_filters[0], kernel_size=3, stride=1, padding=1) + self.relu = nn.ReLU(inplace=True) + self.bn1 = nn.BatchNorm2d(num_filters[0]) + + self.inplanes = num_filters[0] + self.layer1 = self.create_layer(SEBasicBlock, num_filters[0], layers[0]) + self.layer2 = self.create_layer(SEBasicBlock, num_filters[1], layers[1], stride=(2, 2)) + self.layer3 = self.create_layer(SEBasicBlock, num_filters[2], layers[2], stride=(2, 2)) + self.layer4 = self.create_layer(SEBasicBlock, num_filters[3], layers[3], stride=(2, 2)) + + self.instancenorm = nn.InstanceNorm1d(input_dim) + + if self.use_torch_spec: + self.torch_spec = self.get_torch_mel_spectrogram_class(audio_config) + else: + self.torch_spec = None + + outmap_size = int(self.input_dim / 8) + + self.attention = nn.Sequential( + nn.Conv1d(num_filters[3] * outmap_size, 128, kernel_size=1), + nn.ReLU(), + nn.BatchNorm1d(128), + nn.Conv1d(128, num_filters[3] * outmap_size, kernel_size=1), + nn.Softmax(dim=2), + ) + + if self.encoder_type == "SAP": + out_dim = num_filters[3] * outmap_size + elif self.encoder_type == "ASP": + out_dim = num_filters[3] * outmap_size * 2 + else: + raise ValueError("Undefined encoder") + + self.fc = nn.Linear(out_dim, proj_dim) + + self._init_layers() + + def _init_layers(self): + for m in self.modules(): + if isinstance(m, nn.Conv2d): + nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") + elif isinstance(m, nn.BatchNorm2d): + nn.init.constant_(m.weight, 1) + nn.init.constant_(m.bias, 0) + + def create_layer(self, block, planes, blocks, stride=1): + downsample = None + if stride != 1 or self.inplanes != planes * block.expansion: + downsample = nn.Sequential( + nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), + nn.BatchNorm2d(planes * block.expansion), + ) + + layers = [] + layers.append(block(self.inplanes, planes, stride, downsample)) + self.inplanes = planes * block.expansion + for _ in range(1, blocks): + layers.append(block(self.inplanes, planes)) + + return nn.Sequential(*layers) + + # pylint: disable=R0201 + def new_parameter(self, *size): + out = nn.Parameter(torch.FloatTensor(*size)) + nn.init.xavier_normal_(out) + return out + + def forward(self, x, l2_norm=False): + """Forward pass of the model. + + Args: + x (Tensor): Raw waveform signal or spectrogram frames. If input is a waveform, `torch_spec` must be `True` + to compute the spectrogram on-the-fly. + l2_norm (bool): Whether to L2-normalize the outputs. + + Shapes: + - x: :math:`(N, 1, T_{in})` or :math:`(N, D_{spec}, T_{in})` + """ + x.squeeze_(1) + # if you torch spec compute it otherwise use the mel spec computed by the AP + if self.use_torch_spec: + x = self.torch_spec(x) + + if self.log_input: + x = (x + 1e-6).log() + x = self.instancenorm(x).unsqueeze(1) + + x = self.conv1(x) + x = self.relu(x) + x = self.bn1(x) + + x = self.layer1(x) + x = self.layer2(x) + x = self.layer3(x) + x = self.layer4(x) + + x = x.reshape(x.size()[0], -1, x.size()[-1]) + + w = self.attention(x) + + if self.encoder_type == "SAP": + x = torch.sum(x * w, dim=2) + elif self.encoder_type == "ASP": + mu = torch.sum(x * w, dim=2) + sg = torch.sqrt((torch.sum((x**2) * w, dim=2) - mu**2).clamp(min=1e-5)) + x = torch.cat((mu, sg), 1) + + x = x.view(x.size()[0], -1) + x = self.fc(x) + + if l2_norm: + x = torch.nn.functional.normalize(x, p=2, dim=1) + return x diff --git a/TTS/TTS/encoder/requirements.txt b/TTS/TTS/encoder/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..a486cc45ddb44591bd03c9c0df294fbe98c13884 --- /dev/null +++ b/TTS/TTS/encoder/requirements.txt @@ -0,0 +1,2 @@ +umap-learn +numpy>=1.17.0 diff --git a/TTS/TTS/encoder/utils/__init__.py b/TTS/TTS/encoder/utils/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/TTS/TTS/encoder/utils/generic_utils.py b/TTS/TTS/encoder/utils/generic_utils.py new file mode 100644 index 0000000000000000000000000000000000000000..1da029611b5c9bd59b05d61189674832d50ed634 --- /dev/null +++ b/TTS/TTS/encoder/utils/generic_utils.py @@ -0,0 +1,182 @@ +import datetime +import glob +import os +import random +import re + +import numpy as np +from scipy import signal + +from TTS.encoder.models.lstm import LSTMSpeakerEncoder +from TTS.encoder.models.resnet import ResNetSpeakerEncoder +from TTS.utils.io import save_fsspec + + +class AugmentWAV(object): + def __init__(self, ap, augmentation_config): + self.ap = ap + self.use_additive_noise = False + + if "additive" in augmentation_config.keys(): + self.additive_noise_config = augmentation_config["additive"] + additive_path = self.additive_noise_config["sounds_path"] + if additive_path: + self.use_additive_noise = True + # get noise types + self.additive_noise_types = [] + for key in self.additive_noise_config.keys(): + if isinstance(self.additive_noise_config[key], dict): + self.additive_noise_types.append(key) + + additive_files = glob.glob(os.path.join(additive_path, "**/*.wav"), recursive=True) + + self.noise_list = {} + + for wav_file in additive_files: + noise_dir = wav_file.replace(additive_path, "").split(os.sep)[0] + # ignore not listed directories + if noise_dir not in self.additive_noise_types: + continue + if not noise_dir in self.noise_list: + self.noise_list[noise_dir] = [] + self.noise_list[noise_dir].append(wav_file) + + print( + f" | > Using Additive Noise Augmentation: with {len(additive_files)} audios instances from {self.additive_noise_types}" + ) + + self.use_rir = False + + if "rir" in augmentation_config.keys(): + self.rir_config = augmentation_config["rir"] + if self.rir_config["rir_path"]: + self.rir_files = glob.glob(os.path.join(self.rir_config["rir_path"], "**/*.wav"), recursive=True) + self.use_rir = True + + print(f" | > Using RIR Noise Augmentation: with {len(self.rir_files)} audios instances") + + self.create_augmentation_global_list() + + def create_augmentation_global_list(self): + if self.use_additive_noise: + self.global_noise_list = self.additive_noise_types + else: + self.global_noise_list = [] + if self.use_rir: + self.global_noise_list.append("RIR_AUG") + + def additive_noise(self, noise_type, audio): + clean_db = 10 * np.log10(np.mean(audio**2) + 1e-4) + + noise_list = random.sample( + self.noise_list[noise_type], + random.randint( + self.additive_noise_config[noise_type]["min_num_noises"], + self.additive_noise_config[noise_type]["max_num_noises"], + ), + ) + + audio_len = audio.shape[0] + noises_wav = None + for noise in noise_list: + noiseaudio = self.ap.load_wav(noise, sr=self.ap.sample_rate)[:audio_len] + + if noiseaudio.shape[0] < audio_len: + continue + + noise_snr = random.uniform( + self.additive_noise_config[noise_type]["min_snr_in_db"], + self.additive_noise_config[noise_type]["max_num_noises"], + ) + noise_db = 10 * np.log10(np.mean(noiseaudio**2) + 1e-4) + noise_wav = np.sqrt(10 ** ((clean_db - noise_db - noise_snr) / 10)) * noiseaudio + + if noises_wav is None: + noises_wav = noise_wav + else: + noises_wav += noise_wav + + # if all possible files is less than audio, choose other files + if noises_wav is None: + return self.additive_noise(noise_type, audio) + + return audio + noises_wav + + def reverberate(self, audio): + audio_len = audio.shape[0] + + rir_file = random.choice(self.rir_files) + rir = self.ap.load_wav(rir_file, sr=self.ap.sample_rate) + rir = rir / np.sqrt(np.sum(rir**2)) + return signal.convolve(audio, rir, mode=self.rir_config["conv_mode"])[:audio_len] + + def apply_one(self, audio): + noise_type = random.choice(self.global_noise_list) + if noise_type == "RIR_AUG": + return self.reverberate(audio) + + return self.additive_noise(noise_type, audio) + + +def to_camel(text): + text = text.capitalize() + return re.sub(r"(?!^)_([a-zA-Z])", lambda m: m.group(1).upper(), text) + + +def setup_encoder_model(config: "Coqpit"): + if config.model_params["model_name"].lower() == "lstm": + model = LSTMSpeakerEncoder( + config.model_params["input_dim"], + config.model_params["proj_dim"], + config.model_params["lstm_dim"], + config.model_params["num_lstm_layers"], + use_torch_spec=config.model_params.get("use_torch_spec", False), + audio_config=config.audio, + ) + elif config.model_params["model_name"].lower() == "resnet": + model = ResNetSpeakerEncoder( + input_dim=config.model_params["input_dim"], + proj_dim=config.model_params["proj_dim"], + log_input=config.model_params.get("log_input", False), + use_torch_spec=config.model_params.get("use_torch_spec", False), + audio_config=config.audio, + ) + return model + + +def save_checkpoint(model, optimizer, criterion, model_loss, out_path, current_step, epoch): + checkpoint_path = "checkpoint_{}.pth".format(current_step) + checkpoint_path = os.path.join(out_path, checkpoint_path) + print(" | | > Checkpoint saving : {}".format(checkpoint_path)) + + new_state_dict = model.state_dict() + state = { + "model": new_state_dict, + "optimizer": optimizer.state_dict() if optimizer is not None else None, + "criterion": criterion.state_dict(), + "step": current_step, + "epoch": epoch, + "loss": model_loss, + "date": datetime.date.today().strftime("%B %d, %Y"), + } + save_fsspec(state, checkpoint_path) + + +def save_best_model(model, optimizer, criterion, model_loss, best_loss, out_path, current_step, epoch): + if model_loss < best_loss: + new_state_dict = model.state_dict() + state = { + "model": new_state_dict, + "optimizer": optimizer.state_dict(), + "criterion": criterion.state_dict(), + "step": current_step, + "epoch": epoch, + "loss": model_loss, + "date": datetime.date.today().strftime("%B %d, %Y"), + } + best_loss = model_loss + bestmodel_path = "best_model.pth" + bestmodel_path = os.path.join(out_path, bestmodel_path) + print("\n > BEST MODEL ({0:.5f}) : {1:}".format(model_loss, bestmodel_path)) + save_fsspec(state, bestmodel_path) + return best_loss diff --git a/TTS/TTS/encoder/utils/io.py b/TTS/TTS/encoder/utils/io.py new file mode 100644 index 0000000000000000000000000000000000000000..d1dad3e24d234cdcb9616fb14bc87919c7e20291 --- /dev/null +++ b/TTS/TTS/encoder/utils/io.py @@ -0,0 +1,38 @@ +import datetime +import os + +from TTS.utils.io import save_fsspec + + +def save_checkpoint(model, optimizer, model_loss, out_path, current_step): + checkpoint_path = "checkpoint_{}.pth".format(current_step) + checkpoint_path = os.path.join(out_path, checkpoint_path) + print(" | | > Checkpoint saving : {}".format(checkpoint_path)) + + new_state_dict = model.state_dict() + state = { + "model": new_state_dict, + "optimizer": optimizer.state_dict() if optimizer is not None else None, + "step": current_step, + "loss": model_loss, + "date": datetime.date.today().strftime("%B %d, %Y"), + } + save_fsspec(state, checkpoint_path) + + +def save_best_model(model, optimizer, model_loss, best_loss, out_path, current_step): + if model_loss < best_loss: + new_state_dict = model.state_dict() + state = { + "model": new_state_dict, + "optimizer": optimizer.state_dict(), + "step": current_step, + "loss": model_loss, + "date": datetime.date.today().strftime("%B %d, %Y"), + } + best_loss = model_loss + bestmodel_path = "best_model.pth" + bestmodel_path = os.path.join(out_path, bestmodel_path) + print("\n > BEST MODEL ({0:.5f}) : {1:}".format(model_loss, bestmodel_path)) + save_fsspec(state, bestmodel_path) + return best_loss diff --git a/TTS/TTS/encoder/utils/prepare_voxceleb.py b/TTS/TTS/encoder/utils/prepare_voxceleb.py new file mode 100644 index 0000000000000000000000000000000000000000..b93baf9e60f0d5c35a4e86f6746e29f6097174b5 --- /dev/null +++ b/TTS/TTS/encoder/utils/prepare_voxceleb.py @@ -0,0 +1,219 @@ +# coding=utf-8 +# Copyright (C) 2020 ATHENA AUTHORS; Yiping Peng; Ne Luo +# All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================== +# Only support eager mode and TF>=2.0.0 +# pylint: disable=no-member, invalid-name, relative-beyond-top-level +# pylint: disable=too-many-locals, too-many-statements, too-many-arguments, too-many-instance-attributes +""" voxceleb 1 & 2 """ + +import hashlib +import os +import subprocess +import sys +import zipfile + +import pandas +import soundfile as sf +from absl import logging + +SUBSETS = { + "vox1_dev_wav": [ + "https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox1_dev_wav_partaa", + "https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox1_dev_wav_partab", + "https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox1_dev_wav_partac", + "https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox1_dev_wav_partad", + ], + "vox1_test_wav": ["https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox1_test_wav.zip"], + "vox2_dev_aac": [ + "https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox2_dev_aac_partaa", + "https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox2_dev_aac_partab", + "https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox2_dev_aac_partac", + "https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox2_dev_aac_partad", + "https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox2_dev_aac_partae", + "https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox2_dev_aac_partaf", + "https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox2_dev_aac_partag", + "https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox2_dev_aac_partah", + ], + "vox2_test_aac": ["https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox2_test_aac.zip"], +} + +MD5SUM = { + "vox1_dev_wav": "ae63e55b951748cc486645f532ba230b", + "vox2_dev_aac": "bbc063c46078a602ca71605645c2a402", + "vox1_test_wav": "185fdc63c3c739954633d50379a3d102", + "vox2_test_aac": "0d2b3ea430a821c33263b5ea37ede312", +} + +USER = {"user": "", "password": ""} + +speaker_id_dict = {} + + +def download_and_extract(directory, subset, urls): + """Download and extract the given split of dataset. + + Args: + directory: the directory where to put the downloaded data. + subset: subset name of the corpus. + urls: the list of urls to download the data file. + """ + os.makedirs(directory, exist_ok=True) + + try: + for url in urls: + zip_filepath = os.path.join(directory, url.split("/")[-1]) + if os.path.exists(zip_filepath): + continue + logging.info("Downloading %s to %s" % (url, zip_filepath)) + subprocess.call( + "wget %s --user %s --password %s -O %s" % (url, USER["user"], USER["password"], zip_filepath), + shell=True, + ) + + statinfo = os.stat(zip_filepath) + logging.info("Successfully downloaded %s, size(bytes): %d" % (url, statinfo.st_size)) + + # concatenate all parts into zip files + if ".zip" not in zip_filepath: + zip_filepath = "_".join(zip_filepath.split("_")[:-1]) + subprocess.call("cat %s* > %s.zip" % (zip_filepath, zip_filepath), shell=True) + zip_filepath += ".zip" + extract_path = zip_filepath.strip(".zip") + + # check zip file md5sum + with open(zip_filepath, "rb") as f_zip: + md5 = hashlib.md5(f_zip.read()).hexdigest() + if md5 != MD5SUM[subset]: + raise ValueError("md5sum of %s mismatch" % zip_filepath) + + with zipfile.ZipFile(zip_filepath, "r") as zfile: + zfile.extractall(directory) + extract_path_ori = os.path.join(directory, zfile.infolist()[0].filename) + subprocess.call("mv %s %s" % (extract_path_ori, extract_path), shell=True) + finally: + # os.remove(zip_filepath) + pass + + +def exec_cmd(cmd): + """Run a command in a subprocess. + Args: + cmd: command line to be executed. + Return: + int, the return code. + """ + try: + retcode = subprocess.call(cmd, shell=True) + if retcode < 0: + logging.info(f"Child was terminated by signal {retcode}") + except OSError as e: + logging.info(f"Execution failed: {e}") + retcode = -999 + return retcode + + +def decode_aac_with_ffmpeg(aac_file, wav_file): + """Decode a given AAC file into WAV using ffmpeg. + Args: + aac_file: file path to input AAC file. + wav_file: file path to output WAV file. + Return: + bool, True if success. + """ + cmd = f"ffmpeg -i {aac_file} {wav_file}" + logging.info(f"Decoding aac file using command line: {cmd}") + ret = exec_cmd(cmd) + if ret != 0: + logging.error(f"Failed to decode aac file with retcode {ret}") + logging.error("Please check your ffmpeg installation.") + return False + return True + + +def convert_audio_and_make_label(input_dir, subset, output_dir, output_file): + """Optionally convert AAC to WAV and make speaker labels. + Args: + input_dir: the directory which holds the input dataset. + subset: the name of the specified subset. e.g. vox1_dev_wav + output_dir: the directory to place the newly generated csv files. + output_file: the name of the newly generated csv file. e.g. vox1_dev_wav.csv + """ + + logging.info("Preprocessing audio and label for subset %s" % subset) + source_dir = os.path.join(input_dir, subset) + + files = [] + # Convert all AAC file into WAV format. At the same time, generate the csv + for root, _, filenames in os.walk(source_dir): + for filename in filenames: + name, ext = os.path.splitext(filename) + if ext.lower() == ".wav": + _, ext2 = os.path.splitext(name) + if ext2: + continue + wav_file = os.path.join(root, filename) + elif ext.lower() == ".m4a": + # Convert AAC to WAV. + aac_file = os.path.join(root, filename) + wav_file = aac_file + ".wav" + if not os.path.exists(wav_file): + if not decode_aac_with_ffmpeg(aac_file, wav_file): + raise RuntimeError("Audio decoding failed.") + else: + continue + speaker_name = root.split(os.path.sep)[-2] + if speaker_name not in speaker_id_dict: + num = len(speaker_id_dict) + speaker_id_dict[speaker_name] = num + # wav_filesize = os.path.getsize(wav_file) + wav_length = len(sf.read(wav_file)[0]) + files.append((os.path.abspath(wav_file), wav_length, speaker_id_dict[speaker_name], speaker_name)) + + # Write to CSV file which contains four columns: + # "wav_filename", "wav_length_ms", "speaker_id", "speaker_name". + csv_file_path = os.path.join(output_dir, output_file) + df = pandas.DataFrame(data=files, columns=["wav_filename", "wav_length_ms", "speaker_id", "speaker_name"]) + df.to_csv(csv_file_path, index=False, sep="\t") + logging.info("Successfully generated csv file {}".format(csv_file_path)) + + +def processor(directory, subset, force_process): + """download and process""" + urls = SUBSETS + if subset not in urls: + raise ValueError(subset, "is not in voxceleb") + + subset_csv = os.path.join(directory, subset + ".csv") + if not force_process and os.path.exists(subset_csv): + return subset_csv + + logging.info("Downloading and process the voxceleb in %s", directory) + logging.info("Preparing subset %s", subset) + download_and_extract(directory, subset, urls[subset]) + convert_audio_and_make_label(directory, subset, directory, subset + ".csv") + logging.info("Finished downloading and processing") + return subset_csv + + +if __name__ == "__main__": + logging.set_verbosity(logging.INFO) + if len(sys.argv) != 4: + print("Usage: python prepare_data.py save_directory user password") + sys.exit() + + DIR, USER["user"], USER["password"] = sys.argv[1], sys.argv[2], sys.argv[3] + for SUBSET in SUBSETS: + processor(DIR, SUBSET, False) diff --git a/TTS/TTS/encoder/utils/training.py b/TTS/TTS/encoder/utils/training.py new file mode 100644 index 0000000000000000000000000000000000000000..7c58a232e7a146bb24718700527ab80e62a1ab1a --- /dev/null +++ b/TTS/TTS/encoder/utils/training.py @@ -0,0 +1,99 @@ +import os +from dataclasses import dataclass, field + +from coqpit import Coqpit +from trainer import TrainerArgs, get_last_checkpoint +from trainer.logging import logger_factory +from trainer.logging.console_logger import ConsoleLogger + +from TTS.config import load_config, register_config +from TTS.tts.utils.text.characters import parse_symbols +from TTS.utils.generic_utils import get_experiment_folder_path, get_git_branch +from TTS.utils.io import copy_model_files + + +@dataclass +class TrainArgs(TrainerArgs): + config_path: str = field(default=None, metadata={"help": "Path to the config file."}) + + +def getarguments(): + train_config = TrainArgs() + parser = train_config.init_argparse(arg_prefix="") + return parser + + +def process_args(args, config=None): + """Process parsed comand line arguments and initialize the config if not provided. + Args: + args (argparse.Namespace or dict like): Parsed input arguments. + config (Coqpit): Model config. If none, it is generated from `args`. Defaults to None. + Returns: + c (TTS.utils.io.AttrDict): Config paramaters. + out_path (str): Path to save models and logging. + audio_path (str): Path to save generated test audios. + c_logger (TTS.utils.console_logger.ConsoleLogger): Class that does + logging to the console. + dashboard_logger (WandbLogger or TensorboardLogger): Class that does the dashboard Logging + TODO: + - Interactive config definition. + """ + if isinstance(args, tuple): + args, coqpit_overrides = args + if args.continue_path: + # continue a previous training from its output folder + experiment_path = args.continue_path + args.config_path = os.path.join(args.continue_path, "config.json") + args.restore_path, best_model = get_last_checkpoint(args.continue_path) + if not args.best_path: + args.best_path = best_model + # init config if not already defined + if config is None: + if args.config_path: + # init from a file + config = load_config(args.config_path) + else: + # init from console args + from TTS.config.shared_configs import BaseTrainingConfig # pylint: disable=import-outside-toplevel + + config_base = BaseTrainingConfig() + config_base.parse_known_args(coqpit_overrides) + config = register_config(config_base.model)() + # override values from command-line args + config.parse_known_args(coqpit_overrides, relaxed_parser=True) + experiment_path = args.continue_path + if not experiment_path: + experiment_path = get_experiment_folder_path(config.output_path, config.run_name) + audio_path = os.path.join(experiment_path, "test_audios") + config.output_log_path = experiment_path + # setup rank 0 process in distributed training + dashboard_logger = None + if args.rank == 0: + new_fields = {} + if args.restore_path: + new_fields["restore_path"] = args.restore_path + new_fields["github_branch"] = get_git_branch() + # if model characters are not set in the config file + # save the default set to the config file for future + # compatibility. + if config.has("characters") and config.characters is None: + used_characters = parse_symbols() + new_fields["characters"] = used_characters + copy_model_files(config, experiment_path, new_fields) + dashboard_logger = logger_factory(config, experiment_path) + c_logger = ConsoleLogger() + return config, experiment_path, audio_path, c_logger, dashboard_logger + + +def init_arguments(): + train_config = TrainArgs() + parser = train_config.init_argparse(arg_prefix="") + return parser + + +def init_training(config: Coqpit = None): + """Initialization of a training run.""" + parser = init_arguments() + args = parser.parse_known_args() + config, OUT_PATH, AUDIO_PATH, c_logger, dashboard_logger = process_args(args, config) + return args[0], config, OUT_PATH, AUDIO_PATH, c_logger, dashboard_logger diff --git a/TTS/TTS/encoder/utils/visual.py b/TTS/TTS/encoder/utils/visual.py new file mode 100644 index 0000000000000000000000000000000000000000..6575b86ec22818fe1dc0c1e6336a7fd255855330 --- /dev/null +++ b/TTS/TTS/encoder/utils/visual.py @@ -0,0 +1,50 @@ +import matplotlib +import matplotlib.pyplot as plt +import numpy as np +import umap + +matplotlib.use("Agg") + + +colormap = ( + np.array( + [ + [76, 255, 0], + [0, 127, 70], + [255, 0, 0], + [255, 217, 38], + [0, 135, 255], + [165, 0, 165], + [255, 167, 255], + [0, 255, 255], + [255, 96, 38], + [142, 76, 0], + [33, 0, 127], + [0, 0, 0], + [183, 183, 183], + ], + dtype=float, + ) + / 255 +) + + +def plot_embeddings(embeddings, num_classes_in_batch): + num_utter_per_class = embeddings.shape[0] // num_classes_in_batch + + # if necessary get just the first 10 classes + if num_classes_in_batch > 10: + num_classes_in_batch = 10 + embeddings = embeddings[: num_classes_in_batch * num_utter_per_class] + + model = umap.UMAP() + projection = model.fit_transform(embeddings) + ground_truth = np.repeat(np.arange(num_classes_in_batch), num_utter_per_class) + colors = [colormap[i] for i in ground_truth] + fig, ax = plt.subplots(figsize=(16, 10)) + _ = ax.scatter(projection[:, 0], projection[:, 1], c=colors) + plt.gca().set_aspect("equal", "datalim") + plt.title("UMAP projection") + plt.tight_layout() + plt.savefig("umap") + return fig diff --git a/TTS/TTS/model.py b/TTS/TTS/model.py new file mode 100644 index 0000000000000000000000000000000000000000..ae6be7b444695756c00c4faa8f2f6c787dfcf9d8 --- /dev/null +++ b/TTS/TTS/model.py @@ -0,0 +1,59 @@ +from abc import abstractmethod +from typing import Dict + +import torch +from coqpit import Coqpit +from trainer import TrainerModel + +# pylint: skip-file + + +class BaseTrainerModel(TrainerModel): + """BaseTrainerModel model expanding TrainerModel with required functions by ๐ŸธTTS. + + Every new ๐ŸธTTS model must inherit it. + """ + + @staticmethod + @abstractmethod + def init_from_config(config: Coqpit): + """Init the model and all its attributes from the given config. + + Override this depending on your model. + """ + ... + + @abstractmethod + def inference(self, input: torch.Tensor, aux_input={}) -> Dict: + """Forward pass for inference. + + It must return a dictionary with the main model output and all the auxiliary outputs. The key ```model_outputs``` + is considered to be the main output and you can add any other auxiliary outputs as you want. + + We don't use `*kwargs` since it is problematic with the TorchScript API. + + Args: + input (torch.Tensor): [description] + aux_input (Dict): Auxiliary inputs like speaker embeddings, durations etc. + + Returns: + Dict: [description] + """ + outputs_dict = {"model_outputs": None} + ... + return outputs_dict + + @abstractmethod + def load_checkpoint( + self, config: Coqpit, checkpoint_path: str, eval: bool = False, strict: bool = True, cache=False + ) -> None: + """Load a model checkpoint gile and get ready for training or inference. + + Args: + config (Coqpit): Model configuration. + checkpoint_path (str): Path to the model checkpoint file. + eval (bool, optional): If true, init model for inference else for training. Defaults to False. + strict (bool, optional): Match all checkpoint keys to model's keys. Defaults to True. + cache (bool, optional): If True, cache the file locally for subsequent calls. It is cached under `get_user_data_dir()/tts_cache`. Defaults to False. + """ + ... diff --git a/TTS/TTS/server/README.md b/TTS/TTS/server/README.md new file mode 100644 index 0000000000000000000000000000000000000000..270656c4e39dc11636efbb1ba51eba7c9b4a8f04 --- /dev/null +++ b/TTS/TTS/server/README.md @@ -0,0 +1,18 @@ +# :frog: TTS demo server +Before you use the server, make sure you [install](https://github.com/coqui-ai/TTS/tree/dev#install-tts)) :frog: TTS properly. Then, you can follow the steps below. + +**Note:** If you install :frog:TTS using ```pip```, you can also use the ```tts-server``` end point on the terminal. + +Examples runs: + +List officially released models. +```python TTS/server/server.py --list_models ``` + +Run the server with the official models. +```python TTS/server/server.py --model_name tts_models/en/ljspeech/tacotron2-DCA --vocoder_name vocoder_models/en/ljspeech/multiband-melgan``` + +Run the server with the official models on a GPU. +```CUDA_VISIBLE_DEVICES="0" python TTS/server/server.py --model_name tts_models/en/ljspeech/tacotron2-DCA --vocoder_name vocoder_models/en/ljspeech/multiband-melgan --use_cuda True``` + +Run the server with a custom models. +```python TTS/server/server.py --tts_checkpoint /path/to/tts/model.pth --tts_config /path/to/tts/config.json --vocoder_checkpoint /path/to/vocoder/model.pth --vocoder_config /path/to/vocoder/config.json``` diff --git a/TTS/TTS/server/__init__.py b/TTS/TTS/server/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/TTS/TTS/server/conf.json b/TTS/TTS/server/conf.json new file mode 100644 index 0000000000000000000000000000000000000000..49b6c09c3848a224dfb39a1f653aa1b289a4b6e5 --- /dev/null +++ b/TTS/TTS/server/conf.json @@ -0,0 +1,12 @@ +{ + "tts_path":"/media/erogol/data_ssd/Models/libri_tts/5049/", // tts model root folder + "tts_file":"best_model.pth", // tts checkpoint file + "tts_config":"config.json", // tts config.json file + "tts_speakers": null, // json file listing speaker ids. null if no speaker embedding. + "vocoder_config":null, + "vocoder_file": null, + "is_wavernn_batched":true, + "port": 5002, + "use_cuda": true, + "debug": true +} diff --git a/TTS/TTS/server/server.py b/TTS/TTS/server/server.py new file mode 100644 index 0000000000000000000000000000000000000000..6b2141a9aa419b9095956ccae317621fa3a604da --- /dev/null +++ b/TTS/TTS/server/server.py @@ -0,0 +1,258 @@ +#!flask/bin/python +import argparse +import io +import json +import os +import sys +from pathlib import Path +from threading import Lock +from typing import Union +from urllib.parse import parse_qs + +from flask import Flask, render_template, render_template_string, request, send_file + +from TTS.config import load_config +from TTS.utils.manage import ModelManager +from TTS.utils.synthesizer import Synthesizer + + +def create_argparser(): + def convert_boolean(x): + return x.lower() in ["true", "1", "yes"] + + parser = argparse.ArgumentParser() + parser.add_argument( + "--list_models", + type=convert_boolean, + nargs="?", + const=True, + default=False, + help="list available pre-trained tts and vocoder models.", + ) + parser.add_argument( + "--model_name", + type=str, + default="tts_models/en/ljspeech/tacotron2-DDC", + help="Name of one of the pre-trained tts models in format //", + ) + parser.add_argument("--vocoder_name", type=str, default=None, help="name of one of the released vocoder models.") + + # Args for running custom models + parser.add_argument("--config_path", default=None, type=str, help="Path to model config file.") + parser.add_argument( + "--model_path", + type=str, + default=None, + help="Path to model file.", + ) + parser.add_argument( + "--vocoder_path", + type=str, + help="Path to vocoder model file. If it is not defined, model uses GL as vocoder. Please make sure that you installed vocoder library before (WaveRNN).", + default=None, + ) + parser.add_argument("--vocoder_config_path", type=str, help="Path to vocoder model config file.", default=None) + parser.add_argument("--speakers_file_path", type=str, help="JSON file for multi-speaker model.", default=None) + parser.add_argument("--port", type=int, default=5002, help="port to listen on.") + parser.add_argument("--use_cuda", type=convert_boolean, default=False, help="true to use CUDA.") + parser.add_argument("--debug", type=convert_boolean, default=False, help="true to enable Flask debug mode.") + parser.add_argument("--show_details", type=convert_boolean, default=False, help="Generate model detail page.") + return parser + + +# parse the args +args = create_argparser().parse_args() + +path = Path(__file__).parent / "../.models.json" +manager = ModelManager(path) + +if args.list_models: + manager.list_models() + sys.exit() + +# update in-use models to the specified released models. +model_path = None +config_path = None +speakers_file_path = None +vocoder_path = None +vocoder_config_path = None + +# CASE1: list pre-trained TTS models +if args.list_models: + manager.list_models() + sys.exit() + +# CASE2: load pre-trained model paths +if args.model_name is not None and not args.model_path: + model_path, config_path, model_item = manager.download_model(args.model_name) + args.vocoder_name = model_item["default_vocoder"] if args.vocoder_name is None else args.vocoder_name + +if args.vocoder_name is not None and not args.vocoder_path: + vocoder_path, vocoder_config_path, _ = manager.download_model(args.vocoder_name) + +# CASE3: set custom model paths +if args.model_path is not None: + model_path = args.model_path + config_path = args.config_path + speakers_file_path = args.speakers_file_path + +if args.vocoder_path is not None: + vocoder_path = args.vocoder_path + vocoder_config_path = args.vocoder_config_path + +# load models +synthesizer = Synthesizer( + tts_checkpoint=model_path, + tts_config_path=config_path, + tts_speakers_file=speakers_file_path, + tts_languages_file=None, + vocoder_checkpoint=vocoder_path, + vocoder_config=vocoder_config_path, + encoder_checkpoint="", + encoder_config="", + use_cuda=args.use_cuda, +) + +use_multi_speaker = hasattr(synthesizer.tts_model, "num_speakers") and ( + synthesizer.tts_model.num_speakers > 1 or synthesizer.tts_speakers_file is not None +) +speaker_manager = getattr(synthesizer.tts_model, "speaker_manager", None) + +use_multi_language = hasattr(synthesizer.tts_model, "num_languages") and ( + synthesizer.tts_model.num_languages > 1 or synthesizer.tts_languages_file is not None +) +language_manager = getattr(synthesizer.tts_model, "language_manager", None) + +# TODO: set this from SpeakerManager +use_gst = synthesizer.tts_config.get("use_gst", False) +app = Flask(__name__) + + +def style_wav_uri_to_dict(style_wav: str) -> Union[str, dict]: + """Transform an uri style_wav, in either a string (path to wav file to be use for style transfer) + or a dict (gst tokens/values to be use for styling) + + Args: + style_wav (str): uri + + Returns: + Union[str, dict]: path to file (str) or gst style (dict) + """ + if style_wav: + if os.path.isfile(style_wav) and style_wav.endswith(".wav"): + return style_wav # style_wav is a .wav file located on the server + + style_wav = json.loads(style_wav) + return style_wav # style_wav is a gst dictionary with {token1_id : token1_weigth, ...} + return None + + +@app.route("/") +def index(): + return render_template( + "index.html", + show_details=args.show_details, + use_multi_speaker=use_multi_speaker, + use_multi_language=use_multi_language, + speaker_ids=speaker_manager.name_to_id if speaker_manager is not None else None, + language_ids=language_manager.name_to_id if language_manager is not None else None, + use_gst=use_gst, + ) + + +@app.route("/details") +def details(): + if args.config_path is not None and os.path.isfile(args.config_path): + model_config = load_config(args.config_path) + else: + if args.model_name is not None: + model_config = load_config(config_path) + + if args.vocoder_config_path is not None and os.path.isfile(args.vocoder_config_path): + vocoder_config = load_config(args.vocoder_config_path) + else: + if args.vocoder_name is not None: + vocoder_config = load_config(vocoder_config_path) + else: + vocoder_config = None + + return render_template( + "details.html", + show_details=args.show_details, + model_config=model_config, + vocoder_config=vocoder_config, + args=args.__dict__, + ) + + +lock = Lock() + + +@app.route("/api/tts", methods=["GET", "POST"]) +def tts(): + with lock: + text = request.headers.get("text") or request.values.get("text", "") + speaker_idx = request.headers.get("speaker-id") or request.values.get("speaker_id", "") + language_idx = request.headers.get("language-id") or request.values.get("language_id", "") + style_wav = request.headers.get("style-wav") or request.values.get("style_wav", "") + style_wav = style_wav_uri_to_dict(style_wav) + + print(f" > Model input: {text}") + print(f" > Speaker Idx: {speaker_idx}") + print(f" > Language Idx: {language_idx}") + wavs = synthesizer.tts(text, speaker_name=speaker_idx, language_name=language_idx, style_wav=style_wav) + out = io.BytesIO() + synthesizer.save_wav(wavs, out) + return send_file(out, mimetype="audio/wav") + + +# Basic MaryTTS compatibility layer + + +@app.route("/locales", methods=["GET"]) +def mary_tts_api_locales(): + """MaryTTS-compatible /locales endpoint""" + # NOTE: We currently assume there is only one model active at the same time + if args.model_name is not None: + model_details = args.model_name.split("/") + else: + model_details = ["", "en", "", "default"] + return render_template_string("{{ locale }}\n", locale=model_details[1]) + + +@app.route("/voices", methods=["GET"]) +def mary_tts_api_voices(): + """MaryTTS-compatible /voices endpoint""" + # NOTE: We currently assume there is only one model active at the same time + if args.model_name is not None: + model_details = args.model_name.split("/") + else: + model_details = ["", "en", "", "default"] + return render_template_string( + "{{ name }} {{ locale }} {{ gender }}\n", name=model_details[3], locale=model_details[1], gender="u" + ) + + +@app.route("/process", methods=["GET", "POST"]) +def mary_tts_api_process(): + """MaryTTS-compatible /process endpoint""" + with lock: + if request.method == "POST": + data = parse_qs(request.get_data(as_text=True)) + # NOTE: we ignore param. LOCALE and VOICE for now since we have only one active model + text = data.get("INPUT_TEXT", [""])[0] + else: + text = request.args.get("INPUT_TEXT", "") + print(f" > Model input: {text}") + wavs = synthesizer.tts(text) + out = io.BytesIO() + synthesizer.save_wav(wavs, out) + return send_file(out, mimetype="audio/wav") + + +def main(): + app.run(debug=args.debug, host="::", port=args.port) + + +if __name__ == "__main__": + main() diff --git a/TTS/TTS/server/static/coqui-log-green-TTS.png b/TTS/TTS/server/static/coqui-log-green-TTS.png new file mode 100644 index 0000000000000000000000000000000000000000..6ad188b8c03a170097c0393c6769996f03cf9054 Binary files /dev/null and b/TTS/TTS/server/static/coqui-log-green-TTS.png differ diff --git a/TTS/TTS/server/templates/details.html b/TTS/TTS/server/templates/details.html new file mode 100644 index 0000000000000000000000000000000000000000..51c9ed85a83ac0aab045623ee1e6c430fbe51b9d --- /dev/null +++ b/TTS/TTS/server/templates/details.html @@ -0,0 +1,131 @@ + + + + + + + + + + + TTS engine + + + + + + + + + + Fork me on GitHub + + {% if show_details == true %} + +
+ Model details +
+ +
+
+ CLI arguments: + + + + + + + {% for key, value in args.items() %} + + + + + + + {% endfor %} +
CLI key Value
{{ key }}{{ value }}
+
+

+ +
+ + {% if model_config != None %} + +
+ Model config: + + + + + + + + + {% for key, value in model_config.items() %} + + + + + + + {% endfor %} + +
Key Value
{{ key }}{{ value }}
+
+ + {% endif %} + +

+ + + +
+ {% if vocoder_config != None %} +
+ Vocoder model config: + + + + + + + + + {% for key, value in vocoder_config.items() %} + + + + + + + {% endfor %} + + +
Key Value
{{ key }}{{ value }}
+
+ {% endif %} +

+ + {% else %} +
+ Please start server with --show_details=true to see details. +
+ + {% endif %} + + + + \ No newline at end of file diff --git a/TTS/TTS/server/templates/index.html b/TTS/TTS/server/templates/index.html new file mode 100644 index 0000000000000000000000000000000000000000..6354d3919d9a1e9c1e22e9866c84c4eb8284bc13 --- /dev/null +++ b/TTS/TTS/server/templates/index.html @@ -0,0 +1,154 @@ + + + + + + + + + + + TTS engine + + + + + + + + + + Fork me on GitHub + + + + + +
+
+
+ + +
    +
+ + {%if use_gst%} + + {%endif%} + + +

+ + {%if use_multi_speaker%} + Choose a speaker: +

+ {%endif%} + + {%if use_multi_language%} + Choose a language: +

+ {%endif%} + + + {%if show_details%} +

+ {%endif%} + +

+
+
+
+ + + + + + + \ No newline at end of file diff --git a/TTS/TTS/tts/__init__.py b/TTS/TTS/tts/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/TTS/TTS/tts/configs/__init__.py b/TTS/TTS/tts/configs/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..3146ac1c116cb807a81889b7a9ab223b9a051036 --- /dev/null +++ b/TTS/TTS/tts/configs/__init__.py @@ -0,0 +1,17 @@ +import importlib +import os +from inspect import isclass + +# import all files under configs/ +# configs_dir = os.path.dirname(__file__) +# for file in os.listdir(configs_dir): +# path = os.path.join(configs_dir, file) +# if not file.startswith("_") and not file.startswith(".") and (file.endswith(".py") or os.path.isdir(path)): +# config_name = file[: file.find(".py")] if file.endswith(".py") else file +# module = importlib.import_module("TTS.tts.configs." + config_name) +# for attribute_name in dir(module): +# attribute = getattr(module, attribute_name) + +# if isclass(attribute): +# # Add the class to this package's variables +# globals()[attribute_name] = attribute diff --git a/TTS/TTS/tts/configs/align_tts_config.py b/TTS/TTS/tts/configs/align_tts_config.py new file mode 100644 index 0000000000000000000000000000000000000000..317a01af53ce26914d83610a913eb44b5836dac2 --- /dev/null +++ b/TTS/TTS/tts/configs/align_tts_config.py @@ -0,0 +1,107 @@ +from dataclasses import dataclass, field +from typing import List + +from TTS.tts.configs.shared_configs import BaseTTSConfig +from TTS.tts.models.align_tts import AlignTTSArgs + + +@dataclass +class AlignTTSConfig(BaseTTSConfig): + """Defines parameters for AlignTTS model. + Example: + + >>> from TTS.tts.configs.align_tts_config import AlignTTSConfig + >>> config = AlignTTSConfig() + + Args: + model(str): + Model name used for selecting the right model at initialization. Defaults to `align_tts`. + positional_encoding (bool): + enable / disable positional encoding applied to the encoder output. Defaults to True. + hidden_channels (int): + Base number of hidden channels. Defines all the layers expect ones defined by the specific encoder or decoder + parameters. Defaults to 256. + hidden_channels_dp (int): + Number of hidden channels of the duration predictor's layers. Defaults to 256. + encoder_type (str): + Type of the encoder used by the model. Look at `TTS.tts.layers.feed_forward.encoder` for more details. + Defaults to `fftransformer`. + encoder_params (dict): + Parameters used to define the encoder network. Look at `TTS.tts.layers.feed_forward.encoder` for more details. + Defaults to `{"hidden_channels_ffn": 1024, "num_heads": 2, "num_layers": 6, "dropout_p": 0.1}`. + decoder_type (str): + Type of the decoder used by the model. Look at `TTS.tts.layers.feed_forward.decoder` for more details. + Defaults to `fftransformer`. + decoder_params (dict): + Parameters used to define the decoder network. Look at `TTS.tts.layers.feed_forward.decoder` for more details. + Defaults to `{"hidden_channels_ffn": 1024, "num_heads": 2, "num_layers": 6, "dropout_p": 0.1}`. + phase_start_steps (List[int]): + A list of number of steps required to start the next training phase. AlignTTS has 4 different training + phases. Thus you need to define 4 different values to enable phase based training. If None, it + trains the whole model together. Defaults to None. + ssim_alpha (float): + Weight for the SSIM loss. If set <= 0, disables the SSIM loss. Defaults to 1.0. + duration_loss_alpha (float): + Weight for the duration predictor's loss. Defaults to 1.0. + mdn_alpha (float): + Weight for the MDN loss. Defaults to 1.0. + spec_loss_alpha (float): + Weight for the MSE spectrogram loss. If set <= 0, disables the L1 loss. Defaults to 1.0. + use_speaker_embedding (bool): + enable / disable using speaker embeddings for multi-speaker models. If set True, the model is + in the multi-speaker mode. Defaults to False. + use_d_vector_file (bool): + enable /disable using external speaker embeddings in place of the learned embeddings. Defaults to False. + d_vector_file (str): + Path to the file including pre-computed speaker embeddings. Defaults to None. + noam_schedule (bool): + enable / disable the use of Noam LR scheduler. Defaults to False. + warmup_steps (int): + Number of warm-up steps for the Noam scheduler. Defaults 4000. + lr (float): + Initial learning rate. Defaults to `1e-3`. + wd (float): + Weight decay coefficient. Defaults to `1e-7`. + min_seq_len (int): + Minimum input sequence length to be used at training. + max_seq_len (int): + Maximum input sequence length to be used at training. Larger values result in more VRAM usage.""" + + model: str = "align_tts" + # model specific params + model_args: AlignTTSArgs = field(default_factory=AlignTTSArgs) + phase_start_steps: List[int] = None + + ssim_alpha: float = 1.0 + spec_loss_alpha: float = 1.0 + dur_loss_alpha: float = 1.0 + mdn_alpha: float = 1.0 + + # multi-speaker settings + use_speaker_embedding: bool = False + use_d_vector_file: bool = False + d_vector_file: str = False + + # optimizer parameters + optimizer: str = "Adam" + optimizer_params: dict = field(default_factory=lambda: {"betas": [0.9, 0.998], "weight_decay": 1e-6}) + lr_scheduler: str = None + lr_scheduler_params: dict = None + lr: float = 1e-4 + grad_clip: float = 5.0 + + # overrides + min_seq_len: int = 13 + max_seq_len: int = 200 + r: int = 1 + + # testing + test_sentences: List[str] = field( + default_factory=lambda: [ + "It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent.", + "Be a voice, not an echo.", + "I'm sorry Dave. I'm afraid I can't do that.", + "This cake is great. It's so delicious and moist.", + "Prior to November 22, 1963.", + ] + ) diff --git a/TTS/TTS/tts/configs/bark_config.py b/TTS/TTS/tts/configs/bark_config.py new file mode 100644 index 0000000000000000000000000000000000000000..4d1cd1374afe8d5f0b9e87ed81db25d7e4032af9 --- /dev/null +++ b/TTS/TTS/tts/configs/bark_config.py @@ -0,0 +1,105 @@ +import os +from dataclasses import dataclass, field +from typing import Dict + +from TTS.tts.configs.shared_configs import BaseTTSConfig +from TTS.tts.layers.bark.model import GPTConfig +from TTS.tts.layers.bark.model_fine import FineGPTConfig +from TTS.tts.models.bark import BarkAudioConfig +from TTS.utils.generic_utils import get_user_data_dir + + +@dataclass +class BarkConfig(BaseTTSConfig): + """Bark TTS configuration + + Args: + model (str): model name that registers the model. + audio (BarkAudioConfig): audio configuration. Defaults to BarkAudioConfig(). + num_chars (int): number of characters in the alphabet. Defaults to 0. + semantic_config (GPTConfig): semantic configuration. Defaults to GPTConfig(). + fine_config (FineGPTConfig): fine configuration. Defaults to FineGPTConfig(). + coarse_config (GPTConfig): coarse configuration. Defaults to GPTConfig(). + CONTEXT_WINDOW_SIZE (int): GPT context window size. Defaults to 1024. + SEMANTIC_RATE_HZ (float): semantic tokens rate in Hz. Defaults to 49.9. + SEMANTIC_VOCAB_SIZE (int): semantic vocabulary size. Defaults to 10_000. + CODEBOOK_SIZE (int): encodec codebook size. Defaults to 1024. + N_COARSE_CODEBOOKS (int): number of coarse codebooks. Defaults to 2. + N_FINE_CODEBOOKS (int): number of fine codebooks. Defaults to 8. + COARSE_RATE_HZ (int): coarse tokens rate in Hz. Defaults to 75. + SAMPLE_RATE (int): sample rate. Defaults to 24_000. + USE_SMALLER_MODELS (bool): use smaller models. Defaults to False. + TEXT_ENCODING_OFFSET (int): text encoding offset. Defaults to 10_048. + SEMANTIC_PAD_TOKEN (int): semantic pad token. Defaults to 10_000. + TEXT_PAD_TOKEN ([type]): text pad token. Defaults to 10_048. + TEXT_EOS_TOKEN ([type]): text end of sentence token. Defaults to 10_049. + TEXT_SOS_TOKEN ([type]): text start of sentence token. Defaults to 10_050. + SEMANTIC_INFER_TOKEN (int): semantic infer token. Defaults to 10_051. + COARSE_SEMANTIC_PAD_TOKEN (int): coarse semantic pad token. Defaults to 12_048. + COARSE_INFER_TOKEN (int): coarse infer token. Defaults to 12_050. + REMOTE_BASE_URL ([type]): remote base url. Defaults to "https://huggingface.co/erogol/bark/tree". + REMOTE_MODEL_PATHS (Dict): remote model paths. Defaults to None. + LOCAL_MODEL_PATHS (Dict): local model paths. Defaults to None. + SMALL_REMOTE_MODEL_PATHS (Dict): small remote model paths. Defaults to None. + CACHE_DIR (str): local cache directory. Defaults to get_user_data_dir(). + DEF_SPEAKER_DIR (str): default speaker directory to stoke speaker values for voice cloning. Defaults to get_user_data_dir(). + """ + + model: str = "bark" + audio: BarkAudioConfig = field(default_factory=BarkAudioConfig) + num_chars: int = 0 + semantic_config: GPTConfig = field(default_factory=GPTConfig) + fine_config: FineGPTConfig = field(default_factory=FineGPTConfig) + coarse_config: GPTConfig = field(default_factory=GPTConfig) + CONTEXT_WINDOW_SIZE: int = 1024 + SEMANTIC_RATE_HZ: float = 49.9 + SEMANTIC_VOCAB_SIZE: int = 10_000 + CODEBOOK_SIZE: int = 1024 + N_COARSE_CODEBOOKS: int = 2 + N_FINE_CODEBOOKS: int = 8 + COARSE_RATE_HZ: int = 75 + SAMPLE_RATE: int = 24_000 + USE_SMALLER_MODELS: bool = False + + TEXT_ENCODING_OFFSET: int = 10_048 + SEMANTIC_PAD_TOKEN: int = 10_000 + TEXT_PAD_TOKEN: int = 129_595 + SEMANTIC_INFER_TOKEN: int = 129_599 + COARSE_SEMANTIC_PAD_TOKEN: int = 12_048 + COARSE_INFER_TOKEN: int = 12_050 + + REMOTE_BASE_URL = "https://huggingface.co/erogol/bark/tree/main/" + REMOTE_MODEL_PATHS: Dict = None + LOCAL_MODEL_PATHS: Dict = None + SMALL_REMOTE_MODEL_PATHS: Dict = None + CACHE_DIR: str = str(get_user_data_dir("tts/suno/bark_v0")) + DEF_SPEAKER_DIR: str = str(get_user_data_dir("tts/bark_v0/speakers")) + + def __post_init__(self): + self.REMOTE_MODEL_PATHS = { + "text": { + "path": os.path.join(self.REMOTE_BASE_URL, "text_2.pt"), + "checksum": "54afa89d65e318d4f5f80e8e8799026a", + }, + "coarse": { + "path": os.path.join(self.REMOTE_BASE_URL, "coarse_2.pt"), + "checksum": "8a98094e5e3a255a5c9c0ab7efe8fd28", + }, + "fine": { + "path": os.path.join(self.REMOTE_BASE_URL, "fine_2.pt"), + "checksum": "59d184ed44e3650774a2f0503a48a97b", + }, + } + self.LOCAL_MODEL_PATHS = { + "text": os.path.join(self.CACHE_DIR, "text_2.pt"), + "coarse": os.path.join(self.CACHE_DIR, "coarse_2.pt"), + "fine": os.path.join(self.CACHE_DIR, "fine_2.pt"), + "hubert_tokenizer": os.path.join(self.CACHE_DIR, "tokenizer.pth"), + "hubert": os.path.join(self.CACHE_DIR, "hubert.pt"), + } + self.SMALL_REMOTE_MODEL_PATHS = { + "text": {"path": os.path.join(self.REMOTE_BASE_URL, "text.pt")}, + "coarse": {"path": os.path.join(self.REMOTE_BASE_URL, "coarse.pt")}, + "fine": {"path": os.path.join(self.REMOTE_BASE_URL, "fine.pt")}, + } + self.sample_rate = self.SAMPLE_RATE # pylint: disable=attribute-defined-outside-init diff --git a/TTS/TTS/tts/configs/delightful_tts_config.py b/TTS/TTS/tts/configs/delightful_tts_config.py new file mode 100644 index 0000000000000000000000000000000000000000..805d995369e29fce7d6aa87750356b21458cd64a --- /dev/null +++ b/TTS/TTS/tts/configs/delightful_tts_config.py @@ -0,0 +1,170 @@ +from dataclasses import dataclass, field +from typing import List + +from TTS.tts.configs.shared_configs import BaseTTSConfig +from TTS.tts.models.delightful_tts import DelightfulTtsArgs, DelightfulTtsAudioConfig, VocoderConfig + + +@dataclass +class DelightfulTTSConfig(BaseTTSConfig): + """ + Configuration class for the DelightfulTTS model. + + Attributes: + model (str): Name of the model ("delightful_tts"). + audio (DelightfulTtsAudioConfig): Configuration for audio settings. + model_args (DelightfulTtsArgs): Configuration for model arguments. + use_attn_priors (bool): Whether to use attention priors. + vocoder (VocoderConfig): Configuration for the vocoder. + init_discriminator (bool): Whether to initialize the discriminator. + steps_to_start_discriminator (int): Number of steps to start the discriminator. + grad_clip (List[float]): Gradient clipping values. + lr_gen (float): Learning rate for the gan generator. + lr_disc (float): Learning rate for the gan discriminator. + lr_scheduler_gen (str): Name of the learning rate scheduler for the generator. + lr_scheduler_gen_params (dict): Parameters for the learning rate scheduler for the generator. + lr_scheduler_disc (str): Name of the learning rate scheduler for the discriminator. + lr_scheduler_disc_params (dict): Parameters for the learning rate scheduler for the discriminator. + scheduler_after_epoch (bool): Whether to schedule after each epoch. + optimizer (str): Name of the optimizer. + optimizer_params (dict): Parameters for the optimizer. + ssim_loss_alpha (float): Alpha value for the SSIM loss. + mel_loss_alpha (float): Alpha value for the mel loss. + aligner_loss_alpha (float): Alpha value for the aligner loss. + pitch_loss_alpha (float): Alpha value for the pitch loss. + energy_loss_alpha (float): Alpha value for the energy loss. + u_prosody_loss_alpha (float): Alpha value for the utterance prosody loss. + p_prosody_loss_alpha (float): Alpha value for the phoneme prosody loss. + dur_loss_alpha (float): Alpha value for the duration loss. + char_dur_loss_alpha (float): Alpha value for the character duration loss. + binary_align_loss_alpha (float): Alpha value for the binary alignment loss. + binary_loss_warmup_epochs (int): Number of warm-up epochs for the binary loss. + disc_loss_alpha (float): Alpha value for the discriminator loss. + gen_loss_alpha (float): Alpha value for the generator loss. + feat_loss_alpha (float): Alpha value for the feature loss. + vocoder_mel_loss_alpha (float): Alpha value for the vocoder mel loss. + multi_scale_stft_loss_alpha (float): Alpha value for the multi-scale STFT loss. + multi_scale_stft_loss_params (dict): Parameters for the multi-scale STFT loss. + return_wav (bool): Whether to return audio waveforms. + use_weighted_sampler (bool): Whether to use a weighted sampler. + weighted_sampler_attrs (dict): Attributes for the weighted sampler. + weighted_sampler_multipliers (dict): Multipliers for the weighted sampler. + r (int): Value for the `r` override. + compute_f0 (bool): Whether to compute F0 values. + f0_cache_path (str): Path to the F0 cache. + attn_prior_cache_path (str): Path to the attention prior cache. + num_speakers (int): Number of speakers. + use_speaker_embedding (bool): Whether to use speaker embedding. + speakers_file (str): Path to the speaker file. + speaker_embedding_channels (int): Number of channels for the speaker embedding. + language_ids_file (str): Path to the language IDs file. + """ + + model: str = "delightful_tts" + + # model specific params + audio: DelightfulTtsAudioConfig = field(default_factory=DelightfulTtsAudioConfig) + model_args: DelightfulTtsArgs = field(default_factory=DelightfulTtsArgs) + use_attn_priors: bool = True + + # vocoder + vocoder: VocoderConfig = field(default_factory=VocoderConfig) + init_discriminator: bool = True + + # optimizer + steps_to_start_discriminator: int = 200000 + grad_clip: List[float] = field(default_factory=lambda: [1000, 1000]) + lr_gen: float = 0.0002 + lr_disc: float = 0.0002 + lr_scheduler_gen: str = "ExponentialLR" + lr_scheduler_gen_params: dict = field(default_factory=lambda: {"gamma": 0.999875, "last_epoch": -1}) + lr_scheduler_disc: str = "ExponentialLR" + lr_scheduler_disc_params: dict = field(default_factory=lambda: {"gamma": 0.999875, "last_epoch": -1}) + scheduler_after_epoch: bool = True + optimizer: str = "AdamW" + optimizer_params: dict = field(default_factory=lambda: {"betas": [0.8, 0.99], "eps": 1e-9, "weight_decay": 0.01}) + + # acoustic model loss params + ssim_loss_alpha: float = 1.0 + mel_loss_alpha: float = 1.0 + aligner_loss_alpha: float = 1.0 + pitch_loss_alpha: float = 1.0 + energy_loss_alpha: float = 1.0 + u_prosody_loss_alpha: float = 0.5 + p_prosody_loss_alpha: float = 0.5 + dur_loss_alpha: float = 1.0 + char_dur_loss_alpha: float = 0.01 + binary_align_loss_alpha: float = 0.1 + binary_loss_warmup_epochs: int = 10 + + # vocoder loss params + disc_loss_alpha: float = 1.0 + gen_loss_alpha: float = 1.0 + feat_loss_alpha: float = 1.0 + vocoder_mel_loss_alpha: float = 10.0 + multi_scale_stft_loss_alpha: float = 2.5 + multi_scale_stft_loss_params: dict = field( + default_factory=lambda: { + "n_ffts": [1024, 2048, 512], + "hop_lengths": [120, 240, 50], + "win_lengths": [600, 1200, 240], + } + ) + + # data loader params + return_wav: bool = True + use_weighted_sampler: bool = False + weighted_sampler_attrs: dict = field(default_factory=lambda: {}) + weighted_sampler_multipliers: dict = field(default_factory=lambda: {}) + + # overrides + r: int = 1 + + # dataset configs + compute_f0: bool = True + f0_cache_path: str = None + attn_prior_cache_path: str = None + + # multi-speaker settings + # use speaker embedding layer + num_speakers: int = 0 + use_speaker_embedding: bool = False + speakers_file: str = None + speaker_embedding_channels: int = 256 + language_ids_file: str = None + use_language_embedding: bool = False + + # use d-vectors + use_d_vector_file: bool = False + d_vector_file: str = None + d_vector_dim: int = None + + # testing + test_sentences: List[List[str]] = field( + default_factory=lambda: [ + ["It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent."], + ["Be a voice, not an echo."], + ["I'm sorry Dave. I'm afraid I can't do that."], + ["This cake is great. It's so delicious and moist."], + ["Prior to November 22, 1963."], + ] + ) + + def __post_init__(self): + # Pass multi-speaker parameters to the model args as `model.init_multispeaker()` looks for it there. + if self.num_speakers > 0: + self.model_args.num_speakers = self.num_speakers + + # speaker embedding settings + if self.use_speaker_embedding: + self.model_args.use_speaker_embedding = True + if self.speakers_file: + self.model_args.speakers_file = self.speakers_file + + # d-vector settings + if self.use_d_vector_file: + self.model_args.use_d_vector_file = True + if self.d_vector_dim is not None and self.d_vector_dim > 0: + self.model_args.d_vector_dim = self.d_vector_dim + if self.d_vector_file: + self.model_args.d_vector_file = self.d_vector_file diff --git a/TTS/TTS/tts/configs/fast_pitch_config.py b/TTS/TTS/tts/configs/fast_pitch_config.py new file mode 100644 index 0000000000000000000000000000000000000000..d086d26564450c60fa04a7f3a068506f4147d3be --- /dev/null +++ b/TTS/TTS/tts/configs/fast_pitch_config.py @@ -0,0 +1,183 @@ +from dataclasses import dataclass, field +from typing import List + +from TTS.tts.configs.shared_configs import BaseTTSConfig +from TTS.tts.models.forward_tts import ForwardTTSArgs + + +@dataclass +class FastPitchConfig(BaseTTSConfig): + """Configure `ForwardTTS` as FastPitch model. + + Example: + + >>> from TTS.tts.configs.fast_pitch_config import FastPitchConfig + >>> config = FastPitchConfig() + + Args: + model (str): + Model name used for selecting the right model at initialization. Defaults to `fast_pitch`. + + base_model (str): + Name of the base model being configured as this model so that ๐Ÿธ TTS knows it needs to initiate + the base model rather than searching for the `model` implementation. Defaults to `forward_tts`. + + model_args (Coqpit): + Model class arguments. Check `FastPitchArgs` for more details. Defaults to `FastPitchArgs()`. + + data_dep_init_steps (int): + Number of steps used for computing normalization parameters at the beginning of the training. GlowTTS uses + Activation Normalization that pre-computes normalization stats at the beginning and use the same values + for the rest. Defaults to 10. + + speakers_file (str): + Path to the file containing the list of speakers. Needed at inference for loading matching speaker ids to + speaker names. Defaults to `None`. + + use_speaker_embedding (bool): + enable / disable using speaker embeddings for multi-speaker models. If set True, the model is + in the multi-speaker mode. Defaults to False. + + use_d_vector_file (bool): + enable /disable using external speaker embeddings in place of the learned embeddings. Defaults to False. + + d_vector_file (str): + Path to the file including pre-computed speaker embeddings. Defaults to None. + + d_vector_dim (int): + Dimension of the external speaker embeddings. Defaults to 0. + + optimizer (str): + Name of the model optimizer. Defaults to `Adam`. + + optimizer_params (dict): + Arguments of the model optimizer. Defaults to `{"betas": [0.9, 0.998], "weight_decay": 1e-6}`. + + lr_scheduler (str): + Name of the learning rate scheduler. Defaults to `Noam`. + + lr_scheduler_params (dict): + Arguments of the learning rate scheduler. Defaults to `{"warmup_steps": 4000}`. + + lr (float): + Initial learning rate. Defaults to `1e-3`. + + grad_clip (float): + Gradient norm clipping value. Defaults to `5.0`. + + spec_loss_type (str): + Type of the spectrogram loss. Check `ForwardTTSLoss` for possible values. Defaults to `mse`. + + duration_loss_type (str): + Type of the duration loss. Check `ForwardTTSLoss` for possible values. Defaults to `mse`. + + use_ssim_loss (bool): + Enable/disable the use of SSIM (Structural Similarity) loss. Defaults to True. + + wd (float): + Weight decay coefficient. Defaults to `1e-7`. + + ssim_loss_alpha (float): + Weight for the SSIM loss. If set 0, disables the SSIM loss. Defaults to 1.0. + + dur_loss_alpha (float): + Weight for the duration predictor's loss. If set 0, disables the huber loss. Defaults to 1.0. + + spec_loss_alpha (float): + Weight for the L1 spectrogram loss. If set 0, disables the L1 loss. Defaults to 1.0. + + pitch_loss_alpha (float): + Weight for the pitch predictor's loss. If set 0, disables the pitch predictor. Defaults to 1.0. + + binary_align_loss_alpha (float): + Weight for the binary loss. If set 0, disables the binary loss. Defaults to 1.0. + + binary_loss_warmup_epochs (float): + Number of epochs to gradually increase the binary loss impact. Defaults to 150. + + min_seq_len (int): + Minimum input sequence length to be used at training. + + max_seq_len (int): + Maximum input sequence length to be used at training. Larger values result in more VRAM usage. + + # dataset configs + compute_f0(bool): + Compute pitch. defaults to True + + f0_cache_path(str): + pith cache path. defaults to None + """ + + model: str = "fast_pitch" + base_model: str = "forward_tts" + + # model specific params + model_args: ForwardTTSArgs = field(default_factory=ForwardTTSArgs) + + # multi-speaker settings + num_speakers: int = 0 + speakers_file: str = None + use_speaker_embedding: bool = False + use_d_vector_file: bool = False + d_vector_file: str = False + d_vector_dim: int = 0 + + # optimizer parameters + optimizer: str = "Adam" + optimizer_params: dict = field(default_factory=lambda: {"betas": [0.9, 0.998], "weight_decay": 1e-6}) + lr_scheduler: str = "NoamLR" + lr_scheduler_params: dict = field(default_factory=lambda: {"warmup_steps": 4000}) + lr: float = 1e-4 + grad_clip: float = 5.0 + + # loss params + spec_loss_type: str = "mse" + duration_loss_type: str = "mse" + use_ssim_loss: bool = True + ssim_loss_alpha: float = 1.0 + spec_loss_alpha: float = 1.0 + aligner_loss_alpha: float = 1.0 + pitch_loss_alpha: float = 0.1 + dur_loss_alpha: float = 0.1 + binary_align_loss_alpha: float = 0.1 + binary_loss_warmup_epochs: int = 150 + + # overrides + min_seq_len: int = 13 + max_seq_len: int = 200 + r: int = 1 # DO NOT CHANGE + + # dataset configs + compute_f0: bool = True + f0_cache_path: str = None + + # testing + test_sentences: List[str] = field( + default_factory=lambda: [ + "It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent.", + "Be a voice, not an echo.", + "I'm sorry Dave. I'm afraid I can't do that.", + "This cake is great. It's so delicious and moist.", + "Prior to November 22, 1963.", + ] + ) + + def __post_init__(self): + # Pass multi-speaker parameters to the model args as `model.init_multispeaker()` looks for it there. + if self.num_speakers > 0: + self.model_args.num_speakers = self.num_speakers + + # speaker embedding settings + if self.use_speaker_embedding: + self.model_args.use_speaker_embedding = True + if self.speakers_file: + self.model_args.speakers_file = self.speakers_file + + # d-vector settings + if self.use_d_vector_file: + self.model_args.use_d_vector_file = True + if self.d_vector_dim is not None and self.d_vector_dim > 0: + self.model_args.d_vector_dim = self.d_vector_dim + if self.d_vector_file: + self.model_args.d_vector_file = self.d_vector_file diff --git a/TTS/TTS/tts/configs/fast_speech_config.py b/TTS/TTS/tts/configs/fast_speech_config.py new file mode 100644 index 0000000000000000000000000000000000000000..af6c2db6faf55ee2b15047fff86281d42dab1b87 --- /dev/null +++ b/TTS/TTS/tts/configs/fast_speech_config.py @@ -0,0 +1,177 @@ +from dataclasses import dataclass, field +from typing import List + +from TTS.tts.configs.shared_configs import BaseTTSConfig +from TTS.tts.models.forward_tts import ForwardTTSArgs + + +@dataclass +class FastSpeechConfig(BaseTTSConfig): + """Configure `ForwardTTS` as FastSpeech model. + + Example: + + >>> from TTS.tts.configs.fast_speech_config import FastSpeechConfig + >>> config = FastSpeechConfig() + + Args: + model (str): + Model name used for selecting the right model at initialization. Defaults to `fast_pitch`. + + base_model (str): + Name of the base model being configured as this model so that ๐Ÿธ TTS knows it needs to initiate + the base model rather than searching for the `model` implementation. Defaults to `forward_tts`. + + model_args (Coqpit): + Model class arguments. Check `FastSpeechArgs` for more details. Defaults to `FastSpeechArgs()`. + + data_dep_init_steps (int): + Number of steps used for computing normalization parameters at the beginning of the training. GlowTTS uses + Activation Normalization that pre-computes normalization stats at the beginning and use the same values + for the rest. Defaults to 10. + + speakers_file (str): + Path to the file containing the list of speakers. Needed at inference for loading matching speaker ids to + speaker names. Defaults to `None`. + + + use_speaker_embedding (bool): + enable / disable using speaker embeddings for multi-speaker models. If set True, the model is + in the multi-speaker mode. Defaults to False. + + use_d_vector_file (bool): + enable /disable using external speaker embeddings in place of the learned embeddings. Defaults to False. + + d_vector_file (str): + Path to the file including pre-computed speaker embeddings. Defaults to None. + + d_vector_dim (int): + Dimension of the external speaker embeddings. Defaults to 0. + + optimizer (str): + Name of the model optimizer. Defaults to `Adam`. + + optimizer_params (dict): + Arguments of the model optimizer. Defaults to `{"betas": [0.9, 0.998], "weight_decay": 1e-6}`. + + lr_scheduler (str): + Name of the learning rate scheduler. Defaults to `Noam`. + + lr_scheduler_params (dict): + Arguments of the learning rate scheduler. Defaults to `{"warmup_steps": 4000}`. + + lr (float): + Initial learning rate. Defaults to `1e-3`. + + grad_clip (float): + Gradient norm clipping value. Defaults to `5.0`. + + spec_loss_type (str): + Type of the spectrogram loss. Check `ForwardTTSLoss` for possible values. Defaults to `mse`. + + duration_loss_type (str): + Type of the duration loss. Check `ForwardTTSLoss` for possible values. Defaults to `mse`. + + use_ssim_loss (bool): + Enable/disable the use of SSIM (Structural Similarity) loss. Defaults to True. + + wd (float): + Weight decay coefficient. Defaults to `1e-7`. + + ssim_loss_alpha (float): + Weight for the SSIM loss. If set 0, disables the SSIM loss. Defaults to 1.0. + + dur_loss_alpha (float): + Weight for the duration predictor's loss. If set 0, disables the huber loss. Defaults to 1.0. + + spec_loss_alpha (float): + Weight for the L1 spectrogram loss. If set 0, disables the L1 loss. Defaults to 1.0. + + pitch_loss_alpha (float): + Weight for the pitch predictor's loss. If set 0, disables the pitch predictor. Defaults to 1.0. + + binary_loss_alpha (float): + Weight for the binary loss. If set 0, disables the binary loss. Defaults to 1.0. + + binary_loss_warmup_epochs (float): + Number of epochs to gradually increase the binary loss impact. Defaults to 150. + + min_seq_len (int): + Minimum input sequence length to be used at training. + + max_seq_len (int): + Maximum input sequence length to be used at training. Larger values result in more VRAM usage. + """ + + model: str = "fast_speech" + base_model: str = "forward_tts" + + # model specific params + model_args: ForwardTTSArgs = field(default_factory=lambda: ForwardTTSArgs(use_pitch=False)) + + # multi-speaker settings + num_speakers: int = 0 + speakers_file: str = None + use_speaker_embedding: bool = False + use_d_vector_file: bool = False + d_vector_file: str = False + d_vector_dim: int = 0 + + # optimizer parameters + optimizer: str = "Adam" + optimizer_params: dict = field(default_factory=lambda: {"betas": [0.9, 0.998], "weight_decay": 1e-6}) + lr_scheduler: str = "NoamLR" + lr_scheduler_params: dict = field(default_factory=lambda: {"warmup_steps": 4000}) + lr: float = 1e-4 + grad_clip: float = 5.0 + + # loss params + spec_loss_type: str = "mse" + duration_loss_type: str = "mse" + use_ssim_loss: bool = True + ssim_loss_alpha: float = 1.0 + dur_loss_alpha: float = 1.0 + spec_loss_alpha: float = 1.0 + pitch_loss_alpha: float = 0.0 + aligner_loss_alpha: float = 1.0 + binary_align_loss_alpha: float = 1.0 + binary_loss_warmup_epochs: int = 150 + + # overrides + min_seq_len: int = 13 + max_seq_len: int = 200 + r: int = 1 # DO NOT CHANGE + + # dataset configs + compute_f0: bool = False + f0_cache_path: str = None + + # testing + test_sentences: List[str] = field( + default_factory=lambda: [ + "It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent.", + "Be a voice, not an echo.", + "I'm sorry Dave. I'm afraid I can't do that.", + "This cake is great. It's so delicious and moist.", + "Prior to November 22, 1963.", + ] + ) + + def __post_init__(self): + # Pass multi-speaker parameters to the model args as `model.init_multispeaker()` looks for it there. + if self.num_speakers > 0: + self.model_args.num_speakers = self.num_speakers + + # speaker embedding settings + if self.use_speaker_embedding: + self.model_args.use_speaker_embedding = True + if self.speakers_file: + self.model_args.speakers_file = self.speakers_file + + # d-vector settings + if self.use_d_vector_file: + self.model_args.use_d_vector_file = True + if self.d_vector_dim is not None and self.d_vector_dim > 0: + self.model_args.d_vector_dim = self.d_vector_dim + if self.d_vector_file: + self.model_args.d_vector_file = self.d_vector_file diff --git a/TTS/TTS/tts/configs/fastspeech2_config.py b/TTS/TTS/tts/configs/fastspeech2_config.py new file mode 100644 index 0000000000000000000000000000000000000000..d179617fb034fff269355ce7e3d78b67db90aacd --- /dev/null +++ b/TTS/TTS/tts/configs/fastspeech2_config.py @@ -0,0 +1,198 @@ +from dataclasses import dataclass, field +from typing import List + +from TTS.tts.configs.shared_configs import BaseTTSConfig +from TTS.tts.models.forward_tts import ForwardTTSArgs + + +@dataclass +class Fastspeech2Config(BaseTTSConfig): + """Configure `ForwardTTS` as FastPitch model. + + Example: + + >>> from TTS.tts.configs.fastspeech2_config import FastSpeech2Config + >>> config = FastSpeech2Config() + + Args: + model (str): + Model name used for selecting the right model at initialization. Defaults to `fast_pitch`. + + base_model (str): + Name of the base model being configured as this model so that ๐Ÿธ TTS knows it needs to initiate + the base model rather than searching for the `model` implementation. Defaults to `forward_tts`. + + model_args (Coqpit): + Model class arguments. Check `FastPitchArgs` for more details. Defaults to `FastPitchArgs()`. + + data_dep_init_steps (int): + Number of steps used for computing normalization parameters at the beginning of the training. GlowTTS uses + Activation Normalization that pre-computes normalization stats at the beginning and use the same values + for the rest. Defaults to 10. + + speakers_file (str): + Path to the file containing the list of speakers. Needed at inference for loading matching speaker ids to + speaker names. Defaults to `None`. + + use_speaker_embedding (bool): + enable / disable using speaker embeddings for multi-speaker models. If set True, the model is + in the multi-speaker mode. Defaults to False. + + use_d_vector_file (bool): + enable /disable using external speaker embeddings in place of the learned embeddings. Defaults to False. + + d_vector_file (str): + Path to the file including pre-computed speaker embeddings. Defaults to None. + + d_vector_dim (int): + Dimension of the external speaker embeddings. Defaults to 0. + + optimizer (str): + Name of the model optimizer. Defaults to `Adam`. + + optimizer_params (dict): + Arguments of the model optimizer. Defaults to `{"betas": [0.9, 0.998], "weight_decay": 1e-6}`. + + lr_scheduler (str): + Name of the learning rate scheduler. Defaults to `Noam`. + + lr_scheduler_params (dict): + Arguments of the learning rate scheduler. Defaults to `{"warmup_steps": 4000}`. + + lr (float): + Initial learning rate. Defaults to `1e-3`. + + grad_clip (float): + Gradient norm clipping value. Defaults to `5.0`. + + spec_loss_type (str): + Type of the spectrogram loss. Check `ForwardTTSLoss` for possible values. Defaults to `mse`. + + duration_loss_type (str): + Type of the duration loss. Check `ForwardTTSLoss` for possible values. Defaults to `mse`. + + use_ssim_loss (bool): + Enable/disable the use of SSIM (Structural Similarity) loss. Defaults to True. + + wd (float): + Weight decay coefficient. Defaults to `1e-7`. + + ssim_loss_alpha (float): + Weight for the SSIM loss. If set 0, disables the SSIM loss. Defaults to 1.0. + + dur_loss_alpha (float): + Weight for the duration predictor's loss. If set 0, disables the huber loss. Defaults to 1.0. + + spec_loss_alpha (float): + Weight for the L1 spectrogram loss. If set 0, disables the L1 loss. Defaults to 1.0. + + pitch_loss_alpha (float): + Weight for the pitch predictor's loss. If set 0, disables the pitch predictor. Defaults to 1.0. + + energy_loss_alpha (float): + Weight for the energy predictor's loss. If set 0, disables the energy predictor. Defaults to 1.0. + + binary_align_loss_alpha (float): + Weight for the binary loss. If set 0, disables the binary loss. Defaults to 1.0. + + binary_loss_warmup_epochs (float): + Number of epochs to gradually increase the binary loss impact. Defaults to 150. + + min_seq_len (int): + Minimum input sequence length to be used at training. + + max_seq_len (int): + Maximum input sequence length to be used at training. Larger values result in more VRAM usage. + + # dataset configs + compute_f0(bool): + Compute pitch. defaults to True + + f0_cache_path(str): + pith cache path. defaults to None + + # dataset configs + compute_energy(bool): + Compute energy. defaults to True + + energy_cache_path(str): + energy cache path. defaults to None + """ + + model: str = "fastspeech2" + base_model: str = "forward_tts" + + # model specific params + model_args: ForwardTTSArgs = field(default_factory=lambda: ForwardTTSArgs(use_pitch=True, use_energy=True)) + + # multi-speaker settings + num_speakers: int = 0 + speakers_file: str = None + use_speaker_embedding: bool = False + use_d_vector_file: bool = False + d_vector_file: str = False + d_vector_dim: int = 0 + + # optimizer parameters + optimizer: str = "Adam" + optimizer_params: dict = field(default_factory=lambda: {"betas": [0.9, 0.998], "weight_decay": 1e-6}) + lr_scheduler: str = "NoamLR" + lr_scheduler_params: dict = field(default_factory=lambda: {"warmup_steps": 4000}) + lr: float = 1e-4 + grad_clip: float = 5.0 + + # loss params + spec_loss_type: str = "mse" + duration_loss_type: str = "mse" + use_ssim_loss: bool = True + ssim_loss_alpha: float = 1.0 + spec_loss_alpha: float = 1.0 + aligner_loss_alpha: float = 1.0 + pitch_loss_alpha: float = 0.1 + energy_loss_alpha: float = 0.1 + dur_loss_alpha: float = 0.1 + binary_align_loss_alpha: float = 0.1 + binary_loss_warmup_epochs: int = 150 + + # overrides + min_seq_len: int = 13 + max_seq_len: int = 200 + r: int = 1 # DO NOT CHANGE + + # dataset configs + compute_f0: bool = True + f0_cache_path: str = None + + # dataset configs + compute_energy: bool = True + energy_cache_path: str = None + + # testing + test_sentences: List[str] = field( + default_factory=lambda: [ + "It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent.", + "Be a voice, not an echo.", + "I'm sorry Dave. I'm afraid I can't do that.", + "This cake is great. It's so delicious and moist.", + "Prior to November 22, 1963.", + ] + ) + + def __post_init__(self): + # Pass multi-speaker parameters to the model args as `model.init_multispeaker()` looks for it there. + if self.num_speakers > 0: + self.model_args.num_speakers = self.num_speakers + + # speaker embedding settings + if self.use_speaker_embedding: + self.model_args.use_speaker_embedding = True + if self.speakers_file: + self.model_args.speakers_file = self.speakers_file + + # d-vector settings + if self.use_d_vector_file: + self.model_args.use_d_vector_file = True + if self.d_vector_dim is not None and self.d_vector_dim > 0: + self.model_args.d_vector_dim = self.d_vector_dim + if self.d_vector_file: + self.model_args.d_vector_file = self.d_vector_file diff --git a/TTS/TTS/tts/configs/glow_tts_config.py b/TTS/TTS/tts/configs/glow_tts_config.py new file mode 100644 index 0000000000000000000000000000000000000000..f42f3e5a510bacf1b2312ccea7d46201bbcb774f --- /dev/null +++ b/TTS/TTS/tts/configs/glow_tts_config.py @@ -0,0 +1,182 @@ +from dataclasses import dataclass, field +from typing import List + +from TTS.tts.configs.shared_configs import BaseTTSConfig + + +@dataclass +class GlowTTSConfig(BaseTTSConfig): + """Defines parameters for GlowTTS model. + + Example: + + >>> from TTS.tts.configs.glow_tts_config import GlowTTSConfig + >>> config = GlowTTSConfig() + + Args: + model(str): + Model name used for selecting the right model at initialization. Defaults to `glow_tts`. + encoder_type (str): + Type of the encoder used by the model. Look at `TTS.tts.layers.glow_tts.encoder` for more details. + Defaults to `rel_pos_transformers`. + encoder_params (dict): + Parameters used to define the encoder network. Look at `TTS.tts.layers.glow_tts.encoder` for more details. + Defaults to `{"kernel_size": 3, "dropout_p": 0.1, "num_layers": 6, "num_heads": 2, "hidden_channels_ffn": 768}` + use_encoder_prenet (bool): + enable / disable the use of a prenet for the encoder. Defaults to True. + hidden_channels_enc (int): + Number of base hidden channels used by the encoder network. It defines the input and the output channel sizes, + and for some encoder types internal hidden channels sizes too. Defaults to 192. + hidden_channels_dec (int): + Number of base hidden channels used by the decoder WaveNet network. Defaults to 192 as in the original work. + hidden_channels_dp (int): + Number of layer channels of the duration predictor network. Defaults to 256 as in the original work. + mean_only (bool): + If true predict only the mean values by the decoder flow. Defaults to True. + out_channels (int): + Number of channels of the model output tensor. Defaults to 80. + num_flow_blocks_dec (int): + Number of decoder blocks. Defaults to 12. + inference_noise_scale (float): + Noise scale used at inference. Defaults to 0.33. + kernel_size_dec (int): + Decoder kernel size. Defaults to 5 + dilation_rate (int): + Rate to increase dilation by each layer in a decoder block. Defaults to 1. + num_block_layers (int): + Number of decoder layers in each decoder block. Defaults to 4. + dropout_p_dec (float): + Dropout rate for decoder. Defaults to 0.1. + num_speaker (int): + Number of speaker to define the size of speaker embedding layer. Defaults to 0. + c_in_channels (int): + Number of speaker embedding channels. It is set to 512 if embeddings are learned. Defaults to 0. + num_splits (int): + Number of split levels in inversible conv1x1 operation. Defaults to 4. + num_squeeze (int): + Number of squeeze levels. When squeezing channels increases and time steps reduces by the factor + 'num_squeeze'. Defaults to 2. + sigmoid_scale (bool): + enable/disable sigmoid scaling in decoder. Defaults to False. + mean_only (bool): + If True, encoder only computes mean value and uses constant variance for each time step. Defaults to true. + encoder_type (str): + Encoder module type. Possible values are`["rel_pos_transformer", "gated_conv", "residual_conv_bn", "time_depth_separable"]` + Check `TTS.tts.layers.glow_tts.encoder` for more details. Defaults to `rel_pos_transformers` as in the original paper. + encoder_params (dict): + Encoder module parameters. Defaults to None. + d_vector_dim (int): + Channels of external speaker embedding vectors. Defaults to 0. + data_dep_init_steps (int): + Number of steps used for computing normalization parameters at the beginning of the training. GlowTTS uses + Activation Normalization that pre-computes normalization stats at the beginning and use the same values + for the rest. Defaults to 10. + style_wav_for_test (str): + Path to the wav file used for changing the style of the speech. Defaults to None. + inference_noise_scale (float): + Variance used for sampling the random noise added to the decoder's input at inference. Defaults to 0.0. + length_scale (float): + Multiply the predicted durations with this value to change the speech speed. Defaults to 1. + use_speaker_embedding (bool): + enable / disable using speaker embeddings for multi-speaker models. If set True, the model is + in the multi-speaker mode. Defaults to False. + use_d_vector_file (bool): + enable /disable using external speaker embeddings in place of the learned embeddings. Defaults to False. + d_vector_file (str): + Path to the file including pre-computed speaker embeddings. Defaults to None. + noam_schedule (bool): + enable / disable the use of Noam LR scheduler. Defaults to False. + warmup_steps (int): + Number of warm-up steps for the Noam scheduler. Defaults 4000. + lr (float): + Initial learning rate. Defaults to `1e-3`. + wd (float): + Weight decay coefficient. Defaults to `1e-7`. + min_seq_len (int): + Minimum input sequence length to be used at training. + max_seq_len (int): + Maximum input sequence length to be used at training. Larger values result in more VRAM usage. + """ + + model: str = "glow_tts" + + # model params + num_chars: int = None + encoder_type: str = "rel_pos_transformer" + encoder_params: dict = field( + default_factory=lambda: { + "kernel_size": 3, + "dropout_p": 0.1, + "num_layers": 6, + "num_heads": 2, + "hidden_channels_ffn": 768, + } + ) + use_encoder_prenet: bool = True + hidden_channels_enc: int = 192 + hidden_channels_dec: int = 192 + hidden_channels_dp: int = 256 + dropout_p_dp: float = 0.1 + dropout_p_dec: float = 0.05 + mean_only: bool = True + out_channels: int = 80 + num_flow_blocks_dec: int = 12 + inference_noise_scale: float = 0.33 + kernel_size_dec: int = 5 + dilation_rate: int = 1 + num_block_layers: int = 4 + num_speakers: int = 0 + c_in_channels: int = 0 + num_splits: int = 4 + num_squeeze: int = 2 + sigmoid_scale: bool = False + encoder_type: str = "rel_pos_transformer" + encoder_params: dict = field( + default_factory=lambda: { + "kernel_size": 3, + "dropout_p": 0.1, + "num_layers": 6, + "num_heads": 2, + "hidden_channels_ffn": 768, + "input_length": None, + } + ) + d_vector_dim: int = 0 + + # training params + data_dep_init_steps: int = 10 + + # inference params + style_wav_for_test: str = None + inference_noise_scale: float = 0.0 + length_scale: float = 1.0 + + # multi-speaker settings + use_speaker_embedding: bool = False + speakers_file: str = None + use_d_vector_file: bool = False + d_vector_file: str = False + + # optimizer parameters + optimizer: str = "RAdam" + optimizer_params: dict = field(default_factory=lambda: {"betas": [0.9, 0.998], "weight_decay": 1e-6}) + lr_scheduler: str = "NoamLR" + lr_scheduler_params: dict = field(default_factory=lambda: {"warmup_steps": 4000}) + grad_clip: float = 5.0 + lr: float = 1e-3 + + # overrides + min_seq_len: int = 3 + max_seq_len: int = 500 + r: int = 1 # DO NOT CHANGE - TODO: make this immutable once coqpit implements it. + + # testing + test_sentences: List[str] = field( + default_factory=lambda: [ + "It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent.", + "Be a voice, not an echo.", + "I'm sorry Dave. I'm afraid I can't do that.", + "This cake is great. It's so delicious and moist.", + "Prior to November 22, 1963.", + ] + ) diff --git a/TTS/TTS/tts/configs/neuralhmm_tts_config.py b/TTS/TTS/tts/configs/neuralhmm_tts_config.py new file mode 100644 index 0000000000000000000000000000000000000000..50f72847ed3e1c7089915ef8fd77ae5775c5b260 --- /dev/null +++ b/TTS/TTS/tts/configs/neuralhmm_tts_config.py @@ -0,0 +1,170 @@ +from dataclasses import dataclass, field +from typing import List + +from TTS.tts.configs.shared_configs import BaseTTSConfig + + +@dataclass +class NeuralhmmTTSConfig(BaseTTSConfig): + """ + Define parameters for Neural HMM TTS model. + + Example: + + >>> from TTS.tts.configs.overflow_config import OverflowConfig + >>> config = OverflowConfig() + + Args: + model (str): + Model name used to select the right model class to initilize. Defaults to `Overflow`. + run_eval_steps (int): + Run evalulation epoch after N steps. If None, waits until training epoch is completed. Defaults to None. + save_step (int): + Save local checkpoint every save_step steps. Defaults to 500. + plot_step (int): + Plot training stats on the logger every plot_step steps. Defaults to 1. + model_param_stats (bool): + Log model parameters stats on the logger dashboard. Defaults to False. + force_generate_statistics (bool): + Force generate mel normalization statistics. Defaults to False. + mel_statistics_parameter_path (str): + Path to the mel normalization statistics.If the model doesn't finds a file there it will generate statistics. + Defaults to None. + num_chars (int): + Number of characters used by the model. It must be defined before initializing the model. Defaults to None. + state_per_phone (int): + Generates N states per phone. Similar, to `add_blank` parameter in GlowTTS but in Overflow it is upsampled by model's encoder. Defaults to 2. + encoder_in_out_features (int): + Channels of encoder input and character embedding tensors. Defaults to 512. + encoder_n_convolutions (int): + Number of convolution layers in the encoder. Defaults to 3. + out_channels (int): + Channels of the final model output. It must match the spectragram size. Defaults to 80. + ar_order (int): + Autoregressive order of the model. Defaults to 1. In ablations of Neural HMM it was found that more autoregression while giving more variation hurts naturalness of the synthesised audio. + sampling_temp (float): + Variation added to the sample from the latent space of neural HMM. Defaults to 0.334. + deterministic_transition (bool): + deterministic duration generation based on duration quantiles as defiend in "S. Ronanki, O. Watts, S. King, and G. E. Henter, โ€œMedianbased generation of synthetic speech durations using a nonparametric approach,โ€ in Proc. SLT, 2016.". Defaults to True. + duration_threshold (float): + Threshold for duration quantiles. Defaults to 0.55. Tune this to change the speaking rate of the synthesis, where lower values defines a slower speaking rate and higher values defines a faster speaking rate. + use_grad_checkpointing (bool): + Use gradient checkpointing to save memory. In a multi-GPU setting currently pytorch does not supports gradient checkpoint inside a loop so we will have to turn it off then.Adjust depending on whatever get more batch size either by using a single GPU or multi-GPU. Defaults to True. + max_sampling_time (int): + Maximum sampling time while synthesising latents from neural HMM. Defaults to 1000. + prenet_type (str): + `original` or `bn`. `original` sets the default Prenet and `bn` uses Batch Normalization version of the + Prenet. Defaults to `original`. + prenet_dim (int): + Dimension of the Prenet. Defaults to 256. + prenet_n_layers (int): + Number of layers in the Prenet. Defaults to 2. + prenet_dropout (float): + Dropout rate of the Prenet. Defaults to 0.5. + prenet_dropout_at_inference (bool): + Use dropout at inference time. Defaults to False. + memory_rnn_dim (int): + Dimension of the memory LSTM to process the prenet output. Defaults to 1024. + outputnet_size (list[int]): + Size of the output network inside the neural HMM. Defaults to [1024]. + flat_start_params (dict): + Parameters for the flat start initialization of the neural HMM. Defaults to `{"mean": 0.0, "std": 1.0, "transition_p": 0.14}`. + It will be recomputed when you pass the dataset. + std_floor (float): + Floor value for the standard deviation of the neural HMM. Prevents model cheating by putting point mass and getting infinite likelihood at any datapoint. Defaults to 0.01. + It is called `variance flooring` in standard HMM literature. + optimizer (str): + Optimizer to use for training. Defaults to `adam`. + optimizer_params (dict): + Parameters for the optimizer. Defaults to `{"weight_decay": 1e-6}`. + grad_clip (float): + Gradient clipping threshold. Defaults to 40_000. + lr (float): + Learning rate. Defaults to 1e-3. + lr_scheduler (str): + Learning rate scheduler for the training. Use one from `torch.optim.Scheduler` schedulers or + `TTS.utils.training`. Defaults to `None`. + min_seq_len (int): + Minimum input sequence length to be used at training. + max_seq_len (int): + Maximum input sequence length to be used at training. Larger values result in more VRAM usage. + """ + + model: str = "NeuralHMM_TTS" + + # Training and Checkpoint configs + run_eval_steps: int = 100 + save_step: int = 500 + plot_step: int = 1 + model_param_stats: bool = False + + # data parameters + force_generate_statistics: bool = False + mel_statistics_parameter_path: str = None + + # Encoder parameters + num_chars: int = None + state_per_phone: int = 2 + encoder_in_out_features: int = 512 + encoder_n_convolutions: int = 3 + + # HMM parameters + out_channels: int = 80 + ar_order: int = 1 + sampling_temp: float = 0 + deterministic_transition: bool = True + duration_threshold: float = 0.43 + use_grad_checkpointing: bool = True + max_sampling_time: int = 1000 + + ## Prenet parameters + prenet_type: str = "original" + prenet_dim: int = 256 + prenet_n_layers: int = 2 + prenet_dropout: float = 0.5 + prenet_dropout_at_inference: bool = True + memory_rnn_dim: int = 1024 + + ## Outputnet parameters + outputnet_size: List[int] = field(default_factory=lambda: [1024]) + flat_start_params: dict = field(default_factory=lambda: {"mean": 0.0, "std": 1.0, "transition_p": 0.14}) + std_floor: float = 0.001 + + # optimizer parameters + optimizer: str = "Adam" + optimizer_params: dict = field(default_factory=lambda: {"weight_decay": 1e-6}) + grad_clip: float = 40000.0 + lr: float = 1e-3 + lr_scheduler: str = None + + # overrides + min_text_len: int = 10 + max_text_len: int = 500 + min_audio_len: int = 512 + + # testing + test_sentences: List[str] = field( + default_factory=lambda: [ + "Be a voice, not an echo.", + ] + ) + + # Extra needed config + r: int = 1 + use_d_vector_file: bool = False + use_speaker_embedding: bool = False + + def check_values(self): + """Validate the hyperparameters. + + Raises: + AssertionError: when the parameters network is not defined + AssertionError: transition probability is not between 0 and 1 + """ + assert self.ar_order > 0, "AR order must be greater than 0 it is an autoregressive model." + assert ( + len(self.outputnet_size) >= 1 + ), f"Parameter Network must have atleast one layer check the config file for parameter network. Provided: {self.parameternetwork}" + assert ( + 0 < self.flat_start_params["transition_p"] < 1 + ), f"Transition probability must be between 0 and 1. Provided: {self.flat_start_params['transition_p']}" diff --git a/TTS/TTS/tts/configs/overflow_config.py b/TTS/TTS/tts/configs/overflow_config.py new file mode 100644 index 0000000000000000000000000000000000000000..dc3e5548b8f62f76c88acca85d19e2cee8687ebd --- /dev/null +++ b/TTS/TTS/tts/configs/overflow_config.py @@ -0,0 +1,201 @@ +from dataclasses import dataclass, field +from typing import List + +from TTS.tts.configs.shared_configs import BaseTTSConfig + + +@dataclass +class OverflowConfig(BaseTTSConfig): # The classname has to be camel case + """ + Define parameters for OverFlow model. + + Example: + + >>> from TTS.tts.configs.overflow_config import OverflowConfig + >>> config = OverflowConfig() + + Args: + model (str): + Model name used to select the right model class to initilize. Defaults to `Overflow`. + run_eval_steps (int): + Run evalulation epoch after N steps. If None, waits until training epoch is completed. Defaults to None. + save_step (int): + Save local checkpoint every save_step steps. Defaults to 500. + plot_step (int): + Plot training stats on the logger every plot_step steps. Defaults to 1. + model_param_stats (bool): + Log model parameters stats on the logger dashboard. Defaults to False. + force_generate_statistics (bool): + Force generate mel normalization statistics. Defaults to False. + mel_statistics_parameter_path (str): + Path to the mel normalization statistics.If the model doesn't finds a file there it will generate statistics. + Defaults to None. + num_chars (int): + Number of characters used by the model. It must be defined before initializing the model. Defaults to None. + state_per_phone (int): + Generates N states per phone. Similar, to `add_blank` parameter in GlowTTS but in Overflow it is upsampled by model's encoder. Defaults to 2. + encoder_in_out_features (int): + Channels of encoder input and character embedding tensors. Defaults to 512. + encoder_n_convolutions (int): + Number of convolution layers in the encoder. Defaults to 3. + out_channels (int): + Channels of the final model output. It must match the spectragram size. Defaults to 80. + ar_order (int): + Autoregressive order of the model. Defaults to 1. In ablations of Neural HMM it was found that more autoregression while giving more variation hurts naturalness of the synthesised audio. + sampling_temp (float): + Variation added to the sample from the latent space of neural HMM. Defaults to 0.334. + deterministic_transition (bool): + deterministic duration generation based on duration quantiles as defiend in "S. Ronanki, O. Watts, S. King, and G. E. Henter, โ€œMedianbased generation of synthetic speech durations using a nonparametric approach,โ€ in Proc. SLT, 2016.". Defaults to True. + duration_threshold (float): + Threshold for duration quantiles. Defaults to 0.55. Tune this to change the speaking rate of the synthesis, where lower values defines a slower speaking rate and higher values defines a faster speaking rate. + use_grad_checkpointing (bool): + Use gradient checkpointing to save memory. In a multi-GPU setting currently pytorch does not supports gradient checkpoint inside a loop so we will have to turn it off then.Adjust depending on whatever get more batch size either by using a single GPU or multi-GPU. Defaults to True. + max_sampling_time (int): + Maximum sampling time while synthesising latents from neural HMM. Defaults to 1000. + prenet_type (str): + `original` or `bn`. `original` sets the default Prenet and `bn` uses Batch Normalization version of the + Prenet. Defaults to `original`. + prenet_dim (int): + Dimension of the Prenet. Defaults to 256. + prenet_n_layers (int): + Number of layers in the Prenet. Defaults to 2. + prenet_dropout (float): + Dropout rate of the Prenet. Defaults to 0.5. + prenet_dropout_at_inference (bool): + Use dropout at inference time. Defaults to False. + memory_rnn_dim (int): + Dimension of the memory LSTM to process the prenet output. Defaults to 1024. + outputnet_size (list[int]): + Size of the output network inside the neural HMM. Defaults to [1024]. + flat_start_params (dict): + Parameters for the flat start initialization of the neural HMM. Defaults to `{"mean": 0.0, "std": 1.0, "transition_p": 0.14}`. + It will be recomputed when you pass the dataset. + std_floor (float): + Floor value for the standard deviation of the neural HMM. Prevents model cheating by putting point mass and getting infinite likelihood at any datapoint. Defaults to 0.01. + It is called `variance flooring` in standard HMM literature. + hidden_channels_dec (int): + Number of base hidden channels used by the decoder WaveNet network. Defaults to 150. + kernel_size_dec (int): + Decoder kernel size. Defaults to 5 + dilation_rate (int): + Rate to increase dilation by each layer in a decoder block. Defaults to 1. + num_flow_blocks_dec (int): + Number of decoder layers in each decoder block. Defaults to 4. + dropout_p_dec (float): + Dropout rate of the decoder. Defaults to 0.05. + num_splits (int): + Number of split levels in inversible conv1x1 operation. Defaults to 4. + num_squeeze (int): + Number of squeeze levels. When squeezing channels increases and time steps reduces by the factor + 'num_squeeze'. Defaults to 2. + sigmoid_scale (bool): + enable/disable sigmoid scaling in decoder. Defaults to False. + c_in_channels (int): + Unused parameter from GlowTTS's decoder. Defaults to 0. + optimizer (str): + Optimizer to use for training. Defaults to `adam`. + optimizer_params (dict): + Parameters for the optimizer. Defaults to `{"weight_decay": 1e-6}`. + grad_clip (float): + Gradient clipping threshold. Defaults to 40_000. + lr (float): + Learning rate. Defaults to 1e-3. + lr_scheduler (str): + Learning rate scheduler for the training. Use one from `torch.optim.Scheduler` schedulers or + `TTS.utils.training`. Defaults to `None`. + min_seq_len (int): + Minimum input sequence length to be used at training. + max_seq_len (int): + Maximum input sequence length to be used at training. Larger values result in more VRAM usage. + """ + + model: str = "Overflow" + + # Training and Checkpoint configs + run_eval_steps: int = 100 + save_step: int = 500 + plot_step: int = 1 + model_param_stats: bool = False + + # data parameters + force_generate_statistics: bool = False + mel_statistics_parameter_path: str = None + + # Encoder parameters + num_chars: int = None + state_per_phone: int = 2 + encoder_in_out_features: int = 512 + encoder_n_convolutions: int = 3 + + # HMM parameters + out_channels: int = 80 + ar_order: int = 1 + sampling_temp: float = 0.334 + deterministic_transition: bool = True + duration_threshold: float = 0.55 + use_grad_checkpointing: bool = True + max_sampling_time: int = 1000 + + ## Prenet parameters + prenet_type: str = "original" + prenet_dim: int = 256 + prenet_n_layers: int = 2 + prenet_dropout: float = 0.5 + prenet_dropout_at_inference: bool = False + memory_rnn_dim: int = 1024 + + ## Outputnet parameters + outputnet_size: List[int] = field(default_factory=lambda: [1024]) + flat_start_params: dict = field(default_factory=lambda: {"mean": 0.0, "std": 1.0, "transition_p": 0.14}) + std_floor: float = 0.01 + + # Decoder parameters + hidden_channels_dec: int = 150 + kernel_size_dec: int = 5 + dilation_rate: int = 1 + num_flow_blocks_dec: int = 12 + num_block_layers: int = 4 + dropout_p_dec: float = 0.05 + num_splits: int = 4 + num_squeeze: int = 2 + sigmoid_scale: bool = False + c_in_channels: int = 0 + + # optimizer parameters + optimizer: str = "Adam" + optimizer_params: dict = field(default_factory=lambda: {"weight_decay": 1e-6}) + grad_clip: float = 40000.0 + lr: float = 1e-3 + lr_scheduler: str = None + + # overrides + min_text_len: int = 10 + max_text_len: int = 500 + min_audio_len: int = 512 + + # testing + test_sentences: List[str] = field( + default_factory=lambda: [ + "Be a voice, not an echo.", + ] + ) + + # Extra needed config + r: int = 1 + use_d_vector_file: bool = False + use_speaker_embedding: bool = False + + def check_values(self): + """Validate the hyperparameters. + + Raises: + AssertionError: when the parameters network is not defined + AssertionError: transition probability is not between 0 and 1 + """ + assert self.ar_order > 0, "AR order must be greater than 0 it is an autoregressive model." + assert ( + len(self.outputnet_size) >= 1 + ), f"Parameter Network must have atleast one layer check the config file for parameter network. Provided: {self.parameternetwork}" + assert ( + 0 < self.flat_start_params["transition_p"] < 1 + ), f"Transition probability must be between 0 and 1. Provided: {self.flat_start_params['transition_p']}" diff --git a/TTS/TTS/tts/configs/shared_configs.py b/TTS/TTS/tts/configs/shared_configs.py new file mode 100644 index 0000000000000000000000000000000000000000..bf17322c190bb234d4e27c6196e53b276fb5f09d --- /dev/null +++ b/TTS/TTS/tts/configs/shared_configs.py @@ -0,0 +1,344 @@ +from dataclasses import asdict, dataclass, field +from typing import Dict, List + +from coqpit import Coqpit, check_argument + +from TTS.config import BaseAudioConfig, BaseDatasetConfig, BaseTrainingConfig + + +@dataclass +class GSTConfig(Coqpit): + """Defines the Global Style Token Module + + Args: + gst_style_input_wav (str): + Path to the wav file used to define the style of the output speech at inference. Defaults to None. + + gst_style_input_weights (dict): + Defines the weights for each style token used at inference. Defaults to None. + + gst_embedding_dim (int): + Defines the size of the GST embedding vector dimensions. Defaults to 256. + + gst_num_heads (int): + Number of attention heads used by the multi-head attention. Defaults to 4. + + gst_num_style_tokens (int): + Number of style token vectors. Defaults to 10. + """ + + gst_style_input_wav: str = None + gst_style_input_weights: dict = None + gst_embedding_dim: int = 256 + gst_use_speaker_embedding: bool = False + gst_num_heads: int = 4 + gst_num_style_tokens: int = 10 + + def check_values( + self, + ): + """Check config fields""" + c = asdict(self) + super().check_values() + check_argument("gst_style_input_weights", c, restricted=False) + check_argument("gst_style_input_wav", c, restricted=False) + check_argument("gst_embedding_dim", c, restricted=True, min_val=0, max_val=1000) + check_argument("gst_use_speaker_embedding", c, restricted=False) + check_argument("gst_num_heads", c, restricted=True, min_val=2, max_val=10) + check_argument("gst_num_style_tokens", c, restricted=True, min_val=1, max_val=1000) + + +@dataclass +class CapacitronVAEConfig(Coqpit): + """Defines the capacitron VAE Module + Args: + capacitron_capacity (int): + Defines the variational capacity limit of the prosody embeddings. Defaults to 150. + capacitron_VAE_embedding_dim (int): + Defines the size of the Capacitron embedding vector dimension. Defaults to 128. + capacitron_use_text_summary_embeddings (bool): + If True, use a text summary embedding in Capacitron. Defaults to True. + capacitron_text_summary_embedding_dim (int): + Defines the size of the capacitron text embedding vector dimension. Defaults to 128. + capacitron_use_speaker_embedding (bool): + if True use speaker embeddings in Capacitron. Defaults to False. + capacitron_VAE_loss_alpha (float): + Weight for the VAE loss of the Tacotron model. If set less than or equal to zero, it disables the + corresponding loss function. Defaults to 0.25 + capacitron_grad_clip (float): + Gradient clipping value for all gradients except beta. Defaults to 5.0 + """ + + capacitron_loss_alpha: int = 1 + capacitron_capacity: int = 150 + capacitron_VAE_embedding_dim: int = 128 + capacitron_use_text_summary_embeddings: bool = True + capacitron_text_summary_embedding_dim: int = 128 + capacitron_use_speaker_embedding: bool = False + capacitron_VAE_loss_alpha: float = 0.25 + capacitron_grad_clip: float = 5.0 + + def check_values( + self, + ): + """Check config fields""" + c = asdict(self) + super().check_values() + check_argument("capacitron_capacity", c, restricted=True, min_val=10, max_val=500) + check_argument("capacitron_VAE_embedding_dim", c, restricted=True, min_val=16, max_val=1024) + check_argument("capacitron_use_speaker_embedding", c, restricted=False) + check_argument("capacitron_text_summary_embedding_dim", c, restricted=False, min_val=16, max_val=512) + check_argument("capacitron_VAE_loss_alpha", c, restricted=False) + check_argument("capacitron_grad_clip", c, restricted=False) + + +@dataclass +class CharactersConfig(Coqpit): + """Defines arguments for the `BaseCharacters` or `BaseVocabulary` and their subclasses. + + Args: + characters_class (str): + Defines the class of the characters used. If None, we pick ```Phonemes``` or ```Graphemes``` based on + the configuration. Defaults to None. + + vocab_dict (dict): + Defines the vocabulary dictionary used to encode the characters. Defaults to None. + + pad (str): + characters in place of empty padding. Defaults to None. + + eos (str): + characters showing the end of a sentence. Defaults to None. + + bos (str): + characters showing the beginning of a sentence. Defaults to None. + + blank (str): + Optional character used between characters by some models for better prosody. Defaults to `_blank`. + + characters (str): + character set used by the model. Characters not in this list are ignored when converting input text to + a list of sequence IDs. Defaults to None. + + punctuations (str): + characters considered as punctuation as parsing the input sentence. Defaults to None. + + phonemes (str): + characters considered as parsing phonemes. This is only for backwards compat. Use `characters` for new + models. Defaults to None. + + is_unique (bool): + remove any duplicate characters in the character lists. It is a bandaid for compatibility with the old + models trained with character lists with duplicates. Defaults to True. + + is_sorted (bool): + Sort the characters in alphabetical order. Defaults to True. + """ + + characters_class: str = None + + # using BaseVocabulary + vocab_dict: Dict = None + + # using on BaseCharacters + pad: str = None + eos: str = None + bos: str = None + blank: str = None + characters: str = None + punctuations: str = None + phonemes: str = None + is_unique: bool = True # for backwards compatibility of models trained with char sets with duplicates + is_sorted: bool = True + + +@dataclass +class BaseTTSConfig(BaseTrainingConfig): + """Shared parameters among all the tts models. + + Args: + + audio (BaseAudioConfig): + Audio processor config object instance. + + use_phonemes (bool): + enable / disable phoneme use. + + phonemizer (str): + Name of the phonemizer to use. If set None, the phonemizer will be selected by `phoneme_language`. + Defaults to None. + + phoneme_language (str): + Language code for the phonemizer. You can check the list of supported languages by running + `python TTS/tts/utils/text/phonemizers/__init__.py`. Defaults to None. + + compute_input_seq_cache (bool): + enable / disable precomputation of the phoneme sequences. At the expense of some delay at the beginning of + the training, It allows faster data loader time and precise limitation with `max_seq_len` and + `min_seq_len`. + + text_cleaner (str): + Name of the text cleaner used for cleaning and formatting transcripts. + + enable_eos_bos_chars (bool): + enable / disable the use of eos and bos characters. + + test_senteces_file (str): + Path to a txt file that has sentences used at test time. The file must have a sentence per line. + + phoneme_cache_path (str): + Path to the output folder caching the computed phonemes for each sample. + + characters (CharactersConfig): + Instance of a CharactersConfig class. + + batch_group_size (int): + Size of the batch groups used for bucketing. By default, the dataloader orders samples by the sequence + length for a more efficient and stable training. If `batch_group_size > 1` then it performs bucketing to + prevent using the same batches for each epoch. + + loss_masking (bool): + enable / disable masking loss values against padded segments of samples in a batch. + + min_text_len (int): + Minimum length of input text to be used. All shorter samples will be ignored. Defaults to 0. + + max_text_len (int): + Maximum length of input text to be used. All longer samples will be ignored. Defaults to float("inf"). + + min_audio_len (int): + Minimum length of input audio to be used. All shorter samples will be ignored. Defaults to 0. + + max_audio_len (int): + Maximum length of input audio to be used. All longer samples will be ignored. The maximum length in the + dataset defines the VRAM used in the training. Hence, pay attention to this value if you encounter an + OOM error in training. Defaults to float("inf"). + + compute_f0 (int): + (Not in use yet). + + compute_energy (int): + (Not in use yet). + + compute_linear_spec (bool): + If True data loader computes and returns linear spectrograms alongside the other data. + + precompute_num_workers (int): + Number of workers to precompute features. Defaults to 0. + + use_noise_augment (bool): + Augment the input audio with random noise. + + start_by_longest (bool): + If True, the data loader will start loading the longest batch first. It is useful for checking OOM issues. + Defaults to False. + + shuffle (bool): + If True, the data loader will shuffle the dataset when there is not sampler defined. Defaults to True. + + drop_last (bool): + If True, the data loader will drop the last batch if it is not complete. It helps to prevent + issues that emerge from the partial batch statistics. Defaults to True. + + add_blank (bool): + Add blank characters between each other two characters. It improves performance for some models at expense + of slower run-time due to the longer input sequence. + + datasets (List[BaseDatasetConfig]): + List of datasets used for training. If multiple datasets are provided, they are merged and used together + for training. + + optimizer (str): + Optimizer used for the training. Set one from `torch.optim.Optimizer` or `TTS.utils.training`. + Defaults to ``. + + optimizer_params (dict): + Optimizer kwargs. Defaults to `{"betas": [0.8, 0.99], "weight_decay": 0.0}` + + lr_scheduler (str): + Learning rate scheduler for the training. Use one from `torch.optim.Scheduler` schedulers or + `TTS.utils.training`. Defaults to ``. + + lr_scheduler_params (dict): + Parameters for the generator learning rate scheduler. Defaults to `{"warmup": 4000}`. + + test_sentences (List[str]): + List of sentences to be used at testing. Defaults to '[]' + + eval_split_max_size (int): + Number maximum of samples to be used for evaluation in proportion split. Defaults to None (Disabled). + + eval_split_size (float): + If between 0.0 and 1.0 represents the proportion of the dataset to include in the evaluation set. + If > 1, represents the absolute number of evaluation samples. Defaults to 0.01 (1%). + + use_speaker_weighted_sampler (bool): + Enable / Disable the batch balancer by speaker. Defaults to ```False```. + + speaker_weighted_sampler_alpha (float): + Number that control the influence of the speaker sampler weights. Defaults to ```1.0```. + + use_language_weighted_sampler (bool): + Enable / Disable the batch balancer by language. Defaults to ```False```. + + language_weighted_sampler_alpha (float): + Number that control the influence of the language sampler weights. Defaults to ```1.0```. + + use_length_weighted_sampler (bool): + Enable / Disable the batch balancer by audio length. If enabled the dataset will be divided + into 10 buckets considering the min and max audio of the dataset. The sampler weights will be + computed forcing to have the same quantity of data for each bucket in each training batch. Defaults to ```False```. + + length_weighted_sampler_alpha (float): + Number that control the influence of the length sampler weights. Defaults to ```1.0```. + """ + + audio: BaseAudioConfig = field(default_factory=BaseAudioConfig) + # phoneme settings + use_phonemes: bool = False + phonemizer: str = None + phoneme_language: str = None + compute_input_seq_cache: bool = False + text_cleaner: str = None + enable_eos_bos_chars: bool = False + test_sentences_file: str = "" + phoneme_cache_path: str = None + # vocabulary parameters + characters: CharactersConfig = None + add_blank: bool = False + # training params + batch_group_size: int = 0 + loss_masking: bool = None + # dataloading + min_audio_len: int = 1 + max_audio_len: int = float("inf") + min_text_len: int = 1 + max_text_len: int = float("inf") + compute_f0: bool = False + compute_energy: bool = False + compute_linear_spec: bool = False + precompute_num_workers: int = 0 + use_noise_augment: bool = False + start_by_longest: bool = False + shuffle: bool = False + drop_last: bool = False + # dataset + datasets: List[BaseDatasetConfig] = field(default_factory=lambda: [BaseDatasetConfig()]) + # optimizer + optimizer: str = "radam" + optimizer_params: dict = None + # scheduler + lr_scheduler: str = None + lr_scheduler_params: dict = field(default_factory=lambda: {}) + # testing + test_sentences: List[str] = field(default_factory=lambda: []) + # evaluation + eval_split_max_size: int = None + eval_split_size: float = 0.01 + # weighted samplers + use_speaker_weighted_sampler: bool = False + speaker_weighted_sampler_alpha: float = 1.0 + use_language_weighted_sampler: bool = False + language_weighted_sampler_alpha: float = 1.0 + use_length_weighted_sampler: bool = False + length_weighted_sampler_alpha: float = 1.0 diff --git a/TTS/TTS/tts/configs/speedy_speech_config.py b/TTS/TTS/tts/configs/speedy_speech_config.py new file mode 100644 index 0000000000000000000000000000000000000000..bf8517dfc478a135978df19f3126313a616c14c2 --- /dev/null +++ b/TTS/TTS/tts/configs/speedy_speech_config.py @@ -0,0 +1,194 @@ +from dataclasses import dataclass, field +from typing import List + +from TTS.tts.configs.shared_configs import BaseTTSConfig +from TTS.tts.models.forward_tts import ForwardTTSArgs + + +@dataclass +class SpeedySpeechConfig(BaseTTSConfig): + """Configure `ForwardTTS` as SpeedySpeech model. + + Example: + + >>> from TTS.tts.configs.speedy_speech_config import SpeedySpeechConfig + >>> config = SpeedySpeechConfig() + + Args: + model (str): + Model name used for selecting the right model at initialization. Defaults to `speedy_speech`. + + base_model (str): + Name of the base model being configured as this model so that ๐Ÿธ TTS knows it needs to initiate + the base model rather than searching for the `model` implementation. Defaults to `forward_tts`. + + model_args (Coqpit): + Model class arguments. Check `FastPitchArgs` for more details. Defaults to `FastPitchArgs()`. + + data_dep_init_steps (int): + Number of steps used for computing normalization parameters at the beginning of the training. GlowTTS uses + Activation Normalization that pre-computes normalization stats at the beginning and use the same values + for the rest. Defaults to 10. + + speakers_file (str): + Path to the file containing the list of speakers. Needed at inference for loading matching speaker ids to + speaker names. Defaults to `None`. + + use_speaker_embedding (bool): + enable / disable using speaker embeddings for multi-speaker models. If set True, the model is + in the multi-speaker mode. Defaults to False. + + use_d_vector_file (bool): + enable /disable using external speaker embeddings in place of the learned embeddings. Defaults to False. + + d_vector_file (str): + Path to the file including pre-computed speaker embeddings. Defaults to None. + + d_vector_dim (int): + Dimension of the external speaker embeddings. Defaults to 0. + + optimizer (str): + Name of the model optimizer. Defaults to `RAdam`. + + optimizer_params (dict): + Arguments of the model optimizer. Defaults to `{"betas": [0.9, 0.998], "weight_decay": 1e-6}`. + + lr_scheduler (str): + Name of the learning rate scheduler. Defaults to `Noam`. + + lr_scheduler_params (dict): + Arguments of the learning rate scheduler. Defaults to `{"warmup_steps": 4000}`. + + lr (float): + Initial learning rate. Defaults to `1e-3`. + + grad_clip (float): + Gradient norm clipping value. Defaults to `5.0`. + + spec_loss_type (str): + Type of the spectrogram loss. Check `ForwardTTSLoss` for possible values. Defaults to `l1`. + + duration_loss_type (str): + Type of the duration loss. Check `ForwardTTSLoss` for possible values. Defaults to `huber`. + + use_ssim_loss (bool): + Enable/disable the use of SSIM (Structural Similarity) loss. Defaults to True. + + wd (float): + Weight decay coefficient. Defaults to `1e-7`. + + ssim_loss_alpha (float): + Weight for the SSIM loss. If set 0, disables the SSIM loss. Defaults to 1.0. + + dur_loss_alpha (float): + Weight for the duration predictor's loss. If set 0, disables the huber loss. Defaults to 1.0. + + spec_loss_alpha (float): + Weight for the L1 spectrogram loss. If set 0, disables the L1 loss. Defaults to 1.0. + + binary_loss_alpha (float): + Weight for the binary loss. If set 0, disables the binary loss. Defaults to 1.0. + + binary_loss_warmup_epochs (float): + Number of epochs to gradually increase the binary loss impact. Defaults to 150. + + min_seq_len (int): + Minimum input sequence length to be used at training. + + max_seq_len (int): + Maximum input sequence length to be used at training. Larger values result in more VRAM usage. + """ + + model: str = "speedy_speech" + base_model: str = "forward_tts" + + # set model args as SpeedySpeech + model_args: ForwardTTSArgs = field( + default_factory=lambda: ForwardTTSArgs( + use_pitch=False, + encoder_type="residual_conv_bn", + encoder_params={ + "kernel_size": 4, + "dilations": 4 * [1, 2, 4] + [1], + "num_conv_blocks": 2, + "num_res_blocks": 13, + }, + decoder_type="residual_conv_bn", + decoder_params={ + "kernel_size": 4, + "dilations": 4 * [1, 2, 4, 8] + [1], + "num_conv_blocks": 2, + "num_res_blocks": 17, + }, + out_channels=80, + hidden_channels=128, + positional_encoding=True, + detach_duration_predictor=True, + ) + ) + + # multi-speaker settings + num_speakers: int = 0 + speakers_file: str = None + use_speaker_embedding: bool = False + use_d_vector_file: bool = False + d_vector_file: str = False + d_vector_dim: int = 0 + + # optimizer parameters + optimizer: str = "Adam" + optimizer_params: dict = field(default_factory=lambda: {"betas": [0.9, 0.998], "weight_decay": 1e-6}) + lr_scheduler: str = "NoamLR" + lr_scheduler_params: dict = field(default_factory=lambda: {"warmup_steps": 4000}) + lr: float = 1e-4 + grad_clip: float = 5.0 + + # loss params + spec_loss_type: str = "l1" + duration_loss_type: str = "huber" + use_ssim_loss: bool = False + ssim_loss_alpha: float = 1.0 + dur_loss_alpha: float = 1.0 + spec_loss_alpha: float = 1.0 + aligner_loss_alpha: float = 1.0 + binary_align_loss_alpha: float = 0.3 + binary_loss_warmup_epochs: int = 150 + + # overrides + min_seq_len: int = 13 + max_seq_len: int = 200 + r: int = 1 # DO NOT CHANGE + + # dataset configs + compute_f0: bool = False + f0_cache_path: str = None + + # testing + test_sentences: List[str] = field( + default_factory=lambda: [ + "It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent.", + "Be a voice, not an echo.", + "I'm sorry Dave. I'm afraid I can't do that.", + "This cake is great. It's so delicious and moist.", + "Prior to November 22, 1963.", + ] + ) + + def __post_init__(self): + # Pass multi-speaker parameters to the model args as `model.init_multispeaker()` looks for it there. + if self.num_speakers > 0: + self.model_args.num_speakers = self.num_speakers + + # speaker embedding settings + if self.use_speaker_embedding: + self.model_args.use_speaker_embedding = True + if self.speakers_file: + self.model_args.speakers_file = self.speakers_file + + # d-vector settings + if self.use_d_vector_file: + self.model_args.use_d_vector_file = True + if self.d_vector_dim is not None and self.d_vector_dim > 0: + self.model_args.d_vector_dim = self.d_vector_dim + if self.d_vector_file: + self.model_args.d_vector_file = self.d_vector_file diff --git a/TTS/TTS/tts/configs/tacotron2_config.py b/TTS/TTS/tts/configs/tacotron2_config.py new file mode 100644 index 0000000000000000000000000000000000000000..95b65202218cf3aa0dd70c8d8cd55a3f913ed308 --- /dev/null +++ b/TTS/TTS/tts/configs/tacotron2_config.py @@ -0,0 +1,21 @@ +from dataclasses import dataclass + +from TTS.tts.configs.tacotron_config import TacotronConfig + + +@dataclass +class Tacotron2Config(TacotronConfig): + """Defines parameters for Tacotron2 based models. + + Example: + + >>> from TTS.tts.configs.tacotron2_config import Tacotron2Config + >>> config = Tacotron2Config() + + Check `TacotronConfig` for argument descriptions. + """ + + model: str = "tacotron2" + out_channels: int = 80 + encoder_in_features: int = 512 + decoder_in_features: int = 512 diff --git a/TTS/TTS/tts/configs/tacotron_config.py b/TTS/TTS/tts/configs/tacotron_config.py new file mode 100644 index 0000000000000000000000000000000000000000..350b5ea99633569d6977851875d5d8d83175ac36 --- /dev/null +++ b/TTS/TTS/tts/configs/tacotron_config.py @@ -0,0 +1,235 @@ +from dataclasses import dataclass, field +from typing import List + +from TTS.tts.configs.shared_configs import BaseTTSConfig, CapacitronVAEConfig, GSTConfig + + +@dataclass +class TacotronConfig(BaseTTSConfig): + """Defines parameters for Tacotron based models. + + Example: + + >>> from TTS.tts.configs.tacotron_config import TacotronConfig + >>> config = TacotronConfig() + + Args: + model (str): + Model name used to select the right model class to initilize. Defaults to `Tacotron`. + use_gst (bool): + enable / disable the use of Global Style Token modules. Defaults to False. + gst (GSTConfig): + Instance of `GSTConfig` class. + gst_style_input (str): + Path to the wav file used at inference to set the speech style through GST. If `GST` is enabled and + this is not defined, the model uses a zero vector as an input. Defaults to None. + use_capacitron_vae (bool): + enable / disable the use of Capacitron modules. Defaults to False. + capacitron_vae (CapacitronConfig): + Instance of `CapacitronConfig` class. + num_chars (int): + Number of characters used by the model. It must be defined before initializing the model. Defaults to None. + num_speakers (int): + Number of speakers for multi-speaker models. Defaults to 1. + r (int): + Initial number of output frames that the decoder computed per iteration. Larger values makes training and inference + faster but reduces the quality of the output frames. This must be equal to the largest `r` value used in + `gradual_training` schedule. Defaults to 1. + gradual_training (List[List]): + Parameters for the gradual training schedule. It is in the form `[[a, b, c], [d ,e ,f] ..]` where `a` is + the step number to start using the rest of the values, `b` is the `r` value and `c` is the batch size. + If sets None, no gradual training is used. Defaults to None. + memory_size (int): + Defines the number of previous frames used by the Prenet. If set to < 0, then it uses only the last frame. + Defaults to -1. + prenet_type (str): + `original` or `bn`. `original` sets the default Prenet and `bn` uses Batch Normalization version of the + Prenet. Defaults to `original`. + prenet_dropout (bool): + enables / disables the use of dropout in the Prenet. Defaults to True. + prenet_dropout_at_inference (bool): + enable / disable the use of dropout in the Prenet at the inference time. Defaults to False. + stopnet (bool): + enable /disable the Stopnet that predicts the end of the decoder sequence. Defaults to True. + stopnet_pos_weight (float): + Weight that is applied to over-weight positive instances in the Stopnet loss. Use larger values with + datasets with longer sentences. Defaults to 0.2. + max_decoder_steps (int): + Max number of steps allowed for the decoder. Defaults to 50. + encoder_in_features (int): + Channels of encoder input and character embedding tensors. Defaults to 256. + decoder_in_features (int): + Channels of decoder input and encoder output tensors. Defaults to 256. + out_channels (int): + Channels of the final model output. It must match the spectragram size. Defaults to 80. + separate_stopnet (bool): + Use a distinct Stopnet which is trained separately from the rest of the model. Defaults to True. + attention_type (str): + attention type. Check ```TTS.tts.layers.attentions.init_attn```. Defaults to 'original'. + attention_heads (int): + Number of attention heads for GMM attention. Defaults to 5. + windowing (bool): + It especially useful at inference to keep attention alignment diagonal. Defaults to False. + use_forward_attn (bool): + It is only valid if ```attn_type``` is ```original```. Defaults to False. + forward_attn_mask (bool): + enable/disable extra masking over forward attention. It is useful at inference to prevent + possible attention failures. Defaults to False. + transition_agent (bool): + enable/disable transition agent in forward attention. Defaults to False. + location_attn (bool): + enable/disable location sensitive attention as in the original Tacotron2 paper. + It is only valid if ```attn_type``` is ```original```. Defaults to True. + bidirectional_decoder (bool): + enable/disable bidirectional decoding. Defaults to False. + double_decoder_consistency (bool): + enable/disable double decoder consistency. Defaults to False. + ddc_r (int): + reduction rate used by the coarse decoder when `double_decoder_consistency` is in use. Set this + as a multiple of the `r` value. Defaults to 6. + speakers_file (str): + Path to the speaker mapping file for the Speaker Manager. Defaults to None. + use_speaker_embedding (bool): + enable / disable using speaker embeddings for multi-speaker models. If set True, the model is + in the multi-speaker mode. Defaults to False. + use_d_vector_file (bool): + enable /disable using external speaker embeddings in place of the learned embeddings. Defaults to False. + d_vector_file (str): + Path to the file including pre-computed speaker embeddings. Defaults to None. + optimizer (str): + Optimizer used for the training. Set one from `torch.optim.Optimizer` or `TTS.utils.training`. + Defaults to `RAdam`. + optimizer_params (dict): + Optimizer kwargs. Defaults to `{"betas": [0.8, 0.99], "weight_decay": 0.0}` + lr_scheduler (str): + Learning rate scheduler for the training. Use one from `torch.optim.Scheduler` schedulers or + `TTS.utils.training`. Defaults to `NoamLR`. + lr_scheduler_params (dict): + Parameters for the generator learning rate scheduler. Defaults to `{"warmup": 4000}`. + lr (float): + Initial learning rate. Defaults to `1e-4`. + wd (float): + Weight decay coefficient. Defaults to `1e-6`. + grad_clip (float): + Gradient clipping threshold. Defaults to `5`. + seq_len_norm (bool): + enable / disable the sequnce length normalization in the loss functions. If set True, loss of a sample + is divided by the sequence length. Defaults to False. + loss_masking (bool): + enable / disable masking the paddings of the samples in loss computation. Defaults to True. + decoder_loss_alpha (float): + Weight for the decoder loss of the Tacotron model. If set less than or equal to zero, it disables the + corresponding loss function. Defaults to 0.25 + postnet_loss_alpha (float): + Weight for the postnet loss of the Tacotron model. If set less than or equal to zero, it disables the + corresponding loss function. Defaults to 0.25 + postnet_diff_spec_alpha (float): + Weight for the postnet differential loss of the Tacotron model. If set less than or equal to zero, it disables the + corresponding loss function. Defaults to 0.25 + decoder_diff_spec_alpha (float): + + Weight for the decoder differential loss of the Tacotron model. If set less than or equal to zero, it disables the + corresponding loss function. Defaults to 0.25 + decoder_ssim_alpha (float): + Weight for the decoder SSIM loss of the Tacotron model. If set less than or equal to zero, it disables the + corresponding loss function. Defaults to 0.25 + postnet_ssim_alpha (float): + Weight for the postnet SSIM loss of the Tacotron model. If set less than or equal to zero, it disables the + corresponding loss function. Defaults to 0.25 + ga_alpha (float): + Weight for the guided attention loss. If set less than or equal to zero, it disables the corresponding loss + function. Defaults to 5. + """ + + model: str = "tacotron" + # model_params: TacotronArgs = field(default_factory=lambda: TacotronArgs()) + use_gst: bool = False + gst: GSTConfig = None + gst_style_input: str = None + + use_capacitron_vae: bool = False + capacitron_vae: CapacitronVAEConfig = None + + # model specific params + num_speakers: int = 1 + num_chars: int = 0 + r: int = 2 + gradual_training: List[List[int]] = None + memory_size: int = -1 + prenet_type: str = "original" + prenet_dropout: bool = True + prenet_dropout_at_inference: bool = False + stopnet: bool = True + separate_stopnet: bool = True + stopnet_pos_weight: float = 0.2 + max_decoder_steps: int = 10000 + encoder_in_features: int = 256 + decoder_in_features: int = 256 + decoder_output_dim: int = 80 + out_channels: int = 513 + + # attention layers + attention_type: str = "original" + attention_heads: int = None + attention_norm: str = "sigmoid" + attention_win: bool = False + windowing: bool = False + use_forward_attn: bool = False + forward_attn_mask: bool = False + transition_agent: bool = False + location_attn: bool = True + + # advance methods + bidirectional_decoder: bool = False + double_decoder_consistency: bool = False + ddc_r: int = 6 + + # multi-speaker settings + speakers_file: str = None + use_speaker_embedding: bool = False + speaker_embedding_dim: int = 512 + use_d_vector_file: bool = False + d_vector_file: str = False + d_vector_dim: int = None + + # optimizer parameters + optimizer: str = "RAdam" + optimizer_params: dict = field(default_factory=lambda: {"betas": [0.9, 0.998], "weight_decay": 1e-6}) + lr_scheduler: str = "NoamLR" + lr_scheduler_params: dict = field(default_factory=lambda: {"warmup_steps": 4000}) + lr: float = 1e-4 + grad_clip: float = 5.0 + seq_len_norm: bool = False + loss_masking: bool = True + + # loss params + decoder_loss_alpha: float = 0.25 + postnet_loss_alpha: float = 0.25 + postnet_diff_spec_alpha: float = 0.25 + decoder_diff_spec_alpha: float = 0.25 + decoder_ssim_alpha: float = 0.25 + postnet_ssim_alpha: float = 0.25 + ga_alpha: float = 5.0 + + # testing + test_sentences: List[str] = field( + default_factory=lambda: [ + "It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent.", + "Be a voice, not an echo.", + "I'm sorry Dave. I'm afraid I can't do that.", + "This cake is great. It's so delicious and moist.", + "Prior to November 22, 1963.", + ] + ) + + def check_values(self): + if self.gradual_training: + assert ( + self.gradual_training[0][1] == self.r + ), f"[!] the first scheduled gradual training `r` must be equal to the model's `r` value. {self.gradual_training[0][1]} vs {self.r}" + if self.model == "tacotron" and self.audio is not None: + assert self.out_channels == ( + self.audio.fft_size // 2 + 1 + ), f"{self.out_channels} vs {self.audio.fft_size // 2 + 1}" + if self.model == "tacotron2" and self.audio is not None: + assert self.out_channels == self.audio.num_mels diff --git a/TTS/TTS/tts/configs/tortoise_config.py b/TTS/TTS/tts/configs/tortoise_config.py new file mode 100644 index 0000000000000000000000000000000000000000..d60e43d71280bfa085988e31a52acfeef015c5f0 --- /dev/null +++ b/TTS/TTS/tts/configs/tortoise_config.py @@ -0,0 +1,87 @@ +from dataclasses import dataclass, field + +from TTS.tts.configs.shared_configs import BaseTTSConfig +from TTS.tts.models.tortoise import TortoiseArgs, TortoiseAudioConfig + + +@dataclass +class TortoiseConfig(BaseTTSConfig): + """Defines parameters for Tortoise TTS model. + + Args: + model (str): + Model name. Do not change unless you know what you are doing. + + model_args (TortoiseArgs): + Model architecture arguments. Defaults to `TortoiseArgs()`. + + audio (TortoiseAudioConfig): + Audio processing configuration. Defaults to `TortoiseAudioConfig()`. + + model_dir (str): + Path to the folder that has all the Tortoise models. Defaults to None. + + temperature (float): + Temperature for the autoregressive model inference. Larger values makes predictions more creative sacrificing stability. Defaults to `0.2`. + + length_penalty (float): + Exponential penalty to the length that is used with beam-based generation. It is applied as an exponent to the sequence length, + which in turn is used to divide the score of the sequence. Since the score is the log likelihood of the sequence (i.e. negative), + length_penalty > 0.0 promotes longer sequences, while length_penalty < 0.0 encourages shorter sequences. + + reperation_penalty (float): + The parameter for repetition penalty. 1.0 means no penalty. Defaults to `2.0`. + + top_p (float): + If set to float < 1, only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for generation. + Defaults to `0.8`. + + cond_free_k (float): + Knob that determines how to balance the conditioning free signal with the conditioning-present signal. [0,inf]. + As cond_free_k increases, the output becomes dominated by the conditioning-free signal. + Formula is: output=cond_present_output*(cond_free_k+1)-cond_absenct_output*cond_free_k. Defaults to `2.0`. + + diffusion_temperature (float): + Controls the variance of the noise fed into the diffusion model. [0,1]. Values at 0 + are the "mean" prediction of the diffusion network and will sound bland and smeared. + Defaults to `1.0`. + + num_autoregressive_samples (int): + Number of samples taken from the autoregressive model, all of which are filtered using CLVP. + As Tortoise is a probabilistic model, more samples means a higher probability of creating something "great". + Defaults to `16`. + + diffusion_iterations (int): + Number of diffusion steps to perform. [0,4000]. More steps means the network has more chances to iteratively refine + the output, which should theoretically mean a higher quality output. Generally a value above 250 is not noticeably better, + however. Defaults to `30`. + + sampler (str): + Diffusion sampler to be used. `ddim` or `dpm++2m`. Defaults to `ddim`. + Note: + Check :class:`TTS.tts.configs.shared_configs.BaseTTSConfig` for the inherited parameters. + + Example: + + >>> from TTS.tts.configs.tortoise_config import TortoiseConfig + >>> config = TortoiseConfig() + """ + + model: str = "tortoise" + # model specific params + model_args: TortoiseArgs = field(default_factory=TortoiseArgs) + audio: TortoiseAudioConfig = field(default_factory=TortoiseAudioConfig) + model_dir: str = None + + # settings + temperature: float = 0.2 + length_penalty: float = 1.0 + repetition_penalty: float = 2.0 + top_p: float = 0.8 + cond_free_k: float = 2.0 + diffusion_temperature: float = 1.0 + + # inference params + num_autoregressive_samples: int = 16 + diffusion_iterations: int = 30 + sampler: str = "ddim" diff --git a/TTS/TTS/tts/configs/vits_config.py b/TTS/TTS/tts/configs/vits_config.py new file mode 100644 index 0000000000000000000000000000000000000000..2d0242bf131a25d6b2cef7a297a3c32b283f908a --- /dev/null +++ b/TTS/TTS/tts/configs/vits_config.py @@ -0,0 +1,176 @@ +from dataclasses import dataclass, field +from typing import List + +from TTS.tts.configs.shared_configs import BaseTTSConfig +from TTS.tts.models.vits import VitsArgs, VitsAudioConfig + + +@dataclass +class VitsConfig(BaseTTSConfig): + """Defines parameters for VITS End2End TTS model. + + Args: + model (str): + Model name. Do not change unless you know what you are doing. + + model_args (VitsArgs): + Model architecture arguments. Defaults to `VitsArgs()`. + + audio (VitsAudioConfig): + Audio processing configuration. Defaults to `VitsAudioConfig()`. + + grad_clip (List): + Gradient clipping thresholds for each optimizer. Defaults to `[1000.0, 1000.0]`. + + lr_gen (float): + Initial learning rate for the generator. Defaults to 0.0002. + + lr_disc (float): + Initial learning rate for the discriminator. Defaults to 0.0002. + + lr_scheduler_gen (str): + Name of the learning rate scheduler for the generator. One of the `torch.optim.lr_scheduler.*`. Defaults to + `ExponentialLR`. + + lr_scheduler_gen_params (dict): + Parameters for the learning rate scheduler of the generator. Defaults to `{'gamma': 0.999875, "last_epoch":-1}`. + + lr_scheduler_disc (str): + Name of the learning rate scheduler for the discriminator. One of the `torch.optim.lr_scheduler.*`. Defaults to + `ExponentialLR`. + + lr_scheduler_disc_params (dict): + Parameters for the learning rate scheduler of the discriminator. Defaults to `{'gamma': 0.999875, "last_epoch":-1}`. + + scheduler_after_epoch (bool): + If true, step the schedulers after each epoch else after each step. Defaults to `False`. + + optimizer (str): + Name of the optimizer to use with both the generator and the discriminator networks. One of the + `torch.optim.*`. Defaults to `AdamW`. + + kl_loss_alpha (float): + Loss weight for KL loss. Defaults to 1.0. + + disc_loss_alpha (float): + Loss weight for the discriminator loss. Defaults to 1.0. + + gen_loss_alpha (float): + Loss weight for the generator loss. Defaults to 1.0. + + feat_loss_alpha (float): + Loss weight for the feature matching loss. Defaults to 1.0. + + mel_loss_alpha (float): + Loss weight for the mel loss. Defaults to 45.0. + + return_wav (bool): + If true, data loader returns the waveform as well as the other outputs. Do not change. Defaults to `True`. + + compute_linear_spec (bool): + If true, the linear spectrogram is computed and returned alongside the mel output. Do not change. Defaults to `True`. + + use_weighted_sampler (bool): + If true, use weighted sampler with bucketing for balancing samples between datasets used in training. Defaults to `False`. + + weighted_sampler_attrs (dict): + Key retuned by the formatter to be used for weighted sampler. For example `{"root_path": 2.0, "speaker_name": 1.0}` sets sample probabilities + by overweighting `root_path` by 2.0. Defaults to `{}`. + + weighted_sampler_multipliers (dict): + Weight each unique value of a key returned by the formatter for weighted sampling. + For example `{"root_path":{"/raid/datasets/libritts-clean-16khz-bwe-coqui_44khz/LibriTTS/train-clean-100/":1.0, "/raid/datasets/libritts-clean-16khz-bwe-coqui_44khz/LibriTTS/train-clean-360/": 0.5}`. + It will sample instances from `train-clean-100` 2 times more than `train-clean-360`. Defaults to `{}`. + + r (int): + Number of spectrogram frames to be generated at a time. Do not change. Defaults to `1`. + + add_blank (bool): + If true, a blank token is added in between every character. Defaults to `True`. + + test_sentences (List[List]): + List of sentences with speaker and language information to be used for testing. + + language_ids_file (str): + Path to the language ids file. + + use_language_embedding (bool): + If true, language embedding is used. Defaults to `False`. + + Note: + Check :class:`TTS.tts.configs.shared_configs.BaseTTSConfig` for the inherited parameters. + + Example: + + >>> from TTS.tts.configs.vits_config import VitsConfig + >>> config = VitsConfig() + """ + + model: str = "vits" + # model specific params + model_args: VitsArgs = field(default_factory=VitsArgs) + audio: VitsAudioConfig = field(default_factory=VitsAudioConfig) + + # optimizer + grad_clip: List[float] = field(default_factory=lambda: [1000, 1000]) + lr_gen: float = 0.0002 + lr_disc: float = 0.0002 + lr_scheduler_gen: str = "ExponentialLR" + lr_scheduler_gen_params: dict = field(default_factory=lambda: {"gamma": 0.999875, "last_epoch": -1}) + lr_scheduler_disc: str = "ExponentialLR" + lr_scheduler_disc_params: dict = field(default_factory=lambda: {"gamma": 0.999875, "last_epoch": -1}) + scheduler_after_epoch: bool = True + optimizer: str = "AdamW" + optimizer_params: dict = field(default_factory=lambda: {"betas": [0.8, 0.99], "eps": 1e-9, "weight_decay": 0.01}) + + # loss params + kl_loss_alpha: float = 1.0 + disc_loss_alpha: float = 1.0 + gen_loss_alpha: float = 1.0 + feat_loss_alpha: float = 1.0 + mel_loss_alpha: float = 45.0 + dur_loss_alpha: float = 1.0 + speaker_encoder_loss_alpha: float = 1.0 + + # data loader params + return_wav: bool = True + compute_linear_spec: bool = True + + # sampler params + use_weighted_sampler: bool = False # TODO: move it to the base config + weighted_sampler_attrs: dict = field(default_factory=lambda: {}) + weighted_sampler_multipliers: dict = field(default_factory=lambda: {}) + + # overrides + r: int = 1 # DO NOT CHANGE + add_blank: bool = True + + # testing + test_sentences: List[List] = field( + default_factory=lambda: [ + ["It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent."], + ["Be a voice, not an echo."], + ["I'm sorry Dave. I'm afraid I can't do that."], + ["This cake is great. It's so delicious and moist."], + ["Prior to November 22, 1963."], + ] + ) + + # multi-speaker settings + # use speaker embedding layer + num_speakers: int = 0 + use_speaker_embedding: bool = False + speakers_file: str = None + speaker_embedding_channels: int = 256 + language_ids_file: str = None + use_language_embedding: bool = False + + # use d-vectors + use_d_vector_file: bool = False + d_vector_file: List[str] = None + d_vector_dim: int = None + + def __post_init__(self): + for key, val in self.model_args.items(): + if hasattr(self, key): + self[key] = val diff --git a/TTS/TTS/tts/configs/xtts_config.py b/TTS/TTS/tts/configs/xtts_config.py new file mode 100644 index 0000000000000000000000000000000000000000..b96855904710efe8d30fe2f4ae883c6c27cac7a4 --- /dev/null +++ b/TTS/TTS/tts/configs/xtts_config.py @@ -0,0 +1,90 @@ +from dataclasses import dataclass, field +from typing import List + +from TTS.tts.configs.shared_configs import BaseTTSConfig +from TTS.tts.models.xtts import XttsArgs, XttsAudioConfig + + +@dataclass +class XttsConfig(BaseTTSConfig): + """Defines parameters for XTTS TTS model. + + Args: + model (str): + Model name. Do not change unless you know what you are doing. + + model_args (XttsArgs): + Model architecture arguments. Defaults to `XttsArgs()`. + + audio (XttsAudioConfig): + Audio processing configuration. Defaults to `XttsAudioConfig()`. + + model_dir (str): + Path to the folder that has all the XTTS models. Defaults to None. + + temperature (float): + Temperature for the autoregressive model inference. Larger values makes predictions more creative sacrificing stability. Defaults to `0.2`. + + length_penalty (float): + Exponential penalty to the length that is used with beam-based generation. It is applied as an exponent to the sequence length, + which in turn is used to divide the score of the sequence. Since the score is the log likelihood of the sequence (i.e. negative), + length_penalty > 0.0 promotes longer sequences, while length_penalty < 0.0 encourages shorter sequences. + + reperation_penalty (float): + The parameter for repetition penalty. 1.0 means no penalty. Defaults to `2.0`. + + top_p (float): + If set to float < 1, only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for generation. + Defaults to `0.8`. + + cond_free_k (float): + Knob that determines how to balance the conditioning free signal with the conditioning-present signal. [0,inf]. + As cond_free_k increases, the output becomes dominated by the conditioning-free signal. + Formula is: output=cond_present_output*(cond_free_k+1)-cond_absenct_output*cond_free_k. Defaults to `2.0`. + + diffusion_temperature (float): + Controls the variance of the noise fed into the diffusion model. [0,1]. Values at 0 + are the "mean" prediction of the diffusion network and will sound bland and smeared. + Defaults to `1.0`. + + num_gpt_outputs (int): + Number of samples taken from the autoregressive model, all of which are filtered using CLVP. + As XTTS is a probabilistic model, more samples means a higher probability of creating something "great". + Defaults to `16`. + + decoder_iterations (int): + Number of diffusion steps to perform. [0,4000]. More steps means the network has more chances to iteratively refine + the output, which should theoretically mean a higher quality output. Generally a value above 250 is not noticeably better, + however. Defaults to `30`. + + decoder_sampler (str): + Diffusion sampler to be used. `ddim` or `dpm++2m`. Defaults to `ddim`. + Note: + Check :class:`TTS.tts.configs.shared_configs.BaseTTSConfig` for the inherited parameters. + + Example: + + >>> from TTS.tts.configs.xtts_config import XttsConfig + >>> config = XttsConfig() + """ + + model: str = "xtts" + # model specific params + model_args: XttsArgs = field(default_factory=XttsArgs) + audio: XttsAudioConfig = field(default_factory=XttsAudioConfig) + model_dir: str = None + languages: List[str] = field( + default_factory=lambda: ["en", "es", "fr", "de", "it", "pt", "pl", "tr", "ru", "nl", "cs", "ar", "zh-cn"] + ) + + # inference params + temperature: float = 0.2 + length_penalty: float = 1.0 + repetition_penalty: float = 2.0 + top_k: int = 50 + top_p: float = 0.8 + cond_free_k: float = 2.0 + diffusion_temperature: float = 1.0 + num_gpt_outputs: int = 16 + decoder_iterations: int = 30 + decoder_sampler: str = "ddim" diff --git a/TTS/TTS/tts/datasets/__init__.py b/TTS/TTS/tts/datasets/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..192138561fdb4e85978fe8beb52eae2edf73888e --- /dev/null +++ b/TTS/TTS/tts/datasets/__init__.py @@ -0,0 +1,181 @@ +import os +import sys +from collections import Counter +from pathlib import Path +from typing import Callable, Dict, List, Tuple, Union + +import numpy as np + +from TTS.tts.datasets.dataset import * +from TTS.tts.datasets.formatters import * + + +def split_dataset(items, eval_split_max_size=None, eval_split_size=0.01): + """Split a dataset into train and eval. Consider speaker distribution in multi-speaker training. + + Args: + items (List[List]): + A list of samples. Each sample is a list of `[audio_path, text, speaker_id]`. + + eval_split_max_size (int): + Number maximum of samples to be used for evaluation in proportion split. Defaults to None (Disabled). + + eval_split_size (float): + If between 0.0 and 1.0 represents the proportion of the dataset to include in the evaluation set. + If > 1, represents the absolute number of evaluation samples. Defaults to 0.01 (1%). + """ + speakers = [item["speaker_name"] for item in items] + is_multi_speaker = len(set(speakers)) > 1 + if eval_split_size > 1: + eval_split_size = int(eval_split_size) + else: + if eval_split_max_size: + eval_split_size = min(eval_split_max_size, int(len(items) * eval_split_size)) + else: + eval_split_size = int(len(items) * eval_split_size) + + assert ( + eval_split_size > 0 + ), " [!] You do not have enough samples for the evaluation set. You can work around this setting the 'eval_split_size' parameter to a minimum of {}".format( + 1 / len(items) + ) + np.random.seed(0) + np.random.shuffle(items) + if is_multi_speaker: + items_eval = [] + speakers = [item["speaker_name"] for item in items] + speaker_counter = Counter(speakers) + while len(items_eval) < eval_split_size: + item_idx = np.random.randint(0, len(items)) + speaker_to_be_removed = items[item_idx]["speaker_name"] + if speaker_counter[speaker_to_be_removed] > 1: + items_eval.append(items[item_idx]) + speaker_counter[speaker_to_be_removed] -= 1 + del items[item_idx] + return items_eval, items + return items[:eval_split_size], items[eval_split_size:] + + +def add_extra_keys(metadata, language, dataset_name): + for item in metadata: + # add language name + item["language"] = language + # add unique audio name + relfilepath = os.path.splitext(os.path.relpath(item["audio_file"], item["root_path"]))[0] + audio_unique_name = f"{dataset_name}#{relfilepath}" + item["audio_unique_name"] = audio_unique_name + return metadata + + +def load_tts_samples( + datasets: Union[List[Dict], Dict], + eval_split=True, + formatter: Callable = None, + eval_split_max_size=None, + eval_split_size=0.01, +) -> Tuple[List[List], List[List]]: + """Parse the dataset from the datasets config, load the samples as a List and load the attention alignments if provided. + If `formatter` is not None, apply the formatter to the samples else pick the formatter from the available ones based + on the dataset name. + + Args: + datasets (List[Dict], Dict): A list of datasets or a single dataset dictionary. If multiple datasets are + in the list, they are all merged. + + eval_split (bool, optional): If true, create a evaluation split. If an eval split provided explicitly, generate + an eval split automatically. Defaults to True. + + formatter (Callable, optional): The preprocessing function to be applied to create the list of samples. It + must take the root_path and the meta_file name and return a list of samples in the format of + `[[text, audio_path, speaker_id], ...]]`. See the available formatters in `TTS.tts.dataset.formatter` as + example. Defaults to None. + + eval_split_max_size (int): + Number maximum of samples to be used for evaluation in proportion split. Defaults to None (Disabled). + + eval_split_size (float): + If between 0.0 and 1.0 represents the proportion of the dataset to include in the evaluation set. + If > 1, represents the absolute number of evaluation samples. Defaults to 0.01 (1%). + + Returns: + Tuple[List[List], List[List]: training and evaluation splits of the dataset. + """ + meta_data_train_all = [] + meta_data_eval_all = [] if eval_split else None + if not isinstance(datasets, list): + datasets = [datasets] + for dataset in datasets: + formatter_name = dataset["formatter"] + dataset_name = dataset["dataset_name"] + root_path = dataset["path"] + meta_file_train = dataset["meta_file_train"] + meta_file_val = dataset["meta_file_val"] + ignored_speakers = dataset["ignored_speakers"] + language = dataset["language"] + + # setup the right data processor + if formatter is None: + formatter = _get_formatter_by_name(formatter_name) + # load train set + meta_data_train = formatter(root_path, meta_file_train, ignored_speakers=ignored_speakers) + assert len(meta_data_train) > 0, f" [!] No training samples found in {root_path}/{meta_file_train}" + + meta_data_train = add_extra_keys(meta_data_train, language, dataset_name) + + print(f" | > Found {len(meta_data_train)} files in {Path(root_path).resolve()}") + # load evaluation split if set + if eval_split: + if meta_file_val: + meta_data_eval = formatter(root_path, meta_file_val, ignored_speakers=ignored_speakers) + meta_data_eval = add_extra_keys(meta_data_eval, language, dataset_name) + else: + eval_size_per_dataset = eval_split_max_size // len(datasets) if eval_split_max_size else None + meta_data_eval, meta_data_train = split_dataset(meta_data_train, eval_size_per_dataset, eval_split_size) + meta_data_eval_all += meta_data_eval + meta_data_train_all += meta_data_train + # load attention masks for the duration predictor training + if dataset.meta_file_attn_mask: + meta_data = dict(load_attention_mask_meta_data(dataset["meta_file_attn_mask"])) + for idx, ins in enumerate(meta_data_train_all): + attn_file = meta_data[ins["audio_file"]].strip() + meta_data_train_all[idx].update({"alignment_file": attn_file}) + if meta_data_eval_all: + for idx, ins in enumerate(meta_data_eval_all): + attn_file = meta_data[ins["audio_file"]].strip() + meta_data_eval_all[idx].update({"alignment_file": attn_file}) + # set none for the next iter + formatter = None + return meta_data_train_all, meta_data_eval_all + + +def load_attention_mask_meta_data(metafile_path): + """Load meta data file created by compute_attention_masks.py""" + with open(metafile_path, "r", encoding="utf-8") as f: + lines = f.readlines() + + meta_data = [] + for line in lines: + wav_file, attn_file = line.split("|") + meta_data.append([wav_file, attn_file]) + return meta_data + + +def _get_formatter_by_name(name): + """Returns the respective preprocessing function.""" + thismodule = sys.modules[__name__] + return getattr(thismodule, name.lower()) + + +def find_unique_chars(data_samples, verbose=True): + texts = "".join(item[0] for item in data_samples) + chars = set(texts) + lower_chars = filter(lambda c: c.islower(), chars) + chars_force_lower = [c.lower() for c in chars] + chars_force_lower = set(chars_force_lower) + + if verbose: + print(f" > Number of unique characters: {len(chars)}") + print(f" > Unique characters: {''.join(sorted(chars))}") + print(f" > Unique lower characters: {''.join(sorted(lower_chars))}") + print(f" > Unique all forced to lower characters: {''.join(sorted(chars_force_lower))}") + return chars_force_lower diff --git a/TTS/TTS/tts/datasets/dataset.py b/TTS/TTS/tts/datasets/dataset.py new file mode 100644 index 0000000000000000000000000000000000000000..c673c963b65398b624688b630962efa0baf71732 --- /dev/null +++ b/TTS/TTS/tts/datasets/dataset.py @@ -0,0 +1,962 @@ +import base64 +import collections +import os +import random +from typing import Dict, List, Union + +import numpy as np +import torch +import tqdm +from torch.utils.data import Dataset + +from TTS.tts.utils.data import prepare_data, prepare_stop_target, prepare_tensor +from TTS.utils.audio import AudioProcessor +from TTS.utils.audio.numpy_transforms import compute_energy as calculate_energy + +# to prevent too many open files error as suggested here +# https://github.com/pytorch/pytorch/issues/11201#issuecomment-421146936 +torch.multiprocessing.set_sharing_strategy("file_system") + + +def _parse_sample(item): + language_name = None + attn_file = None + if len(item) == 5: + text, wav_file, speaker_name, language_name, attn_file = item + elif len(item) == 4: + text, wav_file, speaker_name, language_name = item + elif len(item) == 3: + text, wav_file, speaker_name = item + else: + raise ValueError(" [!] Dataset cannot parse the sample.") + return text, wav_file, speaker_name, language_name, attn_file + + +def noise_augment_audio(wav): + return wav + (1.0 / 32768.0) * np.random.rand(*wav.shape) + + +def string2filename(string): + # generate a safe and reversible filename based on a string + filename = base64.urlsafe_b64encode(string.encode("utf-8")).decode("utf-8", "ignore") + return filename + + +class TTSDataset(Dataset): + def __init__( + self, + outputs_per_step: int = 1, + compute_linear_spec: bool = False, + ap: AudioProcessor = None, + samples: List[Dict] = None, + tokenizer: "TTSTokenizer" = None, + compute_f0: bool = False, + compute_energy: bool = False, + f0_cache_path: str = None, + energy_cache_path: str = None, + return_wav: bool = False, + batch_group_size: int = 0, + min_text_len: int = 0, + max_text_len: int = float("inf"), + min_audio_len: int = 0, + max_audio_len: int = float("inf"), + phoneme_cache_path: str = None, + precompute_num_workers: int = 0, + speaker_id_mapping: Dict = None, + d_vector_mapping: Dict = None, + language_id_mapping: Dict = None, + use_noise_augment: bool = False, + start_by_longest: bool = False, + verbose: bool = False, + ): + """Generic ๐Ÿ“‚ data loader for `tts` models. It is configurable for different outputs and needs. + + If you need something different, you can subclass and override. + + Args: + outputs_per_step (int): Number of time frames predicted per step. + + compute_linear_spec (bool): compute linear spectrogram if True. + + ap (TTS.tts.utils.AudioProcessor): Audio processor object. + + samples (list): List of dataset samples. + + tokenizer (TTSTokenizer): tokenizer to convert text to sequence IDs. If None init internally else + use the given. Defaults to None. + + compute_f0 (bool): compute f0 if True. Defaults to False. + + compute_energy (bool): compute energy if True. Defaults to False. + + f0_cache_path (str): Path to store f0 cache. Defaults to None. + + energy_cache_path (str): Path to store energy cache. Defaults to None. + + return_wav (bool): Return the waveform of the sample. Defaults to False. + + batch_group_size (int): Range of batch randomization after sorting + sequences by length. It shuffles each batch with bucketing to gather similar lenght sequences in a + batch. Set 0 to disable. Defaults to 0. + + min_text_len (int): Minimum length of input text to be used. All shorter samples will be ignored. + Defaults to 0. + + max_text_len (int): Maximum length of input text to be used. All longer samples will be ignored. + Defaults to float("inf"). + + min_audio_len (int): Minimum length of input audio to be used. All shorter samples will be ignored. + Defaults to 0. + + max_audio_len (int): Maximum length of input audio to be used. All longer samples will be ignored. + The maximum length in the dataset defines the VRAM used in the training. Hence, pay attention to + this value if you encounter an OOM error in training. Defaults to float("inf"). + + phoneme_cache_path (str): Path to cache computed phonemes. It writes phonemes of each sample to a + separate file. Defaults to None. + + precompute_num_workers (int): Number of workers to precompute features. Defaults to 0. + + speaker_id_mapping (dict): Mapping of speaker names to IDs used to compute embedding vectors by the + embedding layer. Defaults to None. + + d_vector_mapping (dict): Mapping of wav files to computed d-vectors. Defaults to None. + + use_noise_augment (bool): Enable adding random noise to wav for augmentation. Defaults to False. + + start_by_longest (bool): Start by longest sequence. It is especially useful to check OOM. Defaults to False. + + verbose (bool): Print diagnostic information. Defaults to false. + """ + super().__init__() + self.batch_group_size = batch_group_size + self._samples = samples + self.outputs_per_step = outputs_per_step + self.compute_linear_spec = compute_linear_spec + self.return_wav = return_wav + self.compute_f0 = compute_f0 + self.compute_energy = compute_energy + self.f0_cache_path = f0_cache_path + self.energy_cache_path = energy_cache_path + self.min_audio_len = min_audio_len + self.max_audio_len = max_audio_len + self.min_text_len = min_text_len + self.max_text_len = max_text_len + self.ap = ap + self.phoneme_cache_path = phoneme_cache_path + self.speaker_id_mapping = speaker_id_mapping + self.d_vector_mapping = d_vector_mapping + self.language_id_mapping = language_id_mapping + self.use_noise_augment = use_noise_augment + self.start_by_longest = start_by_longest + + self.verbose = verbose + self.rescue_item_idx = 1 + self.pitch_computed = False + self.tokenizer = tokenizer + + if self.tokenizer.use_phonemes: + self.phoneme_dataset = PhonemeDataset( + self.samples, self.tokenizer, phoneme_cache_path, precompute_num_workers=precompute_num_workers + ) + + if compute_f0: + self.f0_dataset = F0Dataset( + self.samples, self.ap, cache_path=f0_cache_path, precompute_num_workers=precompute_num_workers + ) + if compute_energy: + self.energy_dataset = EnergyDataset( + self.samples, self.ap, cache_path=energy_cache_path, precompute_num_workers=precompute_num_workers + ) + if self.verbose: + self.print_logs() + + @property + def lengths(self): + lens = [] + for item in self.samples: + _, wav_file, *_ = _parse_sample(item) + audio_len = os.path.getsize(wav_file) / 16 * 8 # assuming 16bit audio + lens.append(audio_len) + return lens + + @property + def samples(self): + return self._samples + + @samples.setter + def samples(self, new_samples): + self._samples = new_samples + if hasattr(self, "f0_dataset"): + self.f0_dataset.samples = new_samples + if hasattr(self, "energy_dataset"): + self.energy_dataset.samples = new_samples + if hasattr(self, "phoneme_dataset"): + self.phoneme_dataset.samples = new_samples + + def __len__(self): + return len(self.samples) + + def __getitem__(self, idx): + return self.load_data(idx) + + def print_logs(self, level: int = 0) -> None: + indent = "\t" * level + print("\n") + print(f"{indent}> DataLoader initialization") + print(f"{indent}| > Tokenizer:") + self.tokenizer.print_logs(level + 1) + print(f"{indent}| > Number of instances : {len(self.samples)}") + + def load_wav(self, filename): + waveform = self.ap.load_wav(filename) + assert waveform.size > 0 + return waveform + + def get_phonemes(self, idx, text): + out_dict = self.phoneme_dataset[idx] + assert text == out_dict["text"], f"{text} != {out_dict['text']}" + assert len(out_dict["token_ids"]) > 0 + return out_dict + + def get_f0(self, idx): + out_dict = self.f0_dataset[idx] + item = self.samples[idx] + assert item["audio_unique_name"] == out_dict["audio_unique_name"] + return out_dict + + def get_energy(self, idx): + out_dict = self.energy_dataset[idx] + item = self.samples[idx] + assert item["audio_unique_name"] == out_dict["audio_unique_name"] + return out_dict + + @staticmethod + def get_attn_mask(attn_file): + return np.load(attn_file) + + def get_token_ids(self, idx, text): + if self.tokenizer.use_phonemes: + token_ids = self.get_phonemes(idx, text)["token_ids"] + else: + token_ids = self.tokenizer.text_to_ids(text) + return np.array(token_ids, dtype=np.int32) + + def load_data(self, idx): + item = self.samples[idx] + + raw_text = item["text"] + + wav = np.asarray(self.load_wav(item["audio_file"]), dtype=np.float32) + + # apply noise for augmentation + if self.use_noise_augment: + wav = noise_augment_audio(wav) + + # get token ids + token_ids = self.get_token_ids(idx, item["text"]) + + # get pre-computed attention maps + attn = None + if "alignment_file" in item: + attn = self.get_attn_mask(item["alignment_file"]) + + # after phonemization the text length may change + # this is a shareful ๐Ÿคญ hack to prevent longer phonemes + # TODO: find a better fix + if len(token_ids) > self.max_text_len or len(wav) < self.min_audio_len: + self.rescue_item_idx += 1 + return self.load_data(self.rescue_item_idx) + + # get f0 values + f0 = None + if self.compute_f0: + f0 = self.get_f0(idx)["f0"] + energy = None + if self.compute_energy: + energy = self.get_energy(idx)["energy"] + + sample = { + "raw_text": raw_text, + "token_ids": token_ids, + "wav": wav, + "pitch": f0, + "energy": energy, + "attn": attn, + "item_idx": item["audio_file"], + "speaker_name": item["speaker_name"], + "language_name": item["language"], + "wav_file_name": os.path.basename(item["audio_file"]), + "audio_unique_name": item["audio_unique_name"], + } + return sample + + @staticmethod + def _compute_lengths(samples): + new_samples = [] + for item in samples: + audio_length = os.path.getsize(item["audio_file"]) / 16 * 8 # assuming 16bit audio + text_lenght = len(item["text"]) + item["audio_length"] = audio_length + item["text_length"] = text_lenght + new_samples += [item] + return new_samples + + @staticmethod + def filter_by_length(lengths: List[int], min_len: int, max_len: int): + idxs = np.argsort(lengths) # ascending order + ignore_idx = [] + keep_idx = [] + for idx in idxs: + length = lengths[idx] + if length < min_len or length > max_len: + ignore_idx.append(idx) + else: + keep_idx.append(idx) + return ignore_idx, keep_idx + + @staticmethod + def sort_by_length(samples: List[List]): + audio_lengths = [s["audio_length"] for s in samples] + idxs = np.argsort(audio_lengths) # ascending order + return idxs + + @staticmethod + def create_buckets(samples, batch_group_size: int): + assert batch_group_size > 0 + for i in range(len(samples) // batch_group_size): + offset = i * batch_group_size + end_offset = offset + batch_group_size + temp_items = samples[offset:end_offset] + random.shuffle(temp_items) + samples[offset:end_offset] = temp_items + return samples + + @staticmethod + def _select_samples_by_idx(idxs, samples): + samples_new = [] + for idx in idxs: + samples_new.append(samples[idx]) + return samples_new + + def preprocess_samples(self): + r"""Sort `items` based on text length or audio length in ascending order. Filter out samples out or the length + range. + """ + samples = self._compute_lengths(self.samples) + + # sort items based on the sequence length in ascending order + text_lengths = [i["text_length"] for i in samples] + audio_lengths = [i["audio_length"] for i in samples] + text_ignore_idx, text_keep_idx = self.filter_by_length(text_lengths, self.min_text_len, self.max_text_len) + audio_ignore_idx, audio_keep_idx = self.filter_by_length(audio_lengths, self.min_audio_len, self.max_audio_len) + keep_idx = list(set(audio_keep_idx) & set(text_keep_idx)) + ignore_idx = list(set(audio_ignore_idx) | set(text_ignore_idx)) + + samples = self._select_samples_by_idx(keep_idx, samples) + + sorted_idxs = self.sort_by_length(samples) + + if self.start_by_longest: + longest_idxs = sorted_idxs[-1] + sorted_idxs[-1] = sorted_idxs[0] + sorted_idxs[0] = longest_idxs + + samples = self._select_samples_by_idx(sorted_idxs, samples) + + if len(samples) == 0: + raise RuntimeError(" [!] No samples left") + + # shuffle batch groups + # create batches with similar length items + # the larger the `batch_group_size`, the higher the length variety in a batch. + if self.batch_group_size > 0: + samples = self.create_buckets(samples, self.batch_group_size) + + # update items to the new sorted items + audio_lengths = [s["audio_length"] for s in samples] + text_lengths = [s["text_length"] for s in samples] + self.samples = samples + + if self.verbose: + print(" | > Preprocessing samples") + print(" | > Max text length: {}".format(np.max(text_lengths))) + print(" | > Min text length: {}".format(np.min(text_lengths))) + print(" | > Avg text length: {}".format(np.mean(text_lengths))) + print(" | ") + print(" | > Max audio length: {}".format(np.max(audio_lengths))) + print(" | > Min audio length: {}".format(np.min(audio_lengths))) + print(" | > Avg audio length: {}".format(np.mean(audio_lengths))) + print(f" | > Num. instances discarded samples: {len(ignore_idx)}") + print(" | > Batch group size: {}.".format(self.batch_group_size)) + + @staticmethod + def _sort_batch(batch, text_lengths): + """Sort the batch by the input text length for RNN efficiency. + + Args: + batch (Dict): Batch returned by `__getitem__`. + text_lengths (List[int]): Lengths of the input character sequences. + """ + text_lengths, ids_sorted_decreasing = torch.sort(torch.LongTensor(text_lengths), dim=0, descending=True) + batch = [batch[idx] for idx in ids_sorted_decreasing] + return batch, text_lengths, ids_sorted_decreasing + + def collate_fn(self, batch): + r""" + Perform preprocessing and create a final data batch: + 1. Sort batch instances by text-length + 2. Convert Audio signal to features. + 3. PAD sequences wrt r. + 4. Load to Torch. + """ + + # Puts each data field into a tensor with outer dimension batch size + if isinstance(batch[0], collections.abc.Mapping): + token_ids_lengths = np.array([len(d["token_ids"]) for d in batch]) + + # sort items with text input length for RNN efficiency + batch, token_ids_lengths, ids_sorted_decreasing = self._sort_batch(batch, token_ids_lengths) + + # convert list of dicts to dict of lists + batch = {k: [dic[k] for dic in batch] for k in batch[0]} + + # get language ids from language names + if self.language_id_mapping is not None: + language_ids = [self.language_id_mapping[ln] for ln in batch["language_name"]] + else: + language_ids = None + # get pre-computed d-vectors + if self.d_vector_mapping is not None: + embedding_keys = list(batch["audio_unique_name"]) + d_vectors = [self.d_vector_mapping[w]["embedding"] for w in embedding_keys] + else: + d_vectors = None + + # get numerical speaker ids from speaker names + if self.speaker_id_mapping: + speaker_ids = [self.speaker_id_mapping[sn] for sn in batch["speaker_name"]] + else: + speaker_ids = None + # compute features + mel = [self.ap.melspectrogram(w).astype("float32") for w in batch["wav"]] + + mel_lengths = [m.shape[1] for m in mel] + + # lengths adjusted by the reduction factor + mel_lengths_adjusted = [ + m.shape[1] + (self.outputs_per_step - (m.shape[1] % self.outputs_per_step)) + if m.shape[1] % self.outputs_per_step + else m.shape[1] + for m in mel + ] + + # compute 'stop token' targets + stop_targets = [np.array([0.0] * (mel_len - 1) + [1.0]) for mel_len in mel_lengths] + + # PAD stop targets + stop_targets = prepare_stop_target(stop_targets, self.outputs_per_step) + + # PAD sequences with longest instance in the batch + token_ids = prepare_data(batch["token_ids"]).astype(np.int32) + + # PAD features with longest instance + mel = prepare_tensor(mel, self.outputs_per_step) + + # B x D x T --> B x T x D + mel = mel.transpose(0, 2, 1) + + # convert things to pytorch + token_ids_lengths = torch.LongTensor(token_ids_lengths) + token_ids = torch.LongTensor(token_ids) + mel = torch.FloatTensor(mel).contiguous() + mel_lengths = torch.LongTensor(mel_lengths) + stop_targets = torch.FloatTensor(stop_targets) + + # speaker vectors + if d_vectors is not None: + d_vectors = torch.FloatTensor(d_vectors) + + if speaker_ids is not None: + speaker_ids = torch.LongTensor(speaker_ids) + + if language_ids is not None: + language_ids = torch.LongTensor(language_ids) + + # compute linear spectrogram + linear = None + if self.compute_linear_spec: + linear = [self.ap.spectrogram(w).astype("float32") for w in batch["wav"]] + linear = prepare_tensor(linear, self.outputs_per_step) + linear = linear.transpose(0, 2, 1) + assert mel.shape[1] == linear.shape[1] + linear = torch.FloatTensor(linear).contiguous() + + # format waveforms + wav_padded = None + if self.return_wav: + wav_lengths = [w.shape[0] for w in batch["wav"]] + max_wav_len = max(mel_lengths_adjusted) * self.ap.hop_length + wav_lengths = torch.LongTensor(wav_lengths) + wav_padded = torch.zeros(len(batch["wav"]), 1, max_wav_len) + for i, w in enumerate(batch["wav"]): + mel_length = mel_lengths_adjusted[i] + w = np.pad(w, (0, self.ap.hop_length * self.outputs_per_step), mode="edge") + w = w[: mel_length * self.ap.hop_length] + wav_padded[i, :, : w.shape[0]] = torch.from_numpy(w) + wav_padded.transpose_(1, 2) + + # format F0 + if self.compute_f0: + pitch = prepare_data(batch["pitch"]) + assert mel.shape[1] == pitch.shape[1], f"[!] {mel.shape} vs {pitch.shape}" + pitch = torch.FloatTensor(pitch)[:, None, :].contiguous() # B x 1 xT + else: + pitch = None + # format energy + if self.compute_energy: + energy = prepare_data(batch["energy"]) + assert mel.shape[1] == energy.shape[1], f"[!] {mel.shape} vs {energy.shape}" + energy = torch.FloatTensor(energy)[:, None, :].contiguous() # B x 1 xT + else: + energy = None + # format attention masks + attns = None + if batch["attn"][0] is not None: + attns = [batch["attn"][idx].T for idx in ids_sorted_decreasing] + for idx, attn in enumerate(attns): + pad2 = mel.shape[1] - attn.shape[1] + pad1 = token_ids.shape[1] - attn.shape[0] + assert pad1 >= 0 and pad2 >= 0, f"[!] Negative padding - {pad1} and {pad2}" + attn = np.pad(attn, [[0, pad1], [0, pad2]]) + attns[idx] = attn + attns = prepare_tensor(attns, self.outputs_per_step) + attns = torch.FloatTensor(attns).unsqueeze(1) + + return { + "token_id": token_ids, + "token_id_lengths": token_ids_lengths, + "speaker_names": batch["speaker_name"], + "linear": linear, + "mel": mel, + "mel_lengths": mel_lengths, + "stop_targets": stop_targets, + "item_idxs": batch["item_idx"], + "d_vectors": d_vectors, + "speaker_ids": speaker_ids, + "attns": attns, + "waveform": wav_padded, + "raw_text": batch["raw_text"], + "pitch": pitch, + "energy": energy, + "language_ids": language_ids, + "audio_unique_names": batch["audio_unique_name"], + } + + raise TypeError( + ( + "batch must contain tensors, numbers, dicts or lists;\ + found {}".format( + type(batch[0]) + ) + ) + ) + + +class PhonemeDataset(Dataset): + """Phoneme Dataset for converting input text to phonemes and then token IDs + + At initialization, it pre-computes the phonemes under `cache_path` and loads them in training to reduce data + loading latency. If `cache_path` is already present, it skips the pre-computation. + + Args: + samples (Union[List[List], List[Dict]]): + List of samples. Each sample is a list or a dict. + + tokenizer (TTSTokenizer): + Tokenizer to convert input text to phonemes. + + cache_path (str): + Path to cache phonemes. If `cache_path` is already present or None, it skips the pre-computation. + + precompute_num_workers (int): + Number of workers used for pre-computing the phonemes. Defaults to 0. + """ + + def __init__( + self, + samples: Union[List[Dict], List[List]], + tokenizer: "TTSTokenizer", + cache_path: str, + precompute_num_workers=0, + ): + self.samples = samples + self.tokenizer = tokenizer + self.cache_path = cache_path + if cache_path is not None and not os.path.exists(cache_path): + os.makedirs(cache_path) + self.precompute(precompute_num_workers) + + def __getitem__(self, index): + item = self.samples[index] + ids = self.compute_or_load(string2filename(item["audio_unique_name"]), item["text"], item["language"]) + ph_hat = self.tokenizer.ids_to_text(ids) + return {"text": item["text"], "ph_hat": ph_hat, "token_ids": ids, "token_ids_len": len(ids)} + + def __len__(self): + return len(self.samples) + + def compute_or_load(self, file_name, text, language): + """Compute phonemes for the given text. + + If the phonemes are already cached, load them from cache. + """ + file_ext = "_phoneme.npy" + cache_path = os.path.join(self.cache_path, file_name + file_ext) + try: + ids = np.load(cache_path) + except FileNotFoundError: + ids = self.tokenizer.text_to_ids(text, language=language) + np.save(cache_path, ids) + return ids + + def get_pad_id(self): + """Get pad token ID for sequence padding""" + return self.tokenizer.pad_id + + def precompute(self, num_workers=1): + """Precompute phonemes for all samples. + + We use pytorch dataloader because we are lazy. + """ + print("[*] Pre-computing phonemes...") + with tqdm.tqdm(total=len(self)) as pbar: + batch_size = num_workers if num_workers > 0 else 1 + dataloder = torch.utils.data.DataLoader( + batch_size=batch_size, dataset=self, shuffle=False, num_workers=num_workers, collate_fn=self.collate_fn + ) + for _ in dataloder: + pbar.update(batch_size) + + def collate_fn(self, batch): + ids = [item["token_ids"] for item in batch] + ids_lens = [item["token_ids_len"] for item in batch] + texts = [item["text"] for item in batch] + texts_hat = [item["ph_hat"] for item in batch] + ids_lens_max = max(ids_lens) + ids_torch = torch.LongTensor(len(ids), ids_lens_max).fill_(self.get_pad_id()) + for i, ids_len in enumerate(ids_lens): + ids_torch[i, :ids_len] = torch.LongTensor(ids[i]) + return {"text": texts, "ph_hat": texts_hat, "token_ids": ids_torch} + + def print_logs(self, level: int = 0) -> None: + indent = "\t" * level + print("\n") + print(f"{indent}> PhonemeDataset ") + print(f"{indent}| > Tokenizer:") + self.tokenizer.print_logs(level + 1) + print(f"{indent}| > Number of instances : {len(self.samples)}") + + +class F0Dataset: + """F0 Dataset for computing F0 from wav files in CPU + + Pre-compute F0 values for all the samples at initialization if `cache_path` is not None or already present. It + also computes the mean and std of F0 values if `normalize_f0` is True. + + Args: + samples (Union[List[List], List[Dict]]): + List of samples. Each sample is a list or a dict. + + ap (AudioProcessor): + AudioProcessor to compute F0 from wav files. + + cache_path (str): + Path to cache F0 values. If `cache_path` is already present or None, it skips the pre-computation. + Defaults to None. + + precompute_num_workers (int): + Number of workers used for pre-computing the F0 values. Defaults to 0. + + normalize_f0 (bool): + Whether to normalize F0 values by mean and std. Defaults to True. + """ + + def __init__( + self, + samples: Union[List[List], List[Dict]], + ap: "AudioProcessor", + audio_config=None, # pylint: disable=unused-argument + verbose=False, + cache_path: str = None, + precompute_num_workers=0, + normalize_f0=True, + ): + self.samples = samples + self.ap = ap + self.verbose = verbose + self.cache_path = cache_path + self.normalize_f0 = normalize_f0 + self.pad_id = 0.0 + self.mean = None + self.std = None + if cache_path is not None and not os.path.exists(cache_path): + os.makedirs(cache_path) + self.precompute(precompute_num_workers) + if normalize_f0: + self.load_stats(cache_path) + + def __getitem__(self, idx): + item = self.samples[idx] + f0 = self.compute_or_load(item["audio_file"], string2filename(item["audio_unique_name"])) + if self.normalize_f0: + assert self.mean is not None and self.std is not None, " [!] Mean and STD is not available" + f0 = self.normalize(f0) + return {"audio_unique_name": item["audio_unique_name"], "f0": f0} + + def __len__(self): + return len(self.samples) + + def precompute(self, num_workers=0): + print("[*] Pre-computing F0s...") + with tqdm.tqdm(total=len(self)) as pbar: + batch_size = num_workers if num_workers > 0 else 1 + # we do not normalize at preproessing + normalize_f0 = self.normalize_f0 + self.normalize_f0 = False + dataloder = torch.utils.data.DataLoader( + batch_size=batch_size, dataset=self, shuffle=False, num_workers=num_workers, collate_fn=self.collate_fn + ) + computed_data = [] + for batch in dataloder: + f0 = batch["f0"] + computed_data.append(f for f in f0) + pbar.update(batch_size) + self.normalize_f0 = normalize_f0 + + if self.normalize_f0: + computed_data = [tensor for batch in computed_data for tensor in batch] # flatten + pitch_mean, pitch_std = self.compute_pitch_stats(computed_data) + pitch_stats = {"mean": pitch_mean, "std": pitch_std} + np.save(os.path.join(self.cache_path, "pitch_stats"), pitch_stats, allow_pickle=True) + + def get_pad_id(self): + return self.pad_id + + @staticmethod + def create_pitch_file_path(file_name, cache_path): + pitch_file = os.path.join(cache_path, file_name + "_pitch.npy") + return pitch_file + + @staticmethod + def _compute_and_save_pitch(ap, wav_file, pitch_file=None): + wav = ap.load_wav(wav_file) + pitch = ap.compute_f0(wav) + if pitch_file: + np.save(pitch_file, pitch) + return pitch + + @staticmethod + def compute_pitch_stats(pitch_vecs): + nonzeros = np.concatenate([v[np.where(v != 0.0)[0]] for v in pitch_vecs]) + mean, std = np.mean(nonzeros), np.std(nonzeros) + return mean, std + + def load_stats(self, cache_path): + stats_path = os.path.join(cache_path, "pitch_stats.npy") + stats = np.load(stats_path, allow_pickle=True).item() + self.mean = stats["mean"].astype(np.float32) + self.std = stats["std"].astype(np.float32) + + def normalize(self, pitch): + zero_idxs = np.where(pitch == 0.0)[0] + pitch = pitch - self.mean + pitch = pitch / self.std + pitch[zero_idxs] = 0.0 + return pitch + + def denormalize(self, pitch): + zero_idxs = np.where(pitch == 0.0)[0] + pitch *= self.std + pitch += self.mean + pitch[zero_idxs] = 0.0 + return pitch + + def compute_or_load(self, wav_file, audio_unique_name): + """ + compute pitch and return a numpy array of pitch values + """ + pitch_file = self.create_pitch_file_path(audio_unique_name, self.cache_path) + if not os.path.exists(pitch_file): + pitch = self._compute_and_save_pitch(self.ap, wav_file, pitch_file) + else: + pitch = np.load(pitch_file) + return pitch.astype(np.float32) + + def collate_fn(self, batch): + audio_unique_name = [item["audio_unique_name"] for item in batch] + f0s = [item["f0"] for item in batch] + f0_lens = [len(item["f0"]) for item in batch] + f0_lens_max = max(f0_lens) + f0s_torch = torch.LongTensor(len(f0s), f0_lens_max).fill_(self.get_pad_id()) + for i, f0_len in enumerate(f0_lens): + f0s_torch[i, :f0_len] = torch.LongTensor(f0s[i]) + return {"audio_unique_name": audio_unique_name, "f0": f0s_torch, "f0_lens": f0_lens} + + def print_logs(self, level: int = 0) -> None: + indent = "\t" * level + print("\n") + print(f"{indent}> F0Dataset ") + print(f"{indent}| > Number of instances : {len(self.samples)}") + + +class EnergyDataset: + """Energy Dataset for computing Energy from wav files in CPU + + Pre-compute Energy values for all the samples at initialization if `cache_path` is not None or already present. It + also computes the mean and std of Energy values if `normalize_Energy` is True. + + Args: + samples (Union[List[List], List[Dict]]): + List of samples. Each sample is a list or a dict. + + ap (AudioProcessor): + AudioProcessor to compute Energy from wav files. + + cache_path (str): + Path to cache Energy values. If `cache_path` is already present or None, it skips the pre-computation. + Defaults to None. + + precompute_num_workers (int): + Number of workers used for pre-computing the Energy values. Defaults to 0. + + normalize_Energy (bool): + Whether to normalize Energy values by mean and std. Defaults to True. + """ + + def __init__( + self, + samples: Union[List[List], List[Dict]], + ap: "AudioProcessor", + verbose=False, + cache_path: str = None, + precompute_num_workers=0, + normalize_energy=True, + ): + self.samples = samples + self.ap = ap + self.verbose = verbose + self.cache_path = cache_path + self.normalize_energy = normalize_energy + self.pad_id = 0.0 + self.mean = None + self.std = None + if cache_path is not None and not os.path.exists(cache_path): + os.makedirs(cache_path) + self.precompute(precompute_num_workers) + if normalize_energy: + self.load_stats(cache_path) + + def __getitem__(self, idx): + item = self.samples[idx] + energy = self.compute_or_load(item["audio_file"], string2filename(item["audio_unique_name"])) + if self.normalize_energy: + assert self.mean is not None and self.std is not None, " [!] Mean and STD is not available" + energy = self.normalize(energy) + return {"audio_unique_name": item["audio_unique_name"], "energy": energy} + + def __len__(self): + return len(self.samples) + + def precompute(self, num_workers=0): + print("[*] Pre-computing energys...") + with tqdm.tqdm(total=len(self)) as pbar: + batch_size = num_workers if num_workers > 0 else 1 + # we do not normalize at preproessing + normalize_energy = self.normalize_energy + self.normalize_energy = False + dataloder = torch.utils.data.DataLoader( + batch_size=batch_size, dataset=self, shuffle=False, num_workers=num_workers, collate_fn=self.collate_fn + ) + computed_data = [] + for batch in dataloder: + energy = batch["energy"] + computed_data.append(e for e in energy) + pbar.update(batch_size) + self.normalize_energy = normalize_energy + + if self.normalize_energy: + computed_data = [tensor for batch in computed_data for tensor in batch] # flatten + energy_mean, energy_std = self.compute_energy_stats(computed_data) + energy_stats = {"mean": energy_mean, "std": energy_std} + np.save(os.path.join(self.cache_path, "energy_stats"), energy_stats, allow_pickle=True) + + def get_pad_id(self): + return self.pad_id + + @staticmethod + def create_energy_file_path(wav_file, cache_path): + file_name = os.path.splitext(os.path.basename(wav_file))[0] + energy_file = os.path.join(cache_path, file_name + "_energy.npy") + return energy_file + + @staticmethod + def _compute_and_save_energy(ap, wav_file, energy_file=None): + wav = ap.load_wav(wav_file) + energy = calculate_energy(wav, fft_size=ap.fft_size, hop_length=ap.hop_length, win_length=ap.win_length) + if energy_file: + np.save(energy_file, energy) + return energy + + @staticmethod + def compute_energy_stats(energy_vecs): + nonzeros = np.concatenate([v[np.where(v != 0.0)[0]] for v in energy_vecs]) + mean, std = np.mean(nonzeros), np.std(nonzeros) + return mean, std + + def load_stats(self, cache_path): + stats_path = os.path.join(cache_path, "energy_stats.npy") + stats = np.load(stats_path, allow_pickle=True).item() + self.mean = stats["mean"].astype(np.float32) + self.std = stats["std"].astype(np.float32) + + def normalize(self, energy): + zero_idxs = np.where(energy == 0.0)[0] + energy = energy - self.mean + energy = energy / self.std + energy[zero_idxs] = 0.0 + return energy + + def denormalize(self, energy): + zero_idxs = np.where(energy == 0.0)[0] + energy *= self.std + energy += self.mean + energy[zero_idxs] = 0.0 + return energy + + def compute_or_load(self, wav_file, audio_unique_name): + """ + compute energy and return a numpy array of energy values + """ + energy_file = self.create_energy_file_path(audio_unique_name, self.cache_path) + if not os.path.exists(energy_file): + energy = self._compute_and_save_energy(self.ap, wav_file, energy_file) + else: + energy = np.load(energy_file) + return energy.astype(np.float32) + + def collate_fn(self, batch): + audio_unique_name = [item["audio_unique_name"] for item in batch] + energys = [item["energy"] for item in batch] + energy_lens = [len(item["energy"]) for item in batch] + energy_lens_max = max(energy_lens) + energys_torch = torch.LongTensor(len(energys), energy_lens_max).fill_(self.get_pad_id()) + for i, energy_len in enumerate(energy_lens): + energys_torch[i, :energy_len] = torch.LongTensor(energys[i]) + return {"audio_unique_name": audio_unique_name, "energy": energys_torch, "energy_lens": energy_lens} + + def print_logs(self, level: int = 0) -> None: + indent = "\t" * level + print("\n") + print(f"{indent}> energyDataset ") + print(f"{indent}| > Number of instances : {len(self.samples)}") diff --git a/TTS/TTS/tts/datasets/formatters.py b/TTS/TTS/tts/datasets/formatters.py new file mode 100644 index 0000000000000000000000000000000000000000..fbf6881f045a2672b7f35f02185642dbac17ad06 --- /dev/null +++ b/TTS/TTS/tts/datasets/formatters.py @@ -0,0 +1,655 @@ +import os +import re +import xml.etree.ElementTree as ET +from glob import glob +from pathlib import Path +from typing import List + +import pandas as pd +from tqdm import tqdm + +######################## +# DATASETS +######################## + + +def cml_tts(root_path, meta_file, ignored_speakers=None): + """Normalizes the CML-TTS meta data file to TTS format + https://github.com/freds0/CML-TTS-Dataset/""" + filepath = os.path.join(root_path, meta_file) + # ensure there are 4 columns for every line + with open(filepath, "r", encoding="utf8") as f: + lines = f.readlines() + num_cols = len(lines[0].split("|")) # take the first row as reference + for idx, line in enumerate(lines[1:]): + if len(line.split("|")) != num_cols: + print(f" > Missing column in line {idx + 1} -> {line.strip()}") + # load metadata + metadata = pd.read_csv(os.path.join(root_path, meta_file), sep="|") + assert all(x in metadata.columns for x in ["wav_filename", "transcript"]) + client_id = None if "client_id" in metadata.columns else "default" + emotion_name = None if "emotion_name" in metadata.columns else "neutral" + items = [] + not_found_counter = 0 + for row in metadata.itertuples(): + if client_id is None and ignored_speakers is not None and row.client_id in ignored_speakers: + continue + audio_path = os.path.join(root_path, row.wav_filename) + if not os.path.exists(audio_path): + not_found_counter += 1 + continue + items.append( + { + "text": row.transcript, + "audio_file": audio_path, + "speaker_name": client_id if client_id is not None else row.client_id, + "emotion_name": emotion_name if emotion_name is not None else row.emotion_name, + "root_path": root_path, + } + ) + if not_found_counter > 0: + print(f" | > [!] {not_found_counter} files not found") + return items + + +def coqui(root_path, meta_file, ignored_speakers=None): + """Interal dataset formatter.""" + filepath = os.path.join(root_path, meta_file) + # ensure there are 4 columns for every line + with open(filepath, "r", encoding="utf8") as f: + lines = f.readlines() + num_cols = len(lines[0].split("|")) # take the first row as reference + for idx, line in enumerate(lines[1:]): + if len(line.split("|")) != num_cols: + print(f" > Missing column in line {idx + 1} -> {line.strip()}") + # load metadata + metadata = pd.read_csv(os.path.join(root_path, meta_file), sep="|") + assert all(x in metadata.columns for x in ["audio_file", "text"]) + speaker_name = None if "speaker_name" in metadata.columns else "coqui" + emotion_name = None if "emotion_name" in metadata.columns else "neutral" + items = [] + not_found_counter = 0 + for row in metadata.itertuples(): + if speaker_name is None and ignored_speakers is not None and row.speaker_name in ignored_speakers: + continue + audio_path = os.path.join(root_path, row.audio_file) + if not os.path.exists(audio_path): + not_found_counter += 1 + continue + items.append( + { + "text": row.text, + "audio_file": audio_path, + "speaker_name": speaker_name if speaker_name is not None else row.speaker_name, + "emotion_name": emotion_name if emotion_name is not None else row.emotion_name, + "root_path": root_path, + } + ) + if not_found_counter > 0: + print(f" | > [!] {not_found_counter} files not found") + return items + + +def tweb(root_path, meta_file, **kwargs): # pylint: disable=unused-argument + """Normalize TWEB dataset. + https://www.kaggle.com/bryanpark/the-world-english-bible-speech-dataset + """ + txt_file = os.path.join(root_path, meta_file) + items = [] + speaker_name = "tweb" + with open(txt_file, "r", encoding="utf-8") as ttf: + for line in ttf: + cols = line.split("\t") + wav_file = os.path.join(root_path, cols[0] + ".wav") + text = cols[1] + items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name, "root_path": root_path}) + return items + + +def mozilla(root_path, meta_file, **kwargs): # pylint: disable=unused-argument + """Normalizes Mozilla meta data files to TTS format""" + txt_file = os.path.join(root_path, meta_file) + items = [] + speaker_name = "mozilla" + with open(txt_file, "r", encoding="utf-8") as ttf: + for line in ttf: + cols = line.split("|") + wav_file = cols[1].strip() + text = cols[0].strip() + wav_file = os.path.join(root_path, "wavs", wav_file) + items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name, "root_path": root_path}) + return items + + +def mozilla_de(root_path, meta_file, **kwargs): # pylint: disable=unused-argument + """Normalizes Mozilla meta data files to TTS format""" + txt_file = os.path.join(root_path, meta_file) + items = [] + speaker_name = "mozilla" + with open(txt_file, "r", encoding="ISO 8859-1") as ttf: + for line in ttf: + cols = line.strip().split("|") + wav_file = cols[0].strip() + text = cols[1].strip() + folder_name = f"BATCH_{wav_file.split('_')[0]}_FINAL" + wav_file = os.path.join(root_path, folder_name, wav_file) + items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name, "root_path": root_path}) + return items + + +def mailabs(root_path, meta_files=None, ignored_speakers=None): + """Normalizes M-AI-Labs meta data files to TTS format + + Args: + root_path (str): root folder of the MAILAB language folder. + meta_files (str): list of meta files to be used in the training. If None, finds all the csv files + recursively. Defaults to None + """ + speaker_regex = re.compile(f"by_book{os.sep}(male|female){os.sep}(?P[^{os.sep}]+){os.sep}") + if not meta_files: + csv_files = glob(root_path + f"{os.sep}**{os.sep}metadata.csv", recursive=True) + else: + csv_files = meta_files + + # meta_files = [f.strip() for f in meta_files.split(",")] + items = [] + for csv_file in csv_files: + if os.path.isfile(csv_file): + txt_file = csv_file + else: + txt_file = os.path.join(root_path, csv_file) + + folder = os.path.dirname(txt_file) + # determine speaker based on folder structure... + speaker_name_match = speaker_regex.search(txt_file) + if speaker_name_match is None: + continue + speaker_name = speaker_name_match.group("speaker_name") + # ignore speakers + if isinstance(ignored_speakers, list): + if speaker_name in ignored_speakers: + continue + print(" | > {}".format(csv_file)) + with open(txt_file, "r", encoding="utf-8") as ttf: + for line in ttf: + cols = line.split("|") + if not meta_files: + wav_file = os.path.join(folder, "wavs", cols[0] + ".wav") + else: + wav_file = os.path.join(root_path, folder.replace("metadata.csv", ""), "wavs", cols[0] + ".wav") + if os.path.isfile(wav_file): + text = cols[1].strip() + items.append( + {"text": text, "audio_file": wav_file, "speaker_name": speaker_name, "root_path": root_path} + ) + else: + # M-AI-Labs have some missing samples, so just print the warning + print("> File %s does not exist!" % (wav_file)) + return items + + +def ljspeech(root_path, meta_file, **kwargs): # pylint: disable=unused-argument + """Normalizes the LJSpeech meta data file to TTS format + https://keithito.com/LJ-Speech-Dataset/""" + txt_file = os.path.join(root_path, meta_file) + items = [] + speaker_name = "ljspeech" + with open(txt_file, "r", encoding="utf-8") as ttf: + for line in ttf: + cols = line.split("|") + wav_file = os.path.join(root_path, "wavs", cols[0] + ".wav") + text = cols[2] + items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name, "root_path": root_path}) + return items + + +def ljspeech_test(root_path, meta_file, **kwargs): # pylint: disable=unused-argument + """Normalizes the LJSpeech meta data file for TTS testing + https://keithito.com/LJ-Speech-Dataset/""" + txt_file = os.path.join(root_path, meta_file) + items = [] + with open(txt_file, "r", encoding="utf-8") as ttf: + speaker_id = 0 + for idx, line in enumerate(ttf): + # 2 samples per speaker to avoid eval split issues + if idx % 2 == 0: + speaker_id += 1 + cols = line.split("|") + wav_file = os.path.join(root_path, "wavs", cols[0] + ".wav") + text = cols[2] + items.append( + {"text": text, "audio_file": wav_file, "speaker_name": f"ljspeech-{speaker_id}", "root_path": root_path} + ) + return items + + +def thorsten(root_path, meta_file, **kwargs): # pylint: disable=unused-argument + """Normalizes the thorsten meta data file to TTS format + https://github.com/thorstenMueller/deep-learning-german-tts/""" + txt_file = os.path.join(root_path, meta_file) + items = [] + speaker_name = "thorsten" + with open(txt_file, "r", encoding="utf-8") as ttf: + for line in ttf: + cols = line.split("|") + wav_file = os.path.join(root_path, "wavs", cols[0] + ".wav") + text = cols[1] + items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name, "root_path": root_path}) + return items + + +def sam_accenture(root_path, meta_file, **kwargs): # pylint: disable=unused-argument + """Normalizes the sam-accenture meta data file to TTS format + https://github.com/Sam-Accenture-Non-Binary-Voice/non-binary-voice-files""" + xml_file = os.path.join(root_path, "voice_over_recordings", meta_file) + xml_root = ET.parse(xml_file).getroot() + items = [] + speaker_name = "sam_accenture" + for item in xml_root.findall("./fileid"): + text = item.text + wav_file = os.path.join(root_path, "vo_voice_quality_transformation", item.get("id") + ".wav") + if not os.path.exists(wav_file): + print(f" [!] {wav_file} in metafile does not exist. Skipping...") + continue + items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name, "root_path": root_path}) + return items + + +def ruslan(root_path, meta_file, **kwargs): # pylint: disable=unused-argument + """Normalizes the RUSLAN meta data file to TTS format + https://ruslan-corpus.github.io/""" + txt_file = os.path.join(root_path, meta_file) + items = [] + speaker_name = "ruslan" + with open(txt_file, "r", encoding="utf-8") as ttf: + for line in ttf: + cols = line.split("|") + wav_file = os.path.join(root_path, "RUSLAN", cols[0] + ".wav") + text = cols[1] + items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name, "root_path": root_path}) + return items + + +def css10(root_path, meta_file, **kwargs): # pylint: disable=unused-argument + """Normalizes the CSS10 dataset file to TTS format""" + txt_file = os.path.join(root_path, meta_file) + items = [] + speaker_name = "css10" + with open(txt_file, "r", encoding="utf-8") as ttf: + for line in ttf: + cols = line.split("|") + wav_file = os.path.join(root_path, cols[0]) + text = cols[1] + items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name}) + return items + + +def nancy(root_path, meta_file, **kwargs): # pylint: disable=unused-argument + """Normalizes the Nancy meta data file to TTS format""" + txt_file = os.path.join(root_path, meta_file) + items = [] + speaker_name = "nancy" + with open(txt_file, "r", encoding="utf-8") as ttf: + for line in ttf: + utt_id = line.split()[1] + text = line[line.find('"') + 1 : line.rfind('"') - 1] + wav_file = os.path.join(root_path, "wavn", utt_id + ".wav") + items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name}) + return items + + +def common_voice(root_path, meta_file, ignored_speakers=None): + """Normalize the common voice meta data file to TTS format.""" + txt_file = os.path.join(root_path, meta_file) + items = [] + with open(txt_file, "r", encoding="utf-8") as ttf: + for line in ttf: + if line.startswith("client_id"): + continue + cols = line.split("\t") + text = cols[2] + speaker_name = cols[0] + # ignore speakers + if isinstance(ignored_speakers, list): + if speaker_name in ignored_speakers: + continue + wav_file = os.path.join(root_path, "clips", cols[1].replace(".mp3", ".wav")) + items.append( + {"text": text, "audio_file": wav_file, "speaker_name": "MCV_" + speaker_name, "root_path": root_path} + ) + return items + + +def libri_tts(root_path, meta_files=None, ignored_speakers=None): + """https://ai.google/tools/datasets/libri-tts/""" + items = [] + if not meta_files: + meta_files = glob(f"{root_path}/**/*trans.tsv", recursive=True) + else: + if isinstance(meta_files, str): + meta_files = [os.path.join(root_path, meta_files)] + + for meta_file in meta_files: + _meta_file = os.path.basename(meta_file).split(".")[0] + with open(meta_file, "r", encoding="utf-8") as ttf: + for line in ttf: + cols = line.split("\t") + file_name = cols[0] + speaker_name, chapter_id, *_ = cols[0].split("_") + _root_path = os.path.join(root_path, f"{speaker_name}/{chapter_id}") + wav_file = os.path.join(_root_path, file_name + ".wav") + text = cols[2] + # ignore speakers + if isinstance(ignored_speakers, list): + if speaker_name in ignored_speakers: + continue + items.append( + { + "text": text, + "audio_file": wav_file, + "speaker_name": f"LTTS_{speaker_name}", + "root_path": root_path, + } + ) + for item in items: + assert os.path.exists(item["audio_file"]), f" [!] wav files don't exist - {item['audio_file']}" + return items + + +def custom_turkish(root_path, meta_file, **kwargs): # pylint: disable=unused-argument + txt_file = os.path.join(root_path, meta_file) + items = [] + speaker_name = "turkish-female" + skipped_files = [] + with open(txt_file, "r", encoding="utf-8") as ttf: + for line in ttf: + cols = line.split("|") + wav_file = os.path.join(root_path, "wavs", cols[0].strip() + ".wav") + if not os.path.exists(wav_file): + skipped_files.append(wav_file) + continue + text = cols[1].strip() + items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name, "root_path": root_path}) + print(f" [!] {len(skipped_files)} files skipped. They don't exist...") + return items + + +# ToDo: add the dataset link when the dataset is released publicly +def brspeech(root_path, meta_file, ignored_speakers=None): + """BRSpeech 3.0 beta""" + txt_file = os.path.join(root_path, meta_file) + items = [] + with open(txt_file, "r", encoding="utf-8") as ttf: + for line in ttf: + if line.startswith("wav_filename"): + continue + cols = line.split("|") + wav_file = os.path.join(root_path, cols[0]) + text = cols[2] + speaker_id = cols[3] + # ignore speakers + if isinstance(ignored_speakers, list): + if speaker_id in ignored_speakers: + continue + items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_id, "root_path": root_path}) + return items + + +def vctk(root_path, meta_files=None, wavs_path="wav48_silence_trimmed", mic="mic1", ignored_speakers=None): + """VCTK dataset v0.92. + + URL: + https://datashare.ed.ac.uk/bitstream/handle/10283/3443/VCTK-Corpus-0.92.zip + + This dataset has 2 recordings per speaker that are annotated with ```mic1``` and ```mic2```. + It is believed that (๐Ÿ˜„ ) ```mic1``` files are the same as the previous version of the dataset. + + mic1: + Audio recorded using an omni-directional microphone (DPA 4035). + Contains very low frequency noises. + This is the same audio released in previous versions of VCTK: + https://doi.org/10.7488/ds/1994 + + mic2: + Audio recorded using a small diaphragm condenser microphone with + very wide bandwidth (Sennheiser MKH 800). + Two speakers, p280 and p315 had technical issues of the audio + recordings using MKH 800. + """ + file_ext = "flac" + items = [] + meta_files = glob(f"{os.path.join(root_path,'txt')}/**/*.txt", recursive=True) + for meta_file in meta_files: + _, speaker_id, txt_file = os.path.relpath(meta_file, root_path).split(os.sep) + file_id = txt_file.split(".")[0] + # ignore speakers + if isinstance(ignored_speakers, list): + if speaker_id in ignored_speakers: + continue + with open(meta_file, "r", encoding="utf-8") as file_text: + text = file_text.readlines()[0] + # p280 has no mic2 recordings + if speaker_id == "p280": + wav_file = os.path.join(root_path, wavs_path, speaker_id, file_id + f"_mic1.{file_ext}") + else: + wav_file = os.path.join(root_path, wavs_path, speaker_id, file_id + f"_{mic}.{file_ext}") + if os.path.exists(wav_file): + items.append( + {"text": text, "audio_file": wav_file, "speaker_name": "VCTK_" + speaker_id, "root_path": root_path} + ) + else: + print(f" [!] wav files don't exist - {wav_file}") + return items + + +def vctk_old(root_path, meta_files=None, wavs_path="wav48", ignored_speakers=None): + """homepages.inf.ed.ac.uk/jyamagis/release/VCTK-Corpus.tar.gz""" + items = [] + meta_files = glob(f"{os.path.join(root_path,'txt')}/**/*.txt", recursive=True) + for meta_file in meta_files: + _, speaker_id, txt_file = os.path.relpath(meta_file, root_path).split(os.sep) + file_id = txt_file.split(".")[0] + # ignore speakers + if isinstance(ignored_speakers, list): + if speaker_id in ignored_speakers: + continue + with open(meta_file, "r", encoding="utf-8") as file_text: + text = file_text.readlines()[0] + wav_file = os.path.join(root_path, wavs_path, speaker_id, file_id + ".wav") + items.append( + {"text": text, "audio_file": wav_file, "speaker_name": "VCTK_old_" + speaker_id, "root_path": root_path} + ) + return items + + +def synpaflex(root_path, metafiles=None, **kwargs): # pylint: disable=unused-argument + items = [] + speaker_name = "synpaflex" + root_path = os.path.join(root_path, "") + wav_files = glob(f"{root_path}**/*.wav", recursive=True) + for wav_file in wav_files: + if os.sep + "wav" + os.sep in wav_file: + txt_file = wav_file.replace("wav", "txt") + else: + txt_file = os.path.join( + os.path.dirname(wav_file), "txt", os.path.basename(wav_file).replace(".wav", ".txt") + ) + if os.path.exists(txt_file) and os.path.exists(wav_file): + with open(txt_file, "r", encoding="utf-8") as file_text: + text = file_text.readlines()[0] + items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name, "root_path": root_path}) + return items + + +def open_bible(root_path, meta_files="train", ignore_digits_sentences=True, ignored_speakers=None): + """ToDo: Refer the paper when available""" + items = [] + split_dir = meta_files + meta_files = glob(f"{os.path.join(root_path, split_dir)}/**/*.txt", recursive=True) + for meta_file in meta_files: + _, speaker_id, txt_file = os.path.relpath(meta_file, root_path).split(os.sep) + file_id = txt_file.split(".")[0] + # ignore speakers + if isinstance(ignored_speakers, list): + if speaker_id in ignored_speakers: + continue + with open(meta_file, "r", encoding="utf-8") as file_text: + text = file_text.readline().replace("\n", "") + # ignore sentences that contains digits + if ignore_digits_sentences and any(map(str.isdigit, text)): + continue + wav_file = os.path.join(root_path, split_dir, speaker_id, file_id + ".flac") + items.append({"text": text, "audio_file": wav_file, "speaker_name": "OB_" + speaker_id, "root_path": root_path}) + return items + + +def mls(root_path, meta_files=None, ignored_speakers=None): + """http://www.openslr.org/94/""" + items = [] + with open(os.path.join(root_path, meta_files), "r", encoding="utf-8") as meta: + for line in meta: + file, text = line.split("\t") + text = text[:-1] + speaker, book, *_ = file.split("_") + wav_file = os.path.join(root_path, os.path.dirname(meta_files), "audio", speaker, book, file + ".wav") + # ignore speakers + if isinstance(ignored_speakers, list): + if speaker in ignored_speakers: + continue + items.append( + {"text": text, "audio_file": wav_file, "speaker_name": "MLS_" + speaker, "root_path": root_path} + ) + return items + + +# ======================================== VOX CELEB =========================================== +def voxceleb2(root_path, meta_file=None, **kwargs): # pylint: disable=unused-argument + """ + :param meta_file Used only for consistency with load_tts_samples api + """ + return _voxcel_x(root_path, meta_file, voxcel_idx="2") + + +def voxceleb1(root_path, meta_file=None, **kwargs): # pylint: disable=unused-argument + """ + :param meta_file Used only for consistency with load_tts_samples api + """ + return _voxcel_x(root_path, meta_file, voxcel_idx="1") + + +def _voxcel_x(root_path, meta_file, voxcel_idx): + assert voxcel_idx in ["1", "2"] + expected_count = 148_000 if voxcel_idx == "1" else 1_000_000 + voxceleb_path = Path(root_path) + cache_to = voxceleb_path / f"metafile_voxceleb{voxcel_idx}.csv" + cache_to.parent.mkdir(exist_ok=True) + + # if not exists meta file, crawl recursively for 'wav' files + if meta_file is not None: + with open(str(meta_file), "r", encoding="utf-8") as f: + return [x.strip().split("|") for x in f.readlines()] + + elif not cache_to.exists(): + cnt = 0 + meta_data = [] + wav_files = voxceleb_path.rglob("**/*.wav") + for path in tqdm( + wav_files, + desc=f"Building VoxCeleb {voxcel_idx} Meta file ... this needs to be done only once.", + total=expected_count, + ): + speaker_id = str(Path(path).parent.parent.stem) + assert speaker_id.startswith("id") + text = None # VoxCel does not provide transciptions, and they are not needed for training the SE + meta_data.append(f"{text}|{path}|voxcel{voxcel_idx}_{speaker_id}\n") + cnt += 1 + with open(str(cache_to), "w", encoding="utf-8") as f: + f.write("".join(meta_data)) + if cnt < expected_count: + raise ValueError(f"Found too few instances for Voxceleb. Should be around {expected_count}, is: {cnt}") + + with open(str(cache_to), "r", encoding="utf-8") as f: + return [x.strip().split("|") for x in f.readlines()] + + +def emotion(root_path, meta_file, ignored_speakers=None): + """Generic emotion dataset""" + txt_file = os.path.join(root_path, meta_file) + items = [] + with open(txt_file, "r", encoding="utf-8") as ttf: + for line in ttf: + if line.startswith("file_path"): + continue + cols = line.split(",") + wav_file = os.path.join(root_path, cols[0]) + speaker_id = cols[1] + emotion_id = cols[2].replace("\n", "") + # ignore speakers + if isinstance(ignored_speakers, list): + if speaker_id in ignored_speakers: + continue + items.append( + {"audio_file": wav_file, "speaker_name": speaker_id, "emotion_name": emotion_id, "root_path": root_path} + ) + return items + + +def baker(root_path: str, meta_file: str, **kwargs) -> List[List[str]]: # pylint: disable=unused-argument + """Normalizes the Baker meta data file to TTS format + + Args: + root_path (str): path to the baker dataset + meta_file (str): name of the meta dataset containing names of wav to select and the transcript of the sentence + Returns: + List[List[str]]: List of (text, wav_path, speaker_name) associated with each sentences + """ + txt_file = os.path.join(root_path, meta_file) + items = [] + speaker_name = "baker" + with open(txt_file, "r", encoding="utf-8") as ttf: + for line in ttf: + wav_name, text = line.rstrip("\n").split("|") + wav_path = os.path.join(root_path, "clips_22", wav_name) + items.append({"text": text, "audio_file": wav_path, "speaker_name": speaker_name, "root_path": root_path}) + return items + + +def kokoro(root_path, meta_file, **kwargs): # pylint: disable=unused-argument + """Japanese single-speaker dataset from https://github.com/kaiidams/Kokoro-Speech-Dataset""" + txt_file = os.path.join(root_path, meta_file) + items = [] + speaker_name = "kokoro" + with open(txt_file, "r", encoding="utf-8") as ttf: + for line in ttf: + cols = line.split("|") + wav_file = os.path.join(root_path, "wavs", cols[0] + ".wav") + text = cols[2].replace(" ", "") + items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name, "root_path": root_path}) + return items + + +def kss(root_path, meta_file, **kwargs): # pylint: disable=unused-argument + """Korean single-speaker dataset from https://www.kaggle.com/datasets/bryanpark/korean-single-speaker-speech-dataset""" + txt_file = os.path.join(root_path, meta_file) + items = [] + speaker_name = "kss" + with open(txt_file, "r", encoding="utf-8") as ttf: + for line in ttf: + cols = line.split("|") + wav_file = os.path.join(root_path, cols[0]) + text = cols[2] # cols[1] => 6์›”, cols[2] => ์œ ์›” + items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name, "root_path": root_path}) + return items + + +def bel_tts_formatter(root_path, meta_file, **kwargs): # pylint: disable=unused-argument + txt_file = os.path.join(root_path, meta_file) + items = [] + speaker_name = "bel_tts" + with open(txt_file, "r", encoding="utf-8") as ttf: + for line in ttf: + cols = line.split("|") + wav_file = os.path.join(root_path, cols[0]) + text = cols[1] + items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name, "root_path": root_path}) + return items diff --git a/TTS/TTS/tts/layers/__init__.py b/TTS/TTS/tts/layers/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..f93efdb7fc41109ec3497d8e5e37ba05b0a4315e --- /dev/null +++ b/TTS/TTS/tts/layers/__init__.py @@ -0,0 +1 @@ +from TTS.tts.layers.losses import * diff --git a/TTS/TTS/tts/layers/align_tts/__init__.py b/TTS/TTS/tts/layers/align_tts/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/TTS/TTS/tts/layers/align_tts/duration_predictor.py b/TTS/TTS/tts/layers/align_tts/duration_predictor.py new file mode 100644 index 0000000000000000000000000000000000000000..b2b83894cc3f87575a89ea8fd7bf4a584ca22c28 --- /dev/null +++ b/TTS/TTS/tts/layers/align_tts/duration_predictor.py @@ -0,0 +1,21 @@ +from torch import nn + +from TTS.tts.layers.generic.pos_encoding import PositionalEncoding +from TTS.tts.layers.generic.transformer import FFTransformerBlock + + +class DurationPredictor(nn.Module): + def __init__(self, num_chars, hidden_channels, hidden_channels_ffn, num_heads): + super().__init__() + self.embed = nn.Embedding(num_chars, hidden_channels) + self.pos_enc = PositionalEncoding(hidden_channels, dropout_p=0.1) + self.FFT = FFTransformerBlock(hidden_channels, num_heads, hidden_channels_ffn, 2, 0.1) + self.out_layer = nn.Conv1d(hidden_channels, 1, 1) + + def forward(self, text, text_lengths): + # B, L -> B, L + emb = self.embed(text) + emb = self.pos_enc(emb.transpose(1, 2)) + x = self.FFT(emb, text_lengths) + x = self.out_layer(x).squeeze(-1) + return x diff --git a/TTS/TTS/tts/layers/align_tts/mdn.py b/TTS/TTS/tts/layers/align_tts/mdn.py new file mode 100644 index 0000000000000000000000000000000000000000..cdb332524bf7a5fec6a23da9e7977de6325a0324 --- /dev/null +++ b/TTS/TTS/tts/layers/align_tts/mdn.py @@ -0,0 +1,30 @@ +from torch import nn + + +class MDNBlock(nn.Module): + """Mixture of Density Network implementation + https://arxiv.org/pdf/2003.01950.pdf + """ + + def __init__(self, in_channels, out_channels): + super().__init__() + self.out_channels = out_channels + self.conv1 = nn.Conv1d(in_channels, in_channels, 1) + self.norm = nn.LayerNorm(in_channels) + self.relu = nn.ReLU() + self.dropout = nn.Dropout(0.1) + self.conv2 = nn.Conv1d(in_channels, out_channels, 1) + + def forward(self, x): + o = self.conv1(x) + o = o.transpose(1, 2) + o = self.norm(o) + o = o.transpose(1, 2) + o = self.relu(o) + o = self.dropout(o) + mu_sigma = self.conv2(o) + # TODO: check this sigmoid + # mu = torch.sigmoid(mu_sigma[:, :self.out_channels//2, :]) + mu = mu_sigma[:, : self.out_channels // 2, :] + log_sigma = mu_sigma[:, self.out_channels // 2 :, :] + return mu, log_sigma diff --git a/TTS/TTS/tts/layers/bark/__init__.py b/TTS/TTS/tts/layers/bark/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/TTS/TTS/tts/layers/bark/hubert/__init__.py b/TTS/TTS/tts/layers/bark/hubert/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/TTS/TTS/tts/layers/bark/hubert/hubert_manager.py b/TTS/TTS/tts/layers/bark/hubert/hubert_manager.py new file mode 100644 index 0000000000000000000000000000000000000000..4bc199294164da0e8c480e292dd5a478e72f4daf --- /dev/null +++ b/TTS/TTS/tts/layers/bark/hubert/hubert_manager.py @@ -0,0 +1,35 @@ +# From https://github.com/gitmylo/bark-voice-cloning-HuBERT-quantizer + +import os.path +import shutil +import urllib.request + +import huggingface_hub + + +class HubertManager: + @staticmethod + def make_sure_hubert_installed( + download_url: str = "https://dl.fbaipublicfiles.com/hubert/hubert_base_ls960.pt", model_path: str = "" + ): + if not os.path.isfile(model_path): + print("Downloading HuBERT base model") + urllib.request.urlretrieve(download_url, model_path) + print("Downloaded HuBERT") + return model_path + return None + + @staticmethod + def make_sure_tokenizer_installed( + model: str = "quantifier_hubert_base_ls960_14.pth", + repo: str = "GitMylo/bark-voice-cloning", + model_path: str = "", + ): + model_dir = os.path.dirname(model_path) + if not os.path.isfile(model_path): + print("Downloading HuBERT custom tokenizer") + huggingface_hub.hf_hub_download(repo, model, local_dir=model_dir, local_dir_use_symlinks=False) + shutil.move(os.path.join(model_dir, model), model_path) + print("Downloaded tokenizer") + return model_path + return None diff --git a/TTS/TTS/tts/layers/bark/hubert/kmeans_hubert.py b/TTS/TTS/tts/layers/bark/hubert/kmeans_hubert.py new file mode 100644 index 0000000000000000000000000000000000000000..a6a3b9aeb1111ca0abeccb6142007ecc5b39d78d --- /dev/null +++ b/TTS/TTS/tts/layers/bark/hubert/kmeans_hubert.py @@ -0,0 +1,82 @@ +""" +Modified HuBERT model without kmeans. +Original author: https://github.com/lucidrains/ +Modified by: https://www.github.com/gitmylo/ +License: MIT +""" + +# Modified code from https://github.com/lucidrains/audiolm-pytorch/blob/main/audiolm_pytorch/hubert_kmeans.py + +import logging +from pathlib import Path + +import torch +from einops import pack, unpack +from torch import nn +from torchaudio.functional import resample +from transformers import HubertModel + + +def round_down_nearest_multiple(num, divisor): + return num // divisor * divisor + + +def curtail_to_multiple(t, mult, from_left=False): + data_len = t.shape[-1] + rounded_seq_len = round_down_nearest_multiple(data_len, mult) + seq_slice = slice(None, rounded_seq_len) if not from_left else slice(-rounded_seq_len, None) + return t[..., seq_slice] + + +def exists(val): + return val is not None + + +def default(val, d): + return val if exists(val) else d + + +class CustomHubert(nn.Module): + """ + checkpoint and kmeans can be downloaded at https://github.com/facebookresearch/fairseq/tree/main/examples/hubert + or you can train your own + """ + + def __init__(self, checkpoint_path, target_sample_hz=16000, seq_len_multiple_of=None, output_layer=9, device=None): + super().__init__() + self.target_sample_hz = target_sample_hz + self.seq_len_multiple_of = seq_len_multiple_of + self.output_layer = output_layer + if device is not None: + self.to(device) + self.model = HubertModel.from_pretrained("facebook/hubert-base-ls960") + if device is not None: + self.model.to(device) + self.model.eval() + + @property + def groups(self): + return 1 + + @torch.no_grad() + def forward(self, wav_input, flatten=True, input_sample_hz=None): + device = wav_input.device + + if exists(input_sample_hz): + wav_input = resample(wav_input, input_sample_hz, self.target_sample_hz) + + if exists(self.seq_len_multiple_of): + wav_input = curtail_to_multiple(wav_input, self.seq_len_multiple_of) + + outputs = self.model.forward( + wav_input, + output_hidden_states=True, + ) + embed = outputs["hidden_states"][self.output_layer] + embed, packed_shape = pack([embed], "* d") + codebook_indices = torch.from_numpy(embed.cpu().detach().numpy()).to(device) + if flatten: + return codebook_indices + + (codebook_indices,) = unpack(codebook_indices, packed_shape, "*") + return codebook_indices diff --git a/TTS/TTS/tts/layers/bark/hubert/tokenizer.py b/TTS/TTS/tts/layers/bark/hubert/tokenizer.py new file mode 100644 index 0000000000000000000000000000000000000000..3070241f1cc1ac95867f2d4173495b9a7047a15e --- /dev/null +++ b/TTS/TTS/tts/layers/bark/hubert/tokenizer.py @@ -0,0 +1,195 @@ +""" +Custom tokenizer model. +Author: https://www.github.com/gitmylo/ +License: MIT +""" + +import json +import os.path +from zipfile import ZipFile + +import numpy +import torch +from torch import nn, optim + + +class HubertTokenizer(nn.Module): + def __init__(self, hidden_size=1024, input_size=768, output_size=10000, version=0): + super().__init__() + next_size = input_size + if version == 0: + self.lstm = nn.LSTM(input_size, hidden_size, 2, batch_first=True) + next_size = hidden_size + if version == 1: + self.lstm = nn.LSTM(input_size, hidden_size, 2, batch_first=True) + self.intermediate = nn.Linear(hidden_size, 4096) + next_size = 4096 + + self.fc = nn.Linear(next_size, output_size) + self.softmax = nn.LogSoftmax(dim=1) + self.optimizer: optim.Optimizer = None + self.lossfunc = nn.CrossEntropyLoss() + self.input_size = input_size + self.hidden_size = hidden_size + self.output_size = output_size + self.version = version + + def forward(self, x): + x, _ = self.lstm(x) + if self.version == 1: + x = self.intermediate(x) + x = self.fc(x) + x = self.softmax(x) + return x + + @torch.no_grad() + def get_token(self, x): + """ + Used to get the token for the first + :param x: An array with shape (N, input_size) where N is a whole number greater or equal to 1, and input_size is the input size used when creating the model. + :return: An array with shape (N,) where N is the same as N from the input. Every number in the array is a whole number in range 0...output_size - 1 where output_size is the output size used when creating the model. + """ + return torch.argmax(self(x), dim=1) + + def prepare_training(self): + self.optimizer = optim.Adam(self.parameters(), 0.001) + + def train_step(self, x_train, y_train, log_loss=False): + # y_train = y_train[:-1] + # y_train = y_train[1:] + + optimizer = self.optimizer + lossfunc = self.lossfunc + # Zero the gradients + self.zero_grad() + + # Forward pass + y_pred = self(x_train) + + y_train_len = len(y_train) + y_pred_len = y_pred.shape[0] + + if y_train_len > y_pred_len: + diff = y_train_len - y_pred_len + y_train = y_train[diff:] + elif y_train_len < y_pred_len: + diff = y_pred_len - y_train_len + y_pred = y_pred[:-diff, :] + + y_train_hot = torch.zeros(len(y_train), self.output_size) + y_train_hot[range(len(y_train)), y_train] = 1 + y_train_hot = y_train_hot.to("cuda") + + # Calculate the loss + loss = lossfunc(y_pred, y_train_hot) + + # Print loss + if log_loss: + print("Loss", loss.item()) + + # Backward pass + loss.backward() + + # Update the weights + optimizer.step() + + def save(self, path): + info_path = ".".join(os.path.basename(path).split(".")[:-1]) + "/.info" + torch.save(self.state_dict(), path) + data_from_model = Data(self.input_size, self.hidden_size, self.output_size, self.version) + with ZipFile(path, "a") as model_zip: + model_zip.writestr(info_path, data_from_model.save()) + model_zip.close() + + @staticmethod + def load_from_checkpoint(path, map_location=None): + old = True + with ZipFile(path) as model_zip: + filesMatch = [file for file in model_zip.namelist() if file.endswith("/.info")] + file = filesMatch[0] if filesMatch else None + if file: + old = False + data_from_model = Data.load(model_zip.read(file).decode("utf-8")) + model_zip.close() + if old: + model = HubertTokenizer() + else: + model = HubertTokenizer( + data_from_model.hidden_size, + data_from_model.input_size, + data_from_model.output_size, + data_from_model.version, + ) + model.load_state_dict(torch.load(path, map_location=map_location)) + if map_location: + model = model.to(map_location) + return model + + +class Data: + input_size: int + hidden_size: int + output_size: int + version: int + + def __init__(self, input_size=768, hidden_size=1024, output_size=10000, version=0): + self.input_size = input_size + self.hidden_size = hidden_size + self.output_size = output_size + self.version = version + + @staticmethod + def load(string): + data = json.loads(string) + return Data(data["input_size"], data["hidden_size"], data["output_size"], data["version"]) + + def save(self): + data = { + "input_size": self.input_size, + "hidden_size": self.hidden_size, + "output_size": self.output_size, + "version": self.version, + } + return json.dumps(data) + + +def auto_train(data_path, save_path="model.pth", load_model: str = None, save_epochs=1): + data_x, data_y = [], [] + + if load_model and os.path.isfile(load_model): + print("Loading model from", load_model) + model_training = HubertTokenizer.load_from_checkpoint(load_model, "cuda") + else: + print("Creating new model.") + model_training = HubertTokenizer(version=1).to("cuda") # Settings for the model to run without lstm + save_path = os.path.join(data_path, save_path) + base_save_path = ".".join(save_path.split(".")[:-1]) + + sem_string = "_semantic.npy" + feat_string = "_semantic_features.npy" + + ready = os.path.join(data_path, "ready") + for input_file in os.listdir(ready): + full_path = os.path.join(ready, input_file) + if input_file.endswith(sem_string): + data_y.append(numpy.load(full_path)) + elif input_file.endswith(feat_string): + data_x.append(numpy.load(full_path)) + model_training.prepare_training() + + epoch = 1 + + while 1: + for _ in range(save_epochs): + j = 0 + for x, y in zip(data_x, data_y): + model_training.train_step( + torch.tensor(x).to("cuda"), torch.tensor(y).to("cuda"), j % 50 == 0 + ) # Print loss every 50 steps + j += 1 + save_p = save_path + save_p_2 = f"{base_save_path}_epoch_{epoch}.pth" + model_training.save(save_p) + model_training.save(save_p_2) + print(f"Epoch {epoch} completed") + epoch += 1 diff --git a/TTS/TTS/tts/layers/bark/inference_funcs.py b/TTS/TTS/tts/layers/bark/inference_funcs.py new file mode 100644 index 0000000000000000000000000000000000000000..f3d3fee9371fae0cd06187c967a5b0028940138e --- /dev/null +++ b/TTS/TTS/tts/layers/bark/inference_funcs.py @@ -0,0 +1,606 @@ +import logging +import os +import re +from glob import glob +from typing import Dict, List + +import librosa +import numpy as np +import torch +import torchaudio +import tqdm +from encodec.utils import convert_audio +from scipy.special import softmax +from torch.nn import functional as F + +from TTS.tts.layers.bark.hubert.hubert_manager import HubertManager +from TTS.tts.layers.bark.hubert.kmeans_hubert import CustomHubert +from TTS.tts.layers.bark.hubert.tokenizer import HubertTokenizer +from TTS.tts.layers.bark.load_model import clear_cuda_cache, inference_mode + +logger = logging.getLogger(__name__) + + +def _tokenize(tokenizer, text): + return tokenizer.encode(text, add_special_tokens=False) + + +def _detokenize(tokenizer, enc_text): + return tokenizer.decode(enc_text) + + +def _normalize_whitespace(text): + return re.sub(r"\s+", " ", text).strip() + + +def get_voices(extra_voice_dirs: List[str] = []): # pylint: disable=dangerous-default-value + dirs = extra_voice_dirs + voices: Dict[str, List[str]] = {} + for d in dirs: + subs = os.listdir(d) + for sub in subs: + subj = os.path.join(d, sub) + if os.path.isdir(subj): + voices[sub] = list(glob(f"{subj}/*.npz")) + # fetch audio files if no npz files are found + if len(voices[sub]) == 0: + voices[sub] = list(glob(f"{subj}/*.wav")) + list(glob(f"{subj}/*.mp3")) + return voices + + +def load_npz(npz_file): + x_history = np.load(npz_file) + semantic = x_history["semantic_prompt"] + coarse = x_history["coarse_prompt"] + fine = x_history["fine_prompt"] + return semantic, coarse, fine + + +def load_voice(model, voice: str, extra_voice_dirs: List[str] = []): # pylint: disable=dangerous-default-value + if voice == "random": + return None, None, None + + voices = get_voices(extra_voice_dirs) + paths = voices[voice] + + # bark only uses a single sample for cloning + if len(paths) > 1: + raise ValueError(f"Voice {voice} has multiple paths: {paths}") + + try: + path = voices[voice] + except KeyError as e: + raise KeyError(f"Voice {voice} not found in {extra_voice_dirs}") from e + + if len(paths) == 1 and paths[0].endswith(".npz"): + return load_npz(path[0]) + + audio_path = paths[0] + # replace the file extension with .npz + output_path = os.path.splitext(audio_path)[0] + ".npz" + generate_voice(audio=audio_path, model=model, output_path=output_path) + return load_voice(model, voice, extra_voice_dirs) + + +def zero_crossing_rate(audio, frame_length=1024, hop_length=512): + zero_crossings = np.sum(np.abs(np.diff(np.sign(audio))) / 2) + total_frames = 1 + int((len(audio) - frame_length) / hop_length) + return zero_crossings / total_frames + + +def compute_spectral_contrast(audio_data, sample_rate, n_bands=6, fmin=200.0): + spectral_contrast = librosa.feature.spectral_contrast(y=audio_data, sr=sample_rate, n_bands=n_bands, fmin=fmin) + return np.mean(spectral_contrast) + + +def compute_average_bass_energy(audio_data, sample_rate, max_bass_freq=250): + stft = librosa.stft(audio_data) + power_spectrogram = np.abs(stft) ** 2 + frequencies = librosa.fft_frequencies(sr=sample_rate, n_fft=stft.shape[0]) + bass_mask = frequencies <= max_bass_freq + bass_energy = power_spectrogram[np.ix_(bass_mask, np.arange(power_spectrogram.shape[1]))].mean() + return bass_energy + + +def generate_voice( + audio, + model, + output_path, +): + """Generate a new voice from a given audio and text prompt. + + Args: + audio (np.ndarray): The audio to use as a base for the new voice. + text (str): Transcription of the audio you are clonning. + model (BarkModel): The BarkModel to use for generating the new voice. + output_path (str): The path to save the generated voice to. + """ + if isinstance(audio, str): + audio, sr = torchaudio.load(audio) + audio = convert_audio(audio, sr, model.config.sample_rate, model.encodec.channels) + audio = audio.unsqueeze(0).to(model.device) + + with torch.no_grad(): + encoded_frames = model.encodec.encode(audio) + codes = torch.cat([encoded[0] for encoded in encoded_frames], dim=-1).squeeze() # [n_q, T] + + # move codes to cpu + codes = codes.cpu().numpy() + + # generate semantic tokens + # Load the HuBERT model + hubert_manager = HubertManager() + # hubert_manager.make_sure_hubert_installed(model_path=model.config.LOCAL_MODEL_PATHS["hubert"]) + hubert_manager.make_sure_tokenizer_installed(model_path=model.config.LOCAL_MODEL_PATHS["hubert_tokenizer"]) + + hubert_model = CustomHubert(checkpoint_path=model.config.LOCAL_MODEL_PATHS["hubert"]).to(model.device) + + # Load the CustomTokenizer model + tokenizer = HubertTokenizer.load_from_checkpoint( + model.config.LOCAL_MODEL_PATHS["hubert_tokenizer"], map_location=model.device + ) + # semantic_tokens = model.text_to_semantic( + # text, max_gen_duration_s=seconds, top_k=50, top_p=0.95, temp=0.7 + # ) # not 100% + semantic_vectors = hubert_model.forward(audio[0], input_sample_hz=model.config.sample_rate) + semantic_tokens = tokenizer.get_token(semantic_vectors) + semantic_tokens = semantic_tokens.cpu().numpy() + + np.savez(output_path, fine_prompt=codes, coarse_prompt=codes[:2, :], semantic_prompt=semantic_tokens) + + +def generate_text_semantic( + text, + model, + history_prompt=None, + temp=0.7, + top_k=None, + top_p=None, + silent=False, + min_eos_p=0.2, + max_gen_duration_s=None, + allow_early_stop=True, + base=None, + use_kv_caching=True, + **kwargs, # pylint: disable=unused-argument +): + """Generate semantic tokens from text. + + Args: + text (str): The text to generate semantic tokens from. + model (BarkModel): The BarkModel to use for generating the semantic tokens. + history_prompt (tuple): A tuple of (semantic_history, coarse_history, fine_history) to use as a prompt for the generation. + temp (float): The temperature to use for the generation. + top_k (int): The number of top tokens to consider for the generation. + top_p (float): The cumulative probability to consider for the generation. + silent (bool): Whether to silence the tqdm progress bar. + min_eos_p (float): The minimum probability to consider for the end of sentence token. + max_gen_duration_s (float): The maximum duration in seconds to generate for. + allow_early_stop (bool): Whether to allow the generation to stop early. + base (tuple): A tuple of (semantic_history, coarse_history, fine_history) to use as a base for the generation. + use_kv_caching (bool): Whether to use key-value caching for the generation. + **kwargs: Additional keyword arguments. They are ignored. + + Returns: + np.ndarray: The generated semantic tokens. + """ + assert isinstance(text, str) + text = _normalize_whitespace(text) + assert len(text.strip()) > 0 + if all(v is not None for v in history_prompt) or base is not None: + if history_prompt is not None: + semantic_history = history_prompt[0] + if base is not None: + semantic_history = base[0] + assert ( + isinstance(semantic_history, np.ndarray) + and len(semantic_history.shape) == 1 + and len(semantic_history) > 0 + and semantic_history.min() >= 0 + and semantic_history.max() <= model.config.SEMANTIC_VOCAB_SIZE - 1 + ) + else: + semantic_history = None + encoded_text = np.array(_tokenize(model.tokenizer, text)) + model.config.TEXT_ENCODING_OFFSET + if len(encoded_text) > 256: + p = round((len(encoded_text) - 256) / len(encoded_text) * 100, 1) + logger.warning(f"warning, text too long, lopping of last {p}%") + encoded_text = encoded_text[:256] + encoded_text = np.pad( + encoded_text, + (0, 256 - len(encoded_text)), + constant_values=model.config.TEXT_PAD_TOKEN, + mode="constant", + ) + if semantic_history is not None: + semantic_history = semantic_history.astype(np.int64) + # lop off if history is too long, pad if needed + semantic_history = semantic_history[-256:] + semantic_history = np.pad( + semantic_history, + (0, 256 - len(semantic_history)), + constant_values=model.config.SEMANTIC_PAD_TOKEN, + mode="constant", + ) + else: + semantic_history = np.array([model.config.SEMANTIC_PAD_TOKEN] * 256) + x = torch.from_numpy( + np.hstack([encoded_text, semantic_history, np.array([model.config.SEMANTIC_INFER_TOKEN])]).astype(np.int64) + )[None] + assert x.shape[1] == 256 + 256 + 1 + with inference_mode(): + x = x.to(model.device) + n_tot_steps = 768 + # custom tqdm updates since we don't know when eos will occur + pbar = tqdm.tqdm(disable=silent, total=100) + pbar_state = 0 + tot_generated_duration_s = 0 + kv_cache = None + for n in range(n_tot_steps): + if use_kv_caching and kv_cache is not None: + x_input = x[:, [-1]] + else: + x_input = x + logits, kv_cache = model.semantic_model( + x_input, merge_context=True, use_cache=use_kv_caching, past_kv=kv_cache + ) + relevant_logits = logits[0, 0, : model.config.SEMANTIC_VOCAB_SIZE] + if allow_early_stop: + relevant_logits = torch.hstack( + (relevant_logits, logits[0, 0, [model.config.SEMANTIC_PAD_TOKEN]]) + ) # eos + if top_p is not None: + # faster to convert to numpy + logits_device = relevant_logits.device + logits_dtype = relevant_logits.type() + relevant_logits = relevant_logits.detach().cpu().type(torch.float32).numpy() + sorted_indices = np.argsort(relevant_logits)[::-1] + sorted_logits = relevant_logits[sorted_indices] + cumulative_probs = np.cumsum(softmax(sorted_logits)) + sorted_indices_to_remove = cumulative_probs > top_p + sorted_indices_to_remove[1:] = sorted_indices_to_remove[:-1].copy() + sorted_indices_to_remove[0] = False + relevant_logits[sorted_indices[sorted_indices_to_remove]] = -np.inf + relevant_logits = torch.from_numpy(relevant_logits) + relevant_logits = relevant_logits.to(logits_device).type(logits_dtype) + if top_k is not None: + v, _ = torch.topk(relevant_logits, min(top_k, relevant_logits.size(-1))) + relevant_logits[relevant_logits < v[-1]] = -float("Inf") + probs = torch.softmax(relevant_logits / temp, dim=-1) + item_next = torch.multinomial(probs, num_samples=1) + if allow_early_stop and ( + item_next == model.config.SEMANTIC_VOCAB_SIZE or (min_eos_p is not None and probs[-1] >= min_eos_p) + ): + # eos found, so break + pbar.update(100 - pbar_state) + break + x = torch.cat((x, item_next[None]), dim=1) + tot_generated_duration_s += 1 / model.config.SEMANTIC_RATE_HZ + if max_gen_duration_s is not None and tot_generated_duration_s > max_gen_duration_s: + pbar.update(100 - pbar_state) + break + if n == n_tot_steps - 1: + pbar.update(100 - pbar_state) + break + del logits, relevant_logits, probs, item_next + req_pbar_state = np.min([100, int(round(100 * n / n_tot_steps))]) + if req_pbar_state > pbar_state: + pbar.update(req_pbar_state - pbar_state) + pbar_state = req_pbar_state + pbar.close() + out = x.detach().cpu().numpy().squeeze()[256 + 256 + 1 :] + assert all(out >= 0) and all(out < model.config.SEMANTIC_VOCAB_SIZE) + clear_cuda_cache() + return out + + +def _flatten_codebooks(arr, offset_size): + assert len(arr.shape) == 2 + arr = arr.copy() + if offset_size is not None: + for n in range(1, arr.shape[0]): + arr[n, :] += offset_size * n + flat_arr = arr.ravel("F") + return flat_arr + + +def generate_coarse( + x_semantic, + model, + history_prompt=None, + temp=0.7, + top_k=None, + top_p=None, + silent=False, + max_coarse_history=630, # min 60 (faster), max 630 (more context) + sliding_window_len=60, + base=None, + use_kv_caching=True, +): + """Generate coarse audio codes from semantic tokens. + + Args: + x_semantic (np.ndarray): The semantic tokens to generate coarse audio codes from. + model (BarkModel): The BarkModel to use for generating the coarse audio codes. + history_prompt (tuple): A tuple of (semantic_history, coarse_history, fine_history) to use as a prompt for the generation. + temp (float): The temperature to use for the generation. + top_k (int): The number of top tokens to consider for the generation. + top_p (float): The cumulative probability to consider for the generation. + silent (bool): Whether to silence the tqdm progress bar. + max_coarse_history (int): The maximum number of coarse audio codes to use as history. + sliding_window_len (int): The length of the sliding window to use for the generation. + base (tuple): A tuple of (semantic_history, coarse_history, fine_history) to use as a base for the generation. + use_kv_caching (bool): Whether to use key-value caching for the generation. + + Returns: + np.ndarray: The generated coarse audio codes. + """ + assert ( + isinstance(x_semantic, np.ndarray) + and len(x_semantic.shape) == 1 + and len(x_semantic) > 0 + and x_semantic.min() >= 0 + and x_semantic.max() <= model.config.SEMANTIC_VOCAB_SIZE - 1 + ) + assert 60 <= max_coarse_history <= 630 + assert max_coarse_history + sliding_window_len <= 1024 - 256 + semantic_to_coarse_ratio = ( + model.config.COARSE_RATE_HZ / model.config.SEMANTIC_RATE_HZ * model.config.N_COARSE_CODEBOOKS + ) + max_semantic_history = int(np.floor(max_coarse_history / semantic_to_coarse_ratio)) + if all(v is not None for v in history_prompt) or base is not None: + if history_prompt is not None: + x_history = history_prompt + x_semantic_history = x_history[0] + x_coarse_history = x_history[1] + if base is not None: + x_semantic_history = base[0] + x_coarse_history = base[1] + assert ( + isinstance(x_semantic_history, np.ndarray) + and len(x_semantic_history.shape) == 1 + and len(x_semantic_history) > 0 + and x_semantic_history.min() >= 0 + and x_semantic_history.max() <= model.config.SEMANTIC_VOCAB_SIZE - 1 + and isinstance(x_coarse_history, np.ndarray) + and len(x_coarse_history.shape) == 2 + and x_coarse_history.shape[0] == model.config.N_COARSE_CODEBOOKS + and x_coarse_history.shape[-1] >= 0 + and x_coarse_history.min() >= 0 + and x_coarse_history.max() <= model.config.CODEBOOK_SIZE - 1 + and ( + round(x_coarse_history.shape[-1] / len(x_semantic_history), 1) + == round(semantic_to_coarse_ratio / model.config.N_COARSE_CODEBOOKS, 1) + ) + ) + x_coarse_history = ( + _flatten_codebooks(x_coarse_history, model.config.CODEBOOK_SIZE) + model.config.SEMANTIC_VOCAB_SIZE + ) + # trim histories correctly + n_semantic_hist_provided = np.min( + [ + max_semantic_history, + len(x_semantic_history) - len(x_semantic_history) % 2, + int(np.floor(len(x_coarse_history) / semantic_to_coarse_ratio)), + ] + ) + n_coarse_hist_provided = int(round(n_semantic_hist_provided * semantic_to_coarse_ratio)) + x_semantic_history = x_semantic_history[-n_semantic_hist_provided:].astype(np.int32) + x_coarse_history = x_coarse_history[-n_coarse_hist_provided:].astype(np.int32) + # TODO: bit of a hack for time alignment (sounds better) + x_coarse_history = x_coarse_history[:-2] + else: + x_semantic_history = np.array([], dtype=np.int32) + x_coarse_history = np.array([], dtype=np.int32) + # start loop + n_steps = int( + round( + np.floor(len(x_semantic) * semantic_to_coarse_ratio / model.config.N_COARSE_CODEBOOKS) + * model.config.N_COARSE_CODEBOOKS + ) + ) + assert n_steps > 0 and n_steps % model.config.N_COARSE_CODEBOOKS == 0 + x_semantic = np.hstack([x_semantic_history, x_semantic]).astype(np.int32) + x_coarse = x_coarse_history.astype(np.int32) + base_semantic_idx = len(x_semantic_history) + with inference_mode(): + x_semantic_in = torch.from_numpy(x_semantic)[None].to(model.device) + x_coarse_in = torch.from_numpy(x_coarse)[None].to(model.device) + n_window_steps = int(np.ceil(n_steps / sliding_window_len)) + n_step = 0 + for _ in tqdm.tqdm(range(n_window_steps), total=n_window_steps, disable=silent): + semantic_idx = base_semantic_idx + int(round(n_step / semantic_to_coarse_ratio)) + # pad from right side + x_in = x_semantic_in[:, np.max([0, semantic_idx - max_semantic_history]) :] + x_in = x_in[:, :256] + x_in = F.pad( + x_in, + (0, 256 - x_in.shape[-1]), + "constant", + model.config.COARSE_SEMANTIC_PAD_TOKEN, + ) + x_in = torch.hstack( + [ + x_in, + torch.tensor([model.config.COARSE_INFER_TOKEN])[None].to(model.device), + x_coarse_in[:, -max_coarse_history:], + ] + ) + kv_cache = None + for _ in range(sliding_window_len): + if n_step >= n_steps: + continue + is_major_step = n_step % model.config.N_COARSE_CODEBOOKS == 0 + + if use_kv_caching and kv_cache is not None: + x_input = x_in[:, [-1]] + else: + x_input = x_in + + logits, kv_cache = model.coarse_model(x_input, use_cache=use_kv_caching, past_kv=kv_cache) + logit_start_idx = ( + model.config.SEMANTIC_VOCAB_SIZE + (1 - int(is_major_step)) * model.config.CODEBOOK_SIZE + ) + logit_end_idx = model.config.SEMANTIC_VOCAB_SIZE + (2 - int(is_major_step)) * model.config.CODEBOOK_SIZE + relevant_logits = logits[0, 0, logit_start_idx:logit_end_idx] + if top_p is not None: + # faster to convert to numpy + logits_device = relevant_logits.device + logits_dtype = relevant_logits.type() + relevant_logits = relevant_logits.detach().cpu().type(torch.float32).numpy() + sorted_indices = np.argsort(relevant_logits)[::-1] + sorted_logits = relevant_logits[sorted_indices] + cumulative_probs = np.cumsum(torch.nn.functional.softmax(sorted_logits)) + sorted_indices_to_remove = cumulative_probs > top_p + sorted_indices_to_remove[1:] = sorted_indices_to_remove[:-1].copy() + sorted_indices_to_remove[0] = False + relevant_logits[sorted_indices[sorted_indices_to_remove]] = -np.inf + relevant_logits = torch.from_numpy(relevant_logits) + relevant_logits = relevant_logits.to(logits_device).type(logits_dtype) + if top_k is not None: + v, _ = torch.topk(relevant_logits, min(top_k, relevant_logits.size(-1))) + relevant_logits[relevant_logits < v[-1]] = -float("Inf") + probs = torch.nn.functional.softmax(relevant_logits / temp, dim=-1) + item_next = torch.multinomial(probs, num_samples=1) + item_next += logit_start_idx + x_coarse_in = torch.cat((x_coarse_in, item_next[None]), dim=1) + x_in = torch.cat((x_in, item_next[None]), dim=1) + del logits, relevant_logits, probs, item_next + n_step += 1 + del x_in + del x_semantic_in + gen_coarse_arr = x_coarse_in.detach().cpu().numpy().squeeze()[len(x_coarse_history) :] + del x_coarse_in + assert len(gen_coarse_arr) == n_steps + gen_coarse_audio_arr = ( + gen_coarse_arr.reshape(-1, model.config.N_COARSE_CODEBOOKS).T - model.config.SEMANTIC_VOCAB_SIZE + ) + for n in range(1, model.config.N_COARSE_CODEBOOKS): + gen_coarse_audio_arr[n, :] -= n * model.config.CODEBOOK_SIZE + clear_cuda_cache() + return gen_coarse_audio_arr + + +def generate_fine( + x_coarse_gen, + model, + history_prompt=None, + temp=0.5, + silent=True, + base=None, +): + """Generate full audio codes from coarse audio codes. + + Args: + x_coarse_gen (np.ndarray): The coarse audio codes to generate full audio codes from. + model (BarkModel): The BarkModel to use for generating the full audio codes. + history_prompt (tuple): A tuple of (semantic_history, coarse_history, fine_history) to use as a prompt for the generation. + temp (float): The temperature to use for the generation. + silent (bool): Whether to silence the tqdm progress bar. + base (tuple): A tuple of (semantic_history, coarse_history, fine_history) to use as a base for the generation. + + Returns: + np.ndarray: The generated full audio codes. + """ + assert ( + isinstance(x_coarse_gen, np.ndarray) + and len(x_coarse_gen.shape) == 2 + and 1 <= x_coarse_gen.shape[0] <= model.config.N_FINE_CODEBOOKS - 1 + and x_coarse_gen.shape[1] > 0 + and x_coarse_gen.min() >= 0 + and x_coarse_gen.max() <= model.config.CODEBOOK_SIZE - 1 + ) + if all(v is not None for v in history_prompt) or base is not None: + if history_prompt is not None: + x_fine_history = history_prompt[2] + if base is not None: + x_fine_history = base[2] + assert ( + isinstance(x_fine_history, np.ndarray) + and len(x_fine_history.shape) == 2 + and x_fine_history.shape[0] == model.config.N_FINE_CODEBOOKS + and x_fine_history.shape[1] >= 0 + and x_fine_history.min() >= 0 + and x_fine_history.max() <= model.config.CODEBOOK_SIZE - 1 + ) + else: + x_fine_history = None + n_coarse = x_coarse_gen.shape[0] + # make input arr + in_arr = np.vstack( + [ + x_coarse_gen, + np.zeros((model.config.N_FINE_CODEBOOKS - n_coarse, x_coarse_gen.shape[1])) + + model.config.CODEBOOK_SIZE, # padding + ] + ).astype(np.int32) + # prepend history if available (max 512) + if x_fine_history is not None: + x_fine_history = x_fine_history.astype(np.int32) + in_arr = np.hstack( + [ + x_fine_history[:, -512:].astype(np.int32), + in_arr, + ] + ) + n_history = x_fine_history[:, -512:].shape[1] + else: + n_history = 0 + n_remove_from_end = 0 + # need to pad if too short (since non-causal model) + if in_arr.shape[1] < 1024: + n_remove_from_end = 1024 - in_arr.shape[1] + in_arr = np.hstack( + [ + in_arr, + np.zeros((model.config.N_FINE_CODEBOOKS, n_remove_from_end), dtype=np.int32) + + model.config.CODEBOOK_SIZE, + ] + ) + # we can be lazy about fractional loop and just keep overwriting codebooks + n_loops = np.max([0, int(np.ceil((x_coarse_gen.shape[1] - (1024 - n_history)) / 512))]) + 1 + with inference_mode(): + in_arr = torch.tensor(in_arr.T).to(model.device) + for n in tqdm.tqdm(range(n_loops), disable=silent): + start_idx = np.min([n * 512, in_arr.shape[0] - 1024]) + start_fill_idx = np.min([n_history + n * 512, in_arr.shape[0] - 512]) + rel_start_fill_idx = start_fill_idx - start_idx + in_buffer = in_arr[start_idx : start_idx + 1024, :][None] + for nn in range(n_coarse, model.config.N_FINE_CODEBOOKS): + logits = model.fine_model(nn, in_buffer) + if temp is None: + relevant_logits = logits[0, rel_start_fill_idx:, : model.config.CODEBOOK_SIZE] + codebook_preds = torch.argmax(relevant_logits, -1) + else: + relevant_logits = logits[0, :, : model.config.CODEBOOK_SIZE] / temp + probs = F.softmax(relevant_logits, dim=-1) + codebook_preds = torch.hstack( + [torch.multinomial(probs[n], num_samples=1) for n in range(rel_start_fill_idx, 1024)] + ) + in_buffer[0, rel_start_fill_idx:, nn] = codebook_preds + del logits, codebook_preds + # transfer over info into model_in and convert to numpy + for nn in range(n_coarse, model.config.N_FINE_CODEBOOKS): + in_arr[start_fill_idx : start_fill_idx + (1024 - rel_start_fill_idx), nn] = in_buffer[ + 0, rel_start_fill_idx:, nn + ] + del in_buffer + gen_fine_arr = in_arr.detach().cpu().numpy().squeeze().T + del in_arr + gen_fine_arr = gen_fine_arr[:, n_history:] + if n_remove_from_end > 0: + gen_fine_arr = gen_fine_arr[:, :-n_remove_from_end] + assert gen_fine_arr.shape[-1] == x_coarse_gen.shape[-1] + clear_cuda_cache() + return gen_fine_arr + + +def codec_decode(fine_tokens, model): + """Turn quantized audio codes into audio array using encodec.""" + arr = torch.from_numpy(fine_tokens)[None] + arr = arr.to(model.device) + arr = arr.transpose(0, 1) + emb = model.encodec.quantizer.decode(arr) + out = model.encodec.decoder(emb) + audio_arr = out.detach().cpu().numpy().squeeze() + return audio_arr diff --git a/TTS/TTS/tts/layers/bark/load_model.py b/TTS/TTS/tts/layers/bark/load_model.py new file mode 100644 index 0000000000000000000000000000000000000000..ce6b757f054ce98b91601b494854ef8e7b56b131 --- /dev/null +++ b/TTS/TTS/tts/layers/bark/load_model.py @@ -0,0 +1,160 @@ +import contextlib +import functools +import hashlib +import logging +import os + +import requests +import torch +import tqdm + +from TTS.tts.layers.bark.model import GPT, GPTConfig +from TTS.tts.layers.bark.model_fine import FineGPT, FineGPTConfig + +if ( + torch.cuda.is_available() + and hasattr(torch.cuda, "amp") + and hasattr(torch.cuda.amp, "autocast") + and torch.cuda.is_bf16_supported() +): + autocast = functools.partial(torch.cuda.amp.autocast, dtype=torch.bfloat16) +else: + + @contextlib.contextmanager + def autocast(): + yield + + +# hold models in global scope to lazy load + +logger = logging.getLogger(__name__) + + +if not hasattr(torch.nn.functional, "scaled_dot_product_attention"): + logger.warning( + "torch version does not support flash attention. You will get significantly faster" + + " inference speed by upgrade torch to newest version / nightly." + ) + + +def _md5(fname): + hash_md5 = hashlib.md5() + with open(fname, "rb") as f: + for chunk in iter(lambda: f.read(4096), b""): + hash_md5.update(chunk) + return hash_md5.hexdigest() + + +def _download(from_s3_path, to_local_path, CACHE_DIR): + os.makedirs(CACHE_DIR, exist_ok=True) + response = requests.get(from_s3_path, stream=True) + total_size_in_bytes = int(response.headers.get("content-length", 0)) + block_size = 1024 # 1 Kibibyte + progress_bar = tqdm.tqdm(total=total_size_in_bytes, unit="iB", unit_scale=True) + with open(to_local_path, "wb") as file: + for data in response.iter_content(block_size): + progress_bar.update(len(data)) + file.write(data) + progress_bar.close() + if total_size_in_bytes not in [0, progress_bar.n]: + raise ValueError("ERROR, something went wrong") + + +class InferenceContext: + def __init__(self, benchmark=False): + # we can't expect inputs to be the same length, so disable benchmarking by default + self._chosen_cudnn_benchmark = benchmark + self._cudnn_benchmark = None + + def __enter__(self): + self._cudnn_benchmark = torch.backends.cudnn.benchmark + torch.backends.cudnn.benchmark = self._chosen_cudnn_benchmark + + def __exit__(self, exc_type, exc_value, exc_traceback): + torch.backends.cudnn.benchmark = self._cudnn_benchmark + + +if torch.cuda.is_available(): + torch.backends.cuda.matmul.allow_tf32 = True + torch.backends.cudnn.allow_tf32 = True + + +@contextlib.contextmanager +def inference_mode(): + with InferenceContext(), torch.inference_mode(), torch.no_grad(), autocast(): + yield + + +def clear_cuda_cache(): + if torch.cuda.is_available(): + torch.cuda.empty_cache() + torch.cuda.synchronize() + + +def load_model(ckpt_path, device, config, model_type="text"): + logger.info(f"loading {model_type} model from {ckpt_path}...") + + if device == "cpu": + logger.warning("No GPU being used. Careful, Inference might be extremely slow!") + if model_type == "text": + ConfigClass = GPTConfig + ModelClass = GPT + elif model_type == "coarse": + ConfigClass = GPTConfig + ModelClass = GPT + elif model_type == "fine": + ConfigClass = FineGPTConfig + ModelClass = FineGPT + else: + raise NotImplementedError() + if ( + not config.USE_SMALLER_MODELS + and os.path.exists(ckpt_path) + and _md5(ckpt_path) != config.REMOTE_MODEL_PATHS[model_type]["checksum"] + ): + logger.warning(f"found outdated {model_type} model, removing...") + os.remove(ckpt_path) + if not os.path.exists(ckpt_path): + logger.info(f"{model_type} model not found, downloading...") + _download(config.REMOTE_MODEL_PATHS[model_type]["path"], ckpt_path, config.CACHE_DIR) + + checkpoint = torch.load(ckpt_path, map_location=device) + # this is a hack + model_args = checkpoint["model_args"] + if "input_vocab_size" not in model_args: + model_args["input_vocab_size"] = model_args["vocab_size"] + model_args["output_vocab_size"] = model_args["vocab_size"] + del model_args["vocab_size"] + + gptconf = ConfigClass(**checkpoint["model_args"]) + if model_type == "text": + config.semantic_config = gptconf + elif model_type == "coarse": + config.coarse_config = gptconf + elif model_type == "fine": + config.fine_config = gptconf + + model = ModelClass(gptconf) + state_dict = checkpoint["model"] + # fixup checkpoint + unwanted_prefix = "_orig_mod." + for k, _ in list(state_dict.items()): + if k.startswith(unwanted_prefix): + state_dict[k[len(unwanted_prefix) :]] = state_dict.pop(k) + extra_keys = set(state_dict.keys()) - set(model.state_dict().keys()) + extra_keys = set(k for k in extra_keys if not k.endswith(".attn.bias")) + missing_keys = set(model.state_dict().keys()) - set(state_dict.keys()) + missing_keys = set(k for k in missing_keys if not k.endswith(".attn.bias")) + if len(extra_keys) != 0: + raise ValueError(f"extra keys found: {extra_keys}") + if len(missing_keys) != 0: + raise ValueError(f"missing keys: {missing_keys}") + model.load_state_dict(state_dict, strict=False) + n_params = model.get_num_params() + val_loss = checkpoint["best_val_loss"].item() + logger.info(f"model loaded: {round(n_params/1e6,1)}M params, {round(val_loss,3)} loss") + model.eval() + model.to(device) + del checkpoint, state_dict + clear_cuda_cache() + return model, config diff --git a/TTS/TTS/tts/layers/bark/model.py b/TTS/TTS/tts/layers/bark/model.py new file mode 100644 index 0000000000000000000000000000000000000000..c84022bd08bcdd2f3f9f3caadfc15a7bf80ddaf3 --- /dev/null +++ b/TTS/TTS/tts/layers/bark/model.py @@ -0,0 +1,233 @@ +""" +Much of this code is adapted from Andrej Karpathy's NanoGPT +(https://github.com/karpathy/nanoGPT) +""" +import math +from dataclasses import dataclass + +import torch +from coqpit import Coqpit +from torch import nn +from torch.nn import functional as F + + +class LayerNorm(nn.Module): + """LayerNorm but with an optional bias. PyTorch doesn't support simply bias=False""" + + def __init__(self, ndim, bias): + super().__init__() + self.weight = nn.Parameter(torch.ones(ndim)) + self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None + + def forward(self, x): + return F.layer_norm(x, self.weight.shape, self.weight, self.bias, 1e-5) + + +class CausalSelfAttention(nn.Module): + def __init__(self, config): + super().__init__() + assert config.n_embd % config.n_head == 0 + # key, query, value projections for all heads, but in a batch + self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias) + # output projection + self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias) + # regularization + self.attn_dropout = nn.Dropout(config.dropout) + self.resid_dropout = nn.Dropout(config.dropout) + self.n_head = config.n_head + self.n_embd = config.n_embd + self.dropout = config.dropout + # flash attention make GPU go brrrrr but support is only in PyTorch nightly and still a bit scary + self.flash = hasattr(torch.nn.functional, "scaled_dot_product_attention") + if not self.flash: + # print("WARNING: using slow attention. Flash Attention atm needs PyTorch nightly and dropout=0.0") + # causal mask to ensure that attention is only applied to the left in the input sequence + self.register_buffer( + "bias", + torch.tril(torch.ones(config.block_size, config.block_size)).view( + 1, 1, config.block_size, config.block_size + ), + ) + + def forward(self, x, past_kv=None, use_cache=False): + B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd) + + # calculate query, key, values for all heads in batch and move head forward to be the batch dim + q, k, v = self.c_attn(x).split(self.n_embd, dim=2) + k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) + q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) + v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) + + if past_kv is not None: + past_key = past_kv[0] + past_value = past_kv[1] + k = torch.cat((past_key, k), dim=-2) + v = torch.cat((past_value, v), dim=-2) + + FULL_T = k.shape[-2] + + if use_cache is True: + present = (k, v) + else: + present = None + + # causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T) + if self.flash: + # efficient attention using Flash Attention CUDA kernels + if past_kv is not None: + # When `past_kv` is provided, we're doing incremental decoding and `q.shape[2] == 1`: q only contains + # the query for the last token. scaled_dot_product_attention interprets this as the first token in the + # sequence, so if is_causal=True it will mask out all attention from it. This is not what we want, so + # to work around this we set is_causal=False. + is_causal = False + else: + is_causal = True + + # efficient attention using Flash Attention CUDA kernels + y = torch.nn.functional.scaled_dot_product_attention(q, k, v, dropout_p=self.dropout, is_causal=is_causal) + else: + # manual implementation of attention + att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) + att = att.masked_fill(self.bias[:, :, FULL_T - T : FULL_T, :FULL_T] == 0, float("-inf")) + att = F.softmax(att, dim=-1) + att = self.attn_dropout(att) + y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs) + y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side + + # output projection + y = self.resid_dropout(self.c_proj(y)) + return (y, present) + + +class MLP(nn.Module): + def __init__(self, config): + super().__init__() + self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias) + self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias) + self.dropout = nn.Dropout(config.dropout) + self.gelu = nn.GELU() + + def forward(self, x): + x = self.c_fc(x) + x = self.gelu(x) + x = self.c_proj(x) + x = self.dropout(x) + return x + + +class Block(nn.Module): + def __init__(self, config, layer_idx): + super().__init__() + self.ln_1 = LayerNorm(config.n_embd, bias=config.bias) + self.attn = CausalSelfAttention(config) + self.ln_2 = LayerNorm(config.n_embd, bias=config.bias) + self.mlp = MLP(config) + self.layer_idx = layer_idx + + def forward(self, x, past_kv=None, use_cache=False): + attn_output, prev_kvs = self.attn(self.ln_1(x), past_kv=past_kv, use_cache=use_cache) + x = x + attn_output + x = x + self.mlp(self.ln_2(x)) + return (x, prev_kvs) + + +@dataclass +class GPTConfig(Coqpit): + block_size: int = 1024 + input_vocab_size: int = 10_048 + output_vocab_size: int = 10_048 + n_layer: int = 12 + n_head: int = 12 + n_embd: int = 768 + dropout: float = 0.0 + bias: bool = True # True: bias in Linears and LayerNorms, like GPT-2. False: a bit better and faster + + +class GPT(nn.Module): + def __init__(self, config): + super().__init__() + assert config.input_vocab_size is not None + assert config.output_vocab_size is not None + assert config.block_size is not None + self.config = config + + self.transformer = nn.ModuleDict( + dict( + wte=nn.Embedding(config.input_vocab_size, config.n_embd), + wpe=nn.Embedding(config.block_size, config.n_embd), + drop=nn.Dropout(config.dropout), + h=nn.ModuleList([Block(config, idx) for idx in range(config.n_layer)]), + ln_f=LayerNorm(config.n_embd, bias=config.bias), + ) + ) + self.lm_head = nn.Linear(config.n_embd, config.output_vocab_size, bias=False) + + def get_num_params(self, non_embedding=True): + """ + Return the number of parameters in the model. + For non-embedding count (default), the position embeddings get subtracted. + The token embeddings would too, except due to the parameter sharing these + params are actually used as weights in the final layer, so we include them. + """ + n_params = sum(p.numel() for p in self.parameters()) + if non_embedding: + n_params -= self.transformer.wte.weight.numel() + n_params -= self.transformer.wpe.weight.numel() + return n_params + + def forward(self, idx, merge_context=False, past_kv=None, position_ids=None, use_cache=False): + device = idx.device + _, t = idx.size() + if past_kv is not None: + assert t == 1 + tok_emb = self.transformer.wte(idx) # token embeddings of shape (b, t, n_embd) + else: + if merge_context: + assert idx.shape[1] >= 256 + 256 + 1 + t = idx.shape[1] - 256 + else: + assert ( + t <= self.config.block_size + ), f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}" + + # forward the GPT model itself + if merge_context: + tok_emb = torch.cat( + [ + self.transformer.wte(idx[:, :256]) + self.transformer.wte(idx[:, 256 : 256 + 256]), + self.transformer.wte(idx[:, 256 + 256 :]), + ], + dim=1, + ) + else: + tok_emb = self.transformer.wte(idx) # token embeddings of shape (b, t, n_embd) + + if past_kv is None: + past_length = 0 + past_kv = tuple([None] * len(self.transformer.h)) + else: + past_length = past_kv[0][0].size(-2) + + if position_ids is None: + position_ids = torch.arange(past_length, t + past_length, dtype=torch.long, device=device) + position_ids = position_ids.unsqueeze(0) # shape (1, t) + assert position_ids.shape == (1, t) + + pos_emb = self.transformer.wpe(position_ids) # position embeddings of shape (1, t, n_embd) + + x = self.transformer.drop(tok_emb + pos_emb) + + new_kv = () if use_cache else None + + for _, (block, past_layer_kv) in enumerate(zip(self.transformer.h, past_kv)): + x, kv = block(x, past_kv=past_layer_kv, use_cache=use_cache) + + if use_cache: + new_kv = new_kv + (kv,) + + x = self.transformer.ln_f(x) + + # inference-time mini-optimization: only forward the lm_head on the very last position + logits = self.lm_head(x[:, [-1], :]) # note: using list [-1] to preserve the time dim + + return (logits, new_kv) diff --git a/TTS/TTS/tts/layers/bark/model_fine.py b/TTS/TTS/tts/layers/bark/model_fine.py new file mode 100644 index 0000000000000000000000000000000000000000..09e5f4765dce8743db2a3ed879e7811d2b9d23d6 --- /dev/null +++ b/TTS/TTS/tts/layers/bark/model_fine.py @@ -0,0 +1,142 @@ +""" +Much of this code is adapted from Andrej Karpathy's NanoGPT +(https://github.com/karpathy/nanoGPT) +""" +import math +from dataclasses import dataclass + +import torch +from torch import nn +from torch.nn import functional as F + +from .model import GPT, MLP, GPTConfig + + +class NonCausalSelfAttention(nn.Module): + def __init__(self, config): + super().__init__() + assert config.n_embd % config.n_head == 0 + # key, query, value projections for all heads, but in a batch + self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias) + # output projection + self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias) + # regularization + self.attn_dropout = nn.Dropout(config.dropout) + self.resid_dropout = nn.Dropout(config.dropout) + self.n_head = config.n_head + self.n_embd = config.n_embd + self.dropout = config.dropout + # flash attention make GPU go brrrrr but support is only in PyTorch nightly and still a bit scary + self.flash = hasattr(torch.nn.functional, "scaled_dot_product_attention") and self.dropout == 0.0 + + def forward(self, x): + B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd) + + # calculate query, key, values for all heads in batch and move head forward to be the batch dim + q, k, v = self.c_attn(x).split(self.n_embd, dim=2) + k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) + q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) + v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) + + # causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T) + if self.flash: + # efficient attention using Flash Attention CUDA kernels + y = torch.nn.functional.scaled_dot_product_attention( + q, k, v, attn_mask=None, dropout_p=self.dropout, is_causal=False + ) + else: + # manual implementation of attention + att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) + att = F.softmax(att, dim=-1) + att = self.attn_dropout(att) + y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs) + y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side + + # output projection + y = self.resid_dropout(self.c_proj(y)) + return y + + +class FineBlock(nn.Module): + def __init__(self, config): + super().__init__() + self.ln_1 = nn.LayerNorm(config.n_embd) + self.attn = NonCausalSelfAttention(config) + self.ln_2 = nn.LayerNorm(config.n_embd) + self.mlp = MLP(config) + + def forward(self, x): + x = x + self.attn(self.ln_1(x)) + x = x + self.mlp(self.ln_2(x)) + return x + + +class FineGPT(GPT): + def __init__(self, config): + super().__init__(config) + del self.lm_head + self.config = config + self.n_codes_total = config.n_codes_total + self.transformer = nn.ModuleDict( + dict( + wtes=nn.ModuleList( + [nn.Embedding(config.input_vocab_size, config.n_embd) for _ in range(config.n_codes_total)] + ), + wpe=nn.Embedding(config.block_size, config.n_embd), + drop=nn.Dropout(config.dropout), + h=nn.ModuleList([FineBlock(config) for _ in range(config.n_layer)]), + ln_f=nn.LayerNorm(config.n_embd), + ) + ) + self.lm_heads = nn.ModuleList( + [ + nn.Linear(config.n_embd, config.output_vocab_size, bias=False) + for _ in range(config.n_codes_given, self.n_codes_total) + ] + ) + for i in range(self.n_codes_total - config.n_codes_given): + self.transformer.wtes[i + 1].weight = self.lm_heads[i].weight + + def forward(self, pred_idx, idx): + device = idx.device + b, t, codes = idx.size() + assert ( + t <= self.config.block_size + ), f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}" + assert pred_idx > 0, "cannot predict 0th codebook" + assert codes == self.n_codes_total, (b, t, codes) + pos = torch.arange(0, t, dtype=torch.long, device=device).unsqueeze(0) # shape (1, t) + + # forward the GPT model itself + tok_embs = [ + wte(idx[:, :, i]).unsqueeze(-1) for i, wte in enumerate(self.transformer.wtes) + ] # token embeddings of shape (b, t, n_embd) + tok_emb = torch.cat(tok_embs, dim=-1) + pos_emb = self.transformer.wpe(pos) # position embeddings of shape (1, t, n_embd) + x = tok_emb[:, :, :, : pred_idx + 1].sum(dim=-1) + x = self.transformer.drop(x + pos_emb) + for block in self.transformer.h: + x = block(x) + x = self.transformer.ln_f(x) + logits = self.lm_heads[pred_idx - self.config.n_codes_given](x) + return logits + + def get_num_params(self, non_embedding=True): + """ + Return the number of parameters in the model. + For non-embedding count (default), the position embeddings get subtracted. + The token embeddings would too, except due to the parameter sharing these + params are actually used as weights in the final layer, so we include them. + """ + n_params = sum(p.numel() for p in self.parameters()) + if non_embedding: + for wte in self.transformer.wtes: + n_params -= wte.weight.numel() + n_params -= self.transformer.wpe.weight.numel() + return n_params + + +@dataclass +class FineGPTConfig(GPTConfig): + n_codes_total: int = 8 + n_codes_given: int = 1 diff --git a/TTS/TTS/tts/layers/delightful_tts/__init__.py b/TTS/TTS/tts/layers/delightful_tts/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/TTS/TTS/tts/layers/delightful_tts/acoustic_model.py b/TTS/TTS/tts/layers/delightful_tts/acoustic_model.py new file mode 100644 index 0000000000000000000000000000000000000000..c906b882e567fade64139a8b932c71d554117547 --- /dev/null +++ b/TTS/TTS/tts/layers/delightful_tts/acoustic_model.py @@ -0,0 +1,563 @@ +### credit: https://github.com/dunky11/voicesmith +from typing import Callable, Dict, Tuple + +import torch +import torch.nn.functional as F +from coqpit import Coqpit +from torch import nn + +from TTS.tts.layers.delightful_tts.conformer import Conformer +from TTS.tts.layers.delightful_tts.encoders import ( + PhonemeLevelProsodyEncoder, + UtteranceLevelProsodyEncoder, + get_mask_from_lengths, +) +from TTS.tts.layers.delightful_tts.energy_adaptor import EnergyAdaptor +from TTS.tts.layers.delightful_tts.networks import EmbeddingPadded, positional_encoding +from TTS.tts.layers.delightful_tts.phoneme_prosody_predictor import PhonemeProsodyPredictor +from TTS.tts.layers.delightful_tts.pitch_adaptor import PitchAdaptor +from TTS.tts.layers.delightful_tts.variance_predictor import VariancePredictor +from TTS.tts.layers.generic.aligner import AlignmentNetwork +from TTS.tts.utils.helpers import generate_path, maximum_path, sequence_mask + + +class AcousticModel(torch.nn.Module): + def __init__( + self, + args: "ModelArgs", + tokenizer: "TTSTokenizer" = None, + speaker_manager: "SpeakerManager" = None, + ): + super().__init__() + self.args = args + self.tokenizer = tokenizer + self.speaker_manager = speaker_manager + + self.init_multispeaker(args) + # self.set_embedding_dims() + + self.length_scale = ( + float(self.args.length_scale) if isinstance(self.args.length_scale, int) else self.args.length_scale + ) + + self.emb_dim = args.n_hidden_conformer_encoder + self.encoder = Conformer( + dim=self.args.n_hidden_conformer_encoder, + n_layers=self.args.n_layers_conformer_encoder, + n_heads=self.args.n_heads_conformer_encoder, + speaker_embedding_dim=self.embedded_speaker_dim, + p_dropout=self.args.dropout_conformer_encoder, + kernel_size_conv_mod=self.args.kernel_size_conv_mod_conformer_encoder, + lrelu_slope=self.args.lrelu_slope, + ) + self.pitch_adaptor = PitchAdaptor( + n_input=self.args.n_hidden_conformer_encoder, + n_hidden=self.args.n_hidden_variance_adaptor, + n_out=1, + kernel_size=self.args.kernel_size_variance_adaptor, + emb_kernel_size=self.args.emb_kernel_size_variance_adaptor, + p_dropout=self.args.dropout_variance_adaptor, + lrelu_slope=self.args.lrelu_slope, + ) + self.energy_adaptor = EnergyAdaptor( + channels_in=self.args.n_hidden_conformer_encoder, + channels_hidden=self.args.n_hidden_variance_adaptor, + channels_out=1, + kernel_size=self.args.kernel_size_variance_adaptor, + emb_kernel_size=self.args.emb_kernel_size_variance_adaptor, + dropout=self.args.dropout_variance_adaptor, + lrelu_slope=self.args.lrelu_slope, + ) + + self.aligner = AlignmentNetwork( + in_query_channels=self.args.out_channels, + in_key_channels=self.args.n_hidden_conformer_encoder, + ) + + self.duration_predictor = VariancePredictor( + channels_in=self.args.n_hidden_conformer_encoder, + channels=self.args.n_hidden_variance_adaptor, + channels_out=1, + kernel_size=self.args.kernel_size_variance_adaptor, + p_dropout=self.args.dropout_variance_adaptor, + lrelu_slope=self.args.lrelu_slope, + ) + + self.utterance_prosody_encoder = UtteranceLevelProsodyEncoder( + num_mels=self.args.num_mels, + ref_enc_filters=self.args.ref_enc_filters_reference_encoder, + ref_enc_size=self.args.ref_enc_size_reference_encoder, + ref_enc_gru_size=self.args.ref_enc_gru_size_reference_encoder, + ref_enc_strides=self.args.ref_enc_strides_reference_encoder, + n_hidden=self.args.n_hidden_conformer_encoder, + dropout=self.args.dropout_conformer_encoder, + bottleneck_size_u=self.args.bottleneck_size_u_reference_encoder, + token_num=self.args.token_num_reference_encoder, + ) + + self.utterance_prosody_predictor = PhonemeProsodyPredictor( + hidden_size=self.args.n_hidden_conformer_encoder, + kernel_size=self.args.predictor_kernel_size_reference_encoder, + dropout=self.args.dropout_conformer_encoder, + bottleneck_size=self.args.bottleneck_size_u_reference_encoder, + lrelu_slope=self.args.lrelu_slope, + ) + + self.phoneme_prosody_encoder = PhonemeLevelProsodyEncoder( + num_mels=self.args.num_mels, + ref_enc_filters=self.args.ref_enc_filters_reference_encoder, + ref_enc_size=self.args.ref_enc_size_reference_encoder, + ref_enc_gru_size=self.args.ref_enc_gru_size_reference_encoder, + ref_enc_strides=self.args.ref_enc_strides_reference_encoder, + n_hidden=self.args.n_hidden_conformer_encoder, + dropout=self.args.dropout_conformer_encoder, + bottleneck_size_p=self.args.bottleneck_size_p_reference_encoder, + n_heads=self.args.n_heads_conformer_encoder, + ) + + self.phoneme_prosody_predictor = PhonemeProsodyPredictor( + hidden_size=self.args.n_hidden_conformer_encoder, + kernel_size=self.args.predictor_kernel_size_reference_encoder, + dropout=self.args.dropout_conformer_encoder, + bottleneck_size=self.args.bottleneck_size_p_reference_encoder, + lrelu_slope=self.args.lrelu_slope, + ) + + self.u_bottle_out = nn.Linear( + self.args.bottleneck_size_u_reference_encoder, + self.args.n_hidden_conformer_encoder, + ) + + self.u_norm = nn.InstanceNorm1d(self.args.bottleneck_size_u_reference_encoder) + self.p_bottle_out = nn.Linear( + self.args.bottleneck_size_p_reference_encoder, + self.args.n_hidden_conformer_encoder, + ) + self.p_norm = nn.InstanceNorm1d( + self.args.bottleneck_size_p_reference_encoder, + ) + self.decoder = Conformer( + dim=self.args.n_hidden_conformer_decoder, + n_layers=self.args.n_layers_conformer_decoder, + n_heads=self.args.n_heads_conformer_decoder, + speaker_embedding_dim=self.embedded_speaker_dim, + p_dropout=self.args.dropout_conformer_decoder, + kernel_size_conv_mod=self.args.kernel_size_conv_mod_conformer_decoder, + lrelu_slope=self.args.lrelu_slope, + ) + + padding_idx = self.tokenizer.characters.pad_id + self.src_word_emb = EmbeddingPadded( + self.args.num_chars, self.args.n_hidden_conformer_encoder, padding_idx=padding_idx + ) + self.to_mel = nn.Linear( + self.args.n_hidden_conformer_decoder, + self.args.num_mels, + ) + + self.energy_scaler = torch.nn.BatchNorm1d(1, affine=False, track_running_stats=True, momentum=None) + self.energy_scaler.requires_grad_(False) + + def init_multispeaker(self, args: Coqpit): # pylint: disable=unused-argument + """Init for multi-speaker training.""" + self.embedded_speaker_dim = 0 + self.num_speakers = self.args.num_speakers + self.audio_transform = None + + if self.speaker_manager: + self.num_speakers = self.speaker_manager.num_speakers + + if self.args.use_speaker_embedding: + self._init_speaker_embedding() + + if self.args.use_d_vector_file: + self._init_d_vector() + + @staticmethod + def _set_cond_input(aux_input: Dict): + """Set the speaker conditioning input based on the multi-speaker mode.""" + sid, g, lid, durations = None, None, None, None + if "speaker_ids" in aux_input and aux_input["speaker_ids"] is not None: + sid = aux_input["speaker_ids"] + if sid.ndim == 0: + sid = sid.unsqueeze_(0) + if "d_vectors" in aux_input and aux_input["d_vectors"] is not None: + g = F.normalize(aux_input["d_vectors"]) # .unsqueeze_(-1) + if g.ndim == 2: + g = g # .unsqueeze_(0) # pylint: disable=self-assigning-variable + + if "durations" in aux_input and aux_input["durations"] is not None: + durations = aux_input["durations"] + + return sid, g, lid, durations + + def get_aux_input(self, aux_input: Dict): + sid, g, lid, _ = self._set_cond_input(aux_input) + return {"speaker_ids": sid, "style_wav": None, "d_vectors": g, "language_ids": lid} + + def _set_speaker_input(self, aux_input: Dict): + d_vectors = aux_input.get("d_vectors", None) + speaker_ids = aux_input.get("speaker_ids", None) + + if d_vectors is not None and speaker_ids is not None: + raise ValueError("[!] Cannot use d-vectors and speaker-ids together.") + + if speaker_ids is not None and not hasattr(self, "emb_g"): + raise ValueError("[!] Cannot use speaker-ids without enabling speaker embedding.") + + g = speaker_ids if speaker_ids is not None else d_vectors + return g + + # def set_embedding_dims(self): + # if self.embedded_speaker_dim > 0: + # self.embedding_dims = self.embedded_speaker_dim + # else: + # self.embedding_dims = 0 + + def _init_speaker_embedding(self): + # pylint: disable=attribute-defined-outside-init + if self.num_speakers > 0: + print(" > initialization of speaker-embedding layers.") + self.embedded_speaker_dim = self.args.speaker_embedding_channels + self.emb_g = nn.Embedding(self.num_speakers, self.embedded_speaker_dim) + + def _init_d_vector(self): + # pylint: disable=attribute-defined-outside-init + if hasattr(self, "emb_g"): + raise ValueError("[!] Speaker embedding layer already initialized before d_vector settings.") + self.embedded_speaker_dim = self.args.d_vector_dim + + @staticmethod + def generate_attn(dr, x_mask, y_mask=None): + """Generate an attention mask from the linear scale durations. + + Args: + dr (Tensor): Linear scale durations. + x_mask (Tensor): Mask for the input (character) sequence. + y_mask (Tensor): Mask for the output (spectrogram) sequence. Compute it from the predicted durations + if None. Defaults to None. + + Shapes + - dr: :math:`(B, T_{en})` + - x_mask: :math:`(B, T_{en})` + - y_mask: :math:`(B, T_{de})` + """ + # compute decode mask from the durations + if y_mask is None: + y_lengths = dr.sum(1).long() + y_lengths[y_lengths < 1] = 1 + y_mask = torch.unsqueeze(sequence_mask(y_lengths, None), 1).to(dr.dtype) + attn_mask = torch.unsqueeze(x_mask, -1) * torch.unsqueeze(y_mask, 2) + attn = generate_path(dr, attn_mask.squeeze(1)).to(dr.dtype) + return attn + + def _expand_encoder_with_durations( + self, + o_en: torch.FloatTensor, + dr: torch.IntTensor, + x_mask: torch.IntTensor, + y_lengths: torch.IntTensor, + ): + y_mask = torch.unsqueeze(sequence_mask(y_lengths, None), 1).to(o_en.dtype) + attn = self.generate_attn(dr, x_mask, y_mask) + o_en_ex = torch.einsum("kmn, kjm -> kjn", [attn.float(), o_en]) + return y_mask, o_en_ex, attn.transpose(1, 2) + + def _forward_aligner( + self, + x: torch.FloatTensor, + y: torch.FloatTensor, + x_mask: torch.IntTensor, + y_mask: torch.IntTensor, + attn_priors: torch.FloatTensor, + ) -> Tuple[torch.IntTensor, torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]: + """Aligner forward pass. + + 1. Compute a mask to apply to the attention map. + 2. Run the alignment network. + 3. Apply MAS to compute the hard alignment map. + 4. Compute the durations from the hard alignment map. + + Args: + x (torch.FloatTensor): Input sequence. + y (torch.FloatTensor): Output sequence. + x_mask (torch.IntTensor): Input sequence mask. + y_mask (torch.IntTensor): Output sequence mask. + attn_priors (torch.FloatTensor): Prior for the aligner network map. + + Returns: + Tuple[torch.IntTensor, torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]: + Durations from the hard alignment map, soft alignment potentials, log scale alignment potentials, + hard alignment map. + + Shapes: + - x: :math:`[B, T_en, C_en]` + - y: :math:`[B, T_de, C_de]` + - x_mask: :math:`[B, 1, T_en]` + - y_mask: :math:`[B, 1, T_de]` + - attn_priors: :math:`[B, T_de, T_en]` + + - aligner_durations: :math:`[B, T_en]` + - aligner_soft: :math:`[B, T_de, T_en]` + - aligner_logprob: :math:`[B, 1, T_de, T_en]` + - aligner_mas: :math:`[B, T_de, T_en]` + """ + attn_mask = torch.unsqueeze(x_mask, -1) * torch.unsqueeze(y_mask, 2) # [B, 1, T_en, T_de] + aligner_soft, aligner_logprob = self.aligner(y.transpose(1, 2), x.transpose(1, 2), x_mask, attn_priors) + aligner_mas = maximum_path( + aligner_soft.squeeze(1).transpose(1, 2).contiguous(), attn_mask.squeeze(1).contiguous() + ) + aligner_durations = torch.sum(aligner_mas, -1).int() + aligner_soft = aligner_soft.squeeze(1) # [B, T_max2, T_max] + aligner_mas = aligner_mas.transpose(1, 2) # [B, T_max, T_max2] -> [B, T_max2, T_max] + return aligner_durations, aligner_soft, aligner_logprob, aligner_mas + + def average_utterance_prosody( # pylint: disable=no-self-use + self, u_prosody_pred: torch.Tensor, src_mask: torch.Tensor + ) -> torch.Tensor: + lengths = ((~src_mask) * 1.0).sum(1) + u_prosody_pred = u_prosody_pred.sum(1, keepdim=True) / lengths.view(-1, 1, 1) + return u_prosody_pred + + def forward( + self, + tokens: torch.Tensor, + src_lens: torch.Tensor, + mels: torch.Tensor, + mel_lens: torch.Tensor, + pitches: torch.Tensor, + energies: torch.Tensor, + attn_priors: torch.Tensor, + use_ground_truth: bool = True, + d_vectors: torch.Tensor = None, + speaker_idx: torch.Tensor = None, + ) -> Dict[str, torch.Tensor]: + sid, g, lid, _ = self._set_cond_input( # pylint: disable=unused-variable + {"d_vectors": d_vectors, "speaker_ids": speaker_idx} + ) # pylint: disable=unused-variable + + src_mask = get_mask_from_lengths(src_lens) # [B, T_src] + mel_mask = get_mask_from_lengths(mel_lens) # [B, T_mel] + + # Token embeddings + token_embeddings = self.src_word_emb(tokens) # [B, T_src, C_hidden] + token_embeddings = token_embeddings.masked_fill(src_mask.unsqueeze(-1), 0.0) + + # Alignment network and durations + aligner_durations, aligner_soft, aligner_logprob, aligner_mas = self._forward_aligner( + x=token_embeddings, + y=mels.transpose(1, 2), + x_mask=~src_mask[:, None], + y_mask=~mel_mask[:, None], + attn_priors=attn_priors, + ) + dr = aligner_durations # [B, T_en] + + # Embeddings + speaker_embedding = None + if d_vectors is not None: + speaker_embedding = g + elif speaker_idx is not None: + speaker_embedding = F.normalize(self.emb_g(sid)) + + pos_encoding = positional_encoding( + self.emb_dim, + max(token_embeddings.shape[1], max(mel_lens)), + device=token_embeddings.device, + ) + encoder_outputs = self.encoder( + token_embeddings, + src_mask, + speaker_embedding=speaker_embedding, + encoding=pos_encoding, + ) + + u_prosody_ref = self.u_norm(self.utterance_prosody_encoder(mels=mels, mel_lens=mel_lens)) + u_prosody_pred = self.u_norm( + self.average_utterance_prosody( + u_prosody_pred=self.utterance_prosody_predictor(x=encoder_outputs, mask=src_mask), + src_mask=src_mask, + ) + ) + + if use_ground_truth: + encoder_outputs = encoder_outputs + self.u_bottle_out(u_prosody_ref) + else: + encoder_outputs = encoder_outputs + self.u_bottle_out(u_prosody_pred) + + p_prosody_ref = self.p_norm( + self.phoneme_prosody_encoder( + x=encoder_outputs, src_mask=src_mask, mels=mels, mel_lens=mel_lens, encoding=pos_encoding + ) + ) + p_prosody_pred = self.p_norm(self.phoneme_prosody_predictor(x=encoder_outputs, mask=src_mask)) + + if use_ground_truth: + encoder_outputs = encoder_outputs + self.p_bottle_out(p_prosody_ref) + else: + encoder_outputs = encoder_outputs + self.p_bottle_out(p_prosody_pred) + + encoder_outputs_res = encoder_outputs + + pitch_pred, avg_pitch_target, pitch_emb = self.pitch_adaptor.get_pitch_embedding_train( + x=encoder_outputs, + target=pitches, + dr=dr, + mask=src_mask, + ) + + energy_pred, avg_energy_target, energy_emb = self.energy_adaptor.get_energy_embedding_train( + x=encoder_outputs, + target=energies, + dr=dr, + mask=src_mask, + ) + + encoder_outputs = encoder_outputs.transpose(1, 2) + pitch_emb + energy_emb + log_duration_prediction = self.duration_predictor(x=encoder_outputs_res.detach(), mask=src_mask) + + mel_pred_mask, encoder_outputs_ex, alignments = self._expand_encoder_with_durations( + o_en=encoder_outputs, y_lengths=mel_lens, dr=dr, x_mask=~src_mask[:, None] + ) + + x = self.decoder( + encoder_outputs_ex.transpose(1, 2), + mel_mask, + speaker_embedding=speaker_embedding, + encoding=pos_encoding, + ) + x = self.to_mel(x) + + dr = torch.log(dr + 1) + + dr_pred = torch.exp(log_duration_prediction) - 1 + alignments_dp = self.generate_attn(dr_pred, src_mask.unsqueeze(1), mel_pred_mask) # [B, T_max, T_max2'] + + return { + "model_outputs": x, + "pitch_pred": pitch_pred, + "pitch_target": avg_pitch_target, + "energy_pred": energy_pred, + "energy_target": avg_energy_target, + "u_prosody_pred": u_prosody_pred, + "u_prosody_ref": u_prosody_ref, + "p_prosody_pred": p_prosody_pred, + "p_prosody_ref": p_prosody_ref, + "alignments_dp": alignments_dp, + "alignments": alignments, # [B, T_de, T_en] + "aligner_soft": aligner_soft, + "aligner_mas": aligner_mas, + "aligner_durations": aligner_durations, + "aligner_logprob": aligner_logprob, + "dr_log_pred": log_duration_prediction.squeeze(1), # [B, T] + "dr_log_target": dr.squeeze(1), # [B, T] + "spk_emb": speaker_embedding, + } + + @torch.no_grad() + def inference( + self, + tokens: torch.Tensor, + speaker_idx: torch.Tensor, + p_control: float = None, # TODO # pylint: disable=unused-argument + d_control: float = None, # TODO # pylint: disable=unused-argument + d_vectors: torch.Tensor = None, + pitch_transform: Callable = None, + energy_transform: Callable = None, + ) -> torch.Tensor: + src_mask = get_mask_from_lengths(torch.tensor([tokens.shape[1]], dtype=torch.int64, device=tokens.device)) + src_lens = torch.tensor(tokens.shape[1:2]).to(tokens.device) # pylint: disable=unused-variable + sid, g, lid, _ = self._set_cond_input( # pylint: disable=unused-variable + {"d_vectors": d_vectors, "speaker_ids": speaker_idx} + ) # pylint: disable=unused-variable + + token_embeddings = self.src_word_emb(tokens) + token_embeddings = token_embeddings.masked_fill(src_mask.unsqueeze(-1), 0.0) + + # Embeddings + speaker_embedding = None + if d_vectors is not None: + speaker_embedding = g + elif speaker_idx is not None: + speaker_embedding = F.normalize(self.emb_g(sid)) + + pos_encoding = positional_encoding( + self.emb_dim, + token_embeddings.shape[1], + device=token_embeddings.device, + ) + encoder_outputs = self.encoder( + token_embeddings, + src_mask, + speaker_embedding=speaker_embedding, + encoding=pos_encoding, + ) + + u_prosody_pred = self.u_norm( + self.average_utterance_prosody( + u_prosody_pred=self.utterance_prosody_predictor(x=encoder_outputs, mask=src_mask), + src_mask=src_mask, + ) + ) + encoder_outputs = encoder_outputs + self.u_bottle_out(u_prosody_pred).expand_as(encoder_outputs) + + p_prosody_pred = self.p_norm( + self.phoneme_prosody_predictor( + x=encoder_outputs, + mask=src_mask, + ) + ) + encoder_outputs = encoder_outputs + self.p_bottle_out(p_prosody_pred).expand_as(encoder_outputs) + + encoder_outputs_res = encoder_outputs + + pitch_emb_pred, pitch_pred = self.pitch_adaptor.get_pitch_embedding( + x=encoder_outputs, + mask=src_mask, + pitch_transform=pitch_transform, + pitch_mean=self.pitch_mean if hasattr(self, "pitch_mean") else None, + pitch_std=self.pitch_std if hasattr(self, "pitch_std") else None, + ) + + energy_emb_pred, energy_pred = self.energy_adaptor.get_energy_embedding( + x=encoder_outputs, mask=src_mask, energy_transform=energy_transform + ) + encoder_outputs = encoder_outputs.transpose(1, 2) + pitch_emb_pred + energy_emb_pred + + log_duration_pred = self.duration_predictor( + x=encoder_outputs_res.detach(), mask=src_mask + ) # [B, C_hidden, T_src] -> [B, T_src] + duration_pred = (torch.exp(log_duration_pred) - 1) * (~src_mask) * self.length_scale # -> [B, T_src] + duration_pred[duration_pred < 1] = 1.0 # -> [B, T_src] + duration_pred = torch.round(duration_pred) # -> [B, T_src] + mel_lens = duration_pred.sum(1) # -> [B,] + + _, encoder_outputs_ex, alignments = self._expand_encoder_with_durations( + o_en=encoder_outputs, y_lengths=mel_lens, dr=duration_pred.squeeze(1), x_mask=~src_mask[:, None] + ) + + mel_mask = get_mask_from_lengths( + torch.tensor([encoder_outputs_ex.shape[2]], dtype=torch.int64, device=encoder_outputs_ex.device) + ) + + if encoder_outputs_ex.shape[1] > pos_encoding.shape[1]: + encoding = positional_encoding(self.emb_dim, encoder_outputs_ex.shape[2], device=tokens.device) + + # [B, C_hidden, T_src], [B, 1, T_src], [B, C_emb], [B, T_src, C_hidden] -> [B, C_hidden, T_src] + x = self.decoder( + encoder_outputs_ex.transpose(1, 2), + mel_mask, + speaker_embedding=speaker_embedding, + encoding=encoding, + ) + x = self.to_mel(x) + outputs = { + "model_outputs": x, + "alignments": alignments, + # "pitch": pitch_emb_pred, + "durations": duration_pred, + "pitch": pitch_pred, + "energy": energy_pred, + "spk_emb": speaker_embedding, + } + return outputs diff --git a/TTS/TTS/tts/layers/delightful_tts/conformer.py b/TTS/TTS/tts/layers/delightful_tts/conformer.py new file mode 100644 index 0000000000000000000000000000000000000000..b2175b3b965c6b100846e87d405a753dc272c9e7 --- /dev/null +++ b/TTS/TTS/tts/layers/delightful_tts/conformer.py @@ -0,0 +1,450 @@ +### credit: https://github.com/dunky11/voicesmith +import math +from typing import Tuple + +import torch +import torch.nn as nn # pylint: disable=consider-using-from-import +import torch.nn.functional as F + +from TTS.tts.layers.delightful_tts.conv_layers import Conv1dGLU, DepthWiseConv1d, PointwiseConv1d +from TTS.tts.layers.delightful_tts.networks import GLUActivation + + +def calc_same_padding(kernel_size: int) -> Tuple[int, int]: + pad = kernel_size // 2 + return (pad, pad - (kernel_size + 1) % 2) + + +class Conformer(nn.Module): + def __init__( + self, + dim: int, + n_layers: int, + n_heads: int, + speaker_embedding_dim: int, + p_dropout: float, + kernel_size_conv_mod: int, + lrelu_slope: float, + ): + """ + A Transformer variant that integrates both CNNs and Transformers components. + Conformer proposes a novel combination of self-attention and convolution, in which self-attention + learns the global interaction while the convolutions efficiently capture the local correlations. + + Args: + dim (int): Number of the dimensions for the model. + n_layers (int): Number of model layers. + n_heads (int): The number of attention heads. + speaker_embedding_dim (int): Number of speaker embedding dimensions. + p_dropout (float): Probabilty of dropout. + kernel_size_conv_mod (int): Size of kernels for convolution modules. + + Inputs: inputs, mask + - **inputs** (batch, time, dim): Tensor containing input vector + - **encoding** (batch, time, dim): Positional embedding tensor + - **mask** (batch, 1, time2) or (batch, time1, time2): Tensor containing indices to be masked + Returns: + - **outputs** (batch, time, dim): Tensor produced by Conformer Encoder. + """ + super().__init__() + d_k = d_v = dim // n_heads + self.layer_stack = nn.ModuleList( + [ + ConformerBlock( + dim, + n_heads, + d_k, + d_v, + kernel_size_conv_mod=kernel_size_conv_mod, + dropout=p_dropout, + speaker_embedding_dim=speaker_embedding_dim, + lrelu_slope=lrelu_slope, + ) + for _ in range(n_layers) + ] + ) + + def forward( + self, + x: torch.Tensor, + mask: torch.Tensor, + speaker_embedding: torch.Tensor, + encoding: torch.Tensor, + ) -> torch.Tensor: + """ + Shapes: + - x: :math:`[B, T_src, C]` + - mask: :math: `[B]` + - speaker_embedding: :math: `[B, C]` + - encoding: :math: `[B, T_max2, C]` + """ + + attn_mask = mask.view((mask.shape[0], 1, 1, mask.shape[1])) + for enc_layer in self.layer_stack: + x = enc_layer( + x, + mask=mask, + slf_attn_mask=attn_mask, + speaker_embedding=speaker_embedding, + encoding=encoding, + ) + return x + + +class ConformerBlock(torch.nn.Module): + def __init__( + self, + d_model: int, + n_head: int, + d_k: int, # pylint: disable=unused-argument + d_v: int, # pylint: disable=unused-argument + kernel_size_conv_mod: int, + speaker_embedding_dim: int, + dropout: float, + lrelu_slope: float = 0.3, + ): + """ + A Conformer block is composed of four modules stacked together, + A feed-forward module, a self-attention module, a convolution module, + and a second feed-forward module in the end. The block starts with two Feed forward + modules sandwiching the Multi-Headed Self-Attention module and the Conv module. + + Args: + d_model (int): The dimension of model + n_head (int): The number of attention heads. + kernel_size_conv_mod (int): Size of kernels for convolution modules. + speaker_embedding_dim (int): Number of speaker embedding dimensions. + emotion_embedding_dim (int): Number of emotion embedding dimensions. + dropout (float): Probabilty of dropout. + + Inputs: inputs, mask + - **inputs** (batch, time, dim): Tensor containing input vector + - **encoding** (batch, time, dim): Positional embedding tensor + - **slf_attn_mask** (batch, 1, 1, time1): Tensor containing indices to be masked in self attention module + - **mask** (batch, 1, time2) or (batch, time1, time2): Tensor containing indices to be masked + Returns: + - **outputs** (batch, time, dim): Tensor produced by the Conformer Block. + """ + super().__init__() + if isinstance(speaker_embedding_dim, int): + self.conditioning = Conv1dGLU( + d_model=d_model, + kernel_size=kernel_size_conv_mod, + padding=kernel_size_conv_mod // 2, + embedding_dim=speaker_embedding_dim, + ) + + self.ff = FeedForward(d_model=d_model, dropout=dropout, kernel_size=3, lrelu_slope=lrelu_slope) + self.conformer_conv_1 = ConformerConvModule( + d_model, kernel_size=kernel_size_conv_mod, dropout=dropout, lrelu_slope=lrelu_slope + ) + self.ln = nn.LayerNorm(d_model) + self.slf_attn = ConformerMultiHeadedSelfAttention(d_model=d_model, num_heads=n_head, dropout_p=dropout) + self.conformer_conv_2 = ConformerConvModule( + d_model, kernel_size=kernel_size_conv_mod, dropout=dropout, lrelu_slope=lrelu_slope + ) + + def forward( + self, + x: torch.Tensor, + speaker_embedding: torch.Tensor, + mask: torch.Tensor, + slf_attn_mask: torch.Tensor, + encoding: torch.Tensor, + ) -> torch.Tensor: + """ + Shapes: + - x: :math:`[B, T_src, C]` + - mask: :math: `[B]` + - slf_attn_mask: :math: `[B, 1, 1, T_src]` + - speaker_embedding: :math: `[B, C]` + - emotion_embedding: :math: `[B, C]` + - encoding: :math: `[B, T_max2, C]` + """ + if speaker_embedding is not None: + x = self.conditioning(x, embeddings=speaker_embedding) + x = self.ff(x) + x + x = self.conformer_conv_1(x) + x + res = x + x = self.ln(x) + x, _ = self.slf_attn(query=x, key=x, value=x, mask=slf_attn_mask, encoding=encoding) + x = x + res + x = x.masked_fill(mask.unsqueeze(-1), 0) + + x = self.conformer_conv_2(x) + x + return x + + +class FeedForward(nn.Module): + def __init__( + self, + d_model: int, + kernel_size: int, + dropout: float, + lrelu_slope: float, + expansion_factor: int = 4, + ): + """ + Feed Forward module for conformer block. + + Args: + d_model (int): The dimension of model. + kernel_size (int): Size of the kernels for conv layers. + dropout (float): probability of dropout. + expansion_factor (int): The factor by which to project the number of channels. + lrelu_slope (int): the negative slope factor for the leaky relu activation. + + Inputs: inputs + - **inputs** (batch, time, dim): Tensor containing input vector + Returns: + - **outputs** (batch, time, dim): Tensor produced by the feed forward module. + """ + super().__init__() + self.dropout = nn.Dropout(dropout) + self.ln = nn.LayerNorm(d_model) + self.conv_1 = nn.Conv1d( + d_model, + d_model * expansion_factor, + kernel_size=kernel_size, + padding=kernel_size // 2, + ) + self.act = nn.LeakyReLU(lrelu_slope) + self.conv_2 = nn.Conv1d(d_model * expansion_factor, d_model, kernel_size=1) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + """ + Shapes: + x: :math: `[B, T, C]` + """ + x = self.ln(x) + x = x.permute((0, 2, 1)) + x = self.conv_1(x) + x = x.permute((0, 2, 1)) + x = self.act(x) + x = self.dropout(x) + x = x.permute((0, 2, 1)) + x = self.conv_2(x) + x = x.permute((0, 2, 1)) + x = self.dropout(x) + x = 0.5 * x + return x + + +class ConformerConvModule(nn.Module): + def __init__( + self, + d_model: int, + expansion_factor: int = 2, + kernel_size: int = 7, + dropout: float = 0.1, + lrelu_slope: float = 0.3, + ): + """ + Convolution module for conformer. Starts with a gating machanism. + a pointwise convolution and a gated linear unit (GLU). This is followed + by a single 1-D depthwise convolution layer. Batchnorm is deployed just after the convolution + to help with training. it also contains an expansion factor to project the number of channels. + + Args: + d_model (int): The dimension of model. + expansion_factor (int): The factor by which to project the number of channels. + kernel_size (int): Size of kernels for convolution modules. + dropout (float): Probabilty of dropout. + lrelu_slope (float): The slope coefficient for leaky relu activation. + + Inputs: inputs + - **inputs** (batch, time, dim): Tensor containing input vector + Returns: + - **outputs** (batch, time, dim): Tensor produced by the conv module. + + """ + super().__init__() + inner_dim = d_model * expansion_factor + self.ln_1 = nn.LayerNorm(d_model) + self.conv_1 = PointwiseConv1d(d_model, inner_dim * 2) + self.conv_act = GLUActivation(slope=lrelu_slope) + self.depthwise = DepthWiseConv1d( + inner_dim, + inner_dim, + kernel_size=kernel_size, + padding=calc_same_padding(kernel_size)[0], + ) + self.ln_2 = nn.GroupNorm(1, inner_dim) + self.activation = nn.LeakyReLU(lrelu_slope) + self.conv_2 = PointwiseConv1d(inner_dim, d_model) + self.dropout = nn.Dropout(dropout) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + """ + Shapes: + x: :math: `[B, T, C]` + """ + x = self.ln_1(x) + x = x.permute(0, 2, 1) + x = self.conv_1(x) + x = self.conv_act(x) + x = self.depthwise(x) + x = self.ln_2(x) + x = self.activation(x) + x = self.conv_2(x) + x = x.permute(0, 2, 1) + x = self.dropout(x) + return x + + +class ConformerMultiHeadedSelfAttention(nn.Module): + """ + Conformer employ multi-headed self-attention (MHSA) while integrating an important technique from Transformer-XL, + the relative sinusoidal positional encoding scheme. The relative positional encoding allows the self-attention + module to generalize better on different input length and the resulting encoder is more robust to the variance of + the utterance length. Conformer use prenorm residual units with dropout which helps training + and regularizing deeper models. + Args: + d_model (int): The dimension of model + num_heads (int): The number of attention heads. + dropout_p (float): probability of dropout + Inputs: inputs, mask + - **inputs** (batch, time, dim): Tensor containing input vector + - **mask** (batch, 1, time2) or (batch, time1, time2): Tensor containing indices to be masked + Returns: + - **outputs** (batch, time, dim): Tensor produces by relative multi headed self attention module. + """ + + def __init__(self, d_model: int, num_heads: int, dropout_p: float): + super().__init__() + self.attention = RelativeMultiHeadAttention(d_model=d_model, num_heads=num_heads) + self.dropout = nn.Dropout(p=dropout_p) + + def forward( + self, + query: torch.Tensor, + key: torch.Tensor, + value: torch.Tensor, + mask: torch.Tensor, + encoding: torch.Tensor, + ) -> Tuple[torch.Tensor, torch.Tensor]: + batch_size, seq_length, _ = key.size() # pylint: disable=unused-variable + encoding = encoding[:, : key.shape[1]] + encoding = encoding.repeat(batch_size, 1, 1) + outputs, attn = self.attention(query, key, value, pos_embedding=encoding, mask=mask) + outputs = self.dropout(outputs) + return outputs, attn + + +class RelativeMultiHeadAttention(nn.Module): + """ + Multi-head attention with relative positional encoding. + This concept was proposed in the "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" + Args: + d_model (int): The dimension of model + num_heads (int): The number of attention heads. + Inputs: query, key, value, pos_embedding, mask + - **query** (batch, time, dim): Tensor containing query vector + - **key** (batch, time, dim): Tensor containing key vector + - **value** (batch, time, dim): Tensor containing value vector + - **pos_embedding** (batch, time, dim): Positional embedding tensor + - **mask** (batch, 1, time2) or (batch, time1, time2): Tensor containing indices to be masked + Returns: + - **outputs**: Tensor produces by relative multi head attention module. + """ + + def __init__( + self, + d_model: int = 512, + num_heads: int = 16, + ): + super().__init__() + assert d_model % num_heads == 0, "d_model % num_heads should be zero." + self.d_model = d_model + self.d_head = int(d_model / num_heads) + self.num_heads = num_heads + self.sqrt_dim = math.sqrt(d_model) + + self.query_proj = nn.Linear(d_model, d_model) + self.key_proj = nn.Linear(d_model, d_model, bias=False) + self.value_proj = nn.Linear(d_model, d_model, bias=False) + self.pos_proj = nn.Linear(d_model, d_model, bias=False) + + self.u_bias = nn.Parameter(torch.Tensor(self.num_heads, self.d_head)) + self.v_bias = nn.Parameter(torch.Tensor(self.num_heads, self.d_head)) + torch.nn.init.xavier_uniform_(self.u_bias) + torch.nn.init.xavier_uniform_(self.v_bias) + self.out_proj = nn.Linear(d_model, d_model) + + def forward( + self, + query: torch.Tensor, + key: torch.Tensor, + value: torch.Tensor, + pos_embedding: torch.Tensor, + mask: torch.Tensor, + ) -> Tuple[torch.Tensor, torch.Tensor]: + batch_size = query.shape[0] + query = self.query_proj(query).view(batch_size, -1, self.num_heads, self.d_head) + key = self.key_proj(key).view(batch_size, -1, self.num_heads, self.d_head).permute(0, 2, 1, 3) + value = self.value_proj(value).view(batch_size, -1, self.num_heads, self.d_head).permute(0, 2, 1, 3) + pos_embedding = self.pos_proj(pos_embedding).view(batch_size, -1, self.num_heads, self.d_head) + u_bias = self.u_bias.expand_as(query) + v_bias = self.v_bias.expand_as(query) + a = (query + u_bias).transpose(1, 2) + content_score = a @ key.transpose(2, 3) + b = (query + v_bias).transpose(1, 2) + pos_score = b @ pos_embedding.permute(0, 2, 3, 1) + pos_score = self._relative_shift(pos_score) + + score = content_score + pos_score + score = score * (1.0 / self.sqrt_dim) + + score.masked_fill_(mask, -1e9) + + attn = F.softmax(score, -1) + + context = (attn @ value).transpose(1, 2) + context = context.contiguous().view(batch_size, -1, self.d_model) + + return self.out_proj(context), attn + + def _relative_shift(self, pos_score: torch.Tensor) -> torch.Tensor: # pylint: disable=no-self-use + batch_size, num_heads, seq_length1, seq_length2 = pos_score.size() + zeros = torch.zeros((batch_size, num_heads, seq_length1, 1), device=pos_score.device) + padded_pos_score = torch.cat([zeros, pos_score], dim=-1) + padded_pos_score = padded_pos_score.view(batch_size, num_heads, seq_length2 + 1, seq_length1) + pos_score = padded_pos_score[:, :, 1:].view_as(pos_score) + return pos_score + + +class MultiHeadAttention(nn.Module): + """ + input: + query --- [N, T_q, query_dim] + key --- [N, T_k, key_dim] + output: + out --- [N, T_q, num_units] + """ + + def __init__(self, query_dim: int, key_dim: int, num_units: int, num_heads: int): + super().__init__() + self.num_units = num_units + self.num_heads = num_heads + self.key_dim = key_dim + + self.W_query = nn.Linear(in_features=query_dim, out_features=num_units, bias=False) + self.W_key = nn.Linear(in_features=key_dim, out_features=num_units, bias=False) + self.W_value = nn.Linear(in_features=key_dim, out_features=num_units, bias=False) + + def forward(self, query: torch.Tensor, key: torch.Tensor) -> torch.Tensor: + querys = self.W_query(query) # [N, T_q, num_units] + keys = self.W_key(key) # [N, T_k, num_units] + values = self.W_value(key) + split_size = self.num_units // self.num_heads + querys = torch.stack(torch.split(querys, split_size, dim=2), dim=0) # [h, N, T_q, num_units/h] + keys = torch.stack(torch.split(keys, split_size, dim=2), dim=0) # [h, N, T_k, num_units/h] + values = torch.stack(torch.split(values, split_size, dim=2), dim=0) # [h, N, T_k, num_units/h] + # score = softmax(QK^T / (d_k ** 0.5)) + scores = torch.matmul(querys, keys.transpose(2, 3)) # [h, N, T_q, T_k] + scores = scores / (self.key_dim**0.5) + scores = F.softmax(scores, dim=3) + # out = score * V + out = torch.matmul(scores, values) # [h, N, T_q, num_units/h] + out = torch.cat(torch.split(out, 1, dim=0), dim=3).squeeze(0) # [N, T_q, num_units] + return out diff --git a/TTS/TTS/tts/layers/delightful_tts/conv_layers.py b/TTS/TTS/tts/layers/delightful_tts/conv_layers.py new file mode 100644 index 0000000000000000000000000000000000000000..354a0336a1f031edc839c103cc01b45fb7642025 --- /dev/null +++ b/TTS/TTS/tts/layers/delightful_tts/conv_layers.py @@ -0,0 +1,670 @@ +from typing import Tuple + +import torch +import torch.nn as nn # pylint: disable=consider-using-from-import +import torch.nn.functional as F + +from TTS.tts.layers.delightful_tts.kernel_predictor import KernelPredictor + + +def calc_same_padding(kernel_size: int) -> Tuple[int, int]: + pad = kernel_size // 2 + return (pad, pad - (kernel_size + 1) % 2) + + +class ConvNorm(nn.Module): + """A 1-dimensional convolutional layer with optional weight normalization. + + This layer wraps a 1D convolutional layer from PyTorch and applies + optional weight normalization. The layer can be used in a similar way to + the convolutional layers in PyTorch's `torch.nn` module. + + Args: + in_channels (int): The number of channels in the input signal. + out_channels (int): The number of channels in the output signal. + kernel_size (int, optional): The size of the convolving kernel. + Defaults to 1. + stride (int, optional): The stride of the convolution. Defaults to 1. + padding (int, optional): Zero-padding added to both sides of the input. + If `None`, the padding will be calculated so that the output has + the same length as the input. Defaults to `None`. + dilation (int, optional): Spacing between kernel elements. Defaults to 1. + bias (bool, optional): If `True`, add bias after convolution. Defaults to `True`. + w_init_gain (str, optional): The weight initialization function to use. + Can be either 'linear' or 'relu'. Defaults to 'linear'. + use_weight_norm (bool, optional): If `True`, apply weight normalization + to the convolutional weights. Defaults to `False`. + + Shapes: + - Input: :math:`[N, D, T]` + + - Output: :math:`[N, out_dim, T]` where `out_dim` is the number of output dimensions. + + """ + + def __init__( + self, + in_channels, + out_channels, + kernel_size=1, + stride=1, + padding=None, + dilation=1, + bias=True, + w_init_gain="linear", + use_weight_norm=False, + ): + super(ConvNorm, self).__init__() # pylint: disable=super-with-arguments + if padding is None: + assert kernel_size % 2 == 1 + padding = int(dilation * (kernel_size - 1) / 2) + self.kernel_size = kernel_size + self.dilation = dilation + self.use_weight_norm = use_weight_norm + conv_fn = nn.Conv1d + self.conv = conv_fn( + in_channels, + out_channels, + kernel_size=kernel_size, + stride=stride, + padding=padding, + dilation=dilation, + bias=bias, + ) + nn.init.xavier_uniform_(self.conv.weight, gain=nn.init.calculate_gain(w_init_gain)) + if self.use_weight_norm: + self.conv = nn.utils.weight_norm(self.conv) + + def forward(self, signal, mask=None): + conv_signal = self.conv(signal) + if mask is not None: + # always re-zero output if mask is + # available to match zero-padding + conv_signal = conv_signal * mask + return conv_signal + + +class ConvLSTMLinear(nn.Module): + def __init__( + self, + in_dim, + out_dim, + n_layers=2, + n_channels=256, + kernel_size=3, + p_dropout=0.1, + lstm_type="bilstm", + use_linear=True, + ): + super(ConvLSTMLinear, self).__init__() # pylint: disable=super-with-arguments + self.out_dim = out_dim + self.lstm_type = lstm_type + self.use_linear = use_linear + self.dropout = nn.Dropout(p=p_dropout) + + convolutions = [] + for i in range(n_layers): + conv_layer = ConvNorm( + in_dim if i == 0 else n_channels, + n_channels, + kernel_size=kernel_size, + stride=1, + padding=int((kernel_size - 1) / 2), + dilation=1, + w_init_gain="relu", + ) + conv_layer = nn.utils.weight_norm(conv_layer.conv, name="weight") + convolutions.append(conv_layer) + + self.convolutions = nn.ModuleList(convolutions) + + if not self.use_linear: + n_channels = out_dim + + if self.lstm_type != "": + use_bilstm = False + lstm_channels = n_channels + if self.lstm_type == "bilstm": + use_bilstm = True + lstm_channels = int(n_channels // 2) + + self.bilstm = nn.LSTM(n_channels, lstm_channels, 1, batch_first=True, bidirectional=use_bilstm) + lstm_norm_fn_pntr = nn.utils.spectral_norm + self.bilstm = lstm_norm_fn_pntr(self.bilstm, "weight_hh_l0") + if self.lstm_type == "bilstm": + self.bilstm = lstm_norm_fn_pntr(self.bilstm, "weight_hh_l0_reverse") + + if self.use_linear: + self.dense = nn.Linear(n_channels, out_dim) + + def run_padded_sequence(self, context, lens): + context_embedded = [] + for b_ind in range(context.size()[0]): # TODO: speed up + curr_context = context[b_ind : b_ind + 1, :, : lens[b_ind]].clone() + for conv in self.convolutions: + curr_context = self.dropout(F.relu(conv(curr_context))) + context_embedded.append(curr_context[0].transpose(0, 1)) + context = nn.utils.rnn.pad_sequence(context_embedded, batch_first=True) + return context + + def run_unsorted_inputs(self, fn, context, lens): # pylint: disable=no-self-use + lens_sorted, ids_sorted = torch.sort(lens, descending=True) + unsort_ids = [0] * lens.size(0) + for i in range(len(ids_sorted)): # pylint: disable=consider-using-enumerate + unsort_ids[ids_sorted[i]] = i + lens_sorted = lens_sorted.long().cpu() + + context = context[ids_sorted] + context = nn.utils.rnn.pack_padded_sequence(context, lens_sorted, batch_first=True) + context = fn(context)[0] + context = nn.utils.rnn.pad_packed_sequence(context, batch_first=True)[0] + + # map back to original indices + context = context[unsort_ids] + return context + + def forward(self, context, lens): + if context.size()[0] > 1: + context = self.run_padded_sequence(context, lens) + # to B, D, T + context = context.transpose(1, 2) + else: + for conv in self.convolutions: + context = self.dropout(F.relu(conv(context))) + + if self.lstm_type != "": + context = context.transpose(1, 2) + self.bilstm.flatten_parameters() + if lens is not None: + context = self.run_unsorted_inputs(self.bilstm, context, lens) + else: + context = self.bilstm(context)[0] + context = context.transpose(1, 2) + + x_hat = context + if self.use_linear: + x_hat = self.dense(context.transpose(1, 2)).transpose(1, 2) + + return x_hat + + +class DepthWiseConv1d(nn.Module): + def __init__(self, in_channels: int, out_channels: int, kernel_size: int, padding: int): + super().__init__() + self.conv = nn.Conv1d(in_channels, out_channels, kernel_size, padding=padding, groups=in_channels) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + return self.conv(x) + + +class PointwiseConv1d(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + stride: int = 1, + padding: int = 0, + bias: bool = True, + ): + super().__init__() + self.conv = nn.Conv1d( + in_channels=in_channels, + out_channels=out_channels, + kernel_size=1, + stride=stride, + padding=padding, + bias=bias, + ) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + return self.conv(x) + + +class BSConv1d(nn.Module): + """https://arxiv.org/pdf/2003.13549.pdf""" + + def __init__(self, channels_in: int, channels_out: int, kernel_size: int, padding: int): + super().__init__() + self.pointwise = nn.Conv1d(channels_in, channels_out, kernel_size=1) + self.depthwise = nn.Conv1d( + channels_out, + channels_out, + kernel_size=kernel_size, + padding=padding, + groups=channels_out, + ) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x1 = self.pointwise(x) + x2 = self.depthwise(x1) + return x2 + + +class BSConv2d(nn.Module): + """https://arxiv.org/pdf/2003.13549.pdf""" + + def __init__(self, channels_in: int, channels_out: int, kernel_size: int, padding: int): + super().__init__() + self.pointwise = nn.Conv2d(channels_in, channels_out, kernel_size=1) + self.depthwise = nn.Conv2d( + channels_out, + channels_out, + kernel_size=kernel_size, + padding=padding, + groups=channels_out, + ) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x1 = self.pointwise(x) + x2 = self.depthwise(x1) + return x2 + + +class Conv1dGLU(nn.Module): + """From DeepVoice 3""" + + def __init__(self, d_model: int, kernel_size: int, padding: int, embedding_dim: int): + super().__init__() + self.conv = BSConv1d(d_model, 2 * d_model, kernel_size=kernel_size, padding=padding) + self.embedding_proj = nn.Linear(embedding_dim, d_model) + self.register_buffer("sqrt", torch.sqrt(torch.FloatTensor([0.5])).squeeze(0)) + self.softsign = torch.nn.Softsign() + + def forward(self, x: torch.Tensor, embeddings: torch.Tensor) -> torch.Tensor: + x = x.permute((0, 2, 1)) + residual = x + x = self.conv(x) + splitdim = 1 + a, b = x.split(x.size(splitdim) // 2, dim=splitdim) + embeddings = self.embedding_proj(embeddings).unsqueeze(2) + softsign = self.softsign(embeddings) + softsign = softsign.expand_as(a) + a = a + softsign + x = a * torch.sigmoid(b) + x = x + residual + x = x * self.sqrt + x = x.permute((0, 2, 1)) + return x + + +class ConvTransposed(nn.Module): + """ + A 1D convolutional transposed layer for PyTorch. + This layer applies a 1D convolutional transpose operation to its input tensor, + where the number of channels of the input tensor is the same as the number of channels of the output tensor. + + Attributes: + in_channels (int): The number of channels in the input tensor. + out_channels (int): The number of channels in the output tensor. + kernel_size (int): The size of the convolutional kernel. Default: 1. + padding (int): The number of padding elements to add to the input tensor. Default: 0. + conv (BSConv1d): The 1D convolutional transpose layer. + """ + + def __init__( + self, + in_channels: int, + out_channels: int, + kernel_size: int = 1, + padding: int = 0, + ): + super().__init__() + self.conv = BSConv1d( + in_channels, + out_channels, + kernel_size=kernel_size, + padding=padding, + ) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = x.contiguous().transpose(1, 2) + x = self.conv(x) + x = x.contiguous().transpose(1, 2) + return x + + +class DepthwiseConvModule(nn.Module): + def __init__(self, dim: int, kernel_size: int = 7, expansion: int = 4, lrelu_slope: float = 0.3): + super().__init__() + padding = calc_same_padding(kernel_size) + self.depthwise = nn.Conv1d( + dim, + dim * expansion, + kernel_size=kernel_size, + padding=padding[0], + groups=dim, + ) + self.act = nn.LeakyReLU(lrelu_slope) + self.out = nn.Conv1d(dim * expansion, dim, 1, 1, 0) + self.ln = nn.LayerNorm(dim) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = self.ln(x) + x = x.permute((0, 2, 1)) + x = self.depthwise(x) + x = self.act(x) + x = self.out(x) + x = x.permute((0, 2, 1)) + return x + + +class AddCoords(nn.Module): + def __init__(self, rank: int, with_r: bool = False): + super().__init__() + self.rank = rank + self.with_r = with_r + + def forward(self, x: torch.Tensor) -> torch.Tensor: + if self.rank == 1: + batch_size_shape, channel_in_shape, dim_x = x.shape # pylint: disable=unused-variable + xx_range = torch.arange(dim_x, dtype=torch.int32) + xx_channel = xx_range[None, None, :] + + xx_channel = xx_channel.float() / (dim_x - 1) + xx_channel = xx_channel * 2 - 1 + xx_channel = xx_channel.repeat(batch_size_shape, 1, 1) + + xx_channel = xx_channel.to(x.device) + out = torch.cat([x, xx_channel], dim=1) + + if self.with_r: + rr = torch.sqrt(torch.pow(xx_channel - 0.5, 2)) + out = torch.cat([out, rr], dim=1) + + elif self.rank == 2: + batch_size_shape, channel_in_shape, dim_y, dim_x = x.shape + xx_ones = torch.ones([1, 1, 1, dim_x], dtype=torch.int32) + yy_ones = torch.ones([1, 1, 1, dim_y], dtype=torch.int32) + + xx_range = torch.arange(dim_y, dtype=torch.int32) + yy_range = torch.arange(dim_x, dtype=torch.int32) + xx_range = xx_range[None, None, :, None] + yy_range = yy_range[None, None, :, None] + + xx_channel = torch.matmul(xx_range, xx_ones) + yy_channel = torch.matmul(yy_range, yy_ones) + + # transpose y + yy_channel = yy_channel.permute(0, 1, 3, 2) + + xx_channel = xx_channel.float() / (dim_y - 1) + yy_channel = yy_channel.float() / (dim_x - 1) + + xx_channel = xx_channel * 2 - 1 + yy_channel = yy_channel * 2 - 1 + + xx_channel = xx_channel.repeat(batch_size_shape, 1, 1, 1) + yy_channel = yy_channel.repeat(batch_size_shape, 1, 1, 1) + + xx_channel = xx_channel.to(x.device) + yy_channel = yy_channel.to(x.device) + + out = torch.cat([x, xx_channel, yy_channel], dim=1) + + if self.with_r: + rr = torch.sqrt(torch.pow(xx_channel - 0.5, 2) + torch.pow(yy_channel - 0.5, 2)) + out = torch.cat([out, rr], dim=1) + + elif self.rank == 3: + batch_size_shape, channel_in_shape, dim_z, dim_y, dim_x = x.shape + xx_ones = torch.ones([1, 1, 1, 1, dim_x], dtype=torch.int32) + yy_ones = torch.ones([1, 1, 1, 1, dim_y], dtype=torch.int32) + zz_ones = torch.ones([1, 1, 1, 1, dim_z], dtype=torch.int32) + + xy_range = torch.arange(dim_y, dtype=torch.int32) + xy_range = xy_range[None, None, None, :, None] + + yz_range = torch.arange(dim_z, dtype=torch.int32) + yz_range = yz_range[None, None, None, :, None] + + zx_range = torch.arange(dim_x, dtype=torch.int32) + zx_range = zx_range[None, None, None, :, None] + + xy_channel = torch.matmul(xy_range, xx_ones) + xx_channel = torch.cat([xy_channel + i for i in range(dim_z)], dim=2) + + yz_channel = torch.matmul(yz_range, yy_ones) + yz_channel = yz_channel.permute(0, 1, 3, 4, 2) + yy_channel = torch.cat([yz_channel + i for i in range(dim_x)], dim=4) + + zx_channel = torch.matmul(zx_range, zz_ones) + zx_channel = zx_channel.permute(0, 1, 4, 2, 3) + zz_channel = torch.cat([zx_channel + i for i in range(dim_y)], dim=3) + + xx_channel = xx_channel.to(x.device) + yy_channel = yy_channel.to(x.device) + zz_channel = zz_channel.to(x.device) + out = torch.cat([x, xx_channel, yy_channel, zz_channel], dim=1) + + if self.with_r: + rr = torch.sqrt( + torch.pow(xx_channel - 0.5, 2) + torch.pow(yy_channel - 0.5, 2) + torch.pow(zz_channel - 0.5, 2) + ) + out = torch.cat([out, rr], dim=1) + else: + raise NotImplementedError + + return out + + +class CoordConv1d(nn.modules.conv.Conv1d): + def __init__( + self, + in_channels: int, + out_channels: int, + kernel_size: int, + stride: int = 1, + padding: int = 0, + dilation: int = 1, + groups: int = 1, + bias: bool = True, + with_r: bool = False, + ): + super().__init__( + in_channels, + out_channels, + kernel_size, + stride, + padding, + dilation, + groups, + bias, + ) + self.rank = 1 + self.addcoords = AddCoords(self.rank, with_r) + self.conv = nn.Conv1d( + in_channels + self.rank + int(with_r), + out_channels, + kernel_size, + stride, + padding, + dilation, + groups, + bias, + ) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = self.addcoords(x) + x = self.conv(x) + return x + + +class CoordConv2d(nn.modules.conv.Conv2d): + def __init__( + self, + in_channels: int, + out_channels: int, + kernel_size: int, + stride: int = 1, + padding: int = 0, + dilation: int = 1, + groups: int = 1, + bias: bool = True, + with_r: bool = False, + ): + super().__init__( + in_channels, + out_channels, + kernel_size, + stride, + padding, + dilation, + groups, + bias, + ) + self.rank = 2 + self.addcoords = AddCoords(self.rank, with_r) + self.conv = nn.Conv2d( + in_channels + self.rank + int(with_r), + out_channels, + kernel_size, + stride, + padding, + dilation, + groups, + bias, + ) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = self.addcoords(x) + x = self.conv(x) + return x + + +class LVCBlock(torch.nn.Module): + """the location-variable convolutions""" + + def __init__( # pylint: disable=dangerous-default-value + self, + in_channels, + cond_channels, + stride, + dilations=[1, 3, 9, 27], + lReLU_slope=0.2, + conv_kernel_size=3, + cond_hop_length=256, + kpnet_hidden_channels=64, + kpnet_conv_size=3, + kpnet_dropout=0.0, + ): + super().__init__() + + self.cond_hop_length = cond_hop_length + self.conv_layers = len(dilations) + self.conv_kernel_size = conv_kernel_size + + self.kernel_predictor = KernelPredictor( + cond_channels=cond_channels, + conv_in_channels=in_channels, + conv_out_channels=2 * in_channels, + conv_layers=len(dilations), + conv_kernel_size=conv_kernel_size, + kpnet_hidden_channels=kpnet_hidden_channels, + kpnet_conv_size=kpnet_conv_size, + kpnet_dropout=kpnet_dropout, + kpnet_nonlinear_activation_params={"negative_slope": lReLU_slope}, + ) + + self.convt_pre = nn.Sequential( + nn.LeakyReLU(lReLU_slope), + nn.utils.weight_norm( + nn.ConvTranspose1d( + in_channels, + in_channels, + 2 * stride, + stride=stride, + padding=stride // 2 + stride % 2, + output_padding=stride % 2, + ) + ), + ) + + self.conv_blocks = nn.ModuleList() + for dilation in dilations: + self.conv_blocks.append( + nn.Sequential( + nn.LeakyReLU(lReLU_slope), + nn.utils.weight_norm( + nn.Conv1d( + in_channels, + in_channels, + conv_kernel_size, + padding=dilation * (conv_kernel_size - 1) // 2, + dilation=dilation, + ) + ), + nn.LeakyReLU(lReLU_slope), + ) + ) + + def forward(self, x, c): + """forward propagation of the location-variable convolutions. + Args: + x (Tensor): the input sequence (batch, in_channels, in_length) + c (Tensor): the conditioning sequence (batch, cond_channels, cond_length) + + Returns: + Tensor: the output sequence (batch, in_channels, in_length) + """ + _, in_channels, _ = x.shape # (B, c_g, L') + + x = self.convt_pre(x) # (B, c_g, stride * L') + kernels, bias = self.kernel_predictor(c) + + for i, conv in enumerate(self.conv_blocks): + output = conv(x) # (B, c_g, stride * L') + + k = kernels[:, i, :, :, :, :] # (B, 2 * c_g, c_g, kernel_size, cond_length) + b = bias[:, i, :, :] # (B, 2 * c_g, cond_length) + + output = self.location_variable_convolution( + output, k, b, hop_size=self.cond_hop_length + ) # (B, 2 * c_g, stride * L'): LVC + x = x + torch.sigmoid(output[:, :in_channels, :]) * torch.tanh( + output[:, in_channels:, :] + ) # (B, c_g, stride * L'): GAU + + return x + + def location_variable_convolution(self, x, kernel, bias, dilation=1, hop_size=256): # pylint: disable=no-self-use + """perform location-variable convolution operation on the input sequence (x) using the local convolution kernl. + Time: 414 ฮผs ยฑ 309 ns per loop (mean ยฑ std. dev. of 7 runs, 1000 loops each), test on NVIDIA V100. + Args: + x (Tensor): the input sequence (batch, in_channels, in_length). + kernel (Tensor): the local convolution kernel (batch, in_channel, out_channels, kernel_size, kernel_length) + bias (Tensor): the bias for the local convolution (batch, out_channels, kernel_length) + dilation (int): the dilation of convolution. + hop_size (int): the hop_size of the conditioning sequence. + Returns: + (Tensor): the output sequence after performing local convolution. (batch, out_channels, in_length). + """ + batch, _, in_length = x.shape + batch, _, out_channels, kernel_size, kernel_length = kernel.shape + assert in_length == (kernel_length * hop_size), "length of (x, kernel) is not matched" + + padding = dilation * int((kernel_size - 1) / 2) + x = F.pad(x, (padding, padding), "constant", 0) # (batch, in_channels, in_length + 2*padding) + x = x.unfold(2, hop_size + 2 * padding, hop_size) # (batch, in_channels, kernel_length, hop_size + 2*padding) + + if hop_size < dilation: + x = F.pad(x, (0, dilation), "constant", 0) + x = x.unfold( + 3, dilation, dilation + ) # (batch, in_channels, kernel_length, (hop_size + 2*padding)/dilation, dilation) + x = x[:, :, :, :, :hop_size] + x = x.transpose(3, 4) # (batch, in_channels, kernel_length, dilation, (hop_size + 2*padding)/dilation) + x = x.unfold(4, kernel_size, 1) # (batch, in_channels, kernel_length, dilation, _, kernel_size) + + o = torch.einsum("bildsk,biokl->bolsd", x, kernel) + o = o.to(memory_format=torch.channels_last_3d) + bias = bias.unsqueeze(-1).unsqueeze(-1).to(memory_format=torch.channels_last_3d) + o = o + bias + o = o.contiguous().view(batch, out_channels, -1) + + return o + + def remove_weight_norm(self): + self.kernel_predictor.remove_weight_norm() + nn.utils.remove_weight_norm(self.convt_pre[1]) + for block in self.conv_blocks: + nn.utils.remove_weight_norm(block[1]) diff --git a/TTS/TTS/tts/layers/delightful_tts/encoders.py b/TTS/TTS/tts/layers/delightful_tts/encoders.py new file mode 100644 index 0000000000000000000000000000000000000000..0878f0677a29d092597a46e8a3b11e4a521769b8 --- /dev/null +++ b/TTS/TTS/tts/layers/delightful_tts/encoders.py @@ -0,0 +1,261 @@ +from typing import List, Tuple, Union + +import torch +import torch.nn as nn # pylint: disable=consider-using-from-import +import torch.nn.functional as F + +from TTS.tts.layers.delightful_tts.conformer import ConformerMultiHeadedSelfAttention +from TTS.tts.layers.delightful_tts.conv_layers import CoordConv1d +from TTS.tts.layers.delightful_tts.networks import STL + + +def get_mask_from_lengths(lengths: torch.Tensor) -> torch.Tensor: + batch_size = lengths.shape[0] + max_len = torch.max(lengths).item() + ids = torch.arange(0, max_len, device=lengths.device).unsqueeze(0).expand(batch_size, -1) + mask = ids >= lengths.unsqueeze(1).expand(-1, max_len) + return mask + + +def stride_lens(lens: torch.Tensor, stride: int = 2) -> torch.Tensor: + return torch.ceil(lens / stride).int() + + +class ReferenceEncoder(nn.Module): + """ + Referance encoder for utterance and phoneme prosody encoders. Reference encoder + made up of convolution and RNN layers. + + Args: + num_mels (int): Number of mel frames to produce. + ref_enc_filters (list[int]): List of channel sizes for encoder layers. + ref_enc_size (int): Size of the kernel for the conv layers. + ref_enc_strides (List[int]): List of strides to use for conv layers. + ref_enc_gru_size (int): Number of hidden features for the gated recurrent unit. + + Inputs: inputs, mask + - **inputs** (batch, dim, time): Tensor containing mel vector + - **lengths** (batch): Tensor containing the mel lengths. + Returns: + - **outputs** (batch, time, dim): Tensor produced by Reference Encoder. + """ + + def __init__( + self, + num_mels: int, + ref_enc_filters: List[Union[int, int, int, int, int, int]], + ref_enc_size: int, + ref_enc_strides: List[Union[int, int, int, int, int]], + ref_enc_gru_size: int, + ): + super().__init__() + + n_mel_channels = num_mels + self.n_mel_channels = n_mel_channels + K = len(ref_enc_filters) + filters = [self.n_mel_channels] + ref_enc_filters + strides = [1] + ref_enc_strides + # Use CoordConv at the first layer to better preserve positional information: https://arxiv.org/pdf/1811.02122.pdf + convs = [ + CoordConv1d( + in_channels=filters[0], + out_channels=filters[0 + 1], + kernel_size=ref_enc_size, + stride=strides[0], + padding=ref_enc_size // 2, + with_r=True, + ) + ] + convs2 = [ + nn.Conv1d( + in_channels=filters[i], + out_channels=filters[i + 1], + kernel_size=ref_enc_size, + stride=strides[i], + padding=ref_enc_size // 2, + ) + for i in range(1, K) + ] + convs.extend(convs2) + self.convs = nn.ModuleList(convs) + + self.norms = nn.ModuleList([nn.InstanceNorm1d(num_features=ref_enc_filters[i], affine=True) for i in range(K)]) + + self.gru = nn.GRU( + input_size=ref_enc_filters[-1], + hidden_size=ref_enc_gru_size, + batch_first=True, + ) + + def forward(self, x: torch.Tensor, mel_lens: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: + """ + inputs --- [N, n_mels, timesteps] + outputs --- [N, E//2] + """ + + mel_masks = get_mask_from_lengths(mel_lens).unsqueeze(1) + x = x.masked_fill(mel_masks, 0) + for conv, norm in zip(self.convs, self.norms): + x = conv(x) + x = F.leaky_relu(x, 0.3) # [N, 128, Ty//2^K, n_mels//2^K] + x = norm(x) + + for _ in range(2): + mel_lens = stride_lens(mel_lens) + + mel_masks = get_mask_from_lengths(mel_lens) + + x = x.masked_fill(mel_masks.unsqueeze(1), 0) + x = x.permute((0, 2, 1)) + x = torch.nn.utils.rnn.pack_padded_sequence(x, mel_lens.cpu().int(), batch_first=True, enforce_sorted=False) + + self.gru.flatten_parameters() + x, memory = self.gru(x) # memory --- [N, Ty, E//2], out --- [1, N, E//2] + x, _ = torch.nn.utils.rnn.pad_packed_sequence(x, batch_first=True) + + return x, memory, mel_masks + + def calculate_channels( # pylint: disable=no-self-use + self, L: int, kernel_size: int, stride: int, pad: int, n_convs: int + ) -> int: + for _ in range(n_convs): + L = (L - kernel_size + 2 * pad) // stride + 1 + return L + + +class UtteranceLevelProsodyEncoder(nn.Module): + def __init__( + self, + num_mels: int, + ref_enc_filters: List[Union[int, int, int, int, int, int]], + ref_enc_size: int, + ref_enc_strides: List[Union[int, int, int, int, int]], + ref_enc_gru_size: int, + dropout: float, + n_hidden: int, + bottleneck_size_u: int, + token_num: int, + ): + """ + Encoder to extract prosody from utterance. it is made up of a reference encoder + with a couple of linear layers and style token layer with dropout. + + Args: + num_mels (int): Number of mel frames to produce. + ref_enc_filters (list[int]): List of channel sizes for ref encoder layers. + ref_enc_size (int): Size of the kernel for the ref encoder conv layers. + ref_enc_strides (List[int]): List of strides to use for teh ref encoder conv layers. + ref_enc_gru_size (int): Number of hidden features for the gated recurrent unit. + dropout (float): Probability of dropout. + n_hidden (int): Size of hidden layers. + bottleneck_size_u (int): Size of the bottle neck layer. + + Inputs: inputs, mask + - **inputs** (batch, dim, time): Tensor containing mel vector + - **lengths** (batch): Tensor containing the mel lengths. + Returns: + - **outputs** (batch, 1, dim): Tensor produced by Utterance Level Prosody Encoder. + """ + super().__init__() + + self.E = n_hidden + self.d_q = self.d_k = n_hidden + bottleneck_size = bottleneck_size_u + + self.encoder = ReferenceEncoder( + ref_enc_filters=ref_enc_filters, + ref_enc_gru_size=ref_enc_gru_size, + ref_enc_size=ref_enc_size, + ref_enc_strides=ref_enc_strides, + num_mels=num_mels, + ) + self.encoder_prj = nn.Linear(ref_enc_gru_size, self.E // 2) + self.stl = STL(n_hidden=n_hidden, token_num=token_num) + self.encoder_bottleneck = nn.Linear(self.E, bottleneck_size) + self.dropout = nn.Dropout(dropout) + + def forward(self, mels: torch.Tensor, mel_lens: torch.Tensor) -> torch.Tensor: + """ + Shapes: + mels: :math: `[B, C, T]` + mel_lens: :math: `[B]` + + out --- [N, seq_len, E] + """ + _, embedded_prosody, _ = self.encoder(mels, mel_lens) + + # Bottleneck + embedded_prosody = self.encoder_prj(embedded_prosody) + + # Style Token + out = self.encoder_bottleneck(self.stl(embedded_prosody)) + out = self.dropout(out) + + out = out.view((-1, 1, out.shape[3])) + return out + + +class PhonemeLevelProsodyEncoder(nn.Module): + def __init__( + self, + num_mels: int, + ref_enc_filters: List[Union[int, int, int, int, int, int]], + ref_enc_size: int, + ref_enc_strides: List[Union[int, int, int, int, int]], + ref_enc_gru_size: int, + dropout: float, + n_hidden: int, + n_heads: int, + bottleneck_size_p: int, + ): + super().__init__() + + self.E = n_hidden + self.d_q = self.d_k = n_hidden + bottleneck_size = bottleneck_size_p + + self.encoder = ReferenceEncoder( + ref_enc_filters=ref_enc_filters, + ref_enc_gru_size=ref_enc_gru_size, + ref_enc_size=ref_enc_size, + ref_enc_strides=ref_enc_strides, + num_mels=num_mels, + ) + self.encoder_prj = nn.Linear(ref_enc_gru_size, n_hidden) + self.attention = ConformerMultiHeadedSelfAttention( + d_model=n_hidden, + num_heads=n_heads, + dropout_p=dropout, + ) + self.encoder_bottleneck = nn.Linear(n_hidden, bottleneck_size) + + def forward( + self, + x: torch.Tensor, + src_mask: torch.Tensor, + mels: torch.Tensor, + mel_lens: torch.Tensor, + encoding: torch.Tensor, + ) -> torch.Tensor: + """ + x --- [N, seq_len, encoder_embedding_dim] + mels --- [N, Ty/r, n_mels*r], r=1 + out --- [N, seq_len, bottleneck_size] + attn --- [N, seq_len, ref_len], Ty/r = ref_len + """ + embedded_prosody, _, mel_masks = self.encoder(mels, mel_lens) + + # Bottleneck + embedded_prosody = self.encoder_prj(embedded_prosody) + + attn_mask = mel_masks.view((mel_masks.shape[0], 1, 1, -1)) + x, _ = self.attention( + query=x, + key=embedded_prosody, + value=embedded_prosody, + mask=attn_mask, + encoding=encoding, + ) + x = self.encoder_bottleneck(x) + x = x.masked_fill(src_mask.unsqueeze(-1), 0.0) + return x diff --git a/TTS/TTS/tts/layers/delightful_tts/energy_adaptor.py b/TTS/TTS/tts/layers/delightful_tts/energy_adaptor.py new file mode 100644 index 0000000000000000000000000000000000000000..ea0d1e47214d81a42b934bbaaa4b3ebb9f63bcc6 --- /dev/null +++ b/TTS/TTS/tts/layers/delightful_tts/energy_adaptor.py @@ -0,0 +1,82 @@ +from typing import Callable, Tuple + +import torch +import torch.nn as nn # pylint: disable=consider-using-from-import + +from TTS.tts.layers.delightful_tts.variance_predictor import VariancePredictor +from TTS.tts.utils.helpers import average_over_durations + + +class EnergyAdaptor(nn.Module): # pylint: disable=abstract-method + """Variance Adaptor with an added 1D conv layer. Used to + get energy embeddings. + + Args: + channels_in (int): Number of in channels for conv layers. + channels_out (int): Number of out channels. + kernel_size (int): Size the kernel for the conv layers. + dropout (float): Probability of dropout. + lrelu_slope (float): Slope for the leaky relu. + emb_kernel_size (int): Size the kernel for the pitch embedding. + + Inputs: inputs, mask + - **inputs** (batch, time1, dim): Tensor containing input vector + - **target** (batch, 1, time2): Tensor containing the energy target + - **dr** (batch, time1): Tensor containing aligner durations vector + - **mask** (batch, time1): Tensor containing indices to be masked + Returns: + - **energy prediction** (batch, 1, time1): Tensor produced by energy predictor + - **energy embedding** (batch, channels, time1): Tensor produced energy adaptor + - **average energy target(train only)** (batch, 1, time1): Tensor produced after averaging over durations + + """ + + def __init__( + self, + channels_in: int, + channels_hidden: int, + channels_out: int, + kernel_size: int, + dropout: float, + lrelu_slope: float, + emb_kernel_size: int, + ): + super().__init__() + self.energy_predictor = VariancePredictor( + channels_in=channels_in, + channels=channels_hidden, + channels_out=channels_out, + kernel_size=kernel_size, + p_dropout=dropout, + lrelu_slope=lrelu_slope, + ) + self.energy_emb = nn.Conv1d( + 1, + channels_hidden, + kernel_size=emb_kernel_size, + padding=int((emb_kernel_size - 1) / 2), + ) + + def get_energy_embedding_train( + self, x: torch.Tensor, target: torch.Tensor, dr: torch.IntTensor, mask: torch.Tensor + ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: + """ + Shapes: + x: :math: `[B, T_src, C]` + target: :math: `[B, 1, T_max2]` + dr: :math: `[B, T_src]` + mask: :math: `[B, T_src]` + """ + energy_pred = self.energy_predictor(x, mask) + energy_pred.unsqueeze_(1) + avg_energy_target = average_over_durations(target, dr) + energy_emb = self.energy_emb(avg_energy_target) + return energy_pred, avg_energy_target, energy_emb + + def get_energy_embedding(self, x: torch.Tensor, mask: torch.Tensor, energy_transform: Callable) -> torch.Tensor: + energy_pred = self.energy_predictor(x, mask) + energy_pred.unsqueeze_(1) + if energy_transform is not None: + energy_pred = energy_transform(energy_pred, (~mask).sum(dim=(1, 2)), self.pitch_mean, self.pitch_std) + energy_emb_pred = self.energy_emb(energy_pred) + return energy_emb_pred, energy_pred diff --git a/TTS/TTS/tts/layers/delightful_tts/kernel_predictor.py b/TTS/TTS/tts/layers/delightful_tts/kernel_predictor.py new file mode 100644 index 0000000000000000000000000000000000000000..19dfd57e7bbb018494aa00ca22f0ae70f1b2e71d --- /dev/null +++ b/TTS/TTS/tts/layers/delightful_tts/kernel_predictor.py @@ -0,0 +1,125 @@ +import torch.nn as nn # pylint: disable=consider-using-from-import + + +class KernelPredictor(nn.Module): + """Kernel predictor for the location-variable convolutions + + Args: + cond_channels (int): number of channel for the conditioning sequence, + conv_in_channels (int): number of channel for the input sequence, + conv_out_channels (int): number of channel for the output sequence, + conv_layers (int): number of layers + + """ + + def __init__( # pylint: disable=dangerous-default-value + self, + cond_channels, + conv_in_channels, + conv_out_channels, + conv_layers, + conv_kernel_size=3, + kpnet_hidden_channels=64, + kpnet_conv_size=3, + kpnet_dropout=0.0, + kpnet_nonlinear_activation="LeakyReLU", + kpnet_nonlinear_activation_params={"negative_slope": 0.1}, + ): + super().__init__() + + self.conv_in_channels = conv_in_channels + self.conv_out_channels = conv_out_channels + self.conv_kernel_size = conv_kernel_size + self.conv_layers = conv_layers + + kpnet_kernel_channels = conv_in_channels * conv_out_channels * conv_kernel_size * conv_layers # l_w + kpnet_bias_channels = conv_out_channels * conv_layers # l_b + + self.input_conv = nn.Sequential( + nn.utils.weight_norm(nn.Conv1d(cond_channels, kpnet_hidden_channels, 5, padding=2, bias=True)), + getattr(nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params), + ) + + self.residual_convs = nn.ModuleList() + padding = (kpnet_conv_size - 1) // 2 + for _ in range(3): + self.residual_convs.append( + nn.Sequential( + nn.Dropout(kpnet_dropout), + nn.utils.weight_norm( + nn.Conv1d( + kpnet_hidden_channels, + kpnet_hidden_channels, + kpnet_conv_size, + padding=padding, + bias=True, + ) + ), + getattr(nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params), + nn.utils.weight_norm( + nn.Conv1d( + kpnet_hidden_channels, + kpnet_hidden_channels, + kpnet_conv_size, + padding=padding, + bias=True, + ) + ), + getattr(nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params), + ) + ) + self.kernel_conv = nn.utils.weight_norm( + nn.Conv1d( + kpnet_hidden_channels, + kpnet_kernel_channels, + kpnet_conv_size, + padding=padding, + bias=True, + ) + ) + self.bias_conv = nn.utils.weight_norm( + nn.Conv1d( + kpnet_hidden_channels, + kpnet_bias_channels, + kpnet_conv_size, + padding=padding, + bias=True, + ) + ) + + def forward(self, c): + """ + Args: + c (Tensor): the conditioning sequence (batch, cond_channels, cond_length) + """ + batch, _, cond_length = c.shape + c = self.input_conv(c) + for residual_conv in self.residual_convs: + residual_conv.to(c.device) + c = c + residual_conv(c) + k = self.kernel_conv(c) + b = self.bias_conv(c) + kernels = k.contiguous().view( + batch, + self.conv_layers, + self.conv_in_channels, + self.conv_out_channels, + self.conv_kernel_size, + cond_length, + ) + bias = b.contiguous().view( + batch, + self.conv_layers, + self.conv_out_channels, + cond_length, + ) + + return kernels, bias + + def remove_weight_norm(self): + nn.utils.remove_weight_norm(self.input_conv[0]) + nn.utils.remove_weight_norm(self.kernel_conv) + nn.utils.remove_weight_norm(self.bias_conv) + for block in self.residual_convs: + nn.utils.remove_weight_norm(block[1]) + nn.utils.remove_weight_norm(block[3]) diff --git a/TTS/TTS/tts/layers/delightful_tts/networks.py b/TTS/TTS/tts/layers/delightful_tts/networks.py new file mode 100644 index 0000000000000000000000000000000000000000..4305022f18cf95565b2da2553740276818fb486c --- /dev/null +++ b/TTS/TTS/tts/layers/delightful_tts/networks.py @@ -0,0 +1,219 @@ +import math +from typing import Tuple + +import numpy as np +import torch +import torch.nn as nn # pylint: disable=consider-using-from-import +import torch.nn.functional as F + +from TTS.tts.layers.delightful_tts.conv_layers import ConvNorm + + +def initialize_embeddings(shape: Tuple[int]) -> torch.Tensor: + assert len(shape) == 2, "Can only initialize 2-D embedding matrices ..." + # Kaiming initialization + return torch.randn(shape) * np.sqrt(2 / shape[1]) + + +def positional_encoding(d_model: int, length: int, device: torch.device) -> torch.Tensor: + pe = torch.zeros(length, d_model, device=device) + position = torch.arange(0, length, dtype=torch.float, device=device).unsqueeze(1) + div_term = torch.exp(torch.arange(0, d_model, 2, device=device).float() * -(math.log(10000.0) / d_model)) + pe[:, 0::2] = torch.sin(position * div_term) + pe[:, 1::2] = torch.cos(position * div_term) + pe = pe.unsqueeze(0) + return pe + + +class BottleneckLayer(nn.Module): + """ + Bottleneck layer for reducing the dimensionality of a tensor. + + Args: + in_dim: The number of input dimensions. + reduction_factor: The factor by which to reduce the number of dimensions. + norm: The normalization method to use. Can be "weightnorm" or "instancenorm". + non_linearity: The non-linearity to use. Can be "relu" or "leakyrelu". + kernel_size: The size of the convolutional kernel. + use_partial_padding: Whether to use partial padding with the convolutional kernel. + + Shape: + - Input: :math:`[N, in_dim]` where `N` is the batch size and `in_dim` is the number of input dimensions. + + - Output: :math:`[N, out_dim]` where `out_dim` is the number of output dimensions. + """ + + def __init__( + self, + in_dim, + reduction_factor, + norm="weightnorm", + non_linearity="relu", + kernel_size=3, + use_partial_padding=False, # pylint: disable=unused-argument + ): + super(BottleneckLayer, self).__init__() # pylint: disable=super-with-arguments + + self.reduction_factor = reduction_factor + reduced_dim = int(in_dim / reduction_factor) + self.out_dim = reduced_dim + if self.reduction_factor > 1: + fn = ConvNorm(in_dim, reduced_dim, kernel_size=kernel_size, use_weight_norm=(norm == "weightnorm")) + if norm == "instancenorm": + fn = nn.Sequential(fn, nn.InstanceNorm1d(reduced_dim, affine=True)) + + self.projection_fn = fn + self.non_linearity = nn.ReLU() + if non_linearity == "leakyrelu": + self.non_linearity = nn.LeakyReLU() + + def forward(self, x): + if self.reduction_factor > 1: + x = self.projection_fn(x) + x = self.non_linearity(x) + return x + + +class GLUActivation(nn.Module): + """Class that implements the Gated Linear Unit (GLU) activation function. + + The GLU activation function is a variant of the Leaky ReLU activation function, + where the output of the activation function is gated by an input tensor. + + """ + + def __init__(self, slope: float): + super().__init__() + self.lrelu = nn.LeakyReLU(slope) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + out, gate = x.chunk(2, dim=1) + x = out * self.lrelu(gate) + return x + + +class StyleEmbedAttention(nn.Module): + def __init__(self, query_dim: int, key_dim: int, num_units: int, num_heads: int): + super().__init__() + self.num_units = num_units + self.num_heads = num_heads + self.key_dim = key_dim + + self.W_query = nn.Linear(in_features=query_dim, out_features=num_units, bias=False) + self.W_key = nn.Linear(in_features=key_dim, out_features=num_units, bias=False) + self.W_value = nn.Linear(in_features=key_dim, out_features=num_units, bias=False) + + def forward(self, query: torch.Tensor, key_soft: torch.Tensor) -> torch.Tensor: + values = self.W_value(key_soft) + split_size = self.num_units // self.num_heads + values = torch.stack(torch.split(values, split_size, dim=2), dim=0) + + out_soft = scores_soft = None + querys = self.W_query(query) # [N, T_q, num_units] + keys = self.W_key(key_soft) # [N, T_k, num_units] + + # [h, N, T_q, num_units/h] + querys = torch.stack(torch.split(querys, split_size, dim=2), dim=0) + # [h, N, T_k, num_units/h] + keys = torch.stack(torch.split(keys, split_size, dim=2), dim=0) + # [h, N, T_k, num_units/h] + + # score = softmax(QK^T / (d_k ** 0.5)) + scores_soft = torch.matmul(querys, keys.transpose(2, 3)) # [h, N, T_q, T_k] + scores_soft = scores_soft / (self.key_dim**0.5) + scores_soft = F.softmax(scores_soft, dim=3) + + # out = score * V + # [h, N, T_q, num_units/h] + out_soft = torch.matmul(scores_soft, values) + out_soft = torch.cat(torch.split(out_soft, 1, dim=0), dim=3).squeeze(0) # [N, T_q, num_units] + + return out_soft # , scores_soft + + +class EmbeddingPadded(nn.Module): + def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int): + super().__init__() + padding_mult = torch.ones((num_embeddings, 1), dtype=torch.int64) + padding_mult[padding_idx] = 0 + self.register_buffer("padding_mult", padding_mult) + self.embeddings = nn.parameter.Parameter(initialize_embeddings((num_embeddings, embedding_dim))) + + def forward(self, idx: torch.Tensor) -> torch.Tensor: + embeddings_zeroed = self.embeddings * self.padding_mult + x = F.embedding(idx, embeddings_zeroed) + return x + + +class EmbeddingProjBlock(nn.Module): + def __init__(self, embedding_dim: int): + super().__init__() + self.layers = nn.ModuleList( + [ + nn.Linear(embedding_dim, embedding_dim), + nn.LeakyReLU(0.3), + nn.Linear(embedding_dim, embedding_dim), + nn.LeakyReLU(0.3), + ] + ) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + res = x + for layer in self.layers: + x = layer(x) + x = x + res + return x + + +class LinearNorm(nn.Module): + def __init__(self, in_features: int, out_features: int, bias: bool = False): + super().__init__() + self.linear = nn.Linear(in_features, out_features, bias) + + nn.init.xavier_uniform_(self.linear.weight) + if bias: + nn.init.constant_(self.linear.bias, 0.0) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = self.linear(x) + return x + + +class STL(nn.Module): + """ + A PyTorch module for the Style Token Layer (STL) as described in + "A Style-Based Generator Architecture for Generative Adversarial Networks" + (https://arxiv.org/abs/1812.04948) + + The STL applies a multi-headed attention mechanism over the learned style tokens, + using the text input as the query and the style tokens as the keys and values. + The output of the attention mechanism is used as the text's style embedding. + + Args: + token_num (int): The number of style tokens. + n_hidden (int): Number of hidden dimensions. + """ + + def __init__(self, n_hidden: int, token_num: int): + super(STL, self).__init__() # pylint: disable=super-with-arguments + + num_heads = 1 + E = n_hidden + self.token_num = token_num + self.embed = nn.Parameter(torch.FloatTensor(self.token_num, E // num_heads)) + d_q = E // 2 + d_k = E // num_heads + self.attention = StyleEmbedAttention(query_dim=d_q, key_dim=d_k, num_units=E, num_heads=num_heads) + + torch.nn.init.normal_(self.embed, mean=0, std=0.5) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + N = x.size(0) + query = x.unsqueeze(1) # [N, 1, E//2] + + keys_soft = torch.tanh(self.embed).unsqueeze(0).expand(N, -1, -1) # [N, token_num, E // num_heads] + + # Weighted sum + emotion_embed_soft = self.attention(query, keys_soft) + + return emotion_embed_soft diff --git a/TTS/TTS/tts/layers/delightful_tts/phoneme_prosody_predictor.py b/TTS/TTS/tts/layers/delightful_tts/phoneme_prosody_predictor.py new file mode 100644 index 0000000000000000000000000000000000000000..28418f7163361120914f277446f76ac9f0363254 --- /dev/null +++ b/TTS/TTS/tts/layers/delightful_tts/phoneme_prosody_predictor.py @@ -0,0 +1,65 @@ +import torch +import torch.nn as nn # pylint: disable=consider-using-from-import + +from TTS.tts.layers.delightful_tts.conv_layers import ConvTransposed + + +class PhonemeProsodyPredictor(nn.Module): + """Non-parallel Prosody Predictor inspired by: https://arxiv.org/pdf/2102.00851.pdf + It consists of 2 layers of 1D convolutions each followed by a relu activation, layer norm + and dropout, then finally a linear layer. + + Args: + hidden_size (int): Size of hidden channels. + kernel_size (int): Kernel size for the conv layers. + dropout: (float): Probability of dropout. + bottleneck_size (int): bottleneck size for last linear layer. + lrelu_slope (float): Slope of the leaky relu. + """ + + def __init__( + self, + hidden_size: int, + kernel_size: int, + dropout: float, + bottleneck_size: int, + lrelu_slope: float, + ): + super().__init__() + self.d_model = hidden_size + self.layers = nn.ModuleList( + [ + ConvTransposed( + self.d_model, + self.d_model, + kernel_size=kernel_size, + padding=(kernel_size - 1) // 2, + ), + nn.LeakyReLU(lrelu_slope), + nn.LayerNorm(self.d_model), + nn.Dropout(dropout), + ConvTransposed( + self.d_model, + self.d_model, + kernel_size=kernel_size, + padding=(kernel_size - 1) // 2, + ), + nn.LeakyReLU(lrelu_slope), + nn.LayerNorm(self.d_model), + nn.Dropout(dropout), + ] + ) + self.predictor_bottleneck = nn.Linear(self.d_model, bottleneck_size) + + def forward(self, x: torch.Tensor, mask: torch.Tensor) -> torch.Tensor: + """ + Shapes: + x: :math: `[B, T, D]` + mask: :math: `[B, T]` + """ + mask = mask.unsqueeze(2) + for layer in self.layers: + x = layer(x) + x = x.masked_fill(mask, 0.0) + x = self.predictor_bottleneck(x) + return x diff --git a/TTS/TTS/tts/layers/delightful_tts/pitch_adaptor.py b/TTS/TTS/tts/layers/delightful_tts/pitch_adaptor.py new file mode 100644 index 0000000000000000000000000000000000000000..9031369e0f019cf115d0d43b288bb97d9db48467 --- /dev/null +++ b/TTS/TTS/tts/layers/delightful_tts/pitch_adaptor.py @@ -0,0 +1,88 @@ +from typing import Callable, Tuple + +import torch +import torch.nn as nn # pylint: disable=consider-using-from-import + +from TTS.tts.layers.delightful_tts.variance_predictor import VariancePredictor +from TTS.tts.utils.helpers import average_over_durations + + +class PitchAdaptor(nn.Module): # pylint: disable=abstract-method + """Module to get pitch embeddings via pitch predictor + + Args: + n_input (int): Number of pitch predictor input channels. + n_hidden (int): Number of pitch predictor hidden channels. + n_out (int): Number of pitch predictor out channels. + kernel size (int): Size of the kernel for conv layers. + emb_kernel_size (int): Size the kernel for the pitch embedding. + p_dropout (float): Probability of dropout. + lrelu_slope (float): Slope for the leaky relu. + + Inputs: inputs, mask + - **inputs** (batch, time1, dim): Tensor containing input vector + - **target** (batch, 1, time2): Tensor containing the pitch target + - **dr** (batch, time1): Tensor containing aligner durations vector + - **mask** (batch, time1): Tensor containing indices to be masked + Returns: + - **pitch prediction** (batch, 1, time1): Tensor produced by pitch predictor + - **pitch embedding** (batch, channels, time1): Tensor produced pitch pitch adaptor + - **average pitch target(train only)** (batch, 1, time1): Tensor produced after averaging over durations + """ + + def __init__( + self, + n_input: int, + n_hidden: int, + n_out: int, + kernel_size: int, + emb_kernel_size: int, + p_dropout: float, + lrelu_slope: float, + ): + super().__init__() + self.pitch_predictor = VariancePredictor( + channels_in=n_input, + channels=n_hidden, + channels_out=n_out, + kernel_size=kernel_size, + p_dropout=p_dropout, + lrelu_slope=lrelu_slope, + ) + self.pitch_emb = nn.Conv1d( + 1, + n_input, + kernel_size=emb_kernel_size, + padding=int((emb_kernel_size - 1) / 2), + ) + + def get_pitch_embedding_train( + self, x: torch.Tensor, target: torch.Tensor, dr: torch.IntTensor, mask: torch.Tensor + ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: + """ + Shapes: + x: :math: `[B, T_src, C]` + target: :math: `[B, 1, T_max2]` + dr: :math: `[B, T_src]` + mask: :math: `[B, T_src]` + """ + pitch_pred = self.pitch_predictor(x, mask) # [B, T_src, C_hidden], [B, T_src] --> [B, T_src] + pitch_pred.unsqueeze_(1) # --> [B, 1, T_src] + avg_pitch_target = average_over_durations(target, dr) # [B, 1, T_mel], [B, T_src] --> [B, 1, T_src] + pitch_emb = self.pitch_emb(avg_pitch_target) # [B, 1, T_src] --> [B, C_hidden, T_src] + return pitch_pred, avg_pitch_target, pitch_emb + + def get_pitch_embedding( + self, + x: torch.Tensor, + mask: torch.Tensor, + pitch_transform: Callable, + pitch_mean: torch.Tensor, + pitch_std: torch.Tensor, + ) -> torch.Tensor: + pitch_pred = self.pitch_predictor(x, mask) + if pitch_transform is not None: + pitch_pred = pitch_transform(pitch_pred, (~mask).sum(), pitch_mean, pitch_std) + pitch_pred.unsqueeze_(1) + pitch_emb_pred = self.pitch_emb(pitch_pred) + return pitch_emb_pred, pitch_pred diff --git a/TTS/TTS/tts/layers/delightful_tts/variance_predictor.py b/TTS/TTS/tts/layers/delightful_tts/variance_predictor.py new file mode 100644 index 0000000000000000000000000000000000000000..68303a1bd1148089eab7ee8be12d4f37ddf420e1 --- /dev/null +++ b/TTS/TTS/tts/layers/delightful_tts/variance_predictor.py @@ -0,0 +1,68 @@ +import torch +import torch.nn as nn # pylint: disable=consider-using-from-import + +from TTS.tts.layers.delightful_tts.conv_layers import ConvTransposed + + +class VariancePredictor(nn.Module): + """ + Network is 2-layer 1D convolutions with leaky relu activation and then + followed by layer normalization then a dropout layer and finally an + extra linear layer to project the hidden states into the output sequence. + + Args: + channels_in (int): Number of in channels for conv layers. + channels_out (int): Number of out channels for the last linear layer. + kernel_size (int): Size the kernel for the conv layers. + p_dropout (float): Probability of dropout. + lrelu_slope (float): Slope for the leaky relu. + + Inputs: inputs, mask + - **inputs** (batch, time, dim): Tensor containing input vector + - **mask** (batch, time): Tensor containing indices to be masked + Returns: + - **outputs** (batch, time): Tensor produced by last linear layer. + """ + + def __init__( + self, channels_in: int, channels: int, channels_out: int, kernel_size: int, p_dropout: float, lrelu_slope: float + ): + super().__init__() + + self.layers = nn.ModuleList( + [ + ConvTransposed( + channels_in, + channels, + kernel_size=kernel_size, + padding=(kernel_size - 1) // 2, + ), + nn.LeakyReLU(lrelu_slope), + nn.LayerNorm(channels), + nn.Dropout(p_dropout), + ConvTransposed( + channels, + channels, + kernel_size=kernel_size, + padding=(kernel_size - 1) // 2, + ), + nn.LeakyReLU(lrelu_slope), + nn.LayerNorm(channels), + nn.Dropout(p_dropout), + ] + ) + + self.linear_layer = nn.Linear(channels, channels_out) + + def forward(self, x: torch.Tensor, mask: torch.Tensor) -> torch.Tensor: + """ + Shapes: + x: :math: `[B, T_src, C]` + mask: :math: `[B, T_src]` + """ + for layer in self.layers: + x = layer(x) + x = self.linear_layer(x) + x = x.squeeze(-1) + x = x.masked_fill(mask, 0.0) + return x diff --git a/TTS/TTS/tts/layers/feed_forward/__init__.py b/TTS/TTS/tts/layers/feed_forward/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/TTS/TTS/tts/layers/feed_forward/decoder.py b/TTS/TTS/tts/layers/feed_forward/decoder.py new file mode 100644 index 0000000000000000000000000000000000000000..0376e2e3926e65254c3a81d085d48c97df033958 --- /dev/null +++ b/TTS/TTS/tts/layers/feed_forward/decoder.py @@ -0,0 +1,228 @@ +import torch +from torch import nn + +from TTS.tts.layers.generic.res_conv_bn import Conv1dBN, Conv1dBNBlock, ResidualConv1dBNBlock +from TTS.tts.layers.generic.transformer import FFTransformerBlock +from TTS.tts.layers.generic.wavenet import WNBlocks +from TTS.tts.layers.glow_tts.transformer import RelativePositionTransformer + + +class WaveNetDecoder(nn.Module): + """WaveNet based decoder with a prenet and a postnet. + + prenet: conv1d_1x1 + postnet: 3 x [conv1d_1x1 -> relu] -> conv1d_1x1 + + TODO: Integrate speaker conditioning vector. + + Note: + default wavenet parameters; + params = { + "num_blocks": 12, + "hidden_channels":192, + "kernel_size": 5, + "dilation_rate": 1, + "num_layers": 4, + "dropout_p": 0.05 + } + + Args: + in_channels (int): number of input channels. + out_channels (int): number of output channels. + hidden_channels (int): number of hidden channels for prenet and postnet. + params (dict): dictionary for residual convolutional blocks. + """ + + def __init__(self, in_channels, out_channels, hidden_channels, c_in_channels, params): + super().__init__() + # prenet + self.prenet = torch.nn.Conv1d(in_channels, params["hidden_channels"], 1) + # wavenet layers + self.wn = WNBlocks(params["hidden_channels"], c_in_channels=c_in_channels, **params) + # postnet + self.postnet = [ + torch.nn.Conv1d(params["hidden_channels"], hidden_channels, 1), + torch.nn.ReLU(), + torch.nn.Conv1d(hidden_channels, hidden_channels, 1), + torch.nn.ReLU(), + torch.nn.Conv1d(hidden_channels, hidden_channels, 1), + torch.nn.ReLU(), + torch.nn.Conv1d(hidden_channels, out_channels, 1), + ] + self.postnet = nn.Sequential(*self.postnet) + + def forward(self, x, x_mask=None, g=None): + x = self.prenet(x) * x_mask + x = self.wn(x, x_mask, g) + o = self.postnet(x) * x_mask + return o + + +class RelativePositionTransformerDecoder(nn.Module): + """Decoder with Relative Positional Transformer. + + Note: + Default params + params={ + 'hidden_channels_ffn': 128, + 'num_heads': 2, + "kernel_size": 3, + "dropout_p": 0.1, + "num_layers": 8, + "rel_attn_window_size": 4, + "input_length": None + } + + Args: + in_channels (int): number of input channels. + out_channels (int): number of output channels. + hidden_channels (int): number of hidden channels including Transformer layers. + params (dict): dictionary for residual convolutional blocks. + """ + + def __init__(self, in_channels, out_channels, hidden_channels, params): + super().__init__() + self.prenet = Conv1dBN(in_channels, hidden_channels, 1, 1) + self.rel_pos_transformer = RelativePositionTransformer(in_channels, out_channels, hidden_channels, **params) + + def forward(self, x, x_mask=None, g=None): # pylint: disable=unused-argument + o = self.prenet(x) * x_mask + o = self.rel_pos_transformer(o, x_mask) + return o + + +class FFTransformerDecoder(nn.Module): + """Decoder with FeedForwardTransformer. + + Default params + params={ + 'hidden_channels_ffn': 1024, + 'num_heads': 2, + "dropout_p": 0.1, + "num_layers": 6, + } + + Args: + in_channels (int): number of input channels. + out_channels (int): number of output channels. + hidden_channels (int): number of hidden channels including Transformer layers. + params (dict): dictionary for residual convolutional blocks. + """ + + def __init__(self, in_channels, out_channels, params): + super().__init__() + self.transformer_block = FFTransformerBlock(in_channels, **params) + self.postnet = nn.Conv1d(in_channels, out_channels, 1) + + def forward(self, x, x_mask=None, g=None): # pylint: disable=unused-argument + # TODO: handle multi-speaker + x_mask = 1 if x_mask is None else x_mask + o = self.transformer_block(x) * x_mask + o = self.postnet(o) * x_mask + return o + + +class ResidualConv1dBNDecoder(nn.Module): + """Residual Convolutional Decoder as in the original Speedy Speech paper + + TODO: Integrate speaker conditioning vector. + + Note: + Default params + params = { + "kernel_size": 4, + "dilations": 4 * [1, 2, 4, 8] + [1], + "num_conv_blocks": 2, + "num_res_blocks": 17 + } + + Args: + in_channels (int): number of input channels. + out_channels (int): number of output channels. + hidden_channels (int): number of hidden channels including ResidualConv1dBNBlock layers. + params (dict): dictionary for residual convolutional blocks. + """ + + def __init__(self, in_channels, out_channels, hidden_channels, params): + super().__init__() + self.res_conv_block = ResidualConv1dBNBlock(in_channels, hidden_channels, hidden_channels, **params) + self.post_conv = nn.Conv1d(hidden_channels, hidden_channels, 1) + self.postnet = nn.Sequential( + Conv1dBNBlock( + hidden_channels, hidden_channels, hidden_channels, params["kernel_size"], 1, num_conv_blocks=2 + ), + nn.Conv1d(hidden_channels, out_channels, 1), + ) + + def forward(self, x, x_mask=None, g=None): # pylint: disable=unused-argument + o = self.res_conv_block(x, x_mask) + o = self.post_conv(o) + x + return self.postnet(o) * x_mask + + +class Decoder(nn.Module): + """Decodes the expanded phoneme encoding into spectrograms + Args: + out_channels (int): number of output channels. + in_hidden_channels (int): input and hidden channels. Model keeps the input channels for the intermediate layers. + decoder_type (str): decoder layer types. 'transformers' or 'residual_conv_bn'. Default 'residual_conv_bn'. + decoder_params (dict): model parameters for specified decoder type. + c_in_channels (int): number of channels for conditional input. + + Shapes: + - input: (B, C, T) + """ + + # pylint: disable=dangerous-default-value + def __init__( + self, + out_channels, + in_hidden_channels, + decoder_type="residual_conv_bn", + decoder_params={ + "kernel_size": 4, + "dilations": 4 * [1, 2, 4, 8] + [1], + "num_conv_blocks": 2, + "num_res_blocks": 17, + }, + c_in_channels=0, + ): + super().__init__() + + if decoder_type.lower() == "relative_position_transformer": + self.decoder = RelativePositionTransformerDecoder( + in_channels=in_hidden_channels, + out_channels=out_channels, + hidden_channels=in_hidden_channels, + params=decoder_params, + ) + elif decoder_type.lower() == "residual_conv_bn": + self.decoder = ResidualConv1dBNDecoder( + in_channels=in_hidden_channels, + out_channels=out_channels, + hidden_channels=in_hidden_channels, + params=decoder_params, + ) + elif decoder_type.lower() == "wavenet": + self.decoder = WaveNetDecoder( + in_channels=in_hidden_channels, + out_channels=out_channels, + hidden_channels=in_hidden_channels, + c_in_channels=c_in_channels, + params=decoder_params, + ) + elif decoder_type.lower() == "fftransformer": + self.decoder = FFTransformerDecoder(in_hidden_channels, out_channels, decoder_params) + else: + raise ValueError(f"[!] Unknown decoder type - {decoder_type}") + + def forward(self, x, x_mask, g=None): # pylint: disable=unused-argument + """ + Args: + x: [B, C, T] + x_mask: [B, 1, T] + g: [B, C_g, 1] + """ + # TODO: implement multi-speaker + o = self.decoder(x, x_mask, g) + return o diff --git a/TTS/TTS/tts/layers/feed_forward/duration_predictor.py b/TTS/TTS/tts/layers/feed_forward/duration_predictor.py new file mode 100644 index 0000000000000000000000000000000000000000..4422648f4337e48aab39671836fcfb5e12ff4be7 --- /dev/null +++ b/TTS/TTS/tts/layers/feed_forward/duration_predictor.py @@ -0,0 +1,41 @@ +from torch import nn + +from TTS.tts.layers.generic.res_conv_bn import Conv1dBN + + +class DurationPredictor(nn.Module): + """Speedy Speech duration predictor model. + Predicts phoneme durations from encoder outputs. + + Note: + Outputs interpreted as log(durations) + To get actual durations, do exp transformation + + conv_BN_4x1 -> conv_BN_3x1 -> conv_BN_1x1 -> conv_1x1 + + Args: + hidden_channels (int): number of channels in the inner layers. + """ + + def __init__(self, hidden_channels): + super().__init__() + + self.layers = nn.ModuleList( + [ + Conv1dBN(hidden_channels, hidden_channels, 4, 1), + Conv1dBN(hidden_channels, hidden_channels, 3, 1), + Conv1dBN(hidden_channels, hidden_channels, 1, 1), + nn.Conv1d(hidden_channels, 1, 1), + ] + ) + + def forward(self, x, x_mask): + """ + Shapes: + x: [B, C, T] + x_mask: [B, 1, T] + """ + o = x + for layer in self.layers: + o = layer(o) * x_mask + return o diff --git a/TTS/TTS/tts/layers/feed_forward/encoder.py b/TTS/TTS/tts/layers/feed_forward/encoder.py new file mode 100644 index 0000000000000000000000000000000000000000..caf939ffc73fedac299228e090b2df3bb4cc553c --- /dev/null +++ b/TTS/TTS/tts/layers/feed_forward/encoder.py @@ -0,0 +1,162 @@ +from torch import nn + +from TTS.tts.layers.generic.res_conv_bn import ResidualConv1dBNBlock +from TTS.tts.layers.generic.transformer import FFTransformerBlock +from TTS.tts.layers.glow_tts.transformer import RelativePositionTransformer + + +class RelativePositionTransformerEncoder(nn.Module): + """Speedy speech encoder built on Transformer with Relative Position encoding. + + TODO: Integrate speaker conditioning vector. + + Args: + in_channels (int): number of input channels. + out_channels (int): number of output channels. + hidden_channels (int): number of hidden channels + params (dict): dictionary for residual convolutional blocks. + """ + + def __init__(self, in_channels, out_channels, hidden_channels, params): + super().__init__() + self.prenet = ResidualConv1dBNBlock( + in_channels, + hidden_channels, + hidden_channels, + kernel_size=5, + num_res_blocks=3, + num_conv_blocks=1, + dilations=[1, 1, 1], + ) + self.rel_pos_transformer = RelativePositionTransformer(hidden_channels, out_channels, hidden_channels, **params) + + def forward(self, x, x_mask=None, g=None): # pylint: disable=unused-argument + if x_mask is None: + x_mask = 1 + o = self.prenet(x) * x_mask + o = self.rel_pos_transformer(o, x_mask) + return o + + +class ResidualConv1dBNEncoder(nn.Module): + """Residual Convolutional Encoder as in the original Speedy Speech paper + + TODO: Integrate speaker conditioning vector. + + Args: + in_channels (int): number of input channels. + out_channels (int): number of output channels. + hidden_channels (int): number of hidden channels + params (dict): dictionary for residual convolutional blocks. + """ + + def __init__(self, in_channels, out_channels, hidden_channels, params): + super().__init__() + self.prenet = nn.Sequential(nn.Conv1d(in_channels, hidden_channels, 1), nn.ReLU()) + self.res_conv_block = ResidualConv1dBNBlock(hidden_channels, hidden_channels, hidden_channels, **params) + + self.postnet = nn.Sequential( + *[ + nn.Conv1d(hidden_channels, hidden_channels, 1), + nn.ReLU(), + nn.BatchNorm1d(hidden_channels), + nn.Conv1d(hidden_channels, out_channels, 1), + ] + ) + + def forward(self, x, x_mask=None, g=None): # pylint: disable=unused-argument + if x_mask is None: + x_mask = 1 + o = self.prenet(x) * x_mask + o = self.res_conv_block(o, x_mask) + o = self.postnet(o + x) * x_mask + return o * x_mask + + +class Encoder(nn.Module): + # pylint: disable=dangerous-default-value + """Factory class for Speedy Speech encoder enables different encoder types internally. + + Args: + num_chars (int): number of characters. + out_channels (int): number of output channels. + in_hidden_channels (int): input and hidden channels. Model keeps the input channels for the intermediate layers. + encoder_type (str): encoder layer types. 'transformers' or 'residual_conv_bn'. Default 'residual_conv_bn'. + encoder_params (dict): model parameters for specified encoder type. + c_in_channels (int): number of channels for conditional input. + + Note: + Default encoder_params to be set in config.json... + + ```python + # for 'relative_position_transformer' + encoder_params={ + 'hidden_channels_ffn': 128, + 'num_heads': 2, + "kernel_size": 3, + "dropout_p": 0.1, + "num_layers": 6, + "rel_attn_window_size": 4, + "input_length": None + }, + + # for 'residual_conv_bn' + encoder_params = { + "kernel_size": 4, + "dilations": 4 * [1, 2, 4] + [1], + "num_conv_blocks": 2, + "num_res_blocks": 13 + } + + # for 'fftransformer' + encoder_params = { + "hidden_channels_ffn": 1024 , + "num_heads": 2, + "num_layers": 6, + "dropout_p": 0.1 + } + ``` + """ + + def __init__( + self, + in_hidden_channels, + out_channels, + encoder_type="residual_conv_bn", + encoder_params={"kernel_size": 4, "dilations": 4 * [1, 2, 4] + [1], "num_conv_blocks": 2, "num_res_blocks": 13}, + c_in_channels=0, + ): + super().__init__() + self.out_channels = out_channels + self.in_channels = in_hidden_channels + self.hidden_channels = in_hidden_channels + self.encoder_type = encoder_type + self.c_in_channels = c_in_channels + + # init encoder + if encoder_type.lower() == "relative_position_transformer": + # text encoder + # pylint: disable=unexpected-keyword-arg + self.encoder = RelativePositionTransformerEncoder( + in_hidden_channels, out_channels, in_hidden_channels, encoder_params + ) + elif encoder_type.lower() == "residual_conv_bn": + self.encoder = ResidualConv1dBNEncoder(in_hidden_channels, out_channels, in_hidden_channels, encoder_params) + elif encoder_type.lower() == "fftransformer": + assert ( + in_hidden_channels == out_channels + ), "[!] must be `in_channels` == `out_channels` when encoder type is 'fftransformer'" + # pylint: disable=unexpected-keyword-arg + self.encoder = FFTransformerBlock(in_hidden_channels, **encoder_params) + else: + raise NotImplementedError(" [!] unknown encoder type.") + + def forward(self, x, x_mask, g=None): # pylint: disable=unused-argument + """ + Shapes: + x: [B, C, T] + x_mask: [B, 1, T] + g: [B, C, 1] + """ + o = self.encoder(x, x_mask) + return o * x_mask diff --git a/TTS/TTS/tts/layers/generic/__init__.py b/TTS/TTS/tts/layers/generic/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/TTS/TTS/tts/layers/generic/aligner.py b/TTS/TTS/tts/layers/generic/aligner.py new file mode 100644 index 0000000000000000000000000000000000000000..baa6f0e9c4879207695b2de1193c9147b5a3fa4b --- /dev/null +++ b/TTS/TTS/tts/layers/generic/aligner.py @@ -0,0 +1,92 @@ +from typing import Tuple + +import torch +from torch import nn + + +class AlignmentNetwork(torch.nn.Module): + """Aligner Network for learning alignment between the input text and the model output with Gaussian Attention. + + :: + + query -> conv1d -> relu -> conv1d -> relu -> conv1d -> L2_dist -> softmax -> alignment + key -> conv1d -> relu -> conv1d -----------------------^ + + Args: + in_query_channels (int): Number of channels in the query network. Defaults to 80. + in_key_channels (int): Number of channels in the key network. Defaults to 512. + attn_channels (int): Number of inner channels in the attention layers. Defaults to 80. + temperature (float): Temperature for the softmax. Defaults to 0.0005. + """ + + def __init__( + self, + in_query_channels=80, + in_key_channels=512, + attn_channels=80, + temperature=0.0005, + ): + super().__init__() + self.temperature = temperature + self.softmax = torch.nn.Softmax(dim=3) + self.log_softmax = torch.nn.LogSoftmax(dim=3) + + self.key_layer = nn.Sequential( + nn.Conv1d( + in_key_channels, + in_key_channels * 2, + kernel_size=3, + padding=1, + bias=True, + ), + torch.nn.ReLU(), + nn.Conv1d(in_key_channels * 2, attn_channels, kernel_size=1, padding=0, bias=True), + ) + + self.query_layer = nn.Sequential( + nn.Conv1d( + in_query_channels, + in_query_channels * 2, + kernel_size=3, + padding=1, + bias=True, + ), + torch.nn.ReLU(), + nn.Conv1d(in_query_channels * 2, in_query_channels, kernel_size=1, padding=0, bias=True), + torch.nn.ReLU(), + nn.Conv1d(in_query_channels, attn_channels, kernel_size=1, padding=0, bias=True), + ) + + self.init_layers() + + def init_layers(self): + torch.nn.init.xavier_uniform_(self.key_layer[0].weight, gain=torch.nn.init.calculate_gain("relu")) + torch.nn.init.xavier_uniform_(self.key_layer[2].weight, gain=torch.nn.init.calculate_gain("linear")) + torch.nn.init.xavier_uniform_(self.query_layer[0].weight, gain=torch.nn.init.calculate_gain("relu")) + torch.nn.init.xavier_uniform_(self.query_layer[2].weight, gain=torch.nn.init.calculate_gain("linear")) + torch.nn.init.xavier_uniform_(self.query_layer[4].weight, gain=torch.nn.init.calculate_gain("linear")) + + def forward( + self, queries: torch.tensor, keys: torch.tensor, mask: torch.tensor = None, attn_prior: torch.tensor = None + ) -> Tuple[torch.tensor, torch.tensor]: + """Forward pass of the aligner encoder. + Shapes: + - queries: :math:`[B, C, T_de]` + - keys: :math:`[B, C_emb, T_en]` + - mask: :math:`[B, T_de]` + Output: + attn (torch.tensor): :math:`[B, 1, T_en, T_de]` soft attention mask. + attn_logp (torch.tensor): :math:`[รŸB, 1, T_en , T_de]` log probabilities. + """ + key_out = self.key_layer(keys) + query_out = self.query_layer(queries) + attn_factor = (query_out[:, :, :, None] - key_out[:, :, None]) ** 2 + attn_logp = -self.temperature * attn_factor.sum(1, keepdim=True) + if attn_prior is not None: + attn_logp = self.log_softmax(attn_logp) + torch.log(attn_prior[:, None] + 1e-8) + + if mask is not None: + attn_logp.data.masked_fill_(~mask.bool().unsqueeze(2), -float("inf")) + + attn = self.softmax(attn_logp) + return attn, attn_logp diff --git a/TTS/TTS/tts/layers/generic/gated_conv.py b/TTS/TTS/tts/layers/generic/gated_conv.py new file mode 100644 index 0000000000000000000000000000000000000000..9a29c4499f970db538a4b99c3c05cba22576195f --- /dev/null +++ b/TTS/TTS/tts/layers/generic/gated_conv.py @@ -0,0 +1,37 @@ +from torch import nn + +from .normalization import LayerNorm + + +class GatedConvBlock(nn.Module): + """Gated convolutional block as in https://arxiv.org/pdf/1612.08083.pdf + Args: + in_out_channels (int): number of input/output channels. + kernel_size (int): convolution kernel size. + dropout_p (float): dropout rate. + """ + + def __init__(self, in_out_channels, kernel_size, dropout_p, num_layers): + super().__init__() + # class arguments + self.dropout_p = dropout_p + self.num_layers = num_layers + # define layers + self.conv_layers = nn.ModuleList() + self.norm_layers = nn.ModuleList() + self.layers = nn.ModuleList() + for _ in range(num_layers): + self.conv_layers += [nn.Conv1d(in_out_channels, 2 * in_out_channels, kernel_size, padding=kernel_size // 2)] + self.norm_layers += [LayerNorm(2 * in_out_channels)] + + def forward(self, x, x_mask): + o = x + res = x + for idx in range(self.num_layers): + o = nn.functional.dropout(o, p=self.dropout_p, training=self.training) + o = self.conv_layers[idx](o * x_mask) + o = self.norm_layers[idx](o) + o = nn.functional.glu(o, dim=1) + o = res + o + res = o + return o diff --git a/TTS/TTS/tts/layers/generic/normalization.py b/TTS/TTS/tts/layers/generic/normalization.py new file mode 100644 index 0000000000000000000000000000000000000000..c0270e405e4246e47b7bc0787e4cd4b069533f92 --- /dev/null +++ b/TTS/TTS/tts/layers/generic/normalization.py @@ -0,0 +1,123 @@ +import torch +from torch import nn + + +class LayerNorm(nn.Module): + def __init__(self, channels, eps=1e-4): + """Layer norm for the 2nd dimension of the input. + Args: + channels (int): number of channels (2nd dimension) of the input. + eps (float): to prevent 0 division + + Shapes: + - input: (B, C, T) + - output: (B, C, T) + """ + super().__init__() + self.channels = channels + self.eps = eps + + self.gamma = nn.Parameter(torch.ones(1, channels, 1) * 0.1) + self.beta = nn.Parameter(torch.zeros(1, channels, 1)) + + def forward(self, x): + mean = torch.mean(x, 1, keepdim=True) + variance = torch.mean((x - mean) ** 2, 1, keepdim=True) + x = (x - mean) * torch.rsqrt(variance + self.eps) + x = x * self.gamma + self.beta + return x + + +class LayerNorm2(nn.Module): + """Layer norm for the 2nd dimension of the input using torch primitive. + Args: + channels (int): number of channels (2nd dimension) of the input. + eps (float): to prevent 0 division + + Shapes: + - input: (B, C, T) + - output: (B, C, T) + """ + + def __init__(self, channels, eps=1e-5): + super().__init__() + self.channels = channels + self.eps = eps + + self.gamma = nn.Parameter(torch.ones(channels)) + self.beta = nn.Parameter(torch.zeros(channels)) + + def forward(self, x): + x = x.transpose(1, -1) + x = torch.nn.functional.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps) + return x.transpose(1, -1) + + +class TemporalBatchNorm1d(nn.BatchNorm1d): + """Normalize each channel separately over time and batch.""" + + def __init__(self, channels, affine=True, track_running_stats=True, momentum=0.1): + super().__init__(channels, affine=affine, track_running_stats=track_running_stats, momentum=momentum) + + def forward(self, x): + return super().forward(x.transpose(2, 1)).transpose(2, 1) + + +class ActNorm(nn.Module): + """Activation Normalization bijector as an alternative to Batch Norm. It computes + mean and std from a sample data in advance and it uses these values + for normalization at training. + + Args: + channels (int): input channels. + ddi (False): data depended initialization flag. + + Shapes: + - inputs: (B, C, T) + - outputs: (B, C, T) + """ + + def __init__(self, channels, ddi=False, **kwargs): # pylint: disable=unused-argument + super().__init__() + self.channels = channels + self.initialized = not ddi + + self.logs = nn.Parameter(torch.zeros(1, channels, 1)) + self.bias = nn.Parameter(torch.zeros(1, channels, 1)) + + def forward(self, x, x_mask=None, reverse=False, **kwargs): # pylint: disable=unused-argument + if x_mask is None: + x_mask = torch.ones(x.size(0), 1, x.size(2)).to(device=x.device, dtype=x.dtype) + x_len = torch.sum(x_mask, [1, 2]) + if not self.initialized: + self.initialize(x, x_mask) + self.initialized = True + + if reverse: + z = (x - self.bias) * torch.exp(-self.logs) * x_mask + logdet = None + else: + z = (self.bias + torch.exp(self.logs) * x) * x_mask + logdet = torch.sum(self.logs) * x_len # [b] + + return z, logdet + + def store_inverse(self): + pass + + def set_ddi(self, ddi): + self.initialized = not ddi + + def initialize(self, x, x_mask): + with torch.no_grad(): + denom = torch.sum(x_mask, [0, 2]) + m = torch.sum(x * x_mask, [0, 2]) / denom + m_sq = torch.sum(x * x * x_mask, [0, 2]) / denom + v = m_sq - (m**2) + logs = 0.5 * torch.log(torch.clamp_min(v, 1e-6)) + + bias_init = (-m * torch.exp(-logs)).view(*self.bias.shape).to(dtype=self.bias.dtype) + logs_init = (-logs).view(*self.logs.shape).to(dtype=self.logs.dtype) + + self.bias.data.copy_(bias_init) + self.logs.data.copy_(logs_init) diff --git a/TTS/TTS/tts/layers/generic/pos_encoding.py b/TTS/TTS/tts/layers/generic/pos_encoding.py new file mode 100644 index 0000000000000000000000000000000000000000..913add0d14332bf70c3ecd2a95869d0071310bd4 --- /dev/null +++ b/TTS/TTS/tts/layers/generic/pos_encoding.py @@ -0,0 +1,69 @@ +import math + +import torch +from torch import nn + + +class PositionalEncoding(nn.Module): + """Sinusoidal positional encoding for non-recurrent neural networks. + Implementation based on "Attention Is All You Need" + + Args: + channels (int): embedding size + dropout_p (float): dropout rate applied to the output. + max_len (int): maximum sequence length. + use_scale (bool): whether to use a learnable scaling coefficient. + """ + + def __init__(self, channels, dropout_p=0.0, max_len=5000, use_scale=False): + super().__init__() + if channels % 2 != 0: + raise ValueError( + "Cannot use sin/cos positional encoding with " "odd channels (got channels={:d})".format(channels) + ) + self.use_scale = use_scale + if use_scale: + self.scale = torch.nn.Parameter(torch.ones(1)) + pe = torch.zeros(max_len, channels) + position = torch.arange(0, max_len).unsqueeze(1) + div_term = torch.pow(10000, torch.arange(0, channels, 2).float() / channels) + pe[:, 0::2] = torch.sin(position.float() * div_term) + pe[:, 1::2] = torch.cos(position.float() * div_term) + pe = pe.unsqueeze(0).transpose(1, 2) + self.register_buffer("pe", pe) + if dropout_p > 0: + self.dropout = nn.Dropout(p=dropout_p) + self.channels = channels + + def forward(self, x, mask=None, first_idx=None, last_idx=None): + """ + Shapes: + x: [B, C, T] + mask: [B, 1, T] + first_idx: int + last_idx: int + """ + + x = x * math.sqrt(self.channels) + if first_idx is None: + if self.pe.size(2) < x.size(2): + raise RuntimeError( + f"Sequence is {x.size(2)} but PositionalEncoding is" + f" limited to {self.pe.size(2)}. See max_len argument." + ) + if mask is not None: + pos_enc = self.pe[:, :, : x.size(2)] * mask + else: + pos_enc = self.pe[:, :, : x.size(2)] + if self.use_scale: + x = x + self.scale * pos_enc + else: + x = x + pos_enc + else: + if self.use_scale: + x = x + self.scale * self.pe[:, :, first_idx:last_idx] + else: + x = x + self.pe[:, :, first_idx:last_idx] + if hasattr(self, "dropout"): + x = self.dropout(x) + return x diff --git a/TTS/TTS/tts/layers/generic/res_conv_bn.py b/TTS/TTS/tts/layers/generic/res_conv_bn.py new file mode 100644 index 0000000000000000000000000000000000000000..4beda291aa15398024b5b16cd6bf12b88898a0a9 --- /dev/null +++ b/TTS/TTS/tts/layers/generic/res_conv_bn.py @@ -0,0 +1,127 @@ +from torch import nn + + +class ZeroTemporalPad(nn.Module): + """Pad sequences to equal lentgh in the temporal dimension""" + + def __init__(self, kernel_size, dilation): + super().__init__() + total_pad = dilation * (kernel_size - 1) + begin = total_pad // 2 + end = total_pad - begin + self.pad_layer = nn.ZeroPad2d((0, 0, begin, end)) + + def forward(self, x): + return self.pad_layer(x) + + +class Conv1dBN(nn.Module): + """1d convolutional with batch norm. + conv1d -> relu -> BN blocks. + + Note: + Batch normalization is applied after ReLU regarding the original implementation. + + Args: + in_channels (int): number of input channels. + out_channels (int): number of output channels. + kernel_size (int): kernel size for convolutional filters. + dilation (int): dilation for convolution layers. + """ + + def __init__(self, in_channels, out_channels, kernel_size, dilation): + super().__init__() + padding = dilation * (kernel_size - 1) + pad_s = padding // 2 + pad_e = padding - pad_s + self.conv1d = nn.Conv1d(in_channels, out_channels, kernel_size, dilation=dilation) + self.pad = nn.ZeroPad2d((pad_s, pad_e, 0, 0)) # uneven left and right padding + self.norm = nn.BatchNorm1d(out_channels) + + def forward(self, x): + o = self.conv1d(x) + o = self.pad(o) + o = nn.functional.relu(o) + o = self.norm(o) + return o + + +class Conv1dBNBlock(nn.Module): + """1d convolutional block with batch norm. It is a set of conv1d -> relu -> BN blocks. + + Args: + in_channels (int): number of input channels. + out_channels (int): number of output channels. + hidden_channels (int): number of inner convolution channels. + kernel_size (int): kernel size for convolutional filters. + dilation (int): dilation for convolution layers. + num_conv_blocks (int, optional): number of convolutional blocks. Defaults to 2. + """ + + def __init__(self, in_channels, out_channels, hidden_channels, kernel_size, dilation, num_conv_blocks=2): + super().__init__() + self.conv_bn_blocks = [] + for idx in range(num_conv_blocks): + layer = Conv1dBN( + in_channels if idx == 0 else hidden_channels, + out_channels if idx == (num_conv_blocks - 1) else hidden_channels, + kernel_size, + dilation, + ) + self.conv_bn_blocks.append(layer) + self.conv_bn_blocks = nn.Sequential(*self.conv_bn_blocks) + + def forward(self, x): + """ + Shapes: + x: (B, D, T) + """ + return self.conv_bn_blocks(x) + + +class ResidualConv1dBNBlock(nn.Module): + """Residual Convolutional Blocks with BN + Each block has 'num_conv_block' conv layers and 'num_res_blocks' such blocks are connected + with residual connections. + + conv_block = (conv1d -> relu -> bn) x 'num_conv_blocks' + residuak_conv_block = (x -> conv_block -> + ->) x 'num_res_blocks' + ' - - - - - - - - - ^ + Args: + in_channels (int): number of input channels. + out_channels (int): number of output channels. + hidden_channels (int): number of inner convolution channels. + kernel_size (int): kernel size for convolutional filters. + dilations (list): dilations for each convolution layer. + num_res_blocks (int, optional): number of residual blocks. Defaults to 13. + num_conv_blocks (int, optional): number of convolutional blocks in each residual block. Defaults to 2. + """ + + def __init__( + self, in_channels, out_channels, hidden_channels, kernel_size, dilations, num_res_blocks=13, num_conv_blocks=2 + ): + super().__init__() + assert len(dilations) == num_res_blocks + self.res_blocks = nn.ModuleList() + for idx, dilation in enumerate(dilations): + block = Conv1dBNBlock( + in_channels if idx == 0 else hidden_channels, + out_channels if (idx + 1) == len(dilations) else hidden_channels, + hidden_channels, + kernel_size, + dilation, + num_conv_blocks, + ) + self.res_blocks.append(block) + + def forward(self, x, x_mask=None): + if x_mask is None: + x_mask = 1.0 + o = x * x_mask + for block in self.res_blocks: + res = o + o = block(o) + o = o + res + if x_mask is not None: + o = o * x_mask + return o diff --git a/TTS/TTS/tts/layers/generic/time_depth_sep_conv.py b/TTS/TTS/tts/layers/generic/time_depth_sep_conv.py new file mode 100644 index 0000000000000000000000000000000000000000..186cea02e75e156c40923de91086c369a9ea02ee --- /dev/null +++ b/TTS/TTS/tts/layers/generic/time_depth_sep_conv.py @@ -0,0 +1,84 @@ +import torch +from torch import nn + + +class TimeDepthSeparableConv(nn.Module): + """Time depth separable convolution as in https://arxiv.org/pdf/1904.02619.pdf + It shows competative results with less computation and memory footprint.""" + + def __init__(self, in_channels, hid_channels, out_channels, kernel_size, bias=True): + super().__init__() + + self.in_channels = in_channels + self.out_channels = out_channels + self.hid_channels = hid_channels + self.kernel_size = kernel_size + + self.time_conv = nn.Conv1d( + in_channels, + 2 * hid_channels, + kernel_size=1, + stride=1, + padding=0, + bias=bias, + ) + self.norm1 = nn.BatchNorm1d(2 * hid_channels) + self.depth_conv = nn.Conv1d( + hid_channels, + hid_channels, + kernel_size, + stride=1, + padding=(kernel_size - 1) // 2, + groups=hid_channels, + bias=bias, + ) + self.norm2 = nn.BatchNorm1d(hid_channels) + self.time_conv2 = nn.Conv1d( + hid_channels, + out_channels, + kernel_size=1, + stride=1, + padding=0, + bias=bias, + ) + self.norm3 = nn.BatchNorm1d(out_channels) + + def forward(self, x): + x_res = x + x = self.time_conv(x) + x = self.norm1(x) + x = nn.functional.glu(x, dim=1) + x = self.depth_conv(x) + x = self.norm2(x) + x = x * torch.sigmoid(x) + x = self.time_conv2(x) + x = self.norm3(x) + x = x_res + x + return x + + +class TimeDepthSeparableConvBlock(nn.Module): + def __init__(self, in_channels, hid_channels, out_channels, num_layers, kernel_size, bias=True): + super().__init__() + assert (kernel_size - 1) % 2 == 0 + assert num_layers > 1 + + self.layers = nn.ModuleList() + layer = TimeDepthSeparableConv( + in_channels, hid_channels, out_channels if num_layers == 1 else hid_channels, kernel_size, bias + ) + self.layers.append(layer) + for idx in range(num_layers - 1): + layer = TimeDepthSeparableConv( + hid_channels, + hid_channels, + out_channels if (idx + 1) == (num_layers - 1) else hid_channels, + kernel_size, + bias, + ) + self.layers.append(layer) + + def forward(self, x, mask): + for layer in self.layers: + x = layer(x * mask) + return x diff --git a/TTS/TTS/tts/layers/generic/transformer.py b/TTS/TTS/tts/layers/generic/transformer.py new file mode 100644 index 0000000000000000000000000000000000000000..9b7ecee2bacb68cd330e18630531c97bc6f2e6a3 --- /dev/null +++ b/TTS/TTS/tts/layers/generic/transformer.py @@ -0,0 +1,89 @@ +import torch +import torch.nn.functional as F +from torch import nn + + +class FFTransformer(nn.Module): + def __init__(self, in_out_channels, num_heads, hidden_channels_ffn=1024, kernel_size_fft=3, dropout_p=0.1): + super().__init__() + self.self_attn = nn.MultiheadAttention(in_out_channels, num_heads, dropout=dropout_p) + + padding = (kernel_size_fft - 1) // 2 + self.conv1 = nn.Conv1d(in_out_channels, hidden_channels_ffn, kernel_size=kernel_size_fft, padding=padding) + self.conv2 = nn.Conv1d(hidden_channels_ffn, in_out_channels, kernel_size=kernel_size_fft, padding=padding) + + self.norm1 = nn.LayerNorm(in_out_channels) + self.norm2 = nn.LayerNorm(in_out_channels) + + self.dropout1 = nn.Dropout(dropout_p) + self.dropout2 = nn.Dropout(dropout_p) + + def forward(self, src, src_mask=None, src_key_padding_mask=None): + """๐Ÿ˜ฆ ugly looking with all the transposing""" + src = src.permute(2, 0, 1) + src2, enc_align = self.self_attn(src, src, src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask) + src = src + self.dropout1(src2) + src = self.norm1(src + src2) + # T x B x D -> B x D x T + src = src.permute(1, 2, 0) + src2 = self.conv2(F.relu(self.conv1(src))) + src2 = self.dropout2(src2) + src = src + src2 + src = src.transpose(1, 2) + src = self.norm2(src) + src = src.transpose(1, 2) + return src, enc_align + + +class FFTransformerBlock(nn.Module): + def __init__(self, in_out_channels, num_heads, hidden_channels_ffn, num_layers, dropout_p): + super().__init__() + self.fft_layers = nn.ModuleList( + [ + FFTransformer( + in_out_channels=in_out_channels, + num_heads=num_heads, + hidden_channels_ffn=hidden_channels_ffn, + dropout_p=dropout_p, + ) + for _ in range(num_layers) + ] + ) + + def forward(self, x, mask=None, g=None): # pylint: disable=unused-argument + """ + TODO: handle multi-speaker + Shapes: + - x: :math:`[B, C, T]` + - mask: :math:`[B, 1, T] or [B, T]` + """ + if mask is not None and mask.ndim == 3: + mask = mask.squeeze(1) + # mask is negated, torch uses 1s and 0s reversely. + mask = ~mask.bool() + alignments = [] + for layer in self.fft_layers: + x, align = layer(x, src_key_padding_mask=mask) + alignments.append(align.unsqueeze(1)) + alignments = torch.cat(alignments, 1) + return x + + +class FFTDurationPredictor: + def __init__( + self, in_channels, hidden_channels, num_heads, num_layers, dropout_p=0.1, cond_channels=None + ): # pylint: disable=unused-argument + self.fft = FFTransformerBlock(in_channels, num_heads, hidden_channels, num_layers, dropout_p) + self.proj = nn.Linear(in_channels, 1) + + def forward(self, x, mask=None, g=None): # pylint: disable=unused-argument + """ + Shapes: + - x: :math:`[B, C, T]` + - mask: :math:`[B, 1, T]` + + TODO: Handle the cond input + """ + x = self.fft(x, mask=mask) + x = self.proj(x) + return x diff --git a/TTS/TTS/tts/layers/generic/wavenet.py b/TTS/TTS/tts/layers/generic/wavenet.py new file mode 100644 index 0000000000000000000000000000000000000000..bc89da4fbe6b2425f2a39a578b8fad105a18da38 --- /dev/null +++ b/TTS/TTS/tts/layers/generic/wavenet.py @@ -0,0 +1,175 @@ +import torch +from torch import nn + + +@torch.jit.script +def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels): + n_channels_int = n_channels[0] + in_act = input_a + input_b + t_act = torch.tanh(in_act[:, :n_channels_int, :]) + s_act = torch.sigmoid(in_act[:, n_channels_int:, :]) + acts = t_act * s_act + return acts + + +class WN(torch.nn.Module): + """Wavenet layers with weight norm and no input conditioning. + + |-----------------------------------------------------------------------------| + | |-> tanh -| | + res -|- conv1d(dilation) -> dropout -> + -| * -> conv1d1x1 -> split -|- + -> res + g -------------------------------------| |-> sigmoid -| | + o --------------------------------------------------------------------------- + --------- o + + Args: + in_channels (int): number of input channels. + hidden_channes (int): number of hidden channels. + kernel_size (int): filter kernel size for the first conv layer. + dilation_rate (int): dilations rate to increase dilation per layer. + If it is 2, dilations are 1, 2, 4, 8 for the next 4 layers. + num_layers (int): number of wavenet layers. + c_in_channels (int): number of channels of conditioning input. + dropout_p (float): dropout rate. + weight_norm (bool): enable/disable weight norm for convolution layers. + """ + + def __init__( + self, + in_channels, + hidden_channels, + kernel_size, + dilation_rate, + num_layers, + c_in_channels=0, + dropout_p=0, + weight_norm=True, + ): + super().__init__() + assert kernel_size % 2 == 1 + assert hidden_channels % 2 == 0 + self.in_channels = in_channels + self.hidden_channels = hidden_channels + self.kernel_size = kernel_size + self.dilation_rate = dilation_rate + self.num_layers = num_layers + self.c_in_channels = c_in_channels + self.dropout_p = dropout_p + + self.in_layers = torch.nn.ModuleList() + self.res_skip_layers = torch.nn.ModuleList() + self.dropout = nn.Dropout(dropout_p) + + # init conditioning layer + if c_in_channels > 0: + cond_layer = torch.nn.Conv1d(c_in_channels, 2 * hidden_channels * num_layers, 1) + self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name="weight") + # intermediate layers + for i in range(num_layers): + dilation = dilation_rate**i + padding = int((kernel_size * dilation - dilation) / 2) + if i == 0: + in_layer = torch.nn.Conv1d( + in_channels, 2 * hidden_channels, kernel_size, dilation=dilation, padding=padding + ) + else: + in_layer = torch.nn.Conv1d( + hidden_channels, 2 * hidden_channels, kernel_size, dilation=dilation, padding=padding + ) + in_layer = torch.nn.utils.weight_norm(in_layer, name="weight") + self.in_layers.append(in_layer) + + if i < num_layers - 1: + res_skip_channels = 2 * hidden_channels + else: + res_skip_channels = hidden_channels + + res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1) + res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name="weight") + self.res_skip_layers.append(res_skip_layer) + # setup weight norm + if not weight_norm: + self.remove_weight_norm() + + def forward(self, x, x_mask=None, g=None, **kwargs): # pylint: disable=unused-argument + output = torch.zeros_like(x) + n_channels_tensor = torch.IntTensor([self.hidden_channels]) + x_mask = 1.0 if x_mask is None else x_mask + if g is not None: + g = self.cond_layer(g) + for i in range(self.num_layers): + x_in = self.in_layers[i](x) + x_in = self.dropout(x_in) + if g is not None: + cond_offset = i * 2 * self.hidden_channels + g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :] + else: + g_l = torch.zeros_like(x_in) + acts = fused_add_tanh_sigmoid_multiply(x_in, g_l, n_channels_tensor) + res_skip_acts = self.res_skip_layers[i](acts) + if i < self.num_layers - 1: + x = (x + res_skip_acts[:, : self.hidden_channels, :]) * x_mask + output = output + res_skip_acts[:, self.hidden_channels :, :] + else: + output = output + res_skip_acts + return output * x_mask + + def remove_weight_norm(self): + if self.c_in_channels != 0: + torch.nn.utils.remove_weight_norm(self.cond_layer) + for l in self.in_layers: + torch.nn.utils.remove_weight_norm(l) + for l in self.res_skip_layers: + torch.nn.utils.remove_weight_norm(l) + + +class WNBlocks(nn.Module): + """Wavenet blocks. + + Note: After each block dilation resets to 1 and it increases in each block + along the dilation rate. + + Args: + in_channels (int): number of input channels. + hidden_channes (int): number of hidden channels. + kernel_size (int): filter kernel size for the first conv layer. + dilation_rate (int): dilations rate to increase dilation per layer. + If it is 2, dilations are 1, 2, 4, 8 for the next 4 layers. + num_blocks (int): number of wavenet blocks. + num_layers (int): number of wavenet layers. + c_in_channels (int): number of channels of conditioning input. + dropout_p (float): dropout rate. + weight_norm (bool): enable/disable weight norm for convolution layers. + """ + + def __init__( + self, + in_channels, + hidden_channels, + kernel_size, + dilation_rate, + num_blocks, + num_layers, + c_in_channels=0, + dropout_p=0, + weight_norm=True, + ): + super().__init__() + self.wn_blocks = nn.ModuleList() + for idx in range(num_blocks): + layer = WN( + in_channels=in_channels if idx == 0 else hidden_channels, + hidden_channels=hidden_channels, + kernel_size=kernel_size, + dilation_rate=dilation_rate, + num_layers=num_layers, + c_in_channels=c_in_channels, + dropout_p=dropout_p, + weight_norm=weight_norm, + ) + self.wn_blocks.append(layer) + + def forward(self, x, x_mask=None, g=None): + o = x + for layer in self.wn_blocks: + o = layer(o, x_mask, g) + return o diff --git a/TTS/TTS/tts/layers/glow_tts/__init__.py b/TTS/TTS/tts/layers/glow_tts/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/TTS/TTS/tts/layers/glow_tts/decoder.py b/TTS/TTS/tts/layers/glow_tts/decoder.py new file mode 100644 index 0000000000000000000000000000000000000000..61c5174ac5e67885288043885290c2906656c99c --- /dev/null +++ b/TTS/TTS/tts/layers/glow_tts/decoder.py @@ -0,0 +1,141 @@ +import torch +from torch import nn + +from TTS.tts.layers.generic.normalization import ActNorm +from TTS.tts.layers.glow_tts.glow import CouplingBlock, InvConvNear + + +def squeeze(x, x_mask=None, num_sqz=2): + """GlowTTS squeeze operation + Increase number of channels and reduce number of time steps + by the same factor. + + Note: + each 's' is a n-dimensional vector. + ``[s1,s2,s3,s4,s5,s6] --> [[s1, s3, s5], [s2, s4, s6]]`` + """ + b, c, t = x.size() + + t = (t // num_sqz) * num_sqz + x = x[:, :, :t] + x_sqz = x.view(b, c, t // num_sqz, num_sqz) + x_sqz = x_sqz.permute(0, 3, 1, 2).contiguous().view(b, c * num_sqz, t // num_sqz) + + if x_mask is not None: + x_mask = x_mask[:, :, num_sqz - 1 :: num_sqz] + else: + x_mask = torch.ones(b, 1, t // num_sqz).to(device=x.device, dtype=x.dtype) + return x_sqz * x_mask, x_mask + + +def unsqueeze(x, x_mask=None, num_sqz=2): + """GlowTTS unsqueeze operation (revert the squeeze) + + Note: + each 's' is a n-dimensional vector. + ``[[s1, s3, s5], [s2, s4, s6]] --> [[s1, s3, s5, s2, s4, s6]]`` + """ + b, c, t = x.size() + + x_unsqz = x.view(b, num_sqz, c // num_sqz, t) + x_unsqz = x_unsqz.permute(0, 2, 3, 1).contiguous().view(b, c // num_sqz, t * num_sqz) + + if x_mask is not None: + x_mask = x_mask.unsqueeze(-1).repeat(1, 1, 1, num_sqz).view(b, 1, t * num_sqz) + else: + x_mask = torch.ones(b, 1, t * num_sqz).to(device=x.device, dtype=x.dtype) + return x_unsqz * x_mask, x_mask + + +class Decoder(nn.Module): + """Stack of Glow Decoder Modules. + + :: + + Squeeze -> ActNorm -> InvertibleConv1x1 -> AffineCoupling -> Unsqueeze + + Args: + in_channels (int): channels of input tensor. + hidden_channels (int): hidden decoder channels. + kernel_size (int): Coupling block kernel size. (Wavenet filter kernel size.) + dilation_rate (int): rate to increase dilation by each layer in a decoder block. + num_flow_blocks (int): number of decoder blocks. + num_coupling_layers (int): number coupling layers. (number of wavenet layers.) + dropout_p (float): wavenet dropout rate. + sigmoid_scale (bool): enable/disable sigmoid scaling in coupling layer. + """ + + def __init__( + self, + in_channels, + hidden_channels, + kernel_size, + dilation_rate, + num_flow_blocks, + num_coupling_layers, + dropout_p=0.0, + num_splits=4, + num_squeeze=2, + sigmoid_scale=False, + c_in_channels=0, + ): + super().__init__() + + self.in_channels = in_channels + self.hidden_channels = hidden_channels + self.kernel_size = kernel_size + self.dilation_rate = dilation_rate + self.num_flow_blocks = num_flow_blocks + self.num_coupling_layers = num_coupling_layers + self.dropout_p = dropout_p + self.num_splits = num_splits + self.num_squeeze = num_squeeze + self.sigmoid_scale = sigmoid_scale + self.c_in_channels = c_in_channels + + self.flows = nn.ModuleList() + for _ in range(num_flow_blocks): + self.flows.append(ActNorm(channels=in_channels * num_squeeze)) + self.flows.append(InvConvNear(channels=in_channels * num_squeeze, num_splits=num_splits)) + self.flows.append( + CouplingBlock( + in_channels * num_squeeze, + hidden_channels, + kernel_size=kernel_size, + dilation_rate=dilation_rate, + num_layers=num_coupling_layers, + c_in_channels=c_in_channels, + dropout_p=dropout_p, + sigmoid_scale=sigmoid_scale, + ) + ) + + def forward(self, x, x_mask, g=None, reverse=False): + """ + Shapes: + - x: :math:`[B, C, T]` + - x_mask: :math:`[B, 1 ,T]` + - g: :math:`[B, C]` + """ + if not reverse: + flows = self.flows + logdet_tot = 0 + else: + flows = reversed(self.flows) + logdet_tot = None + + if self.num_squeeze > 1: + x, x_mask = squeeze(x, x_mask, self.num_squeeze) + for f in flows: + if not reverse: + x, logdet = f(x, x_mask, g=g, reverse=reverse) + logdet_tot += logdet + else: + x, logdet = f(x, x_mask, g=g, reverse=reverse) + if self.num_squeeze > 1: + x, x_mask = unsqueeze(x, x_mask, self.num_squeeze) + return x, logdet_tot + + def store_inverse(self): + for f in self.flows: + f.store_inverse() diff --git a/TTS/TTS/tts/layers/glow_tts/duration_predictor.py b/TTS/TTS/tts/layers/glow_tts/duration_predictor.py new file mode 100644 index 0000000000000000000000000000000000000000..e766ed6ab5a0348eaca8d1482be124003d8b8c68 --- /dev/null +++ b/TTS/TTS/tts/layers/glow_tts/duration_predictor.py @@ -0,0 +1,69 @@ +import torch +from torch import nn + +from ..generic.normalization import LayerNorm + + +class DurationPredictor(nn.Module): + """Glow-TTS duration prediction model. + + :: + + [2 x (conv1d_kxk -> relu -> layer_norm -> dropout)] -> conv1d_1x1 -> durs + + Args: + in_channels (int): Number of channels of the input tensor. + hidden_channels (int): Number of hidden channels of the network. + kernel_size (int): Kernel size for the conv layers. + dropout_p (float): Dropout rate used after each conv layer. + """ + + def __init__(self, in_channels, hidden_channels, kernel_size, dropout_p, cond_channels=None, language_emb_dim=None): + super().__init__() + + # add language embedding dim in the input + if language_emb_dim: + in_channels += language_emb_dim + + # class arguments + self.in_channels = in_channels + self.filter_channels = hidden_channels + self.kernel_size = kernel_size + self.dropout_p = dropout_p + # layers + self.drop = nn.Dropout(dropout_p) + self.conv_1 = nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size // 2) + self.norm_1 = LayerNorm(hidden_channels) + self.conv_2 = nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size // 2) + self.norm_2 = LayerNorm(hidden_channels) + # output layer + self.proj = nn.Conv1d(hidden_channels, 1, 1) + if cond_channels is not None and cond_channels != 0: + self.cond = nn.Conv1d(cond_channels, in_channels, 1) + + if language_emb_dim != 0 and language_emb_dim is not None: + self.cond_lang = nn.Conv1d(language_emb_dim, in_channels, 1) + + def forward(self, x, x_mask, g=None, lang_emb=None): + """ + Shapes: + - x: :math:`[B, C, T]` + - x_mask: :math:`[B, 1, T]` + - g: :math:`[B, C, 1]` + """ + if g is not None: + x = x + self.cond(g) + + if lang_emb is not None: + x = x + self.cond_lang(lang_emb) + + x = self.conv_1(x * x_mask) + x = torch.relu(x) + x = self.norm_1(x) + x = self.drop(x) + x = self.conv_2(x * x_mask) + x = torch.relu(x) + x = self.norm_2(x) + x = self.drop(x) + x = self.proj(x * x_mask) + return x * x_mask diff --git a/TTS/TTS/tts/layers/glow_tts/encoder.py b/TTS/TTS/tts/layers/glow_tts/encoder.py new file mode 100644 index 0000000000000000000000000000000000000000..3b43e527f5e9ca2bd0880bf204e04a1526bc8dfb --- /dev/null +++ b/TTS/TTS/tts/layers/glow_tts/encoder.py @@ -0,0 +1,179 @@ +import math + +import torch +from torch import nn + +from TTS.tts.layers.generic.gated_conv import GatedConvBlock +from TTS.tts.layers.generic.res_conv_bn import ResidualConv1dBNBlock +from TTS.tts.layers.generic.time_depth_sep_conv import TimeDepthSeparableConvBlock +from TTS.tts.layers.glow_tts.duration_predictor import DurationPredictor +from TTS.tts.layers.glow_tts.glow import ResidualConv1dLayerNormBlock +from TTS.tts.layers.glow_tts.transformer import RelativePositionTransformer +from TTS.tts.utils.helpers import sequence_mask + + +class Encoder(nn.Module): + """Glow-TTS encoder module. + + :: + + embedding -> -> encoder_module -> --> proj_mean + | + |-> proj_var + | + |-> concat -> duration_predictor + โ†‘ + speaker_embed + + Args: + num_chars (int): number of characters. + out_channels (int): number of output channels. + hidden_channels (int): encoder's embedding size. + hidden_channels_ffn (int): transformer's feed-forward channels. + kernel_size (int): kernel size for conv layers and duration predictor. + dropout_p (float): dropout rate for any dropout layer. + mean_only (bool): if True, output only mean values and use constant std. + use_prenet (bool): if True, use pre-convolutional layers before transformer layers. + c_in_channels (int): number of channels in conditional input. + + Shapes: + - input: (B, T, C) + + :: + + suggested encoder params... + + for encoder_type == 'rel_pos_transformer' + encoder_params={ + 'kernel_size':3, + 'dropout_p': 0.1, + 'num_layers': 6, + 'num_heads': 2, + 'hidden_channels_ffn': 768, # 4 times the hidden_channels + 'input_length': None + } + + for encoder_type == 'gated_conv' + encoder_params={ + 'kernel_size':5, + 'dropout_p': 0.1, + 'num_layers': 9, + } + + for encoder_type == 'residual_conv_bn' + encoder_params={ + "kernel_size": 4, + "dilations": [1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1], + "num_conv_blocks": 2, + "num_res_blocks": 13 + } + + for encoder_type == 'time_depth_separable' + encoder_params={ + "kernel_size": 5, + 'num_layers': 9, + } + """ + + def __init__( + self, + num_chars, + out_channels, + hidden_channels, + hidden_channels_dp, + encoder_type, + encoder_params, + dropout_p_dp=0.1, + mean_only=False, + use_prenet=True, + c_in_channels=0, + ): + super().__init__() + # class arguments + self.num_chars = num_chars + self.out_channels = out_channels + self.hidden_channels = hidden_channels + self.hidden_channels_dp = hidden_channels_dp + self.dropout_p_dp = dropout_p_dp + self.mean_only = mean_only + self.use_prenet = use_prenet + self.c_in_channels = c_in_channels + self.encoder_type = encoder_type + # embedding layer + self.emb = nn.Embedding(num_chars, hidden_channels) + nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5) + # init encoder module + if encoder_type.lower() == "rel_pos_transformer": + if use_prenet: + self.prenet = ResidualConv1dLayerNormBlock( + hidden_channels, hidden_channels, hidden_channels, kernel_size=5, num_layers=3, dropout_p=0.5 + ) + self.encoder = RelativePositionTransformer( + hidden_channels, hidden_channels, hidden_channels, **encoder_params + ) + elif encoder_type.lower() == "gated_conv": + self.encoder = GatedConvBlock(hidden_channels, **encoder_params) + elif encoder_type.lower() == "residual_conv_bn": + if use_prenet: + self.prenet = nn.Sequential(nn.Conv1d(hidden_channels, hidden_channels, 1), nn.ReLU()) + self.encoder = ResidualConv1dBNBlock(hidden_channels, hidden_channels, hidden_channels, **encoder_params) + self.postnet = nn.Sequential( + nn.Conv1d(self.hidden_channels, self.hidden_channels, 1), nn.BatchNorm1d(self.hidden_channels) + ) + elif encoder_type.lower() == "time_depth_separable": + if use_prenet: + self.prenet = ResidualConv1dLayerNormBlock( + hidden_channels, hidden_channels, hidden_channels, kernel_size=5, num_layers=3, dropout_p=0.5 + ) + self.encoder = TimeDepthSeparableConvBlock( + hidden_channels, hidden_channels, hidden_channels, **encoder_params + ) + else: + raise ValueError(" [!] Unkown encoder type.") + + # final projection layers + self.proj_m = nn.Conv1d(hidden_channels, out_channels, 1) + if not mean_only: + self.proj_s = nn.Conv1d(hidden_channels, out_channels, 1) + # duration predictor + self.duration_predictor = DurationPredictor( + hidden_channels + c_in_channels, hidden_channels_dp, 3, dropout_p_dp + ) + + def forward(self, x, x_lengths, g=None): + """ + Shapes: + - x: :math:`[B, C, T]` + - x_lengths: :math:`[B]` + - g (optional): :math:`[B, 1, T]` + """ + # embedding layer + # [B ,T, D] + x = self.emb(x) * math.sqrt(self.hidden_channels) + # [B, D, T] + x = torch.transpose(x, 1, -1) + # compute input sequence mask + x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype) + # prenet + if hasattr(self, "prenet") and self.use_prenet: + x = self.prenet(x, x_mask) + # encoder + x = self.encoder(x, x_mask) + # postnet + if hasattr(self, "postnet"): + x = self.postnet(x) * x_mask + # set duration predictor input + if g is not None: + g_exp = g.expand(-1, -1, x.size(-1)) + x_dp = torch.cat([x.detach(), g_exp], 1) + else: + x_dp = x.detach() + # final projection layer + x_m = self.proj_m(x) * x_mask + if not self.mean_only: + x_logs = self.proj_s(x) * x_mask + else: + x_logs = torch.zeros_like(x_m) + # duration predictor + logw = self.duration_predictor(x_dp, x_mask) + return x_m, x_logs, logw, x_mask diff --git a/TTS/TTS/tts/layers/glow_tts/glow.py b/TTS/TTS/tts/layers/glow_tts/glow.py new file mode 100644 index 0000000000000000000000000000000000000000..273c62a5c055dcfd79b748092b37a7e8dacb0082 --- /dev/null +++ b/TTS/TTS/tts/layers/glow_tts/glow.py @@ -0,0 +1,233 @@ +import torch +from packaging.version import Version +from torch import nn +from torch.nn import functional as F + +from TTS.tts.layers.generic.wavenet import WN + +from ..generic.normalization import LayerNorm + + +class ResidualConv1dLayerNormBlock(nn.Module): + """Conv1d with Layer Normalization and residual connection as in GlowTTS paper. + https://arxiv.org/pdf/1811.00002.pdf + + :: + + x |-> conv1d -> layer_norm -> relu -> dropout -> + -> o + |---------------> conv1d_1x1 ------------------| + + Args: + in_channels (int): number of input tensor channels. + hidden_channels (int): number of inner layer channels. + out_channels (int): number of output tensor channels. + kernel_size (int): kernel size of conv1d filter. + num_layers (int): number of blocks. + dropout_p (float): dropout rate for each block. + """ + + def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, num_layers, dropout_p): + super().__init__() + self.in_channels = in_channels + self.hidden_channels = hidden_channels + self.out_channels = out_channels + self.kernel_size = kernel_size + self.num_layers = num_layers + self.dropout_p = dropout_p + assert num_layers > 1, " [!] number of layers should be > 0." + assert kernel_size % 2 == 1, " [!] kernel size should be odd number." + + self.conv_layers = nn.ModuleList() + self.norm_layers = nn.ModuleList() + + for idx in range(num_layers): + self.conv_layers.append( + nn.Conv1d( + in_channels if idx == 0 else hidden_channels, hidden_channels, kernel_size, padding=kernel_size // 2 + ) + ) + self.norm_layers.append(LayerNorm(hidden_channels)) + + self.proj = nn.Conv1d(hidden_channels, out_channels, 1) + self.proj.weight.data.zero_() + self.proj.bias.data.zero_() + + def forward(self, x, x_mask): + """ + Shapes: + - x: :math:`[B, C, T]` + - x_mask: :math:`[B, 1, T]` + """ + x_res = x + for i in range(self.num_layers): + x = self.conv_layers[i](x * x_mask) + x = self.norm_layers[i](x * x_mask) + x = F.dropout(F.relu(x), self.dropout_p, training=self.training) + x = x_res + self.proj(x) + return x * x_mask + + +class InvConvNear(nn.Module): + """Invertible Convolution with input splitting as in GlowTTS paper. + https://arxiv.org/pdf/1811.00002.pdf + + Args: + channels (int): input and output channels. + num_splits (int): number of splits, also H and W of conv layer. + no_jacobian (bool): enable/disable jacobian computations. + + Note: + Split the input into groups of size self.num_splits and + perform 1x1 convolution separately. Cast 1x1 conv operation + to 2d by reshaping the input for efficiency. + """ + + def __init__(self, channels, num_splits=4, no_jacobian=False, **kwargs): # pylint: disable=unused-argument + super().__init__() + assert num_splits % 2 == 0 + self.channels = channels + self.num_splits = num_splits + self.no_jacobian = no_jacobian + self.weight_inv = None + + if Version(torch.__version__) < Version("1.9"): + w_init = torch.qr(torch.FloatTensor(self.num_splits, self.num_splits).normal_())[0] + else: + w_init = torch.linalg.qr(torch.FloatTensor(self.num_splits, self.num_splits).normal_(), "complete")[0] + + if torch.det(w_init) < 0: + w_init[:, 0] = -1 * w_init[:, 0] + self.weight = nn.Parameter(w_init) + + def forward(self, x, x_mask=None, reverse=False, **kwargs): # pylint: disable=unused-argument + """ + Shapes: + - x: :math:`[B, C, T]` + - x_mask: :math:`[B, 1, T]` + """ + b, c, t = x.size() + assert c % self.num_splits == 0 + if x_mask is None: + x_mask = 1 + x_len = torch.ones((b,), dtype=x.dtype, device=x.device) * t + else: + x_len = torch.sum(x_mask, [1, 2]) + + x = x.view(b, 2, c // self.num_splits, self.num_splits // 2, t) + x = x.permute(0, 1, 3, 2, 4).contiguous().view(b, self.num_splits, c // self.num_splits, t) + + if reverse: + if self.weight_inv is not None: + weight = self.weight_inv + else: + weight = torch.inverse(self.weight.float()).to(dtype=self.weight.dtype) + logdet = None + else: + weight = self.weight + if self.no_jacobian: + logdet = 0 + else: + logdet = torch.logdet(self.weight) * (c / self.num_splits) * x_len # [b] + + weight = weight.view(self.num_splits, self.num_splits, 1, 1) + z = F.conv2d(x, weight) + + z = z.view(b, 2, self.num_splits // 2, c // self.num_splits, t) + z = z.permute(0, 1, 3, 2, 4).contiguous().view(b, c, t) * x_mask + return z, logdet + + def store_inverse(self): + weight_inv = torch.inverse(self.weight.float()).to(dtype=self.weight.dtype) + self.weight_inv = nn.Parameter(weight_inv, requires_grad=False) + + +class CouplingBlock(nn.Module): + """Glow Affine Coupling block as in GlowTTS paper. + https://arxiv.org/pdf/1811.00002.pdf + + :: + + x --> x0 -> conv1d -> wavenet -> conv1d --> t, s -> concat(s*x1 + t, x0) -> o + '-> x1 - - - - - - - - - - - - - - - - - - - - - - - - - ^ + + Args: + in_channels (int): number of input tensor channels. + hidden_channels (int): number of hidden channels. + kernel_size (int): WaveNet filter kernel size. + dilation_rate (int): rate to increase dilation by each layer in a decoder block. + num_layers (int): number of WaveNet layers. + c_in_channels (int): number of conditioning input channels. + dropout_p (int): wavenet dropout rate. + sigmoid_scale (bool): enable/disable sigmoid scaling for output scale. + + Note: + It does not use the conditional inputs differently from WaveGlow. + """ + + def __init__( + self, + in_channels, + hidden_channels, + kernel_size, + dilation_rate, + num_layers, + c_in_channels=0, + dropout_p=0, + sigmoid_scale=False, + ): + super().__init__() + self.in_channels = in_channels + self.hidden_channels = hidden_channels + self.kernel_size = kernel_size + self.dilation_rate = dilation_rate + self.num_layers = num_layers + self.c_in_channels = c_in_channels + self.dropout_p = dropout_p + self.sigmoid_scale = sigmoid_scale + # input layer + start = torch.nn.Conv1d(in_channels // 2, hidden_channels, 1) + start = torch.nn.utils.weight_norm(start) + self.start = start + # output layer + # Initializing last layer to 0 makes the affine coupling layers + # do nothing at first. This helps with training stability + end = torch.nn.Conv1d(hidden_channels, in_channels, 1) + end.weight.data.zero_() + end.bias.data.zero_() + self.end = end + # coupling layers + self.wn = WN(hidden_channels, hidden_channels, kernel_size, dilation_rate, num_layers, c_in_channels, dropout_p) + + def forward(self, x, x_mask=None, reverse=False, g=None, **kwargs): # pylint: disable=unused-argument + """ + Shapes: + - x: :math:`[B, C, T]` + - x_mask: :math:`[B, 1, T]` + - g: :math:`[B, C, 1]` + """ + if x_mask is None: + x_mask = 1 + x_0, x_1 = x[:, : self.in_channels // 2], x[:, self.in_channels // 2 :] + + x = self.start(x_0) * x_mask + x = self.wn(x, x_mask, g) + out = self.end(x) + + z_0 = x_0 + t = out[:, : self.in_channels // 2, :] + s = out[:, self.in_channels // 2 :, :] + if self.sigmoid_scale: + s = torch.log(1e-6 + torch.sigmoid(s + 2)) + + if reverse: + z_1 = (x_1 - t) * torch.exp(-s) * x_mask + logdet = None + else: + z_1 = (t + torch.exp(s) * x_1) * x_mask + logdet = torch.sum(s * x_mask, [1, 2]) + + z = torch.cat([z_0, z_1], 1) + return z, logdet + + def store_inverse(self): + self.wn.remove_weight_norm() diff --git a/TTS/TTS/tts/layers/glow_tts/transformer.py b/TTS/TTS/tts/layers/glow_tts/transformer.py new file mode 100644 index 0000000000000000000000000000000000000000..02688d611fe41394e8e1fedbc5742845eae85cfd --- /dev/null +++ b/TTS/TTS/tts/layers/glow_tts/transformer.py @@ -0,0 +1,432 @@ +import math + +import torch +from torch import nn +from torch.nn import functional as F + +from TTS.tts.layers.generic.normalization import LayerNorm, LayerNorm2 + + +class RelativePositionMultiHeadAttention(nn.Module): + """Multi-head attention with Relative Positional embedding. + https://arxiv.org/pdf/1809.04281.pdf + + It learns positional embeddings for a window of neighbours. For keys and values, + it learns different set of embeddings. Key embeddings are agregated with the attention + scores and value embeddings are aggregated with the output. + + Note: + Example with relative attention window size 2 + + - input = [a, b, c, d, e] + - rel_attn_embeddings = [e(t-2), e(t-1), e(t+1), e(t+2)] + + So it learns 4 embedding vectors (in total 8) separately for key and value vectors. + + Considering the input c + + - e(t-2) corresponds to c -> a + - e(t-2) corresponds to c -> b + - e(t-2) corresponds to c -> d + - e(t-2) corresponds to c -> e + + These embeddings are shared among different time steps. So input a, b, d and e also uses + the same embeddings. + + Embeddings are ignored when the relative window is out of limit for the first and the last + n items. + + Args: + channels (int): input and inner layer channels. + out_channels (int): output channels. + num_heads (int): number of attention heads. + rel_attn_window_size (int, optional): relation attention window size. + If 4, for each time step next and previous 4 time steps are attended. + If default, relative encoding is disabled and it is a regular transformer. + Defaults to None. + heads_share (bool, optional): [description]. Defaults to True. + dropout_p (float, optional): dropout rate. Defaults to 0.. + input_length (int, optional): intput length for positional encoding. Defaults to None. + proximal_bias (bool, optional): enable/disable proximal bias as in the paper. Defaults to False. + proximal_init (bool, optional): enable/disable poximal init as in the paper. + Init key and query layer weights the same. Defaults to False. + """ + + def __init__( + self, + channels, + out_channels, + num_heads, + rel_attn_window_size=None, + heads_share=True, + dropout_p=0.0, + input_length=None, + proximal_bias=False, + proximal_init=False, + ): + super().__init__() + assert channels % num_heads == 0, " [!] channels should be divisible by num_heads." + # class attributes + self.channels = channels + self.out_channels = out_channels + self.num_heads = num_heads + self.rel_attn_window_size = rel_attn_window_size + self.heads_share = heads_share + self.input_length = input_length + self.proximal_bias = proximal_bias + self.dropout_p = dropout_p + self.attn = None + # query, key, value layers + self.k_channels = channels // num_heads + self.conv_q = nn.Conv1d(channels, channels, 1) + self.conv_k = nn.Conv1d(channels, channels, 1) + self.conv_v = nn.Conv1d(channels, channels, 1) + # output layers + self.conv_o = nn.Conv1d(channels, out_channels, 1) + self.dropout = nn.Dropout(dropout_p) + # relative positional encoding layers + if rel_attn_window_size is not None: + n_heads_rel = 1 if heads_share else num_heads + rel_stddev = self.k_channels**-0.5 + emb_rel_k = nn.Parameter( + torch.randn(n_heads_rel, rel_attn_window_size * 2 + 1, self.k_channels) * rel_stddev + ) + emb_rel_v = nn.Parameter( + torch.randn(n_heads_rel, rel_attn_window_size * 2 + 1, self.k_channels) * rel_stddev + ) + self.register_parameter("emb_rel_k", emb_rel_k) + self.register_parameter("emb_rel_v", emb_rel_v) + + # init layers + nn.init.xavier_uniform_(self.conv_q.weight) + nn.init.xavier_uniform_(self.conv_k.weight) + # proximal bias + if proximal_init: + self.conv_k.weight.data.copy_(self.conv_q.weight.data) + self.conv_k.bias.data.copy_(self.conv_q.bias.data) + nn.init.xavier_uniform_(self.conv_v.weight) + + def forward(self, x, c, attn_mask=None): + """ + Shapes: + - x: :math:`[B, C, T]` + - c: :math:`[B, C, T]` + - attn_mask: :math:`[B, 1, T, T]` + """ + q = self.conv_q(x) + k = self.conv_k(c) + v = self.conv_v(c) + x, self.attn = self.attention(q, k, v, mask=attn_mask) + x = self.conv_o(x) + return x + + def attention(self, query, key, value, mask=None): + # reshape [b, d, t] -> [b, n_h, t, d_k] + b, d, t_s, t_t = (*key.size(), query.size(2)) + query = query.view(b, self.num_heads, self.k_channels, t_t).transpose(2, 3) + key = key.view(b, self.num_heads, self.k_channels, t_s).transpose(2, 3) + value = value.view(b, self.num_heads, self.k_channels, t_s).transpose(2, 3) + # compute raw attention scores + scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(self.k_channels) + # relative positional encoding for scores + if self.rel_attn_window_size is not None: + assert t_s == t_t, "Relative attention is only available for self-attention." + # get relative key embeddings + key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s) + rel_logits = self._matmul_with_relative_keys(query, key_relative_embeddings) + rel_logits = self._relative_position_to_absolute_position(rel_logits) + scores_local = rel_logits / math.sqrt(self.k_channels) + scores = scores + scores_local + # proximan bias + if self.proximal_bias: + assert t_s == t_t, "Proximal bias is only available for self-attention." + scores = scores + self._attn_proximity_bias(t_s).to(device=scores.device, dtype=scores.dtype) + # attention score masking + if mask is not None: + # add small value to prevent oor error. + scores = scores.masked_fill(mask == 0, -1e4) + if self.input_length is not None: + block_mask = torch.ones_like(scores).triu(-1 * self.input_length).tril(self.input_length) + scores = scores * block_mask + -1e4 * (1 - block_mask) + # attention score normalization + p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s] + # apply dropout to attention weights + p_attn = self.dropout(p_attn) + # compute output + output = torch.matmul(p_attn, value) + # relative positional encoding for values + if self.rel_attn_window_size is not None: + relative_weights = self._absolute_position_to_relative_position(p_attn) + value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s) + output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings) + output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t] + return output, p_attn + + @staticmethod + def _matmul_with_relative_values(p_attn, re): + """ + Args: + p_attn (Tensor): attention weights. + re (Tensor): relative value embedding vector. (a_(i,j)^V) + + Shapes: + -p_attn: :math:`[B, H, T, V]` + -re: :math:`[H or 1, V, D]` + -logits: :math:`[B, H, T, D]` + """ + logits = torch.matmul(p_attn, re.unsqueeze(0)) + return logits + + @staticmethod + def _matmul_with_relative_keys(query, re): + """ + Args: + query (Tensor): batch of query vectors. (x*W^Q) + re (Tensor): relative key embedding vector. (a_(i,j)^K) + + Shapes: + - query: :math:`[B, H, T, D]` + - re: :math:`[H or 1, V, D]` + - logits: :math:`[B, H, T, V]` + """ + # logits = torch.einsum('bhld, kmd -> bhlm', [query, re.to(query.dtype)]) + logits = torch.matmul(query, re.unsqueeze(0).transpose(-2, -1)) + return logits + + def _get_relative_embeddings(self, relative_embeddings, length): + """Convert embedding vestors to a tensor of embeddings""" + # Pad first before slice to avoid using cond ops. + pad_length = max(length - (self.rel_attn_window_size + 1), 0) + slice_start_position = max((self.rel_attn_window_size + 1) - length, 0) + slice_end_position = slice_start_position + 2 * length - 1 + if pad_length > 0: + padded_relative_embeddings = F.pad(relative_embeddings, [0, 0, pad_length, pad_length, 0, 0]) + else: + padded_relative_embeddings = relative_embeddings + used_relative_embeddings = padded_relative_embeddings[:, slice_start_position:slice_end_position] + return used_relative_embeddings + + @staticmethod + def _relative_position_to_absolute_position(x): + """Converts tensor from relative to absolute indexing for local attention. + Shapes: + x: :math:`[B, C, T, 2 * T - 1]` + Returns: + A Tensor of shape :math:`[B, C, T, T]` + """ + batch, heads, length, _ = x.size() + # Pad to shift from relative to absolute indexing. + x = F.pad(x, [0, 1, 0, 0, 0, 0, 0, 0]) + # Pad extra elements so to add up to shape (len+1, 2*len-1). + x_flat = x.view([batch, heads, length * 2 * length]) + x_flat = F.pad(x_flat, [0, length - 1, 0, 0, 0, 0]) + # Reshape and slice out the padded elements. + x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[:, :, :length, length - 1 :] + return x_final + + @staticmethod + def _absolute_position_to_relative_position(x): + """ + Shapes: + - x: :math:`[B, C, T, T]` + - ret: :math:`[B, C, T, 2*T-1]` + """ + batch, heads, length, _ = x.size() + # padd along column + x = F.pad(x, [0, length - 1, 0, 0, 0, 0, 0, 0]) + x_flat = x.view([batch, heads, length**2 + length * (length - 1)]) + # add 0's in the beginning that will skew the elements after reshape + x_flat = F.pad(x_flat, [length, 0, 0, 0, 0, 0]) + x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:] + return x_final + + @staticmethod + def _attn_proximity_bias(length): + """Produce an attention mask that discourages distant + attention values. + Args: + length (int): an integer scalar. + Returns: + a Tensor with shape :math:`[1, 1, T, T]` + """ + # L + r = torch.arange(length, dtype=torch.float32) + # L x L + diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1) + # scale mask values + diff = -torch.log1p(torch.abs(diff)) + # 1 x 1 x L x L + return diff.unsqueeze(0).unsqueeze(0) + + +class FeedForwardNetwork(nn.Module): + """Feed Forward Inner layers for Transformer. + + Args: + in_channels (int): input tensor channels. + out_channels (int): output tensor channels. + hidden_channels (int): inner layers hidden channels. + kernel_size (int): conv1d filter kernel size. + dropout_p (float, optional): dropout rate. Defaults to 0. + """ + + def __init__(self, in_channels, out_channels, hidden_channels, kernel_size, dropout_p=0.0, causal=False): + super().__init__() + self.in_channels = in_channels + self.out_channels = out_channels + self.hidden_channels = hidden_channels + self.kernel_size = kernel_size + self.dropout_p = dropout_p + + if causal: + self.padding = self._causal_padding + else: + self.padding = self._same_padding + + self.conv_1 = nn.Conv1d(in_channels, hidden_channels, kernel_size) + self.conv_2 = nn.Conv1d(hidden_channels, out_channels, kernel_size) + self.dropout = nn.Dropout(dropout_p) + + def forward(self, x, x_mask): + x = self.conv_1(self.padding(x * x_mask)) + x = torch.relu(x) + x = self.dropout(x) + x = self.conv_2(self.padding(x * x_mask)) + return x * x_mask + + def _causal_padding(self, x): + if self.kernel_size == 1: + return x + pad_l = self.kernel_size - 1 + pad_r = 0 + padding = [[0, 0], [0, 0], [pad_l, pad_r]] + x = F.pad(x, self._pad_shape(padding)) + return x + + def _same_padding(self, x): + if self.kernel_size == 1: + return x + pad_l = (self.kernel_size - 1) // 2 + pad_r = self.kernel_size // 2 + padding = [[0, 0], [0, 0], [pad_l, pad_r]] + x = F.pad(x, self._pad_shape(padding)) + return x + + @staticmethod + def _pad_shape(padding): + l = padding[::-1] + pad_shape = [item for sublist in l for item in sublist] + return pad_shape + + +class RelativePositionTransformer(nn.Module): + """Transformer with Relative Potional Encoding. + https://arxiv.org/abs/1803.02155 + + Args: + in_channels (int): number of channels of the input tensor. + out_chanels (int): number of channels of the output tensor. + hidden_channels (int): model hidden channels. + hidden_channels_ffn (int): hidden channels of FeedForwardNetwork. + num_heads (int): number of attention heads. + num_layers (int): number of transformer layers. + kernel_size (int, optional): kernel size of feed-forward inner layers. Defaults to 1. + dropout_p (float, optional): dropout rate for self-attention and feed-forward inner layers_per_stack. Defaults to 0. + rel_attn_window_size (int, optional): relation attention window size. + If 4, for each time step next and previous 4 time steps are attended. + If default, relative encoding is disabled and it is a regular transformer. + Defaults to None. + input_length (int, optional): input lenght to limit position encoding. Defaults to None. + layer_norm_type (str, optional): type "1" uses torch tensor operations and type "2" uses torch layer_norm + primitive. Use type "2", type "1: is for backward compat. Defaults to "1". + """ + + def __init__( + self, + in_channels: int, + out_channels: int, + hidden_channels: int, + hidden_channels_ffn: int, + num_heads: int, + num_layers: int, + kernel_size=1, + dropout_p=0.0, + rel_attn_window_size: int = None, + input_length: int = None, + layer_norm_type: str = "1", + ): + super().__init__() + self.hidden_channels = hidden_channels + self.hidden_channels_ffn = hidden_channels_ffn + self.num_heads = num_heads + self.num_layers = num_layers + self.kernel_size = kernel_size + self.dropout_p = dropout_p + self.rel_attn_window_size = rel_attn_window_size + + self.dropout = nn.Dropout(dropout_p) + self.attn_layers = nn.ModuleList() + self.norm_layers_1 = nn.ModuleList() + self.ffn_layers = nn.ModuleList() + self.norm_layers_2 = nn.ModuleList() + + for idx in range(self.num_layers): + self.attn_layers.append( + RelativePositionMultiHeadAttention( + hidden_channels if idx != 0 else in_channels, + hidden_channels, + num_heads, + rel_attn_window_size=rel_attn_window_size, + dropout_p=dropout_p, + input_length=input_length, + ) + ) + if layer_norm_type == "1": + self.norm_layers_1.append(LayerNorm(hidden_channels)) + elif layer_norm_type == "2": + self.norm_layers_1.append(LayerNorm2(hidden_channels)) + else: + raise ValueError(" [!] Unknown layer norm type") + + if hidden_channels != out_channels and (idx + 1) == self.num_layers: + self.proj = nn.Conv1d(hidden_channels, out_channels, 1) + + self.ffn_layers.append( + FeedForwardNetwork( + hidden_channels, + hidden_channels if (idx + 1) != self.num_layers else out_channels, + hidden_channels_ffn, + kernel_size, + dropout_p=dropout_p, + ) + ) + + if layer_norm_type == "1": + self.norm_layers_2.append(LayerNorm(hidden_channels if (idx + 1) != self.num_layers else out_channels)) + elif layer_norm_type == "2": + self.norm_layers_2.append(LayerNorm2(hidden_channels if (idx + 1) != self.num_layers else out_channels)) + else: + raise ValueError(" [!] Unknown layer norm type") + + def forward(self, x, x_mask): + """ + Shapes: + - x: :math:`[B, C, T]` + - x_mask: :math:`[B, 1, T]` + """ + attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1) + for i in range(self.num_layers): + x = x * x_mask + y = self.attn_layers[i](x, x, attn_mask) + y = self.dropout(y) + x = self.norm_layers_1[i](x + y) + + y = self.ffn_layers[i](x, x_mask) + y = self.dropout(y) + + if (i + 1) == self.num_layers and hasattr(self, "proj"): + x = self.proj(x) + + x = self.norm_layers_2[i](x + y) + x = x * x_mask + return x diff --git a/TTS/TTS/tts/layers/losses.py b/TTS/TTS/tts/layers/losses.py new file mode 100644 index 0000000000000000000000000000000000000000..de5f408c48cf9183dfb14c30a6248a2b300bde4d --- /dev/null +++ b/TTS/TTS/tts/layers/losses.py @@ -0,0 +1,889 @@ +import math + +import numpy as np +import torch +from coqpit import Coqpit +from torch import nn +from torch.nn import functional + +from TTS.tts.utils.helpers import sequence_mask +from TTS.tts.utils.ssim import SSIMLoss as _SSIMLoss +from TTS.utils.audio.torch_transforms import TorchSTFT + + +# pylint: disable=abstract-method +# relates https://github.com/pytorch/pytorch/issues/42305 +class L1LossMasked(nn.Module): + def __init__(self, seq_len_norm): + super().__init__() + self.seq_len_norm = seq_len_norm + + def forward(self, x, target, length): + """ + Args: + x: A Variable containing a FloatTensor of size + (batch, max_len, dim) which contains the + unnormalized probability for each class. + target: A Variable containing a LongTensor of size + (batch, max_len, dim) which contains the index of the true + class for each corresponding step. + length: A Variable containing a LongTensor of size (batch,) + which contains the length of each data in a batch. + Shapes: + x: B x T X D + target: B x T x D + length: B + Returns: + loss: An average loss value in range [0, 1] masked by the length. + """ + # mask: (batch, max_len, 1) + target.requires_grad = False + mask = sequence_mask(sequence_length=length, max_len=target.size(1)).unsqueeze(2).float() + if self.seq_len_norm: + norm_w = mask / mask.sum(dim=1, keepdim=True) + out_weights = norm_w.div(target.shape[0] * target.shape[2]) + mask = mask.expand_as(x) + loss = functional.l1_loss(x * mask, target * mask, reduction="none") + loss = loss.mul(out_weights.to(loss.device)).sum() + else: + mask = mask.expand_as(x) + loss = functional.l1_loss(x * mask, target * mask, reduction="sum") + loss = loss / mask.sum() + return loss + + +class MSELossMasked(nn.Module): + def __init__(self, seq_len_norm): + super().__init__() + self.seq_len_norm = seq_len_norm + + def forward(self, x, target, length): + """ + Args: + x: A Variable containing a FloatTensor of size + (batch, max_len, dim) which contains the + unnormalized probability for each class. + target: A Variable containing a LongTensor of size + (batch, max_len, dim) which contains the index of the true + class for each corresponding step. + length: A Variable containing a LongTensor of size (batch,) + which contains the length of each data in a batch. + Shapes: + - x: :math:`[B, T, D]` + - target: :math:`[B, T, D]` + - length: :math:`B` + Returns: + loss: An average loss value in range [0, 1] masked by the length. + """ + # mask: (batch, max_len, 1) + target.requires_grad = False + mask = sequence_mask(sequence_length=length, max_len=target.size(1)).unsqueeze(2).float() + if self.seq_len_norm: + norm_w = mask / mask.sum(dim=1, keepdim=True) + out_weights = norm_w.div(target.shape[0] * target.shape[2]) + mask = mask.expand_as(x) + loss = functional.mse_loss(x * mask, target * mask, reduction="none") + loss = loss.mul(out_weights.to(loss.device)).sum() + else: + mask = mask.expand_as(x) + loss = functional.mse_loss(x * mask, target * mask, reduction="sum") + loss = loss / mask.sum() + return loss + + +def sample_wise_min_max(x: torch.Tensor, mask: torch.Tensor) -> torch.Tensor: + """Min-Max normalize tensor through first dimension + Shapes: + - x: :math:`[B, D1, D2]` + - m: :math:`[B, D1, 1]` + """ + maximum = torch.amax(x.masked_fill(~mask, 0), dim=(1, 2), keepdim=True) + minimum = torch.amin(x.masked_fill(~mask, np.inf), dim=(1, 2), keepdim=True) + return (x - minimum) / (maximum - minimum + 1e-8) + + +class SSIMLoss(torch.nn.Module): + """SSIM loss as (1 - SSIM) + SSIM is explained here https://en.wikipedia.org/wiki/Structural_similarity + """ + + def __init__(self): + super().__init__() + self.loss_func = _SSIMLoss() + + def forward(self, y_hat, y, length): + """ + Args: + y_hat (tensor): model prediction values. + y (tensor): target values. + length (tensor): length of each sample in a batch for masking. + + Shapes: + y_hat: B x T X D + y: B x T x D + length: B + + Returns: + loss: An average loss value in range [0, 1] masked by the length. + """ + mask = sequence_mask(sequence_length=length, max_len=y.size(1)).unsqueeze(2) + y_norm = sample_wise_min_max(y, mask) + y_hat_norm = sample_wise_min_max(y_hat, mask) + ssim_loss = self.loss_func((y_norm * mask).unsqueeze(1), (y_hat_norm * mask).unsqueeze(1)) + + if ssim_loss.item() > 1.0: + print(f" > SSIM loss is out-of-range {ssim_loss.item()}, setting it 1.0") + ssim_loss = torch.tensor(1.0, device=ssim_loss.device) + + if ssim_loss.item() < 0.0: + print(f" > SSIM loss is out-of-range {ssim_loss.item()}, setting it 0.0") + ssim_loss = torch.tensor(0.0, device=ssim_loss.device) + + return ssim_loss + + +class AttentionEntropyLoss(nn.Module): + # pylint: disable=R0201 + def forward(self, align): + """ + Forces attention to be more decisive by penalizing + soft attention weights + """ + entropy = torch.distributions.Categorical(probs=align).entropy() + loss = (entropy / np.log(align.shape[1])).mean() + return loss + + +class BCELossMasked(nn.Module): + """BCE loss with masking. + + Used mainly for stopnet in autoregressive models. + + Args: + pos_weight (float): weight for positive samples. If set < 1, penalize early stopping. Defaults to None. + """ + + def __init__(self, pos_weight: float = None): + super().__init__() + self.register_buffer("pos_weight", torch.tensor([pos_weight])) + + def forward(self, x, target, length): + """ + Args: + x: A Variable containing a FloatTensor of size + (batch, max_len) which contains the + unnormalized probability for each class. + target: A Variable containing a LongTensor of size + (batch, max_len) which contains the index of the true + class for each corresponding step. + length: A Variable containing a LongTensor of size (batch,) + which contains the length of each data in a batch. + Shapes: + x: B x T + target: B x T + length: B + Returns: + loss: An average loss value in range [0, 1] masked by the length. + """ + target.requires_grad = False + if length is not None: + # mask: (batch, max_len, 1) + mask = sequence_mask(sequence_length=length, max_len=target.size(1)) + num_items = mask.sum() + loss = functional.binary_cross_entropy_with_logits( + x.masked_select(mask), + target.masked_select(mask), + pos_weight=self.pos_weight.to(x.device), + reduction="sum", + ) + else: + loss = functional.binary_cross_entropy_with_logits( + x, target, pos_weight=self.pos_weight.to(x.device), reduction="sum" + ) + num_items = torch.numel(x) + loss = loss / num_items + return loss + + +class DifferentialSpectralLoss(nn.Module): + """Differential Spectral Loss + https://arxiv.org/ftp/arxiv/papers/1909/1909.10302.pdf""" + + def __init__(self, loss_func): + super().__init__() + self.loss_func = loss_func + + def forward(self, x, target, length=None): + """ + Shapes: + x: B x T + target: B x T + length: B + Returns: + loss: An average loss value in range [0, 1] masked by the length. + """ + x_diff = x[:, 1:] - x[:, :-1] + target_diff = target[:, 1:] - target[:, :-1] + if length is None: + return self.loss_func(x_diff, target_diff) + return self.loss_func(x_diff, target_diff, length - 1) + + +class GuidedAttentionLoss(torch.nn.Module): + def __init__(self, sigma=0.4): + super().__init__() + self.sigma = sigma + + def _make_ga_masks(self, ilens, olens): + B = len(ilens) + max_ilen = max(ilens) + max_olen = max(olens) + ga_masks = torch.zeros((B, max_olen, max_ilen)) + for idx, (ilen, olen) in enumerate(zip(ilens, olens)): + ga_masks[idx, :olen, :ilen] = self._make_ga_mask(ilen, olen, self.sigma) + return ga_masks + + def forward(self, att_ws, ilens, olens): + ga_masks = self._make_ga_masks(ilens, olens).to(att_ws.device) + seq_masks = self._make_masks(ilens, olens).to(att_ws.device) + losses = ga_masks * att_ws + loss = torch.mean(losses.masked_select(seq_masks)) + return loss + + @staticmethod + def _make_ga_mask(ilen, olen, sigma): + grid_x, grid_y = torch.meshgrid(torch.arange(olen).to(olen), torch.arange(ilen).to(ilen)) + grid_x, grid_y = grid_x.float(), grid_y.float() + return 1.0 - torch.exp(-((grid_y / ilen - grid_x / olen) ** 2) / (2 * (sigma**2))) + + @staticmethod + def _make_masks(ilens, olens): + in_masks = sequence_mask(ilens) + out_masks = sequence_mask(olens) + return out_masks.unsqueeze(-1) & in_masks.unsqueeze(-2) + + +class Huber(nn.Module): + # pylint: disable=R0201 + def forward(self, x, y, length=None): + """ + Shapes: + x: B x T + y: B x T + length: B + """ + mask = sequence_mask(sequence_length=length, max_len=y.size(1)).unsqueeze(2).float() + return torch.nn.functional.smooth_l1_loss(x * mask, y * mask, reduction="sum") / mask.sum() + + +class ForwardSumLoss(nn.Module): + def __init__(self, blank_logprob=-1): + super().__init__() + self.log_softmax = torch.nn.LogSoftmax(dim=3) + self.ctc_loss = torch.nn.CTCLoss(zero_infinity=True) + self.blank_logprob = blank_logprob + + def forward(self, attn_logprob, in_lens, out_lens): + key_lens = in_lens + query_lens = out_lens + attn_logprob_padded = torch.nn.functional.pad(input=attn_logprob, pad=(1, 0), value=self.blank_logprob) + + total_loss = 0.0 + for bid in range(attn_logprob.shape[0]): + target_seq = torch.arange(1, key_lens[bid] + 1).unsqueeze(0) + curr_logprob = attn_logprob_padded[bid].permute(1, 0, 2)[: query_lens[bid], :, : key_lens[bid] + 1] + + curr_logprob = self.log_softmax(curr_logprob[None])[0] + loss = self.ctc_loss( + curr_logprob, + target_seq, + input_lengths=query_lens[bid : bid + 1], + target_lengths=key_lens[bid : bid + 1], + ) + total_loss = total_loss + loss + + total_loss = total_loss / attn_logprob.shape[0] + return total_loss + + +######################## +# MODEL LOSS LAYERS +######################## + + +class TacotronLoss(torch.nn.Module): + """Collection of Tacotron set-up based on provided config.""" + + def __init__(self, c, ga_sigma=0.4): + super().__init__() + self.stopnet_pos_weight = c.stopnet_pos_weight + self.use_capacitron_vae = c.use_capacitron_vae + if self.use_capacitron_vae: + self.capacitron_capacity = c.capacitron_vae.capacitron_capacity + self.capacitron_vae_loss_alpha = c.capacitron_vae.capacitron_VAE_loss_alpha + self.ga_alpha = c.ga_alpha + self.decoder_diff_spec_alpha = c.decoder_diff_spec_alpha + self.postnet_diff_spec_alpha = c.postnet_diff_spec_alpha + self.decoder_alpha = c.decoder_loss_alpha + self.postnet_alpha = c.postnet_loss_alpha + self.decoder_ssim_alpha = c.decoder_ssim_alpha + self.postnet_ssim_alpha = c.postnet_ssim_alpha + self.config = c + + # postnet and decoder loss + if c.loss_masking: + self.criterion = L1LossMasked(c.seq_len_norm) if c.model in ["Tacotron"] else MSELossMasked(c.seq_len_norm) + else: + self.criterion = nn.L1Loss() if c.model in ["Tacotron"] else nn.MSELoss() + # guided attention loss + if c.ga_alpha > 0: + self.criterion_ga = GuidedAttentionLoss(sigma=ga_sigma) + # differential spectral loss + if c.postnet_diff_spec_alpha > 0 or c.decoder_diff_spec_alpha > 0: + self.criterion_diff_spec = DifferentialSpectralLoss(loss_func=self.criterion) + # ssim loss + if c.postnet_ssim_alpha > 0 or c.decoder_ssim_alpha > 0: + self.criterion_ssim = SSIMLoss() + # stopnet loss + # pylint: disable=not-callable + self.criterion_st = BCELossMasked(pos_weight=torch.tensor(self.stopnet_pos_weight)) if c.stopnet else None + + # For dev pruposes only + self.criterion_capacitron_reconstruction_loss = nn.L1Loss(reduction="sum") + + def forward( + self, + postnet_output, + decoder_output, + mel_input, + linear_input, + stopnet_output, + stopnet_target, + stop_target_length, + capacitron_vae_outputs, + output_lens, + decoder_b_output, + alignments, + alignment_lens, + alignments_backwards, + input_lens, + ): + # decoder outputs linear or mel spectrograms for Tacotron and Tacotron2 + # the target should be set acccordingly + postnet_target = linear_input if self.config.model.lower() in ["tacotron"] else mel_input + + return_dict = {} + # remove lengths if no masking is applied + if not self.config.loss_masking: + output_lens = None + # decoder and postnet losses + if self.config.loss_masking: + if self.decoder_alpha > 0: + decoder_loss = self.criterion(decoder_output, mel_input, output_lens) + if self.postnet_alpha > 0: + postnet_loss = self.criterion(postnet_output, postnet_target, output_lens) + else: + if self.decoder_alpha > 0: + decoder_loss = self.criterion(decoder_output, mel_input) + if self.postnet_alpha > 0: + postnet_loss = self.criterion(postnet_output, postnet_target) + loss = self.decoder_alpha * decoder_loss + self.postnet_alpha * postnet_loss + return_dict["decoder_loss"] = decoder_loss + return_dict["postnet_loss"] = postnet_loss + + if self.use_capacitron_vae: + # extract capacitron vae infos + posterior_distribution, prior_distribution, beta = capacitron_vae_outputs + + # KL divergence term between the posterior and the prior + kl_term = torch.mean(torch.distributions.kl_divergence(posterior_distribution, prior_distribution)) + + # Limit the mutual information between the data and latent space by the variational capacity limit + kl_capacity = kl_term - self.capacitron_capacity + + # pass beta through softplus to keep it positive + beta = torch.nn.functional.softplus(beta)[0] + + # This is the term going to the main ADAM optimiser, we detach beta because + # beta is optimised by a separate, SGD optimiser below + capacitron_vae_loss = beta.detach() * kl_capacity + + # normalize the capacitron_vae_loss as in L1Loss or MSELoss. + # After this, both the standard loss and capacitron_vae_loss will be in the same scale. + # For this reason we don't need use L1Loss and MSELoss in "sum" reduction mode. + # Note: the batch is not considered because the L1Loss was calculated in "sum" mode + # divided by the batch size, So not dividing the capacitron_vae_loss by B is legitimate. + + # get B T D dimension from input + B, T, D = mel_input.size() + # normalize + if self.config.loss_masking: + # if mask loss get T using the mask + T = output_lens.sum() / B + + # Only for dev purposes to be able to compare the reconstruction loss with the values in the + # original Capacitron paper + return_dict["capaciton_reconstruction_loss"] = ( + self.criterion_capacitron_reconstruction_loss(decoder_output, mel_input) / decoder_output.size(0) + ) + kl_capacity + + capacitron_vae_loss = capacitron_vae_loss / (T * D) + capacitron_vae_loss = capacitron_vae_loss * self.capacitron_vae_loss_alpha + + # This is the term to purely optimise beta and to pass into the SGD optimizer + beta_loss = torch.negative(beta) * kl_capacity.detach() + + loss += capacitron_vae_loss + + return_dict["capacitron_vae_loss"] = capacitron_vae_loss + return_dict["capacitron_vae_beta_loss"] = beta_loss + return_dict["capacitron_vae_kl_term"] = kl_term + return_dict["capacitron_beta"] = beta + + stop_loss = ( + self.criterion_st(stopnet_output, stopnet_target, stop_target_length) + if self.config.stopnet + else torch.zeros(1) + ) + loss += stop_loss + return_dict["stopnet_loss"] = stop_loss + + # backward decoder loss (if enabled) + if self.config.bidirectional_decoder: + if self.config.loss_masking: + decoder_b_loss = self.criterion(torch.flip(decoder_b_output, dims=(1,)), mel_input, output_lens) + else: + decoder_b_loss = self.criterion(torch.flip(decoder_b_output, dims=(1,)), mel_input) + decoder_c_loss = torch.nn.functional.l1_loss(torch.flip(decoder_b_output, dims=(1,)), decoder_output) + loss += self.decoder_alpha * (decoder_b_loss + decoder_c_loss) + return_dict["decoder_b_loss"] = decoder_b_loss + return_dict["decoder_c_loss"] = decoder_c_loss + + # double decoder consistency loss (if enabled) + if self.config.double_decoder_consistency: + if self.config.loss_masking: + decoder_b_loss = self.criterion(decoder_b_output, mel_input, output_lens) + else: + decoder_b_loss = self.criterion(decoder_b_output, mel_input) + # decoder_c_loss = torch.nn.functional.l1_loss(decoder_b_output, decoder_output) + attention_c_loss = torch.nn.functional.l1_loss(alignments, alignments_backwards) + loss += self.decoder_alpha * (decoder_b_loss + attention_c_loss) + return_dict["decoder_coarse_loss"] = decoder_b_loss + return_dict["decoder_ddc_loss"] = attention_c_loss + + # guided attention loss (if enabled) + if self.config.ga_alpha > 0: + ga_loss = self.criterion_ga(alignments, input_lens, alignment_lens) + loss += ga_loss * self.ga_alpha + return_dict["ga_loss"] = ga_loss + + # decoder differential spectral loss + if self.config.decoder_diff_spec_alpha > 0: + decoder_diff_spec_loss = self.criterion_diff_spec(decoder_output, mel_input, output_lens) + loss += decoder_diff_spec_loss * self.decoder_diff_spec_alpha + return_dict["decoder_diff_spec_loss"] = decoder_diff_spec_loss + + # postnet differential spectral loss + if self.config.postnet_diff_spec_alpha > 0: + postnet_diff_spec_loss = self.criterion_diff_spec(postnet_output, postnet_target, output_lens) + loss += postnet_diff_spec_loss * self.postnet_diff_spec_alpha + return_dict["postnet_diff_spec_loss"] = postnet_diff_spec_loss + + # decoder ssim loss + if self.config.decoder_ssim_alpha > 0: + decoder_ssim_loss = self.criterion_ssim(decoder_output, mel_input, output_lens) + loss += decoder_ssim_loss * self.postnet_ssim_alpha + return_dict["decoder_ssim_loss"] = decoder_ssim_loss + + # postnet ssim loss + if self.config.postnet_ssim_alpha > 0: + postnet_ssim_loss = self.criterion_ssim(postnet_output, postnet_target, output_lens) + loss += postnet_ssim_loss * self.postnet_ssim_alpha + return_dict["postnet_ssim_loss"] = postnet_ssim_loss + + return_dict["loss"] = loss + return return_dict + + +class GlowTTSLoss(torch.nn.Module): + def __init__(self): + super().__init__() + self.constant_factor = 0.5 * math.log(2 * math.pi) + + def forward(self, z, means, scales, log_det, y_lengths, o_dur_log, o_attn_dur, x_lengths): + return_dict = {} + # flow loss - neg log likelihood + pz = torch.sum(scales) + 0.5 * torch.sum(torch.exp(-2 * scales) * (z - means) ** 2) + log_mle = self.constant_factor + (pz - torch.sum(log_det)) / (torch.sum(y_lengths) * z.shape[2]) + # duration loss - MSE + loss_dur = torch.sum((o_dur_log - o_attn_dur) ** 2) / torch.sum(x_lengths) + # duration loss - huber loss + # loss_dur = torch.nn.functional.smooth_l1_loss(o_dur_log, o_attn_dur, reduction="sum") / torch.sum(x_lengths) + return_dict["loss"] = log_mle + loss_dur + return_dict["log_mle"] = log_mle + return_dict["loss_dur"] = loss_dur + + # check if any loss is NaN + for key, loss in return_dict.items(): + if torch.isnan(loss): + raise RuntimeError(f" [!] NaN loss with {key}.") + return return_dict + + +def mse_loss_custom(x, y): + """MSE loss using the torch back-end without reduction. + It uses less VRAM than the raw code""" + expanded_x, expanded_y = torch.broadcast_tensors(x, y) + return torch._C._nn.mse_loss(expanded_x, expanded_y, 0) # pylint: disable=protected-access, c-extension-no-member + + +class MDNLoss(nn.Module): + """Mixture of Density Network Loss as described in https://arxiv.org/pdf/2003.01950.pdf.""" + + def forward(self, logp, text_lengths, mel_lengths): # pylint: disable=no-self-use + """ + Shapes: + mu: [B, D, T] + log_sigma: [B, D, T] + mel_spec: [B, D, T] + """ + B, T_seq, T_mel = logp.shape + log_alpha = logp.new_ones(B, T_seq, T_mel) * (-1e4) + log_alpha[:, 0, 0] = logp[:, 0, 0] + for t in range(1, T_mel): + prev_step = torch.cat( + [log_alpha[:, :, t - 1 : t], functional.pad(log_alpha[:, :, t - 1 : t], (0, 0, 1, -1), value=-1e4)], + dim=-1, + ) + log_alpha[:, :, t] = torch.logsumexp(prev_step + 1e-4, dim=-1) + logp[:, :, t] + alpha_last = log_alpha[torch.arange(B), text_lengths - 1, mel_lengths - 1] + mdn_loss = -alpha_last.mean() / T_seq + return mdn_loss # , log_prob_matrix + + +class AlignTTSLoss(nn.Module): + """Modified AlignTTS Loss. + Computes + - L1 and SSIM losses from output spectrograms. + - Huber loss for duration predictor. + - MDNLoss for Mixture of Density Network. + + All loss values are aggregated by a weighted sum of the alpha values. + + Args: + c (dict): TTS model configuration. + """ + + def __init__(self, c): + super().__init__() + self.mdn_loss = MDNLoss() + self.spec_loss = MSELossMasked(False) + self.ssim = SSIMLoss() + self.dur_loss = MSELossMasked(False) + + self.ssim_alpha = c.ssim_alpha + self.dur_loss_alpha = c.dur_loss_alpha + self.spec_loss_alpha = c.spec_loss_alpha + self.mdn_alpha = c.mdn_alpha + + def forward( + self, logp, decoder_output, decoder_target, decoder_output_lens, dur_output, dur_target, input_lens, phase + ): + # ssim_alpha, dur_loss_alpha, spec_loss_alpha, mdn_alpha = self.set_alphas(step) + spec_loss, ssim_loss, dur_loss, mdn_loss = 0, 0, 0, 0 + if phase == 0: + mdn_loss = self.mdn_loss(logp, input_lens, decoder_output_lens) + elif phase == 1: + spec_loss = self.spec_loss(decoder_output, decoder_target, decoder_output_lens) + ssim_loss = self.ssim(decoder_output, decoder_target, decoder_output_lens) + elif phase == 2: + mdn_loss = self.mdn_loss(logp, input_lens, decoder_output_lens) + spec_loss = self.spec_lossX(decoder_output, decoder_target, decoder_output_lens) + ssim_loss = self.ssim(decoder_output, decoder_target, decoder_output_lens) + elif phase == 3: + dur_loss = self.dur_loss(dur_output.unsqueeze(2), dur_target.unsqueeze(2), input_lens) + else: + mdn_loss = self.mdn_loss(logp, input_lens, decoder_output_lens) + spec_loss = self.spec_loss(decoder_output, decoder_target, decoder_output_lens) + ssim_loss = self.ssim(decoder_output, decoder_target, decoder_output_lens) + dur_loss = self.dur_loss(dur_output.unsqueeze(2), dur_target.unsqueeze(2), input_lens) + loss = ( + self.spec_loss_alpha * spec_loss + + self.ssim_alpha * ssim_loss + + self.dur_loss_alpha * dur_loss + + self.mdn_alpha * mdn_loss + ) + return {"loss": loss, "loss_l1": spec_loss, "loss_ssim": ssim_loss, "loss_dur": dur_loss, "mdn_loss": mdn_loss} + + +class VitsGeneratorLoss(nn.Module): + def __init__(self, c: Coqpit): + super().__init__() + self.kl_loss_alpha = c.kl_loss_alpha + self.gen_loss_alpha = c.gen_loss_alpha + self.feat_loss_alpha = c.feat_loss_alpha + self.dur_loss_alpha = c.dur_loss_alpha + self.mel_loss_alpha = c.mel_loss_alpha + self.spk_encoder_loss_alpha = c.speaker_encoder_loss_alpha + self.stft = TorchSTFT( + c.audio.fft_size, + c.audio.hop_length, + c.audio.win_length, + sample_rate=c.audio.sample_rate, + mel_fmin=c.audio.mel_fmin, + mel_fmax=c.audio.mel_fmax, + n_mels=c.audio.num_mels, + use_mel=True, + do_amp_to_db=True, + ) + + @staticmethod + def feature_loss(feats_real, feats_generated): + loss = 0 + for dr, dg in zip(feats_real, feats_generated): + for rl, gl in zip(dr, dg): + rl = rl.float().detach() + gl = gl.float() + loss += torch.mean(torch.abs(rl - gl)) + return loss * 2 + + @staticmethod + def generator_loss(scores_fake): + loss = 0 + gen_losses = [] + for dg in scores_fake: + dg = dg.float() + l = torch.mean((1 - dg) ** 2) + gen_losses.append(l) + loss += l + + return loss, gen_losses + + @staticmethod + def kl_loss(z_p, logs_q, m_p, logs_p, z_mask): + """ + z_p, logs_q: [b, h, t_t] + m_p, logs_p: [b, h, t_t] + """ + z_p = z_p.float() + logs_q = logs_q.float() + m_p = m_p.float() + logs_p = logs_p.float() + z_mask = z_mask.float() + + kl = logs_p - logs_q - 0.5 + kl += 0.5 * ((z_p - m_p) ** 2) * torch.exp(-2.0 * logs_p) + kl = torch.sum(kl * z_mask) + l = kl / torch.sum(z_mask) + return l + + @staticmethod + def cosine_similarity_loss(gt_spk_emb, syn_spk_emb): + return -torch.nn.functional.cosine_similarity(gt_spk_emb, syn_spk_emb).mean() + + def forward( + self, + mel_slice, + mel_slice_hat, + z_p, + logs_q, + m_p, + logs_p, + z_len, + scores_disc_fake, + feats_disc_fake, + feats_disc_real, + loss_duration, + use_speaker_encoder_as_loss=False, + gt_spk_emb=None, + syn_spk_emb=None, + ): + """ + Shapes: + - mel_slice : :math:`[B, 1, T]` + - mel_slice_hat: :math:`[B, 1, T]` + - z_p: :math:`[B, C, T]` + - logs_q: :math:`[B, C, T]` + - m_p: :math:`[B, C, T]` + - logs_p: :math:`[B, C, T]` + - z_len: :math:`[B]` + - scores_disc_fake[i]: :math:`[B, C]` + - feats_disc_fake[i][j]: :math:`[B, C, T', P]` + - feats_disc_real[i][j]: :math:`[B, C, T', P]` + """ + loss = 0.0 + return_dict = {} + z_mask = sequence_mask(z_len).float() + # compute losses + loss_kl = ( + self.kl_loss(z_p=z_p, logs_q=logs_q, m_p=m_p, logs_p=logs_p, z_mask=z_mask.unsqueeze(1)) + * self.kl_loss_alpha + ) + loss_feat = ( + self.feature_loss(feats_real=feats_disc_real, feats_generated=feats_disc_fake) * self.feat_loss_alpha + ) + loss_gen = self.generator_loss(scores_fake=scores_disc_fake)[0] * self.gen_loss_alpha + loss_mel = torch.nn.functional.l1_loss(mel_slice, mel_slice_hat) * self.mel_loss_alpha + loss_duration = torch.sum(loss_duration.float()) * self.dur_loss_alpha + loss = loss_kl + loss_feat + loss_mel + loss_gen + loss_duration + + if use_speaker_encoder_as_loss: + loss_se = self.cosine_similarity_loss(gt_spk_emb, syn_spk_emb) * self.spk_encoder_loss_alpha + loss = loss + loss_se + return_dict["loss_spk_encoder"] = loss_se + # pass losses to the dict + return_dict["loss_gen"] = loss_gen + return_dict["loss_kl"] = loss_kl + return_dict["loss_feat"] = loss_feat + return_dict["loss_mel"] = loss_mel + return_dict["loss_duration"] = loss_duration + return_dict["loss"] = loss + return return_dict + + +class VitsDiscriminatorLoss(nn.Module): + def __init__(self, c: Coqpit): + super().__init__() + self.disc_loss_alpha = c.disc_loss_alpha + + @staticmethod + def discriminator_loss(scores_real, scores_fake): + loss = 0 + real_losses = [] + fake_losses = [] + for dr, dg in zip(scores_real, scores_fake): + dr = dr.float() + dg = dg.float() + real_loss = torch.mean((1 - dr) ** 2) + fake_loss = torch.mean(dg**2) + loss += real_loss + fake_loss + real_losses.append(real_loss.item()) + fake_losses.append(fake_loss.item()) + return loss, real_losses, fake_losses + + def forward(self, scores_disc_real, scores_disc_fake): + loss = 0.0 + return_dict = {} + loss_disc, loss_disc_real, _ = self.discriminator_loss( + scores_real=scores_disc_real, scores_fake=scores_disc_fake + ) + return_dict["loss_disc"] = loss_disc * self.disc_loss_alpha + loss = loss + return_dict["loss_disc"] + return_dict["loss"] = loss + + for i, ldr in enumerate(loss_disc_real): + return_dict[f"loss_disc_real_{i}"] = ldr + return return_dict + + +class ForwardTTSLoss(nn.Module): + """Generic configurable ForwardTTS loss.""" + + def __init__(self, c): + super().__init__() + if c.spec_loss_type == "mse": + self.spec_loss = MSELossMasked(False) + elif c.spec_loss_type == "l1": + self.spec_loss = L1LossMasked(False) + else: + raise ValueError(" [!] Unknown spec_loss_type {}".format(c.spec_loss_type)) + + if c.duration_loss_type == "mse": + self.dur_loss = MSELossMasked(False) + elif c.duration_loss_type == "l1": + self.dur_loss = L1LossMasked(False) + elif c.duration_loss_type == "huber": + self.dur_loss = Huber() + else: + raise ValueError(" [!] Unknown duration_loss_type {}".format(c.duration_loss_type)) + + if c.model_args.use_aligner: + self.aligner_loss = ForwardSumLoss() + self.aligner_loss_alpha = c.aligner_loss_alpha + + if c.model_args.use_pitch: + self.pitch_loss = MSELossMasked(False) + self.pitch_loss_alpha = c.pitch_loss_alpha + + if c.model_args.use_energy: + self.energy_loss = MSELossMasked(False) + self.energy_loss_alpha = c.energy_loss_alpha + + if c.use_ssim_loss: + self.ssim = SSIMLoss() if c.use_ssim_loss else None + self.ssim_loss_alpha = c.ssim_loss_alpha + + self.spec_loss_alpha = c.spec_loss_alpha + self.dur_loss_alpha = c.dur_loss_alpha + self.binary_alignment_loss_alpha = c.binary_align_loss_alpha + + @staticmethod + def _binary_alignment_loss(alignment_hard, alignment_soft): + """Binary loss that forces soft alignments to match the hard alignments as + explained in `https://arxiv.org/pdf/2108.10447.pdf`. + """ + log_sum = torch.log(torch.clamp(alignment_soft[alignment_hard == 1], min=1e-12)).sum() + return -log_sum / alignment_hard.sum() + + def forward( + self, + decoder_output, + decoder_target, + decoder_output_lens, + dur_output, + dur_target, + pitch_output, + pitch_target, + energy_output, + energy_target, + input_lens, + alignment_logprob=None, + alignment_hard=None, + alignment_soft=None, + binary_loss_weight=None, + ): + loss = 0 + return_dict = {} + if hasattr(self, "ssim_loss") and self.ssim_loss_alpha > 0: + ssim_loss = self.ssim(decoder_output, decoder_target, decoder_output_lens) + loss = loss + self.ssim_loss_alpha * ssim_loss + return_dict["loss_ssim"] = self.ssim_loss_alpha * ssim_loss + + if self.spec_loss_alpha > 0: + spec_loss = self.spec_loss(decoder_output, decoder_target, decoder_output_lens) + loss = loss + self.spec_loss_alpha * spec_loss + return_dict["loss_spec"] = self.spec_loss_alpha * spec_loss + + if self.dur_loss_alpha > 0: + log_dur_tgt = torch.log(dur_target.float() + 1) + dur_loss = self.dur_loss(dur_output[:, :, None], log_dur_tgt[:, :, None], input_lens) + loss = loss + self.dur_loss_alpha * dur_loss + return_dict["loss_dur"] = self.dur_loss_alpha * dur_loss + + if hasattr(self, "pitch_loss") and self.pitch_loss_alpha > 0: + pitch_loss = self.pitch_loss(pitch_output.transpose(1, 2), pitch_target.transpose(1, 2), input_lens) + loss = loss + self.pitch_loss_alpha * pitch_loss + return_dict["loss_pitch"] = self.pitch_loss_alpha * pitch_loss + + if hasattr(self, "energy_loss") and self.energy_loss_alpha > 0: + energy_loss = self.energy_loss(energy_output.transpose(1, 2), energy_target.transpose(1, 2), input_lens) + loss = loss + self.energy_loss_alpha * energy_loss + return_dict["loss_energy"] = self.energy_loss_alpha * energy_loss + + if hasattr(self, "aligner_loss") and self.aligner_loss_alpha > 0: + aligner_loss = self.aligner_loss(alignment_logprob, input_lens, decoder_output_lens) + loss = loss + self.aligner_loss_alpha * aligner_loss + return_dict["loss_aligner"] = self.aligner_loss_alpha * aligner_loss + + if self.binary_alignment_loss_alpha > 0 and alignment_hard is not None: + binary_alignment_loss = self._binary_alignment_loss(alignment_hard, alignment_soft) + loss = loss + self.binary_alignment_loss_alpha * binary_alignment_loss + if binary_loss_weight: + return_dict["loss_binary_alignment"] = ( + self.binary_alignment_loss_alpha * binary_alignment_loss * binary_loss_weight + ) + else: + return_dict["loss_binary_alignment"] = self.binary_alignment_loss_alpha * binary_alignment_loss + + return_dict["loss"] = loss + return return_dict diff --git a/TTS/TTS/tts/layers/overflow/__init__.py b/TTS/TTS/tts/layers/overflow/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/TTS/TTS/tts/layers/overflow/common_layers.py b/TTS/TTS/tts/layers/overflow/common_layers.py new file mode 100644 index 0000000000000000000000000000000000000000..b036dd1bda92fb709f0cce796cf5a668a1c081df --- /dev/null +++ b/TTS/TTS/tts/layers/overflow/common_layers.py @@ -0,0 +1,323 @@ +from typing import List, Tuple + +import torch +import torch.nn.functional as F +from torch import nn +from tqdm.auto import tqdm + +from TTS.tts.layers.tacotron.common_layers import Linear +from TTS.tts.layers.tacotron.tacotron2 import ConvBNBlock + + +class Encoder(nn.Module): + r"""Neural HMM Encoder + + Same as Tacotron 2 encoder but increases the input length by states per phone + + Args: + num_chars (int): Number of characters in the input. + state_per_phone (int): Number of states per phone. + in_out_channels (int): number of input and output channels. + n_convolutions (int): number of convolutional layers. + """ + + def __init__(self, num_chars, state_per_phone, in_out_channels=512, n_convolutions=3): + super().__init__() + + self.state_per_phone = state_per_phone + self.in_out_channels = in_out_channels + + self.emb = nn.Embedding(num_chars, in_out_channels) + self.convolutions = nn.ModuleList() + for _ in range(n_convolutions): + self.convolutions.append(ConvBNBlock(in_out_channels, in_out_channels, 5, "relu")) + self.lstm = nn.LSTM( + in_out_channels, + int(in_out_channels / 2) * state_per_phone, + num_layers=1, + batch_first=True, + bias=True, + bidirectional=True, + ) + self.rnn_state = None + + def forward(self, x: torch.FloatTensor, x_len: torch.LongTensor) -> Tuple[torch.FloatTensor, torch.LongTensor]: + """Forward pass to the encoder. + + Args: + x (torch.FloatTensor): input text indices. + - shape: :math:`(b, T_{in})` + x_len (torch.LongTensor): input text lengths. + - shape: :math:`(b,)` + + Returns: + Tuple[torch.FloatTensor, torch.LongTensor]: encoder outputs and output lengths. + -shape: :math:`((b, T_{in} * states_per_phone, in_out_channels), (b,))` + """ + b, T = x.shape + o = self.emb(x).transpose(1, 2) + for layer in self.convolutions: + o = layer(o) + o = o.transpose(1, 2) + o = nn.utils.rnn.pack_padded_sequence(o, x_len.cpu(), batch_first=True) + self.lstm.flatten_parameters() + o, _ = self.lstm(o) + o, _ = nn.utils.rnn.pad_packed_sequence(o, batch_first=True) + o = o.reshape(b, T * self.state_per_phone, self.in_out_channels) + x_len = x_len * self.state_per_phone + return o, x_len + + def inference(self, x, x_len): + """Inference to the encoder. + + Args: + x (torch.FloatTensor): input text indices. + - shape: :math:`(b, T_{in})` + x_len (torch.LongTensor): input text lengths. + - shape: :math:`(b,)` + + Returns: + Tuple[torch.FloatTensor, torch.LongTensor]: encoder outputs and output lengths. + -shape: :math:`((b, T_{in} * states_per_phone, in_out_channels), (b,))` + """ + b, T = x.shape + o = self.emb(x).transpose(1, 2) + for layer in self.convolutions: + o = layer(o) + o = o.transpose(1, 2) + # self.lstm.flatten_parameters() + o, _ = self.lstm(o) + o = o.reshape(b, T * self.state_per_phone, self.in_out_channels) + x_len = x_len * self.state_per_phone + return o, x_len + + +class ParameterModel(nn.Module): + r"""Main neural network of the outputnet + + Note: Do not put dropout layers here, the model will not converge. + + Args: + outputnet_size (List[int]): the architecture of the parameter model + input_size (int): size of input for the first layer + output_size (int): size of output i.e size of the feature dim + frame_channels (int): feature dim to set the flat start bias + flat_start_params (dict): flat start parameters to set the bias + """ + + def __init__( + self, + outputnet_size: List[int], + input_size: int, + output_size: int, + frame_channels: int, + flat_start_params: dict, + ): + super().__init__() + self.frame_channels = frame_channels + + self.layers = nn.ModuleList( + [Linear(inp, out) for inp, out in zip([input_size] + outputnet_size[:-1], outputnet_size)] + ) + self.last_layer = nn.Linear(outputnet_size[-1], output_size) + self.flat_start_output_layer( + flat_start_params["mean"], flat_start_params["std"], flat_start_params["transition_p"] + ) + + def flat_start_output_layer(self, mean, std, transition_p): + self.last_layer.weight.data.zero_() + self.last_layer.bias.data[0 : self.frame_channels] = mean + self.last_layer.bias.data[self.frame_channels : 2 * self.frame_channels] = OverflowUtils.inverse_softplus(std) + self.last_layer.bias.data[2 * self.frame_channels :] = OverflowUtils.inverse_sigmod(transition_p) + + def forward(self, x): + for layer in self.layers: + x = F.relu(layer(x)) + x = self.last_layer(x) + return x + + +class Outputnet(nn.Module): + r""" + This network takes current state and previous observed values as input + and returns its parameters, mean, standard deviation and probability + of transition to the next state + """ + + def __init__( + self, + encoder_dim: int, + memory_rnn_dim: int, + frame_channels: int, + outputnet_size: List[int], + flat_start_params: dict, + std_floor: float = 1e-2, + ): + super().__init__() + + self.frame_channels = frame_channels + self.flat_start_params = flat_start_params + self.std_floor = std_floor + + input_size = memory_rnn_dim + encoder_dim + output_size = 2 * frame_channels + 1 + + self.parametermodel = ParameterModel( + outputnet_size=outputnet_size, + input_size=input_size, + output_size=output_size, + flat_start_params=flat_start_params, + frame_channels=frame_channels, + ) + + def forward(self, ar_mels, inputs): + r"""Inputs observation and returns the means, stds and transition probability for the current state + + Args: + ar_mel_inputs (torch.FloatTensor): shape (batch, prenet_dim) + states (torch.FloatTensor): (batch, hidden_states, hidden_state_dim) + + Returns: + means: means for the emission observation for each feature + - shape: (B, hidden_states, feature_size) + stds: standard deviations for the emission observation for each feature + - shape: (batch, hidden_states, feature_size) + transition_vectors: transition vector for the current hidden state + - shape: (batch, hidden_states) + """ + batch_size, prenet_dim = ar_mels.shape[0], ar_mels.shape[1] + N = inputs.shape[1] + + ar_mels = ar_mels.unsqueeze(1).expand(batch_size, N, prenet_dim) + ar_mels = torch.cat((ar_mels, inputs), dim=2) + ar_mels = self.parametermodel(ar_mels) + + mean, std, transition_vector = ( + ar_mels[:, :, 0 : self.frame_channels], + ar_mels[:, :, self.frame_channels : 2 * self.frame_channels], + ar_mels[:, :, 2 * self.frame_channels :].squeeze(2), + ) + std = F.softplus(std) + std = self._floor_std(std) + return mean, std, transition_vector + + def _floor_std(self, std): + r""" + It clamps the standard deviation to not to go below some level + This removes the problem when the model tries to cheat for higher likelihoods by converting + one of the gaussians to a point mass. + + Args: + std (float Tensor): tensor containing the standard deviation to be + """ + original_tensor = std.clone().detach() + std = torch.clamp(std, min=self.std_floor) + if torch.any(original_tensor != std): + print( + "[*] Standard deviation was floored! The model is preventing overfitting, nothing serious to worry about" + ) + return std + + +class OverflowUtils: + @staticmethod + def get_data_parameters_for_flat_start( + data_loader: torch.utils.data.DataLoader, out_channels: int, states_per_phone: int + ): + """Generates data parameters for flat starting the HMM. + + Args: + data_loader (torch.utils.data.Dataloader): _description_ + out_channels (int): mel spectrogram channels + states_per_phone (_type_): HMM states per phone + """ + + # State related information for transition_p + total_state_len = 0 + total_mel_len = 0 + + # Useful for data mean an std + total_mel_sum = 0 + total_mel_sq_sum = 0 + + for batch in tqdm(data_loader, leave=False): + text_lengths = batch["token_id_lengths"] + mels = batch["mel"] + mel_lengths = batch["mel_lengths"] + + total_state_len += torch.sum(text_lengths) + total_mel_len += torch.sum(mel_lengths) + total_mel_sum += torch.sum(mels) + total_mel_sq_sum += torch.sum(torch.pow(mels, 2)) + + data_mean = total_mel_sum / (total_mel_len * out_channels) + data_std = torch.sqrt((total_mel_sq_sum / (total_mel_len * out_channels)) - torch.pow(data_mean, 2)) + average_num_states = total_state_len / len(data_loader.dataset) + average_mel_len = total_mel_len / len(data_loader.dataset) + average_duration_each_state = average_mel_len / average_num_states + init_transition_prob = 1 / average_duration_each_state + + return data_mean, data_std, (init_transition_prob * states_per_phone) + + @staticmethod + @torch.no_grad() + def update_flat_start_transition(model, transition_p): + model.neural_hmm.output_net.parametermodel.flat_start_output_layer(0.0, 1.0, transition_p) + + @staticmethod + def log_clamped(x, eps=1e-04): + """ + Avoids the log(0) problem + + Args: + x (torch.tensor): input tensor + eps (float, optional): lower bound. Defaults to 1e-04. + + Returns: + torch.tensor: :math:`log(x)` + """ + clamped_x = torch.clamp(x, min=eps) + return torch.log(clamped_x) + + @staticmethod + def inverse_sigmod(x): + r""" + Inverse of the sigmoid function + """ + if not torch.is_tensor(x): + x = torch.tensor(x) + return OverflowUtils.log_clamped(x / (1.0 - x)) + + @staticmethod + def inverse_softplus(x): + r""" + Inverse of the softplus function + """ + if not torch.is_tensor(x): + x = torch.tensor(x) + return OverflowUtils.log_clamped(torch.exp(x) - 1.0) + + @staticmethod + def logsumexp(x, dim): + r""" + Differentiable LogSumExp: Does not creates nan gradients + when all the inputs are -inf yeilds 0 gradients. + Args: + x : torch.Tensor - The input tensor + dim: int - The dimension on which the log sum exp has to be applied + """ + + m, _ = x.max(dim=dim) + mask = m == -float("inf") + s = (x - m.masked_fill_(mask, 0).unsqueeze(dim=dim)).exp().sum(dim=dim) + return s.masked_fill_(mask, 1).log() + m.masked_fill_(mask, -float("inf")) + + @staticmethod + def double_pad(list_of_different_shape_tensors): + r""" + Pads the list of tensors in 2 dimensions + """ + second_dim_lens = [len(a) for a in [i[0] for i in list_of_different_shape_tensors]] + second_dim_max = max(second_dim_lens) + padded_x = [F.pad(x, (0, second_dim_max - len(x[0]))) for x in list_of_different_shape_tensors] + return nn.utils.rnn.pad_sequence(padded_x, batch_first=True) diff --git a/TTS/TTS/tts/layers/overflow/decoder.py b/TTS/TTS/tts/layers/overflow/decoder.py new file mode 100644 index 0000000000000000000000000000000000000000..4cd7ae88068cfaffe179f2e61354cc7eb760268c --- /dev/null +++ b/TTS/TTS/tts/layers/overflow/decoder.py @@ -0,0 +1,81 @@ +import torch +from torch import nn + +from TTS.tts.layers.glow_tts.decoder import Decoder as GlowDecoder +from TTS.tts.utils.helpers import sequence_mask + + +class Decoder(nn.Module): + """Uses glow decoder with some modifications. + :: + + Squeeze -> ActNorm -> InvertibleConv1x1 -> AffineCoupling -> Unsqueeze + + Args: + in_channels (int): channels of input tensor. + hidden_channels (int): hidden decoder channels. + kernel_size (int): Coupling block kernel size. (Wavenet filter kernel size.) + dilation_rate (int): rate to increase dilation by each layer in a decoder block. + num_flow_blocks (int): number of decoder blocks. + num_coupling_layers (int): number coupling layers. (number of wavenet layers.) + dropout_p (float): wavenet dropout rate. + sigmoid_scale (bool): enable/disable sigmoid scaling in coupling layer. + """ + + def __init__( + self, + in_channels, + hidden_channels, + kernel_size, + dilation_rate, + num_flow_blocks, + num_coupling_layers, + dropout_p=0.0, + num_splits=4, + num_squeeze=2, + sigmoid_scale=False, + c_in_channels=0, + ): + super().__init__() + + self.glow_decoder = GlowDecoder( + in_channels, + hidden_channels, + kernel_size, + dilation_rate, + num_flow_blocks, + num_coupling_layers, + dropout_p, + num_splits, + num_squeeze, + sigmoid_scale, + c_in_channels, + ) + self.n_sqz = num_squeeze + + def forward(self, x, x_len, g=None, reverse=False): + """ + Input shapes: + - x: :math:`[B, C, T]` + - x_len :math:`[B]` + - g: :math:`[B, C]` + + Output shapes: + - x: :math:`[B, C, T]` + - x_len :math:`[B]` + - logget_tot :math:`[B]` + """ + x, x_len, x_max_len = self.preprocess(x, x_len, x_len.max()) + x_mask = torch.unsqueeze(sequence_mask(x_len, x_max_len), 1).to(x.dtype) + x, logdet_tot = self.glow_decoder(x, x_mask, g, reverse) + return x, x_len, logdet_tot + + def preprocess(self, y, y_lengths, y_max_length): + if y_max_length is not None: + y_max_length = torch.div(y_max_length, self.n_sqz, rounding_mode="floor") * self.n_sqz + y = y[:, :, :y_max_length] + y_lengths = torch.div(y_lengths, self.n_sqz, rounding_mode="floor") * self.n_sqz + return y, y_lengths, y_max_length + + def store_inverse(self): + self.glow_decoder.store_inverse() diff --git a/TTS/TTS/tts/layers/overflow/neural_hmm.py b/TTS/TTS/tts/layers/overflow/neural_hmm.py new file mode 100644 index 0000000000000000000000000000000000000000..0631ba98c00029e9871c965e4c7f465aa32bc406 --- /dev/null +++ b/TTS/TTS/tts/layers/overflow/neural_hmm.py @@ -0,0 +1,553 @@ +from typing import List + +import torch +import torch.distributions as tdist +import torch.nn.functional as F +from torch import nn +from torch.utils.checkpoint import checkpoint + +from TTS.tts.layers.overflow.common_layers import Outputnet, OverflowUtils +from TTS.tts.layers.tacotron.common_layers import Prenet +from TTS.tts.utils.helpers import sequence_mask + + +class NeuralHMM(nn.Module): + """Autoregressive left to right HMM model primarily used in "Neural HMMs are all you need (for high-quality attention-free TTS)" + + Paper:: + https://arxiv.org/abs/2108.13320 + + Paper abstract:: + Neural sequence-to-sequence TTS has achieved significantly better output quality than statistical speech synthesis using + HMMs. However, neural TTS is generally not probabilistic and uses non-monotonic attention. Attention failures increase + training time and can make synthesis babble incoherently. This paper describes how the old and new paradigms can be + combined to obtain the advantages of both worlds, by replacing attention in neural TTS with an autoregressive left-right + no-skip hidden Markov model defined by a neural network. Based on this proposal, we modify Tacotron 2 to obtain an + HMM-based neural TTS model with monotonic alignment, trained to maximise the full sequence likelihood without + approximation. We also describe how to combine ideas from classical and contemporary TTS for best results. The resulting + example system is smaller and simpler than Tacotron 2, and learns to speak with fewer iterations and less data, whilst + achieving comparable naturalness prior to the post-net. Our approach also allows easy control over speaking rate. + + Args: + frame_channels (int): Output dimension to generate. + ar_order (int): Autoregressive order of the model. In ablations of Neural HMM it was found that more autoregression while giving more variation hurts naturalness of the synthesised audio. + deterministic_transition (bool): deterministic duration generation based on duration quantiles as defiend in "S. Ronanki, O. Watts, S. King, and G. E. Henter, โ€œMedianbased generation of synthetic speech durations using a nonparametric approach,โ€ in Proc. SLT, 2016.". Defaults to True. + encoder_dim (int): Channels of encoder input and character embedding tensors. Defaults to 512. + prenet_type (str): `original` or `bn`. `original` sets the default Prenet and `bn` uses Batch Normalization version of the Prenet. + prenet_dim (int): Dimension of the Prenet. + prenet_n_layers (int): Number of layers in the Prenet. + prenet_dropout (float): Dropout probability of the Prenet. + prenet_dropout_at_inference (bool): If True, dropout is applied at inference time. + memory_rnn_dim (int): Size of the memory RNN to process output of prenet. + outputnet_size (List[int]): Size of the output network inside the neural HMM. + flat_start_params (dict): Parameters for the flat start initialization of the neural HMM. + std_floor (float): Floor value for the standard deviation of the neural HMM. Prevents model cheating by putting point mass and getting infinite likelihood at any datapoint. + use_grad_checkpointing (bool, optional): Use gradient checkpointing to save memory. Defaults to True. + """ + + def __init__( + self, + frame_channels: int, + ar_order: int, + deterministic_transition: bool, + encoder_dim: int, + prenet_type: str, + prenet_dim: int, + prenet_n_layers: int, + prenet_dropout: float, + prenet_dropout_at_inference: bool, + memory_rnn_dim: int, + outputnet_size: List[int], + flat_start_params: dict, + std_floor: float, + use_grad_checkpointing: bool = True, + ): + super().__init__() + + self.frame_channels = frame_channels + self.ar_order = ar_order + self.deterministic_transition = deterministic_transition + self.prenet_dim = prenet_dim + self.memory_rnn_dim = memory_rnn_dim + self.use_grad_checkpointing = use_grad_checkpointing + + self.transition_model = TransitionModel() + self.emission_model = EmissionModel() + + assert ar_order > 0, f"AR order must be greater than 0 provided {ar_order}" + + self.ar_order = ar_order + self.prenet = Prenet( + in_features=frame_channels * ar_order, + prenet_type=prenet_type, + prenet_dropout=prenet_dropout, + dropout_at_inference=prenet_dropout_at_inference, + out_features=[self.prenet_dim for _ in range(prenet_n_layers)], + bias=False, + ) + self.memory_rnn = nn.LSTMCell(input_size=prenet_dim, hidden_size=memory_rnn_dim) + self.output_net = Outputnet( + encoder_dim, memory_rnn_dim, frame_channels, outputnet_size, flat_start_params, std_floor + ) + self.register_buffer("go_tokens", torch.zeros(ar_order, 1)) + + def forward(self, inputs, inputs_len, mels, mel_lens): + r"""HMM forward algorithm for training uses logarithmic version of Rabiner (1989) forward algorithm. + + Args: + inputs (torch.FloatTensor): Encoder outputs + inputs_len (torch.LongTensor): Encoder output lengths + mels (torch.FloatTensor): Mel inputs + mel_lens (torch.LongTensor): Length of mel inputs + + Shapes: + - inputs: (B, T, D_out_enc) + - inputs_len: (B) + - mels: (B, D_mel, T_mel) + - mel_lens: (B) + + Returns: + log_prob (torch.FloatTensor): Log probability of the sequence + """ + # Get dimensions of inputs + batch_size, N, _ = inputs.shape + T_max = torch.max(mel_lens) + mels = mels.permute(0, 2, 1) + + # Intialize forward algorithm + log_state_priors = self._initialize_log_state_priors(inputs) + log_c, log_alpha_scaled, transition_matrix, means = self._initialize_forward_algorithm_variables(mels, N) + + # Initialize autoregression elements + ar_inputs = self._add_go_token(mels) + h_memory, c_memory = self._init_lstm_states(batch_size, self.memory_rnn_dim, mels) + + for t in range(T_max): + # Process Autoregression + h_memory, c_memory = self._process_ar_timestep(t, ar_inputs, h_memory, c_memory) + # Get mean, std and transition vector from decoder for this timestep + # Note: Gradient checkpointing currently doesn't works with multiple gpus inside a loop + if self.use_grad_checkpointing and self.training: + mean, std, transition_vector = checkpoint(self.output_net, h_memory, inputs) + else: + mean, std, transition_vector = self.output_net(h_memory, inputs) + + if t == 0: + log_alpha_temp = log_state_priors + self.emission_model(mels[:, 0], mean, std, inputs_len) + else: + log_alpha_temp = self.emission_model(mels[:, t], mean, std, inputs_len) + self.transition_model( + log_alpha_scaled[:, t - 1, :], transition_vector, inputs_len + ) + log_c[:, t] = torch.logsumexp(log_alpha_temp, dim=1) + log_alpha_scaled[:, t, :] = log_alpha_temp - log_c[:, t].unsqueeze(1) + transition_matrix[:, t] = transition_vector # needed for absorption state calculation + + # Save for plotting + means.append(mean.detach()) + + log_c, log_alpha_scaled = self._mask_lengths(mel_lens, log_c, log_alpha_scaled) + + sum_final_log_c = self.get_absorption_state_scaling_factor( + mel_lens, log_alpha_scaled, inputs_len, transition_matrix + ) + + log_probs = torch.sum(log_c, dim=1) + sum_final_log_c + + return log_probs, log_alpha_scaled, transition_matrix, means + + @staticmethod + def _mask_lengths(mel_lens, log_c, log_alpha_scaled): + """ + Mask the lengths of the forward variables so that the variable lenghts + do not contribute in the loss calculation + Args: + mel_inputs (torch.FloatTensor): (batch, T, frame_channels) + mel_inputs_lengths (torch.IntTensor): (batch) + log_c (torch.FloatTensor): (batch, T) + Returns: + log_c (torch.FloatTensor) : scaled probabilities (batch, T) + log_alpha_scaled (torch.FloatTensor): forward probabilities (batch, T, N) + """ + mask_log_c = sequence_mask(mel_lens) + log_c = log_c * mask_log_c + mask_log_alpha_scaled = mask_log_c.unsqueeze(2) + log_alpha_scaled = log_alpha_scaled * mask_log_alpha_scaled + return log_c, log_alpha_scaled + + def _process_ar_timestep( + self, + t, + ar_inputs, + h_memory, + c_memory, + ): + """ + Process autoregression in timestep + 1. At a specific t timestep + 2. Perform data dropout if applied (we did not use it) + 3. Run the autoregressive frame through the prenet (has dropout) + 4. Run the prenet output through the post prenet rnn + + Args: + t (int): mel-spec timestep + ar_inputs (torch.FloatTensor): go-token appended mel-spectrograms + - shape: (b, D_out, T_out) + h_post_prenet (torch.FloatTensor): previous timestep rnn hidden state + - shape: (b, memory_rnn_dim) + c_post_prenet (torch.FloatTensor): previous timestep rnn cell state + - shape: (b, memory_rnn_dim) + + Returns: + h_post_prenet (torch.FloatTensor): rnn hidden state of the current timestep + c_post_prenet (torch.FloatTensor): rnn cell state of the current timestep + """ + prenet_input = ar_inputs[:, t : t + self.ar_order].flatten(1) + memory_inputs = self.prenet(prenet_input) + h_memory, c_memory = self.memory_rnn(memory_inputs, (h_memory, c_memory)) + return h_memory, c_memory + + def _add_go_token(self, mel_inputs): + """Append the go token to create the autoregressive input + Args: + mel_inputs (torch.FloatTensor): (batch_size, T, n_mel_channel) + Returns: + ar_inputs (torch.FloatTensor): (batch_size, T, n_mel_channel) + """ + batch_size, T, _ = mel_inputs.shape + go_tokens = self.go_tokens.unsqueeze(0).expand(batch_size, self.ar_order, self.frame_channels) + ar_inputs = torch.cat((go_tokens, mel_inputs), dim=1)[:, :T] + return ar_inputs + + @staticmethod + def _initialize_forward_algorithm_variables(mel_inputs, N): + r"""Initialize placeholders for forward algorithm variables, to use a stable + version we will use log_alpha_scaled and the scaling constant + + Args: + mel_inputs (torch.FloatTensor): (b, T_max, frame_channels) + N (int): number of states + Returns: + log_c (torch.FloatTensor): Scaling constant (b, T_max) + """ + b, T_max, _ = mel_inputs.shape + log_alpha_scaled = mel_inputs.new_zeros((b, T_max, N)) + log_c = mel_inputs.new_zeros(b, T_max) + transition_matrix = mel_inputs.new_zeros((b, T_max, N)) + + # Saving for plotting later, will not have gradient tapes + means = [] + return log_c, log_alpha_scaled, transition_matrix, means + + @staticmethod + def _init_lstm_states(batch_size, hidden_state_dim, device_tensor): + r""" + Initialize Hidden and Cell states for LSTM Cell + + Args: + batch_size (Int): batch size + hidden_state_dim (Int): dimensions of the h and c + device_tensor (torch.FloatTensor): useful for the device and type + + Returns: + (torch.FloatTensor): shape (batch_size, hidden_state_dim) + can be hidden state for LSTM + (torch.FloatTensor): shape (batch_size, hidden_state_dim) + can be the cell state for LSTM + """ + return ( + device_tensor.new_zeros(batch_size, hidden_state_dim), + device_tensor.new_zeros(batch_size, hidden_state_dim), + ) + + def get_absorption_state_scaling_factor(self, mels_len, log_alpha_scaled, inputs_len, transition_vector): + """Returns the final scaling factor of absorption state + + Args: + mels_len (torch.IntTensor): Input size of mels to + get the last timestep of log_alpha_scaled + log_alpha_scaled (torch.FloatTEnsor): State probabilities + text_lengths (torch.IntTensor): length of the states to + mask the values of states lengths + ( + Useful when the batch has very different lengths, + when the length of an observation is less than + the number of max states, then the log alpha after + the state value is filled with -infs. So we mask + those values so that it only consider the states + which are needed for that length + ) + transition_vector (torch.FloatTensor): transtiion vector for each state per timestep + + Shapes: + - mels_len: (batch_size) + - log_alpha_scaled: (batch_size, N, T) + - text_lengths: (batch_size) + - transition_vector: (batch_size, N, T) + + Returns: + sum_final_log_c (torch.FloatTensor): (batch_size) + + """ + N = torch.max(inputs_len) + max_inputs_len = log_alpha_scaled.shape[2] + state_lengths_mask = sequence_mask(inputs_len, max_len=max_inputs_len) + + last_log_alpha_scaled_index = ( + (mels_len - 1).unsqueeze(-1).expand(-1, N).unsqueeze(1) + ) # Batch X Hidden State Size + last_log_alpha_scaled = torch.gather(log_alpha_scaled, 1, last_log_alpha_scaled_index).squeeze(1) + last_log_alpha_scaled = last_log_alpha_scaled.masked_fill(~state_lengths_mask, -float("inf")) + + last_transition_vector = torch.gather(transition_vector, 1, last_log_alpha_scaled_index).squeeze(1) + last_transition_probability = torch.sigmoid(last_transition_vector) + log_probability_of_transitioning = OverflowUtils.log_clamped(last_transition_probability) + + last_transition_probability_index = self.get_mask_for_last_item(inputs_len, inputs_len.device) + log_probability_of_transitioning = log_probability_of_transitioning.masked_fill( + ~last_transition_probability_index, -float("inf") + ) + final_log_c = last_log_alpha_scaled + log_probability_of_transitioning + + # If the length of the mel is less than the number of states it will select the -inf values leading to nan gradients + # Ideally, we should clean the dataset otherwise this is a little hack uncomment the line below + final_log_c = final_log_c.clamp(min=torch.finfo(final_log_c.dtype).min) + + sum_final_log_c = torch.logsumexp(final_log_c, dim=1) + return sum_final_log_c + + @staticmethod + def get_mask_for_last_item(lengths, device, out_tensor=None): + """Returns n-1 mask for the last item in the sequence. + + Args: + lengths (torch.IntTensor): lengths in a batch + device (str, optional): Defaults to "cpu". + out_tensor (torch.Tensor, optional): uses the memory of a specific tensor. + Defaults to None. + + Returns: + - Shape: :math:`(b, max_len)` + """ + max_len = torch.max(lengths).item() + ids = ( + torch.arange(0, max_len, device=device) if out_tensor is None else torch.arange(0, max_len, out=out_tensor) + ) + mask = ids == lengths.unsqueeze(1) - 1 + return mask + + @torch.inference_mode() + def inference( + self, + inputs: torch.FloatTensor, + input_lens: torch.LongTensor, + sampling_temp: float, + max_sampling_time: int, + duration_threshold: float, + ): + """Inference from autoregressive neural HMM + + Args: + inputs (torch.FloatTensor): input states + - shape: :math:`(b, T, d)` + input_lens (torch.LongTensor): input state lengths + - shape: :math:`(b)` + sampling_temp (float): sampling temperature + max_sampling_temp (int): max sampling temperature + duration_threshold (float): duration threshold to switch to next state + - Use this to change the spearking rate of the synthesised audio + """ + + b = inputs.shape[0] + outputs = { + "hmm_outputs": [], + "hmm_outputs_len": [], + "alignments": [], + "input_parameters": [], + "output_parameters": [], + } + for i in range(b): + neural_hmm_outputs, states_travelled, input_parameters, output_parameters = self.sample( + inputs[i : i + 1], input_lens[i], sampling_temp, max_sampling_time, duration_threshold + ) + + outputs["hmm_outputs"].append(neural_hmm_outputs) + outputs["hmm_outputs_len"].append(neural_hmm_outputs.shape[0]) + outputs["alignments"].append(states_travelled) + outputs["input_parameters"].append(input_parameters) + outputs["output_parameters"].append(output_parameters) + + outputs["hmm_outputs"] = nn.utils.rnn.pad_sequence(outputs["hmm_outputs"], batch_first=True) + outputs["hmm_outputs_len"] = torch.tensor( + outputs["hmm_outputs_len"], dtype=input_lens.dtype, device=input_lens.device + ) + return outputs + + @torch.inference_mode() + def sample(self, inputs, input_lens, sampling_temp, max_sampling_time, duration_threshold): + """Samples an output from the parameter models + + Args: + inputs (torch.FloatTensor): input states + - shape: :math:`(1, T, d)` + input_lens (torch.LongTensor): input state lengths + - shape: :math:`(1)` + sampling_temp (float): sampling temperature + max_sampling_time (int): max sampling time + duration_threshold (float): duration threshold to switch to next state + + Returns: + outputs (torch.FloatTensor): Output Observations + - Shape: :math:`(T, output_dim)` + states_travelled (list[int]): Hidden states travelled + - Shape: :math:`(T)` + input_parameters (list[torch.FloatTensor]): Input parameters + output_parameters (list[torch.FloatTensor]): Output parameters + """ + states_travelled, outputs, t = [], [], 0 + + # Sample initial state + current_state = 0 + states_travelled.append(current_state) + + # Prepare autoregression + prenet_input = self.go_tokens.unsqueeze(0).expand(1, self.ar_order, self.frame_channels) + h_memory, c_memory = self._init_lstm_states(1, self.memory_rnn_dim, prenet_input) + + input_parameter_values = [] + output_parameter_values = [] + quantile = 1 + while True: + memory_input = self.prenet(prenet_input.flatten(1).unsqueeze(0)) + # will be 1 while sampling + h_memory, c_memory = self.memory_rnn(memory_input.squeeze(0), (h_memory, c_memory)) + + z_t = inputs[:, current_state].unsqueeze(0) # Add fake time dimension + mean, std, transition_vector = self.output_net(h_memory, z_t) + + transition_probability = torch.sigmoid(transition_vector.flatten()) + staying_probability = torch.sigmoid(-transition_vector.flatten()) + + # Save for plotting + input_parameter_values.append([prenet_input, current_state]) + output_parameter_values.append([mean, std, transition_probability]) + + x_t = self.emission_model.sample(mean, std, sampling_temp=sampling_temp) + + # Prepare autoregressive input for next iteration + prenet_input = torch.cat((prenet_input, x_t), dim=1)[:, 1:] + + outputs.append(x_t.flatten()) + + transition_matrix = torch.cat((staying_probability, transition_probability)) + quantile *= staying_probability + if not self.deterministic_transition: + switch = transition_matrix.multinomial(1)[0].item() + else: + switch = quantile < duration_threshold + + if switch: + current_state += 1 + quantile = 1 + + states_travelled.append(current_state) + + if (current_state == input_lens) or (max_sampling_time and t == max_sampling_time - 1): + break + + t += 1 + + return ( + torch.stack(outputs, dim=0), + F.one_hot(input_lens.new_tensor(states_travelled)), + input_parameter_values, + output_parameter_values, + ) + + @staticmethod + def _initialize_log_state_priors(text_embeddings): + """Creates the log pi in forward algorithm. + + Args: + text_embeddings (torch.FloatTensor): used to create the log pi + on current device + + Shapes: + - text_embeddings: (B, T, D_out_enc) + """ + N = text_embeddings.shape[1] + log_state_priors = text_embeddings.new_full([N], -float("inf")) + log_state_priors[0] = 0.0 + return log_state_priors + + +class TransitionModel(nn.Module): + """Transition Model of the HMM, it represents the probability of transitioning + form current state to all other states""" + + def forward(self, log_alpha_scaled, transition_vector, inputs_len): # pylint: disable=no-self-use + r""" + product of the past state with transitional probabilities in log space + + Args: + log_alpha_scaled (torch.Tensor): Multiply previous timestep's alphas by + transition matrix (in log domain) + - shape: (batch size, N) + transition_vector (torch.tensor): transition vector for each state + - shape: (N) + inputs_len (int tensor): Lengths of states in a batch + - shape: (batch) + + Returns: + out (torch.FloatTensor): log probability of transitioning to each state + """ + transition_p = torch.sigmoid(transition_vector) + staying_p = torch.sigmoid(-transition_vector) + + log_staying_probability = OverflowUtils.log_clamped(staying_p) + log_transition_probability = OverflowUtils.log_clamped(transition_p) + + staying = log_alpha_scaled + log_staying_probability + leaving = log_alpha_scaled + log_transition_probability + leaving = leaving.roll(1, dims=1) + leaving[:, 0] = -float("inf") + inputs_len_mask = sequence_mask(inputs_len) + out = OverflowUtils.logsumexp(torch.stack((staying, leaving), dim=2), dim=2) + out = out.masked_fill(~inputs_len_mask, -float("inf")) # There are no states to contribute to the loss + return out + + +class EmissionModel(nn.Module): + """Emission Model of the HMM, it represents the probability of + emitting an observation based on the current state""" + + def __init__(self) -> None: + super().__init__() + self.distribution_function: tdist.Distribution = tdist.normal.Normal + + def sample(self, means, stds, sampling_temp): + return self.distribution_function(means, stds * sampling_temp).sample() if sampling_temp > 0 else means + + def forward(self, x_t, means, stds, state_lengths): + r"""Calculates the log probability of the the given data (x_t) + being observed from states with given means and stds + Args: + x_t (float tensor) : observation at current time step + - shape: (batch, feature_dim) + means (float tensor): means of the distributions of hidden states + - shape: (batch, hidden_state, feature_dim) + stds (float tensor): standard deviations of the distributions of the hidden states + - shape: (batch, hidden_state, feature_dim) + state_lengths (int tensor): Lengths of states in a batch + - shape: (batch) + + Returns: + out (float tensor): observation log likelihoods, + expressing the probability of an observation + being generated from a state i + shape: (batch, hidden_state) + """ + emission_dists = self.distribution_function(means, stds) + out = emission_dists.log_prob(x_t.unsqueeze(1)) + state_lengths_mask = sequence_mask(state_lengths).unsqueeze(2) + out = torch.sum(out * state_lengths_mask, dim=2) + return out diff --git a/TTS/TTS/tts/layers/overflow/plotting_utils.py b/TTS/TTS/tts/layers/overflow/plotting_utils.py new file mode 100644 index 0000000000000000000000000000000000000000..a63aeb370a38a29660dc93267f4be138381c7df6 --- /dev/null +++ b/TTS/TTS/tts/layers/overflow/plotting_utils.py @@ -0,0 +1,79 @@ +from typing import Any + +import matplotlib.pyplot as plt +import numpy as np +import torch + + +def validate_numpy_array(value: Any): + r""" + Validates the input and makes sure it returns a numpy array (i.e on CPU) + + Args: + value (Any): the input value + + Raises: + TypeError: if the value is not a numpy array or torch tensor + + Returns: + np.ndarray: numpy array of the value + """ + if isinstance(value, np.ndarray): + pass + elif isinstance(value, list): + value = np.array(value) + elif torch.is_tensor(value): + value = value.cpu().numpy() + else: + raise TypeError("Value must be a numpy array, a torch tensor or a list") + + return value + + +def get_spec_from_most_probable_state(log_alpha_scaled, means, decoder=None): + """Get the most probable state means from the log_alpha_scaled. + + Args: + log_alpha_scaled (torch.Tensor): Log alpha scaled values. + - Shape: :math:`(T, N)` + means (torch.Tensor): Means of the states. + - Shape: :math:`(N, T, D_out)` + decoder (torch.nn.Module): Decoder module to decode the latent to melspectrogram. Defaults to None. + """ + max_state_numbers = torch.max(log_alpha_scaled, dim=1)[1] + max_len = means.shape[0] + n_mel_channels = means.shape[2] + max_state_numbers = max_state_numbers.unsqueeze(1).unsqueeze(1).expand(max_len, 1, n_mel_channels) + means = torch.gather(means, 1, max_state_numbers).squeeze(1).to(log_alpha_scaled.dtype) + if decoder is not None: + mel = ( + decoder(means.T.unsqueeze(0), torch.tensor([means.shape[0]], device=means.device), reverse=True)[0] + .squeeze(0) + .T + ) + else: + mel = means + return mel + + +def plot_transition_probabilities_to_numpy(states, transition_probabilities, output_fig=False): + """Generates trainsition probabilities plot for the states and the probability of transition. + + Args: + states (torch.IntTensor): the states + transition_probabilities (torch.FloatTensor): the transition probabilities + """ + states = validate_numpy_array(states) + transition_probabilities = validate_numpy_array(transition_probabilities) + + fig, ax = plt.subplots(figsize=(30, 3)) + ax.plot(transition_probabilities, "o") + ax.set_title("Transition probability of state") + ax.set_xlabel("hidden state") + ax.set_ylabel("probability") + ax.set_xticks([i for i in range(len(transition_probabilities))]) # pylint: disable=unnecessary-comprehension + ax.set_xticklabels([int(x) for x in states], rotation=90) + plt.tight_layout() + if not output_fig: + plt.close() + return fig diff --git a/TTS/TTS/tts/layers/tacotron/__init__.py b/TTS/TTS/tts/layers/tacotron/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/TTS/TTS/tts/layers/tacotron/attentions.py b/TTS/TTS/tts/layers/tacotron/attentions.py new file mode 100644 index 0000000000000000000000000000000000000000..25c3798e6b8f5fbc66224af66c9955e245b94097 --- /dev/null +++ b/TTS/TTS/tts/layers/tacotron/attentions.py @@ -0,0 +1,486 @@ +import torch +from scipy.stats import betabinom +from torch import nn +from torch.nn import functional as F + +from TTS.tts.layers.tacotron.common_layers import Linear + + +class LocationLayer(nn.Module): + """Layers for Location Sensitive Attention + + Args: + attention_dim (int): number of channels in the input tensor. + attention_n_filters (int, optional): number of filters in convolution. Defaults to 32. + attention_kernel_size (int, optional): kernel size of convolution filter. Defaults to 31. + """ + + def __init__(self, attention_dim, attention_n_filters=32, attention_kernel_size=31): + super().__init__() + self.location_conv1d = nn.Conv1d( + in_channels=2, + out_channels=attention_n_filters, + kernel_size=attention_kernel_size, + stride=1, + padding=(attention_kernel_size - 1) // 2, + bias=False, + ) + self.location_dense = Linear(attention_n_filters, attention_dim, bias=False, init_gain="tanh") + + def forward(self, attention_cat): + """ + Shapes: + attention_cat: [B, 2, C] + """ + processed_attention = self.location_conv1d(attention_cat) + processed_attention = self.location_dense(processed_attention.transpose(1, 2)) + return processed_attention + + +class GravesAttention(nn.Module): + """Graves Attention as is ref1 with updates from ref2. + ref1: https://arxiv.org/abs/1910.10288 + ref2: https://arxiv.org/pdf/1906.01083.pdf + + Args: + query_dim (int): number of channels in query tensor. + K (int): number of Gaussian heads to be used for computing attention. + """ + + COEF = 0.3989422917366028 # numpy.sqrt(1/(2*numpy.pi)) + + def __init__(self, query_dim, K): + super().__init__() + self._mask_value = 1e-8 + self.K = K + # self.attention_alignment = 0.05 + self.eps = 1e-5 + self.J = None + self.N_a = nn.Sequential( + nn.Linear(query_dim, query_dim, bias=True), nn.ReLU(), nn.Linear(query_dim, 3 * K, bias=True) + ) + self.attention_weights = None + self.mu_prev = None + self.init_layers() + + def init_layers(self): + torch.nn.init.constant_(self.N_a[2].bias[(2 * self.K) : (3 * self.K)], 1.0) # bias mean + torch.nn.init.constant_(self.N_a[2].bias[self.K : (2 * self.K)], 10) # bias std + + def init_states(self, inputs): + if self.J is None or inputs.shape[1] + 1 > self.J.shape[-1]: + self.J = torch.arange(0, inputs.shape[1] + 2.0).to(inputs.device) + 0.5 + self.attention_weights = torch.zeros(inputs.shape[0], inputs.shape[1]).to(inputs.device) + self.mu_prev = torch.zeros(inputs.shape[0], self.K).to(inputs.device) + + # pylint: disable=R0201 + # pylint: disable=unused-argument + def preprocess_inputs(self, inputs): + return None + + def forward(self, query, inputs, processed_inputs, mask): + """ + Shapes: + query: [B, C_attention_rnn] + inputs: [B, T_in, C_encoder] + processed_inputs: place_holder + mask: [B, T_in] + """ + gbk_t = self.N_a(query) + gbk_t = gbk_t.view(gbk_t.size(0), -1, self.K) + + # attention model parameters + # each B x K + g_t = gbk_t[:, 0, :] + b_t = gbk_t[:, 1, :] + k_t = gbk_t[:, 2, :] + + # dropout to decorrelate attention heads + g_t = torch.nn.functional.dropout(g_t, p=0.5, training=self.training) + + # attention GMM parameters + sig_t = torch.nn.functional.softplus(b_t) + self.eps + + mu_t = self.mu_prev + torch.nn.functional.softplus(k_t) + g_t = torch.softmax(g_t, dim=-1) + self.eps + + j = self.J[: inputs.size(1) + 1] + + # attention weights + phi_t = g_t.unsqueeze(-1) * (1 / (1 + torch.sigmoid((mu_t.unsqueeze(-1) - j) / sig_t.unsqueeze(-1)))) + + # discritize attention weights + alpha_t = torch.sum(phi_t, 1) + alpha_t = alpha_t[:, 1:] - alpha_t[:, :-1] + alpha_t[alpha_t == 0] = 1e-8 + + # apply masking + if mask is not None: + alpha_t.data.masked_fill_(~mask, self._mask_value) + + context = torch.bmm(alpha_t.unsqueeze(1), inputs).squeeze(1) + self.attention_weights = alpha_t + self.mu_prev = mu_t + return context + + +class OriginalAttention(nn.Module): + """Bahdanau Attention with various optional modifications. + - Location sensitive attnetion: https://arxiv.org/abs/1712.05884 + - Forward Attention: https://arxiv.org/abs/1807.06736 + state masking at inference + - Using sigmoid instead of softmax normalization + - Attention windowing at inference time + + Note: + Location Sensitive Attention extends the additive attention mechanism + to use cumulative attention weights from previous decoder time steps with the current time step features. + + Forward attention computes most probable monotonic alignment. The modified attention probabilities at each + timestep are computed recursively by the forward algorithm. + + Transition agent in the forward attention explicitly gates the attention mechanism whether to move forward or + stay at each decoder timestep. + + Attention windowing is a inductive prior that prevents the model from attending to previous and future timesteps + beyond a certain window. + + Args: + query_dim (int): number of channels in the query tensor. + embedding_dim (int): number of channels in the vakue tensor. In general, the value tensor is the output of the encoder layer. + attention_dim (int): number of channels of the inner attention layers. + location_attention (bool): enable/disable location sensitive attention. + attention_location_n_filters (int): number of location attention filters. + attention_location_kernel_size (int): filter size of location attention convolution layer. + windowing (int): window size for attention windowing. if it is 5, for computing the attention, it only considers the time steps [(t-5), ..., (t+5)] of the input. + norm (str): normalization method applied to the attention weights. 'softmax' or 'sigmoid' + forward_attn (bool): enable/disable forward attention. + trans_agent (bool): enable/disable transition agent in the forward attention. + forward_attn_mask (int): enable/disable an explicit masking in forward attention. It is useful to set at especially inference time. + """ + + # Pylint gets confused by PyTorch conventions here + # pylint: disable=attribute-defined-outside-init + def __init__( + self, + query_dim, + embedding_dim, + attention_dim, + location_attention, + attention_location_n_filters, + attention_location_kernel_size, + windowing, + norm, + forward_attn, + trans_agent, + forward_attn_mask, + ): + super().__init__() + self.query_layer = Linear(query_dim, attention_dim, bias=False, init_gain="tanh") + self.inputs_layer = Linear(embedding_dim, attention_dim, bias=False, init_gain="tanh") + self.v = Linear(attention_dim, 1, bias=True) + if trans_agent: + self.ta = nn.Linear(query_dim + embedding_dim, 1, bias=True) + if location_attention: + self.location_layer = LocationLayer( + attention_dim, + attention_location_n_filters, + attention_location_kernel_size, + ) + self._mask_value = -float("inf") + self.windowing = windowing + self.win_idx = None + self.norm = norm + self.forward_attn = forward_attn + self.trans_agent = trans_agent + self.forward_attn_mask = forward_attn_mask + self.location_attention = location_attention + + def init_win_idx(self): + self.win_idx = -1 + self.win_back = 2 + self.win_front = 6 + + def init_forward_attn(self, inputs): + B = inputs.shape[0] + T = inputs.shape[1] + self.alpha = torch.cat([torch.ones([B, 1]), torch.zeros([B, T])[:, :-1] + 1e-7], dim=1).to(inputs.device) + self.u = (0.5 * torch.ones([B, 1])).to(inputs.device) + + def init_location_attention(self, inputs): + B = inputs.size(0) + T = inputs.size(1) + self.attention_weights_cum = torch.zeros([B, T], device=inputs.device) + + def init_states(self, inputs): + B = inputs.size(0) + T = inputs.size(1) + self.attention_weights = torch.zeros([B, T], device=inputs.device) + if self.location_attention: + self.init_location_attention(inputs) + if self.forward_attn: + self.init_forward_attn(inputs) + if self.windowing: + self.init_win_idx() + + def preprocess_inputs(self, inputs): + return self.inputs_layer(inputs) + + def update_location_attention(self, alignments): + self.attention_weights_cum += alignments + + def get_location_attention(self, query, processed_inputs): + attention_cat = torch.cat((self.attention_weights.unsqueeze(1), self.attention_weights_cum.unsqueeze(1)), dim=1) + processed_query = self.query_layer(query.unsqueeze(1)) + processed_attention_weights = self.location_layer(attention_cat) + energies = self.v(torch.tanh(processed_query + processed_attention_weights + processed_inputs)) + energies = energies.squeeze(-1) + return energies, processed_query + + def get_attention(self, query, processed_inputs): + processed_query = self.query_layer(query.unsqueeze(1)) + energies = self.v(torch.tanh(processed_query + processed_inputs)) + energies = energies.squeeze(-1) + return energies, processed_query + + def apply_windowing(self, attention, inputs): + back_win = self.win_idx - self.win_back + front_win = self.win_idx + self.win_front + if back_win > 0: + attention[:, :back_win] = -float("inf") + if front_win < inputs.shape[1]: + attention[:, front_win:] = -float("inf") + # this is a trick to solve a special problem. + # but it does not hurt. + if self.win_idx == -1: + attention[:, 0] = attention.max() + # Update the window + self.win_idx = torch.argmax(attention, 1).long()[0].item() + return attention + + def apply_forward_attention(self, alignment): + # forward attention + fwd_shifted_alpha = F.pad(self.alpha[:, :-1].clone().to(alignment.device), (1, 0, 0, 0)) + # compute transition potentials + alpha = ((1 - self.u) * self.alpha + self.u * fwd_shifted_alpha + 1e-8) * alignment + # force incremental alignment + if not self.training and self.forward_attn_mask: + _, n = fwd_shifted_alpha.max(1) + val, _ = alpha.max(1) + for b in range(alignment.shape[0]): + alpha[b, n[b] + 3 :] = 0 + alpha[b, : (n[b] - 1)] = 0 # ignore all previous states to prevent repetition. + alpha[b, (n[b] - 2)] = 0.01 * val[b] # smoothing factor for the prev step + # renormalize attention weights + alpha = alpha / alpha.sum(dim=1, keepdim=True) + return alpha + + def forward(self, query, inputs, processed_inputs, mask): + """ + shapes: + query: [B, C_attn_rnn] + inputs: [B, T_en, D_en] + processed_inputs: [B, T_en, D_attn] + mask: [B, T_en] + """ + if self.location_attention: + attention, _ = self.get_location_attention(query, processed_inputs) + else: + attention, _ = self.get_attention(query, processed_inputs) + # apply masking + if mask is not None: + attention.data.masked_fill_(~mask, self._mask_value) + # apply windowing - only in eval mode + if not self.training and self.windowing: + attention = self.apply_windowing(attention, inputs) + + # normalize attention values + if self.norm == "softmax": + alignment = torch.softmax(attention, dim=-1) + elif self.norm == "sigmoid": + alignment = torch.sigmoid(attention) / torch.sigmoid(attention).sum(dim=1, keepdim=True) + else: + raise ValueError("Unknown value for attention norm type") + + if self.location_attention: + self.update_location_attention(alignment) + + # apply forward attention if enabled + if self.forward_attn: + alignment = self.apply_forward_attention(alignment) + self.alpha = alignment + + context = torch.bmm(alignment.unsqueeze(1), inputs) + context = context.squeeze(1) + self.attention_weights = alignment + + # compute transition agent + if self.forward_attn and self.trans_agent: + ta_input = torch.cat([context, query.squeeze(1)], dim=-1) + self.u = torch.sigmoid(self.ta(ta_input)) + return context + + +class MonotonicDynamicConvolutionAttention(nn.Module): + """Dynamic convolution attention from + https://arxiv.org/pdf/1910.10288.pdf + + + query -> linear -> tanh -> linear ->| + | mask values + v | | + atten_w(t-1) -|-> conv1d_dynamic -> linear -|-> tanh -> + -> softmax -> * -> * -> context + |-> conv1d_static -> linear -| | + |-> conv1d_prior -> log ----------------| + + query: attention rnn output. + + Note: + Dynamic convolution attention is an alternation of the location senstive attention with + dynamically computed convolution filters from the previous attention scores and a set of + constraints to keep the attention alignment diagonal. + DCA is sensitive to mixed precision training and might cause instable training. + + Args: + query_dim (int): number of channels in the query tensor. + embedding_dim (int): number of channels in the value tensor. + static_filter_dim (int): number of channels in the convolution layer computing the static filters. + static_kernel_size (int): kernel size for the convolution layer computing the static filters. + dynamic_filter_dim (int): number of channels in the convolution layer computing the dynamic filters. + dynamic_kernel_size (int): kernel size for the convolution layer computing the dynamic filters. + prior_filter_len (int, optional): [description]. Defaults to 11 from the paper. + alpha (float, optional): [description]. Defaults to 0.1 from the paper. + beta (float, optional): [description]. Defaults to 0.9 from the paper. + """ + + def __init__( + self, + query_dim, + embedding_dim, # pylint: disable=unused-argument + attention_dim, + static_filter_dim, + static_kernel_size, + dynamic_filter_dim, + dynamic_kernel_size, + prior_filter_len=11, + alpha=0.1, + beta=0.9, + ): + super().__init__() + self._mask_value = 1e-8 + self.dynamic_filter_dim = dynamic_filter_dim + self.dynamic_kernel_size = dynamic_kernel_size + self.prior_filter_len = prior_filter_len + self.attention_weights = None + # setup key and query layers + self.query_layer = nn.Linear(query_dim, attention_dim) + self.key_layer = nn.Linear(attention_dim, dynamic_filter_dim * dynamic_kernel_size, bias=False) + self.static_filter_conv = nn.Conv1d( + 1, + static_filter_dim, + static_kernel_size, + padding=(static_kernel_size - 1) // 2, + bias=False, + ) + self.static_filter_layer = nn.Linear(static_filter_dim, attention_dim, bias=False) + self.dynamic_filter_layer = nn.Linear(dynamic_filter_dim, attention_dim) + self.v = nn.Linear(attention_dim, 1, bias=False) + + prior = betabinom.pmf(range(prior_filter_len), prior_filter_len - 1, alpha, beta) + self.register_buffer("prior", torch.FloatTensor(prior).flip(0)) + + # pylint: disable=unused-argument + def forward(self, query, inputs, processed_inputs, mask): + """ + query: [B, C_attn_rnn] + inputs: [B, T_en, D_en] + processed_inputs: place holder. + mask: [B, T_en] + """ + # compute prior filters + prior_filter = F.conv1d( + F.pad(self.attention_weights.unsqueeze(1), (self.prior_filter_len - 1, 0)), self.prior.view(1, 1, -1) + ) + prior_filter = torch.log(prior_filter.clamp_min_(1e-6)).squeeze(1) + G = self.key_layer(torch.tanh(self.query_layer(query))) + # compute dynamic filters + dynamic_filter = F.conv1d( + self.attention_weights.unsqueeze(0), + G.view(-1, 1, self.dynamic_kernel_size), + padding=(self.dynamic_kernel_size - 1) // 2, + groups=query.size(0), + ) + dynamic_filter = dynamic_filter.view(query.size(0), self.dynamic_filter_dim, -1).transpose(1, 2) + # compute static filters + static_filter = self.static_filter_conv(self.attention_weights.unsqueeze(1)).transpose(1, 2) + alignment = ( + self.v( + torch.tanh(self.static_filter_layer(static_filter) + self.dynamic_filter_layer(dynamic_filter)) + ).squeeze(-1) + + prior_filter + ) + # compute attention weights + attention_weights = F.softmax(alignment, dim=-1) + # apply masking + if mask is not None: + attention_weights.data.masked_fill_(~mask, self._mask_value) + self.attention_weights = attention_weights + # compute context + context = torch.bmm(attention_weights.unsqueeze(1), inputs).squeeze(1) + return context + + def preprocess_inputs(self, inputs): # pylint: disable=no-self-use + return None + + def init_states(self, inputs): + B = inputs.size(0) + T = inputs.size(1) + self.attention_weights = torch.zeros([B, T], device=inputs.device) + self.attention_weights[:, 0] = 1.0 + + +def init_attn( + attn_type, + query_dim, + embedding_dim, + attention_dim, + location_attention, + attention_location_n_filters, + attention_location_kernel_size, + windowing, + norm, + forward_attn, + trans_agent, + forward_attn_mask, + attn_K, +): + if attn_type == "original": + return OriginalAttention( + query_dim, + embedding_dim, + attention_dim, + location_attention, + attention_location_n_filters, + attention_location_kernel_size, + windowing, + norm, + forward_attn, + trans_agent, + forward_attn_mask, + ) + if attn_type == "graves": + return GravesAttention(query_dim, attn_K) + if attn_type == "dynamic_convolution": + return MonotonicDynamicConvolutionAttention( + query_dim, + embedding_dim, + attention_dim, + static_filter_dim=8, + static_kernel_size=21, + dynamic_filter_dim=8, + dynamic_kernel_size=21, + prior_filter_len=11, + alpha=0.1, + beta=0.9, + ) + + raise RuntimeError(f" [!] Given Attention Type '{attn_type}' is not exist.") diff --git a/TTS/TTS/tts/layers/tacotron/capacitron_layers.py b/TTS/TTS/tts/layers/tacotron/capacitron_layers.py new file mode 100644 index 0000000000000000000000000000000000000000..2181ffa7ec4e1f54d86cc5865a8fa7f6b6e362af --- /dev/null +++ b/TTS/TTS/tts/layers/tacotron/capacitron_layers.py @@ -0,0 +1,205 @@ +import torch +from torch import nn +from torch.distributions.multivariate_normal import MultivariateNormal as MVN +from torch.nn import functional as F + + +class CapacitronVAE(nn.Module): + """Effective Use of Variational Embedding Capacity for prosody transfer. + + See https://arxiv.org/abs/1906.03402""" + + def __init__( + self, + num_mel, + capacitron_VAE_embedding_dim, + encoder_output_dim=256, + reference_encoder_out_dim=128, + speaker_embedding_dim=None, + text_summary_embedding_dim=None, + ): + super().__init__() + # Init distributions + self.prior_distribution = MVN( + torch.zeros(capacitron_VAE_embedding_dim), torch.eye(capacitron_VAE_embedding_dim) + ) + self.approximate_posterior_distribution = None + # define output ReferenceEncoder dim to the capacitron_VAE_embedding_dim + self.encoder = ReferenceEncoder(num_mel, out_dim=reference_encoder_out_dim) + + # Init beta, the lagrange-like term for the KL distribution + self.beta = torch.nn.Parameter(torch.log(torch.exp(torch.Tensor([1.0])) - 1), requires_grad=True) + mlp_input_dimension = reference_encoder_out_dim + + if text_summary_embedding_dim is not None: + self.text_summary_net = TextSummary(text_summary_embedding_dim, encoder_output_dim=encoder_output_dim) + mlp_input_dimension += text_summary_embedding_dim + if speaker_embedding_dim is not None: + # TODO: Test a multispeaker model! + mlp_input_dimension += speaker_embedding_dim + self.post_encoder_mlp = PostEncoderMLP(mlp_input_dimension, capacitron_VAE_embedding_dim) + + def forward(self, reference_mel_info=None, text_info=None, speaker_embedding=None): + # Use reference + if reference_mel_info is not None: + reference_mels = reference_mel_info[0] # [batch_size, num_frames, num_mels] + mel_lengths = reference_mel_info[1] # [batch_size] + enc_out = self.encoder(reference_mels, mel_lengths) + + # concat speaker_embedding and/or text summary embedding + if text_info is not None: + text_inputs = text_info[0] # [batch_size, num_characters, num_embedding] + input_lengths = text_info[1] + text_summary_out = self.text_summary_net(text_inputs, input_lengths).to(reference_mels.device) + enc_out = torch.cat([enc_out, text_summary_out], dim=-1) + if speaker_embedding is not None: + speaker_embedding = torch.squeeze(speaker_embedding) + enc_out = torch.cat([enc_out, speaker_embedding], dim=-1) + + # Feed the output of the ref encoder and information about text/speaker into + # an MLP to produce the parameteres for the approximate poterior distributions + mu, sigma = self.post_encoder_mlp(enc_out) + # convert to cpu because prior_distribution was created on cpu + mu = mu.cpu() + sigma = sigma.cpu() + + # Sample from the posterior: z ~ q(z|x) + self.approximate_posterior_distribution = MVN(mu, torch.diag_embed(sigma)) + VAE_embedding = self.approximate_posterior_distribution.rsample() + # Infer from the model, bypasses encoding + else: + # Sample from the prior: z ~ p(z) + VAE_embedding = self.prior_distribution.sample().unsqueeze(0) + + # reshape to [batch_size, 1, capacitron_VAE_embedding_dim] + return VAE_embedding.unsqueeze(1), self.approximate_posterior_distribution, self.prior_distribution, self.beta + + +class ReferenceEncoder(nn.Module): + """NN module creating a fixed size prosody embedding from a spectrogram. + + inputs: mel spectrograms [batch_size, num_spec_frames, num_mel] + outputs: [batch_size, embedding_dim] + """ + + def __init__(self, num_mel, out_dim): + super().__init__() + self.num_mel = num_mel + filters = [1] + [32, 32, 64, 64, 128, 128] + num_layers = len(filters) - 1 + convs = [ + nn.Conv2d( + in_channels=filters[i], out_channels=filters[i + 1], kernel_size=(3, 3), stride=(2, 2), padding=(2, 2) + ) + for i in range(num_layers) + ] + self.convs = nn.ModuleList(convs) + self.training = False + self.bns = nn.ModuleList([nn.BatchNorm2d(num_features=filter_size) for filter_size in filters[1:]]) + + post_conv_height = self.calculate_post_conv_height(num_mel, 3, 2, 2, num_layers) + self.recurrence = nn.LSTM( + input_size=filters[-1] * post_conv_height, hidden_size=out_dim, batch_first=True, bidirectional=False + ) + + def forward(self, inputs, input_lengths): + batch_size = inputs.size(0) + x = inputs.view(batch_size, 1, -1, self.num_mel) # [batch_size, num_channels==1, num_frames, num_mel] + valid_lengths = input_lengths.float() # [batch_size] + for conv, bn in zip(self.convs, self.bns): + x = conv(x) + x = bn(x) + x = F.relu(x) + + # Create the post conv width mask based on the valid lengths of the output of the convolution. + # The valid lengths for the output of a convolution on varying length inputs is + # ceil(input_length/stride) + 1 for stride=3 and padding=2 + # For example (kernel_size=3, stride=2, padding=2): + # 0 0 x x x x x 0 0 -> Input = 5, 0 is zero padding, x is valid values coming from padding=2 in conv2d + # _____ + # x _____ + # x _____ + # x ____ + # x + # x x x x -> Output valid length = 4 + # Since every example in te batch is zero padded and therefore have separate valid_lengths, + # we need to mask off all the values AFTER the valid length for each example in the batch. + # Otherwise, the convolutions create noise and a lot of not real information + valid_lengths = (valid_lengths / 2).float() + valid_lengths = torch.ceil(valid_lengths).to(dtype=torch.int64) + 1 # 2 is stride -- size: [batch_size] + post_conv_max_width = x.size(2) + + mask = torch.arange(post_conv_max_width).to(inputs.device).expand( + len(valid_lengths), post_conv_max_width + ) < valid_lengths.unsqueeze(1) + mask = mask.expand(1, 1, -1, -1).transpose(2, 0).transpose(-1, 2) # [batch_size, 1, post_conv_max_width, 1] + x = x * mask + + x = x.transpose(1, 2) + # x: 4D tensor [batch_size, post_conv_width, + # num_channels==128, post_conv_height] + + post_conv_width = x.size(1) + x = x.contiguous().view(batch_size, post_conv_width, -1) + # x: 3D tensor [batch_size, post_conv_width, + # num_channels*post_conv_height] + + # Routine for fetching the last valid output of a dynamic LSTM with varying input lengths and padding + post_conv_input_lengths = valid_lengths + packed_seqs = nn.utils.rnn.pack_padded_sequence( + x, post_conv_input_lengths.tolist(), batch_first=True, enforce_sorted=False + ) # dynamic rnn sequence padding + self.recurrence.flatten_parameters() + _, (ht, _) = self.recurrence(packed_seqs) + last_output = ht[-1] + + return last_output.to(inputs.device) # [B, 128] + + @staticmethod + def calculate_post_conv_height(height, kernel_size, stride, pad, n_convs): + """Height of spec after n convolutions with fixed kernel/stride/pad.""" + for _ in range(n_convs): + height = (height - kernel_size + 2 * pad) // stride + 1 + return height + + +class TextSummary(nn.Module): + def __init__(self, embedding_dim, encoder_output_dim): + super().__init__() + self.lstm = nn.LSTM( + encoder_output_dim, # text embedding dimension from the text encoder + embedding_dim, # fixed length output summary the lstm creates from the input + batch_first=True, + bidirectional=False, + ) + + def forward(self, inputs, input_lengths): + # Routine for fetching the last valid output of a dynamic LSTM with varying input lengths and padding + packed_seqs = nn.utils.rnn.pack_padded_sequence( + inputs, input_lengths.tolist(), batch_first=True, enforce_sorted=False + ) # dynamic rnn sequence padding + self.lstm.flatten_parameters() + _, (ht, _) = self.lstm(packed_seqs) + last_output = ht[-1] + return last_output + + +class PostEncoderMLP(nn.Module): + def __init__(self, input_size, hidden_size): + super().__init__() + self.hidden_size = hidden_size + modules = [ + nn.Linear(input_size, hidden_size), # Hidden Layer + nn.Tanh(), + nn.Linear(hidden_size, hidden_size * 2), + ] # Output layer twice the size for mean and variance + self.net = nn.Sequential(*modules) + self.softplus = nn.Softplus() + + def forward(self, _input): + mlp_output = self.net(_input) + # The mean parameter is unconstrained + mu = mlp_output[:, : self.hidden_size] + # The standard deviation must be positive. Parameterise with a softplus + sigma = self.softplus(mlp_output[:, self.hidden_size :]) + return mu, sigma diff --git a/TTS/TTS/tts/layers/tacotron/common_layers.py b/TTS/TTS/tts/layers/tacotron/common_layers.py new file mode 100644 index 0000000000000000000000000000000000000000..f78ff1e75f6c23eb1a0fe827247a1127bc8f9958 --- /dev/null +++ b/TTS/TTS/tts/layers/tacotron/common_layers.py @@ -0,0 +1,119 @@ +import torch +from torch import nn +from torch.nn import functional as F + + +class Linear(nn.Module): + """Linear layer with a specific initialization. + + Args: + in_features (int): number of channels in the input tensor. + out_features (int): number of channels in the output tensor. + bias (bool, optional): enable/disable bias in the layer. Defaults to True. + init_gain (str, optional): method to compute the gain in the weight initializtion based on the nonlinear activation used afterwards. Defaults to 'linear'. + """ + + def __init__(self, in_features, out_features, bias=True, init_gain="linear"): + super().__init__() + self.linear_layer = torch.nn.Linear(in_features, out_features, bias=bias) + self._init_w(init_gain) + + def _init_w(self, init_gain): + torch.nn.init.xavier_uniform_(self.linear_layer.weight, gain=torch.nn.init.calculate_gain(init_gain)) + + def forward(self, x): + return self.linear_layer(x) + + +class LinearBN(nn.Module): + """Linear layer with Batch Normalization. + + x -> linear -> BN -> o + + Args: + in_features (int): number of channels in the input tensor. + out_features (int ): number of channels in the output tensor. + bias (bool, optional): enable/disable bias in the linear layer. Defaults to True. + init_gain (str, optional): method to set the gain for weight initialization. Defaults to 'linear'. + """ + + def __init__(self, in_features, out_features, bias=True, init_gain="linear"): + super().__init__() + self.linear_layer = torch.nn.Linear(in_features, out_features, bias=bias) + self.batch_normalization = nn.BatchNorm1d(out_features, momentum=0.1, eps=1e-5) + self._init_w(init_gain) + + def _init_w(self, init_gain): + torch.nn.init.xavier_uniform_(self.linear_layer.weight, gain=torch.nn.init.calculate_gain(init_gain)) + + def forward(self, x): + """ + Shapes: + x: [T, B, C] or [B, C] + """ + out = self.linear_layer(x) + if len(out.shape) == 3: + out = out.permute(1, 2, 0) + out = self.batch_normalization(out) + if len(out.shape) == 3: + out = out.permute(2, 0, 1) + return out + + +class Prenet(nn.Module): + """Tacotron specific Prenet with an optional Batch Normalization. + + Note: + Prenet with BN improves the model performance significantly especially + if it is enabled after learning a diagonal attention alignment with the original + prenet. However, if the target dataset is high quality then it also works from + the start. It is also suggested to disable dropout if BN is in use. + + prenet_type == "original" + x -> [linear -> ReLU -> Dropout]xN -> o + + prenet_type == "bn" + x -> [linear -> BN -> ReLU -> Dropout]xN -> o + + Args: + in_features (int): number of channels in the input tensor and the inner layers. + prenet_type (str, optional): prenet type "original" or "bn". Defaults to "original". + prenet_dropout (bool, optional): dropout rate. Defaults to True. + dropout_at_inference (bool, optional): use dropout at inference. It leads to a better quality for some models. + out_features (list, optional): List of output channels for each prenet block. + It also defines number of the prenet blocks based on the length of argument list. + Defaults to [256, 256]. + bias (bool, optional): enable/disable bias in prenet linear layers. Defaults to True. + """ + + # pylint: disable=dangerous-default-value + def __init__( + self, + in_features, + prenet_type="original", + prenet_dropout=True, + dropout_at_inference=False, + out_features=[256, 256], + bias=True, + ): + super().__init__() + self.prenet_type = prenet_type + self.prenet_dropout = prenet_dropout + self.dropout_at_inference = dropout_at_inference + in_features = [in_features] + out_features[:-1] + if prenet_type == "bn": + self.linear_layers = nn.ModuleList( + [LinearBN(in_size, out_size, bias=bias) for (in_size, out_size) in zip(in_features, out_features)] + ) + elif prenet_type == "original": + self.linear_layers = nn.ModuleList( + [Linear(in_size, out_size, bias=bias) for (in_size, out_size) in zip(in_features, out_features)] + ) + + def forward(self, x): + for linear in self.linear_layers: + if self.prenet_dropout: + x = F.dropout(F.relu(linear(x)), p=0.5, training=self.training or self.dropout_at_inference) + else: + x = F.relu(linear(x)) + return x diff --git a/TTS/TTS/tts/layers/tacotron/gst_layers.py b/TTS/TTS/tts/layers/tacotron/gst_layers.py new file mode 100644 index 0000000000000000000000000000000000000000..05dba7084ff5533b68779d46238530f4988db934 --- /dev/null +++ b/TTS/TTS/tts/layers/tacotron/gst_layers.py @@ -0,0 +1,149 @@ +import torch +import torch.nn.functional as F +from torch import nn + + +class GST(nn.Module): + """Global Style Token Module for factorizing prosody in speech. + + See https://arxiv.org/pdf/1803.09017""" + + def __init__(self, num_mel, num_heads, num_style_tokens, gst_embedding_dim, embedded_speaker_dim=None): + super().__init__() + self.encoder = ReferenceEncoder(num_mel, gst_embedding_dim) + self.style_token_layer = StyleTokenLayer(num_heads, num_style_tokens, gst_embedding_dim, embedded_speaker_dim) + + def forward(self, inputs, speaker_embedding=None): + enc_out = self.encoder(inputs) + # concat speaker_embedding + if speaker_embedding is not None: + enc_out = torch.cat([enc_out, speaker_embedding], dim=-1) + style_embed = self.style_token_layer(enc_out) + + return style_embed + + +class ReferenceEncoder(nn.Module): + """NN module creating a fixed size prosody embedding from a spectrogram. + + inputs: mel spectrograms [batch_size, num_spec_frames, num_mel] + outputs: [batch_size, embedding_dim] + """ + + def __init__(self, num_mel, embedding_dim): + super().__init__() + self.num_mel = num_mel + filters = [1] + [32, 32, 64, 64, 128, 128] + num_layers = len(filters) - 1 + convs = [ + nn.Conv2d( + in_channels=filters[i], out_channels=filters[i + 1], kernel_size=(3, 3), stride=(2, 2), padding=(1, 1) + ) + for i in range(num_layers) + ] + self.convs = nn.ModuleList(convs) + self.bns = nn.ModuleList([nn.BatchNorm2d(num_features=filter_size) for filter_size in filters[1:]]) + + post_conv_height = self.calculate_post_conv_height(num_mel, 3, 2, 1, num_layers) + self.recurrence = nn.GRU( + input_size=filters[-1] * post_conv_height, hidden_size=embedding_dim // 2, batch_first=True + ) + + def forward(self, inputs): + batch_size = inputs.size(0) + x = inputs.view(batch_size, 1, -1, self.num_mel) + # x: 4D tensor [batch_size, num_channels==1, num_frames, num_mel] + for conv, bn in zip(self.convs, self.bns): + x = conv(x) + x = bn(x) + x = F.relu(x) + + x = x.transpose(1, 2) + # x: 4D tensor [batch_size, post_conv_width, + # num_channels==128, post_conv_height] + post_conv_width = x.size(1) + x = x.contiguous().view(batch_size, post_conv_width, -1) + # x: 3D tensor [batch_size, post_conv_width, + # num_channels*post_conv_height] + self.recurrence.flatten_parameters() + _, out = self.recurrence(x) + # out: 3D tensor [seq_len==1, batch_size, encoding_size=128] + + return out.squeeze(0) + + @staticmethod + def calculate_post_conv_height(height, kernel_size, stride, pad, n_convs): + """Height of spec after n convolutions with fixed kernel/stride/pad.""" + for _ in range(n_convs): + height = (height - kernel_size + 2 * pad) // stride + 1 + return height + + +class StyleTokenLayer(nn.Module): + """NN Module attending to style tokens based on prosody encodings.""" + + def __init__(self, num_heads, num_style_tokens, gst_embedding_dim, d_vector_dim=None): + super().__init__() + + self.query_dim = gst_embedding_dim // 2 + + if d_vector_dim: + self.query_dim += d_vector_dim + + self.key_dim = gst_embedding_dim // num_heads + self.style_tokens = nn.Parameter(torch.FloatTensor(num_style_tokens, self.key_dim)) + nn.init.normal_(self.style_tokens, mean=0, std=0.5) + self.attention = MultiHeadAttention( + query_dim=self.query_dim, key_dim=self.key_dim, num_units=gst_embedding_dim, num_heads=num_heads + ) + + def forward(self, inputs): + batch_size = inputs.size(0) + prosody_encoding = inputs.unsqueeze(1) + # prosody_encoding: 3D tensor [batch_size, 1, encoding_size==128] + tokens = torch.tanh(self.style_tokens).unsqueeze(0).expand(batch_size, -1, -1) + # tokens: 3D tensor [batch_size, num tokens, token embedding size] + style_embed = self.attention(prosody_encoding, tokens) + + return style_embed + + +class MultiHeadAttention(nn.Module): + """ + input: + query --- [N, T_q, query_dim] + key --- [N, T_k, key_dim] + output: + out --- [N, T_q, num_units] + """ + + def __init__(self, query_dim, key_dim, num_units, num_heads): + super().__init__() + self.num_units = num_units + self.num_heads = num_heads + self.key_dim = key_dim + + self.W_query = nn.Linear(in_features=query_dim, out_features=num_units, bias=False) + self.W_key = nn.Linear(in_features=key_dim, out_features=num_units, bias=False) + self.W_value = nn.Linear(in_features=key_dim, out_features=num_units, bias=False) + + def forward(self, query, key): + queries = self.W_query(query) # [N, T_q, num_units] + keys = self.W_key(key) # [N, T_k, num_units] + values = self.W_value(key) + + split_size = self.num_units // self.num_heads + queries = torch.stack(torch.split(queries, split_size, dim=2), dim=0) # [h, N, T_q, num_units/h] + keys = torch.stack(torch.split(keys, split_size, dim=2), dim=0) # [h, N, T_k, num_units/h] + values = torch.stack(torch.split(values, split_size, dim=2), dim=0) # [h, N, T_k, num_units/h] + + # score = softmax(QK^T / (d_k**0.5)) + scores = torch.matmul(queries, keys.transpose(2, 3)) # [h, N, T_q, T_k] + scores = scores / (self.key_dim**0.5) + scores = F.softmax(scores, dim=3) + + # out = score * V + out = torch.matmul(scores, values) # [h, N, T_q, num_units/h] + out = torch.cat(torch.split(out, 1, dim=0), dim=3).squeeze(0) # [N, T_q, num_units] + + return out diff --git a/TTS/TTS/tts/layers/tacotron/tacotron.py b/TTS/TTS/tts/layers/tacotron/tacotron.py new file mode 100644 index 0000000000000000000000000000000000000000..7a47c35ef67852456d7211f32502ffb84509d61f --- /dev/null +++ b/TTS/TTS/tts/layers/tacotron/tacotron.py @@ -0,0 +1,503 @@ +# coding: utf-8 +# adapted from https://github.com/r9y9/tacotron_pytorch + +import torch +from torch import nn + +from .attentions import init_attn +from .common_layers import Prenet + + +class BatchNormConv1d(nn.Module): + r"""A wrapper for Conv1d with BatchNorm. It sets the activation + function between Conv and BatchNorm layers. BatchNorm layer + is initialized with the TF default values for momentum and eps. + + Args: + in_channels: size of each input sample + out_channels: size of each output samples + kernel_size: kernel size of conv filters + stride: stride of conv filters + padding: padding of conv filters + activation: activation function set b/w Conv1d and BatchNorm + + Shapes: + - input: (B, D) + - output: (B, D) + """ + + def __init__(self, in_channels, out_channels, kernel_size, stride, padding, activation=None): + super().__init__() + self.padding = padding + self.padder = nn.ConstantPad1d(padding, 0) + self.conv1d = nn.Conv1d( + in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=0, bias=False + ) + # Following tensorflow's default parameters + self.bn = nn.BatchNorm1d(out_channels, momentum=0.99, eps=1e-3) + self.activation = activation + # self.init_layers() + + def init_layers(self): + if isinstance(self.activation, torch.nn.ReLU): + w_gain = "relu" + elif isinstance(self.activation, torch.nn.Tanh): + w_gain = "tanh" + elif self.activation is None: + w_gain = "linear" + else: + raise RuntimeError("Unknown activation function") + torch.nn.init.xavier_uniform_(self.conv1d.weight, gain=torch.nn.init.calculate_gain(w_gain)) + + def forward(self, x): + x = self.padder(x) + x = self.conv1d(x) + x = self.bn(x) + if self.activation is not None: + x = self.activation(x) + return x + + +class Highway(nn.Module): + r"""Highway layers as explained in https://arxiv.org/abs/1505.00387 + + Args: + in_features (int): size of each input sample + out_feature (int): size of each output sample + + Shapes: + - input: (B, *, H_in) + - output: (B, *, H_out) + """ + + # TODO: Try GLU layer + def __init__(self, in_features, out_feature): + super().__init__() + self.H = nn.Linear(in_features, out_feature) + self.H.bias.data.zero_() + self.T = nn.Linear(in_features, out_feature) + self.T.bias.data.fill_(-1) + self.relu = nn.ReLU() + self.sigmoid = nn.Sigmoid() + # self.init_layers() + + def init_layers(self): + torch.nn.init.xavier_uniform_(self.H.weight, gain=torch.nn.init.calculate_gain("relu")) + torch.nn.init.xavier_uniform_(self.T.weight, gain=torch.nn.init.calculate_gain("sigmoid")) + + def forward(self, inputs): + H = self.relu(self.H(inputs)) + T = self.sigmoid(self.T(inputs)) + return H * T + inputs * (1.0 - T) + + +class CBHG(nn.Module): + """CBHG module: a recurrent neural network composed of: + - 1-d convolution banks + - Highway networks + residual connections + - Bidirectional gated recurrent units + + Args: + in_features (int): sample size + K (int): max filter size in conv bank + projections (list): conv channel sizes for conv projections + num_highways (int): number of highways layers + + Shapes: + - input: (B, C, T_in) + - output: (B, T_in, C*2) + """ + + # pylint: disable=dangerous-default-value + def __init__( + self, + in_features, + K=16, + conv_bank_features=128, + conv_projections=[128, 128], + highway_features=128, + gru_features=128, + num_highways=4, + ): + super().__init__() + self.in_features = in_features + self.conv_bank_features = conv_bank_features + self.highway_features = highway_features + self.gru_features = gru_features + self.conv_projections = conv_projections + self.relu = nn.ReLU() + # list of conv1d bank with filter size k=1...K + # TODO: try dilational layers instead + self.conv1d_banks = nn.ModuleList( + [ + BatchNormConv1d( + in_features, + conv_bank_features, + kernel_size=k, + stride=1, + padding=[(k - 1) // 2, k // 2], + activation=self.relu, + ) + for k in range(1, K + 1) + ] + ) + # max pooling of conv bank, with padding + # TODO: try average pooling OR larger kernel size + out_features = [K * conv_bank_features] + conv_projections[:-1] + activations = [self.relu] * (len(conv_projections) - 1) + activations += [None] + # setup conv1d projection layers + layer_set = [] + for in_size, out_size, ac in zip(out_features, conv_projections, activations): + layer = BatchNormConv1d(in_size, out_size, kernel_size=3, stride=1, padding=[1, 1], activation=ac) + layer_set.append(layer) + self.conv1d_projections = nn.ModuleList(layer_set) + # setup Highway layers + if self.highway_features != conv_projections[-1]: + self.pre_highway = nn.Linear(conv_projections[-1], highway_features, bias=False) + self.highways = nn.ModuleList([Highway(highway_features, highway_features) for _ in range(num_highways)]) + # bi-directional GPU layer + self.gru = nn.GRU(gru_features, gru_features, 1, batch_first=True, bidirectional=True) + + def forward(self, inputs): + # (B, in_features, T_in) + x = inputs + # (B, hid_features*K, T_in) + # Concat conv1d bank outputs + outs = [] + for conv1d in self.conv1d_banks: + out = conv1d(x) + outs.append(out) + x = torch.cat(outs, dim=1) + assert x.size(1) == self.conv_bank_features * len(self.conv1d_banks) + for conv1d in self.conv1d_projections: + x = conv1d(x) + x += inputs + x = x.transpose(1, 2) + if self.highway_features != self.conv_projections[-1]: + x = self.pre_highway(x) + # Residual connection + # TODO: try residual scaling as in Deep Voice 3 + # TODO: try plain residual layers + for highway in self.highways: + x = highway(x) + # (B, T_in, hid_features*2) + # TODO: replace GRU with convolution as in Deep Voice 3 + self.gru.flatten_parameters() + outputs, _ = self.gru(x) + return outputs + + +class EncoderCBHG(nn.Module): + r"""CBHG module with Encoder specific arguments""" + + def __init__(self): + super().__init__() + self.cbhg = CBHG( + 128, + K=16, + conv_bank_features=128, + conv_projections=[128, 128], + highway_features=128, + gru_features=128, + num_highways=4, + ) + + def forward(self, x): + return self.cbhg(x) + + +class Encoder(nn.Module): + r"""Stack Prenet and CBHG module for encoder + Args: + inputs (FloatTensor): embedding features + + Shapes: + - inputs: (B, T, D_in) + - outputs: (B, T, 128 * 2) + """ + + def __init__(self, in_features): + super().__init__() + self.prenet = Prenet(in_features, out_features=[256, 128]) + self.cbhg = EncoderCBHG() + + def forward(self, inputs): + # B x T x prenet_dim + outputs = self.prenet(inputs) + outputs = self.cbhg(outputs.transpose(1, 2)) + return outputs + + +class PostCBHG(nn.Module): + def __init__(self, mel_dim): + super().__init__() + self.cbhg = CBHG( + mel_dim, + K=8, + conv_bank_features=128, + conv_projections=[256, mel_dim], + highway_features=128, + gru_features=128, + num_highways=4, + ) + + def forward(self, x): + return self.cbhg(x) + + +class Decoder(nn.Module): + """Tacotron decoder. + + Args: + in_channels (int): number of input channels. + frame_channels (int): number of feature frame channels. + r (int): number of outputs per time step (reduction rate). + memory_size (int): size of the past window. if <= 0 memory_size = r + attn_type (string): type of attention used in decoder. + attn_windowing (bool): if true, define an attention window centered to maximum + attention response. It provides more robust attention alignment especially + at interence time. + attn_norm (string): attention normalization function. 'sigmoid' or 'softmax'. + prenet_type (string): 'original' or 'bn'. + prenet_dropout (float): prenet dropout rate. + forward_attn (bool): if true, use forward attention method. https://arxiv.org/abs/1807.06736 + trans_agent (bool): if true, use transition agent. https://arxiv.org/abs/1807.06736 + forward_attn_mask (bool): if true, mask attention values smaller than a threshold. + location_attn (bool): if true, use location sensitive attention. + attn_K (int): number of attention heads for GravesAttention. + separate_stopnet (bool): if true, detach stopnet input to prevent gradient flow. + d_vector_dim (int): size of speaker embedding vector, for multi-speaker training. + max_decoder_steps (int): Maximum number of steps allowed for the decoder. Defaults to 500. + """ + + # Pylint gets confused by PyTorch conventions here + # pylint: disable=attribute-defined-outside-init + + def __init__( + self, + in_channels, + frame_channels, + r, + memory_size, + attn_type, + attn_windowing, + attn_norm, + prenet_type, + prenet_dropout, + forward_attn, + trans_agent, + forward_attn_mask, + location_attn, + attn_K, + separate_stopnet, + max_decoder_steps, + ): + super().__init__() + self.r_init = r + self.r = r + self.in_channels = in_channels + self.max_decoder_steps = max_decoder_steps + self.use_memory_queue = memory_size > 0 + self.memory_size = memory_size if memory_size > 0 else r + self.frame_channels = frame_channels + self.separate_stopnet = separate_stopnet + self.query_dim = 256 + # memory -> |Prenet| -> processed_memory + prenet_dim = frame_channels * self.memory_size if self.use_memory_queue else frame_channels + self.prenet = Prenet(prenet_dim, prenet_type, prenet_dropout, out_features=[256, 128]) + # processed_inputs, processed_memory -> |Attention| -> Attention, attention, RNN_State + # attention_rnn generates queries for the attention mechanism + self.attention_rnn = nn.GRUCell(in_channels + 128, self.query_dim) + self.attention = init_attn( + attn_type=attn_type, + query_dim=self.query_dim, + embedding_dim=in_channels, + attention_dim=128, + location_attention=location_attn, + attention_location_n_filters=32, + attention_location_kernel_size=31, + windowing=attn_windowing, + norm=attn_norm, + forward_attn=forward_attn, + trans_agent=trans_agent, + forward_attn_mask=forward_attn_mask, + attn_K=attn_K, + ) + # (processed_memory | attention context) -> |Linear| -> decoder_RNN_input + self.project_to_decoder_in = nn.Linear(256 + in_channels, 256) + # decoder_RNN_input -> |RNN| -> RNN_state + self.decoder_rnns = nn.ModuleList([nn.GRUCell(256, 256) for _ in range(2)]) + # RNN_state -> |Linear| -> mel_spec + self.proj_to_mel = nn.Linear(256, frame_channels * self.r_init) + # learn init values instead of zero init. + self.stopnet = StopNet(256 + frame_channels * self.r_init) + + def set_r(self, new_r): + self.r = new_r + + def _reshape_memory(self, memory): + """ + Reshape the spectrograms for given 'r' + """ + # Grouping multiple frames if necessary + if memory.size(-1) == self.frame_channels: + memory = memory.view(memory.shape[0], memory.size(1) // self.r, -1) + # Time first (T_decoder, B, frame_channels) + memory = memory.transpose(0, 1) + return memory + + def _init_states(self, inputs): + """ + Initialization of decoder states + """ + B = inputs.size(0) + # go frame as zeros matrix + if self.use_memory_queue: + self.memory_input = torch.zeros(1, device=inputs.device).repeat(B, self.frame_channels * self.memory_size) + else: + self.memory_input = torch.zeros(1, device=inputs.device).repeat(B, self.frame_channels) + # decoder states + self.attention_rnn_hidden = torch.zeros(1, device=inputs.device).repeat(B, 256) + self.decoder_rnn_hiddens = [ + torch.zeros(1, device=inputs.device).repeat(B, 256) for idx in range(len(self.decoder_rnns)) + ] + self.context_vec = inputs.data.new(B, self.in_channels).zero_() + # cache attention inputs + self.processed_inputs = self.attention.preprocess_inputs(inputs) + + def _parse_outputs(self, outputs, attentions, stop_tokens): + # Back to batch first + attentions = torch.stack(attentions).transpose(0, 1) + stop_tokens = torch.stack(stop_tokens).transpose(0, 1) + outputs = torch.stack(outputs).transpose(0, 1).contiguous() + outputs = outputs.view(outputs.size(0), -1, self.frame_channels) + outputs = outputs.transpose(1, 2) + return outputs, attentions, stop_tokens + + def decode(self, inputs, mask=None): + # Prenet + processed_memory = self.prenet(self.memory_input) + # Attention RNN + self.attention_rnn_hidden = self.attention_rnn( + torch.cat((processed_memory, self.context_vec), -1), self.attention_rnn_hidden + ) + self.context_vec = self.attention(self.attention_rnn_hidden, inputs, self.processed_inputs, mask) + # Concat RNN output and attention context vector + decoder_input = self.project_to_decoder_in(torch.cat((self.attention_rnn_hidden, self.context_vec), -1)) + + # Pass through the decoder RNNs + for idx, decoder_rnn in enumerate(self.decoder_rnns): + self.decoder_rnn_hiddens[idx] = decoder_rnn(decoder_input, self.decoder_rnn_hiddens[idx]) + # Residual connection + decoder_input = self.decoder_rnn_hiddens[idx] + decoder_input + decoder_output = decoder_input + + # predict mel vectors from decoder vectors + output = self.proj_to_mel(decoder_output) + # output = torch.sigmoid(output) + # predict stop token + stopnet_input = torch.cat([decoder_output, output], -1) + if self.separate_stopnet: + stop_token = self.stopnet(stopnet_input.detach()) + else: + stop_token = self.stopnet(stopnet_input) + output = output[:, : self.r * self.frame_channels] + return output, stop_token, self.attention.attention_weights + + def _update_memory_input(self, new_memory): + if self.use_memory_queue: + if self.memory_size > self.r: + # memory queue size is larger than number of frames per decoder iter + self.memory_input = torch.cat( + [new_memory, self.memory_input[:, : (self.memory_size - self.r) * self.frame_channels].clone()], + dim=-1, + ) + else: + # memory queue size smaller than number of frames per decoder iter + self.memory_input = new_memory[:, : self.memory_size * self.frame_channels] + else: + # use only the last frame prediction + # assert new_memory.shape[-1] == self.r * self.frame_channels + self.memory_input = new_memory[:, self.frame_channels * (self.r - 1) :] + + def forward(self, inputs, memory, mask): + """ + Args: + inputs: Encoder outputs. + memory: Decoder memory (autoregression. If None (at eval-time), + decoder outputs are used as decoder inputs. If None, it uses the last + output as the input. + mask: Attention mask for sequence padding. + + Shapes: + - inputs: (B, T, D_out_enc) + - memory: (B, T_mel, D_mel) + """ + # Run greedy decoding if memory is None + memory = self._reshape_memory(memory) + outputs = [] + attentions = [] + stop_tokens = [] + t = 0 + self._init_states(inputs) + self.attention.init_states(inputs) + while len(outputs) < memory.size(0): + if t > 0: + new_memory = memory[t - 1] + self._update_memory_input(new_memory) + + output, stop_token, attention = self.decode(inputs, mask) + outputs += [output] + attentions += [attention] + stop_tokens += [stop_token.squeeze(1)] + t += 1 + return self._parse_outputs(outputs, attentions, stop_tokens) + + def inference(self, inputs): + """ + Args: + inputs: encoder outputs. + Shapes: + - inputs: batch x time x encoder_out_dim + """ + outputs = [] + attentions = [] + stop_tokens = [] + t = 0 + self._init_states(inputs) + self.attention.init_states(inputs) + while True: + if t > 0: + new_memory = outputs[-1] + self._update_memory_input(new_memory) + output, stop_token, attention = self.decode(inputs, None) + stop_token = torch.sigmoid(stop_token.data) + outputs += [output] + attentions += [attention] + stop_tokens += [stop_token] + t += 1 + if t > inputs.shape[1] / 4 and (stop_token > 0.6 or attention[:, -1].item() > 0.6): + break + if t > self.max_decoder_steps: + print(" | > Decoder stopped with 'max_decoder_steps") + break + return self._parse_outputs(outputs, attentions, stop_tokens) + + +class StopNet(nn.Module): + r"""Stopnet signalling decoder to stop inference. + Args: + in_features (int): feature dimension of input. + """ + + def __init__(self, in_features): + super().__init__() + self.dropout = nn.Dropout(0.1) + self.linear = nn.Linear(in_features, 1) + torch.nn.init.xavier_uniform_(self.linear.weight, gain=torch.nn.init.calculate_gain("linear")) + + def forward(self, inputs): + outputs = self.dropout(inputs) + outputs = self.linear(outputs) + return outputs diff --git a/TTS/TTS/tts/layers/tacotron/tacotron2.py b/TTS/TTS/tts/layers/tacotron/tacotron2.py new file mode 100644 index 0000000000000000000000000000000000000000..c79b70997249efc94cbac630bcc7d6c571f5743e --- /dev/null +++ b/TTS/TTS/tts/layers/tacotron/tacotron2.py @@ -0,0 +1,414 @@ +import torch +from torch import nn +from torch.nn import functional as F + +from .attentions import init_attn +from .common_layers import Linear, Prenet + + +# pylint: disable=no-value-for-parameter +# pylint: disable=unexpected-keyword-arg +class ConvBNBlock(nn.Module): + r"""Convolutions with Batch Normalization and non-linear activation. + + Args: + in_channels (int): number of input channels. + out_channels (int): number of output channels. + kernel_size (int): convolution kernel size. + activation (str): 'relu', 'tanh', None (linear). + + Shapes: + - input: (B, C_in, T) + - output: (B, C_out, T) + """ + + def __init__(self, in_channels, out_channels, kernel_size, activation=None): + super().__init__() + assert (kernel_size - 1) % 2 == 0 + padding = (kernel_size - 1) // 2 + self.convolution1d = nn.Conv1d(in_channels, out_channels, kernel_size, padding=padding) + self.batch_normalization = nn.BatchNorm1d(out_channels, momentum=0.1, eps=1e-5) + self.dropout = nn.Dropout(p=0.5) + if activation == "relu": + self.activation = nn.ReLU() + elif activation == "tanh": + self.activation = nn.Tanh() + else: + self.activation = nn.Identity() + + def forward(self, x): + o = self.convolution1d(x) + o = self.batch_normalization(o) + o = self.activation(o) + o = self.dropout(o) + return o + + +class Postnet(nn.Module): + r"""Tacotron2 Postnet + + Args: + in_out_channels (int): number of output channels. + + Shapes: + - input: (B, C_in, T) + - output: (B, C_in, T) + """ + + def __init__(self, in_out_channels, num_convs=5): + super().__init__() + self.convolutions = nn.ModuleList() + self.convolutions.append(ConvBNBlock(in_out_channels, 512, kernel_size=5, activation="tanh")) + for _ in range(1, num_convs - 1): + self.convolutions.append(ConvBNBlock(512, 512, kernel_size=5, activation="tanh")) + self.convolutions.append(ConvBNBlock(512, in_out_channels, kernel_size=5, activation=None)) + + def forward(self, x): + o = x + for layer in self.convolutions: + o = layer(o) + return o + + +class Encoder(nn.Module): + r"""Tacotron2 Encoder + + Args: + in_out_channels (int): number of input and output channels. + + Shapes: + - input: (B, C_in, T) + - output: (B, C_in, T) + """ + + def __init__(self, in_out_channels=512): + super().__init__() + self.convolutions = nn.ModuleList() + for _ in range(3): + self.convolutions.append(ConvBNBlock(in_out_channels, in_out_channels, 5, "relu")) + self.lstm = nn.LSTM( + in_out_channels, int(in_out_channels / 2), num_layers=1, batch_first=True, bias=True, bidirectional=True + ) + self.rnn_state = None + + def forward(self, x, input_lengths): + o = x + for layer in self.convolutions: + o = layer(o) + o = o.transpose(1, 2) + o = nn.utils.rnn.pack_padded_sequence(o, input_lengths.cpu(), batch_first=True) + self.lstm.flatten_parameters() + o, _ = self.lstm(o) + o, _ = nn.utils.rnn.pad_packed_sequence(o, batch_first=True) + return o + + def inference(self, x): + o = x + for layer in self.convolutions: + o = layer(o) + o = o.transpose(1, 2) + # self.lstm.flatten_parameters() + o, _ = self.lstm(o) + return o + + +# adapted from https://github.com/NVIDIA/tacotron2/ +class Decoder(nn.Module): + """Tacotron2 decoder. We don't use Zoneout but Dropout between RNN layers. + + Args: + in_channels (int): number of input channels. + frame_channels (int): number of feature frame channels. + r (int): number of outputs per time step (reduction rate). + memory_size (int): size of the past window. if <= 0 memory_size = r + attn_type (string): type of attention used in decoder. + attn_win (bool): if true, define an attention window centered to maximum + attention response. It provides more robust attention alignment especially + at interence time. + attn_norm (string): attention normalization function. 'sigmoid' or 'softmax'. + prenet_type (string): 'original' or 'bn'. + prenet_dropout (float): prenet dropout rate. + forward_attn (bool): if true, use forward attention method. https://arxiv.org/abs/1807.06736 + trans_agent (bool): if true, use transition agent. https://arxiv.org/abs/1807.06736 + forward_attn_mask (bool): if true, mask attention values smaller than a threshold. + location_attn (bool): if true, use location sensitive attention. + attn_K (int): number of attention heads for GravesAttention. + separate_stopnet (bool): if true, detach stopnet input to prevent gradient flow. + max_decoder_steps (int): Maximum number of steps allowed for the decoder. Defaults to 10000. + """ + + # Pylint gets confused by PyTorch conventions here + # pylint: disable=attribute-defined-outside-init + def __init__( + self, + in_channels, + frame_channels, + r, + attn_type, + attn_win, + attn_norm, + prenet_type, + prenet_dropout, + forward_attn, + trans_agent, + forward_attn_mask, + location_attn, + attn_K, + separate_stopnet, + max_decoder_steps, + ): + super().__init__() + self.frame_channels = frame_channels + self.r_init = r + self.r = r + self.encoder_embedding_dim = in_channels + self.separate_stopnet = separate_stopnet + self.max_decoder_steps = max_decoder_steps + self.stop_threshold = 0.5 + + # model dimensions + self.query_dim = 1024 + self.decoder_rnn_dim = 1024 + self.prenet_dim = 256 + self.attn_dim = 128 + self.p_attention_dropout = 0.1 + self.p_decoder_dropout = 0.1 + + # memory -> |Prenet| -> processed_memory + prenet_dim = self.frame_channels + self.prenet = Prenet( + prenet_dim, prenet_type, prenet_dropout, out_features=[self.prenet_dim, self.prenet_dim], bias=False + ) + + self.attention_rnn = nn.LSTMCell(self.prenet_dim + in_channels, self.query_dim, bias=True) + + self.attention = init_attn( + attn_type=attn_type, + query_dim=self.query_dim, + embedding_dim=in_channels, + attention_dim=128, + location_attention=location_attn, + attention_location_n_filters=32, + attention_location_kernel_size=31, + windowing=attn_win, + norm=attn_norm, + forward_attn=forward_attn, + trans_agent=trans_agent, + forward_attn_mask=forward_attn_mask, + attn_K=attn_K, + ) + + self.decoder_rnn = nn.LSTMCell(self.query_dim + in_channels, self.decoder_rnn_dim, bias=True) + + self.linear_projection = Linear(self.decoder_rnn_dim + in_channels, self.frame_channels * self.r_init) + + self.stopnet = nn.Sequential( + nn.Dropout(0.1), + Linear(self.decoder_rnn_dim + self.frame_channels * self.r_init, 1, bias=True, init_gain="sigmoid"), + ) + self.memory_truncated = None + + def set_r(self, new_r): + self.r = new_r + + def get_go_frame(self, inputs): + B = inputs.size(0) + memory = torch.zeros(1, device=inputs.device).repeat(B, self.frame_channels * self.r) + return memory + + def _init_states(self, inputs, mask, keep_states=False): + B = inputs.size(0) + # T = inputs.size(1) + if not keep_states: + self.query = torch.zeros(1, device=inputs.device).repeat(B, self.query_dim) + self.attention_rnn_cell_state = torch.zeros(1, device=inputs.device).repeat(B, self.query_dim) + self.decoder_hidden = torch.zeros(1, device=inputs.device).repeat(B, self.decoder_rnn_dim) + self.decoder_cell = torch.zeros(1, device=inputs.device).repeat(B, self.decoder_rnn_dim) + self.context = torch.zeros(1, device=inputs.device).repeat(B, self.encoder_embedding_dim) + self.inputs = inputs + self.processed_inputs = self.attention.preprocess_inputs(inputs) + self.mask = mask + + def _reshape_memory(self, memory): + """ + Reshape the spectrograms for given 'r' + """ + # Grouping multiple frames if necessary + if memory.size(-1) == self.frame_channels: + memory = memory.view(memory.shape[0], memory.size(1) // self.r, -1) + # Time first (T_decoder, B, frame_channels) + memory = memory.transpose(0, 1) + return memory + + def _parse_outputs(self, outputs, stop_tokens, alignments): + alignments = torch.stack(alignments).transpose(0, 1) + stop_tokens = torch.stack(stop_tokens).transpose(0, 1) + outputs = torch.stack(outputs).transpose(0, 1).contiguous() + outputs = outputs.view(outputs.size(0), -1, self.frame_channels) + outputs = outputs.transpose(1, 2) + return outputs, stop_tokens, alignments + + def _update_memory(self, memory): + if len(memory.shape) == 2: + return memory[:, self.frame_channels * (self.r - 1) :] + return memory[:, :, self.frame_channels * (self.r - 1) :] + + def decode(self, memory): + """ + shapes: + - memory: B x r * self.frame_channels + """ + # self.context: B x D_en + # query_input: B x D_en + (r * self.frame_channels) + query_input = torch.cat((memory, self.context), -1) + # self.query and self.attention_rnn_cell_state : B x D_attn_rnn + self.query, self.attention_rnn_cell_state = self.attention_rnn( + query_input, (self.query, self.attention_rnn_cell_state) + ) + self.query = F.dropout(self.query, self.p_attention_dropout, self.training) + self.attention_rnn_cell_state = F.dropout( + self.attention_rnn_cell_state, self.p_attention_dropout, self.training + ) + # B x D_en + self.context = self.attention(self.query, self.inputs, self.processed_inputs, self.mask) + # B x (D_en + D_attn_rnn) + decoder_rnn_input = torch.cat((self.query, self.context), -1) + # self.decoder_hidden and self.decoder_cell: B x D_decoder_rnn + self.decoder_hidden, self.decoder_cell = self.decoder_rnn( + decoder_rnn_input, (self.decoder_hidden, self.decoder_cell) + ) + self.decoder_hidden = F.dropout(self.decoder_hidden, self.p_decoder_dropout, self.training) + # B x (D_decoder_rnn + D_en) + decoder_hidden_context = torch.cat((self.decoder_hidden, self.context), dim=1) + # B x (self.r * self.frame_channels) + decoder_output = self.linear_projection(decoder_hidden_context) + # B x (D_decoder_rnn + (self.r * self.frame_channels)) + stopnet_input = torch.cat((self.decoder_hidden, decoder_output), dim=1) + if self.separate_stopnet: + stop_token = self.stopnet(stopnet_input.detach()) + else: + stop_token = self.stopnet(stopnet_input) + # select outputs for the reduction rate self.r + decoder_output = decoder_output[:, : self.r * self.frame_channels] + return decoder_output, self.attention.attention_weights, stop_token + + def forward(self, inputs, memories, mask): + r"""Train Decoder with teacher forcing. + Args: + inputs: Encoder outputs. + memories: Feature frames for teacher-forcing. + mask: Attention mask for sequence padding. + + Shapes: + - inputs: (B, T, D_out_enc) + - memory: (B, T_mel, D_mel) + - outputs: (B, T_mel, D_mel) + - alignments: (B, T_in, T_out) + - stop_tokens: (B, T_out) + """ + memory = self.get_go_frame(inputs).unsqueeze(0) + memories = self._reshape_memory(memories) + memories = torch.cat((memory, memories), dim=0) + memories = self._update_memory(memories) + memories = self.prenet(memories) + + self._init_states(inputs, mask=mask) + self.attention.init_states(inputs) + + outputs, stop_tokens, alignments = [], [], [] + while len(outputs) < memories.size(0) - 1: + memory = memories[len(outputs)] + decoder_output, attention_weights, stop_token = self.decode(memory) + outputs += [decoder_output.squeeze(1)] + stop_tokens += [stop_token.squeeze(1)] + alignments += [attention_weights] + + outputs, stop_tokens, alignments = self._parse_outputs(outputs, stop_tokens, alignments) + return outputs, alignments, stop_tokens + + def inference(self, inputs): + r"""Decoder inference without teacher forcing and use + Stopnet to stop decoder. + Args: + inputs: Encoder outputs. + + Shapes: + - inputs: (B, T, D_out_enc) + - outputs: (B, T_mel, D_mel) + - alignments: (B, T_in, T_out) + - stop_tokens: (B, T_out) + """ + memory = self.get_go_frame(inputs) + memory = self._update_memory(memory) + + self._init_states(inputs, mask=None) + self.attention.init_states(inputs) + + outputs, stop_tokens, alignments, t = [], [], [], 0 + while True: + memory = self.prenet(memory) + decoder_output, alignment, stop_token = self.decode(memory) + stop_token = torch.sigmoid(stop_token.data) + outputs += [decoder_output.squeeze(1)] + stop_tokens += [stop_token] + alignments += [alignment] + + if stop_token > self.stop_threshold and t > inputs.shape[0] // 2: + break + if len(outputs) == self.max_decoder_steps: + print(f" > Decoder stopped with `max_decoder_steps` {self.max_decoder_steps}") + break + + memory = self._update_memory(decoder_output) + t += 1 + + outputs, stop_tokens, alignments = self._parse_outputs(outputs, stop_tokens, alignments) + + return outputs, alignments, stop_tokens + + def inference_truncated(self, inputs): + """ + Preserve decoder states for continuous inference + """ + if self.memory_truncated is None: + self.memory_truncated = self.get_go_frame(inputs) + self._init_states(inputs, mask=None, keep_states=False) + else: + self._init_states(inputs, mask=None, keep_states=True) + + self.attention.init_states(inputs) + outputs, stop_tokens, alignments, t = [], [], [], 0 + while True: + memory = self.prenet(self.memory_truncated) + decoder_output, alignment, stop_token = self.decode(memory) + stop_token = torch.sigmoid(stop_token.data) + outputs += [decoder_output.squeeze(1)] + stop_tokens += [stop_token] + alignments += [alignment] + + if stop_token > 0.7: + break + if len(outputs) == self.max_decoder_steps: + print(" | > Decoder stopped with 'max_decoder_steps") + break + + self.memory_truncated = decoder_output + t += 1 + + outputs, stop_tokens, alignments = self._parse_outputs(outputs, stop_tokens, alignments) + + return outputs, alignments, stop_tokens + + def inference_step(self, inputs, t, memory=None): + """ + For debug purposes + """ + if t == 0: + memory = self.get_go_frame(inputs) + self._init_states(inputs, mask=None) + + memory = self.prenet(memory) + decoder_output, stop_token, alignment = self.decode(memory) + stop_token = torch.sigmoid(stop_token.data) + memory = decoder_output + return decoder_output, stop_token, alignment diff --git a/TTS/TTS/tts/layers/tortoise/arch_utils.py b/TTS/TTS/tts/layers/tortoise/arch_utils.py new file mode 100644 index 0000000000000000000000000000000000000000..dad1814369599f0bc637a92624a73dfab99dc1a1 --- /dev/null +++ b/TTS/TTS/tts/layers/tortoise/arch_utils.py @@ -0,0 +1,433 @@ +import functools +import math +import os + +import fsspec +import torch +import torch.nn as nn +import torch.nn.functional as F +import torchaudio +from transformers import LogitsWarper + +from TTS.tts.layers.tortoise.xtransformers import ContinuousTransformerWrapper, RelativePositionBias + + +def zero_module(module): + """ + Zero out the parameters of a module and return it. + """ + for p in module.parameters(): + p.detach().zero_() + return module + + +class GroupNorm32(nn.GroupNorm): + def forward(self, x): + return super().forward(x.float()).type(x.dtype) + + +def normalization(channels): + """ + Make a standard normalization layer. + + :param channels: number of input channels. + :return: an nn.Module for normalization. + """ + groups = 32 + if channels <= 16: + groups = 8 + elif channels <= 64: + groups = 16 + while channels % groups != 0: + groups = int(groups / 2) + assert groups > 2 + return GroupNorm32(groups, channels) + + +class QKVAttentionLegacy(nn.Module): + """ + A module which performs QKV attention. Matches legacy QKVAttention + input/output heads shaping + """ + + def __init__(self, n_heads): + super().__init__() + self.n_heads = n_heads + + def forward(self, qkv, mask=None, rel_pos=None): + """ + Apply QKV attention. + + :param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs. + :return: an [N x (H * C) x T] tensor after attention. + """ + bs, width, length = qkv.shape + assert width % (3 * self.n_heads) == 0 + ch = width // (3 * self.n_heads) + q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1) + scale = 1 / math.sqrt(math.sqrt(ch)) + weight = torch.einsum("bct,bcs->bts", q * scale, k * scale) # More stable with f16 than dividing afterwards + if rel_pos is not None: + weight = rel_pos(weight.reshape(bs, self.n_heads, weight.shape[-2], weight.shape[-1])).reshape( + bs * self.n_heads, weight.shape[-2], weight.shape[-1] + ) + weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype) + if mask is not None: + # The proper way to do this is to mask before the softmax using -inf, but that doesn't work properly on CPUs. + mask = mask.repeat(self.n_heads, 1).unsqueeze(1) + weight = weight * mask + a = torch.einsum("bts,bcs->bct", weight, v) + + return a.reshape(bs, -1, length) + + +class AttentionBlock(nn.Module): + """ + An attention block that allows spatial positions to attend to each other. + + Originally ported from here, but adapted to the N-d case. + https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66. + """ + + def __init__( + self, + channels, + num_heads=1, + num_head_channels=-1, + do_checkpoint=True, + relative_pos_embeddings=False, + ): + super().__init__() + self.channels = channels + self.do_checkpoint = do_checkpoint + if num_head_channels == -1: + self.num_heads = num_heads + else: + assert ( + channels % num_head_channels == 0 + ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}" + self.num_heads = channels // num_head_channels + self.norm = normalization(channels) + self.qkv = nn.Conv1d(channels, channels * 3, 1) + # split heads before split qkv + self.attention = QKVAttentionLegacy(self.num_heads) + + self.proj_out = zero_module(nn.Conv1d(channels, channels, 1)) + if relative_pos_embeddings: + self.relative_pos_embeddings = RelativePositionBias( + scale=(channels // self.num_heads) ** 0.5, + causal=False, + heads=num_heads, + num_buckets=32, + max_distance=64, + ) + else: + self.relative_pos_embeddings = None + + def forward(self, x, mask=None): + b, c, *spatial = x.shape + x = x.reshape(b, c, -1) + qkv = self.qkv(self.norm(x)) + h = self.attention(qkv, mask, self.relative_pos_embeddings) + h = self.proj_out(h) + return (x + h).reshape(b, c, *spatial) + + +class Upsample(nn.Module): + """ + An upsampling layer with an optional convolution. + + :param channels: channels in the inputs and outputs. + :param use_conv: a bool determining if a convolution is applied. + """ + + def __init__(self, channels, use_conv, out_channels=None, factor=4): + super().__init__() + self.channels = channels + self.out_channels = out_channels or channels + self.use_conv = use_conv + self.factor = factor + if use_conv: + ksize = 5 + pad = 2 + self.conv = nn.Conv1d(self.channels, self.out_channels, ksize, padding=pad) + + def forward(self, x): + assert x.shape[1] == self.channels + x = F.interpolate(x, scale_factor=self.factor, mode="nearest") + if self.use_conv: + x = self.conv(x) + return x + + +class Downsample(nn.Module): + """ + A downsampling layer with an optional convolution. + + :param channels: channels in the inputs and outputs. + :param use_conv: a bool determining if a convolution is applied. + """ + + def __init__(self, channels, use_conv, out_channels=None, factor=4, ksize=5, pad=2): + super().__init__() + self.channels = channels + self.out_channels = out_channels or channels + self.use_conv = use_conv + + stride = factor + if use_conv: + self.op = nn.Conv1d(self.channels, self.out_channels, ksize, stride=stride, padding=pad) + else: + assert self.channels == self.out_channels + self.op = nn.AvgPool1d(kernel_size=stride, stride=stride) + + def forward(self, x): + assert x.shape[1] == self.channels + return self.op(x) + + +class ResBlock(nn.Module): + def __init__( + self, + channels, + dropout, + out_channels=None, + use_conv=False, + use_scale_shift_norm=False, + up=False, + down=False, + kernel_size=3, + ): + super().__init__() + self.channels = channels + self.dropout = dropout + self.out_channels = out_channels or channels + self.use_conv = use_conv + self.use_scale_shift_norm = use_scale_shift_norm + padding = 1 if kernel_size == 3 else 2 + + self.in_layers = nn.Sequential( + normalization(channels), + nn.SiLU(), + nn.Conv1d(channels, self.out_channels, kernel_size, padding=padding), + ) + + self.updown = up or down + + if up: + self.h_upd = Upsample(channels, False) + self.x_upd = Upsample(channels, False) + elif down: + self.h_upd = Downsample(channels, False) + self.x_upd = Downsample(channels, False) + else: + self.h_upd = self.x_upd = nn.Identity() + + self.out_layers = nn.Sequential( + normalization(self.out_channels), + nn.SiLU(), + nn.Dropout(p=dropout), + zero_module(nn.Conv1d(self.out_channels, self.out_channels, kernel_size, padding=padding)), + ) + + if self.out_channels == channels: + self.skip_connection = nn.Identity() + elif use_conv: + self.skip_connection = nn.Conv1d(channels, self.out_channels, kernel_size, padding=padding) + else: + self.skip_connection = nn.Conv1d(channels, self.out_channels, 1) + + def forward(self, x): + if self.updown: + in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] + h = in_rest(x) + h = self.h_upd(h) + x = self.x_upd(x) + h = in_conv(h) + else: + h = self.in_layers(x) + h = self.out_layers(h) + return self.skip_connection(x) + h + + +class AudioMiniEncoder(nn.Module): + def __init__( + self, + spec_dim, + embedding_dim, + base_channels=128, + depth=2, + resnet_blocks=2, + attn_blocks=4, + num_attn_heads=4, + dropout=0, + downsample_factor=2, + kernel_size=3, + ): + super().__init__() + self.init = nn.Sequential(nn.Conv1d(spec_dim, base_channels, 3, padding=1)) + ch = base_channels + res = [] + for l in range(depth): + for r in range(resnet_blocks): + res.append(ResBlock(ch, dropout, kernel_size=kernel_size)) + res.append(Downsample(ch, use_conv=True, out_channels=ch * 2, factor=downsample_factor)) + ch *= 2 + self.res = nn.Sequential(*res) + self.final = nn.Sequential(normalization(ch), nn.SiLU(), nn.Conv1d(ch, embedding_dim, 1)) + attn = [] + for a in range(attn_blocks): + attn.append( + AttentionBlock( + embedding_dim, + num_attn_heads, + ) + ) + self.attn = nn.Sequential(*attn) + self.dim = embedding_dim + + def forward(self, x): + h = self.init(x) + h = self.res(h) + h = self.final(h) + h = self.attn(h) + return h[:, :, 0] + + +DEFAULT_MEL_NORM_FILE = "https://coqui.gateway.scarf.sh/v0.14.1_models/mel_norms.pth" + + +class TorchMelSpectrogram(nn.Module): + def __init__( + self, + filter_length=1024, + hop_length=256, + win_length=1024, + n_mel_channels=80, + mel_fmin=0, + mel_fmax=8000, + sampling_rate=22050, + normalize=False, + mel_norm_file=DEFAULT_MEL_NORM_FILE, + ): + super().__init__() + # These are the default tacotron values for the MEL spectrogram. + self.filter_length = filter_length + self.hop_length = hop_length + self.win_length = win_length + self.n_mel_channels = n_mel_channels + self.mel_fmin = mel_fmin + self.mel_fmax = mel_fmax + self.sampling_rate = sampling_rate + self.mel_stft = torchaudio.transforms.MelSpectrogram( + n_fft=self.filter_length, + hop_length=self.hop_length, + win_length=self.win_length, + power=2, + normalized=normalize, + sample_rate=self.sampling_rate, + f_min=self.mel_fmin, + f_max=self.mel_fmax, + n_mels=self.n_mel_channels, + norm="slaney", + ) + self.mel_norm_file = mel_norm_file + if self.mel_norm_file is not None: + with fsspec.open(self.mel_norm_file) as f: + self.mel_norms = torch.load(f) + else: + self.mel_norms = None + + def forward(self, inp): + if ( + len(inp.shape) == 3 + ): # Automatically squeeze out the channels dimension if it is present (assuming mono-audio) + inp = inp.squeeze(1) + assert len(inp.shape) == 2 + self.mel_stft = self.mel_stft.to(inp.device) + mel = self.mel_stft(inp) + # Perform dynamic range compression + mel = torch.log(torch.clamp(mel, min=1e-5)) + if self.mel_norms is not None: + self.mel_norms = self.mel_norms.to(mel.device) + mel = mel / self.mel_norms.unsqueeze(0).unsqueeze(-1) + return mel + + +class CheckpointedLayer(nn.Module): + """ + Wraps a module. When forward() is called, passes kwargs that require_grad through torch.checkpoint() and bypasses + checkpoint for all other args. + """ + + def __init__(self, wrap): + super().__init__() + self.wrap = wrap + + def forward(self, x, *args, **kwargs): + for k, v in kwargs.items(): + assert not (isinstance(v, torch.Tensor) and v.requires_grad) # This would screw up checkpointing. + partial = functools.partial(self.wrap, **kwargs) + return partial(x, *args) + + +class CheckpointedXTransformerEncoder(nn.Module): + """ + Wraps a ContinuousTransformerWrapper and applies CheckpointedLayer to each layer and permutes from channels-mid + to channels-last that XTransformer expects. + """ + + def __init__(self, needs_permute=True, exit_permute=True, checkpoint=True, **xtransformer_kwargs): + super().__init__() + self.transformer = ContinuousTransformerWrapper(**xtransformer_kwargs) + self.needs_permute = needs_permute + self.exit_permute = exit_permute + + if not checkpoint: + return + for i in range(len(self.transformer.attn_layers.layers)): + n, b, r = self.transformer.attn_layers.layers[i] + self.transformer.attn_layers.layers[i] = nn.ModuleList([n, CheckpointedLayer(b), r]) + + def forward(self, x, **kwargs): + if self.needs_permute: + x = x.permute(0, 2, 1) + h = self.transformer(x, **kwargs) + if self.exit_permute: + h = h.permute(0, 2, 1) + return h + + +class TypicalLogitsWarper(LogitsWarper): + def __init__( + self, + mass: float = 0.9, + filter_value: float = -float("Inf"), + min_tokens_to_keep: int = 1, + ): + self.filter_value = filter_value + self.mass = mass + self.min_tokens_to_keep = min_tokens_to_keep + + def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: + # calculate entropy + normalized = torch.nn.functional.log_softmax(scores, dim=-1) + p = torch.exp(normalized) + ent = -(normalized * p).nansum(-1, keepdim=True) + + # shift and sort + shifted_scores = torch.abs((-normalized) - ent) + sorted_scores, sorted_indices = torch.sort(shifted_scores, descending=False) + sorted_logits = scores.gather(-1, sorted_indices) + cumulative_probs = sorted_logits.softmax(dim=-1).cumsum(dim=-1) + + # Remove tokens with cumulative mass above the threshold + last_ind = (cumulative_probs < self.mass).sum(dim=1) + last_ind[last_ind < 0] = 0 + sorted_indices_to_remove = sorted_scores > sorted_scores.gather(1, last_ind.view(-1, 1)) + if self.min_tokens_to_keep > 1: + # Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below) + sorted_indices_to_remove[..., : self.min_tokens_to_keep] = 0 + indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove) + + scores = scores.masked_fill(indices_to_remove, self.filter_value) + return scores diff --git a/TTS/TTS/tts/layers/tortoise/audio_utils.py b/TTS/TTS/tts/layers/tortoise/audio_utils.py new file mode 100644 index 0000000000000000000000000000000000000000..70711ed7a485ecd4a8c8eb8ab6c338aa79871de7 --- /dev/null +++ b/TTS/TTS/tts/layers/tortoise/audio_utils.py @@ -0,0 +1,177 @@ +import os +from glob import glob +from typing import Dict, List + +import librosa +import numpy as np +import torch +import torchaudio +from scipy.io.wavfile import read + +from TTS.utils.audio.torch_transforms import TorchSTFT + + +def load_wav_to_torch(full_path): + sampling_rate, data = read(full_path) + if data.dtype == np.int32: + norm_fix = 2**31 + elif data.dtype == np.int16: + norm_fix = 2**15 + elif data.dtype == np.float16 or data.dtype == np.float32: + norm_fix = 1.0 + else: + raise NotImplementedError(f"Provided data dtype not supported: {data.dtype}") + return (torch.FloatTensor(data.astype(np.float32)) / norm_fix, sampling_rate) + + +def check_audio(audio, audiopath: str): + # Check some assumptions about audio range. This should be automatically fixed in load_wav_to_torch, but might not be in some edge cases, where we should squawk. + # '2' is arbitrarily chosen since it seems like audio will often "overdrive" the [-1,1] bounds. + if torch.any(audio > 2) or not torch.any(audio < 0): + print(f"Error with {audiopath}. Max={audio.max()} min={audio.min()}") + audio.clip_(-1, 1) + + +def read_audio_file(audiopath: str): + if audiopath[-4:] == ".wav": + audio, lsr = load_wav_to_torch(audiopath) + elif audiopath[-4:] == ".mp3": + audio, lsr = librosa.load(audiopath, sr=None) + audio = torch.FloatTensor(audio) + else: + assert False, f"Unsupported audio format provided: {audiopath[-4:]}" + + # Remove any channel data. + if len(audio.shape) > 1: + if audio.shape[0] < 5: + audio = audio[0] + else: + assert audio.shape[1] < 5 + audio = audio[:, 0] + + return audio, lsr + + +def load_required_audio(audiopath: str): + audio, lsr = read_audio_file(audiopath) + + audios = [torchaudio.functional.resample(audio, lsr, sampling_rate) for sampling_rate in (22050, 24000)] + for audio in audios: + check_audio(audio, audiopath) + + return [audio.unsqueeze(0) for audio in audios] + + +def load_audio(audiopath, sampling_rate): + audio, lsr = read_audio_file(audiopath) + + if lsr != sampling_rate: + audio = torchaudio.functional.resample(audio, lsr, sampling_rate) + check_audio(audio, audiopath) + + return audio.unsqueeze(0) + + +TACOTRON_MEL_MAX = 2.3143386840820312 +TACOTRON_MEL_MIN = -11.512925148010254 + + +def denormalize_tacotron_mel(norm_mel): + return ((norm_mel + 1) / 2) * (TACOTRON_MEL_MAX - TACOTRON_MEL_MIN) + TACOTRON_MEL_MIN + + +def normalize_tacotron_mel(mel): + return 2 * ((mel - TACOTRON_MEL_MIN) / (TACOTRON_MEL_MAX - TACOTRON_MEL_MIN)) - 1 + + +def dynamic_range_compression(x, C=1, clip_val=1e-5): + """ + PARAMS + ------ + C: compression factor + """ + return torch.log(torch.clamp(x, min=clip_val) * C) + + +def dynamic_range_decompression(x, C=1): + """ + PARAMS + ------ + C: compression factor used to compress + """ + return torch.exp(x) / C + + +def get_voices(extra_voice_dirs: List[str] = []): + dirs = extra_voice_dirs + voices: Dict[str, List[str]] = {} + for d in dirs: + subs = os.listdir(d) + for sub in subs: + subj = os.path.join(d, sub) + if os.path.isdir(subj): + voices[sub] = list(glob(f"{subj}/*.wav")) + list(glob(f"{subj}/*.mp3")) + list(glob(f"{subj}/*.pth")) + return voices + + +def load_voice(voice: str, extra_voice_dirs: List[str] = []): + if voice == "random": + return None, None + + voices = get_voices(extra_voice_dirs) + paths = voices[voice] + if len(paths) == 1 and paths[0].endswith(".pth"): + return None, torch.load(paths[0]) + else: + conds = [] + for cond_path in paths: + c = load_required_audio(cond_path) + conds.append(c) + return conds, None + + +def load_voices(voices: List[str], extra_voice_dirs: List[str] = []): + latents = [] + clips = [] + for voice in voices: + if voice == "random": + if len(voices) > 1: + print("Cannot combine a random voice with a non-random voice. Just using a random voice.") + return None, None + clip, latent = load_voice(voice, extra_voice_dirs) + if latent is None: + assert ( + len(latents) == 0 + ), "Can only combine raw audio voices or latent voices, not both. Do it yourself if you want this." + clips.extend(clip) + elif clip is None: + assert ( + len(clips) == 0 + ), "Can only combine raw audio voices or latent voices, not both. Do it yourself if you want this." + latents.append(latent) + if len(latents) == 0: + return clips, None + else: + latents_0 = torch.stack([l[0] for l in latents], dim=0).mean(dim=0) + latents_1 = torch.stack([l[1] for l in latents], dim=0).mean(dim=0) + latents = (latents_0, latents_1) + return None, latents + + +def wav_to_univnet_mel(wav, do_normalization=False, device="cuda"): + stft = TorchSTFT( + n_fft=1024, + hop_length=256, + win_length=1024, + use_mel=True, + n_mels=100, + sample_rate=24000, + mel_fmin=0, + mel_fmax=12000, + ) + stft = stft.to(device) + mel = stft(wav) + mel = dynamic_range_compression(mel) + if do_normalization: + mel = normalize_tacotron_mel(mel) + return mel diff --git a/TTS/TTS/tts/layers/tortoise/autoregressive.py b/TTS/TTS/tts/layers/tortoise/autoregressive.py new file mode 100644 index 0000000000000000000000000000000000000000..14d881bc1029ef577f24ae28f9414e431661142a --- /dev/null +++ b/TTS/TTS/tts/layers/tortoise/autoregressive.py @@ -0,0 +1,631 @@ +# AGPL: a notification must be added stating that changes have been made to that file. +import functools + +import torch +import torch.nn as nn +import torch.nn.functional as F +from transformers import GPT2Config, GPT2PreTrainedModel, LogitsProcessorList +from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions + +from TTS.tts.layers.tortoise.arch_utils import AttentionBlock, TypicalLogitsWarper + + +def null_position_embeddings(range, dim): + return torch.zeros((range.shape[0], range.shape[1], dim), device=range.device) + + +def _p(t): + return t and (len(t), len(t[0]), t[0][0].shape) # kv_cache debug + + +class ResBlock(nn.Module): + """ + Basic residual convolutional block that uses GroupNorm. + """ + + def __init__(self, chan): + super().__init__() + self.net = nn.Sequential( + nn.Conv1d(chan, chan, kernel_size=3, padding=1), + nn.GroupNorm(chan // 8, chan), + nn.ReLU(), + nn.Conv1d(chan, chan, kernel_size=3, padding=1), + nn.GroupNorm(chan // 8, chan), + ) + + def forward(self, x): + return F.relu(self.net(x) + x) + + +class GPT2InferenceModel(GPT2PreTrainedModel): + def __init__(self, config, gpt, text_pos_emb, embeddings, norm, linear, kv_cache): + super().__init__(config) + self.transformer = gpt + self.text_pos_embedding = text_pos_emb + self.embeddings = embeddings + self.lm_head = nn.Sequential(norm, linear) + self.kv_cache = kv_cache + + def store_mel_emb(self, mel_emb): + self.cached_mel_emb = mel_emb + + def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs): + token_type_ids = kwargs.get("token_type_ids", None) # usually None + if not self.kv_cache: + past_key_values = None + # only last token for inputs_ids if past is defined in kwargs + if past_key_values: + input_ids = input_ids[:, -1].unsqueeze(-1) + if token_type_ids is not None: + token_type_ids = token_type_ids[:, -1].unsqueeze(-1) + + attention_mask = kwargs.get("attention_mask", None) + position_ids = kwargs.get("position_ids", None) + + if attention_mask is not None and position_ids is None: + # create position_ids on the fly for batch generation + position_ids = attention_mask.long().cumsum(-1) - 1 + position_ids.masked_fill_(attention_mask == 0, 1) + if past_key_values: + position_ids = position_ids[:, -1].unsqueeze(-1) + else: + position_ids = None + return { + "input_ids": input_ids, + "past_key_values": past_key_values, + "use_cache": kwargs.get("use_cache"), + "position_ids": position_ids, + "attention_mask": attention_mask, + "token_type_ids": token_type_ids, + } + + def forward( + self, + input_ids=None, + past_key_values=None, + attention_mask=None, + token_type_ids=None, + position_ids=None, + head_mask=None, + inputs_embeds=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + labels=None, + use_cache=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + ): + assert self.cached_mel_emb is not None + assert inputs_embeds is None # Not supported by this inference model. + assert labels is None # Training not supported by this inference model. + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # Create embedding + mel_len = self.cached_mel_emb.shape[1] + if input_ids.shape[1] != 1: + text_inputs = input_ids[:, mel_len:] + text_emb = self.embeddings(text_inputs) + text_emb = text_emb + self.text_pos_embedding(text_emb) + if self.cached_mel_emb.shape[0] != text_emb.shape[0]: + mel_emb = self.cached_mel_emb.repeat_interleave(text_emb.shape[0] // self.cached_mel_emb.shape[0], 0) + else: # this outcome only occurs once per loop in most cases + mel_emb = self.cached_mel_emb + emb = torch.cat([mel_emb, text_emb], dim=1) + else: + emb = self.embeddings(input_ids) + emb = emb + self.text_pos_embedding.get_fixed_embedding( + attention_mask.shape[1] - mel_len, attention_mask.device + ) + + transformer_outputs = self.transformer( + inputs_embeds=emb, + past_key_values=past_key_values, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + hidden_states = transformer_outputs[0] + lm_logits = self.lm_head(hidden_states) + + if not return_dict: + return (lm_logits,) + transformer_outputs[1:] + + return CausalLMOutputWithCrossAttentions( + loss=None, + logits=lm_logits, + past_key_values=transformer_outputs.past_key_values, + hidden_states=transformer_outputs.hidden_states, + attentions=transformer_outputs.attentions, + cross_attentions=transformer_outputs.cross_attentions, + ) + + @staticmethod + def _reorder_cache(past, beam_idx): + """ + This function is used to re-order the :obj:`past_key_values` cache if + :meth:`~transformers.PreTrainedModel.beam_search` or :meth:`~transformers.PreTrainedModel.beam_sample` is + called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step. + """ + return tuple( + tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past) + for layer_past in past + ) + + +class ConditioningEncoder(nn.Module): + def __init__( + self, + spec_dim, + embedding_dim, + attn_blocks=6, + num_attn_heads=4, + do_checkpointing=False, + mean=False, + ): + super().__init__() + attn = [] + self.init = nn.Conv1d(spec_dim, embedding_dim, kernel_size=1) + for a in range(attn_blocks): + attn.append(AttentionBlock(embedding_dim, num_attn_heads)) + self.attn = nn.Sequential(*attn) + self.dim = embedding_dim + self.do_checkpointing = do_checkpointing + self.mean = mean + + def forward(self, x): + h = self.init(x) + h = self.attn(h) + if self.mean: + return h.mean(dim=2) + else: + return h[:, :, 0] + + +class LearnedPositionEmbeddings(nn.Module): + def __init__(self, seq_len, model_dim, init=0.02): + super().__init__() + self.emb = nn.Embedding(seq_len, model_dim) + # Initializing this way is standard for GPT-2 + self.emb.weight.data.normal_(mean=0.0, std=init) + + def forward(self, x): + sl = x.shape[1] + return self.emb(torch.arange(0, sl, device=x.device)) + + def get_fixed_embedding(self, ind, dev): + return self.emb(torch.arange(0, ind, device=dev))[ind - 1 : ind] + + +def build_hf_gpt_transformer(layers, model_dim, heads, max_mel_seq_len, max_text_seq_len, checkpointing): + """ + GPT-2 implemented by the HuggingFace library. + """ + from transformers import GPT2Config, GPT2Model + + gpt_config = GPT2Config( + vocab_size=256, # Unused. + n_positions=max_mel_seq_len + max_text_seq_len, + n_ctx=max_mel_seq_len + max_text_seq_len, + n_embd=model_dim, + n_layer=layers, + n_head=heads, + gradient_checkpointing=checkpointing, + use_cache=not checkpointing, + ) + gpt = GPT2Model(gpt_config) + # Override the built in positional embeddings + del gpt.wpe # TODO: figure out relevance in fixing exported model definition: Embedding(1012, 1024) + gpt.wpe = functools.partial(null_position_embeddings, dim=model_dim) + # Built-in token embeddings are unused. + del gpt.wte + return ( + gpt, + LearnedPositionEmbeddings(max_mel_seq_len, model_dim), + LearnedPositionEmbeddings(max_text_seq_len, model_dim), + None, + None, + ) + + +class MelEncoder(nn.Module): + def __init__(self, channels, mel_channels=80, resblocks_per_reduction=2): + super().__init__() + self.channels = channels + self.encoder = nn.Sequential( + nn.Conv1d(mel_channels, channels // 4, kernel_size=3, padding=1), + nn.Sequential(*[ResBlock(channels // 4) for _ in range(resblocks_per_reduction)]), + nn.Conv1d(channels // 4, channels // 2, kernel_size=3, stride=2, padding=1), + nn.GroupNorm(channels // 16, channels // 2), + nn.ReLU(), + nn.Sequential(*[ResBlock(channels // 2) for _ in range(resblocks_per_reduction)]), + nn.Conv1d(channels // 2, channels, kernel_size=3, stride=2, padding=1), + nn.GroupNorm(channels // 8, channels), + nn.ReLU(), + nn.Sequential(*[ResBlock(channels) for _ in range(resblocks_per_reduction)]), + ) + self.reduction = 4 + + def forward(self, x): + for e in self.encoder: + x = e(x) + return x.permute(0, 2, 1) + + +class UnifiedVoice(nn.Module): + def __init__( + self, + layers=8, + model_dim=512, + heads=8, + max_text_tokens=120, + max_mel_tokens=250, + max_conditioning_inputs=1, + mel_length_compression=1024, + number_text_tokens=256, + start_text_token=None, + number_mel_codes=8194, + start_mel_token=8192, + stop_mel_token=8193, + train_solo_embeddings=False, + use_mel_codes_as_input=True, + checkpointing=True, + types=1, + ): + """ + Args: + layers: Number of layers in transformer stack. + model_dim: Operating dimensions of the transformer + heads: Number of transformer heads. Must be divisible by model_dim. Recommend model_dim//64 + max_text_tokens: Maximum number of text tokens that will be encountered by model. + max_mel_tokens: Maximum number of MEL tokens that will be encountered by model. + max_conditioning_inputs: Maximum number of conditioning inputs provided to the model. If (1), conditioning input can be of format (b,80,s), otherwise (b,n,80,s). + mel_length_compression: The factor between and . Used to compute MEL code padding given wav input length. + number_text_tokens: + start_text_token: + stop_text_token: + number_mel_codes: + start_mel_token: + stop_mel_token: + train_solo_embeddings: + use_mel_codes_as_input: + checkpointing: + """ + super().__init__() + + self.number_text_tokens = number_text_tokens + self.start_text_token = number_text_tokens * types if start_text_token is None else start_text_token + self.stop_text_token = 0 + self.number_mel_codes = number_mel_codes + self.start_mel_token = start_mel_token + self.stop_mel_token = stop_mel_token + self.layers = layers + self.heads = heads + self.max_mel_tokens = max_mel_tokens + self.max_text_tokens = max_text_tokens + self.model_dim = model_dim + self.max_conditioning_inputs = max_conditioning_inputs + self.mel_length_compression = mel_length_compression + self.conditioning_encoder = ConditioningEncoder(80, model_dim, num_attn_heads=heads) + self.text_embedding = nn.Embedding(self.number_text_tokens * types + 1, model_dim) + if use_mel_codes_as_input: + self.mel_embedding = nn.Embedding(self.number_mel_codes, model_dim) + else: + self.mel_embedding = MelEncoder(model_dim, resblocks_per_reduction=1) + ( + self.gpt, + self.mel_pos_embedding, + self.text_pos_embedding, + self.mel_layer_pos_embedding, + self.text_layer_pos_embedding, + ) = build_hf_gpt_transformer( + layers, + model_dim, + heads, + self.max_mel_tokens + 2 + self.max_conditioning_inputs, + self.max_text_tokens + 2, + checkpointing, + ) + if train_solo_embeddings: + self.mel_solo_embedding = nn.Parameter(torch.randn(1, 1, model_dim) * 0.02, requires_grad=True) + self.text_solo_embedding = nn.Parameter(torch.randn(1, 1, model_dim) * 0.02, requires_grad=True) + else: + self.mel_solo_embedding = 0 + self.text_solo_embedding = 0 + + self.final_norm = nn.LayerNorm(model_dim) + self.text_head = nn.Linear(model_dim, self.number_text_tokens * types + 1) + self.mel_head = nn.Linear(model_dim, self.number_mel_codes) + + # Initialize the embeddings per the GPT-2 scheme + embeddings = [self.text_embedding] + if use_mel_codes_as_input: + embeddings.append(self.mel_embedding) + for module in embeddings: + module.weight.data.normal_(mean=0.0, std=0.02) + + def post_init_gpt2_config(self, kv_cache=True): + seq_length = self.max_mel_tokens + self.max_text_tokens + 2 + gpt_config = GPT2Config( + vocab_size=self.max_mel_tokens, + n_positions=seq_length, + n_ctx=seq_length, + n_embd=self.model_dim, + n_layer=self.layers, + n_head=self.heads, + gradient_checkpointing=False, + use_cache=True, + ) + self.inference_model = GPT2InferenceModel( + gpt_config, + self.gpt, + self.mel_pos_embedding, + self.mel_embedding, + self.final_norm, + self.mel_head, + kv_cache=kv_cache, + ) + # self.inference_model = PrunedGPT2InferenceModel(gpt_config, self.gpt, self.mel_pos_embedding, self.mel_embedding, self.final_norm, self.mel_head) + self.gpt.wte = self.mel_embedding + # self.inference_model.save_pretrained("") + + def build_aligned_inputs_and_targets(self, input, start_token, stop_token): + inp = F.pad(input, (1, 0), value=start_token) + tar = F.pad(input, (0, 1), value=stop_token) + return inp, tar + + def set_mel_padding(self, mel_input_tokens, wav_lengths): + """ + Given mel tokens that are derived from a padded audio clip and the actual lengths of each batch element in + that audio clip, reformats the tokens with STOP_MEL_TOKEN in place of the zero padding. This is required + preformatting to create a working TTS model. + """ + # Set padding areas within MEL (currently it is coded with the MEL code for ). + mel_lengths = torch.div(wav_lengths, self.mel_length_compression, rounding_mode="trunc") + for b in range(len(mel_lengths)): + actual_end = ( + mel_lengths[b] + 1 + ) # Due to the convolutional nature of how these tokens are generated, it would be best if the model predicts a token past the actual last token. + if actual_end < mel_input_tokens.shape[-1]: + mel_input_tokens[b, actual_end:] = self.stop_mel_token + return mel_input_tokens + + def get_logits( + self, + speech_conditioning_inputs, + first_inputs, + first_head, + second_inputs=None, + second_head=None, + get_attns=False, + return_latent=False, + ): + if second_inputs is not None: + emb = torch.cat([speech_conditioning_inputs, first_inputs, second_inputs], dim=1) + else: + emb = torch.cat([speech_conditioning_inputs, first_inputs], dim=1) + + gpt_out = self.gpt(inputs_embeds=emb, return_dict=True, output_attentions=get_attns) + if get_attns: + return gpt_out.attentions + + enc = gpt_out.last_hidden_state[:, 1:] # The first logit is tied to the speech_conditioning_input + enc = self.final_norm(enc) + + if return_latent: + return ( + enc[ + :, + speech_conditioning_inputs.shape[1] : speech_conditioning_inputs.shape[1] + first_inputs.shape[1], + ], + enc[:, -second_inputs.shape[1] :], + ) + + first_logits = enc[:, : first_inputs.shape[1]] + first_logits = first_head(first_logits) + first_logits = first_logits.permute(0, 2, 1) + if second_inputs is not None: + second_logits = enc[:, -second_inputs.shape[1] :] + second_logits = second_head(second_logits) + second_logits = second_logits.permute(0, 2, 1) + return first_logits, second_logits + else: + return first_logits + + def get_conditioning(self, speech_conditioning_input): + speech_conditioning_input = ( + speech_conditioning_input.unsqueeze(1) + if len(speech_conditioning_input.shape) == 3 + else speech_conditioning_input + ) + conds = [] + for j in range(speech_conditioning_input.shape[1]): + conds.append(self.conditioning_encoder(speech_conditioning_input[:, j])) + conds = torch.stack(conds, dim=1) + conds = conds.mean(dim=1) + return conds + + def forward( + self, + speech_conditioning_latent, + text_inputs, + text_lengths, + mel_codes, + wav_lengths, + types=None, + text_first=True, + raw_mels=None, + return_attentions=False, + return_latent=False, + clip_inputs=True, + ): + """ + Forward pass that uses both text and voice in either text conditioning mode or voice conditioning mode + (actuated by `text_first`). + + speech_conditioning_input: MEL float tensor, (b,1024) + text_inputs: long tensor, (b,t) + text_lengths: long tensor, (b,) + mel_inputs: long tensor, (b,m) + wav_lengths: long tensor, (b,) + raw_mels: MEL float tensor (b,80,s) + + If return_attentions is specified, only logits are returned. + If return_latent is specified, loss & logits are not computed or returned. Only the predicted latents are returned. + If clip_inputs is True, the inputs will be clipped to the smallest input size across each input modality. + """ + # Types are expressed by expanding the text embedding space. + if types is not None: + text_inputs = text_inputs * (1 + types).unsqueeze(-1) + + if clip_inputs: + # This model will receive micro-batches with a ton of padding for both the text and MELs. Ameliorate this by + # chopping the inputs by the maximum actual length. + max_text_len = text_lengths.max() + text_inputs = text_inputs[:, :max_text_len] + max_mel_len = wav_lengths.max() // self.mel_length_compression + mel_codes = mel_codes[:, :max_mel_len] + if raw_mels is not None: + raw_mels = raw_mels[:, :, : max_mel_len * 4] + mel_codes = self.set_mel_padding(mel_codes, wav_lengths) + text_inputs = F.pad(text_inputs, (0, 1), value=self.stop_text_token) + mel_codes = F.pad(mel_codes, (0, 1), value=self.stop_mel_token) + + conds = speech_conditioning_latent.unsqueeze(1) + text_inputs, text_targets = self.build_aligned_inputs_and_targets( + text_inputs, self.start_text_token, self.stop_text_token + ) + text_emb = self.text_embedding(text_inputs) + self.text_pos_embedding(text_inputs) + mel_codes, mel_targets = self.build_aligned_inputs_and_targets( + mel_codes, self.start_mel_token, self.stop_mel_token + ) + if raw_mels is not None: + mel_inp = F.pad(raw_mels, (0, 8)) + else: + mel_inp = mel_codes + mel_emb = self.mel_embedding(mel_inp) + mel_emb = mel_emb + self.mel_pos_embedding(mel_codes) + + if text_first: + text_logits, mel_logits = self.get_logits( + conds, + text_emb, + self.text_head, + mel_emb, + self.mel_head, + get_attns=return_attentions, + return_latent=return_latent, + ) + if return_latent: + return mel_logits[ + :, :-2 + ] # Despite the name, these are not logits. Strip off the two tokens added by this forward pass. + else: + mel_logits, text_logits = self.get_logits( + conds, + mel_emb, + self.mel_head, + text_emb, + self.text_head, + get_attns=return_attentions, + return_latent=return_latent, + ) + if return_latent: + return text_logits[ + :, :-2 + ] # Despite the name, these are not logits. Strip off the two tokens added by this forward pass. + + if return_attentions: + return mel_logits + loss_text = F.cross_entropy(text_logits, text_targets.long()) + loss_mel = F.cross_entropy(mel_logits, mel_targets.long()) + return loss_text.mean(), loss_mel.mean(), mel_logits + + def inference_speech( + self, + speech_conditioning_latent, + text_inputs, + input_tokens=None, + num_return_sequences=1, + max_generate_length=None, + typical_sampling=False, + typical_mass=0.9, + **hf_generate_kwargs, + ): + text_inputs = F.pad(text_inputs, (0, 1), value=self.stop_text_token) + text_inputs, text_targets = self.build_aligned_inputs_and_targets( + text_inputs, self.start_text_token, self.stop_text_token + ) + text_emb = self.text_embedding(text_inputs) + self.text_pos_embedding(text_inputs) + + conds = speech_conditioning_latent.unsqueeze(1) + emb = torch.cat([conds, text_emb], dim=1) + self.inference_model.store_mel_emb(emb) + + fake_inputs = torch.full( + ( + emb.shape[0], + conds.shape[1] + emb.shape[1], + ), + fill_value=1, + dtype=torch.long, + device=text_inputs.device, + ) + fake_inputs[:, -1] = self.start_mel_token + trunc_index = fake_inputs.shape[1] + if input_tokens is None: + inputs = fake_inputs + else: + assert ( + num_return_sequences % input_tokens.shape[0] == 0 + ), "The number of return sequences must be divisible by the number of input sequences" + fake_inputs = fake_inputs.repeat(num_return_sequences, 1) + input_tokens = input_tokens.repeat(num_return_sequences // input_tokens.shape[0], 1) + inputs = torch.cat([fake_inputs, input_tokens], dim=1) + + logits_processor = ( + LogitsProcessorList([TypicalLogitsWarper(mass=typical_mass)]) if typical_sampling else LogitsProcessorList() + ) # TODO disable this + max_length = ( + trunc_index + self.max_mel_tokens - 1 if max_generate_length is None else trunc_index + max_generate_length + ) + gen = self.inference_model.generate( + inputs, + bos_token_id=self.start_mel_token, + pad_token_id=self.stop_mel_token, + eos_token_id=self.stop_mel_token, + max_length=max_length, + logits_processor=logits_processor, + num_return_sequences=num_return_sequences, + **hf_generate_kwargs, + ) + return gen[:, trunc_index:] + + +if __name__ == "__main__": + gpt = UnifiedVoice( + model_dim=256, + heads=4, + train_solo_embeddings=True, + use_mel_codes_as_input=True, + max_conditioning_inputs=4, + ) + l = gpt( + torch.randn(2, 3, 80, 800), + torch.randint(high=120, size=(2, 120)), + torch.tensor([32, 120]), + torch.randint(high=8192, size=(2, 250)), + torch.tensor([250 * 256, 195 * 256]), + ) + gpt.text_forward( + torch.randn(2, 80, 800), + torch.randint(high=50, size=(2, 80)), + torch.tensor([32, 80]), + ) diff --git a/TTS/TTS/tts/layers/tortoise/classifier.py b/TTS/TTS/tts/layers/tortoise/classifier.py new file mode 100644 index 0000000000000000000000000000000000000000..8764bb070b5ad8267ee2992ccc33f5bb65bad005 --- /dev/null +++ b/TTS/TTS/tts/layers/tortoise/classifier.py @@ -0,0 +1,144 @@ +import torch +import torch.nn as nn + +from TTS.tts.layers.tortoise.arch_utils import AttentionBlock, Downsample, Upsample, normalization, zero_module + + +class ResBlock(nn.Module): + def __init__( + self, + channels, + dropout, + out_channels=None, + use_conv=False, + use_scale_shift_norm=False, + dims=2, + up=False, + down=False, + kernel_size=3, + do_checkpoint=True, + ): + super().__init__() + self.channels = channels + self.dropout = dropout + self.out_channels = out_channels or channels + self.use_conv = use_conv + self.use_scale_shift_norm = use_scale_shift_norm + self.do_checkpoint = do_checkpoint + padding = 1 if kernel_size == 3 else 2 + + self.in_layers = nn.Sequential( + normalization(channels), + nn.SiLU(), + nn.Conv1d(channels, self.out_channels, kernel_size, padding=padding), + ) + + self.updown = up or down + + if up: + self.h_upd = Upsample(channels, False, dims) + self.x_upd = Upsample(channels, False, dims) + elif down: + self.h_upd = Downsample(channels, False, dims) + self.x_upd = Downsample(channels, False, dims) + else: + self.h_upd = self.x_upd = nn.Identity() + + self.out_layers = nn.Sequential( + normalization(self.out_channels), + nn.SiLU(), + nn.Dropout(p=dropout), + zero_module(nn.Conv1d(self.out_channels, self.out_channels, kernel_size, padding=padding)), + ) + + if self.out_channels == channels: + self.skip_connection = nn.Identity() + elif use_conv: + self.skip_connection = nn.Conv1d(dims, channels, self.out_channels, kernel_size, padding=padding) + else: + self.skip_connection = nn.Conv1d(dims, channels, self.out_channels, 1) + + def forward(self, x): + if self.updown: + in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] + h = in_rest(x) + h = self.h_upd(h) + x = self.x_upd(x) + h = in_conv(h) + else: + h = self.in_layers(x) + h = self.out_layers(h) + return self.skip_connection(x) + h + + +class AudioMiniEncoder(nn.Module): + def __init__( + self, + spec_dim, + embedding_dim, + base_channels=128, + depth=2, + resnet_blocks=2, + attn_blocks=4, + num_attn_heads=4, + dropout=0, + downsample_factor=2, + kernel_size=3, + ): + super().__init__() + self.init = nn.Sequential(nn.Conv1d(spec_dim, base_channels, 3, padding=1)) + ch = base_channels + res = [] + self.layers = depth + for l in range(depth): + for r in range(resnet_blocks): + res.append(ResBlock(ch, dropout, do_checkpoint=False, kernel_size=kernel_size)) + res.append(Downsample(ch, use_conv=True, out_channels=ch * 2, factor=downsample_factor)) + ch *= 2 + self.res = nn.Sequential(*res) + self.final = nn.Sequential(normalization(ch), nn.SiLU(), nn.Conv1d(ch, embedding_dim, 1)) + attn = [] + for a in range(attn_blocks): + attn.append(AttentionBlock(embedding_dim, num_attn_heads, do_checkpoint=False)) + self.attn = nn.Sequential(*attn) + self.dim = embedding_dim + + def forward(self, x): + h = self.init(x) + h = self.res(h) + h = self.final(h) + for blk in self.attn: + h = blk(h) + return h[:, :, 0] + + +class AudioMiniEncoderWithClassifierHead(nn.Module): + def __init__(self, classes, distribute_zero_label=True, **kwargs): + super().__init__() + self.enc = AudioMiniEncoder(**kwargs) + self.head = nn.Linear(self.enc.dim, classes) + self.num_classes = classes + self.distribute_zero_label = distribute_zero_label + + def forward(self, x, labels=None): + h = self.enc(x) + logits = self.head(h) + if labels is None: + return logits + else: + if self.distribute_zero_label: + oh_labels = nn.functional.one_hot(labels, num_classes=self.num_classes) + zeros_indices = (labels == 0).unsqueeze(-1) + # Distribute 20% of the probability mass on all classes when zero is specified, to compensate for dataset noise. + zero_extra_mass = torch.full_like( + oh_labels, + dtype=torch.float, + fill_value=0.2 / (self.num_classes - 1), + ) + zero_extra_mass[:, 0] = -0.2 + zero_extra_mass = zero_extra_mass * zeros_indices + oh_labels = oh_labels + zero_extra_mass + else: + oh_labels = labels + loss = nn.functional.cross_entropy(logits, oh_labels) + return loss diff --git a/TTS/TTS/tts/layers/tortoise/clvp.py b/TTS/TTS/tts/layers/tortoise/clvp.py new file mode 100644 index 0000000000000000000000000000000000000000..69b8c17c3fe71f55be12b728fa3c8f0e85cefb89 --- /dev/null +++ b/TTS/TTS/tts/layers/tortoise/clvp.py @@ -0,0 +1,159 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F +from torch import einsum + +from TTS.tts.layers.tortoise.arch_utils import CheckpointedXTransformerEncoder +from TTS.tts.layers.tortoise.transformer import Transformer +from TTS.tts.layers.tortoise.xtransformers import Encoder + + +def exists(val): + return val is not None + + +def masked_mean(t, mask, dim=1): + t = t.masked_fill(~mask[:, :, None], 0.0) + return t.sum(dim=1) / mask.sum(dim=1)[..., None] + + +class CLVP(nn.Module): + """ + CLIP model retrofitted for performing contrastive evaluation between tokenized audio data and the corresponding + transcribed text. + + Originally from https://github.com/lucidrains/DALLE-pytorch/blob/main/dalle_pytorch/dalle_pytorch.py + """ + + def __init__( + self, + *, + dim_text=512, + dim_speech=512, + dim_latent=512, + num_text_tokens=256, + text_enc_depth=6, + text_seq_len=120, + text_heads=8, + num_speech_tokens=8192, + speech_enc_depth=6, + speech_heads=8, + speech_seq_len=250, + text_mask_percentage=0, + voice_mask_percentage=0, + wav_token_compression=1024, + use_xformers=False, + ): + super().__init__() + self.text_emb = nn.Embedding(num_text_tokens, dim_text) + self.to_text_latent = nn.Linear(dim_text, dim_latent, bias=False) + + self.speech_emb = nn.Embedding(num_speech_tokens, dim_speech) + self.to_speech_latent = nn.Linear(dim_speech, dim_latent, bias=False) + + if use_xformers: + self.text_transformer = CheckpointedXTransformerEncoder( + needs_permute=False, + exit_permute=False, + max_seq_len=-1, + attn_layers=Encoder( + dim=dim_text, + depth=text_enc_depth, + heads=text_heads, + ff_dropout=0.1, + ff_mult=2, + attn_dropout=0.1, + use_rmsnorm=True, + ff_glu=True, + rotary_pos_emb=True, + ), + ) + self.speech_transformer = CheckpointedXTransformerEncoder( + needs_permute=False, + exit_permute=False, + max_seq_len=-1, + attn_layers=Encoder( + dim=dim_speech, + depth=speech_enc_depth, + heads=speech_heads, + ff_dropout=0.1, + ff_mult=2, + attn_dropout=0.1, + use_rmsnorm=True, + ff_glu=True, + rotary_pos_emb=True, + ), + ) + else: + self.text_transformer = Transformer( + causal=False, seq_len=text_seq_len, dim=dim_text, depth=text_enc_depth, heads=text_heads + ) + self.speech_transformer = Transformer( + causal=False, seq_len=speech_seq_len, dim=dim_speech, depth=speech_enc_depth, heads=speech_heads + ) + + self.temperature = nn.Parameter(torch.tensor(1.0)) + self.text_mask_percentage = text_mask_percentage + self.voice_mask_percentage = voice_mask_percentage + self.wav_token_compression = wav_token_compression + self.xformers = use_xformers + if not use_xformers: + self.text_pos_emb = nn.Embedding(text_seq_len, dim_text) + self.speech_pos_emb = nn.Embedding(num_speech_tokens, dim_speech) + + def forward(self, text, speech_tokens, return_loss=False): + b, device = text.shape[0], text.device + if self.training: + text_mask = torch.rand_like(text.float()) > self.text_mask_percentage + voice_mask = torch.rand_like(speech_tokens.float()) > self.voice_mask_percentage + else: + text_mask = torch.ones_like(text.float()).bool() + voice_mask = torch.ones_like(speech_tokens.float()).bool() + + text_emb = self.text_emb(text) + speech_emb = self.speech_emb(speech_tokens) + + if not self.xformers: + text_emb += self.text_pos_emb(torch.arange(text.shape[1], device=device)) + speech_emb += self.speech_pos_emb(torch.arange(speech_emb.shape[1], device=device)) + + enc_text = self.text_transformer(text_emb, mask=text_mask) + enc_speech = self.speech_transformer(speech_emb, mask=voice_mask) + + text_latents = masked_mean(enc_text, text_mask, dim=1) + speech_latents = masked_mean(enc_speech, voice_mask, dim=1) + + text_latents = self.to_text_latent(text_latents) + speech_latents = self.to_speech_latent(speech_latents) + + text_latents, speech_latents = map(lambda t: F.normalize(t, p=2, dim=-1), (text_latents, speech_latents)) + + temp = self.temperature.exp() + + if not return_loss: + sim = einsum("n d, n d -> n", text_latents, speech_latents) * temp + return sim + + sim = einsum("i d, j d -> i j", text_latents, speech_latents) * temp + labels = torch.arange(b, device=device) + loss = (F.cross_entropy(sim, labels) + F.cross_entropy(sim.t(), labels)) / 2 + return loss + + +if __name__ == "__main__": + clip = CLVP(text_mask_percentage=0.2, voice_mask_percentage=0.2) + clip( + torch.randint(0, 256, (2, 120)), + torch.tensor([50, 100]), + torch.randint(0, 8192, (2, 250)), + torch.tensor([101, 102]), + return_loss=True, + ) + nonloss = clip( + torch.randint(0, 256, (2, 120)), + torch.tensor([50, 100]), + torch.randint(0, 8192, (2, 250)), + torch.tensor([101, 102]), + return_loss=False, + ) + print(nonloss.shape) diff --git a/TTS/TTS/tts/layers/tortoise/diffusion.py b/TTS/TTS/tts/layers/tortoise/diffusion.py new file mode 100644 index 0000000000000000000000000000000000000000..cb350af779ede3185f7fa71ca29f8b62f9691b30 --- /dev/null +++ b/TTS/TTS/tts/layers/tortoise/diffusion.py @@ -0,0 +1,1234 @@ +""" +This is an almost carbon copy of gaussian_diffusion.py from OpenAI's ImprovedDiffusion repo, which itself: + +This code started out as a PyTorch port of Ho et al's diffusion models: +https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py + +Docstrings have been added, as well as DDIM sampling and a new collection of beta schedules. +""" + +import enum +import math + +import numpy as np +import torch +import torch as th +from k_diffusion.sampling import sample_dpmpp_2m, sample_euler_ancestral +from tqdm import tqdm + +from TTS.tts.layers.tortoise.dpm_solver import DPM_Solver, NoiseScheduleVP, model_wrapper + +K_DIFFUSION_SAMPLERS = {"k_euler_a": sample_euler_ancestral, "dpm++2m": sample_dpmpp_2m} +SAMPLERS = ["dpm++2m", "p", "ddim"] + + +def normal_kl(mean1, logvar1, mean2, logvar2): + """ + Compute the KL divergence between two gaussians. + + Shapes are automatically broadcasted, so batches can be compared to + scalars, among other use cases. + """ + tensor = None + for obj in (mean1, logvar1, mean2, logvar2): + if isinstance(obj, th.Tensor): + tensor = obj + break + assert tensor is not None, "at least one argument must be a Tensor" + + # Force variances to be Tensors. Broadcasting helps convert scalars to + # Tensors, but it does not work for th.exp(). + logvar1, logvar2 = [x if isinstance(x, th.Tensor) else th.tensor(x).to(tensor) for x in (logvar1, logvar2)] + + return 0.5 * (-1.0 + logvar2 - logvar1 + th.exp(logvar1 - logvar2) + ((mean1 - mean2) ** 2) * th.exp(-logvar2)) + + +def approx_standard_normal_cdf(x): + """ + A fast approximation of the cumulative distribution function of the + standard normal. + """ + return 0.5 * (1.0 + th.tanh(np.sqrt(2.0 / np.pi) * (x + 0.044715 * th.pow(x, 3)))) + + +def discretized_gaussian_log_likelihood(x, *, means, log_scales): + """ + Compute the log-likelihood of a Gaussian distribution discretizing to a + given image. + + :param x: the target images. It is assumed that this was uint8 values, + rescaled to the range [-1, 1]. + :param means: the Gaussian mean Tensor. + :param log_scales: the Gaussian log stddev Tensor. + :return: a tensor like x of log probabilities (in nats). + """ + assert x.shape == means.shape == log_scales.shape + centered_x = x - means + inv_stdv = th.exp(-log_scales) + plus_in = inv_stdv * (centered_x + 1.0 / 255.0) + cdf_plus = approx_standard_normal_cdf(plus_in) + min_in = inv_stdv * (centered_x - 1.0 / 255.0) + cdf_min = approx_standard_normal_cdf(min_in) + log_cdf_plus = th.log(cdf_plus.clamp(min=1e-12)) + log_one_minus_cdf_min = th.log((1.0 - cdf_min).clamp(min=1e-12)) + cdf_delta = cdf_plus - cdf_min + log_probs = th.where( + x < -0.999, + log_cdf_plus, + th.where(x > 0.999, log_one_minus_cdf_min, th.log(cdf_delta.clamp(min=1e-12))), + ) + assert log_probs.shape == x.shape + return log_probs + + +def mean_flat(tensor): + """ + Take the mean over all non-batch dimensions. + """ + return tensor.mean(dim=list(range(1, len(tensor.shape)))) + + +def get_named_beta_schedule(schedule_name, num_diffusion_timesteps): + """ + Get a pre-defined beta schedule for the given name. + + The beta schedule library consists of beta schedules which remain similar + in the limit of num_diffusion_timesteps. + Beta schedules may be added, but should not be removed or changed once + they are committed to maintain backwards compatibility. + """ + if schedule_name == "linear": + # Linear schedule from Ho et al, extended to work for any number of + # diffusion steps. + scale = 1000 / num_diffusion_timesteps + beta_start = scale * 0.0001 + beta_end = scale * 0.02 + return np.linspace(beta_start, beta_end, num_diffusion_timesteps, dtype=np.float64) + elif schedule_name == "cosine": + return betas_for_alpha_bar( + num_diffusion_timesteps, + lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2, + ) + else: + raise NotImplementedError(f"unknown beta schedule: {schedule_name}") + + +def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999): + """ + Create a beta schedule that discretizes the given alpha_t_bar function, + which defines the cumulative product of (1-beta) over time from t = [0,1]. + + :param num_diffusion_timesteps: the number of betas to produce. + :param alpha_bar: a lambda that takes an argument t from 0 to 1 and + produces the cumulative product of (1-beta) up to that + part of the diffusion process. + :param max_beta: the maximum beta to use; use values lower than 1 to + prevent singularities. + """ + betas = [] + for i in range(num_diffusion_timesteps): + t1 = i / num_diffusion_timesteps + t2 = (i + 1) / num_diffusion_timesteps + betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) + return np.array(betas) + + +class ModelMeanType(enum.Enum): + """ + Which type of output the model predicts. + """ + + PREVIOUS_X = "previous_x" # the model predicts x_{t-1} + START_X = "start_x" # the model predicts x_0 + EPSILON = "epsilon" # the model predicts epsilon + + +class ModelVarType(enum.Enum): + """ + What is used as the model's output variance. + + The LEARNED_RANGE option has been added to allow the model to predict + values between FIXED_SMALL and FIXED_LARGE, making its job easier. + """ + + LEARNED = "learned" + FIXED_SMALL = "fixed_small" + FIXED_LARGE = "fixed_large" + LEARNED_RANGE = "learned_range" + + +class LossType(enum.Enum): + MSE = "mse" # use raw MSE loss (and KL when learning variances) + RESCALED_MSE = "rescaled_mse" # use raw MSE loss (with RESCALED_KL when learning variances) + KL = "kl" # use the variational lower-bound + RESCALED_KL = "rescaled_kl" # like KL, but rescale to estimate the full VLB + + def is_vb(self): + return self == LossType.KL or self == LossType.RESCALED_KL + + +class GaussianDiffusion: + """ + Utilities for training and sampling diffusion models. + + Ported directly from here, and then adapted over time to further experimentation. + https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py#L42 + + :param betas: a 1-D numpy array of betas for each diffusion timestep, + starting at T and going to 1. + :param model_mean_type: a ModelMeanType determining what the model outputs. + :param model_var_type: a ModelVarType determining how variance is output. + :param loss_type: a LossType determining the loss function to use. + :param rescale_timesteps: if True, pass floating point timesteps into the + model so that they are always scaled like in the + original paper (0 to 1000). + """ + + def __init__( + self, + *, + betas, + model_mean_type, + model_var_type, + loss_type, + rescale_timesteps=False, + conditioning_free=False, + conditioning_free_k=1, + ramp_conditioning_free=True, + sampler="p", + ): + self.sampler = sampler + self.model_mean_type = ModelMeanType(model_mean_type) + self.model_var_type = ModelVarType(model_var_type) + self.loss_type = LossType(loss_type) + self.rescale_timesteps = rescale_timesteps + self.conditioning_free = conditioning_free + self.conditioning_free_k = conditioning_free_k + self.ramp_conditioning_free = ramp_conditioning_free + + # Use float64 for accuracy. + betas = np.array(betas, dtype=np.float64) + self.betas = betas + assert len(betas.shape) == 1, "betas must be 1-D" + assert (betas > 0).all() and (betas <= 1).all() + + self.num_timesteps = int(betas.shape[0]) + + alphas = 1.0 - betas + self.alphas_cumprod = np.cumprod(alphas, axis=0) + self.alphas_cumprod_prev = np.append(1.0, self.alphas_cumprod[:-1]) + self.alphas_cumprod_next = np.append(self.alphas_cumprod[1:], 0.0) + assert self.alphas_cumprod_prev.shape == (self.num_timesteps,) + + # calculations for diffusion q(x_t | x_{t-1}) and others + self.sqrt_alphas_cumprod = np.sqrt(self.alphas_cumprod) + self.sqrt_one_minus_alphas_cumprod = np.sqrt(1.0 - self.alphas_cumprod) + self.log_one_minus_alphas_cumprod = np.log(1.0 - self.alphas_cumprod) + self.sqrt_recip_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod) + self.sqrt_recipm1_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod - 1) + + # calculations for posterior q(x_{t-1} | x_t, x_0) + self.posterior_variance = betas * (1.0 - self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod) + # log calculation clipped because the posterior variance is 0 at the + # beginning of the diffusion chain. + self.posterior_log_variance_clipped = np.log(np.append(self.posterior_variance[1], self.posterior_variance[1:])) + self.posterior_mean_coef1 = betas * np.sqrt(self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod) + self.posterior_mean_coef2 = (1.0 - self.alphas_cumprod_prev) * np.sqrt(alphas) / (1.0 - self.alphas_cumprod) + + def q_mean_variance(self, x_start, t): + """ + Get the distribution q(x_t | x_0). + + :param x_start: the [N x C x ...] tensor of noiseless inputs. + :param t: the number of diffusion steps (minus 1). Here, 0 means one step. + :return: A tuple (mean, variance, log_variance), all of x_start's shape. + """ + mean = _extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start + variance = _extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape) + log_variance = _extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape) + return mean, variance, log_variance + + def q_sample(self, x_start, t, noise=None): + """ + Diffuse the data for a given number of diffusion steps. + + In other words, sample from q(x_t | x_0). + + :param x_start: the initial data batch. + :param t: the number of diffusion steps (minus 1). Here, 0 means one step. + :param noise: if specified, the split-out normal noise. + :return: A noisy version of x_start. + """ + if noise is None: + noise = th.randn_like(x_start) + assert noise.shape == x_start.shape + return ( + _extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start + + _extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise + ) + + def q_posterior_mean_variance(self, x_start, x_t, t): + """ + Compute the mean and variance of the diffusion posterior: + + q(x_{t-1} | x_t, x_0) + + """ + assert x_start.shape == x_t.shape + posterior_mean = ( + _extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start + + _extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t + ) + posterior_variance = _extract_into_tensor(self.posterior_variance, t, x_t.shape) + posterior_log_variance_clipped = _extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape) + assert ( + posterior_mean.shape[0] + == posterior_variance.shape[0] + == posterior_log_variance_clipped.shape[0] + == x_start.shape[0] + ) + return posterior_mean, posterior_variance, posterior_log_variance_clipped + + def p_mean_variance(self, model, x, t, clip_denoised=True, denoised_fn=None, model_kwargs=None): + """ + Apply the model to get p(x_{t-1} | x_t), as well as a prediction of + the initial x, x_0. + + :param model: the model, which takes a signal and a batch of timesteps + as input. + :param x: the [N x C x ...] tensor at time t. + :param t: a 1-D Tensor of timesteps. + :param clip_denoised: if True, clip the denoised signal into [-1, 1]. + :param denoised_fn: if not None, a function which applies to the + x_start prediction before it is used to sample. Applies before + clip_denoised. + :param model_kwargs: if not None, a dict of extra keyword arguments to + pass to the model. This can be used for conditioning. + :return: a dict with the following keys: + - 'mean': the model mean output. + - 'variance': the model variance output. + - 'log_variance': the log of 'variance'. + - 'pred_xstart': the prediction for x_0. + """ + if model_kwargs is None: + model_kwargs = {} + + B, C = x.shape[:2] + assert t.shape == (B,) + model_output = model(x, self._scale_timesteps(t), **model_kwargs) + if self.conditioning_free: + model_output_no_conditioning = model(x, self._scale_timesteps(t), conditioning_free=True, **model_kwargs) + + if self.model_var_type in [ModelVarType.LEARNED, ModelVarType.LEARNED_RANGE]: + assert model_output.shape == (B, C * 2, *x.shape[2:]) + model_output, model_var_values = th.split(model_output, C, dim=1) + if self.conditioning_free: + model_output_no_conditioning, _ = th.split(model_output_no_conditioning, C, dim=1) + if self.model_var_type == ModelVarType.LEARNED: + model_log_variance = model_var_values + model_variance = th.exp(model_log_variance) + else: + min_log = _extract_into_tensor(self.posterior_log_variance_clipped, t, x.shape) + max_log = _extract_into_tensor(np.log(self.betas), t, x.shape) + # The model_var_values is [-1, 1] for [min_var, max_var]. + frac = (model_var_values + 1) / 2 + model_log_variance = frac * max_log + (1 - frac) * min_log + model_variance = th.exp(model_log_variance) + else: + model_variance, model_log_variance = { + # for fixedlarge, we set the initial (log-)variance like so + # to get a better decoder log likelihood. + ModelVarType.FIXED_LARGE: ( + np.append(self.posterior_variance[1], self.betas[1:]), + np.log(np.append(self.posterior_variance[1], self.betas[1:])), + ), + ModelVarType.FIXED_SMALL: ( + self.posterior_variance, + self.posterior_log_variance_clipped, + ), + }[self.model_var_type] + model_variance = _extract_into_tensor(model_variance, t, x.shape) + model_log_variance = _extract_into_tensor(model_log_variance, t, x.shape) + + if self.conditioning_free: + if self.ramp_conditioning_free: + assert t.shape[0] == 1 # This should only be used in inference. + cfk = self.conditioning_free_k * (1 - self._scale_timesteps(t)[0].item() / self.num_timesteps) + else: + cfk = self.conditioning_free_k + model_output = (1 + cfk) * model_output - cfk * model_output_no_conditioning + + def process_xstart(x): + if denoised_fn is not None: + x = denoised_fn(x) + if clip_denoised: + return x.clamp(-1, 1) + return x + + if self.model_mean_type == ModelMeanType.PREVIOUS_X: + pred_xstart = process_xstart(self._predict_xstart_from_xprev(x_t=x, t=t, xprev=model_output)) + model_mean = model_output + elif self.model_mean_type in [ModelMeanType.START_X, ModelMeanType.EPSILON]: + if self.model_mean_type == ModelMeanType.START_X: + pred_xstart = process_xstart(model_output) + else: + pred_xstart = process_xstart(self._predict_xstart_from_eps(x_t=x, t=t, eps=model_output)) + model_mean, _, _ = self.q_posterior_mean_variance(x_start=pred_xstart, x_t=x, t=t) + else: + raise NotImplementedError(self.model_mean_type) + + assert model_mean.shape == model_log_variance.shape == pred_xstart.shape == x.shape + return { + "mean": model_mean, + "variance": model_variance, + "log_variance": model_log_variance, + "pred_xstart": pred_xstart, + } + + def _predict_xstart_from_eps(self, x_t, t, eps): + assert x_t.shape == eps.shape + return ( + _extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t + - _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * eps + ) + + def _predict_xstart_from_xprev(self, x_t, t, xprev): + assert x_t.shape == xprev.shape + return ( # (xprev - coef2*x_t) / coef1 + _extract_into_tensor(1.0 / self.posterior_mean_coef1, t, x_t.shape) * xprev + - _extract_into_tensor(self.posterior_mean_coef2 / self.posterior_mean_coef1, t, x_t.shape) * x_t + ) + + def _predict_eps_from_xstart(self, x_t, t, pred_xstart): + return ( + _extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart + ) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) + + def _scale_timesteps(self, t): + if self.rescale_timesteps: + return t.float() * (1000.0 / self.num_timesteps) + return t + + def condition_mean(self, cond_fn, p_mean_var, x, t, model_kwargs=None): + """ + Compute the mean for the previous step, given a function cond_fn that + computes the gradient of a conditional log probability with respect to + x. In particular, cond_fn computes grad(log(p(y|x))), and we want to + condition on y. + + This uses the conditioning strategy from Sohl-Dickstein et al. (2015). + """ + gradient = cond_fn(x, self._scale_timesteps(t), **model_kwargs) + new_mean = p_mean_var["mean"].float() + p_mean_var["variance"] * gradient.float() + return new_mean + + def condition_score(self, cond_fn, p_mean_var, x, t, model_kwargs=None): + """ + Compute what the p_mean_variance output would have been, should the + model's score function be conditioned by cond_fn. + + See condition_mean() for details on cond_fn. + + Unlike condition_mean(), this instead uses the conditioning strategy + from Song et al (2020). + """ + alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape) + + eps = self._predict_eps_from_xstart(x, t, p_mean_var["pred_xstart"]) + eps = eps - (1 - alpha_bar).sqrt() * cond_fn(x, self._scale_timesteps(t), **model_kwargs) + + out = p_mean_var.copy() + out["pred_xstart"] = self._predict_xstart_from_eps(x, t, eps) + out["mean"], _, _ = self.q_posterior_mean_variance(x_start=out["pred_xstart"], x_t=x, t=t) + return out + + def k_diffusion_sample_loop( + self, + k_sampler, + pbar, + model, + shape, + noise=None, # all given + clip_denoised=True, + denoised_fn=None, + cond_fn=None, + device=None, # ALL UNUSED + model_kwargs=None, # {'precomputed_aligned_embeddings': precomputed_embeddings}, + progress=False, # unused as well + ): + assert isinstance(model_kwargs, dict) + if device is None: + device = next(model.parameters()).device + s_in = noise.new_ones([noise.shape[0]]) + + def model_split(*args, **kwargs): + model_output = model(*args, **kwargs) + model_epsilon, model_var = th.split(model_output, model_output.shape[1] // 2, dim=1) + return model_epsilon, model_var + + # + """ + print(self.betas) + print(th.tensor(self.betas)) + noise_schedule = NoiseScheduleVP(schedule='discrete', betas=th.tensor(self.betas)) + """ + noise_schedule = NoiseScheduleVP(schedule="linear", continuous_beta_0=0.1 / 4, continuous_beta_1=20.0 / 4) + + def model_fn_prewrap(x, t, *args, **kwargs): + """ + x_in = torch.cat([x] * 2) + t_in = torch.cat([t_continuous] * 2) + c_in = torch.cat([unconditional_condition, condition]) + noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2) + print(t) + print(self.timestep_map) + exit() + """ + """ + model_output = model(x, self._scale_timesteps(t*4000), **model_kwargs) + out = self.p_mean_variance(model, x, t*4000, model_kwargs=model_kwargs) + return out['pred_xstart'] + """ + x, _ = x.chunk(2) + t, _ = (t * 1000).chunk(2) + res = torch.cat( + [ + model_split(x, t, conditioning_free=True, **model_kwargs)[0], + model_split(x, t, **model_kwargs)[0], + ] + ) + pbar.update(1) + return res + + model_fn = model_wrapper( + model_fn_prewrap, + noise_schedule, + model_type="noise", # "noise" or "x_start" or "v" or "score" + model_kwargs=model_kwargs, + guidance_type="classifier-free", + condition=th.Tensor(1), + unconditional_condition=th.Tensor(1), + guidance_scale=self.conditioning_free_k, + ) + dpm_solver = DPM_Solver(model_fn, noise_schedule, algorithm_type="dpmsolver++") + x_sample = dpm_solver.sample( + noise, + steps=self.num_timesteps, + order=2, + skip_type="time_uniform", + method="multistep", + ) + #''' + return x_sample + + def sample_loop(self, *args, **kwargs): + s = self.sampler + if s == "p": + return self.p_sample_loop(*args, **kwargs) + elif s == "ddim": + return self.ddim_sample_loop(*args, **kwargs) + elif s == "dpm++2m": + if self.conditioning_free is not True: + raise RuntimeError("cond_free must be true") + with tqdm(total=self.num_timesteps) as pbar: + return self.k_diffusion_sample_loop(K_DIFFUSION_SAMPLERS[s], pbar, *args, **kwargs) + else: + raise RuntimeError("sampler not impl") + + def p_sample( + self, + model, + x, + t, + clip_denoised=True, + denoised_fn=None, + cond_fn=None, + model_kwargs=None, + ): + """ + Sample x_{t-1} from the model at the given timestep. + + :param model: the model to sample from. + :param x: the current tensor at x_{t-1}. + :param t: the value of t, starting at 0 for the first diffusion step. + :param clip_denoised: if True, clip the x_start prediction to [-1, 1]. + :param denoised_fn: if not None, a function which applies to the + x_start prediction before it is used to sample. + :param cond_fn: if not None, this is a gradient function that acts + similarly to the model. + :param model_kwargs: if not None, a dict of extra keyword arguments to + pass to the model. This can be used for conditioning. + :return: a dict containing the following keys: + - 'sample': a random sample from the model. + - 'pred_xstart': a prediction of x_0. + """ + out = self.p_mean_variance( + model, + x, + t, + clip_denoised=clip_denoised, + denoised_fn=denoised_fn, + model_kwargs=model_kwargs, + ) + noise = th.randn_like(x) + nonzero_mask = (t != 0).float().view(-1, *([1] * (len(x.shape) - 1))) # no noise when t == 0 + if cond_fn is not None: + out["mean"] = self.condition_mean(cond_fn, out, x, t, model_kwargs=model_kwargs) + sample = out["mean"] + nonzero_mask * th.exp(0.5 * out["log_variance"]) * noise + return {"sample": sample, "pred_xstart": out["pred_xstart"]} + + def p_sample_loop( + self, + model, + shape, + noise=None, + clip_denoised=True, + denoised_fn=None, + cond_fn=None, + model_kwargs=None, + device=None, + progress=False, + ): + """ + Generate samples from the model. + + :param model: the model module. + :param shape: the shape of the samples, (N, C, H, W). + :param noise: if specified, the noise from the encoder to sample. + Should be of the same shape as `shape`. + :param clip_denoised: if True, clip x_start predictions to [-1, 1]. + :param denoised_fn: if not None, a function which applies to the + x_start prediction before it is used to sample. + :param cond_fn: if not None, this is a gradient function that acts + similarly to the model. + :param model_kwargs: if not None, a dict of extra keyword arguments to + pass to the model. This can be used for conditioning. + :param device: if specified, the device to create the samples on. + If not specified, use a model parameter's device. + :param progress: if True, show a tqdm progress bar. + :return: a non-differentiable batch of samples. + """ + final = None + for sample in self.p_sample_loop_progressive( + model, + shape, + noise=noise, + clip_denoised=clip_denoised, + denoised_fn=denoised_fn, + cond_fn=cond_fn, + model_kwargs=model_kwargs, + device=device, + progress=progress, + ): + final = sample + return final["sample"] + + def p_sample_loop_progressive( + self, + model, + shape, + noise=None, + clip_denoised=True, + denoised_fn=None, + cond_fn=None, + model_kwargs=None, + device=None, + progress=False, + ): + """ + Generate samples from the model and yield intermediate samples from + each timestep of diffusion. + + Arguments are the same as p_sample_loop(). + Returns a generator over dicts, where each dict is the return value of + p_sample(). + """ + if device is None: + device = next(model.parameters()).device + assert isinstance(shape, (tuple, list)) + if noise is not None: + img = noise + else: + img = th.randn(*shape, device=device) + indices = list(range(self.num_timesteps))[::-1] + + for i in tqdm(indices, disable=not progress): + t = th.tensor([i] * shape[0], device=device) + with th.no_grad(): + out = self.p_sample( + model, + img, + t, + clip_denoised=clip_denoised, + denoised_fn=denoised_fn, + cond_fn=cond_fn, + model_kwargs=model_kwargs, + ) + yield out + img = out["sample"] + + def ddim_sample( + self, + model, + x, + t, + clip_denoised=True, + denoised_fn=None, + cond_fn=None, + model_kwargs=None, + eta=0.0, + ): + """ + Sample x_{t-1} from the model using DDIM. + + Same usage as p_sample(). + """ + out = self.p_mean_variance( + model, + x, + t, + clip_denoised=clip_denoised, + denoised_fn=denoised_fn, + model_kwargs=model_kwargs, + ) + if cond_fn is not None: + out = self.condition_score(cond_fn, out, x, t, model_kwargs=model_kwargs) + + # Usually our model outputs epsilon, but we re-derive it + # in case we used x_start or x_prev prediction. + eps = self._predict_eps_from_xstart(x, t, out["pred_xstart"]) + + alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape) + alpha_bar_prev = _extract_into_tensor(self.alphas_cumprod_prev, t, x.shape) + sigma = eta * th.sqrt((1 - alpha_bar_prev) / (1 - alpha_bar)) * th.sqrt(1 - alpha_bar / alpha_bar_prev) + # Equation 12. + noise = th.randn_like(x) + mean_pred = out["pred_xstart"] * th.sqrt(alpha_bar_prev) + th.sqrt(1 - alpha_bar_prev - sigma**2) * eps + nonzero_mask = (t != 0).float().view(-1, *([1] * (len(x.shape) - 1))) # no noise when t == 0 + sample = mean_pred + nonzero_mask * sigma * noise + return {"sample": sample, "pred_xstart": out["pred_xstart"]} + + def ddim_reverse_sample( + self, + model, + x, + t, + clip_denoised=True, + denoised_fn=None, + model_kwargs=None, + eta=0.0, + ): + """ + Sample x_{t+1} from the model using DDIM reverse ODE. + """ + assert eta == 0.0, "Reverse ODE only for deterministic path" + out = self.p_mean_variance( + model, + x, + t, + clip_denoised=clip_denoised, + denoised_fn=denoised_fn, + model_kwargs=model_kwargs, + ) + # Usually our model outputs epsilon, but we re-derive it + # in case we used x_start or x_prev prediction. + eps = ( + _extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x.shape) * x - out["pred_xstart"] + ) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x.shape) + alpha_bar_next = _extract_into_tensor(self.alphas_cumprod_next, t, x.shape) + + # Equation 12. reversed + mean_pred = out["pred_xstart"] * th.sqrt(alpha_bar_next) + th.sqrt(1 - alpha_bar_next) * eps + + return {"sample": mean_pred, "pred_xstart": out["pred_xstart"]} + + def ddim_sample_loop( + self, + model, + shape, + noise=None, + clip_denoised=True, + denoised_fn=None, + cond_fn=None, + model_kwargs=None, + device=None, + progress=False, + eta=0.0, + ): + """ + Generate samples from the model using DDIM. + + Same usage as p_sample_loop(). + """ + final = None + for sample in self.ddim_sample_loop_progressive( + model, + shape, + noise=noise, + clip_denoised=clip_denoised, + denoised_fn=denoised_fn, + cond_fn=cond_fn, + model_kwargs=model_kwargs, + device=device, + progress=progress, + eta=eta, + ): + final = sample + return final["sample"] + + def ddim_sample_loop_progressive( + self, + model, + shape, + noise=None, + clip_denoised=True, + denoised_fn=None, + cond_fn=None, + model_kwargs=None, + device=None, + progress=False, + eta=0.0, + ): + """ + Use DDIM to sample from the model and yield intermediate samples from + each timestep of DDIM. + + Same usage as p_sample_loop_progressive(). + """ + if device is None: + device = next(model.parameters()).device + assert isinstance(shape, (tuple, list)) + if noise is not None: + img = noise + else: + img = th.randn(*shape, device=device) + indices = list(range(self.num_timesteps))[::-1] + + if progress: + # Lazy import so that we don't depend on tqdm. + from tqdm.auto import tqdm + + indices = tqdm(indices, disable=not progress) + + for i in indices: + t = th.tensor([i] * shape[0], device=device) + with th.no_grad(): + out = self.ddim_sample( + model, + img, + t, + clip_denoised=clip_denoised, + denoised_fn=denoised_fn, + cond_fn=cond_fn, + model_kwargs=model_kwargs, + eta=eta, + ) + yield out + img = out["sample"] + + def _vb_terms_bpd(self, model, x_start, x_t, t, clip_denoised=True, model_kwargs=None): + """ + Get a term for the variational lower-bound. + + The resulting units are bits (rather than nats, as one might expect). + This allows for comparison to other papers. + + :return: a dict with the following keys: + - 'output': a shape [N] tensor of NLLs or KLs. + - 'pred_xstart': the x_0 predictions. + """ + true_mean, _, true_log_variance_clipped = self.q_posterior_mean_variance(x_start=x_start, x_t=x_t, t=t) + out = self.p_mean_variance(model, x_t, t, clip_denoised=clip_denoised, model_kwargs=model_kwargs) + kl = normal_kl(true_mean, true_log_variance_clipped, out["mean"], out["log_variance"]) + kl = mean_flat(kl) / np.log(2.0) + + decoder_nll = -discretized_gaussian_log_likelihood( + x_start, means=out["mean"], log_scales=0.5 * out["log_variance"] + ) + assert decoder_nll.shape == x_start.shape + decoder_nll = mean_flat(decoder_nll) / np.log(2.0) + + # At the first timestep return the decoder NLL, + # otherwise return KL(q(x_{t-1}|x_t,x_0) || p(x_{t-1}|x_t)) + output = th.where((t == 0), decoder_nll, kl) + return {"output": output, "pred_xstart": out["pred_xstart"]} + + def training_losses(self, model, x_start, t, model_kwargs=None, noise=None): + """ + Compute training losses for a single timestep. + + :param model: the model to evaluate loss on. + :param x_start: the [N x C x ...] tensor of inputs. + :param t: a batch of timestep indices. + :param model_kwargs: if not None, a dict of extra keyword arguments to + pass to the model. This can be used for conditioning. + :param noise: if specified, the specific Gaussian noise to try to remove. + :return: a dict with the key "loss" containing a tensor of shape [N]. + Some mean or variance settings may also have other keys. + """ + if model_kwargs is None: + model_kwargs = {} + if noise is None: + noise = th.randn_like(x_start) + x_t = self.q_sample(x_start, t, noise=noise) + + terms = {} + + if self.loss_type == LossType.KL or self.loss_type == LossType.RESCALED_KL: + # TODO: support multiple model outputs for this mode. + terms["loss"] = self._vb_terms_bpd( + model=model, + x_start=x_start, + x_t=x_t, + t=t, + clip_denoised=False, + model_kwargs=model_kwargs, + )["output"] + if self.loss_type == LossType.RESCALED_KL: + terms["loss"] *= self.num_timesteps + elif self.loss_type == LossType.MSE or self.loss_type == LossType.RESCALED_MSE: + model_outputs = model(x_t, self._scale_timesteps(t), **model_kwargs) + if isinstance(model_outputs, tuple): + model_output = model_outputs[0] + terms["extra_outputs"] = model_outputs[1:] + else: + model_output = model_outputs + + if self.model_var_type in [ + ModelVarType.LEARNED, + ModelVarType.LEARNED_RANGE, + ]: + B, C = x_t.shape[:2] + assert model_output.shape == (B, C * 2, *x_t.shape[2:]) + model_output, model_var_values = th.split(model_output, C, dim=1) + # Learn the variance using the variational bound, but don't let + # it affect our mean prediction. + frozen_out = th.cat([model_output.detach(), model_var_values], dim=1) + terms["vb"] = self._vb_terms_bpd( + model=lambda *args, r=frozen_out: r, + x_start=x_start, + x_t=x_t, + t=t, + clip_denoised=False, + )["output"] + if self.loss_type == LossType.RESCALED_MSE: + # Divide by 1000 for equivalence with initial implementation. + # Without a factor of 1/1000, the VB term hurts the MSE term. + terms["vb"] *= self.num_timesteps / 1000.0 + + if self.model_mean_type == ModelMeanType.PREVIOUS_X: + target = self.q_posterior_mean_variance(x_start=x_start, x_t=x_t, t=t)[0] + x_start_pred = torch.zeros(x_start) # Not supported. + elif self.model_mean_type == ModelMeanType.START_X: + target = x_start + x_start_pred = model_output + elif self.model_mean_type == ModelMeanType.EPSILON: + target = noise + x_start_pred = self._predict_xstart_from_eps(x_t, t, model_output) + else: + raise NotImplementedError(self.model_mean_type) + assert model_output.shape == target.shape == x_start.shape + terms["mse"] = mean_flat((target - model_output) ** 2) + terms["x_start_predicted"] = x_start_pred + if "vb" in terms: + terms["loss"] = terms["mse"] + terms["vb"] + else: + terms["loss"] = terms["mse"] + else: + raise NotImplementedError(self.loss_type) + + return terms + + def autoregressive_training_losses( + self, model, x_start, t, model_output_keys, gd_out_key, model_kwargs=None, noise=None + ): + """ + Compute training losses for a single timestep. + + :param model: the model to evaluate loss on. + :param x_start: the [N x C x ...] tensor of inputs. + :param t: a batch of timestep indices. + :param model_kwargs: if not None, a dict of extra keyword arguments to + pass to the model. This can be used for conditioning. + :param noise: if specified, the specific Gaussian noise to try to remove. + :return: a dict with the key "loss" containing a tensor of shape [N]. + Some mean or variance settings may also have other keys. + """ + if model_kwargs is None: + model_kwargs = {} + if noise is None: + noise = th.randn_like(x_start) + x_t = self.q_sample(x_start, t, noise=noise) + terms = {} + if self.loss_type == LossType.KL or self.loss_type == LossType.RESCALED_KL: + assert False # not currently supported for this type of diffusion. + elif self.loss_type == LossType.MSE or self.loss_type == LossType.RESCALED_MSE: + model_outputs = model(x_t, x_start, self._scale_timesteps(t), **model_kwargs) + terms.update({k: o for k, o in zip(model_output_keys, model_outputs)}) + model_output = terms[gd_out_key] + if self.model_var_type in [ + ModelVarType.LEARNED, + ModelVarType.LEARNED_RANGE, + ]: + B, C = x_t.shape[:2] + assert model_output.shape == (B, C, 2, *x_t.shape[2:]) + model_output, model_var_values = model_output[:, :, 0], model_output[:, :, 1] + # Learn the variance using the variational bound, but don't let + # it affect our mean prediction. + frozen_out = th.cat([model_output.detach(), model_var_values], dim=1) + terms["vb"] = self._vb_terms_bpd( + model=lambda *args, r=frozen_out: r, + x_start=x_start, + x_t=x_t, + t=t, + clip_denoised=False, + )["output"] + if self.loss_type == LossType.RESCALED_MSE: + # Divide by 1000 for equivalence with initial implementation. + # Without a factor of 1/1000, the VB term hurts the MSE term. + terms["vb"] *= self.num_timesteps / 1000.0 + + if self.model_mean_type == ModelMeanType.PREVIOUS_X: + target = self.q_posterior_mean_variance(x_start=x_start, x_t=x_t, t=t)[0] + x_start_pred = torch.zeros(x_start) # Not supported. + elif self.model_mean_type == ModelMeanType.START_X: + target = x_start + x_start_pred = model_output + elif self.model_mean_type == ModelMeanType.EPSILON: + target = noise + x_start_pred = self._predict_xstart_from_eps(x_t, t, model_output) + else: + raise NotImplementedError(self.model_mean_type) + assert model_output.shape == target.shape == x_start.shape + terms["mse"] = mean_flat((target - model_output) ** 2) + terms["x_start_predicted"] = x_start_pred + if "vb" in terms: + terms["loss"] = terms["mse"] + terms["vb"] + else: + terms["loss"] = terms["mse"] + else: + raise NotImplementedError(self.loss_type) + + return terms + + def _prior_bpd(self, x_start): + """ + Get the prior KL term for the variational lower-bound, measured in + bits-per-dim. + + This term can't be optimized, as it only depends on the encoder. + + :param x_start: the [N x C x ...] tensor of inputs. + :return: a batch of [N] KL values (in bits), one per batch element. + """ + batch_size = x_start.shape[0] + t = th.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device) + qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t) + kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0) + return mean_flat(kl_prior) / np.log(2.0) + + def calc_bpd_loop(self, model, x_start, clip_denoised=True, model_kwargs=None): + """ + Compute the entire variational lower-bound, measured in bits-per-dim, + as well as other related quantities. + + :param model: the model to evaluate loss on. + :param x_start: the [N x C x ...] tensor of inputs. + :param clip_denoised: if True, clip denoised samples. + :param model_kwargs: if not None, a dict of extra keyword arguments to + pass to the model. This can be used for conditioning. + + :return: a dict containing the following keys: + - total_bpd: the total variational lower-bound, per batch element. + - prior_bpd: the prior term in the lower-bound. + - vb: an [N x T] tensor of terms in the lower-bound. + - xstart_mse: an [N x T] tensor of x_0 MSEs for each timestep. + - mse: an [N x T] tensor of epsilon MSEs for each timestep. + """ + device = x_start.device + batch_size = x_start.shape[0] + + vb = [] + xstart_mse = [] + mse = [] + for t in list(range(self.num_timesteps))[::-1]: + t_batch = th.tensor([t] * batch_size, device=device) + noise = th.randn_like(x_start) + x_t = self.q_sample(x_start=x_start, t=t_batch, noise=noise) + # Calculate VLB term at the current timestep + with th.no_grad(): + out = self._vb_terms_bpd( + model, + x_start=x_start, + x_t=x_t, + t=t_batch, + clip_denoised=clip_denoised, + model_kwargs=model_kwargs, + ) + vb.append(out["output"]) + xstart_mse.append(mean_flat((out["pred_xstart"] - x_start) ** 2)) + eps = self._predict_eps_from_xstart(x_t, t_batch, out["pred_xstart"]) + mse.append(mean_flat((eps - noise) ** 2)) + + vb = th.stack(vb, dim=1) + xstart_mse = th.stack(xstart_mse, dim=1) + mse = th.stack(mse, dim=1) + + prior_bpd = self._prior_bpd(x_start) + total_bpd = vb.sum(dim=1) + prior_bpd + return { + "total_bpd": total_bpd, + "prior_bpd": prior_bpd, + "vb": vb, + "xstart_mse": xstart_mse, + "mse": mse, + } + + +class SpacedDiffusion(GaussianDiffusion): + """ + A diffusion process which can skip steps in a base diffusion process. + + :param use_timesteps: a collection (sequence or set) of timesteps from the + original diffusion process to retain. + :param kwargs: the kwargs to create the base diffusion process. + """ + + def __init__(self, use_timesteps, **kwargs): + self.use_timesteps = set(use_timesteps) + self.timestep_map = [] + self.original_num_steps = len(kwargs["betas"]) + base_diffusion = GaussianDiffusion(**kwargs) # pylint: disable=missing-kwoa + last_alpha_cumprod = 1.0 + new_betas = [] + for i, alpha_cumprod in enumerate(base_diffusion.alphas_cumprod): + if i in self.use_timesteps: + new_betas.append(1 - alpha_cumprod / last_alpha_cumprod) + last_alpha_cumprod = alpha_cumprod + self.timestep_map.append(i) + kwargs["betas"] = np.array(new_betas) + super().__init__(**kwargs) + + def p_mean_variance(self, model, *args, **kwargs): # pylint: disable=signature-differs + return super().p_mean_variance(self._wrap_model(model), *args, **kwargs) + + def training_losses(self, model, *args, **kwargs): # pylint: disable=signature-differs + return super().training_losses(self._wrap_model(model), *args, **kwargs) + + def autoregressive_training_losses(self, model, *args, **kwargs): # pylint: disable=signature-differs + return super().autoregressive_training_losses(self._wrap_model(model, True), *args, **kwargs) + + def condition_mean(self, cond_fn, *args, **kwargs): + return super().condition_mean(self._wrap_model(cond_fn), *args, **kwargs) + + def condition_score(self, cond_fn, *args, **kwargs): + return super().condition_score(self._wrap_model(cond_fn), *args, **kwargs) + + def _wrap_model(self, model, autoregressive=False): + if isinstance(model, _WrappedModel) or isinstance(model, _WrappedAutoregressiveModel): + return model + mod = _WrappedAutoregressiveModel if autoregressive else _WrappedModel + return mod(model, self.timestep_map, self.rescale_timesteps, self.original_num_steps) + + def _scale_timesteps(self, t): + # Scaling is done by the wrapped model. + return t + + +def space_timesteps(num_timesteps, section_counts): + """ + Create a list of timesteps to use from an original diffusion process, + given the number of timesteps we want to take from equally-sized portions + of the original process. + + For example, if there's 300 timesteps and the section counts are [10,15,20] + then the first 100 timesteps are strided to be 10 timesteps, the second 100 + are strided to be 15 timesteps, and the final 100 are strided to be 20. + + If the stride is a string starting with "ddim", then the fixed striding + from the DDIM paper is used, and only one section is allowed. + + :param num_timesteps: the number of diffusion steps in the original + process to divide up. + :param section_counts: either a list of numbers, or a string containing + comma-separated numbers, indicating the step count + per section. As a special case, use "ddimN" where N + is a number of steps to use the striding from the + DDIM paper. + :return: a set of diffusion steps from the original process to use. + """ + if isinstance(section_counts, str): + if section_counts.startswith("ddim"): + desired_count = int(section_counts[len("ddim") :]) + for i in range(1, num_timesteps): + if len(range(0, num_timesteps, i)) == desired_count: + return set(range(0, num_timesteps, i)) + raise ValueError(f"cannot create exactly {num_timesteps} steps with an integer stride") + section_counts = [int(x) for x in section_counts.split(",")] + size_per = num_timesteps // len(section_counts) + extra = num_timesteps % len(section_counts) + start_idx = 0 + all_steps = [] + for i, section_count in enumerate(section_counts): + size = size_per + (1 if i < extra else 0) + if size < section_count: + raise ValueError(f"cannot divide section of {size} steps into {section_count}") + if section_count <= 1: + frac_stride = 1 + else: + frac_stride = (size - 1) / (section_count - 1) + cur_idx = 0.0 + taken_steps = [] + for _ in range(section_count): + taken_steps.append(start_idx + round(cur_idx)) + cur_idx += frac_stride + all_steps += taken_steps + start_idx += size + return set(all_steps) + + +class _WrappedModel: + def __init__(self, model, timestep_map, rescale_timesteps, original_num_steps): + self.model = model + self.timestep_map = timestep_map + self.rescale_timesteps = rescale_timesteps + self.original_num_steps = original_num_steps + + def __call__(self, x, ts, **kwargs): + map_tensor = th.tensor(self.timestep_map, device=ts.device, dtype=ts.dtype) + new_ts = map_tensor[ts] + if self.rescale_timesteps: + new_ts = new_ts.float() * (1000.0 / self.original_num_steps) + model_output = self.model(x, new_ts, **kwargs) + return model_output + + +class _WrappedAutoregressiveModel: + def __init__(self, model, timestep_map, rescale_timesteps, original_num_steps): + self.model = model + self.timestep_map = timestep_map + self.rescale_timesteps = rescale_timesteps + self.original_num_steps = original_num_steps + + def __call__(self, x, x0, ts, **kwargs): + map_tensor = th.tensor(self.timestep_map, device=ts.device, dtype=ts.dtype) + new_ts = map_tensor[ts] + if self.rescale_timesteps: + new_ts = new_ts.float() * (1000.0 / self.original_num_steps) + return self.model(x, x0, new_ts, **kwargs) + + +def _extract_into_tensor(arr, timesteps, broadcast_shape): + """ + Extract values from a 1-D numpy array for a batch of indices. + + :param arr: the 1-D numpy array. + :param timesteps: a tensor of indices into the array to extract. + :param broadcast_shape: a larger shape of K dimensions with the batch + dimension equal to the length of timesteps. + :return: a tensor of shape [batch_size, 1, ...] where the shape has K dims. + """ + res = th.from_numpy(arr).to(device=timesteps.device)[timesteps].float() + while len(res.shape) < len(broadcast_shape): + res = res[..., None] + return res.expand(broadcast_shape) diff --git a/TTS/TTS/tts/layers/tortoise/diffusion_decoder.py b/TTS/TTS/tts/layers/tortoise/diffusion_decoder.py new file mode 100644 index 0000000000000000000000000000000000000000..0d3cf7698a7334b4cfc8d9bdd0f5f6ee3059189d --- /dev/null +++ b/TTS/TTS/tts/layers/tortoise/diffusion_decoder.py @@ -0,0 +1,415 @@ +import math +import random +from abc import abstractmethod + +import torch +import torch.nn as nn +import torch.nn.functional as F +from torch import autocast + +from TTS.tts.layers.tortoise.arch_utils import AttentionBlock, normalization + + +def is_latent(t): + return t.dtype == torch.float + + +def is_sequence(t): + return t.dtype == torch.long + + +def timestep_embedding(timesteps, dim, max_period=10000): + """ + Create sinusoidal timestep embeddings. + + :param timesteps: a 1-D Tensor of N indices, one per batch element. + These may be fractional. + :param dim: the dimension of the output. + :param max_period: controls the minimum frequency of the embeddings. + :return: an [N x dim] Tensor of positional embeddings. + """ + half = dim // 2 + freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to( + device=timesteps.device + ) + args = timesteps[:, None].float() * freqs[None] + embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) + if dim % 2: + embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) + return embedding + + +class TimestepBlock(nn.Module): + @abstractmethod + def forward(self, x, emb): + """ + Apply the module to `x` given `emb` timestep embeddings. + """ + + +class TimestepEmbedSequential(nn.Sequential, TimestepBlock): + def forward(self, x, emb): + for layer in self: + if isinstance(layer, TimestepBlock): + x = layer(x, emb) + else: + x = layer(x) + return x + + +class ResBlock(TimestepBlock): + def __init__( + self, + channels, + emb_channels, + dropout, + out_channels=None, + dims=2, + kernel_size=3, + efficient_config=True, + use_scale_shift_norm=False, + ): + super().__init__() + self.channels = channels + self.emb_channels = emb_channels + self.dropout = dropout + self.out_channels = out_channels or channels + self.use_scale_shift_norm = use_scale_shift_norm + padding = {1: 0, 3: 1, 5: 2}[kernel_size] + eff_kernel = 1 if efficient_config else 3 + eff_padding = 0 if efficient_config else 1 + + self.in_layers = nn.Sequential( + normalization(channels), + nn.SiLU(), + nn.Conv1d(channels, self.out_channels, eff_kernel, padding=eff_padding), + ) + + self.emb_layers = nn.Sequential( + nn.SiLU(), + nn.Linear( + emb_channels, + 2 * self.out_channels if use_scale_shift_norm else self.out_channels, + ), + ) + self.out_layers = nn.Sequential( + normalization(self.out_channels), + nn.SiLU(), + nn.Dropout(p=dropout), + nn.Conv1d(self.out_channels, self.out_channels, kernel_size, padding=padding), + ) + + if self.out_channels == channels: + self.skip_connection = nn.Identity() + else: + self.skip_connection = nn.Conv1d(channels, self.out_channels, eff_kernel, padding=eff_padding) + + def forward(self, x, emb): + h = self.in_layers(x) + emb_out = self.emb_layers(emb).type(h.dtype) + while len(emb_out.shape) < len(h.shape): + emb_out = emb_out[..., None] + if self.use_scale_shift_norm: + out_norm, out_rest = self.out_layers[0], self.out_layers[1:] + scale, shift = torch.chunk(emb_out, 2, dim=1) + h = out_norm(h) * (1 + scale) + shift + h = out_rest(h) + else: + h = h + emb_out + h = self.out_layers(h) + return self.skip_connection(x) + h + + +class DiffusionLayer(TimestepBlock): + def __init__(self, model_channels, dropout, num_heads): + super().__init__() + self.resblk = ResBlock( + model_channels, + model_channels, + dropout, + model_channels, + dims=1, + use_scale_shift_norm=True, + ) + self.attn = AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True) + + def forward(self, x, time_emb): + y = self.resblk(x, time_emb) + return self.attn(y) + + +class DiffusionTts(nn.Module): + def __init__( + self, + model_channels=512, + num_layers=8, + in_channels=100, + in_latent_channels=512, + in_tokens=8193, + out_channels=200, # mean and variance + dropout=0, + use_fp16=False, + num_heads=16, + # Parameters for regularization. + layer_drop=0.1, + unconditioned_percentage=0.1, # This implements a mechanism similar to what is used in classifier-free training. + ): + super().__init__() + + self.in_channels = in_channels + self.model_channels = model_channels + self.out_channels = out_channels + self.dropout = dropout + self.num_heads = num_heads + self.unconditioned_percentage = unconditioned_percentage + self.enable_fp16 = use_fp16 + self.layer_drop = layer_drop + + self.inp_block = nn.Conv1d(in_channels, model_channels, 3, 1, 1) + self.time_embed = nn.Sequential( + nn.Linear(model_channels, model_channels), + nn.SiLU(), + nn.Linear(model_channels, model_channels), + ) + + # Either code_converter or latent_converter is used, depending on what type of conditioning data is fed. + # This model is meant to be able to be trained on both for efficiency purposes - it is far less computationally + # complex to generate tokens, while generating latents will normally mean propagating through a deep autoregressive + # transformer network. + self.code_embedding = nn.Embedding(in_tokens, model_channels) + self.code_converter = nn.Sequential( + AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True), + AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True), + AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True), + ) + self.code_norm = normalization(model_channels) + self.latent_conditioner = nn.Sequential( + nn.Conv1d(in_latent_channels, model_channels, 3, padding=1), + AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True), + AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True), + AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True), + AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True), + ) + self.contextual_embedder = nn.Sequential( + nn.Conv1d(in_channels, model_channels, 3, padding=1, stride=2), + nn.Conv1d(model_channels, model_channels * 2, 3, padding=1, stride=2), + AttentionBlock( + model_channels * 2, + num_heads, + relative_pos_embeddings=True, + do_checkpoint=False, + ), + AttentionBlock( + model_channels * 2, + num_heads, + relative_pos_embeddings=True, + do_checkpoint=False, + ), + AttentionBlock( + model_channels * 2, + num_heads, + relative_pos_embeddings=True, + do_checkpoint=False, + ), + AttentionBlock( + model_channels * 2, + num_heads, + relative_pos_embeddings=True, + do_checkpoint=False, + ), + AttentionBlock( + model_channels * 2, + num_heads, + relative_pos_embeddings=True, + do_checkpoint=False, + ), + ) + self.unconditioned_embedding = nn.Parameter(torch.randn(1, model_channels, 1)) + self.conditioning_timestep_integrator = TimestepEmbedSequential( + DiffusionLayer(model_channels, dropout, num_heads), + DiffusionLayer(model_channels, dropout, num_heads), + DiffusionLayer(model_channels, dropout, num_heads), + ) + + self.integrating_conv = nn.Conv1d(model_channels * 2, model_channels, kernel_size=1) + self.mel_head = nn.Conv1d(model_channels, in_channels, kernel_size=3, padding=1) + + self.layers = nn.ModuleList( + [DiffusionLayer(model_channels, dropout, num_heads) for _ in range(num_layers)] + + [ + ResBlock( + model_channels, + model_channels, + dropout, + dims=1, + use_scale_shift_norm=True, + ) + for _ in range(3) + ] + ) + + self.out = nn.Sequential( + normalization(model_channels), + nn.SiLU(), + nn.Conv1d(model_channels, out_channels, 3, padding=1), + ) + + def get_grad_norm_parameter_groups(self): + groups = { + "minicoder": list(self.contextual_embedder.parameters()), + "layers": list(self.layers.parameters()), + "code_converters": list(self.code_embedding.parameters()) + + list(self.code_converter.parameters()) + + list(self.latent_conditioner.parameters()) + + list(self.latent_conditioner.parameters()), + "timestep_integrator": list(self.conditioning_timestep_integrator.parameters()) + + list(self.integrating_conv.parameters()), + "time_embed": list(self.time_embed.parameters()), + } + return groups + + def get_conditioning(self, conditioning_input): + speech_conditioning_input = ( + conditioning_input.unsqueeze(1) if len(conditioning_input.shape) == 3 else conditioning_input + ) + conds = [] + for j in range(speech_conditioning_input.shape[1]): + conds.append(self.contextual_embedder(speech_conditioning_input[:, j])) + conds = torch.cat(conds, dim=-1) + conds = conds.mean(dim=-1) + return conds + + def timestep_independent( + self, + aligned_conditioning, + conditioning_latent, + expected_seq_len, + return_code_pred, + ): + # Shuffle aligned_latent to BxCxS format + if is_latent(aligned_conditioning): + aligned_conditioning = aligned_conditioning.permute(0, 2, 1) + + cond_scale, cond_shift = torch.chunk(conditioning_latent, 2, dim=1) + if is_latent(aligned_conditioning): + code_emb = self.latent_conditioner(aligned_conditioning) + else: + code_emb = self.code_embedding(aligned_conditioning).permute(0, 2, 1) + code_emb = self.code_converter(code_emb) + code_emb = self.code_norm(code_emb) * (1 + cond_scale.unsqueeze(-1)) + cond_shift.unsqueeze(-1) + + unconditioned_batches = torch.zeros((code_emb.shape[0], 1, 1), device=code_emb.device) + # Mask out the conditioning branch for whole batch elements, implementing something similar to classifier-free guidance. + if self.training and self.unconditioned_percentage > 0: + unconditioned_batches = ( + torch.rand((code_emb.shape[0], 1, 1), device=code_emb.device) < self.unconditioned_percentage + ) + code_emb = torch.where( + unconditioned_batches, + self.unconditioned_embedding.repeat(aligned_conditioning.shape[0], 1, 1), + code_emb, + ) + expanded_code_emb = F.interpolate(code_emb, size=expected_seq_len, mode="nearest") + + if not return_code_pred: + return expanded_code_emb + else: + mel_pred = self.mel_head(expanded_code_emb) + # Multiply mel_pred by !unconditioned_branches, which drops the gradient on unconditioned branches. This is because we don't want that gradient being used to train parameters through the codes_embedder as it unbalances contributions to that network from the MSE loss. + mel_pred = mel_pred * unconditioned_batches.logical_not() + return expanded_code_emb, mel_pred + + def forward( + self, + x, + timesteps, + aligned_conditioning=None, + conditioning_latent=None, + precomputed_aligned_embeddings=None, + conditioning_free=False, + return_code_pred=False, + ): + """ + Apply the model to an input batch. + + :param x: an [N x C x ...] Tensor of inputs. + :param timesteps: a 1-D batch of timesteps. + :param aligned_conditioning: an aligned latent or sequence of tokens providing useful data about the sample to be produced. + :param conditioning_latent: a pre-computed conditioning latent; see get_conditioning(). + :param precomputed_aligned_embeddings: Embeddings returned from self.timestep_independent() + :param conditioning_free: When set, all conditioning inputs (including tokens and conditioning_input) will not be considered. + :return: an [N x C x ...] Tensor of outputs. + """ + assert precomputed_aligned_embeddings is not None or ( + aligned_conditioning is not None and conditioning_latent is not None + ) + assert not ( + return_code_pred and precomputed_aligned_embeddings is not None + ) # These two are mutually exclusive. + + unused_params = [] + if conditioning_free: + code_emb = self.unconditioned_embedding.repeat(x.shape[0], 1, x.shape[-1]) + unused_params.extend(list(self.code_converter.parameters()) + list(self.code_embedding.parameters())) + unused_params.extend(list(self.latent_conditioner.parameters())) + else: + if precomputed_aligned_embeddings is not None: + code_emb = precomputed_aligned_embeddings + else: + code_emb, mel_pred = self.timestep_independent( + aligned_conditioning, conditioning_latent, x.shape[-1], True + ) + if is_latent(aligned_conditioning): + unused_params.extend( + list(self.code_converter.parameters()) + list(self.code_embedding.parameters()) + ) + else: + unused_params.extend(list(self.latent_conditioner.parameters())) + + unused_params.append(self.unconditioned_embedding) + + time_emb = self.time_embed(timestep_embedding(timesteps, self.model_channels)) + code_emb = self.conditioning_timestep_integrator(code_emb, time_emb) + x = self.inp_block(x) + x = torch.cat([x, code_emb], dim=1) + x = self.integrating_conv(x) + for i, lyr in enumerate(self.layers): + # Do layer drop where applicable. Do not drop first and last layers. + if ( + self.training + and self.layer_drop > 0 + and i != 0 + and i != (len(self.layers) - 1) + and random.random() < self.layer_drop + ): + unused_params.extend(list(lyr.parameters())) + else: + # First and last blocks will have autocast disabled for improved precision. + with autocast(x.device.type, enabled=self.enable_fp16 and i != 0): + x = lyr(x, time_emb) + + x = x.float() + out = self.out(x) + + # Involve probabilistic or possibly unused parameters in loss so we don't get DDP errors. + extraneous_addition = 0 + for p in unused_params: + extraneous_addition = extraneous_addition + p.mean() + out = out + extraneous_addition * 0 + + if return_code_pred: + return out, mel_pred + return out + + +if __name__ == "__main__": + clip = torch.randn(2, 100, 400) + aligned_latent = torch.randn(2, 388, 512) + aligned_sequence = torch.randint(0, 8192, (2, 100)) + cond = torch.randn(2, 100, 400) + ts = torch.LongTensor([600, 600]) + model = DiffusionTts(512, layer_drop=0.3, unconditioned_percentage=0.5) + # Test with latent aligned conditioning + # o = model(clip, ts, aligned_latent, cond) + # Test with sequence aligned conditioning + o = model(clip, ts, aligned_sequence, cond) diff --git a/TTS/TTS/tts/layers/tortoise/dpm_solver.py b/TTS/TTS/tts/layers/tortoise/dpm_solver.py new file mode 100644 index 0000000000000000000000000000000000000000..c70888df42063e65dabf50eadb9a78813effa4e9 --- /dev/null +++ b/TTS/TTS/tts/layers/tortoise/dpm_solver.py @@ -0,0 +1,1562 @@ +import math + +import torch + + +class NoiseScheduleVP: + def __init__( + self, + schedule="discrete", + betas=None, + alphas_cumprod=None, + continuous_beta_0=0.1, + continuous_beta_1=20.0, + dtype=torch.float32, + ): + """Create a wrapper class for the forward SDE (VP type). + + *** + Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t. + We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images. + *** + + The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ). + We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper). + Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have: + + log_alpha_t = self.marginal_log_mean_coeff(t) + sigma_t = self.marginal_std(t) + lambda_t = self.marginal_lambda(t) + + Moreover, as lambda(t) is an invertible function, we also support its inverse function: + + t = self.inverse_lambda(lambda_t) + + =============================================================== + + We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]). + + 1. For discrete-time DPMs: + + For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by: + t_i = (i + 1) / N + e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1. + We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3. + + Args: + betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details) + alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details) + + Note that we always have alphas_cumprod = cumprod(1 - betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`. + + **Important**: Please pay special attention for the args for `alphas_cumprod`: + The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that + q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ). + Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have + alpha_{t_n} = \sqrt{\hat{alpha_n}}, + and + log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}). + + + 2. For continuous-time DPMs: + + We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise + schedule are the default settings in DDPM and improved-DDPM: + + Args: + beta_min: A `float` number. The smallest beta for the linear schedule. + beta_max: A `float` number. The largest beta for the linear schedule. + cosine_s: A `float` number. The hyperparameter in the cosine schedule. + cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule. + T: A `float` number. The ending time of the forward process. + + =============================================================== + + Args: + schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs, + 'linear' or 'cosine' for continuous-time DPMs. + Returns: + A wrapper object of the forward SDE (VP type). + + =============================================================== + + Example: + + # For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1): + >>> ns = NoiseScheduleVP('discrete', betas=betas) + + # For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1): + >>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod) + + # For continuous-time DPMs (VPSDE), linear schedule: + >>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.) + + """ + + if schedule not in ["discrete", "linear", "cosine"]: + raise ValueError( + "Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format( + schedule + ) + ) + + self.schedule = schedule + if schedule == "discrete": + if betas is not None: + log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0) + else: + assert alphas_cumprod is not None + log_alphas = 0.5 * torch.log(alphas_cumprod) + self.total_N = len(log_alphas) + self.T = 1.0 + self.t_array = torch.linspace(0.0, 1.0, self.total_N + 1)[1:].reshape((1, -1)).to(dtype=dtype) + self.log_alpha_array = log_alphas.reshape( + ( + 1, + -1, + ) + ).to(dtype=dtype) + else: + self.total_N = 1000 + self.beta_0 = continuous_beta_0 + self.beta_1 = continuous_beta_1 + self.cosine_s = 0.008 + self.cosine_beta_max = 999.0 + self.cosine_t_max = ( + math.atan(self.cosine_beta_max * (1.0 + self.cosine_s) / math.pi) + * 2.0 + * (1.0 + self.cosine_s) + / math.pi + - self.cosine_s + ) + self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1.0 + self.cosine_s) * math.pi / 2.0)) + self.schedule = schedule + if schedule == "cosine": + # For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T. + # Note that T = 0.9946 may be not the optimal setting. However, we find it works well. + self.T = 0.9946 + else: + self.T = 1.0 + + def marginal_log_mean_coeff(self, t): + """ + Compute log(alpha_t) of a given continuous-time label t in [0, T]. + """ + if self.schedule == "discrete": + return interpolate_fn( + t.reshape((-1, 1)), + self.t_array.to(t.device), + self.log_alpha_array.to(t.device), + ).reshape((-1)) + elif self.schedule == "linear": + return -0.25 * t**2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0 + elif self.schedule == "cosine": + + def log_alpha_fn(s): + return torch.log(torch.cos((s + self.cosine_s) / (1.0 + self.cosine_s) * math.pi / 2.0)) + + log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0 + return log_alpha_t + + def marginal_alpha(self, t): + """ + Compute alpha_t of a given continuous-time label t in [0, T]. + """ + return torch.exp(self.marginal_log_mean_coeff(t)) + + def marginal_std(self, t): + """ + Compute sigma_t of a given continuous-time label t in [0, T]. + """ + return torch.sqrt(1.0 - torch.exp(2.0 * self.marginal_log_mean_coeff(t))) + + def marginal_lambda(self, t): + """ + Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T]. + """ + log_mean_coeff = self.marginal_log_mean_coeff(t) + log_std = 0.5 * torch.log(1.0 - torch.exp(2.0 * log_mean_coeff)) + return log_mean_coeff - log_std + + def inverse_lambda(self, lamb): + """ + Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t. + """ + if self.schedule == "linear": + tmp = 2.0 * (self.beta_1 - self.beta_0) * torch.logaddexp(-2.0 * lamb, torch.zeros((1,)).to(lamb)) + Delta = self.beta_0**2 + tmp + return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0) + elif self.schedule == "discrete": + log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2.0 * lamb) + t = interpolate_fn( + log_alpha.reshape((-1, 1)), + torch.flip(self.log_alpha_array.to(lamb.device), [1]), + torch.flip(self.t_array.to(lamb.device), [1]), + ) + return t.reshape((-1,)) + else: + log_alpha = -0.5 * torch.logaddexp(-2.0 * lamb, torch.zeros((1,)).to(lamb)) + + def t_fn(log_alpha_t): + return ( + torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) + * 2.0 + * (1.0 + self.cosine_s) + / math.pi + - self.cosine_s + ) + + t = t_fn(log_alpha) + return t + + +def model_wrapper( + model, + noise_schedule, + model_type="noise", + model_kwargs={}, + guidance_type="uncond", + condition=None, + unconditional_condition=None, + guidance_scale=1.0, + classifier_fn=None, + classifier_kwargs={}, +): + """Create a wrapper function for the noise prediction model. + + DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to + firstly wrap the model function to a noise prediction model that accepts the continuous time as the input. + + We support four types of the diffusion model by setting `model_type`: + + 1. "noise": noise prediction model. (Trained by predicting noise). + + 2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0). + + 3. "v": velocity prediction model. (Trained by predicting the velocity). + The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2]. + + [1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models." + arXiv preprint arXiv:2202.00512 (2022). + [2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models." + arXiv preprint arXiv:2210.02303 (2022). + + 4. "score": marginal score function. (Trained by denoising score matching). + Note that the score function and the noise prediction model follows a simple relationship: + ``` + noise(x_t, t) = -sigma_t * score(x_t, t) + ``` + + We support three types of guided sampling by DPMs by setting `guidance_type`: + 1. "uncond": unconditional sampling by DPMs. + The input `model` has the following format: + `` + model(x, t_input, **model_kwargs) -> noise | x_start | v | score + `` + + 2. "classifier": classifier guidance sampling [3] by DPMs and another classifier. + The input `model` has the following format: + `` + model(x, t_input, **model_kwargs) -> noise | x_start | v | score + `` + + The input `classifier_fn` has the following format: + `` + classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond) + `` + + [3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis," + in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794. + + 3. "classifier-free": classifier-free guidance sampling by conditional DPMs. + The input `model` has the following format: + `` + model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score + `` + And if cond == `unconditional_condition`, the model output is the unconditional DPM output. + + [4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance." + arXiv preprint arXiv:2207.12598 (2022). + + + The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999) + or continuous-time labels (i.e. epsilon to T). + + We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise: + `` + def model_fn(x, t_continuous) -> noise: + t_input = get_model_input_time(t_continuous) + return noise_pred(model, x, t_input, **model_kwargs) + `` + where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver. + + =============================================================== + + Args: + model: A diffusion model with the corresponding format described above. + noise_schedule: A noise schedule object, such as NoiseScheduleVP. + model_type: A `str`. The parameterization type of the diffusion model. + "noise" or "x_start" or "v" or "score". + model_kwargs: A `dict`. A dict for the other inputs of the model function. + guidance_type: A `str`. The type of the guidance for sampling. + "uncond" or "classifier" or "classifier-free". + condition: A pytorch tensor. The condition for the guided sampling. + Only used for "classifier" or "classifier-free" guidance type. + unconditional_condition: A pytorch tensor. The condition for the unconditional sampling. + Only used for "classifier-free" guidance type. + guidance_scale: A `float`. The scale for the guided sampling. + classifier_fn: A classifier function. Only used for the classifier guidance. + classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function. + Returns: + A noise prediction model that accepts the noised data and the continuous time as the inputs. + """ + + def get_model_input_time(t_continuous): + """ + Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time. + For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N]. + For continuous-time DPMs, we just use `t_continuous`. + """ + if noise_schedule.schedule == "discrete": + return (t_continuous - 1.0 / noise_schedule.total_N) * 1000.0 + else: + return t_continuous + + def noise_pred_fn(x, t_continuous, cond=None): + t_input = get_model_input_time(t_continuous) + if cond is None: + output = model(x, t_input, **model_kwargs) + else: + output = model(x, t_input, cond, **model_kwargs) + if model_type == "noise": + return output + elif model_type == "x_start": + alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous) + return (x - alpha_t * output) / sigma_t + elif model_type == "v": + alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous) + return alpha_t * output + sigma_t * x + elif model_type == "score": + sigma_t = noise_schedule.marginal_std(t_continuous) + return -sigma_t * output + + def cond_grad_fn(x, t_input): + """ + Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t). + """ + with torch.enable_grad(): + x_in = x.detach().requires_grad_(True) + log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs) + return torch.autograd.grad(log_prob.sum(), x_in)[0] + + def model_fn(x, t_continuous): + """ + The noise predicition model function that is used for DPM-Solver. + """ + if guidance_type == "uncond": + return noise_pred_fn(x, t_continuous) + elif guidance_type == "classifier": + assert classifier_fn is not None + t_input = get_model_input_time(t_continuous) + cond_grad = cond_grad_fn(x, t_input) + sigma_t = noise_schedule.marginal_std(t_continuous) + noise = noise_pred_fn(x, t_continuous) + return noise - guidance_scale * sigma_t * cond_grad + elif guidance_type == "classifier-free": + if guidance_scale == 1.0 or unconditional_condition is None: + return noise_pred_fn(x, t_continuous, cond=condition) + else: + x_in = torch.cat([x] * 2) + t_in = torch.cat([t_continuous] * 2) + c_in = torch.cat([unconditional_condition, condition]) + noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2) + return noise_uncond + guidance_scale * (noise - noise_uncond) + + assert model_type in ["noise", "x_start", "v", "score"] + assert guidance_type in ["uncond", "classifier", "classifier-free"] + return model_fn + + +class DPM_Solver: + def __init__( + self, + model_fn, + noise_schedule, + algorithm_type="dpmsolver++", + correcting_x0_fn=None, + correcting_xt_fn=None, + thresholding_max_val=1.0, + dynamic_thresholding_ratio=0.995, + ): + """Construct a DPM-Solver. + + We support both DPM-Solver (`algorithm_type="dpmsolver"`) and DPM-Solver++ (`algorithm_type="dpmsolver++"`). + + We also support the "dynamic thresholding" method in Imagen[1]. For pixel-space diffusion models, you + can set both `algorithm_type="dpmsolver++"` and `correcting_x0_fn="dynamic_thresholding"` to use the + dynamic thresholding. The "dynamic thresholding" can greatly improve the sample quality for pixel-space + DPMs with large guidance scales. Note that the thresholding method is **unsuitable** for latent-space + DPMs (such as stable-diffusion). + + To support advanced algorithms in image-to-image applications, we also support corrector functions for + both x0 and xt. + + Args: + model_fn: A noise prediction model function which accepts the continuous-time input (t in [epsilon, T]): + `` + def model_fn(x, t_continuous): + return noise + `` + The shape of `x` is `(batch_size, **shape)`, and the shape of `t_continuous` is `(batch_size,)`. + noise_schedule: A noise schedule object, such as NoiseScheduleVP. + algorithm_type: A `str`. Either "dpmsolver" or "dpmsolver++". + correcting_x0_fn: A `str` or a function with the following format: + ``` + def correcting_x0_fn(x0, t): + x0_new = ... + return x0_new + ``` + This function is to correct the outputs of the data prediction model at each sampling step. e.g., + ``` + x0_pred = data_pred_model(xt, t) + if correcting_x0_fn is not None: + x0_pred = correcting_x0_fn(x0_pred, t) + xt_1 = update(x0_pred, xt, t) + ``` + If `correcting_x0_fn="dynamic_thresholding"`, we use the dynamic thresholding proposed in Imagen[1]. + correcting_xt_fn: A function with the following format: + ``` + def correcting_xt_fn(xt, t, step): + x_new = ... + return x_new + ``` + This function is to correct the intermediate samples xt at each sampling step. e.g., + ``` + xt = ... + xt = correcting_xt_fn(xt, t, step) + ``` + thresholding_max_val: A `float`. The max value for thresholding. + Valid only when use `dpmsolver++` and `correcting_x0_fn="dynamic_thresholding"`. + dynamic_thresholding_ratio: A `float`. The ratio for dynamic thresholding (see Imagen[1] for details). + Valid only when use `dpmsolver++` and `correcting_x0_fn="dynamic_thresholding"`. + + [1] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed Ghasemipour, + Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al. Photorealistic text-to-image diffusion models + with deep language understanding. arXiv preprint arXiv:2205.11487, 2022b. + """ + self.model = lambda x, t: model_fn(x, t.expand((x.shape[0]))) + self.noise_schedule = noise_schedule + assert algorithm_type in ["dpmsolver", "dpmsolver++"] + self.algorithm_type = algorithm_type + if correcting_x0_fn == "dynamic_thresholding": + self.correcting_x0_fn = self.dynamic_thresholding_fn + else: + self.correcting_x0_fn = correcting_x0_fn + self.correcting_xt_fn = correcting_xt_fn + self.dynamic_thresholding_ratio = dynamic_thresholding_ratio + self.thresholding_max_val = thresholding_max_val + + def dynamic_thresholding_fn(self, x0, t): + """ + The dynamic thresholding method. + """ + dims = x0.dim() + p = self.dynamic_thresholding_ratio + s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1) + s = expand_dims( + torch.maximum(s, self.thresholding_max_val * torch.ones_like(s).to(s.device)), + dims, + ) + x0 = torch.clamp(x0, -s, s) / s + return x0 + + def noise_prediction_fn(self, x, t): + """ + Return the noise prediction model. + """ + return self.model(x, t) + + def data_prediction_fn(self, x, t): + """ + Return the data prediction model (with corrector). + """ + noise = self.noise_prediction_fn(x, t) + alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t) + x0 = (x - sigma_t * noise) / alpha_t + if self.correcting_x0_fn is not None: + x0 = self.correcting_x0_fn(x0, t) + return x0 + + def model_fn(self, x, t): + """ + Convert the model to the noise prediction model or the data prediction model. + """ + if self.algorithm_type == "dpmsolver++": + return self.data_prediction_fn(x, t) + else: + return self.noise_prediction_fn(x, t) + + def get_time_steps(self, skip_type, t_T, t_0, N, device): + """Compute the intermediate time steps for sampling. + + Args: + skip_type: A `str`. The type for the spacing of the time steps. We support three types: + - 'logSNR': uniform logSNR for the time steps. + - 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.) + - 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.) + t_T: A `float`. The starting time of the sampling (default is T). + t_0: A `float`. The ending time of the sampling (default is epsilon). + N: A `int`. The total number of the spacing of the time steps. + device: A torch device. + Returns: + A pytorch tensor of the time steps, with the shape (N + 1,). + """ + if skip_type == "logSNR": + lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device)) + lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device)) + logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device) + return self.noise_schedule.inverse_lambda(logSNR_steps) + elif skip_type == "time_uniform": + return torch.linspace(t_T, t_0, N + 1).to(device) + elif skip_type == "time_quadratic": + t_order = 2 + t = torch.linspace(t_T ** (1.0 / t_order), t_0 ** (1.0 / t_order), N + 1).pow(t_order).to(device) + return t + else: + raise ValueError( + "Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type) + ) + + def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device): + """ + Get the order of each step for sampling by the singlestep DPM-Solver. + + We combine both DPM-Solver-1,2,3 to use all the function evaluations, which is named as "DPM-Solver-fast". + Given a fixed number of function evaluations by `steps`, the sampling procedure by DPM-Solver-fast is: + - If order == 1: + We take `steps` of DPM-Solver-1 (i.e. DDIM). + - If order == 2: + - Denote K = (steps // 2). We take K or (K + 1) intermediate time steps for sampling. + - If steps % 2 == 0, we use K steps of DPM-Solver-2. + - If steps % 2 == 1, we use K steps of DPM-Solver-2 and 1 step of DPM-Solver-1. + - If order == 3: + - Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling. + - If steps % 3 == 0, we use (K - 2) steps of DPM-Solver-3, and 1 step of DPM-Solver-2 and 1 step of DPM-Solver-1. + - If steps % 3 == 1, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-1. + - If steps % 3 == 2, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-2. + + ============================================ + Args: + order: A `int`. The max order for the solver (2 or 3). + steps: A `int`. The total number of function evaluations (NFE). + skip_type: A `str`. The type for the spacing of the time steps. We support three types: + - 'logSNR': uniform logSNR for the time steps. + - 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.) + - 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.) + t_T: A `float`. The starting time of the sampling (default is T). + t_0: A `float`. The ending time of the sampling (default is epsilon). + device: A torch device. + Returns: + orders: A list of the solver order of each step. + """ + if order == 3: + K = steps // 3 + 1 + if steps % 3 == 0: + orders = [ + 3, + ] * ( + K - 2 + ) + [2, 1] + elif steps % 3 == 1: + orders = [ + 3, + ] * ( + K - 1 + ) + [1] + else: + orders = [ + 3, + ] * ( + K - 1 + ) + [2] + elif order == 2: + if steps % 2 == 0: + K = steps // 2 + orders = [ + 2, + ] * K + else: + K = steps // 2 + 1 + orders = [ + 2, + ] * ( + K - 1 + ) + [1] + elif order == 1: + K = 1 + orders = [ + 1, + ] * steps + else: + raise ValueError("'order' must be '1' or '2' or '3'.") + if skip_type == "logSNR": + # To reproduce the results in DPM-Solver paper + timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device) + else: + timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[ + torch.cumsum( + torch.tensor( + [ + 0, + ] + + orders + ), + 0, + ).to(device) + ] + return timesteps_outer, orders + + def denoise_to_zero_fn(self, x, s): + """ + Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization. + """ + return self.data_prediction_fn(x, s) + + def dpm_solver_first_update(self, x, s, t, model_s=None, return_intermediate=False): + """ + DPM-Solver-1 (equivalent to DDIM) from time `s` to time `t`. + + Args: + x: A pytorch tensor. The initial value at time `s`. + s: A pytorch tensor. The starting time, with the shape (1,). + t: A pytorch tensor. The ending time, with the shape (1,). + model_s: A pytorch tensor. The model function evaluated at time `s`. + If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it. + return_intermediate: A `bool`. If true, also return the model value at time `s`. + Returns: + x_t: A pytorch tensor. The approximated solution at time `t`. + """ + ns = self.noise_schedule + dims = x.dim() + lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t) + h = lambda_t - lambda_s + log_alpha_s, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(t) + sigma_s, sigma_t = ns.marginal_std(s), ns.marginal_std(t) + alpha_t = torch.exp(log_alpha_t) + + if self.algorithm_type == "dpmsolver++": + phi_1 = torch.expm1(-h) + if model_s is None: + model_s = self.model_fn(x, s) + x_t = sigma_t / sigma_s * x - alpha_t * phi_1 * model_s + if return_intermediate: + return x_t, {"model_s": model_s} + else: + return x_t + else: + phi_1 = torch.expm1(h) + if model_s is None: + model_s = self.model_fn(x, s) + x_t = torch.exp(log_alpha_t - log_alpha_s) * x - (sigma_t * phi_1) * model_s + if return_intermediate: + return x_t, {"model_s": model_s} + else: + return x_t + + def singlestep_dpm_solver_second_update( + self, + x, + s, + t, + r1=0.5, + model_s=None, + return_intermediate=False, + solver_type="dpmsolver", + ): + """ + Singlestep solver DPM-Solver-2 from time `s` to time `t`. + + Args: + x: A pytorch tensor. The initial value at time `s`. + s: A pytorch tensor. The starting time, with the shape (1,). + t: A pytorch tensor. The ending time, with the shape (1,). + r1: A `float`. The hyperparameter of the second-order solver. + model_s: A pytorch tensor. The model function evaluated at time `s`. + If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it. + return_intermediate: A `bool`. If true, also return the model value at time `s` and `s1` (the intermediate time). + solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers. + The type slightly impacts the performance. We recommend to use 'dpmsolver' type. + Returns: + x_t: A pytorch tensor. The approximated solution at time `t`. + """ + if solver_type not in ["dpmsolver", "taylor"]: + raise ValueError("'solver_type' must be either 'dpmsolver' or 'taylor', got {}".format(solver_type)) + if r1 is None: + r1 = 0.5 + ns = self.noise_schedule + lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t) + h = lambda_t - lambda_s + lambda_s1 = lambda_s + r1 * h + s1 = ns.inverse_lambda(lambda_s1) + log_alpha_s, log_alpha_s1, log_alpha_t = ( + ns.marginal_log_mean_coeff(s), + ns.marginal_log_mean_coeff(s1), + ns.marginal_log_mean_coeff(t), + ) + sigma_s, sigma_s1, sigma_t = ( + ns.marginal_std(s), + ns.marginal_std(s1), + ns.marginal_std(t), + ) + alpha_s1, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_t) + + if self.algorithm_type == "dpmsolver++": + phi_11 = torch.expm1(-r1 * h) + phi_1 = torch.expm1(-h) + + if model_s is None: + model_s = self.model_fn(x, s) + x_s1 = (sigma_s1 / sigma_s) * x - (alpha_s1 * phi_11) * model_s + model_s1 = self.model_fn(x_s1, s1) + if solver_type == "dpmsolver": + x_t = ( + (sigma_t / sigma_s) * x + - (alpha_t * phi_1) * model_s + - (0.5 / r1) * (alpha_t * phi_1) * (model_s1 - model_s) + ) + elif solver_type == "taylor": + x_t = ( + (sigma_t / sigma_s) * x + - (alpha_t * phi_1) * model_s + + (1.0 / r1) * (alpha_t * (phi_1 / h + 1.0)) * (model_s1 - model_s) + ) + else: + phi_11 = torch.expm1(r1 * h) + phi_1 = torch.expm1(h) + + if model_s is None: + model_s = self.model_fn(x, s) + x_s1 = torch.exp(log_alpha_s1 - log_alpha_s) * x - (sigma_s1 * phi_11) * model_s + model_s1 = self.model_fn(x_s1, s1) + if solver_type == "dpmsolver": + x_t = ( + torch.exp(log_alpha_t - log_alpha_s) * x + - (sigma_t * phi_1) * model_s + - (0.5 / r1) * (sigma_t * phi_1) * (model_s1 - model_s) + ) + elif solver_type == "taylor": + x_t = ( + torch.exp(log_alpha_t - log_alpha_s) * x + - (sigma_t * phi_1) * model_s + - (1.0 / r1) * (sigma_t * (phi_1 / h - 1.0)) * (model_s1 - model_s) + ) + if return_intermediate: + return x_t, {"model_s": model_s, "model_s1": model_s1} + else: + return x_t + + def singlestep_dpm_solver_third_update( + self, + x, + s, + t, + r1=1.0 / 3.0, + r2=2.0 / 3.0, + model_s=None, + model_s1=None, + return_intermediate=False, + solver_type="dpmsolver", + ): + """ + Singlestep solver DPM-Solver-3 from time `s` to time `t`. + + Args: + x: A pytorch tensor. The initial value at time `s`. + s: A pytorch tensor. The starting time, with the shape (1,). + t: A pytorch tensor. The ending time, with the shape (1,). + r1: A `float`. The hyperparameter of the third-order solver. + r2: A `float`. The hyperparameter of the third-order solver. + model_s: A pytorch tensor. The model function evaluated at time `s`. + If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it. + model_s1: A pytorch tensor. The model function evaluated at time `s1` (the intermediate time given by `r1`). + If `model_s1` is None, we evaluate the model at `s1`; otherwise we directly use it. + return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times). + solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers. + The type slightly impacts the performance. We recommend to use 'dpmsolver' type. + Returns: + x_t: A pytorch tensor. The approximated solution at time `t`. + """ + if solver_type not in ["dpmsolver", "taylor"]: + raise ValueError("'solver_type' must be either 'dpmsolver' or 'taylor', got {}".format(solver_type)) + if r1 is None: + r1 = 1.0 / 3.0 + if r2 is None: + r2 = 2.0 / 3.0 + ns = self.noise_schedule + lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t) + h = lambda_t - lambda_s + lambda_s1 = lambda_s + r1 * h + lambda_s2 = lambda_s + r2 * h + s1 = ns.inverse_lambda(lambda_s1) + s2 = ns.inverse_lambda(lambda_s2) + log_alpha_s, log_alpha_s1, log_alpha_s2, log_alpha_t = ( + ns.marginal_log_mean_coeff(s), + ns.marginal_log_mean_coeff(s1), + ns.marginal_log_mean_coeff(s2), + ns.marginal_log_mean_coeff(t), + ) + sigma_s, sigma_s1, sigma_s2, sigma_t = ( + ns.marginal_std(s), + ns.marginal_std(s1), + ns.marginal_std(s2), + ns.marginal_std(t), + ) + alpha_s1, alpha_s2, alpha_t = ( + torch.exp(log_alpha_s1), + torch.exp(log_alpha_s2), + torch.exp(log_alpha_t), + ) + + if self.algorithm_type == "dpmsolver++": + phi_11 = torch.expm1(-r1 * h) + phi_12 = torch.expm1(-r2 * h) + phi_1 = torch.expm1(-h) + phi_22 = torch.expm1(-r2 * h) / (r2 * h) + 1.0 + phi_2 = phi_1 / h + 1.0 + phi_3 = phi_2 / h - 0.5 + + if model_s is None: + model_s = self.model_fn(x, s) + if model_s1 is None: + x_s1 = (sigma_s1 / sigma_s) * x - (alpha_s1 * phi_11) * model_s + model_s1 = self.model_fn(x_s1, s1) + x_s2 = ( + (sigma_s2 / sigma_s) * x + - (alpha_s2 * phi_12) * model_s + + r2 / r1 * (alpha_s2 * phi_22) * (model_s1 - model_s) + ) + model_s2 = self.model_fn(x_s2, s2) + if solver_type == "dpmsolver": + x_t = ( + (sigma_t / sigma_s) * x + - (alpha_t * phi_1) * model_s + + (1.0 / r2) * (alpha_t * phi_2) * (model_s2 - model_s) + ) + elif solver_type == "taylor": + D1_0 = (1.0 / r1) * (model_s1 - model_s) + D1_1 = (1.0 / r2) * (model_s2 - model_s) + D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1) + D2 = 2.0 * (D1_1 - D1_0) / (r2 - r1) + x_t = ( + (sigma_t / sigma_s) * x + - (alpha_t * phi_1) * model_s + + (alpha_t * phi_2) * D1 + - (alpha_t * phi_3) * D2 + ) + else: + phi_11 = torch.expm1(r1 * h) + phi_12 = torch.expm1(r2 * h) + phi_1 = torch.expm1(h) + phi_22 = torch.expm1(r2 * h) / (r2 * h) - 1.0 + phi_2 = phi_1 / h - 1.0 + phi_3 = phi_2 / h - 0.5 + + if model_s is None: + model_s = self.model_fn(x, s) + if model_s1 is None: + x_s1 = (torch.exp(log_alpha_s1 - log_alpha_s)) * x - (sigma_s1 * phi_11) * model_s + model_s1 = self.model_fn(x_s1, s1) + x_s2 = ( + (torch.exp(log_alpha_s2 - log_alpha_s)) * x + - (sigma_s2 * phi_12) * model_s + - r2 / r1 * (sigma_s2 * phi_22) * (model_s1 - model_s) + ) + model_s2 = self.model_fn(x_s2, s2) + if solver_type == "dpmsolver": + x_t = ( + (torch.exp(log_alpha_t - log_alpha_s)) * x + - (sigma_t * phi_1) * model_s + - (1.0 / r2) * (sigma_t * phi_2) * (model_s2 - model_s) + ) + elif solver_type == "taylor": + D1_0 = (1.0 / r1) * (model_s1 - model_s) + D1_1 = (1.0 / r2) * (model_s2 - model_s) + D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1) + D2 = 2.0 * (D1_1 - D1_0) / (r2 - r1) + x_t = ( + (torch.exp(log_alpha_t - log_alpha_s)) * x + - (sigma_t * phi_1) * model_s + - (sigma_t * phi_2) * D1 + - (sigma_t * phi_3) * D2 + ) + + if return_intermediate: + return x_t, {"model_s": model_s, "model_s1": model_s1, "model_s2": model_s2} + else: + return x_t + + def multistep_dpm_solver_second_update(self, x, model_prev_list, t_prev_list, t, solver_type="dpmsolver"): + """ + Multistep solver DPM-Solver-2 from time `t_prev_list[-1]` to time `t`. + + Args: + x: A pytorch tensor. The initial value at time `s`. + model_prev_list: A list of pytorch tensor. The previous computed model values. + t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (1,) + t: A pytorch tensor. The ending time, with the shape (1,). + solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers. + The type slightly impacts the performance. We recommend to use 'dpmsolver' type. + Returns: + x_t: A pytorch tensor. The approximated solution at time `t`. + """ + if solver_type not in ["dpmsolver", "taylor"]: + raise ValueError("'solver_type' must be either 'dpmsolver' or 'taylor', got {}".format(solver_type)) + ns = self.noise_schedule + model_prev_1, model_prev_0 = model_prev_list[-2], model_prev_list[-1] + t_prev_1, t_prev_0 = t_prev_list[-2], t_prev_list[-1] + lambda_prev_1, lambda_prev_0, lambda_t = ( + ns.marginal_lambda(t_prev_1), + ns.marginal_lambda(t_prev_0), + ns.marginal_lambda(t), + ) + log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t) + sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t) + alpha_t = torch.exp(log_alpha_t) + + h_0 = lambda_prev_0 - lambda_prev_1 + h = lambda_t - lambda_prev_0 + r0 = h_0 / h + D1_0 = (1.0 / r0) * (model_prev_0 - model_prev_1) + if self.algorithm_type == "dpmsolver++": + phi_1 = torch.expm1(-h) + if solver_type == "dpmsolver": + x_t = (sigma_t / sigma_prev_0) * x - (alpha_t * phi_1) * model_prev_0 - 0.5 * (alpha_t * phi_1) * D1_0 + elif solver_type == "taylor": + x_t = ( + (sigma_t / sigma_prev_0) * x + - (alpha_t * phi_1) * model_prev_0 + + (alpha_t * (phi_1 / h + 1.0)) * D1_0 + ) + else: + phi_1 = torch.expm1(h) + if solver_type == "dpmsolver": + x_t = ( + (torch.exp(log_alpha_t - log_alpha_prev_0)) * x + - (sigma_t * phi_1) * model_prev_0 + - 0.5 * (sigma_t * phi_1) * D1_0 + ) + elif solver_type == "taylor": + x_t = ( + (torch.exp(log_alpha_t - log_alpha_prev_0)) * x + - (sigma_t * phi_1) * model_prev_0 + - (sigma_t * (phi_1 / h - 1.0)) * D1_0 + ) + return x_t + + def multistep_dpm_solver_third_update(self, x, model_prev_list, t_prev_list, t, solver_type="dpmsolver"): + """ + Multistep solver DPM-Solver-3 from time `t_prev_list[-1]` to time `t`. + + Args: + x: A pytorch tensor. The initial value at time `s`. + model_prev_list: A list of pytorch tensor. The previous computed model values. + t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (1,) + t: A pytorch tensor. The ending time, with the shape (1,). + solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers. + The type slightly impacts the performance. We recommend to use 'dpmsolver' type. + Returns: + x_t: A pytorch tensor. The approximated solution at time `t`. + """ + ns = self.noise_schedule + model_prev_2, model_prev_1, model_prev_0 = model_prev_list + t_prev_2, t_prev_1, t_prev_0 = t_prev_list + lambda_prev_2, lambda_prev_1, lambda_prev_0, lambda_t = ( + ns.marginal_lambda(t_prev_2), + ns.marginal_lambda(t_prev_1), + ns.marginal_lambda(t_prev_0), + ns.marginal_lambda(t), + ) + log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t) + sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t) + alpha_t = torch.exp(log_alpha_t) + + h_1 = lambda_prev_1 - lambda_prev_2 + h_0 = lambda_prev_0 - lambda_prev_1 + h = lambda_t - lambda_prev_0 + r0, r1 = h_0 / h, h_1 / h + D1_0 = (1.0 / r0) * (model_prev_0 - model_prev_1) + D1_1 = (1.0 / r1) * (model_prev_1 - model_prev_2) + D1 = D1_0 + (r0 / (r0 + r1)) * (D1_0 - D1_1) + D2 = (1.0 / (r0 + r1)) * (D1_0 - D1_1) + if self.algorithm_type == "dpmsolver++": + phi_1 = torch.expm1(-h) + phi_2 = phi_1 / h + 1.0 + phi_3 = phi_2 / h - 0.5 + x_t = ( + (sigma_t / sigma_prev_0) * x + - (alpha_t * phi_1) * model_prev_0 + + (alpha_t * phi_2) * D1 + - (alpha_t * phi_3) * D2 + ) + else: + phi_1 = torch.expm1(h) + phi_2 = phi_1 / h - 1.0 + phi_3 = phi_2 / h - 0.5 + x_t = ( + (torch.exp(log_alpha_t - log_alpha_prev_0)) * x + - (sigma_t * phi_1) * model_prev_0 + - (sigma_t * phi_2) * D1 + - (sigma_t * phi_3) * D2 + ) + return x_t + + def singlestep_dpm_solver_update( + self, + x, + s, + t, + order, + return_intermediate=False, + solver_type="dpmsolver", + r1=None, + r2=None, + ): + """ + Singlestep DPM-Solver with the order `order` from time `s` to time `t`. + + Args: + x: A pytorch tensor. The initial value at time `s`. + s: A pytorch tensor. The starting time, with the shape (1,). + t: A pytorch tensor. The ending time, with the shape (1,). + order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3. + return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times). + solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers. + The type slightly impacts the performance. We recommend to use 'dpmsolver' type. + r1: A `float`. The hyperparameter of the second-order or third-order solver. + r2: A `float`. The hyperparameter of the third-order solver. + Returns: + x_t: A pytorch tensor. The approximated solution at time `t`. + """ + if order == 1: + return self.dpm_solver_first_update(x, s, t, return_intermediate=return_intermediate) + elif order == 2: + return self.singlestep_dpm_solver_second_update( + x, + s, + t, + return_intermediate=return_intermediate, + solver_type=solver_type, + r1=r1, + ) + elif order == 3: + return self.singlestep_dpm_solver_third_update( + x, + s, + t, + return_intermediate=return_intermediate, + solver_type=solver_type, + r1=r1, + r2=r2, + ) + else: + raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order)) + + def multistep_dpm_solver_update(self, x, model_prev_list, t_prev_list, t, order, solver_type="dpmsolver"): + """ + Multistep DPM-Solver with the order `order` from time `t_prev_list[-1]` to time `t`. + + Args: + x: A pytorch tensor. The initial value at time `s`. + model_prev_list: A list of pytorch tensor. The previous computed model values. + t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (1,) + t: A pytorch tensor. The ending time, with the shape (1,). + order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3. + solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers. + The type slightly impacts the performance. We recommend to use 'dpmsolver' type. + Returns: + x_t: A pytorch tensor. The approximated solution at time `t`. + """ + if order == 1: + return self.dpm_solver_first_update(x, t_prev_list[-1], t, model_s=model_prev_list[-1]) + elif order == 2: + return self.multistep_dpm_solver_second_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type) + elif order == 3: + return self.multistep_dpm_solver_third_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type) + else: + raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order)) + + def dpm_solver_adaptive( + self, + x, + order, + t_T, + t_0, + h_init=0.05, + atol=0.0078, + rtol=0.05, + theta=0.9, + t_err=1e-5, + solver_type="dpmsolver", + ): + """ + The adaptive step size solver based on singlestep DPM-Solver. + + Args: + x: A pytorch tensor. The initial value at time `t_T`. + order: A `int`. The (higher) order of the solver. We only support order == 2 or 3. + t_T: A `float`. The starting time of the sampling (default is T). + t_0: A `float`. The ending time of the sampling (default is epsilon). + h_init: A `float`. The initial step size (for logSNR). + atol: A `float`. The absolute tolerance of the solver. For image data, the default setting is 0.0078, followed [1]. + rtol: A `float`. The relative tolerance of the solver. The default setting is 0.05. + theta: A `float`. The safety hyperparameter for adapting the step size. The default setting is 0.9, followed [1]. + t_err: A `float`. The tolerance for the time. We solve the diffusion ODE until the absolute error between the + current time and `t_0` is less than `t_err`. The default setting is 1e-5. + solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers. + The type slightly impacts the performance. We recommend to use 'dpmsolver' type. + Returns: + x_0: A pytorch tensor. The approximated solution at time `t_0`. + + [1] A. Jolicoeur-Martineau, K. Li, R. Pichรฉ-Taillefer, T. Kachman, and I. Mitliagkas, "Gotta go fast when generating data with score-based models," arXiv preprint arXiv:2105.14080, 2021. + """ + ns = self.noise_schedule + s = t_T * torch.ones((1,)).to(x) + lambda_s = ns.marginal_lambda(s) + lambda_0 = ns.marginal_lambda(t_0 * torch.ones_like(s).to(x)) + h = h_init * torch.ones_like(s).to(x) + x_prev = x + nfe = 0 + if order == 2: + r1 = 0.5 + + def lower_update(x, s, t): + return self.dpm_solver_first_update(x, s, t, return_intermediate=True) + + def higher_update(x, s, t, **kwargs): + return self.singlestep_dpm_solver_second_update(x, s, t, r1=r1, solver_type=solver_type, **kwargs) + + elif order == 3: + r1, r2 = 1.0 / 3.0, 2.0 / 3.0 + + def lower_update(x, s, t): + return self.singlestep_dpm_solver_second_update( + x, s, t, r1=r1, return_intermediate=True, solver_type=solver_type + ) + + def higher_update(x, s, t, **kwargs): + return self.singlestep_dpm_solver_third_update(x, s, t, r1=r1, r2=r2, solver_type=solver_type, **kwargs) + + else: + raise ValueError("For adaptive step size solver, order must be 2 or 3, got {}".format(order)) + while torch.abs((s - t_0)).mean() > t_err: + t = ns.inverse_lambda(lambda_s + h) + x_lower, lower_noise_kwargs = lower_update(x, s, t) + x_higher = higher_update(x, s, t, **lower_noise_kwargs) + delta = torch.max( + torch.ones_like(x).to(x) * atol, + rtol * torch.max(torch.abs(x_lower), torch.abs(x_prev)), + ) + + def norm_fn(v): + return torch.sqrt(torch.square(v.reshape((v.shape[0], -1))).mean(dim=-1, keepdim=True)) + + E = norm_fn((x_higher - x_lower) / delta).max() + if torch.all(E <= 1.0): + x = x_higher + s = t + x_prev = x_lower + lambda_s = ns.marginal_lambda(s) + h = torch.min( + theta * h * torch.float_power(E, -1.0 / order).float(), + lambda_0 - lambda_s, + ) + nfe += order + print("adaptive solver nfe", nfe) + return x + + def add_noise(self, x, t, noise=None): + """ + Compute the noised input xt = alpha_t * x + sigma_t * noise. + + Args: + x: A `torch.Tensor` with shape `(batch_size, *shape)`. + t: A `torch.Tensor` with shape `(t_size,)`. + Returns: + xt with shape `(t_size, batch_size, *shape)`. + """ + alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t) + if noise is None: + noise = torch.randn((t.shape[0], *x.shape), device=x.device) + x = x.reshape((-1, *x.shape)) + xt = expand_dims(alpha_t, x.dim()) * x + expand_dims(sigma_t, x.dim()) * noise + if t.shape[0] == 1: + return xt.squeeze(0) + else: + return xt + + def inverse( + self, + x, + steps=20, + t_start=None, + t_end=None, + order=2, + skip_type="time_uniform", + method="multistep", + lower_order_final=True, + denoise_to_zero=False, + solver_type="dpmsolver", + atol=0.0078, + rtol=0.05, + return_intermediate=False, + ): + """ + Inverse the sample `x` from time `t_start` to `t_end` by DPM-Solver. + For discrete-time DPMs, we use `t_start=1/N`, where `N` is the total time steps during training. + """ + t_0 = 1.0 / self.noise_schedule.total_N if t_start is None else t_start + t_T = self.noise_schedule.T if t_end is None else t_end + assert ( + t_0 > 0 and t_T > 0 + ), "Time range needs to be greater than 0. For discrete-time DPMs, it needs to be in [1 / N, 1], where N is the length of betas array" + return self.sample( + x, + steps=steps, + t_start=t_0, + t_end=t_T, + order=order, + skip_type=skip_type, + method=method, + lower_order_final=lower_order_final, + denoise_to_zero=denoise_to_zero, + solver_type=solver_type, + atol=atol, + rtol=rtol, + return_intermediate=return_intermediate, + ) + + def sample( + self, + x, + steps=20, + t_start=None, + t_end=None, + order=2, + skip_type="time_uniform", + method="multistep", + lower_order_final=True, + denoise_to_zero=False, + solver_type="dpmsolver", + atol=0.0078, + rtol=0.05, + return_intermediate=False, + ): + """ + Compute the sample at time `t_end` by DPM-Solver, given the initial `x` at time `t_start`. + + ===================================================== + + We support the following algorithms for both noise prediction model and data prediction model: + - 'singlestep': + Singlestep DPM-Solver (i.e. "DPM-Solver-fast" in the paper), which combines different orders of singlestep DPM-Solver. + We combine all the singlestep solvers with order <= `order` to use up all the function evaluations (steps). + The total number of function evaluations (NFE) == `steps`. + Given a fixed NFE == `steps`, the sampling procedure is: + - If `order` == 1: + - Denote K = steps. We use K steps of DPM-Solver-1 (i.e. DDIM). + - If `order` == 2: + - Denote K = (steps // 2) + (steps % 2). We take K intermediate time steps for sampling. + - If steps % 2 == 0, we use K steps of singlestep DPM-Solver-2. + - If steps % 2 == 1, we use (K - 1) steps of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1. + - If `order` == 3: + - Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling. + - If steps % 3 == 0, we use (K - 2) steps of singlestep DPM-Solver-3, and 1 step of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1. + - If steps % 3 == 1, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of DPM-Solver-1. + - If steps % 3 == 2, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of singlestep DPM-Solver-2. + - 'multistep': + Multistep DPM-Solver with the order of `order`. The total number of function evaluations (NFE) == `steps`. + We initialize the first `order` values by lower order multistep solvers. + Given a fixed NFE == `steps`, the sampling procedure is: + Denote K = steps. + - If `order` == 1: + - We use K steps of DPM-Solver-1 (i.e. DDIM). + - If `order` == 2: + - We firstly use 1 step of DPM-Solver-1, then use (K - 1) step of multistep DPM-Solver-2. + - If `order` == 3: + - We firstly use 1 step of DPM-Solver-1, then 1 step of multistep DPM-Solver-2, then (K - 2) step of multistep DPM-Solver-3. + - 'singlestep_fixed': + Fixed order singlestep DPM-Solver (i.e. DPM-Solver-1 or singlestep DPM-Solver-2 or singlestep DPM-Solver-3). + We use singlestep DPM-Solver-`order` for `order`=1 or 2 or 3, with total [`steps` // `order`] * `order` NFE. + - 'adaptive': + Adaptive step size DPM-Solver (i.e. "DPM-Solver-12" and "DPM-Solver-23" in the paper). + We ignore `steps` and use adaptive step size DPM-Solver with a higher order of `order`. + You can adjust the absolute tolerance `atol` and the relative tolerance `rtol` to balance the computatation costs + (NFE) and the sample quality. + - If `order` == 2, we use DPM-Solver-12 which combines DPM-Solver-1 and singlestep DPM-Solver-2. + - If `order` == 3, we use DPM-Solver-23 which combines singlestep DPM-Solver-2 and singlestep DPM-Solver-3. + + ===================================================== + + Some advices for choosing the algorithm: + - For **unconditional sampling** or **guided sampling with small guidance scale** by DPMs: + Use singlestep DPM-Solver or DPM-Solver++ ("DPM-Solver-fast" in the paper) with `order = 3`. + e.g., DPM-Solver: + >>> dpm_solver = DPM_Solver(model_fn, noise_schedule, algorithm_type="dpmsolver") + >>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=3, + skip_type='time_uniform', method='singlestep') + e.g., DPM-Solver++: + >>> dpm_solver = DPM_Solver(model_fn, noise_schedule, algorithm_type="dpmsolver++") + >>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=3, + skip_type='time_uniform', method='singlestep') + - For **guided sampling with large guidance scale** by DPMs: + Use multistep DPM-Solver with `algorithm_type="dpmsolver++"` and `order = 2`. + e.g. + >>> dpm_solver = DPM_Solver(model_fn, noise_schedule, algorithm_type="dpmsolver++") + >>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=2, + skip_type='time_uniform', method='multistep') + + We support three types of `skip_type`: + - 'logSNR': uniform logSNR for the time steps. **Recommended for low-resolutional images** + - 'time_uniform': uniform time for the time steps. **Recommended for high-resolutional images**. + - 'time_quadratic': quadratic time for the time steps. + + ===================================================== + Args: + x: A pytorch tensor. The initial value at time `t_start` + e.g. if `t_start` == T, then `x` is a sample from the standard normal distribution. + steps: A `int`. The total number of function evaluations (NFE). + t_start: A `float`. The starting time of the sampling. + If `T` is None, we use self.noise_schedule.T (default is 1.0). + t_end: A `float`. The ending time of the sampling. + If `t_end` is None, we use 1. / self.noise_schedule.total_N. + e.g. if total_N == 1000, we have `t_end` == 1e-3. + For discrete-time DPMs: + - We recommend `t_end` == 1. / self.noise_schedule.total_N. + For continuous-time DPMs: + - We recommend `t_end` == 1e-3 when `steps` <= 15; and `t_end` == 1e-4 when `steps` > 15. + order: A `int`. The order of DPM-Solver. + skip_type: A `str`. The type for the spacing of the time steps. 'time_uniform' or 'logSNR' or 'time_quadratic'. + method: A `str`. The method for sampling. 'singlestep' or 'multistep' or 'singlestep_fixed' or 'adaptive'. + denoise_to_zero: A `bool`. Whether to denoise to time 0 at the final step. + Default is `False`. If `denoise_to_zero` is `True`, the total NFE is (`steps` + 1). + + This trick is firstly proposed by DDPM (https://arxiv.org/abs/2006.11239) and + score_sde (https://arxiv.org/abs/2011.13456). Such trick can improve the FID + for diffusion models sampling by diffusion SDEs for low-resolutional images + (such as CIFAR-10). However, we observed that such trick does not matter for + high-resolutional images. As it needs an additional NFE, we do not recommend + it for high-resolutional images. + lower_order_final: A `bool`. Whether to use lower order solvers at the final steps. + Only valid for `method=multistep` and `steps < 15`. We empirically find that + this trick is a key to stabilizing the sampling by DPM-Solver with very few steps + (especially for steps <= 10). So we recommend to set it to be `True`. + solver_type: A `str`. The taylor expansion type for the solver. `dpmsolver` or `taylor`. We recommend `dpmsolver`. + atol: A `float`. The absolute tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'. + rtol: A `float`. The relative tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'. + return_intermediate: A `bool`. Whether to save the xt at each step. + When set to `True`, method returns a tuple (x0, intermediates); when set to False, method returns only x0. + Returns: + x_end: A pytorch tensor. The approximated solution at time `t_end`. + + """ + t_0 = 1.0 / self.noise_schedule.total_N if t_end is None else t_end + t_T = self.noise_schedule.T if t_start is None else t_start + assert ( + t_0 > 0 and t_T > 0 + ), "Time range needs to be greater than 0. For discrete-time DPMs, it needs to be in [1 / N, 1], where N is the length of betas array" + if return_intermediate: + assert method in [ + "multistep", + "singlestep", + "singlestep_fixed", + ], "Cannot use adaptive solver when saving intermediate values" + if self.correcting_xt_fn is not None: + assert method in [ + "multistep", + "singlestep", + "singlestep_fixed", + ], "Cannot use adaptive solver when correcting_xt_fn is not None" + device = x.device + intermediates = [] + with torch.no_grad(): + if method == "adaptive": + x = self.dpm_solver_adaptive( + x, + order=order, + t_T=t_T, + t_0=t_0, + atol=atol, + rtol=rtol, + solver_type=solver_type, + ) + elif method == "multistep": + assert steps >= order + timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device) + assert timesteps.shape[0] - 1 == steps + # Init the initial values. + step = 0 + t = timesteps[step] + t_prev_list = [t] + model_prev_list = [self.model_fn(x, t)] + if self.correcting_xt_fn is not None: + x = self.correcting_xt_fn(x, t, step) + if return_intermediate: + intermediates.append(x) + # Init the first `order` values by lower order multistep DPM-Solver. + for step in range(1, order): + t = timesteps[step] + x = self.multistep_dpm_solver_update( + x, + model_prev_list, + t_prev_list, + t, + step, + solver_type=solver_type, + ) + if self.correcting_xt_fn is not None: + x = self.correcting_xt_fn(x, t, step) + if return_intermediate: + intermediates.append(x) + t_prev_list.append(t) + model_prev_list.append(self.model_fn(x, t)) + # Compute the remaining values by `order`-th order multistep DPM-Solver. + for step in range(order, steps + 1): + t = timesteps[step] + # We only use lower order for steps < 10 + if lower_order_final and steps < 10: + step_order = min(order, steps + 1 - step) + else: + step_order = order + x = self.multistep_dpm_solver_update( + x, + model_prev_list, + t_prev_list, + t, + step_order, + solver_type=solver_type, + ) + if self.correcting_xt_fn is not None: + x = self.correcting_xt_fn(x, t, step) + if return_intermediate: + intermediates.append(x) + for i in range(order - 1): + t_prev_list[i] = t_prev_list[i + 1] + model_prev_list[i] = model_prev_list[i + 1] + t_prev_list[-1] = t + # We do not need to evaluate the final model value. + if step < steps: + model_prev_list[-1] = self.model_fn(x, t) + elif method in ["singlestep", "singlestep_fixed"]: + if method == "singlestep": + ( + timesteps_outer, + orders, + ) = self.get_orders_and_timesteps_for_singlestep_solver( + steps=steps, + order=order, + skip_type=skip_type, + t_T=t_T, + t_0=t_0, + device=device, + ) + elif method == "singlestep_fixed": + K = steps // order + orders = [ + order, + ] * K + timesteps_outer = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=K, device=device) + for step, order in enumerate(orders): + s, t = timesteps_outer[step], timesteps_outer[step + 1] + timesteps_inner = self.get_time_steps( + skip_type=skip_type, + t_T=s.item(), + t_0=t.item(), + N=order, + device=device, + ) + lambda_inner = self.noise_schedule.marginal_lambda(timesteps_inner) + h = lambda_inner[-1] - lambda_inner[0] + r1 = None if order <= 1 else (lambda_inner[1] - lambda_inner[0]) / h + r2 = None if order <= 2 else (lambda_inner[2] - lambda_inner[0]) / h + x = self.singlestep_dpm_solver_update(x, s, t, order, solver_type=solver_type, r1=r1, r2=r2) + if self.correcting_xt_fn is not None: + x = self.correcting_xt_fn(x, t, step) + if return_intermediate: + intermediates.append(x) + else: + raise ValueError("Got wrong method {}".format(method)) + if denoise_to_zero: + t = torch.ones((1,)).to(device) * t_0 + x = self.denoise_to_zero_fn(x, t) + if self.correcting_xt_fn is not None: + x = self.correcting_xt_fn(x, t, step + 1) + if return_intermediate: + intermediates.append(x) + if return_intermediate: + return x, intermediates + else: + return x + + +############################################################# +# other utility functions +############################################################# + + +def interpolate_fn(x, xp, yp): + """ + A piecewise linear function y = f(x), using xp and yp as keypoints. + We implement f(x) in a differentiable way (i.e. applicable for autograd). + The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.) + + Args: + x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver). + xp: PyTorch tensor with shape [C, K], where K is the number of keypoints. + yp: PyTorch tensor with shape [C, K]. + Returns: + The function values f(x), with shape [N, C]. + """ + N, K = x.shape[0], xp.shape[1] + all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2) + sorted_all_x, x_indices = torch.sort(all_x, dim=2) + x_idx = torch.argmin(x_indices, dim=2) + cand_start_idx = x_idx - 1 + start_idx = torch.where( + torch.eq(x_idx, 0), + torch.tensor(1, device=x.device), + torch.where( + torch.eq(x_idx, K), + torch.tensor(K - 2, device=x.device), + cand_start_idx, + ), + ) + end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1) + start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2) + end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2) + start_idx2 = torch.where( + torch.eq(x_idx, 0), + torch.tensor(0, device=x.device), + torch.where( + torch.eq(x_idx, K), + torch.tensor(K - 2, device=x.device), + cand_start_idx, + ), + ) + y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1) + start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2) + end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2) + cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x) + return cand + + +def expand_dims(v, dims): + """ + Expand the tensor `v` to the dim `dims`. + + Args: + `v`: a PyTorch tensor with shape [N]. + `dim`: a `int`. + Returns: + a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`. + """ + return v[(...,) + (None,) * (dims - 1)] diff --git a/TTS/TTS/tts/layers/tortoise/random_latent_generator.py b/TTS/TTS/tts/layers/tortoise/random_latent_generator.py new file mode 100644 index 0000000000000000000000000000000000000000..9b39c1e4b22ee5a9ad84a1711a08a8530c4d76b7 --- /dev/null +++ b/TTS/TTS/tts/layers/tortoise/random_latent_generator.py @@ -0,0 +1,55 @@ +import math + +import torch +import torch.nn as nn +import torch.nn.functional as F + + +def fused_leaky_relu(input, bias=None, negative_slope=0.2, scale=2**0.5): + if bias is not None: + rest_dim = [1] * (input.ndim - bias.ndim - 1) + return ( + F.leaky_relu( + input + bias.view(1, bias.shape[0], *rest_dim), + negative_slope=negative_slope, + ) + * scale + ) + else: + return F.leaky_relu(input, negative_slope=0.2) * scale + + +class EqualLinear(nn.Module): + def __init__(self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1): + super().__init__() + self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul)) + if bias: + self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init)) + else: + self.bias = None + self.scale = (1 / math.sqrt(in_dim)) * lr_mul + self.lr_mul = lr_mul + + def forward(self, input): + out = F.linear(input, self.weight * self.scale) + out = fused_leaky_relu(out, self.bias * self.lr_mul) + return out + + +class RandomLatentConverter(nn.Module): + def __init__(self, channels): + super().__init__() + self.layers = nn.Sequential( + *[EqualLinear(channels, channels, lr_mul=0.1) for _ in range(5)], nn.Linear(channels, channels) + ) + self.channels = channels + + def forward(self, ref): + r = torch.randn(ref.shape[0], self.channels, device=ref.device) + y = self.layers(r) + return y + + +if __name__ == "__main__": + model = RandomLatentConverter(512) + model(torch.randn(5, 512)) diff --git a/TTS/TTS/tts/layers/tortoise/tokenizer.py b/TTS/TTS/tts/layers/tortoise/tokenizer.py new file mode 100644 index 0000000000000000000000000000000000000000..3969b2cc32c39157c0ca7cd404ac422207960651 --- /dev/null +++ b/TTS/TTS/tts/layers/tortoise/tokenizer.py @@ -0,0 +1,33 @@ +import os + +import torch +from tokenizers import Tokenizer + +from TTS.tts.utils.text.cleaners import english_cleaners + + +class VoiceBpeTokenizer: + def __init__(self, vocab_file=None, vocab_str=None): + self.tokenizer = None + if vocab_file is not None: + self.tokenizer = Tokenizer.from_file(vocab_file) + if vocab_str is not None: + self.tokenizer = Tokenizer.from_str(vocab_str) + + def preprocess_text(self, txt): + txt = english_cleaners(txt) + return txt + + def encode(self, txt): + txt = self.preprocess_text(txt) + txt = txt.replace(" ", "[SPACE]") + return self.tokenizer.encode(txt).ids + + def decode(self, seq): + if isinstance(seq, torch.Tensor): + seq = seq.cpu().numpy() + txt = self.tokenizer.decode(seq, skip_special_tokens=False).replace(" ", "") + txt = txt.replace("[SPACE]", " ") + txt = txt.replace("[STOP]", "") + txt = txt.replace("[UNK]", "") + return txt diff --git a/TTS/TTS/tts/layers/tortoise/transformer.py b/TTS/TTS/tts/layers/tortoise/transformer.py new file mode 100644 index 0000000000000000000000000000000000000000..70d46aa3e03626d8123700a5c2541d2d1a7314b4 --- /dev/null +++ b/TTS/TTS/tts/layers/tortoise/transformer.py @@ -0,0 +1,229 @@ +import torch +import torch.nn.functional as F +from einops import rearrange +from torch import nn + +# helpers + + +def exists(val): + return val is not None + + +def default(val, d): + return val if exists(val) else d + + +def cast_tuple(val, depth=1): + if isinstance(val, list): + val = tuple(val) + return val if isinstance(val, tuple) else (val,) * depth + + +def max_neg_value(t): + return -torch.finfo(t.dtype).max + + +def stable_softmax(t, dim=-1, alpha=32**2): + t = t / alpha + t = t - torch.amax(t, dim=dim, keepdim=True).detach() + return (t * alpha).softmax(dim=dim) + + +def route_args(router, args, depth): + routed_args = [(dict(), dict()) for _ in range(depth)] + matched_keys = [key for key in args.keys() if key in router] + + for key in matched_keys: + val = args[key] + for depth, ((f_args, g_args), routes) in enumerate(zip(routed_args, router[key])): + new_f_args, new_g_args = map(lambda route: ({key: val} if route else {}), routes) + routed_args[depth] = ({**f_args, **new_f_args}, {**g_args, **new_g_args}) + return routed_args + + +# classes +class SequentialSequence(nn.Module): + def __init__(self, layers, args_route={}, layer_dropout=0.0): + super().__init__() + assert all( + len(route) == len(layers) for route in args_route.values() + ), "each argument route map must have the same depth as the number of sequential layers" + self.layers = layers + self.args_route = args_route + self.layer_dropout = layer_dropout + + def forward(self, x, **kwargs): + args = route_args(self.args_route, kwargs, len(self.layers)) + layers_and_args = list(zip(self.layers, args)) + + for (f, g), (f_args, g_args) in layers_and_args: + x = x + f(x, **f_args) + x = x + g(x, **g_args) + return x + + +class DivideMax(nn.Module): + def __init__(self, dim): + super().__init__() + self.dim = dim + + def forward(self, x): + maxes = x.amax(dim=self.dim, keepdim=True).detach() + return x / maxes + + +# https://arxiv.org/abs/2103.17239 +class LayerScale(nn.Module): + def __init__(self, dim, depth, fn): + super().__init__() + if depth <= 18: + init_eps = 0.1 + elif depth > 18 and depth <= 24: + init_eps = 1e-5 + else: + init_eps = 1e-6 + + scale = torch.zeros(1, 1, dim).fill_(init_eps) + self.scale = nn.Parameter(scale) + self.fn = fn + + def forward(self, x, **kwargs): + return self.fn(x, **kwargs) * self.scale + + +# layer norm + + +class PreNorm(nn.Module): + def __init__(self, dim, fn, sandwich=False): + super().__init__() + self.norm = nn.LayerNorm(dim) + self.norm_out = nn.LayerNorm(dim) if sandwich else nn.Identity() + self.fn = fn + + def forward(self, x, **kwargs): + x = self.norm(x) + x = self.fn(x, **kwargs) + return self.norm_out(x) + + +# feed forward + + +class GEGLU(nn.Module): + def forward(self, x): + x, gates = x.chunk(2, dim=-1) + return x * F.gelu(gates) + + +class FeedForward(nn.Module): + def __init__(self, dim, dropout=0.0, mult=4.0): + super().__init__() + self.net = nn.Sequential( + nn.Linear(dim, dim * mult * 2), + GEGLU(), + nn.Dropout(dropout), + nn.Linear(dim * mult, dim), + ) + + def forward(self, x): + return self.net(x) + + +# Attention + + +class Attention(nn.Module): + def __init__(self, dim, seq_len, causal=True, heads=8, dim_head=64, dropout=0.0): + super().__init__() + inner_dim = dim_head * heads + self.heads = heads + self.seq_len = seq_len + self.scale = dim_head**-0.5 + + self.causal = causal + + self.to_qkv = nn.Linear(dim, inner_dim * 3, bias=False) + self.to_out = nn.Sequential(nn.Linear(inner_dim, dim), nn.Dropout(dropout)) + + def forward(self, x, mask=None): + b, n, _, h, device = *x.shape, self.heads, x.device + softmax = torch.softmax + + qkv = self.to_qkv(x).chunk(3, dim=-1) + q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=h), qkv) + + q = q * self.scale + + dots = torch.einsum("b h i d, b h j d -> b h i j", q, k) + mask_value = max_neg_value(dots) + + if exists(mask): + mask = rearrange(mask, "b j -> b () () j") + dots.masked_fill_(~mask, mask_value) + del mask + + if self.causal: + i, j = dots.shape[-2:] + mask = torch.ones(i, j, device=device).triu_(j - i + 1).bool() + dots.masked_fill_(mask, mask_value) + + attn = softmax(dots, dim=-1) + + out = torch.einsum("b h i j, b h j d -> b h i d", attn, v) + out = rearrange(out, "b h n d -> b n (h d)") + out = self.to_out(out) + return out + + +# main transformer class +class Transformer(nn.Module): + def __init__( + self, + *, + dim, + depth, + seq_len, + causal=True, + heads=8, + dim_head=64, + ff_mult=4, + attn_dropout=0.0, + ff_dropout=0.0, + sparse_attn=False, + sandwich_norm=False, + ): + super().__init__() + layers = nn.ModuleList([]) + sparse_layer = cast_tuple(sparse_attn, depth) + + for ind, sparse_attn in zip(range(depth), sparse_layer): + attn = Attention( + dim, + causal=causal, + seq_len=seq_len, + heads=heads, + dim_head=dim_head, + dropout=attn_dropout, + ) + + ff = FeedForward(dim, mult=ff_mult, dropout=ff_dropout) + + layers.append( + nn.ModuleList( + [ + LayerScale(dim, ind + 1, PreNorm(dim, attn, sandwich=sandwich_norm)), + LayerScale(dim, ind + 1, PreNorm(dim, ff, sandwich=sandwich_norm)), + ] + ) + ) + + execute_type = SequentialSequence + route_attn = ((True, False),) * depth + attn_route_map = {"mask": route_attn} + + self.layers = execute_type(layers, args_route=attn_route_map) + + def forward(self, x, **kwargs): + return self.layers(x, **kwargs) diff --git a/TTS/TTS/tts/layers/tortoise/utils.py b/TTS/TTS/tts/layers/tortoise/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..810a9e7f7a8ab4a6a48974367020961f9a9967f4 --- /dev/null +++ b/TTS/TTS/tts/layers/tortoise/utils.py @@ -0,0 +1,46 @@ +import os +from urllib import request + +from tqdm import tqdm + +DEFAULT_MODELS_DIR = os.path.join(os.path.expanduser("~"), ".cache", "tortoise", "models") +MODELS_DIR = os.environ.get("TORTOISE_MODELS_DIR", DEFAULT_MODELS_DIR) +MODELS_DIR = "/data/speech_synth/models/" +MODELS = { + "autoregressive.pth": "https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/autoregressive.pth", + "classifier.pth": "https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/classifier.pth", + "clvp2.pth": "https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/clvp2.pth", + "diffusion_decoder.pth": "https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/diffusion_decoder.pth", + "vocoder.pth": "https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/vocoder.pth", + "rlg_auto.pth": "https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/rlg_auto.pth", + "rlg_diffuser.pth": "https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/rlg_diffuser.pth", +} + + +def download_models(specific_models=None): + """ + Call to download all the models that Tortoise uses. + """ + os.makedirs(MODELS_DIR, exist_ok=True) + for model_name, url in MODELS.items(): + if specific_models is not None and model_name not in specific_models: + continue + model_path = os.path.join(MODELS_DIR, model_name) + if os.path.exists(model_path): + continue + print(f"Downloading {model_name} from {url}...") + with tqdm(unit="B", unit_scale=True, unit_divisor=1024, miniters=1) as t: + request.urlretrieve(url, model_path, lambda nb, bs, fs, t=t: t.update(nb * bs - t.n)) + print("Done.") + + +def get_model_path(model_name, models_dir=MODELS_DIR): + """ + Get path to given model, download it if it doesn't exist. + """ + if model_name not in MODELS: + raise ValueError(f"Model {model_name} not found in available models.") + model_path = os.path.join(models_dir, model_name) + if not os.path.exists(model_path) and models_dir == MODELS_DIR: + download_models([model_name]) + return model_path diff --git a/TTS/TTS/tts/layers/tortoise/vocoder.py b/TTS/TTS/tts/layers/tortoise/vocoder.py new file mode 100644 index 0000000000000000000000000000000000000000..47365eb58d4d8ab563fe4785fc99cb4f5493b37f --- /dev/null +++ b/TTS/TTS/tts/layers/tortoise/vocoder.py @@ -0,0 +1,401 @@ +import json +from dataclasses import dataclass +from enum import Enum +from typing import Callable, Optional + +import torch +import torch.nn as nn +import torch.nn.functional as F + +MAX_WAV_VALUE = 32768.0 + + +class KernelPredictor(torch.nn.Module): + """Kernel predictor for the location-variable convolutions""" + + def __init__( + self, + cond_channels, + conv_in_channels, + conv_out_channels, + conv_layers, + conv_kernel_size=3, + kpnet_hidden_channels=64, + kpnet_conv_size=3, + kpnet_dropout=0.0, + kpnet_nonlinear_activation="LeakyReLU", + kpnet_nonlinear_activation_params={"negative_slope": 0.1}, + ): + """ + Args: + cond_channels (int): number of channel for the conditioning sequence, + conv_in_channels (int): number of channel for the input sequence, + conv_out_channels (int): number of channel for the output sequence, + conv_layers (int): number of layers + """ + super().__init__() + + self.conv_in_channels = conv_in_channels + self.conv_out_channels = conv_out_channels + self.conv_kernel_size = conv_kernel_size + self.conv_layers = conv_layers + + kpnet_kernel_channels = conv_in_channels * conv_out_channels * conv_kernel_size * conv_layers # l_w + kpnet_bias_channels = conv_out_channels * conv_layers # l_b + + self.input_conv = nn.Sequential( + nn.utils.weight_norm(nn.Conv1d(cond_channels, kpnet_hidden_channels, 5, padding=2, bias=True)), + getattr(nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params), + ) + + self.residual_convs = nn.ModuleList() + padding = (kpnet_conv_size - 1) // 2 + for _ in range(3): + self.residual_convs.append( + nn.Sequential( + nn.Dropout(kpnet_dropout), + nn.utils.weight_norm( + nn.Conv1d( + kpnet_hidden_channels, + kpnet_hidden_channels, + kpnet_conv_size, + padding=padding, + bias=True, + ) + ), + getattr(nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params), + nn.utils.weight_norm( + nn.Conv1d( + kpnet_hidden_channels, + kpnet_hidden_channels, + kpnet_conv_size, + padding=padding, + bias=True, + ) + ), + getattr(nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params), + ) + ) + self.kernel_conv = nn.utils.weight_norm( + nn.Conv1d( + kpnet_hidden_channels, + kpnet_kernel_channels, + kpnet_conv_size, + padding=padding, + bias=True, + ) + ) + self.bias_conv = nn.utils.weight_norm( + nn.Conv1d( + kpnet_hidden_channels, + kpnet_bias_channels, + kpnet_conv_size, + padding=padding, + bias=True, + ) + ) + + def forward(self, c): + """ + Args: + c (Tensor): the conditioning sequence (batch, cond_channels, cond_length) + """ + batch, _, cond_length = c.shape + c = self.input_conv(c) + for residual_conv in self.residual_convs: + residual_conv.to(c.device) + c = c + residual_conv(c) + k = self.kernel_conv(c) + b = self.bias_conv(c) + kernels = k.contiguous().view( + batch, + self.conv_layers, + self.conv_in_channels, + self.conv_out_channels, + self.conv_kernel_size, + cond_length, + ) + bias = b.contiguous().view( + batch, + self.conv_layers, + self.conv_out_channels, + cond_length, + ) + + return kernels, bias + + def remove_weight_norm(self): + nn.utils.remove_weight_norm(self.input_conv[0]) + nn.utils.remove_weight_norm(self.kernel_conv) + nn.utils.remove_weight_norm(self.bias_conv) + for block in self.residual_convs: + nn.utils.remove_weight_norm(block[1]) + nn.utils.remove_weight_norm(block[3]) + + +class LVCBlock(torch.nn.Module): + """the location-variable convolutions""" + + def __init__( + self, + in_channels, + cond_channels, + stride, + dilations=[1, 3, 9, 27], + lReLU_slope=0.2, + conv_kernel_size=3, + cond_hop_length=256, + kpnet_hidden_channels=64, + kpnet_conv_size=3, + kpnet_dropout=0.0, + ): + super().__init__() + + self.cond_hop_length = cond_hop_length + self.conv_layers = len(dilations) + self.conv_kernel_size = conv_kernel_size + + self.kernel_predictor = KernelPredictor( + cond_channels=cond_channels, + conv_in_channels=in_channels, + conv_out_channels=2 * in_channels, + conv_layers=len(dilations), + conv_kernel_size=conv_kernel_size, + kpnet_hidden_channels=kpnet_hidden_channels, + kpnet_conv_size=kpnet_conv_size, + kpnet_dropout=kpnet_dropout, + kpnet_nonlinear_activation_params={"negative_slope": lReLU_slope}, + ) + + self.convt_pre = nn.Sequential( + nn.LeakyReLU(lReLU_slope), + nn.utils.weight_norm( + nn.ConvTranspose1d( + in_channels, + in_channels, + 2 * stride, + stride=stride, + padding=stride // 2 + stride % 2, + output_padding=stride % 2, + ) + ), + ) + + self.conv_blocks = nn.ModuleList() + for dilation in dilations: + self.conv_blocks.append( + nn.Sequential( + nn.LeakyReLU(lReLU_slope), + nn.utils.weight_norm( + nn.Conv1d( + in_channels, + in_channels, + conv_kernel_size, + padding=dilation * (conv_kernel_size - 1) // 2, + dilation=dilation, + ) + ), + nn.LeakyReLU(lReLU_slope), + ) + ) + + def forward(self, x, c): + """forward propagation of the location-variable convolutions. + Args: + x (Tensor): the input sequence (batch, in_channels, in_length) + c (Tensor): the conditioning sequence (batch, cond_channels, cond_length) + + Returns: + Tensor: the output sequence (batch, in_channels, in_length) + """ + _, in_channels, _ = x.shape # (B, c_g, L') + + x = self.convt_pre(x) # (B, c_g, stride * L') + kernels, bias = self.kernel_predictor(c) + + for i, conv in enumerate(self.conv_blocks): + output = conv(x) # (B, c_g, stride * L') + + k = kernels[:, i, :, :, :, :] # (B, 2 * c_g, c_g, kernel_size, cond_length) + b = bias[:, i, :, :] # (B, 2 * c_g, cond_length) + + output = self.location_variable_convolution( + output, k, b, hop_size=self.cond_hop_length + ) # (B, 2 * c_g, stride * L'): LVC + x = x + torch.sigmoid(output[:, :in_channels, :]) * torch.tanh( + output[:, in_channels:, :] + ) # (B, c_g, stride * L'): GAU + + return x + + def location_variable_convolution(self, x, kernel, bias, dilation=1, hop_size=256): + """perform location-variable convolution operation on the input sequence (x) using the local convolution kernl. + Time: 414 ฮผs ยฑ 309 ns per loop (mean ยฑ std. dev. of 7 runs, 1000 loops each), test on NVIDIA V100. + Args: + x (Tensor): the input sequence (batch, in_channels, in_length). + kernel (Tensor): the local convolution kernel (batch, in_channel, out_channels, kernel_size, kernel_length) + bias (Tensor): the bias for the local convolution (batch, out_channels, kernel_length) + dilation (int): the dilation of convolution. + hop_size (int): the hop_size of the conditioning sequence. + Returns: + (Tensor): the output sequence after performing local convolution. (batch, out_channels, in_length). + """ + batch, _, in_length = x.shape + batch, _, out_channels, kernel_size, kernel_length = kernel.shape + assert in_length == (kernel_length * hop_size), "length of (x, kernel) is not matched" + + padding = dilation * int((kernel_size - 1) / 2) + x = F.pad(x, (padding, padding), "constant", 0) # (batch, in_channels, in_length + 2*padding) + x = x.unfold(2, hop_size + 2 * padding, hop_size) # (batch, in_channels, kernel_length, hop_size + 2*padding) + + if hop_size < dilation: + x = F.pad(x, (0, dilation), "constant", 0) + x = x.unfold( + 3, dilation, dilation + ) # (batch, in_channels, kernel_length, (hop_size + 2*padding)/dilation, dilation) + x = x[:, :, :, :, :hop_size] + x = x.transpose(3, 4) # (batch, in_channels, kernel_length, dilation, (hop_size + 2*padding)/dilation) + x = x.unfold(4, kernel_size, 1) # (batch, in_channels, kernel_length, dilation, _, kernel_size) + + o = torch.einsum("bildsk,biokl->bolsd", x, kernel) + o = o.to(memory_format=torch.channels_last_3d) + bias = bias.unsqueeze(-1).unsqueeze(-1).to(memory_format=torch.channels_last_3d) + o = o + bias + o = o.contiguous().view(batch, out_channels, -1) + + return o + + def remove_weight_norm(self): + self.kernel_predictor.remove_weight_norm() + nn.utils.remove_weight_norm(self.convt_pre[1]) + for block in self.conv_blocks: + nn.utils.remove_weight_norm(block[1]) + + +class UnivNetGenerator(nn.Module): + """ + UnivNet Generator + + Originally from https://github.com/mindslab-ai/univnet/blob/master/model/generator.py. + """ + + def __init__( + self, + noise_dim=64, + channel_size=32, + dilations=[1, 3, 9, 27], + strides=[8, 8, 4], + lReLU_slope=0.2, + kpnet_conv_size=3, + # Below are MEL configurations options that this generator requires. + hop_length=256, + n_mel_channels=100, + ): + super(UnivNetGenerator, self).__init__() + self.mel_channel = n_mel_channels + self.noise_dim = noise_dim + self.hop_length = hop_length + channel_size = channel_size + kpnet_conv_size = kpnet_conv_size + + self.res_stack = nn.ModuleList() + hop_length = 1 + for stride in strides: + hop_length = stride * hop_length + self.res_stack.append( + LVCBlock( + channel_size, + n_mel_channels, + stride=stride, + dilations=dilations, + lReLU_slope=lReLU_slope, + cond_hop_length=hop_length, + kpnet_conv_size=kpnet_conv_size, + ) + ) + + self.conv_pre = nn.utils.weight_norm(nn.Conv1d(noise_dim, channel_size, 7, padding=3, padding_mode="reflect")) + + self.conv_post = nn.Sequential( + nn.LeakyReLU(lReLU_slope), + nn.utils.weight_norm(nn.Conv1d(channel_size, 1, 7, padding=3, padding_mode="reflect")), + nn.Tanh(), + ) + + def forward(self, c, z): + """ + Args: + c (Tensor): the conditioning sequence of mel-spectrogram (batch, mel_channels, in_length) + z (Tensor): the noise sequence (batch, noise_dim, in_length) + + """ + z = self.conv_pre(z) # (B, c_g, L) + + for res_block in self.res_stack: + res_block.to(z.device) + z = res_block(z, c) # (B, c_g, L * s_0 * ... * s_i) + + z = self.conv_post(z) # (B, 1, L * 256) + + return z + + def eval(self, inference=False): + super(UnivNetGenerator, self).eval() + # don't remove weight norm while validation in training loop + if inference: + self.remove_weight_norm() + + def remove_weight_norm(self): + nn.utils.remove_weight_norm(self.conv_pre) + + for layer in self.conv_post: + if len(layer.state_dict()) != 0: + nn.utils.remove_weight_norm(layer) + + for res_block in self.res_stack: + res_block.remove_weight_norm() + + def inference(self, c, z=None): + # pad input mel with zeros to cut artifact + # see https://github.com/seungwonpark/melgan/issues/8 + zero = torch.full((c.shape[0], self.mel_channel, 10), -11.5129).to(c.device) + mel = torch.cat((c, zero), dim=2) + + if z is None: + z = torch.randn(c.shape[0], self.noise_dim, mel.size(2)).to(mel.device) + + audio = self.forward(mel, z) + audio = audio[:, :, : -(self.hop_length * 10)] + audio = audio.clamp(min=-1, max=1) + return audio + + +@dataclass +class VocType: + constructor: Callable[[], nn.Module] + model_path: str + subkey: Optional[str] = None + + def optionally_index(self, model_dict): + if self.subkey is not None: + return model_dict[self.subkey] + return model_dict + + +class VocConf(Enum): + Univnet = VocType(UnivNetGenerator, "vocoder.pth", "model_g") + + +if __name__ == "__main__": + model = UnivNetGenerator() + + c = torch.randn(3, 100, 10) + z = torch.randn(3, 64, 10) + print(c.shape) + + y = model(c, z) + print(y.shape) + assert y.shape == torch.Size([3, 1, 2560]) + + pytorch_total_params = sum(p.numel() for p in model.parameters() if p.requires_grad) + print(pytorch_total_params) diff --git a/TTS/TTS/tts/layers/tortoise/wav2vec_alignment.py b/TTS/TTS/tts/layers/tortoise/wav2vec_alignment.py new file mode 100644 index 0000000000000000000000000000000000000000..47456cc5ac41b7ed9522fe543affc8482218730c --- /dev/null +++ b/TTS/TTS/tts/layers/tortoise/wav2vec_alignment.py @@ -0,0 +1,150 @@ +import torch +import torchaudio +from transformers import Wav2Vec2CTCTokenizer, Wav2Vec2FeatureExtractor, Wav2Vec2ForCTC + + +def max_alignment(s1, s2, skip_character="~", record=None): + """ + A clever function that aligns s1 to s2 as best it can. Wherever a character from s1 is not found in s2, a '~' is + used to replace that character. + + Finally got to use my DP skills! + """ + if record is None: + record = {} + assert skip_character not in s1, f"Found the skip character {skip_character} in the provided string, {s1}" + if len(s1) == 0: + return "" + if len(s2) == 0: + return skip_character * len(s1) + if s1 == s2: + return s1 + if s1[0] == s2[0]: + return s1[0] + max_alignment(s1[1:], s2[1:], skip_character, record) + + take_s1_key = (len(s1), len(s2) - 1) + if take_s1_key in record: + take_s1, take_s1_score = record[take_s1_key] + else: + take_s1 = max_alignment(s1, s2[1:], skip_character, record) + take_s1_score = len(take_s1.replace(skip_character, "")) + record[take_s1_key] = (take_s1, take_s1_score) + + take_s2_key = (len(s1) - 1, len(s2)) + if take_s2_key in record: + take_s2, take_s2_score = record[take_s2_key] + else: + take_s2 = max_alignment(s1[1:], s2, skip_character, record) + take_s2_score = len(take_s2.replace(skip_character, "")) + record[take_s2_key] = (take_s2, take_s2_score) + + return take_s1 if take_s1_score > take_s2_score else skip_character + take_s2 + + +class Wav2VecAlignment: + """ + Uses wav2vec2 to perform audio<->text alignment. + """ + + def __init__(self, device="cuda"): + self.model = Wav2Vec2ForCTC.from_pretrained("jbetker/wav2vec2-large-robust-ft-libritts-voxpopuli").cpu() + self.feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("facebook/wav2vec2-large-960h") + self.tokenizer = Wav2Vec2CTCTokenizer.from_pretrained("jbetker/tacotron-symbols") + self.device = device + + def align(self, audio, expected_text, audio_sample_rate=24000): + orig_len = audio.shape[-1] + + with torch.no_grad(): + self.model = self.model.to(self.device) + audio = audio.to(self.device) + audio = torchaudio.functional.resample(audio, audio_sample_rate, 16000) + clip_norm = (audio - audio.mean()) / torch.sqrt(audio.var() + 1e-7) + logits = self.model(clip_norm).logits + self.model = self.model.cpu() + + logits = logits[0] + pred_string = self.tokenizer.decode(logits.argmax(-1).tolist()) + + fixed_expectation = max_alignment(expected_text.lower(), pred_string) + w2v_compression = orig_len // logits.shape[0] + expected_tokens = self.tokenizer.encode(fixed_expectation) + expected_chars = list(fixed_expectation) + if len(expected_tokens) == 1: + return [0] # The alignment is simple; there is only one token. + expected_tokens.pop(0) # The first token is a given. + expected_chars.pop(0) + + alignments = [0] + + def pop_till_you_win(): + if len(expected_tokens) == 0: + return None + popped = expected_tokens.pop(0) + popped_char = expected_chars.pop(0) + while popped_char == "~": + alignments.append(-1) + if len(expected_tokens) == 0: + return None + popped = expected_tokens.pop(0) + popped_char = expected_chars.pop(0) + return popped + + next_expected_token = pop_till_you_win() + for i, logit in enumerate(logits): + top = logit.argmax() + if next_expected_token == top: + alignments.append(i * w2v_compression) + if len(expected_tokens) > 0: + next_expected_token = pop_till_you_win() + else: + break + + pop_till_you_win() + if not (len(expected_tokens) == 0 and len(alignments) == len(expected_text)): + torch.save([audio, expected_text], "alignment_debug.pth") + assert False, ( + "Something went wrong with the alignment algorithm. I've dumped a file, 'alignment_debug.pth' to" + "your current working directory. Please report this along with the file so it can get fixed." + ) + + # Now fix up alignments. Anything with -1 should be interpolated. + alignments.append(orig_len) # This'll get removed but makes the algorithm below more readable. + for i in range(len(alignments)): + if alignments[i] == -1: + for j in range(i + 1, len(alignments)): + if alignments[j] != -1: + next_found_token = j + break + for j in range(i, next_found_token): + gap = alignments[next_found_token] - alignments[i - 1] + alignments[j] = (j - i + 1) * gap // (next_found_token - i + 1) + alignments[i - 1] + + return alignments[:-1] + + def redact(self, audio, expected_text, audio_sample_rate=24000): + if "[" not in expected_text: + return audio + splitted = expected_text.split("[") + fully_split = [splitted[0]] + for spl in splitted[1:]: + assert "]" in spl, 'Every "[" character must be paired with a "]" with no nesting.' + fully_split.extend(spl.split("]")) + + # At this point, fully_split is a list of strings, with every other string being something that should be redacted. + non_redacted_intervals = [] + last_point = 0 + for i in range(len(fully_split)): + if i % 2 == 0: + end_interval = max(0, last_point + len(fully_split[i]) - 1) + non_redacted_intervals.append((last_point, end_interval)) + last_point += len(fully_split[i]) + + bare_text = "".join(fully_split) + alignments = self.align(audio, bare_text, audio_sample_rate) + + output_audio = [] + for nri in non_redacted_intervals: + start, stop = nri + output_audio.append(audio[:, alignments[start] : alignments[stop]]) + return torch.cat(output_audio, dim=-1) diff --git a/TTS/TTS/tts/layers/tortoise/xtransformers.py b/TTS/TTS/tts/layers/tortoise/xtransformers.py new file mode 100644 index 0000000000000000000000000000000000000000..1eb3f77269c0e7b718d350217796ec704543c681 --- /dev/null +++ b/TTS/TTS/tts/layers/tortoise/xtransformers.py @@ -0,0 +1,1259 @@ +import math +from collections import namedtuple +from functools import partial +from inspect import isfunction + +import torch +import torch.nn.functional as F +from einops import rearrange, repeat +from torch import einsum, nn + +DEFAULT_DIM_HEAD = 64 + +Intermediates = namedtuple("Intermediates", ["pre_softmax_attn", "post_softmax_attn"]) + +LayerIntermediates = namedtuple( + "Intermediates", + [ + "hiddens", + "attn_intermediates", + "past_key_values", + ], +) + + +# helpers + + +def exists(val): + return val is not None + + +def default(val, d): + if exists(val): + return val + return d() if isfunction(d) else d + + +def cast_tuple(val, depth): + return val if isinstance(val, tuple) else (val,) * depth + + +class always: + def __init__(self, val): + self.val = val + + def __call__(self, *args, **kwargs): + return self.val + + +class not_equals: + def __init__(self, val): + self.val = val + + def __call__(self, x, *args, **kwargs): + return x != self.val + + +class equals: + def __init__(self, val): + self.val = val + + def __call__(self, x, *args, **kwargs): + return x == self.val + + +def max_neg_value(tensor): + return -torch.finfo(tensor.dtype).max + + +def l2norm(t): + return F.normalize(t, p=2, dim=-1) + + +# init helpers + + +def init_zero_(layer): + nn.init.constant_(layer.weight, 0.0) + if exists(layer.bias): + nn.init.constant_(layer.bias, 0.0) + + +# keyword argument helpers + + +def pick_and_pop(keys, d): + values = list(map(lambda key: d.pop(key), keys)) + return dict(zip(keys, values)) + + +def group_dict_by_key(cond, d): + return_val = [dict(), dict()] + for key in d.keys(): + match = bool(cond(key)) + ind = int(not match) + return_val[ind][key] = d[key] + return (*return_val,) + + +def string_begins_with(prefix, str): + return str.startswith(prefix) + + +def group_by_key_prefix(prefix, d): + return group_dict_by_key(partial(string_begins_with, prefix), d) + + +def groupby_prefix_and_trim(prefix, d): + kwargs_with_prefix, kwargs = group_dict_by_key(partial(string_begins_with, prefix), d) + kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix) :], x[1]), tuple(kwargs_with_prefix.items()))) + return kwargs_without_prefix, kwargs + + +# activations + + +class ReluSquared(nn.Module): + def forward(self, x): + return F.relu(x) ** 2 + + +# positional embeddings + + +class AbsolutePositionalEmbedding(nn.Module): + def __init__(self, dim, max_seq_len): + super().__init__() + self.scale = dim**-0.5 + self.emb = nn.Embedding(max_seq_len, dim) + + def forward(self, x): + n = torch.arange(x.shape[1], device=x.device) + pos_emb = self.emb(n) + pos_emb = rearrange(pos_emb, "n d -> () n d") + return pos_emb * self.scale + + +class FixedPositionalEmbedding(nn.Module): + def __init__(self, dim): + super().__init__() + inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim)) + self.register_buffer("inv_freq", inv_freq) + + def forward(self, x, seq_dim=1, offset=0): + t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq) + offset + sinusoid_inp = torch.einsum("i , j -> i j", t, self.inv_freq) + emb = torch.cat((sinusoid_inp.sin(), sinusoid_inp.cos()), dim=-1) + return rearrange(emb, "n d -> () n d") + + +class RelativePositionBias(nn.Module): + def __init__(self, scale, causal=False, num_buckets=32, max_distance=128, heads=8): + super().__init__() + self.scale = scale + self.causal = causal + self.num_buckets = num_buckets + self.max_distance = max_distance + self.relative_attention_bias = nn.Embedding(num_buckets, heads) + + @staticmethod + def _relative_position_bucket(relative_position, causal=True, num_buckets=32, max_distance=128): + ret = 0 + n = -relative_position + if not causal: + num_buckets //= 2 + ret += (n < 0).long() * num_buckets + n = torch.abs(n) + else: + n = torch.max(n, torch.zeros_like(n)) + + max_exact = num_buckets // 2 + is_small = n < max_exact + + val_if_large = ( + max_exact + + (torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact)).long() + ) + val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1)) + + ret += torch.where(is_small, n, val_if_large) + return ret + + def forward(self, qk_dots): + i, j, device = *qk_dots.shape[-2:], qk_dots.device + q_pos = torch.arange(i, dtype=torch.long, device=device) + k_pos = torch.arange(j, dtype=torch.long, device=device) + rel_pos = k_pos[None, :] - q_pos[:, None] + rp_bucket = self._relative_position_bucket( + rel_pos, causal=self.causal, num_buckets=self.num_buckets, max_distance=self.max_distance + ) + values = self.relative_attention_bias(rp_bucket) + bias = rearrange(values, "i j h -> () h i j") + return qk_dots + (bias * self.scale) + + +class AlibiPositionalBias(nn.Module): + def __init__(self, heads, **kwargs): + super().__init__() + self.heads = heads + slopes = torch.Tensor(self._get_slopes(heads)) + slopes = rearrange(slopes, "h -> () h () ()") + self.register_buffer("slopes", slopes, persistent=False) + self.register_buffer("bias", None, persistent=False) + + @staticmethod + def _get_slopes(heads): + def get_slopes_power_of_2(n): + start = 2 ** (-(2 ** -(math.log2(n) - 3))) + ratio = start + return [start * ratio**i for i in range(n)] + + if math.log2(heads).is_integer(): + return get_slopes_power_of_2(heads) + + closest_power_of_2 = 2 ** math.floor(math.log2(heads)) + return ( + get_slopes_power_of_2(closest_power_of_2) + + get_slopes_power_of_2(2 * closest_power_of_2)[0::2][: heads - closest_power_of_2] + ) + + def forward(self, qk_dots): + h, i, j, device = *qk_dots.shape[-3:], qk_dots.device + + if exists(self.bias) and self.bias.shape[-1] >= j: + return qk_dots + self.bias[..., :j] + + bias = torch.arange(j, device=device) + bias = rearrange(bias, "j -> () () () j") + bias = bias * self.slopes + + num_heads_unalibied = h - bias.shape[1] + bias = F.pad(bias, (0, 0, 0, 0, 0, num_heads_unalibied)) + + self.register_buffer("bias", bias, persistent=False) + return qk_dots + self.bias + + +class LearnedAlibiPositionalBias(AlibiPositionalBias): + def __init__(self, heads, bidirectional=False): + super().__init__(heads) + los_slopes = torch.log(self.slopes) + self.learned_logslopes = nn.Parameter(los_slopes) + + self.bidirectional = bidirectional + if self.bidirectional: + self.learned_logslopes_future = nn.Parameter(los_slopes) + + def forward(self, qk_dots): + h, i, j, device = *qk_dots.shape[-3:], qk_dots.device + + def get_slopes(param): + return F.pad(param.exp(), (0, 0, 0, 0, 0, h - param.shape[1])) + + if exists(self.bias) and self.bias.shape[-1] >= j: + bias = self.bias[..., :i, :j] + else: + i_arange = torch.arange(i, device=device) + j_arange = torch.arange(j, device=device) + bias = rearrange(j_arange, "j -> 1 1 1 j") - rearrange(i_arange, "i -> 1 1 i 1") + self.register_buffer("bias", bias, persistent=False) + + if self.bidirectional: + past_slopes = get_slopes(self.learned_logslopes) + future_slopes = get_slopes(self.learned_logslopes_future) + bias = torch.tril(bias * past_slopes) + torch.triu(bias * future_slopes) + else: + slopes = get_slopes(self.learned_logslopes) + bias = bias * slopes + + return qk_dots + bias + + +class RotaryEmbedding(nn.Module): + def __init__(self, dim): + super().__init__() + inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim)) + self.register_buffer("inv_freq", inv_freq) + + def forward(self, max_seq_len, device): + t = torch.arange(max_seq_len, device=device).type_as(self.inv_freq) + freqs = torch.einsum("i , j -> i j", t, self.inv_freq) + emb = torch.cat((freqs, freqs), dim=-1) + return rearrange(emb, "n d -> () () n d") + + +def rotate_half(x): + x = rearrange(x, "... (j d) -> ... j d", j=2) + x1, x2 = x.unbind(dim=-2) + return torch.cat((-x2, x1), dim=-1) + + +def apply_rotary_pos_emb(t, freqs): + seq_len = t.shape[-2] + freqs = freqs[:, :, -seq_len:] + return (t * freqs.cos()) + (rotate_half(t) * freqs.sin()) + + +# norms + + +class Scale(nn.Module): + def __init__(self, value, fn): + super().__init__() + self.value = value + self.fn = fn + + def forward(self, x, **kwargs): + out = self.fn(x, **kwargs) + scale_fn = lambda t: t * self.value + + if not isinstance(out, tuple): + return scale_fn(out) + + return (scale_fn(out[0]), *out[1:]) + + +class Rezero(nn.Module): + def __init__(self, fn): + super().__init__() + self.fn = fn + self.g = nn.Parameter(torch.zeros(1)) + + def forward(self, x, **kwargs): + out = self.fn(x, **kwargs) + rezero_fn = lambda t: t * self.g + + if not isinstance(out, tuple): + return rezero_fn(out) + + return (rezero_fn(out[0]), *out[1:]) + + +class ScaleNorm(nn.Module): + def __init__(self, dim, eps=1e-5): + super().__init__() + self.scale = dim**-0.5 + self.eps = eps + self.g = nn.Parameter(torch.ones(1)) + + def forward(self, x): + norm = torch.norm(x, dim=-1, keepdim=True) * self.scale + return x / norm.clamp(min=self.eps) * self.g + + +class RMSNorm(nn.Module): + def __init__(self, dim, eps=1e-8): + super().__init__() + self.scale = dim**-0.5 + self.eps = eps + self.g = nn.Parameter(torch.ones(dim)) + + def forward(self, x): + norm = torch.norm(x, dim=-1, keepdim=True) * self.scale + return x / norm.clamp(min=self.eps) * self.g + + +class RMSScaleShiftNorm(nn.Module): + def __init__(self, dim, eps=1e-8): + super().__init__() + self.scale = dim**-0.5 + self.eps = eps + self.g = nn.Parameter(torch.ones(dim)) + self.scale_shift_process = nn.Linear(dim * 2, dim * 2) + + def forward(self, x, norm_scale_shift_inp): + norm = torch.norm(x, dim=-1, keepdim=True) * self.scale + norm = x / norm.clamp(min=self.eps) * self.g + + ss_emb = self.scale_shift_process(norm_scale_shift_inp) + scale, shift = torch.chunk(ss_emb, 2, dim=1) + h = norm * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) + return h + + +# residual and residual gates + + +class Residual(nn.Module): + def __init__(self, dim, scale_residual=False): + super().__init__() + self.residual_scale = nn.Parameter(torch.ones(dim)) if scale_residual else None + + def forward(self, x, residual): + if exists(self.residual_scale): + residual = residual * self.residual_scale + + return x + residual + + +class GRUGating(nn.Module): + def __init__(self, dim, scale_residual=False): + super().__init__() + self.gru = nn.GRUCell(dim, dim) + self.residual_scale = nn.Parameter(torch.ones(dim)) if scale_residual else None + + def forward(self, x, residual): + if exists(self.residual_scale): + residual = residual * self.residual_scale + + gated_output = self.gru(rearrange(x, "b n d -> (b n) d"), rearrange(residual, "b n d -> (b n) d")) + + return gated_output.reshape_as(x) + + +# token shifting + + +def shift(t, amount, mask=None): + if amount == 0: + return t + + if exists(mask): + t = t.masked_fill(~mask[..., None], 0.0) + + return F.pad(t, (0, 0, amount, -amount), value=0.0) + + +class ShiftTokens(nn.Module): + def __init__(self, shifts, fn): + super().__init__() + self.fn = fn + self.shifts = tuple(shifts) + + def forward(self, x, **kwargs): + mask = kwargs.get("mask", None) + shifts = self.shifts + segments = len(shifts) + feats_per_shift = x.shape[-1] // segments + splitted = x.split(feats_per_shift, dim=-1) + segments_to_shift, rest = splitted[:segments], splitted[segments:] + segments_to_shift = list(map(lambda args: shift(*args, mask=mask), zip(segments_to_shift, shifts))) + x = torch.cat((*segments_to_shift, *rest), dim=-1) + return self.fn(x, **kwargs) + + +# feedforward + + +class GLU(nn.Module): + def __init__(self, dim_in, dim_out, activation): + super().__init__() + self.act = activation + self.proj = nn.Linear(dim_in, dim_out * 2) + + def forward(self, x): + x, gate = self.proj(x).chunk(2, dim=-1) + return x * self.act(gate) + + +class FeedForward(nn.Module): + def __init__( + self, + dim, + dim_out=None, + mult=4, + glu=False, + relu_squared=False, + post_act_ln=False, + dropout=0.0, + zero_init_output=False, + ): + super().__init__() + inner_dim = int(dim * mult) + dim_out = default(dim_out, dim) + activation = ReluSquared() if relu_squared else nn.GELU() + + project_in = ( + nn.Sequential(nn.Linear(dim, inner_dim), activation) if not glu else GLU(dim, inner_dim, activation) + ) + + self.net = nn.Sequential( + project_in, + nn.LayerNorm(inner_dim) if post_act_ln else nn.Identity(), + nn.Dropout(dropout), + nn.Linear(inner_dim, dim_out), + ) + + # init last linear layer to 0 + if zero_init_output: + init_zero_(self.net[-1]) + + def forward(self, x): + return self.net(x) + + +# attention. + + +class Attention(nn.Module): + def __init__( + self, + dim, + dim_head=DEFAULT_DIM_HEAD, + heads=8, + causal=False, + talking_heads=False, + head_scale=False, + collab_heads=False, + collab_compression=0.3, + sparse_topk=None, + use_entmax15=False, + num_mem_kv=0, + dropout=0.0, + on_attn=False, + gate_values=False, + zero_init_output=False, + max_attend_past=None, + qk_norm=False, + scale_init_value=None, + rel_pos_bias=False, + rel_pos_num_buckets=32, + rel_pos_max_distance=128, + ): + super().__init__() + self.scale = dim_head**-0.5 + + self.heads = heads + self.causal = causal + self.max_attend_past = max_attend_past + + qk_dim = v_dim = dim_head * heads + + # collaborative heads + self.collab_heads = collab_heads + if self.collab_heads: + qk_dim = int(collab_compression * qk_dim) + self.collab_mixing = nn.Parameter(torch.randn(heads, qk_dim)) + + self.to_q = nn.Linear(dim, qk_dim, bias=False) + self.to_k = nn.Linear(dim, qk_dim, bias=False) + self.to_v = nn.Linear(dim, v_dim, bias=False) + + self.dropout = nn.Dropout(dropout) + + # add GLU gating for aggregated values, from alphafold2 + self.to_v_gate = None + if gate_values: + self.to_v_gate = nn.Linear(dim, v_dim) + nn.init.constant_(self.to_v_gate.weight, 0) + nn.init.constant_(self.to_v_gate.bias, 1) + + # cosine sim attention + self.qk_norm = qk_norm + if qk_norm: + scale_init_value = default( + scale_init_value, -3 + ) # if not provided, initialize as though it were sequence length of 1024 + self.scale = nn.Parameter(torch.ones(1, heads, 1, 1) * scale_init_value) + + # talking heads + self.talking_heads = talking_heads + if talking_heads: + self.pre_softmax_proj = nn.Parameter(torch.randn(heads, heads)) + self.post_softmax_proj = nn.Parameter(torch.randn(heads, heads)) + + # head scaling + self.head_scale = head_scale + if head_scale: + self.head_scale_params = nn.Parameter(torch.ones(1, heads, 1, 1)) + + # explicit topk sparse attention + self.sparse_topk = sparse_topk + + # entmax + self.attn_fn = F.softmax + + # add memory key / values + self.num_mem_kv = num_mem_kv + if num_mem_kv > 0: + self.mem_k = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head)) + self.mem_v = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head)) + + # attention on attention + self.attn_on_attn = on_attn + self.to_out = nn.Sequential(nn.Linear(v_dim, dim * 2), nn.GLU()) if on_attn else nn.Linear(v_dim, dim) + + self.rel_pos_bias = rel_pos_bias + if rel_pos_bias: + assert ( + rel_pos_num_buckets <= rel_pos_max_distance + ), "number of relative position buckets must be less than the relative position max distance" + self.rel_pos = RelativePositionBias( + scale=dim_head**0.5, + causal=causal, + heads=heads, + num_buckets=rel_pos_num_buckets, + max_distance=rel_pos_max_distance, + ) + + # init output projection 0 + if zero_init_output: + init_zero_(self.to_out) + + def forward( + self, + x, + context=None, + mask=None, + context_mask=None, + attn_mask=None, + sinusoidal_emb=None, + rotary_pos_emb=None, + prev_attn=None, + mem=None, + layer_past=None, + ): + b, n, _, h, talking_heads, collab_heads, head_scale, scale, device, has_context = ( + *x.shape, + self.heads, + self.talking_heads, + self.collab_heads, + self.head_scale, + self.scale, + x.device, + exists(context), + ) + kv_input = default(context, x) + + q_input = x + k_input = kv_input + v_input = kv_input + + if exists(mem): + k_input = torch.cat((mem, k_input), dim=-2) + v_input = torch.cat((mem, v_input), dim=-2) + + if exists(sinusoidal_emb): + # in shortformer, the query would start at a position offset depending on the past cached memory + offset = k_input.shape[-2] - q_input.shape[-2] + q_input = q_input + sinusoidal_emb(q_input, offset=offset) + k_input = k_input + sinusoidal_emb(k_input) + + q = self.to_q(q_input) + k = self.to_k(k_input) + v = self.to_v(v_input) + + if not collab_heads: + q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=h), (q, k, v)) + else: + q = einsum("b i d, h d -> b h i d", q, self.collab_mixing) + k = rearrange(k, "b n d -> b () n d") + v = rearrange(v, "b n (h d) -> b h n d", h=h) + + if layer_past is not None: + past_key, past_value = layer_past + k = torch.cat([past_key, k], dim=-2) + v = torch.cat([past_value, v], dim=-2) + k_cache = k + v_cache = v + + if exists(rotary_pos_emb) and not has_context: + l = rotary_pos_emb.shape[-1] + (ql, qr), (kl, kr), (vl, vr) = map(lambda t: (t[..., :l], t[..., l:]), (q, k, v)) + ql, kl, vl = map(lambda t: apply_rotary_pos_emb(t, rotary_pos_emb), (ql, kl, vl)) + q, k, v = map(lambda t: torch.cat(t, dim=-1), ((ql, qr), (kl, kr), (vl, vr))) + + input_mask = None + if any(map(exists, (mask, context_mask))): + q_mask = default(mask, lambda: torch.ones((b, n), device=device).bool()) + k_mask = q_mask if not exists(context) else context_mask + k_mask = default(k_mask, lambda: torch.ones((b, k.shape[-2]), device=device).bool()) + q_mask = rearrange(q_mask, "b i -> b () i ()") + k_mask = rearrange(k_mask, "b j -> b () () j") + input_mask = q_mask * k_mask + + if self.num_mem_kv > 0: + mem_k, mem_v = map(lambda t: repeat(t, "h n d -> b h n d", b=b), (self.mem_k, self.mem_v)) + k = torch.cat((mem_k, k), dim=-2) + v = torch.cat((mem_v, v), dim=-2) + if exists(input_mask): + input_mask = F.pad(input_mask, (self.num_mem_kv, 0), value=True) + + if collab_heads: + k = k.expand(-1, h, -1, -1) + + if self.qk_norm: + q, k = map(l2norm, (q, k)) + scale = 1 / (self.scale.exp().clamp(min=1e-2)) + + dots = einsum("b h i d, b h j d -> b h i j", q, k) * scale + mask_value = max_neg_value(dots) + + if exists(prev_attn): + dots = dots + prev_attn + + pre_softmax_attn = dots.clone() + + if talking_heads: + dots = einsum("b h i j, h k -> b k i j", dots, self.pre_softmax_proj).contiguous() + + if self.rel_pos_bias: + dots = self.rel_pos(dots) + + if exists(input_mask): + dots.masked_fill_(~input_mask, mask_value) + del input_mask + + if exists(attn_mask): + assert ( + 2 <= attn_mask.ndim <= 4 + ), "attention mask must have greater than 2 dimensions but less than or equal to 4" + if attn_mask.ndim == 2: + attn_mask = rearrange(attn_mask, "i j -> () () i j") + elif attn_mask.ndim == 3: + attn_mask = rearrange(attn_mask, "h i j -> () h i j") + dots.masked_fill_(~attn_mask, mask_value) + + if exists(self.max_attend_past): + i, j = dots.shape[-2:] + range_q = torch.arange(j - i, j, device=device) + range_k = torch.arange(j, device=device) + dist = rearrange(range_q, "i -> () () i ()") - rearrange(range_k, "j -> () () () j") + mask = dist > self.max_attend_past + dots.masked_fill_(mask, mask_value) + del mask + + if self.causal: + i, j = dots.shape[-2:] + r = torch.arange(i, device=device) + mask = rearrange(r, "i -> () () i ()") < rearrange(r, "j -> () () () j") + mask = F.pad(mask, (j - i, 0), value=False) + dots.masked_fill_(mask, mask_value) + del mask + + if exists(self.sparse_topk) and self.sparse_topk < dots.shape[-1]: + top, _ = dots.topk(self.sparse_topk, dim=-1) + vk = top[..., -1].unsqueeze(-1).expand_as(dots) + mask = dots < vk + dots.masked_fill_(mask, mask_value) + del mask + + attn = self.attn_fn(dots, dim=-1) + post_softmax_attn = attn.clone() + + attn = self.dropout(attn) + + if talking_heads: + attn = einsum("b h i j, h k -> b k i j", attn, self.post_softmax_proj).contiguous() + + out = einsum("b h i j, b h j d -> b h i d", attn, v) + + if head_scale: + out = out * self.head_scale_params + + out = rearrange(out, "b h n d -> b n (h d)") + + if exists(self.to_v_gate): + gates = self.to_v_gate(x) + out = out * gates.sigmoid() + + intermediates = Intermediates(pre_softmax_attn=pre_softmax_attn, post_softmax_attn=post_softmax_attn) + + return self.to_out(out), intermediates, k_cache, v_cache + + +class AttentionLayers(nn.Module): + def __init__( + self, + dim, + depth, + heads=8, + causal=False, + cross_attend=False, + only_cross=False, + use_scalenorm=False, + use_rms_scaleshift_norm=False, + use_rmsnorm=False, + use_rezero=False, + alibi_pos_bias=False, + alibi_num_heads=None, + alibi_learned=False, + position_infused_attn=False, + rotary_pos_emb=False, + rotary_emb_dim=None, + custom_layers=None, + sandwich_coef=None, + par_ratio=None, + residual_attn=False, + cross_residual_attn=False, + macaron=False, + pre_norm=True, + gate_residual=False, + scale_residual=False, + shift_tokens=0, + sandwich_norm=False, + use_qk_norm_attn=False, + qk_norm_attn_seq_len=None, + zero_init_branch_output=False, + **kwargs, + ): + super().__init__() + ff_kwargs, kwargs = groupby_prefix_and_trim("ff_", kwargs) + attn_kwargs, _ = groupby_prefix_and_trim("attn_", kwargs) + + dim_head = attn_kwargs.get("dim_head", DEFAULT_DIM_HEAD) + + self.dim = dim + self.depth = depth + self.layers = nn.ModuleList([]) + self.causal = causal + + rel_pos_bias = "rel_pos_bias" in attn_kwargs + self.has_pos_emb = position_infused_attn or rel_pos_bias or rotary_pos_emb + self.pia_pos_emb = FixedPositionalEmbedding(dim) if position_infused_attn else None + + rotary_emb_dim = max(default(rotary_emb_dim, dim_head // 2), 32) + self.rotary_pos_emb = RotaryEmbedding(rotary_emb_dim) if rotary_pos_emb else None + + assert not ( + alibi_pos_bias and rel_pos_bias + ), "you can only choose Alibi positional bias or T5 relative positional bias, not both" + + if alibi_pos_bias: + alibi_num_heads = default(alibi_num_heads, heads) + assert alibi_num_heads <= heads, "number of ALiBi heads must be less than the total number of heads" + alibi_pos_klass = LearnedAlibiPositionalBias if alibi_learned or not causal else AlibiPositionalBias + self.rel_pos = alibi_pos_klass(heads=alibi_num_heads, bidirectional=not causal) + else: + self.rel_pos = None + + assert not (not pre_norm and sandwich_norm), "sandwich norm cannot be used when not using prenorm" + self.pre_norm = pre_norm + self.sandwich_norm = sandwich_norm + + self.residual_attn = residual_attn + self.cross_residual_attn = cross_residual_attn + self.cross_attend = cross_attend + + norm_class = ScaleNorm if use_scalenorm else nn.LayerNorm + norm_class = RMSNorm if use_rmsnorm else norm_class + norm_class = RMSScaleShiftNorm if use_rms_scaleshift_norm else norm_class + norm_fn = partial(norm_class, dim) + + norm_fn = nn.Identity if use_rezero else norm_fn + branch_fn = Rezero if use_rezero else None + + if cross_attend and not only_cross: + default_block = ("a", "c", "f") + elif cross_attend and only_cross: + default_block = ("c", "f") + else: + default_block = ("a", "f") + + if macaron: + default_block = ("f",) + default_block + + # qk normalization + + if use_qk_norm_attn: + attn_scale_init_value = ( + -math.log(math.log2(qk_norm_attn_seq_len**2 - qk_norm_attn_seq_len)) + if exists(qk_norm_attn_seq_len) + else None + ) + attn_kwargs = {**attn_kwargs, "qk_norm": True, "scale_init_value": attn_scale_init_value} + + # zero init + + if zero_init_branch_output: + attn_kwargs = {**attn_kwargs, "zero_init_output": True} + ff_kwargs = {**ff_kwargs, "zero_init_output": True} + + # calculate layer block order + + if exists(custom_layers): + layer_types = custom_layers + elif exists(par_ratio): + par_depth = depth * len(default_block) + assert 1 < par_ratio <= par_depth, "par ratio out of range" + default_block = tuple(filter(not_equals("f"), default_block)) + par_attn = par_depth // par_ratio + depth_cut = par_depth * 2 // 3 # 2 / 3 attention layer cutoff suggested by PAR paper + par_width = (depth_cut + depth_cut // par_attn) // par_attn + assert len(default_block) <= par_width, "default block is too large for par_ratio" + par_block = default_block + ("f",) * (par_width - len(default_block)) + par_head = par_block * par_attn + layer_types = par_head + ("f",) * (par_depth - len(par_head)) + elif exists(sandwich_coef): + assert sandwich_coef > 0 and sandwich_coef <= depth, "sandwich coefficient should be less than the depth" + layer_types = ("a",) * sandwich_coef + default_block * (depth - sandwich_coef) + ("f",) * sandwich_coef + else: + layer_types = default_block * depth + + self.layer_types = layer_types + self.num_attn_layers = len(list(filter(equals("a"), layer_types))) + + # calculate token shifting + + shift_tokens = cast_tuple(shift_tokens, len(layer_types)) + + # iterate and construct layers + + for ind, (layer_type, layer_shift_tokens) in enumerate(zip(self.layer_types, shift_tokens)): + is_last_layer = ind == (len(self.layer_types) - 1) + + if layer_type == "a": + layer = Attention(dim, heads=heads, causal=causal, **attn_kwargs) + elif layer_type == "c": + layer = Attention(dim, heads=heads, **attn_kwargs) + elif layer_type == "f": + layer = FeedForward(dim, **ff_kwargs) + layer = layer if not macaron else Scale(0.5, layer) + else: + raise Exception(f"invalid layer type {layer_type}") + + if layer_shift_tokens > 0: + shift_range_upper = layer_shift_tokens + 1 + shift_range_lower = -layer_shift_tokens if not causal else 0 + layer = ShiftTokens(range(shift_range_lower, shift_range_upper), layer) + + if exists(branch_fn): + layer = branch_fn(layer) + + residual_fn = GRUGating if gate_residual else Residual + residual = residual_fn(dim, scale_residual=scale_residual) + + layer_uses_qk_norm = use_qk_norm_attn and layer_type in ("a", "c") + + pre_branch_norm = norm_fn() if pre_norm and not layer_uses_qk_norm else None + post_branch_norm = norm_fn() if sandwich_norm or layer_uses_qk_norm else None + post_main_norm = norm_fn() if not pre_norm and not is_last_layer else None + + norms = nn.ModuleList([pre_branch_norm, post_branch_norm, post_main_norm]) + + self.layers.append(nn.ModuleList([norms, layer, residual])) + + def forward( + self, + x, + context=None, + full_context=None, # for passing a list of hidden states from an encoder + mask=None, + context_mask=None, + attn_mask=None, + mems=None, + return_hiddens=False, + norm_scale_shift_inp=None, + past_key_values=None, + expected_seq_len=None, + ): + assert not ( + self.cross_attend ^ (exists(context) or exists(full_context)) + ), "context must be passed in if cross_attend is set to True" + assert context is None or full_context is None, "only one of full_context or context can be provided" + + hiddens = [] + intermediates = [] + prev_attn = None + prev_cross_attn = None + + mems = mems.copy() if exists(mems) else [None] * self.num_attn_layers + norm_args = {} + if exists(norm_scale_shift_inp): + norm_args["norm_scale_shift_inp"] = norm_scale_shift_inp + + rotary_pos_emb = None + if exists(self.rotary_pos_emb): + if not self.training and self.causal: + assert ( + expected_seq_len is not None + ), "To decode a transformer with rotary embeddings, you must specify an `expected_seq_len`" + elif expected_seq_len is None: + expected_seq_len = 0 + seq_len = x.shape[1] + if past_key_values is not None: + seq_len += past_key_values[0][0].shape[-2] + max_rotary_emb_length = max( + list(map(lambda m: (m.shape[1] if exists(m) else 0) + seq_len, mems)) + [expected_seq_len] + ) + rotary_pos_emb = self.rotary_pos_emb(max_rotary_emb_length, x.device) + + present_key_values = [] + cross_attn_count = 0 + for ind, (layer_type, (norm, block, residual_fn)) in enumerate(zip(self.layer_types, self.layers)): + if layer_type == "a": + layer_mem = mems.pop(0) if mems else None + + residual = x + + pre_branch_norm, post_branch_norm, post_main_norm = norm + + if exists(pre_branch_norm): + x = pre_branch_norm(x, **norm_args) + + if layer_type == "a" or layer_type == "c": + if past_key_values is not None: + layer_kv = past_key_values.pop(0) + layer_past = tuple(s.to(x.device) for s in layer_kv) + else: + layer_past = None + + if layer_type == "a": + out, inter, k, v = block( + x, None, mask, None, attn_mask, self.pia_pos_emb, rotary_pos_emb, prev_attn, layer_mem, layer_past + ) + elif layer_type == "c": + if exists(full_context): + out, inter, k, v = block( + x, + full_context[cross_attn_count], + mask, + context_mask, + None, + None, + None, + prev_attn, + None, + layer_past, + ) + else: + out, inter, k, v = block( + x, context, mask, context_mask, None, None, None, prev_attn, None, layer_past + ) + elif layer_type == "f": + out = block(x) + + if layer_type == "a" or layer_type == "c" and present_key_values is not None: + present_key_values.append((k.detach(), v.detach())) + + if exists(post_branch_norm): + out = post_branch_norm(out, **norm_args) + + x = residual_fn(out, residual) + + if layer_type in ("a", "c"): + intermediates.append(inter) + + if layer_type == "a" and self.residual_attn: + prev_attn = inter.pre_softmax_attn + elif layer_type == "c" and self.cross_residual_attn: + prev_cross_attn = inter.pre_softmax_attn + + if exists(post_main_norm): + x = post_main_norm(x, **norm_args) + + if layer_type == "c": + cross_attn_count += 1 + + if layer_type == "f": + hiddens.append(x) + + if return_hiddens: + intermediates = LayerIntermediates( + hiddens=hiddens, attn_intermediates=intermediates, past_key_values=present_key_values + ) + + return x, intermediates + + return x + + +class Encoder(AttentionLayers): + def __init__(self, **kwargs): + assert "causal" not in kwargs, "cannot set causality on encoder" + super().__init__(causal=False, **kwargs) + + +class Decoder(AttentionLayers): + def __init__(self, **kwargs): + assert "causal" not in kwargs, "cannot set causality on decoder" + super().__init__(causal=True, **kwargs) + + +class CrossAttender(AttentionLayers): + def __init__(self, **kwargs): + super().__init__(cross_attend=True, only_cross=True, **kwargs) + + +class ViTransformerWrapper(nn.Module): + def __init__(self, *, image_size, patch_size, attn_layers, num_classes=None, dropout=0.0, emb_dropout=0.0): + super().__init__() + assert isinstance(attn_layers, Encoder), "attention layers must be an Encoder" + assert image_size % patch_size == 0, "image dimensions must be divisible by the patch size" + dim = attn_layers.dim + num_patches = (image_size // patch_size) ** 2 + patch_dim = 3 * patch_size**2 + + self.patch_size = patch_size + + self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim)) + self.patch_to_embedding = nn.Linear(patch_dim, dim) + self.cls_token = nn.Parameter(torch.randn(1, 1, dim)) + self.dropout = nn.Dropout(emb_dropout) + + self.attn_layers = attn_layers + self.norm = nn.LayerNorm(dim) + self.mlp_head = FeedForward(dim, dim_out=num_classes, dropout=dropout) if exists(num_classes) else None + + def forward(self, img, return_embeddings=False): + p = self.patch_size + + x = rearrange(img, "b c (h p1) (w p2) -> b (h w) (p1 p2 c)", p1=p, p2=p) + x = self.patch_to_embedding(x) + b, n, _ = x.shape + + cls_tokens = repeat(self.cls_token, "() n d -> b n d", b=b) + x = torch.cat((cls_tokens, x), dim=1) + x = x + self.pos_embedding[:, : (n + 1)] + x = self.dropout(x) + + x = self.attn_layers(x) + x = self.norm(x) + + if not exists(self.mlp_head) or return_embeddings: + return x + + return self.mlp_head(x[:, 0]) + + +class TransformerWrapper(nn.Module): + def __init__( + self, + *, + num_tokens, + max_seq_len, + attn_layers, + emb_dim=None, + max_mem_len=0.0, + shift_mem_down=0, + emb_dropout=0.0, + num_memory_tokens=None, + tie_embedding=False, + use_pos_emb=True, + ): + super().__init__() + assert isinstance(attn_layers, AttentionLayers), "attention layers must be one of Encoder or Decoder" + + dim = attn_layers.dim + emb_dim = default(emb_dim, dim) + + self.max_seq_len = max_seq_len + self.max_mem_len = max_mem_len + self.shift_mem_down = shift_mem_down + + self.token_emb = nn.Embedding(num_tokens, emb_dim) + self.pos_emb = ( + AbsolutePositionalEmbedding(emb_dim, max_seq_len) + if (use_pos_emb and not attn_layers.has_pos_emb) + else always(0) + ) + self.emb_dropout = nn.Dropout(emb_dropout) + + self.project_emb = nn.Linear(emb_dim, dim) if emb_dim != dim else nn.Identity() + self.attn_layers = attn_layers + self.norm = nn.LayerNorm(dim) + + self.init_() + + self.to_logits = nn.Linear(dim, num_tokens) if not tie_embedding else lambda t: t @ self.token_emb.weight.t() + + # memory tokens (like [cls]) from Memory Transformers paper + num_memory_tokens = default(num_memory_tokens, 0) + self.num_memory_tokens = num_memory_tokens + if num_memory_tokens > 0: + self.memory_tokens = nn.Parameter(torch.randn(num_memory_tokens, dim)) + + def init_(self): + nn.init.kaiming_normal_(self.token_emb.weight) + + def forward( + self, + x, + return_embeddings=False, + mask=None, + return_hiddens=False, + return_attn=False, + mems=None, + use_cache=False, + **kwargs, + ): + b, n, device, num_mem = *x.shape, x.device, self.num_memory_tokens + x = self.token_emb(x) + x = x + self.pos_emb(x) + x = self.emb_dropout(x) + + x = self.project_emb(x) + + if num_mem > 0: + mem = repeat(self.memory_tokens, "n d -> b n d", b=b) + x = torch.cat((mem, x), dim=1) + + # auto-handle masking after appending memory tokens + if exists(mask): + mask = F.pad(mask, (num_mem, 0), value=True) + + if self.shift_mem_down and exists(mems): + mems_l, mems_r = mems[: self.shift_mem_down], mems[self.shift_mem_down :] + mems = [*mems_r, *mems_l] + + x, intermediates = self.attn_layers(x, mask=mask, mems=mems, return_hiddens=True, **kwargs) + x = self.norm(x) + + mem, x = x[:, :num_mem], x[:, num_mem:] + + out = self.to_logits(x) if not return_embeddings else x + + if return_hiddens: + hiddens = intermediates.hiddens + return out, hiddens + + res = [out] + if return_attn: + attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates)) + res.append(attn_maps) + if use_cache: + res.append(intermediates.past_key_values) + + if len(res) > 1: + return tuple(res) + return res[0] + + +class ContinuousTransformerWrapper(nn.Module): + def __init__( + self, *, max_seq_len, attn_layers, dim_in=None, dim_out=None, emb_dim=None, emb_dropout=0.0, use_pos_emb=True + ): + super().__init__() + assert isinstance(attn_layers, AttentionLayers), "attention layers must be one of Encoder or Decoder" + + dim = attn_layers.dim + + self.max_seq_len = max_seq_len + + self.pos_emb = ( + AbsolutePositionalEmbedding(dim, max_seq_len) + if (use_pos_emb and not attn_layers.has_pos_emb) + else always(0) + ) + self.emb_dropout = nn.Dropout(emb_dropout) + + self.project_in = nn.Linear(dim_in, dim) if exists(dim_in) else nn.Identity() + + self.attn_layers = attn_layers + self.norm = nn.LayerNorm(dim) + + self.project_out = nn.Linear(dim, dim_out) if exists(dim_out) else nn.Identity() + + def forward(self, x, return_embeddings=False, mask=None, return_attn=False, mems=None, use_cache=False, **kwargs): + b, n, _, device = *x.shape, x.device + + x = self.project_in(x) + x = x + self.pos_emb(x) + x = self.emb_dropout(x) + + x, intermediates = self.attn_layers(x, mask=mask, mems=mems, return_hiddens=True, **kwargs) + x = self.norm(x) + + out = self.project_out(x) if not return_embeddings else x + + res = [out] + if return_attn: + attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates)) + res.append(attn_maps) + if use_cache: + res.append(intermediates.past_key_values) + + if len(res) > 1: + return tuple(res) + return res[0] diff --git a/TTS/TTS/tts/layers/vits/discriminator.py b/TTS/TTS/tts/layers/vits/discriminator.py new file mode 100644 index 0000000000000000000000000000000000000000..148f283c9010e522c49ad2595860ab859ba6aa48 --- /dev/null +++ b/TTS/TTS/tts/layers/vits/discriminator.py @@ -0,0 +1,89 @@ +import torch +from torch import nn +from torch.nn.modules.conv import Conv1d + +from TTS.vocoder.models.hifigan_discriminator import DiscriminatorP, MultiPeriodDiscriminator + + +class DiscriminatorS(torch.nn.Module): + """HiFiGAN Scale Discriminator. Channel sizes are different from the original HiFiGAN. + + Args: + use_spectral_norm (bool): if `True` swith to spectral norm instead of weight norm. + """ + + def __init__(self, use_spectral_norm=False): + super().__init__() + norm_f = nn.utils.spectral_norm if use_spectral_norm else nn.utils.weight_norm + self.convs = nn.ModuleList( + [ + norm_f(Conv1d(1, 16, 15, 1, padding=7)), + norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)), + norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)), + norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)), + norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)), + norm_f(Conv1d(1024, 1024, 5, 1, padding=2)), + ] + ) + self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1)) + + def forward(self, x): + """ + Args: + x (Tensor): input waveform. + + Returns: + Tensor: discriminator scores. + List[Tensor]: list of features from the convolutiona layers. + """ + feat = [] + for l in self.convs: + x = l(x) + x = torch.nn.functional.leaky_relu(x, 0.1) + feat.append(x) + x = self.conv_post(x) + feat.append(x) + x = torch.flatten(x, 1, -1) + return x, feat + + +class VitsDiscriminator(nn.Module): + """VITS discriminator wrapping one Scale Discriminator and a stack of Period Discriminator. + + :: + waveform -> ScaleDiscriminator() -> scores_sd, feats_sd --> append() -> scores, feats + |--> MultiPeriodDiscriminator() -> scores_mpd, feats_mpd ^ + + Args: + use_spectral_norm (bool): if `True` swith to spectral norm instead of weight norm. + """ + + def __init__(self, periods=(2, 3, 5, 7, 11), use_spectral_norm=False): + super().__init__() + self.nets = nn.ModuleList() + self.nets.append(DiscriminatorS(use_spectral_norm=use_spectral_norm)) + self.nets.extend([DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]) + + def forward(self, x, x_hat=None): + """ + Args: + x (Tensor): ground truth waveform. + x_hat (Tensor): predicted waveform. + + Returns: + List[Tensor]: discriminator scores. + List[List[Tensor]]: list of list of features from each layers of each discriminator. + """ + x_scores = [] + x_hat_scores = [] if x_hat is not None else None + x_feats = [] + x_hat_feats = [] if x_hat is not None else None + for net in self.nets: + x_score, x_feat = net(x) + x_scores.append(x_score) + x_feats.append(x_feat) + if x_hat is not None: + x_hat_score, x_hat_feat = net(x_hat) + x_hat_scores.append(x_hat_score) + x_hat_feats.append(x_hat_feat) + return x_scores, x_feats, x_hat_scores, x_hat_feats diff --git a/TTS/TTS/tts/layers/vits/networks.py b/TTS/TTS/tts/layers/vits/networks.py new file mode 100644 index 0000000000000000000000000000000000000000..f97b584fe6ed311127a8c01a089b159946219cb2 --- /dev/null +++ b/TTS/TTS/tts/layers/vits/networks.py @@ -0,0 +1,288 @@ +import math + +import torch +from torch import nn + +from TTS.tts.layers.glow_tts.glow import WN +from TTS.tts.layers.glow_tts.transformer import RelativePositionTransformer +from TTS.tts.utils.helpers import sequence_mask + +LRELU_SLOPE = 0.1 + + +def convert_pad_shape(pad_shape): + l = pad_shape[::-1] + pad_shape = [item for sublist in l for item in sublist] + return pad_shape + + +def init_weights(m, mean=0.0, std=0.01): + classname = m.__class__.__name__ + if classname.find("Conv") != -1: + m.weight.data.normal_(mean, std) + + +def get_padding(kernel_size, dilation=1): + return int((kernel_size * dilation - dilation) / 2) + + +class TextEncoder(nn.Module): + def __init__( + self, + n_vocab: int, + out_channels: int, + hidden_channels: int, + hidden_channels_ffn: int, + num_heads: int, + num_layers: int, + kernel_size: int, + dropout_p: float, + language_emb_dim: int = None, + ): + """Text Encoder for VITS model. + + Args: + n_vocab (int): Number of characters for the embedding layer. + out_channels (int): Number of channels for the output. + hidden_channels (int): Number of channels for the hidden layers. + hidden_channels_ffn (int): Number of channels for the convolutional layers. + num_heads (int): Number of attention heads for the Transformer layers. + num_layers (int): Number of Transformer layers. + kernel_size (int): Kernel size for the FFN layers in Transformer network. + dropout_p (float): Dropout rate for the Transformer layers. + """ + super().__init__() + self.out_channels = out_channels + self.hidden_channels = hidden_channels + + self.emb = nn.Embedding(n_vocab, hidden_channels) + + nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5) + + if language_emb_dim: + hidden_channels += language_emb_dim + + self.encoder = RelativePositionTransformer( + in_channels=hidden_channels, + out_channels=hidden_channels, + hidden_channels=hidden_channels, + hidden_channels_ffn=hidden_channels_ffn, + num_heads=num_heads, + num_layers=num_layers, + kernel_size=kernel_size, + dropout_p=dropout_p, + layer_norm_type="2", + rel_attn_window_size=4, + ) + + self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) + + def forward(self, x, x_lengths, lang_emb=None): + """ + Shapes: + - x: :math:`[B, T]` + - x_length: :math:`[B]` + """ + assert x.shape[0] == x_lengths.shape[0] + x = self.emb(x) * math.sqrt(self.hidden_channels) # [b, t, h] + + # concat the lang emb in embedding chars + if lang_emb is not None: + x = torch.cat((x, lang_emb.transpose(2, 1).expand(x.size(0), x.size(1), -1)), dim=-1) + + x = torch.transpose(x, 1, -1) # [b, h, t] + x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype) # [b, 1, t] + + x = self.encoder(x * x_mask, x_mask) + stats = self.proj(x) * x_mask + + m, logs = torch.split(stats, self.out_channels, dim=1) + return x, m, logs, x_mask + + +class ResidualCouplingBlock(nn.Module): + def __init__( + self, + channels, + hidden_channels, + kernel_size, + dilation_rate, + num_layers, + dropout_p=0, + cond_channels=0, + mean_only=False, + ): + assert channels % 2 == 0, "channels should be divisible by 2" + super().__init__() + self.half_channels = channels // 2 + self.mean_only = mean_only + # input layer + self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1) + # coupling layers + self.enc = WN( + hidden_channels, + hidden_channels, + kernel_size, + dilation_rate, + num_layers, + dropout_p=dropout_p, + c_in_channels=cond_channels, + ) + # output layer + # Initializing last layer to 0 makes the affine coupling layers + # do nothing at first. This helps with training stability + self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1) + self.post.weight.data.zero_() + self.post.bias.data.zero_() + + def forward(self, x, x_mask, g=None, reverse=False): + """ + Note: + Set `reverse` to True for inference. + + Shapes: + - x: :math:`[B, C, T]` + - x_mask: :math:`[B, 1, T]` + - g: :math:`[B, C, 1]` + """ + x0, x1 = torch.split(x, [self.half_channels] * 2, 1) + h = self.pre(x0) * x_mask + h = self.enc(h, x_mask, g=g) + stats = self.post(h) * x_mask + if not self.mean_only: + m, log_scale = torch.split(stats, [self.half_channels] * 2, 1) + else: + m = stats + log_scale = torch.zeros_like(m) + + if not reverse: + x1 = m + x1 * torch.exp(log_scale) * x_mask + x = torch.cat([x0, x1], 1) + logdet = torch.sum(log_scale, [1, 2]) + return x, logdet + else: + x1 = (x1 - m) * torch.exp(-log_scale) * x_mask + x = torch.cat([x0, x1], 1) + return x + + +class ResidualCouplingBlocks(nn.Module): + def __init__( + self, + channels: int, + hidden_channels: int, + kernel_size: int, + dilation_rate: int, + num_layers: int, + num_flows=4, + cond_channels=0, + ): + """Redisual Coupling blocks for VITS flow layers. + + Args: + channels (int): Number of input and output tensor channels. + hidden_channels (int): Number of hidden network channels. + kernel_size (int): Kernel size of the WaveNet layers. + dilation_rate (int): Dilation rate of the WaveNet layers. + num_layers (int): Number of the WaveNet layers. + num_flows (int, optional): Number of Residual Coupling blocks. Defaults to 4. + cond_channels (int, optional): Number of channels of the conditioning tensor. Defaults to 0. + """ + super().__init__() + self.channels = channels + self.hidden_channels = hidden_channels + self.kernel_size = kernel_size + self.dilation_rate = dilation_rate + self.num_layers = num_layers + self.num_flows = num_flows + self.cond_channels = cond_channels + + self.flows = nn.ModuleList() + for _ in range(num_flows): + self.flows.append( + ResidualCouplingBlock( + channels, + hidden_channels, + kernel_size, + dilation_rate, + num_layers, + cond_channels=cond_channels, + mean_only=True, + ) + ) + + def forward(self, x, x_mask, g=None, reverse=False): + """ + Note: + Set `reverse` to True for inference. + + Shapes: + - x: :math:`[B, C, T]` + - x_mask: :math:`[B, 1, T]` + - g: :math:`[B, C, 1]` + """ + if not reverse: + for flow in self.flows: + x, _ = flow(x, x_mask, g=g, reverse=reverse) + x = torch.flip(x, [1]) + else: + for flow in reversed(self.flows): + x = torch.flip(x, [1]) + x = flow(x, x_mask, g=g, reverse=reverse) + return x + + +class PosteriorEncoder(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + hidden_channels: int, + kernel_size: int, + dilation_rate: int, + num_layers: int, + cond_channels=0, + ): + """Posterior Encoder of VITS model. + + :: + x -> conv1x1() -> WaveNet() (non-causal) -> conv1x1() -> split() -> [m, s] -> sample(m, s) -> z + + Args: + in_channels (int): Number of input tensor channels. + out_channels (int): Number of output tensor channels. + hidden_channels (int): Number of hidden channels. + kernel_size (int): Kernel size of the WaveNet convolution layers. + dilation_rate (int): Dilation rate of the WaveNet layers. + num_layers (int): Number of the WaveNet layers. + cond_channels (int, optional): Number of conditioning tensor channels. Defaults to 0. + """ + super().__init__() + self.in_channels = in_channels + self.out_channels = out_channels + self.hidden_channels = hidden_channels + self.kernel_size = kernel_size + self.dilation_rate = dilation_rate + self.num_layers = num_layers + self.cond_channels = cond_channels + + self.pre = nn.Conv1d(in_channels, hidden_channels, 1) + self.enc = WN( + hidden_channels, hidden_channels, kernel_size, dilation_rate, num_layers, c_in_channels=cond_channels + ) + self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) + + def forward(self, x, x_lengths, g=None): + """ + Shapes: + - x: :math:`[B, C, T]` + - x_lengths: :math:`[B, 1]` + - g: :math:`[B, C, 1]` + """ + x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype) + x = self.pre(x) * x_mask + x = self.enc(x, x_mask, g=g) + stats = self.proj(x) * x_mask + mean, log_scale = torch.split(stats, self.out_channels, dim=1) + z = (mean + torch.randn_like(mean) * torch.exp(log_scale)) * x_mask + return z, mean, log_scale, x_mask diff --git a/TTS/TTS/tts/layers/vits/stochastic_duration_predictor.py b/TTS/TTS/tts/layers/vits/stochastic_duration_predictor.py new file mode 100644 index 0000000000000000000000000000000000000000..98dbf0935ca0f6cd6e92fe6ecf063dde2ee4138f --- /dev/null +++ b/TTS/TTS/tts/layers/vits/stochastic_duration_predictor.py @@ -0,0 +1,294 @@ +import math + +import torch +from torch import nn +from torch.nn import functional as F + +from TTS.tts.layers.generic.normalization import LayerNorm2 +from TTS.tts.layers.vits.transforms import piecewise_rational_quadratic_transform + + +class DilatedDepthSeparableConv(nn.Module): + def __init__(self, channels, kernel_size, num_layers, dropout_p=0.0) -> torch.tensor: + """Dilated Depth-wise Separable Convolution module. + + :: + x |-> DDSConv(x) -> LayerNorm(x) -> GeLU(x) -> Conv1x1(x) -> LayerNorm(x) -> GeLU(x) -> + -> o + |-------------------------------------------------------------------------------------^ + + Args: + channels ([type]): [description] + kernel_size ([type]): [description] + num_layers ([type]): [description] + dropout_p (float, optional): [description]. Defaults to 0.0. + + Returns: + torch.tensor: Network output masked by the input sequence mask. + """ + super().__init__() + self.num_layers = num_layers + + self.convs_sep = nn.ModuleList() + self.convs_1x1 = nn.ModuleList() + self.norms_1 = nn.ModuleList() + self.norms_2 = nn.ModuleList() + for i in range(num_layers): + dilation = kernel_size**i + padding = (kernel_size * dilation - dilation) // 2 + self.convs_sep.append( + nn.Conv1d(channels, channels, kernel_size, groups=channels, dilation=dilation, padding=padding) + ) + self.convs_1x1.append(nn.Conv1d(channels, channels, 1)) + self.norms_1.append(LayerNorm2(channels)) + self.norms_2.append(LayerNorm2(channels)) + self.dropout = nn.Dropout(dropout_p) + + def forward(self, x, x_mask, g=None): + """ + Shapes: + - x: :math:`[B, C, T]` + - x_mask: :math:`[B, 1, T]` + """ + if g is not None: + x = x + g + for i in range(self.num_layers): + y = self.convs_sep[i](x * x_mask) + y = self.norms_1[i](y) + y = F.gelu(y) + y = self.convs_1x1[i](y) + y = self.norms_2[i](y) + y = F.gelu(y) + y = self.dropout(y) + x = x + y + return x * x_mask + + +class ElementwiseAffine(nn.Module): + """Element-wise affine transform like no-population stats BatchNorm alternative. + + Args: + channels (int): Number of input tensor channels. + """ + + def __init__(self, channels): + super().__init__() + self.translation = nn.Parameter(torch.zeros(channels, 1)) + self.log_scale = nn.Parameter(torch.zeros(channels, 1)) + + def forward(self, x, x_mask, reverse=False, **kwargs): # pylint: disable=unused-argument + if not reverse: + y = (x * torch.exp(self.log_scale) + self.translation) * x_mask + logdet = torch.sum(self.log_scale * x_mask, [1, 2]) + return y, logdet + x = (x - self.translation) * torch.exp(-self.log_scale) * x_mask + return x + + +class ConvFlow(nn.Module): + """Dilated depth separable convolutional based spline flow. + + Args: + in_channels (int): Number of input tensor channels. + hidden_channels (int): Number of in network channels. + kernel_size (int): Convolutional kernel size. + num_layers (int): Number of convolutional layers. + num_bins (int, optional): Number of spline bins. Defaults to 10. + tail_bound (float, optional): Tail bound for PRQT. Defaults to 5.0. + """ + + def __init__( + self, + in_channels: int, + hidden_channels: int, + kernel_size: int, + num_layers: int, + num_bins=10, + tail_bound=5.0, + ): + super().__init__() + self.num_bins = num_bins + self.tail_bound = tail_bound + self.hidden_channels = hidden_channels + self.half_channels = in_channels // 2 + + self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1) + self.convs = DilatedDepthSeparableConv(hidden_channels, kernel_size, num_layers, dropout_p=0.0) + self.proj = nn.Conv1d(hidden_channels, self.half_channels * (num_bins * 3 - 1), 1) + self.proj.weight.data.zero_() + self.proj.bias.data.zero_() + + def forward(self, x, x_mask, g=None, reverse=False): + x0, x1 = torch.split(x, [self.half_channels] * 2, 1) + h = self.pre(x0) + h = self.convs(h, x_mask, g=g) + h = self.proj(h) * x_mask + + b, c, t = x0.shape + h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?] + + unnormalized_widths = h[..., : self.num_bins] / math.sqrt(self.hidden_channels) + unnormalized_heights = h[..., self.num_bins : 2 * self.num_bins] / math.sqrt(self.hidden_channels) + unnormalized_derivatives = h[..., 2 * self.num_bins :] + + x1, logabsdet = piecewise_rational_quadratic_transform( + x1, + unnormalized_widths, + unnormalized_heights, + unnormalized_derivatives, + inverse=reverse, + tails="linear", + tail_bound=self.tail_bound, + ) + + x = torch.cat([x0, x1], 1) * x_mask + logdet = torch.sum(logabsdet * x_mask, [1, 2]) + if not reverse: + return x, logdet + return x + + +class StochasticDurationPredictor(nn.Module): + """Stochastic duration predictor with Spline Flows. + + It applies Variational Dequantization and Variational Data Augmentation. + + Paper: + SDP: https://arxiv.org/pdf/2106.06103.pdf + Spline Flow: https://arxiv.org/abs/1906.04032 + + :: + ## Inference + + x -> TextCondEncoder() -> Flow() -> dr_hat + noise ----------------------^ + + ## Training + |---------------------| + x -> TextCondEncoder() -> + -> PosteriorEncoder() -> split() -> z_u, z_v -> (d - z_u) -> concat() -> Flow() -> noise + d -> DurCondEncoder() -> ^ | + |------------------------------------------------------------------------------| + + Args: + in_channels (int): Number of input tensor channels. + hidden_channels (int): Number of hidden channels. + kernel_size (int): Kernel size of convolutional layers. + dropout_p (float): Dropout rate. + num_flows (int, optional): Number of flow blocks. Defaults to 4. + cond_channels (int, optional): Number of channels of conditioning tensor. Defaults to 0. + """ + + def __init__( + self, + in_channels: int, + hidden_channels: int, + kernel_size: int, + dropout_p: float, + num_flows=4, + cond_channels=0, + language_emb_dim=0, + ): + super().__init__() + + # add language embedding dim in the input + if language_emb_dim: + in_channels += language_emb_dim + + # condition encoder text + self.pre = nn.Conv1d(in_channels, hidden_channels, 1) + self.convs = DilatedDepthSeparableConv(hidden_channels, kernel_size, num_layers=3, dropout_p=dropout_p) + self.proj = nn.Conv1d(hidden_channels, hidden_channels, 1) + + # posterior encoder + self.flows = nn.ModuleList() + self.flows.append(ElementwiseAffine(2)) + self.flows += [ConvFlow(2, hidden_channels, kernel_size, num_layers=3) for _ in range(num_flows)] + + # condition encoder duration + self.post_pre = nn.Conv1d(1, hidden_channels, 1) + self.post_convs = DilatedDepthSeparableConv(hidden_channels, kernel_size, num_layers=3, dropout_p=dropout_p) + self.post_proj = nn.Conv1d(hidden_channels, hidden_channels, 1) + + # flow layers + self.post_flows = nn.ModuleList() + self.post_flows.append(ElementwiseAffine(2)) + self.post_flows += [ConvFlow(2, hidden_channels, kernel_size, num_layers=3) for _ in range(num_flows)] + + if cond_channels != 0 and cond_channels is not None: + self.cond = nn.Conv1d(cond_channels, hidden_channels, 1) + + if language_emb_dim != 0 and language_emb_dim is not None: + self.cond_lang = nn.Conv1d(language_emb_dim, hidden_channels, 1) + + def forward(self, x, x_mask, dr=None, g=None, lang_emb=None, reverse=False, noise_scale=1.0): + """ + Shapes: + - x: :math:`[B, C, T]` + - x_mask: :math:`[B, 1, T]` + - dr: :math:`[B, 1, T]` + - g: :math:`[B, C]` + """ + # condition encoder text + x = self.pre(x) + if g is not None: + x = x + self.cond(g) + + if lang_emb is not None: + x = x + self.cond_lang(lang_emb) + + x = self.convs(x, x_mask) + x = self.proj(x) * x_mask + + if not reverse: + flows = self.flows + assert dr is not None + + # condition encoder duration + h = self.post_pre(dr) + h = self.post_convs(h, x_mask) + h = self.post_proj(h) * x_mask + noise = torch.randn(dr.size(0), 2, dr.size(2)).to(device=x.device, dtype=x.dtype) * x_mask + z_q = noise + + # posterior encoder + logdet_tot_q = 0.0 + for idx, flow in enumerate(self.post_flows): + z_q, logdet_q = flow(z_q, x_mask, g=(x + h)) + logdet_tot_q = logdet_tot_q + logdet_q + if idx > 0: + z_q = torch.flip(z_q, [1]) + + z_u, z_v = torch.split(z_q, [1, 1], 1) + u = torch.sigmoid(z_u) * x_mask + z0 = (dr - u) * x_mask + + # posterior encoder - neg log likelihood + logdet_tot_q += torch.sum((F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1, 2]) + nll_posterior_encoder = ( + torch.sum(-0.5 * (math.log(2 * math.pi) + (noise**2)) * x_mask, [1, 2]) - logdet_tot_q + ) + + z0 = torch.log(torch.clamp_min(z0, 1e-5)) * x_mask + logdet_tot = torch.sum(-z0, [1, 2]) + z = torch.cat([z0, z_v], 1) + + # flow layers + for idx, flow in enumerate(flows): + z, logdet = flow(z, x_mask, g=x, reverse=reverse) + logdet_tot = logdet_tot + logdet + if idx > 0: + z = torch.flip(z, [1]) + + # flow layers - neg log likelihood + nll_flow_layers = torch.sum(0.5 * (math.log(2 * math.pi) + (z**2)) * x_mask, [1, 2]) - logdet_tot + return nll_flow_layers + nll_posterior_encoder + + flows = list(reversed(self.flows)) + flows = flows[:-2] + [flows[-1]] # remove a useless vflow + z = torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) * noise_scale + for flow in flows: + z = torch.flip(z, [1]) + z = flow(z, x_mask, g=x, reverse=reverse) + + z0, _ = torch.split(z, [1, 1], 1) + logw = z0 + return logw diff --git a/TTS/TTS/tts/layers/vits/transforms.py b/TTS/TTS/tts/layers/vits/transforms.py new file mode 100644 index 0000000000000000000000000000000000000000..3cac1b8d6d12fe98123ca554899978782cf3b4c5 --- /dev/null +++ b/TTS/TTS/tts/layers/vits/transforms.py @@ -0,0 +1,202 @@ +# adopted from https://github.com/bayesiains/nflows + +import numpy as np +import torch +from torch.nn import functional as F + +DEFAULT_MIN_BIN_WIDTH = 1e-3 +DEFAULT_MIN_BIN_HEIGHT = 1e-3 +DEFAULT_MIN_DERIVATIVE = 1e-3 + + +def piecewise_rational_quadratic_transform( + inputs, + unnormalized_widths, + unnormalized_heights, + unnormalized_derivatives, + inverse=False, + tails=None, + tail_bound=1.0, + min_bin_width=DEFAULT_MIN_BIN_WIDTH, + min_bin_height=DEFAULT_MIN_BIN_HEIGHT, + min_derivative=DEFAULT_MIN_DERIVATIVE, +): + if tails is None: + spline_fn = rational_quadratic_spline + spline_kwargs = {} + else: + spline_fn = unconstrained_rational_quadratic_spline + spline_kwargs = {"tails": tails, "tail_bound": tail_bound} + + outputs, logabsdet = spline_fn( + inputs=inputs, + unnormalized_widths=unnormalized_widths, + unnormalized_heights=unnormalized_heights, + unnormalized_derivatives=unnormalized_derivatives, + inverse=inverse, + min_bin_width=min_bin_width, + min_bin_height=min_bin_height, + min_derivative=min_derivative, + **spline_kwargs, + ) + return outputs, logabsdet + + +def searchsorted(bin_locations, inputs, eps=1e-6): + bin_locations[..., -1] += eps + return torch.sum(inputs[..., None] >= bin_locations, dim=-1) - 1 + + +def unconstrained_rational_quadratic_spline( + inputs, + unnormalized_widths, + unnormalized_heights, + unnormalized_derivatives, + inverse=False, + tails="linear", + tail_bound=1.0, + min_bin_width=DEFAULT_MIN_BIN_WIDTH, + min_bin_height=DEFAULT_MIN_BIN_HEIGHT, + min_derivative=DEFAULT_MIN_DERIVATIVE, +): + inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound) + outside_interval_mask = ~inside_interval_mask + + outputs = torch.zeros_like(inputs) + logabsdet = torch.zeros_like(inputs) + + if tails == "linear": + unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1)) + constant = np.log(np.exp(1 - min_derivative) - 1) + unnormalized_derivatives[..., 0] = constant + unnormalized_derivatives[..., -1] = constant + + outputs[outside_interval_mask] = inputs[outside_interval_mask] + logabsdet[outside_interval_mask] = 0 + else: + raise RuntimeError("{} tails are not implemented.".format(tails)) + + outputs[inside_interval_mask], logabsdet[inside_interval_mask] = rational_quadratic_spline( + inputs=inputs[inside_interval_mask], + unnormalized_widths=unnormalized_widths[inside_interval_mask, :], + unnormalized_heights=unnormalized_heights[inside_interval_mask, :], + unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :], + inverse=inverse, + left=-tail_bound, + right=tail_bound, + bottom=-tail_bound, + top=tail_bound, + min_bin_width=min_bin_width, + min_bin_height=min_bin_height, + min_derivative=min_derivative, + ) + + return outputs, logabsdet + + +def rational_quadratic_spline( + inputs, + unnormalized_widths, + unnormalized_heights, + unnormalized_derivatives, + inverse=False, + left=0.0, + right=1.0, + bottom=0.0, + top=1.0, + min_bin_width=DEFAULT_MIN_BIN_WIDTH, + min_bin_height=DEFAULT_MIN_BIN_HEIGHT, + min_derivative=DEFAULT_MIN_DERIVATIVE, +): + if torch.min(inputs) < left or torch.max(inputs) > right: + raise ValueError("Input to a transform is not within its domain") + + num_bins = unnormalized_widths.shape[-1] + + if min_bin_width * num_bins > 1.0: + raise ValueError("Minimal bin width too large for the number of bins") + if min_bin_height * num_bins > 1.0: + raise ValueError("Minimal bin height too large for the number of bins") + + widths = F.softmax(unnormalized_widths, dim=-1) + widths = min_bin_width + (1 - min_bin_width * num_bins) * widths + cumwidths = torch.cumsum(widths, dim=-1) + cumwidths = F.pad(cumwidths, pad=(1, 0), mode="constant", value=0.0) + cumwidths = (right - left) * cumwidths + left + cumwidths[..., 0] = left + cumwidths[..., -1] = right + widths = cumwidths[..., 1:] - cumwidths[..., :-1] + + derivatives = min_derivative + F.softplus(unnormalized_derivatives) + + heights = F.softmax(unnormalized_heights, dim=-1) + heights = min_bin_height + (1 - min_bin_height * num_bins) * heights + cumheights = torch.cumsum(heights, dim=-1) + cumheights = F.pad(cumheights, pad=(1, 0), mode="constant", value=0.0) + cumheights = (top - bottom) * cumheights + bottom + cumheights[..., 0] = bottom + cumheights[..., -1] = top + heights = cumheights[..., 1:] - cumheights[..., :-1] + + if inverse: + bin_idx = searchsorted(cumheights, inputs)[..., None] + else: + bin_idx = searchsorted(cumwidths, inputs)[..., None] + + input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0] + input_bin_widths = widths.gather(-1, bin_idx)[..., 0] + + input_cumheights = cumheights.gather(-1, bin_idx)[..., 0] + delta = heights / widths + input_delta = delta.gather(-1, bin_idx)[..., 0] + + input_derivatives = derivatives.gather(-1, bin_idx)[..., 0] + input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0] + + input_heights = heights.gather(-1, bin_idx)[..., 0] + + if inverse: + a = (inputs - input_cumheights) * ( + input_derivatives + input_derivatives_plus_one - 2 * input_delta + ) + input_heights * (input_delta - input_derivatives) + b = input_heights * input_derivatives - (inputs - input_cumheights) * ( + input_derivatives + input_derivatives_plus_one - 2 * input_delta + ) + c = -input_delta * (inputs - input_cumheights) + + discriminant = b.pow(2) - 4 * a * c + assert (discriminant >= 0).all() + + root = (2 * c) / (-b - torch.sqrt(discriminant)) + outputs = root * input_bin_widths + input_cumwidths + + theta_one_minus_theta = root * (1 - root) + denominator = input_delta + ( + (input_derivatives + input_derivatives_plus_one - 2 * input_delta) * theta_one_minus_theta + ) + derivative_numerator = input_delta.pow(2) * ( + input_derivatives_plus_one * root.pow(2) + + 2 * input_delta * theta_one_minus_theta + + input_derivatives * (1 - root).pow(2) + ) + logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator) + + return outputs, -logabsdet + else: + theta = (inputs - input_cumwidths) / input_bin_widths + theta_one_minus_theta = theta * (1 - theta) + + numerator = input_heights * (input_delta * theta.pow(2) + input_derivatives * theta_one_minus_theta) + denominator = input_delta + ( + (input_derivatives + input_derivatives_plus_one - 2 * input_delta) * theta_one_minus_theta + ) + outputs = input_cumheights + numerator / denominator + + derivative_numerator = input_delta.pow(2) * ( + input_derivatives_plus_one * theta.pow(2) + + 2 * input_delta * theta_one_minus_theta + + input_derivatives * (1 - theta).pow(2) + ) + logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator) + + return outputs, logabsdet diff --git a/TTS/TTS/tts/layers/xtts/diffusion.py b/TTS/TTS/tts/layers/xtts/diffusion.py new file mode 100644 index 0000000000000000000000000000000000000000..37665bc6768ddf308bcdd15039899402840806be --- /dev/null +++ b/TTS/TTS/tts/layers/xtts/diffusion.py @@ -0,0 +1,1319 @@ +import enum +import math + +import numpy as np +import torch +import torch as th +from k_diffusion.sampling import sample_dpmpp_2m, sample_euler_ancestral +from tqdm import tqdm + +from TTS.tts.layers.tortoise.dpm_solver import DPM_Solver, NoiseScheduleVP, model_wrapper + +K_DIFFUSION_SAMPLERS = {"k_euler_a": sample_euler_ancestral, "dpm++2m": sample_dpmpp_2m} +SAMPLERS = ["dpm++2m", "p", "ddim"] + + +def normal_kl(mean1, logvar1, mean2, logvar2): + """ + Compute the KL divergence between two gaussians. + + Shapes are automatically broadcasted, so batches can be compared to + scalars, among other use cases. + """ + tensor = None + for obj in (mean1, logvar1, mean2, logvar2): + if isinstance(obj, th.Tensor): + tensor = obj + break + assert tensor is not None, "at least one argument must be a Tensor" + + # Force variances to be Tensors. Broadcasting helps convert scalars to + # Tensors, but it does not work for th.exp(). + logvar1, logvar2 = [x if isinstance(x, th.Tensor) else th.tensor(x).to(tensor) for x in (logvar1, logvar2)] + + return 0.5 * (-1.0 + logvar2 - logvar1 + th.exp(logvar1 - logvar2) + ((mean1 - mean2) ** 2) * th.exp(-logvar2)) + + +def approx_standard_normal_cdf(x): + """ + A fast approximation of the cumulative distribution function of the + standard normal. + """ + return 0.5 * (1.0 + th.tanh(np.sqrt(2.0 / np.pi) * (x + 0.044715 * th.pow(x, 3)))) + + +def discretized_gaussian_log_likelihood(x, *, means, log_scales): + """ + Compute the log-likelihood of a Gaussian distribution discretizing to a + given image. + + :param x: the target images. It is assumed that this was uint8 values, + rescaled to the range [-1, 1]. + :param means: the Gaussian mean Tensor. + :param log_scales: the Gaussian log stddev Tensor. + :return: a tensor like x of log probabilities (in nats). + """ + assert x.shape == means.shape == log_scales.shape + centered_x = x - means + inv_stdv = th.exp(-log_scales) + plus_in = inv_stdv * (centered_x + 1.0 / 255.0) + cdf_plus = approx_standard_normal_cdf(plus_in) + min_in = inv_stdv * (centered_x - 1.0 / 255.0) + cdf_min = approx_standard_normal_cdf(min_in) + log_cdf_plus = th.log(cdf_plus.clamp(min=1e-12)) + log_one_minus_cdf_min = th.log((1.0 - cdf_min).clamp(min=1e-12)) + cdf_delta = cdf_plus - cdf_min + log_probs = th.where( + x < -0.999, + log_cdf_plus, + th.where(x > 0.999, log_one_minus_cdf_min, th.log(cdf_delta.clamp(min=1e-12))), + ) + assert log_probs.shape == x.shape + return log_probs + + +def mean_flat(tensor): + """ + Take the mean over all non-batch dimensions. + """ + return tensor.mean(dim=list(range(1, len(tensor.shape)))) + + +def get_named_beta_schedule(schedule_name, num_diffusion_timesteps): + """ + Get a pre-defined beta schedule for the given name. + + The beta schedule library consists of beta schedules which remain similar + in the limit of num_diffusion_timesteps. + Beta schedules may be added, but should not be removed or changed once + they are committed to maintain backwards compatibility. + """ + if schedule_name == "linear": + # Linear schedule from Ho et al, extended to work for any number of + # diffusion steps. + scale = 1000 / num_diffusion_timesteps + beta_start = scale * 0.0001 + beta_end = scale * 0.02 + return np.linspace(beta_start, beta_end, num_diffusion_timesteps, dtype=np.float64) + elif schedule_name == "cosine": + return betas_for_alpha_bar( + num_diffusion_timesteps, + lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2, + ) + else: + raise NotImplementedError(f"unknown beta schedule: {schedule_name}") + + +def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999): + """ + Create a beta schedule that discretizes the given alpha_t_bar function, + which defines the cumulative product of (1-beta) over time from t = [0,1]. + + :param num_diffusion_timesteps: the number of betas to produce. + :param alpha_bar: a lambda that takes an argument t from 0 to 1 and + produces the cumulative product of (1-beta) up to that + part of the diffusion process. + :param max_beta: the maximum beta to use; use values lower than 1 to + prevent singularities. + """ + betas = [] + for i in range(num_diffusion_timesteps): + t1 = i / num_diffusion_timesteps + t2 = (i + 1) / num_diffusion_timesteps + betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) + return np.array(betas) + + +class ModelMeanType(enum.Enum): + """ + Which type of output the model predicts. + """ + + PREVIOUS_X = "previous_x" # the model predicts x_{t-1} + START_X = "start_x" # the model predicts x_0 + EPSILON = "epsilon" # the model predicts epsilon + + +class ModelVarType(enum.Enum): + """ + What is used as the model's output variance. + + The LEARNED_RANGE option has been added to allow the model to predict + values between FIXED_SMALL and FIXED_LARGE, making its job easier. + """ + + LEARNED = "learned" + FIXED_SMALL = "fixed_small" + FIXED_LARGE = "fixed_large" + LEARNED_RANGE = "learned_range" + + +class LossType(enum.Enum): + MSE = "mse" # use raw MSE loss (and KL when learning variances) + RESCALED_MSE = "rescaled_mse" # use raw MSE loss (with RESCALED_KL when learning variances) + KL = "kl" # use the variational lower-bound + RESCALED_KL = "rescaled_kl" # like KL, but rescale to estimate the full VLB + + def is_vb(self): + return self == LossType.KL or self == LossType.RESCALED_KL + + +class GaussianDiffusion: + """ + Utilities for training and sampling diffusion models. + + Ported directly from here, and then adapted over time to further experimentation. + https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py#L42 + + :param betas: a 1-D numpy array of betas for each diffusion timestep, + starting at T and going to 1. + :param model_mean_type: a ModelMeanType determining what the model outputs. + :param model_var_type: a ModelVarType determining how variance is output. + :param loss_type: a LossType determining the loss function to use. + :param rescale_timesteps: if True, pass floating point timesteps into the + model so that they are always scaled like in the + original paper (0 to 1000). + """ + + def __init__( + self, + *, + betas, + model_mean_type, + model_var_type, + loss_type, + rescale_timesteps=False, # this is generally False + conditioning_free=False, + conditioning_free_k=1, + ramp_conditioning_free=True, + sampler="ddim", + ): + self.sampler = sampler + self.model_mean_type = ModelMeanType(model_mean_type) + self.model_var_type = ModelVarType(model_var_type) + self.loss_type = LossType(loss_type) + self.rescale_timesteps = rescale_timesteps + self.conditioning_free = conditioning_free + self.conditioning_free_k = conditioning_free_k + self.ramp_conditioning_free = ramp_conditioning_free + + # Use float64 for accuracy. + betas = np.array(betas, dtype=np.float64) + self.betas = betas + assert len(betas.shape) == 1, "betas must be 1-D" + assert (betas > 0).all() and (betas <= 1).all() + + self.num_timesteps = int(betas.shape[0]) + + alphas = 1.0 - betas + self.alphas_cumprod = np.cumprod(alphas, axis=0) + self.alphas_cumprod_prev = np.append(1.0, self.alphas_cumprod[:-1]) + self.alphas_cumprod_next = np.append(self.alphas_cumprod[1:], 0.0) + assert self.alphas_cumprod_prev.shape == (self.num_timesteps,) + + # calculations for diffusion q(x_t | x_{t-1}) and others + self.sqrt_alphas_cumprod = np.sqrt(self.alphas_cumprod) + self.sqrt_one_minus_alphas_cumprod = np.sqrt(1.0 - self.alphas_cumprod) + self.log_one_minus_alphas_cumprod = np.log(1.0 - self.alphas_cumprod) + self.sqrt_recip_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod) + self.sqrt_recipm1_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod - 1) + + # calculations for posterior q(x_{t-1} | x_t, x_0) + self.posterior_variance = betas * (1.0 - self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod) + # log calculation clipped because the posterior variance is 0 at the + # beginning of the diffusion chain. + self.posterior_log_variance_clipped = np.log(np.append(self.posterior_variance[1], self.posterior_variance[1:])) + self.posterior_mean_coef1 = betas * np.sqrt(self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod) + self.posterior_mean_coef2 = (1.0 - self.alphas_cumprod_prev) * np.sqrt(alphas) / (1.0 - self.alphas_cumprod) + + def q_mean_variance(self, x_start, t): + """ + Get the distribution q(x_t | x_0). + + :param x_start: the [N x C x ...] tensor of noiseless inputs. + :param t: the number of diffusion steps (minus 1). Here, 0 means one step. + :return: A tuple (mean, variance, log_variance), all of x_start's shape. + """ + mean = _extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start + variance = _extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape) + log_variance = _extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape) + return mean, variance, log_variance + + def q_sample(self, x_start, t, noise=None): + """ + Diffuse the data for a given number of diffusion steps. + + In other words, sample from q(x_t | x_0). + + :param x_start: the initial data batch. + :param t: the number of diffusion steps (minus 1). Here, 0 means one step. + :param noise: if specified, the split-out normal noise. + :return: A noisy version of x_start. + """ + if noise is None: + noise = th.randn_like(x_start) + assert noise.shape == x_start.shape + return ( + _extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start + + _extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise + ) + + def q_posterior_mean_variance(self, x_start, x_t, t): + """ + Compute the mean and variance of the diffusion posterior: + + q(x_{t-1} | x_t, x_0) + + """ + assert x_start.shape == x_t.shape + posterior_mean = ( + _extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start + + _extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t + ) + posterior_variance = _extract_into_tensor(self.posterior_variance, t, x_t.shape) + posterior_log_variance_clipped = _extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape) + assert ( + posterior_mean.shape[0] + == posterior_variance.shape[0] + == posterior_log_variance_clipped.shape[0] + == x_start.shape[0] + ) + return posterior_mean, posterior_variance, posterior_log_variance_clipped + + def p_mean_variance(self, model, x, t, clip_denoised=True, denoised_fn=None, model_kwargs=None): + """ + Apply the model to get p(x_{t-1} | x_t), as well as a prediction of + the initial x, x_0. + + :param model: the model, which takes a signal and a batch of timesteps + as input. + :param x: the [N x C x ...] tensor at time t. + :param t: a 1-D Tensor of timesteps. + :param clip_denoised: if True, clip the denoised signal into [-1, 1]. + :param denoised_fn: if not None, a function which applies to the + x_start prediction before it is used to sample. Applies before + clip_denoised. + :param model_kwargs: if not None, a dict of extra keyword arguments to + pass to the model. This can be used for conditioning. + :return: a dict with the following keys: + - 'mean': the model mean output. + - 'variance': the model variance output. + - 'log_variance': the log of 'variance'. + - 'pred_xstart': the prediction for x_0. + """ + if model_kwargs is None: + model_kwargs = {} + + assert self.model_var_type == ModelVarType.LEARNED_RANGE + assert self.model_mean_type == ModelMeanType.EPSILON + assert denoised_fn is None + assert clip_denoised is True + B, C = x.shape[:2] + assert t.shape == (B,) + model_output = model(x, self._scale_timesteps(t), **model_kwargs) + if self.conditioning_free: + model_output_no_conditioning = model(x, self._scale_timesteps(t), conditioning_free=True, **model_kwargs) + + if self.model_var_type in [ModelVarType.LEARNED, ModelVarType.LEARNED_RANGE]: + assert model_output.shape == (B, C * 2, *x.shape[2:]) + model_output, model_var_values = th.split(model_output, C, dim=1) + if self.conditioning_free: + model_output_no_conditioning, _ = th.split(model_output_no_conditioning, C, dim=1) + if self.model_var_type == ModelVarType.LEARNED: + assert False + model_log_variance = model_var_values + model_variance = th.exp(model_log_variance) + else: + min_log = _extract_into_tensor(self.posterior_log_variance_clipped, t, x.shape) + max_log = _extract_into_tensor(np.log(self.betas), t, x.shape) + # The model_var_values is [-1, 1] for [min_var, max_var]. + frac = (model_var_values + 1) / 2 + model_log_variance = frac * max_log + (1 - frac) * min_log + model_variance = th.exp(model_log_variance) + else: + assert False + model_variance, model_log_variance = { + # for fixedlarge, we set the initial (log-)variance like so + # to get a better decoder log likelihood. + ModelVarType.FIXED_LARGE: ( + np.append(self.posterior_variance[1], self.betas[1:]), + np.log(np.append(self.posterior_variance[1], self.betas[1:])), + ), + ModelVarType.FIXED_SMALL: ( + self.posterior_variance, + self.posterior_log_variance_clipped, + ), + }[self.model_var_type] + model_variance = _extract_into_tensor(model_variance, t, x.shape) + model_log_variance = _extract_into_tensor(model_log_variance, t, x.shape) + + if self.conditioning_free: + if self.ramp_conditioning_free: + assert t.shape[0] == 1 # This should only be used in inference. + cfk = self.conditioning_free_k * (1 - self._scale_timesteps(t)[0].item() / self.num_timesteps) + else: + cfk = self.conditioning_free_k + model_output = (1 + cfk) * model_output - cfk * model_output_no_conditioning + + def process_xstart(x): + if denoised_fn is not None: + assert False + x = denoised_fn(x) + if clip_denoised: + return x.clamp(-1, 1) + assert False + return x + + if self.model_mean_type == ModelMeanType.PREVIOUS_X: + assert False + pred_xstart = process_xstart(self._predict_xstart_from_xprev(x_t=x, t=t, xprev=model_output)) + model_mean = model_output + elif self.model_mean_type in [ModelMeanType.START_X, ModelMeanType.EPSILON]: + if self.model_mean_type == ModelMeanType.START_X: + assert False + pred_xstart = process_xstart(model_output) + else: + pred_xstart = process_xstart(self._predict_xstart_from_eps(x_t=x, t=t, eps=model_output)) + model_mean, _, _ = self.q_posterior_mean_variance(x_start=pred_xstart, x_t=x, t=t) + else: + raise NotImplementedError(self.model_mean_type) + + assert model_mean.shape == model_log_variance.shape == pred_xstart.shape == x.shape + return { + "mean": model_mean, + "variance": model_variance, + "log_variance": model_log_variance, + "pred_xstart": pred_xstart, + } + + def _predict_xstart_from_eps(self, x_t, t, eps): + assert x_t.shape == eps.shape + return ( + _extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t + - _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * eps + ) + + def _predict_xstart_from_xprev(self, x_t, t, xprev): + assert x_t.shape == xprev.shape + return ( # (xprev - coef2*x_t) / coef1 + _extract_into_tensor(1.0 / self.posterior_mean_coef1, t, x_t.shape) * xprev + - _extract_into_tensor(self.posterior_mean_coef2 / self.posterior_mean_coef1, t, x_t.shape) * x_t + ) + + def _predict_eps_from_xstart(self, x_t, t, pred_xstart): + return ( + _extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart + ) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) + + def _scale_timesteps(self, t): + if self.rescale_timesteps: + return t.float() * (1000.0 / self.num_timesteps) + return t + + def condition_mean(self, cond_fn, p_mean_var, x, t, model_kwargs=None): + """ + Compute the mean for the previous step, given a function cond_fn that + computes the gradient of a conditional log probability with respect to + x. In particular, cond_fn computes grad(log(p(y|x))), and we want to + condition on y. + + This uses the conditioning strategy from Sohl-Dickstein et al. (2015). + """ + gradient = cond_fn(x, self._scale_timesteps(t), **model_kwargs) + new_mean = p_mean_var["mean"].float() + p_mean_var["variance"] * gradient.float() + return new_mean + + def condition_score(self, cond_fn, p_mean_var, x, t, model_kwargs=None): + """ + Compute what the p_mean_variance output would have been, should the + model's score function be conditioned by cond_fn. + + See condition_mean() for details on cond_fn. + + Unlike condition_mean(), this instead uses the conditioning strategy + from Song et al (2020). + """ + alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape) + + eps = self._predict_eps_from_xstart(x, t, p_mean_var["pred_xstart"]) + eps = eps - (1 - alpha_bar).sqrt() * cond_fn(x, self._scale_timesteps(t), **model_kwargs) + + out = p_mean_var.copy() + out["pred_xstart"] = self._predict_xstart_from_eps(x, t, eps) + out["mean"], _, _ = self.q_posterior_mean_variance(x_start=out["pred_xstart"], x_t=x, t=t) + return out + + def p_sample( + self, + model, + x, + t, + clip_denoised=True, + denoised_fn=None, + cond_fn=None, + model_kwargs=None, + ): + """ + Sample x_{t-1} from the model at the given timestep. + + :param model: the model to sample from. + :param x: the current tensor at x_{t-1}. + :param t: the value of t, starting at 0 for the first diffusion step. + :param clip_denoised: if True, clip the x_start prediction to [-1, 1]. + :param denoised_fn: if not None, a function which applies to the + x_start prediction before it is used to sample. + :param cond_fn: if not None, this is a gradient function that acts + similarly to the model. + :param model_kwargs: if not None, a dict of extra keyword arguments to + pass to the model. This can be used for conditioning. + :return: a dict containing the following keys: + - 'sample': a random sample from the model. + - 'pred_xstart': a prediction of x_0. + """ + out = self.p_mean_variance( + model, + x, + t, + clip_denoised=clip_denoised, + denoised_fn=denoised_fn, + model_kwargs=model_kwargs, + ) + noise = th.randn_like(x) + nonzero_mask = (t != 0).float().view(-1, *([1] * (len(x.shape) - 1))) # no noise when t == 0 + if cond_fn is not None: + out["mean"] = self.condition_mean(cond_fn, out, x, t, model_kwargs=model_kwargs) + sample = out["mean"] + nonzero_mask * th.exp(0.5 * out["log_variance"]) * noise + return {"sample": sample, "pred_xstart": out["pred_xstart"]} + + def k_diffusion_sample_loop( + self, + k_sampler, + pbar, + model, + shape, + noise=None, # all given + clip_denoised=True, + denoised_fn=None, + cond_fn=None, + device=None, # ALL UNUSED + model_kwargs=None, # {'precomputed_aligned_embeddings': precomputed_embeddings}, + progress=False, # unused as well + ): + assert isinstance(model_kwargs, dict) + if device is None: + device = next(model.parameters()).device + s_in = noise.new_ones([noise.shape[0]]) + + def model_split(*args, **kwargs): + model_output = model(*args, **kwargs) + model_epsilon, model_var = th.split(model_output, model_output.shape[1] // 2, dim=1) + return model_epsilon, model_var + + # + """ + print(self.betas) + print(th.tensor(self.betas)) + noise_schedule = NoiseScheduleVP(schedule='discrete', betas=th.tensor(self.betas)) + """ + noise_schedule = NoiseScheduleVP(schedule="linear", continuous_beta_0=0.1 / 4, continuous_beta_1=20.0 / 4) + + def model_fn_prewrap(x, t, *args, **kwargs): + """ + x_in = torch.cat([x] * 2) + t_in = torch.cat([t_continuous] * 2) + c_in = torch.cat([unconditional_condition, condition]) + noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2) + print(t) + print(self.timestep_map) + exit() + """ + """ + model_output = model(x, self._scale_timesteps(t*4000), **model_kwargs) + out = self.p_mean_variance(model, x, t*4000, model_kwargs=model_kwargs) + return out['pred_xstart'] + """ + x, _ = x.chunk(2) + t, _ = (t * 1000).chunk(2) + res = torch.cat( + [ + model_split(x, t, conditioning_free=True, **model_kwargs)[0], + model_split(x, t, **model_kwargs)[0], + ] + ) + pbar.update(1) + return res + + model_fn = model_wrapper( + model_fn_prewrap, + noise_schedule, + model_type="noise", # "noise" or "x_start" or "v" or "score" + model_kwargs=model_kwargs, + guidance_type="classifier-free", + condition=th.Tensor(1), + unconditional_condition=th.Tensor(1), + guidance_scale=self.conditioning_free_k, + ) + """ + model_fn = model_wrapper( + model_fn_prewrap, + noise_schedule, + model_type='x_start', + model_kwargs={} + ) + # + dpm_solver = DPM_Solver(model_fn, noise_schedule, algorithm_type="dpmsolver") + x_sample = dpm_solver.sample( + noise, + steps=20, + order=3, + skip_type="time_uniform", + method="singlestep", + ) + """ + dpm_solver = DPM_Solver(model_fn, noise_schedule, algorithm_type="dpmsolver++") + x_sample = dpm_solver.sample( + noise, + steps=self.num_timesteps, + order=2, + skip_type="time_uniform", + method="multistep", + ) + #''' + return x_sample + + # HF DIFFUSION ATTEMPT + """ + from .hf_diffusion import EulerAncestralDiscreteScheduler + Scheduler = EulerAncestralDiscreteScheduler() + Scheduler.set_timesteps(100) + for timestep in Scheduler.timesteps: + noise_input = Scheduler.scale_model_input(noise, timestep) + ts = s_in * timestep + model_output = model(noise_input, ts, **model_kwargs) + model_epsilon, _model_var = th.split(model_output, model_output.shape[1]//2, dim=1) + noise, _x0 = Scheduler.step(model_epsilon, timestep, noise) + return noise + """ + + # KARRAS DIFFUSION ATTEMPT + """ + TRAINED_DIFFUSION_STEPS = 4000 # HARDCODED + ratio = TRAINED_DIFFUSION_STEPS/14.5 + def call_model(*args, **kwargs): + model_output = model(*args, **kwargs) + model_output, model_var_values = th.split(model_output, model_output.shape[1]//2, dim=1) + return model_output + print(get_sigmas_karras(self.num_timesteps, sigma_min=0.0, sigma_max=4000, device=device)) + exit() + sigmas = get_sigmas_karras(self.num_timesteps, sigma_min=0.03, sigma_max=14.5, device=device) + return k_sampler(call_model, noise, sigmas, extra_args=model_kwargs, disable=not progress) + ''' + sigmas = get_sigmas_karras(self.num_timesteps, sigma_min=0.03, sigma_max=14.5, device=device) + step = 0 # LMAO + global_sigmas = None + # + def fakemodel(x, t, **model_kwargs): + print(t,global_sigmas*ratio) + return model(x, t, **model_kwargs) + def denoised(x, sigmas, **extra_args): + t = th.tensor([self.num_timesteps-step-1] * shape[0], device=device) + nonlocal global_sigmas + global_sigmas = sigmas + with th.no_grad(): + out = self.p_sample( + fakemodel, + x, + t, + clip_denoised=clip_denoised, + denoised_fn=denoised_fn, + cond_fn=cond_fn, + model_kwargs=model_kwargs, + ) + return out["sample"] + def callback(d): + nonlocal step + step += 1 + + return k_sampler(denoised, noise, sigmas, extra_args=model_kwargs, callback=callback, disable=not progress) + ''' + """ + + def sample_loop(self, *args, **kwargs): + s = self.sampler + if s == "p": + return self.p_sample_loop(*args, **kwargs) + elif s == "ddim": + return self.ddim_sample_loop(*args, **kwargs) + elif s == "dpm++2m": + if self.conditioning_free is not True: + raise RuntimeError("cond_free must be true") + with tqdm(total=self.num_timesteps) as pbar: + return self.k_diffusion_sample_loop(K_DIFFUSION_SAMPLERS[s], pbar, *args, **kwargs) + else: + raise RuntimeError("sampler not impl") + + def p_sample_loop( + self, + model, + shape, + noise=None, + clip_denoised=True, + denoised_fn=None, + cond_fn=None, + model_kwargs=None, + device=None, + progress=False, + ): + """ + Generate samples from the model. + + :param model: the model module. + :param shape: the shape of the samples, (N, C, H, W). + :param noise: if specified, the noise from the encoder to sample. + Should be of the same shape as `shape`. + :param clip_denoised: if True, clip x_start predictions to [-1, 1]. + :param denoised_fn: if not None, a function which applies to the + x_start prediction before it is used to sample. + :param cond_fn: if not None, this is a gradient function that acts + similarly to the model. + :param model_kwargs: if not None, a dict of extra keyword arguments to + pass to the model. This can be used for conditioning. + :param device: if specified, the device to create the samples on. + If not specified, use a model parameter's device. + :param progress: if True, show a tqdm progress bar. + :return: a non-differentiable batch of samples. + """ + final = None + for sample in self.p_sample_loop_progressive( + model, + shape, + noise=noise, + clip_denoised=clip_denoised, + denoised_fn=denoised_fn, + cond_fn=cond_fn, + model_kwargs=model_kwargs, + device=device, + progress=progress, + ): + final = sample + return final["sample"] + + def p_sample_loop_progressive( + self, + model, + shape, + noise=None, + clip_denoised=True, + denoised_fn=None, + cond_fn=None, + model_kwargs=None, + device=None, + progress=False, + ): + """ + Generate samples from the model and yield intermediate samples from + each timestep of diffusion. + + Arguments are the same as p_sample_loop(). + Returns a generator over dicts, where each dict is the return value of + p_sample(). + """ + if device is None: + device = next(model.parameters()).device + assert isinstance(shape, (tuple, list)) + if noise is not None: + img = noise + else: + img = th.randn(*shape, device=device) + indices = list(range(self.num_timesteps))[::-1] + + for i in tqdm(indices, disable=not progress): + t = th.tensor([i] * shape[0], device=device) + with th.no_grad(): + out = self.p_sample( + model, + img, + t, + clip_denoised=clip_denoised, + denoised_fn=denoised_fn, + cond_fn=cond_fn, + model_kwargs=model_kwargs, + ) + yield out + img = out["sample"] + + def ddim_sample( + self, + model, + x, + t, + clip_denoised=True, + denoised_fn=None, + cond_fn=None, + model_kwargs=None, + eta=0.0, + ): + """ + Sample x_{t-1} from the model using DDIM. + + Same usage as p_sample(). + """ + out = self.p_mean_variance( + model, + x, + t, + clip_denoised=clip_denoised, + denoised_fn=denoised_fn, + model_kwargs=model_kwargs, + ) + if cond_fn is not None: + out = self.condition_score(cond_fn, out, x, t, model_kwargs=model_kwargs) + + # Usually our model outputs epsilon, but we re-derive it + # in case we used x_start or x_prev prediction. + eps = self._predict_eps_from_xstart(x, t, out["pred_xstart"]) + + alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape) + alpha_bar_prev = _extract_into_tensor(self.alphas_cumprod_prev, t, x.shape) + sigma = eta * th.sqrt((1 - alpha_bar_prev) / (1 - alpha_bar)) * th.sqrt(1 - alpha_bar / alpha_bar_prev) + # Equation 12. + noise = th.randn_like(x) + mean_pred = out["pred_xstart"] * th.sqrt(alpha_bar_prev) + th.sqrt(1 - alpha_bar_prev - sigma**2) * eps + nonzero_mask = (t != 0).float().view(-1, *([1] * (len(x.shape) - 1))) # no noise when t == 0 + sample = mean_pred + nonzero_mask * sigma * noise + return {"sample": sample, "pred_xstart": out["pred_xstart"]} + + def ddim_reverse_sample( + self, + model, + x, + t, + clip_denoised=True, + denoised_fn=None, + model_kwargs=None, + eta=0.0, + ): + """ + Sample x_{t+1} from the model using DDIM reverse ODE. + """ + assert eta == 0.0, "Reverse ODE only for deterministic path" + out = self.p_mean_variance( + model, + x, + t, + clip_denoised=clip_denoised, + denoised_fn=denoised_fn, + model_kwargs=model_kwargs, + ) + # Usually our model outputs epsilon, but we re-derive it + # in case we used x_start or x_prev prediction. + eps = ( + _extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x.shape) * x - out["pred_xstart"] + ) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x.shape) + alpha_bar_next = _extract_into_tensor(self.alphas_cumprod_next, t, x.shape) + + # Equation 12. reversed + mean_pred = out["pred_xstart"] * th.sqrt(alpha_bar_next) + th.sqrt(1 - alpha_bar_next) * eps + + return {"sample": mean_pred, "pred_xstart": out["pred_xstart"]} + + def ddim_sample_loop( + self, + model, + shape, + noise=None, + clip_denoised=True, + denoised_fn=None, + cond_fn=None, + model_kwargs=None, + device=None, + progress=False, + eta=0.0, + ): + """ + Generate samples from the model using DDIM. + + Same usage as p_sample_loop(). + """ + final = None + for sample in self.ddim_sample_loop_progressive( + model, + shape, + noise=noise, + clip_denoised=clip_denoised, + denoised_fn=denoised_fn, + cond_fn=cond_fn, + model_kwargs=model_kwargs, + device=device, + progress=progress, + eta=eta, + ): + final = sample + return final["sample"] + + def ddim_sample_loop_progressive( + self, + model, + shape, + noise=None, + clip_denoised=True, + denoised_fn=None, + cond_fn=None, + model_kwargs=None, + device=None, + progress=False, + eta=0.0, + ): + """ + Use DDIM to sample from the model and yield intermediate samples from + each timestep of DDIM. + + Same usage as p_sample_loop_progressive(). + """ + if device is None: + device = next(model.parameters()).device + assert isinstance(shape, (tuple, list)) + if noise is not None: + img = noise + else: + img = th.randn(*shape, device=device) + indices = list(range(self.num_timesteps))[::-1] + + if progress: + # Lazy import so that we don't depend on tqdm. + from tqdm.auto import tqdm + + indices = tqdm(indices, disable=not progress) + + for i in indices: + t = th.tensor([i] * shape[0], device=device) + with th.no_grad(): + out = self.ddim_sample( + model, + img, + t, + clip_denoised=clip_denoised, + denoised_fn=denoised_fn, + cond_fn=cond_fn, + model_kwargs=model_kwargs, + eta=eta, + ) + yield out + img = out["sample"] + + def _vb_terms_bpd(self, model, x_start, x_t, t, clip_denoised=True, model_kwargs=None): + """ + Get a term for the variational lower-bound. + + The resulting units are bits (rather than nats, as one might expect). + This allows for comparison to other papers. + + :return: a dict with the following keys: + - 'output': a shape [N] tensor of NLLs or KLs. + - 'pred_xstart': the x_0 predictions. + """ + true_mean, _, true_log_variance_clipped = self.q_posterior_mean_variance(x_start=x_start, x_t=x_t, t=t) + out = self.p_mean_variance(model, x_t, t, clip_denoised=clip_denoised, model_kwargs=model_kwargs) + kl = normal_kl(true_mean, true_log_variance_clipped, out["mean"], out["log_variance"]) + kl = mean_flat(kl) / np.log(2.0) + + decoder_nll = -discretized_gaussian_log_likelihood( + x_start, means=out["mean"], log_scales=0.5 * out["log_variance"] + ) + assert decoder_nll.shape == x_start.shape + decoder_nll = mean_flat(decoder_nll) / np.log(2.0) + + # At the first timestep return the decoder NLL, + # otherwise return KL(q(x_{t-1}|x_t,x_0) || p(x_{t-1}|x_t)) + output = th.where((t == 0), decoder_nll, kl) + return {"output": output, "pred_xstart": out["pred_xstart"]} + + def training_losses(self, model, x_start, t, model_kwargs=None, noise=None): + """ + Compute training losses for a single timestep. + + :param model: the model to evaluate loss on. + :param x_start: the [N x C x ...] tensor of inputs. + :param t: a batch of timestep indices. + :param model_kwargs: if not None, a dict of extra keyword arguments to + pass to the model. This can be used for conditioning. + :param noise: if specified, the specific Gaussian noise to try to remove. + :return: a dict with the key "loss" containing a tensor of shape [N]. + Some mean or variance settings may also have other keys. + """ + if model_kwargs is None: + model_kwargs = {} + if noise is None: + noise = th.randn_like(x_start) + x_t = self.q_sample(x_start, t, noise=noise) + + terms = {} + + if self.loss_type == LossType.KL or self.loss_type == LossType.RESCALED_KL: + # TODO: support multiple model outputs for this mode. + terms["loss"] = self._vb_terms_bpd( + model=model, + x_start=x_start, + x_t=x_t, + t=t, + clip_denoised=False, + model_kwargs=model_kwargs, + )["output"] + if self.loss_type == LossType.RESCALED_KL: + terms["loss"] *= self.num_timesteps + elif self.loss_type == LossType.MSE or self.loss_type == LossType.RESCALED_MSE: + model_outputs = model(x_t, self._scale_timesteps(t), **model_kwargs) + if isinstance(model_outputs, tuple): + model_output = model_outputs[0] + terms["extra_outputs"] = model_outputs[1:] + else: + model_output = model_outputs + + if self.model_var_type in [ + ModelVarType.LEARNED, + ModelVarType.LEARNED_RANGE, + ]: + B, C = x_t.shape[:2] + assert model_output.shape == (B, C * 2, *x_t.shape[2:]) + model_output, model_var_values = th.split(model_output, C, dim=1) + # Learn the variance using the variational bound, but don't let + # it affect our mean prediction. + frozen_out = th.cat([model_output.detach(), model_var_values], dim=1) + terms["vb"] = self._vb_terms_bpd( + model=lambda *args, r=frozen_out: r, + x_start=x_start, + x_t=x_t, + t=t, + clip_denoised=False, + )["output"] + if self.loss_type == LossType.RESCALED_MSE: + # Divide by 1000 for equivalence with initial implementation. + # Without a factor of 1/1000, the VB term hurts the MSE term. + terms["vb"] *= self.num_timesteps / 1000.0 + + if self.model_mean_type == ModelMeanType.PREVIOUS_X: + target = self.q_posterior_mean_variance(x_start=x_start, x_t=x_t, t=t)[0] + x_start_pred = torch.zeros(x_start) # Not supported. + elif self.model_mean_type == ModelMeanType.START_X: + target = x_start + x_start_pred = model_output + elif self.model_mean_type == ModelMeanType.EPSILON: + target = noise + x_start_pred = self._predict_xstart_from_eps(x_t, t, model_output) + else: + raise NotImplementedError(self.model_mean_type) + assert model_output.shape == target.shape == x_start.shape + terms["mse"] = mean_flat((target - model_output) ** 2) + terms["x_start_predicted"] = x_start_pred + if "vb" in terms: + terms["loss"] = terms["mse"] + terms["vb"] + else: + terms["loss"] = terms["mse"] + else: + raise NotImplementedError(self.loss_type) + + return terms + + def autoregressive_training_losses( + self, + model, + x_start, + t, + model_output_keys, + gd_out_key, + model_kwargs=None, + noise=None, + ): + """ + Compute training losses for a single timestep. + + :param model: the model to evaluate loss on. + :param x_start: the [N x C x ...] tensor of inputs. + :param t: a batch of timestep indices. + :param model_kwargs: if not None, a dict of extra keyword arguments to + pass to the model. This can be used for conditioning. + :param noise: if specified, the specific Gaussian noise to try to remove. + :return: a dict with the key "loss" containing a tensor of shape [N]. + Some mean or variance settings may also have other keys. + """ + if model_kwargs is None: + model_kwargs = {} + if noise is None: + noise = th.randn_like(x_start) + x_t = self.q_sample(x_start, t, noise=noise) + terms = {} + if self.loss_type == LossType.KL or self.loss_type == LossType.RESCALED_KL: + assert False # not currently supported for this type of diffusion. + elif self.loss_type == LossType.MSE or self.loss_type == LossType.RESCALED_MSE: + model_outputs = model(x_t, x_start, self._scale_timesteps(t), **model_kwargs) + terms.update({k: o for k, o in zip(model_output_keys, model_outputs)}) + model_output = terms[gd_out_key] + if self.model_var_type in [ + ModelVarType.LEARNED, + ModelVarType.LEARNED_RANGE, + ]: + B, C = x_t.shape[:2] + assert model_output.shape == (B, C, 2, *x_t.shape[2:]) + model_output, model_var_values = ( + model_output[:, :, 0], + model_output[:, :, 1], + ) + # Learn the variance using the variational bound, but don't let + # it affect our mean prediction. + frozen_out = th.cat([model_output.detach(), model_var_values], dim=1) + terms["vb"] = self._vb_terms_bpd( + model=lambda *args, r=frozen_out: r, + x_start=x_start, + x_t=x_t, + t=t, + clip_denoised=False, + )["output"] + if self.loss_type == LossType.RESCALED_MSE: + # Divide by 1000 for equivalence with initial implementation. + # Without a factor of 1/1000, the VB term hurts the MSE term. + terms["vb"] *= self.num_timesteps / 1000.0 + + if self.model_mean_type == ModelMeanType.PREVIOUS_X: + target = self.q_posterior_mean_variance(x_start=x_start, x_t=x_t, t=t)[0] + x_start_pred = torch.zeros(x_start) # Not supported. + elif self.model_mean_type == ModelMeanType.START_X: + target = x_start + x_start_pred = model_output + elif self.model_mean_type == ModelMeanType.EPSILON: + target = noise + x_start_pred = self._predict_xstart_from_eps(x_t, t, model_output) + else: + raise NotImplementedError(self.model_mean_type) + assert model_output.shape == target.shape == x_start.shape + terms["mse"] = mean_flat((target - model_output) ** 2) + terms["x_start_predicted"] = x_start_pred + if "vb" in terms: + terms["loss"] = terms["mse"] + terms["vb"] + else: + terms["loss"] = terms["mse"] + else: + raise NotImplementedError(self.loss_type) + + return terms + + def _prior_bpd(self, x_start): + """ + Get the prior KL term for the variational lower-bound, measured in + bits-per-dim. + + This term can't be optimized, as it only depends on the encoder. + + :param x_start: the [N x C x ...] tensor of inputs. + :return: a batch of [N] KL values (in bits), one per batch element. + """ + batch_size = x_start.shape[0] + t = th.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device) + qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t) + kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0) + return mean_flat(kl_prior) / np.log(2.0) + + def calc_bpd_loop(self, model, x_start, clip_denoised=True, model_kwargs=None): + """ + Compute the entire variational lower-bound, measured in bits-per-dim, + as well as other related quantities. + + :param model: the model to evaluate loss on. + :param x_start: the [N x C x ...] tensor of inputs. + :param clip_denoised: if True, clip denoised samples. + :param model_kwargs: if not None, a dict of extra keyword arguments to + pass to the model. This can be used for conditioning. + + :return: a dict containing the following keys: + - total_bpd: the total variational lower-bound, per batch element. + - prior_bpd: the prior term in the lower-bound. + - vb: an [N x T] tensor of terms in the lower-bound. + - xstart_mse: an [N x T] tensor of x_0 MSEs for each timestep. + - mse: an [N x T] tensor of epsilon MSEs for each timestep. + """ + device = x_start.device + batch_size = x_start.shape[0] + + vb = [] + xstart_mse = [] + mse = [] + for t in list(range(self.num_timesteps))[::-1]: + t_batch = th.tensor([t] * batch_size, device=device) + noise = th.randn_like(x_start) + x_t = self.q_sample(x_start=x_start, t=t_batch, noise=noise) + # Calculate VLB term at the current timestep + with th.no_grad(): + out = self._vb_terms_bpd( + model, + x_start=x_start, + x_t=x_t, + t=t_batch, + clip_denoised=clip_denoised, + model_kwargs=model_kwargs, + ) + vb.append(out["output"]) + xstart_mse.append(mean_flat((out["pred_xstart"] - x_start) ** 2)) + eps = self._predict_eps_from_xstart(x_t, t_batch, out["pred_xstart"]) + mse.append(mean_flat((eps - noise) ** 2)) + + vb = th.stack(vb, dim=1) + xstart_mse = th.stack(xstart_mse, dim=1) + mse = th.stack(mse, dim=1) + + prior_bpd = self._prior_bpd(x_start) + total_bpd = vb.sum(dim=1) + prior_bpd + return { + "total_bpd": total_bpd, + "prior_bpd": prior_bpd, + "vb": vb, + "xstart_mse": xstart_mse, + "mse": mse, + } + + +class SpacedDiffusion(GaussianDiffusion): + """ + A diffusion process which can skip steps in a base diffusion process. + + :param use_timesteps: a collection (sequence or set) of timesteps from the + original diffusion process to retain. + :param kwargs: the kwargs to create the base diffusion process. + """ + + def __init__(self, use_timesteps, **kwargs): + self.use_timesteps = set(use_timesteps) + self.timestep_map = [] + self.original_num_steps = len(kwargs["betas"]) + + base_diffusion = GaussianDiffusion(**kwargs) # pylint: disable=missing-kwoa + last_alpha_cumprod = 1.0 + new_betas = [] + for i, alpha_cumprod in enumerate(base_diffusion.alphas_cumprod): + if i in self.use_timesteps: + new_betas.append(1 - alpha_cumprod / last_alpha_cumprod) + last_alpha_cumprod = alpha_cumprod + self.timestep_map.append(i) + kwargs["betas"] = np.array(new_betas) + super().__init__(**kwargs) + + def p_mean_variance(self, model, *args, **kwargs): # pylint: disable=signature-differs + return super().p_mean_variance(self._wrap_model(model), *args, **kwargs) + + def training_losses(self, model, *args, **kwargs): # pylint: disable=signature-differs + return super().training_losses(self._wrap_model(model), *args, **kwargs) + + def autoregressive_training_losses(self, model, *args, **kwargs): # pylint: disable=signature-differs + return super().autoregressive_training_losses(self._wrap_model(model, True), *args, **kwargs) + + def condition_mean(self, cond_fn, *args, **kwargs): + return super().condition_mean(self._wrap_model(cond_fn), *args, **kwargs) + + def condition_score(self, cond_fn, *args, **kwargs): + return super().condition_score(self._wrap_model(cond_fn), *args, **kwargs) + + def _wrap_model(self, model, autoregressive=False): + if isinstance(model, _WrappedModel) or isinstance(model, _WrappedAutoregressiveModel): + return model + mod = _WrappedAutoregressiveModel if autoregressive else _WrappedModel + return mod(model, self.timestep_map, self.rescale_timesteps, self.original_num_steps) + + def _scale_timesteps(self, t): + # Scaling is done by the wrapped model. + return t + + +def space_timesteps(num_timesteps, section_counts): + """ + Create a list of timesteps to use from an original diffusion process, + given the number of timesteps we want to take from equally-sized portions + of the original process. + + For example, if there's 300 timesteps and the section counts are [10,15,20] + then the first 100 timesteps are strided to be 10 timesteps, the second 100 + are strided to be 15 timesteps, and the final 100 are strided to be 20. + + If the stride is a string starting with "ddim", then the fixed striding + from the DDIM paper is used, and only one section is allowed. + + :param num_timesteps: the number of diffusion steps in the original + process to divide up. + :param section_counts: either a list of numbers, or a string containing + comma-separated numbers, indicating the step count + per section. As a special case, use "ddimN" where N + is a number of steps to use the striding from the + DDIM paper. + :return: a set of diffusion steps from the original process to use. + """ + if isinstance(section_counts, str): + if section_counts.startswith("ddim"): + desired_count = int(section_counts[len("ddim") :]) + for i in range(1, num_timesteps): + if len(range(0, num_timesteps, i)) == desired_count: + return set(range(0, num_timesteps, i)) + raise ValueError(f"cannot create exactly {num_timesteps} steps with an integer stride") + section_counts = [int(x) for x in section_counts.split(",")] + size_per = num_timesteps // len(section_counts) + extra = num_timesteps % len(section_counts) + start_idx = 0 + all_steps = [] + for i, section_count in enumerate(section_counts): + size = size_per + (1 if i < extra else 0) + if size < section_count: + raise ValueError(f"cannot divide section of {size} steps into {section_count}") + if section_count <= 1: + frac_stride = 1 + else: + frac_stride = (size - 1) / (section_count - 1) + cur_idx = 0.0 + taken_steps = [] + for _ in range(section_count): + taken_steps.append(start_idx + round(cur_idx)) + cur_idx += frac_stride + all_steps += taken_steps + start_idx += size + return set(all_steps) + + +class _WrappedModel: + def __init__(self, model, timestep_map, rescale_timesteps, original_num_steps): + self.model = model + self.timestep_map = timestep_map + self.rescale_timesteps = rescale_timesteps + self.original_num_steps = original_num_steps + + def __call__(self, x, ts, **kwargs): + map_tensor = th.tensor(self.timestep_map, device=ts.device, dtype=ts.dtype) + new_ts = map_tensor[ts] + if self.rescale_timesteps: + new_ts = new_ts.float() * (1000.0 / self.original_num_steps) + return self.model(x, new_ts, **kwargs) + + +class _WrappedAutoregressiveModel: + def __init__(self, model, timestep_map, rescale_timesteps, original_num_steps): + self.model = model + self.timestep_map = timestep_map + self.rescale_timesteps = rescale_timesteps + self.original_num_steps = original_num_steps + + def __call__(self, x, x0, ts, **kwargs): + map_tensor = th.tensor(self.timestep_map, device=ts.device, dtype=ts.dtype) + new_ts = map_tensor[ts] + if self.rescale_timesteps: + new_ts = new_ts.float() * (1000.0 / self.original_num_steps) + return self.model(x, x0, new_ts, **kwargs) + + +def _extract_into_tensor(arr, timesteps, broadcast_shape): + """ + Extract values from a 1-D numpy array for a batch of indices. + + :param arr: the 1-D numpy array. + :param timesteps: a tensor of indices into the array to extract. + :param broadcast_shape: a larger shape of K dimensions with the batch + dimension equal to the length of timesteps. + :return: a tensor of shape [batch_size, 1, ...] where the shape has K dims. + """ + res = th.from_numpy(arr).to(device=timesteps.device)[timesteps].float() + while len(res.shape) < len(broadcast_shape): + res = res[..., None] + return res.expand(broadcast_shape) diff --git a/TTS/TTS/tts/layers/xtts/dvae.py b/TTS/TTS/tts/layers/xtts/dvae.py new file mode 100644 index 0000000000000000000000000000000000000000..bdd7a9d09f44cc8dae102a053c365462dc416b6d --- /dev/null +++ b/TTS/TTS/tts/layers/xtts/dvae.py @@ -0,0 +1,393 @@ +import functools +from math import sqrt + +import torch +import torch.distributed as distributed +import torch.nn as nn +import torch.nn.functional as F +import torchaudio +from einops import rearrange + + +def default(val, d): + return val if val is not None else d + + +def eval_decorator(fn): + def inner(model, *args, **kwargs): + was_training = model.training + model.eval() + out = fn(model, *args, **kwargs) + model.train(was_training) + return out + + return inner + + +def dvae_wav_to_mel( + wav, mel_norms_file="../experiments/clips_mel_norms.pth", mel_norms=None, device=torch.device("cpu") +): + mel_stft = torchaudio.transforms.MelSpectrogram( + n_fft=1024, + hop_length=256, + win_length=1024, + power=2, + normalized=False, + sample_rate=22050, + f_min=0, + f_max=8000, + n_mels=80, + norm="slaney", + ).to(device) + wav = wav.to(device) + mel = mel_stft(wav) + mel = torch.log(torch.clamp(mel, min=1e-5)) + if mel_norms is None: + mel_norms = torch.load(mel_norms_file, map_location=device) + mel = mel / mel_norms.unsqueeze(0).unsqueeze(-1) + return mel + + +class Quantize(nn.Module): + def __init__(self, dim, n_embed, decay=0.99, eps=1e-5, balancing_heuristic=False, new_return_order=False): + super().__init__() + + self.dim = dim + self.n_embed = n_embed + self.decay = decay + self.eps = eps + + self.balancing_heuristic = balancing_heuristic + self.codes = None + self.max_codes = 64000 + self.codes_full = False + self.new_return_order = new_return_order + + embed = torch.randn(dim, n_embed) + self.register_buffer("embed", embed) + self.register_buffer("cluster_size", torch.zeros(n_embed)) + self.register_buffer("embed_avg", embed.clone()) + + def forward(self, input, return_soft_codes=False): + if self.balancing_heuristic and self.codes_full: + h = torch.histc(self.codes, bins=self.n_embed, min=0, max=self.n_embed) / len(self.codes) + mask = torch.logical_or(h > 0.9, h < 0.01).unsqueeze(1) + ep = self.embed.permute(1, 0) + ea = self.embed_avg.permute(1, 0) + rand_embed = torch.randn_like(ep) * mask + self.embed = (ep * ~mask + rand_embed).permute(1, 0) + self.embed_avg = (ea * ~mask + rand_embed).permute(1, 0) + self.cluster_size = self.cluster_size * ~mask.squeeze() + if torch.any(mask): + print(f"Reset {torch.sum(mask)} embedding codes.") + self.codes = None + self.codes_full = False + + flatten = input.reshape(-1, self.dim) + dist = flatten.pow(2).sum(1, keepdim=True) - 2 * flatten @ self.embed + self.embed.pow(2).sum(0, keepdim=True) + soft_codes = -dist + _, embed_ind = soft_codes.max(1) + embed_onehot = F.one_hot(embed_ind, self.n_embed).type(flatten.dtype) + embed_ind = embed_ind.view(*input.shape[:-1]) + quantize = self.embed_code(embed_ind) + + if self.balancing_heuristic: + if self.codes is None: + self.codes = embed_ind.flatten() + else: + self.codes = torch.cat([self.codes, embed_ind.flatten()]) + if len(self.codes) > self.max_codes: + self.codes = self.codes[-self.max_codes :] + self.codes_full = True + + if self.training: + embed_onehot_sum = embed_onehot.sum(0) + embed_sum = flatten.transpose(0, 1) @ embed_onehot + + if distributed.is_initialized() and distributed.get_world_size() > 1: + distributed.all_reduce(embed_onehot_sum) + distributed.all_reduce(embed_sum) + + self.cluster_size.data.mul_(self.decay).add_(embed_onehot_sum, alpha=1 - self.decay) + self.embed_avg.data.mul_(self.decay).add_(embed_sum, alpha=1 - self.decay) + n = self.cluster_size.sum() + cluster_size = (self.cluster_size + self.eps) / (n + self.n_embed * self.eps) * n + embed_normalized = self.embed_avg / cluster_size.unsqueeze(0) + self.embed.data.copy_(embed_normalized) + + diff = (quantize.detach() - input).pow(2).mean() + quantize = input + (quantize - input).detach() + + if return_soft_codes: + return quantize, diff, embed_ind, soft_codes.view(input.shape[:-1] + (-1,)) + elif self.new_return_order: + return quantize, embed_ind, diff + else: + return quantize, diff, embed_ind + + def embed_code(self, embed_id): + return F.embedding(embed_id, self.embed.transpose(0, 1)) + + +# Fits a soft-discretized input to a normal-PDF across the specified dimension. +# In other words, attempts to force the discretization function to have a mean equal utilization across all discrete +# values with the specified expected variance. +class DiscretizationLoss(nn.Module): + def __init__(self, discrete_bins, dim, expected_variance, store_past=0): + super().__init__() + self.discrete_bins = discrete_bins + self.dim = dim + self.dist = torch.distributions.Normal(0, scale=expected_variance) + if store_past > 0: + self.record_past = True + self.register_buffer("accumulator_index", torch.zeros(1, dtype=torch.long, device="cpu")) + self.register_buffer("accumulator_filled", torch.zeros(1, dtype=torch.long, device="cpu")) + self.register_buffer("accumulator", torch.zeros(store_past, discrete_bins)) + else: + self.record_past = False + + def forward(self, x): + other_dims = set(range(len(x.shape))) - set([self.dim]) + averaged = x.sum(dim=tuple(other_dims)) / x.sum() + averaged = averaged - averaged.mean() + + if self.record_past: + acc_count = self.accumulator.shape[0] + avg = averaged.detach().clone() + if self.accumulator_filled > 0: + averaged = torch.mean(self.accumulator, dim=0) * (acc_count - 1) / acc_count + averaged / acc_count + + # Also push averaged into the accumulator. + self.accumulator[self.accumulator_index] = avg + self.accumulator_index += 1 + if self.accumulator_index >= acc_count: + self.accumulator_index *= 0 + if self.accumulator_filled <= 0: + self.accumulator_filled += 1 + + return torch.sum(-self.dist.log_prob(averaged)) + + +class ResBlock(nn.Module): + def __init__(self, chan, conv, activation): + super().__init__() + self.net = nn.Sequential( + conv(chan, chan, 3, padding=1), + activation(), + conv(chan, chan, 3, padding=1), + activation(), + conv(chan, chan, 1), + ) + + def forward(self, x): + return self.net(x) + x + + +class UpsampledConv(nn.Module): + def __init__(self, conv, *args, **kwargs): + super().__init__() + assert "stride" in kwargs.keys() + self.stride = kwargs["stride"] + del kwargs["stride"] + self.conv = conv(*args, **kwargs) + + def forward(self, x): + up = nn.functional.interpolate(x, scale_factor=self.stride, mode="nearest") + return self.conv(up) + + +# DiscreteVAE partially derived from lucidrains DALLE implementation +# Credit: https://github.com/lucidrains/DALLE-pytorch +class DiscreteVAE(nn.Module): + def __init__( + self, + positional_dims=2, + num_tokens=512, + codebook_dim=512, + num_layers=3, + num_resnet_blocks=0, + hidden_dim=64, + channels=3, + stride=2, + kernel_size=4, + use_transposed_convs=True, + encoder_norm=False, + activation="relu", + smooth_l1_loss=False, + straight_through=False, + normalization=None, # ((0.5,) * 3, (0.5,) * 3), + record_codes=False, + discretization_loss_averaging_steps=100, + lr_quantizer_args={}, + ): + super().__init__() + has_resblocks = num_resnet_blocks > 0 + + self.num_tokens = num_tokens + self.num_layers = num_layers + self.straight_through = straight_through + self.positional_dims = positional_dims + self.discrete_loss = DiscretizationLoss( + num_tokens, 2, 1 / (num_tokens * 2), discretization_loss_averaging_steps + ) + + assert positional_dims > 0 and positional_dims < 3 # This VAE only supports 1d and 2d inputs for now. + if positional_dims == 2: + conv = nn.Conv2d + conv_transpose = nn.ConvTranspose2d + else: + conv = nn.Conv1d + conv_transpose = nn.ConvTranspose1d + if not use_transposed_convs: + conv_transpose = functools.partial(UpsampledConv, conv) + + if activation == "relu": + act = nn.ReLU + elif activation == "silu": + act = nn.SiLU + else: + assert NotImplementedError() + + enc_layers = [] + dec_layers = [] + + if num_layers > 0: + enc_chans = [hidden_dim * 2**i for i in range(num_layers)] + dec_chans = list(reversed(enc_chans)) + + enc_chans = [channels, *enc_chans] + + dec_init_chan = codebook_dim if not has_resblocks else dec_chans[0] + dec_chans = [dec_init_chan, *dec_chans] + + enc_chans_io, dec_chans_io = map(lambda t: list(zip(t[:-1], t[1:])), (enc_chans, dec_chans)) + + pad = (kernel_size - 1) // 2 + for (enc_in, enc_out), (dec_in, dec_out) in zip(enc_chans_io, dec_chans_io): + enc_layers.append(nn.Sequential(conv(enc_in, enc_out, kernel_size, stride=stride, padding=pad), act())) + if encoder_norm: + enc_layers.append(nn.GroupNorm(8, enc_out)) + dec_layers.append( + nn.Sequential(conv_transpose(dec_in, dec_out, kernel_size, stride=stride, padding=pad), act()) + ) + dec_out_chans = dec_chans[-1] + innermost_dim = dec_chans[0] + else: + enc_layers.append(nn.Sequential(conv(channels, hidden_dim, 1), act())) + dec_out_chans = hidden_dim + innermost_dim = hidden_dim + + for _ in range(num_resnet_blocks): + dec_layers.insert(0, ResBlock(innermost_dim, conv, act)) + enc_layers.append(ResBlock(innermost_dim, conv, act)) + + if num_resnet_blocks > 0: + dec_layers.insert(0, conv(codebook_dim, innermost_dim, 1)) + + enc_layers.append(conv(innermost_dim, codebook_dim, 1)) + dec_layers.append(conv(dec_out_chans, channels, 1)) + + self.encoder = nn.Sequential(*enc_layers) + self.decoder = nn.Sequential(*dec_layers) + + self.loss_fn = F.smooth_l1_loss if smooth_l1_loss else F.mse_loss + self.codebook = Quantize(codebook_dim, num_tokens, new_return_order=True) + + # take care of normalization within class + self.normalization = normalization + self.record_codes = record_codes + if record_codes: + self.codes = torch.zeros((1228800,), dtype=torch.long) + self.code_ind = 0 + self.total_codes = 0 + self.internal_step = 0 + + def norm(self, images): + if not self.normalization is not None: + return images + + means, stds = map(lambda t: torch.as_tensor(t).to(images), self.normalization) + arrange = "c -> () c () ()" if self.positional_dims == 2 else "c -> () c ()" + means, stds = map(lambda t: rearrange(t, arrange), (means, stds)) + images = images.clone() + images.sub_(means).div_(stds) + return images + + def get_debug_values(self, step, __): + if self.record_codes and self.total_codes > 0: + # Report annealing schedule + return {"histogram_codes": self.codes[: self.total_codes]} + else: + return {} + + @torch.no_grad() + @eval_decorator + def get_codebook_indices(self, images): + img = self.norm(images) + logits = self.encoder(img).permute((0, 2, 3, 1) if len(img.shape) == 4 else (0, 2, 1)) + sampled, codes, _ = self.codebook(logits) + self.log_codes(codes) + return codes + + def decode(self, img_seq): + self.log_codes(img_seq) + if hasattr(self.codebook, "embed_code"): + image_embeds = self.codebook.embed_code(img_seq) + else: + image_embeds = F.embedding(img_seq, self.codebook.codebook) + b, n, d = image_embeds.shape + + kwargs = {} + if self.positional_dims == 1: + arrange = "b n d -> b d n" + else: + h = w = int(sqrt(n)) + arrange = "b (h w) d -> b d h w" + kwargs = {"h": h, "w": w} + image_embeds = rearrange(image_embeds, arrange, **kwargs) + images = [image_embeds] + for layer in self.decoder: + images.append(layer(images[-1])) + return images[-1], images[-2] + + def infer(self, img): + img = self.norm(img) + logits = self.encoder(img).permute((0, 2, 3, 1) if len(img.shape) == 4 else (0, 2, 1)) + sampled, codes, commitment_loss = self.codebook(logits) + return self.decode(codes) + + # Note: This module is not meant to be run in forward() except while training. It has special logic which performs + # evaluation using quantized values when it detects that it is being run in eval() mode, which will be substantially + # more lossy (but useful for determining network performance). + def forward(self, img): + img = self.norm(img) + logits = self.encoder(img).permute((0, 2, 3, 1) if len(img.shape) == 4 else (0, 2, 1)) + sampled, codes, commitment_loss = self.codebook(logits) + sampled = sampled.permute((0, 3, 1, 2) if len(img.shape) == 4 else (0, 2, 1)) + + if self.training: + out = sampled + for d in self.decoder: + out = d(out) + self.log_codes(codes) + else: + # This is non-differentiable, but gives a better idea of how the network is actually performing. + out, _ = self.decode(codes) + + # reconstruction loss + recon_loss = self.loss_fn(img, out, reduction="none") + + return recon_loss, commitment_loss, out + + def log_codes(self, codes): + # This is so we can debug the distribution of codes being learned. + if self.record_codes and self.internal_step % 10 == 0: + codes = codes.flatten() + l = codes.shape[0] + i = self.code_ind if (self.codes.shape[0] - self.code_ind) > l else self.codes.shape[0] - l + self.codes[i : i + l] = codes.cpu() + self.code_ind = self.code_ind + l + if self.code_ind >= self.codes.shape[0]: + self.code_ind = 0 + self.total_codes += 1 + self.internal_step += 1 diff --git a/TTS/TTS/tts/layers/xtts/gpt.py b/TTS/TTS/tts/layers/xtts/gpt.py new file mode 100644 index 0000000000000000000000000000000000000000..2a821a5d0067efa9365f17d42e9bba23cb77defa --- /dev/null +++ b/TTS/TTS/tts/layers/xtts/gpt.py @@ -0,0 +1,545 @@ +# ported from: https://github.com/neonbjb/tortoise-tts + +import functools +import math +import random + +import torch +import torch.nn as nn +import torch.nn.functional as F +from transformers import GPT2Config + +from TTS.tts.layers.xtts.gpt_inference import GPT2InferenceModel +from TTS.tts.layers.xtts.latent_encoder import ConditioningEncoder + + +def null_position_embeddings(range, dim): + return torch.zeros((range.shape[0], range.shape[1], dim), device=range.device) + + +class LearnedPositionEmbeddings(nn.Module): + def __init__(self, seq_len, model_dim, init=0.02, relative=False): + super().__init__() + # nn.Embedding + self.emb = torch.nn.Embedding(seq_len, model_dim) + # Initializing this way is standard for GPT-2 + self.emb.weight.data.normal_(mean=0.0, std=init) + self.relative = relative + self.seq_len = seq_len + + def forward(self, x): + sl = x.shape[1] + if self.relative: + start = random.randint(sl, self.seq_len) - sl + return self.emb(torch.arange(start, start + sl, device=x.device)) + else: + return self.emb(torch.arange(0, sl, device=x.device)) + + def get_fixed_embedding(self, ind, dev): + return self.emb(torch.tensor([ind], device=dev)).unsqueeze(0) + + +def build_hf_gpt_transformer( + layers, + model_dim, + heads, + max_mel_seq_len, + max_text_seq_len, + max_prompt_len, + checkpointing, +): + """ + GPT-2 implemented by the HuggingFace library. + """ + from transformers import GPT2Config, GPT2Model + + gpt_config = GPT2Config( + vocab_size=256, # Unused. + n_positions=max_mel_seq_len + max_text_seq_len + max_prompt_len, + n_ctx=max_mel_seq_len + max_text_seq_len + max_prompt_len, + n_embd=model_dim, + n_layer=layers, + n_head=heads, + gradient_checkpointing=checkpointing, + use_cache=not checkpointing, + ) + gpt = GPT2Model(gpt_config) + # Override the built in positional embeddings + del gpt.wpe + gpt.wpe = functools.partial(null_position_embeddings, dim=model_dim) + # Built-in token embeddings are unused. + del gpt.wte + + mel_pos_emb = ( + LearnedPositionEmbeddings(max_mel_seq_len, model_dim) + if max_mel_seq_len != -1 + else functools.partial(null_position_embeddings, dim=model_dim) + ) + text_pos_emb = ( + LearnedPositionEmbeddings(max_text_seq_len, model_dim) + if max_mel_seq_len != -1 + else functools.partial(null_position_embeddings, dim=model_dim) + ) + # gpt = torch.compile(gpt, mode="reduce-overhead", fullgraph=True) + return gpt, mel_pos_emb, text_pos_emb, None, None + + +class GPT(nn.Module): + def __init__( + self, + start_text_token=261, + stop_text_token=0, + layers=8, + model_dim=512, + heads=8, + max_text_tokens=120, + max_mel_tokens=250, + max_prompt_tokens=70, + max_conditioning_inputs=1, + code_stride_len=1024, + number_text_tokens=256, + num_audio_tokens=8194, + start_audio_token=8192, + stop_audio_token=8193, + train_solo_embeddings=False, + checkpointing=False, + average_conditioning_embeddings=False, + label_smoothing=0.0, + ): + """ + Args: + + """ + super().__init__() + + self.label_smoothing = label_smoothing + self.number_text_tokens = number_text_tokens + self.start_text_token = start_text_token + self.stop_text_token = stop_text_token + self.num_audio_tokens = num_audio_tokens + self.start_audio_token = start_audio_token + self.stop_audio_token = stop_audio_token + self.start_prompt_token = start_audio_token + self.stop_prompt_token = stop_audio_token + self.layers = layers + self.heads = heads + self.model_dim = model_dim + self.max_conditioning_inputs = max_conditioning_inputs + self.max_mel_tokens = -1 if max_mel_tokens == -1 else max_mel_tokens + 2 + self.max_conditioning_inputs + self.max_text_tokens = -1 if max_text_tokens == -1 else max_text_tokens + 2 + self.max_prompt_tokens = max_prompt_tokens + self.code_stride_len = code_stride_len + self.conditioning_encoder = ConditioningEncoder(80, model_dim, num_attn_heads=heads) + self.conditioning_dropout = nn.Dropout1d(0.1) + self.average_conditioning_embeddings = average_conditioning_embeddings + + self.text_embedding = nn.Embedding(self.number_text_tokens, model_dim) + self.mel_embedding = nn.Embedding(self.num_audio_tokens, model_dim) + + self.prompt_embedding = nn.Embedding(self.num_audio_tokens, model_dim) + self.prompt_pos_embedding = LearnedPositionEmbeddings(24 * 9, model_dim) + + ( + self.gpt, + self.mel_pos_embedding, + self.text_pos_embedding, + self.mel_layer_pos_embedding, + self.text_layer_pos_embedding, + ) = build_hf_gpt_transformer( + layers, + model_dim, + heads, + self.max_mel_tokens, + self.max_text_tokens, + self.max_prompt_tokens, + checkpointing, + ) + if train_solo_embeddings: + self.mel_solo_embedding = nn.Parameter(torch.randn(1, 1, model_dim) * 0.02, requires_grad=True) + self.text_solo_embedding = nn.Parameter(torch.randn(1, 1, model_dim) * 0.02, requires_grad=True) + else: + self.mel_solo_embedding = 0 + self.text_solo_embedding = 0 + + self.final_norm = nn.LayerNorm(model_dim) + self.text_head = nn.Linear(model_dim, self.number_text_tokens) + self.mel_head = nn.Linear(model_dim, self.num_audio_tokens) + + def get_grad_norm_parameter_groups(self): + return { + "conditioning_encoder": list(self.conditioning_encoder.parameters()), + "gpt": list(self.gpt.parameters()), + "heads": list(self.text_head.parameters()) + list(self.mel_head.parameters()), + } + + def init_gpt_for_inference(self, kv_cache=True): + seq_length = self.max_prompt_tokens + self.max_mel_tokens + self.max_text_tokens + 1 + gpt_config = GPT2Config( + vocab_size=self.max_mel_tokens, + n_positions=seq_length, + n_ctx=seq_length, + n_embd=self.model_dim, + n_layer=self.layers, + n_head=self.heads, + gradient_checkpointing=False, + use_cache=True, + ) + self.gpt_inference = GPT2InferenceModel( + gpt_config, + self.gpt, + self.mel_pos_embedding, + self.mel_embedding, + self.final_norm, + self.mel_head, + kv_cache=kv_cache, + ) + self.gpt.wte = self.mel_embedding + + def set_inputs_and_targets(self, input, start_token, stop_token): + inp = F.pad(input, (1, 0), value=start_token) + tar = F.pad(input, (0, 1), value=stop_token) + return inp, tar + + def set_mel_padding(self, mel_input_tokens, code_lengths): + """ + Given mel tokens that are derived from a padded audio clip and the actual lengths of each batch element in + that audio clip, reformats the tokens with stop_audio_token in place of the zero padding. This is required + preformatting to create a working TTS model. + """ + # Set padding areas within MEL (currently it is coded with the MEL code for ). + for b in range(len(code_lengths)): + actual_end = code_lengths[b] + if actual_end < mel_input_tokens.shape[-1]: + mel_input_tokens[b, actual_end:] = self.stop_audio_token + return mel_input_tokens + + def get_logits( + self, + first_inputs, + first_head, + second_inputs=None, + second_head=None, + prompt=None, + get_attns=False, + return_latent=False, + attn_mask_text=None, + attn_mask_mel=None, + ): + if prompt is not None: + offset = prompt.shape[1] + if second_inputs is not None: + emb = torch.cat([prompt, first_inputs, second_inputs], dim=1) + else: + emb = torch.cat([prompt, first_inputs], dim=1) + + # with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False): + attn_mask = None + if attn_mask_text is not None: + attn_mask = torch.cat([attn_mask_text, attn_mask_mel], dim=1) + if prompt is not None: + attn_mask_prompt = torch.ones(prompt.shape[0], offset, dtype=torch.bool, device=emb.device) + attn_mask = torch.cat([attn_mask_prompt, attn_mask], dim=1) + + gpt_out = self.gpt( + inputs_embeds=emb, + return_dict=True, + output_attentions=get_attns, + attention_mask=attn_mask, + ) + + if get_attns: + return gpt_out.attentions + + enc = gpt_out.last_hidden_state[:, offset:] + enc = self.final_norm(enc) + + if return_latent: + return enc[:, : first_inputs.shape[1]], enc[:, -second_inputs.shape[1] :] + + first_logits = enc[:, : first_inputs.shape[1]] + first_logits = first_head(first_logits) + first_logits = first_logits.permute(0, 2, 1) + if second_inputs is not None: + second_logits = enc[:, -second_inputs.shape[1] :] + second_logits = second_head(second_logits) + second_logits = second_logits.permute(0, 2, 1) + return first_logits, second_logits + else: + return first_logits + + def get_conditioning(self, speech_conditioning_input): + speech_conditioning_input = ( + speech_conditioning_input.unsqueeze(1) + if len(speech_conditioning_input.shape) == 3 + else speech_conditioning_input + ) + conds = [] + for j in range(speech_conditioning_input.shape[1]): + conds.append(self.conditioning_encoder(speech_conditioning_input[:, j])) + conds = torch.stack(conds, dim=1) + conds = conds.mean(dim=1) + return conds + + def get_prompts(self, prompt_codes): + """ + Create a prompt from the mel codes. This is used to condition the model on the mel codes. + Pad the prompt with start and stop mel tokens. + """ + prompt = prompt_codes + if self.training: + lengths = [] + # Compute the real prompt length based on the first encounter with the token 83 used for padding + for i in range(prompt_codes.shape[0]): + length = 0 + for j in range(prompt_codes.shape[1]): + if prompt_codes[i, j] == 83: + break + else: + length += 1 + lengths.append(length) + + # prompt_len = random.randint(1, 9) # in secs + prompt_len = 3 + prompt_len = prompt_len * 24 # in frames + if prompt_codes.shape[-1] >= prompt_len: + new_prompt = [] + for i in range(prompt_codes.shape[0]): + if lengths[i] < prompt_len: + start = 0 + else: + start = random.randint(0, lengths[i] - prompt_len) + prompt = prompt_codes[:, start : start + prompt_len] + + # add start and stop tokens + prompt = F.pad(prompt, (1, 0), value=self.start_prompt_token) + prompt = F.pad(prompt, (0, 1), value=self.stop_prompt_token) + return prompt + + def get_style_emb(self, cond_input, cond_lens=None, cond_seg_len=None, return_latent=False, sample=True): + """ + cond_input: (b, 80, s) or (b, 1, 80, s) + conds: (b, 1024, s) + """ + conds = None + if not return_latent: + if cond_input.ndim == 4: + cond_input = cond_input.squeeze(1) + if sample: + _len_secs = random.randint(2, 6) # in secs + cond_seg_len = int((22050 / 1024) * _len_secs) # in frames + if cond_input.shape[-1] >= cond_seg_len: + new_conds = [] + for i in range(cond_input.shape[0]): + cond_len = int(cond_lens[i] / 1024) + if cond_len < cond_seg_len: + start = 0 + else: + start = random.randint(0, cond_len - cond_seg_len) + cond_vec = cond_input[i, :, start : start + cond_seg_len] + new_conds.append(cond_vec) + conds = torch.stack(new_conds, dim=0) + else: + cond_seg_len = 5 if cond_seg_len is None else cond_seg_len # secs + cond_frame_len = int((22050 / 1024) * cond_seg_len) + conds = cond_input[:, :, -cond_frame_len:] + + conds = self.conditioning_encoder(conds) + else: + # already computed + conds = cond_input.unsqueeze(1) + return conds + + def forward( + self, + text_inputs, + text_lengths, + audio_codes, + wav_lengths, + cond_lens=None, + cond_mels=None, + cond_latents=None, + loss_weights=None, + return_attentions=False, + return_latent=False, + ): + """ + Forward pass that uses both text and voice in either text conditioning mode or voice conditioning mode + (actuated by `text_first`). + + cond_mels: MEL float tensor, (b, 1, 80,s) + text_inputs: long tensor, (b,t) + text_lengths: long tensor, (b,) + mel_inputs: long tensor, (b,m) + wav_lengths: long tensor, (b,) + + If return_attentions is specified, only logits are returned. + If return_latent is specified, loss & logits are not computed or returned. Only the predicted latents are returned. + """ + # โ— FIXIT + if self.max_conditioning_inputs == 0: + assert cond_mels is None, " โ— cond_mels is not None, but max_conditioning_inputs == 0" + + max_text_len = text_lengths.max() + code_lengths = torch.ceil(wav_lengths / self.code_stride_len).long() + 3 + + # If len(codes) + 3 is larger than maxiumum allowed length, we truncate the codes. + max_mel_len = code_lengths.max() + + if max_mel_len > audio_codes.shape[-1]: + audio_codes = F.pad(audio_codes, (0, max_mel_len - audio_codes.shape[-1])) + + silence = True + for idx, l in enumerate(code_lengths): + length = l.item() + while silence: + if audio_codes[idx, length - 1] != 83: + break + length -= 1 + code_lengths[idx] = length + + # ๐Ÿ’– Lovely assertions + assert ( + max_mel_len <= audio_codes.shape[-1] + ), f" โ— max_mel_len ({max_mel_len}) > audio_codes.shape[-1] ({audio_codes.shape[-1]})" + assert ( + max_text_len <= text_inputs.shape[-1] + ), f" โ— max_text_len ({max_text_len}) > text_inputs.shape[-1] ({text_inputs.shape[-1]})" + + # Append stop token to text inputs + text_inputs = F.pad(text_inputs[:, :max_text_len], (0, 1), value=self.stop_text_token) + + # Append silence token to mel codes + audio_codes = F.pad(audio_codes[:, :max_mel_len], (0, 1), value=self.stop_audio_token) + + # Pad mel codes with stop_audio_token + audio_codes = self.set_mel_padding(audio_codes, code_lengths) + + # Build input and target tensors + # Prepend start token to inputs and append stop token to targets + text_inputs, text_targets = self.set_inputs_and_targets( + text_inputs, self.start_text_token, self.stop_text_token + ) + audio_codes, mel_targets = self.set_inputs_and_targets( + audio_codes, self.start_audio_token, self.stop_audio_token + ) + + # Set attn_mask + attn_mask_text = None + attn_mask_mel = None + if not return_latent: + attn_mask_text = torch.ones( + text_inputs.shape[0], + text_inputs.shape[1], + dtype=torch.bool, + device=text_inputs.device, + ) + attn_mask_mel = torch.ones( + audio_codes.shape[0], + audio_codes.shape[1], + dtype=torch.bool, + device=audio_codes.device, + ) + + for idx, l in enumerate(text_lengths): + attn_mask_text[idx, l + 1 :] = 0.0 + + for idx, l in enumerate(code_lengths): + attn_mask_mel[idx, l + 1 :] = 0.0 + + # Compute text embeddings + positional embeddings + text_emb = self.text_embedding(text_inputs) + self.text_pos_embedding(text_inputs) + + # Compute mel embeddings + positional embeddings + mel_emb = self.mel_embedding(audio_codes) + self.mel_pos_embedding(audio_codes) + + # Compute speech conditioning input + if cond_latents is None: + cond_latents = self.get_style_emb(cond_mels, cond_lens).transpose(1, 2) + + # Get logits + sub = -5 # don't ask me why ๐Ÿ˜„ + if self.training: + sub = -1 + + text_logits, mel_logits = self.get_logits( + text_emb, + self.text_head, + mel_emb, + self.mel_head, + prompt=cond_latents, + get_attns=return_attentions, + return_latent=return_latent, + attn_mask_text=attn_mask_text, + attn_mask_mel=attn_mask_mel, + ) + if return_latent: + return mel_logits[:, :sub] # sub to prevent bla. + + if return_attentions: + return mel_logits + + # Set paddings to -1 to ignore them in loss + for idx, l in enumerate(text_lengths): + text_targets[idx, l + 1 :] = -1 + + for idx, l in enumerate(code_lengths): + mel_targets[idx, l + 1 :] = -1 + + # check if stoptoken is in every row of mel_targets + assert (mel_targets == self.stop_audio_token).sum() >= mel_targets.shape[ + 0 + ], f" โ— mel_targets does not contain stop token ({self.stop_audio_token}) in every row." + + # Compute losses + loss_text = F.cross_entropy( + text_logits, text_targets.long(), ignore_index=-1, label_smoothing=self.label_smoothing + ) + loss_mel = F.cross_entropy( + mel_logits, mel_targets.long(), ignore_index=-1, label_smoothing=self.label_smoothing + ) + return loss_text.mean(), loss_mel.mean(), mel_logits + + def inference(self, cond_latents, text_inputs, **hf_generate_kwargs): + self.compute_embeddings(cond_latents, text_inputs) + return self.generate(cond_latents, text_inputs, input_tokens=None, **hf_generate_kwargs) + + def compute_embeddings( + self, + cond_latents, + text_inputs, + ): + text_inputs = F.pad(text_inputs, (0, 1), value=self.stop_text_token) + text_inputs = F.pad(text_inputs, (1, 0), value=self.start_text_token) + emb = self.text_embedding(text_inputs) + self.text_pos_embedding(text_inputs) + emb = torch.cat([cond_latents, emb], dim=1) + self.gpt_inference.store_prefix_emb(emb) + gpt_inputs = torch.full( + ( + emb.shape[0], + emb.shape[1] + 1, # +1 for the start_audio_token + ), + fill_value=1, + dtype=torch.long, + device=text_inputs.device, + ) + gpt_inputs[:, -1] = self.start_audio_token + return gpt_inputs + + def generate( + self, + cond_latents, + text_inputs, + **hf_generate_kwargs, + ): + gpt_inputs = self.compute_embeddings(cond_latents, text_inputs) + gen = self.gpt_inference.generate( + gpt_inputs, + bos_token_id=self.start_audio_token, + pad_token_id=self.stop_audio_token, + eos_token_id=self.stop_audio_token, + max_length=self.max_mel_tokens * 2 + self.max_prompt_tokens + self.max_text_tokens, + **hf_generate_kwargs, + ) + if "return_dict_in_generate" in hf_generate_kwargs: + return gen.sequences[:, gpt_inputs.shape[1] :], gen + return gen[:, gpt_inputs.shape[1] :] diff --git a/TTS/TTS/tts/layers/xtts/gpt_encoder_eren.py b/TTS/TTS/tts/layers/xtts/gpt_encoder_eren.py new file mode 100644 index 0000000000000000000000000000000000000000..b5e7158d7c6f84479592fc3d0bef3afbadd865c0 --- /dev/null +++ b/TTS/TTS/tts/layers/xtts/gpt_encoder_eren.py @@ -0,0 +1,658 @@ +import functools + +import torch +import torch.nn as nn +import torch.nn.functional as F +from transformers import GPT2Config, GPT2Model, GPT2PreTrainedModel +from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions + + +def null_position_embeddings(range, dim): + return torch.zeros((range.shape[0], range.shape[1], dim), device=range.device) + + +class GPT2InferenceModel(GPT2PreTrainedModel): + """Override GPT2LMHeadModel to allow for prefix conditioning.""" + + def __init__(self, config, gpt, pos_emb, embeddings, norm, linear, kv_cache): + super().__init__(config) + self.transformer = gpt + self.pos_embedding = pos_emb + self.embeddings = embeddings + self.final_norm = norm + self.lm_head = nn.Sequential(norm, linear) + self.kv_cache = kv_cache + + def store_prefix_emb(self, prefix_emb): + self.cached_prefix_emb = prefix_emb + + def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs): + token_type_ids = kwargs.get("token_type_ids", None) # usually None + if not self.kv_cache: + past_key_values = None + + # only last token for inputs_ids if past is defined in kwargs + if past_key_values is not None: + input_ids = input_ids[:, -1].unsqueeze(-1) + if token_type_ids is not None: + token_type_ids = token_type_ids[:, -1].unsqueeze(-1) + + attention_mask = kwargs.get("attention_mask", None) + position_ids = kwargs.get("position_ids", None) + + if attention_mask is not None and position_ids is None: + # create position_ids on the fly for batch generation + position_ids = attention_mask.long().cumsum(-1) - 1 + position_ids.masked_fill_(attention_mask == 0, 1) + if past_key_values is not None: + position_ids = position_ids[:, -1].unsqueeze(-1) + else: + position_ids = None + return { + "input_ids": input_ids, + "past_key_values": past_key_values, + "use_cache": kwargs.get("use_cache"), + "position_ids": position_ids, + "attention_mask": attention_mask, + "token_type_ids": token_type_ids, + } + + def forward( + self, + input_ids=None, + past_key_values=None, + attention_mask=None, + token_type_ids=None, + position_ids=None, + head_mask=None, + inputs_embeds=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + labels=None, + use_cache=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + ): + assert self.cached_prefix_emb is not None + assert inputs_embeds is None # Not supported by this inference model. + assert labels is None # Training not supported by this inference model. + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # assert len(past_key_values) + len(input_ids) == attention_mask.shape[1] + + # Create embedding + prefix_len = self.cached_prefix_emb.shape[1] + if input_ids.shape[1] != 1: + gen_inputs = input_ids[:, prefix_len:] + gen_emb = self.embeddings(gen_inputs) + gen_emb = gen_emb + self.pos_embedding(gen_emb) + if self.cached_prefix_emb.shape[0] != gen_emb.shape[0]: + prefix_emb = self.cached_prefix_emb.repeat_interleave( + gen_emb.shape[0] // self.cached_prefix_emb.shape[0], 0 + ) + else: + prefix_emb = self.cached_prefix_emb.to(gen_emb.dtype) + emb = torch.cat([prefix_emb, gen_emb], dim=1) + else: + emb = self.embeddings(input_ids) + emb = emb + self.pos_embedding.get_fixed_embedding( + attention_mask.shape[1] - (prefix_len + 1), attention_mask.device + ) + transformer_outputs = self.transformer( + inputs_embeds=emb, + past_key_values=past_key_values, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + hidden_states = transformer_outputs[0] + lm_logits = self.lm_head(hidden_states) + + if not return_dict: + return (lm_logits,) + transformer_outputs[1:] + + return CausalLMOutputWithCrossAttentions( + loss=None, + logits=lm_logits, + past_key_values=transformer_outputs.past_key_values, + hidden_states=transformer_outputs.hidden_states, + attentions=transformer_outputs.attentions, + cross_attentions=transformer_outputs.cross_attentions, + ) + + @staticmethod + def _reorder_cache(past, beam_idx): + """ + This function is used to re-order the :obj:`past_key_values` cache if + :meth:`~transformers.PreTrainedModel.beam_search` or :meth:`~transformers.PreTrainedModel.beam_sample` is + called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step. + """ + return tuple( + tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past) + for layer_past in past + ) + + +class LearnedPositionEmbeddings(nn.Module): + def __init__(self, seq_len, model_channels, init_std=0.02, relative=False): + super().__init__() + self.emb = nn.Embedding(seq_len, model_channels) + nn.init.normal_(self.emb.weight, mean=0.0, std=init_std) + self.relative = relative + + def forward(self, x): + seq_len = x.shape[1] + if self.relative: + start = torch.randint(seq_len, (1,), device=x.device).item() + positions = torch.arange(start, start + seq_len, device=x.device) + else: + positions = torch.arange(seq_len, device=x.device) + return self.emb(positions) + + def get_fixed_embedding(self, ind, dev): + return self.emb(torch.tensor([ind], device=dev)).unsqueeze(0) + + +def init_gpt(layers, model_channels, heads, max_mel_seq_len, max_text_seq_len, max_prompt_len, checkpointing): + """ + Initializes a GPT-2 model and its position embeddings for a text-to-speech system. + + Args: + layers (int): Number of layers in the GPT-2 model. + model_channels (int): Dimension of the GPT-2 model. + heads (int): Number of heads in the GPT-2 model. + max_mel_seq_len (int): Maximum sequence length for the mel spectrogram. + max_text_seq_len (int): Maximum sequence length for the text. + max_prompt_len (int): Maximum length of the prompt. + checkpointing (bool): Whether to use gradient checkpointing. + + Returns: + gpt (GPT2Model): GPT-2 model. + mel_pos_emb (LearnedPositionEmbeddings): Position embeddings for the mel spectrogram. + text_pos_emb (LearnedPositionEmbeddings): Position embeddings for the text. + """ + gpt_config = GPT2Config( + vocab_size=123, + n_positions=max_mel_seq_len + max_text_seq_len + max_prompt_len, + n_ctx=max_mel_seq_len + max_text_seq_len + max_prompt_len, + n_embd=model_channels, + n_layer=layers, + n_head=heads, + gradient_checkpointing=checkpointing, + use_cache=not checkpointing, + ) + gpt = GPT2Model(gpt_config) + + del gpt.wpe + del gpt.wte + + gpt.wpe = functools.partial(null_position_embeddings, dim=model_channels) + + audio_pos_emb = ( + LearnedPositionEmbeddings(max_mel_seq_len, model_channels) + if max_mel_seq_len != -1 + else functools.partial(null_position_embeddings, dim=model_channels) + ) + text_pos_emb = ( + LearnedPositionEmbeddings(max_text_seq_len, model_channels) + if max_mel_seq_len != -1 + else functools.partial(null_position_embeddings, dim=model_channels) + ) + + return gpt, audio_pos_emb, text_pos_emb + + +class XTTSGPTEncoder(nn.Module): + """XTTS GPT Encoder model implementation. + Args: + start_text_token (int): Index of the start token in the text vocabulary. + stop_text_token (int): Index of the stop token in the text vocabulary. + n_layers (int): Number of layers in the GPT-2 model. + n_model_channels (int): Dimension of the GPT-2 model. + n_heads (int): Number of heads in the GPT-2 model. + max_text_tokens (int): Maximum number of text tokens. + max_audio_tokens (int): Maximum number of audio tokens. + max_prompt_tokens (int): Maximum number of prompt tokens. + audio_len_compression (int): Compression factor for the audio length. + number_text_tokens (int): Number of text tokens. + number_audio_codes (int): Number of audio codes. + start_mel_token (int): Index of the start token in the mel code vocabulary. + stop_mel_token (int): Index of the stop token in the mel code vocabulary. + checkpointing (bool): Whether or not to use gradient checkpointing at training. + """ + + _inference_flag = False + + def __init__( + self, + start_text_token=261, + stop_text_token=0, + n_layers=8, + n_model_channels=512, + n_heads=8, + max_text_tokens=120, + max_audio_tokens=250, + max_prompt_tokens=70, + audio_len_compression=1024, + number_text_tokens=256, + number_audio_codes=8194, + start_mel_token=8192, + stop_mel_token=8193, + checkpointing=True, + label_smoothing=0.0, + ): + super().__init__() + + self.label_smoothing = label_smoothing + self.number_text_tokens = number_text_tokens + self.start_text_token = start_text_token + self.stop_text_token = stop_text_token + self.number_audio_codes = number_audio_codes + self.start_mel_token = start_mel_token + self.stop_mel_token = stop_mel_token + self.start_prompt_token = start_mel_token + self.stop_prompt_token = stop_mel_token + self.n_layers = n_layers + self.n_heads = n_heads + self.n_model_channels = n_model_channels + self.max_audio_tokens = -1 if max_audio_tokens == -1 else max_audio_tokens + 2 + self.max_conditioning_inputs + self.max_text_tokens = -1 if max_text_tokens == -1 else max_text_tokens + 2 + self.max_prompt_tokens = max_prompt_tokens + self.audio_len_compression = audio_len_compression + + # embedding layers + self.text_embedding = nn.Embedding(self.number_text_tokens, n_model_channels) + self.audio_embedding = nn.Embedding(self.number_audio_codes, n_model_channels) + self.prompt_embedding = nn.Embedding(self.number_audio_codes, n_model_channels) + self.prompt_pos_embedding = LearnedPositionEmbeddings(24 * 9, n_model_channels) + + # initialize the GPT-2 model + ( + self.gpt, + self.audio_pos_embedding, + self.text_pos_embedding, + ) = init_gpt( + n_layers, + n_model_channels, + n_heads, + self.max_audio_tokens, + self.max_text_tokens, + self.max_prompt_tokens, + checkpointing, + ) + + # output layers + self.final_norm = nn.LayerNorm(n_model_channels) + self.text_head = nn.Linear(n_model_channels, self.number_text_tokens) + self.mel_head = nn.Linear(n_model_channels, self.number_audio_codes) + + def get_grad_norm_parameter_groups(self): + return { + "conditioning_encoder": list(self.conditioning_encoder.parameters()), + "gpt": list(self.gpt.parameters()), + "heads": list(self.text_head.parameters()) + list(self.mel_head.parameters()), + } + + def init_model_for_inference(self, kv_cache=True, use_deepspeed=False, use_deepspeed_f16=False): + self._inference_flag = True + seq_length = self.max_prompt_tokens + self.max_audio_tokens + self.max_text_tokens + gpt_config = GPT2Config( + vocab_size=self.max_audio_tokens, + n_positions=seq_length, + n_ctx=seq_length, + n_embd=self.n_model_channels, + n_layer=self.n_layers, + n_head=self.n_heads, + gradient_checkpointing=False, + use_cache=True, + ) + self.inference_model = GPT2InferenceModel( + gpt_config, + self.gpt, + self.audio_pos_embedding, + self.audio_embedding, + self.final_norm, + self.mel_head, + kv_cache=kv_cache, + ) + self.gpt.wte = self.audio_embedding + + def set_inputs_and_targets(self, input, start_token, stop_token): + inp = F.pad(input, (1, 0), value=start_token) + tar = F.pad(input, (0, 1), value=stop_token) + return inp, tar + + def set_audio_tokens_padding(self, audio_tokens, audio_token_lens): + # Set padding areas within MEL (currently it is coded with the MEL code for ). + for b in range(len(audio_token_lens)): + actual_end = audio_token_lens[b] + if actual_end < audio_tokens.shape[-1]: + audio_tokens[b, actual_end:] = self.stop_mel_token + return audio_tokens + + def get_logits( + self, + speech_conditioning_inputs, + first_inputs, + first_head, + second_inputs=None, + second_head=None, + prompt=None, + get_attns=False, + return_latent=False, + attn_mask_text=None, + attn_mask_mel=None, + ): + if prompt is not None and speech_conditioning_inputs is not None: + offset = speech_conditioning_inputs.shape[1] + prompt.shape[1] + if second_inputs is not None: + emb = torch.cat( + [speech_conditioning_inputs, prompt, first_inputs, second_inputs], + dim=1, + ) + else: + emb = torch.cat([speech_conditioning_inputs, prompt, first_inputs], dim=1) + elif speech_conditioning_inputs is not None: + offset = speech_conditioning_inputs.shape[1] + if second_inputs is not None: + emb = torch.cat([speech_conditioning_inputs, first_inputs, second_inputs], dim=1) + else: + emb = torch.cat([speech_conditioning_inputs, first_inputs], dim=1) + elif prompt is not None: + offset = prompt.shape[1] + if second_inputs is not None: + emb = torch.cat([prompt, first_inputs, second_inputs], dim=1) + else: + emb = torch.cat([prompt, first_inputs], dim=1) + + # with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False): + attn_mask = None + if attn_mask_text is not None: + attn_mask = torch.cat([attn_mask_text, attn_mask_mel], dim=1) + if prompt is not None: + attn_mask_prompt = torch.ones(prompt.shape[0], offset, dtype=torch.bool, device=emb.device) + attn_mask = torch.cat([attn_mask_prompt, attn_mask], dim=1) + + gpt_out = self.gpt( + inputs_embeds=emb, + return_dict=True, + output_attentions=get_attns, + attention_mask=attn_mask, + ) + + if get_attns: + return gpt_out.attentions + + enc = gpt_out.last_hidden_state[:, offset:] + enc = self.final_norm(enc) + + if return_latent: + return enc[:, : first_inputs.shape[1]], enc[:, -second_inputs.shape[1] :] + + first_logits = enc[:, : first_inputs.shape[1]] + first_logits = first_head(first_logits) + first_logits = first_logits.permute(0, 2, 1) + if second_inputs is not None: + second_logits = enc[:, -second_inputs.shape[1] :] + second_logits = second_head(second_logits) + second_logits = second_logits.permute(0, 2, 1) + return first_logits, second_logits + else: + return first_logits + + def get_conditioning(self, speech_conditioning_input): + speech_conditioning_input = ( + speech_conditioning_input.unsqueeze(1) + if len(speech_conditioning_input.shape) == 3 + else speech_conditioning_input + ) + conds = [] + for j in range(speech_conditioning_input.shape[1]): + conds.append(self.conditioning_encoder(speech_conditioning_input[:, j])) + conds = torch.stack(conds, dim=1) + conds = conds.mean(dim=1) + return conds + + def get_prompts(self, prompt_codes): + prompt = F.pad(prompt_codes, (1, 0), value=self.start_prompt_token) + prompt = F.pad(prompt_codes, (0, 1), value=self.stop_prompt_token) + return prompt + + def forward( + self, + text_inputs, + text_lengths, + audio_codes, + wav_lengths, + prompt_codes, + return_attentions=False, + return_latent=False, + ): + max_text_len = text_lengths.max() + + # Due to the convolution in DVAE, codes do not end with silence at the right place. Rather it predicts some intermediate values + # Like [..., 186, 45, 45, 83] where actually it should end with 186. + # We take last 3 codes to prevent abrupt ending of the audio. + # TODO: This is might need some testing. + mel_lengths = torch.ceil(wav_lengths / self.mel_length_compression).long() + 3 + + # If len(codes) + 3 is larger than maxiumum allowed length, we truncate the codes. + max_mel_len = mel_lengths.max() + + if max_mel_len > audio_codes.shape[-1]: + audio_codes = F.pad(audio_codes, (0, max_mel_len - audio_codes.shape[-1])) + + # silence aware lengths, skip the silence tokens at the end of the mel codes. + silence = True + for idx, l in enumerate(mel_lengths): + length = l.item() + while silence: + if audio_codes[idx, length - 1] != 83: + break + length -= 1 + mel_lengths[idx] = length + + # Lovely assertions + assert ( + max_mel_len <= audio_codes.shape[-1] + ), f" โ— max_mel_len ({max_mel_len}) > audio_codes.shape[-1] ({audio_codes.shape[-1]})" + assert ( + max_text_len <= text_inputs.shape[-1] + ), f" โ— max_text_len ({max_text_len}) > text_inputs.shape[-1] ({text_inputs.shape[-1]})" + + # Append stop token to text inputs + text_inputs = F.pad(text_inputs[:, :max_text_len], (0, 1), value=self.stop_text_token) + + # Append silence token to mel codes + audio_codes = F.pad(audio_codes[:, :max_mel_len], (0, 1), value=self.stop_mel_token) + + # Pad mel codes with STOP_MEL_TOKEN + audio_codes = self.set_mel_padding(audio_codes, mel_lengths) + + # Compute speech conditioning input + conds = None + if speech_conditioning_input is not None: + if not return_latent: + # Compute speech conditioning input + speech_conditioning_input = ( + speech_conditioning_input.unsqueeze(1) + if len(speech_conditioning_input.shape) == 3 + else speech_conditioning_input + ) + + conds = [] + for j in range(speech_conditioning_input.shape[1]): + conds.append(self.conditioning_encoder(speech_conditioning_input[:, j])) + conds = torch.stack(conds, dim=1) + if self.average_conditioning_embeddings: + conds = conds.mean(dim=1).unsqueeze(1) + else: + # already computed + conds = speech_conditioning_input.unsqueeze(1) + + # Build input and target tensors + # Prepend start token to inputs and append stop token to targets + text_inputs, _ = self.set_inputs_and_targets(text_inputs, self.start_text_token, self.stop_text_token) + audio_codes, _ = self.set_inputs_and_targets(audio_codes, self.start_mel_token, self.stop_mel_token) + + # Set attn_mask + attn_mask_text = None + attn_mask_mel = None + if not return_latent: + attn_mask_text = torch.ones( + text_inputs.shape[0], + text_inputs.shape[1], + dtype=torch.bool, + device=text_inputs.device, + ) + attn_mask_mel = torch.ones( + audio_codes.shape[0], + audio_codes.shape[1], + dtype=torch.bool, + device=audio_codes.device, + ) + + for idx, l in enumerate(text_lengths): + attn_mask_text[idx, l + 1 :] = 0.0 + + for idx, l in enumerate(mel_lengths): + attn_mask_mel[idx, l + 1 :] = 0.0 + + # Compute text embeddings + positional embeddings + # print(" > text input latent:", text_inputs) + text_emb = self.text_embedding(text_inputs) + self.text_pos_embedding(text_inputs) + + # Compute mel embeddings + positional embeddings + audio_emb = self.audio_embedding(audio_codes) + self.audio_embedding(audio_codes) + + # Compute prompt embeddings + positional embeddings + prompt = self.get_prompts(prompt_codes) + + # prompt_emb = self.audio_embedding(prompt).detach() + self.mel_pos_embedding(prompt).detach() + prompt_emb = self.prompt_embedding(prompt) + self.prompt_pos_embedding(prompt) + + # dropout prompt embeddings + prompt_emb = F.dropout(prompt_emb, p=0.1, training=self.training) + + # Get logits + sub = -4 # don't ask me why ๐Ÿ˜„ + if self.training: + sub = -1 + _, audio_logits = self.get_logits( + conds, + text_emb, + self.text_head, + audio_emb, + self.mel_head, + prompt=prompt_emb, + get_attns=return_attentions, + return_latent=return_latent, + attn_mask_text=attn_mask_text, + attn_mask_mel=attn_mask_mel, + ) + return audio_logits[:, :sub] # sub to prevent bla. + + def compute_embeddings( + self, + speech_conditioning_latent, + text_inputs, + input_tokens=None, + prompt_codes=None, + pad_input_text=False, + ): + """Compute all the embeddings needed for inference.""" + if pad_input_text and text_inputs.shape[1] < 250: + text_inputs = F.pad(text_inputs, (0, 250 - text_inputs.shape[1]), value=self.stop_text_token) + else: + text_inputs = F.pad(text_inputs, (0, 1), value=self.stop_text_token) + text_inputs = F.pad(text_inputs, (1, 0), value=self.start_text_token) + + emb = self.text_embedding(text_inputs) + self.text_pos_embedding(text_inputs) + + print(" > Text inputs:", text_inputs) + if prompt_codes is not None: + prompt_codes = self.get_prompts(prompt_codes) + # prompt_emb = self.audio_embedding(prompt_codes) + self.mel_pos_embedding(prompt_codes) + prompt_emb = self.prompt_embedding(prompt_codes) + self.prompt_pos_embedding(prompt_codes) + + print(" > Prompt inputs:", prompt_codes) + print(" > Prompt inputs shape:", prompt_codes.shape) + emb = torch.cat([prompt_emb, emb], dim=1) + + if speech_conditioning_latent is not None: + conds = speech_conditioning_latent.unsqueeze(1) + emb = torch.cat([conds, emb], dim=1) + + self.inference_model.store_prefix_emb(emb) + + fake_inputs = torch.full( + ( + emb.shape[0], + emb.shape[1] + 1, # +1 for the start_mel_token + ), + fill_value=1, + dtype=torch.long, + device=text_inputs.device, + ) + fake_inputs[:, -1] = self.start_mel_token + + if input_tokens is not None: + fake_inputs = torch.cat([fake_inputs, input_tokens], dim=1) + return fake_inputs + + def inference( + self, + text_inputs, + input_tokens=None, + prompt_codes=None, + pad_input_text=False, + **hf_generate_kwargs, + ): + if pad_input_text and text_inputs.shape[1] < 250: + text_inputs = F.pad(text_inputs, (0, 250 - text_inputs.shape[1]), value=self.stop_text_token) + else: + text_inputs = F.pad(text_inputs, (0, 1), value=self.stop_text_token) + text_inputs = F.pad(text_inputs, (1, 0), value=self.start_text_token) + + emb = self.text_embedding(text_inputs) + self.text_pos_embedding(text_inputs) + + if prompt_codes is not None: + prompt_codes = self.get_prompts(prompt_codes) + prompt_emb = self.prompt_embedding(prompt_codes) + self.prompt_pos_embedding(prompt_codes) + emb = torch.cat([prompt_emb, emb], dim=1) + + self.inference_model.store_prefix_emb(emb) + + fake_inputs = torch.full( + ( + emb.shape[0], + emb.shape[1] + 1, # +1 for the start_mel_token + ), + fill_value=1, + dtype=torch.long, + device=text_inputs.device, + ) + fake_inputs[:, -1] = self.start_mel_token + + if input_tokens is not None: + fake_inputs = torch.cat([fake_inputs, input_tokens], dim=1) + + gen = self.inference_model.generate( + fake_inputs, + bos_token_id=self.start_mel_token, + pad_token_id=self.stop_mel_token, + eos_token_id=self.stop_mel_token, + max_length=self.max_audio_tokens * 2 + self.max_prompt_tokens + self.max_text_tokens, + **hf_generate_kwargs, + ) + if "return_dict_in_generate" in hf_generate_kwargs: + return gen.sequences[:, fake_inputs.shape[1] :], gen + return gen[:, fake_inputs.shape[1] :] diff --git a/TTS/TTS/tts/layers/xtts/gpt_encoder_old.py b/TTS/TTS/tts/layers/xtts/gpt_encoder_old.py new file mode 100644 index 0000000000000000000000000000000000000000..46739aa29fe55ef74244fa127de77e7541394782 --- /dev/null +++ b/TTS/TTS/tts/layers/xtts/gpt_encoder_old.py @@ -0,0 +1,1057 @@ +import functools +import math +import random + +import torch +import torch.nn as nn +import torch.nn.functional as F + +try: + import deepspeed + from deepspeed.ops.transformer.inference import DeepSpeedTransformerInferenceKernel +except ImportError: + pass + +import dlas.codes.torch_intermediary as ml +from dlas.codes.models.arch_util import AttentionBlock +from dlas.codes.trainer.networks import register_model +from dlas.codes.utils.transformers.stream_generator import init_stream_support +from dlas.codes.utils.util import opt_get +from transformers import GPT2Config, GPT2PreTrainedModel +from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions + +init_stream_support() + + +def null_position_embeddings(range, dim): + return torch.zeros((range.shape[0], range.shape[1], dim), device=range.device) + + +class ResBlock(nn.Module): + """ + Basic residual convolutional block that uses GroupNorm. + """ + + def __init__(self, chan): + super().__init__() + self.net = nn.Sequential( + nn.Conv1d(chan, chan, kernel_size=3, padding=1), + nn.GroupNorm(chan // 8, chan), + nn.ReLU(), + nn.Conv1d(chan, chan, kernel_size=3, padding=1), + nn.GroupNorm(chan // 8, chan), + ) + + def forward(self, x): + return F.relu(self.net(x) + x) + + +class GPT2InferenceModel(GPT2PreTrainedModel): + """Override GPT2LMHeadModel to allow for prefix conditioning.""" + + def __init__(self, config, gpt, pos_emb, embeddings, norm, linear, kv_cache): + super().__init__(config) + self.transformer = gpt + self.pos_embedding = pos_emb + self.embeddings = embeddings + self.final_norm = norm + self.lm_head = nn.Sequential(norm, linear) + self.kv_cache = kv_cache + + def store_prefix_emb(self, prefix_emb): + self.cached_prefix_emb = prefix_emb + + def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs): + token_type_ids = kwargs.get("token_type_ids", None) # usually None + if not self.kv_cache: + past_key_values = None + + # only last token for inputs_ids if past is defined in kwargs + if past_key_values is not None: + input_ids = input_ids[:, -1].unsqueeze(-1) + if token_type_ids is not None: + token_type_ids = token_type_ids[:, -1].unsqueeze(-1) + + attention_mask = kwargs.get("attention_mask", None) + position_ids = kwargs.get("position_ids", None) + + if attention_mask is not None and position_ids is None: + # create position_ids on the fly for batch generation + position_ids = attention_mask.long().cumsum(-1) - 1 + position_ids.masked_fill_(attention_mask == 0, 1) + if past_key_values is not None: + position_ids = position_ids[:, -1].unsqueeze(-1) + else: + position_ids = None + return { + "input_ids": input_ids, + "past_key_values": past_key_values, + "use_cache": kwargs.get("use_cache"), + "position_ids": position_ids, + "attention_mask": attention_mask, + "token_type_ids": token_type_ids, + } + + def forward( + self, + input_ids=None, + past_key_values=None, + attention_mask=None, + token_type_ids=None, + position_ids=None, + head_mask=None, + inputs_embeds=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + labels=None, + use_cache=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + ): + assert self.cached_prefix_emb is not None + assert inputs_embeds is None # Not supported by this inference model. + assert labels is None # Training not supported by this inference model. + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # assert len(past_key_values) + len(input_ids) == attention_mask.shape[1] + + # Create embedding + prefix_len = self.cached_prefix_emb.shape[1] + if input_ids.shape[1] != 1: + gen_inputs = input_ids[:, prefix_len:] + gen_emb = self.embeddings(gen_inputs) + gen_emb = gen_emb + self.pos_embedding(gen_emb) + if self.cached_prefix_emb.shape[0] != gen_emb.shape[0]: + prefix_emb = self.cached_prefix_emb.repeat_interleave( + gen_emb.shape[0] // self.cached_prefix_emb.shape[0], 0 + ) + else: + prefix_emb = self.cached_prefix_emb.to(gen_emb.dtype) + emb = torch.cat([prefix_emb, gen_emb], dim=1) + else: + emb = self.embeddings(input_ids) + emb = emb + self.pos_embedding.get_fixed_embedding( + attention_mask.shape[1] - (prefix_len + 1), attention_mask.device + ) + transformer_outputs = self.transformer( + inputs_embeds=emb, + past_key_values=past_key_values, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + hidden_states = transformer_outputs[0] + lm_logits = self.lm_head(hidden_states) + + if not return_dict: + return (lm_logits,) + transformer_outputs[1:] + + return CausalLMOutputWithCrossAttentions( + loss=None, + logits=lm_logits, + past_key_values=transformer_outputs.past_key_values, + hidden_states=transformer_outputs.hidden_states, + attentions=transformer_outputs.attentions, + cross_attentions=transformer_outputs.cross_attentions, + ) + + @staticmethod + def _reorder_cache(past, beam_idx): + """ + This function is used to re-order the :obj:`past_key_values` cache if + :meth:`~transformers.PreTrainedModel.beam_search` or :meth:`~transformers.PreTrainedModel.beam_sample` is + called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step. + """ + return tuple( + tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past) + for layer_past in past + ) + + +class ConditioningEncoder(nn.Module): + def __init__( + self, + spec_dim, + embedding_dim, + attn_blocks=6, + num_attn_heads=4, + do_checkpointing=False, + mean=False, + ): + super().__init__() + attn = [] + self.init = nn.Conv1d(spec_dim, embedding_dim, kernel_size=1) + for a in range(attn_blocks): + attn.append(AttentionBlock(embedding_dim, num_attn_heads, do_checkpoint=do_checkpointing)) + self.attn = nn.Sequential(*attn) + self.dim = embedding_dim + self.do_checkpointing = do_checkpointing + self.mean = mean + + def forward(self, x): + h = self.init(x) + h = self.attn(h) + if self.mean: + return h.mean(dim=2) + else: + return h[:, :, 0] + + +class LearnedPositionEmbeddings(nn.Module): + def __init__(self, seq_len, model_dim, init=0.02, relative=False): + super().__init__() + # nn.Embedding + self.emb = torch.nn.Embedding(seq_len, model_dim) + # Initializing this way is standard for GPT-2 + self.emb.weight.data.normal_(mean=0.0, std=init) + self.relative = relative + self.seq_len = seq_len + + def forward(self, x): + sl = x.shape[1] + if self.relative: + start = random.randint(sl, self.seq_len) - sl + return self.emb(torch.arange(start, start + sl, device=x.device)) + else: + return self.emb(torch.arange(0, sl, device=x.device)) + + def get_fixed_embedding(self, ind, dev): + return self.emb(torch.tensor([ind], device=dev)).unsqueeze(0) + + +def build_hf_gpt_transformer( + layers, + model_dim, + heads, + max_mel_seq_len, + max_text_seq_len, + max_prompt_len, + checkpointing, +): + """ + GPT-2 implemented by the HuggingFace library. + """ + from transformers import GPT2Config, GPT2Model + + gpt_config = GPT2Config( + vocab_size=256, # Unused. + n_positions=max_mel_seq_len + max_text_seq_len + max_prompt_len, + n_ctx=max_mel_seq_len + max_text_seq_len + max_prompt_len, + n_embd=model_dim, + n_layer=layers, + n_head=heads, + gradient_checkpointing=checkpointing, + use_cache=not checkpointing, + ) + gpt = GPT2Model(gpt_config) + # Override the built in positional embeddings + del gpt.wpe + gpt.wpe = functools.partial(null_position_embeddings, dim=model_dim) + # Built-in token embeddings are unused. + del gpt.wte + + # def _attn(self, query, key, value, attention_mask=None, head_mask=None): + # attn_output = torch.nn.functional.scaled_dot_product_attention( + # query, key, value, dropout_p=self.attn_dropout.p, is_causal=True + # ) + # return attn_output, None + + # for i in range(len(gpt.h)): + # gpt.h[i].attn._attn = types.MethodType( + # _attn, gpt.h[i].attn + # ) + + mel_pos_emb = ( + LearnedPositionEmbeddings(max_mel_seq_len, model_dim) + if max_mel_seq_len != -1 + else functools.partial(null_position_embeddings, dim=model_dim) + ) + text_pos_emb = ( + LearnedPositionEmbeddings(max_text_seq_len, model_dim) + if max_mel_seq_len != -1 + else functools.partial(null_position_embeddings, dim=model_dim) + ) + # gpt = torch.compile(gpt, mode="reduce-overhead", fullgraph=True) + return gpt, mel_pos_emb, text_pos_emb, None, None + + +class MelEncoder(nn.Module): + def __init__(self, channels, mel_channels=80, resblocks_per_reduction=2): + super().__init__() + self.channels = channels + self.encoder = nn.Sequential( + nn.Conv1d(mel_channels, channels // 4, kernel_size=3, padding=1), + nn.Sequential(*[ResBlock(channels // 4) for _ in range(resblocks_per_reduction)]), + nn.Conv1d(channels // 4, channels // 2, kernel_size=3, stride=2, padding=1), + nn.GroupNorm(channels // 16, channels // 2), + nn.ReLU(), + nn.Sequential(*[ResBlock(channels // 2) for _ in range(resblocks_per_reduction)]), + nn.Conv1d(channels // 2, channels, kernel_size=3, stride=2, padding=1), + nn.GroupNorm(channels // 8, channels), + nn.ReLU(), + nn.Sequential(*[ResBlock(channels) for _ in range(resblocks_per_reduction)]), + ) + self.reduction = 4 + + def forward(self, x): + for e in self.encoder: + x = e(x) + return x.permute(0, 2, 1) + + +class UnifiedVoice(nn.Module): + def __init__( + self, + start_text_token=261, + stop_text_token=0, + layers=8, + model_dim=512, + heads=8, + max_text_tokens=120, + max_mel_tokens=250, + max_prompt_tokens=70, + max_conditioning_inputs=1, + mel_length_compression=1024, + number_text_tokens=256, + number_mel_codes=8194, + start_mel_token=8192, + stop_mel_token=8193, + train_solo_embeddings=False, + use_mel_codes_as_input=True, + checkpointing=True, + average_conditioning_embeddings=False, + freeze_everything_but_position_embeddings=False, + freeze_conditioning_encoder=False, + tortoise_compat=True, + label_smoothing=0.0, + ): + """ + Args: + layers: Number of layers in transformer stack. + model_dim: Operating dimensions of the transformer + heads: Number of transformer heads. Must be divisible by model_dim. Recommend model_dim//64 + max_text_tokens: Maximum number of text tokens that will be encountered by model. + max_mel_tokens: Maximum number of MEL tokens that will be encountered by model. + max_conditioning_inputs: Maximum number of conditioning inputs provided to the model. If (1), conditioning input can be of format (b,80,s), otherwise (b,n,80,s). + mel_length_compression: The factor between and . Used to compute MEL code padding given wav input length. + number_text_tokens: + start_text_token: + stop_text_token: + number_mel_codes: + start_mel_token: + stop_mel_token: + train_solo_embeddings: + use_mel_codes_as_input: + checkpointing: + average_conditioning_embeddings: Whether or not conditioning embeddings should be averaged, instead of fed piecewise into the model. + """ + super().__init__() + + self.label_smoothing = label_smoothing + self.number_text_tokens = number_text_tokens + self.start_text_token = start_text_token + self.stop_text_token = stop_text_token + self.number_mel_codes = number_mel_codes + self.start_mel_token = start_mel_token + self.stop_mel_token = stop_mel_token + self.start_prompt_token = start_mel_token + self.stop_prompt_token = stop_mel_token + self.layers = layers + self.heads = heads + self.model_dim = model_dim + self.max_conditioning_inputs = max_conditioning_inputs + self.max_mel_tokens = -1 if max_mel_tokens == -1 else max_mel_tokens + 2 + self.max_conditioning_inputs + self.max_text_tokens = -1 if max_text_tokens == -1 else max_text_tokens + 2 + self.max_prompt_tokens = max_prompt_tokens + self.mel_length_compression = mel_length_compression + # self.conditioning_encoder = ConditioningEncoder( + # 80, model_dim, num_attn_heads=heads + # ) + self.average_conditioning_embeddings = average_conditioning_embeddings + self.tortoise_compat = tortoise_compat # credit to https://github.com/152334H/DL-Art-School/commit/ae80992817059acf6eef38a680efa5124cee570b + # nn.Embedding + self.text_embedding = ml.Embedding(self.number_text_tokens, model_dim) + if use_mel_codes_as_input: + # nn.Embedding + self.mel_embedding = ml.Embedding(self.number_mel_codes, model_dim) + else: + self.mel_embedding = MelEncoder(model_dim, resblocks_per_reduction=1) + ( + self.gpt, + self.mel_pos_embedding, + self.text_pos_embedding, + self.mel_layer_pos_embedding, + self.text_layer_pos_embedding, + ) = build_hf_gpt_transformer( + layers, + model_dim, + heads, + self.max_mel_tokens, + self.max_text_tokens, + self.max_prompt_tokens, + checkpointing, + ) + if train_solo_embeddings: + self.mel_solo_embedding = nn.Parameter(torch.randn(1, 1, model_dim) * 0.02, requires_grad=True) + self.text_solo_embedding = nn.Parameter(torch.randn(1, 1, model_dim) * 0.02, requires_grad=True) + else: + self.mel_solo_embedding = 0 + self.text_solo_embedding = 0 + + self.final_norm = nn.LayerNorm(model_dim) + self.text_head = ml.Linear(model_dim, self.number_text_tokens) + self.mel_head = ml.Linear(model_dim, self.number_mel_codes) + + # Initialize the embeddings per the GPT-2 scheme + embeddings = [self.text_embedding] + if use_mel_codes_as_input: + embeddings.append(self.mel_embedding) + for module in embeddings: + module.weight.data.normal_(mean=0.0, std=0.02) + + if freeze_conditioning_encoder: + print(" > Freezing conditioning encoder.") + for p in self.conditioning_encoder.parameters(): + p.requires_grad = False + p.DO_NOT_TRAIN = True + + if freeze_everything_but_position_embeddings: + for p in self.parameters(): + p.requires_grad = False + p.DO_NOT_TRAIN = True + for m in [self.mel_pos_embedding, self.text_pos_embedding]: + for p in m.parameters(): + del p.DO_NOT_TRAIN + p.requires_grad = True + + def get_grad_norm_parameter_groups(self): + return { + "conditioning_encoder": list(self.conditioning_encoder.parameters()), + "gpt": list(self.gpt.parameters()), + "heads": list(self.text_head.parameters()) + list(self.mel_head.parameters()), + } + + def post_init_gpt2_config(self, kv_cache=True, use_deepspeed=False, use_deepspeed_f16=False): + seq_length = self.max_prompt_tokens + self.max_mel_tokens + self.max_text_tokens + 1 + gpt_config = GPT2Config( + vocab_size=self.max_mel_tokens, + n_positions=seq_length, + n_ctx=seq_length, + n_embd=self.model_dim, + n_layer=self.layers, + n_head=self.heads, + gradient_checkpointing=False, + use_cache=True, + ) + self.inference_model = GPT2InferenceModel( + gpt_config, + self.gpt, + self.mel_pos_embedding, + self.mel_embedding, + self.final_norm, + self.mel_head, + kv_cache=kv_cache, + ) + # self.inference_model = PrunedGPT2InferenceModel(gpt_config, self.gpt, self.mel_pos_embedding, self.mel_embedding, self.final_norm, self.mel_head) + self.gpt.wte = self.mel_embedding + + if use_deepspeed: + # init deepspeed inference engine + if use_deepspeed_f16: + self.gpt.wte = self.mel_embedding.half() + self.gpt.wpe = self.mel_pos_embedding.half() + self.ds_engine = deepspeed.init_inference( + model=self.inference_model.half(), # Transformers models + mp_size=1, # Number of GPU + dtype=torch.float16 if use_deepspeed_f16 else torch.float32, # desired data type of output + replace_method="auto", # Lets DS autmatically identify the layer to replace + replace_with_kernel_inject=True, # replace the model with the kernel injector + ) + self.inference_model = self.ds_engine.module.eval() + + def build_aligned_inputs_and_targets(self, input, start_token, stop_token): + inp = F.pad(input, (1, 0), value=start_token) + tar = F.pad(input, (0, 1), value=stop_token) + return inp, tar + + def set_mel_padding(self, mel_input_tokens, mel_lengths): + """ + Given mel tokens that are derived from a padded audio clip and the actual lengths of each batch element in + that audio clip, reformats the tokens with STOP_MEL_TOKEN in place of the zero padding. This is required + preformatting to create a working TTS model. + """ + # Set padding areas within MEL (currently it is coded with the MEL code for ). + for b in range(len(mel_lengths)): + actual_end = mel_lengths[b] + if actual_end < mel_input_tokens.shape[-1]: + mel_input_tokens[b, actual_end:] = self.stop_mel_token + return mel_input_tokens + + def get_logits( + self, + speech_conditioning_inputs, + first_inputs, + first_head, + second_inputs=None, + second_head=None, + prompt=None, + get_attns=False, + return_latent=False, + attn_mask_text=None, + attn_mask_mel=None, + ): + if prompt is not None and speech_conditioning_inputs is not None: + offset = speech_conditioning_inputs.shape[1] + prompt.shape[1] + if second_inputs is not None: + emb = torch.cat( + [speech_conditioning_inputs, prompt, first_inputs, second_inputs], + dim=1, + ) + else: + emb = torch.cat([speech_conditioning_inputs, prompt, first_inputs], dim=1) + elif speech_conditioning_inputs is not None: + offset = speech_conditioning_inputs.shape[1] + if second_inputs is not None: + emb = torch.cat([speech_conditioning_inputs, first_inputs, second_inputs], dim=1) + else: + emb = torch.cat([speech_conditioning_inputs, first_inputs], dim=1) + elif prompt is not None: + offset = prompt.shape[1] + if second_inputs is not None: + emb = torch.cat([prompt, first_inputs, second_inputs], dim=1) + else: + emb = torch.cat([prompt, first_inputs], dim=1) + + # with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False): + attn_mask = None + if attn_mask_text is not None: + attn_mask = torch.cat([attn_mask_text, attn_mask_mel], dim=1) + if prompt is not None: + attn_mask_prompt = torch.ones(prompt.shape[0], offset, dtype=torch.bool, device=emb.device) + attn_mask = torch.cat([attn_mask_prompt, attn_mask], dim=1) + + gpt_out = self.gpt( + inputs_embeds=emb, + return_dict=True, + output_attentions=get_attns, + attention_mask=attn_mask, + ) + + if get_attns: + return gpt_out.attentions + + enc = gpt_out.last_hidden_state[:, offset:] + enc = self.final_norm(enc) + + if return_latent: + return enc[:, : first_inputs.shape[1]], enc[:, -second_inputs.shape[1] :] + + first_logits = enc[:, : first_inputs.shape[1]] + first_logits = first_head(first_logits) + first_logits = first_logits.permute(0, 2, 1) + if second_inputs is not None: + second_logits = enc[:, -second_inputs.shape[1] :] + second_logits = second_head(second_logits) + second_logits = second_logits.permute(0, 2, 1) + return first_logits, second_logits + else: + return first_logits + + def get_conditioning(self, speech_conditioning_input): + speech_conditioning_input = ( + speech_conditioning_input.unsqueeze(1) + if len(speech_conditioning_input.shape) == 3 + else speech_conditioning_input + ) + conds = [] + for j in range(speech_conditioning_input.shape[1]): + conds.append(self.conditioning_encoder(speech_conditioning_input[:, j])) + conds = torch.stack(conds, dim=1) + conds = conds.mean(dim=1) + return conds + + def get_prompts(self, prompt_codes): + """ + Create a prompt from the mel codes. This is used to condition the model on the mel codes. + Pad the prompt with start and stop mel tokens. + """ + prompt = prompt_codes + if self.training: + prompt_len = random.randint(1, 9) # in secs + prompt_len = prompt_len * 24 # in frames + + if prompt_codes.shape[1] < prompt_len: + prompt_len = prompt_codes.shape[-1] + start = 0 + else: + start = random.randint(0, prompt_codes.shape[-1] - prompt_len) + + prompt = prompt_codes[:, start : start + prompt_len] + + # add start and stop tokens + prompt = F.pad(prompt, (1, 0), value=self.start_prompt_token) + prompt = F.pad(prompt, (0, 1), value=self.stop_prompt_token) + return prompt + + # def get_prompts(self, prompt_codes): + # """ + # Create a prompt from the mel codes. This is used to condition the model on the mel codes. + # Pad the prompt with start and stop mel tokens. + # """ + # prompt = prompt_codes + # if self.training: + # max_prompt_len = 9 * 24 + # if prompt_codes.shape[1] < max_prompt_len: + # prompt = prompt_codes + # else: + # start = random.randint(0, prompt_codes.shape[1] - max_prompt_len) + # prompt = prompt_codes[:, start : start + max_prompt_len] + + # # add start and stop tokens + # prompt = F.pad(prompt, (1, 0), value=self.start_prompt_token) + # prompt = F.pad(prompt, (0, 1), value=self.stop_prompt_token) + # return prompt + + def forward( + self, + speech_conditioning_input, + text_inputs, + text_lengths, + mel_codes, + wav_lengths, + prompt_codes, + loss_weights=None, + text_first=True, + return_attentions=False, + return_latent=False, + ): + """ + Forward pass that uses both text and voice in either text conditioning mode or voice conditioning mode + (actuated by `text_first`). + + speech_conditioning_input: MEL float tensor, (b,80,s) + text_inputs: long tensor, (b,t) + text_lengths: long tensor, (b,) + mel_inputs: long tensor, (b,m) + wav_lengths: long tensor, (b,) + + If return_attentions is specified, only logits are returned. + If return_latent is specified, loss & logits are not computed or returned. Only the predicted latents are returned. + """ + + # โ— FIXIT + speech_conditioning_input = None + if self.max_conditioning_inputs == 0: + assert ( + speech_conditioning_input is None + ), " โ— speech_conditioning_input is not None, but max_conditioning_inputs == 0" + + max_text_len = text_lengths.max() + # Due to the convolution in DVAE, codes do not end with silence at the right place. Rather it predicts some intermediate values + # Like [..., 186, 45, 45, 83] where actually it should end with 186. + # We take last 3 codes to prevent abrupt ending of the audio. + # TODO: This is might need some testing. + mel_lengths = torch.ceil(wav_lengths / self.mel_length_compression).long() + 3 + + # If len(codes) + 3 is larger than maxiumum allowed length, we truncate the codes. + max_mel_len = mel_lengths.max() + + if max_mel_len > mel_codes.shape[-1]: + mel_codes = F.pad(mel_codes, (0, max_mel_len - mel_codes.shape[-1])) + + # mel_lengths[mel_lengths >= max_mel_len] = max_mel_len + + # silence aware lengths, skip the silence tokens at the end of the mel codes. + silence = True + for idx, l in enumerate(mel_lengths): + length = l.item() + while silence: + if mel_codes[idx, length - 1] != 83: + break + length -= 1 + mel_lengths[idx] = length + + # Lovely assertions + assert ( + max_mel_len <= mel_codes.shape[-1] + ), f" โ— max_mel_len ({max_mel_len}) > mel_codes.shape[-1] ({mel_codes.shape[-1]})" + assert ( + max_text_len <= text_inputs.shape[-1] + ), f" โ— max_text_len ({max_text_len}) > text_inputs.shape[-1] ({text_inputs.shape[-1]})" + + # Append stop token to text inputs + text_inputs = F.pad(text_inputs[:, :max_text_len], (0, 1), value=self.stop_text_token) + + # Append silence token to mel codes + mel_codes = F.pad(mel_codes[:, :max_mel_len], (0, 1), value=self.stop_mel_token) + + # Pad mel codes with STOP_MEL_TOKEN + mel_codes = self.set_mel_padding(mel_codes, mel_lengths) + + # Compute speech conditioning input + conds = None + if speech_conditioning_input is not None: + if not return_latent: + # Compute speech conditioning input + speech_conditioning_input = ( + speech_conditioning_input.unsqueeze(1) + if len(speech_conditioning_input.shape) == 3 + else speech_conditioning_input + ) + + conds = [] + for j in range(speech_conditioning_input.shape[1]): + conds.append(self.conditioning_encoder(speech_conditioning_input[:, j])) + conds = torch.stack(conds, dim=1) + if self.average_conditioning_embeddings: + conds = conds.mean(dim=1).unsqueeze(1) + else: + # already computed + conds = speech_conditioning_input.unsqueeze(1) + + # Build input and target tensors + # Prepend start token to inputs and append stop token to targets + text_inputs, text_targets = self.build_aligned_inputs_and_targets( + text_inputs, self.start_text_token, self.stop_text_token + ) + mel_codes, mel_targets = self.build_aligned_inputs_and_targets( + mel_codes, self.start_mel_token, self.stop_mel_token + ) + + # Set attn_mask + attn_mask_text = None + attn_mask_mel = None + if not return_latent: + attn_mask_text = torch.ones( + text_inputs.shape[0], + text_inputs.shape[1], + dtype=torch.bool, + device=text_inputs.device, + ) + attn_mask_mel = torch.ones( + mel_codes.shape[0], + mel_codes.shape[1], + dtype=torch.bool, + device=mel_codes.device, + ) + + for idx, l in enumerate(text_lengths): + attn_mask_text[idx, l + 1 :] = 0.0 + + for idx, l in enumerate(mel_lengths): + attn_mask_mel[idx, l + 1 :] = 0.0 + + # Compute text embeddings + positional embeddings + # print(" > text input latent:", text_inputs) + text_emb = self.text_embedding(text_inputs) + self.text_pos_embedding(text_inputs) + + # Compute mel embeddings + positional embeddings + mel_emb = self.mel_embedding(mel_codes) + self.mel_pos_embedding(mel_codes) + + # Compute prompt embeddings + positional embeddings + prompt = self.get_prompts(prompt_codes) + + prompt_emb = self.mel_embedding(prompt).detach() + self.mel_pos_embedding(prompt).detach() + + # Get logits + sub = -4 # don't ask me why ๐Ÿ˜„ + if self.training: + sub = -1 + text_logits, mel_logits = self.get_logits( + conds, + text_emb, + self.text_head, + mel_emb, + self.mel_head, + prompt=prompt_emb, + get_attns=return_attentions, + return_latent=return_latent, + attn_mask_text=attn_mask_text, + attn_mask_mel=attn_mask_mel, + ) + if return_latent: + return mel_logits[:, :sub] # sub to prevent bla. + + if return_attentions: + return mel_logits + + # Set paddings to -1 to ignore them in loss + for idx, l in enumerate(text_lengths): + text_targets[idx, l + 1 :] = -1 + + for idx, l in enumerate(mel_lengths): + mel_targets[idx, l + 1 :] = -1 + + # check if stoptoken is in every row of mel_targets + assert (mel_targets == self.stop_mel_token).sum() >= mel_targets.shape[ + 0 + ], f" โ— mel_targets does not contain stop token ({self.stop_mel_token}) in every row." + + # Compute losses + loss_text = F.cross_entropy( + text_logits, text_targets.long(), ignore_index=-1, label_smoothing=self.label_smoothing + ) + loss_mel = F.cross_entropy( + mel_logits, mel_targets.long(), ignore_index=-1, label_smoothing=self.label_smoothing + ) + + # if loss_weights is not None: + # loss_text = loss_text * loss_weights[:, None] + # loss_mel = loss_mel * loss_weights[:, None] + return loss_text.mean(), loss_mel.mean(), mel_logits + + def text_forward(self, speech_conditioning_input, text_inputs, text_lengths): + """ + Performs autoregressive modeling on only text. Still requires a speech_conditioning_input due to the way the + model inputs are formatted. Just provide any audio clip (arguably, zeros could be provided). + """ + # This model will receive micro-batches with a ton of padding for both the text and MELs. Ameliorate this by + # chopping the inputs by the maximum actual length. + max_text_len = text_lengths.max() + text_inputs = F.pad(text_inputs[:, :max_text_len], (0, 1), value=self.stop_text_token) + + speech_conditioning_input = ( + speech_conditioning_input.unsqueeze(1) + if len(speech_conditioning_input.shape) == 3 + else speech_conditioning_input + ) + conds = [] + for j in range(speech_conditioning_input.shape[1]): + conds.append(self.conditioning_encoder(speech_conditioning_input[:, j])) + conds = torch.stack(conds, dim=1) + if self.average_conditioning_embeddings: + conds = conds.mean(dim=1).unsqueeze(1) + + text_inputs, text_targets = self.build_aligned_inputs_and_targets( + text_inputs, self.start_text_token, self.stop_text_token + ) + text_emb = self.text_embedding(text_inputs) + self.text_pos_embedding(text_inputs) + self.text_solo_embedding + text_logits = self.get_logits(conds, text_emb, self.text_head) + loss_text = F.cross_entropy(text_logits, text_targets.long()) + return loss_text.mean() + + def speech_forward(self, speech_conditioning_input, mel_codes, wav_lengths, raw_mels=None): + """ + Performs autoregressive modeling on only speech data. + """ + assert self.max_mel_tokens >= mel_codes.shape[1], f"{mel_codes.shape[1]}" + + # This model will receive micro-batches with a ton of padding for both the text and MELs. Ameliorate this by + # chopping the inputs by the maximum actual length. + max_mel_len = wav_lengths.max() // self.mel_length_compression + mel_codes = F.pad(mel_codes[:, :max_mel_len], (0, 1), value=self.stop_mel_token) + mel_codes = self.set_mel_padding(mel_codes, wav_lengths) + if raw_mels is not None: + raw_mels = raw_mels[:, :, : max_mel_len * 4] + + speech_conditioning_input = ( + speech_conditioning_input.unsqueeze(1) + if len(speech_conditioning_input.shape) == 3 + else speech_conditioning_input + ) + conds = [] + for j in range(speech_conditioning_input.shape[1]): + conds.append(self.conditioning_encoder(speech_conditioning_input[:, j])) + conds = torch.stack(conds, dim=1) + if self.average_conditioning_embeddings: + conds = conds.mean(dim=1).unsqueeze(1) + + mel_codes, mel_targets = self.build_aligned_inputs_and_targets( + mel_codes, self.start_mel_token, self.stop_mel_token + ) + if raw_mels is not None: + mel_inp = F.pad(raw_mels, (0, 4)) + else: + mel_inp = mel_codes + mel_emb = self.mel_embedding(mel_inp) + mel_emb = mel_emb + self.mel_pos_embedding(mel_codes) + self.mel_solo_embedding + mel_logits = self.get_logits(conds, mel_emb, self.mel_head) + loss_mel = F.cross_entropy(mel_logits, mel_targets.long()) + return loss_mel.mean() + + def get_generator(self, fake_inputs, **hf_generate_kwargs): + return self.inference_model.generate_stream( + fake_inputs, + bos_token_id=self.start_mel_token, + pad_token_id=self.stop_mel_token, + eos_token_id=self.stop_mel_token, + max_length=self.max_mel_tokens * 2 + self.max_prompt_tokens + self.max_text_tokens, + do_stream=True, + **hf_generate_kwargs, + ) + + def compute_embeddings( + self, + speech_conditioning_latent, + text_inputs, + input_tokens=None, + prompt_codes=None, + pad_input_text=False, + ): + if pad_input_text and text_inputs.shape[1] < 250: + text_inputs = F.pad(text_inputs, (0, 250 - text_inputs.shape[1]), value=self.stop_text_token) + else: + text_inputs = F.pad(text_inputs, (0, 1), value=self.stop_text_token) + text_inputs = F.pad(text_inputs, (1, 0), value=self.start_text_token) + + emb = self.text_embedding(text_inputs) + self.text_pos_embedding(text_inputs) + + print(" > Text inputs:", text_inputs) + if prompt_codes is not None: + prompt_codes = self.get_prompts(prompt_codes) + prompt_emb = self.mel_embedding(prompt_codes) + self.mel_pos_embedding(prompt_codes) + print(" > Prompt inputs:", prompt_codes) + print(" > Prompt inputs shape:", prompt_codes.shape) + emb = torch.cat([prompt_emb, emb], dim=1) + + if speech_conditioning_latent is not None: + conds = speech_conditioning_latent.unsqueeze(1) + emb = torch.cat([conds, emb], dim=1) + + self.inference_model.store_prefix_emb(emb) + + fake_inputs = torch.full( + ( + emb.shape[0], + emb.shape[1] + 1, # +1 for the start_mel_token + ), + fill_value=1, + dtype=torch.long, + device=text_inputs.device, + ) + fake_inputs[:, -1] = self.start_mel_token + + if input_tokens is not None: + fake_inputs = torch.cat([fake_inputs, input_tokens], dim=1) + return fake_inputs + + def inference_speech( + self, + speech_conditioning_latent, + text_inputs, + input_tokens=None, + prompt_codes=None, + pad_input_text=False, + **hf_generate_kwargs, + ): + if pad_input_text and text_inputs.shape[1] < 250: + text_inputs = F.pad(text_inputs, (0, 250 - text_inputs.shape[1]), value=self.stop_text_token) + else: + text_inputs = F.pad(text_inputs, (0, 1), value=self.stop_text_token) + text_inputs = F.pad(text_inputs, (1, 0), value=self.start_text_token) + + emb = self.text_embedding(text_inputs) + self.text_pos_embedding(text_inputs) + + print(" > Text inputs:", text_inputs) + if prompt_codes is not None: + prompt_codes = self.get_prompts(prompt_codes) + prompt_emb = self.mel_embedding(prompt_codes) + self.mel_pos_embedding(prompt_codes) + print(" > Prompt inputs:", prompt_codes) + print(" > Prompt inputs shape:", prompt_codes.shape) + emb = torch.cat([prompt_emb, emb], dim=1) + + if speech_conditioning_latent is not None: + conds = speech_conditioning_latent.unsqueeze(1) + emb = torch.cat([conds, emb], dim=1) + + self.inference_model.store_prefix_emb(emb) + + fake_inputs = torch.full( + ( + emb.shape[0], + emb.shape[1] + 1, # +1 for the start_mel_token + ), + fill_value=1, + dtype=torch.long, + device=text_inputs.device, + ) + fake_inputs[:, -1] = self.start_mel_token + + if input_tokens is not None: + fake_inputs = torch.cat([fake_inputs, input_tokens], dim=1) + + gen = self.inference_model.generate( + fake_inputs, + bos_token_id=self.start_mel_token, + pad_token_id=self.stop_mel_token, + eos_token_id=self.stop_mel_token, + max_length=self.max_mel_tokens * 2 + self.max_prompt_tokens + self.max_text_tokens, + **hf_generate_kwargs, + ) + if "return_dict_in_generate" in hf_generate_kwargs: + return gen.sequences[:, fake_inputs.shape[1] :], gen + return gen[:, fake_inputs.shape[1] :] + + # Turns the (utterly insane) output of HF.generate() into a far more sane output: + # [tensors(B,H,S,S)]. Outer=layers, B=batch,H=head,S=sequence + def make_hf_generate_attentions_sane(self, attentions): + layers = [[] for _ in range(len(attentions[0]))] + full_attention_size = attentions[-1][0].shape[-1] + for i, gen in enumerate(attentions): + for j, lyr in enumerate(gen): + layers[j].append(F.pad(lyr, (0, full_attention_size - lyr.shape[-1]))) + catted = [] + for lyr in layers: + catted.append(torch.cat(lyr, dim=2)) + return catted + + def convert_attentions_to_aligned_codes(self, text, attentions, codes, num_conds): + """ + This was an attempt to make some sense out of the attention matrix retrieved from the unified_voice model. Unfortunately, I can't use it for aligning text & voice. + """ + text_padding = num_conds + 2 + num_text = text.shape[-1] + num_context = num_text + text_padding + assert num_context + 1 == attentions[0][0].shape[-1] + attentions = self.make_hf_generate_attentions_sane(attentions) + results = [torch.empty_like(codes) for _ in range(len(attentions))] + for l, layer in enumerate(attentions): + dec_context = layer[:, :, num_context:, :] + # Mask out everything that isn't text (including the start token, which gets a LOT of attention) + dec_context[:, :, :, : text_padding + 1] = 0 + dec_context[:, :, :, num_context:] = 0 + for h in range(dec_context.shape[1]): + dec_context_indices = torch.argmax(dec_context[0, h], dim=-1) + print(f"layer_{l};head_{h}: " + str(dec_context_indices)) + for t, att_tok in enumerate(attentions): + combined_attention_weights = torch.zeros((codes.shape[0], num_text), device=codes.device) + for lyr in att_tok: + token_to_text_attentions = lyr[:, :, -1, text_padding : (text_padding + num_text)].sum(dim=1) + combined_attention_weights = combined_attention_weights + token_to_text_attentions + break + most_attended_text_token = combined_attention_weights.argmax(dim=-1) + results[:, t] = most_attended_text_token + eos_token_mask = codes != self.stop_mel_token + return results * eos_token_mask + + +@register_model +def register_unified_voice_prompt(opt_net, opt): + return UnifiedVoice(**opt_get(opt_net, ["kwargs"], {})) + + +if __name__ == "__main__": + gpt = UnifiedVoice( + model_dim=256, + heads=4, + train_solo_embeddings=True, + use_mel_codes_as_input=True, + max_conditioning_inputs=4, + freeze_everything_but_position_embeddings=True, + ) + l = gpt( + torch.randn(2, 3, 80, 800), + torch.randint(high=256, size=(2, 120)), + torch.tensor([32, 120]), + torch.randint(high=8192, size=(2, 250)), + torch.tensor([250 * 256, 195 * 256]), + ) + # gpt.text_forward(torch.randn(2,80,800), torch.randint(high=50, size=(2,80)), torch.tensor([32, 80])) diff --git a/TTS/TTS/tts/layers/xtts/gpt_inference.py b/TTS/TTS/tts/layers/xtts/gpt_inference.py new file mode 100644 index 0000000000000000000000000000000000000000..d44bd3decd2eb14a5bed14e5d2a8232386ef7076 --- /dev/null +++ b/TTS/TTS/tts/layers/xtts/gpt_inference.py @@ -0,0 +1,136 @@ +import math + +import torch +from torch import nn +from transformers import GPT2PreTrainedModel +from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions + + +class GPT2InferenceModel(GPT2PreTrainedModel): + """Override GPT2LMHeadModel to allow for prefix conditioning.""" + + def __init__(self, config, gpt, pos_emb, embeddings, norm, linear, kv_cache): + super().__init__(config) + self.transformer = gpt + self.pos_embedding = pos_emb + self.embeddings = embeddings + self.final_norm = norm + self.lm_head = nn.Sequential(norm, linear) + self.kv_cache = kv_cache + + def store_prefix_emb(self, prefix_emb): + self.cached_prefix_emb = prefix_emb + + def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs): + token_type_ids = kwargs.get("token_type_ids", None) # usually None + if not self.kv_cache: + past_key_values = None + + # only last token for inputs_ids if past is defined in kwargs + if past_key_values is not None: + input_ids = input_ids[:, -1].unsqueeze(-1) + if token_type_ids is not None: + token_type_ids = token_type_ids[:, -1].unsqueeze(-1) + + attention_mask = kwargs.get("attention_mask", None) + position_ids = kwargs.get("position_ids", None) + + if attention_mask is not None and position_ids is None: + # create position_ids on the fly for batch generation + position_ids = attention_mask.long().cumsum(-1) - 1 + position_ids.masked_fill_(attention_mask == 0, 1) + if past_key_values is not None: + position_ids = position_ids[:, -1].unsqueeze(-1) + else: + position_ids = None + return { + "input_ids": input_ids, + "past_key_values": past_key_values, + "use_cache": kwargs.get("use_cache"), + "position_ids": position_ids, + "attention_mask": attention_mask, + "token_type_ids": token_type_ids, + } + + def forward( + self, + input_ids=None, + past_key_values=None, + attention_mask=None, + token_type_ids=None, + position_ids=None, + head_mask=None, + inputs_embeds=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + labels=None, + use_cache=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + ): + assert self.cached_prefix_emb is not None + assert inputs_embeds is None # Not supported by this inference model. + assert labels is None # Training not supported by this inference model. + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # assert len(past_key_values) + len(input_ids) == attention_mask.shape[1] + + # Create embedding + prefix_len = self.cached_prefix_emb.shape[1] + if input_ids.shape[1] != 1: + gen_inputs = input_ids[:, prefix_len:] + gen_emb = self.embeddings(gen_inputs) + gen_emb = gen_emb + self.pos_embedding(gen_emb) + if self.cached_prefix_emb.shape[0] != gen_emb.shape[0]: + prefix_emb = self.cached_prefix_emb.repeat_interleave( + gen_emb.shape[0] // self.cached_prefix_emb.shape[0], 0 + ) + else: + prefix_emb = self.cached_prefix_emb.to(gen_emb.dtype) + emb = torch.cat([prefix_emb, gen_emb], dim=1) + else: + emb = self.embeddings(input_ids) + emb = emb + self.pos_embedding.get_fixed_embedding( + attention_mask.shape[1] - (prefix_len + 1), attention_mask.device + ) + transformer_outputs = self.transformer( + inputs_embeds=emb, + past_key_values=past_key_values, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + hidden_states = transformer_outputs[0] + lm_logits = self.lm_head(hidden_states) + + if not return_dict: + return (lm_logits,) + transformer_outputs[1:] + + return CausalLMOutputWithCrossAttentions( + loss=None, + logits=lm_logits, + past_key_values=transformer_outputs.past_key_values, + hidden_states=transformer_outputs.hidden_states, + attentions=transformer_outputs.attentions, + cross_attentions=transformer_outputs.cross_attentions, + ) + + @staticmethod + def _reorder_cache(past, beam_idx): + """ + This function is used to re-order the :obj:`past_key_values` cache if + :meth:`~transformers.PreTrainedModel.beam_search` or :meth:`~transformers.PreTrainedModel.beam_sample` is + called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step. + """ + return tuple( + tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past) + for layer_past in past + ) diff --git a/TTS/TTS/tts/layers/xtts/latent_encoder.py b/TTS/TTS/tts/layers/xtts/latent_encoder.py new file mode 100644 index 0000000000000000000000000000000000000000..f9d62a36f1529ddd1e9e6fdd92afc5c9f224f827 --- /dev/null +++ b/TTS/TTS/tts/layers/xtts/latent_encoder.py @@ -0,0 +1,141 @@ +# ported from: Originally ported from: https://github.com/neonbjb/tortoise-tts + +import math + +import torch +from torch import nn +from torch.nn import functional as F + + +class GroupNorm32(nn.GroupNorm): + def forward(self, x): + return super().forward(x.float()).type(x.dtype) + + +def conv_nd(dims, *args, **kwargs): + if dims == 1: + return nn.Conv1d(*args, **kwargs) + elif dims == 2: + return nn.Conv2d(*args, **kwargs) + elif dims == 3: + return nn.Conv3d(*args, **kwargs) + raise ValueError(f"unsupported dimensions: {dims}") + + +def normalization(channels): + groups = 32 + if channels <= 16: + groups = 8 + elif channels <= 64: + groups = 16 + while channels % groups != 0: + groups = int(groups / 2) + assert groups > 2 + return GroupNorm32(groups, channels) + + +def zero_module(module): + for p in module.parameters(): + p.detach().zero_() + return module + + +class QKVAttention(nn.Module): + def __init__(self, n_heads): + super().__init__() + self.n_heads = n_heads + + def forward(self, qkv, mask=None, qk_bias=0): + """ + Apply QKV attention. + + :param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs. + :return: an [N x (H * C) x T] tensor after attention. + """ + bs, width, length = qkv.shape + assert width % (3 * self.n_heads) == 0 + ch = width // (3 * self.n_heads) + q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1) + scale = 1 / math.sqrt(math.sqrt(ch)) + weight = torch.einsum("bct,bcs->bts", q * scale, k * scale) # More stable with f16 than dividing afterwards + weight = weight + qk_bias + if mask is not None: + mask = mask.repeat(self.n_heads, 1, 1) + weight[mask.logical_not()] = -torch.inf + weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype) + a = torch.einsum("bts,bcs->bct", weight, v) + + return a.reshape(bs, -1, length) + + +class AttentionBlock(nn.Module): + """An attention block that allows spatial positions to attend to each other.""" + + def __init__( + self, + channels, + num_heads=1, + num_head_channels=-1, + out_channels=None, + do_activation=False, + ): + super().__init__() + self.channels = channels + out_channels = channels if out_channels is None else out_channels + self.do_activation = do_activation + if num_head_channels == -1: + self.num_heads = num_heads + else: + assert ( + channels % num_head_channels == 0 + ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}" + self.num_heads = channels // num_head_channels + self.norm = normalization(channels) + self.qkv = conv_nd(1, channels, out_channels * 3, 1) + self.attention = QKVAttention(self.num_heads) + + self.x_proj = nn.Identity() if out_channels == channels else conv_nd(1, channels, out_channels, 1) + self.proj_out = zero_module(conv_nd(1, out_channels, out_channels, 1)) + + def forward(self, x, mask=None, qk_bias=0): + b, c, *spatial = x.shape + if mask is not None: + if len(mask.shape) == 2: + mask = mask.unsqueeze(0).repeat(x.shape[0], 1, 1) + if mask.shape[1] != x.shape[-1]: + mask = mask[:, : x.shape[-1], : x.shape[-1]] + + x = x.reshape(b, c, -1) + x = self.norm(x) + if self.do_activation: + x = F.silu(x, inplace=True) + qkv = self.qkv(x) + h = self.attention(qkv, mask=mask, qk_bias=qk_bias) + h = self.proj_out(h) + xp = self.x_proj(x) + return (xp + h).reshape(b, xp.shape[1], *spatial) + + +class ConditioningEncoder(nn.Module): + def __init__( + self, + spec_dim, + embedding_dim, + attn_blocks=6, + num_attn_heads=4, + ): + super().__init__() + attn = [] + self.init = nn.Conv1d(spec_dim, embedding_dim, kernel_size=1) + for a in range(attn_blocks): + attn.append(AttentionBlock(embedding_dim, num_attn_heads)) + self.attn = nn.Sequential(*attn) + self.dim = embedding_dim + + def forward(self, x): + """ + x: (b, 80, s) + """ + h = self.init(x) + h = self.attn(h) + return h diff --git a/TTS/TTS/tts/layers/xtts/tokenizer.py b/TTS/TTS/tts/layers/xtts/tokenizer.py new file mode 100644 index 0000000000000000000000000000000000000000..8dd81facab2b60f4f8c73e3285e8e21ac227a5e5 --- /dev/null +++ b/TTS/TTS/tts/layers/xtts/tokenizer.py @@ -0,0 +1,249 @@ +import json +import os +import re + +import inflect +import pandas as pd +import pypinyin +import torch +from num2words import num2words +from tokenizers import Tokenizer +from unidecode import unidecode + +from TTS.tts.utils.text.cleaners import english_cleaners + +_inflect = inflect.engine() +_comma_number_re = re.compile(r"([0-9][0-9\,]+[0-9])") +_decimal_number_re = re.compile(r"([0-9]+\.[0-9]+)") +_pounds_re = re.compile(r"ยฃ([0-9\,]*[0-9]+)") +_dollars_re = re.compile(r"\$([0-9\.\,]*[0-9]+)") +_ordinal_re = re.compile(r"[0-9]+(st|nd|rd|th)") +_number_re = re.compile(r"[0-9]+") + + +def _remove_commas(m): + return m.group(1).replace(",", "") + + +def _expand_decimal_point(m): + return m.group(1).replace(".", " point ") + + +def _expand_dollars(m): + match = m.group(1) + parts = match.split(".") + if len(parts) > 2: + return match + " dollars" # Unexpected format + dollars = int(parts[0]) if parts[0] else 0 + cents = int(parts[1]) if len(parts) > 1 and parts[1] else 0 + if dollars and cents: + dollar_unit = "dollar" if dollars == 1 else "dollars" + cent_unit = "cent" if cents == 1 else "cents" + return "%s %s, %s %s" % (dollars, dollar_unit, cents, cent_unit) + elif dollars: + dollar_unit = "dollar" if dollars == 1 else "dollars" + return "%s %s" % (dollars, dollar_unit) + elif cents: + cent_unit = "cent" if cents == 1 else "cents" + return "%s %s" % (cents, cent_unit) + else: + return "zero dollars" + + +def _expand_ordinal(m): + return _inflect.number_to_words(m.group(0)) + + +def _expand_number(m): + num = int(m.group(0)) + if num > 1000 and num < 3000: + if num == 2000: + return "two thousand" + elif num > 2000 and num < 2010: + return "two thousand " + _inflect.number_to_words(num % 100) + elif num % 100 == 0: + return _inflect.number_to_words(num // 100) + " hundred" + else: + return _inflect.number_to_words(num, andword="", zero="oh", group=2).replace(", ", " ") + else: + return _inflect.number_to_words(num, andword="") + + +def normalize_numbers(text): + text = re.sub(_comma_number_re, _remove_commas, text) + text = re.sub(_pounds_re, r"\1 pounds", text) + text = re.sub(_dollars_re, _expand_dollars, text) + text = re.sub(_decimal_number_re, _expand_decimal_point, text) + text = re.sub(_ordinal_re, _expand_ordinal, text) + text = re.sub(_number_re, _expand_number, text) + return text + + +# Regular expression matching whitespace: +_whitespace_re = re.compile(r"\s+") + +# List of (regular expression, replacement) pairs for abbreviations: +_abbreviations = [ + (re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1]) + for x in [ + ("mrs", "misess"), + ("mr", "mister"), + ("dr", "doctor"), + ("st", "saint"), + ("co", "company"), + ("jr", "junior"), + ("maj", "major"), + ("gen", "general"), + ("drs", "doctors"), + ("rev", "reverend"), + ("lt", "lieutenant"), + ("hon", "honorable"), + ("sgt", "sergeant"), + ("capt", "captain"), + ("esq", "esquire"), + ("ltd", "limited"), + ("col", "colonel"), + ("ft", "fort"), + ] +] + + +def expand_abbreviations(text): + for regex, replacement in _abbreviations: + text = re.sub(regex, replacement, text) + return text + + +def expand_numbers(text): + return normalize_numbers(text) + + +def lowercase(text): + return text.lower() + + +def collapse_whitespace(text): + return re.sub(_whitespace_re, " ", text) + + +def convert_to_ascii(text): + return unidecode(text) + + +def basic_cleaners(text): + """Basic pipeline that lowercases and collapses whitespace without transliteration.""" + text = lowercase(text) + text = collapse_whitespace(text) + text = text.replace('"', "") + return text + + +def expand_numbers_multilang(text, lang): + # TODO: Handle text more carefully. Currently, it just converts numbers without any context. + # Find all numbers in the input string + numbers = re.findall(r"\d+", text) + + # Transliterate the numbers to text + for num in numbers: + transliterated_num = "".join(num2words(num, lang=lang)) + text = text.replace(num, transliterated_num, 1) + + return text + + +def transliteration_cleaners(text): + """Pipeline for non-English text that transliterates to ASCII.""" + text = convert_to_ascii(text) + text = lowercase(text) + text = collapse_whitespace(text) + return text + + +def multilingual_cleaners(text, lang): + text = lowercase(text) + text = expand_numbers_multilang(text, lang) + text = collapse_whitespace(text) + text = text.replace('"', "") + if lang == "tr": + text = text.replace("ฤฐ", "i") + text = text.replace("ร–", "รถ") + text = text.replace("รœ", "รผ") + return text + + +def remove_extraneous_punctuation(word): + replacement_punctuation = {"{": "(", "}": ")", "[": "(", "]": ")", "`": "'", "โ€”": "-", "โ€”": "-", "`": "'", "สผ": "'"} + replace = re.compile( + "|".join([re.escape(k) for k in sorted(replacement_punctuation, key=len, reverse=True)]), flags=re.DOTALL + ) + word = replace.sub(lambda x: replacement_punctuation[x.group(0)], word) + + # TODO: some of these are spoken ('@', '%', '+', etc). Integrate them into the cleaners. + extraneous = re.compile(r"^[@#%_=\$\^&\*\+\\]$") + word = extraneous.sub("", word) + return word + + +def arabic_cleaners(text): + text = lowercase(text) + text = collapse_whitespace(text) + return text + + +def chinese_cleaners(text): + text = lowercase(text) + text = "".join( + [p[0] for p in pypinyin.pinyin(text, style=pypinyin.Style.TONE3, heteronym=False, neutral_tone_with_five=True)] + ) + return text + + +class VoiceBpeTokenizer: + def __init__(self, vocab_file=None, preprocess=None): + self.tokenizer = None + + if vocab_file is not None: + with open(vocab_file, "r", encoding="utf-8") as f: + vocab = json.load(f) + + self.language = vocab["model"]["language"] if "language" in vocab["model"] else None + + if preprocess is None: + self.preprocess = "pre_tokenizer" in vocab and vocab["pre_tokenizer"] + else: + self.preprocess = preprocess + + self.tokenizer = Tokenizer.from_file(vocab_file) + + def preprocess_text(self, txt, lang): + if lang == "ja": + import pykakasi + + kks = pykakasi.kakasi() + results = kks.convert(txt) + txt = " ".join([result["kana"] for result in results]) + txt = basic_cleaners(txt) + elif lang == "en": + txt = english_cleaners(txt) + elif lang == "ar": + txt = arabic_cleaners(txt) + elif lang == "zh-cn": + txt = chinese_cleaners(txt) + else: + txt = multilingual_cleaners(txt, lang) + return txt + + def encode(self, txt, lang): + if self.preprocess: + txt = self.preprocess_text(txt, lang) + txt = txt.replace(" ", "[SPACE]") + return self.tokenizer.encode(txt).ids + + def decode(self, seq): + if isinstance(seq, torch.Tensor): + seq = seq.cpu().numpy() + txt = self.tokenizer.decode(seq, skip_special_tokens=False).replace(" ", "") + txt = txt.replace("[SPACE]", " ") + txt = txt.replace("[STOP]", "") + txt = txt.replace("[UNK]", "") + return txt diff --git a/TTS/TTS/tts/layers/xtts/vocoder.py b/TTS/TTS/tts/layers/xtts/vocoder.py new file mode 100644 index 0000000000000000000000000000000000000000..0f4991b886a8c18205dd12c7353126495c85bc82 --- /dev/null +++ b/TTS/TTS/tts/layers/xtts/vocoder.py @@ -0,0 +1,385 @@ +import json +from dataclasses import dataclass +from enum import Enum +from typing import Callable, Optional + +import torch +import torch.nn as nn +import torch.nn.functional as F + +MAX_WAV_VALUE = 32768.0 + + +class KernelPredictor(torch.nn.Module): + """Kernel predictor for the location-variable convolutions""" + + def __init__( + self, + cond_channels, + conv_in_channels, + conv_out_channels, + conv_layers, + conv_kernel_size=3, + kpnet_hidden_channels=64, + kpnet_conv_size=3, + kpnet_dropout=0.0, + kpnet_nonlinear_activation="LeakyReLU", + kpnet_nonlinear_activation_params={"negative_slope": 0.1}, + ): + """ + Args: + cond_channels (int): number of channel for the conditioning sequence, + conv_in_channels (int): number of channel for the input sequence, + conv_out_channels (int): number of channel for the output sequence, + conv_layers (int): number of layers + """ + super().__init__() + + self.conv_in_channels = conv_in_channels + self.conv_out_channels = conv_out_channels + self.conv_kernel_size = conv_kernel_size + self.conv_layers = conv_layers + + kpnet_kernel_channels = conv_in_channels * conv_out_channels * conv_kernel_size * conv_layers # l_w + kpnet_bias_channels = conv_out_channels * conv_layers # l_b + + self.input_conv = nn.Sequential( + nn.utils.weight_norm(nn.Conv1d(cond_channels, kpnet_hidden_channels, 5, padding=2, bias=True)), + getattr(nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params), + ) + + self.residual_convs = nn.ModuleList() + padding = (kpnet_conv_size - 1) // 2 + for _ in range(3): + self.residual_convs.append( + nn.Sequential( + nn.Dropout(kpnet_dropout), + nn.utils.weight_norm( + nn.Conv1d( + kpnet_hidden_channels, + kpnet_hidden_channels, + kpnet_conv_size, + padding=padding, + bias=True, + ) + ), + getattr(nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params), + nn.utils.weight_norm( + nn.Conv1d( + kpnet_hidden_channels, + kpnet_hidden_channels, + kpnet_conv_size, + padding=padding, + bias=True, + ) + ), + getattr(nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params), + ) + ) + self.kernel_conv = nn.utils.weight_norm( + nn.Conv1d( + kpnet_hidden_channels, + kpnet_kernel_channels, + kpnet_conv_size, + padding=padding, + bias=True, + ) + ) + self.bias_conv = nn.utils.weight_norm( + nn.Conv1d( + kpnet_hidden_channels, + kpnet_bias_channels, + kpnet_conv_size, + padding=padding, + bias=True, + ) + ) + + def forward(self, c): + """ + Args: + c (Tensor): the conditioning sequence (batch, cond_channels, cond_length) + """ + batch, _, cond_length = c.shape + c = self.input_conv(c) + for residual_conv in self.residual_convs: + residual_conv.to(c.device) + c = c + residual_conv(c) + k = self.kernel_conv(c) + b = self.bias_conv(c) + kernels = k.contiguous().view( + batch, + self.conv_layers, + self.conv_in_channels, + self.conv_out_channels, + self.conv_kernel_size, + cond_length, + ) + bias = b.contiguous().view( + batch, + self.conv_layers, + self.conv_out_channels, + cond_length, + ) + + return kernels, bias + + def remove_weight_norm(self): + nn.utils.remove_weight_norm(self.input_conv[0]) + nn.utils.remove_weight_norm(self.kernel_conv) + nn.utils.remove_weight_norm(self.bias_conv) + for block in self.residual_convs: + nn.utils.remove_weight_norm(block[1]) + nn.utils.remove_weight_norm(block[3]) + + +class LVCBlock(torch.nn.Module): + """the location-variable convolutions""" + + def __init__( + self, + in_channels, + cond_channels, + stride, + dilations=[1, 3, 9, 27], + lReLU_slope=0.2, + conv_kernel_size=3, + cond_hop_length=256, + kpnet_hidden_channels=64, + kpnet_conv_size=3, + kpnet_dropout=0.0, + ): + super().__init__() + + self.cond_hop_length = cond_hop_length + self.conv_layers = len(dilations) + self.conv_kernel_size = conv_kernel_size + + self.kernel_predictor = KernelPredictor( + cond_channels=cond_channels, + conv_in_channels=in_channels, + conv_out_channels=2 * in_channels, + conv_layers=len(dilations), + conv_kernel_size=conv_kernel_size, + kpnet_hidden_channels=kpnet_hidden_channels, + kpnet_conv_size=kpnet_conv_size, + kpnet_dropout=kpnet_dropout, + kpnet_nonlinear_activation_params={"negative_slope": lReLU_slope}, + ) + + self.convt_pre = nn.Sequential( + nn.LeakyReLU(lReLU_slope), + nn.utils.weight_norm( + nn.ConvTranspose1d( + in_channels, + in_channels, + 2 * stride, + stride=stride, + padding=stride // 2 + stride % 2, + output_padding=stride % 2, + ) + ), + ) + + self.conv_blocks = nn.ModuleList() + for dilation in dilations: + self.conv_blocks.append( + nn.Sequential( + nn.LeakyReLU(lReLU_slope), + nn.utils.weight_norm( + nn.Conv1d( + in_channels, + in_channels, + conv_kernel_size, + padding=dilation * (conv_kernel_size - 1) // 2, + dilation=dilation, + ) + ), + nn.LeakyReLU(lReLU_slope), + ) + ) + + def forward(self, x, c): + """forward propagation of the location-variable convolutions. + Args: + x (Tensor): the input sequence (batch, in_channels, in_length) + c (Tensor): the conditioning sequence (batch, cond_channels, cond_length) + + Returns: + Tensor: the output sequence (batch, in_channels, in_length) + """ + _, in_channels, _ = x.shape # (B, c_g, L') + + x = self.convt_pre(x) # (B, c_g, stride * L') + kernels, bias = self.kernel_predictor(c) + + for i, conv in enumerate(self.conv_blocks): + output = conv(x) # (B, c_g, stride * L') + + k = kernels[:, i, :, :, :, :] # (B, 2 * c_g, c_g, kernel_size, cond_length) + b = bias[:, i, :, :] # (B, 2 * c_g, cond_length) + + output = self.location_variable_convolution( + output, k, b, hop_size=self.cond_hop_length + ) # (B, 2 * c_g, stride * L'): LVC + x = x + torch.sigmoid(output[:, :in_channels, :]) * torch.tanh( + output[:, in_channels:, :] + ) # (B, c_g, stride * L'): GAU + + return x + + def location_variable_convolution(self, x, kernel, bias, dilation=1, hop_size=256): + """perform location-variable convolution operation on the input sequence (x) using the local convolution kernl. + Time: 414 ฮผs ยฑ 309 ns per loop (mean ยฑ std. dev. of 7 runs, 1000 loops each), test on NVIDIA V100. + Args: + x (Tensor): the input sequence (batch, in_channels, in_length). + kernel (Tensor): the local convolution kernel (batch, in_channel, out_channels, kernel_size, kernel_length) + bias (Tensor): the bias for the local convolution (batch, out_channels, kernel_length) + dilation (int): the dilation of convolution. + hop_size (int): the hop_size of the conditioning sequence. + Returns: + (Tensor): the output sequence after performing local convolution. (batch, out_channels, in_length). + """ + batch, _, in_length = x.shape + batch, _, out_channels, kernel_size, kernel_length = kernel.shape + assert in_length == (kernel_length * hop_size), "length of (x, kernel) is not matched" + + padding = dilation * int((kernel_size - 1) / 2) + x = F.pad(x, (padding, padding), "constant", 0) # (batch, in_channels, in_length + 2*padding) + x = x.unfold(2, hop_size + 2 * padding, hop_size) # (batch, in_channels, kernel_length, hop_size + 2*padding) + + if hop_size < dilation: + x = F.pad(x, (0, dilation), "constant", 0) + x = x.unfold( + 3, dilation, dilation + ) # (batch, in_channels, kernel_length, (hop_size + 2*padding)/dilation, dilation) + x = x[:, :, :, :, :hop_size] + x = x.transpose(3, 4) # (batch, in_channels, kernel_length, dilation, (hop_size + 2*padding)/dilation) + x = x.unfold(4, kernel_size, 1) # (batch, in_channels, kernel_length, dilation, _, kernel_size) + + o = torch.einsum("bildsk,biokl->bolsd", x, kernel) + o = o.to(memory_format=torch.channels_last_3d) + bias = bias.unsqueeze(-1).unsqueeze(-1).to(memory_format=torch.channels_last_3d) + o = o + bias + o = o.contiguous().view(batch, out_channels, -1) + + return o + + def remove_weight_norm(self): + self.kernel_predictor.remove_weight_norm() + nn.utils.remove_weight_norm(self.convt_pre[1]) + for block in self.conv_blocks: + nn.utils.remove_weight_norm(block[1]) + + +class UnivNetGenerator(nn.Module): + """ + UnivNet Generator + + Originally from https://github.com/mindslab-ai/univnet/blob/master/model/generator.py. + """ + + def __init__( + self, + noise_dim=64, + channel_size=32, + dilations=[1, 3, 9, 27], + strides=[8, 8, 4], + lReLU_slope=0.2, + kpnet_conv_size=3, + # Below are MEL configurations options that this generator requires. + hop_length=256, + n_mel_channels=100, + ): + super(UnivNetGenerator, self).__init__() + self.mel_channel = n_mel_channels + self.noise_dim = noise_dim + self.hop_length = hop_length + channel_size = channel_size + kpnet_conv_size = kpnet_conv_size + + self.res_stack = nn.ModuleList() + hop_length = 1 + for stride in strides: + hop_length = stride * hop_length + self.res_stack.append( + LVCBlock( + channel_size, + n_mel_channels, + stride=stride, + dilations=dilations, + lReLU_slope=lReLU_slope, + cond_hop_length=hop_length, + kpnet_conv_size=kpnet_conv_size, + ) + ) + + self.conv_pre = nn.utils.weight_norm(nn.Conv1d(noise_dim, channel_size, 7, padding=3, padding_mode="reflect")) + + self.conv_post = nn.Sequential( + nn.LeakyReLU(lReLU_slope), + nn.utils.weight_norm(nn.Conv1d(channel_size, 1, 7, padding=3, padding_mode="reflect")), + nn.Tanh(), + ) + + def forward(self, c, z): + """ + Args: + c (Tensor): the conditioning sequence of mel-spectrogram (batch, mel_channels, in_length) + z (Tensor): the noise sequence (batch, noise_dim, in_length) + + """ + z = self.conv_pre(z) # (B, c_g, L) + + for res_block in self.res_stack: + res_block.to(z.device) + z = res_block(z, c) # (B, c_g, L * s_0 * ... * s_i) + + z = self.conv_post(z) # (B, 1, L * 256) + + return z + + def eval(self, inference=False): + super(UnivNetGenerator, self).eval() + # don't remove weight norm while validation in training loop + if inference: + self.remove_weight_norm() + + def remove_weight_norm(self): + nn.utils.remove_weight_norm(self.conv_pre) + + for layer in self.conv_post: + if len(layer.state_dict()) != 0: + nn.utils.remove_weight_norm(layer) + + for res_block in self.res_stack: + res_block.remove_weight_norm() + + def inference(self, c, z=None): + # pad input mel with zeros to cut artifact + # see https://github.com/seungwonpark/melgan/issues/8 + zero = torch.full((c.shape[0], self.mel_channel, 10), -11.5129).to(c.device) + mel = torch.cat((c, zero), dim=2) + + if z is None: + z = torch.randn(c.shape[0], self.noise_dim, mel.size(2)).to(mel.device) + + audio = self.forward(mel, z) + audio = audio[:, :, : -(self.hop_length * 10)] + audio = audio.clamp(min=-1, max=1) + return audio + + +if __name__ == "__main__": + model = UnivNetGenerator() + + c = torch.randn(3, 100, 10) + z = torch.randn(3, 64, 10) + print(c.shape) + + y = model(c, z) + print(y.shape) + assert y.shape == torch.Size([3, 1, 2560]) + + pytorch_total_params = sum(p.numel() for p in model.parameters() if p.requires_grad) + print(pytorch_total_params) diff --git a/TTS/TTS/tts/models/__init__.py b/TTS/TTS/tts/models/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..2bd2e5f0875a84633e707702cd7d628409b12057 --- /dev/null +++ b/TTS/TTS/tts/models/__init__.py @@ -0,0 +1,14 @@ +from typing import Dict, List, Union + +from TTS.utils.generic_utils import find_module + + +def setup_model(config: "Coqpit", samples: Union[List[List], List[Dict]] = None) -> "BaseTTS": + print(" > Using model: {}".format(config.model)) + # fetch the right model implementation. + if "base_model" in config and config["base_model"] is not None: + MyModel = find_module("TTS.tts.models", config.base_model.lower()) + else: + MyModel = find_module("TTS.tts.models", config.model.lower()) + model = MyModel.init_from_config(config=config, samples=samples) + return model diff --git a/TTS/TTS/tts/models/align_tts.py b/TTS/TTS/tts/models/align_tts.py new file mode 100644 index 0000000000000000000000000000000000000000..b2e51de7d6ab37951e3838e6804ca8e9b71338cf --- /dev/null +++ b/TTS/TTS/tts/models/align_tts.py @@ -0,0 +1,448 @@ +from dataclasses import dataclass, field +from typing import Dict, List, Union + +import torch +from coqpit import Coqpit +from torch import nn + +from TTS.tts.layers.align_tts.mdn import MDNBlock +from TTS.tts.layers.feed_forward.decoder import Decoder +from TTS.tts.layers.feed_forward.duration_predictor import DurationPredictor +from TTS.tts.layers.feed_forward.encoder import Encoder +from TTS.tts.layers.generic.pos_encoding import PositionalEncoding +from TTS.tts.models.base_tts import BaseTTS +from TTS.tts.utils.helpers import generate_path, maximum_path, sequence_mask +from TTS.tts.utils.speakers import SpeakerManager +from TTS.tts.utils.text.tokenizer import TTSTokenizer +from TTS.tts.utils.visual import plot_alignment, plot_spectrogram +from TTS.utils.io import load_fsspec + + +@dataclass +class AlignTTSArgs(Coqpit): + """ + Args: + num_chars (int): + number of unique input to characters + out_channels (int): + number of output tensor channels. It is equal to the expected spectrogram size. + hidden_channels (int): + number of channels in all the model layers. + hidden_channels_ffn (int): + number of channels in transformer's conv layers. + hidden_channels_dp (int): + number of channels in duration predictor network. + num_heads (int): + number of attention heads in transformer networks. + num_transformer_layers (int): + number of layers in encoder and decoder transformer blocks. + dropout_p (int): + dropout rate in transformer layers. + length_scale (int, optional): + coefficient to set the speech speed. <1 slower, >1 faster. Defaults to 1. + num_speakers (int, optional): + number of speakers for multi-speaker training. Defaults to 0. + external_c (bool, optional): + enable external speaker embeddings. Defaults to False. + c_in_channels (int, optional): + number of channels in speaker embedding vectors. Defaults to 0. + """ + + num_chars: int = None + out_channels: int = 80 + hidden_channels: int = 256 + hidden_channels_dp: int = 256 + encoder_type: str = "fftransformer" + encoder_params: dict = field( + default_factory=lambda: {"hidden_channels_ffn": 1024, "num_heads": 2, "num_layers": 6, "dropout_p": 0.1} + ) + decoder_type: str = "fftransformer" + decoder_params: dict = field( + default_factory=lambda: {"hidden_channels_ffn": 1024, "num_heads": 2, "num_layers": 6, "dropout_p": 0.1} + ) + length_scale: float = 1.0 + num_speakers: int = 0 + use_speaker_embedding: bool = False + use_d_vector_file: bool = False + d_vector_dim: int = 0 + + +class AlignTTS(BaseTTS): + """AlignTTS with modified duration predictor. + https://arxiv.org/pdf/2003.01950.pdf + + Encoder -> DurationPredictor -> Decoder + + Check :class:`AlignTTSArgs` for the class arguments. + + Paper Abstract: + Targeting at both high efficiency and performance, we propose AlignTTS to predict the + mel-spectrum in parallel. AlignTTS is based on a Feed-Forward Transformer which generates mel-spectrum from a + sequence of characters, and the duration of each character is determined by a duration predictor.Instead of + adopting the attention mechanism in Transformer TTS to align text to mel-spectrum, the alignment loss is presented + to consider all possible alignments in training by use of dynamic programming. Experiments on the LJSpeech dataset s + how that our model achieves not only state-of-the-art performance which outperforms Transformer TTS by 0.03 in mean + option score (MOS), but also a high efficiency which is more than 50 times faster than real-time. + + Note: + Original model uses a separate character embedding layer for duration predictor. However, it causes the + duration predictor to overfit and prevents learning higher level interactions among characters. Therefore, + we predict durations based on encoder outputs which has higher level information about input characters. This + enables training without phases as in the original paper. + + Original model uses Transormers in encoder and decoder layers. However, here you can set the architecture + differently based on your requirements using ```encoder_type``` and ```decoder_type``` parameters. + + Examples: + >>> from TTS.tts.configs.align_tts_config import AlignTTSConfig + >>> config = AlignTTSConfig() + >>> model = AlignTTS(config) + + """ + + # pylint: disable=dangerous-default-value + + def __init__( + self, + config: "AlignTTSConfig", + ap: "AudioProcessor" = None, + tokenizer: "TTSTokenizer" = None, + speaker_manager: SpeakerManager = None, + ): + super().__init__(config, ap, tokenizer, speaker_manager) + self.speaker_manager = speaker_manager + self.phase = -1 + self.length_scale = ( + float(config.model_args.length_scale) + if isinstance(config.model_args.length_scale, int) + else config.model_args.length_scale + ) + + self.emb = nn.Embedding(self.config.model_args.num_chars, self.config.model_args.hidden_channels) + + self.embedded_speaker_dim = 0 + self.init_multispeaker(config) + + self.pos_encoder = PositionalEncoding(config.model_args.hidden_channels) + self.encoder = Encoder( + config.model_args.hidden_channels, + config.model_args.hidden_channels, + config.model_args.encoder_type, + config.model_args.encoder_params, + self.embedded_speaker_dim, + ) + self.decoder = Decoder( + config.model_args.out_channels, + config.model_args.hidden_channels, + config.model_args.decoder_type, + config.model_args.decoder_params, + ) + self.duration_predictor = DurationPredictor(config.model_args.hidden_channels_dp) + + self.mod_layer = nn.Conv1d(config.model_args.hidden_channels, config.model_args.hidden_channels, 1) + + self.mdn_block = MDNBlock(config.model_args.hidden_channels, 2 * config.model_args.out_channels) + + if self.embedded_speaker_dim > 0 and self.embedded_speaker_dim != config.model_args.hidden_channels: + self.proj_g = nn.Conv1d(self.embedded_speaker_dim, config.model_args.hidden_channels, 1) + + @staticmethod + def compute_log_probs(mu, log_sigma, y): + # pylint: disable=protected-access, c-extension-no-member + y = y.transpose(1, 2).unsqueeze(1) # [B, 1, T1, D] + mu = mu.transpose(1, 2).unsqueeze(2) # [B, T2, 1, D] + log_sigma = log_sigma.transpose(1, 2).unsqueeze(2) # [B, T2, 1, D] + expanded_y, expanded_mu = torch.broadcast_tensors(y, mu) + exponential = -0.5 * torch.mean( + torch._C._nn.mse_loss(expanded_y, expanded_mu, 0) / torch.pow(log_sigma.exp(), 2), dim=-1 + ) # B, L, T + logp = exponential - 0.5 * log_sigma.mean(dim=-1) + return logp + + def compute_align_path(self, mu, log_sigma, y, x_mask, y_mask): + # find the max alignment path + attn_mask = torch.unsqueeze(x_mask, -1) * torch.unsqueeze(y_mask, 2) + log_p = self.compute_log_probs(mu, log_sigma, y) + # [B, T_en, T_dec] + attn = maximum_path(log_p, attn_mask.squeeze(1)).unsqueeze(1) + dr_mas = torch.sum(attn, -1) + return dr_mas.squeeze(1), log_p + + @staticmethod + def generate_attn(dr, x_mask, y_mask=None): + # compute decode mask from the durations + if y_mask is None: + y_lengths = dr.sum(1).long() + y_lengths[y_lengths < 1] = 1 + y_mask = torch.unsqueeze(sequence_mask(y_lengths, None), 1).to(dr.dtype) + attn_mask = torch.unsqueeze(x_mask, -1) * torch.unsqueeze(y_mask, 2) + attn = generate_path(dr, attn_mask.squeeze(1)).to(dr.dtype) + return attn + + def expand_encoder_outputs(self, en, dr, x_mask, y_mask): + """Generate attention alignment map from durations and + expand encoder outputs + + Examples:: + - encoder output: [a,b,c,d] + - durations: [1, 3, 2, 1] + + - expanded: [a, b, b, b, c, c, d] + - attention map: [[0, 0, 0, 0, 0, 0, 1], + [0, 0, 0, 0, 1, 1, 0], + [0, 1, 1, 1, 0, 0, 0], + [1, 0, 0, 0, 0, 0, 0]] + """ + attn = self.generate_attn(dr, x_mask, y_mask) + o_en_ex = torch.matmul(attn.squeeze(1).transpose(1, 2), en.transpose(1, 2)).transpose(1, 2) + return o_en_ex, attn + + def format_durations(self, o_dr_log, x_mask): + o_dr = (torch.exp(o_dr_log) - 1) * x_mask * self.length_scale + o_dr[o_dr < 1] = 1.0 + o_dr = torch.round(o_dr) + return o_dr + + @staticmethod + def _concat_speaker_embedding(o_en, g): + g_exp = g.expand(-1, -1, o_en.size(-1)) # [B, C, T_en] + o_en = torch.cat([o_en, g_exp], 1) + return o_en + + def _sum_speaker_embedding(self, x, g): + # project g to decoder dim. + if hasattr(self, "proj_g"): + g = self.proj_g(g) + + return x + g + + def _forward_encoder(self, x, x_lengths, g=None): + if hasattr(self, "emb_g"): + g = nn.functional.normalize(self.speaker_embedding(g)) # [B, C, 1] + + if g is not None: + g = g.unsqueeze(-1) + + # [B, T, C] + x_emb = self.emb(x) + # [B, C, T] + x_emb = torch.transpose(x_emb, 1, -1) + + # compute sequence masks + x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.shape[1]), 1).to(x.dtype) + + # encoder pass + o_en = self.encoder(x_emb, x_mask) + + # speaker conditioning for duration predictor + if g is not None: + o_en_dp = self._concat_speaker_embedding(o_en, g) + else: + o_en_dp = o_en + return o_en, o_en_dp, x_mask, g + + def _forward_decoder(self, o_en, o_en_dp, dr, x_mask, y_lengths, g): + y_mask = torch.unsqueeze(sequence_mask(y_lengths, None), 1).to(o_en_dp.dtype) + # expand o_en with durations + o_en_ex, attn = self.expand_encoder_outputs(o_en, dr, x_mask, y_mask) + # positional encoding + if hasattr(self, "pos_encoder"): + o_en_ex = self.pos_encoder(o_en_ex, y_mask) + # speaker embedding + if g is not None: + o_en_ex = self._sum_speaker_embedding(o_en_ex, g) + # decoder pass + o_de = self.decoder(o_en_ex, y_mask, g=g) + return o_de, attn.transpose(1, 2) + + def _forward_mdn(self, o_en, y, y_lengths, x_mask): + # MAS potentials and alignment + mu, log_sigma = self.mdn_block(o_en) + y_mask = torch.unsqueeze(sequence_mask(y_lengths, None), 1).to(o_en.dtype) + dr_mas, logp = self.compute_align_path(mu, log_sigma, y, x_mask, y_mask) + return dr_mas, mu, log_sigma, logp + + def forward( + self, x, x_lengths, y, y_lengths, aux_input={"d_vectors": None}, phase=None + ): # pylint: disable=unused-argument + """ + Shapes: + - x: :math:`[B, T_max]` + - x_lengths: :math:`[B]` + - y_lengths: :math:`[B]` + - dr: :math:`[B, T_max]` + - g: :math:`[B, C]` + """ + y = y.transpose(1, 2) + g = aux_input["d_vectors"] if "d_vectors" in aux_input else None + o_de, o_dr_log, dr_mas_log, attn, mu, log_sigma, logp = None, None, None, None, None, None, None + if phase == 0: + # train encoder and MDN + o_en, o_en_dp, x_mask, g = self._forward_encoder(x, x_lengths, g) + dr_mas, mu, log_sigma, logp = self._forward_mdn(o_en, y, y_lengths, x_mask) + y_mask = torch.unsqueeze(sequence_mask(y_lengths, None), 1).to(o_en_dp.dtype) + attn = self.generate_attn(dr_mas, x_mask, y_mask) + elif phase == 1: + # train decoder + o_en, o_en_dp, x_mask, g = self._forward_encoder(x, x_lengths, g) + dr_mas, _, _, _ = self._forward_mdn(o_en, y, y_lengths, x_mask) + o_de, attn = self._forward_decoder(o_en.detach(), o_en_dp.detach(), dr_mas.detach(), x_mask, y_lengths, g=g) + elif phase == 2: + # train the whole except duration predictor + o_en, o_en_dp, x_mask, g = self._forward_encoder(x, x_lengths, g) + dr_mas, mu, log_sigma, logp = self._forward_mdn(o_en, y, y_lengths, x_mask) + o_de, attn = self._forward_decoder(o_en, o_en_dp, dr_mas, x_mask, y_lengths, g=g) + elif phase == 3: + # train duration predictor + o_en, o_en_dp, x_mask, g = self._forward_encoder(x, x_lengths, g) + o_dr_log = self.duration_predictor(x, x_mask) + dr_mas, mu, log_sigma, logp = self._forward_mdn(o_en, y, y_lengths, x_mask) + o_de, attn = self._forward_decoder(o_en, o_en_dp, dr_mas, x_mask, y_lengths, g=g) + o_dr_log = o_dr_log.squeeze(1) + else: + o_en, o_en_dp, x_mask, g = self._forward_encoder(x, x_lengths, g) + o_dr_log = self.duration_predictor(o_en_dp.detach(), x_mask) + dr_mas, mu, log_sigma, logp = self._forward_mdn(o_en, y, y_lengths, x_mask) + o_de, attn = self._forward_decoder(o_en, o_en_dp, dr_mas, x_mask, y_lengths, g=g) + o_dr_log = o_dr_log.squeeze(1) + dr_mas_log = torch.log(dr_mas + 1).squeeze(1) + outputs = { + "model_outputs": o_de.transpose(1, 2), + "alignments": attn, + "durations_log": o_dr_log, + "durations_mas_log": dr_mas_log, + "mu": mu, + "log_sigma": log_sigma, + "logp": logp, + } + return outputs + + @torch.no_grad() + def inference(self, x, aux_input={"d_vectors": None}): # pylint: disable=unused-argument + """ + Shapes: + - x: :math:`[B, T_max]` + - x_lengths: :math:`[B]` + - g: :math:`[B, C]` + """ + g = aux_input["d_vectors"] if "d_vectors" in aux_input else None + x_lengths = torch.tensor(x.shape[1:2]).to(x.device) + # pad input to prevent dropping the last word + # x = torch.nn.functional.pad(x, pad=(0, 5), mode='constant', value=0) + o_en, o_en_dp, x_mask, g = self._forward_encoder(x, x_lengths, g) + # o_dr_log = self.duration_predictor(x, x_mask) + o_dr_log = self.duration_predictor(o_en_dp, x_mask) + # duration predictor pass + o_dr = self.format_durations(o_dr_log, x_mask).squeeze(1) + y_lengths = o_dr.sum(1) + o_de, attn = self._forward_decoder(o_en, o_en_dp, o_dr, x_mask, y_lengths, g=g) + outputs = {"model_outputs": o_de.transpose(1, 2), "alignments": attn} + return outputs + + def train_step(self, batch: dict, criterion: nn.Module): + text_input = batch["text_input"] + text_lengths = batch["text_lengths"] + mel_input = batch["mel_input"] + mel_lengths = batch["mel_lengths"] + d_vectors = batch["d_vectors"] + speaker_ids = batch["speaker_ids"] + + aux_input = {"d_vectors": d_vectors, "speaker_ids": speaker_ids} + outputs = self.forward(text_input, text_lengths, mel_input, mel_lengths, aux_input, self.phase) + loss_dict = criterion( + outputs["logp"], + outputs["model_outputs"], + mel_input, + mel_lengths, + outputs["durations_log"], + outputs["durations_mas_log"], + text_lengths, + phase=self.phase, + ) + + return outputs, loss_dict + + def _create_logs(self, batch, outputs, ap): # pylint: disable=no-self-use + model_outputs = outputs["model_outputs"] + alignments = outputs["alignments"] + mel_input = batch["mel_input"] + + pred_spec = model_outputs[0].data.cpu().numpy() + gt_spec = mel_input[0].data.cpu().numpy() + align_img = alignments[0].data.cpu().numpy() + + figures = { + "prediction": plot_spectrogram(pred_spec, ap, output_fig=False), + "ground_truth": plot_spectrogram(gt_spec, ap, output_fig=False), + "alignment": plot_alignment(align_img, output_fig=False), + } + + # Sample audio + train_audio = ap.inv_melspectrogram(pred_spec.T) + return figures, {"audio": train_audio} + + def train_log( + self, batch: dict, outputs: dict, logger: "Logger", assets: dict, steps: int + ) -> None: # pylint: disable=no-self-use + figures, audios = self._create_logs(batch, outputs, self.ap) + logger.train_figures(steps, figures) + logger.train_audios(steps, audios, self.ap.sample_rate) + + def eval_step(self, batch: dict, criterion: nn.Module): + return self.train_step(batch, criterion) + + def eval_log(self, batch: dict, outputs: dict, logger: "Logger", assets: dict, steps: int) -> None: + figures, audios = self._create_logs(batch, outputs, self.ap) + logger.eval_figures(steps, figures) + logger.eval_audios(steps, audios, self.ap.sample_rate) + + def load_checkpoint( + self, config, checkpoint_path, eval=False, cache=False + ): # pylint: disable=unused-argument, redefined-builtin + state = load_fsspec(checkpoint_path, map_location=torch.device("cpu"), cache=cache) + self.load_state_dict(state["model"]) + if eval: + self.eval() + assert not self.training + + def get_criterion(self): + from TTS.tts.layers.losses import AlignTTSLoss # pylint: disable=import-outside-toplevel + + return AlignTTSLoss(self.config) + + @staticmethod + def _set_phase(config, global_step): + """Decide AlignTTS training phase""" + if isinstance(config.phase_start_steps, list): + vals = [i < global_step for i in config.phase_start_steps] + if not True in vals: + phase = 0 + else: + phase = ( + len(config.phase_start_steps) + - [i < global_step for i in config.phase_start_steps][::-1].index(True) + - 1 + ) + else: + phase = None + return phase + + def on_epoch_start(self, trainer): + """Set AlignTTS training phase on epoch start.""" + self.phase = self._set_phase(trainer.config, trainer.total_steps_done) + + @staticmethod + def init_from_config(config: "AlignTTSConfig", samples: Union[List[List], List[Dict]] = None): + """Initiate model from config + + Args: + config (AlignTTSConfig): Model config. + samples (Union[List[List], List[Dict]]): Training samples to parse speaker ids for training. + Defaults to None. + """ + from TTS.utils.audio import AudioProcessor + + ap = AudioProcessor.init_from_config(config) + tokenizer, new_config = TTSTokenizer.init_from_config(config) + speaker_manager = SpeakerManager.init_from_config(config, samples) + return AlignTTS(new_config, ap, tokenizer, speaker_manager) diff --git a/TTS/TTS/tts/models/bark.py b/TTS/TTS/tts/models/bark.py new file mode 100644 index 0000000000000000000000000000000000000000..e5edffd4ef4150b47d1ad7da5a705ab4f44ed889 --- /dev/null +++ b/TTS/TTS/tts/models/bark.py @@ -0,0 +1,284 @@ +import os +from dataclasses import dataclass +from typing import Optional + +import numpy as np +from coqpit import Coqpit +from encodec import EncodecModel +from transformers import BertTokenizer + +from TTS.tts.layers.bark.inference_funcs import ( + codec_decode, + generate_coarse, + generate_fine, + generate_text_semantic, + generate_voice, + load_voice, +) +from TTS.tts.layers.bark.load_model import load_model +from TTS.tts.layers.bark.model import GPT +from TTS.tts.layers.bark.model_fine import FineGPT +from TTS.tts.models.base_tts import BaseTTS + + +@dataclass +class BarkAudioConfig(Coqpit): + sample_rate: int = 24000 + output_sample_rate: int = 24000 + + +class Bark(BaseTTS): + def __init__( + self, + config: Coqpit, + tokenizer: BertTokenizer = BertTokenizer.from_pretrained("bert-base-multilingual-cased"), + ) -> None: + super().__init__(config=config, ap=None, tokenizer=None, speaker_manager=None, language_manager=None) + self.config.num_chars = len(tokenizer) + self.tokenizer = tokenizer + self.semantic_model = GPT(config.semantic_config) + self.coarse_model = GPT(config.coarse_config) + self.fine_model = FineGPT(config.fine_config) + self.encodec = EncodecModel.encodec_model_24khz() + self.encodec.set_target_bandwidth(6.0) + + @property + def device(self): + return next(self.parameters()).device + + def load_bark_models(self): + self.semantic_model, self.config = load_model( + ckpt_path=self.config.LOCAL_MODEL_PATHS["text"], device=self.device, config=self.config, model_type="text" + ) + self.coarse_model, self.config = load_model( + ckpt_path=self.config.LOCAL_MODEL_PATHS["coarse"], + device=self.device, + config=self.config, + model_type="coarse", + ) + self.fine_model, self.config = load_model( + ckpt_path=self.config.LOCAL_MODEL_PATHS["fine"], device=self.device, config=self.config, model_type="fine" + ) + + def train_step( + self, + ): + pass + + def text_to_semantic( + self, + text: str, + history_prompt: Optional[str] = None, + temp: float = 0.7, + base=None, + allow_early_stop=True, + **kwargs, + ): + """Generate semantic array from text. + + Args: + text: text to be turned into audio + history_prompt: history choice for audio cloning + temp: generation temperature (1.0 more diverse, 0.0 more conservative) + + Returns: + numpy semantic array to be fed into `semantic_to_waveform` + """ + x_semantic = generate_text_semantic( + text, + self, + history_prompt=history_prompt, + temp=temp, + base=base, + allow_early_stop=allow_early_stop, + **kwargs, + ) + return x_semantic + + def semantic_to_waveform( + self, + semantic_tokens: np.ndarray, + history_prompt: Optional[str] = None, + temp: float = 0.7, + base=None, + ): + """Generate audio array from semantic input. + + Args: + semantic_tokens: semantic token output from `text_to_semantic` + history_prompt: history choice for audio cloning + temp: generation temperature (1.0 more diverse, 0.0 more conservative) + + Returns: + numpy audio array at sample frequency 24khz + """ + x_coarse_gen = generate_coarse( + semantic_tokens, + self, + history_prompt=history_prompt, + temp=temp, + base=base, + ) + x_fine_gen = generate_fine( + x_coarse_gen, + self, + history_prompt=history_prompt, + temp=0.5, + base=base, + ) + audio_arr = codec_decode(x_fine_gen, self) + return audio_arr, x_coarse_gen, x_fine_gen + + def generate_audio( + self, + text: str, + history_prompt: Optional[str] = None, + text_temp: float = 0.7, + waveform_temp: float = 0.7, + base=None, + allow_early_stop=True, + **kwargs, + ): + """Generate audio array from input text. + + Args: + text: text to be turned into audio + history_prompt: history choice for audio cloning + text_temp: generation temperature (1.0 more diverse, 0.0 more conservative) + waveform_temp: generation temperature (1.0 more diverse, 0.0 more conservative) + + Returns: + numpy audio array at sample frequency 24khz + """ + x_semantic = self.text_to_semantic( + text, + history_prompt=history_prompt, + temp=text_temp, + base=base, + allow_early_stop=allow_early_stop, + **kwargs, + ) + audio_arr, c, f = self.semantic_to_waveform( + x_semantic, history_prompt=history_prompt, temp=waveform_temp, base=base + ) + return audio_arr, [x_semantic, c, f] + + def generate_voice(self, audio, speaker_id, voice_dir): + """Generate a voice from the given audio and text. + + Args: + audio (str): Path to the audio file. + speaker_id (str): Speaker name. + voice_dir (str): Path to the directory to save the generate voice. + """ + if voice_dir is not None: + voice_dirs = [voice_dir] + try: + _ = load_voice(speaker_id, voice_dirs) + except (KeyError, FileNotFoundError): + output_path = os.path.join(voice_dir, speaker_id + ".npz") + os.makedirs(voice_dir, exist_ok=True) + generate_voice(audio, self, output_path) + + def _set_voice_dirs(self, voice_dirs): + def_voice_dir = None + if isinstance(self.config.DEF_SPEAKER_DIR, str): + os.makedirs(self.config.DEF_SPEAKER_DIR, exist_ok=True) + if os.path.isdir(self.config.DEF_SPEAKER_DIR): + def_voice_dir = self.config.DEF_SPEAKER_DIR + _voice_dirs = [def_voice_dir] if def_voice_dir is not None else [] + if voice_dirs is not None: + if isinstance(voice_dirs, str): + voice_dirs = [voice_dirs] + _voice_dirs = voice_dirs + _voice_dirs + return _voice_dirs + + # TODO: remove config from synthesize + def synthesize( + self, text, config, speaker_id="random", voice_dirs=None, **kwargs + ): # pylint: disable=unused-argument + """Synthesize speech with the given input text. + + Args: + text (str): Input text. + config (BarkConfig): Config with inference parameters. + speaker_id (str): One of the available speaker names. If `random`, it generates a random speaker. + speaker_wav (str): Path to the speaker audio file for cloning a new voice. It is cloned and saved in + `voice_dirs` with the name `speaker_id`. Defaults to None. + voice_dirs (List[str]): List of paths that host reference audio files for speakers. Defaults to None. + **kwargs: Model specific inference settings used by `generate_audio()` and `TTS.tts.layers.bark.inference_funcs.generate_text_semantic(). + + Returns: + A dictionary of the output values with `wav` as output waveform, `deterministic_seed` as seed used at inference, + `text_input` as text token IDs after tokenizer, `voice_samples` as samples used for cloning, `conditioning_latents` + as latents used at inference. + + """ + speaker_id = "random" if speaker_id is None else speaker_id + voice_dirs = self._set_voice_dirs(voice_dirs) + history_prompt = load_voice(self, speaker_id, voice_dirs) + outputs = self.generate_audio(text, history_prompt=history_prompt, **kwargs) + return_dict = { + "wav": outputs[0], + "text_inputs": text, + } + + return return_dict + + def eval_step(self): + ... + + def forward(self): + ... + + def inference(self): + ... + + @staticmethod + def init_from_config(config: "BarkConfig", **kwargs): # pylint: disable=unused-argument + return Bark(config) + + # pylint: disable=unused-argument, redefined-builtin + def load_checkpoint( + self, + config, + checkpoint_dir, + text_model_path=None, + coarse_model_path=None, + fine_model_path=None, + hubert_model_path=None, + hubert_tokenizer_path=None, + eval=False, + strict=True, + **kwargs, + ): + """Load a model checkpoints from a directory. This model is with multiple checkpoint files and it + expects to have all the files to be under the given `checkpoint_dir` with the rigth names. + If eval is True, set the model to eval mode. + + Args: + config (TortoiseConfig): The model config. + checkpoint_dir (str): The directory where the checkpoints are stored. + ar_checkpoint_path (str, optional): The path to the autoregressive checkpoint. Defaults to None. + diff_checkpoint_path (str, optional): The path to the diffusion checkpoint. Defaults to None. + clvp_checkpoint_path (str, optional): The path to the CLVP checkpoint. Defaults to None. + vocoder_checkpoint_path (str, optional): The path to the vocoder checkpoint. Defaults to None. + eval (bool, optional): Whether to set the model to eval mode. Defaults to False. + strict (bool, optional): Whether to load the model strictly. Defaults to True. + """ + text_model_path = text_model_path or os.path.join(checkpoint_dir, "text_2.pt") + coarse_model_path = coarse_model_path or os.path.join(checkpoint_dir, "coarse_2.pt") + fine_model_path = fine_model_path or os.path.join(checkpoint_dir, "fine_2.pt") + hubert_model_path = hubert_model_path or os.path.join(checkpoint_dir, "hubert.pt") + hubert_tokenizer_path = hubert_tokenizer_path or os.path.join(checkpoint_dir, "tokenizer.pth") + + self.config.LOCAL_MODEL_PATHS["text"] = text_model_path + self.config.LOCAL_MODEL_PATHS["coarse"] = coarse_model_path + self.config.LOCAL_MODEL_PATHS["fine"] = fine_model_path + self.config.LOCAL_MODEL_PATHS["hubert"] = hubert_model_path + self.config.LOCAL_MODEL_PATHS["hubert_tokenizer"] = hubert_tokenizer_path + + self.load_bark_models() + + if eval: + self.eval() diff --git a/TTS/TTS/tts/models/base_tacotron.py b/TTS/TTS/tts/models/base_tacotron.py new file mode 100644 index 0000000000000000000000000000000000000000..f38dace23559d9940b9a57cab479686f42172540 --- /dev/null +++ b/TTS/TTS/tts/models/base_tacotron.py @@ -0,0 +1,305 @@ +import copy +from abc import abstractmethod +from typing import Dict, Tuple + +import torch +from coqpit import Coqpit +from torch import nn + +from TTS.tts.layers.losses import TacotronLoss +from TTS.tts.models.base_tts import BaseTTS +from TTS.tts.utils.helpers import sequence_mask +from TTS.tts.utils.speakers import SpeakerManager +from TTS.tts.utils.synthesis import synthesis +from TTS.tts.utils.text.tokenizer import TTSTokenizer +from TTS.tts.utils.visual import plot_alignment, plot_spectrogram +from TTS.utils.generic_utils import format_aux_input +from TTS.utils.io import load_fsspec +from TTS.utils.training import gradual_training_scheduler + + +class BaseTacotron(BaseTTS): + """Base class shared by Tacotron and Tacotron2""" + + def __init__( + self, + config: "TacotronConfig", + ap: "AudioProcessor", + tokenizer: "TTSTokenizer", + speaker_manager: SpeakerManager = None, + ): + super().__init__(config, ap, tokenizer, speaker_manager) + + # pass all config fields as class attributes + for key in config: + setattr(self, key, config[key]) + + # layers + self.embedding = None + self.encoder = None + self.decoder = None + self.postnet = None + + # init tensors + self.embedded_speakers = None + self.embedded_speakers_projected = None + + # global style token + if self.gst and self.use_gst: + self.decoder_in_features += self.gst.gst_embedding_dim # add gst embedding dim + self.gst_layer = None + + # Capacitron + if self.capacitron_vae and self.use_capacitron_vae: + self.decoder_in_features += self.capacitron_vae.capacitron_VAE_embedding_dim # add capacitron embedding dim + self.capacitron_vae_layer = None + + # additional layers + self.decoder_backward = None + self.coarse_decoder = None + + @staticmethod + def _format_aux_input(aux_input: Dict) -> Dict: + """Set missing fields to their default values""" + if aux_input: + return format_aux_input({"d_vectors": None, "speaker_ids": None}, aux_input) + return None + + ############################# + # INIT FUNCTIONS + ############################# + + def _init_backward_decoder(self): + """Init the backward decoder for Forward-Backward decoding.""" + self.decoder_backward = copy.deepcopy(self.decoder) + + def _init_coarse_decoder(self): + """Init the coarse decoder for Double-Decoder Consistency.""" + self.coarse_decoder = copy.deepcopy(self.decoder) + self.coarse_decoder.r_init = self.ddc_r + self.coarse_decoder.set_r(self.ddc_r) + + ############################# + # CORE FUNCTIONS + ############################# + + @abstractmethod + def forward(self): + pass + + @abstractmethod + def inference(self): + pass + + def load_checkpoint( + self, config, checkpoint_path, eval=False, cache=False + ): # pylint: disable=unused-argument, redefined-builtin + """Load model checkpoint and set up internals. + + Args: + config (Coqpi): model configuration. + checkpoint_path (str): path to checkpoint file. + eval (bool, optional): whether to load model for evaluation. + cache (bool, optional): If True, cache the file locally for subsequent calls. It is cached under `get_user_data_dir()/tts_cache`. Defaults to False. + """ + state = load_fsspec(checkpoint_path, map_location=torch.device("cpu"), cache=cache) + self.load_state_dict(state["model"]) + # TODO: set r in run-time by taking it from the new config + if "r" in state: + # set r from the state (for compatibility with older checkpoints) + self.decoder.set_r(state["r"]) + elif "config" in state: + # set r from config used at training time (for inference) + self.decoder.set_r(state["config"]["r"]) + else: + # set r from the new config (for new-models) + self.decoder.set_r(config.r) + if eval: + self.eval() + print(f" > Model's reduction rate `r` is set to: {self.decoder.r}") + assert not self.training + + def get_criterion(self) -> nn.Module: + """Get the model criterion used in training.""" + return TacotronLoss(self.config) + + @staticmethod + def init_from_config(config: Coqpit): + """Initialize model from config.""" + from TTS.utils.audio import AudioProcessor + + ap = AudioProcessor.init_from_config(config) + tokenizer = TTSTokenizer.init_from_config(config) + speaker_manager = SpeakerManager.init_from_config(config) + return BaseTacotron(config, ap, tokenizer, speaker_manager) + + ########################## + # TEST AND LOG FUNCTIONS # + ########################## + + def test_run(self, assets: Dict) -> Tuple[Dict, Dict]: + """Generic test run for `tts` models used by `Trainer`. + + You can override this for a different behaviour. + + Args: + assets (dict): A dict of training assets. For `tts` models, it must include `{'audio_processor': ap}`. + + Returns: + Tuple[Dict, Dict]: Test figures and audios to be projected to Tensorboard. + """ + print(" | > Synthesizing test sentences.") + test_audios = {} + test_figures = {} + test_sentences = self.config.test_sentences + aux_inputs = self._get_test_aux_input() + for idx, sen in enumerate(test_sentences): + outputs_dict = synthesis( + self, + sen, + self.config, + "cuda" in str(next(self.parameters()).device), + speaker_id=aux_inputs["speaker_id"], + d_vector=aux_inputs["d_vector"], + style_wav=aux_inputs["style_wav"], + use_griffin_lim=True, + do_trim_silence=False, + ) + test_audios["{}-audio".format(idx)] = outputs_dict["wav"] + test_figures["{}-prediction".format(idx)] = plot_spectrogram( + outputs_dict["outputs"]["model_outputs"], self.ap, output_fig=False + ) + test_figures["{}-alignment".format(idx)] = plot_alignment( + outputs_dict["outputs"]["alignments"], output_fig=False + ) + return {"figures": test_figures, "audios": test_audios} + + def test_log( + self, outputs: dict, logger: "Logger", assets: dict, steps: int # pylint: disable=unused-argument + ) -> None: + logger.test_audios(steps, outputs["audios"], self.ap.sample_rate) + logger.test_figures(steps, outputs["figures"]) + + ############################# + # COMMON COMPUTE FUNCTIONS + ############################# + + def compute_masks(self, text_lengths, mel_lengths): + """Compute masks against sequence paddings.""" + # B x T_in_max (boolean) + input_mask = sequence_mask(text_lengths) + output_mask = None + if mel_lengths is not None: + max_len = mel_lengths.max() + r = self.decoder.r + max_len = max_len + (r - (max_len % r)) if max_len % r > 0 else max_len + output_mask = sequence_mask(mel_lengths, max_len=max_len) + return input_mask, output_mask + + def _backward_pass(self, mel_specs, encoder_outputs, mask): + """Run backwards decoder""" + decoder_outputs_b, alignments_b, _ = self.decoder_backward( + encoder_outputs, torch.flip(mel_specs, dims=(1,)), mask + ) + decoder_outputs_b = decoder_outputs_b.transpose(1, 2).contiguous() + return decoder_outputs_b, alignments_b + + def _coarse_decoder_pass(self, mel_specs, encoder_outputs, alignments, input_mask): + """Double Decoder Consistency""" + T = mel_specs.shape[1] + if T % self.coarse_decoder.r > 0: + padding_size = self.coarse_decoder.r - (T % self.coarse_decoder.r) + mel_specs = torch.nn.functional.pad(mel_specs, (0, 0, 0, padding_size, 0, 0)) + decoder_outputs_backward, alignments_backward, _ = self.coarse_decoder( + encoder_outputs.detach(), mel_specs, input_mask + ) + # scale_factor = self.decoder.r_init / self.decoder.r + alignments_backward = torch.nn.functional.interpolate( + alignments_backward.transpose(1, 2), + size=alignments.shape[1], + mode="nearest", + ).transpose(1, 2) + decoder_outputs_backward = decoder_outputs_backward.transpose(1, 2) + decoder_outputs_backward = decoder_outputs_backward[:, :T, :] + return decoder_outputs_backward, alignments_backward + + ############################# + # EMBEDDING FUNCTIONS + ############################# + + def compute_gst(self, inputs, style_input, speaker_embedding=None): + """Compute global style token""" + if isinstance(style_input, dict): + # multiply each style token with a weight + query = torch.zeros(1, 1, self.gst.gst_embedding_dim // 2).type_as(inputs) + if speaker_embedding is not None: + query = torch.cat([query, speaker_embedding.reshape(1, 1, -1)], dim=-1) + + _GST = torch.tanh(self.gst_layer.style_token_layer.style_tokens) + gst_outputs = torch.zeros(1, 1, self.gst.gst_embedding_dim).type_as(inputs) + for k_token, v_amplifier in style_input.items(): + key = _GST[int(k_token)].unsqueeze(0).expand(1, -1, -1) + gst_outputs_att = self.gst_layer.style_token_layer.attention(query, key) + gst_outputs = gst_outputs + gst_outputs_att * v_amplifier + elif style_input is None: + # ignore style token and return zero tensor + gst_outputs = torch.zeros(1, 1, self.gst.gst_embedding_dim).type_as(inputs) + else: + # compute style tokens + gst_outputs = self.gst_layer(style_input, speaker_embedding) # pylint: disable=not-callable + inputs = self._concat_speaker_embedding(inputs, gst_outputs) + return inputs + + def compute_capacitron_VAE_embedding(self, inputs, reference_mel_info, text_info=None, speaker_embedding=None): + """Capacitron Variational Autoencoder""" + ( + VAE_outputs, + posterior_distribution, + prior_distribution, + capacitron_beta, + ) = self.capacitron_vae_layer( + reference_mel_info, + text_info, + speaker_embedding, # pylint: disable=not-callable + ) + + VAE_outputs = VAE_outputs.to(inputs.device) + encoder_output = self._concat_speaker_embedding( + inputs, VAE_outputs + ) # concatenate to the output of the basic tacotron encoder + return ( + encoder_output, + posterior_distribution, + prior_distribution, + capacitron_beta, + ) + + @staticmethod + def _add_speaker_embedding(outputs, embedded_speakers): + embedded_speakers_ = embedded_speakers.expand(outputs.size(0), outputs.size(1), -1) + outputs = outputs + embedded_speakers_ + return outputs + + @staticmethod + def _concat_speaker_embedding(outputs, embedded_speakers): + embedded_speakers_ = embedded_speakers.expand(outputs.size(0), outputs.size(1), -1) + outputs = torch.cat([outputs, embedded_speakers_], dim=-1) + return outputs + + ############################# + # CALLBACKS + ############################# + + def on_epoch_start(self, trainer): + """Callback for setting values wrt gradual training schedule. + + Args: + trainer (TrainerTTS): TTS trainer object that is used to train this model. + """ + if self.gradual_training: + r, trainer.config.batch_size = gradual_training_scheduler(trainer.total_steps_done, trainer.config) + trainer.config.r = r + self.decoder.set_r(r) + if trainer.config.bidirectional_decoder: + trainer.model.decoder_backward.set_r(r) + print(f"\n > Number of output frames: {self.decoder.r}") diff --git a/TTS/TTS/tts/models/base_tts.py b/TTS/TTS/tts/models/base_tts.py new file mode 100644 index 0000000000000000000000000000000000000000..7871cc38c327f59a70b6695fded64e34ff7d7626 --- /dev/null +++ b/TTS/TTS/tts/models/base_tts.py @@ -0,0 +1,459 @@ +import os +import random +from typing import Dict, List, Tuple, Union + +import torch +import torch.distributed as dist +from coqpit import Coqpit +from torch import nn +from torch.utils.data import DataLoader +from torch.utils.data.sampler import WeightedRandomSampler +from trainer.torch import DistributedSampler, DistributedSamplerWrapper + +from TTS.model import BaseTrainerModel +from TTS.tts.datasets.dataset import TTSDataset +from TTS.tts.utils.data import get_length_balancer_weights +from TTS.tts.utils.languages import LanguageManager, get_language_balancer_weights +from TTS.tts.utils.speakers import SpeakerManager, get_speaker_balancer_weights, get_speaker_manager +from TTS.tts.utils.synthesis import synthesis +from TTS.tts.utils.visual import plot_alignment, plot_spectrogram + +# pylint: skip-file + + +class BaseTTS(BaseTrainerModel): + """Base `tts` class. Every new `tts` model must inherit this. + + It defines common `tts` specific functions on top of `Model` implementation. + """ + + MODEL_TYPE = "tts" + + def __init__( + self, + config: Coqpit, + ap: "AudioProcessor", + tokenizer: "TTSTokenizer", + speaker_manager: SpeakerManager = None, + language_manager: LanguageManager = None, + ): + super().__init__() + self.config = config + self.ap = ap + self.tokenizer = tokenizer + self.speaker_manager = speaker_manager + self.language_manager = language_manager + self._set_model_args(config) + + def _set_model_args(self, config: Coqpit): + """Setup model args based on the config type (`ModelConfig` or `ModelArgs`). + + `ModelArgs` has all the fields reuqired to initialize the model architecture. + + `ModelConfig` has all the fields required for training, inference and containes `ModelArgs`. + + If the config is for training with a name like "*Config", then the model args are embeded in the + config.model_args + + If the config is for the model with a name like "*Args", then we assign the directly. + """ + # don't use isintance not to import recursively + if "Config" in config.__class__.__name__: + config_num_chars = ( + self.config.model_args.num_chars if hasattr(self.config, "model_args") else self.config.num_chars + ) + num_chars = config_num_chars if self.tokenizer is None else self.tokenizer.characters.num_chars + if "characters" in config: + self.config.num_chars = num_chars + if hasattr(self.config, "model_args"): + config.model_args.num_chars = num_chars + self.args = self.config.model_args + else: + self.config = config + self.args = config.model_args + elif "Args" in config.__class__.__name__: + self.args = config + else: + raise ValueError("config must be either a *Config or *Args") + + def init_multispeaker(self, config: Coqpit, data: List = None): + """Initialize a speaker embedding layer if needen and define expected embedding channel size for defining + `in_channels` size of the connected layers. + + This implementation yields 3 possible outcomes: + + 1. If `config.use_speaker_embedding` and `config.use_d_vector_file are False, do nothing. + 2. If `config.use_d_vector_file` is True, set expected embedding channel size to `config.d_vector_dim` or 512. + 3. If `config.use_speaker_embedding`, initialize a speaker embedding layer with channel size of + `config.d_vector_dim` or 512. + + You can override this function for new models. + + Args: + config (Coqpit): Model configuration. + """ + # set number of speakers + if self.speaker_manager is not None: + self.num_speakers = self.speaker_manager.num_speakers + elif hasattr(config, "num_speakers"): + self.num_speakers = config.num_speakers + + # set ultimate speaker embedding size + if config.use_speaker_embedding or config.use_d_vector_file: + self.embedded_speaker_dim = ( + config.d_vector_dim if "d_vector_dim" in config and config.d_vector_dim is not None else 512 + ) + # init speaker embedding layer + if config.use_speaker_embedding and not config.use_d_vector_file: + print(" > Init speaker_embedding layer.") + self.speaker_embedding = nn.Embedding(self.num_speakers, self.embedded_speaker_dim) + self.speaker_embedding.weight.data.normal_(0, 0.3) + + def get_aux_input(self, **kwargs) -> Dict: + """Prepare and return `aux_input` used by `forward()`""" + return {"speaker_id": None, "style_wav": None, "d_vector": None, "language_id": None} + + def get_aux_input_from_test_sentences(self, sentence_info): + if hasattr(self.config, "model_args"): + config = self.config.model_args + else: + config = self.config + + # extract speaker and language info + text, speaker_name, style_wav, language_name = None, None, None, None + + if isinstance(sentence_info, list): + if len(sentence_info) == 1: + text = sentence_info[0] + elif len(sentence_info) == 2: + text, speaker_name = sentence_info + elif len(sentence_info) == 3: + text, speaker_name, style_wav = sentence_info + elif len(sentence_info) == 4: + text, speaker_name, style_wav, language_name = sentence_info + else: + text = sentence_info + + # get speaker id/d_vector + speaker_id, d_vector, language_id = None, None, None + if self.speaker_manager is not None: + if config.use_d_vector_file: + if speaker_name is None: + d_vector = self.speaker_manager.get_random_embedding() + else: + d_vector = self.speaker_manager.get_d_vector_by_name(speaker_name) + elif config.use_speaker_embedding: + if speaker_name is None: + speaker_id = self.speaker_manager.get_random_id() + else: + speaker_id = self.speaker_manager.name_to_id[speaker_name] + + # get language id + if self.language_manager is not None and config.use_language_embedding and language_name is not None: + language_id = self.language_manager.name_to_id[language_name] + + return { + "text": text, + "speaker_id": speaker_id, + "style_wav": style_wav, + "d_vector": d_vector, + "language_id": language_id, + } + + def format_batch(self, batch: Dict) -> Dict: + """Generic batch formatting for `TTSDataset`. + + You must override this if you use a custom dataset. + + Args: + batch (Dict): [description] + + Returns: + Dict: [description] + """ + # setup input batch + text_input = batch["token_id"] + text_lengths = batch["token_id_lengths"] + speaker_names = batch["speaker_names"] + linear_input = batch["linear"] + mel_input = batch["mel"] + mel_lengths = batch["mel_lengths"] + stop_targets = batch["stop_targets"] + item_idx = batch["item_idxs"] + d_vectors = batch["d_vectors"] + speaker_ids = batch["speaker_ids"] + attn_mask = batch["attns"] + waveform = batch["waveform"] + pitch = batch["pitch"] + energy = batch["energy"] + language_ids = batch["language_ids"] + max_text_length = torch.max(text_lengths.float()) + max_spec_length = torch.max(mel_lengths.float()) + + # compute durations from attention masks + durations = None + if attn_mask is not None: + durations = torch.zeros(attn_mask.shape[0], attn_mask.shape[2]) + for idx, am in enumerate(attn_mask): + # compute raw durations + c_idxs = am[:, : text_lengths[idx], : mel_lengths[idx]].max(1)[1] + # c_idxs, counts = torch.unique_consecutive(c_idxs, return_counts=True) + c_idxs, counts = torch.unique(c_idxs, return_counts=True) + dur = torch.ones([text_lengths[idx]]).to(counts.dtype) + dur[c_idxs] = counts + # smooth the durations and set any 0 duration to 1 + # by cutting off from the largest duration indeces. + extra_frames = dur.sum() - mel_lengths[idx] + largest_idxs = torch.argsort(-dur)[:extra_frames] + dur[largest_idxs] -= 1 + assert ( + dur.sum() == mel_lengths[idx] + ), f" [!] total duration {dur.sum()} vs spectrogram length {mel_lengths[idx]}" + durations[idx, : text_lengths[idx]] = dur + + # set stop targets wrt reduction factor + stop_targets = stop_targets.view(text_input.shape[0], stop_targets.size(1) // self.config.r, -1) + stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze(2) + stop_target_lengths = torch.divide(mel_lengths, self.config.r).ceil_() + + return { + "text_input": text_input, + "text_lengths": text_lengths, + "speaker_names": speaker_names, + "mel_input": mel_input, + "mel_lengths": mel_lengths, + "linear_input": linear_input, + "stop_targets": stop_targets, + "stop_target_lengths": stop_target_lengths, + "attn_mask": attn_mask, + "durations": durations, + "speaker_ids": speaker_ids, + "d_vectors": d_vectors, + "max_text_length": float(max_text_length), + "max_spec_length": float(max_spec_length), + "item_idx": item_idx, + "waveform": waveform, + "pitch": pitch, + "energy": energy, + "language_ids": language_ids, + "audio_unique_names": batch["audio_unique_names"], + } + + def get_sampler(self, config: Coqpit, dataset: TTSDataset, num_gpus=1): + weights = None + data_items = dataset.samples + + if getattr(config, "use_language_weighted_sampler", False): + alpha = getattr(config, "language_weighted_sampler_alpha", 1.0) + print(" > Using Language weighted sampler with alpha:", alpha) + weights = get_language_balancer_weights(data_items) * alpha + + if getattr(config, "use_speaker_weighted_sampler", False): + alpha = getattr(config, "speaker_weighted_sampler_alpha", 1.0) + print(" > Using Speaker weighted sampler with alpha:", alpha) + if weights is not None: + weights += get_speaker_balancer_weights(data_items) * alpha + else: + weights = get_speaker_balancer_weights(data_items) * alpha + + if getattr(config, "use_length_weighted_sampler", False): + alpha = getattr(config, "length_weighted_sampler_alpha", 1.0) + print(" > Using Length weighted sampler with alpha:", alpha) + if weights is not None: + weights += get_length_balancer_weights(data_items) * alpha + else: + weights = get_length_balancer_weights(data_items) * alpha + + if weights is not None: + sampler = WeightedRandomSampler(weights, len(weights)) + else: + sampler = None + + # sampler for DDP + if sampler is None: + sampler = DistributedSampler(dataset) if num_gpus > 1 else None + else: # If a sampler is already defined use this sampler and DDP sampler together + sampler = DistributedSamplerWrapper(sampler) if num_gpus > 1 else sampler + + return sampler + + def get_data_loader( + self, + config: Coqpit, + assets: Dict, + is_eval: bool, + samples: Union[List[Dict], List[List]], + verbose: bool, + num_gpus: int, + rank: int = None, + ) -> "DataLoader": + if is_eval and not config.run_eval: + loader = None + else: + # setup multi-speaker attributes + if self.speaker_manager is not None: + if hasattr(config, "model_args"): + speaker_id_mapping = ( + self.speaker_manager.name_to_id if config.model_args.use_speaker_embedding else None + ) + d_vector_mapping = self.speaker_manager.embeddings if config.model_args.use_d_vector_file else None + config.use_d_vector_file = config.model_args.use_d_vector_file + else: + speaker_id_mapping = self.speaker_manager.name_to_id if config.use_speaker_embedding else None + d_vector_mapping = self.speaker_manager.embeddings if config.use_d_vector_file else None + else: + speaker_id_mapping = None + d_vector_mapping = None + + # setup multi-lingual attributes + if self.language_manager is not None: + language_id_mapping = self.language_manager.name_to_id if self.args.use_language_embedding else None + else: + language_id_mapping = None + + # init dataloader + dataset = TTSDataset( + outputs_per_step=config.r if "r" in config else 1, + compute_linear_spec=config.model.lower() == "tacotron" or config.compute_linear_spec, + compute_f0=config.get("compute_f0", False), + f0_cache_path=config.get("f0_cache_path", None), + compute_energy=config.get("compute_energy", False), + energy_cache_path=config.get("energy_cache_path", None), + samples=samples, + ap=self.ap, + return_wav=config.return_wav if "return_wav" in config else False, + batch_group_size=0 if is_eval else config.batch_group_size * config.batch_size, + min_text_len=config.min_text_len, + max_text_len=config.max_text_len, + min_audio_len=config.min_audio_len, + max_audio_len=config.max_audio_len, + phoneme_cache_path=config.phoneme_cache_path, + precompute_num_workers=config.precompute_num_workers, + use_noise_augment=False if is_eval else config.use_noise_augment, + verbose=verbose, + speaker_id_mapping=speaker_id_mapping, + d_vector_mapping=d_vector_mapping if config.use_d_vector_file else None, + tokenizer=self.tokenizer, + start_by_longest=config.start_by_longest, + language_id_mapping=language_id_mapping, + ) + + # wait all the DDP process to be ready + if num_gpus > 1: + dist.barrier() + + # sort input sequences from short to long + dataset.preprocess_samples() + + # get samplers + sampler = self.get_sampler(config, dataset, num_gpus) + + loader = DataLoader( + dataset, + batch_size=config.eval_batch_size if is_eval else config.batch_size, + shuffle=config.shuffle if sampler is None else False, # if there is no other sampler + collate_fn=dataset.collate_fn, + drop_last=config.drop_last, # setting this False might cause issues in AMP training. + sampler=sampler, + num_workers=config.num_eval_loader_workers if is_eval else config.num_loader_workers, + pin_memory=False, + ) + return loader + + def _get_test_aux_input( + self, + ) -> Dict: + d_vector = None + if self.config.use_d_vector_file: + d_vector = [self.speaker_manager.embeddings[name]["embedding"] for name in self.speaker_manager.embeddings] + d_vector = (random.sample(sorted(d_vector), 1),) + + aux_inputs = { + "speaker_id": None + if not self.config.use_speaker_embedding + else random.sample(sorted(self.speaker_manager.name_to_id.values()), 1), + "d_vector": d_vector, + "style_wav": None, # TODO: handle GST style input + } + return aux_inputs + + def test_run(self, assets: Dict) -> Tuple[Dict, Dict]: + """Generic test run for `tts` models used by `Trainer`. + + You can override this for a different behaviour. + + Args: + assets (dict): A dict of training assets. For `tts` models, it must include `{'audio_processor': ap}`. + + Returns: + Tuple[Dict, Dict]: Test figures and audios to be projected to Tensorboard. + """ + print(" | > Synthesizing test sentences.") + test_audios = {} + test_figures = {} + test_sentences = self.config.test_sentences + aux_inputs = self._get_test_aux_input() + for idx, sen in enumerate(test_sentences): + if isinstance(sen, list): + aux_inputs = self.get_aux_input_from_test_sentences(sen) + sen = aux_inputs["text"] + outputs_dict = synthesis( + self, + sen, + self.config, + "cuda" in str(next(self.parameters()).device), + speaker_id=aux_inputs["speaker_id"], + d_vector=aux_inputs["d_vector"], + style_wav=aux_inputs["style_wav"], + use_griffin_lim=True, + do_trim_silence=False, + ) + test_audios["{}-audio".format(idx)] = outputs_dict["wav"] + test_figures["{}-prediction".format(idx)] = plot_spectrogram( + outputs_dict["outputs"]["model_outputs"], self.ap, output_fig=False + ) + test_figures["{}-alignment".format(idx)] = plot_alignment( + outputs_dict["outputs"]["alignments"], output_fig=False + ) + return test_figures, test_audios + + def on_init_start(self, trainer): + """Save the speaker.pth and language_ids.json at the beginning of the training. Also update both paths.""" + if self.speaker_manager is not None: + output_path = os.path.join(trainer.output_path, "speakers.pth") + self.speaker_manager.save_ids_to_file(output_path) + trainer.config.speakers_file = output_path + # some models don't have `model_args` set + if hasattr(trainer.config, "model_args"): + trainer.config.model_args.speakers_file = output_path + trainer.config.save_json(os.path.join(trainer.output_path, "config.json")) + print(f" > `speakers.pth` is saved to {output_path}.") + print(" > `speakers_file` is updated in the config.json.") + + if self.language_manager is not None: + output_path = os.path.join(trainer.output_path, "language_ids.json") + self.language_manager.save_ids_to_file(output_path) + trainer.config.language_ids_file = output_path + if hasattr(trainer.config, "model_args"): + trainer.config.model_args.language_ids_file = output_path + trainer.config.save_json(os.path.join(trainer.output_path, "config.json")) + print(f" > `language_ids.json` is saved to {output_path}.") + print(" > `language_ids_file` is updated in the config.json.") + + +class BaseTTSE2E(BaseTTS): + def _set_model_args(self, config: Coqpit): + self.config = config + if "Config" in config.__class__.__name__: + num_chars = ( + self.config.model_args.num_chars if self.tokenizer is None else self.tokenizer.characters.num_chars + ) + self.config.model_args.num_chars = num_chars + self.config.num_chars = num_chars + self.args = config.model_args + self.args.num_chars = num_chars + elif "Args" in config.__class__.__name__: + self.args = config + self.args.num_chars = self.args.num_chars + else: + raise ValueError("config must be either a *Config or *Args") diff --git a/TTS/TTS/tts/models/delightful_tts.py b/TTS/TTS/tts/models/delightful_tts.py new file mode 100644 index 0000000000000000000000000000000000000000..b1cf886bea1f22a0ec1b0524f5a80ea8db0b55f8 --- /dev/null +++ b/TTS/TTS/tts/models/delightful_tts.py @@ -0,0 +1,1770 @@ +import os +from dataclasses import dataclass, field +from itertools import chain +from pathlib import Path +from typing import Dict, List, Optional, Tuple, Union + +import numpy as np +import torch +import torch.distributed as dist +import torchaudio +from coqpit import Coqpit +from librosa.filters import mel as librosa_mel_fn +from torch import nn +from torch.cuda.amp.autocast_mode import autocast +from torch.nn import functional as F +from torch.utils.data import DataLoader +from torch.utils.data.sampler import WeightedRandomSampler +from trainer.torch import DistributedSampler, DistributedSamplerWrapper +from trainer.trainer_utils import get_optimizer, get_scheduler + +from TTS.tts.datasets.dataset import F0Dataset, TTSDataset, _parse_sample +from TTS.tts.layers.delightful_tts.acoustic_model import AcousticModel +from TTS.tts.layers.losses import ForwardSumLoss, VitsDiscriminatorLoss +from TTS.tts.layers.vits.discriminator import VitsDiscriminator +from TTS.tts.models.base_tts import BaseTTSE2E +from TTS.tts.utils.helpers import average_over_durations, compute_attn_prior, rand_segments, segment, sequence_mask +from TTS.tts.utils.speakers import SpeakerManager +from TTS.tts.utils.text.tokenizer import TTSTokenizer +from TTS.tts.utils.visual import plot_alignment, plot_avg_pitch, plot_pitch, plot_spectrogram +from TTS.utils.audio.numpy_transforms import build_mel_basis, compute_f0 +from TTS.utils.audio.numpy_transforms import db_to_amp as db_to_amp_numpy +from TTS.utils.audio.numpy_transforms import mel_to_wav as mel_to_wav_numpy +from TTS.utils.audio.processor import AudioProcessor +from TTS.utils.io import load_fsspec +from TTS.vocoder.layers.losses import MultiScaleSTFTLoss +from TTS.vocoder.models.hifigan_generator import HifiganGenerator +from TTS.vocoder.utils.generic_utils import plot_results + + +def id_to_torch(aux_id, cuda=False): + if aux_id is not None: + aux_id = np.asarray(aux_id) + aux_id = torch.from_numpy(aux_id) + if cuda: + return aux_id.cuda() + return aux_id + + +def embedding_to_torch(d_vector, cuda=False): + if d_vector is not None: + d_vector = np.asarray(d_vector) + d_vector = torch.from_numpy(d_vector).float() + d_vector = d_vector.squeeze().unsqueeze(0) + if cuda: + return d_vector.cuda() + return d_vector + + +def numpy_to_torch(np_array, dtype, cuda=False): + if np_array is None: + return None + tensor = torch.as_tensor(np_array, dtype=dtype) + if cuda: + return tensor.cuda() + return tensor + + +def get_mask_from_lengths(lengths: torch.Tensor) -> torch.Tensor: + batch_size = lengths.shape[0] + max_len = torch.max(lengths).item() + ids = torch.arange(0, max_len, device=lengths.device).unsqueeze(0).expand(batch_size, -1) + mask = ids >= lengths.unsqueeze(1).expand(-1, max_len) + return mask + + +def pad(input_ele: List[torch.Tensor], max_len: int) -> torch.Tensor: + out_list = torch.jit.annotate(List[torch.Tensor], []) + for batch in input_ele: + if len(batch.shape) == 1: + one_batch_padded = F.pad(batch, (0, max_len - batch.size(0)), "constant", 0.0) + else: + one_batch_padded = F.pad(batch, (0, 0, 0, max_len - batch.size(0)), "constant", 0.0) + out_list.append(one_batch_padded) + out_padded = torch.stack(out_list) + return out_padded + + +def init_weights(m: nn.Module, mean: float = 0.0, std: float = 0.01): + classname = m.__class__.__name__ + if classname.find("Conv") != -1: + m.weight.data.normal_(mean, std) + + +def stride_lens(lens: torch.Tensor, stride: int = 2) -> torch.Tensor: + return torch.ceil(lens / stride).int() + + +def initialize_embeddings(shape: Tuple[int]) -> torch.Tensor: + assert len(shape) == 2, "Can only initialize 2-D embedding matrices ..." + return torch.randn(shape) * np.sqrt(2 / shape[1]) + + +# pylint: disable=redefined-outer-name +def calc_same_padding(kernel_size: int) -> Tuple[int, int]: + pad = kernel_size // 2 + return (pad, pad - (kernel_size + 1) % 2) + + +hann_window = {} +mel_basis = {} + + +@torch.no_grad() +def weights_reset(m: nn.Module): + # check if the current module has reset_parameters and if it is reset the weight + reset_parameters = getattr(m, "reset_parameters", None) + if callable(reset_parameters): + m.reset_parameters() + + +def get_module_weights_sum(mdl: nn.Module): + dict_sums = {} + for name, w in mdl.named_parameters(): + if "weight" in name: + value = w.data.sum().item() + dict_sums[name] = value + return dict_sums + + +def load_audio(file_path: str): + """Load the audio file normalized in [-1, 1] + + Return Shapes: + - x: :math:`[1, T]` + """ + x, sr = torchaudio.load( + file_path, + ) + assert (x > 1).sum() + (x < -1).sum() == 0 + return x, sr + + +def _amp_to_db(x, C=1, clip_val=1e-5): + return torch.log(torch.clamp(x, min=clip_val) * C) + + +def _db_to_amp(x, C=1): + return torch.exp(x) / C + + +def amp_to_db(magnitudes): + output = _amp_to_db(magnitudes) + return output + + +def db_to_amp(magnitudes): + output = _db_to_amp(magnitudes) + return output + + +def _wav_to_spec(y, n_fft, hop_length, win_length, center=False): + y = y.squeeze(1) + + if torch.min(y) < -1.0: + print("min value is ", torch.min(y)) + if torch.max(y) > 1.0: + print("max value is ", torch.max(y)) + + global hann_window # pylint: disable=global-statement + dtype_device = str(y.dtype) + "_" + str(y.device) + wnsize_dtype_device = str(win_length) + "_" + dtype_device + if wnsize_dtype_device not in hann_window: + hann_window[wnsize_dtype_device] = torch.hann_window(win_length).to(dtype=y.dtype, device=y.device) + + y = torch.nn.functional.pad( + y.unsqueeze(1), + (int((n_fft - hop_length) / 2), int((n_fft - hop_length) / 2)), + mode="reflect", + ) + y = y.squeeze(1) + + spec = torch.stft( + y, + n_fft, + hop_length=hop_length, + win_length=win_length, + window=hann_window[wnsize_dtype_device], + center=center, + pad_mode="reflect", + normalized=False, + onesided=True, + return_complex=False, + ) + + return spec + + +def wav_to_spec(y, n_fft, hop_length, win_length, center=False): + """ + Args Shapes: + - y : :math:`[B, 1, T]` + + Return Shapes: + - spec : :math:`[B,C,T]` + """ + spec = _wav_to_spec(y, n_fft, hop_length, win_length, center=center) + spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6) + return spec + + +def wav_to_energy(y, n_fft, hop_length, win_length, center=False): + spec = _wav_to_spec(y, n_fft, hop_length, win_length, center=center) + + spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6) + return torch.norm(spec, dim=1, keepdim=True) + + +def name_mel_basis(spec, n_fft, fmax): + n_fft_len = f"{n_fft}_{fmax}_{spec.dtype}_{spec.device}" + return n_fft_len + + +def spec_to_mel(spec, n_fft, num_mels, sample_rate, fmin, fmax): + """ + Args Shapes: + - spec : :math:`[B,C,T]` + + Return Shapes: + - mel : :math:`[B,C,T]` + """ + global mel_basis # pylint: disable=global-statement + mel_basis_key = name_mel_basis(spec, n_fft, fmax) + # pylint: disable=too-many-function-args + if mel_basis_key not in mel_basis: + # pylint: disable=missing-kwoa + mel = librosa_mel_fn(sample_rate, n_fft, num_mels, fmin, fmax) + mel_basis[mel_basis_key] = torch.from_numpy(mel).to(dtype=spec.dtype, device=spec.device) + mel = torch.matmul(mel_basis[mel_basis_key], spec) + mel = amp_to_db(mel) + return mel + + +def wav_to_mel(y, n_fft, num_mels, sample_rate, hop_length, win_length, fmin, fmax, center=False): + """ + Args Shapes: + - y : :math:`[B, 1, T_y]` + + Return Shapes: + - spec : :math:`[B,C,T_spec]` + """ + y = y.squeeze(1) + + if torch.min(y) < -1.0: + print("min value is ", torch.min(y)) + if torch.max(y) > 1.0: + print("max value is ", torch.max(y)) + + global mel_basis, hann_window # pylint: disable=global-statement + mel_basis_key = name_mel_basis(y, n_fft, fmax) + wnsize_dtype_device = str(win_length) + "_" + str(y.dtype) + "_" + str(y.device) + if mel_basis_key not in mel_basis: + # pylint: disable=missing-kwoa + mel = librosa_mel_fn( + sr=sample_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax + ) # pylint: disable=too-many-function-args + mel_basis[mel_basis_key] = torch.from_numpy(mel).to(dtype=y.dtype, device=y.device) + if wnsize_dtype_device not in hann_window: + hann_window[wnsize_dtype_device] = torch.hann_window(win_length).to(dtype=y.dtype, device=y.device) + + y = torch.nn.functional.pad( + y.unsqueeze(1), + (int((n_fft - hop_length) / 2), int((n_fft - hop_length) / 2)), + mode="reflect", + ) + y = y.squeeze(1) + + spec = torch.stft( + y, + n_fft, + hop_length=hop_length, + win_length=win_length, + window=hann_window[wnsize_dtype_device], + center=center, + pad_mode="reflect", + normalized=False, + onesided=True, + return_complex=False, + ) + + spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6) + spec = torch.matmul(mel_basis[mel_basis_key], spec) + spec = amp_to_db(spec) + return spec + + +############################## +# DATASET +############################## + + +def get_attribute_balancer_weights(items: list, attr_name: str, multi_dict: dict = None): + """Create balancer weight for torch WeightedSampler""" + attr_names_samples = np.array([item[attr_name] for item in items]) + unique_attr_names = np.unique(attr_names_samples).tolist() + attr_idx = [unique_attr_names.index(l) for l in attr_names_samples] + attr_count = np.array([len(np.where(attr_names_samples == l)[0]) for l in unique_attr_names]) + weight_attr = 1.0 / attr_count + dataset_samples_weight = np.array([weight_attr[l] for l in attr_idx]) + dataset_samples_weight = dataset_samples_weight / np.linalg.norm(dataset_samples_weight) + if multi_dict is not None: + multiplier_samples = np.array([multi_dict.get(item[attr_name], 1.0) for item in items]) + dataset_samples_weight *= multiplier_samples + return ( + torch.from_numpy(dataset_samples_weight).float(), + unique_attr_names, + np.unique(dataset_samples_weight).tolist(), + ) + + +class ForwardTTSE2eF0Dataset(F0Dataset): + """Override F0Dataset to avoid slow computing of pitches""" + + def __init__( + self, + ap, + samples: Union[List[List], List[Dict]], + verbose=False, + cache_path: str = None, + precompute_num_workers=0, + normalize_f0=True, + ): + super().__init__( + samples=samples, + ap=ap, + verbose=verbose, + cache_path=cache_path, + precompute_num_workers=precompute_num_workers, + normalize_f0=normalize_f0, + ) + + def _compute_and_save_pitch(self, wav_file, pitch_file=None): + wav, _ = load_audio(wav_file) + f0 = compute_f0( + x=wav.numpy()[0], + sample_rate=self.ap.sample_rate, + hop_length=self.ap.hop_length, + pitch_fmax=self.ap.pitch_fmax, + pitch_fmin=self.ap.pitch_fmin, + win_length=self.ap.win_length, + ) + # skip the last F0 value to align with the spectrogram + if wav.shape[1] % self.ap.hop_length != 0: + f0 = f0[:-1] + if pitch_file: + np.save(pitch_file, f0) + return f0 + + def compute_or_load(self, wav_file, audio_name): + """ + compute pitch and return a numpy array of pitch values + """ + pitch_file = self.create_pitch_file_path(audio_name, self.cache_path) + if not os.path.exists(pitch_file): + pitch = self._compute_and_save_pitch(wav_file=wav_file, pitch_file=pitch_file) + else: + pitch = np.load(pitch_file) + return pitch.astype(np.float32) + + +class ForwardTTSE2eDataset(TTSDataset): + def __init__(self, *args, **kwargs): + # don't init the default F0Dataset in TTSDataset + compute_f0 = kwargs.pop("compute_f0", False) + kwargs["compute_f0"] = False + self.attn_prior_cache_path = kwargs.pop("attn_prior_cache_path") + + super().__init__(*args, **kwargs) + + self.compute_f0 = compute_f0 + self.pad_id = self.tokenizer.characters.pad_id + self.ap = kwargs["ap"] + + if self.compute_f0: + self.f0_dataset = ForwardTTSE2eF0Dataset( + ap=self.ap, + samples=self.samples, + cache_path=kwargs["f0_cache_path"], + precompute_num_workers=kwargs["precompute_num_workers"], + ) + + if self.attn_prior_cache_path is not None: + os.makedirs(self.attn_prior_cache_path, exist_ok=True) + + def __getitem__(self, idx): + item = self.samples[idx] + + rel_wav_path = Path(item["audio_file"]).relative_to(item["root_path"]).with_suffix("") + rel_wav_path = str(rel_wav_path).replace("/", "_") + + raw_text = item["text"] + wav, _ = load_audio(item["audio_file"]) + wav_filename = os.path.basename(item["audio_file"]) + + try: + token_ids = self.get_token_ids(idx, item["text"]) + except: + print(idx, item) + # pylint: disable=raise-missing-from + raise OSError + f0 = None + if self.compute_f0: + f0 = self.get_f0(idx)["f0"] + + # after phonemization the text length may change + # this is a shameful ๐Ÿคญ hack to prevent longer phonemes + # TODO: find a better fix + if len(token_ids) > self.max_text_len or wav.shape[1] < self.min_audio_len: + self.rescue_item_idx += 1 + return self.__getitem__(self.rescue_item_idx) + + attn_prior = None + if self.attn_prior_cache_path is not None: + attn_prior = self.load_or_compute_attn_prior(token_ids, wav, rel_wav_path) + + return { + "raw_text": raw_text, + "token_ids": token_ids, + "token_len": len(token_ids), + "wav": wav, + "pitch": f0, + "wav_file": wav_filename, + "speaker_name": item["speaker_name"], + "language_name": item["language"], + "attn_prior": attn_prior, + "audio_unique_name": item["audio_unique_name"], + } + + def load_or_compute_attn_prior(self, token_ids, wav, rel_wav_path): + """Load or compute and save the attention prior.""" + attn_prior_file = os.path.join(self.attn_prior_cache_path, f"{rel_wav_path}.npy") + # pylint: disable=no-else-return + if os.path.exists(attn_prior_file): + return np.load(attn_prior_file) + else: + token_len = len(token_ids) + mel_len = wav.shape[1] // self.ap.hop_length + attn_prior = compute_attn_prior(token_len, mel_len) + np.save(attn_prior_file, attn_prior) + return attn_prior + + @property + def lengths(self): + lens = [] + for item in self.samples: + _, wav_file, *_ = _parse_sample(item) + audio_len = os.path.getsize(wav_file) / 16 * 8 # assuming 16bit audio + lens.append(audio_len) + return lens + + def collate_fn(self, batch): + """ + Return Shapes: + - tokens: :math:`[B, T]` + - token_lens :math:`[B]` + - token_rel_lens :math:`[B]` + - pitch :math:`[B, T]` + - waveform: :math:`[B, 1, T]` + - waveform_lens: :math:`[B]` + - waveform_rel_lens: :math:`[B]` + - speaker_names: :math:`[B]` + - language_names: :math:`[B]` + - audiofile_paths: :math:`[B]` + - raw_texts: :math:`[B]` + - attn_prior: :math:`[[T_token, T_mel]]` + """ + B = len(batch) + batch = {k: [dic[k] for dic in batch] for k in batch[0]} + + max_text_len = max([len(x) for x in batch["token_ids"]]) + token_lens = torch.LongTensor(batch["token_len"]) + token_rel_lens = token_lens / token_lens.max() + + wav_lens = [w.shape[1] for w in batch["wav"]] + wav_lens = torch.LongTensor(wav_lens) + wav_lens_max = torch.max(wav_lens) + wav_rel_lens = wav_lens / wav_lens_max + + pitch_padded = None + if self.compute_f0: + pitch_lens = [p.shape[0] for p in batch["pitch"]] + pitch_lens = torch.LongTensor(pitch_lens) + pitch_lens_max = torch.max(pitch_lens) + pitch_padded = torch.FloatTensor(B, 1, pitch_lens_max) + pitch_padded = pitch_padded.zero_() + self.pad_id + + token_padded = torch.LongTensor(B, max_text_len) + wav_padded = torch.FloatTensor(B, 1, wav_lens_max) + + token_padded = token_padded.zero_() + self.pad_id + wav_padded = wav_padded.zero_() + self.pad_id + + for i in range(B): + token_ids = batch["token_ids"][i] + token_padded[i, : batch["token_len"][i]] = torch.LongTensor(token_ids) + + wav = batch["wav"][i] + wav_padded[i, :, : wav.size(1)] = torch.FloatTensor(wav) + + if self.compute_f0: + pitch = batch["pitch"][i] + pitch_padded[i, 0, : len(pitch)] = torch.FloatTensor(pitch) + + return { + "text_input": token_padded, + "text_lengths": token_lens, + "text_rel_lens": token_rel_lens, + "pitch": pitch_padded, + "waveform": wav_padded, # (B x T) + "waveform_lens": wav_lens, # (B) + "waveform_rel_lens": wav_rel_lens, + "speaker_names": batch["speaker_name"], + "language_names": batch["language_name"], + "audio_unique_names": batch["audio_unique_name"], + "audio_files": batch["wav_file"], + "raw_text": batch["raw_text"], + "attn_priors": batch["attn_prior"] if batch["attn_prior"][0] is not None else None, + } + + +############################## +# CONFIG DEFINITIONS +############################## + + +@dataclass +class VocoderConfig(Coqpit): + resblock_type_decoder: str = "1" + resblock_kernel_sizes_decoder: List[int] = field(default_factory=lambda: [3, 7, 11]) + resblock_dilation_sizes_decoder: List[List[int]] = field(default_factory=lambda: [[1, 3, 5], [1, 3, 5], [1, 3, 5]]) + upsample_rates_decoder: List[int] = field(default_factory=lambda: [8, 8, 2, 2]) + upsample_initial_channel_decoder: int = 512 + upsample_kernel_sizes_decoder: List[int] = field(default_factory=lambda: [16, 16, 4, 4]) + use_spectral_norm_discriminator: bool = False + upsampling_rates_discriminator: List[int] = field(default_factory=lambda: [4, 4, 4, 4]) + periods_discriminator: List[int] = field(default_factory=lambda: [2, 3, 5, 7, 11]) + pretrained_model_path: Optional[str] = None + + +@dataclass +class DelightfulTtsAudioConfig(Coqpit): + sample_rate: int = 22050 + hop_length: int = 256 + win_length: int = 1024 + fft_size: int = 1024 + mel_fmin: float = 0.0 + mel_fmax: float = 8000 + num_mels: int = 100 + pitch_fmax: float = 640.0 + pitch_fmin: float = 1.0 + resample: bool = False + preemphasis: float = 0.0 + ref_level_db: int = 20 + do_sound_norm: bool = False + log_func: str = "np.log10" + do_trim_silence: bool = True + trim_db: int = 45 + do_rms_norm: bool = False + db_level: float = None + power: float = 1.5 + griffin_lim_iters: int = 60 + spec_gain: int = 20 + do_amp_to_db_linear: bool = True + do_amp_to_db_mel: bool = True + min_level_db: int = -100 + max_norm: float = 4.0 + + +@dataclass +class DelightfulTtsArgs(Coqpit): + num_chars: int = 100 + spec_segment_size: int = 32 + n_hidden_conformer_encoder: int = 512 + n_layers_conformer_encoder: int = 6 + n_heads_conformer_encoder: int = 8 + dropout_conformer_encoder: float = 0.1 + kernel_size_conv_mod_conformer_encoder: int = 7 + kernel_size_depthwise_conformer_encoder: int = 7 + lrelu_slope: float = 0.3 + n_hidden_conformer_decoder: int = 512 + n_layers_conformer_decoder: int = 6 + n_heads_conformer_decoder: int = 8 + dropout_conformer_decoder: float = 0.1 + kernel_size_conv_mod_conformer_decoder: int = 11 + kernel_size_depthwise_conformer_decoder: int = 11 + bottleneck_size_p_reference_encoder: int = 4 + bottleneck_size_u_reference_encoder: int = 512 + ref_enc_filters_reference_encoder = [32, 32, 64, 64, 128, 128] + ref_enc_size_reference_encoder: int = 3 + ref_enc_strides_reference_encoder = [1, 2, 1, 2, 1] + ref_enc_pad_reference_encoder = [1, 1] + ref_enc_gru_size_reference_encoder: int = 32 + ref_attention_dropout_reference_encoder: float = 0.2 + token_num_reference_encoder: int = 32 + predictor_kernel_size_reference_encoder: int = 5 + n_hidden_variance_adaptor: int = 512 + kernel_size_variance_adaptor: int = 5 + dropout_variance_adaptor: float = 0.5 + n_bins_variance_adaptor: int = 256 + emb_kernel_size_variance_adaptor: int = 3 + use_speaker_embedding: bool = False + num_speakers: int = 0 + speakers_file: str = None + d_vector_file: str = None + speaker_embedding_channels: int = 384 + use_d_vector_file: bool = False + d_vector_dim: int = 0 + freeze_vocoder: bool = False + freeze_text_encoder: bool = False + freeze_duration_predictor: bool = False + freeze_pitch_predictor: bool = False + freeze_energy_predictor: bool = False + freeze_basis_vectors_predictor: bool = False + freeze_decoder: bool = False + length_scale: float = 1.0 + + +############################## +# MODEL DEFINITION +############################## +class DelightfulTTS(BaseTTSE2E): + """ + Paper:: + https://arxiv.org/pdf/2110.12612.pdf + + Paper Abstract:: + This paper describes the Microsoft end-to-end neural text to speech (TTS) system: DelightfulTTS for Blizzard Challenge 2021. + The goal of this challenge is to synthesize natural and high-quality speech from text, and we approach this goal in two perspectives: + The first is to directly model and generate waveform in 48 kHz sampling rate, which brings higher perception quality than previous systems + with 16 kHz or 24 kHz sampling rate; The second is to model the variation information in speech through a systematic design, which improves + the prosody and naturalness. Specifically, for 48 kHz modeling, we predict 16 kHz mel-spectrogram in acoustic model, and + propose a vocoder called HiFiNet to directly generate 48 kHz waveform from predicted 16 kHz mel-spectrogram, which can better trade off training + efficiency, modelling stability and voice quality. We model variation information systematically from both explicit (speaker ID, language ID, pitch and duration) and + implicit (utterance-level and phoneme-level prosody) perspectives: 1) For speaker and language ID, we use lookup embedding in training and + inference; 2) For pitch and duration, we extract the values from paired text-speech data in training and use two predictors to predict the values in inference; 3) + For utterance-level and phoneme-level prosody, we use two reference encoders to extract the values in training, and use two separate predictors to predict the values in inference. + Additionally, we introduce an improved Conformer block to better model the local and global dependency in acoustic model. For task SH1, DelightfulTTS achieves 4.17 mean score in MOS test + and 4.35 in SMOS test, which indicates the effectiveness of our proposed system + + + Model training:: + text --> ForwardTTS() --> spec_hat --> rand_seg_select()--> GANVocoder() --> waveform_seg + spec --------^ + + Examples: + >>> from TTS.tts.models.forward_tts_e2e import ForwardTTSE2e, ForwardTTSE2eConfig + >>> config = ForwardTTSE2eConfig() + >>> model = ForwardTTSE2e(config) + """ + + # pylint: disable=dangerous-default-value + def __init__( + self, + config: Coqpit, + ap, + tokenizer: "TTSTokenizer" = None, + speaker_manager: SpeakerManager = None, + ): + super().__init__(config=config, ap=ap, tokenizer=tokenizer, speaker_manager=speaker_manager) + self.ap = ap + + self._set_model_args(config) + self.init_multispeaker(config) + self.binary_loss_weight = None + + self.args.out_channels = self.config.audio.num_mels + self.args.num_mels = self.config.audio.num_mels + self.acoustic_model = AcousticModel(args=self.args, tokenizer=tokenizer, speaker_manager=speaker_manager) + + self.waveform_decoder = HifiganGenerator( + self.config.audio.num_mels, + 1, + self.config.vocoder.resblock_type_decoder, + self.config.vocoder.resblock_dilation_sizes_decoder, + self.config.vocoder.resblock_kernel_sizes_decoder, + self.config.vocoder.upsample_kernel_sizes_decoder, + self.config.vocoder.upsample_initial_channel_decoder, + self.config.vocoder.upsample_rates_decoder, + inference_padding=0, + # cond_channels=self.embedded_speaker_dim, + conv_pre_weight_norm=False, + conv_post_weight_norm=False, + conv_post_bias=False, + ) + + if self.config.init_discriminator: + self.disc = VitsDiscriminator( + use_spectral_norm=self.config.vocoder.use_spectral_norm_discriminator, + periods=self.config.vocoder.periods_discriminator, + ) + + @property + def device(self): + return next(self.parameters()).device + + @property + def energy_scaler(self): + return self.acoustic_model.energy_scaler + + @property + def length_scale(self): + return self.acoustic_model.length_scale + + @length_scale.setter + def length_scale(self, value): + self.acoustic_model.length_scale = value + + @property + def pitch_mean(self): + return self.acoustic_model.pitch_mean + + @pitch_mean.setter + def pitch_mean(self, value): + self.acoustic_model.pitch_mean = value + + @property + def pitch_std(self): + return self.acoustic_model.pitch_std + + @pitch_std.setter + def pitch_std(self, value): + self.acoustic_model.pitch_std = value + + @property + def mel_basis(self): + return build_mel_basis( + sample_rate=self.ap.sample_rate, + fft_size=self.ap.fft_size, + num_mels=self.ap.num_mels, + mel_fmax=self.ap.mel_fmax, + mel_fmin=self.ap.mel_fmin, + ) # pylint: disable=function-redefined + + def init_for_training(self) -> None: + self.train_disc = ( # pylint: disable=attribute-defined-outside-init + self.config.steps_to_start_discriminator <= 0 + ) # pylint: disable=attribute-defined-outside-init + self.update_energy_scaler = True # pylint: disable=attribute-defined-outside-init + + def init_multispeaker(self, config: Coqpit): + """Init for multi-speaker training. + + Args: + config (Coqpit): Model configuration. + """ + self.embedded_speaker_dim = 0 + self.num_speakers = self.args.num_speakers + self.audio_transform = None + + if self.speaker_manager: + self.num_speakers = self.speaker_manager.num_speakers + self.args.num_speakers = self.speaker_manager.num_speakers + + if self.args.use_speaker_embedding: + self._init_speaker_embedding() + + if self.args.use_d_vector_file: + self._init_d_vector() + + def _init_speaker_embedding(self): + # pylint: disable=attribute-defined-outside-init + if self.num_speakers > 0: + print(" > initialization of speaker-embedding layers.") + self.embedded_speaker_dim = self.args.speaker_embedding_channels + self.args.embedded_speaker_dim = self.args.speaker_embedding_channels + + def _init_d_vector(self): + # pylint: disable=attribute-defined-outside-init + if hasattr(self, "emb_g"): + raise ValueError("[!] Speaker embedding layer already initialized before d_vector settings.") + self.embedded_speaker_dim = self.args.d_vector_dim + self.args.embedded_speaker_dim = self.args.d_vector_dim + + def _freeze_layers(self): + if self.args.freeze_vocoder: + for param in self.vocoder.paramseters(): + param.requires_grad = False + + if self.args.freeze_text_encoder: + for param in self.text_encoder.parameters(): + param.requires_grad = False + + if self.args.freeze_duration_predictor: + for param in self.durarion_predictor.parameters(): + param.requires_grad = False + + if self.args.freeze_pitch_predictor: + for param in self.pitch_predictor.parameters(): + param.requires_grad = False + + if self.args.freeze_energy_predictor: + for param in self.energy_predictor.parameters(): + param.requires_grad = False + + if self.args.freeze_decoder: + for param in self.decoder.parameters(): + param.requires_grad = False + + def forward( + self, + x: torch.LongTensor, + x_lengths: torch.LongTensor, + spec_lengths: torch.LongTensor, + spec: torch.FloatTensor, + waveform: torch.FloatTensor, + pitch: torch.FloatTensor = None, + energy: torch.FloatTensor = None, + attn_priors: torch.FloatTensor = None, + d_vectors: torch.FloatTensor = None, + speaker_idx: torch.LongTensor = None, + ) -> Dict: + """Model's forward pass. + + Args: + x (torch.LongTensor): Input character sequences. + x_lengths (torch.LongTensor): Input sequence lengths. + spec_lengths (torch.LongTensor): Spectrogram sequnce lengths. Defaults to None. + spec (torch.FloatTensor): Spectrogram frames. Only used when the alignment network is on. Defaults to None. + waveform (torch.FloatTensor): Waveform. Defaults to None. + pitch (torch.FloatTensor): Pitch values for each spectrogram frame. Only used when the pitch predictor is on. Defaults to None. + energy (torch.FloatTensor): Spectral energy values for each spectrogram frame. Only used when the energy predictor is on. Defaults to None. + attn_priors (torch.FloatTentrasor): Attention priors for the aligner network. Defaults to None. + aux_input (Dict): Auxiliary model inputs for multi-speaker training. Defaults to `{"d_vectors": 0, "speaker_ids": None}`. + + Shapes: + - x: :math:`[B, T_max]` + - x_lengths: :math:`[B]` + - spec_lengths: :math:`[B]` + - spec: :math:`[B, T_max2, C_spec]` + - waveform: :math:`[B, 1, T_max2 * hop_length]` + - g: :math:`[B, C]` + - pitch: :math:`[B, 1, T_max2]` + - energy: :math:`[B, 1, T_max2]` + """ + encoder_outputs = self.acoustic_model( + tokens=x, + src_lens=x_lengths, + mel_lens=spec_lengths, + mels=spec, + pitches=pitch, + energies=energy, + attn_priors=attn_priors, + d_vectors=d_vectors, + speaker_idx=speaker_idx, + ) + + # use mel-spec from the decoder + vocoder_input = encoder_outputs["model_outputs"] # [B, T_max2, C_mel] + + vocoder_input_slices, slice_ids = rand_segments( + x=vocoder_input.transpose(1, 2), + x_lengths=spec_lengths, + segment_size=self.args.spec_segment_size, + let_short_samples=True, + pad_short=True, + ) + if encoder_outputs["spk_emb"] is not None: + g = encoder_outputs["spk_emb"].unsqueeze(-1) + else: + g = None + + vocoder_output = self.waveform_decoder(x=vocoder_input_slices.detach(), g=g) + wav_seg = segment( + waveform, + slice_ids * self.ap.hop_length, + self.args.spec_segment_size * self.ap.hop_length, + pad_short=True, + ) + model_outputs = {**encoder_outputs} + model_outputs["acoustic_model_outputs"] = encoder_outputs["model_outputs"] + model_outputs["model_outputs"] = vocoder_output + model_outputs["waveform_seg"] = wav_seg + model_outputs["slice_ids"] = slice_ids + return model_outputs + + @torch.no_grad() + def inference( + self, x, aux_input={"d_vectors": None, "speaker_ids": None}, pitch_transform=None, energy_transform=None + ): + encoder_outputs = self.acoustic_model.inference( + tokens=x, + d_vectors=aux_input["d_vectors"], + speaker_idx=aux_input["speaker_ids"], + pitch_transform=pitch_transform, + energy_transform=energy_transform, + p_control=None, + d_control=None, + ) + vocoder_input = encoder_outputs["model_outputs"].transpose(1, 2) # [B, T_max2, C_mel] -> [B, C_mel, T_max2] + if encoder_outputs["spk_emb"] is not None: + g = encoder_outputs["spk_emb"].unsqueeze(-1) + else: + g = None + + vocoder_output = self.waveform_decoder(x=vocoder_input, g=g) + model_outputs = {**encoder_outputs} + model_outputs["model_outputs"] = vocoder_output + return model_outputs + + @torch.no_grad() + def inference_spec_decoder(self, x, aux_input={"d_vectors": None, "speaker_ids": None}): + encoder_outputs = self.acoustic_model.inference( + tokens=x, + d_vectors=aux_input["d_vectors"], + speaker_idx=aux_input["speaker_ids"], + ) + model_outputs = {**encoder_outputs} + return model_outputs + + def train_step(self, batch: dict, criterion: nn.Module, optimizer_idx: int): + if optimizer_idx == 0: + tokens = batch["text_input"] + token_lenghts = batch["text_lengths"] + mel = batch["mel_input"] + mel_lens = batch["mel_lengths"] + waveform = batch["waveform"] # [B, T, C] -> [B, C, T] + pitch = batch["pitch"] + d_vectors = batch["d_vectors"] + speaker_ids = batch["speaker_ids"] + attn_priors = batch["attn_priors"] + energy = batch["energy"] + + # generator pass + outputs = self.forward( + x=tokens, + x_lengths=token_lenghts, + spec_lengths=mel_lens, + spec=mel, + waveform=waveform, + pitch=pitch, + energy=energy, + attn_priors=attn_priors, + d_vectors=d_vectors, + speaker_idx=speaker_ids, + ) + + # cache tensors for the generator pass + self.model_outputs_cache = outputs # pylint: disable=attribute-defined-outside-init + + if self.train_disc: + # compute scores and features + scores_d_fake, _, scores_d_real, _ = self.disc( + outputs["model_outputs"].detach(), outputs["waveform_seg"] + ) + + # compute loss + with autocast(enabled=False): # use float32 for the criterion + loss_dict = criterion[optimizer_idx]( + scores_disc_fake=scores_d_fake, + scores_disc_real=scores_d_real, + ) + return outputs, loss_dict + return None, None + + if optimizer_idx == 1: + mel = batch["mel_input"] + # compute melspec segment + with autocast(enabled=False): + mel_slice = segment( + mel.float(), self.model_outputs_cache["slice_ids"], self.args.spec_segment_size, pad_short=True + ) + + mel_slice_hat = wav_to_mel( + y=self.model_outputs_cache["model_outputs"].float(), + n_fft=self.ap.fft_size, + sample_rate=self.ap.sample_rate, + num_mels=self.ap.num_mels, + hop_length=self.ap.hop_length, + win_length=self.ap.win_length, + fmin=self.ap.mel_fmin, + fmax=self.ap.mel_fmax, + center=False, + ) + + scores_d_fake = None + feats_d_fake = None + feats_d_real = None + + if self.train_disc: + # compute discriminator scores and features + scores_d_fake, feats_d_fake, _, feats_d_real = self.disc( + self.model_outputs_cache["model_outputs"], self.model_outputs_cache["waveform_seg"] + ) + + # compute losses + with autocast(enabled=True): # use float32 for the criterion + loss_dict = criterion[optimizer_idx]( + mel_output=self.model_outputs_cache["acoustic_model_outputs"].transpose(1, 2), + mel_target=batch["mel_input"], + mel_lens=batch["mel_lengths"], + dur_output=self.model_outputs_cache["dr_log_pred"], + dur_target=self.model_outputs_cache["dr_log_target"].detach(), + pitch_output=self.model_outputs_cache["pitch_pred"], + pitch_target=self.model_outputs_cache["pitch_target"], + energy_output=self.model_outputs_cache["energy_pred"], + energy_target=self.model_outputs_cache["energy_target"], + src_lens=batch["text_lengths"], + waveform=self.model_outputs_cache["waveform_seg"], + waveform_hat=self.model_outputs_cache["model_outputs"], + p_prosody_ref=self.model_outputs_cache["p_prosody_ref"], + p_prosody_pred=self.model_outputs_cache["p_prosody_pred"], + u_prosody_ref=self.model_outputs_cache["u_prosody_ref"], + u_prosody_pred=self.model_outputs_cache["u_prosody_pred"], + aligner_logprob=self.model_outputs_cache["aligner_logprob"], + aligner_hard=self.model_outputs_cache["aligner_mas"], + aligner_soft=self.model_outputs_cache["aligner_soft"], + binary_loss_weight=self.binary_loss_weight, + feats_fake=feats_d_fake, + feats_real=feats_d_real, + scores_fake=scores_d_fake, + spec_slice=mel_slice, + spec_slice_hat=mel_slice_hat, + skip_disc=not self.train_disc, + ) + + loss_dict["avg_text_length"] = batch["text_lengths"].float().mean() + loss_dict["avg_mel_length"] = batch["mel_lengths"].float().mean() + loss_dict["avg_text_batch_occupancy"] = ( + batch["text_lengths"].float() / batch["text_lengths"].float().max() + ).mean() + loss_dict["avg_mel_batch_occupancy"] = ( + batch["mel_lengths"].float() / batch["mel_lengths"].float().max() + ).mean() + + return self.model_outputs_cache, loss_dict + raise ValueError(" [!] Unexpected `optimizer_idx`.") + + def eval_step(self, batch: dict, criterion: nn.Module, optimizer_idx: int): + return self.train_step(batch, criterion, optimizer_idx) + + def _log(self, batch, outputs, name_prefix="train"): + figures, audios = {}, {} + + # encoder outputs + model_outputs = outputs[1]["acoustic_model_outputs"] + alignments = outputs[1]["alignments"] + mel_input = batch["mel_input"] + + pred_spec = model_outputs[0].data.cpu().numpy() + gt_spec = mel_input[0].data.cpu().numpy() + align_img = alignments[0].data.cpu().numpy() + + figures = { + "prediction": plot_spectrogram(pred_spec, None, output_fig=False), + "ground_truth": plot_spectrogram(gt_spec.T, None, output_fig=False), + "alignment": plot_alignment(align_img, output_fig=False), + } + + # plot pitch figures + pitch_avg = abs(outputs[1]["pitch_target"][0, 0].data.cpu().numpy()) + pitch_avg_hat = abs(outputs[1]["pitch_pred"][0, 0].data.cpu().numpy()) + chars = self.tokenizer.decode(batch["text_input"][0].data.cpu().numpy()) + pitch_figures = { + "pitch_ground_truth": plot_avg_pitch(pitch_avg, chars, output_fig=False), + "pitch_avg_predicted": plot_avg_pitch(pitch_avg_hat, chars, output_fig=False), + } + figures.update(pitch_figures) + + # plot energy figures + energy_avg = abs(outputs[1]["energy_target"][0, 0].data.cpu().numpy()) + energy_avg_hat = abs(outputs[1]["energy_pred"][0, 0].data.cpu().numpy()) + chars = self.tokenizer.decode(batch["text_input"][0].data.cpu().numpy()) + energy_figures = { + "energy_ground_truth": plot_avg_pitch(energy_avg, chars, output_fig=False), + "energy_avg_predicted": plot_avg_pitch(energy_avg_hat, chars, output_fig=False), + } + figures.update(energy_figures) + + # plot the attention mask computed from the predicted durations + alignments_hat = outputs[1]["alignments_dp"][0].data.cpu().numpy() + figures["alignment_hat"] = plot_alignment(alignments_hat.T, output_fig=False) + + # Sample audio + encoder_audio = mel_to_wav_numpy( + mel=db_to_amp_numpy(x=pred_spec.T, gain=1, base=None), mel_basis=self.mel_basis, **self.config.audio + ) + audios[f"{name_prefix}/encoder_audio"] = encoder_audio + + # vocoder outputs + y_hat = outputs[1]["model_outputs"] + y = outputs[1]["waveform_seg"] + + vocoder_figures = plot_results(y_hat=y_hat, y=y, ap=self.ap, name_prefix=name_prefix) + figures.update(vocoder_figures) + + sample_voice = y_hat[0].squeeze(0).detach().cpu().numpy() + audios[f"{name_prefix}/vocoder_audio"] = sample_voice + return figures, audios + + def train_log( + self, batch: dict, outputs: dict, logger: "Logger", assets: dict, steps: int + ): # pylint: disable=no-self-use, unused-argument + """Create visualizations and waveform examples. + + For example, here you can plot spectrograms and generate sample sample waveforms from these spectrograms to + be projected onto Tensorboard. + + Args: + batch (Dict): Model inputs used at the previous training step. + outputs (Dict): Model outputs generated at the previous training step. + + Returns: + Tuple[Dict, np.ndarray]: training plots and output waveform. + """ + figures, audios = self._log(batch=batch, outputs=outputs, name_prefix="vocoder/") + logger.train_figures(steps, figures) + logger.train_audios(steps, audios, self.ap.sample_rate) + + def eval_log(self, batch: dict, outputs: dict, logger: "Logger", assets: dict, steps: int) -> None: + figures, audios = self._log(batch=batch, outputs=outputs, name_prefix="vocoder/") + logger.eval_figures(steps, figures) + logger.eval_audios(steps, audios, self.ap.sample_rate) + + def get_aux_input_from_test_sentences(self, sentence_info): + if hasattr(self.config, "model_args"): + config = self.config.model_args + else: + config = self.config + + # extract speaker and language info + text, speaker_name, style_wav = None, None, None + + if isinstance(sentence_info, list): + if len(sentence_info) == 1: + text = sentence_info[0] + elif len(sentence_info) == 2: + text, speaker_name = sentence_info + elif len(sentence_info) == 3: + text, speaker_name, style_wav = sentence_info + else: + text = sentence_info + + # get speaker id/d_vector + speaker_id, d_vector = None, None + if hasattr(self, "speaker_manager"): + if config.use_d_vector_file: + if speaker_name is None: + d_vector = self.speaker_manager.get_random_embedding() + else: + d_vector = self.speaker_manager.get_mean_embedding(speaker_name, num_samples=None, randomize=False) + elif config.use_speaker_embedding: + if speaker_name is None: + speaker_id = self.speaker_manager.get_random_id() + else: + speaker_id = self.speaker_manager.name_to_id[speaker_name] + + return {"text": text, "speaker_id": speaker_id, "style_wav": style_wav, "d_vector": d_vector} + + def plot_outputs(self, text, wav, alignment, outputs): + figures = {} + pitch_avg_pred = outputs["pitch"].cpu() + energy_avg_pred = outputs["energy"].cpu() + spec = wav_to_mel( + y=torch.from_numpy(wav[None, :]), + n_fft=self.ap.fft_size, + sample_rate=self.ap.sample_rate, + num_mels=self.ap.num_mels, + hop_length=self.ap.hop_length, + win_length=self.ap.win_length, + fmin=self.ap.mel_fmin, + fmax=self.ap.mel_fmax, + center=False, + )[0].transpose(0, 1) + pitch = compute_f0( + x=wav[0], + sample_rate=self.ap.sample_rate, + hop_length=self.ap.hop_length, + pitch_fmax=self.ap.pitch_fmax, + ) + input_text = self.tokenizer.ids_to_text(self.tokenizer.text_to_ids(text, language="en")) + input_text = input_text.replace("", "_") + durations = outputs["durations"] + pitch_avg = average_over_durations(torch.from_numpy(pitch)[None, None, :], durations.cpu()) # [1, 1, n_frames] + pitch_avg_pred_denorm = (pitch_avg_pred * self.pitch_std) + self.pitch_mean + figures["alignment"] = plot_alignment(alignment.transpose(1, 2), output_fig=False) + figures["spectrogram"] = plot_spectrogram(spec) + figures["pitch_from_wav"] = plot_pitch(pitch, spec) + figures["pitch_avg_from_wav"] = plot_avg_pitch(pitch_avg.squeeze(), input_text) + figures["pitch_avg_pred"] = plot_avg_pitch(pitch_avg_pred_denorm.squeeze(), input_text) + figures["energy_avg_pred"] = plot_avg_pitch(energy_avg_pred.squeeze(), input_text) + return figures + + def synthesize( + self, + text: str, + speaker_id: str = None, + d_vector: torch.tensor = None, + pitch_transform=None, + **kwargs, + ): # pylint: disable=unused-argument + # TODO: add cloning support with ref_waveform + is_cuda = next(self.parameters()).is_cuda + + # convert text to sequence of token IDs + text_inputs = np.asarray( + self.tokenizer.text_to_ids(text, language=None), + dtype=np.int32, + ) + + # set speaker inputs + _speaker_id = None + if speaker_id is not None and self.args.use_speaker_embedding: + if isinstance(speaker_id, str) and self.args.use_speaker_embedding: + # get the speaker id for the speaker embedding layer + _speaker_id = self.speaker_manager.name_to_id[speaker_id] + _speaker_id = id_to_torch(_speaker_id, cuda=is_cuda) + + if speaker_id is not None and self.args.use_d_vector_file: + # get the average d_vector for the speaker + d_vector = self.speaker_manager.get_mean_embedding(speaker_id, num_samples=None, randomize=False) + d_vector = embedding_to_torch(d_vector, cuda=is_cuda) + + text_inputs = numpy_to_torch(text_inputs, torch.long, cuda=is_cuda) + text_inputs = text_inputs.unsqueeze(0) + + # synthesize voice + outputs = self.inference( + text_inputs, + aux_input={"d_vectors": d_vector, "speaker_ids": _speaker_id}, + pitch_transform=pitch_transform, + # energy_transform=energy_transform + ) + + # collect outputs + wav = outputs["model_outputs"][0].data.cpu().numpy() + alignments = outputs["alignments"] + return_dict = { + "wav": wav, + "alignments": alignments, + "text_inputs": text_inputs, + "outputs": outputs, + } + return return_dict + + def synthesize_with_gl(self, text: str, speaker_id, d_vector): + is_cuda = next(self.parameters()).is_cuda + + # convert text to sequence of token IDs + text_inputs = np.asarray( + self.tokenizer.text_to_ids(text, language=None), + dtype=np.int32, + ) + # pass tensors to backend + if speaker_id is not None: + speaker_id = id_to_torch(speaker_id, cuda=is_cuda) + + if d_vector is not None: + d_vector = embedding_to_torch(d_vector, cuda=is_cuda) + + text_inputs = numpy_to_torch(text_inputs, torch.long, cuda=is_cuda) + text_inputs = text_inputs.unsqueeze(0) + + # synthesize voice + outputs = self.inference_spec_decoder( + x=text_inputs, + aux_input={"d_vectors": d_vector, "speaker_ids": speaker_id}, + ) + + # collect outputs + S = outputs["model_outputs"].cpu().numpy()[0].T + S = db_to_amp_numpy(x=S, gain=1, base=None) + wav = mel_to_wav_numpy(mel=S, mel_basis=self.mel_basis, **self.config.audio) + alignments = outputs["alignments"] + return_dict = { + "wav": wav[None, :], + "alignments": alignments, + "text_inputs": text_inputs, + "outputs": outputs, + } + return return_dict + + @torch.no_grad() + def test_run(self, assets) -> Tuple[Dict, Dict]: + """Generic test run for `tts` models used by `Trainer`. + + You can override this for a different behaviour. + + Returns: + Tuple[Dict, Dict]: Test figures and audios to be projected to Tensorboard. + """ + print(" | > Synthesizing test sentences.") + test_audios = {} + test_figures = {} + test_sentences = self.config.test_sentences + for idx, s_info in enumerate(test_sentences): + aux_inputs = self.get_aux_input_from_test_sentences(s_info) + outputs = self.synthesize( + aux_inputs["text"], + config=self.config, + speaker_id=aux_inputs["speaker_id"], + d_vector=aux_inputs["d_vector"], + ) + outputs_gl = self.synthesize_with_gl( + aux_inputs["text"], + speaker_id=aux_inputs["speaker_id"], + d_vector=aux_inputs["d_vector"], + ) + # speaker_name = self.speaker_manager.speaker_names[aux_inputs["speaker_id"]] + test_audios["{}-audio".format(idx)] = outputs["wav"].T + test_audios["{}-audio_encoder".format(idx)] = outputs_gl["wav"].T + test_figures["{}-alignment".format(idx)] = plot_alignment(outputs["alignments"], output_fig=False) + return {"figures": test_figures, "audios": test_audios} + + def test_log( + self, outputs: dict, logger: "Logger", assets: dict, steps: int # pylint: disable=unused-argument + ) -> None: + logger.test_audios(steps, outputs["audios"], self.config.audio.sample_rate) + logger.test_figures(steps, outputs["figures"]) + + def format_batch(self, batch: Dict) -> Dict: + """Compute speaker, langugage IDs and d_vector for the batch if necessary.""" + speaker_ids = None + d_vectors = None + + # get numerical speaker ids from speaker names + if self.speaker_manager is not None and self.speaker_manager.speaker_names and self.args.use_speaker_embedding: + speaker_ids = [self.speaker_manager.name_to_id[sn] for sn in batch["speaker_names"]] + + if speaker_ids is not None: + speaker_ids = torch.LongTensor(speaker_ids) + batch["speaker_ids"] = speaker_ids + + # get d_vectors from audio file names + if self.speaker_manager is not None and self.speaker_manager.embeddings and self.args.use_d_vector_file: + d_vector_mapping = self.speaker_manager.embeddings + d_vectors = [d_vector_mapping[w]["embedding"] for w in batch["audio_unique_names"]] + d_vectors = torch.FloatTensor(d_vectors) + + batch["d_vectors"] = d_vectors + batch["speaker_ids"] = speaker_ids + return batch + + def format_batch_on_device(self, batch): + """Compute spectrograms on the device.""" + + ac = self.ap + + # compute spectrograms + batch["mel_input"] = wav_to_mel( + batch["waveform"], + hop_length=ac.hop_length, + win_length=ac.win_length, + n_fft=ac.fft_size, + num_mels=ac.num_mels, + sample_rate=ac.sample_rate, + fmin=ac.mel_fmin, + fmax=ac.mel_fmax, + center=False, + ) + + # TODO: Align pitch properly + # assert ( + # batch["pitch"].shape[2] == batch["mel_input"].shape[2] + # ), f"{batch['pitch'].shape[2]}, {batch['mel_input'].shape[2]}" + batch["pitch"] = batch["pitch"][:, :, : batch["mel_input"].shape[2]] if batch["pitch"] is not None else None + batch["mel_lengths"] = (batch["mel_input"].shape[2] * batch["waveform_rel_lens"]).int() + + # zero the padding frames + batch["mel_input"] = batch["mel_input"] * sequence_mask(batch["mel_lengths"]).unsqueeze(1) + + # format attn priors as we now the max mel length + # TODO: fix 1 diff b/w mel_lengths and attn_priors + + if self.config.use_attn_priors: + attn_priors_np = batch["attn_priors"] + + batch["attn_priors"] = torch.zeros( + batch["mel_input"].shape[0], + batch["mel_lengths"].max(), + batch["text_lengths"].max(), + device=batch["mel_input"].device, + ) + + for i in range(batch["mel_input"].shape[0]): + batch["attn_priors"][i, : attn_priors_np[i].shape[0], : attn_priors_np[i].shape[1]] = torch.from_numpy( + attn_priors_np[i] + ) + + batch["energy"] = None + batch["energy"] = wav_to_energy( # [B, 1, T_max2] + batch["waveform"], + hop_length=ac.hop_length, + win_length=ac.win_length, + n_fft=ac.fft_size, + center=False, + ) + batch["energy"] = self.energy_scaler(batch["energy"]) + return batch + + def get_sampler(self, config: Coqpit, dataset: TTSDataset, num_gpus=1): + weights = None + data_items = dataset.samples + if getattr(config, "use_weighted_sampler", False): + for attr_name, alpha in config.weighted_sampler_attrs.items(): + print(f" > Using weighted sampler for attribute '{attr_name}' with alpha '{alpha}'") + multi_dict = config.weighted_sampler_multipliers.get(attr_name, None) + print(multi_dict) + weights, attr_names, attr_weights = get_attribute_balancer_weights( + attr_name=attr_name, items=data_items, multi_dict=multi_dict + ) + weights = weights * alpha + print(f" > Attribute weights for '{attr_names}' \n | > {attr_weights}") + + if weights is not None: + sampler = WeightedRandomSampler(weights, len(weights)) + else: + sampler = None + # sampler for DDP + if sampler is None: + sampler = DistributedSampler(dataset) if num_gpus > 1 else None + else: # If a sampler is already defined use this sampler and DDP sampler together + sampler = DistributedSamplerWrapper(sampler) if num_gpus > 1 else sampler + return sampler + + def get_data_loader( + self, + config: Coqpit, + assets: Dict, + is_eval: bool, + samples: Union[List[Dict], List[List]], + verbose: bool, + num_gpus: int, + rank: int = None, + ) -> "DataLoader": + if is_eval and not config.run_eval: + loader = None + else: + # init dataloader + dataset = ForwardTTSE2eDataset( + samples=samples, + ap=self.ap, + batch_group_size=0 if is_eval else config.batch_group_size * config.batch_size, + min_text_len=config.min_text_len, + max_text_len=config.max_text_len, + min_audio_len=config.min_audio_len, + max_audio_len=config.max_audio_len, + phoneme_cache_path=config.phoneme_cache_path, + precompute_num_workers=config.precompute_num_workers, + compute_f0=config.compute_f0, + f0_cache_path=config.f0_cache_path, + attn_prior_cache_path=config.attn_prior_cache_path if config.use_attn_priors else None, + verbose=verbose, + tokenizer=self.tokenizer, + start_by_longest=config.start_by_longest, + ) + + # wait all the DDP process to be ready + if num_gpus > 1: + dist.barrier() + + # sort input sequences ascendingly by length + dataset.preprocess_samples() + + # get samplers + sampler = self.get_sampler(config, dataset, num_gpus) + + loader = DataLoader( + dataset, + batch_size=config.eval_batch_size if is_eval else config.batch_size, + shuffle=False, # shuffle is done in the dataset. + drop_last=False, # setting this False might cause issues in AMP training. + sampler=sampler, + collate_fn=dataset.collate_fn, + num_workers=config.num_eval_loader_workers if is_eval else config.num_loader_workers, + pin_memory=True, + ) + + # get pitch mean and std + self.pitch_mean = dataset.f0_dataset.mean + self.pitch_std = dataset.f0_dataset.std + return loader + + def get_criterion(self): + return [VitsDiscriminatorLoss(self.config), DelightfulTTSLoss(self.config)] + + def get_optimizer(self) -> List: + """Initiate and return the GAN optimizers based on the config parameters. + It returnes 2 optimizers in a list. First one is for the generator and the second one is for the discriminator. + Returns: + List: optimizers. + """ + optimizer_disc = get_optimizer( + self.config.optimizer, self.config.optimizer_params, self.config.lr_disc, self.disc + ) + gen_parameters = chain(params for k, params in self.named_parameters() if not k.startswith("disc.")) + optimizer_gen = get_optimizer( + self.config.optimizer, self.config.optimizer_params, self.config.lr_gen, parameters=gen_parameters + ) + return [optimizer_disc, optimizer_gen] + + def get_lr(self) -> List: + """Set the initial learning rates for each optimizer. + + Returns: + List: learning rates for each optimizer. + """ + return [self.config.lr_disc, self.config.lr_gen] + + def get_scheduler(self, optimizer) -> List: + """Set the schedulers for each optimizer. + + Args: + optimizer (List[`torch.optim.Optimizer`]): List of optimizers. + + Returns: + List: Schedulers, one for each optimizer. + """ + scheduler_D = get_scheduler(self.config.lr_scheduler_gen, self.config.lr_scheduler_gen_params, optimizer[0]) + scheduler_G = get_scheduler(self.config.lr_scheduler_disc, self.config.lr_scheduler_disc_params, optimizer[1]) + return [scheduler_D, scheduler_G] + + def on_epoch_end(self, trainer): # pylint: disable=unused-argument + # stop updating mean and var + # TODO: do the same for F0 + self.energy_scaler.eval() + + @staticmethod + def init_from_config( + config: "DelightfulTTSConfig", samples: Union[List[List], List[Dict]] = None, verbose=False + ): # pylint: disable=unused-argument + """Initiate model from config + + Args: + config (ForwardTTSE2eConfig): Model config. + samples (Union[List[List], List[Dict]]): Training samples to parse speaker ids for training. + Defaults to None. + """ + + tokenizer, new_config = TTSTokenizer.init_from_config(config) + speaker_manager = SpeakerManager.init_from_config(config.model_args, samples) + ap = AudioProcessor.init_from_config(config=config) + return DelightfulTTS(config=new_config, tokenizer=tokenizer, speaker_manager=speaker_manager, ap=ap) + + def load_checkpoint(self, config, checkpoint_path, eval=False): + """Load model from a checkpoint created by the ๐Ÿ‘Ÿ""" + # pylint: disable=unused-argument, redefined-builtin + state = load_fsspec(checkpoint_path, map_location=torch.device("cpu")) + self.load_state_dict(state["model"]) + if eval: + self.eval() + assert not self.training + + def get_state_dict(self): + """Custom state dict of the model with all the necessary components for inference.""" + save_state = {"config": self.config.to_dict(), "args": self.args.to_dict(), "model": self.state_dict} + + if hasattr(self, "emb_g"): + save_state["speaker_ids"] = self.speaker_manager.speaker_names + + if self.args.use_d_vector_file: + # TODO: implement saving of d_vectors + ... + return save_state + + def save(self, config, checkpoint_path): + """Save model to a file.""" + save_state = self.get_state_dict(config, checkpoint_path) # pylint: disable=too-many-function-args + save_state["pitch_mean"] = self.pitch_mean + save_state["pitch_std"] = self.pitch_std + torch.save(save_state, checkpoint_path) + + def on_train_step_start(self, trainer) -> None: + """Enable the discriminator training based on `steps_to_start_discriminator` + + Args: + trainer (Trainer): Trainer object. + """ + self.binary_loss_weight = min(trainer.epochs_done / self.config.binary_loss_warmup_epochs, 1.0) * 1.0 + self.train_disc = ( # pylint: disable=attribute-defined-outside-init + trainer.total_steps_done >= self.config.steps_to_start_discriminator + ) + + +class DelightfulTTSLoss(nn.Module): + def __init__(self, config): + super().__init__() + + self.mse_loss = nn.MSELoss() + self.mae_loss = nn.L1Loss() + self.forward_sum_loss = ForwardSumLoss() + self.multi_scale_stft_loss = MultiScaleSTFTLoss(**config.multi_scale_stft_loss_params) + + self.mel_loss_alpha = config.mel_loss_alpha + self.aligner_loss_alpha = config.aligner_loss_alpha + self.pitch_loss_alpha = config.pitch_loss_alpha + self.energy_loss_alpha = config.energy_loss_alpha + self.u_prosody_loss_alpha = config.u_prosody_loss_alpha + self.p_prosody_loss_alpha = config.p_prosody_loss_alpha + self.dur_loss_alpha = config.dur_loss_alpha + self.char_dur_loss_alpha = config.char_dur_loss_alpha + self.binary_alignment_loss_alpha = config.binary_align_loss_alpha + + self.vocoder_mel_loss_alpha = config.vocoder_mel_loss_alpha + self.feat_loss_alpha = config.feat_loss_alpha + self.gen_loss_alpha = config.gen_loss_alpha + self.multi_scale_stft_loss_alpha = config.multi_scale_stft_loss_alpha + + @staticmethod + def _binary_alignment_loss(alignment_hard, alignment_soft): + """Binary loss that forces soft alignments to match the hard alignments as + explained in `https://arxiv.org/pdf/2108.10447.pdf`. + """ + log_sum = torch.log(torch.clamp(alignment_soft[alignment_hard == 1], min=1e-12)).sum() + return -log_sum / alignment_hard.sum() + + @staticmethod + def feature_loss(feats_real, feats_generated): + loss = 0 + for dr, dg in zip(feats_real, feats_generated): + for rl, gl in zip(dr, dg): + rl = rl.float().detach() + gl = gl.float() + loss += torch.mean(torch.abs(rl - gl)) + return loss * 2 + + @staticmethod + def generator_loss(scores_fake): + loss = 0 + gen_losses = [] + for dg in scores_fake: + dg = dg.float() + l = torch.mean((1 - dg) ** 2) + gen_losses.append(l) + loss += l + + return loss, gen_losses + + def forward( + self, + mel_output, + mel_target, + mel_lens, + dur_output, + dur_target, + pitch_output, + pitch_target, + energy_output, + energy_target, + src_lens, + waveform, + waveform_hat, + p_prosody_ref, + p_prosody_pred, + u_prosody_ref, + u_prosody_pred, + aligner_logprob, + aligner_hard, + aligner_soft, + binary_loss_weight=None, + feats_fake=None, + feats_real=None, + scores_fake=None, + spec_slice=None, + spec_slice_hat=None, + skip_disc=False, + ): + """ + Shapes: + - mel_output: :math:`(B, C_mel, T_mel)` + - mel_target: :math:`(B, C_mel, T_mel)` + - mel_lens: :math:`(B)` + - dur_output: :math:`(B, T_src)` + - dur_target: :math:`(B, T_src)` + - pitch_output: :math:`(B, 1, T_src)` + - pitch_target: :math:`(B, 1, T_src)` + - energy_output: :math:`(B, 1, T_src)` + - energy_target: :math:`(B, 1, T_src)` + - src_lens: :math:`(B)` + - waveform: :math:`(B, 1, T_wav)` + - waveform_hat: :math:`(B, 1, T_wav)` + - p_prosody_ref: :math:`(B, T_src, 4)` + - p_prosody_pred: :math:`(B, T_src, 4)` + - u_prosody_ref: :math:`(B, 1, 256) + - u_prosody_pred: :math:`(B, 1, 256) + - aligner_logprob: :math:`(B, 1, T_mel, T_src)` + - aligner_hard: :math:`(B, T_mel, T_src)` + - aligner_soft: :math:`(B, T_mel, T_src)` + - spec_slice: :math:`(B, C_mel, T_mel)` + - spec_slice_hat: :math:`(B, C_mel, T_mel)` + """ + loss_dict = {} + src_mask = sequence_mask(src_lens).to(mel_output.device) # (B, T_src) + mel_mask = sequence_mask(mel_lens).to(mel_output.device) # (B, T_mel) + + dur_target.requires_grad = False + mel_target.requires_grad = False + pitch_target.requires_grad = False + + masked_mel_predictions = mel_output.masked_select(mel_mask[:, None]) + mel_targets = mel_target.masked_select(mel_mask[:, None]) + mel_loss = self.mae_loss(masked_mel_predictions, mel_targets) + + p_prosody_ref = p_prosody_ref.detach() + p_prosody_loss = 0.5 * self.mae_loss( + p_prosody_ref.masked_select(src_mask.unsqueeze(-1)), + p_prosody_pred.masked_select(src_mask.unsqueeze(-1)), + ) + + u_prosody_ref = u_prosody_ref.detach() + u_prosody_loss = 0.5 * self.mae_loss(u_prosody_ref, u_prosody_pred) + + duration_loss = self.mse_loss(dur_output, dur_target) + + pitch_output = pitch_output.masked_select(src_mask[:, None]) + pitch_target = pitch_target.masked_select(src_mask[:, None]) + pitch_loss = self.mse_loss(pitch_output, pitch_target) + + energy_output = energy_output.masked_select(src_mask[:, None]) + energy_target = energy_target.masked_select(src_mask[:, None]) + energy_loss = self.mse_loss(energy_output, energy_target) + + forward_sum_loss = self.forward_sum_loss(aligner_logprob, src_lens, mel_lens) + + total_loss = ( + (mel_loss * self.mel_loss_alpha) + + (duration_loss * self.dur_loss_alpha) + + (u_prosody_loss * self.u_prosody_loss_alpha) + + (p_prosody_loss * self.p_prosody_loss_alpha) + + (pitch_loss * self.pitch_loss_alpha) + + (energy_loss * self.energy_loss_alpha) + + (forward_sum_loss * self.aligner_loss_alpha) + ) + + if self.binary_alignment_loss_alpha > 0 and aligner_hard is not None: + binary_alignment_loss = self._binary_alignment_loss(aligner_hard, aligner_soft) + total_loss = total_loss + self.binary_alignment_loss_alpha * binary_alignment_loss * binary_loss_weight + if binary_loss_weight: + loss_dict["loss_binary_alignment"] = ( + self.binary_alignment_loss_alpha * binary_alignment_loss * binary_loss_weight + ) + else: + loss_dict["loss_binary_alignment"] = self.binary_alignment_loss_alpha * binary_alignment_loss + + loss_dict["loss_aligner"] = self.aligner_loss_alpha * forward_sum_loss + loss_dict["loss_mel"] = self.mel_loss_alpha * mel_loss + loss_dict["loss_duration"] = self.dur_loss_alpha * duration_loss + loss_dict["loss_u_prosody"] = self.u_prosody_loss_alpha * u_prosody_loss + loss_dict["loss_p_prosody"] = self.p_prosody_loss_alpha * p_prosody_loss + loss_dict["loss_pitch"] = self.pitch_loss_alpha * pitch_loss + loss_dict["loss_energy"] = self.energy_loss_alpha * energy_loss + loss_dict["loss"] = total_loss + + # vocoder losses + if not skip_disc: + loss_feat = self.feature_loss(feats_real=feats_real, feats_generated=feats_fake) * self.feat_loss_alpha + loss_gen = self.generator_loss(scores_fake=scores_fake)[0] * self.gen_loss_alpha + loss_dict["vocoder_loss_feat"] = loss_feat + loss_dict["vocoder_loss_gen"] = loss_gen + loss_dict["loss"] = loss_dict["loss"] + loss_feat + loss_gen + + loss_mel = torch.nn.functional.l1_loss(spec_slice, spec_slice_hat) * self.vocoder_mel_loss_alpha + loss_stft_mg, loss_stft_sc = self.multi_scale_stft_loss(y_hat=waveform_hat, y=waveform) + loss_stft_mg = loss_stft_mg * self.multi_scale_stft_loss_alpha + loss_stft_sc = loss_stft_sc * self.multi_scale_stft_loss_alpha + + loss_dict["vocoder_loss_mel"] = loss_mel + loss_dict["vocoder_loss_stft_mg"] = loss_stft_mg + loss_dict["vocoder_loss_stft_sc"] = loss_stft_sc + + loss_dict["loss"] = loss_dict["loss"] + loss_mel + loss_stft_sc + loss_stft_mg + return loss_dict diff --git a/TTS/TTS/tts/models/forward_tts.py b/TTS/TTS/tts/models/forward_tts.py new file mode 100644 index 0000000000000000000000000000000000000000..6d1e90ca5fd1b1ae675e46da6fc1a674009ce432 --- /dev/null +++ b/TTS/TTS/tts/models/forward_tts.py @@ -0,0 +1,856 @@ +from dataclasses import dataclass, field +from typing import Dict, List, Tuple, Union + +import torch +from coqpit import Coqpit +from torch import nn +from torch.cuda.amp.autocast_mode import autocast + +from TTS.tts.layers.feed_forward.decoder import Decoder +from TTS.tts.layers.feed_forward.encoder import Encoder +from TTS.tts.layers.generic.aligner import AlignmentNetwork +from TTS.tts.layers.generic.pos_encoding import PositionalEncoding +from TTS.tts.layers.glow_tts.duration_predictor import DurationPredictor +from TTS.tts.models.base_tts import BaseTTS +from TTS.tts.utils.helpers import average_over_durations, generate_path, maximum_path, sequence_mask +from TTS.tts.utils.speakers import SpeakerManager +from TTS.tts.utils.text.tokenizer import TTSTokenizer +from TTS.tts.utils.visual import plot_alignment, plot_avg_energy, plot_avg_pitch, plot_spectrogram +from TTS.utils.io import load_fsspec + + +@dataclass +class ForwardTTSArgs(Coqpit): + """ForwardTTS Model arguments. + + Args: + + num_chars (int): + Number of characters in the vocabulary. Defaults to 100. + + out_channels (int): + Number of output channels. Defaults to 80. + + hidden_channels (int): + Number of base hidden channels of the model. Defaults to 512. + + use_aligner (bool): + Whether to use aligner network to learn the text to speech alignment or use pre-computed durations. + If set False, durations should be computed by `TTS/bin/compute_attention_masks.py` and path to the + pre-computed durations must be provided to `config.datasets[0].meta_file_attn_mask`. Defaults to True. + + use_pitch (bool): + Use pitch predictor to learn the pitch. Defaults to True. + + use_energy (bool): + Use energy predictor to learn the energy. Defaults to True. + + duration_predictor_hidden_channels (int): + Number of hidden channels in the duration predictor. Defaults to 256. + + duration_predictor_dropout_p (float): + Dropout rate for the duration predictor. Defaults to 0.1. + + duration_predictor_kernel_size (int): + Kernel size of conv layers in the duration predictor. Defaults to 3. + + pitch_predictor_hidden_channels (int): + Number of hidden channels in the pitch predictor. Defaults to 256. + + pitch_predictor_dropout_p (float): + Dropout rate for the pitch predictor. Defaults to 0.1. + + pitch_predictor_kernel_size (int): + Kernel size of conv layers in the pitch predictor. Defaults to 3. + + pitch_embedding_kernel_size (int): + Kernel size of the projection layer in the pitch predictor. Defaults to 3. + + energy_predictor_hidden_channels (int): + Number of hidden channels in the energy predictor. Defaults to 256. + + energy_predictor_dropout_p (float): + Dropout rate for the energy predictor. Defaults to 0.1. + + energy_predictor_kernel_size (int): + Kernel size of conv layers in the energy predictor. Defaults to 3. + + energy_embedding_kernel_size (int): + Kernel size of the projection layer in the energy predictor. Defaults to 3. + + positional_encoding (bool): + Whether to use positional encoding. Defaults to True. + + positional_encoding_use_scale (bool): + Whether to use a learnable scale coeff in the positional encoding. Defaults to True. + + length_scale (int): + Length scale that multiplies the predicted durations. Larger values result slower speech. Defaults to 1.0. + + encoder_type (str): + Type of the encoder module. One of the encoders available in :class:`TTS.tts.layers.feed_forward.encoder`. + Defaults to `fftransformer` as in the paper. + + encoder_params (dict): + Parameters of the encoder module. Defaults to ```{"hidden_channels_ffn": 1024, "num_heads": 1, "num_layers": 6, "dropout_p": 0.1}``` + + decoder_type (str): + Type of the decoder module. One of the decoders available in :class:`TTS.tts.layers.feed_forward.decoder`. + Defaults to `fftransformer` as in the paper. + + decoder_params (str): + Parameters of the decoder module. Defaults to ```{"hidden_channels_ffn": 1024, "num_heads": 1, "num_layers": 6, "dropout_p": 0.1}``` + + detach_duration_predictor (bool): + Detach the input to the duration predictor from the earlier computation graph so that the duraiton loss + does not pass to the earlier layers. Defaults to True. + + max_duration (int): + Maximum duration accepted by the model. Defaults to 75. + + num_speakers (int): + Number of speakers for the speaker embedding layer. Defaults to 0. + + speakers_file (str): + Path to the speaker mapping file for the Speaker Manager. Defaults to None. + + speaker_embedding_channels (int): + Number of speaker embedding channels. Defaults to 256. + + use_d_vector_file (bool): + Enable/Disable the use of d-vectors for multi-speaker training. Defaults to False. + + d_vector_dim (int): + Number of d-vector channels. Defaults to 0. + + """ + + num_chars: int = None + out_channels: int = 80 + hidden_channels: int = 384 + use_aligner: bool = True + # pitch params + use_pitch: bool = True + pitch_predictor_hidden_channels: int = 256 + pitch_predictor_kernel_size: int = 3 + pitch_predictor_dropout_p: float = 0.1 + pitch_embedding_kernel_size: int = 3 + + # energy params + use_energy: bool = False + energy_predictor_hidden_channels: int = 256 + energy_predictor_kernel_size: int = 3 + energy_predictor_dropout_p: float = 0.1 + energy_embedding_kernel_size: int = 3 + + # duration params + duration_predictor_hidden_channels: int = 256 + duration_predictor_kernel_size: int = 3 + duration_predictor_dropout_p: float = 0.1 + + positional_encoding: bool = True + poisitonal_encoding_use_scale: bool = True + length_scale: int = 1 + encoder_type: str = "fftransformer" + encoder_params: dict = field( + default_factory=lambda: {"hidden_channels_ffn": 1024, "num_heads": 1, "num_layers": 6, "dropout_p": 0.1} + ) + decoder_type: str = "fftransformer" + decoder_params: dict = field( + default_factory=lambda: {"hidden_channels_ffn": 1024, "num_heads": 1, "num_layers": 6, "dropout_p": 0.1} + ) + detach_duration_predictor: bool = False + max_duration: int = 75 + num_speakers: int = 1 + use_speaker_embedding: bool = False + speakers_file: str = None + use_d_vector_file: bool = False + d_vector_dim: int = None + d_vector_file: str = None + + +class ForwardTTS(BaseTTS): + """General forward TTS model implementation that uses an encoder-decoder architecture with an optional alignment + network and a pitch predictor. + + If the alignment network is used, the model learns the text-to-speech alignment + from the data instead of using pre-computed durations. + + If the pitch predictor is used, the model trains a pitch predictor that predicts average pitch value for each + input character as in the FastPitch model. + + `ForwardTTS` can be configured to one of these architectures, + + - FastPitch + - SpeedySpeech + - FastSpeech + - FastSpeech2 (requires average speech energy predictor) + + Args: + config (Coqpit): Model coqpit class. + speaker_manager (SpeakerManager): Speaker manager for multi-speaker training. Only used for multi-speaker models. + Defaults to None. + + Examples: + >>> from TTS.tts.models.fast_pitch import ForwardTTS, ForwardTTSArgs + >>> config = ForwardTTSArgs() + >>> model = ForwardTTS(config) + """ + + # pylint: disable=dangerous-default-value + def __init__( + self, + config: Coqpit, + ap: "AudioProcessor" = None, + tokenizer: "TTSTokenizer" = None, + speaker_manager: SpeakerManager = None, + ): + super().__init__(config, ap, tokenizer, speaker_manager) + self._set_model_args(config) + + self.init_multispeaker(config) + + self.max_duration = self.args.max_duration + self.use_aligner = self.args.use_aligner + self.use_pitch = self.args.use_pitch + self.use_energy = self.args.use_energy + self.binary_loss_weight = 0.0 + + self.length_scale = ( + float(self.args.length_scale) if isinstance(self.args.length_scale, int) else self.args.length_scale + ) + + self.emb = nn.Embedding(self.args.num_chars, self.args.hidden_channels) + + self.encoder = Encoder( + self.args.hidden_channels, + self.args.hidden_channels, + self.args.encoder_type, + self.args.encoder_params, + self.embedded_speaker_dim, + ) + + if self.args.positional_encoding: + self.pos_encoder = PositionalEncoding(self.args.hidden_channels) + + self.decoder = Decoder( + self.args.out_channels, + self.args.hidden_channels, + self.args.decoder_type, + self.args.decoder_params, + ) + + self.duration_predictor = DurationPredictor( + self.args.hidden_channels + self.embedded_speaker_dim, + self.args.duration_predictor_hidden_channels, + self.args.duration_predictor_kernel_size, + self.args.duration_predictor_dropout_p, + ) + + if self.args.use_pitch: + self.pitch_predictor = DurationPredictor( + self.args.hidden_channels + self.embedded_speaker_dim, + self.args.pitch_predictor_hidden_channels, + self.args.pitch_predictor_kernel_size, + self.args.pitch_predictor_dropout_p, + ) + self.pitch_emb = nn.Conv1d( + 1, + self.args.hidden_channels, + kernel_size=self.args.pitch_embedding_kernel_size, + padding=int((self.args.pitch_embedding_kernel_size - 1) / 2), + ) + + if self.args.use_energy: + self.energy_predictor = DurationPredictor( + self.args.hidden_channels + self.embedded_speaker_dim, + self.args.energy_predictor_hidden_channels, + self.args.energy_predictor_kernel_size, + self.args.energy_predictor_dropout_p, + ) + self.energy_emb = nn.Conv1d( + 1, + self.args.hidden_channels, + kernel_size=self.args.energy_embedding_kernel_size, + padding=int((self.args.energy_embedding_kernel_size - 1) / 2), + ) + + if self.args.use_aligner: + self.aligner = AlignmentNetwork( + in_query_channels=self.args.out_channels, in_key_channels=self.args.hidden_channels + ) + + def init_multispeaker(self, config: Coqpit): + """Init for multi-speaker training. + + Args: + config (Coqpit): Model configuration. + """ + self.embedded_speaker_dim = 0 + # init speaker manager + if self.speaker_manager is None and (config.use_d_vector_file or config.use_speaker_embedding): + raise ValueError( + " > SpeakerManager is not provided. You must provide the SpeakerManager before initializing a multi-speaker model." + ) + # set number of speakers + if self.speaker_manager is not None: + self.num_speakers = self.speaker_manager.num_speakers + # init d-vector embedding + if config.use_d_vector_file: + self.embedded_speaker_dim = config.d_vector_dim + if self.args.d_vector_dim != self.args.hidden_channels: + self.proj_g = nn.Conv1d(self.args.d_vector_dim, self.args.hidden_channels, 1) + # init speaker embedding layer + if config.use_speaker_embedding and not config.use_d_vector_file: + print(" > Init speaker_embedding layer.") + self.emb_g = nn.Embedding(self.num_speakers, self.args.hidden_channels) + nn.init.uniform_(self.emb_g.weight, -0.1, 0.1) + + @staticmethod + def generate_attn(dr, x_mask, y_mask=None): + """Generate an attention mask from the durations. + + Shapes + - dr: :math:`(B, T_{en})` + - x_mask: :math:`(B, T_{en})` + - y_mask: :math:`(B, T_{de})` + """ + # compute decode mask from the durations + if y_mask is None: + y_lengths = dr.sum(1).long() + y_lengths[y_lengths < 1] = 1 + y_mask = torch.unsqueeze(sequence_mask(y_lengths, None), 1).to(dr.dtype) + attn_mask = torch.unsqueeze(x_mask, -1) * torch.unsqueeze(y_mask, 2) + attn = generate_path(dr, attn_mask.squeeze(1)).to(dr.dtype) + return attn + + def expand_encoder_outputs(self, en, dr, x_mask, y_mask): + """Generate attention alignment map from durations and + expand encoder outputs + + Shapes: + - en: :math:`(B, D_{en}, T_{en})` + - dr: :math:`(B, T_{en})` + - x_mask: :math:`(B, T_{en})` + - y_mask: :math:`(B, T_{de})` + + Examples:: + + encoder output: [a,b,c,d] + durations: [1, 3, 2, 1] + + expanded: [a, b, b, b, c, c, d] + attention map: [[0, 0, 0, 0, 0, 0, 1], + [0, 0, 0, 0, 1, 1, 0], + [0, 1, 1, 1, 0, 0, 0], + [1, 0, 0, 0, 0, 0, 0]] + """ + attn = self.generate_attn(dr, x_mask, y_mask) + o_en_ex = torch.matmul(attn.squeeze(1).transpose(1, 2).to(en.dtype), en.transpose(1, 2)).transpose(1, 2) + return o_en_ex, attn + + def format_durations(self, o_dr_log, x_mask): + """Format predicted durations. + 1. Convert to linear scale from log scale + 2. Apply the length scale for speed adjustment + 3. Apply masking. + 4. Cast 0 durations to 1. + 5. Round the duration values. + + Args: + o_dr_log: Log scale durations. + x_mask: Input text mask. + + Shapes: + - o_dr_log: :math:`(B, T_{de})` + - x_mask: :math:`(B, T_{en})` + """ + o_dr = (torch.exp(o_dr_log) - 1) * x_mask * self.length_scale + o_dr[o_dr < 1] = 1.0 + o_dr = torch.round(o_dr) + return o_dr + + def _forward_encoder( + self, x: torch.LongTensor, x_mask: torch.FloatTensor, g: torch.FloatTensor = None + ) -> Tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]: + """Encoding forward pass. + + 1. Embed speaker IDs if multi-speaker mode. + 2. Embed character sequences. + 3. Run the encoder network. + 4. Sum encoder outputs and speaker embeddings + + Args: + x (torch.LongTensor): Input sequence IDs. + x_mask (torch.FloatTensor): Input squence mask. + g (torch.FloatTensor, optional): Conditioning vectors. In general speaker embeddings. Defaults to None. + + Returns: + Tuple[torch.tensor, torch.tensor, torch.tensor, torch.tensor, torch.tensor]: + encoder output, encoder output for the duration predictor, input sequence mask, speaker embeddings, + character embeddings + + Shapes: + - x: :math:`(B, T_{en})` + - x_mask: :math:`(B, 1, T_{en})` + - g: :math:`(B, C)` + """ + if hasattr(self, "emb_g"): + g = self.emb_g(g) # [B, C, 1] + if g is not None: + g = g.unsqueeze(-1) + # [B, T, C] + x_emb = self.emb(x) + # encoder pass + o_en = self.encoder(torch.transpose(x_emb, 1, -1), x_mask) + # speaker conditioning + # TODO: try different ways of conditioning + if g is not None: + o_en = o_en + g + return o_en, x_mask, g, x_emb + + def _forward_decoder( + self, + o_en: torch.FloatTensor, + dr: torch.IntTensor, + x_mask: torch.FloatTensor, + y_lengths: torch.IntTensor, + g: torch.FloatTensor, + ) -> Tuple[torch.FloatTensor, torch.FloatTensor]: + """Decoding forward pass. + + 1. Compute the decoder output mask + 2. Expand encoder output with the durations. + 3. Apply position encoding. + 4. Add speaker embeddings if multi-speaker mode. + 5. Run the decoder. + + Args: + o_en (torch.FloatTensor): Encoder output. + dr (torch.IntTensor): Ground truth durations or alignment network durations. + x_mask (torch.IntTensor): Input sequence mask. + y_lengths (torch.IntTensor): Output sequence lengths. + g (torch.FloatTensor): Conditioning vectors. In general speaker embeddings. + + Returns: + Tuple[torch.FloatTensor, torch.FloatTensor]: Decoder output, attention map from durations. + """ + y_mask = torch.unsqueeze(sequence_mask(y_lengths, None), 1).to(o_en.dtype) + # expand o_en with durations + o_en_ex, attn = self.expand_encoder_outputs(o_en, dr, x_mask, y_mask) + # positional encoding + if hasattr(self, "pos_encoder"): + o_en_ex = self.pos_encoder(o_en_ex, y_mask) + # decoder pass + o_de = self.decoder(o_en_ex, y_mask, g=g) + return o_de.transpose(1, 2), attn.transpose(1, 2) + + def _forward_pitch_predictor( + self, + o_en: torch.FloatTensor, + x_mask: torch.IntTensor, + pitch: torch.FloatTensor = None, + dr: torch.IntTensor = None, + ) -> Tuple[torch.FloatTensor, torch.FloatTensor]: + """Pitch predictor forward pass. + + 1. Predict pitch from encoder outputs. + 2. In training - Compute average pitch values for each input character from the ground truth pitch values. + 3. Embed average pitch values. + + Args: + o_en (torch.FloatTensor): Encoder output. + x_mask (torch.IntTensor): Input sequence mask. + pitch (torch.FloatTensor, optional): Ground truth pitch values. Defaults to None. + dr (torch.IntTensor, optional): Ground truth durations. Defaults to None. + + Returns: + Tuple[torch.FloatTensor, torch.FloatTensor]: Pitch embedding, pitch prediction. + + Shapes: + - o_en: :math:`(B, C, T_{en})` + - x_mask: :math:`(B, 1, T_{en})` + - pitch: :math:`(B, 1, T_{de})` + - dr: :math:`(B, T_{en})` + """ + o_pitch = self.pitch_predictor(o_en, x_mask) + if pitch is not None: + avg_pitch = average_over_durations(pitch, dr) + o_pitch_emb = self.pitch_emb(avg_pitch) + return o_pitch_emb, o_pitch, avg_pitch + o_pitch_emb = self.pitch_emb(o_pitch) + return o_pitch_emb, o_pitch + + def _forward_energy_predictor( + self, + o_en: torch.FloatTensor, + x_mask: torch.IntTensor, + energy: torch.FloatTensor = None, + dr: torch.IntTensor = None, + ) -> Tuple[torch.FloatTensor, torch.FloatTensor]: + """Energy predictor forward pass. + + 1. Predict energy from encoder outputs. + 2. In training - Compute average pitch values for each input character from the ground truth pitch values. + 3. Embed average energy values. + + Args: + o_en (torch.FloatTensor): Encoder output. + x_mask (torch.IntTensor): Input sequence mask. + energy (torch.FloatTensor, optional): Ground truth energy values. Defaults to None. + dr (torch.IntTensor, optional): Ground truth durations. Defaults to None. + + Returns: + Tuple[torch.FloatTensor, torch.FloatTensor]: Energy embedding, energy prediction. + + Shapes: + - o_en: :math:`(B, C, T_{en})` + - x_mask: :math:`(B, 1, T_{en})` + - pitch: :math:`(B, 1, T_{de})` + - dr: :math:`(B, T_{en})` + """ + o_energy = self.energy_predictor(o_en, x_mask) + if energy is not None: + avg_energy = average_over_durations(energy, dr) + o_energy_emb = self.energy_emb(avg_energy) + return o_energy_emb, o_energy, avg_energy + o_energy_emb = self.energy_emb(o_energy) + return o_energy_emb, o_energy + + def _forward_aligner( + self, x: torch.FloatTensor, y: torch.FloatTensor, x_mask: torch.IntTensor, y_mask: torch.IntTensor + ) -> Tuple[torch.IntTensor, torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]: + """Aligner forward pass. + + 1. Compute a mask to apply to the attention map. + 2. Run the alignment network. + 3. Apply MAS to compute the hard alignment map. + 4. Compute the durations from the hard alignment map. + + Args: + x (torch.FloatTensor): Input sequence. + y (torch.FloatTensor): Output sequence. + x_mask (torch.IntTensor): Input sequence mask. + y_mask (torch.IntTensor): Output sequence mask. + + Returns: + Tuple[torch.IntTensor, torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]: + Durations from the hard alignment map, soft alignment potentials, log scale alignment potentials, + hard alignment map. + + Shapes: + - x: :math:`[B, T_en, C_en]` + - y: :math:`[B, T_de, C_de]` + - x_mask: :math:`[B, 1, T_en]` + - y_mask: :math:`[B, 1, T_de]` + + - o_alignment_dur: :math:`[B, T_en]` + - alignment_soft: :math:`[B, T_en, T_de]` + - alignment_logprob: :math:`[B, 1, T_de, T_en]` + - alignment_mas: :math:`[B, T_en, T_de]` + """ + attn_mask = torch.unsqueeze(x_mask, -1) * torch.unsqueeze(y_mask, 2) + alignment_soft, alignment_logprob = self.aligner(y.transpose(1, 2), x.transpose(1, 2), x_mask, None) + alignment_mas = maximum_path( + alignment_soft.squeeze(1).transpose(1, 2).contiguous(), attn_mask.squeeze(1).contiguous() + ) + o_alignment_dur = torch.sum(alignment_mas, -1).int() + alignment_soft = alignment_soft.squeeze(1).transpose(1, 2) + return o_alignment_dur, alignment_soft, alignment_logprob, alignment_mas + + def _set_speaker_input(self, aux_input: Dict): + d_vectors = aux_input.get("d_vectors", None) + speaker_ids = aux_input.get("speaker_ids", None) + + if d_vectors is not None and speaker_ids is not None: + raise ValueError("[!] Cannot use d-vectors and speaker-ids together.") + + if speaker_ids is not None and not hasattr(self, "emb_g"): + raise ValueError("[!] Cannot use speaker-ids without enabling speaker embedding.") + + g = speaker_ids if speaker_ids is not None else d_vectors + return g + + def forward( + self, + x: torch.LongTensor, + x_lengths: torch.LongTensor, + y_lengths: torch.LongTensor, + y: torch.FloatTensor = None, + dr: torch.IntTensor = None, + pitch: torch.FloatTensor = None, + energy: torch.FloatTensor = None, + aux_input: Dict = {"d_vectors": None, "speaker_ids": None}, # pylint: disable=unused-argument + ) -> Dict: + """Model's forward pass. + + Args: + x (torch.LongTensor): Input character sequences. + x_lengths (torch.LongTensor): Input sequence lengths. + y_lengths (torch.LongTensor): Output sequnce lengths. Defaults to None. + y (torch.FloatTensor): Spectrogram frames. Only used when the alignment network is on. Defaults to None. + dr (torch.IntTensor): Character durations over the spectrogram frames. Only used when the alignment network is off. Defaults to None. + pitch (torch.FloatTensor): Pitch values for each spectrogram frame. Only used when the pitch predictor is on. Defaults to None. + energy (torch.FloatTensor): energy values for each spectrogram frame. Only used when the energy predictor is on. Defaults to None. + aux_input (Dict): Auxiliary model inputs for multi-speaker training. Defaults to `{"d_vectors": 0, "speaker_ids": None}`. + + Shapes: + - x: :math:`[B, T_max]` + - x_lengths: :math:`[B]` + - y_lengths: :math:`[B]` + - y: :math:`[B, T_max2]` + - dr: :math:`[B, T_max]` + - g: :math:`[B, C]` + - pitch: :math:`[B, 1, T]` + """ + g = self._set_speaker_input(aux_input) + # compute sequence masks + y_mask = torch.unsqueeze(sequence_mask(y_lengths, None), 1).float() + x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.shape[1]), 1).float() + # encoder pass + o_en, x_mask, g, x_emb = self._forward_encoder(x, x_mask, g) + # duration predictor pass + if self.args.detach_duration_predictor: + o_dr_log = self.duration_predictor(o_en.detach(), x_mask) + else: + o_dr_log = self.duration_predictor(o_en, x_mask) + o_dr = torch.clamp(torch.exp(o_dr_log) - 1, 0, self.max_duration) + # generate attn mask from predicted durations + o_attn = self.generate_attn(o_dr.squeeze(1), x_mask) + # aligner + o_alignment_dur = None + alignment_soft = None + alignment_logprob = None + alignment_mas = None + if self.use_aligner: + o_alignment_dur, alignment_soft, alignment_logprob, alignment_mas = self._forward_aligner( + x_emb, y, x_mask, y_mask + ) + alignment_soft = alignment_soft.transpose(1, 2) + alignment_mas = alignment_mas.transpose(1, 2) + dr = o_alignment_dur + # pitch predictor pass + o_pitch = None + avg_pitch = None + if self.args.use_pitch: + o_pitch_emb, o_pitch, avg_pitch = self._forward_pitch_predictor(o_en, x_mask, pitch, dr) + o_en = o_en + o_pitch_emb + # energy predictor pass + o_energy = None + avg_energy = None + if self.args.use_energy: + o_energy_emb, o_energy, avg_energy = self._forward_energy_predictor(o_en, x_mask, energy, dr) + o_en = o_en + o_energy_emb + # decoder pass + o_de, attn = self._forward_decoder( + o_en, dr, x_mask, y_lengths, g=None + ) # TODO: maybe pass speaker embedding (g) too + outputs = { + "model_outputs": o_de, # [B, T, C] + "durations_log": o_dr_log.squeeze(1), # [B, T] + "durations": o_dr.squeeze(1), # [B, T] + "attn_durations": o_attn, # for visualization [B, T_en, T_de'] + "pitch_avg": o_pitch, + "pitch_avg_gt": avg_pitch, + "energy_avg": o_energy, + "energy_avg_gt": avg_energy, + "alignments": attn, # [B, T_de, T_en] + "alignment_soft": alignment_soft, + "alignment_mas": alignment_mas, + "o_alignment_dur": o_alignment_dur, + "alignment_logprob": alignment_logprob, + "x_mask": x_mask, + "y_mask": y_mask, + } + return outputs + + @torch.no_grad() + def inference(self, x, aux_input={"d_vectors": None, "speaker_ids": None}): # pylint: disable=unused-argument + """Model's inference pass. + + Args: + x (torch.LongTensor): Input character sequence. + aux_input (Dict): Auxiliary model inputs. Defaults to `{"d_vectors": None, "speaker_ids": None}`. + + Shapes: + - x: [B, T_max] + - x_lengths: [B] + - g: [B, C] + """ + g = self._set_speaker_input(aux_input) + x_lengths = torch.tensor(x.shape[1:2]).to(x.device) + x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.shape[1]), 1).to(x.dtype).float() + # encoder pass + o_en, x_mask, g, _ = self._forward_encoder(x, x_mask, g) + # duration predictor pass + o_dr_log = self.duration_predictor(o_en, x_mask) + o_dr = self.format_durations(o_dr_log, x_mask).squeeze(1) + y_lengths = o_dr.sum(1) + # pitch predictor pass + o_pitch = None + if self.args.use_pitch: + o_pitch_emb, o_pitch = self._forward_pitch_predictor(o_en, x_mask) + o_en = o_en + o_pitch_emb + # energy predictor pass + o_energy = None + if self.args.use_energy: + o_energy_emb, o_energy = self._forward_energy_predictor(o_en, x_mask) + o_en = o_en + o_energy_emb + # decoder pass + o_de, attn = self._forward_decoder(o_en, o_dr, x_mask, y_lengths, g=None) + outputs = { + "model_outputs": o_de, + "alignments": attn, + "pitch": o_pitch, + "energy": o_energy, + "durations_log": o_dr_log, + } + return outputs + + def train_step(self, batch: dict, criterion: nn.Module): + text_input = batch["text_input"] + text_lengths = batch["text_lengths"] + mel_input = batch["mel_input"] + mel_lengths = batch["mel_lengths"] + pitch = batch["pitch"] if self.args.use_pitch else None + energy = batch["energy"] if self.args.use_energy else None + d_vectors = batch["d_vectors"] + speaker_ids = batch["speaker_ids"] + durations = batch["durations"] + aux_input = {"d_vectors": d_vectors, "speaker_ids": speaker_ids} + + # forward pass + outputs = self.forward( + text_input, + text_lengths, + mel_lengths, + y=mel_input, + dr=durations, + pitch=pitch, + energy=energy, + aux_input=aux_input, + ) + # use aligner's output as the duration target + if self.use_aligner: + durations = outputs["o_alignment_dur"] + # use float32 in AMP + with autocast(enabled=False): + # compute loss + loss_dict = criterion( + decoder_output=outputs["model_outputs"], + decoder_target=mel_input, + decoder_output_lens=mel_lengths, + dur_output=outputs["durations_log"], + dur_target=durations, + pitch_output=outputs["pitch_avg"] if self.use_pitch else None, + pitch_target=outputs["pitch_avg_gt"] if self.use_pitch else None, + energy_output=outputs["energy_avg"] if self.use_energy else None, + energy_target=outputs["energy_avg_gt"] if self.use_energy else None, + input_lens=text_lengths, + alignment_logprob=outputs["alignment_logprob"] if self.use_aligner else None, + alignment_soft=outputs["alignment_soft"], + alignment_hard=outputs["alignment_mas"], + binary_loss_weight=self.binary_loss_weight, + ) + # compute duration error + durations_pred = outputs["durations"] + duration_error = torch.abs(durations - durations_pred).sum() / text_lengths.sum() + loss_dict["duration_error"] = duration_error + + return outputs, loss_dict + + def _create_logs(self, batch, outputs, ap): + """Create common logger outputs.""" + model_outputs = outputs["model_outputs"] + alignments = outputs["alignments"] + mel_input = batch["mel_input"] + + pred_spec = model_outputs[0].data.cpu().numpy() + gt_spec = mel_input[0].data.cpu().numpy() + align_img = alignments[0].data.cpu().numpy() + + figures = { + "prediction": plot_spectrogram(pred_spec, ap, output_fig=False), + "ground_truth": plot_spectrogram(gt_spec, ap, output_fig=False), + "alignment": plot_alignment(align_img, output_fig=False), + } + + # plot pitch figures + if self.args.use_pitch: + pitch_avg = abs(outputs["pitch_avg_gt"][0, 0].data.cpu().numpy()) + pitch_avg_hat = abs(outputs["pitch_avg"][0, 0].data.cpu().numpy()) + chars = self.tokenizer.decode(batch["text_input"][0].data.cpu().numpy()) + pitch_figures = { + "pitch_ground_truth": plot_avg_pitch(pitch_avg, chars, output_fig=False), + "pitch_avg_predicted": plot_avg_pitch(pitch_avg_hat, chars, output_fig=False), + } + figures.update(pitch_figures) + + # plot energy figures + if self.args.use_energy: + energy_avg = abs(outputs["energy_avg_gt"][0, 0].data.cpu().numpy()) + energy_avg_hat = abs(outputs["energy_avg"][0, 0].data.cpu().numpy()) + chars = self.tokenizer.decode(batch["text_input"][0].data.cpu().numpy()) + energy_figures = { + "energy_ground_truth": plot_avg_energy(energy_avg, chars, output_fig=False), + "energy_avg_predicted": plot_avg_energy(energy_avg_hat, chars, output_fig=False), + } + figures.update(energy_figures) + + # plot the attention mask computed from the predicted durations + if "attn_durations" in outputs: + alignments_hat = outputs["attn_durations"][0].data.cpu().numpy() + figures["alignment_hat"] = plot_alignment(alignments_hat.T, output_fig=False) + + # Sample audio + train_audio = ap.inv_melspectrogram(pred_spec.T) + return figures, {"audio": train_audio} + + def train_log( + self, batch: dict, outputs: dict, logger: "Logger", assets: dict, steps: int + ) -> None: # pylint: disable=no-self-use + figures, audios = self._create_logs(batch, outputs, self.ap) + logger.train_figures(steps, figures) + logger.train_audios(steps, audios, self.ap.sample_rate) + + def eval_step(self, batch: dict, criterion: nn.Module): + return self.train_step(batch, criterion) + + def eval_log(self, batch: dict, outputs: dict, logger: "Logger", assets: dict, steps: int) -> None: + figures, audios = self._create_logs(batch, outputs, self.ap) + logger.eval_figures(steps, figures) + logger.eval_audios(steps, audios, self.ap.sample_rate) + + def load_checkpoint( + self, config, checkpoint_path, eval=False, cache=False + ): # pylint: disable=unused-argument, redefined-builtin + state = load_fsspec(checkpoint_path, map_location=torch.device("cpu"), cache=cache) + self.load_state_dict(state["model"]) + if eval: + self.eval() + assert not self.training + + def get_criterion(self): + from TTS.tts.layers.losses import ForwardTTSLoss # pylint: disable=import-outside-toplevel + + return ForwardTTSLoss(self.config) + + def on_train_step_start(self, trainer): + """Schedule binary loss weight.""" + self.binary_loss_weight = min(trainer.epochs_done / self.config.binary_loss_warmup_epochs, 1.0) * 1.0 + + @staticmethod + def init_from_config(config: "ForwardTTSConfig", samples: Union[List[List], List[Dict]] = None): + """Initiate model from config + + Args: + config (ForwardTTSConfig): Model config. + samples (Union[List[List], List[Dict]]): Training samples to parse speaker ids for training. + Defaults to None. + """ + from TTS.utils.audio import AudioProcessor + + ap = AudioProcessor.init_from_config(config) + tokenizer, new_config = TTSTokenizer.init_from_config(config) + speaker_manager = SpeakerManager.init_from_config(config, samples) + return ForwardTTS(new_config, ap, tokenizer, speaker_manager) diff --git a/TTS/TTS/tts/models/glow_tts.py b/TTS/TTS/tts/models/glow_tts.py new file mode 100644 index 0000000000000000000000000000000000000000..bfd1a2b618bd9bfdc7d12dd4eb16a6febcaf8cde --- /dev/null +++ b/TTS/TTS/tts/models/glow_tts.py @@ -0,0 +1,557 @@ +import math +from typing import Dict, List, Tuple, Union + +import torch +from coqpit import Coqpit +from torch import nn +from torch.cuda.amp.autocast_mode import autocast +from torch.nn import functional as F + +from TTS.tts.configs.glow_tts_config import GlowTTSConfig +from TTS.tts.layers.glow_tts.decoder import Decoder +from TTS.tts.layers.glow_tts.encoder import Encoder +from TTS.tts.models.base_tts import BaseTTS +from TTS.tts.utils.helpers import generate_path, maximum_path, sequence_mask +from TTS.tts.utils.speakers import SpeakerManager +from TTS.tts.utils.synthesis import synthesis +from TTS.tts.utils.text.tokenizer import TTSTokenizer +from TTS.tts.utils.visual import plot_alignment, plot_spectrogram +from TTS.utils.io import load_fsspec + + +class GlowTTS(BaseTTS): + """GlowTTS model. + + Paper:: + https://arxiv.org/abs/2005.11129 + + Paper abstract:: + Recently, text-to-speech (TTS) models such as FastSpeech and ParaNet have been proposed to generate + mel-spectrograms from text in parallel. Despite the advantage, the parallel TTS models cannot be trained + without guidance from autoregressive TTS models as their external aligners. In this work, we propose Glow-TTS, + a flow-based generative model for parallel TTS that does not require any external aligner. By combining the + properties of flows and dynamic programming, the proposed model searches for the most probable monotonic + alignment between text and the latent representation of speech on its own. We demonstrate that enforcing hard + monotonic alignments enables robust TTS, which generalizes to long utterances, and employing generative flows + enables fast, diverse, and controllable speech synthesis. Glow-TTS obtains an order-of-magnitude speed-up over + the autoregressive model, Tacotron 2, at synthesis with comparable speech quality. We further show that our + model can be easily extended to a multi-speaker setting. + + Check :class:`TTS.tts.configs.glow_tts_config.GlowTTSConfig` for class arguments. + + Examples: + Init only model layers. + + >>> from TTS.tts.configs.glow_tts_config import GlowTTSConfig + >>> from TTS.tts.models.glow_tts import GlowTTS + >>> config = GlowTTSConfig(num_chars=2) + >>> model = GlowTTS(config) + + Fully init a model ready for action. All the class attributes and class members + (e.g Tokenizer, AudioProcessor, etc.). are initialized internally based on config values. + + >>> from TTS.tts.configs.glow_tts_config import GlowTTSConfig + >>> from TTS.tts.models.glow_tts import GlowTTS + >>> config = GlowTTSConfig() + >>> model = GlowTTS.init_from_config(config, verbose=False) + """ + + def __init__( + self, + config: GlowTTSConfig, + ap: "AudioProcessor" = None, + tokenizer: "TTSTokenizer" = None, + speaker_manager: SpeakerManager = None, + ): + super().__init__(config, ap, tokenizer, speaker_manager) + + # pass all config fields to `self` + # for fewer code change + self.config = config + for key in config: + setattr(self, key, config[key]) + + self.decoder_output_dim = config.out_channels + + # init multi-speaker layers if necessary + self.init_multispeaker(config) + + self.run_data_dep_init = config.data_dep_init_steps > 0 + self.encoder = Encoder( + self.num_chars, + out_channels=self.out_channels, + hidden_channels=self.hidden_channels_enc, + hidden_channels_dp=self.hidden_channels_dp, + encoder_type=self.encoder_type, + encoder_params=self.encoder_params, + mean_only=self.mean_only, + use_prenet=self.use_encoder_prenet, + dropout_p_dp=self.dropout_p_dp, + c_in_channels=self.c_in_channels, + ) + + self.decoder = Decoder( + self.out_channels, + self.hidden_channels_dec, + self.kernel_size_dec, + self.dilation_rate, + self.num_flow_blocks_dec, + self.num_block_layers, + dropout_p=self.dropout_p_dec, + num_splits=self.num_splits, + num_squeeze=self.num_squeeze, + sigmoid_scale=self.sigmoid_scale, + c_in_channels=self.c_in_channels, + ) + + def init_multispeaker(self, config: Coqpit): + """Init speaker embedding layer if `use_speaker_embedding` is True and set the expected speaker embedding + vector dimension to the encoder layer channel size. If model uses d-vectors, then it only sets + speaker embedding vector dimension to the d-vector dimension from the config. + + Args: + config (Coqpit): Model configuration. + """ + self.embedded_speaker_dim = 0 + # set number of speakers - if num_speakers is set in config, use it, otherwise use speaker_manager + if self.speaker_manager is not None: + self.num_speakers = self.speaker_manager.num_speakers + # set ultimate speaker embedding size + if config.use_d_vector_file: + self.embedded_speaker_dim = ( + config.d_vector_dim if "d_vector_dim" in config and config.d_vector_dim is not None else 512 + ) + if self.speaker_manager is not None: + assert ( + config.d_vector_dim == self.speaker_manager.embedding_dim + ), " [!] d-vector dimension mismatch b/w config and speaker manager." + # init speaker embedding layer + if config.use_speaker_embedding and not config.use_d_vector_file: + print(" > Init speaker_embedding layer.") + self.embedded_speaker_dim = self.hidden_channels_enc + self.emb_g = nn.Embedding(self.num_speakers, self.hidden_channels_enc) + nn.init.uniform_(self.emb_g.weight, -0.1, 0.1) + # set conditioning dimensions + self.c_in_channels = self.embedded_speaker_dim + + @staticmethod + def compute_outputs(attn, o_mean, o_log_scale, x_mask): + """Compute and format the mode outputs with the given alignment map""" + y_mean = torch.matmul(attn.squeeze(1).transpose(1, 2), o_mean.transpose(1, 2)).transpose( + 1, 2 + ) # [b, t', t], [b, t, d] -> [b, d, t'] + y_log_scale = torch.matmul(attn.squeeze(1).transpose(1, 2), o_log_scale.transpose(1, 2)).transpose( + 1, 2 + ) # [b, t', t], [b, t, d] -> [b, d, t'] + # compute total duration with adjustment + o_attn_dur = torch.log(1 + torch.sum(attn, -1)) * x_mask + return y_mean, y_log_scale, o_attn_dur + + def unlock_act_norm_layers(self): + """Unlock activation normalization layers for data depended initalization.""" + for f in self.decoder.flows: + if getattr(f, "set_ddi", False): + f.set_ddi(True) + + def lock_act_norm_layers(self): + """Lock activation normalization layers.""" + for f in self.decoder.flows: + if getattr(f, "set_ddi", False): + f.set_ddi(False) + + def _set_speaker_input(self, aux_input: Dict): + if aux_input is None: + d_vectors = None + speaker_ids = None + else: + d_vectors = aux_input.get("d_vectors", None) + speaker_ids = aux_input.get("speaker_ids", None) + + if d_vectors is not None and speaker_ids is not None: + raise ValueError("[!] Cannot use d-vectors and speaker-ids together.") + + if speaker_ids is not None and not hasattr(self, "emb_g"): + raise ValueError("[!] Cannot use speaker-ids without enabling speaker embedding.") + + g = speaker_ids if speaker_ids is not None else d_vectors + return g + + def _speaker_embedding(self, aux_input: Dict) -> Union[torch.tensor, None]: + g = self._set_speaker_input(aux_input) + # speaker embedding + if g is not None: + if hasattr(self, "emb_g"): + # use speaker embedding layer + if not g.size(): # if is a scalar + g = g.unsqueeze(0) # unsqueeze + g = F.normalize(self.emb_g(g)).unsqueeze(-1) # [b, h, 1] + else: + # use d-vector + g = F.normalize(g).unsqueeze(-1) # [b, h, 1] + return g + + def forward( + self, x, x_lengths, y, y_lengths=None, aux_input={"d_vectors": None, "speaker_ids": None} + ): # pylint: disable=dangerous-default-value + """ + Args: + x (torch.Tensor): + Input text sequence ids. :math:`[B, T_en]` + + x_lengths (torch.Tensor): + Lengths of input text sequences. :math:`[B]` + + y (torch.Tensor): + Target mel-spectrogram frames. :math:`[B, T_de, C_mel]` + + y_lengths (torch.Tensor): + Lengths of target mel-spectrogram frames. :math:`[B]` + + aux_input (Dict): + Auxiliary inputs. `d_vectors` is speaker embedding vectors for a multi-speaker model. + :math:`[B, D_vec]`. `speaker_ids` is speaker ids for a multi-speaker model usind speaker-embedding + layer. :math:`B` + + Returns: + Dict: + - z: :math: `[B, T_de, C]` + - logdet: :math:`B` + - y_mean: :math:`[B, T_de, C]` + - y_log_scale: :math:`[B, T_de, C]` + - alignments: :math:`[B, T_en, T_de]` + - durations_log: :math:`[B, T_en, 1]` + - total_durations_log: :math:`[B, T_en, 1]` + """ + # [B, T, C] -> [B, C, T] + y = y.transpose(1, 2) + y_max_length = y.size(2) + # norm speaker embeddings + g = self._speaker_embedding(aux_input) + # embedding pass + o_mean, o_log_scale, o_dur_log, x_mask = self.encoder(x, x_lengths, g=g) + # drop redisual frames wrt num_squeeze and set y_lengths. + y, y_lengths, y_max_length, attn = self.preprocess(y, y_lengths, y_max_length, None) + # create masks + y_mask = torch.unsqueeze(sequence_mask(y_lengths, y_max_length), 1).to(x_mask.dtype) + # [B, 1, T_en, T_de] + attn_mask = torch.unsqueeze(x_mask, -1) * torch.unsqueeze(y_mask, 2) + # decoder pass + z, logdet = self.decoder(y, y_mask, g=g, reverse=False) + # find the alignment path + with torch.no_grad(): + o_scale = torch.exp(-2 * o_log_scale) + logp1 = torch.sum(-0.5 * math.log(2 * math.pi) - o_log_scale, [1]).unsqueeze(-1) # [b, t, 1] + logp2 = torch.matmul(o_scale.transpose(1, 2), -0.5 * (z**2)) # [b, t, d] x [b, d, t'] = [b, t, t'] + logp3 = torch.matmul((o_mean * o_scale).transpose(1, 2), z) # [b, t, d] x [b, d, t'] = [b, t, t'] + logp4 = torch.sum(-0.5 * (o_mean**2) * o_scale, [1]).unsqueeze(-1) # [b, t, 1] + logp = logp1 + logp2 + logp3 + logp4 # [b, t, t'] + attn = maximum_path(logp, attn_mask.squeeze(1)).unsqueeze(1).detach() + y_mean, y_log_scale, o_attn_dur = self.compute_outputs(attn, o_mean, o_log_scale, x_mask) + attn = attn.squeeze(1).permute(0, 2, 1) + outputs = { + "z": z.transpose(1, 2), + "logdet": logdet, + "y_mean": y_mean.transpose(1, 2), + "y_log_scale": y_log_scale.transpose(1, 2), + "alignments": attn, + "durations_log": o_dur_log.transpose(1, 2), + "total_durations_log": o_attn_dur.transpose(1, 2), + } + return outputs + + @torch.no_grad() + def inference_with_MAS( + self, x, x_lengths, y=None, y_lengths=None, aux_input={"d_vectors": None, "speaker_ids": None} + ): # pylint: disable=dangerous-default-value + """ + It's similar to the teacher forcing in Tacotron. + It was proposed in: https://arxiv.org/abs/2104.05557 + + Shapes: + - x: :math:`[B, T]` + - x_lenghts: :math:`B` + - y: :math:`[B, T, C]` + - y_lengths: :math:`B` + - g: :math:`[B, C] or B` + """ + y = y.transpose(1, 2) + y_max_length = y.size(2) + # norm speaker embeddings + g = self._speaker_embedding(aux_input) + # embedding pass + o_mean, o_log_scale, o_dur_log, x_mask = self.encoder(x, x_lengths, g=g) + # drop redisual frames wrt num_squeeze and set y_lengths. + y, y_lengths, y_max_length, attn = self.preprocess(y, y_lengths, y_max_length, None) + # create masks + y_mask = torch.unsqueeze(sequence_mask(y_lengths, y_max_length), 1).to(x_mask.dtype) + attn_mask = torch.unsqueeze(x_mask, -1) * torch.unsqueeze(y_mask, 2) + # decoder pass + z, logdet = self.decoder(y, y_mask, g=g, reverse=False) + # find the alignment path between z and encoder output + o_scale = torch.exp(-2 * o_log_scale) + logp1 = torch.sum(-0.5 * math.log(2 * math.pi) - o_log_scale, [1]).unsqueeze(-1) # [b, t, 1] + logp2 = torch.matmul(o_scale.transpose(1, 2), -0.5 * (z**2)) # [b, t, d] x [b, d, t'] = [b, t, t'] + logp3 = torch.matmul((o_mean * o_scale).transpose(1, 2), z) # [b, t, d] x [b, d, t'] = [b, t, t'] + logp4 = torch.sum(-0.5 * (o_mean**2) * o_scale, [1]).unsqueeze(-1) # [b, t, 1] + logp = logp1 + logp2 + logp3 + logp4 # [b, t, t'] + attn = maximum_path(logp, attn_mask.squeeze(1)).unsqueeze(1).detach() + + y_mean, y_log_scale, o_attn_dur = self.compute_outputs(attn, o_mean, o_log_scale, x_mask) + attn = attn.squeeze(1).permute(0, 2, 1) + + # get predited aligned distribution + z = y_mean * y_mask + + # reverse the decoder and predict using the aligned distribution + y, logdet = self.decoder(z, y_mask, g=g, reverse=True) + outputs = { + "model_outputs": z.transpose(1, 2), + "logdet": logdet, + "y_mean": y_mean.transpose(1, 2), + "y_log_scale": y_log_scale.transpose(1, 2), + "alignments": attn, + "durations_log": o_dur_log.transpose(1, 2), + "total_durations_log": o_attn_dur.transpose(1, 2), + } + return outputs + + @torch.no_grad() + def decoder_inference( + self, y, y_lengths=None, aux_input={"d_vectors": None, "speaker_ids": None} + ): # pylint: disable=dangerous-default-value + """ + Shapes: + - y: :math:`[B, T, C]` + - y_lengths: :math:`B` + - g: :math:`[B, C] or B` + """ + y = y.transpose(1, 2) + y_max_length = y.size(2) + g = self._speaker_embedding(aux_input) + y_mask = torch.unsqueeze(sequence_mask(y_lengths, y_max_length), 1).to(y.dtype) + # decoder pass + z, logdet = self.decoder(y, y_mask, g=g, reverse=False) + # reverse decoder and predict + y, logdet = self.decoder(z, y_mask, g=g, reverse=True) + outputs = {} + outputs["model_outputs"] = y.transpose(1, 2) + outputs["logdet"] = logdet + return outputs + + @torch.no_grad() + def inference( + self, x, aux_input={"x_lengths": None, "d_vectors": None, "speaker_ids": None} + ): # pylint: disable=dangerous-default-value + x_lengths = aux_input["x_lengths"] + g = self._speaker_embedding(aux_input) + # embedding pass + o_mean, o_log_scale, o_dur_log, x_mask = self.encoder(x, x_lengths, g=g) + # compute output durations + w = (torch.exp(o_dur_log) - 1) * x_mask * self.length_scale + w_ceil = torch.clamp_min(torch.ceil(w), 1) + y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long() + y_max_length = None + # compute masks + y_mask = torch.unsqueeze(sequence_mask(y_lengths, y_max_length), 1).to(x_mask.dtype) + attn_mask = torch.unsqueeze(x_mask, -1) * torch.unsqueeze(y_mask, 2) + # compute attention mask + attn = generate_path(w_ceil.squeeze(1), attn_mask.squeeze(1)).unsqueeze(1) + y_mean, y_log_scale, o_attn_dur = self.compute_outputs(attn, o_mean, o_log_scale, x_mask) + + z = (y_mean + torch.exp(y_log_scale) * torch.randn_like(y_mean) * self.inference_noise_scale) * y_mask + # decoder pass + y, logdet = self.decoder(z, y_mask, g=g, reverse=True) + attn = attn.squeeze(1).permute(0, 2, 1) + outputs = { + "model_outputs": y.transpose(1, 2), + "logdet": logdet, + "y_mean": y_mean.transpose(1, 2), + "y_log_scale": y_log_scale.transpose(1, 2), + "alignments": attn, + "durations_log": o_dur_log.transpose(1, 2), + "total_durations_log": o_attn_dur.transpose(1, 2), + } + return outputs + + def train_step(self, batch: dict, criterion: nn.Module): + """A single training step. Forward pass and loss computation. Run data depended initialization for the + first `config.data_dep_init_steps` steps. + + Args: + batch (dict): [description] + criterion (nn.Module): [description] + """ + text_input = batch["text_input"] + text_lengths = batch["text_lengths"] + mel_input = batch["mel_input"] + mel_lengths = batch["mel_lengths"] + d_vectors = batch["d_vectors"] + speaker_ids = batch["speaker_ids"] + + if self.run_data_dep_init and self.training: + # compute data-dependent initialization of activation norm layers + self.unlock_act_norm_layers() + with torch.no_grad(): + _ = self.forward( + text_input, + text_lengths, + mel_input, + mel_lengths, + aux_input={"d_vectors": d_vectors, "speaker_ids": speaker_ids}, + ) + outputs = None + loss_dict = None + self.lock_act_norm_layers() + else: + # normal training step + outputs = self.forward( + text_input, + text_lengths, + mel_input, + mel_lengths, + aux_input={"d_vectors": d_vectors, "speaker_ids": speaker_ids}, + ) + + with autocast(enabled=False): # avoid mixed_precision in criterion + loss_dict = criterion( + outputs["z"].float(), + outputs["y_mean"].float(), + outputs["y_log_scale"].float(), + outputs["logdet"].float(), + mel_lengths, + outputs["durations_log"].float(), + outputs["total_durations_log"].float(), + text_lengths, + ) + return outputs, loss_dict + + def _create_logs(self, batch, outputs, ap): + alignments = outputs["alignments"] + text_input = batch["text_input"][:1] if batch["text_input"] is not None else None + text_lengths = batch["text_lengths"] + mel_input = batch["mel_input"] + d_vectors = batch["d_vectors"][:1] if batch["d_vectors"] is not None else None + speaker_ids = batch["speaker_ids"][:1] if batch["speaker_ids"] is not None else None + + # model runs reverse flow to predict spectrograms + pred_outputs = self.inference( + text_input, + aux_input={"x_lengths": text_lengths[:1], "d_vectors": d_vectors, "speaker_ids": speaker_ids}, + ) + model_outputs = pred_outputs["model_outputs"] + + pred_spec = model_outputs[0].data.cpu().numpy() + gt_spec = mel_input[0].data.cpu().numpy() + align_img = alignments[0].data.cpu().numpy() + + figures = { + "prediction": plot_spectrogram(pred_spec, ap, output_fig=False), + "ground_truth": plot_spectrogram(gt_spec, ap, output_fig=False), + "alignment": plot_alignment(align_img, output_fig=False), + } + + # Sample audio + train_audio = ap.inv_melspectrogram(pred_spec.T) + return figures, {"audio": train_audio} + + def train_log( + self, batch: dict, outputs: dict, logger: "Logger", assets: dict, steps: int + ) -> None: # pylint: disable=no-self-use + figures, audios = self._create_logs(batch, outputs, self.ap) + logger.train_figures(steps, figures) + logger.train_audios(steps, audios, self.ap.sample_rate) + + @torch.no_grad() + def eval_step(self, batch: dict, criterion: nn.Module): + return self.train_step(batch, criterion) + + def eval_log(self, batch: dict, outputs: dict, logger: "Logger", assets: dict, steps: int) -> None: + figures, audios = self._create_logs(batch, outputs, self.ap) + logger.eval_figures(steps, figures) + logger.eval_audios(steps, audios, self.ap.sample_rate) + + @torch.no_grad() + def test_run(self, assets: Dict) -> Tuple[Dict, Dict]: + """Generic test run for `tts` models used by `Trainer`. + + You can override this for a different behaviour. + + Returns: + Tuple[Dict, Dict]: Test figures and audios to be projected to Tensorboard. + """ + print(" | > Synthesizing test sentences.") + test_audios = {} + test_figures = {} + test_sentences = self.config.test_sentences + aux_inputs = self._get_test_aux_input() + if len(test_sentences) == 0: + print(" | [!] No test sentences provided.") + else: + for idx, sen in enumerate(test_sentences): + outputs = synthesis( + self, + sen, + self.config, + "cuda" in str(next(self.parameters()).device), + speaker_id=aux_inputs["speaker_id"], + d_vector=aux_inputs["d_vector"], + style_wav=aux_inputs["style_wav"], + use_griffin_lim=True, + do_trim_silence=False, + ) + + test_audios["{}-audio".format(idx)] = outputs["wav"] + test_figures["{}-prediction".format(idx)] = plot_spectrogram( + outputs["outputs"]["model_outputs"], self.ap, output_fig=False + ) + test_figures["{}-alignment".format(idx)] = plot_alignment(outputs["alignments"], output_fig=False) + return test_figures, test_audios + + def preprocess(self, y, y_lengths, y_max_length, attn=None): + if y_max_length is not None: + y_max_length = (y_max_length // self.num_squeeze) * self.num_squeeze + y = y[:, :, :y_max_length] + if attn is not None: + attn = attn[:, :, :, :y_max_length] + y_lengths = torch.div(y_lengths, self.num_squeeze, rounding_mode="floor") * self.num_squeeze + return y, y_lengths, y_max_length, attn + + def store_inverse(self): + self.decoder.store_inverse() + + def load_checkpoint( + self, config, checkpoint_path, eval=False + ): # pylint: disable=unused-argument, redefined-builtin + state = load_fsspec(checkpoint_path, map_location=torch.device("cpu")) + self.load_state_dict(state["model"]) + if eval: + self.eval() + self.store_inverse() + assert not self.training + + @staticmethod + def get_criterion(): + from TTS.tts.layers.losses import GlowTTSLoss # pylint: disable=import-outside-toplevel + + return GlowTTSLoss() + + def on_train_step_start(self, trainer): + """Decide on every training step wheter enable/disable data depended initialization.""" + self.run_data_dep_init = trainer.total_steps_done < self.data_dep_init_steps + + @staticmethod + def init_from_config(config: "GlowTTSConfig", samples: Union[List[List], List[Dict]] = None, verbose=True): + """Initiate model from config + + Args: + config (VitsConfig): Model config. + samples (Union[List[List], List[Dict]]): Training samples to parse speaker ids for training. + Defaults to None. + verbose (bool): If True, print init messages. Defaults to True. + """ + from TTS.utils.audio import AudioProcessor + + ap = AudioProcessor.init_from_config(config, verbose) + tokenizer, new_config = TTSTokenizer.init_from_config(config) + speaker_manager = SpeakerManager.init_from_config(config, samples) + return GlowTTS(new_config, ap, tokenizer, speaker_manager) diff --git a/TTS/TTS/tts/models/neuralhmm_tts.py b/TTS/TTS/tts/models/neuralhmm_tts.py new file mode 100644 index 0000000000000000000000000000000000000000..e2414108721571c9a1cf143fdca2fa74174a9684 --- /dev/null +++ b/TTS/TTS/tts/models/neuralhmm_tts.py @@ -0,0 +1,385 @@ +import os +from typing import Dict, List, Union + +import torch +from coqpit import Coqpit +from torch import nn +from trainer.logging.tensorboard_logger import TensorboardLogger + +from TTS.tts.layers.overflow.common_layers import Encoder, OverflowUtils +from TTS.tts.layers.overflow.neural_hmm import NeuralHMM +from TTS.tts.layers.overflow.plotting_utils import ( + get_spec_from_most_probable_state, + plot_transition_probabilities_to_numpy, +) +from TTS.tts.models.base_tts import BaseTTS +from TTS.tts.utils.speakers import SpeakerManager +from TTS.tts.utils.text.tokenizer import TTSTokenizer +from TTS.tts.utils.visual import plot_alignment, plot_spectrogram +from TTS.utils.generic_utils import format_aux_input +from TTS.utils.io import load_fsspec + + +class NeuralhmmTTS(BaseTTS): + """Neural HMM TTS model. + + Paper:: + https://arxiv.org/abs/2108.13320 + + Paper abstract:: + Neural sequence-to-sequence TTS has achieved significantly better output quality + than statistical speech synthesis using HMMs.However, neural TTS is generally not probabilistic + and uses non-monotonic attention. Attention failures increase training time and can make + synthesis babble incoherently. This paper describes how the old and new paradigms can be + combined to obtain the advantages of both worlds, by replacing attention in neural TTS with + an autoregressive left-right no-skip hidden Markov model defined by a neural network. + Based on this proposal, we modify Tacotron 2 to obtain an HMM-based neural TTS model with + monotonic alignment, trained to maximise the full sequence likelihood without approximation. + We also describe how to combine ideas from classical and contemporary TTS for best results. + The resulting example system is smaller and simpler than Tacotron 2, and learns to speak with + fewer iterations and less data, whilst achieving comparable naturalness prior to the post-net. + Our approach also allows easy control over speaking rate. Audio examples and code + are available at https://shivammehta25.github.io/Neural-HMM/ . + + Note: + - This is a parameter efficient version of OverFlow (15.3M vs 28.6M). Since it has half the + number of parameters as OverFlow the synthesis output quality is suboptimal (but comparable to Tacotron2 + without Postnet), but it learns to speak with even lesser amount of data and is still significantly faster + than other attention-based methods. + + - Neural HMMs uses flat start initialization i.e it computes the means and std and transition probabilities + of the dataset and uses them to initialize the model. This benefits the model and helps with faster learning + If you change the dataset or want to regenerate the parameters change the `force_generate_statistics` and + `mel_statistics_parameter_path` accordingly. + + - To enable multi-GPU training, set the `use_grad_checkpointing=False` in config. + This will significantly increase the memory usage. This is because to compute + the actual data likelihood (not an approximation using MAS/Viterbi) we must use + all the states at the previous time step during the forward pass to decide the + probability distribution at the current step i.e the difference between the forward + algorithm and viterbi approximation. + + Check :class:`TTS.tts.configs.neuralhmm_tts_config.NeuralhmmTTSConfig` for class arguments. + """ + + def __init__( + self, + config: "NeuralhmmTTSConfig", + ap: "AudioProcessor" = None, + tokenizer: "TTSTokenizer" = None, + speaker_manager: SpeakerManager = None, + ): + super().__init__(config, ap, tokenizer, speaker_manager) + + # pass all config fields to `self` + # for fewer code change + self.config = config + for key in config: + setattr(self, key, config[key]) + + self.encoder = Encoder(config.num_chars, config.state_per_phone, config.encoder_in_out_features) + self.neural_hmm = NeuralHMM( + frame_channels=self.out_channels, + ar_order=self.ar_order, + deterministic_transition=self.deterministic_transition, + encoder_dim=self.encoder_in_out_features, + prenet_type=self.prenet_type, + prenet_dim=self.prenet_dim, + prenet_n_layers=self.prenet_n_layers, + prenet_dropout=self.prenet_dropout, + prenet_dropout_at_inference=self.prenet_dropout_at_inference, + memory_rnn_dim=self.memory_rnn_dim, + outputnet_size=self.outputnet_size, + flat_start_params=self.flat_start_params, + std_floor=self.std_floor, + use_grad_checkpointing=self.use_grad_checkpointing, + ) + + self.register_buffer("mean", torch.tensor(0)) + self.register_buffer("std", torch.tensor(1)) + + def update_mean_std(self, statistics_dict: Dict): + self.mean.data = torch.tensor(statistics_dict["mean"]) + self.std.data = torch.tensor(statistics_dict["std"]) + + def preprocess_batch(self, text, text_len, mels, mel_len): + if self.mean.item() == 0 or self.std.item() == 1: + statistics_dict = torch.load(self.mel_statistics_parameter_path) + self.update_mean_std(statistics_dict) + + mels = self.normalize(mels) + return text, text_len, mels, mel_len + + def normalize(self, x): + return x.sub(self.mean).div(self.std) + + def inverse_normalize(self, x): + return x.mul(self.std).add(self.mean) + + def forward(self, text, text_len, mels, mel_len): + """ + Forward pass for training and computing the log likelihood of a given batch. + + Shapes: + Shapes: + text: :math:`[B, T_in]` + text_len: :math:`[B]` + mels: :math:`[B, T_out, C]` + mel_len: :math:`[B]` + """ + text, text_len, mels, mel_len = self.preprocess_batch(text, text_len, mels, mel_len) + encoder_outputs, encoder_output_len = self.encoder(text, text_len) + + log_probs, fwd_alignments, transition_vectors, means = self.neural_hmm( + encoder_outputs, encoder_output_len, mels.transpose(1, 2), mel_len + ) + + outputs = { + "log_probs": log_probs, + "alignments": fwd_alignments, + "transition_vectors": transition_vectors, + "means": means, + } + + return outputs + + @staticmethod + def _training_stats(batch): + stats = {} + stats["avg_text_length"] = batch["text_lengths"].float().mean() + stats["avg_spec_length"] = batch["mel_lengths"].float().mean() + stats["avg_text_batch_occupancy"] = (batch["text_lengths"].float() / batch["text_lengths"].float().max()).mean() + stats["avg_spec_batch_occupancy"] = (batch["mel_lengths"].float() / batch["mel_lengths"].float().max()).mean() + return stats + + def train_step(self, batch: dict, criterion: nn.Module): + text_input = batch["text_input"] + text_lengths = batch["text_lengths"] + mel_input = batch["mel_input"] + mel_lengths = batch["mel_lengths"] + + outputs = self.forward( + text=text_input, + text_len=text_lengths, + mels=mel_input, + mel_len=mel_lengths, + ) + loss_dict = criterion(outputs["log_probs"] / (mel_lengths.sum() + text_lengths.sum())) + + # for printing useful statistics on terminal + loss_dict.update(self._training_stats(batch)) + return outputs, loss_dict + + def eval_step(self, batch: Dict, criterion: nn.Module): + return self.train_step(batch, criterion) + + def _format_aux_input(self, aux_input: Dict, default_input_dict): + """Set missing fields to their default value. + + Args: + aux_inputs (Dict): Dictionary containing the auxiliary inputs. + """ + default_input_dict = default_input_dict.copy() + default_input_dict.update( + { + "sampling_temp": self.sampling_temp, + "max_sampling_time": self.max_sampling_time, + "duration_threshold": self.duration_threshold, + } + ) + if aux_input: + return format_aux_input(default_input_dict, aux_input) + return default_input_dict + + @torch.no_grad() + def inference( + self, + text: torch.Tensor, + aux_input={"x_lengths": None, "sampling_temp": None, "max_sampling_time": None, "duration_threshold": None}, + ): # pylint: disable=dangerous-default-value + """Sampling from the model + + Args: + text (torch.Tensor): :math:`[B, T_in]` + aux_inputs (_type_, optional): _description_. Defaults to None. + + Returns: + outputs: Dictionary containing the following + - mel (torch.Tensor): :math:`[B, T_out, C]` + - hmm_outputs_len (torch.Tensor): :math:`[B]` + - state_travelled (List[List[int]]): List of lists containing the state travelled for each sample in the batch. + - input_parameters (list[torch.FloatTensor]): Input parameters to the neural HMM. + - output_parameters (list[torch.FloatTensor]): Output parameters to the neural HMM. + """ + default_input_dict = { + "x_lengths": torch.sum(text != 0, dim=1), + } + aux_input = self._format_aux_input(aux_input, default_input_dict) + encoder_outputs, encoder_output_len = self.encoder.inference(text, aux_input["x_lengths"]) + outputs = self.neural_hmm.inference( + encoder_outputs, + encoder_output_len, + sampling_temp=aux_input["sampling_temp"], + max_sampling_time=aux_input["max_sampling_time"], + duration_threshold=aux_input["duration_threshold"], + ) + mels, mel_outputs_len = outputs["hmm_outputs"], outputs["hmm_outputs_len"] + + mels = self.inverse_normalize(mels) + outputs.update({"model_outputs": mels, "model_outputs_len": mel_outputs_len}) + outputs["alignments"] = OverflowUtils.double_pad(outputs["alignments"]) + return outputs + + @staticmethod + def get_criterion(): + return NLLLoss() + + @staticmethod + def init_from_config(config: "NeuralhmmTTSConfig", samples: Union[List[List], List[Dict]] = None, verbose=True): + """Initiate model from config + + Args: + config (VitsConfig): Model config. + samples (Union[List[List], List[Dict]]): Training samples to parse speaker ids for training. + Defaults to None. + verbose (bool): If True, print init messages. Defaults to True. + """ + from TTS.utils.audio import AudioProcessor + + ap = AudioProcessor.init_from_config(config, verbose) + tokenizer, new_config = TTSTokenizer.init_from_config(config) + speaker_manager = SpeakerManager.init_from_config(config, samples) + return NeuralhmmTTS(new_config, ap, tokenizer, speaker_manager) + + def load_checkpoint( + self, config: Coqpit, checkpoint_path: str, eval: bool = False, strict: bool = True, cache=False + ): # pylint: disable=unused-argument, redefined-builtin + state = load_fsspec(checkpoint_path, map_location=torch.device("cpu")) + self.load_state_dict(state["model"]) + if eval: + self.eval() + assert not self.training + + def on_init_start(self, trainer): + """If the current dataset does not have normalisation statistics and initialisation transition_probability it computes them otherwise loads.""" + if not os.path.isfile(trainer.config.mel_statistics_parameter_path) or trainer.config.force_generate_statistics: + dataloader = trainer.get_train_dataloader( + training_assets=None, samples=trainer.train_samples, verbose=False + ) + print( + f" | > Data parameters not found for: {trainer.config.mel_statistics_parameter_path}. Computing mel normalization parameters..." + ) + data_mean, data_std, init_transition_prob = OverflowUtils.get_data_parameters_for_flat_start( + dataloader, trainer.config.out_channels, trainer.config.state_per_phone + ) + print( + f" | > Saving data parameters to: {trainer.config.mel_statistics_parameter_path}: value: {data_mean, data_std, init_transition_prob}" + ) + statistics = { + "mean": data_mean.item(), + "std": data_std.item(), + "init_transition_prob": init_transition_prob.item(), + } + torch.save(statistics, trainer.config.mel_statistics_parameter_path) + + else: + print( + f" | > Data parameters found for: {trainer.config.mel_statistics_parameter_path}. Loading mel normalization parameters..." + ) + statistics = torch.load(trainer.config.mel_statistics_parameter_path) + data_mean, data_std, init_transition_prob = ( + statistics["mean"], + statistics["std"], + statistics["init_transition_prob"], + ) + print(f" | > Data parameters loaded with value: {data_mean, data_std, init_transition_prob}") + + trainer.config.flat_start_params["transition_p"] = ( + init_transition_prob.item() if torch.is_tensor(init_transition_prob) else init_transition_prob + ) + OverflowUtils.update_flat_start_transition(trainer.model, init_transition_prob) + trainer.model.update_mean_std(statistics) + + @torch.inference_mode() + def _create_logs(self, batch, outputs, ap): # pylint: disable=no-self-use, unused-argument + alignments, transition_vectors = outputs["alignments"], outputs["transition_vectors"] + means = torch.stack(outputs["means"], dim=1) + + figures = { + "alignment": plot_alignment(alignments[0].exp(), title="Forward alignment", fig_size=(20, 20)), + "log_alignment": plot_alignment( + alignments[0].exp(), title="Forward log alignment", plot_log=True, fig_size=(20, 20) + ), + "transition_vectors": plot_alignment(transition_vectors[0], title="Transition vectors", fig_size=(20, 20)), + "mel_from_most_probable_state": plot_spectrogram( + get_spec_from_most_probable_state(alignments[0], means[0]), fig_size=(12, 3) + ), + "mel_target": plot_spectrogram(batch["mel_input"][0], fig_size=(12, 3)), + } + + # sample one item from the batch -1 will give the smalles item + print(" | > Synthesising audio from the model...") + inference_output = self.inference( + batch["text_input"][-1].unsqueeze(0), aux_input={"x_lengths": batch["text_lengths"][-1].unsqueeze(0)} + ) + figures["synthesised"] = plot_spectrogram(inference_output["model_outputs"][0], fig_size=(12, 3)) + + states = [p[1] for p in inference_output["input_parameters"][0]] + transition_probability_synthesising = [p[2].cpu().numpy() for p in inference_output["output_parameters"][0]] + + for i in range((len(transition_probability_synthesising) // 200) + 1): + start = i * 200 + end = (i + 1) * 200 + figures[f"synthesised_transition_probabilities/{i}"] = plot_transition_probabilities_to_numpy( + states[start:end], transition_probability_synthesising[start:end] + ) + + audio = ap.inv_melspectrogram(inference_output["model_outputs"][0].T.cpu().numpy()) + return figures, {"audios": audio} + + def train_log( + self, batch: dict, outputs: dict, logger: "Logger", assets: dict, steps: int + ): # pylint: disable=unused-argument + """Log training progress.""" + figures, audios = self._create_logs(batch, outputs, self.ap) + logger.train_figures(steps, figures) + logger.train_audios(steps, audios, self.ap.sample_rate) + + def eval_log( + self, batch: Dict, outputs: Dict, logger: "Logger", assets: Dict, steps: int + ): # pylint: disable=unused-argument + """Compute and log evaluation metrics.""" + # Plot model parameters histograms + if isinstance(logger, TensorboardLogger): + # I don't know if any other loggers supports this + for tag, value in self.named_parameters(): + tag = tag.replace(".", "/") + logger.writer.add_histogram(tag, value.data.cpu().numpy(), steps) + + figures, audios = self._create_logs(batch, outputs, self.ap) + logger.eval_figures(steps, figures) + logger.eval_audios(steps, audios, self.ap.sample_rate) + + def test_log( + self, outputs: dict, logger: "Logger", assets: dict, steps: int # pylint: disable=unused-argument + ) -> None: + logger.test_audios(steps, outputs[1], self.ap.sample_rate) + logger.test_figures(steps, outputs[0]) + + +class NLLLoss(nn.Module): + """Negative log likelihood loss.""" + + def forward(self, log_prob: torch.Tensor) -> dict: # pylint: disable=no-self-use + """Compute the loss. + + Args: + logits (Tensor): [B, T, D] + + Returns: + Tensor: [1] + + """ + return_dict = {} + return_dict["loss"] = -log_prob.mean() + return return_dict diff --git a/TTS/TTS/tts/models/overflow.py b/TTS/TTS/tts/models/overflow.py new file mode 100644 index 0000000000000000000000000000000000000000..92b3c767de4cb5180df4a58d6cfdc1ed194caad7 --- /dev/null +++ b/TTS/TTS/tts/models/overflow.py @@ -0,0 +1,401 @@ +import os +from typing import Dict, List, Union + +import torch +from coqpit import Coqpit +from torch import nn +from trainer.logging.tensorboard_logger import TensorboardLogger + +from TTS.tts.layers.overflow.common_layers import Encoder, OverflowUtils +from TTS.tts.layers.overflow.decoder import Decoder +from TTS.tts.layers.overflow.neural_hmm import NeuralHMM +from TTS.tts.layers.overflow.plotting_utils import ( + get_spec_from_most_probable_state, + plot_transition_probabilities_to_numpy, +) +from TTS.tts.models.base_tts import BaseTTS +from TTS.tts.utils.speakers import SpeakerManager +from TTS.tts.utils.text.tokenizer import TTSTokenizer +from TTS.tts.utils.visual import plot_alignment, plot_spectrogram +from TTS.utils.generic_utils import format_aux_input +from TTS.utils.io import load_fsspec + + +class Overflow(BaseTTS): + """OverFlow TTS model. + + Paper:: + https://arxiv.org/abs/2211.06892 + + Paper abstract:: + Neural HMMs are a type of neural transducer recently proposed for + sequence-to-sequence modelling in text-to-speech. They combine the best features + of classic statistical speech synthesis and modern neural TTS, requiring less + data and fewer training updates, and are less prone to gibberish output caused + by neural attention failures. In this paper, we combine neural HMM TTS with + normalising flows for describing the highly non-Gaussian distribution of speech + acoustics. The result is a powerful, fully probabilistic model of durations and + acoustics that can be trained using exact maximum likelihood. Compared to + dominant flow-based acoustic models, our approach integrates autoregression for + improved modelling of long-range dependences such as utterance-level prosody. + Experiments show that a system based on our proposal gives more accurate + pronunciations and better subjective speech quality than comparable methods, + whilst retaining the original advantages of neural HMMs. Audio examples and code + are available at https://shivammehta25.github.io/OverFlow/. + + Note: + - Neural HMMs uses flat start initialization i.e it computes the means and std and transition probabilities + of the dataset and uses them to initialize the model. This benefits the model and helps with faster learning + If you change the dataset or want to regenerate the parameters change the `force_generate_statistics` and + `mel_statistics_parameter_path` accordingly. + + - To enable multi-GPU training, set the `use_grad_checkpointing=False` in config. + This will significantly increase the memory usage. This is because to compute + the actual data likelihood (not an approximation using MAS/Viterbi) we must use + all the states at the previous time step during the forward pass to decide the + probability distribution at the current step i.e the difference between the forward + algorithm and viterbi approximation. + + Check :class:`TTS.tts.configs.overflow.OverFlowConfig` for class arguments. + """ + + def __init__( + self, + config: "OverFlowConfig", + ap: "AudioProcessor" = None, + tokenizer: "TTSTokenizer" = None, + speaker_manager: SpeakerManager = None, + ): + super().__init__(config, ap, tokenizer, speaker_manager) + + # pass all config fields to `self` + # for fewer code change + self.config = config + for key in config: + setattr(self, key, config[key]) + + self.decoder_output_dim = config.out_channels + + self.encoder = Encoder(config.num_chars, config.state_per_phone, config.encoder_in_out_features) + self.neural_hmm = NeuralHMM( + frame_channels=self.out_channels, + ar_order=self.ar_order, + deterministic_transition=self.deterministic_transition, + encoder_dim=self.encoder_in_out_features, + prenet_type=self.prenet_type, + prenet_dim=self.prenet_dim, + prenet_n_layers=self.prenet_n_layers, + prenet_dropout=self.prenet_dropout, + prenet_dropout_at_inference=self.prenet_dropout_at_inference, + memory_rnn_dim=self.memory_rnn_dim, + outputnet_size=self.outputnet_size, + flat_start_params=self.flat_start_params, + std_floor=self.std_floor, + use_grad_checkpointing=self.use_grad_checkpointing, + ) + + self.decoder = Decoder( + self.out_channels, + self.hidden_channels_dec, + self.kernel_size_dec, + self.dilation_rate, + self.num_flow_blocks_dec, + self.num_block_layers, + dropout_p=self.dropout_p_dec, + num_splits=self.num_splits, + num_squeeze=self.num_squeeze, + sigmoid_scale=self.sigmoid_scale, + c_in_channels=self.c_in_channels, + ) + + self.register_buffer("mean", torch.tensor(0)) + self.register_buffer("std", torch.tensor(1)) + + def update_mean_std(self, statistics_dict: Dict): + self.mean.data = torch.tensor(statistics_dict["mean"]) + self.std.data = torch.tensor(statistics_dict["std"]) + + def preprocess_batch(self, text, text_len, mels, mel_len): + if self.mean.item() == 0 or self.std.item() == 1: + statistics_dict = torch.load(self.mel_statistics_parameter_path) + self.update_mean_std(statistics_dict) + + mels = self.normalize(mels) + return text, text_len, mels, mel_len + + def normalize(self, x): + return x.sub(self.mean).div(self.std) + + def inverse_normalize(self, x): + return x.mul(self.std).add(self.mean) + + def forward(self, text, text_len, mels, mel_len): + """ + Forward pass for training and computing the log likelihood of a given batch. + + Shapes: + Shapes: + text: :math:`[B, T_in]` + text_len: :math:`[B]` + mels: :math:`[B, T_out, C]` + mel_len: :math:`[B]` + """ + text, text_len, mels, mel_len = self.preprocess_batch(text, text_len, mels, mel_len) + encoder_outputs, encoder_output_len = self.encoder(text, text_len) + z, z_lengths, logdet = self.decoder(mels.transpose(1, 2), mel_len) + log_probs, fwd_alignments, transition_vectors, means = self.neural_hmm( + encoder_outputs, encoder_output_len, z, z_lengths + ) + + outputs = { + "log_probs": log_probs + logdet, + "alignments": fwd_alignments, + "transition_vectors": transition_vectors, + "means": means, + } + + return outputs + + @staticmethod + def _training_stats(batch): + stats = {} + stats["avg_text_length"] = batch["text_lengths"].float().mean() + stats["avg_spec_length"] = batch["mel_lengths"].float().mean() + stats["avg_text_batch_occupancy"] = (batch["text_lengths"].float() / batch["text_lengths"].float().max()).mean() + stats["avg_spec_batch_occupancy"] = (batch["mel_lengths"].float() / batch["mel_lengths"].float().max()).mean() + return stats + + def train_step(self, batch: dict, criterion: nn.Module): + text_input = batch["text_input"] + text_lengths = batch["text_lengths"] + mel_input = batch["mel_input"] + mel_lengths = batch["mel_lengths"] + + outputs = self.forward( + text=text_input, + text_len=text_lengths, + mels=mel_input, + mel_len=mel_lengths, + ) + loss_dict = criterion(outputs["log_probs"] / (mel_lengths.sum() + text_lengths.sum())) + + # for printing useful statistics on terminal + loss_dict.update(self._training_stats(batch)) + return outputs, loss_dict + + def eval_step(self, batch: Dict, criterion: nn.Module): + return self.train_step(batch, criterion) + + def _format_aux_input(self, aux_input: Dict, default_input_dict): + """Set missing fields to their default value. + + Args: + aux_inputs (Dict): Dictionary containing the auxiliary inputs. + """ + default_input_dict = default_input_dict.copy() + default_input_dict.update( + { + "sampling_temp": self.sampling_temp, + "max_sampling_time": self.max_sampling_time, + "duration_threshold": self.duration_threshold, + } + ) + if aux_input: + return format_aux_input(default_input_dict, aux_input) + return default_input_dict + + @torch.no_grad() + def inference( + self, + text: torch.Tensor, + aux_input={"x_lengths": None, "sampling_temp": None, "max_sampling_time": None, "duration_threshold": None}, + ): # pylint: disable=dangerous-default-value + """Sampling from the model + + Args: + text (torch.Tensor): :math:`[B, T_in]` + aux_inputs (_type_, optional): _description_. Defaults to None. + + Returns: + outputs: Dictionary containing the following + - mel (torch.Tensor): :math:`[B, T_out, C]` + - hmm_outputs_len (torch.Tensor): :math:`[B]` + - state_travelled (List[List[int]]): List of lists containing the state travelled for each sample in the batch. + - input_parameters (list[torch.FloatTensor]): Input parameters to the neural HMM. + - output_parameters (list[torch.FloatTensor]): Output parameters to the neural HMM. + """ + default_input_dict = { + "x_lengths": torch.sum(text != 0, dim=1), + } + aux_input = self._format_aux_input(aux_input, default_input_dict) + encoder_outputs, encoder_output_len = self.encoder.inference(text, aux_input["x_lengths"]) + outputs = self.neural_hmm.inference( + encoder_outputs, + encoder_output_len, + sampling_temp=aux_input["sampling_temp"], + max_sampling_time=aux_input["max_sampling_time"], + duration_threshold=aux_input["duration_threshold"], + ) + + mels, mel_outputs_len, _ = self.decoder( + outputs["hmm_outputs"].transpose(1, 2), outputs["hmm_outputs_len"], reverse=True + ) + mels = self.inverse_normalize(mels.transpose(1, 2)) + outputs.update({"model_outputs": mels, "model_outputs_len": mel_outputs_len}) + outputs["alignments"] = OverflowUtils.double_pad(outputs["alignments"]) + return outputs + + @staticmethod + def get_criterion(): + return NLLLoss() + + @staticmethod + def init_from_config(config: "OverFlowConfig", samples: Union[List[List], List[Dict]] = None, verbose=True): + """Initiate model from config + + Args: + config (VitsConfig): Model config. + samples (Union[List[List], List[Dict]]): Training samples to parse speaker ids for training. + Defaults to None. + verbose (bool): If True, print init messages. Defaults to True. + """ + from TTS.utils.audio import AudioProcessor + + ap = AudioProcessor.init_from_config(config, verbose) + tokenizer, new_config = TTSTokenizer.init_from_config(config) + speaker_manager = SpeakerManager.init_from_config(config, samples) + return Overflow(new_config, ap, tokenizer, speaker_manager) + + def load_checkpoint( + self, config: Coqpit, checkpoint_path: str, eval: bool = False, strict: bool = True, cache=False + ): # pylint: disable=unused-argument, redefined-builtin + state = load_fsspec(checkpoint_path, map_location=torch.device("cpu")) + self.load_state_dict(state["model"]) + if eval: + self.eval() + self.decoder.store_inverse() + assert not self.training + + def on_init_start(self, trainer): + """If the current dataset does not have normalisation statistics and initialisation transition_probability it computes them otherwise loads.""" + if not os.path.isfile(trainer.config.mel_statistics_parameter_path) or trainer.config.force_generate_statistics: + dataloader = trainer.get_train_dataloader( + training_assets=None, samples=trainer.train_samples, verbose=False + ) + print( + f" | > Data parameters not found for: {trainer.config.mel_statistics_parameter_path}. Computing mel normalization parameters..." + ) + data_mean, data_std, init_transition_prob = OverflowUtils.get_data_parameters_for_flat_start( + dataloader, trainer.config.out_channels, trainer.config.state_per_phone + ) + print( + f" | > Saving data parameters to: {trainer.config.mel_statistics_parameter_path}: value: {data_mean, data_std, init_transition_prob}" + ) + statistics = { + "mean": data_mean.item(), + "std": data_std.item(), + "init_transition_prob": init_transition_prob.item(), + } + torch.save(statistics, trainer.config.mel_statistics_parameter_path) + + else: + print( + f" | > Data parameters found for: {trainer.config.mel_statistics_parameter_path}. Loading mel normalization parameters..." + ) + statistics = torch.load(trainer.config.mel_statistics_parameter_path) + data_mean, data_std, init_transition_prob = ( + statistics["mean"], + statistics["std"], + statistics["init_transition_prob"], + ) + print(f" | > Data parameters loaded with value: {data_mean, data_std, init_transition_prob}") + + trainer.config.flat_start_params["transition_p"] = ( + init_transition_prob.item() if torch.is_tensor(init_transition_prob) else init_transition_prob + ) + OverflowUtils.update_flat_start_transition(trainer.model, init_transition_prob) + trainer.model.update_mean_std(statistics) + + @torch.inference_mode() + def _create_logs(self, batch, outputs, ap): # pylint: disable=no-self-use, unused-argument + alignments, transition_vectors = outputs["alignments"], outputs["transition_vectors"] + means = torch.stack(outputs["means"], dim=1) + + figures = { + "alignment": plot_alignment(alignments[0].exp(), title="Forward alignment", fig_size=(20, 20)), + "log_alignment": plot_alignment( + alignments[0].exp(), title="Forward log alignment", plot_log=True, fig_size=(20, 20) + ), + "transition_vectors": plot_alignment(transition_vectors[0], title="Transition vectors", fig_size=(20, 20)), + "mel_from_most_probable_state": plot_spectrogram( + get_spec_from_most_probable_state(alignments[0], means[0], self.decoder), fig_size=(12, 3) + ), + "mel_target": plot_spectrogram(batch["mel_input"][0], fig_size=(12, 3)), + } + + # sample one item from the batch -1 will give the smalles item + print(" | > Synthesising audio from the model...") + inference_output = self.inference( + batch["text_input"][-1].unsqueeze(0), aux_input={"x_lengths": batch["text_lengths"][-1].unsqueeze(0)} + ) + figures["synthesised"] = plot_spectrogram(inference_output["model_outputs"][0], fig_size=(12, 3)) + + states = [p[1] for p in inference_output["input_parameters"][0]] + transition_probability_synthesising = [p[2].cpu().numpy() for p in inference_output["output_parameters"][0]] + + for i in range((len(transition_probability_synthesising) // 200) + 1): + start = i * 200 + end = (i + 1) * 200 + figures[f"synthesised_transition_probabilities/{i}"] = plot_transition_probabilities_to_numpy( + states[start:end], transition_probability_synthesising[start:end] + ) + + audio = ap.inv_melspectrogram(inference_output["model_outputs"][0].T.cpu().numpy()) + return figures, {"audios": audio} + + def train_log( + self, batch: dict, outputs: dict, logger: "Logger", assets: dict, steps: int + ): # pylint: disable=unused-argument + """Log training progress.""" + figures, audios = self._create_logs(batch, outputs, self.ap) + logger.train_figures(steps, figures) + logger.train_audios(steps, audios, self.ap.sample_rate) + + def eval_log( + self, batch: Dict, outputs: Dict, logger: "Logger", assets: Dict, steps: int + ): # pylint: disable=unused-argument + """Compute and log evaluation metrics.""" + # Plot model parameters histograms + if isinstance(logger, TensorboardLogger): + # I don't know if any other loggers supports this + for tag, value in self.named_parameters(): + tag = tag.replace(".", "/") + logger.writer.add_histogram(tag, value.data.cpu().numpy(), steps) + + figures, audios = self._create_logs(batch, outputs, self.ap) + logger.eval_figures(steps, figures) + logger.eval_audios(steps, audios, self.ap.sample_rate) + + def test_log( + self, outputs: dict, logger: "Logger", assets: dict, steps: int # pylint: disable=unused-argument + ) -> None: + logger.test_audios(steps, outputs[1], self.ap.sample_rate) + logger.test_figures(steps, outputs[0]) + + +class NLLLoss(nn.Module): + """Negative log likelihood loss.""" + + def forward(self, log_prob: torch.Tensor) -> dict: # pylint: disable=no-self-use + """Compute the loss. + + Args: + logits (Tensor): [B, T, D] + + Returns: + Tensor: [1] + + """ + return_dict = {} + return_dict["loss"] = -log_prob.mean() + return return_dict diff --git a/TTS/TTS/tts/models/tacotron.py b/TTS/TTS/tts/models/tacotron.py new file mode 100644 index 0000000000000000000000000000000000000000..474ec4641d0a569fc1938442ab9f7ce4bb980119 --- /dev/null +++ b/TTS/TTS/tts/models/tacotron.py @@ -0,0 +1,409 @@ +# coding: utf-8 + +from typing import Dict, List, Tuple, Union + +import torch +from torch import nn +from torch.cuda.amp.autocast_mode import autocast +from trainer.trainer_utils import get_optimizer, get_scheduler + +from TTS.tts.layers.tacotron.capacitron_layers import CapacitronVAE +from TTS.tts.layers.tacotron.gst_layers import GST +from TTS.tts.layers.tacotron.tacotron import Decoder, Encoder, PostCBHG +from TTS.tts.models.base_tacotron import BaseTacotron +from TTS.tts.utils.measures import alignment_diagonal_score +from TTS.tts.utils.speakers import SpeakerManager +from TTS.tts.utils.text.tokenizer import TTSTokenizer +from TTS.tts.utils.visual import plot_alignment, plot_spectrogram +from TTS.utils.capacitron_optimizer import CapacitronOptimizer + + +class Tacotron(BaseTacotron): + """Tacotron as in https://arxiv.org/abs/1703.10135 + It's an autoregressive encoder-attention-decoder-postnet architecture. + Check `TacotronConfig` for the arguments. + + Args: + config (TacotronConfig): Configuration for the Tacotron model. + speaker_manager (SpeakerManager): Speaker manager to handle multi-speaker settings. Only use if the model is + a multi-speaker model. Defaults to None. + """ + + def __init__( + self, + config: "TacotronConfig", + ap: "AudioProcessor" = None, + tokenizer: "TTSTokenizer" = None, + speaker_manager: SpeakerManager = None, + ): + super().__init__(config, ap, tokenizer, speaker_manager) + + # pass all config fields to `self` + # for fewer code change + for key in config: + setattr(self, key, config[key]) + + # set speaker embedding channel size for determining `in_channels` for the connected layers. + # `init_multispeaker` needs to be called once more in training to initialize the speaker embedding layer based + # on the number of speakers infered from the dataset. + if self.use_speaker_embedding or self.use_d_vector_file: + self.init_multispeaker(config) + self.decoder_in_features += self.embedded_speaker_dim # add speaker embedding dim + + if self.use_gst: + self.decoder_in_features += self.gst.gst_embedding_dim + + if self.use_capacitron_vae: + self.decoder_in_features += self.capacitron_vae.capacitron_VAE_embedding_dim + + # embedding layer + self.embedding = nn.Embedding(self.num_chars, 256, padding_idx=0) + self.embedding.weight.data.normal_(0, 0.3) + + # base model layers + self.encoder = Encoder(self.encoder_in_features) + self.decoder = Decoder( + self.decoder_in_features, + self.decoder_output_dim, + self.r, + self.memory_size, + self.attention_type, + self.windowing, + self.attention_norm, + self.prenet_type, + self.prenet_dropout, + self.use_forward_attn, + self.transition_agent, + self.forward_attn_mask, + self.location_attn, + self.attention_heads, + self.separate_stopnet, + self.max_decoder_steps, + ) + self.postnet = PostCBHG(self.decoder_output_dim) + self.last_linear = nn.Linear(self.postnet.cbhg.gru_features * 2, self.out_channels) + + # setup prenet dropout + self.decoder.prenet.dropout_at_inference = self.prenet_dropout_at_inference + + # global style token layers + if self.gst and self.use_gst: + self.gst_layer = GST( + num_mel=self.decoder_output_dim, + num_heads=self.gst.gst_num_heads, + num_style_tokens=self.gst.gst_num_style_tokens, + gst_embedding_dim=self.gst.gst_embedding_dim, + ) + + # Capacitron layers + if self.capacitron_vae and self.use_capacitron_vae: + self.capacitron_vae_layer = CapacitronVAE( + num_mel=self.decoder_output_dim, + encoder_output_dim=self.encoder_in_features, + capacitron_VAE_embedding_dim=self.capacitron_vae.capacitron_VAE_embedding_dim, + speaker_embedding_dim=self.embedded_speaker_dim + if self.use_speaker_embedding and self.capacitron_vae.capacitron_use_speaker_embedding + else None, + text_summary_embedding_dim=self.capacitron_vae.capacitron_text_summary_embedding_dim + if self.capacitron_vae.capacitron_use_text_summary_embeddings + else None, + ) + + # backward pass decoder + if self.bidirectional_decoder: + self._init_backward_decoder() + # setup DDC + if self.double_decoder_consistency: + self.coarse_decoder = Decoder( + self.decoder_in_features, + self.decoder_output_dim, + self.ddc_r, + self.memory_size, + self.attention_type, + self.windowing, + self.attention_norm, + self.prenet_type, + self.prenet_dropout, + self.use_forward_attn, + self.transition_agent, + self.forward_attn_mask, + self.location_attn, + self.attention_heads, + self.separate_stopnet, + self.max_decoder_steps, + ) + + def forward( # pylint: disable=dangerous-default-value + self, text, text_lengths, mel_specs=None, mel_lengths=None, aux_input={"speaker_ids": None, "d_vectors": None} + ): + """ + Shapes: + text: [B, T_in] + text_lengths: [B] + mel_specs: [B, T_out, C] + mel_lengths: [B] + aux_input: 'speaker_ids': [B, 1] and 'd_vectors':[B, C] + """ + aux_input = self._format_aux_input(aux_input) + outputs = {"alignments_backward": None, "decoder_outputs_backward": None} + inputs = self.embedding(text) + input_mask, output_mask = self.compute_masks(text_lengths, mel_lengths) + # B x T_in x encoder_in_features + encoder_outputs = self.encoder(inputs) + # sequence masking + encoder_outputs = encoder_outputs * input_mask.unsqueeze(2).expand_as(encoder_outputs) + # global style token + if self.gst and self.use_gst: + # B x gst_dim + encoder_outputs = self.compute_gst(encoder_outputs, mel_specs) + # speaker embedding + if self.use_speaker_embedding or self.use_d_vector_file: + if not self.use_d_vector_file: + # B x 1 x speaker_embed_dim + embedded_speakers = self.speaker_embedding(aux_input["speaker_ids"])[:, None] + else: + # B x 1 x speaker_embed_dim + embedded_speakers = torch.unsqueeze(aux_input["d_vectors"], 1) + encoder_outputs = self._concat_speaker_embedding(encoder_outputs, embedded_speakers) + # Capacitron + if self.capacitron_vae and self.use_capacitron_vae: + # B x capacitron_VAE_embedding_dim + encoder_outputs, *capacitron_vae_outputs = self.compute_capacitron_VAE_embedding( + encoder_outputs, + reference_mel_info=[mel_specs, mel_lengths], + text_info=[inputs, text_lengths] + if self.capacitron_vae.capacitron_use_text_summary_embeddings + else None, + speaker_embedding=embedded_speakers if self.capacitron_vae.capacitron_use_speaker_embedding else None, + ) + else: + capacitron_vae_outputs = None + # decoder_outputs: B x decoder_in_features x T_out + # alignments: B x T_in x encoder_in_features + # stop_tokens: B x T_in + decoder_outputs, alignments, stop_tokens = self.decoder(encoder_outputs, mel_specs, input_mask) + # sequence masking + if output_mask is not None: + decoder_outputs = decoder_outputs * output_mask.unsqueeze(1).expand_as(decoder_outputs) + # B x T_out x decoder_in_features + postnet_outputs = self.postnet(decoder_outputs) + # sequence masking + if output_mask is not None: + postnet_outputs = postnet_outputs * output_mask.unsqueeze(2).expand_as(postnet_outputs) + # B x T_out x posnet_dim + postnet_outputs = self.last_linear(postnet_outputs) + # B x T_out x decoder_in_features + decoder_outputs = decoder_outputs.transpose(1, 2).contiguous() + if self.bidirectional_decoder: + decoder_outputs_backward, alignments_backward = self._backward_pass(mel_specs, encoder_outputs, input_mask) + outputs["alignments_backward"] = alignments_backward + outputs["decoder_outputs_backward"] = decoder_outputs_backward + if self.double_decoder_consistency: + decoder_outputs_backward, alignments_backward = self._coarse_decoder_pass( + mel_specs, encoder_outputs, alignments, input_mask + ) + outputs["alignments_backward"] = alignments_backward + outputs["decoder_outputs_backward"] = decoder_outputs_backward + outputs.update( + { + "model_outputs": postnet_outputs, + "decoder_outputs": decoder_outputs, + "alignments": alignments, + "stop_tokens": stop_tokens, + "capacitron_vae_outputs": capacitron_vae_outputs, + } + ) + return outputs + + @torch.no_grad() + def inference(self, text_input, aux_input=None): + aux_input = self._format_aux_input(aux_input) + inputs = self.embedding(text_input) + encoder_outputs = self.encoder(inputs) + if self.gst and self.use_gst: + # B x gst_dim + encoder_outputs = self.compute_gst(encoder_outputs, aux_input["style_mel"], aux_input["d_vectors"]) + if self.capacitron_vae and self.use_capacitron_vae: + if aux_input["style_text"] is not None: + style_text_embedding = self.embedding(aux_input["style_text"]) + style_text_length = torch.tensor([style_text_embedding.size(1)], dtype=torch.int64).to( + encoder_outputs.device + ) # pylint: disable=not-callable + reference_mel_length = ( + torch.tensor([aux_input["style_mel"].size(1)], dtype=torch.int64).to(encoder_outputs.device) + if aux_input["style_mel"] is not None + else None + ) # pylint: disable=not-callable + # B x capacitron_VAE_embedding_dim + encoder_outputs, *_ = self.compute_capacitron_VAE_embedding( + encoder_outputs, + reference_mel_info=[aux_input["style_mel"], reference_mel_length] + if aux_input["style_mel"] is not None + else None, + text_info=[style_text_embedding, style_text_length] if aux_input["style_text"] is not None else None, + speaker_embedding=aux_input["d_vectors"] + if self.capacitron_vae.capacitron_use_speaker_embedding + else None, + ) + if self.num_speakers > 1: + if not self.use_d_vector_file: + # B x 1 x speaker_embed_dim + embedded_speakers = self.speaker_embedding(aux_input["speaker_ids"]) + # reshape embedded_speakers + if embedded_speakers.ndim == 1: + embedded_speakers = embedded_speakers[None, None, :] + elif embedded_speakers.ndim == 2: + embedded_speakers = embedded_speakers[None, :] + else: + # B x 1 x speaker_embed_dim + embedded_speakers = torch.unsqueeze(aux_input["d_vectors"], 1) + encoder_outputs = self._concat_speaker_embedding(encoder_outputs, embedded_speakers) + decoder_outputs, alignments, stop_tokens = self.decoder.inference(encoder_outputs) + postnet_outputs = self.postnet(decoder_outputs) + postnet_outputs = self.last_linear(postnet_outputs) + decoder_outputs = decoder_outputs.transpose(1, 2) + outputs = { + "model_outputs": postnet_outputs, + "decoder_outputs": decoder_outputs, + "alignments": alignments, + "stop_tokens": stop_tokens, + } + return outputs + + def before_backward_pass(self, loss_dict, optimizer) -> None: + # Extracting custom training specific operations for capacitron + # from the trainer + if self.use_capacitron_vae: + loss_dict["capacitron_vae_beta_loss"].backward() + optimizer.first_step() + + def train_step(self, batch: Dict, criterion: torch.nn.Module) -> Tuple[Dict, Dict]: + """Perform a single training step by fetching the right set of samples from the batch. + + Args: + batch ([Dict]): A dictionary of input tensors. + criterion ([torch.nn.Module]): Callable criterion to compute model loss. + """ + text_input = batch["text_input"] + text_lengths = batch["text_lengths"] + mel_input = batch["mel_input"] + mel_lengths = batch["mel_lengths"] + linear_input = batch["linear_input"] + stop_targets = batch["stop_targets"] + stop_target_lengths = batch["stop_target_lengths"] + speaker_ids = batch["speaker_ids"] + d_vectors = batch["d_vectors"] + + aux_input = {"speaker_ids": speaker_ids, "d_vectors": d_vectors} + outputs = self.forward(text_input, text_lengths, mel_input, mel_lengths, aux_input) + + # set the [alignment] lengths wrt reduction factor for guided attention + if mel_lengths.max() % self.decoder.r != 0: + alignment_lengths = ( + mel_lengths + (self.decoder.r - (mel_lengths.max() % self.decoder.r)) + ) // self.decoder.r + else: + alignment_lengths = mel_lengths // self.decoder.r + + # compute loss + with autocast(enabled=False): # use float32 for the criterion + loss_dict = criterion( + outputs["model_outputs"].float(), + outputs["decoder_outputs"].float(), + mel_input.float(), + linear_input.float(), + outputs["stop_tokens"].float(), + stop_targets.float(), + stop_target_lengths, + outputs["capacitron_vae_outputs"] if self.capacitron_vae else None, + mel_lengths, + None if outputs["decoder_outputs_backward"] is None else outputs["decoder_outputs_backward"].float(), + outputs["alignments"].float(), + alignment_lengths, + None if outputs["alignments_backward"] is None else outputs["alignments_backward"].float(), + text_lengths, + ) + + # compute alignment error (the lower the better ) + align_error = 1 - alignment_diagonal_score(outputs["alignments"]) + loss_dict["align_error"] = align_error + return outputs, loss_dict + + def get_optimizer(self) -> List: + if self.use_capacitron_vae: + return CapacitronOptimizer(self.config, self.named_parameters()) + return get_optimizer(self.config.optimizer, self.config.optimizer_params, self.config.lr, self) + + def get_scheduler(self, optimizer: object): + opt = optimizer.primary_optimizer if self.use_capacitron_vae else optimizer + return get_scheduler(self.config.lr_scheduler, self.config.lr_scheduler_params, opt) + + def before_gradient_clipping(self): + if self.use_capacitron_vae: + # Capacitron model specific gradient clipping + model_params_to_clip = [] + for name, param in self.named_parameters(): + if param.requires_grad: + if name != "capacitron_vae_layer.beta": + model_params_to_clip.append(param) + torch.nn.utils.clip_grad_norm_(model_params_to_clip, self.capacitron_vae.capacitron_grad_clip) + + def _create_logs(self, batch, outputs, ap): + postnet_outputs = outputs["model_outputs"] + decoder_outputs = outputs["decoder_outputs"] + alignments = outputs["alignments"] + alignments_backward = outputs["alignments_backward"] + mel_input = batch["mel_input"] + linear_input = batch["linear_input"] + + pred_linear_spec = postnet_outputs[0].data.cpu().numpy() + pred_mel_spec = decoder_outputs[0].data.cpu().numpy() + gt_linear_spec = linear_input[0].data.cpu().numpy() + gt_mel_spec = mel_input[0].data.cpu().numpy() + align_img = alignments[0].data.cpu().numpy() + + figures = { + "pred_linear_spec": plot_spectrogram(pred_linear_spec, ap, output_fig=False), + "real_linear_spec": plot_spectrogram(gt_linear_spec, ap, output_fig=False), + "pred_mel_spec": plot_spectrogram(pred_mel_spec, ap, output_fig=False), + "real_mel_spec": plot_spectrogram(gt_mel_spec, ap, output_fig=False), + "alignment": plot_alignment(align_img, output_fig=False), + } + + if self.bidirectional_decoder or self.double_decoder_consistency: + figures["alignment_backward"] = plot_alignment(alignments_backward[0].data.cpu().numpy(), output_fig=False) + + # Sample audio + audio = ap.inv_spectrogram(pred_linear_spec.T) + return figures, {"audio": audio} + + def train_log( + self, batch: dict, outputs: dict, logger: "Logger", assets: dict, steps: int + ) -> None: # pylint: disable=no-self-use + figures, audios = self._create_logs(batch, outputs, self.ap) + logger.train_figures(steps, figures) + logger.train_audios(steps, audios, self.ap.sample_rate) + + def eval_step(self, batch: dict, criterion: nn.Module): + return self.train_step(batch, criterion) + + def eval_log(self, batch: dict, outputs: dict, logger: "Logger", assets: dict, steps: int) -> None: + figures, audios = self._create_logs(batch, outputs, self.ap) + logger.eval_figures(steps, figures) + logger.eval_audios(steps, audios, self.ap.sample_rate) + + @staticmethod + def init_from_config(config: "TacotronConfig", samples: Union[List[List], List[Dict]] = None): + """Initiate model from config + + Args: + config (TacotronConfig): Model config. + samples (Union[List[List], List[Dict]]): Training samples to parse speaker ids for training. + Defaults to None. + """ + from TTS.utils.audio import AudioProcessor + + ap = AudioProcessor.init_from_config(config) + tokenizer, new_config = TTSTokenizer.init_from_config(config) + speaker_manager = SpeakerManager.init_from_config(config, samples) + return Tacotron(new_config, ap, tokenizer, speaker_manager) diff --git a/TTS/TTS/tts/models/tacotron2.py b/TTS/TTS/tts/models/tacotron2.py new file mode 100644 index 0000000000000000000000000000000000000000..71ab1eac37aa70900a795cf8aa3df7a9ce77c49c --- /dev/null +++ b/TTS/TTS/tts/models/tacotron2.py @@ -0,0 +1,433 @@ +# coding: utf-8 + +from typing import Dict, List, Union + +import torch +from torch import nn +from torch.cuda.amp.autocast_mode import autocast +from trainer.trainer_utils import get_optimizer, get_scheduler + +from TTS.tts.layers.tacotron.capacitron_layers import CapacitronVAE +from TTS.tts.layers.tacotron.gst_layers import GST +from TTS.tts.layers.tacotron.tacotron2 import Decoder, Encoder, Postnet +from TTS.tts.models.base_tacotron import BaseTacotron +from TTS.tts.utils.measures import alignment_diagonal_score +from TTS.tts.utils.speakers import SpeakerManager +from TTS.tts.utils.text.tokenizer import TTSTokenizer +from TTS.tts.utils.visual import plot_alignment, plot_spectrogram +from TTS.utils.capacitron_optimizer import CapacitronOptimizer + + +class Tacotron2(BaseTacotron): + """Tacotron2 model implementation inherited from :class:`TTS.tts.models.base_tacotron.BaseTacotron`. + + Paper:: + https://arxiv.org/abs/1712.05884 + + Paper abstract:: + This paper describes Tacotron 2, a neural network architecture for speech synthesis directly from text. + The system is composed of a recurrent sequence-to-sequence feature prediction network that maps character + embeddings to mel-scale spectrograms, followed by a modified WaveNet model acting as a vocoder to synthesize + timedomain waveforms from those spectrograms. Our model achieves a mean opinion score (MOS) of 4.53 comparable + to a MOS of 4.58 for professionally recorded speech. To validate our design choices, we present ablation + studies of key components of our system and evaluate the impact of using mel spectrograms as the input to + WaveNet instead of linguistic, duration, and F0 features. We further demonstrate that using a compact acoustic + intermediate representation enables significant simplification of the WaveNet architecture. + + Check :class:`TTS.tts.configs.tacotron2_config.Tacotron2Config` for model arguments. + + Args: + config (TacotronConfig): + Configuration for the Tacotron2 model. + speaker_manager (SpeakerManager): + Speaker manager for multi-speaker training. Uuse only for multi-speaker training. Defaults to None. + """ + + def __init__( + self, + config: "Tacotron2Config", + ap: "AudioProcessor" = None, + tokenizer: "TTSTokenizer" = None, + speaker_manager: SpeakerManager = None, + ): + super().__init__(config, ap, tokenizer, speaker_manager) + + self.decoder_output_dim = config.out_channels + + # pass all config fields to `self` + # for fewer code change + for key in config: + setattr(self, key, config[key]) + + # init multi-speaker layers + if self.use_speaker_embedding or self.use_d_vector_file: + self.init_multispeaker(config) + self.decoder_in_features += self.embedded_speaker_dim # add speaker embedding dim + + if self.use_gst: + self.decoder_in_features += self.gst.gst_embedding_dim + + if self.use_capacitron_vae: + self.decoder_in_features += self.capacitron_vae.capacitron_VAE_embedding_dim + + # embedding layer + self.embedding = nn.Embedding(self.num_chars, 512, padding_idx=0) + + # base model layers + self.encoder = Encoder(self.encoder_in_features) + + self.decoder = Decoder( + self.decoder_in_features, + self.decoder_output_dim, + self.r, + self.attention_type, + self.attention_win, + self.attention_norm, + self.prenet_type, + self.prenet_dropout, + self.use_forward_attn, + self.transition_agent, + self.forward_attn_mask, + self.location_attn, + self.attention_heads, + self.separate_stopnet, + self.max_decoder_steps, + ) + self.postnet = Postnet(self.out_channels) + + # setup prenet dropout + self.decoder.prenet.dropout_at_inference = self.prenet_dropout_at_inference + + # global style token layers + if self.gst and self.use_gst: + self.gst_layer = GST( + num_mel=self.decoder_output_dim, + num_heads=self.gst.gst_num_heads, + num_style_tokens=self.gst.gst_num_style_tokens, + gst_embedding_dim=self.gst.gst_embedding_dim, + ) + + # Capacitron VAE Layers + if self.capacitron_vae and self.use_capacitron_vae: + self.capacitron_vae_layer = CapacitronVAE( + num_mel=self.decoder_output_dim, + encoder_output_dim=self.encoder_in_features, + capacitron_VAE_embedding_dim=self.capacitron_vae.capacitron_VAE_embedding_dim, + speaker_embedding_dim=self.embedded_speaker_dim + if self.capacitron_vae.capacitron_use_speaker_embedding + else None, + text_summary_embedding_dim=self.capacitron_vae.capacitron_text_summary_embedding_dim + if self.capacitron_vae.capacitron_use_text_summary_embeddings + else None, + ) + + # backward pass decoder + if self.bidirectional_decoder: + self._init_backward_decoder() + # setup DDC + if self.double_decoder_consistency: + self.coarse_decoder = Decoder( + self.decoder_in_features, + self.decoder_output_dim, + self.ddc_r, + self.attention_type, + self.attention_win, + self.attention_norm, + self.prenet_type, + self.prenet_dropout, + self.use_forward_attn, + self.transition_agent, + self.forward_attn_mask, + self.location_attn, + self.attention_heads, + self.separate_stopnet, + self.max_decoder_steps, + ) + + @staticmethod + def shape_outputs(mel_outputs, mel_outputs_postnet, alignments): + """Final reshape of the model output tensors.""" + mel_outputs = mel_outputs.transpose(1, 2) + mel_outputs_postnet = mel_outputs_postnet.transpose(1, 2) + return mel_outputs, mel_outputs_postnet, alignments + + def forward( # pylint: disable=dangerous-default-value + self, text, text_lengths, mel_specs=None, mel_lengths=None, aux_input={"speaker_ids": None, "d_vectors": None} + ): + """Forward pass for training with Teacher Forcing. + + Shapes: + text: :math:`[B, T_in]` + text_lengths: :math:`[B]` + mel_specs: :math:`[B, T_out, C]` + mel_lengths: :math:`[B]` + aux_input: 'speaker_ids': :math:`[B, 1]` and 'd_vectors': :math:`[B, C]` + """ + aux_input = self._format_aux_input(aux_input) + outputs = {"alignments_backward": None, "decoder_outputs_backward": None} + # compute mask for padding + # B x T_in_max (boolean) + input_mask, output_mask = self.compute_masks(text_lengths, mel_lengths) + # B x D_embed x T_in_max + embedded_inputs = self.embedding(text).transpose(1, 2) + # B x T_in_max x D_en + encoder_outputs = self.encoder(embedded_inputs, text_lengths) + if self.gst and self.use_gst: + # B x gst_dim + encoder_outputs = self.compute_gst(encoder_outputs, mel_specs) + + if self.use_speaker_embedding or self.use_d_vector_file: + if not self.use_d_vector_file: + # B x 1 x speaker_embed_dim + embedded_speakers = self.speaker_embedding(aux_input["speaker_ids"])[:, None] + else: + # B x 1 x speaker_embed_dim + embedded_speakers = torch.unsqueeze(aux_input["d_vectors"], 1) + encoder_outputs = self._concat_speaker_embedding(encoder_outputs, embedded_speakers) + + # capacitron + if self.capacitron_vae and self.use_capacitron_vae: + # B x capacitron_VAE_embedding_dim + encoder_outputs, *capacitron_vae_outputs = self.compute_capacitron_VAE_embedding( + encoder_outputs, + reference_mel_info=[mel_specs, mel_lengths], + text_info=[embedded_inputs.transpose(1, 2), text_lengths] + if self.capacitron_vae.capacitron_use_text_summary_embeddings + else None, + speaker_embedding=embedded_speakers if self.capacitron_vae.capacitron_use_speaker_embedding else None, + ) + else: + capacitron_vae_outputs = None + + encoder_outputs = encoder_outputs * input_mask.unsqueeze(2).expand_as(encoder_outputs) + + # B x mel_dim x T_out -- B x T_out//r x T_in -- B x T_out//r + decoder_outputs, alignments, stop_tokens = self.decoder(encoder_outputs, mel_specs, input_mask) + # sequence masking + if mel_lengths is not None: + decoder_outputs = decoder_outputs * output_mask.unsqueeze(1).expand_as(decoder_outputs) + # B x mel_dim x T_out + postnet_outputs = self.postnet(decoder_outputs) + postnet_outputs = decoder_outputs + postnet_outputs + # sequence masking + if output_mask is not None: + postnet_outputs = postnet_outputs * output_mask.unsqueeze(1).expand_as(postnet_outputs) + # B x T_out x mel_dim -- B x T_out x mel_dim -- B x T_out//r x T_in + decoder_outputs, postnet_outputs, alignments = self.shape_outputs(decoder_outputs, postnet_outputs, alignments) + if self.bidirectional_decoder: + decoder_outputs_backward, alignments_backward = self._backward_pass(mel_specs, encoder_outputs, input_mask) + outputs["alignments_backward"] = alignments_backward + outputs["decoder_outputs_backward"] = decoder_outputs_backward + if self.double_decoder_consistency: + decoder_outputs_backward, alignments_backward = self._coarse_decoder_pass( + mel_specs, encoder_outputs, alignments, input_mask + ) + outputs["alignments_backward"] = alignments_backward + outputs["decoder_outputs_backward"] = decoder_outputs_backward + outputs.update( + { + "model_outputs": postnet_outputs, + "decoder_outputs": decoder_outputs, + "alignments": alignments, + "stop_tokens": stop_tokens, + "capacitron_vae_outputs": capacitron_vae_outputs, + } + ) + return outputs + + @torch.no_grad() + def inference(self, text, aux_input=None): + """Forward pass for inference with no Teacher-Forcing. + + Shapes: + text: :math:`[B, T_in]` + text_lengths: :math:`[B]` + """ + aux_input = self._format_aux_input(aux_input) + embedded_inputs = self.embedding(text).transpose(1, 2) + encoder_outputs = self.encoder.inference(embedded_inputs) + + if self.gst and self.use_gst: + # B x gst_dim + encoder_outputs = self.compute_gst(encoder_outputs, aux_input["style_mel"], aux_input["d_vectors"]) + + if self.capacitron_vae and self.use_capacitron_vae: + if aux_input["style_text"] is not None: + style_text_embedding = self.embedding(aux_input["style_text"]) + style_text_length = torch.tensor([style_text_embedding.size(1)], dtype=torch.int64).to( + encoder_outputs.device + ) # pylint: disable=not-callable + reference_mel_length = ( + torch.tensor([aux_input["style_mel"].size(1)], dtype=torch.int64).to(encoder_outputs.device) + if aux_input["style_mel"] is not None + else None + ) # pylint: disable=not-callable + # B x capacitron_VAE_embedding_dim + encoder_outputs, *_ = self.compute_capacitron_VAE_embedding( + encoder_outputs, + reference_mel_info=[aux_input["style_mel"], reference_mel_length] + if aux_input["style_mel"] is not None + else None, + text_info=[style_text_embedding, style_text_length] if aux_input["style_text"] is not None else None, + speaker_embedding=aux_input["d_vectors"] + if self.capacitron_vae.capacitron_use_speaker_embedding + else None, + ) + + if self.num_speakers > 1: + if not self.use_d_vector_file: + embedded_speakers = self.speaker_embedding(aux_input["speaker_ids"])[None] + # reshape embedded_speakers + if embedded_speakers.ndim == 1: + embedded_speakers = embedded_speakers[None, None, :] + elif embedded_speakers.ndim == 2: + embedded_speakers = embedded_speakers[None, :] + else: + embedded_speakers = aux_input["d_vectors"] + + encoder_outputs = self._concat_speaker_embedding(encoder_outputs, embedded_speakers) + + decoder_outputs, alignments, stop_tokens = self.decoder.inference(encoder_outputs) + postnet_outputs = self.postnet(decoder_outputs) + postnet_outputs = decoder_outputs + postnet_outputs + decoder_outputs, postnet_outputs, alignments = self.shape_outputs(decoder_outputs, postnet_outputs, alignments) + outputs = { + "model_outputs": postnet_outputs, + "decoder_outputs": decoder_outputs, + "alignments": alignments, + "stop_tokens": stop_tokens, + } + return outputs + + def before_backward_pass(self, loss_dict, optimizer) -> None: + # Extracting custom training specific operations for capacitron + # from the trainer + if self.use_capacitron_vae: + loss_dict["capacitron_vae_beta_loss"].backward() + optimizer.first_step() + + def train_step(self, batch: Dict, criterion: torch.nn.Module): + """A single training step. Forward pass and loss computation. + + Args: + batch ([Dict]): A dictionary of input tensors. + criterion ([type]): Callable criterion to compute model loss. + """ + text_input = batch["text_input"] + text_lengths = batch["text_lengths"] + mel_input = batch["mel_input"] + mel_lengths = batch["mel_lengths"] + stop_targets = batch["stop_targets"] + stop_target_lengths = batch["stop_target_lengths"] + speaker_ids = batch["speaker_ids"] + d_vectors = batch["d_vectors"] + + aux_input = {"speaker_ids": speaker_ids, "d_vectors": d_vectors} + outputs = self.forward(text_input, text_lengths, mel_input, mel_lengths, aux_input) + + # set the [alignment] lengths wrt reduction factor for guided attention + if mel_lengths.max() % self.decoder.r != 0: + alignment_lengths = ( + mel_lengths + (self.decoder.r - (mel_lengths.max() % self.decoder.r)) + ) // self.decoder.r + else: + alignment_lengths = mel_lengths // self.decoder.r + + # compute loss + with autocast(enabled=False): # use float32 for the criterion + loss_dict = criterion( + outputs["model_outputs"].float(), + outputs["decoder_outputs"].float(), + mel_input.float(), + None, + outputs["stop_tokens"].float(), + stop_targets.float(), + stop_target_lengths, + outputs["capacitron_vae_outputs"] if self.capacitron_vae else None, + mel_lengths, + None if outputs["decoder_outputs_backward"] is None else outputs["decoder_outputs_backward"].float(), + outputs["alignments"].float(), + alignment_lengths, + None if outputs["alignments_backward"] is None else outputs["alignments_backward"].float(), + text_lengths, + ) + + # compute alignment error (the lower the better ) + align_error = 1 - alignment_diagonal_score(outputs["alignments"]) + loss_dict["align_error"] = align_error + return outputs, loss_dict + + def get_optimizer(self) -> List: + if self.use_capacitron_vae: + return CapacitronOptimizer(self.config, self.named_parameters()) + return get_optimizer(self.config.optimizer, self.config.optimizer_params, self.config.lr, self) + + def get_scheduler(self, optimizer: object): + opt = optimizer.primary_optimizer if self.use_capacitron_vae else optimizer + return get_scheduler(self.config.lr_scheduler, self.config.lr_scheduler_params, opt) + + def before_gradient_clipping(self): + if self.use_capacitron_vae: + # Capacitron model specific gradient clipping + model_params_to_clip = [] + for name, param in self.named_parameters(): + if param.requires_grad: + if name != "capacitron_vae_layer.beta": + model_params_to_clip.append(param) + torch.nn.utils.clip_grad_norm_(model_params_to_clip, self.capacitron_vae.capacitron_grad_clip) + + def _create_logs(self, batch, outputs, ap): + """Create dashboard log information.""" + postnet_outputs = outputs["model_outputs"] + alignments = outputs["alignments"] + alignments_backward = outputs["alignments_backward"] + mel_input = batch["mel_input"] + + pred_spec = postnet_outputs[0].data.cpu().numpy() + gt_spec = mel_input[0].data.cpu().numpy() + align_img = alignments[0].data.cpu().numpy() + + figures = { + "prediction": plot_spectrogram(pred_spec, ap, output_fig=False), + "ground_truth": plot_spectrogram(gt_spec, ap, output_fig=False), + "alignment": plot_alignment(align_img, output_fig=False), + } + + if self.bidirectional_decoder or self.double_decoder_consistency: + figures["alignment_backward"] = plot_alignment(alignments_backward[0].data.cpu().numpy(), output_fig=False) + + # Sample audio + audio = ap.inv_melspectrogram(pred_spec.T) + return figures, {"audio": audio} + + def train_log( + self, batch: dict, outputs: dict, logger: "Logger", assets: dict, steps: int + ) -> None: # pylint: disable=no-self-use + """Log training progress.""" + figures, audios = self._create_logs(batch, outputs, self.ap) + logger.train_figures(steps, figures) + logger.train_audios(steps, audios, self.ap.sample_rate) + + def eval_step(self, batch: dict, criterion: nn.Module): + return self.train_step(batch, criterion) + + def eval_log(self, batch: dict, outputs: dict, logger: "Logger", assets: dict, steps: int) -> None: + figures, audios = self._create_logs(batch, outputs, self.ap) + logger.eval_figures(steps, figures) + logger.eval_audios(steps, audios, self.ap.sample_rate) + + @staticmethod + def init_from_config(config: "Tacotron2Config", samples: Union[List[List], List[Dict]] = None): + """Initiate model from config + + Args: + config (Tacotron2Config): Model config. + samples (Union[List[List], List[Dict]]): Training samples to parse speaker ids for training. + Defaults to None. + """ + from TTS.utils.audio import AudioProcessor + + ap = AudioProcessor.init_from_config(config) + tokenizer, new_config = TTSTokenizer.init_from_config(config) + speaker_manager = SpeakerManager.init_from_config(new_config, samples) + return Tacotron2(new_config, ap, tokenizer, speaker_manager) diff --git a/TTS/TTS/tts/models/tortoise.py b/TTS/TTS/tts/models/tortoise.py new file mode 100644 index 0000000000000000000000000000000000000000..16644ff95eee6799f5e78603e2011f63b05a1011 --- /dev/null +++ b/TTS/TTS/tts/models/tortoise.py @@ -0,0 +1,911 @@ +import os +import random +from contextlib import contextmanager +from dataclasses import dataclass +from time import time + +import torch +import torch.nn.functional as F +import torchaudio +from coqpit import Coqpit +from tqdm import tqdm + +from TTS.tts.layers.tortoise.arch_utils import TorchMelSpectrogram +from TTS.tts.layers.tortoise.audio_utils import denormalize_tacotron_mel, load_voice, wav_to_univnet_mel +from TTS.tts.layers.tortoise.autoregressive import UnifiedVoice +from TTS.tts.layers.tortoise.classifier import AudioMiniEncoderWithClassifierHead +from TTS.tts.layers.tortoise.clvp import CLVP +from TTS.tts.layers.tortoise.diffusion import SpacedDiffusion, get_named_beta_schedule, space_timesteps +from TTS.tts.layers.tortoise.diffusion_decoder import DiffusionTts +from TTS.tts.layers.tortoise.random_latent_generator import RandomLatentConverter +from TTS.tts.layers.tortoise.tokenizer import VoiceBpeTokenizer +from TTS.tts.layers.tortoise.vocoder import VocConf, VocType +from TTS.tts.layers.tortoise.wav2vec_alignment import Wav2VecAlignment +from TTS.tts.models.base_tts import BaseTTS + + +def pad_or_truncate(t, length): + """ + Utility function for forcing to have the specified sequence length, whether by clipping it or padding it with 0s. + """ + tp = t[..., :length] + if t.shape[-1] == length: + tp = t + elif t.shape[-1] < length: + tp = F.pad(t, (0, length - t.shape[-1])) + return tp + + +def deterministic_state(seed=None): + """ + Sets the random seeds that tortoise uses to the current time() and returns that seed so results can be + reproduced. + """ + seed = int(time()) if seed is None else seed + torch.manual_seed(seed) + random.seed(seed) + # Can't currently set this because of CUBLAS. TODO: potentially enable it if necessary. + # torch.use_deterministic_algorithms(True) + + return seed + + +def load_discrete_vocoder_diffuser( + trained_diffusion_steps=4000, + desired_diffusion_steps=200, + cond_free=True, + cond_free_k=1, + sampler="ddim", +): + """ + Helper function to load a GaussianDiffusion instance configured for use as a vocoder. + """ + return SpacedDiffusion( + use_timesteps=space_timesteps(trained_diffusion_steps, [desired_diffusion_steps]), + model_mean_type="epsilon", + model_var_type="learned_range", + loss_type="mse", + betas=get_named_beta_schedule("linear", trained_diffusion_steps), + conditioning_free=cond_free, + conditioning_free_k=cond_free_k, + sampler=sampler, + ) + + +def format_conditioning(clip, cond_length=132300, device="cuda", **kwargs): + """ + Converts the given conditioning signal to a MEL spectrogram and clips it as expected by the models. + """ + gap = clip.shape[-1] - cond_length + if gap < 0: + clip = F.pad(clip, pad=(0, abs(gap))) + elif gap > 0: + rand_start = random.randint(0, gap) + clip = clip[:, rand_start : rand_start + cond_length] + mel_clip = TorchMelSpectrogram(**kwargs)(clip.unsqueeze(0)).squeeze(0) + return mel_clip.unsqueeze(0).to(device) + + +def fix_autoregressive_output(codes, stop_token, complain=True): + """ + This function performs some padding on coded audio that fixes a mismatch issue between what the diffusion model was + trained on and what the autoregressive code generator creates (which has no padding or end). + This is highly specific to the DVAE being used, so this particular coding will not necessarily work if used with + a different DVAE. This can be inferred by feeding a audio clip padded with lots of zeros on the end through the DVAE + and copying out the last few codes. + + Failing to do this padding will produce speech with a harsh end that sounds like "BLAH" or similar. + """ + # Strip off the autoregressive stop token and add padding. + stop_token_indices = (codes == stop_token).nonzero() + if len(stop_token_indices) == 0: + if complain: + print( + "No stop tokens found in one of the generated voice clips. This typically means the spoken audio is " + "too long. In some cases, the output will still be good, though. Listen to it and if it is missing words, " + "try breaking up your input text." + ) + return codes + codes[stop_token_indices] = 83 + stm = stop_token_indices.min().item() + codes[stm:] = 83 + if stm - 3 < codes.shape[0]: + codes[-3] = 45 + codes[-2] = 45 + codes[-1] = 248 + return codes + + +def do_spectrogram_diffusion( + diffusion_model, + diffuser, + latents, + conditioning_latents, + temperature=1, + verbose=True, +): + """ + Uses the specified diffusion model to convert discrete codes into a spectrogram. + """ + with torch.no_grad(): + output_seq_len = ( + latents.shape[1] * 4 * 24000 // 22050 + ) # This diffusion model converts from 22kHz spectrogram codes to a 24kHz spectrogram signal. + output_shape = (latents.shape[0], 100, output_seq_len) + precomputed_embeddings = diffusion_model.timestep_independent( + latents, conditioning_latents, output_seq_len, False + ) + + noise = torch.randn(output_shape, device=latents.device) * temperature + mel = diffuser.sample_loop( + diffusion_model, + output_shape, + noise=noise, + model_kwargs={"precomputed_aligned_embeddings": precomputed_embeddings}, + progress=verbose, + ) + return denormalize_tacotron_mel(mel)[:, :, :output_seq_len] + + +def classify_audio_clip(clip, model_dir): + """ + Returns whether or not Tortoises' classifier thinks the given clip came from Tortoise. + :param clip: torch tensor containing audio waveform data (get it from load_audio) + :return: True if the clip was classified as coming from Tortoise and false if it was classified as real. + """ + classifier = AudioMiniEncoderWithClassifierHead( + 2, + spec_dim=1, + embedding_dim=512, + depth=5, + downsample_factor=4, + resnet_blocks=2, + attn_blocks=4, + num_attn_heads=4, + base_channels=32, + dropout=0, + kernel_size=5, + distribute_zero_label=False, + ) + classifier.load_state_dict(torch.load(os.path.join(model_dir, "classifier.pth"), map_location=torch.device("cpu"))) + clip = clip.cpu().unsqueeze(0) + results = F.softmax(classifier(clip), dim=-1) + return results[0][0] + + +def pick_best_batch_size_for_gpu(): + """ + Tries to pick a batch size that will fit in your GPU. These sizes aren't guaranteed to work, but they should give + you a good shot. + """ + if torch.cuda.is_available(): + _, available = torch.cuda.mem_get_info() + availableGb = available / (1024**3) + batch_size = 1 + if availableGb > 14: + batch_size = 16 + elif availableGb > 10: + batch_size = 8 + elif availableGb > 7: + batch_size = 4 + return batch_size + + +@dataclass +class TortoiseAudioConfig(Coqpit): + sample_rate: int = 22050 + diffusion_sample_rate: int = 24000 + output_sample_rate: int = 24000 + + +@dataclass +class TortoiseArgs(Coqpit): + """A dataclass to represent Tortoise model arguments that define the model structure. + + Args: + autoregressive_batch_size (int): The size of the auto-regressive batch. + enable_redaction (bool, optional): Whether to enable redaction. Defaults to True. + high_vram (bool, optional): Whether to use high VRAM. Defaults to False. + kv_cache (bool, optional): Whether to use the kv_cache. Defaults to True. + ar_checkpoint (str, optional): The checkpoint for the autoregressive model. Defaults to None. + clvp_checkpoint (str, optional): The checkpoint for the ConditionalLatentVariablePerseq model. Defaults to None. + diff_checkpoint (str, optional): The checkpoint for the DiffTTS model. Defaults to None. + num_chars (int, optional): The maximum number of characters to generate. Defaults to 255. + vocoder (VocType, optional): The vocoder to use for synthesis. Defaults to VocConf.Univnet. + + For UnifiedVoice model: + ar_max_mel_tokens (int, optional): The maximum mel tokens for the autoregressive model. Defaults to 604. + ar_max_text_tokens (int, optional): The maximum text tokens for the autoregressive model. Defaults to 402. + ar_max_conditioning_inputs (int, optional): The maximum conditioning inputs for the autoregressive model. Defaults to 2. + ar_layers (int, optional): The number of layers for the autoregressive model. Defaults to 30. + ar_model_dim (int, optional): The model dimension for the autoregressive model. Defaults to 1024. + ar_heads (int, optional): The number of heads for the autoregressive model. Defaults to 16. + ar_number_text_tokens (int, optional): The number of text tokens for the autoregressive model. Defaults to 255. + ar_start_text_token (int, optional): The start text token for the autoregressive model. Defaults to 255. + ar_checkpointing (bool, optional): Whether to use checkpointing for the autoregressive model. Defaults to False. + ar_train_solo_embeddings (bool, optional): Whether to train embeddings for the autoregressive model. Defaults to False. + + For DiffTTS model: + diff_model_channels (int, optional): The number of channels for the DiffTTS model. Defaults to 1024. + diff_num_layers (int, optional): The number of layers for the DiffTTS model. Defaults to 10. + diff_in_channels (int, optional): The input channels for the DiffTTS model. Defaults to 100. + diff_out_channels (int, optional): The output channels for the DiffTTS model. Defaults to 200. + diff_in_latent_channels (int, optional): The input latent channels for the DiffTTS model. Defaults to 1024. + diff_in_tokens (int, optional): The input tokens for the DiffTTS model. Defaults to 8193. + diff_dropout (int, optional): The dropout percentage for the DiffTTS model. Defaults to 0. + diff_use_fp16 (bool, optional): Whether to use fp16 for the DiffTTS model. Defaults to False. + diff_num_heads (int, optional): The number of heads for the DiffTTS model. Defaults to 16. + diff_layer_drop (int, optional): The layer dropout percentage for the DiffTTS model. Defaults to 0. + diff_unconditioned_percentage (int, optional): The percentage of unconditioned inputs for the DiffTTS model. Defaults to 0. + + For ConditionalLatentVariablePerseq model: + clvp_dim_text (int): The dimension of the text input for the CLVP module. Defaults to 768. + clvp_dim_speech (int): The dimension of the speech input for the CLVP module. Defaults to 768. + clvp_dim_latent (int): The dimension of the latent representation for the CLVP module. Defaults to 768. + clvp_num_text_tokens (int): The number of text tokens used by the CLVP module. Defaults to 256. + clvp_text_enc_depth (int): The depth of the text encoder in the CLVP module. Defaults to 20. + clvp_text_seq_len (int): The maximum sequence length of the text input for the CLVP module. Defaults to 350. + clvp_text_heads (int): The number of attention heads used by the text encoder in the CLVP module. Defaults to 12. + clvp_num_speech_tokens (int): The number of speech tokens used by the CLVP module. Defaults to 8192. + clvp_speech_enc_depth (int): The depth of the speech encoder in the CLVP module. Defaults to 20. + clvp_speech_heads (int): The number of attention heads used by the speech encoder in the CLVP module. Defaults to 12. + clvp_speech_seq_len (int): The maximum sequence length of the speech input for the CLVP module. Defaults to 430. + clvp_use_xformers (bool): A flag indicating whether the model uses transformers in the CLVP module. Defaults to True. + duration_const (int): A constant value used in the model. Defaults to 102400. + """ + + autoregressive_batch_size: int = 1 + enable_redaction: bool = False + high_vram: bool = False + kv_cache: bool = True + ar_checkpoint: str = None + clvp_checkpoint: str = None + diff_checkpoint: str = None + num_chars: int = 255 + vocoder: VocType = VocConf.Univnet + + # UnifiedVoice params + ar_max_mel_tokens: int = 604 + ar_max_text_tokens: int = 402 + ar_max_conditioning_inputs: int = 2 + ar_layers: int = 30 + ar_model_dim: int = 1024 + ar_heads: int = 16 + ar_number_text_tokens: int = 255 + ar_start_text_token: int = 255 + ar_checkpointing: bool = False + ar_train_solo_embeddings: bool = False + + # DiffTTS params + diff_model_channels: int = 1024 + diff_num_layers: int = 10 + diff_in_channels: int = 100 + diff_out_channels: int = 200 + diff_in_latent_channels: int = 1024 + diff_in_tokens: int = 8193 + diff_dropout: int = 0 + diff_use_fp16: bool = False + diff_num_heads: int = 16 + diff_layer_drop: int = 0 + diff_unconditioned_percentage: int = 0 + + # clvp params + clvp_dim_text: int = 768 + clvp_dim_speech: int = 768 + clvp_dim_latent: int = 768 + clvp_num_text_tokens: int = 256 + clvp_text_enc_depth: int = 20 + clvp_text_seq_len: int = 350 + clvp_text_heads: int = 12 + clvp_num_speech_tokens: int = 8192 + clvp_speech_enc_depth: int = 20 + clvp_speech_heads: int = 12 + clvp_speech_seq_len: int = 430 + clvp_use_xformers: bool = True + # constants + duration_const: int = 102400 + + +class Tortoise(BaseTTS): + """Tortoise model class. + + Currently only supports inference. + + Examples: + >>> from TTS.tts.configs.tortoise_config import TortoiseConfig + >>> from TTS.tts.models.tortoise import Tortoise + >>> config = TortoiseConfig() + >>> model = Tortoise.inif_from_config(config) + >>> model.load_checkpoint(config, checkpoint_dir="paths/to/models_dir/", eval=True) + """ + + def __init__(self, config: Coqpit): + super().__init__(config, ap=None, tokenizer=None) + self.mel_norm_path = None + self.config = config + self.ar_checkpoint = self.args.ar_checkpoint + self.diff_checkpoint = self.args.diff_checkpoint # TODO: check if this is even needed + self.models_dir = config.model_dir + self.autoregressive_batch_size = ( + pick_best_batch_size_for_gpu() + if self.args.autoregressive_batch_size is None + else self.args.autoregressive_batch_size + ) + self.enable_redaction = self.args.enable_redaction + self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") + if self.enable_redaction: + self.aligner = Wav2VecAlignment() + + self.tokenizer = VoiceBpeTokenizer() + + self.autoregressive = UnifiedVoice( + max_mel_tokens=self.args.ar_max_mel_tokens, + max_text_tokens=self.args.ar_max_text_tokens, + max_conditioning_inputs=self.args.ar_max_conditioning_inputs, + layers=self.args.ar_layers, + model_dim=self.args.ar_model_dim, + heads=self.args.ar_heads, + number_text_tokens=self.args.ar_number_text_tokens, + start_text_token=self.args.ar_start_text_token, + checkpointing=self.args.ar_checkpointing, + train_solo_embeddings=self.args.ar_train_solo_embeddings, + ).cpu() + + self.diffusion = DiffusionTts( + model_channels=self.args.diff_model_channels, + num_layers=self.args.diff_num_layers, + in_channels=self.args.diff_in_channels, + out_channels=self.args.diff_out_channels, + in_latent_channels=self.args.diff_in_latent_channels, + in_tokens=self.args.diff_in_tokens, + dropout=self.args.diff_dropout, + use_fp16=self.args.diff_use_fp16, + num_heads=self.args.diff_num_heads, + layer_drop=self.args.diff_layer_drop, + unconditioned_percentage=self.args.diff_unconditioned_percentage, + ).cpu() + + self.clvp = CLVP( + dim_text=self.args.clvp_dim_text, + dim_speech=self.args.clvp_dim_speech, + dim_latent=self.args.clvp_dim_latent, + num_text_tokens=self.args.clvp_num_text_tokens, + text_enc_depth=self.args.clvp_text_enc_depth, + text_seq_len=self.args.clvp_text_seq_len, + text_heads=self.args.clvp_text_heads, + num_speech_tokens=self.args.clvp_num_speech_tokens, + speech_enc_depth=self.args.clvp_speech_enc_depth, + speech_heads=self.args.clvp_speech_heads, + speech_seq_len=self.args.clvp_speech_seq_len, + use_xformers=self.args.clvp_use_xformers, + ).cpu() + + self.vocoder = self.args.vocoder.value.constructor().cpu() + + # Random latent generators (RLGs) are loaded lazily. + self.rlg_auto = None + self.rlg_diffusion = None + + if self.args.high_vram: + self.autoregressive = self.autoregressive.to(self.device) + self.diffusion = self.diffusion.to(self.device) + self.clvp = self.clvp.to(self.device) + self.vocoder = self.vocoder.to(self.device) + self.high_vram = self.args.high_vram + + @contextmanager + def temporary_cuda(self, model): + if self.high_vram: + yield model + else: + m = model.to(self.device) + yield m + m = model.cpu() + + def get_conditioning_latents( + self, + voice_samples, + return_mels=False, + latent_averaging_mode=0, + original_tortoise=False, + ): + """ + Transforms one or more voice_samples into a tuple (autoregressive_conditioning_latent, diffusion_conditioning_latent). + These are expressive learned latents that encode aspects of the provided clips like voice, intonation, and acoustic + properties. + :param voice_samples: List of arbitrary reference clips, which should be *pairs* of torch tensors containing arbitrary kHz waveform data. + :param latent_averaging_mode: 0/1/2 for following modes: + 0 - latents will be generated as in original tortoise, using ~4.27s from each voice sample, averaging latent across all samples + 1 - latents will be generated using (almost) entire voice samples, averaged across all the ~4.27s chunks + 2 - latents will be generated using (almost) entire voice samples, averaged per voice sample + """ + assert latent_averaging_mode in [ + 0, + 1, + 2, + ], "latent_averaging mode has to be one of (0, 1, 2)" + + with torch.no_grad(): + voice_samples = [[v.to(self.device) for v in ls] for ls in voice_samples] + + auto_conds = [] + for ls in voice_samples: + auto_conds.append(format_conditioning(ls[0], device=self.device, mel_norm_file=self.mel_norm_path)) + auto_conds = torch.stack(auto_conds, dim=1) + with self.temporary_cuda(self.autoregressive) as ar: + auto_latent = ar.get_conditioning(auto_conds) + + diffusion_conds = [] + + DURS_CONST = self.args.duration_const + for ls in voice_samples: + # The diffuser operates at a sample rate of 24000 (except for the latent inputs) + sample = torchaudio.functional.resample(ls[0], 22050, 24000) if original_tortoise else ls[1] + if latent_averaging_mode == 0: + sample = pad_or_truncate(sample, DURS_CONST) + cond_mel = wav_to_univnet_mel( + sample.to(self.device), + do_normalization=False, + device=self.device, + ) + diffusion_conds.append(cond_mel) + else: + from math import ceil + + if latent_averaging_mode == 2: + temp_diffusion_conds = [] + for chunk in range(ceil(sample.shape[1] / DURS_CONST)): + current_sample = sample[:, chunk * DURS_CONST : (chunk + 1) * DURS_CONST] + current_sample = pad_or_truncate(current_sample, DURS_CONST) + cond_mel = wav_to_univnet_mel( + current_sample.to(self.device), + do_normalization=False, + device=self.device, + ) + if latent_averaging_mode == 1: + diffusion_conds.append(cond_mel) + elif latent_averaging_mode == 2: + temp_diffusion_conds.append(cond_mel) + if latent_averaging_mode == 2: + diffusion_conds.append(torch.stack(temp_diffusion_conds).mean(0)) + diffusion_conds = torch.stack(diffusion_conds, dim=1) + + with self.temporary_cuda(self.diffusion) as diffusion: + diffusion_latent = diffusion.get_conditioning(diffusion_conds) + + if return_mels: + return auto_latent, diffusion_latent, auto_conds, diffusion_conds + return auto_latent, diffusion_latent + + def get_random_conditioning_latents(self): + # Lazy-load the RLG models. + if self.rlg_auto is None: + self.rlg_auto = RandomLatentConverter(1024).eval() + self.rlg_auto.load_state_dict( + torch.load( + os.path.join(self.models_dir, "rlg_auto.pth"), + map_location=torch.device("cpu"), + ) + ) + self.rlg_diffusion = RandomLatentConverter(2048).eval() + self.rlg_diffusion.load_state_dict( + torch.load( + os.path.join(self.models_dir, "rlg_diffuser.pth"), + map_location=torch.device("cpu"), + ) + ) + with torch.no_grad(): + return self.rlg_auto(torch.tensor([0.0])), self.rlg_diffusion(torch.tensor([0.0])) + + def synthesize(self, text, config, speaker_id="random", voice_dirs=None, **kwargs): + """Synthesize speech with the given input text. + + Args: + text (str): Input text. + config (TortoiseConfig): Config with inference parameters. + speaker_id (str): One of the available speaker names. If `random`, it generates a random speaker. + voice_dirs (List[str]): List of paths that host reference audio files for speakers. Defaults to None. + **kwargs: Inference settings. See `inference()`. + + Returns: + A dictionary of the output values with `wav` as output waveform, `deterministic_seed` as seed used at inference, + `text_input` as text token IDs after tokenizer, `voice_samples` as samples used for cloning, `conditioning_latents` + as latents used at inference. + + """ + + speaker_id = "random" if speaker_id is None else speaker_id + + if voice_dirs is not None: + voice_dirs = [voice_dirs] + voice_samples, conditioning_latents = load_voice(speaker_id, voice_dirs) + + else: + voice_samples, conditioning_latents = load_voice(speaker_id) + + outputs = self.inference_with_config( + text, config, voice_samples=voice_samples, conditioning_latents=conditioning_latents, **kwargs + ) + + return_dict = { + "wav": outputs["wav"], + "deterministic_seed": outputs["deterministic_seed"], + "text_inputs": outputs["text"], + "voice_samples": outputs["voice_samples"], + "conditioning_latents": outputs["conditioning_latents"], + } + + return return_dict + + def inference_with_config(self, text, config, **kwargs): + """ + inference with config + #TODO describe in detail + """ + # Use generally found best tuning knobs for generation. + settings = { + "temperature": config.temperature, + "length_penalty": config.length_penalty, + "repetition_penalty": config.repetition_penalty, + "top_p": config.top_p, + "cond_free_k": config.cond_free_k, + "diffusion_temperature": config.diffusion_temperature, + "sampler": config.sampler, + } + # Presets are defined here. + presets = { + "single_sample": { + "num_autoregressive_samples": 8, + "diffusion_iterations": 10, + "sampler": "ddim", + }, + "ultra_fast": { + "num_autoregressive_samples": 16, + "diffusion_iterations": 10, + "sampler": "ddim", + }, + "ultra_fast_old": { + "num_autoregressive_samples": 16, + "diffusion_iterations": 30, + "cond_free": False, + }, + "very_fast": { + "num_autoregressive_samples": 32, + "diffusion_iterations": 30, + "sampler": "dpm++2m", + }, + "fast": { + "num_autoregressive_samples": 5, + "diffusion_iterations": 50, + "sampler": "ddim", + }, + "fast_old": {"num_autoregressive_samples": 96, "diffusion_iterations": 80}, + "standard": { + "num_autoregressive_samples": 5, + "diffusion_iterations": 200, + }, + "high_quality": { + "num_autoregressive_samples": 256, + "diffusion_iterations": 400, + }, + } + if "preset" in kwargs: + settings.update(presets[kwargs["preset"]]) + kwargs.pop("preset") + settings.update(kwargs) # allow overriding of preset settings with kwargs + return self.inference(text, **settings) + + def inference( + self, + text, + voice_samples=None, + conditioning_latents=None, + k=1, + verbose=True, + use_deterministic_seed=None, + return_deterministic_state=False, + latent_averaging_mode=0, + # autoregressive generation parameters follow + num_autoregressive_samples=16, + temperature=0.8, + length_penalty=1, + repetition_penalty=2.0, + top_p=0.8, + max_mel_tokens=500, + # diffusion generation parameters follow + diffusion_iterations=100, + cond_free=True, + cond_free_k=2, + diffusion_temperature=1.0, + sampler="ddim", + half=True, + original_tortoise=False, + **hf_generate_kwargs, + ): + """ + This function produces an audio clip of the given text being spoken with the given reference voice. + + Args: + text: (str) Text to be spoken. + voice_samples: (List[Tuple[torch.Tensor]]) List of an arbitrary number of reference clips, which should be tuple-pairs + of torch tensors containing arbitrary kHz waveform data. + conditioning_latents: (Tuple[autoregressive_conditioning_latent, diffusion_conditioning_latent]) A tuple of + (autoregressive_conditioning_latent, diffusion_conditioning_latent), which can be provided in lieu + of voice_samples. This is ignored unless `voice_samples=None`. Conditioning latents can be retrieved + via `get_conditioning_latents()`. + k: (int) The number of returned clips. The most likely (as determined by Tortoises' CLVP model) clips are returned. + latent_averaging_mode: (int) 0/1/2 for following modes: + 0 - latents will be generated as in original tortoise, using ~4.27s from each voice sample, averaging latent across all samples + 1 - latents will be generated using (almost) entire voice samples, averaged across all the ~4.27s chunks + 2 - latents will be generated using (almost) entire voice samples, averaged per voice sample + verbose: (bool) Whether or not to print log messages indicating the progress of creating a clip. Default=true. + num_autoregressive_samples: (int) Number of samples taken from the autoregressive model, all of which are filtered using CLVP. + As Tortoise is a probabilistic model, more samples means a higher probability of creating something "great". + temperature: (float) The softmax temperature of the autoregressive model. + length_penalty: (float) A length penalty applied to the autoregressive decoder. Higher settings causes the model to produce more terse outputs. + repetition_penalty: (float) A penalty that prevents the autoregressive decoder from repeating itself during decoding. Can be used to reduce + the incidence of long silences or "uhhhhhhs", etc. + top_p: (float) P value used in nucleus sampling. (0,1]. Lower values mean the decoder produces more "likely" (aka boring) outputs. + max_mel_tokens: (int) Restricts the output length. (0,600] integer. Each unit is 1/20 of a second. + typical_sampling: (bool) Turns typical sampling on or off. This sampling mode is discussed in this paper: https://arxiv.org/abs/2202.00666 + I was interested in the premise, but the results were not as good as I was hoping. This is off by default, but could use some tuning. + typical_mass: (float) The typical_mass parameter from the typical_sampling algorithm. + diffusion_iterations: (int) Number of diffusion steps to perform. [0,4000]. More steps means the network has more chances to iteratively + refine the output, which should theoretically mean a higher quality output. Generally a value above 250 is not noticeably better, however. + cond_free: (bool) Whether or not to perform conditioning-free diffusion. Conditioning-free diffusion performs two forward passes for + each diffusion step: one with the outputs of the autoregressive model and one with no conditioning priors. The output of the two + is blended according to the cond_free_k value below. Conditioning-free diffusion is the real deal, and dramatically improves realism. + cond_free_k: (float) Knob that determines how to balance the conditioning free signal with the conditioning-present signal. [0,inf]. + As cond_free_k increases, the output becomes dominated by the conditioning-free signal. + diffusion_temperature: (float) Controls the variance of the noise fed into the diffusion model. [0,1]. Values at 0 + are the "mean" prediction of the diffusion network and will sound bland and smeared. + hf_generate_kwargs: (**kwargs) The huggingface Transformers generate API is used for the autoregressive transformer. + Extra keyword args fed to this function get forwarded directly to that API. Documentation + here: https://huggingface.co/docs/transformers/internal/generation_utils + + Returns: + Generated audio clip(s) as a torch tensor. Shape 1,S if k=1 else, (k,1,S) where S is the sample length. + Sample rate is 24kHz. + """ + deterministic_seed = deterministic_state(seed=use_deterministic_seed) + + text_tokens = torch.IntTensor(self.tokenizer.encode(text)).unsqueeze(0).to(self.device) + text_tokens = F.pad(text_tokens, (0, 1)) # This may not be necessary. + assert ( + text_tokens.shape[-1] < 400 + ), "Too much text provided. Break the text up into separate segments and re-try inference." + + if voice_samples is not None: + ( + auto_conditioning, + diffusion_conditioning, + _, + _, + ) = self.get_conditioning_latents( + voice_samples, + return_mels=True, + latent_averaging_mode=latent_averaging_mode, + original_tortoise=original_tortoise, + ) + elif conditioning_latents is not None: + auto_conditioning, diffusion_conditioning = conditioning_latents + else: + ( + auto_conditioning, + diffusion_conditioning, + ) = self.get_random_conditioning_latents() + auto_conditioning = auto_conditioning.to(self.device) + diffusion_conditioning = diffusion_conditioning.to(self.device) + + diffuser = load_discrete_vocoder_diffuser( + desired_diffusion_steps=diffusion_iterations, cond_free=cond_free, cond_free_k=cond_free_k, sampler=sampler + ) + + # in the case of single_sample, + orig_batch_size = self.autoregressive_batch_size + while num_autoregressive_samples % self.autoregressive_batch_size: + self.autoregressive_batch_size //= 2 + with torch.no_grad(): + samples = [] + num_batches = num_autoregressive_samples // self.autoregressive_batch_size + stop_mel_token = self.autoregressive.stop_mel_token + calm_token = ( + 83 # This is the token for coding silence, which is fixed in place with "fix_autoregressive_output" + ) + self.autoregressive = self.autoregressive.to(self.device) + if verbose: + print("Generating autoregressive samples..") + with self.temporary_cuda(self.autoregressive) as autoregressive, torch.autocast( + device_type="cuda", dtype=torch.float16, enabled=half + ): + for b in tqdm(range(num_batches), disable=not verbose): + codes = autoregressive.inference_speech( + auto_conditioning, + text_tokens, + do_sample=True, + top_p=top_p, + temperature=temperature, + num_return_sequences=self.autoregressive_batch_size, + length_penalty=length_penalty, + repetition_penalty=repetition_penalty, + max_generate_length=max_mel_tokens, + **hf_generate_kwargs, + ) + padding_needed = max_mel_tokens - codes.shape[1] + codes = F.pad(codes, (0, padding_needed), value=stop_mel_token) + samples.append(codes) + self.autoregressive_batch_size = orig_batch_size # in the case of single_sample + + clip_results = [] + with self.temporary_cuda(self.clvp) as clvp, torch.autocast( + device_type="cuda", dtype=torch.float16, enabled=half + ): + for batch in tqdm(samples, disable=not verbose): + for i in range(batch.shape[0]): + batch[i] = fix_autoregressive_output(batch[i], stop_mel_token) + clvp_res = clvp( + text_tokens.repeat(batch.shape[0], 1), + batch, + return_loss=False, + ) + clip_results.append(clvp_res) + + clip_results = torch.cat(clip_results, dim=0) + samples = torch.cat(samples, dim=0) + best_results = samples[torch.topk(clip_results, k=k).indices] + del samples + + # The diffusion model actually wants the last hidden layer from the autoregressive model as conditioning + # inputs. Re-produce those for the top results. This could be made more efficient by storing all of these + # results, but will increase memory usage. + with self.temporary_cuda(self.autoregressive) as autoregressive: + best_latents = autoregressive( + auto_conditioning.repeat(k, 1), + text_tokens.repeat(k, 1), + torch.tensor([text_tokens.shape[-1]], device=text_tokens.device), + best_results, + torch.tensor( + [best_results.shape[-1] * self.autoregressive.mel_length_compression], + device=text_tokens.device, + ), + return_latent=True, + clip_inputs=False, + ) + del auto_conditioning + + if verbose: + print("Transforming autoregressive outputs into audio..") + wav_candidates = [] + for b in range(best_results.shape[0]): + codes = best_results[b].unsqueeze(0) + latents = best_latents[b].unsqueeze(0) + + # Find the first occurrence of the "calm" token and trim the codes to that. + ctokens = 0 + for code in range(codes.shape[-1]): + if codes[0, code] == calm_token: + ctokens += 1 + else: + ctokens = 0 + if ctokens > 8: # 8 tokens gives the diffusion model some "breathing room" to terminate speech. + latents = latents[:, :code] + break + with self.temporary_cuda(self.diffusion) as diffusion: + mel = do_spectrogram_diffusion( + diffusion, + diffuser, + latents, + diffusion_conditioning, + temperature=diffusion_temperature, + verbose=verbose, + ) + with self.temporary_cuda(self.vocoder) as vocoder: + wav = vocoder.inference(mel) + wav_candidates.append(wav.cpu()) + + def potentially_redact(clip, text): + if self.enable_redaction: + return self.aligner.redact(clip.squeeze(1), text).unsqueeze(1) + return clip + + wav_candidates = [potentially_redact(wav_candidate, text) for wav_candidate in wav_candidates] + + if len(wav_candidates) > 1: + res = wav_candidates + else: + res = wav_candidates[0] + + return_dict = { + "wav": res, + "deterministic_seed": None, + "text": None, + "voice_samples": None, + "conditioning_latents": None, + } + if return_deterministic_state: + return_dict = { + "wav": res, + "deterministic_seed": deterministic_seed, + "text": text, + "voice_samples": voice_samples, + "conditioning_latents": conditioning_latents, + } + return return_dict + + def forward(self): + raise NotImplementedError("Tortoise Training is not implemented") + + def eval_step(self): + raise NotImplementedError("Tortoise Training is not implemented") + + @staticmethod + def init_from_config(config: "TortoiseConfig", **kwargs): # pylint: disable=unused-argument + return Tortoise(config) + + def load_checkpoint( + self, + config, + checkpoint_dir, + ar_checkpoint_path=None, + diff_checkpoint_path=None, + clvp_checkpoint_path=None, + vocoder_checkpoint_path=None, + eval=False, + strict=True, + **kwargs, + ): # pylint: disable=unused-argument, redefined-builtin + """Load a model checkpoints from a directory. This model is with multiple checkpoint files and it + expects to have all the files to be under the given `checkpoint_dir` with the rigth names. + If eval is True, set the model to eval mode. + + Args: + config (TortoiseConfig): The model config. + checkpoint_dir (str): The directory where the checkpoints are stored. + ar_checkpoint_path (str, optional): The path to the autoregressive checkpoint. Defaults to None. + diff_checkpoint_path (str, optional): The path to the diffusion checkpoint. Defaults to None. + clvp_checkpoint_path (str, optional): The path to the CLVP checkpoint. Defaults to None. + vocoder_checkpoint_path (str, optional): The path to the vocoder checkpoint. Defaults to None. + eval (bool, optional): Whether to set the model to eval mode. Defaults to False. + strict (bool, optional): Whether to load the model strictly. Defaults to True. + """ + if self.models_dir is None: + self.models_dir = checkpoint_dir + ar_path = ar_checkpoint_path or os.path.join(checkpoint_dir, "autoregressive.pth") + diff_path = diff_checkpoint_path or os.path.join(checkpoint_dir, "diffusion_decoder.pth") + clvp_path = clvp_checkpoint_path or os.path.join(checkpoint_dir, "clvp2.pth") + vocoder_checkpoint_path = vocoder_checkpoint_path or os.path.join(checkpoint_dir, "vocoder.pth") + self.mel_norm_path = os.path.join(checkpoint_dir, "mel_norms.pth") + + if os.path.exists(ar_path): + # remove keys from the checkpoint that are not in the model + checkpoint = torch.load(ar_path, map_location=torch.device("cpu")) + + # strict set False + # due to removed `bias` and `masked_bias` changes in Transformers + self.autoregressive.load_state_dict(checkpoint, strict=False) + + if os.path.exists(diff_path): + self.diffusion.load_state_dict(torch.load(diff_path), strict=strict) + + if os.path.exists(clvp_path): + self.clvp.load_state_dict(torch.load(clvp_path), strict=strict) + + if os.path.exists(vocoder_checkpoint_path): + self.vocoder.load_state_dict( + config.model_args.vocoder.value.optionally_index( + torch.load( + vocoder_checkpoint_path, + map_location=torch.device("cpu"), + ) + ) + ) + + if eval: + self.autoregressive.post_init_gpt2_config(self.args.kv_cache) + self.autoregressive.eval() + self.diffusion.eval() + self.clvp.eval() + self.vocoder.eval() + + def train_step(self): + raise NotImplementedError("Tortoise Training is not implemented") diff --git a/TTS/TTS/tts/models/vits.py b/TTS/TTS/tts/models/vits.py new file mode 100644 index 0000000000000000000000000000000000000000..d9b1f59618ab7e0ebc4cabc9a9ac40fdb9843d99 --- /dev/null +++ b/TTS/TTS/tts/models/vits.py @@ -0,0 +1,1999 @@ +import math +import os +from dataclasses import dataclass, field, replace +from itertools import chain +from typing import Dict, List, Tuple, Union + +import numpy as np +import torch +import torch.distributed as dist +import torchaudio +from coqpit import Coqpit +from librosa.filters import mel as librosa_mel_fn +from torch import nn +from torch.cuda.amp.autocast_mode import autocast +from torch.nn import functional as F +from torch.utils.data import DataLoader +from torch.utils.data.sampler import WeightedRandomSampler +from trainer.torch import DistributedSampler, DistributedSamplerWrapper +from trainer.trainer_utils import get_optimizer, get_scheduler + +from TTS.tts.configs.shared_configs import CharactersConfig +from TTS.tts.datasets.dataset import TTSDataset, _parse_sample +from TTS.tts.layers.glow_tts.duration_predictor import DurationPredictor +from TTS.tts.layers.vits.discriminator import VitsDiscriminator +from TTS.tts.layers.vits.networks import PosteriorEncoder, ResidualCouplingBlocks, TextEncoder +from TTS.tts.layers.vits.stochastic_duration_predictor import StochasticDurationPredictor +from TTS.tts.models.base_tts import BaseTTS +from TTS.tts.utils.fairseq import rehash_fairseq_vits_checkpoint +from TTS.tts.utils.helpers import generate_path, maximum_path, rand_segments, segment, sequence_mask +from TTS.tts.utils.languages import LanguageManager +from TTS.tts.utils.speakers import SpeakerManager +from TTS.tts.utils.synthesis import synthesis +from TTS.tts.utils.text.characters import BaseCharacters, BaseVocabulary, _characters, _pad, _phonemes, _punctuations +from TTS.tts.utils.text.tokenizer import TTSTokenizer +from TTS.tts.utils.visual import plot_alignment +from TTS.utils.io import load_fsspec +from TTS.utils.samplers import BucketBatchSampler +from TTS.vocoder.models.hifigan_generator import HifiganGenerator +from TTS.vocoder.utils.generic_utils import plot_results + +############################## +# IO / Feature extraction +############################## + +# pylint: disable=global-statement +hann_window = {} +mel_basis = {} + + +@torch.no_grad() +def weights_reset(m: nn.Module): + # check if the current module has reset_parameters and if it is reset the weight + reset_parameters = getattr(m, "reset_parameters", None) + if callable(reset_parameters): + m.reset_parameters() + + +def get_module_weights_sum(mdl: nn.Module): + dict_sums = {} + for name, w in mdl.named_parameters(): + if "weight" in name: + value = w.data.sum().item() + dict_sums[name] = value + return dict_sums + + +def load_audio(file_path): + """Load the audio file normalized in [-1, 1] + + Return Shapes: + - x: :math:`[1, T]` + """ + x, sr = torchaudio.load(file_path) + assert (x > 1).sum() + (x < -1).sum() == 0 + return x, sr + + +def _amp_to_db(x, C=1, clip_val=1e-5): + return torch.log(torch.clamp(x, min=clip_val) * C) + + +def _db_to_amp(x, C=1): + return torch.exp(x) / C + + +def amp_to_db(magnitudes): + output = _amp_to_db(magnitudes) + return output + + +def db_to_amp(magnitudes): + output = _db_to_amp(magnitudes) + return output + + +def wav_to_spec(y, n_fft, hop_length, win_length, center=False): + """ + Args Shapes: + - y : :math:`[B, 1, T]` + + Return Shapes: + - spec : :math:`[B,C,T]` + """ + y = y.squeeze(1) + + if torch.min(y) < -1.0: + print("min value is ", torch.min(y)) + if torch.max(y) > 1.0: + print("max value is ", torch.max(y)) + + global hann_window + dtype_device = str(y.dtype) + "_" + str(y.device) + wnsize_dtype_device = str(win_length) + "_" + dtype_device + if wnsize_dtype_device not in hann_window: + hann_window[wnsize_dtype_device] = torch.hann_window(win_length).to(dtype=y.dtype, device=y.device) + + y = torch.nn.functional.pad( + y.unsqueeze(1), + (int((n_fft - hop_length) / 2), int((n_fft - hop_length) / 2)), + mode="reflect", + ) + y = y.squeeze(1) + + spec = torch.stft( + y, + n_fft, + hop_length=hop_length, + win_length=win_length, + window=hann_window[wnsize_dtype_device], + center=center, + pad_mode="reflect", + normalized=False, + onesided=True, + return_complex=False, + ) + + spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6) + return spec + + +def spec_to_mel(spec, n_fft, num_mels, sample_rate, fmin, fmax): + """ + Args Shapes: + - spec : :math:`[B,C,T]` + + Return Shapes: + - mel : :math:`[B,C,T]` + """ + global mel_basis + dtype_device = str(spec.dtype) + "_" + str(spec.device) + fmax_dtype_device = str(fmax) + "_" + dtype_device + if fmax_dtype_device not in mel_basis: + mel = librosa_mel_fn(sr=sample_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax) + mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=spec.dtype, device=spec.device) + mel = torch.matmul(mel_basis[fmax_dtype_device], spec) + mel = amp_to_db(mel) + return mel + + +def wav_to_mel(y, n_fft, num_mels, sample_rate, hop_length, win_length, fmin, fmax, center=False): + """ + Args Shapes: + - y : :math:`[B, 1, T]` + + Return Shapes: + - spec : :math:`[B,C,T]` + """ + y = y.squeeze(1) + + if torch.min(y) < -1.0: + print("min value is ", torch.min(y)) + if torch.max(y) > 1.0: + print("max value is ", torch.max(y)) + + global mel_basis, hann_window + dtype_device = str(y.dtype) + "_" + str(y.device) + fmax_dtype_device = str(fmax) + "_" + dtype_device + wnsize_dtype_device = str(win_length) + "_" + dtype_device + if fmax_dtype_device not in mel_basis: + mel = librosa_mel_fn(sr=sample_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax) + mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=y.dtype, device=y.device) + if wnsize_dtype_device not in hann_window: + hann_window[wnsize_dtype_device] = torch.hann_window(win_length).to(dtype=y.dtype, device=y.device) + + y = torch.nn.functional.pad( + y.unsqueeze(1), + (int((n_fft - hop_length) / 2), int((n_fft - hop_length) / 2)), + mode="reflect", + ) + y = y.squeeze(1) + + spec = torch.stft( + y, + n_fft, + hop_length=hop_length, + win_length=win_length, + window=hann_window[wnsize_dtype_device], + center=center, + pad_mode="reflect", + normalized=False, + onesided=True, + return_complex=False, + ) + + spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6) + spec = torch.matmul(mel_basis[fmax_dtype_device], spec) + spec = amp_to_db(spec) + return spec + + +############################# +# CONFIGS +############################# + + +@dataclass +class VitsAudioConfig(Coqpit): + fft_size: int = 1024 + sample_rate: int = 22050 + win_length: int = 1024 + hop_length: int = 256 + num_mels: int = 80 + mel_fmin: int = 0 + mel_fmax: int = None + + +############################## +# DATASET +############################## + + +def get_attribute_balancer_weights(items: list, attr_name: str, multi_dict: dict = None): + """Create inverse frequency weights for balancing the dataset. + Use `multi_dict` to scale relative weights.""" + attr_names_samples = np.array([item[attr_name] for item in items]) + unique_attr_names = np.unique(attr_names_samples).tolist() + attr_idx = [unique_attr_names.index(l) for l in attr_names_samples] + attr_count = np.array([len(np.where(attr_names_samples == l)[0]) for l in unique_attr_names]) + weight_attr = 1.0 / attr_count + dataset_samples_weight = np.array([weight_attr[l] for l in attr_idx]) + dataset_samples_weight = dataset_samples_weight / np.linalg.norm(dataset_samples_weight) + if multi_dict is not None: + # check if all keys are in the multi_dict + for k in multi_dict: + assert k in unique_attr_names, f"{k} not in {unique_attr_names}" + # scale weights + multiplier_samples = np.array([multi_dict.get(item[attr_name], 1.0) for item in items]) + dataset_samples_weight *= multiplier_samples + return ( + torch.from_numpy(dataset_samples_weight).float(), + unique_attr_names, + np.unique(dataset_samples_weight).tolist(), + ) + + +class VitsDataset(TTSDataset): + def __init__(self, model_args, *args, **kwargs): + super().__init__(*args, **kwargs) + self.pad_id = self.tokenizer.characters.pad_id + self.model_args = model_args + + def __getitem__(self, idx): + item = self.samples[idx] + raw_text = item["text"] + + wav, _ = load_audio(item["audio_file"]) + if self.model_args.encoder_sample_rate is not None: + if wav.size(1) % self.model_args.encoder_sample_rate != 0: + wav = wav[:, : -int(wav.size(1) % self.model_args.encoder_sample_rate)] + + wav_filename = os.path.basename(item["audio_file"]) + + token_ids = self.get_token_ids(idx, item["text"]) + + # after phonemization the text length may change + # this is a shameful ๐Ÿคญ hack to prevent longer phonemes + # TODO: find a better fix + if len(token_ids) > self.max_text_len or wav.shape[1] < self.min_audio_len: + self.rescue_item_idx += 1 + return self.__getitem__(self.rescue_item_idx) + + return { + "raw_text": raw_text, + "token_ids": token_ids, + "token_len": len(token_ids), + "wav": wav, + "wav_file": wav_filename, + "speaker_name": item["speaker_name"], + "language_name": item["language"], + "audio_unique_name": item["audio_unique_name"], + } + + @property + def lengths(self): + lens = [] + for item in self.samples: + _, wav_file, *_ = _parse_sample(item) + audio_len = os.path.getsize(wav_file) / 16 * 8 # assuming 16bit audio + lens.append(audio_len) + return lens + + def collate_fn(self, batch): + """ + Return Shapes: + - tokens: :math:`[B, T]` + - token_lens :math:`[B]` + - token_rel_lens :math:`[B]` + - waveform: :math:`[B, 1, T]` + - waveform_lens: :math:`[B]` + - waveform_rel_lens: :math:`[B]` + - speaker_names: :math:`[B]` + - language_names: :math:`[B]` + - audiofile_paths: :math:`[B]` + - raw_texts: :math:`[B]` + - audio_unique_names: :math:`[B]` + """ + # convert list of dicts to dict of lists + B = len(batch) + batch = {k: [dic[k] for dic in batch] for k in batch[0]} + + _, ids_sorted_decreasing = torch.sort( + torch.LongTensor([x.size(1) for x in batch["wav"]]), dim=0, descending=True + ) + + max_text_len = max([len(x) for x in batch["token_ids"]]) + token_lens = torch.LongTensor(batch["token_len"]) + token_rel_lens = token_lens / token_lens.max() + + wav_lens = [w.shape[1] for w in batch["wav"]] + wav_lens = torch.LongTensor(wav_lens) + wav_lens_max = torch.max(wav_lens) + wav_rel_lens = wav_lens / wav_lens_max + + token_padded = torch.LongTensor(B, max_text_len) + wav_padded = torch.FloatTensor(B, 1, wav_lens_max) + token_padded = token_padded.zero_() + self.pad_id + wav_padded = wav_padded.zero_() + self.pad_id + for i in range(len(ids_sorted_decreasing)): + token_ids = batch["token_ids"][i] + token_padded[i, : batch["token_len"][i]] = torch.LongTensor(token_ids) + + wav = batch["wav"][i] + wav_padded[i, :, : wav.size(1)] = torch.FloatTensor(wav) + + return { + "tokens": token_padded, + "token_lens": token_lens, + "token_rel_lens": token_rel_lens, + "waveform": wav_padded, # (B x T) + "waveform_lens": wav_lens, # (B) + "waveform_rel_lens": wav_rel_lens, + "speaker_names": batch["speaker_name"], + "language_names": batch["language_name"], + "audio_files": batch["wav_file"], + "raw_text": batch["raw_text"], + "audio_unique_names": batch["audio_unique_name"], + } + + +############################## +# MODEL DEFINITION +############################## + + +@dataclass +class VitsArgs(Coqpit): + """VITS model arguments. + + Args: + + num_chars (int): + Number of characters in the vocabulary. Defaults to 100. + + out_channels (int): + Number of output channels of the decoder. Defaults to 513. + + spec_segment_size (int): + Decoder input segment size. Defaults to 32 `(32 * hoplength = waveform length)`. + + hidden_channels (int): + Number of hidden channels of the model. Defaults to 192. + + hidden_channels_ffn_text_encoder (int): + Number of hidden channels of the feed-forward layers of the text encoder transformer. Defaults to 256. + + num_heads_text_encoder (int): + Number of attention heads of the text encoder transformer. Defaults to 2. + + num_layers_text_encoder (int): + Number of transformer layers in the text encoder. Defaults to 6. + + kernel_size_text_encoder (int): + Kernel size of the text encoder transformer FFN layers. Defaults to 3. + + dropout_p_text_encoder (float): + Dropout rate of the text encoder. Defaults to 0.1. + + dropout_p_duration_predictor (float): + Dropout rate of the duration predictor. Defaults to 0.1. + + kernel_size_posterior_encoder (int): + Kernel size of the posterior encoder's WaveNet layers. Defaults to 5. + + dilatation_posterior_encoder (int): + Dilation rate of the posterior encoder's WaveNet layers. Defaults to 1. + + num_layers_posterior_encoder (int): + Number of posterior encoder's WaveNet layers. Defaults to 16. + + kernel_size_flow (int): + Kernel size of the Residual Coupling layers of the flow network. Defaults to 5. + + dilatation_flow (int): + Dilation rate of the Residual Coupling WaveNet layers of the flow network. Defaults to 1. + + num_layers_flow (int): + Number of Residual Coupling WaveNet layers of the flow network. Defaults to 6. + + resblock_type_decoder (str): + Type of the residual block in the decoder network. Defaults to "1". + + resblock_kernel_sizes_decoder (List[int]): + Kernel sizes of the residual blocks in the decoder network. Defaults to `[3, 7, 11]`. + + resblock_dilation_sizes_decoder (List[List[int]]): + Dilation sizes of the residual blocks in the decoder network. Defaults to `[[1, 3, 5], [1, 3, 5], [1, 3, 5]]`. + + upsample_rates_decoder (List[int]): + Upsampling rates for each concecutive upsampling layer in the decoder network. The multiply of these + values must be equal to the kop length used for computing spectrograms. Defaults to `[8, 8, 2, 2]`. + + upsample_initial_channel_decoder (int): + Number of hidden channels of the first upsampling convolution layer of the decoder network. Defaults to 512. + + upsample_kernel_sizes_decoder (List[int]): + Kernel sizes for each upsampling layer of the decoder network. Defaults to `[16, 16, 4, 4]`. + + periods_multi_period_discriminator (List[int]): + Periods values for Vits Multi-Period Discriminator. Defaults to `[2, 3, 5, 7, 11]`. + + use_sdp (bool): + Use Stochastic Duration Predictor. Defaults to True. + + noise_scale (float): + Noise scale used for the sample noise tensor in training. Defaults to 1.0. + + inference_noise_scale (float): + Noise scale used for the sample noise tensor in inference. Defaults to 0.667. + + length_scale (float): + Scale factor for the predicted duration values. Smaller values result faster speech. Defaults to 1. + + noise_scale_dp (float): + Noise scale used by the Stochastic Duration Predictor sample noise in training. Defaults to 1.0. + + inference_noise_scale_dp (float): + Noise scale for the Stochastic Duration Predictor in inference. Defaults to 0.8. + + max_inference_len (int): + Maximum inference length to limit the memory use. Defaults to None. + + init_discriminator (bool): + Initialize the disciminator network if set True. Set False for inference. Defaults to True. + + use_spectral_norm_disriminator (bool): + Use spectral normalization over weight norm in the discriminator. Defaults to False. + + use_speaker_embedding (bool): + Enable/Disable speaker embedding for multi-speaker models. Defaults to False. + + num_speakers (int): + Number of speakers for the speaker embedding layer. Defaults to 0. + + speakers_file (str): + Path to the speaker mapping file for the Speaker Manager. Defaults to None. + + speaker_embedding_channels (int): + Number of speaker embedding channels. Defaults to 256. + + use_d_vector_file (bool): + Enable/Disable the use of d-vectors for multi-speaker training. Defaults to False. + + d_vector_file (List[str]): + List of paths to the files including pre-computed speaker embeddings. Defaults to None. + + d_vector_dim (int): + Number of d-vector channels. Defaults to 0. + + detach_dp_input (bool): + Detach duration predictor's input from the network for stopping the gradients. Defaults to True. + + use_language_embedding (bool): + Enable/Disable language embedding for multilingual models. Defaults to False. + + embedded_language_dim (int): + Number of language embedding channels. Defaults to 4. + + num_languages (int): + Number of languages for the language embedding layer. Defaults to 0. + + language_ids_file (str): + Path to the language mapping file for the Language Manager. Defaults to None. + + use_speaker_encoder_as_loss (bool): + Enable/Disable Speaker Consistency Loss (SCL). Defaults to False. + + speaker_encoder_config_path (str): + Path to the file speaker encoder config file, to use for SCL. Defaults to "". + + speaker_encoder_model_path (str): + Path to the file speaker encoder checkpoint file, to use for SCL. Defaults to "". + + condition_dp_on_speaker (bool): + Condition the duration predictor on the speaker embedding. Defaults to True. + + freeze_encoder (bool): + Freeze the encoder weigths during training. Defaults to False. + + freeze_DP (bool): + Freeze the duration predictor weigths during training. Defaults to False. + + freeze_PE (bool): + Freeze the posterior encoder weigths during training. Defaults to False. + + freeze_flow_encoder (bool): + Freeze the flow encoder weigths during training. Defaults to False. + + freeze_waveform_decoder (bool): + Freeze the waveform decoder weigths during training. Defaults to False. + + encoder_sample_rate (int): + If not None this sample rate will be used for training the Posterior Encoder, + flow, text_encoder and duration predictor. The decoder part (vocoder) will be + trained with the `config.audio.sample_rate`. Defaults to None. + + interpolate_z (bool): + If `encoder_sample_rate` not None and this parameter True the nearest interpolation + will be used to upsampling the latent variable z with the sampling rate `encoder_sample_rate` + to the `config.audio.sample_rate`. If it is False you will need to add extra + `upsample_rates_decoder` to match the shape. Defaults to True. + + """ + + num_chars: int = 100 + out_channels: int = 513 + spec_segment_size: int = 32 + hidden_channels: int = 192 + hidden_channels_ffn_text_encoder: int = 768 + num_heads_text_encoder: int = 2 + num_layers_text_encoder: int = 6 + kernel_size_text_encoder: int = 3 + dropout_p_text_encoder: float = 0.1 + dropout_p_duration_predictor: float = 0.5 + kernel_size_posterior_encoder: int = 5 + dilation_rate_posterior_encoder: int = 1 + num_layers_posterior_encoder: int = 16 + kernel_size_flow: int = 5 + dilation_rate_flow: int = 1 + num_layers_flow: int = 4 + resblock_type_decoder: str = "1" + resblock_kernel_sizes_decoder: List[int] = field(default_factory=lambda: [3, 7, 11]) + resblock_dilation_sizes_decoder: List[List[int]] = field(default_factory=lambda: [[1, 3, 5], [1, 3, 5], [1, 3, 5]]) + upsample_rates_decoder: List[int] = field(default_factory=lambda: [8, 8, 2, 2]) + upsample_initial_channel_decoder: int = 512 + upsample_kernel_sizes_decoder: List[int] = field(default_factory=lambda: [16, 16, 4, 4]) + periods_multi_period_discriminator: List[int] = field(default_factory=lambda: [2, 3, 5, 7, 11]) + use_sdp: bool = True + noise_scale: float = 1.0 + inference_noise_scale: float = 0.667 + length_scale: float = 1 + noise_scale_dp: float = 1.0 + inference_noise_scale_dp: float = 1.0 + max_inference_len: int = None + init_discriminator: bool = True + use_spectral_norm_disriminator: bool = False + use_speaker_embedding: bool = False + num_speakers: int = 0 + speakers_file: str = None + d_vector_file: List[str] = None + speaker_embedding_channels: int = 256 + use_d_vector_file: bool = False + d_vector_dim: int = 0 + detach_dp_input: bool = True + use_language_embedding: bool = False + embedded_language_dim: int = 4 + num_languages: int = 0 + language_ids_file: str = None + use_speaker_encoder_as_loss: bool = False + speaker_encoder_config_path: str = "" + speaker_encoder_model_path: str = "" + condition_dp_on_speaker: bool = True + freeze_encoder: bool = False + freeze_DP: bool = False + freeze_PE: bool = False + freeze_flow_decoder: bool = False + freeze_waveform_decoder: bool = False + encoder_sample_rate: int = None + interpolate_z: bool = True + reinit_DP: bool = False + reinit_text_encoder: bool = False + + +class Vits(BaseTTS): + """VITS TTS model + + Paper:: + https://arxiv.org/pdf/2106.06103.pdf + + Paper Abstract:: + Several recent end-to-end text-to-speech (TTS) models enabling single-stage training and parallel + sampling have been proposed, but their sample quality does not match that of two-stage TTS systems. + In this work, we present a parallel endto-end TTS method that generates more natural sounding audio than + current two-stage models. Our method adopts variational inference augmented with normalizing flows and + an adversarial training process, which improves the expressive power of generative modeling. We also propose a + stochastic duration predictor to synthesize speech with diverse rhythms from input text. With the + uncertainty modeling over latent variables and the stochastic duration predictor, our method expresses the + natural one-to-many relationship in which a text input can be spoken in multiple ways + with different pitches and rhythms. A subjective human evaluation (mean opinion score, or MOS) + on the LJ Speech, a single speaker dataset, shows that our method outperforms the best publicly + available TTS systems and achieves a MOS comparable to ground truth. + + Check :class:`TTS.tts.configs.vits_config.VitsConfig` for class arguments. + + Examples: + >>> from TTS.tts.configs.vits_config import VitsConfig + >>> from TTS.tts.models.vits import Vits + >>> config = VitsConfig() + >>> model = Vits(config) + """ + + def __init__( + self, + config: Coqpit, + ap: "AudioProcessor" = None, + tokenizer: "TTSTokenizer" = None, + speaker_manager: SpeakerManager = None, + language_manager: LanguageManager = None, + ): + super().__init__(config, ap, tokenizer, speaker_manager, language_manager) + + self.init_multispeaker(config) + self.init_multilingual(config) + self.init_upsampling() + + self.length_scale = self.args.length_scale + self.noise_scale = self.args.noise_scale + self.inference_noise_scale = self.args.inference_noise_scale + self.inference_noise_scale_dp = self.args.inference_noise_scale_dp + self.noise_scale_dp = self.args.noise_scale_dp + self.max_inference_len = self.args.max_inference_len + self.spec_segment_size = self.args.spec_segment_size + + self.text_encoder = TextEncoder( + self.args.num_chars, + self.args.hidden_channels, + self.args.hidden_channels, + self.args.hidden_channels_ffn_text_encoder, + self.args.num_heads_text_encoder, + self.args.num_layers_text_encoder, + self.args.kernel_size_text_encoder, + self.args.dropout_p_text_encoder, + language_emb_dim=self.embedded_language_dim, + ) + + self.posterior_encoder = PosteriorEncoder( + self.args.out_channels, + self.args.hidden_channels, + self.args.hidden_channels, + kernel_size=self.args.kernel_size_posterior_encoder, + dilation_rate=self.args.dilation_rate_posterior_encoder, + num_layers=self.args.num_layers_posterior_encoder, + cond_channels=self.embedded_speaker_dim, + ) + + self.flow = ResidualCouplingBlocks( + self.args.hidden_channels, + self.args.hidden_channels, + kernel_size=self.args.kernel_size_flow, + dilation_rate=self.args.dilation_rate_flow, + num_layers=self.args.num_layers_flow, + cond_channels=self.embedded_speaker_dim, + ) + + if self.args.use_sdp: + self.duration_predictor = StochasticDurationPredictor( + self.args.hidden_channels, + 192, + 3, + self.args.dropout_p_duration_predictor, + 4, + cond_channels=self.embedded_speaker_dim if self.args.condition_dp_on_speaker else 0, + language_emb_dim=self.embedded_language_dim, + ) + else: + self.duration_predictor = DurationPredictor( + self.args.hidden_channels, + 256, + 3, + self.args.dropout_p_duration_predictor, + cond_channels=self.embedded_speaker_dim, + language_emb_dim=self.embedded_language_dim, + ) + + self.waveform_decoder = HifiganGenerator( + self.args.hidden_channels, + 1, + self.args.resblock_type_decoder, + self.args.resblock_dilation_sizes_decoder, + self.args.resblock_kernel_sizes_decoder, + self.args.upsample_kernel_sizes_decoder, + self.args.upsample_initial_channel_decoder, + self.args.upsample_rates_decoder, + inference_padding=0, + cond_channels=self.embedded_speaker_dim, + conv_pre_weight_norm=False, + conv_post_weight_norm=False, + conv_post_bias=False, + ) + + if self.args.init_discriminator: + self.disc = VitsDiscriminator( + periods=self.args.periods_multi_period_discriminator, + use_spectral_norm=self.args.use_spectral_norm_disriminator, + ) + + @property + def device(self): + return next(self.parameters()).device + + def init_multispeaker(self, config: Coqpit): + """Initialize multi-speaker modules of a model. A model can be trained either with a speaker embedding layer + or with external `d_vectors` computed from a speaker encoder model. + + You must provide a `speaker_manager` at initialization to set up the multi-speaker modules. + + Args: + config (Coqpit): Model configuration. + data (List, optional): Dataset items to infer number of speakers. Defaults to None. + """ + self.embedded_speaker_dim = 0 + self.num_speakers = self.args.num_speakers + self.audio_transform = None + + if self.speaker_manager: + self.num_speakers = self.speaker_manager.num_speakers + + if self.args.use_speaker_embedding: + self._init_speaker_embedding() + + if self.args.use_d_vector_file: + self._init_d_vector() + + # TODO: make this a function + if self.args.use_speaker_encoder_as_loss: + if self.speaker_manager.encoder is None and ( + not self.args.speaker_encoder_model_path or not self.args.speaker_encoder_config_path + ): + raise RuntimeError( + " [!] To use the speaker consistency loss (SCL) you need to specify speaker_encoder_model_path and speaker_encoder_config_path !!" + ) + + self.speaker_manager.encoder.eval() + print(" > External Speaker Encoder Loaded !!") + + if ( + hasattr(self.speaker_manager.encoder, "audio_config") + and self.config.audio.sample_rate != self.speaker_manager.encoder.audio_config["sample_rate"] + ): + self.audio_transform = torchaudio.transforms.Resample( + orig_freq=self.config.audio.sample_rate, + new_freq=self.speaker_manager.encoder.audio_config["sample_rate"], + ) + + def _init_speaker_embedding(self): + # pylint: disable=attribute-defined-outside-init + if self.num_speakers > 0: + print(" > initialization of speaker-embedding layers.") + self.embedded_speaker_dim = self.args.speaker_embedding_channels + self.emb_g = nn.Embedding(self.num_speakers, self.embedded_speaker_dim) + + def _init_d_vector(self): + # pylint: disable=attribute-defined-outside-init + if hasattr(self, "emb_g"): + raise ValueError("[!] Speaker embedding layer already initialized before d_vector settings.") + self.embedded_speaker_dim = self.args.d_vector_dim + + def init_multilingual(self, config: Coqpit): + """Initialize multilingual modules of a model. + + Args: + config (Coqpit): Model configuration. + """ + if self.args.language_ids_file is not None: + self.language_manager = LanguageManager(language_ids_file_path=config.language_ids_file) + + if self.args.use_language_embedding and self.language_manager: + print(" > initialization of language-embedding layers.") + self.num_languages = self.language_manager.num_languages + self.embedded_language_dim = self.args.embedded_language_dim + self.emb_l = nn.Embedding(self.num_languages, self.embedded_language_dim) + torch.nn.init.xavier_uniform_(self.emb_l.weight) + else: + self.embedded_language_dim = 0 + + def init_upsampling(self): + """ + Initialize upsampling modules of a model. + """ + if self.args.encoder_sample_rate: + self.interpolate_factor = self.config.audio["sample_rate"] / self.args.encoder_sample_rate + self.audio_resampler = torchaudio.transforms.Resample( + orig_freq=self.config.audio["sample_rate"], new_freq=self.args.encoder_sample_rate + ) # pylint: disable=W0201 + + def on_epoch_start(self, trainer): # pylint: disable=W0613 + """Freeze layers at the beginning of an epoch""" + self._freeze_layers() + # set the device of speaker encoder + if self.args.use_speaker_encoder_as_loss: + self.speaker_manager.encoder = self.speaker_manager.encoder.to(self.device) + + def on_init_end(self, trainer): # pylint: disable=W0613 + """Reinit layes if needed""" + if self.args.reinit_DP: + before_dict = get_module_weights_sum(self.duration_predictor) + # Applies weights_reset recursively to every submodule of the duration predictor + self.duration_predictor.apply(fn=weights_reset) + after_dict = get_module_weights_sum(self.duration_predictor) + for key, value in after_dict.items(): + if value == before_dict[key]: + raise RuntimeError(" [!] The weights of Duration Predictor was not reinit check it !") + print(" > Duration Predictor was reinit.") + + if self.args.reinit_text_encoder: + before_dict = get_module_weights_sum(self.text_encoder) + # Applies weights_reset recursively to every submodule of the duration predictor + self.text_encoder.apply(fn=weights_reset) + after_dict = get_module_weights_sum(self.text_encoder) + for key, value in after_dict.items(): + if value == before_dict[key]: + raise RuntimeError(" [!] The weights of Text Encoder was not reinit check it !") + print(" > Text Encoder was reinit.") + + def get_aux_input(self, aux_input: Dict): + sid, g, lid, _ = self._set_cond_input(aux_input) + return {"speaker_ids": sid, "style_wav": None, "d_vectors": g, "language_ids": lid} + + def _freeze_layers(self): + if self.args.freeze_encoder: + for param in self.text_encoder.parameters(): + param.requires_grad = False + + if hasattr(self, "emb_l"): + for param in self.emb_l.parameters(): + param.requires_grad = False + + if self.args.freeze_PE: + for param in self.posterior_encoder.parameters(): + param.requires_grad = False + + if self.args.freeze_DP: + for param in self.duration_predictor.parameters(): + param.requires_grad = False + + if self.args.freeze_flow_decoder: + for param in self.flow.parameters(): + param.requires_grad = False + + if self.args.freeze_waveform_decoder: + for param in self.waveform_decoder.parameters(): + param.requires_grad = False + + @staticmethod + def _set_cond_input(aux_input: Dict): + """Set the speaker conditioning input based on the multi-speaker mode.""" + sid, g, lid, durations = None, None, None, None + if "speaker_ids" in aux_input and aux_input["speaker_ids"] is not None: + sid = aux_input["speaker_ids"] + if sid.ndim == 0: + sid = sid.unsqueeze_(0) + if "d_vectors" in aux_input and aux_input["d_vectors"] is not None: + g = F.normalize(aux_input["d_vectors"]).unsqueeze(-1) + if g.ndim == 2: + g = g.unsqueeze_(0) + + if "language_ids" in aux_input and aux_input["language_ids"] is not None: + lid = aux_input["language_ids"] + if lid.ndim == 0: + lid = lid.unsqueeze_(0) + + if "durations" in aux_input and aux_input["durations"] is not None: + durations = aux_input["durations"] + + return sid, g, lid, durations + + def _set_speaker_input(self, aux_input: Dict): + d_vectors = aux_input.get("d_vectors", None) + speaker_ids = aux_input.get("speaker_ids", None) + + if d_vectors is not None and speaker_ids is not None: + raise ValueError("[!] Cannot use d-vectors and speaker-ids together.") + + if speaker_ids is not None and not hasattr(self, "emb_g"): + raise ValueError("[!] Cannot use speaker-ids without enabling speaker embedding.") + + g = speaker_ids if speaker_ids is not None else d_vectors + return g + + def forward_mas(self, outputs, z_p, m_p, logs_p, x, x_mask, y_mask, g, lang_emb): + # find the alignment path + attn_mask = torch.unsqueeze(x_mask, -1) * torch.unsqueeze(y_mask, 2) + with torch.no_grad(): + o_scale = torch.exp(-2 * logs_p) + logp1 = torch.sum(-0.5 * math.log(2 * math.pi) - logs_p, [1]).unsqueeze(-1) # [b, t, 1] + logp2 = torch.einsum("klm, kln -> kmn", [o_scale, -0.5 * (z_p**2)]) + logp3 = torch.einsum("klm, kln -> kmn", [m_p * o_scale, z_p]) + logp4 = torch.sum(-0.5 * (m_p**2) * o_scale, [1]).unsqueeze(-1) # [b, t, 1] + logp = logp2 + logp3 + logp1 + logp4 + attn = maximum_path(logp, attn_mask.squeeze(1)).unsqueeze(1).detach() # [b, 1, t, t'] + + # duration predictor + attn_durations = attn.sum(3) + if self.args.use_sdp: + loss_duration = self.duration_predictor( + x.detach() if self.args.detach_dp_input else x, + x_mask, + attn_durations, + g=g.detach() if self.args.detach_dp_input and g is not None else g, + lang_emb=lang_emb.detach() if self.args.detach_dp_input and lang_emb is not None else lang_emb, + ) + loss_duration = loss_duration / torch.sum(x_mask) + else: + attn_log_durations = torch.log(attn_durations + 1e-6) * x_mask + log_durations = self.duration_predictor( + x.detach() if self.args.detach_dp_input else x, + x_mask, + g=g.detach() if self.args.detach_dp_input and g is not None else g, + lang_emb=lang_emb.detach() if self.args.detach_dp_input and lang_emb is not None else lang_emb, + ) + loss_duration = torch.sum((log_durations - attn_log_durations) ** 2, [1, 2]) / torch.sum(x_mask) + outputs["loss_duration"] = loss_duration + return outputs, attn + + def upsampling_z(self, z, slice_ids=None, y_lengths=None, y_mask=None): + spec_segment_size = self.spec_segment_size + if self.args.encoder_sample_rate: + # recompute the slices and spec_segment_size if needed + slice_ids = slice_ids * int(self.interpolate_factor) if slice_ids is not None else slice_ids + spec_segment_size = spec_segment_size * int(self.interpolate_factor) + # interpolate z if needed + if self.args.interpolate_z: + z = torch.nn.functional.interpolate(z, scale_factor=[self.interpolate_factor], mode="linear").squeeze(0) + # recompute the mask if needed + if y_lengths is not None and y_mask is not None: + y_mask = ( + sequence_mask(y_lengths * self.interpolate_factor, None).to(y_mask.dtype).unsqueeze(1) + ) # [B, 1, T_dec_resampled] + + return z, spec_segment_size, slice_ids, y_mask + + def forward( # pylint: disable=dangerous-default-value + self, + x: torch.tensor, + x_lengths: torch.tensor, + y: torch.tensor, + y_lengths: torch.tensor, + waveform: torch.tensor, + aux_input={"d_vectors": None, "speaker_ids": None, "language_ids": None}, + ) -> Dict: + """Forward pass of the model. + + Args: + x (torch.tensor): Batch of input character sequence IDs. + x_lengths (torch.tensor): Batch of input character sequence lengths. + y (torch.tensor): Batch of input spectrograms. + y_lengths (torch.tensor): Batch of input spectrogram lengths. + waveform (torch.tensor): Batch of ground truth waveforms per sample. + aux_input (dict, optional): Auxiliary inputs for multi-speaker and multi-lingual training. + Defaults to {"d_vectors": None, "speaker_ids": None, "language_ids": None}. + + Returns: + Dict: model outputs keyed by the output name. + + Shapes: + - x: :math:`[B, T_seq]` + - x_lengths: :math:`[B]` + - y: :math:`[B, C, T_spec]` + - y_lengths: :math:`[B]` + - waveform: :math:`[B, 1, T_wav]` + - d_vectors: :math:`[B, C, 1]` + - speaker_ids: :math:`[B]` + - language_ids: :math:`[B]` + + Return Shapes: + - model_outputs: :math:`[B, 1, T_wav]` + - alignments: :math:`[B, T_seq, T_dec]` + - z: :math:`[B, C, T_dec]` + - z_p: :math:`[B, C, T_dec]` + - m_p: :math:`[B, C, T_dec]` + - logs_p: :math:`[B, C, T_dec]` + - m_q: :math:`[B, C, T_dec]` + - logs_q: :math:`[B, C, T_dec]` + - waveform_seg: :math:`[B, 1, spec_seg_size * hop_length]` + - gt_spk_emb: :math:`[B, 1, speaker_encoder.proj_dim]` + - syn_spk_emb: :math:`[B, 1, speaker_encoder.proj_dim]` + """ + outputs = {} + sid, g, lid, _ = self._set_cond_input(aux_input) + # speaker embedding + if self.args.use_speaker_embedding and sid is not None: + g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1] + + # language embedding + lang_emb = None + if self.args.use_language_embedding and lid is not None: + lang_emb = self.emb_l(lid).unsqueeze(-1) + + x, m_p, logs_p, x_mask = self.text_encoder(x, x_lengths, lang_emb=lang_emb) + + # posterior encoder + z, m_q, logs_q, y_mask = self.posterior_encoder(y, y_lengths, g=g) + + # flow layers + z_p = self.flow(z, y_mask, g=g) + + # duration predictor + outputs, attn = self.forward_mas(outputs, z_p, m_p, logs_p, x, x_mask, y_mask, g=g, lang_emb=lang_emb) + + # expand prior + m_p = torch.einsum("klmn, kjm -> kjn", [attn, m_p]) + logs_p = torch.einsum("klmn, kjm -> kjn", [attn, logs_p]) + + # select a random feature segment for the waveform decoder + z_slice, slice_ids = rand_segments(z, y_lengths, self.spec_segment_size, let_short_samples=True, pad_short=True) + + # interpolate z if needed + z_slice, spec_segment_size, slice_ids, _ = self.upsampling_z(z_slice, slice_ids=slice_ids) + + o = self.waveform_decoder(z_slice, g=g) + + wav_seg = segment( + waveform, + slice_ids * self.config.audio.hop_length, + spec_segment_size * self.config.audio.hop_length, + pad_short=True, + ) + + if self.args.use_speaker_encoder_as_loss and self.speaker_manager.encoder is not None: + # concate generated and GT waveforms + wavs_batch = torch.cat((wav_seg, o), dim=0) + + # resample audio to speaker encoder sample_rate + # pylint: disable=W0105 + if self.audio_transform is not None: + wavs_batch = self.audio_transform(wavs_batch) + + pred_embs = self.speaker_manager.encoder.forward(wavs_batch, l2_norm=True) + + # split generated and GT speaker embeddings + gt_spk_emb, syn_spk_emb = torch.chunk(pred_embs, 2, dim=0) + else: + gt_spk_emb, syn_spk_emb = None, None + + outputs.update( + { + "model_outputs": o, + "alignments": attn.squeeze(1), + "m_p": m_p, + "logs_p": logs_p, + "z": z, + "z_p": z_p, + "m_q": m_q, + "logs_q": logs_q, + "waveform_seg": wav_seg, + "gt_spk_emb": gt_spk_emb, + "syn_spk_emb": syn_spk_emb, + "slice_ids": slice_ids, + } + ) + return outputs + + @staticmethod + def _set_x_lengths(x, aux_input): + if "x_lengths" in aux_input and aux_input["x_lengths"] is not None: + return aux_input["x_lengths"] + return torch.tensor(x.shape[1:2]).to(x.device) + + @torch.no_grad() + def inference( + self, + x, + aux_input={"x_lengths": None, "d_vectors": None, "speaker_ids": None, "language_ids": None, "durations": None}, + ): # pylint: disable=dangerous-default-value + """ + Note: + To run in batch mode, provide `x_lengths` else model assumes that the batch size is 1. + + Shapes: + - x: :math:`[B, T_seq]` + - x_lengths: :math:`[B]` + - d_vectors: :math:`[B, C]` + - speaker_ids: :math:`[B]` + + Return Shapes: + - model_outputs: :math:`[B, 1, T_wav]` + - alignments: :math:`[B, T_seq, T_dec]` + - z: :math:`[B, C, T_dec]` + - z_p: :math:`[B, C, T_dec]` + - m_p: :math:`[B, C, T_dec]` + - logs_p: :math:`[B, C, T_dec]` + """ + sid, g, lid, durations = self._set_cond_input(aux_input) + x_lengths = self._set_x_lengths(x, aux_input) + + # speaker embedding + if self.args.use_speaker_embedding and sid is not None: + g = self.emb_g(sid).unsqueeze(-1) + + # language embedding + lang_emb = None + if self.args.use_language_embedding and lid is not None: + lang_emb = self.emb_l(lid).unsqueeze(-1) + + x, m_p, logs_p, x_mask = self.text_encoder(x, x_lengths, lang_emb=lang_emb) + + if durations is None: + if self.args.use_sdp: + logw = self.duration_predictor( + x, + x_mask, + g=g if self.args.condition_dp_on_speaker else None, + reverse=True, + noise_scale=self.inference_noise_scale_dp, + lang_emb=lang_emb, + ) + else: + logw = self.duration_predictor( + x, x_mask, g=g if self.args.condition_dp_on_speaker else None, lang_emb=lang_emb + ) + w = torch.exp(logw) * x_mask * self.length_scale + else: + assert durations.shape[-1] == x.shape[-1] + w = durations.unsqueeze(0) + + w_ceil = torch.ceil(w) + y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long() + y_mask = sequence_mask(y_lengths, None).to(x_mask.dtype).unsqueeze(1) # [B, 1, T_dec] + + attn_mask = x_mask * y_mask.transpose(1, 2) # [B, 1, T_enc] * [B, T_dec, 1] + attn = generate_path(w_ceil.squeeze(1), attn_mask.squeeze(1).transpose(1, 2)) + + m_p = torch.matmul(attn.transpose(1, 2), m_p.transpose(1, 2)).transpose(1, 2) + logs_p = torch.matmul(attn.transpose(1, 2), logs_p.transpose(1, 2)).transpose(1, 2) + + z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * self.inference_noise_scale + z = self.flow(z_p, y_mask, g=g, reverse=True) + + # upsampling if needed + z, _, _, y_mask = self.upsampling_z(z, y_lengths=y_lengths, y_mask=y_mask) + + o = self.waveform_decoder((z * y_mask)[:, :, : self.max_inference_len], g=g) + + outputs = { + "model_outputs": o, + "alignments": attn.squeeze(1), + "durations": w_ceil, + "z": z, + "z_p": z_p, + "m_p": m_p, + "logs_p": logs_p, + "y_mask": y_mask, + } + return outputs + + @torch.no_grad() + def inference_voice_conversion( + self, reference_wav, speaker_id=None, d_vector=None, reference_speaker_id=None, reference_d_vector=None + ): + """Inference for voice conversion + + Args: + reference_wav (Tensor): Reference wavform. Tensor of shape [B, T] + speaker_id (Tensor): speaker_id of the target speaker. Tensor of shape [B] + d_vector (Tensor): d_vector embedding of target speaker. Tensor of shape `[B, C]` + reference_speaker_id (Tensor): speaker_id of the reference_wav speaker. Tensor of shape [B] + reference_d_vector (Tensor): d_vector embedding of the reference_wav speaker. Tensor of shape `[B, C]` + """ + # compute spectrograms + y = wav_to_spec( + reference_wav, + self.config.audio.fft_size, + self.config.audio.hop_length, + self.config.audio.win_length, + center=False, + ) + y_lengths = torch.tensor([y.size(-1)]).to(y.device) + speaker_cond_src = reference_speaker_id if reference_speaker_id is not None else reference_d_vector + speaker_cond_tgt = speaker_id if speaker_id is not None else d_vector + wav, _, _ = self.voice_conversion(y, y_lengths, speaker_cond_src, speaker_cond_tgt) + return wav + + def voice_conversion(self, y, y_lengths, speaker_cond_src, speaker_cond_tgt): + """Forward pass for voice conversion + + TODO: create an end-point for voice conversion + + Args: + y (Tensor): Reference spectrograms. Tensor of shape [B, T, C] + y_lengths (Tensor): Length of each reference spectrogram. Tensor of shape [B] + speaker_cond_src (Tensor): Reference speaker ID. Tensor of shape [B,] + speaker_cond_tgt (Tensor): Target speaker ID. Tensor of shape [B,] + """ + assert self.num_speakers > 0, "num_speakers have to be larger than 0." + # speaker embedding + if self.args.use_speaker_embedding and not self.args.use_d_vector_file: + g_src = self.emb_g(torch.from_numpy((np.array(speaker_cond_src))).unsqueeze(0)).unsqueeze(-1) + g_tgt = self.emb_g(torch.from_numpy((np.array(speaker_cond_tgt))).unsqueeze(0)).unsqueeze(-1) + elif not self.args.use_speaker_embedding and self.args.use_d_vector_file: + g_src = F.normalize(speaker_cond_src).unsqueeze(-1) + g_tgt = F.normalize(speaker_cond_tgt).unsqueeze(-1) + else: + raise RuntimeError(" [!] Voice conversion is only supported on multi-speaker models.") + + z, _, _, y_mask = self.posterior_encoder(y, y_lengths, g=g_src) + z_p = self.flow(z, y_mask, g=g_src) + z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True) + o_hat = self.waveform_decoder(z_hat * y_mask, g=g_tgt) + return o_hat, y_mask, (z, z_p, z_hat) + + def train_step(self, batch: dict, criterion: nn.Module, optimizer_idx: int) -> Tuple[Dict, Dict]: + """Perform a single training step. Run the model forward pass and compute losses. + + Args: + batch (Dict): Input tensors. + criterion (nn.Module): Loss layer designed for the model. + optimizer_idx (int): Index of optimizer to use. 0 for the generator and 1 for the discriminator networks. + + Returns: + Tuple[Dict, Dict]: Model ouputs and computed losses. + """ + + spec_lens = batch["spec_lens"] + + if optimizer_idx == 0: + tokens = batch["tokens"] + token_lenghts = batch["token_lens"] + spec = batch["spec"] + + d_vectors = batch["d_vectors"] + speaker_ids = batch["speaker_ids"] + language_ids = batch["language_ids"] + waveform = batch["waveform"] + + # generator pass + outputs = self.forward( + tokens, + token_lenghts, + spec, + spec_lens, + waveform, + aux_input={"d_vectors": d_vectors, "speaker_ids": speaker_ids, "language_ids": language_ids}, + ) + + # cache tensors for the generator pass + self.model_outputs_cache = outputs # pylint: disable=attribute-defined-outside-init + + # compute scores and features + scores_disc_fake, _, scores_disc_real, _ = self.disc( + outputs["model_outputs"].detach(), outputs["waveform_seg"] + ) + + # compute loss + with autocast(enabled=False): # use float32 for the criterion + loss_dict = criterion[optimizer_idx]( + scores_disc_real, + scores_disc_fake, + ) + return outputs, loss_dict + + if optimizer_idx == 1: + mel = batch["mel"] + + # compute melspec segment + with autocast(enabled=False): + if self.args.encoder_sample_rate: + spec_segment_size = self.spec_segment_size * int(self.interpolate_factor) + else: + spec_segment_size = self.spec_segment_size + + mel_slice = segment( + mel.float(), self.model_outputs_cache["slice_ids"], spec_segment_size, pad_short=True + ) + mel_slice_hat = wav_to_mel( + y=self.model_outputs_cache["model_outputs"].float(), + n_fft=self.config.audio.fft_size, + sample_rate=self.config.audio.sample_rate, + num_mels=self.config.audio.num_mels, + hop_length=self.config.audio.hop_length, + win_length=self.config.audio.win_length, + fmin=self.config.audio.mel_fmin, + fmax=self.config.audio.mel_fmax, + center=False, + ) + + # compute discriminator scores and features + scores_disc_fake, feats_disc_fake, _, feats_disc_real = self.disc( + self.model_outputs_cache["model_outputs"], self.model_outputs_cache["waveform_seg"] + ) + + # compute losses + with autocast(enabled=False): # use float32 for the criterion + loss_dict = criterion[optimizer_idx]( + mel_slice_hat=mel_slice.float(), + mel_slice=mel_slice_hat.float(), + z_p=self.model_outputs_cache["z_p"].float(), + logs_q=self.model_outputs_cache["logs_q"].float(), + m_p=self.model_outputs_cache["m_p"].float(), + logs_p=self.model_outputs_cache["logs_p"].float(), + z_len=spec_lens, + scores_disc_fake=scores_disc_fake, + feats_disc_fake=feats_disc_fake, + feats_disc_real=feats_disc_real, + loss_duration=self.model_outputs_cache["loss_duration"], + use_speaker_encoder_as_loss=self.args.use_speaker_encoder_as_loss, + gt_spk_emb=self.model_outputs_cache["gt_spk_emb"], + syn_spk_emb=self.model_outputs_cache["syn_spk_emb"], + ) + + return self.model_outputs_cache, loss_dict + + raise ValueError(" [!] Unexpected `optimizer_idx`.") + + def _log(self, ap, batch, outputs, name_prefix="train"): # pylint: disable=unused-argument,no-self-use + y_hat = outputs[1]["model_outputs"] + y = outputs[1]["waveform_seg"] + figures = plot_results(y_hat, y, ap, name_prefix) + sample_voice = y_hat[0].squeeze(0).detach().cpu().numpy() + audios = {f"{name_prefix}/audio": sample_voice} + + alignments = outputs[1]["alignments"] + align_img = alignments[0].data.cpu().numpy().T + + figures.update( + { + "alignment": plot_alignment(align_img, output_fig=False), + } + ) + return figures, audios + + def train_log( + self, batch: dict, outputs: dict, logger: "Logger", assets: dict, steps: int + ): # pylint: disable=no-self-use + """Create visualizations and waveform examples. + + For example, here you can plot spectrograms and generate sample sample waveforms from these spectrograms to + be projected onto Tensorboard. + + Args: + ap (AudioProcessor): audio processor used at training. + batch (Dict): Model inputs used at the previous training step. + outputs (Dict): Model outputs generated at the previoud training step. + + Returns: + Tuple[Dict, np.ndarray]: training plots and output waveform. + """ + figures, audios = self._log(self.ap, batch, outputs, "train") + logger.train_figures(steps, figures) + logger.train_audios(steps, audios, self.ap.sample_rate) + + @torch.no_grad() + def eval_step(self, batch: dict, criterion: nn.Module, optimizer_idx: int): + return self.train_step(batch, criterion, optimizer_idx) + + def eval_log(self, batch: dict, outputs: dict, logger: "Logger", assets: dict, steps: int) -> None: + figures, audios = self._log(self.ap, batch, outputs, "eval") + logger.eval_figures(steps, figures) + logger.eval_audios(steps, audios, self.ap.sample_rate) + + def get_aux_input_from_test_sentences(self, sentence_info): + if hasattr(self.config, "model_args"): + config = self.config.model_args + else: + config = self.config + + # extract speaker and language info + text, speaker_name, style_wav, language_name = None, None, None, None + + if isinstance(sentence_info, list): + if len(sentence_info) == 1: + text = sentence_info[0] + elif len(sentence_info) == 2: + text, speaker_name = sentence_info + elif len(sentence_info) == 3: + text, speaker_name, style_wav = sentence_info + elif len(sentence_info) == 4: + text, speaker_name, style_wav, language_name = sentence_info + else: + text = sentence_info + + # get speaker id/d_vector + speaker_id, d_vector, language_id = None, None, None + if hasattr(self, "speaker_manager"): + if config.use_d_vector_file: + if speaker_name is None: + d_vector = self.speaker_manager.get_random_embedding() + else: + d_vector = self.speaker_manager.get_mean_embedding(speaker_name, num_samples=None, randomize=False) + elif config.use_speaker_embedding: + if speaker_name is None: + speaker_id = self.speaker_manager.get_random_id() + else: + speaker_id = self.speaker_manager.name_to_id[speaker_name] + + # get language id + if hasattr(self, "language_manager") and config.use_language_embedding and language_name is not None: + language_id = self.language_manager.name_to_id[language_name] + + return { + "text": text, + "speaker_id": speaker_id, + "style_wav": style_wav, + "d_vector": d_vector, + "language_id": language_id, + "language_name": language_name, + } + + @torch.no_grad() + def test_run(self, assets) -> Tuple[Dict, Dict]: + """Generic test run for `tts` models used by `Trainer`. + + You can override this for a different behaviour. + + Returns: + Tuple[Dict, Dict]: Test figures and audios to be projected to Tensorboard. + """ + print(" | > Synthesizing test sentences.") + test_audios = {} + test_figures = {} + test_sentences = self.config.test_sentences + for idx, s_info in enumerate(test_sentences): + aux_inputs = self.get_aux_input_from_test_sentences(s_info) + wav, alignment, _, _ = synthesis( + self, + aux_inputs["text"], + self.config, + "cuda" in str(next(self.parameters()).device), + speaker_id=aux_inputs["speaker_id"], + d_vector=aux_inputs["d_vector"], + style_wav=aux_inputs["style_wav"], + language_id=aux_inputs["language_id"], + use_griffin_lim=True, + do_trim_silence=False, + ).values() + test_audios["{}-audio".format(idx)] = wav + test_figures["{}-alignment".format(idx)] = plot_alignment(alignment.T, output_fig=False) + return {"figures": test_figures, "audios": test_audios} + + def test_log( + self, outputs: dict, logger: "Logger", assets: dict, steps: int # pylint: disable=unused-argument + ) -> None: + logger.test_audios(steps, outputs["audios"], self.ap.sample_rate) + logger.test_figures(steps, outputs["figures"]) + + def format_batch(self, batch: Dict) -> Dict: + """Compute speaker, langugage IDs and d_vector for the batch if necessary.""" + speaker_ids = None + language_ids = None + d_vectors = None + + # get numerical speaker ids from speaker names + if self.speaker_manager is not None and self.speaker_manager.name_to_id and self.args.use_speaker_embedding: + speaker_ids = [self.speaker_manager.name_to_id[sn] for sn in batch["speaker_names"]] + + if speaker_ids is not None: + speaker_ids = torch.LongTensor(speaker_ids) + + # get d_vectors from audio file names + if self.speaker_manager is not None and self.speaker_manager.embeddings and self.args.use_d_vector_file: + d_vector_mapping = self.speaker_manager.embeddings + d_vectors = [d_vector_mapping[w]["embedding"] for w in batch["audio_unique_names"]] + d_vectors = torch.FloatTensor(d_vectors) + + # get language ids from language names + if self.language_manager is not None and self.language_manager.name_to_id and self.args.use_language_embedding: + language_ids = [self.language_manager.name_to_id[ln] for ln in batch["language_names"]] + + if language_ids is not None: + language_ids = torch.LongTensor(language_ids) + + batch["language_ids"] = language_ids + batch["d_vectors"] = d_vectors + batch["speaker_ids"] = speaker_ids + return batch + + def format_batch_on_device(self, batch): + """Compute spectrograms on the device.""" + ac = self.config.audio + + if self.args.encoder_sample_rate: + wav = self.audio_resampler(batch["waveform"]) + else: + wav = batch["waveform"] + + # compute spectrograms + batch["spec"] = wav_to_spec(wav, ac.fft_size, ac.hop_length, ac.win_length, center=False) + + if self.args.encoder_sample_rate: + # recompute spec with high sampling rate to the loss + spec_mel = wav_to_spec(batch["waveform"], ac.fft_size, ac.hop_length, ac.win_length, center=False) + # remove extra stft frames if needed + if spec_mel.size(2) > int(batch["spec"].size(2) * self.interpolate_factor): + spec_mel = spec_mel[:, :, : int(batch["spec"].size(2) * self.interpolate_factor)] + else: + batch["spec"] = batch["spec"][:, :, : int(spec_mel.size(2) / self.interpolate_factor)] + else: + spec_mel = batch["spec"] + + batch["mel"] = spec_to_mel( + spec=spec_mel, + n_fft=ac.fft_size, + num_mels=ac.num_mels, + sample_rate=ac.sample_rate, + fmin=ac.mel_fmin, + fmax=ac.mel_fmax, + ) + + if self.args.encoder_sample_rate: + assert batch["spec"].shape[2] == int( + batch["mel"].shape[2] / self.interpolate_factor + ), f"{batch['spec'].shape[2]}, {batch['mel'].shape[2]}" + else: + assert batch["spec"].shape[2] == batch["mel"].shape[2], f"{batch['spec'].shape[2]}, {batch['mel'].shape[2]}" + + # compute spectrogram frame lengths + batch["spec_lens"] = (batch["spec"].shape[2] * batch["waveform_rel_lens"]).int() + batch["mel_lens"] = (batch["mel"].shape[2] * batch["waveform_rel_lens"]).int() + + if self.args.encoder_sample_rate: + assert (batch["spec_lens"] - (batch["mel_lens"] / self.interpolate_factor).int()).sum() == 0 + else: + assert (batch["spec_lens"] - batch["mel_lens"]).sum() == 0 + + # zero the padding frames + batch["spec"] = batch["spec"] * sequence_mask(batch["spec_lens"]).unsqueeze(1) + batch["mel"] = batch["mel"] * sequence_mask(batch["mel_lens"]).unsqueeze(1) + return batch + + def get_sampler(self, config: Coqpit, dataset: TTSDataset, num_gpus=1, is_eval=False): + weights = None + data_items = dataset.samples + if getattr(config, "use_weighted_sampler", False): + for attr_name, alpha in config.weighted_sampler_attrs.items(): + print(f" > Using weighted sampler for attribute '{attr_name}' with alpha '{alpha}'") + multi_dict = config.weighted_sampler_multipliers.get(attr_name, None) + print(multi_dict) + weights, attr_names, attr_weights = get_attribute_balancer_weights( + attr_name=attr_name, items=data_items, multi_dict=multi_dict + ) + weights = weights * alpha + print(f" > Attribute weights for '{attr_names}' \n | > {attr_weights}") + + # input_audio_lenghts = [os.path.getsize(x["audio_file"]) for x in data_items] + + if weights is not None: + w_sampler = WeightedRandomSampler(weights, len(weights)) + batch_sampler = BucketBatchSampler( + w_sampler, + data=data_items, + batch_size=config.eval_batch_size if is_eval else config.batch_size, + sort_key=lambda x: os.path.getsize(x["audio_file"]), + drop_last=True, + ) + else: + batch_sampler = None + # sampler for DDP + if batch_sampler is None: + batch_sampler = DistributedSampler(dataset) if num_gpus > 1 else None + else: # If a sampler is already defined use this sampler and DDP sampler together + batch_sampler = ( + DistributedSamplerWrapper(batch_sampler) if num_gpus > 1 else batch_sampler + ) # TODO: check batch_sampler with multi-gpu + return batch_sampler + + def get_data_loader( + self, + config: Coqpit, + assets: Dict, + is_eval: bool, + samples: Union[List[Dict], List[List]], + verbose: bool, + num_gpus: int, + rank: int = None, + ) -> "DataLoader": + if is_eval and not config.run_eval: + loader = None + else: + # init dataloader + dataset = VitsDataset( + model_args=self.args, + samples=samples, + batch_group_size=0 if is_eval else config.batch_group_size * config.batch_size, + min_text_len=config.min_text_len, + max_text_len=config.max_text_len, + min_audio_len=config.min_audio_len, + max_audio_len=config.max_audio_len, + phoneme_cache_path=config.phoneme_cache_path, + precompute_num_workers=config.precompute_num_workers, + verbose=verbose, + tokenizer=self.tokenizer, + start_by_longest=config.start_by_longest, + ) + + # wait all the DDP process to be ready + if num_gpus > 1: + dist.barrier() + + # sort input sequences from short to long + dataset.preprocess_samples() + + # get samplers + sampler = self.get_sampler(config, dataset, num_gpus) + if sampler is None: + loader = DataLoader( + dataset, + batch_size=config.eval_batch_size if is_eval else config.batch_size, + shuffle=False, # shuffle is done in the dataset. + collate_fn=dataset.collate_fn, + drop_last=False, # setting this False might cause issues in AMP training. + num_workers=config.num_eval_loader_workers if is_eval else config.num_loader_workers, + pin_memory=False, + ) + else: + if num_gpus > 1: + loader = DataLoader( + dataset, + sampler=sampler, + batch_size=config.eval_batch_size if is_eval else config.batch_size, + collate_fn=dataset.collate_fn, + num_workers=config.num_eval_loader_workers if is_eval else config.num_loader_workers, + pin_memory=False, + ) + else: + loader = DataLoader( + dataset, + batch_sampler=sampler, + collate_fn=dataset.collate_fn, + num_workers=config.num_eval_loader_workers if is_eval else config.num_loader_workers, + pin_memory=False, + ) + return loader + + def get_optimizer(self) -> List: + """Initiate and return the GAN optimizers based on the config parameters. + It returnes 2 optimizers in a list. First one is for the generator and the second one is for the discriminator. + Returns: + List: optimizers. + """ + # select generator parameters + optimizer0 = get_optimizer(self.config.optimizer, self.config.optimizer_params, self.config.lr_disc, self.disc) + + gen_parameters = chain(params for k, params in self.named_parameters() if not k.startswith("disc.")) + optimizer1 = get_optimizer( + self.config.optimizer, self.config.optimizer_params, self.config.lr_gen, parameters=gen_parameters + ) + return [optimizer0, optimizer1] + + def get_lr(self) -> List: + """Set the initial learning rates for each optimizer. + + Returns: + List: learning rates for each optimizer. + """ + return [self.config.lr_disc, self.config.lr_gen] + + def get_scheduler(self, optimizer) -> List: + """Set the schedulers for each optimizer. + + Args: + optimizer (List[`torch.optim.Optimizer`]): List of optimizers. + + Returns: + List: Schedulers, one for each optimizer. + """ + scheduler_D = get_scheduler(self.config.lr_scheduler_disc, self.config.lr_scheduler_disc_params, optimizer[0]) + scheduler_G = get_scheduler(self.config.lr_scheduler_gen, self.config.lr_scheduler_gen_params, optimizer[1]) + return [scheduler_D, scheduler_G] + + def get_criterion(self): + """Get criterions for each optimizer. The index in the output list matches the optimizer idx used in + `train_step()`""" + from TTS.tts.layers.losses import ( # pylint: disable=import-outside-toplevel + VitsDiscriminatorLoss, + VitsGeneratorLoss, + ) + + return [VitsDiscriminatorLoss(self.config), VitsGeneratorLoss(self.config)] + + def load_checkpoint( + self, config, checkpoint_path, eval=False, strict=True, cache=False + ): # pylint: disable=unused-argument, redefined-builtin + """Load the model checkpoint and setup for training or inference""" + state = load_fsspec(checkpoint_path, map_location=torch.device("cpu"), cache=cache) + # compat band-aid for the pre-trained models to not use the encoder baked into the model + # TODO: consider baking the speaker encoder into the model and call it from there. + # as it is probably easier for model distribution. + state["model"] = {k: v for k, v in state["model"].items() if "speaker_encoder" not in k} + + if self.args.encoder_sample_rate is not None and eval: + # audio resampler is not used in inference time + self.audio_resampler = None + + # handle fine-tuning from a checkpoint with additional speakers + if hasattr(self, "emb_g") and state["model"]["emb_g.weight"].shape != self.emb_g.weight.shape: + num_new_speakers = self.emb_g.weight.shape[0] - state["model"]["emb_g.weight"].shape[0] + print(f" > Loading checkpoint with {num_new_speakers} additional speakers.") + emb_g = state["model"]["emb_g.weight"] + new_row = torch.randn(num_new_speakers, emb_g.shape[1]) + emb_g = torch.cat([emb_g, new_row], axis=0) + state["model"]["emb_g.weight"] = emb_g + # load the model weights + self.load_state_dict(state["model"], strict=strict) + + if eval: + self.eval() + assert not self.training + + def load_fairseq_checkpoint( + self, config, checkpoint_dir, eval=False, strict=True + ): # pylint: disable=unused-argument, redefined-builtin + """Load VITS checkpoints released by fairseq here: https://github.com/facebookresearch/fairseq/tree/main/examples/mms + Performs some changes for compatibility. + + Args: + config (Coqpit): ๐ŸธTTS model config. + checkpoint_dir (str): Path to the checkpoint directory. + eval (bool, optional): Set to True for evaluation. Defaults to False. + """ + import json + + from TTS.tts.utils.text.cleaners import basic_cleaners + + self.disc = None + # set paths + config_file = os.path.join(checkpoint_dir, "config.json") + checkpoint_file = os.path.join(checkpoint_dir, "G_100000.pth") + vocab_file = os.path.join(checkpoint_dir, "vocab.txt") + # set config params + with open(config_file, "r", encoding="utf-8") as file: + # Load the JSON data as a dictionary + config_org = json.load(file) + self.config.audio.sample_rate = config_org["data"]["sampling_rate"] + # self.config.add_blank = config['add_blank'] + # set tokenizer + vocab = FairseqVocab(vocab_file) + self.text_encoder.emb = nn.Embedding(vocab.num_chars, config.model_args.hidden_channels) + self.tokenizer = TTSTokenizer( + use_phonemes=False, + text_cleaner=basic_cleaners, + characters=vocab, + phonemizer=None, + add_blank=config_org["data"]["add_blank"], + use_eos_bos=False, + ) + # load fairseq checkpoint + new_chk = rehash_fairseq_vits_checkpoint(checkpoint_file) + self.load_state_dict(new_chk, strict=strict) + if eval: + self.eval() + assert not self.training + + @staticmethod + def init_from_config(config: "VitsConfig", samples: Union[List[List], List[Dict]] = None, verbose=True): + """Initiate model from config + + Args: + config (VitsConfig): Model config. + samples (Union[List[List], List[Dict]]): Training samples to parse speaker ids for training. + Defaults to None. + """ + from TTS.utils.audio import AudioProcessor + + upsample_rate = torch.prod(torch.as_tensor(config.model_args.upsample_rates_decoder)).item() + + if not config.model_args.encoder_sample_rate: + assert ( + upsample_rate == config.audio.hop_length + ), f" [!] Product of upsample rates must be equal to the hop length - {upsample_rate} vs {config.audio.hop_length}" + else: + encoder_to_vocoder_upsampling_factor = config.audio.sample_rate / config.model_args.encoder_sample_rate + effective_hop_length = config.audio.hop_length * encoder_to_vocoder_upsampling_factor + assert ( + upsample_rate == effective_hop_length + ), f" [!] Product of upsample rates must be equal to the hop length - {upsample_rate} vs {effective_hop_length}" + + ap = AudioProcessor.init_from_config(config, verbose=verbose) + tokenizer, new_config = TTSTokenizer.init_from_config(config) + speaker_manager = SpeakerManager.init_from_config(config, samples) + language_manager = LanguageManager.init_from_config(config) + + if config.model_args.speaker_encoder_model_path: + speaker_manager.init_encoder( + config.model_args.speaker_encoder_model_path, config.model_args.speaker_encoder_config_path + ) + return Vits(new_config, ap, tokenizer, speaker_manager, language_manager) + + def export_onnx(self, output_path: str = "coqui_vits.onnx", verbose: bool = True): + """Export model to ONNX format for inference + + Args: + output_path (str): Path to save the exported model. + verbose (bool): Print verbose information. Defaults to True. + """ + + # rollback values + _forward = self.forward + disc = None + if hasattr(self, "disc"): + disc = self.disc + training = self.training + + # set export mode + self.disc = None + self.eval() + + def onnx_inference(text, text_lengths, scales, sid=None, langid=None): + noise_scale = scales[0] + length_scale = scales[1] + noise_scale_dp = scales[2] + self.noise_scale = noise_scale + self.length_scale = length_scale + self.noise_scale_dp = noise_scale_dp + return self.inference( + text, + aux_input={ + "x_lengths": text_lengths, + "d_vectors": None, + "speaker_ids": sid, + "language_ids": langid, + "durations": None, + }, + )["model_outputs"] + + self.forward = onnx_inference + + # set dummy inputs + dummy_input_length = 100 + sequences = torch.randint(low=0, high=2, size=(1, dummy_input_length), dtype=torch.long) + sequence_lengths = torch.LongTensor([sequences.size(1)]) + scales = torch.FloatTensor([self.inference_noise_scale, self.length_scale, self.inference_noise_scale_dp]) + dummy_input = (sequences, sequence_lengths, scales) + input_names = ["input", "input_lengths", "scales"] + + if self.num_speakers > 0: + speaker_id = torch.LongTensor([0]) + dummy_input += (speaker_id,) + input_names.append("sid") + + if hasattr(self, "num_languages") and self.num_languages > 0 and self.embedded_language_dim > 0: + language_id = torch.LongTensor([0]) + dummy_input += (language_id,) + input_names.append("langid") + + # export to ONNX + torch.onnx.export( + model=self, + args=dummy_input, + opset_version=15, + f=output_path, + verbose=verbose, + input_names=input_names, + output_names=["output"], + dynamic_axes={ + "input": {0: "batch_size", 1: "phonemes"}, + "input_lengths": {0: "batch_size"}, + "output": {0: "batch_size", 1: "time1", 2: "time2"}, + }, + ) + + # rollback + self.forward = _forward + if training: + self.train() + if not disc is None: + self.disc = disc + + def load_onnx(self, model_path: str, cuda=False): + import onnxruntime as ort + + providers = [ + "CPUExecutionProvider" + if cuda is False + else ("CUDAExecutionProvider", {"cudnn_conv_algo_search": "DEFAULT"}) + ] + sess_options = ort.SessionOptions() + self.onnx_sess = ort.InferenceSession( + model_path, + sess_options=sess_options, + providers=providers, + ) + + def inference_onnx(self, x, x_lengths=None, speaker_id=None, language_id=None): + """ONNX inference""" + + if isinstance(x, torch.Tensor): + x = x.cpu().numpy() + + if x_lengths is None: + x_lengths = np.array([x.shape[1]], dtype=np.int64) + + if isinstance(x_lengths, torch.Tensor): + x_lengths = x_lengths.cpu().numpy() + scales = np.array( + [self.inference_noise_scale, self.length_scale, self.inference_noise_scale_dp], + dtype=np.float32, + ) + input_params = {"input": x, "input_lengths": x_lengths, "scales": scales} + if not speaker_id is None: + input_params["sid"] = torch.tensor([speaker_id]).cpu().numpy() + if not language_id is None: + input_params["langid"] = torch.tensor([language_id]).cpu().numpy() + + audio = self.onnx_sess.run( + ["output"], + input_params, + ) + return audio[0][0] + + +################################## +# VITS CHARACTERS +################################## + + +class VitsCharacters(BaseCharacters): + """Characters class for VITs model for compatibility with pre-trained models""" + + def __init__( + self, + graphemes: str = _characters, + punctuations: str = _punctuations, + pad: str = _pad, + ipa_characters: str = _phonemes, + ) -> None: + if ipa_characters is not None: + graphemes += ipa_characters + super().__init__(graphemes, punctuations, pad, None, None, "", is_unique=False, is_sorted=True) + + def _create_vocab(self): + self._vocab = [self._pad] + list(self._punctuations) + list(self._characters) + [self._blank] + self._char_to_id = {char: idx for idx, char in enumerate(self.vocab)} + # pylint: disable=unnecessary-comprehension + self._id_to_char = {idx: char for idx, char in enumerate(self.vocab)} + + @staticmethod + def init_from_config(config: Coqpit): + if config.characters is not None: + _pad = config.characters["pad"] + _punctuations = config.characters["punctuations"] + _letters = config.characters["characters"] + _letters_ipa = config.characters["phonemes"] + return ( + VitsCharacters(graphemes=_letters, ipa_characters=_letters_ipa, punctuations=_punctuations, pad=_pad), + config, + ) + characters = VitsCharacters() + new_config = replace(config, characters=characters.to_config()) + return characters, new_config + + def to_config(self) -> "CharactersConfig": + return CharactersConfig( + characters=self._characters, + punctuations=self._punctuations, + pad=self._pad, + eos=None, + bos=None, + blank=self._blank, + is_unique=False, + is_sorted=True, + ) + + +class FairseqVocab(BaseVocabulary): + def __init__(self, vocab: str): + super(FairseqVocab).__init__() + self.vocab = vocab + + @property + def vocab(self): + """Return the vocabulary dictionary.""" + return self._vocab + + @vocab.setter + def vocab(self, vocab_file): + with open(vocab_file, encoding="utf-8") as f: + self._vocab = [x.replace("\n", "") for x in f.readlines()] + self.blank = self._vocab[0] + self.pad = " " + self._char_to_id = {s: i for i, s in enumerate(self._vocab)} # pylint: disable=unnecessary-comprehension + self._id_to_char = {i: s for i, s in enumerate(self._vocab)} # pylint: disable=unnecessary-comprehension diff --git a/TTS/TTS/tts/models/xtts.py b/TTS/TTS/tts/models/xtts.py new file mode 100644 index 0000000000000000000000000000000000000000..a23a0f5f656cc15061d0ae0dd29283e29fdc71ab --- /dev/null +++ b/TTS/TTS/tts/models/xtts.py @@ -0,0 +1,654 @@ +import os +from contextlib import contextmanager +from dataclasses import dataclass + +import torch +import torch.nn.functional as F +import torchaudio +from coqpit import Coqpit + +from TTS.tts.layers.tortoise.audio_utils import denormalize_tacotron_mel, wav_to_univnet_mel +from TTS.tts.layers.tortoise.diffusion_decoder import DiffusionTts +from TTS.tts.layers.xtts.diffusion import SpacedDiffusion, get_named_beta_schedule, space_timesteps +from TTS.tts.layers.xtts.gpt import GPT +from TTS.tts.layers.xtts.tokenizer import VoiceBpeTokenizer +from TTS.tts.layers.xtts.vocoder import UnivNetGenerator +from TTS.tts.models.base_tts import BaseTTS +from TTS.utils.io import load_fsspec + + +def load_audio(audiopath, sr=22050): + """ + Load an audio file from disk and resample it to the specified sampling rate. + + Args: + audiopath (str): Path to the audio file. + sr (int): Target sampling rate. + + Returns: + Tensor: Audio waveform tensor with shape (1, T), where T is the number of samples. + """ + audio, sampling_rate = torchaudio.load(audiopath) + + if len(audio.shape) > 1: + if audio.shape[0] < 5: + audio = audio[0] + else: + assert audio.shape[1] < 5 + audio = audio[:, 0] + + if sampling_rate != sr: + resampler = torchaudio.transforms.Resample(sampling_rate, sr) + audio = resampler(audio) + + audio = audio.clamp_(-1, 1) + return audio.unsqueeze(0) + + +def wav_to_mel_cloning( + wav, mel_norms_file="../experiments/clips_mel_norms.pth", mel_norms=None, device=torch.device("cpu") +): + """ + Convert waveform to mel-spectrogram with hard-coded parameters for cloning. + + Args: + wav (torch.Tensor): Input waveform tensor. + mel_norms_file (str): Path to mel-spectrogram normalization file. + mel_norms (torch.Tensor): Mel-spectrogram normalization tensor. + device (torch.device): Device to use for computation. + + Returns: + torch.Tensor: Mel-spectrogram tensor. + """ + mel_stft = torchaudio.transforms.MelSpectrogram( + n_fft=4096, + hop_length=1024, + win_length=4096, + power=2, + normalized=False, + sample_rate=22050, + f_min=0, + f_max=8000, + n_mels=80, + norm="slaney", + ).to(device) + wav = wav.to(device) + mel = mel_stft(wav) + mel = torch.log(torch.clamp(mel, min=1e-5)) + if mel_norms is None: + mel_norms = torch.load(mel_norms_file, map_location=device) + mel = mel / mel_norms.unsqueeze(0).unsqueeze(-1) + return mel + + +def pad_or_truncate(t, length): + """ + Ensure a given tensor t has a specified sequence length by either padding it with zeros or clipping it. + + Args: + t (torch.Tensor): The input tensor to be padded or truncated. + length (int): The desired length of the tensor. + + Returns: + torch.Tensor: The padded or truncated tensor. + """ + tp = t[..., :length] + if t.shape[-1] == length: + tp = t + elif t.shape[-1] < length: + tp = F.pad(t, (0, length - t.shape[-1])) + return tp + + +def load_discrete_vocoder_diffuser( + trained_diffusion_steps=4000, + desired_diffusion_steps=200, + cond_free=True, + cond_free_k=1, + sampler="ddim", +): + """ + Load a GaussianDiffusion instance configured for use as a decoder. + + Args: + trained_diffusion_steps (int): The number of diffusion steps used during training. + desired_diffusion_steps (int): The number of diffusion steps to use during inference. + cond_free (bool): Whether to use a conditioning-free model. + cond_free_k (int): The number of samples to use for conditioning-free models. + sampler (str): The name of the sampler to use. + + Returns: + A SpacedDiffusion instance configured with the given parameters. + """ + return SpacedDiffusion( + use_timesteps=space_timesteps(trained_diffusion_steps, [desired_diffusion_steps]), + model_mean_type="epsilon", + model_var_type="learned_range", + loss_type="mse", + betas=get_named_beta_schedule("linear", trained_diffusion_steps), + conditioning_free=cond_free, + conditioning_free_k=cond_free_k, + sampler=sampler, + ) + + +def do_spectrogram_diffusion( + diffusion_model, + diffuser, + latents, + conditioning_latents, + temperature=1, +): + """ + Generate a mel-spectrogram using a diffusion model and a diffuser. + + Args: + diffusion_model (nn.Module): A diffusion model that converts from 22kHz spectrogram codes to a 24kHz spectrogram signal. + diffuser (Diffuser): A diffuser that generates a mel-spectrogram from noise. + latents (torch.Tensor): A tensor of shape (batch_size, seq_len, code_size) containing the input spectrogram codes. + conditioning_latents (torch.Tensor): A tensor of shape (batch_size, code_size) containing the conditioning codes. + temperature (float, optional): The temperature of the noise used by the diffuser. Defaults to 1. + + Returns: + torch.Tensor: A tensor of shape (batch_size, mel_channels, mel_seq_len) containing the generated mel-spectrogram. + """ + with torch.no_grad(): + output_seq_len = ( + latents.shape[1] * 4 * 24000 // 22050 + ) # This diffusion model converts from 22kHz spectrogram codes to a 24kHz spectrogram signal. + output_shape = (latents.shape[0], 100, output_seq_len) + precomputed_embeddings = diffusion_model.timestep_independent( + latents, conditioning_latents, output_seq_len, False + ) + + noise = torch.randn(output_shape, device=latents.device) * temperature + mel = diffuser.sample_loop( + diffusion_model, + output_shape, + noise=noise, + model_kwargs={"precomputed_aligned_embeddings": precomputed_embeddings}, + progress=False, + ) + return denormalize_tacotron_mel(mel)[:, :, :output_seq_len] + + +@dataclass +class XttsAudioConfig(Coqpit): + """ + Configuration class for audio-related parameters in the XTTS model. + + Args: + sample_rate (int): The sample rate in which the GPT operates. + diffusion_sample_rate (int): The sample rate of the diffusion audio waveform. + output_sample_rate (int): The sample rate of the output audio waveform. + """ + + sample_rate: int = 22050 + diffusion_sample_rate: int = 24000 + output_sample_rate: int = 24000 + + +@dataclass +class XttsArgs(Coqpit): + """A dataclass to represent XTTS model arguments that define the model structure. + + Args: + gpt_batch_size (int): The size of the auto-regressive batch. + enable_redaction (bool, optional): Whether to enable redaction. Defaults to True. + lazy_load (bool, optional): Whether to load models on demand. It reduces VRAM usage. Defaults to False. + kv_cache (bool, optional): Whether to use the kv_cache. Defaults to True. + gpt_checkpoint (str, optional): The checkpoint for the autoregressive model. Defaults to None. + clvp_checkpoint (str, optional): The checkpoint for the ConditionalLatentVariablePerseq model. Defaults to None. + decoder_checkpoint (str, optional): The checkpoint for the DiffTTS model. Defaults to None. + num_chars (int, optional): The maximum number of characters to generate. Defaults to 255. + vocoder (VocType, optional): The vocoder to use for synthesis. Defaults to VocConf.Univnet. + + For GPT model: + ar_max_audio_tokens (int, optional): The maximum mel tokens for the autoregressive model. Defaults to 604. + ar_max_text_tokens (int, optional): The maximum text tokens for the autoregressive model. Defaults to 402. + ar_max_prompt_tokens (int, optional): The maximum prompt tokens or the autoregressive model. Defaults to 70. + ar_layers (int, optional): The number of layers for the autoregressive model. Defaults to 30. + ar_n_model_channels (int, optional): The model dimension for the autoregressive model. Defaults to 1024. + ar_n_heads (int, optional): The number of heads for the autoregressive model. Defaults to 16. + ar_number_text_tokens (int, optional): The number of text tokens for the autoregressive model. Defaults to 255. + ar_start_text_token (int, optional): The start text token for the autoregressive model. Defaults to 255. + gpt_checkpointing (bool, optional): Whether to use checkpointing for the autoregressive model. Defaults to False. + ar_train_solo_embeddings (bool, optional): Whether to train embeddings for the autoregressive model. Defaults to False. + + For DiffTTS model: + diff_model_channels (int, optional): The number of channels for the DiffTTS model. Defaults to 1024. + diff_num_layers (int, optional): The number of layers for the DiffTTS model. Defaults to 10. + diff_in_channels (int, optional): The input channels for the DiffTTS model. Defaults to 100. + diff_out_channels (int, optional): The output channels for the DiffTTS model. Defaults to 200. + diff_in_latent_channels (int, optional): The input latent channels for the DiffTTS model. Defaults to 1024. + diff_in_tokens (int, optional): The input tokens for the DiffTTS model. Defaults to 8193. + diff_dropout (int, optional): The dropout percentage for the DiffTTS model. Defaults to 0. + diff_use_fp16 (bool, optional): Whether to use fp16 for the DiffTTS model. Defaults to False. + diff_num_heads (int, optional): The number of heads for the DiffTTS model. Defaults to 16. + diff_layer_drop (int, optional): The layer dropout percentage for the DiffTTS model. Defaults to 0. + diff_unconditioned_percentage (int, optional): The percentage of unconditioned inputs for the DiffTTS model. Defaults to 0. + """ + + gpt_batch_size: int = 1 + enable_redaction: bool = False + lazy_load: bool = True + kv_cache: bool = True + gpt_checkpoint: str = None + clvp_checkpoint: str = None + decoder_checkpoint: str = None + num_chars: int = 255 + + # XTTS GPT Encoder params + tokenizer_file: str = "" + gpt_max_audio_tokens: int = 605 + gpt_max_text_tokens: int = 402 + gpt_max_prompt_tokens: int = 70 + gpt_layers: int = 30 + gpt_n_model_channels: int = 1024 + gpt_n_heads: int = 16 + gpt_number_text_tokens: int = None + gpt_start_text_token: int = None + gpt_stop_text_token: int = None + gpt_num_audio_tokens: int = 8194 + gpt_start_audio_token: int = 8192 + gpt_stop_audio_token: int = 8193 + + # Diffusion Decoder params + diff_model_channels: int = 1024 + diff_num_layers: int = 10 + diff_in_channels: int = 100 + diff_out_channels: int = 200 + diff_in_latent_channels: int = 1024 + diff_in_tokens: int = 8193 + diff_dropout: int = 0 + diff_use_fp16: bool = False + diff_num_heads: int = 16 + diff_layer_drop: int = 0 + diff_unconditioned_percentage: int = 0 + + # constants + duration_const: int = 102400 + + +class Xtts(BaseTTS): + """โ“TTS model implementation. + + โ— Currently it only supports inference. + + Examples: + >>> from TTS.tts.configs.xtts_config import XttsConfig + >>> from TTS.tts.models.xtts import Xtts + >>> config = XttsConfig() + >>> model = Xtts.inif_from_config(config) + >>> model.load_checkpoint(config, checkpoint_dir="paths/to/models_dir/", eval=True) + """ + + def __init__(self, config: Coqpit): + super().__init__(config, ap=None, tokenizer=None) + self.lazy_load = self.args.lazy_load + self.mel_stats_path = None + self.config = config + self.gpt_checkpoint = self.args.gpt_checkpoint + self.decoder_checkpoint = self.args.decoder_checkpoint # TODO: check if this is even needed + self.models_dir = config.model_dir + self.gpt_batch_size = self.args.gpt_batch_size + + self.tokenizer = VoiceBpeTokenizer() + self.gpt = None + self.diffusion_decoder = None + self.init_models() + self.register_buffer("mel_stats", torch.ones(80)) + + def init_models(self): + """Initialize the models. We do it here since we need to load the tokenizer first.""" + if self.tokenizer.tokenizer is not None: + self.args.gpt_number_text_tokens = self.tokenizer.tokenizer.get_vocab_size() + self.args.gpt_start_text_token = self.tokenizer.tokenizer.token_to_id("[START]") + self.args.gpt_stop_text_token = self.tokenizer.tokenizer.token_to_id("[STOP]") + + if self.args.gpt_number_text_tokens: + self.gpt = GPT( + layers=self.args.gpt_layers, + model_dim=self.args.gpt_n_model_channels, + start_text_token=self.args.gpt_start_text_token, + stop_text_token=self.args.gpt_stop_text_token, + heads=self.args.gpt_n_heads, + max_text_tokens=self.args.gpt_max_text_tokens, + max_mel_tokens=self.args.gpt_max_audio_tokens, + max_prompt_tokens=self.args.gpt_max_prompt_tokens, + number_text_tokens=self.args.gpt_number_text_tokens, + num_audio_tokens=self.args.gpt_num_audio_tokens, + start_audio_token=self.args.gpt_start_audio_token, + stop_audio_token=self.args.gpt_stop_audio_token, + ) + + self.diffusion_decoder = DiffusionTts( + model_channels=self.args.diff_model_channels, + num_layers=self.args.diff_num_layers, + in_channels=self.args.diff_in_channels, + out_channels=self.args.diff_out_channels, + in_latent_channels=self.args.diff_in_latent_channels, + in_tokens=self.args.diff_in_tokens, + dropout=self.args.diff_dropout, + use_fp16=self.args.diff_use_fp16, + num_heads=self.args.diff_num_heads, + layer_drop=self.args.diff_layer_drop, + unconditioned_percentage=self.args.diff_unconditioned_percentage, + ) + + self.vocoder = UnivNetGenerator() + + @property + def device(self): + return next(self.parameters()).device + + @contextmanager + def lazy_load_model(self, model): + """Context to load a model on demand. + + Args: + model (nn.Module): The model to be loaded. + """ + if self.lazy_load: + yield model + else: + m = model.to(self.device) + yield m + m = model.cpu() + + def get_gpt_cond_latents(self, audio_path: str, length: int = 3): + """Compute the conditioning latents for the GPT model from the given audio. + + Args: + audio_path (str): Path to the audio file. + length (int): Length of the audio in seconds. Defaults to 3. + """ + + audio = load_audio(audio_path) + audio = audio[:, : 22050 * length] + mel = wav_to_mel_cloning(audio, mel_norms=self.mel_stats.cpu()) + cond_latent = self.gpt.get_style_emb(mel.to(self.device), sample=False) + return cond_latent.transpose(1, 2) + + def get_diffusion_cond_latents( + self, + audio_path, + ): + from math import ceil + + diffusion_conds = [] + CHUNK_SIZE = 102400 + audio = load_audio(audio_path, 24000) + for chunk in range(ceil(audio.shape[1] / CHUNK_SIZE)): + current_sample = audio[:, chunk * CHUNK_SIZE : (chunk + 1) * CHUNK_SIZE] + current_sample = pad_or_truncate(current_sample, CHUNK_SIZE) + cond_mel = wav_to_univnet_mel( + current_sample.to(self.device), + do_normalization=False, + device=self.device, + ) + diffusion_conds.append(cond_mel) + diffusion_conds = torch.stack(diffusion_conds, dim=1) + with self.lazy_load_model(self.diffusion_decoder) as diffusion: + diffusion_latent = diffusion.get_conditioning(diffusion_conds) + return diffusion_latent + + def get_conditioning_latents( + self, + audio_path, + gpt_cond_len=3, + ): + gpt_cond_latents = self.get_gpt_cond_latents(audio_path, length=gpt_cond_len) # [1, 1024, T] + diffusion_cond_latents = self.get_diffusion_cond_latents( + audio_path, + ) + return gpt_cond_latents.to(self.device), diffusion_cond_latents.to(self.device) + + def synthesize(self, text, config, speaker_wav, language, **kwargs): + """Synthesize speech with the given input text. + + Args: + text (str): Input text. + config (XttsConfig): Config with inference parameters. + speaker_wav (str): Path to the speaker audio file for cloning. + language (str): Language ID of the speaker. + **kwargs: Inference settings. See `inference()`. + + Returns: + A dictionary of the output values with `wav` as output waveform, `deterministic_seed` as seed used at inference, + `text_input` as text token IDs after tokenizer, `voice_samples` as samples used for cloning, `conditioning_latents` + as latents used at inference. + + """ + + # Make the synthesizer happy ๐Ÿฅณ + if isinstance(speaker_wav, list): + speaker_wav = speaker_wav[0] + + return self.inference_with_config(text, config, ref_audio_path=speaker_wav, language=language, **kwargs) + + def inference_with_config(self, text, config, ref_audio_path, language, **kwargs): + """ + inference with config + """ + assert ( + language in self.config.languages + ), f" โ— Language {language} is not supported. Supported languages are {self.config.languages}" + # Use generally found best tuning knobs for generation. + settings = { + "temperature": config.temperature, + "length_penalty": config.length_penalty, + "repetition_penalty": config.repetition_penalty, + "top_k": config.top_k, + "top_p": config.top_p, + "cond_free_k": config.cond_free_k, + "diffusion_temperature": config.diffusion_temperature, + "decoder_iterations": config.decoder_iterations, + "decoder_sampler": config.decoder_sampler, + } + settings.update(kwargs) # allow overriding of preset settings with kwargs + return self.inference(text, ref_audio_path, language, **settings) + + @torch.no_grad() + def inference( + self, + text, + ref_audio_path, + language, + # GPT inference + temperature=0.65, + length_penalty=1, + repetition_penalty=2.0, + top_k=50, + top_p=0.85, + gpt_cond_len=4, + do_sample=True, + # Decoder inference + decoder_iterations=100, + cond_free=True, + cond_free_k=2, + diffusion_temperature=1.0, + decoder_sampler="ddim", + **hf_generate_kwargs, + ): + """ + This function produces an audio clip of the given text being spoken with the given reference voice. + + Args: + text: (str) Text to be spoken. + + ref_audio_path: (str) Path to a reference audio file to be used for cloning. This audio file should be >3 + seconds long. + + language: (str) Language of the voice to be generated. + + temperature: (float) The softmax temperature of the autoregressive model. Defaults to 0.65. + + length_penalty: (float) A length penalty applied to the autoregressive decoder. Higher settings causes the + model to produce more terse outputs. Defaults to 1.0. + + repetition_penalty: (float) A penalty that prevents the autoregressive decoder from repeating itself during + decoding. Can be used to reduce the incidence of long silences or "uhhhhhhs", etc. Defaults to 2.0. + + top_k: (int) K value used in top-k sampling. [0,inf]. Lower values mean the decoder produces more "likely" + (aka boring) outputs. Defaults to 50. + + top_p: (float) P value used in nucleus sampling. (0,1]. Lower values mean the decoder produces more "likely" + (aka boring) outputs. Defaults to 0.8. + + gpt_cond_len: (int) Length of the audio used for cloning. If audio is shorter, then audio length is used + else the first `gpt_cond_len` secs is used. Defaults to 3 seconds. + + decoder_iterations: (int) Number of diffusion steps to perform. [0,4000]. More steps means the network has + more chances to iteratively refine the output, which should theoretically mean a higher quality output. + Generally a value above 250 is not noticeably better, however. Defaults to 100. + + cond_free: (bool) Whether or not to perform conditioning-free diffusion. Conditioning-free diffusion + performs two forward passes for each diffusion step: one with the outputs of the autoregressive model + and one with no conditioning priors. The output of the two is blended according to the cond_free_k + value below. Conditioning-free diffusion is the real deal, and dramatically improves realism. + Defaults to True. + + cond_free_k: (float) Knob that determines how to balance the conditioning free signal with the + conditioning-present signal. [0,inf]. As cond_free_k increases, the output becomes dominated by the + conditioning-free signal. Defaults to 2.0. + + diffusion_temperature: (float) Controls the variance of the noise fed into the diffusion model. [0,1]. + Values at 0 re the "mean" prediction of the diffusion network and will sound bland and smeared. + Defaults to 1.0. + + hf_generate_kwargs: (**kwargs) The huggingface Transformers generate API is used for the autoregressive + transformer. Extra keyword args fed to this function get forwarded directly to that API. Documentation + here: https://huggingface.co/docs/transformers/internal/generation_utils + + Returns: + Generated audio clip(s) as a torch tensor. Shape 1,S if k=1 else, (k,1,S) where S is the sample length. + Sample rate is 24kHz. + """ + text = f"[{language}]{text.strip().lower()}" + text_tokens = torch.IntTensor(self.tokenizer.encode(text, lang=language)).unsqueeze(0).to(self.device) + + assert ( + text_tokens.shape[-1] < self.args.gpt_max_text_tokens + ), " โ— XTTS can only generate text with a maximum of 400 tokens." + + ( + gpt_cond_latent, + diffusion_conditioning, + ) = self.get_conditioning_latents(audio_path=ref_audio_path, gpt_cond_len=gpt_cond_len) + + diffuser = load_discrete_vocoder_diffuser( + desired_diffusion_steps=decoder_iterations, + cond_free=cond_free, + cond_free_k=cond_free_k, + sampler=decoder_sampler, + ) + + with torch.no_grad(): + self.gpt = self.gpt.to(self.device) + with self.lazy_load_model(self.gpt) as gpt: + gpt_codes = gpt.generate( + cond_latents=gpt_cond_latent, + text_inputs=text_tokens, + input_tokens=None, + do_sample=do_sample, + top_p=top_p, + top_k=top_k, + temperature=temperature, + num_return_sequences=self.gpt_batch_size, + length_penalty=length_penalty, + repetition_penalty=repetition_penalty, + output_attentions=False, + **hf_generate_kwargs, + ) + + with self.lazy_load_model(self.gpt) as gpt: + expected_output_len = torch.tensor( + [gpt_codes.shape[-1] * self.gpt.code_stride_len], device=text_tokens.device + ) + text_len = torch.tensor([text_tokens.shape[-1]], device=self.device) + gpt_latents = gpt( + text_tokens, + text_len, + gpt_codes, + expected_output_len, + cond_latents=gpt_cond_latent, + return_attentions=False, + return_latent=True, + ) + silence_token = 83 + ctokens = 0 + for k in range(gpt_codes.shape[-1]): + if gpt_codes[0, k] == silence_token: + ctokens += 1 + else: + ctokens = 0 + if ctokens > 8: + gpt_latents = gpt_latents[:, :k] + break + + with self.lazy_load_model(self.diffusion_decoder) as diffusion: + mel = do_spectrogram_diffusion( + diffusion, + diffuser, + gpt_latents, + diffusion_conditioning, + temperature=diffusion_temperature, + ) + with self.lazy_load_model(self.vocoder) as vocoder: + wav = vocoder.inference(mel) + + return {"wav": wav.cpu().numpy().squeeze()} + + def forward(self): + raise NotImplementedError("XTTS Training is not implemented") + + def eval_step(self): + raise NotImplementedError("XTTS Training is not implemented") + + @staticmethod + def init_from_config(config: "XttsConfig", **kwargs): # pylint: disable=unused-argument + return Xtts(config) + + def eval(self): # pylint: disable=redefined-builtin + """Sets the model to evaluation mode. Overrides the default eval() method to also set the GPT model to eval mode.""" + self.gpt.init_gpt_for_inference() + super().eval() + + def load_checkpoint( + self, config, checkpoint_dir=None, checkpoint_path=None, vocab_path=None, eval=False, strict=True + ): + """ + Loads a checkpoint from disk and initializes the model's state and tokenizer. + + Args: + config (dict): The configuration dictionary for the model. + checkpoint_dir (str, optional): The directory where the checkpoint is stored. Defaults to None. + checkpoint_path (str, optional): The path to the checkpoint file. Defaults to None. + vocab_path (str, optional): The path to the vocabulary file. Defaults to None. + eval (bool, optional): Whether to set the model to evaluation mode. Defaults to False. + strict (bool, optional): Whether to strictly enforce that the keys in the checkpoint match the keys in the model. Defaults to True. + + Returns: + None + """ + + model_path = checkpoint_path or os.path.join(checkpoint_dir, "model.pth") + vocab_path = vocab_path or os.path.join(checkpoint_dir, "vocab.json") + + if os.path.exists(os.path.join(checkpoint_dir, "vocab.json")): + self.tokenizer = VoiceBpeTokenizer(vocab_file=os.path.join(checkpoint_dir, "vocab.json")) + + self.init_models() + if eval: + self.gpt.init_gpt_for_inference(kv_cache=self.args.kv_cache) + self.load_state_dict(load_fsspec(model_path, map_location=self.device)["model"], strict=strict) + + if eval: + self.gpt.init_gpt_for_inference(kv_cache=self.args.kv_cache) + self.gpt.eval() + self.diffusion_decoder.eval() + self.vocoder.eval() + + def train_step(self): + raise NotImplementedError("XTTS Training is not implemented") diff --git a/TTS/TTS/tts/utils/__init__.py b/TTS/TTS/tts/utils/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/TTS/TTS/tts/utils/assets/tortoise/tokenizer.json b/TTS/TTS/tts/utils/assets/tortoise/tokenizer.json new file mode 100644 index 0000000000000000000000000000000000000000..a128f273053e465a15c488e48d8106e0c8b0898e --- /dev/null +++ b/TTS/TTS/tts/utils/assets/tortoise/tokenizer.json @@ -0,0 +1 @@ +{"version":"1.0","truncation":null,"padding":null,"added_tokens":[{"id":0,"special":true,"content":"[STOP]","single_word":false,"lstrip":false,"rstrip":false,"normalized":false},{"id":1,"special":true,"content":"[UNK]","single_word":false,"lstrip":false,"rstrip":false,"normalized":false},{"id":2,"special":true,"content":"[SPACE]","single_word":false,"lstrip":false,"rstrip":false,"normalized":false}],"normalizer":null,"pre_tokenizer":{"type":"Whitespace"},"post_processor":null,"decoder":null,"model":{"type":"BPE","dropout":null,"unk_token":"[UNK]","continuing_subword_prefix":null,"end_of_word_suffix":null,"fuse_unk":false,"vocab":{"[STOP]":0,"[UNK]":1,"[SPACE]":2,"!":3,"'":4,"(":5,")":6,",":7,"-":8,".":9,"/":10,":":11,";":12,"?":13,"a":14,"b":15,"c":16,"d":17,"e":18,"f":19,"g":20,"h":21,"i":22,"j":23,"k":24,"l":25,"m":26,"n":27,"o":28,"p":29,"q":30,"r":31,"s":32,"t":33,"u":34,"v":35,"w":36,"x":37,"y":38,"z":39,"th":40,"in":41,"the":42,"an":43,"er":44,"ou":45,"re":46,"on":47,"at":48,"ed":49,"en":50,"to":51,"ing":52,"and":53,"is":54,"as":55,"al":56,"or":57,"of":58,"ar":59,"it":60,"es":61,"he":62,"st":63,"le":64,"om":65,"se":66,"be":67,"ad":68,"ow":69,"ly":70,"ch":71,"wh":72,"that":73,"you":74,"li":75,"ve":76,"ac":77,"ti":78,"ld":79,"me":80,"was":81,"gh":82,"id":83,"ll":84,"wi":85,"ent":86,"for":87,"ay":88,"ro":89,"ver":90,"ic":91,"her":92,"ke":93,"his":94,"no":95,"ut":96,"un":97,"ir":98,"lo":99,"we":100,"ri":101,"ha":102,"with":103,"ght":104,"out":105,"im":106,"ion":107,"all":108,"ab":109,"one":110,"ne":111,"ge":112,"ould":113,"ter":114,"mo":115,"had":116,"ce":117,"she":118,"go":119,"sh":120,"ur":121,"am":122,"so":123,"pe":124,"my":125,"de":126,"are":127,"but":128,"ome":129,"fr":130,"ther":131,"fe":132,"su":133,"do":134,"con":135,"te":136,"ain":137,"ere":138,"po":139,"if":140,"they":141,"us":142,"ag":143,"tr":144,"now":145,"oun":146,"this":147,"have":148,"not":149,"sa":150,"il":151,"up":152,"thing":153,"from":154,"ap":155,"him":156,"ack":157,"ation":158,"ant":159,"our":160,"op":161,"like":162,"ust":163,"ess":164,"bo":165,"ok":166,"ul":167,"ind":168,"ex":169,"com":170,"some":171,"there":172,"ers":173,"co":174,"res":175,"man":176,"ard":177,"pl":178,"wor":179,"way":180,"tion":181,"fo":182,"ca":183,"were":184,"by":185,"ate":186,"pro":187,"ted":188,"ound":189,"own":190,"would":191,"ts":192,"what":193,"qu":194,"ally":195,"ight":196,"ck":197,"gr":198,"when":199,"ven":200,"can":201,"ough":202,"ine":203,"end":204,"per":205,"ous":206,"od":207,"ide":208,"know":209,"ty":210,"very":211,"si":212,"ak":213,"who":214,"about":215,"ill":216,"them":217,"est":218,"red":219,"ye":220,"could":221,"ong":222,"your":223,"their":224,"em":225,"just":226,"other":227,"into":228,"any":229,"whi":230,"um":231,"tw":232,"ast":233,"der":234,"did":235,"ie":236,"been":237,"ace":238,"ink":239,"ity":240,"back":241,"ting":242,"br":243,"more":244,"ake":245,"pp":246,"then":247,"sp":248,"el":249,"use":250,"bl":251,"said":252,"over":253,"get":254},"merges":["t h","i n","th e","a n","e r","o u","r e","o n","a t","e d","e n","t o","in g","an d","i s","a s","a l","o r","o f","a r","i t","e s","h e","s t","l e","o m","s e","b e","a d","o w","l y","c h","w h","th at","y ou","l i","v e","a c","t i","l d","m e","w as","g h","i d","l l","w i","en t","f or","a y","r o","v er","i c","h er","k e","h is","n o","u t","u n","i r","l o","w e","r i","h a","wi th","gh t","ou t","i m","i on","al l","a b","on e","n e","g e","ou ld","t er","m o","h ad","c e","s he","g o","s h","u r","a m","s o","p e","m y","d e","a re","b ut","om e","f r","the r","f e","s u","d o","c on","t e","a in","er e","p o","i f","the y","u s","a g","t r","n ow","ou n","th is","ha ve","no t","s a","i l","u p","th ing","fr om","a p","h im","ac k","at ion","an t","ou r","o p","li ke","u st","es s","b o","o k","u l","in d","e x","c om","s ome","the re","er s","c o","re s","m an","ar d","p l","w or","w ay","ti on","f o","c a","w ere","b y","at e","p ro","t ed","oun d","ow n","w ould","t s","wh at","q u","al ly","i ght","c k","g r","wh en","v en","c an","ou gh","in e","en d","p er","ou s","o d","id e","k now","t y","ver y","s i","a k","wh o","ab out","i ll","the m","es t","re d","y e","c ould","on g","you r","the ir","e m","j ust","o ther","in to","an y","wh i","u m","t w","as t","d er","d id","i e","be en","ac e","in k","it y","b ack","t ing","b r","mo re","a ke","p p","the n","s p","e l","u se","b l","sa id","o ver","ge t"]}} \ No newline at end of file diff --git a/TTS/TTS/tts/utils/data.py b/TTS/TTS/tts/utils/data.py new file mode 100644 index 0000000000000000000000000000000000000000..22e46b683adfc7f6c7c8a57fb5b697e422cd915c --- /dev/null +++ b/TTS/TTS/tts/utils/data.py @@ -0,0 +1,79 @@ +import bisect + +import numpy as np +import torch + + +def _pad_data(x, length): + _pad = 0 + assert x.ndim == 1 + return np.pad(x, (0, length - x.shape[0]), mode="constant", constant_values=_pad) + + +def prepare_data(inputs): + max_len = max((len(x) for x in inputs)) + return np.stack([_pad_data(x, max_len) for x in inputs]) + + +def _pad_tensor(x, length): + _pad = 0.0 + assert x.ndim == 2 + x = np.pad(x, [[0, 0], [0, length - x.shape[1]]], mode="constant", constant_values=_pad) + return x + + +def prepare_tensor(inputs, out_steps): + max_len = max((x.shape[1] for x in inputs)) + remainder = max_len % out_steps + pad_len = max_len + (out_steps - remainder) if remainder > 0 else max_len + return np.stack([_pad_tensor(x, pad_len) for x in inputs]) + + +def _pad_stop_target(x: np.ndarray, length: int, pad_val=1) -> np.ndarray: + """Pad stop target array. + + Args: + x (np.ndarray): Stop target array. + length (int): Length after padding. + pad_val (int, optional): Padding value. Defaults to 1. + + Returns: + np.ndarray: Padded stop target array. + """ + assert x.ndim == 1 + return np.pad(x, (0, length - x.shape[0]), mode="constant", constant_values=pad_val) + + +def prepare_stop_target(inputs, out_steps): + """Pad row vectors with 1.""" + max_len = max((x.shape[0] for x in inputs)) + remainder = max_len % out_steps + pad_len = max_len + (out_steps - remainder) if remainder > 0 else max_len + return np.stack([_pad_stop_target(x, pad_len) for x in inputs]) + + +def pad_per_step(inputs, pad_len): + return np.pad(inputs, [[0, 0], [0, 0], [0, pad_len]], mode="constant", constant_values=0.0) + + +def get_length_balancer_weights(items: list, num_buckets=10): + # get all durations + audio_lengths = np.array([item["audio_length"] for item in items]) + # create the $num_buckets buckets classes based in the dataset max and min length + max_length = int(max(audio_lengths)) + min_length = int(min(audio_lengths)) + step = int((max_length - min_length) / num_buckets) + 1 + buckets_classes = [i + step for i in range(min_length, (max_length - step) + num_buckets + 1, step)] + # add each sample in their respective length bucket + buckets_names = np.array( + [buckets_classes[bisect.bisect_left(buckets_classes, item["audio_length"])] for item in items] + ) + # count and compute the weights_bucket for each sample + unique_buckets_names = np.unique(buckets_names).tolist() + bucket_ids = [unique_buckets_names.index(l) for l in buckets_names] + bucket_count = np.array([len(np.where(buckets_names == l)[0]) for l in unique_buckets_names]) + weight_bucket = 1.0 / bucket_count + dataset_samples_weight = np.array([weight_bucket[l] for l in bucket_ids]) + # normalize + dataset_samples_weight = dataset_samples_weight / np.linalg.norm(dataset_samples_weight) + return torch.from_numpy(dataset_samples_weight).float() diff --git a/TTS/TTS/tts/utils/fairseq.py b/TTS/TTS/tts/utils/fairseq.py new file mode 100644 index 0000000000000000000000000000000000000000..3d8eec2b4ee0d7b0c79e368616d4b75fb2e551d4 --- /dev/null +++ b/TTS/TTS/tts/utils/fairseq.py @@ -0,0 +1,48 @@ +import torch + + +def rehash_fairseq_vits_checkpoint(checkpoint_file): + chk = torch.load(checkpoint_file, map_location=torch.device("cpu"))["model"] + new_chk = {} + for k, v in chk.items(): + if "enc_p." in k: + new_chk[k.replace("enc_p.", "text_encoder.")] = v + elif "dec." in k: + new_chk[k.replace("dec.", "waveform_decoder.")] = v + elif "enc_q." in k: + new_chk[k.replace("enc_q.", "posterior_encoder.")] = v + elif "flow.flows.2." in k: + new_chk[k.replace("flow.flows.2.", "flow.flows.1.")] = v + elif "flow.flows.4." in k: + new_chk[k.replace("flow.flows.4.", "flow.flows.2.")] = v + elif "flow.flows.6." in k: + new_chk[k.replace("flow.flows.6.", "flow.flows.3.")] = v + elif "dp.flows.0.m" in k: + new_chk[k.replace("dp.flows.0.m", "duration_predictor.flows.0.translation")] = v + elif "dp.flows.0.logs" in k: + new_chk[k.replace("dp.flows.0.logs", "duration_predictor.flows.0.log_scale")] = v + elif "dp.flows.1" in k: + new_chk[k.replace("dp.flows.1", "duration_predictor.flows.1")] = v + elif "dp.flows.3" in k: + new_chk[k.replace("dp.flows.3", "duration_predictor.flows.2")] = v + elif "dp.flows.5" in k: + new_chk[k.replace("dp.flows.5", "duration_predictor.flows.3")] = v + elif "dp.flows.7" in k: + new_chk[k.replace("dp.flows.7", "duration_predictor.flows.4")] = v + elif "dp.post_flows.0.m" in k: + new_chk[k.replace("dp.post_flows.0.m", "duration_predictor.post_flows.0.translation")] = v + elif "dp.post_flows.0.logs" in k: + new_chk[k.replace("dp.post_flows.0.logs", "duration_predictor.post_flows.0.log_scale")] = v + elif "dp.post_flows.1" in k: + new_chk[k.replace("dp.post_flows.1", "duration_predictor.post_flows.1")] = v + elif "dp.post_flows.3" in k: + new_chk[k.replace("dp.post_flows.3", "duration_predictor.post_flows.2")] = v + elif "dp.post_flows.5" in k: + new_chk[k.replace("dp.post_flows.5", "duration_predictor.post_flows.3")] = v + elif "dp.post_flows.7" in k: + new_chk[k.replace("dp.post_flows.7", "duration_predictor.post_flows.4")] = v + elif "dp." in k: + new_chk[k.replace("dp.", "duration_predictor.")] = v + else: + new_chk[k] = v + return new_chk diff --git a/TTS/TTS/tts/utils/helpers.py b/TTS/TTS/tts/utils/helpers.py new file mode 100644 index 0000000000000000000000000000000000000000..7b37201f8410eb34300d8bb2b1a595d5c5cfc42f --- /dev/null +++ b/TTS/TTS/tts/utils/helpers.py @@ -0,0 +1,258 @@ +import numpy as np +import torch +from scipy.stats import betabinom +from torch.nn import functional as F + +try: + from TTS.tts.utils.monotonic_align.core import maximum_path_c + + CYTHON = True +except ModuleNotFoundError: + CYTHON = False + + +class StandardScaler: + """StandardScaler for mean-scale normalization with the given mean and scale values.""" + + def __init__(self, mean: np.ndarray = None, scale: np.ndarray = None) -> None: + self.mean_ = mean + self.scale_ = scale + + def set_stats(self, mean, scale): + self.mean_ = mean + self.scale_ = scale + + def reset_stats(self): + delattr(self, "mean_") + delattr(self, "scale_") + + def transform(self, X): + X = np.asarray(X) + X -= self.mean_ + X /= self.scale_ + return X + + def inverse_transform(self, X): + X = np.asarray(X) + X *= self.scale_ + X += self.mean_ + return X + + +# from https://gist.github.com/jihunchoi/f1434a77df9db1bb337417854b398df1 +def sequence_mask(sequence_length, max_len=None): + """Create a sequence mask for filtering padding in a sequence tensor. + + Args: + sequence_length (torch.tensor): Sequence lengths. + max_len (int, Optional): Maximum sequence length. Defaults to None. + + Shapes: + - mask: :math:`[B, T_max]` + """ + if max_len is None: + max_len = sequence_length.max() + seq_range = torch.arange(max_len, dtype=sequence_length.dtype, device=sequence_length.device) + # B x T_max + return seq_range.unsqueeze(0) < sequence_length.unsqueeze(1) + + +def segment(x: torch.tensor, segment_indices: torch.tensor, segment_size=4, pad_short=False): + """Segment each sample in a batch based on the provided segment indices + + Args: + x (torch.tensor): Input tensor. + segment_indices (torch.tensor): Segment indices. + segment_size (int): Expected output segment size. + pad_short (bool): Pad the end of input tensor with zeros if shorter than the segment size. + """ + # pad the input tensor if it is shorter than the segment size + if pad_short and x.shape[-1] < segment_size: + x = torch.nn.functional.pad(x, (0, segment_size - x.size(2))) + + segments = torch.zeros_like(x[:, :, :segment_size]) + + for i in range(x.size(0)): + index_start = segment_indices[i] + index_end = index_start + segment_size + x_i = x[i] + if pad_short and index_end >= x.size(2): + # pad the sample if it is shorter than the segment size + x_i = torch.nn.functional.pad(x_i, (0, (index_end + 1) - x.size(2))) + segments[i] = x_i[:, index_start:index_end] + return segments + + +def rand_segments( + x: torch.tensor, x_lengths: torch.tensor = None, segment_size=4, let_short_samples=False, pad_short=False +): + """Create random segments based on the input lengths. + + Args: + x (torch.tensor): Input tensor. + x_lengths (torch.tensor): Input lengths. + segment_size (int): Expected output segment size. + let_short_samples (bool): Allow shorter samples than the segment size. + pad_short (bool): Pad the end of input tensor with zeros if shorter than the segment size. + + Shapes: + - x: :math:`[B, C, T]` + - x_lengths: :math:`[B]` + """ + _x_lenghts = x_lengths.clone() + B, _, T = x.size() + if pad_short: + if T < segment_size: + x = torch.nn.functional.pad(x, (0, segment_size - T)) + T = segment_size + if _x_lenghts is None: + _x_lenghts = T + len_diff = _x_lenghts - segment_size + if let_short_samples: + _x_lenghts[len_diff < 0] = segment_size + len_diff = _x_lenghts - segment_size + else: + assert all( + len_diff > 0 + ), f" [!] At least one sample is shorter than the segment size ({segment_size}). \n {_x_lenghts}" + segment_indices = (torch.rand([B]).type_as(x) * (len_diff + 1)).long() + ret = segment(x, segment_indices, segment_size, pad_short=pad_short) + return ret, segment_indices + + +def average_over_durations(values, durs): + """Average values over durations. + + Shapes: + - values: :math:`[B, 1, T_de]` + - durs: :math:`[B, T_en]` + - avg: :math:`[B, 1, T_en]` + """ + durs_cums_ends = torch.cumsum(durs, dim=1).long() + durs_cums_starts = torch.nn.functional.pad(durs_cums_ends[:, :-1], (1, 0)) + values_nonzero_cums = torch.nn.functional.pad(torch.cumsum(values != 0.0, dim=2), (1, 0)) + values_cums = torch.nn.functional.pad(torch.cumsum(values, dim=2), (1, 0)) + + bs, l = durs_cums_ends.size() + n_formants = values.size(1) + dcs = durs_cums_starts[:, None, :].expand(bs, n_formants, l) + dce = durs_cums_ends[:, None, :].expand(bs, n_formants, l) + + values_sums = (torch.gather(values_cums, 2, dce) - torch.gather(values_cums, 2, dcs)).float() + values_nelems = (torch.gather(values_nonzero_cums, 2, dce) - torch.gather(values_nonzero_cums, 2, dcs)).float() + + avg = torch.where(values_nelems == 0.0, values_nelems, values_sums / values_nelems) + return avg + + +def convert_pad_shape(pad_shape): + l = pad_shape[::-1] + pad_shape = [item for sublist in l for item in sublist] + return pad_shape + + +def generate_path(duration, mask): + """ + Shapes: + - duration: :math:`[B, T_en]` + - mask: :math:'[B, T_en, T_de]` + - path: :math:`[B, T_en, T_de]` + """ + b, t_x, t_y = mask.shape + cum_duration = torch.cumsum(duration, 1) + + cum_duration_flat = cum_duration.view(b * t_x) + path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype) + path = path.view(b, t_x, t_y) + path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1] + path = path * mask + return path + + +def maximum_path(value, mask): + if CYTHON: + return maximum_path_cython(value, mask) + return maximum_path_numpy(value, mask) + + +def maximum_path_cython(value, mask): + """Cython optimised version. + Shapes: + - value: :math:`[B, T_en, T_de]` + - mask: :math:`[B, T_en, T_de]` + """ + value = value * mask + device = value.device + dtype = value.dtype + value = value.data.cpu().numpy().astype(np.float32) + path = np.zeros_like(value).astype(np.int32) + mask = mask.data.cpu().numpy() + + t_x_max = mask.sum(1)[:, 0].astype(np.int32) + t_y_max = mask.sum(2)[:, 0].astype(np.int32) + maximum_path_c(path, value, t_x_max, t_y_max) + return torch.from_numpy(path).to(device=device, dtype=dtype) + + +def maximum_path_numpy(value, mask, max_neg_val=None): + """ + Monotonic alignment search algorithm + Numpy-friendly version. It's about 4 times faster than torch version. + value: [b, t_x, t_y] + mask: [b, t_x, t_y] + """ + if max_neg_val is None: + max_neg_val = -np.inf # Patch for Sphinx complaint + value = value * mask + + device = value.device + dtype = value.dtype + value = value.cpu().detach().numpy() + mask = mask.cpu().detach().numpy().astype(bool) + + b, t_x, t_y = value.shape + direction = np.zeros(value.shape, dtype=np.int64) + v = np.zeros((b, t_x), dtype=np.float32) + x_range = np.arange(t_x, dtype=np.float32).reshape(1, -1) + for j in range(t_y): + v0 = np.pad(v, [[0, 0], [1, 0]], mode="constant", constant_values=max_neg_val)[:, :-1] + v1 = v + max_mask = v1 >= v0 + v_max = np.where(max_mask, v1, v0) + direction[:, :, j] = max_mask + + index_mask = x_range <= j + v = np.where(index_mask, v_max + value[:, :, j], max_neg_val) + direction = np.where(mask, direction, 1) + + path = np.zeros(value.shape, dtype=np.float32) + index = mask[:, :, 0].sum(1).astype(np.int64) - 1 + index_range = np.arange(b) + for j in reversed(range(t_y)): + path[index_range, index, j] = 1 + index = index + direction[index_range, index, j] - 1 + path = path * mask.astype(np.float32) + path = torch.from_numpy(path).to(device=device, dtype=dtype) + return path + + +def beta_binomial_prior_distribution(phoneme_count, mel_count, scaling_factor=1.0): + P, M = phoneme_count, mel_count + x = np.arange(0, P) + mel_text_probs = [] + for i in range(1, M + 1): + a, b = scaling_factor * i, scaling_factor * (M + 1 - i) + rv = betabinom(P, a, b) + mel_i_prob = rv.pmf(x) + mel_text_probs.append(mel_i_prob) + return np.array(mel_text_probs) + + +def compute_attn_prior(x_len, y_len, scaling_factor=1.0): + """Compute attention priors for the alignment network.""" + attn_prior = beta_binomial_prior_distribution( + x_len, + y_len, + scaling_factor, + ) + return attn_prior # [y_len, x_len] diff --git a/TTS/TTS/tts/utils/languages.py b/TTS/TTS/tts/utils/languages.py new file mode 100644 index 0000000000000000000000000000000000000000..1e1836b32ce2010ad55a0253849f2e59c61dad82 --- /dev/null +++ b/TTS/TTS/tts/utils/languages.py @@ -0,0 +1,125 @@ +import os +from typing import Any, Dict, List + +import fsspec +import numpy as np +import torch +from coqpit import Coqpit + +from TTS.config import check_config_and_model_args +from TTS.tts.utils.managers import BaseIDManager + + +class LanguageManager(BaseIDManager): + """Manage the languages for multi-lingual ๐ŸธTTS models. Load a datafile and parse the information + in a way that can be queried by language. + + Args: + language_ids_file_path (str, optional): Path to the metafile that maps language names to ids used by + TTS models. Defaults to "". + config (Coqpit, optional): Coqpit config that contains the language information in the datasets filed. + Defaults to None. + + Examples: + >>> manager = LanguageManager(language_ids_file_path=language_ids_file_path) + >>> language_id_mapper = manager.language_ids + """ + + def __init__( + self, + language_ids_file_path: str = "", + config: Coqpit = None, + ): + super().__init__(id_file_path=language_ids_file_path) + + if config: + self.set_language_ids_from_config(config) + + @property + def num_languages(self) -> int: + return len(list(self.name_to_id.keys())) + + @property + def language_names(self) -> List: + return list(self.name_to_id.keys()) + + @staticmethod + def parse_language_ids_from_config(c: Coqpit) -> Dict: + """Set language id from config. + + Args: + c (Coqpit): Config + + Returns: + Tuple[Dict, int]: Language ID mapping and the number of languages. + """ + languages = set({}) + for dataset in c.datasets: + if "language" in dataset: + languages.add(dataset["language"]) + else: + raise ValueError(f"Dataset {dataset['name']} has no language specified.") + return {name: i for i, name in enumerate(sorted(list(languages)))} + + def set_language_ids_from_config(self, c: Coqpit) -> None: + """Set language IDs from config samples. + + Args: + c (Coqpit): Config. + """ + self.name_to_id = self.parse_language_ids_from_config(c) + + @staticmethod + def parse_ids_from_data(items: List, parse_key: str) -> Any: + raise NotImplementedError + + def set_ids_from_data(self, items: List, parse_key: str) -> Any: + raise NotImplementedError + + def save_ids_to_file(self, file_path: str) -> None: + """Save language IDs to a json file. + + Args: + file_path (str): Path to the output file. + """ + self._save_json(file_path, self.name_to_id) + + @staticmethod + def init_from_config(config: Coqpit) -> "LanguageManager": + """Initialize the language manager from a Coqpit config. + + Args: + config (Coqpit): Coqpit config. + """ + language_manager = None + if check_config_and_model_args(config, "use_language_embedding", True): + if config.get("language_ids_file", None): + language_manager = LanguageManager(language_ids_file_path=config.language_ids_file) + language_manager = LanguageManager(config=config) + return language_manager + + +def _set_file_path(path): + """Find the language_ids.json under the given path or the above it. + Intended to band aid the different paths returned in restored and continued training.""" + path_restore = os.path.join(os.path.dirname(path), "language_ids.json") + path_continue = os.path.join(path, "language_ids.json") + fs = fsspec.get_mapper(path).fs + if fs.exists(path_restore): + return path_restore + if fs.exists(path_continue): + return path_continue + return None + + +def get_language_balancer_weights(items: list): + language_names = np.array([item["language"] for item in items]) + unique_language_names = np.unique(language_names).tolist() + language_ids = [unique_language_names.index(l) for l in language_names] + language_count = np.array([len(np.where(language_names == l)[0]) for l in unique_language_names]) + weight_language = 1.0 / language_count + # get weight for each sample + dataset_samples_weight = np.array([weight_language[l] for l in language_ids]) + # normalize + dataset_samples_weight = dataset_samples_weight / np.linalg.norm(dataset_samples_weight) + return torch.from_numpy(dataset_samples_weight).float() diff --git a/TTS/TTS/tts/utils/managers.py b/TTS/TTS/tts/utils/managers.py new file mode 100644 index 0000000000000000000000000000000000000000..1f94c5332df1e2774955eb263c3b688c5ad6e827 --- /dev/null +++ b/TTS/TTS/tts/utils/managers.py @@ -0,0 +1,383 @@ +import json +import random +from typing import Any, Dict, List, Tuple, Union + +import fsspec +import numpy as np +import torch + +from TTS.config import load_config +from TTS.encoder.utils.generic_utils import setup_encoder_model +from TTS.utils.audio import AudioProcessor + + +def load_file(path: str): + if path.endswith(".json"): + with fsspec.open(path, "r") as f: + return json.load(f) + elif path.endswith(".pth"): + with fsspec.open(path, "rb") as f: + return torch.load(f, map_location="cpu") + else: + raise ValueError("Unsupported file type") + + +def save_file(obj: Any, path: str): + if path.endswith(".json"): + with fsspec.open(path, "w") as f: + json.dump(obj, f, indent=4) + elif path.endswith(".pth"): + with fsspec.open(path, "wb") as f: + torch.save(obj, f) + else: + raise ValueError("Unsupported file type") + + +class BaseIDManager: + """Base `ID` Manager class. Every new `ID` manager must inherit this. + It defines common `ID` manager specific functions. + """ + + def __init__(self, id_file_path: str = ""): + self.name_to_id = {} + + if id_file_path: + self.load_ids_from_file(id_file_path) + + @staticmethod + def _load_json(json_file_path: str) -> Dict: + with fsspec.open(json_file_path, "r") as f: + return json.load(f) + + @staticmethod + def _save_json(json_file_path: str, data: dict) -> None: + with fsspec.open(json_file_path, "w") as f: + json.dump(data, f, indent=4) + + def set_ids_from_data(self, items: List, parse_key: str) -> None: + """Set IDs from data samples. + + Args: + items (List): Data sampled returned by `load_tts_samples()`. + """ + self.name_to_id = self.parse_ids_from_data(items, parse_key=parse_key) + + def load_ids_from_file(self, file_path: str) -> None: + """Set IDs from a file. + + Args: + file_path (str): Path to the file. + """ + self.name_to_id = load_file(file_path) + + def save_ids_to_file(self, file_path: str) -> None: + """Save IDs to a json file. + + Args: + file_path (str): Path to the output file. + """ + save_file(self.name_to_id, file_path) + + def get_random_id(self) -> Any: + """Get a random embedding. + + Args: + + Returns: + np.ndarray: embedding. + """ + if self.name_to_id: + return self.name_to_id[random.choices(list(self.name_to_id.keys()))[0]] + + return None + + @staticmethod + def parse_ids_from_data(items: List, parse_key: str) -> Tuple[Dict]: + """Parse IDs from data samples retured by `load_tts_samples()`. + + Args: + items (list): Data sampled returned by `load_tts_samples()`. + parse_key (str): The key to being used to parse the data. + Returns: + Tuple[Dict]: speaker IDs. + """ + classes = sorted({item[parse_key] for item in items}) + ids = {name: i for i, name in enumerate(classes)} + return ids + + +class EmbeddingManager(BaseIDManager): + """Base `Embedding` Manager class. Every new `Embedding` manager must inherit this. + It defines common `Embedding` manager specific functions. + + It expects embeddings files in the following format: + + :: + + { + 'audio_file_key':{ + 'name': 'category_name', + 'embedding'[] + }, + ... + } + + `audio_file_key` is a unique key to the audio file in the dataset. It can be the path to the file or any other unique key. + `embedding` is the embedding vector of the audio file. + `name` can be name of the speaker of the audio file. + """ + + def __init__( + self, + embedding_file_path: Union[str, List[str]] = "", + id_file_path: str = "", + encoder_model_path: str = "", + encoder_config_path: str = "", + use_cuda: bool = False, + ): + super().__init__(id_file_path=id_file_path) + + self.embeddings = {} + self.embeddings_by_names = {} + self.clip_ids = [] + self.encoder = None + self.encoder_ap = None + self.use_cuda = use_cuda + + if embedding_file_path: + if isinstance(embedding_file_path, list): + self.load_embeddings_from_list_of_files(embedding_file_path) + else: + self.load_embeddings_from_file(embedding_file_path) + + if encoder_model_path and encoder_config_path: + self.init_encoder(encoder_model_path, encoder_config_path, use_cuda) + + @property + def num_embeddings(self): + """Get number of embeddings.""" + return len(self.embeddings) + + @property + def num_names(self): + """Get number of embeddings.""" + return len(self.embeddings_by_names) + + @property + def embedding_dim(self): + """Dimensionality of embeddings. If embeddings are not loaded, returns zero.""" + if self.embeddings: + return len(self.embeddings[list(self.embeddings.keys())[0]]["embedding"]) + return 0 + + @property + def embedding_names(self): + """Get embedding names.""" + return list(self.embeddings_by_names.keys()) + + def save_embeddings_to_file(self, file_path: str) -> None: + """Save embeddings to a json file. + + Args: + file_path (str): Path to the output file. + """ + save_file(self.embeddings, file_path) + + @staticmethod + def read_embeddings_from_file(file_path: str): + """Load embeddings from a json file. + + Args: + file_path (str): Path to the file. + """ + embeddings = load_file(file_path) + speakers = sorted({x["name"] for x in embeddings.values()}) + name_to_id = {name: i for i, name in enumerate(speakers)} + clip_ids = list(set(sorted(clip_name for clip_name in embeddings.keys()))) + # cache embeddings_by_names for fast inference using a bigger speakers.json + embeddings_by_names = {} + for x in embeddings.values(): + if x["name"] not in embeddings_by_names.keys(): + embeddings_by_names[x["name"]] = [x["embedding"]] + else: + embeddings_by_names[x["name"]].append(x["embedding"]) + return name_to_id, clip_ids, embeddings, embeddings_by_names + + def load_embeddings_from_file(self, file_path: str) -> None: + """Load embeddings from a json file. + + Args: + file_path (str): Path to the target json file. + """ + self.name_to_id, self.clip_ids, self.embeddings, self.embeddings_by_names = self.read_embeddings_from_file( + file_path + ) + + def load_embeddings_from_list_of_files(self, file_paths: List[str]) -> None: + """Load embeddings from a list of json files and don't allow duplicate keys. + + Args: + file_paths (List[str]): List of paths to the target json files. + """ + self.name_to_id = {} + self.clip_ids = [] + self.embeddings_by_names = {} + self.embeddings = {} + for file_path in file_paths: + ids, clip_ids, embeddings, embeddings_by_names = self.read_embeddings_from_file(file_path) + # check colliding keys + duplicates = set(self.embeddings.keys()) & set(embeddings.keys()) + if duplicates: + raise ValueError(f" [!] Duplicate embedding names <{duplicates}> in {file_path}") + # store values + self.name_to_id.update(ids) + self.clip_ids.extend(clip_ids) + self.embeddings_by_names.update(embeddings_by_names) + self.embeddings.update(embeddings) + + # reset name_to_id to get the right speaker ids + self.name_to_id = {name: i for i, name in enumerate(self.name_to_id)} + + def get_embedding_by_clip(self, clip_idx: str) -> List: + """Get embedding by clip ID. + + Args: + clip_idx (str): Target clip ID. + + Returns: + List: embedding as a list. + """ + return self.embeddings[clip_idx]["embedding"] + + def get_embeddings_by_name(self, idx: str) -> List[List]: + """Get all embeddings of a speaker. + + Args: + idx (str): Target name. + + Returns: + List[List]: all the embeddings of the given speaker. + """ + return self.embeddings_by_names[idx] + + def get_embeddings_by_names(self) -> Dict: + """Get all embeddings by names. + + Returns: + Dict: all the embeddings of each speaker. + """ + embeddings_by_names = {} + for x in self.embeddings.values(): + if x["name"] not in embeddings_by_names.keys(): + embeddings_by_names[x["name"]] = [x["embedding"]] + else: + embeddings_by_names[x["name"]].append(x["embedding"]) + return embeddings_by_names + + def get_mean_embedding(self, idx: str, num_samples: int = None, randomize: bool = False) -> np.ndarray: + """Get mean embedding of a idx. + + Args: + idx (str): Target name. + num_samples (int, optional): Number of samples to be averaged. Defaults to None. + randomize (bool, optional): Pick random `num_samples` of embeddings. Defaults to False. + + Returns: + np.ndarray: Mean embedding. + """ + embeddings = self.get_embeddings_by_name(idx) + if num_samples is None: + embeddings = np.stack(embeddings).mean(0) + else: + assert len(embeddings) >= num_samples, f" [!] {idx} has number of samples < {num_samples}" + if randomize: + embeddings = np.stack(random.choices(embeddings, k=num_samples)).mean(0) + else: + embeddings = np.stack(embeddings[:num_samples]).mean(0) + return embeddings + + def get_random_embedding(self) -> Any: + """Get a random embedding. + + Args: + + Returns: + np.ndarray: embedding. + """ + if self.embeddings: + return self.embeddings[random.choices(list(self.embeddings.keys()))[0]]["embedding"] + + return None + + def get_clips(self) -> List: + return sorted(self.embeddings.keys()) + + def init_encoder(self, model_path: str, config_path: str, use_cuda=False) -> None: + """Initialize a speaker encoder model. + + Args: + model_path (str): Model file path. + config_path (str): Model config file path. + use_cuda (bool, optional): Use CUDA. Defaults to False. + """ + self.use_cuda = use_cuda + self.encoder_config = load_config(config_path) + self.encoder = setup_encoder_model(self.encoder_config) + self.encoder_criterion = self.encoder.load_checkpoint( + self.encoder_config, model_path, eval=True, use_cuda=use_cuda, cache=True + ) + self.encoder_ap = AudioProcessor(**self.encoder_config.audio) + + def compute_embedding_from_clip(self, wav_file: Union[str, List[str]]) -> list: + """Compute a embedding from a given audio file. + + Args: + wav_file (Union[str, List[str]]): Target file path. + + Returns: + list: Computed embedding. + """ + + def _compute(wav_file: str): + waveform = self.encoder_ap.load_wav(wav_file, sr=self.encoder_ap.sample_rate) + if not self.encoder_config.model_params.get("use_torch_spec", False): + m_input = self.encoder_ap.melspectrogram(waveform) + m_input = torch.from_numpy(m_input) + else: + m_input = torch.from_numpy(waveform) + + if self.use_cuda: + m_input = m_input.cuda() + m_input = m_input.unsqueeze(0) + embedding = self.encoder.compute_embedding(m_input) + return embedding + + if isinstance(wav_file, list): + # compute the mean embedding + embeddings = None + for wf in wav_file: + embedding = _compute(wf) + if embeddings is None: + embeddings = embedding + else: + embeddings += embedding + return (embeddings / len(wav_file))[0].tolist() + embedding = _compute(wav_file) + return embedding[0].tolist() + + def compute_embeddings(self, feats: Union[torch.Tensor, np.ndarray]) -> List: + """Compute embedding from features. + + Args: + feats (Union[torch.Tensor, np.ndarray]): Input features. + + Returns: + List: computed embedding. + """ + if isinstance(feats, np.ndarray): + feats = torch.from_numpy(feats) + if feats.ndim == 2: + feats = feats.unsqueeze(0) + if self.use_cuda: + feats = feats.cuda() + return self.encoder.compute_embedding(feats) diff --git a/TTS/TTS/tts/utils/measures.py b/TTS/TTS/tts/utils/measures.py new file mode 100644 index 0000000000000000000000000000000000000000..90e862e1190bdb8443933580b3ff47321f70cecd --- /dev/null +++ b/TTS/TTS/tts/utils/measures.py @@ -0,0 +1,15 @@ +def alignment_diagonal_score(alignments, binary=False): + """ + Compute how diagonal alignment predictions are. It is useful + to measure the alignment consistency of a model + Args: + alignments (torch.Tensor): batch of alignments. + binary (bool): if True, ignore scores and consider attention + as a binary mask. + Shape: + - alignments : :math:`[B, T_de, T_en]` + """ + maxs = alignments.max(dim=1)[0] + if binary: + maxs[maxs > 0] = 1 + return maxs.mean(dim=1).mean(dim=0).item() diff --git a/TTS/TTS/tts/utils/monotonic_align/__init__.py b/TTS/TTS/tts/utils/monotonic_align/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/TTS/TTS/tts/utils/monotonic_align/core.pyx b/TTS/TTS/tts/utils/monotonic_align/core.pyx new file mode 100644 index 0000000000000000000000000000000000000000..091fcc3a50a51f3d3fee47a70825260757e6d885 --- /dev/null +++ b/TTS/TTS/tts/utils/monotonic_align/core.pyx @@ -0,0 +1,47 @@ +import numpy as np + +cimport cython +cimport numpy as np + +from cython.parallel import prange + + +@cython.boundscheck(False) +@cython.wraparound(False) +cdef void maximum_path_each(int[:,::1] path, float[:,::1] value, int t_x, int t_y, float max_neg_val) nogil: + cdef int x + cdef int y + cdef float v_prev + cdef float v_cur + cdef float tmp + cdef int index = t_x - 1 + + for y in range(t_y): + for x in range(max(0, t_x + y - t_y), min(t_x, y + 1)): + if x == y: + v_cur = max_neg_val + else: + v_cur = value[x, y-1] + if x == 0: + if y == 0: + v_prev = 0. + else: + v_prev = max_neg_val + else: + v_prev = value[x-1, y-1] + value[x, y] = max(v_cur, v_prev) + value[x, y] + + for y in range(t_y - 1, -1, -1): + path[index, y] = 1 + if index != 0 and (index == y or value[index, y-1] < value[index-1, y-1]): + index = index - 1 + + +@cython.boundscheck(False) +@cython.wraparound(False) +cpdef void maximum_path_c(int[:,:,::1] paths, float[:,:,::1] values, int[::1] t_xs, int[::1] t_ys, float max_neg_val=-1e9) nogil: + cdef int b = values.shape[0] + + cdef int i + for i in prange(b, nogil=True): + maximum_path_each(paths[i], values[i], t_xs[i], t_ys[i], max_neg_val) diff --git a/TTS/TTS/tts/utils/monotonic_align/setup.py b/TTS/TTS/tts/utils/monotonic_align/setup.py new file mode 100644 index 0000000000000000000000000000000000000000..f22bc6a35a5a04c9e6d7b82040973722c9b770c9 --- /dev/null +++ b/TTS/TTS/tts/utils/monotonic_align/setup.py @@ -0,0 +1,7 @@ +# from distutils.core import setup +# from Cython.Build import cythonize +# import numpy + +# setup(name='monotonic_align', +# ext_modules=cythonize("core.pyx"), +# include_dirs=[numpy.get_include()]) diff --git a/TTS/TTS/tts/utils/speakers.py b/TTS/TTS/tts/utils/speakers.py new file mode 100644 index 0000000000000000000000000000000000000000..e49695268d6a4a3ac8e5f41df8954f07b16b5566 --- /dev/null +++ b/TTS/TTS/tts/utils/speakers.py @@ -0,0 +1,222 @@ +import json +import os +from typing import Any, Dict, List, Union + +import fsspec +import numpy as np +import torch +from coqpit import Coqpit + +from TTS.config import get_from_config_or_model_args_with_default +from TTS.tts.utils.managers import EmbeddingManager + + +class SpeakerManager(EmbeddingManager): + """Manage the speakers for multi-speaker ๐ŸธTTS models. Load a datafile and parse the information + in a way that can be queried by speaker or clip. + + There are 3 different scenarios considered: + + 1. Models using speaker embedding layers. The datafile only maps speaker names to ids used by the embedding layer. + 2. Models using d-vectors. The datafile includes a dictionary in the following format. + + :: + + { + 'clip_name.wav':{ + 'name': 'speakerA', + 'embedding'[] + }, + ... + } + + + 3. Computing the d-vectors by the speaker encoder. It loads the speaker encoder model and + computes the d-vectors for a given clip or speaker. + + Args: + d_vectors_file_path (str, optional): Path to the metafile including x vectors. Defaults to "". + speaker_id_file_path (str, optional): Path to the metafile that maps speaker names to ids used by + TTS models. Defaults to "". + encoder_model_path (str, optional): Path to the speaker encoder model file. Defaults to "". + encoder_config_path (str, optional): Path to the spealer encoder config file. Defaults to "". + + Examples: + >>> # load audio processor and speaker encoder + >>> ap = AudioProcessor(**config.audio) + >>> manager = SpeakerManager(encoder_model_path=encoder_model_path, encoder_config_path=encoder_config_path) + >>> # load a sample audio and compute embedding + >>> waveform = ap.load_wav(sample_wav_path) + >>> mel = ap.melspectrogram(waveform) + >>> d_vector = manager.compute_embeddings(mel.T) + """ + + def __init__( + self, + data_items: List[List[Any]] = None, + d_vectors_file_path: str = "", + speaker_id_file_path: str = "", + encoder_model_path: str = "", + encoder_config_path: str = "", + use_cuda: bool = False, + ): + super().__init__( + embedding_file_path=d_vectors_file_path, + id_file_path=speaker_id_file_path, + encoder_model_path=encoder_model_path, + encoder_config_path=encoder_config_path, + use_cuda=use_cuda, + ) + + if data_items: + self.set_ids_from_data(data_items, parse_key="speaker_name") + + @property + def num_speakers(self): + return len(self.name_to_id) + + @property + def speaker_names(self): + return list(self.name_to_id.keys()) + + def get_speakers(self) -> List: + return self.name_to_id + + @staticmethod + def init_from_config(config: "Coqpit", samples: Union[List[List], List[Dict]] = None) -> "SpeakerManager": + """Initialize a speaker manager from config + + Args: + config (Coqpit): Config object. + samples (Union[List[List], List[Dict]], optional): List of data samples to parse out the speaker names. + Defaults to None. + + Returns: + SpeakerEncoder: Speaker encoder object. + """ + speaker_manager = None + if get_from_config_or_model_args_with_default(config, "use_speaker_embedding", False): + if samples: + speaker_manager = SpeakerManager(data_items=samples) + if get_from_config_or_model_args_with_default(config, "speaker_file", None): + speaker_manager = SpeakerManager( + speaker_id_file_path=get_from_config_or_model_args_with_default(config, "speaker_file", None) + ) + if get_from_config_or_model_args_with_default(config, "speakers_file", None): + speaker_manager = SpeakerManager( + speaker_id_file_path=get_from_config_or_model_args_with_default(config, "speakers_file", None) + ) + + if get_from_config_or_model_args_with_default(config, "use_d_vector_file", False): + speaker_manager = SpeakerManager() + if get_from_config_or_model_args_with_default(config, "d_vector_file", None): + speaker_manager = SpeakerManager( + d_vectors_file_path=get_from_config_or_model_args_with_default(config, "d_vector_file", None) + ) + return speaker_manager + + +def _set_file_path(path): + """Find the speakers.json under the given path or the above it. + Intended to band aid the different paths returned in restored and continued training.""" + path_restore = os.path.join(os.path.dirname(path), "speakers.json") + path_continue = os.path.join(path, "speakers.json") + fs = fsspec.get_mapper(path).fs + if fs.exists(path_restore): + return path_restore + if fs.exists(path_continue): + return path_continue + raise FileNotFoundError(f" [!] `speakers.json` not found in {path}") + + +def load_speaker_mapping(out_path): + """Loads speaker mapping if already present.""" + if os.path.splitext(out_path)[1] == ".json": + json_file = out_path + else: + json_file = _set_file_path(out_path) + with fsspec.open(json_file, "r") as f: + return json.load(f) + + +def save_speaker_mapping(out_path, speaker_mapping): + """Saves speaker mapping if not yet present.""" + if out_path is not None: + speakers_json_path = _set_file_path(out_path) + with fsspec.open(speakers_json_path, "w") as f: + json.dump(speaker_mapping, f, indent=4) + + +def get_speaker_manager(c: Coqpit, data: List = None, restore_path: str = None, out_path: str = None) -> SpeakerManager: + """Initiate a `SpeakerManager` instance by the provided config. + + Args: + c (Coqpit): Model configuration. + restore_path (str): Path to a previous training folder. + data (List): Data samples used in training to infer speakers from. It must be provided if speaker embedding + layers is used. Defaults to None. + out_path (str, optional): Save the generated speaker IDs to a output path. Defaults to None. + + Returns: + SpeakerManager: initialized and ready to use instance. + """ + speaker_manager = SpeakerManager() + if c.use_speaker_embedding: + if data is not None: + speaker_manager.set_ids_from_data(data, parse_key="speaker_name") + if restore_path: + speakers_file = _set_file_path(restore_path) + # restoring speaker manager from a previous run. + if c.use_d_vector_file: + # restore speaker manager with the embedding file + if not os.path.exists(speakers_file): + print("WARNING: speakers.json was not found in restore_path, trying to use CONFIG.d_vector_file") + if not os.path.exists(c.d_vector_file): + raise RuntimeError( + "You must copy the file speakers.json to restore_path, or set a valid file in CONFIG.d_vector_file" + ) + speaker_manager.load_embeddings_from_file(c.d_vector_file) + speaker_manager.load_embeddings_from_file(speakers_file) + elif not c.use_d_vector_file: # restor speaker manager with speaker ID file. + speaker_ids_from_data = speaker_manager.name_to_id + speaker_manager.load_ids_from_file(speakers_file) + assert all( + speaker in speaker_manager.name_to_id for speaker in speaker_ids_from_data + ), " [!] You cannot introduce new speakers to a pre-trained model." + elif c.use_d_vector_file and c.d_vector_file: + # new speaker manager with external speaker embeddings. + speaker_manager.load_embeddings_from_file(c.d_vector_file) + elif c.use_d_vector_file and not c.d_vector_file: + raise "use_d_vector_file is True, so you need pass a external speaker embedding file." + elif c.use_speaker_embedding and "speakers_file" in c and c.speakers_file: + # new speaker manager with speaker IDs file. + speaker_manager.load_ids_from_file(c.speakers_file) + + if speaker_manager.num_speakers > 0: + print( + " > Speaker manager is loaded with {} speakers: {}".format( + speaker_manager.num_speakers, ", ".join(speaker_manager.name_to_id) + ) + ) + + # save file if path is defined + if out_path: + out_file_path = os.path.join(out_path, "speakers.json") + print(f" > Saving `speakers.json` to {out_file_path}.") + if c.use_d_vector_file and c.d_vector_file: + speaker_manager.save_embeddings_to_file(out_file_path) + else: + speaker_manager.save_ids_to_file(out_file_path) + return speaker_manager + + +def get_speaker_balancer_weights(items: list): + speaker_names = np.array([item["speaker_name"] for item in items]) + unique_speaker_names = np.unique(speaker_names).tolist() + speaker_ids = [unique_speaker_names.index(l) for l in speaker_names] + speaker_count = np.array([len(np.where(speaker_names == l)[0]) for l in unique_speaker_names]) + weight_speaker = 1.0 / speaker_count + dataset_samples_weight = np.array([weight_speaker[l] for l in speaker_ids]) + # normalize + dataset_samples_weight = dataset_samples_weight / np.linalg.norm(dataset_samples_weight) + return torch.from_numpy(dataset_samples_weight).float() diff --git a/TTS/TTS/tts/utils/ssim.py b/TTS/TTS/tts/utils/ssim.py new file mode 100644 index 0000000000000000000000000000000000000000..4bc3befc5bd3fb154cd48b4458184a4d8f3dca78 --- /dev/null +++ b/TTS/TTS/tts/utils/ssim.py @@ -0,0 +1,383 @@ +# Adopted from https://github.com/photosynthesis-team/piq + +from typing import List, Optional, Tuple, Union + +import torch +import torch.nn.functional as F +from torch.nn.modules.loss import _Loss + + +def _reduce(x: torch.Tensor, reduction: str = "mean") -> torch.Tensor: + r"""Reduce input in batch dimension if needed. + Args: + x: Tensor with shape (N, *). + reduction: Specifies the reduction type: + ``'none'`` | ``'mean'`` | ``'sum'``. Default: ``'mean'`` + """ + if reduction == "none": + return x + if reduction == "mean": + return x.mean(dim=0) + if reduction == "sum": + return x.sum(dim=0) + raise ValueError("Unknown reduction. Expected one of {'none', 'mean', 'sum'}") + + +def _validate_input( + tensors: List[torch.Tensor], + dim_range: Tuple[int, int] = (0, -1), + data_range: Tuple[float, float] = (0.0, -1.0), + # size_dim_range: Tuple[float, float] = (0., -1.), + size_range: Optional[Tuple[int, int]] = None, +) -> None: + r"""Check that input(-s) satisfies the requirements + Args: + tensors: Tensors to check + dim_range: Allowed number of dimensions. (min, max) + data_range: Allowed range of values in tensors. (min, max) + size_range: Dimensions to include in size comparison. (start_dim, end_dim + 1) + """ + + if not __debug__: + return + + x = tensors[0] + + for t in tensors: + assert torch.is_tensor(t), f"Expected torch.Tensor, got {type(t)}" + assert t.device == x.device, f"Expected tensors to be on {x.device}, got {t.device}" + + if size_range is None: + assert t.size() == x.size(), f"Expected tensors with same size, got {t.size()} and {x.size()}" + else: + assert ( + t.size()[size_range[0] : size_range[1]] == x.size()[size_range[0] : size_range[1]] + ), f"Expected tensors with same size at given dimensions, got {t.size()} and {x.size()}" + + if dim_range[0] == dim_range[1]: + assert t.dim() == dim_range[0], f"Expected number of dimensions to be {dim_range[0]}, got {t.dim()}" + elif dim_range[0] < dim_range[1]: + assert ( + dim_range[0] <= t.dim() <= dim_range[1] + ), f"Expected number of dimensions to be between {dim_range[0]} and {dim_range[1]}, got {t.dim()}" + + if data_range[0] < data_range[1]: + assert data_range[0] <= t.min(), f"Expected values to be greater or equal to {data_range[0]}, got {t.min()}" + assert t.max() <= data_range[1], f"Expected values to be lower or equal to {data_range[1]}, got {t.max()}" + + +def gaussian_filter(kernel_size: int, sigma: float) -> torch.Tensor: + r"""Returns 2D Gaussian kernel N(0,`sigma`^2) + Args: + size: Size of the kernel + sigma: Std of the distribution + Returns: + gaussian_kernel: Tensor with shape (1, kernel_size, kernel_size) + """ + coords = torch.arange(kernel_size, dtype=torch.float32) + coords -= (kernel_size - 1) / 2.0 + + g = coords**2 + g = (-(g.unsqueeze(0) + g.unsqueeze(1)) / (2 * sigma**2)).exp() + + g /= g.sum() + return g.unsqueeze(0) + + +def ssim( + x: torch.Tensor, + y: torch.Tensor, + kernel_size: int = 11, + kernel_sigma: float = 1.5, + data_range: Union[int, float] = 1.0, + reduction: str = "mean", + full: bool = False, + downsample: bool = True, + k1: float = 0.01, + k2: float = 0.03, +) -> List[torch.Tensor]: + r"""Interface of Structural Similarity (SSIM) index. + Inputs supposed to be in range ``[0, data_range]``. + To match performance with skimage and tensorflow set ``'downsample' = True``. + + Args: + x: An input tensor. Shape :math:`(N, C, H, W)` or :math:`(N, C, H, W, 2)`. + y: A target tensor. Shape :math:`(N, C, H, W)` or :math:`(N, C, H, W, 2)`. + kernel_size: The side-length of the sliding window used in comparison. Must be an odd value. + kernel_sigma: Sigma of normal distribution. + data_range: Maximum value range of images (usually 1.0 or 255). + reduction: Specifies the reduction type: + ``'none'`` | ``'mean'`` | ``'sum'``. Default:``'mean'`` + full: Return cs map or not. + downsample: Perform average pool before SSIM computation. Default: True + k1: Algorithm parameter, K1 (small constant). + k2: Algorithm parameter, K2 (small constant). + Try a larger K2 constant (e.g. 0.4) if you get a negative or NaN results. + + Returns: + Value of Structural Similarity (SSIM) index. In case of 5D input tensors, complex value is returned + as a tensor of size 2. + + References: + Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). + Image quality assessment: From error visibility to structural similarity. + IEEE Transactions on Image Processing, 13, 600-612. + https://ece.uwaterloo.ca/~z70wang/publications/ssim.pdf, + DOI: `10.1109/TIP.2003.819861` + """ + assert kernel_size % 2 == 1, f"Kernel size must be odd, got [{kernel_size}]" + _validate_input([x, y], dim_range=(4, 5), data_range=(0, data_range)) + + x = x / float(data_range) + y = y / float(data_range) + + # Averagepool image if the size is large enough + f = max(1, round(min(x.size()[-2:]) / 256)) + if (f > 1) and downsample: + x = F.avg_pool2d(x, kernel_size=f) + y = F.avg_pool2d(y, kernel_size=f) + + kernel = gaussian_filter(kernel_size, kernel_sigma).repeat(x.size(1), 1, 1, 1).to(y) + _compute_ssim_per_channel = _ssim_per_channel_complex if x.dim() == 5 else _ssim_per_channel + ssim_map, cs_map = _compute_ssim_per_channel(x=x, y=y, kernel=kernel, k1=k1, k2=k2) + ssim_val = ssim_map.mean(1) + cs = cs_map.mean(1) + + ssim_val = _reduce(ssim_val, reduction) + cs = _reduce(cs, reduction) + + if full: + return [ssim_val, cs] + + return ssim_val + + +class SSIMLoss(_Loss): + r"""Creates a criterion that measures the structural similarity index error between + each element in the input :math:`x` and target :math:`y`. + + To match performance with skimage and tensorflow set ``'downsample' = True``. + + The unreduced (i.e. with :attr:`reduction` set to ``'none'``) loss can be described as: + + .. math:: + SSIM = \{ssim_1,\dots,ssim_{N \times C}\}\\ + ssim_{l}(x, y) = \frac{(2 \mu_x \mu_y + c_1) (2 \sigma_{xy} + c_2)} + {(\mu_x^2 +\mu_y^2 + c_1)(\sigma_x^2 +\sigma_y^2 + c_2)}, + + where :math:`N` is the batch size, `C` is the channel size. If :attr:`reduction` is not ``'none'`` + (default ``'mean'``), then: + + .. math:: + SSIMLoss(x, y) = + \begin{cases} + \operatorname{mean}(1 - SSIM), & \text{if reduction} = \text{'mean';}\\ + \operatorname{sum}(1 - SSIM), & \text{if reduction} = \text{'sum'.} + \end{cases} + + :math:`x` and :math:`y` are tensors of arbitrary shapes with a total + of :math:`n` elements each. + + The sum operation still operates over all the elements, and divides by :math:`n`. + The division by :math:`n` can be avoided if one sets ``reduction = 'sum'``. + In case of 5D input tensors, complex value is returned as a tensor of size 2. + + Args: + kernel_size: By default, the mean and covariance of a pixel is obtained + by convolution with given filter_size. + kernel_sigma: Standard deviation for Gaussian kernel. + k1: Coefficient related to c1 in the above equation. + k2: Coefficient related to c2 in the above equation. + downsample: Perform average pool before SSIM computation. Default: True + reduction: Specifies the reduction type: + ``'none'`` | ``'mean'`` | ``'sum'``. Default:``'mean'`` + data_range: Maximum value range of images (usually 1.0 or 255). + + Examples: + >>> loss = SSIMLoss() + >>> x = torch.rand(3, 3, 256, 256, requires_grad=True) + >>> y = torch.rand(3, 3, 256, 256) + >>> output = loss(x, y) + >>> output.backward() + + References: + Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). + Image quality assessment: From error visibility to structural similarity. + IEEE Transactions on Image Processing, 13, 600-612. + https://ece.uwaterloo.ca/~z70wang/publications/ssim.pdf, + DOI:`10.1109/TIP.2003.819861` + """ + __constants__ = ["kernel_size", "k1", "k2", "sigma", "kernel", "reduction"] + + def __init__( + self, + kernel_size: int = 11, + kernel_sigma: float = 1.5, + k1: float = 0.01, + k2: float = 0.03, + downsample: bool = True, + reduction: str = "mean", + data_range: Union[int, float] = 1.0, + ) -> None: + super().__init__() + + # Generic loss parameters. + self.reduction = reduction + + # Loss-specific parameters. + self.kernel_size = kernel_size + + # This check might look redundant because kernel size is checked within the ssim function anyway. + # However, this check allows to fail fast when the loss is being initialised and training has not been started. + assert kernel_size % 2 == 1, f"Kernel size must be odd, got [{kernel_size}]" + self.kernel_sigma = kernel_sigma + self.k1 = k1 + self.k2 = k2 + self.downsample = downsample + self.data_range = data_range + + def forward(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor: + r"""Computation of Structural Similarity (SSIM) index as a loss function. + + Args: + x: An input tensor. Shape :math:`(N, C, H, W)` or :math:`(N, C, H, W, 2)`. + y: A target tensor. Shape :math:`(N, C, H, W)` or :math:`(N, C, H, W, 2)`. + + Returns: + Value of SSIM loss to be minimized, i.e ``1 - ssim`` in [0, 1] range. In case of 5D input tensors, + complex value is returned as a tensor of size 2. + """ + + score = ssim( + x=x, + y=y, + kernel_size=self.kernel_size, + kernel_sigma=self.kernel_sigma, + downsample=self.downsample, + data_range=self.data_range, + reduction=self.reduction, + full=False, + k1=self.k1, + k2=self.k2, + ) + return torch.ones_like(score) - score + + +def _ssim_per_channel( + x: torch.Tensor, + y: torch.Tensor, + kernel: torch.Tensor, + k1: float = 0.01, + k2: float = 0.03, +) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: + r"""Calculate Structural Similarity (SSIM) index for X and Y per channel. + + Args: + x: An input tensor. Shape :math:`(N, C, H, W)`. + y: A target tensor. Shape :math:`(N, C, H, W)`. + kernel: 2D Gaussian kernel. + k1: Algorithm parameter, K1 (small constant, see [1]). + k2: Algorithm parameter, K2 (small constant, see [1]). + Try a larger K2 constant (e.g. 0.4) if you get a negative or NaN results. + + Returns: + Full Value of Structural Similarity (SSIM) index. + """ + if x.size(-1) < kernel.size(-1) or x.size(-2) < kernel.size(-2): + raise ValueError( + f"Kernel size can't be greater than actual input size. Input size: {x.size()}. " + f"Kernel size: {kernel.size()}" + ) + + c1 = k1**2 + c2 = k2**2 + n_channels = x.size(1) + mu_x = F.conv2d(x, weight=kernel, stride=1, padding=0, groups=n_channels) + mu_y = F.conv2d(y, weight=kernel, stride=1, padding=0, groups=n_channels) + + mu_xx = mu_x**2 + mu_yy = mu_y**2 + mu_xy = mu_x * mu_y + + sigma_xx = F.conv2d(x**2, weight=kernel, stride=1, padding=0, groups=n_channels) - mu_xx + sigma_yy = F.conv2d(y**2, weight=kernel, stride=1, padding=0, groups=n_channels) - mu_yy + sigma_xy = F.conv2d(x * y, weight=kernel, stride=1, padding=0, groups=n_channels) - mu_xy + + # Contrast sensitivity (CS) with alpha = beta = gamma = 1. + cs = (2.0 * sigma_xy + c2) / (sigma_xx + sigma_yy + c2) + + # Structural similarity (SSIM) + ss = (2.0 * mu_xy + c1) / (mu_xx + mu_yy + c1) * cs + + ssim_val = ss.mean(dim=(-1, -2)) + cs = cs.mean(dim=(-1, -2)) + return ssim_val, cs + + +def _ssim_per_channel_complex( + x: torch.Tensor, + y: torch.Tensor, + kernel: torch.Tensor, + k1: float = 0.01, + k2: float = 0.03, +) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: + r"""Calculate Structural Similarity (SSIM) index for Complex X and Y per channel. + + Args: + x: An input tensor. Shape :math:`(N, C, H, W, 2)`. + y: A target tensor. Shape :math:`(N, C, H, W, 2)`. + kernel: 2-D gauss kernel. + k1: Algorithm parameter, K1 (small constant, see [1]). + k2: Algorithm parameter, K2 (small constant, see [1]). + Try a larger K2 constant (e.g. 0.4) if you get a negative or NaN results. + + Returns: + Full Value of Complex Structural Similarity (SSIM) index. + """ + n_channels = x.size(1) + if x.size(-2) < kernel.size(-1) or x.size(-3) < kernel.size(-2): + raise ValueError( + f"Kernel size can't be greater than actual input size. Input size: {x.size()}. " + f"Kernel size: {kernel.size()}" + ) + + c1 = k1**2 + c2 = k2**2 + + x_real = x[..., 0] + x_imag = x[..., 1] + y_real = y[..., 0] + y_imag = y[..., 1] + + mu1_real = F.conv2d(x_real, weight=kernel, stride=1, padding=0, groups=n_channels) + mu1_imag = F.conv2d(x_imag, weight=kernel, stride=1, padding=0, groups=n_channels) + mu2_real = F.conv2d(y_real, weight=kernel, stride=1, padding=0, groups=n_channels) + mu2_imag = F.conv2d(y_imag, weight=kernel, stride=1, padding=0, groups=n_channels) + + mu1_sq = mu1_real.pow(2) + mu1_imag.pow(2) + mu2_sq = mu2_real.pow(2) + mu2_imag.pow(2) + mu1_mu2_real = mu1_real * mu2_real - mu1_imag * mu2_imag + mu1_mu2_imag = mu1_real * mu2_imag + mu1_imag * mu2_real + + compensation = 1.0 + + x_sq = x_real.pow(2) + x_imag.pow(2) + y_sq = y_real.pow(2) + y_imag.pow(2) + x_y_real = x_real * y_real - x_imag * y_imag + x_y_imag = x_real * y_imag + x_imag * y_real + + sigma1_sq = F.conv2d(x_sq, weight=kernel, stride=1, padding=0, groups=n_channels) - mu1_sq + sigma2_sq = F.conv2d(y_sq, weight=kernel, stride=1, padding=0, groups=n_channels) - mu2_sq + sigma12_real = F.conv2d(x_y_real, weight=kernel, stride=1, padding=0, groups=n_channels) - mu1_mu2_real + sigma12_imag = F.conv2d(x_y_imag, weight=kernel, stride=1, padding=0, groups=n_channels) - mu1_mu2_imag + sigma12 = torch.stack((sigma12_imag, sigma12_real), dim=-1) + mu1_mu2 = torch.stack((mu1_mu2_real, mu1_mu2_imag), dim=-1) + # Set alpha = beta = gamma = 1. + cs_map = (sigma12 * 2 + c2 * compensation) / (sigma1_sq.unsqueeze(-1) + sigma2_sq.unsqueeze(-1) + c2 * compensation) + ssim_map = (mu1_mu2 * 2 + c1 * compensation) / (mu1_sq.unsqueeze(-1) + mu2_sq.unsqueeze(-1) + c1 * compensation) + ssim_map = ssim_map * cs_map + + ssim_val = ssim_map.mean(dim=(-2, -3)) + cs = cs_map.mean(dim=(-2, -3)) + + return ssim_val, cs diff --git a/TTS/TTS/tts/utils/synthesis.py b/TTS/TTS/tts/utils/synthesis.py new file mode 100644 index 0000000000000000000000000000000000000000..797151c2540fe86b26df2b52bf734f0a93389f72 --- /dev/null +++ b/TTS/TTS/tts/utils/synthesis.py @@ -0,0 +1,343 @@ +from typing import Dict + +import numpy as np +import torch +from torch import nn + + +def numpy_to_torch(np_array, dtype, cuda=False, device="cpu"): + if cuda: + device = "cuda" + if np_array is None: + return None + tensor = torch.as_tensor(np_array, dtype=dtype, device=device) + return tensor + + +def compute_style_mel(style_wav, ap, cuda=False, device="cpu"): + if cuda: + device = "cuda" + style_mel = torch.FloatTensor( + ap.melspectrogram(ap.load_wav(style_wav, sr=ap.sample_rate)), + device=device, + ).unsqueeze(0) + return style_mel + + +def run_model_torch( + model: nn.Module, + inputs: torch.Tensor, + speaker_id: int = None, + style_mel: torch.Tensor = None, + style_text: str = None, + d_vector: torch.Tensor = None, + language_id: torch.Tensor = None, +) -> Dict: + """Run a torch model for inference. It does not support batch inference. + + Args: + model (nn.Module): The model to run inference. + inputs (torch.Tensor): Input tensor with character ids. + speaker_id (int, optional): Input speaker ids for multi-speaker models. Defaults to None. + style_mel (torch.Tensor, optional): Spectrograms used for voice styling . Defaults to None. + d_vector (torch.Tensor, optional): d-vector for multi-speaker models . Defaults to None. + + Returns: + Dict: model outputs. + """ + input_lengths = torch.tensor(inputs.shape[1:2]).to(inputs.device) + if hasattr(model, "module"): + _func = model.module.inference + else: + _func = model.inference + outputs = _func( + inputs, + aux_input={ + "x_lengths": input_lengths, + "speaker_ids": speaker_id, + "d_vectors": d_vector, + "style_mel": style_mel, + "style_text": style_text, + "language_ids": language_id, + }, + ) + return outputs + + +def trim_silence(wav, ap): + return wav[: ap.find_endpoint(wav)] + + +def inv_spectrogram(postnet_output, ap, CONFIG): + if CONFIG.model.lower() in ["tacotron"]: + wav = ap.inv_spectrogram(postnet_output.T) + else: + wav = ap.inv_melspectrogram(postnet_output.T) + return wav + + +def id_to_torch(aux_id, cuda=False, device="cpu"): + if cuda: + device = "cuda" + if aux_id is not None: + aux_id = np.asarray(aux_id) + aux_id = torch.from_numpy(aux_id).to(device) + return aux_id + + +def embedding_to_torch(d_vector, cuda=False, device="cpu"): + if cuda: + device = "cuda" + if d_vector is not None: + d_vector = np.asarray(d_vector) + d_vector = torch.from_numpy(d_vector).type(torch.FloatTensor) + d_vector = d_vector.squeeze().unsqueeze(0).to(device) + return d_vector + + +# TODO: perform GL with pytorch for batching +def apply_griffin_lim(inputs, input_lens, CONFIG, ap): + """Apply griffin-lim to each sample iterating throught the first dimension. + Args: + inputs (Tensor or np.Array): Features to be converted by GL. First dimension is the batch size. + input_lens (Tensor or np.Array): 1D array of sample lengths. + CONFIG (Dict): TTS config. + ap (AudioProcessor): TTS audio processor. + """ + wavs = [] + for idx, spec in enumerate(inputs): + wav_len = (input_lens[idx] * ap.hop_length) - ap.hop_length # inverse librosa padding + wav = inv_spectrogram(spec, ap, CONFIG) + # assert len(wav) == wav_len, f" [!] wav lenght: {len(wav)} vs expected: {wav_len}" + wavs.append(wav[:wav_len]) + return wavs + + +def synthesis( + model, + text, + CONFIG, + use_cuda, + speaker_id=None, + style_wav=None, + style_text=None, + use_griffin_lim=False, + do_trim_silence=False, + d_vector=None, + language_id=None, +): + """Synthesize voice for the given text using Griffin-Lim vocoder or just compute output features to be passed to + the vocoder model. + + Args: + model (TTS.tts.models): + The TTS model to synthesize audio with. + + text (str): + The input text to convert to speech. + + CONFIG (Coqpit): + Model configuration. + + use_cuda (bool): + Enable/disable CUDA. + + speaker_id (int): + Speaker ID passed to the speaker embedding layer in multi-speaker model. Defaults to None. + + style_wav (str | Dict[str, float]): + Path or tensor to/of a waveform used for computing the style embedding based on GST or Capacitron. + Defaults to None, meaning that Capacitron models will sample from the prior distribution to + generate random but realistic prosody. + + style_text (str): + Transcription of style_wav for Capacitron models. Defaults to None. + + enable_eos_bos_chars (bool): + enable special chars for end of sentence and start of sentence. Defaults to False. + + do_trim_silence (bool): + trim silence after synthesis. Defaults to False. + + d_vector (torch.Tensor): + d-vector for multi-speaker models in share :math:`[1, D]`. Defaults to None. + + language_id (int): + Language ID passed to the language embedding layer in multi-langual model. Defaults to None. + """ + # device + device = next(model.parameters()).device + if use_cuda: + device = "cuda" + + # GST or Capacitron processing + # TODO: need to handle the case of setting both gst and capacitron to true somewhere + style_mel = None + if CONFIG.has("gst") and CONFIG.gst and style_wav is not None: + if isinstance(style_wav, dict): + style_mel = style_wav + else: + style_mel = compute_style_mel(style_wav, model.ap, device=device) + + if CONFIG.has("capacitron_vae") and CONFIG.use_capacitron_vae and style_wav is not None: + style_mel = compute_style_mel(style_wav, model.ap, device=device) + style_mel = style_mel.transpose(1, 2) # [1, time, depth] + + language_name = None + if language_id is not None: + language = [k for k, v in model.language_manager.name_to_id.items() if v == language_id] + assert len(language) == 1, "language_id must be a valid language" + language_name = language[0] + + # convert text to sequence of token IDs + text_inputs = np.asarray( + model.tokenizer.text_to_ids(text, language=language_name), + dtype=np.int32, + ) + # pass tensors to backend + if speaker_id is not None: + speaker_id = id_to_torch(speaker_id, device=device) + + if d_vector is not None: + d_vector = embedding_to_torch(d_vector, device=device) + + if language_id is not None: + language_id = id_to_torch(language_id, device=device) + + if not isinstance(style_mel, dict): + # GST or Capacitron style mel + style_mel = numpy_to_torch(style_mel, torch.float, device=device) + if style_text is not None: + style_text = np.asarray( + model.tokenizer.text_to_ids(style_text, language=language_id), + dtype=np.int32, + ) + style_text = numpy_to_torch(style_text, torch.long, device=device) + style_text = style_text.unsqueeze(0) + + text_inputs = numpy_to_torch(text_inputs, torch.long, device=device) + text_inputs = text_inputs.unsqueeze(0) + # synthesize voice + outputs = run_model_torch( + model, + text_inputs, + speaker_id, + style_mel, + style_text, + d_vector=d_vector, + language_id=language_id, + ) + model_outputs = outputs["model_outputs"] + model_outputs = model_outputs[0].data.cpu().numpy() + alignments = outputs["alignments"] + + # convert outputs to numpy + # plot results + wav = None + model_outputs = model_outputs.squeeze() + if model_outputs.ndim == 2: # [T, C_spec] + if use_griffin_lim: + wav = inv_spectrogram(model_outputs, model.ap, CONFIG) + # trim silence + if do_trim_silence: + wav = trim_silence(wav, model.ap) + else: # [T,] + wav = model_outputs + return_dict = { + "wav": wav, + "alignments": alignments, + "text_inputs": text_inputs, + "outputs": outputs, + } + return return_dict + + +def transfer_voice( + model, + CONFIG, + use_cuda, + reference_wav, + speaker_id=None, + d_vector=None, + reference_speaker_id=None, + reference_d_vector=None, + do_trim_silence=False, + use_griffin_lim=False, +): + """Synthesize voice for the given text using Griffin-Lim vocoder or just compute output features to be passed to + the vocoder model. + + Args: + model (TTS.tts.models): + The TTS model to synthesize audio with. + + CONFIG (Coqpit): + Model configuration. + + use_cuda (bool): + Enable/disable CUDA. + + reference_wav (str): + Path of reference_wav to be used to voice conversion. + + speaker_id (int): + Speaker ID passed to the speaker embedding layer in multi-speaker model. Defaults to None. + + d_vector (torch.Tensor): + d-vector for multi-speaker models in share :math:`[1, D]`. Defaults to None. + + reference_speaker_id (int): + Reference Speaker ID passed to the speaker embedding layer in multi-speaker model. Defaults to None. + + reference_d_vector (torch.Tensor): + Reference d-vector for multi-speaker models in share :math:`[1, D]`. Defaults to None. + + enable_eos_bos_chars (bool): + enable special chars for end of sentence and start of sentence. Defaults to False. + + do_trim_silence (bool): + trim silence after synthesis. Defaults to False. + """ + # device + device = next(model.parameters()).device + if use_cuda: + device = "cuda" + + # pass tensors to backend + if speaker_id is not None: + speaker_id = id_to_torch(speaker_id, device=device) + + if d_vector is not None: + d_vector = embedding_to_torch(d_vector, device=device) + + if reference_d_vector is not None: + reference_d_vector = embedding_to_torch(reference_d_vector, device=device) + + # load reference_wav audio + reference_wav = embedding_to_torch( + model.ap.load_wav( + reference_wav, sr=model.args.encoder_sample_rate if model.args.encoder_sample_rate else model.ap.sample_rate + ), + device=device, + ) + + if hasattr(model, "module"): + _func = model.module.inference_voice_conversion + else: + _func = model.inference_voice_conversion + model_outputs = _func(reference_wav, speaker_id, d_vector, reference_speaker_id, reference_d_vector) + + # convert outputs to numpy + # plot results + wav = None + model_outputs = model_outputs.squeeze() + if model_outputs.ndim == 2: # [T, C_spec] + if use_griffin_lim: + wav = inv_spectrogram(model_outputs, model.ap, CONFIG) + # trim silence + if do_trim_silence: + wav = trim_silence(wav, model.ap) + else: # [T,] + wav = model_outputs + + return wav diff --git a/TTS/TTS/tts/utils/text/__init__.py b/TTS/TTS/tts/utils/text/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..593372dc7cb2fba240eb5f08e8e2cfae5a4b4e45 --- /dev/null +++ b/TTS/TTS/tts/utils/text/__init__.py @@ -0,0 +1 @@ +from TTS.tts.utils.text.tokenizer import TTSTokenizer diff --git a/TTS/TTS/tts/utils/text/bangla/__init__.py b/TTS/TTS/tts/utils/text/bangla/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/TTS/TTS/tts/utils/text/bangla/phonemizer.py b/TTS/TTS/tts/utils/text/bangla/phonemizer.py new file mode 100644 index 0000000000000000000000000000000000000000..e15830fe8af6cd08ea03fb4f8e40a9ddbe70f1f6 --- /dev/null +++ b/TTS/TTS/tts/utils/text/bangla/phonemizer.py @@ -0,0 +1,121 @@ +import re + +import bangla +from bnnumerizer import numerize +from bnunicodenormalizer import Normalizer + +# initialize +bnorm = Normalizer() + + +attribution_dict = { + "เฆธเฆพเฆƒ": "เฆธเฆพเฆฒเงเฆฒเฆพเฆฒเงเฆฒเฆพเฆนเง เฆ†เฆฒเฆพเฆ‡เฆนเฆฟ เฆ“เฆฏเฆผเฆพ เฆธเฆพเฆฒเงเฆฒเฆพเฆฎ", + "เฆ†เฆƒ": "เฆ†เฆฒเฆพเฆ‡เฆนเฆฟเฆธ เฆธเฆพเฆฒเฆพเฆฎ", + "เฆฐเฆพเฆƒ": "เฆฐเฆพเฆฆเฆฟเฆ†เฆฒเงเฆฒเฆพเฆนเง เฆ†เฆจเฆนเง", + "เฆฐเฆนเฆƒ": "เฆฐเฆนเฆฎเฆพเฆคเงเฆฒเงเฆฒเฆพเฆนเฆฟ เฆ†เฆฒเฆพเฆ‡เฆนเฆฟ", + "เฆฐเฆนเฆฟเฆƒ": "เฆฐเฆนเฆฟเฆฎเฆพเฆนเงเฆฒเงเฆฒเฆพเฆน", + "เฆนเฆพเฆซเฆฟเฆƒ": "เฆนเฆพเฆซเฆฟเฆฏเฆพเฆนเงเฆฒเงเฆฒเฆพเฆน", + "เฆฌเฆพเฆฏเฆผเฆพเฆจ": "เฆฌเฆพเฆ‡เฆ†เฆจ", + "เฆฆเฆพเฆƒเฆฌเฆพเฆƒ": "เฆฆเฆพเฆฎเฆพเฆค เฆฌเฆพเฆฐเฆพเฆ•เฆพเฆคเงเฆนเงเฆฎ,เฆฆเฆพเฆฎเฆพเฆค เฆฌเฆพเฆฐเฆพเฆ•เฆพเฆคเงเฆฒเงเฆฒเฆพเฆน", + # "เฆ†เงŸเฆพเฆค" : "เฆ†เฆ‡เฆ†เฆค",#เฆ†เฆ‡เฆ†เฆค + # "เฆ“เงŸเฆพ" : "เฆ“เฆ†", + # "เฆ“เงŸเฆพเฆธเฆพเฆฒเงเฆฒเฆพเฆฎ" : "เฆ“เฆ†เฆธเฆพเฆฒเงเฆฒเฆพเฆฎ", + # "เฆ•เง‡เฆจ" : "เฆ•เง‡เฆจเง‹", + # "เฆ•เง‹เฆจ" : "เฆ•เง‹เฆจเง‹", + # "เฆฌเฆฒ" : "เฆฌเฆฒเง‹", + # "เฆšเฆฒ" : "เฆšเฆฒเง‹", + # "เฆ•เฆฐ" : "เฆ•เฆฐเง‹", + # "เฆฐเฆพเฆ–" : "เฆฐเฆพเฆ–เง‹", + "โ€™": "", + "โ€˜": "", + # "เงŸ" : "เฆ…", + # "เฆธเฆฎเงเฆชเงเฆฐเฆฆเฆพเงŸ" : "เฆธเฆฎเงเฆชเงเฆฐเฆฆเฆพเฆ‡", + # "เฆฐเงŸเง‡เฆ›เง‡" : "เฆฐเฆ‡เฆ›เง‡", + # "เฆฐเงŸเง‡เฆ›" : "เฆฐเฆ‡เฆ›", + "/": " เฆฌเฆพเฆ‡ ", +} + + +def tag_text(text: str): + # remove multiple spaces + text = re.sub(" +", " ", text) + # create start and end + text = "start" + text + "end" + # tag text + parts = re.split("[\u0600-\u06FF]+", text) + # remove non chars + parts = [p for p in parts if p.strip()] + # unique parts + parts = set(parts) + # tag the text + for m in parts: + if len(m.strip()) > 1: + text = text.replace(m, f"{m}") + # clean-tags + text = text.replace("start", "") + text = text.replace("end", "") + return text + + +def normalize(sen): + global bnorm # pylint: disable=global-statement + _words = [bnorm(word)["normalized"] for word in sen.split()] + return " ".join([word for word in _words if word is not None]) + + +def expand_full_attribution(text): + for word, attr in attribution_dict.items(): + if word in text: + text = text.replace(word, normalize(attr)) + return text + + +def collapse_whitespace(text): + # Regular expression matching whitespace: + _whitespace_re = re.compile(r"\s+") + return re.sub(_whitespace_re, " ", text) + + +def bangla_text_to_phonemes(text: str) -> str: + # english numbers to bangla conversion + res = re.search("[0-9]", text) + if res is not None: + text = bangla.convert_english_digit_to_bangla_digit(text) + + # replace ':' in between two bangla numbers with ' เฆเฆฐ ' + pattern = r"[เงฆ, เงง, เงจ, เงฉ, เงช, เงซ, เงฌ, เงญ, เงฎ, เงฏ]:[เงฆ, เงง, เงจ, เงฉ, เงช, เงซ, เงฌ, เงญ, เงฎ, เงฏ]" + matches = re.findall(pattern, text) + for m in matches: + r = m.replace(":", " เฆเฆฐ ") + text = text.replace(m, r) + + # numerize text + text = numerize(text) + + # tag sections + text = tag_text(text) + + # text blocks + # blocks = text.split("") + # blocks = [b for b in blocks if b.strip()] + + # create tuple of (lang,text) + if "" in text: + text = text.replace("", "").replace("", "") + # Split based on sentence ending Characters + bn_text = text.strip() + + sentenceEnders = re.compile("[เฅค!?]") + sentences = sentenceEnders.split(str(bn_text)) + + data = "" + for sent in sentences: + res = re.sub("\n", "", sent) + res = normalize(res) + # expand attributes + res = expand_full_attribution(res) + + res = collapse_whitespace(res) + res += "เฅค" + data += res + return data diff --git a/TTS/TTS/tts/utils/text/belarusian/__init__.py b/TTS/TTS/tts/utils/text/belarusian/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/TTS/TTS/tts/utils/text/belarusian/phonemizer.py b/TTS/TTS/tts/utils/text/belarusian/phonemizer.py new file mode 100644 index 0000000000000000000000000000000000000000..1922577e5b479980a8e11ac3ae15549cfeb178db --- /dev/null +++ b/TTS/TTS/tts/utils/text/belarusian/phonemizer.py @@ -0,0 +1,37 @@ +import os + +finder = None + + +def init(): + try: + import jpype + import jpype.imports + except ModuleNotFoundError: + raise ModuleNotFoundError( + "Belarusian phonemizer requires to install module 'jpype1' manually. Try `pip install jpype1`." + ) + + try: + jar_path = os.environ["BEL_FANETYKA_JAR"] + except KeyError: + raise KeyError("You need to define 'BEL_FANETYKA_JAR' environment variable as path to the fanetyka.jar file") + + jpype.startJVM(classpath=[jar_path]) + + # import the Java modules + from org.alex73.korpus.base import GrammarDB2, GrammarFinder + + grammar_db = GrammarDB2.initializeFromJar() + global finder + finder = GrammarFinder(grammar_db) + + +def belarusian_text_to_phonemes(text: str) -> str: + # Initialize only on first run + if finder is None: + init() + + from org.alex73.fanetyka.impl import FanetykaText + + return str(FanetykaText(finder, text).ipa) diff --git a/TTS/TTS/tts/utils/text/characters.py b/TTS/TTS/tts/utils/text/characters.py new file mode 100644 index 0000000000000000000000000000000000000000..8fa45ed84bef4aa7953bd365b025d38f82b717d2 --- /dev/null +++ b/TTS/TTS/tts/utils/text/characters.py @@ -0,0 +1,501 @@ +from dataclasses import replace +from typing import Dict + +from TTS.tts.configs.shared_configs import CharactersConfig + + +def parse_symbols(): + return { + "pad": _pad, + "eos": _eos, + "bos": _bos, + "characters": _characters, + "punctuations": _punctuations, + "phonemes": _phonemes, + } + + +# DEFAULT SET OF GRAPHEMES +_pad = "" +_eos = "" +_bos = "" +_blank = "" # TODO: check if we need this alongside with PAD +_characters = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" +_punctuations = "!'(),-.:;? " + + +# DEFAULT SET OF IPA PHONEMES +# Phonemes definition (All IPA characters) +_vowels = "iyษจส‰ษฏuษชสสŠeรธษ˜ษ™ษตษคoษ›ล“ษœษžสŒษ”รฆษaษถษ‘ษ’แตป" +_non_pulmonic_consonants = "ส˜ษ“ว€ษ—วƒส„ว‚ษ วส›" +_pulmonic_consonants = "pbtdสˆษ–cษŸkษกqษขส”ษดล‹ษฒษณnษฑmส™rส€โฑฑษพษฝษธฮฒfvฮธรฐszสƒส’ส‚สรงสxษฃฯ‡สฤงส•hษฆษฌษฎส‹ษนษปjษฐlษญสŽสŸ" +_suprasegmentals = "หˆหŒหห‘" +_other_symbols = "สwษฅสœสขสกษ•ส‘ษบษงสฒ" +_diacrilics = "ษšหžษซ" +_phonemes = _vowels + _non_pulmonic_consonants + _pulmonic_consonants + _suprasegmentals + _other_symbols + _diacrilics + + +class BaseVocabulary: + """Base Vocabulary class. + + This class only needs a vocabulary dictionary without specifying the characters. + + Args: + vocab (Dict): A dictionary of characters and their corresponding indices. + """ + + def __init__(self, vocab: Dict, pad: str = None, blank: str = None, bos: str = None, eos: str = None): + self.vocab = vocab + self.pad = pad + self.blank = blank + self.bos = bos + self.eos = eos + + @property + def pad_id(self) -> int: + """Return the index of the padding character. If the padding character is not specified, return the length + of the vocabulary.""" + return self.char_to_id(self.pad) if self.pad else len(self.vocab) + + @property + def blank_id(self) -> int: + """Return the index of the blank character. If the blank character is not specified, return the length of + the vocabulary.""" + return self.char_to_id(self.blank) if self.blank else len(self.vocab) + + @property + def bos_id(self) -> int: + """Return the index of the bos character. If the bos character is not specified, return the length of the + vocabulary.""" + return self.char_to_id(self.bos) if self.bos else len(self.vocab) + + @property + def eos_id(self) -> int: + """Return the index of the eos character. If the eos character is not specified, return the length of the + vocabulary.""" + return self.char_to_id(self.eos) if self.eos else len(self.vocab) + + @property + def vocab(self): + """Return the vocabulary dictionary.""" + return self._vocab + + @vocab.setter + def vocab(self, vocab): + """Set the vocabulary dictionary and character mapping dictionaries.""" + self._vocab, self._char_to_id, self._id_to_char = None, None, None + if vocab is not None: + self._vocab = vocab + self._char_to_id = {char: idx for idx, char in enumerate(self._vocab)} + self._id_to_char = { + idx: char for idx, char in enumerate(self._vocab) # pylint: disable=unnecessary-comprehension + } + + @staticmethod + def init_from_config(config, **kwargs): + """Initialize from the given config.""" + if config.characters is not None and "vocab_dict" in config.characters and config.characters.vocab_dict: + return ( + BaseVocabulary( + config.characters.vocab_dict, + config.characters.pad, + config.characters.blank, + config.characters.bos, + config.characters.eos, + ), + config, + ) + return BaseVocabulary(**kwargs), config + + def to_config(self) -> "CharactersConfig": + return CharactersConfig( + vocab_dict=self._vocab, + pad=self.pad, + eos=self.eos, + bos=self.bos, + blank=self.blank, + is_unique=False, + is_sorted=False, + ) + + @property + def num_chars(self): + """Return number of tokens in the vocabulary.""" + return len(self._vocab) + + def char_to_id(self, char: str) -> int: + """Map a character to an token ID.""" + try: + return self._char_to_id[char] + except KeyError as e: + raise KeyError(f" [!] {repr(char)} is not in the vocabulary.") from e + + def id_to_char(self, idx: int) -> str: + """Map an token ID to a character.""" + return self._id_to_char[idx] + + +class BaseCharacters: + """๐ŸธBaseCharacters class + + Every new character class should inherit from this. + + Characters are oredered as follows ```[PAD, EOS, BOS, BLANK, CHARACTERS, PUNCTUATIONS]```. + + If you need a custom order, you need to define inherit from this class and override the ```_create_vocab``` method. + + Args: + characters (str): + Main set of characters to be used in the vocabulary. + + punctuations (str): + Characters to be treated as punctuation. + + pad (str): + Special padding character that would be ignored by the model. + + eos (str): + End of the sentence character. + + bos (str): + Beginning of the sentence character. + + blank (str): + Optional character used between characters by some models for better prosody. + + is_unique (bool): + Remove duplicates from the provided characters. Defaults to True. + el + is_sorted (bool): + Sort the characters in alphabetical order. Only applies to `self.characters`. Defaults to True. + """ + + def __init__( + self, + characters: str = None, + punctuations: str = None, + pad: str = None, + eos: str = None, + bos: str = None, + blank: str = None, + is_unique: bool = False, + is_sorted: bool = True, + ) -> None: + self._characters = characters + self._punctuations = punctuations + self._pad = pad + self._eos = eos + self._bos = bos + self._blank = blank + self.is_unique = is_unique + self.is_sorted = is_sorted + self._create_vocab() + + @property + def pad_id(self) -> int: + return self.char_to_id(self.pad) if self.pad else len(self.vocab) + + @property + def blank_id(self) -> int: + return self.char_to_id(self.blank) if self.blank else len(self.vocab) + + @property + def eos_id(self) -> int: + return self.char_to_id(self.eos) if self.eos else len(self.vocab) + + @property + def bos_id(self) -> int: + return self.char_to_id(self.bos) if self.bos else len(self.vocab) + + @property + def characters(self): + return self._characters + + @characters.setter + def characters(self, characters): + self._characters = characters + self._create_vocab() + + @property + def punctuations(self): + return self._punctuations + + @punctuations.setter + def punctuations(self, punctuations): + self._punctuations = punctuations + self._create_vocab() + + @property + def pad(self): + return self._pad + + @pad.setter + def pad(self, pad): + self._pad = pad + self._create_vocab() + + @property + def eos(self): + return self._eos + + @eos.setter + def eos(self, eos): + self._eos = eos + self._create_vocab() + + @property + def bos(self): + return self._bos + + @bos.setter + def bos(self, bos): + self._bos = bos + self._create_vocab() + + @property + def blank(self): + return self._blank + + @blank.setter + def blank(self, blank): + self._blank = blank + self._create_vocab() + + @property + def vocab(self): + return self._vocab + + @vocab.setter + def vocab(self, vocab): + self._vocab = vocab + self._char_to_id = {char: idx for idx, char in enumerate(self.vocab)} + self._id_to_char = { + idx: char for idx, char in enumerate(self.vocab) # pylint: disable=unnecessary-comprehension + } + + @property + def num_chars(self): + return len(self._vocab) + + def _create_vocab(self): + _vocab = self._characters + if self.is_unique: + _vocab = list(set(_vocab)) + if self.is_sorted: + _vocab = sorted(_vocab) + _vocab = list(_vocab) + _vocab = [self._blank] + _vocab if self._blank is not None and len(self._blank) > 0 else _vocab + _vocab = [self._bos] + _vocab if self._bos is not None and len(self._bos) > 0 else _vocab + _vocab = [self._eos] + _vocab if self._eos is not None and len(self._eos) > 0 else _vocab + _vocab = [self._pad] + _vocab if self._pad is not None and len(self._pad) > 0 else _vocab + self.vocab = _vocab + list(self._punctuations) + if self.is_unique: + duplicates = {x for x in self.vocab if self.vocab.count(x) > 1} + assert ( + len(self.vocab) == len(self._char_to_id) == len(self._id_to_char) + ), f" [!] There are duplicate characters in the character set. {duplicates}" + + def char_to_id(self, char: str) -> int: + try: + return self._char_to_id[char] + except KeyError as e: + raise KeyError(f" [!] {repr(char)} is not in the vocabulary.") from e + + def id_to_char(self, idx: int) -> str: + return self._id_to_char[idx] + + def print_log(self, level: int = 0): + """ + Prints the vocabulary in a nice format. + """ + indent = "\t" * level + print(f"{indent}| > Characters: {self._characters}") + print(f"{indent}| > Punctuations: {self._punctuations}") + print(f"{indent}| > Pad: {self._pad}") + print(f"{indent}| > EOS: {self._eos}") + print(f"{indent}| > BOS: {self._bos}") + print(f"{indent}| > Blank: {self._blank}") + print(f"{indent}| > Vocab: {self.vocab}") + print(f"{indent}| > Num chars: {self.num_chars}") + + @staticmethod + def init_from_config(config: "Coqpit"): # pylint: disable=unused-argument + """Init your character class from a config. + + Implement this method for your subclass. + """ + # use character set from config + if config.characters is not None: + return BaseCharacters(**config.characters), config + # return default character set + characters = BaseCharacters() + new_config = replace(config, characters=characters.to_config()) + return characters, new_config + + def to_config(self) -> "CharactersConfig": + return CharactersConfig( + characters=self._characters, + punctuations=self._punctuations, + pad=self._pad, + eos=self._eos, + bos=self._bos, + blank=self._blank, + is_unique=self.is_unique, + is_sorted=self.is_sorted, + ) + + +class IPAPhonemes(BaseCharacters): + """๐ŸธIPAPhonemes class to manage `TTS.tts` model vocabulary + + Intended to be used with models using IPAPhonemes as input. + It uses system defaults for the undefined class arguments. + + Args: + characters (str): + Main set of case-sensitive characters to be used in the vocabulary. Defaults to `_phonemes`. + + punctuations (str): + Characters to be treated as punctuation. Defaults to `_punctuations`. + + pad (str): + Special padding character that would be ignored by the model. Defaults to `_pad`. + + eos (str): + End of the sentence character. Defaults to `_eos`. + + bos (str): + Beginning of the sentence character. Defaults to `_bos`. + + blank (str): + Optional character used between characters by some models for better prosody. Defaults to `_blank`. + + is_unique (bool): + Remove duplicates from the provided characters. Defaults to True. + + is_sorted (bool): + Sort the characters in alphabetical order. Defaults to True. + """ + + def __init__( + self, + characters: str = _phonemes, + punctuations: str = _punctuations, + pad: str = _pad, + eos: str = _eos, + bos: str = _bos, + blank: str = _blank, + is_unique: bool = False, + is_sorted: bool = True, + ) -> None: + super().__init__(characters, punctuations, pad, eos, bos, blank, is_unique, is_sorted) + + @staticmethod + def init_from_config(config: "Coqpit"): + """Init a IPAPhonemes object from a model config + + If characters are not defined in the config, it will be set to the default characters and the config + will be updated. + """ + # band-aid for compatibility with old models + if "characters" in config and config.characters is not None: + if "phonemes" in config.characters and config.characters.phonemes is not None: + config.characters["characters"] = config.characters["phonemes"] + return ( + IPAPhonemes( + characters=config.characters["characters"], + punctuations=config.characters["punctuations"], + pad=config.characters["pad"], + eos=config.characters["eos"], + bos=config.characters["bos"], + blank=config.characters["blank"], + is_unique=config.characters["is_unique"], + is_sorted=config.characters["is_sorted"], + ), + config, + ) + # use character set from config + if config.characters is not None: + return IPAPhonemes(**config.characters), config + # return default character set + characters = IPAPhonemes() + new_config = replace(config, characters=characters.to_config()) + return characters, new_config + + +class Graphemes(BaseCharacters): + """๐ŸธGraphemes class to manage `TTS.tts` model vocabulary + + Intended to be used with models using graphemes as input. + It uses system defaults for the undefined class arguments. + + Args: + characters (str): + Main set of case-sensitive characters to be used in the vocabulary. Defaults to `_characters`. + + punctuations (str): + Characters to be treated as punctuation. Defaults to `_punctuations`. + + pad (str): + Special padding character that would be ignored by the model. Defaults to `_pad`. + + eos (str): + End of the sentence character. Defaults to `_eos`. + + bos (str): + Beginning of the sentence character. Defaults to `_bos`. + + is_unique (bool): + Remove duplicates from the provided characters. Defaults to True. + + is_sorted (bool): + Sort the characters in alphabetical order. Defaults to True. + """ + + def __init__( + self, + characters: str = _characters, + punctuations: str = _punctuations, + pad: str = _pad, + eos: str = _eos, + bos: str = _bos, + blank: str = _blank, + is_unique: bool = False, + is_sorted: bool = True, + ) -> None: + super().__init__(characters, punctuations, pad, eos, bos, blank, is_unique, is_sorted) + + @staticmethod + def init_from_config(config: "Coqpit"): + """Init a Graphemes object from a model config + + If characters are not defined in the config, it will be set to the default characters and the config + will be updated. + """ + if config.characters is not None: + # band-aid for compatibility with old models + if "phonemes" in config.characters: + return ( + Graphemes( + characters=config.characters["characters"], + punctuations=config.characters["punctuations"], + pad=config.characters["pad"], + eos=config.characters["eos"], + bos=config.characters["bos"], + blank=config.characters["blank"], + is_unique=config.characters["is_unique"], + is_sorted=config.characters["is_sorted"], + ), + config, + ) + return Graphemes(**config.characters), config + characters = Graphemes() + new_config = replace(config, characters=characters.to_config()) + return characters, new_config + + +if __name__ == "__main__": + gr = Graphemes() + ph = IPAPhonemes() + gr.print_log() + ph.print_log() diff --git a/TTS/TTS/tts/utils/text/chinese_mandarin/__init__.py b/TTS/TTS/tts/utils/text/chinese_mandarin/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/TTS/TTS/tts/utils/text/chinese_mandarin/numbers.py b/TTS/TTS/tts/utils/text/chinese_mandarin/numbers.py new file mode 100644 index 0000000000000000000000000000000000000000..4787ea61007656819eb57d52d5865b38c7afa915 --- /dev/null +++ b/TTS/TTS/tts/utils/text/chinese_mandarin/numbers.py @@ -0,0 +1,127 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- + +# Licensed under WTFPL or the Unlicense or CC0. +# This uses Python 3, but it's easy to port to Python 2 by changing +# strings to u'xx'. + +import itertools +import re + + +def _num2chinese(num: str, big=False, simp=True, o=False, twoalt=False) -> str: + """Convert numerical arabic numbers (0->9) to chinese hanzi numbers (ใ€‡ -> ไน) + + Args: + num (str): arabic number to convert + big (bool, optional): use financial characters. Defaults to False. + simp (bool, optional): use simplified characters instead of tradictional characters. Defaults to True. + o (bool, optional): use ใ€‡ for 'zero'. Defaults to False. + twoalt (bool, optional): use ไธค/ๅ…ฉ for 'two' when appropriate. Defaults to False. + + Raises: + ValueError: if number is more than 1e48 + ValueError: if 'e' exposent in number + + Returns: + str: converted number as hanzi characters + """ + + # check num first + nd = str(num) + if abs(float(nd)) >= 1e48: + raise ValueError("number out of range") + if "e" in nd: + raise ValueError("scientific notation is not supported") + c_symbol = "ๆญฃ่ดŸ็‚น" if simp else "ๆญฃ่ฒ ้ปž" + if o: # formal + twoalt = False + if big: + c_basic = "้›ถๅฃน่ดฐๅ่‚†ไผ้™†ๆŸ’ๆŒ็Ž–" if simp else "้›ถๅฃน่ฒณๅƒ่‚†ไผ้™ธๆŸ’ๆŒ็Ž–" + c_unit1 = "ๆ‹พไฝฐไปŸ" + c_twoalt = "่ดฐ" if simp else "่ฒณ" + else: + c_basic = "ใ€‡ไธ€ไบŒไธ‰ๅ››ไบ”ๅ…ญไธƒๅ…ซไน" if o else "้›ถไธ€ไบŒไธ‰ๅ››ไบ”ๅ…ญไธƒๅ…ซไน" + c_unit1 = "ๅ็™พๅƒ" + if twoalt: + c_twoalt = "ไธค" if simp else "ๅ…ฉ" + else: + c_twoalt = "ไบŒ" + c_unit2 = "ไธ‡ไบฟๅ…†ไบฌๅž“็งญ็ฉฐๆฒŸๆถงๆญฃ่ฝฝ" if simp else "่ฌๅ„„ๅ…†ไบฌๅž“็งญ็ฉฐๆบๆพ—ๆญฃ่ผ‰" + revuniq = lambda l: "".join(k for k, g in itertools.groupby(reversed(l))) + nd = str(num) + result = [] + if nd[0] == "+": + result.append(c_symbol[0]) + elif nd[0] == "-": + result.append(c_symbol[1]) + if "." in nd: + integer, remainder = nd.lstrip("+-").split(".") + else: + integer, remainder = nd.lstrip("+-"), None + if int(integer): + splitted = [integer[max(i - 4, 0) : i] for i in range(len(integer), 0, -4)] + intresult = [] + for nu, unit in enumerate(splitted): + # special cases + if int(unit) == 0: # 0000 + intresult.append(c_basic[0]) + continue + if nu > 0 and int(unit) == 2: # 0002 + intresult.append(c_twoalt + c_unit2[nu - 1]) + continue + ulist = [] + unit = unit.zfill(4) + for nc, ch in enumerate(reversed(unit)): + if ch == "0": + if ulist: # ???0 + ulist.append(c_basic[0]) + elif nc == 0: + ulist.append(c_basic[int(ch)]) + elif nc == 1 and ch == "1" and unit[1] == "0": + # special case for tens + # edit the 'elif' if you don't like + # ๅๅ››, ไธ‰ๅƒ้›ถๅๅ››, ไธ‰ๅƒไธ‰็™พไธ€ๅๅ›› + ulist.append(c_unit1[0]) + elif nc > 1 and ch == "2": + ulist.append(c_twoalt + c_unit1[nc - 1]) + else: + ulist.append(c_basic[int(ch)] + c_unit1[nc - 1]) + ustr = revuniq(ulist) + if nu == 0: + intresult.append(ustr) + else: + intresult.append(ustr + c_unit2[nu - 1]) + result.append(revuniq(intresult).strip(c_basic[0])) + else: + result.append(c_basic[0]) + if remainder: + result.append(c_symbol[2]) + result.append("".join(c_basic[int(ch)] for ch in remainder)) + return "".join(result) + + +def _number_replace(match) -> str: + """function to apply in a match, transform all numbers in a match by chinese characters + + Args: + match (re.Match): numbers regex matches + + Returns: + str: replaced characters for the numbers + """ + match_str: str = match.group() + return _num2chinese(match_str) + + +def replace_numbers_to_characters_in_text(text: str) -> str: + """Replace all arabic numbers in a text by their equivalent in chinese characters (simplified) + + Args: + text (str): input text to transform + + Returns: + str: output text + """ + text = re.sub(r"[0-9]+", _number_replace, text) + return text diff --git a/TTS/TTS/tts/utils/text/chinese_mandarin/phonemizer.py b/TTS/TTS/tts/utils/text/chinese_mandarin/phonemizer.py new file mode 100644 index 0000000000000000000000000000000000000000..727c881e1062badc57df7418aa07e7434d57335c --- /dev/null +++ b/TTS/TTS/tts/utils/text/chinese_mandarin/phonemizer.py @@ -0,0 +1,37 @@ +from typing import List + +import jieba +import pypinyin + +from .pinyinToPhonemes import PINYIN_DICT + + +def _chinese_character_to_pinyin(text: str) -> List[str]: + pinyins = pypinyin.pinyin(text, style=pypinyin.Style.TONE3, heteronym=False, neutral_tone_with_five=True) + pinyins_flat_list = [item for sublist in pinyins for item in sublist] + return pinyins_flat_list + + +def _chinese_pinyin_to_phoneme(pinyin: str) -> str: + segment = pinyin[:-1] + tone = pinyin[-1] + phoneme = PINYIN_DICT.get(segment, [""])[0] + return phoneme + tone + + +def chinese_text_to_phonemes(text: str, seperator: str = "|") -> str: + tokenized_text = jieba.cut(text, HMM=False) + tokenized_text = " ".join(tokenized_text) + pinyined_text: List[str] = _chinese_character_to_pinyin(tokenized_text) + + results: List[str] = [] + + for token in pinyined_text: + if token[-1] in "12345": # TODO transform to is_pinyin() + pinyin_phonemes = _chinese_pinyin_to_phoneme(token) + + results += list(pinyin_phonemes) + else: # is ponctuation or other + results += list(token) + + return seperator.join(results) diff --git a/TTS/TTS/tts/utils/text/chinese_mandarin/pinyinToPhonemes.py b/TTS/TTS/tts/utils/text/chinese_mandarin/pinyinToPhonemes.py new file mode 100644 index 0000000000000000000000000000000000000000..4e25c3a4c91cddd0bf0e5d6e273262e3dbd3a2dd --- /dev/null +++ b/TTS/TTS/tts/utils/text/chinese_mandarin/pinyinToPhonemes.py @@ -0,0 +1,419 @@ +PINYIN_DICT = { + "a": ["a"], + "ai": ["ai"], + "an": ["an"], + "ang": ["ษ‘ล‹"], + "ao": ["aสŒ"], + "ba": ["ba"], + "bai": ["bai"], + "ban": ["ban"], + "bang": ["bษ‘ล‹"], + "bao": ["baสŒ"], + # "be": ["be"], doesnt exist + "bei": ["bษ›i"], + "ben": ["bล“n"], + "beng": ["bษตล‹"], + "bi": ["bi"], + "bian": ["biษ›n"], + "biao": ["biaสŒ"], + "bie": ["bie"], + "bin": ["bin"], + "bing": ["bษจล‹"], + "bo": ["bo"], + "bu": ["bu"], + "ca": ["tsa"], + "cai": ["tsai"], + "can": ["tsan"], + "cang": ["tsษ‘ล‹"], + "cao": ["tsaสŒ"], + "ce": ["tsรธ"], + "cen": ["tsล“n"], + "ceng": ["tsษตล‹"], + "cha": ["สˆส‚a"], + "chai": ["สˆส‚ai"], + "chan": ["สˆส‚an"], + "chang": ["สˆส‚ษ‘ล‹"], + "chao": ["สˆส‚aสŒ"], + "che": ["สˆส‚รธ"], + "chen": ["สˆส‚ล“n"], + "cheng": ["สˆส‚ษตล‹"], + "chi": ["สˆส‚ส"], + "chong": ["สˆส‚oล‹"], + "chou": ["สˆส‚ou"], + "chu": ["สˆส‚u"], + "chua": ["สˆส‚ua"], + "chuai": ["สˆส‚uai"], + "chuan": ["สˆส‚uan"], + "chuang": ["สˆส‚uษ‘ล‹"], + "chui": ["สˆส‚uei"], + "chun": ["สˆส‚un"], + "chuo": ["สˆส‚uo"], + "ci": ["tsษช"], + "cong": ["tsoล‹"], + "cou": ["tsou"], + "cu": ["tsu"], + "cuan": ["tsuan"], + "cui": ["tsuei"], + "cun": ["tsun"], + "cuo": ["tsuo"], + "da": ["da"], + "dai": ["dai"], + "dan": ["dan"], + "dang": ["dษ‘ล‹"], + "dao": ["daสŒ"], + "de": ["dรธ"], + "dei": ["dei"], + # "den": ["dล“n"], + "deng": ["dษตล‹"], + "di": ["di"], + "dia": ["dia"], + "dian": ["diษ›n"], + "diao": ["diaสŒ"], + "die": ["die"], + "ding": ["dษจล‹"], + "diu": ["dio"], + "dong": ["doล‹"], + "dou": ["dou"], + "du": ["du"], + "duan": ["duan"], + "dui": ["duei"], + "dun": ["dun"], + "duo": ["duo"], + "e": ["รธ"], + "ei": ["ei"], + "en": ["ล“n"], + # "ng": ["ล“n"], + # "eng": ["ษตล‹"], + "er": ["er"], + "fa": ["fa"], + "fan": ["fan"], + "fang": ["fษ‘ล‹"], + "fei": ["fei"], + "fen": ["fล“n"], + "feng": ["fษตล‹"], + "fo": ["fo"], + "fou": ["fou"], + "fu": ["fu"], + "ga": ["ga"], + "gai": ["gai"], + "gan": ["gan"], + "gang": ["gษ‘ล‹"], + "gao": ["gaสŒ"], + "ge": ["gรธ"], + "gei": ["gei"], + "gen": ["gล“n"], + "geng": ["gษตล‹"], + "gong": ["goล‹"], + "gou": ["gou"], + "gu": ["gu"], + "gua": ["gua"], + "guai": ["guai"], + "guan": ["guan"], + "guang": ["guษ‘ล‹"], + "gui": ["guei"], + "gun": ["gun"], + "guo": ["guo"], + "ha": ["xa"], + "hai": ["xai"], + "han": ["xan"], + "hang": ["xษ‘ล‹"], + "hao": ["xaสŒ"], + "he": ["xรธ"], + "hei": ["xei"], + "hen": ["xล“n"], + "heng": ["xษตล‹"], + "hong": ["xoล‹"], + "hou": ["xou"], + "hu": ["xu"], + "hua": ["xua"], + "huai": ["xuai"], + "huan": ["xuan"], + "huang": ["xuษ‘ล‹"], + "hui": ["xuei"], + "hun": ["xun"], + "huo": ["xuo"], + "ji": ["dส‘i"], + "jia": ["dส‘ia"], + "jian": ["dส‘iษ›n"], + "jiang": ["dส‘iษ‘ล‹"], + "jiao": ["dส‘iaสŒ"], + "jie": ["dส‘ie"], + "jin": ["dส‘in"], + "jing": ["dส‘ษจล‹"], + "jiong": ["dส‘ioล‹"], + "jiu": ["dส‘io"], + "ju": ["dส‘y"], + "juan": ["dส‘yษ›n"], + "jue": ["dส‘ye"], + "jun": ["dส‘yn"], + "ka": ["ka"], + "kai": ["kai"], + "kan": ["kan"], + "kang": ["kษ‘ล‹"], + "kao": ["kaสŒ"], + "ke": ["kรธ"], + "kei": ["kei"], + "ken": ["kล“n"], + "keng": ["kษตล‹"], + "kong": ["koล‹"], + "kou": ["kou"], + "ku": ["ku"], + "kua": ["kua"], + "kuai": ["kuai"], + "kuan": ["kuan"], + "kuang": ["kuษ‘ล‹"], + "kui": ["kuei"], + "kun": ["kun"], + "kuo": ["kuo"], + "la": ["la"], + "lai": ["lai"], + "lan": ["lan"], + "lang": ["lษ‘ล‹"], + "lao": ["laสŒ"], + "le": ["lรธ"], + "lei": ["lei"], + "leng": ["lษตล‹"], + "li": ["li"], + "lia": ["lia"], + "lian": ["liษ›n"], + "liang": ["liษ‘ล‹"], + "liao": ["liaสŒ"], + "lie": ["lie"], + "lin": ["lin"], + "ling": ["lษจล‹"], + "liu": ["lio"], + "lo": ["lo"], + "long": ["loล‹"], + "lou": ["lou"], + "lu": ["lu"], + "lv": ["ly"], + "luan": ["luan"], + "lve": ["lye"], + "lue": ["lue"], + "lun": ["lun"], + "luo": ["luo"], + "ma": ["ma"], + "mai": ["mai"], + "man": ["man"], + "mang": ["mษ‘ล‹"], + "mao": ["maสŒ"], + "me": ["mรธ"], + "mei": ["mei"], + "men": ["mล“n"], + "meng": ["mษตล‹"], + "mi": ["mi"], + "mian": ["miษ›n"], + "miao": ["miaสŒ"], + "mie": ["mie"], + "min": ["min"], + "ming": ["mษจล‹"], + "miu": ["mio"], + "mo": ["mo"], + "mou": ["mou"], + "mu": ["mu"], + "na": ["na"], + "nai": ["nai"], + "nan": ["nan"], + "nang": ["nษ‘ล‹"], + "nao": ["naสŒ"], + "ne": ["nรธ"], + "nei": ["nei"], + "nen": ["nล“n"], + "neng": ["nษตล‹"], + "ni": ["ni"], + "nia": ["nia"], + "nian": ["niษ›n"], + "niang": ["niษ‘ล‹"], + "niao": ["niaสŒ"], + "nie": ["nie"], + "nin": ["nin"], + "ning": ["nษจล‹"], + "niu": ["nio"], + "nong": ["noล‹"], + "nou": ["nou"], + "nu": ["nu"], + "nv": ["ny"], + "nuan": ["nuan"], + "nve": ["nye"], + "nue": ["nye"], + "nuo": ["nuo"], + "o": ["o"], + "ou": ["ou"], + "pa": ["pa"], + "pai": ["pai"], + "pan": ["pan"], + "pang": ["pษ‘ล‹"], + "pao": ["paสŒ"], + "pe": ["pรธ"], + "pei": ["pei"], + "pen": ["pล“n"], + "peng": ["pษตล‹"], + "pi": ["pi"], + "pian": ["piษ›n"], + "piao": ["piaสŒ"], + "pie": ["pie"], + "pin": ["pin"], + "ping": ["pษจล‹"], + "po": ["po"], + "pou": ["pou"], + "pu": ["pu"], + "qi": ["tษ•i"], + "qia": ["tษ•ia"], + "qian": ["tษ•iษ›n"], + "qiang": ["tษ•iษ‘ล‹"], + "qiao": ["tษ•iaสŒ"], + "qie": ["tษ•ie"], + "qin": ["tษ•in"], + "qing": ["tษ•ษจล‹"], + "qiong": ["tษ•ioล‹"], + "qiu": ["tษ•io"], + "qu": ["tษ•y"], + "quan": ["tษ•yษ›n"], + "que": ["tษ•ye"], + "qun": ["tษ•yn"], + "ran": ["สan"], + "rang": ["สษ‘ล‹"], + "rao": ["สaสŒ"], + "re": ["สรธ"], + "ren": ["สล“n"], + "reng": ["สษตล‹"], + "ri": ["สส"], + "rong": ["สoล‹"], + "rou": ["สou"], + "ru": ["สu"], + "rua": ["สua"], + "ruan": ["สuan"], + "rui": ["สuei"], + "run": ["สun"], + "ruo": ["สuo"], + "sa": ["sa"], + "sai": ["sai"], + "san": ["san"], + "sang": ["sษ‘ล‹"], + "sao": ["saสŒ"], + "se": ["sรธ"], + "sen": ["sล“n"], + "seng": ["sษตล‹"], + "sha": ["ส‚a"], + "shai": ["ส‚ai"], + "shan": ["ส‚an"], + "shang": ["ส‚ษ‘ล‹"], + "shao": ["ส‚aสŒ"], + "she": ["ส‚รธ"], + "shei": ["ส‚ei"], + "shen": ["ส‚ล“n"], + "sheng": ["ส‚ษตล‹"], + "shi": ["ส‚ส"], + "shou": ["ส‚ou"], + "shu": ["ส‚u"], + "shua": ["ส‚ua"], + "shuai": ["ส‚uai"], + "shuan": ["ส‚uan"], + "shuang": ["ส‚uษ‘ล‹"], + "shui": ["ส‚uei"], + "shun": ["ส‚un"], + "shuo": ["ส‚uo"], + "si": ["sษช"], + "song": ["soล‹"], + "sou": ["sou"], + "su": ["su"], + "suan": ["suan"], + "sui": ["suei"], + "sun": ["sun"], + "suo": ["suo"], + "ta": ["ta"], + "tai": ["tai"], + "tan": ["tan"], + "tang": ["tษ‘ล‹"], + "tao": ["taสŒ"], + "te": ["tรธ"], + "tei": ["tei"], + "teng": ["tษตล‹"], + "ti": ["ti"], + "tian": ["tiษ›n"], + "tiao": ["tiaสŒ"], + "tie": ["tie"], + "ting": ["tษจล‹"], + "tong": ["toล‹"], + "tou": ["tou"], + "tu": ["tu"], + "tuan": ["tuan"], + "tui": ["tuei"], + "tun": ["tun"], + "tuo": ["tuo"], + "wa": ["wa"], + "wai": ["wai"], + "wan": ["wan"], + "wang": ["wษ‘ล‹"], + "wei": ["wei"], + "wen": ["wล“n"], + "weng": ["wษตล‹"], + "wo": ["wo"], + "wu": ["wu"], + "xi": ["ษ•i"], + "xia": ["ษ•ia"], + "xian": ["ษ•iษ›n"], + "xiang": ["ษ•iษ‘ล‹"], + "xiao": ["ษ•iaสŒ"], + "xie": ["ษ•ie"], + "xin": ["ษ•in"], + "xing": ["ษ•ษจล‹"], + "xiong": ["ษ•ioล‹"], + "xiu": ["ษ•io"], + "xu": ["ษ•y"], + "xuan": ["ษ•yษ›n"], + "xue": ["ษ•ye"], + "xun": ["ษ•yn"], + "ya": ["ia"], + "yan": ["iษ›n"], + "yang": ["iษ‘ล‹"], + "yao": ["iaสŒ"], + "ye": ["ie"], + "yi": ["i"], + "yin": ["in"], + "ying": ["ษจล‹"], + "yo": ["io"], + "yong": ["ioล‹"], + "you": ["io"], + "yu": ["y"], + "yuan": ["yษ›n"], + "yue": ["ye"], + "yun": ["yn"], + "za": ["dza"], + "zai": ["dzai"], + "zan": ["dzan"], + "zang": ["dzษ‘ล‹"], + "zao": ["dzaสŒ"], + "ze": ["dzรธ"], + "zei": ["dzei"], + "zen": ["dzล“n"], + "zeng": ["dzษตล‹"], + "zha": ["dส’a"], + "zhai": ["dส’ai"], + "zhan": ["dส’an"], + "zhang": ["dส’ษ‘ล‹"], + "zhao": ["dส’aสŒ"], + "zhe": ["dส’รธ"], + # "zhei": ["dส’ei"], it doesn't exist + "zhen": ["dส’ล“n"], + "zheng": ["dส’ษตล‹"], + "zhi": ["dส’ส"], + "zhong": ["dส’oล‹"], + "zhou": ["dส’ou"], + "zhu": ["dส’u"], + "zhua": ["dส’ua"], + "zhuai": ["dส’uai"], + "zhuan": ["dส’uan"], + "zhuang": ["dส’uษ‘ล‹"], + "zhui": ["dส’uei"], + "zhun": ["dส’un"], + "zhuo": ["dส’uo"], + "zi": ["dzษช"], + "zong": ["dzoล‹"], + "zou": ["dzou"], + "zu": ["dzu"], + "zuan": ["dzuan"], + "zui": ["dzuei"], + "zun": ["dzun"], + "zuo": ["dzuo"], +} diff --git a/TTS/TTS/tts/utils/text/cleaners.py b/TTS/TTS/tts/utils/text/cleaners.py new file mode 100644 index 0000000000000000000000000000000000000000..74d3910b516ae1dc856509d62aca52a01cc2088b --- /dev/null +++ b/TTS/TTS/tts/utils/text/cleaners.py @@ -0,0 +1,171 @@ +"""Set of default text cleaners""" +# TODO: pick the cleaner for languages dynamically + +import re + +from anyascii import anyascii + +from TTS.tts.utils.text.chinese_mandarin.numbers import replace_numbers_to_characters_in_text + +from .english.abbreviations import abbreviations_en +from .english.number_norm import normalize_numbers as en_normalize_numbers +from .english.time_norm import expand_time_english +from .french.abbreviations import abbreviations_fr + +# Regular expression matching whitespace: +_whitespace_re = re.compile(r"\s+") + + +def expand_abbreviations(text, lang="en"): + if lang == "en": + _abbreviations = abbreviations_en + elif lang == "fr": + _abbreviations = abbreviations_fr + for regex, replacement in _abbreviations: + text = re.sub(regex, replacement, text) + return text + + +def lowercase(text): + return text.lower() + + +def collapse_whitespace(text): + return re.sub(_whitespace_re, " ", text).strip() + + +def convert_to_ascii(text): + return anyascii(text) + + +def remove_aux_symbols(text): + text = re.sub(r"[\<\>\(\)\[\]\"]+", "", text) + return text + + +def replace_symbols(text, lang="en"): + """Replace symbols based on the lenguage tag. + + Args: + text: + Input text. + lang: + Lenguage identifier. ex: "en", "fr", "pt", "ca". + + Returns: + The modified text + example: + input args: + text: "si l'avi cau, diguem-ho" + lang: "ca" + Output: + text: "si lavi cau, diguemho" + """ + text = text.replace(";", ",") + text = text.replace("-", " ") if lang != "ca" else text.replace("-", "") + text = text.replace(":", ",") + if lang == "en": + text = text.replace("&", " and ") + elif lang == "fr": + text = text.replace("&", " et ") + elif lang == "pt": + text = text.replace("&", " e ") + elif lang == "ca": + text = text.replace("&", " i ") + text = text.replace("'", "") + return text + + +def basic_cleaners(text): + """Basic pipeline that lowercases and collapses whitespace without transliteration.""" + text = lowercase(text) + text = collapse_whitespace(text) + return text + + +def transliteration_cleaners(text): + """Pipeline for non-English text that transliterates to ASCII.""" + # text = convert_to_ascii(text) + text = lowercase(text) + text = collapse_whitespace(text) + return text + + +def basic_german_cleaners(text): + """Pipeline for German text""" + text = lowercase(text) + text = collapse_whitespace(text) + return text + + +# TODO: elaborate it +def basic_turkish_cleaners(text): + """Pipeline for Turkish text""" + text = text.replace("I", "ฤฑ") + text = lowercase(text) + text = collapse_whitespace(text) + return text + + +def english_cleaners(text): + """Pipeline for English text, including number and abbreviation expansion.""" + # text = convert_to_ascii(text) + text = lowercase(text) + text = expand_time_english(text) + text = en_normalize_numbers(text) + text = expand_abbreviations(text) + text = replace_symbols(text) + text = remove_aux_symbols(text) + text = collapse_whitespace(text) + return text + + +def phoneme_cleaners(text): + """Pipeline for phonemes mode, including number and abbreviation expansion.""" + text = en_normalize_numbers(text) + text = expand_abbreviations(text) + text = replace_symbols(text) + text = remove_aux_symbols(text) + text = collapse_whitespace(text) + return text + + +def french_cleaners(text): + """Pipeline for French text. There is no need to expand numbers, phonemizer already does that""" + text = expand_abbreviations(text, lang="fr") + text = lowercase(text) + text = replace_symbols(text, lang="fr") + text = remove_aux_symbols(text) + text = collapse_whitespace(text) + return text + + +def portuguese_cleaners(text): + """Basic pipeline for Portuguese text. There is no need to expand abbreviation and + numbers, phonemizer already does that""" + text = lowercase(text) + text = replace_symbols(text, lang="pt") + text = remove_aux_symbols(text) + text = collapse_whitespace(text) + return text + + +def chinese_mandarin_cleaners(text: str) -> str: + """Basic pipeline for chinese""" + text = replace_numbers_to_characters_in_text(text) + return text + + +def multilingual_cleaners(text): + """Pipeline for multilingual text""" + text = lowercase(text) + text = replace_symbols(text, lang=None) + text = remove_aux_symbols(text) + text = collapse_whitespace(text) + return text + + +def no_cleaners(text): + # remove newline characters + text = text.replace("\n", "") + return text diff --git a/TTS/TTS/tts/utils/text/cmudict.py b/TTS/TTS/tts/utils/text/cmudict.py new file mode 100644 index 0000000000000000000000000000000000000000..f206fb043be1d478fa6ace36fefdefa30b0acb02 --- /dev/null +++ b/TTS/TTS/tts/utils/text/cmudict.py @@ -0,0 +1,151 @@ +# -*- coding: utf-8 -*- + +import re + +VALID_SYMBOLS = [ + "AA", + "AA0", + "AA1", + "AA2", + "AE", + "AE0", + "AE1", + "AE2", + "AH", + "AH0", + "AH1", + "AH2", + "AO", + "AO0", + "AO1", + "AO2", + "AW", + "AW0", + "AW1", + "AW2", + "AY", + "AY0", + "AY1", + "AY2", + "B", + "CH", + "D", + "DH", + "EH", + "EH0", + "EH1", + "EH2", + "ER", + "ER0", + "ER1", + "ER2", + "EY", + "EY0", + "EY1", + "EY2", + "F", + "G", + "HH", + "IH", + "IH0", + "IH1", + "IH2", + "IY", + "IY0", + "IY1", + "IY2", + "JH", + "K", + "L", + "M", + "N", + "NG", + "OW", + "OW0", + "OW1", + "OW2", + "OY", + "OY0", + "OY1", + "OY2", + "P", + "R", + "S", + "SH", + "T", + "TH", + "UH", + "UH0", + "UH1", + "UH2", + "UW", + "UW0", + "UW1", + "UW2", + "V", + "W", + "Y", + "Z", + "ZH", +] + + +class CMUDict: + """Thin wrapper around CMUDict data. http://www.speech.cs.cmu.edu/cgi-bin/cmudict""" + + def __init__(self, file_or_path, keep_ambiguous=True): + if isinstance(file_or_path, str): + with open(file_or_path, encoding="latin-1") as f: + entries = _parse_cmudict(f) + else: + entries = _parse_cmudict(file_or_path) + if not keep_ambiguous: + entries = {word: pron for word, pron in entries.items() if len(pron) == 1} + self._entries = entries + + def __len__(self): + return len(self._entries) + + def lookup(self, word): + """Returns list of ARPAbet pronunciations of the given word.""" + return self._entries.get(word.upper()) + + @staticmethod + def get_arpabet(word, cmudict, punctuation_symbols): + first_symbol, last_symbol = "", "" + if word and word[0] in punctuation_symbols: + first_symbol = word[0] + word = word[1:] + if word and word[-1] in punctuation_symbols: + last_symbol = word[-1] + word = word[:-1] + arpabet = cmudict.lookup(word) + if arpabet is not None: + return first_symbol + "{%s}" % arpabet[0] + last_symbol + return first_symbol + word + last_symbol + + +_alt_re = re.compile(r"\([0-9]+\)") + + +def _parse_cmudict(file): + cmudict = {} + for line in file: + if line and (line[0] >= "A" and line[0] <= "Z" or line[0] == "'"): + parts = line.split(" ") + word = re.sub(_alt_re, "", parts[0]) + pronunciation = _get_pronunciation(parts[1]) + if pronunciation: + if word in cmudict: + cmudict[word].append(pronunciation) + else: + cmudict[word] = [pronunciation] + return cmudict + + +def _get_pronunciation(s): + parts = s.strip().split(" ") + for part in parts: + if part not in VALID_SYMBOLS: + return None + return " ".join(parts) diff --git a/TTS/TTS/tts/utils/text/english/__init__.py b/TTS/TTS/tts/utils/text/english/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/TTS/TTS/tts/utils/text/english/abbreviations.py b/TTS/TTS/tts/utils/text/english/abbreviations.py new file mode 100644 index 0000000000000000000000000000000000000000..cd93c13c8ecfbc0df2d0c6d2fa348388940c213a --- /dev/null +++ b/TTS/TTS/tts/utils/text/english/abbreviations.py @@ -0,0 +1,26 @@ +import re + +# List of (regular expression, replacement) pairs for abbreviations in english: +abbreviations_en = [ + (re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1]) + for x in [ + ("mrs", "misess"), + ("mr", "mister"), + ("dr", "doctor"), + ("st", "saint"), + ("co", "company"), + ("jr", "junior"), + ("maj", "major"), + ("gen", "general"), + ("drs", "doctors"), + ("rev", "reverend"), + ("lt", "lieutenant"), + ("hon", "honorable"), + ("sgt", "sergeant"), + ("capt", "captain"), + ("esq", "esquire"), + ("ltd", "limited"), + ("col", "colonel"), + ("ft", "fort"), + ] +] diff --git a/TTS/TTS/tts/utils/text/english/number_norm.py b/TTS/TTS/tts/utils/text/english/number_norm.py new file mode 100644 index 0000000000000000000000000000000000000000..e8377ede87ebc9d1bb9cffbbb290aa7787caea4f --- /dev/null +++ b/TTS/TTS/tts/utils/text/english/number_norm.py @@ -0,0 +1,97 @@ +""" from https://github.com/keithito/tacotron """ + +import re +from typing import Dict + +import inflect + +_inflect = inflect.engine() +_comma_number_re = re.compile(r"([0-9][0-9\,]+[0-9])") +_decimal_number_re = re.compile(r"([0-9]+\.[0-9]+)") +_currency_re = re.compile(r"(ยฃ|\$|ยฅ)([0-9\,\.]*[0-9]+)") +_ordinal_re = re.compile(r"[0-9]+(st|nd|rd|th)") +_number_re = re.compile(r"-?[0-9]+") + + +def _remove_commas(m): + return m.group(1).replace(",", "") + + +def _expand_decimal_point(m): + return m.group(1).replace(".", " point ") + + +def __expand_currency(value: str, inflection: Dict[float, str]) -> str: + parts = value.replace(",", "").split(".") + if len(parts) > 2: + return f"{value} {inflection[2]}" # Unexpected format + text = [] + integer = int(parts[0]) if parts[0] else 0 + if integer > 0: + integer_unit = inflection.get(integer, inflection[2]) + text.append(f"{integer} {integer_unit}") + fraction = int(parts[1]) if len(parts) > 1 and parts[1] else 0 + if fraction > 0: + fraction_unit = inflection.get(fraction / 100, inflection[0.02]) + text.append(f"{fraction} {fraction_unit}") + if len(text) == 0: + return f"zero {inflection[2]}" + return " ".join(text) + + +def _expand_currency(m: "re.Match") -> str: + currencies = { + "$": { + 0.01: "cent", + 0.02: "cents", + 1: "dollar", + 2: "dollars", + }, + "โ‚ฌ": { + 0.01: "cent", + 0.02: "cents", + 1: "euro", + 2: "euros", + }, + "ยฃ": { + 0.01: "penny", + 0.02: "pence", + 1: "pound sterling", + 2: "pounds sterling", + }, + "ยฅ": { + # TODO rin + 0.02: "sen", + 2: "yen", + }, + } + unit = m.group(1) + currency = currencies[unit] + value = m.group(2) + return __expand_currency(value, currency) + + +def _expand_ordinal(m): + return _inflect.number_to_words(m.group(0)) + + +def _expand_number(m): + num = int(m.group(0)) + if 1000 < num < 3000: + if num == 2000: + return "two thousand" + if 2000 < num < 2010: + return "two thousand " + _inflect.number_to_words(num % 100) + if num % 100 == 0: + return _inflect.number_to_words(num // 100) + " hundred" + return _inflect.number_to_words(num, andword="", zero="oh", group=2).replace(", ", " ") + return _inflect.number_to_words(num, andword="") + + +def normalize_numbers(text): + text = re.sub(_comma_number_re, _remove_commas, text) + text = re.sub(_currency_re, _expand_currency, text) + text = re.sub(_decimal_number_re, _expand_decimal_point, text) + text = re.sub(_ordinal_re, _expand_ordinal, text) + text = re.sub(_number_re, _expand_number, text) + return text diff --git a/TTS/TTS/tts/utils/text/english/time_norm.py b/TTS/TTS/tts/utils/text/english/time_norm.py new file mode 100644 index 0000000000000000000000000000000000000000..c8ac09e79db4a239a7f72f101503dbf0d6feb3ae --- /dev/null +++ b/TTS/TTS/tts/utils/text/english/time_norm.py @@ -0,0 +1,47 @@ +import re + +import inflect + +_inflect = inflect.engine() + +_time_re = re.compile( + r"""\b + ((0?[0-9])|(1[0-1])|(1[2-9])|(2[0-3])) # hours + : + ([0-5][0-9]) # minutes + \s*(a\\.m\\.|am|pm|p\\.m\\.|a\\.m|p\\.m)? # am/pm + \b""", + re.IGNORECASE | re.X, +) + + +def _expand_num(n: int) -> str: + return _inflect.number_to_words(n) + + +def _expand_time_english(match: "re.Match") -> str: + hour = int(match.group(1)) + past_noon = hour >= 12 + time = [] + if hour > 12: + hour -= 12 + elif hour == 0: + hour = 12 + past_noon = True + time.append(_expand_num(hour)) + + minute = int(match.group(6)) + if minute > 0: + if minute < 10: + time.append("oh") + time.append(_expand_num(minute)) + am_pm = match.group(7) + if am_pm is None: + time.append("p m" if past_noon else "a m") + else: + time.extend(list(am_pm.replace(".", ""))) + return " ".join(time) + + +def expand_time_english(text: str) -> str: + return re.sub(_time_re, _expand_time_english, text) diff --git a/TTS/TTS/tts/utils/text/french/__init__.py b/TTS/TTS/tts/utils/text/french/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/TTS/TTS/tts/utils/text/french/abbreviations.py b/TTS/TTS/tts/utils/text/french/abbreviations.py new file mode 100644 index 0000000000000000000000000000000000000000..f580dfed7b4576a9f87b0a4145cb729e70050d50 --- /dev/null +++ b/TTS/TTS/tts/utils/text/french/abbreviations.py @@ -0,0 +1,48 @@ +import re + +# List of (regular expression, replacement) pairs for abbreviations in french: +abbreviations_fr = [ + (re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1]) + for x in [ + ("M", "monsieur"), + ("Mlle", "mademoiselle"), + ("Mlles", "mesdemoiselles"), + ("Mme", "Madame"), + ("Mmes", "Mesdames"), + ("N.B", "nota bene"), + ("M", "monsieur"), + ("p.c.q", "parce que"), + ("Pr", "professeur"), + ("qqch", "quelque chose"), + ("rdv", "rendez-vous"), + ("max", "maximum"), + ("min", "minimum"), + ("no", "numรฉro"), + ("adr", "adresse"), + ("dr", "docteur"), + ("st", "saint"), + ("co", "companie"), + ("jr", "junior"), + ("sgt", "sergent"), + ("capt", "capitain"), + ("col", "colonel"), + ("av", "avenue"), + ("av. J.-C", "avant Jรฉsus-Christ"), + ("apr. J.-C", "aprรจs Jรฉsus-Christ"), + ("art", "article"), + ("boul", "boulevard"), + ("c.-ร -d", "cโ€™est-ร -dire"), + ("etc", "et cetera"), + ("ex", "exemple"), + ("excl", "exclusivement"), + ("boul", "boulevard"), + ] +] + [ + (re.compile("\\b%s" % x[0]), x[1]) + for x in [ + ("Mlle", "mademoiselle"), + ("Mlles", "mesdemoiselles"), + ("Mme", "Madame"), + ("Mmes", "Mesdames"), + ] +] diff --git a/TTS/TTS/tts/utils/text/japanese/__init__.py b/TTS/TTS/tts/utils/text/japanese/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/TTS/TTS/tts/utils/text/japanese/phonemizer.py b/TTS/TTS/tts/utils/text/japanese/phonemizer.py new file mode 100644 index 0000000000000000000000000000000000000000..c3111067e140903b301696c59b67f090995c1f59 --- /dev/null +++ b/TTS/TTS/tts/utils/text/japanese/phonemizer.py @@ -0,0 +1,470 @@ +# Convert Japanese text to phonemes which is +# compatible with Julius https://github.com/julius-speech/segmentation-kit + +import re +import unicodedata + +try: + import MeCab +except ImportError as e: + raise ImportError("Japanese requires mecab-python3 and unidic-lite.") from e +from num2words import num2words + +_CONVRULES = [ + # Conversion of 2 letters + "ใ‚ขใ‚ก/ a a", + "ใ‚คใ‚ฃ/ i i", + "ใ‚คใ‚ง/ i e", + "ใ‚คใƒฃ/ y a", + "ใ‚ฆใ‚ฅ/ u:", + "ใ‚จใ‚ง/ e e", + "ใ‚ชใ‚ฉ/ o:", + "ใ‚ซใ‚ก/ k a:", + "ใ‚ญใ‚ฃ/ k i:", + "ใ‚ฏใ‚ฅ/ k u:", + "ใ‚ฏใƒฃ/ ky a", + "ใ‚ฏใƒฅ/ ky u", + "ใ‚ฏใƒง/ ky o", + "ใ‚ฑใ‚ง/ k e:", + "ใ‚ณใ‚ฉ/ k o:", + "ใ‚ฌใ‚ก/ g a:", + "ใ‚ฎใ‚ฃ/ g i:", + "ใ‚ฐใ‚ฅ/ g u:", + "ใ‚ฐใƒฃ/ gy a", + "ใ‚ฐใƒฅ/ gy u", + "ใ‚ฐใƒง/ gy o", + "ใ‚ฒใ‚ง/ g e:", + "ใ‚ดใ‚ฉ/ g o:", + "ใ‚ตใ‚ก/ s a:", + "ใ‚ทใ‚ฃ/ sh i:", + "ใ‚นใ‚ฅ/ s u:", + "ใ‚นใƒฃ/ sh a", + "ใ‚นใƒฅ/ sh u", + "ใ‚นใƒง/ sh o", + "ใ‚ปใ‚ง/ s e:", + "ใ‚ฝใ‚ฉ/ s o:", + "ใ‚ถใ‚ก/ z a:", + "ใ‚ธใ‚ฃ/ j i:", + "ใ‚บใ‚ฅ/ z u:", + "ใ‚บใƒฃ/ zy a", + "ใ‚บใƒฅ/ zy u", + "ใ‚บใƒง/ zy o", + "ใ‚ผใ‚ง/ z e:", + "ใ‚พใ‚ฉ/ z o:", + "ใ‚ฟใ‚ก/ t a:", + "ใƒใ‚ฃ/ ch i:", + "ใƒ„ใ‚ก/ ts a", + "ใƒ„ใ‚ฃ/ ts i", + "ใƒ„ใ‚ฅ/ ts u:", + "ใƒ„ใƒฃ/ ch a", + "ใƒ„ใƒฅ/ ch u", + "ใƒ„ใƒง/ ch o", + "ใƒ„ใ‚ง/ ts e", + "ใƒ„ใ‚ฉ/ ts o", + "ใƒ†ใ‚ง/ t e:", + "ใƒˆใ‚ฉ/ t o:", + "ใƒ€ใ‚ก/ d a:", + "ใƒ‚ใ‚ฃ/ j i:", + "ใƒ…ใ‚ฅ/ d u:", + "ใƒ…ใƒฃ/ zy a", + "ใƒ…ใƒฅ/ zy u", + "ใƒ…ใƒง/ zy o", + "ใƒ‡ใ‚ง/ d e:", + "ใƒ‰ใ‚ฉ/ d o:", + "ใƒŠใ‚ก/ n a:", + "ใƒ‹ใ‚ฃ/ n i:", + "ใƒŒใ‚ฅ/ n u:", + "ใƒŒใƒฃ/ ny a", + "ใƒŒใƒฅ/ ny u", + "ใƒŒใƒง/ ny o", + "ใƒใ‚ง/ n e:", + "ใƒŽใ‚ฉ/ n o:", + "ใƒใ‚ก/ h a:", + "ใƒ’ใ‚ฃ/ h i:", + "ใƒ•ใ‚ฅ/ f u:", + "ใƒ•ใƒฃ/ hy a", + "ใƒ•ใƒฅ/ hy u", + "ใƒ•ใƒง/ hy o", + "ใƒ˜ใ‚ง/ h e:", + "ใƒ›ใ‚ฉ/ h o:", + "ใƒใ‚ก/ b a:", + "ใƒ“ใ‚ฃ/ b i:", + "ใƒ–ใ‚ฅ/ b u:", + "ใƒ•ใƒฃ/ hy a", + "ใƒ–ใƒฅ/ by u", + "ใƒ•ใƒง/ hy o", + "ใƒ™ใ‚ง/ b e:", + "ใƒœใ‚ฉ/ b o:", + "ใƒ‘ใ‚ก/ p a:", + "ใƒ”ใ‚ฃ/ p i:", + "ใƒ—ใ‚ฅ/ p u:", + "ใƒ—ใƒฃ/ py a", + "ใƒ—ใƒฅ/ py u", + "ใƒ—ใƒง/ py o", + "ใƒšใ‚ง/ p e:", + "ใƒใ‚ฉ/ p o:", + "ใƒžใ‚ก/ m a:", + "ใƒŸใ‚ฃ/ m i:", + "ใƒ ใ‚ฅ/ m u:", + "ใƒ ใƒฃ/ my a", + "ใƒ ใƒฅ/ my u", + "ใƒ ใƒง/ my o", + "ใƒกใ‚ง/ m e:", + "ใƒขใ‚ฉ/ m o:", + "ใƒคใ‚ก/ y a:", + "ใƒฆใ‚ฅ/ y u:", + "ใƒฆใƒฃ/ y a:", + "ใƒฆใƒฅ/ y u:", + "ใƒฆใƒง/ y o:", + "ใƒจใ‚ฉ/ y o:", + "ใƒฉใ‚ก/ r a:", + "ใƒชใ‚ฃ/ r i:", + "ใƒซใ‚ฅ/ r u:", + "ใƒซใƒฃ/ ry a", + "ใƒซใƒฅ/ ry u", + "ใƒซใƒง/ ry o", + "ใƒฌใ‚ง/ r e:", + "ใƒญใ‚ฉ/ r o:", + "ใƒฏใ‚ก/ w a:", + "ใƒฒใ‚ฉ/ o:", + "ใƒ‡ใ‚ฃ/ d i", + "ใƒ‡ใ‚ง/ d e:", + "ใƒ‡ใƒฃ/ dy a", + "ใƒ‡ใƒฅ/ dy u", + "ใƒ‡ใƒง/ dy o", + "ใƒ†ใ‚ฃ/ t i", + "ใƒ†ใ‚ง/ t e:", + "ใƒ†ใƒฃ/ ty a", + "ใƒ†ใƒฅ/ ty u", + "ใƒ†ใƒง/ ty o", + "ใ‚นใ‚ฃ/ s i", + "ใ‚บใ‚ก/ z u a", + "ใ‚บใ‚ฃ/ z i", + "ใ‚บใ‚ฅ/ z u", + "ใ‚บใƒฃ/ zy a", + "ใ‚บใƒฅ/ zy u", + "ใ‚บใƒง/ zy o", + "ใ‚บใ‚ง/ z e", + "ใ‚บใ‚ฉ/ z o", + "ใ‚ญใƒฃ/ ky a", + "ใ‚ญใƒฅ/ ky u", + "ใ‚ญใƒง/ ky o", + "ใ‚ทใƒฃ/ sh a", + "ใ‚ทใƒฅ/ sh u", + "ใ‚ทใ‚ง/ sh e", + "ใ‚ทใƒง/ sh o", + "ใƒใƒฃ/ ch a", + "ใƒใƒฅ/ ch u", + "ใƒใ‚ง/ ch e", + "ใƒใƒง/ ch o", + "ใƒˆใ‚ฅ/ t u", + "ใƒˆใƒฃ/ ty a", + "ใƒˆใƒฅ/ ty u", + "ใƒˆใƒง/ ty o", + "ใƒ‰ใ‚ก/ d o a", + "ใƒ‰ใ‚ฅ/ d u", + "ใƒ‰ใƒฃ/ dy a", + "ใƒ‰ใƒฅ/ dy u", + "ใƒ‰ใƒง/ dy o", + "ใƒ‰ใ‚ฉ/ d o:", + "ใƒ‹ใƒฃ/ ny a", + "ใƒ‹ใƒฅ/ ny u", + "ใƒ‹ใƒง/ ny o", + "ใƒ’ใƒฃ/ hy a", + "ใƒ’ใƒฅ/ hy u", + "ใƒ’ใƒง/ hy o", + "ใƒŸใƒฃ/ my a", + "ใƒŸใƒฅ/ my u", + "ใƒŸใƒง/ my o", + "ใƒชใƒฃ/ ry a", + "ใƒชใƒฅ/ ry u", + "ใƒชใƒง/ ry o", + "ใ‚ฎใƒฃ/ gy a", + "ใ‚ฎใƒฅ/ gy u", + "ใ‚ฎใƒง/ gy o", + "ใƒ‚ใ‚ง/ j e", + "ใƒ‚ใƒฃ/ j a", + "ใƒ‚ใƒฅ/ j u", + "ใƒ‚ใƒง/ j o", + "ใ‚ธใ‚ง/ j e", + "ใ‚ธใƒฃ/ j a", + "ใ‚ธใƒฅ/ j u", + "ใ‚ธใƒง/ j o", + "ใƒ“ใƒฃ/ by a", + "ใƒ“ใƒฅ/ by u", + "ใƒ“ใƒง/ by o", + "ใƒ”ใƒฃ/ py a", + "ใƒ”ใƒฅ/ py u", + "ใƒ”ใƒง/ py o", + "ใ‚ฆใ‚ก/ u a", + "ใ‚ฆใ‚ฃ/ w i", + "ใ‚ฆใ‚ง/ w e", + "ใ‚ฆใ‚ฉ/ w o", + "ใƒ•ใ‚ก/ f a", + "ใƒ•ใ‚ฃ/ f i", + "ใƒ•ใ‚ฅ/ f u", + "ใƒ•ใƒฃ/ hy a", + "ใƒ•ใƒฅ/ hy u", + "ใƒ•ใƒง/ hy o", + "ใƒ•ใ‚ง/ f e", + "ใƒ•ใ‚ฉ/ f o", + "ใƒดใ‚ก/ b a", + "ใƒดใ‚ฃ/ b i", + "ใƒดใ‚ง/ b e", + "ใƒดใ‚ฉ/ b o", + "ใƒดใƒฅ/ by u", + # Conversion of 1 letter + "ใ‚ข/ a", + "ใ‚ค/ i", + "ใ‚ฆ/ u", + "ใ‚จ/ e", + "ใ‚ช/ o", + "ใ‚ซ/ k a", + "ใ‚ญ/ k i", + "ใ‚ฏ/ k u", + "ใ‚ฑ/ k e", + "ใ‚ณ/ k o", + "ใ‚ต/ s a", + "ใ‚ท/ sh i", + "ใ‚น/ s u", + "ใ‚ป/ s e", + "ใ‚ฝ/ s o", + "ใ‚ฟ/ t a", + "ใƒ/ ch i", + "ใƒ„/ ts u", + "ใƒ†/ t e", + "ใƒˆ/ t o", + "ใƒŠ/ n a", + "ใƒ‹/ n i", + "ใƒŒ/ n u", + "ใƒ/ n e", + "ใƒŽ/ n o", + "ใƒ/ h a", + "ใƒ’/ h i", + "ใƒ•/ f u", + "ใƒ˜/ h e", + "ใƒ›/ h o", + "ใƒž/ m a", + "ใƒŸ/ m i", + "ใƒ / m u", + "ใƒก/ m e", + "ใƒข/ m o", + "ใƒฉ/ r a", + "ใƒช/ r i", + "ใƒซ/ r u", + "ใƒฌ/ r e", + "ใƒญ/ r o", + "ใ‚ฌ/ g a", + "ใ‚ฎ/ g i", + "ใ‚ฐ/ g u", + "ใ‚ฒ/ g e", + "ใ‚ด/ g o", + "ใ‚ถ/ z a", + "ใ‚ธ/ j i", + "ใ‚บ/ z u", + "ใ‚ผ/ z e", + "ใ‚พ/ z o", + "ใƒ€/ d a", + "ใƒ‚/ j i", + "ใƒ…/ z u", + "ใƒ‡/ d e", + "ใƒ‰/ d o", + "ใƒ/ b a", + "ใƒ“/ b i", + "ใƒ–/ b u", + "ใƒ™/ b e", + "ใƒœ/ b o", + "ใƒ‘/ p a", + "ใƒ”/ p i", + "ใƒ—/ p u", + "ใƒš/ p e", + "ใƒ/ p o", + "ใƒค/ y a", + "ใƒฆ/ y u", + "ใƒจ/ y o", + "ใƒฏ/ w a", + "ใƒฐ/ i", + "ใƒฑ/ e", + "ใƒฒ/ o", + "ใƒณ/ N", + "ใƒƒ/ q", + "ใƒด/ b u", + "ใƒผ/:", + # Try converting broken text + "ใ‚ก/ a", + "ใ‚ฃ/ i", + "ใ‚ฅ/ u", + "ใ‚ง/ e", + "ใ‚ฉ/ o", + "ใƒฎ/ w a", + "ใ‚ฉ/ o", + # Symbols + "ใ€/ ,", + "ใ€‚/ .", + "๏ผ/ !", + "๏ผŸ/ ?", + "ใƒป/ ,", +] + +_COLON_RX = re.compile(":+") +_REJECT_RX = re.compile("[^ a-zA-Z:,.?]") + + +def _makerulemap(): + l = [tuple(x.split("/")) for x in _CONVRULES] + return tuple({k: v for k, v in l if len(k) == i} for i in (1, 2)) + + +_RULEMAP1, _RULEMAP2 = _makerulemap() + + +def kata2phoneme(text: str) -> str: + """Convert katakana text to phonemes.""" + text = text.strip() + res = "" + while text: + if len(text) >= 2: + x = _RULEMAP2.get(text[:2]) + if x is not None: + text = text[2:] + res += x + continue + x = _RULEMAP1.get(text[0]) + if x is not None: + text = text[1:] + res += x + continue + res += " " + text[0] + text = text[1:] + res = _COLON_RX.sub(":", res) + return res[1:] + + +_KATAKANA = "".join(chr(ch) for ch in range(ord("ใ‚ก"), ord("ใƒณ") + 1)) +_HIRAGANA = "".join(chr(ch) for ch in range(ord("ใ"), ord("ใ‚“") + 1)) +_HIRA2KATATRANS = str.maketrans(_HIRAGANA, _KATAKANA) + + +def hira2kata(text: str) -> str: + text = text.translate(_HIRA2KATATRANS) + return text.replace("ใ†ใ‚›", "ใƒด") + + +_SYMBOL_TOKENS = set(list("ใƒปใ€ใ€‚๏ผŸ๏ผ")) +_NO_YOMI_TOKENS = set(list("ใ€Œใ€ใ€Žใ€โ€•๏ผˆ๏ผ‰๏ผป๏ผฝ[]ใ€€โ€ฆ")) +_TAGGER = MeCab.Tagger() + + +def text2kata(text: str) -> str: + parsed = _TAGGER.parse(text) + res = [] + for line in parsed.split("\n"): + if line == "EOS": + break + parts = line.split("\t") + + word, yomi = parts[0], parts[1] + if yomi: + res.append(yomi) + else: + if word in _SYMBOL_TOKENS: + res.append(word) + elif word in ("ใฃ", "ใƒƒ"): + res.append("ใƒƒ") + elif word in _NO_YOMI_TOKENS: + pass + else: + res.append(word) + return hira2kata("".join(res)) + + +_ALPHASYMBOL_YOMI = { + "#": "ใ‚ทใƒฃใƒผใƒ—", + "%": "ใƒ‘ใƒผใ‚ปใƒณใƒˆ", + "&": "ใ‚ขใƒณใƒ‰", + "+": "ใƒ—ใƒฉใ‚น", + "-": "ใƒžใ‚คใƒŠใ‚น", + ":": "ใ‚ณใƒญใƒณ", + ";": "ใ‚ปใƒŸใ‚ณใƒญใƒณ", + "<": "ๅฐใชใ‚Š", + "=": "ใ‚คใ‚ณใƒผใƒซ", + ">": "ๅคงใชใ‚Š", + "@": "ใ‚ขใƒƒใƒˆ", + "a": "ใ‚จใƒผ", + "b": "ใƒ“ใƒผ", + "c": "ใ‚ทใƒผ", + "d": "ใƒ‡ใ‚ฃใƒผ", + "e": "ใ‚คใƒผ", + "f": "ใ‚จใƒ•", + "g": "ใ‚ธใƒผ", + "h": "ใ‚จใ‚คใƒ", + "i": "ใ‚ขใ‚ค", + "j": "ใ‚ธใ‚งใƒผ", + "k": "ใ‚ฑใƒผ", + "l": "ใ‚จใƒซ", + "m": "ใ‚จใƒ ", + "n": "ใ‚จใƒŒ", + "o": "ใ‚ชใƒผ", + "p": "ใƒ”ใƒผ", + "q": "ใ‚ญใƒฅใƒผ", + "r": "ใ‚ขใƒผใƒซ", + "s": "ใ‚จใ‚น", + "t": "ใƒ†ใ‚ฃใƒผ", + "u": "ใƒฆใƒผ", + "v": "ใƒ–ใ‚ค", + "w": "ใƒ€ใƒ–ใƒชใƒฅใƒผ", + "x": "ใ‚จใƒƒใ‚ฏใ‚น", + "y": "ใƒฏใ‚ค", + "z": "ใ‚ผใƒƒใƒˆ", + "ฮฑ": "ใ‚ขใƒซใƒ•ใ‚ก", + "ฮฒ": "ใƒ™ใƒผใ‚ฟ", + "ฮณ": "ใ‚ฌใƒณใƒž", + "ฮด": "ใƒ‡ใƒซใ‚ฟ", + "ฮต": "ใ‚คใƒ—ใ‚ทใƒญใƒณ", + "ฮถ": "ใ‚ผใƒผใ‚ฟ", + "ฮท": "ใ‚คใƒผใ‚ฟ", + "ฮธ": "ใ‚ทใƒผใ‚ฟ", + "ฮน": "ใ‚คใ‚ชใ‚ฟ", + "ฮบ": "ใ‚ซใƒƒใƒ‘", + "ฮป": "ใƒฉใƒ ใƒ€", + "ฮผ": "ใƒŸใƒฅใƒผ", + "ฮฝ": "ใƒ‹ใƒฅใƒผ", + "ฮพ": "ใ‚ฏใ‚ตใ‚ค", + "ฮฟ": "ใ‚ชใƒŸใ‚ฏใƒญใƒณ", + "ฯ€": "ใƒ‘ใ‚ค", + "ฯ": "ใƒญใƒผ", + "ฯƒ": "ใ‚ทใ‚ฐใƒž", + "ฯ„": "ใ‚ฟใ‚ฆ", + "ฯ…": "ใ‚ฆใƒ—ใ‚ทใƒญใƒณ", + "ฯ†": "ใƒ•ใ‚กใ‚ค", + "ฯ‡": "ใ‚ซใ‚ค", + "ฯˆ": "ใƒ—ใ‚ตใ‚ค", + "ฯ‰": "ใ‚ชใƒกใ‚ฌ", +} + + +_NUMBER_WITH_SEPARATOR_RX = re.compile("[0-9]{1,3}(,[0-9]{3})+") +_CURRENCY_MAP = {"$": "ใƒ‰ใƒซ", "ยฅ": "ๅ††", "ยฃ": "ใƒใƒณใƒ‰", "โ‚ฌ": "ใƒฆใƒผใƒญ"} +_CURRENCY_RX = re.compile(r"([$ยฅยฃโ‚ฌ])([0-9.]*[0-9])") +_NUMBER_RX = re.compile(r"[0-9]+(\.[0-9]+)?") + + +def japanese_convert_numbers_to_words(text: str) -> str: + res = _NUMBER_WITH_SEPARATOR_RX.sub(lambda m: m[0].replace(",", ""), text) + res = _CURRENCY_RX.sub(lambda m: m[2] + _CURRENCY_MAP.get(m[1], m[1]), res) + res = _NUMBER_RX.sub(lambda m: num2words(m[0], lang="ja"), res) + return res + + +def japanese_convert_alpha_symbols_to_words(text: str) -> str: + return "".join([_ALPHASYMBOL_YOMI.get(ch, ch) for ch in text.lower()]) + + +def japanese_text_to_phonemes(text: str) -> str: + """Convert Japanese text to phonemes.""" + res = unicodedata.normalize("NFKC", text) + res = japanese_convert_numbers_to_words(res) + res = japanese_convert_alpha_symbols_to_words(res) + res = text2kata(res) + res = kata2phoneme(res) + return res.replace(" ", "") diff --git a/TTS/TTS/tts/utils/text/korean/__init__.py b/TTS/TTS/tts/utils/text/korean/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/TTS/TTS/tts/utils/text/korean/ko_dictionary.py b/TTS/TTS/tts/utils/text/korean/ko_dictionary.py new file mode 100644 index 0000000000000000000000000000000000000000..5d2a148234be297cca12417964b191f1f521280d --- /dev/null +++ b/TTS/TTS/tts/utils/text/korean/ko_dictionary.py @@ -0,0 +1,44 @@ +# coding: utf-8 +# Add the word you want to the dictionary. +etc_dictionary = {"1+1": "์›ํ”Œ๋Ÿฌ์Šค์›", "2+1": "ํˆฌํ”Œ๋Ÿฌ์Šค์›"} + + +english_dictionary = { + "KOREA": "์ฝ”๋ฆฌ์•„", + "IDOL": "์•„์ด๋Œ", + "IT": "์•„์ดํ‹ฐ", + "IQ": "์•„์ดํ", + "UP": "์—…", + "DOWN": "๋‹ค์šด", + "PC": "ํ”ผ์”จ", + "CCTV": "์”จ์”จํ‹ฐ๋น„", + "SNS": "์—์Šค์—”์—์Šค", + "AI": "์—์ด์•„์ด", + "CEO": "์”จ์ด์˜ค", + "A": "์—์ด", + "B": "๋น„", + "C": "์”จ", + "D": "๋””", + "E": "์ด", + "F": "์—ํ”„", + "G": "์ง€", + "H": "์—์ด์น˜", + "I": "์•„์ด", + "J": "์ œ์ด", + "K": "์ผ€์ด", + "L": "์—˜", + "M": "์— ", + "N": "์—”", + "O": "์˜ค", + "P": "ํ”ผ", + "Q": "ํ", + "R": "์•Œ", + "S": "์—์Šค", + "T": "ํ‹ฐ", + "U": "์œ ", + "V": "๋ธŒ์ด", + "W": "๋”๋ธ”์œ ", + "X": "์—‘์Šค", + "Y": "์™€์ด", + "Z": "์ œํŠธ", +} diff --git a/TTS/TTS/tts/utils/text/korean/korean.py b/TTS/TTS/tts/utils/text/korean/korean.py new file mode 100644 index 0000000000000000000000000000000000000000..1f39a9e4da52be75f4fbf6838da1824d7d488a47 --- /dev/null +++ b/TTS/TTS/tts/utils/text/korean/korean.py @@ -0,0 +1,32 @@ +๏ปฟ# coding: utf-8 +# Code based on https://github.com/carpedm20/multi-speaker-tacotron-tensorflow/blob/master/text/korean.py +import re + +from TTS.tts.utils.text.korean.ko_dictionary import english_dictionary, etc_dictionary + + +def normalize(text): + text = text.strip() + text = re.sub("[โบ€-โบ™โบ›-โปณโผ€-โฟ•ใ€…ใ€‡ใ€ก-ใ€ฉใ€ธ-ใ€บใ€ปใ€-ไถตไธ€-้ฟƒ่ฑˆ-้ถดไพฎ-้ ปไธฆ-้พŽ]", "", text) + text = normalize_with_dictionary(text, etc_dictionary) + text = normalize_english(text) + text = text.lower() + return text + + +def normalize_with_dictionary(text, dic): + if any(key in text for key in dic.keys()): + pattern = re.compile("|".join(re.escape(key) for key in dic.keys())) + return pattern.sub(lambda x: dic[x.group()], text) + return text + + +def normalize_english(text): + def fn(m): + word = m.group() + if word in english_dictionary: + return english_dictionary.get(word) + return word + + text = re.sub("([A-Za-z]+)", fn, text) + return text diff --git a/TTS/TTS/tts/utils/text/korean/phonemizer.py b/TTS/TTS/tts/utils/text/korean/phonemizer.py new file mode 100644 index 0000000000000000000000000000000000000000..ed70fc35f6950b98ec715577a3303c5a271fbb0e --- /dev/null +++ b/TTS/TTS/tts/utils/text/korean/phonemizer.py @@ -0,0 +1,36 @@ +from jamo import hangul_to_jamo + +from TTS.tts.utils.text.korean.korean import normalize + +g2p = None + + +def korean_text_to_phonemes(text, character: str = "hangeul") -> str: + """ + + The input and output values look the same, but they are different in Unicode. + + example : + + input = 'ํ•˜๋Š˜' (Unicode : \ud558\ub298), (ํ•˜ + ๋Š˜) + output = 'แ„’แ…กแ„‚แ…ณแ†ฏ' (Unicode :\u1112\u1161\u1102\u1173\u11af), (แ„’ + แ…ก + แ„‚ + แ…ณ + แ†ฏ) + + """ + global g2p # pylint: disable=global-statement + if g2p is None: + from g2pkk import G2p + + g2p = G2p() + + if character == "english": + from anyascii import anyascii + + text = normalize(text) + text = g2p(text) + text = anyascii(text) + return text + + text = normalize(text) + text = g2p(text) + text = list(hangul_to_jamo(text)) # 'ํ•˜๋Š˜' --> ['แ„’', 'แ…ก', 'แ„‚', 'แ…ณ', 'แ†ฏ'] + return "".join(text) diff --git a/TTS/TTS/tts/utils/text/phonemizers/__init__.py b/TTS/TTS/tts/utils/text/phonemizers/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..1831a7e64419f3f59e1c5687bb0e9150e64efdae --- /dev/null +++ b/TTS/TTS/tts/utils/text/phonemizers/__init__.py @@ -0,0 +1,79 @@ +from TTS.tts.utils.text.phonemizers.bangla_phonemizer import BN_Phonemizer +from TTS.tts.utils.text.phonemizers.base import BasePhonemizer +from TTS.tts.utils.text.phonemizers.belarusian_phonemizer import BEL_Phonemizer +from TTS.tts.utils.text.phonemizers.espeak_wrapper import ESpeak +from TTS.tts.utils.text.phonemizers.gruut_wrapper import Gruut +from TTS.tts.utils.text.phonemizers.ko_kr_phonemizer import KO_KR_Phonemizer +from TTS.tts.utils.text.phonemizers.zh_cn_phonemizer import ZH_CN_Phonemizer + +try: + from TTS.tts.utils.text.phonemizers.ja_jp_phonemizer import JA_JP_Phonemizer +except ImportError: + JA_JP_Phonemizer = None + pass + +PHONEMIZERS = {b.name(): b for b in (ESpeak, Gruut, KO_KR_Phonemizer, BN_Phonemizer)} + + +ESPEAK_LANGS = list(ESpeak.supported_languages().keys()) +GRUUT_LANGS = list(Gruut.supported_languages()) + + +# Dict setting default phonemizers for each language +# Add Gruut languages +_ = [Gruut.name()] * len(GRUUT_LANGS) +DEF_LANG_TO_PHONEMIZER = dict(list(zip(GRUUT_LANGS, _))) + + +# Add ESpeak languages and override any existing ones +_ = [ESpeak.name()] * len(ESPEAK_LANGS) +_new_dict = dict(list(zip(list(ESPEAK_LANGS), _))) +DEF_LANG_TO_PHONEMIZER.update(_new_dict) + + +# Force default for some languages +DEF_LANG_TO_PHONEMIZER["en"] = DEF_LANG_TO_PHONEMIZER["en-us"] +DEF_LANG_TO_PHONEMIZER["zh-cn"] = ZH_CN_Phonemizer.name() +DEF_LANG_TO_PHONEMIZER["ko-kr"] = KO_KR_Phonemizer.name() +DEF_LANG_TO_PHONEMIZER["bn"] = BN_Phonemizer.name() +DEF_LANG_TO_PHONEMIZER["be"] = BEL_Phonemizer.name() + + +# JA phonemizer has deal breaking dependencies like MeCab for some systems. +# So we only have it when we have it. +if JA_JP_Phonemizer is not None: + PHONEMIZERS[JA_JP_Phonemizer.name()] = JA_JP_Phonemizer + DEF_LANG_TO_PHONEMIZER["ja-jp"] = JA_JP_Phonemizer.name() + + +def get_phonemizer_by_name(name: str, **kwargs) -> BasePhonemizer: + """Initiate a phonemizer by name + + Args: + name (str): + Name of the phonemizer that should match `phonemizer.name()`. + + kwargs (dict): + Extra keyword arguments that should be passed to the phonemizer. + """ + if name == "espeak": + return ESpeak(**kwargs) + if name == "gruut": + return Gruut(**kwargs) + if name == "zh_cn_phonemizer": + return ZH_CN_Phonemizer(**kwargs) + if name == "ja_jp_phonemizer": + if JA_JP_Phonemizer is None: + raise ValueError(" โ— You need to install JA phonemizer dependencies. Try `pip install TTS[ja]`.") + return JA_JP_Phonemizer(**kwargs) + if name == "ko_kr_phonemizer": + return KO_KR_Phonemizer(**kwargs) + if name == "bn_phonemizer": + return BN_Phonemizer(**kwargs) + if name == "be_phonemizer": + return BEL_Phonemizer(**kwargs) + raise ValueError(f"Phonemizer {name} not found") + + +if __name__ == "__main__": + print(DEF_LANG_TO_PHONEMIZER) diff --git a/TTS/TTS/tts/utils/text/phonemizers/bangla_phonemizer.py b/TTS/TTS/tts/utils/text/phonemizers/bangla_phonemizer.py new file mode 100644 index 0000000000000000000000000000000000000000..3c4a35bbfa4fc63a7cbb2a2caa152ef59b4afa63 --- /dev/null +++ b/TTS/TTS/tts/utils/text/phonemizers/bangla_phonemizer.py @@ -0,0 +1,62 @@ +from typing import Dict + +from TTS.tts.utils.text.bangla.phonemizer import bangla_text_to_phonemes +from TTS.tts.utils.text.phonemizers.base import BasePhonemizer + +_DEF_ZH_PUNCS = "ใ€.,[]()?!ใ€ฝ~ใ€Žใ€ใ€Œใ€ใ€ใ€‘" + + +class BN_Phonemizer(BasePhonemizer): + """๐ŸธTTS bn phonemizer using functions in `TTS.tts.utils.text.bangla.phonemizer` + + Args: + punctuations (str): + Set of characters to be treated as punctuation. Defaults to `_DEF_ZH_PUNCS`. + + keep_puncs (bool): + If True, keep the punctuations after phonemization. Defaults to False. + + Example :: + + "่ฟ™ๆ˜ฏ๏ผŒๆ ทๆœฌไธญๆ–‡ใ€‚" -> `d|ส’|รธ|4| |ส‚|ส|4| |๏ผŒ| |i|ษ‘|ล‹|4|b|ล“|n|3| |d|ส’|o|ล‹|1|w|ล“|n|2| |ใ€‚` + + TODO: someone with Bangla knowledge should check this implementation + """ + + language = "bn" + + def __init__(self, punctuations=_DEF_ZH_PUNCS, keep_puncs=False, **kwargs): # pylint: disable=unused-argument + super().__init__(self.language, punctuations=punctuations, keep_puncs=keep_puncs) + + @staticmethod + def name(): + return "bn_phonemizer" + + @staticmethod + def phonemize_bn(text: str, separator: str = "|") -> str: # pylint: disable=unused-argument + ph = bangla_text_to_phonemes(text) + return ph + + def _phonemize(self, text, separator): + return self.phonemize_bn(text, separator) + + @staticmethod + def supported_languages() -> Dict: + return {"bn": "Bangla"} + + def version(self) -> str: + return "0.0.1" + + def is_available(self) -> bool: + return True + + +if __name__ == "__main__": + txt = "เฆฐเฆพเฆธเง‚เฆฒเงเฆฒเงเฆฒเฆพเฆน เฆธเฆพเฆฒเงเฆฒเฆพเฆฒเงเฆฒเฆพเฆนเง เฆ†เฆฒเฆพเฆ‡เฆนเฆฟ เฆ“เงŸเฆพ เฆธเฆพเฆฒเงเฆฒเฆพเฆฎ เฆถเฆฟเฆ•เงเฆทเฆพ เฆฆเฆฟเงŸเง‡เฆ›เง‡เฆจ เฆฏเง‡, เฆ•เง‡เฆ‰ เฆฏเฆฆเฆฟ เฆ•เง‹เฆจ เฆ–เฆพเฆฐเฆพเฆช เฆ•เฆฟเฆ›เงเฆฐ เฆธเฆฎเงเฆฎเงเฆ–เง€เฆจ เฆนเงŸ, เฆคเฆ–เฆจเฆ“ เฆฏเง‡เฆจ เฆฌเฆฒเง‡." + e = BN_Phonemizer() + print(e.supported_languages()) + print(e.version()) + print(e.language) + print(e.name()) + print(e.is_available()) + print("`" + e.phonemize(txt) + "`") diff --git a/TTS/TTS/tts/utils/text/phonemizers/base.py b/TTS/TTS/tts/utils/text/phonemizers/base.py new file mode 100644 index 0000000000000000000000000000000000000000..4fc79874159aad40ce27f34671907a25d7e39a94 --- /dev/null +++ b/TTS/TTS/tts/utils/text/phonemizers/base.py @@ -0,0 +1,140 @@ +import abc +from typing import List, Tuple + +from TTS.tts.utils.text.punctuation import Punctuation + + +class BasePhonemizer(abc.ABC): + """Base phonemizer class + + Phonemization follows the following steps: + 1. Preprocessing: + - remove empty lines + - remove punctuation + - keep track of punctuation marks + + 2. Phonemization: + - convert text to phonemes + + 3. Postprocessing: + - join phonemes + - restore punctuation marks + + Args: + language (str): + Language used by the phonemizer. + + punctuations (List[str]): + List of punctuation marks to be preserved. + + keep_puncs (bool): + Whether to preserve punctuation marks or not. + """ + + def __init__(self, language, punctuations=Punctuation.default_puncs(), keep_puncs=False): + # ensure the backend is installed on the system + if not self.is_available(): + raise RuntimeError("{} not installed on your system".format(self.name())) # pragma: nocover + + # ensure the backend support the requested language + self._language = self._init_language(language) + + # setup punctuation processing + self._keep_puncs = keep_puncs + self._punctuator = Punctuation(punctuations) + + def _init_language(self, language): + """Language initialization + + This method may be overloaded in child classes (see Segments backend) + + """ + if not self.is_supported_language(language): + raise RuntimeError(f'language "{language}" is not supported by the ' f"{self.name()} backend") + return language + + @property + def language(self): + """The language code configured to be used for phonemization""" + return self._language + + @staticmethod + @abc.abstractmethod + def name(): + """The name of the backend""" + ... + + @classmethod + @abc.abstractmethod + def is_available(cls): + """Returns True if the backend is installed, False otherwise""" + ... + + @classmethod + @abc.abstractmethod + def version(cls): + """Return the backend version as a tuple (major, minor, patch)""" + ... + + @staticmethod + @abc.abstractmethod + def supported_languages(): + """Return a dict of language codes -> name supported by the backend""" + ... + + def is_supported_language(self, language): + """Returns True if `language` is supported by the backend""" + return language in self.supported_languages() + + @abc.abstractmethod + def _phonemize(self, text, separator): + """The main phonemization method""" + + def _phonemize_preprocess(self, text) -> Tuple[List[str], List]: + """Preprocess the text before phonemization + + 1. remove spaces + 2. remove punctuation + + Override this if you need a different behaviour + """ + text = text.strip() + if self._keep_puncs: + # a tuple (text, punctuation marks) + return self._punctuator.strip_to_restore(text) + return [self._punctuator.strip(text)], [] + + def _phonemize_postprocess(self, phonemized, punctuations) -> str: + """Postprocess the raw phonemized output + + Override this if you need a different behaviour + """ + if self._keep_puncs: + return self._punctuator.restore(phonemized, punctuations)[0] + return phonemized[0] + + def phonemize(self, text: str, separator="|", language: str = None) -> str: # pylint: disable=unused-argument + """Returns the `text` phonemized for the given language + + Args: + text (str): + Text to be phonemized. + + separator (str): + string separator used between phonemes. Default to '_'. + + Returns: + (str): Phonemized text + """ + text, punctuations = self._phonemize_preprocess(text) + phonemized = [] + for t in text: + p = self._phonemize(t, separator) + phonemized.append(p) + phonemized = self._phonemize_postprocess(phonemized, punctuations) + return phonemized + + def print_logs(self, level: int = 0): + indent = "\t" * level + print(f"{indent}| > phoneme language: {self.language}") + print(f"{indent}| > phoneme backend: {self.name()}") diff --git a/TTS/TTS/tts/utils/text/phonemizers/belarusian_phonemizer.py b/TTS/TTS/tts/utils/text/phonemizers/belarusian_phonemizer.py new file mode 100644 index 0000000000000000000000000000000000000000..e5fcab6e09b7e9fad06c381ebc7239e36c4cb8db --- /dev/null +++ b/TTS/TTS/tts/utils/text/phonemizers/belarusian_phonemizer.py @@ -0,0 +1,55 @@ +from typing import Dict + +from TTS.tts.utils.text.belarusian.phonemizer import belarusian_text_to_phonemes +from TTS.tts.utils.text.phonemizers.base import BasePhonemizer + +_DEF_BE_PUNCS = ",!." # TODO + + +class BEL_Phonemizer(BasePhonemizer): + """๐ŸธTTS be phonemizer using functions in `TTS.tts.utils.text.belarusian.phonemizer` + + Args: + punctuations (str): + Set of characters to be treated as punctuation. Defaults to `_DEF_BE_PUNCS`. + + keep_puncs (bool): + If True, keep the punctuations after phonemization. Defaults to False. + """ + + language = "be" + + def __init__(self, punctuations=_DEF_BE_PUNCS, keep_puncs=True, **kwargs): # pylint: disable=unused-argument + super().__init__(self.language, punctuations=punctuations, keep_puncs=keep_puncs) + + @staticmethod + def name(): + return "be_phonemizer" + + @staticmethod + def phonemize_be(text: str, separator: str = "|") -> str: # pylint: disable=unused-argument + return belarusian_text_to_phonemes(text) + + def _phonemize(self, text, separator): + return self.phonemize_be(text, separator) + + @staticmethod + def supported_languages() -> Dict: + return {"be": "Belarusian"} + + def version(self) -> str: + return "0.0.1" + + def is_available(self) -> bool: + return True + + +if __name__ == "__main__": + txt = "ั‚ััั‚" + e = BEL_Phonemizer() + print(e.supported_languages()) + print(e.version()) + print(e.language) + print(e.name()) + print(e.is_available()) + print("`" + e.phonemize(txt) + "`") diff --git a/TTS/TTS/tts/utils/text/phonemizers/espeak_wrapper.py b/TTS/TTS/tts/utils/text/phonemizers/espeak_wrapper.py new file mode 100644 index 0000000000000000000000000000000000000000..8982a893779495cc4d8187040546706fdcc9d11b --- /dev/null +++ b/TTS/TTS/tts/utils/text/phonemizers/espeak_wrapper.py @@ -0,0 +1,268 @@ +import logging +import re +import subprocess +from typing import Dict, List + +from packaging.version import Version + +from TTS.tts.utils.text.phonemizers.base import BasePhonemizer +from TTS.tts.utils.text.punctuation import Punctuation + + +def is_tool(name): + from shutil import which + + return which(name) is not None + + +# Use a regex pattern to match the espeak version, because it may be +# symlinked to espeak-ng, which moves the version bits to another spot. +espeak_version_pattern = re.compile(r"text-to-speech:\s(?P\d+\.\d+(\.\d+)?)") + + +def get_espeak_version(): + output = subprocess.getoutput("espeak --version") + match = espeak_version_pattern.search(output) + + return match.group("version") + + +def get_espeakng_version(): + output = subprocess.getoutput("espeak-ng --version") + return output.split()[3] + + +# priority: espeakng > espeak +if is_tool("espeak-ng"): + _DEF_ESPEAK_LIB = "espeak-ng" + _DEF_ESPEAK_VER = get_espeakng_version() +elif is_tool("espeak"): + _DEF_ESPEAK_LIB = "espeak" + _DEF_ESPEAK_VER = get_espeak_version() +else: + _DEF_ESPEAK_LIB = None + _DEF_ESPEAK_VER = None + + +def _espeak_exe(espeak_lib: str, args: List, sync=False) -> List[str]: + """Run espeak with the given arguments.""" + cmd = [ + espeak_lib, + "-q", + "-b", + "1", # UTF8 text encoding + ] + cmd.extend(args) + logging.debug("espeakng: executing %s", repr(cmd)) + + with subprocess.Popen( + cmd, + stdout=subprocess.PIPE, + stderr=subprocess.STDOUT, + ) as p: + res = iter(p.stdout.readline, b"") + if not sync: + p.stdout.close() + if p.stderr: + p.stderr.close() + if p.stdin: + p.stdin.close() + return res + res2 = [] + for line in res: + res2.append(line) + p.stdout.close() + if p.stderr: + p.stderr.close() + if p.stdin: + p.stdin.close() + p.wait() + return res2 + + +class ESpeak(BasePhonemizer): + """ESpeak wrapper calling `espeak` or `espeak-ng` from the command-line the perform G2P + + Args: + language (str): + Valid language code for the used backend. + + backend (str): + Name of the backend library to use. `espeak` or `espeak-ng`. If None, set automatically + prefering `espeak-ng` over `espeak`. Defaults to None. + + punctuations (str): + Characters to be treated as punctuation. Defaults to Punctuation.default_puncs(). + + keep_puncs (bool): + If True, keep the punctuations after phonemization. Defaults to True. + + Example: + + >>> from TTS.tts.utils.text.phonemizers import ESpeak + >>> phonemizer = ESpeak("tr") + >>> phonemizer.phonemize("Bu Tรผrkรงe, bir รถrnektir.", separator="|") + 'b|สŠ t|หˆรธ|r|k|tสƒ|ษ›, b|ษช|r ล“|r|n|หˆษ›|c|t|ษช|r.' + + """ + + _ESPEAK_LIB = _DEF_ESPEAK_LIB + _ESPEAK_VER = _DEF_ESPEAK_VER + + def __init__(self, language: str, backend=None, punctuations=Punctuation.default_puncs(), keep_puncs=True): + if self._ESPEAK_LIB is None: + raise Exception(" [!] No espeak backend found. Install espeak-ng or espeak to your system.") + self.backend = self._ESPEAK_LIB + + # band-aid for backwards compatibility + if language == "en": + language = "en-us" + if language == "zh-cn": + language = "cmn" + + super().__init__(language, punctuations=punctuations, keep_puncs=keep_puncs) + if backend is not None: + self.backend = backend + + @property + def backend(self): + return self._ESPEAK_LIB + + @property + def backend_version(self): + return self._ESPEAK_VER + + @backend.setter + def backend(self, backend): + if backend not in ["espeak", "espeak-ng"]: + raise Exception("Unknown backend: %s" % backend) + self._ESPEAK_LIB = backend + self._ESPEAK_VER = get_espeakng_version() if backend == "espeak-ng" else get_espeak_version() + + def auto_set_espeak_lib(self) -> None: + if is_tool("espeak-ng"): + self._ESPEAK_LIB = "espeak-ng" + self._ESPEAK_VER = get_espeakng_version() + elif is_tool("espeak"): + self._ESPEAK_LIB = "espeak" + self._ESPEAK_VER = get_espeak_version() + else: + raise Exception("Cannot set backend automatically. espeak-ng or espeak not found") + + @staticmethod + def name(): + return "espeak" + + def phonemize_espeak(self, text: str, separator: str = "|", tie=False) -> str: + """Convert input text to phonemes. + + Args: + text (str): + Text to be converted to phonemes. + + tie (bool, optional) : When True use a 'อก' character between + consecutive characters of a single phoneme. Else separate phoneme + with '_'. This option requires espeak>=1.49. Default to False. + """ + # set arguments + args = ["-v", f"{self._language}"] + # espeak and espeak-ng parses `ipa` differently + if tie: + # use 'อก' between phonemes + if self.backend == "espeak": + args.append("--ipa=1") + else: + args.append("--ipa=3") + else: + # split with '_' + if self.backend == "espeak": + if Version(self.backend_version) >= Version("1.48.15"): + args.append("--ipa=1") + else: + args.append("--ipa=3") + else: + args.append("--ipa=1") + if tie: + args.append("--tie=%s" % tie) + + args.append('"' + text + '"') + # compute phonemes + phonemes = "" + for line in _espeak_exe(self._ESPEAK_LIB, args, sync=True): + logging.debug("line: %s", repr(line)) + ph_decoded = line.decode("utf8").strip() + # espeak need to skip first two characters of the retuned text: + # version 1.48.03: "_ p_ษน_หˆaษช_ษš t_ษ™ n_oสŠ_v_หˆษ›_m_b_ษš t_w_หˆษ›_n_t_i t_หˆuห\n" + # version 1.48.15: " p_ษน_หˆaษช_ษš t_ษ™ n_oสŠ_v_หˆษ›_m_b_ษš t_w_หˆษ›_n_t_i t_หˆuห\n" + # espeak-ng need to skip the first character of the retuned text: + # "_p_ษน_หˆaษช_ษš t_ษ™ n_oสŠ_v_หˆษ›_m_b_ษš t_w_หˆษ›_n_t_i t_หˆuห\n" + + # dealing with the conditions descrived above + ph_decoded = ph_decoded[:1].replace("_", "") + ph_decoded[1:] + + # espeak-ng backend can add language flags that need to be removed: + # "sษ›สtหˆษ›ฬƒ mหˆo kษ”m (en)fหˆสŠtbษ”หl(fr) ส’enหˆษ›ส de- flหˆaษก dษ™- lหˆษ‘ฬƒษก." + # phonemize needs to remove the language flags of the returned text: + # "sษ›สtหˆษ›ฬƒ mหˆo kษ”m fหˆสŠtbษ”หl ส’enหˆษ›ส de- flหˆaษก dษ™- lหˆษ‘ฬƒษก." + ph_decoded = re.sub(r"\(.+?\)", "", ph_decoded) + + phonemes += ph_decoded.strip() + return phonemes.replace("_", separator) + + def _phonemize(self, text, separator=None): + return self.phonemize_espeak(text, separator, tie=False) + + @staticmethod + def supported_languages() -> Dict: + """Get a dictionary of supported languages. + + Returns: + Dict: Dictionary of language codes. + """ + if _DEF_ESPEAK_LIB is None: + return {} + args = ["--voices"] + langs = {} + count = 0 + for line in _espeak_exe(_DEF_ESPEAK_LIB, args, sync=True): + line = line.decode("utf8").strip() + if count > 0: + cols = line.split() + lang_code = cols[1] + lang_name = cols[3] + langs[lang_code] = lang_name + logging.debug("line: %s", repr(line)) + count += 1 + return langs + + def version(self) -> str: + """Get the version of the used backend. + + Returns: + str: Version of the used backend. + """ + args = ["--version"] + for line in _espeak_exe(self.backend, args, sync=True): + version = line.decode("utf8").strip().split()[2] + logging.debug("line: %s", repr(line)) + return version + + @classmethod + def is_available(cls): + """Return true if ESpeak is available else false""" + return is_tool("espeak") or is_tool("espeak-ng") + + +if __name__ == "__main__": + e = ESpeak(language="en-us") + print(e.supported_languages()) + print(e.version()) + print(e.language) + print(e.name()) + print(e.is_available()) + + e = ESpeak(language="en-us", keep_puncs=False) + print("`" + e.phonemize("hello how are you today?") + "`") + + e = ESpeak(language="en-us", keep_puncs=True) + print("`" + e.phonemize("hello how are you today?") + "`") diff --git a/TTS/TTS/tts/utils/text/phonemizers/gruut_wrapper.py b/TTS/TTS/tts/utils/text/phonemizers/gruut_wrapper.py new file mode 100644 index 0000000000000000000000000000000000000000..f3e9c9abd4c41935ed07ec10ed883d75b42a6bc8 --- /dev/null +++ b/TTS/TTS/tts/utils/text/phonemizers/gruut_wrapper.py @@ -0,0 +1,151 @@ +import importlib +from typing import List + +import gruut +from gruut_ipa import IPA + +from TTS.tts.utils.text.phonemizers.base import BasePhonemizer +from TTS.tts.utils.text.punctuation import Punctuation + +# Table for str.translate to fix gruut/TTS phoneme mismatch +GRUUT_TRANS_TABLE = str.maketrans("g", "ษก") + + +class Gruut(BasePhonemizer): + """Gruut wrapper for G2P + + Args: + language (str): + Valid language code for the used backend. + + punctuations (str): + Characters to be treated as punctuation. Defaults to `Punctuation.default_puncs()`. + + keep_puncs (bool): + If true, keep the punctuations after phonemization. Defaults to True. + + use_espeak_phonemes (bool): + If true, use espeak lexicons instead of default Gruut lexicons. Defaults to False. + + keep_stress (bool): + If true, keep the stress characters after phonemization. Defaults to False. + + Example: + + >>> from TTS.tts.utils.text.phonemizers.gruut_wrapper import Gruut + >>> phonemizer = Gruut('en-us') + >>> phonemizer.phonemize("Be a voice, not an! echo?", separator="|") + 'b|i| ษ™| v|ษ”|ษช|s, n|ษ‘|t| ษ™|n! ษ›|k|o|สŠ?' + """ + + def __init__( + self, + language: str, + punctuations=Punctuation.default_puncs(), + keep_puncs=True, + use_espeak_phonemes=False, + keep_stress=False, + ): + super().__init__(language, punctuations=punctuations, keep_puncs=keep_puncs) + self.use_espeak_phonemes = use_espeak_phonemes + self.keep_stress = keep_stress + + @staticmethod + def name(): + return "gruut" + + def phonemize_gruut(self, text: str, separator: str = "|", tie=False) -> str: # pylint: disable=unused-argument + """Convert input text to phonemes. + + Gruut phonemizes the given `str` by seperating each phoneme character with `separator`, even for characters + that constitude a single sound. + + It doesn't affect ๐ŸธTTS since it individually converts each character to token IDs. + + Examples:: + "hello how are you today?" -> `h|ษ›|l|o|สŠ| h|a|สŠ| ษ‘|ษน| j|u| t|ษ™|d|e|ษช` + + Args: + text (str): + Text to be converted to phonemes. + + tie (bool, optional) : When True use a 'อก' character between + consecutive characters of a single phoneme. Else separate phoneme + with '_'. This option requires espeak>=1.49. Default to False. + """ + ph_list = [] + for sentence in gruut.sentences(text, lang=self.language, espeak=self.use_espeak_phonemes): + for word in sentence: + if word.is_break: + # Use actual character for break phoneme (e.g., comma) + if ph_list: + # Join with previous word + ph_list[-1].append(word.text) + else: + # First word is punctuation + ph_list.append([word.text]) + elif word.phonemes: + # Add phonemes for word + word_phonemes = [] + + for word_phoneme in word.phonemes: + if not self.keep_stress: + # Remove primary/secondary stress + word_phoneme = IPA.without_stress(word_phoneme) + + word_phoneme = word_phoneme.translate(GRUUT_TRANS_TABLE) + + if word_phoneme: + # Flatten phonemes + word_phonemes.extend(word_phoneme) + + if word_phonemes: + ph_list.append(word_phonemes) + + ph_words = [separator.join(word_phonemes) for word_phonemes in ph_list] + ph = f"{separator} ".join(ph_words) + return ph + + def _phonemize(self, text, separator): + return self.phonemize_gruut(text, separator, tie=False) + + def is_supported_language(self, language): + """Returns True if `language` is supported by the backend""" + return gruut.is_language_supported(language) + + @staticmethod + def supported_languages() -> List: + """Get a dictionary of supported languages. + + Returns: + List: List of language codes. + """ + return list(gruut.get_supported_languages()) + + def version(self): + """Get the version of the used backend. + + Returns: + str: Version of the used backend. + """ + return gruut.__version__ + + @classmethod + def is_available(cls): + """Return true if ESpeak is available else false""" + return importlib.util.find_spec("gruut") is not None + + +if __name__ == "__main__": + e = Gruut(language="en-us") + print(e.supported_languages()) + print(e.version()) + print(e.language) + print(e.name()) + print(e.is_available()) + + e = Gruut(language="en-us", keep_puncs=False) + print("`" + e.phonemize("hello how are you today?") + "`") + + e = Gruut(language="en-us", keep_puncs=True) + print("`" + e.phonemize("hello how, are you today?") + "`") diff --git a/TTS/TTS/tts/utils/text/phonemizers/ja_jp_phonemizer.py b/TTS/TTS/tts/utils/text/phonemizers/ja_jp_phonemizer.py new file mode 100644 index 0000000000000000000000000000000000000000..878e5e52969f740ae74d875c91294666095e89ac --- /dev/null +++ b/TTS/TTS/tts/utils/text/phonemizers/ja_jp_phonemizer.py @@ -0,0 +1,72 @@ +from typing import Dict + +from TTS.tts.utils.text.japanese.phonemizer import japanese_text_to_phonemes +from TTS.tts.utils.text.phonemizers.base import BasePhonemizer + +_DEF_JA_PUNCS = "ใ€.,[]()?!ใ€ฝ~ใ€Žใ€ใ€Œใ€ใ€ใ€‘" + +_TRANS_TABLE = {"ใ€": ","} + + +def trans(text): + for i, j in _TRANS_TABLE.items(): + text = text.replace(i, j) + return text + + +class JA_JP_Phonemizer(BasePhonemizer): + """๐ŸธTTS Ja-Jp phonemizer using functions in `TTS.tts.utils.text.japanese.phonemizer` + + TODO: someone with JA knowledge should check this implementation + + Example: + + >>> from TTS.tts.utils.text.phonemizers import JA_JP_Phonemizer + >>> phonemizer = JA_JP_Phonemizer() + >>> phonemizer.phonemize("ใฉใกใ‚‰ใซ่กŒใใพใ™ใ‹๏ผŸ", separator="|") + 'd|o|c|h|i|r|a|n|i|i|k|i|m|a|s|u|k|a|?' + + """ + + language = "ja-jp" + + def __init__(self, punctuations=_DEF_JA_PUNCS, keep_puncs=True, **kwargs): # pylint: disable=unused-argument + super().__init__(self.language, punctuations=punctuations, keep_puncs=keep_puncs) + + @staticmethod + def name(): + return "ja_jp_phonemizer" + + def _phonemize(self, text: str, separator: str = "|") -> str: + ph = japanese_text_to_phonemes(text) + if separator is not None or separator != "": + return separator.join(ph) + return ph + + def phonemize(self, text: str, separator="|", language=None) -> str: + """Custom phonemize for JP_JA + + Skip pre-post processing steps used by the other phonemizers. + """ + return self._phonemize(text, separator) + + @staticmethod + def supported_languages() -> Dict: + return {"ja-jp": "Japanese (Japan)"} + + def version(self) -> str: + return "0.0.1" + + def is_available(self) -> bool: + return True + + +# if __name__ == "__main__": +# text = "ใ“ใ‚Œใฏใ€้›ป่ฉฑใ‚’ใ‹ใ‘ใ‚‹ใŸใ‚ใฎ็งใฎๆ—ฅๆœฌ่ชžใฎไพ‹ใฎใƒ†ใ‚ญใ‚นใƒˆใงใ™ใ€‚" +# e = JA_JP_Phonemizer() +# print(e.supported_languages()) +# print(e.version()) +# print(e.language) +# print(e.name()) +# print(e.is_available()) +# print("`" + e.phonemize(text) + "`") diff --git a/TTS/TTS/tts/utils/text/phonemizers/ko_kr_phonemizer.py b/TTS/TTS/tts/utils/text/phonemizers/ko_kr_phonemizer.py new file mode 100644 index 0000000000000000000000000000000000000000..84f24c75ca9eca094e3bc2bf36fc93b56812b59f --- /dev/null +++ b/TTS/TTS/tts/utils/text/phonemizers/ko_kr_phonemizer.py @@ -0,0 +1,65 @@ +from typing import Dict + +from TTS.tts.utils.text.korean.phonemizer import korean_text_to_phonemes +from TTS.tts.utils.text.phonemizers.base import BasePhonemizer + +_DEF_KO_PUNCS = "ใ€.,[]()?!ใ€ฝ~ใ€Žใ€ใ€Œใ€ใ€ใ€‘" + + +class KO_KR_Phonemizer(BasePhonemizer): + """๐ŸธTTS ko_kr_phonemizer using functions in `TTS.tts.utils.text.korean.phonemizer` + + TODO: Add Korean to character (แ„€แ„แ„‚แ„ƒแ„„แ„…แ„†แ„‡แ„ˆแ„‰แ„Šแ„‹แ„Œแ„แ„Žแ„แ„แ„‘แ„’แ…กแ…ขแ…ฃแ…คแ…ฅแ…ฆแ…งแ…จแ…ฉแ…ชแ…ซแ…ฌแ…ญแ…ฎแ…ฏแ…ฐแ…ฑแ…ฒแ…ณแ…ดแ…ตแ†จแ†ฉแ†ชแ†ซแ†ฌแ†ญแ†ฎแ†ฏแ†ฐแ†ฑแ†ฒแ†ณแ†ดแ†ตแ†ถแ†ทแ†ธแ†นแ†บแ†ปแ†ผแ†ฝแ†พแ†ฟแ‡€แ‡แ‡‚) + + Example: + + >>> from TTS.tts.utils.text.phonemizers import KO_KR_Phonemizer + >>> phonemizer = KO_KR_Phonemizer() + >>> phonemizer.phonemize("์ด ๋ฌธ์žฅ์€ ์Œ์„ฑํ•ฉ์„ฑ ํ…Œ์ŠคํŠธ๋ฅผ ์œ„ํ•œ ๋ฌธ์žฅ์ž…๋‹ˆ๋‹ค.", separator="|") + 'แ„‹|แ…ต| |แ„†|แ…ฎ|แ†ซ|แ„Œ|แ…ก|แ†ผ|แ„‹|แ…ณ| |แ„‚|แ…ณ|แ†ท|แ„‰|แ…ฅ|แ†ผ|แ„’|แ…ก|แ†ธ|แ„Š|แ…ฅ|แ†ผ| |แ„|แ…ฆ|แ„‰|แ…ณ|แ„|แ…ณ|แ„…|แ…ณ| |แ„…|แ…ฑ|แ„’|แ…ก|แ†ซ| |แ„†|แ…ฎ|แ†ซ|แ„Œ|แ…ก|แ†ผ|แ„‹|แ…ต|แ†ท|แ„‚|แ…ต|แ„ƒ|แ…ก|.' + + >>> from TTS.tts.utils.text.phonemizers import KO_KR_Phonemizer + >>> phonemizer = KO_KR_Phonemizer() + >>> phonemizer.phonemize("์ด ๋ฌธ์žฅ์€ ์Œ์„ฑํ•ฉ์„ฑ ํ…Œ์ŠคํŠธ๋ฅผ ์œ„ํ•œ ๋ฌธ์žฅ์ž…๋‹ˆ๋‹ค.", separator="|", character='english') + 'I| |M|u|n|J|a|n|g|E|u| |N|e|u|m|S|e|o|n|g|H|a|b|S|s|e|o|n|g| |T|e|S|e|u|T|e|u|L|e|u| |L|w|i|H|a|n| |M|u|n|J|a|n|g|I|m|N|i|D|a|.' + + """ + + language = "ko-kr" + + def __init__(self, punctuations=_DEF_KO_PUNCS, keep_puncs=True, **kwargs): # pylint: disable=unused-argument + super().__init__(self.language, punctuations=punctuations, keep_puncs=keep_puncs) + + @staticmethod + def name(): + return "ko_kr_phonemizer" + + def _phonemize(self, text: str, separator: str = "", character: str = "hangeul") -> str: + ph = korean_text_to_phonemes(text, character=character) + if separator is not None or separator != "": + return separator.join(ph) + return ph + + def phonemize(self, text: str, separator: str = "", character: str = "hangeul", language=None) -> str: + return self._phonemize(text, separator, character) + + @staticmethod + def supported_languages() -> Dict: + return {"ko-kr": "hangeul(korean)"} + + def version(self) -> str: + return "0.0.2" + + def is_available(self) -> bool: + return True + + +if __name__ == "__main__": + texts = "์ด ๋ฌธ์žฅ์€ ์Œ์„ฑํ•ฉ์„ฑ ํ…Œ์ŠคํŠธ๋ฅผ ์œ„ํ•œ ๋ฌธ์žฅ์ž…๋‹ˆ๋‹ค." + e = KO_KR_Phonemizer() + print(e.supported_languages()) + print(e.version()) + print(e.language) + print(e.name()) + print(e.is_available()) + print(e.phonemize(texts)) diff --git a/TTS/TTS/tts/utils/text/phonemizers/multi_phonemizer.py b/TTS/TTS/tts/utils/text/phonemizers/multi_phonemizer.py new file mode 100644 index 0000000000000000000000000000000000000000..62a9c39322e051124d8c2d816cbc7d479df69dfe --- /dev/null +++ b/TTS/TTS/tts/utils/text/phonemizers/multi_phonemizer.py @@ -0,0 +1,65 @@ +from typing import Dict, List + +from TTS.tts.utils.text.phonemizers import DEF_LANG_TO_PHONEMIZER, get_phonemizer_by_name + + +class MultiPhonemizer: + """๐ŸธTTS multi-phonemizer that operates phonemizers for multiple langugages + + Args: + custom_lang_to_phonemizer (Dict): + Custom phonemizer mapping if you want to change the defaults. In the format of + `{"lang_code", "phonemizer_name"}`. When it is None, `DEF_LANG_TO_PHONEMIZER` is used. Defaults to `{}`. + + TODO: find a way to pass custom kwargs to the phonemizers + """ + + lang_to_phonemizer = {} + + def __init__(self, lang_to_phonemizer_name: Dict = {}) -> None: # pylint: disable=dangerous-default-value + for k, v in lang_to_phonemizer_name.items(): + if v == "" and k in DEF_LANG_TO_PHONEMIZER.keys(): + lang_to_phonemizer_name[k] = DEF_LANG_TO_PHONEMIZER[k] + elif v == "": + raise ValueError(f"Phonemizer wasn't set for language {k} and doesn't have a default.") + self.lang_to_phonemizer_name = lang_to_phonemizer_name + self.lang_to_phonemizer = self.init_phonemizers(self.lang_to_phonemizer_name) + + @staticmethod + def init_phonemizers(lang_to_phonemizer_name: Dict) -> Dict: + lang_to_phonemizer = {} + for k, v in lang_to_phonemizer_name.items(): + lang_to_phonemizer[k] = get_phonemizer_by_name(v, language=k) + return lang_to_phonemizer + + @staticmethod + def name(): + return "multi-phonemizer" + + def phonemize(self, text, separator="|", language=""): + if language == "": + raise ValueError("Language must be set for multi-phonemizer to phonemize.") + return self.lang_to_phonemizer[language].phonemize(text, separator) + + def supported_languages(self) -> List: + return list(self.lang_to_phonemizer.keys()) + + def print_logs(self, level: int = 0): + indent = "\t" * level + print(f"{indent}| > phoneme language: {self.supported_languages()}") + print(f"{indent}| > phoneme backend: {self.name()}") + + +# if __name__ == "__main__": +# texts = { +# "tr": "Merhaba, bu Tรผrkรงe bit รถrnek!", +# "en-us": "Hello, this is English example!", +# "de": "Hallo, das ist ein Deutches Beipiel!", +# "zh-cn": "่ฟ™ๆ˜ฏไธญๅ›ฝ็š„ไพ‹ๅญ", +# } +# phonemes = {} +# ph = MultiPhonemizer({"tr": "espeak", "en-us": "", "de": "gruut", "zh-cn": ""}) +# for lang, text in texts.items(): +# phoneme = ph.phonemize(text, lang) +# phonemes[lang] = phoneme +# print(phonemes) diff --git a/TTS/TTS/tts/utils/text/phonemizers/zh_cn_phonemizer.py b/TTS/TTS/tts/utils/text/phonemizers/zh_cn_phonemizer.py new file mode 100644 index 0000000000000000000000000000000000000000..41480c417356fd941e71e3eff0099eb38ac7296a --- /dev/null +++ b/TTS/TTS/tts/utils/text/phonemizers/zh_cn_phonemizer.py @@ -0,0 +1,62 @@ +from typing import Dict + +from TTS.tts.utils.text.chinese_mandarin.phonemizer import chinese_text_to_phonemes +from TTS.tts.utils.text.phonemizers.base import BasePhonemizer + +_DEF_ZH_PUNCS = "ใ€.,[]()?!ใ€ฝ~ใ€Žใ€ใ€Œใ€ใ€ใ€‘" + + +class ZH_CN_Phonemizer(BasePhonemizer): + """๐ŸธTTS Zh-Cn phonemizer using functions in `TTS.tts.utils.text.chinese_mandarin.phonemizer` + + Args: + punctuations (str): + Set of characters to be treated as punctuation. Defaults to `_DEF_ZH_PUNCS`. + + keep_puncs (bool): + If True, keep the punctuations after phonemization. Defaults to False. + + Example :: + + "่ฟ™ๆ˜ฏ๏ผŒๆ ทๆœฌไธญๆ–‡ใ€‚" -> `d|ส’|รธ|4| |ส‚|ส|4| |๏ผŒ| |i|ษ‘|ล‹|4|b|ล“|n|3| |d|ส’|o|ล‹|1|w|ล“|n|2| |ใ€‚` + + TODO: someone with Mandarin knowledge should check this implementation + """ + + language = "zh-cn" + + def __init__(self, punctuations=_DEF_ZH_PUNCS, keep_puncs=False, **kwargs): # pylint: disable=unused-argument + super().__init__(self.language, punctuations=punctuations, keep_puncs=keep_puncs) + + @staticmethod + def name(): + return "zh_cn_phonemizer" + + @staticmethod + def phonemize_zh_cn(text: str, separator: str = "|") -> str: + ph = chinese_text_to_phonemes(text, separator) + return ph + + def _phonemize(self, text, separator): + return self.phonemize_zh_cn(text, separator) + + @staticmethod + def supported_languages() -> Dict: + return {"zh-cn": "Chinese (China)"} + + def version(self) -> str: + return "0.0.1" + + def is_available(self) -> bool: + return True + + +# if __name__ == "__main__": +# text = "่ฟ™ๆ˜ฏ๏ผŒๆ ทๆœฌไธญๆ–‡ใ€‚" +# e = ZH_CN_Phonemizer() +# print(e.supported_languages()) +# print(e.version()) +# print(e.language) +# print(e.name()) +# print(e.is_available()) +# print("`" + e.phonemize(text) + "`") diff --git a/TTS/TTS/tts/utils/text/punctuation.py b/TTS/TTS/tts/utils/text/punctuation.py new file mode 100644 index 0000000000000000000000000000000000000000..8d199cc545b36f6089056d904fd0a03670012c4d --- /dev/null +++ b/TTS/TTS/tts/utils/text/punctuation.py @@ -0,0 +1,172 @@ +import collections +import re +from enum import Enum + +import six + +_DEF_PUNCS = ';:,.!?ยกยฟโ€”โ€ฆ"ยซยปโ€œโ€' + +_PUNC_IDX = collections.namedtuple("_punc_index", ["punc", "position"]) + + +class PuncPosition(Enum): + """Enum for the punctuations positions""" + + BEGIN = 0 + END = 1 + MIDDLE = 2 + ALONE = 3 + + +class Punctuation: + """Handle punctuations in text. + + Just strip punctuations from text or strip and restore them later. + + Args: + puncs (str): The punctuations to be processed. Defaults to `_DEF_PUNCS`. + + Example: + >>> punc = Punctuation() + >>> punc.strip("This is. example !") + 'This is example' + + >>> text_striped, punc_map = punc.strip_to_restore("This is. example !") + >>> ' '.join(text_striped) + 'This is example' + + >>> text_restored = punc.restore(text_striped, punc_map) + >>> text_restored[0] + 'This is. example !' + """ + + def __init__(self, puncs: str = _DEF_PUNCS): + self.puncs = puncs + + @staticmethod + def default_puncs(): + """Return default set of punctuations.""" + return _DEF_PUNCS + + @property + def puncs(self): + return self._puncs + + @puncs.setter + def puncs(self, value): + if not isinstance(value, six.string_types): + raise ValueError("[!] Punctuations must be of type str.") + self._puncs = "".join(list(dict.fromkeys(list(value)))) # remove duplicates without changing the oreder + self.puncs_regular_exp = re.compile(rf"(\s*[{re.escape(self._puncs)}]+\s*)+") + + def strip(self, text): + """Remove all the punctuations by replacing with `space`. + + Args: + text (str): The text to be processed. + + Example:: + + "This is. example !" -> "This is example " + """ + return re.sub(self.puncs_regular_exp, " ", text).rstrip().lstrip() + + def strip_to_restore(self, text): + """Remove punctuations from text to restore them later. + + Args: + text (str): The text to be processed. + + Examples :: + + "This is. example !" -> [["This is", "example"], [".", "!"]] + + """ + text, puncs = self._strip_to_restore(text) + return text, puncs + + def _strip_to_restore(self, text): + """Auxiliary method for Punctuation.preserve()""" + matches = list(re.finditer(self.puncs_regular_exp, text)) + if not matches: + return [text], [] + # the text is only punctuations + if len(matches) == 1 and matches[0].group() == text: + return [], [_PUNC_IDX(text, PuncPosition.ALONE)] + # build a punctuation map to be used later to restore punctuations + puncs = [] + for match in matches: + position = PuncPosition.MIDDLE + if match == matches[0] and text.startswith(match.group()): + position = PuncPosition.BEGIN + elif match == matches[-1] and text.endswith(match.group()): + position = PuncPosition.END + puncs.append(_PUNC_IDX(match.group(), position)) + # convert str text to a List[str], each item is separated by a punctuation + splitted_text = [] + for idx, punc in enumerate(puncs): + split = text.split(punc.punc) + prefix, suffix = split[0], punc.punc.join(split[1:]) + splitted_text.append(prefix) + # if the text does not end with a punctuation, add it to the last item + if idx == len(puncs) - 1 and len(suffix) > 0: + splitted_text.append(suffix) + text = suffix + return splitted_text, puncs + + @classmethod + def restore(cls, text, puncs): + """Restore punctuation in a text. + + Args: + text (str): The text to be processed. + puncs (List[str]): The list of punctuations map to be used for restoring. + + Examples :: + + ['This is', 'example'], ['.', '!'] -> "This is. example!" + + """ + return cls._restore(text, puncs, 0) + + @classmethod + def _restore(cls, text, puncs, num): # pylint: disable=too-many-return-statements + """Auxiliary method for Punctuation.restore()""" + if not puncs: + return text + + # nothing have been phonemized, returns the puncs alone + if not text: + return ["".join(m.punc for m in puncs)] + + current = puncs[0] + + if current.position == PuncPosition.BEGIN: + return cls._restore([current.punc + text[0]] + text[1:], puncs[1:], num) + + if current.position == PuncPosition.END: + return [text[0] + current.punc] + cls._restore(text[1:], puncs[1:], num + 1) + + if current.position == PuncPosition.ALONE: + return [current.mark] + cls._restore(text, puncs[1:], num + 1) + + # POSITION == MIDDLE + if len(text) == 1: # pragma: nocover + # a corner case where the final part of an intermediate + # mark (I) has not been phonemized + return cls._restore([text[0] + current.punc], puncs[1:], num) + + return cls._restore([text[0] + current.punc + text[1]] + text[2:], puncs[1:], num) + + +# if __name__ == "__main__": +# punc = Punctuation() +# text = "This is. This is, example!" + +# print(punc.strip(text)) + +# split_text, puncs = punc.strip_to_restore(text) +# print(split_text, " ---- ", puncs) + +# restored_text = punc.restore(split_text, puncs) +# print(restored_text) diff --git a/TTS/TTS/tts/utils/text/tokenizer.py b/TTS/TTS/tts/utils/text/tokenizer.py new file mode 100644 index 0000000000000000000000000000000000000000..b7faf86e8a3120ee39171de0caa40bbc85614ddb --- /dev/null +++ b/TTS/TTS/tts/utils/text/tokenizer.py @@ -0,0 +1,216 @@ +from typing import Callable, Dict, List, Union + +from TTS.tts.utils.text import cleaners +from TTS.tts.utils.text.characters import Graphemes, IPAPhonemes +from TTS.tts.utils.text.phonemizers import DEF_LANG_TO_PHONEMIZER, get_phonemizer_by_name +from TTS.tts.utils.text.phonemizers.multi_phonemizer import MultiPhonemizer +from TTS.utils.generic_utils import get_import_path, import_class + + +class TTSTokenizer: + """๐ŸธTTS tokenizer to convert input characters to token IDs and back. + + Token IDs for OOV chars are discarded but those are stored in `self.not_found_characters` for later. + + Args: + use_phonemes (bool): + Whether to use phonemes instead of characters. Defaults to False. + + characters (Characters): + A Characters object to use for character-to-ID and ID-to-character mappings. + + text_cleaner (callable): + A function to pre-process the text before tokenization and phonemization. Defaults to None. + + phonemizer (Phonemizer): + A phonemizer object or a dict that maps language codes to phonemizer objects. Defaults to None. + + Example: + + >>> from TTS.tts.utils.text.tokenizer import TTSTokenizer + >>> tokenizer = TTSTokenizer(use_phonemes=False, characters=Graphemes()) + >>> text = "Hello world!" + >>> ids = tokenizer.text_to_ids(text) + >>> text_hat = tokenizer.ids_to_text(ids) + >>> assert text == text_hat + """ + + def __init__( + self, + use_phonemes=False, + text_cleaner: Callable = None, + characters: "BaseCharacters" = None, + phonemizer: Union["Phonemizer", Dict] = None, + add_blank: bool = False, + use_eos_bos=False, + ): + self.text_cleaner = text_cleaner + self.use_phonemes = use_phonemes + self.add_blank = add_blank + self.use_eos_bos = use_eos_bos + self.characters = characters + self.not_found_characters = [] + self.phonemizer = phonemizer + + @property + def characters(self): + return self._characters + + @characters.setter + def characters(self, new_characters): + self._characters = new_characters + self.pad_id = self.characters.char_to_id(self.characters.pad) if self.characters.pad else None + self.blank_id = self.characters.char_to_id(self.characters.blank) if self.characters.blank else None + + def encode(self, text: str) -> List[int]: + """Encodes a string of text as a sequence of IDs.""" + token_ids = [] + for char in text: + try: + idx = self.characters.char_to_id(char) + token_ids.append(idx) + except KeyError: + # discard but store not found characters + if char not in self.not_found_characters: + self.not_found_characters.append(char) + print(text) + print(f" [!] Character {repr(char)} not found in the vocabulary. Discarding it.") + return token_ids + + def decode(self, token_ids: List[int]) -> str: + """Decodes a sequence of IDs to a string of text.""" + text = "" + for token_id in token_ids: + text += self.characters.id_to_char(token_id) + return text + + def text_to_ids(self, text: str, language: str = None) -> List[int]: # pylint: disable=unused-argument + """Converts a string of text to a sequence of token IDs. + + Args: + text(str): + The text to convert to token IDs. + + language(str): + The language code of the text. Defaults to None. + + TODO: + - Add support for language-specific processing. + + 1. Text normalizatin + 2. Phonemization (if use_phonemes is True) + 3. Add blank char between characters + 4. Add BOS and EOS characters + 5. Text to token IDs + """ + # TODO: text cleaner should pick the right routine based on the language + if self.text_cleaner is not None: + text = self.text_cleaner(text) + if self.use_phonemes: + text = self.phonemizer.phonemize(text, separator="", language=language) + text = self.encode(text) + if self.add_blank: + text = self.intersperse_blank_char(text, True) + if self.use_eos_bos: + text = self.pad_with_bos_eos(text) + return text + + def ids_to_text(self, id_sequence: List[int]) -> str: + """Converts a sequence of token IDs to a string of text.""" + return self.decode(id_sequence) + + def pad_with_bos_eos(self, char_sequence: List[str]): + """Pads a sequence with the special BOS and EOS characters.""" + return [self.characters.bos_id] + list(char_sequence) + [self.characters.eos_id] + + def intersperse_blank_char(self, char_sequence: List[str], use_blank_char: bool = False): + """Intersperses the blank character between characters in a sequence. + + Use the ```blank``` character if defined else use the ```pad``` character. + """ + char_to_use = self.characters.blank_id if use_blank_char else self.characters.pad + result = [char_to_use] * (len(char_sequence) * 2 + 1) + result[1::2] = char_sequence + return result + + def print_logs(self, level: int = 0): + indent = "\t" * level + print(f"{indent}| > add_blank: {self.add_blank}") + print(f"{indent}| > use_eos_bos: {self.use_eos_bos}") + print(f"{indent}| > use_phonemes: {self.use_phonemes}") + if self.use_phonemes: + print(f"{indent}| > phonemizer:") + self.phonemizer.print_logs(level + 1) + if len(self.not_found_characters) > 0: + print(f"{indent}| > {len(self.not_found_characters)} not found characters:") + for char in self.not_found_characters: + print(f"{indent}| > {char}") + + @staticmethod + def init_from_config(config: "Coqpit", characters: "BaseCharacters" = None): + """Init Tokenizer object from config + + Args: + config (Coqpit): Coqpit model config. + characters (BaseCharacters): Defines the model character set. If not set, use the default options based on + the config values. Defaults to None. + """ + # init cleaners + text_cleaner = None + if isinstance(config.text_cleaner, (str, list)): + text_cleaner = getattr(cleaners, config.text_cleaner) + + # init characters + if characters is None: + # set characters based on defined characters class + if config.characters and config.characters.characters_class: + CharactersClass = import_class(config.characters.characters_class) + characters, new_config = CharactersClass.init_from_config(config) + # set characters based on config + else: + if config.use_phonemes: + # init phoneme set + characters, new_config = IPAPhonemes().init_from_config(config) + else: + # init character set + characters, new_config = Graphemes().init_from_config(config) + + else: + characters, new_config = characters.init_from_config(config) + + # set characters class + new_config.characters.characters_class = get_import_path(characters) + + # init phonemizer + phonemizer = None + if config.use_phonemes: + if "phonemizer" in config and config.phonemizer == "multi_phonemizer": + lang_to_phonemizer_name = {} + for dataset in config.datasets: + if dataset.language != "": + lang_to_phonemizer_name[dataset.language] = dataset.phonemizer + else: + raise ValueError("Multi phonemizer requires language to be set for each dataset.") + phonemizer = MultiPhonemizer(lang_to_phonemizer_name) + else: + phonemizer_kwargs = {"language": config.phoneme_language} + if "phonemizer" in config and config.phonemizer: + phonemizer = get_phonemizer_by_name(config.phonemizer, **phonemizer_kwargs) + else: + try: + phonemizer = get_phonemizer_by_name( + DEF_LANG_TO_PHONEMIZER[config.phoneme_language], **phonemizer_kwargs + ) + new_config.phonemizer = phonemizer.name() + except KeyError as e: + raise ValueError( + f"""No phonemizer found for language {config.phoneme_language}. + You may need to install a third party library for this language.""" + ) from e + + return ( + TTSTokenizer( + config.use_phonemes, text_cleaner, characters, phonemizer, config.add_blank, config.enable_eos_bos_chars + ), + new_config, + ) diff --git a/TTS/TTS/tts/utils/visual.py b/TTS/TTS/tts/utils/visual.py new file mode 100644 index 0000000000000000000000000000000000000000..fba7bc508ef962d5a93c794ca868acd46d07ec16 --- /dev/null +++ b/TTS/TTS/tts/utils/visual.py @@ -0,0 +1,238 @@ +import librosa +import matplotlib +import matplotlib.pyplot as plt +import numpy as np +import torch +from matplotlib.colors import LogNorm + +matplotlib.use("Agg") + + +def plot_alignment(alignment, info=None, fig_size=(16, 10), title=None, output_fig=False, plot_log=False): + if isinstance(alignment, torch.Tensor): + alignment_ = alignment.detach().cpu().numpy().squeeze() + else: + alignment_ = alignment + alignment_ = alignment_.astype(np.float32) if alignment_.dtype == np.float16 else alignment_ + fig, ax = plt.subplots(figsize=fig_size) + im = ax.imshow( + alignment_.T, aspect="auto", origin="lower", interpolation="none", norm=LogNorm() if plot_log else None + ) + fig.colorbar(im, ax=ax) + xlabel = "Decoder timestep" + if info is not None: + xlabel += "\n\n" + info + plt.xlabel(xlabel) + plt.ylabel("Encoder timestep") + # plt.yticks(range(len(text)), list(text)) + plt.tight_layout() + if title is not None: + plt.title(title) + if not output_fig: + plt.close() + return fig + + +def plot_spectrogram(spectrogram, ap=None, fig_size=(16, 10), output_fig=False): + if isinstance(spectrogram, torch.Tensor): + spectrogram_ = spectrogram.detach().cpu().numpy().squeeze().T + else: + spectrogram_ = spectrogram.T + spectrogram_ = spectrogram_.astype(np.float32) if spectrogram_.dtype == np.float16 else spectrogram_ + if ap is not None: + spectrogram_ = ap.denormalize(spectrogram_) # pylint: disable=protected-access + fig = plt.figure(figsize=fig_size) + plt.imshow(spectrogram_, aspect="auto", origin="lower") + plt.colorbar() + plt.tight_layout() + if not output_fig: + plt.close() + return fig + + +def plot_pitch(pitch, spectrogram, ap=None, fig_size=(30, 10), output_fig=False): + """Plot pitch curves on top of the spectrogram. + + Args: + pitch (np.array): Pitch values. + spectrogram (np.array): Spectrogram values. + + Shapes: + pitch: :math:`(T,)` + spec: :math:`(C, T)` + """ + + if isinstance(spectrogram, torch.Tensor): + spectrogram_ = spectrogram.detach().cpu().numpy().squeeze().T + else: + spectrogram_ = spectrogram.T + spectrogram_ = spectrogram_.astype(np.float32) if spectrogram_.dtype == np.float16 else spectrogram_ + if ap is not None: + spectrogram_ = ap.denormalize(spectrogram_) # pylint: disable=protected-access + + old_fig_size = plt.rcParams["figure.figsize"] + if fig_size is not None: + plt.rcParams["figure.figsize"] = fig_size + + fig, ax = plt.subplots() + + ax.imshow(spectrogram_, aspect="auto", origin="lower") + ax.set_xlabel("time") + ax.set_ylabel("spec_freq") + + ax2 = ax.twinx() + ax2.plot(pitch, linewidth=5.0, color="red") + ax2.set_ylabel("F0") + + plt.rcParams["figure.figsize"] = old_fig_size + if not output_fig: + plt.close() + return fig + + +def plot_avg_pitch(pitch, chars, fig_size=(30, 10), output_fig=False): + """Plot pitch curves on top of the input characters. + + Args: + pitch (np.array): Pitch values. + chars (str): Characters to place to the x-axis. + + Shapes: + pitch: :math:`(T,)` + """ + old_fig_size = plt.rcParams["figure.figsize"] + if fig_size is not None: + plt.rcParams["figure.figsize"] = fig_size + + fig, ax = plt.subplots() + + x = np.array(range(len(chars))) + my_xticks = chars + plt.xticks(x, my_xticks) + + ax.set_xlabel("characters") + ax.set_ylabel("freq") + + ax2 = ax.twinx() + ax2.plot(pitch, linewidth=5.0, color="red") + ax2.set_ylabel("F0") + + plt.rcParams["figure.figsize"] = old_fig_size + if not output_fig: + plt.close() + return fig + + +def plot_avg_energy(energy, chars, fig_size=(30, 10), output_fig=False): + """Plot energy curves on top of the input characters. + + Args: + energy (np.array): energy values. + chars (str): Characters to place to the x-axis. + + Shapes: + energy: :math:`(T,)` + """ + old_fig_size = plt.rcParams["figure.figsize"] + if fig_size is not None: + plt.rcParams["figure.figsize"] = fig_size + + fig, ax = plt.subplots() + + x = np.array(range(len(chars))) + my_xticks = chars + plt.xticks(x, my_xticks) + + ax.set_xlabel("characters") + ax.set_ylabel("freq") + + ax2 = ax.twinx() + ax2.plot(energy, linewidth=5.0, color="red") + ax2.set_ylabel("energy") + + plt.rcParams["figure.figsize"] = old_fig_size + if not output_fig: + plt.close() + return fig + + +def visualize( + alignment, + postnet_output, + text, + hop_length, + CONFIG, + tokenizer, + stop_tokens=None, + decoder_output=None, + output_path=None, + figsize=(8, 24), + output_fig=False, +): + """Intended to be used in Notebooks.""" + + if decoder_output is not None: + num_plot = 4 + else: + num_plot = 3 + + label_fontsize = 16 + fig = plt.figure(figsize=figsize) + + plt.subplot(num_plot, 1, 1) + plt.imshow(alignment.T, aspect="auto", origin="lower", interpolation=None) + plt.xlabel("Decoder timestamp", fontsize=label_fontsize) + plt.ylabel("Encoder timestamp", fontsize=label_fontsize) + # compute phoneme representation and back + if CONFIG.use_phonemes: + seq = tokenizer.text_to_ids(text) + text = tokenizer.ids_to_text(seq) + print(text) + plt.yticks(range(len(text)), list(text)) + plt.colorbar() + + if stop_tokens is not None: + # plot stopnet predictions + plt.subplot(num_plot, 1, 2) + plt.plot(range(len(stop_tokens)), list(stop_tokens)) + + # plot postnet spectrogram + plt.subplot(num_plot, 1, 3) + librosa.display.specshow( + postnet_output.T, + sr=CONFIG.audio["sample_rate"], + hop_length=hop_length, + x_axis="time", + y_axis="linear", + fmin=CONFIG.audio["mel_fmin"], + fmax=CONFIG.audio["mel_fmax"], + ) + + plt.xlabel("Time", fontsize=label_fontsize) + plt.ylabel("Hz", fontsize=label_fontsize) + plt.tight_layout() + plt.colorbar() + + if decoder_output is not None: + plt.subplot(num_plot, 1, 4) + librosa.display.specshow( + decoder_output.T, + sr=CONFIG.audio["sample_rate"], + hop_length=hop_length, + x_axis="time", + y_axis="linear", + fmin=CONFIG.audio["mel_fmin"], + fmax=CONFIG.audio["mel_fmax"], + ) + plt.xlabel("Time", fontsize=label_fontsize) + plt.ylabel("Hz", fontsize=label_fontsize) + plt.tight_layout() + plt.colorbar() + + if output_path: + print(output_path) + fig.savefig(output_path) + plt.close() + + if not output_fig: + plt.close() diff --git a/TTS/TTS/utils/__init__.py b/TTS/TTS/utils/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/TTS/TTS/utils/audio/__init__.py b/TTS/TTS/utils/audio/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..f18f22199908ee0dd5445e34527f5fddb65cfed8 --- /dev/null +++ b/TTS/TTS/utils/audio/__init__.py @@ -0,0 +1 @@ +from TTS.utils.audio.processor import AudioProcessor diff --git a/TTS/TTS/utils/audio/numpy_transforms.py b/TTS/TTS/utils/audio/numpy_transforms.py new file mode 100644 index 0000000000000000000000000000000000000000..ae44472f05384bae383fe2d64ab2a32983c5c4e7 --- /dev/null +++ b/TTS/TTS/utils/audio/numpy_transforms.py @@ -0,0 +1,477 @@ +from typing import Tuple + +import librosa +import numpy as np +import scipy +import soundfile as sf +from librosa import magphase, pyin + +# For using kwargs +# pylint: disable=unused-argument + + +def build_mel_basis( + *, + sample_rate: int = None, + fft_size: int = None, + num_mels: int = None, + mel_fmax: int = None, + mel_fmin: int = None, + **kwargs, +) -> np.ndarray: + """Build melspectrogram basis. + + Returns: + np.ndarray: melspectrogram basis. + """ + if mel_fmax is not None: + assert mel_fmax <= sample_rate // 2 + assert mel_fmax - mel_fmin > 0 + return librosa.filters.mel(sr=sample_rate, n_fft=fft_size, n_mels=num_mels, fmin=mel_fmin, fmax=mel_fmax) + + +def millisec_to_length( + *, frame_length_ms: int = None, frame_shift_ms: int = None, sample_rate: int = None, **kwargs +) -> Tuple[int, int]: + """Compute hop and window length from milliseconds. + + Returns: + Tuple[int, int]: hop length and window length for STFT. + """ + factor = frame_length_ms / frame_shift_ms + assert (factor).is_integer(), " [!] frame_shift_ms should divide frame_length_ms" + win_length = int(frame_length_ms / 1000.0 * sample_rate) + hop_length = int(win_length / float(factor)) + return win_length, hop_length + + +def _log(x, base): + if base == 10: + return np.log10(x) + return np.log(x) + + +def _exp(x, base): + if base == 10: + return np.power(10, x) + return np.exp(x) + + +def amp_to_db(*, x: np.ndarray = None, gain: float = 1, base: int = 10, **kwargs) -> np.ndarray: + """Convert amplitude values to decibels. + + Args: + x (np.ndarray): Amplitude spectrogram. + gain (float): Gain factor. Defaults to 1. + base (int): Logarithm base. Defaults to 10. + + Returns: + np.ndarray: Decibels spectrogram. + """ + assert (x < 0).sum() == 0, " [!] Input values must be non-negative." + return gain * _log(np.maximum(1e-8, x), base) + + +# pylint: disable=no-self-use +def db_to_amp(*, x: np.ndarray = None, gain: float = 1, base: int = 10, **kwargs) -> np.ndarray: + """Convert decibels spectrogram to amplitude spectrogram. + + Args: + x (np.ndarray): Decibels spectrogram. + gain (float): Gain factor. Defaults to 1. + base (int): Logarithm base. Defaults to 10. + + Returns: + np.ndarray: Amplitude spectrogram. + """ + return _exp(x / gain, base) + + +def preemphasis(*, x: np.ndarray, coef: float = 0.97, **kwargs) -> np.ndarray: + """Apply pre-emphasis to the audio signal. Useful to reduce the correlation between neighbouring signal values. + + Args: + x (np.ndarray): Audio signal. + + Raises: + RuntimeError: Preemphasis coeff is set to 0. + + Returns: + np.ndarray: Decorrelated audio signal. + """ + if coef == 0: + raise RuntimeError(" [!] Preemphasis is set 0.0.") + return scipy.signal.lfilter([1, -coef], [1], x) + + +def deemphasis(*, x: np.ndarray = None, coef: float = 0.97, **kwargs) -> np.ndarray: + """Reverse pre-emphasis.""" + if coef == 0: + raise RuntimeError(" [!] Preemphasis is set 0.0.") + return scipy.signal.lfilter([1], [1, -coef], x) + + +def spec_to_mel(*, spec: np.ndarray, mel_basis: np.ndarray = None, **kwargs) -> np.ndarray: + """Convert a full scale linear spectrogram output of a network to a melspectrogram. + + Args: + spec (np.ndarray): Normalized full scale linear spectrogram. + + Shapes: + - spec: :math:`[C, T]` + + Returns: + np.ndarray: Normalized melspectrogram. + """ + return np.dot(mel_basis, spec) + + +def mel_to_spec(*, mel: np.ndarray = None, mel_basis: np.ndarray = None, **kwargs) -> np.ndarray: + """Convert a melspectrogram to full scale spectrogram.""" + assert (mel < 0).sum() == 0, " [!] Input values must be non-negative." + inv_mel_basis = np.linalg.pinv(mel_basis) + return np.maximum(1e-10, np.dot(inv_mel_basis, mel)) + + +def wav_to_spec(*, wav: np.ndarray = None, **kwargs) -> np.ndarray: + """Compute a spectrogram from a waveform. + + Args: + wav (np.ndarray): Waveform. Shape :math:`[T_wav,]` + + Returns: + np.ndarray: Spectrogram. Shape :math:`[C, T_spec]`. :math:`T_spec == T_wav / hop_length` + """ + D = stft(y=wav, **kwargs) + S = np.abs(D) + return S.astype(np.float32) + + +def wav_to_mel(*, wav: np.ndarray = None, mel_basis=None, **kwargs) -> np.ndarray: + """Compute a melspectrogram from a waveform.""" + D = stft(y=wav, **kwargs) + S = spec_to_mel(spec=np.abs(D), mel_basis=mel_basis, **kwargs) + return S.astype(np.float32) + + +def spec_to_wav(*, spec: np.ndarray, power: float = 1.5, **kwargs) -> np.ndarray: + """Convert a spectrogram to a waveform using Griffi-Lim vocoder.""" + S = spec.copy() + return griffin_lim(spec=S**power, **kwargs) + + +def mel_to_wav(*, mel: np.ndarray = None, power: float = 1.5, **kwargs) -> np.ndarray: + """Convert a melspectrogram to a waveform using Griffi-Lim vocoder.""" + S = mel.copy() + S = mel_to_spec(mel=S, mel_basis=kwargs["mel_basis"]) # Convert back to linear + return griffin_lim(spec=S**power, **kwargs) + + +### STFT and ISTFT ### +def stft( + *, + y: np.ndarray = None, + fft_size: int = None, + hop_length: int = None, + win_length: int = None, + pad_mode: str = "reflect", + window: str = "hann", + center: bool = True, + **kwargs, +) -> np.ndarray: + """Librosa STFT wrapper. + + Check http://librosa.org/doc/main/generated/librosa.stft.html argument details. + + Returns: + np.ndarray: Complex number array. + """ + return librosa.stft( + y=y, + n_fft=fft_size, + hop_length=hop_length, + win_length=win_length, + pad_mode=pad_mode, + window=window, + center=center, + ) + + +def istft( + *, + y: np.ndarray = None, + fft_size: int = None, + hop_length: int = None, + win_length: int = None, + window: str = "hann", + center: bool = True, + **kwargs, +) -> np.ndarray: + """Librosa iSTFT wrapper. + + Check http://librosa.org/doc/main/generated/librosa.istft.html argument details. + + Returns: + np.ndarray: Complex number array. + """ + return librosa.istft(y, hop_length=hop_length, win_length=win_length, center=center, window=window) + + +def griffin_lim(*, spec: np.ndarray = None, num_iter=60, **kwargs) -> np.ndarray: + angles = np.exp(2j * np.pi * np.random.rand(*spec.shape)) + S_complex = np.abs(spec).astype(complex) + y = istft(y=S_complex * angles, **kwargs) + if not np.isfinite(y).all(): + print(" [!] Waveform is not finite everywhere. Skipping the GL.") + return np.array([0.0]) + for _ in range(num_iter): + angles = np.exp(1j * np.angle(stft(y=y, **kwargs))) + y = istft(y=S_complex * angles, **kwargs) + return y + + +def compute_stft_paddings( + *, x: np.ndarray = None, hop_length: int = None, pad_two_sides: bool = False, **kwargs +) -> Tuple[int, int]: + """Compute paddings used by Librosa's STFT. Compute right padding (final frame) or both sides padding + (first and final frames)""" + pad = (x.shape[0] // hop_length + 1) * hop_length - x.shape[0] + if not pad_two_sides: + return 0, pad + return pad // 2, pad // 2 + pad % 2 + + +def compute_f0( + *, + x: np.ndarray = None, + pitch_fmax: float = None, + pitch_fmin: float = None, + hop_length: int = None, + win_length: int = None, + sample_rate: int = None, + stft_pad_mode: str = "reflect", + center: bool = True, + **kwargs, +) -> np.ndarray: + """Compute pitch (f0) of a waveform using the same parameters used for computing melspectrogram. + + Args: + x (np.ndarray): Waveform. Shape :math:`[T_wav,]` + pitch_fmax (float): Pitch max value. + pitch_fmin (float): Pitch min value. + hop_length (int): Number of frames between STFT columns. + win_length (int): STFT window length. + sample_rate (int): Audio sampling rate. + stft_pad_mode (str): Padding mode for STFT. + center (bool): Centered padding. + + Returns: + np.ndarray: Pitch. Shape :math:`[T_pitch,]`. :math:`T_pitch == T_wav / hop_length` + + Examples: + >>> WAV_FILE = filename = librosa.example('vibeace') + >>> from TTS.config import BaseAudioConfig + >>> from TTS.utils.audio import AudioProcessor + >>> conf = BaseAudioConfig(pitch_fmax=640, pitch_fmin=1) + >>> ap = AudioProcessor(**conf) + >>> wav = ap.load_wav(WAV_FILE, sr=ap.sample_rate)[:5 * ap.sample_rate] + >>> pitch = ap.compute_f0(wav) + """ + assert pitch_fmax is not None, " [!] Set `pitch_fmax` before caling `compute_f0`." + assert pitch_fmin is not None, " [!] Set `pitch_fmin` before caling `compute_f0`." + + f0, voiced_mask, _ = pyin( + y=x.astype(np.double), + fmin=pitch_fmin, + fmax=pitch_fmax, + sr=sample_rate, + frame_length=win_length, + win_length=win_length // 2, + hop_length=hop_length, + pad_mode=stft_pad_mode, + center=center, + n_thresholds=100, + beta_parameters=(2, 18), + boltzmann_parameter=2, + resolution=0.1, + max_transition_rate=35.92, + switch_prob=0.01, + no_trough_prob=0.01, + ) + f0[~voiced_mask] = 0.0 + + return f0 + + +def compute_energy(y: np.ndarray, **kwargs) -> np.ndarray: + """Compute energy of a waveform using the same parameters used for computing melspectrogram. + Args: + x (np.ndarray): Waveform. Shape :math:`[T_wav,]` + Returns: + np.ndarray: energy. Shape :math:`[T_energy,]`. :math:`T_energy == T_wav / hop_length` + Examples: + >>> WAV_FILE = filename = librosa.example('vibeace') + >>> from TTS.config import BaseAudioConfig + >>> from TTS.utils.audio import AudioProcessor + >>> conf = BaseAudioConfig() + >>> ap = AudioProcessor(**conf) + >>> wav = ap.load_wav(WAV_FILE, sr=ap.sample_rate)[:5 * ap.sample_rate] + >>> energy = ap.compute_energy(wav) + """ + x = stft(y=y, **kwargs) + mag, _ = magphase(x) + energy = np.sqrt(np.sum(mag**2, axis=0)) + return energy + + +### Audio Processing ### +def find_endpoint( + *, + wav: np.ndarray = None, + trim_db: float = -40, + sample_rate: int = None, + min_silence_sec=0.8, + gain: float = None, + base: int = None, + **kwargs, +) -> int: + """Find the last point without silence at the end of a audio signal. + + Args: + wav (np.ndarray): Audio signal. + threshold_db (int, optional): Silence threshold in decibels. Defaults to -40. + min_silence_sec (float, optional): Ignore silences that are shorter then this in secs. Defaults to 0.8. + gian (float, optional): Gain to be used to convert trim_db to trim_amp. Defaults to None. + base (int, optional): Base of the logarithm used to convert trim_db to trim_amp. Defaults to 10. + + Returns: + int: Last point without silence. + """ + window_length = int(sample_rate * min_silence_sec) + hop_length = int(window_length / 4) + threshold = db_to_amp(x=-trim_db, gain=gain, base=base) + for x in range(hop_length, len(wav) - window_length, hop_length): + if np.max(wav[x : x + window_length]) < threshold: + return x + hop_length + return len(wav) + + +def trim_silence( + *, + wav: np.ndarray = None, + sample_rate: int = None, + trim_db: float = None, + win_length: int = None, + hop_length: int = None, + **kwargs, +) -> np.ndarray: + """Trim silent parts with a threshold and 0.01 sec margin""" + margin = int(sample_rate * 0.01) + wav = wav[margin:-margin] + return librosa.effects.trim(wav, top_db=trim_db, frame_length=win_length, hop_length=hop_length)[0] + + +def volume_norm(*, x: np.ndarray = None, coef: float = 0.95, **kwargs) -> np.ndarray: + """Normalize the volume of an audio signal. + + Args: + x (np.ndarray): Raw waveform. + coef (float): Coefficient to rescale the maximum value. Defaults to 0.95. + + Returns: + np.ndarray: Volume normalized waveform. + """ + return x / abs(x).max() * coef + + +def rms_norm(*, wav: np.ndarray = None, db_level: float = -27.0, **kwargs) -> np.ndarray: + r = 10 ** (db_level / 20) + a = np.sqrt((len(wav) * (r**2)) / np.sum(wav**2)) + return wav * a + + +def rms_volume_norm(*, x: np.ndarray, db_level: float = -27.0, **kwargs) -> np.ndarray: + """Normalize the volume based on RMS of the signal. + + Args: + x (np.ndarray): Raw waveform. + db_level (float): Target dB level in RMS. Defaults to -27.0. + + Returns: + np.ndarray: RMS normalized waveform. + """ + assert -99 <= db_level <= 0, " [!] db_level should be between -99 and 0" + wav = rms_norm(wav=x, db_level=db_level) + return wav + + +def load_wav(*, filename: str, sample_rate: int = None, resample: bool = False, **kwargs) -> np.ndarray: + """Read a wav file using Librosa and optionally resample, silence trim, volume normalize. + + Resampling slows down loading the file significantly. Therefore it is recommended to resample the file before. + + Args: + filename (str): Path to the wav file. + sr (int, optional): Sampling rate for resampling. Defaults to None. + resample (bool, optional): Resample the audio file when loading. Slows down the I/O time. Defaults to False. + + Returns: + np.ndarray: Loaded waveform. + """ + if resample: + # loading with resampling. It is significantly slower. + x, _ = librosa.load(filename, sr=sample_rate) + else: + # SF is faster than librosa for loading files + x, _ = sf.read(filename) + return x + + +def save_wav(*, wav: np.ndarray, path: str, sample_rate: int = None, **kwargs) -> None: + """Save float waveform to a file using Scipy. + + Args: + wav (np.ndarray): Waveform with float values in range [-1, 1] to save. + path (str): Path to a output file. + sr (int, optional): Sampling rate used for saving to the file. Defaults to None. + """ + wav_norm = wav * (32767 / max(0.01, np.max(np.abs(wav)))) + scipy.io.wavfile.write(path, sample_rate, wav_norm.astype(np.int16)) + + +def mulaw_encode(*, wav: np.ndarray, mulaw_qc: int, **kwargs) -> np.ndarray: + mu = 2**mulaw_qc - 1 + signal = np.sign(wav) * np.log(1 + mu * np.abs(wav)) / np.log(1.0 + mu) + signal = (signal + 1) / 2 * mu + 0.5 + return np.floor( + signal, + ) + + +def mulaw_decode(*, wav, mulaw_qc: int, **kwargs) -> np.ndarray: + """Recovers waveform from quantized values.""" + mu = 2**mulaw_qc - 1 + x = np.sign(wav) / mu * ((1 + mu) ** np.abs(wav) - 1) + return x + + +def encode_16bits(*, x: np.ndarray, **kwargs) -> np.ndarray: + return np.clip(x * 2**15, -(2**15), 2**15 - 1).astype(np.int16) + + +def quantize(*, x: np.ndarray, quantize_bits: int, **kwargs) -> np.ndarray: + """Quantize a waveform to a given number of bits. + + Args: + x (np.ndarray): Waveform to quantize. Must be normalized into the range `[-1, 1]`. + quantize_bits (int): Number of quantization bits. + + Returns: + np.ndarray: Quantized waveform. + """ + return (x + 1.0) * (2**quantize_bits - 1) / 2 + + +def dequantize(*, x, quantize_bits, **kwargs) -> np.ndarray: + """Dequantize a waveform from the given number of bits.""" + return 2 * x / (2**quantize_bits - 1) - 1 diff --git a/TTS/TTS/utils/audio/processor.py b/TTS/TTS/utils/audio/processor.py new file mode 100644 index 0000000000000000000000000000000000000000..b0920dc9eb903e0c8bba0fca42c719f07e6f61e1 --- /dev/null +++ b/TTS/TTS/utils/audio/processor.py @@ -0,0 +1,769 @@ +from typing import Dict, Tuple + +import librosa +import numpy as np +import scipy.io.wavfile +import scipy.signal +import soundfile as sf + +from TTS.tts.utils.helpers import StandardScaler +from TTS.utils.audio.numpy_transforms import compute_f0 + +# pylint: disable=too-many-public-methods + + +class AudioProcessor(object): + """Audio Processor for TTS. + + Note: + All the class arguments are set to default values to enable a flexible initialization + of the class with the model config. They are not meaningful for all the arguments. + + Args: + sample_rate (int, optional): + target audio sampling rate. Defaults to None. + + resample (bool, optional): + enable/disable resampling of the audio clips when the target sampling rate does not match the original sampling rate. Defaults to False. + + num_mels (int, optional): + number of melspectrogram dimensions. Defaults to None. + + log_func (int, optional): + log exponent used for converting spectrogram aplitude to DB. + + min_level_db (int, optional): + minimum db threshold for the computed melspectrograms. Defaults to None. + + frame_shift_ms (int, optional): + milliseconds of frames between STFT columns. Defaults to None. + + frame_length_ms (int, optional): + milliseconds of STFT window length. Defaults to None. + + hop_length (int, optional): + number of frames between STFT columns. Used if ```frame_shift_ms``` is None. Defaults to None. + + win_length (int, optional): + STFT window length. Used if ```frame_length_ms``` is None. Defaults to None. + + ref_level_db (int, optional): + reference DB level to avoid background noise. In general <20DB corresponds to the air noise. Defaults to None. + + fft_size (int, optional): + FFT window size for STFT. Defaults to 1024. + + power (int, optional): + Exponent value applied to the spectrogram before GriffinLim. Defaults to None. + + preemphasis (float, optional): + Preemphasis coefficient. Preemphasis is disabled if == 0.0. Defaults to 0.0. + + signal_norm (bool, optional): + enable/disable signal normalization. Defaults to None. + + symmetric_norm (bool, optional): + enable/disable symmetric normalization. If set True normalization is performed in the range [-k, k] else [0, k], Defaults to None. + + max_norm (float, optional): + ```k``` defining the normalization range. Defaults to None. + + mel_fmin (int, optional): + minimum filter frequency for computing melspectrograms. Defaults to None. + + mel_fmax (int, optional): + maximum filter frequency for computing melspectrograms. Defaults to None. + + pitch_fmin (int, optional): + minimum filter frequency for computing pitch. Defaults to None. + + pitch_fmax (int, optional): + maximum filter frequency for computing pitch. Defaults to None. + + spec_gain (int, optional): + gain applied when converting amplitude to DB. Defaults to 20. + + stft_pad_mode (str, optional): + Padding mode for STFT. Defaults to 'reflect'. + + clip_norm (bool, optional): + enable/disable clipping the our of range values in the normalized audio signal. Defaults to True. + + griffin_lim_iters (int, optional): + Number of GriffinLim iterations. Defaults to None. + + do_trim_silence (bool, optional): + enable/disable silence trimming when loading the audio signal. Defaults to False. + + trim_db (int, optional): + DB threshold used for silence trimming. Defaults to 60. + + do_sound_norm (bool, optional): + enable/disable signal normalization. Defaults to False. + + do_amp_to_db_linear (bool, optional): + enable/disable amplitude to dB conversion of linear spectrograms. Defaults to True. + + do_amp_to_db_mel (bool, optional): + enable/disable amplitude to dB conversion of mel spectrograms. Defaults to True. + + do_rms_norm (bool, optional): + enable/disable RMS volume normalization when loading an audio file. Defaults to False. + + db_level (int, optional): + dB level used for rms normalization. The range is -99 to 0. Defaults to None. + + stats_path (str, optional): + Path to the computed stats file. Defaults to None. + + verbose (bool, optional): + enable/disable logging. Defaults to True. + + """ + + def __init__( + self, + sample_rate=None, + resample=False, + num_mels=None, + log_func="np.log10", + min_level_db=None, + frame_shift_ms=None, + frame_length_ms=None, + hop_length=None, + win_length=None, + ref_level_db=None, + fft_size=1024, + power=None, + preemphasis=0.0, + signal_norm=None, + symmetric_norm=None, + max_norm=None, + mel_fmin=None, + mel_fmax=None, + pitch_fmax=None, + pitch_fmin=None, + spec_gain=20, + stft_pad_mode="reflect", + clip_norm=True, + griffin_lim_iters=None, + do_trim_silence=False, + trim_db=60, + do_sound_norm=False, + do_amp_to_db_linear=True, + do_amp_to_db_mel=True, + do_rms_norm=False, + db_level=None, + stats_path=None, + verbose=True, + **_, + ): + # setup class attributed + self.sample_rate = sample_rate + self.resample = resample + self.num_mels = num_mels + self.log_func = log_func + self.min_level_db = min_level_db or 0 + self.frame_shift_ms = frame_shift_ms + self.frame_length_ms = frame_length_ms + self.ref_level_db = ref_level_db + self.fft_size = fft_size + self.power = power + self.preemphasis = preemphasis + self.griffin_lim_iters = griffin_lim_iters + self.signal_norm = signal_norm + self.symmetric_norm = symmetric_norm + self.mel_fmin = mel_fmin or 0 + self.mel_fmax = mel_fmax + self.pitch_fmin = pitch_fmin + self.pitch_fmax = pitch_fmax + self.spec_gain = float(spec_gain) + self.stft_pad_mode = stft_pad_mode + self.max_norm = 1.0 if max_norm is None else float(max_norm) + self.clip_norm = clip_norm + self.do_trim_silence = do_trim_silence + self.trim_db = trim_db + self.do_sound_norm = do_sound_norm + self.do_amp_to_db_linear = do_amp_to_db_linear + self.do_amp_to_db_mel = do_amp_to_db_mel + self.do_rms_norm = do_rms_norm + self.db_level = db_level + self.stats_path = stats_path + # setup exp_func for db to amp conversion + if log_func == "np.log": + self.base = np.e + elif log_func == "np.log10": + self.base = 10 + else: + raise ValueError(" [!] unknown `log_func` value.") + # setup stft parameters + if hop_length is None: + # compute stft parameters from given time values + self.hop_length, self.win_length = self._stft_parameters() + else: + # use stft parameters from config file + self.hop_length = hop_length + self.win_length = win_length + assert min_level_db != 0.0, " [!] min_level_db is 0" + assert ( + self.win_length <= self.fft_size + ), f" [!] win_length cannot be larger than fft_size - {self.win_length} vs {self.fft_size}" + members = vars(self) + if verbose: + print(" > Setting up Audio Processor...") + for key, value in members.items(): + print(" | > {}:{}".format(key, value)) + # create spectrogram utils + self.mel_basis = self._build_mel_basis() + self.inv_mel_basis = np.linalg.pinv(self._build_mel_basis()) + # setup scaler + if stats_path and signal_norm: + mel_mean, mel_std, linear_mean, linear_std, _ = self.load_stats(stats_path) + self.setup_scaler(mel_mean, mel_std, linear_mean, linear_std) + self.signal_norm = True + self.max_norm = None + self.clip_norm = None + self.symmetric_norm = None + + @staticmethod + def init_from_config(config: "Coqpit", verbose=True): + if "audio" in config: + return AudioProcessor(verbose=verbose, **config.audio) + return AudioProcessor(verbose=verbose, **config) + + ### setting up the parameters ### + def _build_mel_basis( + self, + ) -> np.ndarray: + """Build melspectrogram basis. + + Returns: + np.ndarray: melspectrogram basis. + """ + if self.mel_fmax is not None: + assert self.mel_fmax <= self.sample_rate // 2 + return librosa.filters.mel( + sr=self.sample_rate, n_fft=self.fft_size, n_mels=self.num_mels, fmin=self.mel_fmin, fmax=self.mel_fmax + ) + + def _stft_parameters( + self, + ) -> Tuple[int, int]: + """Compute the real STFT parameters from the time values. + + Returns: + Tuple[int, int]: hop length and window length for STFT. + """ + factor = self.frame_length_ms / self.frame_shift_ms + assert (factor).is_integer(), " [!] frame_shift_ms should divide frame_length_ms" + hop_length = int(self.frame_shift_ms / 1000.0 * self.sample_rate) + win_length = int(hop_length * factor) + return hop_length, win_length + + ### normalization ### + def normalize(self, S: np.ndarray) -> np.ndarray: + """Normalize values into `[0, self.max_norm]` or `[-self.max_norm, self.max_norm]` + + Args: + S (np.ndarray): Spectrogram to normalize. + + Raises: + RuntimeError: Mean and variance is computed from incompatible parameters. + + Returns: + np.ndarray: Normalized spectrogram. + """ + # pylint: disable=no-else-return + S = S.copy() + if self.signal_norm: + # mean-var scaling + if hasattr(self, "mel_scaler"): + if S.shape[0] == self.num_mels: + return self.mel_scaler.transform(S.T).T + elif S.shape[0] == self.fft_size / 2: + return self.linear_scaler.transform(S.T).T + else: + raise RuntimeError(" [!] Mean-Var stats does not match the given feature dimensions.") + # range normalization + S -= self.ref_level_db # discard certain range of DB assuming it is air noise + S_norm = (S - self.min_level_db) / (-self.min_level_db) + if self.symmetric_norm: + S_norm = ((2 * self.max_norm) * S_norm) - self.max_norm + if self.clip_norm: + S_norm = np.clip( + S_norm, -self.max_norm, self.max_norm # pylint: disable=invalid-unary-operand-type + ) + return S_norm + else: + S_norm = self.max_norm * S_norm + if self.clip_norm: + S_norm = np.clip(S_norm, 0, self.max_norm) + return S_norm + else: + return S + + def denormalize(self, S: np.ndarray) -> np.ndarray: + """Denormalize spectrogram values. + + Args: + S (np.ndarray): Spectrogram to denormalize. + + Raises: + RuntimeError: Mean and variance are incompatible. + + Returns: + np.ndarray: Denormalized spectrogram. + """ + # pylint: disable=no-else-return + S_denorm = S.copy() + if self.signal_norm: + # mean-var scaling + if hasattr(self, "mel_scaler"): + if S_denorm.shape[0] == self.num_mels: + return self.mel_scaler.inverse_transform(S_denorm.T).T + elif S_denorm.shape[0] == self.fft_size / 2: + return self.linear_scaler.inverse_transform(S_denorm.T).T + else: + raise RuntimeError(" [!] Mean-Var stats does not match the given feature dimensions.") + if self.symmetric_norm: + if self.clip_norm: + S_denorm = np.clip( + S_denorm, -self.max_norm, self.max_norm # pylint: disable=invalid-unary-operand-type + ) + S_denorm = ((S_denorm + self.max_norm) * -self.min_level_db / (2 * self.max_norm)) + self.min_level_db + return S_denorm + self.ref_level_db + else: + if self.clip_norm: + S_denorm = np.clip(S_denorm, 0, self.max_norm) + S_denorm = (S_denorm * -self.min_level_db / self.max_norm) + self.min_level_db + return S_denorm + self.ref_level_db + else: + return S_denorm + + ### Mean-STD scaling ### + def load_stats(self, stats_path: str) -> Tuple[np.array, np.array, np.array, np.array, Dict]: + """Loading mean and variance statistics from a `npy` file. + + Args: + stats_path (str): Path to the `npy` file containing + + Returns: + Tuple[np.array, np.array, np.array, np.array, Dict]: loaded statistics and the config used to + compute them. + """ + stats = np.load(stats_path, allow_pickle=True).item() # pylint: disable=unexpected-keyword-arg + mel_mean = stats["mel_mean"] + mel_std = stats["mel_std"] + linear_mean = stats["linear_mean"] + linear_std = stats["linear_std"] + stats_config = stats["audio_config"] + # check all audio parameters used for computing stats + skip_parameters = ["griffin_lim_iters", "stats_path", "do_trim_silence", "ref_level_db", "power"] + for key in stats_config.keys(): + if key in skip_parameters: + continue + if key not in ["sample_rate", "trim_db"]: + assert ( + stats_config[key] == self.__dict__[key] + ), f" [!] Audio param {key} does not match the value used for computing mean-var stats. {stats_config[key]} vs {self.__dict__[key]}" + return mel_mean, mel_std, linear_mean, linear_std, stats_config + + # pylint: disable=attribute-defined-outside-init + def setup_scaler( + self, mel_mean: np.ndarray, mel_std: np.ndarray, linear_mean: np.ndarray, linear_std: np.ndarray + ) -> None: + """Initialize scaler objects used in mean-std normalization. + + Args: + mel_mean (np.ndarray): Mean for melspectrograms. + mel_std (np.ndarray): STD for melspectrograms. + linear_mean (np.ndarray): Mean for full scale spectrograms. + linear_std (np.ndarray): STD for full scale spectrograms. + """ + self.mel_scaler = StandardScaler() + self.mel_scaler.set_stats(mel_mean, mel_std) + self.linear_scaler = StandardScaler() + self.linear_scaler.set_stats(linear_mean, linear_std) + + ### DB and AMP conversion ### + # pylint: disable=no-self-use + def _amp_to_db(self, x: np.ndarray) -> np.ndarray: + """Convert amplitude values to decibels. + + Args: + x (np.ndarray): Amplitude spectrogram. + + Returns: + np.ndarray: Decibels spectrogram. + """ + return self.spec_gain * _log(np.maximum(1e-5, x), self.base) + + # pylint: disable=no-self-use + def _db_to_amp(self, x: np.ndarray) -> np.ndarray: + """Convert decibels spectrogram to amplitude spectrogram. + + Args: + x (np.ndarray): Decibels spectrogram. + + Returns: + np.ndarray: Amplitude spectrogram. + """ + return _exp(x / self.spec_gain, self.base) + + ### Preemphasis ### + def apply_preemphasis(self, x: np.ndarray) -> np.ndarray: + """Apply pre-emphasis to the audio signal. Useful to reduce the correlation between neighbouring signal values. + + Args: + x (np.ndarray): Audio signal. + + Raises: + RuntimeError: Preemphasis coeff is set to 0. + + Returns: + np.ndarray: Decorrelated audio signal. + """ + if self.preemphasis == 0: + raise RuntimeError(" [!] Preemphasis is set 0.0.") + return scipy.signal.lfilter([1, -self.preemphasis], [1], x) + + def apply_inv_preemphasis(self, x: np.ndarray) -> np.ndarray: + """Reverse pre-emphasis.""" + if self.preemphasis == 0: + raise RuntimeError(" [!] Preemphasis is set 0.0.") + return scipy.signal.lfilter([1], [1, -self.preemphasis], x) + + ### SPECTROGRAMs ### + def _linear_to_mel(self, spectrogram: np.ndarray) -> np.ndarray: + """Project a full scale spectrogram to a melspectrogram. + + Args: + spectrogram (np.ndarray): Full scale spectrogram. + + Returns: + np.ndarray: Melspectrogram + """ + return np.dot(self.mel_basis, spectrogram) + + def _mel_to_linear(self, mel_spec: np.ndarray) -> np.ndarray: + """Convert a melspectrogram to full scale spectrogram.""" + return np.maximum(1e-10, np.dot(self.inv_mel_basis, mel_spec)) + + def spectrogram(self, y: np.ndarray) -> np.ndarray: + """Compute a spectrogram from a waveform. + + Args: + y (np.ndarray): Waveform. + + Returns: + np.ndarray: Spectrogram. + """ + if self.preemphasis != 0: + D = self._stft(self.apply_preemphasis(y)) + else: + D = self._stft(y) + if self.do_amp_to_db_linear: + S = self._amp_to_db(np.abs(D)) + else: + S = np.abs(D) + return self.normalize(S).astype(np.float32) + + def melspectrogram(self, y: np.ndarray) -> np.ndarray: + """Compute a melspectrogram from a waveform.""" + if self.preemphasis != 0: + D = self._stft(self.apply_preemphasis(y)) + else: + D = self._stft(y) + if self.do_amp_to_db_mel: + S = self._amp_to_db(self._linear_to_mel(np.abs(D))) + else: + S = self._linear_to_mel(np.abs(D)) + return self.normalize(S).astype(np.float32) + + def inv_spectrogram(self, spectrogram: np.ndarray) -> np.ndarray: + """Convert a spectrogram to a waveform using Griffi-Lim vocoder.""" + S = self.denormalize(spectrogram) + S = self._db_to_amp(S) + # Reconstruct phase + if self.preemphasis != 0: + return self.apply_inv_preemphasis(self._griffin_lim(S**self.power)) + return self._griffin_lim(S**self.power) + + def inv_melspectrogram(self, mel_spectrogram: np.ndarray) -> np.ndarray: + """Convert a melspectrogram to a waveform using Griffi-Lim vocoder.""" + D = self.denormalize(mel_spectrogram) + S = self._db_to_amp(D) + S = self._mel_to_linear(S) # Convert back to linear + if self.preemphasis != 0: + return self.apply_inv_preemphasis(self._griffin_lim(S**self.power)) + return self._griffin_lim(S**self.power) + + def out_linear_to_mel(self, linear_spec: np.ndarray) -> np.ndarray: + """Convert a full scale linear spectrogram output of a network to a melspectrogram. + + Args: + linear_spec (np.ndarray): Normalized full scale linear spectrogram. + + Returns: + np.ndarray: Normalized melspectrogram. + """ + S = self.denormalize(linear_spec) + S = self._db_to_amp(S) + S = self._linear_to_mel(np.abs(S)) + S = self._amp_to_db(S) + mel = self.normalize(S) + return mel + + ### STFT and ISTFT ### + def _stft(self, y: np.ndarray) -> np.ndarray: + """Librosa STFT wrapper. + + Args: + y (np.ndarray): Audio signal. + + Returns: + np.ndarray: Complex number array. + """ + return librosa.stft( + y=y, + n_fft=self.fft_size, + hop_length=self.hop_length, + win_length=self.win_length, + pad_mode=self.stft_pad_mode, + window="hann", + center=True, + ) + + def _istft(self, y: np.ndarray) -> np.ndarray: + """Librosa iSTFT wrapper.""" + return librosa.istft(y, hop_length=self.hop_length, win_length=self.win_length) + + def _griffin_lim(self, S): + angles = np.exp(2j * np.pi * np.random.rand(*S.shape)) + try: + S_complex = np.abs(S).astype(np.complex) + except AttributeError: # np.complex is deprecated since numpy 1.20.0 + S_complex = np.abs(S).astype(complex) + y = self._istft(S_complex * angles) + if not np.isfinite(y).all(): + print(" [!] Waveform is not finite everywhere. Skipping the GL.") + return np.array([0.0]) + for _ in range(self.griffin_lim_iters): + angles = np.exp(1j * np.angle(self._stft(y))) + y = self._istft(S_complex * angles) + return y + + def compute_stft_paddings(self, x, pad_sides=1): + """Compute paddings used by Librosa's STFT. Compute right padding (final frame) or both sides padding + (first and final frames)""" + assert pad_sides in (1, 2) + pad = (x.shape[0] // self.hop_length + 1) * self.hop_length - x.shape[0] + if pad_sides == 1: + return 0, pad + return pad // 2, pad // 2 + pad % 2 + + def compute_f0(self, x: np.ndarray) -> np.ndarray: + """Compute pitch (f0) of a waveform using the same parameters used for computing melspectrogram. + + Args: + x (np.ndarray): Waveform. + + Returns: + np.ndarray: Pitch. + + Examples: + >>> WAV_FILE = filename = librosa.example('vibeace') + >>> from TTS.config import BaseAudioConfig + >>> from TTS.utils.audio import AudioProcessor + >>> conf = BaseAudioConfig(pitch_fmax=640, pitch_fmin=1) + >>> ap = AudioProcessor(**conf) + >>> wav = ap.load_wav(WAV_FILE, sr=ap.sample_rate)[:5 * ap.sample_rate] + >>> pitch = ap.compute_f0(wav) + """ + assert self.pitch_fmax is not None, " [!] Set `pitch_fmax` before caling `compute_f0`." + assert self.pitch_fmin is not None, " [!] Set `pitch_fmin` before caling `compute_f0`." + # align F0 length to the spectrogram length + if len(x) % self.hop_length == 0: + x = np.pad(x, (0, self.hop_length // 2), mode=self.stft_pad_mode) + + f0 = compute_f0( + x=x, + pitch_fmax=self.pitch_fmax, + pitch_fmin=self.pitch_fmin, + hop_length=self.hop_length, + win_length=self.win_length, + sample_rate=self.sample_rate, + stft_pad_mode=self.stft_pad_mode, + center=True, + ) + + return f0 + + ### Audio Processing ### + def find_endpoint(self, wav: np.ndarray, min_silence_sec=0.8) -> int: + """Find the last point without silence at the end of a audio signal. + + Args: + wav (np.ndarray): Audio signal. + threshold_db (int, optional): Silence threshold in decibels. Defaults to -40. + min_silence_sec (float, optional): Ignore silences that are shorter then this in secs. Defaults to 0.8. + + Returns: + int: Last point without silence. + """ + window_length = int(self.sample_rate * min_silence_sec) + hop_length = int(window_length / 4) + threshold = self._db_to_amp(-self.trim_db) + for x in range(hop_length, len(wav) - window_length, hop_length): + if np.max(wav[x : x + window_length]) < threshold: + return x + hop_length + return len(wav) + + def trim_silence(self, wav): + """Trim silent parts with a threshold and 0.01 sec margin""" + margin = int(self.sample_rate * 0.01) + wav = wav[margin:-margin] + return librosa.effects.trim(wav, top_db=self.trim_db, frame_length=self.win_length, hop_length=self.hop_length)[ + 0 + ] + + @staticmethod + def sound_norm(x: np.ndarray) -> np.ndarray: + """Normalize the volume of an audio signal. + + Args: + x (np.ndarray): Raw waveform. + + Returns: + np.ndarray: Volume normalized waveform. + """ + return x / abs(x).max() * 0.95 + + @staticmethod + def _rms_norm(wav, db_level=-27): + r = 10 ** (db_level / 20) + a = np.sqrt((len(wav) * (r**2)) / np.sum(wav**2)) + return wav * a + + def rms_volume_norm(self, x: np.ndarray, db_level: float = None) -> np.ndarray: + """Normalize the volume based on RMS of the signal. + + Args: + x (np.ndarray): Raw waveform. + + Returns: + np.ndarray: RMS normalized waveform. + """ + if db_level is None: + db_level = self.db_level + assert -99 <= db_level <= 0, " [!] db_level should be between -99 and 0" + wav = self._rms_norm(x, db_level) + return wav + + ### save and load ### + def load_wav(self, filename: str, sr: int = None) -> np.ndarray: + """Read a wav file using Librosa and optionally resample, silence trim, volume normalize. + + Resampling slows down loading the file significantly. Therefore it is recommended to resample the file before. + + Args: + filename (str): Path to the wav file. + sr (int, optional): Sampling rate for resampling. Defaults to None. + + Returns: + np.ndarray: Loaded waveform. + """ + if self.resample: + # loading with resampling. It is significantly slower. + x, sr = librosa.load(filename, sr=self.sample_rate) + elif sr is None: + # SF is faster than librosa for loading files + x, sr = sf.read(filename) + assert self.sample_rate == sr, "%s vs %s" % (self.sample_rate, sr) + else: + x, sr = librosa.load(filename, sr=sr) + if self.do_trim_silence: + try: + x = self.trim_silence(x) + except ValueError: + print(f" [!] File cannot be trimmed for silence - {filename}") + if self.do_sound_norm: + x = self.sound_norm(x) + if self.do_rms_norm: + x = self.rms_volume_norm(x, self.db_level) + return x + + def save_wav(self, wav: np.ndarray, path: str, sr: int = None) -> None: + """Save a waveform to a file using Scipy. + + Args: + wav (np.ndarray): Waveform to save. + path (str): Path to a output file. + sr (int, optional): Sampling rate used for saving to the file. Defaults to None. + """ + if self.do_rms_norm: + wav_norm = self.rms_volume_norm(wav, self.db_level) * 32767 + else: + wav_norm = wav * (32767 / max(0.01, np.max(np.abs(wav)))) + + scipy.io.wavfile.write(path, sr if sr else self.sample_rate, wav_norm.astype(np.int16)) + + def get_duration(self, filename: str) -> float: + """Get the duration of a wav file using Librosa. + + Args: + filename (str): Path to the wav file. + """ + return librosa.get_duration(filename=filename) + + @staticmethod + def mulaw_encode(wav: np.ndarray, qc: int) -> np.ndarray: + mu = 2**qc - 1 + # wav_abs = np.minimum(np.abs(wav), 1.0) + signal = np.sign(wav) * np.log(1 + mu * np.abs(wav)) / np.log(1.0 + mu) + # Quantize signal to the specified number of levels. + signal = (signal + 1) / 2 * mu + 0.5 + return np.floor( + signal, + ) + + @staticmethod + def mulaw_decode(wav, qc): + """Recovers waveform from quantized values.""" + mu = 2**qc - 1 + x = np.sign(wav) / mu * ((1 + mu) ** np.abs(wav) - 1) + return x + + @staticmethod + def encode_16bits(x): + return np.clip(x * 2**15, -(2**15), 2**15 - 1).astype(np.int16) + + @staticmethod + def quantize(x: np.ndarray, bits: int) -> np.ndarray: + """Quantize a waveform to a given number of bits. + + Args: + x (np.ndarray): Waveform to quantize. Must be normalized into the range `[-1, 1]`. + bits (int): Number of quantization bits. + + Returns: + np.ndarray: Quantized waveform. + """ + return (x + 1.0) * (2**bits - 1) / 2 + + @staticmethod + def dequantize(x, bits): + """Dequantize a waveform from the given number of bits.""" + return 2 * x / (2**bits - 1) - 1 + + +def _log(x, base): + if base == 10: + return np.log10(x) + return np.log(x) + + +def _exp(x, base): + if base == 10: + return np.power(10, x) + return np.exp(x) diff --git a/TTS/TTS/utils/audio/torch_transforms.py b/TTS/TTS/utils/audio/torch_transforms.py new file mode 100644 index 0000000000000000000000000000000000000000..fd40ebb048b915a836ba0d84dc22054d23b1d886 --- /dev/null +++ b/TTS/TTS/utils/audio/torch_transforms.py @@ -0,0 +1,165 @@ +import librosa +import torch +from torch import nn + + +class TorchSTFT(nn.Module): # pylint: disable=abstract-method + """Some of the audio processing funtions using Torch for faster batch processing. + + Args: + + n_fft (int): + FFT window size for STFT. + + hop_length (int): + number of frames between STFT columns. + + win_length (int, optional): + STFT window length. + + pad_wav (bool, optional): + If True pad the audio with (n_fft - hop_length) / 2). Defaults to False. + + window (str, optional): + The name of a function to create a window tensor that is applied/multiplied to each frame/window. Defaults to "hann_window" + + sample_rate (int, optional): + target audio sampling rate. Defaults to None. + + mel_fmin (int, optional): + minimum filter frequency for computing melspectrograms. Defaults to None. + + mel_fmax (int, optional): + maximum filter frequency for computing melspectrograms. Defaults to None. + + n_mels (int, optional): + number of melspectrogram dimensions. Defaults to None. + + use_mel (bool, optional): + If True compute the melspectrograms otherwise. Defaults to False. + + do_amp_to_db_linear (bool, optional): + enable/disable amplitude to dB conversion of linear spectrograms. Defaults to False. + + spec_gain (float, optional): + gain applied when converting amplitude to DB. Defaults to 1.0. + + power (float, optional): + Exponent for the magnitude spectrogram, e.g., 1 for energy, 2 for power, etc. Defaults to None. + + use_htk (bool, optional): + Use HTK formula in mel filter instead of Slaney. + + mel_norm (None, 'slaney', or number, optional): + If 'slaney', divide the triangular mel weights by the width of the mel band + (area normalization). + + If numeric, use `librosa.util.normalize` to normalize each filter by to unit l_p norm. + See `librosa.util.normalize` for a full description of supported norm values + (including `+-np.inf`). + + Otherwise, leave all the triangles aiming for a peak value of 1.0. Defaults to "slaney". + """ + + def __init__( + self, + n_fft, + hop_length, + win_length, + pad_wav=False, + window="hann_window", + sample_rate=None, + mel_fmin=0, + mel_fmax=None, + n_mels=80, + use_mel=False, + do_amp_to_db=False, + spec_gain=1.0, + power=None, + use_htk=False, + mel_norm="slaney", + normalized=False, + ): + super().__init__() + self.n_fft = n_fft + self.hop_length = hop_length + self.win_length = win_length + self.pad_wav = pad_wav + self.sample_rate = sample_rate + self.mel_fmin = mel_fmin + self.mel_fmax = mel_fmax + self.n_mels = n_mels + self.use_mel = use_mel + self.do_amp_to_db = do_amp_to_db + self.spec_gain = spec_gain + self.power = power + self.use_htk = use_htk + self.mel_norm = mel_norm + self.window = nn.Parameter(getattr(torch, window)(win_length), requires_grad=False) + self.mel_basis = None + self.normalized = normalized + if use_mel: + self._build_mel_basis() + + def __call__(self, x): + """Compute spectrogram frames by torch based stft. + + Args: + x (Tensor): input waveform + + Returns: + Tensor: spectrogram frames. + + Shapes: + x: [B x T] or [:math:`[B, 1, T]`] + """ + if x.ndim == 2: + x = x.unsqueeze(1) + if self.pad_wav: + padding = int((self.n_fft - self.hop_length) / 2) + x = torch.nn.functional.pad(x, (padding, padding), mode="reflect") + # B x D x T x 2 + o = torch.stft( + x.squeeze(1), + self.n_fft, + self.hop_length, + self.win_length, + self.window, + center=True, + pad_mode="reflect", # compatible with audio.py + normalized=self.normalized, + onesided=True, + return_complex=False, + ) + M = o[:, :, :, 0] + P = o[:, :, :, 1] + S = torch.sqrt(torch.clamp(M**2 + P**2, min=1e-8)) + + if self.power is not None: + S = S**self.power + + if self.use_mel: + S = torch.matmul(self.mel_basis.to(x), S) + if self.do_amp_to_db: + S = self._amp_to_db(S, spec_gain=self.spec_gain) + return S + + def _build_mel_basis(self): + mel_basis = librosa.filters.mel( + sr=self.sample_rate, + n_fft=self.n_fft, + n_mels=self.n_mels, + fmin=self.mel_fmin, + fmax=self.mel_fmax, + htk=self.use_htk, + norm=self.mel_norm, + ) + self.mel_basis = torch.from_numpy(mel_basis).float() + + @staticmethod + def _amp_to_db(x, spec_gain=1.0): + return torch.log(torch.clamp(x, min=1e-5) * spec_gain) + + @staticmethod + def _db_to_amp(x, spec_gain=1.0): + return torch.exp(x) / spec_gain diff --git a/TTS/TTS/utils/callbacks.py b/TTS/TTS/utils/callbacks.py new file mode 100644 index 0000000000000000000000000000000000000000..511d215c656f1ce3ed31484963db64fae4dc77d4 --- /dev/null +++ b/TTS/TTS/utils/callbacks.py @@ -0,0 +1,105 @@ +class TrainerCallback: + @staticmethod + def on_init_start(trainer) -> None: + if hasattr(trainer.model, "module"): + if hasattr(trainer.model.module, "on_init_start"): + trainer.model.module.on_init_start(trainer) + else: + if hasattr(trainer.model, "on_init_start"): + trainer.model.on_init_start(trainer) + + if hasattr(trainer.criterion, "on_init_start"): + trainer.criterion.on_init_start(trainer) + + if hasattr(trainer.optimizer, "on_init_start"): + trainer.optimizer.on_init_start(trainer) + + @staticmethod + def on_init_end(trainer) -> None: + if hasattr(trainer.model, "module"): + if hasattr(trainer.model.module, "on_init_end"): + trainer.model.module.on_init_end(trainer) + else: + if hasattr(trainer.model, "on_init_end"): + trainer.model.on_init_end(trainer) + + if hasattr(trainer.criterion, "on_init_end"): + trainer.criterion.on_init_end(trainer) + + if hasattr(trainer.optimizer, "on_init_end"): + trainer.optimizer.on_init_end(trainer) + + @staticmethod + def on_epoch_start(trainer) -> None: + if hasattr(trainer.model, "module"): + if hasattr(trainer.model.module, "on_epoch_start"): + trainer.model.module.on_epoch_start(trainer) + else: + if hasattr(trainer.model, "on_epoch_start"): + trainer.model.on_epoch_start(trainer) + + if hasattr(trainer.criterion, "on_epoch_start"): + trainer.criterion.on_epoch_start(trainer) + + if hasattr(trainer.optimizer, "on_epoch_start"): + trainer.optimizer.on_epoch_start(trainer) + + @staticmethod + def on_epoch_end(trainer) -> None: + if hasattr(trainer.model, "module"): + if hasattr(trainer.model.module, "on_epoch_end"): + trainer.model.module.on_epoch_end(trainer) + else: + if hasattr(trainer.model, "on_epoch_end"): + trainer.model.on_epoch_end(trainer) + + if hasattr(trainer.criterion, "on_epoch_end"): + trainer.criterion.on_epoch_end(trainer) + + if hasattr(trainer.optimizer, "on_epoch_end"): + trainer.optimizer.on_epoch_end(trainer) + + @staticmethod + def on_train_step_start(trainer) -> None: + if hasattr(trainer.model, "module"): + if hasattr(trainer.model.module, "on_train_step_start"): + trainer.model.module.on_train_step_start(trainer) + else: + if hasattr(trainer.model, "on_train_step_start"): + trainer.model.on_train_step_start(trainer) + + if hasattr(trainer.criterion, "on_train_step_start"): + trainer.criterion.on_train_step_start(trainer) + + if hasattr(trainer.optimizer, "on_train_step_start"): + trainer.optimizer.on_train_step_start(trainer) + + @staticmethod + def on_train_step_end(trainer) -> None: + if hasattr(trainer.model, "module"): + if hasattr(trainer.model.module, "on_train_step_end"): + trainer.model.module.on_train_step_end(trainer) + else: + if hasattr(trainer.model, "on_train_step_end"): + trainer.model.on_train_step_end(trainer) + + if hasattr(trainer.criterion, "on_train_step_end"): + trainer.criterion.on_train_step_end(trainer) + + if hasattr(trainer.optimizer, "on_train_step_end"): + trainer.optimizer.on_train_step_end(trainer) + + @staticmethod + def on_keyboard_interrupt(trainer) -> None: + if hasattr(trainer.model, "module"): + if hasattr(trainer.model.module, "on_keyboard_interrupt"): + trainer.model.module.on_keyboard_interrupt(trainer) + else: + if hasattr(trainer.model, "on_keyboard_interrupt"): + trainer.model.on_keyboard_interrupt(trainer) + + if hasattr(trainer.criterion, "on_keyboard_interrupt"): + trainer.criterion.on_keyboard_interrupt(trainer) + + if hasattr(trainer.optimizer, "on_keyboard_interrupt"): + trainer.optimizer.on_keyboard_interrupt(trainer) diff --git a/TTS/TTS/utils/capacitron_optimizer.py b/TTS/TTS/utils/capacitron_optimizer.py new file mode 100644 index 0000000000000000000000000000000000000000..7206ffd508896cab96a22288f33a93e999c5f009 --- /dev/null +++ b/TTS/TTS/utils/capacitron_optimizer.py @@ -0,0 +1,67 @@ +from typing import Generator + +from trainer.trainer_utils import get_optimizer + + +class CapacitronOptimizer: + """Double optimizer class for the Capacitron model.""" + + def __init__(self, config: dict, model_params: Generator) -> None: + self.primary_params, self.secondary_params = self.split_model_parameters(model_params) + + optimizer_names = list(config.optimizer_params.keys()) + optimizer_parameters = list(config.optimizer_params.values()) + + self.primary_optimizer = get_optimizer( + optimizer_names[0], + optimizer_parameters[0], + config.lr, + parameters=self.primary_params, + ) + + self.secondary_optimizer = get_optimizer( + optimizer_names[1], + self.extract_optimizer_parameters(optimizer_parameters[1]), + optimizer_parameters[1]["lr"], + parameters=self.secondary_params, + ) + + self.param_groups = self.primary_optimizer.param_groups + + def first_step(self): + self.secondary_optimizer.step() + self.secondary_optimizer.zero_grad() + self.primary_optimizer.zero_grad() + + def step(self): + # Update param groups to display the correct learning rate + self.param_groups = self.primary_optimizer.param_groups + self.primary_optimizer.step() + + def zero_grad(self, set_to_none=False): + self.primary_optimizer.zero_grad(set_to_none) + self.secondary_optimizer.zero_grad(set_to_none) + + def load_state_dict(self, state_dict): + self.primary_optimizer.load_state_dict(state_dict[0]) + self.secondary_optimizer.load_state_dict(state_dict[1]) + + def state_dict(self): + return [self.primary_optimizer.state_dict(), self.secondary_optimizer.state_dict()] + + @staticmethod + def split_model_parameters(model_params: Generator) -> list: + primary_params = [] + secondary_params = [] + for name, param in model_params: + if param.requires_grad: + if name == "capacitron_vae_layer.beta": + secondary_params.append(param) + else: + primary_params.append(param) + return [iter(primary_params), iter(secondary_params)] + + @staticmethod + def extract_optimizer_parameters(params: dict) -> dict: + """Extract parameters that are not the learning rate""" + return {k: v for k, v in params.items() if k != "lr"} diff --git a/TTS/TTS/utils/distribute.py b/TTS/TTS/utils/distribute.py new file mode 100644 index 0000000000000000000000000000000000000000..a51ef7661ece97c87c165ad1aba4c9d9700379dc --- /dev/null +++ b/TTS/TTS/utils/distribute.py @@ -0,0 +1,20 @@ +# edited from https://github.com/fastai/imagenet-fast/blob/master/imagenet_nv/distributed.py +import torch +import torch.distributed as dist + + +def reduce_tensor(tensor, num_gpus): + rt = tensor.clone() + dist.all_reduce(rt, op=dist.reduce_op.SUM) + rt /= num_gpus + return rt + + +def init_distributed(rank, num_gpus, group_name, dist_backend, dist_url): + assert torch.cuda.is_available(), "Distributed mode requires CUDA." + + # Set cuda device so everything is done on the right GPU. + torch.cuda.set_device(rank % torch.cuda.device_count()) + + # Initialize distributed communication + dist.init_process_group(dist_backend, init_method=dist_url, world_size=num_gpus, rank=rank, group_name=group_name) diff --git a/TTS/TTS/utils/download.py b/TTS/TTS/utils/download.py new file mode 100644 index 0000000000000000000000000000000000000000..3f06b578248441d9951bf0ee62e2764ffd9ff9d7 --- /dev/null +++ b/TTS/TTS/utils/download.py @@ -0,0 +1,206 @@ +# Adapted from https://github.com/pytorch/audio/ + +import hashlib +import logging +import os +import tarfile +import urllib +import urllib.request +import zipfile +from os.path import expanduser +from typing import Any, Iterable, List, Optional + +from torch.utils.model_zoo import tqdm + + +def stream_url( + url: str, start_byte: Optional[int] = None, block_size: int = 32 * 1024, progress_bar: bool = True +) -> Iterable: + """Stream url by chunk + + Args: + url (str): Url. + start_byte (int or None, optional): Start streaming at that point (Default: ``None``). + block_size (int, optional): Size of chunks to stream (Default: ``32 * 1024``). + progress_bar (bool, optional): Display a progress bar (Default: ``True``). + """ + + # If we already have the whole file, there is no need to download it again + req = urllib.request.Request(url, method="HEAD") + with urllib.request.urlopen(req) as response: + url_size = int(response.info().get("Content-Length", -1)) + if url_size == start_byte: + return + + req = urllib.request.Request(url) + if start_byte: + req.headers["Range"] = "bytes={}-".format(start_byte) + + with urllib.request.urlopen(req) as upointer, tqdm( + unit="B", + unit_scale=True, + unit_divisor=1024, + total=url_size, + disable=not progress_bar, + ) as pbar: + num_bytes = 0 + while True: + chunk = upointer.read(block_size) + if not chunk: + break + yield chunk + num_bytes += len(chunk) + pbar.update(len(chunk)) + + +def download_url( + url: str, + download_folder: str, + filename: Optional[str] = None, + hash_value: Optional[str] = None, + hash_type: str = "sha256", + progress_bar: bool = True, + resume: bool = False, +) -> None: + """Download file to disk. + + Args: + url (str): Url. + download_folder (str): Folder to download file. + filename (str or None, optional): Name of downloaded file. If None, it is inferred from the url + (Default: ``None``). + hash_value (str or None, optional): Hash for url (Default: ``None``). + hash_type (str, optional): Hash type, among "sha256" and "md5" (Default: ``"sha256"``). + progress_bar (bool, optional): Display a progress bar (Default: ``True``). + resume (bool, optional): Enable resuming download (Default: ``False``). + """ + + req = urllib.request.Request(url, method="HEAD") + req_info = urllib.request.urlopen(req).info() # pylint: disable=consider-using-with + + # Detect filename + filename = filename or req_info.get_filename() or os.path.basename(url) + filepath = os.path.join(download_folder, filename) + if resume and os.path.exists(filepath): + mode = "ab" + local_size: Optional[int] = os.path.getsize(filepath) + + elif not resume and os.path.exists(filepath): + raise RuntimeError("{} already exists. Delete the file manually and retry.".format(filepath)) + else: + mode = "wb" + local_size = None + + if hash_value and local_size == int(req_info.get("Content-Length", -1)): + with open(filepath, "rb") as file_obj: + if validate_file(file_obj, hash_value, hash_type): + return + raise RuntimeError("The hash of {} does not match. Delete the file manually and retry.".format(filepath)) + + with open(filepath, mode) as fpointer: + for chunk in stream_url(url, start_byte=local_size, progress_bar=progress_bar): + fpointer.write(chunk) + + with open(filepath, "rb") as file_obj: + if hash_value and not validate_file(file_obj, hash_value, hash_type): + raise RuntimeError("The hash of {} does not match. Delete the file manually and retry.".format(filepath)) + + +def validate_file(file_obj: Any, hash_value: str, hash_type: str = "sha256") -> bool: + """Validate a given file object with its hash. + + Args: + file_obj: File object to read from. + hash_value (str): Hash for url. + hash_type (str, optional): Hash type, among "sha256" and "md5" (Default: ``"sha256"``). + + Returns: + bool: return True if its a valid file, else False. + """ + + if hash_type == "sha256": + hash_func = hashlib.sha256() + elif hash_type == "md5": + hash_func = hashlib.md5() + else: + raise ValueError + + while True: + # Read by chunk to avoid filling memory + chunk = file_obj.read(1024**2) + if not chunk: + break + hash_func.update(chunk) + + return hash_func.hexdigest() == hash_value + + +def extract_archive(from_path: str, to_path: Optional[str] = None, overwrite: bool = False) -> List[str]: + """Extract archive. + Args: + from_path (str): the path of the archive. + to_path (str or None, optional): the root path of the extraced files (directory of from_path) + (Default: ``None``) + overwrite (bool, optional): overwrite existing files (Default: ``False``) + + Returns: + list: List of paths to extracted files even if not overwritten. + """ + + if to_path is None: + to_path = os.path.dirname(from_path) + + try: + with tarfile.open(from_path, "r") as tar: + logging.info("Opened tar file %s.", from_path) + files = [] + for file_ in tar: # type: Any + file_path = os.path.join(to_path, file_.name) + if file_.isfile(): + files.append(file_path) + if os.path.exists(file_path): + logging.info("%s already extracted.", file_path) + if not overwrite: + continue + tar.extract(file_, to_path) + return files + except tarfile.ReadError: + pass + + try: + with zipfile.ZipFile(from_path, "r") as zfile: + logging.info("Opened zip file %s.", from_path) + files = zfile.namelist() + for file_ in files: + file_path = os.path.join(to_path, file_) + if os.path.exists(file_path): + logging.info("%s already extracted.", file_path) + if not overwrite: + continue + zfile.extract(file_, to_path) + return files + except zipfile.BadZipFile: + pass + + raise NotImplementedError(" > [!] only supports tar.gz, tgz, and zip achives.") + + +def download_kaggle_dataset(dataset_path: str, dataset_name: str, output_path: str): + """Download dataset from kaggle. + Args: + dataset_path (str): + This the kaggle link to the dataset. for example vctk is 'mfekadu/english-multispeaker-corpus-for-voice-cloning' + dataset_name (str): Name of the folder the dataset will be saved in. + output_path (str): Path of the location you want the dataset folder to be saved to. + """ + data_path = os.path.join(output_path, dataset_name) + try: + import kaggle # pylint: disable=import-outside-toplevel + + kaggle.api.authenticate() + print(f"""\nDownloading {dataset_name}...""") + kaggle.api.dataset_download_files(dataset_path, path=data_path, unzip=True) + except OSError: + print( + f"""[!] in order to download kaggle datasets, you need to have a kaggle api token stored in your {os.path.join(expanduser('~'), '.kaggle/kaggle.json')}""" + ) diff --git a/TTS/TTS/utils/downloaders.py b/TTS/TTS/utils/downloaders.py new file mode 100644 index 0000000000000000000000000000000000000000..104dc7b94e17b1d7f828103d2396d6c5115b628a --- /dev/null +++ b/TTS/TTS/utils/downloaders.py @@ -0,0 +1,126 @@ +import os +from typing import Optional + +from TTS.utils.download import download_kaggle_dataset, download_url, extract_archive + + +def download_ljspeech(path: str): + """Download and extract LJSpeech dataset + + Args: + path (str): path to the directory where the dataset will be stored. + """ + os.makedirs(path, exist_ok=True) + url = "https://data.keithito.com/data/speech/LJSpeech-1.1.tar.bz2" + download_url(url, path) + basename = os.path.basename(url) + archive = os.path.join(path, basename) + print(" > Extracting archive file...") + extract_archive(archive) + + +def download_vctk(path: str, use_kaggle: Optional[bool] = False): + """Download and extract VCTK dataset. + + Args: + path (str): path to the directory where the dataset will be stored. + + use_kaggle (bool, optional): Downloads vctk dataset from kaggle. Is generally faster. Defaults to False. + """ + if use_kaggle: + download_kaggle_dataset("mfekadu/english-multispeaker-corpus-for-voice-cloning", "VCTK", path) + else: + os.makedirs(path, exist_ok=True) + url = "https://datashare.ed.ac.uk/bitstream/handle/10283/3443/VCTK-Corpus-0.92.zip" + download_url(url, path) + basename = os.path.basename(url) + archive = os.path.join(path, basename) + print(" > Extracting archive file...") + extract_archive(archive) + + +def download_tweb(path: str): + """Download and extract Tweb dataset + + Args: + path (str): Path to the directory where the dataset will be stored. + """ + download_kaggle_dataset("bryanpark/the-world-english-bible-speech-dataset", "TWEB", path) + + +def download_libri_tts(path: str, subset: Optional[str] = "all"): + """Download and extract libri tts dataset. + + Args: + path (str): Path to the directory where the dataset will be stored. + + subset (str, optional): Name of the subset to download. If you only want to download a certain + portion specify it here. Defaults to 'all'. + """ + + subset_dict = { + "libri-tts-clean-100": "http://www.openslr.org/resources/60/train-clean-100.tar.gz", + "libri-tts-clean-360": "http://www.openslr.org/resources/60/train-clean-360.tar.gz", + "libri-tts-other-500": "http://www.openslr.org/resources/60/train-other-500.tar.gz", + "libri-tts-dev-clean": "http://www.openslr.org/resources/60/dev-clean.tar.gz", + "libri-tts-dev-other": "http://www.openslr.org/resources/60/dev-other.tar.gz", + "libri-tts-test-clean": "http://www.openslr.org/resources/60/test-clean.tar.gz", + "libri-tts-test-other": "http://www.openslr.org/resources/60/test-other.tar.gz", + } + + os.makedirs(path, exist_ok=True) + if subset == "all": + for sub, val in subset_dict.items(): + print(f" > Downloading {sub}...") + download_url(val, path) + basename = os.path.basename(val) + archive = os.path.join(path, basename) + print(" > Extracting archive file...") + extract_archive(archive) + print(" > All subsets downloaded") + else: + url = subset_dict[subset] + download_url(url, path) + basename = os.path.basename(url) + archive = os.path.join(path, basename) + print(" > Extracting archive file...") + extract_archive(archive) + + +def download_thorsten_de(path: str): + """Download and extract Thorsten german male voice dataset. + + Args: + path (str): Path to the directory where the dataset will be stored. + """ + os.makedirs(path, exist_ok=True) + url = "https://www.openslr.org/resources/95/thorsten-de_v02.tgz" + download_url(url, path) + basename = os.path.basename(url) + archive = os.path.join(path, basename) + print(" > Extracting archive file...") + extract_archive(archive) + + +def download_mailabs(path: str, language: str = "english"): + """Download and extract Mailabs dataset. + + Args: + path (str): Path to the directory where the dataset will be stored. + + language (str): Language subset to download. Defaults to english. + """ + language_dict = { + "english": "https://data.solak.de/data/Training/stt_tts/en_US.tgz", + "german": "https://data.solak.de/data/Training/stt_tts/de_DE.tgz", + "french": "https://data.solak.de/data/Training/stt_tts/fr_FR.tgz", + "italian": "https://data.solak.de/data/Training/stt_tts/it_IT.tgz", + "spanish": "https://data.solak.de/data/Training/stt_tts/es_ES.tgz", + } + os.makedirs(path, exist_ok=True) + url = language_dict[language] + download_url(url, path) + basename = os.path.basename(url) + archive = os.path.join(path, basename) + print(" > Extracting archive file...") + extract_archive(archive) diff --git a/TTS/TTS/utils/generic_utils.py b/TTS/TTS/utils/generic_utils.py new file mode 100644 index 0000000000000000000000000000000000000000..9730576239fa37500198fbe08f9c2f9d63f99aec --- /dev/null +++ b/TTS/TTS/utils/generic_utils.py @@ -0,0 +1,241 @@ +# -*- coding: utf-8 -*- +import datetime +import importlib +import logging +import os +import re +import subprocess +import sys +from pathlib import Path +from typing import Dict + +import fsspec +import torch + + +def to_cuda(x: torch.Tensor) -> torch.Tensor: + if x is None: + return None + if torch.is_tensor(x): + x = x.contiguous() + if torch.cuda.is_available(): + x = x.cuda(non_blocking=True) + return x + + +def get_cuda(): + use_cuda = torch.cuda.is_available() + device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") + return use_cuda, device + + +def get_git_branch(): + try: + out = subprocess.check_output(["git", "branch"]).decode("utf8") + current = next(line for line in out.split("\n") if line.startswith("*")) + current.replace("* ", "") + except subprocess.CalledProcessError: + current = "inside_docker" + except FileNotFoundError: + current = "unknown" + except StopIteration: + current = "unknown" + return current + + +def get_commit_hash(): + """https://stackoverflow.com/questions/14989858/get-the-current-git-hash-in-a-python-script""" + # try: + # subprocess.check_output(['git', 'diff-index', '--quiet', + # 'HEAD']) # Verify client is clean + # except: + # raise RuntimeError( + # " !! Commit before training to get the commit hash.") + try: + commit = subprocess.check_output(["git", "rev-parse", "--short", "HEAD"]).decode().strip() + # Not copying .git folder into docker container + except (subprocess.CalledProcessError, FileNotFoundError): + commit = "0000000" + return commit + + +def get_experiment_folder_path(root_path, model_name): + """Get an experiment folder path with the current date and time""" + date_str = datetime.datetime.now().strftime("%B-%d-%Y_%I+%M%p") + commit_hash = get_commit_hash() + output_folder = os.path.join(root_path, model_name + "-" + date_str + "-" + commit_hash) + return output_folder + + +def remove_experiment_folder(experiment_path): + """Check folder if there is a checkpoint, otherwise remove the folder""" + fs = fsspec.get_mapper(experiment_path).fs + checkpoint_files = fs.glob(experiment_path + "/*.pth") + if not checkpoint_files: + if fs.exists(experiment_path): + fs.rm(experiment_path, recursive=True) + print(" ! Run is removed from {}".format(experiment_path)) + else: + print(" ! Run is kept in {}".format(experiment_path)) + + +def count_parameters(model): + r"""Count number of trainable parameters in a network""" + return sum(p.numel() for p in model.parameters() if p.requires_grad) + + +def to_camel(text): + text = text.capitalize() + text = re.sub(r"(?!^)_([a-zA-Z])", lambda m: m.group(1).upper(), text) + text = text.replace("Tts", "TTS") + text = text.replace("vc", "VC") + return text + + +def find_module(module_path: str, module_name: str) -> object: + module_name = module_name.lower() + module = importlib.import_module(module_path + "." + module_name) + class_name = to_camel(module_name) + return getattr(module, class_name) + + +def import_class(module_path: str) -> object: + """Import a class from a module path. + + Args: + module_path (str): The module path of the class. + + Returns: + object: The imported class. + """ + class_name = module_path.split(".")[-1] + module_path = ".".join(module_path.split(".")[:-1]) + module = importlib.import_module(module_path) + return getattr(module, class_name) + + +def get_import_path(obj: object) -> str: + """Get the import path of a class. + + Args: + obj (object): The class object. + + Returns: + str: The import path of the class. + """ + return ".".join([type(obj).__module__, type(obj).__name__]) + + +def get_user_data_dir(appname): + TTS_HOME = os.environ.get("TTS_HOME") + XDG_DATA_HOME = os.environ.get("XDG_DATA_HOME") + if TTS_HOME is not None: + ans = Path(TTS_HOME).expanduser().resolve(strict=False) + elif XDG_DATA_HOME is not None: + ans = Path(XDG_DATA_HOME).expanduser().resolve(strict=False) + elif sys.platform == "win32": + import winreg # pylint: disable=import-outside-toplevel + + key = winreg.OpenKey( + winreg.HKEY_CURRENT_USER, r"Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders" + ) + dir_, _ = winreg.QueryValueEx(key, "Local AppData") + ans = Path(dir_).resolve(strict=False) + elif sys.platform == "darwin": + ans = Path("~/Library/Application Support/").expanduser() + else: + ans = Path.home().joinpath(".local/share") + return ans.joinpath(appname) + + +def set_init_dict(model_dict, checkpoint_state, c): + # Partial initialization: if there is a mismatch with new and old layer, it is skipped. + for k, v in checkpoint_state.items(): + if k not in model_dict: + print(" | > Layer missing in the model definition: {}".format(k)) + # 1. filter out unnecessary keys + pretrained_dict = {k: v for k, v in checkpoint_state.items() if k in model_dict} + # 2. filter out different size layers + pretrained_dict = {k: v for k, v in pretrained_dict.items() if v.numel() == model_dict[k].numel()} + # 3. skip reinit layers + if c.has("reinit_layers") and c.reinit_layers is not None: + for reinit_layer_name in c.reinit_layers: + pretrained_dict = {k: v for k, v in pretrained_dict.items() if reinit_layer_name not in k} + # 4. overwrite entries in the existing state dict + model_dict.update(pretrained_dict) + print(" | > {} / {} layers are restored.".format(len(pretrained_dict), len(model_dict))) + return model_dict + + +def format_aux_input(def_args: Dict, kwargs: Dict) -> Dict: + """Format kwargs to hande auxilary inputs to models. + + Args: + def_args (Dict): A dictionary of argument names and their default values if not defined in `kwargs`. + kwargs (Dict): A `dict` or `kwargs` that includes auxilary inputs to the model. + + Returns: + Dict: arguments with formatted auxilary inputs. + """ + kwargs = kwargs.copy() + for name in def_args: + if name not in kwargs or kwargs[name] is None: + kwargs[name] = def_args[name] + return kwargs + + +class KeepAverage: + def __init__(self): + self.avg_values = {} + self.iters = {} + + def __getitem__(self, key): + return self.avg_values[key] + + def items(self): + return self.avg_values.items() + + def add_value(self, name, init_val=0, init_iter=0): + self.avg_values[name] = init_val + self.iters[name] = init_iter + + def update_value(self, name, value, weighted_avg=False): + if name not in self.avg_values: + # add value if not exist before + self.add_value(name, init_val=value) + else: + # else update existing value + if weighted_avg: + self.avg_values[name] = 0.99 * self.avg_values[name] + 0.01 * value + self.iters[name] += 1 + else: + self.avg_values[name] = self.avg_values[name] * self.iters[name] + value + self.iters[name] += 1 + self.avg_values[name] /= self.iters[name] + + def add_values(self, name_dict): + for key, value in name_dict.items(): + self.add_value(key, init_val=value) + + def update_values(self, value_dict): + for key, value in value_dict.items(): + self.update_value(key, value) + + +def get_timestamp(): + return datetime.now().strftime("%y%m%d-%H%M%S") + + +def setup_logger(logger_name, root, phase, level=logging.INFO, screen=False, tofile=False): + lg = logging.getLogger(logger_name) + formatter = logging.Formatter("%(asctime)s.%(msecs)03d - %(levelname)s: %(message)s", datefmt="%y-%m-%d %H:%M:%S") + lg.setLevel(level) + if tofile: + log_file = os.path.join(root, phase + "_{}.log".format(get_timestamp())) + fh = logging.FileHandler(log_file, mode="w") + fh.setFormatter(formatter) + lg.addHandler(fh) + if screen: + sh = logging.StreamHandler() + sh.setFormatter(formatter) + lg.addHandler(sh) diff --git a/TTS/TTS/utils/io.py b/TTS/TTS/utils/io.py new file mode 100644 index 0000000000000000000000000000000000000000..e9bdf3e68620052c15f7f5b2d0c00c8ad426f85f --- /dev/null +++ b/TTS/TTS/utils/io.py @@ -0,0 +1,216 @@ +import datetime +import json +import os +import pickle as pickle_tts +import shutil +from typing import Any, Callable, Dict, Union + +import fsspec +import torch +from coqpit import Coqpit + +from TTS.utils.generic_utils import get_user_data_dir + + +class RenamingUnpickler(pickle_tts.Unpickler): + """Overload default pickler to solve module renaming problem""" + + def find_class(self, module, name): + return super().find_class(module.replace("mozilla_voice_tts", "TTS"), name) + + +class AttrDict(dict): + """A custom dict which converts dict keys + to class attributes""" + + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + self.__dict__ = self + + +def copy_model_files(config: Coqpit, out_path, new_fields=None): + """Copy config.json and other model files to training folder and add + new fields. + + Args: + config (Coqpit): Coqpit config defining the training run. + out_path (str): output path to copy the file. + new_fields (dict): new fileds to be added or edited + in the config file. + """ + copy_config_path = os.path.join(out_path, "config.json") + # add extra information fields + if new_fields: + config.update(new_fields, allow_new=True) + # TODO: Revert to config.save_json() once Coqpit supports arbitrary paths. + with fsspec.open(copy_config_path, "w", encoding="utf8") as f: + json.dump(config.to_dict(), f, indent=4) + + # copy model stats file if available + if config.audio.stats_path is not None: + copy_stats_path = os.path.join(out_path, "scale_stats.npy") + filesystem = fsspec.get_mapper(copy_stats_path).fs + if not filesystem.exists(copy_stats_path): + with fsspec.open(config.audio.stats_path, "rb") as source_file: + with fsspec.open(copy_stats_path, "wb") as target_file: + shutil.copyfileobj(source_file, target_file) + + +def load_fsspec( + path: str, + map_location: Union[str, Callable, torch.device, Dict[Union[str, torch.device], Union[str, torch.device]]] = None, + cache: bool = True, + **kwargs, +) -> Any: + """Like torch.load but can load from other locations (e.g. s3:// , gs://). + + Args: + path: Any path or url supported by fsspec. + map_location: torch.device or str. + cache: If True, cache a remote file locally for subsequent calls. It is cached under `get_user_data_dir()/tts_cache`. Defaults to True. + **kwargs: Keyword arguments forwarded to torch.load. + + Returns: + Object stored in path. + """ + is_local = os.path.isdir(path) or os.path.isfile(path) + if cache and not is_local: + with fsspec.open( + f"filecache::{path}", + filecache={"cache_storage": str(get_user_data_dir("tts_cache"))}, + mode="rb", + ) as f: + return torch.load(f, map_location=map_location, **kwargs) + else: + with fsspec.open(path, "rb") as f: + return torch.load(f, map_location=map_location, **kwargs) + + +def load_checkpoint( + model, checkpoint_path, use_cuda=False, eval=False, cache=False +): # pylint: disable=redefined-builtin + try: + state = load_fsspec(checkpoint_path, map_location=torch.device("cpu"), cache=cache) + except ModuleNotFoundError: + pickle_tts.Unpickler = RenamingUnpickler + state = load_fsspec(checkpoint_path, map_location=torch.device("cpu"), pickle_module=pickle_tts, cache=cache) + model.load_state_dict(state["model"]) + if use_cuda: + model.cuda() + if eval: + model.eval() + return model, state + + +def save_fsspec(state: Any, path: str, **kwargs): + """Like torch.save but can save to other locations (e.g. s3:// , gs://). + + Args: + state: State object to save + path: Any path or url supported by fsspec. + **kwargs: Keyword arguments forwarded to torch.save. + """ + with fsspec.open(path, "wb") as f: + torch.save(state, f, **kwargs) + + +def save_model(config, model, optimizer, scaler, current_step, epoch, output_path, **kwargs): + if hasattr(model, "module"): + model_state = model.module.state_dict() + else: + model_state = model.state_dict() + if isinstance(optimizer, list): + optimizer_state = [optim.state_dict() for optim in optimizer] + elif optimizer.__class__.__name__ == "CapacitronOptimizer": + optimizer_state = [optimizer.primary_optimizer.state_dict(), optimizer.secondary_optimizer.state_dict()] + else: + optimizer_state = optimizer.state_dict() if optimizer is not None else None + + if isinstance(scaler, list): + scaler_state = [s.state_dict() for s in scaler] + else: + scaler_state = scaler.state_dict() if scaler is not None else None + + if isinstance(config, Coqpit): + config = config.to_dict() + + state = { + "config": config, + "model": model_state, + "optimizer": optimizer_state, + "scaler": scaler_state, + "step": current_step, + "epoch": epoch, + "date": datetime.date.today().strftime("%B %d, %Y"), + } + state.update(kwargs) + save_fsspec(state, output_path) + + +def save_checkpoint( + config, + model, + optimizer, + scaler, + current_step, + epoch, + output_folder, + **kwargs, +): + file_name = "checkpoint_{}.pth".format(current_step) + checkpoint_path = os.path.join(output_folder, file_name) + print("\n > CHECKPOINT : {}".format(checkpoint_path)) + save_model( + config, + model, + optimizer, + scaler, + current_step, + epoch, + checkpoint_path, + **kwargs, + ) + + +def save_best_model( + current_loss, + best_loss, + config, + model, + optimizer, + scaler, + current_step, + epoch, + out_path, + keep_all_best=False, + keep_after=10000, + **kwargs, +): + if current_loss < best_loss: + best_model_name = f"best_model_{current_step}.pth" + checkpoint_path = os.path.join(out_path, best_model_name) + print(" > BEST MODEL : {}".format(checkpoint_path)) + save_model( + config, + model, + optimizer, + scaler, + current_step, + epoch, + checkpoint_path, + model_loss=current_loss, + **kwargs, + ) + fs = fsspec.get_mapper(out_path).fs + # only delete previous if current is saved successfully + if not keep_all_best or (current_step < keep_after): + model_names = fs.glob(os.path.join(out_path, "best_model*.pth")) + for model_name in model_names: + if os.path.basename(model_name) != best_model_name: + fs.rm(model_name) + # create a shortcut which always points to the currently best model + shortcut_name = "best_model.pth" + shortcut_path = os.path.join(out_path, shortcut_name) + fs.copy(checkpoint_path, shortcut_path) + best_loss = current_loss + return best_loss diff --git a/TTS/TTS/utils/manage.py b/TTS/TTS/utils/manage.py new file mode 100644 index 0000000000000000000000000000000000000000..b5c698f35ee70602063c231d077c45dc711bdcf0 --- /dev/null +++ b/TTS/TTS/utils/manage.py @@ -0,0 +1,571 @@ +import json +import os +import tarfile +import zipfile +from pathlib import Path +from shutil import copyfile, rmtree +from typing import Dict, List, Tuple + +import requests +from tqdm import tqdm + +from TTS.config import load_config +from TTS.utils.generic_utils import get_user_data_dir + +LICENSE_URLS = { + "cc by-nc-nd 4.0": "https://creativecommons.org/licenses/by-nc-nd/4.0/", + "mpl": "https://www.mozilla.org/en-US/MPL/2.0/", + "mpl2": "https://www.mozilla.org/en-US/MPL/2.0/", + "mpl 2.0": "https://www.mozilla.org/en-US/MPL/2.0/", + "mit": "https://choosealicense.com/licenses/mit/", + "apache 2.0": "https://choosealicense.com/licenses/apache-2.0/", + "apache2": "https://choosealicense.com/licenses/apache-2.0/", + "cc-by-sa 4.0": "https://creativecommons.org/licenses/by-sa/4.0/", + "cpml": "https://coqui.ai/cpml.txt", +} + + +class ModelManager(object): + """Manage TTS models defined in .models.json. + It provides an interface to list and download + models defines in '.model.json' + + Models are downloaded under '.TTS' folder in the user's + home path. + + Args: + models_file (str): path to .model.json file. Defaults to None. + output_prefix (str): prefix to `tts` to download models. Defaults to None + progress_bar (bool): print a progress bar when donwloading a file. Defaults to False. + verbose (bool): print info. Defaults to True. + """ + + def __init__(self, models_file=None, output_prefix=None, progress_bar=False, verbose=True): + super().__init__() + self.progress_bar = progress_bar + self.verbose = verbose + if output_prefix is None: + self.output_prefix = get_user_data_dir("tts") + else: + self.output_prefix = os.path.join(output_prefix, "tts") + self.models_dict = None + if models_file is not None: + self.read_models_file(models_file) + else: + # try the default location + path = Path(__file__).parent / "../.models.json" + self.read_models_file(path) + + def read_models_file(self, file_path): + """Read .models.json as a dict + + Args: + file_path (str): path to .models.json. + """ + with open(file_path, "r", encoding="utf-8") as json_file: + self.models_dict = json.load(json_file) + + def add_cs_api_models(self, model_list: List[str]): + """Add list of Coqui Studio model names that are returned from the api + + Each has the following format `/en//` + """ + + def _add_model(model_name: str): + if not "coqui_studio" in model_name: + return + model_type, lang, dataset, model = model_name.split("/") + if model_type not in self.models_dict: + self.models_dict[model_type] = {} + if lang not in self.models_dict[model_type]: + self.models_dict[model_type][lang] = {} + if dataset not in self.models_dict[model_type][lang]: + self.models_dict[model_type][lang][dataset] = {} + if model not in self.models_dict[model_type][lang][dataset]: + self.models_dict[model_type][lang][dataset][model] = {} + + for model_name in model_list: + _add_model(model_name) + + def _list_models(self, model_type, model_count=0): + if self.verbose: + print("\n Name format: type/language/dataset/model") + model_list = [] + for lang in self.models_dict[model_type]: + for dataset in self.models_dict[model_type][lang]: + for model in self.models_dict[model_type][lang][dataset]: + model_full_name = f"{model_type}--{lang}--{dataset}--{model}" + output_path = os.path.join(self.output_prefix, model_full_name) + if self.verbose: + if os.path.exists(output_path): + print(f" {model_count}: {model_type}/{lang}/{dataset}/{model} [already downloaded]") + else: + print(f" {model_count}: {model_type}/{lang}/{dataset}/{model}") + model_list.append(f"{model_type}/{lang}/{dataset}/{model}") + model_count += 1 + return model_list + + def _list_for_model_type(self, model_type): + models_name_list = [] + model_count = 1 + model_type = "tts_models" + models_name_list.extend(self._list_models(model_type, model_count)) + return models_name_list + + def list_models(self): + models_name_list = [] + model_count = 1 + for model_type in self.models_dict: + model_list = self._list_models(model_type, model_count) + models_name_list.extend(model_list) + return models_name_list + + def model_info_by_idx(self, model_query): + """Print the description of the model from .models.json file using model_idx + + Args: + model_query (str): / + """ + model_name_list = [] + model_type, model_query_idx = model_query.split("/") + try: + model_query_idx = int(model_query_idx) + if model_query_idx <= 0: + print("> model_query_idx should be a positive integer!") + return + except: + print("> model_query_idx should be an integer!") + return + model_count = 0 + if model_type in self.models_dict: + for lang in self.models_dict[model_type]: + for dataset in self.models_dict[model_type][lang]: + for model in self.models_dict[model_type][lang][dataset]: + model_name_list.append(f"{model_type}/{lang}/{dataset}/{model}") + model_count += 1 + else: + print(f"> model_type {model_type} does not exist in the list.") + return + if model_query_idx > model_count: + print(f"model query idx exceeds the number of available models [{model_count}] ") + else: + model_type, lang, dataset, model = model_name_list[model_query_idx - 1].split("/") + print(f"> model type : {model_type}") + print(f"> language supported : {lang}") + print(f"> dataset used : {dataset}") + print(f"> model name : {model}") + if "description" in self.models_dict[model_type][lang][dataset][model]: + print(f"> description : {self.models_dict[model_type][lang][dataset][model]['description']}") + else: + print("> description : coming soon") + if "default_vocoder" in self.models_dict[model_type][lang][dataset][model]: + print(f"> default_vocoder : {self.models_dict[model_type][lang][dataset][model]['default_vocoder']}") + + def model_info_by_full_name(self, model_query_name): + """Print the description of the model from .models.json file using model_full_name + + Args: + model_query_name (str): Format is /// + """ + model_type, lang, dataset, model = model_query_name.split("/") + if model_type in self.models_dict: + if lang in self.models_dict[model_type]: + if dataset in self.models_dict[model_type][lang]: + if model in self.models_dict[model_type][lang][dataset]: + print(f"> model type : {model_type}") + print(f"> language supported : {lang}") + print(f"> dataset used : {dataset}") + print(f"> model name : {model}") + if "description" in self.models_dict[model_type][lang][dataset][model]: + print( + f"> description : {self.models_dict[model_type][lang][dataset][model]['description']}" + ) + else: + print("> description : coming soon") + if "default_vocoder" in self.models_dict[model_type][lang][dataset][model]: + print( + f"> default_vocoder : {self.models_dict[model_type][lang][dataset][model]['default_vocoder']}" + ) + else: + print(f"> model {model} does not exist for {model_type}/{lang}/{dataset}.") + else: + print(f"> dataset {dataset} does not exist for {model_type}/{lang}.") + else: + print(f"> lang {lang} does not exist for {model_type}.") + else: + print(f"> model_type {model_type} does not exist in the list.") + + def list_tts_models(self): + """Print all `TTS` models and return a list of model names + + Format is `language/dataset/model` + """ + return self._list_for_model_type("tts_models") + + def list_vocoder_models(self): + """Print all the `vocoder` models and return a list of model names + + Format is `language/dataset/model` + """ + return self._list_for_model_type("vocoder_models") + + def list_vc_models(self): + """Print all the voice conversion models and return a list of model names + + Format is `language/dataset/model` + """ + return self._list_for_model_type("voice_conversion_models") + + def list_langs(self): + """Print all the available languages""" + print(" Name format: type/language") + for model_type in self.models_dict: + for lang in self.models_dict[model_type]: + print(f" >: {model_type}/{lang} ") + + def list_datasets(self): + """Print all the datasets""" + print(" Name format: type/language/dataset") + for model_type in self.models_dict: + for lang in self.models_dict[model_type]: + for dataset in self.models_dict[model_type][lang]: + print(f" >: {model_type}/{lang}/{dataset}") + + @staticmethod + def print_model_license(model_item: Dict): + """Print the license of a model + + Args: + model_item (dict): model item in the models.json + """ + if "license" in model_item and model_item["license"].strip() != "": + print(f" > Model's license - {model_item['license']}") + if model_item["license"].lower() in LICENSE_URLS: + print(f" > Check {LICENSE_URLS[model_item['license'].lower()]} for more info.") + else: + print(" > Check https://opensource.org/licenses for more info.") + else: + print(" > Model's license - No license information available") + + def _download_github_model(self, model_item: Dict, output_path: str): + if isinstance(model_item["github_rls_url"], list): + self._download_model_files(model_item["github_rls_url"], output_path, self.progress_bar) + else: + self._download_zip_file(model_item["github_rls_url"], output_path, self.progress_bar) + + def _download_hf_model(self, model_item: Dict, output_path: str): + if isinstance(model_item["hf_url"], list): + self._download_model_files(model_item["hf_url"], output_path, self.progress_bar) + else: + self._download_zip_file(model_item["hf_url"], output_path, self.progress_bar) + + def download_fairseq_model(self, model_name, output_path): + URI_PREFIX = "https://coqui.gateway.scarf.sh/fairseq/" + _, lang, _, _ = model_name.split("/") + model_download_uri = os.path.join(URI_PREFIX, f"{lang}.tar.gz") + self._download_tar_file(model_download_uri, output_path, self.progress_bar) + + @staticmethod + def set_model_url(model_item: Dict): + model_item["model_url"] = None + if "github_rls_url" in model_item: + model_item["model_url"] = model_item["github_rls_url"] + elif "hf_url" in model_item: + model_item["model_url"] = model_item["hf_url"] + elif "fairseq" in model_item["model_name"]: + model_item["model_url"] = "https://coqui.gateway.scarf.sh/fairseq/" + return model_item + + def _set_model_item(self, model_name): + # fetch model info from the dict + model_type, lang, dataset, model = model_name.split("/") + model_full_name = f"{model_type}--{lang}--{dataset}--{model}" + if "fairseq" in model_name: + model_item = { + "model_type": "tts_models", + "license": "CC BY-NC 4.0", + "default_vocoder": None, + "author": "fairseq", + "description": "this model is released by Meta under Fairseq repo. Visit https://github.com/facebookresearch/fairseq/tree/main/examples/mms for more info.", + } + model_item["model_name"] = model_name + else: + # get model from models.json + model_item = self.models_dict[model_type][lang][dataset][model] + model_item["model_type"] = model_type + model_item = self.set_model_url(model_item) + return model_item, model_full_name, model + + def ask_tos(self, model_full_path): + """Ask the user to agree to the terms of service""" + tos_path = os.path.join(model_full_path, "tos_agreed.txt") + if not os.path.exists(tos_path): + print(" > You must agree to the terms of service to use this model.") + print(" | > Please see the terms of service at https://coqui.ai/cpml.txt") + print(' | > "I have read, understood and agreed the Terms and Conditions." - [y/n]') + answer = input(" | | > ") + if answer.lower() == "y": + with open(tos_path, "w") as f: + f.write("I have read, understood ad agree the Terms and Conditions.") + return True + else: + return False + + def tos_agreed(self, model_item, model_full_path): + """Check if the user has agreed to the terms of service""" + if "tos_required" in model_item and model_item["tos_required"]: + tos_path = os.path.join(model_full_path, "tos_agreed.txt") + if os.path.exists(tos_path) or os.environ.get("COQUI_TOS_AGREED") == "1": + return True + return False + return True + + def download_model(self, model_name): + """Download model files given the full model name. + Model name is in the format + 'type/language/dataset/model' + e.g. 'tts_model/en/ljspeech/tacotron' + + Every model must have the following files: + - *.pth : pytorch model checkpoint file. + - config.json : model config file. + - scale_stats.npy (if exist): scale values for preprocessing. + + Args: + model_name (str): model name as explained above. + """ + model_item, model_full_name, model = self._set_model_item(model_name) + # set the model specific output path + output_path = os.path.join(self.output_prefix, model_full_name) + if os.path.exists(output_path): + print(f" > {model_name} is already downloaded.") + else: + os.makedirs(output_path, exist_ok=True) + # handle TOS + if not self.tos_agreed(model_item, output_path): + if not self.ask_tos(output_path): + os.rmdir(output_path) + raise Exception(" [!] You must agree to the terms of service to use this model.") + print(f" > Downloading model to {output_path}") + try: + if "fairseq" in model_name: + self.download_fairseq_model(model_name, output_path) + elif "github_rls_url" in model_item: + self._download_github_model(model_item, output_path) + elif "hf_url" in model_item: + self._download_hf_model(model_item, output_path) + + except requests.RequestException as e: + print(f" > Failed to download the model file to {output_path}") + rmtree(output_path) + raise e + self.print_model_license(model_item=model_item) + # find downloaded files + output_model_path = output_path + output_config_path = None + if ( + model not in ["tortoise-v2", "bark", "xtts_v1"] and "fairseq" not in model_name + ): # TODO:This is stupid but don't care for now. + output_model_path, output_config_path = self._find_files(output_path) + # update paths in the config.json + self._update_paths(output_path, output_config_path) + return output_model_path, output_config_path, model_item + + @staticmethod + def _find_files(output_path: str) -> Tuple[str, str]: + """Find the model and config files in the output path + + Args: + output_path (str): path to the model files + + Returns: + Tuple[str, str]: path to the model file and config file + """ + model_file = None + config_file = None + for file_name in os.listdir(output_path): + if file_name in ["model_file.pth", "model_file.pth.tar", "model.pth"]: + model_file = os.path.join(output_path, file_name) + elif file_name == "config.json": + config_file = os.path.join(output_path, file_name) + if model_file is None: + raise ValueError(" [!] Model file not found in the output path") + if config_file is None: + raise ValueError(" [!] Config file not found in the output path") + return model_file, config_file + + @staticmethod + def _find_speaker_encoder(output_path: str) -> str: + """Find the speaker encoder file in the output path + + Args: + output_path (str): path to the model files + + Returns: + str: path to the speaker encoder file + """ + speaker_encoder_file = None + for file_name in os.listdir(output_path): + if file_name in ["model_se.pth", "model_se.pth.tar"]: + speaker_encoder_file = os.path.join(output_path, file_name) + return speaker_encoder_file + + def _update_paths(self, output_path: str, config_path: str) -> None: + """Update paths for certain files in config.json after download. + + Args: + output_path (str): local path the model is downloaded to. + config_path (str): local config.json path. + """ + output_stats_path = os.path.join(output_path, "scale_stats.npy") + output_d_vector_file_path = os.path.join(output_path, "speakers.json") + output_d_vector_file_pth_path = os.path.join(output_path, "speakers.pth") + output_speaker_ids_file_path = os.path.join(output_path, "speaker_ids.json") + output_speaker_ids_file_pth_path = os.path.join(output_path, "speaker_ids.pth") + speaker_encoder_config_path = os.path.join(output_path, "config_se.json") + speaker_encoder_model_path = self._find_speaker_encoder(output_path) + + # update the scale_path.npy file path in the model config.json + self._update_path("audio.stats_path", output_stats_path, config_path) + + # update the speakers.json file path in the model config.json to the current path + self._update_path("d_vector_file", output_d_vector_file_path, config_path) + self._update_path("d_vector_file", output_d_vector_file_pth_path, config_path) + self._update_path("model_args.d_vector_file", output_d_vector_file_path, config_path) + self._update_path("model_args.d_vector_file", output_d_vector_file_pth_path, config_path) + + # update the speaker_ids.json file path in the model config.json to the current path + self._update_path("speakers_file", output_speaker_ids_file_path, config_path) + self._update_path("speakers_file", output_speaker_ids_file_pth_path, config_path) + self._update_path("model_args.speakers_file", output_speaker_ids_file_path, config_path) + self._update_path("model_args.speakers_file", output_speaker_ids_file_pth_path, config_path) + + # update the speaker_encoder file path in the model config.json to the current path + self._update_path("speaker_encoder_model_path", speaker_encoder_model_path, config_path) + self._update_path("model_args.speaker_encoder_model_path", speaker_encoder_model_path, config_path) + self._update_path("speaker_encoder_config_path", speaker_encoder_config_path, config_path) + self._update_path("model_args.speaker_encoder_config_path", speaker_encoder_config_path, config_path) + + @staticmethod + def _update_path(field_name, new_path, config_path): + """Update the path in the model config.json for the current environment after download""" + if new_path and os.path.exists(new_path): + config = load_config(config_path) + field_names = field_name.split(".") + if len(field_names) > 1: + # field name points to a sub-level field + sub_conf = config + for fd in field_names[:-1]: + if fd in sub_conf: + sub_conf = sub_conf[fd] + else: + return + if isinstance(sub_conf[field_names[-1]], list): + sub_conf[field_names[-1]] = [new_path] + else: + sub_conf[field_names[-1]] = new_path + else: + # field name points to a top-level field + if not field_name in config: + return + if isinstance(config[field_name], list): + config[field_name] = [new_path] + else: + config[field_name] = new_path + config.save_json(config_path) + + @staticmethod + def _download_zip_file(file_url, output_folder, progress_bar): + """Download the github releases""" + # download the file + r = requests.get(file_url, stream=True) + # extract the file + try: + total_size_in_bytes = int(r.headers.get("content-length", 0)) + block_size = 1024 # 1 Kibibyte + if progress_bar: + progress_bar = tqdm(total=total_size_in_bytes, unit="iB", unit_scale=True) + temp_zip_name = os.path.join(output_folder, file_url.split("/")[-1]) + with open(temp_zip_name, "wb") as file: + for data in r.iter_content(block_size): + if progress_bar: + progress_bar.update(len(data)) + file.write(data) + with zipfile.ZipFile(temp_zip_name) as z: + z.extractall(output_folder) + os.remove(temp_zip_name) # delete zip after extract + except zipfile.BadZipFile: + print(f" > Error: Bad zip file - {file_url}") + raise zipfile.BadZipFile # pylint: disable=raise-missing-from + # move the files to the outer path + for file_path in z.namelist(): + src_path = os.path.join(output_folder, file_path) + if os.path.isfile(src_path): + dst_path = os.path.join(output_folder, os.path.basename(file_path)) + if src_path != dst_path: + copyfile(src_path, dst_path) + # remove redundant (hidden or not) folders + for file_path in z.namelist(): + if os.path.isdir(os.path.join(output_folder, file_path)): + rmtree(os.path.join(output_folder, file_path)) + + @staticmethod + def _download_tar_file(file_url, output_folder, progress_bar): + """Download the github releases""" + # download the file + r = requests.get(file_url, stream=True) + # extract the file + try: + total_size_in_bytes = int(r.headers.get("content-length", 0)) + block_size = 1024 # 1 Kibibyte + if progress_bar: + progress_bar = tqdm(total=total_size_in_bytes, unit="iB", unit_scale=True) + temp_tar_name = os.path.join(output_folder, file_url.split("/")[-1]) + with open(temp_tar_name, "wb") as file: + for data in r.iter_content(block_size): + if progress_bar: + progress_bar.update(len(data)) + file.write(data) + with tarfile.open(temp_tar_name) as t: + t.extractall(output_folder) + tar_names = t.getnames() + os.remove(temp_tar_name) # delete tar after extract + except tarfile.ReadError: + print(f" > Error: Bad tar file - {file_url}") + raise tarfile.ReadError # pylint: disable=raise-missing-from + # move the files to the outer path + for file_path in os.listdir(os.path.join(output_folder, tar_names[0])): + src_path = os.path.join(output_folder, tar_names[0], file_path) + dst_path = os.path.join(output_folder, os.path.basename(file_path)) + if src_path != dst_path: + copyfile(src_path, dst_path) + # remove the extracted folder + rmtree(os.path.join(output_folder, tar_names[0])) + + @staticmethod + def _download_model_files(file_urls, output_folder, progress_bar): + """Download the github releases""" + for file_url in file_urls: + # download the file + r = requests.get(file_url, stream=True) + # extract the file + bease_filename = file_url.split("/")[-1] + temp_zip_name = os.path.join(output_folder, bease_filename) + total_size_in_bytes = int(r.headers.get("content-length", 0)) + block_size = 1024 # 1 Kibibyte + with open(temp_zip_name, "wb") as file: + if progress_bar: + progress_bar = tqdm(total=total_size_in_bytes, unit="iB", unit_scale=True) + for data in r.iter_content(block_size): + if progress_bar: + progress_bar.update(len(data)) + file.write(data) + + @staticmethod + def _check_dict_key(my_dict, key): + if key in my_dict.keys() and my_dict[key] is not None: + if not isinstance(key, str): + return True + if isinstance(key, str) and len(my_dict[key]) > 0: + return True + return False diff --git a/TTS/TTS/utils/radam.py b/TTS/TTS/utils/radam.py new file mode 100644 index 0000000000000000000000000000000000000000..cbd14990f33cb671f030e401a3a2f9b96c2710cd --- /dev/null +++ b/TTS/TTS/utils/radam.py @@ -0,0 +1,105 @@ +# modified from https://github.com/LiyuanLucasLiu/RAdam + +import math + +import torch +from torch.optim.optimizer import Optimizer + + +class RAdam(Optimizer): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, degenerated_to_sgd=True): + if lr < 0.0: + raise ValueError("Invalid learning rate: {}".format(lr)) + if eps < 0.0: + raise ValueError("Invalid epsilon value: {}".format(eps)) + if not 0.0 <= betas[0] < 1.0: + raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) + if not 0.0 <= betas[1] < 1.0: + raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) + + self.degenerated_to_sgd = degenerated_to_sgd + if isinstance(params, (list, tuple)) and len(params) > 0 and isinstance(params[0], dict): + for param in params: + if "betas" in param and (param["betas"][0] != betas[0] or param["betas"][1] != betas[1]): + param["buffer"] = [[None, None, None] for _ in range(10)] + defaults = dict( + lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, buffer=[[None, None, None] for _ in range(10)] + ) + super().__init__(params, defaults) + + def __setstate__(self, state): # pylint: disable=useless-super-delegation + super().__setstate__(state) + + def step(self, closure=None): + loss = None + if closure is not None: + loss = closure() + + for group in self.param_groups: + for p in group["params"]: + if p.grad is None: + continue + grad = p.grad.data.float() + if grad.is_sparse: + raise RuntimeError("RAdam does not support sparse gradients") + + p_data_fp32 = p.data.float() + + state = self.state[p] + + if len(state) == 0: + state["step"] = 0 + state["exp_avg"] = torch.zeros_like(p_data_fp32) + state["exp_avg_sq"] = torch.zeros_like(p_data_fp32) + else: + state["exp_avg"] = state["exp_avg"].type_as(p_data_fp32) + state["exp_avg_sq"] = state["exp_avg_sq"].type_as(p_data_fp32) + + exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"] + beta1, beta2 = group["betas"] + + exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) + exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) + + state["step"] += 1 + buffered = group["buffer"][int(state["step"] % 10)] + if state["step"] == buffered[0]: + N_sma, step_size = buffered[1], buffered[2] + else: + buffered[0] = state["step"] + beta2_t = beta2 ** state["step"] + N_sma_max = 2 / (1 - beta2) - 1 + N_sma = N_sma_max - 2 * state["step"] * beta2_t / (1 - beta2_t) + buffered[1] = N_sma + + # more conservative since it's an approximated value + if N_sma >= 5: + step_size = math.sqrt( + (1 - beta2_t) + * (N_sma - 4) + / (N_sma_max - 4) + * (N_sma - 2) + / N_sma + * N_sma_max + / (N_sma_max - 2) + ) / (1 - beta1 ** state["step"]) + elif self.degenerated_to_sgd: + step_size = 1.0 / (1 - beta1 ** state["step"]) + else: + step_size = -1 + buffered[2] = step_size + + # more conservative since it's an approximated value + if N_sma >= 5: + if group["weight_decay"] != 0: + p_data_fp32.add_(p_data_fp32, alpha=-group["weight_decay"] * group["lr"]) + denom = exp_avg_sq.sqrt().add_(group["eps"]) + p_data_fp32.addcdiv_(exp_avg, denom, value=-step_size * group["lr"]) + p.data.copy_(p_data_fp32) + elif step_size > 0: + if group["weight_decay"] != 0: + p_data_fp32.add_(p_data_fp32, alpha=-group["weight_decay"] * group["lr"]) + p_data_fp32.add_(exp_avg, alpha=-step_size * group["lr"]) + p.data.copy_(p_data_fp32) + + return loss diff --git a/TTS/TTS/utils/samplers.py b/TTS/TTS/utils/samplers.py new file mode 100644 index 0000000000000000000000000000000000000000..b08a763a33e40d00a32577e31ffc12b8e228bc46 --- /dev/null +++ b/TTS/TTS/utils/samplers.py @@ -0,0 +1,201 @@ +import math +import random +from typing import Callable, List, Union + +from torch.utils.data.sampler import BatchSampler, Sampler, SubsetRandomSampler + + +class SubsetSampler(Sampler): + """ + Samples elements sequentially from a given list of indices. + + Args: + indices (list): a sequence of indices + """ + + def __init__(self, indices): + super().__init__(indices) + self.indices = indices + + def __iter__(self): + return (self.indices[i] for i in range(len(self.indices))) + + def __len__(self): + return len(self.indices) + + +class PerfectBatchSampler(Sampler): + """ + Samples a mini-batch of indices for a balanced class batching + + Args: + dataset_items(list): dataset items to sample from. + classes (list): list of classes of dataset_items to sample from. + batch_size (int): total number of samples to be sampled in a mini-batch. + num_gpus (int): number of GPU in the data parallel mode. + shuffle (bool): if True, samples randomly, otherwise samples sequentially. + drop_last (bool): if True, drops last incomplete batch. + """ + + def __init__( + self, + dataset_items, + classes, + batch_size, + num_classes_in_batch, + num_gpus=1, + shuffle=True, + drop_last=False, + label_key="class_name", + ): + super().__init__(dataset_items) + assert ( + batch_size % (num_classes_in_batch * num_gpus) == 0 + ), "Batch size must be divisible by number of classes times the number of data parallel devices (if enabled)." + + label_indices = {} + for idx, item in enumerate(dataset_items): + label = item[label_key] + if label not in label_indices.keys(): + label_indices[label] = [idx] + else: + label_indices[label].append(idx) + + if shuffle: + self._samplers = [SubsetRandomSampler(label_indices[key]) for key in classes] + else: + self._samplers = [SubsetSampler(label_indices[key]) for key in classes] + + self._batch_size = batch_size + self._drop_last = drop_last + self._dp_devices = num_gpus + self._num_classes_in_batch = num_classes_in_batch + + def __iter__(self): + batch = [] + if self._num_classes_in_batch != len(self._samplers): + valid_samplers_idx = random.sample(range(len(self._samplers)), self._num_classes_in_batch) + else: + valid_samplers_idx = None + + iters = [iter(s) for s in self._samplers] + done = False + + while True: + b = [] + for i, it in enumerate(iters): + if valid_samplers_idx is not None and i not in valid_samplers_idx: + continue + idx = next(it, None) + if idx is None: + done = True + break + b.append(idx) + if done: + break + batch += b + if len(batch) == self._batch_size: + yield batch + batch = [] + if valid_samplers_idx is not None: + valid_samplers_idx = random.sample(range(len(self._samplers)), self._num_classes_in_batch) + + if not self._drop_last: + if len(batch) > 0: + groups = len(batch) // self._num_classes_in_batch + if groups % self._dp_devices == 0: + yield batch + else: + batch = batch[: (groups // self._dp_devices) * self._dp_devices * self._num_classes_in_batch] + if len(batch) > 0: + yield batch + + def __len__(self): + class_batch_size = self._batch_size // self._num_classes_in_batch + return min(((len(s) + class_batch_size - 1) // class_batch_size) for s in self._samplers) + + +def identity(x): + return x + + +class SortedSampler(Sampler): + """Samples elements sequentially, always in the same order. + + Taken from https://github.com/PetrochukM/PyTorch-NLP + + Args: + data (iterable): Iterable data. + sort_key (callable): Specifies a function of one argument that is used to extract a + numerical comparison key from each list element. + + Example: + >>> list(SortedSampler(range(10), sort_key=lambda i: -i)) + [9, 8, 7, 6, 5, 4, 3, 2, 1, 0] + + """ + + def __init__(self, data, sort_key: Callable = identity): + super().__init__(data) + self.data = data + self.sort_key = sort_key + zip_ = [(i, self.sort_key(row)) for i, row in enumerate(self.data)] + zip_ = sorted(zip_, key=lambda r: r[1]) + self.sorted_indexes = [item[0] for item in zip_] + + def __iter__(self): + return iter(self.sorted_indexes) + + def __len__(self): + return len(self.data) + + +class BucketBatchSampler(BatchSampler): + """Bucket batch sampler + + Adapted from https://github.com/PetrochukM/PyTorch-NLP + + Args: + sampler (torch.data.utils.sampler.Sampler): + batch_size (int): Size of mini-batch. + drop_last (bool): If `True` the sampler will drop the last batch if its size would be less + than `batch_size`. + data (list): List of data samples. + sort_key (callable, optional): Callable to specify a comparison key for sorting. + bucket_size_multiplier (int, optional): Buckets are of size + `batch_size * bucket_size_multiplier`. + + Example: + >>> sampler = WeightedRandomSampler(weights, len(weights)) + >>> sampler = BucketBatchSampler(sampler, data=data_items, batch_size=32, drop_last=True) + """ + + def __init__( + self, + sampler, + data, + batch_size, + drop_last, + sort_key: Union[Callable, List] = identity, + bucket_size_multiplier=100, + ): + super().__init__(sampler, batch_size, drop_last) + self.data = data + self.sort_key = sort_key + _bucket_size = batch_size * bucket_size_multiplier + if hasattr(sampler, "__len__"): + _bucket_size = min(_bucket_size, len(sampler)) + self.bucket_sampler = BatchSampler(sampler, _bucket_size, False) + + def __iter__(self): + for idxs in self.bucket_sampler: + bucket_data = [self.data[idx] for idx in idxs] + sorted_sampler = SortedSampler(bucket_data, self.sort_key) + for batch_idx in SubsetRandomSampler(list(BatchSampler(sorted_sampler, self.batch_size, self.drop_last))): + sorted_idxs = [idxs[i] for i in batch_idx] + yield sorted_idxs + + def __len__(self): + if self.drop_last: + return len(self.sampler) // self.batch_size + return math.ceil(len(self.sampler) / self.batch_size) diff --git a/TTS/TTS/utils/synthesizer.py b/TTS/TTS/utils/synthesizer.py new file mode 100644 index 0000000000000000000000000000000000000000..24a078f5f1bbb22c3199e5e05a57135278a0ec48 --- /dev/null +++ b/TTS/TTS/utils/synthesizer.py @@ -0,0 +1,494 @@ +import os +import time +from typing import List + +import numpy as np +import pysbd +import torch +from torch import nn + +from TTS.config import load_config +from TTS.tts.configs.vits_config import VitsConfig +from TTS.tts.models import setup_model as setup_tts_model +from TTS.tts.models.vits import Vits + +# pylint: disable=unused-wildcard-import +# pylint: disable=wildcard-import +from TTS.tts.utils.synthesis import synthesis, transfer_voice, trim_silence +from TTS.utils.audio import AudioProcessor +from TTS.utils.audio.numpy_transforms import save_wav +from TTS.vc.models import setup_model as setup_vc_model +from TTS.vocoder.models import setup_model as setup_vocoder_model +from TTS.vocoder.utils.generic_utils import interpolate_vocoder_input + + +class Synthesizer(nn.Module): + def __init__( + self, + tts_checkpoint: str = "", + tts_config_path: str = "", + tts_speakers_file: str = "", + tts_languages_file: str = "", + vocoder_checkpoint: str = "", + vocoder_config: str = "", + encoder_checkpoint: str = "", + encoder_config: str = "", + vc_checkpoint: str = "", + vc_config: str = "", + model_dir: str = "", + voice_dir: str = None, + use_cuda: bool = False, + ) -> None: + """General ๐Ÿธ TTS interface for inference. It takes a tts and a vocoder + model and synthesize speech from the provided text. + + The text is divided into a list of sentences using `pysbd` and synthesize + speech on each sentence separately. + + If you have certain special characters in your text, you need to handle + them before providing the text to Synthesizer. + + TODO: set the segmenter based on the source language + + Args: + tts_checkpoint (str, optional): path to the tts model file. + tts_config_path (str, optional): path to the tts config file. + vocoder_checkpoint (str, optional): path to the vocoder model file. Defaults to None. + vocoder_config (str, optional): path to the vocoder config file. Defaults to None. + encoder_checkpoint (str, optional): path to the speaker encoder model file. Defaults to `""`, + encoder_config (str, optional): path to the speaker encoder config file. Defaults to `""`, + vc_checkpoint (str, optional): path to the voice conversion model file. Defaults to `""`, + vc_config (str, optional): path to the voice conversion config file. Defaults to `""`, + use_cuda (bool, optional): enable/disable cuda. Defaults to False. + """ + super().__init__() + self.tts_checkpoint = tts_checkpoint + self.tts_config_path = tts_config_path + self.tts_speakers_file = tts_speakers_file + self.tts_languages_file = tts_languages_file + self.vocoder_checkpoint = vocoder_checkpoint + self.vocoder_config = vocoder_config + self.encoder_checkpoint = encoder_checkpoint + self.encoder_config = encoder_config + self.vc_checkpoint = vc_checkpoint + self.vc_config = vc_config + self.use_cuda = use_cuda + + self.tts_model = None + self.vocoder_model = None + self.vc_model = None + self.speaker_manager = None + self.tts_speakers = {} + self.language_manager = None + self.num_languages = 0 + self.tts_languages = {} + self.d_vector_dim = 0 + self.seg = self._get_segmenter("en") + self.use_cuda = use_cuda + self.voice_dir = voice_dir + if self.use_cuda: + assert torch.cuda.is_available(), "CUDA is not availabe on this machine." + + if tts_checkpoint: + self._load_tts(tts_checkpoint, tts_config_path, use_cuda) + self.output_sample_rate = self.tts_config.audio["sample_rate"] + + if vocoder_checkpoint: + self._load_vocoder(vocoder_checkpoint, vocoder_config, use_cuda) + self.output_sample_rate = self.vocoder_config.audio["sample_rate"] + + if vc_checkpoint: + self._load_vc(vc_checkpoint, vc_config, use_cuda) + self.output_sample_rate = self.vc_config.audio["output_sample_rate"] + + if model_dir: + if "fairseq" in model_dir: + self._load_fairseq_from_dir(model_dir, use_cuda) + self.output_sample_rate = self.tts_config.audio["sample_rate"] + else: + self._load_tts_from_dir(model_dir, use_cuda) + self.output_sample_rate = self.tts_config.audio["output_sample_rate"] + + @staticmethod + def _get_segmenter(lang: str): + """get the sentence segmenter for the given language. + + Args: + lang (str): target language code. + + Returns: + [type]: [description] + """ + return pysbd.Segmenter(language=lang, clean=True) + + def _load_vc(self, vc_checkpoint: str, vc_config_path: str, use_cuda: bool) -> None: + """Load the voice conversion model. + + 1. Load the model config. + 2. Init the model from the config. + 3. Load the model weights. + 4. Move the model to the GPU if CUDA is enabled. + + Args: + vc_checkpoint (str): path to the model checkpoint. + tts_config_path (str): path to the model config file. + use_cuda (bool): enable/disable CUDA use. + """ + # pylint: disable=global-statement + self.vc_config = load_config(vc_config_path) + self.vc_model = setup_vc_model(config=self.vc_config) + self.vc_model.load_checkpoint(self.vc_config, vc_checkpoint) + if use_cuda: + self.vc_model.cuda() + + def _load_fairseq_from_dir(self, model_dir: str, use_cuda: bool) -> None: + """Load the fairseq model from a directory. + + We assume it is VITS and the model knows how to load itself from the directory and there is a config.json file in the directory. + """ + self.tts_config = VitsConfig() + self.tts_model = Vits.init_from_config(self.tts_config) + self.tts_model.load_fairseq_checkpoint(self.tts_config, checkpoint_dir=model_dir, eval=True) + self.tts_config = self.tts_model.config + if use_cuda: + self.tts_model.cuda() + + def _load_tts_from_dir(self, model_dir: str, use_cuda: bool) -> None: + """Load the TTS model from a directory. + + We assume the model knows how to load itself from the directory and there is a config.json file in the directory. + """ + config = load_config(os.path.join(model_dir, "config.json")) + self.tts_config = config + self.tts_model = setup_tts_model(config) + self.tts_model.load_checkpoint(config, checkpoint_dir=model_dir, eval=True) + if use_cuda: + self.tts_model.cuda() + + def _load_tts(self, tts_checkpoint: str, tts_config_path: str, use_cuda: bool) -> None: + """Load the TTS model. + + 1. Load the model config. + 2. Init the model from the config. + 3. Load the model weights. + 4. Move the model to the GPU if CUDA is enabled. + 5. Init the speaker manager in the model. + + Args: + tts_checkpoint (str): path to the model checkpoint. + tts_config_path (str): path to the model config file. + use_cuda (bool): enable/disable CUDA use. + """ + # pylint: disable=global-statement + self.tts_config = load_config(tts_config_path) + if self.tts_config["use_phonemes"] and self.tts_config["phonemizer"] is None: + raise ValueError("Phonemizer is not defined in the TTS config.") + + self.tts_model = setup_tts_model(config=self.tts_config) + + if not self.encoder_checkpoint: + self._set_speaker_encoder_paths_from_tts_config() + + self.tts_model.load_checkpoint(self.tts_config, tts_checkpoint, eval=True) + if use_cuda: + self.tts_model.cuda() + + if self.encoder_checkpoint and hasattr(self.tts_model, "speaker_manager"): + self.tts_model.speaker_manager.init_encoder(self.encoder_checkpoint, self.encoder_config, use_cuda) + + def _set_speaker_encoder_paths_from_tts_config(self): + """Set the encoder paths from the tts model config for models with speaker encoders.""" + if hasattr(self.tts_config, "model_args") and hasattr( + self.tts_config.model_args, "speaker_encoder_config_path" + ): + self.encoder_checkpoint = self.tts_config.model_args.speaker_encoder_model_path + self.encoder_config = self.tts_config.model_args.speaker_encoder_config_path + + def _load_vocoder(self, model_file: str, model_config: str, use_cuda: bool) -> None: + """Load the vocoder model. + + 1. Load the vocoder config. + 2. Init the AudioProcessor for the vocoder. + 3. Init the vocoder model from the config. + 4. Move the model to the GPU if CUDA is enabled. + + Args: + model_file (str): path to the model checkpoint. + model_config (str): path to the model config file. + use_cuda (bool): enable/disable CUDA use. + """ + self.vocoder_config = load_config(model_config) + self.vocoder_ap = AudioProcessor(verbose=False, **self.vocoder_config.audio) + self.vocoder_model = setup_vocoder_model(self.vocoder_config) + self.vocoder_model.load_checkpoint(self.vocoder_config, model_file, eval=True) + if use_cuda: + self.vocoder_model.cuda() + + def split_into_sentences(self, text) -> List[str]: + """Split give text into sentences. + + Args: + text (str): input text in string format. + + Returns: + List[str]: list of sentences. + """ + return self.seg.segment(text) + + def save_wav(self, wav: List[int], path: str) -> None: + """Save the waveform as a file. + + Args: + wav (List[int]): waveform as a list of values. + path (str): output path to save the waveform. + """ + # if tensor convert to numpy + if torch.is_tensor(wav): + wav = wav.cpu().numpy() + if isinstance(wav, list): + wav = np.array(wav) + save_wav(wav=wav, path=path, sample_rate=self.output_sample_rate) + + def voice_conversion(self, source_wav: str, target_wav: str) -> List[int]: + output_wav = self.vc_model.voice_conversion(source_wav, target_wav) + return output_wav + + def tts( + self, + text: str = "", + speaker_name: str = "", + language_name: str = "", + speaker_wav=None, + style_wav=None, + style_text=None, + reference_wav=None, + reference_speaker_name=None, + **kwargs, + ) -> List[int]: + """๐Ÿธ TTS magic. Run all the models and generate speech. + + Args: + text (str): input text. + speaker_name (str, optional): speaker id for multi-speaker models. Defaults to "". + language_name (str, optional): language id for multi-language models. Defaults to "". + speaker_wav (Union[str, List[str]], optional): path to the speaker wav for voice cloning. Defaults to None. + style_wav ([type], optional): style waveform for GST. Defaults to None. + style_text ([type], optional): transcription of style_wav for Capacitron. Defaults to None. + reference_wav ([type], optional): reference waveform for voice conversion. Defaults to None. + reference_speaker_name ([type], optional): speaker id of reference waveform. Defaults to None. + Returns: + List[int]: [description] + """ + start_time = time.time() + wavs = [] + + if not text and not reference_wav: + raise ValueError( + "You need to define either `text` (for sythesis) or a `reference_wav` (for voice conversion) to use the Coqui TTS API." + ) + + if text: + sens = self.split_into_sentences(text) + print(" > Text splitted to sentences.") + print(sens) + + # handle multi-speaker + if "voice_dir" in kwargs: + self.voice_dir = kwargs["voice_dir"] + kwargs.pop("voice_dir") + speaker_embedding = None + speaker_id = None + if self.tts_speakers_file or hasattr(self.tts_model.speaker_manager, "name_to_id"): + # handle Neon models with single speaker. + if len(self.tts_model.speaker_manager.name_to_id) == 1: + speaker_id = list(self.tts_model.speaker_manager.name_to_id.values())[0] + + elif speaker_name and isinstance(speaker_name, str): + if self.tts_config.use_d_vector_file: + # get the average speaker embedding from the saved d_vectors. + speaker_embedding = self.tts_model.speaker_manager.get_mean_embedding( + speaker_name, num_samples=None, randomize=False + ) + speaker_embedding = np.array(speaker_embedding)[None, :] # [1 x embedding_dim] + else: + # get speaker idx from the speaker name + speaker_id = self.tts_model.speaker_manager.name_to_id[speaker_name] + + elif not speaker_name and not speaker_wav: + raise ValueError( + " [!] Looks like you are using a multi-speaker model. " + "You need to define either a `speaker_idx` or a `speaker_wav` to use a multi-speaker model." + ) + else: + speaker_embedding = None + else: + if speaker_name and self.voice_dir is None: + raise ValueError( + f" [!] Missing speakers.json file path for selecting speaker {speaker_name}." + "Define path for speaker.json if it is a multi-speaker model or remove defined speaker idx. " + ) + + # handle multi-lingual + language_id = None + if self.tts_languages_file or ( + hasattr(self.tts_model, "language_manager") and self.tts_model.language_manager is not None + ): + if len(self.tts_model.language_manager.name_to_id) == 1: + language_id = list(self.tts_model.language_manager.name_to_id.values())[0] + + elif language_name and isinstance(language_name, str): + try: + language_id = self.tts_model.language_manager.name_to_id[language_name] + except KeyError as e: + raise ValueError( + f" [!] Looks like you use a multi-lingual model. " + f"Language {language_name} is not in the available languages: " + f"{self.tts_model.language_manager.name_to_id.keys()}." + ) from e + + elif not language_name: + raise ValueError( + " [!] Look like you use a multi-lingual model. " + "You need to define either a `language_name` or a `style_wav` to use a multi-lingual model." + ) + + else: + raise ValueError( + f" [!] Missing language_ids.json file path for selecting language {language_name}." + "Define path for language_ids.json if it is a multi-lingual model or remove defined language idx. " + ) + + # compute a new d_vector from the given clip. + if speaker_wav is not None and self.tts_model.speaker_manager is not None: + speaker_embedding = self.tts_model.speaker_manager.compute_embedding_from_clip(speaker_wav) + + vocoder_device = "cpu" + use_gl = self.vocoder_model is None + if not use_gl: + vocoder_device = next(self.vocoder_model.parameters()).device + if self.use_cuda: + vocoder_device = "cuda" + + if not reference_wav: # not voice conversion + for sen in sens: + if hasattr(self.tts_model, "synthesize"): + outputs = self.tts_model.synthesize( + text=sen, + config=self.tts_config, + speaker_id=speaker_name, + voice_dirs=self.voice_dir, + d_vector=speaker_embedding, + speaker_wav=speaker_wav, + language=language_name, + **kwargs, + ) + else: + # synthesize voice + outputs = synthesis( + model=self.tts_model, + text=sen, + CONFIG=self.tts_config, + use_cuda=self.use_cuda, + speaker_id=speaker_id, + style_wav=style_wav, + style_text=style_text, + use_griffin_lim=use_gl, + d_vector=speaker_embedding, + language_id=language_id, + ) + waveform = outputs["wav"] + if not use_gl: + mel_postnet_spec = outputs["outputs"]["model_outputs"][0].detach().cpu().numpy() + # denormalize tts output based on tts audio config + mel_postnet_spec = self.tts_model.ap.denormalize(mel_postnet_spec.T).T + # renormalize spectrogram based on vocoder config + vocoder_input = self.vocoder_ap.normalize(mel_postnet_spec.T) + # compute scale factor for possible sample rate mismatch + scale_factor = [ + 1, + self.vocoder_config["audio"]["sample_rate"] / self.tts_model.ap.sample_rate, + ] + if scale_factor[1] != 1: + print(" > interpolating tts model output.") + vocoder_input = interpolate_vocoder_input(scale_factor, vocoder_input) + else: + vocoder_input = torch.tensor(vocoder_input).unsqueeze(0) # pylint: disable=not-callable + # run vocoder model + # [1, T, C] + waveform = self.vocoder_model.inference(vocoder_input.to(vocoder_device)) + if torch.is_tensor(waveform) and waveform.device != torch.device("cpu") and not use_gl: + waveform = waveform.cpu() + if not use_gl: + waveform = waveform.numpy() + waveform = waveform.squeeze() + + # trim silence + if "do_trim_silence" in self.tts_config.audio and self.tts_config.audio["do_trim_silence"]: + waveform = trim_silence(waveform, self.tts_model.ap) + + wavs += list(waveform) + wavs += [0] * 10000 + else: + # get the speaker embedding or speaker id for the reference wav file + reference_speaker_embedding = None + reference_speaker_id = None + if self.tts_speakers_file or hasattr(self.tts_model.speaker_manager, "name_to_id"): + if reference_speaker_name and isinstance(reference_speaker_name, str): + if self.tts_config.use_d_vector_file: + # get the speaker embedding from the saved d_vectors. + reference_speaker_embedding = self.tts_model.speaker_manager.get_embeddings_by_name( + reference_speaker_name + )[0] + reference_speaker_embedding = np.array(reference_speaker_embedding)[ + None, : + ] # [1 x embedding_dim] + else: + # get speaker idx from the speaker name + reference_speaker_id = self.tts_model.speaker_manager.name_to_id[reference_speaker_name] + else: + reference_speaker_embedding = self.tts_model.speaker_manager.compute_embedding_from_clip( + reference_wav + ) + outputs = transfer_voice( + model=self.tts_model, + CONFIG=self.tts_config, + use_cuda=self.use_cuda, + reference_wav=reference_wav, + speaker_id=speaker_id, + d_vector=speaker_embedding, + use_griffin_lim=use_gl, + reference_speaker_id=reference_speaker_id, + reference_d_vector=reference_speaker_embedding, + ) + waveform = outputs + if not use_gl: + mel_postnet_spec = outputs[0].detach().cpu().numpy() + # denormalize tts output based on tts audio config + mel_postnet_spec = self.tts_model.ap.denormalize(mel_postnet_spec.T).T + # renormalize spectrogram based on vocoder config + vocoder_input = self.vocoder_ap.normalize(mel_postnet_spec.T) + # compute scale factor for possible sample rate mismatch + scale_factor = [ + 1, + self.vocoder_config["audio"]["sample_rate"] / self.tts_model.ap.sample_rate, + ] + if scale_factor[1] != 1: + print(" > interpolating tts model output.") + vocoder_input = interpolate_vocoder_input(scale_factor, vocoder_input) + else: + vocoder_input = torch.tensor(vocoder_input).unsqueeze(0) # pylint: disable=not-callable + # run vocoder model + # [1, T, C] + waveform = self.vocoder_model.inference(vocoder_input.to(vocoder_device)) + if torch.is_tensor(waveform) and waveform.device != torch.device("cpu"): + waveform = waveform.cpu() + if not use_gl: + waveform = waveform.numpy() + wavs = waveform.squeeze() + + # compute stats + process_time = time.time() - start_time + audio_time = len(wavs) / self.tts_config.audio["sample_rate"] + print(f" > Processing time: {process_time}") + print(f" > Real-time factor: {process_time / audio_time}") + return wavs diff --git a/TTS/TTS/utils/training.py b/TTS/TTS/utils/training.py new file mode 100644 index 0000000000000000000000000000000000000000..b51f55e92b56bece69ae61f99f68b48c88938261 --- /dev/null +++ b/TTS/TTS/utils/training.py @@ -0,0 +1,44 @@ +import numpy as np +import torch + + +def check_update(model, grad_clip, ignore_stopnet=False, amp_opt_params=None): + r"""Check model gradient against unexpected jumps and failures""" + skip_flag = False + if ignore_stopnet: + if not amp_opt_params: + grad_norm = torch.nn.utils.clip_grad_norm_( + [param for name, param in model.named_parameters() if "stopnet" not in name], grad_clip + ) + else: + grad_norm = torch.nn.utils.clip_grad_norm_(amp_opt_params, grad_clip) + else: + if not amp_opt_params: + grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), grad_clip) + else: + grad_norm = torch.nn.utils.clip_grad_norm_(amp_opt_params, grad_clip) + + # compatibility with different torch versions + if isinstance(grad_norm, float): + if np.isinf(grad_norm): + print(" | > Gradient is INF !!") + skip_flag = True + else: + if torch.isinf(grad_norm): + print(" | > Gradient is INF !!") + skip_flag = True + return grad_norm, skip_flag + + +def gradual_training_scheduler(global_step, config): + """Setup the gradual training schedule wrt number + of active GPUs""" + num_gpus = torch.cuda.device_count() + if num_gpus == 0: + num_gpus = 1 + new_values = None + # we set the scheduling wrt num_gpus + for values in config.gradual_training: + if global_step * num_gpus >= values[0]: + new_values = values + return new_values[1], new_values[2] diff --git a/TTS/TTS/utils/vad.py b/TTS/TTS/utils/vad.py new file mode 100644 index 0000000000000000000000000000000000000000..aefce2b50b9b3924c4c0e8fb2e4a988e0758e9cd --- /dev/null +++ b/TTS/TTS/utils/vad.py @@ -0,0 +1,88 @@ +import torch +import torchaudio + + +def read_audio(path): + wav, sr = torchaudio.load(path) + + if wav.size(0) > 1: + wav = wav.mean(dim=0, keepdim=True) + + return wav.squeeze(0), sr + + +def resample_wav(wav, sr, new_sr): + wav = wav.unsqueeze(0) + transform = torchaudio.transforms.Resample(orig_freq=sr, new_freq=new_sr) + wav = transform(wav) + return wav.squeeze(0) + + +def map_timestamps_to_new_sr(vad_sr, new_sr, timestamps, just_begging_end=False): + factor = new_sr / vad_sr + new_timestamps = [] + if just_begging_end and timestamps: + # get just the start and end timestamps + new_dict = {"start": int(timestamps[0]["start"] * factor), "end": int(timestamps[-1]["end"] * factor)} + new_timestamps.append(new_dict) + else: + for ts in timestamps: + # map to the new SR + new_dict = {"start": int(ts["start"] * factor), "end": int(ts["end"] * factor)} + new_timestamps.append(new_dict) + + return new_timestamps + + +def get_vad_model_and_utils(use_cuda=False, use_onnx=False): + model, utils = torch.hub.load( + repo_or_dir="snakers4/silero-vad", model="silero_vad", force_reload=True, onnx=use_onnx, force_onnx_cpu=True + ) + if use_cuda: + model = model.cuda() + + get_speech_timestamps, save_audio, _, _, collect_chunks = utils + return model, get_speech_timestamps, save_audio, collect_chunks + + +def remove_silence( + model_and_utils, audio_path, out_path, vad_sample_rate=8000, trim_just_beginning_and_end=True, use_cuda=False +): + # get the VAD model and utils functions + model, get_speech_timestamps, _, collect_chunks = model_and_utils + + # read ground truth wav and resample the audio for the VAD + try: + wav, gt_sample_rate = read_audio(audio_path) + except: + print(f"> โ— Failed to read {audio_path}") + return None, False + + # if needed, resample the audio for the VAD model + if gt_sample_rate != vad_sample_rate: + wav_vad = resample_wav(wav, gt_sample_rate, vad_sample_rate) + else: + wav_vad = wav + + if use_cuda: + wav_vad = wav_vad.cuda() + + # get speech timestamps from full audio file + speech_timestamps = get_speech_timestamps(wav_vad, model, sampling_rate=vad_sample_rate, window_size_samples=768) + + # map the current speech_timestamps to the sample rate of the ground truth audio + new_speech_timestamps = map_timestamps_to_new_sr( + vad_sample_rate, gt_sample_rate, speech_timestamps, trim_just_beginning_and_end + ) + + # if have speech timestamps else save the wav + if new_speech_timestamps: + wav = collect_chunks(new_speech_timestamps, wav) + is_speech = True + else: + print(f"> The file {audio_path} probably does not have speech please check it !!") + is_speech = False + + # save + torchaudio.save(out_path, wav[None, :], gt_sample_rate) + return out_path, is_speech diff --git a/TTS/TTS/vc/configs/__init__.py b/TTS/TTS/vc/configs/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/TTS/TTS/vc/configs/freevc_config.py b/TTS/TTS/vc/configs/freevc_config.py new file mode 100644 index 0000000000000000000000000000000000000000..890a269303415ad79c32642bd2930119b37d3d39 --- /dev/null +++ b/TTS/TTS/vc/configs/freevc_config.py @@ -0,0 +1,5 @@ +from dataclasses import dataclass, field +from typing import List + +from TTS.vc.configs.shared_configs import BaseVCConfig +from TTS.vc.models.freevc import FreeVCArgs, FreeVCAudioConfig, FreeVCConfig diff --git a/TTS/TTS/vc/configs/shared_configs.py b/TTS/TTS/vc/configs/shared_configs.py new file mode 100644 index 0000000000000000000000000000000000000000..74164a744452a00c7f318fbdcc55438cddcc70be --- /dev/null +++ b/TTS/TTS/vc/configs/shared_configs.py @@ -0,0 +1,155 @@ +from dataclasses import asdict, dataclass, field +from typing import Dict, List + +from coqpit import Coqpit, check_argument + +from TTS.config import BaseAudioConfig, BaseDatasetConfig, BaseTrainingConfig + + +@dataclass +class BaseVCConfig(BaseTrainingConfig): + """Shared parameters among all the tts models. + + Args: + + audio (BaseAudioConfig): + Audio processor config object instance. + + batch_group_size (int): + Size of the batch groups used for bucketing. By default, the dataloader orders samples by the sequence + length for a more efficient and stable training. If `batch_group_size > 1` then it performs bucketing to + prevent using the same batches for each epoch. + + loss_masking (bool): + enable / disable masking loss values against padded segments of samples in a batch. + + min_text_len (int): + Minimum length of input text to be used. All shorter samples will be ignored. Defaults to 0. + + max_text_len (int): + Maximum length of input text to be used. All longer samples will be ignored. Defaults to float("inf"). + + min_audio_len (int): + Minimum length of input audio to be used. All shorter samples will be ignored. Defaults to 0. + + max_audio_len (int): + Maximum length of input audio to be used. All longer samples will be ignored. The maximum length in the + dataset defines the VRAM used in the training. Hence, pay attention to this value if you encounter an + OOM error in training. Defaults to float("inf"). + + compute_f0 (int): + (Not in use yet). + + compute_energy (int): + (Not in use yet). + + compute_linear_spec (bool): + If True data loader computes and returns linear spectrograms alongside the other data. + + precompute_num_workers (int): + Number of workers to precompute features. Defaults to 0. + + use_noise_augment (bool): + Augment the input audio with random noise. + + start_by_longest (bool): + If True, the data loader will start loading the longest batch first. It is useful for checking OOM issues. + Defaults to False. + + shuffle (bool): + If True, the data loader will shuffle the dataset when there is not sampler defined. Defaults to True. + + drop_last (bool): + If True, the data loader will drop the last batch if it is not complete. It helps to prevent + issues that emerge from the partial batch statistics. Defaults to True. + + add_blank (bool): + Add blank characters between each other two characters. It improves performance for some models at expense + of slower run-time due to the longer input sequence. + + datasets (List[BaseDatasetConfig]): + List of datasets used for training. If multiple datasets are provided, they are merged and used together + for training. + + optimizer (str): + Optimizer used for the training. Set one from `torch.optim.Optimizer` or `TTS.utils.training`. + Defaults to ``. + + optimizer_params (dict): + Optimizer kwargs. Defaults to `{"betas": [0.8, 0.99], "weight_decay": 0.0}` + + lr_scheduler (str): + Learning rate scheduler for the training. Use one from `torch.optim.Scheduler` schedulers or + `TTS.utils.training`. Defaults to ``. + + lr_scheduler_params (dict): + Parameters for the generator learning rate scheduler. Defaults to `{"warmup": 4000}`. + + test_sentences (List[str]): + List of sentences to be used at testing. Defaults to '[]' + + eval_split_max_size (int): + Number maximum of samples to be used for evaluation in proportion split. Defaults to None (Disabled). + + eval_split_size (float): + If between 0.0 and 1.0 represents the proportion of the dataset to include in the evaluation set. + If > 1, represents the absolute number of evaluation samples. Defaults to 0.01 (1%). + + use_speaker_weighted_sampler (bool): + Enable / Disable the batch balancer by speaker. Defaults to ```False```. + + speaker_weighted_sampler_alpha (float): + Number that control the influence of the speaker sampler weights. Defaults to ```1.0```. + + use_language_weighted_sampler (bool): + Enable / Disable the batch balancer by language. Defaults to ```False```. + + language_weighted_sampler_alpha (float): + Number that control the influence of the language sampler weights. Defaults to ```1.0```. + + use_length_weighted_sampler (bool): + Enable / Disable the batch balancer by audio length. If enabled the dataset will be divided + into 10 buckets considering the min and max audio of the dataset. The sampler weights will be + computed forcing to have the same quantity of data for each bucket in each training batch. Defaults to ```False```. + + length_weighted_sampler_alpha (float): + Number that control the influence of the length sampler weights. Defaults to ```1.0```. + """ + + audio: BaseAudioConfig = field(default_factory=BaseAudioConfig) + # training params + batch_group_size: int = 0 + loss_masking: bool = None + # dataloading + min_audio_len: int = 1 + max_audio_len: int = float("inf") + min_text_len: int = 1 + max_text_len: int = float("inf") + compute_f0: bool = False + compute_energy: bool = False + compute_linear_spec: bool = False + precompute_num_workers: int = 0 + use_noise_augment: bool = False + start_by_longest: bool = False + shuffle: bool = False + drop_last: bool = False + # dataset + datasets: List[BaseDatasetConfig] = field(default_factory=lambda: [BaseDatasetConfig()]) + # optimizer + optimizer: str = "radam" + optimizer_params: dict = None + # scheduler + lr_scheduler: str = None + lr_scheduler_params: dict = field(default_factory=lambda: {}) + # testing + test_sentences: List[str] = field(default_factory=lambda: []) + # evaluation + eval_split_max_size: int = None + eval_split_size: float = 0.01 + # weighted samplers + use_speaker_weighted_sampler: bool = False + speaker_weighted_sampler_alpha: float = 1.0 + use_language_weighted_sampler: bool = False + language_weighted_sampler_alpha: float = 1.0 + use_length_weighted_sampler: bool = False + length_weighted_sampler_alpha: float = 1.0 diff --git a/TTS/TTS/vc/models/__init__.py b/TTS/TTS/vc/models/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..5a09b4e53e2a4e40dd7c9d0d4c7e5b3c30f317a5 --- /dev/null +++ b/TTS/TTS/vc/models/__init__.py @@ -0,0 +1,17 @@ +import importlib +import re +from typing import Dict, List, Union + + +def to_camel(text): + text = text.capitalize() + return re.sub(r"(?!^)_([a-zA-Z])", lambda m: m.group(1).upper(), text) + + +def setup_model(config: "Coqpit", samples: Union[List[List], List[Dict]] = None) -> "BaseVC": + print(" > Using model: {}".format(config.model)) + # fetch the right model implementation. + if "model" in config and config["model"].lower() == "freevc": + MyModel = importlib.import_module("TTS.vc.models.freevc").FreeVC + model = MyModel.init_from_config(config, samples) + return model diff --git a/TTS/TTS/vc/models/base_vc.py b/TTS/TTS/vc/models/base_vc.py new file mode 100644 index 0000000000000000000000000000000000000000..19f2761bbc42051a2f03d1170c011955dcdd28cb --- /dev/null +++ b/TTS/TTS/vc/models/base_vc.py @@ -0,0 +1,429 @@ +import os +import random +from typing import Dict, List, Tuple, Union + +import torch +import torch.distributed as dist +from coqpit import Coqpit +from torch import nn +from torch.utils.data import DataLoader +from torch.utils.data.sampler import WeightedRandomSampler +from trainer.torch import DistributedSampler, DistributedSamplerWrapper + +from TTS.model import BaseTrainerModel +from TTS.tts.datasets.dataset import TTSDataset +from TTS.tts.utils.data import get_length_balancer_weights +from TTS.tts.utils.languages import LanguageManager, get_language_balancer_weights +from TTS.tts.utils.speakers import SpeakerManager, get_speaker_balancer_weights +from TTS.tts.utils.synthesis import synthesis +from TTS.tts.utils.visual import plot_alignment, plot_spectrogram + +# pylint: skip-file + + +class BaseVC(BaseTrainerModel): + """Base `vc` class. Every new `vc` model must inherit this. + + It defines common `vc` specific functions on top of `Model` implementation. + """ + + MODEL_TYPE = "vc" + + def __init__( + self, + config: Coqpit, + ap: "AudioProcessor", + speaker_manager: SpeakerManager = None, + language_manager: LanguageManager = None, + ): + super().__init__() + self.config = config + self.ap = ap + self.speaker_manager = speaker_manager + self.language_manager = language_manager + self._set_model_args(config) + + def _set_model_args(self, config: Coqpit): + """Setup model args based on the config type (`ModelConfig` or `ModelArgs`). + + `ModelArgs` has all the fields reuqired to initialize the model architecture. + + `ModelConfig` has all the fields required for training, inference and containes `ModelArgs`. + + If the config is for training with a name like "*Config", then the model args are embeded in the + config.model_args + + If the config is for the model with a name like "*Args", then we assign the directly. + """ + # don't use isintance not to import recursively + if "Config" in config.__class__.__name__: + self.config = config + self.args = config.model_args + elif "Args" in config.__class__.__name__: + self.args = config + else: + raise ValueError("config must be either a *Config or *Args") + + def init_multispeaker(self, config: Coqpit, data: List = None): + """Initialize a speaker embedding layer if needen and define expected embedding channel size for defining + `in_channels` size of the connected layers. + + This implementation yields 3 possible outcomes: + + 1. If `config.use_speaker_embedding` and `config.use_d_vector_file are False, do nothing. + 2. If `config.use_d_vector_file` is True, set expected embedding channel size to `config.d_vector_dim` or 512. + 3. If `config.use_speaker_embedding`, initialize a speaker embedding layer with channel size of + `config.d_vector_dim` or 512. + + You can override this function for new models. + + Args: + config (Coqpit): Model configuration. + """ + # set number of speakers + if self.speaker_manager is not None: + self.num_speakers = self.speaker_manager.num_speakers + elif hasattr(config, "num_speakers"): + self.num_speakers = config.num_speakers + + # set ultimate speaker embedding size + if config.use_speaker_embedding or config.use_d_vector_file: + self.embedded_speaker_dim = ( + config.d_vector_dim if "d_vector_dim" in config and config.d_vector_dim is not None else 512 + ) + # init speaker embedding layer + if config.use_speaker_embedding and not config.use_d_vector_file: + print(" > Init speaker_embedding layer.") + self.speaker_embedding = nn.Embedding(self.num_speakers, self.embedded_speaker_dim) + self.speaker_embedding.weight.data.normal_(0, 0.3) + + def get_aux_input(self, **kwargs) -> Dict: + """Prepare and return `aux_input` used by `forward()`""" + return {"speaker_id": None, "style_wav": None, "d_vector": None, "language_id": None} + + def get_aux_input_from_test_sentences(self, sentence_info): + if hasattr(self.config, "model_args"): + config = self.config.model_args + else: + config = self.config + + # extract speaker and language info + text, speaker_name, style_wav, language_name = None, None, None, None + + if isinstance(sentence_info, list): + if len(sentence_info) == 1: + text = sentence_info[0] + elif len(sentence_info) == 2: + text, speaker_name = sentence_info + elif len(sentence_info) == 3: + text, speaker_name, style_wav = sentence_info + elif len(sentence_info) == 4: + text, speaker_name, style_wav, language_name = sentence_info + else: + text = sentence_info + + # get speaker id/d_vector + speaker_id, d_vector, language_id = None, None, None + if self.speaker_manager is not None: + if config.use_d_vector_file: + if speaker_name is None: + d_vector = self.speaker_manager.get_random_embedding() + else: + d_vector = self.speaker_manager.get_d_vector_by_name(speaker_name) + elif config.use_speaker_embedding: + if speaker_name is None: + speaker_id = self.speaker_manager.get_random_id() + else: + speaker_id = self.speaker_manager.name_to_id[speaker_name] + + # get language id + if self.language_manager is not None and config.use_language_embedding and language_name is not None: + language_id = self.language_manager.name_to_id[language_name] + + return { + "text": text, + "speaker_id": speaker_id, + "style_wav": style_wav, + "d_vector": d_vector, + "language_id": language_id, + } + + def format_batch(self, batch: Dict) -> Dict: + """Generic batch formatting for `VCDataset`. + + You must override this if you use a custom dataset. + + Args: + batch (Dict): [description] + + Returns: + Dict: [description] + """ + # setup input batch + text_input = batch["token_id"] + text_lengths = batch["token_id_lengths"] + speaker_names = batch["speaker_names"] + linear_input = batch["linear"] + mel_input = batch["mel"] + mel_lengths = batch["mel_lengths"] + stop_targets = batch["stop_targets"] + item_idx = batch["item_idxs"] + d_vectors = batch["d_vectors"] + speaker_ids = batch["speaker_ids"] + attn_mask = batch["attns"] + waveform = batch["waveform"] + pitch = batch["pitch"] + energy = batch["energy"] + language_ids = batch["language_ids"] + max_text_length = torch.max(text_lengths.float()) + max_spec_length = torch.max(mel_lengths.float()) + + # compute durations from attention masks + durations = None + if attn_mask is not None: + durations = torch.zeros(attn_mask.shape[0], attn_mask.shape[2]) + for idx, am in enumerate(attn_mask): + # compute raw durations + c_idxs = am[:, : text_lengths[idx], : mel_lengths[idx]].max(1)[1] + # c_idxs, counts = torch.unique_consecutive(c_idxs, return_counts=True) + c_idxs, counts = torch.unique(c_idxs, return_counts=True) + dur = torch.ones([text_lengths[idx]]).to(counts.dtype) + dur[c_idxs] = counts + # smooth the durations and set any 0 duration to 1 + # by cutting off from the largest duration indeces. + extra_frames = dur.sum() - mel_lengths[idx] + largest_idxs = torch.argsort(-dur)[:extra_frames] + dur[largest_idxs] -= 1 + assert ( + dur.sum() == mel_lengths[idx] + ), f" [!] total duration {dur.sum()} vs spectrogram length {mel_lengths[idx]}" + durations[idx, : text_lengths[idx]] = dur + + # set stop targets wrt reduction factor + stop_targets = stop_targets.view(text_input.shape[0], stop_targets.size(1) // self.config.r, -1) + stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze(2) + stop_target_lengths = torch.divide(mel_lengths, self.config.r).ceil_() + + return { + "text_input": text_input, + "text_lengths": text_lengths, + "speaker_names": speaker_names, + "mel_input": mel_input, + "mel_lengths": mel_lengths, + "linear_input": linear_input, + "stop_targets": stop_targets, + "stop_target_lengths": stop_target_lengths, + "attn_mask": attn_mask, + "durations": durations, + "speaker_ids": speaker_ids, + "d_vectors": d_vectors, + "max_text_length": float(max_text_length), + "max_spec_length": float(max_spec_length), + "item_idx": item_idx, + "waveform": waveform, + "pitch": pitch, + "energy": energy, + "language_ids": language_ids, + "audio_unique_names": batch["audio_unique_names"], + } + + def get_sampler(self, config: Coqpit, dataset: TTSDataset, num_gpus=1): + weights = None + data_items = dataset.samples + + if getattr(config, "use_language_weighted_sampler", False): + alpha = getattr(config, "language_weighted_sampler_alpha", 1.0) + print(" > Using Language weighted sampler with alpha:", alpha) + weights = get_language_balancer_weights(data_items) * alpha + + if getattr(config, "use_speaker_weighted_sampler", False): + alpha = getattr(config, "speaker_weighted_sampler_alpha", 1.0) + print(" > Using Speaker weighted sampler with alpha:", alpha) + if weights is not None: + weights += get_speaker_balancer_weights(data_items) * alpha + else: + weights = get_speaker_balancer_weights(data_items) * alpha + + if getattr(config, "use_length_weighted_sampler", False): + alpha = getattr(config, "length_weighted_sampler_alpha", 1.0) + print(" > Using Length weighted sampler with alpha:", alpha) + if weights is not None: + weights += get_length_balancer_weights(data_items) * alpha + else: + weights = get_length_balancer_weights(data_items) * alpha + + if weights is not None: + sampler = WeightedRandomSampler(weights, len(weights)) + else: + sampler = None + + # sampler for DDP + if sampler is None: + sampler = DistributedSampler(dataset) if num_gpus > 1 else None + else: # If a sampler is already defined use this sampler and DDP sampler together + sampler = DistributedSamplerWrapper(sampler) if num_gpus > 1 else sampler + + return sampler + + def get_data_loader( + self, + config: Coqpit, + assets: Dict, + is_eval: bool, + samples: Union[List[Dict], List[List]], + verbose: bool, + num_gpus: int, + rank: int = None, + ) -> "DataLoader": + if is_eval and not config.run_eval: + loader = None + else: + # setup multi-speaker attributes + if self.speaker_manager is not None: + if hasattr(config, "model_args"): + speaker_id_mapping = ( + self.speaker_manager.name_to_id if config.model_args.use_speaker_embedding else None + ) + d_vector_mapping = self.speaker_manager.embeddings if config.model_args.use_d_vector_file else None + config.use_d_vector_file = config.model_args.use_d_vector_file + else: + speaker_id_mapping = self.speaker_manager.name_to_id if config.use_speaker_embedding else None + d_vector_mapping = self.speaker_manager.embeddings if config.use_d_vector_file else None + else: + speaker_id_mapping = None + d_vector_mapping = None + + # setup multi-lingual attributes + if self.language_manager is not None: + language_id_mapping = self.language_manager.name_to_id if self.args.use_language_embedding else None + else: + language_id_mapping = None + + # init dataloader + dataset = TTSDataset( + outputs_per_step=config.r if "r" in config else 1, + compute_linear_spec=config.model.lower() == "tacotron" or config.compute_linear_spec, + compute_f0=config.get("compute_f0", False), + f0_cache_path=config.get("f0_cache_path", None), + compute_energy=config.get("compute_energy", False), + energy_cache_path=config.get("energy_cache_path", None), + samples=samples, + ap=self.ap, + return_wav=config.return_wav if "return_wav" in config else False, + batch_group_size=0 if is_eval else config.batch_group_size * config.batch_size, + min_text_len=config.min_text_len, + max_text_len=config.max_text_len, + min_audio_len=config.min_audio_len, + max_audio_len=config.max_audio_len, + phoneme_cache_path=config.phoneme_cache_path, + precompute_num_workers=config.precompute_num_workers, + use_noise_augment=False if is_eval else config.use_noise_augment, + verbose=verbose, + speaker_id_mapping=speaker_id_mapping, + d_vector_mapping=d_vector_mapping if config.use_d_vector_file else None, + tokenizer=None, + start_by_longest=config.start_by_longest, + language_id_mapping=language_id_mapping, + ) + + # wait all the DDP process to be ready + if num_gpus > 1: + dist.barrier() + + # sort input sequences from short to long + dataset.preprocess_samples() + + # get samplers + sampler = self.get_sampler(config, dataset, num_gpus) + + loader = DataLoader( + dataset, + batch_size=config.eval_batch_size if is_eval else config.batch_size, + shuffle=config.shuffle if sampler is None else False, # if there is no other sampler + collate_fn=dataset.collate_fn, + drop_last=config.drop_last, # setting this False might cause issues in AMP training. + sampler=sampler, + num_workers=config.num_eval_loader_workers if is_eval else config.num_loader_workers, + pin_memory=False, + ) + return loader + + def _get_test_aux_input( + self, + ) -> Dict: + d_vector = None + if self.config.use_d_vector_file: + d_vector = [self.speaker_manager.embeddings[name]["embedding"] for name in self.speaker_manager.embeddings] + d_vector = (random.sample(sorted(d_vector), 1),) + + aux_inputs = { + "speaker_id": None + if not self.config.use_speaker_embedding + else random.sample(sorted(self.speaker_manager.name_to_id.values()), 1), + "d_vector": d_vector, + "style_wav": None, # TODO: handle GST style input + } + return aux_inputs + + def test_run(self, assets: Dict) -> Tuple[Dict, Dict]: + """Generic test run for `vc` models used by `Trainer`. + + You can override this for a different behaviour. + + Args: + assets (dict): A dict of training assets. For `vc` models, it must include `{'audio_processor': ap}`. + + Returns: + Tuple[Dict, Dict]: Test figures and audios to be projected to Tensorboard. + """ + print(" | > Synthesizing test sentences.") + test_audios = {} + test_figures = {} + test_sentences = self.config.test_sentences + aux_inputs = self._get_test_aux_input() + for idx, sen in enumerate(test_sentences): + if isinstance(sen, list): + aux_inputs = self.get_aux_input_from_test_sentences(sen) + sen = aux_inputs["text"] + outputs_dict = synthesis( + self, + sen, + self.config, + "cuda" in str(next(self.parameters()).device), + speaker_id=aux_inputs["speaker_id"], + d_vector=aux_inputs["d_vector"], + style_wav=aux_inputs["style_wav"], + use_griffin_lim=True, + do_trim_silence=False, + ) + test_audios["{}-audio".format(idx)] = outputs_dict["wav"] + test_figures["{}-prediction".format(idx)] = plot_spectrogram( + outputs_dict["outputs"]["model_outputs"], self.ap, output_fig=False + ) + test_figures["{}-alignment".format(idx)] = plot_alignment( + outputs_dict["outputs"]["alignments"], output_fig=False + ) + return test_figures, test_audios + + def on_init_start(self, trainer): + """Save the speaker.pth and language_ids.json at the beginning of the training. Also update both paths.""" + if self.speaker_manager is not None: + output_path = os.path.join(trainer.output_path, "speakers.pth") + self.speaker_manager.save_ids_to_file(output_path) + trainer.config.speakers_file = output_path + # some models don't have `model_args` set + if hasattr(trainer.config, "model_args"): + trainer.config.model_args.speakers_file = output_path + trainer.config.save_json(os.path.join(trainer.output_path, "config.json")) + print(f" > `speakers.pth` is saved to {output_path}.") + print(" > `speakers_file` is updated in the config.json.") + + if self.language_manager is not None: + output_path = os.path.join(trainer.output_path, "language_ids.json") + self.language_manager.save_ids_to_file(output_path) + trainer.config.language_ids_file = output_path + if hasattr(trainer.config, "model_args"): + trainer.config.model_args.language_ids_file = output_path + trainer.config.save_json(os.path.join(trainer.output_path, "config.json")) + print(f" > `language_ids.json` is saved to {output_path}.") + print(" > `language_ids_file` is updated in the config.json.") diff --git a/TTS/TTS/vc/models/freevc.py b/TTS/TTS/vc/models/freevc.py new file mode 100644 index 0000000000000000000000000000000000000000..ae22ad28c1d0330acc5f8fafa033cc4db33ef8bb --- /dev/null +++ b/TTS/TTS/vc/models/freevc.py @@ -0,0 +1,833 @@ +from dataclasses import dataclass, field +from typing import Dict, List, Optional, Tuple, Union + +import librosa +import numpy as np +import torch +from coqpit import Coqpit +from torch import nn +from torch.nn import AvgPool1d, Conv1d, Conv2d, ConvTranspose1d +from torch.nn import functional as F +from torch.nn.utils import remove_weight_norm, spectral_norm, weight_norm + +import TTS.vc.modules.freevc.commons as commons +import TTS.vc.modules.freevc.modules as modules +from TTS.tts.utils.speakers import SpeakerManager +from TTS.utils.io import load_fsspec, save_checkpoint +from TTS.vc.configs.shared_configs import BaseVCConfig +from TTS.vc.models.base_vc import BaseVC +from TTS.vc.modules.freevc.commons import get_padding, init_weights +from TTS.vc.modules.freevc.mel_processing import mel_spectrogram_torch +from TTS.vc.modules.freevc.speaker_encoder.speaker_encoder import SpeakerEncoder as SpeakerEncoderEx +from TTS.vc.modules.freevc.wavlm import get_wavlm + + +class ResidualCouplingBlock(nn.Module): + def __init__(self, channels, hidden_channels, kernel_size, dilation_rate, n_layers, n_flows=4, gin_channels=0): + super().__init__() + self.channels = channels + self.hidden_channels = hidden_channels + self.kernel_size = kernel_size + self.dilation_rate = dilation_rate + self.n_layers = n_layers + self.n_flows = n_flows + self.gin_channels = gin_channels + + self.flows = nn.ModuleList() + for i in range(n_flows): + self.flows.append( + modules.ResidualCouplingLayer( + channels, + hidden_channels, + kernel_size, + dilation_rate, + n_layers, + gin_channels=gin_channels, + mean_only=True, + ) + ) + self.flows.append(modules.Flip()) + + def forward(self, x, x_mask, g=None, reverse=False): + if not reverse: + for flow in self.flows: + x, _ = flow(x, x_mask, g=g, reverse=reverse) + else: + for flow in reversed(self.flows): + x = flow(x, x_mask, g=g, reverse=reverse) + return x + + +class Encoder(nn.Module): + def __init__( + self, in_channels, out_channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0 + ): + super().__init__() + self.in_channels = in_channels + self.out_channels = out_channels + self.hidden_channels = hidden_channels + self.kernel_size = kernel_size + self.dilation_rate = dilation_rate + self.n_layers = n_layers + self.gin_channels = gin_channels + + self.pre = nn.Conv1d(in_channels, hidden_channels, 1) + self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels) + self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) + + def forward(self, x, x_lengths, g=None): + x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype) + x = self.pre(x) * x_mask + x = self.enc(x, x_mask, g=g) + stats = self.proj(x) * x_mask + m, logs = torch.split(stats, self.out_channels, dim=1) + z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask + return z, m, logs, x_mask + + +class Generator(torch.nn.Module): + def __init__( + self, + initial_channel, + resblock, + resblock_kernel_sizes, + resblock_dilation_sizes, + upsample_rates, + upsample_initial_channel, + upsample_kernel_sizes, + gin_channels=0, + ): + super(Generator, self).__init__() + self.num_kernels = len(resblock_kernel_sizes) + self.num_upsamples = len(upsample_rates) + self.conv_pre = Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3) + resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2 + + self.ups = nn.ModuleList() + for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): + self.ups.append( + weight_norm( + ConvTranspose1d( + upsample_initial_channel // (2**i), + upsample_initial_channel // (2 ** (i + 1)), + k, + u, + padding=(k - u) // 2, + ) + ) + ) + + self.resblocks = nn.ModuleList() + for i in range(len(self.ups)): + ch = upsample_initial_channel // (2 ** (i + 1)) + for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)): + self.resblocks.append(resblock(ch, k, d)) + + self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False) + self.ups.apply(init_weights) + + if gin_channels != 0: + self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1) + + def forward(self, x, g=None): + x = self.conv_pre(x) + if g is not None: + x = x + self.cond(g) + + for i in range(self.num_upsamples): + x = F.leaky_relu(x, modules.LRELU_SLOPE) + x = self.ups[i](x) + xs = None + for j in range(self.num_kernels): + if xs is None: + xs = self.resblocks[i * self.num_kernels + j](x) + else: + xs += self.resblocks[i * self.num_kernels + j](x) + x = xs / self.num_kernels + x = F.leaky_relu(x) + x = self.conv_post(x) + x = torch.tanh(x) + + return x + + def remove_weight_norm(self): + print("Removing weight norm...") + for l in self.ups: + remove_weight_norm(l) + for l in self.resblocks: + l.remove_weight_norm() + + +class DiscriminatorP(torch.nn.Module): + def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False): + super(DiscriminatorP, self).__init__() + self.period = period + self.use_spectral_norm = use_spectral_norm + norm_f = weight_norm if use_spectral_norm == False else spectral_norm + self.convs = nn.ModuleList( + [ + norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), + norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), + norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), + norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), + norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))), + ] + ) + self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) + + def forward(self, x): + fmap = [] + + # 1d to 2d + b, c, t = x.shape + if t % self.period != 0: # pad first + n_pad = self.period - (t % self.period) + x = F.pad(x, (0, n_pad), "reflect") + t = t + n_pad + x = x.view(b, c, t // self.period, self.period) + + for l in self.convs: + x = l(x) + x = F.leaky_relu(x, modules.LRELU_SLOPE) + fmap.append(x) + x = self.conv_post(x) + fmap.append(x) + x = torch.flatten(x, 1, -1) + + return x, fmap + + +class DiscriminatorS(torch.nn.Module): + def __init__(self, use_spectral_norm=False): + super(DiscriminatorS, self).__init__() + norm_f = weight_norm if use_spectral_norm == False else spectral_norm + self.convs = nn.ModuleList( + [ + norm_f(Conv1d(1, 16, 15, 1, padding=7)), + norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)), + norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)), + norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)), + norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)), + norm_f(Conv1d(1024, 1024, 5, 1, padding=2)), + ] + ) + self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1)) + + def forward(self, x): + fmap = [] + + for l in self.convs: + x = l(x) + x = F.leaky_relu(x, modules.LRELU_SLOPE) + fmap.append(x) + x = self.conv_post(x) + fmap.append(x) + x = torch.flatten(x, 1, -1) + + return x, fmap + + +class MultiPeriodDiscriminator(torch.nn.Module): + def __init__(self, use_spectral_norm=False): + super(MultiPeriodDiscriminator, self).__init__() + periods = [2, 3, 5, 7, 11] + + discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)] + discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods] + self.discriminators = nn.ModuleList(discs) + + def forward(self, y, y_hat): + y_d_rs = [] + y_d_gs = [] + fmap_rs = [] + fmap_gs = [] + for i, d in enumerate(self.discriminators): + y_d_r, fmap_r = d(y) + y_d_g, fmap_g = d(y_hat) + y_d_rs.append(y_d_r) + y_d_gs.append(y_d_g) + fmap_rs.append(fmap_r) + fmap_gs.append(fmap_g) + + return y_d_rs, y_d_gs, fmap_rs, fmap_gs + + +class SpeakerEncoder(torch.nn.Module): + def __init__(self, mel_n_channels=80, model_num_layers=3, model_hidden_size=256, model_embedding_size=256): + super(SpeakerEncoder, self).__init__() + self.lstm = nn.LSTM(mel_n_channels, model_hidden_size, model_num_layers, batch_first=True) + self.linear = nn.Linear(model_hidden_size, model_embedding_size) + self.relu = nn.ReLU() + + def forward(self, mels): + self.lstm.flatten_parameters() + _, (hidden, _) = self.lstm(mels) + embeds_raw = self.relu(self.linear(hidden[-1])) + return embeds_raw / torch.norm(embeds_raw, dim=1, keepdim=True) + + def compute_partial_slices(self, total_frames, partial_frames, partial_hop): + mel_slices = [] + for i in range(0, total_frames - partial_frames, partial_hop): + mel_range = torch.arange(i, i + partial_frames) + mel_slices.append(mel_range) + + return mel_slices + + def embed_utterance(self, mel, partial_frames=128, partial_hop=64): + mel_len = mel.size(1) + last_mel = mel[:, -partial_frames:] + + if mel_len > partial_frames: + mel_slices = self.compute_partial_slices(mel_len, partial_frames, partial_hop) + mels = list(mel[:, s] for s in mel_slices) + mels.append(last_mel) + mels = torch.stack(tuple(mels), 0).squeeze(1) + + with torch.no_grad(): + partial_embeds = self(mels) + embed = torch.mean(partial_embeds, axis=0).unsqueeze(0) + # embed = embed / torch.linalg.norm(embed, 2) + else: + with torch.no_grad(): + embed = self(last_mel) + + return embed + + +@dataclass +class FreeVCAudioConfig(Coqpit): + """Audio configuration + + Args: + max_wav_value (float): + The maximum value of the waveform. + + input_sample_rate (int): + The sampling rate of the input waveform. + + output_sample_rate (int): + The sampling rate of the output waveform. + + filter_length (int): + The length of the filter. + + hop_length (int): + The hop length. + + win_length (int): + The window length. + + n_mel_channels (int): + The number of mel channels. + + mel_fmin (float): + The minimum frequency of the mel filterbank. + + mel_fmax (Optional[float]): + The maximum frequency of the mel filterbank. + """ + + max_wav_value: float = field(default=32768.0) + input_sample_rate: int = field(default=16000) + output_sample_rate: int = field(default=24000) + filter_length: int = field(default=1280) + hop_length: int = field(default=320) + win_length: int = field(default=1280) + n_mel_channels: int = field(default=80) + mel_fmin: float = field(default=0.0) + mel_fmax: Optional[float] = field(default=None) + + +@dataclass +class FreeVCArgs(Coqpit): + """FreeVC model arguments + + Args: + spec_channels (int): + The number of channels in the spectrogram. + + inter_channels (int): + The number of channels in the intermediate layers. + + hidden_channels (int): + The number of channels in the hidden layers. + + filter_channels (int): + The number of channels in the filter layers. + + n_heads (int): + The number of attention heads. + + n_layers (int): + The number of layers. + + kernel_size (int): + The size of the kernel. + + p_dropout (float): + The dropout probability. + + resblock (str): + The type of residual block. + + resblock_kernel_sizes (List[int]): + The kernel sizes for the residual blocks. + + resblock_dilation_sizes (List[List[int]]): + The dilation sizes for the residual blocks. + + upsample_rates (List[int]): + The upsample rates. + + upsample_initial_channel (int): + The number of channels in the initial upsample layer. + + upsample_kernel_sizes (List[int]): + The kernel sizes for the upsample layers. + + n_layers_q (int): + The number of layers in the quantization network. + + use_spectral_norm (bool): + Whether to use spectral normalization. + + gin_channels (int): + The number of channels in the global conditioning vector. + + ssl_dim (int): + The dimension of the self-supervised learning embedding. + + use_spk (bool): + Whether to use external speaker encoder. + """ + + spec_channels: int = field(default=641) + inter_channels: int = field(default=192) + hidden_channels: int = field(default=192) + filter_channels: int = field(default=768) + n_heads: int = field(default=2) + n_layers: int = field(default=6) + kernel_size: int = field(default=3) + p_dropout: float = field(default=0.1) + resblock: str = field(default="1") + resblock_kernel_sizes: List[int] = field(default_factory=lambda: [3, 7, 11]) + resblock_dilation_sizes: List[List[int]] = field(default_factory=lambda: [[1, 3, 5], [1, 3, 5], [1, 3, 5]]) + upsample_rates: List[int] = field(default_factory=lambda: [10, 8, 2, 2]) + upsample_initial_channel: int = field(default=512) + upsample_kernel_sizes: List[int] = field(default_factory=lambda: [16, 16, 4, 4]) + n_layers_q: int = field(default=3) + use_spectral_norm: bool = field(default=False) + gin_channels: int = field(default=256) + ssl_dim: int = field(default=1024) + use_spk: bool = field(default=False) + num_spks: int = field(default=0) + segment_size: int = field(default=8960) + + +class FreeVC(BaseVC): + """ + + Papaer:: + https://arxiv.org/abs/2210.15418# + + Paper Abstract:: + Voice conversion (VC) can be achieved by first extracting source content information and target speaker + information, and then reconstructing waveform with these information. However, current approaches normally + either extract dirty content information with speaker information leaked in, or demand a large amount of + annotated data for training. Besides, the quality of reconstructed waveform can be degraded by the + mismatch between conversion model and vocoder. In this paper, we adopt the end-to-end framework of VITS for + high-quality waveform reconstruction, and propose strategies for clean content information extraction without + text annotation. We disentangle content information by imposing an information bottleneck to WavLM features, + and propose the spectrogram-resize based data augmentation to improve the purity of extracted content + information. Experimental results show that the proposed method outperforms the latest VC models trained with + annotated data and has greater robustness. + + Original Code:: + https://github.com/OlaWod/FreeVC + + Examples: + >>> from TTS.vc.configs.freevc_config import FreeVCConfig + >>> from TTS.vc.models.freevc import FreeVC + >>> config = FreeVCConfig() + >>> model = FreeVC(config) + """ + + def __init__(self, config: Coqpit, speaker_manager: SpeakerManager = None): + super().__init__(config, None, speaker_manager, None) + + self.init_multispeaker(config) + + self.spec_channels = self.args.spec_channels + self.inter_channels = self.args.inter_channels + self.hidden_channels = self.args.hidden_channels + self.filter_channels = self.args.filter_channels + self.n_heads = self.args.n_heads + self.n_layers = self.args.n_layers + self.kernel_size = self.args.kernel_size + self.p_dropout = self.args.p_dropout + self.resblock = self.args.resblock + self.resblock_kernel_sizes = self.args.resblock_kernel_sizes + self.resblock_dilation_sizes = self.args.resblock_dilation_sizes + self.upsample_rates = self.args.upsample_rates + self.upsample_initial_channel = self.args.upsample_initial_channel + self.upsample_kernel_sizes = self.args.upsample_kernel_sizes + self.segment_size = self.args.segment_size + self.gin_channels = self.args.gin_channels + self.ssl_dim = self.args.ssl_dim + self.use_spk = self.args.use_spk + + self.enc_p = Encoder(self.args.ssl_dim, self.inter_channels, self.hidden_channels, 5, 1, 16) + self.dec = Generator( + self.inter_channels, + self.resblock, + self.resblock_kernel_sizes, + self.resblock_dilation_sizes, + self.upsample_rates, + self.upsample_initial_channel, + self.upsample_kernel_sizes, + gin_channels=self.gin_channels, + ) + self.enc_q = Encoder( + self.spec_channels, self.inter_channels, self.hidden_channels, 5, 1, 16, gin_channels=self.gin_channels + ) + self.flow = ResidualCouplingBlock( + self.inter_channels, self.hidden_channels, 5, 1, 4, gin_channels=self.gin_channels + ) + if not self.use_spk: + self.enc_spk = SpeakerEncoder(model_hidden_size=self.gin_channels, model_embedding_size=self.gin_channels) + else: + self.load_pretrained_speaker_encoder() + + self.wavlm = get_wavlm() + + @property + def device(self): + return next(self.parameters()).device + + def load_pretrained_speaker_encoder(self): + """Load pretrained speaker encoder model as mentioned in the paper.""" + print(" > Loading pretrained speaker encoder model ...") + self.enc_spk_ex = SpeakerEncoderEx( + "https://github.com/coqui-ai/TTS/releases/download/v0.13.0_models/speaker_encoder.pt" + ) + + def init_multispeaker(self, config: Coqpit): + """Initialize multi-speaker modules of a model. A model can be trained either with a speaker embedding layer + or with external `d_vectors` computed from a speaker encoder model. + + You must provide a `speaker_manager` at initialization to set up the multi-speaker modules. + + Args: + config (Coqpit): Model configuration. + data (List, optional): Dataset items to infer number of speakers. Defaults to None. + """ + self.num_spks = self.args.num_spks + if self.speaker_manager: + self.num_spks = self.speaker_manager.num_spks + + def forward( + self, + c: torch.Tensor, + spec: torch.Tensor, + g: Optional[torch.Tensor] = None, + mel: Optional[torch.Tensor] = None, + c_lengths: Optional[torch.Tensor] = None, + spec_lengths: Optional[torch.Tensor] = None, + ) -> Tuple[ + torch.Tensor, + torch.Tensor, + torch.Tensor, + Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor], + ]: + """ + Forward pass of the model. + + Args: + c: WavLM features. Shape: (batch_size, c_seq_len). + spec: The input spectrogram. Shape: (batch_size, spec_seq_len, spec_dim). + g: The speaker embedding. Shape: (batch_size, spk_emb_dim). + mel: The input mel-spectrogram for the speaker encoder. Shape: (batch_size, mel_seq_len, mel_dim). + c_lengths: The lengths of the WavLM features. Shape: (batch_size,). + spec_lengths: The lengths of the spectrogram. Shape: (batch_size,). + + Returns: + o: The output spectrogram. Shape: (batch_size, spec_seq_len, spec_dim). + ids_slice: The slice indices. Shape: (batch_size, num_slices). + spec_mask: The spectrogram mask. Shape: (batch_size, spec_seq_len). + (z, z_p, m_p, logs_p, m_q, logs_q): A tuple of latent variables. + """ + + # If c_lengths is None, set it to the length of the last dimension of c + if c_lengths is None: + c_lengths = (torch.ones(c.size(0)) * c.size(-1)).to(c.device) + + # If spec_lengths is None, set it to the length of the last dimension of spec + if spec_lengths is None: + spec_lengths = (torch.ones(spec.size(0)) * spec.size(-1)).to(spec.device) + + # If use_spk is False, compute g from mel using enc_spk + g = None + if not self.use_spk: + g = self.enc_spk(mel).unsqueeze(-1) + + # Compute m_p, logs_p, z, m_q, logs_q, and spec_mask using enc_p and enc_q + _, m_p, logs_p, _ = self.enc_p(c, c_lengths) + z, m_q, logs_q, spec_mask = self.enc_q(spec.transpose(1, 2), spec_lengths, g=g) + + # Compute z_p using flow + z_p = self.flow(z, spec_mask, g=g) + + # Randomly slice z and compute o using dec + z_slice, ids_slice = commons.rand_slice_segments(z, spec_lengths, self.segment_size) + o = self.dec(z_slice, g=g) + + return o, ids_slice, spec_mask, (z, z_p, m_p, logs_p, m_q, logs_q) + + @torch.no_grad() + def inference(self, c, g=None, mel=None, c_lengths=None): + """ + Inference pass of the model + + Args: + c (torch.Tensor): Input tensor. Shape: (batch_size, c_seq_len). + g (torch.Tensor): Speaker embedding tensor. Shape: (batch_size, spk_emb_dim). + mel (torch.Tensor): Mel-spectrogram tensor. Shape: (batch_size, mel_seq_len, mel_dim). + c_lengths (torch.Tensor): Lengths of the input tensor. Shape: (batch_size,). + + Returns: + torch.Tensor: Output tensor. + """ + if c_lengths == None: + c_lengths = (torch.ones(c.size(0)) * c.size(-1)).to(c.device) + if not self.use_spk: + g = self.enc_spk.embed_utterance(mel) + g = g.unsqueeze(-1) + z_p, m_p, logs_p, c_mask = self.enc_p(c, c_lengths) + z = self.flow(z_p, c_mask, g=g, reverse=True) + o = self.dec(z * c_mask, g=g) + return o + + def extract_wavlm_features(self, y): + """Extract WavLM features from an audio tensor. + + Args: + y (torch.Tensor): Audio tensor. Shape: (batch_size, audio_seq_len). + """ + + with torch.no_grad(): + c = self.wavlm.extract_features(y)[0] + c = c.transpose(1, 2) + return c + + def load_audio(self, wav): + """Read and format the input audio.""" + if isinstance(wav, str): + wav, _ = librosa.load(wav, sr=self.config.audio.input_sample_rate) + if isinstance(wav, np.ndarray): + wav = torch.from_numpy(wav).to(self.device) + if isinstance(wav, torch.Tensor): + wav = wav.to(self.device) + if isinstance(wav, list): + wav = torch.from_numpy(np.array(wav)).to(self.device) + return wav.float() + + @torch.inference_mode() + def voice_conversion(self, src, tgt): + """ + Voice conversion pass of the model. + + Args: + src (str or torch.Tensor): Source utterance. + tgt (str or torch.Tensor): Target utterance. + + Returns: + torch.Tensor: Output tensor. + """ + + wav_tgt = self.load_audio(tgt).cpu().numpy() + wav_tgt, _ = librosa.effects.trim(wav_tgt, top_db=20) + + if self.config.model_args.use_spk: + g_tgt = self.enc_spk_ex.embed_utterance(wav_tgt) + g_tgt = torch.from_numpy(g_tgt)[None, :, None].to(self.device) + else: + wav_tgt = torch.from_numpy(wav_tgt).unsqueeze(0).to(self.device) + mel_tgt = mel_spectrogram_torch( + wav_tgt, + self.config.audio.filter_length, + self.config.audio.n_mel_channels, + self.config.audio.input_sample_rate, + self.config.audio.hop_length, + self.config.audio.win_length, + self.config.audio.mel_fmin, + self.config.audio.mel_fmax, + ) + # src + wav_src = self.load_audio(src) + c = self.extract_wavlm_features(wav_src[None, :]) + + if self.config.model_args.use_spk: + audio = self.inference(c, g=g_tgt) + else: + audio = self.inference(c, mel=mel_tgt.transpose(1, 2)) + audio = audio[0][0].data.cpu().float().numpy() + return audio + + def eval_step(): + ... + + @staticmethod + def init_from_config(config: "VitsConfig", samples: Union[List[List], List[Dict]] = None, verbose=True): + model = FreeVC(config) + return model + + def load_checkpoint(self, config, checkpoint_path, eval=False, strict=True, cache=False): + state = load_fsspec(checkpoint_path, map_location=torch.device("cpu"), cache=cache) + self.load_state_dict(state["model"], strict=strict) + if eval: + self.eval() + + def train_step(): + ... + + +@dataclass +class FreeVCConfig(BaseVCConfig): + """Defines parameters for FreeVC End2End TTS model. + + Args: + model (str): + Model name. Do not change unless you know what you are doing. + + model_args (FreeVCArgs): + Model architecture arguments. Defaults to `FreeVCArgs()`. + + audio (FreeVCAudioConfig): + Audio processing configuration. Defaults to `FreeVCAudioConfig()`. + + grad_clip (List): + Gradient clipping thresholds for each optimizer. Defaults to `[1000.0, 1000.0]`. + + lr_gen (float): + Initial learning rate for the generator. Defaults to 0.0002. + + lr_disc (float): + Initial learning rate for the discriminator. Defaults to 0.0002. + + lr_scheduler_gen (str): + Name of the learning rate scheduler for the generator. One of the `torch.optim.lr_scheduler.*`. Defaults to + `ExponentialLR`. + + lr_scheduler_gen_params (dict): + Parameters for the learning rate scheduler of the generator. Defaults to `{'gamma': 0.999875, "last_epoch":-1}`. + + lr_scheduler_disc (str): + Name of the learning rate scheduler for the discriminator. One of the `torch.optim.lr_scheduler.*`. Defaults to + `ExponentialLR`. + + lr_scheduler_disc_params (dict): + Parameters for the learning rate scheduler of the discriminator. Defaults to `{'gamma': 0.999875, "last_epoch":-1}`. + + scheduler_after_epoch (bool): + If true, step the schedulers after each epoch else after each step. Defaults to `False`. + + optimizer (str): + Name of the optimizer to use with both the generator and the discriminator networks. One of the + `torch.optim.*`. Defaults to `AdamW`. + + kl_loss_alpha (float): + Loss weight for KL loss. Defaults to 1.0. + + disc_loss_alpha (float): + Loss weight for the discriminator loss. Defaults to 1.0. + + gen_loss_alpha (float): + Loss weight for the generator loss. Defaults to 1.0. + + feat_loss_alpha (float): + Loss weight for the feature matching loss. Defaults to 1.0. + + mel_loss_alpha (float): + Loss weight for the mel loss. Defaults to 45.0. + + return_wav (bool): + If true, data loader returns the waveform as well as the other outputs. Do not change. Defaults to `True`. + + compute_linear_spec (bool): + If true, the linear spectrogram is computed and returned alongside the mel output. Do not change. Defaults to `True`. + + use_weighted_sampler (bool): + If true, use weighted sampler with bucketing for balancing samples between datasets used in training. Defaults to `False`. + + weighted_sampler_attrs (dict): + Key retuned by the formatter to be used for weighted sampler. For example `{"root_path": 2.0, "speaker_name": 1.0}` sets sample probabilities + by overweighting `root_path` by 2.0. Defaults to `{}`. + + weighted_sampler_multipliers (dict): + Weight each unique value of a key returned by the formatter for weighted sampling. + For example `{"root_path":{"/raid/datasets/libritts-clean-16khz-bwe-coqui_44khz/LibriTTS/train-clean-100/":1.0, "/raid/datasets/libritts-clean-16khz-bwe-coqui_44khz/LibriTTS/train-clean-360/": 0.5}`. + It will sample instances from `train-clean-100` 2 times more than `train-clean-360`. Defaults to `{}`. + + r (int): + Number of spectrogram frames to be generated at a time. Do not change. Defaults to `1`. + + add_blank (bool): + If true, a blank token is added in between every character. Defaults to `True`. + + test_sentences (List[List]): + List of sentences with speaker and language information to be used for testing. + + language_ids_file (str): + Path to the language ids file. + + use_language_embedding (bool): + If true, language embedding is used. Defaults to `False`. + + Note: + Check :class:`TTS.tts.configs.shared_configs.BaseTTSConfig` for the inherited parameters. + + Example: + + >>> from TTS.tts.configs.freevc_config import FreeVCConfig + >>> config = FreeVCConfig() + """ + + model: str = "freevc" + # model specific params + model_args: FreeVCArgs = field(default_factory=FreeVCArgs) + audio: FreeVCAudioConfig = field(default_factory=FreeVCAudioConfig) + + # optimizer + # TODO with training support + + # loss params + # TODO with training support + + # data loader params + return_wav: bool = True + compute_linear_spec: bool = True + + # sampler params + use_weighted_sampler: bool = False # TODO: move it to the base config + weighted_sampler_attrs: dict = field(default_factory=lambda: {}) + weighted_sampler_multipliers: dict = field(default_factory=lambda: {}) + + # overrides + r: int = 1 # DO NOT CHANGE + add_blank: bool = True + + # multi-speaker settings + # use speaker embedding layer + num_speakers: int = 0 + speakers_file: str = None + speaker_embedding_channels: int = 256 + + # use d-vectors + use_d_vector_file: bool = False + d_vector_file: List[str] = None + d_vector_dim: int = None + + def __post_init__(self): + for key, val in self.model_args.items(): + if hasattr(self, key): + self[key] = val diff --git a/TTS/TTS/vc/modules/__init__.py b/TTS/TTS/vc/modules/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/TTS/TTS/vc/modules/freevc/__init__.py b/TTS/TTS/vc/modules/freevc/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/TTS/TTS/vc/modules/freevc/commons.py b/TTS/TTS/vc/modules/freevc/commons.py new file mode 100644 index 0000000000000000000000000000000000000000..e799cc2a5bea018706abe7556780d1102e5d0889 --- /dev/null +++ b/TTS/TTS/vc/modules/freevc/commons.py @@ -0,0 +1,164 @@ +import math + +import numpy as np +import torch +from torch import nn +from torch.nn import functional as F + + +def init_weights(m, mean=0.0, std=0.01): + classname = m.__class__.__name__ + if classname.find("Conv") != -1: + m.weight.data.normal_(mean, std) + + +def get_padding(kernel_size, dilation=1): + return int((kernel_size * dilation - dilation) / 2) + + +def convert_pad_shape(pad_shape): + l = pad_shape[::-1] + pad_shape = [item for sublist in l for item in sublist] + return pad_shape + + +def intersperse(lst, item): + result = [item] * (len(lst) * 2 + 1) + result[1::2] = lst + return result + + +def kl_divergence(m_p, logs_p, m_q, logs_q): + """KL(P||Q)""" + kl = (logs_q - logs_p) - 0.5 + kl += 0.5 * (torch.exp(2.0 * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2.0 * logs_q) + return kl + + +def rand_gumbel(shape): + """Sample from the Gumbel distribution, protect from overflows.""" + uniform_samples = torch.rand(shape) * 0.99998 + 0.00001 + return -torch.log(-torch.log(uniform_samples)) + + +def rand_gumbel_like(x): + g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device) + return g + + +def slice_segments(x, ids_str, segment_size=4): + ret = torch.zeros_like(x[:, :, :segment_size]) + for i in range(x.size(0)): + idx_str = ids_str[i] + idx_end = idx_str + segment_size + ret[i] = x[i, :, idx_str:idx_end] + return ret + + +def rand_slice_segments(x, x_lengths=None, segment_size=4): + b, d, t = x.size() + if x_lengths is None: + x_lengths = t + ids_str_max = x_lengths - segment_size + 1 + ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long) + ret = slice_segments(x, ids_str, segment_size) + return ret, ids_str + + +def rand_spec_segments(x, x_lengths=None, segment_size=4): + b, d, t = x.size() + if x_lengths is None: + x_lengths = t + ids_str_max = x_lengths - segment_size + ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long) + ret = slice_segments(x, ids_str, segment_size) + return ret, ids_str + + +def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4): + position = torch.arange(length, dtype=torch.float) + num_timescales = channels // 2 + log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / (num_timescales - 1) + inv_timescales = min_timescale * torch.exp( + torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment + ) + scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1) + signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0) + signal = F.pad(signal, [0, 0, 0, channels % 2]) + signal = signal.view(1, channels, length) + return signal + + +def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4): + b, channels, length = x.size() + signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale) + return x + signal.to(dtype=x.dtype, device=x.device) + + +def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1): + b, channels, length = x.size() + signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale) + return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis) + + +def subsequent_mask(length): + mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0) + return mask + + +@torch.jit.script +def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels): + n_channels_int = n_channels[0] + in_act = input_a + input_b + t_act = torch.tanh(in_act[:, :n_channels_int, :]) + s_act = torch.sigmoid(in_act[:, n_channels_int:, :]) + acts = t_act * s_act + return acts + + +def shift_1d(x): + x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1] + return x + + +def sequence_mask(length, max_length=None): + if max_length is None: + max_length = length.max() + x = torch.arange(max_length, dtype=length.dtype, device=length.device) + return x.unsqueeze(0) < length.unsqueeze(1) + + +def generate_path(duration, mask): + """ + duration: [b, 1, t_x] + mask: [b, 1, t_y, t_x] + """ + device = duration.device + + b, _, t_y, t_x = mask.shape + cum_duration = torch.cumsum(duration, -1) + + cum_duration_flat = cum_duration.view(b * t_x) + path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype) + path = path.view(b, t_x, t_y) + path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1] + path = path.unsqueeze(1).transpose(2, 3) * mask + return path + + +def clip_grad_value_(parameters, clip_value, norm_type=2): + if isinstance(parameters, torch.Tensor): + parameters = [parameters] + parameters = list(filter(lambda p: p.grad is not None, parameters)) + norm_type = float(norm_type) + if clip_value is not None: + clip_value = float(clip_value) + + total_norm = 0 + for p in parameters: + param_norm = p.grad.data.norm(norm_type) + total_norm += param_norm.item() ** norm_type + if clip_value is not None: + p.grad.data.clamp_(min=-clip_value, max=clip_value) + total_norm = total_norm ** (1.0 / norm_type) + return total_norm diff --git a/TTS/TTS/vc/modules/freevc/mel_processing.py b/TTS/TTS/vc/modules/freevc/mel_processing.py new file mode 100644 index 0000000000000000000000000000000000000000..2dcbf214935a1fde832a32139145ce87fa752598 --- /dev/null +++ b/TTS/TTS/vc/modules/freevc/mel_processing.py @@ -0,0 +1,125 @@ +import torch +import torch.utils.data +from librosa.filters import mel as librosa_mel_fn + +MAX_WAV_VALUE = 32768.0 + + +def dynamic_range_compression_torch(x, C=1, clip_val=1e-5): + """ + PARAMS + ------ + C: compression factor + """ + return torch.log(torch.clamp(x, min=clip_val) * C) + + +def dynamic_range_decompression_torch(x, C=1): + """ + PARAMS + ------ + C: compression factor used to compress + """ + return torch.exp(x) / C + + +def spectral_normalize_torch(magnitudes): + output = dynamic_range_compression_torch(magnitudes) + return output + + +def spectral_de_normalize_torch(magnitudes): + output = dynamic_range_decompression_torch(magnitudes) + return output + + +mel_basis = {} +hann_window = {} + + +def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False): + if torch.min(y) < -1.0: + print("min value is ", torch.min(y)) + if torch.max(y) > 1.0: + print("max value is ", torch.max(y)) + + global hann_window + dtype_device = str(y.dtype) + "_" + str(y.device) + wnsize_dtype_device = str(win_size) + "_" + dtype_device + if wnsize_dtype_device not in hann_window: + hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device) + + y = torch.nn.functional.pad( + y.unsqueeze(1), (int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)), mode="reflect" + ) + y = y.squeeze(1) + + spec = torch.stft( + y, + n_fft, + hop_length=hop_size, + win_length=win_size, + window=hann_window[wnsize_dtype_device], + center=center, + pad_mode="reflect", + normalized=False, + onesided=True, + return_complex=False, + ) + + spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6) + return spec + + +def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax): + global mel_basis + dtype_device = str(spec.dtype) + "_" + str(spec.device) + fmax_dtype_device = str(fmax) + "_" + dtype_device + if fmax_dtype_device not in mel_basis: + mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax) + mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=spec.dtype, device=spec.device) + spec = torch.matmul(mel_basis[fmax_dtype_device], spec) + spec = spectral_normalize_torch(spec) + return spec + + +def mel_spectrogram_torch(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False): + if torch.min(y) < -1.0: + print("min value is ", torch.min(y)) + if torch.max(y) > 1.0: + print("max value is ", torch.max(y)) + + global mel_basis, hann_window + dtype_device = str(y.dtype) + "_" + str(y.device) + fmax_dtype_device = str(fmax) + "_" + dtype_device + wnsize_dtype_device = str(win_size) + "_" + dtype_device + if fmax_dtype_device not in mel_basis: + mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax) + mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=y.dtype, device=y.device) + if wnsize_dtype_device not in hann_window: + hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device) + + y = torch.nn.functional.pad( + y.unsqueeze(1), (int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)), mode="reflect" + ) + y = y.squeeze(1) + + spec = torch.stft( + y, + n_fft, + hop_length=hop_size, + win_length=win_size, + window=hann_window[wnsize_dtype_device], + center=center, + pad_mode="reflect", + normalized=False, + onesided=True, + return_complex=False, + ) + + spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6) + + spec = torch.matmul(mel_basis[fmax_dtype_device], spec) + spec = spectral_normalize_torch(spec) + + return spec diff --git a/TTS/TTS/vc/modules/freevc/modules.py b/TTS/TTS/vc/modules/freevc/modules.py new file mode 100644 index 0000000000000000000000000000000000000000..0503a13c8a18bae791aabb41b0e716ab3505222b --- /dev/null +++ b/TTS/TTS/vc/modules/freevc/modules.py @@ -0,0 +1,391 @@ +import copy +import math + +import numpy as np +import scipy +import torch +from torch import nn +from torch.nn import AvgPool1d, Conv1d, Conv2d, ConvTranspose1d +from torch.nn import functional as F +from torch.nn.utils import remove_weight_norm, weight_norm + +import TTS.vc.modules.freevc.commons as commons +from TTS.vc.modules.freevc.commons import get_padding, init_weights + +LRELU_SLOPE = 0.1 + + +class LayerNorm(nn.Module): + def __init__(self, channels, eps=1e-5): + super().__init__() + self.channels = channels + self.eps = eps + + self.gamma = nn.Parameter(torch.ones(channels)) + self.beta = nn.Parameter(torch.zeros(channels)) + + def forward(self, x): + x = x.transpose(1, -1) + x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps) + return x.transpose(1, -1) + + +class ConvReluNorm(nn.Module): + def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout): + super().__init__() + self.in_channels = in_channels + self.hidden_channels = hidden_channels + self.out_channels = out_channels + self.kernel_size = kernel_size + self.n_layers = n_layers + self.p_dropout = p_dropout + assert n_layers > 1, "Number of layers should be larger than 0." + + self.conv_layers = nn.ModuleList() + self.norm_layers = nn.ModuleList() + self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size // 2)) + self.norm_layers.append(LayerNorm(hidden_channels)) + self.relu_drop = nn.Sequential(nn.ReLU(), nn.Dropout(p_dropout)) + for _ in range(n_layers - 1): + self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size // 2)) + self.norm_layers.append(LayerNorm(hidden_channels)) + self.proj = nn.Conv1d(hidden_channels, out_channels, 1) + self.proj.weight.data.zero_() + self.proj.bias.data.zero_() + + def forward(self, x, x_mask): + x_org = x + for i in range(self.n_layers): + x = self.conv_layers[i](x * x_mask) + x = self.norm_layers[i](x) + x = self.relu_drop(x) + x = x_org + self.proj(x) + return x * x_mask + + +class DDSConv(nn.Module): + """ + Dialted and Depth-Separable Convolution + """ + + def __init__(self, channels, kernel_size, n_layers, p_dropout=0.0): + super().__init__() + self.channels = channels + self.kernel_size = kernel_size + self.n_layers = n_layers + self.p_dropout = p_dropout + + self.drop = nn.Dropout(p_dropout) + self.convs_sep = nn.ModuleList() + self.convs_1x1 = nn.ModuleList() + self.norms_1 = nn.ModuleList() + self.norms_2 = nn.ModuleList() + for i in range(n_layers): + dilation = kernel_size**i + padding = (kernel_size * dilation - dilation) // 2 + self.convs_sep.append( + nn.Conv1d(channels, channels, kernel_size, groups=channels, dilation=dilation, padding=padding) + ) + self.convs_1x1.append(nn.Conv1d(channels, channels, 1)) + self.norms_1.append(LayerNorm(channels)) + self.norms_2.append(LayerNorm(channels)) + + def forward(self, x, x_mask, g=None): + if g is not None: + x = x + g + for i in range(self.n_layers): + y = self.convs_sep[i](x * x_mask) + y = self.norms_1[i](y) + y = F.gelu(y) + y = self.convs_1x1[i](y) + y = self.norms_2[i](y) + y = F.gelu(y) + y = self.drop(y) + x = x + y + return x * x_mask + + +class WN(torch.nn.Module): + def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0): + super(WN, self).__init__() + assert kernel_size % 2 == 1 + self.hidden_channels = hidden_channels + self.kernel_size = (kernel_size,) + self.dilation_rate = dilation_rate + self.n_layers = n_layers + self.gin_channels = gin_channels + self.p_dropout = p_dropout + + self.in_layers = torch.nn.ModuleList() + self.res_skip_layers = torch.nn.ModuleList() + self.drop = nn.Dropout(p_dropout) + + if gin_channels != 0: + cond_layer = torch.nn.Conv1d(gin_channels, 2 * hidden_channels * n_layers, 1) + self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name="weight") + + for i in range(n_layers): + dilation = dilation_rate**i + padding = int((kernel_size * dilation - dilation) / 2) + in_layer = torch.nn.Conv1d( + hidden_channels, 2 * hidden_channels, kernel_size, dilation=dilation, padding=padding + ) + in_layer = torch.nn.utils.weight_norm(in_layer, name="weight") + self.in_layers.append(in_layer) + + # last one is not necessary + if i < n_layers - 1: + res_skip_channels = 2 * hidden_channels + else: + res_skip_channels = hidden_channels + + res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1) + res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name="weight") + self.res_skip_layers.append(res_skip_layer) + + def forward(self, x, x_mask, g=None, **kwargs): + output = torch.zeros_like(x) + n_channels_tensor = torch.IntTensor([self.hidden_channels]) + + if g is not None: + g = self.cond_layer(g) + + for i in range(self.n_layers): + x_in = self.in_layers[i](x) + if g is not None: + cond_offset = i * 2 * self.hidden_channels + g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :] + else: + g_l = torch.zeros_like(x_in) + + acts = commons.fused_add_tanh_sigmoid_multiply(x_in, g_l, n_channels_tensor) + acts = self.drop(acts) + + res_skip_acts = self.res_skip_layers[i](acts) + if i < self.n_layers - 1: + res_acts = res_skip_acts[:, : self.hidden_channels, :] + x = (x + res_acts) * x_mask + output = output + res_skip_acts[:, self.hidden_channels :, :] + else: + output = output + res_skip_acts + return output * x_mask + + def remove_weight_norm(self): + if self.gin_channels != 0: + torch.nn.utils.remove_weight_norm(self.cond_layer) + for l in self.in_layers: + torch.nn.utils.remove_weight_norm(l) + for l in self.res_skip_layers: + torch.nn.utils.remove_weight_norm(l) + + +class ResBlock1(torch.nn.Module): + def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)): + super(ResBlock1, self).__init__() + self.convs1 = nn.ModuleList( + [ + weight_norm( + Conv1d( + channels, + channels, + kernel_size, + 1, + dilation=dilation[0], + padding=get_padding(kernel_size, dilation[0]), + ) + ), + weight_norm( + Conv1d( + channels, + channels, + kernel_size, + 1, + dilation=dilation[1], + padding=get_padding(kernel_size, dilation[1]), + ) + ), + weight_norm( + Conv1d( + channels, + channels, + kernel_size, + 1, + dilation=dilation[2], + padding=get_padding(kernel_size, dilation[2]), + ) + ), + ] + ) + self.convs1.apply(init_weights) + + self.convs2 = nn.ModuleList( + [ + weight_norm( + Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1)) + ), + weight_norm( + Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1)) + ), + weight_norm( + Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1)) + ), + ] + ) + self.convs2.apply(init_weights) + + def forward(self, x, x_mask=None): + for c1, c2 in zip(self.convs1, self.convs2): + xt = F.leaky_relu(x, LRELU_SLOPE) + if x_mask is not None: + xt = xt * x_mask + xt = c1(xt) + xt = F.leaky_relu(xt, LRELU_SLOPE) + if x_mask is not None: + xt = xt * x_mask + xt = c2(xt) + x = xt + x + if x_mask is not None: + x = x * x_mask + return x + + def remove_weight_norm(self): + for l in self.convs1: + remove_weight_norm(l) + for l in self.convs2: + remove_weight_norm(l) + + +class ResBlock2(torch.nn.Module): + def __init__(self, channels, kernel_size=3, dilation=(1, 3)): + super(ResBlock2, self).__init__() + self.convs = nn.ModuleList( + [ + weight_norm( + Conv1d( + channels, + channels, + kernel_size, + 1, + dilation=dilation[0], + padding=get_padding(kernel_size, dilation[0]), + ) + ), + weight_norm( + Conv1d( + channels, + channels, + kernel_size, + 1, + dilation=dilation[1], + padding=get_padding(kernel_size, dilation[1]), + ) + ), + ] + ) + self.convs.apply(init_weights) + + def forward(self, x, x_mask=None): + for c in self.convs: + xt = F.leaky_relu(x, LRELU_SLOPE) + if x_mask is not None: + xt = xt * x_mask + xt = c(xt) + x = xt + x + if x_mask is not None: + x = x * x_mask + return x + + def remove_weight_norm(self): + for l in self.convs: + remove_weight_norm(l) + + +class Log(nn.Module): + def forward(self, x, x_mask, reverse=False, **kwargs): + if not reverse: + y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask + logdet = torch.sum(-y, [1, 2]) + return y, logdet + else: + x = torch.exp(x) * x_mask + return x + + +class Flip(nn.Module): + def forward(self, x, *args, reverse=False, **kwargs): + x = torch.flip(x, [1]) + if not reverse: + logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device) + return x, logdet + else: + return x + + +class ElementwiseAffine(nn.Module): + def __init__(self, channels): + super().__init__() + self.channels = channels + self.m = nn.Parameter(torch.zeros(channels, 1)) + self.logs = nn.Parameter(torch.zeros(channels, 1)) + + def forward(self, x, x_mask, reverse=False, **kwargs): + if not reverse: + y = self.m + torch.exp(self.logs) * x + y = y * x_mask + logdet = torch.sum(self.logs * x_mask, [1, 2]) + return y, logdet + else: + x = (x - self.m) * torch.exp(-self.logs) * x_mask + return x + + +class ResidualCouplingLayer(nn.Module): + def __init__( + self, + channels, + hidden_channels, + kernel_size, + dilation_rate, + n_layers, + p_dropout=0, + gin_channels=0, + mean_only=False, + ): + assert channels % 2 == 0, "channels should be divisible by 2" + super().__init__() + self.channels = channels + self.hidden_channels = hidden_channels + self.kernel_size = kernel_size + self.dilation_rate = dilation_rate + self.n_layers = n_layers + self.half_channels = channels // 2 + self.mean_only = mean_only + + self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1) + self.enc = WN( + hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels + ) + self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1) + self.post.weight.data.zero_() + self.post.bias.data.zero_() + + def forward(self, x, x_mask, g=None, reverse=False): + x0, x1 = torch.split(x, [self.half_channels] * 2, 1) + h = self.pre(x0) * x_mask + h = self.enc(h, x_mask, g=g) + stats = self.post(h) * x_mask + if not self.mean_only: + m, logs = torch.split(stats, [self.half_channels] * 2, 1) + else: + m = stats + logs = torch.zeros_like(m) + + if not reverse: + x1 = m + x1 * torch.exp(logs) * x_mask + x = torch.cat([x0, x1], 1) + logdet = torch.sum(logs, [1, 2]) + return x, logdet + else: + x1 = (x1 - m) * torch.exp(-logs) * x_mask + x = torch.cat([x0, x1], 1) + return x diff --git a/TTS/TTS/vc/modules/freevc/speaker_encoder/__init__.py b/TTS/TTS/vc/modules/freevc/speaker_encoder/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/TTS/TTS/vc/modules/freevc/speaker_encoder/audio.py b/TTS/TTS/vc/modules/freevc/speaker_encoder/audio.py new file mode 100644 index 0000000000000000000000000000000000000000..52f6fd0893a1e67270ccd6af4a50d1370a8fa5c4 --- /dev/null +++ b/TTS/TTS/vc/modules/freevc/speaker_encoder/audio.py @@ -0,0 +1,65 @@ +import struct +from pathlib import Path +from typing import Optional, Union + +# import webrtcvad +import librosa +import numpy as np +from scipy.ndimage.morphology import binary_dilation + +from TTS.vc.modules.freevc.speaker_encoder.hparams import * + +int16_max = (2**15) - 1 + + +def preprocess_wav(fpath_or_wav: Union[str, Path, np.ndarray], source_sr: Optional[int] = None): + """ + Applies the preprocessing operations used in training the Speaker Encoder to a waveform + either on disk or in memory. The waveform will be resampled to match the data hyperparameters. + + :param fpath_or_wav: either a filepath to an audio file (many extensions are supported, not + just .wav), either the waveform as a numpy array of floats. + :param source_sr: if passing an audio waveform, the sampling rate of the waveform before + preprocessing. After preprocessing, the waveform's sampling rate will match the data + hyperparameters. If passing a filepath, the sampling rate will be automatically detected and + this argument will be ignored. + """ + # Load the wav from disk if needed + if isinstance(fpath_or_wav, str) or isinstance(fpath_or_wav, Path): + wav, source_sr = librosa.load(fpath_or_wav, sr=None) + else: + wav = fpath_or_wav + + # Resample the wav if needed + if source_sr is not None and source_sr != sampling_rate: + wav = librosa.resample(wav, source_sr, sampling_rate) + + # Apply the preprocessing: normalize volume and shorten long silences + wav = normalize_volume(wav, audio_norm_target_dBFS, increase_only=True) + wav = trim_long_silences(wav) + + return wav + + +def wav_to_mel_spectrogram(wav): + """ + Derives a mel spectrogram ready to be used by the encoder from a preprocessed audio waveform. + Note: this not a log-mel spectrogram. + """ + frames = librosa.feature.melspectrogram( + y=wav, + sr=sampling_rate, + n_fft=int(sampling_rate * mel_window_length / 1000), + hop_length=int(sampling_rate * mel_window_step / 1000), + n_mels=mel_n_channels, + ) + return frames.astype(np.float32).T + + +def normalize_volume(wav, target_dBFS, increase_only=False, decrease_only=False): + if increase_only and decrease_only: + raise ValueError("Both increase only and decrease only are set") + dBFS_change = target_dBFS - 10 * np.log10(np.mean(wav**2)) + if (dBFS_change < 0 and increase_only) or (dBFS_change > 0 and decrease_only): + return wav + return wav * (10 ** (dBFS_change / 20)) diff --git a/TTS/TTS/vc/modules/freevc/speaker_encoder/hparams.py b/TTS/TTS/vc/modules/freevc/speaker_encoder/hparams.py new file mode 100644 index 0000000000000000000000000000000000000000..2c536ae16cf8134d66c83aaf978ed01fc396b680 --- /dev/null +++ b/TTS/TTS/vc/modules/freevc/speaker_encoder/hparams.py @@ -0,0 +1,31 @@ +## Mel-filterbank +mel_window_length = 25 # In milliseconds +mel_window_step = 10 # In milliseconds +mel_n_channels = 40 + + +## Audio +sampling_rate = 16000 +# Number of spectrogram frames in a partial utterance +partials_n_frames = 160 # 1600 ms + + +## Voice Activation Detection +# Window size of the VAD. Must be either 10, 20 or 30 milliseconds. +# This sets the granularity of the VAD. Should not need to be changed. +vad_window_length = 30 # In milliseconds +# Number of frames to average together when performing the moving average smoothing. +# The larger this value, the larger the VAD variations must be to not get smoothed out. +vad_moving_average_width = 8 +# Maximum number of consecutive silent frames a segment can have. +vad_max_silence_length = 6 + + +## Audio volume normalization +audio_norm_target_dBFS = -30 + + +## Model parameters +model_hidden_size = 256 +model_embedding_size = 256 +model_num_layers = 3 diff --git a/TTS/TTS/vc/modules/freevc/speaker_encoder/speaker_encoder.py b/TTS/TTS/vc/modules/freevc/speaker_encoder/speaker_encoder.py new file mode 100644 index 0000000000000000000000000000000000000000..2e21a14fd833ecf4f1b1d5b8573ac100dffacbfa --- /dev/null +++ b/TTS/TTS/vc/modules/freevc/speaker_encoder/speaker_encoder.py @@ -0,0 +1,175 @@ +from pathlib import Path +from time import perf_counter as timer +from typing import List, Union + +import numpy as np +import torch +from torch import nn + +from TTS.utils.io import load_fsspec +from TTS.vc.modules.freevc.speaker_encoder import audio +from TTS.vc.modules.freevc.speaker_encoder.hparams import * + + +class SpeakerEncoder(nn.Module): + def __init__(self, weights_fpath, device: Union[str, torch.device] = None, verbose=True): + """ + :param device: either a torch device or the name of a torch device (e.g. "cpu", "cuda"). + If None, defaults to cuda if it is available on your machine, otherwise the model will + run on cpu. Outputs are always returned on the cpu, as numpy arrays. + """ + super().__init__() + + # Define the network + self.lstm = nn.LSTM(mel_n_channels, model_hidden_size, model_num_layers, batch_first=True) + self.linear = nn.Linear(model_hidden_size, model_embedding_size) + self.relu = nn.ReLU() + + # Get the target device + if device is None: + device = torch.device("cuda" if torch.cuda.is_available() else "cpu") + elif isinstance(device, str): + device = torch.device(device) + self.device = device + + # Load the pretrained model'speaker weights + # weights_fpath = Path(__file__).resolve().parent.joinpath("pretrained.pt") + # if not weights_fpath.exists(): + # raise Exception("Couldn't find the voice encoder pretrained model at %s." % + # weights_fpath) + + start = timer() + checkpoint = load_fsspec(weights_fpath, map_location="cpu") + + self.load_state_dict(checkpoint["model_state"], strict=False) + self.to(device) + + if verbose: + print("Loaded the voice encoder model on %s in %.2f seconds." % (device.type, timer() - start)) + + def forward(self, mels: torch.FloatTensor): + """ + Computes the embeddings of a batch of utterance spectrograms. + :param mels: a batch of mel spectrograms of same duration as a float32 tensor of shape + (batch_size, n_frames, n_channels) + :return: the embeddings as a float 32 tensor of shape (batch_size, embedding_size). + Embeddings are positive and L2-normed, thus they lay in the range [0, 1]. + """ + # Pass the input through the LSTM layers and retrieve the final hidden state of the last + # layer. Apply a cutoff to 0 for negative values and L2 normalize the embeddings. + _, (hidden, _) = self.lstm(mels) + embeds_raw = self.relu(self.linear(hidden[-1])) + return embeds_raw / torch.norm(embeds_raw, dim=1, keepdim=True) + + @staticmethod + def compute_partial_slices(n_samples: int, rate, min_coverage): + """ + Computes where to split an utterance waveform and its corresponding mel spectrogram to + obtain partial utterances of each. Both the waveform and the + mel spectrogram slices are returned, so as to make each partial utterance waveform + correspond to its spectrogram. + + The returned ranges may be indexing further than the length of the waveform. It is + recommended that you pad the waveform with zeros up to wav_slices[-1].stop. + + :param n_samples: the number of samples in the waveform + :param rate: how many partial utterances should occur per second. Partial utterances must + cover the span of the entire utterance, thus the rate should not be lower than the inverse + of the duration of a partial utterance. By default, partial utterances are 1.6s long and + the minimum rate is thus 0.625. + :param min_coverage: when reaching the last partial utterance, it may or may not have + enough frames. If at least of are present, + then the last partial utterance will be considered by zero-padding the audio. Otherwise, + it will be discarded. If there aren't enough frames for one partial utterance, + this parameter is ignored so that the function always returns at least one slice. + :return: the waveform slices and mel spectrogram slices as lists of array slices. Index + respectively the waveform and the mel spectrogram with these slices to obtain the partial + utterances. + """ + assert 0 < min_coverage <= 1 + + # Compute how many frames separate two partial utterances + samples_per_frame = int((sampling_rate * mel_window_step / 1000)) + n_frames = int(np.ceil((n_samples + 1) / samples_per_frame)) + frame_step = int(np.round((sampling_rate / rate) / samples_per_frame)) + assert 0 < frame_step, "The rate is too high" + assert frame_step <= partials_n_frames, "The rate is too low, it should be %f at least" % ( + sampling_rate / (samples_per_frame * partials_n_frames) + ) + + # Compute the slices + wav_slices, mel_slices = [], [] + steps = max(1, n_frames - partials_n_frames + frame_step + 1) + for i in range(0, steps, frame_step): + mel_range = np.array([i, i + partials_n_frames]) + wav_range = mel_range * samples_per_frame + mel_slices.append(slice(*mel_range)) + wav_slices.append(slice(*wav_range)) + + # Evaluate whether extra padding is warranted or not + last_wav_range = wav_slices[-1] + coverage = (n_samples - last_wav_range.start) / (last_wav_range.stop - last_wav_range.start) + if coverage < min_coverage and len(mel_slices) > 1: + mel_slices = mel_slices[:-1] + wav_slices = wav_slices[:-1] + + return wav_slices, mel_slices + + def embed_utterance(self, wav: np.ndarray, return_partials=False, rate=1.3, min_coverage=0.75): + """ + Computes an embedding for a single utterance. The utterance is divided in partial + utterances and an embedding is computed for each. The complete utterance embedding is the + L2-normed average embedding of the partial utterances. + + TODO: independent batched version of this function + + :param wav: a preprocessed utterance waveform as a numpy array of float32 + :param return_partials: if True, the partial embeddings will also be returned along with + the wav slices corresponding to each partial utterance. + :param rate: how many partial utterances should occur per second. Partial utterances must + cover the span of the entire utterance, thus the rate should not be lower than the inverse + of the duration of a partial utterance. By default, partial utterances are 1.6s long and + the minimum rate is thus 0.625. + :param min_coverage: when reaching the last partial utterance, it may or may not have + enough frames. If at least of are present, + then the last partial utterance will be considered by zero-padding the audio. Otherwise, + it will be discarded. If there aren't enough frames for one partial utterance, + this parameter is ignored so that the function always returns at least one slice. + :return: the embedding as a numpy array of float32 of shape (model_embedding_size,). If + is True, the partial utterances as a numpy array of float32 of shape + (n_partials, model_embedding_size) and the wav partials as a list of slices will also be + returned. + """ + # Compute where to split the utterance into partials and pad the waveform with zeros if + # the partial utterances cover a larger range. + wav_slices, mel_slices = self.compute_partial_slices(len(wav), rate, min_coverage) + max_wave_length = wav_slices[-1].stop + if max_wave_length >= len(wav): + wav = np.pad(wav, (0, max_wave_length - len(wav)), "constant") + + # Split the utterance into partials and forward them through the model + mel = audio.wav_to_mel_spectrogram(wav) + mels = np.array([mel[s] for s in mel_slices]) + with torch.no_grad(): + mels = torch.from_numpy(mels).to(self.device) + partial_embeds = self(mels).cpu().numpy() + + # Compute the utterance embedding from the partial embeddings + raw_embed = np.mean(partial_embeds, axis=0) + embed = raw_embed / np.linalg.norm(raw_embed, 2) + + if return_partials: + return embed, partial_embeds, wav_slices + return embed + + def embed_speaker(self, wavs: List[np.ndarray], **kwargs): + """ + Compute the embedding of a collection of wavs (presumably from the same speaker) by + averaging their embedding and L2-normalizing it. + + :param wavs: list of wavs a numpy arrays of float32. + :param kwargs: extra arguments to embed_utterance() + :return: the embedding as a numpy array of float32 of shape (model_embedding_size,). + """ + raw_embed = np.mean([self.embed_utterance(wav, return_partials=False, **kwargs) for wav in wavs], axis=0) + return raw_embed / np.linalg.norm(raw_embed, 2) diff --git a/TTS/TTS/vc/modules/freevc/wavlm/__init__.py b/TTS/TTS/vc/modules/freevc/wavlm/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..6edada407b2210b5b99f6628e4f765a24c4d3dcb --- /dev/null +++ b/TTS/TTS/vc/modules/freevc/wavlm/__init__.py @@ -0,0 +1,35 @@ +import os +import urllib.request + +import torch + +from TTS.utils.generic_utils import get_user_data_dir +from TTS.vc.modules.freevc.wavlm.wavlm import WavLM, WavLMConfig + +model_uri = "https://github.com/coqui-ai/TTS/releases/download/v0.13.0_models/WavLM-Large.pt" + + +def get_wavlm(device="cpu"): + """Download the model and return the model object.""" + + output_path = get_user_data_dir("tts") + + output_path = os.path.join(output_path, "wavlm") + if not os.path.exists(output_path): + os.makedirs(output_path) + + output_path = os.path.join(output_path, "WavLM-Large.pt") + if not os.path.exists(output_path): + print(f" > Downloading WavLM model to {output_path} ...") + urllib.request.urlretrieve(model_uri, output_path) + + checkpoint = torch.load(output_path, map_location=torch.device(device)) + cfg = WavLMConfig(checkpoint["cfg"]) + wavlm = WavLM(cfg).to(device) + wavlm.load_state_dict(checkpoint["model"]) + wavlm.eval() + return wavlm + + +if __name__ == "__main__": + wavlm = get_wavlm() diff --git a/TTS/TTS/vc/modules/freevc/wavlm/config.json b/TTS/TTS/vc/modules/freevc/wavlm/config.json new file mode 100644 index 0000000000000000000000000000000000000000..c6f851b93d5eee0c975af1e6708735bbf9bb8be4 --- /dev/null +++ b/TTS/TTS/vc/modules/freevc/wavlm/config.json @@ -0,0 +1,99 @@ +{ + "_name_or_path": "./wavlm-large/", + "activation_dropout": 0.0, + "adapter_kernel_size": 3, + "adapter_stride": 2, + "add_adapter": false, + "apply_spec_augment": true, + "architectures": [ + "WavLMModel" + ], + "attention_dropout": 0.1, + "bos_token_id": 1, + "classifier_proj_size": 256, + "codevector_dim": 768, + "contrastive_logits_temperature": 0.1, + "conv_bias": false, + "conv_dim": [ + 512, + 512, + 512, + 512, + 512, + 512, + 512 + ], + "conv_kernel": [ + 10, + 3, + 3, + 3, + 3, + 2, + 2 + ], + "conv_stride": [ + 5, + 2, + 2, + 2, + 2, + 2, + 2 + ], + "ctc_loss_reduction": "sum", + "ctc_zero_infinity": false, + "diversity_loss_weight": 0.1, + "do_stable_layer_norm": true, + "eos_token_id": 2, + "feat_extract_activation": "gelu", + "feat_extract_dropout": 0.0, + "feat_extract_norm": "layer", + "feat_proj_dropout": 0.1, + "feat_quantizer_dropout": 0.0, + "final_dropout": 0.0, + "gradient_checkpointing": false, + "hidden_act": "gelu", + "hidden_dropout": 0.1, + "hidden_size": 1024, + "initializer_range": 0.02, + "intermediate_size": 4096, + "layer_norm_eps": 1e-05, + "layerdrop": 0.1, + "mask_channel_length": 10, + "mask_channel_min_space": 1, + "mask_channel_other": 0.0, + "mask_channel_prob": 0.0, + "mask_channel_selection": "static", + "mask_feature_length": 10, + "mask_feature_min_masks": 0, + "mask_feature_prob": 0.0, + "mask_time_length": 10, + "mask_time_min_masks": 2, + "mask_time_min_space": 1, + "mask_time_other": 0.0, + "mask_time_prob": 0.075, + "mask_time_selection": "static", + "max_bucket_distance": 800, + "model_type": "wavlm", + "num_adapter_layers": 3, + "num_attention_heads": 16, + "num_buckets": 320, + "num_codevector_groups": 2, + "num_codevectors_per_group": 320, + "num_conv_pos_embedding_groups": 16, + "num_conv_pos_embeddings": 128, + "num_ctc_classes": 80, + "num_feat_extract_layers": 7, + "num_hidden_layers": 24, + "num_negatives": 100, + "output_hidden_size": 1024, + "pad_token_id": 0, + "proj_codevector_dim": 768, + "replace_prob": 0.5, + "tokenizer_class": "Wav2Vec2CTCTokenizer", + "torch_dtype": "float32", + "transformers_version": "4.15.0.dev0", + "use_weighted_layer_sum": false, + "vocab_size": 32 + } \ No newline at end of file diff --git a/TTS/TTS/vc/modules/freevc/wavlm/modules.py b/TTS/TTS/vc/modules/freevc/wavlm/modules.py new file mode 100644 index 0000000000000000000000000000000000000000..37c1a6e8774cdfd439baa38a8a7ad55fd79ebf7c --- /dev/null +++ b/TTS/TTS/vc/modules/freevc/wavlm/modules.py @@ -0,0 +1,768 @@ +# -------------------------------------------------------- +# WavLM: Large-Scale Self-Supervised Pre-training for Full Stack Speech Processing (https://arxiv.org/abs/2110.13900.pdf) +# Github source: https://github.com/microsoft/unilm/tree/master/wavlm +# Copyright (c) 2021 Microsoft +# Licensed under The MIT License [see LICENSE for details] +# Based on fairseq code bases +# https://github.com/pytorch/fairseq +# -------------------------------------------------------- + +import math +import warnings +from typing import Dict, Optional, Tuple + +import torch +import torch.nn.functional as F +from torch import Tensor, nn +from torch.nn import Parameter + + +class TransposeLast(nn.Module): + def __init__(self, deconstruct_idx=None): + super().__init__() + self.deconstruct_idx = deconstruct_idx + + def forward(self, x): + if self.deconstruct_idx is not None: + x = x[self.deconstruct_idx] + return x.transpose(-2, -1) + + +class Fp32LayerNorm(nn.LayerNorm): + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + + def forward(self, input): + output = F.layer_norm( + input.float(), + self.normalized_shape, + self.weight.float() if self.weight is not None else None, + self.bias.float() if self.bias is not None else None, + self.eps, + ) + return output.type_as(input) + + +class Fp32GroupNorm(nn.GroupNorm): + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + + def forward(self, input): + output = F.group_norm( + input.float(), + self.num_groups, + self.weight.float() if self.weight is not None else None, + self.bias.float() if self.bias is not None else None, + self.eps, + ) + return output.type_as(input) + + +class GradMultiply(torch.autograd.Function): + @staticmethod + def forward(ctx, x, scale): + ctx.scale = scale + res = x.new(x) + return res + + @staticmethod + def backward(ctx, grad): + return grad * ctx.scale, None + + +class SamePad(nn.Module): + def __init__(self, kernel_size, causal=False): + super().__init__() + if causal: + self.remove = kernel_size - 1 + else: + self.remove = 1 if kernel_size % 2 == 0 else 0 + + def forward(self, x): + if self.remove > 0: + x = x[:, :, : -self.remove] + return x + + +class Swish(nn.Module): + """Swish function""" + + def __init__(self): + """Construct an MultiHeadedAttention object.""" + super(Swish, self).__init__() + self.act = torch.nn.Sigmoid() + + def forward(self, x): + return x * self.act(x) + + +class GLU_Linear(nn.Module): + def __init__(self, input_dim, output_dim, glu_type="sigmoid", bias_in_glu=True): + super(GLU_Linear, self).__init__() + + self.glu_type = glu_type + self.output_dim = output_dim + + if glu_type == "sigmoid": + self.glu_act = torch.nn.Sigmoid() + elif glu_type == "swish": + self.glu_act = Swish() + elif glu_type == "relu": + self.glu_act = torch.nn.ReLU() + elif glu_type == "gelu": + self.glu_act = torch.nn.GELU() + + if bias_in_glu: + self.linear = nn.Linear(input_dim, output_dim * 2, True) + else: + self.linear = nn.Linear(input_dim, output_dim * 2, False) + + def forward(self, x): + # to be consistent with GLU_Linear, we assume the input always has the #channel (#dim) in the last dimension of the tensor, so need to switch the dimension first for 1D-Conv case + x = self.linear(x) + + if self.glu_type == "bilinear": + x = x[:, :, 0 : self.output_dim] * x[:, :, self.output_dim : self.output_dim * 2] + else: + x = x[:, :, 0 : self.output_dim] * self.glu_act(x[:, :, self.output_dim : self.output_dim * 2]) + + return x + + +def gelu_accurate(x): + if not hasattr(gelu_accurate, "_a"): + gelu_accurate._a = math.sqrt(2 / math.pi) + return 0.5 * x * (1 + torch.tanh(gelu_accurate._a * (x + 0.044715 * torch.pow(x, 3)))) + + +def gelu(x: torch.Tensor) -> torch.Tensor: + return torch.nn.functional.gelu(x.float()).type_as(x) + + +def get_activation_fn(activation: str): + """Returns the activation function corresponding to `activation`""" + + if activation == "relu": + return F.relu + elif activation == "gelu": + return gelu + elif activation == "gelu_fast": + warnings.warn("--activation-fn=gelu_fast has been renamed to gelu_accurate") + return gelu_accurate + elif activation == "gelu_accurate": + return gelu_accurate + elif activation == "tanh": + return torch.tanh + elif activation == "linear": + return lambda x: x + elif activation == "glu": + return lambda x: x + else: + raise RuntimeError("--activation-fn {} not supported".format(activation)) + + +def init_bert_params(module): + """ + Initialize the weights specific to the BERT Model. + This overrides the default initializations depending on the specified arguments. + 1. If normal_init_linear_weights is set then weights of linear + layer will be initialized using the normal distribution and + bais will be set to the specified value. + 2. If normal_init_embed_weights is set then weights of embedding + layer will be initialized using the normal distribution. + 3. If normal_init_proj_weights is set then weights of + in_project_weight for MultiHeadAttention initialized using + the normal distribution (to be validated). + """ + + def normal_(data): + # with FSDP, module params will be on CUDA, so we cast them back to CPU + # so that the RNG is consistent with and without FSDP + data.copy_(data.cpu().normal_(mean=0.0, std=0.02).to(data.device)) + + if isinstance(module, nn.Linear): + normal_(module.weight.data) + if module.bias is not None: + module.bias.data.zero_() + if isinstance(module, nn.Embedding): + normal_(module.weight.data) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + if isinstance(module, MultiheadAttention): + normal_(module.q_proj.weight.data) + normal_(module.k_proj.weight.data) + normal_(module.v_proj.weight.data) + + +def quant_noise(module, p, block_size): + """ + Wraps modules and applies quantization noise to the weights for + subsequent quantization with Iterative Product Quantization as + described in "Training with Quantization Noise for Extreme Model Compression" + + Args: + - module: nn.Module + - p: amount of Quantization Noise + - block_size: size of the blocks for subsequent quantization with iPQ + + Remarks: + - Module weights must have the right sizes wrt the block size + - Only Linear, Embedding and Conv2d modules are supported for the moment + - For more detail on how to quantize by blocks with convolutional weights, + see "And the Bit Goes Down: Revisiting the Quantization of Neural Networks" + - We implement the simplest form of noise here as stated in the paper + which consists in randomly dropping blocks + """ + + # if no quantization noise, don't register hook + if p <= 0: + return module + + # supported modules + assert isinstance(module, (nn.Linear, nn.Embedding, nn.Conv2d)) + + # test whether module.weight has the right sizes wrt block_size + is_conv = module.weight.ndim == 4 + + # 2D matrix + if not is_conv: + assert module.weight.size(1) % block_size == 0, "Input features must be a multiple of block sizes" + + # 4D matrix + else: + # 1x1 convolutions + if module.kernel_size == (1, 1): + assert module.in_channels % block_size == 0, "Input channels must be a multiple of block sizes" + # regular convolutions + else: + k = module.kernel_size[0] * module.kernel_size[1] + assert k % block_size == 0, "Kernel size must be a multiple of block size" + + def _forward_pre_hook(mod, input): + # no noise for evaluation + if mod.training: + if not is_conv: + # gather weight and sizes + weight = mod.weight + in_features = weight.size(1) + out_features = weight.size(0) + + # split weight matrix into blocks and randomly drop selected blocks + mask = torch.zeros(in_features // block_size * out_features, device=weight.device) + mask.bernoulli_(p) + mask = mask.repeat_interleave(block_size, -1).view(-1, in_features) + + else: + # gather weight and sizes + weight = mod.weight + in_channels = mod.in_channels + out_channels = mod.out_channels + + # split weight matrix into blocks and randomly drop selected blocks + if mod.kernel_size == (1, 1): + mask = torch.zeros( + int(in_channels // block_size * out_channels), + device=weight.device, + ) + mask.bernoulli_(p) + mask = mask.repeat_interleave(block_size, -1).view(-1, in_channels) + else: + mask = torch.zeros(weight.size(0), weight.size(1), device=weight.device) + mask.bernoulli_(p) + mask = mask.unsqueeze(2).unsqueeze(3).repeat(1, 1, mod.kernel_size[0], mod.kernel_size[1]) + + # scale weights and apply mask + mask = mask.to(torch.bool) # x.bool() is not currently supported in TorchScript + s = 1 / (1 - p) + mod.weight.data = s * weight.masked_fill(mask, 0) + + module.register_forward_pre_hook(_forward_pre_hook) + return module + + +class MultiheadAttention(nn.Module): + """Multi-headed attention. + + See "Attention Is All You Need" for more details. + """ + + def __init__( + self, + embed_dim, + num_heads, + kdim=None, + vdim=None, + dropout=0.0, + bias=True, + add_bias_kv=False, + add_zero_attn=False, + self_attention=False, + encoder_decoder_attention=False, + q_noise=0.0, + qn_block_size=8, + has_relative_attention_bias=False, + num_buckets=32, + max_distance=128, + gru_rel_pos=False, + rescale_init=False, + ): + super().__init__() + self.embed_dim = embed_dim + self.kdim = kdim if kdim is not None else embed_dim + self.vdim = vdim if vdim is not None else embed_dim + self.qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim + + self.num_heads = num_heads + self.dropout_module = nn.Dropout(dropout) + + self.has_relative_attention_bias = has_relative_attention_bias + self.num_buckets = num_buckets + self.max_distance = max_distance + if self.has_relative_attention_bias: + self.relative_attention_bias = nn.Embedding(num_buckets, num_heads) + + self.head_dim = embed_dim // num_heads + self.q_head_dim = self.head_dim + self.k_head_dim = self.head_dim + assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads" + self.scaling = self.head_dim**-0.5 + + self.self_attention = self_attention + self.encoder_decoder_attention = encoder_decoder_attention + + assert not self.self_attention or self.qkv_same_dim, ( + "Self-attention requires query, key and " "value to be of the same size" + ) + + k_bias = True + if rescale_init: + k_bias = False + + k_embed_dim = embed_dim + q_embed_dim = embed_dim + + self.k_proj = quant_noise(nn.Linear(self.kdim, k_embed_dim, bias=k_bias), q_noise, qn_block_size) + self.v_proj = quant_noise(nn.Linear(self.vdim, embed_dim, bias=bias), q_noise, qn_block_size) + self.q_proj = quant_noise(nn.Linear(embed_dim, q_embed_dim, bias=bias), q_noise, qn_block_size) + + self.out_proj = quant_noise(nn.Linear(embed_dim, embed_dim, bias=bias), q_noise, qn_block_size) + + if add_bias_kv: + self.bias_k = Parameter(torch.Tensor(1, 1, embed_dim)) + self.bias_v = Parameter(torch.Tensor(1, 1, embed_dim)) + else: + self.bias_k = self.bias_v = None + + self.add_zero_attn = add_zero_attn + + self.gru_rel_pos = gru_rel_pos + if self.gru_rel_pos: + self.grep_linear = nn.Linear(self.q_head_dim, 8) + self.grep_a = nn.Parameter(torch.ones(1, num_heads, 1, 1)) + + self.reset_parameters() + + def reset_parameters(self): + if self.qkv_same_dim: + # Empirically observed the convergence to be much better with + # the scaled initialization + nn.init.xavier_uniform_(self.k_proj.weight, gain=1 / math.sqrt(2)) + nn.init.xavier_uniform_(self.v_proj.weight, gain=1 / math.sqrt(2)) + nn.init.xavier_uniform_(self.q_proj.weight, gain=1 / math.sqrt(2)) + else: + nn.init.xavier_uniform_(self.k_proj.weight) + nn.init.xavier_uniform_(self.v_proj.weight) + nn.init.xavier_uniform_(self.q_proj.weight) + + nn.init.xavier_uniform_(self.out_proj.weight) + if self.out_proj.bias is not None: + nn.init.constant_(self.out_proj.bias, 0.0) + if self.bias_k is not None: + nn.init.xavier_normal_(self.bias_k) + if self.bias_v is not None: + nn.init.xavier_normal_(self.bias_v) + if self.has_relative_attention_bias: + nn.init.xavier_normal_(self.relative_attention_bias.weight) + + def _relative_positions_bucket(self, relative_positions, bidirectional=True): + num_buckets = self.num_buckets + max_distance = self.max_distance + relative_buckets = 0 + + if bidirectional: + num_buckets = num_buckets // 2 + relative_buckets += (relative_positions > 0).to(torch.long) * num_buckets + relative_positions = torch.abs(relative_positions) + else: + relative_positions = -torch.min(relative_positions, torch.zeros_like(relative_positions)) + + max_exact = num_buckets // 2 + is_small = relative_positions < max_exact + + relative_postion_if_large = max_exact + ( + torch.log(relative_positions.float() / max_exact) + / math.log(max_distance / max_exact) + * (num_buckets - max_exact) + ).to(torch.long) + relative_postion_if_large = torch.min( + relative_postion_if_large, torch.full_like(relative_postion_if_large, num_buckets - 1) + ) + + relative_buckets += torch.where(is_small, relative_positions, relative_postion_if_large) + return relative_buckets + + def compute_bias(self, query_length, key_length): + context_position = torch.arange(query_length, dtype=torch.long)[:, None] + memory_position = torch.arange(key_length, dtype=torch.long)[None, :] + relative_position = memory_position - context_position + relative_position_bucket = self._relative_positions_bucket(relative_position, bidirectional=True) + relative_position_bucket = relative_position_bucket.to(self.relative_attention_bias.weight.device) + values = self.relative_attention_bias(relative_position_bucket) + values = values.permute([2, 0, 1]) + return values + + def forward( + self, + query, + key: Optional[Tensor], + value: Optional[Tensor], + key_padding_mask: Optional[Tensor] = None, + incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, + need_weights: bool = True, + static_kv: bool = False, + attn_mask: Optional[Tensor] = None, + before_softmax: bool = False, + need_head_weights: bool = False, + position_bias: Optional[Tensor] = None, + ) -> Tuple[Tensor, Optional[Tensor], Optional[Tensor]]: + """Input shape: Time x Batch x Channel + + Args: + key_padding_mask (ByteTensor, optional): mask to exclude + keys that are pads, of shape `(batch, src_len)`, where + padding elements are indicated by 1s. + need_weights (bool, optional): return the attention weights, + averaged over heads (default: False). + attn_mask (ByteTensor, optional): typically used to + implement causal attention, where the mask prevents the + attention from looking forward in time (default: None). + before_softmax (bool, optional): return the raw attention + weights and values before the attention softmax. + need_head_weights (bool, optional): return the attention + weights for each head. Implies *need_weights*. Default: + return the average attention weights over all heads. + """ + if need_head_weights: + need_weights = True + + is_tpu = query.device.type == "xla" + + tgt_len, bsz, embed_dim = query.size() + src_len = tgt_len + assert embed_dim == self.embed_dim + assert list(query.size()) == [tgt_len, bsz, embed_dim] + if key is not None: + src_len, key_bsz, _ = key.size() + if not torch.jit.is_scripting(): + assert key_bsz == bsz + assert value is not None + assert src_len, bsz == value.shape[:2] + + if self.has_relative_attention_bias and position_bias is None: + position_bias = self.compute_bias(tgt_len, src_len) + position_bias = position_bias.unsqueeze(0).repeat(bsz, 1, 1, 1).view(bsz * self.num_heads, tgt_len, src_len) + + if ( + not is_tpu # don't use PyTorch version on TPUs + and incremental_state is None + and not static_kv + # A workaround for quantization to work. Otherwise JIT compilation + # treats bias in linear module as method. + and not torch.jit.is_scripting() + and self.q_head_dim == self.head_dim + ): + assert key is not None and value is not None + assert attn_mask is None + + attn_mask_rel_pos = None + if position_bias is not None: + attn_mask_rel_pos = position_bias + if self.gru_rel_pos: + query_layer = query.transpose(0, 1) + new_x_shape = query_layer.size()[:-1] + (self.num_heads, -1) + query_layer = query_layer.view(*new_x_shape) + query_layer = query_layer.permute(0, 2, 1, 3) + _B, _H, _L, __ = query_layer.size() + + gate_a, gate_b = torch.sigmoid( + self.grep_linear(query_layer).view(_B, _H, _L, 2, 4).sum(-1, keepdim=False) + ).chunk(2, dim=-1) + gate_a_1 = gate_a * (gate_b * self.grep_a - 1.0) + 2.0 + attn_mask_rel_pos = gate_a_1.view(bsz * self.num_heads, -1, 1) * position_bias + + attn_mask_rel_pos = attn_mask_rel_pos.view((-1, tgt_len, tgt_len)) + k_proj_bias = self.k_proj.bias + if k_proj_bias is None: + k_proj_bias = torch.zeros_like(self.q_proj.bias) + + x, attn = F.multi_head_attention_forward( + query, + key, + value, + self.embed_dim, + self.num_heads, + torch.empty([0]), + torch.cat((self.q_proj.bias, self.k_proj.bias, self.v_proj.bias)), + self.bias_k, + self.bias_v, + self.add_zero_attn, + self.dropout_module.p, + self.out_proj.weight, + self.out_proj.bias, + self.training, + # self.training or self.dropout_module.apply_during_inference, + key_padding_mask, + need_weights, + attn_mask_rel_pos, + use_separate_proj_weight=True, + q_proj_weight=self.q_proj.weight, + k_proj_weight=self.k_proj.weight, + v_proj_weight=self.v_proj.weight, + ) + return x, attn, position_bias + + if incremental_state is not None: + saved_state = self._get_input_buffer(incremental_state) + if saved_state is not None and "prev_key" in saved_state: + # previous time steps are cached - no need to recompute + # key and value if they are static + if static_kv: + assert self.encoder_decoder_attention and not self.self_attention + key = value = None + else: + saved_state = None + + if self.self_attention: + q = self.q_proj(query) + k = self.k_proj(query) + v = self.v_proj(query) + elif self.encoder_decoder_attention: + # encoder-decoder attention + q = self.q_proj(query) + if key is None: + assert value is None + k = v = None + else: + k = self.k_proj(key) + v = self.v_proj(key) + + else: + assert key is not None and value is not None + q = self.q_proj(query) + k = self.k_proj(key) + v = self.v_proj(value) + q *= self.scaling + + if self.bias_k is not None: + assert self.bias_v is not None + k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)]) + v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)]) + if attn_mask is not None: + attn_mask = torch.cat([attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1) + if key_padding_mask is not None: + key_padding_mask = torch.cat( + [ + key_padding_mask, + key_padding_mask.new_zeros(key_padding_mask.size(0), 1), + ], + dim=1, + ) + + q = q.contiguous().view(tgt_len, bsz * self.num_heads, self.q_head_dim).transpose(0, 1) + if k is not None: + k = k.contiguous().view(-1, bsz * self.num_heads, self.k_head_dim).transpose(0, 1) + if v is not None: + v = v.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1) + + if saved_state is not None: + # saved states are stored with shape (bsz, num_heads, seq_len, head_dim) + if "prev_key" in saved_state: + _prev_key = saved_state["prev_key"] + assert _prev_key is not None + prev_key = _prev_key.view(bsz * self.num_heads, -1, self.head_dim) + if static_kv: + k = prev_key + else: + assert k is not None + k = torch.cat([prev_key, k], dim=1) + src_len = k.size(1) + if "prev_value" in saved_state: + _prev_value = saved_state["prev_value"] + assert _prev_value is not None + prev_value = _prev_value.view(bsz * self.num_heads, -1, self.head_dim) + if static_kv: + v = prev_value + else: + assert v is not None + v = torch.cat([prev_value, v], dim=1) + prev_key_padding_mask: Optional[Tensor] = None + if "prev_key_padding_mask" in saved_state: + prev_key_padding_mask = saved_state["prev_key_padding_mask"] + assert k is not None and v is not None + key_padding_mask = MultiheadAttention._append_prev_key_padding_mask( + key_padding_mask=key_padding_mask, + prev_key_padding_mask=prev_key_padding_mask, + batch_size=bsz, + src_len=k.size(1), + static_kv=static_kv, + ) + + saved_state["prev_key"] = k.view(bsz, self.num_heads, -1, self.head_dim) + saved_state["prev_value"] = v.view(bsz, self.num_heads, -1, self.head_dim) + saved_state["prev_key_padding_mask"] = key_padding_mask + # In this branch incremental_state is never None + assert incremental_state is not None + incremental_state = self._set_input_buffer(incremental_state, saved_state) + assert k is not None + assert k.size(1) == src_len + + # This is part of a workaround to get around fork/join parallelism + # not supporting Optional types. + if key_padding_mask is not None and key_padding_mask.dim() == 0: + key_padding_mask = None + + if key_padding_mask is not None: + assert key_padding_mask.size(0) == bsz + assert key_padding_mask.size(1) == src_len + + if self.add_zero_attn: + assert v is not None + src_len += 1 + k = torch.cat([k, k.new_zeros((k.size(0), 1) + k.size()[2:])], dim=1) + v = torch.cat([v, v.new_zeros((v.size(0), 1) + v.size()[2:])], dim=1) + if attn_mask is not None: + attn_mask = torch.cat([attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1) + if key_padding_mask is not None: + key_padding_mask = torch.cat( + [ + key_padding_mask, + torch.zeros(key_padding_mask.size(0), 1).type_as(key_padding_mask), + ], + dim=1, + ) + + attn_weights = torch.bmm(q, k.transpose(1, 2)) + attn_weights = self.apply_sparse_mask(attn_weights, tgt_len, src_len, bsz) + + assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len] + + if attn_mask is not None: + attn_mask = attn_mask.unsqueeze(0) + attn_weights += attn_mask + + if key_padding_mask is not None: + # don't attend to padding symbols + attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + if not is_tpu: + attn_weights = attn_weights.masked_fill( + key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool), + float("-inf"), + ) + else: + attn_weights = attn_weights.transpose(0, 2) + attn_weights = attn_weights.masked_fill(key_padding_mask, float("-inf")) + attn_weights = attn_weights.transpose(0, 2) + attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) + + if before_softmax: + return attn_weights, v, position_bias + + if position_bias is not None: + if self.gru_rel_pos == 1: + query_layer = q.view(bsz, self.num_heads, tgt_len, self.q_head_dim) + _B, _H, _L, __ = query_layer.size() + gate_a, gate_b = torch.sigmoid( + self.grep_linear(query_layer).view(_B, _H, _L, 2, 4).sum(-1, keepdim=False) + ).chunk(2, dim=-1) + gate_a_1 = gate_a * (gate_b * self.grep_a - 1.0) + 2.0 + position_bias = gate_a_1.view(bsz * self.num_heads, -1, 1) * position_bias + + position_bias = position_bias.view(attn_weights.size()) + + attn_weights = attn_weights + position_bias + + attn_weights_float = F.softmax(attn_weights, dim=-1) + attn_weights = attn_weights_float.type_as(attn_weights) + attn_probs = self.dropout_module(attn_weights) + + assert v is not None + attn = torch.bmm(attn_probs, v) + assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim] + attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) + attn = self.out_proj(attn) + attn_weights: Optional[Tensor] = None + if need_weights: + attn_weights = attn_weights_float.view(bsz, self.num_heads, tgt_len, src_len).transpose(1, 0) + if not need_head_weights: + # average attention weights over heads + attn_weights = attn_weights.mean(dim=0) + + return attn, attn_weights, position_bias + + @staticmethod + def _append_prev_key_padding_mask( + key_padding_mask: Optional[Tensor], + prev_key_padding_mask: Optional[Tensor], + batch_size: int, + src_len: int, + static_kv: bool, + ) -> Optional[Tensor]: + # saved key padding masks have shape (bsz, seq_len) + if prev_key_padding_mask is not None and static_kv: + new_key_padding_mask = prev_key_padding_mask + elif prev_key_padding_mask is not None and key_padding_mask is not None: + new_key_padding_mask = torch.cat([prev_key_padding_mask.float(), key_padding_mask.float()], dim=1) + # During incremental decoding, as the padding token enters and + # leaves the frame, there will be a time when prev or current + # is None + elif prev_key_padding_mask is not None: + if src_len > prev_key_padding_mask.size(1): + filler = torch.zeros( + (batch_size, src_len - prev_key_padding_mask.size(1)), + device=prev_key_padding_mask.device, + ) + new_key_padding_mask = torch.cat([prev_key_padding_mask.float(), filler.float()], dim=1) + else: + new_key_padding_mask = prev_key_padding_mask.float() + elif key_padding_mask is not None: + if src_len > key_padding_mask.size(1): + filler = torch.zeros( + (batch_size, src_len - key_padding_mask.size(1)), + device=key_padding_mask.device, + ) + new_key_padding_mask = torch.cat([filler.float(), key_padding_mask.float()], dim=1) + else: + new_key_padding_mask = key_padding_mask.float() + else: + new_key_padding_mask = prev_key_padding_mask + return new_key_padding_mask + + def _get_input_buffer( + self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] + ) -> Dict[str, Optional[Tensor]]: + result = self.get_incremental_state(incremental_state, "attn_state") + if result is not None: + return result + else: + empty_result: Dict[str, Optional[Tensor]] = {} + return empty_result + + def _set_input_buffer( + self, + incremental_state: Dict[str, Dict[str, Optional[Tensor]]], + buffer: Dict[str, Optional[Tensor]], + ): + return self.set_incremental_state(incremental_state, "attn_state", buffer) + + def apply_sparse_mask(self, attn_weights, tgt_len: int, src_len: int, bsz: int): + return attn_weights diff --git a/TTS/TTS/vc/modules/freevc/wavlm/wavlm.py b/TTS/TTS/vc/modules/freevc/wavlm/wavlm.py new file mode 100644 index 0000000000000000000000000000000000000000..7efb11bfc68f4e2cb9bd8770b897a13a7094c266 --- /dev/null +++ b/TTS/TTS/vc/modules/freevc/wavlm/wavlm.py @@ -0,0 +1,719 @@ +# -------------------------------------------------------- +# WavLM: Large-Scale Self-Supervised Pre-training for Full Stack Speech Processing (https://arxiv.org/abs/2110.13900.pdf) +# Github source: https://github.com/microsoft/unilm/tree/master/wavlm +# Copyright (c) 2021 Microsoft +# Licensed under The MIT License [see LICENSE for details] +# Based on fairseq code bases +# https://github.com/pytorch/fairseq +# -------------------------------------------------------- + +import logging +import math +from typing import List, Optional, Tuple + +import numpy as np +import torch +import torch.nn as nn +import torch.nn.functional as F +from torch.nn import LayerNorm + +from TTS.vc.modules.freevc.wavlm.modules import ( + Fp32GroupNorm, + Fp32LayerNorm, + GLU_Linear, + GradMultiply, + MultiheadAttention, + SamePad, + TransposeLast, + get_activation_fn, + init_bert_params, +) + +logger = logging.getLogger(__name__) + + +def compute_mask_indices( + shape: Tuple[int, int], + padding_mask: Optional[torch.Tensor], + mask_prob: float, + mask_length: int, + mask_type: str = "static", + mask_other: float = 0.0, + min_masks: int = 0, + no_overlap: bool = False, + min_space: int = 0, +) -> np.ndarray: + """ + Computes random mask spans for a given shape + + Args: + shape: the the shape for which to compute masks. + should be of size 2 where first element is batch size and 2nd is timesteps + padding_mask: optional padding mask of the same size as shape, which will prevent masking padded elements + mask_prob: probability for each token to be chosen as start of the span to be masked. this will be multiplied by + number of timesteps divided by length of mask span to mask approximately this percentage of all elements. + however due to overlaps, the actual number will be smaller (unless no_overlap is True) + mask_type: how to compute mask lengths + static = fixed size + uniform = sample from uniform distribution [mask_other, mask_length*2] + normal = sample from normal distribution with mean mask_length and stdev mask_other. mask is min 1 element + poisson = sample from possion distribution with lambda = mask length + min_masks: minimum number of masked spans + no_overlap: if false, will switch to an alternative recursive algorithm that prevents spans from overlapping + min_space: only used if no_overlap is True, this is how many elements to keep unmasked between spans + """ + + bsz, all_sz = shape + mask = np.full((bsz, all_sz), False) + + all_num_mask = int( + # add a random number for probabilistic rounding + mask_prob * all_sz / float(mask_length) + + np.random.rand() + ) + + all_num_mask = max(min_masks, all_num_mask) + + mask_idcs = [] + for i in range(bsz): + if padding_mask is not None: + sz = all_sz - padding_mask[i].long().sum().item() + num_mask = int( + # add a random number for probabilistic rounding + mask_prob * sz / float(mask_length) + + np.random.rand() + ) + num_mask = max(min_masks, num_mask) + else: + sz = all_sz + num_mask = all_num_mask + + if mask_type == "static": + lengths = np.full(num_mask, mask_length) + elif mask_type == "uniform": + lengths = np.random.randint(mask_other, mask_length * 2 + 1, size=num_mask) + elif mask_type == "normal": + lengths = np.random.normal(mask_length, mask_other, size=num_mask) + lengths = [max(1, int(round(x))) for x in lengths] + elif mask_type == "poisson": + lengths = np.random.poisson(mask_length, size=num_mask) + lengths = [int(round(x)) for x in lengths] + else: + raise Exception("unknown mask selection " + mask_type) + + if sum(lengths) == 0: + lengths[0] = min(mask_length, sz - 1) + + if no_overlap: + mask_idc = [] + + def arrange(s, e, length, keep_length): + span_start = np.random.randint(s, e - length) + mask_idc.extend(span_start + i for i in range(length)) + + new_parts = [] + if span_start - s - min_space >= keep_length: + new_parts.append((s, span_start - min_space + 1)) + if e - span_start - keep_length - min_space > keep_length: + new_parts.append((span_start + length + min_space, e)) + return new_parts + + parts = [(0, sz)] + min_length = min(lengths) + for length in sorted(lengths, reverse=True): + lens = np.fromiter( + (e - s if e - s >= length + min_space else 0 for s, e in parts), + np.int, + ) + l_sum = np.sum(lens) + if l_sum == 0: + break + probs = lens / np.sum(lens) + c = np.random.choice(len(parts), p=probs) + s, e = parts.pop(c) + parts.extend(arrange(s, e, length, min_length)) + mask_idc = np.asarray(mask_idc) + else: + min_len = min(lengths) + if sz - min_len <= num_mask: + min_len = sz - num_mask - 1 + + mask_idc = np.random.choice(sz - min_len, num_mask, replace=False) + + mask_idc = np.asarray([mask_idc[j] + offset for j in range(len(mask_idc)) for offset in range(lengths[j])]) + + mask_idcs.append(np.unique(mask_idc[mask_idc < sz])) + + min_len = min([len(m) for m in mask_idcs]) + for i, mask_idc in enumerate(mask_idcs): + if len(mask_idc) > min_len: + mask_idc = np.random.choice(mask_idc, min_len, replace=False) + mask[i, mask_idc] = True + + return mask + + +class WavLMConfig: + def __init__(self, cfg=None): + self.extractor_mode: str = "default" # mode for feature extractor. default has a single group norm with d groups in the first conv block, whereas layer_norm has layer norms in every block (meant to use with normalize=True) + self.encoder_layers: int = 12 # num encoder layers in the transformer + + self.encoder_embed_dim: int = 768 # encoder embedding dimension + self.encoder_ffn_embed_dim: int = 3072 # encoder embedding dimension for FFN + self.encoder_attention_heads: int = 12 # num encoder attention heads + self.activation_fn: str = "gelu" # activation function to use + + self.layer_norm_first: bool = False # apply layernorm first in the transformer + self.conv_feature_layers: str = "[(512,10,5)] + [(512,3,2)] * 4 + [(512,2,2)] * 2" # string describing convolutional feature extraction layers in form of a python list that contains [(dim, kernel_size, stride), ...] + self.conv_bias: bool = False # include bias in conv encoder + self.feature_grad_mult: float = 1.0 # multiply feature extractor var grads by this + + self.normalize: bool = False # normalize input to have 0 mean and unit variance during training + + # dropouts + self.dropout: float = 0.1 # dropout probability for the transformer + self.attention_dropout: float = 0.1 # dropout probability for attention weights + self.activation_dropout: float = 0.0 # dropout probability after activation in FFN + self.encoder_layerdrop: float = 0.0 # probability of dropping a tarnsformer layer + self.dropout_input: float = 0.0 # dropout to apply to the input (after feat extr) + self.dropout_features: float = 0.0 # dropout to apply to the features (after feat extr) + + # masking + self.mask_length: int = 10 # mask length + self.mask_prob: float = 0.65 # probability of replacing a token with mask + self.mask_selection: str = "static" # how to choose mask length + self.mask_other: float = ( + 0 # secondary mask argument (used for more complex distributions), see help in compute_mask_indicesh + ) + self.no_mask_overlap: bool = False # whether to allow masks to overlap + self.mask_min_space: int = 1 # min space between spans (if no overlap is enabled) + + # channel masking + self.mask_channel_length: int = 10 # length of the mask for features (channels) + self.mask_channel_prob: float = 0.0 # probability of replacing a feature with 0 + self.mask_channel_selection: str = "static" # how to choose mask length for channel masking + self.mask_channel_other: float = ( + 0 # secondary mask argument (used for more complex distributions), see help in compute_mask_indices + ) + self.no_mask_channel_overlap: bool = False # whether to allow channel masks to overlap + self.mask_channel_min_space: int = 1 # min space between spans (if no overlap is enabled) + + # positional embeddings + self.conv_pos: int = 128 # number of filters for convolutional positional embeddings + self.conv_pos_groups: int = 16 # number of groups for convolutional positional embedding + + # relative position embedding + self.relative_position_embedding: bool = False # apply relative position embedding + self.num_buckets: int = 320 # number of buckets for relative position embedding + self.max_distance: int = 1280 # maximum distance for relative position embedding + self.gru_rel_pos: bool = False # apply gated relative position embedding + + if cfg is not None: + self.update(cfg) + + def update(self, cfg: dict): + self.__dict__.update(cfg) + + +class WavLM(nn.Module): + def __init__( + self, + cfg: WavLMConfig, + ) -> None: + super().__init__() + logger.info(f"WavLM Config: {cfg.__dict__}") + + self.cfg = cfg + feature_enc_layers = eval(cfg.conv_feature_layers) + self.embed = feature_enc_layers[-1][0] + + self.feature_extractor = ConvFeatureExtractionModel( + conv_layers=feature_enc_layers, + dropout=0.0, + mode=cfg.extractor_mode, + conv_bias=cfg.conv_bias, + ) + + self.post_extract_proj = ( + nn.Linear(self.embed, cfg.encoder_embed_dim) if self.embed != cfg.encoder_embed_dim else None + ) + + self.mask_prob = cfg.mask_prob + self.mask_selection = cfg.mask_selection + self.mask_other = cfg.mask_other + self.mask_length = cfg.mask_length + self.no_mask_overlap = cfg.no_mask_overlap + self.mask_min_space = cfg.mask_min_space + + self.mask_channel_prob = cfg.mask_channel_prob + self.mask_channel_selection = cfg.mask_channel_selection + self.mask_channel_other = cfg.mask_channel_other + self.mask_channel_length = cfg.mask_channel_length + self.no_mask_channel_overlap = cfg.no_mask_channel_overlap + self.mask_channel_min_space = cfg.mask_channel_min_space + + self.dropout_input = nn.Dropout(cfg.dropout_input) + self.dropout_features = nn.Dropout(cfg.dropout_features) + + self.feature_grad_mult = cfg.feature_grad_mult + + self.mask_emb = nn.Parameter(torch.FloatTensor(cfg.encoder_embed_dim).uniform_()) + + self.encoder = TransformerEncoder(cfg) + self.layer_norm = LayerNorm(self.embed) + + def apply_mask(self, x, padding_mask): + B, T, C = x.shape + if self.mask_prob > 0: + mask_indices = compute_mask_indices( + (B, T), + padding_mask, + self.mask_prob, + self.mask_length, + self.mask_selection, + self.mask_other, + min_masks=2, + no_overlap=self.no_mask_overlap, + min_space=self.mask_min_space, + ) + mask_indices = torch.from_numpy(mask_indices).to(x.device) + x[mask_indices] = self.mask_emb + else: + mask_indices = None + + if self.mask_channel_prob > 0: + mask_channel_indices = compute_mask_indices( + (B, C), + None, + self.mask_channel_prob, + self.mask_channel_length, + self.mask_channel_selection, + self.mask_channel_other, + no_overlap=self.no_mask_channel_overlap, + min_space=self.mask_channel_min_space, + ) + mask_channel_indices = torch.from_numpy(mask_channel_indices).to(x.device).unsqueeze(1).expand(-1, T, -1) + x[mask_channel_indices] = 0 + + return x, mask_indices + + def forward_padding_mask( + self, + features: torch.Tensor, + padding_mask: torch.Tensor, + ) -> torch.Tensor: + extra = padding_mask.size(1) % features.size(1) + if extra > 0: + padding_mask = padding_mask[:, :-extra] + padding_mask = padding_mask.view(padding_mask.size(0), features.size(1), -1) + # padding_mask = padding_mask.all(-1) + padding_mask = padding_mask.any(-1) + return padding_mask + + def extract_features( + self, + source: torch.Tensor, + padding_mask: Optional[torch.Tensor] = None, + mask: bool = False, + ret_conv: bool = False, + output_layer: Optional[int] = None, + ret_layer_results: bool = False, + ): + if self.feature_grad_mult > 0: + features = self.feature_extractor(source) + if self.feature_grad_mult != 1.0: + features = GradMultiply.apply(features, self.feature_grad_mult) + else: + with torch.no_grad(): + features = self.feature_extractor(source) + + features = features.transpose(1, 2) + features = self.layer_norm(features) + + if padding_mask is not None: + padding_mask = self.forward_padding_mask(features, padding_mask) + + if self.post_extract_proj is not None: + features = self.post_extract_proj(features) + + features = self.dropout_input(features) + + if mask: + x, mask_indices = self.apply_mask(features, padding_mask) + else: + x = features + + # feature: (B, T, D), float + # target: (B, T), long + # x: (B, T, D), float + # padding_mask: (B, T), bool + # mask_indices: (B, T), bool + x, layer_results = self.encoder( + x, padding_mask=padding_mask, layer=None if output_layer is None else output_layer - 1 + ) + + res = {"x": x, "padding_mask": padding_mask, "features": features, "layer_results": layer_results} + + feature = res["features"] if ret_conv else res["x"] + if ret_layer_results: + feature = (feature, res["layer_results"]) + return feature, res["padding_mask"] + + +class ConvFeatureExtractionModel(nn.Module): + def __init__( + self, + conv_layers: List[Tuple[int, int, int]], + dropout: float = 0.0, + mode: str = "default", + conv_bias: bool = False, + conv_type: str = "default", + ): + super().__init__() + + assert mode in {"default", "layer_norm"} + + def block( + n_in, + n_out, + k, + stride, + is_layer_norm=False, + is_group_norm=False, + conv_bias=False, + ): + def make_conv(): + conv = nn.Conv1d(n_in, n_out, k, stride=stride, bias=conv_bias) + nn.init.kaiming_normal_(conv.weight) + return conv + + assert (is_layer_norm and is_group_norm) == False, "layer norm and group norm are exclusive" + + if is_layer_norm: + return nn.Sequential( + make_conv(), + nn.Dropout(p=dropout), + nn.Sequential( + TransposeLast(), + Fp32LayerNorm(dim, elementwise_affine=True), + TransposeLast(), + ), + nn.GELU(), + ) + elif is_group_norm: + return nn.Sequential( + make_conv(), + nn.Dropout(p=dropout), + Fp32GroupNorm(dim, dim, affine=True), + nn.GELU(), + ) + else: + return nn.Sequential(make_conv(), nn.Dropout(p=dropout), nn.GELU()) + + self.conv_type = conv_type + if self.conv_type == "default": + in_d = 1 + self.conv_layers = nn.ModuleList() + for i, cl in enumerate(conv_layers): + assert len(cl) == 3, "invalid conv definition: " + str(cl) + (dim, k, stride) = cl + + self.conv_layers.append( + block( + in_d, + dim, + k, + stride, + is_layer_norm=mode == "layer_norm", + is_group_norm=mode == "default" and i == 0, + conv_bias=conv_bias, + ) + ) + in_d = dim + elif self.conv_type == "conv2d": + in_d = 1 + self.conv_layers = nn.ModuleList() + for i, cl in enumerate(conv_layers): + assert len(cl) == 3 + (dim, k, stride) = cl + + self.conv_layers.append(torch.nn.Conv2d(in_d, dim, k, stride)) + self.conv_layers.append(torch.nn.ReLU()) + in_d = dim + elif self.conv_type == "custom": + in_d = 1 + idim = 80 + self.conv_layers = nn.ModuleList() + for i, cl in enumerate(conv_layers): + assert len(cl) == 3 + (dim, k, stride) = cl + self.conv_layers.append(torch.nn.Conv2d(in_d, dim, k, stride, padding=1)) + self.conv_layers.append(torch.nn.LayerNorm([dim, idim])) + self.conv_layers.append(torch.nn.ReLU()) + in_d = dim + if (i + 1) % 2 == 0: + self.conv_layers.append(torch.nn.MaxPool2d(2, stride=2, ceil_mode=True)) + idim = int(math.ceil(idim / 2)) + else: + pass + + def forward(self, x, mask=None): + # BxT -> BxCxT + x = x.unsqueeze(1) + if self.conv_type == "custom": + for conv in self.conv_layers: + if isinstance(conv, nn.LayerNorm): + x = x.transpose(1, 2) + x = conv(x).transpose(1, 2) + else: + x = conv(x) + x = x.transpose(2, 3).contiguous() + x = x.view(x.size(0), -1, x.size(-1)) + else: + for conv in self.conv_layers: + x = conv(x) + if self.conv_type == "conv2d": + b, c, t, f = x.size() + x = x.transpose(2, 3).contiguous().view(b, c * f, t) + return x + + +class TransformerEncoder(nn.Module): + def __init__(self, args): + super().__init__() + + self.dropout = args.dropout + self.embedding_dim = args.encoder_embed_dim + + self.pos_conv = nn.Conv1d( + self.embedding_dim, + self.embedding_dim, + kernel_size=args.conv_pos, + padding=args.conv_pos // 2, + groups=args.conv_pos_groups, + ) + dropout = 0 + std = math.sqrt((4 * (1.0 - dropout)) / (args.conv_pos * self.embedding_dim)) + nn.init.normal_(self.pos_conv.weight, mean=0, std=std) + nn.init.constant_(self.pos_conv.bias, 0) + + self.pos_conv = nn.utils.weight_norm(self.pos_conv, name="weight", dim=2) + self.pos_conv = nn.Sequential(self.pos_conv, SamePad(args.conv_pos), nn.GELU()) + + if hasattr(args, "relative_position_embedding"): + self.relative_position_embedding = args.relative_position_embedding + self.num_buckets = args.num_buckets + self.max_distance = args.max_distance + else: + self.relative_position_embedding = False + self.num_buckets = 0 + self.max_distance = 0 + + self.layers = nn.ModuleList( + [ + TransformerSentenceEncoderLayer( + embedding_dim=self.embedding_dim, + ffn_embedding_dim=args.encoder_ffn_embed_dim, + num_attention_heads=args.encoder_attention_heads, + dropout=self.dropout, + attention_dropout=args.attention_dropout, + activation_dropout=args.activation_dropout, + activation_fn=args.activation_fn, + layer_norm_first=args.layer_norm_first, + has_relative_attention_bias=(self.relative_position_embedding and i == 0), + num_buckets=self.num_buckets, + max_distance=self.max_distance, + gru_rel_pos=args.gru_rel_pos, + ) + for i in range(args.encoder_layers) + ] + ) + + self.layer_norm_first = args.layer_norm_first + self.layer_norm = LayerNorm(self.embedding_dim) + self.layerdrop = args.encoder_layerdrop + + self.apply(init_bert_params) + + def forward(self, x, padding_mask=None, streaming_mask=None, layer=None): + x, layer_results = self.extract_features(x, padding_mask, streaming_mask, layer) + + if self.layer_norm_first and layer is None: + x = self.layer_norm(x) + + return x, layer_results + + def extract_features(self, x, padding_mask=None, streaming_mask=None, tgt_layer=None): + if padding_mask is not None: + x[padding_mask] = 0 + + x_conv = self.pos_conv(x.transpose(1, 2)) + x_conv = x_conv.transpose(1, 2) + x += x_conv + + if not self.layer_norm_first: + x = self.layer_norm(x) + + x = F.dropout(x, p=self.dropout, training=self.training) + + # B x T x C -> T x B x C + x = x.transpose(0, 1) + + layer_results = [] + z = None + if tgt_layer is not None: + layer_results.append((x, z)) + r = None + pos_bias = None + for i, layer in enumerate(self.layers): + dropout_probability = np.random.random() + if not self.training or (dropout_probability > self.layerdrop): + x, z, pos_bias = layer( + x, + self_attn_padding_mask=padding_mask, + need_weights=False, + self_attn_mask=streaming_mask, + pos_bias=pos_bias, + ) + if tgt_layer is not None: + layer_results.append((x, z)) + if i == tgt_layer: + r = x + break + + if r is not None: + x = r + + # T x B x C -> B x T x C + x = x.transpose(0, 1) + + return x, layer_results + + +class TransformerSentenceEncoderLayer(nn.Module): + """ + Implements a Transformer Encoder Layer used in BERT/XLM style pre-trained + models. + """ + + def __init__( + self, + embedding_dim: float = 768, + ffn_embedding_dim: float = 3072, + num_attention_heads: float = 8, + dropout: float = 0.1, + attention_dropout: float = 0.1, + activation_dropout: float = 0.1, + activation_fn: str = "relu", + layer_norm_first: bool = False, + has_relative_attention_bias: bool = False, + num_buckets: int = 0, + max_distance: int = 0, + rescale_init: bool = False, + gru_rel_pos: bool = False, + ) -> None: + super().__init__() + # Initialize parameters + self.embedding_dim = embedding_dim + self.dropout = dropout + self.activation_dropout = activation_dropout + + # Initialize blocks + self.activation_name = activation_fn + self.activation_fn = get_activation_fn(activation_fn) + self.self_attn = MultiheadAttention( + self.embedding_dim, + num_attention_heads, + dropout=attention_dropout, + self_attention=True, + has_relative_attention_bias=has_relative_attention_bias, + num_buckets=num_buckets, + max_distance=max_distance, + rescale_init=rescale_init, + gru_rel_pos=gru_rel_pos, + ) + + self.dropout1 = nn.Dropout(dropout) + self.dropout2 = nn.Dropout(self.activation_dropout) + self.dropout3 = nn.Dropout(dropout) + + self.layer_norm_first = layer_norm_first + + # layer norm associated with the self attention layer + self.self_attn_layer_norm = LayerNorm(self.embedding_dim) + + if self.activation_name == "glu": + self.fc1 = GLU_Linear(self.embedding_dim, ffn_embedding_dim, "swish") + else: + self.fc1 = nn.Linear(self.embedding_dim, ffn_embedding_dim) + self.fc2 = nn.Linear(ffn_embedding_dim, self.embedding_dim) + + # layer norm associated with the position wise feed-forward NN + self.final_layer_norm = LayerNorm(self.embedding_dim) + + def forward( + self, + x: torch.Tensor, + self_attn_mask: torch.Tensor = None, + self_attn_padding_mask: torch.Tensor = None, + need_weights: bool = False, + pos_bias=None, + ): + """ + LayerNorm is applied either before or after the self-attention/ffn + modules similar to the original Transformer imlementation. + """ + residual = x + + if self.layer_norm_first: + x = self.self_attn_layer_norm(x) + x, attn, pos_bias = self.self_attn( + query=x, + key=x, + value=x, + key_padding_mask=self_attn_padding_mask, + need_weights=False, + attn_mask=self_attn_mask, + position_bias=pos_bias, + ) + x = self.dropout1(x) + x = residual + x + + residual = x + x = self.final_layer_norm(x) + if self.activation_name == "glu": + x = self.fc1(x) + else: + x = self.activation_fn(self.fc1(x)) + x = self.dropout2(x) + x = self.fc2(x) + x = self.dropout3(x) + x = residual + x + else: + x, attn, pos_bias = self.self_attn( + query=x, + key=x, + value=x, + key_padding_mask=self_attn_padding_mask, + need_weights=need_weights, + attn_mask=self_attn_mask, + position_bias=pos_bias, + ) + + x = self.dropout1(x) + x = residual + x + + x = self.self_attn_layer_norm(x) + + residual = x + if self.activation_name == "glu": + x = self.fc1(x) + else: + x = self.activation_fn(self.fc1(x)) + x = self.dropout2(x) + x = self.fc2(x) + x = self.dropout3(x) + x = residual + x + x = self.final_layer_norm(x) + + return x, attn, pos_bias diff --git a/TTS/TTS/vocoder/README.md b/TTS/TTS/vocoder/README.md new file mode 100644 index 0000000000000000000000000000000000000000..b9fb17c8f09fa6e8c217087e31fb8c52d96da536 --- /dev/null +++ b/TTS/TTS/vocoder/README.md @@ -0,0 +1,39 @@ +# Mozilla TTS Vocoders (Experimental) + +Here there are vocoder model implementations which can be combined with the other TTS models. + +Currently, following models are implemented: + +- Melgan +- MultiBand-Melgan +- ParallelWaveGAN +- GAN-TTS (Discriminator Only) + +It is also very easy to adapt different vocoder models as we provide a flexible and modular (but not too modular) framework. + +## Training a model + +You can see here an example (Soon)[Colab Notebook]() training MelGAN with LJSpeech dataset. + +In order to train a new model, you need to gather all wav files into a folder and give this folder to `data_path` in '''config.json''' + +You need to define other relevant parameters in your ```config.json``` and then start traning with the following command. + +```CUDA_VISIBLE_DEVICES='0' python tts/bin/train_vocoder.py --config_path path/to/config.json``` + +Example config files can be found under `tts/vocoder/configs/` folder. + +You can continue a previous training run by the following command. + +```CUDA_VISIBLE_DEVICES='0' python tts/bin/train_vocoder.py --continue_path path/to/your/model/folder``` + +You can fine-tune a pre-trained model by the following command. + +```CUDA_VISIBLE_DEVICES='0' python tts/bin/train_vocoder.py --restore_path path/to/your/model.pth``` + +Restoring a model starts a new training in a different folder. It only restores model weights with the given checkpoint file. However, continuing a training starts from the same directory where the previous training run left off. + +You can also follow your training runs on Tensorboard as you do with our TTS models. + +## Acknowledgement +Thanks to @kan-bayashi for his [repository](https://github.com/kan-bayashi/ParallelWaveGAN) being the start point of our work. diff --git a/TTS/TTS/vocoder/__init__.py b/TTS/TTS/vocoder/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/TTS/TTS/vocoder/configs/__init__.py b/TTS/TTS/vocoder/configs/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..b5e11b990c6d7294e7cb00c3e024bbb5f94a8105 --- /dev/null +++ b/TTS/TTS/vocoder/configs/__init__.py @@ -0,0 +1,17 @@ +import importlib +import os +from inspect import isclass + +# import all files under configs/ +configs_dir = os.path.dirname(__file__) +for file in os.listdir(configs_dir): + path = os.path.join(configs_dir, file) + if not file.startswith("_") and not file.startswith(".") and (file.endswith(".py") or os.path.isdir(path)): + config_name = file[: file.find(".py")] if file.endswith(".py") else file + module = importlib.import_module("TTS.vocoder.configs." + config_name) + for attribute_name in dir(module): + attribute = getattr(module, attribute_name) + + if isclass(attribute): + # Add the class to this package's variables + globals()[attribute_name] = attribute diff --git a/TTS/TTS/vocoder/configs/fullband_melgan_config.py b/TTS/TTS/vocoder/configs/fullband_melgan_config.py new file mode 100644 index 0000000000000000000000000000000000000000..2ab83aace678e328a8f99a5f0dc63e54ed99d4c4 --- /dev/null +++ b/TTS/TTS/vocoder/configs/fullband_melgan_config.py @@ -0,0 +1,106 @@ +from dataclasses import dataclass, field + +from .shared_configs import BaseGANVocoderConfig + + +@dataclass +class FullbandMelganConfig(BaseGANVocoderConfig): + """Defines parameters for FullBand MelGAN vocoder. + + Example: + + >>> from TTS.vocoder.configs import FullbandMelganConfig + >>> config = FullbandMelganConfig() + + Args: + model (str): + Model name used for selecting the right model at initialization. Defaults to `fullband_melgan`. + discriminator_model (str): One of the discriminators from `TTS.vocoder.models.*_discriminator`. Defaults to + 'melgan_multiscale_discriminator`. + discriminator_model_params (dict): The discriminator model parameters. Defaults to + '{"base_channels": 16, "max_channels": 1024, "downsample_factors": [4, 4, 4, 4]}` + generator_model (str): One of the generators from TTS.vocoder.models.*`. Every other non-GAN vocoder model is + considered as a generator too. Defaults to `melgan_generator`. + batch_size (int): + Batch size used at training. Larger values use more memory. Defaults to 16. + seq_len (int): + Audio segment length used at training. Larger values use more memory. Defaults to 8192. + pad_short (int): + Additional padding applied to the audio samples shorter than `seq_len`. Defaults to 0. + use_noise_augment (bool): + enable / disable random noise added to the input waveform. The noise is added after computing the + features. Defaults to True. + use_cache (bool): + enable / disable in memory caching of the computed features. It can cause OOM error if the system RAM is + not large enough. Defaults to True. + use_stft_loss (bool): + enable / disable use of STFT loss originally used by ParallelWaveGAN model. Defaults to True. + use_subband_stft (bool): + enable / disable use of subband loss computation originally used by MultiBandMelgan model. Defaults to True. + use_mse_gan_loss (bool): + enable / disable using Mean Squeare Error GAN loss. Defaults to True. + use_hinge_gan_loss (bool): + enable / disable using Hinge GAN loss. You should choose either Hinge or MSE loss for training GAN models. + Defaults to False. + use_feat_match_loss (bool): + enable / disable using Feature Matching loss originally used by MelGAN model. Defaults to True. + use_l1_spec_loss (bool): + enable / disable using L1 spectrogram loss originally used by HifiGAN model. Defaults to False. + stft_loss_params (dict): STFT loss parameters. Default to + `{"n_ffts": [1024, 2048, 512], "hop_lengths": [120, 240, 50], "win_lengths": [600, 1200, 240]}` + stft_loss_weight (float): STFT loss weight that multiplies the computed loss before summing up the total + model loss. Defaults to 0.5. + subband_stft_loss_weight (float): + Subband STFT loss weight that multiplies the computed loss before summing up the total loss. Defaults to 0. + mse_G_loss_weight (float): + MSE generator loss weight that multiplies the computed loss before summing up the total loss. faults to 2.5. + hinge_G_loss_weight (float): + Hinge generator loss weight that multiplies the computed loss before summing up the total loss. Defaults to 0. + feat_match_loss_weight (float): + Feature matching loss weight that multiplies the computed loss before summing up the total loss. faults to 108. + l1_spec_loss_weight (float): + L1 spectrogram loss weight that multiplies the computed loss before summing up the total loss. Defaults to 0. + """ + + model: str = "fullband_melgan" + + # Model specific params + discriminator_model: str = "melgan_multiscale_discriminator" + discriminator_model_params: dict = field( + default_factory=lambda: {"base_channels": 16, "max_channels": 512, "downsample_factors": [4, 4, 4]} + ) + generator_model: str = "melgan_generator" + generator_model_params: dict = field( + default_factory=lambda: {"upsample_factors": [8, 8, 2, 2], "num_res_blocks": 4} + ) + + # Training - overrides + batch_size: int = 16 + seq_len: int = 8192 + pad_short: int = 2000 + use_noise_augment: bool = True + use_cache: bool = True + + # LOSS PARAMETERS - overrides + use_stft_loss: bool = True + use_subband_stft_loss: bool = False + use_mse_gan_loss: bool = True + use_hinge_gan_loss: bool = False + use_feat_match_loss: bool = True # requires MelGAN Discriminators (MelGAN and HifiGAN) + use_l1_spec_loss: bool = False + + stft_loss_params: dict = field( + default_factory=lambda: { + "n_ffts": [1024, 2048, 512], + "hop_lengths": [120, 240, 50], + "win_lengths": [600, 1200, 240], + } + ) + + # loss weights - overrides + stft_loss_weight: float = 0.5 + subband_stft_loss_weight: float = 0 + mse_G_loss_weight: float = 2.5 + hinge_G_loss_weight: float = 0 + feat_match_loss_weight: float = 108 + l1_spec_loss_weight: float = 0.0 diff --git a/TTS/TTS/vocoder/configs/hifigan_config.py b/TTS/TTS/vocoder/configs/hifigan_config.py new file mode 100644 index 0000000000000000000000000000000000000000..9a102f0c89588b1a7fe270225e4b0fefa2e4bc71 --- /dev/null +++ b/TTS/TTS/vocoder/configs/hifigan_config.py @@ -0,0 +1,136 @@ +from dataclasses import dataclass, field + +from TTS.vocoder.configs.shared_configs import BaseGANVocoderConfig + + +@dataclass +class HifiganConfig(BaseGANVocoderConfig): + """Defines parameters for FullBand MelGAN vocoder. + + Example: + + >>> from TTS.vocoder.configs import HifiganConfig + >>> config = HifiganConfig() + + Args: + model (str): + Model name used for selecting the right model at initialization. Defaults to `hifigan`. + discriminator_model (str): One of the discriminators from `TTS.vocoder.models.*_discriminator`. Defaults to + 'hifigan_discriminator`. + generator_model (str): One of the generators from TTS.vocoder.models.*`. Every other non-GAN vocoder model is + considered as a generator too. Defaults to `hifigan_generator`. + generator_model_params (dict): Parameters of the generator model. Defaults to + ` + { + "upsample_factors": [8, 8, 2, 2], + "upsample_kernel_sizes": [16, 16, 4, 4], + "upsample_initial_channel": 512, + "resblock_kernel_sizes": [3, 7, 11], + "resblock_dilation_sizes": [[1, 3, 5], [1, 3, 5], [1, 3, 5]], + "resblock_type": "1", + } + ` + batch_size (int): + Batch size used at training. Larger values use more memory. Defaults to 16. + seq_len (int): + Audio segment length used at training. Larger values use more memory. Defaults to 8192. + pad_short (int): + Additional padding applied to the audio samples shorter than `seq_len`. Defaults to 0. + use_noise_augment (bool): + enable / disable random noise added to the input waveform. The noise is added after computing the + features. Defaults to True. + use_cache (bool): + enable / disable in memory caching of the computed features. It can cause OOM error if the system RAM is + not large enough. Defaults to True. + use_stft_loss (bool): + enable / disable use of STFT loss originally used by ParallelWaveGAN model. Defaults to True. + use_subband_stft (bool): + enable / disable use of subband loss computation originally used by MultiBandMelgan model. Defaults to True. + use_mse_gan_loss (bool): + enable / disable using Mean Squeare Error GAN loss. Defaults to True. + use_hinge_gan_loss (bool): + enable / disable using Hinge GAN loss. You should choose either Hinge or MSE loss for training GAN models. + Defaults to False. + use_feat_match_loss (bool): + enable / disable using Feature Matching loss originally used by MelGAN model. Defaults to True. + use_l1_spec_loss (bool): + enable / disable using L1 spectrogram loss originally used by HifiGAN model. Defaults to False. + stft_loss_params (dict): + STFT loss parameters. Default to + `{ + "n_ffts": [1024, 2048, 512], + "hop_lengths": [120, 240, 50], + "win_lengths": [600, 1200, 240] + }` + l1_spec_loss_params (dict): + L1 spectrogram loss parameters. Default to + `{ + "use_mel": True, + "sample_rate": 22050, + "n_fft": 1024, + "hop_length": 256, + "win_length": 1024, + "n_mels": 80, + "mel_fmin": 0.0, + "mel_fmax": None, + }` + stft_loss_weight (float): STFT loss weight that multiplies the computed loss before summing up the total + model loss. Defaults to 0.5. + subband_stft_loss_weight (float): + Subband STFT loss weight that multiplies the computed loss before summing up the total loss. Defaults to 0. + mse_G_loss_weight (float): + MSE generator loss weight that multiplies the computed loss before summing up the total loss. faults to 2.5. + hinge_G_loss_weight (float): + Hinge generator loss weight that multiplies the computed loss before summing up the total loss. Defaults to 0. + feat_match_loss_weight (float): + Feature matching loss weight that multiplies the computed loss before summing up the total loss. faults to 108. + l1_spec_loss_weight (float): + L1 spectrogram loss weight that multiplies the computed loss before summing up the total loss. Defaults to 0. + """ + + model: str = "hifigan" + # model specific params + discriminator_model: str = "hifigan_discriminator" + generator_model: str = "hifigan_generator" + generator_model_params: dict = field( + default_factory=lambda: { + "upsample_factors": [8, 8, 2, 2], + "upsample_kernel_sizes": [16, 16, 4, 4], + "upsample_initial_channel": 512, + "resblock_kernel_sizes": [3, 7, 11], + "resblock_dilation_sizes": [[1, 3, 5], [1, 3, 5], [1, 3, 5]], + "resblock_type": "1", + } + ) + + # LOSS PARAMETERS - overrides + use_stft_loss: bool = False + use_subband_stft_loss: bool = False + use_mse_gan_loss: bool = True + use_hinge_gan_loss: bool = False + use_feat_match_loss: bool = True # requires MelGAN Discriminators (MelGAN and HifiGAN) + use_l1_spec_loss: bool = True + + # loss weights - overrides + stft_loss_weight: float = 0 + subband_stft_loss_weight: float = 0 + mse_G_loss_weight: float = 1 + hinge_G_loss_weight: float = 0 + feat_match_loss_weight: float = 108 + l1_spec_loss_weight: float = 45 + l1_spec_loss_params: dict = field( + default_factory=lambda: { + "use_mel": True, + "sample_rate": 22050, + "n_fft": 1024, + "hop_length": 256, + "win_length": 1024, + "n_mels": 80, + "mel_fmin": 0.0, + "mel_fmax": None, + } + ) + + # optimizer parameters + lr: float = 1e-4 + wd: float = 1e-6 diff --git a/TTS/TTS/vocoder/configs/melgan_config.py b/TTS/TTS/vocoder/configs/melgan_config.py new file mode 100644 index 0000000000000000000000000000000000000000..dc35b6f8b70891d4904baefad802d9c62fe67925 --- /dev/null +++ b/TTS/TTS/vocoder/configs/melgan_config.py @@ -0,0 +1,106 @@ +from dataclasses import dataclass, field + +from TTS.vocoder.configs.shared_configs import BaseGANVocoderConfig + + +@dataclass +class MelganConfig(BaseGANVocoderConfig): + """Defines parameters for MelGAN vocoder. + + Example: + + >>> from TTS.vocoder.configs import MelganConfig + >>> config = MelganConfig() + + Args: + model (str): + Model name used for selecting the right model at initialization. Defaults to `melgan`. + discriminator_model (str): One of the discriminators from `TTS.vocoder.models.*_discriminator`. Defaults to + 'melgan_multiscale_discriminator`. + discriminator_model_params (dict): The discriminator model parameters. Defaults to + '{"base_channels": 16, "max_channels": 1024, "downsample_factors": [4, 4, 4, 4]}` + generator_model (str): One of the generators from TTS.vocoder.models.*`. Every other non-GAN vocoder model is + considered as a generator too. Defaults to `melgan_generator`. + batch_size (int): + Batch size used at training. Larger values use more memory. Defaults to 16. + seq_len (int): + Audio segment length used at training. Larger values use more memory. Defaults to 8192. + pad_short (int): + Additional padding applied to the audio samples shorter than `seq_len`. Defaults to 0. + use_noise_augment (bool): + enable / disable random noise added to the input waveform. The noise is added after computing the + features. Defaults to True. + use_cache (bool): + enable / disable in memory caching of the computed features. It can cause OOM error if the system RAM is + not large enough. Defaults to True. + use_stft_loss (bool): + enable / disable use of STFT loss originally used by ParallelWaveGAN model. Defaults to True. + use_subband_stft (bool): + enable / disable use of subband loss computation originally used by MultiBandMelgan model. Defaults to True. + use_mse_gan_loss (bool): + enable / disable using Mean Squeare Error GAN loss. Defaults to True. + use_hinge_gan_loss (bool): + enable / disable using Hinge GAN loss. You should choose either Hinge or MSE loss for training GAN models. + Defaults to False. + use_feat_match_loss (bool): + enable / disable using Feature Matching loss originally used by MelGAN model. Defaults to True. + use_l1_spec_loss (bool): + enable / disable using L1 spectrogram loss originally used by HifiGAN model. Defaults to False. + stft_loss_params (dict): STFT loss parameters. Default to + `{"n_ffts": [1024, 2048, 512], "hop_lengths": [120, 240, 50], "win_lengths": [600, 1200, 240]}` + stft_loss_weight (float): STFT loss weight that multiplies the computed loss before summing up the total + model loss. Defaults to 0.5. + subband_stft_loss_weight (float): + Subband STFT loss weight that multiplies the computed loss before summing up the total loss. Defaults to 0. + mse_G_loss_weight (float): + MSE generator loss weight that multiplies the computed loss before summing up the total loss. faults to 2.5. + hinge_G_loss_weight (float): + Hinge generator loss weight that multiplies the computed loss before summing up the total loss. Defaults to 0. + feat_match_loss_weight (float): + Feature matching loss weight that multiplies the computed loss before summing up the total loss. faults to 108. + l1_spec_loss_weight (float): + L1 spectrogram loss weight that multiplies the computed loss before summing up the total loss. Defaults to 0. + """ + + model: str = "melgan" + + # Model specific params + discriminator_model: str = "melgan_multiscale_discriminator" + discriminator_model_params: dict = field( + default_factory=lambda: {"base_channels": 16, "max_channels": 1024, "downsample_factors": [4, 4, 4, 4]} + ) + generator_model: str = "melgan_generator" + generator_model_params: dict = field( + default_factory=lambda: {"upsample_factors": [8, 8, 2, 2], "num_res_blocks": 3} + ) + + # Training - overrides + batch_size: int = 16 + seq_len: int = 8192 + pad_short: int = 2000 + use_noise_augment: bool = True + use_cache: bool = True + + # LOSS PARAMETERS - overrides + use_stft_loss: bool = True + use_subband_stft_loss: bool = False + use_mse_gan_loss: bool = True + use_hinge_gan_loss: bool = False + use_feat_match_loss: bool = True # requires MelGAN Discriminators (MelGAN and HifiGAN) + use_l1_spec_loss: bool = False + + stft_loss_params: dict = field( + default_factory=lambda: { + "n_ffts": [1024, 2048, 512], + "hop_lengths": [120, 240, 50], + "win_lengths": [600, 1200, 240], + } + ) + + # loss weights - overrides + stft_loss_weight: float = 0.5 + subband_stft_loss_weight: float = 0 + mse_G_loss_weight: float = 2.5 + hinge_G_loss_weight: float = 0 + feat_match_loss_weight: float = 108 + l1_spec_loss_weight: float = 0 diff --git a/TTS/TTS/vocoder/configs/multiband_melgan_config.py b/TTS/TTS/vocoder/configs/multiband_melgan_config.py new file mode 100644 index 0000000000000000000000000000000000000000..763113537f36a8615b2b77369bf5bde01527fe53 --- /dev/null +++ b/TTS/TTS/vocoder/configs/multiband_melgan_config.py @@ -0,0 +1,144 @@ +from dataclasses import dataclass, field + +from TTS.vocoder.configs.shared_configs import BaseGANVocoderConfig + + +@dataclass +class MultibandMelganConfig(BaseGANVocoderConfig): + """Defines parameters for MultiBandMelGAN vocoder. + + Example: + + >>> from TTS.vocoder.configs import MultibandMelganConfig + >>> config = MultibandMelganConfig() + + Args: + model (str): + Model name used for selecting the right model at initialization. Defaults to `multiband_melgan`. + discriminator_model (str): One of the discriminators from `TTS.vocoder.models.*_discriminator`. Defaults to + 'melgan_multiscale_discriminator`. + discriminator_model_params (dict): The discriminator model parameters. Defaults to + '{ + "base_channels": 16, + "max_channels": 512, + "downsample_factors": [4, 4, 4] + }` + generator_model (str): One of the generators from TTS.vocoder.models.*`. Every other non-GAN vocoder model is + considered as a generator too. Defaults to `melgan_generator`. + generator_model_param (dict): + The generator model parameters. Defaults to `{"upsample_factors": [8, 4, 2], "num_res_blocks": 4}`. + use_pqmf (bool): + enable / disable PQMF modulation for multi-band training. Defaults to True. + lr_gen (float): + Initial learning rate for the generator model. Defaults to 0.0001. + lr_disc (float): + Initial learning rate for the discriminator model. Defaults to 0.0001. + optimizer (torch.optim.Optimizer): + Optimizer used for the training. Defaults to `AdamW`. + optimizer_params (dict): + Optimizer kwargs. Defaults to `{"betas": [0.8, 0.99], "weight_decay": 0.0}` + lr_scheduler_gen (torch.optim.Scheduler): + Learning rate scheduler for the generator. Defaults to `MultiStepLR`. + lr_scheduler_gen_params (dict): + Parameters for the generator learning rate scheduler. Defaults to + `{"gamma": 0.5, "milestones": [100000, 200000, 300000, 400000, 500000, 600000]}`. + lr_scheduler_disc (torch.optim.Scheduler): + Learning rate scheduler for the discriminator. Defaults to `MultiStepLR`. + lr_scheduler_dict_params (dict): + Parameters for the discriminator learning rate scheduler. Defaults to + `{"gamma": 0.5, "milestones": [100000, 200000, 300000, 400000, 500000, 600000]}`. + batch_size (int): + Batch size used at training. Larger values use more memory. Defaults to 16. + seq_len (int): + Audio segment length used at training. Larger values use more memory. Defaults to 8192. + pad_short (int): + Additional padding applied to the audio samples shorter than `seq_len`. Defaults to 0. + use_noise_augment (bool): + enable / disable random noise added to the input waveform. The noise is added after computing the + features. Defaults to True. + use_cache (bool): + enable / disable in memory caching of the computed features. It can cause OOM error if the system RAM is + not large enough. Defaults to True. + steps_to_start_discriminator (int): + Number of steps required to start training the discriminator. Defaults to 0. + use_stft_loss (bool):` + enable / disable use of STFT loss originally used by ParallelWaveGAN model. Defaults to True. + use_subband_stft (bool): + enable / disable use of subband loss computation originally used by MultiBandMelgan model. Defaults to True. + use_mse_gan_loss (bool): + enable / disable using Mean Squeare Error GAN loss. Defaults to True. + use_hinge_gan_loss (bool): + enable / disable using Hinge GAN loss. You should choose either Hinge or MSE loss for training GAN models. + Defaults to False. + use_feat_match_loss (bool): + enable / disable using Feature Matching loss originally used by MelGAN model. Defaults to True. + use_l1_spec_loss (bool): + enable / disable using L1 spectrogram loss originally used by HifiGAN model. Defaults to False. + stft_loss_params (dict): STFT loss parameters. Default to + `{"n_ffts": [1024, 2048, 512], "hop_lengths": [120, 240, 50], "win_lengths": [600, 1200, 240]}` + stft_loss_weight (float): STFT loss weight that multiplies the computed loss before summing up the total + model loss. Defaults to 0.5. + subband_stft_loss_weight (float): + Subband STFT loss weight that multiplies the computed loss before summing up the total loss. Defaults to 0. + mse_G_loss_weight (float): + MSE generator loss weight that multiplies the computed loss before summing up the total loss. faults to 2.5. + hinge_G_loss_weight (float): + Hinge generator loss weight that multiplies the computed loss before summing up the total loss. Defaults to 0. + feat_match_loss_weight (float): + Feature matching loss weight that multiplies the computed loss before summing up the total loss. faults to 108. + l1_spec_loss_weight (float): + L1 spectrogram loss weight that multiplies the computed loss before summing up the total loss. Defaults to 0. + """ + + model: str = "multiband_melgan" + + # Model specific params + discriminator_model: str = "melgan_multiscale_discriminator" + discriminator_model_params: dict = field( + default_factory=lambda: {"base_channels": 16, "max_channels": 512, "downsample_factors": [4, 4, 4]} + ) + generator_model: str = "multiband_melgan_generator" + generator_model_params: dict = field(default_factory=lambda: {"upsample_factors": [8, 4, 2], "num_res_blocks": 4}) + use_pqmf: bool = True + + # optimizer - overrides + lr_gen: float = 0.0001 # Initial learning rate. + lr_disc: float = 0.0001 # Initial learning rate. + optimizer: str = "AdamW" + optimizer_params: dict = field(default_factory=lambda: {"betas": [0.8, 0.99], "weight_decay": 0.0}) + lr_scheduler_gen: str = "MultiStepLR" # one of the schedulers from https:#pytorch.org/docs/stable/optim.html + lr_scheduler_gen_params: dict = field( + default_factory=lambda: {"gamma": 0.5, "milestones": [100000, 200000, 300000, 400000, 500000, 600000]} + ) + lr_scheduler_disc: str = "MultiStepLR" # one of the schedulers from https:#pytorch.org/docs/stable/optim.html + lr_scheduler_disc_params: dict = field( + default_factory=lambda: {"gamma": 0.5, "milestones": [100000, 200000, 300000, 400000, 500000, 600000]} + ) + + # Training - overrides + batch_size: int = 64 + seq_len: int = 16384 + pad_short: int = 2000 + use_noise_augment: bool = False + use_cache: bool = True + steps_to_start_discriminator: bool = 200000 + + # LOSS PARAMETERS - overrides + use_stft_loss: bool = True + use_subband_stft_loss: bool = True + use_mse_gan_loss: bool = True + use_hinge_gan_loss: bool = False + use_feat_match_loss: bool = False # requires MelGAN Discriminators (MelGAN and HifiGAN) + use_l1_spec_loss: bool = False + + subband_stft_loss_params: dict = field( + default_factory=lambda: {"n_ffts": [384, 683, 171], "hop_lengths": [30, 60, 10], "win_lengths": [150, 300, 60]} + ) + + # loss weights - overrides + stft_loss_weight: float = 0.5 + subband_stft_loss_weight: float = 0 + mse_G_loss_weight: float = 2.5 + hinge_G_loss_weight: float = 0 + feat_match_loss_weight: float = 108 + l1_spec_loss_weight: float = 0 diff --git a/TTS/TTS/vocoder/configs/parallel_wavegan_config.py b/TTS/TTS/vocoder/configs/parallel_wavegan_config.py new file mode 100644 index 0000000000000000000000000000000000000000..7845dd6bf835ebab4cc5d8b65962b7347b7711cf --- /dev/null +++ b/TTS/TTS/vocoder/configs/parallel_wavegan_config.py @@ -0,0 +1,133 @@ +from dataclasses import dataclass, field + +from .shared_configs import BaseGANVocoderConfig + + +@dataclass +class ParallelWaveganConfig(BaseGANVocoderConfig): + """Defines parameters for ParallelWavegan vocoder. + + Args: + model (str): + Model name used for selecting the right configuration at initialization. Defaults to `gan`. + discriminator_model (str): One of the discriminators from `TTS.vocoder.models.*_discriminator`. Defaults to + 'parallel_wavegan_discriminator`. + discriminator_model_params (dict): The discriminator model kwargs. Defaults to + '{"num_layers": 10}` + generator_model (str): One of the generators from TTS.vocoder.models.*`. Every other non-GAN vocoder model is + considered as a generator too. Defaults to `parallel_wavegan_generator`. + generator_model_param (dict): + The generator model kwargs. Defaults to `{"upsample_factors": [4, 4, 4, 4], "stacks": 3, "num_res_blocks": 30}`. + batch_size (int): + Batch size used at training. Larger values use more memory. Defaults to 16. + seq_len (int): + Audio segment length used at training. Larger values use more memory. Defaults to 8192. + pad_short (int): + Additional padding applied to the audio samples shorter than `seq_len`. Defaults to 0. + use_noise_augment (bool): + enable / disable random noise added to the input waveform. The noise is added after computing the + features. Defaults to True. + use_cache (bool): + enable / disable in memory caching of the computed features. It can cause OOM error if the system RAM is + not large enough. Defaults to True. + steps_to_start_discriminator (int): + Number of steps required to start training the discriminator. Defaults to 0. + use_stft_loss (bool):` + enable / disable use of STFT loss originally used by ParallelWaveGAN model. Defaults to True. + use_subband_stft (bool): + enable / disable use of subband loss computation originally used by MultiBandMelgan model. Defaults to True. + use_mse_gan_loss (bool): + enable / disable using Mean Squeare Error GAN loss. Defaults to True. + use_hinge_gan_loss (bool): + enable / disable using Hinge GAN loss. You should choose either Hinge or MSE loss for training GAN models. + Defaults to False. + use_feat_match_loss (bool): + enable / disable using Feature Matching loss originally used by MelGAN model. Defaults to True. + use_l1_spec_loss (bool): + enable / disable using L1 spectrogram loss originally used by HifiGAN model. Defaults to False. + stft_loss_params (dict): STFT loss parameters. Default to + `{"n_ffts": [1024, 2048, 512], "hop_lengths": [120, 240, 50], "win_lengths": [600, 1200, 240]}` + stft_loss_weight (float): STFT loss weight that multiplies the computed loss before summing up the total + model loss. Defaults to 0.5. + subband_stft_loss_weight (float): + Subband STFT loss weight that multiplies the computed loss before summing up the total loss. Defaults to 0. + mse_G_loss_weight (float): + MSE generator loss weight that multiplies the computed loss before summing up the total loss. faults to 2.5. + hinge_G_loss_weight (float): + Hinge generator loss weight that multiplies the computed loss before summing up the total loss. Defaults to 0. + feat_match_loss_weight (float): + Feature matching loss weight that multiplies the computed loss before summing up the total loss. faults to 0. + l1_spec_loss_weight (float): + L1 spectrogram loss weight that multiplies the computed loss before summing up the total loss. Defaults to 0. + lr_gen (float): + Generator model initial learning rate. Defaults to 0.0002. + lr_disc (float): + Discriminator model initial learning rate. Defaults to 0.0002. + optimizer (torch.optim.Optimizer): + Optimizer used for the training. Defaults to `AdamW`. + optimizer_params (dict): + Optimizer kwargs. Defaults to `{"betas": [0.8, 0.99], "weight_decay": 0.0}` + lr_scheduler_gen (torch.optim.Scheduler): + Learning rate scheduler for the generator. Defaults to `ExponentialLR`. + lr_scheduler_gen_params (dict): + Parameters for the generator learning rate scheduler. Defaults to `{"gamma": 0.5, "step_size": 200000, "last_epoch": -1}`. + lr_scheduler_disc (torch.optim.Scheduler): + Learning rate scheduler for the discriminator. Defaults to `ExponentialLR`. + lr_scheduler_dict_params (dict): + Parameters for the discriminator learning rate scheduler. Defaults to `{"gamma": 0.5, "step_size": 200000, "last_epoch": -1}`. + """ + + model: str = "parallel_wavegan" + + # Model specific params + discriminator_model: str = "parallel_wavegan_discriminator" + discriminator_model_params: dict = field(default_factory=lambda: {"num_layers": 10}) + generator_model: str = "parallel_wavegan_generator" + generator_model_params: dict = field( + default_factory=lambda: {"upsample_factors": [4, 4, 4, 4], "stacks": 3, "num_res_blocks": 30} + ) + + # Training - overrides + batch_size: int = 6 + seq_len: int = 25600 + pad_short: int = 2000 + use_noise_augment: bool = False + use_cache: bool = True + steps_to_start_discriminator: int = 200000 + + # LOSS PARAMETERS - overrides + use_stft_loss: bool = True + use_subband_stft_loss: bool = False + use_mse_gan_loss: bool = True + use_hinge_gan_loss: bool = False + use_feat_match_loss: bool = False # requires MelGAN Discriminators (MelGAN and HifiGAN) + use_l1_spec_loss: bool = False + + stft_loss_params: dict = field( + default_factory=lambda: { + "n_ffts": [1024, 2048, 512], + "hop_lengths": [120, 240, 50], + "win_lengths": [600, 1200, 240], + } + ) + + # loss weights - overrides + stft_loss_weight: float = 0.5 + subband_stft_loss_weight: float = 0 + mse_G_loss_weight: float = 2.5 + hinge_G_loss_weight: float = 0 + feat_match_loss_weight: float = 0 + l1_spec_loss_weight: float = 0 + + # optimizer overrides + lr_gen: float = 0.0002 # Initial learning rate. + lr_disc: float = 0.0002 # Initial learning rate. + optimizer: str = "AdamW" + optimizer_params: dict = field(default_factory=lambda: {"betas": [0.8, 0.99], "weight_decay": 0.0}) + lr_scheduler_gen: str = "StepLR" # one of the schedulers from https:#pytorch.org/docs/stable/optim.html + lr_scheduler_gen_params: dict = field(default_factory=lambda: {"gamma": 0.5, "step_size": 200000, "last_epoch": -1}) + lr_scheduler_disc: str = "StepLR" # one of the schedulers from https:#pytorch.org/docs/stable/optim.html + lr_scheduler_disc_params: dict = field( + default_factory=lambda: {"gamma": 0.5, "step_size": 200000, "last_epoch": -1} + ) + scheduler_after_epoch: bool = False diff --git a/TTS/TTS/vocoder/configs/shared_configs.py b/TTS/TTS/vocoder/configs/shared_configs.py new file mode 100644 index 0000000000000000000000000000000000000000..a558cfcabbc2abc26be60065d3ac75cebd829f28 --- /dev/null +++ b/TTS/TTS/vocoder/configs/shared_configs.py @@ -0,0 +1,182 @@ +from dataclasses import dataclass, field + +from TTS.config import BaseAudioConfig, BaseTrainingConfig + + +@dataclass +class BaseVocoderConfig(BaseTrainingConfig): + """Shared parameters among all the vocoder models. + Args: + audio (BaseAudioConfig): + Audio processor config instance. Defaultsto `BaseAudioConfig()`. + use_noise_augment (bool): + Augment the input audio with random noise. Defaults to False/ + eval_split_size (int): + Number of instances used for evaluation. Defaults to 10. + data_path (str): + Root path of the training data. All the audio files found recursively from this root path are used for + training. Defaults to `""`. + feature_path (str): + Root path to the precomputed feature files. Defaults to None. + seq_len (int): + Length of the waveform segments used for training. Defaults to 1000. + pad_short (int): + Extra padding for the waveforms shorter than `seq_len`. Defaults to 0. + conv_path (int): + Extra padding for the feature frames against convolution of the edge frames. Defaults to MISSING. + Defaults to 0. + use_cache (bool): + enable / disable in memory caching of the computed features. If the RAM is not enough, if may cause OOM. + Defaults to False. + epochs (int): + Number of training epochs to. Defaults to 10000. + wd (float): + Weight decay. + optimizer (torch.optim.Optimizer): + Optimizer used for the training. Defaults to `AdamW`. + optimizer_params (dict): + Optimizer kwargs. Defaults to `{"betas": [0.8, 0.99], "weight_decay": 0.0}` + """ + + audio: BaseAudioConfig = field(default_factory=BaseAudioConfig) + # dataloading + use_noise_augment: bool = False # enable/disable random noise augmentation in spectrograms. + eval_split_size: int = 10 # number of samples used for evaluation. + # dataset + data_path: str = "" # root data path. It finds all wav files recursively from there. + feature_path: str = None # if you use precomputed features + seq_len: int = 1000 # signal length used in training. + pad_short: int = 0 # additional padding for short wavs + conv_pad: int = 0 # additional padding against convolutions applied to spectrograms + use_cache: bool = False # use in memory cache to keep the computed features. This might cause OOM. + # OPTIMIZER + epochs: int = 10000 # total number of epochs to train. + wd: float = 0.0 # Weight decay weight. + optimizer: str = "AdamW" + optimizer_params: dict = field(default_factory=lambda: {"betas": [0.8, 0.99], "weight_decay": 0.0}) + + +@dataclass +class BaseGANVocoderConfig(BaseVocoderConfig): + """Base config class used among all the GAN based vocoders. + Args: + use_stft_loss (bool): + enable / disable the use of STFT loss. Defaults to True. + use_subband_stft_loss (bool): + enable / disable the use of Subband STFT loss. Defaults to True. + use_mse_gan_loss (bool): + enable / disable the use of Mean Squared Error based GAN loss. Defaults to True. + use_hinge_gan_loss (bool): + enable / disable the use of Hinge GAN loss. Defaults to True. + use_feat_match_loss (bool): + enable / disable feature matching loss. Defaults to True. + use_l1_spec_loss (bool): + enable / disable L1 spectrogram loss. Defaults to True. + stft_loss_weight (float): + Loss weight that multiplies the computed loss value. Defaults to 0. + subband_stft_loss_weight (float): + Loss weight that multiplies the computed loss value. Defaults to 0. + mse_G_loss_weight (float): + Loss weight that multiplies the computed loss value. Defaults to 1. + hinge_G_loss_weight (float): + Loss weight that multiplies the computed loss value. Defaults to 0. + feat_match_loss_weight (float): + Loss weight that multiplies the computed loss value. Defaults to 100. + l1_spec_loss_weight (float): + Loss weight that multiplies the computed loss value. Defaults to 45. + stft_loss_params (dict): + Parameters for the STFT loss. Defaults to `{"n_ffts": [1024, 2048, 512], "hop_lengths": [120, 240, 50], "win_lengths": [600, 1200, 240]}`. + l1_spec_loss_params (dict): + Parameters for the L1 spectrogram loss. Defaults to + `{ + "use_mel": True, + "sample_rate": 22050, + "n_fft": 1024, + "hop_length": 256, + "win_length": 1024, + "n_mels": 80, + "mel_fmin": 0.0, + "mel_fmax": None, + }` + target_loss (str): + Target loss name that defines the quality of the model. Defaults to `G_avg_loss`. + grad_clip (list): + A list of gradient clipping theresholds for each optimizer. Any value less than 0 disables clipping. + Defaults to [5, 5]. + lr_gen (float): + Generator model initial learning rate. Defaults to 0.0002. + lr_disc (float): + Discriminator model initial learning rate. Defaults to 0.0002. + lr_scheduler_gen (torch.optim.Scheduler): + Learning rate scheduler for the generator. Defaults to `ExponentialLR`. + lr_scheduler_gen_params (dict): + Parameters for the generator learning rate scheduler. Defaults to `{"gamma": 0.999, "last_epoch": -1}`. + lr_scheduler_disc (torch.optim.Scheduler): + Learning rate scheduler for the discriminator. Defaults to `ExponentialLR`. + lr_scheduler_disc_params (dict): + Parameters for the discriminator learning rate scheduler. Defaults to `{"gamma": 0.999, "last_epoch": -1}`. + scheduler_after_epoch (bool): + Whether to update the learning rate schedulers after each epoch. Defaults to True. + use_pqmf (bool): + enable / disable PQMF for subband approximation at training. Defaults to False. + steps_to_start_discriminator (int): + Number of steps required to start training the discriminator. Defaults to 0. + diff_samples_for_G_and_D (bool): + enable / disable use of different training samples for the generator and the discriminator iterations. + Enabling it results in slower iterations but faster convergance in some cases. Defaults to False. + """ + + model: str = "gan" + + # LOSS PARAMETERS + use_stft_loss: bool = True + use_subband_stft_loss: bool = True + use_mse_gan_loss: bool = True + use_hinge_gan_loss: bool = True + use_feat_match_loss: bool = True # requires MelGAN Discriminators (MelGAN and HifiGAN) + use_l1_spec_loss: bool = True + + # loss weights + stft_loss_weight: float = 0 + subband_stft_loss_weight: float = 0 + mse_G_loss_weight: float = 1 + hinge_G_loss_weight: float = 0 + feat_match_loss_weight: float = 100 + l1_spec_loss_weight: float = 45 + + stft_loss_params: dict = field( + default_factory=lambda: { + "n_ffts": [1024, 2048, 512], + "hop_lengths": [120, 240, 50], + "win_lengths": [600, 1200, 240], + } + ) + + l1_spec_loss_params: dict = field( + default_factory=lambda: { + "use_mel": True, + "sample_rate": 22050, + "n_fft": 1024, + "hop_length": 256, + "win_length": 1024, + "n_mels": 80, + "mel_fmin": 0.0, + "mel_fmax": None, + } + ) + + target_loss: str = "loss_0" # loss value to pick the best model to save after each epoch + + # optimizer + grad_clip: float = field(default_factory=lambda: [5, 5]) + lr_gen: float = 0.0002 # Initial learning rate. + lr_disc: float = 0.0002 # Initial learning rate. + lr_scheduler_gen: str = "ExponentialLR" # one of the schedulers from https:#pytorch.org/docs/stable/optim.html + lr_scheduler_gen_params: dict = field(default_factory=lambda: {"gamma": 0.999, "last_epoch": -1}) + lr_scheduler_disc: str = "ExponentialLR" # one of the schedulers from https:#pytorch.org/docs/stable/optim.html + lr_scheduler_disc_params: dict = field(default_factory=lambda: {"gamma": 0.999, "last_epoch": -1}) + scheduler_after_epoch: bool = True + + use_pqmf: bool = False # enable/disable using pqmf for multi-band training. (Multi-band MelGAN) + steps_to_start_discriminator = 0 # start training the discriminator after this number of steps. + diff_samples_for_G_and_D: bool = False # use different samples for G and D training steps. diff --git a/TTS/TTS/vocoder/configs/univnet_config.py b/TTS/TTS/vocoder/configs/univnet_config.py new file mode 100644 index 0000000000000000000000000000000000000000..67f324cfce5f701f0d7453beab81590bef6be114 --- /dev/null +++ b/TTS/TTS/vocoder/configs/univnet_config.py @@ -0,0 +1,161 @@ +from dataclasses import dataclass, field +from typing import Dict + +from TTS.vocoder.configs.shared_configs import BaseGANVocoderConfig + + +@dataclass +class UnivnetConfig(BaseGANVocoderConfig): + """Defines parameters for UnivNet vocoder. + + Example: + + >>> from TTS.vocoder.configs import UnivNetConfig + >>> config = UnivNetConfig() + + Args: + model (str): + Model name used for selecting the right model at initialization. Defaults to `UnivNet`. + discriminator_model (str): One of the discriminators from `TTS.vocoder.models.*_discriminator`. Defaults to + 'UnivNet_discriminator`. + generator_model (str): One of the generators from TTS.vocoder.models.*`. Every other non-GAN vocoder model is + considered as a generator too. Defaults to `UnivNet_generator`. + generator_model_params (dict): Parameters of the generator model. Defaults to + ` + { + "use_mel": True, + "sample_rate": 22050, + "n_fft": 1024, + "hop_length": 256, + "win_length": 1024, + "n_mels": 80, + "mel_fmin": 0.0, + "mel_fmax": None, + } + ` + batch_size (int): + Batch size used at training. Larger values use more memory. Defaults to 32. + seq_len (int): + Audio segment length used at training. Larger values use more memory. Defaults to 8192. + pad_short (int): + Additional padding applied to the audio samples shorter than `seq_len`. Defaults to 0. + use_noise_augment (bool): + enable / disable random noise added to the input waveform. The noise is added after computing the + features. Defaults to True. + use_cache (bool): + enable / disable in memory caching of the computed features. It can cause OOM error if the system RAM is + not large enough. Defaults to True. + use_stft_loss (bool): + enable / disable use of STFT loss originally used by ParallelWaveGAN model. Defaults to True. + use_subband_stft (bool): + enable / disable use of subband loss computation originally used by MultiBandMelgan model. Defaults to True. + use_mse_gan_loss (bool): + enable / disable using Mean Squeare Error GAN loss. Defaults to True. + use_hinge_gan_loss (bool): + enable / disable using Hinge GAN loss. You should choose either Hinge or MSE loss for training GAN models. + Defaults to False. + use_feat_match_loss (bool): + enable / disable using Feature Matching loss originally used by MelGAN model. Defaults to True. + use_l1_spec_loss (bool): + enable / disable using L1 spectrogram loss originally used by univnet model. Defaults to False. + stft_loss_params (dict): + STFT loss parameters. Default to + `{ + "n_ffts": [1024, 2048, 512], + "hop_lengths": [120, 240, 50], + "win_lengths": [600, 1200, 240] + }` + l1_spec_loss_params (dict): + L1 spectrogram loss parameters. Default to + `{ + "use_mel": True, + "sample_rate": 22050, + "n_fft": 1024, + "hop_length": 256, + "win_length": 1024, + "n_mels": 80, + "mel_fmin": 0.0, + "mel_fmax": None, + }` + stft_loss_weight (float): STFT loss weight that multiplies the computed loss before summing up the total + model loss. Defaults to 0.5. + subband_stft_loss_weight (float): + Subband STFT loss weight that multiplies the computed loss before summing up the total loss. Defaults to 0. + mse_G_loss_weight (float): + MSE generator loss weight that multiplies the computed loss before summing up the total loss. faults to 2.5. + hinge_G_loss_weight (float): + Hinge generator loss weight that multiplies the computed loss before summing up the total loss. Defaults to 0. + feat_match_loss_weight (float): + Feature matching loss weight that multiplies the computed loss before summing up the total loss. faults to 108. + l1_spec_loss_weight (float): + L1 spectrogram loss weight that multiplies the computed loss before summing up the total loss. Defaults to 0. + """ + + model: str = "univnet" + batch_size: int = 32 + # model specific params + discriminator_model: str = "univnet_discriminator" + generator_model: str = "univnet_generator" + generator_model_params: Dict = field( + default_factory=lambda: { + "in_channels": 64, + "out_channels": 1, + "hidden_channels": 32, + "cond_channels": 80, + "upsample_factors": [8, 8, 4], + "lvc_layers_each_block": 4, + "lvc_kernel_size": 3, + "kpnet_hidden_channels": 64, + "kpnet_conv_size": 3, + "dropout": 0.0, + } + ) + + # LOSS PARAMETERS - overrides + use_stft_loss: bool = True + use_subband_stft_loss: bool = False + use_mse_gan_loss: bool = True + use_hinge_gan_loss: bool = False + use_feat_match_loss: bool = False # requires MelGAN Discriminators (MelGAN and univnet) + use_l1_spec_loss: bool = False + + # loss weights - overrides + stft_loss_weight: float = 2.5 + stft_loss_params: Dict = field( + default_factory=lambda: { + "n_ffts": [1024, 2048, 512], + "hop_lengths": [120, 240, 50], + "win_lengths": [600, 1200, 240], + } + ) + subband_stft_loss_weight: float = 0 + mse_G_loss_weight: float = 1 + hinge_G_loss_weight: float = 0 + feat_match_loss_weight: float = 0 + l1_spec_loss_weight: float = 0 + l1_spec_loss_params: Dict = field( + default_factory=lambda: { + "use_mel": True, + "sample_rate": 22050, + "n_fft": 1024, + "hop_length": 256, + "win_length": 1024, + "n_mels": 80, + "mel_fmin": 0.0, + "mel_fmax": None, + } + ) + + # optimizer parameters + lr_gen: float = 1e-4 # Initial learning rate. + lr_disc: float = 1e-4 # Initial learning rate. + lr_scheduler_gen: str = None # one of the schedulers from https:#pytorch.org/docs/stable/optim.html + # lr_scheduler_gen_params: dict = field(default_factory=lambda: {"gamma": 0.999, "last_epoch": -1}) + lr_scheduler_disc: str = None # one of the schedulers from https:#pytorch.org/docs/stable/optim.html + # lr_scheduler_disc_params: dict = field(default_factory=lambda: {"gamma": 0.999, "last_epoch": -1}) + optimizer_params: Dict = field(default_factory=lambda: {"betas": [0.5, 0.9], "weight_decay": 0.0}) + steps_to_start_discriminator: int = 200000 + + def __post_init__(self): + super().__post_init__() + self.generator_model_params["cond_channels"] = self.audio.num_mels diff --git a/TTS/TTS/vocoder/configs/wavegrad_config.py b/TTS/TTS/vocoder/configs/wavegrad_config.py new file mode 100644 index 0000000000000000000000000000000000000000..c39813ae68c3d8c77614c9a5188ac5f2a59d991d --- /dev/null +++ b/TTS/TTS/vocoder/configs/wavegrad_config.py @@ -0,0 +1,90 @@ +from dataclasses import dataclass, field + +from TTS.vocoder.configs.shared_configs import BaseVocoderConfig +from TTS.vocoder.models.wavegrad import WavegradArgs + + +@dataclass +class WavegradConfig(BaseVocoderConfig): + """Defines parameters for WaveGrad vocoder. + Example: + + >>> from TTS.vocoder.configs import WavegradConfig + >>> config = WavegradConfig() + + Args: + model (str): + Model name used for selecting the right model at initialization. Defaults to `wavegrad`. + generator_model (str): One of the generators from TTS.vocoder.models.*`. Every other non-GAN vocoder model is + considered as a generator too. Defaults to `wavegrad`. + model_params (WavegradArgs): Model parameters. Check `WavegradArgs` for default values. + target_loss (str): + Target loss name that defines the quality of the model. Defaults to `avg_wavegrad_loss`. + epochs (int): + Number of epochs to traing the model. Defaults to 10000. + batch_size (int): + Batch size used at training. Larger values use more memory. Defaults to 96. + seq_len (int): + Audio segment length used at training. Larger values use more memory. Defaults to 6144. + use_cache (bool): + enable / disable in memory caching of the computed features. It can cause OOM error if the system RAM is + not large enough. Defaults to True. + mixed_precision (bool): + enable / disable mixed precision training. Default is True. + eval_split_size (int): + Number of samples used for evalutaion. Defaults to 50. + train_noise_schedule (dict): + Training noise schedule. Defaults to + `{"min_val": 1e-6, "max_val": 1e-2, "num_steps": 1000}` + test_noise_schedule (dict): + Inference noise schedule. For a better performance, you may need to use `bin/tune_wavegrad.py` to find a + better schedule. Defaults to + ` + { + "min_val": 1e-6, + "max_val": 1e-2, + "num_steps": 50, + } + ` + grad_clip (float): + Gradient clipping threshold. If <= 0.0, no clipping is applied. Defaults to 1.0 + lr (float): + Initila leraning rate. Defaults to 1e-4. + lr_scheduler (str): + One of the learning rate schedulers from `torch.optim.scheduler.*`. Defaults to `MultiStepLR`. + lr_scheduler_params (dict): + kwargs for the scheduler. Defaults to `{"gamma": 0.5, "milestones": [100000, 200000, 300000, 400000, 500000, 600000]}` + """ + + model: str = "wavegrad" + # Model specific params + generator_model: str = "wavegrad" + model_params: WavegradArgs = field(default_factory=WavegradArgs) + target_loss: str = "loss" # loss value to pick the best model to save after each epoch + + # Training - overrides + epochs: int = 10000 + batch_size: int = 96 + seq_len: int = 6144 + use_cache: bool = True + mixed_precision: bool = True + eval_split_size: int = 50 + + # NOISE SCHEDULE PARAMS + train_noise_schedule: dict = field(default_factory=lambda: {"min_val": 1e-6, "max_val": 1e-2, "num_steps": 1000}) + + test_noise_schedule: dict = field( + default_factory=lambda: { # inference noise schedule. Try TTS/bin/tune_wavegrad.py to find the optimal values. + "min_val": 1e-6, + "max_val": 1e-2, + "num_steps": 50, + } + ) + + # optimizer overrides + grad_clip: float = 1.0 + lr: float = 1e-4 # Initial learning rate. + lr_scheduler: str = "MultiStepLR" # one of the schedulers from https:#pytorch.org/docs/stable/optim.html + lr_scheduler_params: dict = field( + default_factory=lambda: {"gamma": 0.5, "milestones": [100000, 200000, 300000, 400000, 500000, 600000]} + ) diff --git a/TTS/TTS/vocoder/configs/wavernn_config.py b/TTS/TTS/vocoder/configs/wavernn_config.py new file mode 100644 index 0000000000000000000000000000000000000000..f39400e5e50b56d4ff79c8c148fd518b3ec3b390 --- /dev/null +++ b/TTS/TTS/vocoder/configs/wavernn_config.py @@ -0,0 +1,102 @@ +from dataclasses import dataclass, field + +from TTS.vocoder.configs.shared_configs import BaseVocoderConfig +from TTS.vocoder.models.wavernn import WavernnArgs + + +@dataclass +class WavernnConfig(BaseVocoderConfig): + """Defines parameters for Wavernn vocoder. + Example: + + >>> from TTS.vocoder.configs import WavernnConfig + >>> config = WavernnConfig() + + Args: + model (str): + Model name used for selecting the right model at initialization. Defaults to `wavernn`. + mode (str): + Output mode of the WaveRNN vocoder. `mold` for Mixture of Logistic Distribution, `gauss` for a single + Gaussian Distribution and `bits` for quantized bits as the model's output. + mulaw (bool): + enable / disable the use of Mulaw quantization for training. Only applicable if `mode == 'bits'`. Defaults + to `True`. + generator_model (str): + One of the generators from TTS.vocoder.models.*`. Every other non-GAN vocoder model is + considered as a generator too. Defaults to `WaveRNN`. + wavernn_model_params (dict): + kwargs for the WaveRNN model. Defaults to + `{ + "rnn_dims": 512, + "fc_dims": 512, + "compute_dims": 128, + "res_out_dims": 128, + "num_res_blocks": 10, + "use_aux_net": True, + "use_upsample_net": True, + "upsample_factors": [4, 8, 8] + }` + batched (bool): + enable / disable the batched inference. It speeds up the inference by splitting the input into segments and + processing the segments in a batch. Then it merges the outputs with a certain overlap and smoothing. If + you set it False, without CUDA, it is too slow to be practical. Defaults to True. + target_samples (int): + Size of the segments in batched mode. Defaults to 11000. + overlap_sampels (int): + Size of the overlap between consecutive segments. Defaults to 550. + batch_size (int): + Batch size used at training. Larger values use more memory. Defaults to 256. + seq_len (int): + Audio segment length used at training. Larger values use more memory. Defaults to 1280. + + use_noise_augment (bool): + enable / disable random noise added to the input waveform. The noise is added after computing the + features. Defaults to True. + use_cache (bool): + enable / disable in memory caching of the computed features. It can cause OOM error if the system RAM is + not large enough. Defaults to True. + mixed_precision (bool): + enable / disable mixed precision training. Default is True. + eval_split_size (int): + Number of samples used for evalutaion. Defaults to 50. + num_epochs_before_test (int): + Number of epochs waited to run the next evalution. Since inference takes some time, it is better to + wait some number of epochs not ot waste training time. Defaults to 10. + grad_clip (float): + Gradient clipping threshold. If <= 0.0, no clipping is applied. Defaults to 4.0 + lr (float): + Initila leraning rate. Defaults to 1e-4. + lr_scheduler (str): + One of the learning rate schedulers from `torch.optim.scheduler.*`. Defaults to `MultiStepLR`. + lr_scheduler_params (dict): + kwargs for the scheduler. Defaults to `{"gamma": 0.5, "milestones": [200000, 400000, 600000]}` + """ + + model: str = "wavernn" + + # Model specific params + model_args: WavernnArgs = field(default_factory=WavernnArgs) + target_loss: str = "loss" + + # Inference + batched: bool = True + target_samples: int = 11000 + overlap_samples: int = 550 + + # Training - overrides + epochs: int = 10000 + batch_size: int = 256 + seq_len: int = 1280 + use_noise_augment: bool = False + use_cache: bool = True + mixed_precision: bool = True + eval_split_size: int = 50 + num_epochs_before_test: int = ( + 10 # number of epochs to wait until the next test run (synthesizing a full audio clip). + ) + + # optimizer overrides + grad_clip: float = 4.0 + lr: float = 1e-4 # Initial learning rate. + lr_scheduler: str = "MultiStepLR" # one of the schedulers from https:#pytorch.org/docs/stable/optim.html + lr_scheduler_params: dict = field(default_factory=lambda: {"gamma": 0.5, "milestones": [200000, 400000, 600000]}) diff --git a/TTS/TTS/vocoder/datasets/__init__.py b/TTS/TTS/vocoder/datasets/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..871eb0d20276ffc691fd6da796bf65df6c23ea0d --- /dev/null +++ b/TTS/TTS/vocoder/datasets/__init__.py @@ -0,0 +1,58 @@ +from typing import List + +from coqpit import Coqpit +from torch.utils.data import Dataset + +from TTS.utils.audio import AudioProcessor +from TTS.vocoder.datasets.gan_dataset import GANDataset +from TTS.vocoder.datasets.preprocess import load_wav_data, load_wav_feat_data +from TTS.vocoder.datasets.wavegrad_dataset import WaveGradDataset +from TTS.vocoder.datasets.wavernn_dataset import WaveRNNDataset + + +def setup_dataset(config: Coqpit, ap: AudioProcessor, is_eval: bool, data_items: List, verbose: bool) -> Dataset: + if config.model.lower() in "gan": + dataset = GANDataset( + ap=ap, + items=data_items, + seq_len=config.seq_len, + hop_len=ap.hop_length, + pad_short=config.pad_short, + conv_pad=config.conv_pad, + return_pairs=config.diff_samples_for_G_and_D if "diff_samples_for_G_and_D" in config else False, + is_training=not is_eval, + return_segments=not is_eval, + use_noise_augment=config.use_noise_augment, + use_cache=config.use_cache, + verbose=verbose, + ) + dataset.shuffle_mapping() + elif config.model.lower() == "wavegrad": + dataset = WaveGradDataset( + ap=ap, + items=data_items, + seq_len=config.seq_len, + hop_len=ap.hop_length, + pad_short=config.pad_short, + conv_pad=config.conv_pad, + is_training=not is_eval, + return_segments=True, + use_noise_augment=False, + use_cache=config.use_cache, + verbose=verbose, + ) + elif config.model.lower() == "wavernn": + dataset = WaveRNNDataset( + ap=ap, + items=data_items, + seq_len=config.seq_len, + hop_len=ap.hop_length, + pad=config.model_params.pad, + mode=config.model_params.mode, + mulaw=config.model_params.mulaw, + is_training=not is_eval, + verbose=verbose, + ) + else: + raise ValueError(f" [!] Dataset for model {config.model.lower()} cannot be found.") + return dataset diff --git a/TTS/TTS/vocoder/datasets/gan_dataset.py b/TTS/TTS/vocoder/datasets/gan_dataset.py new file mode 100644 index 0000000000000000000000000000000000000000..50c38c4deb8fd861f7cef8144df3098c3558aeb4 --- /dev/null +++ b/TTS/TTS/vocoder/datasets/gan_dataset.py @@ -0,0 +1,152 @@ +import glob +import os +import random +from multiprocessing import Manager + +import numpy as np +import torch +from torch.utils.data import Dataset + + +class GANDataset(Dataset): + """ + GAN Dataset searchs for all the wav files under root path + and converts them to acoustic features on the fly and returns + random segments of (audio, feature) couples. + """ + + def __init__( + self, + ap, + items, + seq_len, + hop_len, + pad_short, + conv_pad=2, + return_pairs=False, + is_training=True, + return_segments=True, + use_noise_augment=False, + use_cache=False, + verbose=False, + ): + super().__init__() + self.ap = ap + self.item_list = items + self.compute_feat = not isinstance(items[0], (tuple, list)) + self.seq_len = seq_len + self.hop_len = hop_len + self.pad_short = pad_short + self.conv_pad = conv_pad + self.return_pairs = return_pairs + self.is_training = is_training + self.return_segments = return_segments + self.use_cache = use_cache + self.use_noise_augment = use_noise_augment + self.verbose = verbose + + assert seq_len % hop_len == 0, " [!] seq_len has to be a multiple of hop_len." + self.feat_frame_len = seq_len // hop_len + (2 * conv_pad) + + # map G and D instances + self.G_to_D_mappings = list(range(len(self.item_list))) + self.shuffle_mapping() + + # cache acoustic features + if use_cache: + self.create_feature_cache() + + def create_feature_cache(self): + self.manager = Manager() + self.cache = self.manager.list() + self.cache += [None for _ in range(len(self.item_list))] + + @staticmethod + def find_wav_files(path): + return glob.glob(os.path.join(path, "**", "*.wav"), recursive=True) + + def __len__(self): + return len(self.item_list) + + def __getitem__(self, idx): + """Return different items for Generator and Discriminator and + cache acoustic features""" + + # set the seed differently for each worker + if torch.utils.data.get_worker_info(): + random.seed(torch.utils.data.get_worker_info().seed) + + if self.return_segments: + item1 = self.load_item(idx) + if self.return_pairs: + idx2 = self.G_to_D_mappings[idx] + item2 = self.load_item(idx2) + return item1, item2 + return item1 + item1 = self.load_item(idx) + return item1 + + def _pad_short_samples(self, audio, mel=None): + """Pad samples shorter than the output sequence length""" + if len(audio) < self.seq_len: + audio = np.pad(audio, (0, self.seq_len - len(audio)), mode="constant", constant_values=0.0) + + if mel is not None and mel.shape[1] < self.feat_frame_len: + pad_value = self.ap.melspectrogram(np.zeros([self.ap.win_length]))[:, 0] + mel = np.pad( + mel, + ([0, 0], [0, self.feat_frame_len - mel.shape[1]]), + mode="constant", + constant_values=pad_value.mean(), + ) + return audio, mel + + def shuffle_mapping(self): + random.shuffle(self.G_to_D_mappings) + + def load_item(self, idx): + """load (audio, feat) couple""" + if self.compute_feat: + # compute features from wav + wavpath = self.item_list[idx] + # print(wavpath) + + if self.use_cache and self.cache[idx] is not None: + audio, mel = self.cache[idx] + else: + audio = self.ap.load_wav(wavpath) + mel = self.ap.melspectrogram(audio) + audio, mel = self._pad_short_samples(audio, mel) + else: + # load precomputed features + wavpath, feat_path = self.item_list[idx] + + if self.use_cache and self.cache[idx] is not None: + audio, mel = self.cache[idx] + else: + audio = self.ap.load_wav(wavpath) + mel = np.load(feat_path) + audio, mel = self._pad_short_samples(audio, mel) + + # correct the audio length wrt padding applied in stft + audio = np.pad(audio, (0, self.hop_len), mode="edge") + audio = audio[: mel.shape[-1] * self.hop_len] + assert ( + mel.shape[-1] * self.hop_len == audio.shape[-1] + ), f" [!] {mel.shape[-1] * self.hop_len} vs {audio.shape[-1]}" + + audio = torch.from_numpy(audio).float().unsqueeze(0) + mel = torch.from_numpy(mel).float().squeeze(0) + + if self.return_segments: + max_mel_start = mel.shape[1] - self.feat_frame_len + mel_start = random.randint(0, max_mel_start) + mel_end = mel_start + self.feat_frame_len + mel = mel[:, mel_start:mel_end] + + audio_start = mel_start * self.hop_len + audio = audio[:, audio_start : audio_start + self.seq_len] + + if self.use_noise_augment and self.is_training and self.return_segments: + audio = audio + (1 / 32768) * torch.randn_like(audio) + return (mel, audio) diff --git a/TTS/TTS/vocoder/datasets/preprocess.py b/TTS/TTS/vocoder/datasets/preprocess.py new file mode 100644 index 0000000000000000000000000000000000000000..0f69b812fa58949eadc78b450114f03b19e5c80c --- /dev/null +++ b/TTS/TTS/vocoder/datasets/preprocess.py @@ -0,0 +1,70 @@ +import glob +import os +from pathlib import Path + +import numpy as np +from coqpit import Coqpit +from tqdm import tqdm + +from TTS.utils.audio import AudioProcessor + + +def preprocess_wav_files(out_path: str, config: Coqpit, ap: AudioProcessor): + """Process wav and compute mel and quantized wave signal. + It is mainly used by WaveRNN dataloader. + + Args: + out_path (str): Parent folder path to save the files. + config (Coqpit): Model config. + ap (AudioProcessor): Audio processor. + """ + os.makedirs(os.path.join(out_path, "quant"), exist_ok=True) + os.makedirs(os.path.join(out_path, "mel"), exist_ok=True) + wav_files = find_wav_files(config.data_path) + for path in tqdm(wav_files): + wav_name = Path(path).stem + quant_path = os.path.join(out_path, "quant", wav_name + ".npy") + mel_path = os.path.join(out_path, "mel", wav_name + ".npy") + y = ap.load_wav(path) + mel = ap.melspectrogram(y) + np.save(mel_path, mel) + if isinstance(config.mode, int): + quant = ap.mulaw_encode(y, qc=config.mode) if config.model_args.mulaw else ap.quantize(y, bits=config.mode) + np.save(quant_path, quant) + + +def find_wav_files(data_path, file_ext="wav"): + wav_paths = glob.glob(os.path.join(data_path, "**", f"*.{file_ext}"), recursive=True) + return wav_paths + + +def find_feat_files(data_path): + feat_paths = glob.glob(os.path.join(data_path, "**", "*.npy"), recursive=True) + return feat_paths + + +def load_wav_data(data_path, eval_split_size, file_ext="wav"): + wav_paths = find_wav_files(data_path, file_ext=file_ext) + assert len(wav_paths) > 0, f" [!] {data_path} is empty." + np.random.seed(0) + np.random.shuffle(wav_paths) + return wav_paths[:eval_split_size], wav_paths[eval_split_size:] + + +def load_wav_feat_data(data_path, feat_path, eval_split_size): + wav_paths = find_wav_files(data_path) + feat_paths = find_feat_files(feat_path) + + wav_paths.sort(key=lambda x: Path(x).stem) + feat_paths.sort(key=lambda x: Path(x).stem) + + assert len(wav_paths) == len(feat_paths), f" [!] {len(wav_paths)} vs {feat_paths}" + for wav, feat in zip(wav_paths, feat_paths): + wav_name = Path(wav).stem + feat_name = Path(feat).stem + assert wav_name == feat_name + + items = list(zip(wav_paths, feat_paths)) + np.random.seed(0) + np.random.shuffle(items) + return items[:eval_split_size], items[eval_split_size:] diff --git a/TTS/TTS/vocoder/datasets/wavegrad_dataset.py b/TTS/TTS/vocoder/datasets/wavegrad_dataset.py new file mode 100644 index 0000000000000000000000000000000000000000..305fe430e3da880c03aee625525ce825c8ef87a3 --- /dev/null +++ b/TTS/TTS/vocoder/datasets/wavegrad_dataset.py @@ -0,0 +1,151 @@ +import glob +import os +import random +from multiprocessing import Manager +from typing import List, Tuple + +import numpy as np +import torch +from torch.utils.data import Dataset + + +class WaveGradDataset(Dataset): + """ + WaveGrad Dataset searchs for all the wav files under root path + and converts them to acoustic features on the fly and returns + random segments of (audio, feature) couples. + """ + + def __init__( + self, + ap, + items, + seq_len, + hop_len, + pad_short, + conv_pad=2, + is_training=True, + return_segments=True, + use_noise_augment=False, + use_cache=False, + verbose=False, + ): + super().__init__() + self.ap = ap + self.item_list = items + self.seq_len = seq_len if return_segments else None + self.hop_len = hop_len + self.pad_short = pad_short + self.conv_pad = conv_pad + self.is_training = is_training + self.return_segments = return_segments + self.use_cache = use_cache + self.use_noise_augment = use_noise_augment + self.verbose = verbose + + if return_segments: + assert seq_len % hop_len == 0, " [!] seq_len has to be a multiple of hop_len." + self.feat_frame_len = seq_len // hop_len + (2 * conv_pad) + + # cache acoustic features + if use_cache: + self.create_feature_cache() + + def create_feature_cache(self): + self.manager = Manager() + self.cache = self.manager.list() + self.cache += [None for _ in range(len(self.item_list))] + + @staticmethod + def find_wav_files(path): + return glob.glob(os.path.join(path, "**", "*.wav"), recursive=True) + + def __len__(self): + return len(self.item_list) + + def __getitem__(self, idx): + item = self.load_item(idx) + return item + + def load_test_samples(self, num_samples: int) -> List[Tuple]: + """Return test samples. + + Args: + num_samples (int): Number of samples to return. + + Returns: + List[Tuple]: melspectorgram and audio. + + Shapes: + - melspectrogram (Tensor): :math:`[C, T]` + - audio (Tensor): :math:`[T_audio]` + """ + samples = [] + return_segments = self.return_segments + self.return_segments = False + for idx in range(num_samples): + mel, audio = self.load_item(idx) + samples.append([mel, audio]) + self.return_segments = return_segments + return samples + + def load_item(self, idx): + """load (audio, feat) couple""" + # compute features from wav + wavpath = self.item_list[idx] + + if self.use_cache and self.cache[idx] is not None: + audio = self.cache[idx] + else: + audio = self.ap.load_wav(wavpath) + + if self.return_segments: + # correct audio length wrt segment length + if audio.shape[-1] < self.seq_len + self.pad_short: + audio = np.pad( + audio, (0, self.seq_len + self.pad_short - len(audio)), mode="constant", constant_values=0.0 + ) + assert ( + audio.shape[-1] >= self.seq_len + self.pad_short + ), f"{audio.shape[-1]} vs {self.seq_len + self.pad_short}" + + # correct the audio length wrt hop length + p = (audio.shape[-1] // self.hop_len + 1) * self.hop_len - audio.shape[-1] + audio = np.pad(audio, (0, p), mode="constant", constant_values=0.0) + + if self.use_cache: + self.cache[idx] = audio + + if self.return_segments: + max_start = len(audio) - self.seq_len + start = random.randint(0, max_start) + end = start + self.seq_len + audio = audio[start:end] + + if self.use_noise_augment and self.is_training and self.return_segments: + audio = audio + (1 / 32768) * torch.randn_like(audio) + + mel = self.ap.melspectrogram(audio) + mel = mel[..., :-1] # ignore the padding + + audio = torch.from_numpy(audio).float() + mel = torch.from_numpy(mel).float().squeeze(0) + return (mel, audio) + + @staticmethod + def collate_full_clips(batch): + """This is used in tune_wavegrad.py. + It pads sequences to the max length.""" + max_mel_length = max([b[0].shape[1] for b in batch]) if len(batch) > 1 else batch[0][0].shape[1] + max_audio_length = max([b[1].shape[0] for b in batch]) if len(batch) > 1 else batch[0][1].shape[0] + + mels = torch.zeros([len(batch), batch[0][0].shape[0], max_mel_length]) + audios = torch.zeros([len(batch), max_audio_length]) + + for idx, b in enumerate(batch): + mel = b[0] + audio = b[1] + mels[idx, :, : mel.shape[1]] = mel + audios[idx, : audio.shape[0]] = audio + + return mels, audios diff --git a/TTS/TTS/vocoder/datasets/wavernn_dataset.py b/TTS/TTS/vocoder/datasets/wavernn_dataset.py new file mode 100644 index 0000000000000000000000000000000000000000..c3907964285f2a11de401e40e78e8cd4dd6a2918 --- /dev/null +++ b/TTS/TTS/vocoder/datasets/wavernn_dataset.py @@ -0,0 +1,114 @@ +import numpy as np +import torch +from torch.utils.data import Dataset + + +class WaveRNNDataset(Dataset): + """ + WaveRNN Dataset searchs for all the wav files under root path + and converts them to acoustic features on the fly. + """ + + def __init__( + self, ap, items, seq_len, hop_len, pad, mode, mulaw, is_training=True, verbose=False, return_segments=True + ): + super().__init__() + self.ap = ap + self.compute_feat = not isinstance(items[0], (tuple, list)) + self.item_list = items + self.seq_len = seq_len + self.hop_len = hop_len + self.mel_len = seq_len // hop_len + self.pad = pad + self.mode = mode + self.mulaw = mulaw + self.is_training = is_training + self.verbose = verbose + self.return_segments = return_segments + + assert self.seq_len % self.hop_len == 0 + + def __len__(self): + return len(self.item_list) + + def __getitem__(self, index): + item = self.load_item(index) + return item + + def load_test_samples(self, num_samples): + samples = [] + return_segments = self.return_segments + self.return_segments = False + for idx in range(num_samples): + mel, audio, _ = self.load_item(idx) + samples.append([mel, audio]) + self.return_segments = return_segments + return samples + + def load_item(self, index): + """ + load (audio, feat) couple if feature_path is set + else compute it on the fly + """ + if self.compute_feat: + wavpath = self.item_list[index] + audio = self.ap.load_wav(wavpath) + if self.return_segments: + min_audio_len = 2 * self.seq_len + (2 * self.pad * self.hop_len) + else: + min_audio_len = audio.shape[0] + (2 * self.pad * self.hop_len) + if audio.shape[0] < min_audio_len: + print(" [!] Instance is too short! : {}".format(wavpath)) + audio = np.pad(audio, [0, min_audio_len - audio.shape[0] + self.hop_len]) + mel = self.ap.melspectrogram(audio) + + if self.mode in ["gauss", "mold"]: + x_input = audio + elif isinstance(self.mode, int): + x_input = ( + self.ap.mulaw_encode(audio, qc=self.mode) if self.mulaw else self.ap.quantize(audio, bits=self.mode) + ) + else: + raise RuntimeError("Unknown dataset mode - ", self.mode) + + else: + wavpath, feat_path = self.item_list[index] + mel = np.load(feat_path.replace("/quant/", "/mel/")) + + if mel.shape[-1] < self.mel_len + 2 * self.pad: + print(" [!] Instance is too short! : {}".format(wavpath)) + self.item_list[index] = self.item_list[index + 1] + feat_path = self.item_list[index] + mel = np.load(feat_path.replace("/quant/", "/mel/")) + if self.mode in ["gauss", "mold"]: + x_input = self.ap.load_wav(wavpath) + elif isinstance(self.mode, int): + x_input = np.load(feat_path.replace("/mel/", "/quant/")) + else: + raise RuntimeError("Unknown dataset mode - ", self.mode) + + return mel, x_input, wavpath + + def collate(self, batch): + mel_win = self.seq_len // self.hop_len + 2 * self.pad + max_offsets = [x[0].shape[-1] - (mel_win + 2 * self.pad) for x in batch] + + mel_offsets = [np.random.randint(0, offset) for offset in max_offsets] + sig_offsets = [(offset + self.pad) * self.hop_len for offset in mel_offsets] + + mels = [x[0][:, mel_offsets[i] : mel_offsets[i] + mel_win] for i, x in enumerate(batch)] + + coarse = [x[1][sig_offsets[i] : sig_offsets[i] + self.seq_len + 1] for i, x in enumerate(batch)] + + mels = np.stack(mels).astype(np.float32) + if self.mode in ["gauss", "mold"]: + coarse = np.stack(coarse).astype(np.float32) + coarse = torch.FloatTensor(coarse) + x_input = coarse[:, : self.seq_len] + elif isinstance(self.mode, int): + coarse = np.stack(coarse).astype(np.int64) + coarse = torch.LongTensor(coarse) + x_input = 2 * coarse[:, : self.seq_len].float() / (2**self.mode - 1.0) - 1.0 + y_coarse = coarse[:, 1:] + mels = torch.FloatTensor(mels) + return x_input, mels, y_coarse diff --git a/TTS/TTS/vocoder/layers/__init__.py b/TTS/TTS/vocoder/layers/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/TTS/TTS/vocoder/layers/hifigan.py b/TTS/TTS/vocoder/layers/hifigan.py new file mode 100644 index 0000000000000000000000000000000000000000..f51200724887b04746a125b7d7c368e0315ce7da --- /dev/null +++ b/TTS/TTS/vocoder/layers/hifigan.py @@ -0,0 +1,53 @@ +from torch import nn + + +# pylint: disable=dangerous-default-value +class ResStack(nn.Module): + def __init__(self, kernel, channel, padding, dilations=[1, 3, 5]): + super().__init__() + resstack = [] + for dilation in dilations: + resstack += [ + nn.LeakyReLU(0.2), + nn.ReflectionPad1d(dilation), + nn.utils.weight_norm(nn.Conv1d(channel, channel, kernel_size=kernel, dilation=dilation)), + nn.LeakyReLU(0.2), + nn.ReflectionPad1d(padding), + nn.utils.weight_norm(nn.Conv1d(channel, channel, kernel_size=1)), + ] + self.resstack = nn.Sequential(*resstack) + + self.shortcut = nn.utils.weight_norm(nn.Conv1d(channel, channel, kernel_size=1)) + + def forward(self, x): + x1 = self.shortcut(x) + x2 = self.resstack(x) + return x1 + x2 + + def remove_weight_norm(self): + nn.utils.remove_weight_norm(self.shortcut) + nn.utils.remove_weight_norm(self.resstack[2]) + nn.utils.remove_weight_norm(self.resstack[5]) + nn.utils.remove_weight_norm(self.resstack[8]) + nn.utils.remove_weight_norm(self.resstack[11]) + nn.utils.remove_weight_norm(self.resstack[14]) + nn.utils.remove_weight_norm(self.resstack[17]) + + +class MRF(nn.Module): + def __init__(self, kernels, channel, dilations=[1, 3, 5]): # # pylint: disable=dangerous-default-value + super().__init__() + self.resblock1 = ResStack(kernels[0], channel, 0, dilations) + self.resblock2 = ResStack(kernels[1], channel, 6, dilations) + self.resblock3 = ResStack(kernels[2], channel, 12, dilations) + + def forward(self, x): + x1 = self.resblock1(x) + x2 = self.resblock2(x) + x3 = self.resblock3(x) + return x1 + x2 + x3 + + def remove_weight_norm(self): + self.resblock1.remove_weight_norm() + self.resblock2.remove_weight_norm() + self.resblock3.remove_weight_norm() diff --git a/TTS/TTS/vocoder/layers/losses.py b/TTS/TTS/vocoder/layers/losses.py new file mode 100644 index 0000000000000000000000000000000000000000..befc43cca6ff3a3477cdcfbfcb0593d28f60d2c6 --- /dev/null +++ b/TTS/TTS/vocoder/layers/losses.py @@ -0,0 +1,368 @@ +from typing import Dict, Union + +import torch +from torch import nn +from torch.nn import functional as F + +from TTS.utils.audio.torch_transforms import TorchSTFT +from TTS.vocoder.utils.distribution import discretized_mix_logistic_loss, gaussian_loss + +################################# +# GENERATOR LOSSES +################################# + + +class STFTLoss(nn.Module): + """STFT loss. Input generate and real waveforms are converted + to spectrograms compared with L1 and Spectral convergence losses. + It is from ParallelWaveGAN paper https://arxiv.org/pdf/1910.11480.pdf""" + + def __init__(self, n_fft, hop_length, win_length): + super().__init__() + self.n_fft = n_fft + self.hop_length = hop_length + self.win_length = win_length + self.stft = TorchSTFT(n_fft, hop_length, win_length) + + def forward(self, y_hat, y): + y_hat_M = self.stft(y_hat) + y_M = self.stft(y) + # magnitude loss + loss_mag = F.l1_loss(torch.log(y_M), torch.log(y_hat_M)) + # spectral convergence loss + loss_sc = torch.norm(y_M - y_hat_M, p="fro") / torch.norm(y_M, p="fro") + return loss_mag, loss_sc + + +class MultiScaleSTFTLoss(torch.nn.Module): + """Multi-scale STFT loss. Input generate and real waveforms are converted + to spectrograms compared with L1 and Spectral convergence losses. + It is from ParallelWaveGAN paper https://arxiv.org/pdf/1910.11480.pdf""" + + def __init__(self, n_ffts=(1024, 2048, 512), hop_lengths=(120, 240, 50), win_lengths=(600, 1200, 240)): + super().__init__() + self.loss_funcs = torch.nn.ModuleList() + for n_fft, hop_length, win_length in zip(n_ffts, hop_lengths, win_lengths): + self.loss_funcs.append(STFTLoss(n_fft, hop_length, win_length)) + + def forward(self, y_hat, y): + N = len(self.loss_funcs) + loss_sc = 0 + loss_mag = 0 + for f in self.loss_funcs: + lm, lsc = f(y_hat, y) + loss_mag += lm + loss_sc += lsc + loss_sc /= N + loss_mag /= N + return loss_mag, loss_sc + + +class L1SpecLoss(nn.Module): + """L1 Loss over Spectrograms as described in HiFiGAN paper https://arxiv.org/pdf/2010.05646.pdf""" + + def __init__( + self, sample_rate, n_fft, hop_length, win_length, mel_fmin=None, mel_fmax=None, n_mels=None, use_mel=True + ): + super().__init__() + self.use_mel = use_mel + self.stft = TorchSTFT( + n_fft, + hop_length, + win_length, + sample_rate=sample_rate, + mel_fmin=mel_fmin, + mel_fmax=mel_fmax, + n_mels=n_mels, + use_mel=use_mel, + ) + + def forward(self, y_hat, y): + y_hat_M = self.stft(y_hat) + y_M = self.stft(y) + # magnitude loss + loss_mag = F.l1_loss(torch.log(y_M), torch.log(y_hat_M)) + return loss_mag + + +class MultiScaleSubbandSTFTLoss(MultiScaleSTFTLoss): + """Multiscale STFT loss for multi band model outputs. + From MultiBand-MelGAN paper https://arxiv.org/abs/2005.05106""" + + # pylint: disable=no-self-use + def forward(self, y_hat, y): + y_hat = y_hat.view(-1, 1, y_hat.shape[2]) + y = y.view(-1, 1, y.shape[2]) + return super().forward(y_hat.squeeze(1), y.squeeze(1)) + + +class MSEGLoss(nn.Module): + """Mean Squared Generator Loss""" + + # pylint: disable=no-self-use + def forward(self, score_real): + loss_fake = F.mse_loss(score_real, score_real.new_ones(score_real.shape)) + return loss_fake + + +class HingeGLoss(nn.Module): + """Hinge Discriminator Loss""" + + # pylint: disable=no-self-use + def forward(self, score_real): + # TODO: this might be wrong + loss_fake = torch.mean(F.relu(1.0 - score_real)) + return loss_fake + + +################################## +# DISCRIMINATOR LOSSES +################################## + + +class MSEDLoss(nn.Module): + """Mean Squared Discriminator Loss""" + + def __init__( + self, + ): + super().__init__() + self.loss_func = nn.MSELoss() + + # pylint: disable=no-self-use + def forward(self, score_fake, score_real): + loss_real = self.loss_func(score_real, score_real.new_ones(score_real.shape)) + loss_fake = self.loss_func(score_fake, score_fake.new_zeros(score_fake.shape)) + loss_d = loss_real + loss_fake + return loss_d, loss_real, loss_fake + + +class HingeDLoss(nn.Module): + """Hinge Discriminator Loss""" + + # pylint: disable=no-self-use + def forward(self, score_fake, score_real): + loss_real = torch.mean(F.relu(1.0 - score_real)) + loss_fake = torch.mean(F.relu(1.0 + score_fake)) + loss_d = loss_real + loss_fake + return loss_d, loss_real, loss_fake + + +class MelganFeatureLoss(nn.Module): + def __init__( + self, + ): + super().__init__() + self.loss_func = nn.L1Loss() + + # pylint: disable=no-self-use + def forward(self, fake_feats, real_feats): + loss_feats = 0 + num_feats = 0 + for idx, _ in enumerate(fake_feats): + for fake_feat, real_feat in zip(fake_feats[idx], real_feats[idx]): + loss_feats += self.loss_func(fake_feat, real_feat) + num_feats += 1 + loss_feats = loss_feats / num_feats + return loss_feats + + +##################################### +# LOSS WRAPPERS +##################################### + + +def _apply_G_adv_loss(scores_fake, loss_func): + """Compute G adversarial loss function + and normalize values""" + adv_loss = 0 + if isinstance(scores_fake, list): + for score_fake in scores_fake: + fake_loss = loss_func(score_fake) + adv_loss += fake_loss + adv_loss /= len(scores_fake) + else: + fake_loss = loss_func(scores_fake) + adv_loss = fake_loss + return adv_loss + + +def _apply_D_loss(scores_fake, scores_real, loss_func): + """Compute D loss func and normalize loss values""" + loss = 0 + real_loss = 0 + fake_loss = 0 + if isinstance(scores_fake, list): + # multi-scale loss + for score_fake, score_real in zip(scores_fake, scores_real): + total_loss, real_loss, fake_loss = loss_func(score_fake=score_fake, score_real=score_real) + loss += total_loss + real_loss += real_loss + fake_loss += fake_loss + # normalize loss values with number of scales (discriminators) + loss /= len(scores_fake) + real_loss /= len(scores_real) + fake_loss /= len(scores_fake) + else: + # single scale loss + total_loss, real_loss, fake_loss = loss_func(scores_fake, scores_real) + loss = total_loss + return loss, real_loss, fake_loss + + +################################## +# MODEL LOSSES +################################## + + +class GeneratorLoss(nn.Module): + """Generator Loss Wrapper. Based on model configuration it sets a right set of loss functions and computes + losses. It allows to experiment with different combinations of loss functions with different models by just + changing configurations. + + Args: + C (AttrDict): model configuration. + """ + + def __init__(self, C): + super().__init__() + assert not ( + C.use_mse_gan_loss and C.use_hinge_gan_loss + ), " [!] Cannot use HingeGANLoss and MSEGANLoss together." + + self.use_stft_loss = C.use_stft_loss if "use_stft_loss" in C else False + self.use_subband_stft_loss = C.use_subband_stft_loss if "use_subband_stft_loss" in C else False + self.use_mse_gan_loss = C.use_mse_gan_loss if "use_mse_gan_loss" in C else False + self.use_hinge_gan_loss = C.use_hinge_gan_loss if "use_hinge_gan_loss" in C else False + self.use_feat_match_loss = C.use_feat_match_loss if "use_feat_match_loss" in C else False + self.use_l1_spec_loss = C.use_l1_spec_loss if "use_l1_spec_loss" in C else False + + self.stft_loss_weight = C.stft_loss_weight if "stft_loss_weight" in C else 0.0 + self.subband_stft_loss_weight = C.subband_stft_loss_weight if "subband_stft_loss_weight" in C else 0.0 + self.mse_gan_loss_weight = C.mse_G_loss_weight if "mse_G_loss_weight" in C else 0.0 + self.hinge_gan_loss_weight = C.hinge_G_loss_weight if "hinde_G_loss_weight" in C else 0.0 + self.feat_match_loss_weight = C.feat_match_loss_weight if "feat_match_loss_weight" in C else 0.0 + self.l1_spec_loss_weight = C.l1_spec_loss_weight if "l1_spec_loss_weight" in C else 0.0 + + if C.use_stft_loss: + self.stft_loss = MultiScaleSTFTLoss(**C.stft_loss_params) + if C.use_subband_stft_loss: + self.subband_stft_loss = MultiScaleSubbandSTFTLoss(**C.subband_stft_loss_params) + if C.use_mse_gan_loss: + self.mse_loss = MSEGLoss() + if C.use_hinge_gan_loss: + self.hinge_loss = HingeGLoss() + if C.use_feat_match_loss: + self.feat_match_loss = MelganFeatureLoss() + if C.use_l1_spec_loss: + assert C.audio["sample_rate"] == C.l1_spec_loss_params["sample_rate"] + self.l1_spec_loss = L1SpecLoss(**C.l1_spec_loss_params) + + def forward( + self, y_hat=None, y=None, scores_fake=None, feats_fake=None, feats_real=None, y_hat_sub=None, y_sub=None + ): + gen_loss = 0 + adv_loss = 0 + return_dict = {} + + # STFT Loss + if self.use_stft_loss: + stft_loss_mg, stft_loss_sc = self.stft_loss(y_hat[:, :, : y.size(2)].squeeze(1), y.squeeze(1)) + return_dict["G_stft_loss_mg"] = stft_loss_mg + return_dict["G_stft_loss_sc"] = stft_loss_sc + gen_loss = gen_loss + self.stft_loss_weight * (stft_loss_mg + stft_loss_sc) + + # L1 Spec loss + if self.use_l1_spec_loss: + l1_spec_loss = self.l1_spec_loss(y_hat, y) + return_dict["G_l1_spec_loss"] = l1_spec_loss + gen_loss = gen_loss + self.l1_spec_loss_weight * l1_spec_loss + + # subband STFT Loss + if self.use_subband_stft_loss: + subband_stft_loss_mg, subband_stft_loss_sc = self.subband_stft_loss(y_hat_sub, y_sub) + return_dict["G_subband_stft_loss_mg"] = subband_stft_loss_mg + return_dict["G_subband_stft_loss_sc"] = subband_stft_loss_sc + gen_loss = gen_loss + self.subband_stft_loss_weight * (subband_stft_loss_mg + subband_stft_loss_sc) + + # multiscale MSE adversarial loss + if self.use_mse_gan_loss and scores_fake is not None: + mse_fake_loss = _apply_G_adv_loss(scores_fake, self.mse_loss) + return_dict["G_mse_fake_loss"] = mse_fake_loss + adv_loss = adv_loss + self.mse_gan_loss_weight * mse_fake_loss + + # multiscale Hinge adversarial loss + if self.use_hinge_gan_loss and not scores_fake is not None: + hinge_fake_loss = _apply_G_adv_loss(scores_fake, self.hinge_loss) + return_dict["G_hinge_fake_loss"] = hinge_fake_loss + adv_loss = adv_loss + self.hinge_gan_loss_weight * hinge_fake_loss + + # Feature Matching Loss + if self.use_feat_match_loss and not feats_fake is None: + feat_match_loss = self.feat_match_loss(feats_fake, feats_real) + return_dict["G_feat_match_loss"] = feat_match_loss + adv_loss = adv_loss + self.feat_match_loss_weight * feat_match_loss + return_dict["loss"] = gen_loss + adv_loss + return_dict["G_gen_loss"] = gen_loss + return_dict["G_adv_loss"] = adv_loss + return return_dict + + +class DiscriminatorLoss(nn.Module): + """Like ```GeneratorLoss```""" + + def __init__(self, C): + super().__init__() + assert not ( + C.use_mse_gan_loss and C.use_hinge_gan_loss + ), " [!] Cannot use HingeGANLoss and MSEGANLoss together." + + self.use_mse_gan_loss = C.use_mse_gan_loss + self.use_hinge_gan_loss = C.use_hinge_gan_loss + + if C.use_mse_gan_loss: + self.mse_loss = MSEDLoss() + if C.use_hinge_gan_loss: + self.hinge_loss = HingeDLoss() + + def forward(self, scores_fake, scores_real): + loss = 0 + return_dict = {} + + if self.use_mse_gan_loss: + mse_D_loss, mse_D_real_loss, mse_D_fake_loss = _apply_D_loss( + scores_fake=scores_fake, scores_real=scores_real, loss_func=self.mse_loss + ) + return_dict["D_mse_gan_loss"] = mse_D_loss + return_dict["D_mse_gan_real_loss"] = mse_D_real_loss + return_dict["D_mse_gan_fake_loss"] = mse_D_fake_loss + loss += mse_D_loss + + if self.use_hinge_gan_loss: + hinge_D_loss, hinge_D_real_loss, hinge_D_fake_loss = _apply_D_loss( + scores_fake=scores_fake, scores_real=scores_real, loss_func=self.hinge_loss + ) + return_dict["D_hinge_gan_loss"] = hinge_D_loss + return_dict["D_hinge_gan_real_loss"] = hinge_D_real_loss + return_dict["D_hinge_gan_fake_loss"] = hinge_D_fake_loss + loss += hinge_D_loss + + return_dict["loss"] = loss + return return_dict + + +class WaveRNNLoss(nn.Module): + def __init__(self, wave_rnn_mode: Union[str, int]): + super().__init__() + if wave_rnn_mode == "mold": + self.loss_func = discretized_mix_logistic_loss + elif wave_rnn_mode == "gauss": + self.loss_func = gaussian_loss + elif isinstance(wave_rnn_mode, int): + self.loss_func = torch.nn.CrossEntropyLoss() + else: + raise ValueError(" [!] Unknown mode for Wavernn.") + + def forward(self, y_hat, y) -> Dict: + loss = self.loss_func(y_hat, y) + return {"loss": loss} diff --git a/TTS/TTS/vocoder/layers/lvc_block.py b/TTS/TTS/vocoder/layers/lvc_block.py new file mode 100644 index 0000000000000000000000000000000000000000..8913a1132ec769fd304077412289c01c0d1cb17b --- /dev/null +++ b/TTS/TTS/vocoder/layers/lvc_block.py @@ -0,0 +1,198 @@ +import torch +import torch.nn.functional as F + + +class KernelPredictor(torch.nn.Module): + """Kernel predictor for the location-variable convolutions""" + + def __init__( # pylint: disable=dangerous-default-value + self, + cond_channels, + conv_in_channels, + conv_out_channels, + conv_layers, + conv_kernel_size=3, + kpnet_hidden_channels=64, + kpnet_conv_size=3, + kpnet_dropout=0.0, + kpnet_nonlinear_activation="LeakyReLU", + kpnet_nonlinear_activation_params={"negative_slope": 0.1}, + ): + """ + Args: + cond_channels (int): number of channel for the conditioning sequence, + conv_in_channels (int): number of channel for the input sequence, + conv_out_channels (int): number of channel for the output sequence, + conv_layers (int): + kpnet_ + """ + super().__init__() + + self.conv_in_channels = conv_in_channels + self.conv_out_channels = conv_out_channels + self.conv_kernel_size = conv_kernel_size + self.conv_layers = conv_layers + + l_w = conv_in_channels * conv_out_channels * conv_kernel_size * conv_layers + l_b = conv_out_channels * conv_layers + + padding = (kpnet_conv_size - 1) // 2 + self.input_conv = torch.nn.Sequential( + torch.nn.Conv1d(cond_channels, kpnet_hidden_channels, 5, padding=(5 - 1) // 2, bias=True), + getattr(torch.nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params), + ) + + self.residual_conv = torch.nn.Sequential( + torch.nn.Dropout(kpnet_dropout), + torch.nn.Conv1d(kpnet_hidden_channels, kpnet_hidden_channels, kpnet_conv_size, padding=padding, bias=True), + getattr(torch.nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params), + torch.nn.Conv1d(kpnet_hidden_channels, kpnet_hidden_channels, kpnet_conv_size, padding=padding, bias=True), + getattr(torch.nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params), + torch.nn.Dropout(kpnet_dropout), + torch.nn.Conv1d(kpnet_hidden_channels, kpnet_hidden_channels, kpnet_conv_size, padding=padding, bias=True), + getattr(torch.nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params), + torch.nn.Conv1d(kpnet_hidden_channels, kpnet_hidden_channels, kpnet_conv_size, padding=padding, bias=True), + getattr(torch.nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params), + torch.nn.Dropout(kpnet_dropout), + torch.nn.Conv1d(kpnet_hidden_channels, kpnet_hidden_channels, kpnet_conv_size, padding=padding, bias=True), + getattr(torch.nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params), + torch.nn.Conv1d(kpnet_hidden_channels, kpnet_hidden_channels, kpnet_conv_size, padding=padding, bias=True), + getattr(torch.nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params), + ) + + self.kernel_conv = torch.nn.Conv1d(kpnet_hidden_channels, l_w, kpnet_conv_size, padding=padding, bias=True) + self.bias_conv = torch.nn.Conv1d(kpnet_hidden_channels, l_b, kpnet_conv_size, padding=padding, bias=True) + + def forward(self, c): + """ + Args: + c (Tensor): the conditioning sequence (batch, cond_channels, cond_length) + Returns: + """ + batch, _, cond_length = c.shape + + c = self.input_conv(c) + c = c + self.residual_conv(c) + k = self.kernel_conv(c) + b = self.bias_conv(c) + + kernels = k.contiguous().view( + batch, self.conv_layers, self.conv_in_channels, self.conv_out_channels, self.conv_kernel_size, cond_length + ) + bias = b.contiguous().view(batch, self.conv_layers, self.conv_out_channels, cond_length) + return kernels, bias + + +class LVCBlock(torch.nn.Module): + """the location-variable convolutions""" + + def __init__( + self, + in_channels, + cond_channels, + upsample_ratio, + conv_layers=4, + conv_kernel_size=3, + cond_hop_length=256, + kpnet_hidden_channels=64, + kpnet_conv_size=3, + kpnet_dropout=0.0, + ): + super().__init__() + + self.cond_hop_length = cond_hop_length + self.conv_layers = conv_layers + self.conv_kernel_size = conv_kernel_size + self.convs = torch.nn.ModuleList() + + self.upsample = torch.nn.ConvTranspose1d( + in_channels, + in_channels, + kernel_size=upsample_ratio * 2, + stride=upsample_ratio, + padding=upsample_ratio // 2 + upsample_ratio % 2, + output_padding=upsample_ratio % 2, + ) + + self.kernel_predictor = KernelPredictor( + cond_channels=cond_channels, + conv_in_channels=in_channels, + conv_out_channels=2 * in_channels, + conv_layers=conv_layers, + conv_kernel_size=conv_kernel_size, + kpnet_hidden_channels=kpnet_hidden_channels, + kpnet_conv_size=kpnet_conv_size, + kpnet_dropout=kpnet_dropout, + ) + + for i in range(conv_layers): + padding = (3**i) * int((conv_kernel_size - 1) / 2) + conv = torch.nn.Conv1d( + in_channels, in_channels, kernel_size=conv_kernel_size, padding=padding, dilation=3**i + ) + + self.convs.append(conv) + + def forward(self, x, c): + """forward propagation of the location-variable convolutions. + Args: + x (Tensor): the input sequence (batch, in_channels, in_length) + c (Tensor): the conditioning sequence (batch, cond_channels, cond_length) + + Returns: + Tensor: the output sequence (batch, in_channels, in_length) + """ + in_channels = x.shape[1] + kernels, bias = self.kernel_predictor(c) + + x = F.leaky_relu(x, 0.2) + x = self.upsample(x) + + for i in range(self.conv_layers): + y = F.leaky_relu(x, 0.2) + y = self.convs[i](y) + y = F.leaky_relu(y, 0.2) + + k = kernels[:, i, :, :, :, :] + b = bias[:, i, :, :] + y = self.location_variable_convolution(y, k, b, 1, self.cond_hop_length) + x = x + torch.sigmoid(y[:, :in_channels, :]) * torch.tanh(y[:, in_channels:, :]) + return x + + @staticmethod + def location_variable_convolution(x, kernel, bias, dilation, hop_size): + """perform location-variable convolution operation on the input sequence (x) using the local convolution kernl. + Time: 414 ฮผs ยฑ 309 ns per loop (mean ยฑ std. dev. of 7 runs, 1000 loops each), test on NVIDIA V100. + Args: + x (Tensor): the input sequence (batch, in_channels, in_length). + kernel (Tensor): the local convolution kernel (batch, in_channel, out_channels, kernel_size, kernel_length) + bias (Tensor): the bias for the local convolution (batch, out_channels, kernel_length) + dilation (int): the dilation of convolution. + hop_size (int): the hop_size of the conditioning sequence. + Returns: + (Tensor): the output sequence after performing local convolution. (batch, out_channels, in_length). + """ + batch, _, in_length = x.shape + batch, _, out_channels, kernel_size, kernel_length = kernel.shape + + assert in_length == ( + kernel_length * hop_size + ), f"length of (x, kernel) is not matched, {in_length} vs {kernel_length * hop_size}" + + padding = dilation * int((kernel_size - 1) / 2) + x = F.pad(x, (padding, padding), "constant", 0) # (batch, in_channels, in_length + 2*padding) + x = x.unfold(2, hop_size + 2 * padding, hop_size) # (batch, in_channels, kernel_length, hop_size + 2*padding) + + if hop_size < dilation: + x = F.pad(x, (0, dilation), "constant", 0) + x = x.unfold( + 3, dilation, dilation + ) # (batch, in_channels, kernel_length, (hop_size + 2*padding)/dilation, dilation) + x = x[:, :, :, :, :hop_size] + x = x.transpose(3, 4) # (batch, in_channels, kernel_length, dilation, (hop_size + 2*padding)/dilation) + x = x.unfold(4, kernel_size, 1) # (batch, in_channels, kernel_length, dilation, _, kernel_size) + + o = torch.einsum("bildsk,biokl->bolsd", x, kernel) + o = o + bias.unsqueeze(-1).unsqueeze(-1) + o = o.contiguous().view(batch, out_channels, -1) + return o diff --git a/TTS/TTS/vocoder/layers/melgan.py b/TTS/TTS/vocoder/layers/melgan.py new file mode 100644 index 0000000000000000000000000000000000000000..4bb328e98354dc0683b3c5b4f4160dd54d92fabd --- /dev/null +++ b/TTS/TTS/vocoder/layers/melgan.py @@ -0,0 +1,42 @@ +from torch import nn +from torch.nn.utils import weight_norm + + +class ResidualStack(nn.Module): + def __init__(self, channels, num_res_blocks, kernel_size): + super().__init__() + + assert (kernel_size - 1) % 2 == 0, " [!] kernel_size has to be odd." + base_padding = (kernel_size - 1) // 2 + + self.blocks = nn.ModuleList() + for idx in range(num_res_blocks): + layer_kernel_size = kernel_size + layer_dilation = layer_kernel_size**idx + layer_padding = base_padding * layer_dilation + self.blocks += [ + nn.Sequential( + nn.LeakyReLU(0.2), + nn.ReflectionPad1d(layer_padding), + weight_norm( + nn.Conv1d(channels, channels, kernel_size=kernel_size, dilation=layer_dilation, bias=True) + ), + nn.LeakyReLU(0.2), + weight_norm(nn.Conv1d(channels, channels, kernel_size=1, bias=True)), + ) + ] + + self.shortcuts = nn.ModuleList( + [weight_norm(nn.Conv1d(channels, channels, kernel_size=1, bias=True)) for i in range(num_res_blocks)] + ) + + def forward(self, x): + for block, shortcut in zip(self.blocks, self.shortcuts): + x = shortcut(x) + block(x) + return x + + def remove_weight_norm(self): + for block, shortcut in zip(self.blocks, self.shortcuts): + nn.utils.remove_weight_norm(block[2]) + nn.utils.remove_weight_norm(block[4]) + nn.utils.remove_weight_norm(shortcut) diff --git a/TTS/TTS/vocoder/layers/parallel_wavegan.py b/TTS/TTS/vocoder/layers/parallel_wavegan.py new file mode 100644 index 0000000000000000000000000000000000000000..51142e5eceb20564585635a9040a24bc8eb3b6e3 --- /dev/null +++ b/TTS/TTS/vocoder/layers/parallel_wavegan.py @@ -0,0 +1,77 @@ +import torch +from torch.nn import functional as F + + +class ResidualBlock(torch.nn.Module): + """Residual block module in WaveNet.""" + + def __init__( + self, + kernel_size=3, + res_channels=64, + gate_channels=128, + skip_channels=64, + aux_channels=80, + dropout=0.0, + dilation=1, + bias=True, + use_causal_conv=False, + ): + super().__init__() + self.dropout = dropout + # no future time stamps available + if use_causal_conv: + padding = (kernel_size - 1) * dilation + else: + assert (kernel_size - 1) % 2 == 0, "Not support even number kernel size." + padding = (kernel_size - 1) // 2 * dilation + self.use_causal_conv = use_causal_conv + + # dilation conv + self.conv = torch.nn.Conv1d( + res_channels, gate_channels, kernel_size, padding=padding, dilation=dilation, bias=bias + ) + + # local conditioning + if aux_channels > 0: + self.conv1x1_aux = torch.nn.Conv1d(aux_channels, gate_channels, 1, bias=False) + else: + self.conv1x1_aux = None + + # conv output is split into two groups + gate_out_channels = gate_channels // 2 + self.conv1x1_out = torch.nn.Conv1d(gate_out_channels, res_channels, 1, bias=bias) + self.conv1x1_skip = torch.nn.Conv1d(gate_out_channels, skip_channels, 1, bias=bias) + + def forward(self, x, c): + """ + x: B x D_res x T + c: B x D_aux x T + """ + residual = x + x = F.dropout(x, p=self.dropout, training=self.training) + x = self.conv(x) + + # remove future time steps if use_causal_conv conv + x = x[:, :, : residual.size(-1)] if self.use_causal_conv else x + + # split into two part for gated activation + splitdim = 1 + xa, xb = x.split(x.size(splitdim) // 2, dim=splitdim) + + # local conditioning + if c is not None: + assert self.conv1x1_aux is not None + c = self.conv1x1_aux(c) + ca, cb = c.split(c.size(splitdim) // 2, dim=splitdim) + xa, xb = xa + ca, xb + cb + + x = torch.tanh(xa) * torch.sigmoid(xb) + + # for skip connection + s = self.conv1x1_skip(x) + + # for residual connection + x = (self.conv1x1_out(x) + residual) * (0.5**2) + + return x, s diff --git a/TTS/TTS/vocoder/layers/pqmf.py b/TTS/TTS/vocoder/layers/pqmf.py new file mode 100644 index 0000000000000000000000000000000000000000..6253efbbefc32222464a97bee99707d46bcdcf8b --- /dev/null +++ b/TTS/TTS/vocoder/layers/pqmf.py @@ -0,0 +1,53 @@ +import numpy as np +import torch +import torch.nn.functional as F +from scipy import signal as sig + + +# adapted from +# https://github.com/kan-bayashi/ParallelWaveGAN/tree/master/parallel_wavegan +class PQMF(torch.nn.Module): + def __init__(self, N=4, taps=62, cutoff=0.15, beta=9.0): + super().__init__() + + self.N = N + self.taps = taps + self.cutoff = cutoff + self.beta = beta + + QMF = sig.firwin(taps + 1, cutoff, window=("kaiser", beta)) + H = np.zeros((N, len(QMF))) + G = np.zeros((N, len(QMF))) + for k in range(N): + constant_factor = ( + (2 * k + 1) * (np.pi / (2 * N)) * (np.arange(taps + 1) - ((taps - 1) / 2)) + ) # TODO: (taps - 1) -> taps + phase = (-1) ** k * np.pi / 4 + H[k] = 2 * QMF * np.cos(constant_factor + phase) + + G[k] = 2 * QMF * np.cos(constant_factor - phase) + + H = torch.from_numpy(H[:, None, :]).float() + G = torch.from_numpy(G[None, :, :]).float() + + self.register_buffer("H", H) + self.register_buffer("G", G) + + updown_filter = torch.zeros((N, N, N)).float() + for k in range(N): + updown_filter[k, k, 0] = 1.0 + self.register_buffer("updown_filter", updown_filter) + self.N = N + + self.pad_fn = torch.nn.ConstantPad1d(taps // 2, 0.0) + + def forward(self, x): + return self.analysis(x) + + def analysis(self, x): + return F.conv1d(x, self.H, padding=self.taps // 2, stride=self.N) + + def synthesis(self, x): + x = F.conv_transpose1d(x, self.updown_filter * self.N, stride=self.N) + x = F.conv1d(x, self.G, padding=self.taps // 2) + return x diff --git a/TTS/TTS/vocoder/layers/qmf.dat b/TTS/TTS/vocoder/layers/qmf.dat new file mode 100644 index 0000000000000000000000000000000000000000..4793abbfb3c67b88fed43f262c28f6fc2f26e5ca --- /dev/null +++ b/TTS/TTS/vocoder/layers/qmf.dat @@ -0,0 +1,640 @@ + 0.0000000e+000 + -5.5252865e-004 + -5.6176926e-004 + -4.9475181e-004 + -4.8752280e-004 + -4.8937912e-004 + -5.0407143e-004 + -5.2265643e-004 + -5.4665656e-004 + -5.6778026e-004 + -5.8709305e-004 + -6.1327474e-004 + -6.3124935e-004 + -6.5403334e-004 + -6.7776908e-004 + -6.9416146e-004 + -7.1577365e-004 + -7.2550431e-004 + -7.4409419e-004 + -7.4905981e-004 + -7.6813719e-004 + -7.7248486e-004 + -7.8343323e-004 + -7.7798695e-004 + -7.8036647e-004 + -7.8014496e-004 + -7.7579773e-004 + -7.6307936e-004 + -7.5300014e-004 + -7.3193572e-004 + -7.2153920e-004 + -6.9179375e-004 + -6.6504151e-004 + -6.3415949e-004 + -5.9461189e-004 + -5.5645764e-004 + -5.1455722e-004 + -4.6063255e-004 + -4.0951215e-004 + -3.5011759e-004 + -2.8969812e-004 + -2.0983373e-004 + -1.4463809e-004 + -6.1733441e-005 + 1.3494974e-005 + 1.0943831e-004 + 2.0430171e-004 + 2.9495311e-004 + 4.0265402e-004 + 5.1073885e-004 + 6.2393761e-004 + 7.4580259e-004 + 8.6084433e-004 + 9.8859883e-004 + 1.1250155e-003 + 1.2577885e-003 + 1.3902495e-003 + 1.5443220e-003 + 1.6868083e-003 + 1.8348265e-003 + 1.9841141e-003 + 2.1461584e-003 + 2.3017255e-003 + 2.4625617e-003 + 2.6201759e-003 + 2.7870464e-003 + 2.9469448e-003 + 3.1125421e-003 + 3.2739613e-003 + 3.4418874e-003 + 3.6008268e-003 + 3.7603923e-003 + 3.9207432e-003 + 4.0819753e-003 + 4.2264269e-003 + 4.3730720e-003 + 4.5209853e-003 + 4.6606461e-003 + 4.7932561e-003 + 4.9137604e-003 + 5.0393023e-003 + 5.1407354e-003 + 5.2461166e-003 + 5.3471681e-003 + 5.4196776e-003 + 5.4876040e-003 + 5.5475715e-003 + 5.5938023e-003 + 5.6220643e-003 + 5.6455197e-003 + 5.6389200e-003 + 5.6266114e-003 + 5.5917129e-003 + 5.5404364e-003 + 5.4753783e-003 + 5.3838976e-003 + 5.2715759e-003 + 5.1382275e-003 + 4.9839688e-003 + 4.8109469e-003 + 4.6039530e-003 + 4.3801862e-003 + 4.1251642e-003 + 3.8456408e-003 + 3.5401247e-003 + 3.2091886e-003 + 2.8446758e-003 + 2.4508540e-003 + 2.0274176e-003 + 1.5784683e-003 + 1.0902329e-003 + 5.8322642e-004 + 2.7604519e-005 + -5.4642809e-004 + -1.1568136e-003 + -1.8039473e-003 + -2.4826724e-003 + -3.1933778e-003 + -3.9401124e-003 + -4.7222596e-003 + -5.5337211e-003 + -6.3792293e-003 + -7.2615817e-003 + -8.1798233e-003 + -9.1325330e-003 + -1.0115022e-002 + -1.1131555e-002 + -1.2185000e-002 + -1.3271822e-002 + -1.4390467e-002 + -1.5540555e-002 + -1.6732471e-002 + -1.7943338e-002 + -1.9187243e-002 + -2.0453179e-002 + -2.1746755e-002 + -2.3068017e-002 + -2.4416099e-002 + -2.5787585e-002 + -2.7185943e-002 + -2.8607217e-002 + -3.0050266e-002 + -3.1501761e-002 + -3.2975408e-002 + -3.4462095e-002 + -3.5969756e-002 + -3.7481285e-002 + -3.9005368e-002 + -4.0534917e-002 + -4.2064909e-002 + -4.3609754e-002 + -4.5148841e-002 + -4.6684303e-002 + -4.8216572e-002 + -4.9738576e-002 + -5.1255616e-002 + -5.2763075e-002 + -5.4245277e-002 + -5.5717365e-002 + -5.7161645e-002 + -5.8591568e-002 + -5.9983748e-002 + -6.1345517e-002 + -6.2685781e-002 + -6.3971590e-002 + -6.5224711e-002 + -6.6436751e-002 + -6.7607599e-002 + -6.8704383e-002 + -6.9763024e-002 + -7.0762871e-002 + -7.1700267e-002 + -7.2568258e-002 + -7.3362026e-002 + -7.4100364e-002 + -7.4745256e-002 + -7.5313734e-002 + -7.5800836e-002 + -7.6199248e-002 + -7.6499217e-002 + -7.6709349e-002 + -7.6817398e-002 + -7.6823001e-002 + -7.6720492e-002 + -7.6505072e-002 + -7.6174832e-002 + -7.5730576e-002 + -7.5157626e-002 + -7.4466439e-002 + -7.3640601e-002 + -7.2677464e-002 + -7.1582636e-002 + -7.0353307e-002 + -6.8966401e-002 + -6.7452502e-002 + -6.5769067e-002 + -6.3944481e-002 + -6.1960278e-002 + -5.9816657e-002 + -5.7515269e-002 + -5.5046003e-002 + -5.2409382e-002 + -4.9597868e-002 + -4.6630331e-002 + -4.3476878e-002 + -4.0145828e-002 + -3.6641812e-002 + -3.2958393e-002 + -2.9082401e-002 + -2.5030756e-002 + -2.0799707e-002 + -1.6370126e-002 + -1.1762383e-002 + -6.9636862e-003 + -1.9765601e-003 + 3.2086897e-003 + 8.5711749e-003 + 1.4128883e-002 + 1.9883413e-002 + 2.5822729e-002 + 3.1953127e-002 + 3.8277657e-002 + 4.4780682e-002 + 5.1480418e-002 + 5.8370533e-002 + 6.5440985e-002 + 7.2694330e-002 + 8.0137293e-002 + 8.7754754e-002 + 9.5553335e-002 + 1.0353295e-001 + 1.1168269e-001 + 1.2000780e-001 + 1.2850029e-001 + 1.3715518e-001 + 1.4597665e-001 + 1.5496071e-001 + 1.6409589e-001 + 1.7338082e-001 + 1.8281725e-001 + 1.9239667e-001 + 2.0212502e-001 + 2.1197359e-001 + 2.2196527e-001 + 2.3206909e-001 + 2.4230169e-001 + 2.5264803e-001 + 2.6310533e-001 + 2.7366340e-001 + 2.8432142e-001 + 2.9507167e-001 + 3.0590986e-001 + 3.1682789e-001 + 3.2781137e-001 + 3.3887227e-001 + 3.4999141e-001 + 3.6115899e-001 + 3.7237955e-001 + 3.8363500e-001 + 3.9492118e-001 + 4.0623177e-001 + 4.1756969e-001 + 4.2891199e-001 + 4.4025538e-001 + 4.5159965e-001 + 4.6293081e-001 + 4.7424532e-001 + 4.8552531e-001 + 4.9677083e-001 + 5.0798175e-001 + 5.1912350e-001 + 5.3022409e-001 + 5.4125534e-001 + 5.5220513e-001 + 5.6307891e-001 + 5.7385241e-001 + 5.8454032e-001 + 5.9511231e-001 + 6.0557835e-001 + 6.1591099e-001 + 6.2612427e-001 + 6.3619801e-001 + 6.4612697e-001 + 6.5590163e-001 + 6.6551399e-001 + 6.7496632e-001 + 6.8423533e-001 + 6.9332824e-001 + 7.0223887e-001 + 7.1094104e-001 + 7.1944626e-001 + 7.2774489e-001 + 7.3582118e-001 + 7.4368279e-001 + 7.5131375e-001 + 7.5870808e-001 + 7.6586749e-001 + 7.7277809e-001 + 7.7942875e-001 + 7.8583531e-001 + 7.9197358e-001 + 7.9784664e-001 + 8.0344858e-001 + 8.0876950e-001 + 8.1381913e-001 + 8.1857760e-001 + 8.2304199e-001 + 8.2722753e-001 + 8.3110385e-001 + 8.3469374e-001 + 8.3797173e-001 + 8.4095414e-001 + 8.4362383e-001 + 8.4598185e-001 + 8.4803158e-001 + 8.4978052e-001 + 8.5119715e-001 + 8.5230470e-001 + 8.5310209e-001 + 8.5357206e-001 + 8.5373856e-001 + 8.5357206e-001 + 8.5310209e-001 + 8.5230470e-001 + 8.5119715e-001 + 8.4978052e-001 + 8.4803158e-001 + 8.4598185e-001 + 8.4362383e-001 + 8.4095414e-001 + 8.3797173e-001 + 8.3469374e-001 + 8.3110385e-001 + 8.2722753e-001 + 8.2304199e-001 + 8.1857760e-001 + 8.1381913e-001 + 8.0876950e-001 + 8.0344858e-001 + 7.9784664e-001 + 7.9197358e-001 + 7.8583531e-001 + 7.7942875e-001 + 7.7277809e-001 + 7.6586749e-001 + 7.5870808e-001 + 7.5131375e-001 + 7.4368279e-001 + 7.3582118e-001 + 7.2774489e-001 + 7.1944626e-001 + 7.1094104e-001 + 7.0223887e-001 + 6.9332824e-001 + 6.8423533e-001 + 6.7496632e-001 + 6.6551399e-001 + 6.5590163e-001 + 6.4612697e-001 + 6.3619801e-001 + 6.2612427e-001 + 6.1591099e-001 + 6.0557835e-001 + 5.9511231e-001 + 5.8454032e-001 + 5.7385241e-001 + 5.6307891e-001 + 5.5220513e-001 + 5.4125534e-001 + 5.3022409e-001 + 5.1912350e-001 + 5.0798175e-001 + 4.9677083e-001 + 4.8552531e-001 + 4.7424532e-001 + 4.6293081e-001 + 4.5159965e-001 + 4.4025538e-001 + 4.2891199e-001 + 4.1756969e-001 + 4.0623177e-001 + 3.9492118e-001 + 3.8363500e-001 + 3.7237955e-001 + 3.6115899e-001 + 3.4999141e-001 + 3.3887227e-001 + 3.2781137e-001 + 3.1682789e-001 + 3.0590986e-001 + 2.9507167e-001 + 2.8432142e-001 + 2.7366340e-001 + 2.6310533e-001 + 2.5264803e-001 + 2.4230169e-001 + 2.3206909e-001 + 2.2196527e-001 + 2.1197359e-001 + 2.0212502e-001 + 1.9239667e-001 + 1.8281725e-001 + 1.7338082e-001 + 1.6409589e-001 + 1.5496071e-001 + 1.4597665e-001 + 1.3715518e-001 + 1.2850029e-001 + 1.2000780e-001 + 1.1168269e-001 + 1.0353295e-001 + 9.5553335e-002 + 8.7754754e-002 + 8.0137293e-002 + 7.2694330e-002 + 6.5440985e-002 + 5.8370533e-002 + 5.1480418e-002 + 4.4780682e-002 + 3.8277657e-002 + 3.1953127e-002 + 2.5822729e-002 + 1.9883413e-002 + 1.4128883e-002 + 8.5711749e-003 + 3.2086897e-003 + -1.9765601e-003 + -6.9636862e-003 + -1.1762383e-002 + -1.6370126e-002 + -2.0799707e-002 + -2.5030756e-002 + -2.9082401e-002 + -3.2958393e-002 + -3.6641812e-002 + -4.0145828e-002 + -4.3476878e-002 + -4.6630331e-002 + -4.9597868e-002 + -5.2409382e-002 + -5.5046003e-002 + -5.7515269e-002 + -5.9816657e-002 + -6.1960278e-002 + -6.3944481e-002 + -6.5769067e-002 + -6.7452502e-002 + -6.8966401e-002 + -7.0353307e-002 + -7.1582636e-002 + -7.2677464e-002 + -7.3640601e-002 + -7.4466439e-002 + -7.5157626e-002 + -7.5730576e-002 + -7.6174832e-002 + -7.6505072e-002 + -7.6720492e-002 + -7.6823001e-002 + -7.6817398e-002 + -7.6709349e-002 + -7.6499217e-002 + -7.6199248e-002 + -7.5800836e-002 + -7.5313734e-002 + -7.4745256e-002 + -7.4100364e-002 + -7.3362026e-002 + -7.2568258e-002 + -7.1700267e-002 + -7.0762871e-002 + -6.9763024e-002 + -6.8704383e-002 + -6.7607599e-002 + -6.6436751e-002 + -6.5224711e-002 + -6.3971590e-002 + -6.2685781e-002 + -6.1345517e-002 + -5.9983748e-002 + -5.8591568e-002 + -5.7161645e-002 + -5.5717365e-002 + -5.4245277e-002 + -5.2763075e-002 + -5.1255616e-002 + -4.9738576e-002 + -4.8216572e-002 + -4.6684303e-002 + -4.5148841e-002 + -4.3609754e-002 + -4.2064909e-002 + -4.0534917e-002 + -3.9005368e-002 + -3.7481285e-002 + -3.5969756e-002 + -3.4462095e-002 + -3.2975408e-002 + -3.1501761e-002 + -3.0050266e-002 + -2.8607217e-002 + -2.7185943e-002 + -2.5787585e-002 + -2.4416099e-002 + -2.3068017e-002 + -2.1746755e-002 + -2.0453179e-002 + -1.9187243e-002 + -1.7943338e-002 + -1.6732471e-002 + -1.5540555e-002 + -1.4390467e-002 + -1.3271822e-002 + -1.2185000e-002 + -1.1131555e-002 + -1.0115022e-002 + -9.1325330e-003 + -8.1798233e-003 + -7.2615817e-003 + -6.3792293e-003 + -5.5337211e-003 + -4.7222596e-003 + -3.9401124e-003 + -3.1933778e-003 + -2.4826724e-003 + -1.8039473e-003 + -1.1568136e-003 + -5.4642809e-004 + 2.7604519e-005 + 5.8322642e-004 + 1.0902329e-003 + 1.5784683e-003 + 2.0274176e-003 + 2.4508540e-003 + 2.8446758e-003 + 3.2091886e-003 + 3.5401247e-003 + 3.8456408e-003 + 4.1251642e-003 + 4.3801862e-003 + 4.6039530e-003 + 4.8109469e-003 + 4.9839688e-003 + 5.1382275e-003 + 5.2715759e-003 + 5.3838976e-003 + 5.4753783e-003 + 5.5404364e-003 + 5.5917129e-003 + 5.6266114e-003 + 5.6389200e-003 + 5.6455197e-003 + 5.6220643e-003 + 5.5938023e-003 + 5.5475715e-003 + 5.4876040e-003 + 5.4196776e-003 + 5.3471681e-003 + 5.2461166e-003 + 5.1407354e-003 + 5.0393023e-003 + 4.9137604e-003 + 4.7932561e-003 + 4.6606461e-003 + 4.5209853e-003 + 4.3730720e-003 + 4.2264269e-003 + 4.0819753e-003 + 3.9207432e-003 + 3.7603923e-003 + 3.6008268e-003 + 3.4418874e-003 + 3.2739613e-003 + 3.1125421e-003 + 2.9469448e-003 + 2.7870464e-003 + 2.6201759e-003 + 2.4625617e-003 + 2.3017255e-003 + 2.1461584e-003 + 1.9841141e-003 + 1.8348265e-003 + 1.6868083e-003 + 1.5443220e-003 + 1.3902495e-003 + 1.2577885e-003 + 1.1250155e-003 + 9.8859883e-004 + 8.6084433e-004 + 7.4580259e-004 + 6.2393761e-004 + 5.1073885e-004 + 4.0265402e-004 + 2.9495311e-004 + 2.0430171e-004 + 1.0943831e-004 + 1.3494974e-005 + -6.1733441e-005 + -1.4463809e-004 + -2.0983373e-004 + -2.8969812e-004 + -3.5011759e-004 + -4.0951215e-004 + -4.6063255e-004 + -5.1455722e-004 + -5.5645764e-004 + -5.9461189e-004 + -6.3415949e-004 + -6.6504151e-004 + -6.9179375e-004 + -7.2153920e-004 + -7.3193572e-004 + -7.5300014e-004 + -7.6307936e-004 + -7.7579773e-004 + -7.8014496e-004 + -7.8036647e-004 + -7.7798695e-004 + -7.8343323e-004 + -7.7248486e-004 + -7.6813719e-004 + -7.4905981e-004 + -7.4409419e-004 + -7.2550431e-004 + -7.1577365e-004 + -6.9416146e-004 + -6.7776908e-004 + -6.5403334e-004 + -6.3124935e-004 + -6.1327474e-004 + -5.8709305e-004 + -5.6778026e-004 + -5.4665656e-004 + -5.2265643e-004 + -5.0407143e-004 + -4.8937912e-004 + -4.8752280e-004 + -4.9475181e-004 + -5.6176926e-004 + -5.5252865e-004 diff --git a/TTS/TTS/vocoder/layers/upsample.py b/TTS/TTS/vocoder/layers/upsample.py new file mode 100644 index 0000000000000000000000000000000000000000..e169db00b2749493e1cec07ee51c93178dada118 --- /dev/null +++ b/TTS/TTS/vocoder/layers/upsample.py @@ -0,0 +1,102 @@ +import torch +from torch.nn import functional as F + + +class Stretch2d(torch.nn.Module): + def __init__(self, x_scale, y_scale, mode="nearest"): + super().__init__() + self.x_scale = x_scale + self.y_scale = y_scale + self.mode = mode + + def forward(self, x): + """ + x (Tensor): Input tensor (B, C, F, T). + Tensor: Interpolated tensor (B, C, F * y_scale, T * x_scale), + """ + return F.interpolate(x, scale_factor=(self.y_scale, self.x_scale), mode=self.mode) + + +class UpsampleNetwork(torch.nn.Module): + # pylint: disable=dangerous-default-value + def __init__( + self, + upsample_factors, + nonlinear_activation=None, + nonlinear_activation_params={}, + interpolate_mode="nearest", + freq_axis_kernel_size=1, + use_causal_conv=False, + ): + super().__init__() + self.use_causal_conv = use_causal_conv + self.up_layers = torch.nn.ModuleList() + for scale in upsample_factors: + # interpolation layer + stretch = Stretch2d(scale, 1, interpolate_mode) + self.up_layers += [stretch] + + # conv layer + assert (freq_axis_kernel_size - 1) % 2 == 0, "Not support even number freq axis kernel size." + freq_axis_padding = (freq_axis_kernel_size - 1) // 2 + kernel_size = (freq_axis_kernel_size, scale * 2 + 1) + if use_causal_conv: + padding = (freq_axis_padding, scale * 2) + else: + padding = (freq_axis_padding, scale) + conv = torch.nn.Conv2d(1, 1, kernel_size=kernel_size, padding=padding, bias=False) + self.up_layers += [conv] + + # nonlinear + if nonlinear_activation is not None: + nonlinear = getattr(torch.nn, nonlinear_activation)(**nonlinear_activation_params) + self.up_layers += [nonlinear] + + def forward(self, c): + """ + c : (B, C, T_in). + Tensor: (B, C, T_upsample) + """ + c = c.unsqueeze(1) # (B, 1, C, T) + for f in self.up_layers: + c = f(c) + return c.squeeze(1) # (B, C, T') + + +class ConvUpsample(torch.nn.Module): + # pylint: disable=dangerous-default-value + def __init__( + self, + upsample_factors, + nonlinear_activation=None, + nonlinear_activation_params={}, + interpolate_mode="nearest", + freq_axis_kernel_size=1, + aux_channels=80, + aux_context_window=0, + use_causal_conv=False, + ): + super().__init__() + self.aux_context_window = aux_context_window + self.use_causal_conv = use_causal_conv and aux_context_window > 0 + # To capture wide-context information in conditional features + kernel_size = aux_context_window + 1 if use_causal_conv else 2 * aux_context_window + 1 + # NOTE(kan-bayashi): Here do not use padding because the input is already padded + self.conv_in = torch.nn.Conv1d(aux_channels, aux_channels, kernel_size=kernel_size, bias=False) + self.upsample = UpsampleNetwork( + upsample_factors=upsample_factors, + nonlinear_activation=nonlinear_activation, + nonlinear_activation_params=nonlinear_activation_params, + interpolate_mode=interpolate_mode, + freq_axis_kernel_size=freq_axis_kernel_size, + use_causal_conv=use_causal_conv, + ) + + def forward(self, c): + """ + c : (B, C, T_in). + Tensor: (B, C, T_upsampled), + """ + c_ = self.conv_in(c) + c = c_[:, :, : -self.aux_context_window] if self.use_causal_conv else c_ + return self.upsample(c) diff --git a/TTS/TTS/vocoder/layers/wavegrad.py b/TTS/TTS/vocoder/layers/wavegrad.py new file mode 100644 index 0000000000000000000000000000000000000000..24b905f994b69075fc5e46249ce0c7719fe4b174 --- /dev/null +++ b/TTS/TTS/vocoder/layers/wavegrad.py @@ -0,0 +1,165 @@ +import torch +import torch.nn.functional as F +from torch import nn +from torch.nn.utils import weight_norm + + +class Conv1d(nn.Conv1d): + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + nn.init.orthogonal_(self.weight) + nn.init.zeros_(self.bias) + + +class PositionalEncoding(nn.Module): + """Positional encoding with noise level conditioning""" + + def __init__(self, n_channels, max_len=10000): + super().__init__() + self.n_channels = n_channels + self.max_len = max_len + self.C = 5000 + self.pe = torch.zeros(0, 0) + + def forward(self, x, noise_level): + if x.shape[2] > self.pe.shape[1]: + self.init_pe_matrix(x.shape[1], x.shape[2], x) + return x + noise_level[..., None, None] + self.pe[:, : x.size(2)].repeat(x.shape[0], 1, 1) / self.C + + def init_pe_matrix(self, n_channels, max_len, x): + pe = torch.zeros(max_len, n_channels) + position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) + div_term = torch.pow(10000, torch.arange(0, n_channels, 2).float() / n_channels) + + pe[:, 0::2] = torch.sin(position / div_term) + pe[:, 1::2] = torch.cos(position / div_term) + self.pe = pe.transpose(0, 1).to(x) + + +class FiLM(nn.Module): + def __init__(self, input_size, output_size): + super().__init__() + self.encoding = PositionalEncoding(input_size) + self.input_conv = nn.Conv1d(input_size, input_size, 3, padding=1) + self.output_conv = nn.Conv1d(input_size, output_size * 2, 3, padding=1) + + nn.init.xavier_uniform_(self.input_conv.weight) + nn.init.xavier_uniform_(self.output_conv.weight) + nn.init.zeros_(self.input_conv.bias) + nn.init.zeros_(self.output_conv.bias) + + def forward(self, x, noise_scale): + o = self.input_conv(x) + o = F.leaky_relu(o, 0.2) + o = self.encoding(o, noise_scale) + shift, scale = torch.chunk(self.output_conv(o), 2, dim=1) + return shift, scale + + def remove_weight_norm(self): + nn.utils.remove_weight_norm(self.input_conv) + nn.utils.remove_weight_norm(self.output_conv) + + def apply_weight_norm(self): + self.input_conv = weight_norm(self.input_conv) + self.output_conv = weight_norm(self.output_conv) + + +@torch.jit.script +def shif_and_scale(x, scale, shift): + o = shift + scale * x + return o + + +class UBlock(nn.Module): + def __init__(self, input_size, hidden_size, factor, dilation): + super().__init__() + assert isinstance(dilation, (list, tuple)) + assert len(dilation) == 4 + + self.factor = factor + self.res_block = Conv1d(input_size, hidden_size, 1) + self.main_block = nn.ModuleList( + [ + Conv1d(input_size, hidden_size, 3, dilation=dilation[0], padding=dilation[0]), + Conv1d(hidden_size, hidden_size, 3, dilation=dilation[1], padding=dilation[1]), + ] + ) + self.out_block = nn.ModuleList( + [ + Conv1d(hidden_size, hidden_size, 3, dilation=dilation[2], padding=dilation[2]), + Conv1d(hidden_size, hidden_size, 3, dilation=dilation[3], padding=dilation[3]), + ] + ) + + def forward(self, x, shift, scale): + x_inter = F.interpolate(x, size=x.shape[-1] * self.factor) + res = self.res_block(x_inter) + o = F.leaky_relu(x_inter, 0.2) + o = F.interpolate(o, size=x.shape[-1] * self.factor) + o = self.main_block[0](o) + o = shif_and_scale(o, scale, shift) + o = F.leaky_relu(o, 0.2) + o = self.main_block[1](o) + res2 = res + o + o = shif_and_scale(res2, scale, shift) + o = F.leaky_relu(o, 0.2) + o = self.out_block[0](o) + o = shif_and_scale(o, scale, shift) + o = F.leaky_relu(o, 0.2) + o = self.out_block[1](o) + o = o + res2 + return o + + def remove_weight_norm(self): + nn.utils.remove_weight_norm(self.res_block) + for _, layer in enumerate(self.main_block): + if len(layer.state_dict()) != 0: + nn.utils.remove_weight_norm(layer) + for _, layer in enumerate(self.out_block): + if len(layer.state_dict()) != 0: + nn.utils.remove_weight_norm(layer) + + def apply_weight_norm(self): + self.res_block = weight_norm(self.res_block) + for idx, layer in enumerate(self.main_block): + if len(layer.state_dict()) != 0: + self.main_block[idx] = weight_norm(layer) + for idx, layer in enumerate(self.out_block): + if len(layer.state_dict()) != 0: + self.out_block[idx] = weight_norm(layer) + + +class DBlock(nn.Module): + def __init__(self, input_size, hidden_size, factor): + super().__init__() + self.factor = factor + self.res_block = Conv1d(input_size, hidden_size, 1) + self.main_block = nn.ModuleList( + [ + Conv1d(input_size, hidden_size, 3, dilation=1, padding=1), + Conv1d(hidden_size, hidden_size, 3, dilation=2, padding=2), + Conv1d(hidden_size, hidden_size, 3, dilation=4, padding=4), + ] + ) + + def forward(self, x): + size = x.shape[-1] // self.factor + res = self.res_block(x) + res = F.interpolate(res, size=size) + o = F.interpolate(x, size=size) + for layer in self.main_block: + o = F.leaky_relu(o, 0.2) + o = layer(o) + return o + res + + def remove_weight_norm(self): + nn.utils.remove_weight_norm(self.res_block) + for _, layer in enumerate(self.main_block): + if len(layer.state_dict()) != 0: + nn.utils.remove_weight_norm(layer) + + def apply_weight_norm(self): + self.res_block = weight_norm(self.res_block) + for idx, layer in enumerate(self.main_block): + if len(layer.state_dict()) != 0: + self.main_block[idx] = weight_norm(layer) diff --git a/TTS/TTS/vocoder/models/__init__.py b/TTS/TTS/vocoder/models/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..65901617b69d3ae708e09226c5e4ad903f89a929 --- /dev/null +++ b/TTS/TTS/vocoder/models/__init__.py @@ -0,0 +1,154 @@ +import importlib +import re + +from coqpit import Coqpit + + +def to_camel(text): + text = text.capitalize() + return re.sub(r"(?!^)_([a-zA-Z])", lambda m: m.group(1).upper(), text) + + +def setup_model(config: Coqpit): + """Load models directly from configuration.""" + if "discriminator_model" in config and "generator_model" in config: + MyModel = importlib.import_module("TTS.vocoder.models.gan") + MyModel = getattr(MyModel, "GAN") + else: + MyModel = importlib.import_module("TTS.vocoder.models." + config.model.lower()) + if config.model.lower() == "wavernn": + MyModel = getattr(MyModel, "Wavernn") + elif config.model.lower() == "gan": + MyModel = getattr(MyModel, "GAN") + elif config.model.lower() == "wavegrad": + MyModel = getattr(MyModel, "Wavegrad") + else: + try: + MyModel = getattr(MyModel, to_camel(config.model)) + except ModuleNotFoundError as e: + raise ValueError(f"Model {config.model} not exist!") from e + print(" > Vocoder Model: {}".format(config.model)) + return MyModel.init_from_config(config) + + +def setup_generator(c): + """TODO: use config object as arguments""" + print(" > Generator Model: {}".format(c.generator_model)) + MyModel = importlib.import_module("TTS.vocoder.models." + c.generator_model.lower()) + MyModel = getattr(MyModel, to_camel(c.generator_model)) + # this is to preserve the Wavernn class name (instead of Wavernn) + if c.generator_model.lower() in "hifigan_generator": + model = MyModel(in_channels=c.audio["num_mels"], out_channels=1, **c.generator_model_params) + elif c.generator_model.lower() in "melgan_generator": + model = MyModel( + in_channels=c.audio["num_mels"], + out_channels=1, + proj_kernel=7, + base_channels=512, + upsample_factors=c.generator_model_params["upsample_factors"], + res_kernel=3, + num_res_blocks=c.generator_model_params["num_res_blocks"], + ) + elif c.generator_model in "melgan_fb_generator": + raise ValueError("melgan_fb_generator is now fullband_melgan_generator") + elif c.generator_model.lower() in "multiband_melgan_generator": + model = MyModel( + in_channels=c.audio["num_mels"], + out_channels=4, + proj_kernel=7, + base_channels=384, + upsample_factors=c.generator_model_params["upsample_factors"], + res_kernel=3, + num_res_blocks=c.generator_model_params["num_res_blocks"], + ) + elif c.generator_model.lower() in "fullband_melgan_generator": + model = MyModel( + in_channels=c.audio["num_mels"], + out_channels=1, + proj_kernel=7, + base_channels=512, + upsample_factors=c.generator_model_params["upsample_factors"], + res_kernel=3, + num_res_blocks=c.generator_model_params["num_res_blocks"], + ) + elif c.generator_model.lower() in "parallel_wavegan_generator": + model = MyModel( + in_channels=1, + out_channels=1, + kernel_size=3, + num_res_blocks=c.generator_model_params["num_res_blocks"], + stacks=c.generator_model_params["stacks"], + res_channels=64, + gate_channels=128, + skip_channels=64, + aux_channels=c.audio["num_mels"], + dropout=0.0, + bias=True, + use_weight_norm=True, + upsample_factors=c.generator_model_params["upsample_factors"], + ) + elif c.generator_model.lower() in "univnet_generator": + model = MyModel(**c.generator_model_params) + else: + raise NotImplementedError(f"Model {c.generator_model} not implemented!") + return model + + +def setup_discriminator(c): + """TODO: use config objekt as arguments""" + print(" > Discriminator Model: {}".format(c.discriminator_model)) + if "parallel_wavegan" in c.discriminator_model: + MyModel = importlib.import_module("TTS.vocoder.models.parallel_wavegan_discriminator") + else: + MyModel = importlib.import_module("TTS.vocoder.models." + c.discriminator_model.lower()) + MyModel = getattr(MyModel, to_camel(c.discriminator_model.lower())) + if c.discriminator_model in "hifigan_discriminator": + model = MyModel() + if c.discriminator_model in "random_window_discriminator": + model = MyModel( + cond_channels=c.audio["num_mels"], + hop_length=c.audio["hop_length"], + uncond_disc_donwsample_factors=c.discriminator_model_params["uncond_disc_donwsample_factors"], + cond_disc_downsample_factors=c.discriminator_model_params["cond_disc_downsample_factors"], + cond_disc_out_channels=c.discriminator_model_params["cond_disc_out_channels"], + window_sizes=c.discriminator_model_params["window_sizes"], + ) + if c.discriminator_model in "melgan_multiscale_discriminator": + model = MyModel( + in_channels=1, + out_channels=1, + kernel_sizes=(5, 3), + base_channels=c.discriminator_model_params["base_channels"], + max_channels=c.discriminator_model_params["max_channels"], + downsample_factors=c.discriminator_model_params["downsample_factors"], + ) + if c.discriminator_model == "residual_parallel_wavegan_discriminator": + model = MyModel( + in_channels=1, + out_channels=1, + kernel_size=3, + num_layers=c.discriminator_model_params["num_layers"], + stacks=c.discriminator_model_params["stacks"], + res_channels=64, + gate_channels=128, + skip_channels=64, + dropout=0.0, + bias=True, + nonlinear_activation="LeakyReLU", + nonlinear_activation_params={"negative_slope": 0.2}, + ) + if c.discriminator_model == "parallel_wavegan_discriminator": + model = MyModel( + in_channels=1, + out_channels=1, + kernel_size=3, + num_layers=c.discriminator_model_params["num_layers"], + conv_channels=64, + dilation_factor=1, + nonlinear_activation="LeakyReLU", + nonlinear_activation_params={"negative_slope": 0.2}, + bias=True, + ) + if c.discriminator_model == "univnet_discriminator": + model = MyModel() + return model diff --git a/TTS/TTS/vocoder/models/base_vocoder.py b/TTS/TTS/vocoder/models/base_vocoder.py new file mode 100644 index 0000000000000000000000000000000000000000..0bcbe7ba1cb933c2bd3e8925c32d781aeaf79add --- /dev/null +++ b/TTS/TTS/vocoder/models/base_vocoder.py @@ -0,0 +1,55 @@ +from coqpit import Coqpit + +from TTS.model import BaseTrainerModel + +# pylint: skip-file + + +class BaseVocoder(BaseTrainerModel): + """Base `vocoder` class. Every new `vocoder` model must inherit this. + + It defines `vocoder` specific functions on top of `Model`. + + Notes on input/output tensor shapes: + Any input or output tensor of the model must be shaped as + + - 3D tensors `batch x time x channels` + - 2D tensors `batch x channels` + - 1D tensors `batch x 1` + """ + + MODEL_TYPE = "vocoder" + + def __init__(self, config): + super().__init__() + self._set_model_args(config) + + def _set_model_args(self, config: Coqpit): + """Setup model args based on the config type. + + If the config is for training with a name like "*Config", then the model args are embeded in the + config.model_args + + If the config is for the model with a name like "*Args", then we assign the directly. + """ + # don't use isintance not to import recursively + if "Config" in config.__class__.__name__: + if "characters" in config: + _, self.config, num_chars = self.get_characters(config) + self.config.num_chars = num_chars + if hasattr(self.config, "model_args"): + config.model_args.num_chars = num_chars + if "model_args" in config: + self.args = self.config.model_args + # This is for backward compatibility + if "model_params" in config: + self.args = self.config.model_params + else: + self.config = config + if "model_args" in config: + self.args = self.config.model_args + # This is for backward compatibility + if "model_params" in config: + self.args = self.config.model_params + else: + raise ValueError("config must be either a *Config or *Args") diff --git a/TTS/TTS/vocoder/models/fullband_melgan_generator.py b/TTS/TTS/vocoder/models/fullband_melgan_generator.py new file mode 100644 index 0000000000000000000000000000000000000000..ee25559af0d468aac535841bdfdd33b366250f43 --- /dev/null +++ b/TTS/TTS/vocoder/models/fullband_melgan_generator.py @@ -0,0 +1,33 @@ +import torch + +from TTS.vocoder.models.melgan_generator import MelganGenerator + + +class FullbandMelganGenerator(MelganGenerator): + def __init__( + self, + in_channels=80, + out_channels=1, + proj_kernel=7, + base_channels=512, + upsample_factors=(2, 8, 2, 2), + res_kernel=3, + num_res_blocks=4, + ): + super().__init__( + in_channels=in_channels, + out_channels=out_channels, + proj_kernel=proj_kernel, + base_channels=base_channels, + upsample_factors=upsample_factors, + res_kernel=res_kernel, + num_res_blocks=num_res_blocks, + ) + + @torch.no_grad() + def inference(self, cond_features): + cond_features = cond_features.to(self.layers[1].weight.device) + cond_features = torch.nn.functional.pad( + cond_features, (self.inference_padding, self.inference_padding), "replicate" + ) + return self.layers(cond_features) diff --git a/TTS/TTS/vocoder/models/gan.py b/TTS/TTS/vocoder/models/gan.py new file mode 100644 index 0000000000000000000000000000000000000000..19c30e983e5bb2066d3ccd22dc5cb21c091cb60a --- /dev/null +++ b/TTS/TTS/vocoder/models/gan.py @@ -0,0 +1,374 @@ +from inspect import signature +from typing import Dict, List, Tuple + +import numpy as np +import torch +from coqpit import Coqpit +from torch import nn +from torch.utils.data import DataLoader +from torch.utils.data.distributed import DistributedSampler +from trainer.trainer_utils import get_optimizer, get_scheduler + +from TTS.utils.audio import AudioProcessor +from TTS.utils.io import load_fsspec +from TTS.vocoder.datasets.gan_dataset import GANDataset +from TTS.vocoder.layers.losses import DiscriminatorLoss, GeneratorLoss +from TTS.vocoder.models import setup_discriminator, setup_generator +from TTS.vocoder.models.base_vocoder import BaseVocoder +from TTS.vocoder.utils.generic_utils import plot_results + + +class GAN(BaseVocoder): + def __init__(self, config: Coqpit, ap: AudioProcessor = None): + """Wrap a generator and a discriminator network. It provides a compatible interface for the trainer. + It also helps mixing and matching different generator and disciminator networks easily. + + To implement a new GAN models, you just need to define the generator and the discriminator networks, the rest + is handled by the `GAN` class. + + Args: + config (Coqpit): Model configuration. + ap (AudioProcessor): ๐ŸธTTS AudioProcessor instance. Defaults to None. + + Examples: + Initializing the GAN model with HifiGAN generator and discriminator. + >>> from TTS.vocoder.configs import HifiganConfig + >>> config = HifiganConfig() + >>> model = GAN(config) + """ + super().__init__(config) + self.config = config + self.model_g = setup_generator(config) + self.model_d = setup_discriminator(config) + self.train_disc = False # if False, train only the generator. + self.y_hat_g = None # the last generator prediction to be passed onto the discriminator + self.ap = ap + + def forward(self, x: torch.Tensor) -> torch.Tensor: + """Run the generator's forward pass. + + Args: + x (torch.Tensor): Input tensor. + + Returns: + torch.Tensor: output of the GAN generator network. + """ + return self.model_g.forward(x) + + def inference(self, x: torch.Tensor) -> torch.Tensor: + """Run the generator's inference pass. + + Args: + x (torch.Tensor): Input tensor. + Returns: + torch.Tensor: output of the GAN generator network. + """ + return self.model_g.inference(x) + + def train_step(self, batch: Dict, criterion: Dict, optimizer_idx: int) -> Tuple[Dict, Dict]: + """Compute model outputs and the loss values. `optimizer_idx` selects the generator or the discriminator for + network on the current pass. + + Args: + batch (Dict): Batch of samples returned by the dataloader. + criterion (Dict): Criterion used to compute the losses. + optimizer_idx (int): ID of the optimizer in use on the current pass. + + Raises: + ValueError: `optimizer_idx` is an unexpected value. + + Returns: + Tuple[Dict, Dict]: model outputs and the computed loss values. + """ + outputs = {} + loss_dict = {} + + x = batch["input"] + y = batch["waveform"] + + if optimizer_idx not in [0, 1]: + raise ValueError(" [!] Unexpected `optimizer_idx`.") + + if optimizer_idx == 0: + # DISCRIMINATOR optimization + + # generator pass + y_hat = self.model_g(x)[:, :, : y.size(2)] + + # cache for generator loss + # pylint: disable=W0201 + self.y_hat_g = y_hat + self.y_hat_sub = None + self.y_sub_g = None + + # PQMF formatting + if y_hat.shape[1] > 1: + self.y_hat_sub = y_hat + y_hat = self.model_g.pqmf_synthesis(y_hat) + self.y_hat_g = y_hat # save for generator loss + self.y_sub_g = self.model_g.pqmf_analysis(y) + + scores_fake, feats_fake, feats_real = None, None, None + + if self.train_disc: + # use different samples for G and D trainings + if self.config.diff_samples_for_G_and_D: + x_d = batch["input_disc"] + y_d = batch["waveform_disc"] + # use a different sample than generator + with torch.no_grad(): + y_hat = self.model_g(x_d) + + # PQMF formatting + if y_hat.shape[1] > 1: + y_hat = self.model_g.pqmf_synthesis(y_hat) + else: + # use the same samples as generator + x_d = x.clone() + y_d = y.clone() + y_hat = self.y_hat_g + + # run D with or without cond. features + if len(signature(self.model_d.forward).parameters) == 2: + D_out_fake = self.model_d(y_hat.detach().clone(), x_d) + D_out_real = self.model_d(y_d, x_d) + else: + D_out_fake = self.model_d(y_hat.detach()) + D_out_real = self.model_d(y_d) + + # format D outputs + if isinstance(D_out_fake, tuple): + # self.model_d returns scores and features + scores_fake, feats_fake = D_out_fake + if D_out_real is None: + scores_real, feats_real = None, None + else: + scores_real, feats_real = D_out_real + else: + # model D returns only scores + scores_fake = D_out_fake + scores_real = D_out_real + + # compute losses + loss_dict = criterion[optimizer_idx](scores_fake, scores_real) + outputs = {"model_outputs": y_hat} + + if optimizer_idx == 1: + # GENERATOR loss + scores_fake, feats_fake, feats_real = None, None, None + if self.train_disc: + if len(signature(self.model_d.forward).parameters) == 2: + D_out_fake = self.model_d(self.y_hat_g, x) + else: + D_out_fake = self.model_d(self.y_hat_g) + D_out_real = None + + if self.config.use_feat_match_loss: + with torch.no_grad(): + D_out_real = self.model_d(y) + + # format D outputs + if isinstance(D_out_fake, tuple): + scores_fake, feats_fake = D_out_fake + if D_out_real is None: + feats_real = None + else: + _, feats_real = D_out_real + else: + scores_fake = D_out_fake + feats_fake, feats_real = None, None + + # compute losses + loss_dict = criterion[optimizer_idx]( + self.y_hat_g, y, scores_fake, feats_fake, feats_real, self.y_hat_sub, self.y_sub_g + ) + outputs = {"model_outputs": self.y_hat_g} + return outputs, loss_dict + + def _log(self, name: str, ap: AudioProcessor, batch: Dict, outputs: Dict) -> Tuple[Dict, Dict]: + """Logging shared by the training and evaluation. + + Args: + name (str): Name of the run. `train` or `eval`, + ap (AudioProcessor): Audio processor used in training. + batch (Dict): Batch used in the last train/eval step. + outputs (Dict): Model outputs from the last train/eval step. + + Returns: + Tuple[Dict, Dict]: log figures and audio samples. + """ + y_hat = outputs[0]["model_outputs"] if self.train_disc else outputs[1]["model_outputs"] + y = batch["waveform"] + figures = plot_results(y_hat, y, ap, name) + sample_voice = y_hat[0].squeeze(0).detach().cpu().numpy() + audios = {f"{name}/audio": sample_voice} + return figures, audios + + def train_log( + self, batch: Dict, outputs: Dict, logger: "Logger", assets: Dict, steps: int # pylint: disable=unused-argument + ) -> Tuple[Dict, np.ndarray]: + """Call `_log()` for training.""" + figures, audios = self._log("eval", self.ap, batch, outputs) + logger.eval_figures(steps, figures) + logger.eval_audios(steps, audios, self.ap.sample_rate) + + @torch.no_grad() + def eval_step(self, batch: Dict, criterion: nn.Module, optimizer_idx: int) -> Tuple[Dict, Dict]: + """Call `train_step()` with `no_grad()`""" + self.train_disc = True # Avoid a bug in the Training with the missing discriminator loss + return self.train_step(batch, criterion, optimizer_idx) + + def eval_log( + self, batch: Dict, outputs: Dict, logger: "Logger", assets: Dict, steps: int # pylint: disable=unused-argument + ) -> Tuple[Dict, np.ndarray]: + """Call `_log()` for evaluation.""" + figures, audios = self._log("eval", self.ap, batch, outputs) + logger.eval_figures(steps, figures) + logger.eval_audios(steps, audios, self.ap.sample_rate) + + def load_checkpoint( + self, + config: Coqpit, + checkpoint_path: str, + eval: bool = False, # pylint: disable=unused-argument, redefined-builtin + cache: bool = False, + ) -> None: + """Load a GAN checkpoint and initialize model parameters. + + Args: + config (Coqpit): Model config. + checkpoint_path (str): Checkpoint file path. + eval (bool, optional): If true, load the model for inference. If falseDefaults to False. + """ + state = load_fsspec(checkpoint_path, map_location=torch.device("cpu"), cache=cache) + # band-aid for older than v0.0.15 GAN models + if "model_disc" in state: + self.model_g.load_checkpoint(config, checkpoint_path, eval) + else: + self.load_state_dict(state["model"]) + if eval: + self.model_d = None + if hasattr(self.model_g, "remove_weight_norm"): + self.model_g.remove_weight_norm() + + def on_train_step_start(self, trainer) -> None: + """Enable the discriminator training based on `steps_to_start_discriminator` + + Args: + trainer (Trainer): Trainer object. + """ + self.train_disc = trainer.total_steps_done >= self.config.steps_to_start_discriminator + + def get_optimizer(self) -> List: + """Initiate and return the GAN optimizers based on the config parameters. + + It returnes 2 optimizers in a list. First one is for the generator and the second one is for the discriminator. + + Returns: + List: optimizers. + """ + optimizer1 = get_optimizer( + self.config.optimizer, self.config.optimizer_params, self.config.lr_gen, self.model_g + ) + optimizer2 = get_optimizer( + self.config.optimizer, self.config.optimizer_params, self.config.lr_disc, self.model_d + ) + return [optimizer2, optimizer1] + + def get_lr(self) -> List: + """Set the initial learning rates for each optimizer. + + Returns: + List: learning rates for each optimizer. + """ + return [self.config.lr_disc, self.config.lr_gen] + + def get_scheduler(self, optimizer) -> List: + """Set the schedulers for each optimizer. + + Args: + optimizer (List[`torch.optim.Optimizer`]): List of optimizers. + + Returns: + List: Schedulers, one for each optimizer. + """ + scheduler1 = get_scheduler(self.config.lr_scheduler_gen, self.config.lr_scheduler_gen_params, optimizer[0]) + scheduler2 = get_scheduler(self.config.lr_scheduler_disc, self.config.lr_scheduler_disc_params, optimizer[1]) + return [scheduler2, scheduler1] + + @staticmethod + def format_batch(batch: List) -> Dict: + """Format the batch for training. + + Args: + batch (List): Batch out of the dataloader. + + Returns: + Dict: formatted model inputs. + """ + if isinstance(batch[0], list): + x_G, y_G = batch[0] + x_D, y_D = batch[1] + return {"input": x_G, "waveform": y_G, "input_disc": x_D, "waveform_disc": y_D} + x, y = batch + return {"input": x, "waveform": y} + + def get_data_loader( # pylint: disable=no-self-use, unused-argument + self, + config: Coqpit, + assets: Dict, + is_eval: True, + samples: List, + verbose: bool, + num_gpus: int, + rank: int = None, # pylint: disable=unused-argument + ): + """Initiate and return the GAN dataloader. + + Args: + config (Coqpit): Model config. + ap (AudioProcessor): Audio processor. + is_eval (True): Set the dataloader for evaluation if true. + samples (List): Data samples. + verbose (bool): Log information if true. + num_gpus (int): Number of GPUs in use. + rank (int): Rank of the current GPU. Defaults to None. + + Returns: + DataLoader: Torch dataloader. + """ + dataset = GANDataset( + ap=self.ap, + items=samples, + seq_len=config.seq_len, + hop_len=self.ap.hop_length, + pad_short=config.pad_short, + conv_pad=config.conv_pad, + return_pairs=config.diff_samples_for_G_and_D if "diff_samples_for_G_and_D" in config else False, + is_training=not is_eval, + return_segments=not is_eval, + use_noise_augment=config.use_noise_augment, + use_cache=config.use_cache, + verbose=verbose, + ) + dataset.shuffle_mapping() + sampler = DistributedSampler(dataset, shuffle=True) if num_gpus > 1 else None + loader = DataLoader( + dataset, + batch_size=1 if is_eval else config.batch_size, + shuffle=num_gpus == 0, + drop_last=False, + sampler=sampler, + num_workers=config.num_eval_loader_workers if is_eval else config.num_loader_workers, + pin_memory=False, + ) + return loader + + def get_criterion(self): + """Return criterions for the optimizers""" + return [DiscriminatorLoss(self.config), GeneratorLoss(self.config)] + + @staticmethod + def init_from_config(config: Coqpit, verbose=True) -> "GAN": + ap = AudioProcessor.init_from_config(config, verbose=verbose) + return GAN(config, ap=ap) diff --git a/TTS/TTS/vocoder/models/hifigan_discriminator.py b/TTS/TTS/vocoder/models/hifigan_discriminator.py new file mode 100644 index 0000000000000000000000000000000000000000..ca5eaf408c95372ea26f4e83db6f470b4dd92dfb --- /dev/null +++ b/TTS/TTS/vocoder/models/hifigan_discriminator.py @@ -0,0 +1,217 @@ +# adopted from https://github.com/jik876/hifi-gan/blob/master/models.py +import torch +from torch import nn +from torch.nn import functional as F + +LRELU_SLOPE = 0.1 + + +class DiscriminatorP(torch.nn.Module): + """HiFiGAN Periodic Discriminator + + Takes every Pth value from the input waveform and applied a stack of convoluations. + + Note: + if `period` is 2 + `waveform = [1, 2, 3, 4, 5, 6 ...] --> [1, 3, 5 ... ] --> convs -> score, feat` + + Args: + x (Tensor): input waveform. + + Returns: + [Tensor]: discriminator scores per sample in the batch. + [List[Tensor]]: list of features from each convolutional layer. + + Shapes: + x: [B, 1, T] + """ + + def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False): + super().__init__() + self.period = period + get_padding = lambda k, d: int((k * d - d) / 2) + norm_f = nn.utils.spectral_norm if use_spectral_norm else nn.utils.weight_norm + self.convs = nn.ModuleList( + [ + norm_f(nn.Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), + norm_f(nn.Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), + norm_f(nn.Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), + norm_f(nn.Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), + norm_f(nn.Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0))), + ] + ) + self.conv_post = norm_f(nn.Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) + + def forward(self, x): + """ + Args: + x (Tensor): input waveform. + + Returns: + [Tensor]: discriminator scores per sample in the batch. + [List[Tensor]]: list of features from each convolutional layer. + + Shapes: + x: [B, 1, T] + """ + feat = [] + + # 1d to 2d + b, c, t = x.shape + if t % self.period != 0: # pad first + n_pad = self.period - (t % self.period) + x = F.pad(x, (0, n_pad), "reflect") + t = t + n_pad + x = x.view(b, c, t // self.period, self.period) + + for l in self.convs: + x = l(x) + x = F.leaky_relu(x, LRELU_SLOPE) + feat.append(x) + x = self.conv_post(x) + feat.append(x) + x = torch.flatten(x, 1, -1) + + return x, feat + + +class MultiPeriodDiscriminator(torch.nn.Module): + """HiFiGAN Multi-Period Discriminator (MPD) + Wrapper for the `PeriodDiscriminator` to apply it in different periods. + Periods are suggested to be prime numbers to reduce the overlap between each discriminator. + """ + + def __init__(self, use_spectral_norm=False): + super().__init__() + self.discriminators = nn.ModuleList( + [ + DiscriminatorP(2, use_spectral_norm=use_spectral_norm), + DiscriminatorP(3, use_spectral_norm=use_spectral_norm), + DiscriminatorP(5, use_spectral_norm=use_spectral_norm), + DiscriminatorP(7, use_spectral_norm=use_spectral_norm), + DiscriminatorP(11, use_spectral_norm=use_spectral_norm), + ] + ) + + def forward(self, x): + """ + Args: + x (Tensor): input waveform. + + Returns: + [List[Tensor]]: list of scores from each discriminator. + [List[List[Tensor]]]: list of list of features from each discriminator's each convolutional layer. + + Shapes: + x: [B, 1, T] + """ + scores = [] + feats = [] + for _, d in enumerate(self.discriminators): + score, feat = d(x) + scores.append(score) + feats.append(feat) + return scores, feats + + +class DiscriminatorS(torch.nn.Module): + """HiFiGAN Scale Discriminator. + It is similar to `MelganDiscriminator` but with a specific architecture explained in the paper. + + Args: + use_spectral_norm (bool): if `True` swith to spectral norm instead of weight norm. + + """ + + def __init__(self, use_spectral_norm=False): + super().__init__() + norm_f = nn.utils.spectral_norm if use_spectral_norm else nn.utils.weight_norm + self.convs = nn.ModuleList( + [ + norm_f(nn.Conv1d(1, 128, 15, 1, padding=7)), + norm_f(nn.Conv1d(128, 128, 41, 2, groups=4, padding=20)), + norm_f(nn.Conv1d(128, 256, 41, 2, groups=16, padding=20)), + norm_f(nn.Conv1d(256, 512, 41, 4, groups=16, padding=20)), + norm_f(nn.Conv1d(512, 1024, 41, 4, groups=16, padding=20)), + norm_f(nn.Conv1d(1024, 1024, 41, 1, groups=16, padding=20)), + norm_f(nn.Conv1d(1024, 1024, 5, 1, padding=2)), + ] + ) + self.conv_post = norm_f(nn.Conv1d(1024, 1, 3, 1, padding=1)) + + def forward(self, x): + """ + Args: + x (Tensor): input waveform. + + Returns: + Tensor: discriminator scores. + List[Tensor]: list of features from the convolutiona layers. + """ + feat = [] + for l in self.convs: + x = l(x) + x = F.leaky_relu(x, LRELU_SLOPE) + feat.append(x) + x = self.conv_post(x) + feat.append(x) + x = torch.flatten(x, 1, -1) + return x, feat + + +class MultiScaleDiscriminator(torch.nn.Module): + """HiFiGAN Multi-Scale Discriminator. + It is similar to `MultiScaleMelganDiscriminator` but specially tailored for HiFiGAN as in the paper. + """ + + def __init__(self): + super().__init__() + self.discriminators = nn.ModuleList( + [ + DiscriminatorS(use_spectral_norm=True), + DiscriminatorS(), + DiscriminatorS(), + ] + ) + self.meanpools = nn.ModuleList([nn.AvgPool1d(4, 2, padding=2), nn.AvgPool1d(4, 2, padding=2)]) + + def forward(self, x): + """ + Args: + x (Tensor): input waveform. + + Returns: + List[Tensor]: discriminator scores. + List[List[Tensor]]: list of list of features from each layers of each discriminator. + """ + scores = [] + feats = [] + for i, d in enumerate(self.discriminators): + if i != 0: + x = self.meanpools[i - 1](x) + score, feat = d(x) + scores.append(score) + feats.append(feat) + return scores, feats + + +class HifiganDiscriminator(nn.Module): + """HiFiGAN discriminator wrapping MPD and MSD.""" + + def __init__(self): + super().__init__() + self.mpd = MultiPeriodDiscriminator() + self.msd = MultiScaleDiscriminator() + + def forward(self, x): + """ + Args: + x (Tensor): input waveform. + + Returns: + List[Tensor]: discriminator scores. + List[List[Tensor]]: list of list of features from each layers of each discriminator. + """ + scores, feats = self.mpd(x) + scores_, feats_ = self.msd(x) + return scores + scores_, feats + feats_ diff --git a/TTS/TTS/vocoder/models/hifigan_generator.py b/TTS/TTS/vocoder/models/hifigan_generator.py new file mode 100644 index 0000000000000000000000000000000000000000..4916d1e69769b2a17fb67c420fd8bb9376557a88 --- /dev/null +++ b/TTS/TTS/vocoder/models/hifigan_generator.py @@ -0,0 +1,300 @@ +# adopted from https://github.com/jik876/hifi-gan/blob/master/models.py +import torch +from torch import nn +from torch.nn import Conv1d, ConvTranspose1d +from torch.nn import functional as F +from torch.nn.utils import remove_weight_norm, weight_norm + +from TTS.utils.io import load_fsspec + +LRELU_SLOPE = 0.1 + + +def get_padding(k, d): + return int((k * d - d) / 2) + + +class ResBlock1(torch.nn.Module): + """Residual Block Type 1. It has 3 convolutional layers in each convolutional block. + + Network:: + + x -> lrelu -> conv1_1 -> conv1_2 -> conv1_3 -> z -> lrelu -> conv2_1 -> conv2_2 -> conv2_3 -> o -> + -> o + |--------------------------------------------------------------------------------------------------| + + + Args: + channels (int): number of hidden channels for the convolutional layers. + kernel_size (int): size of the convolution filter in each layer. + dilations (list): list of dilation value for each conv layer in a block. + """ + + def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)): + super().__init__() + self.convs1 = nn.ModuleList( + [ + weight_norm( + Conv1d( + channels, + channels, + kernel_size, + 1, + dilation=dilation[0], + padding=get_padding(kernel_size, dilation[0]), + ) + ), + weight_norm( + Conv1d( + channels, + channels, + kernel_size, + 1, + dilation=dilation[1], + padding=get_padding(kernel_size, dilation[1]), + ) + ), + weight_norm( + Conv1d( + channels, + channels, + kernel_size, + 1, + dilation=dilation[2], + padding=get_padding(kernel_size, dilation[2]), + ) + ), + ] + ) + + self.convs2 = nn.ModuleList( + [ + weight_norm( + Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1)) + ), + weight_norm( + Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1)) + ), + weight_norm( + Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1)) + ), + ] + ) + + def forward(self, x): + """ + Args: + x (Tensor): input tensor. + Returns: + Tensor: output tensor. + Shapes: + x: [B, C, T] + """ + for c1, c2 in zip(self.convs1, self.convs2): + xt = F.leaky_relu(x, LRELU_SLOPE) + xt = c1(xt) + xt = F.leaky_relu(xt, LRELU_SLOPE) + xt = c2(xt) + x = xt + x + return x + + def remove_weight_norm(self): + for l in self.convs1: + remove_weight_norm(l) + for l in self.convs2: + remove_weight_norm(l) + + +class ResBlock2(torch.nn.Module): + """Residual Block Type 2. It has 1 convolutional layers in each convolutional block. + + Network:: + + x -> lrelu -> conv1-> -> z -> lrelu -> conv2-> o -> + -> o + |---------------------------------------------------| + + + Args: + channels (int): number of hidden channels for the convolutional layers. + kernel_size (int): size of the convolution filter in each layer. + dilations (list): list of dilation value for each conv layer in a block. + """ + + def __init__(self, channels, kernel_size=3, dilation=(1, 3)): + super().__init__() + self.convs = nn.ModuleList( + [ + weight_norm( + Conv1d( + channels, + channels, + kernel_size, + 1, + dilation=dilation[0], + padding=get_padding(kernel_size, dilation[0]), + ) + ), + weight_norm( + Conv1d( + channels, + channels, + kernel_size, + 1, + dilation=dilation[1], + padding=get_padding(kernel_size, dilation[1]), + ) + ), + ] + ) + + def forward(self, x): + for c in self.convs: + xt = F.leaky_relu(x, LRELU_SLOPE) + xt = c(xt) + x = xt + x + return x + + def remove_weight_norm(self): + for l in self.convs: + remove_weight_norm(l) + + +class HifiganGenerator(torch.nn.Module): + def __init__( + self, + in_channels, + out_channels, + resblock_type, + resblock_dilation_sizes, + resblock_kernel_sizes, + upsample_kernel_sizes, + upsample_initial_channel, + upsample_factors, + inference_padding=5, + cond_channels=0, + conv_pre_weight_norm=True, + conv_post_weight_norm=True, + conv_post_bias=True, + ): + r"""HiFiGAN Generator with Multi-Receptive Field Fusion (MRF) + + Network: + x -> lrelu -> upsampling_layer -> resblock1_k1x1 -> z1 -> + -> z_sum / #resblocks -> lrelu -> conv_post_7x1 -> tanh -> o + .. -> zI ---| + resblockN_kNx1 -> zN ---' + + Args: + in_channels (int): number of input tensor channels. + out_channels (int): number of output tensor channels. + resblock_type (str): type of the `ResBlock`. '1' or '2'. + resblock_dilation_sizes (List[List[int]]): list of dilation values in each layer of a `ResBlock`. + resblock_kernel_sizes (List[int]): list of kernel sizes for each `ResBlock`. + upsample_kernel_sizes (List[int]): list of kernel sizes for each transposed convolution. + upsample_initial_channel (int): number of channels for the first upsampling layer. This is divided by 2 + for each consecutive upsampling layer. + upsample_factors (List[int]): upsampling factors (stride) for each upsampling layer. + inference_padding (int): constant padding applied to the input at inference time. Defaults to 5. + """ + super().__init__() + self.inference_padding = inference_padding + self.num_kernels = len(resblock_kernel_sizes) + self.num_upsamples = len(upsample_factors) + # initial upsampling layers + self.conv_pre = weight_norm(Conv1d(in_channels, upsample_initial_channel, 7, 1, padding=3)) + resblock = ResBlock1 if resblock_type == "1" else ResBlock2 + # upsampling layers + self.ups = nn.ModuleList() + for i, (u, k) in enumerate(zip(upsample_factors, upsample_kernel_sizes)): + self.ups.append( + weight_norm( + ConvTranspose1d( + upsample_initial_channel // (2**i), + upsample_initial_channel // (2 ** (i + 1)), + k, + u, + padding=(k - u) // 2, + ) + ) + ) + # MRF blocks + self.resblocks = nn.ModuleList() + for i in range(len(self.ups)): + ch = upsample_initial_channel // (2 ** (i + 1)) + for _, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)): + self.resblocks.append(resblock(ch, k, d)) + # post convolution layer + self.conv_post = weight_norm(Conv1d(ch, out_channels, 7, 1, padding=3, bias=conv_post_bias)) + if cond_channels > 0: + self.cond_layer = nn.Conv1d(cond_channels, upsample_initial_channel, 1) + + if not conv_pre_weight_norm: + remove_weight_norm(self.conv_pre) + + if not conv_post_weight_norm: + remove_weight_norm(self.conv_post) + + def forward(self, x, g=None): + """ + Args: + x (Tensor): feature input tensor. + g (Tensor): global conditioning input tensor. + + Returns: + Tensor: output waveform. + + Shapes: + x: [B, C, T] + Tensor: [B, 1, T] + """ + o = self.conv_pre(x) + if hasattr(self, "cond_layer"): + o = o + self.cond_layer(g) + for i in range(self.num_upsamples): + o = F.leaky_relu(o, LRELU_SLOPE) + o = self.ups[i](o) + z_sum = None + for j in range(self.num_kernels): + if z_sum is None: + z_sum = self.resblocks[i * self.num_kernels + j](o) + else: + z_sum += self.resblocks[i * self.num_kernels + j](o) + o = z_sum / self.num_kernels + o = F.leaky_relu(o) + o = self.conv_post(o) + o = torch.tanh(o) + return o + + @torch.no_grad() + def inference(self, c): + """ + Args: + x (Tensor): conditioning input tensor. + + Returns: + Tensor: output waveform. + + Shapes: + x: [B, C, T] + Tensor: [B, 1, T] + """ + c = c.to(self.conv_pre.weight.device) + c = torch.nn.functional.pad(c, (self.inference_padding, self.inference_padding), "replicate") + return self.forward(c) + + def remove_weight_norm(self): + print("Removing weight norm...") + for l in self.ups: + remove_weight_norm(l) + for l in self.resblocks: + l.remove_weight_norm() + remove_weight_norm(self.conv_pre) + remove_weight_norm(self.conv_post) + + def load_checkpoint( + self, config, checkpoint_path, eval=False, cache=False + ): # pylint: disable=unused-argument, redefined-builtin + state = load_fsspec(checkpoint_path, map_location=torch.device("cpu"), cache=cache) + self.load_state_dict(state["model"]) + if eval: + self.eval() + assert not self.training + self.remove_weight_norm() diff --git a/TTS/TTS/vocoder/models/melgan_discriminator.py b/TTS/TTS/vocoder/models/melgan_discriminator.py new file mode 100644 index 0000000000000000000000000000000000000000..14f00c5927cb28449c4fb0dc0727cde014370c2b --- /dev/null +++ b/TTS/TTS/vocoder/models/melgan_discriminator.py @@ -0,0 +1,84 @@ +import numpy as np +from torch import nn +from torch.nn.utils import weight_norm + + +class MelganDiscriminator(nn.Module): + def __init__( + self, + in_channels=1, + out_channels=1, + kernel_sizes=(5, 3), + base_channels=16, + max_channels=1024, + downsample_factors=(4, 4, 4, 4), + groups_denominator=4, + ): + super().__init__() + self.layers = nn.ModuleList() + + layer_kernel_size = np.prod(kernel_sizes) + layer_padding = (layer_kernel_size - 1) // 2 + + # initial layer + self.layers += [ + nn.Sequential( + nn.ReflectionPad1d(layer_padding), + weight_norm(nn.Conv1d(in_channels, base_channels, layer_kernel_size, stride=1)), + nn.LeakyReLU(0.2, inplace=True), + ) + ] + + # downsampling layers + layer_in_channels = base_channels + for downsample_factor in downsample_factors: + layer_out_channels = min(layer_in_channels * downsample_factor, max_channels) + layer_kernel_size = downsample_factor * 10 + 1 + layer_padding = (layer_kernel_size - 1) // 2 + layer_groups = layer_in_channels // groups_denominator + self.layers += [ + nn.Sequential( + weight_norm( + nn.Conv1d( + layer_in_channels, + layer_out_channels, + kernel_size=layer_kernel_size, + stride=downsample_factor, + padding=layer_padding, + groups=layer_groups, + ) + ), + nn.LeakyReLU(0.2, inplace=True), + ) + ] + layer_in_channels = layer_out_channels + + # last 2 layers + layer_padding1 = (kernel_sizes[0] - 1) // 2 + layer_padding2 = (kernel_sizes[1] - 1) // 2 + self.layers += [ + nn.Sequential( + weight_norm( + nn.Conv1d( + layer_out_channels, + layer_out_channels, + kernel_size=kernel_sizes[0], + stride=1, + padding=layer_padding1, + ) + ), + nn.LeakyReLU(0.2, inplace=True), + ), + weight_norm( + nn.Conv1d( + layer_out_channels, out_channels, kernel_size=kernel_sizes[1], stride=1, padding=layer_padding2 + ) + ), + ] + + def forward(self, x): + feats = [] + for layer in self.layers: + x = layer(x) + feats.append(x) + return x, feats diff --git a/TTS/TTS/vocoder/models/melgan_generator.py b/TTS/TTS/vocoder/models/melgan_generator.py new file mode 100644 index 0000000000000000000000000000000000000000..989797f0b8537c96ff4cfd1c2c6af856cecc79fc --- /dev/null +++ b/TTS/TTS/vocoder/models/melgan_generator.py @@ -0,0 +1,95 @@ +import torch +from torch import nn +from torch.nn.utils import weight_norm + +from TTS.utils.io import load_fsspec +from TTS.vocoder.layers.melgan import ResidualStack + + +class MelganGenerator(nn.Module): + def __init__( + self, + in_channels=80, + out_channels=1, + proj_kernel=7, + base_channels=512, + upsample_factors=(8, 8, 2, 2), + res_kernel=3, + num_res_blocks=3, + ): + super().__init__() + + # assert model parameters + assert (proj_kernel - 1) % 2 == 0, " [!] proj_kernel should be an odd number." + + # setup additional model parameters + base_padding = (proj_kernel - 1) // 2 + act_slope = 0.2 + self.inference_padding = 2 + + # initial layer + layers = [] + layers += [ + nn.ReflectionPad1d(base_padding), + weight_norm(nn.Conv1d(in_channels, base_channels, kernel_size=proj_kernel, stride=1, bias=True)), + ] + + # upsampling layers and residual stacks + for idx, upsample_factor in enumerate(upsample_factors): + layer_in_channels = base_channels // (2**idx) + layer_out_channels = base_channels // (2 ** (idx + 1)) + layer_filter_size = upsample_factor * 2 + layer_stride = upsample_factor + layer_output_padding = upsample_factor % 2 + layer_padding = upsample_factor // 2 + layer_output_padding + layers += [ + nn.LeakyReLU(act_slope), + weight_norm( + nn.ConvTranspose1d( + layer_in_channels, + layer_out_channels, + layer_filter_size, + stride=layer_stride, + padding=layer_padding, + output_padding=layer_output_padding, + bias=True, + ) + ), + ResidualStack(channels=layer_out_channels, num_res_blocks=num_res_blocks, kernel_size=res_kernel), + ] + + layers += [nn.LeakyReLU(act_slope)] + + # final layer + layers += [ + nn.ReflectionPad1d(base_padding), + weight_norm(nn.Conv1d(layer_out_channels, out_channels, proj_kernel, stride=1, bias=True)), + nn.Tanh(), + ] + self.layers = nn.Sequential(*layers) + + def forward(self, c): + return self.layers(c) + + def inference(self, c): + c = c.to(self.layers[1].weight.device) + c = torch.nn.functional.pad(c, (self.inference_padding, self.inference_padding), "replicate") + return self.layers(c) + + def remove_weight_norm(self): + for _, layer in enumerate(self.layers): + if len(layer.state_dict()) != 0: + try: + nn.utils.remove_weight_norm(layer) + except ValueError: + layer.remove_weight_norm() + + def load_checkpoint( + self, config, checkpoint_path, eval=False, cache=False + ): # pylint: disable=unused-argument, redefined-builtin + state = load_fsspec(checkpoint_path, map_location=torch.device("cpu"), cache=cache) + self.load_state_dict(state["model"]) + if eval: + self.eval() + assert not self.training + self.remove_weight_norm() diff --git a/TTS/TTS/vocoder/models/melgan_multiscale_discriminator.py b/TTS/TTS/vocoder/models/melgan_multiscale_discriminator.py new file mode 100644 index 0000000000000000000000000000000000000000..b4909f37c0c91c6fee8bb0baab98a8662039dea1 --- /dev/null +++ b/TTS/TTS/vocoder/models/melgan_multiscale_discriminator.py @@ -0,0 +1,50 @@ +from torch import nn + +from TTS.vocoder.models.melgan_discriminator import MelganDiscriminator + + +class MelganMultiscaleDiscriminator(nn.Module): + def __init__( + self, + in_channels=1, + out_channels=1, + num_scales=3, + kernel_sizes=(5, 3), + base_channels=16, + max_channels=1024, + downsample_factors=(4, 4, 4), + pooling_kernel_size=4, + pooling_stride=2, + pooling_padding=2, + groups_denominator=4, + ): + super().__init__() + + self.discriminators = nn.ModuleList( + [ + MelganDiscriminator( + in_channels=in_channels, + out_channels=out_channels, + kernel_sizes=kernel_sizes, + base_channels=base_channels, + max_channels=max_channels, + downsample_factors=downsample_factors, + groups_denominator=groups_denominator, + ) + for _ in range(num_scales) + ] + ) + + self.pooling = nn.AvgPool1d( + kernel_size=pooling_kernel_size, stride=pooling_stride, padding=pooling_padding, count_include_pad=False + ) + + def forward(self, x): + scores = [] + feats = [] + for disc in self.discriminators: + score, feat = disc(x) + scores.append(score) + feats.append(feat) + x = self.pooling(x) + return scores, feats diff --git a/TTS/TTS/vocoder/models/multiband_melgan_generator.py b/TTS/TTS/vocoder/models/multiband_melgan_generator.py new file mode 100644 index 0000000000000000000000000000000000000000..25d6590659cf5863176eb6609c7609b0e1b28d12 --- /dev/null +++ b/TTS/TTS/vocoder/models/multiband_melgan_generator.py @@ -0,0 +1,41 @@ +import torch + +from TTS.vocoder.layers.pqmf import PQMF +from TTS.vocoder.models.melgan_generator import MelganGenerator + + +class MultibandMelganGenerator(MelganGenerator): + def __init__( + self, + in_channels=80, + out_channels=4, + proj_kernel=7, + base_channels=384, + upsample_factors=(2, 8, 2, 2), + res_kernel=3, + num_res_blocks=3, + ): + super().__init__( + in_channels=in_channels, + out_channels=out_channels, + proj_kernel=proj_kernel, + base_channels=base_channels, + upsample_factors=upsample_factors, + res_kernel=res_kernel, + num_res_blocks=num_res_blocks, + ) + self.pqmf_layer = PQMF(N=4, taps=62, cutoff=0.15, beta=9.0) + + def pqmf_analysis(self, x): + return self.pqmf_layer.analysis(x) + + def pqmf_synthesis(self, x): + return self.pqmf_layer.synthesis(x) + + @torch.no_grad() + def inference(self, cond_features): + cond_features = cond_features.to(self.layers[1].weight.device) + cond_features = torch.nn.functional.pad( + cond_features, (self.inference_padding, self.inference_padding), "replicate" + ) + return self.pqmf_synthesis(self.layers(cond_features)) diff --git a/TTS/TTS/vocoder/models/parallel_wavegan_discriminator.py b/TTS/TTS/vocoder/models/parallel_wavegan_discriminator.py new file mode 100644 index 0000000000000000000000000000000000000000..adf1bdaea040e99dd66829b9b8ed184146e155cb --- /dev/null +++ b/TTS/TTS/vocoder/models/parallel_wavegan_discriminator.py @@ -0,0 +1,186 @@ +import math + +import torch +from torch import nn + +from TTS.vocoder.layers.parallel_wavegan import ResidualBlock + + +class ParallelWaveganDiscriminator(nn.Module): + """PWGAN discriminator as in https://arxiv.org/abs/1910.11480. + It classifies each audio window real/fake and returns a sequence + of predictions. + It is a stack of convolutional blocks with dilation. + """ + + # pylint: disable=dangerous-default-value + def __init__( + self, + in_channels=1, + out_channels=1, + kernel_size=3, + num_layers=10, + conv_channels=64, + dilation_factor=1, + nonlinear_activation="LeakyReLU", + nonlinear_activation_params={"negative_slope": 0.2}, + bias=True, + ): + super().__init__() + assert (kernel_size - 1) % 2 == 0, " [!] does not support even number kernel size." + assert dilation_factor > 0, " [!] dilation factor must be > 0." + self.conv_layers = nn.ModuleList() + conv_in_channels = in_channels + for i in range(num_layers - 1): + if i == 0: + dilation = 1 + else: + dilation = i if dilation_factor == 1 else dilation_factor**i + conv_in_channels = conv_channels + padding = (kernel_size - 1) // 2 * dilation + conv_layer = [ + nn.Conv1d( + conv_in_channels, + conv_channels, + kernel_size=kernel_size, + padding=padding, + dilation=dilation, + bias=bias, + ), + getattr(nn, nonlinear_activation)(inplace=True, **nonlinear_activation_params), + ] + self.conv_layers += conv_layer + padding = (kernel_size - 1) // 2 + last_conv_layer = nn.Conv1d(conv_in_channels, out_channels, kernel_size=kernel_size, padding=padding, bias=bias) + self.conv_layers += [last_conv_layer] + self.apply_weight_norm() + + def forward(self, x): + """ + x : (B, 1, T). + Returns: + Tensor: (B, 1, T) + """ + for f in self.conv_layers: + x = f(x) + return x + + def apply_weight_norm(self): + def _apply_weight_norm(m): + if isinstance(m, (torch.nn.Conv1d, torch.nn.Conv2d)): + torch.nn.utils.weight_norm(m) + + self.apply(_apply_weight_norm) + + def remove_weight_norm(self): + def _remove_weight_norm(m): + try: + # print(f"Weight norm is removed from {m}.") + nn.utils.remove_weight_norm(m) + except ValueError: # this module didn't have weight norm + return + + self.apply(_remove_weight_norm) + + +class ResidualParallelWaveganDiscriminator(nn.Module): + # pylint: disable=dangerous-default-value + def __init__( + self, + in_channels=1, + out_channels=1, + kernel_size=3, + num_layers=30, + stacks=3, + res_channels=64, + gate_channels=128, + skip_channels=64, + dropout=0.0, + bias=True, + nonlinear_activation="LeakyReLU", + nonlinear_activation_params={"negative_slope": 0.2}, + ): + super().__init__() + assert (kernel_size - 1) % 2 == 0, "Not support even number kernel size." + + self.in_channels = in_channels + self.out_channels = out_channels + self.num_layers = num_layers + self.stacks = stacks + self.kernel_size = kernel_size + self.res_factor = math.sqrt(1.0 / num_layers) + + # check the number of num_layers and stacks + assert num_layers % stacks == 0 + layers_per_stack = num_layers // stacks + + # define first convolution + self.first_conv = nn.Sequential( + nn.Conv1d(in_channels, res_channels, kernel_size=1, padding=0, dilation=1, bias=True), + getattr(nn, nonlinear_activation)(inplace=True, **nonlinear_activation_params), + ) + + # define residual blocks + self.conv_layers = nn.ModuleList() + for layer in range(num_layers): + dilation = 2 ** (layer % layers_per_stack) + conv = ResidualBlock( + kernel_size=kernel_size, + res_channels=res_channels, + gate_channels=gate_channels, + skip_channels=skip_channels, + aux_channels=-1, + dilation=dilation, + dropout=dropout, + bias=bias, + use_causal_conv=False, + ) + self.conv_layers += [conv] + + # define output layers + self.last_conv_layers = nn.ModuleList( + [ + getattr(nn, nonlinear_activation)(inplace=True, **nonlinear_activation_params), + nn.Conv1d(skip_channels, skip_channels, kernel_size=1, padding=0, dilation=1, bias=True), + getattr(nn, nonlinear_activation)(inplace=True, **nonlinear_activation_params), + nn.Conv1d(skip_channels, out_channels, kernel_size=1, padding=0, dilation=1, bias=True), + ] + ) + + # apply weight norm + self.apply_weight_norm() + + def forward(self, x): + """ + x: (B, 1, T). + """ + x = self.first_conv(x) + + skips = 0 + for f in self.conv_layers: + x, h = f(x, None) + skips += h + skips *= self.res_factor + + # apply final layers + x = skips + for f in self.last_conv_layers: + x = f(x) + return x + + def apply_weight_norm(self): + def _apply_weight_norm(m): + if isinstance(m, (torch.nn.Conv1d, torch.nn.Conv2d)): + torch.nn.utils.weight_norm(m) + + self.apply(_apply_weight_norm) + + def remove_weight_norm(self): + def _remove_weight_norm(m): + try: + print(f"Weight norm is removed from {m}.") + nn.utils.remove_weight_norm(m) + except ValueError: # this module didn't have weight norm + return + + self.apply(_remove_weight_norm) diff --git a/TTS/TTS/vocoder/models/parallel_wavegan_generator.py b/TTS/TTS/vocoder/models/parallel_wavegan_generator.py new file mode 100644 index 0000000000000000000000000000000000000000..5587fb7264d8ab98b3d5fa8086268c0e06aefc86 --- /dev/null +++ b/TTS/TTS/vocoder/models/parallel_wavegan_generator.py @@ -0,0 +1,163 @@ +import math + +import numpy as np +import torch + +from TTS.utils.io import load_fsspec +from TTS.vocoder.layers.parallel_wavegan import ResidualBlock +from TTS.vocoder.layers.upsample import ConvUpsample + + +class ParallelWaveganGenerator(torch.nn.Module): + """PWGAN generator as in https://arxiv.org/pdf/1910.11480.pdf. + It is similar to WaveNet with no causal convolution. + It is conditioned on an aux feature (spectrogram) to generate + an output waveform from an input noise. + """ + + # pylint: disable=dangerous-default-value + def __init__( + self, + in_channels=1, + out_channels=1, + kernel_size=3, + num_res_blocks=30, + stacks=3, + res_channels=64, + gate_channels=128, + skip_channels=64, + aux_channels=80, + dropout=0.0, + bias=True, + use_weight_norm=True, + upsample_factors=[4, 4, 4, 4], + inference_padding=2, + ): + super().__init__() + self.in_channels = in_channels + self.out_channels = out_channels + self.aux_channels = aux_channels + self.num_res_blocks = num_res_blocks + self.stacks = stacks + self.kernel_size = kernel_size + self.upsample_factors = upsample_factors + self.upsample_scale = np.prod(upsample_factors) + self.inference_padding = inference_padding + self.use_weight_norm = use_weight_norm + + # check the number of layers and stacks + assert num_res_blocks % stacks == 0 + layers_per_stack = num_res_blocks // stacks + + # define first convolution + self.first_conv = torch.nn.Conv1d(in_channels, res_channels, kernel_size=1, bias=True) + + # define conv + upsampling network + self.upsample_net = ConvUpsample(upsample_factors=upsample_factors) + + # define residual blocks + self.conv_layers = torch.nn.ModuleList() + for layer in range(num_res_blocks): + dilation = 2 ** (layer % layers_per_stack) + conv = ResidualBlock( + kernel_size=kernel_size, + res_channels=res_channels, + gate_channels=gate_channels, + skip_channels=skip_channels, + aux_channels=aux_channels, + dilation=dilation, + dropout=dropout, + bias=bias, + ) + self.conv_layers += [conv] + + # define output layers + self.last_conv_layers = torch.nn.ModuleList( + [ + torch.nn.ReLU(inplace=True), + torch.nn.Conv1d(skip_channels, skip_channels, kernel_size=1, bias=True), + torch.nn.ReLU(inplace=True), + torch.nn.Conv1d(skip_channels, out_channels, kernel_size=1, bias=True), + ] + ) + + # apply weight norm + if use_weight_norm: + self.apply_weight_norm() + + def forward(self, c): + """ + c: (B, C ,T'). + o: Output tensor (B, out_channels, T) + """ + # random noise + x = torch.randn([c.shape[0], 1, c.shape[2] * self.upsample_scale]) + x = x.to(self.first_conv.bias.device) + + # perform upsampling + if c is not None and self.upsample_net is not None: + c = self.upsample_net(c) + assert ( + c.shape[-1] == x.shape[-1] + ), f" [!] Upsampling scale does not match the expected output. {c.shape} vs {x.shape}" + + # encode to hidden representation + x = self.first_conv(x) + skips = 0 + for f in self.conv_layers: + x, h = f(x, c) + skips += h + skips *= math.sqrt(1.0 / len(self.conv_layers)) + + # apply final layers + x = skips + for f in self.last_conv_layers: + x = f(x) + + return x + + @torch.no_grad() + def inference(self, c): + c = c.to(self.first_conv.weight.device) + c = torch.nn.functional.pad(c, (self.inference_padding, self.inference_padding), "replicate") + return self.forward(c) + + def remove_weight_norm(self): + def _remove_weight_norm(m): + try: + # print(f"Weight norm is removed from {m}.") + torch.nn.utils.remove_weight_norm(m) + except ValueError: # this module didn't have weight norm + return + + self.apply(_remove_weight_norm) + + def apply_weight_norm(self): + def _apply_weight_norm(m): + if isinstance(m, (torch.nn.Conv1d, torch.nn.Conv2d)): + torch.nn.utils.weight_norm(m) + # print(f"Weight norm is applied to {m}.") + + self.apply(_apply_weight_norm) + + @staticmethod + def _get_receptive_field_size(layers, stacks, kernel_size, dilation=lambda x: 2**x): + assert layers % stacks == 0 + layers_per_cycle = layers // stacks + dilations = [dilation(i % layers_per_cycle) for i in range(layers)] + return (kernel_size - 1) * sum(dilations) + 1 + + @property + def receptive_field_size(self): + return self._get_receptive_field_size(self.layers, self.stacks, self.kernel_size) + + def load_checkpoint( + self, config, checkpoint_path, eval=False, cache=False + ): # pylint: disable=unused-argument, redefined-builtin + state = load_fsspec(checkpoint_path, map_location=torch.device("cpu"), cache=cache) + self.load_state_dict(state["model"]) + if eval: + self.eval() + assert not self.training + if self.use_weight_norm: + self.remove_weight_norm() diff --git a/TTS/TTS/vocoder/models/random_window_discriminator.py b/TTS/TTS/vocoder/models/random_window_discriminator.py new file mode 100644 index 0000000000000000000000000000000000000000..79b68e9780ff1703b0f4955e37fe93c02d97ea09 --- /dev/null +++ b/TTS/TTS/vocoder/models/random_window_discriminator.py @@ -0,0 +1,203 @@ +import numpy as np +from torch import nn + + +class GBlock(nn.Module): + def __init__(self, in_channels, cond_channels, downsample_factor): + super().__init__() + + self.in_channels = in_channels + self.cond_channels = cond_channels + self.downsample_factor = downsample_factor + + self.start = nn.Sequential( + nn.AvgPool1d(downsample_factor, stride=downsample_factor), + nn.ReLU(), + nn.Conv1d(in_channels, in_channels * 2, kernel_size=3, padding=1), + ) + self.lc_conv1d = nn.Conv1d(cond_channels, in_channels * 2, kernel_size=1) + self.end = nn.Sequential( + nn.ReLU(), nn.Conv1d(in_channels * 2, in_channels * 2, kernel_size=3, dilation=2, padding=2) + ) + self.residual = nn.Sequential( + nn.Conv1d(in_channels, in_channels * 2, kernel_size=1), + nn.AvgPool1d(downsample_factor, stride=downsample_factor), + ) + + def forward(self, inputs, conditions): + outputs = self.start(inputs) + self.lc_conv1d(conditions) + outputs = self.end(outputs) + residual_outputs = self.residual(inputs) + outputs = outputs + residual_outputs + + return outputs + + +class DBlock(nn.Module): + def __init__(self, in_channels, out_channels, downsample_factor): + super().__init__() + + self.in_channels = in_channels + self.downsample_factor = downsample_factor + self.out_channels = out_channels + + self.donwsample_layer = nn.AvgPool1d(downsample_factor, stride=downsample_factor) + self.layers = nn.Sequential( + nn.ReLU(), + nn.Conv1d(in_channels, out_channels, kernel_size=3, padding=1), + nn.ReLU(), + nn.Conv1d(out_channels, out_channels, kernel_size=3, dilation=2, padding=2), + ) + self.residual = nn.Sequential( + nn.Conv1d(in_channels, out_channels, kernel_size=1), + ) + + def forward(self, inputs): + if self.downsample_factor > 1: + outputs = self.layers(self.donwsample_layer(inputs)) + self.donwsample_layer(self.residual(inputs)) + else: + outputs = self.layers(inputs) + self.residual(inputs) + return outputs + + +class ConditionalDiscriminator(nn.Module): + def __init__(self, in_channels, cond_channels, downsample_factors=(2, 2, 2), out_channels=(128, 256)): + super().__init__() + + assert len(downsample_factors) == len(out_channels) + 1 + + self.in_channels = in_channels + self.cond_channels = cond_channels + self.downsample_factors = downsample_factors + self.out_channels = out_channels + + self.pre_cond_layers = nn.ModuleList() + self.post_cond_layers = nn.ModuleList() + + # layers before condition features + self.pre_cond_layers += [DBlock(in_channels, 64, 1)] + in_channels = 64 + for i, channel in enumerate(out_channels): + self.pre_cond_layers.append(DBlock(in_channels, channel, downsample_factors[i])) + in_channels = channel + + # condition block + self.cond_block = GBlock(in_channels, cond_channels, downsample_factors[-1]) + + # layers after condition block + self.post_cond_layers += [ + DBlock(in_channels * 2, in_channels * 2, 1), + DBlock(in_channels * 2, in_channels * 2, 1), + nn.AdaptiveAvgPool1d(1), + nn.Conv1d(in_channels * 2, 1, kernel_size=1), + ] + + def forward(self, inputs, conditions): + batch_size = inputs.size()[0] + outputs = inputs.view(batch_size, self.in_channels, -1) + for layer in self.pre_cond_layers: + outputs = layer(outputs) + outputs = self.cond_block(outputs, conditions) + for layer in self.post_cond_layers: + outputs = layer(outputs) + + return outputs + + +class UnconditionalDiscriminator(nn.Module): + def __init__(self, in_channels, base_channels=64, downsample_factors=(8, 4), out_channels=(128, 256)): + super().__init__() + + self.downsample_factors = downsample_factors + self.in_channels = in_channels + self.downsample_factors = downsample_factors + self.out_channels = out_channels + + self.layers = nn.ModuleList() + self.layers += [DBlock(self.in_channels, base_channels, 1)] + in_channels = base_channels + for i, factor in enumerate(downsample_factors): + self.layers.append(DBlock(in_channels, out_channels[i], factor)) + in_channels *= 2 + self.layers += [ + DBlock(in_channels, in_channels, 1), + DBlock(in_channels, in_channels, 1), + nn.AdaptiveAvgPool1d(1), + nn.Conv1d(in_channels, 1, kernel_size=1), + ] + + def forward(self, inputs): + batch_size = inputs.size()[0] + outputs = inputs.view(batch_size, self.in_channels, -1) + for layer in self.layers: + outputs = layer(outputs) + return outputs + + +class RandomWindowDiscriminator(nn.Module): + """Random Window Discriminator as described in + http://arxiv.org/abs/1909.11646""" + + def __init__( + self, + cond_channels, + hop_length, + uncond_disc_donwsample_factors=(8, 4), + cond_disc_downsample_factors=((8, 4, 2, 2, 2), (8, 4, 2, 2), (8, 4, 2), (8, 4), (4, 2, 2)), + cond_disc_out_channels=((128, 128, 256, 256), (128, 256, 256), (128, 256), (256,), (128, 256)), + window_sizes=(512, 1024, 2048, 4096, 8192), + ): + super().__init__() + self.cond_channels = cond_channels + self.window_sizes = window_sizes + self.hop_length = hop_length + self.base_window_size = self.hop_length * 2 + self.ks = [ws // self.base_window_size for ws in window_sizes] + + # check arguments + assert len(cond_disc_downsample_factors) == len(cond_disc_out_channels) == len(window_sizes) + for ws in window_sizes: + assert ws % hop_length == 0 + + for idx, cf in enumerate(cond_disc_downsample_factors): + assert np.prod(cf) == hop_length // self.ks[idx] + + # define layers + self.unconditional_discriminators = nn.ModuleList([]) + for k in self.ks: + layer = UnconditionalDiscriminator( + in_channels=k, base_channels=64, downsample_factors=uncond_disc_donwsample_factors + ) + self.unconditional_discriminators.append(layer) + + self.conditional_discriminators = nn.ModuleList([]) + for idx, k in enumerate(self.ks): + layer = ConditionalDiscriminator( + in_channels=k, + cond_channels=cond_channels, + downsample_factors=cond_disc_downsample_factors[idx], + out_channels=cond_disc_out_channels[idx], + ) + self.conditional_discriminators.append(layer) + + def forward(self, x, c): + scores = [] + feats = [] + # unconditional pass + for window_size, layer in zip(self.window_sizes, self.unconditional_discriminators): + index = np.random.randint(x.shape[-1] - window_size) + + score = layer(x[:, :, index : index + window_size]) + scores.append(score) + + # conditional pass + for window_size, layer in zip(self.window_sizes, self.conditional_discriminators): + frame_size = window_size // self.hop_length + lc_index = np.random.randint(c.shape[-1] - frame_size) + sample_index = lc_index * self.hop_length + x_sub = x[:, :, sample_index : (lc_index + frame_size) * self.hop_length] + c_sub = c[:, :, lc_index : lc_index + frame_size] + + score = layer(x_sub, c_sub) + scores.append(score) + return scores, feats diff --git a/TTS/TTS/vocoder/models/univnet_discriminator.py b/TTS/TTS/vocoder/models/univnet_discriminator.py new file mode 100644 index 0000000000000000000000000000000000000000..4c09520c2a218771d1f73ee98635c528d815fcf1 --- /dev/null +++ b/TTS/TTS/vocoder/models/univnet_discriminator.py @@ -0,0 +1,94 @@ +import torch +import torch.nn.functional as F +from torch import nn +from torch.nn.utils import spectral_norm, weight_norm + +from TTS.utils.audio.torch_transforms import TorchSTFT +from TTS.vocoder.models.hifigan_discriminator import MultiPeriodDiscriminator + +LRELU_SLOPE = 0.1 + + +class SpecDiscriminator(nn.Module): + """docstring for Discriminator.""" + + def __init__(self, fft_size=1024, hop_length=120, win_length=600, use_spectral_norm=False): + super().__init__() + norm_f = weight_norm if use_spectral_norm is False else spectral_norm + self.fft_size = fft_size + self.hop_length = hop_length + self.win_length = win_length + self.stft = TorchSTFT(fft_size, hop_length, win_length) + self.discriminators = nn.ModuleList( + [ + norm_f(nn.Conv2d(1, 32, kernel_size=(3, 9), padding=(1, 4))), + norm_f(nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1, 2), padding=(1, 4))), + norm_f(nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1, 2), padding=(1, 4))), + norm_f(nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1, 2), padding=(1, 4))), + norm_f(nn.Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))), + ] + ) + + self.out = norm_f(nn.Conv2d(32, 1, 3, 1, 1)) + + def forward(self, y): + fmap = [] + with torch.no_grad(): + y = y.squeeze(1) + y = self.stft(y) + y = y.unsqueeze(1) + for _, d in enumerate(self.discriminators): + y = d(y) + y = F.leaky_relu(y, LRELU_SLOPE) + fmap.append(y) + + y = self.out(y) + fmap.append(y) + + return torch.flatten(y, 1, -1), fmap + + +class MultiResSpecDiscriminator(torch.nn.Module): + def __init__( # pylint: disable=dangerous-default-value + self, fft_sizes=[1024, 2048, 512], hop_sizes=[120, 240, 50], win_lengths=[600, 1200, 240], window="hann_window" + ): + super().__init__() + self.discriminators = nn.ModuleList( + [ + SpecDiscriminator(fft_sizes[0], hop_sizes[0], win_lengths[0], window), + SpecDiscriminator(fft_sizes[1], hop_sizes[1], win_lengths[1], window), + SpecDiscriminator(fft_sizes[2], hop_sizes[2], win_lengths[2], window), + ] + ) + + def forward(self, x): + scores = [] + feats = [] + for d in self.discriminators: + score, feat = d(x) + scores.append(score) + feats.append(feat) + + return scores, feats + + +class UnivnetDiscriminator(nn.Module): + """Univnet discriminator wrapping MPD and MSD.""" + + def __init__(self): + super().__init__() + self.mpd = MultiPeriodDiscriminator() + self.msd = MultiResSpecDiscriminator() + + def forward(self, x): + """ + Args: + x (Tensor): input waveform. + + Returns: + List[Tensor]: discriminator scores. + List[List[Tensor]]: list of list of features from each layers of each discriminator. + """ + scores, feats = self.mpd(x) + scores_, feats_ = self.msd(x) + return scores + scores_, feats + feats_ diff --git a/TTS/TTS/vocoder/models/univnet_generator.py b/TTS/TTS/vocoder/models/univnet_generator.py new file mode 100644 index 0000000000000000000000000000000000000000..2ee28c7b85852c6b15df28907b6fd1195f3218cd --- /dev/null +++ b/TTS/TTS/vocoder/models/univnet_generator.py @@ -0,0 +1,156 @@ +from typing import List + +import numpy as np +import torch +import torch.nn.functional as F + +from TTS.vocoder.layers.lvc_block import LVCBlock + +LRELU_SLOPE = 0.1 + + +class UnivnetGenerator(torch.nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + hidden_channels: int, + cond_channels: int, + upsample_factors: List[int], + lvc_layers_each_block: int, + lvc_kernel_size: int, + kpnet_hidden_channels: int, + kpnet_conv_size: int, + dropout: float, + use_weight_norm=True, + ): + """Univnet Generator network. + + Paper: https://arxiv.org/pdf/2106.07889.pdf + + Args: + in_channels (int): Number of input tensor channels. + out_channels (int): Number of channels of the output tensor. + hidden_channels (int): Number of hidden network channels. + cond_channels (int): Number of channels of the conditioning tensors. + upsample_factors (List[int]): List of uplsample factors for the upsampling layers. + lvc_layers_each_block (int): Number of LVC layers in each block. + lvc_kernel_size (int): Kernel size of the LVC layers. + kpnet_hidden_channels (int): Number of hidden channels in the key-point network. + kpnet_conv_size (int): Number of convolution channels in the key-point network. + dropout (float): Dropout rate. + use_weight_norm (bool, optional): Enable/disable weight norm. Defaults to True. + """ + + super().__init__() + self.in_channels = in_channels + self.out_channels = out_channels + self.cond_channels = cond_channels + self.upsample_scale = np.prod(upsample_factors) + self.lvc_block_nums = len(upsample_factors) + + # define first convolution + self.first_conv = torch.nn.Conv1d( + in_channels, hidden_channels, kernel_size=7, padding=(7 - 1) // 2, dilation=1, bias=True + ) + + # define residual blocks + self.lvc_blocks = torch.nn.ModuleList() + cond_hop_length = 1 + for n in range(self.lvc_block_nums): + cond_hop_length = cond_hop_length * upsample_factors[n] + lvcb = LVCBlock( + in_channels=hidden_channels, + cond_channels=cond_channels, + upsample_ratio=upsample_factors[n], + conv_layers=lvc_layers_each_block, + conv_kernel_size=lvc_kernel_size, + cond_hop_length=cond_hop_length, + kpnet_hidden_channels=kpnet_hidden_channels, + kpnet_conv_size=kpnet_conv_size, + kpnet_dropout=dropout, + ) + self.lvc_blocks += [lvcb] + + # define output layers + self.last_conv_layers = torch.nn.ModuleList( + [ + torch.nn.Conv1d( + hidden_channels, out_channels, kernel_size=7, padding=(7 - 1) // 2, dilation=1, bias=True + ), + ] + ) + + # apply weight norm + if use_weight_norm: + self.apply_weight_norm() + + def forward(self, c): + """Calculate forward propagation. + Args: + c (Tensor): Local conditioning auxiliary features (B, C ,T'). + Returns: + Tensor: Output tensor (B, out_channels, T) + """ + # random noise + x = torch.randn([c.shape[0], self.in_channels, c.shape[2]]) + x = x.to(self.first_conv.bias.device) + x = self.first_conv(x) + + for n in range(self.lvc_block_nums): + x = self.lvc_blocks[n](x, c) + + # apply final layers + for f in self.last_conv_layers: + x = F.leaky_relu(x, LRELU_SLOPE) + x = f(x) + x = torch.tanh(x) + return x + + def remove_weight_norm(self): + """Remove weight normalization module from all of the layers.""" + + def _remove_weight_norm(m): + try: + # print(f"Weight norm is removed from {m}.") + torch.nn.utils.remove_weight_norm(m) + except ValueError: # this module didn't have weight norm + return + + self.apply(_remove_weight_norm) + + def apply_weight_norm(self): + """Apply weight normalization module from all of the layers.""" + + def _apply_weight_norm(m): + if isinstance(m, (torch.nn.Conv1d, torch.nn.Conv2d)): + torch.nn.utils.weight_norm(m) + # print(f"Weight norm is applied to {m}.") + + self.apply(_apply_weight_norm) + + @staticmethod + def _get_receptive_field_size(layers, stacks, kernel_size, dilation=lambda x: 2**x): + assert layers % stacks == 0 + layers_per_cycle = layers // stacks + dilations = [dilation(i % layers_per_cycle) for i in range(layers)] + return (kernel_size - 1) * sum(dilations) + 1 + + @property + def receptive_field_size(self): + """Return receptive field size.""" + return self._get_receptive_field_size(self.layers, self.stacks, self.kernel_size) + + @torch.no_grad() + def inference(self, c): + """Perform inference. + Args: + c (Tensor): Local conditioning auxiliary features :math:`(B, C, T)`. + Returns: + Tensor: Output tensor (T, out_channels) + """ + x = torch.randn([c.shape[0], self.in_channels, c.shape[2]]) + x = x.to(self.first_conv.bias.device) + + c = c.to(next(self.parameters())) + return self.forward(c) diff --git a/TTS/TTS/vocoder/models/wavegrad.py b/TTS/TTS/vocoder/models/wavegrad.py new file mode 100644 index 0000000000000000000000000000000000000000..a0f9221a8f64fb9953527a6b859d114aabb702d2 --- /dev/null +++ b/TTS/TTS/vocoder/models/wavegrad.py @@ -0,0 +1,344 @@ +from dataclasses import dataclass, field +from typing import Dict, List, Tuple + +import numpy as np +import torch +from coqpit import Coqpit +from torch import nn +from torch.nn.utils import weight_norm +from torch.utils.data import DataLoader +from torch.utils.data.distributed import DistributedSampler +from trainer.trainer_utils import get_optimizer, get_scheduler + +from TTS.utils.io import load_fsspec +from TTS.vocoder.datasets import WaveGradDataset +from TTS.vocoder.layers.wavegrad import Conv1d, DBlock, FiLM, UBlock +from TTS.vocoder.models.base_vocoder import BaseVocoder +from TTS.vocoder.utils.generic_utils import plot_results + + +@dataclass +class WavegradArgs(Coqpit): + in_channels: int = 80 + out_channels: int = 1 + use_weight_norm: bool = False + y_conv_channels: int = 32 + x_conv_channels: int = 768 + dblock_out_channels: List[int] = field(default_factory=lambda: [128, 128, 256, 512]) + ublock_out_channels: List[int] = field(default_factory=lambda: [512, 512, 256, 128, 128]) + upsample_factors: List[int] = field(default_factory=lambda: [4, 4, 4, 2, 2]) + upsample_dilations: List[List[int]] = field( + default_factory=lambda: [[1, 2, 1, 2], [1, 2, 1, 2], [1, 2, 4, 8], [1, 2, 4, 8], [1, 2, 4, 8]] + ) + + +class Wavegrad(BaseVocoder): + """๐Ÿธ ๐ŸŒŠ WaveGrad ๐ŸŒŠ model. + Paper - https://arxiv.org/abs/2009.00713 + + Examples: + Initializing the model. + + >>> from TTS.vocoder.configs import WavegradConfig + >>> config = WavegradConfig() + >>> model = Wavegrad(config) + + Paper Abstract: + This paper introduces WaveGrad, a conditional model for waveform generation which estimates gradients of the + data density. The model is built on prior work on score matching and diffusion probabilistic models. It starts + from a Gaussian white noise signal and iteratively refines the signal via a gradient-based sampler conditioned + on the mel-spectrogram. WaveGrad offers a natural way to trade inference speed for sample quality by adjusting + the number of refinement steps, and bridges the gap between non-autoregressive and autoregressive models in + terms of audio quality. We find that it can generate high fidelity audio samples using as few as six iterations. + Experiments reveal WaveGrad to generate high fidelity audio, outperforming adversarial non-autoregressive + baselines and matching a strong likelihood-based autoregressive baseline using fewer sequential operations. + Audio samples are available at this https URL. + """ + + # pylint: disable=dangerous-default-value + def __init__(self, config: Coqpit): + super().__init__(config) + self.config = config + self.use_weight_norm = config.model_params.use_weight_norm + self.hop_len = np.prod(config.model_params.upsample_factors) + self.noise_level = None + self.num_steps = None + self.beta = None + self.alpha = None + self.alpha_hat = None + self.c1 = None + self.c2 = None + self.sigma = None + + # dblocks + self.y_conv = Conv1d(1, config.model_params.y_conv_channels, 5, padding=2) + self.dblocks = nn.ModuleList([]) + ic = config.model_params.y_conv_channels + for oc, df in zip(config.model_params.dblock_out_channels, reversed(config.model_params.upsample_factors)): + self.dblocks.append(DBlock(ic, oc, df)) + ic = oc + + # film + self.film = nn.ModuleList([]) + ic = config.model_params.y_conv_channels + for oc in reversed(config.model_params.ublock_out_channels): + self.film.append(FiLM(ic, oc)) + ic = oc + + # ublocksn + self.ublocks = nn.ModuleList([]) + ic = config.model_params.x_conv_channels + for oc, uf, ud in zip( + config.model_params.ublock_out_channels, + config.model_params.upsample_factors, + config.model_params.upsample_dilations, + ): + self.ublocks.append(UBlock(ic, oc, uf, ud)) + ic = oc + + self.x_conv = Conv1d(config.model_params.in_channels, config.model_params.x_conv_channels, 3, padding=1) + self.out_conv = Conv1d(oc, config.model_params.out_channels, 3, padding=1) + + if config.model_params.use_weight_norm: + self.apply_weight_norm() + + def forward(self, x, spectrogram, noise_scale): + shift_and_scale = [] + + x = self.y_conv(x) + shift_and_scale.append(self.film[0](x, noise_scale)) + + for film, layer in zip(self.film[1:], self.dblocks): + x = layer(x) + shift_and_scale.append(film(x, noise_scale)) + + x = self.x_conv(spectrogram) + for layer, (film_shift, film_scale) in zip(self.ublocks, reversed(shift_and_scale)): + x = layer(x, film_shift, film_scale) + x = self.out_conv(x) + return x + + def load_noise_schedule(self, path): + beta = np.load(path, allow_pickle=True).item()["beta"] # pylint: disable=unexpected-keyword-arg + self.compute_noise_level(beta) + + @torch.no_grad() + def inference(self, x, y_n=None): + """ + Shapes: + x: :math:`[B, C , T]` + y_n: :math:`[B, 1, T]` + """ + if y_n is None: + y_n = torch.randn(x.shape[0], 1, self.hop_len * x.shape[-1]) + else: + y_n = torch.FloatTensor(y_n).unsqueeze(0).unsqueeze(0) + y_n = y_n.type_as(x) + sqrt_alpha_hat = self.noise_level.to(x) + for n in range(len(self.alpha) - 1, -1, -1): + y_n = self.c1[n] * (y_n - self.c2[n] * self.forward(y_n, x, sqrt_alpha_hat[n].repeat(x.shape[0]))) + if n > 0: + z = torch.randn_like(y_n) + y_n += self.sigma[n - 1] * z + y_n.clamp_(-1.0, 1.0) + return y_n + + def compute_y_n(self, y_0): + """Compute noisy audio based on noise schedule""" + self.noise_level = self.noise_level.to(y_0) + if len(y_0.shape) == 3: + y_0 = y_0.squeeze(1) + s = torch.randint(0, self.num_steps - 1, [y_0.shape[0]]) + l_a, l_b = self.noise_level[s], self.noise_level[s + 1] + noise_scale = l_a + torch.rand(y_0.shape[0]).to(y_0) * (l_b - l_a) + noise_scale = noise_scale.unsqueeze(1) + noise = torch.randn_like(y_0) + noisy_audio = noise_scale * y_0 + (1.0 - noise_scale**2) ** 0.5 * noise + return noise.unsqueeze(1), noisy_audio.unsqueeze(1), noise_scale[:, 0] + + def compute_noise_level(self, beta): + """Compute noise schedule parameters""" + self.num_steps = len(beta) + alpha = 1 - beta + alpha_hat = np.cumprod(alpha) + noise_level = np.concatenate([[1.0], alpha_hat**0.5], axis=0) + noise_level = alpha_hat**0.5 + + # pylint: disable=not-callable + self.beta = torch.tensor(beta.astype(np.float32)) + self.alpha = torch.tensor(alpha.astype(np.float32)) + self.alpha_hat = torch.tensor(alpha_hat.astype(np.float32)) + self.noise_level = torch.tensor(noise_level.astype(np.float32)) + + self.c1 = 1 / self.alpha**0.5 + self.c2 = (1 - self.alpha) / (1 - self.alpha_hat) ** 0.5 + self.sigma = ((1.0 - self.alpha_hat[:-1]) / (1.0 - self.alpha_hat[1:]) * self.beta[1:]) ** 0.5 + + def remove_weight_norm(self): + for _, layer in enumerate(self.dblocks): + if len(layer.state_dict()) != 0: + try: + nn.utils.remove_weight_norm(layer) + except ValueError: + layer.remove_weight_norm() + + for _, layer in enumerate(self.film): + if len(layer.state_dict()) != 0: + try: + nn.utils.remove_weight_norm(layer) + except ValueError: + layer.remove_weight_norm() + + for _, layer in enumerate(self.ublocks): + if len(layer.state_dict()) != 0: + try: + nn.utils.remove_weight_norm(layer) + except ValueError: + layer.remove_weight_norm() + + nn.utils.remove_weight_norm(self.x_conv) + nn.utils.remove_weight_norm(self.out_conv) + nn.utils.remove_weight_norm(self.y_conv) + + def apply_weight_norm(self): + for _, layer in enumerate(self.dblocks): + if len(layer.state_dict()) != 0: + layer.apply_weight_norm() + + for _, layer in enumerate(self.film): + if len(layer.state_dict()) != 0: + layer.apply_weight_norm() + + for _, layer in enumerate(self.ublocks): + if len(layer.state_dict()) != 0: + layer.apply_weight_norm() + + self.x_conv = weight_norm(self.x_conv) + self.out_conv = weight_norm(self.out_conv) + self.y_conv = weight_norm(self.y_conv) + + def load_checkpoint( + self, config, checkpoint_path, eval=False, cache=False + ): # pylint: disable=unused-argument, redefined-builtin + state = load_fsspec(checkpoint_path, map_location=torch.device("cpu"), cache=cache) + self.load_state_dict(state["model"]) + if eval: + self.eval() + assert not self.training + if self.config.model_params.use_weight_norm: + self.remove_weight_norm() + betas = np.linspace( + config["test_noise_schedule"]["min_val"], + config["test_noise_schedule"]["max_val"], + config["test_noise_schedule"]["num_steps"], + ) + self.compute_noise_level(betas) + else: + betas = np.linspace( + config["train_noise_schedule"]["min_val"], + config["train_noise_schedule"]["max_val"], + config["train_noise_schedule"]["num_steps"], + ) + self.compute_noise_level(betas) + + def train_step(self, batch: Dict, criterion: Dict) -> Tuple[Dict, Dict]: + # format data + x = batch["input"] + y = batch["waveform"] + + # set noise scale + noise, x_noisy, noise_scale = self.compute_y_n(y) + + # forward pass + noise_hat = self.forward(x_noisy, x, noise_scale) + + # compute losses + loss = criterion(noise, noise_hat) + return {"model_output": noise_hat}, {"loss": loss} + + def train_log( # pylint: disable=no-self-use + self, batch: Dict, outputs: Dict, logger: "Logger", assets: Dict, steps: int # pylint: disable=unused-argument + ) -> Tuple[Dict, np.ndarray]: + pass + + @torch.no_grad() + def eval_step(self, batch: Dict, criterion: nn.Module) -> Tuple[Dict, Dict]: + return self.train_step(batch, criterion) + + def eval_log( # pylint: disable=no-self-use + self, batch: Dict, outputs: Dict, logger: "Logger", assets: Dict, steps: int # pylint: disable=unused-argument + ) -> None: + pass + + def test(self, assets: Dict, test_loader: "DataLoader", outputs=None): # pylint: disable=unused-argument + # setup noise schedule and inference + ap = assets["audio_processor"] + noise_schedule = self.config["test_noise_schedule"] + betas = np.linspace(noise_schedule["min_val"], noise_schedule["max_val"], noise_schedule["num_steps"]) + self.compute_noise_level(betas) + samples = test_loader.dataset.load_test_samples(1) + for sample in samples: + x = sample[0] + x = x[None, :, :].to(next(self.parameters()).device) + y = sample[1] + y = y[None, :] + # compute voice + y_pred = self.inference(x) + # compute spectrograms + figures = plot_results(y_pred, y, ap, "test") + # Sample audio + sample_voice = y_pred[0].squeeze(0).detach().cpu().numpy() + return figures, {"test/audio": sample_voice} + + def get_optimizer(self): + return get_optimizer(self.config.optimizer, self.config.optimizer_params, self.config.lr, self) + + def get_scheduler(self, optimizer): + return get_scheduler(self.config.lr_scheduler, self.config.lr_scheduler_params, optimizer) + + @staticmethod + def get_criterion(): + return torch.nn.L1Loss() + + @staticmethod + def format_batch(batch: Dict) -> Dict: + # return a whole audio segment + m, y = batch[0], batch[1] + y = y.unsqueeze(1) + return {"input": m, "waveform": y} + + def get_data_loader(self, config: Coqpit, assets: Dict, is_eval: True, samples: List, verbose: bool, num_gpus: int): + ap = assets["audio_processor"] + dataset = WaveGradDataset( + ap=ap, + items=samples, + seq_len=self.config.seq_len, + hop_len=ap.hop_length, + pad_short=self.config.pad_short, + conv_pad=self.config.conv_pad, + is_training=not is_eval, + return_segments=True, + use_noise_augment=False, + use_cache=config.use_cache, + verbose=verbose, + ) + sampler = DistributedSampler(dataset) if num_gpus > 1 else None + loader = DataLoader( + dataset, + batch_size=self.config.batch_size, + shuffle=num_gpus <= 1, + drop_last=False, + sampler=sampler, + num_workers=self.config.num_eval_loader_workers if is_eval else self.config.num_loader_workers, + pin_memory=False, + ) + return loader + + def on_epoch_start(self, trainer): # pylint: disable=unused-argument + noise_schedule = self.config["train_noise_schedule"] + betas = np.linspace(noise_schedule["min_val"], noise_schedule["max_val"], noise_schedule["num_steps"]) + self.compute_noise_level(betas) + + @staticmethod + def init_from_config(config: "WavegradConfig"): + return Wavegrad(config) diff --git a/TTS/TTS/vocoder/models/wavernn.py b/TTS/TTS/vocoder/models/wavernn.py new file mode 100644 index 0000000000000000000000000000000000000000..903f4b7e6308ce700d65ed60bb6098d1e39aa6b1 --- /dev/null +++ b/TTS/TTS/vocoder/models/wavernn.py @@ -0,0 +1,645 @@ +import sys +import time +from dataclasses import dataclass, field +from typing import Dict, List, Tuple + +import numpy as np +import torch +import torch.nn.functional as F +from coqpit import Coqpit +from torch import nn +from torch.utils.data import DataLoader +from torch.utils.data.distributed import DistributedSampler + +from TTS.tts.utils.visual import plot_spectrogram +from TTS.utils.audio import AudioProcessor +from TTS.utils.io import load_fsspec +from TTS.vocoder.datasets.wavernn_dataset import WaveRNNDataset +from TTS.vocoder.layers.losses import WaveRNNLoss +from TTS.vocoder.models.base_vocoder import BaseVocoder +from TTS.vocoder.utils.distribution import sample_from_discretized_mix_logistic, sample_from_gaussian + + +def stream(string, variables): + sys.stdout.write(f"\r{string}" % variables) + + +# pylint: disable=abstract-method +# relates https://github.com/pytorch/pytorch/issues/42305 +class ResBlock(nn.Module): + def __init__(self, dims): + super().__init__() + self.conv1 = nn.Conv1d(dims, dims, kernel_size=1, bias=False) + self.conv2 = nn.Conv1d(dims, dims, kernel_size=1, bias=False) + self.batch_norm1 = nn.BatchNorm1d(dims) + self.batch_norm2 = nn.BatchNorm1d(dims) + + def forward(self, x): + residual = x + x = self.conv1(x) + x = self.batch_norm1(x) + x = F.relu(x) + x = self.conv2(x) + x = self.batch_norm2(x) + return x + residual + + +class MelResNet(nn.Module): + def __init__(self, num_res_blocks, in_dims, compute_dims, res_out_dims, pad): + super().__init__() + k_size = pad * 2 + 1 + self.conv_in = nn.Conv1d(in_dims, compute_dims, kernel_size=k_size, bias=False) + self.batch_norm = nn.BatchNorm1d(compute_dims) + self.layers = nn.ModuleList() + for _ in range(num_res_blocks): + self.layers.append(ResBlock(compute_dims)) + self.conv_out = nn.Conv1d(compute_dims, res_out_dims, kernel_size=1) + + def forward(self, x): + x = self.conv_in(x) + x = self.batch_norm(x) + x = F.relu(x) + for f in self.layers: + x = f(x) + x = self.conv_out(x) + return x + + +class Stretch2d(nn.Module): + def __init__(self, x_scale, y_scale): + super().__init__() + self.x_scale = x_scale + self.y_scale = y_scale + + def forward(self, x): + b, c, h, w = x.size() + x = x.unsqueeze(-1).unsqueeze(3) + x = x.repeat(1, 1, 1, self.y_scale, 1, self.x_scale) + return x.view(b, c, h * self.y_scale, w * self.x_scale) + + +class UpsampleNetwork(nn.Module): + def __init__( + self, + feat_dims, + upsample_scales, + compute_dims, + num_res_blocks, + res_out_dims, + pad, + use_aux_net, + ): + super().__init__() + self.total_scale = np.cumproduct(upsample_scales)[-1] + self.indent = pad * self.total_scale + self.use_aux_net = use_aux_net + if use_aux_net: + self.resnet = MelResNet(num_res_blocks, feat_dims, compute_dims, res_out_dims, pad) + self.resnet_stretch = Stretch2d(self.total_scale, 1) + self.up_layers = nn.ModuleList() + for scale in upsample_scales: + k_size = (1, scale * 2 + 1) + padding = (0, scale) + stretch = Stretch2d(scale, 1) + conv = nn.Conv2d(1, 1, kernel_size=k_size, padding=padding, bias=False) + conv.weight.data.fill_(1.0 / k_size[1]) + self.up_layers.append(stretch) + self.up_layers.append(conv) + + def forward(self, m): + if self.use_aux_net: + aux = self.resnet(m).unsqueeze(1) + aux = self.resnet_stretch(aux) + aux = aux.squeeze(1) + aux = aux.transpose(1, 2) + else: + aux = None + m = m.unsqueeze(1) + for f in self.up_layers: + m = f(m) + m = m.squeeze(1)[:, :, self.indent : -self.indent] + return m.transpose(1, 2), aux + + +class Upsample(nn.Module): + def __init__(self, scale, pad, num_res_blocks, feat_dims, compute_dims, res_out_dims, use_aux_net): + super().__init__() + self.scale = scale + self.pad = pad + self.indent = pad * scale + self.use_aux_net = use_aux_net + self.resnet = MelResNet(num_res_blocks, feat_dims, compute_dims, res_out_dims, pad) + + def forward(self, m): + if self.use_aux_net: + aux = self.resnet(m) + aux = torch.nn.functional.interpolate(aux, scale_factor=self.scale, mode="linear", align_corners=True) + aux = aux.transpose(1, 2) + else: + aux = None + m = torch.nn.functional.interpolate(m, scale_factor=self.scale, mode="linear", align_corners=True) + m = m[:, :, self.indent : -self.indent] + m = m * 0.045 # empirically found + + return m.transpose(1, 2), aux + + +@dataclass +class WavernnArgs(Coqpit): + """๐Ÿธ WaveRNN model arguments. + + rnn_dims (int): + Number of hidden channels in RNN layers. Defaults to 512. + fc_dims (int): + Number of hidden channels in fully-conntected layers. Defaults to 512. + compute_dims (int): + Number of hidden channels in the feature ResNet. Defaults to 128. + res_out_dim (int): + Number of hidden channels in the feature ResNet output. Defaults to 128. + num_res_blocks (int): + Number of residual blocks in the ResNet. Defaults to 10. + use_aux_net (bool): + enable/disable the feature ResNet. Defaults to True. + use_upsample_net (bool): + enable/ disable the upsampling networl. If False, basic upsampling is used. Defaults to True. + upsample_factors (list): + Upsampling factors. The multiply of the values must match the `hop_length`. Defaults to ```[4, 8, 8]```. + mode (str): + Output mode of the WaveRNN vocoder. `mold` for Mixture of Logistic Distribution, `gauss` for a single + Gaussian Distribution and `bits` for quantized bits as the model's output. + mulaw (bool): + enable / disable the use of Mulaw quantization for training. Only applicable if `mode == 'bits'`. Defaults + to `True`. + pad (int): + Padding applied to the input feature frames against the convolution layers of the feature network. + Defaults to 2. + """ + + rnn_dims: int = 512 + fc_dims: int = 512 + compute_dims: int = 128 + res_out_dims: int = 128 + num_res_blocks: int = 10 + use_aux_net: bool = True + use_upsample_net: bool = True + upsample_factors: List[int] = field(default_factory=lambda: [4, 8, 8]) + mode: str = "mold" # mold [string], gauss [string], bits [int] + mulaw: bool = True # apply mulaw if mode is bits + pad: int = 2 + feat_dims: int = 80 + + +class Wavernn(BaseVocoder): + def __init__(self, config: Coqpit): + """๐Ÿธ WaveRNN model. + Original paper - https://arxiv.org/abs/1802.08435 + Official implementation - https://github.com/fatchord/WaveRNN + + Args: + config (Coqpit): [description] + + Raises: + RuntimeError: [description] + + Examples: + >>> from TTS.vocoder.configs import WavernnConfig + >>> config = WavernnConfig() + >>> model = Wavernn(config) + + Paper Abstract: + Sequential models achieve state-of-the-art results in audio, visual and textual domains with respect to + both estimating the data distribution and generating high-quality samples. Efficient sampling for this + class of models has however remained an elusive problem. With a focus on text-to-speech synthesis, we + describe a set of general techniques for reducing sampling time while maintaining high output quality. + We first describe a single-layer recurrent neural network, the WaveRNN, with a dual softmax layer that + matches the quality of the state-of-the-art WaveNet model. The compact form of the network makes it + possible to generate 24kHz 16-bit audio 4x faster than real time on a GPU. Second, we apply a weight + pruning technique to reduce the number of weights in the WaveRNN. We find that, for a constant number of + parameters, large sparse networks perform better than small dense networks and this relationship holds for + sparsity levels beyond 96%. The small number of weights in a Sparse WaveRNN makes it possible to sample + high-fidelity audio on a mobile CPU in real time. Finally, we propose a new generation scheme based on + subscaling that folds a long sequence into a batch of shorter sequences and allows one to generate multiple + samples at once. The Subscale WaveRNN produces 16 samples per step without loss of quality and offers an + orthogonal method for increasing sampling efficiency. + """ + super().__init__(config) + + if isinstance(self.args.mode, int): + self.n_classes = 2**self.args.mode + elif self.args.mode == "mold": + self.n_classes = 3 * 10 + elif self.args.mode == "gauss": + self.n_classes = 2 + else: + raise RuntimeError("Unknown model mode value - ", self.args.mode) + + self.ap = AudioProcessor(**config.audio.to_dict()) + self.aux_dims = self.args.res_out_dims // 4 + + if self.args.use_upsample_net: + assert ( + np.cumproduct(self.args.upsample_factors)[-1] == config.audio.hop_length + ), " [!] upsample scales needs to be equal to hop_length" + self.upsample = UpsampleNetwork( + self.args.feat_dims, + self.args.upsample_factors, + self.args.compute_dims, + self.args.num_res_blocks, + self.args.res_out_dims, + self.args.pad, + self.args.use_aux_net, + ) + else: + self.upsample = Upsample( + config.audio.hop_length, + self.args.pad, + self.args.num_res_blocks, + self.args.feat_dims, + self.args.compute_dims, + self.args.res_out_dims, + self.args.use_aux_net, + ) + if self.args.use_aux_net: + self.I = nn.Linear(self.args.feat_dims + self.aux_dims + 1, self.args.rnn_dims) + self.rnn1 = nn.GRU(self.args.rnn_dims, self.args.rnn_dims, batch_first=True) + self.rnn2 = nn.GRU(self.args.rnn_dims + self.aux_dims, self.args.rnn_dims, batch_first=True) + self.fc1 = nn.Linear(self.args.rnn_dims + self.aux_dims, self.args.fc_dims) + self.fc2 = nn.Linear(self.args.fc_dims + self.aux_dims, self.args.fc_dims) + self.fc3 = nn.Linear(self.args.fc_dims, self.n_classes) + else: + self.I = nn.Linear(self.args.feat_dims + 1, self.args.rnn_dims) + self.rnn1 = nn.GRU(self.args.rnn_dims, self.args.rnn_dims, batch_first=True) + self.rnn2 = nn.GRU(self.args.rnn_dims, self.args.rnn_dims, batch_first=True) + self.fc1 = nn.Linear(self.args.rnn_dims, self.args.fc_dims) + self.fc2 = nn.Linear(self.args.fc_dims, self.args.fc_dims) + self.fc3 = nn.Linear(self.args.fc_dims, self.n_classes) + + def forward(self, x, mels): + bsize = x.size(0) + h1 = torch.zeros(1, bsize, self.args.rnn_dims).to(x.device) + h2 = torch.zeros(1, bsize, self.args.rnn_dims).to(x.device) + mels, aux = self.upsample(mels) + + if self.args.use_aux_net: + aux_idx = [self.aux_dims * i for i in range(5)] + a1 = aux[:, :, aux_idx[0] : aux_idx[1]] + a2 = aux[:, :, aux_idx[1] : aux_idx[2]] + a3 = aux[:, :, aux_idx[2] : aux_idx[3]] + a4 = aux[:, :, aux_idx[3] : aux_idx[4]] + + x = ( + torch.cat([x.unsqueeze(-1), mels, a1], dim=2) + if self.args.use_aux_net + else torch.cat([x.unsqueeze(-1), mels], dim=2) + ) + x = self.I(x) + res = x + self.rnn1.flatten_parameters() + x, _ = self.rnn1(x, h1) + + x = x + res + res = x + x = torch.cat([x, a2], dim=2) if self.args.use_aux_net else x + self.rnn2.flatten_parameters() + x, _ = self.rnn2(x, h2) + + x = x + res + x = torch.cat([x, a3], dim=2) if self.args.use_aux_net else x + x = F.relu(self.fc1(x)) + + x = torch.cat([x, a4], dim=2) if self.args.use_aux_net else x + x = F.relu(self.fc2(x)) + return self.fc3(x) + + def inference(self, mels, batched=None, target=None, overlap=None): + self.eval() + output = [] + start = time.time() + rnn1 = self.get_gru_cell(self.rnn1) + rnn2 = self.get_gru_cell(self.rnn2) + + with torch.no_grad(): + if isinstance(mels, np.ndarray): + mels = torch.FloatTensor(mels).to(str(next(self.parameters()).device)) + + if mels.ndim == 2: + mels = mels.unsqueeze(0) + wave_len = (mels.size(-1) - 1) * self.config.audio.hop_length + + mels = self.pad_tensor(mels.transpose(1, 2), pad=self.args.pad, side="both") + mels, aux = self.upsample(mels.transpose(1, 2)) + + if batched: + mels = self.fold_with_overlap(mels, target, overlap) + if aux is not None: + aux = self.fold_with_overlap(aux, target, overlap) + + b_size, seq_len, _ = mels.size() + + h1 = torch.zeros(b_size, self.args.rnn_dims).type_as(mels) + h2 = torch.zeros(b_size, self.args.rnn_dims).type_as(mels) + x = torch.zeros(b_size, 1).type_as(mels) + + if self.args.use_aux_net: + d = self.aux_dims + aux_split = [aux[:, :, d * i : d * (i + 1)] for i in range(4)] + + for i in range(seq_len): + m_t = mels[:, i, :] + + if self.args.use_aux_net: + a1_t, a2_t, a3_t, a4_t = (a[:, i, :] for a in aux_split) + + x = torch.cat([x, m_t, a1_t], dim=1) if self.args.use_aux_net else torch.cat([x, m_t], dim=1) + x = self.I(x) + h1 = rnn1(x, h1) + + x = x + h1 + inp = torch.cat([x, a2_t], dim=1) if self.args.use_aux_net else x + h2 = rnn2(inp, h2) + + x = x + h2 + x = torch.cat([x, a3_t], dim=1) if self.args.use_aux_net else x + x = F.relu(self.fc1(x)) + + x = torch.cat([x, a4_t], dim=1) if self.args.use_aux_net else x + x = F.relu(self.fc2(x)) + + logits = self.fc3(x) + + if self.args.mode == "mold": + sample = sample_from_discretized_mix_logistic(logits.unsqueeze(0).transpose(1, 2)) + output.append(sample.view(-1)) + x = sample.transpose(0, 1).type_as(mels) + elif self.args.mode == "gauss": + sample = sample_from_gaussian(logits.unsqueeze(0).transpose(1, 2)) + output.append(sample.view(-1)) + x = sample.transpose(0, 1).type_as(mels) + elif isinstance(self.args.mode, int): + posterior = F.softmax(logits, dim=1) + distrib = torch.distributions.Categorical(posterior) + + sample = 2 * distrib.sample().float() / (self.n_classes - 1.0) - 1.0 + output.append(sample) + x = sample.unsqueeze(-1) + else: + raise RuntimeError("Unknown model mode value - ", self.args.mode) + + if i % 100 == 0: + self.gen_display(i, seq_len, b_size, start) + + output = torch.stack(output).transpose(0, 1) + output = output.cpu() + if batched: + output = output.numpy() + output = output.astype(np.float64) + + output = self.xfade_and_unfold(output, target, overlap) + else: + output = output[0] + + if self.args.mulaw and isinstance(self.args.mode, int): + output = AudioProcessor.mulaw_decode(output, self.args.mode) + + # Fade-out at the end to avoid signal cutting out suddenly + fade_out = np.linspace(1, 0, 20 * self.config.audio.hop_length) + output = output[:wave_len] + + if wave_len > len(fade_out): + output[-20 * self.config.audio.hop_length :] *= fade_out + + self.train() + return output + + def gen_display(self, i, seq_len, b_size, start): + gen_rate = (i + 1) / (time.time() - start) * b_size / 1000 + realtime_ratio = gen_rate * 1000 / self.config.audio.sample_rate + stream( + "%i/%i -- batch_size: %i -- gen_rate: %.1f kHz -- x_realtime: %.1f ", + (i * b_size, seq_len * b_size, b_size, gen_rate, realtime_ratio), + ) + + def fold_with_overlap(self, x, target, overlap): + """Fold the tensor with overlap for quick batched inference. + Overlap will be used for crossfading in xfade_and_unfold() + Args: + x (tensor) : Upsampled conditioning features. + shape=(1, timesteps, features) + target (int) : Target timesteps for each index of batch + overlap (int) : Timesteps for both xfade and rnn warmup + Return: + (tensor) : shape=(num_folds, target + 2 * overlap, features) + Details: + x = [[h1, h2, ... hn]] + Where each h is a vector of conditioning features + Eg: target=2, overlap=1 with x.size(1)=10 + folded = [[h1, h2, h3, h4], + [h4, h5, h6, h7], + [h7, h8, h9, h10]] + """ + + _, total_len, features = x.size() + + # Calculate variables needed + num_folds = (total_len - overlap) // (target + overlap) + extended_len = num_folds * (overlap + target) + overlap + remaining = total_len - extended_len + + # Pad if some time steps poking out + if remaining != 0: + num_folds += 1 + padding = target + 2 * overlap - remaining + x = self.pad_tensor(x, padding, side="after") + + folded = torch.zeros(num_folds, target + 2 * overlap, features).to(x.device) + + # Get the values for the folded tensor + for i in range(num_folds): + start = i * (target + overlap) + end = start + target + 2 * overlap + folded[i] = x[:, start:end, :] + + return folded + + @staticmethod + def get_gru_cell(gru): + gru_cell = nn.GRUCell(gru.input_size, gru.hidden_size) + gru_cell.weight_hh.data = gru.weight_hh_l0.data + gru_cell.weight_ih.data = gru.weight_ih_l0.data + gru_cell.bias_hh.data = gru.bias_hh_l0.data + gru_cell.bias_ih.data = gru.bias_ih_l0.data + return gru_cell + + @staticmethod + def pad_tensor(x, pad, side="both"): + # NB - this is just a quick method i need right now + # i.e., it won't generalise to other shapes/dims + b, t, c = x.size() + total = t + 2 * pad if side == "both" else t + pad + padded = torch.zeros(b, total, c).to(x.device) + if side in ("before", "both"): + padded[:, pad : pad + t, :] = x + elif side == "after": + padded[:, :t, :] = x + return padded + + @staticmethod + def xfade_and_unfold(y, target, overlap): + """Applies a crossfade and unfolds into a 1d array. + Args: + y (ndarry) : Batched sequences of audio samples + shape=(num_folds, target + 2 * overlap) + dtype=np.float64 + overlap (int) : Timesteps for both xfade and rnn warmup + Return: + (ndarry) : audio samples in a 1d array + shape=(total_len) + dtype=np.float64 + Details: + y = [[seq1], + [seq2], + [seq3]] + Apply a gain envelope at both ends of the sequences + y = [[seq1_in, seq1_target, seq1_out], + [seq2_in, seq2_target, seq2_out], + [seq3_in, seq3_target, seq3_out]] + Stagger and add up the groups of samples: + [seq1_in, seq1_target, (seq1_out + seq2_in), seq2_target, ...] + """ + + num_folds, length = y.shape + target = length - 2 * overlap + total_len = num_folds * (target + overlap) + overlap + + # Need some silence for the rnn warmup + silence_len = overlap // 2 + fade_len = overlap - silence_len + silence = np.zeros((silence_len), dtype=np.float64) + + # Equal power crossfade + t = np.linspace(-1, 1, fade_len, dtype=np.float64) + fade_in = np.sqrt(0.5 * (1 + t)) + fade_out = np.sqrt(0.5 * (1 - t)) + + # Concat the silence to the fades + fade_in = np.concatenate([silence, fade_in]) + fade_out = np.concatenate([fade_out, silence]) + + # Apply the gain to the overlap samples + y[:, :overlap] *= fade_in + y[:, -overlap:] *= fade_out + + unfolded = np.zeros((total_len), dtype=np.float64) + + # Loop to add up all the samples + for i in range(num_folds): + start = i * (target + overlap) + end = start + target + 2 * overlap + unfolded[start:end] += y[i] + + return unfolded + + def load_checkpoint( + self, config, checkpoint_path, eval=False, cache=False + ): # pylint: disable=unused-argument, redefined-builtin + state = load_fsspec(checkpoint_path, map_location=torch.device("cpu"), cache=cache) + self.load_state_dict(state["model"]) + if eval: + self.eval() + assert not self.training + + def train_step(self, batch: Dict, criterion: Dict) -> Tuple[Dict, Dict]: + mels = batch["input"] + waveform = batch["waveform"] + waveform_coarse = batch["waveform_coarse"] + + y_hat = self.forward(waveform, mels) + if isinstance(self.args.mode, int): + y_hat = y_hat.transpose(1, 2).unsqueeze(-1) + else: + waveform_coarse = waveform_coarse.float() + waveform_coarse = waveform_coarse.unsqueeze(-1) + # compute losses + loss_dict = criterion(y_hat, waveform_coarse) + return {"model_output": y_hat}, loss_dict + + def eval_step(self, batch: Dict, criterion: Dict) -> Tuple[Dict, Dict]: + return self.train_step(batch, criterion) + + @torch.no_grad() + def test( + self, assets: Dict, test_loader: "DataLoader", output: Dict # pylint: disable=unused-argument + ) -> Tuple[Dict, Dict]: + ap = self.ap + figures = {} + audios = {} + samples = test_loader.dataset.load_test_samples(1) + for idx, sample in enumerate(samples): + x = torch.FloatTensor(sample[0]) + x = x.to(next(self.parameters()).device) + y_hat = self.inference(x, self.config.batched, self.config.target_samples, self.config.overlap_samples) + x_hat = ap.melspectrogram(y_hat) + figures.update( + { + f"test_{idx}/ground_truth": plot_spectrogram(x.T), + f"test_{idx}/prediction": plot_spectrogram(x_hat.T), + } + ) + audios.update({f"test_{idx}/audio": y_hat}) + # audios.update({f"real_{idx}/audio": y_hat}) + return figures, audios + + def test_log( + self, outputs: Dict, logger: "Logger", assets: Dict, steps: int # pylint: disable=unused-argument + ) -> Tuple[Dict, np.ndarray]: + figures, audios = outputs + logger.eval_figures(steps, figures) + logger.eval_audios(steps, audios, self.ap.sample_rate) + + @staticmethod + def format_batch(batch: Dict) -> Dict: + waveform = batch[0] + mels = batch[1] + waveform_coarse = batch[2] + return {"input": mels, "waveform": waveform, "waveform_coarse": waveform_coarse} + + def get_data_loader( # pylint: disable=no-self-use + self, + config: Coqpit, + assets: Dict, + is_eval: True, + samples: List, + verbose: bool, + num_gpus: int, + ): + ap = self.ap + dataset = WaveRNNDataset( + ap=ap, + items=samples, + seq_len=config.seq_len, + hop_len=ap.hop_length, + pad=config.model_args.pad, + mode=config.model_args.mode, + mulaw=config.model_args.mulaw, + is_training=not is_eval, + verbose=verbose, + ) + sampler = DistributedSampler(dataset, shuffle=True) if num_gpus > 1 else None + loader = DataLoader( + dataset, + batch_size=1 if is_eval else config.batch_size, + shuffle=num_gpus == 0, + collate_fn=dataset.collate, + sampler=sampler, + num_workers=config.num_eval_loader_workers if is_eval else config.num_loader_workers, + pin_memory=True, + ) + return loader + + def get_criterion(self): + # define train functions + return WaveRNNLoss(self.args.mode) + + @staticmethod + def init_from_config(config: "WavernnConfig"): + return Wavernn(config) diff --git a/TTS/TTS/vocoder/pqmf_output.wav b/TTS/TTS/vocoder/pqmf_output.wav new file mode 100644 index 0000000000000000000000000000000000000000..8a77747b00198a4adfd6c398998517df5b4bdb8d Binary files /dev/null and b/TTS/TTS/vocoder/pqmf_output.wav differ diff --git a/TTS/TTS/vocoder/utils/__init__.py b/TTS/TTS/vocoder/utils/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/TTS/TTS/vocoder/utils/distribution.py b/TTS/TTS/vocoder/utils/distribution.py new file mode 100644 index 0000000000000000000000000000000000000000..fe706ba9ffbc3f8aad75285bca34a910246666b3 --- /dev/null +++ b/TTS/TTS/vocoder/utils/distribution.py @@ -0,0 +1,154 @@ +import math + +import numpy as np +import torch +import torch.nn.functional as F +from torch.distributions.normal import Normal + + +def gaussian_loss(y_hat, y, log_std_min=-7.0): + assert y_hat.dim() == 3 + assert y_hat.size(2) == 2 + mean = y_hat[:, :, :1] + log_std = torch.clamp(y_hat[:, :, 1:], min=log_std_min) + # TODO: replace with pytorch dist + log_probs = -0.5 * (-math.log(2.0 * math.pi) - 2.0 * log_std - torch.pow(y - mean, 2) * torch.exp((-2.0 * log_std))) + return log_probs.squeeze().mean() + + +def sample_from_gaussian(y_hat, log_std_min=-7.0, scale_factor=1.0): + assert y_hat.size(2) == 2 + mean = y_hat[:, :, :1] + log_std = torch.clamp(y_hat[:, :, 1:], min=log_std_min) + dist = Normal( + mean, + torch.exp(log_std), + ) + sample = dist.sample() + sample = torch.clamp(torch.clamp(sample, min=-scale_factor), max=scale_factor) + del dist + return sample + + +def log_sum_exp(x): + """numerically stable log_sum_exp implementation that prevents overflow""" + # TF ordering + axis = len(x.size()) - 1 + m, _ = torch.max(x, dim=axis) + m2, _ = torch.max(x, dim=axis, keepdim=True) + return m + torch.log(torch.sum(torch.exp(x - m2), dim=axis)) + + +# It is adapted from https://github.com/r9y9/wavenet_vocoder/blob/master/wavenet_vocoder/mixture.py +def discretized_mix_logistic_loss(y_hat, y, num_classes=65536, log_scale_min=None, reduce=True): + if log_scale_min is None: + log_scale_min = float(np.log(1e-14)) + y_hat = y_hat.permute(0, 2, 1) + assert y_hat.dim() == 3 + assert y_hat.size(1) % 3 == 0 + nr_mix = y_hat.size(1) // 3 + + # (B x T x C) + y_hat = y_hat.transpose(1, 2) + + # unpack parameters. (B, T, num_mixtures) x 3 + logit_probs = y_hat[:, :, :nr_mix] + means = y_hat[:, :, nr_mix : 2 * nr_mix] + log_scales = torch.clamp(y_hat[:, :, 2 * nr_mix : 3 * nr_mix], min=log_scale_min) + + # B x T x 1 -> B x T x num_mixtures + y = y.expand_as(means) + + centered_y = y - means + inv_stdv = torch.exp(-log_scales) + plus_in = inv_stdv * (centered_y + 1.0 / (num_classes - 1)) + cdf_plus = torch.sigmoid(plus_in) + min_in = inv_stdv * (centered_y - 1.0 / (num_classes - 1)) + cdf_min = torch.sigmoid(min_in) + + # log probability for edge case of 0 (before scaling) + # equivalent: torch.log(F.sigmoid(plus_in)) + log_cdf_plus = plus_in - F.softplus(plus_in) + + # log probability for edge case of 255 (before scaling) + # equivalent: (1 - F.sigmoid(min_in)).log() + log_one_minus_cdf_min = -F.softplus(min_in) + + # probability for all other cases + cdf_delta = cdf_plus - cdf_min + + mid_in = inv_stdv * centered_y + # log probability in the center of the bin, to be used in extreme cases + # (not actually used in our code) + log_pdf_mid = mid_in - log_scales - 2.0 * F.softplus(mid_in) + + # tf equivalent + + # log_probs = tf.where(x < -0.999, log_cdf_plus, + # tf.where(x > 0.999, log_one_minus_cdf_min, + # tf.where(cdf_delta > 1e-5, + # tf.log(tf.maximum(cdf_delta, 1e-12)), + # log_pdf_mid - np.log(127.5)))) + + # TODO: cdf_delta <= 1e-5 actually can happen. How can we choose the value + # for num_classes=65536 case? 1e-7? not sure.. + inner_inner_cond = (cdf_delta > 1e-5).float() + + inner_inner_out = inner_inner_cond * torch.log(torch.clamp(cdf_delta, min=1e-12)) + (1.0 - inner_inner_cond) * ( + log_pdf_mid - np.log((num_classes - 1) / 2) + ) + inner_cond = (y > 0.999).float() + inner_out = inner_cond * log_one_minus_cdf_min + (1.0 - inner_cond) * inner_inner_out + cond = (y < -0.999).float() + log_probs = cond * log_cdf_plus + (1.0 - cond) * inner_out + + log_probs = log_probs + F.log_softmax(logit_probs, -1) + + if reduce: + return -torch.mean(log_sum_exp(log_probs)) + return -log_sum_exp(log_probs).unsqueeze(-1) + + +def sample_from_discretized_mix_logistic(y, log_scale_min=None): + """ + Sample from discretized mixture of logistic distributions + Args: + y (Tensor): :math:`[B, C, T]` + log_scale_min (float): Log scale minimum value + Returns: + Tensor: sample in range of [-1, 1]. + """ + if log_scale_min is None: + log_scale_min = float(np.log(1e-14)) + assert y.size(1) % 3 == 0 + nr_mix = y.size(1) // 3 + + # B x T x C + y = y.transpose(1, 2) + logit_probs = y[:, :, :nr_mix] + + # sample mixture indicator from softmax + temp = logit_probs.data.new(logit_probs.size()).uniform_(1e-5, 1.0 - 1e-5) + temp = logit_probs.data - torch.log(-torch.log(temp)) + _, argmax = temp.max(dim=-1) + + # (B, T) -> (B, T, nr_mix) + one_hot = to_one_hot(argmax, nr_mix) + # select logistic parameters + means = torch.sum(y[:, :, nr_mix : 2 * nr_mix] * one_hot, dim=-1) + log_scales = torch.clamp(torch.sum(y[:, :, 2 * nr_mix : 3 * nr_mix] * one_hot, dim=-1), min=log_scale_min) + # sample from logistic & clip to interval + # we don't actually round to the nearest 8bit value when sampling + u = means.data.new(means.size()).uniform_(1e-5, 1.0 - 1e-5) + x = means + torch.exp(log_scales) * (torch.log(u) - torch.log(1.0 - u)) + + x = torch.clamp(torch.clamp(x, min=-1.0), max=1.0) + + return x + + +def to_one_hot(tensor, n, fill_with=1.0): + # we perform one hot encore with respect to the last axis + one_hot = torch.FloatTensor(tensor.size() + (n,)).zero_().type_as(tensor) + one_hot.scatter_(len(tensor.size()), tensor.unsqueeze(-1), fill_with) + return one_hot diff --git a/TTS/TTS/vocoder/utils/generic_utils.py b/TTS/TTS/vocoder/utils/generic_utils.py new file mode 100644 index 0000000000000000000000000000000000000000..63a0af4445b5684e928b83d2f4fdfaf7e8f5b9a2 --- /dev/null +++ b/TTS/TTS/vocoder/utils/generic_utils.py @@ -0,0 +1,72 @@ +from typing import Dict + +import numpy as np +import torch +from matplotlib import pyplot as plt + +from TTS.tts.utils.visual import plot_spectrogram +from TTS.utils.audio import AudioProcessor + + +def interpolate_vocoder_input(scale_factor, spec): + """Interpolate spectrogram by the scale factor. + It is mainly used to match the sampling rates of + the tts and vocoder models. + + Args: + scale_factor (float): scale factor to interpolate the spectrogram + spec (np.array): spectrogram to be interpolated + + Returns: + torch.tensor: interpolated spectrogram. + """ + print(" > before interpolation :", spec.shape) + spec = torch.tensor(spec).unsqueeze(0).unsqueeze(0) # pylint: disable=not-callable + spec = torch.nn.functional.interpolate( + spec, scale_factor=scale_factor, recompute_scale_factor=True, mode="bilinear", align_corners=False + ).squeeze(0) + print(" > after interpolation :", spec.shape) + return spec + + +def plot_results(y_hat: torch.tensor, y: torch.tensor, ap: AudioProcessor, name_prefix: str = None) -> Dict: + """Plot the predicted and the real waveform and their spectrograms. + + Args: + y_hat (torch.tensor): Predicted waveform. + y (torch.tensor): Real waveform. + ap (AudioProcessor): Audio processor used to process the waveform. + name_prefix (str, optional): Name prefix used to name the figures. Defaults to None. + + Returns: + Dict: output figures keyed by the name of the figures. + """ """Plot vocoder model results""" + if name_prefix is None: + name_prefix = "" + + # select an instance from batch + y_hat = y_hat[0].squeeze().detach().cpu().numpy() + y = y[0].squeeze().detach().cpu().numpy() + + spec_fake = ap.melspectrogram(y_hat).T + spec_real = ap.melspectrogram(y).T + spec_diff = np.abs(spec_fake - spec_real) + + # plot figure and save it + fig_wave = plt.figure() + plt.subplot(2, 1, 1) + plt.plot(y) + plt.title("groundtruth speech") + plt.subplot(2, 1, 2) + plt.plot(y_hat) + plt.title("generated speech") + plt.tight_layout() + plt.close() + + figures = { + name_prefix + "spectrogram/fake": plot_spectrogram(spec_fake), + name_prefix + "spectrogram/real": plot_spectrogram(spec_real), + name_prefix + "spectrogram/diff": plot_spectrogram(spec_diff), + name_prefix + "speech_comparison": fig_wave, + } + return figures diff --git a/TTS/docs/Makefile b/TTS/docs/Makefile new file mode 100644 index 0000000000000000000000000000000000000000..b1d20a99ed037c92d31a927f2bb01fb801b59bf2 --- /dev/null +++ b/TTS/docs/Makefile @@ -0,0 +1,20 @@ +# Minimal makefile for Sphinx documentation +# + +# You can set these variables from the command line, and also +# from the environment for the first two. +SPHINXOPTS ?= -j auto -WT --keep-going +SPHINXBUILD ?= sphinx-build +SOURCEDIR = source +BUILDDIR = _build + +# Put it first so that "make" without argument is like "make help". +help: + @$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O) + +.PHONY: help Makefile + +# Catch-all target: route all unknown targets to Sphinx using the new +# "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS). +%: Makefile + @$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O) diff --git a/TTS/docs/README.md b/TTS/docs/README.md new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/TTS/docs/requirements.txt b/TTS/docs/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..efbefec44bced5ae039d0db508b1e600ba2f3987 --- /dev/null +++ b/TTS/docs/requirements.txt @@ -0,0 +1,6 @@ +furo +myst-parser == 2.0.0 +sphinx == 7.2.5 +sphinx_inline_tabs +sphinx_copybutton +linkify-it-py \ No newline at end of file diff --git a/TTS/docs/source/_static/logo.png b/TTS/docs/source/_static/logo.png new file mode 100644 index 0000000000000000000000000000000000000000..6a1185c0966f9731a0e0f1878cc95a757d97107a Binary files /dev/null and b/TTS/docs/source/_static/logo.png differ diff --git a/TTS/docs/source/_templates/page.html b/TTS/docs/source/_templates/page.html new file mode 100644 index 0000000000000000000000000000000000000000..dd1bc34fa6b70a90516a8881940c32031096645a --- /dev/null +++ b/TTS/docs/source/_templates/page.html @@ -0,0 +1,4 @@ +{% extends "!page.html" %} +{% block scripts %} + {{ super() }} +{% endblock %} diff --git a/TTS/docs/source/conf.py b/TTS/docs/source/conf.py new file mode 100644 index 0000000000000000000000000000000000000000..b85324fd4091fdc0a4b910008ea3a4f41e3dcbe4 --- /dev/null +++ b/TTS/docs/source/conf.py @@ -0,0 +1,120 @@ +# Configuration file for the Sphinx documentation builder. +# +# This file only contains a selection of the most common options. For a full +# list see the documentation: +# https://www.sphinx-doc.org/en/master/usage/configuration.html + +# -- Path setup -------------------------------------------------------------- + +# If extensions (or modules to document with autodoc) are in another directory, +# add these directories to sys.path here. If the directory is relative to the +# documentation root, use os.path.abspath to make it absolute, like shown here. +# +import os +import sys + +sys.path.insert(0, os.path.abspath('../..')) + +# mock deps with system level requirements. +autodoc_mock_imports = ["soundfile"] + +# -- Project information ----------------------------------------------------- +project = 'TTS' +copyright = "2021 Coqui GmbH, 2020 TTS authors" +author = 'Coqui GmbH' + +with open("../../TTS/VERSION", "r") as ver: + version = ver.read().strip() + +# The version info for the project you're documenting, acts as replacement for +# |version| and |release|, also used in various other places throughout the +# built documents. +release = version + +# The main toctree document. +master_doc = "index" + +# -- General configuration --------------------------------------------------- + +# Add any Sphinx extension module names here, as strings. They can be +# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom +# ones. +extensions = [ + 'sphinx.ext.autodoc', + 'sphinx.ext.autosummary', + 'sphinx.ext.doctest', + 'sphinx.ext.intersphinx', + 'sphinx.ext.todo', + 'sphinx.ext.coverage', + 'sphinx.ext.napoleon', + 'sphinx.ext.viewcode', + 'sphinx.ext.autosectionlabel', + 'myst_parser', + "sphinx_copybutton", + "sphinx_inline_tabs", +] + + +# Add any paths that contain templates here, relative to this directory. +templates_path = ['_templates'] + +# List of patterns, relative to source directory, that match files and +# directories to ignore when looking for source files. +# This pattern also affects html_static_path and html_extra_path. +exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store', 'TODO/*'] + +source_suffix = [".rst", ".md"] + +myst_enable_extensions = ['linkify',] + +# 'sphinxcontrib.katex', +# 'sphinx.ext.autosectionlabel', + + +# autosectionlabel throws warnings if section names are duplicated. +# The following tells autosectionlabel to not throw a warning for +# duplicated section names that are in different documents. +autosectionlabel_prefix_document = True + +language = 'en' + +autodoc_inherit_docstrings = False + +# Disable displaying type annotations, these can be very verbose +autodoc_typehints = 'none' + +# Enable overriding of function signatures in the first line of the docstring. +autodoc_docstring_signature = True + +napoleon_custom_sections = [('Shapes', 'shape')] + + +# -- Options for HTML output ------------------------------------------------- + +# The theme to use for HTML and HTML Help pages. See the documentation for +# a list of builtin themes. +# +html_theme = 'furo' +html_tite = "TTS" +html_theme_options = { + "light_logo": "logo.png", + "dark_logo": "logo.png", + "sidebar_hide_name": True, +} + +html_sidebars = { + '**': [ + "sidebar/scroll-start.html", + "sidebar/brand.html", + "sidebar/search.html", + "sidebar/navigation.html", + "sidebar/ethical-ads.html", + "sidebar/scroll-end.html", + ] + } + + +# Add any paths that contain custom static files (such as style sheets) here, +# relative to this directory. They are copied after the builtin static files, +# so a file named "default.css" will overwrite the builtin "default.css". +html_static_path = ['_static'] diff --git a/TTS/docs/source/configuration.md b/TTS/docs/source/configuration.md new file mode 100644 index 0000000000000000000000000000000000000000..cde7e073e9ec515ae32b00951a3e4e6952c969e0 --- /dev/null +++ b/TTS/docs/source/configuration.md @@ -0,0 +1,59 @@ +# Configuration + +We use ๐Ÿ‘ฉโ€โœˆ๏ธ[Coqpit] for configuration management. It provides basic static type checking and serialization capabilities on top of native Python `dataclasses`. Here is how a simple configuration looks like with Coqpit. + +```python +from dataclasses import asdict, dataclass, field +from typing import List, Union +from coqpit.coqpit import MISSING, Coqpit, check_argument + + +@dataclass +class SimpleConfig(Coqpit): + val_a: int = 10 + val_b: int = None + val_d: float = 10.21 + val_c: str = "Coqpit is great!" + vol_e: bool = True + # mandatory field + # raise an error when accessing the value if it is not changed. It is a way to define + val_k: int = MISSING + # optional field + val_dict: dict = field(default_factory=lambda: {"val_aa": 10, "val_ss": "This is in a dict."}) + # list of list + val_listoflist: List[List] = field(default_factory=lambda: [[1, 2], [3, 4]]) + val_listofunion: List[List[Union[str, int, bool]]] = field( + default_factory=lambda: [[1, 3], [1, "Hi!"], [True, False]] + ) + + def check_values( + self, + ): # you can define explicit constraints manually or by`check_argument()` + """Check config fields""" + c = asdict(self) # avoid unexpected changes on `self` + check_argument("val_a", c, restricted=True, min_val=10, max_val=2056) + check_argument("val_b", c, restricted=True, min_val=128, max_val=4058, allow_none=True) + check_argument("val_c", c, restricted=True) +``` + +In TTS, each model must have a configuration class that exposes all the values necessary for its lifetime. + +It defines model architecture, hyper-parameters, training, and inference settings. For our models, we merge all the fields in a single configuration class for ease. It may not look like a wise practice but enables easier bookkeeping and reproducible experiments. + +The general configuration hierarchy looks like below: + +``` +ModelConfig() + | + | -> ... # model specific configurations + | -> ModelArgs() # model class arguments + | -> BaseDatasetConfig() # only for tts models + | -> BaseXModelConfig() # Generic fields for `tts` and `vocoder` models. + | + | -> BaseTrainingConfig() # trainer fields + | -> BaseAudioConfig() # audio processing fields +``` + +In the example above, ```ModelConfig()``` is the final configuration that the model receives and it has all the fields necessary for the model. + +We host pre-defined model configurations under ```TTS//configs/```.Although we recommend a unified config class, you can decompose it as you like as for your custom models as long as all the fields for the trainer, model, and inference APIs are provided. \ No newline at end of file diff --git a/TTS/docs/source/contributing.md b/TTS/docs/source/contributing.md new file mode 100644 index 0000000000000000000000000000000000000000..5b2725094f72319db74c010ca7f7e194c94d5e0d --- /dev/null +++ b/TTS/docs/source/contributing.md @@ -0,0 +1,3 @@ +```{include} ../../CONTRIBUTING.md +:relative-images: +``` diff --git a/TTS/docs/source/docker_images.md b/TTS/docs/source/docker_images.md new file mode 100644 index 0000000000000000000000000000000000000000..d08a55837d33f44785a03207408f8dabca8fa07f --- /dev/null +++ b/TTS/docs/source/docker_images.md @@ -0,0 +1,56 @@ +(docker_images)= +## Docker images +We provide docker images to be able to test TTS without having to setup your own environment. + +### Using premade images +You can use premade images built automatically from the latest TTS version. + +#### CPU version +```bash +docker pull ghcr.io/coqui-ai/tts-cpu +``` +#### GPU version +```bash +docker pull ghcr.io/coqui-ai/tts +``` + +### Building your own image +```bash +docker build -t tts . +``` + +## Basic inference +Basic usage: generating an audio file from a text passed as argument. +You can pass any tts argument after the image name. + +### CPU version +```bash +docker run --rm -v ~/tts-output:/root/tts-output ghcr.io/coqui-ai/tts-cpu --text "Hello." --out_path /root/tts-output/hello.wav +``` +### GPU version +For the GPU version, you need to have the latest NVIDIA drivers installed. +With `nvidia-smi` you can check the CUDA version supported, it must be >= 11.8 + +```bash +docker run --rm --gpus all -v ~/tts-output:/root/tts-output ghcr.io/coqui-ai/tts --text "Hello." --out_path /root/tts-output/hello.wav --use_cuda true +``` + +## Start a server +Starting a TTS server: +Start the container and get a shell inside it. + +### CPU version +```bash +docker run --rm -it -p 5002:5002 --entrypoint /bin/bash ghcr.io/coqui-ai/tts-cpu +python3 TTS/server/server.py --list_models #To get the list of available models +python3 TTS/server/server.py --model_name tts_models/en/vctk/vits +``` + +### GPU version +```bash +docker run --rm -it -p 5002:5002 --gpus all --entrypoint /bin/bash ghcr.io/coqui-ai/tts +python3 TTS/server/server.py --list_models #To get the list of available models +python3 TTS/server/server.py --model_name tts_models/en/vctk/vits --use_cuda true +``` + +Click [there](http://[::1]:5002/) and have fun with the server! \ No newline at end of file diff --git a/TTS/docs/source/faq.md b/TTS/docs/source/faq.md new file mode 100644 index 0000000000000000000000000000000000000000..fa48c4a9fbbaf1c77d847e4289645dceaf5aba91 --- /dev/null +++ b/TTS/docs/source/faq.md @@ -0,0 +1,113 @@ +# Humble FAQ +We tried to collect common issues and questions we receive about ๐ŸธTTS. It is worth checking before going deeper. + +## Errors with a pre-trained model. How can I resolve this? +- Make sure you use the right commit version of ๐ŸธTTS. Each pre-trained model has its corresponding version that needs to be used. It is defined on the model table. +- If it is still problematic, post your problem on [Discussions](https://github.com/coqui-ai/TTS/discussions). Please give as many details as possible (error message, your TTS version, your TTS model and config.json etc.) +- If you feel like it's a bug to be fixed, then prefer Github issues with the same level of scrutiny. + +## What are the requirements of a good ๐ŸธTTS dataset? +* {ref}`See this page ` + +## How should I choose the right model? +- First, train Tacotron. It is smaller and faster to experiment with. If it performs poorly, try Tacotron2. +- Tacotron models produce the most natural voice if your dataset is not too noisy. +- If both models do not perform well and especially the attention does not align, then try AlignTTS or GlowTTS. +- If you need faster models, consider SpeedySpeech, GlowTTS or AlignTTS. Keep in mind that SpeedySpeech requires a pre-trained Tacotron or Tacotron2 model to compute text-to-speech alignments. + +## How can I train my own `tts` model? +0. Check your dataset with notebooks in [dataset_analysis](https://github.com/coqui-ai/TTS/tree/master/notebooks/dataset_analysis) folder. Use [this notebook](https://github.com/coqui-ai/TTS/blob/master/notebooks/dataset_analysis/CheckSpectrograms.ipynb) to find the right audio processing parameters. A better set of parameters results in a better audio synthesis. + +1. Write your own dataset `formatter` in `datasets/formatters.py` or format your dataset as one of the supported datasets, like LJSpeech. + A `formatter` parses the metadata file and converts a list of training samples. + +2. If you have a dataset with a different alphabet than English, you need to set your own character list in the ```config.json```. + - If you use phonemes for training and your language is supported [here](https://github.com/rhasspy/gruut#supported-languages), you don't need to set your character list. + - You can use `TTS/bin/find_unique_chars.py` to get characters used in your dataset. + +3. Write your own text cleaner in ```utils.text.cleaners```. It is not always necessary, except when you have a different alphabet or language-specific requirements. + - A `cleaner` performs number and abbreviation expansion and text normalization. Basically, it converts the written text to its spoken format. + - If you go lazy, you can try using ```basic_cleaners```. + +4. Fill in a ```config.json```. Go over each parameter one by one and consider it regarding the appended explanation. + - Check the `Coqpit` class created for your target model. Coqpit classes for `tts` models are under `TTS/tts/configs/`. + - You just need to define fields you need/want to change in your `config.json`. For the rest, their default values are used. + - 'sample_rate', 'phoneme_language' (if phoneme enabled), 'output_path', 'datasets', 'text_cleaner' are the fields you need to edit in most of the cases. + - Here is a sample `config.json` for training a `GlowTTS` network. + ```json + { + "model": "glow_tts", + "batch_size": 32, + "eval_batch_size": 16, + "num_loader_workers": 4, + "num_eval_loader_workers": 4, + "run_eval": true, + "test_delay_epochs": -1, + "epochs": 1000, + "text_cleaner": "english_cleaners", + "use_phonemes": false, + "phoneme_language": "en-us", + "phoneme_cache_path": "phoneme_cache", + "print_step": 25, + "print_eval": true, + "mixed_precision": false, + "output_path": "recipes/ljspeech/glow_tts/", + "test_sentences": ["Test this sentence.", "This test sentence.", "Sentence this test."], + "datasets":[{"formatter": "ljspeech", "meta_file_train":"metadata.csv", "path": "recipes/ljspeech/LJSpeech-1.1/"}] + } + ``` + +6. Train your model. + - SingleGPU training: ```CUDA_VISIBLE_DEVICES="0" python train_tts.py --config_path config.json``` + - MultiGPU training: ```python3 -m trainer.distribute --gpus "0,1" --script TTS/bin/train_tts.py --config_path config.json``` + +**Note:** You can also train your model using pure ๐Ÿ python. Check ```{eval-rst} :ref: 'tutorial_for_nervous_beginners'```. + +## How can I train in a different language? +- Check steps 2, 3, 4, 5 above. + +## How can I train multi-GPUs? +- Check step 5 above. + +## How can I check model performance? +- You can inspect model training and performance using ```tensorboard```. It will show you loss, attention alignment, model output. Go with the order below to measure the model performance. +1. Check ground truth spectrograms. If they do not look as they are supposed to, then check audio processing parameters in ```config.json```. +2. Check train and eval losses and make sure that they all decrease smoothly in time. +3. Check model spectrograms. Especially, training outputs should look similar to ground truth spectrograms after ~10K iterations. +4. Your model would not work well at test time until the attention has a near diagonal alignment. This is the sublime art of TTS training. + - Attention should converge diagonally after ~50K iterations. + - If attention does not converge, the probabilities are; + - Your dataset is too noisy or small. + - Samples are too long. + - Batch size is too small (batch_size < 32 would be having a hard time converging) + - You can also try other attention algorithms like 'graves', 'bidirectional_decoder', 'forward_attn'. + - 'bidirectional_decoder' is your ultimate savior, but it trains 2x slower and demands 1.5x more GPU memory. + - You can also try the other models like AlignTTS or GlowTTS. + +## How do I know when to stop training? +There is no single objective metric to decide the end of a training since the voice quality is a subjective matter. + +In our model trainings, we follow these steps; + +- Check test time audio outputs, if it does not improve more. +- Check test time attention maps, if they look clear and diagonal. +- Check validation loss, if it converged and smoothly went down or started to overfit going up. +- If the answer is YES for all of the above, then test the model with a set of complex sentences. For English, you can use the `TestAttention` notebook. + +Keep in mind that the approach above only validates the model robustness. It is hard to estimate the voice quality without asking the actual people. +The best approach is to pick a set of promising models and run a Mean-Opinion-Score study asking actual people to score the models. + +## My model does not learn. How can I debug? +- Go over the steps under "How can I check model performance?" + +## Attention does not align. How can I make it work? +- Check the 4th step under "How can I check model performance?" + +## How can I test a trained model? +- The best way is to use `tts` or `tts-server` commands. For details check {ref}`here `. +- If you need to code your own ```TTS.utils.synthesizer.Synthesizer``` class. + +## My Tacotron model does not stop - I see "Decoder stopped with 'max_decoder_steps" - Stopnet does not work. +- In general, all of the above relates to the `stopnet`. It is the part of the model telling the `decoder` when to stop. +- In general, a poor `stopnet` relates to something else that is broken in your model or dataset. Especially the attention module. +- One common reason is the silent parts in the audio clips at the beginning and the ending. Check ```trim_db``` value in the config. You can find a better value for your dataset by using ```CheckSpectrogram``` notebook. If this value is too small, too much of the audio will be trimmed. If too big, then too much silence will remain. Both will curtail the `stopnet` performance. diff --git a/TTS/docs/source/finetuning.md b/TTS/docs/source/finetuning.md new file mode 100644 index 0000000000000000000000000000000000000000..c236260d0cc889207869fa5a00f18163d875b54f --- /dev/null +++ b/TTS/docs/source/finetuning.md @@ -0,0 +1,114 @@ +# Fine-tuning a ๐Ÿธ TTS model + +## Fine-tuning + +Fine-tuning takes a pre-trained model and retrains it to improve the model performance on a different task or dataset. +In ๐ŸธTTS we provide different pre-trained models in different languages and different pros and cons. You can take one of +them and fine-tune it for your own dataset. This will help you in two main ways: + +1. Faster learning + + Since a pre-trained model has already learned features that are relevant for the task, it will converge faster on + a new dataset. This will reduce the cost of training and let you experiment faster. + +2. Better results with small datasets + + Deep learning models are data hungry and they give better performance with more data. However, it is not always + possible to have this abundance, especially in specific domains. For instance, the LJSpeech dataset, that we released most of + our English models with, is almost 24 hours long. It takes weeks to record this amount of data with + the help of a voice actor. + + Fine-tuning comes to the rescue in this case. You can take one of our pre-trained models and fine-tune it on your own + speech dataset and achieve reasonable results with only a couple of hours of data. + + However, note that, fine-tuning does not ensure great results. The model performance is still depends on the + {ref}`dataset quality ` and the hyper-parameters you choose for fine-tuning. Therefore, + it still takes a bit of tinkering. + + +## Steps to fine-tune a ๐Ÿธ TTS model + +1. Setup your dataset. + + You need to format your target dataset in a certain way so that ๐ŸธTTS data loader will be able to load it for the + training. Please see {ref}`this page ` for more information about formatting. + +2. Choose the model you want to fine-tune. + + You can list the available models in the command line with + + ```bash + tts --list_models + ``` + + The command above lists the the models in a naming format as ```///```. + + Or you can manually check the `.model.json` file in the project directory. + + You should choose the model based on your requirements. Some models are fast and some are better in speech quality. + One lazy way to test a model is running the model on the hardware you want to use and see how it works. For + simple testing, you can use the `tts` command on the terminal. For more info see {ref}`here `. + +3. Download the model. + + You can download the model by using the `tts` command. If you run `tts` with a particular model, it will download it automatically + and the model path will be printed on the terminal. + + ```bash + tts --model_name tts_models/es/mai/tacotron2-DDC --text "Ola." + + > Downloading model to /home/ubuntu/.local/share/tts/tts_models--en--ljspeech--glow-tts + ... + ``` + + In the example above, we called the Spanish Tacotron model and give the sample output showing use the path where + the model is downloaded. + +4. Setup the model config for fine-tuning. + + You need to change certain fields in the model config. You have 3 options for playing with the configuration. + + 1. Edit the fields in the ```config.json``` file if you want to use ```TTS/bin/train_tts.py``` to train the model. + 2. Edit the fields in one of the training scripts in the ```recipes``` directory if you want to use python. + 3. Use the command-line arguments to override the fields like ```--coqpit.lr 0.00001``` to change the learning rate. + + Some of the important fields are as follows: + + - `datasets` field: This is set to the dataset you want to fine-tune the model on. + - `run_name` field: This is the name of the run. This is used to name the output directory and the entry in the + logging dashboard. + - `output_path` field: This is the path where the fine-tuned model is saved. + - `lr` field: You may need to use a smaller learning rate for fine-tuning to not lose the features learned by the + pre-trained model with big update steps. + - `audio` fields: Different datasets have different audio characteristics. You must check the current audio parameters and + make sure that the values reflect your dataset. For instance, your dataset might have a different audio sampling rate. + + Apart from the parameters above, you should check the whole configuration file and make sure that the values are correct for + your dataset and training. + +5. Start fine-tuning. + + Whether you use one of the training scripts under ```recipes``` folder or the ```train_tts.py``` to start + your training, you should use the ```--restore_path``` flag to specify the path to the pre-trained model. + + ```bash + CUDA_VISIBLE_DEVICES="0" python recipes/ljspeech/glow_tts/train_glowtts.py \ + --restore_path /home/ubuntu/.local/share/tts/tts_models--en--ljspeech--glow-tts/model_file.pth + ``` + + ```bash + CUDA_VISIBLE_DEVICES="0" python TTS/bin/train_tts.py \ + --config_path /home/ubuntu/.local/share/tts/tts_models--en--ljspeech--glow-tts/config.json \ + --restore_path /home/ubuntu/.local/share/tts/tts_models--en--ljspeech--glow-tts/model_file.pth + ``` + + As stated above, you can also use command-line arguments to change the model configuration. + + + ```bash + CUDA_VISIBLE_DEVICES="0" python recipes/ljspeech/glow_tts/train_glowtts.py \ + --restore_path /home/ubuntu/.local/share/tts/tts_models--en--ljspeech--glow-tts/model_file.pth + --coqpit.run_name "glow-tts-finetune" \ + --coqpit.lr 0.00001 + ``` + diff --git a/TTS/docs/source/formatting_your_dataset.md b/TTS/docs/source/formatting_your_dataset.md new file mode 100644 index 0000000000000000000000000000000000000000..477708878f1b6e38ebe981f11f4c2a5392fd9727 --- /dev/null +++ b/TTS/docs/source/formatting_your_dataset.md @@ -0,0 +1,128 @@ +(formatting_your_dataset)= +# Formatting Your Dataset + +For training a TTS model, you need a dataset with speech recordings and transcriptions. The speech must be divided into audio clips and each clip needs transcription. + +If you have a single audio file and you need to split it into clips, there are different open-source tools for you. We recommend Audacity. It is an open-source and free audio editing software. + +It is also important to use a lossless audio file format to prevent compression artifacts. We recommend using `wav` file format. + +Let's assume you created the audio clips and their transcription. You can collect all your clips under a folder. Let's call this folder `wavs`. + +``` +/wavs + | - audio1.wav + | - audio2.wav + | - audio3.wav + ... +``` + +You can either create separate transcription files for each clip or create a text file that maps each audio clip to its transcription. In this file, each line must be delimitered by a special character separating the audio file name from the transcription. And make sure that the delimiter is not used in the transcription text. + +We recommend the following format delimited by `|`. In the following example, `audio1`, `audio2` refer to files `audio1.wav`, `audio2.wav` etc. + +``` +# metadata.txt + +audio1|This is my sentence. +audio2|This is maybe my sentence. +audio3|This is certainly my sentence. +audio4|Let this be your sentence. +... +``` + +In the end, we have the following folder structure +``` +/MyTTSDataset + | + | -> metadata.txt + | -> /wavs + | -> audio1.wav + | -> audio2.wav + | ... +``` + +The format above is taken from widely-used the [LJSpeech](https://keithito.com/LJ-Speech-Dataset/) dataset. You can also download and see the dataset. ๐ŸธTTS already provides tooling for the LJSpeech. if you use the same format, you can start training your models right away. + +## Dataset Quality + +Your dataset should have good coverage of the target language. It should cover the phonemic variety, exceptional sounds and syllables. This is extremely important for especially non-phonemic languages like English. + +For more info about dataset qualities and properties check our [post](https://github.com/coqui-ai/TTS/wiki/What-makes-a-good-TTS-dataset). + +## Using Your Dataset in ๐ŸธTTS + +After you collect and format your dataset, you need to check two things. Whether you need a `formatter` and a `text_cleaner`. The `formatter` loads the text file (created above) as a list and the `text_cleaner` performs a sequence of text normalization operations that converts the raw text into the spoken representation (e.g. converting numbers to text, acronyms, and symbols to the spoken format). + +If you use a different dataset format then the LJSpeech or the other public datasets that ๐ŸธTTS supports, then you need to write your own `formatter`. + +If your dataset is in a new language or it needs special normalization steps, then you need a new `text_cleaner`. + +What you get out of a `formatter` is a `List[Dict]` in the following format. + +``` +>>> formatter(metafile_path) +[ + {"audio_file":"audio1.wav", "text":"This is my sentence.", "speaker_name":"MyDataset", "language": "lang_code"}, + {"audio_file":"audio1.wav", "text":"This is maybe a sentence.", "speaker_name":"MyDataset", "language": "lang_code"}, + ... +] +``` + +Each sub-list is parsed as ```{"", "", "]```. +`````` is the dataset name for single speaker datasets and it is mainly used +in the multi-speaker models to map the speaker of the each sample. But for now, we only focus on single speaker datasets. + +The purpose of a `formatter` is to parse your manifest file and load the audio file paths and transcriptions. +Then, the output is passed to the `Dataset`. It computes features from the audio signals, calls text normalization routines, and converts raw text to +phonemes if needed. + +## Loading your dataset + +Load one of the dataset supported by ๐ŸธTTS. + +```python +from TTS.tts.configs.shared_configs import BaseDatasetConfig +from TTS.tts.datasets import load_tts_samples + + +# dataset config for one of the pre-defined datasets +dataset_config = BaseDatasetConfig( + formatter="vctk", meta_file_train="", language="en-us", path="dataset-path") +) + +# load training samples +train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True) +``` + +Load a custom dataset with a custom formatter. + +```python +from TTS.tts.datasets import load_tts_samples + + +# custom formatter implementation +def formatter(root_path, manifest_file, **kwargs): # pylint: disable=unused-argument + """Assumes each line as ```|``` + """ + txt_file = os.path.join(root_path, manifest_file) + items = [] + speaker_name = "my_speaker" + with open(txt_file, "r", encoding="utf-8") as ttf: + for line in ttf: + cols = line.split("|") + wav_file = os.path.join(root_path, "wavs", cols[0]) + text = cols[1] + items.append({"text":text, "audio_file":wav_file, "speaker_name":speaker_name, "root_path": root_path}) + return items + +# load training samples +train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True, formatter=formatter) +``` + +See `TTS.tts.datasets.TTSDataset`, a generic `Dataset` implementation for the `tts` models. + +See `TTS.vocoder.datasets.*`, for different `Dataset` implementations for the `vocoder` models. + +See `TTS.utils.audio.AudioProcessor` that includes all the audio processing and feature extraction functions used in a +`Dataset` implementation. Feel free to add things as you need. diff --git a/TTS/docs/source/implementing_a_new_language_frontend.md b/TTS/docs/source/implementing_a_new_language_frontend.md new file mode 100644 index 0000000000000000000000000000000000000000..f4f6a04a5fbc048c9e4a7b2cf2b658d5aa6b1fbc --- /dev/null +++ b/TTS/docs/source/implementing_a_new_language_frontend.md @@ -0,0 +1,12 @@ +# Implementing a New Language Frontend + +- Language frontends are located under `TTS.tts.utils.text` +- Each special language has a separate folder. +- Each folder containst all the utilities for processing the text input. +- `TTS.tts.utils.text.phonemizers` contains the main phonemizer for a language. This is the class that uses the utilities +from the previous step and used to convert the text to phonemes or graphemes for the model. +- After you implement your phonemizer, you need to add it to the `TTS/tts/utils/text/phonemizers/__init__.py` to be able to +map the language code in the model config - `config.phoneme_language` - to the phonemizer class and initiate the phonemizer automatically. +- You should also add tests to `tests/text_tests` if you want to make a PR. + +We suggest you to check the available implementations as reference. Good luck! \ No newline at end of file diff --git a/TTS/docs/source/implementing_a_new_model.md b/TTS/docs/source/implementing_a_new_model.md new file mode 100644 index 0000000000000000000000000000000000000000..134271ff160b9174f07e43784dad1120b8e92d43 --- /dev/null +++ b/TTS/docs/source/implementing_a_new_model.md @@ -0,0 +1,206 @@ +# Implementing a Model + +1. Implement layers. + + You can either implement the layers under `TTS/tts/layers/new_model.py` or in the model file `TTS/tts/model/new_model.py`. + You can also reuse layers already implemented. + +2. Test layers. + + We keep tests under `tests` folder. You can add `tts` layers tests under `tts_tests` folder. + Basic tests are checking input-output tensor shapes and output values for a given input. Consider testing extreme cases that are more likely to cause problems like `zero` tensors. + +3. Implement a loss function. + + We keep loss functions under `TTS/tts/layers/losses.py`. You can also mix-and-match implemented loss functions as you like. + + A loss function returns a dictionary in a format ```{โ€™lossโ€™: loss, โ€˜loss1โ€™:loss1 ...}``` and the dictionary must at least define the `loss` key which is the actual value used by the optimizer. All the items in the dictionary are automatically logged on the terminal and the Tensorboard. + +4. Test the loss function. + + As we do for the layers, you need to test the loss functions too. You need to check input/output tensor shapes, + expected output values for a given input tensor. For instance, certain loss functions have upper and lower limits and + it is a wise practice to test with the inputs that should produce these limits. + +5. Implement `MyModel`. + + In ๐ŸธTTS, a model class is a self-sufficient implementation of a model directing all the interactions with the other + components. It is enough to implement the API provided by the `BaseModel` class to comply. + + A model interacts with the `Trainer API` for training, `Synthesizer API` for inference and testing. + + A ๐ŸธTTS model must return a dictionary by the `forward()` and `inference()` functions. This dictionary must `model_outputs` key that is considered as the main model output by the `Trainer` and `Synthesizer`. + + You can place your `tts` model implementation under `TTS/tts/models/new_model.py` then inherit and implement the `BaseTTS`. + + There is also the `callback` interface by which you can manipulate both the model and the `Trainer` states. Callbacks give you + an infinite flexibility to add custom behaviours for your model and training routines. + + For more details, see {ref}`BaseTTS ` and :obj:`TTS.utils.callbacks`. + +6. Optionally, define `MyModelArgs`. + + `MyModelArgs` is a ๐Ÿ‘จโ€โœˆ๏ธCoqpit class that sets all the class arguments of the `MyModel`. `MyModelArgs` must have + all the fields neccessary to instantiate the `MyModel`. However, for training, you need to pass `MyModelConfig` to + the model. + +7. Test `MyModel`. + + As the layers and the loss functions, it is recommended to test your model. One smart way for testing is that you + create two models with the exact same weights. Then we run a training loop with one of these models and + compare the weights with the other model. All the weights need to be different in a passing test. Otherwise, it + is likely that a part of the model is malfunctioning or not even attached to the model's computational graph. + +8. Define `MyModelConfig`. + + Place `MyModelConfig` file under `TTS/models/configs`. It is enough to inherit the `BaseTTSConfig` to make your + config compatible with the `Trainer`. You should also include `MyModelArgs` as a field if defined. The rest of the fields should define the model + specific values and parameters. + +9. Write Docstrings. + + We love you more when you document your code. โค๏ธ + + +# Template ๐ŸธTTS Model implementation + +You can start implementing your model by copying the following base class. + +```python +from TTS.tts.models.base_tts import BaseTTS + + +class MyModel(BaseTTS): + """ + Notes on input/output tensor shapes: + Any input or output tensor of the model must be shaped as + + - 3D tensors `batch x time x channels` + - 2D tensors `batch x channels` + - 1D tensors `batch x 1` + """ + + def __init__(self, config: Coqpit): + super().__init__() + self._set_model_args(config) + + def _set_model_args(self, config: Coqpit): + """Set model arguments from the config. Override this.""" + pass + + def forward(self, input: torch.Tensor, *args, aux_input={}, **kwargs) -> Dict: + """Forward pass for the model mainly used in training. + + You can be flexible here and use different number of arguments and argument names since it is intended to be + used by `train_step()` without exposing it out of the model. + + Args: + input (torch.Tensor): Input tensor. + aux_input (Dict): Auxiliary model inputs like embeddings, durations or any other sorts of inputs. + + Returns: + Dict: Model outputs. Main model output must be named as "model_outputs". + """ + outputs_dict = {"model_outputs": None} + ... + return outputs_dict + + def inference(self, input: torch.Tensor, aux_input={}) -> Dict: + """Forward pass for inference. + + We don't use `*kwargs` since it is problematic with the TorchScript API. + + Args: + input (torch.Tensor): [description] + aux_input (Dict): Auxiliary inputs like speaker embeddings, durations etc. + + Returns: + Dict: [description] + """ + outputs_dict = {"model_outputs": None} + ... + return outputs_dict + + def train_step(self, batch: Dict, criterion: nn.Module) -> Tuple[Dict, Dict]: + """Perform a single training step. Run the model forward pass and compute losses. + + Args: + batch (Dict): Input tensors. + criterion (nn.Module): Loss layer designed for the model. + + Returns: + Tuple[Dict, Dict]: Model ouputs and computed losses. + """ + outputs_dict = {} + loss_dict = {} # this returns from the criterion + ... + return outputs_dict, loss_dict + + def train_log(self, batch: Dict, outputs: Dict, logger: "Logger", assets:Dict, steps:int) -> None: + """Create visualizations and waveform examples for training. + + For example, here you can plot spectrograms and generate sample sample waveforms from these spectrograms to + be projected onto Tensorboard. + + Args: + ap (AudioProcessor): audio processor used at training. + batch (Dict): Model inputs used at the previous training step. + outputs (Dict): Model outputs generated at the previoud training step. + + Returns: + Tuple[Dict, np.ndarray]: training plots and output waveform. + """ + pass + + def eval_step(self, batch: Dict, criterion: nn.Module) -> Tuple[Dict, Dict]: + """Perform a single evaluation step. Run the model forward pass and compute losses. In most cases, you can + call `train_step()` with no changes. + + Args: + batch (Dict): Input tensors. + criterion (nn.Module): Loss layer designed for the model. + + Returns: + Tuple[Dict, Dict]: Model ouputs and computed losses. + """ + outputs_dict = {} + loss_dict = {} # this returns from the criterion + ... + return outputs_dict, loss_dict + + def eval_log(self, batch: Dict, outputs: Dict, logger: "Logger", assets:Dict, steps:int) -> None: + """The same as `train_log()`""" + pass + + def load_checkpoint(self, config: Coqpit, checkpoint_path: str, eval: bool = False) -> None: + """Load a checkpoint and get ready for training or inference. + + Args: + config (Coqpit): Model configuration. + checkpoint_path (str): Path to the model checkpoint file. + eval (bool, optional): If true, init model for inference else for training. Defaults to False. + """ + ... + + def get_optimizer(self) -> Union["Optimizer", List["Optimizer"]]: + """Setup an return optimizer or optimizers.""" + pass + + def get_lr(self) -> Union[float, List[float]]: + """Return learning rate(s). + + Returns: + Union[float, List[float]]: Model's initial learning rates. + """ + pass + + def get_scheduler(self, optimizer: torch.optim.Optimizer): + pass + + def get_criterion(self): + pass + + def format_batch(self): + pass + +``` diff --git a/TTS/docs/source/index.md b/TTS/docs/source/index.md new file mode 100644 index 0000000000000000000000000000000000000000..79993eec76dd72d743e2236a0df4601fd37d9809 --- /dev/null +++ b/TTS/docs/source/index.md @@ -0,0 +1,62 @@ + +```{include} ../../README.md +:relative-images: +``` +---- + +# Documentation Content +```{eval-rst} +.. toctree:: + :maxdepth: 2 + :caption: Get started + + tutorial_for_nervous_beginners + installation + faq + contributing + +.. toctree:: + :maxdepth: 2 + :caption: Using ๐ŸธTTS + + inference + docker_images + implementing_a_new_model + implementing_a_new_language_frontend + training_a_model + finetuning + configuration + formatting_your_dataset + what_makes_a_good_dataset + tts_datasets + marytts + +.. toctree:: + :maxdepth: 2 + :caption: Main Classes + + main_classes/trainer_api + main_classes/audio_processor + main_classes/model_api + main_classes/dataset + main_classes/gan + main_classes/speaker_manager + +.. toctree:: + :maxdepth: 2 + :caption: `tts` Models + + models/glow_tts.md + models/vits.md + models/forward_tts.md + models/tacotron1-2.md + models/overflow.md + models/tortoise.md + models/bark.md + models/xtts.md + +.. toctree:: + :maxdepth: 2 + :caption: `vocoder` Models + +``` diff --git a/TTS/docs/source/inference.md b/TTS/docs/source/inference.md new file mode 100644 index 0000000000000000000000000000000000000000..3071be4f4d60a9562cd4f62e4912464b996f5678 --- /dev/null +++ b/TTS/docs/source/inference.md @@ -0,0 +1,235 @@ +(synthesizing_speech)= +# Synthesizing Speech + +First, you need to install TTS. We recommend using PyPi. You need to call the command below: + +```bash +$ pip install TTS +``` + +After the installation, 2 terminal commands are available. + +1. TTS Command Line Interface (CLI). - `tts` +2. Local Demo Server. - `tts-server` +3. In ๐ŸPython. - `from TTS.api import TTS` + +## On the Commandline - `tts` +![cli.gif](https://github.com/coqui-ai/TTS/raw/main/images/tts_cli.gif) + +After the installation, ๐ŸธTTS provides a CLI interface for synthesizing speech using pre-trained models. You can either use your own model or the release models under ๐ŸธTTS. + +Listing released ๐ŸธTTS models. + +```bash +tts --list_models +``` + +Run a TTS model, from the release models list, with its default vocoder. (Simply copy and paste the full model names from the list as arguments for the command below.) + +```bash +tts --text "Text for TTS" \ + --model_name "///" \ + --out_path folder/to/save/output.wav +``` + +Run a tts and a vocoder model from the released model list. Note that not every vocoder is compatible with every TTS model. + +```bash +tts --text "Text for TTS" \ + --model_name "tts_models///" \ + --vocoder_name "vocoder_models///" \ + --out_path folder/to/save/output.wav +``` + +Run your own TTS model (Using Griffin-Lim Vocoder) + +```bash +tts --text "Text for TTS" \ + --model_path path/to/model.pth \ + --config_path path/to/config.json \ + --out_path folder/to/save/output.wav +``` + +Run your own TTS and Vocoder models + +```bash +tts --text "Text for TTS" \ + --config_path path/to/config.json \ + --model_path path/to/model.pth \ + --out_path folder/to/save/output.wav \ + --vocoder_path path/to/vocoder.pth \ + --vocoder_config_path path/to/vocoder_config.json +``` + +Run a multi-speaker TTS model from the released models list. + +```bash +tts --model_name "tts_models///" --list_speaker_idxs # list the possible speaker IDs. +tts --text "Text for TTS." --out_path output/path/speech.wav --model_name "tts_models///" --speaker_idx "" +``` + +Run a released voice conversion model + +```bash +tts --model_name "voice_conversion///" + --source_wav "my/source/speaker/audio.wav" + --target_wav "my/target/speaker/audio.wav" + --out_path folder/to/save/output.wav +``` + +**Note:** You can use ```./TTS/bin/synthesize.py``` if you prefer running ```tts``` from the TTS project folder. + +## On the Demo Server - `tts-server` + + +![server.gif](https://github.com/coqui-ai/TTS/raw/main/images/demo_server.gif) + +You can boot up a demo ๐ŸธTTS server to run an inference with your models. Note that the server is not optimized for performance +but gives you an easy way to interact with the models. + +The demo server provides pretty much the same interface as the CLI command. + +```bash +tts-server -h # see the help +tts-server --list_models # list the available models. +``` + +Run a TTS model, from the release models list, with its default vocoder. +If the model you choose is a multi-speaker TTS model, you can select different speakers on the Web interface and synthesize +speech. + +```bash +tts-server --model_name "///" +``` + +Run a TTS and a vocoder model from the released model list. Note that not every vocoder is compatible with every TTS model. + +```bash +tts-server --model_name "///" \ + --vocoder_name "///" +``` + +## Python ๐ŸธTTS API + +You can run a multi-speaker and multi-lingual model in Python as + +```python +from TTS.api import TTS + +# List available ๐ŸธTTS models and choose the first one +model_name = TTS().list_models()[0] +# Init TTS +tts = TTS(model_name) +# Run TTS +# โ— Since this model is multi-speaker and multi-lingual, we must set the target speaker and the language +# Text to speech with a numpy output +wav = tts.tts("This is a test! This is also a test!!", speaker=tts.speakers[0], language=tts.languages[0]) +# Text to speech to a file +tts.tts_to_file(text="Hello world!", speaker=tts.speakers[0], language=tts.languages[0], file_path="output.wav") +``` + +#### Here is an example for a single speaker model. + +```python +# Init TTS with the target model name +tts = TTS(model_name="tts_models/de/thorsten/tacotron2-DDC", progress_bar=False) +# Run TTS +tts.tts_to_file(text="Ich bin eine Testnachricht.", file_path=OUTPUT_PATH) +``` + +#### Example voice cloning with YourTTS in English, French and Portuguese: + +```python +tts = TTS(model_name="tts_models/multilingual/multi-dataset/your_tts", progress_bar=False).to("cuda") +tts.tts_to_file("This is voice cloning.", speaker_wav="my/cloning/audio.wav", language="en", file_path="output.wav") +tts.tts_to_file("C'est le clonage de la voix.", speaker_wav="my/cloning/audio.wav", language="fr", file_path="output.wav") +tts.tts_to_file("Isso รฉ clonagem de voz.", speaker_wav="my/cloning/audio.wav", language="pt", file_path="output.wav") +``` + +#### Example voice conversion converting speaker of the `source_wav` to the speaker of the `target_wav` + +```python +tts = TTS(model_name="voice_conversion_models/multilingual/vctk/freevc24", progress_bar=False).to("cuda") +tts.voice_conversion_to_file(source_wav="my/source.wav", target_wav="my/target.wav", file_path="output.wav") +``` + +#### Example voice cloning by a single speaker TTS model combining with the voice conversion model. + +This way, you can clone voices by using any model in ๐ŸธTTS. + +```python +tts = TTS("tts_models/de/thorsten/tacotron2-DDC") +tts.tts_with_vc_to_file( + "Wie sage ich auf Italienisch, dass ich dich liebe?", + speaker_wav="target/speaker.wav", + file_path="ouptut.wav" +) +``` + +#### Example text to speech using [๐ŸธCoqui Studio](https://coqui.ai) models. + +You can use all of your available speakers in the studio. +[๐ŸธCoqui Studio](https://coqui.ai) API token is required. You can get it from the [account page](https://coqui.ai/account). +You should set the `COQUI_STUDIO_TOKEN` environment variable to use the API token. + +```python +# If you have a valid API token set you will see the studio speakers as separate models in the list. +# The name format is coqui_studio/en//coqui_studio +models = TTS().list_models() +# Init TTS with the target studio speaker +tts = TTS(model_name="coqui_studio/en/Torcull Diarmuid/coqui_studio", progress_bar=False) +# Run TTS +tts.tts_to_file(text="This is a test.", file_path=OUTPUT_PATH) +# Run TTS with emotion and speed control +tts.tts_to_file(text="This is a test.", file_path=OUTPUT_PATH, emotion="Happy", speed=1.5) +``` + +If you just need ๐Ÿธ Coqui Studio speakers, you can use `CS_API`. It is a wrapper around the ๐Ÿธ Coqui Studio API. + +```python +from TTS.api import CS_API + +# Init ๐Ÿธ Coqui Studio API +# you can either set the API token as an environment variable `COQUI_STUDIO_TOKEN` or pass it as an argument. + +# XTTS - Best quality and life-like speech in EN +api = CS_API(api_token=, model="XTTS") +api.speakers # all the speakers are available with all the models. +api.list_speakers() +api.list_voices() +wav, sample_rate = api.tts(text="This is a test.", speaker=api.speakers[0].name, emotion="Happy", speed=1.5) + +# XTTS-multilingual - Multilingual XTTS with [en, de, es, fr, it, pt, ...] (more langs coming soon) +api = CS_API(api_token=, model="XTTS-multilingual") +api.speakers +api.list_speakers() +api.list_voices() +wav, sample_rate = api.tts(text="This is a test.", speaker=api.speakers[0].name, emotion="Happy", speed=1.5) + +# V1 - Fast and lightweight TTS in EN with emotion control. +api = CS_API(api_token=, model="V1") +api.speakers +api.emotions # emotions are only for the V1 model. +api.list_speakers() +api.list_voices() +wav, sample_rate = api.tts(text="This is a test.", speaker=api.speakers[0].name, emotion="Happy", speed=1.5) +``` + +#### Example text to speech using **Fairseq models in ~1100 languages** ๐Ÿคฏ. +For these models use the following name format: `tts_models//fairseq/vits`. + +You can find the list of language ISO codes [here](https://dl.fbaipublicfiles.com/mms/tts/all-tts-languages.html) and learn about the Fairseq models [here](https://github.com/facebookresearch/fairseq/tree/main/examples/mms). + +```python +from TTS.api import TTS +api = TTS(model_name="tts_models/eng/fairseq/vits").to("cuda") +api.tts_to_file("This is a test.", file_path="output.wav") + +# TTS with on the fly voice conversion +api = TTS("tts_models/deu/fairseq/vits") +api.tts_with_vc_to_file( + "Wie sage ich auf Italienisch, dass ich dich liebe?", + speaker_wav="target/speaker.wav", + file_path="ouptut.wav" +) +``` \ No newline at end of file diff --git a/TTS/docs/source/installation.md b/TTS/docs/source/installation.md new file mode 100644 index 0000000000000000000000000000000000000000..c4d05361f4f7d120da53d7e3dc60d635f1b06e5d --- /dev/null +++ b/TTS/docs/source/installation.md @@ -0,0 +1,33 @@ +# Installation + +๐ŸธTTS supports python >=3.7 <3.11.0 and tested on Ubuntu 18.10, 19.10, 20.10. + +## Using `pip` + +`pip` is recommended if you want to use ๐ŸธTTS only for inference. + +You can install from PyPI as follows: + +```bash +pip install TTS # from PyPI +``` + +Or install from Github: + +```bash +pip install git+https://github.com/coqui-ai/TTS # from Github +``` + +## Installing From Source + +This is recommended for development and more control over ๐ŸธTTS. + +```bash +git clone https://github.com/coqui-ai/TTS/ +cd TTS +make system-deps # only on Linux systems. +make install +``` + +## On Windows +If you are on Windows, ๐Ÿ‘‘@GuyPaddock wrote installation instructions [here](https://stackoverflow.com/questions/66726331/ \ No newline at end of file diff --git a/TTS/docs/source/main_classes/audio_processor.md b/TTS/docs/source/main_classes/audio_processor.md new file mode 100644 index 0000000000000000000000000000000000000000..600b0db582880920be11cfc7773e4b2876127cb8 --- /dev/null +++ b/TTS/docs/source/main_classes/audio_processor.md @@ -0,0 +1,25 @@ +# AudioProcessor API + +`TTS.utils.audio.AudioProcessor` is the core class for all the audio processing routines. It provides an API for + +- Feature extraction. +- Sound normalization. +- Reading and writing audio files. +- Sampling audio signals. +- Normalizing and denormalizing audio signals. +- Griffin-Lim vocoder. + +The `AudioProcessor` needs to be initialized with `TTS.config.shared_configs.BaseAudioConfig`. Any model config +also must inherit or initiate `BaseAudioConfig`. + +## AudioProcessor +```{eval-rst} +.. autoclass:: TTS.utils.audio.AudioProcessor + :members: +``` + +## BaseAudioConfig +```{eval-rst} +.. autoclass:: TTS.config.shared_configs.BaseAudioConfig + :members: +``` \ No newline at end of file diff --git a/TTS/docs/source/main_classes/dataset.md b/TTS/docs/source/main_classes/dataset.md new file mode 100644 index 0000000000000000000000000000000000000000..92d381aca552c6fe95a9573d76227b8aa51a8dc0 --- /dev/null +++ b/TTS/docs/source/main_classes/dataset.md @@ -0,0 +1,25 @@ +# Datasets + +## TTS Dataset + +```{eval-rst} +.. autoclass:: TTS.tts.datasets.TTSDataset + :members: +``` + +## Vocoder Dataset + +```{eval-rst} +.. autoclass:: TTS.vocoder.datasets.gan_dataset.GANDataset + :members: +``` + +```{eval-rst} +.. autoclass:: TTS.vocoder.datasets.wavegrad_dataset.WaveGradDataset + :members: +``` + +```{eval-rst} +.. autoclass:: TTS.vocoder.datasets.wavernn_dataset.WaveRNNDataset + :members: +``` \ No newline at end of file diff --git a/TTS/docs/source/main_classes/gan.md b/TTS/docs/source/main_classes/gan.md new file mode 100644 index 0000000000000000000000000000000000000000..4524b4b5c591f9790f68999b4920abc50f32c9cd --- /dev/null +++ b/TTS/docs/source/main_classes/gan.md @@ -0,0 +1,12 @@ +# GAN API + +The {class}`TTS.vocoder.models.gan.GAN` provides an easy way to implementing new GAN based models. You just need +to define the model architectures for the generator and the discriminator networks and give them to the `GAN` class +to do its โœจ๏ธ. + + +## GAN +```{eval-rst} +.. autoclass:: TTS.vocoder.models.gan.GAN + :members: +``` \ No newline at end of file diff --git a/TTS/docs/source/main_classes/model_api.md b/TTS/docs/source/main_classes/model_api.md new file mode 100644 index 0000000000000000000000000000000000000000..0e6f2d9427acff3d6f848451cb389e1712a7a33a --- /dev/null +++ b/TTS/docs/source/main_classes/model_api.md @@ -0,0 +1,24 @@ +# Model API +Model API provides you a set of functions that easily make your model compatible with the `Trainer`, +`Synthesizer` and `ModelZoo`. + +## Base TTS Model + +```{eval-rst} +.. autoclass:: TTS.model.BaseTrainerModel + :members: +``` + +## Base tts Model + +```{eval-rst} +.. autoclass:: TTS.tts.models.base_tts.BaseTTS + :members: +``` + +## Base vocoder Model + +```{eval-rst} +.. autoclass:: TTS.vocoder.models.base_vocoder.BaseVocoder + :members: +``` \ No newline at end of file diff --git a/TTS/docs/source/main_classes/speaker_manager.md b/TTS/docs/source/main_classes/speaker_manager.md new file mode 100644 index 0000000000000000000000000000000000000000..ba4b55dc781ea09c13f703ea815bac14acf0bfa0 --- /dev/null +++ b/TTS/docs/source/main_classes/speaker_manager.md @@ -0,0 +1,11 @@ +# Speaker Manager API + +The {class}`TTS.tts.utils.speakers.SpeakerManager` organize speaker related data and information for ๐ŸธTTS models. It is +especially useful for multi-speaker models. + + +## Speaker Manager +```{eval-rst} +.. automodule:: TTS.tts.utils.speakers + :members: +``` \ No newline at end of file diff --git a/TTS/docs/source/main_classes/trainer_api.md b/TTS/docs/source/main_classes/trainer_api.md new file mode 100644 index 0000000000000000000000000000000000000000..f765fff7bd1bff49a00c57217e086a6cabe74a13 --- /dev/null +++ b/TTS/docs/source/main_classes/trainer_api.md @@ -0,0 +1,3 @@ +# Trainer API + +We made the trainer a seprate project on https://github.com/coqui-ai/Trainer diff --git a/TTS/docs/source/make.bat b/TTS/docs/source/make.bat new file mode 100644 index 0000000000000000000000000000000000000000..922152e96a04a242e6fc40f124261d74890617d8 --- /dev/null +++ b/TTS/docs/source/make.bat @@ -0,0 +1,35 @@ +@ECHO OFF + +pushd %~dp0 + +REM Command file for Sphinx documentation + +if "%SPHINXBUILD%" == "" ( + set SPHINXBUILD=sphinx-build +) +set SOURCEDIR=. +set BUILDDIR=_build + +if "%1" == "" goto help + +%SPHINXBUILD% >NUL 2>NUL +if errorlevel 9009 ( + echo. + echo.The 'sphinx-build' command was not found. Make sure you have Sphinx + echo.installed, then set the SPHINXBUILD environment variable to point + echo.to the full path of the 'sphinx-build' executable. Alternatively you + echo.may add the Sphinx directory to PATH. + echo. + echo.If you don't have Sphinx installed, grab it from + echo.http://sphinx-doc.org/ + exit /b 1 +) + +%SPHINXBUILD% -M %1 %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O% +goto end + +:help +%SPHINXBUILD% -M help %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O% + +:end +popd diff --git a/TTS/docs/source/marytts.md b/TTS/docs/source/marytts.md new file mode 100644 index 0000000000000000000000000000000000000000..81d547107df26a22cd4d3537c0669cffe8a83e57 --- /dev/null +++ b/TTS/docs/source/marytts.md @@ -0,0 +1,43 @@ +# Mary-TTS API Support for Coqui-TTS + +## What is Mary-TTS? + +[Mary (Modular Architecture for Research in sYynthesis) Text-to-Speech](http://mary.dfki.de/) is an open-source (GNU LGPL license), multilingual Text-to-Speech Synthesis platform written in Java. It was originally developed as a collaborative project of [DFKIโ€™s](http://www.dfki.de/web) Language Technology Lab and the [Institute of Phonetics](http://www.coli.uni-saarland.de/groups/WB/Phonetics/) at Saarland University, Germany. It is now maintained by the Multimodal Speech Processing Group in the [Cluster of Excellence MMCI](https://www.mmci.uni-saarland.de/) and DFKI. +MaryTTS has been around for a very! long time. Version 3.0 even dates back to 2006, long before Deep Learning was a broadly known term and the last official release was version 5.2 in 2016. +You can check out this OpenVoice-Tech page to learn more: https://openvoice-tech.net/index.php/MaryTTS + +## Why Mary-TTS compatibility is relevant + +Due to it's open-source nature, relatively high quality voices and fast synthetization speed Mary-TTS was a popular choice in the past and many tools implemented API support over the years like screen-readers (NVDA + SpeechHub), smart-home HUBs (openHAB, Home Assistant) or voice assistants (Rhasspy, Mycroft, SEPIA). A compatibility layer for Coqui-TTS will ensure that these tools can use Coqui as a drop-in replacement and get even better voices right away. + +## API and code examples + +Like Coqui-TTS, Mary-TTS can run as HTTP server to allow access to the API via HTTP GET and POST calls. The best documentations of this API are probably the [web-page](https://github.com/marytts/marytts/tree/master/marytts-runtime/src/main/resources/marytts/server/http), available via your self-hosted Mary-TTS server and the [Java docs page](http://mary.dfki.de/javadoc/marytts/server/http/MaryHttpServer.html). +Mary-TTS offers a larger number of endpoints to load styles, audio effects, examples etc., but compatible tools often only require 3 of them to work: +- `/locales` (GET) - Returns a list of supported locales in the format `[locale]\n...`, for example "en_US" or "de_DE" or simply "en" etc. +- `/voices` (GET) - Returns a list of supported voices in the format `[name] [locale] [gender]\n...`, 'name' can be anything without spaces(!) and 'gender' is traditionally `f` or `m` +- `/process?INPUT_TEXT=[my text]&INPUT_TYPE=TEXT&LOCALE=[locale]&VOICE=[name]&OUTPUT_TYPE=AUDIO&AUDIO=WAVE_FILE` (GET/POST) - Processes the input text and returns a wav file. INPUT_TYPE, OUTPUT_TYPE and AUDIO support additional values, but are usually static in compatible tools. + +If your Coqui-TTS server is running on `localhost` using `port` 59125 (for classic Mary-TTS compatibility) you can us the following CURL requests to test the API: + +Return locale of active voice, e.g. "en": +```bash +curl http://localhost:59125/locales +``` + +Return name of active voice, e.g. "glow-tts en u" +```bash +curl http://localhost:59125/voices +``` + +Create a wav-file with spoken input text: +```bash +curl http://localhost:59125/process?INPUT_TEXT=this+is+a+test > test.wav +``` + +You can enter the same URLs in your browser and check-out the results there as well. + +### How it works and limitations + +A classic Mary-TTS server would usually show all installed locales and voices via the corresponding endpoints and accept the parameters `LOCALE` and `VOICE` for processing. For Coqui-TTS we usually start the server with one specific locale and model and thus cannot return all available options. Instead we return the active locale and use the model name as "voice". Since we only have one active model and always want to return a WAV-file, we currently ignore all other processing parameters except `INPUT_TEXT`. Since the gender is not defined for models in Coqui-TTS we always return `u` (undefined). +We think that this is an acceptable compromise, since users are often only interested in one specific voice anyways, but the API might get extended in the future to support multiple languages and voices at the same time. \ No newline at end of file diff --git a/TTS/docs/source/models/bark.md b/TTS/docs/source/models/bark.md new file mode 100644 index 0000000000000000000000000000000000000000..c328ae6110f0d0c9a495b9eeaf49610dbd66a945 --- /dev/null +++ b/TTS/docs/source/models/bark.md @@ -0,0 +1,98 @@ +# ๐Ÿถ Bark + +Bark is a multi-lingual TTS model created by [Suno-AI](https://www.suno.ai/). It can generate conversational speech as well as music and sound effects. +It is architecturally very similar to Google's [AudioLM](https://arxiv.org/abs/2209.03143). For more information, please refer to the [Suno-AI's repo](https://github.com/suno-ai/bark). + + +## Acknowledgements +- ๐Ÿ‘‘[Suno-AI](https://www.suno.ai/) for training and open-sourcing this model. +- ๐Ÿ‘‘[gitmylo](https://github.com/gitmylo) for finding [the solution](https://github.com/gitmylo/bark-voice-cloning-HuBERT-quantizer/) to the semantic token generation for voice clones and finetunes. +- ๐Ÿ‘‘[serp-ai](https://github.com/serp-ai/bark-with-voice-clone) for controlled voice cloning. + + +## Example Use + +```python +text = "Hello, my name is Manmay , how are you?" + +from TTS.tts.configs.bark_config import BarkConfig +from TTS.tts.models.bark import Bark + +config = BarkConfig() +model = Bark.init_from_config(config) +model.load_checkpoint(config, checkpoint_dir="path/to/model/dir/", eval=True) + +# with random speaker +output_dict = model.synthesize(text, config, speaker_id="random", voice_dirs=None) + +# cloning a speaker. +# It assumes that you have a speaker file in `bark_voices/speaker_n/speaker.wav` or `bark_voices/speaker_n/speaker.npz` +output_dict = model.synthesize(text, config, speaker_id="ljspeech", voice_dirs="bark_voices/") +``` + +Using ๐ŸธTTS API: + +```python +from TTS.api import TTS + +# Load the model to GPU +# Bark is really slow on CPU, so we recommend using GPU. +tts = TTS("tts_models/multilingual/multi-dataset/bark", gpu=True) + + +# Cloning a new speaker +# This expects to find a mp3 or wav file like `bark_voices/new_speaker/speaker.wav` +# It computes the cloning values and stores in `bark_voices/new_speaker/speaker.npz` +tts.tts_to_file(text="Hello, my name is Manmay , how are you?", + file_path="output.wav", + voice_dir="bark_voices/", + speaker="ljspeech") + + +# When you run it again it uses the stored values to generate the voice. +tts.tts_to_file(text="Hello, my name is Manmay , how are you?", + file_path="output.wav", + voice_dir="bark_voices/", + speaker="ljspeech") + + +# random speaker +tts = TTS("tts_models/multilingual/multi-dataset/bark", gpu=True) +tts.tts_to_file("hello world", file_path="out.wav") +``` + +Using ๐ŸธTTS Command line: + +```console +# cloning the `ljspeech` voice +tts --model_name tts_models/multilingual/multi-dataset/bark \ +--text "This is an example." \ +--out_path "output.wav" \ +--voice_dir bark_voices/ \ +--speaker_idx "ljspeech" \ +--progress_bar True + +# Random voice generation +tts --model_name tts_models/multilingual/multi-dataset/bark \ +--text "This is an example." \ +--out_path "output.wav" \ +--progress_bar True +``` + + +## Important resources & papers +- Original Repo: https://github.com/suno-ai/bark +- Cloning implementation: https://github.com/serp-ai/bark-with-voice-clone +- AudioLM: https://arxiv.org/abs/2209.03143 + +## BarkConfig +```{eval-rst} +.. autoclass:: TTS.tts.configs.bark_config.BarkConfig + :members: +``` + +## Bark Model +```{eval-rst} +.. autoclass:: TTS.tts.models.bark.Bark + :members: +``` diff --git a/TTS/docs/source/models/forward_tts.md b/TTS/docs/source/models/forward_tts.md new file mode 100644 index 0000000000000000000000000000000000000000..473949677057bfb9376cebfc6825d6a57f89fe56 --- /dev/null +++ b/TTS/docs/source/models/forward_tts.md @@ -0,0 +1,65 @@ +# Forward TTS model(s) + +A general feed-forward TTS model implementation that can be configured to different architectures by setting different +encoder and decoder networks. It can be trained with either pre-computed durations (from pre-trained Tacotron) or +an alignment network that learns the text to audio alignment from the input data. + +Currently we provide the following pre-configured architectures: + +- **FastSpeech:** + + It's a feed-forward model TTS model that uses Feed Forward Transformer (FFT) modules as the encoder and decoder. + +- **FastPitch:** + + It uses the same FastSpeech architecture that is conditioned on fundemental frequency (f0) contours with the + promise of more expressive speech. + +- **SpeedySpeech:** + + It uses Residual Convolution layers instead of Transformers that leads to a more compute friendly model. + +- **FastSpeech2 (TODO):** + + Similar to FastPitch but it also uses a spectral energy values as an addition. + +## Important resources & papers +- FastPitch: https://arxiv.org/abs/2006.06873 +- SpeedySpeech: https://arxiv.org/abs/2008.03802 +- FastSpeech: https://arxiv.org/pdf/1905.09263 +- FastSpeech2: https://arxiv.org/abs/2006.04558 +- Aligner Network: https://arxiv.org/abs/2108.10447 +- What is Pitch: https://www.britannica.com/topic/pitch-speech + + +## ForwardTTSArgs +```{eval-rst} +.. autoclass:: TTS.tts.models.forward_tts.ForwardTTSArgs + :members: +``` + +## ForwardTTS Model +```{eval-rst} +.. autoclass:: TTS.tts.models.forward_tts.ForwardTTS + :members: +``` + +## FastPitchConfig +```{eval-rst} +.. autoclass:: TTS.tts.configs.fast_pitch_config.FastPitchConfig + :members: +``` + +## SpeedySpeechConfig +```{eval-rst} +.. autoclass:: TTS.tts.configs.speedy_speech_config.SpeedySpeechConfig + :members: +``` + +## FastSpeechConfig +```{eval-rst} +.. autoclass:: TTS.tts.configs.fast_speech_config.FastSpeechConfig + :members: +``` + + diff --git a/TTS/docs/source/models/glow_tts.md b/TTS/docs/source/models/glow_tts.md new file mode 100644 index 0000000000000000000000000000000000000000..66171abd144ce3f2f2c8ec236ef1cc6c46ea9424 --- /dev/null +++ b/TTS/docs/source/models/glow_tts.md @@ -0,0 +1,22 @@ +# Glow TTS + +Glow TTS is a normalizing flow model for text-to-speech. It is built on the generic Glow model that is previously +used in computer vision and vocoder models. It uses "monotonic alignment search" (MAS) to fine the text-to-speech alignment +and uses the output to train a separate duration predictor network for faster inference run-time. + +## Important resources & papers +- GlowTTS: https://arxiv.org/abs/2005.11129 +- Glow (Generative Flow with invertible 1x1 Convolutions): https://arxiv.org/abs/1807.03039 +- Normalizing Flows: https://blog.evjang.com/2018/01/nf1.html + +## GlowTTS Config +```{eval-rst} +.. autoclass:: TTS.tts.configs.glow_tts_config.GlowTTSConfig + :members: +``` + +## GlowTTS Model +```{eval-rst} +.. autoclass:: TTS.tts.models.glow_tts.GlowTTS + :members: +``` diff --git a/TTS/docs/source/models/overflow.md b/TTS/docs/source/models/overflow.md new file mode 100644 index 0000000000000000000000000000000000000000..09e270eae566d0c05c8c285af6504711d8f12cba --- /dev/null +++ b/TTS/docs/source/models/overflow.md @@ -0,0 +1,36 @@ +# Overflow TTS + +Neural HMMs are a type of neural transducer recently proposed for +sequence-to-sequence modelling in text-to-speech. They combine the best features +of classic statistical speech synthesis and modern neural TTS, requiring less +data and fewer training updates, and are less prone to gibberish output caused +by neural attention failures. In this paper, we combine neural HMM TTS with +normalising flows for describing the highly non-Gaussian distribution of speech +acoustics. The result is a powerful, fully probabilistic model of durations and +acoustics that can be trained using exact maximum likelihood. Compared to +dominant flow-based acoustic models, our approach integrates autoregression for +improved modelling of long-range dependences such as utterance-level prosody. +Experiments show that a system based on our proposal gives more accurate +pronunciations and better subjective speech quality than comparable methods, +whilst retaining the original advantages of neural HMMs. Audio examples and code +are available at https://shivammehta25.github.io/OverFlow/. + + +## Important resources & papers +- HMM: https://de.wikipedia.org/wiki/Hidden_Markov_Model +- OverflowTTS paper: https://arxiv.org/abs/2211.06892 +- Neural HMM: https://arxiv.org/abs/2108.13320 +- Audio Samples: https://shivammehta25.github.io/OverFlow/ + + +## OverflowConfig +```{eval-rst} +.. autoclass:: TTS.tts.configs.overflow_config.OverflowConfig + :members: +``` + +## Overflow Model +```{eval-rst} +.. autoclass:: TTS.tts.models.overflow.Overflow + :members: +``` \ No newline at end of file diff --git a/TTS/docs/source/models/tacotron1-2.md b/TTS/docs/source/models/tacotron1-2.md new file mode 100644 index 0000000000000000000000000000000000000000..25721eba4ca7899a6a24c36a7656b6a5a3ebb1a1 --- /dev/null +++ b/TTS/docs/source/models/tacotron1-2.md @@ -0,0 +1,63 @@ +# ๐ŸŒฎ Tacotron 1 and 2 + +Tacotron is one of the first successful DL-based text-to-mel models and opened up the whole TTS field for more DL research. + +Tacotron mainly is an encoder-decoder model with attention. + +The encoder takes input tokens (characters or phonemes) and the decoder outputs mel-spectrogram* frames. Attention module in-between learns to align the input tokens with the output mel-spectrgorams. + +Tacotron1 and 2 are both built on the same encoder-decoder architecture but they use different layers. Additionally, Tacotron1 uses a Postnet module to convert mel-spectrograms to linear spectrograms with a higher resolution before the vocoder. + +Vanilla Tacotron models are slow at inference due to the auto-regressive* nature that prevents the model to process all the inputs in parallel. One trick is to use a higher โ€œreduction rateโ€ that helps the model to predict multiple frames at once. That is, reduction rate 2 reduces the number of decoder iterations by half. + +Tacotron also uses a Prenet module with Dropout that projects the modelโ€™s previous output before feeding it to the decoder again. The paper and most of the implementations use the Dropout layer even in inference and they report the attention fails or the voice quality degrades otherwise. But the issue with that, you get a slightly different output speech every time you run the model. + +Training the attention is notoriously problematic in Tacoron models. Especially, in inference, for some input sequences, the alignment fails and causes the model to produce unexpected results. There are many different methods proposed to improve the attention. + +After hundreds of experiments, @ ๐ŸธTTS we suggest Double Decoder Consistency that leads to the most robust model performance. + +If you have a limited VRAM, then you can try using the Guided Attention Loss or the Dynamic Convolutional Attention. You can also combine the two. + + +## Important resources & papers +- Tacotron: https://arxiv.org/abs/2006.06873 +- Tacotron2: https://arxiv.org/abs/2008.03802 +- Double Decoder Consistency: https://coqui.ai/blog/tts/solving-attention-problems-of-tts-models-with-double-decoder-consistency +- Guided Attention Loss: https://arxiv.org/abs/1710.08969 +- Forward & Backward Decoder: https://arxiv.org/abs/1907.09006 +- Forward Attention: https://arxiv.org/abs/1807.06736 +- Gaussian Attention: https://arxiv.org/abs/1910.10288 +- Dynamic Convolutional Attention: https://arxiv.org/pdf/1910.10288.pdf + + +## BaseTacotron +```{eval-rst} +.. autoclass:: TTS.tts.models.base_tacotron.BaseTacotron + :members: +``` + +## Tacotron +```{eval-rst} +.. autoclass:: TTS.tts.models.tacotron.Tacotron + :members: +``` + +## Tacotron2 +```{eval-rst} +.. autoclass:: TTS.tts.models.tacotron2.Tacotron2 + :members: +``` + +## TacotronConfig +```{eval-rst} +.. autoclass:: TTS.tts.configs.tacotron_config.TacotronConfig + :members: +``` + +## Tacotron2Config +```{eval-rst} +.. autoclass:: TTS.tts.configs.tacotron2_config.Tacotron2Config + :members: +``` + + diff --git a/TTS/docs/source/models/tortoise.md b/TTS/docs/source/models/tortoise.md new file mode 100644 index 0000000000000000000000000000000000000000..2df6da7649c46c351d73ca60da91f19758952e92 --- /dev/null +++ b/TTS/docs/source/models/tortoise.md @@ -0,0 +1,94 @@ +# ๐Ÿข Tortoise +Tortoise is a very expressive TTS system with impressive voice cloning capabilities. It is based on an GPT like autogressive acoustic model that converts input +text to discritized acouistic tokens, a diffusion model that converts these tokens to melspeectrogram frames and a Univnet vocoder to convert the spectrograms to +the final audio signal. The important downside is that Tortoise is very slow compared to the parallel TTS models like VITS. + +Big thanks to ๐Ÿ‘‘[@manmay-nakhashi](https://github.com/manmay-nakhashi) who helped us implement Tortoise in ๐ŸธTTS. + +Example use: + +```python +from TTS.tts.configs.tortoise_config import TortoiseConfig +from TTS.tts.models.tortoise import Tortoise + +config = TortoiseConfig() +model = Tortoise.init_from_config(config) +model.load_checkpoint(config, checkpoint_dir="paths/to/models_dir/", eval=True) + +# with random speaker +output_dict = model.synthesize(text, config, speaker_id="random", extra_voice_dirs=None, **kwargs) + +# cloning a speaker +output_dict = model.synthesize(text, config, speaker_id="speaker_n", extra_voice_dirs="path/to/speaker_n/", **kwargs) +``` + +Using ๐ŸธTTS API: + +```python +from TTS.api import TTS +tts = TTS("tts_models/en/multi-dataset/tortoise-v2") + +# cloning `lj` voice from `TTS/tts/utils/assets/tortoise/voices/lj` +# with custom inference settings overriding defaults. +tts.tts_to_file(text="Hello, my name is Manmay , how are you?", + file_path="output.wav", + voice_dir="path/to/tortoise/voices/dir/", + speaker="lj", + num_autoregressive_samples=1, + diffusion_iterations=10) + +# Using presets with the same voice +tts.tts_to_file(text="Hello, my name is Manmay , how are you?", + file_path="output.wav", + voice_dir="path/to/tortoise/voices/dir/", + speaker="lj", + preset="ultra_fast") + +# Random voice generation +tts.tts_to_file(text="Hello, my name is Manmay , how are you?", + file_path="output.wav") +``` + +Using ๐ŸธTTS Command line: + +```console +# cloning the `lj` voice +tts --model_name tts_models/en/multi-dataset/tortoise-v2 \ +--text "This is an example." \ +--out_path "output.wav" \ +--voice_dir path/to/tortoise/voices/dir/ \ +--speaker_idx "lj" \ +--progress_bar True + +# Random voice generation +tts --model_name tts_models/en/multi-dataset/tortoise-v2 \ +--text "This is an example." \ +--out_path "output.wav" \ +--progress_bar True +``` + + +## Important resources & papers +- Original Repo: https://github.com/neonbjb/tortoise-tts +- Faster implementation: https://github.com/152334H/tortoise-tts-fast +- Univnet: https://arxiv.org/abs/2106.07889 +- Latent Diffusion:https://arxiv.org/abs/2112.10752 +- DALL-E: https://arxiv.org/abs/2102.12092 + +## TortoiseConfig +```{eval-rst} +.. autoclass:: TTS.tts.configs.tortoise_config.TortoiseConfig + :members: +``` + +## TortoiseArgs +```{eval-rst} +.. autoclass:: TTS.tts.models.tortoise.TortoiseArgs + :members: +``` + +## Tortoise Model +```{eval-rst} +.. autoclass:: TTS.tts.models.tortoise.Tortoise + :members: +``` diff --git a/TTS/docs/source/models/vits.md b/TTS/docs/source/models/vits.md new file mode 100644 index 0000000000000000000000000000000000000000..0c303f7a957f1a27be9028c1f596368919303ecd --- /dev/null +++ b/TTS/docs/source/models/vits.md @@ -0,0 +1,38 @@ +# VITS + +VITS (Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech +) is an End-to-End (encoder -> vocoder together) TTS model that takes advantage of SOTA DL techniques like GANs, VAE, +Normalizing Flows. It does not require external alignment annotations and learns the text-to-audio alignment +using MAS, as explained in the paper. The model architecture is a combination of GlowTTS encoder and HiFiGAN vocoder. +It is a feed-forward model with x67.12 real-time factor on a GPU. + +๐Ÿธ YourTTS is a multi-speaker and multi-lingual TTS model that can perform voice conversion and zero-shot speaker adaptation. +It can also learn a new language or voice with a ~ 1 minute long audio clip. This is a big open gate for training +TTS models in low-resources languages. ๐Ÿธ YourTTS uses VITS as the backbone architecture coupled with a speaker encoder model. + +## Important resources & papers +- ๐Ÿธ YourTTS: https://arxiv.org/abs/2112.02418 +- VITS: https://arxiv.org/pdf/2106.06103.pdf +- Neural Spline Flows: https://arxiv.org/abs/1906.04032 +- Variational Autoencoder: https://arxiv.org/pdf/1312.6114.pdf +- Generative Adversarial Networks: https://arxiv.org/abs/1406.2661 +- HiFiGAN: https://arxiv.org/abs/2010.05646 +- Normalizing Flows: https://blog.evjang.com/2018/01/nf1.html + +## VitsConfig +```{eval-rst} +.. autoclass:: TTS.tts.configs.vits_config.VitsConfig + :members: +``` + +## VitsArgs +```{eval-rst} +.. autoclass:: TTS.tts.models.vits.VitsArgs + :members: +``` + +## Vits Model +```{eval-rst} +.. autoclass:: TTS.tts.models.vits.Vits + :members: +``` diff --git a/TTS/docs/source/models/xtts.md b/TTS/docs/source/models/xtts.md new file mode 100644 index 0000000000000000000000000000000000000000..85a3afbabf447e9f1f71153cdb8bda657b383844 --- /dev/null +++ b/TTS/docs/source/models/xtts.md @@ -0,0 +1,108 @@ +# โ“TTS +โ“TTS is a super cool Text-to-Speech model that lets you clone voices in different languages by using just a quick 3-second audio clip. Built on the ๐ŸขTortoise, +โ“TTS has important model changes that make cross-language voice cloning and multi-lingual speech generation super easy. +There is no need for an excessive amount of training data that spans countless hours. + +This is the same model that powers [Coqui Studio](https://coqui.ai/), and [Coqui API](https://docs.coqui.ai/docs), however we apply +a few tricks to make it faster and support streaming inference. + +### Features +- Voice cloning with just a 3-second audio clip. +- Cross-language voice cloning. +- Multi-lingual speech generation. +- 24khz sampling rate. + +### Code +Current implementation only supports inference. + +### Languages +As of now, XTTS-v1 supports 13 languages: English, Spanish, French, German, Italian, Portuguese, +Polish, Turkish, Russian, Dutch, Czech, Arabic, and Chinese (Simplified). + +Stay tuned as we continue to add support for more languages. If you have any language requests, please feel free to reach out. + +### License +This model is licensed under [Coqui Public Model License](https://coqui.ai/cpml). + +### Contact +Come and join in our ๐ŸธCommunity. We're active on [Discord](https://discord.gg/fBC58unbKE) and [Twitter](https://twitter.com/coqui_ai). +You can also mail us at info@coqui.ai. + +Using ๐ŸธTTS API: + +```python +from TTS.api import TTS +tts = TTS("tts_models/multilingual/multi-dataset/xtts_v1", gpu=True) + +# generate speech by cloning a voice using default settings +tts.tts_to_file(text="It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent.", + file_path="output.wav", + speaker_wav="/path/to/target/speaker.wav", + language="en") + +# generate speech by cloning a voice using custom settings +tts.tts_to_file(text="It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent.", + file_path="output.wav", + speaker_wav="/path/to/target/speaker.wav", + language="en", + decoder_iterations=30) +``` + +Using ๐ŸธTTS Command line: + +```console + tts --model_name tts_models/multilingual/multi-dataset/xtts_v1 \ + --text "Bugรผn okula gitmek istemiyorum." \ + --speaker_wav /path/to/target/speaker.wav \ + --language_idx tr \ + --use_cuda true +``` + +Using model directly: + +```python +from TTS.tts.configs.xtts_config import XttsConfig +from TTS.tts.models.xtts import Xtts + +config = XttsConfig() +config.load_json("/path/to/xtts/config.json") +model = Xtts.init_from_config(config) +model.load_checkpoint(config, checkpoint_dir="/path/to/xtts/", eval=True) +model.cuda() + +outputs = model.synthesize( + "It took me quite a long time to develop a voice and now that I have it I am not going to be silent.", + config, + speaker_wav="/data/TTS-public/_refclips/3.wav", + gpt_cond_len=3, + language="en", +) +``` + + +## Important resources & papers +- VallE: https://arxiv.org/abs/2301.02111 +- Tortoise Repo: https://github.com/neonbjb/tortoise-tts +- Faster implementation: https://github.com/152334H/tortoise-tts-fast +- Univnet: https://arxiv.org/abs/2106.07889 +- Latent Diffusion:https://arxiv.org/abs/2112.10752 +- DALL-E: https://arxiv.org/abs/2102.12092 + + +## XttsConfig +```{eval-rst} +.. autoclass:: TTS.tts.configs.xtts_config.XttsConfig + :members: +``` + +## XttsArgs +```{eval-rst} +.. autoclass:: TTS.tts.models.xtts.XttsArgs + :members: +``` + +## XTTS Model +```{eval-rst} +.. autoclass:: TTS.tts.models.xtts.XTTS + :members: +``` diff --git a/TTS/docs/source/training_a_model.md b/TTS/docs/source/training_a_model.md new file mode 100644 index 0000000000000000000000000000000000000000..989a57042abf83e89206f47a1bbbcb3e258224d0 --- /dev/null +++ b/TTS/docs/source/training_a_model.md @@ -0,0 +1,146 @@ +# Training a Model + +1. Decide the model you want to use. + + Each model has a different set of pros and cons that define the run-time efficiency and the voice quality. It is up to you to decide what model serves your needs. Other than referring to the papers, one easy way is to test the ๐ŸธTTS + community models and see how fast and good each of the models. Or you can start a discussion on our communication channels. + +2. Understand the configuration, its fields and values. + + For instance, if you want to train a `Tacotron` model then see the `TacotronConfig` class and make sure you understand it. + +3. Check the recipes. + + Recipes are located under `TTS/recipes/`. They do not promise perfect models but they provide a good start point for + `Nervous Beginners`. + A recipe for `GlowTTS` using `LJSpeech` dataset looks like below. Let's be creative and call this `train_glowtts.py`. + + ```{literalinclude} ../../recipes/ljspeech/glow_tts/train_glowtts.py + ``` + + You need to change fields of the `BaseDatasetConfig` to match your dataset and then update `GlowTTSConfig` + fields as you need. + + 4. Run the training. + + ```bash + $ CUDA_VISIBLE_DEVICES="0" python train_glowtts.py + ``` + + Notice that we set the GPU for the training by `CUDA_VISIBLE_DEVICES` environment variable. + To see available GPUs on your system, you can use `nvidia-smi` command on the terminal. + + If you like to run a multi-gpu training using DDP back-end, + + ```bash + $ CUDA_VISIBLE_DEVICES="0, 1, 2" python -m trainer.distribute --script /train_glowtts.py + ``` + + The example above runs a multi-gpu training using GPUs `0, 1, 2`. + + Beginning of a training log looks like this: + + ```console + > Experiment folder: /your/output_path/-Juni-23-2021_02+52-78899209 + > Using CUDA: True + > Number of GPUs: 1 + > Setting up Audio Processor... + | > sample_rate:22050 + | > resample:False + | > num_mels:80 + | > min_level_db:-100 + | > frame_shift_ms:None + | > frame_length_ms:None + | > ref_level_db:20 + | > fft_size:1024 + | > power:1.5 + | > preemphasis:0.0 + | > griffin_lim_iters:60 + | > signal_norm:True + | > symmetric_norm:True + | > mel_fmin:0 + | > mel_fmax:None + | > spec_gain:20.0 + | > stft_pad_mode:reflect + | > max_norm:4.0 + | > clip_norm:True + | > do_trim_silence:True + | > trim_db:45 + | > do_sound_norm:False + | > stats_path:None + | > base:10 + | > hop_length:256 + | > win_length:1024 + | > Found 13100 files in /your/dataset/path/ljspeech/LJSpeech-1.1 + > Using model: glow_tts + + > Model has 28356129 parameters + + > EPOCH: 0/1000 + + > DataLoader initialization + | > Use phonemes: False + | > Number of instances : 12969 + | > Max length sequence: 187 + | > Min length sequence: 5 + | > Avg length sequence: 98.3403500655409 + | > Num. instances discarded by max-min (max=500, min=3) seq limits: 0 + | > Batch group size: 0. + + > TRAINING (2021-06-23 14:52:54) + + --> STEP: 0/405 -- GLOBAL_STEP: 0 + | > loss: 2.34670 + | > log_mle: 1.61872 + | > loss_dur: 0.72798 + | > align_error: 0.52744 + | > current_lr: 2.5e-07 + | > grad_norm: 5.036039352416992 + | > step_time: 5.8815 + | > loader_time: 0.0065 + ... + ``` + +5. Run the Tensorboard. + + ```bash + $ tensorboard --logdir= + ``` + +6. Monitor the training progress. + + On the terminal and Tensorboard, you can monitor the progress of your model. Also Tensorboard provides certain figures and sample outputs. + + Note that different models have different metrics, visuals and outputs. + + You should also check the [FAQ page](https://github.com/coqui-ai/TTS/wiki/FAQ) for common problems and solutions + that occur in a training. + +7. Use your best model for inference. + + Use `tts` or `tts-server` commands for testing your models. + + ```bash + $ tts --text "Text for TTS" \ + --model_path path/to/checkpoint_x.pth \ + --config_path path/to/config.json \ + --out_path folder/to/save/output.wav + ``` + +8. Return to the step 1 and reiterate for training a `vocoder` model. + + In the example above, we trained a `GlowTTS` model, but the same workflow applies to all the other ๐ŸธTTS models. + + +# Multi-speaker Training + +Training a multi-speaker model is mostly the same as training a single-speaker model. +You need to specify a couple of configuration parameters, initiate a `SpeakerManager` instance and pass it to the model. + +The configuration parameters define whether you want to train the model with a speaker-embedding layer or pre-computed +d-vectors. For using d-vectors, you first need to compute the d-vectors using the `SpeakerEncoder`. + +The same Glow-TTS model above can be trained on a multi-speaker VCTK dataset with the script below. + +```{literalinclude} ../../recipes/vctk/glow_tts/train_glow_tts.py +``` diff --git a/TTS/docs/source/tts_datasets.md b/TTS/docs/source/tts_datasets.md new file mode 100644 index 0000000000000000000000000000000000000000..11da1b7688d07dadfdb3dfab33deb4bcdf3f861a --- /dev/null +++ b/TTS/docs/source/tts_datasets.md @@ -0,0 +1,17 @@ +# TTS Datasets + +Some of the known public datasets that we successfully applied ๐ŸธTTS: + +- [English - LJ Speech](https://keithito.com/LJ-Speech-Dataset/) +- [English - Nancy](http://www.cstr.ed.ac.uk/projects/blizzard/2011/lessac_blizzard2011/) +- [English - TWEB](https://www.kaggle.com/bryanpark/the-world-english-bible-speech-dataset) +- [English - LibriTTS](https://openslr.org/60/) +- [English - VCTK](https://datashare.ed.ac.uk/handle/10283/2950) +- [Multilingual - M-AI-Labs](http://www.caito.de/2019/01/the-m-ailabs-speech-dataset/) +- [Spanish](https://drive.google.com/file/d/1Sm_zyBo67XHkiFhcRSQ4YaHPYM0slO_e/view?usp=sharing) - thx! @carlfm01 +- [German - Thorsten OGVD](https://github.com/thorstenMueller/deep-learning-german-tts) +- [Japanese - Kokoro](https://www.kaggle.com/kaiida/kokoro-speech-dataset-v11-small/version/1) +- [Chinese](https://www.data-baker.com/data/index/source/) +- [Ukrainian - LADA](https://github.com/egorsmkv/ukrainian-tts-datasets/tree/main/lada) + +Let us know if you use ๐ŸธTTS on a different dataset. diff --git a/TTS/docs/source/tutorial_for_nervous_beginners.md b/TTS/docs/source/tutorial_for_nervous_beginners.md new file mode 100644 index 0000000000000000000000000000000000000000..acde3fc4c2a8bd3ce4bb05c9c71b2c52044f7000 --- /dev/null +++ b/TTS/docs/source/tutorial_for_nervous_beginners.md @@ -0,0 +1,122 @@ +# Tutorial For Nervous Beginners + +## Installation + +User friendly installation. Recommended only for synthesizing voice. + +```bash +$ pip install TTS +``` + +Developer friendly installation. + +```bash +$ git clone https://github.com/coqui-ai/TTS +$ cd TTS +$ pip install -e . +``` + +## Training a `tts` Model + +A breakdown of a simple script that trains a GlowTTS model on the LJspeech dataset. See the comments for more details. + +### Pure Python Way + +0. Download your dataset. + + In this example, we download and use the LJSpeech dataset. Set the download directory based on your preferences. + + ```bash + $ python -c 'from TTS.utils.downloaders import download_ljspeech; download_ljspeech("../recipes/ljspeech/");' + ``` + +1. Define `train.py`. + + ```{literalinclude} ../../recipes/ljspeech/glow_tts/train_glowtts.py + ``` + +2. Run the script. + + ```bash + CUDA_VISIBLE_DEVICES=0 python train.py + ``` + + - Continue a previous run. + + ```bash + CUDA_VISIBLE_DEVICES=0 python train.py --continue_path path/to/previous/run/folder/ + ``` + + - Fine-tune a model. + + ```bash + CUDA_VISIBLE_DEVICES=0 python train.py --restore_path path/to/model/checkpoint.pth + ``` + + - Run multi-gpu training. + + ```bash + CUDA_VISIBLE_DEVICES=0,1,2 python -m trainer.distribute --script train.py + ``` + +### CLI Way + +We still support running training from CLI like in the old days. The same training run can also be started as follows. + +1. Define your `config.json` + + ```json + { + "run_name": "my_run", + "model": "glow_tts", + "batch_size": 32, + "eval_batch_size": 16, + "num_loader_workers": 4, + "num_eval_loader_workers": 4, + "run_eval": true, + "test_delay_epochs": -1, + "epochs": 1000, + "text_cleaner": "english_cleaners", + "use_phonemes": false, + "phoneme_language": "en-us", + "phoneme_cache_path": "phoneme_cache", + "print_step": 25, + "print_eval": true, + "mixed_precision": false, + "output_path": "recipes/ljspeech/glow_tts/", + "datasets":[{"formatter": "ljspeech", "meta_file_train":"metadata.csv", "path": "recipes/ljspeech/LJSpeech-1.1/"}] + } + ``` + +2. Start training. + ```bash + $ CUDA_VISIBLE_DEVICES="0" python TTS/bin/train_tts.py --config_path config.json + ``` + +## Training a `vocoder` Model + +```{literalinclude} ../../recipes/ljspeech/hifigan/train_hifigan.py +``` + +โ—๏ธ Note that you can also use ```train_vocoder.py``` as the ```tts``` models above. + +## Synthesizing Speech + +You can run `tts` and synthesize speech directly on the terminal. + +```bash +$ tts -h # see the help +$ tts --list_models # list the available models. +``` + +![cli.gif](https://github.com/coqui-ai/TTS/raw/main/images/tts_cli.gif) + + +You can call `tts-server` to start a local demo server that you can open it on +your favorite web browser and ๐Ÿ—ฃ๏ธ. + +```bash +$ tts-server -h # see the help +$ tts-server --list_models # list the available models. +``` +![server.gif](https://github.com/coqui-ai/TTS/raw/main/images/demo_server.gif) diff --git a/TTS/docs/source/what_makes_a_good_dataset.md b/TTS/docs/source/what_makes_a_good_dataset.md new file mode 100644 index 0000000000000000000000000000000000000000..18c87453f7b7704315222612f23977662451a287 --- /dev/null +++ b/TTS/docs/source/what_makes_a_good_dataset.md @@ -0,0 +1,20 @@ +(what_makes_a_good_dataset)= +# What makes a good TTS dataset + +## What Makes a Good Dataset +* **Gaussian like distribution on clip and text lengths**. So plot the distribution of clip lengths and check if it covers enough short and long voice clips. +* **Mistake free**. Remove any wrong or broken files. Check annotations, compare transcript and audio length. +* **Noise free**. Background noise might lead your model to struggle, especially for a good alignment. Even if it learns the alignment, the final result is likely to be suboptimial. +* **Compatible tone and pitch among voice clips**. For instance, if you are using audiobook recordings for your project, it might have impersonations for different characters in the book. These differences between samples downgrade the model performance. +* **Good phoneme coverage**. Make sure that your dataset covers a good portion of the phonemes, di-phonemes, and in some languages tri-phonemes. +* **Naturalness of recordings**. For your model WISIAIL (What it sees is all it learns). Therefore, your dataset should accommodate all the attributes you want to hear from your model. + +## Preprocessing Dataset +If you like to use a bespoken dataset, you might like to perform a couple of quality checks before training. ๐ŸธTTS provides a couple of notebooks (CheckSpectrograms, AnalyzeDataset) to expedite this part for you. + +* **AnalyzeDataset** is for checking dataset distribution in terms of the clip and transcript lengths. It is good to find outlier instances (too long, short text but long voice clip, etc.)and remove them before training. Keep in mind that we like to have a good balance between long and short clips to prevent any bias in training. If you have only short clips (1-3 secs), then your model might suffer for long sentences and if your instances are long, then it might not learn the alignment or might take too long to train the model. + +* **CheckSpectrograms** is to measure the noise level of the clips and find good audio processing parameters. The noise level might be observed by checking spectrograms. If spectrograms look cluttered, especially in silent parts, this dataset might not be a good candidate for a TTS project. If your voice clips are too noisy in the background, it makes things harder for your model to learn the alignment, and the final result might be different than the voice you are given. +If the spectrograms look good, then the next step is to find a good set of audio processing parameters, defined in ```config.json```. In the notebook, you can compare different sets of parameters and see the resynthesis results in relation to the given ground-truth. Find the best parameters that give the best possible synthesis performance. + +Another practical detail is the quantization level of the clips. If your dataset has a very high bit-rate, that might cause slow data-load time and consequently slow training. It is better to reduce the sample-rate of your dataset to around 16000-22050. \ No newline at end of file diff --git a/TTS/hubconf.py b/TTS/hubconf.py new file mode 100644 index 0000000000000000000000000000000000000000..0c9c5930fcbf98962d3086e7537aa3941b191083 --- /dev/null +++ b/TTS/hubconf.py @@ -0,0 +1,46 @@ +dependencies = [ + 'torch', 'gdown', 'pysbd', 'gruut', 'anyascii', 'pypinyin', 'coqpit', 'mecab-python3', 'unidic-lite' +] +import torch + +from TTS.utils.manage import ModelManager +from TTS.utils.synthesizer import Synthesizer + + +def tts(model_name='tts_models/en/ljspeech/tacotron2-DCA', + vocoder_name=None, + use_cuda=False): + """TTS entry point for PyTorch Hub that provides a Synthesizer object to synthesize speech from a give text. + + Example: + >>> synthesizer = torch.hub.load('coqui-ai/TTS', 'tts', source='github') + >>> wavs = synthesizer.tts("This is a test! This is also a test!!") + wavs - is a list of values of the synthesized speech. + + Args: + model_name (str, optional): One of the model names from .model.json. Defaults to 'tts_models/en/ljspeech/tacotron2-DCA'. + vocoder_name (str, optional): One of the model names from .model.json. Defaults to 'vocoder_models/en/ljspeech/multiband-melgan'. + pretrained (bool, optional): [description]. Defaults to True. + + Returns: + TTS.utils.synthesizer.Synthesizer: Synthesizer object wrapping both vocoder and tts models. + """ + manager = ModelManager() + + model_path, config_path, model_item = manager.download_model(model_name) + vocoder_name = model_item[ + 'default_vocoder'] if vocoder_name is None else vocoder_name + vocoder_path, vocoder_config_path, _ = manager.download_model(vocoder_name) + + # create synthesizer + synt = Synthesizer(tts_checkpoint=model_path, + tts_config_path=config_path, + vocoder_checkpoint=vocoder_path, + vocoder_config=vocoder_config_path, + use_cuda=use_cuda) + return synt + + +if __name__ == '__main__': + synthesizer = torch.hub.load('coqui-ai/TTS:dev', 'tts', source='github') + synthesizer.tts("This is a test!") diff --git a/TTS/images/TTS-performance.png b/TTS/images/TTS-performance.png new file mode 100644 index 0000000000000000000000000000000000000000..68eebaf7e6dd503333f2bb8b85e0bd4115c2011f Binary files /dev/null and b/TTS/images/TTS-performance.png differ diff --git a/TTS/images/coqui-log-green-TTS.png b/TTS/images/coqui-log-green-TTS.png new file mode 100644 index 0000000000000000000000000000000000000000..6ad188b8c03a170097c0393c6769996f03cf9054 Binary files /dev/null and b/TTS/images/coqui-log-green-TTS.png differ diff --git a/TTS/images/demo_server.gif b/TTS/images/demo_server.gif new file mode 100644 index 0000000000000000000000000000000000000000..6ebc1860fa5b327b83c4174f765edf12acc8b134 Binary files /dev/null and b/TTS/images/demo_server.gif differ diff --git a/TTS/images/example_model_output.png b/TTS/images/example_model_output.png new file mode 100644 index 0000000000000000000000000000000000000000..8e83531c117a626c7db8ea23cf994299a6d93fec Binary files /dev/null and b/TTS/images/example_model_output.png differ diff --git a/TTS/images/model.png b/TTS/images/model.png new file mode 100644 index 0000000000000000000000000000000000000000..e2c55269efe82fa8ab7e4d17eb089518823efcbe Binary files /dev/null and b/TTS/images/model.png differ diff --git a/TTS/images/tts_cli.gif b/TTS/images/tts_cli.gif new file mode 100644 index 0000000000000000000000000000000000000000..f4c7897cda0f6d8659c0cbe957a7361e24b66b5e Binary files /dev/null and b/TTS/images/tts_cli.gif differ diff --git a/TTS/images/tts_performance.png b/TTS/images/tts_performance.png new file mode 100644 index 0000000000000000000000000000000000000000..bdff06731e6b60ffb4806943aba5dc89363f3ab3 Binary files /dev/null and b/TTS/images/tts_performance.png differ diff --git a/TTS/notebooks/ExtractTTSpectrogram.ipynb b/TTS/notebooks/ExtractTTSpectrogram.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..a257b6bf253c306701216057e6d8193c70663933 --- /dev/null +++ b/TTS/notebooks/ExtractTTSpectrogram.ipynb @@ -0,0 +1,372 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This is a notebook to generate mel-spectrograms from a TTS model to be used in a Vocoder training." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "import os\n", + "import sys\n", + "import torch\n", + "import importlib\n", + "import numpy as np\n", + "from tqdm import tqdm as tqdm\n", + "from torch.utils.data import DataLoader\n", + "from TTS.tts.datasets.dataset import TTSDataset\n", + "from TTS.tts.layers.losses import L1LossMasked\n", + "from TTS.utils.audio import AudioProcessor\n", + "from TTS.config import load_config\n", + "from TTS.tts.utils.visual import plot_spectrogram\n", + "from TTS.tts.utils.helpers import sequence_mask\n", + "from TTS.tts.models import setup_model\n", + "from TTS.tts.utils.text.symbols import make_symbols, symbols, phonemes\n", + "\n", + "%matplotlib inline\n", + "\n", + "import os\n", + "os.environ['CUDA_VISIBLE_DEVICES']='2'" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def set_filename(wav_path, out_path):\n", + " wav_file = os.path.basename(wav_path)\n", + " file_name = wav_file.split('.')[0]\n", + " os.makedirs(os.path.join(out_path, \"quant\"), exist_ok=True)\n", + " os.makedirs(os.path.join(out_path, \"mel\"), exist_ok=True)\n", + " os.makedirs(os.path.join(out_path, \"wav_gl\"), exist_ok=True)\n", + " wavq_path = os.path.join(out_path, \"quant\", file_name)\n", + " mel_path = os.path.join(out_path, \"mel\", file_name)\n", + " wav_path = os.path.join(out_path, \"wav_gl\", file_name)\n", + " return file_name, wavq_path, mel_path, wav_path" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "OUT_PATH = \"/home/ubuntu/TTS/recipes/ljspeech/LJSpeech-1.1/specs2/\"\n", + "DATA_PATH = \"/home/ubuntu/TTS/recipes/ljspeech/LJSpeech-1.1/\"\n", + "DATASET = \"ljspeech\"\n", + "METADATA_FILE = \"metadata.csv\"\n", + "CONFIG_PATH = \"/home/ubuntu/.local/share/tts/tts_models--en--ljspeech--tacotron2-DDC_ph/config.json\"\n", + "MODEL_FILE = \"/home/ubuntu/.local/share/tts/tts_models--en--ljspeech--tacotron2-DDC_ph/model_file.pth\"\n", + "BATCH_SIZE = 32\n", + "\n", + "QUANTIZED_WAV = False\n", + "QUANTIZE_BIT = None\n", + "DRY_RUN = False # if False, does not generate output files, only computes loss and visuals.\n", + "\n", + "use_cuda = torch.cuda.is_available()\n", + "print(\" > CUDA enabled: \", use_cuda)\n", + "\n", + "C = load_config(CONFIG_PATH)\n", + "C.audio['do_trim_silence'] = False # IMPORTANT!!!!!!!!!!!!!!! disable to align mel specs with the wav files\n", + "ap = AudioProcessor(bits=QUANTIZE_BIT, **C.audio)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(C['r'])\n", + "# if the vocabulary was passed, replace the default\n", + "if 'characters' in C and C['characters']:\n", + " symbols, phonemes = make_symbols(**C.characters)\n", + "\n", + "# load the model\n", + "num_chars = len(phonemes) if C.use_phonemes else len(symbols)\n", + "# TODO: multiple speaker\n", + "model = setup_model(C)\n", + "model.load_checkpoint(C, MODEL_FILE, eval=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "preprocessor = importlib.import_module(\"TTS.tts.datasets.formatters\")\n", + "preprocessor = getattr(preprocessor, DATASET.lower())\n", + "meta_data = preprocessor(DATA_PATH, METADATA_FILE)\n", + "dataset = TTSDataset(\n", + " checkpoint[\"config\"][\"r\"],\n", + " C.text_cleaner,\n", + " False,\n", + " ap,\n", + " meta_data,\n", + " characters=C.get('characters', None),\n", + " use_phonemes=C.use_phonemes,\n", + " phoneme_cache_path=C.phoneme_cache_path,\n", + " enable_eos_bos=C.enable_eos_bos_chars,\n", + ")\n", + "loader = DataLoader(\n", + " dataset, batch_size=BATCH_SIZE, num_workers=4, collate_fn=dataset.collate_fn, shuffle=False, drop_last=False\n", + ")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Generate model outputs " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import pickle\n", + "\n", + "file_idxs = []\n", + "metadata = []\n", + "losses = []\n", + "postnet_losses = []\n", + "criterion = L1LossMasked(seq_len_norm=C.seq_len_norm)\n", + "with torch.no_grad():\n", + " for data in tqdm(loader):\n", + " # setup input data\n", + " text_input = data[0]\n", + " text_lengths = data[1]\n", + " linear_input = data[3]\n", + " mel_input = data[4]\n", + " mel_lengths = data[5]\n", + " stop_targets = data[6]\n", + " item_idx = data[7]\n", + "\n", + " # dispatch data to GPU\n", + " if use_cuda:\n", + " text_input = text_input.cuda()\n", + " text_lengths = text_lengths.cuda()\n", + " mel_input = mel_input.cuda()\n", + " mel_lengths = mel_lengths.cuda()\n", + "\n", + " mask = sequence_mask(text_lengths)\n", + " mel_outputs, postnet_outputs, alignments, stop_tokens = model.forward(text_input, text_lengths, mel_input)\n", + " \n", + " # compute loss\n", + " loss = criterion(mel_outputs, mel_input, mel_lengths)\n", + " loss_postnet = criterion(postnet_outputs, mel_input, mel_lengths)\n", + " losses.append(loss.item())\n", + " postnet_losses.append(loss_postnet.item())\n", + "\n", + " # compute mel specs from linear spec if model is Tacotron\n", + " if C.model == \"Tacotron\":\n", + " mel_specs = []\n", + " postnet_outputs = postnet_outputs.data.cpu().numpy()\n", + " for b in range(postnet_outputs.shape[0]):\n", + " postnet_output = postnet_outputs[b]\n", + " mel_specs.append(torch.FloatTensor(ap.out_linear_to_mel(postnet_output.T).T).cuda())\n", + " postnet_outputs = torch.stack(mel_specs)\n", + " elif C.model == \"Tacotron2\":\n", + " postnet_outputs = postnet_outputs.detach().cpu().numpy()\n", + " alignments = alignments.detach().cpu().numpy()\n", + "\n", + " if not DRY_RUN:\n", + " for idx in range(text_input.shape[0]):\n", + " wav_file_path = item_idx[idx]\n", + " wav = ap.load_wav(wav_file_path)\n", + " file_name, wavq_path, mel_path, wav_path = set_filename(wav_file_path, OUT_PATH)\n", + " file_idxs.append(file_name)\n", + "\n", + " # quantize and save wav\n", + " if QUANTIZED_WAV:\n", + " wavq = ap.quantize(wav)\n", + " np.save(wavq_path, wavq)\n", + "\n", + " # save TTS mel\n", + " mel = postnet_outputs[idx]\n", + " mel_length = mel_lengths[idx]\n", + " mel = mel[:mel_length, :].T\n", + " np.save(mel_path, mel)\n", + "\n", + " metadata.append([wav_file_path, mel_path])\n", + "\n", + " # for wavernn\n", + " if not DRY_RUN:\n", + " pickle.dump(file_idxs, open(OUT_PATH+\"/dataset_ids.pkl\", \"wb\")) \n", + " \n", + " # for pwgan\n", + " with open(os.path.join(OUT_PATH, \"metadata.txt\"), \"w\") as f:\n", + " for data in metadata:\n", + " f.write(f\"{data[0]}|{data[1]+'.npy'}\\n\")\n", + "\n", + " print(np.mean(losses))\n", + " print(np.mean(postnet_losses))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# for pwgan\n", + "with open(os.path.join(OUT_PATH, \"metadata.txt\"), \"w\") as f:\n", + " for data in metadata:\n", + " f.write(f\"{data[0]}|{data[1]+'.npy'}\\n\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Sanity Check" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "idx = 1\n", + "ap.melspectrogram(ap.load_wav(item_idx[idx])).shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import soundfile as sf\n", + "wav, sr = sf.read(item_idx[idx])\n", + "mel_postnet = postnet_outputs[idx][:mel_lengths[idx], :]\n", + "mel_decoder = mel_outputs[idx][:mel_lengths[idx], :].detach().cpu().numpy()\n", + "mel_truth = ap.melspectrogram(wav)\n", + "print(mel_truth.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# plot posnet output\n", + "print(mel_postnet[:mel_lengths[idx], :].shape)\n", + "plot_spectrogram(mel_postnet, ap)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# plot decoder output\n", + "print(mel_decoder.shape)\n", + "plot_spectrogram(mel_decoder, ap)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# plot GT specgrogram\n", + "print(mel_truth.shape)\n", + "plot_spectrogram(mel_truth.T, ap)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# postnet, decoder diff\n", + "from matplotlib import pylab as plt\n", + "mel_diff = mel_decoder - mel_postnet\n", + "plt.figure(figsize=(16, 10))\n", + "plt.imshow(abs(mel_diff[:mel_lengths[idx],:]).T,aspect=\"auto\", origin=\"lower\");\n", + "plt.colorbar()\n", + "plt.tight_layout()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# PLOT GT SPECTROGRAM diff\n", + "from matplotlib import pylab as plt\n", + "mel_diff2 = mel_truth.T - mel_decoder\n", + "plt.figure(figsize=(16, 10))\n", + "plt.imshow(abs(mel_diff2).T,aspect=\"auto\", origin=\"lower\");\n", + "plt.colorbar()\n", + "plt.tight_layout()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# PLOT GT SPECTROGRAM diff\n", + "from matplotlib import pylab as plt\n", + "mel = postnet_outputs[idx]\n", + "mel_diff2 = mel_truth.T - mel[:mel_truth.shape[1]]\n", + "plt.figure(figsize=(16, 10))\n", + "plt.imshow(abs(mel_diff2).T,aspect=\"auto\", origin=\"lower\");\n", + "plt.colorbar()\n", + "plt.tight_layout()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "interpreter": { + "hash": "822ce188d9bce5372c4adbb11364eeb49293228c2224eb55307f4664778e7f56" + }, + "kernelspec": { + "display_name": "Python 3.9.7 64-bit ('base': conda)", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.7" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/TTS/notebooks/PlotUmapLibriTTS.ipynb b/TTS/notebooks/PlotUmapLibriTTS.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..1e29790b9ea0be914954ef8b58552b6c58cdca3d --- /dev/null +++ b/TTS/notebooks/PlotUmapLibriTTS.ipynb @@ -0,0 +1,322 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Overview\n", + "\n", + "This notebook can be used with both a single or multi- speaker corpus and allows the interactive plotting of speaker embeddings linked to underlying audio (see instructions in the repo's speaker_embedding directory)\n", + "\n", + "Depending on the directory structure used for your corpus, you may need to adjust handling of **speaker_to_utter** and **locations**." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import glob\n", + "import numpy as np\n", + "import umap\n", + "\n", + "from TTS.utils.audio import AudioProcessor\n", + "from TTS.config import load_config\n", + "\n", + "from bokeh.io import output_notebook, show\n", + "from bokeh.plotting import figure\n", + "from bokeh.models import HoverTool, ColumnDataSource, BoxZoomTool, ResetTool, OpenURL, TapTool\n", + "from bokeh.transform import factor_cmap\n", + "from bokeh.palettes import Category10" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For larger sets of speakers, you can use **Category20**, but you need to change it in the **pal** variable too\n", + "\n", + "List of Bokeh palettes here: http://docs.bokeh.org/en/1.4.0/docs/reference/palettes.html\n", + "\n", + "**NB:** if you have problems with other palettes, first see https://stackoverflow.com/questions/48333820/why-do-some-bokeh-palettes-raise-a-valueerror-when-used-in-factor-cmap" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "output_notebook()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You should also adjust all the path constants to point at the relevant locations for you locally" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "MODEL_RUN_PATH = \"/media/erogol/data_ssd/Models/libri_tts/speaker_encoder/libritts_360-half-October-31-2019_04+54PM-19d2f5f/\"\n", + "MODEL_PATH = MODEL_RUN_PATH + \"best_model.pth\"\n", + "CONFIG_PATH = MODEL_RUN_PATH + \"config.json\"\n", + "\n", + "# My single speaker locations\n", + "#EMBED_PATH = \"/home/neil/main/Projects/TTS3/embeddings/neil14/\"\n", + "#AUDIO_PATH = \"/home/neil/data/Projects/NeilTTS/neil14/wavs/\"\n", + "\n", + "# My multi speaker locations\n", + "EMBED_PATH = \"/home/erogol/Data/Libri-TTS/train-clean-360-embed_128/\"\n", + "AUDIO_PATH = \"/home/erogol/Data/Libri-TTS/train-clean-360/\"" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "!ls -1 $MODEL_RUN_PATH" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "CONFIG = load_config(CONFIG_PATH)\n", + "ap = AudioProcessor(**CONFIG['audio'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Bring in the embeddings created by **compute_embeddings.py**" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "embed_files = glob.glob(EMBED_PATH+\"/**/*.npy\", recursive=True)\n", + "print(f'Embeddings found: {len(embed_files)}')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Check that we did indeed find an embedding" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "embed_files[0]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Process the speakers\n", + "\n", + "Assumes count of **speaker_paths** corresponds to number of speakers (so a corpus in just one directory would be treated like a single speaker and the multiple directories of LibriTTS are treated as distinct speakers)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "speaker_paths = list(set([os.path.dirname(os.path.dirname(embed_file)) for embed_file in embed_files]))\n", + "speaker_to_utter = {}\n", + "for embed_file in embed_files:\n", + " speaker_path = os.path.dirname(os.path.dirname(embed_file))\n", + " try:\n", + " speaker_to_utter[speaker_path].append(embed_file)\n", + " except:\n", + " speaker_to_utter[speaker_path]=[embed_file]\n", + "print(f'Speaker count: {len(speaker_paths)}')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Set up the embeddings\n", + "\n", + "Adjust the number of speakers to select and the number of utterances from each speaker and they will be randomly sampled from the corpus" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "embeds = []\n", + "labels = []\n", + "locations = []\n", + "\n", + "# single speaker \n", + "#num_speakers = 1\n", + "#num_utters = 1000\n", + "\n", + "# multi speaker\n", + "num_speakers = 10\n", + "num_utters = 20\n", + "\n", + "\n", + "speaker_idxs = np.random.choice(range(len(speaker_paths)), num_speakers, replace=False )\n", + "\n", + "for speaker_num, speaker_idx in enumerate(speaker_idxs):\n", + " speaker_path = speaker_paths[speaker_idx]\n", + " speakers_utter = speaker_to_utter[speaker_path]\n", + " utter_idxs = np.random.randint(0, len(speakers_utter) , num_utters)\n", + " for utter_idx in utter_idxs:\n", + " embed_path = speaker_to_utter[speaker_path][utter_idx]\n", + " embed = np.load(embed_path)\n", + " embeds.append(embed)\n", + " labels.append(str(speaker_num))\n", + " locations.append(embed_path.replace(EMBED_PATH, '').replace('.npy','.wav'))\n", + "embeds = np.concatenate(embeds)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Load embeddings with UMAP" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model = umap.UMAP()\n", + "projection = model.fit_transform(embeds)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Interactively charting the data in Bokeh\n", + "\n", + "Set up various details for Bokeh to plot the data\n", + "\n", + "You can use the regular Bokeh [tools](http://docs.bokeh.org/en/1.4.0/docs/user_guide/tools.html?highlight=tools) to explore the data, with reset setting it back to normal\n", + "\n", + "Once you have started the local server (see cell below) you can then click on plotted points which will open a tab to play the audio for that point, enabling easy exploration of your corpus\n", + "\n", + "File location in the tooltip is given relative to **AUDIO_PATH**" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "source_wav_stems = ColumnDataSource(\n", + " data=dict(\n", + " x = projection.T[0].tolist(),\n", + " y = projection.T[1].tolist(),\n", + " desc=locations,\n", + " label=labels\n", + " )\n", + " )\n", + "\n", + "hover = HoverTool(\n", + " tooltips=[\n", + " (\"file\", \"@desc\"),\n", + " (\"speaker\", \"@label\"),\n", + " ]\n", + " )\n", + "\n", + "# optionally consider adding these to the tooltips if you want additional detail\n", + "# for the coordinates: (\"(x,y)\", \"($x, $y)\"),\n", + "# for the index of the embedding / wav file: (\"index\", \"$index\"),\n", + "\n", + "factors = list(set(labels))\n", + "pal_size = max(len(factors), 3)\n", + "pal = Category10[pal_size]\n", + "\n", + "p = figure(plot_width=600, plot_height=400, tools=[hover,BoxZoomTool(), ResetTool(), TapTool()])\n", + "\n", + "\n", + "p.circle('x', 'y', source=source_wav_stems, color=factor_cmap('label', palette=pal, factors=factors),)\n", + "\n", + "url = \"http://localhost:8000/@desc\"\n", + "taptool = p.select(type=TapTool)\n", + "taptool.callback = OpenURL(url=url)\n", + "\n", + "show(p)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Local server to serve wav files from corpus\n", + "\n", + "This is required so that when you click on a data point the hyperlink associated with it will be served the file locally.\n", + "\n", + "There are other ways to serve this if you prefer and you can also run the commands manually on the command line\n", + "\n", + "The server will continue to run until stopped. To stop it simply interupt the kernel (ie square button or under Kernel menu)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%cd $AUDIO_PATH\n", + "%pwd\n", + "!python -m http.server" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.4" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/TTS/notebooks/TestAttention.ipynb b/TTS/notebooks/TestAttention.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..65edf98ca4a5ac2028bd930b3ddfe54a60564d90 --- /dev/null +++ b/TTS/notebooks/TestAttention.ipynb @@ -0,0 +1,188 @@ +{ + "cells": [{ + "cell_type": "markdown", + "metadata": { + "Collapsed": "false" + }, + "source": [ + "This notebook is to test attention performance of a TTS model on a list of sentences taken from DeepVoice paper.\n", + "### Features of this notebook\n", + "- You can see visually how your model performs on each sentence and try to dicern common problems.\n", + "- At the end, final attention score would be printed showing the ultimate performace of your model. You can use this value to perform model selection.\n", + "- You can change the list of sentences byt providing a different sentence file." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "Collapsed": "false", + "scrolled": true + }, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "import os, sys\n", + "import torch \n", + "import time\n", + "import numpy as np\n", + "from matplotlib import pylab as plt\n", + "\n", + "%pylab inline\n", + "plt.rcParams[\"figure.figsize\"] = (16,5)\n", + "\n", + "import librosa\n", + "import librosa.display\n", + "\n", + "from TTS.tts.layers import *\n", + "from TTS.utils.audio import AudioProcessor\n", + "from TTS.tts.utils.generic_utils import setup_model\n", + "from TTS.tts.utils.io import load_config\n", + "from TTS.tts.utils.text import text_to_sequence\n", + "from TTS.tts.utils.synthesis import synthesis\n", + "from TTS.tts.utils.visual import plot_alignment\n", + "from TTS.tts.utils.measures import alignment_diagonal_score\n", + "\n", + "import IPython\n", + "from IPython.display import Audio\n", + "\n", + "os.environ['CUDA_VISIBLE_DEVICES']='1'\n", + "\n", + "def tts(model, text, CONFIG, use_cuda, ap):\n", + " t_1 = time.time()\n", + " # run the model\n", + " waveform, alignment, mel_spec, mel_postnet_spec, stop_tokens, inputs = synthesis(model, text, CONFIG, use_cuda, ap, speaker_id, None, False, CONFIG.enable_eos_bos_chars, True)\n", + " if CONFIG.model == \"Tacotron\" and not use_gl:\n", + " mel_postnet_spec = ap.out_linear_to_mel(mel_postnet_spec.T).T\n", + " # plotting\n", + " attn_score = alignment_diagonal_score(torch.FloatTensor(alignment).unsqueeze(0))\n", + " print(f\" > {text}\")\n", + " IPython.display.display(IPython.display.Audio(waveform, rate=ap.sample_rate))\n", + " fig = plot_alignment(alignment, fig_size=(8, 5))\n", + " IPython.display.display(fig)\n", + " #saving results\n", + " os.makedirs(OUT_FOLDER, exist_ok=True)\n", + " file_name = text[:200].replace(\" \", \"_\").replace(\".\",\"\") + \".wav\"\n", + " out_path = os.path.join(OUT_FOLDER, file_name)\n", + " ap.save_wav(waveform, out_path)\n", + " return attn_score\n", + "\n", + "# Set constants\n", + "ROOT_PATH = '/home/erogol/Models/LJSpeech/ljspeech-May-20-2020_12+29PM-1835628/'\n", + "MODEL_PATH = ROOT_PATH + '/best_model.pth'\n", + "CONFIG_PATH = ROOT_PATH + '/config.json'\n", + "OUT_FOLDER = './hard_sentences/'\n", + "CONFIG = load_config(CONFIG_PATH)\n", + "SENTENCES_PATH = 'sentences.txt'\n", + "use_cuda = True\n", + "\n", + "# Set some config fields manually for testing\n", + "# CONFIG.windowing = False\n", + "# CONFIG.prenet_dropout = False\n", + "# CONFIG.separate_stopnet = True\n", + "CONFIG.use_forward_attn = False\n", + "# CONFIG.forward_attn_mask = True\n", + "# CONFIG.stopnet = True" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "Collapsed": "false" + }, + "outputs": [], + "source": [ + "# LOAD TTS MODEL\n", + "from TTS.tts.utils.text.symbols import make_symbols, symbols, phonemes\n", + "\n", + "# multi speaker \n", + "if CONFIG.use_speaker_embedding:\n", + " speakers = json.load(open(f\"{ROOT_PATH}/speakers.json\", 'r'))\n", + " speakers_idx_to_id = {v: k for k, v in speakers.items()}\n", + "else:\n", + " speakers = []\n", + " speaker_id = None\n", + "\n", + "# if the vocabulary was passed, replace the default\n", + "if 'characters' in CONFIG.keys():\n", + " symbols, phonemes = make_symbols(**CONFIG.characters)\n", + "\n", + "# load the model\n", + "num_chars = len(phonemes) if CONFIG.use_phonemes else len(symbols)\n", + "model = setup_model(num_chars, len(speakers), CONFIG)\n", + "\n", + "# load the audio processor\n", + "ap = AudioProcessor(**CONFIG.audio) \n", + "\n", + "\n", + "# load model state\n", + "if use_cuda:\n", + " cp = torch.load(MODEL_PATH)\n", + "else:\n", + " cp = torch.load(MODEL_PATH, map_location=lambda storage, loc: storage)\n", + "\n", + "# load the model\n", + "model.load_state_dict(cp['model'])\n", + "if use_cuda:\n", + " model.cuda()\n", + "model.eval()\n", + "print(cp['step'])\n", + "print(cp['r'])\n", + "\n", + "# set model stepsize\n", + "if 'r' in cp:\n", + " model.decoder.set_r(cp['r'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "Collapsed": "false" + }, + "outputs": [], + "source": [ + "model.decoder.max_decoder_steps=3000\n", + "attn_scores = []\n", + "with open(SENTENCES_PATH, 'r') as f:\n", + " for text in f:\n", + " attn_score = tts(model, text, CONFIG, use_cuda, ap)\n", + " attn_scores.append(attn_score)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "Collapsed": "false" + }, + "outputs": [], + "source": [ + "np.mean(attn_scores)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.5" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} \ No newline at end of file diff --git a/TTS/notebooks/Tortoise.ipynb b/TTS/notebooks/Tortoise.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..788d99e0cfb5ff8c7c0db41abea31d2ebd2c9515 --- /dev/null +++ b/TTS/notebooks/Tortoise.ipynb @@ -0,0 +1,108 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "id": "4d50310e-f094-42e0-af30-1e42b13ceb95", + "metadata": {}, + "outputs": [], + "source": [ + "#@title # Setup\n", + "# Imports used through the rest of the notebook.\n", + "import torch\n", + "import torchaudio\n", + "import torch.nn as nn\n", + "import torch.nn.functional as F\n", + "\n", + "import IPython\n", + "\n", + "from TTS.tts.models.tortoise import TextToSpeech\n", + "from TTS.tts.layers.tortoise.audio_utils import load_audio, load_voice, load_voices\n", + "\n", + "# This will download all the models used by Tortoise from the HuggingFace hub.\n", + "tts = TextToSpeech()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e126c3c3-d90a-492f-b5bb-0d86587f15cc", + "metadata": {}, + "outputs": [], + "source": [ + "# This is the text that will be spoken.\n", + "text = \"Joining two modalities results in a surprising increase in generalization! What would happen if we combined them all?\" #@param {type:\"string\"}\n", + "#@markdown Show code for multiline text input\n", + "# Here's something for the poetically inclined.. (set text=)\n", + "\"\"\"\n", + "Then took the other, as just as fair,\n", + "And having perhaps the better claim,\n", + "Because it was grassy and wanted wear;\n", + "Though as for that the passing there\n", + "Had worn them really about the same,\"\"\"\n", + "\n", + "# Pick a \"preset mode\" to determine quality. Options: {\"ultra_fast\", \"fast\" (default), \"standard\", \"high_quality\"}. See docs in api.py\n", + "preset = \"fast\" #@param [\"ultra_fast\", \"fast\", \"standard\", \"high_quality\"]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "9413f553-5bd0-4820-bad4-edd7fd7d2370", + "metadata": {}, + "outputs": [], + "source": [ + "%ls ../TTS/tts/utils/assets/tortoise/voices/\n", + "import IPython\n", + "IPython.display.Audio(filename='../TTS/tts/utils/assets/tortoise/voices/lj/1.wav')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "96a98ae5-313b-40d1-9311-5a785f2c9a4e", + "metadata": {}, + "outputs": [], + "source": [ + "#@markdown Pick one of the voices from the output above\n", + "voice = 'lj' #@param {type:\"string\"}\n", + "\n", + "#@markdown Load it and send it through Tortoise.\n", + "voice_samples, conditioning_latents = load_voice(voice)\n", + "gen = tts.tts_with_preset(text, voice_samples=voice_samples, conditioning_latents=conditioning_latents, \n", + " preset=preset)\n", + "torchaudio.save('generated.wav', gen.squeeze(0).cpu(), 24000)\n", + "IPython.display.Audio('generated.wav')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "04e473e5-c489-4a78-aa11-03e89a778ed8", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.16" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/TTS/notebooks/Tutorial_1_use-pretrained-TTS.ipynb b/TTS/notebooks/Tutorial_1_use-pretrained-TTS.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..87d04c499dac7a08b20e192b2592e8af66a06cfb --- /dev/null +++ b/TTS/notebooks/Tutorial_1_use-pretrained-TTS.ipynb @@ -0,0 +1,272 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "45ea3ef5", + "metadata": { + "tags": [] + }, + "source": [ + "# Easy Inferencing with ๐Ÿธ TTS โšก\n", + "\n", + "#### You want to quicly synthesize speech using Coqui ๐Ÿธ TTS model?\n", + "\n", + "๐Ÿ’ก: Grab a pre-trained model and use it to synthesize speech using any speaker voice, including yours! โšก\n", + "\n", + "๐Ÿธ TTS comes with a list of pretrained models and speaker voices. You can even start a local demo server that you can open it on your favorite web browser and ๐Ÿ—ฃ๏ธ .\n", + "\n", + "In this notebook, we will: \n", + "```\n", + "1. List available pre-trained ๐Ÿธ TTS models\n", + "2. Run a ๐Ÿธ TTS model\n", + "3. Listen to the synthesized wave ๐Ÿ“ฃ\n", + "4. Run multispeaker ๐Ÿธ TTS model \n", + "```\n", + "So, let's jump right in!\n" + ] + }, + { + "cell_type": "markdown", + "id": "a1e5c2a5-46eb-42fd-b550-2a052546857e", + "metadata": {}, + "source": [ + "## Install ๐Ÿธ TTS โฌ‡๏ธ" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "fa2aec77", + "metadata": {}, + "outputs": [], + "source": [ + "! pip install -U pip\n", + "! pip install TTS" + ] + }, + { + "cell_type": "markdown", + "id": "8c07a273", + "metadata": {}, + "source": [ + "## โœ… List available pre-trained ๐Ÿธ TTS models\n", + "\n", + "Coqui ๐ŸธTTS comes with a list of pretrained models for different model types (ex: TTS, vocoder), languages, datasets used for training and architectures. \n", + "\n", + "You can either use your own model or the release models under ๐ŸธTTS.\n", + "\n", + "Use `tts --list_models` to find out the availble models.\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "608d203f", + "metadata": {}, + "outputs": [], + "source": [ + "! tts --list_models" + ] + }, + { + "cell_type": "markdown", + "id": "ed9dd7ab", + "metadata": {}, + "source": [ + "## โœ… Run a ๐Ÿธ TTS model\n", + "\n", + "#### **First things first**: Using a release model and default vocoder:\n", + "\n", + "You can simply copy the full model name from the list above and use it \n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "cc9e4608-16ec-4dcd-bd6b-bd10d62286f8", + "metadata": {}, + "outputs": [], + "source": [ + "!tts --text \"hello world\" \\\n", + "--model_name \"tts_models/en/ljspeech/glow-tts\" \\\n", + "--out_path output.wav\n" + ] + }, + { + "cell_type": "markdown", + "id": "0ca2cb14-1aba-400e-a219-8ce44d9410be", + "metadata": {}, + "source": [ + "## ๐Ÿ“ฃ Listen to the synthesized wave ๐Ÿ“ฃ" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5fe63ef4-9284-4461-9dda-1ca7483a8f9b", + "metadata": {}, + "outputs": [], + "source": [ + "import IPython\n", + "IPython.display.Audio(\"output.wav\")" + ] + }, + { + "cell_type": "markdown", + "id": "5e67d178-1ebe-49c7-9a47-0593251bdb96", + "metadata": {}, + "source": [ + "### **Second things second**:\n", + "\n", + "๐Ÿ”ถ A TTS model can be either trained on a single speaker voice or multispeaker voices. This training choice is directly reflected on the inference ability and the available speaker voices that can be used to synthesize speech. \n", + "\n", + "๐Ÿ”ถ If you want to run a multispeaker model from the released models list, you can first check the speaker ids using `--list_speaker_idx` flag and use this speaker voice to synthesize speech." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "87b18839-f750-4a61-bbb0-c964acaecab2", + "metadata": {}, + "outputs": [], + "source": [ + "# list the possible speaker IDs.\n", + "!tts --model_name \"tts_models/en/vctk/vits\" \\\n", + "--list_speaker_idxs \n" + ] + }, + { + "cell_type": "markdown", + "id": "c4365a9d-f922-4b14-88b0-d2b22a245b2e", + "metadata": {}, + "source": [ + "## ๐Ÿ’ฌ Synthesize speech using speaker ID ๐Ÿ’ฌ" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "52be0403-d13e-4d9b-99c2-c10b85154063", + "metadata": {}, + "outputs": [], + "source": [ + "!tts --text \"Trying out specific speaker voice\"\\\n", + "--out_path spkr-out.wav --model_name \"tts_models/en/vctk/vits\" \\\n", + "--speaker_idx \"p341\"" + ] + }, + { + "cell_type": "markdown", + "id": "894a560a-f9c8-48ce-aaa6-afdf516c01f6", + "metadata": {}, + "source": [ + "## ๐Ÿ“ฃ Listen to the synthesized speaker specific wave ๐Ÿ“ฃ" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ed485b0a-dfd5-4a7e-a571-ebf74bdfc41d", + "metadata": {}, + "outputs": [], + "source": [ + "import IPython\n", + "IPython.display.Audio(\"spkr-out.wav\")" + ] + }, + { + "cell_type": "markdown", + "id": "84636a38-097e-4dad-933b-0aeaee650e92", + "metadata": {}, + "source": [ + "๐Ÿ”ถ If you want to use an external speaker to synthesize speech, you need to supply `--speaker_wav` flag along with an external speaker encoder path and config file, as follows:" + ] + }, + { + "cell_type": "markdown", + "id": "cbdb15fa-123a-4282-a127-87b50dc70365", + "metadata": {}, + "source": [ + "First we need to get the speaker encoder model, its config and a referece `speaker_wav`" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e54f1b13-560c-4fed-bafd-e38ec9712359", + "metadata": {}, + "outputs": [], + "source": [ + "!wget https://github.com/coqui-ai/TTS/releases/download/speaker_encoder_model/config_se.json\n", + "!wget https://github.com/coqui-ai/TTS/releases/download/speaker_encoder_model/model_se.pth.tar\n", + "!wget https://github.com/coqui-ai/TTS/raw/speaker_encoder_model/tests/data/ljspeech/wavs/LJ001-0001.wav" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "6dac1912-5054-4a68-8357-6d20fd99cb10", + "metadata": {}, + "outputs": [], + "source": [ + "!tts --model_name tts_models/multilingual/multi-dataset/your_tts \\\n", + "--encoder_path model_se.pth.tar \\\n", + "--encoder_config config_se.json \\\n", + "--speaker_wav LJ001-0001.wav \\\n", + "--text \"Are we not allowed to dim the lights so people can see that a bit better?\"\\\n", + "--out_path spkr-out.wav \\\n", + "--language_idx \"en\"" + ] + }, + { + "cell_type": "markdown", + "id": "92ddce58-8aca-4f69-84c3-645ae1b12e7d", + "metadata": {}, + "source": [ + "## ๐Ÿ“ฃ Listen to the synthesized speaker specific wave ๐Ÿ“ฃ" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "cc889adc-9c71-4232-8e85-bfc8f76476f4", + "metadata": {}, + "outputs": [], + "source": [ + "import IPython\n", + "IPython.display.Audio(\"spkr-out.wav\")" + ] + }, + { + "cell_type": "markdown", + "id": "29101d01-0b01-4153-a216-5dae415a5dd6", + "metadata": {}, + "source": [ + "## ๐ŸŽ‰ Congratulations! ๐ŸŽ‰ You now know how to use a TTS model to synthesize speech! \n", + "Follow up with the next tutorials to learn more adnavced material." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.10" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/TTS/notebooks/Tutorial_2_train_your_first_TTS_model.ipynb b/TTS/notebooks/Tutorial_2_train_your_first_TTS_model.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..0f580a85b6405d35df5e14c384412a6331981755 --- /dev/null +++ b/TTS/notebooks/Tutorial_2_train_your_first_TTS_model.ipynb @@ -0,0 +1,456 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "f79d99ef", + "metadata": {}, + "source": [ + "# Train your first ๐Ÿธ TTS model ๐Ÿ’ซ\n", + "\n", + "### ๐Ÿ‘‹ Hello and welcome to Coqui (๐Ÿธ) TTS\n", + "\n", + "The goal of this notebook is to show you a **typical workflow** for **training** and **testing** a TTS model with ๐Ÿธ.\n", + "\n", + "Let's train a very small model on a very small amount of data so we can iterate quickly.\n", + "\n", + "In this notebook, we will:\n", + "\n", + "1. Download data and format it for ๐Ÿธ TTS.\n", + "2. Configure the training and testing runs.\n", + "3. Train a new model.\n", + "4. Test the model and display its performance.\n", + "\n", + "So, let's jump right in!\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "fa2aec78", + "metadata": {}, + "outputs": [], + "source": [ + "## Install Coqui TTS\n", + "! pip install -U pip\n", + "! pip install TTS" + ] + }, + { + "cell_type": "markdown", + "id": "be5fe49c", + "metadata": {}, + "source": [ + "## โœ… Data Preparation\n", + "\n", + "### **First things first**: we need some data.\n", + "\n", + "We're training a Text-to-Speech model, so we need some _text_ and we need some _speech_. Specificially, we want _transcribed speech_. The speech must be divided into audio clips and each clip needs transcription. More details about data requirements such as recording characteristics, background noise and vocabulary coverage can be found in the [๐ŸธTTS documentation](https://tts.readthedocs.io/en/latest/formatting_your_dataset.html).\n", + "\n", + "If you have a single audio file and you need to **split** it into clips. It is also important to use a lossless audio file format to prevent compression artifacts. We recommend using **wav** file format.\n", + "\n", + "The data format we will be adopting for this tutorial is taken from the widely-used **LJSpeech** dataset, where **waves** are collected under a folder:\n", + "\n", + "\n", + "/wavs
\n", + "  | - audio1.wav
\n", + "  | - audio2.wav
\n", + "  | - audio3.wav
\n", + " ...
\n", + "
\n", + "\n", + "and a **metadata.csv** file will have the audio file name in parallel to the transcript, delimited by `|`: \n", + " \n", + "\n", + "# metadata.csv
\n", + "audio1|This is my sentence.
\n", + "audio2|This is maybe my sentence.
\n", + "audio3|This is certainly my sentence.
\n", + "audio4|Let this be your sentence.
\n", + "...\n", + "
\n", + "\n", + "In the end, we should have the following **folder structure**:\n", + "\n", + "\n", + "/MyTTSDataset
\n", + " |
\n", + " | -> metadata.csv
\n", + " | -> /wavs
\n", + "  | -> audio1.wav
\n", + "  | -> audio2.wav
\n", + "  | ...
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "id": "69501a10-3b53-4e75-ae66-90221d6f2271", + "metadata": {}, + "source": [ + "๐ŸธTTS already provides tooling for the _LJSpeech_. if you use the same format, you can start training your models right away.
\n", + "\n", + "After you collect and format your dataset, you need to check two things. Whether you need a **_formatter_** and a **_text_cleaner_**.
The **_formatter_** loads the text file (created above) as a list and the **_text_cleaner_** performs a sequence of text normalization operations that converts the raw text into the spoken representation (e.g. converting numbers to text, acronyms, and symbols to the spoken format).\n", + "\n", + "If you use a different dataset format then the LJSpeech or the other public datasets that ๐ŸธTTS supports, then you need to write your own **_formatter_** and **_text_cleaner_**." + ] + }, + { + "cell_type": "markdown", + "id": "e7f226c8-4e55-48fa-937b-8415d539b17c", + "metadata": {}, + "source": [ + "## โณ๏ธ Loading your dataset\n", + "Load one of the dataset supported by ๐ŸธTTS.\n", + "\n", + "We will start by defining dataset config and setting LJSpeech as our target dataset and define its path.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b3cb0191-b8fc-4158-bd26-8423c2a8ba66", + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "\n", + "# BaseDatasetConfig: defines name, formatter and path of the dataset.\n", + "from TTS.tts.configs.shared_configs import BaseDatasetConfig\n", + "\n", + "output_path = \"tts_train_dir\"\n", + "if not os.path.exists(output_path):\n", + " os.makedirs(output_path)\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ae6b7019-3685-4b48-8917-c152e288d7e3", + "metadata": {}, + "outputs": [], + "source": [ + "# Download and extract LJSpeech dataset.\n", + "\n", + "!wget -O $output_path/LJSpeech-1.1.tar.bz2 https://data.keithito.com/data/speech/LJSpeech-1.1.tar.bz2 \n", + "!tar -xf $output_path/LJSpeech-1.1.tar.bz2 -C $output_path" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "76cd3ab5-6387-45f1-b488-24734cc1beb5", + "metadata": {}, + "outputs": [], + "source": [ + "dataset_config = BaseDatasetConfig(\n", + " formatter=\"ljspeech\", meta_file_train=\"metadata.csv\", path=os.path.join(output_path, \"LJSpeech-1.1/\")\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "ae82fd75", + "metadata": {}, + "source": [ + "## โœ… Train a new model\n", + "\n", + "Let's kick off a training run ๐Ÿš€๐Ÿš€๐Ÿš€.\n", + "\n", + "Deciding on the model architecture you'd want to use is based on your needs and available resources. Each model architecture has it's pros and cons that define the run-time efficiency and the voice quality.\n", + "We have many recipes under `TTS/recipes/` that provide a good starting point. For this tutorial, we will be using `GlowTTS`." + ] + }, + { + "cell_type": "markdown", + "id": "f5876e46-2aee-4bcf-b6b3-9e3c535c553f", + "metadata": {}, + "source": [ + "We will begin by initializing the model training configuration." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5483ca28-39d6-49f8-a18e-4fb53c50ad84", + "metadata": {}, + "outputs": [], + "source": [ + "# GlowTTSConfig: all model related values for training, validating and testing.\n", + "from TTS.tts.configs.glow_tts_config import GlowTTSConfig\n", + "config = GlowTTSConfig(\n", + " batch_size=32,\n", + " eval_batch_size=16,\n", + " num_loader_workers=4,\n", + " num_eval_loader_workers=4,\n", + " run_eval=True,\n", + " test_delay_epochs=-1,\n", + " epochs=100,\n", + " text_cleaner=\"phoneme_cleaners\",\n", + " use_phonemes=True,\n", + " phoneme_language=\"en-us\",\n", + " phoneme_cache_path=os.path.join(output_path, \"phoneme_cache\"),\n", + " print_step=25,\n", + " print_eval=False,\n", + " mixed_precision=True,\n", + " output_path=output_path,\n", + " datasets=[dataset_config],\n", + " save_step=1000,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "b93ed377-80b7-447b-bd92-106bffa777ee", + "metadata": {}, + "source": [ + "Next we will initialize the audio processor which is used for feature extraction and audio I/O." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b1b12f61-f851-4565-84dd-7640947e04ab", + "metadata": {}, + "outputs": [], + "source": [ + "from TTS.utils.audio import AudioProcessor\n", + "ap = AudioProcessor.init_from_config(config)\n", + "# Modify sample rate if for a custom audio dataset:\n", + "# ap.sample_rate = 22050\n" + ] + }, + { + "cell_type": "markdown", + "id": "1d461683-b05e-403f-815f-8007bda08c38", + "metadata": {}, + "source": [ + "Next we will initialize the tokenizer which is used to convert text to sequences of token IDs. If characters are not defined in the config, default characters are passed to the config." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "014879b7-f18d-44c0-b24a-e10f8002113a", + "metadata": {}, + "outputs": [], + "source": [ + "from TTS.tts.utils.text.tokenizer import TTSTokenizer\n", + "tokenizer, config = TTSTokenizer.init_from_config(config)" + ] + }, + { + "cell_type": "markdown", + "id": "df3016e1-9e99-4c4f-94e3-fa89231fd978", + "metadata": {}, + "source": [ + "Next we will load data samples. Each sample is a list of ```[text, audio_file_path, speaker_name]```. You can define your custom sample loader returning the list of samples." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "cadd6ada-c8eb-4f79-b8fe-6d72850af5a7", + "metadata": {}, + "outputs": [], + "source": [ + "from TTS.tts.datasets import load_tts_samples\n", + "train_samples, eval_samples = load_tts_samples(\n", + " dataset_config,\n", + " eval_split=True,\n", + " eval_split_max_size=config.eval_split_max_size,\n", + " eval_split_size=config.eval_split_size,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "db8b451e-1fe1-4aa3-b69e-ab22b925bd19", + "metadata": {}, + "source": [ + "Now we're ready to initialize the model.\n", + "\n", + "Models take a config object and a speaker manager as input. Config defines the details of the model like the number of layers, the size of the embedding, etc. Speaker manager is used by multi-speaker models." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ac2ffe3e-ad0c-443e-800c-9b076ee811b4", + "metadata": {}, + "outputs": [], + "source": [ + "from TTS.tts.models.glow_tts import GlowTTS\n", + "model = GlowTTS(config, ap, tokenizer, speaker_manager=None)" + ] + }, + { + "cell_type": "markdown", + "id": "e2832c56-889d-49a6-95b6-eb231892ecc6", + "metadata": {}, + "source": [ + "Trainer provides a generic API to train all the ๐ŸธTTS models with all its perks like mixed-precision training, distributed training, etc." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0f609945-4fe0-4d0d-b95e-11d7bfb63ebe", + "metadata": {}, + "outputs": [], + "source": [ + "from trainer import Trainer, TrainerArgs\n", + "trainer = Trainer(\n", + " TrainerArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "5b320831-dd83-429b-bb6a-473f9d49d321", + "metadata": {}, + "source": [ + "### AND... 3,2,1... START TRAINING ๐Ÿš€๐Ÿš€๐Ÿš€" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d4c07f99-3d1d-4bea-801e-9f33bbff0e9f", + "metadata": {}, + "outputs": [], + "source": [ + "trainer.fit()" + ] + }, + { + "cell_type": "markdown", + "id": "4cff0c40-2734-40a6-a905-e945a9fb3e98", + "metadata": {}, + "source": [ + "#### ๐Ÿš€ Run the Tensorboard. ๐Ÿš€\n", + "On the notebook and Tensorboard, you can monitor the progress of your model. Also Tensorboard provides certain figures and sample outputs." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5a85cd3b-1646-40ad-a6c2-49323e08eeec", + "metadata": {}, + "outputs": [], + "source": [ + "!pip install tensorboard\n", + "!tensorboard --logdir=tts_train_dir" + ] + }, + { + "cell_type": "markdown", + "id": "9f6dc959", + "metadata": {}, + "source": [ + "## โœ… Test the model\n", + "\n", + "We made it! ๐Ÿ™Œ\n", + "\n", + "Let's kick off the testing run, which displays performance metrics.\n", + "\n", + "We're committing the cardinal sin of ML ๐Ÿ˜ˆ (aka - testing on our training data) so you don't want to deploy this model into production. In this notebook we're focusing on the workflow itself, so it's forgivable ๐Ÿ˜‡\n", + "\n", + "You can see from the test output that our tiny model has overfit to the data, and basically memorized this one sentence.\n", + "\n", + "When you start training your own models, make sure your testing data doesn't include your training data ๐Ÿ˜…" + ] + }, + { + "cell_type": "markdown", + "id": "99fada7a-592f-4a09-9369-e6f3d82de3a0", + "metadata": {}, + "source": [ + "Let's get the latest saved checkpoint. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "6dd47ed5-da8e-4bf9-b524-d686630d6961", + "metadata": {}, + "outputs": [], + "source": [ + "import glob, os\n", + "output_path = \"tts_train_dir\"\n", + "ckpts = sorted([f for f in glob.glob(output_path+\"/*/*.pth\")])\n", + "configs = sorted([f for f in glob.glob(output_path+\"/*/*.json\")])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "dd42bc7a", + "metadata": {}, + "outputs": [], + "source": [ + " !tts --text \"Text for TTS\" \\\n", + " --model_path $test_ckpt \\\n", + " --config_path $test_config \\\n", + " --out_path out.wav" + ] + }, + { + "cell_type": "markdown", + "id": "81cbcb3f-d952-469b-a0d8-8941cd7af670", + "metadata": {}, + "source": [ + "## ๐Ÿ“ฃ Listen to the synthesized wave ๐Ÿ“ฃ" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e0000bd6-6763-4a10-a74d-911dd08ebcff", + "metadata": {}, + "outputs": [], + "source": [ + "import IPython\n", + "IPython.display.Audio(\"out.wav\")" + ] + }, + { + "cell_type": "markdown", + "id": "13914401-cad1-494a-b701-474e52829138", + "metadata": {}, + "source": [ + "## ๐ŸŽ‰ Congratulations! ๐ŸŽ‰ You now have trained your first TTS model! \n", + "Follow up with the next tutorials to learn more advanced material." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "950d9fc6-896f-4a2c-86fd-8fd1fcbbb3f7", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.10" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/TTS/notebooks/dataset_analysis/AnalyzeDataset.ipynb b/TTS/notebooks/dataset_analysis/AnalyzeDataset.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..4f0dbb8e40ed78530c287feadd9168ac2afc07c4 --- /dev/null +++ b/TTS/notebooks/dataset_analysis/AnalyzeDataset.ipynb @@ -0,0 +1,427 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "Collapsed": "false" + }, + "outputs": [], + "source": [ + "# TTS_PATH = \"/home/erogol/projects/\"" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "Collapsed": "false" + }, + "outputs": [], + "source": [ + "import os\n", + "import sys\n", + "import librosa\n", + "import numpy as np\n", + "import pandas as pd\n", + "from scipy.stats import norm\n", + "from tqdm import tqdm_notebook as tqdm\n", + "from multiprocessing import Pool\n", + "from matplotlib import pylab as plt\n", + "from collections import Counter\n", + "from TTS.config.shared_configs import BaseDatasetConfig\n", + "from TTS.tts.datasets import load_tts_samples\n", + "from TTS.tts.datasets.formatters import *\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "Collapsed": "false" + }, + "outputs": [], + "source": [ + "NUM_PROC = 8\n", + "DATASET_CONFIG = BaseDatasetConfig(\n", + " formatter=\"ljspeech\", meta_file_train=\"metadata.csv\", path=\"/absolute/path/to/your/dataset/\"\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def formatter(root_path, meta_file, **kwargs): # pylint: disable=unused-argument\n", + " txt_file = os.path.join(root_path, meta_file)\n", + " items = []\n", + " speaker_name = \"myspeaker\"\n", + " with open(txt_file, \"r\", encoding=\"utf-8\") as ttf:\n", + " for line in ttf:\n", + " cols = line.split(\"|\")\n", + " wav_file = os.path.join(root_path, \"wavs\", cols[0] + \".wav\") \n", + " text = cols[1]\n", + " items.append({\"text\": text, \"audio_file\": wav_file, \"speaker_name\": speaker_name, \"root_path\": root_path})\n", + " return items" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "Collapsed": "false" + }, + "outputs": [], + "source": [ + "# use your own preprocessor at this stage - TTS/datasets/proprocess.py\n", + "train_samples, eval_samples = load_tts_samples(DATASET_CONFIG, eval_split=True, formatter=formatter)\n", + "if eval_samples is not None:\n", + " items = train_samples + eval_samples\n", + "else:\n", + " items = train_samples\n", + "print(\" > Number of audio files: {}\".format(len(items)))\n", + "print(items[1])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "Collapsed": "false" + }, + "outputs": [], + "source": [ + "# check wavs if exist\n", + "wav_files = []\n", + "for item in items:\n", + " wav_file = item[\"audio_file\"].strip()\n", + " wav_files.append(wav_file)\n", + " if not os.path.exists(wav_file):\n", + " print(waf_path)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "Collapsed": "false" + }, + "outputs": [], + "source": [ + "# show duplicate items\n", + "c = Counter(wav_files)\n", + "print([item for item, count in c.items() if count > 1])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "item" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "Collapsed": "false" + }, + "outputs": [], + "source": [ + "def load_item(item):\n", + " text = item[\"text\"].strip()\n", + " file_name = item[\"audio_file\"].strip()\n", + " audio, sr = librosa.load(file_name, sr=None)\n", + " audio_len = len(audio) / sr\n", + " text_len = len(text)\n", + " return file_name, text, text_len, audio, audio_len\n", + "\n", + "# This will take a while depending on size of dataset\n", + "if NUM_PROC == 1:\n", + " data = []\n", + " for m in tqdm(items):\n", + " data += [load_item(m)]\n", + "else:\n", + " with Pool(8) as p:\n", + " data = list(tqdm(p.imap(load_item, items), total=len(items)))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "Collapsed": "false" + }, + "outputs": [], + "source": [ + "# count words in the dataset\n", + "w_count = Counter()\n", + "for item in tqdm(data):\n", + " text = item[1].lower().strip()\n", + " for word in text.split():\n", + " w_count[word] += 1\n", + "print(\" > Number of words: {}\".format(len(w_count)))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "Collapsed": "false" + }, + "outputs": [], + "source": [ + "text_vs_durs = {} # text length vs audio duration\n", + "text_len_counter = Counter() # number of sentences with the keyed length\n", + "for item in tqdm(data):\n", + " text = item[1].lower().strip()\n", + " text_len = len(text)\n", + " text_len_counter[text_len] += 1\n", + " audio_len = item[-1]\n", + " try:\n", + " text_vs_durs[text_len] += [audio_len]\n", + " except:\n", + " text_vs_durs[text_len] = [audio_len]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "Collapsed": "false" + }, + "outputs": [], + "source": [ + "# text_len vs avg_audio_len, median_audio_len, std_audio_len\n", + "text_vs_avg = {}\n", + "text_vs_median = {}\n", + "text_vs_std = {}\n", + "for key, durs in text_vs_durs.items():\n", + " text_vs_avg[key] = np.mean(durs)\n", + " text_vs_median[key] = np.median(durs)\n", + " text_vs_std[key] = np.std(durs)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "Collapsed": "false" + }, + "source": [ + "### Avg audio length per char" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "Collapsed": "false" + }, + "outputs": [], + "source": [ + "for item in data:\n", + " if item[-1] < 2:\n", + " print(item)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "Collapsed": "false" + }, + "outputs": [], + "source": [ + "sec_per_chars = []\n", + "for item in data:\n", + " text = item[1]\n", + " dur = item[-1]\n", + " sec_per_char = dur / len(text)\n", + " sec_per_chars.append(sec_per_char)\n", + "# sec_per_char /= len(data)\n", + "# print(sec_per_char)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "Collapsed": "false" + }, + "outputs": [], + "source": [ + "mean = np.mean(sec_per_chars)\n", + "std = np.std(sec_per_chars)\n", + "print(mean)\n", + "print(std)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "Collapsed": "false" + }, + "outputs": [], + "source": [ + "dist = norm(mean, std)\n", + "\n", + "# find irregular instances long or short voice durations\n", + "for item in data:\n", + " text = item[1]\n", + " dur = item[-1]\n", + " sec_per_char = dur / len(text)\n", + " pdf =norm.pdf(sec_per_char)\n", + " if pdf < 0.39:\n", + " print(item)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "Collapsed": "false" + }, + "source": [ + "### Plot Dataset Statistics" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "Collapsed": "false" + }, + "outputs": [], + "source": [ + "plt.title(\"text length vs mean audio duration\")\n", + "plt.scatter(list(text_vs_avg.keys()), list(text_vs_avg.values()))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "Collapsed": "false" + }, + "outputs": [], + "source": [ + "plt.title(\"text length vs median audio duration\")\n", + "plt.scatter(list(text_vs_median.keys()), list(text_vs_median.values()))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "Collapsed": "false" + }, + "outputs": [], + "source": [ + "plt.title(\"text length vs STD\")\n", + "plt.scatter(list(text_vs_std.keys()), list(text_vs_std.values()))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "Collapsed": "false" + }, + "outputs": [], + "source": [ + "plt.title(\"text length vs # instances\")\n", + "plt.scatter(list(text_len_counter.keys()), list(text_len_counter.values()))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "Collapsed": "false" + }, + "source": [ + "### Check words frequencies" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "Collapsed": "false" + }, + "outputs": [], + "source": [ + "w_count_df = pd.DataFrame.from_dict(w_count, orient='index')\n", + "w_count_df.sort_values(0, ascending=False, inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "Collapsed": "false", + "scrolled": true + }, + "outputs": [], + "source": [ + "w_count_df" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "Collapsed": "false" + }, + "outputs": [], + "source": [ + "# check a certain word\n", + "w_count_df.at['minute', 0]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "Collapsed": "false" + }, + "outputs": [], + "source": [ + "# fequency bar plot - it takes time!!\n", + "w_count_df.plot.bar()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.12" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/TTS/notebooks/dataset_analysis/CheckDatasetSNR.ipynb b/TTS/notebooks/dataset_analysis/CheckDatasetSNR.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..18c48d0bd181830fe096852dfdfe30cba1bc47b4 --- /dev/null +++ b/TTS/notebooks/dataset_analysis/CheckDatasetSNR.ipynb @@ -0,0 +1,210 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This notebook computes the average SNR a given Voice Dataset. If the SNR is too low, that might reduce the performance or prevent model to learn. SNR paper can be seen here: https://www.cs.cmu.edu/~robust/Papers/KimSternIS08.pdf\n", + "\n", + "To use this notebook, you need:\n", + "- WADA SNR estimation: http://www.cs.cmu.edu/~robust/archive/algorithms/WADA_SNR_IS_2008/\n", + " 1. extract in the same folder as this notebook\n", + " 2. under MacOS you'll have to rebuild the executable. In the build folder: 1) remove existing .o files and 2) run make\n", + "\n", + "\n", + "- FFMPEG: ```sudo apt-get install ffmpeg ``` \n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import glob\n", + "import subprocess\n", + "import IPython\n", + "import soundfile as sf\n", + "import numpy as np\n", + "from tqdm import tqdm\n", + "from multiprocessing import Pool\n", + "from matplotlib import pylab as plt\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Set the meta parameters\n", + "DATA_PATH = \"/home/erogol/Data/m-ai-labs/de_DE/by_book/female/eva_k/\"\n", + "NUM_PROC = 1\n", + "CURRENT_PATH = os.getcwd()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "def compute_file_snr(file_path):\n", + " \"\"\" Convert given file to required format with FFMPEG and process with WADA.\"\"\"\n", + " _, sr = sf.read(file_path)\n", + " new_file = file_path.replace(\".wav\", \"_tmp.wav\")\n", + " if sr != 16000:\n", + " command = f'ffmpeg -i \"{file_path}\" -ac 1 -acodec pcm_s16le -y -ar 16000 \"{new_file}\"'\n", + " else:\n", + " command = f'cp \"{file_path}\" \"{new_file}\"'\n", + " os.system(command)\n", + " command = [f'\"{CURRENT_PATH}/WadaSNR/Exe/WADASNR\"', f'-i \"{new_file}\"', f'-t \"{CURRENT_PATH}/WadaSNR/Exe/Alpha0.400000.txt\"', '-ifmt mswav']\n", + " output = subprocess.check_output(\" \".join(command), shell=True)\n", + " try:\n", + " output = float(output.split()[-3].decode(\"utf-8\"))\n", + " except:\n", + " raise RuntimeError(\" \".join(command))\n", + " os.system(f'rm \"{new_file}\"')\n", + " return output, file_path\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "wav_file = \"/home/erogol/Data/LJSpeech-1.1/wavs/LJ001-0001.wav\"\n", + "output = compute_file_snr(wav_file)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "wav_files = glob.glob(f\"{DATA_PATH}/**/*.wav\", recursive=True)\n", + "print(f\" > Number of wav files {len(wav_files)}\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "if NUM_PROC == 1:\n", + " file_snrs = [None] * len(wav_files) \n", + " for idx, wav_file in tqdm(enumerate(wav_files)):\n", + " tup = compute_file_snr(wav_file)\n", + " file_snrs[idx] = tup\n", + "else:\n", + " with Pool(NUM_PROC) as pool:\n", + " file_snrs = list(tqdm(pool.imap(compute_file_snr, wav_files), total=len(wav_files)))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "snrs = [tup[0] for tup in file_snrs]\n", + "\n", + "error_idxs = np.where(np.isnan(snrs) == True)[0]\n", + "error_files = [wav_files[idx] for idx in error_idxs]\n", + "\n", + "file_snrs = [i for j, i in enumerate(file_snrs) if j not in error_idxs]\n", + "file_names = [tup[1] for tup in file_snrs]\n", + "snrs = [tup[0] for tup in file_snrs]\n", + "file_idxs = np.argsort(snrs)\n", + "\n", + "\n", + "print(f\" > Average SNR of the dataset:{np.mean(snrs)}\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def output_snr_with_audio(idx):\n", + " file_idx = file_idxs[idx]\n", + " file_name = file_names[file_idx]\n", + " wav, sr = sf.read(file_name)\n", + " # multi channel to single channel\n", + " if len(wav.shape) == 2:\n", + " wav = wav[:, 0]\n", + " print(f\" > {file_name} - snr:{snrs[file_idx]}\")\n", + " IPython.display.display(IPython.display.Audio(wav, rate=sr))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# find worse SNR files\n", + "N = 10 # number of files to fetch\n", + "for i in range(N):\n", + " output_snr_with_audio(i)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# find best recordings\n", + "N = 10 # number of files to fetch\n", + "for i in range(N):\n", + " output_snr_with_audio(-i-1)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.hist(snrs, bins=100)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.5" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/TTS/notebooks/dataset_analysis/CheckPitch.ipynb b/TTS/notebooks/dataset_analysis/CheckPitch.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..72afbc64a17e2a46d1d2d5336990f01eb620ca20 --- /dev/null +++ b/TTS/notebooks/dataset_analysis/CheckPitch.ipynb @@ -0,0 +1,179 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "source": [ + "%load_ext autoreload\n", + "%autoreload 2" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 9, + "source": [ + "import numpy as np\n", + "import glob\n", + "from TTS.utils.audio import AudioProcessor\n", + "from TTS.config.shared_configs import BaseAudioConfig\n", + "from TTS.tts.utils.visual import plot_pitch" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 13, + "source": [ + "pitch_path = \"/home/ubuntu/TTS/recipes/ljspeech/fast_pitch/f0_cache\"\n", + "wav_path = \"/home/ubuntu/TTS/recipes/ljspeech/LJSpeech-1.1/wavs\"\n", + "wav_files = glob.glob(\"/home/ubuntu/TTS/recipes/ljspeech/LJSpeech-1.1/wavs/*.wav\")\n", + "print(len(wav_files))" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "13100\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 20, + "source": [ + "ap = AudioProcessor(**BaseAudioConfig( sample_rate=22050,\n", + " do_trim_silence=True,\n", + " trim_db=60.0,\n", + " signal_norm=False,\n", + " mel_fmin=0.0,\n", + " mel_fmax=8000,\n", + " spec_gain=1.0,\n", + " log_func=\"np.log\",\n", + " ref_level_db=20,\n", + " preemphasis=0.0,))" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + " > Setting up Audio Processor...\n", + " | > sample_rate:22050\n", + " | > resample:False\n", + " | > num_mels:80\n", + " | > log_func:np.log\n", + " | > min_level_db:-100\n", + " | > frame_shift_ms:None\n", + " | > frame_length_ms:None\n", + " | > ref_level_db:20\n", + " | > fft_size:1024\n", + " | > power:1.5\n", + " | > preemphasis:0.0\n", + " | > griffin_lim_iters:60\n", + " | > signal_norm:False\n", + " | > symmetric_norm:True\n", + " | > mel_fmin:0\n", + " | > mel_fmax:8000\n", + " | > spec_gain:1.0\n", + " | > stft_pad_mode:reflect\n", + " | > max_norm:4.0\n", + " | > clip_norm:True\n", + " | > do_trim_silence:True\n", + " | > trim_db:60.0\n", + " | > do_sound_norm:False\n", + " | > do_amp_to_db_linear:True\n", + " | > do_amp_to_db_mel:True\n", + " | > stats_path:None\n", + " | > base:2.718281828459045\n", + " | > hop_length:256\n", + " | > win_length:1024\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 15, + "source": [ + "pitch_files = [wf.replace(\".wav\", \"_pitch.npy\").replace(wav_path, pitch_path) for wf in wav_files]" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 30, + "source": [ + "idx = 100\n", + "# wav_file = wav_files[idx]\n", + "# pitch_file = pitch_files[idx]\n", + "wav_file = \"/home/ubuntu/TTS/recipes/ljspeech/fast_pitch/../LJSpeech-1.1/wavs/LJ011-0097.wav\"\n", + "pitch_file = \"/home/ubuntu/TTS/recipes/ljspeech/fast_pitch/f0_cache/LJ011-0097_pitch.npy\"\n", + "pitch = np.load(pitch_file)\n", + "wav = ap.load_wav(wav_file)\n", + "spec = ap.melspectrogram(wav)" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 31, + "source": [ + "plot_pitch(pitch, spec.T)" + ], + "outputs": [ + { + "output_type": "execute_result", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABuIAAAJNCAYAAADEcGOGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd5gkR2E3/m91mLB570465ZwTp3zKIAkQIEQQRoAJNmAZjAMGB2z8w/b7mtcBMMY2GJNFkEAEESURhFBEOed0p3j5Nk/s7vr9cSvp9ro29HdnZ3dmvp/n0SOpZ2qrprq6urqqq8pYayEiIiIiIiIiIiIiIiIijeUtdgJERERERERERERERERE2pEG4kREREREREREREREREQWgAbiRERERERERERERERERBaABuJEREREREREREREREREFoAG4kREREREREREREREREQWgAbiRERERERERERERERERBZAsNgJmCtjjPX8sClxWdOUaObN2ObFxeYJk0bbKsPDTcx/tEKZbGZ+tAj6Gk2YQO17AmzIXQAeewKI6BK2kmyF08amsQV+WzPvowB5fyOLludRFQk84sQ1+xZlyRhboEgiZgpJs39YK2Rks7VpnjS7jqS1SjrbFVElt8zzHoNtfrZxe4tPYyv8uDZ+UDdN/G3NbpP7RKAmn2rDNOWb3iZc+mWrre83pFZo3zWzX77p99927kumfhuXIYmNrLWtd4W3zECc54c47i3/nDlcTHTgJrnMQQAA9W6uhJuYiy83RnSWcf1yiMkxUC/KHmZ8Ty4fq8u4H2diLr6u9dnDsee6NsCFi/NchcakMyhx+RiUqGDw6tnDJGSNx96YuzZwZbL/weHMYUyVuNgAwCPvzDFZmRAe/KtBKtzRBz1Jhcv52S+A+zbsSsVVGstT4YxPNlbGs1fm4VbmSRXID5N1wkT2MH6Vyw+/RgVDUOHi23hs9jzx9x2n4jplrzVUuFW9T2cOs1MwSsUVkwszPFZZSYXbUu/OHKbHrzYtLgC47qn9M4cpjxSouFDj8t/UyZcjiHBetbltayaN28JlD8PWP6yglL3eKgyRdStdJ3NtC7+cPZxfIdtNZOehVyMKZUK2tcg0WrJNWF2RvQ7acBz3cBn1kI1yMlg4lj1PctwtEYWt3Pnu2pi9LAfjRKUFwCtz142pc5WyYTr5a9xvg8fdE22R6Dxir222Soi5/E8KxG8ju0TZMsJaf/qyzGEm9iD7VsgiudNd2U94bozLx3CUa5QEG8lngP7s7eTaTkUqrqGDuA7eeg8RiLzX0M+kE1yEIdEmZJ9/a91cpRARp5vpfwaAkMzHro3cxZ3bRHR4sPcodtCbrcur2esgU+Get3/+6CfKVMBF1nIjhyIiIiIiIiIiIiIiIiKtQANxIiIiIiIiIiIiIiIiIgtAA3EiIiIiIiIiIiIiIiIiC0ADcSIiIiIiIiIiIiIiIiILQANxIiIiIiIiIiIiIiIiIgsgWOwEZBHnTOYwSZg9nqiQPR4AiLqoYDAxGS7Jnk4TWyquuMjliVfPHibJcWk0XDAqjQBgiWHs3DD524hzDQARed5Mkj2MX6Gigl/l8sSvcvExvIhLY2Eo4iI0xHlLiJMGwOZzVDjkmcqVSyN8Lv9zPle59gbZC9ey7hIVV63mU+Fswr1Hk+Sz50lcJN/ZGeLqHwZTHwNAwmU/6mTdaomynMtx9Ug3UY4BIE/cFAd8rvxXLFGPAEjQvLJVSrg60icbJSv7xzKHeXI8T8VFNpsA8rqxxC2AaY8AgCXTaGpkOCKdHhsXeeKYdppXZ9vkXDjrcdc2c5+KyfaPV+cKpR9k/21+iav/kxx3AZg6127Kb81+v8mNcvV/1EMFQ9xFVibEe8t+hSvH9S4uXHl59i6dIhUTEDDPKABMzJVJr5S9ovTq5HXTQ3bmMM9gbD4mZMdRM5GXGlv/2BzXpRkViDBF7t7mkb2u9e7s9Q/bRrAe15b0KuR1QwhHuYZTfpg8AcTzNvnYAPbRhu1L9omsZONi+uQBICb65U2Z7W+lgsEj+7cMEy7iOq7pNjnbT8hoZlxLgGbEiYiIiIiIiIiIiIiIiCwADcSJiIiIiIiIiIiIiIiILAANxImIiIiIiIiIiIiIiIgsAA3EiYiIiIiIiIiIiIiIiCwADcSJiIiIiIiIiIiIiIiILAANxImIiIiIiIiIiIiIiIgsgGCxE7DQ6j0mc5iowMVlfTJc9iQCAOJ89jBenYus3kMFA2z2IFGRiyoJicgAmIjLE9vEYeygxP22cJyLLyTiKy/jMsRwPw1hKckcJs5z59qvU8Hgl2MqnKlF2QOFza3OzUQleyCPLCNj3G97bryfCrdL92jmMF1hjYqLFdfJCqia/UbF3jeY+h8ATJw9YBKSaSQT6ZF1AohkToxxjZLhOncz3VzvzRxmPObSWCcbTjF5A+4Lstdbo2SjcGutiwpXj7PniU248h+McvnvEbcoAED22zaCEvfb2GvUEGncFjB7kCTHRRWOk5VrCzAJ99v8SvYT59W4k+1VyQvAy15IqPYggKDEtUmsIZ+JCtnbaey15pe5NJqIu2/41ezxBWUqKoQTXPnPjRGZSV5rLKZtty1g9vyPl2dvxwCAibhCaSrEDcdy+WGL5I2D5RPXG3muTYl4tgSAmMsTSzxe2pArIwlZt0aF7OHCCSoqJAGXxrgrpML5o9XMYUzC5X//YyUqXNSd/bfRdR0pKnJteaYPLihzbZLCZioYou7sF6lXZ9t2XL9duJUrW4iyx2fqZPuTvN+YmGyoEdepbXJf5mLTjDgRERERERERERERERGRBaCBOBEREREREREREREREZEFoIE4ERERERERERERERERkQWggTgRERERERERERERERGRBaCBOBEREREREREREREREZEFECx2ArLwIps5TDCRPR6/kj0MAHh1Lpxf5cIVhuLMYWq93NirXzVUuCSXPVxtIPt5BkAPKychF5/1uDxhBGUujWGJCxcT5y0JqagAcPlo/ezhrGHPGZmPea5QBrnsVbOpcBWQibLXIwAAS+RJ4FNR+RUuHydqXKHcaHozhxkqFam46mN5Kpw/yuWlV89+DQRj3HUTlKlg8CIiDFlH5sYTKpzhgsGrZS/L9Tp3rp8eH6TC9QS1zGF6A67hVCAbTqNRgQoXmuz1XTXhmsqViKt/Jqq5zGHMBFdG2PYPyHspc7ot99MQk21Cpv4BuPrOr3L5zz6nhKXsFVcSkuc6Jn9bmatcvTh7OKYduS0cV7gMkca4K3t9AAB+matb4y6yMU/UCV6NKyNeja1/uHDhWPYwha1cOe55husU8OrZ721sOfaqZCVJ1glMOAMu/61HXtvE842ZIBvJ5HkD+dtskD2czXM3btvFte1Q58ok0wfnkc+kbL3FNK8NeakFJbZPgAtGIdufJuLqBL+UvWx5FbI8jhAd1wDMbgNUOBtmL8umTj4Ak8LR7M+kJiHbFmS7yYyVqHAIsz9f2gLXJrQhWSf7ZH/TOHF/Y/oWW5hmxImIiIiIiIiIiIiIiIgsgJaaESciIiLz5yUJ9t20CQevfw4HrV8Pawx+dPSxWLvTToudNBERERERERERkbaigTgREZE21lsu49Bnn8Mh69bhsGe2/fug9etQiKYunfH7112L3/nAn+DRXXZdpJSKiIiIiIiIiIi0Hw3EiYiItAGTJNhn8xYc8ty2wbZDn3sOhz73HHYfGp5T+J5aFX//o8vw9gvfT6/BLyIiIiIiIiIiIlNpIE5ERKTFnf7gQ/i7H/0YB2zcOK+/s/qJx3HGww/hmkMObVDKREREREREREREOpu32AkQERERkrV4/6+uwle+9OV5D8I976+u+Cm8JGnI3xIREREREREREel0LTUjLqjYzGH8WvZ4TJI9HgAIylzHZW4rkUgA4TNbMoep77mciisucEVlZL9c5jBeRC6JVuGCeXUuvoCIz4upqJAf4cpW9yPZywgATBycvZwEFS4fPa74w6tnv05rvWTZIpfp66py583miOvNcvWWqdS5cPVo9i/tiKxboz7uwlnZM06FK/jZ82Ssmr2uAwCQ9Y9fNuiqVvEvP/g2XnXfPdTfGC524anB5TjquaenHD94/Xq86be34werTgAAGHJMLurmwsWF7HlS2MKVrTjH5b/1qWDwmMvNcL9tvJqnwj0+uiJzmO6wSsV16rLHqXCDwQQV7rHSysxhtlS5grx+opcKV61nr/+tz5URsMHIcN4E8f4fedtOQi4cXd91ZQ/D1j858sQx7Wuy+oEh27txnntHNDbZw/lkG40tkzYkbhxku8kGXD6aiMsTppwwz+gAf/9ly2RhKPuPK2wl2sgA/AoXztSz/zjrcwXZxGSlwGJuG2w5Trj8T7qzt7cMe43WuDQi4i4Ar5Q9L63PXaSmyj2TWp/LS6ZN7tXI/g7up8GLsl9vbF9mOMJ1pnklrjJn+juifu7Zxi+RdfJE9ucbto60m7dS4XIxd21HKwcyhzExWbcS9ygAsHmiMc/W/2Q420d2eBB9aaZCNpwMd93Q91LifmMDsnHXolpqIE5ERESAPbduwee++VUcsmHdrN+NjcHaFTvhoV12xSMrdsdDK3fDQ7vshg29/QCAi7/6XzjmmbVTwvzp1Vfg8sNXoRKSA4wiIiIiIiIiIiICQANxIiIiLeXUBx/BZ7/4LQyUy87PH9xlN9y6z754aJfd8NCuu+HRnXdBJbdtQM2vpt/k/MTZr8UlX/uvKcd2GRvBO26+Dl889azG/wAREREREREREZEOooE4ERGRVmAtLvzVtfjIZZfDn2ZtuC+e9lJ86uWvRpxhWZg799oXvzjkSLzioXunHL/whqvw3WNOxEiuZ17JFhERERERERER6WTcgsoiIiLSNIVaDf/5lUvw0R/8zDkIVw5DfPCCt+PfznltpkG45336zNcg2mGPnd5qBe+/7pd0mkVEREREREREREQDcSIiIkvaHlu24gef+Bxed9tdzs+fHlyGCy78E/zsqKPpONas2BnfPWZ16vhbb70Rewxtof+uiIiIiIiIiIhIp9NAnIiIyBJ18kOP4Sf//J84/JnnnJ/fuN8BOP/9f4YHd9t93nF99oxXYCLMTTmWS2J88JrL5/23RUREREREREREOlVL7REXlJPMYerd2ZfoSnyTOQwAeHX3nj2zCYZLVLhkeCR7XMU8FReWk3sEmdzs39mBJYeHLVuaIy5YzGQlV0QQF7gymfQWqHAmyZ5Qk/3ynFe4Wk/2glJZxuWjX6GCobiFK5Qmyp4pHsKmxQUANuzKHoasW0GWkcSS1w1RCXnkT4M/zbVmLd591fX46PcuR5C4M+DLp56BT7zyNdmWopzh0t7c3YevnvRS/PG1v5hy/DUP3Imvrj4D9+2219zjAX3aENSyh4mz32oAACbmTlxQ5Spzr5o9PjNdGZnFsiLXthgsZA/HXmu/2XIQFS7ncTfuLZXuzGGGS0UqrrEJ7v4bT2Svy4PR7G1dAPCJ8gjw90S/mj1MOEE2nEgBd9lQ/Br53FDlatfcSPbrJhivU3Fhmn1MZxWTdWst+29LcuSDA9uWIdiAfCgyXBqtz8VnmPxns5+oRwCAvG1Q6YyI/gcACCrscwMRH3mNerWYCseUEQAw1ezhbJFsFCbkdUNcp0meO9f+CHfeTEQ0rgHAy162bJ4r/wm4dhPLr2TPy6BC9hOS2c/0yXjkMwpb/8PjwkW92TvTKsu4azsocGWy+MRE5jAm4urIaHSUCgcyXEBsZWELXP6zbRlTJdugBDqN5L3N5oi+u4Arx7SY7M0h2heGjatFaUaciIjIEpKv1fHvX70Uf3/pT52DcJUwwId/5234l1efR+0HN5Ovrn4pNnX3po7/5VU/4TtWRUREREREREREOpgG4kRERJaI4x9dg8v+9XM4/6Y7nJ8/O9iP8//qj/Djo49dkPgn8gX89xmvTB0/8cnHcfrjDy5InCIiIiIiIiIiIu1MA3EiIiKL7OBn1uEr//VVfO8Tn8fhT7v3g/vtQfvhtR/9U9y39/z3g5vJ91ediDXLdkod/4urfgpvmmUyRURERERERERExE0DcSIiIotkj81b8e9f+Q6u/L+fwVn3PjTt975y5il4+wffiy195H6dGUS+j0+d9ZrU8YM2rcfr77ltweMXERERERERERFpJ+Q2ySIiIsIaGCnh3d+5AW/62R3Iz7CpcyUI8NG3vwHfO/m4JqYO+NXBR+KOPfbBMc+snXL8T6+5ApcfvgqVkNusWUREREREREREpNNoRpyIiEiTFMs1vPeS6/Gj93wOv/ujW2cchHtot13wO3/1vqYPwgEAjMEnzn5t6vAuYyN45y3XNj89IiIiIiIiIiIiLaqlZsTF+ezjhgnxC6O8yR4IgBf5VLh8yIXz+vsyh6kv55Y1i7q5ouJXs4cJJrj8r+YtFa7eN31H+ExMnP28JZuoqGA9Lk9qy4tcuJ7svy0OuTSamDtvlniNgKkPAMCQk38SMk+8KPs+XN5omYoLAVf/2CD7CTDlGhWXV+PeGdk00U2F687VM4epzVL/B/UYb/rFHfjDS6/DiuGJGb/7zLIBfOq8V+KHJx6NxPMA1yVCbtXmZzgF96zcF7886Ei8/JF7pxz/gxt+je8fsRrDXTPfTzzudMOvZK8TmPoAAMBdooDl6q2EuE+F+YiKqzskbsAAVuRmLp8uCZmRz5X6qXDPjnPhIuK+HVu2kJAMUf4D8j6avaqbjI/Lk5gIZsj8N9xlA5NweekReRlUuYo8N8z9uIQ4b7V+rgHkRWw+cnli89mvbWu4suWPcXUrfCI+9l6T4xq8TNsOAFDJHsQjr1HLNVtR6+LCMQ0FL+Ly0a9y5y0cyV4B+VXu+Rfkc5shnm0AAMQzsKmRhSvm0ugRdUmS5861qbD1D/m8x/RTkafaVMkHB7KeNEw62a2yuSQiHM8eYWEzUSGDv26SYsjFR+RJOMalkW2T1Fdm728NyDaCv3JnKhwGsqcRAOKefOYwdD1Otrcs0W4y7L2NbFtQdSRA1SWWbNuZOpknJNtVaGp8railBuJERERaiUkszrn+fvzJt36DPdcPzfjdrd1d+K9Xn4VvnnESauHSuD3/x+mvwcsevR+BfbG12Fur4H03/hL/cvYbFjFlIiIiIiIiIiIirWFp9PSJiIi0maMefgYf/fwVOOyJ9TN+r5QL8aWzT8cXXnE6xorcLNaFsnb5zvjeS1bjLXfdOOX4W+68Ed887nQ8M7B8kVImIiIiIiIiIiLSGrRHnIiISIPt+8xmfPVvvz7jIFzd93DRS0/G6f/0EXzqda9ccoNwz/ufU16BUjh1ebIwifFn116+SCkSERERERERERFpHRqIExERabA3X3E7ctH063FfftrheN1n34+PvfX12NTf28SUZbe5pw9fOeFlqeOvfvBOHLHuqUVIkYiIiIiIiIiISOvQQJyIiEiDnXb7Y87jN6zaD2/+9/fir//ijXh612VNThXvohNeis3d6QHDD//mJ/Qm6SIiIiIiIiIiIp1AA3EiIiINtNdzW7D3uq1TjsWewR/84+/iff/4u3hw/10XKWW8Ui6Pz57yytTxE556HKc98eAipEhERERERERERKQ1BIudgCzqRZM5TK03e5i4kD0MAERdPhWu2j9IhbMme7jaAPfbLBcMXj17GL/KxeVXyN8WcePRJmLKFhUVkhI348R6XJ6YJHt8fo1LoxdRwagySZctMlwccvmfhNnLpBdw9Y8NuPJvvezhjM/FlXRPv8TjTPbuH6LCDebKmcM84S1/4b9feW96YOqBQ3fFI6fsgmUoTTk+0ctVClGFPG/EXd8k2/797dNOwNvvuAb7b9405fMPXftTXL3qYCQ7lAm2Tk6Y64aclMfkBwDUernrjUlnVOfimqjnqXAbvZ7MYRKykfDsWD8VLoq58h8G2esSsvkDm5AhmeJPlmNDXjdxgbzf17P/ODNORUWfuDhPBiRmBic+2W5l23bEaWPagwAQDleocHSbhAjn1bm2hUkSLlypljlM0sO1ETyijQYACVm2bJ64T5H1D/vcwMbnZ28SIixxZcSvkOEmiAduklfjTkDSzbVJEBF5wtYj7A2fwN5/k/4uKpxH1D8sQ9atNJ9rJydE2ynJkSfOcIWrtHP231bv7qbi6l0zQYVj79v+WPZ2QrCZq3/ifm4f9rgrzB6mh6vrwiLZUVjj6n+vRJRJsk2YdJH1P8FUyI67kHyYIttbqGcvyxbZyyMAYIbtUmZEtnfB9PmR5bhVaUaciIhIA62++YnUsZtO2HcRUtJYke/jU698Ter4QRvX46wH71+EFImIiIiIiIiIiGxjjCkYY24xxtxtjLnfGPOPk8f3NcbcbIx5zBjzHWNMbvJ4fvL/H5v8fJ+FSpsG4kRERBqkUK5j1T3PpI7f3AYDcQDwy8OOwO177ZM6/rs339D8xIiIiIiIiIiIiLyoCuBMa+1LAKwCcI4xZjWAfwXwaWvtAQCGALxn8vvvATA0efzTk99bEBqIExERaZBj7noKuR2WZNmyrBuPHrDzIqWowYzBf5/1itThUx57FPtu2rgICRIREREREREREQHsNs9vchBO/mMBnAnge5PHLwLw+sn/ft3k/2Py87OMIdcVnoUG4kRERBpk9c1rUsduPn4fem+ApeiG/Q/EmuUrUsffestvFyE1IiIiIiIiIiIi2xhjfGPMXQA2AvglgMcBDFtrn9+k7xkAu0/+9+4AngaAyc9HACxfiHRpIE5ERKQRrMUJt6YH4m46cb9FSMzCsZ6Hi088OXX8/NtvQbFGbpAsIiIiIiIiIiIyu8AYc9t2/1y4/YfW2thauwrAHgBOAHDIYiRyR8FiJyAL62WfUWCD7GGSXOYgAIBaHxcO4GZK+DUikKWigiHDUXFFs3+nodg8iWf/zo6SkIur3sWVkSRo3iVeGE6ocOEYkZEsQ54AUlDmCpeJiLyMyHwkZ2oZmz2+pMBVrv4wV443l3uocIzAS7D32i3YdcPolOOxZ3DXcXsi8KY5p2Tlan2ybCWNmZn3g2OPx4d+eQWK9foLx/oqFZx795347vGr5/W3LfOKUItMOEzC7OctGePqrfU9vVS4apz9eivVuTSWa1y4aoULlxDlP6lz76z5ea5ONmH2+p9pjwDktQYgGOcuuKCcPYxXJ+tI8t4WTnDx5Uezn7egxJ24JMedOJNk/22WrFvjbu5+zzy3AYBXzZ6XzHMlACRFrv7xLJH/Oa79k4RkGalzZdKrZQ8XVNg2MvncTD5f+kQdFJS5ZyKvxoUzRNmKerhrNBrIU+HY522vTtStWye4yOpcIbE9xexhfPL5K+Yykn0G86r12b/UKIHfvLjAtZ08sv5h22kxcbnRaSSuNYDvJ7Qhcb497t5GxQXueqPbTTv1cwGJ+n9bhNnDsW0EGnG+k94uLqqJChXOsHVkQjzvkfcoliXvG6ac/cVsm6P7aSNr7XGz/n1rh40xVwM4CcCAMSaYnPW2B4BnJ7/2LIA9ATxjjAkA9APYwiZsJpoRJyIi0gAnOJalvPfI3THRQ3ZaLGGjxS789KijU8ffftMN/AOBiIiIiIiIiIgIyRizkzFmYPK/iwBeDuBBAFcDeNPk194F4EeT//3jyf/H5Oe/tnZhOrY0ECciItIAJ968NnXslhP3aXo6muWbq09JHTts3XNY9fRTi5AaERERERERERHpcLsCuNoYcw+AWwH80lr7UwB/DeBDxpjHsG0PuC9Pfv/LAJZPHv8QgI8sVMJaamlKERGRpahroooj7302dfyWE/ZdhNQ0xwO774G79twrNfD2uzfdgLv22nuRUiUiIiIiIiIiIp3IWnsPgNQSTtbaJ7Btv7gdj1cA/E4TkqYZcSIiIvN1zO1PIYinrvW9cacerNl3+SKlqDm+dWJ6Vtyr770Ly8bHFyE1IiIiIiIiIiIiS48G4kRERObphFvWpo7dcuK+gCF3bG4Rlx/5Emztmropci6O8abbb1mkFImIiIiIiIiIiCwtGogTERGZD2tx4s1rUodvPrF9l6V8Xi0M8b3jTkwdf8stv4WXJI4QIiIiIiIiIiIinWVB94gzxhwM4DvbHdoPwMcAfH3y+D4A1gJ4s7V2aPY/mD0N1YHsYeK8zR4IQJKngiEJufj8cvYMyY1yszO4FAJR1+zfScXlc3HF3WSnLxnMEOFisoxQhR9AHHGxBRPZz7hX50pJrY874XEue56wafTrVDD4Na5wGSaZXnNnXtkccfsgZ4f5VSoYNo70UOGGSsVM3z94zXqs2DIx5VjN9/G9nY5B6amZL3ozxt2GwxHuPZqglP0chBMzf37Zfifjvdf+Bt52d4o9h7birDsfxLX7Hp45PpNkvwDYMlIY4q5Rv8qFqywPM4epB2S95XFpHK1kv1GNl7ibW5I0930wGxHxxWTdasn2VjX7PdFEXFweGc6STw8JES4kV7kNKlz5L2yNqXBJmD0v6z1c+6fexV03TN3KtHUBIKhwhSQocfmfKxMNXrLdlPjkBUC0gWxA1pHkg5sNyTY5k06yamXLJJsnCZEllUEuH8vLybJlC5mDGMtlSFjiwpmYjG88e53gM88oAJDP3kYDAMs837DlmHzJjb1uEiZPfLJNUqpR4RBzPy4hflqc48qxR1blHnFrY+71AJB0ceXfH6tQ4SxRtpi2FgBUB3NUuHp3855TvIg7b7kxrt2U3zDLA76DqXAP3IYrIrAF4vmSbTbluPJv6mSHK3EPtgHZUU5XQFw4WyTOG1mPt6oFrVmstQ9ba1dZa1cBOBZACcBlAD4C4Cpr7YEArpr8fxERkZZz2u2PpY7dfMi+KDGNxxb0bP9yXL/PIanjb77vhkVIjYiIiIiIiIiIyNLSzFeRzwLwuLX2SQCvA3DR5PGLALy+iekQERFpmNNvfzR17OqjDl6ElCye7xx1SurYKU8+jD1GNi9CakRERERERERERJaOZg7EvQXAJZP/vdJau27yv9cDWNnEdIiIiDRE33gZqx5+JnX8N0cetAipWTw37H0InulbNuWYB4s33ffbRUqRiIiIiIiIiIjI0tCUgThjTA7AeQC+u+Nn1lqLaVZtN8ZcaIy5zRhzm7WdtWaoiIgsfSff9QT8Hdbif2qnQTy+606LlKLFkXgevnvkyanjb3jgZuQjcs8HERERERERERGRNtCsGXGvAnCHtXbD5P9vMMbsCgCT/97oCmSt/YK19jhr7XHGNHPynoiIyOxc+8NdfdTBALNxe4u77PATUPWDKccGqiW84tG7FylFIiIiIiIiIiIii69Zo1tvxYvLUgLAjwG8a/K/3wXgR01Kh4iISEOYxOLUO6YZiOtAw8Ue/OLAVanjF9x3Q/MTIyIiIiIiIiIiskQEs39lfowx3QBeDuAPtzv8LwAuNca8B8CTAN4829+xBqj1ZJ9hEOedq17OKAkzBwGwLY0ME5PxEcOo9e7s+QEAJuF+nCGii4pcGm3Y3OVLo57sJ8BEZFxdZP6TZSsXZo8v6uaqE/a6ibqyh/ErXFxBmSuTbBUbTGQvKM2eM2wq2dNoQ5+KK8lRweCRhcvOMdxhj6/DipGJKccqYYBbXrI3/PzcLr64xp25ej8VDFF39jyp9809zNfOPBmvfei2KceO3PAUDhl+Gvfvsuec/kY4nil58xIVuDISFbiyHHdlr0u8AnfjyAXcDcAQN+5x5Lm4qFBAErPXNhHIJ9sk7G2jnv23+ZXmthGSkMwTYqZwYSsVFTy6vcXVyXGOqFvJth3dJiTa8n6VfG4gyz9blr1a9sLMlEcAQEi2uIj4rMelMclx9yhWEmRP59heXD7W+ppcJktE/wPZtjDkoyxTl4cTs3/HpdrLdnhwwerdxPN2UqTiCjeVqHAeccNnn4nYFTcs2W5NiHR6EVeQkyLXCZfkuOftuJg9L5M899vYupzp72PvbUmOq5M9siwzj+lxkey+Zqst4r6RNPf2i8Qn25IDhcxhAvLhxtTJBw4CXbd6XPlPyCah9bOn0yRc/eMNk50rVW57EVvI3i9gi2SHX4ta8L5ba+2EtXa5tXZku2NbrLVnWWsPtNaeba0lH7NFREQWx+m3P5o6dtPh+6GS76yGxPbu3nMv3Lf7HqnjF9ylWXEiIiIiIiIiItKZtPGaiIgI4fQ70gNxv3nJgYuQkiXEGHxr9cmpw69+6A70lcnXr0VERERERERaTCGq4k2P3IC3PHQtemvczFsRaR8aiBMREclocGQCRz76bOr4NasOWoTULC0/ecnRGClMXRaoEEV4/f23LlKKRERERERERJonH9Vx0ZX/gb+87TL8+R0/xiU/+yT6K3o5VaSTaSBOREQko1PuehzeDsukP7HrCjy5y/LFSdASUsnl8P3jjk8dv+CuG2Fsc/fyFBEREREREWm2k597EPuMbnrh/3cqj+KctXcsYopEZLFpIE5ERCSj0+94LHXsN5oN94KLT0wvT7n38Gac9GR6OU8RERERERGRdrLX2KbUsf1G1i9CSkRkqdBAnIiISAZenOBUDcTNaO1OO+HGvdP58ZY7r1+E1IiIiIiIiIg0TxhHqWP92idOpKMFi52ATJo0bGjIcHb2rzQ0QjadDC99/5iTqJg9V6LldSouLx9z4XzuzNXj7GcgGPOpuJIebjk3r8aVEpNkD2fJ69OQK9XVe7OfN6/GxRVONPNqAwpbspcTr5Cj4vKq3PWGKPv1ZmLuGo27uELSW6xS4YyZuWwd9dgzGBgvTzlWyoX47T4HIC5nu636vVz+d6/kflvgZz8HtYhrKnz1lSfh5C88MuXYGU88gP6+zXh22eC04Qrrs5f/kHyeqfeQdSRXlMG0FJIqd9+YqJJ1wizl3yUMuQxJEu7+GxvuhpPUs+elGSfv23ny5kb8tCTH5aNfJe9tIReMYckk+lWybdfNRVgZzH7i6j1UVEjI/GfqraDM5Uec58Il3OWGsJTPHihmrxvyBmCzx2fIOtJ6XP6zbXkbZA/oV7i40McFi/NcXiZEEyguzv4dl4B83siNZQ/D/K75oJ8Tiedtls2TFRBRlzDXzHzCmYhrkwRbs+9lZUOucNkCWSjJ+o65BhKyHjFk0YoK2c+3V2fbP1z+mzrZT0WUyaiLy8jKABcuZh6ldiiOgZ/uSO2rT6Tam7VerhwX2b5ky1wA3M3NxFwZsX728m8DLkP8Mtfh7ZFtSRNl7wNKitwDQLyMazh5NXYQgGgnE23kVqYZcSIiIhmcetvjqWPXH3YAauSDZ7v69eGH4tnBgSnHfGvx1utvWpwEiYiIiIiIiDRB3jEjbqCSfYBbRNqHBuJEREQyOMUxEPebIw9ehJQsbbHv4+JTVqeOX/DbW5Crk29YiYiIiIiIiCxxucixNGVVS1OKdDINxImIiMzR8qFxHPZ4eoNlDcS5fefkE1Dzpy4HstPYOM65695FSpGIiIiIiIjIwsrF6SUIByoTHbcUn4i8SANxIiIic3Ty7U+kjj221wo8u2L6Pc862ea+Xlyx6sjU8Xdcd+MipEZERERERERk4bmWpgxsgp4au1GqiLQ6DcSJiIjM0am3PZY6dv1xByxCSlrHN04/OXXs+CfW4tBnnluE1IiIiIiIiIgsLNeMOAAY1D5xIh1LA3EiIiJzEEQxTrpzTer49cftvwipaR237bcPHtxtl9Txt1/320VIjYiIiIiIiMjCcs2IA4D+qgbiRDpVsNgJWJISLhg7qmkTQ4Uz7pcrZuTVubjYPAERnZePqajCvPsmN5skJs8cESzuITOym/ttEbn0dNTrz/6lHYTD2cMAQDDBlUnLnDay+HvEtQYAfpULV1mWvWr2ohwVl7eZK1vxQFfmMCbmyr9X5q7RUoXLE2vdBeX4B9aid2LqSR0v5nHDPgcAI1wak5ALx64qH/rMOeDKyHj3i3X5N85ejf/39R9O+fzcO+7CR999Hqw3NQ+sn70uiQpUErl6BIBf48JRJ26a8jibhGxbxESmRBFZ/mPuvpHUyRNHtIFsjrzayPuNIdJouEuUrkgM225l25JUZFywaj9XtiorsoeJurkMScgyyZy3eo3LSLbdFBXIe6KX/SYQlrj892tc/ueGst84/DKXkV6dq1ujbq5rIM5nLydRkYqKRj8DEyyX/TBs444oymwa2WebsMT9uHAse79AbsM4FRcirg/CFrM/b5g6Fxe7r1RSCLnoguzPe16Fa5R4bH1Hhgsmsv82f4K7R7HXdkKctjjPxRUXuDqyNsg9b5ske6aUl3P3KPZ+wz4nbi9MphmIq09MOb/W4/K/2sslMg6zxxd0cXH5VbK9S6TRL5P9TTWy/emTz0TELcBUufuGSZr5AAaAiM/bMroACVm6NCNORERkDs6485HUsRuO3B9RQPZmdJDLTjoalWDqw1N/uYL+UnmRUiQiIiIiIiKyMHLTzIgb0NKUIh1LA3EiIiJzcMadj6aO/eaYAxchJa2nVMhjtDv9OmKOfSNYREREREREZInKT7NHnAbiRDqXBuJERERmscvmERzy1IbU8WtXaSBurqphejmRfJ1cv0xERERERERkicpF082IKzU5JSKyVGggTkREZBan35WeDffAPrtg47K+RUhNa3INxBXq7OZWIiIiIiIiIktTXktTisgONBAnIiIyC+eylEcftAgpaV2VML3juGbEiYiIiIiISLvJTbc0ZVkDcSKdKv16+hJW78keJi7azGGSdF/hnBh2qxtyONT62cPEBS4uj5y0wKTRkPlhDBeuu6tKhSv7SeYw1dE8FZcx2csxACBiMzN7kLjApZG9bpJc9vhMzBUSNo30aStkP2+1PrLiQhcVytSzl/8kz91y/BoVDEnMlf/+3vKU/w/rEU657/HU9247eW/0dVcAALU8N6DUX6xQ4UKfK5T1OHulHHjZzzWA1AVQzTlmxEX11PeiLuLaJpNI87i6xK9mD1evc3FFEXEDBuB5ZMVFiGvkPYq8txkiPva+Yck2iUdUJbkxLrKYbe+S4+f5oexhujdydV1+M9e2GzqomwoXdWevhJg2MgB4ZJ1gicuGaWuxcQFAXCTbaTZ7OuNc8/IRAIqV7A9TJuJubibhzptHtO0AwBDPiX6VaxPWyYUI2LIcTGQvJybiyhZT/wOAFxHlv0DepIhrDQC6NnB1eVjKXriSPHdzMx53cduAqVypqGB9sv0TcxFaor2b5MibGxku7uLOd9/TRJ1M3rgt2VFVXUbE5XNxdW2kgiG/hWtvbT4qex9EbYBsI5B9mUwf6I71+HQz4vqrE1OvL/Lxy5I9+pVlRF1C3jbCcbbDO3sQv8jW49yPC0IuvnCoPPuXdpAU2f4+jj/K9VNRHfNk26JVaUaciIjIDFbd/zS6y1NHA0d6Crjv4N0XKUWtyb1HnJamFBERERERkfaSi9xvWAxqaUqRjqWBOBERkRmcelt6NtxNx+yLmHwrtVM5B+JqGogTERERERGRNmItcrF7NrCWphTpXOpFFBERmcEpt6YH4m447oBFSElrqzr3iNNAnIiIiIiIiLSPIInhTbO+Yn+l1HHL8YnINhqIExERmcYuG0ew7zNbUsdvPHa/RUhNa3MvTUluiCIiIiIiIiKyBE23PxwABDZBb43cg0tEWpoG4kRERKax97NbU8ce3H8XDA10L0JqWpv2iBMREREREZF2l59mf7jnDZTHm5QSEVlKNBAnIiIyjUIl3YDesKJ3EVLS+jQQJyIiIiIiIu0uN8OMOAAYqGifOJFOlO4VW6oMkKS3l5lTuMxByKV6rc+Fg89FaOLsP86vUlEBCRksl/23xRU2Izm1CncZJFUinRE39m3JcEwZAQBTzR7Oq3NxsQxZJhlJjgtXJydNFbdkv25MzNUj1nDnzUuyx+fVuGUIvWqRCpd4XJ70FV5cJmIA5dTntmimfGc+6jFX3/Xn0ulaKFsrjZn9N9eBOI8oJl5E1j9sMHL8MC5kL5N+mav/a2NcxWVy2StXL+AqZJ+ICwBiy5042+3eMH3GMOy9jQxmicZkxFWRVHkEADL7qes0zpPn2ufC1fq5PIl7s5ctUyPbdhUyHLEXiSVf2WTa/wAQdXPhKsuyJzQ3wsWVH81+rgEg6s1eJ7NttHCsRoUD0bYDgPKuhcxhagNcXEnIhfOIZxsA8GrE8zaZ/WzbgrnfBGUyH8kVxdn+lXAT0VFNXjdJkelsApIw+33bxOSDrEeW43GuUJqYuLdVuUJiC1y71R/hnolM1JM5TL4ne10HAAnZ6xr1EOeb7stk27vk9ZbLHo5tk/hk3WqY2/12Pysfz3wtDFYmXvw+ed488n5jiX4Suk1Iln+mv6/WR5ZHRz/FXHRF3IkLguyZaepc+5Pty6f52X9bMtjHxfUMF2yxaUaciIjINHK1dMu9RjbUOl0lTHdwaEaciIiIiIiItJPZZsT1V0pNSomILCUaiBMREZlGrpZ+86iWa+6s3XbhnhFHvlotIiIiIiIisgTNNhA3WNbSlCKdSANxIiIi03DNiKvmNSOOoT3iREREREREpN3lotn2iBtvUkpEZCnRQJyIiMg0nEtT5jQQx9BAnIiIiIiIiLS72faI09KUIp1JA3EiIiLTcA/EaWlKRlV7xImIiIiIiEiby2tpShFx0ECciIjINNx7xGlGHEN7xImIiIiIiEi7y0UzP+cOVDQQJ9KJWqo3MSrazGHiYpI9IpM9CACYhAtoAyKNABJiHNXE5I8jJUwJq3Ljw4mfvXwAgOWCAXUinQEXmcmlBwPmxJJl0hInrs5eOFwwS+SlJbORzUevxkUXFbLH50XcdROOcTOSrJ89PiYMALqMJDEX30Qt98J/e+V0/Tzm56d8BwAKAZeP+/RtocKFhrtvPDUxmDmMMVy9FeSnXnBRMX0+Ckk99b24i7i2yWvNkBPywipXKJMwe7g4T943Qq6MBLnsmRJH3CzRpEQ2Q8n2FpiyTLYtDHm/T4jfFnVz+REXuDLCtnfjYvZwlX6uHrdegQxHBaPbCQzDtmWIm6kh8yPOceU/LpDh8tl/W72HO2dl6uEGyBP1f34zeXNLuGvbq3Dhat3ZC0q9h3xuC8k6mXwGptI5vvSfG8JxMh+5IoIkIJ9Jw+ztC1PmMtJjrxuPqCjJuJj8AAAEZP8KEZ9nuHNtylUqnC2VuXC79mUOE+fI30b2N/mV7GHi3OzfcYZLL1wyJ9Yj24T57GHqveR9w+fSyOT/9k0EP5z5maq/OoFa77b/ZstIQrR/ACDimsmUgLtEqTa5T95HbZUsW2T5T4gXu/0Jro5kJXmuUjDM/Y28b7QqzYgTERGZhmbENY72iBMREREREZF2l59tRpyWphTpSBqIExERmUbetUecY0BJZld1DGC68ldERERERESkVeWimZ9zB8olGEtOMxaRlqWBOBERkWnkHDO2XANKMrtKLr28QUF7xImIiIiIiEgbycUzD8QFNkFvhVj/UkRamgbiREREppGvOgbi8hqIYziXptSMOBEREREREWkj+VlmxAHAoJanFOk4GogTERGZRk5LUzaM9ogTERERERGRdjfbHnGA9okT6UQaiBMREZmGa6ColvMXISWtzzWAqYE4ERERERERaSezLU0JAIMlDcSJdJqWeq0/7rKZw5ju5nXy2RrZOetl/10AYJF9Y8+oh4vLL5FjtqZ556zQXaPCRXXuvNUr2cOZfEzFFeS4PInJ32ZjkzlMUM4eBgCSgCuTSIj4uCQiIWvKqJuL0B/Knie1bu4a9avcjwsmspdlY7lzHRe5cAlRjgFgeLz4wn/75XTcW6LuKd8BgGKe2+vs/uouVLiVPeNUuO4gez05Vs9TccX1qWWyZHKp7+RqUep7QTX7eQvHuHNtyP2xiVsbAMAnblO1JrfUmPtGQt5r2DqZ5ZWaN4ieFLjCZYh7G1uOLXv/5ZoyiHPZ44uLXCGJq+R9g0gjAJhi9naazXH37SQi6zvivCXprT3nxIZcobQ+99uslz0v/Rp5rsm2TFQgzveK9H1zLoJxrq7zK+TFzTTJyXoLZPn3yC1pDdGWZH9bVJz9Oy4J0UwzlsvH3Abux3l1LlzcQ/y4bu66gWHr1uy/LS5wjTu/wvUJmDp3bduQaBOS9bhh9+Du66KC1Xuzx1dnn+3r3H0jN5o9nEfG1fMc15fGlH8AiLqzh2H7BOj7DVFPbt+OzGH2G09fNL7td5F1csI+2hBNEr/KRcX2pTFtC7b8s2KmbQeg3pe9gc22P/0x7sRZ8hkgLmS/B3vkPapVaUaciIjINPK1dAO6kiNbJR1OS1OKiIiIiIhIu5vL0pSD5VITUiIiS4kG4kRERKbhGiiqsm9sdrhqmB7A1ECciIiIiIiItJPcHJ5zBye0NKVIp9FAnIiIyDScA3GOmV0yO82IExERERERkXaXj7RHnIikaSBORERkGvmaBuIaJfI9xDvsvxEkCfy4s9YEFxERERERkfaVizUQJyJpGogTERGZhnMgTktTcozRrDgRERERERFpa3PZI26gpD3iRDqNBuJEWlS+Vseha9dhcFRv0YgsFO0R11gaiBMREREREZF2pqUpRcSldXoTDZAUkszBwlz2Ja+CkFsmK8pz45q+b6lwcWxm/9KOYeo+FVfSkz0uALBEGnMFrlPWGC4fwYbLZS+PNiLHvnMArMVBT2/EaXc/hlPveQzHP/gkCvUIsTG45ugDccnZx+Oaow9E4r0YhyHLFhMq6uLiMs1clY481UmeC2dGyfhCIq7sxXEyMi6YVyfKP1eNIDfMBZxYzt3iavG2a8iPYwTJ1N8ZeR7K1WIqTL3GxTXQzzW+R6oFKlw9zn4PiGKu3rLVdFzVMARQnnIsN57A5l78rl/Nfr79WuYg88KWZUPc3pgwAJ9GmxABq+S9jUxjM3l1LpEmIduE5ezxBSUyjWSb0DBlBEA4lj1McRN3k8oPcxeOXyVuwADqNSIvA+63JT1kw4mJjn1lk21bk2XLEumsd3FxRQUunFfPnidBmbtGi+R9w4vIZ9Jc9jBJgXxGCchwjjbJXCREfJaLCl5Eln8iWEL2AsV58rrp5jLFekSbsEo+3LBtEuaEN7n9Y32yLW+yJ9SG3Ln2HauQLGR81b7seVLvo6JCTLYlw/Hs9Q/7TFRaSVTk4J83EqKfKslz13ZENmbqPcT9Zrv2T2jnMCOuPI7aQELXCX6Z+21JSLbTCLkR9pkoe5iJ3cg2GtluSkLut+WHmVDcNcqFApA0r4zEhdYZmmqEzvq1Ii1mxcgYTn3gMZzx0MM49Z7HsPPweOo7vrU4845HcOYdj+C55f249Mxj8N0zj8WGZWRLUUQAAAXtD9dwzhlxc3hbUERERERERKQVzGXVl8GJEkyS0IPlItJ61KMosoTk6hGOf3QtTrvvUZx+/yM4/Kl1mcLvtmUEH/zu1fjj71+Dq485CBefdQKuO+qAKbPkRGRu8vX0W2yVHDdbQrapBlqaUkRERERERNrXXF429a1Fb6WC0e6uJqRIRJYCDcSJLLJCtYYLrrsNL7vnYax++AkUa7NPYZ9NkCR4+W0P4eW3PYRnVgzg22ceh+++9FhsGuxtQIpFOoNzfzjNiJuXbUtTTqWBOBEREREREWkXrpd6656HcIetL5aNT2ggTqSDqEdRZBHtv24jLvrUV7DnlmEqfM33kYtn3itkj83D+ItLf4U/+/6vcdWxh+Dis47HDUfsD6tZciIz0kBc4zmXpnQ8pIiIiIiIiIi0IteMuI39fdh9aHjKsWUTE1iLnZqUKhFZbOpRFFkkBz+9Ht/65Jew02h637fp1AIftx6yN64/an9c/5ID8MieO+O0ux/DW391G156xyPw7fQbaoZxgnNueQDn3PIAntx5EI/suRKx76Hu+4g9D1HgIfI8RL6Pej33wn9v/+91gwO4+rBDMdTT3YgsEFnSCo7ZqRqImx/3QJxmxImIiIiIiEh7yDkG4tYP9KcG4gYmSk1KkYgsBa3To2gBU80+gydJsoeJoukHM2bieVy4gR6u4vVM9vhGywUqrnI5R4VjSli9whVLr4vL/+5ijQpXJs53d7EKADjksfX4n09cgoGx8qxhHttrBe44fm/ceuzeuPuoPVAtvLi02y4Yx6Mv3wX/5+Xn4n82juI1V9yH11xxL3bePPPg3t4bh7D3xqHM6QeAdSv68M5/+T2s36l/yvHRjT3U3/NKPhUORP4boj4AAEOOEyRkDRsVTOYwuTGu/Edd5MxIL/teaX4lmf1LLtxPo9loW/7nKunZppUwfOHz7ZmteSquoST7uQaAFcvHqHCFIHthHq5z9w1TTl/bFT99LymOx1O+G+ezn/ComDkIACCc4PK/sIkrlNVBIj4uibARd217uZlnWTsViTAAMMZVkjbP1SVJIXs431GO58RyJ86rZw8XzN6UcEpyZOEiq3KPmPxqEu5aMzHZlueahABx3uCT+e+TeZIjTlyT6x9TI9skZDoZlkyi9bIn0szwgt1CiLrI+o7IfxuQv40pxwCiInniiOstZi/tMfK6IbIy6uYSWTZcuFoPV7byI9njK2ylokJulFuhgbm2o26u/VMd5J43PPKeyNxL/TL34Gzzzd2Hm3nerneTbQuyUmDSWN6ZiyvPdQ3Br3J5khBF2ZDPGwnZbgLxnG6KL5Z/18um63bqBdZMPbYsGQX6ufonyjexL63KxRXnmpf/Sci2m9gGLxcsN5q9LOe3VKi4TMS1myz5nOLVsv+2uJscb2hRrTMQJ9Imjnj4WXzuY99G70TV+flQXxE3r9oXNx6zH25atS82rehFX8H93e1t2rkPX3vXyfjG21fjxJufwHk/vQcn3rqGucfOaNfNo/ibL16JP/vbCxr7h0WWGNeSidVAt835cOXfXDayFhEREREREVnqvCRxbiGzaaA3dWxwTDPiRDqJehRFmujo+57Cf/3jpegup1+5fm7nfvzNX74O9x68O/Vm3fNi38ONJx+AG08+ACvWjeG1V9yLc6+8Byu2Tswn6VOcefMjWPXg07jr0D0b9jdFlhr3HnHNfVuz3bjyT0tTioiIiIiISDvIOZ5vK2GALb3pLV6WjTWun05Elj5yjQYRyeqke5/AZ//+O85BuKd2HcR7/uXtuOfQPeY1CLejDSv78aXfOxXnf+t9+Ju/fz1uOm5fZoa304e/+iugyUvmiDRTwTUjTnvEzYt7Rhy3FIeIiIiIiIjIUuJ+oTfAkGMgbmBcM+JEOol6FEWa4PQ7H8VnP/Ft5w35iT2W430ffxs2LU9PU2+U2Pdw3SkH4rpTDsTyLePYf80m5GoRgiiBHycI4sl/T/5/veLBjxOEUYIgjrHn+iG87tf3TPmbqx5+Bmfe/DB+vfqQBUu3yGJyXa+VnGbEzYdrIFMz4kRERERERKQduJ5va2GArT1dqePLNBAn0nDGmD0BfB3ASmzbze8L1trPGGP+AcAfANg0+dW/tdZePhnmbwC8B0AM4E+ttT9fiLRpIE5kgZ19y4P4j3//rnON6Ef22Qnv+6e3YWgg/WbMQtmyvAdblvfM+J2RcmHK/3txgsMeX4cDn9w05fiffePXuOb4gxD7mlwr7We6N9mE51yaUjPiREREREREpA1M148w7BiIG9TSlCILIQLwYWvtHcaYXgC3G2N+OfnZp621n9z+y8aYwwC8BcDhAHYD8CtjzEHW2nRH/jyp91xkAb36hvvwn5+61DkI98D+u+DC//e7TR2EYyW+h0+/86zU8f2e2YI3/Oqu5idIpAk0ENd4zqUpNSNORERERERE2kB+mi0utjr3iNOMOJFGs9aus9beMfnfYwAeBLD7DEFeB+Db1tqqtXYNgMcAnLAQaVvwHkVjzACALwE4AtumA74bwMMAvgNgHwBrAbzZWjs029/yiJfmkzox1mi4fa+MSahwIxNFKlxU9zOHSRJu7DUeI5djI7LSkJuYVSrZ8wMAKmGeCme8mX/cG6+/A5/40vfgO/ZRu3P/PfGuv3oXxpIiMDx7XKN++s2ZuWB3cLOOc3DFwUfg5kP2wYkPrZ1y/P0XX4PvHHscTI4r/wl5voNR4nxzSaQlXNFCOJ79zHkxd7b9KhcutzW91+FCiYvkNZojX16ZLJLFJP0ba3nfWda9XSpUVIP93Btw1nLXzVAp+/2Gjcvm0/lULTgG4mx9yncNcW37NS6NPnfa6L08k1z2MCbm4jIT3D0xqRPxkfW4x/62EvfbbJi9vosLXB1pc+wdOHs7zSPLP3lp078tyWePMAnYa5ur/4MSF1+NKMu2xrXJDXONArDE6gWGLCTsdsTkoxQ8okkSVLhyzDyPsuEsV9Wh3k2+a8vWCUQ4qh0PIOqjggGzPLdNiyiTNiDrSLJuZdoJ1WXcxRZ1kc9tE2y7KXtZtj4XV0ReN8yzFHtvi4n7KABYskrwa8QzaQ93beeHucrVL5Ev9DF5QuZj7HPXdkRcp36FS2R+iLzfk9kfjmWPL85zfZKGrJOZzjRb21b+c+V04EoQYms+vR3NwHiJfpYybFsyyh6fXyHr/zJZ/xOjFWyfQDBOBUNhmLuXhuPZL5wkRz7/Ovpf5sKvcBe3DZfefC9jzD4AjgZwM4BTAPyxMeadAG7DtllzQ9g2SHfTdsGewcwDd7Rm5NBnAFxprT0EwEuwbRTyIwCustYeCOCqyf8XaRtvvfoWfHKaQbhbDt4H7/jI72OsmxuAXTTG4F/eek7q8M7D43j3lTcsQoJEFpb2iGs89x5xWppSREREREREWt90K+sMuZamHC/BJE1+Y1ykPQTGmNu2++fCHb9gjOkB8H0AH7TWjgL4HwD7A1gFYB2ATzUzwcACD8QZY/oBnA7gywBgra1Za4exbcrfRZNfuwjA6xcyHSLN9K5f3oh//tpl8ByDcNcfsT9+7y/fhQlyhs9iu+uAPXH5CUekjv/hT67DslHyNRKRJWq6JSWE5x6I09KUIiIiIiIi0vqcA3FBiHoQYKwwtS/QtxZ9JXKZFpHOFllrj9vuny9s/6ExJsS2QbhvWWt/AADW2g3W2thamwD4Il5cfvJZAHtuF3yPyWMNt9Az4vYFsAnAV40xdxpjvmSM6Qaw0lq7bvI76wGsXOB0iDTFhZdfi3/85k+cn/36JQfjPR96B8oFYm2yJeQTF7wckTe16uitVPEnP756kVIksjDcb7JpRtx8OAfiIg3EiYiIiIiISOub6YXeoZ70PnGD49onTqSRjDEG2yaFPWit/fftju+63dfeAOC+yf/+MYC3GGPyxph9ARwI4JaFSNtCD8QFAI4B8D/W2qMBTGCHZSittRbTrL5rjLnw+SmGVlN1ZYl77xXX4W+/c4Xzs58fcxje9ydvR60NlrVbu8sKXHLmcanjv/vrm7Hnxq2LkCKRhVGoaUZco1WDdB2opSlFRERERESkHUy3NCUAbHUsT7lsnNs3XkSmdQqAdwA40xhz1+Q/rwbwb8aYe40x9wB4GYA/BwBr7f0ALgXwAIArAXzAWsttOj6LhR6IewbAM9bamyf//3vYNjC34flRyMl/b3QFttZ+4fkphsZbehv+iTxvv3Wb8JFLr3R+9pMTj8IHPvA21NqoA/8/33gWJvJTZ/bl4hh/+b2fL1KKRBrPvUdc+1zHi0FLU4qIiIiIiEi7cj3f1oJtz8HDrn3ixjQjTqSRrLXXW2uNtfYoa+2qyX8ut9a+w1p75OTx87ZbrRHW2o9ba/e31h5srXXPsmmABR3dstauB/C0MebgyUNnYdvo4o8BvGvy2LsA/Ggh0yGy0N73s2sQOGZtfv+Uo/Fn77sAUeAvQqoWzub+HnzxNaemjp938z04Ys2CLKMr0nRamrLxKhqIExERERERkTY109KUWx1LUy4b04w4kU7RjFf7/wTAt4wxOQBPAPh9bBsAvNQY8x4ATwJ481z+kF81mSNPxrP/xDjkxifj7MkDAJgct+ym8bOHswmbSOfqobMHi4m8jLg0GnJc2Sbcb7PetnC7bRnCG264M/X5d045Dn/9jvNh6y+my3Rx5zpf4JZu8z0uvnJl9sGGr553Et5+1c1YMTK10fCR716Bt//1uwEzx/NIrjpriWJiC9y5jslxAkNWCgmxjWBMXjdRkQsX5ps3uBznuPMGsrp7frHkfM21yXLgXEw5GuMG6DZV+6hwxiPrZCJcUuGaCv54uk6OonThLlSiKd8NStlPXDieOcg29C2Ry3/mt8UFKip4NfJeWsp+vq3PthG4NOaGybqVuEzJ5g9db3n17L/Nr1JR0QzZlgyIPgYvIk+Az5YtLr5aX/Y2aJInywjxPLQtIBGGbaORr3oGFfK8jWbPy+IW7scFFTZTsgepd5PPpHkuH/1q8+pyQ7atXW2LufDIdrJfJu7bRTIf2feSiJ9WG+BWW0rSEznmJOoly/JI9nDss01hC5fGPFH/JE1eYKMwRJ7vMHteWo+8R8XcdZOQfXce0b3ik/co+nwz/R3ssw2Z/x65cFtATAALR9m+FS4c83yTJNvKY76cbivUvBCm7GGo0JP6bGBrBZjIXlC8Mlf+/Vr2MOyzJf2czhRJsvznRsj6h3zesAETju3c4pg6d3GbSvbK1WPvGy1qwdd7tNbeNbm85FHW2tdba4estVustWdZaw+01p5trdXGUtKyLvzltQh3mA031N2Ff7jgPNg2XlJ1opjHf53/stTxU+9/HKff++gipEiksWZ6k004rj3icpFmxImIiIiIiEjrc66sM/kc7JwRN6GlKUU6RfuOEog0wfLRcbzlultTx7965skoFfKLkKLm+s5Zx2LtLstSxz/ynZ/DOJbqFGkl7j3itDTlfDj3iIu4Gb8iIiIiIiIiS8lML/QOdzv2iBvX0pQinUIDcSLz8O6rrkdxh5vsRD6Hr515yiKlqLmiwMen3nJ26vhhT63D63579yKkSKRx3HvEaUbcfFQD7REnIiIiIiIi7SnvWPHl+efgrd2OGXEaiBPpGBqIEyH1lsp459U3po5/84zVGHG85dKurlh9OO46YPfU8b/43i+Rr2mmi7QuDcQ1XiVMzygsON4YFBEREREREWk17n6Ebc/BQ46lKQe0NKVIx9BAnAjpHdfchL5KdcqxauDjS2eftkgpWiTG4N9+9xWpw3tsHsbbr7p5ERIk0hgFx0CyBuLmp+oYiHO9MSgiIiIiIiLSalxbL2hGnIgAGogToRRqNbznV9eljn/35OOwcaBvEVK0uG45bF/8+iUHp47/8Y+vRt9EeRFSJDJ/2iOu8dxLU2pGnIiIiIiIiLQ+54y4yefgIdcecRMaiBPpFC31ar9XN5nDmCh7GMR+9jAAbD6hwsFYLr4k+2+zETn2SmQjABjinNFqXFx+NXuevPXG27FibOrNMjYGXzr5LAQj019WcZ3L/4kxrvPfkPF5xASVT7z8XLz0nkfg2RfL8+B4GX906fX4t3NfM224/GYujUkue5g4T0WFYIIrW4Wt3LUdTmQPF5S5uPLD3GwkrxpnDmN9Lh/zw1y4JOROuA235WW+ms6bWqkLZshR+JbVqLj6+7llKDyPu99U69nrkqTIDZRVyum3/crWMRAXRUhyL5bfoJI9rohcDTgucOFMzJVJQ5y2JOSu7bgv+zUKAKaWvU72J8i2BffT6DZJQLwXEqWL8ZyE5H2juCF7pnjcqYZJ2BPA8avNu7clAVcmc2NcfAFxDbBzgZl6BAAME6FlHwC4fPTJd7fyI9njyw+R7Z86eQIYhntUtz75LOtx55t5bmDb1jFZ34XjZHxEU9Krkm0EskqOuppYl7OP9mS4uEDcN8hzneS4cHWiDZof5eoRr04+W46y9V32C84QYQDARGTdGpPPwKPZHwKqo1zdyrYlmb40pj6eT7igwt7vs/82v4usSDyyLUm0gZ6/jeZr6QyteyG8usFozr00palZWC9be9Ij32el+snJW03SxPeYfaIfAQD924JKE9uEZFRMPQ4AMGRbxjEIPasye+Jak2bEiWQUxDH+4JrfpI7/ZNXReHr58uYnaIl4eLdd8YPjjk0d/71rr8Muw8PNT5DIPGmPuMarBekH2HwUAba5AwIiIiIiIiIijebaeuH5GXH1IMBYYepAsG8t+jpsMEKkU2kgTiSj8+66A7sPD6WO/++ZZy5CapaWT59zDio7LD1XiCJ88MpfLFKKRHgFx5KJrqUVZe5i30d9hzf9PGsRsq+4i4iIiIiIiCwROecLvS9ODRvqSk+lXablKUU6ggbiRDLwkgTvu/qq1PFfHnY4Htll10VI0dKybnAAF512aur4+bfeigPXr1+EFInwXG+yVULtETdfVUceumYfioiIiIiIiLSSfDTzC71D3enlKQfHNRAn0gk0ECeSwcvvvw/7b9qUOv75M89ahNQsTf9z1pkYLhanHPOtxV//9Gdafk5ahh/HCJKpC3FHnoeY3HdFXuRa3tM16CkiIiIiIiLSSmbb4sI5EKcZcSIdQQNxInNlLf7IMRvuxgMOwF17770ICVqaRru68Lmz0wOTZz7woAbjpGXMtK67zI8rH/OOZUBFREREREREWom7L+HFVWG29qQH4rQ0pUhn0ECcyByd+ugjOOLZZ1LH/0ez4VK+fuopeHZwIHX8D6/+Df7yZ1doME6WPOf+cI6ZXJKdc2lKzYgTERERERGRFudcmnK7voRhxx5xmhEn0hlaqlcx6sreeZ/0Zu/cM2Ey+5ccPI8bXDCGCoa4SiyRVufGXk3EJdISwQw7RkOGs+HcAr7/N79KHbtrnz1x7TH7ASaeW2Rk2aJ/W46LL46znziv/GJ5rPoh/vW1r8F/fv1bqe+9/9e/RuIbfPI15wDGwJIr/fnV7GHYchyybSLyvEV5Iv/JcYwk4PLE5LOfOBNx5TEc4zKy1ksFQ603QViqpY5XciGSgvs3sPX/yHC6ET4XtkzevvNzrKu2Y3y2AnKXLeeMuFr0wveZ+0Z+qLmD+4asymt92X9cOE7etxPy2s5eROBXyIZMk+/3fiV7GPZcs+GYe6Jl4yLr/4S9b6er1VkFZe7mZhKukFQHuest6iaeUXJL/6Ukpj4AAI+c5GzJV0QTYvvW0kpuz1e/zp23cCx7ZvoV7uImm/+IC+z9JnueFLZwcVWWk/UW2WxK8tl/G/u8EZDPG0ydbCrN7RPw6mQ7gSjLljzXfpm7tnNj2RPpkfVIUOYubr/MVcpJLnvhsjnuBASlEhUO5P0+N5y9fVEscuW47HHXWziWPVxQpqKCXyH7MmMuHHOd0m2EJtb/SX7bNZqP0+Wr3OMh7tr2+ZYBx0BcZRy2kK2twPYJWOL5nu23szXymZSo7iKua4XuEwO4TImI9lZhC1eP+45+rTkh++6S3uLsX9pRT4GKC89xwRabZsSJzMGxa9Zg9eNPpI5/9lUv40dS29xPjlmFz5/1UudnH/jlVfjQ5T/XzDhZslxLJWpGXGNojzgRERERERFpR+6+hJmXphycIAejRaSlqFdRZA7ef9WvU8ce2XUlfnnUYYuQmhZhDP71ta+BZy0u/PU1qY//5Be/QuwZfP74Vy1C4kRmNtu67sJz5aP2iBMREREREZFWl5tlv/kh10DcmJamFOkEmhEnMotDnn0OZz7wYOr45855GSy5zEDHMAb/fN65+NJLT3d+/MErf4k/uvbnTU6UyOwKNc2IWyjOGXF1zYgTERERERGR1uZ6tt3+GXioO72G4rJxzYgT6QQaRRCZxft/nZ4N9/SyQfz4+JcsQmpakDH4+Otfiy+fcZrz4z+95uf4w+t+2eREiczM1XiuhJoR1wjOPeK0NKWIiIiIiIi0OPdA3GxLU2pGnEgn0ECcyAz23rQZr77r7tTxL7zsZYh9crfSTmQM/ukN5+Grp5/q/PjPf3MFLrz+V01OlMj0nEtTakZcQ1QdA5pamlJERERERERamrXOvoRa8GL/oXNpSs2IE+kIrdOraICoJ84czC9kD5NEJnMYAEhq3MBM90CZChcS+VGPuTQmCZcnUT17fPWxHBWXP8r9NjvDVXDhb66Gb+2UY5t6e3HpScfDEOXE+lw+skyZG2sPxrOHmykfJ1ODfzr39fAji3feeEPq0w9dfTniwOCLp501p/hM9uKPhCtaNCaNAOATYxJBJaHi8iI7+5cc/Er2GUxemR1sKVKh6n3cb0M+Rh7V1OFqPgDy7pNa7KpRUe0xMEyF27tnKxWOsXZsORXukYndnMer+XRlkUMdNretDI/vS543AlOPA4BXJcPVs/+2uMjlh4m5NFL1VnNvbYgLXLioJ3te+hXux+WHqGCI89njq/dycUVkPhryEjXEbcoabiayX+MSmZDvWCV54tru4u7bhmyTg8kSy+UjWf0gyXHt1tpw9ggLW7nfZsnfVlmW/bE7qHJpLGzh2iThGHlxE883cS5PRcXUkQBQ76GCwatnj8/jsp8WlIj8L3DXmkc+27B5wtR3foWLi73emHtiUObqf79KngDDXTfWz15OTMT9Nku+5Gx7uHZCOJp+1ptNeuhkbuo9XCdEvYvob2KbCOQUDba9FRO3gKiLjKtA3u9zRFnOJwijCN4O7ae67yHuMgC2/c3hZekMGJgowQsiJBm2v7Fsu5UoJx65gE2deP5iMc8aAGDItoVP9gn4RJ9AvZcbvomLXM0VTHD3m/y60cxhosH0Uq3tTDPiRKaxcngE599yW+r4l152Ompaoo5jDP7x9W/AN0862fnxX/7yZ3j39Vc3OVEiaYWaZsQtFOfSlJoRJyIiIiIiIi1stv3hAKAeBBgtTh2M861FX4mbpCEirUMDcSLTeO/V1yAXT30LYKRYxLdOOWmRUtQmjME/vP4NuHi1Ox8/8ouf4Pdv+E1z0ySyA9fAUCWngbhGqOTSLzK4Bj5FREREREREWoVrIK7meBFVy1OKdCYNxIk4DI5P4G03/jZ1/KLTT8FEgVzLSV5gPQ8fe8Mb8e0TVzs//5uf/xjvuvGaJqdK5EWzbbAsPOeMuEgz4kRERERERKR1zWVGHABs7U0PxC0b00CcSLvTQJyIw7uuvR5dtakdw6VciK+dftoipaj9WM/D373xfHz3mBOdn3/0yh/hHTdd2+RUiWwz1wa0ZOfKR1d+i4iIiIiIiLSK3Bxf6B3uTu+LNTg+sSBpEpGlQwNxIjvorlTwe9denzp+8cknOaePC896Hv7uvN/B944+wfn5/3f5D/HHV/8cXkLuuipCKtTSM7Q0ENcYrgcRDcSJiIiIiIhIK5v7jLj0QJxmxIm0Pw3Eiezgd2/4LfrLUzdJrfk+vvSyMxYpRe3Neh7+7nVvxg9WHe/8/E+v/jm+/PUvYPn4WJNTJp3M1YCuaGnKhnDPiNPSlCIiIiIiItK6XM+1rudf7REn0pla6vV+0539jfn+vuxTe601mcPMJ1whx3VAjlfymcPU6z4VVxjGVLiEyBOT5+KKe7j839Gbbr01dez7Jx2Ldbv0AnhxZlZ+WTn1vdl0FWpUmuoxd97Y810dzV62TImLC4mHGAZ/fcGbYbwEb7jj9tRXTnniEfzofz6JD7717bh5/wMAAH6FKFvkxLo6OREyKnJlMiTGHOOQy/98yKUx72cP5xW4W47hqgSEo9xvq+V95CvpSKteDqi687m/K3t9AAA9YZUK92xpgAo3Uc9lDhN43IWTW1ZxHo/608e6/OoL36+vT78dOBuPnFBnIvIaHSfbCcQlkJC/za9yaUxCmzmModPIhUvI1muSI/Ike3YA4O8bPtFMqA5wcdUGucrVq3Nly8TZ3/+LSmxc3ImrrODCxcuyt+UDsr3LYp5TErKOZEWOPUTnot5LhCOvbbb8e8Tpjgpk+U+4F4f8Cpcplni1t7SSex84JrfqtuRjivWy50lCtq3jApf/zOlOuri2XUzkBwD449wJCIg+6aDJK7vFRNsiIZ6jACCokQ+z7OoyljjfHtlGJp8TyS44GGQPWB3k0lgd5BJZ782e/wHRRwLwbet6N1eX1way/7ZoJ67f1CP7Mn0/exo9P0FPkO4XqOV95LqnNvJHlqX73HaqjaLYO/cHpHJCXgD17OeNfW72ylwZSYrZ6y0bcPcor8KlkXm2AYComD1cOM79ttwY2eAl+YPZ+3LYNnmr0ow4ke1Zi/3Xb0od/vwrNBtuoSWeh7/6nbfgh0cf4/x857ExfOOLn8cHrvqllqqUBedcUoLsIJSpatojTkRERERERNqMsx8hl37+HXYsTTk4qhlxIu1OA3Ei28lHEbwd3vyqBj7WrtxpkVLUWRLPw1+++a347JlnIzHpN258a/GhX1yJr35ZS1XKwirMcUkJyc71IJKvaSBOREREREREWpfrudb1IuqQayBOe8SJtD0NxIlsp1BLd75XctmXchNe4nn491e+Cu/+/fdiS7d7ba9TH3sUl335kzj+yceanDrpFM494nLaI64RXAOaOc2IExERERERkRbmeq6tOVbWGepLD8QNaCBOpO1pIE5kO8VaenOWsjrfF8V1Bx+C1/7Zh3Hzvvs5P99pYgxfvfh/8L7rtVSlNJ5zk2UtTdkQroE4V36LiIiIiIiItIq5Lk051KOlKUU6kQbiRLbjnBEXaiBusWzo78c7/uB9My5V+WfXXoEvfOcLWDahpSqlcfKRowGtuqAhnEtTakaciIiIiIiItLBcPU4dc72I6poRp6UpRdqfBuJEtlN0DMRpRtziin1/1qUqT1nzCC778qe0VKU0jGtQXnvENYZzRpz2iBMREREREZEW5pwR53j+HXbMiOubqMCLtdqTSDtrqV5FG2UfN6xF2X9i6KffYJhbXD4VLvC5iranUM0cxubTSy/ORbXOFZUqsg9ieYGl4oo9LpypvViuusquGXE5mCg9G8va9LHZMGEAoF7nylZ1pECF88ayx2fJ8zbX1wGuO/QQvPbPP4xPX/xNnPjEE6nPdx4fxVcv/h/810vPwf+eehYSL/2HbZNfPTBklgTl7AEtWZsnAVcm43z2zEx8Lq4kx4UzZBvWH/NRqKTvA7V6Hv4018ZzTy2n4lqXH6DCdfVmr/8BoL+rnDlMLebqnzh2l5Gyn953M1eLX/h+OJr9fIcTzS0jIMPV+rNf22w94nG3e/iV7HmZIyckFzdzGRnlybqEea+Giwqlncm6tZg9TG2Ay0fbzbV3Y0ebaC7KRJ7kt3JxWfLeRt838tnzMpdv7pK8TBu0brjGhSErLrJoodZL3KfINnlAvqyexNnzxGvyOypJyOVJVCSe0fupqOjnDb9M3jeIZ4facq5uBRmMKss9XP1jyOsmicl74jRtyZlY8nmDxVyn7LNNbYDbu94j+3JyI9kbk8bRnzIXNs89b7ANtfG904Mgsxnbk3wmylPBEPdmb5REfVwd6dW4MhKuIfvuCsQ9MeQqSeNzacwXspfl0I/RYyup40nRoKuQvp5Gu/Pom3jxud5PLHa3IxjpmtsDQY08b4lPlGWyvzWhHsAA2529cvVzXEM+Jtu7tX6u/skR99KAbMfE3G2DatsBAJZlr/AKm9PXTDvTjDiR7bhmwWhG3NKxob8f77jwffjsWWcjcTS6fWvxwauvwI8+/0n87ZWX4ZUP3I0V46OLkFJpdfnINSNOdUEjuPeI04w4ERERERERaV2ulV5cWzMAwEhvesCtX/vEibS1lpoR1wh7rduKv/3iFTj08fWwnkE98BH5HuqBv+2f0EccbPf/gYfohf/2sWlZD3590sG476DdAMeeVdLainXXQBz5CoEsiNj38e/nvAp37LIfPnHZt7CsNJH6zkGb1uOgTevxrpuvAwCsXbYCt++1L27bZz/cvte+WLt8J12/MiPXHnG1oONumQvCPRDX3JkhIiIiIiIiIo2Uc7xgWptmi4vhvi7suX54yrGBkTKe2mMhUiYiS0Fn9Spai//9h29hrw1D8/oz7/7+b3H/AbviO685Fj8/7TBU85ol0S6KtfR08bJmwSxJ1x9wCF73hx/Gp37wTZzwZHqpyu3ts3Uz9tm6GeffdSsAYHN3D27fe1/cvtd+uH3vffHALrsjZqbnS9sqOAaGNCOuMTQjTkRERERERNpNvpZeQnO6GXFDfeklUvvHsm8lISKto6MG4vZ9dsu8B+Ged/hj6/B/PvNT/PlXrsJlr1iF773qGKxZtqIhf1sWT9GxNGVFS1MuWRv7BvB773w//uQ3P8cfXncVPMxt3eoVE+N45QP34pUP3AsAmMjlcPte++Hzp5+N2/bZbyGTLC0i5xiIq0zzJptk43oQ0UCciIiIiIiItDLX0pT10P3S97BjacqBES1NKdLOOmqPuP7xxr9ZMDhWxru//1v85MLP4b//+ds4+a7HActtYimLr+CaEaelKZe02PPxH2e+Gu95+4V4YJfdqb/RXavh9Mcewle//nnsv2lDg1Morci1NGU10KB8I7hebig4HlhEREREREREWkXo6keY5oXeEceMuIFRzYgTaWcd9Xp/obpwe9D4icVZtz6Ms259GE/svhyXnHM8fvjSl2C8u7BgcUrjuWbElTUjriXcuP/BeMP+B2Pl6DCOeWoNjn1qDY576gkcvGHdnGfK5aMIZz14Hx7faeUCp1aWOvdAXEfdMhdMLUi/EZivR9teYtHejSIiIiIiItKCXDPipl2a0jUjTgNxIm2tpXoVvVx6rd3ZFHMvDqz0x5XU57e8ZG/88x+fgzCKEUYxgijBMn8CYT1BMPn/QX3bv/tGK3j5zx/AwQ9vnDHO/Z7dgo9++Up8+OJf4dpzDsQvzj8Mz+y3LHPaZ7Ou1Jc5TLnODSp15dMzxeaiWs9exMqb02+FLCRvWfWF/+7y0ze9ap835TvP6+tOl6fZ7No7mjkMAAzkuOnp0e7cvmdPjQ1mDvPsc1wZj3LcDNKo1338yV178OTBR+IyHAkA6C2XccwTT+H4x9bghEfXYtXap5yDLM/rt2OorZha13glbvJwOM4NKlQHs4fz00V0TuLlXBrrXdnD5ce4c21iLpwl53wb694jrhaEMNMkJezl6shVez5DhduzyC2znPeyzzzbUu+m4to6Nn24WuAjF029zrpRRS0MUdk5exq53AdMlSskXo27bixRJSeFhIor6iPT6GW/3qKt3L0mKnD5H2S//QIA4nz2MB5ZuKarK2aTEPlvsjePAXDnGgDgkQPmRKbUszd1AQCWTKINuTzxiN/m+9y17ZOFK2EzhRDH3LVt61w4v5r9tyXkU3BCLpTh1bOn0VTJdlOTJ5lHeSL/yfY/27bzyeIfdWdPpw24a9uwixUR59smXIaw70vZkMuTpJA9wnovl8j8MFtHZi8jXr25Kyj5dS7/kWQPF/dzL6Jbsm0RjHCDFpX+7NdbdYCKCvU+Lv+9AaIRSrYRqmR/R3mMC5cQ9WQQcg1ett5i2jLGWISOPeLKQYgoSf+9rb3p5+WekQpq0Ryfrci2Xa4re9mqlbm+ZBuQ9V0te/7HZe6Z1ETkPZH8aT5xafs1st3EZQktJu7bSb7JiVxkLTUQN1/FSrq0D/d14endpw4gLCtOP+jx4ze8BAc/uB7nXXY3zvjNo8jVp78ZFMoRXnHZg3jFZQ9i7YHLsHWnbowMFjE6WMTIsuLkfxcwMvn/Y/0FJEFHrRa65Lg637VHXGsbKxZxzeEH45rDD4ZJDHL1CEc8/QyOf2wNXnXnvVj15NNTvl90LE8qncWPYwQ7PHhGnofI76wGwkKq5oLUQFy+HqGm+lZERERERERakGtGXG2aGXHDva6lKbVHnEg766iBuEI1XSFWCtk7/R4+dBd84tBd8MX3n4ZzLr8f5/74Huy8cXzGMPs8uhX7PLp11r892p/HyLJtg3XDy7pw/7G74bpzDkA931Gnaop8vY4D123AAes2YryQx40HH4BSgXitfQ5cy5eW8+oYbie1MMAd++2DO/bbB1t6e7DqGzsOxC3cErbSGrQs5cKrhgF6MXUaZ74WYYZJdCIiIiIiIiJLVq4+9z3ihvrSS1MOamlKkbbWUT2LrkGWyjwGuIYHu/Dt3z0el77lWKz+7Rqc/6M7cORtz80niegbqaJvpAqsGQYAnPKrx3H+V+7AD37/aPzmNQchDtt3RoZJEuy+cRj73LcGhz67Dgc/ux6HPLse+27YBN++OA334d1W4oIPvw9DPY3vsdUecZ2llE+vL1TQQFzHy0fpMqCBuMZyPYzkHQ8tIiIiIiIiIq0g0x5xfekZcf0aiBNpax3Vs+geiJv/IEvie7jx1P3x0Fm7Yvc1Q3jFDx7A6Vc8imKpMR36yzdN4A/+7Xqc98278f13H4PrXnkArN/aS1j2j5Vw0FMbcfCTG3DQkxtw0FMbceBTG9HtWD50Rwc/twGvu+UufO3MUxqeruIClRFZmspheiCuS0tTdjzXErXVUPVAI7mW59BAnIiIiIiIiLSqvGP7oto0M+KGHQNxWppSpL111EBcvgmDLM/uO4ivfvgUfPt9x+O0Kx/FK77/APZYO9yQv73yuTH80T9dg9d94258973H4IcnrqI3tV0M3eUq3nD1Xbjg57fhwGc2zetvHfzsugalairXbKiyY9aUtAfX/n/aI05cA0IaiGss14y4nOPtQREREREREZFW4HqmrU2zstlIT3ppyv7xMrw4QdLiky9ExK2jBuKKlebNdip35/CL8w/HL954GFasH8eyzSX0bS2jf2jbP31DZfRvLaN/qIK+yf/vG6nO/ocB7P7kMD74//0a5+53L778eyfjxpP2B8zSHZDbY/1WvP2KW3D+r+9Eb2luv3E2CzVrqVhN/10tTdm+yjktTSlpOe0Rt+C0NKXIwsrV6zj7/gfQXa3iyqOOxFgx/aAvIiIiIiKN4+xLmGZpyijwMdqVR992/aSeBfrGKxjuT8+WE5HW11I9i8lY9gGRLabnxf8ZTX++OenBlqGeKceGx7jOiif9ZdN/uHzyH4eV/WMAAD+KMTBSxsBwCSu2jOM1V96Ll1736LR/8oAnNuGfP/YjPHzoSnz9Patx53F7zjogl/e5js6RaiFbAGtx7N1P4Y3fuxNn3v4IvO32eGuEQrUO7Pgn8wn1t7bPMdcecZV8CFeu1qLs+/WtH+/NHAYA1tk+KpzvcXkyXslnDuPl0lPw5yKJuEFkU8n+hpBXnxpXBemBuGK1Bq8y9XuGy8Z0GZ2joJQ9oA24fLTki1aW2a6SrAfiPJdIG3LxufeIC2FnyGLf5wrJs+P9VLiHN+9MhespZH8ZYmXXGBVXMT/9CxP1fLoA9aGCYr6GaKTHEWJmpsljeIa8tpnrhr22nTeuBQoXdXEZEo5yiUzI92N84l0gE3G/zSPvbbZKhOudmsYgjvHNz38Bxz+xBgDwoSuuxLl/8efY0rtDG6TG3gCa9/IXfW2TTzg73v/nqjaWffWEepksyHQFRPw2tvlOhjMT3InziHeoAnYLFvK3ebXsAYMKW/9w4UzChUuIPczjIhlXjmtvWY/bZ91j6mTDxWU99sGBCFcn29ZMXAB/32CiI5OYkPeNiHgh2mfKFfhn0uoAd78JwuzlxK+yD86cqJ/ru6v3Zj8H9V7utyVdXD9JMZ/95lav0QWZCsY2SZiyHFW4cmxj8reF2ROZ5A1y1fT5HkcBtWnOzVBv95SBOADoGq5hY/fsfYBsN2u9mr2cWPK+Ybq5xnxYyB6OaY8DgCHyAwCCca5sBcTqo0xbFwDyo1y95dW5wsX0dyRBZ83+bKmBuPly7f9VXkL7f8WBjy3Le7BleQ8e339n3HzCfjjokfV4z0U34KRb1kwb7uAHN+Djf/Ej3PuS3fD196zG/S/ZvYmpnipfreMVVz+AC354Ow5cm335yfFiHg/tugse2n0XPLz7rnhw912xcmQEn/3SxVO+t1Az4pz7CGpGXNtyzYjTHnGSd+4R11G3ywXn2iNOS1OKNMaJjz3+wiAcAOwyMoo/u/IX+NjvnL+IqRIRERERaW/ubS6m70sY6uvC3hu2Tjk2OFrC2sXr1hWRBdRRPYuu2U5LfdnBRw7aBX/98fNxxH3P4r1fux7H3P30tN898u7n8Ik//QFuP34v3Hbi3tiyohtbdurBlhXd2Lq8GxHxtuJc7bR5DOf/9E684fK7MDA6t1dMH9t9Jzy898pt/+y1Eo/stTOe3WkA1a1Tp2Af/2h6ENJ1LhvBWUaW0GCtNFbZse/XQpUtaR15x3ISFe0R11DVXPp+lNdAnEhDHLBhY+rY62+7A/983rko57PPeBcRERERkdk5B+KmWZoSAIYd+8QNjhJTpkSkJXTUQJxztlOLDLLcd8Tu+OAnL8Axdz6F9371Ohzx4Lppv3vsrU/h2FufSh0fGixi84oebFnRg80rurF5p15sXtE9+f89GO/Jb1s1whhYM7mqw+R/o5bAGgMYwGLyc2Ow71ObccEPb8eZ1z+MIJ59yms5F+KHZ7wEX3/ViXh8z7ktreYaLC0u1Iw419KUS3ywVngV1x5xjtlQ0lncS1N21O1ywdUcbwXmtEecSEO42ki91SrOvfNufHf1CYuQIhERERGR9uda5cX17Pu8rb3dqWMDYxqIE2lXHdWz2FVNd0y4lqZbyu44ei/80aq3YfUtT+APv3Yd9n9s85zDDg6VMThUxoGPZl8ycr6eW96Pb77qBHz3zGMw0ptt01HXQNiCDcRpacqO4poR11WrbVtsm1jvX9qD8y22QPVAI7mWptSMOJHGmK6N9Nbf3qSBOBERERGRBeAlCXJxeo+4WjD96mRDfen+0YExdiNbEVnqOmogzrXkXKlFZsRNYQxuOnF/3H/K7jj52sfxjq/chL2eHFrsVDnddsheuOjVq/GrEw5B7HNLY5by6cFSLU0pjRD7Pqq+j/x2jSXPWuSiCDUtRdixXLMitUdcY7nyUzPiRBpjur1Oj37yKRz67HN4cPfdmpwiEREREZH25nqerYTBjC95a2lKkc7SUj2LxmafoRLmXqwIXW8IRz3elO8AQF93JXviAPQXuHDetkUgM3tqdBBPrToOl376GLz62vvwR9++FnuuX/wBuVrg44rTDsfF556A23bbZ9tBC2COfaxe1Zvy/1VbSH2nq1pLfQ8VL/W9uYiez35r0eWYETceF5GU0397giiPIMtWMccNPJZr3GBSLsjeIe71zL40qcuE4/zOLWD2fW6SMH2tVXI55MtT3zjK29q2BtMkP+Jmx1lyW8Yklz0+pjgCgOFOGxUuqHB1Xb2HCob6QPpttLkIfcfs6WKAuHv6vxdvSTeg52JdiZuVvesuXF2/smssc5hKzNUjlRnqn5Kf/t1e2aJSC6myzM5fZa9RcEULYK437tYGWyATSWSmjbkz4LjUFlREXKa5US4uj/1tRDXp1afmf7EyfZvhLTfcjH98wxsBAInP1clUOQZgmHJCXtx+hQuY5Mg88YhwhovLC7gTYNmGAiMh200h99vifPaK0iPf6WPrLSZcWCbPNXvf8LjzFhWzh0uK5Ms3bL3leJabCzYvKWSbxDJ1ApmNbP3P1nfUPYCs6tg2oUc837DPX00tjwCSsHkRehFXRozlwsVEF0TSxZ04U+Ta5EGQPVwcc+eMvG0jIXuUDdG/kpDPG1QbDYBP1K2uNngtDODNkIbh/vSMuMGxEswc6k2fKCMAkMtlDxcRbS0AqNe4QhJHRKVMlhG6biXDRdkWiQPAtz+9OnvD5yR+9nMQFdlOmdbUUgNx8+Wc7dQGyw4mvoefvuwoXHna4Tj5zsdxyJoN2HnLGFZuGZ389xiWj0wseDq29HfjO686Fpeecyy2DE72nDfgRY6SY/nQhZgR51qOrhIESLwmt3ilqcq5EP07DMQVazWMdBN3R2kLzqUpNSOuoVwbVmtpSpHGmG5GHAC8/o7b8a+vOde5R6qIiIiIiHByUXqAy/Xcu70hx9Y92iNOpH11VM+ic/+vNlp2MAp8XHv8Qbj2+INSnwX1GDsNjWH5hhJWbh3FzltGsXLrGFZuffHfhVoEWAuDbW8WGQsYbP9vO/ky2+Qxa5F4Bo/uvRLff/kqXHna4agvQGd1NQyQGANvu7ed8lEEL0kaOkjmmjHZTuVD3FwDvTN1Ykr7yzuXplRd0EiuDatdA6Aikp1red3n9VUqePU9d+MHxx3fxBSJiIiIiLQ314uls73Q69ojTktTirSvjhqIcy072Cn7f0Whj3U7D+DJwRVU+Fy4iB2kxqAchujeYXCkWKthokAua+jQrjMmZWYVxzleqD0IpTU494gLOup2ueAqmhEnsmBme5nkLTfdpIE4EREREZEGcu0R53oBdXvDrhlxo2XHN0WkHXTOmnvWOmfElfNamqcVuAbEGj1YUnSVDy3d1PZc57hQ14y4TuZcplaD8g2lpSlFFs5s97Bjn1yLg9ava1JqRERERETan3NGHLE05aCWphRpWx0zEBdGMYJk6mabdd9DFHTWpoCtyrWXiWspyflw/T3NiGt/zdqDUFqHc484zYhrKNcSHVqaUqQx5rK88gU339yElIiIiIiIdAZmr/mRnmLqWN94GV6cOL4tIq2uYwbiCo6Odc1waB3uwZJGD8Q5lqNTGWl7rnqgq6oZcZ0sH7n2iNNAXCNpjziRheNq8+7oDbffhrxeOhERERERaQhmIC4KfIx0T91yx7NA30SloWkTkaVhwXsWjTFrAYwBiAFE1trjjDHLAHwHwD4A1gJ4s7V2aMY/ZAFTNZnjr47nAQD9Q9XUZ+Vc7oXPt7elxmXLkNdNhRvsn6DC9RTSv2k2tSCm4mIxv8w6TrNzacp6bcp3PbIP14xvO9+F0fQbJ2U/98LnO/J7sg/W5Mj8DzzubZhl3dyU9jjJPkZfrnODluNJ9usaAGx39rz0R9MzYCt+epC3q1yHV3sxXUloM8cFAIZ8iSkuZM+TpMmTe02cPY31Lu7dD0NWW6bKxVesOtZ293Iw9en/3s4HbqbiOmXlE1S4/YqbqHAFk73jvZSk75Nz8Uvv0Gk/G1yRXvd+mZnAATttxn0T2ZcEZt8XDHJs4eLqhKiSvZ7MdXEvBiRk3ZrPZ7+ZTgTcfq3je3Jp9OpkOCIro24yruxNNABAvTd72UqCqWG66rNH3l8u49W33ofLTjomc3wz1YUzB8weJBzj8t8n+y7qvVx8zKuNYYFruFpXQ3kOEqK6Y+OCx9WR7CuiAdHcDUpk2478aSDCWcPlP9OOBABL5n9CPAKYAvlMRN636dcOiPout5VrlNcGmzj7wScLMlkl0PERmHs9APjkfZsRFbmLjb1GTczlfxJkP+EBef+Ni+T9vkpeN0SWmIhLoyHviUxsvs/lR0JeouE4F9AjqvKYfLYJu7g7QL6QPVyPTV8AUd5DITfz3xrrK6B/h4G3vapDsLPUFWOGe073iMZMmXhGB4CkSnZUEafb1NiGJPlsX+DCBePZf1ycI+ufiEuj9ck6uZY9Pr/S3HGKxdasGXEvs9austYeN/n/HwFwlbX2QABXTf7/gnLNcNGyg63DtY9Xw/eIc/y9cqgy0u6ce8RplkBHc+4Rp7qgoWqOtfJztc5qgIksFNeKAb8+9JDUsbddq+UpRUREREQawbVHnGslmB0N96eXp+wfTb+4KiKtb7GWpnwdgIsm//siAK9f6Ai1/1drcw6W1Bd+jzjX3nTSXpzLnja4bElr0R5xC6+WS78Zl3M8uIhIdq4Xi75yxumpYyc8thYHPrehGUkSEREREVl0PaUKPv2fl+K29/w/XPwPX8Je67c27G/n6ukXS10voO5opE8DcSKdohkDcRbAL4wxtxtjLpw8ttJau27yv9cDWLnQiXB1SpTyGmRpFa7Bkkbv4+WaBaXB2vbnmunU1eD9B6W1uPeIU13QSHXHQFyoGXEi82aSBMV6ug777YEH4KFdd00df8t1tzQjWSIiIiIii+5jX/sZXnvjvRiYKOOEh57Ef//HJQ372znnHnGzL82ogTiRztGMgbhTrbXHAHgVgA8YY6a8kmuttZhmhWZjzIXGmNuMMbfZZH5rprsG4ioaZGkZrnPl6miaD9csqHKowdp25xps1dKUnS3vqFs0I66xtDSlyMIoOOqvShgg8TxcctKJqc/edOPtzjpPRERERKSd7Lx1FOddf8+UY4etXY/lw+MN+fvOpSnJGXEDIxqIE2lHCz4QZ619dvLfGwFcBuAEABuMMbsCwOS/N04T9gvW2uOstccZb35JLbiWptSMuJbhGhArNnhGnHOPOA3Wtj1n2dLSlB3NuUec6oKG0tKUIgvDNaP7+VUFLjvuWFR22KdioFTGq26/rylpExERERFZLOdfcwcCxySPvlJjBr1cz7PVOQzEDfd3pdM0poE4kXa0oANxxphuY0zv8/8N4BUA7gPwYwDvmvzauwD8aCHTAQBdVQ2ytDLXMqKNHizRHnGdyTUg7xqUlc6Rj7RH3EKrOx5ItDSlyPy5ZsQ9/8LJWLGIn65alfr8rdfdvNDJEhERERFZNCZJ8OZf3+78zNVfzHC90FsLNSNORF600D2LKwFcZox5Pq6LrbVXGmNuBXCpMeY9AJ4E8OZZ/5IBkv7sb8sPLN82xXh5OJb6LO41L3y+vWXdpczxAEBguOUzN5fSbz/Mxdbh/sxhjHGuAjorz+d+W6GQ/YZW3yUdV20w/b2ecALhLi+eq/p6Lh+fzxLnjLgwxHRZVt+UvlnOZvNoPnMYAJg2EbMFq8y+HrWLLWTvEA+6uNkstsal0dSzv0fg1U3qWMVz7D9YqU35rl9Jh5tbfFQwBMTKCH6dKyNBiQtXGMpeRkzMxZUb4wbEk5B718S1R1ylx4MtTv+b9+gdpuIqJ9xv+9mGI6lwHlGX7NPNbWAdJdPnfzlIvwgT1mJEiQczlD1P/DJ3jZK3bdR7yYD92SuFJOF+G6tez14n2zJXjwe15v62hHj/yq9ycYX0CjfZ8yTJv3hddztWCyjnci80I769ejXedOttUz5f/cga7L9pPR7fbec5xWd9ri7HWPY6mb1G/RqXxrohy6SjfTFrEEu+EBiTaWTCsZdowJ04Q9YJHvEeh0dOwmbqETZcnG9uHcm20xKmR4H8aYllr1Hy/WMiS9gkBmPcvTQuzm8LjyxsgYyLbMsw7buA68qBF5HPUpXs4QpbuReKk4Arx3GBDJfPHq7WSz7bk/WP6/l+LmwzNul5Pi6y/Nej7HlZmeCeLXNVsuIi+6moetIj45qM7JR7n8Cem4ad3ylU6i9873m5gOh/RnrwzO9JsKJnYsZw1cF0I2H52AS6w5nriq3jXB9oeSh7X6Ypcdc2edpgA+YGzMXFhrMhFzAuZr8AipvINlqOu7bDce4laeZ+Exe4sjUTY8yeAL6ObeNSFsAXrLWfMcYsA/AdAPsAWAvgzdbaIbNt4OozAF4NoATg96y1dzQ8YVjgGXHW2iestS+Z/Odwa+3HJ49vsdaeZa090Fp7trWW6+XLoOCaEVfQjLhW0YxZS64ZdpoR1/4qzqUpNSOuk7lmlFTn8CabzJ2WphRZGK7Z/duvAHHHPnvj4V1Wpr7z1mtuXdB0iYiIiIgslrdcddu0n3VVGrPalut5tj6XGXH9hdSxPs2IE5mPCMCHrbWHAVgN4APGmMMAfATAVdbaAwFcNfn/APAqAAdO/nMhgP9ZqIQ18T2QxeUaiKvkNRDXKsqOc+U6p/Ph2li1EqqMtDvXErUF7RHX0bRH3MJzbVqd09KUIvPmHojb7oUTY/Cd1atT3zn/hjuQ17LMIiIiItJmlg+P4+zbH5z282KD+hZdz7OuF1B3NNKfnqHWN1ppSJpEOpG1dt3zM9qstWMAHgSwO4DXAbho8msXAXj95H+/DsDX7TY3ARgwxuy6EGnTQJy0BNeMuEat4/w814y4sgbi2l7ZNSNOnZEdLe+cEae6oJFcDyShZsSJzJt7me2p97nLjj02te/lsvESXnnH/QuaNhERERGRZjv/2jsQxtMvrdtdIdei30FYdw3EzT4jbtQxENc/qhlxIo1gjNkHwNEAbgaw0lq7bvKj9di2dCWwbZDu6e2CPTN5rOE6ZiDO9YaDBuJaRzNmxDk7r7Q0ZdtznWPXoKx0jnyUHhDasdNa5qfuWpqynsAk7MLuIgLMYUYcgJHuLlz+kqNS33vbb7Q8pYiIiIi0D5MkuODq22f8TuNmxKX7EeYyI260L700Zc9YBd4Mg4cigsAYc9t2/1y44xeMMT0Avg/gg9ba0e0/s9Za8DsL0jpmIE4z4lqbayCuq9rYwRJX55WWo2t/rlmPrrIgncFP4tTbcrExiPyOuV02hzGohY5ZcY63CEVk7rpm2SPued8+Kb085UkPPYF9129akHSJiIiIiDTb6gfWYJ/1W2b8TqP6Ft1LU87+Qm/iexjryU855lmgd0zLU4rMILLWHrfdP1/Y/kNjTIhtg3Dfstb+YPLwhueXnJz898bJ488C2HO74HtMHmu4julZdL3h4BrckaWpGTPiCo7l6FzLFkp7qTjOsassSGdwzYar5ELAmEVITXur5l37xGl5SpH5cC6z7Zj5feu+++KxXXdKHX+rZsWJiIiISJu44Ne3zfqdYsMG4hwz4hwvn7q4lqfUPnEiHGOMAfBlAA9aa/99u49+DOBdk//9LgA/2u74O802qwGMbLeEZUO11lpbUfaO0PGJbVN8g4n0lN5hdL3w+fbGxtMV4Fx0dXOV5MrecSrc7n2js39pBxN1bmBptJLOp7ko17IPdsZR+kY14afjL1bqU75rc9y0bVPdNh7tXs5p+vR7y7KvI93Xw63zPNjV3PWh6/HcGgvb2zrRRcUVjZCDnUR9EHWlZx2PRY5B3qg25btxgZutHI5xgzeVnYhwlosrN0KmcVn29ziCCjnrm1yRod6bPT5vIl0PVMMA8Gf+Ww9tWjnj59O5p7YbFa4+zNXJfm/2QeanugeouEql/Iyfl4MQvZhajz7z1AD8SvYy2fUcV44NOQEvLmSvIwFg7BCiMOe4REZ1Lo22kj1cMMw1J/0yd97sLNfjdOKZi6STIeufqJsL5xP9AEnuxfwoxOk/UCqEU77zvItPOxEfu/SnU4696fo78MnXnYNaOP05NRXuPT6PKMoB2fyx5MsTbJ2AIHuZDIrciwd+wCUyDLOH8wx3rSVkm2TcI9uSRJ0cFbk0BhNUMFiiSq5y1Tg88n2ygOzvs8QtwHhc2WJfi/KqXL1l6tljdNW3cxGUuF+X5Ik05snnZrb+J/OfeZbyIvK5rdS8JeBqfeQL4ewCWuSF49WIZykiDADkt3J7dEVdXBuUqZNtyDYKufKfJET5J9ojAN/+qfWRhcsS6SSCDI5N4JW3PjDr93qjCvKFqTfPYpi9nRZU02VkIsijGs1cTserOWzp6cLuGJ5yPFkPbFo+/UNFpUT2pcVM3cpFRTYJ4RF9Aoa4ZgAgLpDXNlknM9dbvZtst5L37XCcqxSSkChb1QVZHfIUAO8AcK8x5q7JY38L4F8AXGqMeQ+AJwG8efKzywG8GsBjAEoAfn8hEgW02kDcPBSc+39pRlyrKBcc+3g5zul8FF0z4rRHXNtz1QONXvZUWke+7tgfboYOaeG58tWV/yIyd66Xikp5d1vm+ycfg7/+wRXIRy8+aC0fn8Ar7rwfPz3hJQuWRhERERGRhXb+jXcgF80+oNCwPeIcz7JznRE33Jt+GWlwtDTvNIl0Imvt9Zj+NZSzHN+3AD6woIma1DFLU3ZVHLOdtDRly3ANljR8aUrXHnGO/cOkvbjOcbFe597SkpbnWpa0qnpgQbjyVQNxIvPjnt3vHogb7unGFccemTr+tmtvbni6RERERESaxlq89dpbUoc3LOtNHStWGjQQ51iasp6b40BcX3ogrn+suStjicjC65iBONeMuMo0bwjL0uMaNG30rCXXDDvNiGt/se+j6k9tHHnWOvcKk/bn3CNOM+IWhGbEiTRe1rbMxaefmDp2ykOPY58NmxuaLhERERGRZjn+0bU4YP2m1PFvn3Nc6lij9ogL6+nZdzMt9769ob70FkkDmhEn0nY6ZiDONdW4pBlxLaPsGDR1Da7Oh2smjDrgO4OrfLlmFUj7y2tGXNNUcxqIE2k010tKpRkG4m4+aF88vnJF6vhbrku/QSwiIiIi0gredk26LXvzEfvgwX13SR3vatiMOMdAnOOZ12XEMRA3OKoZcSLtpnMG4lwz4rRHXMtw7uNVqTVs+UCTJM494rQ0ZWcohwu/B6G0BteMOO0RtzCcM+J03YnMi7MtM1N71xhc4pgV9zs33IZQM8NFREREpMX0j5fw6tvuTR3/7iuOQbng6Ptp0Iy4vGNpyuo8lqbUjDiR9tMxA3Gu/cRcs2BkaYoCH7Udlg/0rZ3TxqtzMd1ydNbrmEuko7kGejUjrjO5Z8RpIG4haGlKkcZzdSTMNCMOAL538rGoBlPbWCvGJvDyux5oaNpERERERBbaG266E4Ud+viGe4r41YmHOre9Wcg94uY6I861NKX2iBNpP63Vuxhmn/1kzLYwzhlx+eCFz7eXL3CVcKXMDew9PrwzFc74SeYwftiYgau5yucb16layYfIlaamv1itvbDmsqlxg2YmArpKjoHaMAczQ/I9L3v+1yLukquS4QIijQAwVEo3AmYTRVz+e1VysJOZDGnchyuOTspirY7nqwcTTRNwFgk5oTIgxgA98lJL8ly4YDx7GI9s31qPm/lqg+zh8tZxrwhCYJYyUBrnMnLf3bh9mA7efyMVziMunKdKg1RcD0zsOuPn7hlxMerLshfmkT7uGjUxF86rkeEm5vZG5PbqEXmRckmEP9G8F1AS4hoF+LrVNvHdmpg8bcxv2/6cuZbWqSZ553mNitvaVEN9XbjymCPwulvunvL52669GZcff2QqnM1zbQsTZz8BtT4qKiTkEw5z3wAAEG3QqM49N0SOZ5e5qBLPUR753GAtWQGRbXmmvuta35hVNeaKKZPNrLMAIPG588ac7hz5jBiGXLgxxwyIuciNZb9vwyPbJOTzhk/001pDFi62Te5z4eJC9jBRF5ePtR4uT3zi+SYhihUAkNU//Cp73poXV5LnMiUucuEs004g7qMAYMjrplbJ3ihk44q6uXCFzeR9g2hvefk5tkmsxVsdS6x///SjMZYUMWLSM88KlTqqO+T3CHHBBdV0G/m5Sj+GR9Jxbi+KfDwXpp+5e4cqGB2foW9ujHso8ivZzxsTBgDAPTbAJNnj88h36dk+SY+8bxc2Zy9buXGy/km4cPUerm5l2pJ+g1a6axUdM93H9YZwRXvEtRTXnn6uvf8YxXq6fJS1LGXHcM0WcO2zI+1PM+Kap+aoYzUjTmR+XLO5y7PMiAOAS844IXXstAcewx9ecU1D0iUiIiIistCOfuxpHPLMhtTx75x5HABgwvFiRlelQUtTOp5l59qXMNSTHqxbNqalKUXaTUcMxAVRjDCeOgwfeR5qAfkqkiyK6WYtNULBuYegli7tFK69AF2Ds9L+3I1nDcovBPfSlNojTmQ+ulwDcY59UHf024P3w5qdl6eO/+33rsBfff/Khu3JKyIiIiKyUN5y9a2pY7cevDce333bSmSuLYoa8oK/tc6+hFo4t37nod70QNygBuJE2k5HDMQ5B1nyIWDIqbWyKJxrOTdo1pJmxHU212wBV70h7U8z4ppHe8SJNF7B1Z6Zy4tFxuCLrzzN+dEHLv8NPv6NH8JLyLVlREREREQWWG+pgtfedG/q+POz4YDpVtqaf79iGCXwdnhxLfI8xP7cBuKGe9JLUPaVKvDj5m4vJCILqyMG4lxvN5RzGmRpNaWFenMF7pl1c+q4krbgWprStbyXtL98lB4Ics2YlPmrOjauzjs2uBaRuXPOiJtjm/fi00/AZatXOT97+zU34zNf+DZCRx0pIiIiIrLYzrvx7lTf3kh3AZevPuKF/6+FAeIdJmXkoxhBNL8BL1cbOcsLvbHvY6R76saYnrXon6jMK10isrR07kCc9odrORVHR1KjZsS53iBX53vncJUtV2emtD/NiGsezYgTaTzXbO7SHJamBADrefjz97wZX3/Zaufn5916D774399AQXuoioiIiMhSYi3e6liW8kenrEJ1+/4eY1By7BM3375F1wulNceLpzMZ6u1OHRscm6DTJCJLT0v1Lpog+5I43V1VLDPjqeO1QoDurqozjOdxS+8MdJWpcN0hV+GP1vKZw4xMpKc7z0VU5/bTq1azF7G46o5rwtGRlJ+IX/i+8bn9SxIDFBLHG+SFEElu+r+ZbM6el/Ui95bNxFbuvJkSd968avYx+rif60Bnz5tfItJYcMflmhFXqNdhJ1+U8smXo8IxbvnbgKhKLPtaBbntT1DJHjAscZFFBS4fw9HsmdI1kT7Z9SQHf2zma2mPfTdljgsADu7fSIULDFcoN1d7MofxyEJSKM58b4u70ue1y1bhd2evS5KIKyO2wtWRlrwn2hnuKdPx+riZ30mdqxRsJXs4sjjCJNx58yKy4iKyst7LxWXIMWUmT2wwmUZr0eVamrIrhHXca03ZVY59fOyNb8Rwvht/euVVqU9fdu/D+Manv4L3vu/3MdqVrW0SF2b/Tio1XNMaSUi2Ccl3sLze7IWrp4d7w7mY4+qEgHi+YcIAQJRw9c/W8fT+KHNRG+nNHsg2d4uCpIkLbRS2cOFyo2TdSmSl73NlKx9wN5xSH/e8HY9nr7jYesQne2Zc9fusPPJck/dtv0aGK2cPl5D5WOsj2yRE0WKeowAgHCfr5ALZJiSCJT6XjzG5YpVf4/KymbcAQ9Z3Pb3Z2wnVGncBxGR+ROlxoznxiGe3ejRzgTxyzTM4/Ml1qePfPvtYGDO1nJTzIXrLU/uDu2s1jPe8WOfHcbYLIKikz3MlDBBFsz83xsPbGglbi93YB1Nv4n3r6oi73Y2Iwkayv49oSjJ9VGxcAGDi7Nd2EpB9AiUuHPsMXBjKXiewdV1uhHso9epcvVXvyV4HefXO2ou8I2bEFVwz4gqa7dRqFmxTVWwbdNmRZsR1DudsS82I60iuukAz4haGZsSJNFYuilJ7U9R8H9Ec96Z4gTH493PPwf99w7nOj094fA0u+cznsWJ0jE2qiIiIiEjDvO03t6SO3bHfnnhkr11Sx519i5XGz4jL2o+wtSc9srlsXDPiRNpJRwzEuQZrKlqasuW49jhp1GCJq/Nde8R1julmxEnnyUUalG8WDcSJNJZ7fzi+LfPls87AX/7u76T20QCAw595Dpd++nPYfcsQ/fdFREREROaru1zFeTffnTp+yUtPcH6/5OgP7prv0pSO59isA3FD3emVATQQJ9JeOmIgruB4M0F7xLUe94y4xgzEuQb0yup87xiuQd75NsSkNeVdmywHmhG3EFxr5ucc92sRmZsdN6cH5t+W+e5JJ+AD7347qkF6Vt1+Gzfju//+Wey/nltiV0RERERkvl57893o2WFG21ghj5+ceJTz+wux2lbOMRBXyzoQ55gRNzhRotMkIktPZwzEuWbEkWtQy+JxDpY4Op0Yzs4rlZGOUXHsP1h07LMj7c89EKe6YCG47sOuF2dEZG6cLxU1YHb/lUcfhff84bsx4fhbuw2P4NJPfw5HPPXMvOMREREREcnqrdfcmjr2w5NWOQfcAKBUSB+f94w419KUjhdPZ+JamnJQM+JE2kpHDMS51vqt5DXDodU0e0ZcRUtTdgzXoGuhQYO80loKjqUptUfcwnDNiHM9wIjI3LheIGnUMtvXH3oQ3v4nF2K4q5j6bPn4BC75zOex+pHHGxKXiIiIiMhcHPbkc1i1Jv1C2LfPOH7aMK4V0ubbt+hamrKWcWUd19KUmhEn0l46YiCuUHUsTel4A0KWtubvEadZMJ3CtUdco8qWtBbtEdc8rgFO15IeIjI3rj3iXPc31p377o0L/uz92NjXm/qst1LFRZ/9Es6694GGxSciIiIiMhPXbLh79tkd9+2z+7RhSo6X/LsqjV+aMvMecY4ZcdojTqS9tNRr/jZObxY/m5HhLmDYcRzFbZ85I8oeDwBsJdIHAMX+ChXO82xTwgBAHHNjtkmdCFd352MpyKeOFcv1F7+fZI/qhb/j3CNu5s4r2529w3jP3bZmDgMAA4UyFa4ccQMIY9V0Xs9m81C6Y24uknL2uAAgLhBl2bjDuN6I6qrVtvs+d21HRe56Y+KLuri4bHrbnzmJC9nTWKlx+eiRYzM2yJ4n+dgxIy4Xws5SlT27eSBzXADw3JZ+Klx9iLtuEGbPk6CbeyiJxmauf0ZK6QeNYCKBv6aQOa5clStbPnf7pa+b0qHZIywUuZcCKuAGYGYr605c9vPYqpVA3WsA+GSZNLXs8SW5bWEKSTX1WTkfvvB5Kq6B7GXrkYHleONH34eLP/ll7LVpapsmH0X43y9chE+94eX4wjmnI9phXzlvJHvhisn7qEe2yQ3Zlowmsj9SjZZ7qLhGp2knz4q5ttm2Nfmqp4m431YYzx7OI/vbwgmyveVlTyNVHwMobJ3HQxHBJNl/W0KEmQ/f5/KkvoIoKGNsFwuXJzmibq0OkmWEPW1kdEx7iy39ScC2JbPXCUx9AABexNU/xc1chWfi7PHVe8nyT7btLBkddb8n2xYJ+eBQLmdvy0c1Li6fzP+EzH+/QvR3lNKRFas1vP7Gu1LHv33SiTCT33e10SaQXuEhv9Ui2vLic2iUsYyYDel4KjaPZNPsz7b54W31+Hi9L/XZ8qES8pvcGR2QY3RM+WfbTUw9AnB9QB7xHAUA+VHuzuHFVDDyfsP293H1liXHRfxa9rw05L2tVXXEjDjt/9Ue3DPitEeczJ9rGdKiY5aktD/XkhLVjEtKyNy43hB05b+IzI1rSeVGLU25vad3Xo7z/+Z9eHj3lanPgiTBX3//5/jx//1vHLFW+8aJiIiIyMJ4zR13o68y9UXHiXwOPz7u6BnDudrH816a0rXFRealKdMvqg6UtTSlSDvp2IE47f/Velw3S9cyTAyVkc5Wdiw9WNDSlB3J2YDWHnELouq47jQQJ8JzLk05zSb187VxsA9v/siFuHO/PZ2fH/7UOvz4/3wWf3Pp5Sg0aD9fEREREZHnvfX6m1PHfnLsKowXZ56F5lyacp79P84XejNucTFUdOwRVxqn0yQiS09nDMQ5OgBcS9HJ0uaaoeZ6+5uRd8x+qqjzvWO4GmKNmm0prSUfpRvQ2iNuYWhGnEhjuZfZXrj6a7inG2/7y/fi+sMOcH7uW4v3XXEtfv6xz+DkBx5bsHSIiIiISGc56Ln1OHbNk6njl5x64qxhF+Il/0asrDPiGIgbKJfhx+QaiCKy5HTIQFy6Q32h3hCWheO8WTboLWtn55VmxHUM136AjZptKa3FNShfDTQQtxCcA3GOGYkiMjfOtswCt3dLhTx+/4O/hy+88jTExr2XwD4bt+CST3wJH//Bd9Bb5va8FRERERF5nms23IO774q793av1rC9UrOWpsz4cn/s+xgupvev66uo/SzSLjpjIM7RMVHR/l8tZyFnLbn2A9MecZ3DVR9oacrO5JoRp6UpF4brDUHNiBPhOfe7dbxo0mi1MMDH3/IavP7v/ggP7rHLtN9782234Mr/+Fe84r57FjxNIiIiItKe8rU63njz7anjF596IjDNi2Hbm1iiS1MCwFBXT+rYstIElSYRWXo6YiDOvXm9BllajWuwZL5vrbzwd1yDtU3ovJKlwVUfaGnKzlRwzojTQNxC0B5xIo3VzD3iXO7Zb0+89u//GJ944ytQDXznd3YeG8NnL74I//2tr2Gn0dGmpU1ERERE2sNr7rgb/TusslAOQ/zo+GPmFN61YsT8Z8Sln2Nrvrs9PJNh1z5xExqIE2kXrdO7aIDewVLmYLv1jWK5SVday/cYx0F7bnCGWVHgKrlSxA3ubS6n33iYi6FSesrybCZGZ960dDq2zo3ZmlySOYzf6x4AqS5Lv9nSFdUQTH4/slxnk4mNs/O9XAyBGe6b+e7sN+p6wuVjLc5+AweAcp0rkzGRznyBa7iU2P0asxetaV89KDmWHizW67BhAhiDOLJEZICP2d/GcrFEVhomPwCQSYRlwrFxka+MJETRysXpBnQdOfi1mRMf3ptuMC+kkMzLOE+EKXBNhdwsY2q2kr4f5WsRcsPZf5xHjpuz4SzZerIJeeIIQcjtJVDLE/ftEe4eZbiqFRHXlIENskcYlLhzxtQ/AJAwTZn+bQW5aCqpjyp93guf78jzuRNg7fRlJAo8fPYNL8WVJx6Gf/7yZTjhkfTeHQDwyvvvxeonHsPH33AuLj3p+GnfXs5v5spWnOd+W9TNhevZOfuzQ0+hSsVVrXMVENO2q1S5glwb59rk/jAXH9MmYe6HAGADtjGTPQhbj8RFruHkkX2QhniHpjzMVeRRN1cnJFTDFfDC7PdEUybzn2yTVJcRaSSfG9g2ORuOuW58shw39XljnDsBXpULF4xxmRL1ZK/L/TK5l5VHtrfYtjUTjGy3GqIeAYB8oXkvBidkmzDJk/0dXvb4zHbP42+7Lr0s5U+PfgnGgi6YHYq7X0mnsRqn70HdpTqCsRcrgqz1ZLGULvtRlENuePbKxd+uCT9c6E59vnxkfMp3nse2Ezzivh2UuDISkuEYbD0elMlnIq5JAhBtSUNWrUnI3ri5YH6FKFzNKyJLQmfMiKukb2AVtvNfFk3F8dZKwbH/H2OxlnOSpSHxPFR2mPXkWavZOR1Ie8Q1j3NpSu0RJ0JbSnsiP77bzrjgo3+Av3vXeRgvuNPQXy7j3y7+Li7+r//FEU89A5Owb5SIiIiISCc4aN06HLdmber4xSefNOe/UXbsEddd416Qel7O1Y9AbHEx1JUeiBsoZ5+UIiJLU+vMiJuHvGNEtlJUx2qrcS0f2LWAS1Nq+dLOUsmFKOywnECxVkNV5aBj+HGMcIeO4NgYRF5HvLPSdHXfR2IMPPviK1BhksBPYsQe+3qZSOdyLamzmG0Z63n45tmrcdXRh+CfvvYjnHXXw87vnfzI4/jpv30GW3q68duDDsCNB+2PGw4+EE+uWN7kFIuIiIjIUvbWG9Oz4R7cbVfctfdec/4bJcdAnKtPMAvn0pTEC71DRcdAnPaIE2kbHTEQ55o1Vc13xE9vK5Vc+pwV6hFMksDOs6PcOSPOcXOW9lXO5TBQmrrOeLFWx/DiJEcWgavxXA3COW34LARjUA0CFHd4ezAXRSjnNBAnklWXo73r2gOj2dYtH8B7PvROvPbXD+Dvv/dDrBh3dyYsH5/AuXfcjXPvuBsA8MzgAG7e+yD8dr8DcdO+B2JTb18zky0iIiIiS0ihVsMbb70tdfySk1ZnemZ39fUtxEAcs9f8sGMgbrCsgTiRdtERo1H5qqNCJPe8kcVjPQ/lXJgaNCvW6igVyI0eAHhJ4r5pEtPIpXW59qrrmmdjTFqLa1nEiuqBBeUciIsjlMHX6SKdaqnNiJvCGPzkuFW4/pAD8Xc/+DHOv+WOWYPsMTSMPYZuwfl33QIAeHSnlfjtvgfipv0Owi1774+xYva9kkVERESkNb36rrvRV5m6WVo5DPHD447J9HdKjm1o5tv34+pLYLa4GHYsTTmoGXEibaMjehhdS1NWtUdcSyrlHQNx1fkNxBUcs+FKOc2C6TSVBXgrSlqLa09AZjkJmbttDydTZ6JqnzgRjmt2/2LtETedoZ5ufPidb8WPjzsaH//2D7DH1qE5hz1w0wYcuGkD3nnL9YiNwd27742vnnwGfnHoUWqziYiIiLS5t914U+rYT45elfnlLOeMuPrSmBHnXJpSM+JE2kZHbHxTqDhmOWhGXEuqOAZQXW+AZ1FwbKpaCdX53mlcswZcg7TSvjQztvlqjocT13kQkdm59s1dCktTulxz2CF4xUc/jH940+tw7SEHopyx3eVbi2OeWYv/uvQifO7bX8HKkeGFSaiIiIiILLqDn1uHY9c+mTp+ycmrM/8t1x5xS2ZGnJamFGlrLdTDaBH6ceZQ/aaEMEqmHEsMkO+KkDfuv1eJuWwJvGT2LzmctPMaKlw4Tfpn8mxlgIrrmQkuXGIb+4ZyvSu9b9B+PZvh7Qw8F/ZTf7OrOp46VimE8AarM6elSrzdgq7MYQBgaIwLVytzA4q2kn1/prB/5vyajtfDDXaZdYXscc3Qv18x6cZY75YY4XIffpUsx1yVAEu8ImEiMo2WC5bkiYDkjAWPHQ/NmP95136iXgi/PHu6awNcRia7V2b/ksOyAa4xbkz2dA6NpB8G5iJ+dvY3E10D4PHOVUzsmvH+Rr5WFIxxAcNRriyH67MPipR9rmx5AVkBednji7q5NIZjzZ3FZIgsIZpa28KRZZKKbzIbXS+PlAvhC5/vKF/gKtfSOLcKgV+emilVFPGNE0/HN048HbkowtFPrsXJjz6Kkx97FEc9/TSCZG4n7KyH78eJax/Dv73qXFxy4mpYz0PUTZb/hCuT5VI6T3YeGkV3uYo1u65w3v/Gh7i2nRkjH9+I+p9tW+RKZDiybmXaCey17dXJ+o64bcfkOLrPNclhLPfbaj3Zz5s3ypVjtknoFbgT7vvZ65KowNU/JuJuHMy9Le7h8sPUyTROdyOaPWBmda7ZSj9vMNd2OMGVkSTk8r82yN23mfjYeoSuW0e5E5cQL1sash5hjQ8TS3CT9UhA3u8t8dwAACbOHt/br745dezBlbvhwZ59kN8y/d9zXduJzSGBgbddZ0g+ilDYapF42/IwznjZ5Grp8hHBn1PdEpRe/O9RzzEQNzEx5TvPo/tJCEGZPddcuPxI9ustCblyHJS4azsqcPvaJyHxvF3kflvXRrKQkOeN4nXWyiYtNBDHyVXTF1S1oGUHW1W1kO60dS09moVrKaeyli7tOAuxYa+0FudbbJodu6Bcbwm6ZimLyOxcM+KW2tKU06kFAW7e/wDcvP8B+DRehZ5KBceteQKnPPIoTnr8URy6bt2M4XuqVfyfH34f5911O/72/DfjkX13alLK04Ioxt9+6wq84xc3wbcW9+67G/76D8/HQ3vtsmhpEhEREWlVhVoN591zW+r4pcecxPXtGoNKGKJrh+Uoi/UaJvLZX/gGGjgjrqClKUXaWdsPxDn3h9OylC2rkk+fO9fSo1kUHbNgXLM0pL2VHRv2znedcGktjVrXXebOtfSna68+EZmd88WiFm3PjBcK+M2hh+Gagw8DACwbH8Pqxx/DyY89hpMfexR7bd3iDHfc2rX46X98Cv/5qrPxv2e/FPUm1+FdlSr++zOX4KV3P/rCsSPXPIcffvRz+PTvnI0vnnvqC29ai4iIiMjsXn3/XeirTl1JphTm8JMjjqH/ZinMNXggztGX4Gdvh44WiqnZev3VMvwkRuxxM7BEZOlo+ydBDcS1l4pjRlzBMZCWhavjyrUXnbQ3176ARc3M6Sh5x/lm3mKTuXPuEafrToTi2jN3qe4Rl9XWnl5c/pKj8Xfn/w7O/Ku/wQfe/i5s7O11fjcXx/iLn/4cP/nXz2DV2qealsYVI+O45P9+acog3PZp+utv/xzf/j9fwp4btjYtTSIiIiKt7s23/zZ17GeHH43xArF85yTXi9hddXJtZwA5x0BcjehLiD0fY47BwP6KY21KEWk5HTAQ5+hYdcyqktbgGkQtzHNpStdAXqu+QS68Ui69CHhBS1N2lIJzOQndLxaSa6DT9TahiMwsiGKE8dQ9Z2JjUAva8M1ZY/DzI4/COR/6K1x6/AnTfu2Qdevxg0/9Nz72vR+hq8p3rMzFvs9twvc+9nkcuea5Gb933CNP4vKP/Bcu+PWtALmPjoiIiEinOHj9czj6mSdTxy89ZvW8/m6jtyZxL03J9SUMFXtSx7Q8pUh7mPNAnDHmmJn+WchEzodrRlxNM+JalnNG3HyXpnTuEdceb5DL3FUcg687LlUg7c21JKJmxC0sLU0p0hjT7g/Xxnsij3Z14W/fdAHefuH7sXb5Cud3PGvx7t9cj1/80ydxxgMPLUg6jlmzFt/9hy9gr01Dc/p+d7WGf/7SD/GVz1yEnUbGFiRNIiIiIu3ANRvugZW7497d9prX32301iTubS64voThYnqfuEENxIm0hSwz4j4H4CYAXwDwxcn//iyATwH4ZOOT1hj5aroyrGggrmW5loyc/x5x6Zuta1BG2purIVZwDNJK+2pk41nmxvWWoOttQhGZmet+1SnLbN+0/wF4zZ//Bf73pS9DNM3+a3sMDeOiz30Zn77oYiwbG29Y3K+45z5c/N+fx7Lx9HJBlTDAD095CZJpBkPPuvsh/OLvPo1X3XZvw9IjIiIi0i6KtSped8/tqePfOfakeb9sVg7TKyLNbyCucTPiRvPpJTd7ahXHN0Wk1WSpFZ4D8AfW2nsBwBhzBIB/sNa+aUFStiNrMF7KvmnmhvXp/SO2mG48sGGX6aOyXIWeJFy4tT3LqHCDhXLmML6XzP4lh3Kd68zZOt6VOcxM+b/ZpN8MqQ4FeG6oH/U6t/xSvhynjpXCHJJo5nHqIEyHm83O/VznT0+OW1JpvJZuXMwFc77LNa6MVGLuvMW92fMfE9Of01LRsexpUkOS45eO8mrNm4kQZK8OAAAxOfnTqzfvtyXkuxM2zHbuctbRkV0IEBVn/zt2T+4E7DTA1QnGcOWyWs+emWGOm6FWHpx9QK3Snb7+86jDFrLdq0ydW2mbvb7jAlf+o92z1+X9/dx+ALWIq1tLY0RdTlaTtQGuTcIKxonzRrYJQV6j1H1jJETX5nRelsIcMDL9+ayR13ahi+ukKPcR9c/w3MpxNQzxiVedi58dtQr/7/vfxRHPPuP83htuvRNn3P8wvnba6bjkxJOwtWfq0j9Z6oS3X38D/uH7P4TvWGJya08X3vuhd+KOA/fCJWccj0994XvYY/Nw6nvLxkv4/Ge/hR+ctgr/+K7XYKx79r1OkoC7bmyVqBMqZN0akHVk9scGAMD/z957R1lyVWffz6lcN3SYqJFGCSGQRFAARA7GZLBNMg4YY4yNjXGO2J8xr83r+Dpng7GRsUkGbDA552CUQCihMEqj0aRON1XdCuf7o3uk6a7dfevsubn3b61ZM1N9T1fdqlMnPWc/22IMkxWz+XHA/G6BeZugGENdALAyXvvjdHjlkor5PdFM11zl8K4x544TOO+Nz6tceTzEsQyzb9NVXr+RMG2Ss8D8nnhLzPvI3LvS2WN+LzPmRplggVe3uO2dt2LeCGlm+5/UeM9Npcw2gfEI/JC3WZA7b+PQjXl1S6/w3lHNXROwy92T595wDerxegGq5Xn44KWXlm77cpe+xmZYXAjxre4DYxHD5+ZlRBCI75bq76wNr1qbEAlrUVT4nNdgzmU5a0DMR73xmsuy2XPbCu64adhwrtPKme0Ic0yYVnmLcLlr3pb7i9vLiczkDj30hAgHAFrrbwO4sP+X1F+o/F/bZYfwNEJFqlHWkiaQu8g9iZrcbvTbI1yYPIJEcsQNG7GmFIT+UCH6KyrSe9q54Yz9eMnrfh5/+PwXoOPS4/0d7TZ++eMfw5f+4E34o/e8Cxfcu3VetwJa49f+5yN403v/ixTh7to9j5f8zk/j6vNXLZO+fuGD8Jw/+Hm8+ymP2vRXvviL1+Kjv/G3eMK3bzO7FkEQBEEQhCnlB678WuHYhx9xKVqBeZDGRkhrSub6j8pzeFlRXUlsnsDZIoS4ajLYfMeCIAwHEyHuW0qpf1ZKPW3tz1sAfGtQF9YvKhGxMCFC3MRCPbuQeMYmUEJeRIgywnTTz4GYMJn4hBAXbbKQK/QHWogTa0pBMIXaVLRd891mto1/fup34Xm//Kv48oPP3/Rzfpri+6/8Bj78l3+G//jHv8czv30drHzrsAE3TfHn//FO/MynP0P+/FvnnoEXv/GncWDf+px1zTDAb/zkS/CTv/gjOFYvujsAwOnHl/Hvv/+veMMVH4Yv1tiCIAiCIGxjLjh0Ly65567C8Xc/+nF9+f3URuwK05qSEuFi22HbZ7a9otBY6YoQJwjTgMlW/1cBeC2AX1j7/xcA/EPfr6jPbOecGdMItah0qnm8AmoXueSI23YMItpSmCzoHHESETdIYkLolIg4QTCnQuS7bW/zTUV37dyFH/3Jn8JLrvwGfutDH8RcZ3ML4cfdfhsed/ttuOvDO3DFk5+E/3zsY9AI19tE1qII//AvV+BJ37mF/B2ffeRD8Lqf+yG0g81twT/5qItw9YPPwh/863/j2VfdQH7mVR/7Kp76zVvw6cseittO343bT9+F207fjcUZWsATBEEQBEGYNn7gyq8Wjl2/7wxcd8aZffn9bWIjdiXmiV39zA8HbBIRJ0KcIEwFpVsGrXWklPpHAB/RWt88wGvqKyFhTblddwhPA1REXCU6NbGEriMixG03qIi44BSS9QqTByUAUUKR0D/EmlIQ+gOVXF42FQFQCu97zOX43AUX4jc//D/43muuJu0kT3DW8QW84b8/iF/66Mfx3ssfgyue8kTcsXs39iwv423/9M+48N5DZLn3POVR+K1XvRBpiTxIx2dr+KlfeDle+pWr8MYrPox6p7iw8qBDx/CgDx9bd2yhVsFtZ+zGrft247Z9u3Hb6at/37N7HrnFy60jlMPOM+xoNbGr1cCexQZ2tlf/7Gqd+HcTc1ETubIQOS7itT8dx7v/3104D/zMdlf/bbtY8UN887RzsBgW85oLgiAIwnYk7Mb4vm9eVTj+rsc8nh1ltpGOVxS7qPF0GegNvfxxeIu4NrGmFITpoLQQp5T6XgD/D4AH4Fyl1CUAfk9r/b0Dura+QOWIE5FlcukEhFhCPGMTqKgnWbzaflCRAxIRt72QHHHDhxTiiB2FgiBsDbmpaJtHxJ3M8Xodv/qDP4w/e/Zz8Yqvfhk/8PWvbRkhV4tj/NgXv4Qf/dKX8dkLL8AFhw7hjMUl8rN/+exn4i9f/jSzhSGl8P6nXoavXXQu/uQf348n3HCgZ5EdzTZ23HwnHnPzneuOx66DA3t34rZ9u3Fkvo7lavjAn8oD/15ya1iuhIhljAtgdZFvvt3CznYDO9pN7Gw1Md9Z/XtXq4GdayLbrmYDc502LPCS3ZchsWx8/LxL8I5HPBk37u7PTn9BEARBmFSef921qG2ITmt5Hj70iEv7dg5qIzaVc7kM/Y6Ia1NCXDdi/z5BEMYHk5bhjQAuB/A5ANBaX6uUOncQF0WiAM8z3yW/WzULx7y5DGfML29aZn91yfg8ANDJeBPbO1fmWeXuWjAvt8Um4C2x7a1zZmx+PvPdKtHS5olXV5JK4ZjXylbLpLydMQERUdexfehk693FszuKdasX580e6/0hgnPC46xyXI4n5vZH31nZwzrX3XqOVc6qmO8IiqPN39G4U6zjFUSwTu8gafPebRXxkvNq2/xF7Wb92RlWFtU1P5/b4F2ju8IrpwzbBL9b7GPK5ojLj/ISRh85vrmF2VZYETP6wTKvW5p5Kjfqff+TqPj9K0s5/EOG75wa3AIphdPmleNM7ZotXt1KO7zJn7NkXs5f4L2jFlNzjed5z1szmmS3wToV3MO8e5IxHne8e7OIuK2FuGSL8daW5TzemFCF5uP4hNFmAYDVph/2wdPm8Ecvej7+6nnPwIu+cRV+7AtfwvmHj2z+e7TGd99wI/mz1LLwOy98Cd5z+eOgO8XcIL3ILI27wz344V94DV71mS/jN973MQTEjupe+EmKC+45jAvuOVzq87HjrAp0YYjlSgWNIEBq28gshcyykCkLmb32t7KQWRZyZSG11/62LOSWQmrZ9/+dWdZa+dXfk8NaO3bi86t/Z5aNW/buxa17TzP+nlvhbXhPlc5x+d234iHH78WOdhPzURM72k3s6Kz9aTcRpuPjeuDmGV5wy1V4wS1X4Zs7z8V7zn8SvnD6w5ErXgdsR7x3NPN55+O05RZjHAkAGXNsbTomPIF2GG2Qb94eAEA2x3MEULH5c7NqvA5YM+cbqjO8qN2cMY8CACdmfjfO6YY7bIXDbBOciNG3+bx31OryrpELY5kKijnfyHNe3UruMV+T4batbos7T2cVg+rxuH/oq18rHPvwwy9Dxw7Z84eNdBzKmrILa60p1lb5e+LHxXel67g9v+cJVLa+brUcQoiLo8LnwuO8foPzvmmbWUeavGs0uf8n6OzhbULMAt5385aZ9z8ZXntnE3WzDFnAa8tdYk2tJ1yhYkIxWW1JtNbLav1uz7G/W35MhAj7EuEwqbQJW1EqL4oJYk0pAJvkiDvFaEthsqB2snUlIm6gdKkccYyFaEHY7kiOODM6vo93POkJeMcTH48n3/wdvOpzX8R33XhT6fJt18PPvfxH8fkLLjzla9GWhX95xpPxxYsegj+54r247Pa7Tvl3boWfptiz0sCeFabK3Afe9sQn4/df8L3QA7DUdLMUf/LRf8PTD3y77797GFx8/AAuPn4A91bm8d7znogPnXs5Wm7Yu6AgCIIgTAEPPXoQjzhcHAu9+7LH9/U8VEQc35qy3zniipvlxJpSEKYDk5bheqXUDwOwlVLnA/h5AF8ZzGX1j5CIdopEZJlYSLHkFO0DxZpSAOjckadqeypMFv32dhd6Q01QPLGmFARjqLEMNWYSNqAUvnjBQ/HFCx6KBx0+gld95kt40dVXorqFNdHxag0/8WOvxnVnntXXS7nl9L140et/Bg89eB8uvOc+PPjQEZx33xGcd99RnHPkGPyUt6N1HPmxL38RSmu86Xtf2LdcL8BqLrc/+vjbJ1aEO5nT24v4+es+hJ+48ZP48NmPxnvPeyLuqe8e9WUJgiAIwkD5/m9/tXDsht37cf3p/bVuppwjQrY1JbWOcArWlC7hGiNCnCBMBSYtw88B+P8AxADeAeDjAP7vIC6qn/gRYTUWysLEpEJ2lqcaEUd0tpHsIt92tAmBXnLEbS98KkcckcNM6B+U0CkRcYJgDjWWoVwEhM25fe8e/J8XvgR/9uzn4WXf+Dpe8ZUvYf/S4rrPHNi1C69+1U/irp27BnMRSuHm/ftw8/596w7bWYb9xxdx3qGjOP/gEZx3+CjOu+8IHnzfEcy1N891N8688itfQtv38WfPeV5ffp/SOX73U+/GM267ri+/byOLQQULYR0Lfh3Hw9U/C0EdC2ENx8MZLAQ1KGj4aQI/SxBs+LvS7iLIuvCzFH62eixMY1x++DuY77Y2PW8ljfH9t30ZL7ntK/jKvgvx7gc/GVfvPq+vAqYgCIIgjANhN8bzbrqqcPw/H9HfaDhg1d1gIxVmRJxHzF8T+xQi4sgccSLECcI0UKplUErZAD6stf4urIpxE4NPRLSINeXkQi0qnapYEkhEnAA6UvZURV5hsqAsJSKJiBso1E5BEeIEwRxKiOuUzHEprKcRhnjrU56Gtz3xyfjuG6/HS6/8X5xz7Bi+fP5D8NfPeBYWq7WhX1Nm27hzzy7cuWcXPvOwix74gdbY0WzhvPuO4uxjxzHXamO23Vn7s/bv1kn/bnfg5sPNw7MVr/3sp9H2PPzD059xar9Ia/zW596P77n5ytJFEsvGYlDFQlhb+1PHYljDYli9X1w7VlkV3BbDGlJ7NVeGw9Q9vSZ9370swbPuugYvu/WLOG/lvk3LW9B40qEb8KRDN+DWmdPw/vOegDvqe7HiVdDwQqx4FXRteecFQRCEyeW537kGtQ2RXy3Xx0cfcmnfz0VaUzLFLtqakt8nS0ScIEwvpRQprXWmlMqVUrNa6+VBX1Q/CYgccWJNOblQAlmFGT5+AkqIEzun7Qf1zCtxsu0Sh25n/ISwlJCF7IESkTniJBJVEEyhxkKU5bJQnsy28YmHPxKfePgjR30pm6MUFuo1LNRr+Mb55275USu2AK1R6XZXRbnOqjhXjWPYeX7/HyvXcPIcVp7DSXPYuX7g5zqHna39nZ/8R8POs7VyGm6Wbficxly7hafdXMzD9ysf/yg6roe3PfkpvHugNX7xKx/Cy75NZ0x4+yVPxZ1zu1fFtsqa6Fapo6X8sYgq69ouPnTu5fjQOY/Bo47eipfd8kU86b4btyzz4JX78OvXvL9wPLJdrHgVNJ0QK26IFbeChrsq0p3497fnz8btM/uI3yoIgiAIo+WlhC3lRx56KdpeMWfaqUK6bfUxIu6UcsRREXEixAnCVGDSMjQBXKeU+iSA+/0ztNY/3/er6iM+kSMuDiQiblIh83idohAnOeIEAMgtC7HrFMQYP0mRQBYztwP99nYXekNZf1IWoYIgbA21qagtNtvCRpRC2/fR9n0cmp/r/fGUJ1RZm6Sz+5WPfQSv/eynC8d/+0MfQMdz8d6Ln2B8rp/5/Cfxqqs/S/7s95/6ErznkU+krzEZs41WSuGqPefjqj3n48zGUbz0ti/jeXd8A5Ws/DwnyBIEnWXswdb7Zt97zhPx1w/73lO9YkEQBEHoGxceuQcPP3J34fh7H24+NigDGRHHFOL6nWu+RUXEdSP27xMEYXwwWWF8/9ofY9asLa8EcFBr/QKl1LkA3gVgJ4CrALxCa92zxdPafDIYEtaUeUXBtze3vlqMK8bnAYAZj+dV8tg9d7LK2XvMrWVua/KSfC9EvHvSScw7H9ve/HtZM8WZfdhNUN3ZRpLYxucC6M62W7dhB5usIqxx/Li5NdHnj59vXAYAvhqewypnWbxFBtfZ+rtT7Ki2Wefi0jxuXidVvHUdaXteQYjz7rOAumV8LgAA0/3JXTGvy4p5LrvDW2SzGRuylHm1AgBo3qsNy3AcTS1kp6kLp937Htkxc7GSqTlx76XFWFTNmBsQyzy3NKc2V6RwDJsTh1mPGcOKVZjldMpoSxzey61azBeH0W1w25+cOT/1VpjvG2Nu7US8frRylHdTulXzOtI6U6FCWClHtrelkKKrvIZEdXh1y26ZP/B0jmdVmzO/m9Xlbb6wIvPnZkW8esxuthi3hNtGbtYm/Pl3PxeVqItXfvWLhZ+96b/eByx6+MhDHlX6PC//1ufxC1/9GPmzv33k8/GhvY9D5TCzw9wEp8NrExKDd/uOHXvwpztehDc/7Nn4njv+Fy+99cvY117sXbAkL73jy/jM3otxw9xZ646nYd9O0ROL6UKdJ8xKmTPLVc0vtDbHWxOIOrzNE7pi/t08f7ibnnSFd75opbgY3fNcEW9wQQxJBwZ3n1/CeNYAYDPfmzQ07++zgDdvdtq8cZPd4dUtxXjgWcb7bjm3XN28/+K2kU6HVykTplu3S6RGfcn1xWi46/fsxw379q+WafDOpTe5/d2UELviLpy1a9MGt6RC1MMscVC5r9yYoX73hr5GW8igYJ80MQuyFDtui5FZD7yXVsJ7bzjvaRry6nFa5c0bVG4+3rK7vDGaSodbzonN321tMdvxGnPCzTyfe9/meY83PxfrVBNLz6+rlDqxbfEirfUVG/+UPM8vADjZY+OPAfyF1vrBABYBvNroqg0IIsKaMpBop0klcSykGxoEN8vhJvxJNiXWdsS+dFtC5dOh8u4I0wnp7S7WlAOFzBGXSUScIJhCCXESESeMHUrh95/3vXjPoy4v/MjSGr/7uXfh6bd/q9SvetGNX8OvfvWD5M/+5aJn4D8ueNqpXOlY0PRCvPMhT8XLnvMb+K3HvQLf3HlO3373M++9um+/SxAEQRBOhbAb4/k3Fful/3zk4wd2zn5GxFHWlF37FJx1lELHIa4vE3tKQZh0yuiO+5RSTwDwvUqpS5VSl538p1dhpdR+AM8H8M9r/1cAng7gvWsfuQLAC1lXXwKfEFnEmnKCUQqdgIqg4C/cUmXFmnJ7QvqEn0LdEiaLfltKCL2hhDhqIiMIwtaEhKVrJEKcMIZoy8IbXvj9+J9HXlr4maNz/NGn/x1PvGvrHGnPueVq/PYX3kv+7F3nPxlvediz+nKt40Jm2fjc/kfitd/1Ovz4038e73rwk/GlfRfiWzvPxh31PVjwa0iV2Xbipx2+Dnbe32hBQRAEQeDwvJuvLuRAa7k+PvLQnkvObNp9taYk1p1PcR2hbRN54lIR4gRh0imjSP0OgDcA2A/gzzf8TGNVVNuKvwTw6wDqa//fCWBJa31ipe0eAGeUuVgOPhERF/sixE0yke+i3l7fAYVRF/Cqxr/LzjL46fpJaK4UukTeImH6iQgB9lRzEAqTg+SIGz7UBIWayAiCsDVU9LZExAnjSm5Z+PWX/hCCpItn3nj9up+5eYY//cTb8LPP+0lcdfqDC2Wfdse38abPvhMW4aP7gXMvx19d8j2A4hp4jj837TgTN+04s/gDrVFJY8x0O9ix1MBM0kE9aWMm6WAmaeNHb/s0/PyBcc58t4XLFm7DN3Y9ZIhXLwiCIAirKJ3jwiMH8ZQDN+Cl132t8PMPX3AZOp65PW1ZIsoNKU2gdA5tuLnFz/ocEQeg7QRAvLLuWEWEOEEYC9aCzC7HA3rWQQD/q7Xu6Vfas2XQWr8XwHuVUm/QWr9pi4t4mNb6+g3HXgDgiNb6KqXU03qdi/idrwHwmtUr5fnK+jGxsCrWlBMNZRtJ2UuWIegW60fHc6d6Ai9sTtsvLlpWRIjbNvhERIlExA2WLmVNKRFxgmAMJcRJdL8wzqS2jV/8wR/FP779rXjyrd9Z97MgS/HXH30rXvv8n8K3Tjvn/uOPvedm/PEn/w2OLuZE+cRZl+BPHvWS7TuGVwptN0DbDbCQzxR+fP7KvXja4evWHfvuQ9eKECcIgiAMjWoc4fEHvoOn33gDnnzgRuxub574bZC2lACglYW246GSrh9DB0liLAC6/bamBNB2iBx2IsQJwshRSj0LwN8DuAWrAhywGrz2YKXUz2itP7FV+dItw1Yi3BpvB7AxbviJWLW0fB6AAMAMgL8CMKeUctai4vafdOEbz/lmAG8GACvwjLMgWlkOr7sx2gnoejxRTxgP+irESX444SToHHESnbNdGISlhLA11P31iB2FgiBsDS3ESUScMN50HQc/8/JX4V+ueAsec8ft635WSbv424++BT/5Pa/Fzbv245JDt+MvPv6v8Ag7xS+cfhF+7/IfRG5ts2zvBnx638UFIe7Jh6/Hn1+UoGvLWEcQBEEYDGcvHMVTb7kBT731RjzmztvIfnwj1+09Ezft2T/wa+u4RSGuknSNhTgqx/kghLhQhDhBGAf+CsAztNZ3nHxQKXUugI8AuHCrwv303CpsP9Ra/yaA31y7oKcB+FWt9cuVUv8J4KUA3gXglQA+0MfruB8q91ccSLTTpNMhopYoQa0MlMhC2RMK2wMqnw61uClMH3aWwc3X77DPlEIqi3oDhbL+9NME0Fr6akEwgBrPiBAnTAKR5+E1r3g13vav/4SL77lr3c/q3Qj/8OE34/894fvwm196P0Jiw8zXzjgfb3jcjyCzZKPlVnx910PRdHzUTlrEq2YxHnf0JnzhtEeM8MqEcSKMVuc9VE52QRCEMrhZikfddTueduuNeOotN+DchaPGv+OfL3/GAK6sSMf1gM76Y5UkxvH7MyuVg0xxcYqbXDpURFwmQpwgjAEOVtOsbeQggJ4vfj+FOJOItd8A8C6l1P8FcA2At5b57XFk1pDVlouNVNv18J37dm9ZLs94E7ks4pU77fRFVrmKay4+Wco4sBAAEKW8qtLsmHs6d6Otz9VyihMDa1mj2zSfMNjErY8cD1mjd12zm4wFeua6cmLzJkNWzDthZ9Y8ebs+jXUq2HbRXqgUmfl3U8nWZTpE3Qo7KZwG7912G7z773R6f6ZfKGbwUeWo+XNz27xnffxCXvuT7Ch/PocQ82PXQbxLo0z35rR5zzpnrnNkPq8tz6vm7zY0sx4v935vUlhILQvOSSKorTUcnSM1WFRVjK+1ejJeMc3UZ51j5hOydJZ3/xXzudmMvQfc+2Ex2x+nzav/nHrCuR8AkFSYbQJjzu4tWajExQtN2wG8dPOHEzMdIrTLa8u1ZX5PKgd4ixjJLLON5LYJjMedzjEbLov33YxmamuomPdy2x2zcitugFf9xE/inX/393jo0UPrfjYftfAHn3kHWe7qM87Fz770x5FFjM6UOSbn9jecdtLpMNvxuPiwO/DxhX2PwPPuvnLd8acf/iY+e9bFAIDc4Z3P7ZhXLqfNq1tWlzlPD3nvTdYyH4OmNd41KuY8nVMqzzc8a63xq//xKfzYh74KBY3/ePbl+MNXPht6w4a0QrmSpIbrOCewPPMXjnv/vRLjVgrOXIrbjljMct0a732L6+blXOYYTTOvUXEGTgAsxj7uNGGOmxjrFgBgL5m3P9w6wl1/2Fj/Lzl4AL//sXfi7KVjrN93x8xuXPHwp+Mr8w9HcHx9XXKIvq0Mrb2b162IWP+pdLqwqoAymAME0SbWlCUvOZ4t1q1GGBSOeW6y7rNJlbmkz7iVwTJ3/M8qBqfFOB9zI6/mjv+Z46Zod/HZDgp/gRe0knm8B9c5y0zEBgCry1wTHh3/AuAbSql3Abh77diZAH4QJfStfgpxW6K1/hyAz639+3asJrUbKKRNj9gOTjwR8QypBagyUFGTklNl+0JFW0qOuO1BIPnhRkbsOHA2vGdemiC1JbpBEMpg5TmZJJ6KOBWEcWW5UsFPfP9P44p3/R0etHCk5+ev37sfr33JT6Dj+fAipji5zfjU6ZcUhLjHH7kJ1aSDlhuO6KqEceCx19+B13zgS/f//8c+8jXcu3sWb3vBE0Z4VYIgTBIPPXIQ//S+N6OalI/a6lo2rtp7Hr68/yJ8af+FOFjfNcArLNJxiY3Yifn6z7CsKSVHnCCMHq31Hyql/hvA9wE4kczyIICXa61v6FW+nzP0sVutpvKGie3g5NPuqzUllVNF6sh2hcoRF4gQty3wCSEuIuqD0H9ix0F1w3vmZynaI7oeQZg0qAWDtusVIhkEYdxZqNbx6pf9NP7tnX+LM5cXNv3crTv34jUvfQ2avohHJly96zwseDXs6DbvP+bnKZ583/X42JmPHuGVCaPmUTfdWTj2i+/6DD71mAtxz975EVyRIAiTxL6VBfzj+8uJcIdrM/jKvovwpTMuxDf2nY+Oa+6i1S/6JcR5A7CmbBP3pWIgcgqCMBiUUmdprW8EcCOnfOkZulLqRUqp2ZP+P6eUeuGJ/2utH8e5gEFCCXESETf5UEIZNyJOcqoIJ0M9e6qOCNOHnxCDZ1eiSYZBTAiePpEHSBAEGiqil1pYEIRJ4Eh9Dq9+2WtxX22W/PldczvxEy/7aSxVakO+sskns2x89vRHFo4/8+C1w78YYayYaUWFY5U4wZv+6YOreXsFQRA2YabTwj+9783Y3WqQP8+hcO2+s/HXT3wuXvojv4zvfs0b8QeP/3584ayHj1SEAzZJTSIRcYIgbM1/n/iHUup9poVNtsq+UWu9fOI/WuslAG80PeEwEWvK6YSyD+SKJbQQJ3Vku0IKcYyBmDB5kNaUIsQNhS5hn0clvBYEgYYc70pErzDBHJzbiVf/wGtxbIPYdqg+hx9/2WtxdBORTujNp864pHDssmO3Yi5uFj8sbBtqHXpx94nX3Y4Xff6bQ74aQRAmBS9N8Dcf+BfSUvr2HXvwm8/9YTz1tb+LH/nhX8CbH/dM3LR3PzuP1yBoExvXOGLX0CLi0uKmCUEQhs7JjdiDTAubCHHUZ8d6lVIi4qYT6hlSz7oMlBAn9qXbF0qEDZnRlsJkQUbESY64oUDdZ08i4gShNJRNjUT3C5POHTv24JU/9LP43zPPQ9Pz8eWzH4If+8HX4dDsjlFf2kTz7fmzcW+43mrQ0Tm+695vjeiKhHGg1t584fk33/Yx7FwSoVYQhPUoneMPP/oOPOrggcLPDtdm8JqX/BT+56JHY3GMI9j7Zk2ZF9cSklPMd94iIuJM8u8JgjAw9Cb/LoWJkHalUurPAfzd2v9fB+Aq0xMOk0BsB6cSKkccVywJiHJSR7YvVARBSERKCdMHZYUoOeKGQywRcYJwSlARvZFYUwpTwB079uBVP/i6UV/GdKEUPnPGJfiRWz+77vAzD16D9zz8SSO6KGHUbCXEzbU6eMO/fAS/+MsvG+IVCYIw7vz6Zz6IZ3+nGDHb8AK89sWvwX0z459fcrxzxAWFY5IjThDGgouVUitYjYwL1/6Ntf9rrfXMVoVNhLifA/AGAO/GquL3SayKcUNDWbnR5ymrnrRioRpu3bDWA17jttwpNpRlOHz7LlY5NWPeQdhuxjoXF52bBF2uYjtbP+c4KFbbStpdHxxaEkpk6bguUKaqnW4eFl6v8kLJqz5PaGzFvIU4pcxzAURd3kAjajJ9wV3za1Q9NnNGlEd43IXT5tknKObrZnfMy2hmfLJi6h3a/NVG6jMKAciZY1htUI+pCKyu40CV7HaSed7Drp9Ge+n3Yl+dV861za/zWLvKOteRAztLfS4i2nTMdNHZW77Pj+eY7yirFGPb0ykUVDHvvXFavG9nxeblOO3BqWAzXVksRnuXVnjnyh1m7WLUkTArjlvbngdtb/3LnAbvwdkd3g7f3GP022ZD//uZY6XOBqyU93Z3ZxjvjeJ13HbCbIEYxZwO71yauQnc6fD6Un/ZvFxaGW7DpS3zOpL6vHYk61Hu4+cUhbhHLN6Jfa0FHKqZRxxqxmXmzHFrWmM2CjnvXtpt83oSd3gD19oMYwIAIEnMb6bjrH9nZqKtz/28r16Pj1xzA774uPONzwUAUY/+aDPilvlcljOOAfjzjWQHo29jzr8q9zHHu8zzKUZ+QCtlXiNTX4hneR2Ozagn3Taz4WK2PxvHQNUowms/+2nsbjRw++7d+PDFl+CeHRvmW8whgrdsVvBHvvl5/OiVXygcTywbr3/iK3Fvchpq927eXmfu8OYbweLm15GkxTam3ohXyxjckoBw6NKRA3+Fn2OTyhFXTWOcvMRhx7zfHyyZj5tyxjMDwBskAFAZ57vx7odivqNJjdcmuE3z+58x19LSCq+NVDnvXnrL5oEMzCoyMrTmznRWKV1rtNYtAK9XSlXX/j32VIhop0isKSce6hn205pSIuK2L2SOOGb+QWGyoCKoJUfccKAiDyUiThDKQ0fEyXhXEASa22b34faZvXjQyuF1x59x17V4+0VPH9FVCaOk1u696fMN//gRvPgRP4Vmlbf5WBCEU+Nf3/oWPOrOO+7//69/9CO49syz8KGLL8FHLr4Eh2eHkz/1Wbdeg1/56gfJn/3fx/4ArjqNJ9iPAmojdpByrCmJTb32qa0lUEJcJZEccYIw6ZSWVJVST1BK3QDgxrX/X6yU+vuBXVkfIHPEBSKyTDr9tKakykmOuO0LmSOOiKwVpg9K+JEcccOBsqakhAVBEGgqXToiThAEgUQpfPLMSwuHn3XnNSO4GGEcqG5hTXmCvQsN/MIVnxnC1QiCsJFzjh5dJ8Kd4JK778Jvf+iD+NIfvAnv/Ie/w8u/+mXsaPKcU8rwqHtvw5s+807yZ3938fPw8XMuG9i5B0GHckRiCHF+VlxLGIgQl4o1pSBMOiaxjX8B4NkAjgOA1vqbAJ4yiIvqF2SOOF8iHCadfkbEyS5y4WT65REuTB5+Uhw8S1swHGIqIk6EOEEojeSIEwTBlE+deXHh2PlLh3Du8n0juBph1NTbxSiLay7YXzj2so9djcu+fecwLkkQhJM4Y3Fhy59bWuPyA7fjdz/wfnz1938Xb/vnf8T3f+PrmG23+3YND1q4D3/+sX+Flxdt9f7z/Cfg7Rd+V9/ONSz6JcR5lBBnnWqOOCoiToQ4QSiLUupflFJHlFLfPunY/1FKHVRKXbv253kn/ew3lVK3KqVuVko9e1DXZWQyqrW+e8Oh4SYcM4QSZyTaafKhI+KYQhxpTSl1ZLtCtQ9iTbk9oIQfsaYcDtR9poRRQRBoKkTktkTECYKwFQdru/DtHWcVjktU3PZD5Rq1TrEfef0vvgjtoDg3euPffRheV8ZpgjBM6lF5S0Jbazzp1lvwh+97D776+/8Hb37bP+OFV1+JmsHv2Mju5jL+9iNvwUy3mE/yc/sfjr+47IWAmrBET6CFOJY1ZUasJZxyRFzRBlgi4gTBiLcBeA5x/C+01pes/fkIACilLgLwgwAetlbm75VSp5QLbjNMhLi7lVJPAKCVUq5S6lexZlM5rlAii+SIm3xIsYRtTSk54oQHoBYuA4mI2xYEhPAj1pTDgRTiJEecIJSG6qckolcQhF586sxLCseeeee1gNZDvxZhdFSiYh/SCjzcc9o8/vJHijkDzzm4gNe8+4vDuDRBENYwEeJOxssyPP2mG/Gn73kn/vdNv4P/+Ke/xy988mN43G23lnYgqcUd/O1H34J9zaXCz76162y88fEvR24ZxXiMDVSOuL5FxJ2iENeiIuLSWPpoQSiJ1voLALYOJ36A7wPwLq11rLU+AOBWAJcP4rpMWoafBvBXAM4AcC+AjwN43SAuql9Qg0oR4iYfamceN2qJKicRcdsXSoSlIg2E6UMi4kYHJXiKNaUglIfqpyirZUEQhJP59P6L8XPf/B/YeGBRb3/zOC5auBs37CxGywnTSb1VXOBvVlYXgN/53MfgeV/8Ni65+eC6n//Y+7+KTzzpInzn3L1DucZTQmv84Ne+jp/4/OfR8n189sIL8c7HPw6HZ2dHfWWCUBoqmu1jD38EvnPaaXjBtdfiQceO9vwdXpbhsQduw2MP3Iaf+/Qn0bVtXHvm2fj6g87DddXzcN2eswvW5k6W4k8/cQUecvxQ4ffdObsLv/aUH5/ozat9sabUGl5eFOIS69TWEjLLRmw58E/63bbW8LMEMXHdgiCU5meVUj8K4EoAv6K1XsSq1vW1kz5zz9qxvlO6ZdBaHwPw8kFcRFksy0z5p0QWZy7Hrlpry3K7g6bReU5wVp23M6E5X1agXc+xTtW4zNHlGutcvs9bFM1z850xvTZ4pNXi7wy7XaiOedRo2OELcfWq+a6k83YcMy4DAIHNiw6xVM4ql+bm9/LeFm8yc9dh83oMAHZkbn1gd7Yu081o29PuPO8+KrZ5L2NHGdMJwuU1d4jmza8xZ47RmdUYKil/jUFcfFix5cLqlrux1l6eYFvxeG3r0RbvvWm2ihYXveC04wCgSt67LjFJCTppz/f1ZOyY9wJw31HNnFdFexltucMbW+gO77lZjEvkvqMWc59DUuc9b6trfi8tribMbJNtxvmqTWIjQe7DW976ItKK+bkAwF3hlfMY5TSz/ntNXqW0GXUEANLAfNwU72CdCqnmVS5Ou+W0eeeqHGaOm5htSe6YX2dS4bWRSci7J17TvG65bd4NSYi5EsURfxZXnfZgXH7fLeuOP/vA1bhp9szS57MS8+9mR7z7zy2XFwMLSpEGjDZhkbdAyqgiAIBK3dyqzHMe6OznusUcUq2Kt/oZB3jTzz8P7/qFt8JNH6iPbpbj//z1h/Dy//fjyOzez8SymG2yZz5QSyvr2+Nf+8DH8LMf+8z9/3/EPffgZz79aXzi4ofh3576eHz1IecBSiHJuGML8zLccSsxVS2FxTTXSgPz69TMc+kGr5zNHEvaRYfF3mWWeRMAbt+m7QcahTphCXnLaXvxl899Nv7yOc/Chffeixdc+018z9XXYv9SufVFL8tw+R234/I7bgfwSSSWjet3nYWr9p6Hq/c+CNftOhuv//r78NiDtxTKHg9q+IXv+kl0lz2EMB+8Zr55W06tA5bB6WzeuCZJcYGiEnfhNXJYablG2c4z2BsWMVNlQUUKDso9fLdFT8A6trdOiAOAnYcbWPTqAIDc5rUldmxeKTe2rYMul8yYv29Oize59xd4lp9pjbfApS3z5+Yf512jSnkNUO7xnlvGmBNZzGsE4Cilrjzp/2/WWr+5R5l/APAmAHrt7z8D8OPcC+BQumYrpR6E1Yi4x2H1gr8K4Je01rcP6NpOGUqIk4i4yadDPMNK1L+IuI27gITtA/XsA4nM2RZQOckmeXffJBETFnpiTSkI5Qkpa0ppvwRBKMEnzr6kIMR9993fxN9c/D3I1WRajQlm1NrFxb1m9QHl8vazd+Ot3/8E/PQ7v7TuMw+77RB+5INfxxUvevzAr5HLKz7/lXUi3AmcPMfzrrkOz7vmOtxy2h68/amPxwcuegyaYTiCqxSE3lDWlI1gbYOlUrjxjDNw4xln4C+f8nw84uBdeP63r8Vzr78Wp60slz6Hm2e45MgBXHLkAF59HZApVRCYAKDtePjlp78a99Z3otqY7LWSyKYi4swEDyoajtpoyqFt+5hL1m+WqKTx/UKcIGxzUq31o00KaK0Pn/i3UuotAD609t+DAE7ehbZ/7VjfMRldvwPAewDsA3A6gP8E8M5BXFS/CIj8X3EgVmOTTscnxBKuNSWxeCXWlNuXDiEIVJKu+HBvAyjBNXakvxgG1H0WIU4QykOOZYi8EoIgCBv53JmPQLIhXGZX1MClR8d2r63QZyghrlVZ34f8y8uegNvO2lX43Ove8TnsP8Rz9xk0z7722/i9d3+g5+fOv+8Ifu/dH8BXfv/38Hvvfy8ecqhowScIo6beIYS4kHA6UQrX7T8bf/Sc78PTfukN+OEf/1n8++VPxJH6jPE5KREuVRZ+8ymvwI07y0dNjzOUNWWQmYVZellxHaFvQpxTfMaVjBcZJQgCoJTad9J/XwTg22v//iCAH1RK+UqpcwGcD+B/B3ENJkJcRWv9dq11uvbn3wGYe1wNkZAS4nxZWJ10qKjGkMgHWAZKwKPyhAnbA21ZiAhRQKLiph8/pXLEiSg/DKhcfJIjThDKExDtVyTtlyAIJWj4FXzl9AsKx5951zUjuBphFFQpIS5cPx9OXAe/93PPQ77BTSvspnjj33947DYtPvrWA/jrt74DlsF1VbtdvPxrX8VH/+JP8c5/+Du84Npr4MrGMGFM2DIibhO0ZeGqsx+ENz3/JXjyr7wRz/m51+MN3/P9+J9HXMoS5gDgjx77Enz1jAtZZccROiLObG1xo3UkAHTt/ozD232I2BOE7YpS6p1YdXN8qFLqHqXUqwH8iVLqOqXUtwB8F4BfAgCt9fVYDT67AcDHALxOa81ONrQVJqrUR5VSrwfwLqxaU/4AgI8opXYAgNZ67LZChTFh1RPIwsSkQ1lTht0UKs+hLTMLlbArEXHCejquh2DDpCvsJohEoJ1qSGtKQiAS+g9lASoRcYJQnjApTsg7YrMtCEJJPnH2pXjqPdevO/a0e67Dn136IiS2jIWmnVq7OB9uVosL/N+6cD/e8fzL8SMfWr9B/HHfugMv/PQ38d/PuGRQl2jE+YcO463/8LbCfA4AvvqQB+Hcw8dw2vLWSUsvP3A7Lj9wO47W6nj3Yx+Ldz728bhvbm5AVywIvamRQpyBlapSOLBrDw7s2oP3PPrxgNY4e+EYLj9wKx57x2147K23Yk9n6/fiLY98Jj54/mNNL32s6RCCmXlE3OCsKTtO0eGiYnh9grBd0Vr/EHH4rVt8/vcB/P7grmgVk9bhZWt//xRWhThgNRX9D679/0F9vK6+QFpTSkTcxKMthchzEHTXd3h+mhqLJQGx+B6JELetiTwX2JALOex2sYjqaC5IGAqU8CM54oYDJXh6RISPIAg0IRFBKkKcIAhl+eL+i9B2PFROigKYSTp47OGb8aXTHzbCKxOGQa1F5Iir0H3IX//Id+HpX78Zpx9dn3fq1/7lk/jiox6M4/O1gVxjWfYurOCKv3kr5tqdws8+8/AL8BM//UooAM/65vX40c9/BY//ztYWrLubDfzspz+Fn/zcZ/EXz34u3vLUpwFKbVlGEAYBFRHXDE7Bhlwp3LlzN+7cuRv/+ejHY/aWDPsbx/Gow7fhsrU/e9sPvOdvv+ipeMsjn8U/35gSE9aUYZZA6Ryry9298XLCmrJPm1jaNiHESUScIEw0Jq3DbwD4mNZ6RSn1BgCXAXiT1vrqwVxakXjZzAkziIoLq7c09+Dew3Nbljugi/7nZajXigO+MuytN1jldoTt3h/agGvzIis7CW9But01LxdFvct0PLcgxIVpjE5odr6AiIiLHA9qo+8GwdJx84nG1csV4zIAoLu8ZOnK4dmEOL55NIrjMqN2x8vJBG1i8bLaTGBVzSddToc3UQuPmd+UpMY7l2bOJZ3I/BodXhOJsoPgjVgGWg65ccNxoEp+zewwz6n5yDHeBMpb4rUJdom2bSM6YLYjcblzpQnxzq2kqB4sf612zLtGbff+DEXm8epkvJtx/5l2TxnzualseAtMVsrsAJjFsoDx3co2AhsIFofXuVG2YlhyUHXyLctlPu9ZZ8x1nzQ0P5/dZd5HZjVuncZrFDh9sOY14+zvprauDiTca+Q+t9zlfbmc0SZz+42U044AyBlTqcTQ6eMETsfsu2Vw8cV9D8Oz715vR/nMu6/F589+eM/ynHtpMkY7mZy5x8Bp8cpxXric2f/mMa/9sWfNX27beuAaqUibdtVb95kTJDUbv/+zz8HfvfHd647PtCL8f2/5KH79N19Mnm9lgbmh0WAOXO908M9/+nacsbhU+Nm1Z5+J1736FcjXolQ+eunF+OilF+PBhw7jFV/4Cl789atQjzZf3PazDK//yIdw6T134Fdf/gNohA9EIrkN8/eUW/+ZQxKA0f5zz8cdIyimGYbNDA7iPAP+uXj9hrf8QLmZZvE9TVcqqB5cX/985vgzPJbhOObwiblH4RNzjwIeonF6ZwH7W8dwNJjFgfppCI8V13uinUzBiSFouw3eelMWbv6OZrARW07BXtJDhk5YrsOxOsUXrGs5Rt1HZxc9SGhUi1GPTpje/3mLuQSXx+aNgsUoAwBOm3mRjDqibd67llZ5691JlVf/rcT8XnorTAHW4Y0lNbOclTLGJM3tFeVpcmd/e02EexKApwP4ZwD/MJjL6g8hmf9LIhymgY5P7FwhnncvqDKR7CLf1lDPP0y2V8ewHaFyknUlIm4oxEReRp+w+BAEgSYgksRHxA5fQRCEzfjk/ksLx5588HrS+laYLihrylZl8w1mX3nUefjQdxUF2md++Sa89t8/j/PuODL0nHFekuLN//BvuOieQ4WfHdi9Cz/+Mz9Orh/cum8v3vgDL8Lj/uC38dvf/2LcvG/vlud59re+jQ/+6V/hgoP39u3aBaEM9ZiIiPN4G0FLoRTurezE/+5+KA7UTxvcecaADjFmDgzyxHlEjrikT9aUbcqaUiLiBGGiMRHiTsjYzwfwFq31hwGM9SyfzP9F5BcTJg/qOVaInIBb4WQZvGz97oxMKXQdZoiEMBVQYn1AiDTCdEFZU0au9BfDgBI8PUJYEASBhlosoBYVBEEQNuMbe8/HsrfeuSPIEjz54PWblBCmBRNryhP82U88A4szxUiN17zry3jvz/4zPvHKv8Gb/uyDeP5nrsPOxWbfrpVC5Tn+9Ip34wk331b42dF6Da/82Vdjob61k00rCPDvT34Cnv36X8XLfv61+NClF28akXru0WP4rz//G7z4f6/sy/ULQhlqcdFapuEb5IgTNoXavBYa5GGj5q1dIvcch7ZLCHGyQUYQJhoTmf6gUuqfADwTwB8rpXyYCXlDxcpzMv8XlYtGmDwoIY6ymdyKgIyY9MT3fZtDRsQZ1i1h8vCJnGRUpJbQf8iIOEIYFQSBhhLiIluEOEEQypNaDj591iPx4lu/tu74s++4Bp8457IRXZUwDCh741Zla3/BpdkK/uQ1z8If/ukHyJ/vXmjiBZ/9Nl7w2W8DAG7cfxq+9LAH44sPOx9ff8i5iIjoNC6/9f6P4Pu+8c3C8Zbv4cd/5sdx126DtCNK4X8ffB7+98HnYffyCn7mU5/Bqz7/pcLHwiTBn//7u/Do2+/AHz31ReKiIQwUJ0sRbHALyZSSfMB9okOMmY0i4ggnl65ExAmCsAkmQtrLAHwcwLO11ksAdgD4tUFcVD+gRRYXmum1L4wXZEScoVgi1qUCBZUjToS46YfcuCGT6qFA3WdqQiMIAk1ICXHSfgmCYMgnzi7aUz7u0M2YidkJ1oQJgIyIq/ZO9PWxp16ELz76vFLnuPCe+/CTH/8S/u3P/xXf+tnfxTv/+M147Yc/h4ffcQ9UzkxgBuDVn/oCXvPJLxSOJ5aFn/mJV+C6s89k/+6jszP43Ze8ED/16lei4dP344e/8jW8421/gzOWFtjnEYRe1LpFW8qWF8gG8j5xqhFxG/PLAUBsixAnCAJNaVVKa93WWr9fa33L2v8Paa0/MbhLOzUokaUttpRTQz9yxFERdJEIcdseqg6EYk059VA54iSCejhQ99kXa0pBKIfWCKkccRIRJwiCIdfuORdHwtl1xxyd47vv+taIrkgYBnREXIk+RCm88ZdegOsecrrR+fw0wxNuuh2vf+/H8OHf/Vtc8/P/F//4t2/Hj376q3jwveXzy33PN67F7/znh8ifvf5Hvh+ff9gFRte1GR+/+BH43l/7Rdy0j86T9fBD9+B9b/kzPPnWG/tyPkHYSI3ID9fwB5gfbptx6hFxhDVlnyLiWoQ1ZTUp1gdBECaHqV1lpCJYIhHipgYqcs1UiCMj4iS8f9tD1QGJiJt+yBxxElEyFKj77Ik1pSCUghKtY8tBLg4QgiAYopWFT559CV5+0+fXHX/mndfgv85//IiuShg01U5xntPLmvIEi7NV/OifvRIX3XofHnfNATz22gO45IZ74KVZ78JrzLfaeO5V1+O5V63mIzwyW8dXLjxv9c+Dz8fdu3YUyjz+5lvxZ297N/n7/uR7n4P3Pe7Rpc9fhgN7duNFv/xz+P13vw8vvvLqws/nog7+6Z3/jH948jPwd095tvTBQl+pE0Jc0xMhrl+QEXGnak3ZtxxxxecsEXGCMNlMjhCnAe++8pc7c6RocdCxfeQL5QaVHFaO8n73sjvb+0ME2i63W2wdHs/6QTm8cjoxH4Sqtt3zM20UO6TqSgK7Vf581WVq4d2D1Sn3O/LM3ArAjnn2ARY3OIRRRQAgC8wHDp3Z8hOudbi8umUvmTdfVrf3/Y+t4kCs2kzgNs2fndM2LsJGMW+/0+FVEs75dO9Xmz4Xsx6b4FE54gwi4vxjvAm3YrrxWEydKmf0+n7Ea7dUyWvMYyLnZ5YY1Zdo12CvcSPBAq9Sasu8nFXhXWTObFvTEnZUG7GYexW0zXxuGfP+M9ogbfGusb2HV860Ta506Gg4r9n7+WtmH5VUeO1dNG9+T3LmOkbOrFv+Eu+9sbrm98RKefU4DXjfzWa8p07Eux+ZxxzvMu+Jt2TeTmYBb1Bix7xrjOfM60ju8O5j7jDrVqjwkYdeWhDiLj1yADvyZRypztHnc83vJXeMnDDHktwxqN0xL6NqvHO5M7zF1VpgXm53+IDd6Ey7+CWruxOcXlspHI8yeiB59JIZ/M8lF+N/cDGCToKHX3cQl115Fy676i486PbjRte2Z7mBF37tWrzwa9cCAO7ZO4f/feTZ+MYjz8E3Hnk25pfbeMs/vh0+Ifa9+3mPwj/+wJNgKUaDd9/W45/Y9vGrP/RDuPqcc/CG//oA/Gz9+S1ovO6Ln8Qjj9yJX3jFy7FYq276u+wO01KQWYx7Ps1oSzRTg1Qp12aR1965bfNyaYs7bmUVQxqu/h2i+I42wvD+n58Md9xaOcytk7xyqc8ox65cW5+L2ojto1v6Xnp6kxxxBlXMbdPjrTgtDoRrcXz/59u7eUv6DqdNqPM6Un+RN5fVrCrCHTcx6zFzTsT5cv4x3v3XjDHaajned0sZ4+ukWmGda1KZHCHOECqCRfJ/TQ8dj9i1khjmiCM+L3VEaPehbgmTB5UjThKvD4fYKQ5FKGFUEIQiZH64Pu3CFQRh+3HTzv24c2YXzl45dv8xCxrPuv1a/Psjnja6CxMGRqVd7EfaVb5LTBS6uPLyc3Dl5ecAAOYXWnjENw7i0VfdiUdffSd2HTfLObj/8BL2f3IJL/7kNwEAsWvDT4rKxmce9xD88WueBbQHmDdLKbzjCU/At/fvx99d8W84Y3Gp8JEn3/wd/M+f/gV+9sdegWvPOXv1oNaYb7WxZ2UFe5dXsPf4CvY0Gtizsnz/37sbDexprGChWsUVT3gy/vnJT5McYAKAVeFlI2JN2T8oa0qTiDiXiojrkzUllSMulIg4QZhopleII/L9UOKNMJmQQpyhfWBA1JHIlcWr7U5EWVNKjriph8wRRwhEQv/pEsmsfWJCIwhCESqHBWWxIwiCUAql8LHzLsNPXbM+Ffyzb79GhLgpxMpyhJ31Y65crYpp/WJxRxWffMZF+OQzLgK0xrl3HL9flHvkt+5BJTKbZ1Ei3DUX7sdv/uoLkdvDsYT81lln4Xt++Zfw5//xDjztppsLPz9jaQnv/pu/x/X7z8CelRXsWmkUIug2Y9/yMl7/0Q/h5tP24YsP6U+eO2GyqcfFiLimCHF9gxo3G+WIy4vz1mSAQpxYUwrCZDO1q4yBRDtNNWTUUh9yxFEijLC96BBiLNWeCNODnWVw8/V2EJlSSGymj5FgREzmiBPxWxDKEFC2uhIRJwjCKfDxB11aEOIuOnYPzlo+irtmd4/oqoRBEBLRcJ2Kx7b36olSOHDuLhw4dxf+86WPgp1muODm+/Coa+7CZdfcjYfdcC88Qmjbitv378QvvOFliP3h9n1L1Spe/ROvxus+9Sn84sc/CUuv96HzsgyX3nkX+/c/5Ts3ixAnAABqVI44EeL6RucUc8RRG0ipjaYcOiLECcLUMbVCnETETTeUqFrpQ0SciLUC5REu1pTTjZcWB8+x44odzJCgJipBlgJayzMQhB6QNtuExY4gCEJZ7pzbg5t2noELjh9cd/zZt12Nt1z27BFdlTAIKi3ClrIyvD4kc2xc/7AzcP3DzsC//cjj4cUJHn79vbjs2rtx2TV34aE33wcn3zzR0pEdNbzud38IK3UiWdYQ0JaFv3nOs/DNs8/GX779PzDf7l+C8PmWmYWnML3UCSGuEYgQ1y8osSvIDCLisuK6Ytfqz7qiRMQJwvQxtUJcIDniphpKVA2MI+KIOiIRcdse2ppShLhphsoPF7tT2z2OHbllIbFsuPn6HdBuliERe1BB2BLKOicWIU4QhFPkY+ddWhDinnXgmyLETRmVVnH+3K6Nrg/p+i6uvuxsXH3Zam619LjCZdffhcd860489psH8NADR+7/7H276vj53/kBHNozO6rLvZ8vXPhQfM+v/iL+7m1vx8V33d2X3zkTFe0Ihe1JjbCmbPijEZ+nESoirmKw/uMREXFxn6wpO7aHHAoWHtiQEOQJ7DxDZol7jyBMIlO7wiURcdMNmSPOUCyh6kgkYu22h7amFJu8acanrN1EABoqsePA7a4X4vwsESFOEHpAWedIRJwgCKfKJ869BL/4vx9ad+xBS4fhpQm6hKW0MJlUWsXIimFGxPWiVfHxxcecjy8+5nwAwNxyGxffdA+cNMfXLj0XrUoxWmRUHNyxAy/7+dfht//7g3jFl75S+HnL83BkdgaHZ2ZwtDqDIzOzOFKv48jMLHY3Gvitj3xw3efrIsQJa4g15WCJiHGzUUQckSOuX9aUUAodx0N1QxRcmHXRtESMFYRJZHJWuBSQnGnQGF5ftAWI6zas+d6/w3bMfMlPkCbMHQnLvMGuyhiWXS3eNaqUV1U4pmK6RI5lctdK1IVKy58xJBJDR7YHq6Tmwrn/wXGezVo27HHW5g4gm+K0eXUkZ7ZCVmJ+L53iGLZAV9N1y2E4jeghblKqHuK1W14j7/0hgu6M+ZdTGaNiAQB4idftuFwdCdvFexcTguxWuEwnGqfFuyeK97gR7zB/b7jvqG2gX8e2ixrWTzBmj3SRheUWWLo1Xttapk2g4NZlkz7qVFE27xpz17wc93ulFVYxeMu8ck7b/LvZzDrCbf9N3zc/L75ojRkfjTN6X0Dm856b2+TVrWDRvL9JqrxrbO/h9RtWwvtuWWB+ndz7zx5bML6aypnzBt7QAt4K7/6ngflcStvMMTlTg+I8N597P0Je/T/5Gu+bncdCUMOOqLnuM/Wsg2MbcnGp2Pw6U2a/nTHXHbltOadOdud53y1p8tYEKrvNNwzW3NUx1864OIDt1pz7f76RwOFtTrz6rjNZ5TbSdALc8/Adq//RAAj3xjzh1X/FKwa788DzzuDid5//Evz7Y56EBx09gpUwxOH6LI7O1NE6SThRG6rVhfeujz4FgJlOp/C5zBve2A4AgqPmN8Xh6ofMaSJ3nMAZE3orvHNx5w1puHq+mXaxAWtbAdmucfvfpM7r71PmWIYzv2SPm3rkvGwR801fd5GWHNu5KApxUeDe//zKYG2xtth2/IIQ51sJlv0q+73Z2LaUYgub4K1PNrz5r9PhLZIkNWb9Z4z/AcDjzKUs5ppYg2dlqlLegLdbNy/HfbcnlckR4gwJY8JmYcgJfIXB0fGJXSuGUUtkXhXDxXdh+iBtT4mIKWF68Im2I5bd3kOlS0S+UX77giCshxrLRNJ+CYLQB1b8sCjExR0cq8yM6IqEfhNSOeJq0oecKrft2Yvb9uwt/fmVsKgwizWlcAIyIs6TiLh+QW3ypxwnNoPMEWf3rx2l8sRVU+buEkEQRg5z38/4ExL5wjoixE0NlGBWIXK+bQWVU47KDyZsLyJqICY54qYaSmgVa8rhEhOTFcrmQxCE9VA54qgFBUEQBFMaXlEcqBMRVMLkEjaJPqQqfciwWQkIIa4jQpywSp0Q4iRHXP84dSFucDniAKDlFkXXSsKLchIEYfRMsRBH7BCWHHFTQ5uIiDPPEUdMPCRH3LYnIkReEeKmGz8hBs+uCHHDhIqI84lJjSAI66EWCqgNJYIgCKZQC731ruzCnyYqLWLzclXmw8Om6fvIN9i3VbtdOBnTi16YKmrdoigrOeL6R4fYjE9tdNsMSohL+pUjDnREXCUVIU4QJpWpFeICwppSIuKmBypyjRJft4KyshQ7J4EciBnangqThU9ExElbMFxiYrIi1pSC0BvaZluEOEEQTh0yIo5YEBYmF9KaUiLiho62LDQIYaUu9pQCgFpcFF2o+iLwIB2RTlGI6/YxIk6EOEGYLqZWiKNsCiXaaXogI+IIq8mtIIU4iZrc9pzqjihh8vBTYvAs+SKHSpcQPqlJjSAI66H6J9lIIAhCP1ghIuJmxJpyqqCEOLGmHA1Unrh6JBGoAh0R15IccX2DtKY0cETyic2jVNoFLm1XhDhBmCamVogLyYg4GVROC1SOuMDUmpISa2XxfdtDLWCKNeV04xOivOSIGy50RJwIcYLQC2rHruSIEwShH5DWlESuImFyCcWacmxoBEVhZbYjwvd2x8pz1LpF0aUpQlzfOOUccURe8+6grSklR5wgTCwTtdLoV8s3hpWs2DBV98TYv3uxd1mXt+hecXjlApu32NhOzQfJdy7Ps87VTXlVpds1L9ddLnY0G2nnduFYpdsFFPHhTaAi4toVF7mvS5XXe8w7P+dCnr1E6PD84aOE99ys3Fyjbzd6PzfyXMd4C4a6WAV6kpe4HQnxoTBNYKU5tDK7L4qpI5S5zo1067x9FdE8r5y/Uu49ORmtDF7Qk8sxt4w4rXLnq7SIwbNyYXfKX2/KnAt19vLKJXPMnBFObl6my3sAlbvLV+SIso6uZujsGux+ISsxr8cAkDLfN7tlfr6Uu6OSeevchvl7WruHUa8AdGd4bULm8cpZKaPdYvQ1AKCYr2j9PrOC9RU6R5wq8VWTmtGpTirHu/8eo26Fx3h1i0sa8r4bGE0Jt26lVV67lTGGWxZzHGPSf56Mynnlcse8nB1z7yOzjjDa5G6Vd6oy7z/Jhtet4VJCXLvwOW0z7wkDm6kDctvkpG7+3XKb+QBSXsedMuZtrrV6Q2qt4ny2W3fu//lGdrlN43MBwEP2HWGVu3PRfO0iWeTNSeHynlvO6KZyr3iupXoIHFp/rKLaSGYeOIHd5tWRLGCOdyvmZTjzWACwmY70DrNN2KSKb4nKePfRZmomdqxRIzY/tFwf7ooCNfhIA1573K3yyjnMvhSMdQF2v92jSYgsYpO/kTVlsfJmiQ2nU/56sy2eGxURF2YxtAU4EfPd9hn3n7k3vTvDG/DaXfPGNQuZDRCzGnPvv9M2/27JDG/d1NXcQSEPznw7rUxtjBjJ1H5bKiIu9idKdxS2oENYSJrm8SLzqoh96bZHWxYiIhqKsi8UpgOPeLZi7TZcqIg4yuZDEIT1BBktxAmCIJwqdESc5KyaJgKJiBsbKGvKmY68b9sdypay6Uo0XD/ZNEdcSQHDJ3PE9dGaUnLECcJUMbVCXEDkCyN33AsTSdexkW3YReNlGZys/NYmKqdcROQHE7YfbUrolTxxUwvp6y7WlEMlJmyBRfwWhN4ERPtF5ToVBEEwpeERwgCxKCxMLrQ1pfQho4AW4sQKdrtTIywIxZayv2SWja61PmrLgiYFNgoqnUJfrSklR5wgTBVTK8RVIkJkCWRhdWpQCm0i519A5H3bDCqnnETECQAtyEqeuOmFiqbtSkTcUKFzxElEnCD0gtokIhG9giD0gxVCiKuLEDdVVJrEfLgmfcgoWAmL4opExAlURFxLIuL6DpUnLigpdpFCnNW/tecWmSNORHpBmFSmVogjI+ICGVROE5RoFhrYU1IRcZTlpbD96BDROabWp8LkQFlTSkTccIkJ4SBI5Z0ThF5Q1pQdYsIuCIJgilhTTj+0NaXMh0fBSqX4vs225X3b7tS6RcFFIuL6z6b2lCWgNo8mfRTiKGvKqkTECcLEMrVCHJUjTqwpp4uIEM0qpxgRFxECjLD9ICPixJpyaqGsKaUtGC5dQvikBFJBENZD54iT9ksQhFOn4VUKxyQibroIW8U+pC0RcSNhWXLECQQ1IvJJhLj+Q0XElVn/UTqHlxfT4/QzIq5NREBWCMtSQRAmg6kV4gJCiIt9iXCYJk7VmpKKnpOIOAGgc8SJNeX0QuUioyK0hMFB3W9KIBUEYT2SI04QhEHR8IuLfyLETQ92msOP1y8g55ZCV9J5jAQqIm5GIuK2PXREXLGuCKcGV4jzsqIIF1sOoFRfrgvYxJpSIuIEYWKZqFFWNy53uSrPSdvBO9o7oKPe2mOa2D0/Q7FjrsUqd/78UVa53UHTuIxj5axzrXR5u26OtqrGZRaWy1kqUdaUlW4X0L3LOlkGJ19/L1LLQlxTAMrdoyAwj9aYDXlezjM+r9xKzHtuyx3zcl7IWzSPK8NrhlRabkDUCYt1S9W7aJ9WonKdhLfMHIBZ5uU0r9lCzrz9acX8Gv0ls/t3KucCgO5cufO5FhERFzrIgvLXG+0rDsLLEO5qs8rtqPDahCw333+z3OBN9qIS/e0JWrPFCqwqCZpnlWuP3SZvX1E8z6tb2ubV5dw3L6dqvMhA3eE1ChbjdO29vPuveLcRive6Idph/rwdZgqGymHeeKuzy+y5+TkRzRD6yN3e39VfMjrV/cRzvHIpoylJQt476i/z7r+/wjtfGpiXyxusU6E7y7tGO2K8cMx3VDO3eirNO2GwaF6Oe40O5z4yy+UO71nHM7xyG9vkRkBZU0ZQKodWD9xAlTG+m827xpy5T6p6iFmZGbTOYJ6L12whSs0H88fjKurLRZGnXfFwvFvbtJzHGSQAOKu6yCrH4UDOfG9iXuXKE/PGRC0UF/0bhLgy047WzV/TOaZbBHPcmjLqFrffsGPec/OWeefjjC+4c1Juu5WGgHdbcSC6NBugs5u+Foep3bpt5tyGuZZgJebni+eY840Sr03bI+wfOzHs7tbXGRKBAF3bQWen4Txsi6q13C22DWEeo1uz4DV4HQenTva6F5uhcl45zVgTY5+LKZw6bd79T6rmdTl3eXN7zR5v8cplnvl347QHk8xURsQF3WJLG7kOtDWVX3fbQkWvUR0hBRU5Rwl7wvaEqguUlakwHfhEdKzkiBsuZEScWFMKwtZoTe7WpXb1CoIgmJJZNlru+sVJCxpVscSaCipEfrhWTfqPUbFCWFNKjjihHhMRcUS0snBq8CPiCGcdu7/rim2XEAmlHxaEiWUqlSkqGq4dyKBy2qDEkrJCHG1LKUKcsAot8opN3rRCCT6SI264xG5R+PRTeecEYSvcPIO9IYIosSykNjNEWhAEYQMNIhdRPRZxYBqotIoLue2KrJmMCkqIkxxxQk2EuKEQsYW44ny1a/d3Qy8lxEmOOEGYXKZTiIuJxPUiskwdVI44SmCjoPJ9RZJTRViDyhFXMcg/KEwWlOAjEXHDhbrfXiIRcYKwFRINJwjCoGn4lcIxEeKmg0qLsDauSh8yKpapHHGRvGvbHaq9bfiSI67fUOPnoIwQlxf98vstxG2MTAfWhDimnbcgCKNlKoW4gIhc6fgixE0bp2IfSNYREWuFNSjhXqwppxfKmrJLWCUKgyMmIhDFmlIQtoZaIJBNRYIg9BMyb1VXxIFpoNIWIW6ckIg4gaIWSUTcMCCtKTNeRFy/rSlT20HXWu924egcPmGLKQjC+DOVQhxlIReJEDd1RKcQtURFxFF2hML2hLSmLBltKUwelOAjEXHDhbrflEAqCMIDSEScIAiDZoWIvJCIuOmg2hQhbpxoex5Sa/3yXJCk8GQ8vK2pdYtCXEOEuL7TITaylYqII8SwpM8RccBm9pTFuiEIwvgzUSuNebOcmBYs5oVjbctHd6Fch6VyZXRdJ1g8xOsQv7pjhlVOOcXv2bOMzQxfZhbLI/MqFtxT7jl3u0TOgqUEwfHez2/2GLFzxfLgLpXPqxI55s/7zpViB1oKXpUEzKvIKl1zjd6qD3eSYDfNc+B4S+VuZBITCXEbCbwVswdhMW+J2xiezYDL3EilGXXSjnnfS1u8F0CXbO8oa8qO70KbvAaM9vhUOLZUY5XLF8zbIO3wnpvXKf/c0pzI+dlJ4R8v9xCI4qVwmPMX2+C7rYPx4nSZ0dqKWSXjOfPnXb+Tdy4n4tWtaAdvH5nNCGz2lnjXmLm8OmIn5c9HWbF3PA9ZyXVUm1n/q4d496Q7Y35POnt49zGp8fLkcetk5ptfZ8p1luI2P4y+lNPXA2Bfo9PmFezsMC/ntnnPOmemYOTcf6/Ba8gV88FR342yQKsl7XWf1Tajbg07lSVzaB3PM+4ltwP2eeW6qfnNrDhdzBK2h92ajYqzeWd5uMNbt7j5yB5WOY7zWtLlLXHlK7zxlt1hzJtjql4prAQBdrTb647OL0Y4VvfWyvG+WzpXtM8rBWNdzF/ktT8W03yG204mFfPrLDu+6lc5gM4R1wiCTeep3HMlVeZ8e4jjhDRg1q20d0PSDoo3zrO66Na3PqfVIHLNe47x/cx6jAmbfoC5eH3b4FRjJGnd6Dz3l+2Yvzc5c27DnRO5HfMOIAmGG2uUzvPOZzHW4HK2esMsyBw3eSvm/Y3aZi6r2yYijsonJkw2HcLKjIp0owiohXfi9wnbEyoiThLiTi8+kYssFmvKoULdb7GmFIStoSLiqGTzgiAIXMiIOCJCQ5g8KlREXE36kFGyEhZzMoo95famTghxYk3Zf0hryhIRcZQ9ZLfP1pQA0PaIjeJdWZ8ShElkSoU4YoewiCxTBxk+XtK6gcr3RVldCtuTiBAFytYtYfKghHmxphwusUtYUxLPRRCEB6Asc6ixkSAIAhcqIm5mw658YTKhcsR1KtKHjJKVgHjfiBxhwvahRlgBU+2ycGp0COvHMpv86Rxx/V9HoMRXEeIEYTKZUiGOyBHHtHYSxhdqselUIuIo8UXYnnA9woXJhIyII4QhYXB0CeHTk4g4QdgSMkecbDwTBKGPNDzJETethC2iD5EccSNlJSwutktE3DZGa9TiotjSDCQirt9wI+Ko+Wp3AOuKLUIoFCFOECaTqRTiAioiTqKdpg7qmZbpLAE6uqkjYq2wBlm3JCJuavGoiDhZzB4qYk0pCOaQ+S0lIk4QhD4i1pTTi1hTjh8NKiKuIxGo25Uw6cLR63N5RY6DZAARV9sd7kZsf0gRcS3KmlJSpwjCRDKVLXiFFOJkUXXaiE7BmpKKnKN+n7A9OZX8g8LkITniRg9lBUpNbIbBBYfvwdNv+TaO1mbw/kc+Fpllj+Q6BKEXkiNOEIRBI9aU00vYKo6z2lUZ/46SlVCsKYUHqFH54TyJhhsEXLctL8sKx7oDEOKoHHEV2RQjCBPJVApxlDVl25eFiWmDFkvK7QqhrCnFzkk4AbWQSeUVFKYDSsCXHHHDhRI+R2FN+dg7voN/+s83w81Xd58++fab8PMv/vGhX4cglIG2ppTxriAI/YOMiBNryqkgpHLEiTXlSFkmhTh537YrdUqII6ImhVOHbU1JRcQNwpqSiogTa0pBmEgGutKolAoAfAGAv3au92qt36iUOhfAuwDsBHAVgFdorUu0cnnPjwBAmBE7hCsOVFjcrUChuzzHzqyuWeWcY7yGOgvMz5dXyt2DAor33Tjlkplyz7kxR1iZ5QmSWu9zeqpYR1pVF2nV4Hot8+/mHOU9a29ZscpxsRjVpLOX995YTINcm7EBSJWrWqQQFyYJYPjI3RbvvSl7nf0gZW6q85fNv5tmBhZpZvVXae+CdpbdL7qcIFcKWWbDMngOLrMdTxZ45bhNsheZ30yLGZjmtgw+HBXfOT9NSrdFNlMnzzac9oeu+fK6+vDdt3wb+xrHcXBu57rPKeY6lbY57w3zYQ8xkI/7bsdzzA6AeUvAaEu43y1Y5jXkmVv+IqkNIh3fRV6yWUmZazkZox0BeP22xZ2pMKtWtIP33ZJZ80qZ1nh1RDvDG5Nz3hkAQMYr6C7zXjgrNj9flPOuUTPrlmKMrb0G736ER3h1y+4W60i3U1z8m213EB5/4BzxrPlN4d5H7rttMff2xDu4HY45lsebp88E5ouxs24H9VaxnDWrMetuLvycGS4anwsAPJv3AO5amTcuc2ypxjoXmG1rNmP+3LJN1hGWdhGL7VYLyd7Vwbhq8dqEMnMiCs57U3YMspG0wrv/Ky6vUXAYgb2cNRIAyJljmdlG8V1sugHsLV55p8O7j9z5nsp550sr5nWSOyZPS4ytm7XiuxfoLqKdW5e1fMJZx3eQGY6xVY93re0UF22qUQyV8e6/ts3vP7cec+dtaWB+jdx1NCvh3kfe+ThjQm0Ne02Y+W5Xzdvk8PD2CnoYdI64GMDTtdYXA7gEwHOUUo8D8McA/kJr/WAAiwBe3c+TkjnifIl2mjaoCLZKyaglavEqkjyCwhqkR7hExE0lXlYc9UaOC6jhDnS2O1QEIhW5PGjOXThSOHb2wrGhX4cglIHaqdsmkrkLgiBwaXiVwrF6IhE60wBlTRmJNeVIWakUF9tn2vK+bVdqhPVgwxdrykHAtaakcpoPLUecRMQJwkQyUCFOr9Jc+6+79kcDeDqA964dvwLAC/t53jAmBpUiskwdHeKZUiIsRUhY0UkeQeEEkeSI2zbQ+eHElnLYUF76XpZB6SGGhwKY7RS3x851TEL7BGF4BIQdDtV/CYIgcGm6xUXfeleEgWkgaFHWlNKHjJKVSjGMZrYl79t2hcwRJ0LcQGALccRYvDsIa0pio11VcsQJwkQy6Ig4KKVspdS1AI4A+CSA2wAsaa1PrH7eA+CMfp6zEhODShFZpg5KiCsrlpBRk5JXRViD9AgnxFth8pH8cGOCUuTuwaHmidOaFN1EiBPGlUByxAmCMGDajo9UrV8yCLIELuEoIEwWYZPYmFqTNZNRskwIcTMdWWzfrpA54jzJETcIqPFzpUTEGTVXHcRaQlsi4gRhahi4EKe1zrTWlwDYD+ByABeULauUeo1S6kql1JU6K78rPuwSg0qxppw6aCGunFgiEXHCVlARBWJNOZ1QdhKD2MUm9IaatPhDXOirduNCvkAAmCOi5ARhHBAhThCEgaMUGRVXE3vKicbpZnCT9WOe1FZI/CEmmBUKiDWlcDKUNWXTFwvyQdDeLCJOb50ni7amHEBEnEfkiEtEiBOESWTgQtwJtNZLAD4L4PEA5pRSJ1bc9gM4uEmZN2utH621frSyy19qQAlxYk05dVA54sqKJXSOOFl8F1YhrSnTZOg2ecLg8Yk8ZGLtNhq6xKRlmBFxm0W+SUScMK6EmQhxgiAMHioCQ+wpJ5uAyA/XqXmSI3nEUNaUM22JiNuu1OJiOysRcYMhtR0k1vqNCLbWZD75k6HWEroDiIhrkhFx0jYIwiQyUCFOKbVbKTW39u8QwDMB3IhVQe6lax97JYAP9PO8IWU7KBFxU8emEXE9dq0AQCCL78IWaGWhQ0RFUTaGwmQjOeLGBzIijmirB8VmkW8SESeMK9RYRoQ4QRD6zYpbXPitJbIAOMmETWJTquSHGzkSESecDGVN2ZAccQODjIoj1pZPhrJpHsRaAhURV8Y6UxCE8WPQq437AFyhlLKxKvq9R2v9IaXUDQDepZT6vwCuAfDWnr9JaezYvVLqpPW82GHV9kU4/bTFUuUdixf10k54g1e9n7fzrB2bn2++yhvItbu877Z4vGZcJquWu/8ZgMhxEJwUMWFpDdtLEPcQ1QJiF3m74kB7Bs9emz+3rMKrW50KqxjcZZ7WrhmuJHZnuDsoc0aVzA2cHCLPQ7hhkbMSJYit8r9EZeXPd6rl3E5vAZoirvOeWxqal3Mi3jUqZiCiKnE6Mkec5xjXL3+Jdx+TOu+eWAnvfG7DvEzK3Hhp2kRSNh6OSpGV0BVspnNssPDA/d9zpEl+ZsdKa93nAFbzDwBonG/+coe7eEJgmvDspfIV8w4nnufdEIups3L6KIBXl+2I+d1S3rttUrdCwpKmqz3YJdfHo7N4jWvk8r6bv2D+4MLDzPto8Z6bZo63NGO4ZbeGZkyyyhCHadriPTcwizmM6Y1iBlyXGVtQlOnLNpIy11sznzm2C+hyK2EIbJhGh06EeGa1Dmee+fm4Y7s04D2AxlnMcdq8eUVRAXMCwKTumS/GOo3iA2hXPXTzrZeHKswB1yNnSAOknniW+b1sdHjWfZ0FXjlnl3kD5Dj0C9Al3sHZdgfhTAdQCp2MNyhXHd7AKZk1v/+5wxx/BrxGIduk3eqJMu+DM6YrpHZ47VZAdG4Le320z9j8XjlN3tgiPMoqBn+RO04zL9OjedqckufquB5mN0QhBnkXi3Z10zJUxFzku8ZrCbrHGGFlhoiIS2N0Z3j1318yf27c+bYdM99txtiCO/53W7xr1DZzUloieGQj3PEnd7zVrQ1vnuK0t9dG+IF+W631twBcShy/Hav54gZCEBHRThIRN5VEnrtOiAOAStztLcSJfanQg47rYn7DMckTN334lBAnOeJGAmXjMcyIuNlok4i4TY4LwqgJMomIEwRh8Kz4RYW6JtaUE01IWlPK+HfUxL6L2LXhJw8IYG6WI4wTdALp37cb9YiIiAslIm5Q0I5bW6//kNaU9iAi4opCnETECcJkMuStmMMhjAkhLtheCut2oe2bd5abfaYjOeKEk6AWMysixE0dVIJlsakdDaQ1ZQ9f/n4yF9G54GY3OS4IoyZICWsx2UggCEKfoXISzRC5i4TJgbKm7FRF6BkHVqpFoaXeEivY7QgpxAUixA0Kcv2nhzUltZYwiBxxlBBXFSFOECaSqRTiAlKIk4WJaYQSz3r5OK9+hqgjEhEnnAQ1EJMccdMHNXiWHHGjoUtYU45DRNxsLBFxwngSUjbbEhEnCEKfWfGLQlxdIuImGjIiTnLEjQUNKk+cCHHbknpHhLhhQq3/UDbwJ0NtGh2Euw4VrVdJurBypu+gIAgjY0qFONqnV5g+KPGMEtk2QgkqEhEnnAwVFUVFHwiTjVhTjg+UAOoRQumgmIvpyLd6N4KTDTffiyCUgRKqI0eEOEEQ+kuDjIiTTSqTTKVFRMTVpP8YB6iIuJmWCN/bEToijpm8W+gJLcRtsjpcdQAAol9JREFUvf7jEWPxeADWlFpZtD1lD6FQEITxY/qEOK1Ja8rYkwiHaaTN8HGG1mTUXCRCnHASnIGYMHmQvu4SETcS4jGNiANkwVEYT6iIOMkRJwhCv6Ej4iRCZ5IJJCJubGmQQpy8b9uRmuSIGyrk+g/LmnIwbakIcYIwHUydEEdFw8Wujdyeuq8qgGdN6WUZbK3XHevaNlLb7uu1CZMNJ1mvMHlIjrjxgRJAqeczKLbKBbdZ/jhBGBV2nsHN10dqZkoNJEG8IAjbGyoirt6VDSqTjFhTji8rVeJ9EyFuWyI54oZL26WErl5CHOWuM5ixOCXE1WRTjCBMHBM0W1fopr0vt9IuNpRx4CB0y++qdy2eBdW5M8dZ5fb4DVa5wDKPFLCge3+I4PrGPla5O2xzz+Jjx+ulP9upEBEUdoysvvkzdAlrh8h3Eewys3wIPPP73015Yl+W8YTkZAfvFdeZMi/TZQqZvCoJlZjfk9wv/73aRN2yal20Ty9fp9MK77n5i+ZlGmebPzMAUEzHPXeIukTGnG/oEreftHYLHOS+WcXs7OVVZLvDfG7MQLGUcS/TKu+7ZYbOKZ1qsb1ykSAr8SxUzruPzknriHOdzRcVdyy3cddJ9y7awTsfPPM+kd3+r/AioyqL5t9NMdMT5Mw1P4u5J4LT3immFtzexezvvXL3vxYTkf2OBwVVul+1El49zkLeA493mz+ANOTVf4fZR3H7RDBuibfCbLeY381tmrflmcG46WRyl1dOM2em4VHz78bpDwF+HclC83tiR7z+N63w7v9m92RxZ7FDr+YR4vnV89iMNtnlTX8BPdy6BWX+DJyAN0g7c9cSqxxnfj/XJua9Mwqz7tbz4aPd8vP0k7mrNc8ql2TmfWnS5T1sK2K+N8fNrQITd/NOY8GpFY6FR3N0FkKAOd7VAbPhYpyPsUQFAHA6vP5eMdYtAN51dvYyB7yMdsRL0sKGxNSy0Jq3tuyIcmZb5y/y7j+3v+H0pQ7ToTUt+Yp2CHv3atSFvUVdodIotOsO0orZMy8zl20FRSEuQJc1VotnjYvw53tcYZJTJZlri1bGK+gv8Bq8eIf5JDhhvmtui/fdvCbvgWuLUR/ntldQzNSFiVG2lFEgu7umFTIijlicOpkgISJgxLpU2ABVt4Ie0ZbC5EHniJP2YBRQufmGGhG3hf3k7Cb54wRhVATEJgKxpRQEYRAs+5XCsZlYclZNMpQ1ZURsiBKGz0qFsKakhFNhqiGj4cIAUMzNgEJPOKlJqLnqoNYSmn6xbah2xZpSECaNqRPiAio/nC9C3LTS9s19nMn8cFJHhA3QA7Hh5asShgM5eBZrypFATVqoBNiDYiuxbSuRThBGQUjkhIgGlJNCEITtTSMohhPMbJFXVRh/giYhxNWkDxkHVsLi+zYrQty2o94pPnPJDzdYODnivIzIETcgm3g6R5xYUwrCpLEthLgokN1d0woloIXdrRduqZ93RIgTNtAhRN6KRMRNHZIjbnyg7vuwIuKcLEVti2TXEhEnjBsSEScIwrBY8YmcVbEs/k0ylBDXESFuLFgmcsRJRNz2oxYV5yUixA0W44g4rYebI84vCnESEScIk8fUCXGUNWXsixA3rVD2gb3EEjIijvg9wvamQ4gCYk05fYg15fhA3XdqcjMIZrtb7+yXiDhh3AhTOkecIAhCv6Ei4upRB9DMZCzCyKGtKWU+PA6sEGLLTEeE7+1GnXjmVN0Q+oepEOfkOewN/WBqWcjsweS7anliTSkI08AUCnHFhjKWHHFTC2VNGTAi4sSaUthIx6OsCcSactoIKCHOFSFuFHQJWz3q+QyCXkKbRMQJ40ZALAxIRJwgCIMgsR20N7Qvjs5R2SKSXBhvRIgbX1YqEhEnADNR8Zk3g2JElNA/qPWfrfo5KoXCIDf0SkScIEwHUyfEBTFhMyZC3NRCRbJVCDH2ZCihTqwphY1QEXG9kvUKkwedYFnag1FAR8QNx5pyppcQ15UFEGG8oCLiOhIRJwjCgGj4xZ34s8RCsTAZhFSOuLqMf8cBSoiTHHHbDyoiTqwpB0vbLQpdW63/+FR+uEEKcWSOOBHiBGHSmJxt/xpoLRcHJRtRi8Vjx5I6br39tNKnsiu8hb+F+QqrnLMzZ5U7PVhileNQd3gNvKXMLUssp/z96FSKE4YqIrgzm3eYdbu44NoNHASeWeTFnlrT6PMAsDPgRVV0c154e93lPbflrvkg78bD5d+xk0m6vGYoz5RxGRMHnfaO4j6FEBH0zvJiXBe8RdHMN/9uOXPubHO1RWV+jdCMMgBy5tpyOpP1/IwLKkeGjTw0a5dVMtzvljAdL5w24zp5Xw3a8BqpjRVeSSEuY24QbZy9+uW8ztZCXA2t+z8LAK55878Ko7vPMt6eKRXzynHqpMV07mR2bbB5wyZYjABLxbRe85q8cu3d5V64MCs23s1ZF639g7eKc1Z4Dy6rmD+4dDcvKjad5zVcziJvTJLVzL9be4b3rFTO+25WbF7O4q7vMLd6WswxSRowxoRD1hw499JxmfW4xatbtrX5+Rp+BXubK+uOzTY6OBLMQ/UebhVIZszLAEAWMNs4bp1krAvUKrwXJ3R47d3ecKX3h05GazJHXDMMkPbomD2Lt06yGPVex6FY6ZjPSZMO8+VmtOMAb7ylthjbNezimtJMK4KKLCjG/BcA8jrvuVkd8/6e0x4AvD5q9YS8Ypy5s/a5A1DzdquWEhFxXsh6JmWI53nlcm4/xdCWuddYtk62QsJtK+siqdKft6iIONuFHTHWckoMPykhLswjpIzmVW/R32+Gv8jsfxlrwgAARrPF7KLQrfIGCVox1zIZxZhLacZrMidIfOZaAuO7pSHzy00oUxcRR1nHUXnEhOmAerZh1CMijsgjGEkeQWEDZN0Sa8qpg84RJ33GKKAsQYeVI26us/UmidkeQp0gDJuAiogTa0pBEAbEikfY5Un+1InEjTPY2fqF0cSzkHqDWeAXzFgOiXetIxFx2416RETEEfk6hf5BW1NuvrZIbRgdqDUlIcSJNaUgTB4ixAkTTScwz+MlOeKEMkRE/kER4qYPyRE3PozSmnKuh9DWS6gThGFDWeW0iQUEQRCEftDwiwvA9bi4UCyMP6QtpeSHGxso+8F6J4LKmdFYwkQi1pTDZ2MuVAAIu1tYUxLzVCrneb9oERbRNemHBWHimD4hjsgPRu1sEKYDMmqJiHg7maBL5BEUIU7YQJuoE0GP/IPC5OEnxE42EeJGAjVxGVpEXHtroW2u3TbzthWEARMQ74aMdwVBGBQrRCTGTCxROpNI2CL6DxHixobEcdDesMZha42qzEO3FaQQ5zO9+IVSUM4SW+aIo4Q4WyLiBEHYmikU4oiBpYgsUwsloPUU4ohBrFhTChshrQl61C1h8qAG0JErfcYoICPiCKF0EPSKiPPyTCY6wlhBLQx0pO0SBGFAUBFxYk05mQSEEBfVZCPHOLFC2FPOij3ltqLepiLixJpykJDrP1vM/6gNo4O0pmwSEXEyPxWEyWP6hDgidFh2CE8vbdI+cOvdYqQ1pdiXChugc8TJTsRpg8wRJxFxIyEmRIThWVP2tp7sJdYJwjAhc8TJeFcQhAGxQlpTijAwiYRNYlOqRMSNFcsVQvhuy/u2nSAj4gKxphwk/YiIG2Su+RYREVmNRYgThEljolYbld3bF5vcIRy4gF3eUsr1eAt/yy3eDpXPLDyEVc52MuMyYcCL6PFd3j1ZWK4al7Gs8v7ncVBMKh1GCbJ0c43Z7xS/S1a1EHhm9+as2qLR5wFgxuENoA+0drLKVW2ecJQ45sm6TZ7byWQdXmJw5ZjbxPnV8vcjn1OFY2E3geOWf+/M39BVkjnzklaXt69CdYrfs1Q5xuPuzrFOBWuA40vKqjZ2XMCwemmXZ1uYM90OtcN8305jtOW8KgI0zCYi7ZliW+AnCeyo9wUks7wbqddGQXMldvXX8yaycH71uhaZN4VRrFrhvQDJ6bx+O9I1Rile+6OZ28HUCq+czUijYDH3X6Q+s20tWZWp5PGtGQfpjEH/YfHeG/c4b/rgtMwfOFeK1zVeD5ydxnvfLMaYpFrl5fVwbN53SzPz8Vaa8V7SpMurI/ES03bLY/SJzPoP5njLapnff3+Rd67KYd53S7aoWi1FROg0O3BaGvFO8/YurfGuMQt45VTGa5MtgzWEE7Q6vHr8ndYeVrlgv9kcNl0q1sWy1pT7vGWjc53guaffwCp3Z8d8DnxzhXcfDy/VWeW6TfNNMM7xre83FYE6txzDmeXV4y7vqwE7zfvEboXX/ntHeeVs5lyWg0qZYztGvzHTKt77lh32nBdxx63ccjlzRTllLJ2mFeZ8r+RjW67Qm/z1JmM8TxMb/H0HSd38Op1274tsubQQ5zaNT3f/HNiEbMjOqJy3zW3z6ojX4I2ttcVrE3Rifp25zVs3zR3mNTLn6WlleG1yL5RS/wLgBQCOaK0fvnZsB4B3AzgHwB0AXqa1XlRKKQB/BeB5ANoAfkxrffUgrmsKI+KonBmyw2ta6RARcUEP+0AyIk7sS4UNUJa2AVF3hMmGtJSQiLiRQN33oUXE9cgRBwDzbYmIE8aHgIjmpVwCBEEQ+gElDNS7EqEziVSIBf6oJnPhcYKyppwRa8ptRS2SiLhh07VtpNb6JXI3z+FuMh8lnXUGaE1JRsR1eZu6BGGb8DYAz9lw7PUAPq21Ph/Ap9f+DwDPBXD+2p/XAPiHQV3U9AlxkiNuW0E920qPRMaUmCJCnLARsm5FYk05bVA5yCRH3GgYrRDXW2QrI9YJwrAI0+JCqlhTCoIwKBqe5IibFkIiR1zZiDhhOKwEVI44ed+2E3VCiKNyhAl9RCkje0ovI5x1Briht+UVn38liQHNjPAXhClHa/0FAAsbDn8fgCvW/n0FgBeedPzf9CpfAzCnlNo3iOuaQiFOcmZsJ9qMqCWqjkS+RMAI66EGUUGSQuU8S0BhPKGEOImIGw2Up75HRCz2Ha1LiWxlxDpBGBZURJw4QAiCMChWCCGuLjvxJ5JKi5gLS0TcWEFFxFHCjDC9SI640dAm1o4r3U2EOGLDaHeAOeISx0HXWm9P6OY5KQgKgrApe7XWh9b+fR+AvWv/PgPA3Sd97p61Y31n+oQ4yppSop2mlq7rIFfrPWj9NIOdbe7xS1pTBlJHhPVoyyIXNamcYsJkYuU5vA1tRa4UEqb/tnBqjCoirhbHcEsI7BIRJ4wTYSobzwRBGB6kNaVExE0klBAnEXHjhVhTbm/sLEN1g/iTK0VaEwr9hRpLh5sIccO2pgSANmlPyctvLAhTgKOUuvKkP68xKay11gCGHlI6ddv+qfxgsjAxxSiFjueiuiHKLYwTNCv0YjplXyrWlAJFJ3ALwm3YTdAJpE2ZBshoOMcB1PgkmN1O0ELc4CPiygpskiNOGCcomxzJEScIwqCgrCklR9xkIhFx448IcdubWlQUVlqeD21NXRzF2EFFxG0qxJERcYNdYm95PuY22NRWkhiLqA30vIIwpqRa60cbljmslNqntT60Zj15ZO34QQBnnvS5/WvH+s7UteRkRJxY9Uw1HSKabSt7SjpH3NRp0kIfoNqOUPLETQ3ULrZI+ouRQVtTDj4irqzlpETECeNEQEbESfslCMJgICPixJpyIqFyxEUSETdWiBC3vanFYks5Kqggjs2sKSkhjprP9hMqKrImfbEgmPBBAK9c+/crAXzgpOM/qlZ5HIDlkyws+8rEqA9KaZy2e7nn5+ppsRGydmeozZffyd7t8m6LZfEiGnXGi75IuuY7n7OUZ7m20uLdE7tmvojq+2ZlqGi2XU4DUZ3uBCvE4lV9Lsa+6orReQ+2Z40+DwC3JLuNywCAbfHyki1EVVa55Y75QC9JeHVLebzvZh0xr//dBbOBUccqDnS8gxayrDg5orC6vHdb2+blnBbvXG6TGf3FeGwOM6CoO8cr14vN8sOprvkeFWs3bwBcr/LKnTt/nFVu3jOfxB+Pee3Itw7sN/p8V2vkSsE6KeG0l2dIZzLkPXaAapfX/2ZVjfq9zVKfnU1aSOZWK35LMfcxMS5z2F4JinFCt8E7l2aOQlNelUTO6KYs5hgtZq6XqJJtK2VNGc1ZsKrlo0hnZniLeq0ZXuRdsmR+Uyp38ipJvIv33LLa5tbmW5ZjnK5RciyxEcvmtQp5yrhIzRwjMOdE8Jl5eBn9tkp4381u8dp/f9H8fJrZ1SQh77t19m5eLtIBcihYJ/VK1SRGsitHGpg3ru4K8x31mfNtZp3kXOWOGd7GnZU2r+Po5mbtZNgs9hPHwwpW0t62d3dHO4zOdYLT/SVWuXPDY8Zljka8yJC7mztZ5Tik9a37mqX54rOoJ212m2A1eH2pdhltMqcMgDTkvaMOcy6bM/QSbjui58zGFrWV4tykUfOR7C2xITjmrcn4R3jlgmO8+59WzMtw678JVESc50X3zwFPxnGITXE1G+mM+TuQlmy2GtVi26B2dtA41+yc/oL5zezWec/a672MTxIsmr9v3GFr7vIKWl3meJdxoZw2CwAUb2rDvpd2bH5P3NZgVjyUUu8E8DQAu5RS9wB4I4A/AvAepdSrAdwJ4GVrH/8IgOcBuBVAG8CrBnJRmCAhrix+VFxYpSKmhOmBer6U/eQJqIi4rkTECQRkRNwW0ZbCZBGMwNdd2AKlELtO4R3z0hTRAC2m51pFhfjg/BzOWFxa/7mmWFMK4wPVfnXEmlIQhAGhlYWVIMBctF7Ar8UdLARiiTVJhG0qR5z0H+PEckUi4rYz9Q4RERdKRNwwICPi4s1yxG2S5mKANAMiR1wsOeIEgUJr/UOb/Oi7ic9qAK8b7BWtMnXWlGSOOMn/NdVQEXFbCnHEz+JAFt+FIibWBMLkQUfESX8xSug8cYO1p5xvFneuH9izq/g5QrAThFERpsVJt1hTCoIwSBpBURyYjUQcmDSoHHEdsaYcK1YqRdFlpi32c9sFUoir9I5YFU4dKiJuU2vKEawlNAmLUhHiBGGymC4hTmtaZJGFiamGWnii6sEJKJFOhDiBghLigkSEuGmBzBFHCEHC8KCEOCryp59QAtuBPUUbYSpyThBGgdI5AkKgjjxpvwRBGBwrQdFLrC5C3MRRpYS4mkTEjRPLkiNuWzPTLgorKxIRNxTaXlHwDDeJiKNymVNz2X5C5ogTIU4QJoqpEuK8JCukJOg6NjJ7qr6msAHKmnJTIW4TsbYri1cCQYfY0STWlNMDmWBZIuJGChkRN2AhjhLY7ty9E7lab4w+E0VwMqbJuiD0EdKW0nOhe+RSFARBOBVWiIi4GRHiJg6JiBt/VihrSomI2zbUIrGmHBVmEXHDT3PRoqwpIxHiBGGSmKoZexCJLeV2hLSmJOoCQIu1iWshd6bqVRD6BJWXSoS46YHKFznoXWzC1lBC6MCtKVtFa8qFWpXMzyFRccI4EKbFBYG2jHcFQRgwDZ+wyxMhbrLQWnLETQCU6DITRbDyfARXIwybOiG6NkWIGwpGOeJGsKm3SUTEVWMR6QVhkpgq9YEU4ohoKWG66PiEWLJJRBxpXerLwrtAQ+2ICruy42haoH3dpT0YJXSOuOFbUy5Wq1isFi24RIgTxoGQsEimNo4IgiD0E8qaciaSfnGSCDoJ7Hz9rtTYt5HJptSxIrcsrBC5oOpEpJQwfZA54kSIGwr0+k/5HHFdx+77NZ0MFREn1pSCMFlMzIqjAnBGbXnLz5x+fKlwLA8tPHTXEaNzeRbPesphlrOV7v0hguWueWd828Iu1rlWkuLEqwx+YJ5Py3PMoh+6YbGz89opkrR43GkXn1EcuMi1+eQjyc072btu3mtcBgBbMrc6qveHCLI58wgUFfMGHdrh7ezLGRq70za7H7FFWRMkYL6ypQmOmt9Lb+vmcfNyK7wvY8fm5TRzXJpUeS+ASrZ+3kFE5FhyeIvZ8zO8haizZxdY5RyL994kjLau5vIG93M7msZlsrD4zFzVRe5v/X2dJq+OpDWNuWbx2S2FFSxViv3e/EoL2APkPrMR6JpfZ+NwjXUqFfPuib9oXs5iaqV2k3cfc4fXtyUznHOxTsUmK86vC3iqeMPbvgutze5LxeflPJ0NeQuB9zLKtO0SN4TAavA6HLvJK5dVzdtk517ed/MXePWf856WqY8U8Tzv3ea2JcExxj1hNuM5V/NmnM9mpiVu7WeO/3v0bUszxblnVXfgMILiFDPY3T/O7O+rvAceVMzHQC5zjKZ4jw0rcfk1AXeR2IRWc7HDKzeOvS9idKQArl86jVWu7pnf/7uX5ljnQsZ7ACoyr5M66F1HVioBZjYIbxW0cZxwbOiFv8B7bxJGg6dS3n30lpn3n9mWc/obZTjOOoE2vEhKiOvutFCb693YxjFv4Jo2qqxyjKklAN5aDnf+ZUflnxu1sW3TiDjCmrI7p6BmzTtvnZa7kc3Z4vOtxrHxemFSZ9xLZh/ltngFU4b2rHzeuewur1x3B+8FyFzz8/krvLEFs9lCxryXccX8nnDuxyQzVVuf/JgYWAYTozUKTMgccZvYB1KRchIRJ2xGxyPq1oDzVQnDg7STGLCvu7A1MZGvk9pt2E8oa8rFagWL1eKElIqeE4RhEybFhUnKHUAQBKGfLIdERFxHrCkniVqL6D9q4iA0jpB54uR92xbMUBFxFYmIGwZt1yBHHGlNOYIccRIRJwgTxVQJcR4R3SBC3PRD5YirbJIjzu9KHRHK0yEGYptZEwiTh+SIGz+6lDXlgIW4uTYREVetYImypiQ+KwjDhuqHqI0jgiAI/aRBWOWJMDBZVIj8cFFV+o9xZIUQXmbb8r5tB2qEENesMkPUBSOoHHEm1pSjEOLEslYQJoupEuKCjkQ7bUcoIY7KBQfQEXFdqSPCJpgMxITJg46Ik8WIUUJGxA0wR5ybpqhH63cR5kphJQxpa0oiek4Qhk1IvBNtiYgTBGHAkBFxkQgDk0S1XYyciKoyFx5HVkKJiNuu1DvF97QZihA3DKgccSbWlIMW4poSEScIE89UCXEeZU0ZyqLqtNOhhLhNrCkpgU7EWmEzOm6xboWb1C1h8qAGzxEhBAnDY9gRcVSE23IYIrcsLBIRcWJNKYwDZEQcMRYSBEHoJytBURiY7Ui/OElUCWvKqCYbOcaRZbGm3LbU24Q1pUTEDQWTjdhemhWODVyIIwTZaiRCnCBMElMlxPmUNaWILFMPbU1Jd5ZkjjixphQ2gUrWGyYSETctSETc+BF7duEY9Zz6xRwhrJ0Q4EhrShHihDEgSCkhThZSBUEYLFSETp2wUBPGlyplTVmTufA4QllTihC3PaDa1abkiBsKRhFxhEPFKKwpaxIRJwgTxfQLcSKyTD2doLw1JZkTSuqIsAlURNxm0ZbC5CE54sYPOiJucO8cFeF2QoBbrFaJz4s1pTB6qKTxkiNOEIRBQwlxEhE3WZBCnOSIG0tWyIg4Eb63A2REXEUi4oYBFRFHjbuBTXLEDXg8LtaUgjD5TMyKo1Iap4fLW35md94sHptr4Lt23mx0rjPcRaPPnyBQvMXCisVrOO/o7jIu81nvQta5Zs/k7b5yVTFcuxcHO3NGn9+5qzgB3KnbOGfnQuH4fnepcKzju0i1uSadZMXIjV6EpxfraBnimNehZxZvh7zycuMyVoUXtWJZ5ucCgATmg9FMmz2zFmHVEqYxcl+XKq+YWx0SZV4mLc7VSpZjnAwAYF7OWy533zbiMDd/Os2tH0DYLrZPae7Bjsy/W5rxHvZ9rRlWucMLvHKWbf6+7ZtfYZ2L00ZS4nelkcFd3vr+WpyXBsCeQ8XKteLWEBy10UpqhZ/tWOogOGrDZs53op2MurWTN7bQFfP+FwC6mfk1apt3/50Wr5y3wmtLrK75+RjDGACA1+ZdY+NBvT/jOsUFgbbjQ0dm79zh47NGnz9BvcZrlGdr5guIccCr/w27KKSXQTXN2y0AgGvetqZVXv3PfF45TjuZhbwxmrZ59d8/xrv/OWNGmzHXNDVzjS13zO8JZzwCAIxpzSo9TkfmrIoi1hiU24/mzPtvd5j9lG3eCbiMMgBwzo7i3LUMe4NG6c+emRbXOeKaAxvl3vWzK7xrjFLeg2sk5i9q1OWdS/m858Zq7fLe9ZG0go3b0L55u5wFwxun5cwAfbd8NV6Hz5xfNs5k3BPeqaAsg4JaF/JXA8CRdBbpSu8+UpeoWxR+m1eO0/8CQLzDvB7nNaZLii5/kc0akZok6ULNFMfeVERcpD3kXfOxjGqVK9NKi+PbahTDMhwvWIxbyX23E96QHD6ju+GOEZIqb+CUMe+JYgyvo1neNYYLvLG8lfEavLTkWul2Zroi4jrF1iQNmBNqYWKgItr8aJOIOOJ4LHlVhE2gIgwkR9z04FGDZ0IIEoYHFZE4UGtKIkfcUrhmTVkpzhrmOhIRJ4weOiJOrCkFQRgsy5QQ12kDWhZdJoWgRYx9JSJuLFmuEu9bW6wpp51q1IW1oU3teC5SR9Y1h0HbK4r/m1pTUhFxg7amJKzoq90uVM4TWwRBGD5TJcS5hDVlGk7VVxQISCEuphduqeNiTSlsBpmsd4A2ecJwoXPESXswSroeJcQN7p2jhLWlsLr2N5EjjhDuBGHYBESuUiqnhSAIQj/pum5hnOTmueRPniDCllhTTgpkBKrkiJt6qPxwjVDyww0LajwdEkKcynP4aTGKdtBrCdqy0CKusbqJfaYgCOPHVKlUXlRsCJNQdo5MO11CSAs69MItmUfQl4V3gYYciMkgZ2oICFFVhLjRMg4RcYuVHhFxsvNfGDFURFwkOeIEQRgCVFRcPRJxYFIIm0REXF36j3FkpVIUX2aI3GHCdCH54UZL7DrI1XqbRz/N4GwQ3TxKhHMdQHHTfpSnJXniBGGimXohTqwpp584KE4eJCJO6AeUTSG1I0qYTKhIq9iRxYhRQokJlIVov5iNKGvKVQEucj1ExM7/alcmOsJoCQiL5DZhVSMIgtBvyLxVEqUzMUhE3ORARcTNijXl1CMRcSNGqVJRcaOwpTxB06eEOBHpBWFSmCohjrKmTMSacuqhhDQqFxywiRAnOeKETRBryumGtKaUHHEjhbSmJCY6/WKuTVhTVh6wpDwhyq0r0xF7SmG00DnipO0SBGHwkHZ5EhE3MYRkjjjZlDqOrFTEmnI7Uu8UN/xR0ZHC4KDWgDbmifNGKMRREXE1iYgThIlhqlQqv0PkiJOIuKknDomFW0KUXT1ORMD4UkcEGmphU6wppwdyJ5tYU44UagITDDRH3OYRccB6Ue7+MoR4JwjDhMrHJBFxgiAMAxHiJhvSmrImGznGkWVKiJOIuKmHsqZshmJNOUxaxJi6Eq9vO0cZEdciIuJqEhEnCBPDxKw45lrh1sbuLT+TNIuCypJXwWJa3NG+FTZyo8+f4AL/EKvcmXaTVy40L3eed4R1rlbO6/zvTeeNy1jKLP+O5RWfVxAl2BcsFzya59Li4NWpacx55oNa0+sEAN/mRXYcaxcXg8vQtHl12fPMrzNwed8tSnjNUOKaLzrqwExE6xC5oIIkBawM2uq9j0E7vFxSeXHe1RN3gScop7yqBTDqfxbwPNMVrxojOLb1+UIil6Ru8RYjGi3eTsVGk/GwAdgHeOfr7ipaOPfiqGNeBgDi2PxeNlD8XkGcwo62fpYuM0htvlkU1VpZBd7y6r9X3OL4YdexNqwa73wWR1PMmbkGLF774zbMz+e0eNfIuh/gtyUZYyijmXt1lOZdY+70bvACQoiLZy3YNbMbqpl1a+lInVUOJb7bRurzvJe7voMnmHdrvDHJnlnzMfmMP9xFkyQzr8zdnPcCRCnvPh6pz7DKdVcYY8IKb9xqubxBSd42vycWMbctgx3z3u0y5RpeceA40+kAhl1OxgzwUMx+QzO1Js1oy7Oct9e54vA2+1Wd8pEQlfapWVPu9xZLf/ZkztvDW4M4kpi3CV9zzmWd6+Z797LKOZXBbBjL8hyZpWDnD7xclW4Cz42QGG4cTJhjQk4bxG1/unOsYkjqvPNx2gS7zXu3M1X+ZPWlYn1q+CF0Uu7cVsCct53Gq8fdOfZA2byMzavHeqfhGlDYOz3JZkKcYq6/oV7+uzVqxQlNqCNklfLnZgwJoZjvtpUy522ccQIzlXvKW5KBw9wb4TXM60k8w2t/cqbqk1R459OM8yleszWxTFdEHGE7mIQS7TTt5I6F1F1flS0NON3i2+wRkXKxPzF6tDBslEKbjIoTe8ppwM8kR9y4Qe0kpCxE+8UckSNuOTgpIi4grCkjiYgTRgtpTSkRcYIgDAEqR9wM0ZcK40kgEXETg7YsNAhLQipiSpgeJEfc6KFcJjZaU/pEupLusCLiwuL1VcWaUhAmhukS4gjbwUSsKbcFXeI5+xElxBWPdYkcc4Jwgg6RQ1CEuOnAo3LEiRA3UqgJjDcoa0qtMUuIakvhSTniguLOf6qMIAwTKiKO6qsEQRD6DS3EiV3eJKByDb8tOeImCUqIm22JEDfNUELcighxQ4UW4sbImpLIEVeNRIgThElhuoQ4KiJOhLhtAfWcqTxxZEScCHHCFlDJeiVP3HRARVrFtrQHoyT2hhcRV+3GcPP1thAdx0XsPPDOL4dERByRV04QhgkdESdCnCAIg4fMEdcRIW4S8NtpwbU6Dh1oe6qWhKaK5VpRgJE8cdNNLSIi4ghBVhgc5EbsjRFx3dEJcU1CiKtJRJwgTAxTNeqihBexptwedEMiioKoD5RYKxFxwlZIRNz04hORVl2JiBsppDUlYSHaDyiLyeUNVpQSESeMI1QfRO3eFQRB6DdURFw9FmFgEgiaxCYOsaUcaygBZkasKaeaGSIijhJehMFRzppyzCLiRIgThIlhqoS4QKwpty1kRFynbESc1BFhcyQibnqhBJ5IhLiRQk1gKAvRfjBLRLZtFN42CnMAnVdOEIYJ1QdFRD5TQRCEfkNGxIk15UQQtIh5sNhSjjUrVYmI225IjrjRQwlxhYi4MRPiamJNKQgTw8SMvJQC5rytBx0BEe10l7UDUWy2S/jzR883+vwJ5n3e4twT5m9jlTvNWTYukzG118PJLKvctY39xmVuPH6acZmX21/D6Vh/P+4+PIdv7Tp93TFFPKLvxHtw35L59zu9Zn7/d1Z5kRT7q0uscp2MtzB3NKoZl2nEvJ1accRcPOya12Wdm5fpOMSOqGYKFZf4XUr3/gwF4zXNQt65cp9Xzl0xv0iLGdiUM3uq9r58y597WbHPWNpvIatuXY5Cr/CiUawOcz8Ms2qprjIu02ny3m2dmH+3dlacaPppAt2jDiRFvawndRTb48V6FdHOB/5/ZE8xIq6etdCdNz8fAGSMW+nUeC+OYrY/GcPi0GLuTfAXedfYOsO8HgNAd8783bYj3rmC47xyedDjnmiNkEgQv/OMNuZss13y3Dpy58FdrHJomjfmrUXe+FPv4L03XoVXmXNt/rwDm3mNVjHfcRksz/x5p5rXR610eYuG2Q7e+ZbcojjUC9tmtpEp7xq1b/7cOP0oAKTMPYa52/ueLM4ROavaHViD2TNTwGauNUZ13vOOE/N261jKG7g2DNcsThDsKteW7FpuFI5FhhFxt0W7jT5/gnmHt04SMCYPHrMyZsd54900NH+3rZLtAeXMUF/pQseGL3nGG5NwhgnhEd653CbvHU2qzDEh43VLZ3j9b7CzvHg6mxXnJ9lpwMyucutIGWO9AwBaTeaaDLMvZc1lc96zdkKzdiSuFNvwSrcLddJ39XNCiPMcWA7vfvhB+c6tO1d8xtW8A10v3/Ypxq20mrw+SvFeG2S++UU6Hd79r97Hu8j2Lt6Aq7PT/D3Nma9oFvDaBG7byuk3/AVmOzKhTE9EnNakNaXYDm4PIr/4nEMiQtKPiQgYyasibEGHiDIIE4mIm3SsPIeXrR9w5UohsSVCdpSQ1pQDioibaxNCXGX9gscSkSNuvi0RccLo8JMUll4/Wem6NjLJ8SMIwhBYrhDWlBIRNxFUCGtKUyFOGC6UNeVsS963aabWLgoyDSIyUhgcbWJ9sGBNSdjEDy0iLiwKYrWORMQJwqQwNbN2J8lh5esXJlLHQu5MzVcUtoAS0wJCdKOiJmNCxBOEE5DWlLEIcZOOT0SUxI7D2x4m9I2hCnGUNWVlQ464SnEn8lxHcsQJo4O0pQxkIVUQhOFAWVPOihA3EYQtov+oSv8xzixXCSvYjrxv0wwlqDQrkiNumHTIHHHr1w5Ia0pvWEIckSNOrCkFYWKYGpWKioaLJRpu20AtQhWEOK0REuLcsDpMYTIhhThCxBEmC0rciVxZjBg1MZGjz0sH875RgtpSuCEirkLkiJOIOGGEVESIEwRhhCwTQlw9FmFgEghbhDOM5Igba1aIiLiZtpkNtTBZ1InnK0LccGkHvBxxXWeEEXEixAnCxDDVQpzYUm4fyIi4DdaUfpdKqGojFzsnYQtIa0piIVSYLCghLh7S4FnYnHGLiFsJQuQboiTrcQQnY5rdC8IpQkbESWS/IAhDohkUhYF6HMHKzXNwCsMlFGvKiWOFsIKdaYvwPbVoTVpTihA3XDplrCmpiLghWVM2JSJOECaaqVEgPImI29Z0SkTEUVaVkh9O6AUlxAWEJ7gwWZDWlBIRN3JS20K2QfhydA57AMIXlSNuoxVlbllYDggbLkLEE4RhEBL9j0TECYIwLHLLQoMU40QcGHfCNhURJ/3HOLNC5AabFSFuavG7Kbx0/ZwncSxxcBoybcKaMiyzyX+U1pSSI04QJoapEeLEmnJ7QwlqGztLKj+cCHFCLyhrSsoaTJgsgs1yxAmjRSnSnnIQUXFkRFxYtKKk7SklT5wwGjbuyAVkLCMIwnCh7ClnJE/c2ENaU0pE3FhDW1PKuzatULaUjUogOcyHDLXJv1rGmnJIEXFiTSkIk81AWwql1JkA/g3AXgAawJu11n+llNoB4N0AzgFwB4CXaa0Xt/pdWgOH2jOb/nzHcrNwrOn6OBLVjK97f3XJuAyw9fVtxdtvv5xVzrXNLUA6Xd5gO814mm17uThR64UdmC+4LqBSOKaXFY4vPPD8Z48UB60t10Pd53VaT9l5i3GZx4S3s861w+J5wcfaZpX7TrLHuMyXVh7COten2g9llfP2mC+E25b5O5Pv0oVjVbcNZ0+JSZAqli2D75u/A4HLEyq6Ka+OtFrFiWEv8mM8Ww2LGYCY7dy8oLNSfKei0EG2M+HNdWJeG2lHvIlVWuPVLe2Zl1MrvH7DSnjfLXYdVJINYsNMjLi2xZBFm59rJim2IQuzFeT++nu0VK0Ax4tlM8a9hGVeJkt4dcsLeS9OPMuJPuS1I9w6koXM+u8z+oCcd/9zm/fddI86EqRFIS6p2Kh55mOZvUHDuAwAeGfyIlTvPD5vXCa/3XwcDwDZEq/d6jZ4U6ODi+Z94sFsF+tcbFzGe5Px6rEKeWMS2+XZG+b3md9/xLzv5jaYC6Iz5vef19IB6QzvHS3bbq1UAmDDzL3e7cBk2mEx97Sl5lNLAEDu8O6mxei3Leb4n0ual7vxQaM4LnBnM+zxyvcFh7qzpT97Mp89zJsncvq2xYhZSZi4R8z7G22XK9NozRWOzXQi4/GkYs5TOOM0xpAcAJBUmf0N0zTD23L1kSat8Ma7lTPK1eNdefFdjOsOzttxrPS5lru8+n/7Aq+cvcxcX5wzHyfUd/I2Qsax2TV2qBxx0fpOy6PSXLguPJ83/5qplF/vs4n+rBbHqM6W/x1Rp/gde8EdW6iM996ER8zbhMzjtSPdGq+NTJntFmeZNueqN8w22V9kzrcZ50tq22uzwaAj4lIAv6K1vgjA4wC8Til1EYDXA/i01vp8AJ9e+/8p4UdEdINExG0bIiJ8fOOu8ZCypiSinQThZMj8g0RdEiaLUfq6C1tD5okjIhhPlflWcTK3WC1u6lisFI9JRJwwKqiIuFhyxAmCMESWiX6xLhFxY0+FiIjbcpOTMHJWqOhTiYibWmqtomDXrsh61bAplSOOsqYc0lpC17WR2uuX8t00h0usbwiCMH4MVIjTWh/SWl+99u8GgBsBnAHg+wBcsfaxKwC88FTPtdGGEBCrnu0EmcdrY444Iq8KVU4QToa0PZUccROPCHHjS0Tk6huINWWraE25HBYXFylryvm25IgTRkOwMVoUQBTKWEYQhOFB2eXNihA39oStYv/RFSFurFkJKWtKnlOOMP7U24QQVxMhbtiQOeI2rC2OdC1BKdKestqR9CmCMAkMLUecUuocAJcC+DqAvVrrQ2s/ug+r1pWnhE/l/5Lk9duGNvGsN4olIbGLnNrtIggnQ9WRjdYEwuRBCfMixI0HdERcf4U4N01Rj9dPdnOlyJ3HSxIRJ4wREhEnCMKooTatSETc+FMhhDiJiBtvOq6HxFq/ZBekKXzZFDqVkBFxVRHihk2bsKYsRMSROeJ4FowcqEjJakfyxAnCJDAUIU4pVQPwPgC/qLVeOflnWmuNTSzwlVKvUUpdqZS6Umdb5wwIxJpyW0NZTG7sLAOis5SIOKEXpBAnk5+Jhxo8U5FYwvCJHSLCuc/WlHNERNtyGCK3isOixWoxIo4qLwjDgOp/JCJOEIRhQkXEzUTSL447oVhTTh5KYYUQvmfFnnIqoYS4lkTEDR0yR1wJIS4e4lpCm4iIqxERlYIgjB8DF+KUUi5WRbj/0Fq/f+3wYaXUvrWf7wNwhCqrtX6z1vrRWutHK3vrSyUj4mSH8LahXUIsoSLiYhHihB6Q1pSSI27ioXKOSUTceDCMHHGULSUV+bbZ8XmJiBNGRKUrEXGCIIwWMm9VJHZ54w5lTRlXpf8Yd8SecvtARTS1q/4IrmR7Q60tVsbJmhK0ECfWlIIwGQxUiFNKKQBvBXCj1vrPT/rRBwG8cu3frwTwgVM9l09FxInt4LaBjFraGBEnOeIEBpQQR9UlYbIY9S42YXNihxDi+pwjbr5VFNKoXHCbHZeIOGFUUP1PJA4QgiAMkeUKJcRJvzjukNaUdek/xh1S+JaIuKmEtqaU+emwiTwXuVLrjvlJCit/wKXNo9JceEMU4sSaUhAmlkG3FE8E8AoA1ymlrl079lsA/gjAe5RSrwZwJ4CX9fpFtsrx/NO+venPH+ncWzh21q4FPGzmEPHprbmluce4DAAcb9OLeL0IXN4Co+r9kQL1gNc4LzTpSIFeKGdrS1GKvGvurdyyigPUSrcLx83u/38tLX73OHTwyLmDxucDgNPdReMyrZy3o6lu8Xa3WIp0fe2Jp7LeH+oTtm1eRwAgy8z3Ebi2+f2IwmIzWe124fm939uow7OS0Nr8/rdj3iA9TXle5ppRtbTPe9aqw/Rb725eR4JO8R7Htgt0Lai2+fl0wPtuySzzXWPeSw6a64jCfLepSGU/S7fcOmQZdm07VooLhgu1CrKgWLGPzxX7l9luC+ms+ffTgfnzrtZ5/bZl8e5/NzEfXThtzogEYHZRALP6q9T8Ot0G77tp5lY3lW19vgqRo3TBqeJ4x3ycdkZlybgMAJw/c5RVrpubt6137GbuBGc8awBAj/u/Kdq8nMqZ52Kic/MXTsXMipzxxiRZlTcnshjPLfOZDRD3sTFOl1WZ4yZm3bI65Z53wym2NzOdjtF3tJnrhdy21WL0bQBQ9c3nYKHL27DXSXjvjWP1HluoLEfQWf9+aQWomoZvlb/eC0LztRUAwE5esSNR3bhMzmiPAeDekDcmTxjlTOY2y9ViRNxc2oJlMKa0Kry2NY+L5+5FWuHdf5sZ5KeY08R43rxRTmd59zEu+W6HjeK7uBRU0ErKj4WynNdIKofXJ+bMvtSumd/LisdrWznteOQ7qGwI9njk3MH7IxTnVFEM33NaA/vmVgrHy7DQMhvHrwTFdzNsJ6XXyBRjEmbVePc/b/HqZHeGMSdl7lFoncF8b7hLOQvm9z9navLxPK9NTmrcOdGQykwwAxXitNZfwubTle/u57mcqPgGJOHwkmUKo0Ui4oRBQUbEiTXlxENZHUqOuPGAjIgbQo64peom1pREjrh5wtpSEIYBZU0pVuyCIAwTKmfVTCQROuMMlR+uW7UBa7gbAgRzyIi4llhTTiN1wnK0VRNrylEQBW5BiAui9H4hzk2K68/dYUbEkdaUEhEnCJPAwHPEDQuXiG5IAhHitgsRIahtzONF5fWiRBZBOBkR4qYTyupQcsSNB3SOuMFbUy4SgtvqcSJHHFFeEIbBxvy3AJ1UXhAEYVCQOatEiBtrSCGuJuPeSWCFsoIVa8qppNYuCimtqozxRkEnIBxaOg+0o16XWH/2hrf+3AqLAq3kiBOEyWBqhDgnKlp3pBIRt21o+8UBysYIOImIEzjQ0ZYixE06o06wLGwOlauv3znijCLiKsXjc802z59VEE6RjdH+gETECYIwXJaJiLi6CHFjTUjlh6tK3zEJ0DniJCJuGqGFOImIGwWUEBecFCHndotz0+5QhTiJiBOESWVqhDiXsqaUiLhtAyWoVUpExHUIAU8QToaKiKMWQoXJghLmRYgbD4ZhTUlZSy4SghsARJ6HaEPdcPMctUgmO8LwCRNCiCMWCwRBEAYFKQyIEDfWVJrFvqNbl3HvJCDWlNuHOiHEtSuyXjUKqLF1ED0gvpERce7w1p9Ja0oij7QgCOPH9AhxpDXl1Hw9oQeUNaWfpLDyByIlqYV3qpwgnExMeH37SQYrK0bhCpMDFWElOeLGg2FYU861i9aSVC64EyxWij+bkzxxwgiokBFx0nYJgjA8lkWImzjCtlhTTiorlaIV7GxL3rdppEbliJOIuJFA2b6fHBFHCXHDzBFHW1PKJlFBmASmRqlyKCFOrCm3D0qh3cNCkLSmlMUroReb1K2AsCMQJgcqwkoi4sYD2ppyCBFxm1hTArRtpeSJE0ZBSLRdlH2OIAjCoIhcF117/Tzbz1L4RMSuMB5QOeLiqqyVTAKUFaxYU04nVERcqyYRcaOAWicM1uWIG0drSumDBWESmJhVRwXgbO/Ypj+vxsVOa1e9icurtxmfq2LxGrAzwiVWuUTzGuxWar475taVXaxznbVjkVVuiUgu3AvH4kUaxaFTsKM8v34EiztWIxl2oLhoOrM7gnZ4evSNnTOMy1zf2Mc61y6ft+BrgZfD6N7OjHGZQy3zMgAwX+Ht6Osk5guPUcJr8tquV6hb+m4P7Xpty3La4t3/VsP8u1lt5r4KZjGVKOMyPnPzJrOJBPTm10jmiHNcQCvoHeZ9QFDhCUUWt72LeJMyyy5uWumF55mXORXiSrFS+uhCVzcXv62G2f2ghLiGqsFp0nVmKShGxM2vdIDU8D0w/TyA0OPVrTTjvdzaMW+3tM1r63LH/H4AQB7wzqc98/ctY7orKGbQtN2jLa8QtjP3NHbgvvvmzM+lePdxV8gbk4SOeV1+8DmHWeeKU15/v9DaXJDfijNml1nlOKSaVydbXfN+I2G2I1wsXpOAZd98vmHZvJc0S3mDEsc170vTFq+vd+/hlVNZ2Qeg0AhC7Gw11x2tooN2WG4Mq3Lew4528Z6b9nnt3VxgPng9u7bAOteMwxNX9nm925+HpMW2dKlSxaHunNG5HhbeY/T5Ezx95gZWuXbNfL3jmvbZrHPdMbeDVc5mtCVRp/w72txbbHPm4jbCSvn5is2cb7RONy/TVcUIvlIwUy9z2xLFmd4wxsgAEEXl2sVaq7im+e3W6Wjl5d+DIGDOSV3mwHU3LwrLdhhzUsY8FuDV/6RCvHdJBzU3BrSGS0TEedUMIXj3f9/MitHn/Z3F8+/JGjhv9+Zr5idzuFk3Oh8AHF/Yeu1rM/Ru3vp6zNho6N3CG6PZMXNuyZzLplXzctxr9JaZ83SP993Ya3fbiOmJiIuKjWsWMmdzwkQSE7tW/PiBhdsgJqzoJCJOKEHkFSdLkidusqEiGqlILGH4DMOacrZdFOKWNskRt9nP5ojfIQiDhorub0u+W0EQhsxyUBQ/ZzvSL44rfpOYB4s15USwUi2+a3XJETd1OGmGcMMYL1cKLcIiURg8lNuEv2ZNaWc57Hy9uJHZCjlzgz+HDrHpJWzL+pQgTAJTI8TZnaIQl4ZT8/WEEsRBcTJxso+zHxGWHEQZQdhIh8glGHZloDPJUNaUkiNuPBi4EKc1mSOOygN3gqWQyhEn1pTC8KkQ1m8dYrOIIAjCIGkQQlxd8sSNLV6zGD0RV2XcOwmQOeKa8q5NGzUiv1cz9AElwQWjICKEuKCzOh91u8W152HaUgJAu1Ic+1c6/U3lIAjCYJgapcohhDiunZAwmdC7Vh5YvPWJiLjYFyFO6A21yLlxx5owWfgpFREn7cE4QOaI66MQV4tjuPn6MUPHdbeMiFwkIuIoe0tBGDQBsQlE8t0KgjBslkMqIk7EgXGFiojr1KTvmARWqkUhTiLipo86kfevUTG3ZhX6Ay3Era7/uISzTuINdx2hXSXWpyQiThAmgqlRqsiIOMLXV5heKFEtPCkKLogISw6G77Cw/aCEuIpExE00ZI44EeLGAjoirn/CNxUNt5Ut5erPqYg4EeKE4eKmaUFETiwLiSNtlyAIw4WKiJuRiLixxSOEuFisKScCKiKu3ooAzUyqJowlpBAXMvPtCafMVpv8qfxwyZAj4mhrStkoLgiTwHQIcVrDpnLESUTctoIS1fw4If99AomIE8pAWVNSUQnC5BAQwo7kiBsPBm1NSeV2o6wn1/2cjIgTa0phuFCWyFQOU0EQhEGzHBb7xbpExI0tXovYkCrWlBNB13MRbRgbO7lGhUi7IUwu9Q4VESdC3Kgg1xbXIuI8SohzR29NKRFxgjAZTIVSpRINa0NbmDuAdsVPeTvRK0dcQFhTSkScUAY6R5xMfiYZOkecCPPjAJWrr59C3DyZH848Ik6sKYVhExLtVtsVIU4QhOHTCIi8VSLEjS1+g5gHizXlxCD2lNNPrV3MESdC3OigIs6CMYqIi4jrq3QSqFwiZQVh3JmYVUcFjTmb3n3uJMWGMAsszNktPNRdNj7XE/wF4zIAkGC4jd69qfnju2nuNNa5VvKi/UgZZizzCdnxrMY6l10t3v/T9TLOqi4CAAIiIm7PjiYWk60XYDfjxmXze3msuXXUxWbc4exglVtq8J6b5xXfqV7sqvGiQ/ZUGqxyuTYX2m86upd1rqhafNcqTgdqdutdRzriDchUbF5Oe7z2RyW8DQvaMT9fUmedCuym1S1GSp+AzBEX2oCbw9qi3GY8Zv+dxmUA4LzKMVa5c/0jrHKeMn+3b4/3sM71hWMPZpVLCFvpIEtge5s/l2RHeaGuroptzuJMBSnRh5zg2I5iWzoXtaBrZgKhWzEX8OOU1440l3ntv7PCaH+Yc8+MmfpCW7xGwaqYC7ops/1xl3kLnOlZm9cRLyv2s53QRW2Ot/i92OLVkXsPz7HK+Yz6X6/wFhpPq/HGFtwxyaxrfp37w0XWuXzVv40JvWgyX9LD8Qyr3M1LvP7mkfsPGpfxNu7iLEkO3rhpKTZ/3+625ljn6jIjZR2D/SUrQXH+NNuI4DTL3Z9kltm47i4uVpfBcczHdgCQ5OYd3OEOr/4vO7w2edbp3Qc4zWJ992dT7HDM5m+fXbrQ6PMn2OPz2tZ93pJxmVbKa7eSLm9pLLXM65btmLU/jWqAPUvNdcfcu4FWXnJtgVf9Wdv2vYi5GZ55jTlTT3ZXzK8zrfIGvNWdvd+zXVmzcEzPA2fvMVub9G3eGOHW7i5WuTTiPYCZuvmGxrmAN95dic0FzY5f7EfzBnBvcxYzS8Vrbzke7m3OouryotKqrmHfZgNR4BTS7+gm0Kn0fiZZznhPmd22znjxP5yWJOUt7cLKeO2W0+LdlDQ0P1/GDTRihl9x21bNOB+nzCQzFV/Xbhd77ZxRsYXJJg6Lg2cvWh3kqlzDi0e/c0WYTNo+EREXS+j/JCM54sYX0pqSSIrNhYpkWyQi3k5mqUpExDUlIk4YLlQkNtU/CYIgDJoVIkfcbCT94rjiE9aUMbHRUBhPlqtETkYip5gwudSJiLhmlbljTThlKOesMNrcmrLrDb89pQS3ithTCsLYMx1CXKeoQmeVqfhqggFdwprS72wePh77NrQlgq3QG2pHVEhEWAqTQ0AsaEuOuPGAzhHXv/dtjhDQlqpbb59bJH4+JznihCFTITaASI44QRBGQYMQ4uqRWFOOKwFhTRnXRYibFBqENeVMW963aaJGWI22RIgbGR1CiAvuF+KK7Wl3BBv8O0SeuEpHhDhBGHemQq2yomJEXBaIwLLdoHLE+Wt54byo2Fkmvkw+hHJEZI44GeRMMlREXDSCnWxCkZh4Dn3NEUdFxBERbyezEobI1fpxxUwnhpPyrM0EgQO1gaBNbBQRBEEYNMshEaEjQtzY4reIDWg1GfdOCitErrAZyck4VVA54kSIGx1bRsQRqZFGEhFH5YlryRqVIIw7UyHEkRFx4VR8NcGAblDcheJ1NhfiqM8LAkWHsP6icg4Kk4GV5/Cy9QPoXCkktrQJ48AorCmXKltHxOWWRS46zhG/SxAGBRUR1yE2igiCIAwaKiJOhLjxxEpyuBs2LucWkIQy7p0UVoiIuFmxppwqaCFONluNiogQubaKiBtFigvSmlIi4gRh7JkKtcruUDnipuKrCQbERGfpR5sLcVQEnSBQUBEHFRHiJhZvs/xwSiKpxwHamrJ/Qtxcs2gpSVlPboSyr5Q8ccIwoSyRJSJOEIRRsCxC3MRA5oerybh3kqCtKWUMOk2QQhxhPSgMB8qa8sQ4nFpLGBtrSskRJwhjz8QoETkUrmw/iPzZg5cO41G4Z92xBbeKK9sPQhbeYXwuWxWFvTLstHiDodMd3gLjua75de6172adayHndSxHs63tvihaOS8Ef6uIOD8iwsfXhLh7O7Os8+XafPJSD4oDrDK0urwd70mHV85xzOuWbfHem8W49wI4RSM2ryedNm8wGxE2pmHShbKK0bjrYO4H0AHD7o47l27z3m3d67sT2O3hbpBwK7RYWs+KC0Wx69z/ecs2r8sXVA8blwGAp9ZuZJU7zeb1N109vGfwBTyYVc6dK/aJQZqgXtt8gc9kV/fOuFk4Fp2vUT13ectyyzt84Oj6Y2e6x3Bsd/k2rB2Zt0HNJV4bqXNeo5DVzOu/WubVK4vr7DnH2wjhB+blOm3eULk7z+sT3crmE+g6iu99XLFx9vwi61ythNcn3h3zxhZZZl4nj947xzrX8aDGKrdjnpf7cSYwj0w42OaNPy1l3v8CQGCb1/9U88YIac5rE0KX925/5/huVjkONvP+t9rm49aceR+1y7vGeEf5duuYV/w+9biDvGTzkIa8a3Q9XseRdnl12WGsC6TMsdY19+xnlfPO2notYffRRuFYVPWwkJrP0w936sZlAOCrd53DKnfB3iPGZaKM12+nK7w+UaXmfZsOzerxglPs02bbEVDyNQoP8e4JpwvwF1inKv1dNsKoxgCApG5+Qncvb7PBI/Yc6vmZ09PiPOTMfUt4/K4DRuc6HM8Yff4Ed/tzrHIhY2wNAJqxlsZZfwOAmme+BmcT9SOIElhKk04tqWfDUhr3rvDufxyZj60PqeK5Oodd3H10vmfZLDXvp2zG+jMApBGz/20wrpG33Mpuf7LiHolSKG1+wtzl1f+0uG+q3PmYapFbXGrpCfc+TipTETbmdooDGbFa2H50CbFkqxxxXYmIE0oSEdaUVGSCMBlIfrjxhvLYpyxAuMw1ipPopXrvEepyvSiIza3I7n9heFCWyJR1siAIwqBZCYurJvUogtK8hTphcITN4gaPqCZ9xySxXCEiUCVH3FRBvqd1eU9HRUSsFZ7IEUetJXRHYE3ZCosbYqpiTSkIY890CHFEtJMIcduPOCQWb7ewppQccUJZOoT1V9AVIW5SoXaxjWLwLNBQz8JPUoCxc4xirlGMKlqu9RbiKLFulhD1BGFQkDnixJpSEIQRkNk2mv76RUALGrWYux1dGBRhqzhniaoy7p0kViqUNaXkiJsmKtR7KoL5yIgJa8ogTqFyDa9bXH+OR2BN2QoIIS6SPlgQxp0pEeKKO+8SEVm2HVSEm79mTenFxMI7EUEnCBRtIuKgEsluo0nFT4oTnVgi4saGzLaQ2OuHJ5YGnPTUd9m7SYbahp2CuaJzb2yEEuKo6DpBGBRUJLZExAmCMCrIKB3JEzd2hC0i0qYqfccksUK8a7OSI26qIN/TmsxPR4W2FJmeJIgT0qmFcnQZNK2wuBmv2hEhThDGnakQ4hwqIk6EuG3HVhFxVI64WKwphZJEHrEjSiLiJhYqIi52ZUFinKAmM5QNiCmzzeIC4UotRG73Hg4tS0ScMGJEiBMEYZyg7ClnOiIOjBuVJhFpI5Z3EwUZEdeRiLhpokJYU8YSETdSOlRUXJTATYpri6MR4qiIONksLgjjzlQIcV672BCmIsRtO8gccWtCnEtFxIkQJ5SEsv6SHHGTi+SIG39iyp6yD3niKFvKMvnhVj9XzBE3uyILjsLwCMWaUhCEMWIllIi4SYCKtInFmnKiIKNP2/KuTQsq1wjahGOLvKcjJSKEuLDT3SQibjysKWsSEScIY89UCHFkRFw4FV9NMICOiMvW/X0yiS9irVCODhERF0pE3MRCCXGU8COMDmoy4/UjIo6IYCstxM2INaUwWiQiThCEcYKyyxMhbvygc8RJ3zFJkO+aRMRNDUE7gbUhFXYUOsgdWdMcJaQQFyVkjrhR5JtvUtaUkiNOEMaeiVl5zKFwU+s08mePaRwoHLvHnsdNrdNwqDtrfK77ohnjMsBqgmoOD60dZpXb5y0Zl/EUbyFzKStGApThO236mW15rm65RdECupg/yGlnONieRdQoVvXjdhUH27M43q6yTtfpmk9g0pQ3mAp9nuhjObycSr576gveZVlo8573whHGe5oq1rlaUa1wLOwkyBeKu5BOxo5559OMYpqpK1td3jW6TfNyNnNc2D6jONgtQzWkrRlmUFwkSgMb4drnk9T8Zi6mvDbyYDrPKnd3spNVrpVvXWcpMuaenT1hg1XuOzfsR0f5ANaX794ZYjmi+3Qdlqsj4aFi27ZQqaHd6p0j7rBbPHdtKcZK06ANY7zcOmFOwjPeu60YbYJmjibZ7ZbNG2+FvrldS5e5WKkWeDdFbXH7KSEu8l3sDXjvWrXGa5Q9i9cmL8e937ONHL2X17aiyatc3TpvYdNS5nXy4LL5HAUAmkd541Z7hXFPeM0InDNbrHKuy6tb7QPmY0KbOf7JfF77k/uMMTmnDACEzHKeWbnlevGdruVtZJXe94jxygAAPI83R3EcXt2KM/O23LZ4918xb8qNx7eebz/92E2FY4thBQtd87bkjMqycRkAsPbwvlvgmM+Buzmv/fd38ERkzRjbdRtm0eyNoPiu1TsR7A6grd7jxKTKu/8WYwkinue1rf4iqxiCY7zvFs+Zl9EZb0xuqa3bhFqrOPZo1zzYPcpxzrUZ3PYn9HjrVFXPfEzuWbz2/+4V3nw7Ihy0at0YYVr8zllgwbUznDm3xDrXCmOM7O4qPutaJy7VwYZV8/vPrSPtnDknPWbe/2bmSx2nVI47UOZUZYc3tIbiDX/gMtfunI55PdEOc8IxoUzFFosT9oMnExM2hcJ0ExM7Vvz4RI44ItRfrCmFknSI/GFhV/y3JxU6Ik4iZMcJ0pqSmPSYMt8qWkku1sot9FOfk4g4YZhQ/U47EGtKQRBGw3KVyJ3akX5x3Ki2i6tpnZr0HZNE6thobbCitrRGTaJfpgIqarVTlXd01FARcUGUkNaUyQjWEtoVIiJOrCkFYeyZCiHOk/xfAugdK0GUAFojIOpIJGKtUJKOR+SIE2vKiYUaPMdi7zZWxA4hxPXBmnKuSeSIKynEUZ+bJ36fIAyKkNhUFBHWyYIgCMNgpUJF6YgQN25QQpxYU04eZJ44ed+mgrBJ5ACWd3TkGFlTjiDffJu0ppTN4oJwMkqpO5RS1ymlrlVKXbl2bIdS6pNKqVvW/uaFzTKZDiGOyP8lQtz2I3NspPb6Km3nGm6S0VGTRMcqCBSx6yDf4BfmpymsnGn9I4wUyRE3/kREFGo/hDhKOFssmSNusU5ExDXbgGb6awmCIdQGEImIEwRhVFDCgETEjR+1VlGIa8si/8RBCd8ixE0HlRbheCBRqyOnQwhdQZTAJTb1UvnNB01LIuIEoSzfpbW+RGv96LX/vx7Ap7XW5wP49Nr/h8ZUCHF+R2wHhVWoqDg/TuETeVXEvlQojVJiTzlF+FQU9Qh2sQmbMzBrylOIiIs9F50N0Udulq968QvCEAiJXa4dieYVBGFErFAROpEIA+NGjYyIk0X+SYN830SImwoqVERcTcZ3o2Yzx62xiYijhDiJiBOEMnwfgCvW/n0FgBcO8+RTIcRREXFxKIuq2xEqyi2Ikk0i4qSOCOXZuAAPiD3lpCIRceNPTAjfQR/et7lTyBG32Wcpu0tBGARUnyNCnCAIo4LKESfWlONHtS2L/NMAFRE325b3bRoIm4TjgYjlIycKqbXFFB6xljCSiDgiYk82iApCAQ3gE0qpq5RSr1k7tldrfWjt3/cB2DvMC5oKIY6MbpBop20JGREXpZvkiJMJiFCeiMgT1w9hQBg+PpUjTiLixgoyR1w6GGvKJcJycjOWCBvL+YYsggjDgcoR1/FloUYQhNFACgMixI0dVESc5J+aPFZCiYibVkKxphxLOpts8h+XiLiu5yC11i/pe2kGtw9zZkGYEByl1JUn/XkN8Zknaa0vA/BcAK9TSj3l5B9qrTVWxbqhMTErjwrAHr9B/iyMix1XfSbCHr+Bg50543Pd25w1LgMAR5ZrrHJf65zLKmc55nUlz1TvDxF4AU9wyFLznSGux+s4Ai9B0/ULx9uLLlSreK8O6zqONGvIcp4e/ZjT7zIuc3H9bta56lbEKreclV9gXl+uXM6kk8k07z5+4/jZrHKNanHy34s84+1UyhMLbSpZr9MBapvX16zKOh1U07xp1oz2AACy4itTCpWb38vUvFqtMsNrf2oBvSOslhPHKw98vh2bT3y+fvQc4zIAcN3S6axyUcpbQMm1eR/w+D0HWOfyreIkpVS5vW2k9eJ1Vitt+Hvp6LOsZN+2o90qHDvu1pB1ytXnxbD4Us8eSpDPl3uRdGB+T+b20GOfQbF01HwsYx/h1Uc15DSboWs+vkiqvP635fEaV7VFU07miPNcNFLeuc6tHGOVe9BpR1nlDsbmebBvqfLq/9EOrwPmtP8A8NCZI8Zl9lWWWee6BvtZ5VoetxM2pxLwrJF2V4ttdBnuOdu8b2sv8MbIVsCbp7iuefufRry21a3x2i3TlKftHcXx6kynA1XiFqmENyet+ry65VjD63BmPN79n6/zIux7zWWrhBB3wNqJxbZ5O3nhzH3GZQDg7B3HWeUsxtrYTS3exvaDHm8NyGeMLZYY07bGXLF/mokilBnaZzVe/c8Z76nNDMiJGXMUAMg8XrktB1yb4DHXqRbird81RQwHFvwqvnDkwcbnmvd57ci+Om+85dq8+V7FMW/LzwwXWec6LeR9t5m5Ylt+pl5EPSOO71yENQccieusc3H7qHbFxUxz/Uu3313CyszWY76aZ37/7z4+Z1wGAFvi6O40r1uZz1uTdFd45bjtXWa+lImUubbIxVvilctdRpvMl8HSk/K+0b9a64Nrfx9RSv0X/v/27j1IsuyuD/z33Js331mVVf2a7pme0cxo9BxJSIwENstjDSwCE4jFjxVGIGzWxMZ6d+3dtXfFeiN2/QcOHCa83g1jYhVYBocxrFfYIFgw1mLZgBFCQvKCkDSa0Qwz090z093VlZXv+zz7R9V0d9X9ZVWeX2Vl3lv1/UQoNJ2dp+/NzHvPPff87u93gPcAeNUYc9la+7Ix5jIA9xu5YzgVGXGBUJoyYtnBM0nKcmtMYzFziRlx5EIq/9UUHgKg4qsJ/QEz4opF+j2k382VVEZyuzX/qFYsTSmUuyRaNC/LcmV1M2NYVpeIVqYvlKZkhk7xtEf5mUKWvSufvvAQKs+306ElnaPMiFu5SFjuqDpJEAgZcfEKSlMCwFgoTymVIyY6i4wxLWNM57X/BvCfAPg8gI8B+ODe2z4I4JeWuV+n4u69Osk/mRI3VtMR0mqJ6eNhjHooBOI48U4OpNKUXCOunIpSToJmk4IL0tp+TqzF+jA/YeGyRlyvlX/vxkiXwUHkoiksvj6pBoBRPglORHRMYmBgysBAkQRxgmqyf9yb+B5CLuNROgOhFCwDcadDa5gf441ayrI1tDBSIK42SRCE+bmEpLqaHBcpENecMBBHtOcSgH9pdu+XKwD+mbX2XxljPg3gnxtjfgjACwD+/DJ36lSMwKpSRpzQadLpNzMjjmvE0TFNqkKQN+Igp4yqXCOu8KTAqLS2n4v2JESQ7i/7MakGCIVze5aeELTbYEYcLYGU2S89fEREtCyjehWJ56GS3bu2NuIY1SRBJKz1SssnZUYMm1U+xFFCYgbqmIG406AprBE3YtbqyoVClbXqNEGlSBlxTSkjTlkvkeiUsdY+B+AdwutbAL55+Xu0q/SlKb04g5/sLyia+gZphYPLs8gpI46BOHIwrglPGwnHFRVfVcisilY0eCaZlBEn/W4uNgZSWUq3NYKk97M0JS1DcyoE4hyCyEREC2eMmBXXYVZcYbRH+bWMhop1tmn1dlia8tRqCgFzlqZcPTkjLkUQ5tdzS2qrmUsYMSOOqHRKH4iTsuHius+nvM4oMSNuZiCOT2rS/KQJzwYz4kqpJmTIsjRlsZxEacrjlqWc9X4G4mgZxIw44QERIqJlkgJx6xNeF4tCyogbCRkUVHwsTXl6tYbCGnE8T1cuEpY7qk6KlhGXL2EqBXaJqDhKH4gLpsL6cHVmNpxVUiCOGXG0CLOCvFQ+NWHwzNKUxSL9HsctTSllxElrvh1GCsRxjThaBnGNOI5jiGjF+mJwIJ+FRavRFkqUjRpce6qMxNKUPNdOBbE0ZZvn6aqFUkbcOEEQCxlxK1ojTsqIazEjjqjQSjXz2Ivzg49gIAdYXnuvZ/Kd5FEGU91FLw51X6fNdNl7aeTezq+6fx8AEA6VA4HI/YLUfEBX07haScX08bVwilqcn3i3TYOqSfGei8+ptveNa087t3lX7YZqWw9V8sf+PAKjC0rvZO5P131quqbaVj/RlUe50Xff3lpjqNpW1U8RbOaPocuNHh558PbMdqNI9yTbaM29XaehO2/GkW4id1BtuTdKdH2dH+j6rczK2wuEgM40CO6+f1a7w7y8te7cBgCMsUe/SbC5vrzgzwvjTVU7D7rP5vsZYqG8Rz2J4fvysZCmR/d1XSkjrt6CGc1/7d7xO/l/dzQG0vmOGW/oPk6IN3X9eC1QPiigGJMohlq7dIcIrLJdNMdxclAc68Z2tW3dDbm9Kn+4VpK/qZ7WA/i+xbN3zqu2NYx1Y7vXd26p2gUmfx09ypPrunETdF0ywkz3e7+1ed25zYVKX7Wt7zn/WVW7yLof/9NMN0YYZ7pj60uTy6p2D7e3ndusvU6XSVLxdB3eJHX/Lp8b6s7t6zu6EyDJ3PutYSf/W3fiCewRp1J2QTdRuF7TBR4C373/AYBYcd1o+Lrr7+PrW6p2a8Hs7+QdlXzfVNnMsFnTZS3+2xuvV7WrVnTf/1s2XnVuM05091+DHd39dtR0/73jgXsfecfm733Xp2PYtTm2P1E+qK5olrSVgzRF/wMAfqi7v6xM3NtVlMfx9vTwY6s5zPeHNypraAXu/eR6VddHjpRjQs11AwD6kfsckNfUHVvae9KXzEbutVovf75FVR/XJrvvbQe6OZkH2z1Vu8ZGfl7jcXMbT26+cmi7rdDtYVQA2OjorhtSZuE8+r77PibK9Wmtsl2wo7zf89yPyUyZJKvp6wBgclF33tTusDrhUUqfESeVppSeXKCzQSo3ub6Tv9Ge1AKWLyUn0vqDDWHNHio+qcQh14grlkgsTam7+X1NV8yIcwsobwvv32BpSloCKQNbWruUiGiZ5CwdXheLoj4SHlpuMZu6jHak7NMxS1OWnrVojfLBm6FQcpCWayrM/3R28oHOVZWlBOT+XOr3iag4Sh+IqwmlKSOWpjyzpGBJt58foHJ9OHIVCsdMjYG4UpLWiGNpymKRfo/qcUtTDvMTg9uupSmF93ONOFoGltgmoiIaCGvEsVxecUgTshMG4kpp0KgjO/AgcXsawU+P96AarVYtTFDJ9meehIGPmPemKxfW879BW8heXOUDvdOmEIgbH++emYhOVukDcVUxEMeL1lkVCpNS3X5+klR6uoXoMNIxUxcCOlR8VWGNuIg3O4USihlxxzvfuoP8QxmuGXH9RiM3CbI2naLCSRA6YdIacWOOZYhoxfrtfCBunRlxhdEYCoG4NrOpy8h6HgZ1oRQsA9+l1hay4UbMhiuEaWO+cXYcrDIQl79nro/5sDhRkZ2CQJwwocpA3Jk1b0Ycs1/IlZgRJ2QoUPFVhYAO+4RikQKjtWNmxHUXkBGXeR52GvkyXMyKo5NWj4SMuCoDcUS0Wn0hI64zZbm8omBpytOlL5anZCCuzMRAXIvB8iKQMuIkKy1NKWbEcY6KqMjKH4ibsDQl3SOVaeruCBlxLOdEjqSMOK4RV05SQIcZccUiZcRJAVQXG8Iaca6BuFltuqORap+I5iVlxE3qnKghotUSM+K4blVhNBiIO1X6zfzDYOsjnm9l1hoL68O1mBFXBJnvzVV2cpXzCFwjjqh8yh+IY2lKuo8ciJPWiOMNCLmZCv2KtEYlFZ8UiGNGXLFIv8fxM+KE0pRNt9KUgFzOcmPMjDg6WQ0hA3vCjDgiWjFxjThmxBVGQ1jPaNLmtaOsmBF3+sgZcQzEFcU85SkLlxHHQBxRoZVm5tEAeKR+J/f6A2k/91q1ndx9b2jdP2J0Xve19NfyA6N5xJmu4x5G7k9Cp5ku9hrGuu9kMnUf6K83dIPJKPXF0pTS5NX0vjKDaxXd9rbStnObz4ZXVNsa2Juqdld83WfLFG0u+kPVtp5sXVe1+/L6Rec2W2P3SXcA8I3FOMifb7Vpcug5NQ512QoV3/0XqFd0QYrMmqPfJBh69ug3HeDtKG/8+7o+clCXB6FVIaCzlbYQT3b7hariu7y0mb8WzSNVfv/9se56kymuAU/H7ucaANQC3TGZph7Gfv7cqUYJ0lTe/zQ++hiR1ohbWEZcMoRtHr1OnE3cf+9QcR0FgHiO72RRPMXnAoCk7d6PAIDRbQ5TxVhmOtBNhngbmispcLEtB3W7Vnh9Dei2x7ja6am2tR26H/8A8FvXH1e1Cyruayk2A91kwsOd/D3DPLqBLoBwI9pwbtP08pNv86gb3XfS8tz75JZyH9fscieGr0WbS9tWbHV9q2fc+7tuVXc89mr5rJl5JIoxQrSR71c74QRJ4/DPa1Pl+DPWja39RHe9iVL337sf6a4bWzu6+5Sve93zM/8uGOb73Z1GHa9rbqm2lVjdXMIzd86r2u3E7uNdzbkGAI22rr+rKq5tofJBmp1G/rq9vhMC4eHHqT/W/W5Zzf27NJHu3DbK5ZYT3VAGSct9nOYr59IOG6c9nG3nXkvXPVzt9PDV6y84byvMdMfWjdG6qp1WO3A/3/qJ7v5Xqx2EiBo+sHP4+9K6d/fzvDpeU20rUc4JW2FOxh9muD4+/PcMU/d7onY1/2DHPF7su4+RAcBq5kkyXf+TtXQdkLmj6xOMYgyUNnT3ltGa7ppYv6X7bKliCJR0dPtYVqXPiAuENeJilqY8s+bNdAuFgB3RYaRjhmvElY+XZgiS/YOYzABxhdeNIhEz4o5ZmrIrlqbUZMTl7/g3hixNSSerLpRCZnY/Ea2amBE3YUZcUTSljDiuP1VafWGdYp5v5dYc8RwtsnnmDVeZETcWjpUG14gjKrRTGYhLGIg7s6R1vMT3cfKKHInZllwjrnSqSf6aEQYVfYoNnYhIWCPuOKUpgyRBZ7r/ycvMGAwa7k9WbgvlLLtDlqakk1UP88e/dF0iIlqmQTv/6DMDA8UhlShjacryYmnK00cKlkvBFVqNsHF05thKA3FNIRA30WWuEdFylD8QN2FGHN0jreMlvq9WmqqsVBBS8FaaGKVik7IYV7nAMskWnRG3LqwPt9OqI/Pch0FSacqNEQNxdLIaU+GJaQbiiGjFBu18YGB9zEBcUTSYbXOqSBlxPN/KTcqIG7d5jhZFOMf84ioDcZOGlBHHQBxRkZ3KQFzUYCDurJrU5hu0MCOOXIVC8JalKctHCuaEQvYVrZb0mxwnI25DyFjrtXWLSsilKRmIo5MlPfgRcixDRCs2szSlPVvrfRRVcyhkxLV47SirnZZQmpKBuFJjRlyxzZcRt7pp9UlDqNo0iXkNJiqw8gfipNKUDMSdWfNnxPEGhNxIZU+ZEVc+UjBnqlwwnU6OGIg7RkacFCjbVgbipHXlusyIoxMmrRHHjDgiWrUk8DE+MI7yrUX7QDloWgFrUZcy4phtU1pcI+70YUZcsRW9NGVW8XLVvjwL1Cd8YJyoqEqTBmBgsVkZ5l5vhflBfrWV3H3vlWDbeVvvaX3FfQcBxHa5X+coy9fkP0ovVU48JvmJx3mMU/dBRC/R7eMz/QswwXxPftiWQae2e+x8eXhRtb3fvvm4c5tbA933+NVXXlK1q3n5QPU8AkW7S9W+alt1TzdIeOv6y85tXq2vqbbVixoI1vLfSWMaYa02uy7/beXvnWXug7nrt7uqbWmflbKZ+5pqtW3dOmzjq7rj2Pey3GuNNH+zE1V98b0uHu64X2uA3WNLY6vXVrXTiDzdzUUY666JWWYw9eVAXJZCXM/P+IcfyRtjISOuow3E6TPiTNM9mOj5umMznirHJIpOIW7pehLlJQpJqDsm/bb7fjbWdGuvTCLd8XWhORJfb8f58W5jPcGF5ghv7bhfDwHgVq2javfCrTeq2mn0rO57fHlbd73fXJO//6O88/x15zZfGF5Wbev6aF3VrqK4zmnGgwCwWdM9nFDzdA9cPN1zH8tHqbIfUY4XppF74Hy9sdy1nzTHCAD0mw00o/3j+bVggOH67O/Y39I9SPCyv6FqB093naoEinPA6LaVbOnGhF/uXhBfr4UxKun+fYkCH18YP4CH1nuqbX39xjOqdk92bqjaaeYSrk27qm09cf62qt1O5L7e8GjsPo8DAP01YU3G6QSoHn7upsu7bYBJdPd7fqRrF63pzjeruASMtnXn6NXXzb5PPDfJjzuaGxGuNrZxJeg5b0szRwgAFxr5udZ5RIp5CwDwFP3kJNVdN4ax7jtZr04RzfGgf1Lz4e99HqPt/60uR6bux5g2g9wD4hvhGNud2efU7bH7PNXFlu4Y0Y6ttwfu9wCpck7e1HXj3bij2161797fZVXlzJ0y/Spt6LaXKb6StH62MjhLnxFXmeYHHUm99B+LlKxn5lr/TVp/iOgwcdXHwdhTEGfwkuMFcGi5akIWI9eIKx7reYgq+Ru7qjIrrjuQMuJ0N9M9ISNuY6S7wSCal/Rk63SOp3SJiE6aVC5vfcQsnVVrjfIPcAybuglpKoZ+U1iTkedaqdWF8rHTNiseFEXRM+IAYNIUylOOmRFHVFSlj1hJa8QxEHe2SWt55d4zZwlLoruMQSiUATvOulW0fFwjrjwWWZ5SXCNOmxHXzLfrco04OmHSQwRcI46IikAKDnDdqtVrjYWSd02WvCuzflMqTbnczFlaLCkQN2EgrjDKEYjL9+sNof8nomIofcSqIgXimlwj7iyT1vLKvYeTV6QgrUFYmzIQVyZS4DTkGnGFJGUuawNxckbc4taI2xiNuSg2nShmxBFRUTEjrpha43xG3KjFQFyZ7UiBOAa9S63BjLhCkx7EPiiurToQx4w4ojIpfyBOKE0Z1xmIO8vmCcQxI440pOyD+pSDnDKRShuyVG0xiRlxygxUMSNOGYgLqwEmB4K3QZqhPc1PeBEtivTQxzwVAIiITpqcEccsnVVrj/IZESxNWW5iRhzPtVKrjRiIK7JSZMQ1pEAcM+KIiqr8gbgJ14ij/aSspYM4eUUaUgCXGXHlUpcy4gI+vFFEiyxN2R3mnxbeVpamBIDtVr6tFOwjWgST2dwi7MB8T+kSEZ00OTjALJ1VEzPiGIgrtVG9itTsX7S8EcXqNZRp9ZgRV2xlCMSNhUxnZsQRFdeJRqyMMR8xxtw0xnz+vtc2jTEfN8Y8s/f/G8fZRmUqlKZscFL1LJtnzZR5suaIDpICuLWQg5wyqQqBuIgZcYW0yNKUG0Jpyl47P3E4L6msZXfEQBydjKoUhKv6sJ4R3k1EtFwsTVlM0hpxLE1ZcsYw8H2K+HGGINyfWJD6BhHnMwtjnkpayYoDcVOWpiQqlZOeffxpAP8AwD+577UPAfgNa+2PGWM+tPfn//Gof8gCiG1+dwMhI25Sq959743YPc43yPLlNeZRN7oJwktBT9Wu64+c27Q8XeksbbtbSce5TZjpDksPu+vzzHOxjGr+3fd/8dYl1faiyH0/k1h3kf7M9YdV7aZj3c1Wq+Ne4sJa3YSg5+XP4Xm84dwt5zbnau7nzP2SZv7ZhXPpCN2qfPNjjG7NqMnLbec2trLc9akqO+7HsvLUhjfVPTMymeYHpd44/z2N/Nq+977hAfdj62pz27kNANR83XXji+MrqnZBy71MxVpTV/JG2yfc6e8GuaSMuGqYiEuxZcnhx4i0RtydRhtQnqO9en6duHO3pvDOH35e+KH7SRBfdm4CALCp7ryp7LjvY/2mMiCkbJa0ddfSieIJ4yTWdVzBncXdlNeEQNz0vjI0r6+/qvp3n2o9p2r32JPufSQA/Padx53b7ES6gPnNgft1FACSVPe7henyHuh44eVzqnbGW944oVbXTQBd3eip2vWn7lk+g21dVrT2e6zU3K/300j34KB2ydJaVTcm6beE0pSTCXDId2WVXaRNlReOqW6DtUvuY6As0+1j7CvHJCO5n/S28/dYd6ot9EYNPD3U3f8GnfxD0PO4GPRV7aqKYzJVPmt+e6q7brQC97H11Qu6+4abgzYGndru2sT3eSDYxnRj9jE+uuY+JwMAlcHyKk1p+4TKWHe+JS338617fqja1qz5rXY/379MWwFCGwAW+GT/9c7bavi6koSvTnTHyLm6bn6lU3GfX3yksaXa1o2wq2rXrYzRXDv6+2w1Q1yu7QAAHm7cUW2r6el+t5tRB8F6vl9+MOnh0Zbu+5qlWVlucE81BlKm+cSKe3QAh45zDpMqpmnrt3SdpLZvNbrLPTLFvGRleLYeLj3RK6u19jcBHOyJ3gfgZ/b++2cAfPdxtlGZCBlxTT5BcpbNt0YcM+LIXSSVppywFEiZSBlxUsCHVi9aaGnKfCDuOKUpe0Jpyu74eIF+olnqk/yNL8cxRFQUfSEjbm3EdatWrS2Uphw2WJqy7KTAd4fnWynVhbKUmofG6OREc5SmTGqrnX8Om8I985hzVERFtYrF1C5Za1/e++9XAOgexwLgxRn8ZH+0NfOANDhb0VTab57137hGHGlwjbjyq0fChDZLUxbSwtaIsxZdoUSWVF5yXtvNfEbcwaeTiRZFyojjOIaIiqLfFDLiWCpv5doTIRDHNeJKbyBloDIQV0pSII7rwxXLPIG4uLqKafV7wlb+mKmPWJqSqKhW2mNYay2AmXmLxpgfNsZ8xhjzmSzNv60S5sstJHUfMAzEnWX3l2uahRNYpBEJx02VgbhSkQI5zIgrprCa78s1i9F3JiGCdP94YVINxH9/XmJG3IgZcXQypIy46RwTA0REy8A14oqpLQRnGIgrPzEQN2QgrowaUiBOCKrQ6syzXh8z4ojIxSoCca8aYy4DwN7/35z1Rmvth621T1lrn/L8fHBNLEvZWO3TCLR607ky4jjAIXehMPHJjLhyEQNxzIgrpKmUESeUFj2KWJbyGNlwALDdEjLixsyIo5MhZ8RxHENExSBnxDEwsGrtSX7NIZamLD+Wpjw9pEAcS1MWy1ylKaurDcRJwdvaiHNUREW1iqjVxwB8cO+/Pwjgl7T/UCAE4uI614c76+aZnJoKJQaJjsLSlOXHjLjykAKkmtKUG0IgrnfMQFyvKWXEMRBHJ4MZcURUZMyIK6aOEAxlRlz59dssTXlaNIb5YDkDccUyX0bciktTChlxLE1JVFwn2mMYY34OwCcBvNEYc80Y80MAfgzAtxpjngHwLXt/VqlMZ5SmpDPtqMmpzABxwOOE3LE0ZflJGVVhwBueIlrUGnFSIG67nZ80dLEtlKbcYGlKOiFcI46IiqzfzF9TmRG3eq2xtEZcPohD5SKVpmRGXDnJa8RVV7AnNMt8a8StuDRli6UpicrkRO/irbXfO+Ovvtn138qsh4/ffvO+197wyiv4AD6177WtoLXvfb2p+2TbKNJNym5vt1XtGq38IHkenjdzeb2ZWrX8UzfzyKxu3b1e3z3roN063kByy+RLht1vWgtwa3zvtxpd7+g2pPhKrO/+mwHAZKw8VRPd7zaM3X+3SkN3sTdePqA+j88+/7Bzm0qQz6Kdx+b67gT7Dazn/m68U8WzvfNiuyTRDcqqd9yfkciUh4gX646RYOjeRruP1R3dMyPTdv6p32CUP97GWR3x4N57166690GXgr5zGwBIMt1n+7o3P6tq5xn3861d0V03bk5118RXX+4CACYQfr9hhngk3KAechh3d/JP5W+3WrCJB29D99nunM9PgnSnI2Ttw/uYrOF+vpmBbkziT3THluIQQaqd19NdEuGPdJ8t3HIfE/pj3bYqY13f+sL2Ru61d2zlj/ktr3X3vc9vXFBt60+0eqp2TzWfU7W7Emw7t4ms7jq6kx4+Fpzl1XhN1e58MHBus53o9rH2Bt14K1RchDerugcMAqMbb4WZrr97Yu2Wc5vRA7rJzlGia3dr4n5NjFLd8b891GV991/R3RN5oUVmDDx7r1NvhREqdzwkvvwZtPdECHV9ctDTfZfeA+77+cQF9+MRAKoP6M6bTkWeS7iY5Afrjz+6hepDFoNElxn3/9x4q6pdqhzvvu3cy85tap6uj3yp11W1G95U9OXa4z8zuG3z16n67RTDW7P3w1POCWhoxpEAULujaxfrbjdgPffvZDDUPcj33FCeK/iaO/nx1MvVtbvv74fuA+w3dmeu/HOoy80dVbtpqrtuTxTttGOLS1XdffqLk014c8xVvYo13Ax3z8vWjP74KGlFnyMTNqXSlIdnxD3QcB+3Xht3ndsAQKwcy3Sb7pn1qXLeOrqpGzdpe1bNcLd+W7etxpauUx4+pDsmvYr7txKcseeZS72gmlQSTiodR2fL5IjSlFOuq0JKk3r+2GlMdRP5tBq1JH/dmDIjrpAWlRF3EmvE9cSMOJampJPRmApPTHMsQ0QFYT0P/Ya0ThzLU65SUyp7J6wlROXSbwilYHmulVJjnD9Hxy1mxBVJVvEQB4dPm686I24qZMTVmRFHVFjlDsRx8XoSHDU5xckr0pL6l7rQD1FxcY248lhYIE4IkEmBNBdSIG+dgTg6IfUwH4ib1DlRQ0TFIQUH1iYMDqyStEYQA3HlJ63JyKB3ObWEYPmoxXUciyY8ojxlXFt1IE7KiOMcFVFRlToQJy1ez4w4krKW9v09A3GkNBXW5KkJE6RUXPVIuG4wEFdI0tp9i1sj7niBuH6zgczsL7uwNglRSXQlU4gO0wjzEzXS9YiIaFV2hHXimKWzQtaiIQTipAlbKhcx+3TCNeLKqDXKlzFkRlzxREfMMa86Iy5sSmvEcY6KqKhKHYgTM+IYiDvzjs6I4zFCOtKxJWUqUHHJGXGclCgiOSPO/Xw7iUBc5nnipKOUfUd0XA0pI67GiRoiKg5mxBVLbZLAy/avQxbVfKTBaieM6fj6wviTGXHl1BwJGXFtju+K5siMuBUH4uK6j+zAmodBlMGLlQs2EtGJKncgTlgjbnpENhSdfixNSSdFXiOOgbgyqSXC08HMiCukk1wjrteevaD9vKRgHteJo5MgXWeOyv4nIlomZsQVi5QNx7KUpwPPtdODpSnLITxkzJ36BlllxdPqxohZcXVmxREVUskDcUKJMWY7nXlHTU6FVd6EkI6cEcf622XCjLjyWFQgTgqOHTcjDpDXmZOCfkTHJa4Rx4eKiKhAmBFXLPL6cMy0OQ3E0pTjKWCt8G4qsuY4H4hjacriOSwjbtXZcK+ZtoT7Zq4TR1RIpY5azVOaMrUm956j3Lne1e2Qpxv8jOP8jcs8atfdJ2FubujSk21Tt+6NGbtfmMa+bh+zbPe33soOz3QYVmoYju89aWQbyjV9FL+3V1F+trHuVDWZ+/EPANVOvl75UTpN9zYAsDPM30zMw7vpPkiNO7rf+vZeP/JKtJb7u8o4xe1eW2yX9nQDadN1P060v7V/R9cuU8wBK7pjAEBFGdswYf5ZEylwGtnqvvd2q+4TR081n3NuAwDf1tZNUgVG15f4cO+3rqfy8X2U3xi8VdXOe+PuPj700nbu7y7Xe3j3G5/PvZ4dcnBdCvu51x586x14VzMMIl3/k1gP4QUfOPCzv6l1A1uPzg7y9Sbu29sZ6IKG2v4nSxUnaqZ7ritp6cZNZolzTanyuiF0P3OZ3MmPYSr9/Ae+k3TQ33vvb689rtrWONUdIw/W8ufmPFqe+zihbnRP8z5SvbXUdhpZVXeQvL3x0oL3ZLbA6CZxYqsbt95KOqp2Hd99faTY6ibPRpkuW2E7cc/Efmm6odrWZ5OrqnZxT/f928BiUBPKNQ+m8CL5mpI2dOOYykD3u3nK+chUcX1LlMfWuuI4BoAr9V7utYeiO7nXkjXv7ntrynN7mugeAvnKnXOqdtuR+zzJA/WBaltXuz1Vu+cT9987flFfmSG2dYS+j1p6b3xSTVO07mSYVhcbxAmG7mNCo5xaiZVfiVWOtzRdeaqck2lW8gE3AGgLa8Rl6+bu+9++ft15W+NMdwyEke5+o+rpfvCHG/k+6iip8sd+ZnRR1e5SbfceMmvOPg+SmoducG+y4mJV1/8MUt09abuyewzFrXw/tBGOEVfkY3YN7tcbzdw6ALww3FS1q/nu16nxSPc92pbumpjWdMdkcMu9L4l0Q0JEG7p91M7d1XrubRJdSKS0Sp4RxzXiKG9SP3zwMWFGHClJGQjS2j1UXNIaY1LmFa1eJDxhWI3cb/Y6O/kbjcG6bpB+v/6aUBqoz6f/afEaUX4Ch2MZIiqSHWbEFYqUCREKGRNUQsZgwPPtVGgKpSmZEVc80SEZcUlB1t2USlMyI46omEodiKuLpSk5MXHWHTU5xTXiSGtSyw+MG6H8hBsVUy0R1hZlacpCkkp9BI6BuEqconmgPn5mFnOT218TSgP1dU+zEx2mKVxnpOsREdGqMDBQLLWhEIhrMxB3WrAUbPl5aYbGRFi7vMn70qKJGrODbYkyI2rRIpamJCqNYvQaSlJG3PSQpxXobDhqjTiuq0JaYkZcxIy4MpHXiON1o4jiav53cQ3Etfv5ki+jTg2Zf/zhz866MAnCjDg6AXXhOsOMOCIqEmbEFUt9KEzwt3ndOC2kdeLWeb6VSkNYx3HcDBZyj0KLddgacUlB1oiTMp4ZiCMqplL38uIacTVOqJ51se8j8WYf2lNOXpGSNPFZZ2nKUqlLpSkr7BOKaBGlKcWylEImmwYz4mhZpIy4MTPiiKhAmKFTLMyIO914vpVfYyxUO2BZykKKDln+SKrgsgphKz+fUR1znoqoiModiBPXiOOE6plnzKHlJ5kRR1pRUEFm9q9aWktS+KlyVWpaKi/LUD3wW2XGIKoUYwBN+8mlKd2e7OsIgbFFrA8HyGvEMSOOTkKTGXFEVHA7TWHd1DGviasirxHH68ZpsdNo5l5bm/BhsDJpcX240oiE9ddeU5TSlMyIIyqPYvQaSsyIo1nGhwTbmBFHasaIx1aDWXGlUBXWhwsrFeBAcJWKIaoJgbjQNSMuX5pysF5T79P9mBFHy1LnGnFEVHBihs6UgbhVkUtTcp7ktBgIpSmZEVcuTSkQ1+bYrojCQ9aIK0pGHNeIIyqP0ozGMhi8sL2x7zUzsLn3vRBv7HvfZOJ+MfPX8hfFuVjdZG6W6NpF5zLnNkFPF3uNau7bAgCsuwcoWo38xOk8ouTe4XxYRlzc8lGr3bsoXegOVdt7fP22c5tHm1uqbWmNU91gzjP5c+soN8OOalufia+q2o0fcD9OtE8e+P69439aC9Ce7u8jWmmIiZ//rtOq7rzxuu6DpnSkCzBP67p99Ifu36bJdH2dNsxZObCPrXH+s4aVSu59Gi2ju25c8HXff2rdz1EAmCqaaT9bYI6XKSqtETerNGUnkPuDC6N8/z7tBnffnymv2y+P1nCzme/zOjtTjOPZ56Kn2JxVnjd+V/e7pQP3viRpqzYFqxxbWOXvBk2fHOn6By/U7ePaufwx24rzv2VwOUa3ufveMNUN53/92ptU7bRaVffePPB1/chjHd14K/B02+vH7pm23UA3adrwlfcpCtp+vKncx9TqzrdnJpec2wxT3UMZSaabdIsVn+1O2FJtazTVjf/Ttq5PNrFBryUE4sYTzPrYJtb91mlDt49ZoOuTTeq+n0+/clG1rUyxLQB49yP5a8A3bedfeynYxDPD3X175/qLqm19w7lnVO2e2nhB1e527D7AaPu6uYSv6ur65Irnfkx+WTeMR6Wyu63RA/l+aLPeQ/3RgdhuMtb1CZqHfprXdH1k0tZ9KXFHOU+loZgjAeS5ldY4f5yO29V979UcyzVPF3w5H+jmxLQGqfu46QvDy6ptab+T2O4ey5P67PMgqlbuvg8APtfXzW01fN2MxyTdvW97S+VG7u+GvRqeHsrjIw/ux3KkHP8MI914K0zc72/SsTLEESvHCMr79Ew1dae8cCjp9hGwip+gMjpbD8aXOiNOXLyepSkJhx8HoTC5SzQvqRwYM+LKgevDlYuYEee4RlxLWCNuuKDSlDud/L+zPmBGHC2YteJapIc9cEREtGwz16xSPjhEx9McCZnUTV43TotBS8iIG3EMWiZiRhzLxxZS1Ch+aUqpf29wjTiiQipGr6EkTkyw7CDh8AkqrhFHxyE9ESX1RVQ8tUQIxAUMzBeVvEacWyCuLZSmHC6oNOWOsEbcep+TjrRY1TiFn+0/pqKKj9Qv9RCeiE6ZKAh2y33fJ8gyNKPlZXDSPY1RfszLsnenR7+dD8R1GIgrFekcnXCNuEI6NBAXFKM0pRSIqzMQR1RIpb6Ll7JQGGQh4PDjgE+R03FIGXFNYf0eKp5aLK0Rx/6gqCKpNKWwNuxhTjIQF9YCTA+sS1tJM7TG7A9ocZgNR0RlsdOckRVHSydmxHGS/9ToCxlxDMSVC9eIK49D14grSEbclBlxRKVRjF5DiZMTNMthxwGPEToO6fhhRlw5VMWMOPYHRZUE+SFKkGTw0vnXgjjJQBwA7HSESccBJx1pcRpTYTKVZdiJqID6dQbiiqIhBuJ47TgtWJqy/KRg+ZjB8kI6LCNOquCyCpNm/tiRrgNEtHqlDsQ1pgzEkeywjDhmTdJxSMdPQ1ivkopHXiOOpSkLyxiEws1NJZ6/POWJB+JmlackWpC6kAXKsS4RFZGUEbc+5jVxFZpSaUpO8p8aYiBuyEBcmTAjrjzC+mFrxBUlEMeMOKKyKM0MpGcyvOPS9Xt/TjJUk/2TcZkB3nT1VcCYu69NU/fJimGsm6RLs+XGNY1xX4em6rutr/MaD7o1bzZqY+c2l2s7qm3dijp3/7uzOfvpjzc8dAvNK/e+h6/qvKja3rsbzzm3ueDlJ4Xn4Zuj3yOZWl3D2Lofy7fSlmpb39g9r2r3xckV5za3w7ZqW69O7x1b/lr+XHistoXrl27lXn+x1lVtrx64ld8DgLGwdt084lg3eIyMop9UdpFmomvoT/e3q6ZCacqggoOH++3Q/Vj+N6M3O7cBgGGav5GexzPDi6p2Ueb+e79r/SXVtmKrO7a+cPOBu/89DQLUDqwL9/z187lMtCyT+zp/K3/N++T0UTx9bXcbnqe7tkVPrwEAbps1vAE39/2d9x9q2BrLv0/SmT+b7662e38AQHnVBvyB++/mRbprjb+lvHlVfrjwvPsYyKS6z1bb1rV7pLu978+PvbqVe0/a8va976FmT7Wt54bnVO1e7q+p2g1D9+vURNEGAG5sr6vapYnuenNxY+DcZhzpAqr9QVPVzq+4H//xzXxgZR7BRV3wZaPjft8AALd77uO7tK+c8AwU/TgAxIpjS3Gvdywt5fUm2v1s0rpV7WyErJk/9sxU1/+bGdf7o7Su685t85j7d1JTjOMBYGtbd5/y+9eu5l6rDvL78MmdR9FPd8/pcaI7/l/Xzl+T5tH2dffAGxX3PmGY6uZynhnoxtZ1332y++L6ULWt3mT3HBsKAZu18RSeJ/dP2UD5AE/FvQ+K27p+y4t157ZJlGPQ0L2dPa87jqW5tNYo/29N2sG+9/7B4EHnbb067hz9JkEr0GVPVYzymqigmVsEgIqnmwN9cbQJAEgx+1jZMq277wN25601Wr7u+++Fu336rSB//aiOkrt/f1Cz4r497VxyZUa/dBTN2RZ0dOdoPNH1kTZU3ssqxneJbroVnjIeq+kjAaju02t3ljzeXbHSZsRVw3wnENUr+4JwdHaF9dkdYnTIEy1ER5GeiKo5rltFq1FLhMwSlqYsNHGdOGGtv1m6QpnInlBOUqvXzI+Iu2PdTSKRpCaUPg5rHMcQUfEwI64YTJahJZQ1HjWYbXNa9Nv5c41rxJVLQ8halcoL0upNDykJL92rrsJIKk3JjDiiQipvIG4qZDYwwEJ7osMuljxO6BikCdCaUCaXiqcmrRFXYSCuyMJAON+iOQNx1mJ9KATi2rpsEsl2M/9vdUejhf37RHVhvHvYhAAR0ar0hUDc2pjBgWVrTSN4dv/T5aNaFalfjBJqdHyDVj7rrzOaAvZsZRWUGUtTlse0pGvENSdcI46oiEobiJMyUCI+IUx7okMy4hiwpeNgRlx5cY248hEDcXNmxLXHIYJ0fymMSbWCcIHra0kZcRvMiKMFqk+EfovjGCIqIDkjjtfEZWtPhPVxm4tbH5dWLw4qmBzIxPEzy4n3EmmOGIgri/DQjLhiBOLGQiCuPokZnCcqoPIG4iZCII4TE7TnsEmqw4J0REeRMhHqzIgrBak0pRTooeIQS1POmRHXHeQn/3qdxWXDAUBPyogbMyOOFkd60GPK8S4RFVC/mV8jjhlxy9ceMxB3FgxawvnG8pSlIWXETVoMxBVREvhIfHnqPA6KMbeY+R7CA0FBP7NiZQ0iWq3SBuLE0pSHpAzT2RLNOBYyzyCtlPawpwIQM+I4wCmFmpQRxzXiCu04GXFdqSzlAteHA4BtrhFHJ6wmZcQ12G8RUfH0G1wjrgjak3wwZthgIO606bcZiCuzBjPiSmVWecq4IGvEAXJ5ygazZIkKp7QRCWnim6V66DWzsiOjug8Ys+S9odNEKmvHQFw5iBlxXCOu0ELh5mbeNeKWkhHXyv97G8yIowWSMuKktUqJiFZNKk25xkDc0okZcQzEnTpSRlyHgbhysBbNUf5Bq3GL96VFNas8ZVFKUwJyecrGmIE4oqIpzZ28B4uvWX/+7p8f8bdy72m2o33v0cqsLj4ZGN1kfN3TlbWrG/d22m1pP5sP95rEo0x3o/A588jd/6535M+Z1H1cqvX3vab5HgHgVtpxbnMj2VBtq5fqJo8jqzvFM+serNysDFXb2vR17d7ZfMG5za3qmmpbn/eu3P3vxlp+MLOZjvBgs5d7/dWh+zECANPY/XdLEl2/FY11A35/4D7ozOq6GuVepAueV8b72zXH+XM9tkHufV+6fdF5Wy/2def2Vq+tapf0dU9Mrj0wcG4zTnTbSjPdMTkZ3dvexBOOz8H+9wBAFuePx9bN/HVrq97GpH/fxEWiO7a8xu6xvLWR75vXp2OkDflYD3ru34l3S3dNTJq6883Pz98d6eA5NDflsgXTC9nRb5IoDkl/qPtsiTLmu1bdP2m9HuUnsW1r//uebF1Tbeuxxi1Vuz9qXDn6TYJboXt/5ykPkhd6uj45C3S/t2YvjdF9tlZLN9E6Dd2v98FFXRCl1VB0JAB8T3du+757u+r55WYvVyqpc5t6oLv/urOTz9aeRzrR3TeY+u5n63fz44X1cHL37/e1aSofYrutuyYOH3X//gHgTes7zm02a7pj61lln3BwvHUpy4/1JmsB1u7rO56+6T7WBYA/fFHX/0vjtHk88tBt5zZrNV0f+ZXb51TtphP3cXIWKSfv43vXqO1K/ppauWYwOJ9/3ZvqxuS1O+7tlNNG8HSnKLxQ99mM4nKTPK7byYP3UvVxBC/bf76HVR8D0wDu+/52onyw9SjDUNdH1nzdD9eu6a73mvkm7ZhwELt/j8D+739cq+Ic8g9b9rzGvvdVlOOYKNNdf5uVe3NTYTP/b2yGY/Qq+THBTuReJSZOdf1WraI7tgZj92PZ85Q3l5lyTkDZt1Z33NtlgfLefqq8t1He3mv68kQ3bC2t0mbEVab5Xzfm2l+0Z9axwPXh6LiksqdVYc1KKp6qmBFXmudRzqTjlabMT4Rtt09+jbiNETPiaHHEjDhWgCCiAtppCaUpR8yIW7aWkAEx4hpxp460JiNLwZZDk2UpS2fW+szSeuarMmnmH7hqMiOOqHBKG4gLJvlAXFIv7cehBYsacsCNwVo6LmkCtCo8GEDFI5WmnHKNuEKT1vCbNxC3IQTipFKSx7HdEtaIG3GNOFqcmvCgB9eII6Ii6gulKTtjlspbtpZQmpKBuNNHOt/WJgzElUFLCMSNWjxHi2zSkAOlRSpNKa4RJ1QEIqLVKm3kqjLJp/zGzeJ0grRaswJu8YwAHdG8pKzKKteIK4Vakh+IRlwjrtDkjLj5biikQNyiM+L6jTrSA+uOdsIQgRD0JdKQri/M7ieiImJGXDG0R8IacQzEnTpck7G8mkMhI67FjLgim8xcI67YGXFcI46oeEobiAuEDBRmxNFr4hmp48yIo+OKmBFXWlIAh6Upiy0Ubm5q0ZylKYXMtEUH4qzniRMh62NmxdFi1IRA3KwF44mIVmnYyAd7OtMQfspx8jIxI+5skEpTrjEDtRSkcoEMxBXbdGYgrjjzi2MhI67OjDiiwilt5ErKiEsYZKE9s0pTSkEUIhfSMSRNlFLxSKUpGYgrNql06LFKU7YXvxJwTyhPucHylLQgzIgjorLIPE8MDnSEwBCdnLYYiOMk/2nTb7A0ZVk1h/lzlIG4YpsViIuD4ozJ5Yw4BuKIiqa8gTgpI65R2o9DCzarBCUz4ui45Iw4BuLKQCpNyTXiik0uTakPxC06Iw4Atpv5f3NjNFr4duhsktaIm3KNOCIqKDlLh8GBZZIy4oZcf+rUkc41loItB2mNuHGbgbgim50RV5yHelmakqgcitNrHCGDh9/afuLun1+/fTP3nqftA/veAwCdivsTeInVBfQavu5pg05FV0Jgs+I+0VfzlvtERKb4LlOYo98kGKb3bjCiqrzdSTXY9z4A+Pidt6i2tz11n9DdCfMD5nncvLmuamcj3bHst9wDS49c2lJt61xdN2FdV5xvNU9XGuf+PmFYzd/IVqcpoizfnbaquoHPdr/r3Ma+qju2gonufAuGunYqVtfs4M9dD/PHdZIEqByI14yf6Tpva9jIZ2nPwwa6dt5Ed24Pn3PvS56+qDu26g3d8Z9N7p1LU5O/Ka1Osn3vAYDqzfz51+3nJyOGozVUb9y7SfES3XFsvXsH5U4tnxF37vYEwcX8v+1F7tuzypGar0xAqPbc99Eoz9FgoGsYr+l+N3/q3q62rTxGlF3kNN1/E12d5K9bg2o99z6NK8G2qt35bl/VbmrdJ5liq3uA6uX1rqrdq+Gaqt2Ves+5jae8uI2z0ztZlylPnPbl5WVc+UZ33dbYSfIZL/P4TPVhVbuXbm6q2nXa9663w04NuL3/7x/0trHT3f9ZtL91P9T1CWaqa9etugc23tJ+WbWtt3Wuq9odPE4eTvN9+xuu3gQevDd2fHZ0QbUt7bXn5qitarc1cr/fDnzd/d5aUzcnk6buY3KvrpuTmdy+933sNPLfzdpkKg5ANOMfAEhr7tcpqy0+oR5L6j5bsvhn82aq+vvvQaUSotN2kHvfRs29woZV9q1xpusj+5HuPlFzDYhS3U1RvaKcp63eG1ukLXl/g1a6731VT/eAdt3XtWvdN9/tr+VPonPRGBfqQ9W/vWobHffjv6bs/3dqumOkF+vuGyLFvaz2flvTjwOAp4zhepp5QuVnK6vSppBVhQnVkGUHaU9cm1WakhlxdDzMiCsvKSMuYmnKQpMy4urRfAPljXE+yN9rLr40pTQR0p2wNCUthlyakv0WERXToC2Uphxx3aplqg+FChAtZlKfNtIaxcw+LYfmkBlxZTOrGkVcoIw4qZ+vjViakqhoShuIkxevL04nSKtlfQ+REIyLeYzQMYUNoVSeUDqMikcKxIUVTkwUWahcIy5IErTD/RkSmTEY1HVPbR6mJ5Sm7ApBQCKN+lSYUOVYhogKatCSAnFcI26Z6iOhpHGb493Tpi8F4iYMepeBVC6Qa8QVWzizNGVxHvSfCqUp61wjjqhwGIijU0taD44ZcXRcSeAh8/anW1eSDH6yvFJFpFNLhesGA3GFJq4RJwRUD1oXMtJ26g1k3uKHPduNfJZdd8yMOFoMKSOO410iKqq+EIhbGzJLZ5lqQkZc2OZ147TpN7geY1mJGXEMxBXarIfg4kIF4oRKMmM+ME5UNKUNxImlemocYNI9UtAtErKZiJwYg1A4tgKWpyy8aiIF4tgnFJn0+8yTEScFwqTMtUWQ/t2NCTPiaDHqYiCODxAQUTHJpSmZEbdMLE15NgyEQNz6ZAov48OhRdccsTRl2UilKaOqDxjlotAnQOrnGyxNSVQ4pQ3EMSOOjiIF3aQsOSJXUtC/JqxbScVSZ2nK0hEz4uYIxC1rfbhZ/y4z4mhRmBFHRGXCjLjVMqlFbZLmXo9avG6cNqnvY1Cv5V5vszxl4TEjrnymwkNwRSpLCcwoTclAHJ1hxpj3GmOeNsY8a4z50Kr35zWlHZGJgbgZC2jS2RQJE1XSa0SuwkYF2N7/2jf+4pcx7O6ffLg91U3894b5mv9HsX1d/+fFuqe4/GU+3Gx1zcyBdmvTfHAk8tknFJm0Rtxjr9zCB/7tJ/e9VhnsvxF64ys3cu2WmRH3+puv4Ht/73dyrxtNvF75yJRVtqssMYboK+eKwlcXux+H0X4fym4LD9h7H87LLIIDZY9T3yAJSvscHRGdclJG3Du+dA1/7ld/f99r2j5yOswHHuZhlOPdR5+/6dzmcn1HtS0PukymSXZvAj8I80G4aasC6xUna4MWp99ooDPdf1P2A//uk+i19o9N/bFu3GAUh6R2/KmlHUtmmlvAF3Ube7C7v0+4dKOfew8z4opNegguDooViAuFQNz67TG+8aNP514fxrpr6TLtRO5zYhVPeR2NdHNpk75u/XlvqugotQMnJU+ZZ+Ap5gm9/NAl51MPP4E/3rw4979pjPEB/ASAbwVwDcCnjTEfs9Z+wX0PF6s0M5BZZvDp5x65+2c7yA8mP3PrYTwXXNj/omLMaXd0F0Fbm+PoERsucWDs685eM9ZdZEzi/tmaj+QHJvNYa+wfGG35LVw9EC15OrqIT996eN9rt3pt1fbigeLipfz+ESpHtJ5ue+nYvWt4/kuXVdt6XtUKsBXFZ1N+/83N/TOxO34DFzHc99qf+fDnVP82rdZUCPQEI/d+K0l152iyqRss2kDZl2huqGPdZxsPdYHo+yfLIuR/nzdffwU/+rO/6Pzvbm00EZ3bf52u3tZd2+6b88LWev5zPrp1G3/rl39B9W/TGff/Hv7X01qA66Puvtf+dfYW1aa8g08rzOlcTVd6ta14gqOmvAsM5rmjE1yq6cagGr5mhhNARznr6Cnu4DPNjRSAVDkTq/1OAqO8B1PQfrbYul9vtJ/rQmN49JsE/TXdxNz29r17qVe8tdzfv/vzL+Ldn39R9W/T8YWtSq6//6q1a6p/S9snvNJcV7Ubpe7zMp3KcjPCel33yWLtJPgLtY19fx6tB7mHQ//GL/266t+m1Ro0akiy/deXKw33MckDjcGidmkuYaqbUq4oxmmZ8vqbKNu1/HuZi/W1/Hg0rXm4UNt/vY2V24pUkWHg1vTe9Teu5Le9th3iA3/n91T/NlGRfOg7vxdfuTx/IA7AewA8a619DgCMMT8P4H0AVh6IK+0jtfVIqH1eZUYc3SMtqCqllBO5mtR4HJ0Woc/fssikjDitg08HL+zfPaFMOyLJhOMYIiqwftM9KEEna9rmdeO0GgqlYKmcWJqy2EJp2ZuClaacCBlxRGfYgwBeuu/P1/ZeW7nSBuIaUb6uMifH6X7XrmwIr3WXvyN06ly/2F31LtAC3G51EPvFGkDTftc38/241vMXzy/s37rfVruNQa345T3odHj5ki6rgIhoGV64uLnqXaADth/kA0On1UuXFzdOptUZNwP0uwyqFtmtK20k/v6M4JsP5TPAVymsV9Db4MMwdKZUjDGfue9/P7zqHZpHaQNxzTCfETdhRhzd55ff+3aM73ty/LNvv4pnHnNKZSUS/fy3PYVISP2ncvmnX/31gOGaGUV2fXMDH3+bruze/W5srOPX3vm2BexRXlyp4J/+ya87kX+b6KCPfte7Vr0LREQzfeXKBfzm255Y9W7QntQ3+N33P7bq3aAT8gvvfSem1dKsNkMz/Op/+iTSCh8OLbLReh2f/PbH7/458Q0+8WfeuMI9EhiDX/mzJ3O/S1RQibX2qfv+9+H7/u46gKv3/fmhvddWrpxXbWvxf/7pr0cjilEPIzSiGM0wRhiU8+PQyfjy6y/hB37yB/Et/+5L6Hfq+Nh7385Jd1qI33vbo/gLf/uH8C2f+iK6w8nM96WJcv0pxZpc/lR3bGsX1FYu46LbVqr7bLOWVokqFfzew6/HJ17/1mPsFS3LX/lL34/v/vRn8eRL1+BZeY2jw47jl85t4hff805srenWA53Hj7/3O/D5Bx/Cu59/HkGqXNl4Bu25ZrVDIsWSRJ5iPVgAUCwZBgBIlQmImu/SnyrXWm3ovpPq5bH4+rhZxe+8+zF87h0Pi39PRFQIxuAv/7UP4Ht++3N484svz7xue77u4pZGyoubcmndza77enutIF+5Zx7aNQErMy5uk06AL/zHl3Ht7cxSPK3+8E0P4oM//kF8y7//Erp9efwAANORcuCkOG/U923Kc3SJS4Qibeh28nxXXustCXx88e2X8TvfxGB5GXzkf/46fPGpy9h8dYQ/+por+OM3n0y1leP46Pe/Cy8+uoknP3cDQTT7ntRTnKba9QCtVc7BKjqFg+sszivLdPsYa+f7pu7fpfprVN6nK5fphhefzJz7C5sXXJt8GsATxphHsRuAez+Av7Do/dIwdsbguGi8WtU+8pH/1b2h4hiwO7r6zLamHAVozygNX/d7m7Gug9Gc9M1H3BelBYC1hm5h5ls93eRsPFAMaJXfP0JltMRTbk+xOaPdRyVbUXw25fff3Jx9Y3OYcKrrS9KBe3Zv9ZbuHLXKRGKjuTArD0c/Wu4kf6Ko4JPUdR8u2dSNcEykPN8U8162oxyFhcrrhmLwpuoPAFRvKwfP2mUcFLupHQRrJwu80P37r0x052jtjqoZQuWcoqbfatzWfY+TC7rvpPsNrzi3udQcqLblKWe9ztVGqnZtRadcU54Agacbk6fKp1N8RZRXO+mu5Sk6oExzI4Xlfo/Acr9L7WeLrfv1Jsx0k17PjpwnKwAAX9k+p2q3ve1+L1Wt56vbzCPcVpZvU06yvfXNLx39pgMebPZU29L0kQDQ8N2/y6anCxZq+4RXQl1Z5VHqPuDqVHRzAlq92L0U3DDWBcZe2NGVorxzvatqp7lv8JRzAtpu3FeMWwGoPlv0gG5M8s43/rGq3ZWG+7yY9hzV0gZnKopxWqa8/ibKdppxU6zcVqS83kep7l624rmfANuhrsyxNjimuU8Zx7rJrUgZUBtNdH15dMv9u7TKuUxvovv+K2NdXxL0FXM5yqmtL/3t/25srW3N+ntjzHcA+PsAfAAfsdb+qG5Li8UUMiIiIiIiIiIiIiIiIio1a+2vAvjVVe/HQaUKxGVD9+i2JmtA+1RNpkzB9JWR5lSRgZG1dI8a2aruCVXru3+20UD3pGOaKp9QHSlTGzRlF7QZQWPdZ0tbyppmiidktJ9N+2SHhqnqjv8w1D1ZoykxCQCe5vdWPkWi/fY1WWpZVbe1uK1rl1WWl0lnlfuozWzTZC0BQKbJ3FMex9oaM7ah6H8S5ROSLW0dHF0zDc11FNA/Wabh6RIbYFJlJmNP951EXfc24wd020qaus9240X3jJQbVpfFYurKx893dNdETZWEbF2ZNVxRjluVfYkm20Y7JtH2P5VA8/S58loT6Z4s9oLl1b1OtZnl6muie5Paui6zR1sGKlPeS2n6hHCkm4bQZttoM+e/csu99NiXE92a5PGO7sn6ypp7dttDF7Z129LcI0KfpeArxpLafkubJT4MtWUS3MXK7BevrRuoZX33381XVkkIBsrxrnJGM1Xcl2orAD17R1fC8Ctwb6ctlecpKylp5+CM4nyLlaWJ/YpuvBUoxk3hVDlvpL1uK8ckVjFOM8oKcEFNN5aPFPO0Zqg8/pXndlbXXRM9xVyaUf7W2r5VvYSEYjrf1yXpl9Zya8kRERERERERERERERERnREMxBERERERERERERERERGdAAbiiIiIiIiIiIiIiIiIiE4AA3FEREREREREREREREREJ4CBOCIiIiIiIiIiIiIiIqITUFn1DszNAkHPd24W9I1zGy9xbgIAyAL3bQFAfcuq2iV19zhq0lxu7NWL3duMrur2cRLr2pmp+3EFALWb7u1MptoUKmNdu2hdd0zCuncNXqTclO7rBxQfLa0pN6Y8bXzF8Q8AwXB5/RZ03Q9q2+4N07puW9bTHcdW+buZVNNKtzFNHwno+xKr+CqzQHfeJG3dweVFiuNf+T3Wb+v2UXtsJS33z6b5zQAARtdQc73xp7rvMZjo2k3Oaa9t7k20fWv7RV27HcV1ytZ032Plhu42QNdHAv7U/XdLR4FqW16qO0a0n03VB1ndZ9OOmzTtUuWxFSj6cQBIm7rtGcV52ujp9jFpqZqprhvei7pjZHpeN0iwga5dMHL/cBXFWBcAgqGqGabndMdWiKZ7I2X/07ipG1ykTfeT+8ZzDdW2vEQ7KFFS/GxZVdmPKPt/3bZ036N2vFtVzvpVd9zbVJRjQi9WtlOO06K2+28wjXUX4Mm4q2rnT93bJLpTG1lTe3Opa+aF7t9/pjyOU1+3k5Gimfbc9ifKPkH5/Wvm0hLFtQYAkrSqatfYcr8masfItW1dOz/UXbf9UNFIefmtDnQXt1pP17kOHnL/vcPukscWK8aMOCIiIiIiIiIiIiIiIqITwEAcERERERERERERERER0QlgII6IiIiIiIiIiIiIiIjoBDAQR0RERERERERERERERHQCGIgjIiIiIiIiIiIiIiIiOgErC8QZY95rjHnaGPOsMeZDq9oPIiIiIiIiIiIiIiIiopNQWcVGjTE+gJ8A8K0ArgH4tDHmY9baLxzWLlPsrfXd21S3rHujY/BiXbv2dubcZnRJF3v1Et134kXubbJAt4/Wq6rapY3lfbb6Hd22Mt+o2rV3VM3gh8s7B9K6rl2mOLezQPc9RuuqZghGunbVHffvPxjrfrNqP1W10/QJ1e1Qta24ozu3w03dJW6y6d4HBUPdsVUZ6X63ivIcDdfdP5vR7uNY951oromNLffrIQBUprp2RtcMk3PuHVcW6LZVv6PbSau4BGv7Vj/SHVvtG7p+azpWHP/K3xq6rwTBQPEDDHTbqm3r2nmJrp2mv4s7ui9ScxwD+jG5Sd0/m6+7JKrubQCojsm0qjyQte4o+5KJ+/efNFWbUp/blbF7G+39VzDUnQBpVdeutu2+n83byn5cMY4BgPqWqhkGjyiu21XlmFzZlwc3dO00koayobJP1vTlwVC3rbCrO7mN4lCuKPosADj/B7qby/EV3Q+XKsZ3ned1+5g1dPdtWUXZ39Xd29V7ugvwWDkHF7fd2wTKcat3Rzu4WJ6kpexbe8r5RcUhaZRjZC3tmFBzf9m8oby3V45lYN3bWU+3j4FyvqM20J1wvmIOon5rqtrWsnVecm+T1nXzfWW1qoy49wB41lr7nLU2AvDzAN63on0hIiIiIiIiIiIiIiIiWrhVBeIeBHB/nPTa3mtEREREREREREREREREp8JKSlPOyxjzwwB+GADgFz9VmoiIiIiIiIiIiIiIiOg1q8qIuw7g6n1/fmjvtX2stR+21j5lrX3KeKvaVSIiIiIiIiIiIiIiIiJ3q4pufRrAE8aYR40xVQDvB/CxFe0LERERERERERERERER0cKtpDSltTYxxvxXAH4dgA/gI9baP1rFvhARERERERERERERERGdBGOtXfU+zMUYkwGYzPjrCoBkibtDRKcP+xEiOi72I0S0COxLiOi42I8Q0SKwLyGi4zqJfqRhrS3dOmalCcQdxhjzGWvtU6veDyIqL/YjRHRc7EeIaBHYlxDRcbEfIaJFYF9CRMfFfuSe0kUOiYiIiIiIiIiIiIiIiMqAgTgiIiIiIiIiIiIiIiKiE3BaAnEfXvUOEFHpsR8houNiP0JEi8C+hIiOi/0IES0C+xIiOi72I3tOxRpxREREREREREREREREREVzWjLiiIiIiIiIiIiIiIiIiAql1IE4Y8x7jTFPG2OeNcZ8aNX7Q0TFZ4y5aoz5hDHmC8aYPzLG/NW91zeNMR83xjyz9/8bq95XIio+Y4xvjPmcMeZX9v78qDHmU3tjk//LGFNd9T4SUXEZY7rGmI8aY75kjPmiMeZPcExCRK6MMf/t3r3N540xP2eMqXNMQkSHMcZ8xBhz0xjz+fteE8cgZtf/sdef/IEx5l2r23MiKpIZfcnf3bu/+QNjzL80xnTv+7sf2etLnjbGfNtKdnpFShuIM8b4AH4CwLcDeAuA7zXGvGW1e0VEJZAA+O+ttW8B8LUA/spe3/EhAL9hrX0CwG/s/ZmI6Ch/FcAX7/vz3wHwv1lrXw9gG8APrWSviKgs/ncA/8pa+yYA78Buf8IxCRHNzRjzIID/BsBT1tonAfgA3g+OSYjocD8N4L0HXps1Bvl2AE/s/e+HAfzkkvaRiIrvp5HvSz4O4Elr7dsBfBnAjwDA3vzr+wG8da/NP9yL8ZwJpQ3EAXgPgGettc9ZayMAPw/gfSveJyIqOGvty9baz+799wC7E14PYrf/+Jm9t/0MgO9eyQ4SUWkYYx4C8KcB/NTenw2APwXgo3tvYV9CRDMZY9YBfAOAfwQA1trIWtsDxyRE5K4CoGGMqQBoAngZHJMQ0SGstb8J4M6Bl2eNQd4H4J/YXb8LoGuMubyUHSWiQpP6Emvtv7bWJnt//F0AD+399/sA/Ly1NrTWPg/gWezGeM6EMgfiHgTw0n1/vrb3GhHRXIwxrwPwTgCfAnDJWvvy3l+9AuDSqvaLiErj7wP4HwBke38+B6B334CTYxMiOsyjAG4B+Md7JW5/yhjTAsckROTAWnsdwI8DeBG7AbgdAL8PjkmIyN2sMQjnYIlI6y8B+LW9/z7TfUmZA3FERGrGmDaAXwDw16y1/fv/zlprAdiV7BgRlYIx5jsB3LTW/v6q94WISqsC4F0AftJa+04AIxwoQ8kxCREdZW8Np/dhN7h/BUAL+RJRREROOAYhouMyxvxN7C4R9LOr3pciKHMg7jqAq/f9+aG914iIDmWMCbAbhPtZa+2/2Hv51ddKK+z9/81V7R8RlcLXAfguY8wfY7c89p/C7lpP3b2yUADHJkR0uGsArllrP7X3549iNzDHMQkRufgWAM9ba29Za2MA/wK74xSOSYjI1awxCOdgiciJMeYHAXwngO/bC+wDZ7wvKXMg7tMAnjDGPGqMqWJ3ob+PrXifiKjg9tZw+kcAvmit/Xv3/dXHAHxw778/COCXlr1vRFQe1tofsdY+ZK19HXbHIP/GWvt9AD4B4M/uvY19CRHNZK19BcBLxpg37r30zQC+AI5JiMjNiwC+1hjT3LvXea0v4ZiEiFzNGoN8DMAPmF1fC2DnvhKWRET7GGPei91lPL7LWju+768+BuD9xpiaMeZRAE8A+L1V7OMqmHsByfIxxnwHdtdn8QF8xFr7o6vdIyIqOmPMfwTgtwD8Ie6t6/Q/YXeduH8O4GEALwD489bagwsXExHlGGO+CcBft9Z+pzHmMexmyG0C+ByAD1hrwxXuHhEVmDHmqwD8FIAqgOcA/EXsPizJMQkRzc0Y87cA/GfYLf/0OQD/OXbXXOGYhIhExpifA/BNAM4DeBXA/wLgFyGMQfaC/P8Au2VvxwD+orX2MyvYbSIqmBl9yY8AqAHY2nvb71pr/4u99/9N7K4bl2B3uaBfO/hvnlalDsQRERERERERERERERERFVWZS1MSERERERERERERERERFRYDcUREREREREREREREREQngIE4IiIiIiIiIiIiIiIiohPAQBwRERERERERERERERHRCWAgjoiIiIiIiIiIiIiIiOgEMBBHRERERES0IsaYrjHmv9z77yvGmI+uep+IiIiIiIhocYy1dtX7QEREREREdCYZY14H4FestU+uel+IiIiIiIho8Sqr3gEiIiIiIqIz7McAPG6M+Q8AngHwZmvtk8aYHwTw3QBaAJ4A8OMAqgC+H0AI4DustXeMMY8D+AkAFwCMAfxla+2Xlv0hiIiIiIiISMbSlERERERERKvzIQBfsdZ+FYC/ceDvngTwPQDeDeBHAYytte8E8EkAP7D3ng8D+K+ttV8N4K8D+IfL2GkiIiIiIiKaDzPiiIiIiIiIiukT1toBgIExZgfAL++9/ocA3m6MaQP4kwD+b2PMa21qy99NIiIiIiIimoWBOCIiIiIiomIK7/vv7L4/Z9i9l/MA9Pay6YiIiIiIiKiAWJqSiIiIiIhodQYAOpqG1to+gOeNMX8OAMyudyxy54iIiIiIiOh4GIgjIiIiIiJaEWvtFoB/b4z5PIC/q/gnvg/ADxlj/j8AfwTgfYvcPyIiIiIiIjoeY61d9T4QERERERERERERERERnTrMiCMiIiIiIiIiIiIiIiI6AQzEEREREREREREREREREZ0ABuKIiIiIiIiIiIiIiIiITgADcUREREREREREREREREQngIE4IiIiIiIiIiIiIiIiohPAQBwRERERERERERERERHRCWAgjoiIiIiIiIiIiIiIiOgEMBBHREREREREREREREREdAL+f+itReBxkDxdAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "execution_count": 31 + } + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [], + "outputs": [], + "metadata": {} + } + ], + "metadata": { + "orig_nbformat": 4, + "language_info": { + "name": "python", + "version": "3.9.7", + "mimetype": "text/x-python", + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "pygments_lexer": "ipython3", + "nbconvert_exporter": "python", + "file_extension": ".py" + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.9.1 64-bit ('miniconda3': virtualenv)" + }, + "interpreter": { + "hash": "822ce188d9bce5372c4adbb11364eeb49293228c2224eb55307f4664778e7f56" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/TTS/notebooks/dataset_analysis/CheckSpectrograms.ipynb b/TTS/notebooks/dataset_analysis/CheckSpectrograms.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..1fb37fbf71480918ea5f69fc07db7c0daf31fedf --- /dev/null +++ b/TTS/notebooks/dataset_analysis/CheckSpectrograms.ipynb @@ -0,0 +1,319 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "Collapsed": "false" + }, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "\n", + "from TTS.utils.audio import AudioProcessor\n", + "from TTS.tts.utils.visual import plot_spectrogram\n", + "from TTS.config import load_config\n", + "\n", + "import IPython.display as ipd\n", + "import glob" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "Collapsed": "false" + }, + "outputs": [], + "source": [ + "from TTS.config.shared_configs import BaseAudioConfig\n", + "CONFIG = BaseAudioConfig()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## โœ๏ธ Set these values " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "data_path = \"/root/wav48_silence_trimmed/\"\n", + "file_ext = \".flac\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Read audio files" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "file_paths = glob.glob(data_path + f\"/**/*{file_ext}\", recursive=True)\n", + "\n", + "# Change this to the index of the desired file listed below\n", + "sample_file_index = 10\n", + "\n", + "SAMPLE_FILE_PATH = file_paths[sample_file_index]\n", + "\n", + "print(\"File list, by index:\")\n", + "dict(enumerate(file_paths))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "Collapsed": "false" + }, + "source": [ + "## โœ๏ธ Set Audio Processor\n", + "Play with the AP parameters until you find a good fit with the synthesis speech below.\n", + "\n", + "The default values are loaded from your config.json file, so you only need to\n", + "uncomment and modify values below that you'd like to tune." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "Collapsed": "false" + }, + "outputs": [], + "source": [ + "tune_params={\n", + " 'num_mels': 80, # In general, you don't need to change this. \n", + " 'fft_size': 2400, # In general, you don't need to change this.\n", + " 'frame_length_ms': 50, \n", + " 'frame_shift_ms': 12.5,\n", + " 'sample_rate': 48000, # This must match the sample rate of the dataset.\n", + " 'hop_length': None, # In general, you don't need to change this.\n", + " 'win_length': 1024, # In general, you don't need to change this.\n", + " 'preemphasis': 0.98, # In general, 0 gives better voice recovery but makes training harder. If your model does not train, try 0.97 - 0.99.\n", + " 'min_level_db': -100,\n", + " 'ref_level_db': 0, # The base DB; increase until all background noise is removed in the spectrogram, then lower until you hear better speech below.\n", + " 'power': 1.5, # Change this value and listen to the synthesized voice. 1.2 - 1.5 are resonable values.\n", + " 'griffin_lim_iters': 60, # Quality does not improve for values > 60\n", + " 'mel_fmin': 0.0, # Adjust this and check mel-spectrogram-based voice synthesis below.\n", + " 'mel_fmax': 8000.0, # Adjust this and check mel-spectrogram-based voice synthesis below.\n", + " 'do_trim_silence': True # If you dataset has some silience at the beginning or end, this trims it. Check the AP.load_wav() below,if it causes any difference for the loaded audio file.\n", + "}\n", + "\n", + "# These options have to be forced off in order to avoid errors about the \n", + "# pre-calculated not matching the options being tuned.\n", + "reset={\n", + " 'signal_norm': True, # check this if you want to test normalization parameters.\n", + " 'stats_path': None,\n", + " 'symmetric_norm': False,\n", + " 'max_norm': 1,\n", + " 'clip_norm': True,\n", + "}\n", + "\n", + "# Override select parts of loaded config with parameters above\n", + "tuned_config = CONFIG.copy()\n", + "tuned_config.update(reset)\n", + "tuned_config.update(tune_params)\n", + "\n", + "AP = AudioProcessor(**tuned_config);" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "Collapsed": "false" + }, + "source": [ + "### Check audio loading " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "Collapsed": "false" + }, + "outputs": [], + "source": [ + "wav = AP.load_wav(SAMPLE_FILE_PATH)\n", + "ipd.Audio(data=wav, rate=AP.sample_rate) " + ] + }, + { + "cell_type": "markdown", + "metadata": { + "Collapsed": "false" + }, + "source": [ + "### Generate Mel-Spectrogram and Re-synthesis with GL" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "AP.power = 1.5" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "mel = AP.melspectrogram(wav)\n", + "print(\"Max:\", mel.max())\n", + "print(\"Min:\", mel.min())\n", + "print(\"Mean:\", mel.mean())\n", + "plot_spectrogram(mel.T, AP, output_fig=True)\n", + "\n", + "wav_gen = AP.inv_melspectrogram(mel)\n", + "ipd.Audio(wav_gen, rate=AP.sample_rate)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "Collapsed": "false" + }, + "source": [ + "### Generate Linear-Spectrogram and Re-synthesis with GL" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "Collapsed": "false" + }, + "outputs": [], + "source": [ + "spec = AP.spectrogram(wav)\n", + "print(\"Max:\", spec.max())\n", + "print(\"Min:\", spec.min())\n", + "print(\"Mean:\", spec.mean())\n", + "plot_spectrogram(spec.T, AP, output_fig=True)\n", + "\n", + "wav_gen = AP.inv_spectrogram(spec)\n", + "ipd.Audio(wav_gen, rate=AP.sample_rate)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "Collapsed": "false" + }, + "source": [ + "### Compare values for a certain parameter\n", + "\n", + "Optimize your parameters by comparing different values per parameter at a time." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "Collapsed": "false" + }, + "outputs": [], + "source": [ + "from librosa import display\n", + "from matplotlib import pylab as plt\n", + "import IPython\n", + "plt.rcParams['figure.figsize'] = (20.0, 16.0)\n", + "\n", + "def compare_values(attribute, values):\n", + " \"\"\"\n", + " attributes (str): the names of the attribute you like to test.\n", + " values (list): list of values to compare.\n", + " \"\"\"\n", + " file = SAMPLE_FILE_PATH\n", + " wavs = []\n", + " for idx, val in enumerate(values):\n", + " set_val_cmd = \"AP.{}={}\".format(attribute, val)\n", + " exec(set_val_cmd)\n", + " wav = AP.load_wav(file)\n", + " spec = AP.spectrogram(wav)\n", + " spec_norm = AP.denormalize(spec.T)\n", + " plt.subplot(len(values), 2, 2*idx + 1)\n", + " plt.imshow(spec_norm.T, aspect=\"auto\", origin=\"lower\")\n", + " # plt.colorbar()\n", + " plt.tight_layout()\n", + " wav_gen = AP.inv_spectrogram(spec)\n", + " wavs.append(wav_gen)\n", + " plt.subplot(len(values), 2, 2*idx + 2)\n", + " display.waveshow(wav, alpha=0.5)\n", + " display.waveshow(wav_gen, alpha=0.25)\n", + " plt.title(\"{}={}\".format(attribute, val))\n", + " plt.tight_layout()\n", + " \n", + " wav = AP.load_wav(file)\n", + " print(\" > Ground-truth\")\n", + " IPython.display.display(IPython.display.Audio(wav, rate=AP.sample_rate))\n", + " \n", + " for idx, wav_gen in enumerate(wavs):\n", + " val = values[idx]\n", + " print(\" > {} = {}\".format(attribute, val))\n", + " IPython.display.display(IPython.display.Audio(wav_gen, rate=AP.sample_rate))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "Collapsed": "false" + }, + "outputs": [], + "source": [ + "compare_values(\"preemphasis\", [0, 0.5, 0.97, 0.98, 0.99])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "Collapsed": "false" + }, + "outputs": [], + "source": [ + "compare_values(\"ref_level_db\", [2, 5, 10, 15, 20, 25, 30, 35, 40])" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "27648abe09795c3a768a281b31f7524fcf66a207e733f8ecda3a4e1fd1059fb0" + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.5" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/TTS/notebooks/dataset_analysis/PhonemeCoverage.ipynb b/TTS/notebooks/dataset_analysis/PhonemeCoverage.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..a2268317fbdefad63e69a839edfa2cb0c5d9960c --- /dev/null +++ b/TTS/notebooks/dataset_analysis/PhonemeCoverage.ipynb @@ -0,0 +1,256 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "Collapsed": "false" + }, + "source": [ + "# Jupyter Notbook for phoneme coverage analysis\n", + "\n", + "This jupyter notebook checks dataset configured in config.json for phoneme coverage.\n", + "As mentioned here https://github.com/mozilla/TTS/wiki/Dataset#what-makes-a-good-dataset a good phoneme coverage is recommended.\n", + "\n", + "Most parameters will be taken from config.json file in mozilla tts repo so please ensure it's configured correctly for your dataset.\n", + "This notebook used lots of existring code from the TTS repo to ensure future compatibility.\n", + "\n", + "Many thanks to Neil Stoker supporting me on this topic :-).\n", + "\n", + "I provide this notebook without any warrenty but it's hopefully useful for your dataset analysis.\n", + "\n", + "Happy TTS'ing :-)\n", + "\n", + "Thorsten Mรผller\n", + "\n", + "* https://github.com/thorstenMueller/deep-learning-german-tts\n", + "* https://discourse.mozilla.org/t/contributing-my-german-voice-for-tts/" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "Collapsed": "false" + }, + "outputs": [], + "source": [ + "# set some vars\n", + "# TTS_PATH = \"/home/thorsten/___dev/tts/mozilla/TTS\"\n", + "CONFIG_FILE = \"/path/to/config/config.json\"\n", + "CHARS_TO_REMOVE = \".,:!?'\"\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "Collapsed": "false" + }, + "outputs": [], + "source": [ + "# import stuff\n", + "from TTS.config import load_config\n", + "from TTS.tts.datasets import load_tts_samples\n", + "from TTS.tts.utils.text.tokenizer import TTSTokenizer\n", + "from tqdm import tqdm\n", + "from matplotlib import pylab as plt\n", + "from multiprocessing import Pool, cpu_count\n", + "\n", + "# extra imports that might not be included in requirements.txt\n", + "import collections\n", + "import operator\n", + "\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "Collapsed": "false", + "tags": [] + }, + "outputs": [], + "source": [ + "# Load config.json properties\n", + "CONFIG = load_config(CONFIG_FILE)\n", + "\n", + "# Load some properties from config.json\n", + "CONFIG_METADATA = load_tts_samples(CONFIG.datasets)[0]\n", + "CONFIG_METADATA = CONFIG_METADATA\n", + "CONFIG_DATASET = CONFIG.datasets[0]\n", + "CONFIG_PHONEME_LANGUAGE = CONFIG.phoneme_language\n", + "CONFIG_TEXT_CLEANER = CONFIG.text_cleaner\n", + "CONFIG_ENABLE_EOS_BOS_CHARS = CONFIG.enable_eos_bos_chars\n", + "\n", + "# Will be printed on generated output graph\n", + "CONFIG_RUN_NAME = CONFIG.run_name\n", + "CONFIG_RUN_DESC = CONFIG.run_description\n", + "\n", + "# Needed to convert text to phonemes and phonemes to ids\n", + "tokenizer, config = TTSTokenizer.init_from_config(CONFIG)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "Collapsed": "false", + "tags": [] + }, + "outputs": [], + "source": [ + "# print some debug information on loaded config values\n", + "print(\" > Run name: \" + CONFIG_RUN_NAME + \" (\" + CONFIG_RUN_DESC + \")\")\n", + "print(\" > Dataset files: \" + str(len(CONFIG_METADATA)))\n", + "print(\" > Phoneme language: \" + CONFIG_PHONEME_LANGUAGE)\n", + "print(\" > Used text cleaner: \" + CONFIG_TEXT_CLEANER)\n", + "print(\" > Enable eos bos chars: \" + str(CONFIG_ENABLE_EOS_BOS_CHARS))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def get_phoneme_from_sequence(text):\n", + " temp_list = []\n", + " if len(text[\"text\"]) > 0:\n", + " #temp_text = text[0].rstrip('\\n')\n", + " temp_text = text[\"text\"].rstrip('\\n')\n", + " for rm_bad_chars in CHARS_TO_REMOVE:\n", + " temp_text = temp_text.replace(rm_bad_chars,\"\")\n", + " seq = tokenizer.text_to_ids(temp_text)\n", + " text = tokenizer.ids_to_text(seq)\n", + " text = text.replace(\" \",\"\")\n", + " temp_list.append(text)\n", + " return temp_list" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "Collapsed": "false", + "tags": [] + }, + "outputs": [], + "source": [ + "# Get phonemes from metadata\n", + "phonemes = []\n", + "\n", + "with Pool(cpu_count()-1) as p:\n", + " \n", + " phonemes = list(tqdm(p.imap(get_phoneme_from_sequence, CONFIG_METADATA), total=len(CONFIG_METADATA)))\n", + " phonemes = [i for sub in phonemes for i in sub]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "Collapsed": "false", + "tags": [] + }, + "outputs": [], + "source": [ + "s = \"\"\n", + "phonemeString = s.join(phonemes)\n", + "\n", + "d = {}\n", + "collections._count_elements(d, phonemeString)\n", + "sorted_d = dict(sorted(d.items(), key=operator.itemgetter(1),reverse=True))\n", + "\n", + "# remove useless keys\n", + "sorted_d.pop(' ', None)\n", + "sorted_d.pop('หˆ', None)\n", + "\n", + "phonemesSum = len(phonemeString.replace(\" \",\"\"))\n", + "\n", + "print(\"Dataset contains \" + str(len(sorted_d)) + \" different ipa phonemes.\")\n", + "print(\"Dataset consists of \" + str(phonemesSum) + \" phonemes\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "Collapsed": "false", + "tags": [] + }, + "outputs": [], + "source": [ + "print(\"5 rarest phonemes\")\n", + "\n", + "rareList = dict(sorted(sorted_d.items(), key=operator.itemgetter(1), reverse=False)[:5])\n", + "for key, value in rareList.items():\n", + " print(key + \" --> \" + str(value) + \" occurrences\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "Collapsed": "false" + }, + "outputs": [], + "source": [ + "# create plot from analysis result\n", + "\n", + "x = []\n", + "y = []\n", + "\n", + "for key, value in sorted_d.items():\n", + " x.append(key)\n", + " y.append(value)\n", + "\n", + "plt.figure(figsize=(50,50))\n", + "plt.title(\"Phoneme coverage for \" + CONFIG_RUN_NAME + \" (\" + CONFIG_RUN_DESC + \")\", fontsize=50)\n", + "plt.xticks(fontsize=50)\n", + "plt.yticks(fontsize=50)\n", + "plt.barh(x,y, align='center', alpha=1.0)\n", + "plt.gca().invert_yaxis()\n", + "plt.ylabel('phoneme', fontsize=50)\n", + "plt.xlabel('occurrences', fontsize=50)\n", + "\n", + "for i, v in enumerate(y):\n", + " plt.text(v + 2, i - .2, str(v), fontsize=20)\n", + " plt.text(v + 2, i + .2, \"(\" + str(round(100/phonemesSum * v,2)) + \"%)\", fontsize=20)\n", + " \n", + " \n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "Collapsed": "false" + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.12" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/TTS/notebooks/dataset_analysis/README.md b/TTS/notebooks/dataset_analysis/README.md new file mode 100644 index 0000000000000000000000000000000000000000..79faf5215951c996e7b15cc960a93195fd9034a8 --- /dev/null +++ b/TTS/notebooks/dataset_analysis/README.md @@ -0,0 +1,7 @@ +## Simple Notebook to Analyze a Dataset + +By the use of this notebook, you can easily analyze a brand new dataset, find exceptional cases and define your training set. + +What we are looking in here is reasonable distribution of instances in terms of sequence-length, audio-length and word-coverage. + +This notebook is inspired from https://github.com/MycroftAI/mimic2 diff --git a/TTS/notebooks/dataset_analysis/analyze.py b/TTS/notebooks/dataset_analysis/analyze.py new file mode 100644 index 0000000000000000000000000000000000000000..d34ce4c1b6a16c2acea81aa14451307cb4f0f0d0 --- /dev/null +++ b/TTS/notebooks/dataset_analysis/analyze.py @@ -0,0 +1,210 @@ +# visualisation tools for mimic2 +import argparse +import csv +import os +import random +from statistics import StatisticsError, mean, median, mode, stdev + +import matplotlib.pyplot as plt +import seaborn as sns +from text.cmudict import CMUDict + + +def get_audio_seconds(frames): + return (frames * 12.5) / 1000 + + +def append_data_statistics(meta_data): + # get data statistics + for char_cnt in meta_data: + data = meta_data[char_cnt]["data"] + audio_len_list = [d["audio_len"] for d in data] + mean_audio_len = mean(audio_len_list) + try: + mode_audio_list = [round(d["audio_len"], 2) for d in data] + mode_audio_len = mode(mode_audio_list) + except StatisticsError: + mode_audio_len = audio_len_list[0] + median_audio_len = median(audio_len_list) + + try: + std = stdev(d["audio_len"] for d in data) + except StatisticsError: + std = 0 + + meta_data[char_cnt]["mean"] = mean_audio_len + meta_data[char_cnt]["median"] = median_audio_len + meta_data[char_cnt]["mode"] = mode_audio_len + meta_data[char_cnt]["std"] = std + return meta_data + + +def process_meta_data(path): + meta_data = {} + + # load meta data + with open(path, "r", encoding="utf-8") as f: + data = csv.reader(f, delimiter="|") + for row in data: + frames = int(row[2]) + utt = row[3] + audio_len = get_audio_seconds(frames) + char_count = len(utt) + if not meta_data.get(char_count): + meta_data[char_count] = {"data": []} + + meta_data[char_count]["data"].append( + { + "utt": utt, + "frames": frames, + "audio_len": audio_len, + "row": "{}|{}|{}|{}".format(row[0], row[1], row[2], row[3]), + } + ) + + meta_data = append_data_statistics(meta_data) + + return meta_data + + +def get_data_points(meta_data): + x = meta_data + y_avg = [meta_data[d]["mean"] for d in meta_data] + y_mode = [meta_data[d]["mode"] for d in meta_data] + y_median = [meta_data[d]["median"] for d in meta_data] + y_std = [meta_data[d]["std"] for d in meta_data] + y_num_samples = [len(meta_data[d]["data"]) for d in meta_data] + return { + "x": x, + "y_avg": y_avg, + "y_mode": y_mode, + "y_median": y_median, + "y_std": y_std, + "y_num_samples": y_num_samples, + } + + +def save_training(file_path, meta_data): + rows = [] + for char_cnt in meta_data: + data = meta_data[char_cnt]["data"] + for d in data: + rows.append(d["row"] + "\n") + + random.shuffle(rows) + with open(file_path, "w+", encoding="utf-8") as f: + for row in rows: + f.write(row) + + +def plot(meta_data, save_path=None): + save = False + if save_path: + save = True + + graph_data = get_data_points(meta_data) + x = graph_data["x"] + y_avg = graph_data["y_avg"] + y_std = graph_data["y_std"] + y_mode = graph_data["y_mode"] + y_median = graph_data["y_median"] + y_num_samples = graph_data["y_num_samples"] + + plt.figure() + plt.plot(x, y_avg, "ro") + plt.xlabel("character lengths", fontsize=30) + plt.ylabel("avg seconds", fontsize=30) + if save: + name = "char_len_vs_avg_secs" + plt.savefig(os.path.join(save_path, name)) + + plt.figure() + plt.plot(x, y_mode, "ro") + plt.xlabel("character lengths", fontsize=30) + plt.ylabel("mode seconds", fontsize=30) + if save: + name = "char_len_vs_mode_secs" + plt.savefig(os.path.join(save_path, name)) + + plt.figure() + plt.plot(x, y_median, "ro") + plt.xlabel("character lengths", fontsize=30) + plt.ylabel("median seconds", fontsize=30) + if save: + name = "char_len_vs_med_secs" + plt.savefig(os.path.join(save_path, name)) + + plt.figure() + plt.plot(x, y_std, "ro") + plt.xlabel("character lengths", fontsize=30) + plt.ylabel("standard deviation", fontsize=30) + if save: + name = "char_len_vs_std" + plt.savefig(os.path.join(save_path, name)) + + plt.figure() + plt.plot(x, y_num_samples, "ro") + plt.xlabel("character lengths", fontsize=30) + plt.ylabel("number of samples", fontsize=30) + if save: + name = "char_len_vs_num_samples" + plt.savefig(os.path.join(save_path, name)) + + +def plot_phonemes(train_path, cmu_dict_path, save_path): + cmudict = CMUDict(cmu_dict_path) + + phonemes = {} + + with open(train_path, "r", encoding="utf-8") as f: + data = csv.reader(f, delimiter="|") + phonemes["None"] = 0 + for row in data: + words = row[3].split() + for word in words: + pho = cmudict.lookup(word) + if pho: + indie = pho[0].split() + for nemes in indie: + if phonemes.get(nemes): + phonemes[nemes] += 1 + else: + phonemes[nemes] = 1 + else: + phonemes["None"] += 1 + + x, y = [], [] + for k, v in phonemes.items(): + x.append(k) + y.append(v) + + plt.figure() + plt.rcParams["figure.figsize"] = (50, 20) + barplot = sns.barplot(x=x, y=y) + if save_path: + fig = barplot.get_figure() + fig.savefig(os.path.join(save_path, "phoneme_dist")) + + +def main(): + parser = argparse.ArgumentParser() + parser.add_argument( + "--train_file_path", + required=True, + help="this is the path to the train.txt file that the preprocess.py script creates", + ) + parser.add_argument("--save_to", help="path to save charts of data to") + parser.add_argument("--cmu_dict_path", help="give cmudict-0.7b to see phoneme distribution") + args = parser.parse_args() + meta_data = process_meta_data(args.train_file_path) + plt.rcParams["figure.figsize"] = (10, 5) + plot(meta_data, save_path=args.save_to) + if args.cmu_dict_path: + plt.rcParams["figure.figsize"] = (30, 10) + plot_phonemes(args.train_file_path, args.cmu_dict_path, args.save_to) + + plt.show() + + +if __name__ == "__main__": + main() diff --git a/TTS/pyproject.toml b/TTS/pyproject.toml new file mode 100644 index 0000000000000000000000000000000000000000..922575305c37ff8c3f56391ee9fa44d902a8f0ab --- /dev/null +++ b/TTS/pyproject.toml @@ -0,0 +1,20 @@ +[build-system] +requires = [ + "setuptools", + "wheel", + "cython~=0.29.30", + "numpy>=1.22.0", + "packaging", +] + +[flake8] +max-line-length=120 + +[tool.black] +line-length = 120 +target-version = ['py39'] + +[tool.isort] +line_length = 120 +profile = "black" +multi_line_output = 3 diff --git a/TTS/recipes/README.md b/TTS/recipes/README.md new file mode 100644 index 0000000000000000000000000000000000000000..21a6727d8bffb9a16c9b053aaae1aab25c1805fa --- /dev/null +++ b/TTS/recipes/README.md @@ -0,0 +1,22 @@ +# ๐Ÿธ๐Ÿ’ฌ TTS Training Recipes + +TTS recipes intended to host scripts running all the necessary steps to train a TTS model on a particular dataset. + +For each dataset, you need to download the dataset once. Then you run the training for the model you want. + +Run each script from the root TTS folder as follows. + +```console +$ sh ./recipes//download_.sh +$ python recipes///train.py +``` + +For some datasets you might need to resample the audio files. For example, VCTK dataset can be resampled to 22050Hz as follows. + +```console +python TTS/bin/resample.py --input_dir recipes/vctk/VCTK/wav48_silence_trimmed --output_sr 22050 --output_dir recipes/vctk/VCTK/wav48_silence_trimmed --n_jobs 8 --file_ext flac +``` + +If you train a new model using TTS, feel free to share your training to expand the list of recipes. + +You can also open a new discussion and share your progress with the ๐Ÿธ community. \ No newline at end of file diff --git a/TTS/recipes/bel-alex73/.gitignore b/TTS/recipes/bel-alex73/.gitignore new file mode 100644 index 0000000000000000000000000000000000000000..87a23ae8374ac1d323545ef1b2d7b266e83aea4e --- /dev/null +++ b/TTS/recipes/bel-alex73/.gitignore @@ -0,0 +1 @@ +/docker-prepare/*.txt diff --git a/TTS/recipes/bel-alex73/README.md b/TTS/recipes/bel-alex73/README.md new file mode 100644 index 0000000000000000000000000000000000000000..ad378dd9984b3fa94e1be7a0c479f9e51d88e1a6 --- /dev/null +++ b/TTS/recipes/bel-alex73/README.md @@ -0,0 +1,62 @@ +This description was created based on [jhlfrfufyfn/ml-bel-tts](https://github.com/jhlfrfufyfn/ml-bel-tts). Thanks a lot to jhlfrfufyfn for advices, configuration, code and ideas. + +# Training + +This recipe uses [CommonVoice](https://commonvoice.mozilla.org/en/datasets) dataset. It has format mp3/32kHz/48kbps format and contains multiple speakers because it was created for voice recognition. Looks like it's the best voice corpus of Belarussian language for today. But for creating better voice synthesis it will require to record some specific corpus with good pronunciation and good record quality. + +Looks like for Belarusian Common Voice corpus there is no sense to train full big dataset (90 hours). It's enough 30 hours dataset, that makes very good progress for 350 epochs(24000 steps on 24GiB GPU). The quality of dataset is more important that size. + +To train a model, you need to: +- download code and data +- prepare training data and generate scale_stats file +- change configuration settings +- train TTS model (GlowTTS in this example) +- train Vocoder model (HiFiGAN in this example) + +We recommend to prepare all things locally, then train models on the external computer with fast GPU. Text below describes all these steps. + +## Download code and data + +It would be good to place all things into local folder like /mycomputer/. You need files: + +- Coqui-TTS - code from this git. For example, to /mycomputer/TTS/. *Expected result: you have /mycomputer/TTS/setup.py and other files from git.* +- [Common voice dataset](https://commonvoice.mozilla.org/en/datasets) into cv-corpus/ directory near Coqui-TTS. *Expected result: you have /mycomputer/cv-corpus/be/validated.tsv and more than 1 mln .mp3 files in the /mycomputer/cv-corpus/be/clips/.* +- Belarusian text to phonemes converter - fanetyka.jar from the [https://github.com/alex73/Software-Korpus/releases](https://github.com/alex73/Software-Korpus/releases), then place it to fanetyka/ near Coqui-TTS. *Expected result: you have file /mycomputer/fanetyka/fanetyka.jar* + +Prepared data will be stored into storage/ directory near Coqui-TTS, like /mycomputer/storage/. + +## Prepare to training - locally + +Docker container was created for simplify local running. You can run `docker-prepare-start.sh` to start environment. All commands below should be started in docker console. + +* Start jupyter by the command `jupyter notebook --no-browser --allow-root --port=2525 --ip=0.0.0.0`. It will display link to http. You need to open this link, then choose `recipes/bel-alex73/choose_speaker.ipynb` notebook. You should run cells one-by-one, listen different speakers and select speaker that you want to use. After all commands in notebook, you can press Ctrl+C in docker console to stop jupyter. *Expected result: directory /mycomputer/storage/filtered_dataset/ with df_speaker.csv file and many *.wav files.* + +* Convert text to phonemes: `java -cp /a/fanetyka/fanetyka.jar org.alex73.fanetyka.impl.FanetykaTTSPrepare /storage/filtered_dataset/df_speaker.csv /storage/filtered_dataset/ipa_final_dataset.csv`. It will display all used characters at the end. You can use these characters to modify config in train_glowtts.py. *Expected result: file /mycomputer/storage/filtered_dataset/ipa_final_dataset.csv* + +* Modify configs(if you need) in the train_glowtts.py and train_hifigan.py. Then export config to old json format to create scale_stats.npy by the command `python3 recipes/bel-alex73/dump_config.py > recipes/bel-alex73/config.json`. *Expected result: file /mycomputer/TTS/recipes/bel-alex73/config.json exists.* + +* Start scale_stats.npy, that will the model to learn better: `mkdir -p /storage/TTS/; python3 TTS/bin/compute_statistics.py --config_path recipes/bel-alex73/config.json --out_path /storage/TTS/scale_stats.npy`. *Expected result: file /mycomputer/storage/TTS/scale_stats.npy exists.* + +## Training - with GPU + +You need to upload Coqui-TTS(/mycomputer/TTS/) and storage/ directory(/mycomputer/storage/) to some computer with GPU. We don't need cv-corpus/ and fanetyka/ directories for training. Install gcc, then run `pip install -e .[all,dev,notebooks]` to prepare modules. GlowTTS and HifiGan models should be learned separately based on /storage/filtered_dataset only, i.e. they are not dependent from each other. below means list of GPU ids from zero("0,1,2,3" for systems with 4 GPU). See details on the https://tts.readthedocs.io/en/latest/tutorial_for_nervous_beginners.html(multi-gpu training). + +Current setup created for 24GiB GPU. You need to change batch_size if you have more or less GPU memory. Also, you can try to set lr(learning rate) to lower value in the end of training GlowTTS. + +* Start GlowTTS model training by the command `OMP_NUM_THREADS=2 CUDA_VISIBLE_DEVICES= python3 -m trainer.distribute --script recipes/bel-alex73/train_glowtts.py`. It will produce training data into storage/output/ directory. Usually 100.000 global steps required. *Expected behavior: You will see /storage/output-glowtts//best_model_.pth files.* + +* Start HiFiGAN model training by the command `OMP_NUM_THREADS=2 CUDA_VISIBLE_DEVICES= python3 -m trainer.distribute --script recipes/bel-alex73/train_hifigan.py`. *Expected behavior: You will see /storage/output-hifigan//best_model_.pth files.* + +## How to monitor training + +* Run `nvidia-smi` to be sure that training uses all GPUs and to be sure that you are using more than 90% GPU memory and utilization. + +* Run `tensorboard --logdir=/storage/output-/` to see alignment, avg_loss metrics and check audio evaluation. You need only events.out.tfevents.\* files for that. + +## Synthesizing speech + + tts --text "" --out_path output.wav \ + --config_path /storage/output-glowtts/run/config.json \ + --model_path /storage/output-glowtts/run/best_model.pth \ + --vocoder_config_path /storage/output-hifigan/run/config.json \ + --vocoder_path /storage/output-hifigan/run/best_model.pth diff --git a/TTS/recipes/bel-alex73/choose_speaker.ipynb b/TTS/recipes/bel-alex73/choose_speaker.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..4941f6020775b988fe4f588ddc1976654d0f6c7a --- /dev/null +++ b/TTS/recipes/bel-alex73/choose_speaker.ipynb @@ -0,0 +1,346 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# This file was created by jhlfrfufyfn for choose speaker from the Belarusian Mozilla Voice corpus\n", + "#\n", + "#\n", + "import pandas as pd\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "import os\n", + "import librosa" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# unpackage tar gz file cv-corpus-12.0-2022-12-07-be.tar.gz\n", + "# import tarfile\n", + "# tar = tarfile.open(\"cv-corpus-12.0-2022-12-07-be.tar.gz\", \"r:gz\")\n", + "# tar.extractall()\n", + "# tar.close()\n", + "\n", + "corpuspath = '/a/cv-corpus'\n", + "outputpath = '/storage/filtered_dataset'" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# open validated.tsv\n", + "df = pd.read_csv(corpuspath+'/be/validated.tsv', sep='\\t' ,low_memory=False)\n", + "df" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# drop from df columns age, accents\n", + "df = df.drop(['age', 'accents', 'gender', 'variant', 'locale', 'segment'], axis=1)\n", + "df" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# count number of recordes with down_votes > 0\n", + "df[df['down_votes'] > 0].count()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# count number of recordes with up_votes == 0\n", + "df[df['up_votes'] == 0].count()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# drop all rows with down_votes > 0 and up_votes == 0\n", + "df = df[df['down_votes'] == 0]\n", + "df = df[df['up_votes'] > 0]\n", + "df" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# drop column down_votes and up_votes\n", + "df = df.drop(['down_votes', 'up_votes'], axis=1)\n", + "df" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# sort by count\n", + "df_sorted = df.groupby('client_id').count().sort_values(by='path', ascending=False)\n", + "df_sorted" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# get top 10 speakers\n", + "top_10_speakers = df_sorted.head(10)\n", + "top_10_speakers" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# get for the first speaker ten random paths to audio files\n", + "def get_speaker_audio_list(speaker_id, n=10):\n", + " return df[df['client_id'] == speaker_id].sample(n)['path'].values.tolist()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# CHOOSE : which speaker will we use\n", + "speaker_index = 0\n", + "speaker_audio_list = get_speaker_audio_list(top_10_speakers.index[speaker_index])\n", + "print(speaker_audio_list)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# open audio files from speaker_audio_list and play them\n", + "# audio files lie in cv-corpus-12.0-2022-12-07/be/clips\n", + "import IPython.display as ipd\n", + "for audio in speaker_audio_list:\n", + " audio = corpuspath+'/be/clips/' + audio\n", + " audio_data = ipd.Audio(audio)\n", + " display(audio_data)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# 0 is pretty good\n", + "# 1 is bad\n", + "# 2 is partly 0, other are different\n", + "# 3 is bad\n", + "# 4 is pretty fast and clear, but not good\n", + "# 5 is echoing, sometimes mic cracks\n", + "# 6 is really slow and clear, but accent?\n", + "# 7 has a lot of intonation, but is pretty clear\n", + "# 8 is clear and slow, sometimes little mic crack\n", + "# 9 has background noise, whispering\n", + "\n", + "# options: 0, 6, 8" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# calculate speech rate in words per minute for each speaker\n", + "def get_speech_rate(speaker_id):\n", + " df_speaker = df[df['client_id'] == speaker_id]\n", + " # get 1000 random samples to calculate speech rate\n", + " df_speaker = df_speaker.sample(1000)\n", + " # get duration of each audio file\n", + " df_speaker['duration'] = df_speaker['path'].apply(lambda x: librosa.get_duration(path=corpuspath+'/be/clips/' + x))\n", + " # get number of words in each audio file\n", + " df_speaker['words'] = df_speaker['sentence'].apply(lambda x: len(x.split()))\n", + " # calculate speech rate\n", + " df_speaker['speech_rate'] = df_speaker['words'] / df_speaker['duration'] * 60\n", + " # return mean speech rate\n", + " return df_speaker['speech_rate'].mean()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# calculate speech rate for each speaker\n", + "print(f'Speech rate for speaker {speaker_index}: ', get_speech_rate(top_10_speakers.index[speaker_index]))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def get_average_duration(df_speaker):\n", + " # get 1000 random samples to calculate speech rate\n", + " df_speaker = df_speaker.sample(1000)\n", + " # get duration of each audio file\n", + " df_speaker['duration'] = df_speaker['path'].apply(lambda x: librosa.get_duration(path=corpuspath+'/be/clips/' + x))\n", + " return df_speaker['duration'].mean()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df_speaker = df[df['client_id'] == top_10_speakers.index[speaker_index]]\n", + "\n", + "avg_duration = get_average_duration(df_speaker)\n", + "avg_total_duration = avg_duration * len(df_speaker.index)\n", + "print(f'Average duration for speaker {speaker_index}: ', avg_duration, \", average total duration(hours): \",(avg_total_duration/60.0/60.0))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# get df with speaker_index speaker \n", + "df_speaker = df[df['client_id'] == top_10_speakers.index[speaker_index]]\n", + "df_speaker = df_speaker.drop(['client_id'], axis=1)\n", + "\n", + "# get only x latest hours\n", + "limit_hours = 30\n", + "limit_files = round(limit_hours*60*60 / avg_duration)\n", + "df_speaker = df_speaker.tail(limit_files)\n", + "\n", + "df_speaker" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# # move all files of that speaker to another folder\n", + "# # use multiprocessing to speed up\n", + "# # add progress bar\n", + "# from tqdm import tqdm\n", + "# import multiprocessing\n", + "# from multiprocessing import Pool\n", + "# import shutil\n", + "\n", + "# def move_file(file):\n", + "# shutil.move(corpuspath+'/be/clips/' + file, corpuspath+'/be/speaker_0/' + file)\n", + "\n", + "# # get list of files to move\n", + "# files = df_speaker['path'].values.tolist()\n", + "\n", + "# # move files\n", + "# with Pool(multiprocessing.cpu_count()) as p:\n", + "# r = list(tqdm(p.imap(move_file, files), total=len(files)))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# cleanup output and save text lines to csv\n", + "if os.path.isdir(outputpath):\n", + " for file in os.scandir(outputpath):\n", + " os.remove(file.path)\n", + "else:\n", + " os.mkdir(outputpath)\n", + "\n", + "df_speaker['path2'] = df_speaker['path'].str.replace('\\.mp3$','.wav', regex=True)\n", + "df_speaker[['path2','sentence']].to_csv(outputpath+'/df_speaker.csv', sep='|', header=False, index=False)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# make rate=22050 of all mp3 files in speaker_0 folder with multiprocessing and tqdm\n", + "import multiprocessing\n", + "from multiprocessing import Pool\n", + "from tqdm import tqdm\n", + "from pydub import AudioSegment\n", + "\n", + "def convert_mp3_to_wav(file):\n", + " sound = AudioSegment.from_mp3(corpuspath+'/be/clips/' + file)\n", + " sound = sound.set_frame_rate(22050)\n", + " sound.export(outputpath+'/' + file[:-4] + '.wav', format='wav')\n", + "\n", + "# get list of files to convert\n", + "files = df_speaker['path'].values.tolist()\n", + "\n", + "# convert files\n", + "with Pool(multiprocessing.cpu_count()) as p:\n", + " r = list(tqdm(p.imap(convert_mp3_to_wav, files), total=len(files)))" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.6" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/TTS/recipes/bel-alex73/docker-prepare-start.sh b/TTS/recipes/bel-alex73/docker-prepare-start.sh new file mode 100644 index 0000000000000000000000000000000000000000..a4ce3c6dcca3abced93bd6c80d863061d8d86486 --- /dev/null +++ b/TTS/recipes/bel-alex73/docker-prepare-start.sh @@ -0,0 +1,19 @@ +#!/bin/bash +set -x + +cd $( dirname -- "$0"; ) + +cp ../../requirements*.txt docker-prepare/ + +docker build -t tts-learn -f docker-prepare/Dockerfile docker-prepare/ + +mkdir -p ../../../storage +docker run --rm -it \ + -p 2525:2525 \ + --shm-size=256M \ + --name tts-learn-run \ + -v $(pwd)/../../:/a/TTS \ + -v $(pwd)/../../../cv-corpus:/a/cv-corpus \ + -v $(pwd)/../../../fanetyka/:/a/fanetyka/ \ + -v $(pwd)/../../../storage:/storage \ + tts-learn diff --git a/TTS/recipes/bel-alex73/docker-prepare/Dockerfile b/TTS/recipes/bel-alex73/docker-prepare/Dockerfile new file mode 100644 index 0000000000000000000000000000000000000000..fd9b745386da8319ddb9ed2cbb7d3db720e12bb9 --- /dev/null +++ b/TTS/recipes/bel-alex73/docker-prepare/Dockerfile @@ -0,0 +1,18 @@ +FROM ubuntu:22.04 + +RUN apt -y update +RUN apt -y upgrade +RUN apt -y install --no-install-recommends pip ffmpeg openjdk-19-jre-headless + +RUN mkdir /a/ +ADD requirements*.txt /a/ +WORKDIR /a/ +RUN pip install -r requirements.txt -r requirements.dev.txt -r requirements.notebooks.txt +RUN pip install seaborn pydub notebook + +RUN apt -y install --no-install-recommends gcc libpython3.10-dev + +ADD runtime.sh /a/ + +WORKDIR /a/TTS/ +CMD /a/runtime.sh diff --git a/TTS/recipes/bel-alex73/docker-prepare/runtime.sh b/TTS/recipes/bel-alex73/docker-prepare/runtime.sh new file mode 100644 index 0000000000000000000000000000000000000000..27b723bc0fe56388674d33e2c8839b7fda68c776 --- /dev/null +++ b/TTS/recipes/bel-alex73/docker-prepare/runtime.sh @@ -0,0 +1,6 @@ +#!/bin/bash + +cd /a/TTS +pip install -e .[all,dev,notebooks] + +LANG=C.utf8 bash diff --git a/TTS/recipes/bel-alex73/dump_config.py b/TTS/recipes/bel-alex73/dump_config.py new file mode 100644 index 0000000000000000000000000000000000000000..c4d307231cbdd36c88ecae29009bab7c48bc1d7e --- /dev/null +++ b/TTS/recipes/bel-alex73/dump_config.py @@ -0,0 +1,8 @@ +import json +import re + +from train_glowtts import config + +s = json.dumps(config, default=vars, indent=2) +s = re.sub(r'"test_sentences":\s*\[\],', "", s) +print(s) diff --git a/TTS/recipes/bel-alex73/train_glowtts.py b/TTS/recipes/bel-alex73/train_glowtts.py new file mode 100644 index 0000000000000000000000000000000000000000..74866be7ebcfe43fa8f837fba84adc27f7380b08 --- /dev/null +++ b/TTS/recipes/bel-alex73/train_glowtts.py @@ -0,0 +1,113 @@ +import os + +# Trainer: Where the โœจ๏ธ happens. +# TrainingArgs: Defines the set of arguments of the Trainer. +from trainer import Trainer, TrainerArgs + +# GlowTTSConfig: all model related values for training, validating and testing. +from TTS.tts.configs.glow_tts_config import GlowTTSConfig + +# BaseDatasetConfig: defines name, formatter and path of the dataset. +from TTS.tts.configs.shared_configs import BaseAudioConfig, BaseDatasetConfig, CharactersConfig +from TTS.tts.datasets import load_tts_samples +from TTS.tts.models.glow_tts import GlowTTS +from TTS.tts.utils.text.tokenizer import TTSTokenizer +from TTS.utils.audio import AudioProcessor + +# we use the same path as this script as our training folder. +output_path = "/storage/output-glowtts/" + + +# DEFINE DATASET CONFIG +# Set LJSpeech as our target dataset and define its path. +# You can also use a simple Dict to define the dataset and pass it to your custom formatter. +dataset_config = BaseDatasetConfig( + formatter="bel_tts_formatter", + meta_file_train="ipa_final_dataset.csv", + path=os.path.join(output_path, "/storage/filtered_dataset/"), +) + +characters = CharactersConfig( + characters_class="TTS.tts.utils.text.characters.Graphemes", + pad="_", + eos="~", + bos="^", + blank="@", + characters="Iabdfgijklmnprstuvxzษ”ษ›ษฃษจษซษฑส‚สสฒหˆหฬฏอกฮฒ", + punctuations="!,.?: -โ€’โ€“โ€”โ€ฆ", +) + +audio_config = BaseAudioConfig( + mel_fmin=50, + mel_fmax=8000, + hop_length=256, + stats_path="/storage/TTS/scale_stats.npy", +) + +# INITIALIZE THE TRAINING CONFIGURATION +# Configure the model. Every config class inherits the BaseTTSConfig. +config = GlowTTSConfig( + batch_size=96, + eval_batch_size=32, + num_loader_workers=8, + num_eval_loader_workers=8, + use_noise_augment=True, + run_eval=True, + test_delay_epochs=-1, + epochs=1000, + print_step=50, + print_eval=True, + output_path=output_path, + add_blank=True, + datasets=[dataset_config], + # characters=characters, + enable_eos_bos_chars=True, + mixed_precision=False, + save_step=10000, + save_n_checkpoints=2, + save_best_after=5000, + text_cleaner="no_cleaners", + audio=audio_config, + test_sentences=[], + use_phonemes=True, + phoneme_language="be", +) + +if __name__ == "__main__": + # INITIALIZE THE AUDIO PROCESSOR + # Audio processor is used for feature extraction and audio I/O. + # It mainly serves to the dataloader and the training loggers. + ap = AudioProcessor.init_from_config(config) + + # INITIALIZE THE TOKENIZER + # Tokenizer is used to convert text to sequences of token IDs. + # If characters are not defined in the config, default characters are passed to the config + tokenizer, config = TTSTokenizer.init_from_config(config) + + # LOAD DATA SAMPLES + # Each sample is a list of ```[text, audio_file_path, speaker_name]``` + # You can define your custom sample loader returning the list of samples. + # Or define your custom formatter and pass it to the `load_tts_samples`. + # Check `TTS.tts.datasets.load_tts_samples` for more details. + train_samples, eval_samples = load_tts_samples( + dataset_config, + eval_split=True, + eval_split_max_size=config.eval_split_max_size, + eval_split_size=config.eval_split_size, + ) + + # INITIALIZE THE MODEL + # Models take a config object and a speaker manager as input + # Config defines the details of the model like the number of layers, the size of the embedding, etc. + # Speaker manager is used by multi-speaker models. + model = GlowTTS(config, ap, tokenizer, speaker_manager=None) + + # INITIALIZE THE TRAINER + # Trainer provides a generic API to train all the ๐ŸธTTS models with all its perks like mixed-precision training, + # distributed training, etc. + trainer = Trainer( + TrainerArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples + ) + + # AND... 3,2,1... ๐Ÿš€ + trainer.fit() diff --git a/TTS/recipes/bel-alex73/train_hifigan.py b/TTS/recipes/bel-alex73/train_hifigan.py new file mode 100644 index 0000000000000000000000000000000000000000..3e740b2ff400ab8f8815d3958bae9d6664c49142 --- /dev/null +++ b/TTS/recipes/bel-alex73/train_hifigan.py @@ -0,0 +1,60 @@ +import os + +from coqpit import Coqpit +from trainer import Trainer, TrainerArgs + +from TTS.tts.configs.shared_configs import BaseAudioConfig +from TTS.utils.audio import AudioProcessor +from TTS.vocoder.configs.hifigan_config import * +from TTS.vocoder.datasets.preprocess import load_wav_data +from TTS.vocoder.models.gan import GAN + +output_path = "/storage/output-hifigan/" + +audio_config = BaseAudioConfig( + mel_fmin=50, + mel_fmax=8000, + hop_length=256, + stats_path="/storage/TTS/scale_stats.npy", +) + +config = HifiganConfig( + batch_size=74, + eval_batch_size=16, + num_loader_workers=8, + num_eval_loader_workers=8, + lr_disc=0.0002, + lr_gen=0.0002, + run_eval=True, + test_delay_epochs=5, + epochs=1000, + use_noise_augment=True, + seq_len=8192, + pad_short=2000, + save_step=5000, + print_step=50, + print_eval=True, + mixed_precision=False, + eval_split_size=30, + save_n_checkpoints=2, + save_best_after=5000, + data_path="/storage/filtered_dataset", + output_path=output_path, + audio=audio_config, +) + +# init audio processor +ap = AudioProcessor.init_from_config(config) + +# load training samples +print("config.eval_split_size = ", config.eval_split_size) +eval_samples, train_samples = load_wav_data(config.data_path, config.eval_split_size) + +# init model +model = GAN(config, ap) + +# init the trainer and ๐Ÿš€ +trainer = Trainer( + TrainerArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples +) +trainer.fit() diff --git a/TTS/recipes/blizzard2013/README.md b/TTS/recipes/blizzard2013/README.md new file mode 100644 index 0000000000000000000000000000000000000000..9dcb73972802686dba80b83e798ab1466f2b26a0 --- /dev/null +++ b/TTS/recipes/blizzard2013/README.md @@ -0,0 +1,12 @@ +# How to get the Blizzard 2013 Dataset + +The Capacitron model is a variational encoder extension of standard Tacotron based models to model prosody. + +To take full advantage of the model, it is advised to train the model with a dataset that contains a significant amount of prosodic information in the utterances. A tested candidate for such applications is the blizzard2013 dataset from the Blizzard Challenge, containing many hours of high quality audio book recordings. + +To get a license and download link for this dataset, you need to visit the [website](https://www.cstr.ed.ac.uk/projects/blizzard/2013/lessac_blizzard2013/license.html) of the Centre for Speech Technology Research of the University of Edinburgh. + +You get access to the raw dataset in a couple of days. There are a few preprocessing steps you need to do to be able to use the high fidelity dataset. + +1. Get the forced time alignments for the blizzard dataset from [here](https://github.com/mueller91/tts_alignments). +2. Segment the high fidelity audio-book files based on the instructions [here](https://github.com/Tomiinek/Blizzard2013_Segmentation). \ No newline at end of file diff --git a/TTS/recipes/blizzard2013/tacotron1-Capacitron/train_capacitron_t1.py b/TTS/recipes/blizzard2013/tacotron1-Capacitron/train_capacitron_t1.py new file mode 100644 index 0000000000000000000000000000000000000000..0243735dde4c1b87434087ddc01ad6b80e53cc27 --- /dev/null +++ b/TTS/recipes/blizzard2013/tacotron1-Capacitron/train_capacitron_t1.py @@ -0,0 +1,99 @@ +import os + +from trainer import Trainer, TrainerArgs + +from TTS.config.shared_configs import BaseAudioConfig +from TTS.tts.configs.shared_configs import BaseDatasetConfig, CapacitronVAEConfig +from TTS.tts.configs.tacotron_config import TacotronConfig +from TTS.tts.datasets import load_tts_samples +from TTS.tts.models.tacotron import Tacotron +from TTS.tts.utils.text.tokenizer import TTSTokenizer +from TTS.utils.audio import AudioProcessor + +output_path = os.path.dirname(os.path.abspath(__file__)) + +data_path = "/srv/data/" + +# Using LJSpeech like dataset processing for the blizzard dataset +dataset_config = BaseDatasetConfig(formatter="ljspeech", meta_file_train="metadata.csv", path=data_path) + +audio_config = BaseAudioConfig( + sample_rate=24000, + do_trim_silence=True, + trim_db=60.0, + signal_norm=True, + mel_fmin=80.0, + mel_fmax=12000, + spec_gain=20.0, + log_func="np.log10", + ref_level_db=20, + preemphasis=0.0, + min_level_db=-100, +) + +# Using the standard Capacitron config +capacitron_config = CapacitronVAEConfig(capacitron_VAE_loss_alpha=1.0) + +config = TacotronConfig( + run_name="Blizzard-Capacitron-T1", + audio=audio_config, + capacitron_vae=capacitron_config, + use_capacitron_vae=True, + batch_size=128, # Tune this to your gpu + max_audio_len=6 * 24000, # Tune this to your gpu + min_audio_len=0.5 * 24000, + eval_batch_size=16, + num_loader_workers=12, + num_eval_loader_workers=8, + precompute_num_workers=24, + run_eval=True, + test_delay_epochs=5, + r=2, + optimizer="CapacitronOptimizer", + optimizer_params={"RAdam": {"betas": [0.9, 0.998], "weight_decay": 1e-6}, "SGD": {"lr": 1e-5, "momentum": 0.9}}, + attention_type="graves", + attention_heads=5, + epochs=1000, + text_cleaner="phoneme_cleaners", + use_phonemes=True, + phoneme_language="en-us", + phonemizer="espeak", + phoneme_cache_path=os.path.join(data_path, "phoneme_cache"), + stopnet_pos_weight=15, + print_step=50, + print_eval=True, + mixed_precision=False, + output_path=output_path, + datasets=[dataset_config], + lr=1e-3, + lr_scheduler="StepwiseGradualLR", + lr_scheduler_params={"gradual_learning_rates": [[0, 1e-3], [2e4, 5e-4], [4e4, 3e-4], [6e4, 1e-4], [8e4, 5e-5]]}, + scheduler_after_epoch=False, # scheduler doesn't work without this flag + loss_masking=False, + decoder_loss_alpha=1.0, + postnet_loss_alpha=1.0, + postnet_diff_spec_alpha=1.0, + decoder_diff_spec_alpha=1.0, + decoder_ssim_alpha=1.0, + postnet_ssim_alpha=1.0, +) + +ap = AudioProcessor(**config.audio.to_dict()) + +tokenizer, config = TTSTokenizer.init_from_config(config) + +train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True) + +model = Tacotron(config, ap, tokenizer, speaker_manager=None) + +trainer = Trainer( + TrainerArgs(), + config, + output_path, + model=model, + train_samples=train_samples, + eval_samples=eval_samples, +) + +# ๐Ÿš€ +trainer.fit() diff --git a/TTS/recipes/blizzard2013/tacotron2-Capacitron/train_capacitron_t2.py b/TTS/recipes/blizzard2013/tacotron2-Capacitron/train_capacitron_t2.py new file mode 100644 index 0000000000000000000000000000000000000000..b41676d8e7dccce6f513118ac2d22adbd892d2f2 --- /dev/null +++ b/TTS/recipes/blizzard2013/tacotron2-Capacitron/train_capacitron_t2.py @@ -0,0 +1,113 @@ +import os + +from trainer import Trainer, TrainerArgs + +from TTS.config.shared_configs import BaseAudioConfig +from TTS.tts.configs.shared_configs import BaseDatasetConfig, CapacitronVAEConfig +from TTS.tts.configs.tacotron2_config import Tacotron2Config +from TTS.tts.datasets import load_tts_samples +from TTS.tts.models.tacotron2 import Tacotron2 +from TTS.tts.utils.text.tokenizer import TTSTokenizer +from TTS.utils.audio import AudioProcessor + +output_path = os.path.dirname(os.path.abspath(__file__)) + +data_path = "/srv/data/blizzard2013/segmented" + +# Using LJSpeech like dataset processing for the blizzard dataset +dataset_config = BaseDatasetConfig( + formatter="ljspeech", + meta_file_train="metadata.csv", + path=data_path, +) + +audio_config = BaseAudioConfig( + sample_rate=24000, + do_trim_silence=True, + trim_db=60.0, + signal_norm=True, + mel_fmin=80.0, + mel_fmax=12000, + spec_gain=25.0, + log_func="np.log10", + ref_level_db=20, + preemphasis=0.0, + min_level_db=-100, +) + +# Using the standard Capacitron config +capacitron_config = CapacitronVAEConfig(capacitron_VAE_loss_alpha=1.0) + +config = Tacotron2Config( + run_name="Blizzard-Capacitron-T2", + audio=audio_config, + capacitron_vae=capacitron_config, + use_capacitron_vae=True, + batch_size=246, # Tune this to your gpu + max_audio_len=6 * 24000, # Tune this to your gpu + min_audio_len=1 * 24000, + eval_batch_size=16, + num_loader_workers=12, + num_eval_loader_workers=8, + precompute_num_workers=24, + run_eval=True, + test_delay_epochs=5, + r=2, + optimizer="CapacitronOptimizer", + optimizer_params={"RAdam": {"betas": [0.9, 0.998], "weight_decay": 1e-6}, "SGD": {"lr": 1e-5, "momentum": 0.9}}, + attention_type="dynamic_convolution", + grad_clip=0.0, # Important! We overwrite the standard grad_clip with capacitron_grad_clip + double_decoder_consistency=False, + epochs=1000, + text_cleaner="phoneme_cleaners", + use_phonemes=True, + phoneme_language="en-us", + phonemizer="espeak", + phoneme_cache_path=os.path.join(data_path, "phoneme_cache"), + stopnet_pos_weight=15, + print_step=25, + print_eval=True, + mixed_precision=False, + output_path=output_path, + datasets=[dataset_config], + lr=1e-3, + lr_scheduler="StepwiseGradualLR", + lr_scheduler_params={ + "gradual_learning_rates": [ + [0, 1e-3], + [2e4, 5e-4], + [4e4, 3e-4], + [6e4, 1e-4], + [8e4, 5e-5], + ] + }, + scheduler_after_epoch=False, # scheduler doesn't work without this flag + seq_len_norm=True, + loss_masking=False, + decoder_loss_alpha=1.0, + postnet_loss_alpha=1.0, + postnet_diff_spec_alpha=1.0, + decoder_diff_spec_alpha=1.0, + decoder_ssim_alpha=1.0, + postnet_ssim_alpha=1.0, +) + +ap = AudioProcessor(**config.audio.to_dict()) + +tokenizer, config = TTSTokenizer.init_from_config(config) + +train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True) + +model = Tacotron2(config, ap, tokenizer, speaker_manager=None) + +trainer = Trainer( + TrainerArgs(), + config, + output_path, + model=model, + train_samples=train_samples, + eval_samples=eval_samples, + training_assets={"audio_processor": ap}, +) + +trainer.fit() diff --git a/TTS/recipes/kokoro/tacotron2-DDC/run.sh b/TTS/recipes/kokoro/tacotron2-DDC/run.sh new file mode 100644 index 0000000000000000000000000000000000000000..69800cf7b4e9b518a352191498ec50e44af86f90 --- /dev/null +++ b/TTS/recipes/kokoro/tacotron2-DDC/run.sh @@ -0,0 +1,23 @@ +#!/bin/bash +# take the scripts's parent's directory to prefix all the output paths. +RUN_DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" &> /dev/null && pwd )" +CORPUS=kokoro-speech-v1_1-small +echo $RUN_DIR +if [ \! -d $RUN_DIR/$CORPUS ] ; then + echo "$RUN_DIR/$CORPUS doesn't exist." + echo "Follow the instruction of https://github.com/kaiidams/Kokoro-Speech-Dataset to make the corpus." + exit 1 +fi +# create train-val splits +shuf $RUN_DIR/$CORPUS/metadata.csv > $RUN_DIR/$CORPUS/metadata_shuf.csv +head -n 8000 $RUN_DIR/$CORPUS/metadata_shuf.csv > $RUN_DIR/$CORPUS/metadata_train.csv +tail -n 812 $RUN_DIR/$CORPUS/metadata_shuf.csv > $RUN_DIR/$CORPUS/metadata_val.csv +# compute dataset mean and variance for normalization +python TTS/bin/compute_statistics.py $RUN_DIR/tacotron2-DDC.json $RUN_DIR/scale_stats.npy --data_path $RUN_DIR/$CORPUS/wavs/ +# training .... +# change the GPU id if needed +CUDA_VISIBLE_DEVICES="0" python TTS/bin/train_tts.py --config_path $RUN_DIR/tacotron2-DDC.json \ + --coqpit.output_path $RUN_DIR \ + --coqpit.datasets.0.path $RUN_DIR/$CORPUS \ + --coqpit.audio.stats_path $RUN_DIR/scale_stats.npy \ + --coqpit.phoneme_cache_path $RUN_DIR/phoneme_cache \ \ No newline at end of file diff --git a/TTS/recipes/kokoro/tacotron2-DDC/tacotron2-DDC.json b/TTS/recipes/kokoro/tacotron2-DDC/tacotron2-DDC.json new file mode 100644 index 0000000000000000000000000000000000000000..c2e526f46c53dc6342bc67b74740a55358c33652 --- /dev/null +++ b/TTS/recipes/kokoro/tacotron2-DDC/tacotron2-DDC.json @@ -0,0 +1,125 @@ +{ + "datasets": [ + { + "formatter": "kokoro", + "path": "DEFINE THIS", + "meta_file_train": "metadata.csv", + "meta_file_val": null + } + ], + "audio": { + "fft_size": 1024, + "win_length": 1024, + "hop_length": 256, + "frame_length_ms": null, + "frame_shift_ms": null, + "sample_rate": 22050, + "preemphasis": 0.0, + "ref_level_db": 20, + "do_trim_silence": true, + "trim_db": 60, + "power": 1.5, + "griffin_lim_iters": 60, + "num_mels": 80, + "mel_fmin": 50.0, + "mel_fmax": 7600.0, + "spec_gain": 1, + "signal_norm": true, + "min_level_db": -100, + "symmetric_norm": true, + "max_norm": 4.0, + "clip_norm": true, + "stats_path": "scale_stats.npy" + }, + "gst":{ + "gst_style_input": null, + + + + "gst_embedding_dim": 512, + "gst_num_heads": 4, + "gst_style_tokens": 10, + "gst_use_speaker_embedding": false + }, + "model": "Tacotron2", + "run_name": "kokoro-ddc", + "run_description": "tacotron2 with DDC and differential spectral loss.", + "batch_size": 32, + "eval_batch_size": 16, + "mixed_precision": true, + "distributed": { + "backend": "nccl", + "url": "tcp:\/\/localhost:54321" + }, + "reinit_layers": [], + "loss_masking": true, + "decoder_loss_alpha": 0.5, + "postnet_loss_alpha": 0.25, + "postnet_diff_spec_alpha": 0.25, + "decoder_diff_spec_alpha": 0.25, + "decoder_ssim_alpha": 0.5, + "postnet_ssim_alpha": 0.25, + "ga_alpha": 5.0, + "stopnet_pos_weight": 15.0, + "run_eval": true, + "test_delay_epochs": 10, + "test_sentences_file": null, + "noam_schedule": false, + "grad_clip": 1.0, + "epochs": 1000, + "lr": 0.0001, + "wd": 0.000001, + "warmup_steps": 4000, + "seq_len_norm": false, + "memory_size": -1, + "prenet_type": "original", + "prenet_dropout": true, + "attention_type": "original", + "windowing": false, + "use_forward_attn": false, + "forward_attn_mask": false, + "transition_agent": false, + "location_attn": true, + "bidirectional_decoder": false, + "double_decoder_consistency": true, + "ddc_r": 7, + "attention_heads": 4, + "attention_norm": "sigmoid", + "r": 7, + "gradual_training": [[0, 7, 64], [1, 5, 64], [50000, 3, 32], [130000, 2, 32], [290000, 1, 32]], + "stopnet": true, + "separate_stopnet": true, + "print_step": 25, + "tb_plot_step": 100, + "print_eval": false, + "save_step": 10000, + "checkpoint": true, + "keep_all_best": false, + "keep_after": 10000, + "tb_model_param_stats": false, + "text_cleaner": "basic_cleaners", + "enable_eos_bos_chars": false, + "num_loader_workers": 4, + "num_val_loader_workers": 4, + "batch_group_size": 4, + "min_seq_len": 6, + "max_seq_len": 153, + "compute_input_seq_cache": false, + "use_noise_augment": true, + "output_path": "DEFINE THIS", + "phoneme_cache_path": "DEFINE THIS", + "use_phonemes": true, + "phoneme_language": "ja-jp", + "characters": { + "pad": "_", + "eos": "~", + "bos": "^", + "characters": "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz!'(),-.:;? ", + "punctuations": "!'(),-.:;? ", + "phonemes": "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" + }, + "use_speaker_embedding": false, + "use_gst": false, + "use_external_speaker_embedding_file": false, + "external_speaker_embedding_file": "../../speakers-vctk-en.json" +} \ No newline at end of file diff --git a/TTS/recipes/ljspeech/README.md b/TTS/recipes/ljspeech/README.md new file mode 100644 index 0000000000000000000000000000000000000000..94508a7f2ecd7d161b16997e415ed4c4935a39f2 --- /dev/null +++ b/TTS/recipes/ljspeech/README.md @@ -0,0 +1,19 @@ +# ๐Ÿธ๐Ÿ’ฌ TTS LJspeech Recipes + +For running the recipes + +1. Download the LJSpeech dataset here either manually from [its official website](https://keithito.com/LJ-Speech-Dataset/) or using ```download_ljspeech.sh```. +2. Go to your desired model folder and run the training. + + Running Python files. (Choose the desired GPU ID for your run and set ```CUDA_VISIBLE_DEVICES```) + ```terminal + CUDA_VISIBLE_DEVICES="0" python train_modelX.py + ``` + + Running bash scripts. + ```terminal + bash run.sh + ``` + +๐Ÿ’ก Note that these runs are just templates to help you start training your first model. They are not optimized for the best +result. Double-check the configurations and feel free to share your experiments to find better parameters together ๐Ÿ’ช. diff --git a/TTS/recipes/ljspeech/align_tts/train_aligntts.py b/TTS/recipes/ljspeech/align_tts/train_aligntts.py new file mode 100644 index 0000000000000000000000000000000000000000..451114add2eb40d4d466be637d862ac8f7eb897d --- /dev/null +++ b/TTS/recipes/ljspeech/align_tts/train_aligntts.py @@ -0,0 +1,70 @@ +import os + +from trainer import Trainer, TrainerArgs + +from TTS.tts.configs.align_tts_config import AlignTTSConfig +from TTS.tts.configs.shared_configs import BaseDatasetConfig +from TTS.tts.datasets import load_tts_samples +from TTS.tts.models.align_tts import AlignTTS +from TTS.tts.utils.text.tokenizer import TTSTokenizer +from TTS.utils.audio import AudioProcessor + +output_path = os.path.dirname(os.path.abspath(__file__)) + +# init configs +dataset_config = BaseDatasetConfig( + formatter="ljspeech", meta_file_train="metadata.csv", path=os.path.join(output_path, "../LJSpeech-1.1/") +) +config = AlignTTSConfig( + batch_size=32, + eval_batch_size=16, + num_loader_workers=4, + num_eval_loader_workers=4, + run_eval=True, + test_delay_epochs=-1, + epochs=1000, + text_cleaner="english_cleaners", + use_phonemes=False, + phoneme_language="en-us", + phoneme_cache_path=os.path.join(output_path, "phoneme_cache"), + print_step=25, + print_eval=True, + mixed_precision=False, + output_path=output_path, + datasets=[dataset_config], +) + +# INITIALIZE THE AUDIO PROCESSOR +# Audio processor is used for feature extraction and audio I/O. +# It mainly serves to the dataloader and the training loggers. +ap = AudioProcessor.init_from_config(config) + +# INITIALIZE THE TOKENIZER +# Tokenizer is used to convert text to sequences of token IDs. +# If characters are not defined in the config, default characters are passed to the config +tokenizer, config = TTSTokenizer.init_from_config(config) + +# LOAD DATA SAMPLES +# Each sample is a list of ```[text, audio_file_path, speaker_name]``` +# You can define your custom sample loader returning the list of samples. +# Or define your custom formatter and pass it to the `load_tts_samples`. +# Check `TTS.tts.datasets.load_tts_samples` for more details. +train_samples, eval_samples = load_tts_samples( + dataset_config, + eval_split=True, + eval_split_max_size=config.eval_split_max_size, + eval_split_size=config.eval_split_size, +) + +# init model +model = AlignTTS(config, ap, tokenizer) + +# INITIALIZE THE TRAINER +# Trainer provides a generic API to train all the ๐ŸธTTS models with all its perks like mixed-precision training, +# distributed training, etc. +trainer = Trainer( + TrainerArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples +) + +# AND... 3,2,1... ๐Ÿš€ +trainer.fit() diff --git a/TTS/recipes/ljspeech/delightful_tts/train_delightful_tts.py b/TTS/recipes/ljspeech/delightful_tts/train_delightful_tts.py new file mode 100644 index 0000000000000000000000000000000000000000..81e40c84aed772f768f91218b45446e669c2aa91 --- /dev/null +++ b/TTS/recipes/ljspeech/delightful_tts/train_delightful_tts.py @@ -0,0 +1,84 @@ +import os + +from trainer import Trainer, TrainerArgs + +from TTS.config.shared_configs import BaseDatasetConfig +from TTS.tts.configs.delightful_tts_config import DelightfulTtsAudioConfig, DelightfulTTSConfig +from TTS.tts.datasets import load_tts_samples +from TTS.tts.models.delightful_tts import DelightfulTTS, DelightfulTtsArgs, VocoderConfig +from TTS.tts.utils.text.tokenizer import TTSTokenizer +from TTS.utils.audio.processor import AudioProcessor + +data_path = "" +output_path = os.path.dirname(os.path.abspath(__file__)) + +dataset_config = BaseDatasetConfig( + dataset_name="ljspeech", formatter="ljspeech", meta_file_train="metadata.csv", path=data_path +) + +audio_config = DelightfulTtsAudioConfig() +model_args = DelightfulTtsArgs() + +vocoder_config = VocoderConfig() + +delightful_tts_config = DelightfulTTSConfig( + run_name="delightful_tts_ljspeech", + run_description="Train like in delightful tts paper.", + model_args=model_args, + audio=audio_config, + vocoder=vocoder_config, + batch_size=32, + eval_batch_size=16, + num_loader_workers=10, + num_eval_loader_workers=10, + precompute_num_workers=10, + batch_group_size=2, + compute_input_seq_cache=True, + compute_f0=True, + f0_cache_path=os.path.join(output_path, "f0_cache"), + run_eval=True, + test_delay_epochs=-1, + epochs=1000, + text_cleaner="english_cleaners", + use_phonemes=True, + phoneme_language="en-us", + phoneme_cache_path=os.path.join(output_path, "phoneme_cache"), + print_step=50, + print_eval=False, + mixed_precision=True, + output_path=output_path, + datasets=[dataset_config], + start_by_longest=False, + eval_split_size=0.1, + binary_align_loss_alpha=0.0, + use_attn_priors=False, + lr_gen=4e-1, + lr=4e-1, + lr_disc=4e-1, + max_text_len=130, +) + +tokenizer, config = TTSTokenizer.init_from_config(delightful_tts_config) + +ap = AudioProcessor.init_from_config(config) + + +train_samples, eval_samples = load_tts_samples( + dataset_config, + eval_split=True, + eval_split_max_size=config.eval_split_max_size, + eval_split_size=config.eval_split_size, +) + +model = DelightfulTTS(ap=ap, config=config, tokenizer=tokenizer, speaker_manager=None) + +trainer = Trainer( + TrainerArgs(), + config, + output_path, + model=model, + train_samples=train_samples, + eval_samples=eval_samples, +) + +trainer.fit() diff --git a/TTS/recipes/ljspeech/download_ljspeech.sh b/TTS/recipes/ljspeech/download_ljspeech.sh new file mode 100644 index 0000000000000000000000000000000000000000..9468988a9928708d2d1792afeacebd6e0c4cb64a --- /dev/null +++ b/TTS/recipes/ljspeech/download_ljspeech.sh @@ -0,0 +1,14 @@ +#!/bin/bash +# take the scripts's parent's directory to prefix all the output paths. +RUN_DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" &> /dev/null && pwd )" +echo $RUN_DIR +# download LJSpeech dataset +wget http://data.keithito.com/data/speech/LJSpeech-1.1.tar.bz2 +# extract +tar -xjf LJSpeech-1.1.tar.bz2 +# create train-val splits +shuf LJSpeech-1.1/metadata.csv > LJSpeech-1.1/metadata_shuf.csv +head -n 12000 LJSpeech-1.1/metadata_shuf.csv > LJSpeech-1.1/metadata_train.csv +tail -n 1100 LJSpeech-1.1/metadata_shuf.csv > LJSpeech-1.1/metadata_val.csv +mv LJSpeech-1.1 $RUN_DIR/recipes/ljspeech/ +rm LJSpeech-1.1.tar.bz2 \ No newline at end of file diff --git a/TTS/recipes/ljspeech/fast_pitch/train_fast_pitch.py b/TTS/recipes/ljspeech/fast_pitch/train_fast_pitch.py new file mode 100644 index 0000000000000000000000000000000000000000..055526b1bcea41c646e841baa556b71a71da7487 --- /dev/null +++ b/TTS/recipes/ljspeech/fast_pitch/train_fast_pitch.py @@ -0,0 +1,100 @@ +import os + +from trainer import Trainer, TrainerArgs + +from TTS.config.shared_configs import BaseAudioConfig, BaseDatasetConfig +from TTS.tts.configs.fast_pitch_config import FastPitchConfig +from TTS.tts.datasets import load_tts_samples +from TTS.tts.models.forward_tts import ForwardTTS +from TTS.tts.utils.text.tokenizer import TTSTokenizer +from TTS.utils.audio import AudioProcessor +from TTS.utils.manage import ModelManager + +output_path = os.path.dirname(os.path.abspath(__file__)) + +# init configs +dataset_config = BaseDatasetConfig( + formatter="ljspeech", + meta_file_train="metadata.csv", + # meta_file_attn_mask=os.path.join(output_path, "../LJSpeech-1.1/metadata_attn_mask.txt"), + path=os.path.join(output_path, "../LJSpeech-1.1/"), +) + +audio_config = BaseAudioConfig( + sample_rate=22050, + do_trim_silence=True, + trim_db=60.0, + signal_norm=False, + mel_fmin=0.0, + mel_fmax=8000, + spec_gain=1.0, + log_func="np.log", + ref_level_db=20, + preemphasis=0.0, +) + +config = FastPitchConfig( + run_name="fast_pitch_ljspeech", + audio=audio_config, + batch_size=32, + eval_batch_size=16, + num_loader_workers=8, + num_eval_loader_workers=4, + compute_input_seq_cache=True, + compute_f0=True, + f0_cache_path=os.path.join(output_path, "f0_cache"), + run_eval=True, + test_delay_epochs=-1, + epochs=1000, + text_cleaner="english_cleaners", + use_phonemes=True, + phoneme_language="en-us", + phoneme_cache_path=os.path.join(output_path, "phoneme_cache"), + precompute_num_workers=4, + print_step=50, + print_eval=False, + mixed_precision=False, + max_seq_len=500000, + output_path=output_path, + datasets=[dataset_config], +) + +# compute alignments +if not config.model_args.use_aligner: + manager = ModelManager() + model_path, config_path, _ = manager.download_model("tts_models/en/ljspeech/tacotron2-DCA") + # TODO: make compute_attention python callable + os.system( + f"python TTS/bin/compute_attention_masks.py --model_path {model_path} --config_path {config_path} --dataset ljspeech --dataset_metafile metadata.csv --data_path ./recipes/ljspeech/LJSpeech-1.1/ --use_cuda true" + ) + +# INITIALIZE THE AUDIO PROCESSOR +# Audio processor is used for feature extraction and audio I/O. +# It mainly serves to the dataloader and the training loggers. +ap = AudioProcessor.init_from_config(config) + +# INITIALIZE THE TOKENIZER +# Tokenizer is used to convert text to sequences of token IDs. +# If characters are not defined in the config, default characters are passed to the config +tokenizer, config = TTSTokenizer.init_from_config(config) + +# LOAD DATA SAMPLES +# Each sample is a list of ```[text, audio_file_path, speaker_name]``` +# You can define your custom sample loader returning the list of samples. +# Or define your custom formatter and pass it to the `load_tts_samples`. +# Check `TTS.tts.datasets.load_tts_samples` for more details. +train_samples, eval_samples = load_tts_samples( + dataset_config, + eval_split=True, + eval_split_max_size=config.eval_split_max_size, + eval_split_size=config.eval_split_size, +) + +# init the model +model = ForwardTTS(config, ap, tokenizer, speaker_manager=None) + +# init the trainer and ๐Ÿš€ +trainer = Trainer( + TrainerArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples +) +trainer.fit() diff --git a/TTS/recipes/ljspeech/fast_speech/train_fast_speech.py b/TTS/recipes/ljspeech/fast_speech/train_fast_speech.py new file mode 100644 index 0000000000000000000000000000000000000000..8c9a272e81655dddf7543a8574e8969836115c3a --- /dev/null +++ b/TTS/recipes/ljspeech/fast_speech/train_fast_speech.py @@ -0,0 +1,99 @@ +import os + +from trainer import Trainer, TrainerArgs + +from TTS.config import BaseAudioConfig, BaseDatasetConfig +from TTS.tts.configs.fast_speech_config import FastSpeechConfig +from TTS.tts.datasets import load_tts_samples +from TTS.tts.models.forward_tts import ForwardTTS +from TTS.tts.utils.text.tokenizer import TTSTokenizer +from TTS.utils.audio import AudioProcessor +from TTS.utils.manage import ModelManager + +output_path = os.path.dirname(os.path.abspath(__file__)) + +# init configs +dataset_config = BaseDatasetConfig( + formatter="ljspeech", + meta_file_train="metadata.csv", + # meta_file_attn_mask=os.path.join(output_path, "../LJSpeech-1.1/metadata_attn_mask.txt"), + path=os.path.join(output_path, "../LJSpeech-1.1/"), +) + +audio_config = BaseAudioConfig( + sample_rate=22050, + do_trim_silence=True, + trim_db=60.0, + signal_norm=False, + mel_fmin=0.0, + mel_fmax=8000, + spec_gain=1.0, + log_func="np.log", + ref_level_db=20, + preemphasis=0.0, +) + +config = FastSpeechConfig( + run_name="fast_speech_ljspeech", + audio=audio_config, + batch_size=32, + eval_batch_size=16, + num_loader_workers=8, + num_eval_loader_workers=4, + compute_input_seq_cache=True, + compute_f0=False, + run_eval=True, + test_delay_epochs=-1, + epochs=1000, + text_cleaner="english_cleaners", + use_phonemes=True, + phoneme_language="en-us", + phoneme_cache_path=os.path.join(output_path, "phoneme_cache"), + precompute_num_workers=8, + print_step=50, + print_eval=False, + mixed_precision=False, + max_seq_len=500000, + output_path=output_path, + datasets=[dataset_config], +) + +# compute alignments +if not config.model_args.use_aligner: + manager = ModelManager() + model_path, config_path, _ = manager.download_model("tts_models/en/ljspeech/tacotron2-DCA") + # TODO: make compute_attention python callable + os.system( + f"python TTS/bin/compute_attention_masks.py --model_path {model_path} --config_path {config_path} --dataset ljspeech --dataset_metafile metadata.csv --data_path ./recipes/ljspeech/LJSpeech-1.1/ --use_cuda true" + ) + +# INITIALIZE THE AUDIO PROCESSOR +# Audio processor is used for feature extraction and audio I/O. +# It mainly serves to the dataloader and the training loggers. +ap = AudioProcessor.init_from_config(config) + +# INITIALIZE THE TOKENIZER +# Tokenizer is used to convert text to sequences of token IDs. +# If characters are not defined in the config, default characters are passed to the config +tokenizer, config = TTSTokenizer.init_from_config(config) + +# LOAD DATA SAMPLES +# Each sample is a list of ```[text, audio_file_path, speaker_name]``` +# You can define your custom sample loader returning the list of samples. +# Or define your custom formatter and pass it to the `load_tts_samples`. +# Check `TTS.tts.datasets.load_tts_samples` for more details. +train_samples, eval_samples = load_tts_samples( + dataset_config, + eval_split=True, + eval_split_max_size=config.eval_split_max_size, + eval_split_size=config.eval_split_size, +) + +# init the model +model = ForwardTTS(config, ap, tokenizer) + +# init the trainer and ๐Ÿš€ +trainer = Trainer( + TrainerArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples +) +trainer.fit() diff --git a/TTS/recipes/ljspeech/fastspeech2/train_fastspeech2.py b/TTS/recipes/ljspeech/fastspeech2/train_fastspeech2.py new file mode 100644 index 0000000000000000000000000000000000000000..93737dba7f25e1383c8238e9a39ed47465cfdb48 --- /dev/null +++ b/TTS/recipes/ljspeech/fastspeech2/train_fastspeech2.py @@ -0,0 +1,102 @@ +import os + +from trainer import Trainer, TrainerArgs + +from TTS.config.shared_configs import BaseAudioConfig, BaseDatasetConfig +from TTS.tts.configs.fastspeech2_config import Fastspeech2Config +from TTS.tts.datasets import load_tts_samples +from TTS.tts.models.forward_tts import ForwardTTS +from TTS.tts.utils.text.tokenizer import TTSTokenizer +from TTS.utils.audio import AudioProcessor +from TTS.utils.manage import ModelManager + +output_path = os.path.dirname(os.path.abspath(__file__)) + +# init configs +dataset_config = BaseDatasetConfig( + formatter="ljspeech", + meta_file_train="metadata.csv", + # meta_file_attn_mask=os.path.join(output_path, "../LJSpeech-1.1/metadata_attn_mask.txt"), + path=os.path.join(output_path, "../LJSpeech-1.1/"), +) + +audio_config = BaseAudioConfig( + sample_rate=22050, + do_trim_silence=True, + trim_db=60.0, + signal_norm=False, + mel_fmin=0.0, + mel_fmax=8000, + spec_gain=1.0, + log_func="np.log", + ref_level_db=20, + preemphasis=0.0, +) + +config = Fastspeech2Config( + run_name="fastspeech2_ljspeech", + audio=audio_config, + batch_size=32, + eval_batch_size=16, + num_loader_workers=8, + num_eval_loader_workers=4, + compute_input_seq_cache=True, + compute_f0=True, + f0_cache_path=os.path.join(output_path, "f0_cache"), + compute_energy=True, + energy_cache_path=os.path.join(output_path, "energy_cache"), + run_eval=True, + test_delay_epochs=-1, + epochs=1000, + text_cleaner="english_cleaners", + use_phonemes=True, + phoneme_language="en-us", + phoneme_cache_path=os.path.join(output_path, "phoneme_cache"), + precompute_num_workers=4, + print_step=50, + print_eval=False, + mixed_precision=False, + max_seq_len=500000, + output_path=output_path, + datasets=[dataset_config], +) + +# compute alignments +if not config.model_args.use_aligner: + manager = ModelManager() + model_path, config_path, _ = manager.download_model("tts_models/en/ljspeech/tacotron2-DCA") + # TODO: make compute_attention python callable + os.system( + f"python TTS/bin/compute_attention_masks.py --model_path {model_path} --config_path {config_path} --dataset ljspeech --dataset_metafile metadata.csv --data_path ./recipes/ljspeech/LJSpeech-1.1/ --use_cuda true" + ) + +# INITIALIZE THE AUDIO PROCESSOR +# Audio processor is used for feature extraction and audio I/O. +# It mainly serves to the dataloader and the training loggers. +ap = AudioProcessor.init_from_config(config) + +# INITIALIZE THE TOKENIZER +# Tokenizer is used to convert text to sequences of token IDs. +# If characters are not defined in the config, default characters are passed to the config +tokenizer, config = TTSTokenizer.init_from_config(config) + +# LOAD DATA SAMPLES +# Each sample is a list of ```[text, audio_file_path, speaker_name]``` +# You can define your custom sample loader returning the list of samples. +# Or define your custom formatter and pass it to the `load_tts_samples`. +# Check `TTS.tts.datasets.load_tts_samples` for more details. +train_samples, eval_samples = load_tts_samples( + dataset_config, + eval_split=True, + eval_split_max_size=config.eval_split_max_size, + eval_split_size=config.eval_split_size, +) + +# init the model +model = ForwardTTS(config, ap, tokenizer, speaker_manager=None) + +# init the trainer and ๐Ÿš€ +trainer = Trainer( + TrainerArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples +) +trainer.fit() diff --git a/TTS/recipes/ljspeech/glow_tts/train_glowtts.py b/TTS/recipes/ljspeech/glow_tts/train_glowtts.py new file mode 100644 index 0000000000000000000000000000000000000000..9eb188f8a4db42c6868bdf2e2cf8bbbeedb97cdd --- /dev/null +++ b/TTS/recipes/ljspeech/glow_tts/train_glowtts.py @@ -0,0 +1,84 @@ +import os + +# Trainer: Where the โœจ๏ธ happens. +# TrainingArgs: Defines the set of arguments of the Trainer. +from trainer import Trainer, TrainerArgs + +# GlowTTSConfig: all model related values for training, validating and testing. +from TTS.tts.configs.glow_tts_config import GlowTTSConfig + +# BaseDatasetConfig: defines name, formatter and path of the dataset. +from TTS.tts.configs.shared_configs import BaseDatasetConfig +from TTS.tts.datasets import load_tts_samples +from TTS.tts.models.glow_tts import GlowTTS +from TTS.tts.utils.text.tokenizer import TTSTokenizer +from TTS.utils.audio import AudioProcessor + +# we use the same path as this script as our training folder. +output_path = os.path.dirname(os.path.abspath(__file__)) + +# DEFINE DATASET CONFIG +# Set LJSpeech as our target dataset and define its path. +# You can also use a simple Dict to define the dataset and pass it to your custom formatter. +dataset_config = BaseDatasetConfig( + formatter="ljspeech", meta_file_train="metadata.csv", path=os.path.join(output_path, "../LJSpeech-1.1/") +) + +# INITIALIZE THE TRAINING CONFIGURATION +# Configure the model. Every config class inherits the BaseTTSConfig. +config = GlowTTSConfig( + batch_size=32, + eval_batch_size=16, + num_loader_workers=4, + num_eval_loader_workers=4, + run_eval=True, + test_delay_epochs=-1, + epochs=1000, + text_cleaner="phoneme_cleaners", + use_phonemes=True, + phoneme_language="en-us", + phoneme_cache_path=os.path.join(output_path, "phoneme_cache"), + print_step=25, + print_eval=False, + mixed_precision=True, + output_path=output_path, + datasets=[dataset_config], +) + +# INITIALIZE THE AUDIO PROCESSOR +# Audio processor is used for feature extraction and audio I/O. +# It mainly serves to the dataloader and the training loggers. +ap = AudioProcessor.init_from_config(config) + +# INITIALIZE THE TOKENIZER +# Tokenizer is used to convert text to sequences of token IDs. +# If characters are not defined in the config, default characters are passed to the config +tokenizer, config = TTSTokenizer.init_from_config(config) + +# LOAD DATA SAMPLES +# Each sample is a list of ```[text, audio_file_path, speaker_name]``` +# You can define your custom sample loader returning the list of samples. +# Or define your custom formatter and pass it to the `load_tts_samples`. +# Check `TTS.tts.datasets.load_tts_samples` for more details. +train_samples, eval_samples = load_tts_samples( + dataset_config, + eval_split=True, + eval_split_max_size=config.eval_split_max_size, + eval_split_size=config.eval_split_size, +) + +# INITIALIZE THE MODEL +# Models take a config object and a speaker manager as input +# Config defines the details of the model like the number of layers, the size of the embedding, etc. +# Speaker manager is used by multi-speaker models. +model = GlowTTS(config, ap, tokenizer, speaker_manager=None) + +# INITIALIZE THE TRAINER +# Trainer provides a generic API to train all the ๐ŸธTTS models with all its perks like mixed-precision training, +# distributed training, etc. +trainer = Trainer( + TrainerArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples +) + +# AND... 3,2,1... ๐Ÿš€ +trainer.fit() diff --git a/TTS/recipes/ljspeech/hifigan/train_hifigan.py b/TTS/recipes/ljspeech/hifigan/train_hifigan.py new file mode 100644 index 0000000000000000000000000000000000000000..b4cbae63edc228f755375d38e7a117ff76f2a785 --- /dev/null +++ b/TTS/recipes/ljspeech/hifigan/train_hifigan.py @@ -0,0 +1,46 @@ +import os + +from trainer import Trainer, TrainerArgs + +from TTS.utils.audio import AudioProcessor +from TTS.vocoder.configs import HifiganConfig +from TTS.vocoder.datasets.preprocess import load_wav_data +from TTS.vocoder.models.gan import GAN + +output_path = os.path.dirname(os.path.abspath(__file__)) + +config = HifiganConfig( + batch_size=32, + eval_batch_size=16, + num_loader_workers=4, + num_eval_loader_workers=4, + run_eval=True, + test_delay_epochs=5, + epochs=1000, + seq_len=8192, + pad_short=2000, + use_noise_augment=True, + eval_split_size=10, + print_step=25, + print_eval=False, + mixed_precision=False, + lr_gen=1e-4, + lr_disc=1e-4, + data_path=os.path.join(output_path, "../LJSpeech-1.1/wavs/"), + output_path=output_path, +) + +# init audio processor +ap = AudioProcessor(**config.audio.to_dict()) + +# load training samples +eval_samples, train_samples = load_wav_data(config.data_path, config.eval_split_size) + +# init model +model = GAN(config, ap) + +# init the trainer and ๐Ÿš€ +trainer = Trainer( + TrainerArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples +) +trainer.fit() diff --git a/TTS/recipes/ljspeech/multiband_melgan/train_multiband_melgan.py b/TTS/recipes/ljspeech/multiband_melgan/train_multiband_melgan.py new file mode 100644 index 0000000000000000000000000000000000000000..225f5a302f349be2f2069eeb10cd4b8ab6645eb0 --- /dev/null +++ b/TTS/recipes/ljspeech/multiband_melgan/train_multiband_melgan.py @@ -0,0 +1,46 @@ +import os + +from trainer import Trainer, TrainerArgs + +from TTS.utils.audio import AudioProcessor +from TTS.vocoder.configs import MultibandMelganConfig +from TTS.vocoder.datasets.preprocess import load_wav_data +from TTS.vocoder.models.gan import GAN + +output_path = os.path.dirname(os.path.abspath(__file__)) + +config = MultibandMelganConfig( + batch_size=32, + eval_batch_size=16, + num_loader_workers=4, + num_eval_loader_workers=4, + run_eval=True, + test_delay_epochs=5, + epochs=1000, + seq_len=8192, + pad_short=2000, + use_noise_augment=True, + eval_split_size=10, + print_step=25, + print_eval=False, + mixed_precision=False, + lr_gen=1e-4, + lr_disc=1e-4, + data_path=os.path.join(output_path, "../LJSpeech-1.1/wavs/"), + output_path=output_path, +) + +# init audio processor +ap = AudioProcessor(**config.audio.to_dict()) + +# load training samples +eval_samples, train_samples = load_wav_data(config.data_path, config.eval_split_size) + +# init model +model = GAN(config, ap) + +# init the trainer and ๐Ÿš€ +trainer = Trainer( + TrainerArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples +) +trainer.fit() diff --git a/TTS/recipes/ljspeech/neuralhmm_tts/train_neuralhmmtts.py b/TTS/recipes/ljspeech/neuralhmm_tts/train_neuralhmmtts.py new file mode 100644 index 0000000000000000000000000000000000000000..28d37799750b7115be9a24c4a947526fed9429fe --- /dev/null +++ b/TTS/recipes/ljspeech/neuralhmm_tts/train_neuralhmmtts.py @@ -0,0 +1,96 @@ +import os + +from trainer import Trainer, TrainerArgs + +from TTS.config.shared_configs import BaseAudioConfig +from TTS.tts.configs.neuralhmm_tts_config import NeuralhmmTTSConfig +from TTS.tts.configs.shared_configs import BaseDatasetConfig +from TTS.tts.datasets import load_tts_samples +from TTS.tts.models.neuralhmm_tts import NeuralhmmTTS +from TTS.tts.utils.text.tokenizer import TTSTokenizer +from TTS.utils.audio import AudioProcessor + +output_path = os.path.dirname(os.path.abspath(__file__)) + +# init configs +dataset_config = BaseDatasetConfig( + formatter="ljspeech", meta_file_train="metadata.csv", path=os.path.join("data", "LJSpeech-1.1/") +) + +audio_config = BaseAudioConfig( + sample_rate=22050, + do_trim_silence=True, + trim_db=60.0, + signal_norm=False, + mel_fmin=0.0, + mel_fmax=8000, + spec_gain=1.0, + log_func="np.log", + ref_level_db=20, + preemphasis=0.0, +) + +config = NeuralhmmTTSConfig( # This is the config that is saved for the future use + run_name="neuralhmmtts_ljspeech", + audio=audio_config, + batch_size=32, + eval_batch_size=16, + num_loader_workers=4, + num_eval_loader_workers=4, + run_eval=True, + test_delay_epochs=-1, + epochs=1000, + text_cleaner="phoneme_cleaners", + use_phonemes=True, + phoneme_language="en-us", + phoneme_cache_path=os.path.join(output_path, "phoneme_cache"), + precompute_num_workers=8, + mel_statistics_parameter_path=os.path.join(output_path, "lj_parameters.pt"), + force_generate_statistics=False, + print_step=1, + print_eval=True, + mixed_precision=True, + output_path=output_path, + datasets=[dataset_config], +) + +# INITIALIZE THE AUDIO PROCESSOR +# Audio processor is used for feature extraction and audio I/O. +# It mainly serves to the dataloader and the training loggers. +ap = AudioProcessor.init_from_config(config) + +# INITIALIZE THE TOKENIZER +# Tokenizer is used to convert text to sequences of token IDs. +# If characters are not defined in the config, default characters are passed to the config +tokenizer, config = TTSTokenizer.init_from_config(config) + +# LOAD DATA SAMPLES +# Each sample is a list of ```[text, audio_file_path, speaker_name]``` +# You can define your custom sample loader returning the list of samples. +# Or define your custom formatter and pass it to the `load_tts_samples`. +# Check `TTS.tts.datasets.load_tts_samples` for more details. +train_samples, eval_samples = load_tts_samples( + dataset_config, + eval_split=True, + eval_split_max_size=config.eval_split_max_size, + eval_split_size=config.eval_split_size, +) + +# INITIALIZE THE MODEL +# Models take a config object and a speaker manager as input +# Config defines the details of the model like the number of layers, the size of the embedding, etc. +# Speaker manager is used by multi-speaker models. +model = NeuralhmmTTS(config, ap, tokenizer) + + +# init the trainer and ๐Ÿš€ +trainer = Trainer( + TrainerArgs(), + config, + output_path, + model=model, + train_samples=train_samples, + eval_samples=eval_samples, + gpu=1, +) +trainer.fit() diff --git a/TTS/recipes/ljspeech/overflow/lj_parameters.pt b/TTS/recipes/ljspeech/overflow/lj_parameters.pt new file mode 100644 index 0000000000000000000000000000000000000000..625d0e4b475641e304487f911996d21ba0ad0e10 --- /dev/null +++ b/TTS/recipes/ljspeech/overflow/lj_parameters.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:67dee2d73e7df7b1d8621a06447580cbb604823d665f4fd125596865f79b296a +size 507 diff --git a/TTS/recipes/ljspeech/overflow/train_overflow.py b/TTS/recipes/ljspeech/overflow/train_overflow.py new file mode 100644 index 0000000000000000000000000000000000000000..e05e399d19b1d0005df9496169fd190749d12876 --- /dev/null +++ b/TTS/recipes/ljspeech/overflow/train_overflow.py @@ -0,0 +1,96 @@ +import os + +from trainer import Trainer, TrainerArgs + +from TTS.config.shared_configs import BaseAudioConfig +from TTS.tts.configs.overflow_config import OverflowConfig +from TTS.tts.configs.shared_configs import BaseDatasetConfig +from TTS.tts.datasets import load_tts_samples +from TTS.tts.models.overflow import Overflow +from TTS.tts.utils.text.tokenizer import TTSTokenizer +from TTS.utils.audio import AudioProcessor + +output_path = os.path.dirname(os.path.abspath(__file__)) + +# init configs +dataset_config = BaseDatasetConfig( + formatter="ljspeech", meta_file_train="metadata.csv", path=os.path.join("data", "LJSpeech-1.1/") +) + +audio_config = BaseAudioConfig( + sample_rate=22050, + do_trim_silence=True, + trim_db=60.0, + signal_norm=False, + mel_fmin=0.0, + mel_fmax=8000, + spec_gain=1.0, + log_func="np.log", + ref_level_db=20, + preemphasis=0.0, +) + +config = OverflowConfig( # This is the config that is saved for the future use + run_name="overflow_ljspeech", + audio=audio_config, + batch_size=30, + eval_batch_size=16, + num_loader_workers=4, + num_eval_loader_workers=4, + run_eval=True, + test_delay_epochs=-1, + epochs=1000, + text_cleaner="phoneme_cleaners", + use_phonemes=True, + phoneme_language="en-us", + phoneme_cache_path=os.path.join(output_path, "phoneme_cache"), + precompute_num_workers=8, + mel_statistics_parameter_path=os.path.join(output_path, "lj_parameters.pt"), + force_generate_statistics=False, + print_step=1, + print_eval=True, + mixed_precision=True, + output_path=output_path, + datasets=[dataset_config], +) + +# INITIALIZE THE AUDIO PROCESSOR +# Audio processor is used for feature extraction and audio I/O. +# It mainly serves to the dataloader and the training loggers. +ap = AudioProcessor.init_from_config(config) + +# INITIALIZE THE TOKENIZER +# Tokenizer is used to convert text to sequences of token IDs. +# If characters are not defined in the config, default characters are passed to the config +tokenizer, config = TTSTokenizer.init_from_config(config) + +# LOAD DATA SAMPLES +# Each sample is a list of ```[text, audio_file_path, speaker_name]``` +# You can define your custom sample loader returning the list of samples. +# Or define your custom formatter and pass it to the `load_tts_samples`. +# Check `TTS.tts.datasets.load_tts_samples` for more details. +train_samples, eval_samples = load_tts_samples( + dataset_config, + eval_split=True, + eval_split_max_size=config.eval_split_max_size, + eval_split_size=config.eval_split_size, +) + +# INITIALIZE THE MODEL +# Models take a config object and a speaker manager as input +# Config defines the details of the model like the number of layers, the size of the embedding, etc. +# Speaker manager is used by multi-speaker models. +model = Overflow(config, ap, tokenizer) + + +# init the trainer and ๐Ÿš€ +trainer = Trainer( + TrainerArgs(), + config, + output_path, + model=model, + train_samples=train_samples, + eval_samples=eval_samples, + gpu=1, +) +trainer.fit() diff --git a/TTS/recipes/ljspeech/speedy_speech/train_speedy_speech.py b/TTS/recipes/ljspeech/speedy_speech/train_speedy_speech.py new file mode 100644 index 0000000000000000000000000000000000000000..ed282aed962ddcea64b395c206fca5659f72e3b2 --- /dev/null +++ b/TTS/recipes/ljspeech/speedy_speech/train_speedy_speech.py @@ -0,0 +1,87 @@ +import os + +from trainer import Trainer, TrainerArgs + +from TTS.config import BaseAudioConfig, BaseDatasetConfig +from TTS.tts.configs.speedy_speech_config import SpeedySpeechConfig +from TTS.tts.datasets import load_tts_samples +from TTS.tts.models.forward_tts import ForwardTTS +from TTS.tts.utils.text.tokenizer import TTSTokenizer +from TTS.utils.audio import AudioProcessor + +output_path = os.path.dirname(os.path.abspath(__file__)) +dataset_config = BaseDatasetConfig( + formatter="ljspeech", meta_file_train="metadata.csv", path=os.path.join(output_path, "../LJSpeech-1.1/") +) + +audio_config = BaseAudioConfig( + sample_rate=22050, + do_trim_silence=True, + trim_db=60.0, + signal_norm=False, + mel_fmin=0.0, + mel_fmax=8000, + spec_gain=1.0, + log_func="np.log", + ref_level_db=20, + preemphasis=0.0, +) + +config = SpeedySpeechConfig( + run_name="speedy_speech_ljspeech", + audio=audio_config, + batch_size=32, + eval_batch_size=16, + num_loader_workers=4, + num_eval_loader_workers=4, + compute_input_seq_cache=True, + run_eval=True, + test_delay_epochs=-1, + epochs=1000, + text_cleaner="english_cleaners", + use_phonemes=True, + phoneme_language="en-us", + phoneme_cache_path=os.path.join(output_path, "phoneme_cache"), + precompute_num_workers=4, + print_step=50, + print_eval=False, + mixed_precision=False, + max_seq_len=500000, + output_path=output_path, + datasets=[dataset_config], +) + +# INITIALIZE THE AUDIO PROCESSOR +# Audio processor is used for feature extraction and audio I/O. +# It mainly serves to the dataloader and the training loggers. +ap = AudioProcessor.init_from_config(config) + +# INITIALIZE THE TOKENIZER +# Tokenizer is used to convert text to sequences of token IDs. +# If characters are not defined in the config, default characters are passed to the config +tokenizer, config = TTSTokenizer.init_from_config(config) + +# LOAD DATA SAMPLES +# Each sample is a list of ```[text, audio_file_path, speaker_name]``` +# You can define your custom sample loader returning the list of samples. +# Or define your custom formatter and pass it to the `load_tts_samples`. +# Check `TTS.tts.datasets.load_tts_samples` for more details. +train_samples, eval_samples = load_tts_samples( + dataset_config, + eval_split=True, + eval_split_max_size=config.eval_split_max_size, + eval_split_size=config.eval_split_size, +) + +# init model +model = ForwardTTS(config, ap, tokenizer) + +# INITIALIZE THE TRAINER +# Trainer provides a generic API to train all the ๐ŸธTTS models with all its perks like mixed-precision training, +# distributed training, etc. +trainer = Trainer( + TrainerArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples +) + +# AND... 3,2,1... ๐Ÿš€ +trainer.fit() diff --git a/TTS/recipes/ljspeech/tacotron2-Capacitron/train_capacitron_t2.py b/TTS/recipes/ljspeech/tacotron2-Capacitron/train_capacitron_t2.py new file mode 100644 index 0000000000000000000000000000000000000000..f1ae2bd5c584ff5d10d19ca7ed3a5154c49cf9b7 --- /dev/null +++ b/TTS/recipes/ljspeech/tacotron2-Capacitron/train_capacitron_t2.py @@ -0,0 +1,114 @@ +import os + +from trainer import Trainer, TrainerArgs + +from TTS.config.shared_configs import BaseAudioConfig +from TTS.tts.configs.shared_configs import BaseDatasetConfig, CapacitronVAEConfig +from TTS.tts.configs.tacotron2_config import Tacotron2Config +from TTS.tts.datasets import load_tts_samples +from TTS.tts.models.tacotron2 import Tacotron2 +from TTS.tts.utils.text.tokenizer import TTSTokenizer +from TTS.utils.audio import AudioProcessor + +output_path = os.path.dirname(os.path.abspath(__file__)) + +data_path = "/srv/data/" + +# Using LJSpeech like dataset processing for the blizzard dataset +dataset_config = BaseDatasetConfig( + formatter="ljspeech", + meta_file_train="metadata.csv", + path=data_path, +) + +audio_config = BaseAudioConfig( + sample_rate=22050, + do_trim_silence=True, + trim_db=60.0, + signal_norm=False, + mel_fmin=0.0, + mel_fmax=11025, + spec_gain=1.0, + log_func="np.log", + ref_level_db=20, + preemphasis=0.0, +) + +# Using the standard Capacitron config +capacitron_config = CapacitronVAEConfig(capacitron_VAE_loss_alpha=1.0, capacitron_capacity=50) + +config = Tacotron2Config( + run_name="Capacitron-Tacotron2", + audio=audio_config, + capacitron_vae=capacitron_config, + use_capacitron_vae=True, + batch_size=128, # Tune this to your gpu + max_audio_len=8 * 22050, # Tune this to your gpu + min_audio_len=1 * 22050, + eval_batch_size=16, + num_loader_workers=8, + num_eval_loader_workers=8, + precompute_num_workers=24, + run_eval=True, + test_delay_epochs=25, + ga_alpha=0.0, + r=2, + optimizer="CapacitronOptimizer", + optimizer_params={"RAdam": {"betas": [0.9, 0.998], "weight_decay": 1e-6}, "SGD": {"lr": 1e-5, "momentum": 0.9}}, + attention_type="dynamic_convolution", + grad_clip=0.0, # Important! We overwrite the standard grad_clip with capacitron_grad_clip + double_decoder_consistency=False, + epochs=1000, + text_cleaner="phoneme_cleaners", + use_phonemes=True, + phoneme_language="en-us", + phonemizer="espeak", + phoneme_cache_path=os.path.join(data_path, "phoneme_cache"), + stopnet_pos_weight=15, + print_step=25, + print_eval=True, + mixed_precision=False, + seq_len_norm=True, + output_path=output_path, + datasets=[dataset_config], + lr=1e-3, + lr_scheduler="StepwiseGradualLR", + lr_scheduler_params={ + "gradual_learning_rates": [ + [0, 1e-3], + [2e4, 5e-4], + [4e5, 3e-4], + [6e4, 1e-4], + [8e4, 5e-5], + ] + }, + scheduler_after_epoch=False, # scheduler doesn't work without this flag + # Need to experiment with these below for capacitron + loss_masking=False, + decoder_loss_alpha=1.0, + postnet_loss_alpha=1.0, + postnet_diff_spec_alpha=0.0, + decoder_diff_spec_alpha=0.0, + decoder_ssim_alpha=0.0, + postnet_ssim_alpha=0.0, +) + +ap = AudioProcessor(**config.audio.to_dict()) + +tokenizer, config = TTSTokenizer.init_from_config(config) + +train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True) + +model = Tacotron2(config, ap, tokenizer, speaker_manager=None) + +trainer = Trainer( + TrainerArgs(), + config, + output_path, + model=model, + train_samples=train_samples, + eval_samples=eval_samples, + training_assets={"audio_processor": ap}, +) + +trainer.fit() diff --git a/TTS/recipes/ljspeech/tacotron2-DCA/train_tacotron_dca.py b/TTS/recipes/ljspeech/tacotron2-DCA/train_tacotron_dca.py new file mode 100644 index 0000000000000000000000000000000000000000..d9836f56ad5d47f801d7fc4a2fdf08dd0c78c7a1 --- /dev/null +++ b/TTS/recipes/ljspeech/tacotron2-DCA/train_tacotron_dca.py @@ -0,0 +1,101 @@ +import os + +from trainer import Trainer, TrainerArgs + +from TTS.config.shared_configs import BaseAudioConfig +from TTS.tts.configs.shared_configs import BaseDatasetConfig +from TTS.tts.configs.tacotron2_config import Tacotron2Config +from TTS.tts.datasets import load_tts_samples +from TTS.tts.models.tacotron2 import Tacotron2 +from TTS.tts.utils.text.tokenizer import TTSTokenizer +from TTS.utils.audio import AudioProcessor + +# from TTS.tts.datasets.tokenizer import Tokenizer + +output_path = os.path.dirname(os.path.abspath(__file__)) + +# init configs +dataset_config = BaseDatasetConfig( + formatter="ljspeech", meta_file_train="metadata.csv", path=os.path.join(output_path, "../LJSpeech-1.1/") +) + +audio_config = BaseAudioConfig( + sample_rate=22050, + do_trim_silence=True, + trim_db=60.0, + signal_norm=False, + mel_fmin=0.0, + mel_fmax=8000, + spec_gain=1.0, + log_func="np.log", + ref_level_db=20, + preemphasis=0.0, +) + +config = Tacotron2Config( # This is the config that is saved for the future use + audio=audio_config, + batch_size=64, + eval_batch_size=16, + num_loader_workers=4, + num_eval_loader_workers=4, + run_eval=True, + test_delay_epochs=-1, + ga_alpha=0.0, + decoder_loss_alpha=0.25, + postnet_loss_alpha=0.25, + postnet_diff_spec_alpha=0, + decoder_diff_spec_alpha=0, + decoder_ssim_alpha=0, + postnet_ssim_alpha=0, + r=2, + attention_type="dynamic_convolution", + double_decoder_consistency=False, + epochs=1000, + text_cleaner="phoneme_cleaners", + use_phonemes=True, + phoneme_language="en-us", + phoneme_cache_path=os.path.join(output_path, "phoneme_cache"), + print_step=25, + print_eval=True, + mixed_precision=False, + output_path=output_path, + datasets=[dataset_config], +) + +# INITIALIZE THE AUDIO PROCESSOR +# Audio processor is used for feature extraction and audio I/O. +# It mainly serves to the dataloader and the training loggers. +ap = AudioProcessor.init_from_config(config) + +# INITIALIZE THE TOKENIZER +# Tokenizer is used to convert text to sequences of token IDs. +# If characters are not defined in the config, default characters are passed to the config +tokenizer, config = TTSTokenizer.init_from_config(config) + +# LOAD DATA SAMPLES +# Each sample is a list of ```[text, audio_file_path, speaker_name]``` +# You can define your custom sample loader returning the list of samples. +# Or define your custom formatter and pass it to the `load_tts_samples`. +# Check `TTS.tts.datasets.load_tts_samples` for more details. +train_samples, eval_samples = load_tts_samples( + dataset_config, + eval_split=True, + eval_split_max_size=config.eval_split_max_size, + eval_split_size=config.eval_split_size, +) + +# INITIALIZE THE MODEL +# Models take a config object and a speaker manager as input +# Config defines the details of the model like the number of layers, the size of the embedding, etc. +# Speaker manager is used by multi-speaker models. +model = Tacotron2(config, ap, tokenizer) + +# INITIALIZE THE TRAINER +# Trainer provides a generic API to train all the ๐ŸธTTS models with all its perks like mixed-precision training, +# distributed training, etc. +trainer = Trainer( + TrainerArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples +) + +# AND... 3,2,1... ๐Ÿš€ +trainer.fit() diff --git a/TTS/recipes/ljspeech/tacotron2-DDC/train_tacotron_ddc.py b/TTS/recipes/ljspeech/tacotron2-DDC/train_tacotron_ddc.py new file mode 100644 index 0000000000000000000000000000000000000000..f050ae3222ed4fd2fc0cd7e4d3c873c5ae4557c4 --- /dev/null +++ b/TTS/recipes/ljspeech/tacotron2-DDC/train_tacotron_ddc.py @@ -0,0 +1,94 @@ +import os + +from trainer import Trainer, TrainerArgs + +from TTS.config.shared_configs import BaseAudioConfig +from TTS.tts.configs.shared_configs import BaseDatasetConfig +from TTS.tts.configs.tacotron2_config import Tacotron2Config +from TTS.tts.datasets import load_tts_samples +from TTS.tts.models.tacotron2 import Tacotron2 +from TTS.tts.utils.text.tokenizer import TTSTokenizer +from TTS.utils.audio import AudioProcessor + +# from TTS.tts.datasets.tokenizer import Tokenizer + +output_path = os.path.dirname(os.path.abspath(__file__)) + +# init configs +dataset_config = BaseDatasetConfig( + formatter="ljspeech", meta_file_train="metadata.csv", path=os.path.join(output_path, "../LJSpeech-1.1/") +) + +audio_config = BaseAudioConfig( + sample_rate=22050, + do_trim_silence=True, + trim_db=60.0, + signal_norm=False, + mel_fmin=0.0, + mel_fmax=8000, + spec_gain=1.0, + log_func="np.log", + ref_level_db=20, + preemphasis=0.0, +) + +config = Tacotron2Config( # This is the config that is saved for the future use + audio=audio_config, + batch_size=64, + eval_batch_size=16, + num_loader_workers=4, + num_eval_loader_workers=4, + run_eval=True, + test_delay_epochs=-1, + r=6, + gradual_training=[[0, 6, 64], [10000, 4, 32], [50000, 3, 32], [100000, 2, 32]], + double_decoder_consistency=True, + epochs=1000, + text_cleaner="phoneme_cleaners", + use_phonemes=True, + phoneme_language="en-us", + phoneme_cache_path=os.path.join(output_path, "phoneme_cache"), + precompute_num_workers=8, + print_step=25, + print_eval=True, + mixed_precision=False, + output_path=output_path, + datasets=[dataset_config], +) + +# init audio processor +ap = AudioProcessor(**config.audio.to_dict()) + +# INITIALIZE THE AUDIO PROCESSOR +# Audio processor is used for feature extraction and audio I/O. +# It mainly serves to the dataloader and the training loggers. +ap = AudioProcessor.init_from_config(config) + +# INITIALIZE THE TOKENIZER +# Tokenizer is used to convert text to sequences of token IDs. +# If characters are not defined in the config, default characters are passed to the config +tokenizer, config = TTSTokenizer.init_from_config(config) + +# LOAD DATA SAMPLES +# Each sample is a list of ```[text, audio_file_path, speaker_name]``` +# You can define your custom sample loader returning the list of samples. +# Or define your custom formatter and pass it to the `load_tts_samples`. +# Check `TTS.tts.datasets.load_tts_samples` for more details. +train_samples, eval_samples = load_tts_samples( + dataset_config, + eval_split=True, + eval_split_max_size=config.eval_split_max_size, + eval_split_size=config.eval_split_size, +) + +# INITIALIZE THE MODEL +# Models take a config object and a speaker manager as input +# Config defines the details of the model like the number of layers, the size of the embedding, etc. +# Speaker manager is used by multi-speaker models. +model = Tacotron2(config, ap, tokenizer, speaker_manager=None) + +# init the trainer and ๐Ÿš€ +trainer = Trainer( + TrainerArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples +) +trainer.fit() diff --git a/TTS/recipes/ljspeech/univnet/train.py b/TTS/recipes/ljspeech/univnet/train.py new file mode 100644 index 0000000000000000000000000000000000000000..81d2b889b90cb888084d7229c424986f0e3118d4 --- /dev/null +++ b/TTS/recipes/ljspeech/univnet/train.py @@ -0,0 +1,45 @@ +import os + +from trainer import Trainer, TrainerArgs + +from TTS.utils.audio import AudioProcessor +from TTS.vocoder.configs import UnivnetConfig +from TTS.vocoder.datasets.preprocess import load_wav_data +from TTS.vocoder.models.gan import GAN + +output_path = os.path.dirname(os.path.abspath(__file__)) +config = UnivnetConfig( + batch_size=64, + eval_batch_size=16, + num_loader_workers=4, + num_eval_loader_workers=4, + run_eval=True, + test_delay_epochs=-1, + epochs=1000, + seq_len=8192, + pad_short=2000, + use_noise_augment=True, + eval_split_size=10, + print_step=25, + print_eval=False, + mixed_precision=False, + lr_gen=1e-4, + lr_disc=1e-4, + data_path=os.path.join(output_path, "../LJSpeech-1.1/wavs/"), + output_path=output_path, +) + +# init audio processor +ap = AudioProcessor(**config.audio.to_dict()) + +# load training samples +eval_samples, train_samples = load_wav_data(config.data_path, config.eval_split_size) + +# init model +model = GAN(config, ap) + +# init the trainer and ๐Ÿš€ +trainer = Trainer( + TrainerArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples +) +trainer.fit() diff --git a/TTS/recipes/ljspeech/vits_tts/train_vits.py b/TTS/recipes/ljspeech/vits_tts/train_vits.py new file mode 100644 index 0000000000000000000000000000000000000000..ba3265e3056e8cceb4f749d8d09554fdee83e13e --- /dev/null +++ b/TTS/recipes/ljspeech/vits_tts/train_vits.py @@ -0,0 +1,78 @@ +import os + +from trainer import Trainer, TrainerArgs + +from TTS.tts.configs.shared_configs import BaseDatasetConfig +from TTS.tts.configs.vits_config import VitsConfig +from TTS.tts.datasets import load_tts_samples +from TTS.tts.models.vits import Vits, VitsAudioConfig +from TTS.tts.utils.text.tokenizer import TTSTokenizer +from TTS.utils.audio import AudioProcessor + +output_path = os.path.dirname(os.path.abspath(__file__)) +dataset_config = BaseDatasetConfig( + formatter="ljspeech", meta_file_train="metadata.csv", path=os.path.join(output_path, "../LJSpeech-1.1/") +) +audio_config = VitsAudioConfig( + sample_rate=22050, win_length=1024, hop_length=256, num_mels=80, mel_fmin=0, mel_fmax=None +) + +config = VitsConfig( + audio=audio_config, + run_name="vits_ljspeech", + batch_size=32, + eval_batch_size=16, + batch_group_size=5, + num_loader_workers=8, + num_eval_loader_workers=4, + run_eval=True, + test_delay_epochs=-1, + epochs=1000, + text_cleaner="english_cleaners", + use_phonemes=True, + phoneme_language="en-us", + phoneme_cache_path=os.path.join(output_path, "phoneme_cache"), + compute_input_seq_cache=True, + print_step=25, + print_eval=True, + mixed_precision=True, + output_path=output_path, + datasets=[dataset_config], + cudnn_benchmark=False, +) + +# INITIALIZE THE AUDIO PROCESSOR +# Audio processor is used for feature extraction and audio I/O. +# It mainly serves to the dataloader and the training loggers. +ap = AudioProcessor.init_from_config(config) + +# INITIALIZE THE TOKENIZER +# Tokenizer is used to convert text to sequences of token IDs. +# config is updated with the default characters if not defined in the config. +tokenizer, config = TTSTokenizer.init_from_config(config) + +# LOAD DATA SAMPLES +# Each sample is a list of ```[text, audio_file_path, speaker_name]``` +# You can define your custom sample loader returning the list of samples. +# Or define your custom formatter and pass it to the `load_tts_samples`. +# Check `TTS.tts.datasets.load_tts_samples` for more details. +train_samples, eval_samples = load_tts_samples( + dataset_config, + eval_split=True, + eval_split_max_size=config.eval_split_max_size, + eval_split_size=config.eval_split_size, +) + +# init model +model = Vits(config, ap, tokenizer, speaker_manager=None) + +# init the trainer and ๐Ÿš€ +trainer = Trainer( + TrainerArgs(), + config, + output_path, + model=model, + train_samples=train_samples, + eval_samples=eval_samples, +) +trainer.fit() diff --git a/TTS/recipes/ljspeech/wavegrad/train_wavegrad.py b/TTS/recipes/ljspeech/wavegrad/train_wavegrad.py new file mode 100644 index 0000000000000000000000000000000000000000..1abdf45d8759de249eafdd479c5e96b7f5f59b33 --- /dev/null +++ b/TTS/recipes/ljspeech/wavegrad/train_wavegrad.py @@ -0,0 +1,49 @@ +import os + +from trainer import Trainer, TrainerArgs + +from TTS.utils.audio import AudioProcessor +from TTS.vocoder.configs import WavegradConfig +from TTS.vocoder.datasets.preprocess import load_wav_data +from TTS.vocoder.models.wavegrad import Wavegrad + +output_path = os.path.dirname(os.path.abspath(__file__)) +config = WavegradConfig( + batch_size=32, + eval_batch_size=16, + num_loader_workers=4, + num_eval_loader_workers=4, + run_eval=True, + test_delay_epochs=-1, + epochs=1000, + seq_len=6144, + pad_short=2000, + use_noise_augment=True, + eval_split_size=50, + print_step=50, + print_eval=True, + mixed_precision=False, + data_path=os.path.join(output_path, "../LJSpeech-1.1/wavs/"), + output_path=output_path, +) + +# init audio processor +ap = AudioProcessor(**config.audio.to_dict()) + +# load training samples +eval_samples, train_samples = load_wav_data(config.data_path, config.eval_split_size) + +# init model +model = Wavegrad(config) + +# init the trainer and ๐Ÿš€ +trainer = Trainer( + TrainerArgs(), + config, + output_path, + model=model, + train_samples=train_samples, + eval_samples=eval_samples, + training_assets={"audio_processor": ap}, +) +trainer.fit() diff --git a/TTS/recipes/ljspeech/wavernn/train_wavernn.py b/TTS/recipes/ljspeech/wavernn/train_wavernn.py new file mode 100644 index 0000000000000000000000000000000000000000..640f50921888f4fd4a33a32e725b280a639170b6 --- /dev/null +++ b/TTS/recipes/ljspeech/wavernn/train_wavernn.py @@ -0,0 +1,51 @@ +import os + +from trainer import Trainer, TrainerArgs + +from TTS.utils.audio import AudioProcessor +from TTS.vocoder.configs import WavernnConfig +from TTS.vocoder.datasets.preprocess import load_wav_data +from TTS.vocoder.models.wavernn import Wavernn + +output_path = os.path.dirname(os.path.abspath(__file__)) +config = WavernnConfig( + batch_size=64, + eval_batch_size=16, + num_loader_workers=4, + num_eval_loader_workers=4, + run_eval=True, + test_delay_epochs=-1, + epochs=10000, + seq_len=1280, + pad_short=2000, + use_noise_augment=False, + eval_split_size=10, + print_step=25, + print_eval=True, + mixed_precision=False, + lr=1e-4, + grad_clip=4, + data_path=os.path.join(output_path, "../LJSpeech-1.1/wavs/"), + output_path=output_path, +) + +# init audio processor +ap = AudioProcessor(**config.audio.to_dict()) + +# load training samples +eval_samples, train_samples = load_wav_data(config.data_path, config.eval_split_size) + +# init model +model = Wavernn(config) + +# init the trainer and ๐Ÿš€ +trainer = Trainer( + TrainerArgs(), + config, + output_path, + model=model, + train_samples=train_samples, + eval_samples=eval_samples, + training_assets={"audio_processor": ap}, +) +trainer.fit() diff --git a/TTS/recipes/multilingual/cml_yourtts/train_yourtts.py b/TTS/recipes/multilingual/cml_yourtts/train_yourtts.py new file mode 100644 index 0000000000000000000000000000000000000000..25a2fd0a4ba33f6c8be33ab7244555f45e4b9460 --- /dev/null +++ b/TTS/recipes/multilingual/cml_yourtts/train_yourtts.py @@ -0,0 +1,337 @@ +import os + +import torch +from trainer import Trainer, TrainerArgs + +from TTS.bin.compute_embeddings import compute_embeddings +from TTS.bin.resample import resample_files +from TTS.config.shared_configs import BaseDatasetConfig +from TTS.tts.configs.vits_config import VitsConfig +from TTS.tts.datasets import load_tts_samples +from TTS.tts.models.vits import CharactersConfig, Vits, VitsArgs, VitsAudioConfig +from TTS.utils.downloaders import download_libri_tts + +torch.set_num_threads(24) + +# pylint: disable=W0105 +""" + This recipe replicates the first experiment proposed in the CML-TTS paper (https://arxiv.org/abs/2306.10097). It uses the YourTTS model. + YourTTS model is based on the VITS model however it uses external speaker embeddings extracted from a pre-trained speaker encoder and has small architecture changes. +""" +CURRENT_PATH = os.path.dirname(os.path.abspath(__file__)) + +# Name of the run for the Trainer +RUN_NAME = "YourTTS-CML-TTS" + +# Path where you want to save the models outputs (configs, checkpoints and tensorboard logs) +OUT_PATH = os.path.dirname(os.path.abspath(__file__)) # "/raid/coqui/Checkpoints/original-YourTTS/" + +# If you want to do transfer learning and speedup your training you can set here the path to the CML-TTS available checkpoint that cam be downloaded here: https://drive.google.com/u/2/uc?id=1yDCSJ1pFZQTHhL09GMbOrdjcPULApa0p +RESTORE_PATH = "/raid/edresson/CML_YourTTS/checkpoints_yourtts_cml_tts_dataset/best_model.pth" # Download the checkpoint here: https://drive.google.com/u/2/uc?id=1yDCSJ1pFZQTHhL09GMbOrdjcPULApa0p + +# This paramter is useful to debug, it skips the training epochs and just do the evaluation and produce the test sentences +SKIP_TRAIN_EPOCH = False + +# Set here the batch size to be used in training and evaluation +BATCH_SIZE = 32 + +# Training Sampling rate and the target sampling rate for resampling the downloaded dataset (Note: If you change this you might need to redownload the dataset !!) +# Note: If you add new datasets, please make sure that the dataset sampling rate and this parameter are matching, otherwise resample your audios +SAMPLE_RATE = 24000 + +# Max audio length in seconds to be used in training (every audio bigger than it will be ignored) +MAX_AUDIO_LEN_IN_SECONDS = float("inf") + +### Download CML-TTS dataset +# You need to download the dataset for all languages manually and extract it to a path and then set the CML_DATASET_PATH to this path: https://github.com/freds0/CML-TTS-Dataset#download +CML_DATASET_PATH = "./datasets/CML-TTS-Dataset/" + + +### Download LibriTTS dataset +# it will automatic download the dataset, if you have problems you can comment it and manually donwload and extract it ! Download link: https://www.openslr.org/resources/60/train-clean-360.tar.gz +LIBRITTS_DOWNLOAD_PATH = "./datasets/LibriTTS/" +# Check if LibriTTS dataset is not already downloaded, if not download it +if not os.path.exists(LIBRITTS_DOWNLOAD_PATH): + print(">>> Downloading LibriTTS dataset:") + download_libri_tts(LIBRITTS_DOWNLOAD_PATH, subset="libri-tts-clean-360") + +# init LibriTTS configs +libritts_config = BaseDatasetConfig( + formatter="libri_tts", + dataset_name="libri_tts", + meta_file_train="", + meta_file_val="", + path=os.path.join(LIBRITTS_DOWNLOAD_PATH, "train-clean-360/"), + language="en", +) + +# init CML-TTS configs +pt_config = BaseDatasetConfig( + formatter="cml_tts", + dataset_name="cml_tts", + meta_file_train="train.csv", + meta_file_val="", + path=os.path.join(CML_DATASET_PATH, "cml_tts_dataset_portuguese_v0.1/"), + language="pt-br", +) + +pl_config = BaseDatasetConfig( + formatter="cml_tts", + dataset_name="cml_tts", + meta_file_train="train.csv", + meta_file_val="", + path=os.path.join(CML_DATASET_PATH, "cml_tts_dataset_polish_v0.1/"), + language="pl", +) + +it_config = BaseDatasetConfig( + formatter="cml_tts", + dataset_name="cml_tts", + meta_file_train="train.csv", + meta_file_val="", + path=os.path.join(CML_DATASET_PATH, "cml_tts_dataset_italian_v0.1/"), + language="it", +) + +fr_config = BaseDatasetConfig( + formatter="cml_tts", + dataset_name="cml_tts", + meta_file_train="train.csv", + meta_file_val="", + path=os.path.join(CML_DATASET_PATH, "cml_tts_dataset_french_v0.1/"), + language="fr", +) + +du_config = BaseDatasetConfig( + formatter="cml_tts", + dataset_name="cml_tts", + meta_file_train="train.csv", + meta_file_val="", + path=os.path.join(CML_DATASET_PATH, "cml_tts_dataset_dutch_v0.1/"), + language="du", +) + +ge_config = BaseDatasetConfig( + formatter="cml_tts", + dataset_name="cml_tts", + meta_file_train="train.csv", + meta_file_val="", + path=os.path.join(CML_DATASET_PATH, "cml_tts_dataset_german_v0.1/"), + language="ge", +) + +sp_config = BaseDatasetConfig( + formatter="cml_tts", + dataset_name="cml_tts", + meta_file_train="train.csv", + meta_file_val="", + path=os.path.join(CML_DATASET_PATH, "cml_tts_dataset_spanish_v0.1/"), + language="sp", +) + +# Add here all datasets configs Note: If you want to add new datasets, just add them here and it will automatically compute the speaker embeddings (d-vectors) for this new dataset :) +DATASETS_CONFIG_LIST = [libritts_config, pt_config, pl_config, it_config, fr_config, du_config, ge_config, sp_config] + +### Extract speaker embeddings +SPEAKER_ENCODER_CHECKPOINT_PATH = ( + "https://github.com/coqui-ai/TTS/releases/download/speaker_encoder_model/model_se.pth.tar" +) +SPEAKER_ENCODER_CONFIG_PATH = "https://github.com/coqui-ai/TTS/releases/download/speaker_encoder_model/config_se.json" + +D_VECTOR_FILES = [] # List of speaker embeddings/d-vectors to be used during the training + +# Iterates all the dataset configs checking if the speakers embeddings are already computated, if not compute it +for dataset_conf in DATASETS_CONFIG_LIST: + # Check if the embeddings weren't already computed, if not compute it + embeddings_file = os.path.join(dataset_conf.path, "speakers.pth") + if not os.path.isfile(embeddings_file): + print(f">>> Computing the speaker embeddings for the {dataset_conf.dataset_name} dataset") + compute_embeddings( + SPEAKER_ENCODER_CHECKPOINT_PATH, + SPEAKER_ENCODER_CONFIG_PATH, + embeddings_file, + old_speakers_file=None, + config_dataset_path=None, + formatter_name=dataset_conf.formatter, + dataset_name=dataset_conf.dataset_name, + dataset_path=dataset_conf.path, + meta_file_train=dataset_conf.meta_file_train, + meta_file_val=dataset_conf.meta_file_val, + disable_cuda=False, + no_eval=False, + ) + D_VECTOR_FILES.append(embeddings_file) + + +# Audio config used in training. +audio_config = VitsAudioConfig( + sample_rate=SAMPLE_RATE, + hop_length=256, + win_length=1024, + fft_size=1024, + mel_fmin=0.0, + mel_fmax=None, + num_mels=80, +) + +# Init VITSArgs setting the arguments that are needed for the YourTTS model +model_args = VitsArgs( + spec_segment_size=62, + hidden_channels=192, + hidden_channels_ffn_text_encoder=768, + num_heads_text_encoder=2, + num_layers_text_encoder=10, + kernel_size_text_encoder=3, + dropout_p_text_encoder=0.1, + d_vector_file=D_VECTOR_FILES, + use_d_vector_file=True, + d_vector_dim=512, + speaker_encoder_model_path=SPEAKER_ENCODER_CHECKPOINT_PATH, + speaker_encoder_config_path=SPEAKER_ENCODER_CONFIG_PATH, + resblock_type_decoder="2", # In the paper, we accidentally trained the YourTTS using ResNet blocks type 2, if you like you can use the ResNet blocks type 1 like the VITS model + # Useful parameters to enable the Speaker Consistency Loss (SCL) described in the paper + use_speaker_encoder_as_loss=False, + # Useful parameters to enable multilingual training + use_language_embedding=True, + embedded_language_dim=4, +) + +# General training config, here you can change the batch size and others useful parameters +config = VitsConfig( + output_path=OUT_PATH, + model_args=model_args, + run_name=RUN_NAME, + project_name="YourTTS", + run_description=""" + - YourTTS trained using CML-TTS and LibriTTS datasets + """, + dashboard_logger="tensorboard", + logger_uri=None, + audio=audio_config, + batch_size=BATCH_SIZE, + batch_group_size=48, + eval_batch_size=BATCH_SIZE, + num_loader_workers=8, + eval_split_max_size=256, + print_step=50, + plot_step=100, + log_model_step=1000, + save_step=5000, + save_n_checkpoints=2, + save_checkpoints=True, + target_loss="loss_1", + print_eval=False, + use_phonemes=False, + phonemizer="espeak", + phoneme_language="en", + compute_input_seq_cache=True, + add_blank=True, + text_cleaner="multilingual_cleaners", + characters=CharactersConfig( + characters_class="TTS.tts.models.vits.VitsCharacters", + pad="_", + eos="&", + bos="*", + blank=None, + characters="ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz\u00a1\u00a3\u00b7\u00b8\u00c0\u00c1\u00c2\u00c3\u00c4\u00c5\u00c7\u00c8\u00c9\u00ca\u00cb\u00cc\u00cd\u00ce\u00cf\u00d1\u00d2\u00d3\u00d4\u00d5\u00d6\u00d9\u00da\u00db\u00dc\u00df\u00e0\u00e1\u00e2\u00e3\u00e4\u00e5\u00e7\u00e8\u00e9\u00ea\u00eb\u00ec\u00ed\u00ee\u00ef\u00f1\u00f2\u00f3\u00f4\u00f5\u00f6\u00f9\u00fa\u00fb\u00fc\u0101\u0104\u0105\u0106\u0107\u010b\u0119\u0141\u0142\u0143\u0144\u0152\u0153\u015a\u015b\u0161\u0178\u0179\u017a\u017b\u017c\u020e\u04e7\u05c2\u1b20", + punctuations="\u2014!'(),-.:;?\u00bf ", + phonemes="iy\u0268\u0289\u026fu\u026a\u028f\u028ae\u00f8\u0258\u0259\u0275\u0264o\u025b\u0153\u025c\u025e\u028c\u0254\u00e6\u0250a\u0276\u0251\u0252\u1d7b\u0298\u0253\u01c0\u0257\u01c3\u0284\u01c2\u0260\u01c1\u029bpbtd\u0288\u0256c\u025fk\u0261q\u0262\u0294\u0274\u014b\u0272\u0273n\u0271m\u0299r\u0280\u2c71\u027e\u027d\u0278\u03b2fv\u03b8\u00f0sz\u0283\u0292\u0282\u0290\u00e7\u029dx\u0263\u03c7\u0281\u0127\u0295h\u0266\u026c\u026e\u028b\u0279\u027bj\u0270l\u026d\u028e\u029f\u02c8\u02cc\u02d0\u02d1\u028dw\u0265\u029c\u02a2\u02a1\u0255\u0291\u027a\u0267\u025a\u02de\u026b'\u0303' ", + is_unique=True, + is_sorted=True, + ), + phoneme_cache_path=None, + precompute_num_workers=12, + start_by_longest=True, + datasets=DATASETS_CONFIG_LIST, + cudnn_benchmark=False, + max_audio_len=SAMPLE_RATE * MAX_AUDIO_LEN_IN_SECONDS, + mixed_precision=False, + test_sentences=[ + ["Voc\u00ea ter\u00e1 a vista do topo da montanha que voc\u00ea escalar.", "9351", None, "pt-br"], + ["Quando voc\u00ea n\u00e3o corre nenhum risco, voc\u00ea arrisca tudo.", "12249", None, "pt-br"], + [ + "S\u00e3o necess\u00e1rios muitos anos de trabalho para ter sucesso da noite para o dia.", + "2961", + None, + "pt-br", + ], + ["You'll have the view of the top of the mountain that you climb.", "LTTS_6574", None, "en"], + ["When you don\u2019t take any risks, you risk everything.", "LTTS_6206", None, "en"], + ["Are necessary too many years of work to succeed overnight.", "LTTS_5717", None, "en"], + ["Je hebt uitzicht op de top van de berg die je beklimt.", "960", None, "du"], + ["Als je geen risico neemt, riskeer je alles.", "2450", None, "du"], + ["Zijn te veel jaren werk nodig om van de ene op de andere dag te slagen.", "10984", None, "du"], + ["Vous aurez la vue sur le sommet de la montagne que vous gravirez.", "6381", None, "fr"], + ["Quand tu ne prends aucun risque, tu risques tout.", "2825", None, "fr"], + [ + "Sont n\u00e9cessaires trop d'ann\u00e9es de travail pour r\u00e9ussir du jour au lendemain.", + "1844", + None, + "fr", + ], + ["Sie haben die Aussicht auf die Spitze des Berges, den Sie erklimmen.", "2314", None, "ge"], + ["Wer nichts riskiert, riskiert alles.", "7483", None, "ge"], + ["Es sind zu viele Jahre Arbeit notwendig, um \u00fcber Nacht erfolgreich zu sein.", "12461", None, "ge"], + ["Avrai la vista della cima della montagna che sali.", "4998", None, "it"], + ["Quando non corri alcun rischio, rischi tutto.", "6744", None, "it"], + ["Are necessary too many years of work to succeed overnight.", "1157", None, "it"], + [ + "B\u0119dziesz mie\u0107 widok na szczyt g\u00f3ry, na kt\u00f3r\u0105 si\u0119 wspinasz.", + "7014", + None, + "pl", + ], + ["Kiedy nie podejmujesz \u017cadnego ryzyka, ryzykujesz wszystko.", "3492", None, "pl"], + [ + "Potrzebne s\u0105 zbyt wiele lat pracy, aby odnie\u015b\u0107 sukces z dnia na dzie\u0144.", + "1890", + None, + "pl", + ], + ["Tendr\u00e1s la vista de la cima de la monta\u00f1a que subes", "101", None, "sp"], + ["Cuando no te arriesgas, lo arriesgas todo.", "5922", None, "sp"], + [ + "Son necesarios demasiados a\u00f1os de trabajo para triunfar de la noche a la ma\u00f1ana.", + "10246", + None, + "sp", + ], + ], + # Enable the weighted sampler + use_weighted_sampler=True, + # Ensures that all speakers are seen in the training batch equally no matter how many samples each speaker has + # weighted_sampler_attrs={"language": 1.0, "speaker_name": 1.0}, + weighted_sampler_attrs={"language": 1.0}, + weighted_sampler_multipliers={ + # "speaker_name": { + # you can force the batching scheme to give a higher weight to a certain speaker and then this speaker will appears more frequently on the batch. + # It will speedup the speaker adaptation process. Considering the CML train dataset and "new_speaker" as the speaker name of the speaker that you want to adapt. + # The line above will make the balancer consider the "new_speaker" as 106 speakers so 1/4 of the number of speakers present on CML dataset. + # 'new_speaker': 106, # (CML tot. train speaker)/4 = (424/4) = 106 + # } + }, + # It defines the Speaker Consistency Loss (SCL) ฮฑ to 9 like the YourTTS paper + speaker_encoder_loss_alpha=9.0, +) + +# Load all the datasets samples and split traning and evaluation sets +train_samples, eval_samples = load_tts_samples( + config.datasets, + eval_split=True, + eval_split_max_size=config.eval_split_max_size, + eval_split_size=config.eval_split_size, +) + +# Init the model +model = Vits.init_from_config(config) + +# Init the trainer and ๐Ÿš€ +trainer = Trainer( + TrainerArgs(restore_path=RESTORE_PATH, skip_train_epoch=SKIP_TRAIN_EPOCH), + config, + output_path=OUT_PATH, + model=model, + train_samples=train_samples, + eval_samples=eval_samples, +) +trainer.fit() diff --git a/TTS/recipes/multilingual/vits_tts/train_vits_tts.py b/TTS/recipes/multilingual/vits_tts/train_vits_tts.py new file mode 100644 index 0000000000000000000000000000000000000000..89119aa1ff9321b8e8d185c8021f4a4c75b113c5 --- /dev/null +++ b/TTS/recipes/multilingual/vits_tts/train_vits_tts.py @@ -0,0 +1,129 @@ +import os +from glob import glob + +from trainer import Trainer, TrainerArgs + +from TTS.tts.configs.shared_configs import BaseDatasetConfig +from TTS.tts.configs.vits_config import VitsConfig +from TTS.tts.datasets import load_tts_samples +from TTS.tts.models.vits import CharactersConfig, Vits, VitsArgs, VitsAudioConfig +from TTS.tts.utils.languages import LanguageManager +from TTS.tts.utils.speakers import SpeakerManager +from TTS.tts.utils.text.tokenizer import TTSTokenizer +from TTS.utils.audio import AudioProcessor + +output_path = os.path.dirname(os.path.abspath(__file__)) + +mailabs_path = "/home/julian/workspace/mailabs/**" +dataset_paths = glob(mailabs_path) +dataset_config = [ + BaseDatasetConfig(formatter="mailabs", meta_file_train=None, path=path, language=path.split("/")[-1]) + for path in dataset_paths +] + +audio_config = VitsAudioConfig( + sample_rate=16000, + win_length=1024, + hop_length=256, + num_mels=80, + mel_fmin=0, + mel_fmax=None, +) + +vitsArgs = VitsArgs( + use_language_embedding=True, + embedded_language_dim=4, + use_speaker_embedding=True, + use_sdp=False, +) + +config = VitsConfig( + model_args=vitsArgs, + audio=audio_config, + run_name="vits_vctk", + use_speaker_embedding=True, + batch_size=32, + eval_batch_size=16, + batch_group_size=0, + num_loader_workers=4, + num_eval_loader_workers=4, + run_eval=True, + test_delay_epochs=-1, + epochs=1000, + text_cleaner="multilingual_cleaners", + use_phonemes=False, + phoneme_language="en-us", + phoneme_cache_path=os.path.join(output_path, "phoneme_cache"), + compute_input_seq_cache=True, + print_step=25, + use_language_weighted_sampler=True, + print_eval=False, + mixed_precision=False, + min_audio_len=32 * 256 * 4, + max_audio_len=160000, + output_path=output_path, + datasets=dataset_config, + characters=CharactersConfig( + characters_class="TTS.tts.models.vits.VitsCharacters", + pad="", + eos="", + bos="", + blank="", + characters="!ยก'(),-.:;ยฟ?abcdefghijklmnopqrstuvwxyzยตรŸร รกรขรครฅรฆรงรจรฉรชรซรฌรญรฎรฏรฑรฒรณรดรถรนรบรปรผฤ…ฤ‡ฤ™ล‚ล„ล“ล›ลŸลบลผฦ’ะฐะฑะฒะณะดะตะถะทะธะนะบะปะผะฝะพะฟั€ัั‚ัƒั„ั…ั†ั‡ัˆั‰ัŠั‹ัŒััŽัั‘ั”ั–ั—า‘ำง ยซยฐยฑยตยป$%&โ€˜โ€™โ€šโ€œ`โ€โ€ž", + punctuations="!ยก'(),-.:;ยฟ? ", + phonemes=None, + ), + test_sentences=[ + [ + "It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent.", + "mary_ann", + None, + "en_US", + ], + [ + "Il m'a fallu beaucoup de temps pour d\u00e9velopper une voix, et maintenant que je l'ai, je ne vais pas me taire.", + "ezwa", + None, + "fr_FR", + ], + ["Ich finde, dieses Startup ist wirklich unglaublich.", "eva_k", None, "de_DE"], + ["ะฏ ะดัƒะผะฐัŽ, ั‡ั‚ะพ ัั‚ะพั‚ ัั‚ะฐั€ั‚ะฐะฟ ะดะตะนัั‚ะฒะธั‚ะตะปัŒะฝะพ ัƒะดะธะฒะธั‚ะตะปัŒะฝั‹ะน.", "oblomov", None, "ru_RU"], + ], +) + +# force the convertion of the custom characters to a config attribute +config.from_dict(config.to_dict()) + +# init audio processor +ap = AudioProcessor(**config.audio.to_dict()) + +# load training samples +train_samples, eval_samples = load_tts_samples( + dataset_config, + eval_split=True, + eval_split_max_size=config.eval_split_max_size, + eval_split_size=config.eval_split_size, +) + +# init speaker manager for multi-speaker training +# it maps speaker-id to speaker-name in the model and data-loader +speaker_manager = SpeakerManager() +speaker_manager.set_ids_from_data(train_samples + eval_samples, parse_key="speaker_name") +config.model_args.num_speakers = speaker_manager.num_speakers + +language_manager = LanguageManager(config=config) +config.model_args.num_languages = language_manager.num_languages + +# INITIALIZE THE TOKENIZER +# Tokenizer is used to convert text to sequences of token IDs. +# config is updated with the default characters if not defined in the config. +tokenizer, config = TTSTokenizer.init_from_config(config) + +# init model +model = Vits(config, ap, tokenizer, speaker_manager, language_manager) + +# init the trainer and ๐Ÿš€ +trainer = Trainer( + TrainerArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples +) +trainer.fit() diff --git a/TTS/recipes/multilingual/vits_tts/train_vits_tts_phonemes.py b/TTS/recipes/multilingual/vits_tts/train_vits_tts_phonemes.py new file mode 100644 index 0000000000000000000000000000000000000000..24e9e51a9428022cbc60750dcf1f6216a018a247 --- /dev/null +++ b/TTS/recipes/multilingual/vits_tts/train_vits_tts_phonemes.py @@ -0,0 +1,126 @@ +import os +from glob import glob + +from trainer import Trainer, TrainerArgs + +from TTS.tts.configs.shared_configs import BaseDatasetConfig +from TTS.tts.configs.vits_config import VitsConfig +from TTS.tts.datasets import load_tts_samples +from TTS.tts.models.vits import Vits, VitsArgs, VitsAudioConfig +from TTS.tts.utils.languages import LanguageManager +from TTS.tts.utils.speakers import SpeakerManager +from TTS.tts.utils.text.tokenizer import TTSTokenizer +from TTS.utils.audio import AudioProcessor + +output_path = "/media/julian/Workdisk/train" + +mailabs_path = "/home/julian/workspace/mailabs/**" +dataset_paths = glob(mailabs_path) +dataset_config = [ + BaseDatasetConfig( + formatter="mailabs", + meta_file_train=None, + path=path, + language=path.split("/")[-1], # language code is the folder name + ) + for path in dataset_paths +] + +audio_config = VitsAudioConfig( + sample_rate=16000, + win_length=1024, + hop_length=256, + num_mels=80, + mel_fmin=0, + mel_fmax=None, +) + +vitsArgs = VitsArgs( + use_language_embedding=True, + embedded_language_dim=4, + use_speaker_embedding=True, + use_sdp=False, +) + +config = VitsConfig( + model_args=vitsArgs, + audio=audio_config, + run_name="vits_vctk", + use_speaker_embedding=True, + batch_size=32, + eval_batch_size=16, + batch_group_size=0, + num_loader_workers=12, + num_eval_loader_workers=12, + precompute_num_workers=12, + run_eval=True, + test_delay_epochs=-1, + epochs=1000, + text_cleaner="multilingual_cleaners", + use_phonemes=True, + phoneme_language=None, + phonemizer="multi_phonemizer", + phoneme_cache_path=os.path.join(output_path, "phoneme_cache"), + compute_input_seq_cache=True, + print_step=25, + use_language_weighted_sampler=True, + print_eval=False, + mixed_precision=False, + min_audio_len=audio_config.sample_rate, + max_audio_len=audio_config.sample_rate * 10, + output_path=output_path, + datasets=dataset_config, + test_sentences=[ + [ + "It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent.", + "mary_ann", + None, + "en-us", + ], + [ + "Il m'a fallu beaucoup de temps pour d\u00e9velopper une voix, et maintenant que je l'ai, je ne vais pas me taire.", + "ezwa", + None, + "fr-fr", + ], + ["Ich finde, dieses Startup ist wirklich unglaublich.", "eva_k", None, "de-de"], + ["ะฏ ะดัƒะผะฐัŽ, ั‡ั‚ะพ ัั‚ะพั‚ ัั‚ะฐั€ั‚ะฐะฟ ะดะตะนัั‚ะฒะธั‚ะตะปัŒะฝะพ ัƒะดะธะฒะธั‚ะตะปัŒะฝั‹ะน.", "nikolaev", None, "ru"], + ], +) + +# force the convertion of the custom characters to a config attribute +config.from_dict(config.to_dict()) + +# init audio processor +ap = AudioProcessor(**config.audio.to_dict()) + +# load training samples +train_samples, eval_samples = load_tts_samples( + dataset_config, + eval_split=True, + eval_split_max_size=config.eval_split_max_size, + eval_split_size=config.eval_split_size, +) + +# init speaker manager for multi-speaker training +# it maps speaker-id to speaker-name in the model and data-loader +speaker_manager = SpeakerManager() +speaker_manager.set_ids_from_data(train_samples + eval_samples, parse_key="speaker_name") +config.model_args.num_speakers = speaker_manager.num_speakers + +language_manager = LanguageManager(config=config) +config.model_args.num_languages = language_manager.num_languages + +# INITIALIZE THE TOKENIZER +# Tokenizer is used to convert text to sequences of token IDs. +# config is updated with the default characters if not defined in the config. +tokenizer, config = TTSTokenizer.init_from_config(config) + +# init model +model = Vits(config, ap, tokenizer, speaker_manager, language_manager) + +# init the trainer and ๐Ÿš€ +trainer = Trainer( + TrainerArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples +) +trainer.fit() diff --git a/TTS/recipes/thorsten_DE/README.md b/TTS/recipes/thorsten_DE/README.md new file mode 100644 index 0000000000000000000000000000000000000000..3ef0dbaa8b631f8fc0e5e4d38422dcead94799eb --- /dev/null +++ b/TTS/recipes/thorsten_DE/README.md @@ -0,0 +1,15 @@ +# ๐Ÿธ๐Ÿ’ฌ TTS Thorsten Recipes + +For running the recipes you need the [Thorsten-Voice](https://github.com/thorstenMueller/Thorsten-Voice) dataset. + +You can download it manually from [the official website](https://www.thorsten-voice.de/) or use ```download_thorsten_de.sh``` alternatively running any of the **train_modelX.py**scripts will download the dataset if not already present. + +Then, go to your desired model folder and run the training. + + Running Python files. (Choose the desired GPU ID for your run and set ```CUDA_VISIBLE_DEVICES```) + ```terminal + CUDA_VISIBLE_DEVICES="0" python train_modelX.py + ``` + +๐Ÿ’ก Note that these runs are just templates to help you start training your first model. They are not optimized for the best +result. Double-check the configurations and feel free to share your experiments to find better parameters together ๐Ÿ’ช. diff --git a/TTS/recipes/thorsten_DE/align_tts/train_aligntts.py b/TTS/recipes/thorsten_DE/align_tts/train_aligntts.py new file mode 100644 index 0000000000000000000000000000000000000000..32cfd9967fa55a3bd60992f7bb409d6d388efa1b --- /dev/null +++ b/TTS/recipes/thorsten_DE/align_tts/train_aligntts.py @@ -0,0 +1,84 @@ +import os + +from trainer import Trainer, TrainerArgs + +from TTS.tts.configs.align_tts_config import AlignTTSConfig +from TTS.tts.configs.shared_configs import BaseDatasetConfig +from TTS.tts.datasets import load_tts_samples +from TTS.tts.models.align_tts import AlignTTS +from TTS.tts.utils.text.tokenizer import TTSTokenizer +from TTS.utils.audio import AudioProcessor +from TTS.utils.downloaders import download_thorsten_de + +output_path = os.path.dirname(os.path.abspath(__file__)) + +# init configs +dataset_config = BaseDatasetConfig( + formatter="thorsten", meta_file_train="metadata.csv", path=os.path.join(output_path, "../thorsten-de/") +) + +# download dataset if not already present +if not os.path.exists(dataset_config.path): + print("Downloading dataset") + download_thorsten_de(os.path.split(os.path.abspath(dataset_config.path))[0]) + +config = AlignTTSConfig( + batch_size=32, + eval_batch_size=16, + num_loader_workers=4, + num_eval_loader_workers=4, + run_eval=True, + test_delay_epochs=-1, + epochs=1000, + text_cleaner="phoneme_cleaners", + use_phonemes=False, + phoneme_language="de", + phoneme_cache_path=os.path.join(output_path, "phoneme_cache"), + print_step=25, + print_eval=True, + mixed_precision=False, + test_sentences=[ + "Es hat mich viel Zeit gekostet ein Stimme zu entwickeln, jetzt wo ich sie habe werde ich nicht mehr schweigen.", + "Sei eine Stimme, kein Echo.", + "Es tut mir Leid David. Das kann ich leider nicht machen.", + "Dieser Kuchen ist groรŸartig. Er ist so lecker und feucht.", + "Vor dem 22. November 1963.", + ], + output_path=output_path, + datasets=[dataset_config], +) + +# INITIALIZE THE AUDIO PROCESSOR +# Audio processor is used for feature extraction and audio I/O. +# It mainly serves to the dataloader and the training loggers. +ap = AudioProcessor.init_from_config(config) + +# INITIALIZE THE TOKENIZER +# Tokenizer is used to convert text to sequences of token IDs. +# If characters are not defined in the config, default characters are passed to the config +tokenizer, config = TTSTokenizer.init_from_config(config) + +# LOAD DATA SAMPLES +# Each sample is a list of ```[text, audio_file_path, speaker_name]``` +# You can define your custom sample loader returning the list of samples. +# Or define your custom formatter and pass it to the `load_tts_samples`. +# Check `TTS.tts.datasets.load_tts_samples` for more details. +train_samples, eval_samples = load_tts_samples( + dataset_config, + eval_split=True, + eval_split_max_size=config.eval_split_max_size, + eval_split_size=config.eval_split_size, +) + +# init model +model = AlignTTS(config, ap, tokenizer) + +# INITIALIZE THE TRAINER +# Trainer provides a generic API to train all the ๐ŸธTTS models with all its perks like mixed-precision training, +# distributed training, etc. +trainer = Trainer( + TrainerArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples +) + +# AND... 3,2,1... ๐Ÿš€ +trainer.fit() diff --git a/TTS/recipes/thorsten_DE/download_thorsten_DE.sh b/TTS/recipes/thorsten_DE/download_thorsten_DE.sh new file mode 100644 index 0000000000000000000000000000000000000000..27809ce50741e4491338f1cf04cbff52df1e26d9 --- /dev/null +++ b/TTS/recipes/thorsten_DE/download_thorsten_DE.sh @@ -0,0 +1,21 @@ +# create venv +python3 -m venv env +source .env/bin/activate +pip install pip --upgrade + +# download Thorsten_DE dataset +pip install gdown +gdown --id 1yKJM1LAOQpRVojKunD9r8WN_p5KzBxjc -O dataset.tgz +tar -xzf dataset.tgz + +# create train-val splits +shuf LJSpeech-1.1/metadata.csv > LJSpeech-1.1/metadata_shuf.csv +head -n 20668 LJSpeech-1.1/metadata_shuf.csv > LJSpeech-1.1/metadata_train.csv +tail -n 2000 LJSpeech-1.1/metadata_shuf.csv > LJSpeech-1.1/metadata_val.csv + +# rename dataset and remove archive +mv LJSpeech-1.1 thorsten-de +rm dataset.tgz + +# destry venv +rm -rf env diff --git a/TTS/recipes/thorsten_DE/glow_tts/train_glowtts.py b/TTS/recipes/thorsten_DE/glow_tts/train_glowtts.py new file mode 100644 index 0000000000000000000000000000000000000000..00c67fb5d8c75afb80e6ed860dc0817525db8ff3 --- /dev/null +++ b/TTS/recipes/thorsten_DE/glow_tts/train_glowtts.py @@ -0,0 +1,97 @@ +import os + +# Trainer: Where the โœจ๏ธ happens. +# TrainingArgs: Defines the set of arguments of the Trainer. +from trainer import Trainer, TrainerArgs + +# GlowTTSConfig: all model related values for training, validating and testing. +from TTS.tts.configs.glow_tts_config import GlowTTSConfig + +# BaseDatasetConfig: defines name, formatter and path of the dataset. +from TTS.tts.configs.shared_configs import BaseDatasetConfig +from TTS.tts.datasets import load_tts_samples +from TTS.tts.models.glow_tts import GlowTTS +from TTS.tts.utils.text.tokenizer import TTSTokenizer +from TTS.utils.audio import AudioProcessor +from TTS.utils.downloaders import download_thorsten_de + +# we use the same path as this script as our training folder. +output_path = os.path.dirname(os.path.abspath(__file__)) + +# DEFINE DATASET CONFIG +# Set LJSpeech as our target dataset and define its path. +# You can also use a simple Dict to define the dataset and pass it to your custom formatter. +dataset_config = BaseDatasetConfig( + formatter="thorsten", meta_file_train="metadata.csv", path=os.path.join(output_path, "../thorsten-de/") +) + +# download dataset if not already present +if not os.path.exists(dataset_config.path): + print("Downloading dataset") + download_thorsten_de(os.path.split(os.path.abspath(dataset_config.path))[0]) + +# INITIALIZE THE TRAINING CONFIGURATION +# Configure the model. Every config class inherits the BaseTTSConfig. +config = GlowTTSConfig( + batch_size=32, + eval_batch_size=16, + num_loader_workers=4, + num_eval_loader_workers=4, + run_eval=True, + test_delay_epochs=-1, + epochs=1000, + text_cleaner="phoneme_cleaners", + use_phonemes=True, + phoneme_language="de", + phoneme_cache_path=os.path.join(output_path, "phoneme_cache"), + print_step=25, + print_eval=False, + mixed_precision=True, + test_sentences=[ + "Es hat mich viel Zeit gekostet ein Stimme zu entwickeln, jetzt wo ich sie habe werde ich nicht mehr schweigen.", + "Sei eine Stimme, kein Echo.", + "Es tut mir Leid David. Das kann ich leider nicht machen.", + "Dieser Kuchen ist groรŸartig. Er ist so lecker und feucht.", + "Vor dem 22. November 1963.", + ], + output_path=output_path, + datasets=[dataset_config], +) + +# INITIALIZE THE AUDIO PROCESSOR +# Audio processor is used for feature extraction and audio I/O. +# It mainly serves to the dataloader and the training loggers. +ap = AudioProcessor.init_from_config(config) + +# INITIALIZE THE TOKENIZER +# Tokenizer is used to convert text to sequences of token IDs. +# If characters are not defined in the config, default characters are passed to the config +tokenizer, config = TTSTokenizer.init_from_config(config) + +# LOAD DATA SAMPLES +# Each sample is a list of ```[text, audio_file_path, speaker_name]``` +# You can define your custom sample loader returning the list of samples. +# Or define your custom formatter and pass it to the `load_tts_samples`. +# Check `TTS.tts.datasets.load_tts_samples` for more details. +train_samples, eval_samples = load_tts_samples( + dataset_config, + eval_split=True, + eval_split_max_size=config.eval_split_max_size, + eval_split_size=config.eval_split_size, +) + +# INITIALIZE THE MODEL +# Models take a config object and a speaker manager as input +# Config defines the details of the model like the number of layers, the size of the embedding, etc. +# Speaker manager is used by multi-speaker models. +model = GlowTTS(config, ap, tokenizer, speaker_manager=None) + +# INITIALIZE THE TRAINER +# Trainer provides a generic API to train all the ๐ŸธTTS models with all its perks like mixed-precision training, +# distributed training, etc. +trainer = Trainer( + TrainerArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples +) + +# AND... 3,2,1... ๐Ÿš€ +trainer.fit() diff --git a/TTS/recipes/thorsten_DE/hifigan/train_hifigan.py b/TTS/recipes/thorsten_DE/hifigan/train_hifigan.py new file mode 100644 index 0000000000000000000000000000000000000000..b476780211154266bf3683b8657b40481bba1366 --- /dev/null +++ b/TTS/recipes/thorsten_DE/hifigan/train_hifigan.py @@ -0,0 +1,53 @@ +import os + +from trainer import Trainer, TrainerArgs + +from TTS.utils.audio import AudioProcessor +from TTS.utils.downloaders import download_thorsten_de +from TTS.vocoder.configs import HifiganConfig +from TTS.vocoder.datasets.preprocess import load_wav_data +from TTS.vocoder.models.gan import GAN + +output_path = os.path.dirname(os.path.abspath(__file__)) + +config = HifiganConfig( + batch_size=32, + eval_batch_size=16, + num_loader_workers=4, + num_eval_loader_workers=4, + run_eval=True, + test_delay_epochs=5, + epochs=1000, + seq_len=8192, + pad_short=2000, + use_noise_augment=True, + eval_split_size=10, + print_step=25, + print_eval=False, + mixed_precision=False, + lr_gen=1e-4, + lr_disc=1e-4, + data_path=os.path.join(output_path, "../thorsten-de/wavs/"), + output_path=output_path, +) + +# download dataset if not already present +if not os.path.exists(config.data_path): + print("Downloading dataset") + download_path = os.path.abspath(os.path.join(os.path.abspath(config.data_path), "../../")) + download_thorsten_de(download_path) + +# init audio processor +ap = AudioProcessor(**config.audio.to_dict()) + +# load training samples +eval_samples, train_samples = load_wav_data(config.data_path, config.eval_split_size) + +# init model +model = GAN(config, ap) + +# init the trainer and ๐Ÿš€ +trainer = Trainer( + TrainerArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples +) +trainer.fit() diff --git a/TTS/recipes/thorsten_DE/multiband_melgan/train_multiband_melgan.py b/TTS/recipes/thorsten_DE/multiband_melgan/train_multiband_melgan.py new file mode 100644 index 0000000000000000000000000000000000000000..2951b1495a78fa7f0ded9dbd4201af88206267cf --- /dev/null +++ b/TTS/recipes/thorsten_DE/multiband_melgan/train_multiband_melgan.py @@ -0,0 +1,53 @@ +import os + +from trainer import Trainer, TrainerArgs + +from TTS.utils.audio import AudioProcessor +from TTS.utils.downloaders import download_thorsten_de +from TTS.vocoder.configs import MultibandMelganConfig +from TTS.vocoder.datasets.preprocess import load_wav_data +from TTS.vocoder.models.gan import GAN + +output_path = os.path.dirname(os.path.abspath(__file__)) + +config = MultibandMelganConfig( + batch_size=32, + eval_batch_size=16, + num_loader_workers=4, + num_eval_loader_workers=4, + run_eval=True, + test_delay_epochs=5, + epochs=1000, + seq_len=8192, + pad_short=2000, + use_noise_augment=True, + eval_split_size=10, + print_step=25, + print_eval=False, + mixed_precision=False, + lr_gen=1e-4, + lr_disc=1e-4, + data_path=os.path.join(output_path, "../thorsten-de/wavs/"), + output_path=output_path, +) + +# download dataset if not already present +if not os.path.exists(config.data_path): + print("Downloading dataset") + download_path = os.path.abspath(os.path.join(os.path.abspath(config.data_path), "../../")) + download_thorsten_de(download_path) + +# init audio processor +ap = AudioProcessor(**config.audio.to_dict()) + +# load training samples +eval_samples, train_samples = load_wav_data(config.data_path, config.eval_split_size) + +# init model +model = GAN(config, ap) + +# init the trainer and ๐Ÿš€ +trainer = Trainer( + TrainerArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples +) +trainer.fit() diff --git a/TTS/recipes/thorsten_DE/speedy_speech/train_speedy_speech.py b/TTS/recipes/thorsten_DE/speedy_speech/train_speedy_speech.py new file mode 100644 index 0000000000000000000000000000000000000000..a3d0b9db2b3b2c2edeaf40b90b120117e79f5077 --- /dev/null +++ b/TTS/recipes/thorsten_DE/speedy_speech/train_speedy_speech.py @@ -0,0 +1,101 @@ +import os + +from trainer import Trainer, TrainerArgs + +from TTS.config import BaseAudioConfig, BaseDatasetConfig +from TTS.tts.configs.speedy_speech_config import SpeedySpeechConfig +from TTS.tts.datasets import load_tts_samples +from TTS.tts.models.forward_tts import ForwardTTS +from TTS.tts.utils.text.tokenizer import TTSTokenizer +from TTS.utils.audio import AudioProcessor +from TTS.utils.downloaders import download_thorsten_de + +output_path = os.path.dirname(os.path.abspath(__file__)) +dataset_config = BaseDatasetConfig( + formatter="thorsten", meta_file_train="metadata.csv", path=os.path.join(output_path, "../thorsten-de/") +) + +# download dataset if not already present +if not os.path.exists(dataset_config.path): + print("Downloading dataset") + download_thorsten_de(os.path.split(os.path.abspath(dataset_config.path))[0]) + +audio_config = BaseAudioConfig( + sample_rate=22050, + do_trim_silence=True, + trim_db=60.0, + signal_norm=False, + mel_fmin=0.0, + mel_fmax=8000, + spec_gain=1.0, + log_func="np.log", + ref_level_db=20, + preemphasis=0.0, +) + +config = SpeedySpeechConfig( + run_name="speedy_speech_thorsten-de", + audio=audio_config, + batch_size=32, + eval_batch_size=16, + num_loader_workers=4, + num_eval_loader_workers=4, + compute_input_seq_cache=True, + run_eval=True, + test_delay_epochs=-1, + epochs=1000, + min_audio_len=11050, # need to up min_audio_len to avois speedy speech error + text_cleaner="phoneme_cleaners", + use_phonemes=True, + phoneme_language="de", + phoneme_cache_path=os.path.join(output_path, "phoneme_cache"), + precompute_num_workers=4, + print_step=50, + print_eval=False, + mixed_precision=False, + test_sentences=[ + "Es hat mich viel Zeit gekostet ein Stimme zu entwickeln, jetzt wo ich sie habe werde ich nicht mehr schweigen.", + "Sei eine Stimme, kein Echo.", + "Es tut mir Leid David. Das kann ich leider nicht machen.", + "Dieser Kuchen ist groรŸartig. Er ist so lecker und feucht.", + "Vor dem 22. November 1963.", + ], + max_seq_len=500000, + output_path=output_path, + datasets=[dataset_config], +) + +# INITIALIZE THE AUDIO PROCESSOR +# Audio processor is used for feature extraction and audio I/O. +# It mainly serves to the dataloader and the training loggers. +ap = AudioProcessor.init_from_config(config) + +# INITIALIZE THE TOKENIZER +# Tokenizer is used to convert text to sequences of token IDs. +# If characters are not defined in the config, default characters are passed to the config +tokenizer, config = TTSTokenizer.init_from_config(config) + +# LOAD DATA SAMPLES +# Each sample is a list of ```[text, audio_file_path, speaker_name]``` +# You can define your custom sample loader returning the list of samples. +# Or define your custom formatter and pass it to the `load_tts_samples`. +# Check `TTS.tts.datasets.load_tts_samples` for more details. +train_samples, eval_samples = load_tts_samples( + dataset_config, + eval_split=True, + eval_split_max_size=config.eval_split_max_size, + eval_split_size=config.eval_split_size, +) + +# init model +model = ForwardTTS(config, ap, tokenizer) + +# INITIALIZE THE TRAINER +# Trainer provides a generic API to train all the ๐ŸธTTS models with all its perks like mixed-precision training, +# distributed training, etc. +trainer = Trainer( + TrainerArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples +) + +# AND... 3,2,1... ๐Ÿš€ +trainer.fit() diff --git a/TTS/recipes/thorsten_DE/tacotron2-DDC/train_tacotron_ddc.py b/TTS/recipes/thorsten_DE/tacotron2-DDC/train_tacotron_ddc.py new file mode 100644 index 0000000000000000000000000000000000000000..bc0274f5af2a6c1096c89e41d8b2e359fe5432f6 --- /dev/null +++ b/TTS/recipes/thorsten_DE/tacotron2-DDC/train_tacotron_ddc.py @@ -0,0 +1,108 @@ +import os + +from trainer import Trainer, TrainerArgs + +from TTS.config.shared_configs import BaseAudioConfig +from TTS.tts.configs.shared_configs import BaseDatasetConfig +from TTS.tts.configs.tacotron2_config import Tacotron2Config +from TTS.tts.datasets import load_tts_samples +from TTS.tts.models.tacotron2 import Tacotron2 +from TTS.tts.utils.text.tokenizer import TTSTokenizer +from TTS.utils.audio import AudioProcessor +from TTS.utils.downloaders import download_thorsten_de + +# from TTS.tts.datasets.tokenizer import Tokenizer +output_path = os.path.dirname(os.path.abspath(__file__)) + +# init configs +dataset_config = BaseDatasetConfig( + formatter="thorsten", meta_file_train="metadata.csv", path=os.path.join(output_path, "../thorsten-de/") +) + +# download dataset if not already present +if not os.path.exists(dataset_config.path): + print("Downloading dataset") + download_thorsten_de(os.path.split(os.path.abspath(dataset_config.path))[0]) + +audio_config = BaseAudioConfig( + sample_rate=22050, + do_trim_silence=True, + trim_db=60.0, + signal_norm=False, + mel_fmin=0.0, + mel_fmax=8000, + spec_gain=1.0, + log_func="np.log", + ref_level_db=20, + preemphasis=0.0, +) + +config = Tacotron2Config( # This is the config that is saved for the future use + audio=audio_config, + batch_size=40, # BS of 40 and max length of 10s will use about 20GB of GPU memory + eval_batch_size=16, + num_loader_workers=4, + num_eval_loader_workers=4, + run_eval=True, + test_delay_epochs=-1, + r=6, + gradual_training=[[0, 6, 64], [10000, 4, 32], [50000, 3, 32], [100000, 2, 32]], + double_decoder_consistency=True, + epochs=1000, + text_cleaner="phoneme_cleaners", + use_phonemes=True, + phoneme_language="de", + phoneme_cache_path=os.path.join(output_path, "phoneme_cache"), + precompute_num_workers=8, + print_step=25, + print_eval=True, + mixed_precision=False, + test_sentences=[ + "Es hat mich viel Zeit gekostet ein Stimme zu entwickeln, jetzt wo ich sie habe werde ich nicht mehr schweigen.", + "Sei eine Stimme, kein Echo.", + "Es tut mir Leid David. Das kann ich leider nicht machen.", + "Dieser Kuchen ist groรŸartig. Er ist so lecker und feucht.", + "Vor dem 22. November 1963.", + ], + # max audio length of 10 seconds, feel free to increase if you got more than 20GB GPU memory + max_audio_len=22050 * 10, + output_path=output_path, + datasets=[dataset_config], +) + +# init audio processor +ap = AudioProcessor(**config.audio.to_dict()) + +# INITIALIZE THE AUDIO PROCESSOR +# Audio processor is used for feature extraction and audio I/O. +# It mainly serves to the dataloader and the training loggers. +ap = AudioProcessor.init_from_config(config) + +# INITIALIZE THE TOKENIZER +# Tokenizer is used to convert text to sequences of token IDs. +# If characters are not defined in the config, default characters are passed to the config +tokenizer, config = TTSTokenizer.init_from_config(config) + +# LOAD DATA SAMPLES +# Each sample is a list of ```[text, audio_file_path, speaker_name]``` +# You can define your custom sample loader returning the list of samples. +# Or define your custom formatter and pass it to the `load_tts_samples`. +# Check `TTS.tts.datasets.load_tts_samples` for more details. +train_samples, eval_samples = load_tts_samples( + dataset_config, + eval_split=True, + eval_split_max_size=config.eval_split_max_size, + eval_split_size=config.eval_split_size, +) + +# INITIALIZE THE MODEL +# Models take a config object and a speaker manager as input +# Config defines the details of the model like the number of layers, the size of the embedding, etc. +# Speaker manager is used by multi-speaker models. +model = Tacotron2(config, ap, tokenizer, speaker_manager=None) + +# init the trainer and ๐Ÿš€ +trainer = Trainer( + TrainerArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples +) +trainer.fit() diff --git a/TTS/recipes/thorsten_DE/univnet/train_univnet.py b/TTS/recipes/thorsten_DE/univnet/train_univnet.py new file mode 100644 index 0000000000000000000000000000000000000000..7d82093d627cd6eea19df00f8828b1abc90aca27 --- /dev/null +++ b/TTS/recipes/thorsten_DE/univnet/train_univnet.py @@ -0,0 +1,52 @@ +import os + +from trainer import Trainer, TrainerArgs + +from TTS.utils.audio import AudioProcessor +from TTS.utils.downloaders import download_thorsten_de +from TTS.vocoder.configs import UnivnetConfig +from TTS.vocoder.datasets.preprocess import load_wav_data +from TTS.vocoder.models.gan import GAN + +output_path = os.path.dirname(os.path.abspath(__file__)) +config = UnivnetConfig( + batch_size=64, + eval_batch_size=16, + num_loader_workers=4, + num_eval_loader_workers=4, + run_eval=True, + test_delay_epochs=-1, + epochs=1000, + seq_len=8192, + pad_short=2000, + use_noise_augment=True, + eval_split_size=10, + print_step=25, + print_eval=False, + mixed_precision=False, + lr_gen=1e-4, + lr_disc=1e-4, + data_path=os.path.join(output_path, "../thorsten-de/wavs/"), + output_path=output_path, +) + +# download dataset if not already present +if not os.path.exists(config.data_path): + print("Downloading dataset") + download_path = os.path.abspath(os.path.join(os.path.abspath(config.data_path), "../../")) + download_thorsten_de(download_path) + +# init audio processor +ap = AudioProcessor(**config.audio.to_dict()) + +# load training samples +eval_samples, train_samples = load_wav_data(config.data_path, config.eval_split_size) + +# init model +model = GAN(config, ap) + +# init the trainer and ๐Ÿš€ +trainer = Trainer( + TrainerArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples +) +trainer.fit() diff --git a/TTS/recipes/thorsten_DE/vits_tts/train_vits.py b/TTS/recipes/thorsten_DE/vits_tts/train_vits.py new file mode 100644 index 0000000000000000000000000000000000000000..4ffa0f30f6d028f3b844144df6d3abf29835afaa --- /dev/null +++ b/TTS/recipes/thorsten_DE/vits_tts/train_vits.py @@ -0,0 +1,96 @@ +import os + +from trainer import Trainer, TrainerArgs + +from TTS.tts.configs.shared_configs import BaseDatasetConfig +from TTS.tts.configs.vits_config import VitsConfig +from TTS.tts.datasets import load_tts_samples +from TTS.tts.models.vits import Vits, VitsAudioConfig +from TTS.tts.utils.text.tokenizer import TTSTokenizer +from TTS.utils.audio import AudioProcessor +from TTS.utils.downloaders import download_thorsten_de + +output_path = os.path.dirname(os.path.abspath(__file__)) +dataset_config = BaseDatasetConfig( + formatter="thorsten", meta_file_train="metadata.csv", path=os.path.join(output_path, "../thorsten-de/") +) + +# download dataset if not already present +if not os.path.exists(dataset_config.path): + print("Downloading dataset") + download_thorsten_de(os.path.split(os.path.abspath(dataset_config.path))[0]) + +audio_config = VitsAudioConfig( + sample_rate=22050, + win_length=1024, + hop_length=256, + num_mels=80, + mel_fmin=0, + mel_fmax=None, +) + +config = VitsConfig( + audio=audio_config, + run_name="vits_thorsten-de", + batch_size=32, + eval_batch_size=16, + batch_group_size=5, + num_loader_workers=0, + num_eval_loader_workers=4, + run_eval=True, + test_delay_epochs=-1, + epochs=1000, + text_cleaner="phoneme_cleaners", + use_phonemes=True, + phoneme_language="de", + phoneme_cache_path=os.path.join(output_path, "phoneme_cache"), + compute_input_seq_cache=True, + print_step=25, + print_eval=True, + mixed_precision=True, + test_sentences=[ + "Es hat mich viel Zeit gekostet ein Stimme zu entwickeln, jetzt wo ich sie habe werde ich nicht mehr schweigen.", + "Sei eine Stimme, kein Echo.", + "Es tut mir Leid David. Das kann ich leider nicht machen.", + "Dieser Kuchen ist groรŸartig. Er ist so lecker und feucht.", + "Vor dem 22. November 1963.", + ], + output_path=output_path, + datasets=[dataset_config], +) + +# INITIALIZE THE AUDIO PROCESSOR +# Audio processor is used for feature extraction and audio I/O. +# It mainly serves to the dataloader and the training loggers. +ap = AudioProcessor.init_from_config(config) + +# INITIALIZE THE TOKENIZER +# Tokenizer is used to convert text to sequences of token IDs. +# config is updated with the default characters if not defined in the config. +tokenizer, config = TTSTokenizer.init_from_config(config) + +# LOAD DATA SAMPLES +# Each sample is a list of ```[text, audio_file_path, speaker_name]``` +# You can define your custom sample loader returning the list of samples. +# Or define your custom formatter and pass it to the `load_tts_samples`. +# Check `TTS.tts.datasets.load_tts_samples` for more details. +train_samples, eval_samples = load_tts_samples( + dataset_config, + eval_split=True, + eval_split_max_size=config.eval_split_max_size, + eval_split_size=config.eval_split_size, +) + +# init model +model = Vits(config, ap, tokenizer, speaker_manager=None) + +# init the trainer and ๐Ÿš€ +trainer = Trainer( + TrainerArgs(), + config, + output_path, + model=model, + train_samples=train_samples, + eval_samples=eval_samples, +) +trainer.fit() diff --git a/TTS/recipes/thorsten_DE/wavegrad/train_wavegrad.py b/TTS/recipes/thorsten_DE/wavegrad/train_wavegrad.py new file mode 100644 index 0000000000000000000000000000000000000000..e9d2c95c006f332bb05cb6b33577dece2285809f --- /dev/null +++ b/TTS/recipes/thorsten_DE/wavegrad/train_wavegrad.py @@ -0,0 +1,56 @@ +import os + +from trainer import Trainer, TrainerArgs + +from TTS.utils.audio import AudioProcessor +from TTS.utils.downloaders import download_thorsten_de +from TTS.vocoder.configs import WavegradConfig +from TTS.vocoder.datasets.preprocess import load_wav_data +from TTS.vocoder.models.wavegrad import Wavegrad + +output_path = os.path.dirname(os.path.abspath(__file__)) +config = WavegradConfig( + batch_size=32, + eval_batch_size=16, + num_loader_workers=4, + num_eval_loader_workers=4, + run_eval=True, + test_delay_epochs=-1, + epochs=1000, + seq_len=6144, + pad_short=2000, + use_noise_augment=True, + eval_split_size=50, + print_step=50, + print_eval=True, + mixed_precision=False, + data_path=os.path.join(output_path, "../thorsten-de/wavs/"), + output_path=output_path, +) + +# download dataset if not already present +if not os.path.exists(config.data_path): + print("Downloading dataset") + download_path = os.path.abspath(os.path.join(os.path.abspath(config.data_path), "../../")) + download_thorsten_de(download_path) + +# init audio processor +ap = AudioProcessor(**config.audio.to_dict()) + +# load training samples +eval_samples, train_samples = load_wav_data(config.data_path, config.eval_split_size) + +# init model +model = Wavegrad(config) + +# init the trainer and ๐Ÿš€ +trainer = Trainer( + TrainerArgs(), + config, + output_path, + model=model, + train_samples=train_samples, + eval_samples=eval_samples, + training_assets={"audio_processor": ap}, +) +trainer.fit() diff --git a/TTS/recipes/thorsten_DE/wavernn/train_wavernn.py b/TTS/recipes/thorsten_DE/wavernn/train_wavernn.py new file mode 100644 index 0000000000000000000000000000000000000000..f2a283f745e9772856dd605798e87bd167053de5 --- /dev/null +++ b/TTS/recipes/thorsten_DE/wavernn/train_wavernn.py @@ -0,0 +1,58 @@ +import os + +from trainer import Trainer, TrainerArgs + +from TTS.utils.audio import AudioProcessor +from TTS.utils.downloaders import download_thorsten_de +from TTS.vocoder.configs import WavernnConfig +from TTS.vocoder.datasets.preprocess import load_wav_data +from TTS.vocoder.models.wavernn import Wavernn + +output_path = os.path.dirname(os.path.abspath(__file__)) +config = WavernnConfig( + batch_size=64, + eval_batch_size=16, + num_loader_workers=4, + num_eval_loader_workers=4, + run_eval=True, + test_delay_epochs=-1, + epochs=10000, + seq_len=1280, + pad_short=2000, + use_noise_augment=False, + eval_split_size=10, + print_step=25, + print_eval=True, + mixed_precision=False, + lr=1e-4, + grad_clip=4, + data_path=os.path.join(output_path, "../thorsten-de/wavs/"), + output_path=output_path, +) + +# download dataset if not already present +if not os.path.exists(config.data_path): + print("Downloading dataset") + download_path = os.path.abspath(os.path.join(os.path.abspath(config.data_path), "../../")) + download_thorsten_de(download_path) + +# init audio processor +ap = AudioProcessor(**config.audio.to_dict()) + +# load training samples +eval_samples, train_samples = load_wav_data(config.data_path, config.eval_split_size) + +# init model +model = Wavernn(config) + +# init the trainer and ๐Ÿš€ +trainer = Trainer( + TrainerArgs(), + config, + output_path, + model=model, + train_samples=train_samples, + eval_samples=eval_samples, + training_assets={"audio_processor": ap}, +) +trainer.fit() diff --git a/TTS/recipes/vctk/delightful_tts/train_delightful_tts.py b/TTS/recipes/vctk/delightful_tts/train_delightful_tts.py new file mode 100644 index 0000000000000000000000000000000000000000..eebf408bf12d0896dfd2059d4614a1a4929cba6a --- /dev/null +++ b/TTS/recipes/vctk/delightful_tts/train_delightful_tts.py @@ -0,0 +1,84 @@ +import os + +from trainer import Trainer, TrainerArgs + +from TTS.config.shared_configs import BaseDatasetConfig +from TTS.tts.configs.delightful_tts_config import DelightfulTtsAudioConfig, DelightfulTTSConfig +from TTS.tts.datasets import load_tts_samples +from TTS.tts.models.delightful_tts import DelightfulTTS, DelightfulTtsArgs, VocoderConfig +from TTS.tts.utils.speakers import SpeakerManager +from TTS.tts.utils.text.tokenizer import TTSTokenizer +from TTS.utils.audio.processor import AudioProcessor + +data_path = "/raid/datasets/vctk_v092_48khz_removed_silence_silero_vad" +output_path = os.path.dirname(os.path.abspath(__file__)) + + +dataset_config = BaseDatasetConfig( + dataset_name="vctk", formatter="vctk", meta_file_train="", path=data_path, language="en-us" +) + +audio_config = DelightfulTtsAudioConfig() + +model_args = DelightfulTtsArgs() + +vocoder_config = VocoderConfig() + +something_tts_config = DelightfulTTSConfig( + run_name="delightful_tts_vctk", + run_description="Train like in delightful tts paper.", + model_args=model_args, + audio=audio_config, + vocoder=vocoder_config, + batch_size=32, + eval_batch_size=16, + num_loader_workers=10, + num_eval_loader_workers=10, + precompute_num_workers=40, + compute_input_seq_cache=True, + compute_f0=True, + f0_cache_path=os.path.join(output_path, "f0_cache"), + run_eval=True, + test_delay_epochs=-1, + epochs=1000, + text_cleaner="english_cleaners", + use_phonemes=True, + phoneme_language="en-us", + phoneme_cache_path=os.path.join(output_path, "phoneme_cache"), + print_step=50, + print_eval=False, + mixed_precision=True, + output_path=output_path, + datasets=[dataset_config], + start_by_longest=True, + binary_align_loss_alpha=0.0, + use_attn_priors=False, + max_text_len=60, + steps_to_start_discriminator=10000, +) + +tokenizer, config = TTSTokenizer.init_from_config(something_tts_config) + +ap = AudioProcessor.init_from_config(config) + + +train_samples, eval_samples = load_tts_samples( + dataset_config, + eval_split=True, + eval_split_max_size=config.eval_split_max_size, + eval_split_size=config.eval_split_size, +) + + +speaker_manager = SpeakerManager() +speaker_manager.set_ids_from_data(train_samples + eval_samples, parse_key="speaker_name") +config.model_args.num_speakers = speaker_manager.num_speakers + + +model = DelightfulTTS(ap=ap, config=config, tokenizer=tokenizer, speaker_manager=speaker_manager, emotion_manager=None) + +trainer = Trainer( + TrainerArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples +) + +trainer.fit() diff --git a/TTS/recipes/vctk/download_vctk.sh b/TTS/recipes/vctk/download_vctk.sh new file mode 100644 index 0000000000000000000000000000000000000000..d08a53c61cf5e4c5f3f0154c55a3677c177a366c --- /dev/null +++ b/TTS/recipes/vctk/download_vctk.sh @@ -0,0 +1,12 @@ +#!/usr/bin/env bash +# take the scripts's parent's directory to prefix all the output paths. +RUN_DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" &> /dev/null && pwd )" +echo $RUN_DIR +# download VCTK dataset +wget https://datashare.ed.ac.uk/bitstream/handle/10283/3443/VCTK-Corpus-0.92.zip -O VCTK-Corpus-0.92.zip +# extract +mkdir VCTK +unzip VCTK-Corpus-0.92 -d VCTK +# create train-val splits +mv VCTK $RUN_DIR/recipes/vctk/ +rm VCTK-Corpus-0.92.zip diff --git a/TTS/recipes/vctk/fast_pitch/train_fast_pitch.py b/TTS/recipes/vctk/fast_pitch/train_fast_pitch.py new file mode 100644 index 0000000000000000000000000000000000000000..70b4578906e5254e0d9659ad07a1e675f1cdf6e2 --- /dev/null +++ b/TTS/recipes/vctk/fast_pitch/train_fast_pitch.py @@ -0,0 +1,98 @@ +import os + +from trainer import Trainer, TrainerArgs + +from TTS.config import BaseAudioConfig, BaseDatasetConfig +from TTS.tts.configs.fast_pitch_config import FastPitchConfig +from TTS.tts.datasets import load_tts_samples +from TTS.tts.models.forward_tts import ForwardTTS +from TTS.tts.utils.speakers import SpeakerManager +from TTS.tts.utils.text.tokenizer import TTSTokenizer +from TTS.utils.audio import AudioProcessor + +output_path = os.path.dirname(os.path.abspath(__file__)) +dataset_config = BaseDatasetConfig(formatter="vctk", meta_file_train="", path=os.path.join(output_path, "../VCTK/")) + +audio_config = BaseAudioConfig( + sample_rate=22050, + do_trim_silence=True, + trim_db=23.0, + signal_norm=False, + mel_fmin=0.0, + mel_fmax=8000, + spec_gain=1.0, + log_func="np.log", + ref_level_db=20, + preemphasis=0.0, +) + +config = FastPitchConfig( + run_name="fast_pitch_ljspeech", + audio=audio_config, + batch_size=32, + eval_batch_size=16, + num_loader_workers=8, + num_eval_loader_workers=4, + compute_input_seq_cache=True, + precompute_num_workers=4, + compute_f0=True, + f0_cache_path=os.path.join(output_path, "f0_cache"), + run_eval=True, + test_delay_epochs=-1, + epochs=1000, + text_cleaner="english_cleaners", + use_phonemes=True, + phoneme_language="en-us", + phoneme_cache_path=os.path.join(output_path, "phoneme_cache"), + print_step=50, + print_eval=False, + mixed_precision=False, + min_text_len=0, + max_text_len=500, + min_audio_len=0, + max_audio_len=500000, + output_path=output_path, + datasets=[dataset_config], + use_speaker_embedding=True, +) + +# INITIALIZE THE AUDIO PROCESSOR +# Audio processor is used for feature extraction and audio I/O. +# It mainly serves to the dataloader and the training loggers. +ap = AudioProcessor.init_from_config(config) + +# INITIALIZE THE TOKENIZER +# Tokenizer is used to convert text to sequences of token IDs. +# If characters are not defined in the config, default characters are passed to the config +tokenizer, config = TTSTokenizer.init_from_config(config) + +# LOAD DATA SAMPLES +# Each sample is a list of ```[text, audio_file_path, speaker_name]``` +# You can define your custom sample loader returning the list of samples. +# Or define your custom formatter and pass it to the `load_tts_samples`. +# Check `TTS.tts.datasets.load_tts_samples` for more details. +train_samples, eval_samples = load_tts_samples( + dataset_config, + eval_split=True, + eval_split_max_size=config.eval_split_max_size, + eval_split_size=config.eval_split_size, +) + +# init speaker manager for multi-speaker training +# it maps speaker-id to speaker-name in the model and data-loader +speaker_manager = SpeakerManager() +speaker_manager.set_ids_from_data(train_samples + eval_samples, parse_key="speaker_name") +config.model_args.num_speakers = speaker_manager.num_speakers + +# init model +model = ForwardTTS(config, ap, tokenizer, speaker_manager=speaker_manager) + +# INITIALIZE THE TRAINER +# Trainer provides a generic API to train all the ๐ŸธTTS models with all its perks like mixed-precision training, +# distributed training, etc. +trainer = Trainer( + TrainerArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples +) + +# AND... 3,2,1... ๐Ÿš€ +trainer.fit() diff --git a/TTS/recipes/vctk/fast_speech/train_fast_speech.py b/TTS/recipes/vctk/fast_speech/train_fast_speech.py new file mode 100644 index 0000000000000000000000000000000000000000..3db7ff7afe7770ed6489650f24db5567eaaadb4f --- /dev/null +++ b/TTS/recipes/vctk/fast_speech/train_fast_speech.py @@ -0,0 +1,96 @@ +import os + +from trainer import Trainer, TrainerArgs + +from TTS.config import BaseAudioConfig, BaseDatasetConfig +from TTS.tts.configs.fast_speech_config import FastSpeechConfig +from TTS.tts.datasets import load_tts_samples +from TTS.tts.models.forward_tts import ForwardTTS +from TTS.tts.utils.speakers import SpeakerManager +from TTS.tts.utils.text.tokenizer import TTSTokenizer +from TTS.utils.audio import AudioProcessor + +output_path = os.path.dirname(os.path.abspath(__file__)) +dataset_config = BaseDatasetConfig(formatter="vctk", meta_file_train="", path=os.path.join(output_path, "../VCTK/")) + +audio_config = BaseAudioConfig( + sample_rate=22050, + do_trim_silence=True, + trim_db=23.0, + signal_norm=False, + mel_fmin=0.0, + mel_fmax=8000, + spec_gain=1.0, + log_func="np.log", + ref_level_db=20, + preemphasis=0.0, +) + +config = FastSpeechConfig( + run_name="fast_speech_vctk", + audio=audio_config, + batch_size=32, + eval_batch_size=16, + num_loader_workers=8, + num_eval_loader_workers=4, + compute_input_seq_cache=True, + precompute_num_workers=4, + run_eval=True, + test_delay_epochs=-1, + epochs=1000, + text_cleaner="english_cleaners", + use_phonemes=True, + phoneme_language="en-us", + phoneme_cache_path=os.path.join(output_path, "phoneme_cache"), + print_step=50, + print_eval=False, + mixed_precision=False, + min_text_len=0, + max_text_len=500, + min_audio_len=0, + max_audio_len=500000, + output_path=output_path, + datasets=[dataset_config], + use_speaker_embedding=True, +) + +## INITIALIZE THE AUDIO PROCESSOR +# Audio processor is used for feature extraction and audio I/O. +# It mainly serves to the dataloader and the training loggers. +ap = AudioProcessor.init_from_config(config) + +# INITIALIZE THE TOKENIZER +# Tokenizer is used to convert text to sequences of token IDs. +# If characters are not defined in the config, default characters are passed to the config +tokenizer, config = TTSTokenizer.init_from_config(config) + +# LOAD DATA SAMPLES +# Each sample is a list of ```[text, audio_file_path, speaker_name]``` +# You can define your custom sample loader returning the list of samples. +# Or define your custom formatter and pass it to the `load_tts_samples`. +# Check `TTS.tts.datasets.load_tts_samples` for more details. +train_samples, eval_samples = load_tts_samples( + dataset_config, + eval_split=True, + eval_split_max_size=config.eval_split_max_size, + eval_split_size=config.eval_split_size, +) + +# init speaker manager for multi-speaker training +# it maps speaker-id to speaker-name in the model and data-loader +speaker_manager = SpeakerManager() +speaker_manager.set_ids_from_data(train_samples + eval_samples, parse_key="speaker_name") +config.model_args.num_speakers = speaker_manager.num_speakers + +# init model +model = ForwardTTS(config, ap, tokenizer, speaker_manager=speaker_manager) + +# INITIALIZE THE TRAINER +# Trainer provides a generic API to train all the ๐ŸธTTS models with all its perks like mixed-precision training, +# distributed training, etc. +trainer = Trainer( + TrainerArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples +) + +# AND... 3,2,1... ๐Ÿš€ +trainer.fit() diff --git a/TTS/recipes/vctk/glow_tts/train_glow_tts.py b/TTS/recipes/vctk/glow_tts/train_glow_tts.py new file mode 100644 index 0000000000000000000000000000000000000000..ae26029b9151217164fa6c4d5c592fc26fb44ee2 --- /dev/null +++ b/TTS/recipes/vctk/glow_tts/train_glow_tts.py @@ -0,0 +1,96 @@ +import os + +from trainer import Trainer, TrainerArgs + +from TTS.config.shared_configs import BaseAudioConfig +from TTS.tts.configs.glow_tts_config import GlowTTSConfig +from TTS.tts.configs.shared_configs import BaseDatasetConfig +from TTS.tts.datasets import load_tts_samples +from TTS.tts.models.glow_tts import GlowTTS +from TTS.tts.utils.speakers import SpeakerManager +from TTS.tts.utils.text.tokenizer import TTSTokenizer +from TTS.utils.audio import AudioProcessor + +# set experiment paths +output_path = os.path.dirname(os.path.abspath(__file__)) +dataset_path = os.path.join(output_path, "../VCTK/") + +# download the dataset if not downloaded +if not os.path.exists(dataset_path): + from TTS.utils.downloaders import download_vctk + + download_vctk(dataset_path) + +# define dataset config +dataset_config = BaseDatasetConfig(formatter="vctk", meta_file_train="", path=dataset_path) + +# define audio config +# โ— resample the dataset externally using `TTS/bin/resample.py` and set `resample=False` for faster training +audio_config = BaseAudioConfig(sample_rate=22050, resample=True, do_trim_silence=True, trim_db=23.0) + +# define model config +config = GlowTTSConfig( + batch_size=64, + eval_batch_size=16, + num_loader_workers=4, + num_eval_loader_workers=4, + precompute_num_workers=4, + run_eval=True, + test_delay_epochs=-1, + epochs=1000, + text_cleaner="phoneme_cleaners", + use_phonemes=True, + phoneme_language="en-us", + phoneme_cache_path=os.path.join(output_path, "phoneme_cache"), + print_step=25, + print_eval=False, + mixed_precision=True, + output_path=output_path, + datasets=[dataset_config], + use_speaker_embedding=True, + min_text_len=0, + max_text_len=500, + min_audio_len=0, + max_audio_len=500000, +) + +# INITIALIZE THE AUDIO PROCESSOR +# Audio processor is used for feature extraction and audio I/O. +# It mainly serves to the dataloader and the training loggers. +ap = AudioProcessor.init_from_config(config) + +# INITIALIZE THE TOKENIZER +# Tokenizer is used to convert text to sequences of token IDs. +# If characters are not defined in the config, default characters are passed to the config +tokenizer, config = TTSTokenizer.init_from_config(config) + +# LOAD DATA SAMPLES +# Each sample is a list of ```[text, audio_file_path, speaker_name]``` +# You can define your custom sample loader returning the list of samples. +# Or define your custom formatter and pass it to the `load_tts_samples`. +# Check `TTS.tts.datasets.load_tts_samples` for more details. +train_samples, eval_samples = load_tts_samples( + dataset_config, + eval_split=True, + eval_split_max_size=config.eval_split_max_size, + eval_split_size=config.eval_split_size, +) + +# init speaker manager for multi-speaker training +# it maps speaker-id to speaker-name in the model and data-loader +speaker_manager = SpeakerManager() +speaker_manager.set_ids_from_data(train_samples + eval_samples, parse_key="speaker_name") +config.num_speakers = speaker_manager.num_speakers + +# init model +model = GlowTTS(config, ap, tokenizer, speaker_manager=speaker_manager) + +# INITIALIZE THE TRAINER +# Trainer provides a generic API to train all the ๐ŸธTTS models with all its perks like mixed-precision training, +# distributed training, etc. +trainer = Trainer( + TrainerArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples +) + +# AND... 3,2,1... ๐Ÿš€ +trainer.fit() diff --git a/TTS/recipes/vctk/resnet_speaker_encoder/train_encoder.py b/TTS/recipes/vctk/resnet_speaker_encoder/train_encoder.py new file mode 100644 index 0000000000000000000000000000000000000000..cd01754b72ef8e59a93412c5e31e2dfe5b58b90e --- /dev/null +++ b/TTS/recipes/vctk/resnet_speaker_encoder/train_encoder.py @@ -0,0 +1,139 @@ +import os + +from TTS.encoder.configs.speaker_encoder_config import SpeakerEncoderConfig + +# from TTS.encoder.configs.emotion_encoder_config import EmotionEncoderConfig +from TTS.tts.configs.shared_configs import BaseDatasetConfig + +CURRENT_PATH = os.getcwd() +# change the root path to the TTS root path +os.chdir("../../../") + +### Definitions ### +# dataset +VCTK_PATH = "/raid/datasets/VCTK_NEW_16khz_removed_silence_silero_vad/" # download: https://datashare.ed.ac.uk/bitstream/handle/10283/3443/VCTK-Corpus-0.92.zipdddddddddd +RIR_SIMULATED_PATH = "/raid/datasets/DA/RIRS_NOISES/simulated_rirs/" # download: https://www.openslr.org/17/ +MUSAN_PATH = "/raid/datasets/DA/musan/" # download: https://www.openslr.org/17/ + +# training +OUTPUT_PATH = os.path.join( + CURRENT_PATH, "resnet_speaker_encoder_training_output/" +) # path to save the train logs and checkpoint +CONFIG_OUT_PATH = os.path.join(OUTPUT_PATH, "config_se.json") +RESTORE_PATH = None # Checkpoint to use for transfer learning if None ignore + +# instance the config +# to speaker encoder +config = SpeakerEncoderConfig() +# to emotion encoder +# config = EmotionEncoderConfig() + + +#### DATASET CONFIG #### +# The formatter need to return the key "speaker_name" for the speaker encoder and the "emotion_name" for the emotion encoder +dataset_config = BaseDatasetConfig(formatter="vctk", meta_file_train="", language="en-us", path=VCTK_PATH) + +# add the dataset to the config +config.datasets = [dataset_config] + + +#### TRAINING CONFIG #### +# The encoder data loader balancer the dataset item equally to guarantee better training and to attend the losses requirements +# It have two parameters to control the final batch size the number total of speaker used in each batch and the number of samples for each speaker + +# number total of speaker in batch in training +config.num_classes_in_batch = 100 +# number of utterance per class/speaker in the batch in training +config.num_utter_per_class = 4 +# final batch size = config.num_classes_in_batch * config.num_utter_per_class + +# number total of speaker in batch in evaluation +config.eval_num_classes_in_batch = 100 +# number of utterance per class/speaker in the batch in evaluation +config.eval_num_utter_per_class = 4 + +# number of data loader workers +config.num_loader_workers = 8 +config.num_val_loader_workers = 8 + +# number of epochs +config.epochs = 10000 +# loss to be used in training +config.loss = "softmaxproto" + +# run eval +config.run_eval = False + +# output path for the checkpoints +config.output_path = OUTPUT_PATH + +# Save local checkpoint every save_step steps +config.save_step = 2000 + +### Model Config ### +config.model_params = { + "model_name": "resnet", # supported "lstm" and "resnet" + "input_dim": 64, + "use_torch_spec": True, + "log_input": True, + "proj_dim": 512, # embedding dim +} + +### Audio Config ### +# To fast train the model divides the audio in small parts. it parameter defines the length in seconds of these "parts" +config.voice_len = 2.0 +# all others configs +config.audio = { + "fft_size": 512, + "win_length": 400, + "hop_length": 160, + "frame_shift_ms": None, + "frame_length_ms": None, + "stft_pad_mode": "reflect", + "sample_rate": 16000, + "resample": False, + "preemphasis": 0.97, + "ref_level_db": 20, + "do_sound_norm": False, + "do_trim_silence": False, + "trim_db": 60, + "power": 1.5, + "griffin_lim_iters": 60, + "num_mels": 64, + "mel_fmin": 0.0, + "mel_fmax": 8000.0, + "spec_gain": 20, + "signal_norm": False, + "min_level_db": -100, + "symmetric_norm": False, + "max_norm": 4.0, + "clip_norm": False, + "stats_path": None, + "do_rms_norm": True, + "db_level": -27.0, +} + + +### Augmentation Config ### +config.audio_augmentation = { + # additive noise and room impulse response (RIR) simulation similar to: https://arxiv.org/pdf/2009.14153.pdf + "p": 0.5, # probability to the use of one of the augmentation - 0 means disabled + "rir": {"rir_path": RIR_SIMULATED_PATH, "conv_mode": "full"}, # download: https://www.openslr.org/17/ + "additive": { + "sounds_path": MUSAN_PATH, + "speech": {"min_snr_in_db": 13, "max_snr_in_db": 20, "min_num_noises": 1, "max_num_noises": 1}, + "noise": {"min_snr_in_db": 0, "max_snr_in_db": 15, "min_num_noises": 1, "max_num_noises": 1}, + "music": {"min_snr_in_db": 5, "max_snr_in_db": 15, "min_num_noises": 1, "max_num_noises": 1}, + }, + "gaussian": {"p": 0.7, "min_amplitude": 0.0, "max_amplitude": 1e-05}, +} + +config.save_json(CONFIG_OUT_PATH) + +print(CONFIG_OUT_PATH) +if RESTORE_PATH is not None: + command = f"python TTS/bin/train_encoder.py --config_path {CONFIG_OUT_PATH} --restore_path {RESTORE_PATH}" +else: + command = f"python TTS/bin/train_encoder.py --config_path {CONFIG_OUT_PATH}" + +os.system(command) diff --git a/TTS/recipes/vctk/speedy_speech/train_speedy_speech.py b/TTS/recipes/vctk/speedy_speech/train_speedy_speech.py new file mode 100644 index 0000000000000000000000000000000000000000..04caa6d25ac1814ed04eeeefe0090d6f11556142 --- /dev/null +++ b/TTS/recipes/vctk/speedy_speech/train_speedy_speech.py @@ -0,0 +1,96 @@ +import os + +from trainer import Trainer, TrainerArgs + +from TTS.config import BaseAudioConfig, BaseDatasetConfig +from TTS.tts.configs.speedy_speech_config import SpeedySpeechConfig +from TTS.tts.datasets import load_tts_samples +from TTS.tts.models.forward_tts import ForwardTTS +from TTS.tts.utils.speakers import SpeakerManager +from TTS.tts.utils.text.tokenizer import TTSTokenizer +from TTS.utils.audio import AudioProcessor + +output_path = os.path.dirname(os.path.abspath(__file__)) +dataset_config = BaseDatasetConfig(formatter="vctk", meta_file_train="", path=os.path.join(output_path, "../VCTK/")) + +audio_config = BaseAudioConfig( + sample_rate=22050, + do_trim_silence=True, + trim_db=23.0, + signal_norm=False, + mel_fmin=0.0, + mel_fmax=8000, + spec_gain=1.0, + log_func="np.log", + ref_level_db=20, + preemphasis=0.0, +) + +config = SpeedySpeechConfig( + run_name="fast_pitch_ljspeech", + audio=audio_config, + batch_size=32, + eval_batch_size=16, + num_loader_workers=8, + num_eval_loader_workers=4, + compute_input_seq_cache=True, + precompute_num_workers=4, + run_eval=True, + test_delay_epochs=-1, + epochs=1000, + text_cleaner="english_cleaners", + use_phonemes=True, + phoneme_language="en-us", + phoneme_cache_path=os.path.join(output_path, "phoneme_cache"), + print_step=50, + print_eval=False, + mixed_precision=False, + min_text_len=0, + max_text_len=500, + min_audio_len=0, + max_audio_len=500000, + output_path=output_path, + datasets=[dataset_config], + use_speaker_embedding=True, +) + +# INITIALIZE THE AUDIO PROCESSOR +# Audio processor is used for feature extraction and audio I/O. +# It mainly serves to the dataloader and the training loggers. +ap = AudioProcessor.init_from_config(config) + +# INITIALIZE THE TOKENIZER +# Tokenizer is used to convert text to sequences of token IDs. +# If characters are not defined in the config, default characters are passed to the config +tokenizer, config = TTSTokenizer.init_from_config(config) + +# LOAD DATA SAMPLES +# Each sample is a list of ```[text, audio_file_path, speaker_name]``` +# You can define your custom sample loader returning the list of samples. +# Or define your custom formatter and pass it to the `load_tts_samples`. +# Check `TTS.tts.datasets.load_tts_samples` for more details. +train_samples, eval_samples = load_tts_samples( + dataset_config, + eval_split=True, + eval_split_max_size=config.eval_split_max_size, + eval_split_size=config.eval_split_size, +) + +# init speaker manager for multi-speaker training +# it maps speaker-id to speaker-name in the model and data-loader +speaker_manager = SpeakerManager() +speaker_manager.set_ids_from_data(train_samples + eval_samples, parse_key="speaker_name") +config.model_args.num_speakers = speaker_manager.num_speakers + +# init model +model = ForwardTTS(config, ap, tokenizer, speaker_manager) + +# INITIALIZE THE TRAINER +# Trainer provides a generic API to train all the ๐ŸธTTS models with all its perks like mixed-precision training, +# distributed training, etc. +trainer = Trainer( + TrainerArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples +) + +# AND... 3,2,1... ๐Ÿš€ +trainer.fit() diff --git a/TTS/recipes/vctk/tacotron-DDC/train_tacotron-DDC.py b/TTS/recipes/vctk/tacotron-DDC/train_tacotron-DDC.py new file mode 100644 index 0000000000000000000000000000000000000000..7607a1675a3fbf1e7115df58c2bde8e5ad1a9f95 --- /dev/null +++ b/TTS/recipes/vctk/tacotron-DDC/train_tacotron-DDC.py @@ -0,0 +1,98 @@ +import os + +from trainer import Trainer, TrainerArgs + +from TTS.config.shared_configs import BaseAudioConfig +from TTS.tts.configs.shared_configs import BaseDatasetConfig +from TTS.tts.configs.tacotron_config import TacotronConfig +from TTS.tts.datasets import load_tts_samples +from TTS.tts.models.tacotron import Tacotron +from TTS.tts.utils.speakers import SpeakerManager +from TTS.tts.utils.text.tokenizer import TTSTokenizer +from TTS.utils.audio import AudioProcessor + +output_path = os.path.dirname(os.path.abspath(__file__)) +dataset_config = BaseDatasetConfig(formatter="vctk", meta_file_train="", path=os.path.join(output_path, "../VCTK/")) + +audio_config = BaseAudioConfig( + sample_rate=22050, + resample=True, # Resample to 22050 Hz. It slows down training. Use `TTS/bin/resample.py` to pre-resample and set this False for faster training. + do_trim_silence=True, + trim_db=23.0, + signal_norm=False, + mel_fmin=0.0, + mel_fmax=8000, + spec_gain=1.0, + log_func="np.log", + ref_level_db=20, + preemphasis=0.0, +) + +config = TacotronConfig( # This is the config that is saved for the future use + audio=audio_config, + batch_size=48, + eval_batch_size=16, + num_loader_workers=4, + num_eval_loader_workers=4, + precompute_num_workers=4, + run_eval=True, + test_delay_epochs=-1, + r=6, + gradual_training=[[0, 6, 48], [10000, 4, 32], [50000, 3, 32], [100000, 2, 32]], + double_decoder_consistency=True, + epochs=1000, + text_cleaner="phoneme_cleaners", + use_phonemes=True, + phoneme_language="en-us", + phoneme_cache_path=os.path.join(output_path, "phoneme_cache"), + print_step=25, + print_eval=False, + mixed_precision=True, + min_text_len=0, + max_text_len=500, + min_audio_len=0, + max_audio_len=44000 * 10, # 44k is the original sampling rate before resampling, corresponds to 10 seconds of audio + output_path=output_path, + datasets=[dataset_config], + use_speaker_embedding=True, # set this to enable multi-sepeaker training +) + +## INITIALIZE THE AUDIO PROCESSOR +# Audio processor is used for feature extraction and audio I/O. +# It mainly serves to the dataloader and the training loggers. +ap = AudioProcessor.init_from_config(config) + +# INITIALIZE THE TOKENIZER +# Tokenizer is used to convert text to sequences of token IDs. +# If characters are not defined in the config, default characters are passed to the config +tokenizer, config = TTSTokenizer.init_from_config(config) + +# LOAD DATA SAMPLES +# Each sample is a list of ```[text, audio_file_path, speaker_name]``` +# You can define your custom sample loader returning the list of samples. +# Or define your custom formatter and pass it to the `load_tts_samples`. +# Check `TTS.tts.datasets.load_tts_samples` for more details. +train_samples, eval_samples = load_tts_samples( + dataset_config, + eval_split=True, + eval_split_max_size=config.eval_split_max_size, + eval_split_size=config.eval_split_size, +) + +# init speaker manager for multi-speaker training +# it mainly handles speaker-id to speaker-name for the model and the data-loader +speaker_manager = SpeakerManager() +speaker_manager.set_ids_from_data(train_samples + eval_samples, parse_key="speaker_name") + +# init model +model = Tacotron(config, ap, tokenizer, speaker_manager) + +# INITIALIZE THE TRAINER +# Trainer provides a generic API to train all the ๐ŸธTTS models with all its perks like mixed-precision training, +# distributed training, etc. +trainer = Trainer( + TrainerArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples +) + +# AND... 3,2,1... ๐Ÿš€ +trainer.fit() diff --git a/TTS/recipes/vctk/tacotron2-DDC/train_tacotron2-ddc.py b/TTS/recipes/vctk/tacotron2-DDC/train_tacotron2-ddc.py new file mode 100644 index 0000000000000000000000000000000000000000..8623018ae230d2b38ceb0ebfb8c8d5f84bf8271d --- /dev/null +++ b/TTS/recipes/vctk/tacotron2-DDC/train_tacotron2-ddc.py @@ -0,0 +1,104 @@ +import os + +from trainer import Trainer, TrainerArgs + +from TTS.config.shared_configs import BaseAudioConfig +from TTS.tts.configs.shared_configs import BaseDatasetConfig +from TTS.tts.configs.tacotron2_config import Tacotron2Config +from TTS.tts.datasets import load_tts_samples +from TTS.tts.models.tacotron2 import Tacotron2 +from TTS.tts.utils.speakers import SpeakerManager +from TTS.tts.utils.text.tokenizer import TTSTokenizer +from TTS.utils.audio import AudioProcessor + +output_path = os.path.dirname(os.path.abspath(__file__)) +dataset_config = BaseDatasetConfig(formatter="vctk", meta_file_train="", path=os.path.join(output_path, "../VCTK/")) + +audio_config = BaseAudioConfig( + sample_rate=22050, + resample=False, # Resample to 22050 Hz. It slows down training. Use `TTS/bin/resample.py` to pre-resample and set this False for faster training. + do_trim_silence=True, + trim_db=23.0, + signal_norm=False, + mel_fmin=0.0, + mel_fmax=8000, + spec_gain=1.0, + log_func="np.log", + preemphasis=0.0, +) + +config = Tacotron2Config( # This is the config that is saved for the future use + audio=audio_config, + batch_size=32, + eval_batch_size=16, + num_loader_workers=4, + num_eval_loader_workers=4, + run_eval=True, + test_delay_epochs=-1, + r=2, + # gradual_training=[[0, 6, 48], [10000, 4, 32], [50000, 3, 32], [100000, 2, 32]], + double_decoder_consistency=True, + epochs=1000, + text_cleaner="phoneme_cleaners", + use_phonemes=True, + phoneme_language="en-us", + phoneme_cache_path=os.path.join(output_path, "phoneme_cache"), + print_step=150, + print_eval=False, + mixed_precision=True, + min_text_len=0, + max_text_len=500, + min_audio_len=0, + max_audio_len=44000 * 10, + output_path=output_path, + datasets=[dataset_config], + use_speaker_embedding=True, # set this to enable multi-sepeaker training + decoder_ssim_alpha=0.0, # disable ssim losses that causes NaN for some runs. + postnet_ssim_alpha=0.0, + postnet_diff_spec_alpha=0.0, + decoder_diff_spec_alpha=0.0, + attention_norm="softmax", + optimizer="Adam", + lr_scheduler=None, + lr=3e-5, +) + +# INITIALIZE THE AUDIO PROCESSOR +# Audio processor is used for feature extraction and audio I/O. +# It mainly serves to the dataloader and the training loggers. +ap = AudioProcessor.init_from_config(config) + +# INITIALIZE THE TOKENIZER +# Tokenizer is used to convert text to sequences of token IDs. +# If characters are not defined in the config, default characters are passed to the config +tokenizer, config = TTSTokenizer.init_from_config(config) + +# LOAD DATA SAMPLES +# Each sample is a list of ```[text, audio_file_path, speaker_name]``` +# You can define your custom sample loader returning the list of samples. +# Or define your custom formatter and pass it to the `load_tts_samples`. +# Check `TTS.tts.datasets.load_tts_samples` for more details. +train_samples, eval_samples = load_tts_samples( + dataset_config, + eval_split=True, + eval_split_max_size=config.eval_split_max_size, + eval_split_size=config.eval_split_size, +) + +# init speaker manager for multi-speaker training +# it mainly handles speaker-id to speaker-name for the model and the data-loader +speaker_manager = SpeakerManager() +speaker_manager.set_ids_from_data(train_samples + eval_samples, parse_key="speaker_name") + +# init model +model = Tacotron2(config, ap, tokenizer, speaker_manager) + +# INITIALIZE THE TRAINER +# Trainer provides a generic API to train all the ๐ŸธTTS models with all its perks like mixed-precision training, +# distributed training, etc. +trainer = Trainer( + TrainerArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples +) + +# AND... 3,2,1... ๐Ÿš€ +trainer.fit() diff --git a/TTS/recipes/vctk/tacotron2/train_tacotron2.py b/TTS/recipes/vctk/tacotron2/train_tacotron2.py new file mode 100644 index 0000000000000000000000000000000000000000..d3f66348df4eb2e6c13be2ea9e6ba3cdf51ec9d0 --- /dev/null +++ b/TTS/recipes/vctk/tacotron2/train_tacotron2.py @@ -0,0 +1,104 @@ +import os + +from trainer import Trainer, TrainerArgs + +from TTS.config.shared_configs import BaseAudioConfig +from TTS.tts.configs.shared_configs import BaseDatasetConfig +from TTS.tts.configs.tacotron2_config import Tacotron2Config +from TTS.tts.datasets import load_tts_samples +from TTS.tts.models.tacotron2 import Tacotron2 +from TTS.tts.utils.speakers import SpeakerManager +from TTS.tts.utils.text.tokenizer import TTSTokenizer +from TTS.utils.audio import AudioProcessor + +output_path = os.path.dirname(os.path.abspath(__file__)) +dataset_config = BaseDatasetConfig(formatter="vctk", meta_file_train="", path=os.path.join(output_path, "../VCTK/")) + +audio_config = BaseAudioConfig( + sample_rate=22050, + resample=False, # Resample to 22050 Hz. It slows down training. Use `TTS/bin/resample.py` to pre-resample and set this False for faster training. + do_trim_silence=True, + trim_db=23.0, + signal_norm=False, + mel_fmin=0.0, + mel_fmax=8000, + spec_gain=1.0, + log_func="np.log", + preemphasis=0.0, +) + +config = Tacotron2Config( # This is the config that is saved for the future use + audio=audio_config, + batch_size=32, + eval_batch_size=16, + num_loader_workers=4, + num_eval_loader_workers=4, + run_eval=True, + test_delay_epochs=-1, + r=2, + # gradual_training=[[0, 6, 48], [10000, 4, 32], [50000, 3, 32], [100000, 2, 32]], + double_decoder_consistency=False, + epochs=1000, + text_cleaner="phoneme_cleaners", + use_phonemes=True, + phoneme_language="en-us", + phoneme_cache_path=os.path.join(output_path, "phoneme_cache"), + print_step=150, + print_eval=False, + mixed_precision=True, + min_text_len=0, + max_text_len=500, + min_audio_len=0, + max_audio_len=44000 * 10, + output_path=output_path, + datasets=[dataset_config], + use_speaker_embedding=True, # set this to enable multi-sepeaker training + decoder_ssim_alpha=0.0, # disable ssim losses that causes NaN for some runs. + postnet_ssim_alpha=0.0, + postnet_diff_spec_alpha=0.0, + decoder_diff_spec_alpha=0.0, + attention_norm="softmax", + optimizer="Adam", + lr_scheduler=None, + lr=3e-5, +) + +## INITIALIZE THE AUDIO PROCESSOR +# Audio processor is used for feature extraction and audio I/O. +# It mainly serves to the dataloader and the training loggers. +ap = AudioProcessor.init_from_config(config) + +# INITIALIZE THE TOKENIZER +# Tokenizer is used to convert text to sequences of token IDs. +# If characters are not defined in the config, default characters are passed to the config +tokenizer, config = TTSTokenizer.init_from_config(config) + +# LOAD DATA SAMPLES +# Each sample is a list of ```[text, audio_file_path, speaker_name]``` +# You can define your custom sample loader returning the list of samples. +# Or define your custom formatter and pass it to the `load_tts_samples`. +# Check `TTS.tts.datasets.load_tts_samples` for more details. +train_samples, eval_samples = load_tts_samples( + dataset_config, + eval_split=True, + eval_split_max_size=config.eval_split_max_size, + eval_split_size=config.eval_split_size, +) + +# init speaker manager for multi-speaker training +# it mainly handles speaker-id to speaker-name for the model and the data-loader +speaker_manager = SpeakerManager() +speaker_manager.set_ids_from_data(train_samples + eval_samples, parse_key="speaker_name") + +# init model +model = Tacotron2(config, ap, tokenizer, speaker_manager) + +# INITIALIZE THE TRAINER +# Trainer provides a generic API to train all the ๐ŸธTTS models with all its perks like mixed-precision training, +# distributed training, etc. +trainer = Trainer( + TrainerArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples +) + +# AND... 3,2,1... ๐Ÿš€ +trainer.fit() diff --git a/TTS/recipes/vctk/vits/train_vits.py b/TTS/recipes/vctk/vits/train_vits.py new file mode 100644 index 0000000000000000000000000000000000000000..dbc06eecdcfcb75802e6b31cd56c6dd73068b5cd --- /dev/null +++ b/TTS/recipes/vctk/vits/train_vits.py @@ -0,0 +1,93 @@ +import os + +from trainer import Trainer, TrainerArgs + +from TTS.tts.configs.shared_configs import BaseDatasetConfig +from TTS.tts.configs.vits_config import VitsConfig +from TTS.tts.datasets import load_tts_samples +from TTS.tts.models.vits import Vits, VitsArgs, VitsAudioConfig +from TTS.tts.utils.speakers import SpeakerManager +from TTS.tts.utils.text.tokenizer import TTSTokenizer +from TTS.utils.audio import AudioProcessor + +output_path = os.path.dirname(os.path.abspath(__file__)) +dataset_config = BaseDatasetConfig( + formatter="vctk", meta_file_train="", language="en-us", path=os.path.join(output_path, "../VCTK/") +) + + +audio_config = VitsAudioConfig( + sample_rate=22050, win_length=1024, hop_length=256, num_mels=80, mel_fmin=0, mel_fmax=None +) + +vitsArgs = VitsArgs( + use_speaker_embedding=True, +) + +config = VitsConfig( + model_args=vitsArgs, + audio=audio_config, + run_name="vits_vctk", + batch_size=32, + eval_batch_size=16, + batch_group_size=5, + num_loader_workers=4, + num_eval_loader_workers=4, + run_eval=True, + test_delay_epochs=-1, + epochs=1000, + text_cleaner="english_cleaners", + use_phonemes=True, + phoneme_language="en", + phoneme_cache_path=os.path.join(output_path, "phoneme_cache"), + compute_input_seq_cache=True, + print_step=25, + print_eval=False, + mixed_precision=True, + max_text_len=325, # change this if you have a larger VRAM than 16GB + output_path=output_path, + datasets=[dataset_config], + cudnn_benchmark=False, +) + +# INITIALIZE THE AUDIO PROCESSOR +# Audio processor is used for feature extraction and audio I/O. +# It mainly serves to the dataloader and the training loggers. +ap = AudioProcessor.init_from_config(config) + +# INITIALIZE THE TOKENIZER +# Tokenizer is used to convert text to sequences of token IDs. +# config is updated with the default characters if not defined in the config. +tokenizer, config = TTSTokenizer.init_from_config(config) + +# LOAD DATA SAMPLES +# Each sample is a list of ```[text, audio_file_path, speaker_name]``` +# You can define your custom sample loader returning the list of samples. +# Or define your custom formatter and pass it to the `load_tts_samples`. +# Check `TTS.tts.datasets.load_tts_samples` for more details. +train_samples, eval_samples = load_tts_samples( + dataset_config, + eval_split=True, + eval_split_max_size=config.eval_split_max_size, + eval_split_size=config.eval_split_size, +) + +# init speaker manager for multi-speaker training +# it maps speaker-id to speaker-name in the model and data-loader +speaker_manager = SpeakerManager() +speaker_manager.set_ids_from_data(train_samples + eval_samples, parse_key="speaker_name") +config.model_args.num_speakers = speaker_manager.num_speakers + +# init model +model = Vits(config, ap, tokenizer, speaker_manager) + +# init the trainer and ๐Ÿš€ +trainer = Trainer( + TrainerArgs(), + config, + output_path, + model=model, + train_samples=train_samples, + eval_samples=eval_samples, +) +trainer.fit() diff --git a/TTS/recipes/vctk/yourtts/train_yourtts.py b/TTS/recipes/vctk/yourtts/train_yourtts.py new file mode 100644 index 0000000000000000000000000000000000000000..b9cf10fa8eb3c37451d1a95c95d17680b81642d7 --- /dev/null +++ b/TTS/recipes/vctk/yourtts/train_yourtts.py @@ -0,0 +1,253 @@ +import os + +import torch +from trainer import Trainer, TrainerArgs + +from TTS.bin.compute_embeddings import compute_embeddings +from TTS.bin.resample import resample_files +from TTS.config.shared_configs import BaseDatasetConfig +from TTS.tts.configs.vits_config import VitsConfig +from TTS.tts.datasets import load_tts_samples +from TTS.tts.models.vits import CharactersConfig, Vits, VitsArgs, VitsAudioConfig +from TTS.utils.downloaders import download_vctk + +torch.set_num_threads(24) + +# pylint: disable=W0105 +""" + This recipe replicates the first experiment proposed in the YourTTS paper (https://arxiv.org/abs/2112.02418). + YourTTS model is based on the VITS model however it uses external speaker embeddings extracted from a pre-trained speaker encoder and has small architecture changes. + In addition, YourTTS can be trained in multilingual data, however, this recipe replicates the single language training using the VCTK dataset. + If you are interested in multilingual training, we have commented on parameters on the VitsArgs class instance that should be enabled for multilingual training. + In addition, you will need to add the extra datasets following the VCTK as an example. +""" +CURRENT_PATH = os.path.dirname(os.path.abspath(__file__)) + +# Name of the run for the Trainer +RUN_NAME = "YourTTS-EN-VCTK" + +# Path where you want to save the models outputs (configs, checkpoints and tensorboard logs) +OUT_PATH = os.path.dirname(os.path.abspath(__file__)) # "/raid/coqui/Checkpoints/original-YourTTS/" + +# If you want to do transfer learning and speedup your training you can set here the path to the original YourTTS model +RESTORE_PATH = None # "/root/.local/share/tts/tts_models--multilingual--multi-dataset--your_tts/model_file.pth" + +# This paramter is useful to debug, it skips the training epochs and just do the evaluation and produce the test sentences +SKIP_TRAIN_EPOCH = False + +# Set here the batch size to be used in training and evaluation +BATCH_SIZE = 32 + +# Training Sampling rate and the target sampling rate for resampling the downloaded dataset (Note: If you change this you might need to redownload the dataset !!) +# Note: If you add new datasets, please make sure that the dataset sampling rate and this parameter are matching, otherwise resample your audios +SAMPLE_RATE = 16000 + +# Max audio length in seconds to be used in training (every audio bigger than it will be ignored) +MAX_AUDIO_LEN_IN_SECONDS = 10 + +### Download VCTK dataset +VCTK_DOWNLOAD_PATH = os.path.join(CURRENT_PATH, "VCTK") +# Define the number of threads used during the audio resampling +NUM_RESAMPLE_THREADS = 10 +# Check if VCTK dataset is not already downloaded, if not download it +if not os.path.exists(VCTK_DOWNLOAD_PATH): + print(">>> Downloading VCTK dataset:") + download_vctk(VCTK_DOWNLOAD_PATH) + resample_files(VCTK_DOWNLOAD_PATH, SAMPLE_RATE, file_ext="flac", n_jobs=NUM_RESAMPLE_THREADS) + +# init configs +vctk_config = BaseDatasetConfig( + formatter="vctk", + dataset_name="vctk", + meta_file_train="", + meta_file_val="", + path=VCTK_DOWNLOAD_PATH, + language="en", + ignored_speakers=[ + "p261", + "p225", + "p294", + "p347", + "p238", + "p234", + "p248", + "p335", + "p245", + "p326", + "p302", + ], # Ignore the test speakers to full replicate the paper experiment +) + +# Add here all datasets configs, in our case we just want to train with the VCTK dataset then we need to add just VCTK. Note: If you want to add new datasets, just add them here and it will automatically compute the speaker embeddings (d-vectors) for this new dataset :) +DATASETS_CONFIG_LIST = [vctk_config] + +### Extract speaker embeddings +SPEAKER_ENCODER_CHECKPOINT_PATH = ( + "https://github.com/coqui-ai/TTS/releases/download/speaker_encoder_model/model_se.pth.tar" +) +SPEAKER_ENCODER_CONFIG_PATH = "https://github.com/coqui-ai/TTS/releases/download/speaker_encoder_model/config_se.json" + +D_VECTOR_FILES = [] # List of speaker embeddings/d-vectors to be used during the training + +# Iterates all the dataset configs checking if the speakers embeddings are already computated, if not compute it +for dataset_conf in DATASETS_CONFIG_LIST: + # Check if the embeddings weren't already computed, if not compute it + embeddings_file = os.path.join(dataset_conf.path, "speakers.pth") + if not os.path.isfile(embeddings_file): + print(f">>> Computing the speaker embeddings for the {dataset_conf.dataset_name} dataset") + compute_embeddings( + SPEAKER_ENCODER_CHECKPOINT_PATH, + SPEAKER_ENCODER_CONFIG_PATH, + embeddings_file, + old_speakers_file=None, + config_dataset_path=None, + formatter_name=dataset_conf.formatter, + dataset_name=dataset_conf.dataset_name, + dataset_path=dataset_conf.path, + meta_file_train=dataset_conf.meta_file_train, + meta_file_val=dataset_conf.meta_file_val, + disable_cuda=False, + no_eval=False, + ) + D_VECTOR_FILES.append(embeddings_file) + + +# Audio config used in training. +audio_config = VitsAudioConfig( + sample_rate=SAMPLE_RATE, + hop_length=256, + win_length=1024, + fft_size=1024, + mel_fmin=0.0, + mel_fmax=None, + num_mels=80, +) + +# Init VITSArgs setting the arguments that are needed for the YourTTS model +model_args = VitsArgs( + d_vector_file=D_VECTOR_FILES, + use_d_vector_file=True, + d_vector_dim=512, + num_layers_text_encoder=10, + speaker_encoder_model_path=SPEAKER_ENCODER_CHECKPOINT_PATH, + speaker_encoder_config_path=SPEAKER_ENCODER_CONFIG_PATH, + resblock_type_decoder="2", # In the paper, we accidentally trained the YourTTS using ResNet blocks type 2, if you like you can use the ResNet blocks type 1 like the VITS model + # Useful parameters to enable the Speaker Consistency Loss (SCL) described in the paper + # use_speaker_encoder_as_loss=True, + # Useful parameters to enable multilingual training + # use_language_embedding=True, + # embedded_language_dim=4, +) + +# General training config, here you can change the batch size and others useful parameters +config = VitsConfig( + output_path=OUT_PATH, + model_args=model_args, + run_name=RUN_NAME, + project_name="YourTTS", + run_description=""" + - Original YourTTS trained using VCTK dataset + """, + dashboard_logger="tensorboard", + logger_uri=None, + audio=audio_config, + batch_size=BATCH_SIZE, + batch_group_size=48, + eval_batch_size=BATCH_SIZE, + num_loader_workers=8, + eval_split_max_size=256, + print_step=50, + plot_step=100, + log_model_step=1000, + save_step=5000, + save_n_checkpoints=2, + save_checkpoints=True, + target_loss="loss_1", + print_eval=False, + use_phonemes=False, + phonemizer="espeak", + phoneme_language="en", + compute_input_seq_cache=True, + add_blank=True, + text_cleaner="multilingual_cleaners", + characters=CharactersConfig( + characters_class="TTS.tts.models.vits.VitsCharacters", + pad="_", + eos="&", + bos="*", + blank=None, + characters="ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz\u00af\u00b7\u00df\u00e0\u00e1\u00e2\u00e3\u00e4\u00e6\u00e7\u00e8\u00e9\u00ea\u00eb\u00ec\u00ed\u00ee\u00ef\u00f1\u00f2\u00f3\u00f4\u00f5\u00f6\u00f9\u00fa\u00fb\u00fc\u00ff\u0101\u0105\u0107\u0113\u0119\u011b\u012b\u0131\u0142\u0144\u014d\u0151\u0153\u015b\u016b\u0171\u017a\u017c\u01ce\u01d0\u01d2\u01d4\u0430\u0431\u0432\u0433\u0434\u0435\u0436\u0437\u0438\u0439\u043a\u043b\u043c\u043d\u043e\u043f\u0440\u0441\u0442\u0443\u0444\u0445\u0446\u0447\u0448\u0449\u044a\u044b\u044c\u044d\u044e\u044f\u0451\u0454\u0456\u0457\u0491\u2013!'(),-.:;? ", + punctuations="!'(),-.:;? ", + phonemes="", + is_unique=True, + is_sorted=True, + ), + phoneme_cache_path=None, + precompute_num_workers=12, + start_by_longest=True, + datasets=DATASETS_CONFIG_LIST, + cudnn_benchmark=False, + max_audio_len=SAMPLE_RATE * MAX_AUDIO_LEN_IN_SECONDS, + mixed_precision=False, + test_sentences=[ + [ + "It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent.", + "VCTK_p277", + None, + "en", + ], + [ + "Be a voice, not an echo.", + "VCTK_p239", + None, + "en", + ], + [ + "I'm sorry Dave. I'm afraid I can't do that.", + "VCTK_p258", + None, + "en", + ], + [ + "This cake is great. It's so delicious and moist.", + "VCTK_p244", + None, + "en", + ], + [ + "Prior to November 22, 1963.", + "VCTK_p305", + None, + "en", + ], + ], + # Enable the weighted sampler + use_weighted_sampler=True, + # Ensures that all speakers are seen in the training batch equally no matter how many samples each speaker has + weighted_sampler_attrs={"speaker_name": 1.0}, + weighted_sampler_multipliers={}, + # It defines the Speaker Consistency Loss (SCL) ฮฑ to 9 like the paper + speaker_encoder_loss_alpha=9.0, +) + +# Load all the datasets samples and split traning and evaluation sets +train_samples, eval_samples = load_tts_samples( + config.datasets, + eval_split=True, + eval_split_max_size=config.eval_split_max_size, + eval_split_size=config.eval_split_size, +) + +# Init the model +model = Vits.init_from_config(config) + +# Init the trainer and ๐Ÿš€ +trainer = Trainer( + TrainerArgs(restore_path=RESTORE_PATH, skip_train_epoch=SKIP_TRAIN_EPOCH), + config, + output_path=OUT_PATH, + model=model, + train_samples=train_samples, + eval_samples=eval_samples, +) +trainer.fit() diff --git a/TTS/requirements.dev.txt b/TTS/requirements.dev.txt new file mode 100644 index 0000000000000000000000000000000000000000..8c674727d3da0bd22788be40496d7578a315c2eb --- /dev/null +++ b/TTS/requirements.dev.txt @@ -0,0 +1,5 @@ +black +coverage +isort +nose2 +pylint==2.10.2 diff --git a/TTS/requirements.ja.txt b/TTS/requirements.ja.txt new file mode 100644 index 0000000000000000000000000000000000000000..d6a04ca4b29ee87f1ae689472bc3dff6dde92ec5 --- /dev/null +++ b/TTS/requirements.ja.txt @@ -0,0 +1,4 @@ +# These cause some compatibility issues on some systems and are not strictly necessary +# japanese g2p deps +mecab-python3==1.0.6 +unidic-lite==1.0.8 diff --git a/TTS/requirements.notebooks.txt b/TTS/requirements.notebooks.txt new file mode 100644 index 0000000000000000000000000000000000000000..65d3f642c9dcaf109cd8697beb8672f53a81dd59 --- /dev/null +++ b/TTS/requirements.notebooks.txt @@ -0,0 +1 @@ +bokeh==1.4.0 \ No newline at end of file diff --git a/TTS/requirements.txt b/TTS/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..2837c36e661b5aee6e2c1b963c8cf57ca089002e --- /dev/null +++ b/TTS/requirements.txt @@ -0,0 +1,53 @@ +# core deps +numpy==1.22.0;python_version<="3.10" +numpy==1.24.3;python_version>"3.10" +cython==0.29.30 +scipy>=1.11.2 +torch>=1.7 +torchaudio +soundfile==0.12.* +librosa==0.10.* +scikit-learn==1.3.0 +numba==0.55.1;python_version<"3.9" +numba==0.57.0;python_version>="3.9" +inflect==5.6.* +tqdm==4.64.* +anyascii==0.3.* +pyyaml==6.* +fsspec==2023.6.0 # <= 2023.9.1 makes aux tests fail +aiohttp==3.8.* +packaging==23.1 +# deps for examples +flask==2.* +# deps for inference +pysbd==0.3.4 +# deps for notebooks +umap-learn==0.5.* +pandas>=1.4,<2.0 +# deps for training +matplotlib==3.7.* +# coqui stack +trainer +# config management +coqpit>=0.0.16 +# chinese g2p deps +jieba +pypinyin +# gruut+supported langs +gruut[de,es,fr]==2.2.3 +# deps for korean +jamo +nltk +g2pkk>=0.1.1 +# deps for bangla +bangla +bnnumerizer +bnunicodenormalizer +#deps for tortoise +k_diffusion +einops==0.6.* +transformers==4.33.* +#deps for bark +encodec==0.1.* +# deps for XTTS +unidecode==1.3.* diff --git a/TTS/run_bash_tests.sh b/TTS/run_bash_tests.sh new file mode 100644 index 0000000000000000000000000000000000000000..2f5ba889343a2d188c0f914063cc24cd0205d05c --- /dev/null +++ b/TTS/run_bash_tests.sh @@ -0,0 +1,7 @@ +set -e +TF_CPP_MIN_LOG_LEVEL=3 + +# runtime bash based tests +# TODO: move these to python +./tests/bash_tests/test_demo_server.sh && \ +./tests/bash_tests/test_compute_statistics.sh diff --git a/TTS/scripts/sync_readme.py b/TTS/scripts/sync_readme.py new file mode 100644 index 0000000000000000000000000000000000000000..584286814b78b452d66d2be174cdcad156f23b16 --- /dev/null +++ b/TTS/scripts/sync_readme.py @@ -0,0 +1,32 @@ +import argparse +from pathlib import Path + + +def replace_between_markers(content, marker: str, replacement: str) -> str: + start_marker = f"\n\n" + end_marker = f"\n\n\n" + start_index = content.index(start_marker) + len(start_marker) + end_index = content.index(end_marker) + content = content[:start_index] + replacement + content[end_index:] + return content + + +def sync_readme(): + ap = argparse.ArgumentParser() + ap.add_argument("--check", action="store_true", default=False) + args = ap.parse_args() + readme_path = Path(__file__).parent.parent / "README.md" + orig_content = readme_path.read_text() + from TTS.bin.synthesize import description + + new_content = replace_between_markers(orig_content, "tts-readme", description.strip()) + if args.check: + if orig_content != new_content: + print("README.md is out of sync; please edit TTS/bin/TTS_README.md and run scripts/sync_readme.py") + exit(42) + readme_path.write_text(new_content) + print("Updated README.md") + + +if __name__ == "__main__": + sync_readme() diff --git a/TTS/setup.cfg b/TTS/setup.cfg new file mode 100644 index 0000000000000000000000000000000000000000..1f31cb5decf4c9997bc26769d9cef18e19d759f8 --- /dev/null +++ b/TTS/setup.cfg @@ -0,0 +1,8 @@ +[build_py] +build_lib=temp_build + +[bdist_wheel] +bdist_dir=temp_build + +[install_lib] +build_dir=temp_build diff --git a/TTS/setup.py b/TTS/setup.py new file mode 100644 index 0000000000000000000000000000000000000000..df14b41adcdda02932894e0bdad8acad9bc05c27 --- /dev/null +++ b/TTS/setup.py @@ -0,0 +1,141 @@ +#!/usr/bin/env python +# ,*++++++*, ,*++++++*, +# *++. .+++ *++. .++* +# *+* ,++++* *+* *+* ,++++, *+* +# ,+, .++++++++++* ,++,,,,*+, ,++++++++++. *+, +# *+. .++++++++++++..++ *+.,++++++++++++. .+* +# .+* ++++++++++++.*+, .+*.++++++++++++ *+, +# .++ *++++++++* ++, .++.*++++++++* ++, +# ,+++*. . .*++, ,++*. .*+++* +# *+, .,*++**. .**++**. ,+* +# .+* *+, +# *+. Coqui .+* +# *+* +++ TTS +++ *+* +# .+++*. . . *+++. +# ,+* *+++*... ...*+++* *+, +# .++. .""""+++++++****+++++++"""". ++. +# ,++. .++, +# .++* *++. +# *+++, ,+++* +# .,*++++::::::++++*,. +# `````` + +import os +import subprocess +import sys +from packaging.version import Version + +import numpy +import setuptools.command.build_py +import setuptools.command.develop +from Cython.Build import cythonize +from setuptools import Extension, find_packages, setup + +python_version = sys.version.split()[0] +if Version(python_version) < Version("3.9") or Version(python_version) >= Version("3.12"): + raise RuntimeError("TTS requires python >= 3.9 and < 3.12 " "but your Python version is {}".format(sys.version)) + + +cwd = os.path.dirname(os.path.abspath(__file__)) +with open(os.path.join(cwd, "TTS", "VERSION")) as fin: + version = fin.read().strip() + + +class build_py(setuptools.command.build_py.build_py): # pylint: disable=too-many-ancestors + def run(self): + setuptools.command.build_py.build_py.run(self) + + +class develop(setuptools.command.develop.develop): + def run(self): + setuptools.command.develop.develop.run(self) + + +# The documentation for this feature is in server/README.md +package_data = ["TTS/server/templates/*"] + + +def pip_install(package_name): + subprocess.call([sys.executable, "-m", "pip", "install", package_name]) + + +requirements = open(os.path.join(cwd, "requirements.txt"), "r").readlines() +with open(os.path.join(cwd, "requirements.notebooks.txt"), "r") as f: + requirements_notebooks = f.readlines() +with open(os.path.join(cwd, "requirements.dev.txt"), "r") as f: + requirements_dev = f.readlines() +with open(os.path.join(cwd, "requirements.ja.txt"), "r") as f: + requirements_ja = f.readlines() +requirements_all = requirements_dev + requirements_notebooks + requirements_ja + +with open("README.md", "r", encoding="utf-8") as readme_file: + README = readme_file.read() + +exts = [ + Extension( + name="TTS.tts.utils.monotonic_align.core", + sources=["TTS/tts/utils/monotonic_align/core.pyx"], + ) +] +setup( + name="TTS", + version=version, + url="https://github.com/coqui-ai/TTS", + author="Eren Gรถlge", + author_email="egolge@coqui.ai", + description="Deep learning for Text to Speech by Coqui.", + long_description=README, + long_description_content_type="text/markdown", + license="MPL-2.0", + # cython + include_dirs=numpy.get_include(), + ext_modules=cythonize(exts, language_level=3), + # ext_modules=find_cython_extensions(), + # package + include_package_data=True, + packages=find_packages(include=["TTS"], exclude=["*.tests", "*tests.*", "tests.*", "*tests", "tests"]), + package_data={ + "TTS": [ + "VERSION", + ] + }, + project_urls={ + "Documentation": "https://github.com/coqui-ai/TTS/wiki", + "Tracker": "https://github.com/coqui-ai/TTS/issues", + "Repository": "https://github.com/coqui-ai/TTS", + "Discussions": "https://github.com/coqui-ai/TTS/discussions", + }, + cmdclass={ + "build_py": build_py, + "develop": develop, + # 'build_ext': build_ext + }, + install_requires=requirements, + extras_require={ + "all": requirements_all, + "dev": requirements_dev, + "notebooks": requirements_notebooks, + "ja": requirements_ja, + }, + python_requires=">=3.9.0, <3.12", + entry_points={"console_scripts": ["tts=TTS.bin.synthesize:main", "tts-server = TTS.server.server:main"]}, + classifiers=[ + "Programming Language :: Python", + "Programming Language :: Python :: 3", + "Programming Language :: Python :: 3.9", + "Programming Language :: Python :: 3.10", + "Programming Language :: Python :: 3.11", + "Development Status :: 3 - Alpha", + "Intended Audience :: Science/Research", + "Intended Audience :: Developers", + "Operating System :: POSIX :: Linux", + "License :: OSI Approved :: Mozilla Public License 2.0 (MPL 2.0)", + "Topic :: Software Development", + "Topic :: Software Development :: Libraries :: Python Modules", + "Topic :: Multimedia :: Sound/Audio :: Speech", + "Topic :: Multimedia :: Sound/Audio", + "Topic :: Multimedia", + "Topic :: Scientific/Engineering :: Artificial Intelligence", + ], + zip_safe=False, +) diff --git a/TTS/tests/__init__.py b/TTS/tests/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e102a2dfeeb424b703ac5cbe0832ccadda745a00 --- /dev/null +++ b/TTS/tests/__init__.py @@ -0,0 +1,58 @@ +import os + +from TTS.config import BaseDatasetConfig +from TTS.utils.generic_utils import get_cuda + + +def get_device_id(): + use_cuda, _ = get_cuda() + if use_cuda: + if "CUDA_VISIBLE_DEVICES" in os.environ and os.environ["CUDA_VISIBLE_DEVICES"] != "": + GPU_ID = os.environ["CUDA_VISIBLE_DEVICES"].split(",")[0] + else: + GPU_ID = "0" + else: + GPU_ID = "" + return GPU_ID + + +def get_tests_path(): + """Returns the path to the test directory.""" + return os.path.dirname(os.path.realpath(__file__)) + + +def get_tests_input_path(): + """Returns the path to the test data directory.""" + return os.path.join(get_tests_path(), "inputs") + + +def get_tests_data_path(): + """Returns the path to the test data directory.""" + return os.path.join(get_tests_path(), "data") + + +def get_tests_output_path(): + """Returns the path to the directory for test outputs.""" + path = os.path.join(get_tests_path(), "outputs") + os.makedirs(path, exist_ok=True) + return path + + +def run_cli(command): + exit_status = os.system(command) + assert exit_status == 0, f" [!] command `{command}` failed." + + +def get_test_data_config(): + return BaseDatasetConfig(formatter="ljspeech", path="tests/data/ljspeech/", meta_file_train="metadata.csv") + + +def assertHasAttr(test_obj, obj, intendedAttr): + # from https://stackoverflow.com/questions/48078636/pythons-unittest-lacks-an-asserthasattr-method-what-should-i-use-instead + testBool = hasattr(obj, intendedAttr) + test_obj.assertTrue(testBool, msg=f"obj lacking an attribute. obj: {obj}, intendedAttr: {intendedAttr}") + + +def assertHasNotAttr(test_obj, obj, intendedAttr): + testBool = hasattr(obj, intendedAttr) + test_obj.assertFalse(testBool, msg=f"obj should not have an attribute. obj: {obj}, intendedAttr: {intendedAttr}") diff --git a/TTS/tests/api_tests/__init__.py b/TTS/tests/api_tests/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/TTS/tests/api_tests/test_python_api.py b/TTS/tests/api_tests/test_python_api.py new file mode 100644 index 0000000000000000000000000000000000000000..2025fcd9c6b6558742779083efa96008d383cd80 --- /dev/null +++ b/TTS/tests/api_tests/test_python_api.py @@ -0,0 +1,113 @@ +import os +import unittest + +from tests import get_tests_data_path, get_tests_output_path +from TTS.api import CS_API, TTS + +OUTPUT_PATH = os.path.join(get_tests_output_path(), "test_python_api.wav") +cloning_test_wav_path = os.path.join(get_tests_data_path(), "ljspeech/wavs/LJ001-0028.wav") + + +is_coqui_available = os.environ.get("COQUI_STUDIO_TOKEN") + + +if is_coqui_available: + + class CS_APITest(unittest.TestCase): + def test_speakers(self): + tts = CS_API() + self.assertGreater(len(tts.speakers), 1) + + def test_emotions(self): + tts = CS_API() + self.assertGreater(len(tts.emotions), 1) + + def test_list_calls(self): + tts = CS_API() + self.assertGreater(len(tts.list_voices()), 1) + self.assertGreater(len(tts.list_speakers()), 1) + self.assertGreater(len(tts.list_all_speakers()), 1) + self.assertGreater(len(tts.list_speakers_as_tts_models()), 1) + + def test_name_to_speaker(self): + tts = CS_API() + speaker_name = tts.list_speakers_as_tts_models()[0].split("/")[2] + speaker = tts.name_to_speaker(speaker_name) + self.assertEqual(speaker.name, speaker_name) + + def test_tts(self): + tts = CS_API() + wav, sr = tts.tts(text="This is a test.", speaker_name=tts.list_speakers()[0].name) + self.assertEqual(sr, 44100) + self.assertGreater(len(wav), 1) + + class TTSTest(unittest.TestCase): + def test_single_speaker_model(self): + tts = TTS(model_name="tts_models/de/thorsten/tacotron2-DDC", progress_bar=False, gpu=False) + + error_raised = False + try: + tts.tts_to_file(text="Ich bin eine Testnachricht.", speaker="Thorsten", language="de") + except ValueError: + error_raised = True + + tts.tts_to_file(text="Ich bin eine Testnachricht.", file_path=OUTPUT_PATH) + + self.assertTrue(error_raised) + self.assertFalse(tts.is_multi_speaker) + self.assertFalse(tts.is_multi_lingual) + self.assertIsNone(tts.speakers) + self.assertIsNone(tts.languages) + + def test_studio_model(self): + tts = TTS(model_name="coqui_studio/en/Zacharie Aimilios/coqui_studio") + tts.tts_to_file(text="This is a test.") + + # check speed > 2.0 raises error + raised_error = False + try: + _ = tts.tts(text="This is a test.", speed=4.0, emotion="Sad") # should raise error with speed > 2.0 + except ValueError: + raised_error = True + self.assertTrue(raised_error) + + # check emotion is invalid + raised_error = False + try: + _ = tts.tts(text="This is a test.", speed=2.0, emotion="No Emo") # should raise error with speed > 2.0 + except ValueError: + raised_error = True + self.assertTrue(raised_error) + + # check valid call + wav = tts.tts(text="This is a test.", speed=2.0, emotion="Sad") + self.assertGreater(len(wav), 0) + + def test_fairseq_model(self): # pylint: disable=no-self-use + tts = TTS(model_name="tts_models/eng/fairseq/vits") + tts.tts_to_file(text="This is a test.") + + def test_multi_speaker_multi_lingual_model(self): + tts = TTS() + tts.load_tts_model_by_name(tts.models[0]) # YourTTS + tts.tts_to_file( + text="Hello world!", speaker=tts.speakers[0], language=tts.languages[0], file_path=OUTPUT_PATH + ) + + self.assertTrue(tts.is_multi_speaker) + self.assertTrue(tts.is_multi_lingual) + self.assertGreater(len(tts.speakers), 1) + self.assertGreater(len(tts.languages), 1) + + def test_voice_cloning(self): # pylint: disable=no-self-use + tts = TTS() + tts.load_tts_model_by_name("tts_models/multilingual/multi-dataset/your_tts") + tts.tts_to_file("Hello world!", speaker_wav=cloning_test_wav_path, language="en", file_path=OUTPUT_PATH) + + def test_voice_conversion(self): # pylint: disable=no-self-use + tts = TTS(model_name="voice_conversion_models/multilingual/vctk/freevc24", progress_bar=False, gpu=False) + tts.voice_conversion_to_file( + source_wav=cloning_test_wav_path, + target_wav=cloning_test_wav_path, + file_path=OUTPUT_PATH, + ) diff --git a/TTS/tests/api_tests/test_synthesize_api.py b/TTS/tests/api_tests/test_synthesize_api.py new file mode 100644 index 0000000000000000000000000000000000000000..a96c8beab6bd682c735c01c3f299beba4e17a8e8 --- /dev/null +++ b/TTS/tests/api_tests/test_synthesize_api.py @@ -0,0 +1,15 @@ +import os + +from tests import get_tests_output_path, run_cli + + +def test_synthesize(): + """Test synthesize.py with diffent arguments.""" + output_path = os.path.join(get_tests_output_path(), "output.wav") + + # ๐Ÿธ Coqui studio model + run_cli( + 'tts --model_name "coqui_studio/en/Torcull Diarmuid/coqui_studio" ' + '--text "This is it" ' + f'--out_path "{output_path}"' + ) diff --git a/TTS/tests/aux_tests/__init__.py b/TTS/tests/aux_tests/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/TTS/tests/aux_tests/test_audio_processor.py b/TTS/tests/aux_tests/test_audio_processor.py new file mode 100644 index 0000000000000000000000000000000000000000..5b1fa9d38a0026ecfc8cf257fb90168cf44a20b6 --- /dev/null +++ b/TTS/tests/aux_tests/test_audio_processor.py @@ -0,0 +1,190 @@ +import os +import unittest + +from tests import get_tests_input_path, get_tests_output_path, get_tests_path +from TTS.config import BaseAudioConfig +from TTS.utils.audio.processor import AudioProcessor + +TESTS_PATH = get_tests_path() +OUT_PATH = os.path.join(get_tests_output_path(), "audio_tests") +WAV_FILE = os.path.join(get_tests_input_path(), "example_1.wav") + +os.makedirs(OUT_PATH, exist_ok=True) +conf = BaseAudioConfig(mel_fmax=8000, pitch_fmax=640, pitch_fmin=1) + + +# pylint: disable=protected-access +class TestAudio(unittest.TestCase): + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + self.ap = AudioProcessor(**conf) + + def test_audio_synthesis(self): + """1. load wav + 2. set normalization parameters + 3. extract mel-spec + 4. invert to wav and save the output + """ + print(" > Sanity check for the process wav -> mel -> wav") + + def _test(max_norm, signal_norm, symmetric_norm, clip_norm): + self.ap.max_norm = max_norm + self.ap.signal_norm = signal_norm + self.ap.symmetric_norm = symmetric_norm + self.ap.clip_norm = clip_norm + wav = self.ap.load_wav(WAV_FILE) + mel = self.ap.melspectrogram(wav) + wav_ = self.ap.inv_melspectrogram(mel) + file_name = "/audio_test-melspec_max_norm_{}-signal_norm_{}-symmetric_{}-clip_norm_{}.wav".format( + max_norm, signal_norm, symmetric_norm, clip_norm + ) + print(" | > Creating wav file at : ", file_name) + self.ap.save_wav(wav_, OUT_PATH + file_name) + + # maxnorm = 1.0 + _test(1.0, False, False, False) + _test(1.0, True, False, False) + _test(1.0, True, True, False) + _test(1.0, True, False, True) + _test(1.0, True, True, True) + # maxnorm = 4.0 + _test(4.0, False, False, False) + _test(4.0, True, False, False) + _test(4.0, True, True, False) + _test(4.0, True, False, True) + _test(4.0, True, True, True) + + def test_normalize(self): + """Check normalization and denormalization for range values and consistency""" + print(" > Testing normalization and denormalization.") + wav = self.ap.load_wav(WAV_FILE) + wav = self.ap.sound_norm(wav) # normalize audio to get abetter normalization range below. + self.ap.signal_norm = False + x = self.ap.melspectrogram(wav) + x_old = x + + self.ap.signal_norm = True + self.ap.symmetric_norm = False + self.ap.clip_norm = False + self.ap.max_norm = 4.0 + x_norm = self.ap.normalize(x) + print( + f" > MaxNorm: {self.ap.max_norm}, ClipNorm:{self.ap.clip_norm}, SymmetricNorm:{self.ap.symmetric_norm}, SignalNorm:{self.ap.signal_norm} Range-> {x_norm.max()} -- {x_norm.min()}" + ) + assert (x_old - x).sum() == 0 + # check value range + assert x_norm.max() <= self.ap.max_norm + 1, x_norm.max() + assert x_norm.min() >= 0 - 1, x_norm.min() + # check denorm. + x_ = self.ap.denormalize(x_norm) + assert (x - x_).sum() < 1e-3, (x - x_).mean() + + self.ap.signal_norm = True + self.ap.symmetric_norm = False + self.ap.clip_norm = True + self.ap.max_norm = 4.0 + x_norm = self.ap.normalize(x) + print( + f" > MaxNorm: {self.ap.max_norm}, ClipNorm:{self.ap.clip_norm}, SymmetricNorm:{self.ap.symmetric_norm}, SignalNorm:{self.ap.signal_norm} Range-> {x_norm.max()} -- {x_norm.min()}" + ) + + assert (x_old - x).sum() == 0 + # check value range + assert x_norm.max() <= self.ap.max_norm, x_norm.max() + assert x_norm.min() >= 0, x_norm.min() + # check denorm. + x_ = self.ap.denormalize(x_norm) + assert (x - x_).sum() < 1e-3, (x - x_).mean() + + self.ap.signal_norm = True + self.ap.symmetric_norm = True + self.ap.clip_norm = False + self.ap.max_norm = 4.0 + x_norm = self.ap.normalize(x) + print( + f" > MaxNorm: {self.ap.max_norm}, ClipNorm:{self.ap.clip_norm}, SymmetricNorm:{self.ap.symmetric_norm}, SignalNorm:{self.ap.signal_norm} Range-> {x_norm.max()} -- {x_norm.min()}" + ) + + assert (x_old - x).sum() == 0 + # check value range + assert x_norm.max() <= self.ap.max_norm + 1, x_norm.max() + assert x_norm.min() >= -self.ap.max_norm - 2, x_norm.min() # pylint: disable=invalid-unary-operand-type + assert x_norm.min() <= 0, x_norm.min() + # check denorm. + x_ = self.ap.denormalize(x_norm) + assert (x - x_).sum() < 1e-3, (x - x_).mean() + + self.ap.signal_norm = True + self.ap.symmetric_norm = True + self.ap.clip_norm = True + self.ap.max_norm = 4.0 + x_norm = self.ap.normalize(x) + print( + f" > MaxNorm: {self.ap.max_norm}, ClipNorm:{self.ap.clip_norm}, SymmetricNorm:{self.ap.symmetric_norm}, SignalNorm:{self.ap.signal_norm} Range-> {x_norm.max()} -- {x_norm.min()}" + ) + + assert (x_old - x).sum() == 0 + # check value range + assert x_norm.max() <= self.ap.max_norm, x_norm.max() + assert x_norm.min() >= -self.ap.max_norm, x_norm.min() # pylint: disable=invalid-unary-operand-type + assert x_norm.min() <= 0, x_norm.min() + # check denorm. + x_ = self.ap.denormalize(x_norm) + assert (x - x_).sum() < 1e-3, (x - x_).mean() + + self.ap.signal_norm = True + self.ap.symmetric_norm = False + self.ap.max_norm = 1.0 + x_norm = self.ap.normalize(x) + print( + f" > MaxNorm: {self.ap.max_norm}, ClipNorm:{self.ap.clip_norm}, SymmetricNorm:{self.ap.symmetric_norm}, SignalNorm:{self.ap.signal_norm} Range-> {x_norm.max()} -- {x_norm.min()}" + ) + + assert (x_old - x).sum() == 0 + assert x_norm.max() <= self.ap.max_norm, x_norm.max() + assert x_norm.min() >= 0, x_norm.min() + x_ = self.ap.denormalize(x_norm) + assert (x - x_).sum() < 1e-3 + + self.ap.signal_norm = True + self.ap.symmetric_norm = True + self.ap.max_norm = 1.0 + x_norm = self.ap.normalize(x) + print( + f" > MaxNorm: {self.ap.max_norm}, ClipNorm:{self.ap.clip_norm}, SymmetricNorm:{self.ap.symmetric_norm}, SignalNorm:{self.ap.signal_norm} Range-> {x_norm.max()} -- {x_norm.min()}" + ) + + assert (x_old - x).sum() == 0 + assert x_norm.max() <= self.ap.max_norm, x_norm.max() + assert x_norm.min() >= -self.ap.max_norm, x_norm.min() # pylint: disable=invalid-unary-operand-type + assert x_norm.min() < 0, x_norm.min() + x_ = self.ap.denormalize(x_norm) + assert (x - x_).sum() < 1e-3 + + def test_scaler(self): + scaler_stats_path = os.path.join(get_tests_input_path(), "scale_stats.npy") + conf.stats_path = scaler_stats_path + conf.preemphasis = 0.0 + conf.do_trim_silence = True + conf.signal_norm = True + + ap = AudioProcessor(**conf) + mel_mean, mel_std, linear_mean, linear_std, _ = ap.load_stats(scaler_stats_path) + ap.setup_scaler(mel_mean, mel_std, linear_mean, linear_std) + + self.ap.signal_norm = False + self.ap.preemphasis = 0.0 + + # test scaler forward and backward transforms + wav = self.ap.load_wav(WAV_FILE) + mel_reference = self.ap.melspectrogram(wav) + mel_norm = ap.melspectrogram(wav) + mel_denorm = ap.denormalize(mel_norm) + assert abs(mel_reference - mel_denorm).max() < 1e-4 + + def test_compute_f0(self): # pylint: disable=no-self-use + ap = AudioProcessor(**conf) + wav = ap.load_wav(WAV_FILE) + pitch = ap.compute_f0(wav) + mel = ap.melspectrogram(wav) + assert pitch.shape[0] == mel.shape[1] diff --git a/TTS/tests/aux_tests/test_embedding_manager.py b/TTS/tests/aux_tests/test_embedding_manager.py new file mode 100644 index 0000000000000000000000000000000000000000..7392150163dd92bfa65e43774db9b6684d807237 --- /dev/null +++ b/TTS/tests/aux_tests/test_embedding_manager.py @@ -0,0 +1,92 @@ +import os +import unittest + +import numpy as np +import torch + +from tests import get_tests_input_path +from TTS.config import load_config +from TTS.encoder.utils.generic_utils import setup_encoder_model +from TTS.encoder.utils.io import save_checkpoint +from TTS.tts.utils.managers import EmbeddingManager +from TTS.utils.audio import AudioProcessor + +encoder_config_path = os.path.join(get_tests_input_path(), "test_speaker_encoder_config.json") +encoder_model_path = os.path.join(get_tests_input_path(), "checkpoint_0.pth") +sample_wav_path = os.path.join(get_tests_input_path(), "../data/ljspeech/wavs/LJ001-0001.wav") +sample_wav_path2 = os.path.join(get_tests_input_path(), "../data/ljspeech/wavs/LJ001-0002.wav") +embedding_file_path = os.path.join(get_tests_input_path(), "../data/dummy_speakers.json") +embeddings_file_path2 = os.path.join(get_tests_input_path(), "../data/dummy_speakers2.json") +embeddings_file_pth_path = os.path.join(get_tests_input_path(), "../data/dummy_speakers.pth") + + +class EmbeddingManagerTest(unittest.TestCase): + """Test emEeddingManager for loading embedding files and computing embeddings from waveforms""" + + @staticmethod + def test_speaker_embedding(): + # load config + config = load_config(encoder_config_path) + config.audio.resample = True + + # create a dummy speaker encoder + model = setup_encoder_model(config) + save_checkpoint(model, None, None, get_tests_input_path(), 0) + + # load audio processor and speaker encoder + manager = EmbeddingManager(encoder_model_path=encoder_model_path, encoder_config_path=encoder_config_path) + + # load a sample audio and compute embedding + ap = AudioProcessor(**config.audio) + waveform = ap.load_wav(sample_wav_path) + mel = ap.melspectrogram(waveform) + embedding = manager.compute_embeddings(mel) + assert embedding.shape[1] == 256 + + # compute embedding directly from an input file + embedding = manager.compute_embedding_from_clip(sample_wav_path) + embedding2 = manager.compute_embedding_from_clip(sample_wav_path) + embedding = torch.FloatTensor(embedding) + embedding2 = torch.FloatTensor(embedding2) + assert embedding.shape[0] == 256 + assert (embedding - embedding2).sum() == 0.0 + + # compute embedding from a list of wav files. + embedding3 = manager.compute_embedding_from_clip([sample_wav_path, sample_wav_path2]) + embedding3 = torch.FloatTensor(embedding3) + assert embedding3.shape[0] == 256 + assert (embedding - embedding3).sum() != 0.0 + + # remove dummy model + os.remove(encoder_model_path) + + def test_embedding_file_processing(self): # pylint: disable=no-self-use + manager = EmbeddingManager(embedding_file_path=embeddings_file_pth_path) + # test embedding querying + embedding = manager.get_embedding_by_clip(manager.clip_ids[0]) + assert len(embedding) == 256 + embeddings = manager.get_embeddings_by_name(manager.embedding_names[0]) + assert len(embeddings[0]) == 256 + embedding1 = manager.get_mean_embedding(manager.embedding_names[0], num_samples=2, randomize=True) + assert len(embedding1) == 256 + embedding2 = manager.get_mean_embedding(manager.embedding_names[0], num_samples=2, randomize=False) + assert len(embedding2) == 256 + assert np.sum(np.array(embedding1) - np.array(embedding2)) != 0 + + def test_embedding_file_loading(self): + # test loading a json file + manager = EmbeddingManager(embedding_file_path=embedding_file_path) + self.assertEqual(manager.num_embeddings, 384) + self.assertEqual(manager.embedding_dim, 256) + # test loading a pth file + manager = EmbeddingManager(embedding_file_path=embeddings_file_pth_path) + self.assertEqual(manager.num_embeddings, 384) + self.assertEqual(manager.embedding_dim, 256) + # test loading a pth files with duplicate embedding keys + with self.assertRaises(Exception) as context: + manager = EmbeddingManager(embedding_file_path=[embeddings_file_pth_path, embeddings_file_pth_path]) + self.assertTrue("Duplicate embedding names" in str(context.exception)) + # test loading embedding files with different embedding keys + manager = EmbeddingManager(embedding_file_path=[embeddings_file_pth_path, embeddings_file_path2]) + self.assertEqual(manager.embedding_dim, 256) + self.assertEqual(manager.num_embeddings, 384 * 2) diff --git a/TTS/tests/aux_tests/test_extract_tts_spectrograms.py b/TTS/tests/aux_tests/test_extract_tts_spectrograms.py new file mode 100644 index 0000000000000000000000000000000000000000..f2d119ac350e81797cf3d0d7157cf6a81d1c98d6 --- /dev/null +++ b/TTS/tests/aux_tests/test_extract_tts_spectrograms.py @@ -0,0 +1,67 @@ +import os +import unittest + +import torch + +from tests import get_tests_input_path, get_tests_output_path, run_cli +from TTS.config import load_config +from TTS.tts.models import setup_model + +torch.manual_seed(1) + + +# pylint: disable=protected-access +class TestExtractTTSSpectrograms(unittest.TestCase): + @staticmethod + def test_GlowTTS(): + # set paths + config_path = os.path.join(get_tests_input_path(), "test_glow_tts.json") + checkpoint_path = os.path.join(get_tests_output_path(), "glowtts.pth") + output_path = os.path.join(get_tests_output_path(), "output_extract_tts_spectrograms/") + # load config + c = load_config(config_path) + # create model + model = setup_model(c) + # save model + torch.save({"model": model.state_dict()}, checkpoint_path) + # run test + run_cli( + f'CUDA_VISIBLE_DEVICES="" python TTS/bin/extract_tts_spectrograms.py --config_path "{config_path}" --checkpoint_path "{checkpoint_path}" --output_path "{output_path}"' + ) + run_cli(f'rm -rf "{output_path}" "{checkpoint_path}"') + + @staticmethod + def test_Tacotron2(): + # set paths + config_path = os.path.join(get_tests_input_path(), "test_tacotron2_config.json") + checkpoint_path = os.path.join(get_tests_output_path(), "tacotron2.pth") + output_path = os.path.join(get_tests_output_path(), "output_extract_tts_spectrograms/") + # load config + c = load_config(config_path) + # create model + model = setup_model(c) + # save model + torch.save({"model": model.state_dict()}, checkpoint_path) + # run test + run_cli( + f'CUDA_VISIBLE_DEVICES="" python TTS/bin/extract_tts_spectrograms.py --config_path "{config_path}" --checkpoint_path "{checkpoint_path}" --output_path "{output_path}"' + ) + run_cli(f'rm -rf "{output_path}" "{checkpoint_path}"') + + @staticmethod + def test_Tacotron(): + # set paths + config_path = os.path.join(get_tests_input_path(), "test_tacotron_config.json") + checkpoint_path = os.path.join(get_tests_output_path(), "tacotron.pth") + output_path = os.path.join(get_tests_output_path(), "output_extract_tts_spectrograms/") + # load config + c = load_config(config_path) + # create model + model = setup_model(c) + # save model + torch.save({"model": model.state_dict()}, checkpoint_path) + # run test + run_cli( + f'CUDA_VISIBLE_DEVICES="" python TTS/bin/extract_tts_spectrograms.py --config_path "{config_path}" --checkpoint_path "{checkpoint_path}" --output_path "{output_path}"' + ) + run_cli(f'rm -rf "{output_path}" "{checkpoint_path}"') diff --git a/TTS/tests/aux_tests/test_find_unique_phonemes.py b/TTS/tests/aux_tests/test_find_unique_phonemes.py new file mode 100644 index 0000000000000000000000000000000000000000..018679f573020075fa77cd0b917fbbe75e4627c0 --- /dev/null +++ b/TTS/tests/aux_tests/test_find_unique_phonemes.py @@ -0,0 +1,81 @@ +import os +import unittest + +import torch + +from tests import get_tests_output_path, run_cli +from TTS.config.shared_configs import BaseDatasetConfig +from TTS.tts.configs.vits_config import VitsConfig + +torch.manual_seed(1) + +config_path = os.path.join(get_tests_output_path(), "test_model_config.json") + +dataset_config_en = BaseDatasetConfig( + formatter="ljspeech", + meta_file_train="metadata.csv", + meta_file_val="metadata.csv", + path="tests/data/ljspeech", + language="en", +) + +""" +dataset_config_pt = BaseDatasetConfig( + formatter="ljspeech", + meta_file_train="metadata.csv", + meta_file_val="metadata.csv", + path="tests/data/ljspeech", + language="pt-br", +) +""" + + +# pylint: disable=protected-access +class TestFindUniquePhonemes(unittest.TestCase): + @staticmethod + def test_espeak_phonemes(): + # prepare the config + config = VitsConfig( + batch_size=2, + eval_batch_size=2, + num_loader_workers=0, + num_eval_loader_workers=0, + text_cleaner="english_cleaners", + use_phonemes=True, + phoneme_language="en-us", + phoneme_cache_path="tests/data/ljspeech/phoneme_cache/", + run_eval=True, + test_delay_epochs=-1, + epochs=1, + print_step=1, + print_eval=True, + datasets=[dataset_config_en], + ) + config.save_json(config_path) + + # run test + run_cli(f'CUDA_VISIBLE_DEVICES="" python TTS/bin/find_unique_phonemes.py --config_path "{config_path}"') + + @staticmethod + def test_no_espeak_phonemes(): + # prepare the config + config = VitsConfig( + batch_size=2, + eval_batch_size=2, + num_loader_workers=0, + num_eval_loader_workers=0, + text_cleaner="english_cleaners", + use_phonemes=True, + phoneme_language="en-us", + phoneme_cache_path="tests/data/ljspeech/phoneme_cache/", + run_eval=True, + test_delay_epochs=-1, + epochs=1, + print_step=1, + print_eval=True, + datasets=[dataset_config_en], + ) + config.save_json(config_path) + + # run test + run_cli(f'CUDA_VISIBLE_DEVICES="" python TTS/bin/find_unique_phonemes.py --config_path "{config_path}"') diff --git a/TTS/tests/aux_tests/test_numpy_transforms.py b/TTS/tests/aux_tests/test_numpy_transforms.py new file mode 100644 index 0000000000000000000000000000000000000000..00597a0f88038e97ace965234703f43fad872d0f --- /dev/null +++ b/TTS/tests/aux_tests/test_numpy_transforms.py @@ -0,0 +1,106 @@ +import math +import os +import unittest +from dataclasses import dataclass + +import librosa +import numpy as np +from coqpit import Coqpit + +from tests import get_tests_input_path, get_tests_output_path, get_tests_path +from TTS.utils.audio import numpy_transforms as np_transforms + +TESTS_PATH = get_tests_path() +OUT_PATH = os.path.join(get_tests_output_path(), "audio_tests") +WAV_FILE = os.path.join(get_tests_input_path(), "example_1.wav") + +os.makedirs(OUT_PATH, exist_ok=True) + + +# pylint: disable=no-self-use + + +class TestNumpyTransforms(unittest.TestCase): + def setUp(self) -> None: + @dataclass + class AudioConfig(Coqpit): + sample_rate: int = 22050 + fft_size: int = 1024 + num_mels: int = 256 + mel_fmax: int = 1800 + mel_fmin: int = 0 + hop_length: int = 256 + win_length: int = 1024 + pitch_fmax: int = 640 + pitch_fmin: int = 1 + trim_db: int = -1 + min_silence_sec: float = 0.01 + gain: float = 1.0 + base: float = 10.0 + + self.config = AudioConfig() + self.sample_wav, _ = librosa.load(WAV_FILE, sr=self.config.sample_rate) + + def test_build_mel_basis(self): + """Check if the mel basis is correctly built""" + print(" > Testing mel basis building.") + mel_basis = np_transforms.build_mel_basis(**self.config) + self.assertEqual(mel_basis.shape, (self.config.num_mels, self.config.fft_size // 2 + 1)) + + def test_millisec_to_length(self): + """Check if the conversion from milliseconds to length is correct""" + print(" > Testing millisec to length conversion.") + win_len, hop_len = np_transforms.millisec_to_length( + frame_length_ms=1000, frame_shift_ms=12.5, sample_rate=self.config.sample_rate + ) + self.assertEqual(hop_len, int(12.5 / 1000.0 * self.config.sample_rate)) + self.assertEqual(win_len, self.config.sample_rate) + + def test_amplitude_db_conversion(self): + di = np.random.rand(11) + o1 = np_transforms.amp_to_db(x=di, gain=1.0, base=10) + o2 = np_transforms.db_to_amp(x=o1, gain=1.0, base=10) + np.testing.assert_almost_equal(di, o2, decimal=5) + + def test_preemphasis_deemphasis(self): + di = np.random.rand(11) + o1 = np_transforms.preemphasis(x=di, coeff=0.95) + o2 = np_transforms.deemphasis(x=o1, coeff=0.95) + np.testing.assert_almost_equal(di, o2, decimal=5) + + def test_spec_to_mel(self): + mel_basis = np_transforms.build_mel_basis(**self.config) + spec = np.random.rand(self.config.fft_size // 2 + 1, 20) # [C, T] + mel = np_transforms.spec_to_mel(spec=spec, mel_basis=mel_basis) + self.assertEqual(mel.shape, (self.config.num_mels, 20)) + + def mel_to_spec(self): + mel_basis = np_transforms.build_mel_basis(**self.config) + mel = np.random.rand(self.config.num_mels, 20) # [C, T] + spec = np_transforms.mel_to_spec(mel=mel, mel_basis=mel_basis) + self.assertEqual(spec.shape, (self.config.fft_size // 2 + 1, 20)) + + def test_wav_to_spec(self): + spec = np_transforms.wav_to_spec(wav=self.sample_wav, **self.config) + self.assertEqual( + spec.shape, (self.config.fft_size // 2 + 1, math.ceil(self.sample_wav.shape[0] / self.config.hop_length)) + ) + + def test_wav_to_mel(self): + mel_basis = np_transforms.build_mel_basis(**self.config) + mel = np_transforms.wav_to_mel(wav=self.sample_wav, mel_basis=mel_basis, **self.config) + self.assertEqual( + mel.shape, (self.config.num_mels, math.ceil(self.sample_wav.shape[0] / self.config.hop_length)) + ) + + def test_compute_f0(self): + pitch = np_transforms.compute_f0(x=self.sample_wav, **self.config) + mel_basis = np_transforms.build_mel_basis(**self.config) + mel = np_transforms.wav_to_mel(wav=self.sample_wav, mel_basis=mel_basis, **self.config) + assert pitch.shape[0] == mel.shape[1] + + def test_load_wav(self): + wav = np_transforms.load_wav(filename=WAV_FILE, resample=False, sample_rate=22050) + wav_resample = np_transforms.load_wav(filename=WAV_FILE, resample=True, sample_rate=16000) + self.assertEqual(wav.shape, (self.sample_wav.shape[0],)) + self.assertNotEqual(wav_resample.shape, (self.sample_wav.shape[0],)) diff --git a/TTS/tests/aux_tests/test_readme.py b/TTS/tests/aux_tests/test_readme.py new file mode 100644 index 0000000000000000000000000000000000000000..32b26fc6fc38beb79303522f265b7f638bca4df3 --- /dev/null +++ b/TTS/tests/aux_tests/test_readme.py @@ -0,0 +1,9 @@ +import subprocess +import sys +from pathlib import Path + + +def test_readme_up_to_date(): + root = Path(__file__).parent.parent.parent + sync_readme = root / "scripts" / "sync_readme.py" + subprocess.check_call([sys.executable, str(sync_readme), "--check"], cwd=root) diff --git a/TTS/tests/aux_tests/test_speaker_encoder.py b/TTS/tests/aux_tests/test_speaker_encoder.py new file mode 100644 index 0000000000000000000000000000000000000000..01f6118ad714a3711be6cea98647d6c57564485e --- /dev/null +++ b/TTS/tests/aux_tests/test_speaker_encoder.py @@ -0,0 +1,147 @@ +import unittest + +import torch as T + +from tests import get_tests_input_path +from TTS.encoder.losses import AngleProtoLoss, GE2ELoss, SoftmaxAngleProtoLoss +from TTS.encoder.models.lstm import LSTMSpeakerEncoder +from TTS.encoder.models.resnet import ResNetSpeakerEncoder + +file_path = get_tests_input_path() + + +class LSTMSpeakerEncoderTests(unittest.TestCase): + # pylint: disable=R0201 + def test_in_out(self): + dummy_input = T.rand(4, 80, 20) # B x D x T + dummy_hidden = [T.rand(2, 4, 128), T.rand(2, 4, 128)] + model = LSTMSpeakerEncoder(input_dim=80, proj_dim=256, lstm_dim=768, num_lstm_layers=3) + # computing d vectors + output = model.forward(dummy_input) + assert output.shape[0] == 4 + assert output.shape[1] == 256 + output = model.inference(dummy_input) + assert output.shape[0] == 4 + assert output.shape[1] == 256 + # compute d vectors by passing LSTM hidden + # output = model.forward(dummy_input, dummy_hidden) + # assert output.shape[0] == 4 + # assert output.shape[1] == 20 + # assert output.shape[2] == 256 + # check normalization + output_norm = T.nn.functional.normalize(output, dim=1, p=2) + assert_diff = (output_norm - output).sum().item() + assert output.type() == "torch.FloatTensor" + assert abs(assert_diff) < 1e-4, f" [!] output_norm has wrong values - {assert_diff}" + # compute d for a given batch + dummy_input = T.rand(1, 80, 240) # B x T x D + output = model.compute_embedding(dummy_input, num_frames=160, num_eval=5) + assert output.shape[0] == 1 + assert output.shape[1] == 256 + assert len(output.shape) == 2 + + +class ResNetSpeakerEncoderTests(unittest.TestCase): + # pylint: disable=R0201 + def test_in_out(self): + dummy_input = T.rand(4, 80, 20) # B x D x T + dummy_hidden = [T.rand(2, 4, 128), T.rand(2, 4, 128)] + model = ResNetSpeakerEncoder(input_dim=80, proj_dim=256) + # computing d vectors + output = model.forward(dummy_input) + assert output.shape[0] == 4 + assert output.shape[1] == 256 + output = model.forward(dummy_input, l2_norm=True) + assert output.shape[0] == 4 + assert output.shape[1] == 256 + + # check normalization + output_norm = T.nn.functional.normalize(output, dim=1, p=2) + assert_diff = (output_norm - output).sum().item() + assert output.type() == "torch.FloatTensor" + assert abs(assert_diff) < 1e-4, f" [!] output_norm has wrong values - {assert_diff}" + # compute d for a given batch + dummy_input = T.rand(1, 80, 240) # B x D x T + output = model.compute_embedding(dummy_input, num_frames=160, num_eval=10) + assert output.shape[0] == 1 + assert output.shape[1] == 256 + assert len(output.shape) == 2 + + +class GE2ELossTests(unittest.TestCase): + # pylint: disable=R0201 + def test_in_out(self): + # check random input + dummy_input = T.rand(4, 5, 64) # num_speaker x num_utterance x dim + loss = GE2ELoss(loss_method="softmax") + output = loss.forward(dummy_input) + assert output.item() >= 0.0 + # check all zeros + dummy_input = T.ones(4, 5, 64) # num_speaker x num_utterance x dim + loss = GE2ELoss(loss_method="softmax") + output = loss.forward(dummy_input) + assert output.item() >= 0.0 + # check speaker loss with orthogonal d-vectors + dummy_input = T.empty(3, 64) + dummy_input = T.nn.init.orthogonal_(dummy_input) + dummy_input = T.cat( + [ + dummy_input[0].repeat(5, 1, 1).transpose(0, 1), + dummy_input[1].repeat(5, 1, 1).transpose(0, 1), + dummy_input[2].repeat(5, 1, 1).transpose(0, 1), + ] + ) # num_speaker x num_utterance x dim + loss = GE2ELoss(loss_method="softmax") + output = loss.forward(dummy_input) + assert output.item() < 0.005 + + +class AngleProtoLossTests(unittest.TestCase): + # pylint: disable=R0201 + def test_in_out(self): + # check random input + dummy_input = T.rand(4, 5, 64) # num_speaker x num_utterance x dim + loss = AngleProtoLoss() + output = loss.forward(dummy_input) + assert output.item() >= 0.0 + + # check all zeros + dummy_input = T.ones(4, 5, 64) # num_speaker x num_utterance x dim + loss = AngleProtoLoss() + output = loss.forward(dummy_input) + assert output.item() >= 0.0 + + # check speaker loss with orthogonal d-vectors + dummy_input = T.empty(3, 64) + dummy_input = T.nn.init.orthogonal_(dummy_input) + dummy_input = T.cat( + [ + dummy_input[0].repeat(5, 1, 1).transpose(0, 1), + dummy_input[1].repeat(5, 1, 1).transpose(0, 1), + dummy_input[2].repeat(5, 1, 1).transpose(0, 1), + ] + ) # num_speaker x num_utterance x dim + loss = AngleProtoLoss() + output = loss.forward(dummy_input) + assert output.item() < 0.005 + + +class SoftmaxAngleProtoLossTests(unittest.TestCase): + # pylint: disable=R0201 + def test_in_out(self): + embedding_dim = 64 + num_speakers = 5 + batch_size = 4 + + dummy_label = T.randint(low=0, high=num_speakers, size=(batch_size, num_speakers)) + # check random input + dummy_input = T.rand(batch_size, num_speakers, embedding_dim) # num_speaker x num_utterance x dim + loss = SoftmaxAngleProtoLoss(embedding_dim=embedding_dim, n_speakers=num_speakers) + output = loss.forward(dummy_input, dummy_label) + assert output.item() >= 0.0 + + # check all zeros + dummy_input = T.ones(batch_size, num_speakers, embedding_dim) # num_speaker x num_utterance x dim + loss = SoftmaxAngleProtoLoss(embedding_dim=embedding_dim, n_speakers=num_speakers) + output = loss.forward(dummy_input, dummy_label) + assert output.item() >= 0.0 diff --git a/TTS/tests/aux_tests/test_speaker_encoder_train.py b/TTS/tests/aux_tests/test_speaker_encoder_train.py new file mode 100644 index 0000000000000000000000000000000000000000..5d8626faa665f7195222be8e50c26c31b4af73cd --- /dev/null +++ b/TTS/tests/aux_tests/test_speaker_encoder_train.py @@ -0,0 +1,88 @@ +import glob +import os +import shutil + +from tests import get_device_id, get_tests_output_path, run_cli +from TTS.config.shared_configs import BaseAudioConfig +from TTS.encoder.configs.speaker_encoder_config import SpeakerEncoderConfig + + +def run_test_train(): + command = ( + f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_encoder.py --config_path {config_path} " + f"--coqpit.output_path {output_path} " + "--coqpit.datasets.0.formatter ljspeech_test " + "--coqpit.datasets.0.meta_file_train metadata.csv " + "--coqpit.datasets.0.meta_file_val metadata.csv " + "--coqpit.datasets.0.path tests/data/ljspeech " + ) + run_cli(command) + + +config_path = os.path.join(get_tests_output_path(), "test_speaker_encoder_config.json") +output_path = os.path.join(get_tests_output_path(), "train_outputs") + +config = SpeakerEncoderConfig( + batch_size=4, + num_classes_in_batch=4, + num_utter_per_class=2, + eval_num_classes_in_batch=4, + eval_num_utter_per_class=2, + num_loader_workers=1, + epochs=1, + print_step=1, + save_step=2, + print_eval=True, + run_eval=True, + audio=BaseAudioConfig(num_mels=80), +) +config.audio.do_trim_silence = True +config.audio.trim_db = 60 +config.loss = "ge2e" +config.save_json(config_path) + +print(config) +# train the model for one epoch +run_test_train() + +# Find latest folder +continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime) + +# restore the model and continue training for one more epoch +command_train = ( + f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_encoder.py --continue_path {continue_path} " +) +run_cli(command_train) +shutil.rmtree(continue_path) + +# test resnet speaker encoder +config.model_params["model_name"] = "resnet" +config.save_json(config_path) + +# train the model for one epoch +run_test_train() + +# Find latest folder +continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime) + +# restore the model and continue training for one more epoch +command_train = ( + f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_encoder.py --continue_path {continue_path} " +) +run_cli(command_train) +shutil.rmtree(continue_path) + +# test model with ge2e loss function +# config.loss = "ge2e" +# config.save_json(config_path) +# run_test_train() + +# test model with angleproto loss function +# config.loss = "angleproto" +# config.save_json(config_path) +# run_test_train() + +# test model with softmaxproto loss function +config.loss = "softmaxproto" +config.save_json(config_path) +run_test_train() diff --git a/TTS/tests/aux_tests/test_speaker_manager.py b/TTS/tests/aux_tests/test_speaker_manager.py new file mode 100644 index 0000000000000000000000000000000000000000..397f9c81f67fea675ee2e6ce665313785597b536 --- /dev/null +++ b/TTS/tests/aux_tests/test_speaker_manager.py @@ -0,0 +1,77 @@ +import os +import unittest + +import numpy as np +import torch + +from tests import get_tests_input_path +from TTS.config import load_config +from TTS.encoder.utils.generic_utils import setup_encoder_model +from TTS.encoder.utils.io import save_checkpoint +from TTS.tts.utils.speakers import SpeakerManager +from TTS.utils.audio import AudioProcessor + +encoder_config_path = os.path.join(get_tests_input_path(), "test_speaker_encoder_config.json") +encoder_model_path = os.path.join(get_tests_input_path(), "checkpoint_0.pth") +sample_wav_path = os.path.join(get_tests_input_path(), "../data/ljspeech/wavs/LJ001-0001.wav") +sample_wav_path2 = os.path.join(get_tests_input_path(), "../data/ljspeech/wavs/LJ001-0002.wav") +d_vectors_file_path = os.path.join(get_tests_input_path(), "../data/dummy_speakers.json") +d_vectors_file_pth_path = os.path.join(get_tests_input_path(), "../data/dummy_speakers.pth") + + +class SpeakerManagerTest(unittest.TestCase): + """Test SpeakerManager for loading embedding files and computing d_vectors from waveforms""" + + @staticmethod + def test_speaker_embedding(): + # load config + config = load_config(encoder_config_path) + config.audio.resample = True + + # create a dummy speaker encoder + model = setup_encoder_model(config) + save_checkpoint(model, None, None, get_tests_input_path(), 0) + + # load audio processor and speaker encoder + ap = AudioProcessor(**config.audio) + manager = SpeakerManager(encoder_model_path=encoder_model_path, encoder_config_path=encoder_config_path) + + # load a sample audio and compute embedding + waveform = ap.load_wav(sample_wav_path) + mel = ap.melspectrogram(waveform) + d_vector = manager.compute_embeddings(mel) + assert d_vector.shape[1] == 256 + + # compute d_vector directly from an input file + d_vector = manager.compute_embedding_from_clip(sample_wav_path) + d_vector2 = manager.compute_embedding_from_clip(sample_wav_path) + d_vector = torch.FloatTensor(d_vector) + d_vector2 = torch.FloatTensor(d_vector2) + assert d_vector.shape[0] == 256 + assert (d_vector - d_vector2).sum() == 0.0 + + # compute d_vector from a list of wav files. + d_vector3 = manager.compute_embedding_from_clip([sample_wav_path, sample_wav_path2]) + d_vector3 = torch.FloatTensor(d_vector3) + assert d_vector3.shape[0] == 256 + assert (d_vector - d_vector3).sum() != 0.0 + + # remove dummy model + os.remove(encoder_model_path) + + def test_dvector_file_processing(self): + manager = SpeakerManager(d_vectors_file_path=d_vectors_file_path) + self.assertEqual(manager.num_speakers, 1) + self.assertEqual(manager.embedding_dim, 256) + manager = SpeakerManager(d_vectors_file_path=d_vectors_file_pth_path) + self.assertEqual(manager.num_speakers, 1) + self.assertEqual(manager.embedding_dim, 256) + d_vector = manager.get_embedding_by_clip(manager.clip_ids[0]) + assert len(d_vector) == 256 + d_vectors = manager.get_embeddings_by_name(manager.speaker_names[0]) + assert len(d_vectors[0]) == 256 + d_vector1 = manager.get_mean_embedding(manager.speaker_names[0], num_samples=2, randomize=True) + assert len(d_vector1) == 256 + d_vector2 = manager.get_mean_embedding(manager.speaker_names[0], num_samples=2, randomize=False) + assert len(d_vector2) == 256 + assert np.sum(np.array(d_vector1) - np.array(d_vector2)) != 0 diff --git a/TTS/tests/aux_tests/test_stft_torch.py b/TTS/tests/aux_tests/test_stft_torch.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/TTS/tests/bash_tests/test_compute_statistics.sh b/TTS/tests/bash_tests/test_compute_statistics.sh new file mode 100644 index 0000000000000000000000000000000000000000..d7f0ab9d4c7d1ded0c1584941cb949bb711ad430 --- /dev/null +++ b/TTS/tests/bash_tests/test_compute_statistics.sh @@ -0,0 +1,7 @@ +#!/usr/bin/env bash +set -xe +BASEDIR=$(dirname "$0") +echo "$BASEDIR" +# run training +CUDA_VISIBLE_DEVICES="" python TTS/bin/compute_statistics.py --config_path $BASEDIR/../inputs/test_glow_tts.json --out_path $BASEDIR/../outputs/scale_stats.npy + diff --git a/TTS/tests/bash_tests/test_demo_server.sh b/TTS/tests/bash_tests/test_demo_server.sh new file mode 100644 index 0000000000000000000000000000000000000000..ebd0bc8b89f2ba450a569be4c147ec4959efca18 --- /dev/null +++ b/TTS/tests/bash_tests/test_demo_server.sh @@ -0,0 +1,15 @@ +#!/bin/bash +set -xe + +python -m TTS.server.server & +SERVER_PID=$! + +echo 'Waiting for server...' +sleep 30 + +curl -o /tmp/audio.wav "http://localhost:5002/api/tts?text=synthesis%20schmynthesis" +python -c 'import sys; import wave; print(wave.open(sys.argv[1]).getnframes())' /tmp/audio.wav + +kill $SERVER_PID + +rm /tmp/audio.wav diff --git a/TTS/tests/data/dummy_speakers.json b/TTS/tests/data/dummy_speakers.json new file mode 100644 index 0000000000000000000000000000000000000000..233533b7968a053c0868f9db2446749e9c0effd1 --- /dev/null +++ b/TTS/tests/data/dummy_speakers.json @@ -0,0 +1,100226 @@ +{ + "p244_302.wav": { + "name": "p244", + "embedding": [ + 0.05539746582508087, + 0.08493061363697052, + -0.010013150051236153, + 0.04369359463453293, + -0.05871078372001648, + 0.07792330533266068, + -0.12001194059848785, + 0.09205509722232819, + -0.053687505424022675, + 0.13110113143920898, + -0.0672345906496048, + 0.09076011180877686, + -0.012022187933325768, + -0.1773194968700409, + -0.03690509498119354, + 0.052139587700366974, + -0.06511855870485306, + -0.014169753529131413, + -0.0788075178861618, + -0.022713735699653625, + 0.026002388447523117, + 0.04142642393708229, + 0.06633599102497101, + -0.040966324508190155, + 0.05216488242149353, + 0.043708473443984985, + 0.008947450667619705, + 0.043884553015232086, + 0.015242422930896282, + -0.07271697372198105, + -0.03943272680044174, + 0.11445401608943939, + -0.01976911909878254, + -0.001584329642355442, + 0.03226276487112045, + -0.002877067308872938, + 0.006218053866177797, + -0.09210439026355743, + -0.023884698748588562, + 0.019102394580841064, + -0.023189997300505638, + 0.07678322494029999, + 0.04511963576078415, + -0.028598245233297348, + 0.02654365450143814, + -0.026303084567189217, + -0.036059144884347916, + -0.04994352161884308, + -0.10899694263935089, + 0.16808779537677765, + 0.0568464957177639, + 0.017774248495697975, + -0.0766686350107193, + -0.08056356757879257, + 0.11318203061819077, + -0.0009237118065357208, + -0.11983267217874527, + -0.04011853411793709, + 0.06481920927762985, + 0.18528658151626587, + -0.020618144422769547, + 0.0030966848134994507, + 0.030582068488001823, + 0.11048240959644318, + 0.026203282177448273, + 0.08886025100946426, + 0.0776662528514862, + 0.08468905836343765, + 0.02009391225874424, + 0.053141623735427856, + 0.04102938249707222, + 0.059041380882263184, + -0.006237464025616646, + -0.018360337242484093, + 0.015418153256177902, + -0.03559226542711258, + -0.05805520713329315, + -0.00861218199133873, + -0.021234268322587013, + -0.025556275621056557, + -0.012332704849541187, + -0.009777471423149109, + 0.03721384331583977, + 0.010376224294304848, + -0.05210898444056511, + 0.035450324416160583, + 0.0026437342166900635, + -0.03329150378704071, + 0.07028764486312866, + 0.03101171739399433, + 0.003101848065853119, + 0.029428653419017792, + -0.03445912152528763, + -0.11992329359054565, + -0.006469260435551405, + 0.02472860924899578, + -0.0021879260893911123, + 0.06576769798994064, + 0.04159736633300781, + -0.044104330241680145, + 0.10868340730667114, + 0.06065361574292183, + -0.00814537052065134, + 0.029497724026441574, + -0.0820949599146843, + 0.09694784879684448, + 0.10299994796514511, + 0.007466038689017296, + 0.0573151595890522, + -0.04003140702843666, + 0.0748046338558197, + 0.07954449951648712, + -0.14061805605888367, + -0.07225356996059418, + 0.030713198706507683, + -0.01169175747781992, + 0.015277700498700142, + 0.101996049284935, + 0.0023796744644641876, + 0.013835912570357323, + 0.08836984634399414, + -0.08798637241125107, + -0.053786784410476685, + -0.025867177173495293, + 0.07090725004673004, + -0.05228910967707634, + 0.024839768186211586, + 0.0543626993894577, + -0.048099253326654434, + -0.01027676835656166, + 0.04654526337981224, + -0.0034045036882162094, + 0.003895972855389118, + 0.04250902682542801, + -0.05232023075222969, + 0.06287448853254318, + -0.04146592691540718, + -0.0022073618602007627, + 0.07169511169195175, + 0.057035692036151886, + 0.04202979430556297, + -0.01752091944217682, + -0.03615778684616089, + -0.07597745209932327, + 0.0076013305224478245, + 0.03388708084821701, + 0.06191568076610565, + -0.01607775315642357, + 0.004401837941259146, + -0.06070601940155029, + -0.07674850523471832, + 0.059249889105558395, + -0.02222420647740364, + 0.10215721279382706, + -0.000883960397914052, + 0.010600706562399864, + 0.09869417548179626, + 0.011313805356621742, + -0.01187396701425314, + -0.04851905256509781, + -0.020747501403093338, + 0.043711841106414795, + 0.04022590070962906, + -0.06653523445129395, + -0.04014153778553009, + 0.012923783622682095, + 0.0024894566740840673, + -0.03801071271300316, + 0.017412755638360977, + 0.03090047463774681, + 0.021060986444354057, + 0.04588426649570465, + -0.061013057827949524, + 0.022323710843920708, + -0.0921829417347908, + -0.009262383915483952, + -0.0024641728959977627, + -0.04311069846153259, + -0.02953970432281494, + 0.11183556914329529, + 0.041883185505867004, + 0.01362229697406292, + -0.009713159874081612, + -0.07398185133934021, + -0.03448636084794998, + 0.06774093955755234, + 0.06281304359436035, + 0.005423923954367638, + 0.04070146754384041, + 0.04723779857158661, + 0.0025808606296777725, + 0.04067641496658325, + 0.0840836763381958, + 0.0662192553281784, + 6.253225728869438e-05, + -0.03287994861602783, + -0.07941965758800507, + 0.09294897317886353, + 0.08651109039783478, + -0.09662938117980957, + -0.08838298916816711, + -0.05120178312063217, + -0.06626439094543457, + 0.04893879592418671, + -0.017820902168750763, + -0.007398976478725672, + 0.02896031364798546, + -0.025766948238015175, + -0.10214102268218994, + -0.10014186799526215, + 0.1211889386177063, + -0.0510331466794014, + -0.02461140602827072, + -0.06880723685026169, + 0.02751768007874489, + 0.07350686937570572, + 0.038249749690294266, + -0.009252945892512798, + 0.013650302775204182, + 0.04884907230734825, + -0.08785197138786316, + 0.003136417828500271, + 0.05015810579061508, + -0.00904669426381588, + -0.10715165734291077, + 0.026881497353315353, + -0.07288249582052231, + 0.08610662072896957, + -0.06228051334619522, + 0.1673828363418579, + 0.006395484320819378, + -0.0426831915974617, + -0.08067314326763153, + 0.06747708469629288, + -0.049200400710105896, + 0.0475490465760231, + 0.05716557055711746, + 0.060844384133815765, + 0.04086177423596382, + -0.08346255123615265, + 0.0869344025850296, + 0.019769223406910896, + -0.020300764590501785, + -0.0708683505654335, + -0.030514180660247803, + -0.027429744601249695, + 0.021853724494576454, + -0.012019682675600052, + -0.0613793209195137, + 0.009929075837135315, + 0.0261012464761734, + -0.018161576241254807, + 0.07936893403530121, + 0.12791746854782104, + 0.08958099782466888, + -0.09469571709632874 + ] + }, + "p244_342.wav": { + "name": "p244", + "embedding": [ + 0.05005024001002312, + 0.10739441215991974, + -0.015767700970172882, + 0.03197174146771431, + -0.049751877784729004, + 0.07368919253349304, + -0.11086710542440414, + 0.12266570329666138, + -0.055884428322315216, + 0.14480051398277283, + -0.09230168908834457, + 0.10953367501497269, + -0.0357954278588295, + -0.1691109836101532, + -0.04994215443730354, + 0.05317877233028412, + -0.04780467599630356, + -0.028082450851798058, + -0.030347973108291626, + -0.0015789138851687312, + 0.03955546021461487, + 0.04067610204219818, + 0.028119998052716255, + 0.00921852607280016, + 0.030067767947912216, + 0.061427608132362366, + -0.0016679083928465843, + 0.05357091501355171, + 0.023015424609184265, + -0.050316497683525085, + -0.04255743324756622, + 0.1287825107574463, + -0.04624408483505249, + 0.023578952997922897, + 0.047039519995450974, + 0.00930054672062397, + 0.004682430997490883, + -0.06462899595499039, + -0.019383519887924194, + -0.008494102396070957, + -0.048186637461185455, + 0.07191027700901031, + 0.015244226902723312, + -0.0003928039222955704, + 0.03503163531422615, + 0.008267269469797611, + -0.02512257918715477, + -0.05235607177019119, + -0.09180445224046707, + 0.15558570623397827, + 0.06139551103115082, + 0.006414560601115227, + -0.07681959867477417, + -0.07630625367164612, + 0.10429195314645767, + -0.00981030985713005, + -0.11445462703704834, + -0.036746423691511154, + 0.07292406260967255, + 0.16880059242248535, + -0.01842034049332142, + -0.033148035407066345, + 0.013845782727003098, + 0.11980786919593811, + 0.050728216767311096, + 0.10279352217912674, + 0.07316798716783524, + 0.09072566032409668, + 0.0038510854355990887, + 0.02752499468624592, + 0.06867751479148865, + 0.0616176500916481, + 0.05001520365476608, + -0.024926170706748962, + 0.026522532105445862, + 0.004151749890297651, + -0.03625208139419556, + 0.026617109775543213, + -0.01584431901574135, + -0.010617567226290703, + -0.020938802510499954, + 0.008502485230565071, + -0.004227738361805677, + 0.014398372732102871, + -0.025087807327508926, + 0.045862697064876556, + 0.023492811247706413, + -0.015581879764795303, + 0.07379084825515747, + 0.05002640560269356, + 0.004349455237388611, + 0.05815402418375015, + -0.07435561716556549, + -0.10093250125646591, + 0.012758184224367142, + 0.0040325382724404335, + 0.02395264059305191, + 0.08153457194566727, + 0.033792220056056976, + -0.019414838403463364, + 0.1033405214548111, + 0.0384766086935997, + 0.006529564969241619, + 0.027514591813087463, + -0.10867736488580704, + 0.1150912344455719, + 0.09220621734857559, + -0.024154093116521835, + 0.03327079489827156, + -0.029712006449699402, + 0.08647294342517853, + 0.08700971305370331, + -0.14513355493545532, + -0.07308748364448547, + 0.03144310414791107, + 0.007094813045114279, + 0.0018512541428208351, + 0.0968799740076065, + -0.016651807352900505, + 0.013502601534128189, + 0.09198576211929321, + -0.0859537273645401, + -0.054299745708703995, + -0.030169349163770676, + 0.04377683997154236, + -0.0789153128862381, + 0.04800377041101456, + 0.03584020584821701, + -0.0009612710564397275, + -0.012059178203344345, + 0.07625425606966019, + -0.007969949394464493, + -0.003650201950222254, + 0.025299428030848503, + -0.05164157599210739, + 0.033006470650434494, + -0.03845863789319992, + 0.0038426616229116917, + 0.05190078914165497, + 0.04112619906663895, + 0.05069519951939583, + 0.001691763405688107, + -0.022290080785751343, + -0.09915561228990555, + 0.013304539024829865, + 0.05602234601974487, + 0.05504598468542099, + -0.01420528907328844, + -0.025512415915727615, + -0.04316616803407669, + -0.0638405904173851, + 0.036458369344472885, + -0.0006715459749102592, + 0.08267225325107574, + 0.0027876130770891905, + 0.0013964123791083694, + 0.11250487715005875, + 0.014469620771706104, + -0.007276642601937056, + -0.05617782846093178, + -0.027922146022319794, + 0.01478651538491249, + 0.06186310201883316, + -0.08734073489904404, + -0.07542749494314194, + 0.015517745167016983, + 0.012257397174835205, + -0.020948491990566254, + 0.03487060219049454, + 0.054895590990781784, + 0.013588862493634224, + 0.04263032600283623, + -0.0647064745426178, + 0.01728040724992752, + -0.12200611084699631, + -0.06621172279119492, + -0.019416222348809242, + -0.030050568282604218, + -0.0017845522379502654, + 0.08169281482696533, + 0.017037319019436836, + 0.02421201765537262, + 0.0037975357845425606, + -0.08823724091053009, + -0.07071515917778015, + 0.08511896431446075, + 0.08436156809329987, + 0.01660916581749916, + 0.057988524436950684, + 0.05465036630630493, + -0.032873932272195816, + 0.05294205993413925, + 0.06271162629127502, + 0.11366848647594452, + -0.02610023133456707, + 0.015349031426012516, + -0.07377832382917404, + 0.07414689660072327, + 0.07684557139873505, + -0.11574330925941467, + -0.10163731873035431, + -0.023144066333770752, + -0.051269568502902985, + 0.045116886496543884, + -0.026288434863090515, + 0.011183633469045162, + 0.03164569288492203, + -0.030619151890277863, + -0.10015660524368286, + -0.09329545497894287, + 0.09745553135871887, + -0.04969329759478569, + -0.02546953782439232, + -0.08311304450035095, + 0.04494427889585495, + 0.07559853792190552, + 0.036820605397224426, + -0.030338197946548462, + 0.01947575807571411, + 0.05258313566446304, + -0.06045728921890259, + -0.023316536098718643, + 0.04226306453347206, + 0.0016495431773364544, + -0.09124850481748581, + 0.011782881803810596, + -0.06902118027210236, + 0.09021267294883728, + -0.06915663182735443, + 0.16398003697395325, + -0.022971302270889282, + -0.06647606194019318, + -0.08104446530342102, + 0.05106651410460472, + -0.017583303153514862, + 0.03503591939806938, + 0.042305998504161835, + 0.05885643512010574, + 0.02223961427807808, + -0.0645500048995018, + 0.11483395099639893, + 0.03016156330704689, + -0.03008243814110756, + -0.0585399866104126, + -0.04248024523258209, + -0.04242590814828873, + 0.026500295847654343, + 0.002028970280662179, + -0.08147037774324417, + 0.0017442512325942516, + 0.01499109622091055, + -0.02363378368318081, + 0.06126737967133522, + 0.1384272277355194, + 0.06977587938308716, + -0.11724086105823517 + ] + }, + "p244_379.wav": { + "name": "p244", + "embedding": [ + 0.04385417327284813, + 0.08368086814880371, + 0.0004669101908802986, + -0.010091540403664112, + -0.03873376548290253, + 0.046230755746364594, + -0.14813315868377686, + 0.13340362906455994, + -0.03948982059955597, + 0.15426620841026306, + -0.06360238790512085, + 0.11138015985488892, + -0.008127805776894093, + -0.18019263446331024, + -0.03770577162504196, + 0.04193387180566788, + -0.057793062180280685, + -0.04214119166135788, + -0.056620948016643524, + -0.04057123512029648, + 0.051402948796749115, + 0.05183681845664978, + 0.013680952601134777, + 0.018274657428264618, + 0.0034123891964554787, + 0.062409352511167526, + 0.02043917216360569, + 0.055918335914611816, + 0.023541729897260666, + -0.08195513486862183, + -0.02083502523601055, + 0.08724872767925262, + -0.028091277927160263, + 0.018559720367193222, + 0.04656890779733658, + -0.025418013334274292, + 0.030472083017230034, + -0.05127841979265213, + -0.03467317670583725, + 0.03528723865747452, + -0.03902474045753479, + 0.07907763868570328, + 0.0074369898065924644, + 0.007716057356446981, + 0.05388845503330231, + 0.029956858605146408, + -0.015823351219296455, + -0.0724020004272461, + -0.09075143933296204, + 0.1657782644033432, + 0.10434740036725998, + -0.019610103219747543, + -0.04357729107141495, + -0.07185962796211243, + 0.08603136241436005, + -0.052245061844587326, + -0.10766220092773438, + -0.05293136462569237, + 0.06449665129184723, + 0.12944144010543823, + -0.042106788605451584, + -0.04758021980524063, + 0.049494460225105286, + 0.12775693833827972, + 0.040527358651161194, + 0.07349203526973724, + 0.0795803964138031, + 0.0761307030916214, + -0.044778965413570404, + 0.003302923869341612, + 0.03309907764196396, + 0.07771170139312744, + 0.04621581360697746, + 0.005038945935666561, + 0.044806189835071564, + 0.020960239693522453, + -0.0068280380219221115, + 8.056375372689217e-05, + -0.019911594688892365, + 0.02049337327480316, + -0.010624206624925137, + 0.03540490195155144, + -0.021328754723072052, + 0.012203291058540344, + -0.02071482688188553, + 0.06538721919059753, + -0.008392799645662308, + 0.000987844541668892, + 0.060524582862854004, + 0.023379843682050705, + 0.04655498266220093, + 0.054990898817777634, + -0.05890372022986412, + -0.08285146206617355, + 0.028673967346549034, + 0.008595142513513565, + -0.011616579256951809, + 0.056019872426986694, + 0.017910296097397804, + -0.02655627205967903, + 0.1350702941417694, + 0.049260806292295456, + -0.028640856966376305, + 0.03055524453520775, + -0.10077312588691711, + 0.12397953122854233, + 0.07329561561346054, + -0.034036532044410706, + 0.03970664367079735, + -0.05486592650413513, + 0.06752245128154755, + 0.04661741852760315, + -0.1333666741847992, + -0.09235265851020813, + 0.043007396161556244, + 0.02136904001235962, + -0.02561361901462078, + 0.10230007022619247, + -0.005486679263412952, + 0.033191148191690445, + 0.10709051787853241, + -0.056307561695575714, + -0.04276499152183533, + -0.01762603223323822, + 0.05830918997526169, + -0.0918903574347496, + 0.060251664370298386, + 0.04541034623980522, + 0.0014724340289831161, + 0.017731232568621635, + 0.1095895916223526, + -0.022439848631620407, + -0.006722745485603809, + -0.012465088628232479, + -0.03208261355757713, + 0.01631762459874153, + -0.04512239620089531, + -0.009204409085214138, + 0.021059151738882065, + 0.0491592101752758, + 0.03468703478574753, + -0.0031415175180882215, + -0.0552615225315094, + -0.12650644779205322, + 0.018601013347506523, + -0.0013559520011767745, + 0.07058518379926682, + 0.0008318508043885231, + -0.0053475843742489815, + -0.05491418391466141, + -0.049462370574474335, + -0.024400413036346436, + -0.024958988651633263, + 0.06559912860393524, + -0.024860378354787827, + 0.02269887924194336, + 0.09741535037755966, + 0.012000896036624908, + 0.0035986807197332382, + -0.034669265151023865, + -0.025829574093222618, + -0.003224350977689028, + 0.047697536647319794, + -0.046893130987882614, + -0.06946690380573273, + 0.005941083189100027, + 0.04294610768556595, + 0.01209615170955658, + 0.06000249832868576, + 0.03875409811735153, + 0.012823483906686306, + 0.03734605759382248, + -0.09658080339431763, + 0.0314655676484108, + -0.10068618506193161, + -0.06583625078201294, + -0.01892363652586937, + -0.0025274772197008133, + -0.01628824882209301, + 0.0637492835521698, + -0.008107378147542477, + 0.048660408705472946, + -0.010005421936511993, + -0.10025914013385773, + -0.0969337448477745, + 0.059523966163396835, + 0.0996452122926712, + -0.004202151205390692, + 0.045321013778448105, + 0.05651431530714035, + -0.014919697307050228, + 0.06441773474216461, + 0.04368766397237778, + 0.10110782086849213, + -0.0043152268044650555, + 0.03423415124416351, + -0.059874605387449265, + 0.06583072245121002, + 0.04978032037615776, + -0.08416496962308884, + -0.073335662484169, + -0.010527554899454117, + -0.07210519164800644, + 0.035875968635082245, + -0.0031813548412173986, + 0.012447054497897625, + 0.04415292665362358, + 0.00752978352829814, + -0.08800460398197174, + -0.05641252547502518, + 0.07591962814331055, + -0.07787096500396729, + -0.011992206797003746, + -0.057379916310310364, + 0.036020129919052124, + 0.12026499956846237, + 0.0666547641158104, + -0.017779793590307236, + -0.04473390430212021, + 0.04401383921504021, + -0.02994568645954132, + 0.004939892329275608, + 0.027159716933965683, + 0.030616983771324158, + -0.10693733394145966, + 0.02875242382287979, + -0.09080235660076141, + 0.04131399840116501, + -0.05450586974620819, + 0.1073312759399414, + 0.010020781308412552, + -0.0629810318350792, + -0.09145230054855347, + 0.026476040482521057, + -0.0383373461663723, + 0.060232680290937424, + 0.0011733348947018385, + 0.04009602963924408, + 0.069184809923172, + -0.06585222482681274, + 0.10212516039609909, + 0.05953359603881836, + -0.04728677496314049, + -0.06880010664463043, + -0.04774005338549614, + -0.024935949593782425, + 0.03395010158419609, + 0.03719611465930939, + -0.07992134988307953, + -0.03410416841506958, + 0.012216593138873577, + -0.04541661962866783, + 0.09453573077917099, + 0.13344059884548187, + 0.05227658897638321, + -0.1507265418767929 + ] + }, + "p244_146.wav": { + "name": "p244", + "embedding": [ + 0.05173081159591675, + 0.08781048655509949, + 0.03257787972688675, + 0.005466929636895657, + -0.023618539795279503, + 0.015054089948534966, + -0.11388292163610458, + 0.1028447076678276, + 0.007264353334903717, + 0.07433748990297318, + -0.11498712748289108, + 0.10358240455389023, + -0.05607076734304428, + -0.1409558355808258, + -0.04124286398291588, + 0.03587265685200691, + -0.04401744529604912, + -0.01768949255347252, + -0.02214878797531128, + -0.010046346113085747, + 0.035469312220811844, + 0.014919303357601166, + 0.04470502957701683, + 0.018321475014090538, + -0.00444794399663806, + 0.04457274079322815, + -0.004052337259054184, + 0.03477124497294426, + 0.021253926679491997, + -0.005067147314548492, + 0.021340904757380486, + 0.039399079978466034, + -0.007815222255885601, + 0.055303506553173065, + 0.06028258427977562, + 0.02536826580762863, + -0.0054739429615437984, + -0.018883245065808296, + -0.03618921339511871, + 0.013414287939667702, + -0.04407748207449913, + 0.055351853370666504, + 0.02702566236257553, + -0.03960036486387253, + 0.0490243062376976, + 0.04641438648104668, + -0.016285691410303116, + -0.01790410652756691, + -0.10511147230863571, + 0.12259026616811752, + 0.010291787795722485, + 0.03289821743965149, + -0.08099640905857086, + -0.026124536991119385, + 0.09215167164802551, + -0.050865575671195984, + -0.09459369629621506, + -0.028084008023142815, + 0.07599273324012756, + 0.09264038503170013, + -0.023951835930347443, + -0.041913505643606186, + -0.005671866238117218, + 0.0582917258143425, + 0.041189368814229965, + 0.05618399381637573, + 0.0817662701010704, + 0.09764754772186279, + -0.03388510271906853, + 0.010172495618462563, + 0.06193658709526062, + 0.03605092316865921, + 0.06660737097263336, + 0.006852769758552313, + -0.004304143600165844, + -0.006190738640725613, + 0.0004641196574084461, + 0.019091667607426643, + -0.009173627942800522, + -0.004967373795807362, + -0.027705632150173187, + -0.008259315975010395, + -0.0029292358085513115, + 0.002002920024096966, + -0.02405666932463646, + 0.03258177638053894, + 0.031177019700407982, + 0.008372969925403595, + 0.06282497942447662, + 0.06677483022212982, + -0.01705140992999077, + 0.046009503304958344, + -0.03578224405646324, + -0.07554700970649719, + -0.03225565701723099, + -0.020589854568243027, + 0.03575562685728073, + 0.035922177135944366, + 0.03503880649805069, + 0.023354357108473778, + 0.0855662077665329, + 0.0254385843873024, + -0.0036251756828278303, + 0.0032674050889909267, + -0.10853132605552673, + 0.08199082314968109, + 0.05580103024840355, + -0.027594666928052902, + 0.019852720201015472, + -0.036443717777729034, + 0.048316389322280884, + 0.07583539932966232, + -0.05360352247953415, + -0.03800172358751297, + 0.024394333362579346, + 0.03642188012599945, + 0.03318864107131958, + 0.07662512362003326, + -0.01152440719306469, + 0.016784314066171646, + 0.11875718086957932, + -0.07176057249307632, + -0.024109384045004845, + 0.005587983876466751, + 0.009327013045549393, + -0.03365793824195862, + 0.05791780352592468, + 0.029259514063596725, + 0.02902703545987606, + 0.004038798622786999, + 0.06939239799976349, + 0.00478143896907568, + 0.009569157846271992, + -0.036234915256500244, + -0.015711260959506035, + 0.02211536280810833, + -0.02117694728076458, + 0.0007077722693793476, + 0.06763876974582672, + 0.06141200661659241, + 0.04103091359138489, + 0.06552741676568985, + -0.05750571936368942, + -0.0852167159318924, + 0.011977690272033215, + 0.05217904597520828, + 0.047709863632917404, + -0.007119899149984121, + -0.03633209317922592, + -0.04580448567867279, + -0.007685321383178234, + 0.04970385879278183, + -0.0024655070155858994, + 0.05368969962000847, + -0.0014410652220249176, + -0.009220248088240623, + 0.08319792151451111, + 0.004213802516460419, + -0.008937712758779526, + -0.07948096841573715, + -0.05960806831717491, + -0.025604955852031708, + 0.024362564086914062, + -0.10140591114759445, + -0.054099615663290024, + -0.023109978064894676, + 0.037883318960666656, + -0.0025205023121088743, + 0.0227670781314373, + 0.05524842441082001, + -0.005986891686916351, + 0.01179206557571888, + -0.03954809904098511, + 0.01663348637521267, + -0.06980662047863007, + -0.10311965644359589, + 0.01984083279967308, + -0.00989723764359951, + 0.021990396082401276, + 0.05811266228556633, + 0.005904274992644787, + 0.03793155774474144, + -0.01590459607541561, + -0.09037895500659943, + -0.06753981113433838, + 0.061282679438591, + 0.021295949816703796, + 0.0032610055059194565, + 0.05217217653989792, + 0.0253852941095829, + -0.0741269439458847, + 0.07798756659030914, + 0.01668640784919262, + 0.0862961933016777, + -0.07870747148990631, + 0.02164555713534355, + -0.027306711301207542, + 0.03223402425646782, + 0.06706254184246063, + -0.06367616355419159, + -0.08458103984594345, + -0.050511181354522705, + -0.02036047726869583, + 0.0028320476412773132, + -0.016799330711364746, + -0.005957796238362789, + 0.017700176686048508, + -0.01823967508971691, + -0.06084313616156578, + -0.08374806493520737, + 0.014344906434416771, + -0.03149090334773064, + 0.012745125219225883, + -0.05736103653907776, + 0.03571572154760361, + 0.025993801653385162, + -0.019825372844934464, + -0.0036927226465195417, + 0.021637266501784325, + -0.002274036407470703, + -0.04890124127268791, + -0.0485353097319603, + 0.024078156799077988, + 0.04139643907546997, + -0.011267557740211487, + -0.03186582773923874, + -0.07837104797363281, + 0.04924409091472626, + -0.010795444250106812, + 0.12591981887817383, + -0.012514190748333931, + -0.04951813071966171, + -0.0067854104563593864, + -0.032804928719997406, + -0.04248955100774765, + 0.03967583552002907, + 0.029716845601797104, + 0.032708458602428436, + 0.007038564886897802, + -0.02184302732348442, + 0.0928443893790245, + 0.05198834463953972, + -0.04275655746459961, + -0.04693467542529106, + -0.048397552222013474, + -0.05464000627398491, + -0.01461903564631939, + -0.031152945011854172, + -0.0545472614467144, + 0.0027494654059410095, + -0.013447854667901993, + 0.017987411469221115, + 0.04795508086681366, + 0.11922390758991241, + 0.04045257717370987, + -0.07620753347873688 + ] + }, + "p244_190.wav": { + "name": "p244", + "embedding": [ + 0.03891666978597641, + 0.08618548512458801, + -0.012352603487670422, + 0.0023647616617381573, + -0.04511157423257828, + 0.08262351155281067, + -0.15334278345108032, + 0.11335278302431107, + -0.07073113322257996, + 0.1437074840068817, + -0.05526787042617798, + 0.11605475842952728, + -0.02294749766588211, + -0.19488683342933655, + -0.06092676520347595, + 0.062192484736442566, + -0.07134442031383514, + -0.06475155055522919, + 0.005238390993326902, + -0.011493239551782608, + 0.05193570256233215, + 0.025915730744600296, + 0.013390488922595978, + 0.035989910364151, + 0.013592299073934555, + 0.07172174751758575, + 0.015837375074625015, + 0.05136915296316147, + 0.013818459585309029, + -0.02149501070380211, + -0.04269518703222275, + 0.1095333993434906, + -0.04994969069957733, + 0.008344747126102448, + 0.04553315043449402, + 0.002721929457038641, + 0.019683293998241425, + -0.07648376375436783, + -0.011557327583432198, + 0.005703666713088751, + -0.04630947858095169, + 0.08604322373867035, + 0.024151362478733063, + 0.009969284757971764, + 0.006591316312551498, + 0.016788501292467117, + -0.008936790749430656, + -0.04407847672700882, + -0.10332876443862915, + 0.14969968795776367, + 0.07188258320093155, + -0.004159452393651009, + -0.05464881286025047, + -0.07255028188228607, + 0.117868572473526, + 0.005936199799180031, + -0.10220304131507874, + -0.03999566659331322, + 0.07501912117004395, + 0.16038082540035248, + -0.03320574760437012, + -0.04479363560676575, + 0.02120385691523552, + 0.1265159398317337, + 0.044165074825286865, + 0.0974731296300888, + 0.07087424397468567, + 0.09011547267436981, + -0.011436786502599716, + -0.008907885290682316, + 0.07551225274801254, + 0.0740157887339592, + 0.028836743906140327, + -0.020702751353383064, + 0.04140472412109375, + 0.007198440842330456, + -0.02204008214175701, + 0.05030984431505203, + -0.012128639966249466, + -0.01338435523211956, + -0.02191055938601494, + -0.001331954263150692, + -0.0150510398671031, + 0.03325839340686798, + -0.01166414376348257, + 0.046062763780355453, + 0.010720659047365189, + -0.0016609709709882736, + 0.07922933995723724, + 0.03723090887069702, + 0.02604392170906067, + 0.08400508016347885, + -0.07623007893562317, + -0.07979101687669754, + 0.05053455010056496, + 0.008680237457156181, + 0.03445329889655113, + 0.08768151700496674, + 0.0446850061416626, + -0.024085253477096558, + 0.10533446818590164, + 0.05589498579502106, + -0.006498263217508793, + 0.02790868654847145, + -0.1080659031867981, + 0.12004449218511581, + 0.07869429886341095, + -0.04090873897075653, + 0.019370591267943382, + -0.04255497828125954, + 0.09387113153934479, + 0.08306798338890076, + -0.1440945565700531, + -0.08431284129619598, + 0.055854879319667816, + 0.042773813009262085, + -0.014650602824985981, + 0.13262630999088287, + -0.031001346185803413, + 0.007896746508777142, + 0.08489559590816498, + -0.05678100138902664, + -0.04893491417169571, + -0.033049799501895905, + 0.0443098209798336, + -0.07036128640174866, + 0.05185675621032715, + 0.03613513708114624, + 0.004043039865791798, + -0.011045982129871845, + 0.07997813820838928, + -0.0227487925440073, + -0.025182552635669708, + 0.02432696893811226, + -0.03223945200443268, + 0.046007998287677765, + -0.022601153701543808, + 0.016615698114037514, + 0.043354518711566925, + 0.04039819538593292, + 0.032384030520915985, + 0.01469055563211441, + -0.03640322387218475, + -0.12419065833091736, + 0.015508345328271389, + 0.05666865408420563, + 0.07116006314754486, + -0.015323542058467865, + -0.05304718390107155, + -0.05137743800878525, + -0.0591328926384449, + 0.012484293431043625, + 0.0029017780907452106, + 0.091408371925354, + -0.001773263793438673, + -0.00022884283680468798, + 0.07577857375144958, + 0.0194857157766819, + -0.003263377584517002, + -0.03675318509340286, + -0.041201747953891754, + 0.023517003282904625, + 0.04719114303588867, + -0.08032232522964478, + -0.06488973647356033, + -0.0009055742993950844, + 0.036279790103435516, + -0.015142029151320457, + 0.028365613892674446, + 0.05698738992214203, + 0.017797598615288734, + 0.0376548208296299, + -0.08761591464281082, + 0.043355900794267654, + -0.12279794365167618, + -0.06551626324653625, + -0.0320172980427742, + -0.010431734845042229, + 0.0024665198288857937, + 0.07042818516492844, + -0.004997836891561747, + 0.040651585906744, + -0.022141478955745697, + -0.07916876673698425, + -0.06485278904438019, + 0.07047265768051147, + 0.103216752409935, + 0.012911692261695862, + 0.062018103897571564, + 0.057831525802612305, + -0.012101317755877972, + 0.046879060566425323, + 0.05007849261164665, + 0.13482853770256042, + -0.03489668667316437, + 0.019783727824687958, + -0.04995163530111313, + 0.0744292289018631, + 0.05259699746966362, + -0.10245924443006516, + -0.06838458776473999, + 6.273388862609863e-05, + -0.04936979338526726, + 0.04081407189369202, + -0.02829176001250744, + 0.012483715079724789, + 0.003441236913204193, + -0.005567100830376148, + -0.1050506979227066, + -0.08585310727357864, + 0.07601556181907654, + -0.06117270886898041, + -0.012992369942367077, + -0.09122200310230255, + 0.055312518030405045, + 0.10301375389099121, + 0.037872932851314545, + -0.030580706894397736, + 0.005703204311430454, + 0.03272298350930214, + -0.025252459570765495, + -0.004251203499734402, + 0.03085319697856903, + 0.01622661016881466, + -0.1204351857304573, + 0.00017932639457285404, + -0.09284012019634247, + 0.0756625235080719, + -0.06378820538520813, + 0.16047629714012146, + -0.02003616839647293, + -0.05094631761312485, + -0.08163866400718689, + 0.028918597847223282, + -0.017792830243706703, + 0.04300200566649437, + 0.039597608149051666, + 0.06194380670785904, + 0.009485496208071709, + -0.0545857697725296, + 0.12352314591407776, + 0.042216140776872635, + -0.037687428295612335, + -0.07131104171276093, + -0.005493655800819397, + -0.01561376266181469, + 0.04466020315885544, + 0.016033610329031944, + -0.0759623795747757, + -0.029592476785182953, + 0.034450795501470566, + -0.020359832793474197, + 0.0662091001868248, + 0.13950827717781067, + 0.06911428272724152, + -0.1255066841840744 + ] + }, + "p244_369.wav": { + "name": "p244", + "embedding": [ + 0.028199300169944763, + 0.10727851092815399, + 0.0007854877039790154, + 0.014856789261102676, + -0.02383865788578987, + 0.05175522714853287, + -0.15402263402938843, + 0.14111328125, + -0.0471477210521698, + 0.14013467729091644, + -0.1019069105386734, + 0.093677818775177, + -0.03452619910240173, + -0.18918216228485107, + -0.06011847034096718, + 0.040417589247226715, + -0.04967929795384407, + -0.033519256860017776, + -0.0112451845780015, + -0.002914853859692812, + 0.06663721054792404, + 0.03348027914762497, + -0.009950281120836735, + 0.03041946142911911, + -0.001922254334203899, + 0.039967119693756104, + 0.01975911855697632, + 0.06062823534011841, + 0.0386592298746109, + -0.010230815038084984, + -0.009711163118481636, + 0.13572587072849274, + -0.018907783553004265, + 0.037021297961473465, + 0.06497976928949356, + 0.009449531324207783, + 0.008329341188073158, + -0.040101662278175354, + -0.015024878084659576, + 0.0030898405238986015, + -0.047345276921987534, + 0.061730872839689255, + 0.037560299038887024, + 0.011270963586866856, + 0.039189569652080536, + 0.05919507145881653, + -0.014882213436067104, + -0.054816409945487976, + -0.08506748080253601, + 0.1604343056678772, + 0.07355619966983795, + -0.016493886709213257, + -0.05894913151860237, + -0.06987728178501129, + 0.1099076122045517, + -0.01109024416655302, + -0.1018749549984932, + -0.033475831151008606, + 0.11122995615005493, + 0.1727573424577713, + -0.02717198245227337, + -0.03787035495042801, + 0.021621355786919594, + 0.14679546654224396, + 0.02834227867424488, + 0.09194448590278625, + 0.056256502866744995, + 0.10263821482658386, + 0.002833115868270397, + 0.008135393261909485, + 0.0622495636343956, + 0.05787428468465805, + 0.028404200449585915, + -0.04193072021007538, + 0.034289535135030746, + 0.008783059194684029, + -0.011217325925827026, + 0.040299057960510254, + -0.028623204678297043, + -0.01079061534255743, + -0.009426545351743698, + 0.02032358944416046, + -0.02184356190264225, + 0.011745870113372803, + -0.025703642517328262, + 0.052416764199733734, + 0.022887282073497772, + -0.006816552951931953, + 0.07264624536037445, + 0.0622590035200119, + 0.03945743665099144, + 0.05528624355792999, + -0.06214742362499237, + -0.10373042523860931, + 0.022373618558049202, + -0.013525377959012985, + 0.023544378578662872, + 0.07536736130714417, + 0.03749381750822067, + -0.011822872795164585, + 0.11691711843013763, + 0.038871005177497864, + -0.007304166443645954, + 0.03464965522289276, + -0.13144895434379578, + 0.12909510731697083, + 0.06521330028772354, + -0.02801908552646637, + 0.024824976921081543, + -0.04462732374668121, + 0.07613295316696167, + 0.07967578619718552, + -0.13630422949790955, + -0.07441186904907227, + 0.05125047266483307, + 0.0413830429315567, + -0.02172214165329933, + 0.11135700345039368, + -0.012063495814800262, + -0.002701223362237215, + 0.09428876638412476, + -0.06454937905073166, + -0.0689682736992836, + -0.049475304782390594, + 0.0462544709444046, + -0.082177072763443, + 0.06637449562549591, + 0.026514071971178055, + 0.0003492333344183862, + -0.017994390800595284, + 0.0893142968416214, + -0.018672045320272446, + 0.00800756923854351, + -0.00570314098149538, + -0.029605116695165634, + 0.049831829965114594, + -0.048813529312610626, + 0.019458573311567307, + 0.008507682010531425, + 0.04998883605003357, + 0.04737384617328644, + 0.025580327957868576, + -0.04806726425886154, + -0.10428784042596817, + -0.0008538421243429184, + 0.04670098423957825, + 0.08045955002307892, + 0.007464645896106958, + -0.036868758499622345, + -0.043867629021406174, + -0.04719647020101547, + 0.007677203975617886, + -0.01655011810362339, + 0.0799948200583458, + 0.003716093488037586, + -0.006608342751860619, + 0.09437038004398346, + -0.0012841126881539822, + -0.00011603336315602064, + -0.06334536522626877, + -0.01437787152826786, + 0.011144244112074375, + 0.02807004377245903, + -0.08281341195106506, + -0.06476549804210663, + 0.011694781482219696, + 0.03234819322824478, + -0.01226583868265152, + 0.028073497116565704, + 0.030791539698839188, + 0.018071219325065613, + 0.04037819057703018, + -0.08583992719650269, + 0.025005552917718887, + -0.12360372394323349, + -0.07989845424890518, + -0.022651176899671555, + -0.002108201151713729, + 0.0013351314701139927, + 0.06324441730976105, + 0.0018283510580658913, + 0.01843988336622715, + 0.016505595296621323, + -0.08618628233671188, + -0.08267609030008316, + 0.07102423906326294, + 0.08336284756660461, + 0.013562096282839775, + 0.06645528972148895, + 0.04629442095756531, + -0.03991423547267914, + 0.06404398381710052, + 0.04608313366770744, + 0.11671169102191925, + -0.02419842779636383, + 0.007976994849741459, + -0.06375421583652496, + 0.06935905665159225, + 0.06549336016178131, + -0.10340673476457596, + -0.08530882000923157, + -0.013326704502105713, + -0.05254099518060684, + 0.02138952538371086, + -0.01734915003180504, + 0.018607545644044876, + 0.007718452252447605, + -0.01408150140196085, + -0.09854468703269958, + -0.05838078260421753, + 0.06029728427529335, + -0.09261518716812134, + -0.01981927827000618, + -0.07572667300701141, + 0.05167001485824585, + 0.11062225699424744, + 0.037236444652080536, + -0.0400782972574234, + -0.02766759879887104, + 0.04832552373409271, + -0.07503670454025269, + -0.02767399698495865, + 0.010355996899306774, + 0.022310465574264526, + -0.09718108177185059, + 0.023773279041051865, + -0.08914737403392792, + 0.054145485162734985, + -0.07524878531694412, + 0.14482787251472473, + -0.0031678318046033382, + -0.08146260678768158, + -0.07533472776412964, + 0.02277853712439537, + -0.01881023868918419, + 0.04335108771920204, + 0.029217790812253952, + 0.05414988100528717, + 0.01590767502784729, + -0.055966816842556, + 0.12878789007663727, + 0.03935732692480087, + -0.029454415664076805, + -0.06619588285684586, + -0.03981907665729523, + -0.039492495357990265, + 0.022052889689803123, + 0.025556489825248718, + -0.09094993770122528, + -0.04063460975885391, + 0.02391265705227852, + -0.02889437787234783, + 0.07761697471141815, + 0.13333022594451904, + 0.045225322246551514, + -0.12099325656890869 + ] + }, + "p244_055.wav": { + "name": "p244", + "embedding": [ + 0.046574436128139496, + 0.08913436532020569, + -0.0023929483722895384, + 0.004350261762738228, + -0.04254953935742378, + 0.06514020264148712, + -0.1442471146583557, + 0.1451658010482788, + -0.0565878227353096, + 0.1407376527786255, + -0.09106993675231934, + 0.11484470963478088, + -0.03148968145251274, + -0.19993528723716736, + -0.022515378892421722, + 0.048772528767585754, + -0.04098231717944145, + -0.017407460138201714, + -0.029846753925085068, + -0.025409795343875885, + 0.04550321400165558, + 0.01899908110499382, + 0.009541154839098454, + 0.009712934494018555, + 0.007824135944247246, + 0.07307508587837219, + -0.004122601822018623, + 0.03266330435872078, + 0.002577691338956356, + -0.026551980525255203, + -0.03578141704201698, + 0.11213751137256622, + -0.05473366379737854, + 0.004312671720981598, + 0.07759320735931396, + -0.01027532760053873, + -0.024935448542237282, + -0.0615367516875267, + -0.014649576507508755, + -0.008107008412480354, + -0.06940373033285141, + 0.05909372866153717, + 0.024877093732357025, + -0.008142421022057533, + 0.04316188395023346, + 0.04451502859592438, + 0.0028448961675167084, + -0.043630972504615784, + -0.09380718320608139, + 0.1379014253616333, + 0.07744523882865906, + -0.004231967031955719, + -0.05677090585231781, + -0.05916500836610794, + 0.11454176902770996, + -0.003850226290524006, + -0.11819355189800262, + -0.04130569100379944, + 0.10107502341270447, + 0.15562397241592407, + -0.05671142041683197, + -0.026052938774228096, + 0.028546340763568878, + 0.10549560189247131, + 0.03289832919836044, + 0.11902220547199249, + 0.08150166273117065, + 0.1073945164680481, + -0.01186227984726429, + 0.024482499808073044, + 0.06277100741863251, + 0.055194370448589325, + 0.0640106201171875, + -0.03717948496341705, + 0.022137347608804703, + 0.011258618906140327, + -0.024129696190357208, + 0.016543114557862282, + -0.03129882737994194, + -0.01165520865470171, + -0.019313769415020943, + -0.005342992953956127, + 0.0018325226847082376, + 0.009058971889317036, + -0.019726015627384186, + 0.05271347239613533, + 0.03635776415467262, + -0.000942105136346072, + 0.07288220524787903, + 0.017791273072361946, + -0.0028136475011706352, + 0.07125572860240936, + -0.08712626248598099, + -0.07857319712638855, + 0.02426619827747345, + -0.011976849287748337, + -0.0002128448977600783, + 0.09163360297679901, + 0.05353984609246254, + -0.011702270247042179, + 0.12337925285100937, + 0.04680298641324043, + -0.0005060539115220308, + 0.03358887881040573, + -0.10153765976428986, + 0.12774483859539032, + 0.07750610262155533, + -0.05008864402770996, + 0.04139804095029831, + -0.059163689613342285, + 0.08013476431369781, + 0.08006198704242706, + -0.14718866348266602, + -0.0539596751332283, + 0.04259147495031357, + 0.02254943922162056, + -0.026735395193099976, + 0.1272776573896408, + -0.02291165292263031, + 0.0169075895100832, + 0.11666344106197357, + -0.08210164308547974, + -0.059017203748226166, + -0.024821419268846512, + 0.043551139533519745, + -0.08164355158805847, + 0.06433211266994476, + 0.04648889973759651, + -0.0016722474247217178, + 0.013577437028288841, + 0.10247376561164856, + -0.027321791276335716, + -0.02072293311357498, + 0.005596350412815809, + -0.03557903319597244, + 0.02170388586819172, + -0.03603385388851166, + 0.0076075354591012, + 0.024209316819906235, + 0.04263443499803543, + 0.0333988256752491, + 0.008780399337410927, + -0.037260085344314575, + -0.10201187431812286, + 0.012085439637303352, + 0.04208651930093765, + 0.08861590176820755, + -0.00486858282238245, + -0.02041034586727619, + -0.03934132307767868, + -0.06423559039831161, + 0.004675803240388632, + -0.02093695104122162, + 0.07811477780342102, + -0.027870360761880875, + 0.007149981334805489, + 0.08687368035316467, + 0.03586791083216667, + -0.003421555971726775, + -0.07692418992519379, + -0.03912508487701416, + 0.00718061625957489, + 0.047734081745147705, + -0.08591185510158539, + -0.07083427906036377, + -0.014545300975441933, + 0.03895916789770126, + -0.017533330246806145, + 0.05183684080839157, + 0.03833241015672684, + 0.025639843195676804, + 0.02463449165225029, + -0.08224032819271088, + 0.015124998986721039, + -0.11992624402046204, + -0.07971511036157608, + -0.01891009509563446, + -0.013322421349585056, + -0.004228496458381414, + 0.06551694869995117, + -0.0019042243948206306, + 0.03481516242027283, + -0.014965128153562546, + -0.07622719556093216, + -0.08238254487514496, + 0.06252120435237885, + 0.07650018483400345, + -0.011789831332862377, + 0.04586467891931534, + 0.05817842483520508, + -0.049839988350868225, + 0.0470852330327034, + 0.06303859502077103, + 0.1288510262966156, + -0.02223774418234825, + 0.03674256429076195, + -0.06645467132329941, + 0.07680311799049377, + 0.07735106348991394, + -0.08554330468177795, + -0.0876953974366188, + -0.018741222098469734, + -0.05704496055841446, + 0.03937928378582001, + -0.019623935222625732, + -0.0041176192462444305, + -0.0019676941446959972, + -0.0062654884532094, + -0.08003780245780945, + -0.07332847267389297, + 0.07443499565124512, + -0.0674520954489708, + -0.005016189534217119, + -0.09536699950695038, + 0.05337999761104584, + 0.0944749191403389, + 0.031060732901096344, + -0.026241417974233627, + -0.005389410071074963, + 0.04848342016339302, + -0.03311874344944954, + 0.0016810663510113955, + 0.0416463166475296, + 0.03446490317583084, + -0.11019304394721985, + -0.003943437710404396, + -0.08162915706634521, + 0.06479348242282867, + -0.05929083377122879, + 0.1414589285850525, + -0.00805061124265194, + -0.04871737211942673, + -0.0753415897488594, + 0.035351913422346115, + 0.00344419339671731, + 0.036168865859508514, + 0.03754804655909538, + 0.07143204659223557, + 0.02240382507443428, + -0.06710101664066315, + 0.12995368242263794, + 0.014064205810427666, + -0.023517899215221405, + -0.06127078831195831, + -0.04899080842733383, + -0.04501912370324135, + -0.0015472689410671592, + 0.005220281425863504, + -0.10901229083538055, + -0.028873872011899948, + 0.019628137350082397, + -0.016123972833156586, + 0.056438006460666656, + 0.14413830637931824, + 0.06163401901721954, + -0.12603460252285004 + ] + }, + "p244_416.wav": { + "name": "p244", + "embedding": [ + 0.0567907989025116, + 0.06137121841311455, + 0.03674077242612839, + -0.03178399056196213, + 0.00300041027367115, + 0.11558578163385391, + -0.09009912610054016, + 0.09349261224269867, + -0.0014780350029468536, + 0.027230067178606987, + -0.067775659263134, + 0.034372493624687195, + 0.0031084883958101273, + -0.1340586543083191, + -0.011272762902081013, + 0.047002751380205154, + -0.03475184738636017, + 0.025634601712226868, + -0.04725174978375435, + -0.01655474305152893, + -0.02471337839961052, + 0.008841507136821747, + 0.04945560172200203, + -0.02523030713200569, + 0.05547273904085159, + 0.03038673661649227, + 0.004403010942041874, + 0.019978735595941544, + -0.013245188631117344, + -0.014343657530844212, + -0.012119540013372898, + 0.07473617792129517, + -0.040856122970581055, + -0.032392777502536774, + 0.06482695788145065, + -0.003955521620810032, + 0.04602472856640816, + -0.09960207343101501, + -0.021383536979556084, + 0.03907986357808113, + -0.06382596492767334, + 0.08577613532543182, + 0.07248856127262115, + 0.031154153868556023, + 0.024028554558753967, + 0.012702086009085178, + 0.004519999492913485, + -0.050253767520189285, + -0.09138837456703186, + 0.14109325408935547, + 0.019830642268061638, + 0.030226966366171837, + -0.08460353314876556, + -0.0027941223233938217, + 0.05003519356250763, + 0.0001817962620407343, + -0.03909480199217796, + -0.01801268942654133, + 0.04741377383470535, + 0.08155964314937592, + 0.04193412885069847, + -0.00751175731420517, + 0.0282631553709507, + 0.07708166539669037, + -0.0008111521601676941, + 0.026783302426338196, + 0.08534255623817444, + 0.09093628823757172, + 0.020387357100844383, + 0.0287494957447052, + 0.05056292191147804, + -0.011136289685964584, + 0.012760885059833527, + -0.02051311917603016, + 0.034366849809885025, + -0.03974774479866028, + -0.014197340235114098, + -0.014851966872811317, + -0.0009447336196899414, + -0.02088828943669796, + 0.06970079243183136, + 0.03769897669553757, + 0.01453565526753664, + 0.06822018325328827, + -0.04767470434308052, + 0.027288168668746948, + -0.02114154025912285, + 0.09532777965068817, + 0.08049063384532928, + 0.044545844197273254, + 0.03397013992071152, + 0.00405912846326828, + -0.025210492312908173, + -0.08055074512958527, + 0.01917753927409649, + 0.028193194419145584, + 0.0009263250976800919, + 0.00024887174367904663, + 0.016075773164629936, + -0.03548377379775047, + 0.09358718991279602, + 0.007819762453436852, + -0.0052802651189267635, + 0.010923583060503006, + -0.06192692369222641, + 0.05942104011774063, + 0.04144691675901413, + 0.012968428432941437, + 0.06518562883138657, + -0.021607359871268272, + 0.0213124118745327, + 0.0648246482014656, + -0.08226243406534195, + -0.018341904506087303, + 0.029112935066223145, + 0.018069801852107048, + 0.049465928226709366, + 0.11785601824522018, + 0.015189849771559238, + 0.021076707169413567, + 0.035244591534137726, + -0.07194758206605911, + -0.019156519323587418, + 0.04732681065797806, + 0.001741865649819374, + 0.018829703330993652, + -0.0234701968729496, + 0.029811378568410873, + 0.01583380252122879, + -0.07465830445289612, + 0.03607070446014404, + 0.02948310784995556, + 0.024294618517160416, + -0.05371376872062683, + 0.04280327633023262, + 0.042849522083997726, + -0.0021061180159449577, + -0.025993550196290016, + 0.025131581351161003, + 0.05759604647755623, + -0.009550297632813454, + 0.041474323719739914, + -0.051814183592796326, + -0.09134930372238159, + -0.051411066204309464, + -0.017881054431200027, + 0.04415519908070564, + -0.020648781210184097, + -0.02756025455892086, + -0.06745801866054535, + 0.023630425333976746, + -0.0011830441653728485, + -0.007896332070231438, + 0.03980392962694168, + 0.09757402539253235, + -0.06991977989673615, + 0.05163955315947533, + -0.02070273831486702, + 0.032362744212150574, + -0.01946130022406578, + -0.03826843574643135, + 0.024332456290721893, + 0.023941773921251297, + -0.0042892321944236755, + -0.047967202961444855, + 0.014726214110851288, + -0.06178019195795059, + -0.012573277577757835, + -0.005452342331409454, + 0.02859993278980255, + -0.0017840638756752014, + -0.03733401000499725, + -0.07862615585327148, + 0.020164823159575462, + -0.043614305555820465, + -0.03302149847149849, + 0.07899540662765503, + 0.04223420098423958, + -0.03670389950275421, + 0.09814518690109253, + 0.044447124004364014, + 0.02855328656733036, + -0.03492702916264534, + -0.028882192447781563, + 0.04290291666984558, + 0.04755566641688347, + 0.0358084999024868, + -0.0017981259152293205, + 0.02763209491968155, + -0.006372924894094467, + -0.0008250924292951822, + 0.03864503279328346, + 0.039031289517879486, + 0.020886069163680077, + -0.037478022277355194, + -0.03772738575935364, + 0.022353626787662506, + 0.08378852903842926, + -0.006557576358318329, + -0.050600141286849976, + -0.029572520405054092, + 0.04553770646452904, + -0.017793282866477966, + 0.001892803586088121, + -0.00015062838792800903, + 0.025224143639206886, + 0.03570117801427841, + -0.033847302198410034, + -0.048651739954948425, + -0.0749111995100975, + 0.02383178099989891, + -0.0725645124912262, + -0.019341357052326202, + -0.033219676464796066, + 0.0482814759016037, + 0.08746325969696045, + -0.015543824061751366, + -0.004597595892846584, + -0.008085458539426327, + -0.017453357577323914, + -0.019890829920768738, + -0.042361900210380554, + -0.0017944574356079102, + 0.02992306649684906, + -0.0801640972495079, + 0.018427453935146332, + -0.051806218922138214, + 0.06349413841962814, + 0.015992505475878716, + 0.07570898532867432, + 0.059676650911569595, + -0.02038032002747059, + -0.06252992898225784, + -0.004649071022868156, + -0.0071282461285591125, + 0.027470968663692474, + -0.008077695034444332, + 0.0085157360881567, + 0.05133112519979477, + -0.021400058642029762, + 0.05884072184562683, + 0.018169095739722252, + -0.06082256883382797, + -0.04509517922997475, + 0.013953562825918198, + -0.016391271725296974, + 0.025656264275312424, + -0.027521420270204544, + -0.046593815088272095, + 0.025631526485085487, + 0.04764686897397041, + 0.03699498623609543, + 0.011318061500787735, + 0.04729567468166351, + 0.014677945524454117, + -0.04137536883354187 + ] + }, + "p244_022.wav": { + "name": "p244", + "embedding": [ + 0.05324256047606468, + 0.061302293092012405, + -0.005025130696594715, + 0.01198851503431797, + -0.057215042412281036, + 0.04223097488284111, + -0.10840871185064316, + 0.13754360377788544, + -0.02465054765343666, + 0.09339778870344162, + -0.07185589522123337, + 0.11825723946094513, + -0.030186904594302177, + -0.14125891029834747, + -0.016872841864824295, + 0.05601181462407112, + -0.025600483641028404, + -0.0234761293977499, + -0.04188695177435875, + -0.024710973724722862, + 0.013375586830079556, + 0.026865586638450623, + 0.0398847833275795, + 0.01684473268687725, + 0.022400561720132828, + 0.06845802068710327, + -0.0006524207419715822, + 0.038663335144519806, + 0.012818616814911366, + -0.037854522466659546, + -0.01886928454041481, + 0.06561212986707687, + -0.05319884419441223, + 0.0071054003201425076, + 0.05396874621510506, + -0.005310772452503443, + -0.008902838453650475, + -0.062401723116636276, + -0.026669198647141457, + -0.0033368864096701145, + -0.05418379232287407, + 0.07686834782361984, + 0.026250198483467102, + -0.018549030646681786, + 0.03559478744864464, + 0.017564356327056885, + -0.011372784152626991, + -0.035834427922964096, + -0.11986465752124786, + 0.13321977853775024, + 0.042802900075912476, + 0.00832411739975214, + -0.10078143328428268, + -0.040594760328531265, + 0.0821743980050087, + -0.038213491439819336, + -0.08589424192905426, + -0.04702872782945633, + 0.058764275163412094, + 0.11749287694692612, + -0.017929598689079285, + -0.029212012887001038, + 0.01113861333578825, + 0.08081115782260895, + 0.05228882655501366, + 0.057697027921676636, + 0.09072805941104889, + 0.10422497242689133, + -0.03733307123184204, + 0.034734275192022324, + 0.048660267144441605, + 0.05916241556406021, + 0.05137226730585098, + 0.012145251035690308, + 0.00894327461719513, + -0.010723164305090904, + -0.007460992783308029, + 0.009404128417372704, + -0.023798830807209015, + -0.022367704659700394, + -0.019436601549386978, + 0.009480023756623268, + 0.007161378860473633, + 0.020561737939715385, + -0.01759173348546028, + 0.07141675055027008, + 0.02871347777545452, + 0.0041181789711117744, + 0.0652528628706932, + 0.03488336130976677, + -0.027383113279938698, + 0.04738170653581619, + -0.07045860588550568, + -0.06743291020393372, + -0.007237815298140049, + -0.01465634722262621, + 0.03835726156830788, + 0.0582859106361866, + 0.023977557197213173, + 0.0012763416161760688, + 0.11218085139989853, + 0.04241640120744705, + 0.0026273243129253387, + 0.013760223984718323, + -0.0759207010269165, + 0.11506791412830353, + 0.08514852821826935, + -0.018498443067073822, + 0.03904011473059654, + -0.04295190051198006, + 0.048243194818496704, + 0.05668666958808899, + -0.10186289995908737, + -0.047524306923151016, + 0.008349123410880566, + 0.004310175776481628, + 0.0033535838592797518, + 0.1038592979311943, + -0.010126795619726181, + 0.03911980614066124, + 0.09584072232246399, + -0.08150944113731384, + -0.04041064903140068, + 0.016518017277121544, + 0.02416919730603695, + -0.056308772414922714, + 0.04082862287759781, + 0.042970508337020874, + 0.010659074410796165, + 0.01760186068713665, + 0.08590855449438095, + -0.0026000705547630787, + 0.0016993418103083968, + 0.010413152165710926, + -0.028262360021471977, + 0.020225364714860916, + -0.016469767317175865, + -0.014491048641502857, + 0.0718434676527977, + 0.06346558779478073, + 0.04298487305641174, + 0.009037402458488941, + -0.02301657944917679, + -0.10575832426548004, + -0.001162229455076158, + 0.04356175288558006, + 0.06886432319879532, + -0.029556620866060257, + -0.028247911483049393, + -0.041098855435848236, + -0.0413292832672596, + 0.006152871064841747, + 0.014197251759469509, + 0.062205392867326736, + -0.024410007521510124, + 0.004270531237125397, + 0.08781793713569641, + 0.02211890183389187, + -0.00658487668260932, + -0.06471861898899078, + -0.026197416707873344, + 0.000420949247200042, + 0.055853601545095444, + -0.059295106679201126, + -0.0691130980849266, + -0.003671650541946292, + 0.034395016729831696, + -0.027208132669329643, + 0.04693871736526489, + 0.04393736645579338, + 0.004974675364792347, + 0.014129765331745148, + -0.06800070405006409, + 0.024692555889487267, + -0.08237608522176743, + -0.058275967836380005, + 0.015931254252791405, + -0.01525780837982893, + -0.015050581656396389, + 0.06195163354277611, + 0.023209623992443085, + 0.06388459354639053, + -0.011865590699017048, + -0.08598818629980087, + -0.06828141212463379, + 0.05322566255927086, + 0.04108474776148796, + -0.015175786800682545, + 0.04581515118479729, + 0.0505252368748188, + -0.04002430662512779, + 0.0537480004131794, + 0.05123565346002579, + 0.07857302576303482, + -0.05612390115857124, + 0.0047832028940320015, + -0.04561203345656395, + 0.06616338342428207, + 0.06934478878974915, + -0.08487281948328018, + -0.0690789446234703, + -0.028633838519454002, + -0.04422156512737274, + 0.03621666878461838, + -0.020767319947481155, + -0.003627300728112459, + 0.04623904824256897, + -0.012674671597778797, + -0.09455786645412445, + -0.07809048891067505, + 0.06553131341934204, + -0.057748373597860336, + 0.013004057109355927, + -0.06921438127756119, + 0.02716211788356304, + 0.07098933309316635, + 0.02222384326159954, + -0.0037244276609271765, + -0.007137469481676817, + 0.023656774312257767, + -0.03247683122754097, + -0.022201651707291603, + 0.046808600425720215, + 0.031671714037656784, + -0.06424158811569214, + -0.01589217036962509, + -0.06142134591937065, + 0.052113499492406845, + -0.015291360206902027, + 0.133778914809227, + 0.0006001185975037515, + -0.04379967600107193, + -0.06352009624242783, + 0.0006721764802932739, + -0.029346132650971413, + 0.05153700336813927, + 0.041114747524261475, + 0.04483325406908989, + 0.029850849881768227, + -0.0434134267270565, + 0.11956961452960968, + 0.050123121589422226, + -0.05864757299423218, + -0.04936657473444939, + -0.04123452678322792, + -0.03550001233816147, + 0.014122906140983105, + -0.0006522267940454185, + -0.0715562105178833, + 0.0065712593495845795, + 0.0033439528197050095, + -0.022484436631202698, + 0.05486337095499039, + 0.12036079168319702, + 0.07447535544633865, + -0.09200917929410934 + ] + }, + "p244_335.wav": { + "name": "p244", + "embedding": [ + 0.04199257493019104, + 0.08892996609210968, + 0.008641382679343224, + -0.009453978389501572, + -0.02137896604835987, + 0.06362928450107574, + -0.12301419675350189, + 0.08644839376211166, + -0.03773996978998184, + 0.13767001032829285, + -0.05482705309987068, + 0.07192657887935638, + -0.008518553338944912, + -0.1373392939567566, + -0.05108211934566498, + 0.034587059170007706, + -0.07831590622663498, + -0.005116255953907967, + -0.05878249555826187, + -0.008343957364559174, + 0.03481651097536087, + 0.036918655037879944, + 0.04181723669171333, + -0.060623109340667725, + 0.0587172657251358, + 0.037981703877449036, + 0.0530821867287159, + 0.06958456337451935, + 0.06090376898646355, + -0.059416964650154114, + -0.020414866507053375, + 0.10418006777763367, + -0.02444155141711235, + 0.016964247450232506, + 0.03525381162762642, + 0.002311745658516884, + 0.04806772246956825, + -0.06123020499944687, + -0.021319659426808357, + 0.06647691130638123, + -0.012859487906098366, + 0.08751493692398071, + 0.027104495093226433, + 0.0101105822250247, + 0.009353546425700188, + 0.04908143728971481, + -0.005352572537958622, + -0.08023662865161896, + -0.07675178349018097, + 0.1825820505619049, + 0.040736597031354904, + -0.01549578458070755, + -0.05682007223367691, + -0.07847986370325089, + 0.09336146712303162, + -0.019799184054136276, + -0.06816112995147705, + -0.031503286212682724, + 0.07169219851493835, + 0.14021651446819305, + -0.029171908274292946, + 0.005227888002991676, + 0.016633763909339905, + 0.11838006973266602, + 0.022399093955755234, + 0.05357801541686058, + 0.06887462735176086, + 0.08455190062522888, + 0.04138166457414627, + 0.048407185822725296, + 0.025311864912509918, + 0.06889475882053375, + -0.015499012544751167, + -0.011595621705055237, + 0.029313433915376663, + -0.02255629375576973, + -0.0514276847243309, + 0.012401705607771873, + -0.007684722077101469, + -0.0027304328978061676, + 0.015446944162249565, + -0.0002575097605586052, + -0.0019865259528160095, + 0.023443857207894325, + -0.03219224512577057, + 0.04208652302622795, + -0.03812112659215927, + -0.006978310644626617, + 0.07214789092540741, + 0.01456240564584732, + 0.006361637730151415, + 0.04026614874601364, + -0.04209909215569496, + -0.12104970961809158, + -0.007916999980807304, + 0.005739630199968815, + 0.01301302295178175, + 0.05009947717189789, + 0.04211876913905144, + -0.049872443079948425, + 0.10778867453336716, + 0.041849687695503235, + -0.025697171688079834, + 0.02777659147977829, + -0.09451504051685333, + 0.11773648858070374, + 0.0697186291217804, + -0.007269886787980795, + 0.023536888882517815, + -0.04603276774287224, + 0.06318366527557373, + 0.044546082615852356, + -0.14325019717216492, + -0.06988342106342316, + 0.05604244023561478, + -0.02932731807231903, + 0.008439527824521065, + 0.06855004280805588, + -0.0033898716792464256, + -0.018165534362196922, + 0.07283703237771988, + -0.06284299492835999, + -0.04674302041530609, + -0.022204400971531868, + 0.0673355832695961, + -0.05229955166578293, + 0.0053389910608530045, + 0.03211677819490433, + -0.03647319972515106, + -0.01811276748776436, + 0.07836821675300598, + 0.01435836497694254, + 0.02559647150337696, + 0.020600534975528717, + -0.012520981952548027, + 0.06220254302024841, + -0.03484669327735901, + 0.029449913650751114, + 0.04761910066008568, + 0.08200129121541977, + 0.05170191079378128, + 0.007448915857821703, + -0.07090297341346741, + -0.08006048202514648, + 0.006199871655553579, + 0.01693909242749214, + 0.048258572816848755, + -0.019243672490119934, + -0.014141546562314034, + -0.06672597676515579, + -0.058080561459064484, + 0.022938579320907593, + 0.01846778579056263, + 0.10079550743103027, + 0.014553926885128021, + -0.03154242783784866, + 0.1280750185251236, + -0.0310067031532526, + -0.004371006973087788, + -0.008714258670806885, + -0.010095467790961266, + 0.04211525619029999, + 0.005994373932480812, + -0.04314360395073891, + -0.04779992997646332, + 0.025909392163157463, + -0.022329673171043396, + -0.017854366451501846, + -0.0004951246082782745, + -0.003264857456088066, + 0.020975276827812195, + 0.04464074224233627, + -0.05537869781255722, + -0.014321788214147091, + -0.07688619196414948, + 0.0074501242488622665, + -0.009183879010379314, + -0.010820964351296425, + -0.07537836581468582, + 0.10119102895259857, + -0.008822977542877197, + 0.013086620718240738, + 0.012761054560542107, + -0.07155165821313858, + -0.008827300742268562, + 0.06906633824110031, + 0.08144252002239227, + 0.017893217504024506, + 0.035997506231069565, + 0.04988212138414383, + 0.013876711949706078, + 0.03241956979036331, + 0.0907677710056305, + 0.060314640402793884, + 0.0072409361600875854, + -0.021741919219493866, + -0.03993678092956543, + 0.1135089099407196, + 0.010460760444402695, + -0.09237933903932571, + -0.06321438401937485, + -0.02145492658019066, + -0.07221998274326324, + 0.015705164521932602, + -0.007785316091030836, + 0.02918567880988121, + 0.016829241067171097, + -0.010494627989828587, + -0.08744720369577408, + -0.0733645111322403, + 0.06126019358634949, + -0.09093831479549408, + -0.0495544895529747, + -0.029355553910136223, + 0.04723712056875229, + 0.10146286338567734, + 0.07382183521986008, + 0.0197888370603323, + -0.01096520759165287, + 0.053285837173461914, + -0.10108982771635056, + -0.042458269745111465, + 0.01303887739777565, + -0.014631019905209541, + -0.07976728677749634, + 0.039096347987651825, + -0.05399172380566597, + 0.05580270290374756, + -0.06278306990861893, + 0.128276988863945, + 0.00547771668061614, + -0.0711478441953659, + -0.07058806717395782, + 0.03497830778360367, + -0.064044289290905, + 0.023915551602840424, + 0.0412735752761364, + 0.015875883400440216, + 0.043776970356702805, + -0.05875685065984726, + 0.12558326125144958, + 0.014873407781124115, + -0.021190688014030457, + -0.09137672930955887, + -0.04988788813352585, + -0.00418389867991209, + 0.04000279679894447, + 0.021027863025665283, + -0.0600716695189476, + -0.0002337014302611351, + 0.03781680762767792, + -0.03509362041950226, + 0.06237088888883591, + 0.1147623062133789, + 0.06811603158712387, + -0.0892682820558548 + ] + }, + "p244_234.wav": { + "name": "p244", + "embedding": [ + 0.03859855234622955, + 0.06536020338535309, + -0.05317090451717377, + 0.048265717923641205, + -0.07475513219833374, + 0.03391978517174721, + -0.11376482248306274, + 0.07741101086139679, + -0.024729568511247635, + 0.10837063938379288, + -0.06549143046140671, + 0.0974111258983612, + -0.03725048527121544, + -0.16334807872772217, + -0.022786781191825867, + 0.029134754091501236, + -0.021586617454886436, + -0.034028712660074234, + -0.07125753164291382, + -0.05357389524579048, + 0.03808830678462982, + 0.04620485007762909, + 0.037542980164289474, + -0.03874049335718155, + 0.024919772520661354, + 0.07656604051589966, + -0.0012513245455920696, + 0.020306438207626343, + -0.0073990351520478725, + -0.02825022302567959, + -0.033680260181427, + 0.12117268145084381, + -0.05313227325677872, + -0.02491612732410431, + 0.0220029316842556, + -0.011181545443832874, + -0.026563022285699844, + -0.06553985178470612, + 0.00677464809268713, + 0.0188668854534626, + -0.06003882735967636, + 0.07544171065092087, + 0.037750158458948135, + -0.02425515465438366, + 0.03790944069623947, + -0.02394789643585682, + -0.03895793855190277, + -0.031601451337337494, + -0.1135723739862442, + 0.15090526640415192, + 0.06480830907821655, + 0.005111951846629381, + -0.07643724977970123, + -0.03469008952379227, + 0.11702896654605865, + 0.00011325161904096603, + -0.10391978174448013, + -0.0601520910859108, + 0.05091874301433563, + 0.13522972166538239, + -0.021721580997109413, + -0.010522306896746159, + 0.04580019786953926, + 0.08238363265991211, + 0.05134568735957146, + 0.05934164673089981, + 0.09767190366983414, + 0.11020466685295105, + -0.01940980926156044, + 0.026963967829942703, + 0.0635671317577362, + 0.0512508898973465, + 0.004070617258548737, + -0.03484227508306503, + 0.028774341568350792, + -0.023614415898919106, + -0.03152000159025192, + -0.021742310374975204, + -0.0170968659222126, + -0.03713006153702736, + -0.014190487563610077, + -0.006610504351556301, + 0.023592984303832054, + 0.013758573681116104, + -0.07379648089408875, + 0.03989016264677048, + 0.05868522822856903, + -0.04482884332537651, + 0.07561008632183075, + 0.04234018176794052, + -0.02142864651978016, + 0.02775394916534424, + -0.06345707178115845, + -0.06695277243852615, + 0.006896377075463533, + 0.015231841243803501, + -0.002263029105961323, + 0.07118502259254456, + 0.041825756430625916, + -0.01341099664568901, + 0.1182360053062439, + 0.05332415923476219, + -0.00010971445590257645, + 0.016209347173571587, + -0.05489329993724823, + 0.11478199064731598, + 0.09783156961202621, + -0.021169234067201614, + 0.04628896340727806, + -0.025693543255329132, + 0.04850009083747864, + 0.03727053850889206, + -0.0980229601264, + -0.05620863288640976, + 0.01675214245915413, + -0.0005779140628874302, + -0.016480816528201103, + 0.12641844153404236, + -0.023657022044062614, + 0.029201500117778778, + 0.1001882255077362, + -0.07846298068761826, + -0.0468326061964035, + -0.02599833346903324, + 0.0507347472012043, + -0.05261535570025444, + 0.03368260711431503, + 0.06303907930850983, + -0.010581274516880512, + 0.010219539515674114, + 0.07421673089265823, + -0.0032368479296565056, + 0.011091831140220165, + 0.022239116951823235, + -0.030271630734205246, + 0.06623533368110657, + -0.009648853912949562, + -0.014935877174139023, + 0.08406563848257065, + 0.03172847628593445, + 0.07616819441318512, + -0.020973140373826027, + 0.0075493683107197285, + -0.08079719543457031, + 0.034587062895298004, + 0.03369280695915222, + 0.07178688794374466, + -0.02151252143085003, + -0.002016404177993536, + -0.06350171566009521, + -0.09410462528467178, + 0.036443352699279785, + -0.0070542446337640285, + 0.11022815108299255, + -0.02414689213037491, + 0.0006169844418764114, + 0.10694345086812973, + 0.03461815416812897, + -0.0037476629950106144, + -0.039060309529304504, + -0.012701804749667645, + 0.0005930531769990921, + 0.0647931694984436, + -0.06514895707368851, + -0.05673503875732422, + -0.017224684357643127, + 0.028163854032754898, + -0.013866370543837547, + 0.06153073161840439, + 0.06615598499774933, + 0.007006385363638401, + 0.015415019355714321, + -0.09403462707996368, + 0.040469661355018616, + -0.0571637861430645, + 0.0030420292168855667, + -0.018780099228024483, + -0.05402619391679764, + -0.03947633132338524, + 0.10606244206428528, + 0.028492046520113945, + 0.018114376813173294, + -0.00851733423769474, + -0.08809319138526917, + -0.05415783450007439, + 0.04925578832626343, + 0.0618937686085701, + -0.03630887717008591, + 0.04230650141835213, + 0.06619949638843536, + -0.02612951397895813, + 0.02468230575323105, + 0.08153250068426132, + 0.06665295362472534, + -0.05009851232171059, + -0.010692842304706573, + -0.046283796429634094, + 0.0961911752820015, + 0.057161860167980194, + -0.08834637701511383, + -0.058778949081897736, + -0.05279126390814781, + -0.0705227255821228, + 0.032884445041418076, + -0.00844891369342804, + 0.011212746612727642, + 0.04085033759474754, + -0.01949182152748108, + -0.11022347211837769, + -0.09587196260690689, + 0.08932378888130188, + -0.05024102330207825, + 0.0008833149913698435, + -0.08373536169528961, + 0.011574815027415752, + 0.07716451585292816, + 0.030302952975034714, + -0.018663160502910614, + 0.003427368588745594, + 0.026869148015975952, + -0.03749735653400421, + 0.025821998715400696, + 0.06695492565631866, + 0.030477840453386307, + -0.08606046438217163, + -0.01636342518031597, + -0.07262247055768967, + 0.09376001358032227, + -0.045824408531188965, + 0.13435187935829163, + 0.030832357704639435, + -0.029940340667963028, + -0.0678267776966095, + 0.08531317859888077, + -0.038513388484716415, + 0.0648491233587265, + 0.07825575023889542, + 0.06580692529678345, + 0.023558005690574646, + -0.07233178615570068, + 0.10416823625564575, + 0.0473080649971962, + -0.03588294982910156, + -0.07229477912187576, + -0.020407695323228836, + -0.02657570317387581, + 0.03915943577885628, + 0.04880320280790329, + -0.06501597911119461, + 0.018592577427625656, + 0.0319160558283329, + -0.024493027478456497, + 0.08041813969612122, + 0.110394686460495, + 0.11622071266174316, + -0.07773072272539139 + ] + }, + "p244_397.wav": { + "name": "p244", + "embedding": [ + 0.057540830224752426, + 0.06532454490661621, + -0.02408442460000515, + 0.042704205960035324, + -0.062366336584091187, + 0.056560419499874115, + -0.1079028993844986, + 0.11655204743146896, + -0.04469050094485283, + 0.13947443664073944, + -0.07262063026428223, + 0.11737707257270813, + -0.01949811726808548, + -0.17521195113658905, + -0.03316901624202728, + 0.05325757712125778, + -0.06746870279312134, + -0.04792320355772972, + -0.0665336474776268, + -0.03227730095386505, + 0.0373370423913002, + 0.05137907713651657, + 0.035126909613609314, + 0.02016899548470974, + 0.014160270802676678, + 0.07044355571269989, + -0.012833474203944206, + 0.03222101554274559, + 0.015369421802461147, + -0.07165725529193878, + -0.04738829657435417, + 0.09383641928434372, + -0.0397530198097229, + 0.011873606592416763, + 0.03279845416545868, + 0.00019890815019607544, + 0.00031969169504009187, + -0.08078673481941223, + -0.044617921113967896, + 0.0028171264566481113, + -0.05969257652759552, + 0.06437467038631439, + 0.01772245019674301, + -0.031186606734991074, + 0.04823547601699829, + -0.010540718212723732, + -0.04005371034145355, + -0.04987271875143051, + -0.10491453111171722, + 0.1607937067747116, + 0.09455075860023499, + 0.005585236009210348, + -0.06001652032136917, + -0.06775936484336853, + 0.10809382051229477, + -0.0183560773730278, + -0.1331251561641693, + -0.031904272735118866, + 0.06258156150579453, + 0.16119226813316345, + -0.03705383464694023, + -0.02197418175637722, + 0.034684278070926666, + 0.12138589471578598, + 0.06770135462284088, + 0.08071542531251907, + 0.09527765959501266, + 0.10467272996902466, + -0.023244358599185944, + 0.02007889375090599, + 0.07369059324264526, + 0.07845441997051239, + 0.0824674516916275, + -0.004242807626724243, + 0.028644919395446777, + 0.015267936512827873, + -0.029963966459035873, + -0.012296195141971111, + -0.03389760106801987, + -0.008340008556842804, + -0.016823895275592804, + -0.0030051961075514555, + 0.018570445477962494, + 0.015772460028529167, + -0.02580837905406952, + 0.05877598747611046, + 0.03376041352748871, + -0.023342913016676903, + 0.047215916216373444, + 0.027569323778152466, + -0.0004563244874589145, + 0.06384430825710297, + -0.06534422934055328, + -0.08968979120254517, + 0.01588067226111889, + 0.011095504276454449, + 0.014128206297755241, + 0.06967657804489136, + 0.04535719379782677, + -0.02505848929286003, + 0.11780580133199692, + 0.04420093819499016, + -0.010124864988029003, + 0.0207502581179142, + -0.0945325717329979, + 0.10449769347906113, + 0.10750206559896469, + -0.02789856493473053, + 0.03669149801135063, + -0.0426027774810791, + 0.09445399045944214, + 0.07198980450630188, + -0.14391843974590302, + -0.05636026710271835, + 0.030613554641604424, + -0.012263334356248379, + -0.004027357324957848, + 0.10700099170207977, + -0.006462668534368277, + 0.04592222720384598, + 0.10730355978012085, + -0.08114545047283173, + -0.03928473964333534, + -0.023136427626013756, + 0.053239788860082626, + -0.08261683583259583, + 0.052216537296772, + 0.036352451890707016, + -0.0025719678960740566, + 0.003824323182925582, + 0.07800237834453583, + -0.02541550248861313, + -0.026276595890522003, + 0.011455315165221691, + -0.05827484652400017, + 0.02425011619925499, + -0.02965531498193741, + -0.02056877315044403, + 0.06409473717212677, + 0.03817122057080269, + 0.02788360044360161, + -0.020514635369181633, + -0.02869958057999611, + -0.11039724946022034, + 0.0313028059899807, + 0.026596589013934135, + 0.07606153935194016, + -0.007155153900384903, + -0.00208934280090034, + -0.03904145956039429, + -0.07480637729167938, + 0.03183102607727051, + -0.030751032754778862, + 0.06840033829212189, + -0.030961211770772934, + 0.004520168527960777, + 0.09241440147161484, + 0.013798135332763195, + -0.011791705153882504, + -0.036504633724689484, + -0.029024504125118256, + 0.017915723845362663, + 0.06781511008739471, + -0.07024537026882172, + -0.070942722260952, + 0.004237617366015911, + 0.02153971791267395, + -0.023881524801254272, + 0.04084716737270355, + 0.028243567794561386, + 0.012064069509506226, + 0.02149488590657711, + -0.07491093128919601, + 0.008561758324503899, + -0.12347130477428436, + -0.060442790389060974, + 0.00012538924056570977, + -0.04127415642142296, + 0.00697859562933445, + 0.06804788112640381, + 0.016223493963479996, + 0.029025528579950333, + -0.022596752271056175, + -0.09798000752925873, + -0.07826878130435944, + 0.07046032696962357, + 0.06413925439119339, + 0.010672470554709435, + 0.04109174758195877, + 0.07330833375453949, + -0.016872752457857132, + 0.044797904789447784, + 0.05065843462944031, + 0.11130677163600922, + -0.015410601161420345, + 0.021907702088356018, + -0.07040541619062424, + 0.09405621141195297, + 0.07999931275844574, + -0.07885131239891052, + -0.08681308478116989, + -0.034416936337947845, + -0.06607018411159515, + 0.049803461879491806, + -0.025917261838912964, + 0.0004382620973046869, + 0.03776116669178009, + -0.005550956353545189, + -0.11164825409650803, + -0.08303257077932358, + 0.11659802496433258, + -0.05695090815424919, + -0.015014204196631908, + -0.08481454849243164, + 0.03651123866438866, + 0.09869354963302612, + 0.034791506826877594, + -0.018765516579151154, + 0.020810086280107498, + 0.05472680926322937, + -0.04323801025748253, + -0.004003293812274933, + 0.04698282107710838, + 0.019797801971435547, + -0.12165190279483795, + -0.017747284844517708, + -0.0698779746890068, + 0.06123388931155205, + -0.051786281168460846, + 0.13769465684890747, + -0.0026503829285502434, + -0.03999355062842369, + -0.08109214156866074, + 0.06105998158454895, + -0.005325633566826582, + 0.06430846452713013, + 0.04729950428009033, + 0.07043691724538803, + 0.0337294302880764, + -0.08141229301691055, + 0.11539270728826523, + 0.04767915606498718, + -0.04081384465098381, + -0.05705872178077698, + -0.038658443838357925, + -0.034047093242406845, + 0.007532726041972637, + 8.991795766633004e-05, + -0.07070273905992508, + -0.0014495283830910921, + 0.005676197819411755, + -0.0341653935611248, + 0.05727916583418846, + 0.14224930107593536, + 0.08008070290088654, + -0.11024807393550873 + ] + }, + "p244_106.wav": { + "name": "p244", + "embedding": [ + 0.0427519716322422, + 0.07694810628890991, + -0.02245134301483631, + -0.005665434058755636, + -0.010476135648787022, + 0.06258927285671234, + -0.1418188214302063, + 0.10302042961120605, + -0.06556939333677292, + 0.11914758384227753, + -0.07776011526584625, + 0.08804655075073242, + -0.011592025868594646, + -0.1432502567768097, + -0.08018187433481216, + 0.027180248871445656, + -0.01970004104077816, + -0.004508022218942642, + -0.026844289153814316, + -0.01862291246652603, + 0.04567750543355942, + 0.018382199108600616, + 0.0061140842735767365, + -0.00606498122215271, + 0.010840908624231815, + 0.03474259749054909, + 0.033002011477947235, + 0.03733992204070091, + -0.004828840494155884, + 0.02688691020011902, + 0.020637158304452896, + 0.10734124481678009, + -0.01397402212023735, + 0.027543287724256516, + 0.05704706907272339, + 0.030004329979419708, + -0.008690332062542439, + -0.07661132514476776, + 0.010858278721570969, + -0.0017732740379869938, + -0.024860268458724022, + 0.0724225789308548, + 0.05331461876630783, + 0.031018195673823357, + 0.016407746821641922, + -0.0012391991913318634, + -0.012477651238441467, + -0.0644802451133728, + -0.08840176463127136, + 0.15691760182380676, + 0.04493248835206032, + 0.024969400838017464, + -0.10528482496738434, + -0.04488055408000946, + 0.11523723602294922, + -0.004678588360548019, + -0.06408601999282837, + -0.0564829558134079, + 0.05434976890683174, + 0.1709747016429901, + -0.020079301670193672, + -0.04213612526655197, + 0.005624804645776749, + 0.11440606415271759, + -0.010934830643236637, + 0.06499598920345306, + 0.10186415910720825, + 0.08263866603374481, + 0.012216202914714813, + 0.020930536091327667, + 0.02490309253334999, + 0.04082687944173813, + 0.0038823112845420837, + -0.05641651153564453, + 0.028496716171503067, + -0.01733851246535778, + -0.016198333352804184, + 0.03138786926865578, + -0.03411983326077461, + -0.05369788780808449, + -0.02596319653093815, + 0.016600243747234344, + 0.005684027448296547, + 0.02999354712665081, + -0.05634834244847298, + 0.025477098301053047, + 0.0038183159194886684, + -0.04912189394235611, + 0.05777186527848244, + 0.0677749514579773, + -0.003958894871175289, + -0.005723932757973671, + -0.04160679131746292, + -0.09642630815505981, + 0.016420360654592514, + 0.00039441417902708054, + -0.009193778969347477, + 0.0674218237400055, + 0.021623987704515457, + -0.002396136522293091, + 0.07411657273769379, + 0.033429283648729324, + -0.019676407799124718, + -0.015580292791128159, + -0.08421895653009415, + 0.09572944790124893, + 0.09954970329999924, + -0.01319190114736557, + 0.009538757614791393, + -0.062058378010988235, + 0.02598610892891884, + 0.07688501477241516, + -0.1164083480834961, + -0.08166754990816116, + 0.06654050201177597, + 0.05794944614171982, + 0.03165165334939957, + 0.09595367312431335, + -0.007649307604879141, + -0.022623702883720398, + 0.059548377990722656, + -0.05058114230632782, + -0.06607181578874588, + -0.06546132266521454, + 0.040819473564624786, + -0.04138847067952156, + 0.024085860699415207, + 0.03412676602602005, + 0.02466416172683239, + -0.05497874319553375, + 0.06199301406741142, + 0.01113943662494421, + -0.008335095830261707, + -0.010134845972061157, + 0.026606829836964607, + 0.0726943239569664, + -0.021889425814151764, + -0.010633549652993679, + 0.009030130691826344, + 0.07020898163318634, + 0.032597240060567856, + 0.04164118692278862, + -0.030050138011574745, + -0.06943956017494202, + -0.014498108997941017, + 0.07804124057292938, + 0.04547502100467682, + -0.0435788631439209, + -0.05152851343154907, + -0.04110708460211754, + -0.032782066613435745, + -0.0016359263099730015, + -0.015720851719379425, + 0.09455867111682892, + 0.031994856894016266, + 0.031123023480176926, + 0.10014209151268005, + -0.02973327413201332, + -0.01036190614104271, + -0.02443264052271843, + 0.04108366742730141, + 0.018774792551994324, + 0.015921510756015778, + -0.045924410223960876, + -0.05289851874113083, + 0.003566407598555088, + 0.024182381108403206, + -0.022433005273342133, + -0.005906634032726288, + 0.01901666820049286, + -0.0029092319309711456, + 0.041755907237529755, + -0.08814629912376404, + 0.013949907384812832, + -0.13104656338691711, + -0.007741441950201988, + -0.008114174008369446, + -0.04755556955933571, + 0.012878422625362873, + 0.0642852932214737, + 0.03845012187957764, + 0.013791058212518692, + -0.004724073689430952, + -0.09635418653488159, + -0.03396987542510033, + 0.08273695409297943, + 0.10104820132255554, + -0.013546517118811607, + 0.007590843364596367, + 0.025754503905773163, + 0.004993945360183716, + 0.02900567278265953, + 0.0814787894487381, + 0.061993952840566635, + -0.04452437907457352, + -0.029020089656114578, + -0.04106205329298973, + 0.09100213646888733, + 0.0467894971370697, + -0.09919969737529755, + -0.0771709531545639, + -0.019369514659047127, + -0.04193383455276489, + -0.00019593536853790283, + -0.025279633700847626, + 0.017453771084547043, + 0.02317841723561287, + -0.04758284240961075, + -0.11623245477676392, + -0.08040468394756317, + 0.0547233484685421, + -0.05182869732379913, + -0.0026939632371068, + -0.05191291868686676, + 0.04142235592007637, + 0.0949823260307312, + 0.020158160477876663, + -0.007058457471430302, + -0.024548951536417007, + -0.00752929225564003, + -0.07997819781303406, + -0.043783482164144516, + -0.03655308857560158, + 0.006962346378713846, + -0.09107588231563568, + 0.02590060979127884, + -0.06737266480922699, + 0.09787330776453018, + -0.07624639570713043, + 0.10886448621749878, + -0.006393615156412125, + -0.06544225662946701, + -0.07187162339687347, + -0.02109329029917717, + -0.0179626252502203, + 0.05293448269367218, + 0.025958435609936714, + 0.04295800253748894, + -0.021494261920452118, + -0.057783521711826324, + 0.09629243612289429, + 0.07330377399921417, + -0.020481985062360764, + -0.08109760284423828, + -0.018762478604912758, + -0.002446417696774006, + 0.02659645862877369, + -0.004103943705558777, + -0.03248944133520126, + 0.004662847146391869, + 0.024305369704961777, + -0.04136628657579422, + 0.06538631021976471, + 0.10389071702957153, + 0.0602184496819973, + -0.10899677872657776 + ] + }, + "p244_191.wav": { + "name": "p244", + "embedding": [ + 0.022175565361976624, + 0.0747724249958992, + -0.027321409434080124, + 0.030165312811732292, + -0.05689185485243797, + 0.07187459617853165, + -0.15050649642944336, + 0.10399547219276428, + -0.037636712193489075, + 0.1342366337776184, + -0.04982148855924606, + 0.10650668293237686, + -0.008327571675181389, + -0.22470709681510925, + -0.04590329900383949, + 0.054470378905534744, + -0.06933785229921341, + -0.05900704115629196, + -0.051514819264411926, + -0.025101831182837486, + 0.044221095740795135, + 0.03885680064558983, + 0.0031743545550853014, + 0.0074349381029605865, + 0.009667285718023777, + 0.06393073499202728, + -0.009768174961209297, + 0.03430560976266861, + 0.008768603205680847, + -0.014811355620622635, + -0.028077878057956696, + 0.1162358820438385, + -0.04909404367208481, + 0.004908096045255661, + 0.04136002063751221, + -0.005539552308619022, + 0.007891043089330196, + -0.036787621676921844, + -0.0105166370049119, + 0.03261182829737663, + -0.05397137999534607, + 0.08123006671667099, + 0.056336089968681335, + 0.02756069228053093, + 0.042793285101652145, + 0.01947682537138462, + -0.03352392092347145, + -0.052572377026081085, + -0.10145284980535507, + 0.1726909726858139, + 0.08373115211725235, + -0.02637336030602455, + -0.042922284454107285, + -0.05629683658480644, + 0.1016121581196785, + 0.006244222167879343, + -0.13506515324115753, + -0.06101066246628761, + 0.10683766007423401, + 0.15685945749282837, + -0.027135232463479042, + -0.02631394751369953, + 0.016621630638837814, + 0.14870795607566833, + 0.046060968190431595, + 0.09830193221569061, + 0.06431888043880463, + 0.1227603331208229, + -0.012555280700325966, + -0.012496725656092167, + 0.08732208609580994, + 0.048278260976076126, + 0.02975551038980484, + -0.031862739473581314, + 0.03687242045998573, + -0.010816832073032856, + 0.013931049965322018, + 0.0018217662582173944, + -0.021716777235269547, + 0.004080775193870068, + 0.005389925092458725, + 0.008121881633996964, + -0.01443731039762497, + 0.031808264553546906, + -0.03613647073507309, + 0.046505335718393326, + 0.04709441959857941, + 0.0026023699901998043, + 0.06788568198680878, + 0.06565072387456894, + 0.026158148422837257, + 0.0611119419336319, + -0.06408911198377609, + -0.0799141675233841, + 0.04541116580367088, + 0.014736386016011238, + 0.01829720474779606, + 0.06068801134824753, + 0.033604465425014496, + -0.008374703116714954, + 0.10796406120061874, + 0.04096109792590141, + -0.03924153372645378, + 0.03126382827758789, + -0.10777614265680313, + 0.14503967761993408, + 0.07615648210048676, + -0.011648321524262428, + 0.028465423732995987, + -0.0382898710668087, + 0.07624278217554092, + 0.06406006217002869, + -0.12477913498878479, + -0.06001076102256775, + 0.05483951047062874, + 0.02717859297990799, + -0.04498917981982231, + 0.13747744262218475, + -0.009407522156834602, + 0.015672191977500916, + 0.10710211843252182, + -0.061838794499635696, + -0.043705619871616364, + -0.03202421963214874, + 0.03577689453959465, + -0.0925050601363182, + 0.03193860873579979, + 0.046968456357717514, + -0.015962304547429085, + 0.00843830220401287, + 0.0938134416937828, + -0.009952452965080738, + 0.004126099403947592, + 0.0025766040198504925, + -0.02352413907647133, + 0.0604381188750267, + -0.00112285150680691, + 0.010314145125448704, + 0.04976432025432587, + 0.023834409192204475, + 0.05055885761976242, + -0.012612798251211643, + -0.0377265028655529, + -0.12382485717535019, + 0.025742942467331886, + 0.024966957047581673, + 0.08417195081710815, + -0.013430200517177582, + 0.0034405088517814875, + -0.04963560029864311, + -0.08324241638183594, + 0.030722662806510925, + -0.02228548191487789, + 0.09034071862697601, + -0.008055459707975388, + -0.037861380726099014, + 0.08979056030511856, + 0.016244126483798027, + 0.0017152815125882626, + -0.035636186599731445, + -0.03838826343417168, + 0.013545718975365162, + 0.03792436048388481, + -0.10829644650220871, + -0.03670772165060043, + 0.002010050928220153, + 0.042315997183322906, + -0.0072885481640696526, + 0.037247128784656525, + 0.055533722043037415, + 0.011021795682609081, + 0.028642475605010986, + -0.07372120767831802, + 0.016794823110103607, + -0.08757111430168152, + -0.05934591963887215, + -0.014382150024175644, + -0.021497951820492744, + -0.013199860230088234, + 0.0862390547990799, + -0.0036681336350739002, + 0.019779764115810394, + -0.02517828717827797, + -0.07932916283607483, + -0.0665304884314537, + 0.0705956220626831, + 0.07664357870817184, + -0.0077321394346654415, + 0.054230138659477234, + 0.05223070830106735, + -0.039549436420202255, + 0.04978561773896217, + 0.055477555841207504, + 0.1299421638250351, + -0.04276376590132713, + 0.029367748647928238, + -0.0633784830570221, + 0.08539832383394241, + 0.05862031131982803, + -0.08714938163757324, + -0.059677526354789734, + 0.0008904297719709575, + -0.052549783140420914, + 0.02825263887643814, + -0.04864303395152092, + 0.005762938410043716, + 0.030967002734541893, + 0.009038272313773632, + -0.1029125452041626, + -0.08618417382240295, + 0.06293707340955734, + -0.08058104664087296, + -0.005472587421536446, + -0.09468360990285873, + 0.04746519774198532, + 0.10620653629302979, + 0.03684850037097931, + -0.049029648303985596, + -0.008159715682268143, + 0.04514487460255623, + -0.039109472185373306, + 0.0007048398838378489, + 0.039099399000406265, + 0.037268124520778656, + -0.12623754143714905, + -0.03399093076586723, + -0.09068727493286133, + 0.050463948398828506, + -0.0474587008357048, + 0.13753531873226166, + 0.028787899762392044, + -0.03845091164112091, + -0.060725659132003784, + 0.04398157447576523, + -0.016064437106251717, + 0.06347043067216873, + 0.047907594591379166, + 0.074980728328228, + 0.04420159384608269, + -0.03178921714425087, + 0.12935315072536469, + 0.04517108201980591, + -0.03804997354745865, + -0.07401292026042938, + 0.010099492967128754, + -0.032603826373815536, + 0.0480019710958004, + 0.04429735988378525, + -0.11224681884050369, + -0.02244671806693077, + 0.0525258332490921, + -0.03385701775550842, + 0.05783668905496597, + 0.1340969055891037, + 0.07120203226804733, + -0.0999627485871315 + ] + }, + "p244_408.wav": { + "name": "p244", + "embedding": [ + 0.05795387923717499, + 0.07993321120738983, + -0.028890900313854218, + 0.04526165500283241, + -0.053827352821826935, + 0.07763614505529404, + -0.1255510449409485, + 0.10473877191543579, + -0.03808465227484703, + 0.14794796705245972, + -0.054261621087789536, + 0.1166784018278122, + 0.008465890772640705, + -0.1844589114189148, + -0.033687327057123184, + 0.0470532588660717, + -0.05057710409164429, + -0.02854839526116848, + -0.0529794916510582, + -0.0006592115387320518, + 0.048261843621730804, + 0.05804350972175598, + 0.03579185903072357, + -0.034539684653282166, + 0.030921176075935364, + 0.04982202500104904, + 0.001303676050156355, + 0.04713825136423111, + 0.02033761329948902, + -0.09648922085762024, + -0.04627399146556854, + 0.11619056016206741, + -0.04022083058953285, + 0.02874002419412136, + 0.037012986838817596, + -0.004669602029025555, + 0.008763359859585762, + -0.06490179896354675, + -0.02678809128701687, + 0.02365734800696373, + -0.036279380321502686, + 0.0786181092262268, + 0.032284680753946304, + -0.007165825460106134, + 0.042665693908929825, + -0.0048924582079052925, + -0.030786365270614624, + -0.05162402242422104, + -0.0943618193268776, + 0.1822013556957245, + 0.05752633512020111, + -0.0026272409595549107, + -0.061701394617557526, + -0.08332651853561401, + 0.09486395120620728, + 0.002730137901380658, + -0.12565092742443085, + -0.04224316030740738, + 0.062358319759368896, + 0.15870404243469238, + -0.00639377674087882, + -0.03632984310388565, + 0.027366695925593376, + 0.12502487003803253, + 0.048423781991004944, + 0.09107780456542969, + 0.07537348568439484, + 0.10573868453502655, + 0.00944077130407095, + 0.03287335857748985, + 0.052275948226451874, + 0.07837960124015808, + 0.04395738244056702, + -0.017929136753082275, + 0.040936488658189774, + -0.0040151197463274, + -0.027951855212450027, + -0.008947746828198433, + -0.011454056948423386, + -0.0007989341393113136, + 0.003869995940476656, + 0.004563618451356888, + 0.021159760653972626, + 0.030073046684265137, + -0.047005705535411835, + 0.03801552206277847, + 0.02660352922976017, + -0.017359985038638115, + 0.05702454596757889, + 0.04981996864080429, + 0.0342940129339695, + 0.049222953617572784, + -0.0661940649151802, + -0.11556795239448547, + 0.03198021277785301, + 0.025216955691576004, + 0.0177287720143795, + 0.06385821104049683, + 0.03505943715572357, + -0.026817122474312782, + 0.10143935680389404, + 0.033250562846660614, + -0.01962314546108246, + 0.022350860759615898, + -0.08895082771778107, + 0.11319520324468613, + 0.09378618746995926, + -0.0030606850050389767, + 0.05085260793566704, + -0.058879315853118896, + 0.09249942004680634, + 0.0699605941772461, + -0.14641055464744568, + -0.08140605688095093, + 0.041800521314144135, + -0.00790295097976923, + -0.0018841137643903494, + 0.12380842864513397, + 0.00541010731831193, + 0.027493659406900406, + 0.08993594348430634, + -0.10014893859624863, + -0.047284893691539764, + -0.0257110595703125, + 0.04882792383432388, + -0.09543190151453018, + 0.05618387460708618, + 0.030164871364831924, + -0.026353899389505386, + -0.012837149202823639, + 0.0756593570113182, + -0.017210397869348526, + 0.026204951107501984, + 0.0013834394048899412, + -0.04166504740715027, + 0.04386794939637184, + -0.039340242743492126, + 0.007611640263348818, + 0.05172627419233322, + 0.01723569631576538, + 0.054618194699287415, + -0.024440079927444458, + -0.037975117564201355, + -0.1261913776397705, + 0.023831166326999664, + 0.031019095331430435, + 0.057257261127233505, + -0.01631343923509121, + -0.013952294364571571, + -0.039183732122182846, + -0.08422552049160004, + 0.052201323211193085, + -0.03210868313908577, + 0.07844893634319305, + 0.019184023141860962, + -0.007348168641328812, + 0.10857681930065155, + 0.006041594315320253, + 0.002210104838013649, + -0.03175653889775276, + -0.038547806441783905, + 0.02191019244492054, + 0.05476086214184761, + -0.09116437286138535, + -0.0550079345703125, + 0.0073479898273944855, + 0.0009390049381181598, + -0.012643402442336082, + 0.02743622660636902, + 0.05711442977190018, + 0.020645011216402054, + 0.04290563613176346, + -0.07044471055269241, + -0.007050788961350918, + -0.10893266648054123, + -0.05954836308956146, + -0.01748489774763584, + -0.035437729209661484, + -0.01827521063387394, + 0.10539530217647552, + 0.01852291449904442, + 0.020397283136844635, + -0.03199456259608269, + -0.061375267803668976, + -0.06714057922363281, + 0.06909464299678802, + 0.06822487711906433, + 0.010802545584738255, + 0.03910788893699646, + 0.04038555175065994, + -0.012726346030831337, + 0.04964650049805641, + 0.05538329482078552, + 0.09894035756587982, + -0.010316697880625725, + 0.012042976915836334, + -0.07650133967399597, + 0.12115707993507385, + 0.08962982147932053, + -0.0786755159497261, + -0.09203052520751953, + -0.020763112232089043, + -0.08135312795639038, + 0.03938748687505722, + -0.039056919515132904, + 0.0013477166648954153, + 0.04168971627950668, + -0.00751902861520648, + -0.1154029369354248, + -0.08849278092384338, + 0.09200016409158707, + -0.06380036473274231, + -0.024448929354548454, + -0.08399520814418793, + 0.04543715715408325, + 0.09038315713405609, + 0.05097802355885506, + -0.04044061526656151, + -0.001345152035355568, + 0.06383608281612396, + -0.060351815074682236, + 0.0017298684688284993, + 0.04822154343128204, + 0.017030300572514534, + -0.10195666551589966, + 0.0010009845718741417, + -0.06511762738227844, + 0.05057504400610924, + -0.08186712861061096, + 0.14817070960998535, + -5.755014717578888e-05, + -0.070331871509552, + -0.0739428848028183, + 0.0715414509177208, + -0.01954510062932968, + 0.040190234780311584, + 0.0398549884557724, + 0.05801467224955559, + 0.05601721629500389, + -0.08724776655435562, + 0.09807078540325165, + 0.0446489080786705, + -0.01285366527736187, + -0.07045096158981323, + -0.03892212361097336, + -0.031981877982616425, + 0.053543977439403534, + 0.012469088658690453, + -0.0838434100151062, + 0.00615954864770174, + 0.039289359003305435, + -0.010561258532106876, + 0.05536743998527527, + 0.13979165256023407, + 0.05070715770125389, + -0.11497946083545685 + ] + }, + "p244_197.wav": { + "name": "p244", + "embedding": [ + 0.058055635541677475, + 0.1074618473649025, + 0.021068284288048744, + -0.0010020845802500844, + -0.04170786216855049, + 0.08451616019010544, + -0.17002679407596588, + 0.1508990228176117, + -0.03895324096083641, + 0.1541563868522644, + -0.051700741052627563, + 0.10365165024995804, + -0.002696135314181447, + -0.19420285522937775, + -0.04791633039712906, + 0.055123891681432724, + -0.06069289147853851, + -0.027404047548770905, + -0.017811425030231476, + -0.03357461839914322, + 0.030294299125671387, + 0.04507025331258774, + 0.04362129047513008, + -0.0014828925486654043, + 0.05933642014861107, + 0.05420345440506935, + 0.009121217764914036, + 0.049728456884622574, + -0.000526254007127136, + -0.06650300323963165, + -0.025423135608434677, + 0.10703492909669876, + -0.048015132546424866, + 0.011957149021327496, + 0.04159965738654137, + -0.021543148905038834, + 0.009015759453177452, + -0.07240532338619232, + -0.01671900972723961, + 0.014973951503634453, + -0.01312252227216959, + 0.09170165657997131, + 0.04914812743663788, + 0.0187879279255867, + 0.014517447911202908, + 0.029300352558493614, + -0.004633763805031776, + -0.06220166012644768, + -0.11511097848415375, + 0.17847901582717896, + 0.05609407275915146, + 0.009741229005157948, + -0.06864548474550247, + -0.0787307620048523, + 0.10420095175504684, + -0.01636802777647972, + -0.10933462530374527, + -0.027812931686639786, + 0.08134518563747406, + 0.1686745285987854, + -0.029305512085556984, + -0.05873207747936249, + 0.0376870222389698, + 0.1378747969865799, + 0.0232933908700943, + 0.08510619401931763, + 0.08449776470661163, + 0.09587737172842026, + -0.013932125642895699, + 0.0073706479743123055, + 0.034882497042417526, + 0.05307560786604881, + 0.009565510787069798, + -0.020982712507247925, + 0.017607592046260834, + -0.019956450909376144, + -0.021204426884651184, + -0.0021228892728686333, + -0.013767629861831665, + -0.013673433102667332, + -0.007005990482866764, + 0.003988579381257296, + -0.0010128997964784503, + 0.04044744744896889, + -0.02840178832411766, + 0.03810817375779152, + -0.011452930979430676, + 0.002437965013086796, + 0.09827789664268494, + 0.019896171987056732, + 0.04258324205875397, + 0.06000569462776184, + -0.06600376218557358, + -0.06905841082334518, + 0.04455297067761421, + 0.01811547577381134, + 0.026311039924621582, + 0.07242988795042038, + 0.04268445074558258, + -0.03791908547282219, + 0.13067877292633057, + 0.05285258963704109, + -0.012711300514638424, + 0.008694911375641823, + -0.10869701951742172, + 0.12411991506814957, + 0.07382039725780487, + -0.017362473532557487, + 0.06939296424388885, + -0.054552335292100906, + 0.0707441046833992, + 0.06080062687397003, + -0.15742075443267822, + -0.0933922603726387, + 0.03836025297641754, + 0.05100821331143379, + -0.015163294039666653, + 0.1337669938802719, + 7.327039929805323e-05, + 0.034779444336891174, + 0.08967702835798264, + -0.0820172056555748, + -0.047974471002817154, + -0.013950485736131668, + 0.06435086578130722, + -0.0925464779138565, + 0.04168618097901344, + 0.07407135516405106, + -0.03881368413567543, + 0.016208147630095482, + 0.06853528320789337, + -0.008164691738784313, + 0.0060318936593830585, + 0.008668231777846813, + -0.042966317385435104, + 0.02779749222099781, + -0.02616289258003235, + 0.02356853149831295, + 0.006193407811224461, + 0.043752271682024, + 0.04131161794066429, + 0.00846865028142929, + -0.061276935040950775, + -0.11208146810531616, + 0.0010961816878989339, + 0.020529426634311676, + 0.06525661796331406, + -0.016497058793902397, + -0.040986113250255585, + -0.04217483103275299, + -0.03932361677289009, + 0.016968177631497383, + 0.005211802199482918, + 0.07559551298618317, + -0.0035012983717024326, + -0.0009613845031708479, + 0.09929198771715164, + 0.05012435466051102, + -0.0016848078230395913, + -0.04078972712159157, + -0.03895736113190651, + 0.014426643960177898, + 0.03421925753355026, + -0.08102822303771973, + -0.05011318251490593, + 0.005671427585184574, + 0.04207475110888481, + -0.020724017173051834, + 0.052591726183891296, + 0.044406261295080185, + 0.02426319569349289, + 0.03639514371752739, + -0.05352209508419037, + 0.026526305824518204, + -0.08224309980869293, + -0.06781580299139023, + 0.001592017593793571, + 0.010638938285410404, + -0.045833855867385864, + 0.09403815120458603, + 0.022935403510928154, + 0.0695425346493721, + -0.02482745051383972, + -0.04397549480199814, + -0.06354080885648727, + 0.047804396599531174, + 0.07627888023853302, + -0.016450703144073486, + 0.031017674133181572, + 0.04734286665916443, + -0.02203744277358055, + 0.06639260798692703, + 0.0652126893401146, + 0.09491625428199768, + -0.0347813256084919, + 0.02320261299610138, + -0.07312561571598053, + 0.07098966091871262, + 0.06723051518201828, + -0.08712327480316162, + -0.08389002829790115, + -0.02102913334965706, + -0.07230132818222046, + 0.038018643856048584, + -0.008482086472213268, + 0.008950849995017052, + 0.007707138080149889, + -0.006337166763842106, + -0.09167716652154922, + -0.08920707553625107, + 0.07076869159936905, + -0.07141191512346268, + -0.0038407405372709036, + -0.07515989989042282, + 0.06482430547475815, + 0.10594165325164795, + 0.05566047504544258, + -0.001486341585405171, + -0.03975987061858177, + 0.026226256042718887, + -0.03154412657022476, + 0.005256484728306532, + 0.053102798759937286, + 0.028496958315372467, + -0.11359695345163345, + 0.01944729872047901, + -0.08850865811109543, + 0.052623454481363297, + -0.04521642252802849, + 0.16470223665237427, + 0.021295713260769844, + -0.0673568993806839, + -0.08467940241098404, + 0.019602719694375992, + -0.04269549995660782, + 0.042172446846961975, + 0.022178830578923225, + 0.04342152178287506, + 0.058471474796533585, + -0.0572822168469429, + 0.0899905413389206, + 0.0321134477853775, + -0.04098472371697426, + -0.08059430122375488, + -0.03718848153948784, + -0.023323047906160355, + 0.03747283294796944, + -0.0025357201229780912, + -0.09115681052207947, + -0.030114056542515755, + 0.03872305899858475, + 0.004737819544970989, + 0.0894341990351677, + 0.1272176206111908, + 0.05156904458999634, + -0.14191167056560516 + ] + }, + "p244_336.wav": { + "name": "p244", + "embedding": [ + 0.04297199845314026, + 0.06637506932020187, + 0.0003252355381846428, + -0.04164819419384003, + -0.0164704080671072, + 0.02591972053050995, + -0.13879114389419556, + 0.09573985636234283, + -0.004450442269444466, + 0.15151214599609375, + -0.05243874341249466, + 0.09468136727809906, + -0.024470534175634384, + -0.09278792887926102, + 0.021567203104496002, + 0.02131728082895279, + -0.027086731046438217, + 9.04211774468422e-05, + -0.0008207745850086212, + -0.08896653354167938, + 0.010634129866957664, + 0.01587599143385887, + 0.02689112164080143, + -0.05673631653189659, + 0.014687832444906235, + 0.08172720670700073, + -0.007245142012834549, + -0.017211776226758957, + -0.014790334738790989, + -0.07775133848190308, + 0.02428421750664711, + 0.06400258839130402, + -0.05009445175528526, + -0.008332937024533749, + 0.03116048499941826, + -0.012234840542078018, + -0.021201271563768387, + -0.02297772653400898, + 0.02111024223268032, + 0.05742549151182175, + -0.044390276074409485, + 0.08910342305898666, + 0.03663421422243118, + 0.004380689933896065, + 0.03484594449400902, + -0.019738275557756424, + -0.028948847204446793, + 0.020697079598903656, + -0.04744671657681465, + 0.1116088479757309, + 0.05790285766124725, + -0.0015091700479388237, + -0.06089019030332565, + 0.013046946376562119, + 0.06016375496983528, + 0.0027748923748731613, + -0.08971203118562698, + -0.0043679457157850266, + 0.018695957958698273, + 0.07477156817913055, + -0.037917912006378174, + -0.07455902546644211, + 0.021636972203850746, + 0.06878378987312317, + -0.005640862509608269, + 0.047774724662303925, + 0.09340020269155502, + 0.07889383286237717, + -0.0365731380879879, + 0.0011922679841518402, + 0.02478170022368431, + 0.07595258951187134, + 0.05987626314163208, + -0.02564232610166073, + 0.053052566945552826, + -0.03301495686173439, + -0.004700921941548586, + -0.05111683905124664, + -0.000600697472691536, + -0.05951221287250519, + -0.04950045794248581, + -0.022256068885326385, + 0.021153628826141357, + 0.07263054698705673, + -3.6852434277534485e-05, + -0.010028915479779243, + 0.06456665694713593, + -0.040224798023700714, + 0.0445375069975853, + 0.02239389345049858, + 0.015698667615652084, + 0.021052440628409386, + -0.09284137189388275, + -0.02747391164302826, + 0.021850164979696274, + -0.038596514612436295, + 0.0730225071310997, + 0.044772081077098846, + 0.044825874269008636, + 0.020545249804854393, + 0.08739449083805084, + 0.05544038861989975, + 0.001629092963412404, + -0.04035439342260361, + -0.06761690974235535, + 0.10777570307254791, + 0.10720673203468323, + -0.07259534299373627, + 0.03398248925805092, + -0.005189461633563042, + 0.02227882668375969, + -0.0324593111872673, + -0.10422004014253616, + -0.029190029948949814, + -0.020331036299467087, + 0.06648590415716171, + 0.01597311906516552, + 0.12341463565826416, + 0.011800015345215797, + 0.04585743322968483, + 0.08070963621139526, + -0.019063778221607208, + -0.022774135693907738, + -0.05218600109219551, + 0.027308207005262375, + -0.10546234250068665, + 0.0696202740073204, + 0.05264337360858917, + 0.03131499141454697, + 0.03148127719759941, + 0.08422926068305969, + 0.01298036240041256, + -0.011416951194405556, + -0.05168282240629196, + 0.009225451387465, + 0.011088758707046509, + 0.010594906285405159, + 0.050012726336717606, + 0.03542950749397278, + 0.011802375316619873, + 0.10038711130619049, + 0.04961829632520676, + -0.007886858657002449, + -0.0796830803155899, + 0.036881640553474426, + 0.003776947967708111, + 0.02053573727607727, + -0.04421299695968628, + -0.031965840607881546, + 0.015910228714346886, + -0.07837881147861481, + -0.015975290909409523, + -0.00562854390591383, + 0.06497380137443542, + 0.004884698428213596, + -0.006149151362478733, + 0.10936041176319122, + 0.05248694121837616, + 0.0030342661775648594, + -0.0033281277865171432, + -0.014363911002874374, + -0.019560104236006737, + 0.07094424962997437, + -0.1463857740163803, + -0.06753361225128174, + -0.021173985674977303, + 0.03479725494980812, + 0.021704215556383133, + 0.042933911085128784, + 0.09864449501037598, + -0.018615618348121643, + 0.0384952686727047, + 0.023089613765478134, + 0.0036072293296456337, + -0.050257302820682526, + -0.08452620357275009, + -0.02091260440647602, + -0.07687711715698242, + -0.06702183932065964, + 0.04567151144146919, + -0.043574102222919464, + 0.06908570230007172, + -0.02905118092894554, + -0.027556948363780975, + -0.05216683819890022, + 0.026882434263825417, + 0.021881554275751114, + -0.0668681263923645, + -0.015298723243176937, + 0.09534942358732224, + 0.01464770920574665, + 0.0020034611225128174, + 0.05454543977975845, + 0.09636372327804565, + -0.07684508711099625, + 0.02490130253136158, + -0.06378153711557388, + 0.07028444111347198, + 0.07099933922290802, + -0.020072638988494873, + -0.054828282445669174, + -0.06908369064331055, + -0.054092518985271454, + 0.04419594630599022, + -0.0267596747726202, + -0.02340739406645298, + -0.0006609074771404266, + -0.004478516057133675, + -0.04075480252504349, + -0.053550899028778076, + 0.04134989529848099, + -0.031349148601293564, + 0.021280432119965553, + -0.06925119459629059, + 0.02097034826874733, + 0.018761366605758667, + 0.07122942805290222, + -0.04583998769521713, + 0.05291718244552612, + 0.01850764825940132, + -0.023767197504639626, + 0.030848052352666855, + 0.02042655646800995, + 0.05000197887420654, + -0.03353630751371384, + -0.06380531936883926, + -0.07287409901618958, + 0.029993098229169846, + -0.038242340087890625, + 0.0485946424305439, + 0.02599048614501953, + -0.031193427741527557, + -0.03089020401239395, + -0.02484181709587574, + -0.037060145288705826, + 0.025059210136532784, + 0.07898952066898346, + 0.055542346090078354, + 0.048502467572689056, + -0.023209938779473305, + 0.07391097396612167, + 0.03547685593366623, + 0.027104074135422707, + -0.026511378586292267, + -0.0020484812557697296, + -0.023154495283961296, + 0.032872721552848816, + 0.02549217827618122, + -0.07073508948087692, + 0.024470817297697067, + 0.0013566603884100914, + 0.022015897557139397, + 0.03684920445084572, + 0.03721669688820839, + 0.040202103555202484, + -0.0817594826221466 + ] + }, + "p244_246.wav": { + "name": "p244", + "embedding": [ + 0.062234725803136826, + 0.06518390029668808, + -0.03540882468223572, + 0.037405289709568024, + -0.05455930903553963, + 0.03411645069718361, + -0.14325088262557983, + 0.14795808494091034, + 0.02645295485854149, + 0.12226879596710205, + -0.04102587699890137, + 0.12960875034332275, + 0.0007471313001587987, + -0.16069212555885315, + 0.008489241823554039, + 0.02835860289633274, + -0.0019056424498558044, + 0.009615087881684303, + -0.06737266480922699, + -0.032690081745386124, + 0.028827182948589325, + 0.03656414896249771, + 0.05571463704109192, + -0.06944573670625687, + 0.0347844660282135, + 0.051989588886499405, + -0.007428913842886686, + 0.04363567754626274, + -0.004475218243896961, + -0.07549194246530533, + -0.014238673262298107, + 0.08848488330841064, + -0.07911901921033859, + 0.005589722190052271, + 0.05654514580965042, + -0.04831772297620773, + -0.04138533025979996, + -0.03560688719153404, + -0.01955695077776909, + 0.022490136325359344, + -0.030201975256204605, + 0.08055878430604935, + 0.025492113083600998, + -0.029204340651631355, + 0.07459831982851028, + 0.029252590611577034, + -0.016695860773324966, + -0.03644099831581116, + -0.11087613552808762, + 0.1458817720413208, + 0.03860539570450783, + 0.019598830491304398, + -0.11119317263364792, + -0.036532312631607056, + 0.06928285956382751, + -0.044481340795755386, + -0.08801126480102539, + -0.04170284420251846, + 0.048794571310281754, + 0.11482498794794083, + -0.0402633398771286, + -0.05157041549682617, + 0.041940752416849136, + 0.06955446302890778, + 0.1100507378578186, + 0.055275656282901764, + 0.11011705547571182, + 0.13010051846504211, + -0.03663085773587227, + 0.031186329200863838, + 0.008879574947059155, + 0.07947991788387299, + 0.0680614709854126, + 0.020778140053153038, + 0.02273562178015709, + -0.0005222858744673431, + 0.002409461885690689, + -0.06968048214912415, + -0.043244630098342896, + -0.006703294813632965, + 0.025375161319971085, + 0.028511039912700653, + 0.05909962207078934, + 0.052408598363399506, + -0.05707280710339546, + 0.07115450501441956, + 0.07252462208271027, + -0.03190404921770096, + 0.047037675976753235, + 0.014114072546362877, + -0.0008033867925405502, + 0.05534384399652481, + -0.13608433306217194, + -0.08927701413631439, + 0.021495027467608452, + -0.008207659237086773, + 0.0085078040137887, + 0.02958180382847786, + 0.036678846925497055, + -0.009311249479651451, + 0.12113740295171738, + 0.05633220821619034, + -0.038567107170820236, + 0.04020875319838524, + -0.05341002345085144, + 0.1243322342634201, + 0.09695638716220856, + -0.022481311112642288, + 0.051924265921115875, + -0.07940144836902618, + 0.041989393532276154, + 0.024286450818181038, + -0.10995928943157196, + -0.06781532615423203, + 0.026161516085267067, + -0.007904996164143085, + -0.012699516490101814, + 0.1411893218755722, + -0.0014471127651631832, + 0.07202480733394623, + 0.1189289391040802, + -0.09899033606052399, + -0.03218572214245796, + 0.0066069141030311584, + 0.054606273770332336, + -0.0759187713265419, + 0.04832048714160919, + 0.028710562735795975, + 0.0003779493272304535, + 0.022543838247656822, + 0.08694420754909515, + 0.01130138523876667, + 0.005096713081002235, + 0.0017715028952807188, + -0.018005847930908203, + 0.03301377221941948, + -0.004401381127536297, + -0.03748319670557976, + 0.043648861348629, + 0.04363642632961273, + 0.07328172028064728, + -0.017843572422862053, + -0.02216685563325882, + -0.12259674072265625, + 0.021692872047424316, + 0.008032059296965599, + 0.08469515293836594, + -0.03329864889383316, + 0.0017294064164161682, + -0.05610518157482147, + -0.06764674931764603, + 0.02713514119386673, + 0.0034611541777849197, + 0.04947759211063385, + -0.01971656084060669, + 0.013315335847437382, + 0.10871091485023499, + 0.03157930076122284, + 0.03563417121767998, + -0.02640039473772049, + -0.0332062803208828, + -0.021624762564897537, + 0.057052142918109894, + -0.07201257348060608, + -0.07685928046703339, + -0.028159311041235924, + 0.01147978100925684, + -0.033475611358881, + 0.07518038153648376, + 0.057338301092386246, + 0.027355404570698738, + 0.0265045128762722, + -0.03906038776040077, + -0.02538939006626606, + -0.07170476019382477, + -0.06387759745121002, + -0.004573984537273645, + -0.002391337649896741, + -0.05780286341905594, + 0.07712560892105103, + 0.03469777852296829, + 0.08039484918117523, + -0.053021810948848724, + -0.052227720618247986, + -0.09603653848171234, + 0.037728890776634216, + 0.02811294049024582, + -0.045195624232292175, + 0.02005293034017086, + 0.04451301693916321, + -0.030211258679628372, + 0.04744444414973259, + 0.09658835828304291, + 0.05439599230885506, + -0.013864046894013882, + 0.009558364748954773, + -0.08252006024122238, + 0.14363832771778107, + 0.11120176315307617, + -0.05009642243385315, + -0.09617748111486435, + -0.0201492290943861, + -0.095227912068367, + 0.006009896285831928, + -0.02647731453180313, + -0.0001439920160919428, + 0.0760733112692833, + 0.01558336429297924, + -0.09346333146095276, + -0.09026537835597992, + 0.06560471653938293, + -0.07884369790554047, + 0.00162464939057827, + -0.0754927396774292, + 0.02557339332997799, + 0.09053429216146469, + 0.007992707192897797, + -0.021941013634204865, + -0.04882774129509926, + 0.04420505836606026, + -0.01772095449268818, + 0.032647646963596344, + 0.06194338947534561, + 0.05249716341495514, + -0.09589116275310516, + -0.013015180826187134, + -0.02547292411327362, + 0.024815011769533157, + -0.014813199639320374, + 0.11465806514024734, + 0.02971246838569641, + -0.027110066264867783, + -0.05960920825600624, + 0.04442355036735535, + -0.028591053560376167, + 0.07079499959945679, + 0.02038370445370674, + 0.06699541211128235, + 0.058832522481679916, + -0.07945895195007324, + 0.10569782555103302, + 0.03929407522082329, + -0.06036685034632683, + -0.08901453763246536, + -0.08659602701663971, + -0.04641169309616089, + 0.031386587768793106, + 0.03945339098572731, + -0.07684697955846786, + -0.00206894613802433, + 0.025160953402519226, + -0.01587875746190548, + 0.02038617432117462, + 0.11597073823213577, + 0.05066359043121338, + -0.10850891470909119 + ] + }, + "p244_130.wav": { + "name": "p244", + "embedding": [ + 0.0483817420899868, + 0.07082764804363251, + -0.018744714558124542, + 0.039659298956394196, + -0.06096640229225159, + 0.004679184406995773, + -0.12546823918819427, + 0.14823207259178162, + 0.015305161476135254, + 0.10067307949066162, + -0.04685888811945915, + 0.15098433196544647, + -0.0017455627676099539, + -0.15939916670322418, + 0.024027159437537193, + 0.03704172372817993, + 0.009130998514592648, + -0.02013785019516945, + 0.013401441276073456, + -0.03525494039058685, + 0.055074721574783325, + 0.04819576069712639, + 0.05984567850828171, + -0.023445401340723038, + 0.027696605771780014, + 0.07229888439178467, + 0.004518445115536451, + 0.03639143705368042, + -0.0005885710706934333, + -0.06751259416341782, + -0.03823664039373398, + 0.05809609219431877, + -0.05971789360046387, + -0.0018191959243267775, + 0.035165827721357346, + -0.04505794495344162, + -0.034337569028139114, + -0.04791431874036789, + -0.022435128688812256, + 0.0128852017223835, + -0.038900792598724365, + 0.07302288711071014, + 0.02277919463813305, + -0.06429733335971832, + 0.04632265865802765, + 0.02333163097500801, + -0.0068079340271651745, + -0.010877195745706558, + -0.12315338850021362, + 0.13772797584533691, + 0.056093987077474594, + 0.02339167706668377, + -0.07882283627986908, + -0.05833493918180466, + 0.07601308822631836, + 0.0037426683120429516, + -0.06516733765602112, + -0.0029292176477611065, + 0.04751995950937271, + 0.10647952556610107, + -0.02084764465689659, + -0.045451950281858444, + 0.06714346259832382, + 0.07580310106277466, + 0.0760878473520279, + 0.04512735456228256, + 0.10616996139287949, + 0.11047235131263733, + -0.05297979712486267, + 0.006176195573061705, + 0.011929850094020367, + 0.10621093213558197, + 0.044848229736089706, + 0.0064920722506940365, + 0.004785965662449598, + 0.017359241843223572, + -0.017422406002879143, + -0.03614243492484093, + -0.022749029099941254, + -0.03305765613913536, + -0.0007780059240758419, + 0.006115839816629887, + 0.03840500861406326, + 0.046187907457351685, + -0.038807954639196396, + 0.06955067813396454, + 0.07115959376096725, + -0.0002790192957036197, + 0.054900094866752625, + -0.011141876690089703, + 0.008288074284791946, + 0.07651889324188232, + -0.1249968409538269, + -0.06300756335258484, + 0.038186654448509216, + -0.0006003642920404673, + 0.04554593563079834, + 0.10180588811635971, + 0.060806434601545334, + -0.021724587306380272, + 0.12779487669467926, + 0.06763186305761337, + -0.022588923573493958, + 0.00411205692216754, + -0.05090319737792015, + 0.1054033562541008, + 0.11008894443511963, + -0.03677869960665703, + 0.0696030706167221, + -0.07315269112586975, + 0.06190277636051178, + 0.026881014928221703, + -0.11970995366573334, + -0.06826762855052948, + 0.016256017610430717, + 0.019804831594228745, + 0.002884648507460952, + 0.14632290601730347, + 0.005431973375380039, + 0.08432426303625107, + 0.10937955230474472, + -0.1110774576663971, + -0.06225376948714256, + -0.0221081729978323, + 0.06104288622736931, + -0.07780227065086365, + 0.08430743217468262, + 0.060042139142751694, + -0.0233868770301342, + 0.016126718372106552, + 0.043488308787345886, + -0.01603449508547783, + 0.029745182022452354, + 0.006045798771083355, + -0.032596390694379807, + 0.006203831639140844, + -0.028141643851995468, + -0.019225429743528366, + 0.029528316110372543, + 0.019331365823745728, + 0.041358958929777145, + -0.014365693554282188, + -0.00958995334804058, + -0.1453835368156433, + 0.033181048929691315, + 0.03359852731227875, + 0.06236536428332329, + -0.030696779489517212, + -0.06875710934400558, + -0.04039425402879715, + -0.06977571547031403, + -0.005077578127384186, + 0.004829036071896553, + 0.02970641665160656, + -0.031681668013334274, + 0.030496647581458092, + 0.06999583542346954, + 0.052733615040779114, + -0.00029541010735556483, + -0.012492012232542038, + -0.07217376679182053, + 0.000859053514432162, + 0.04456605762243271, + -0.06580594182014465, + -0.09546233713626862, + -0.058730967342853546, + 0.022496569901704788, + -0.03035735711455345, + 0.06908684223890305, + 0.049859922379255295, + 0.026896487921476364, + 0.010915283113718033, + -0.05993424355983734, + -8.503844583174214e-05, + -0.08358120173215866, + -0.09428979456424713, + -0.018427304923534393, + 0.018659524619579315, + -0.02153618261218071, + 0.07418867945671082, + 0.03727605938911438, + 0.10246787965297699, + -0.03685007244348526, + -0.009295267052948475, + -0.08450650423765182, + 0.011907926760613918, + 0.03609730303287506, + -0.012805852107703686, + 0.048492640256881714, + 0.06477619707584381, + -0.03512146696448326, + 0.0536235086619854, + 0.05676162242889404, + 0.05978219956159592, + -0.014764445833861828, + 0.01151392050087452, + -0.06268353760242462, + 0.10880293697118759, + 0.12007027864456177, + -0.054786890745162964, + -0.07946425676345825, + -0.054703157395124435, + -0.10350140184164047, + 0.031033804640173912, + -0.005409087985754013, + 0.013613267801702023, + 0.0285273939371109, + 0.017124783247709274, + -0.09336404502391815, + -0.08844578266143799, + 0.05829755589365959, + -0.036124564707279205, + 0.005765251349657774, + -0.09375389665365219, + 0.0365976057946682, + 0.11474370211362839, + 0.02573411725461483, + -0.02051503211259842, + -0.051311880350112915, + 0.03134428337216377, + 0.016199007630348206, + 0.028238758444786072, + 0.07190842926502228, + 0.07987867295742035, + -0.09940101206302643, + -0.013664326630532742, + -0.05342360958456993, + 0.03217547386884689, + -0.045086801052093506, + 0.11238980293273926, + 0.03454163670539856, + -0.04369392246007919, + -0.09124766290187836, + 0.0571213960647583, + 0.016971921548247337, + 0.05072672665119171, + 0.009725001640617847, + 0.047851428389549255, + 0.03121873550117016, + -0.107744500041008, + 0.0983891412615776, + 0.04270121455192566, + -0.049248456954956055, + -0.07582562416791916, + -0.05434579402208328, + -0.02231798693537712, + 0.04242752492427826, + 0.018614668399095535, + -0.06351149082183838, + -0.03136802464723587, + 0.022570988163352013, + 0.019011355936527252, + 0.03019523248076439, + 0.14833936095237732, + 0.02832471951842308, + -0.1262088119983673 + ] + }, + "p244_327.wav": { + "name": "p244", + "embedding": [ + 0.013196651823818684, + 0.11890305578708649, + -0.004542496986687183, + 0.049333371222019196, + -0.05395256727933884, + 0.0022604726254940033, + -0.05548735707998276, + 0.0603465661406517, + -0.014438347890973091, + 0.08676643669605255, + -0.052193012088537216, + 0.09676573425531387, + -0.05464395508170128, + -0.08851510286331177, + -0.03548905625939369, + -0.008346905000507832, + 0.0050183795392513275, + 0.048899952322244644, + -0.007851855829358101, + -0.02263437584042549, + -0.029554076492786407, + -0.00037205033004283905, + -0.03293415904045105, + 0.005970536265522242, + -0.025503309443593025, + 0.0040174443274736404, + -0.029574351385235786, + 0.03110436350107193, + -0.002543959766626358, + -0.059578247368335724, + -0.0057619791477918625, + 0.03986481577157974, + -0.015394826419651508, + 0.006114695221185684, + 0.02552868239581585, + 0.001054611406289041, + 0.019006647169589996, + -0.016406074166297913, + -0.03704599663615227, + -0.028000200167298317, + -0.040925282984972, + 0.0011538434773683548, + 0.026364922523498535, + -0.056655582040548325, + 0.016938969492912292, + 0.03360353037714958, + -0.016993260011076927, + -0.016701243817806244, + -0.020338548347353935, + 0.09648387879133224, + 0.007653282955288887, + 0.06300763785839081, + -0.03990523889660835, + -0.05223686620593071, + 0.1198267787694931, + 0.010891223326325417, + -0.0231698676943779, + -0.014122292399406433, + -0.0020603127777576447, + 0.08130665123462677, + 0.027541426941752434, + 0.02126936987042427, + 0.02333941124379635, + 0.06686248630285263, + -0.008235132321715355, + 0.04003538936376572, + 0.055872298777103424, + 0.04654872789978981, + -0.020082751289010048, + 0.04276534169912338, + 0.041740477085113525, + 0.029323045164346695, + 0.014010610990226269, + 0.020290682092308998, + -0.026327984407544136, + 0.023227673023939133, + 0.004990508779883385, + 0.06915926933288574, + -0.04206033796072006, + -0.018709737807512283, + -0.02613747864961624, + 0.022307364270091057, + 0.00408798037096858, + -0.06944576650857925, + -0.04495447501540184, + -0.023478373885154724, + 0.03557122126221657, + 0.02305559627711773, + 0.021976882591843605, + 0.0325840562582016, + 0.04724317416548729, + -0.0015440434217453003, + -0.02642081491649151, + -0.06250319629907608, + 0.015172623097896576, + -0.02207833342254162, + 0.03864607959985733, + 0.0144144706428051, + 0.0005683731287717819, + 0.010063673369586468, + 0.040375966578722, + 0.006904032081365585, + 0.04348159208893776, + -0.008989842608571053, + -0.05335412546992302, + -0.011677954345941544, + 0.03380510210990906, + 0.01941431313753128, + 0.039031945168972015, + 0.02557201497256756, + 0.05923229828476906, + 0.09882311522960663, + -0.06384085863828659, + -0.04046373441815376, + 0.011066386476159096, + 0.04982154443860054, + -0.022073134779930115, + 0.05861622840166092, + -0.017771786078810692, + 0.019810007885098457, + 0.041077595204114914, + 0.013836231082677841, + -0.03430665656924248, + -0.026773793622851372, + -0.006333686411380768, + -0.01762358285486698, + 0.04304005578160286, + 0.020030632615089417, + -0.021824978291988373, + -0.05765622854232788, + 0.06692032516002655, + -0.014795970171689987, + -0.024689458310604095, + 0.02167966216802597, + -0.0006019920110702515, + -0.04315555468201637, + 0.05104271322488785, + -0.0393759086728096, + 0.02606905624270439, + 0.0695122629404068, + -0.025692598894238472, + 0.0008956068195402622, + 0.0042330604046583176, + -0.02331354282796383, + 0.03711045905947685, + 0.021936826407909393, + -0.024474799633026123, + 0.08449864387512207, + -0.05076161399483681, + -0.048262130469083786, + -0.031435199081897736, + 0.0399453341960907, + -0.03153136372566223, + 0.0893363282084465, + 0.058858778327703476, + 0.0398516021668911, + 0.0380668006837368, + -0.01898638904094696, + -0.005924876779317856, + -0.007116112858057022, + -0.10884974151849747, + 0.009590805508196354, + 0.0033424077555537224, + 0.0107746422290802, + -0.01896841824054718, + 0.015878286212682724, + -0.006613150238990784, + -0.01575806364417076, + 0.0012081637978553772, + 0.0272452961653471, + -0.004351332318037748, + 0.06987175345420837, + -0.10034775733947754, + -0.01674550212919712, + -0.06565854698419571, + -0.037267934530973434, + 0.023031752556562424, + -0.041140004992485046, + 0.008332076482474804, + 0.02062748372554779, + 0.04425511136651039, + -0.038273658603429794, + -0.009828265756368637, + -0.06143855303525925, + -0.00410238653421402, + 0.016067249700427055, + 0.018080443143844604, + 0.02678677812218666, + -0.007922947406768799, + 0.017894580960273743, + 0.035755135118961334, + 0.03582911938428879, + 0.022619053721427917, + 0.059399135410785675, + -0.021487753838300705, + 0.007093596272170544, + 0.02828720584511757, + 0.07983069121837616, + 0.018252849578857422, + -0.08761118352413177, + -0.11072571575641632, + -0.011294991709291935, + -0.04015304520726204, + 0.044461559504270554, + -0.010170679539442062, + 0.03207830339670181, + 0.001340415794402361, + 0.014513084664940834, + 0.04576552286744118, + -0.12580646574497223, + 0.04471628740429878, + -0.0003653205931186676, + -0.05186966434121132, + 0.013936681672930717, + 0.010181711986660957, + 0.02096298709511757, + 0.015369715169072151, + -0.02131561003625393, + -0.009356766939163208, + 0.023700354620814323, + -0.006348747760057449, + -0.015089953318238258, + 0.037345971912145615, + 0.010826123878359795, + 0.015073135495185852, + 0.020365171134471893, + -0.04196001961827278, + 0.029436469078063965, + -0.006438283249735832, + 0.04570543020963669, + -0.009088899940252304, + -0.03538886830210686, + -0.07537313550710678, + 0.07549562305212021, + -0.04007522761821747, + 0.04426063224673271, + -0.01176130399107933, + 0.02230175957083702, + 0.002984285354614258, + -0.022502023726701736, + 0.11341774463653564, + 0.021770846098661423, + -0.02735484205186367, + -0.020341908559203148, + -0.020718947052955627, + -0.04231278598308563, + 0.044872500002384186, + 0.046704672276973724, + -0.027051502838730812, + -0.011136801913380623, + 0.04829796031117439, + 0.03519148379564285, + 0.0918767973780632, + 0.06966596841812134, + 0.05598558858036995, + 0.03039107844233513 + ] + }, + "p244_118.wav": { + "name": "p244", + "embedding": [ + 0.08021856844425201, + 0.10969100892543793, + 0.03342356160283089, + 0.009949089959263802, + 0.057601261883974075, + 0.04524441435933113, + -0.1211153045296669, + 0.059965021908283234, + -0.020339827984571457, + 0.14657330513000488, + -0.11284252256155014, + 0.06286406517028809, + -0.020700976252555847, + -0.11063581705093384, + -0.030577220022678375, + 0.0448831170797348, + -0.009756211191415787, + 0.04334409534931183, + -0.02051616460084915, + 0.033768441528081894, + 0.00885817687958479, + 0.015843801200389862, + 0.05865012854337692, + -0.07426120340824127, + 0.08317530900239944, + 0.022432656958699226, + 0.05704435333609581, + 0.08689700067043304, + 0.03175964951515198, + -0.018328966572880745, + 0.029209870845079422, + 0.11342711746692657, + -0.02476494200527668, + 0.01682024449110031, + 0.032519806176424026, + 0.04995492845773697, + -0.0070250630378723145, + -0.07192917168140411, + 0.03270074352622032, + -0.005756274797022343, + 0.010225449688732624, + 0.05691733583807945, + 0.04085694998502731, + -0.029640285298228264, + -0.005855883471667767, + 0.05865361541509628, + 0.021647760644555092, + -0.04638085886836052, + -0.11118754744529724, + 0.12052658200263977, + 0.008098968304693699, + 0.023148424923419952, + -0.08550912141799927, + -0.07185272872447968, + 0.0470857210457325, + 0.029950033873319626, + -0.02184305340051651, + -0.021323945373296738, + 0.08827625215053558, + 0.1475561559200287, + -0.013476436957716942, + -0.051205698400735855, + 0.011677843518555164, + 0.08581048250198364, + 0.024764016270637512, + 0.09175382554531097, + 0.06725993007421494, + 0.06867270171642303, + 0.042651742696762085, + 0.0678689032793045, + 0.014246590435504913, + 0.03924500569701195, + -0.004332654178142548, + -0.014721066690981388, + -0.014425585977733135, + -0.023758664727211, + -0.046216245740652084, + 0.018436932936310768, + 0.008266807533800602, + -0.07028249651193619, + 0.0003694252809509635, + -0.05090713873505592, + 0.011282239109277725, + 0.027101241052150726, + -0.014320816844701767, + 0.0067093707621097565, + 0.03240598738193512, + -0.04147815704345703, + 0.0968562513589859, + 0.006448704749345779, + 0.01083011832088232, + -0.0035309400409460068, + -0.04104558378458023, + -0.12041911482810974, + -0.005356861278414726, + -0.00500280037522316, + 0.004404408857226372, + 0.027927152812480927, + 0.04572881758213043, + -0.018008248880505562, + 0.09197898209095001, + 0.008144675754010677, + 0.018935229629278183, + -0.010596564039587975, + -0.035210855305194855, + 0.09775760769844055, + 0.08336663246154785, + -0.004042668268084526, + 0.021012291312217712, + -0.042535874992609024, + -0.016166996210813522, + 0.11024556308984756, + -0.13234774768352509, + -0.0879531130194664, + 0.018417388200759888, + -0.011912384070456028, + -0.0057600741274654865, + 0.0507965162396431, + 0.007791630923748016, + -0.03545762598514557, + 0.06614147126674652, + -0.08127156645059586, + -0.07742097973823547, + -0.030510179698467255, + 0.05978544056415558, + -0.05713605880737305, + 0.00915742851793766, + 0.06365719437599182, + -0.02868960052728653, + -0.06758248060941696, + 0.05223947763442993, + -0.0006843593437224627, + 0.011516544967889786, + -0.021365884691476822, + -0.010801957920193672, + 0.07555743306875229, + -0.07588811218738556, + 0.03540682792663574, + 0.004379707388579845, + 0.025115743279457092, + 0.03285476192831993, + 0.022581836208701134, + -0.058954305946826935, + -0.060113325715065, + -0.007974544540047646, + 0.07487452775239944, + 0.0357213169336319, + -0.038779035210609436, + -0.07104304432868958, + -0.031658660620450974, + -0.02254287339746952, + 0.0645938515663147, + 0.011461847461760044, + 0.06996951997280121, + 0.06303934007883072, + 0.0007822467014193535, + 0.1435275375843048, + -0.0425516739487648, + 0.033266160637140274, + -0.05716407299041748, + 0.012439013458788395, + 0.06893227994441986, + 0.0005773305892944336, + -0.07196105271577835, + -0.058866627514362335, + 0.01889757066965103, + -0.016617491841316223, + -0.014492619782686234, + 0.005629643797874451, + 0.006959831342101097, + 0.015503142029047012, + 0.020521223545074463, + 0.002555912360548973, + -0.036060627549886703, + -0.06164941564202309, + -0.025468356907367706, + -0.020932916551828384, + -0.009335173293948174, + -0.00503320898860693, + 0.06612639874219894, + 0.03306607902050018, + 0.026818640530109406, + 0.005393319763243198, + -0.03500642254948616, + -0.044147342443466187, + 0.06242217868566513, + 0.10573065280914307, + -0.002897303318604827, + 0.018014175817370415, + 0.01841695047914982, + -0.009610586799681187, + 0.014421416446566582, + 0.05665088817477226, + 0.04340434819459915, + -0.006976466625928879, + -0.07730883359909058, + -0.07915009558200836, + 0.09371644258499146, + 0.08577200770378113, + -0.10061462968587875, + -0.06727772951126099, + -0.03836091235280037, + -0.055724043399095535, + 0.03469405323266983, + -0.03803228586912155, + -0.003129224292933941, + 0.011618871241807938, + -0.07181718200445175, + -0.0581618957221508, + -0.1111060157418251, + 0.04286568611860275, + -0.030137211084365845, + -0.03444654121994972, + -0.06273093819618225, + 0.04339297115802765, + 0.019260574132204056, + 0.05937652289867401, + 0.02199064940214157, + 0.01679362542927265, + 0.01639135368168354, + -0.10649415850639343, + -0.051960788667201996, + 0.027338160201907158, + -0.030154366046190262, + -0.06931205093860626, + 0.024207327514886856, + -0.04473692923784256, + 0.09450338035821915, + -0.06879223883152008, + 0.10711175948381424, + -0.007084609009325504, + -0.05299802124500275, + -0.09194636344909668, + -0.00240876991301775, + -0.052422549575567245, + 0.040736839175224304, + 0.03356121852993965, + -0.02506815455853939, + 0.02232864871621132, + -0.07647602260112762, + 0.08005044609308243, + 0.004780407063663006, + 0.04597420245409012, + -0.08066266030073166, + -0.05446663498878479, + -0.053460489958524704, + 0.03453965485095978, + -0.028911877423524857, + -0.025795945897698402, + 0.0029121432453393936, + 0.03358977660536766, + -0.004812704399228096, + 0.03617364540696144, + 0.0719185322523117, + 0.02065223827958107, + -0.05530675873160362 + ] + }, + "p244_400.wav": { + "name": "p244", + "embedding": [ + 0.05053942650556564, + 0.09646899998188019, + -0.027374617755413055, + 0.024246055632829666, + -0.05257076025009155, + 0.09351804107427597, + -0.11137928813695908, + 0.12616947293281555, + -0.04456082731485367, + 0.15492606163024902, + -0.051945388317108154, + 0.11233455687761307, + -0.018775006756186485, + -0.1520809829235077, + -0.04695861041545868, + 0.018748905509710312, + -0.07124253362417221, + -0.023805759847164154, + -0.10862024128437042, + -0.02287735417485237, + 0.030787251889705658, + 0.03205721080303192, + 0.025626754388213158, + -0.021082360297441483, + 0.031791239976882935, + 0.06859797239303589, + 0.00863736867904663, + 0.05237775295972824, + 0.02464832365512848, + -0.09288458526134491, + -0.03058764711022377, + 0.09527076780796051, + -0.06832201778888702, + 0.02968393638730049, + 0.050669021904468536, + -0.02569620870053768, + 0.014991317875683308, + -0.040170539170503616, + -0.009432490915060043, + 0.040505848824977875, + -0.022939687594771385, + 0.09011654555797577, + -0.0009731203899718821, + 0.035227663815021515, + 0.034676164388656616, + 0.024047493934631348, + -0.014489714056253433, + -0.07286138832569122, + -0.07280115783214569, + 0.18246901035308838, + 0.08122102916240692, + -0.023695914074778557, + -0.056694891303777695, + -0.08033302426338196, + 0.0821426510810852, + -0.029088255017995834, + -0.1365344226360321, + -0.06719265133142471, + 0.05663881450891495, + 0.1370963752269745, + -0.04770912975072861, + -0.028637737035751343, + 0.0112940464168787, + 0.12040476500988007, + 0.08527788519859314, + 0.0839025229215622, + 0.09662358462810516, + 0.10660937428474426, + -0.016998691484332085, + 0.024155355989933014, + 0.06180451065301895, + 0.04467274248600006, + 0.08433789014816284, + 0.018324395641684532, + 0.0502580925822258, + -0.013541549444198608, + 0.015926234424114227, + -0.02741243503987789, + -0.017203042283654213, + 0.009793896228075027, + 0.009469199925661087, + 0.036539480090141296, + -0.003526360262185335, + 0.04668328911066055, + -0.030008362606167793, + 0.06147938221693039, + 0.00850432738661766, + -0.026476800441741943, + 0.0516519770026207, + 0.03651402145624161, + 0.03542536869645119, + 0.06543764472007751, + -0.07363831996917725, + -0.0862838476896286, + 0.04344604164361954, + 0.01410445012152195, + 0.0037103150971233845, + 0.036826543509960175, + 0.03100178763270378, + -0.007787529844790697, + 0.10383725166320801, + 0.0494295209646225, + -0.042055025696754456, + 0.02392265386879444, + -0.08150888979434967, + 0.14098212122917175, + 0.07739824056625366, + -0.030676715075969696, + 0.03343028202652931, + -0.03434886783361435, + 0.0699676126241684, + 0.03870538994669914, + -0.13470511138439178, + -0.10837861895561218, + 0.04302896559238434, + -0.00874422024935484, + -0.029670823365449905, + 0.07562843710184097, + -0.002656846772879362, + 0.03161662817001343, + 0.10219651460647583, + -0.066884845495224, + -0.01801367662847042, + -0.012202414683997631, + 0.05396562069654465, + -0.07898958027362823, + 0.015454623848199844, + 0.04010533541440964, + -0.001971959136426449, + -0.00276409974321723, + 0.13414739072322845, + 0.005273330956697464, + -0.012891230173408985, + 0.01833406835794449, + -0.022578798234462738, + 0.041748158633708954, + -0.0066428473219275475, + -0.01478208415210247, + 0.03524940460920334, + 0.03562815487384796, + 0.055995918810367584, + -0.03283051773905754, + -0.0418962687253952, + -0.10740187764167786, + 0.033719323575496674, + 0.02134593203663826, + 0.05213851481676102, + -0.038598574697971344, + 0.021210819482803345, + -0.03093128278851509, + -0.06231634318828583, + 0.02418169006705284, + -0.009159738197922707, + 0.0772741436958313, + -0.03150858357548714, + -0.007958821952342987, + 0.13126052916049957, + 0.0033897990360856056, + 0.007149349432438612, + -0.03360576927661896, + -0.018871353939175606, + 0.013747945427894592, + 0.060412608087062836, + -0.06583832949399948, + -0.06400668621063232, + 0.006678346544504166, + 0.022931678220629692, + 0.0033535792026668787, + 0.0803307294845581, + 0.051240451633930206, + -0.009944802150130272, + 0.031103044748306274, + -0.036846745759248734, + -0.016207732260227203, + -0.07806430757045746, + -0.0458969846367836, + -0.023766152560710907, + -0.044228918850421906, + -0.041395753622055054, + 0.08404529094696045, + 0.012381714768707752, + 0.05741448700428009, + -0.02016575261950493, + -0.09285682439804077, + -0.06741909682750702, + 0.07487379759550095, + 0.07823365926742554, + -0.01932818815112114, + 0.029713913798332214, + 0.07107331603765488, + -0.005012538284063339, + 0.04666861146688461, + 0.08552233874797821, + 0.09391190111637115, + -0.023120302706956863, + 0.027389535680413246, + -0.091127410531044, + 0.09053464233875275, + 0.0428406186401844, + -0.09005285799503326, + -0.073916494846344, + -0.007085512392222881, + -0.057615190744400024, + 0.016361400485038757, + -0.0413484200835228, + 0.029719578102231026, + 0.07708516716957092, + 0.0002740445779636502, + -0.07349929213523865, + -0.10459575057029724, + 0.11195839941501617, + -0.09053973108530045, + -0.009640864096581936, + -0.0689467042684555, + 0.03942933678627014, + 0.08978866785764694, + 0.06725664436817169, + -0.018309906125068665, + -0.00024114875122904778, + 0.05321994796395302, + -0.016517654061317444, + 0.00033383630216121674, + 0.04865456372499466, + 0.015678534284234047, + -0.11634225398302078, + 0.006422641221433878, + -0.07633957266807556, + 0.051836688071489334, + -0.05980987101793289, + 0.1252908706665039, + 0.0033604034688323736, + -0.04055309295654297, + -0.08084645867347717, + 0.0545833483338356, + -0.049858130514621735, + 0.06814046204090118, + 0.013050705194473267, + 0.0619654543697834, + 0.05434957146644592, + -0.054302092641592026, + 0.12178653478622437, + 0.044727351516485214, + -0.04462964087724686, + -0.08999882638454437, + -0.06695359945297241, + -0.03502817451953888, + 0.043355923146009445, + 0.03577809035778046, + -0.08695538341999054, + 0.008675831370055676, + 0.023106645792722702, + -0.04838944226503372, + 0.05734530836343765, + 0.13678139448165894, + 0.08542408049106598, + -0.12853728234767914 + ] + }, + "p244_076.wav": { + "name": "p244", + "embedding": [ + 0.04037095233798027, + 0.13764843344688416, + 0.007012718357145786, + 0.02261301875114441, + -0.032263197004795074, + 0.07159577310085297, + -0.08193717896938324, + 0.11613215506076813, + -0.06130309775471687, + 0.13961389660835266, + -0.11655938625335693, + 0.10490601509809494, + -0.06449037790298462, + -0.13848866522312164, + -0.037140801548957825, + 0.05259323492646217, + -0.0348464697599411, + 0.03234892711043358, + -0.02132207714021206, + 0.0030829589813947678, + 0.030819809064269066, + 0.017189502716064453, + 0.06872552633285522, + -0.02526131644845009, + 0.04082213714718819, + 0.05645167455077171, + 0.02694776840507984, + 0.07625964283943176, + 0.04195638373494148, + -0.0509735643863678, + -0.04752815514802933, + 0.1251574158668518, + -0.032261840999126434, + 0.033561546355485916, + 0.0576615184545517, + 0.016482248902320862, + -0.0012533895205706358, + -0.05587492138147354, + -0.0011165686883032322, + -0.021076317876577377, + -0.0334252268075943, + 0.040446631610393524, + 0.0008315485902130604, + -0.02376745082437992, + 0.027616413310170174, + 0.024395866319537163, + -0.020841583609580994, + -0.025382153689861298, + -0.08509089052677155, + 0.1477886587381363, + 0.05559735745191574, + -0.0015781987458467484, + -0.07457108795642853, + -0.09058764576911926, + 0.10822287201881409, + 0.005029873922467232, + -0.11035969853401184, + -0.012881547212600708, + 0.08433149755001068, + 0.16410008072853088, + -0.009644023142755032, + -0.027379069477319717, + 0.0023826458491384983, + 0.10790708661079407, + -6.020348519086838e-05, + 0.112828828394413, + 0.0586782842874527, + 0.07315827906131744, + 0.031227514147758484, + 0.07111864537000656, + 0.037119604647159576, + 0.06497267633676529, + 0.017160294577479362, + -0.024218998849391937, + 0.004126985557377338, + -0.026237523183226585, + -0.0459447056055069, + 0.052518054842948914, + -0.015375608578324318, + -0.04730473831295967, + -0.0329255647957325, + -0.017924068495631218, + -0.008379505947232246, + -0.03960617259144783, + -0.00845858734101057, + 0.04162054508924484, + -0.009148597717285156, + -0.00582651374861598, + 0.08696100115776062, + 0.02784571796655655, + -0.023738257586956024, + 0.0439765527844429, + -0.037809647619724274, + -0.09898503124713898, + -0.01753910258412361, + 0.00706604216247797, + 0.019492272287607193, + 0.08926250040531158, + 0.03702676296234131, + -0.021501606330275536, + 0.10189008712768555, + 0.05460657551884651, + 0.03087984025478363, + 0.025580208748579025, + -0.09864602237939835, + 0.10859756916761398, + 0.08049934357404709, + -0.01699146255850792, + 0.04073077812790871, + -0.0175881776958704, + 0.08812698721885681, + 0.10243579745292664, + -0.14123377203941345, + -0.06874243170022964, + -0.01940654031932354, + -0.008445695042610168, + 0.0031498530879616737, + 0.05005911365151405, + -0.020407598465681076, + -0.014747008681297302, + 0.10300946235656738, + -0.09670090675354004, + -0.08348426222801208, + -0.04263151437044144, + 0.044025786221027374, + -0.057726748287677765, + 0.037608884274959564, + 0.041304659098386765, + -0.015584757551550865, + -0.018973151221871376, + 0.06120190769433975, + -0.013975674286484718, + 0.021961238235235214, + 0.060964688658714294, + -0.07643675804138184, + 0.0016423962078988552, + -0.07740730047225952, + 0.020345179364085197, + 0.056520938873291016, + 0.06204928457736969, + 0.05876106768846512, + 0.012037435546517372, + -0.029501445591449738, + -0.05763449892401695, + -0.013333426788449287, + 0.08377092331647873, + 0.025010403245687485, + -0.012123534455895424, + -0.04990389943122864, + -0.021398276090621948, + -0.051785264164209366, + 0.04337175190448761, + 0.0074604470282793045, + 0.0799565464258194, + -0.010167635045945644, + -0.005495373625308275, + 0.11491915583610535, + 0.009996838867664337, + -0.02934999018907547, + -0.09868563711643219, + -0.03302093967795372, + 0.03735147789120674, + 0.014893303625285625, + -0.09818150848150253, + -0.08328143507242203, + 0.014430168084800243, + -0.006564276292920113, + -0.027671217918395996, + 0.02406672202050686, + 0.03553932532668114, + 0.009732716716825962, + 0.041021060198545456, + -0.031582195311784744, + -0.0006226208060979843, + -0.09954287856817245, + -0.060952745378017426, + -0.023160364478826523, + -0.0334116593003273, + -0.007443828973919153, + 0.07629574835300446, + 0.010202744975686073, + 0.010963167995214462, + 0.03494274243712425, + -0.061509981751441956, + -0.05982247740030289, + 0.08414982259273529, + 0.0643981397151947, + 0.023676443845033646, + 0.07315056025981903, + 0.050914157181978226, + -0.06682533025741577, + 0.060128938406705856, + 0.05861974135041237, + 0.08930563181638718, + -0.027293624356389046, + -0.005892493762075901, + -0.0803760439157486, + 0.03835541754961014, + 0.09374020993709564, + -0.12522566318511963, + -0.1097838431596756, + -0.06733863055706024, + -0.050214678049087524, + 0.06219257414340973, + -0.02199053019285202, + -0.010140171274542809, + 0.01084477361291647, + -0.051775116473436356, + -0.07259685546159744, + -0.08979864418506622, + 0.10459926724433899, + -0.035193461924791336, + -0.04423952102661133, + -0.04723978042602539, + 0.05199592188000679, + 0.03887098655104637, + 0.03169165924191475, + -0.019173385575413704, + 0.04122205078601837, + 0.06062355637550354, + -0.093259796500206, + -0.03810175880789757, + 0.04094254598021507, + -0.000958690419793129, + -0.05110141262412071, + 0.036421142518520355, + -0.07109324634075165, + 0.08266282826662064, + -0.07566773146390915, + 0.17352139949798584, + -0.03900402411818504, + -0.07110479474067688, + -0.0783536285161972, + 0.05334654822945595, + -0.039068467915058136, + -0.0055625224485993385, + 0.04592191427946091, + 0.034208592027425766, + -0.010556260123848915, + -0.08727201819419861, + 0.1313057243824005, + -0.011344349943101406, + -0.009854376316070557, + -0.057933785021305084, + -0.05131971091032028, + -0.05881940945982933, + 0.00033874576911330223, + -0.024586688727140427, + -0.08287695050239563, + -0.005483762361109257, + -0.004566133953630924, + -0.0017496270593255758, + 0.057817209511995316, + 0.13085409998893738, + 0.06414993107318878, + -0.0817672535777092 + ] + }, + "p244_421.wav": { + "name": "p244", + "embedding": [ + 0.052359603345394135, + 0.08491339534521103, + -0.0052977679297327995, + 0.027988698333501816, + -0.054709941148757935, + 0.0558035783469677, + -0.13452669978141785, + 0.13362833857536316, + -0.03757494315505028, + 0.14037875831127167, + -0.06648547202348709, + 0.10888543725013733, + -0.029858548194169998, + -0.18481528759002686, + -0.024504847824573517, + 0.0695403665304184, + -0.043456271290779114, + -0.03300505131483078, + -0.03962382674217224, + -0.012660928070545197, + 0.02752881869673729, + 0.037373535335063934, + 0.04065645858645439, + 0.012203475460410118, + 0.021803414449095726, + 0.060740821063518524, + 0.002221314236521721, + 0.05864550918340683, + 0.018737390637397766, + -0.05807553976774216, + -0.02747165411710739, + 0.10151033103466034, + -0.042212747037410736, + 0.020324809476733208, + 0.053468845784664154, + -0.0034837238490581512, + -0.005158654879778624, + -0.06351504474878311, + -0.02001127414405346, + -0.00910661369562149, + -0.04769226163625717, + 0.08150672167539597, + 0.023300809785723686, + -0.005530927330255508, + 0.045759882777929306, + 0.015095775946974754, + -0.030782124027609825, + -0.053303610533475876, + -0.11417430639266968, + 0.14903146028518677, + 0.07275809347629547, + 0.0021658800542354584, + -0.06897446513175964, + -0.07877419888973236, + 0.09227396547794342, + -0.028562214225530624, + -0.1202654093503952, + -0.05955028161406517, + 0.07685442268848419, + 0.15787135064601898, + -0.02730032429099083, + -0.03053065948188305, + 0.019903123378753662, + 0.128347709774971, + 0.05918174609541893, + 0.09720789641141891, + 0.07236267626285553, + 0.10033013671636581, + -0.02036476880311966, + 0.02200353518128395, + 0.05133114755153656, + 0.061604928225278854, + 0.042029526084661484, + 0.011000072583556175, + 0.021969132125377655, + 0.00298164295963943, + -0.013397286646068096, + 0.009743070229887962, + -0.016798675060272217, + -0.0074360668659210205, + -0.024280427023768425, + 0.01408606581389904, + -0.002260783454403281, + 0.01663368195295334, + -0.013697940856218338, + 0.05663369223475456, + 0.021143531426787376, + -0.005746930837631226, + 0.0695028007030487, + 0.03222574293613434, + 0.00443997560068965, + 0.05952133238315582, + -0.06665770709514618, + -0.08225062489509583, + 0.009627111256122589, + 0.004235336557030678, + 0.022029904648661613, + 0.06457825005054474, + 0.0189584419131279, + -0.01946914941072464, + 0.11743514239788055, + 0.046374596655368805, + -0.00821107067167759, + 0.033387795090675354, + -0.09662780165672302, + 0.11897893249988556, + 0.06971326470375061, + -0.014988185837864876, + 0.051024388521909714, + -0.048399847000837326, + 0.06919652223587036, + 0.07528217881917953, + -0.13261821866035461, + -0.06689087301492691, + 0.025559432804584503, + 0.008176721632480621, + -0.021581675857305527, + 0.11641605943441391, + -0.00542498379945755, + 0.03229762613773346, + 0.10619594156742096, + -0.08651252090930939, + -0.05318313091993332, + -0.006541445851325989, + 0.04954063147306442, + -0.0865594670176506, + 0.045327093452215195, + 0.0434432327747345, + -0.01434248685836792, + 0.011201722547411919, + 0.0901261568069458, + -0.0059002055786550045, + 0.003480600891634822, + 0.02298714779317379, + -0.05986514315009117, + 0.02254810743033886, + -0.04001174867153168, + 0.0009383925935253501, + 0.05553753674030304, + 0.04159386828541756, + 0.0430096760392189, + -0.004365541972219944, + -0.034328117966651917, + -0.11798670142889023, + 0.005010065156966448, + 0.03674982488155365, + 0.07754839956760406, + -0.0124696409329772, + -0.015956806018948555, + -0.043485648930072784, + -0.06129337474703789, + 0.020878370851278305, + -0.009759507142007351, + 0.07530860602855682, + -0.024133212864398956, + 0.00018365922733210027, + 0.09656389057636261, + 0.01610649935901165, + 0.0009305290877819061, + -0.054944634437561035, + -0.035191625356674194, + 0.008118957281112671, + 0.057478539645671844, + -0.08140076696872711, + -0.05751657485961914, + 0.013857441954314709, + 0.04003417119383812, + -0.018604308366775513, + 0.0471780002117157, + 0.0489465668797493, + 0.018174225464463234, + 0.029334744438529015, + -0.06177128851413727, + 0.016143137589097023, + -0.09872758388519287, + -0.07609512656927109, + -0.0018860509153455496, + -0.007533456198871136, + -0.01084181945770979, + 0.07288126647472382, + 0.01838839054107666, + 0.05020969361066818, + -0.008386634290218353, + -0.08623592555522919, + -0.09076200425624847, + 0.06908263266086578, + 0.06968741118907928, + -0.0013668525498360395, + 0.05549834296107292, + 0.0528520867228508, + -0.05103222653269768, + 0.053178735077381134, + 0.04785279929637909, + 0.104213647544384, + -0.029271148145198822, + 0.02190653793513775, + -0.08060689270496368, + 0.06930804252624512, + 0.09676992893218994, + -0.09904275834560394, + -0.08024166524410248, + -0.020491164177656174, + -0.06414781510829926, + 0.04435170441865921, + -0.028730478137731552, + -0.003296114271506667, + 0.043042369186878204, + -0.014094225130975246, + -0.10101969540119171, + -0.09378762543201447, + 0.08977267146110535, + -0.06952670216560364, + -0.0030763084068894386, + -0.07000904530286789, + 0.03830642253160477, + 0.08000911772251129, + 0.04903144761919975, + -0.02160087786614895, + -0.011179282329976559, + 0.05266395956277847, + -0.045007988810539246, + -0.004609322175383568, + 0.05822475999593735, + 0.01822805032134056, + -0.09958585351705551, + 0.0022085928358137608, + -0.0774078443646431, + 0.05633009225130081, + -0.0453941784799099, + 0.15446597337722778, + -0.005352163687348366, + -0.05346453934907913, + -0.07835906744003296, + 0.020546667277812958, + -0.027687987312674522, + 0.05097168684005737, + 0.02886008284986019, + 0.06206386536359787, + 0.04512518644332886, + -0.05445303022861481, + 0.12324132025241852, + 0.04730850085616112, + -0.03821056708693504, + -0.05541013181209564, + -0.039593156427145004, + -0.04679294675588608, + 0.029032841324806213, + 0.00022608294966630638, + -0.09560677409172058, + -0.01142454706132412, + 0.02166072651743889, + -0.0305277518928051, + 0.05913497135043144, + 0.14018478989601135, + 0.0649317055940628, + -0.11952614784240723 + ] + }, + "p244_394.wav": { + "name": "p244", + "embedding": [ + 0.04221281781792641, + 0.07372567802667618, + -0.0659819096326828, + 0.006157597526907921, + -0.02978031150996685, + 0.03945683687925339, + -0.12181125581264496, + 0.058032795786857605, + -0.03868616372346878, + 0.14774687588214874, + -0.07240644097328186, + 0.09537186473608017, + -0.013648711144924164, + -0.11537807434797287, + -0.04489489644765854, + 0.024008475244045258, + -0.017972923815250397, + -0.02762364223599434, + -0.07296928763389587, + -0.05663127824664116, + 0.04322358965873718, + 0.047203414142131805, + 0.01330507267266512, + -0.054803602397441864, + 0.0009810198098421097, + 0.07010701298713684, + 0.004903367720544338, + 0.002591957338154316, + -0.004884074442088604, + 0.0023916661739349365, + 0.007890032604336739, + 0.09013614058494568, + -0.03697314113378525, + -0.013693119399249554, + 0.0155577901750803, + 0.030582480132579803, + -0.010209169238805771, + -0.04287702590227127, + 0.009402159601449966, + 0.05422542989253998, + -0.04355786740779877, + 0.07451993972063065, + 0.02853311412036419, + -0.0025416752323508263, + 0.032882463186979294, + -0.03931282460689545, + -0.03843151777982712, + 0.002634061500430107, + -0.052503764629364014, + 0.17036250233650208, + 0.10296783596277237, + 0.007376339286565781, + -0.07343405485153198, + -0.031032774597406387, + 0.09722359478473663, + -0.005868859123438597, + -0.08558053523302078, + -0.06655317544937134, + 0.002623163163661957, + 0.1131540983915329, + -0.012632308527827263, + -0.06558747589588165, + 0.00698844064027071, + 0.10186818242073059, + 0.02486557886004448, + 0.03929458558559418, + 0.0945490300655365, + 0.08909730613231659, + -0.021795857697725296, + 0.0030776322819292545, + 0.07897725701332092, + 0.06378591805696487, + 0.049082182347774506, + -0.06440963596105576, + 0.06504374742507935, + -0.01625491864979267, + -0.008609740994870663, + -0.01093031745404005, + -0.02692103572189808, + -0.06158566102385521, + -0.0005314182490110397, + -0.011568897403776646, + -0.017167942598462105, + 0.04275604337453842, + -0.08168315142393112, + -1.0542571544647217e-06, + 0.06265141069889069, + -0.05579163879156113, + 0.05064044147729874, + 0.09218795597553253, + 0.02366851642727852, + 0.0011337138712406158, + -0.0610482320189476, + -0.06813901662826538, + 0.04482470825314522, + -0.0032767076045274734, + 0.0015504853799939156, + 0.04853503406047821, + 0.033751919865608215, + 0.0024062134325504303, + 0.07271923124790192, + 0.04323473200201988, + -0.02236836776137352, + -0.019747108221054077, + -0.07916384190320969, + 0.11579327285289764, + 0.13964106142520905, + -0.03967355564236641, + -0.011013301089406013, + 0.0017855498008430004, + 0.037831664085388184, + 0.03917057067155838, + -0.09499269723892212, + -0.0749216079711914, + 0.028514113277196884, + 0.03920985758304596, + 0.037640832364559174, + 0.08007712662220001, + -0.0013311905786395073, + -0.002193443477153778, + 0.09710744023323059, + -0.02258693240582943, + -0.06172921508550644, + -0.06625495105981827, + 0.008981116116046906, + -0.07737134397029877, + 0.03650752827525139, + 0.061724476516246796, + 0.033231399953365326, + -0.02998354844748974, + 0.08500725775957108, + 0.002355338539928198, + 0.003857824020087719, + -0.045823559165000916, + 0.02854788862168789, + 0.05841199308633804, + 0.011052394285798073, + -0.003450383897870779, + 0.0456831119954586, + 0.013796903192996979, + 0.0868886411190033, + 0.021950632333755493, + 0.022808659821748734, + -0.09523002803325653, + 0.04796866700053215, + 0.0413176454603672, + 0.0050698332488536835, + -0.0522797517478466, + -0.01754833571612835, + -0.020438849925994873, + -0.06216639280319214, + 0.015912078320980072, + -0.048053402453660965, + 0.08413240313529968, + 0.02139638550579548, + -0.028737042099237442, + 0.14665734767913818, + -0.037699125707149506, + -0.007535828277468681, + 0.006085017696022987, + 0.032038867473602295, + -0.0022094841115176678, + 0.04081571847200394, + -0.10109880566596985, + -0.07877299189567566, + -0.014130750671029091, + 0.012173613533377647, + 0.04750073328614235, + 0.01893373392522335, + 0.08463788032531738, + -0.048994410783052444, + 0.03135241940617561, + -0.06985719501972198, + 0.016635265201330185, + -0.09746984392404556, + 0.003945829346776009, + -0.0282443817704916, + -0.11036363244056702, + -0.0005139214918017387, + 0.07725851982831955, + -0.01924262009561062, + 0.010488408617675304, + -0.05139767751097679, + -0.10992743074893951, + -0.06320053339004517, + 0.05239824950695038, + 0.10323932766914368, + -0.02312656305730343, + 0.01673564314842224, + 0.08824264258146286, + 0.028324509039521217, + 0.008866289630532265, + 0.045627690851688385, + 0.08047404885292053, + -0.0641738772392273, + -0.00593201257288456, + -0.04705319553613663, + 0.07765305042266846, + 0.05012659728527069, + -0.08386698365211487, + -0.0650007575750351, + -0.07331133633852005, + -0.03916112333536148, + 0.013628602959215641, + -0.04112265259027481, + 0.02014829032123089, + 0.05306567996740341, + -0.03210524469614029, + -0.0801018625497818, + -0.09217952191829681, + 0.07033544033765793, + -0.0350370891392231, + -0.0052529750391840935, + -0.05333959311246872, + 0.024838626384735107, + 0.02708384022116661, + 0.05357912555336952, + -0.06930997967720032, + 0.021345606073737144, + 0.0037568937987089157, + -0.037808675318956375, + -0.01639874465763569, + -0.003400258719921112, + 0.030739542096853256, + -0.07515322417020798, + -0.026407957077026367, + -0.0663398802280426, + 0.11452736705541611, + -0.07026782631874084, + 0.05067889764904976, + 0.004596891347318888, + -0.03442615643143654, + -0.0711522325873375, + 0.025660306215286255, + -0.011127292178571224, + 0.05089222639799118, + 0.08250969648361206, + 0.055533066391944885, + -0.006250837817788124, + -0.06509929150342941, + 0.07760076224803925, + 0.06454917043447495, + 0.002327009104192257, + -0.08449520915746689, + 0.02630813792347908, + -0.0261441208422184, + 0.038046471774578094, + 0.061569489538669586, + -0.05411284416913986, + 0.04874954745173454, + 0.004920903593301773, + -0.03563157096505165, + 0.050731562077999115, + 0.04804393649101257, + 0.05965430289506912, + -0.08994707465171814 + ] + }, + "p244_059.wav": { + "name": "p244", + "embedding": [ + 0.05211058259010315, + 0.09031020849943161, + -0.016787324100732803, + 0.044890522956848145, + -0.07434713840484619, + 0.04509442672133446, + -0.138683021068573, + 0.15274880826473236, + -0.014317094348371029, + 0.11448056995868683, + -0.05287359654903412, + 0.1250535100698471, + -0.025392839685082436, + -0.19026386737823486, + -0.003872975707054138, + 0.06730380654335022, + -0.008804458193480968, + -0.024860791862010956, + 0.006314050406217575, + -0.02803061529994011, + 0.02479531429708004, + 0.04429391771554947, + 0.043818652629852295, + 0.0028664530254900455, + 0.05632931739091873, + 0.06739361584186554, + -0.010996385477483273, + 0.030286163091659546, + 0.0024190880358219147, + -0.053098730742931366, + -0.04355702921748161, + 0.08344703912734985, + -0.05834344029426575, + 0.005014099180698395, + 0.051025375723838806, + -0.01388503983616829, + -0.020580502226948738, + -0.060148969292640686, + -0.02872304990887642, + -0.0010775126283988357, + -0.054255276918411255, + 0.0857522115111351, + 0.05023276060819626, + -0.03782668337225914, + 0.03837617114186287, + 0.01860402524471283, + -0.003439562860876322, + -0.03719545155763626, + -0.1267479658126831, + 0.1542169451713562, + 0.04489909112453461, + 0.012139051221311092, + -0.08407258987426758, + -0.06525923311710358, + 0.10446441173553467, + 0.0014876071363687515, + -0.09852991253137589, + -0.03226218745112419, + 0.08392706513404846, + 0.1515682339668274, + -0.01122039183974266, + -0.03162868693470955, + 0.028277942910790443, + 0.11791953444480896, + 0.05518379434943199, + 0.07797396183013916, + 0.06564490497112274, + 0.11697226762771606, + -0.019241739064455032, + 0.024206530302762985, + 0.04920335114002228, + 0.0724349096417427, + 0.018184814602136612, + -0.01683025434613228, + -0.01598476432263851, + -0.004768064711242914, + -0.023378970101475716, + -0.011343930847942829, + -0.005287173204123974, + -0.02188873663544655, + -0.024261534214019775, + -0.005456279031932354, + 0.011974446475505829, + 0.014671731740236282, + -0.023219861090183258, + 0.05448531731963158, + 0.0510338731110096, + -0.004323908593505621, + 0.07310354709625244, + 0.022049546241760254, + -0.015815729275345802, + 0.06292496621608734, + -0.08115273714065552, + -0.06564487516880035, + 0.018000714480876923, + -0.0011353300651535392, + 0.039665453135967255, + 0.09368514269590378, + 0.04481733590364456, + -0.015207127667963505, + 0.13545510172843933, + 0.0574614554643631, + 0.008050581440329552, + 0.018052363768219948, + -0.07626637071371078, + 0.12130442261695862, + 0.06759084761142731, + -0.010168075561523438, + 0.08639216423034668, + -0.04942810907959938, + 0.06838169693946838, + 0.06409639120101929, + -0.14163321256637573, + -0.0523344948887825, + 0.015249529853463173, + 0.022128598764538765, + -0.01690315082669258, + 0.14046034216880798, + 0.005391120444983244, + 0.05108964443206787, + 0.10216464102268219, + -0.10790012776851654, + -0.06773235648870468, + -0.01801345869898796, + 0.056593433022499084, + -0.09005950391292572, + 0.06811849772930145, + 0.07202481478452682, + -0.039467282593250275, + 0.031007032841444016, + 0.05758289992809296, + -0.002961705904453993, + 0.024321893230080605, + 0.024886082857847214, + -0.048783764243125916, + 0.008189593441784382, + -0.030337151139974594, + 0.01699521765112877, + 0.059775106608867645, + 0.016814284026622772, + 0.057762689888477325, + -0.001238397671841085, + -0.021220512688159943, + -0.12438033521175385, + 0.008859913796186447, + 0.04408992826938629, + 0.08999302238225937, + -0.0163830928504467, + -0.04759235680103302, + -0.03438553214073181, + -0.08179104328155518, + 0.02691732719540596, + 0.010365668684244156, + 0.07743996381759644, + -0.027045879513025284, + 0.004372643772512674, + 0.08790628612041473, + 0.056354813277721405, + -0.012188902124762535, + -0.05727371573448181, + -0.049839019775390625, + -0.00020913488697260618, + 0.043822042644023895, + -0.10179653763771057, + -0.06975045055150986, + -0.02184605598449707, + 0.028134597465395927, + -0.04036519303917885, + 0.05948321521282196, + 0.039885878562927246, + 0.031334299594163895, + 0.022022534161806107, + -0.05822766572237015, + 0.007934393361210823, + -0.084077388048172, + -0.0759524330496788, + -0.01076965406537056, + 0.008049480617046356, + -0.04031803458929062, + 0.08851504325866699, + 0.03602299839258194, + 0.06514918804168701, + -0.009855658747255802, + -0.03239437937736511, + -0.06953404098749161, + 0.03346630930900574, + 0.023713747039437294, + -0.007787439506500959, + 0.05046822875738144, + 0.06018594279885292, + -0.06341789662837982, + 0.0562901496887207, + 0.060678452253341675, + 0.0846179872751236, + -0.0357646644115448, + 0.022774893790483475, + -0.06300573796033859, + 0.08778300881385803, + 0.10481292009353638, + -0.09367352724075317, + -0.08410625159740448, + -0.053423330187797546, + -0.07847580313682556, + 0.04153309017419815, + -0.019026286900043488, + 0.0061453827656805515, + 0.004096143878996372, + -0.0075471303425729275, + -0.09132785350084305, + -0.10212084650993347, + 0.06480856239795685, + -0.055305205285549164, + 5.991733632981777e-05, + -0.08395881950855255, + 0.041417863219976425, + 0.09231184422969818, + 0.03960429131984711, + -0.004887227434664965, + -0.021804237738251686, + 0.05057108402252197, + -0.03523723781108856, + 0.01057150773704052, + 0.09661002457141876, + 0.0465642586350441, + -0.09745390713214874, + -0.01476682722568512, + -0.062276691198349, + 0.06255712360143661, + -0.03646198660135269, + 0.1689663827419281, + 0.021374596282839775, + -0.05630611628293991, + -0.0784098207950592, + 0.03436777740716934, + -0.018948176875710487, + 0.04361008107662201, + 0.02956235781311989, + 0.05381504446268082, + 0.03879433125257492, + -0.04818301647901535, + 0.11761713773012161, + 0.0379662811756134, + -0.040918607264757156, + -0.04715179651975632, + -0.047564469277858734, + -0.039870284497737885, + 0.037253767251968384, + 0.003212657291442156, + -0.09977522492408752, + -0.02584272250533104, + 0.03237131983041763, + 0.007361389230936766, + 0.058573536574840546, + 0.14789551496505737, + 0.06627048552036285, + -0.10891734063625336 + ] + }, + "p244_100.wav": { + "name": "p244", + "embedding": [ + 0.0663197785615921, + 0.09439428150653839, + -0.05860540270805359, + 0.04420878365635872, + -0.0157189778983593, + 0.05247534066438675, + -0.10924509167671204, + 0.10548478364944458, + -0.029878534376621246, + 0.11963379383087158, + -0.06781339645385742, + 0.09859782457351685, + -0.04731093719601631, + -0.10407844930887222, + -0.025321464985609055, + 0.0381789356470108, + -0.028281522914767265, + -0.005352920852601528, + -0.018945593386888504, + -0.016972610726952553, + 0.04892675578594208, + 0.009979571215808392, + 0.04857354611158371, + -0.043624814599752426, + -0.007384458556771278, + 0.059436164796352386, + -0.004885569680482149, + -0.010640589520335197, + 0.011995124630630016, + -0.007840579375624657, + 0.0026341602206230164, + 0.04913713037967682, + -0.017757225781679153, + 0.000975143164396286, + 0.04100700840353966, + 0.026308663189411163, + -0.03971042484045029, + -0.05527646467089653, + 0.016162578016519547, + 0.0015194378793239594, + -0.033707112073898315, + 0.059089966118335724, + 0.026121221482753754, + -0.0753602385520935, + 0.062055837363004684, + -0.05959121510386467, + -0.02531673014163971, + -0.007754381280392408, + -0.08055133372545242, + 0.13634063303470612, + 0.0722898468375206, + 0.04264960065484047, + -0.09108496457338333, + -0.0037523843348026276, + 0.0923738032579422, + 0.021413519978523254, + -0.08120468258857727, + -0.03694716840982437, + 0.020819321274757385, + 0.13331222534179688, + -0.026344316080212593, + -0.046072062104940414, + 0.04454554617404938, + 0.062435977160930634, + 0.038268934935331345, + 0.04812190681695938, + 0.11056789755821228, + 0.06409688293933868, + -0.0023174136877059937, + 0.030247226357460022, + 0.048067860305309296, + 0.08169476687908173, + 0.05583852529525757, + -0.01167504582554102, + 0.014711730182170868, + -0.048491790890693665, + -0.04016498476266861, + -0.008022511377930641, + 0.008780616335570812, + -0.0828246995806694, + -0.03210859373211861, + -0.037795573472976685, + 0.01731165125966072, + 0.031443674117326736, + -0.023595400154590607, + 0.01804482564330101, + 0.05807250365614891, + -0.057509537786245346, + 0.03341579809784889, + 0.04593736678361893, + -0.002328613307327032, + 0.019688639789819717, + -0.052042510360479355, + -0.10841652005910873, + 0.026302458718419075, + -0.010919563472270966, + 0.029422741383314133, + 0.038488660007715225, + 0.06177400052547455, + 0.026608601212501526, + 0.0835871696472168, + 0.04342842847108841, + 0.006749723106622696, + 0.0043671149760484695, + -0.0627894401550293, + 0.11522842943668365, + 0.1276656687259674, + -0.037673670798540115, + 0.029498660936951637, + -0.03411189839243889, + 0.007968232035636902, + 0.05691046267747879, + -0.08458146452903748, + -0.051257744431495667, + 0.01903976872563362, + 0.024734729900956154, + 0.045076634734869, + 0.10741623491048813, + 0.02892608568072319, + 0.009291954338550568, + 0.10416583716869354, + -0.09102657437324524, + -0.08732734620571136, + -0.07047225534915924, + 0.044792789965867996, + -0.06465359032154083, + 0.07475265115499496, + 0.07118361443281174, + 0.0050682323053479195, + -0.003476560115814209, + 0.04940428584814072, + -0.008041362278163433, + 0.00932995229959488, + -0.025251735001802444, + -0.00887626688927412, + 0.03655785694718361, + -0.05850313603878021, + -0.009714930318295956, + 0.06718210875988007, + 0.017471838742494583, + 0.06314821541309357, + 0.021001707762479782, + 0.017348608002066612, + -0.09711773693561554, + 0.00856832042336464, + 0.08780636638402939, + 0.012186123058199883, + -0.04391637444496155, + -0.04549715295433998, + -0.0033802613615989685, + -0.05527162551879883, + 0.016970159485936165, + -0.028318775817751884, + 0.07493670284748077, + -0.0031198784708976746, + 0.03987174108624458, + 0.10714699327945709, + -0.003863329067826271, + 0.004510321654379368, + -0.03685054928064346, + -0.008681939914822578, + 0.03332715481519699, + 0.03084845468401909, + -0.11221206933259964, + -0.10365574061870575, + -0.06344129145145416, + 0.022486770525574684, + 0.00369067769497633, + 0.025880323722958565, + 0.06596258282661438, + -0.009321731515228748, + 0.0115674939006567, + -0.028061628341674805, + 0.03308183327317238, + -0.10043562948703766, + -0.054394111037254333, + -0.033737242221832275, + -0.07232873886823654, + 0.012167712673544884, + 0.08024148643016815, + 0.008952250704169273, + 0.028988581150770187, + -0.03271050006151199, + -0.06773829460144043, + -0.06748488545417786, + 0.0571545735001564, + 0.05134906619787216, + -0.02053200639784336, + 0.009943072684109211, + 0.06056932732462883, + 0.011697516776621342, + 0.01142505556344986, + 0.022412709891796112, + 0.1010124683380127, + -0.03607857972383499, + -0.048399388790130615, + -0.07639270275831223, + 0.04189855605363846, + 0.12902554869651794, + -0.08879778534173965, + -0.07785983383655548, + -0.09564165025949478, + -0.05752214044332504, + 0.019074978306889534, + -0.07030005753040314, + -0.007959501817822456, + 0.019897159188985825, + -0.05385321378707886, + -0.09478220343589783, + -0.13109785318374634, + 0.06463485211133957, + -0.010974442586302757, + -0.004489540588110685, + -0.07305482029914856, + 0.04138777405023575, + 0.026729801669716835, + -0.014840628951787949, + -0.043802786618471146, + 0.05128946155309677, + -0.019664419814944267, + -0.02324110083281994, + -0.002534065395593643, + 0.012591449543833733, + 0.0510978102684021, + -0.0857885554432869, + -0.02150963433086872, + -0.06154468655586243, + 0.09006279706954956, + -0.06946229934692383, + 0.11457448452711105, + -0.027412837371230125, + -0.026068881154060364, + -0.08111831545829773, + 0.03654753044247627, + -0.008012485690414906, + 0.047931745648384094, + 0.04473424702882767, + 0.040938958525657654, + 0.0036564096808433533, + -0.09383370727300644, + 0.06946577876806259, + 0.042330384254455566, + 0.008626967668533325, + -0.09750566631555557, + -0.02568056248128414, + -0.05529318377375603, + 0.008041676133871078, + -0.01950201578438282, + -0.039776209741830826, + 0.018483854830265045, + -0.007487908937036991, + 0.04015301913022995, + 0.048131756484508514, + 0.07871736586093903, + 0.02605525404214859, + -0.05583636462688446 + ] + }, + "p244_023.wav": { + "name": "p244", + "embedding": [ + 0.03908824548125267, + 0.1017199233174324, + -0.009959769435226917, + 0.021438581869006157, + -0.06452645361423492, + 0.044496528804302216, + -0.13400962948799133, + 0.1451302468776703, + -0.044776733964681625, + 0.11464640498161316, + -0.07916643470525742, + 0.12784340977668762, + -0.029615890234708786, + -0.1755208522081375, + -0.048016875982284546, + 0.05921188369393349, + -0.0343744233250618, + -0.045235276222229004, + -0.0074041178449988365, + -0.0253108162432909, + 0.039457403123378754, + 0.03610103577375412, + 0.03011571429669857, + 0.03964009881019592, + 0.02795795351266861, + 0.06703013181686401, + 0.016632018610835075, + 0.05980275571346283, + 0.03333541005849838, + -0.029680419713258743, + -0.03519735857844353, + 0.09383947402238846, + -0.04114807769656181, + 0.014151819981634617, + 0.053443919867277145, + -0.0067961798049509525, + 0.016943257302045822, + -0.06032857298851013, + -0.02663329243659973, + -0.00046618329361081123, + -0.039308350533246994, + 0.07699462026357651, + 0.04193534702062607, + -0.005273374263197184, + 0.02674288861453533, + 0.04383581504225731, + -0.0043047694489359856, + -0.0473567396402359, + -0.11646394431591034, + 0.14727148413658142, + 0.05183038488030434, + -0.00142720399890095, + -0.06901705265045166, + -0.06773066520690918, + 0.11674400418996811, + -0.031111136078834534, + -0.0977528765797615, + -0.029965033754706383, + 0.08769207447767258, + 0.15565212070941925, + -0.03476284071803093, + -0.04429098591208458, + 0.023429809138178825, + 0.13291653990745544, + 0.057654645293951035, + 0.07660049945116043, + 0.07403185218572617, + 0.10676908493041992, + -0.02657163515686989, + -0.0007726012845523655, + 0.05820402503013611, + 0.08041516691446304, + 0.01997154764831066, + -0.012673151679337025, + 0.008889789693057537, + 0.0164633821696043, + -0.010283536277711391, + 0.027073834091424942, + -0.025768082588911057, + -0.011276870965957642, + -0.033658891916275024, + 0.016812419518828392, + -0.011569165624678135, + 0.010936538688838482, + -0.01961156167089939, + 0.08063401281833649, + 0.019893674179911613, + 0.0028532263822853565, + 0.07736208289861679, + 0.029046129435300827, + 0.0002845727140083909, + 0.06905665993690491, + -0.07306993007659912, + -0.06884765625, + 0.017564628273248672, + -0.0046822004951536655, + 0.029821451753377914, + 0.07846148312091827, + 0.0375356562435627, + -0.012686869129538536, + 0.13154901564121246, + 0.05841303989291191, + -0.005561016034334898, + 0.023732321336865425, + -0.09533876925706863, + 0.12531165778636932, + 0.07549038529396057, + -0.021976590156555176, + 0.04789264127612114, + -0.04142708331346512, + 0.0662362203001976, + 0.05911421775817871, + -0.13633295893669128, + -0.08132922649383545, + 0.03302367776632309, + 0.044984545558691025, + -0.02104741893708706, + 0.10965011268854141, + -0.028814515098929405, + 0.035344772040843964, + 0.09868381917476654, + -0.06828127056360245, + -0.056365661323070526, + -0.01856410503387451, + 0.04307914897799492, + -0.07022472470998764, + 0.05234229564666748, + 0.05905531346797943, + -0.009590099565684795, + 0.010263609699904919, + 0.08055105805397034, + -0.0061597395688295364, + -0.003881992306560278, + 0.028562072664499283, + -0.057598669081926346, + 0.019651295617222786, + -0.0191297959536314, + 0.005933896638453007, + 0.043608468025922775, + 0.05449352785944939, + 0.04584034904837608, + 0.011709746904671192, + -0.03451947867870331, + -0.12400718033313751, + 0.007686857134103775, + 0.03464972600340843, + 0.08371372520923615, + -0.0009035574039444327, + -0.044929251074790955, + -0.043272312730550766, + -0.04334426671266556, + -0.001561360084451735, + 0.01567970961332321, + 0.08219204843044281, + -0.039747532457113266, + 0.010228430852293968, + 0.08703365921974182, + 0.025471672415733337, + -0.006671713199466467, + -0.052804186940193176, + -0.030194992199540138, + 0.0002452497137710452, + 0.04281293973326683, + -0.059373751282691956, + -0.07548919320106506, + 0.0015809343894943595, + 0.052883878350257874, + -0.027732735499739647, + 0.05769096314907074, + 0.03231029957532883, + 0.013555985875427723, + 0.03596971556544304, + -0.05700072646141052, + 0.022291073575615883, + -0.10057568550109863, + -0.06620828062295914, + -0.014416437596082687, + 0.015316369943320751, + -0.025401776656508446, + 0.063944011926651, + 0.034537337720394135, + 0.07000309973955154, + 0.011429321952164173, + -0.0725812315940857, + -0.08231204748153687, + 0.053027551621198654, + 0.06893660128116608, + 0.007796157151460648, + 0.0591251477599144, + 0.06391574442386627, + -0.03666124865412712, + 0.06755539029836655, + 0.05735276639461517, + 0.08449211716651917, + -0.030076559633016586, + 0.014660472981631756, + -0.05635940283536911, + 0.06003953889012337, + 0.06228463724255562, + -0.11223392188549042, + -0.07457417994737625, + -0.03092467039823532, + -0.05540286377072334, + 0.04038581624627113, + -0.00673317164182663, + 0.01929626055061817, + 0.013313712552189827, + -0.0018207458779215813, + -0.10298387706279755, + -0.08288252353668213, + 0.06628750264644623, + -0.0733165293931961, + 0.005856611765921116, + -0.07208412885665894, + 0.040309373289346695, + 0.1149497926235199, + 0.02881626971065998, + -0.004198829643428326, + -0.029416609555482864, + 0.03783728554844856, + -0.036783572286367416, + -0.012174882926046848, + 0.05171601101756096, + 0.029560891911387444, + -0.09624523669481277, + 0.011329907923936844, + -0.08156187832355499, + 0.06035470962524414, + -0.03657836839556694, + 0.1633358746767044, + 0.011731870472431183, + -0.05558416619896889, + -0.08446737378835678, + 0.01829644851386547, + -0.03290078416466713, + 0.05489852651953697, + 0.0303493719547987, + 0.04956279695034027, + 0.02715081349015236, + -0.0494561493396759, + 0.1296415776014328, + 0.04800746962428093, + -0.06840189546346664, + -0.07137420773506165, + -0.03960240259766579, + -0.03337593004107475, + 0.027055565267801285, + 0.027266275137662888, + -0.08271216601133347, + -0.040648285299539566, + 0.015020700171589851, + -0.02820698171854019, + 0.08464384078979492, + 0.1389710009098053, + 0.07099004834890366, + -0.1135907769203186 + ] + }, + "p244_001.wav": { + "name": "p244", + "embedding": [ + 0.015332179144024849, + 0.07108315825462341, + -0.020739970728754997, + 0.05744510889053345, + -0.04570154845714569, + 0.020833274349570274, + -0.1109994649887085, + 0.14159035682678223, + 0.009848130866885185, + 0.11420293152332306, + -0.07159987092018127, + 0.0914527103304863, + -0.0625762864947319, + -0.17988622188568115, + 0.052134789526462555, + 0.051672205328941345, + 0.04731632024049759, + -0.006856944411993027, + 0.003111025085672736, + -0.007992730475962162, + 0.027882717549800873, + 0.05588168278336525, + -0.014738529920578003, + -0.02105940505862236, + 0.01581038162112236, + 0.06336754560470581, + -0.04263804107904434, + -0.01843671128153801, + -0.029094256460666656, + -0.018652595579624176, + -0.02964254654943943, + 0.0827953964471817, + -0.0799579918384552, + 0.010914979502558708, + 0.06217946112155914, + 0.009177275002002716, + -0.07105202972888947, + 0.016001801937818527, + -0.01115439087152481, + -0.005310261622071266, + -0.10693271458148956, + 0.047822482883930206, + 0.015527957119047642, + -0.018014488741755486, + 0.08667831122875214, + 0.029291581362485886, + 0.0021342034451663494, + -0.0023415519390255213, + -0.0867738425731659, + 0.1013704240322113, + 0.05490349233150482, + -0.02102711796760559, + -0.0681600347161293, + -0.05408202111721039, + 0.043294474482536316, + 0.01799607463181019, + -0.09437404572963715, + -0.021127671003341675, + 0.09878145158290863, + 0.11597470939159393, + 0.012194476090371609, + -0.03993900120258331, + 0.0261235274374485, + 0.0897771418094635, + 0.04261494427919388, + 0.08973386883735657, + 0.04110422730445862, + 0.11391530930995941, + -0.03944727033376694, + -0.02352098375558853, + 0.03497697040438652, + 0.0508694052696228, + 0.08620239794254303, + -0.032662659883499146, + -0.015647606924176216, + 0.00278669036924839, + -0.028113259002566338, + -0.012908965349197388, + -0.017692675814032555, + -0.018312573432922363, + -0.014719038270413876, + -0.021705131977796555, + -0.007278572767972946, + -0.0012894890969619155, + -0.0078122434206306934, + 0.018887579441070557, + 0.12920019030570984, + 0.009379029273986816, + 0.06988713145256042, + 0.03569526970386505, + -0.025971459224820137, + 0.07317141443490982, + -0.1158798336982727, + -0.003239100333303213, + 0.0035500172525644302, + -0.022510454058647156, + 0.02235689014196396, + 0.1020098477602005, + 0.04558086395263672, + 0.010756200179457664, + 0.12658396363258362, + 0.0006218478083610535, + 0.03367367386817932, + 0.03445741534233093, + -0.09070102870464325, + 0.11754370480775833, + 0.0624704584479332, + -0.042367011308670044, + 0.058698706328868866, + -0.043965213000774384, + 0.0372648686170578, + 0.06139852851629257, + -0.09974567592144012, + -0.01718933880329132, + 0.0024605211801826954, + 0.01508396491408348, + -0.04705511033535004, + 0.16210293769836426, + 0.026749365031719208, + 0.009849561378359795, + 0.11299304664134979, + -0.1387653350830078, + -0.09164271503686905, + -0.005564861930906773, + 0.028440717607736588, + -0.12368398904800415, + 0.07504577934741974, + 0.05022487789392471, + -0.006364494562149048, + 0.05789971351623535, + 0.07559937238693237, + -0.008155264891684055, + 0.06495187431573868, + -0.022819023579359055, + -0.022629395127296448, + -0.01611892506480217, + -0.03801148384809494, + 0.018936779350042343, + 0.036104340106248856, + -0.008834347128868103, + 0.09331975877285004, + -0.02421494573354721, + -0.00135873444378376, + -0.1277925968170166, + 0.0049688429571688175, + 0.08407506346702576, + 0.061537016183137894, + -0.030716441571712494, + -0.035312190651893616, + -0.04310460388660431, + -0.10013379901647568, + 0.03536054864525795, + -0.011094405315816402, + 0.038348257541656494, + -0.02725199982523918, + -0.011467266827821732, + 0.1260988712310791, + 0.05621485784649849, + -0.029998809099197388, + -0.07546477019786835, + -0.05859825015068054, + -0.04499642923474312, + 0.04695644602179527, + -0.1449158936738968, + -0.09980586171150208, + -0.055393971502780914, + 0.017905019223690033, + 0.0026516574434936047, + 0.06350744515657425, + 0.058349281549453735, + 0.038489554077386856, + -0.0006957833538763225, + -0.0564144067466259, + -0.004356719553470612, + -0.08724237978458405, + -0.11274762451648712, + -0.04256569966673851, + -0.018790483474731445, + 0.005788655020296574, + 0.07858725637197495, + -0.009145157411694527, + 0.03569881618022919, + -0.01142931543290615, + -0.02560727298259735, + -0.10053502768278122, + 0.04588941112160683, + 0.00034770439378917217, + -0.02873968705534935, + 0.047554414719343185, + 0.06538181006908417, + -0.1378755271434784, + 0.04275937378406525, + 0.06216815114021301, + 0.1073300838470459, + -0.04981303960084915, + 0.08144046366214752, + -0.05596820265054703, + 0.06934529542922974, + 0.12503361701965332, + -0.05679711326956749, + -0.09968920052051544, + -0.041347332298755646, + -0.06743539869785309, + 0.03525843098759651, + -0.06051412224769592, + -0.009532234631478786, + -0.004692481830716133, + -0.015292897820472717, + -0.06887029111385345, + -0.08320097625255585, + 0.057233698666095734, + -0.016128353774547577, + -0.0017727082595229149, + -0.09885057806968689, + 0.0449804849922657, + 0.015024697408080101, + 0.06777267158031464, + -0.039914682507514954, + -0.01014675758779049, + 0.0651957169175148, + -0.01678445190191269, + 0.023181021213531494, + 0.10439378023147583, + 0.05277450382709503, + -0.05962442234158516, + -0.05271410197019577, + -0.04789105802774429, + 0.05983292683959007, + -0.04893389344215393, + 0.10914941132068634, + 0.008151409216225147, + -0.07194779068231583, + -0.05372968316078186, + 0.026354417204856873, + 0.039717897772789, + 0.00383058562874794, + 0.010209467262029648, + 0.07519416511058807, + 0.03247915208339691, + -0.021991681307554245, + 0.12093430757522583, + 0.02438914030790329, + 0.013897374272346497, + -0.013209586963057518, + -0.07147912681102753, + -0.06426887214183807, + 0.01133603323251009, + 0.0048578823916614056, + -0.12598922848701477, + 0.004515137057751417, + 0.018026068806648254, + 0.030099008232355118, + 0.002299480140209198, + 0.13964521884918213, + 0.052897028625011444, + -0.12555529177188873 + ] + }, + "p244_418.wav": { + "name": "p244", + "embedding": [ + 0.03042732924222946, + 0.08651362359523773, + -0.013920066878199577, + 0.048780761659145355, + -0.052090711891651154, + 0.08329790085554123, + -0.11538572609424591, + 0.11805260181427002, + -0.05403435230255127, + 0.1214764341711998, + -0.06727450340986252, + 0.1027962788939476, + -0.03265245258808136, + -0.1598365306854248, + -0.04812697693705559, + 0.06039876490831375, + -0.060169413685798645, + -0.03810255974531174, + -0.027802687138319016, + 0.0004598855448421091, + 0.0426812581717968, + 0.03234236687421799, + 0.03217286616563797, + 0.005338083952665329, + 0.026176458224654198, + 0.05210056155920029, + 0.01715407334268093, + 0.0640350729227066, + 0.04269653186202049, + -0.043983157724142075, + -0.031350284814834595, + 0.11005459725856781, + -0.032013725489377975, + 0.01277065183967352, + 0.03910341486334801, + 0.017702404409646988, + 0.009509921073913574, + -0.07261432707309723, + -0.017713073641061783, + 0.0029306281358003616, + -0.056677162647247314, + 0.07570306211709976, + 0.03297759220004082, + 0.0011304605286568403, + 0.032163284718990326, + 0.0020733103156089783, + -0.033347513526678085, + -0.044419534504413605, + -0.11861996352672577, + 0.1733040064573288, + 0.07114322483539581, + 0.00046034157276153564, + -0.06837894022464752, + -0.08171238005161285, + 0.11344584077596664, + 0.008522684685885906, + -0.11059318482875824, + -0.040410589426755905, + 0.07804276794195175, + 0.16771946847438812, + -0.00998427253216505, + -0.012965536676347256, + 0.007841771468520164, + 0.13953067362308502, + 0.046284958720207214, + 0.08596092462539673, + 0.061943650245666504, + 0.1144830510020256, + 0.023485522717237473, + 0.02887917123734951, + 0.06789934635162354, + 0.06649571657180786, + 0.012322461232542992, + -0.008861749432981014, + 0.026057785376906395, + -0.0032019380014389753, + -0.022234968841075897, + 0.03055218979716301, + -0.016919052228331566, + -0.027719389647245407, + -0.006482791155576706, + 0.004953575320541859, + -0.00019641872495412827, + 0.02074054628610611, + -0.0189328882843256, + 0.061738744378089905, + -0.0003138644096907228, + -0.007053555455058813, + 0.06543485820293427, + 0.03294426202774048, + -0.007979125715792179, + 0.05275658890604973, + -0.047497041523456573, + -0.10310500860214233, + 0.008370448835194111, + 0.012577819637954235, + 0.032337382435798645, + 0.07281038165092468, + 0.025696445256471634, + -0.02632003091275692, + 0.11227305978536606, + 0.04462633281946182, + -0.0026685483753681183, + 0.029009569436311722, + -0.10383844375610352, + 0.11793702840805054, + 0.06773589551448822, + 0.0013511746656149626, + 0.04369799420237541, + -0.035197317600250244, + 0.0898575484752655, + 0.07476542890071869, + -0.14476880431175232, + -0.06473158299922943, + 0.04074136167764664, + 0.011845901608467102, + -0.010365951806306839, + 0.1114029511809349, + 0.0005197376012802124, + 0.01257854700088501, + 0.10317005217075348, + -0.09022516012191772, + -0.05977262184023857, + -0.027801748365163803, + 0.05695301294326782, + -0.06449718028306961, + 0.03565460443496704, + 0.03788425028324127, + -0.017154905945062637, + -0.019174739718437195, + 0.06904801726341248, + -0.007908841595053673, + 0.01101063471287489, + 0.034281887114048004, + -0.0528271421790123, + 0.047352395951747894, + -0.04941331595182419, + 0.008191721513867378, + 0.0674145519733429, + 0.04438894987106323, + 0.05146746337413788, + -0.006602135952562094, + -0.030637752264738083, + -0.1019003689289093, + -0.0015331199392676353, + 0.05343484878540039, + 0.06839784979820251, + -0.015266354195773602, + -0.03592716157436371, + -0.047860078513622284, + -0.07134748995304108, + 0.03448622301220894, + -0.006113764829933643, + 0.09391947835683823, + -0.010928637348115444, + -0.021680442616343498, + 0.09492798149585724, + -0.010043883696198463, + -0.004402143880724907, + -0.03908437117934227, + -0.03171183168888092, + 0.029661845415830612, + 0.034044280648231506, + -0.07901380956172943, + -0.06244722008705139, + 0.018996838480234146, + 0.015304110944271088, + -0.029031287878751755, + 0.007591585628688335, + 0.022095542401075363, + 0.01805446296930313, + 0.028784144669771194, + -0.059311896562576294, + 0.013762134127318859, + -0.10258348286151886, + -0.04074089229106903, + -0.0035348222590982914, + -0.018314126878976822, + -0.02378804050385952, + 0.08394932746887207, + 0.01932479813694954, + 0.02460772916674614, + 0.015703296288847923, + -0.08019258081912994, + -0.05558403581380844, + 0.0718565583229065, + 0.07005901634693146, + 0.022349661216139793, + 0.06703704595565796, + 0.06528645753860474, + -0.021125029772520065, + 0.03852381184697151, + 0.05289817973971367, + 0.10172756761312485, + -0.022602692246437073, + -0.011527790687978268, + -0.07194548845291138, + 0.08536722511053085, + 0.06805568933486938, + -0.10020886361598969, + -0.07833231985569, + -0.026089251041412354, + -0.06174907088279724, + 0.044399045407772064, + -0.04184674471616745, + 0.0021067787893116474, + 0.026352612301707268, + -0.026897024363279343, + -0.11908938735723495, + -0.0906689390540123, + 0.08755158632993698, + -0.08036810159683228, + -0.031581226736307144, + -0.06086207926273346, + 0.04355759546160698, + 0.09889324009418488, + 0.03754740208387375, + -0.02637976035475731, + 0.005788288079202175, + 0.05877317488193512, + -0.07560603320598602, + -0.024257352575659752, + 0.042853742837905884, + 0.0026402100920677185, + -0.10282234847545624, + 0.00972248986363411, + -0.07420995086431503, + 0.06533047556877136, + -0.06502285599708557, + 0.15314491093158722, + -0.012376468628644943, + -0.05757790058851242, + -0.07536821812391281, + 0.04355122894048691, + -0.024933792650699615, + 0.03695180267095566, + 0.042136382311582565, + 0.05257222056388855, + 0.029036542400717735, + -0.06018456071615219, + 0.13721179962158203, + 0.030541544780135155, + -0.031840644776821136, + -0.06002620980143547, + -0.02252354845404625, + -0.032839205116033554, + 0.03107338957488537, + 0.007079975213855505, + -0.0801437497138977, + -0.01041292492300272, + 0.024479543790221214, + -0.02416488528251648, + 0.061183638870716095, + 0.13520441949367523, + 0.06480760872364044, + -0.09626524150371552 + ] + }, + "p244_035.wav": { + "name": "p244", + "embedding": [ + 0.047512274235486984, + 0.08609914034605026, + -0.046957552433013916, + 0.027574673295021057, + -0.03924497961997986, + 0.03821911662817001, + -0.13186554610729218, + 0.10746931284666061, + -0.027431121096014977, + 0.12437397241592407, + -0.04287900775671005, + 0.11486640572547913, + -0.015343727543950081, + -0.1584114283323288, + -0.025371000170707703, + 0.04812903702259064, + -0.021808108314871788, + -0.027373217046260834, + -0.007206720300018787, + -0.021419469267129898, + 0.06363151967525482, + 0.04318461939692497, + 0.036855049431324005, + -0.022972911596298218, + -0.002549968659877777, + 0.06865663826465607, + 0.00332033634185791, + 0.019372913986444473, + 0.004853181075304747, + -0.03148690611124039, + -0.018673807382583618, + 0.08538803458213806, + -0.02187051624059677, + 0.007954302243888378, + 0.0301038920879364, + 0.008952243253588676, + -0.02129673957824707, + -0.05781055614352226, + -0.007296671159565449, + 0.015679871663451195, + -0.03887028619647026, + 0.06691883504390717, + 0.01664990559220314, + -0.03335646912455559, + 0.05290444940328598, + -0.053276486694812775, + -0.037761978805065155, + -0.019499806687235832, + -0.0798143744468689, + 0.14589202404022217, + 0.09664269536733627, + 0.027677249163389206, + -0.06830545514822006, + -0.03380965813994408, + 0.09383022040128708, + 0.018186433240771294, + -0.0948326587677002, + -0.0416414812207222, + 0.04243795573711395, + 0.14704479277133942, + 0.005419223569333553, + -0.02080828696489334, + 0.041589777916669846, + 0.10111330449581146, + 0.021087510511279106, + 0.06361795216798782, + 0.10026641935110092, + 0.07566763460636139, + -0.00036413720226846635, + 0.013197584077715874, + 0.02729940041899681, + 0.09100913256406784, + 0.014969943091273308, + -0.031735554337501526, + 0.017868466675281525, + -0.025481805205345154, + -0.03786304593086243, + -0.011180998757481575, + -0.008563697338104248, + -0.045560143887996674, + -0.030515586957335472, + -0.009088415652513504, + -0.0014375986065715551, + 0.02741953730583191, + -0.033017996698617935, + 0.017747124657034874, + 0.03437551483511925, + -0.040561579167842865, + 0.04603039473295212, + 0.045318882912397385, + 0.015366427600383759, + 0.022925768047571182, + -0.05694061145186424, + -0.08957916498184204, + 0.02947296015918255, + 0.02426670305430889, + 0.01292937807738781, + 0.08937977254390717, + 0.031166646629571915, + 0.00403913389891386, + 0.09304189682006836, + 0.038550134748220444, + -0.01802215538918972, + -0.009072205051779747, + -0.07091206312179565, + 0.1043706089258194, + 0.09936642646789551, + -0.0253828726708889, + 0.053714536130428314, + -0.05511198565363884, + 0.03667735308408737, + 0.04630982503294945, + -0.1055835410952568, + -0.05516941472887993, + 0.034832291305065155, + 0.03261159360408783, + 0.025443535298109055, + 0.11465909332036972, + 0.03726130723953247, + 0.030363252386450768, + 0.09185874462127686, + -0.08185656368732452, + -0.09117460250854492, + -0.06671448051929474, + 0.0653037577867508, + -0.07601243257522583, + 0.08106499910354614, + 0.05676394701004028, + -0.0019281134009361267, + -0.0022406044881790876, + 0.047236502170562744, + -0.0026236686389893293, + 0.02866353653371334, + -0.005930222570896149, + -0.03171057999134064, + 0.02295582741498947, + -0.059072356671094894, + 0.010003656148910522, + 0.03996270149946213, + 0.0051517183892428875, + 0.05573644861578941, + 0.0027772970497608185, + -0.0032236739061772823, + -0.10150401294231415, + 0.008834552951157093, + 0.05883560702204704, + 0.045625656843185425, + -0.027181189507246017, + -0.054899148643016815, + -0.01451468002051115, + -0.06837444007396698, + 0.002241502283141017, + -0.045617520809173584, + 0.07822269201278687, + -0.0005640421877615154, + 0.02417202852666378, + 0.07696916162967682, + 0.000522322952747345, + -0.005944509990513325, + -0.03242078423500061, + -0.013525960966944695, + 0.013982011005282402, + 0.03526326268911362, + -0.09811844676733017, + -0.07592052221298218, + -0.033725377172231674, + 0.014820109121501446, + -0.015350266359746456, + 0.02785833738744259, + 0.05280764028429985, + 0.004163810517638922, + 0.02141760103404522, + -0.07109146565198898, + 0.02428961917757988, + -0.09811060130596161, + -0.05941072106361389, + -0.027518145740032196, + -0.02331431210041046, + -0.0032530315220355988, + 0.08884786814451218, + 0.02086341381072998, + 0.028346367180347443, + -0.027570350095629692, + -0.057705070823431015, + -0.07781679183244705, + 0.05320239067077637, + 0.06403405964374542, + -0.0035114018246531487, + 0.03885791823267937, + 0.04390726983547211, + -0.02458917163312435, + 0.022658567875623703, + 0.036476388573646545, + 0.08441587537527084, + -0.046668022871017456, + -0.006689698901027441, + -0.07432778179645538, + 0.05822507664561272, + 0.11375582218170166, + -0.08773978054523468, + -0.07553941011428833, + -0.0564013347029686, + -0.07821381092071533, + 0.020092494785785675, + -0.04410077631473541, + 0.000687162100803107, + 0.027942299842834473, + -0.03650069236755371, + -0.12579014897346497, + -0.10675406455993652, + 0.0777093842625618, + -0.03278997540473938, + -0.006179330870509148, + -0.06986880302429199, + 0.0446537584066391, + 0.07444396615028381, + 0.02134857140481472, + -0.05210947245359421, + -0.0038992948830127716, + 0.020999623462557793, + -0.03290301188826561, + 0.004802831914275885, + 0.03310735523700714, + 0.052572257816791534, + -0.10819780826568604, + -0.0009580999612808228, + -0.06278321146965027, + 0.06290467083454132, + -0.07500292360782623, + 0.11263549327850342, + 0.007468120660632849, + -0.056552112102508545, + -0.0906960591673851, + 0.04758359119296074, + 0.021654268726706505, + 0.03939587622880936, + 0.01717129349708557, + 0.050779130309820175, + 0.00842757523059845, + -0.09632016718387604, + 0.08334605395793915, + 0.051021527498960495, + 0.0013994028558954597, + -0.08277277648448944, + -0.005998106673359871, + -0.020790688693523407, + 0.0514594130218029, + -0.0009228637209162116, + -0.06089923903346062, + -0.006041245069354773, + 0.005709233693778515, + 0.013314230367541313, + 0.06248827278614044, + 0.11817269772291183, + 0.03676634654402733, + -0.10958908498287201 + ] + }, + "p244_226.wav": { + "name": "p244", + "embedding": [ + 0.017812533304095268, + 0.09059041738510132, + -0.03313907980918884, + 0.04103659838438034, + -0.07077332586050034, + 0.0858350545167923, + -0.09737630188465118, + 0.08155152946710587, + -0.08273117989301682, + 0.12696227431297302, + -0.06535467505455017, + 0.07652875781059265, + -0.054977089166641235, + -0.1634788066148758, + -0.019013606011867523, + 0.06683763116598129, + -0.05668655410408974, + -0.02705809473991394, + -0.08173489570617676, + -0.014207035303115845, + 0.021991947665810585, + -0.0008913557976484299, + 0.0338105782866478, + -0.043577641248703, + 0.01690848171710968, + 0.061247799545526505, + -0.007964516058564186, + 0.014899916015565395, + -0.0015098992735147476, + -0.030810566619038582, + -0.041758790612220764, + 0.11071734130382538, + -0.048800788819789886, + -0.02021772228181362, + 0.03633880615234375, + 0.007430911995470524, + -0.021571576595306396, + -0.06781338155269623, + 0.023993993178009987, + -0.013845808804035187, + -0.04508243501186371, + 0.06458313018083572, + 0.01562678813934326, + -0.007549887988716364, + 0.03832894191145897, + -0.032098378986120224, + -0.04359281063079834, + -0.021026315167546272, + -0.09502652287483215, + 0.14071117341518402, + 0.0716174989938736, + -0.014656499028205872, + -0.07088983803987503, + -0.06469035148620605, + 0.1039232462644577, + 0.021482126787304878, + -0.12525664269924164, + -0.08519650995731354, + 0.07195033133029938, + 0.14371412992477417, + -0.0143812270835042, + 0.0027439752593636513, + -0.0018545370548963547, + 0.08409930765628815, + 0.032359957695007324, + 0.12321692705154419, + 0.050845690071582794, + 0.08650851249694824, + 0.01957816071808338, + 0.042425885796546936, + 0.07798807322978973, + 0.025242211297154427, + 0.017986726015806198, + -0.027062153443694115, + 0.05001316964626312, + -0.041238922625780106, + -0.021431762725114822, + 0.02151731587946415, + -0.011262292042374611, + -0.05123452469706535, + -0.007807143963873386, + -0.02646128460764885, + 0.015259671956300735, + -0.0050367871299386024, + -0.018694862723350525, + 0.03231633082032204, + 0.049393001943826675, + -0.009402278810739517, + 0.08503606170415878, + 0.05327557027339935, + -0.020933054387569427, + 0.0507267564535141, + -0.05928286910057068, + -0.07814568281173706, + 0.0231265090405941, + 0.010647416114807129, + -0.006972522474825382, + 0.054435472935438156, + 0.020305711776018143, + -0.020595472306013107, + 0.07533472031354904, + 0.062298484146595, + 0.0049236612394452095, + 0.038266535848379135, + -0.09032192826271057, + 0.13072529435157776, + 0.08264055848121643, + -0.0016047056997194886, + 0.01971760205924511, + -0.002422597259283066, + 0.06372210383415222, + 0.08181428164243698, + -0.11387448012828827, + -0.06097695976495743, + 0.0058185202069580555, + -0.03437022492289543, + -0.026582656428217888, + 0.10046318173408508, + 0.010077845305204391, + -0.01973363757133484, + 0.12020901590585709, + -0.09582118690013885, + -0.07433643937110901, + -0.017314458265900612, + 0.02952229604125023, + -0.06504113972187042, + 0.019193297252058983, + 0.07229027152061462, + -0.014313793741166592, + 0.006998042576014996, + 0.07392776757478714, + -0.00953326653689146, + 0.013012412935495377, + 0.05263940244913101, + -0.0539824441075325, + 0.05201076343655586, + -0.029374677687883377, + -0.008439918048679829, + 0.07707489281892776, + 0.03963133692741394, + 0.06181463971734047, + -0.03984887897968292, + 0.023428667336702347, + -0.07353004068136215, + 0.007975846529006958, + 0.06959986686706543, + 0.034159399569034576, + -0.020396485924720764, + 0.02756473794579506, + -0.03465186804533005, + -0.09888540208339691, + 0.03113856539130211, + -0.03112836368381977, + 0.10586914420127869, + -0.016313310712575912, + -0.010148300789296627, + 0.10745478421449661, + 0.02456034906208515, + 0.0011929835891351104, + -0.08267434686422348, + -0.036593787372112274, + 0.06966713070869446, + 0.05008133500814438, + -0.09171774238348007, + -0.046621330082416534, + -0.003816711250692606, + 0.03263888135552406, + -0.019197531044483185, + 0.024892134591937065, + 0.07395240664482117, + 0.01321241445839405, + 0.022703152149915695, + -0.06322157382965088, + 0.06555382907390594, + -0.06085039675235748, + -0.014930887147784233, + -0.01683466136455536, + -0.07916229963302612, + -0.021217316389083862, + 0.08617821335792542, + 0.009829986840486526, + -0.009620287455618382, + -0.014620725065469742, + -0.08855455368757248, + -0.05156542360782623, + 0.06566715985536575, + 0.06902584433555603, + -0.0161186084151268, + 0.05520292744040489, + 0.051071230322122574, + -0.02909225970506668, + 0.007875243201851845, + 0.06917604058980942, + 0.10452248156070709, + -0.03878478333353996, + -0.0131932832300663, + -0.09000295400619507, + 0.06527124345302582, + 0.08763380348682404, + -0.10467067360877991, + -0.0676594004034996, + -0.04176659137010574, + -0.031584903597831726, + 0.05053078010678291, + -0.06521078944206238, + -0.02410782314836979, + 0.05019301921129227, + -0.03197476267814636, + -0.09199391305446625, + -0.11977519094944, + 0.12044841796159744, + -0.052169881761074066, + -0.01880607008934021, + -0.07795597612857819, + 0.02965570241212845, + 0.02910565584897995, + 0.028086815029382706, + -0.06644060462713242, + 0.03515669330954552, + 0.046732522547245026, + -0.05202682316303253, + 0.02212521620094776, + 0.04053444415330887, + 0.0047126454301178455, + -0.08312739431858063, + 0.0004059639759361744, + -0.09185010194778442, + 0.0974762812256813, + -0.04912235960364342, + 0.16276174783706665, + -0.021926935762166977, + -0.015017393045127392, + -0.08026532828807831, + 0.0661572590470314, + -0.016571369022130966, + 0.043669480830430984, + 0.0596039779484272, + 0.0794236809015274, + 0.02443462237715721, + -0.04566018655896187, + 0.11101384460926056, + -0.003603626973927021, + -0.005719837266951799, + -0.0508153960108757, + 0.014219369739294052, + -0.07715022563934326, + 0.02015441283583641, + -0.016168801113963127, + -0.102598175406456, + 0.022079816088080406, + 0.03219984471797943, + -0.011841347441077232, + 0.07455947995185852, + 0.11495341360569, + 0.08404475450515747, + -0.0624585822224617 + ] + }, + "p244_299.wav": { + "name": "p244", + "embedding": [ + 0.06525465846061707, + 0.10495209693908691, + 0.03223846107721329, + 0.016825005412101746, + -0.022490717470645905, + 0.0565137080848217, + -0.09467238932847977, + 0.09756150096654892, + -0.04944169148802757, + 0.1523725688457489, + -0.11396205425262451, + 0.10953082144260406, + -0.03651455044746399, + -0.1839219629764557, + -0.08920477330684662, + 0.04318549856543541, + -0.1008606106042862, + 0.0006701675010845065, + -0.06478724628686905, + -0.025530997663736343, + 0.0459497906267643, + 0.054662637412548065, + 0.07263357192277908, + -0.0009710810845717788, + 0.04059436917304993, + 0.07352381944656372, + 0.019158611074090004, + 0.07684890180826187, + 0.04121684283018112, + -0.10462955385446548, + -0.028435807675123215, + 0.12060249596834183, + -0.021402571350336075, + 0.029443880543112755, + 0.02644909732043743, + 0.012790137901902199, + 0.03859560564160347, + -0.03909823298454285, + -0.02449653670191765, + 0.023418409749865532, + -0.022774219512939453, + 0.06648801267147064, + -0.0018441944848746061, + -0.003679991699755192, + 0.03021998703479767, + 0.0245768204331398, + -0.03373754769563675, + -0.04800606891512871, + -0.10045932978391647, + 0.17561951279640198, + 0.06669551879167557, + 0.022984713315963745, + -0.07473025470972061, + -0.0914839655160904, + 0.1033722385764122, + -0.04138606786727905, + -0.1324692666530609, + -0.015400592237710953, + 0.07188437879085541, + 0.1745031625032425, + -0.02837865985929966, + -0.04367165267467499, + 0.029865633696317673, + 0.1106882244348526, + 0.022444233298301697, + 0.085270456969738, + 0.0994037613272667, + 0.05433196946978569, + 0.009999201633036137, + 0.046106431633234024, + 0.0537010096013546, + 0.07132069766521454, + 0.07379911839962006, + -0.026058921590447426, + 0.024111108854413033, + -0.011033689603209496, + -0.020490849390625954, + 0.007766140624880791, + -0.014132874086499214, + 0.0008325775270350277, + -0.012159896083176136, + -0.004228881560266018, + -0.007673243060708046, + -0.030775906518101692, + -0.03162151202559471, + 0.050704240798950195, + -0.02407735399901867, + -0.01223254669457674, + 0.07154654711484909, + 0.057108353823423386, + 0.02514728531241417, + 0.03744937852025032, + -0.03559383004903793, + -0.10221049189567566, + 0.004771812818944454, + 0.006398889701813459, + 0.021163037046790123, + 0.05676198750734329, + 0.05728333070874214, + -0.03295552730560303, + 0.1011909544467926, + 0.057710736989974976, + 0.003964595962315798, + 0.0016684905858710408, + -0.12661729753017426, + 0.09040845185518265, + 0.12222171574831009, + -0.017466116696596146, + 0.03753943368792534, + 0.010324040427803993, + 0.09317605942487717, + 0.10224784910678864, + -0.14613954722881317, + -0.07852289080619812, + -0.01632460206747055, + -0.021364035084843636, + 0.024501658976078033, + 0.046979501843452454, + -0.04010120779275894, + 0.010432679206132889, + 0.09373456984758377, + -0.06838951259851456, + -0.03329191729426384, + -0.04200923815369606, + 0.03089362382888794, + -0.10082848370075226, + 0.04401632770895958, + 0.03614797443151474, + -0.0037154927849769592, + -0.025383666157722473, + 0.08150732517242432, + -0.024260053411126137, + -0.009058866649866104, + -0.0022542846854776144, + -0.06266731023788452, + 0.00518936850130558, + -0.06299592554569244, + 0.00224533979780972, + 0.07850766181945801, + 0.047631315886974335, + 0.030845433473587036, + 0.019286898896098137, + -0.057110559195280075, + -0.08896134048700333, + 0.018198121339082718, + 0.04260723292827606, + 0.008305331692099571, + -0.007923095487058163, + -0.01071025338023901, + -0.03632080554962158, + -0.04154243320226669, + 0.08141613006591797, + -0.0034014841075986624, + 0.07047772407531738, + 0.0032769411336630583, + -0.013654384762048721, + 0.12524522840976715, + -0.009069817140698433, + -0.012858973816037178, + -0.050339873880147934, + -0.012125964276492596, + 0.031177598983049393, + 0.028574947267770767, + -0.0954546183347702, + -0.06267496198415756, + 0.020996076986193657, + 0.009550933726131916, + -0.004062483552843332, + 0.04714687168598175, + 0.06491273641586304, + -0.01572195254266262, + 0.02811150625348091, + -0.040634118020534515, + 0.016217274591326714, + -0.10074228048324585, + -0.07388980686664581, + -0.005860468838363886, + -0.0651792660355568, + -0.002756331115961075, + 0.07921024411916733, + 0.012623680755496025, + -0.006509409751743078, + -0.01404818519949913, + -0.11291965842247009, + -0.06609392911195755, + 0.0731973797082901, + 0.09069140255451202, + 0.043645575642585754, + 0.05095747858285904, + 0.053662076592445374, + -0.026429863646626472, + 0.11103732138872147, + 0.05484195426106453, + 0.13079118728637695, + -0.032712168991565704, + 0.02296675741672516, + -0.06567157804965973, + 0.04224824532866478, + 0.05530143901705742, + -0.08168598264455795, + -0.10931160300970078, + -0.044377122074365616, + -0.0723477303981781, + 0.08402661234140396, + 0.014698334969580173, + 0.009212006814777851, + 0.05181252956390381, + -0.015379744581878185, + -0.07406057417392731, + -0.0743553563952446, + 0.11936365813016891, + -0.026120983064174652, + -0.050299275666475296, + -0.06002526730298996, + 0.049183186143636703, + 0.05959730222821236, + 0.026089487597346306, + -0.0026231701485812664, + 0.04825114831328392, + 0.030927781015634537, + -0.08415275067090988, + -0.05903004854917526, + 0.02372831664979458, + -0.024885375052690506, + -0.0731138363480568, + 0.00032999555696733296, + -0.11139626055955887, + 0.07734385877847672, + -0.06374754756689072, + 0.13184620440006256, + -0.04206470027565956, + -0.06348712742328644, + -0.07138999551534653, + 0.06452766060829163, + -0.05767722800374031, + 0.06281332671642303, + 0.08663783222436905, + 0.05028331279754639, + 0.023744475096464157, + -0.09078331291675568, + 0.09316637367010117, + 0.021749479696154594, + -0.042131755501031876, + -0.07219576835632324, + -0.03430481627583504, + -0.0368807390332222, + -0.003160016844049096, + -0.015943780541419983, + -0.06629819422960281, + 0.01755841262638569, + 0.0013367170467972755, + -0.025492778047919273, + 0.05650454759597778, + 0.10607189685106277, + 0.03448333963751793, + -0.08789954334497452 + ] + }, + "p244_344.wav": { + "name": "p244", + "embedding": [ + 0.05785099416971207, + 0.1109224408864975, + -0.007159736007452011, + 0.008349551819264889, + -0.0435284748673439, + 0.08217641711235046, + -0.13609643280506134, + 0.1284220814704895, + -0.05251353979110718, + 0.14806871116161346, + -0.08109495043754578, + 0.09958012402057648, + -0.014049846678972244, + -0.1978411078453064, + -0.035785600543022156, + 0.051955997943878174, + -0.04597517102956772, + -0.0016738830599933863, + -0.04772093892097473, + -0.010143155232071877, + 0.028294147923588753, + 0.02395155280828476, + 0.00914748478680849, + -0.02986595779657364, + 0.04369159787893295, + 0.05366864055395126, + -0.005277041345834732, + 0.030500197783112526, + -0.005059400107711554, + -0.04588552936911583, + -0.0467258058488369, + 0.13302773237228394, + -0.047579213976860046, + 0.026921693235635757, + 0.08929920196533203, + 0.0012285778066143394, + -0.017531603574752808, + -0.06672068685293198, + -0.010465852916240692, + 0.006913275923579931, + -0.03499038890004158, + 0.07198087126016617, + 0.04544607177376747, + 0.007247472647577524, + 0.04198122397065163, + 0.04771246761083603, + 0.010499674826860428, + -0.06133449077606201, + -0.06975804269313812, + 0.16359329223632812, + 0.04251303896307945, + -0.010465221479535103, + -0.07099996507167816, + -0.07582181692123413, + 0.09738533198833466, + -0.00836309976875782, + -0.11989572644233704, + -0.03652895241975784, + 0.09124121814966202, + 0.1507948487997055, + -0.03502993285655975, + -0.04249962419271469, + -0.0014890988823026419, + 0.11999700963497162, + 0.010711725801229477, + 0.11983908712863922, + 0.05363166332244873, + 0.10856938362121582, + 0.006699001416563988, + 0.04155507683753967, + 0.06656653434038162, + 0.047099314630031586, + 0.052688296884298325, + -0.047392070293426514, + 0.036343201994895935, + -0.005509236361831427, + -0.037099990993738174, + 0.015293164178729057, + -0.03229137510061264, + -0.002235549734905362, + -0.011757569387555122, + 0.0027793976478278637, + 0.019965749233961105, + 0.00708624254912138, + -0.017573408782482147, + 0.032505013048648834, + 0.040242984890937805, + -0.007144433446228504, + 0.07299722731113434, + 0.06345395743846893, + 0.007595045492053032, + 0.05285285413265228, + -0.08416520059108734, + -0.11388155817985535, + 0.04209868982434273, + -0.0005669667152687907, + 0.0016788875218480825, + 0.07130926847457886, + 0.04701681062579155, + -0.017556920647621155, + 0.09558342397212982, + 0.050410110503435135, + -0.0016123120440170169, + 0.03228164091706276, + -0.1072370707988739, + 0.1308879256248474, + 0.08197914063930511, + -0.013330936431884766, + 0.0350673533976078, + -0.06423955410718918, + 0.09303425252437592, + 0.09237924218177795, + -0.16140779852867126, + -0.07283392548561096, + 0.03918175399303436, + -0.008261866867542267, + -0.013359136879444122, + 0.11424532532691956, + -0.02375209704041481, + -0.005212510470300913, + 0.09676734358072281, + -0.09837020933628082, + -0.060571637004613876, + -0.03379792720079422, + 0.025965919718146324, + -0.09258256107568741, + 0.04301176220178604, + 0.044763460755348206, + -0.014842348173260689, + -0.002080074045807123, + 0.08291754871606827, + -0.0008366527035832405, + -0.002387942746281624, + 0.004649616777896881, + -0.019002005457878113, + 0.04031208157539368, + -0.023888621479272842, + 0.022209666669368744, + 0.0252758227288723, + 0.046621281653642654, + 0.03824624419212341, + 0.00593279954046011, + -0.028868485242128372, + -0.08815938234329224, + 0.003064821008592844, + 0.04442959278821945, + 0.06529945135116577, + -0.02092544361948967, + -0.002192132640630007, + -0.028183037415146828, + -0.08209900557994843, + 0.03580604866147041, + -0.026423681527376175, + 0.0711858868598938, + 0.02154758758842945, + -0.004989531822502613, + 0.12286464124917984, + 0.03290189057588577, + -0.005588519386947155, + -0.07340742647647858, + -0.026646949350833893, + 0.029122980311512947, + 0.05568907409906387, + -0.11040371656417847, + -0.06192261725664139, + 0.0011645122431218624, + -0.016356736421585083, + -0.025905780494213104, + 0.02242409810423851, + 0.04045805335044861, + 0.02268514223396778, + 0.05503729358315468, + -0.07334285229444504, + 0.0019255736842751503, + -0.13436110317707062, + -0.05416038632392883, + -0.025928620249032974, + -0.039887990802526474, + -0.010550256818532944, + 0.09001092612743378, + -0.0047018942423164845, + 0.01399797573685646, + -0.02610042691230774, + -0.05919145047664642, + -0.046540625393390656, + 0.08017183840274811, + 0.08122405409812927, + 0.0015265726251527667, + 0.03560664504766464, + 0.026534922420978546, + -0.023910829797387123, + 0.040683895349502563, + 0.07533729076385498, + 0.11010071635246277, + -0.022893184795975685, + 0.03910081833600998, + -0.07094786316156387, + 0.11056504398584366, + 0.07315543293952942, + -0.09186962246894836, + -0.11349812895059586, + -0.015909504145383835, + -0.037440814077854156, + 0.027942873537540436, + -0.0347382128238678, + -0.009762267582118511, + 0.004904330708086491, + -0.018296372145414352, + -0.0684630423784256, + -0.08263783156871796, + 0.0775475949048996, + -0.05198180675506592, + -0.013393385335803032, + -0.08564633131027222, + 0.061585888266563416, + 0.08239369839429855, + 0.040338799357414246, + -0.05126342922449112, + 0.005704818293452263, + 0.06052856519818306, + -0.060382381081581116, + -0.01515639666467905, + 0.016332531347870827, + 0.01277819462120533, + -0.08798089623451233, + 0.018368098884820938, + -0.04996307194232941, + 0.08702942728996277, + -0.0796576589345932, + 0.16390392184257507, + -0.014727666042745113, + -0.07781647145748138, + -0.05855898559093475, + 0.03564026579260826, + -0.015868691727519035, + 0.01871754601597786, + 0.04221160337328911, + 0.06321880221366882, + 0.021970443427562714, + -0.05272405967116356, + 0.1074758768081665, + 0.005036352202296257, + -0.0061488039791584015, + -0.04770372807979584, + -0.04779090732336044, + -0.04319775104522705, + 0.02141861990094185, + -0.0026098531670868397, + -0.1130748987197876, + 0.007606293074786663, + 0.03627312183380127, + -0.013938918709754944, + 0.052663687616586685, + 0.13975360989570618, + 0.06305785477161407, + -0.12126585841178894 + ] + }, + "p244_360.wav": { + "name": "p244", + "embedding": [ + 0.04818341135978699, + 0.0892372876405716, + -0.023963045328855515, + 0.03353828936815262, + -0.0587724894285202, + 0.04637666046619415, + -0.1390831172466278, + 0.13001206517219543, + -0.028515413403511047, + 0.13336704671382904, + -0.06780992448329926, + 0.12324316054582596, + -0.00434302631765604, + -0.20527401566505432, + -0.03509523347020149, + 0.052356064319610596, + -0.05108198896050453, + -0.04220440983772278, + -0.02751733362674713, + -0.024607710540294647, + 0.05460461974143982, + 0.0598616898059845, + 0.024827798828482628, + -0.0009294659830629826, + 0.0215434767305851, + 0.06283250451087952, + 0.007106424774974585, + 0.04856424406170845, + 0.019958490505814552, + -0.05086905509233475, + -0.04544483870267868, + 0.11000079661607742, + -0.04285122826695442, + 0.010822150856256485, + 0.04023807495832443, + -0.0172361321747303, + 0.004100871738046408, + -0.05445122346282005, + -0.03459722921252251, + 0.019841361790895462, + -0.04251132905483246, + 0.07924088835716248, + 0.049969062209129333, + -0.007279278244823217, + 0.049436770379543304, + 0.02144922874867916, + -0.02620839700102806, + -0.05495361238718033, + -0.10778412222862244, + 0.17434734106063843, + 0.07190129160881042, + 0.004165538586676121, + -0.05924128741025925, + -0.06530208140611649, + 0.1076882928609848, + -0.005999373272061348, + -0.11085349321365356, + -0.033510591834783554, + 0.07840707898139954, + 0.15708011388778687, + -0.020719420164823532, + -0.04222678393125534, + 0.035200491547584534, + 0.12964297831058502, + 0.0483706071972847, + 0.08025745302438736, + 0.07878462970256805, + 0.10153041779994965, + -0.007564951665699482, + 0.014279303140938282, + 0.062808096408844, + 0.08337651193141937, + 0.03345275670289993, + -0.027589987963438034, + 0.032149627804756165, + 0.010095231235027313, + -0.02473561465740204, + -0.0009514203993603587, + -0.01662163808941841, + -0.0019060338381677866, + -0.0013230836484581232, + 0.011667110957205296, + 0.008785568177700043, + 0.02372272126376629, + -0.03692757338285446, + 0.05743300914764404, + 0.034976400434970856, + -0.001934751751832664, + 0.06716115772724152, + 0.034734297543764114, + 0.01959652453660965, + 0.06311195343732834, + -0.07915162295103073, + -0.09368149936199188, + 0.033322520554065704, + 0.011361178010702133, + 0.02762276493012905, + 0.07484801113605499, + 0.04263082146644592, + -0.02613668702542782, + 0.12353827804327011, + 0.04825718328356743, + -0.017903637140989304, + 0.029046356678009033, + -0.09762896597385406, + 0.11958770453929901, + 0.09574230760335922, + -0.016620857641100883, + 0.05462227016687393, + -0.05322267860174179, + 0.08577287197113037, + 0.06266245990991592, + -0.1443309336900711, + -0.07345615327358246, + 0.043604299426078796, + 0.026158498600125313, + -0.012653142213821411, + 0.13935181498527527, + -0.006468495354056358, + 0.03820013999938965, + 0.10803616046905518, + -0.08957557380199432, + -0.059089384973049164, + -0.03278517723083496, + 0.05207153409719467, + -0.09878183901309967, + 0.06484998762607574, + 0.05092233419418335, + -0.021630026400089264, + 0.005786439403891563, + 0.07191776484251022, + -0.019467100501060486, + 0.009732222184538841, + 0.0004570989403873682, + -0.03916069120168686, + 0.034367792308330536, + -0.03271656483411789, + 0.0025011892430484295, + 0.042799726128578186, + 0.02957453764975071, + 0.047085750848054886, + -0.0011959981638938189, + -0.03680147975683212, + -0.13563141226768494, + 0.020480960607528687, + 0.026251450181007385, + 0.07421793043613434, + -0.007241176441311836, + -0.0312972366809845, + -0.04691696912050247, + -0.07139088213443756, + 0.019030258059501648, + -0.01212640292942524, + 0.07105046510696411, + -0.00853114016354084, + -0.0007098466157913208, + 0.0941433310508728, + 0.023770665749907494, + -0.0034995628520846367, + -0.03423214703798294, + -0.043204404413700104, + 0.013585953041911125, + 0.046025656163692474, + -0.08780065178871155, + -0.0678306445479393, + -0.0053627812303602695, + 0.026609428226947784, + -0.019446764141321182, + 0.03454305976629257, + 0.04616714268922806, + 0.023568496108055115, + 0.036026448011398315, + -0.08049984276294708, + 0.02272200398147106, + -0.1157190352678299, + -0.073982372879982, + -0.016189996153116226, + -0.0065652416087687016, + -0.02246159315109253, + 0.08463318645954132, + 0.009956256486475468, + 0.043271202594041824, + -0.019988102838397026, + -0.061487823724746704, + -0.07361534237861633, + 0.06201750785112381, + 0.07731617242097855, + 0.009294477291405201, + 0.05246388912200928, + 0.04720202833414078, + -0.028537709265947342, + 0.05688081309199333, + 0.04749014228582382, + 0.10813334584236145, + -0.01687084697186947, + 0.014279123395681381, + -0.06130410358309746, + 0.09323512017726898, + 0.07583028823137283, + -0.09023593366146088, + -0.08087369054555893, + -0.022342924028635025, + -0.06757941842079163, + 0.04381515085697174, + -0.016919147223234177, + 0.00869122613221407, + 0.02092628926038742, + 0.005649100057780743, + -0.10753688216209412, + -0.08004668354988098, + 0.06542098522186279, + -0.06795226037502289, + -0.015878837555646896, + -0.08632469177246094, + 0.048127323389053345, + 0.1169637143611908, + 0.03337424620985985, + -0.03121248260140419, + -0.026110628619790077, + 0.04236619919538498, + -0.044278666377067566, + 0.004427822306752205, + 0.04517524689435959, + 0.04218100756406784, + -0.10436249524354935, + 0.0029109488241374493, + -0.07495289295911789, + 0.05299672856926918, + -0.059955574572086334, + 0.14652499556541443, + 0.014607176184654236, + -0.0617627277970314, + -0.08570197224617004, + 0.05610182136297226, + -0.011980456300079823, + 0.04974393546581268, + 0.036598946899175644, + 0.053706955164670944, + 0.044027894735336304, + -0.07756789028644562, + 0.10961734503507614, + 0.03991749882698059, + -0.03993002325296402, + -0.06623899191617966, + -0.02951471321284771, + -0.03404852747917175, + 0.038766007870435715, + 0.026224222034215927, + -0.08289890736341476, + -0.029031813144683838, + 0.029849905520677567, + -0.013806086964905262, + 0.06660966575145721, + 0.13615640997886658, + 0.04583241790533066, + -0.12063522636890411 + ] + }, + "p244_090.wav": { + "name": "p244", + "embedding": [ + 0.04064396768808365, + 0.08127425611019135, + 0.0626651868224144, + 0.010515211150050163, + -0.0006475523114204407, + 0.006266243755817413, + -0.06174740567803383, + 0.0465511754155159, + 0.02600579708814621, + 0.0719980001449585, + -0.08814815431833267, + 0.07031863927841187, + -0.05689362809062004, + -0.12588611245155334, + -0.054793424904346466, + 0.0026247650384902954, + -0.08458973467350006, + -0.019523780792951584, + -0.022977255284786224, + -0.027991391718387604, + 0.01419652346521616, + -0.005771474912762642, + 0.07965461164712906, + -0.03457125648856163, + -0.025750059634447098, + 0.059703342616558075, + 0.012465003877878189, + 0.02703074924647808, + 0.03189624100923538, + -0.021269138902425766, + 0.03828392177820206, + 0.016185134649276733, + 0.008575506508350372, + 0.01700453646481037, + 0.030969278886914253, + 0.012255815789103508, + 0.0023500584065914154, + -0.018851539120078087, + -0.03283969312906265, + 0.054762423038482666, + -0.051807552576065063, + 0.054250169545412064, + 0.03277702257037163, + -0.06027974560856819, + 0.06507537513971329, + 0.01832493022084236, + -0.04006722941994667, + 0.010587694123387337, + -0.11249355971813202, + 0.10613133013248444, + 0.02595362439751625, + 0.02173946425318718, + -0.046614184975624084, + 0.001112576574087143, + 0.07961267232894897, + -0.022676020860671997, + -0.10368247330188751, + -0.020038418471813202, + 0.062287941575050354, + 0.05499210208654404, + -0.038513362407684326, + -0.03270542994141579, + -0.03815265744924545, + 0.0267141405493021, + 0.05871954560279846, + 0.028176359832286835, + 0.10708551853895187, + 0.08919653296470642, + -0.004631532821804285, + 0.028754757717251778, + 0.06231595575809479, + 0.01567215472459793, + 0.027146045118570328, + 0.004878790117800236, + 0.015389010310173035, + -0.03102223202586174, + -0.006385800428688526, + -0.004703775513917208, + 0.009810584597289562, + -0.01857198029756546, + 0.018842706456780434, + -0.03814390301704407, + 0.019134651869535446, + 0.011757351458072662, + -0.028971102088689804, + 0.017234614118933678, + 0.02773413062095642, + 0.03158588334918022, + 0.04936652630567551, + 0.0501798540353775, + -0.005821910221129656, + 0.058594685047864914, + -0.02979329042136669, + -0.08756905049085617, + -0.050675250589847565, + -0.03978967294096947, + 0.04243859648704529, + 0.037334974855184555, + 0.03551529347896576, + 0.019609754905104637, + 0.0737939178943634, + 0.02514183335006237, + -0.034302689135074615, + 0.0092157032340765, + -0.08985643833875656, + 0.03873419761657715, + 0.07328743487596512, + -0.012470136396586895, + -0.005603881552815437, + -0.0046141669154167175, + 0.08125514537096024, + 0.06594736129045486, + -0.02226751297712326, + 0.0002889372408390045, + 0.01647973246872425, + 0.03091169334948063, + 0.011780399829149246, + 0.07843362540006638, + -0.02702299878001213, + 0.0038549555465579033, + 0.13695725798606873, + -0.050181373953819275, + 0.005859868600964546, + -0.012817978858947754, + -0.010104721412062645, + -0.03332233428955078, + 0.030030228197574615, + 0.011784368194639683, + -0.00015557464212179184, + -0.004663496743887663, + 0.048312947154045105, + 0.019948840141296387, + -0.01283595897257328, + -0.04992695897817612, + -0.0158180333673954, + 0.06533131003379822, + -0.00957013200968504, + 0.007416803855448961, + 0.07714344561100006, + 0.0678035318851471, + 0.031001625582575798, + 0.045978475362062454, + -0.03039032220840454, + -0.022971563041210175, + 0.0387633852660656, + 0.03797642141580582, + 0.01062517799437046, + -0.0077188946306705475, + -0.054019927978515625, + -0.06872181594371796, + 0.011401109397411346, + 0.0697874128818512, + -0.0304543599486351, + 0.060097914189100266, + 0.01463514007627964, + -0.010936297476291656, + 0.08449341356754303, + -0.010837298817932606, + -0.009675005450844765, + -0.0336470901966095, + -0.08266518265008926, + -0.015317079611122608, + 0.025599392130970955, + -0.15433835983276367, + -0.03613152354955673, + -0.050635382533073425, + 0.01456288993358612, + 0.008349638432264328, + 0.00025600194931030273, + 0.06447562575340271, + -0.023840826004743576, + -0.005452310666441917, + -0.012684334069490433, + 0.009937944822013378, + -0.034454409033060074, + -0.07915346324443817, + 0.00742768682539463, + -0.031095465645194054, + 0.022986911237239838, + 0.05516264960169792, + -0.05528753623366356, + 0.015599982813000679, + -0.024020100012421608, + -0.0912422388792038, + -0.023345571011304855, + 0.07813675701618195, + 0.01678263209760189, + 0.007619466166943312, + 0.05370423197746277, + 0.043600715696811676, + -0.057052865624427795, + 0.056252673268318176, + -0.033938370645046234, + 0.08170104771852493, + -0.07578510046005249, + 0.012209897860884666, + -0.0052476003766059875, + 0.021156426519155502, + 0.07137377560138702, + -0.04816038906574249, + -0.08887307345867157, + -0.03825104236602783, + -0.034095779061317444, + 0.020649783313274384, + -0.021899720653891563, + -0.05128190666437149, + 0.01892632246017456, + -0.01499510370194912, + -0.05113307014107704, + -0.09644712507724762, + 0.017037585377693176, + -0.006728529930114746, + -0.002356880810111761, + -0.0784783661365509, + 0.015572423115372658, + -0.008868716657161713, + 0.021705541759729385, + -0.012285393662750721, + 0.06398647278547287, + -0.00813133642077446, + -0.01981765776872635, + -0.03380812704563141, + 0.010599728673696518, + 0.043498069047927856, + 0.015872284770011902, + -0.06370401382446289, + -0.05483846738934517, + 0.03882104158401489, + 0.003696262836456299, + 0.06969879567623138, + 0.02077825553715229, + 0.0002292674034833908, + 0.028231801465153694, + -6.337091326713562e-05, + -0.037019550800323486, + 0.04078030586242676, + 0.05615423619747162, + 0.01964956894516945, + 0.0013615414500236511, + -0.03153536841273308, + 0.09341824054718018, + 0.03599722683429718, + -0.0029991213232278824, + -0.03623276948928833, + 0.015962064266204834, + -0.06498231738805771, + -0.056303344666957855, + 0.0014917273074388504, + -0.05723215267062187, + 0.017543850466609, + -0.004169324412941933, + 0.018473897129297256, + 0.005040300078690052, + 0.08774666488170624, + 0.03280787914991379, + 0.00721321627497673 + ] + }, + "p244_330.wav": { + "name": "p244", + "embedding": [ + 0.028775177896022797, + 0.0942976251244545, + -0.007552044931799173, + 0.008686493150889874, + -0.050842370837926865, + 0.04642527550458908, + -0.1547546088695526, + 0.14853498339653015, + -0.04556361213326454, + 0.1401551365852356, + -0.07498010993003845, + 0.09947290271520615, + -0.028957396745681763, + -0.20971153676509857, + -0.024361716583371162, + 0.05742349475622177, + -0.049325551837682724, + -0.03760281205177307, + -0.028330618515610695, + -0.036062952131032944, + 0.04246811196208, + 0.05712404474616051, + 0.0010933857411146164, + 0.006788269616663456, + 0.035417355597019196, + 0.060848068445920944, + -0.00593825476244092, + 0.022392529994249344, + -0.002645763335749507, + -0.04228941351175308, + -0.02704721689224243, + 0.10263815522193909, + -0.04541067034006119, + -0.0016553238965570927, + 0.04527520015835762, + -0.012980104424059391, + 0.005061643663793802, + -0.05632397159934044, + -0.035657983273267746, + 0.021175328642129898, + -0.05598392337560654, + 0.07094807922840118, + 0.04540979862213135, + 0.009661754593253136, + 0.048433270305395126, + 0.03346649929881096, + -0.015975601971149445, + -0.0627770870923996, + -0.10571716725826263, + 0.1799689680337906, + 0.06859327852725983, + -0.0010220753028988838, + -0.06429551541805267, + -0.077412910759449, + 0.11247684061527252, + -0.0012093563564121723, + -0.1156325712800026, + -0.03648144379258156, + 0.09239096939563751, + 0.16624177992343903, + -0.019953126087784767, + -0.04572741314768791, + 0.040032509714365005, + 0.1287534534931183, + 0.02503649890422821, + 0.08262725919485092, + 0.06323330104351044, + 0.08655506372451782, + -0.009852055460214615, + 4.258615444996394e-05, + 0.06674792617559433, + 0.05819473788142204, + 0.02464931644499302, + -0.04103938490152359, + 0.022542722523212433, + 0.011651113629341125, + -0.031608715653419495, + -0.0006100579630583525, + -0.017362941056489944, + -0.006360533647239208, + -0.00681935902684927, + 0.019258219748735428, + -0.004623271990567446, + 0.01647677831351757, + -0.02628968469798565, + 0.04284828156232834, + 0.02720942720770836, + 0.0063293566927313805, + 0.08645815402269363, + 0.03611991927027702, + 0.02872610278427601, + 0.06712743639945984, + -0.07143925130367279, + -0.07111746072769165, + 0.028093665838241577, + 0.011730422265827656, + 0.008528018370270729, + 0.07223747670650482, + 0.046128008514642715, + -0.027298910543322563, + 0.13931550085544586, + 0.04103231057524681, + 0.004401904530823231, + 0.025906242430210114, + -0.11898987740278244, + 0.11477471888065338, + 0.07792922109365463, + -0.026407528668642044, + 0.058479174971580505, + -0.04493040218949318, + 0.07228315621614456, + 0.06652665138244629, + -0.152790829539299, + -0.07113491743803024, + 0.03901821747422218, + 0.034688226878643036, + -0.020282993093132973, + 0.15232884883880615, + -0.0008881477988325059, + 0.027568671852350235, + 0.10801813006401062, + -0.0980055034160614, + -0.06507053226232529, + -0.024508953094482422, + 0.060099925845861435, + -0.09166676551103592, + 0.05855695903301239, + 0.07104960829019547, + -0.029177578166127205, + 0.02858414128422737, + 0.06988789141178131, + -0.017563609406352043, + 0.020906032994389534, + -0.016088807955384254, + -0.03398805856704712, + 0.029657838866114616, + -0.036932263523340225, + 0.000521114852745086, + 0.030030759051442146, + 0.042283255606889725, + 0.04619602859020233, + 0.004907483235001564, + -0.05178247392177582, + -0.12175274640321732, + 0.015008042566478252, + 0.01987510174512863, + 0.07778052240610123, + -0.003235435811802745, + -0.020022328943014145, + -0.044971998780965805, + -0.06584125012159348, + -0.004014094825834036, + -0.005116398446261883, + 0.09099182486534119, + -0.011174105107784271, + -0.0026409414131194353, + 0.1033637747168541, + 0.0485977828502655, + -0.004749538376927376, + -0.04129302501678467, + -0.046134140342473984, + -0.001764293061569333, + 0.0420251227915287, + -0.08176632225513458, + -0.06909742951393127, + -0.011056512594223022, + 0.04126637801527977, + -0.003850417211651802, + 0.04995927959680557, + 0.03722752258181572, + 0.024100279435515404, + 0.027754345908761024, + -0.09293355792760849, + 0.03915109857916832, + -0.10830654948949814, + -0.0761324018239975, + -0.006361217238008976, + -0.012022493407130241, + -0.0258127823472023, + 0.09199270606040955, + 0.002167552476748824, + 0.03620534390211105, + -0.017047669738531113, + -0.06860188394784927, + -0.07338572293519974, + 0.055204544216394424, + 0.07647529244422913, + -0.011820715852081776, + 0.04574711248278618, + 0.0529719814658165, + -0.04489642381668091, + 0.053750310093164444, + 0.05419224128127098, + 0.11394426226615906, + -0.022352589294314384, + 0.02878769114613533, + -0.05205736309289932, + 0.08080983906984329, + 0.05842039734125137, + -0.08768323063850403, + -0.07520138472318649, + -0.023953553289175034, + -0.06678587943315506, + 0.04522787407040596, + -0.00245091924443841, + 0.01864619180560112, + 0.0017047241562977433, + -0.0016624588752165437, + -0.09359132498502731, + -0.06657226383686066, + 0.05649025738239288, + -0.05803738534450531, + -0.016047485172748566, + -0.08337128162384033, + 0.05354076251387596, + 0.11559978127479553, + 0.049841102212667465, + -0.015008434653282166, + -0.03896990790963173, + 0.03340882807970047, + -0.038215503096580505, + 0.0042031267657876015, + 0.05201674625277519, + 0.03596038743853569, + -0.09438767284154892, + 0.0034492751583456993, + -0.08936912566423416, + 0.07114681601524353, + -0.053649820387363434, + 0.14778290688991547, + 0.014951919205486774, + -0.06981822103261948, + -0.1001640185713768, + 0.0405099056661129, + -0.010781927965581417, + 0.048182617872953415, + 0.023616915568709373, + 0.06275665014982224, + 0.06097223609685898, + -0.040008544921875, + 0.1036645770072937, + 0.03136811405420303, + -0.03299437835812569, + -0.04510760307312012, + -0.03755544498562813, + -0.03452673926949501, + 0.018769390881061554, + 0.006894656457006931, + -0.0962354764342308, + -0.023216702044010162, + 0.024768684059381485, + 0.002940610283985734, + 0.08153677731752396, + 0.1194208562374115, + 0.04961024224758148, + -0.1429012417793274 + ] + }, + "p244_005.wav": { + "name": "p244", + "embedding": [ + 0.025751689448952675, + 0.09247411042451859, + -0.01481679081916809, + 0.002580709755420685, + -0.047820497304201126, + 0.031276993453502655, + -0.15323218703269958, + 0.13633522391319275, + -0.0312531478703022, + 0.12312326580286026, + -0.05915254354476929, + 0.10241879522800446, + -0.04438268765807152, + -0.16465875506401062, + -0.013169439509510994, + 0.06484699249267578, + -0.02492721937596798, + -0.03713805228471756, + 0.012213650159537792, + -0.02052169106900692, + 0.028823306784033775, + 0.019845543429255486, + 0.010030052624642849, + 0.0174336526542902, + 0.01750507764518261, + 0.07105695456266403, + -0.0018580554751679301, + 0.023838896304368973, + -8.113496005535126e-05, + -0.0011915796203538775, + -0.012518675997853279, + 0.08900490403175354, + -0.039401229470968246, + 0.007327149156481028, + 0.061140816658735275, + 0.0033923436421900988, + -0.008418516255915165, + -0.0373876616358757, + 0.009603055194020271, + -0.0022687034215778112, + -0.05736105516552925, + 0.08183414489030838, + 0.03330230340361595, + -0.003914451692253351, + 0.03413618728518486, + 0.030132634565234184, + -0.00441955029964447, + -0.01882593147456646, + -0.08758299052715302, + 0.13185621798038483, + 0.0608295276761055, + 0.009664368815720081, + -0.06682051718235016, + -0.034202467650175095, + 0.08539756387472153, + -0.013197868131101131, + -0.09733202308416367, + -0.05651670694351196, + 0.07982601225376129, + 0.1298866719007492, + -0.02178170159459114, + -0.041950952261686325, + 0.020245349034667015, + 0.11902689933776855, + 0.029456421732902527, + 0.07493413984775543, + 0.06037766858935356, + 0.10166652500629425, + -0.02030940353870392, + -0.009444179013371468, + 0.053118105977773666, + 0.05621718242764473, + 0.025752825662493706, + -0.015468365512788296, + 0.010053319856524467, + -0.012781363911926746, + -0.008865932933986187, + 0.012631827965378761, + -0.014924371615052223, + -0.03145730495452881, + -0.05392680689692497, + 0.004488821607083082, + -0.023478878661990166, + 0.026279447600245476, + 0.005703621078282595, + 0.03302256390452385, + 0.05726640298962593, + -0.012014302425086498, + 0.08122263103723526, + 0.042374927550554276, + -0.008360168896615505, + 0.04747333750128746, + -0.0784466490149498, + -0.04162577539682388, + 0.02184409275650978, + -0.007953012362122536, + 0.03751415014266968, + 0.06978607922792435, + 0.02579343318939209, + 0.016692832112312317, + 0.1087413802742958, + 0.03914780169725418, + 0.004087178036570549, + 0.007513151969760656, + -0.09907539933919907, + 0.1404232233762741, + 0.06030994653701782, + -0.0458175390958786, + 0.03655023127794266, + -0.032442737370729446, + 0.023660805076360703, + 0.042734142392873764, + -0.10230907052755356, + -0.05554288253188133, + 0.030258584767580032, + 0.044573355466127396, + -0.022863119840621948, + 0.12222959101200104, + 0.004582211375236511, + 0.022670665755867958, + 0.10225160419940948, + -0.07203736156225204, + -0.08265693485736847, + -0.023847756907343864, + 0.035272691398859024, + -0.08250445127487183, + 0.06003674864768982, + 0.07833289355039597, + 0.007364712655544281, + 0.027607271447777748, + 0.08703519403934479, + 0.0236942358314991, + 0.019190281629562378, + -0.005353455897420645, + -0.02498854510486126, + 0.01818469725549221, + -0.02052154950797558, + 0.020734982565045357, + 0.03831108286976814, + 0.028344979509711266, + 0.06835141032934189, + 0.026013633236289024, + -0.014806079678237438, + -0.11593671143054962, + -0.0050568473525345325, + 0.05435812473297119, + 0.06633037328720093, + -0.027806712314486504, + -0.043762363493442535, + -0.02780364826321602, + -0.05236717686057091, + -0.02628963626921177, + 0.0030397993978112936, + 0.08151530474424362, + -0.022789010778069496, + -0.005302906036376953, + 0.09771472215652466, + 0.02625555731356144, + -0.004160396289080381, + -0.06628470122814178, + -0.026820192113518715, + -0.005690340884029865, + 0.039222847670316696, + -0.09614644199609756, + -0.0746803879737854, + -0.0171371977776289, + 0.0507940910756588, + -0.004642564337700605, + 0.05241745337843895, + 0.057788994163274765, + 0.013224628753960133, + 0.015903351828455925, + -0.045140378177165985, + 0.035480767488479614, + -0.0744086354970932, + -0.0786619707942009, + -0.02025953121483326, + -0.004782547242939472, + -0.029815783724188805, + 0.07740012556314468, + 0.006323916371911764, + 0.06174571067094803, + -0.005351876374334097, + -0.06544952839612961, + -0.08191382139921188, + 0.049945052713155746, + 0.05891530588269234, + -0.03241581842303276, + 0.04496927559375763, + 0.04943684861063957, + -0.05588522180914879, + 0.023241456598043442, + 0.04074364900588989, + 0.10572715103626251, + -0.06369687616825104, + 0.019643960520625114, + -0.05950211361050606, + 0.05306880548596382, + 0.07781235128641129, + -0.09480667859315872, + -0.06370726972818375, + -0.03584478050470352, + -0.041032467037439346, + 0.019404901191592216, + -0.032237228006124496, + 0.0116353090852499, + 0.006078171543776989, + -0.025051867589354515, + -0.08602433651685715, + -0.10105009377002716, + 0.04299122467637062, + -0.0635981485247612, + 0.012628167867660522, + -0.06944680958986282, + 0.04417206719517708, + 0.057485032826662064, + 0.033591967076063156, + -0.040401894599199295, + -0.01090376265347004, + 0.02220587246119976, + -0.02587585709989071, + 0.002378108911216259, + 0.05339096859097481, + 0.04920055344700813, + -0.06807062029838562, + -0.015053587034344673, + -0.08359590172767639, + 0.06522922217845917, + -0.04064479470252991, + 0.1401396095752716, + 0.00669890409335494, + -0.051161497831344604, + -0.0719616636633873, + -0.01930060237646103, + -0.01189219206571579, + 0.034772831946611404, + 0.030210062861442566, + 0.057875823229551315, + 0.02430647611618042, + -0.022067708894610405, + 0.11881152540445328, + 0.04928240925073624, + -0.022224219515919685, + -0.060008931905031204, + -0.030271828174591064, + -0.04335605353116989, + 0.03636306896805763, + 0.014109629206359386, + -0.10383329540491104, + -0.01007533073425293, + 0.017167722806334496, + 0.003292742418125272, + 0.07619378715753555, + 0.11934701353311539, + 0.061288367956876755, + -0.11134073883295059 + ] + }, + "p244_338.wav": { + "name": "p244", + "embedding": [ + 0.04102391004562378, + 0.09404051303863525, + -0.013703575357794762, + 0.043323636054992676, + -0.0589664988219738, + 0.0326029509305954, + -0.12760983407497406, + 0.14680981636047363, + -0.02417687140405178, + 0.12538829445838928, + -0.08796220272779465, + 0.11340855807065964, + -0.03165631368756294, + -0.19505028426647186, + -0.02535703033208847, + 0.07253023982048035, + -0.047131799161434174, + -0.04184499382972717, + -0.037942349910736084, + -0.01847253367304802, + 0.038353584706783295, + 0.04341405630111694, + 0.028912773355841637, + 0.03292600065469742, + 0.0030481999274343252, + 0.06400053203105927, + -0.005463878624141216, + 0.04588539898395538, + 0.031159546226263046, + -0.013155660592019558, + -0.03663887083530426, + 0.11392031610012054, + -0.023835692554712296, + 0.009370487183332443, + 0.050447773188352585, + -0.006495075300335884, + -0.004920381121337414, + -0.05598188936710358, + -0.033462539315223694, + -0.007103222422301769, + -0.060744114220142365, + 0.06411627680063248, + 0.03661311790347099, + -0.008307775482535362, + 0.07547600567340851, + 0.020827434957027435, + -0.050890058279037476, + -0.050755392760038376, + -0.11806660145521164, + 0.15462371706962585, + 0.09738489240407944, + -0.0014778965851292014, + -0.06550323963165283, + -0.051741503179073334, + 0.09798663854598999, + -0.019104696810245514, + -0.11481021344661713, + -0.04825432598590851, + 0.0923953503370285, + 0.15434959530830383, + -0.01551961712539196, + -0.020738907158374786, + 0.0250251404941082, + 0.15619820356369019, + 0.05627680569887161, + 0.09270654618740082, + 0.062010325491428375, + 0.11288772523403168, + -0.03001170977950096, + 0.017727412283420563, + 0.07268472015857697, + 0.0596601627767086, + 0.035544008016586304, + -0.012070360593497753, + 0.019215280190110207, + 0.012073686346411705, + -0.017725301906466484, + 0.007525689899921417, + -0.034538932144641876, + -0.007980989292263985, + -0.025446800515055656, + 0.009731393307447433, + -0.016469363123178482, + 0.010556772351264954, + -0.01962146908044815, + 0.06840859353542328, + 0.04780596122145653, + 0.0061414241790771484, + 0.06742027401924133, + 0.04598572850227356, + 0.004867593292146921, + 0.06456311792135239, + -0.06450364738702774, + -0.086041659116745, + 0.009608002379536629, + -0.001914256950840354, + 0.024147581309080124, + 0.06559255719184875, + 0.02723701111972332, + -0.01865668222308159, + 0.1240086778998375, + 0.04605934023857117, + -0.01619747094810009, + 0.04223329573869705, + -0.10692392289638519, + 0.126690074801445, + 0.08142156898975372, + -0.021290220320224762, + 0.040113888680934906, + -0.03608899936079979, + 0.07253705710172653, + 0.07166515290737152, + -0.12288157641887665, + -0.04304562136530876, + 0.029197407886385918, + 0.014444700442254543, + -0.027562733739614487, + 0.11656133830547333, + 0.004667364992201328, + 0.042792391031980515, + 0.11476494371891022, + -0.07899925112724304, + -0.0684492439031601, + -0.02288840524852276, + 0.04763060808181763, + -0.09656398743391037, + 0.053603172302246094, + 0.05281418561935425, + -0.007395615801215172, + 0.010420829057693481, + 0.07941490411758423, + -0.005900798365473747, + 0.00013526731345336884, + 0.014369579032063484, + -0.06391957402229309, + 0.030904870480298996, + -0.03508904576301575, + -0.003078195033594966, + 0.04659448564052582, + 0.040982797741889954, + 0.040698982775211334, + -0.0021367508452385664, + -0.018278196454048157, + -0.10974903404712677, + 0.010570976883172989, + 0.031058212742209435, + 0.08584713935852051, + 0.008872914128005505, + -0.01721477322280407, + -0.04305783659219742, + -0.0623776875436306, + 0.005800226703286171, + -0.02083773724734783, + 0.06063871830701828, + -0.04043854400515556, + -0.013258038088679314, + 0.0933605283498764, + 0.009024466387927532, + 0.003986444789916277, + -0.047592610120773315, + -0.03874823451042175, + 0.011362962424755096, + 0.05025026202201843, + -0.08625790476799011, + -0.07113875448703766, + 0.011010151356458664, + 0.03381587564945221, + -0.025479283183813095, + 0.03287027031183243, + 0.02819760888814926, + 0.010258961468935013, + 0.023746557533740997, + -0.07637040317058563, + 0.029231026768684387, + -0.11355855315923691, + -0.07538261264562607, + -0.007543667685240507, + -0.0021072616800665855, + -0.0033139530569314957, + 0.05932000279426575, + 0.008054036647081375, + 0.039663612842559814, + 0.010288329795002937, + -0.09107789397239685, + -0.09306816756725311, + 0.0720660462975502, + 0.07757392525672913, + 0.007989971898496151, + 0.0750846266746521, + 0.0554271899163723, + -0.05560479313135147, + 0.048159655183553696, + 0.030037513002753258, + 0.11011700332164764, + -0.019759507849812508, + 0.013727596960961819, + -0.08091473579406738, + 0.05746433138847351, + 0.09096956253051758, + -0.11060699820518494, + -0.08227789402008057, + -0.025494307279586792, + -0.050003327429294586, + 0.039126306772232056, + -0.026564180850982666, + -0.003959990106523037, + 0.04524245113134384, + -0.009651796892285347, + -0.11342038959264755, + -0.08504398912191391, + 0.07966822385787964, + -0.07838701456785202, + -0.0018658809131011367, + -0.0688696950674057, + 0.03626197576522827, + 0.0955563336610794, + 0.01767021417617798, + -0.04212246090173721, + -0.017780475318431854, + 0.0479314848780632, + -0.044675808399915695, + -0.010200833901762962, + 0.032487496733665466, + 0.0371989831328392, + -0.11207787692546844, + -0.001362629234790802, + -0.07121067494153976, + 0.06254415214061737, + -0.04630634933710098, + 0.14817757904529572, + 0.017550859600305557, + -0.045733314007520676, + -0.08875660598278046, + 0.03624237701296806, + -0.004451698623597622, + 0.05125384032726288, + 0.029379427433013916, + 0.05633626878261566, + 0.02399054914712906, + -0.06488151848316193, + 0.129984050989151, + 0.03490384668111801, + -0.049936018884181976, + -0.056096404790878296, + -0.015089405700564384, + -0.052996568381786346, + 0.016771573573350906, + 0.02335342764854431, + -0.0932389348745346, + -0.03478509187698364, + 0.012313449755311012, + -0.04063805937767029, + 0.07577440142631531, + 0.13775473833084106, + 0.06095390021800995, + -0.11094637960195541 + ] + }, + "p244_391.wav": { + "name": "p244", + "embedding": [ + 0.04475565627217293, + 0.08445829898118973, + -0.03482842072844505, + 0.028779076412320137, + -0.05144379660487175, + 0.07730261981487274, + -0.1261998862028122, + 0.10576523840427399, + -0.034466277807950974, + 0.14886286854743958, + -0.0728699266910553, + 0.13544268906116486, + -0.005417270120233297, + -0.17050045728683472, + -0.019191410392522812, + 0.04791611060500145, + -0.0217113196849823, + -0.021417034789919853, + -0.04494427144527435, + -0.02324852906167507, + 0.04740201681852341, + 0.04067324101924896, + 0.04741324856877327, + -0.041410841047763824, + 0.031443677842617035, + 0.06916915625333786, + -0.01657356135547161, + 0.03314198926091194, + -0.008323051035404205, + -0.09121359139680862, + -0.06360432505607605, + 0.10366450250148773, + -0.06279800087213516, + 0.006447340361773968, + 0.030507370829582214, + -0.008925455622375011, + 0.010416969656944275, + -0.06755886226892471, + -0.010517291724681854, + 0.014069553464651108, + -0.024344198405742645, + 0.06747173517942429, + -0.009081847034394741, + -0.025300128385424614, + 0.03991752862930298, + 0.0052709029987454414, + -0.014901787042617798, + -0.028051448985934258, + -0.09598222374916077, + 0.15395468473434448, + 0.05070444568991661, + 0.0026327979285269976, + -0.07729495316743851, + -0.07014848291873932, + 0.0927153006196022, + -0.00932000856846571, + -0.09822805225849152, + -0.034471482038497925, + 0.05725415423512459, + 0.14293190836906433, + -0.024730799719691277, + -0.05496111884713173, + 0.049386873841285706, + 0.07950408011674881, + 0.049979060888290405, + 0.07378515601158142, + 0.10072334855794907, + 0.10587462782859802, + -0.016188785433769226, + 0.003911721520125866, + 0.031614284962415695, + 0.09812268614768982, + 0.0813341811299324, + -0.014089087955653667, + 0.040813107043504715, + -0.0020376797765493393, + -0.025137141346931458, + -0.019072165712714195, + -0.05207672342658043, + -0.03556160256266594, + 0.0030249105766415596, + -0.006976144388318062, + 0.024737738072872162, + 0.024147195741534233, + -0.047896239906549454, + 0.0465267039835453, + 0.06678692996501923, + -0.034494489431381226, + 0.06862171739339828, + 0.03676571324467659, + 0.015841543674468994, + 0.05871529132127762, + -0.12004963308572769, + -0.07510169595479965, + 0.0632457286119461, + 0.02912026271224022, + -0.01038141269236803, + 0.07163555920124054, + 0.0556488111615181, + -0.026362119242548943, + 0.11318233609199524, + 0.035304829478263855, + -0.0005532089853659272, + 0.012245634570717812, + -0.08129800111055374, + 0.13182812929153442, + 0.1263558715581894, + -0.04192619025707245, + 0.027076663449406624, + -0.04925129562616348, + 0.057712405920028687, + 0.06085308641195297, + -0.13565240800380707, + -0.09596654772758484, + 0.012001050636172295, + -0.020846327766776085, + -0.003182913176715374, + 0.1101795956492424, + -0.012469641864299774, + 0.044291310012340546, + 0.10889151692390442, + -0.10956189036369324, + -0.058276236057281494, + -0.0070252083241939545, + 0.03585992753505707, + -0.09176762402057648, + 0.06521953642368317, + 0.04517240822315216, + 0.015312273986637592, + -0.00339338555932045, + 0.07249868661165237, + -0.013997214846313, + 0.007416174281388521, + 0.0038231033831834793, + -0.037874698638916016, + 0.008054663427174091, + -0.027380961924791336, + -0.03448547050356865, + 0.0436052642762661, + 0.03516879305243492, + 0.06869257241487503, + -0.029147779569029808, + -0.017612360417842865, + -0.13826081156730652, + 0.024862486869096756, + 0.03652787581086159, + 0.04917508363723755, + -0.01798488013446331, + -0.015032642520964146, + -0.049134574830532074, + -0.07683062553405762, + 0.04029630869626999, + -0.020044395700097084, + 0.07759607583284378, + 0.004628386348485947, + 0.014294054359197617, + 0.11544560641050339, + 0.029482055455446243, + 0.00648410152643919, + -0.031085975468158722, + -0.03396117314696312, + 0.007486049085855484, + 0.043998751789331436, + -0.06972501426935196, + -0.10206920653581619, + -0.029392996802926064, + 0.0035860100761055946, + -0.005114537198096514, + 0.08452353626489639, + 0.07642000168561935, + 0.020112834870815277, + 0.01829945109784603, + -0.060348283499479294, + -0.009538174606859684, + -0.08370153605937958, + -0.0578397698700428, + -0.020565152168273926, + -0.050570763647556305, + -0.030210578814148903, + 0.10048534721136093, + 0.023672735318541527, + 0.03672643378376961, + -0.06911935657262802, + -0.05053436756134033, + -0.09950694441795349, + 0.04814744368195534, + 0.05687841400504112, + -0.009804955683648586, + 0.019170355051755905, + 0.05248704552650452, + -0.0027235078159719706, + 0.05640871077775955, + 0.08356982469558716, + 0.08389993011951447, + -0.02409106120467186, + 0.022876331582665443, + -0.060714107006788254, + 0.12603406608104706, + 0.10261187702417374, + -0.06148110702633858, + -0.0946405827999115, + -0.03647901862859726, + -0.09201876074075699, + 0.04842294007539749, + -0.031402166932821274, + -0.003240474732592702, + 0.05512641742825508, + -0.014015892520546913, + -0.10799790173768997, + -0.09559755772352219, + 0.09522709250450134, + -0.048895835876464844, + -0.017499355599284172, + -0.08222983032464981, + 0.04866539686918259, + 0.07448327541351318, + 0.02879994362592697, + -0.04282752051949501, + 0.0011830126168206334, + 0.05681319534778595, + -0.027522733435034752, + 0.024755720049142838, + 0.055269505828619, + 0.040254633873701096, + -0.10236751288175583, + -0.007689174730330706, + -0.07135006785392761, + 0.04229961708188057, + -0.06378545612096786, + 0.13410131633281708, + 0.0108482139185071, + -0.045616161078214645, + -0.07834893465042114, + 0.07525690644979477, + -0.016149261966347694, + 0.04846128448843956, + 0.030103370547294617, + 0.06719794124364853, + 0.04558586701750755, + -0.10772771388292313, + 0.10215885937213898, + 0.04660838097333908, + -0.03494365140795708, + -0.09867776930332184, + -0.07350967079401016, + -0.036285027861595154, + 0.03467181324958801, + 0.01720988005399704, + -0.08759579807519913, + 0.00595390098169446, + 0.024533240124583244, + 0.02508567087352276, + 0.05026039108633995, + 0.1316027194261551, + 0.05401219055056572, + -0.11442084610462189 + ] + }, + "p244_255.wav": { + "name": "p244", + "embedding": [ + 0.05430874228477478, + 0.09774158895015717, + 0.01347745954990387, + 0.004972044378519058, + -0.012308331206440926, + 0.05372491478919983, + -0.015709009021520615, + 0.0686049535870552, + 0.058810096234083176, + 0.028306618332862854, + -0.08619813621044159, + 0.04947549104690552, + -0.022378897294402122, + -0.09923802316188812, + 0.025608714669942856, + 0.026873666793107986, + -0.018502648919820786, + 0.015591317787766457, + -0.043779533356428146, + -0.026002051308751106, + -0.014537546783685684, + 0.006839936599135399, + 0.03584045544266701, + -0.018978744745254517, + 0.011685444973409176, + 0.002531846985220909, + -0.03858165442943573, + -0.007537835277616978, + -0.015930943191051483, + -0.04945084825158119, + -0.030241888016462326, + 0.03820665180683136, + -0.024072200059890747, + -0.010192835703492165, + -0.004791846964508295, + -0.04764346033334732, + 0.024696966633200645, + -0.07823380082845688, + -0.06926882266998291, + 0.04884723201394081, + -0.055877409875392914, + 0.042214974761009216, + 0.02864380180835724, + -0.0466630794107914, + 0.0625571608543396, + 0.011679427698254585, + -0.047914013266563416, + -0.00826011598110199, + -0.08712661266326904, + 0.12145355343818665, + 0.0217595212161541, + 0.022263966500759125, + -0.06696166843175888, + 0.005346570163965225, + 0.054151393473148346, + -0.008380424231290817, + -0.0278440173715353, + 0.00017682649195194244, + 0.02487005665898323, + 0.014670856297016144, + 0.06343583017587662, + -0.02097918838262558, + 0.0275642741471529, + 0.04632057994604111, + 0.04389994218945503, + -0.014888783916831017, + 0.07998812198638916, + 0.10132572799921036, + -0.03211326524615288, + 0.020754342898726463, + 0.01418408565223217, + 0.009712819010019302, + 0.042468585073947906, + -0.007901829667389393, + 0.00095329899340868, + -0.02055731974542141, + 0.008386963978409767, + -0.04433564469218254, + -0.02692912518978119, + -0.028600141406059265, + 0.06794092804193497, + 0.007959078066051006, + 0.02130330353975296, + 0.027074065059423447, + -0.0463731549680233, + -0.013050507754087448, + 0.05219823122024536, + 0.08347707986831665, + 0.06172531843185425, + 0.030457882210612297, + 0.01658627577126026, + 0.04357363283634186, + -0.06571778655052185, + -0.07064215838909149, + 0.015229208394885063, + 0.021436570212244987, + 0.0027671707794070244, + 0.013337412849068642, + 0.03716866672039032, + -0.027809806168079376, + 0.10106607526540756, + -0.011955322697758675, + 0.004767312668263912, + -0.00479104183614254, + -0.05073666572570801, + 0.012240037322044373, + 0.061280716210603714, + -0.00638702604919672, + 0.0681275874376297, + 0.017029546201229095, + 0.06522238254547119, + 0.043957993388175964, + -0.04780182987451553, + 0.013337705284357071, + -0.022062424570322037, + 0.008388960734009743, + 0.026759816333651543, + 0.10155860334634781, + 0.010886836796998978, + 0.057982828468084335, + 0.08869235217571259, + -0.06098257005214691, + 0.01550203375518322, + 0.05748186632990837, + -0.011237148195505142, + 0.004615951329469681, + 0.03253023326396942, + 0.02515196055173874, + -0.0034752970095723867, + -0.0286130141466856, + 0.0004828236997127533, + 0.01972118951380253, + 0.029773356392979622, + -0.07508664578199387, + 0.01647849939763546, + -0.01317545399069786, + -0.0030111498199403286, + -0.027988936752080917, + 0.01638893596827984, + 0.04712340235710144, + -0.006316136568784714, + 0.022809334099292755, + -0.049131277948617935, + -0.059588637202978134, + 0.02155737392604351, + -0.042042024433612823, + 0.005092935636639595, + 0.05131315439939499, + -0.02260187827050686, + -0.05235358327627182, + 0.00721769779920578, + 0.03811686858534813, + -0.028150059282779694, + 0.019183780997991562, + 0.08530475199222565, + -0.04081461951136589, + 0.05118509382009506, + 0.024056170135736465, + 0.029365716502070427, + -0.018594348803162575, + -0.09280963987112045, + -0.006896346341818571, + 0.03319235518574715, + -0.030784036964178085, + -0.044725202023983, + -0.016633763909339905, + -0.07315071672201157, + -0.0031818910501897335, + 0.015321135520935059, + 0.07648880779743195, + -0.018735330551862717, + -0.02757854200899601, + -0.0827283188700676, + -0.0026331646367907524, + -0.008053064346313477, + -0.0910884439945221, + 0.07206295430660248, + 0.038100820034742355, + 0.013404693454504013, + 0.0881463885307312, + 0.019160162657499313, + 0.00919361412525177, + -0.06912365555763245, + -0.027963832020759583, + 0.034555308520793915, + 0.031073711812496185, + 0.0018057804554700851, + -0.0025843651965260506, + 0.04371615871787071, + 0.041177865117788315, + -0.012960391119122505, + 0.035534925758838654, + 0.013252072036266327, + 0.0353245809674263, + -0.02948800101876259, + 0.0122229577973485, + 0.029015105217695236, + 0.09154590219259262, + 0.04014185443520546, + -0.027290519326925278, + -0.0880202203989029, + -0.026353871449828148, + -0.042294666171073914, + 0.013319004327058792, + 0.01445453055202961, + 0.012715521268546581, + 0.04443905130028725, + -0.01205204613506794, + -0.025969084352254868, + -0.09695051610469818, + -0.0004797913134098053, + -0.0025463085621595383, + -0.01854422315955162, + -0.028552358970046043, + 0.026280077174305916, + 0.05005079135298729, + 0.004732104018330574, + -0.025891238823533058, + 0.017430447041988373, + 0.00866516213864088, + 0.018742449581623077, + -0.022751860320568085, + 0.005694802850484848, + 0.050899628549814224, + -0.016456685960292816, + -0.01385124959051609, + -0.05806155502796173, + 0.04041241109371185, + 0.04801962897181511, + 0.0625956729054451, + 0.05974408611655235, + 0.017898771911859512, + -0.0724748894572258, + 0.05567363649606705, + -0.004642583429813385, + 0.03655055910348892, + -0.03209227696061134, + 0.014330834150314331, + 0.07109825313091278, + -0.04922118037939072, + 0.04186179116368294, + 0.02869436703622341, + -0.03642933815717697, + -0.0290510430932045, + 0.011721570044755936, + -0.045564111322164536, + -0.010473456233739853, + -0.009366411715745926, + -0.03548828139901161, + -0.004731165710836649, + 0.029181640595197678, + 0.07118245959281921, + 0.026769788935780525, + 0.049811460077762604, + 0.012321382761001587, + -0.018462814390659332 + ] + }, + "p244_248.wav": { + "name": "p244", + "embedding": [ + 0.03326428309082985, + 0.10503867268562317, + -0.006563019473105669, + 0.021382618695497513, + -0.035181332379579544, + 0.06641621887683868, + -0.14270910620689392, + 0.14689882099628448, + -0.0529194101691246, + 0.14005199074745178, + -0.08515670150518417, + 0.10863259434700012, + -0.02142701856791973, + -0.19966208934783936, + -0.05129221826791763, + 0.04734417796134949, + -0.037114884704351425, + -0.021756403148174286, + -0.020290590822696686, + 0.02037068083882332, + 0.054260432720184326, + 0.0197905283421278, + -0.008160501718521118, + 0.005950427148491144, + 0.011820094659924507, + 0.04632983356714249, + 0.018941283226013184, + 0.07119020819664001, + 0.038772545754909515, + -0.008806821890175343, + -0.021929437294602394, + 0.1389164924621582, + -0.04237101599574089, + 0.023965582251548767, + 0.09051065146923065, + -0.010492709465324879, + -0.010640027932822704, + -0.04174468666315079, + 0.0015000661369413137, + -0.005619301460683346, + -0.04801660403609276, + 0.07297725975513458, + 0.04421119764447212, + 0.029680799692869186, + 0.044248875230550766, + 0.06206236407160759, + -0.006960523780435324, + -0.059761714190244675, + -0.08272796124219894, + 0.14419464766979218, + 0.061015497893095016, + -0.013569101691246033, + -0.06060367450118065, + -0.06195567548274994, + 0.09821299463510513, + -0.0053466870449483395, + -0.10537618398666382, + -0.059383925050497055, + 0.10277719050645828, + 0.16306942701339722, + -0.025835031643509865, + -0.029996497556567192, + 0.005888940766453743, + 0.13256876170635223, + 0.038057293742895126, + 0.11651652306318283, + 0.06195082142949104, + 0.1047007367014885, + 0.016978176310658455, + 0.031210927292704582, + 0.06324133276939392, + 0.0424971729516983, + 0.018749108538031578, + -0.03604646399617195, + 0.041535235941410065, + 0.0004186670994386077, + -0.010627089068293571, + 0.029011476784944534, + -0.024011215195059776, + 0.0014914039056748152, + -0.008591105230152607, + 0.03372807055711746, + -0.007432431913912296, + 0.027847113087773323, + -0.02181638590991497, + 0.06372219324111938, + 0.016094636172056198, + 0.0001664205628912896, + 0.07467986643314362, + 0.04773971810936928, + 0.020981866866350174, + 0.05578187480568886, + -0.08660785108804703, + -0.11086946725845337, + 0.027062853798270226, + -0.011498336680233479, + 0.010076425038278103, + 0.07281024754047394, + 0.028779448941349983, + -0.0022513512521982193, + 0.10478446632623672, + 0.044505927711725235, + -0.015915464609861374, + 0.05098680406808853, + -0.11171170324087143, + 0.1369580328464508, + 0.05428781360387802, + -0.017963018268346786, + 0.03188413381576538, + -0.06151900812983513, + 0.07348376512527466, + 0.07083126157522202, + -0.14331021904945374, + -0.07584619522094727, + 0.06422212719917297, + 0.0241533350199461, + -0.03761085495352745, + 0.12506811320781708, + -0.023752253502607346, + 0.001755036530084908, + 0.09748087078332901, + -0.07048944383859634, + -0.0653095692396164, + -0.037154119461774826, + 0.04394792392849922, + -0.08155908435583115, + 0.05932453274726868, + 0.020151883363723755, + -0.01049033086746931, + -0.012261648662388325, + 0.09844256937503815, + -0.007093452848494053, + -0.0038391880225390196, + 0.01670568436384201, + -0.02559264935553074, + 0.06542926281690598, + -0.04142296314239502, + 0.02087036520242691, + 0.006950828246772289, + 0.04439277946949005, + 0.054226797074079514, + 0.011732866056263447, + -0.033627741038799286, + -0.10067842155694962, + -0.003911444917321205, + 0.039438504725694656, + 0.07828150689601898, + -0.008904989808797836, + -0.023920999839901924, + -0.04549529775977135, + -0.0516778863966465, + 0.00099505006801337, + -0.012249048799276352, + 0.0849609225988388, + 0.00759790139272809, + 0.0008260492468252778, + 0.09692353010177612, + -0.0005662136245518923, + 0.017252637073397636, + -0.06549599021673203, + -0.025167036801576614, + 0.01781909354031086, + 0.04906206578016281, + -0.08635608851909637, + -0.049549639225006104, + 0.014585984870791435, + 0.021570555865764618, + -0.02042437717318535, + 0.01902623102068901, + 0.040436070412397385, + 0.026762712746858597, + 0.049159519374370575, + -0.07578486204147339, + 0.021188899874687195, + -0.12176697701215744, + -0.06806919723749161, + -0.03642034903168678, + 0.0004002218774985522, + -0.015886256471276283, + 0.06698358058929443, + 0.0039036013185977936, + 0.037194326519966125, + 0.015204844065010548, + -0.0767972469329834, + -0.07526036351919174, + 0.07649330794811249, + 0.0991264134645462, + -0.001367559190839529, + 0.06216452270746231, + 0.031130140647292137, + -0.04054833948612213, + 0.04654073342680931, + 0.056162938475608826, + 0.10860594362020493, + -0.019133972004055977, + 0.00453865947201848, + -0.077931247651577, + 0.08217664062976837, + 0.07550106942653656, + -0.1111370176076889, + -0.08311592042446136, + 0.00900371465831995, + -0.044097039848566055, + 0.01728678308427334, + -0.03302762284874916, + 0.01365702971816063, + 0.0205699373036623, + -0.007566655054688454, + -0.09120527654886246, + -0.07581083476543427, + 0.058440614491701126, + -0.10131945461034775, + -0.016129354014992714, + -0.08538387715816498, + 0.05188335105776787, + 0.11250221729278564, + 0.02571343630552292, + -0.046410802751779556, + -0.03351137414574623, + 0.051456283777952194, + -0.05524391308426857, + -0.02375953458249569, + 0.017551101744174957, + 0.015847980976104736, + -0.10280276089906693, + 0.028751088306307793, + -0.06517082452774048, + 0.05934521183371544, + -0.0794801115989685, + 0.15510199964046478, + -0.013200648128986359, + -0.06854457408189774, + -0.07437928766012192, + 0.025352315977215767, + -0.006819678470492363, + 0.03801553323864937, + 0.028141608461737633, + 0.061457544565200806, + 0.019665881991386414, + -0.0542270727455616, + 0.13810986280441284, + 0.020569251850247383, + -0.0248253270983696, + -0.07060646265745163, + -0.039414022117853165, + -0.05000360682606697, + 0.02745663933455944, + 0.03320255130529404, + -0.10911651700735092, + -0.031119652092456818, + 0.03785828873515129, + -0.03898182511329651, + 0.0671602189540863, + 0.13517501950263977, + 0.042723946273326874, + -0.12259938567876816 + ] + }, + "p244_052.wav": { + "name": "p244", + "embedding": [ + 0.02461729198694229, + 0.11220350861549377, + 0.00576367974281311, + 0.019884226843714714, + -0.04553502798080444, + 0.09078769385814667, + -0.1215575635433197, + 0.1318088173866272, + -0.07248298823833466, + 0.1112847551703453, + -0.08531473577022552, + 0.0903068482875824, + -0.046396393328905106, + -0.16560135781764984, + -0.0748433843255043, + 0.03916962072253227, + -0.023979267105460167, + -0.00828811526298523, + 0.019866470247507095, + -0.017199667170643806, + 0.034716784954071045, + 0.024099452421069145, + 0.031233252957463264, + 0.047742970287799835, + 0.02351890131831169, + 0.04149694740772247, + -0.0010612073820084333, + 0.06147298216819763, + 0.02914806455373764, + -0.0073667969554662704, + -0.0359785333275795, + 0.1282387673854828, + -0.04221896827220917, + 0.022699439898133278, + 0.05404910445213318, + 0.008744747377932072, + 0.00874701701104641, + -0.04250281676650047, + -0.0013972679153084755, + -0.014133111573755741, + -0.06006339192390442, + 0.07375790178775787, + 0.046959202736616135, + 0.015315026976168156, + 0.037660617381334305, + -0.0009997468441724777, + -0.005216027610003948, + -0.03204164654016495, + -0.10133330523967743, + 0.1442474126815796, + 0.054993636906147, + -0.019869307056069374, + -0.08211657404899597, + -0.05116325616836548, + 0.12014009058475494, + -0.022556878626346588, + -0.11318440735340118, + -0.016502240672707558, + 0.09668166935443878, + 0.16815432906150818, + -0.008910097181797028, + -0.02278093434870243, + 0.008447269909083843, + 0.11771362274885178, + 0.0171053446829319, + 0.0892338976264, + 0.05988588184118271, + 0.09027130901813507, + 0.002936731092631817, + 0.017418542876839638, + 0.03888275474309921, + 0.03919089213013649, + -0.016603533178567886, + -0.05297697335481644, + -0.008933966048061848, + -0.01466728001832962, + -0.01987205632030964, + 0.053971461951732635, + -0.007564156781882048, + -0.014675319194793701, + -0.03689700365066528, + -0.0019894482102245092, + -0.03175489977002144, + -0.003526933491230011, + -0.031240373849868774, + 0.04904472082853317, + -0.018115155398845673, + 0.006456083618104458, + 0.08571235090494156, + 0.061489421874284744, + -0.013132041320204735, + 0.04120257869362831, + -0.03525439277291298, + -0.053384676575660706, + -0.0025698337703943253, + 0.011682536453008652, + 0.0021088719367980957, + 0.103084035217762, + 0.015489468351006508, + -0.0075929369777441025, + 0.11186592280864716, + 0.048607371747493744, + 0.017590107396245003, + 0.025880703702569008, + -0.1165463998913765, + 0.11485552787780762, + 0.06032179296016693, + -0.006168113090097904, + 0.054958827793598175, + -0.020840175449848175, + 0.07374560832977295, + 0.08006364107131958, + -0.13088193535804749, + -0.049307700246572495, + 0.05015387758612633, + 0.053890161216259, + 0.017599359154701233, + 0.09057211875915527, + -0.006140542216598988, + -0.013789824210107327, + 0.07432764768600464, + -0.059044960886240005, + -0.06589166074991226, + -0.04651696979999542, + 0.059359584003686905, + -0.05485941097140312, + 0.04034537449479103, + 0.04481913894414902, + -0.004485502373427153, + -0.015887927263975143, + 0.04910779371857643, + -0.005915951449424028, + -0.0010451485868543386, + 0.05398301035165787, + -0.049914829432964325, + 0.025554336607456207, + -0.03148936852812767, + 0.024627970531582832, + 0.03483326733112335, + 0.04228203371167183, + 0.056894294917583466, + 0.02319403737783432, + -0.026692498475313187, + -0.07117032259702682, + -0.025391101837158203, + 0.07293614745140076, + 0.06483370065689087, + -0.012316869571805, + -0.05095524340867996, + -0.05656690150499344, + -0.053292274475097656, + 0.03591407835483551, + 0.014254285022616386, + 0.10420675575733185, + -0.012310061603784561, + -0.009402175433933735, + 0.08443333208560944, + 0.021613098680973053, + -0.012500266544520855, + -0.07796072214841843, + -0.007898930460214615, + -0.009853281080722809, + 0.02404339239001274, + -0.0710131824016571, + -0.06594668328762054, + 0.012925908900797367, + 0.033652301877737045, + -0.02251022681593895, + 0.02441975474357605, + 0.04228997230529785, + 0.011201804503798485, + 0.051938001066446304, + -0.08097703754901886, + 0.03697438910603523, + -0.09129761904478073, + -0.052359070628881454, + -0.0262919832020998, + 0.0056367493234574795, + -0.006701742764562368, + 0.0776686817407608, + 0.04400784522294998, + 0.010905489325523376, + 0.04755881801247597, + -0.081350177526474, + -0.050006281584501266, + 0.06667609512805939, + 0.0676199346780777, + 0.005168521776795387, + 0.07405666261911392, + 0.06712150573730469, + -0.0817323848605156, + 0.07908907532691956, + 0.06922781467437744, + 0.07884333282709122, + -0.04767966270446777, + 0.013489321805536747, + -0.04463464021682739, + 0.03492811322212219, + 0.06259921193122864, + -0.12189766764640808, + -0.11362707614898682, + -0.02967889793217182, + -0.0356282964348793, + 0.035641077905893326, + -0.01859964244067669, + 0.009658269584178925, + -0.005589451640844345, + -0.03788786008954048, + -0.08369266986846924, + -0.09335709363222122, + 0.07418875396251678, + -0.055459871888160706, + -0.023473430424928665, + -0.06079328805208206, + 0.046317920088768005, + 0.07799415290355682, + 0.014707422815263271, + -0.024482211098074913, + 0.0015435069799423218, + 0.033230993896722794, + -0.06597688794136047, + -0.036313995718955994, + 0.04239746183156967, + -0.006132114678621292, + -0.10634181648492813, + 0.0341251865029335, + -0.07060961425304413, + 0.11117818206548691, + -0.041971705853939056, + 0.16613945364952087, + -0.016668274998664856, + -0.06820325553417206, + -0.0623968169093132, + 0.02231348678469658, + -0.026286892592906952, + 0.017103224992752075, + 0.02587055414915085, + 0.04509027674794197, + -0.012744843028485775, + -0.016076557338237762, + 0.1124788373708725, + 0.027185829356312752, + -0.05542168766260147, + -0.05452360212802887, + -0.021760813891887665, + -0.033542174845933914, + 0.01871402934193611, + 0.01952582411468029, + -0.09221219271421432, + -0.027059849351644516, + 0.01278475858271122, + -0.021847978234291077, + 0.07726338505744934, + 0.12456287443637848, + 0.07813167572021484, + -0.1188732385635376 + ] + }, + "p244_353.wav": { + "name": "p244", + "embedding": [ + 0.043939970433712006, + 0.10691487789154053, + -0.03382353112101555, + 0.024774219840765, + -0.06259916722774506, + 0.04711415618658066, + -0.14136506617069244, + 0.14516456425189972, + -0.02197573333978653, + 0.12541812658309937, + -0.06838381290435791, + 0.12074869871139526, + -0.029490657150745392, + -0.1730169951915741, + -0.0169266015291214, + 0.06136977672576904, + -0.024157673120498657, + -0.027413394302129745, + -0.023489084094762802, + -0.03913910314440727, + 0.026756517589092255, + 0.027055714279413223, + 0.02038307674229145, + 0.006067059934139252, + 0.027422845363616943, + 0.07447230815887451, + -0.01915745995938778, + 0.012766714207828045, + -0.013059066608548164, + -0.020452678203582764, + -0.042938947677612305, + 0.09641903638839722, + -0.04826776683330536, + -0.001437250291928649, + 0.04582596942782402, + -0.011489923112094402, + -0.01030330266803503, + -0.05598995089530945, + -0.00026965251890942454, + -0.004197809379547834, + -0.04700184985995293, + 0.07193886488676071, + 0.024902895092964172, + -0.026057027280330658, + 0.04780525714159012, + 0.016849588602781296, + -0.012146556749939919, + -0.031586647033691406, + -0.10496874153614044, + 0.14691615104675293, + 0.07423444092273712, + -0.0008038997184485197, + -0.08242611587047577, + -0.038067616522312164, + 0.09638342261314392, + -0.0076970322988927364, + -0.09671672433614731, + -0.03786900267004967, + 0.07513648271560669, + 0.13381272554397583, + -0.029442651197314262, + -0.03760174661874771, + 0.03242933750152588, + 0.12780199944972992, + 0.05309326946735382, + 0.07383023947477341, + 0.07119062542915344, + 0.1162438690662384, + -0.03798314929008484, + 0.002081445185467601, + 0.05844908207654953, + 0.061394400894641876, + 0.060104578733444214, + -0.02254362404346466, + 0.00842240173369646, + -0.02575605735182762, + -0.01775575987994671, + -0.017861973494291306, + -0.032954730093479156, + -0.04290040582418442, + -0.029251541942358017, + -0.006941178347915411, + -0.004586758092045784, + 0.02825237065553665, + -0.02763018012046814, + 0.044173017144203186, + 0.0750226154923439, + -0.032377734780311584, + 0.07098361104726791, + 0.04978755861520767, + -0.003548018168658018, + 0.058121442794799805, + -0.09239117801189423, + -0.060137294232845306, + 0.05180661007761955, + -0.002339379396289587, + 0.018108706921339035, + 0.07394929230213165, + 0.04876463860273361, + -0.011561593972146511, + 0.11747635900974274, + 0.049650516360998154, + 0.0027373291086405516, + 0.014396516606211662, + -0.0818329006433487, + 0.13982510566711426, + 0.09525132179260254, + -0.04213577136397362, + 0.042720548808574677, + -0.0363873690366745, + 0.04285022243857384, + 0.062207844108343124, + -0.12231659144163132, + -0.059776198118925095, + 0.017880823463201523, + 0.02003583498299122, + -0.01886848174035549, + 0.10633452981710434, + 0.008891570381820202, + 0.044902052730321884, + 0.10354335606098175, + -0.08470162749290466, + -0.07425521314144135, + -0.034826043993234634, + 0.047132622450590134, + -0.08839268982410431, + 0.06450497359037399, + 0.08593564480543137, + 0.0030951513908803463, + 0.01817740686237812, + 0.06573298573493958, + 0.0024766316637396812, + 0.0007607733714394271, + 0.007003994192928076, + -0.03736093267798424, + 0.01061282865703106, + -0.01007426530122757, + 0.0012555706780403852, + 0.025982683524489403, + 0.020591700449585915, + 0.05436306446790695, + -0.0006632544100284576, + 0.005667123943567276, + -0.11041754484176636, + 0.015894755721092224, + 0.047319523990154266, + 0.07157841324806213, + -0.017311550676822662, + -0.027808040380477905, + -0.02620134875178337, + -0.06364040821790695, + 0.005542825907468796, + -0.007868200540542603, + 0.06593191623687744, + -0.03174726665019989, + -0.001960505498573184, + 0.10873977839946747, + 0.04383071884512901, + 0.0022285464219748974, + -0.04395073652267456, + -0.020196333527565002, + 0.012962227687239647, + 0.04972103238105774, + -0.09548301994800568, + -0.08497324585914612, + -0.028217127546668053, + 0.033452823758125305, + -0.016314763575792313, + 0.07153943181037903, + 0.04869813472032547, + 0.010796202346682549, + 0.012075768783688545, + -0.06252385675907135, + 0.024236634373664856, + -0.07974513620138168, + -0.05849669873714447, + -0.020876843482255936, + -0.03045497089624405, + -0.031504787504673004, + 0.07692693173885345, + 0.030361225828528404, + 0.05152229219675064, + -0.034591592848300934, + -0.05497196316719055, + -0.07747530937194824, + 0.03953031823039055, + 0.058082230389118195, + -0.027342036366462708, + 0.035873111337423325, + 0.05944370478391647, + -0.03729637712240219, + 0.0356731116771698, + 0.06934027373790741, + 0.09381049871444702, + -0.037000373005867004, + 0.018823441118001938, + -0.06490135192871094, + 0.07236181944608688, + 0.09311109781265259, + -0.08784578740596771, + -0.08716148138046265, + -0.05564112961292267, + -0.05037158355116844, + 0.023461824283003807, + -0.0335405170917511, + 0.01222970336675644, + 0.02390909194946289, + -0.012353017926216125, + -0.09205956757068634, + -0.11025117337703705, + 0.0797870084643364, + -0.06430177390575409, + 0.009054852649569511, + -0.07965712249279022, + 0.05632390081882477, + 0.07357460260391235, + 0.013699891977012157, + -0.043824464082717896, + -0.0116160549223423, + 0.03202202543616295, + -0.016615988686680794, + 0.016063343733549118, + 0.053188424557447433, + 0.04957496374845505, + -0.11299188435077667, + -0.0062429821118712425, + -0.06451284140348434, + 0.07691487669944763, + -0.03716975077986717, + 0.1552359163761139, + 0.02833961695432663, + -0.03954467177391052, + -0.08787109702825546, + 0.03880289942026138, + -0.013706794008612633, + 0.04677604138851166, + 0.0314050018787384, + 0.06105167791247368, + 0.020481619983911514, + -0.05866445600986481, + 0.10519498586654663, + 0.04149964451789856, + -0.04062721133232117, + -0.07529982924461365, + -0.04706866666674614, + -0.04687320813536644, + 0.030921760946512222, + 0.01699727028608322, + -0.08952122926712036, + -0.020645545795559883, + 0.018967652693390846, + 0.0038050522562116385, + 0.07898121327161789, + 0.12863728404045105, + 0.06583650410175323, + -0.1036527007818222 + ] + }, + "p244_164.wav": { + "name": "p244", + "embedding": [ + 0.0594656839966774, + 0.10709811747074127, + -0.009478701278567314, + 0.014008665457367897, + -0.04990536719560623, + 0.07834392786026001, + -0.14610826969146729, + 0.15572059154510498, + -0.03834958374500275, + 0.14458638429641724, + -0.05045820772647858, + 0.11260189116001129, + -0.020351529121398926, + -0.17301446199417114, + -0.019511312246322632, + 0.060571715235710144, + -0.04906829446554184, + -0.03699567914009094, + -0.018836725503206253, + -0.026801511645317078, + 0.015098942443728447, + 0.03914260119199753, + 0.020265765488147736, + 0.011904153972864151, + 0.055603377521038055, + 0.07252798974514008, + -0.018950436264276505, + 0.028585443273186684, + -0.010216201655566692, + -0.07654242217540741, + -0.03248701989650726, + 0.09222359955310822, + -0.06877975165843964, + 0.017660843208432198, + 0.0494048148393631, + -0.01843917928636074, + -0.010575932450592518, + -0.06733650714159012, + -0.02305220626294613, + 6.938248407095671e-05, + -0.04125489294528961, + 0.09556032717227936, + 0.03692626953125, + -0.010760156437754631, + 0.01643647439777851, + 0.02905668318271637, + 0.003687824122607708, + -0.05119138956069946, + -0.10591503977775574, + 0.1611585021018982, + 0.05903426185250282, + -0.002332336502149701, + -0.07803048193454742, + -0.0695740357041359, + 0.0932781994342804, + -0.011613067239522934, + -0.11296188831329346, + -0.029901567846536636, + 0.07225608825683594, + 0.14319384098052979, + -0.030803438276052475, + -0.0417182520031929, + 0.025613486766815186, + 0.128589928150177, + 0.05874600261449814, + 0.09313248097896576, + 0.06954358518123627, + 0.11018253117799759, + -0.02993832528591156, + 0.022344328463077545, + 0.057668283581733704, + 0.057046227157115936, + 0.05641727149486542, + -0.017789684236049652, + 0.016078609973192215, + -0.0170163344591856, + -0.020496416836977005, + -0.02113696187734604, + -0.013186370953917503, + -0.025964956730604172, + -0.0121114831417799, + 0.0024513863027095795, + 0.008113515563309193, + 0.03615376353263855, + -0.011661062017083168, + 0.04284850135445595, + 0.044131629168987274, + -0.018957529217004776, + 0.08339321613311768, + 0.03797092288732529, + 0.021465379744768143, + 0.0708024799823761, + -0.09454603493213654, + -0.0607772096991539, + 0.0449020117521286, + 0.001478975173085928, + 0.03833973407745361, + 0.08255483955144882, + 0.04951360821723938, + -0.009843872860074043, + 0.12479770183563232, + 0.04491530358791351, + 0.006890221498906612, + 0.006743225269019604, + -0.09826315939426422, + 0.14281581342220306, + 0.06024184450507164, + -0.035629577934741974, + 0.06203886866569519, + -0.049200527369976044, + 0.0762380063533783, + 0.07117051631212234, + -0.15567734837532043, + -0.07161803543567657, + 0.020707186311483383, + 0.009617948904633522, + -0.026887325569987297, + 0.1291286051273346, + 0.0006019645370543003, + 0.03635036200284958, + 0.08926235884428024, + -0.0951957032084465, + -0.0520201250910759, + -0.011026940308511257, + 0.05075107142329216, + -0.10613619536161423, + 0.06694957613945007, + 0.0646403357386589, + -0.02390226349234581, + 0.03278383985161781, + 0.08511307835578918, + -0.0027913691010326147, + 0.004280788358300924, + 0.014742509461939335, + -0.029447827488183975, + 0.009352752938866615, + -0.024173688143491745, + 0.019747614860534668, + 0.011975567787885666, + 0.01541026122868061, + 0.051368460059165955, + -0.010944240726530552, + -0.021711276844143867, + -0.10878575593233109, + 0.01868097484111786, + 0.031388815492391586, + 0.07991840690374374, + -0.01489272527396679, + -0.029355479404330254, + -0.021170616149902344, + -0.0625380128622055, + 0.009269311092793941, + -0.0035207602195441723, + 0.0640183687210083, + -0.006121315993368626, + 0.003834654577076435, + 0.11720642447471619, + 0.06327647715806961, + 0.002736604306846857, + -0.059557244181632996, + -0.024205023422837257, + 0.015541747212409973, + 0.0673469677567482, + -0.09150288999080658, + -0.06817245483398438, + -0.001982145244255662, + 0.020541556179523468, + -0.023838162422180176, + 0.07395950704813004, + 0.04975065961480141, + 0.032182611525058746, + 0.014874253422021866, + -0.0633438229560852, + 0.016460036858916283, + -0.08519095182418823, + -0.07817889750003815, + -0.01045701839029789, + -0.01665334962308407, + -0.04219694808125496, + 0.0875631719827652, + 0.021297477185726166, + 0.05953603237867355, + -0.03363807871937752, + -0.05494934320449829, + -0.06964477896690369, + 0.05072474107146263, + 0.056322548538446426, + -0.02381245605647564, + 0.02447160705924034, + 0.05777783691883087, + -0.03476788476109505, + 0.040135473012924194, + 0.059586044400930405, + 0.11007022112607956, + -0.04677971452474594, + 0.032591432332992554, + -0.06050638109445572, + 0.07805934548377991, + 0.07897111773490906, + -0.0944739356637001, + -0.07798964530229568, + -0.02272661402821541, + -0.062202565371990204, + 0.02518220990896225, + -0.021116480231285095, + 0.009551675990223885, + 0.011311385780572891, + -0.012302102521061897, + -0.09029628336429596, + -0.09280556440353394, + 0.08553604781627655, + -0.07617902010679245, + -0.0009349153842777014, + -0.09397603571414948, + 0.0600925013422966, + 0.08066295087337494, + 0.06040782481431961, + -0.024022653698921204, + -0.014285099692642689, + 0.05054769665002823, + -0.01797836646437645, + 0.017552226781845093, + 0.085203155875206, + 0.040570832788944244, + -0.10100072622299194, + -0.007374167907983065, + -0.0655958279967308, + 0.06040674448013306, + -0.04505102336406708, + 0.1660071611404419, + 0.009140953421592712, + -0.06578747183084488, + -0.08166655898094177, + 0.027246372774243355, + -0.019429907202720642, + 0.043643347918987274, + 0.030838103964924812, + 0.057012416422367096, + 0.058647431433200836, + -0.038849279284477234, + 0.10850533097982407, + 0.040856122970581055, + -0.026720594614744186, + -0.051427848637104034, + -0.055083267390728, + -0.041140928864479065, + 0.04029040038585663, + 0.0024347722064703703, + -0.1077069416642189, + -0.014998281374573708, + 0.03404555842280388, + 0.004768904764205217, + 0.0754873976111412, + 0.14448189735412598, + 0.06581549346446991, + -0.12508776783943176 + ] + }, + "p244_230.wav": { + "name": "p244", + "embedding": [ + 0.056013286113739014, + 0.03714391589164734, + -0.006162726785987616, + 0.0007905091042630374, + -0.025705358013510704, + 0.06713633239269257, + -0.14226174354553223, + 0.11263689398765564, + -0.05571219325065613, + 0.08893713355064392, + -0.055112458765506744, + 0.0731644481420517, + -0.010182168334722519, + -0.14791817963123322, + -0.02855006977915764, + 0.06242036819458008, + -0.021413318812847137, + -0.022249605506658554, + -0.04029892757534981, + -0.006370568182319403, + 0.008403691463172436, + 0.031938906759023666, + 0.00801350362598896, + -0.01641983352601528, + 0.027265042066574097, + 0.05362307280302048, + -0.00018361459660809487, + 0.01898009516298771, + -0.027236532419919968, + 0.0019029267132282257, + 0.0025387518107891083, + 0.09532196819782257, + -0.037012532353401184, + -0.030520524829626083, + 0.05299223214387894, + 0.010502032935619354, + 0.0012134239077568054, + -0.09347701072692871, + -0.004099187906831503, + -0.006725732237100601, + -0.06607513129711151, + 0.07849696278572083, + 0.055674102157354355, + 0.01100136712193489, + 0.01824071630835533, + 0.006606068462133408, + -0.004261543974280357, + -0.05974356457591057, + -0.11420981585979462, + 0.15129908919334412, + 0.02386198565363884, + 0.03897732496261597, + -0.10510300099849701, + -0.029018577188253403, + 0.07838630676269531, + 0.00835583359003067, + -0.056262172758579254, + -0.07234429568052292, + 0.04734432324767113, + 0.15339669585227966, + -0.002796964254230261, + -0.03464989364147186, + 0.027139555662870407, + 0.09072297811508179, + 0.03211933374404907, + 0.06043105572462082, + 0.09267735481262207, + 0.0948609709739685, + 0.01259525865316391, + 0.026584986597299576, + 0.05674136430025101, + 0.027040211483836174, + 0.017330823466181755, + -0.025926560163497925, + 0.03535137325525284, + -0.02139151841402054, + -0.03667180985212326, + 0.005609530955553055, + -0.02083970420062542, + -0.045055702328681946, + 0.013960529118776321, + 0.012674015015363693, + 0.024131156504154205, + 0.05503500625491142, + -0.04470612108707428, + 0.03360062465071678, + 0.03432310372591019, + -0.01707579381763935, + 0.08083848655223846, + 0.044244568794965744, + 0.004788603167980909, + 0.020985690876841545, + -0.060382239520549774, + -0.08003890514373779, + 0.022601094096899033, + 0.012500055134296417, + 0.01914467290043831, + 0.030573755502700806, + 0.01478942297399044, + -0.02975829504430294, + 0.0911652073264122, + -0.005542195402085781, + 0.015651334077119827, + 0.008869946002960205, + -0.07910382002592087, + 0.10676756501197815, + 0.0715847983956337, + -0.01695254072546959, + 0.021068355068564415, + -0.046003829687833786, + 0.010163719765841961, + 0.07535072416067123, + -0.10606637597084045, + -0.058830954134464264, + 0.055338650941848755, + 0.017236042767763138, + 0.023401563987135887, + 0.14160703122615814, + 0.02438358962535858, + 0.010803459212183952, + 0.07776294648647308, + -0.09656594693660736, + -0.053666189312934875, + 0.007733501028269529, + 0.02650153636932373, + -0.03803712874650955, + 0.030671386048197746, + 0.05915973335504532, + 0.012527081184089184, + -0.0209103561937809, + 0.0619325265288353, + 0.00918325874954462, + 0.009638451039791107, + -0.031693607568740845, + 0.013476742431521416, + 0.07048434019088745, + -0.006475945934653282, + -0.022134929895401, + 0.03836553916335106, + 0.0501384399831295, + 0.026009608060121536, + 0.018488086760044098, + -0.03790687769651413, + -0.11187230050563812, + -0.029584437608718872, + 0.05646776407957077, + 0.06525199115276337, + -0.04061385989189148, + -0.030117198824882507, + -0.06170855462551117, + -0.030808523297309875, + -0.012271692976355553, + -0.002872450975701213, + 0.08010086417198181, + 0.042493920773267746, + -0.009057383984327316, + 0.08383893221616745, + -0.007440716028213501, + 0.03570020943880081, + -0.034287407994270325, + -0.004831552505493164, + 0.03721839562058449, + 0.03959018737077713, + -0.032654035836458206, + -0.05974603816866875, + -0.003963192459195852, + 0.014841060154139996, + -0.02452170103788376, + 0.0013139372458681464, + 0.0249284990131855, + 0.0124655244871974, + -0.007256511598825455, + -0.0891616940498352, + 0.0518822968006134, + -0.09128762781620026, + -0.01488957554101944, + 0.03961503505706787, + -0.02482362650334835, + -0.02994430810213089, + 0.09405364841222763, + 0.022211674600839615, + 0.03581884503364563, + -0.03610766679048538, + -0.08008735626935959, + -0.027728348970413208, + 0.04441916570067406, + 0.06797396391630173, + -0.03148669749498367, + 0.00954367034137249, + -0.0015327533474192023, + 0.005271201487630606, + 0.01340256817638874, + 0.056852132081985474, + 0.07405798882246017, + -0.03730624169111252, + -0.046241119503974915, + -0.022990159690380096, + 0.11287641525268555, + 0.035534534603357315, + -0.0650450587272644, + -0.05100494250655174, + 0.011640718206763268, + -0.034434724599123, + 0.009442973881959915, + -0.023103205487132072, + 0.019912462681531906, + 0.04292803257703781, + -0.03275977075099945, + -0.1272137612104416, + -0.07149083912372589, + 0.04267006739974022, + -0.07501514256000519, + -0.004336903803050518, + -0.07462344318628311, + 0.038579944521188736, + 0.0790209099650383, + 0.016775555908679962, + -0.01168876327574253, + -0.03275301679968834, + -0.004615466110408306, + -0.06482589244842529, + -0.016674190759658813, + 0.012881053611636162, + 0.030085651203989983, + -0.07199843227863312, + -0.0031549804843962193, + -0.06372497975826263, + 0.07417309284210205, + -0.03465184196829796, + 0.11975656449794769, + 0.0172154288738966, + -0.04511001706123352, + -0.08861349523067474, + -0.00874839536845684, + -0.0005107658798806369, + 0.05078420042991638, + 0.03108431026339531, + 0.04208550974726677, + 0.042323093861341476, + -0.041673868894577026, + 0.08590114116668701, + 0.048882972449064255, + -0.025937674567103386, + -0.054015349596738815, + -0.026187313720583916, + -0.025463899597525597, + 0.038449134677648544, + -0.030729934573173523, + -0.04977121576666832, + 0.020411644130945206, + 0.04302361235022545, + 0.008658559061586857, + 0.05402036011219025, + 0.09839686751365662, + 0.03958921879529953, + -0.08683746308088303 + ] + }, + "p244_178.wav": { + "name": "p244", + "embedding": [ + 0.03712261840701103, + 0.10299722105264664, + -0.00403292803093791, + 0.026907529681921005, + -0.05853986740112305, + 0.03755905106663704, + -0.12841719388961792, + 0.138652503490448, + -0.02681763470172882, + 0.13290223479270935, + -0.08146893233060837, + 0.12259525805711746, + -0.04527243226766586, + -0.19801700115203857, + -0.01635902002453804, + 0.06641770899295807, + -0.014850256964564323, + -0.007043277844786644, + -0.013415524736046791, + -0.021864118054509163, + 0.02971971407532692, + 0.04869363456964493, + 0.032104432582855225, + -0.0032524587586522102, + 0.039779260754585266, + 0.0765891820192337, + -0.0010581850074231625, + 0.04524082690477371, + 0.0003628884442150593, + -0.06143292412161827, + -0.038828812539577484, + 0.10332119464874268, + -0.054013416171073914, + 0.02078835293650627, + 0.052907370030879974, + -0.00028266478329896927, + -0.014157673344016075, + -0.025893185287714005, + -0.0017233524704352021, + 0.0013958578929305077, + -0.0463557168841362, + 0.06737864017486572, + 0.01205834373831749, + -3.2813288271427155e-05, + 0.04619474709033966, + 0.051478177309036255, + -0.004143240861594677, + -0.048191919922828674, + -0.10256132483482361, + 0.1568867266178131, + 0.050495970994234085, + -0.007260498590767384, + -0.07333797961473465, + -0.08386564254760742, + 0.08568930625915527, + -0.018067941069602966, + -0.11281709372997284, + -0.03989407420158386, + 0.10002265870571136, + 0.14609214663505554, + -0.02461106702685356, + -0.053070612251758575, + 0.012777771800756454, + 0.11683471500873566, + 0.023663681000471115, + 0.09530059248209, + 0.0567760095000267, + 0.0915597677230835, + -0.028181027621030807, + 0.012626001611351967, + 0.04473212733864784, + 0.062812939286232, + 0.06605339795351028, + -0.01565207540988922, + 0.006290452554821968, + -0.015162407420575619, + -0.003137855790555477, + 0.011556969955563545, + -0.01576746255159378, + -0.022488679736852646, + -0.020964205265045166, + 0.0021488498896360397, + -0.010705877095460892, + -0.01569433882832527, + -0.00373866967856884, + 0.04473067820072174, + 0.050707243382930756, + -0.0014077355153858662, + 0.08103881776332855, + 0.039343755692243576, + -0.007086962927132845, + 0.06777282804250717, + -0.08286634087562561, + -0.05878179147839546, + 0.03190059959888458, + -0.004369435366243124, + 0.034629739820957184, + 0.07383552938699722, + 0.03243429213762283, + -0.005696788430213928, + 0.11846515536308289, + 0.04383081942796707, + 0.011523867957293987, + 0.01973215863108635, + -0.10149984061717987, + 0.13023534417152405, + 0.08018310368061066, + -0.018835747614502907, + 0.06438010185956955, + -0.03974708169698715, + 0.06656348705291748, + 0.06779806315898895, + -0.13369201123714447, + -0.06812851130962372, + -0.009644665755331516, + 0.00868218857795, + -0.029070354998111725, + 0.11089421808719635, + -0.018454821780323982, + 0.02712063118815422, + 0.11820265650749207, + -0.1116076409816742, + -0.06902912259101868, + -0.020521564409136772, + 0.02741391584277153, + -0.11555635184049606, + 0.05735808610916138, + 0.07042264938354492, + -0.02060883305966854, + 0.03749286010861397, + 0.08846522867679596, + -0.0023412886075675488, + 0.031236154958605766, + 0.005439474247395992, + -0.05126297101378441, + -0.020799510180950165, + -0.03759344667196274, + 0.005050658714026213, + 0.0493328683078289, + 0.03366320580244064, + 0.06276095658540726, + 0.0029723765328526497, + -0.040692634880542755, + -0.12779691815376282, + 0.006258119363337755, + 0.055015888065099716, + 0.053064413368701935, + -0.02270687371492386, + -0.02574940398335457, + -0.024883266538381577, + -0.06726200133562088, + 0.029306646436452866, + 0.0072535243816673756, + 0.06752286106348038, + -0.02773122861981392, + -0.008305350318551064, + 0.12045978009700775, + 0.04753173887729645, + -0.019304681569337845, + -0.07876787334680557, + -0.04941553622484207, + 0.002045764122158289, + 0.03578618913888931, + -0.12068357318639755, + -0.07415036857128143, + -0.024593252688646317, + 0.03917188569903374, + -0.016258222982287407, + 0.067776620388031, + 0.0617227777838707, + 0.018349483609199524, + 0.023837992921471596, + -0.04080554097890854, + 0.0026069162413477898, + -0.08595094829797745, + -0.09882542490959167, + -0.011610809713602066, + -0.02239689975976944, + -0.02791624143719673, + 0.07917069643735886, + 0.002631774637848139, + 0.04317404329776764, + -0.03080374374985695, + -0.0523606538772583, + -0.08598465472459793, + 0.05262487009167671, + 0.04452838748693466, + 0.004893545061349869, + 0.05870331823825836, + 0.042578838765621185, + -0.08084826916456223, + 0.07944075763225555, + 0.061727993190288544, + 0.12253653258085251, + -0.04733484238386154, + 0.05089572072029114, + -0.06677445769309998, + 0.05795943737030029, + 0.09437147527933121, + -0.08475182950496674, + -0.0939042940735817, + -0.0475880429148674, + -0.0678853988647461, + 0.06170334294438362, + -0.02545233443379402, + 0.0018410562770441175, + 0.02366887778043747, + -0.005163310095667839, + -0.07524684071540833, + -0.08914919942617416, + 0.0695025697350502, + -0.037062037736177444, + -0.003804852720350027, + -0.07871198654174805, + 0.06456378102302551, + 0.06850453466176987, + 0.04466533660888672, + -0.02215014584362507, + -0.014458067715168, + 0.05620088428258896, + -0.046637795865535736, + -0.0033499212004244328, + 0.06430047750473022, + 0.04652746021747589, + -0.06467356532812119, + -0.00737482775002718, + -0.08667854964733124, + 0.057117097079753876, + -0.047693487256765366, + 0.16161498427391052, + -0.0028951384592801332, + -0.06593134999275208, + -0.07063286006450653, + 0.03259924054145813, + -0.023492828011512756, + 0.03652738407254219, + 0.03287685662508011, + 0.05605044215917587, + 0.0444687083363533, + -0.050842177122831345, + 0.12692990899085999, + 0.035019032657146454, + -0.0317072719335556, + -0.04341932758688927, + -0.05827448517084122, + -0.05472496151924133, + 0.029848232865333557, + -0.01177220605313778, + -0.1171531230211258, + -0.024804072454571724, + 0.022816404700279236, + 0.01220932137221098, + 0.05075586214661598, + 0.1443537473678589, + 0.04555417224764824, + -0.1103561520576477 + ] + }, + "p244_040.wav": { + "name": "p244", + "embedding": [ + 0.04495055601000786, + 0.08091925084590912, + -0.023899100720882416, + 0.06364770233631134, + 0.0043339719995856285, + 0.017842553555965424, + -0.15235336124897003, + 0.10670260339975357, + 0.007963153533637524, + 0.12191521376371384, + -0.08412328362464905, + 0.10776207596063614, + -0.0026113111525774, + -0.19686566293239594, + -0.025430435314774513, + 0.04363745450973511, + 0.0063882204703986645, + -0.0392884835600853, + 0.04481268301606178, + 0.020669160410761833, + 0.06594237685203552, + 0.0764748603105545, + 0.004484226461499929, + -0.007977046072483063, + 0.030034303665161133, + 0.037923891097307205, + 0.002517371205613017, + 0.04114250838756561, + 0.0273317638784647, + 0.012979288585484028, + 0.014537165872752666, + 0.1215284988284111, + -0.018760859966278076, + 0.010456711985170841, + 0.03460221737623215, + 0.021090570837259293, + -0.003616174915805459, + -0.05582403019070625, + -0.0283343605697155, + 0.006691006477922201, + -0.07339166104793549, + 0.06644338369369507, + 0.05084121599793434, + -0.02697248011827469, + 0.04172699525952339, + 0.023947030305862427, + -0.01215349417179823, + -0.038375936448574066, + -0.0995880514383316, + 0.15816575288772583, + 0.06119965761899948, + 0.03348084166646004, + -0.08770403265953064, + -0.05057140439748764, + 0.07704555243253708, + 0.044308632612228394, + -0.046811506152153015, + -0.013155868276953697, + 0.08359432965517044, + 0.18490557372570038, + 0.013240848667919636, + -0.03752153739333153, + 0.046499382704496384, + 0.13724452257156372, + 0.06937169283628464, + 0.06601040065288544, + 0.07093054801225662, + 0.11323708295822144, + 0.018576711416244507, + -0.0031576817855238914, + 0.0498509481549263, + 0.08755046129226685, + 0.014901616610586643, + -0.058390967547893524, + -0.019455134868621826, + 0.033823806792497635, + -0.06609778106212616, + -0.005165450274944305, + -0.009029597975313663, + -0.005711965728551149, + 0.00858728401362896, + -0.013741516508162022, + -0.005588752217590809, + 0.06467785686254501, + -0.028528055176138878, + 0.00831794273108244, + 0.08257483690977097, + -0.03213237598538399, + 0.060412608087062836, + 0.036047499626874924, + 0.03468085080385208, + 0.03456924483180046, + -0.08877044171094894, + -0.10367810726165771, + 0.018753085285425186, + 0.019932083785533905, + 0.001656953594647348, + 0.0951651781797409, + 0.06465445458889008, + -0.02606094628572464, + 0.12595856189727783, + -0.010712393559515476, + -0.014769189059734344, + 0.009770405478775501, + -0.09444763511419296, + 0.10428347438573837, + 0.0815771222114563, + -0.02266279049217701, + 0.0435517318546772, + -0.051708173006772995, + 0.024538608267903328, + 0.07642997056245804, + -0.14907562732696533, + -0.05421648919582367, + 0.08253740519285202, + 0.03526829183101654, + 0.01327831856906414, + 0.1492481231689453, + 0.03444350138306618, + 0.03188977390527725, + 0.08572719991207123, + -0.08569172769784927, + -0.09323955327272415, + -0.07331091910600662, + 0.07598268240690231, + -0.07419396936893463, + 0.08765041083097458, + 0.028623564168810844, + -0.001634847023524344, + -0.03797255828976631, + 0.0289253331720829, + -0.02151227928698063, + 0.029429927468299866, + -0.05495020002126694, + -0.015399664640426636, + 0.07979043573141098, + -0.0740356594324112, + 0.021387577056884766, + 0.006761624943464994, + -0.01709704101085663, + 0.05385821685194969, + 0.03471032530069351, + -0.03326821327209473, + -0.12563538551330566, + 0.003685401752591133, + 0.05497492477297783, + 0.09479479491710663, + -0.019053932279348373, + -0.07465942949056625, + -0.06583745777606964, + -0.05240589380264282, + 0.037893157452344894, + -0.028790488839149475, + 0.06153125315904617, + 0.038089219480752945, + -0.01391951460391283, + 0.10477640479803085, + -0.047057848423719406, + 0.030479364097118378, + -0.0016953053418546915, + -0.015339018777012825, + -0.007733749225735664, + 0.018341461196541786, + -0.0906587690114975, + -0.08532994240522385, + -0.02004626952111721, + -0.011209310963749886, + -0.019155094400048256, + 0.006984043400734663, + 0.00710704131051898, + 0.025630448013544083, + 0.0109371617436409, + -0.07828947901725769, + -0.02800135686993599, + -0.11755731701850891, + -0.07833923399448395, + -0.0259071234613657, + 0.02926010638475418, + -0.0016416204161942005, + 0.07786545902490616, + 0.04187348112463951, + 0.020147088915109634, + 0.0015260165091603994, + -0.048953574150800705, + -0.0736822634935379, + 0.03856421262025833, + 0.070896677672863, + -0.004274791106581688, + 0.05022195726633072, + 0.037424735724925995, + -0.024672996252775192, + 0.027671197429299355, + 0.04090285301208496, + 0.07970910519361496, + -0.006848360877484083, + -0.022482862696051598, + -0.06558993458747864, + 0.13110531866550446, + 0.11166006326675415, + -0.08023499697446823, + -0.08536139130592346, + -0.023370882496237755, + -0.08703171461820602, + 0.009509020484983921, + -0.02097439020872116, + 0.028122292831540108, + -0.00030433348729275167, + -0.03710223734378815, + -0.11090395599603653, + -0.09562809020280838, + 0.025277476757764816, + -0.05576304718852043, + -0.05077287554740906, + -0.10832804441452026, + 0.04808374494314194, + 0.09711091220378876, + 0.01782788150012493, + -0.02110099047422409, + -0.03539315611124039, + 0.030252281576395035, + -0.06695185601711273, + -0.03145667165517807, + 0.05306421220302582, + 0.02451188676059246, + -0.13823451101779938, + -0.019514748826622963, + -0.03546757251024246, + 0.09687231481075287, + -0.09072501212358475, + 0.101354219019413, + 0.021578939631581306, + -0.08464367687702179, + -0.10189229995012283, + 0.039914533495903015, + 0.04118196293711662, + 0.05118982493877411, + 0.008239515125751495, + 0.030299313366413116, + 0.018764406442642212, + -0.07884528487920761, + 0.09468279033899307, + 0.04409037530422211, + 0.01662810891866684, + -0.09230504930019379, + -0.05334858596324921, + -0.012485414743423462, + 0.056828539818525314, + 0.015249905176460743, + -0.05182284861803055, + -0.016369830816984177, + 0.035126689821481705, + -0.006698464043438435, + 0.030547412112355232, + 0.11847157776355743, + 0.03373018279671669, + -0.12432920932769775 + ] + }, + "p244_112.wav": { + "name": "p244", + "embedding": [ + -0.0009802263230085373, + 0.08174587786197662, + -0.022297613322734833, + 0.05671565979719162, + -0.07533954083919525, + 0.04122024402022362, + -0.07901707291603088, + 0.07334195077419281, + -0.040008895099163055, + 0.09940716624259949, + -0.074732705950737, + 0.10062313079833984, + -0.058968156576156616, + -0.16907745599746704, + 0.011732298880815506, + 0.07067835330963135, + -0.010217098519206047, + 0.015776891261339188, + -0.054323963820934296, + -0.03308413177728653, + 0.02753547951579094, + 0.004149802029132843, + 0.07034067809581757, + -0.07410216331481934, + 0.016815539449453354, + 0.0816277414560318, + 0.020690444856882095, + 0.03366517275571823, + -0.01031907182186842, + -0.056505244225263596, + -0.046657562255859375, + 0.10779893398284912, + -0.03677147626876831, + -0.02187792956829071, + 0.03771497309207916, + -0.01023287232965231, + -0.039262332022190094, + -0.03292806074023247, + 0.03921150416135788, + -0.012086894363164902, + -0.04110576957464218, + 0.04990589618682861, + 0.002277469728142023, + -0.022117502987384796, + 0.053709499537944794, + -0.029078945517539978, + -0.05086686089634895, + 0.008605746552348137, + -0.10042262077331543, + 0.12241555750370026, + 0.06355815380811691, + -0.009840436279773712, + -0.07614320516586304, + -0.06971330940723419, + 0.09044612944126129, + 0.026915261521935463, + -0.11820939183235168, + -0.05908767879009247, + 0.08081290125846863, + 0.1179690808057785, + -0.00016829418018460274, + -0.0023905811831355095, + 0.018842794001102448, + 0.07030780613422394, + -0.009298200719058514, + 0.10999328643083572, + 0.048297613859176636, + 0.08664128929376602, + 0.0066216373816132545, + 0.05596403032541275, + 0.0380781926214695, + 0.05797659605741501, + 0.005250042304396629, + -0.020069502294063568, + 0.017919423058629036, + -0.054512910544872284, + -0.024967892095446587, + -3.842124715447426e-05, + -0.009181708097457886, + -0.07244692742824554, + -0.022843975573778152, + -0.04403878375887871, + 0.024410400539636612, + -0.052098535001277924, + -0.009675349108874798, + 0.03293566405773163, + 0.07328155636787415, + -0.012279498390853405, + 0.08596457540988922, + 0.052158892154693604, + -0.03150991350412369, + 0.051902152597904205, + -0.055141765624284744, + -0.06645189225673676, + -0.0039552850648760796, + 0.01636188104748726, + 0.020017027854919434, + 0.06412402540445328, + 0.030177609995007515, + -0.009816373698413372, + 0.07664959132671356, + 0.07388676702976227, + 0.024874798953533173, + 0.0273908618837595, + -0.06444159895181656, + 0.09397181123495102, + 0.11117450892925262, + -0.002812185324728489, + 0.04502446949481964, + -0.019359134137630463, + 0.06258551776409149, + 0.06892985850572586, + -0.07889647036790848, + -0.061794668436050415, + -0.058790531009435654, + -0.04438777267932892, + -0.028374426066875458, + 0.09670434892177582, + -0.004261840134859085, + -0.004163431003689766, + 0.12552669644355774, + -0.12190863490104675, + -0.08938755095005035, + -0.03409399837255478, + 0.023814234882593155, + -0.0643991008400917, + 0.03387078270316124, + 0.07639537751674652, + -0.030473146587610245, + 0.02189747989177704, + 0.049688275903463364, + -0.013621720485389233, + 0.04722753167152405, + 0.05327651649713516, + -0.07378670573234558, + 0.009556584060192108, + -0.04394747316837311, + -0.00473697017878294, + 0.09845617413520813, + 0.05024895817041397, + 0.07578941434621811, + -0.041455067694187164, + 0.020339036360383034, + -0.07199618965387344, + -0.00032202573493123055, + 0.06411229074001312, + 0.005231868475675583, + -0.03483327478170395, + 0.001881057396531105, + -0.017777256667613983, + -0.10686129331588745, + 0.0411837063729763, + -0.01494716014713049, + 0.09120506793260574, + -0.022627366706728935, + -0.009103327989578247, + 0.11127546429634094, + 0.05352877080440521, + -0.025964023545384407, + -0.09588244557380676, + -0.06749939918518066, + 0.05777214094996452, + 0.02400066889822483, + -0.13540257513523102, + -0.05402431637048721, + -0.04703710973262787, + 0.014835123904049397, + -0.015248063951730728, + 0.028131704777479172, + 0.07688596844673157, + 0.02474958449602127, + 0.013577042147517204, + -0.03989001363515854, + 0.057824112474918365, + -0.04226052016019821, + -0.03806401416659355, + -0.023969005793333054, + -0.08808296173810959, + -0.024581748992204666, + 0.09127004444599152, + -0.00015879381680861115, + -0.0023662401363253593, + -0.011115769855678082, + -0.03736710548400879, + -0.06828293949365616, + 0.04172505810856819, + 0.03899235278367996, + -0.013100661337375641, + 0.07425445318222046, + 0.03501540422439575, + -0.07611650973558426, + 0.03888406977057457, + 0.05817209929227829, + 0.0886860191822052, + -0.05818326398730278, + -0.01082757767289877, + -0.08797362446784973, + 0.06570108234882355, + 0.12596997618675232, + -0.07915858924388885, + -0.07743801176548004, + -0.08394711464643478, + -0.04512365162372589, + 0.07957577705383301, + -0.05289927124977112, + -0.04932757839560509, + 0.03850160539150238, + -0.025188328698277473, + -0.08130116015672684, + -0.10619225353002548, + 0.12219294160604477, + -0.021180758252739906, + -0.008895516395568848, + -0.0709991455078125, + 0.03743146359920502, + 0.02384989894926548, + 0.01840767078101635, + -0.06096290424466133, + 0.04182836785912514, + 0.06620658189058304, + -0.03637291491031647, + 0.03359926491975784, + 0.04802922531962395, + 0.03619861230254173, + -0.02270526997745037, + -0.017054516822099686, + -0.0744648277759552, + 0.06370579451322556, + -0.03850877285003662, + 0.14627712965011597, + -0.008775411173701286, + -0.02794124186038971, + -0.06970594823360443, + 0.07781580835580826, + -0.014483317732810974, + 0.02895738184452057, + 0.06764410436153412, + 0.07853825390338898, + 0.01507125236093998, + -0.08431023359298706, + 0.1134813129901886, + -0.01131184957921505, + 0.0026457877829670906, + -0.04900173097848892, + 0.011052620597183704, + -0.0666150152683258, + 0.024891305714845657, + -0.025077415630221367, + -0.10422015190124512, + 0.01919066347181797, + 0.020873498171567917, + 0.016923341900110245, + 0.0581284761428833, + 0.1151733249425888, + 0.06967391073703766, + -0.027923349291086197 + ] + }, + "p244_214.wav": { + "name": "p244", + "embedding": [ + 0.047064945101737976, + 0.09374096989631653, + -0.029795479029417038, + 0.021070312708616257, + -0.05589009076356888, + 0.07865388691425323, + -0.09673842787742615, + 0.11000014841556549, + -0.05048755556344986, + 0.131479412317276, + -0.05370466411113739, + 0.12335020303726196, + -0.015409699641168118, + -0.14077019691467285, + -0.06206444278359413, + 0.04187578707933426, + -0.08741737902164459, + -0.03439265489578247, + -0.057838551700115204, + -0.02681402675807476, + 0.039697375148534775, + 0.025438295677304268, + 0.0642424076795578, + -0.03531991317868233, + 0.03902808204293251, + 0.06412626057863235, + 0.030178818851709366, + 0.060814641416072845, + 0.03210289403796196, + -0.08688667416572571, + -0.044193901121616364, + 0.09137901663780212, + -0.049057118594646454, + 0.02080947905778885, + 0.04218422248959541, + 0.0006431713700294495, + 0.015838002786040306, + -0.0843123123049736, + -0.02381298318505287, + 0.018406018614768982, + -0.015955021604895592, + 0.07347764074802399, + 0.013104238547384739, + -0.0401352196931839, + 0.006440825294703245, + -0.00018069567158818245, + -0.01934182085096836, + -0.04337479919195175, + -0.10113073885440826, + 0.18702459335327148, + 0.07387524843215942, + 0.015530914068222046, + -0.06757976114749908, + -0.09620954096317291, + 0.11589176207780838, + -0.007667948491871357, + -0.11702315509319305, + -0.024702582508325577, + 0.039730995893478394, + 0.15890994668006897, + -0.034337423741817474, + -0.020275689661502838, + 0.029227253049612045, + 0.12411117553710938, + 0.042949289083480835, + 0.062421295791864395, + 0.09880602359771729, + 0.09733450412750244, + 0.006113381125032902, + 0.05861132964491844, + 0.05956602841615677, + 0.10144306719303131, + 0.04811899736523628, + 0.006292167119681835, + 0.030547291040420532, + -0.02756848931312561, + -0.036115359514951706, + -0.016231752932071686, + -0.04358946532011032, + -0.041516147553920746, + -0.015501786023378372, + 0.009788262657821178, + 0.03226057067513466, + 0.019569098949432373, + -0.01108971331268549, + 0.07296542823314667, + -0.015121547505259514, + -0.04750765860080719, + 0.046328455209732056, + 0.022960711270570755, + -0.006325690075755119, + 0.041848886758089066, + -0.06744523346424103, + -0.10826902836561203, + 0.011240575462579727, + 0.01573677361011505, + 0.031987763941287994, + 0.07897083461284637, + 0.05564790964126587, + -0.033009812235832214, + 0.09721823036670685, + 0.06314319372177124, + -0.01413993164896965, + -0.0028952702414244413, + -0.07780136168003082, + 0.11032142490148544, + 0.111485555768013, + -0.01416182890534401, + 0.022237898781895638, + -0.05350640416145325, + 0.09373100101947784, + 0.06556052714586258, + -0.1477869749069214, + -0.09696733206510544, + 0.005461027845740318, + -0.019313577562570572, + 0.004709434229880571, + 0.0838983878493309, + -0.013766838237643242, + 0.03721331059932709, + 0.10485678166151047, + -0.08244822919368744, + -0.044463638216257095, + -0.03709612786769867, + 0.053563982248306274, + -0.050841473042964935, + 0.03447488695383072, + 0.04613909497857094, + -0.01970847323536873, + -0.010802707634866238, + 0.06719760596752167, + -0.018274515867233276, + -0.009892809204757214, + 0.045708656311035156, + -0.05996613949537277, + 0.02718154340982437, + -0.04021844640374184, + -0.010672122240066528, + 0.06381121277809143, + 0.06861798465251923, + 0.04255390912294388, + -0.013168737292289734, + -0.04493601620197296, + -0.07938000559806824, + 0.016043849289417267, + 0.03960055857896805, + 0.05487310141324997, + -0.029077205806970596, + -0.03648816794157028, + -0.01762356236577034, + -0.0602191686630249, + 0.030928272753953934, + -0.00013626401778310537, + 0.07913556694984436, + -0.01807384565472603, + 0.00330669479444623, + 0.10706989467144012, + 0.006294815801084042, + -0.032156262546777725, + -0.030468961223959923, + -0.008995155803859234, + 0.04417487606406212, + 0.043615393340587616, + -0.06412704288959503, + -0.07915131747722626, + 0.007170567288994789, + -0.0034205028787255287, + -0.02790575660765171, + 0.038497958332300186, + 0.02190997079014778, + 0.011776771396398544, + 0.02892483025789261, + -0.04509740322828293, + -0.013596253469586372, + -0.11366325616836548, + -0.02900163270533085, + -0.010162962600588799, + -0.06506217271089554, + -0.04136526957154274, + 0.08132496476173401, + 0.02283637784421444, + 0.04748018458485603, + -0.006393404211848974, + -0.07064872235059738, + -0.050806254148483276, + 0.06312011182308197, + 0.06869572401046753, + 0.023169487714767456, + 0.03028082475066185, + 0.07200144976377487, + 0.026990236714482307, + 0.0423385351896286, + 0.06885185837745667, + 0.07954250276088715, + -0.030644822865724564, + -0.022927861660718918, + -0.0760050043463707, + 0.09944835305213928, + 0.06745614856481552, + -0.09499670565128326, + -0.07299520075321198, + -0.05125616863369942, + -0.07023270428180695, + 0.03086809068918228, + -0.03088713437318802, + 0.010799797251820564, + 0.0277373306453228, + -0.015600482001900673, + -0.11233333498239517, + -0.09321694076061249, + 0.11651705205440521, + -0.06504756212234497, + -0.019255002960562706, + -0.05156809836626053, + 0.030898239463567734, + 0.11055074632167816, + 0.043039415031671524, + 0.0038550500757992268, + 0.03207135945558548, + 0.04429542273283005, + -0.05662743002176285, + -0.016363929957151413, + 0.0314166434109211, + 0.009591658599674702, + -0.09701497852802277, + 0.013765759766101837, + -0.05995069444179535, + 0.03888368234038353, + -0.06455570459365845, + 0.14857006072998047, + -0.013764876872301102, + -0.05282110720872879, + -0.0901290774345398, + 0.0639055147767067, + -0.06208319962024689, + 0.04900985211133957, + 0.05416499078273773, + 0.05222054570913315, + 0.014623776078224182, + -0.11301794648170471, + 0.13485057651996613, + 0.03911841660737991, + -0.03812802955508232, + -0.08746892213821411, + -0.06006479263305664, + -0.016906699165701866, + 0.01666960120201111, + 0.008866417221724987, + -0.04860284924507141, + 0.00625983439385891, + -0.0016223359853029251, + -0.022989757359027863, + 0.062379077076911926, + 0.14042839407920837, + 0.08589006960391998, + -0.08640982210636139 + ] + }, + "p244_215.wav": { + "name": "p244", + "embedding": [ + 0.05340327322483063, + 0.10633864998817444, + 0.016881447285413742, + 0.011955846101045609, + -0.028103653341531754, + 0.039301495999097824, + -0.007915105670690536, + 0.07690724730491638, + 0.03343275189399719, + 0.0071962811052799225, + -0.10044921934604645, + 0.05461234971880913, + -0.05114267021417618, + -0.1005287915468216, + 0.03138060122728348, + 0.04352860525250435, + -0.028951672837138176, + 0.011115949600934982, + -0.05946015566587448, + -0.027463845908641815, + -0.04222572222352028, + -0.01483626663684845, + 0.0420759841799736, + -0.007125634700059891, + 0.017293814569711685, + 0.02452283538877964, + -0.04159819334745407, + -0.008275894448161125, + -0.033947646617889404, + -0.015321293845772743, + -0.04088747873902321, + 0.02245538868010044, + -0.026904450729489326, + -0.017765305936336517, + 0.003981326706707478, + -0.03462702035903931, + 0.02976091578602791, + -0.06605526804924011, + -0.0760427936911583, + 0.035450588911771774, + -0.061423659324645996, + 0.043719857931137085, + 0.03152107819914818, + -0.06027592718601227, + 0.07246733456850052, + 0.03666800633072853, + -0.05529148504137993, + -0.0057771094143390656, + -0.10241740942001343, + 0.10199737548828125, + 0.015739869326353073, + 0.03047354705631733, + -0.06237658113241196, + -0.0009945407509803772, + 0.07519080489873886, + -0.02481830306351185, + -0.033776238560676575, + -0.019413195550441742, + 0.028561802580952644, + 0.019934870302677155, + 0.028781460598111153, + -0.007138711400330067, + 0.00945344753563404, + 0.030890248715877533, + 0.06488597393035889, + 0.005041081458330154, + 0.06499192118644714, + 0.09021380543708801, + -0.04256809875369072, + 0.02328052558004856, + 0.049421776086091995, + 0.0002708360552787781, + 0.048158034682273865, + -0.007632295601069927, + -0.0066888523288071156, + -0.0028166454285383224, + -0.0018488089554011822, + -0.036213528364896774, + -0.013678686693310738, + -0.020208947360515594, + 0.036172378808259964, + 0.009933008812367916, + 0.026395440101623535, + 0.003233599476516247, + -0.03619940206408501, + 0.0026943646371364594, + 0.06542219966650009, + 0.074161097407341, + 0.06696416437625885, + 0.03806217014789581, + -0.031037840992212296, + 0.06247745454311371, + -0.046704474836587906, + -0.0468948557972908, + 0.0014159264974296093, + 0.01603846065700054, + -0.007557017263025045, + 0.012560242787003517, + 0.030513733625411987, + -0.021396394819021225, + 0.09735725820064545, + -0.00040161237120628357, + 0.03699781745672226, + 0.00926295481622219, + -0.04896874353289604, + 0.022798974066972733, + 0.053600162267684937, + -0.025863278657197952, + 0.06389139592647552, + 0.05553627386689186, + 0.05068339407444, + 0.06422695517539978, + -0.04759574681520462, + 0.012998662889003754, + -0.03497140854597092, + 0.009746340103447437, + 0.030462805181741714, + 0.07011143863201141, + 0.002916098339483142, + 0.05067679286003113, + 0.1155703067779541, + -0.06528075039386749, + 0.015539305284619331, + 0.07424341887235641, + -0.001646561548113823, + 0.01806781068444252, + 0.02655821666121483, + 0.045040328055620193, + -0.003527548164129257, + -0.004002511501312256, + 0.009933184832334518, + 0.027712196111679077, + 0.012289375066757202, + -0.05542512238025665, + 0.0071549974381923676, + -0.02295861765742302, + 0.0007631317712366581, + -0.03404443711042404, + 0.04421551153063774, + 0.047018758952617645, + -0.0211980938911438, + 0.03315199539065361, + -0.03931222856044769, + -0.060177698731422424, + 0.029677048325538635, + -0.025737091898918152, + 0.0119534432888031, + 0.056419603526592255, + -0.0043476177379488945, + -0.05137646943330765, + 0.003010384738445282, + 0.042700670659542084, + -0.0047316947020590305, + 0.04177888110280037, + 0.04720599949359894, + -0.04274782910943031, + 0.04149050638079643, + 0.032853126525878906, + 0.02865358255803585, + -0.04825536534190178, + -0.09471835941076279, + -0.006813532207161188, + 0.03889298439025879, + -0.018483903259038925, + -0.05374060198664665, + -0.019268011674284935, + -0.03440209850668907, + 0.00211772951297462, + 0.023846661671996117, + 0.0755378007888794, + -0.025281261652708054, + -0.044753298163414, + -0.0645294263958931, + 0.022926198318600655, + 0.00519133172929287, + -0.10383737087249756, + 0.06645971536636353, + 0.019896792247891426, + 0.010932762175798416, + 0.09003394097089767, + 0.028335466980934143, + 0.016694311052560806, + -0.04772309213876724, + -0.05228255316615105, + 0.01909811794757843, + 0.03237741440534592, + -0.001835099421441555, + -0.01396514568477869, + 0.04869674891233444, + 0.04550394043326378, + -0.036374419927597046, + 0.04230061173439026, + 0.00609235092997551, + 0.037768810987472534, + -0.0290360189974308, + 0.011342196725308895, + 0.04197467863559723, + 0.0473606251180172, + 0.031079819425940514, + -0.05481845512986183, + -0.08514288812875748, + -0.04372561350464821, + -0.013911528512835503, + 0.015830835327506065, + 0.029978711158037186, + 0.02546517923474312, + 0.045097097754478455, + -0.0013326751068234444, + -0.010913103818893433, + -0.1187296062707901, + -0.004345055669546127, + 0.009404845535755157, + -0.015766851603984833, + -0.014623725786805153, + 0.019849084317684174, + 0.013312287628650665, + -0.00048827752470970154, + -0.003574371337890625, + 0.034068118780851364, + -0.00222137663513422, + 0.022723587229847908, + -0.033382244408130646, + 0.024314584210515022, + 0.038221798837184906, + 0.018750663846731186, + -0.019439980387687683, + -0.08463259041309357, + 0.06716679036617279, + 0.06160535290837288, + 0.09457183629274368, + 0.03948646038770676, + 0.03383138030767441, + -0.06190531700849533, + 0.038250964134931564, + -0.023806357756257057, + 0.02556297369301319, + -0.025996921584010124, + 0.0302744060754776, + 0.051189325749874115, + -0.009792758151888847, + 0.04220205917954445, + 0.02648290991783142, + -0.04122382029891014, + -0.01870855689048767, + 0.005629613995552063, + -0.07677137106657028, + -0.025150945410132408, + -0.022165482863783836, + -0.042740389704704285, + 0.010031008161604404, + 0.011736268177628517, + 0.07382740825414658, + 0.029676204547286034, + 0.056366175413131714, + 0.031996890902519226, + -0.006148543208837509 + ] + }, + "p244_110.wav": { + "name": "p244", + "embedding": [ + 0.02555643394589424, + 0.07235626876354218, + 0.01770714856684208, + 0.026068637147545815, + -0.04630326107144356, + 0.03194857016205788, + -0.11019507050514221, + 0.13463464379310608, + -0.0429706908762455, + 0.1285693645477295, + -0.09663064777851105, + 0.08202726393938065, + -0.07185394316911697, + -0.1800156533718109, + 0.020058924332261086, + 0.04866713285446167, + 0.0034322692081332207, + 0.006989171728491783, + -0.03739259019494057, + -0.01714503951370716, + 0.013698607683181763, + 0.022624261677265167, + 0.020074687898159027, + 0.012232186272740364, + 0.004504336975514889, + 0.0857618898153305, + -0.01760084182024002, + 0.02221524715423584, + -0.012096527963876724, + -0.021842781454324722, + -0.03781283646821976, + 0.11227633059024811, + -0.07059779763221741, + -0.0024249600246548653, + 0.09085740149021149, + -0.016050709411501884, + -0.07173023372888565, + -0.007009584456682205, + -0.010077418759465218, + -0.034766700118780136, + -0.09529420733451843, + 0.05475795269012451, + 0.01458156481385231, + 0.016427000984549522, + 0.06712383776903152, + 0.049199193716049194, + -0.0038540740497410297, + -0.018240638077259064, + -0.08559584617614746, + 0.08013657480478287, + 0.06938417255878448, + -0.015711436048150063, + -0.03539039194583893, + -0.05248210206627846, + 0.07989786565303802, + -0.016821742057800293, + -0.10916199535131454, + -0.059557169675827026, + 0.11869795620441437, + 0.11590433120727539, + -0.05694813281297684, + -0.02093386836349964, + 0.003558643162250519, + 0.086424820125103, + 0.029945047572255135, + 0.1258133053779602, + 0.047477301210165024, + 0.09240173548460007, + -0.01444920152425766, + 0.029028236865997314, + 0.052897460758686066, + 0.036802634596824646, + 0.07295069098472595, + -0.034984417259693146, + -0.0023337118327617645, + 0.023935696110129356, + -0.00937301479279995, + 0.015886934474110603, + -0.006022213026881218, + 0.0020228582434356213, + -0.01804099604487419, + -0.04307274892926216, + -0.009423762559890747, + -0.035697948187589645, + 0.013644331134855747, + 0.03897920995950699, + 0.08407110720872879, + 0.007962756790220737, + 0.08778700977563858, + 0.007871446199715137, + -0.05993299186229706, + 0.07932788878679276, + -0.07809124886989594, + -0.017535602673888206, + -0.011218776926398277, + -0.03262505680322647, + 0.012550795450806618, + 0.08188579976558685, + 0.03862619400024414, + 0.007160184904932976, + 0.11518634855747223, + 0.022629477083683014, + 0.028711212798953056, + 0.05931922793388367, + -0.11019732058048248, + 0.1228824257850647, + 0.048726409673690796, + -0.042014531791210175, + 0.0452614389359951, + -0.028597736731171608, + 0.0609288364648819, + 0.0787540152668953, + -0.11722566932439804, + -0.01935793273150921, + -0.016635458916425705, + -0.019967833533883095, + -0.05789241939783096, + 0.11276793479919434, + -0.023669414222240448, + -0.020678788423538208, + 0.1348908543586731, + -0.10980445146560669, + -0.07240233570337296, + -0.0003691096499096602, + 0.01737053133547306, + -0.13624191284179688, + 0.04622536897659302, + 0.04442868381738663, + -0.013762760907411575, + 0.04043731838464737, + 0.12342032045125961, + -0.01572316884994507, + -0.008604258298873901, + 0.0054579731076955795, + -0.051671016961336136, + -0.0074430713430047035, + -0.03893083333969116, + 0.02852053940296173, + 0.060383982956409454, + 0.03592574596405029, + 0.060844436287879944, + -0.01535792276263237, + -0.0077037084847688675, + -0.08128048479557037, + -0.008699445053935051, + 0.054758574813604355, + 0.05283838510513306, + -0.010027196258306503, + 0.003271749010309577, + -0.042886462062597275, + -0.08479133248329163, + 0.03776728734374046, + -0.013723475858569145, + 0.055247992277145386, + -0.040381886065006256, + 0.004527071490883827, + 0.11329612135887146, + 0.046185653656721115, + -0.013349653221666813, + -0.12891486287117004, + -0.038776032626628876, + 0.0022130890283733606, + 0.05557439476251602, + -0.12151066213846207, + -0.05831880867481232, + -0.02554401010274887, + 0.057104989886283875, + -0.009181196801364422, + 0.03971859812736511, + 0.03621897101402283, + 0.039036307483911514, + 0.011169672012329102, + -0.0295325368642807, + 0.014777950942516327, + -0.059585779905319214, + -0.087800994515419, + -0.0345965139567852, + -0.027754995971918106, + -0.014154193922877312, + 0.04475027322769165, + -0.032369453459978104, + 0.01805879734456539, + -0.0025275805965065956, + -0.07460813224315643, + -0.09717938303947449, + 0.0600360706448555, + 0.0318426676094532, + -0.018791604787111282, + 0.04684809595346451, + 0.041291236877441406, + -0.13143031299114227, + 0.036254823207855225, + 0.04524070769548416, + 0.14362019300460815, + -0.047457944601774216, + 0.06435289978981018, + -0.05861120671033859, + 0.03930116444826126, + 0.09640099853277206, + -0.08042299747467041, + -0.0909884124994278, + -0.018367188051342964, + -0.035890843719244, + 0.07536790519952774, + -0.03099660575389862, + -0.04874314367771149, + 0.0047473907470703125, + -0.01652522385120392, + -0.039226893335580826, + -0.06445834040641785, + 0.07846919447183609, + -0.03068755567073822, + -0.009995811618864536, + -0.09745784103870392, + 0.0478726401925087, + 0.003368699923157692, + 0.06446559727191925, + -0.014516664668917656, + 0.011852843686938286, + 0.0683678388595581, + -0.0370762012898922, + 0.004386263433843851, + 0.09676545113325119, + 0.02815013751387596, + -0.04111116752028465, + -0.052117787301540375, + -0.07754398137331009, + 0.07877151668071747, + -0.03502999246120453, + 0.11218953877687454, + -0.03431636095046997, + -0.0400056354701519, + -0.03413724526762962, + -0.0019906521774828434, + 0.01643894612789154, + 0.01642376184463501, + 0.059626124799251556, + 0.0699956938624382, + 0.02787698619067669, + -0.020561281591653824, + 0.1302621066570282, + -0.007433319464325905, + 0.011815494857728481, + -0.01599222794175148, + -0.03756856173276901, + -0.0720696672797203, + -0.021684154868125916, + -0.010201646015048027, + -0.15179437398910522, + 0.009371409192681313, + 0.00499859731644392, + -0.02156764827668667, + 0.02268831990659237, + 0.12261008471250534, + 0.06367574632167816, + -0.09981290996074677 + ] + }, + "p244_261.wav": { + "name": "p244", + "embedding": [ + 0.028719626367092133, + 0.0682663768529892, + -0.04940575361251831, + 0.03504057228565216, + -0.016620462760329247, + 0.04279787093400955, + -0.12955424189567566, + 0.06353916227817535, + -0.04909253492951393, + 0.14170783758163452, + -0.09153395891189575, + 0.06715115904808044, + -0.02883533574640751, + -0.1582050621509552, + -0.02464410848915577, + 0.055761996656656265, + -0.01921982318162918, + -0.00347290001809597, + -0.06350982189178467, + -0.015356123447418213, + 0.05540609359741211, + 0.06547226011753082, + 0.01876433566212654, + -0.049175627529621124, + 0.006675088312476873, + 0.05275445431470871, + -0.02564014494419098, + -0.0010150463785976171, + -0.03351340442895889, + -0.03141164034605026, + -0.008707764558494091, + 0.12295949459075928, + 0.0034940880723297596, + 0.003139996435493231, + 0.015117807313799858, + 0.051158081740140915, + -0.021998688578605652, + -0.07792427390813828, + -0.0007367711514234543, + -0.008576905354857445, + -0.0631859079003334, + 0.035880327224731445, + 0.006141346879303455, + -0.038210514932870865, + 0.07119050621986389, + -0.07058751583099365, + -0.04105035215616226, + -0.03922830522060394, + -0.08949838578701019, + 0.17172160744667053, + 0.06163036823272705, + 0.045889709144830704, + -0.09138541668653488, + -0.05498262494802475, + 0.1072787344455719, + 0.014204464852809906, + -0.08314104378223419, + -0.048729151487350464, + 0.05059795081615448, + 0.1794515699148178, + -0.004692745860666037, + -0.020559659227728844, + 0.060942020267248154, + 0.060778748244047165, + -0.015036608092486858, + 0.09242556989192963, + 0.07661066204309464, + 0.05347227305173874, + 0.0388450026512146, + 0.005949879996478558, + 0.04976240545511246, + 0.07206512987613678, + 0.027056021615862846, + -0.06214090436697006, + 0.02311357483267784, + 0.00044776126742362976, + -0.07447825372219086, + 0.011545495130121708, + -0.027642032131552696, + -0.05656038597226143, + 0.014318699017167091, + -0.026159826666116714, + 0.023067116737365723, + -0.005185766611248255, + -0.07371778786182404, + -0.02234519273042679, + 0.07163495570421219, + -0.06722832471132278, + 0.05723799020051956, + 0.06098293885588646, + 0.024096745997667313, + -0.001870916225016117, + -0.027889618650078773, + -0.10887596011161804, + 0.0246100053191185, + 0.04710167646408081, + -0.03869970142841339, + 0.04575304687023163, + 0.04728969559073448, + -0.03264822065830231, + 0.07574567198753357, + -0.002339482307434082, + 0.013620937243103981, + 0.006478495895862579, + -0.09110035747289658, + 0.07065313309431076, + 0.14203159511089325, + -0.0036951114889234304, + 0.04770747199654579, + -0.04089842364192009, + 0.021626245230436325, + 0.09142092615365982, + -0.10794660449028015, + -0.07400927692651749, + 0.027334842830896378, + -0.008714540861546993, + 0.051466234028339386, + 0.1170751303434372, + 0.0508880615234375, + -0.0033791083842515945, + 0.10336221754550934, + -0.12567271292209625, + -0.08851557970046997, + -0.04820217937231064, + 0.03977808356285095, + -0.06521207094192505, + 0.06675456464290619, + 0.07564829289913177, + 0.005411386024206877, + -0.016224874183535576, + 0.0325373075902462, + -0.022063452750444412, + 0.04771711677312851, + -0.05338918790221214, + -0.022877052426338196, + 0.039339084178209305, + -0.06750660389661789, + -0.03709257021546364, + 0.07008512318134308, + 0.0391334593296051, + 0.0582529678940773, + -0.012380555272102356, + -0.027346568182110786, + -0.10309469699859619, + -0.009733662940561771, + 0.07755441963672638, + 0.03022763319313526, + -0.020615937188267708, + -0.001985626295208931, + -0.05781591311097145, + -0.08478523045778275, + 0.05125606432557106, + -0.08793842792510986, + 0.10906244814395905, + 0.03553424030542374, + 0.012464728206396103, + 0.12585753202438354, + -0.020334316417574883, + -0.01074310578405857, + -0.050014056265354156, + -0.010473500937223434, + 0.03056339919567108, + 0.03348955512046814, + -0.07469385117292404, + -0.07651777565479279, + -0.02957879565656185, + 0.005555484443902969, + -0.013957532122731209, + 0.008994956500828266, + 0.04029555991292, + 0.015366200357675552, + 0.01623581536114216, + -0.1108129471540451, + 0.04026583582162857, + -0.11875109374523163, + -0.03266284987330437, + 0.007016483228653669, + -0.06607335805892944, + 0.018608558923006058, + 0.12396019697189331, + 0.01859358139336109, + -0.050637125968933105, + -0.058687955141067505, + -0.09448264539241791, + -0.060775838792324066, + 0.06692124903202057, + 0.07513782382011414, + -0.00427282927557826, + 0.020299918949604034, + 0.011965272948145866, + 0.0041732583194971085, + 0.015369415283203125, + 0.06248774379491806, + 0.10406634956598282, + -0.0048499819822609425, + -0.030295372009277344, + -0.06337064504623413, + 0.10416190326213837, + 0.09583314508199692, + -0.050846487283706665, + -0.07677732408046722, + -0.04408232867717743, + -0.06627500057220459, + 0.054286010563373566, + -0.04040510952472687, + -0.007627756800502539, + 0.03301994502544403, + -0.05689230561256409, + -0.14404836297035217, + -0.0914098471403122, + 0.07674422115087509, + 0.007081826217472553, + -0.023436736315488815, + -0.07264649868011475, + 0.03708415478467941, + 0.03996081277728081, + 0.01779070869088173, + -0.046048760414123535, + 0.01382038276642561, + 0.014750783331692219, + -0.08491375297307968, + -0.008266124874353409, + 0.0039771609008312225, + 0.0008199198637157679, + -0.07435379922389984, + 0.008985860273241997, + -0.07965540885925293, + 0.11350997537374496, + -0.06394005566835403, + 0.10732769966125488, + -0.013949532061815262, + -0.060727380216121674, + -0.08874869346618652, + 0.0719105526804924, + 0.01938960887491703, + 0.033333919942379, + 0.03244972229003906, + 0.05756678059697151, + 0.050989627838134766, + -0.0989881157875061, + 0.0424191839993, + 0.04609941691160202, + 0.024677548557519913, + -0.05812446027994156, + -0.04080793634057045, + -0.032777562737464905, + 0.02581276372075081, + -0.046896569430828094, + -0.046861421316862106, + 0.03433758765459061, + 0.009798077866435051, + 0.02808917500078678, + 0.06244601309299469, + 0.07803112268447876, + 0.032547835260629654, + -0.10110392421483994 + ] + }, + "p244_111.wav": { + "name": "p244", + "embedding": [ + 0.03550855442881584, + 0.14485898613929749, + -0.010829811915755272, + -0.03280510753393173, + -0.03996242582798004, + 0.039297379553318024, + -0.14222826063632965, + 0.1331581324338913, + -0.016904544085264206, + 0.12735259532928467, + -0.10943038016557693, + 0.11034969985485077, + -0.08529987931251526, + -0.10741734504699707, + -0.02197076380252838, + 0.012994790449738503, + 0.025103982537984848, + 0.02306518144905567, + -0.022478360682725906, + -0.030524447560310364, + 0.03684055060148239, + 0.03498847037553787, + 0.01673566922545433, + -0.02004510723054409, + 0.007751945871859789, + 0.0461181104183197, + -0.0013326248154044151, + 0.05583211034536362, + 0.012679265812039375, + -0.016813842579722404, + 0.0006979331374168396, + 0.08946909010410309, + -0.045991286635398865, + 0.041900523006916046, + 0.05703932046890259, + 0.010381726548075676, + -0.024921881034970284, + -0.0243266262114048, + 0.036851316690444946, + -0.0033594791311770678, + -0.0234886035323143, + 0.061311401426792145, + 0.022858023643493652, + -0.01987280137836933, + 0.0304512158036232, + 0.06362675130367279, + 0.028783652931451797, + -0.03097056970000267, + -0.07412416487932205, + 0.13080735504627228, + 0.02817368507385254, + -0.013529549352824688, + -0.07549724727869034, + -0.03104124590754509, + 0.08248063921928406, + -0.0479760579764843, + -0.05786697939038277, + -0.07814197987318039, + 0.060501545667648315, + 0.08764363825321198, + -0.048179976642131805, + -0.0659920945763588, + 0.007014569826424122, + 0.09848722815513611, + 0.018647005781531334, + 0.06673350185155869, + 0.08258254826068878, + 0.12289552390575409, + -0.041442207992076874, + -0.010779842734336853, + -0.0037249941378831863, + 0.04359939694404602, + 0.008133910596370697, + -0.0006030024960637093, + 0.016861408948898315, + -0.03304049000144005, + 0.009248674847185612, + 0.054975561797618866, + -0.04692225903272629, + -0.04663801193237305, + -0.03479180485010147, + 0.02962360344827175, + -0.047401636838912964, + -0.013485975563526154, + -0.021126369014382362, + 0.06323599815368652, + 0.044344738125801086, + -0.02065996080636978, + 0.09202764928340912, + 0.045098792761564255, + 0.004654675256460905, + 0.029217151924967766, + -0.08452662825584412, + -0.04490996152162552, + 0.013734543696045876, + -0.03426099568605423, + 0.004958480596542358, + 0.08601246774196625, + 0.014770184643566608, + 0.006437203846871853, + 0.11453334987163544, + 0.02017252892255783, + -0.00776681350544095, + 0.01847825199365616, + -0.0804281085729599, + 0.1612178385257721, + 0.07517047226428986, + -0.04474687576293945, + 0.015668615698814392, + -0.06843627244234085, + -0.0033770427107810974, + 0.03790973871946335, + -0.07300029695034027, + -0.08607394993305206, + 0.01222588773816824, + 0.041114211082458496, + -0.019171588122844696, + 0.07914507389068604, + -0.011501951143145561, + 0.0008063190616667271, + 0.12321918457746506, + -0.07063327729701996, + -0.08817235380411148, + -0.008862371556460857, + 0.030997196212410927, + -0.047107189893722534, + 0.04081398993730545, + 0.08151167631149292, + 0.007638392969965935, + 0.03005233407020569, + 0.08584250509738922, + 0.019545547664165497, + 0.046437494456768036, + 0.006292250473052263, + -0.04177769646048546, + 0.00728335976600647, + -0.013473732396960258, + -0.012093758210539818, + 0.0013461187481880188, + 0.09340496361255646, + 0.090224489569664, + 0.024059699848294258, + -0.02864828333258629, + -0.10220964252948761, + -0.010555543005466461, + 0.06303481757640839, + 0.03227592632174492, + -0.030729053542017937, + -0.019810186699032784, + -0.0417516827583313, + -0.03278498351573944, + -0.018932055681943893, + -0.0021347845904529095, + 0.07034353911876678, + -0.051769934594631195, + 0.01090044155716896, + 0.13358326256275177, + 0.037237100303173065, + 0.009262293577194214, + -0.06731415539979935, + -0.014622404240071774, + -0.02947082556784153, + 0.01738361455500126, + -0.07015276700258255, + -0.09717075526714325, + -0.03522675111889839, + 0.05434386804699898, + -0.006228724494576454, + 0.0832095593214035, + 0.060385528951883316, + 0.006247204728424549, + 0.044586025178432465, + -0.05626225844025612, + 0.02354953996837139, + -0.05149802565574646, + -0.051610447466373444, + -0.017696933820843697, + -0.0015532439574599266, + -0.009260283783078194, + 0.06963570415973663, + 0.008927978575229645, + 0.066965252161026, + 0.01630980521440506, + -0.08143803477287292, + -0.11671242117881775, + 0.015963826328516006, + 0.06909096240997314, + -0.041098590940237045, + 0.051891714334487915, + 0.04089884087443352, + -0.05928340181708336, + 0.0590372160077095, + 0.06834644079208374, + 0.0473015271127224, + -0.03937268629670143, + 0.009194767102599144, + -0.055180251598358154, + 0.02112501859664917, + 0.07843370735645294, + -0.10434204339981079, + -0.06425374746322632, + -0.06442097574472427, + -0.022550711408257484, + -0.03478993475437164, + -0.010842906311154366, + 0.014627031050622463, + 0.013083430007100105, + 0.0014417776837944984, + -0.0695328414440155, + -0.08121350407600403, + 0.011930480599403381, + -0.058943212032318115, + 0.034701064229011536, + -0.06020333617925644, + 0.04696594178676605, + 0.06092483177781105, + 0.04206293821334839, + -0.032730501145124435, + -0.04312049597501755, + 0.028974315151572227, + -0.029506759718060493, + 0.019039565697312355, + 0.0474838986992836, + 0.05166543275117874, + -0.032307956367731094, + 0.04034123569726944, + -0.08381982147693634, + 0.06599937379360199, + -0.047803476452827454, + 0.1456785947084427, + 0.027119625359773636, + -0.07268694043159485, + -0.08589650690555573, + -0.0002403393154963851, + -0.052077047526836395, + 0.021691421046853065, + -0.006582115776836872, + 0.016479825600981712, + 0.012505254708230495, + -0.046623602509498596, + 0.12616442143917084, + 0.0442710742354393, + -0.05161421746015549, + -0.08115414530038834, + -0.07762987911701202, + -0.06402859091758728, + 0.020394140854477882, + 0.030192259699106216, + -0.08394274115562439, + -0.0313834585249424, + 0.006412512622773647, + -0.014594304375350475, + 0.08737412095069885, + 0.12215501070022583, + 0.07093289494514465, + -0.12070630490779877 + ] + }, + "p244_041.wav": { + "name": "p244", + "embedding": [ + 0.0477493517100811, + 0.09237784147262573, + -0.04194314032793045, + 0.015993749722838402, + -0.06453871726989746, + 0.04421694204211235, + -0.11807951331138611, + 0.12396105378866196, + -0.02690242789685726, + 0.1365990936756134, + -0.06510811299085617, + 0.13611844182014465, + -0.008770588785409927, + -0.16155876219272614, + -0.034966230392456055, + 0.02737453207373619, + -0.043871812522411346, + -0.025151420384645462, + -0.061628472059965134, + -0.049977779388427734, + 0.051731400191783905, + 0.048346951603889465, + 0.03644756227731705, + -0.02840607985854149, + 0.016115382313728333, + 0.06663861870765686, + 0.005010311957448721, + 0.0280466228723526, + 0.007017101161181927, + -0.06567616760730743, + -0.044305138289928436, + 0.09010188281536102, + -0.05202030390501022, + 0.012884674593806267, + 0.038975901901721954, + -0.021395020186901093, + -0.004304943140596151, + -0.06211567670106888, + -0.026561586186289787, + 0.02595832198858261, + -0.03137664496898651, + 0.06644094735383987, + 0.01489008218050003, + -0.033769767731428146, + 0.05108369514346123, + 0.0031738176476210356, + -0.019590381532907486, + -0.04465639218688011, + -0.09283270686864853, + 0.1672413945198059, + 0.07739828526973724, + 0.004435134120285511, + -0.07296284288167953, + -0.05701959878206253, + 0.10157613456249237, + -0.024667665362358093, + -0.10168250650167465, + -0.029142102226614952, + 0.04136113449931145, + 0.1286768764257431, + -0.03394491225481033, + -0.04360955208539963, + 0.04500718042254448, + 0.10438748449087143, + 0.051580771803855896, + 0.05864544212818146, + 0.1077108085155487, + 0.10473759472370148, + -0.0309605710208416, + 0.023109566420316696, + 0.04447374865412712, + 0.09272312372922897, + 0.05901356786489487, + -0.011929653584957123, + 0.03504199534654617, + -0.004105374217033386, + -0.01844783127307892, + -0.020031172782182693, + -0.03811773657798767, + -0.02390196919441223, + -0.006757264956831932, + 0.012772822752594948, + 0.01802491582930088, + 0.02396896481513977, + -0.04342176765203476, + 0.06574518978595734, + 0.04898051545023918, + -0.03049437701702118, + 0.05111781880259514, + 0.041526615619659424, + 0.01291646622121334, + 0.05399622023105621, + -0.0910683199763298, + -0.09725426137447357, + 0.03494423255324364, + 0.0060155875980854034, + 0.00856709759682417, + 0.07191620767116547, + 0.05017685517668724, + -0.02178741991519928, + 0.10842698812484741, + 0.05835350602865219, + -0.02091311663389206, + 0.009147617034614086, + -0.07842686772346497, + 0.1159372627735138, + 0.12462387979030609, + -0.03323308005928993, + 0.033219143748283386, + -0.05944114178419113, + 0.0759272575378418, + 0.047366105020046234, + -0.1181628555059433, + -0.08785824477672577, + 0.024486316367983818, + 0.0008049008320085704, + 0.0021551456302404404, + 0.11213827133178711, + -0.004702751990407705, + 0.05059404298663139, + 0.11286967992782593, + -0.07962623238563538, + -0.054937005043029785, + -0.04110291972756386, + 0.045597486197948456, + -0.07029402256011963, + 0.060428276658058167, + 0.06039038300514221, + 0.004759245552122593, + 0.007408760488033295, + 0.06954717636108398, + -0.017764568328857422, + 0.004618425853550434, + 0.00407846225425601, + -0.041635021567344666, + 0.017860565334558487, + -0.013863824307918549, + -0.0257607102394104, + 0.04759707674384117, + 0.05385126918554306, + 0.0446147620677948, + -0.00906505435705185, + -0.022154850885272026, + -0.10992348194122314, + 0.032542936503887177, + 0.027880478650331497, + 0.05512824282050133, + -0.020555822178721428, + -0.01608181558549404, + -0.02974173054099083, + -0.0684344619512558, + 0.009244384244084358, + -0.01695946604013443, + 0.061791520565748215, + -0.02952212654054165, + 0.00883636437356472, + 0.10563653707504272, + 0.026330173015594482, + -0.009894780814647675, + -0.02149779722094536, + -0.0250079445540905, + 0.010634174570441246, + 0.050586216151714325, + -0.06921441853046417, + -0.09290610253810883, + -0.029016582295298576, + 0.012191740795969963, + -0.018572300672531128, + 0.06368248164653778, + 0.053111325949430466, + 0.007641030475497246, + 0.0381646454334259, + -0.07638256251811981, + 0.007735195569694042, + -0.11101382225751877, + -0.051872946321964264, + -0.016163796186447144, + -0.040560003370046616, + -0.021449659019708633, + 0.07260923087596893, + 0.012661389075219631, + 0.04406234622001648, + -0.030989903956651688, + -0.07271388918161392, + -0.06864629685878754, + 0.05229887366294861, + 0.06854039430618286, + 0.0027720890939235687, + 0.032364506274461746, + 0.06306475400924683, + -0.0015725692501291633, + 0.04637237638235092, + 0.07249733060598373, + 0.08299090713262558, + -0.020934831351041794, + 0.009450020268559456, + -0.0701339840888977, + 0.1035202294588089, + 0.07218052446842194, + -0.07887984812259674, + -0.08870985358953476, + -0.0490020290017128, + -0.06473680585622787, + 0.023912271484732628, + -0.022393954917788506, + 0.01675771176815033, + 0.03506441041827202, + 0.009061263874173164, + -0.10205816477537155, + -0.0841464027762413, + 0.08850695192813873, + -0.055125847458839417, + -0.0012489210348576307, + -0.0738770142197609, + 0.03230364993214607, + 0.10851822793483734, + 0.02782110497355461, + -0.030705278739333153, + -0.010481758043169975, + 0.041074901819229126, + -0.022446414455771446, + 0.01784534752368927, + 0.025507211685180664, + 0.045900341123342514, + -0.0955275446176529, + 0.0034386366605758667, + -0.06259236484766006, + 0.054756324738264084, + -0.055079083889722824, + 0.12476056814193726, + 0.016941087320446968, + -0.05011047050356865, + -0.09257613122463226, + 0.06569737941026688, + -0.01717977412045002, + 0.05570942163467407, + 0.02985534630715847, + 0.059644948691129684, + 0.022495320066809654, + -0.10366769880056381, + 0.10545758903026581, + 0.042949795722961426, + -0.0459798239171505, + -0.08494843542575836, + -0.05034906417131424, + -0.0250820592045784, + 0.030237583443522453, + 0.02807774394750595, + -0.05646726116538048, + -0.006900464650243521, + 0.005302296485751867, + -0.01282959058880806, + 0.06398545205593109, + 0.13197055459022522, + 0.06530894339084625, + -0.11476507037878036 + ] + }, + "p244_328.wav": { + "name": "p244", + "embedding": [ + 0.05617386847734451, + 0.07904292643070221, + -0.05768284201622009, + 0.01280163787305355, + -0.01526748575270176, + 0.0485241636633873, + -0.15064625442028046, + 0.10934114456176758, + -0.03235384821891785, + 0.1413254737854004, + -0.04893331974744797, + 0.10392957925796509, + 0.00040120165795087814, + -0.14071737229824066, + -0.03232470527291298, + 0.0321141853928566, + -0.0015894435346126556, + -0.011904029175639153, + -0.011431677266955376, + -0.021638354286551476, + 0.06593276560306549, + 0.03981903940439224, + 0.0029544932767748833, + -0.018907058984041214, + 0.001344342716038227, + 0.06283427029848099, + 0.007014612667262554, + 0.005726813338696957, + -0.027804411947727203, + -0.01787494495511055, + 0.003961613401770592, + 0.10440093278884888, + -0.013393338769674301, + 0.014731412753462791, + 0.02829013019800186, + 0.008674138225615025, + -0.026389606297016144, + -0.08025700598955154, + 0.0073259854689240456, + 0.007017776370048523, + -0.02491014450788498, + 0.07158514857292175, + 0.018068892881274223, + -0.009878246113657951, + 0.04825524240732193, + -0.05671892687678337, + -0.02168121188879013, + -0.03901250660419464, + -0.07670150697231293, + 0.15379369258880615, + 0.08683139830827713, + 0.05515015125274658, + -0.08740255981683731, + -0.01735696569085121, + 0.09593777358531952, + 0.02081870101392269, + -0.05083323270082474, + -0.04623928293585777, + 0.024533364921808243, + 0.16087546944618225, + -0.011430121958255768, + -0.0456274151802063, + 0.04772263020277023, + 0.0976860374212265, + 0.00822538137435913, + 0.04963439702987671, + 0.11910323798656464, + 0.0733649879693985, + 0.0013680141419172287, + 0.009420438669621944, + 0.006742628291249275, + 0.09184914827346802, + 0.0413745641708374, + -0.04767830669879913, + 0.035659365355968475, + -0.02246152237057686, + -0.03310563415288925, + -0.019495779648423195, + -0.025863494724035263, + -0.06216835603117943, + -0.008380716666579247, + 0.0034364003222435713, + 0.019272930920124054, + 0.049597930163145065, + -0.05142837390303612, + -0.00502572488039732, + 0.04930359125137329, + -0.08180411159992218, + 0.03782174736261368, + 0.04454237222671509, + 0.018986109644174576, + 0.007577402517199516, + -0.07519514858722687, + -0.10205693542957306, + 0.06489294767379761, + 0.02303912863135338, + -0.008926928974688053, + 0.0840153843164444, + 0.0438527949154377, + 0.0008392501622438431, + 0.06922023743391037, + 0.01919633522629738, + -0.019355930387973785, + -0.027148349210619926, + -0.05884486436843872, + 0.10010324418544769, + 0.12095650285482407, + -0.037342801690101624, + 0.04775581508874893, + -0.07086178660392761, + 0.008903516456484795, + 0.05004771426320076, + -0.11418317258358002, + -0.07147450000047684, + 0.046104028820991516, + 0.02718237228691578, + 0.04102572798728943, + 0.11280116438865662, + 0.03383931145071983, + 0.027148520573973656, + 0.07994554191827774, + -0.0745246633887291, + -0.0801478698849678, + -0.09133970737457275, + 0.05698493495583534, + -0.07129272818565369, + 0.08108112215995789, + 0.05352579057216644, + 0.019657142460346222, + -0.02620226889848709, + 0.0318094827234745, + -0.006074388511478901, + -0.0001315223053097725, + -0.03856272250413895, + 0.006228663958609104, + 0.03147214278578758, + -0.04583292454481125, + -0.003433307632803917, + -0.0030966829508543015, + 0.008602485060691833, + 0.0375945046544075, + 0.012672887183725834, + 0.0012815799564123154, + -0.0956883430480957, + -0.0017617587000131607, + 0.05918446183204651, + 0.038543879985809326, + -0.04297349974513054, + -0.04934300109744072, + -0.023013826459646225, + -0.05868016183376312, + -0.006701629608869553, + -0.056717418134212494, + 0.07512792199850082, + 0.04180514067411423, + 0.04520123079419136, + 0.09287647902965546, + -0.006895776838064194, + 0.017783477902412415, + -0.003460145089775324, + 0.02473307028412819, + 0.02298557572066784, + 0.03354668244719505, + -0.07770553976297379, + -0.07962100952863693, + -0.04650557041168213, + 0.0017606260953471065, + -0.024057237431406975, + 0.013286969624459743, + 0.02535199001431465, + 0.0076537225395441055, + 0.017590194940567017, + -0.09013740718364716, + 0.007999510504305363, + -0.12707996368408203, + -0.03398171067237854, + -0.021966902539134026, + -0.03939962014555931, + -0.0012892317026853561, + 0.08144719153642654, + 0.030042706057429314, + 0.017198117449879646, + -0.05104053393006325, + -0.05589691549539566, + -0.054754309356212616, + 0.05088431015610695, + 0.08637966215610504, + -0.015134629793465137, + -0.002071704715490341, + 0.012231019325554371, + 0.027255753055214882, + 0.014431443996727467, + 0.06546209752559662, + 0.08026807010173798, + -0.02532717026770115, + -0.009718581102788448, + -0.05980297923088074, + 0.1069805696606636, + 0.10707004368305206, + -0.0614449679851532, + -0.09145216643810272, + -0.04136540740728378, + -0.07436417043209076, + 0.00538298673927784, + -0.044389039278030396, + 0.008544267155230045, + 0.03614173084497452, + -0.04093204438686371, + -0.13392260670661926, + -0.09538638591766357, + 0.06791391968727112, + -0.02935994416475296, + -0.0032106838189065456, + -0.07973016798496246, + 0.0651625320315361, + 0.09330111742019653, + 0.011324265971779823, + -0.05224213749170303, + -0.025258494541049004, + 0.0014371015131473541, + -0.03626387566328049, + 0.0013702819123864174, + -0.005832750350236893, + 0.030596623197197914, + -0.12303905189037323, + 0.011951295658946037, + -0.0479188933968544, + 0.07796569168567657, + -0.08250056207180023, + 0.09229965507984161, + 0.00027545448392629623, + -0.0613454170525074, + -0.09219121932983398, + 0.04239840433001518, + 0.046963680535554886, + 0.036961205303668976, + -0.00227383803576231, + 0.05158303678035736, + 0.007124053314328194, + -0.11739473789930344, + 0.05927913635969162, + 0.062101248651742935, + 0.011960633099079132, + -0.09744171798229218, + -0.02750169299542904, + -0.0009344723075628281, + 0.05877801030874252, + -0.01584586128592491, + -0.03744545578956604, + -0.0023435503244400024, + 0.02005106210708618, + 0.023712754249572754, + 0.061332784593105316, + 0.09847626835107803, + 0.020485959947109222, + -0.11655662953853607 + ] + }, + "p244_048.wav": { + "name": "p244", + "embedding": [ + 0.04827209562063217, + 0.07733197510242462, + -0.003094793064519763, + 0.04265182465314865, + -0.04931697994470596, + 0.07825329899787903, + -0.13045519590377808, + 0.13008370995521545, + -0.05213911086320877, + 0.13751989603042603, + -0.08746270835399628, + 0.1242460161447525, + -0.019425880163908005, + -0.18289387226104736, + -0.044179804623126984, + 0.06216875836253166, + -0.01563127711415291, + -0.02073816768825054, + -0.0048699751496315, + 0.006337813567370176, + 0.05005989223718643, + 0.02714351937174797, + 0.04588029533624649, + 0.01888325996696949, + 0.014225313439965248, + 0.05118347331881523, + 0.010695486329495907, + 0.07697305828332901, + 0.037662725895643234, + -0.048459917306900024, + -0.03948194161057472, + 0.12638385593891144, + -0.04402773827314377, + 0.02371201291680336, + 0.05820462480187416, + 0.0047158473171293736, + -0.0040702433325350285, + -0.07582718133926392, + -0.015208657830953598, + -0.036827657371759415, + -0.048001714050769806, + 0.06616838276386261, + 0.018180236220359802, + -0.008400265127420425, + 0.039698801934719086, + 0.0044549996964633465, + -0.029463913291692734, + -0.0380723774433136, + -0.11143915355205536, + 0.12026453018188477, + 0.056759580969810486, + 0.011729151010513306, + -0.0793977826833725, + -0.07146266102790833, + 0.10772228240966797, + -0.014417052268981934, + -0.10487514734268188, + -0.03818989172577858, + 0.08424211293458939, + 0.18898943066596985, + -0.017520999535918236, + -0.030518971383571625, + 0.021288853138685226, + 0.10361947119235992, + 0.0527152344584465, + 0.1059795469045639, + 0.09200204908847809, + 0.09676412492990494, + 0.00929214246571064, + 0.03070054203271866, + 0.025073019787669182, + 0.08254441618919373, + 0.034201644361019135, + -0.006474196910858154, + 0.011831933632493019, + 0.012454196810722351, + -0.02525544911623001, + 0.02861812710762024, + -0.033858414739370346, + -0.012108471244573593, + -0.02703946642577648, + -0.001300246687605977, + 0.01257583498954773, + 0.011897867545485497, + -0.030838433653116226, + 0.05659656971693039, + 0.005704890005290508, + -0.013511136174201965, + 0.06260167807340622, + 0.019151829183101654, + -0.01630425825715065, + 0.05332048237323761, + -0.08144542574882507, + -0.10232388973236084, + 0.005137446336448193, + 0.0044280909933149815, + 0.009218962863087654, + 0.08582229912281036, + 0.028914859518408775, + -0.020744170993566513, + 0.1139017641544342, + 0.03861263766884804, + -0.0056467317044734955, + 0.04693478345870972, + -0.09190023690462112, + 0.11143511533737183, + 0.08087579905986786, + -0.009290654212236404, + 0.051562365144491196, + -0.06122512370347977, + 0.0812540128827095, + 0.08307251334190369, + -0.1430470496416092, + -0.06673327088356018, + 0.027310559526085854, + 0.016199221834540367, + -0.008983487263321877, + 0.11584265530109406, + -0.018362928181886673, + 0.02473014034330845, + 0.091159887611866, + -0.08273765444755554, + -0.05975021421909332, + -0.018027430400252342, + 0.04511408507823944, + -0.07047255337238312, + 0.05964837223291397, + 0.01350078172981739, + 0.0006645230459980667, + -0.011342974379658699, + 0.07541333138942719, + -0.017483746632933617, + -0.014441552571952343, + 0.04478956013917923, + -0.07441110908985138, + 0.02282283641397953, + -0.05053841695189476, + 0.0024701296351850033, + 0.054625071585178375, + 0.04182734340429306, + 0.055346667766571045, + 0.004719394259154797, + -0.030691489577293396, + -0.10647712647914886, + -0.014974161051213741, + 0.051886290311813354, + 0.080818310379982, + -0.0012216406175866723, + -0.04254882410168648, + -0.05467415973544121, + -0.057816725224256516, + 0.03811957687139511, + -0.008121978491544724, + 0.08739885687828064, + -0.00270849303342402, + 0.023016218096017838, + 0.0714796930551529, + 0.006914336234331131, + -0.001389464596286416, + -0.070253387093544, + -0.030554182827472687, + 0.006429283879697323, + 0.05303538218140602, + -0.0715801864862442, + -0.05467407405376434, + 0.016154427081346512, + 0.033158719539642334, + -0.042429156601428986, + 0.03310069441795349, + 0.04770341515541077, + 0.032174259424209595, + 0.04236266762018204, + -0.06367494910955429, + -0.00280338479205966, + -0.12100141495466232, + -0.06949446350336075, + -0.009603125043213367, + 0.007858033291995525, + -0.001059834728948772, + 0.0625513419508934, + 0.037704311311244965, + 0.04697214812040329, + 0.007810885552316904, + -0.06778083741664886, + -0.09864729642868042, + 0.062486808747053146, + 0.06209496408700943, + 0.023577526211738586, + 0.06678949296474457, + 0.045135557651519775, + -0.05043257400393486, + 0.07210192084312439, + 0.06486591696739197, + 0.09128132462501526, + -0.022669468075037003, + 0.012239282950758934, + -0.08310054242610931, + 0.08222278952598572, + 0.11855454742908478, + -0.09039004147052765, + -0.1022348403930664, + -0.016433820128440857, + -0.0805412083864212, + 0.05964312702417374, + -0.033202290534973145, + -0.017606928944587708, + 0.03513156622648239, + -0.03205867111682892, + -0.12043394148349762, + -0.08593438565731049, + 0.09556235373020172, + -0.07492953538894653, + -0.01863514631986618, + -0.07923662662506104, + 0.03670211881399155, + 0.0882929265499115, + 0.016785964369773865, + -0.019328579306602478, + -0.006718709133565426, + 0.06685979664325714, + -0.06807854771614075, + -0.019682439044117928, + 0.04808364808559418, + 1.0044197551906109e-05, + -0.11420659720897675, + 0.014631063677370548, + -0.06839814782142639, + 0.04320947080850601, + -0.05270499736070633, + 0.16021078824996948, + -0.01832277700304985, + -0.055416032671928406, + -0.0695975124835968, + 0.03730277344584465, + -0.012677269987761974, + 0.040440868586301804, + 0.03587840497493744, + 0.06559747457504272, + 0.014560209587216377, + -0.08525940775871277, + 0.13062810897827148, + 0.03711410611867905, + -0.040612734854221344, + -0.0745595246553421, + -0.04604172334074974, + -0.04146720468997955, + 0.015205984935164452, + -0.005205302499234676, + -0.08903783559799194, + -0.02617494761943817, + 0.02137882076203823, + -0.02170909382402897, + 0.052738163620233536, + 0.1374872624874115, + 0.05957169085741043, + -0.10747544467449188 + ] + }, + "p244_026.wav": { + "name": "p244", + "embedding": [ + 0.06586799025535583, + 0.11278679966926575, + 0.0049434844404459, + 0.028054434806108475, + -0.050383105874061584, + 0.060185957700014114, + -0.11728794127702713, + 0.14155426621437073, + -0.0459170788526535, + 0.13404732942581177, + -0.10389409959316254, + 0.11975269019603729, + -0.032792992889881134, + -0.16663172841072083, + -0.0439152866601944, + 0.04642602801322937, + -0.026820560917258263, + 0.004712419584393501, + -0.046308018267154694, + -0.03168323636054993, + 0.019950177520513535, + 0.045187026262283325, + 0.05844635143876076, + 0.016566717997193336, + 0.03047313541173935, + 0.0620131641626358, + -0.010942035354673862, + 0.05403365194797516, + 0.03414197266101837, + -0.053701892495155334, + -0.044500626623630524, + 0.11905394494533539, + -0.051627591252326965, + 0.012245481833815575, + 0.050309598445892334, + -0.007627889513969421, + -0.009441401809453964, + -0.0470849871635437, + -0.023912079632282257, + 0.00040835142135620117, + -0.04580874741077423, + 0.05982600152492523, + 0.017169905826449394, + -0.01894812285900116, + 0.07335232943296432, + 0.008407972753047943, + -0.021488133817911148, + -0.04493880271911621, + -0.10867172479629517, + 0.14045865833759308, + 0.05867236852645874, + -0.0006718453951179981, + -0.08618460595607758, + -0.05350463092327118, + 0.09918363392353058, + -0.04780343919992447, + -0.12267208844423294, + -0.030448067933321, + 0.07761223614215851, + 0.1502697616815567, + -0.029043741524219513, + -0.028298037126660347, + 0.02671806327998638, + 0.1055757999420166, + 0.05961158126592636, + 0.09839142858982086, + 0.08869531750679016, + 0.09445095807313919, + -0.028137894347310066, + 0.03457392752170563, + 0.04931679368019104, + 0.042325008660554886, + 0.04774358868598938, + -0.023446764796972275, + 0.009804775938391685, + -0.00511131901293993, + -0.008887168951332569, + 0.013712966814637184, + -0.014532960951328278, + -0.006879265420138836, + -0.027192190289497375, + 0.0052452050149440765, + -0.018263498321175575, + -0.0020943335257470608, + -0.054482102394104004, + 0.0717814564704895, + 0.020618127658963203, + 0.004537150729447603, + 0.07351469993591309, + 0.05744819715619087, + -0.009114952757954597, + 0.04616812244057655, + -0.05194506421685219, + -0.0707567036151886, + 0.002746155485510826, + -0.003859890392050147, + 0.00025226082652807236, + 0.0743798166513443, + 0.02977294661104679, + -0.008410993963479996, + 0.12026776373386383, + 0.0699431449174881, + 0.009360147640109062, + 0.03390972316265106, + -0.09845301508903503, + 0.12943825125694275, + 0.09846656024456024, + -0.019256005063652992, + 0.06757931411266327, + -0.02021576464176178, + 0.06509047001600266, + 0.07466380298137665, + -0.12672531604766846, + -0.04961514100432396, + 0.023249352350831032, + 0.005390803329646587, + 0.004474075045436621, + 0.08171842992305756, + -0.004117000848054886, + 0.022824615240097046, + 0.10177913308143616, + -0.07870312035083771, + -0.0565452016890049, + -0.019559189677238464, + 0.04730800539255142, + -0.0931725949048996, + 0.0495491698384285, + 0.05466557294130325, + -0.010689627379179, + -0.004761622287333012, + 0.09053339064121246, + -0.00405983766540885, + 0.0013721450231969357, + 0.028684459626674652, + -0.05138193070888519, + 0.010132534429430962, + -0.02009863778948784, + 0.00040217209607362747, + 0.053819164633750916, + 0.042085856199264526, + 0.05309782177209854, + -0.000862735090777278, + -0.0193669144064188, + -0.09966550767421722, + 0.004759381525218487, + 0.053793154656887054, + 0.06253529340028763, + -0.008933543227612972, + -0.01144277211278677, + -0.045943230390548706, + -0.06170273572206497, + 0.03640960901975632, + 0.0006338045932352543, + 0.07830873131752014, + -0.04069656506180763, + -0.0017511346377432346, + 0.11064109951257706, + 0.023758316412568092, + 0.0019833254627883434, + -0.06366121768951416, + -0.012429897673428059, + 0.005104259122163057, + 0.05324679985642433, + -0.07818473875522614, + -0.08689823746681213, + 0.00674787349998951, + 0.0329638235270977, + -0.01725333370268345, + 0.0686255618929863, + 0.05748320370912552, + -0.01090861577540636, + 0.04167197272181511, + -0.06881002336740494, + 0.023425288498401642, + -0.097846120595932, + -0.06627470254898071, + -0.018358347937464714, + -0.023377839475870132, + -0.010047231800854206, + 0.07810098677873611, + 0.03274979069828987, + 0.03823040425777435, + 0.01940709911286831, + -0.09928067773580551, + -0.08621026575565338, + 0.06613142788410187, + 0.065971240401268, + 0.004101244267076254, + 0.05681080371141434, + 0.0645536407828331, + -0.06128019839525223, + 0.0822572112083435, + 0.06855404376983643, + 0.07632607966661453, + -0.03120030090212822, + 0.01882569119334221, + -0.0711621642112732, + 0.0410422645509243, + 0.08664519339799881, + -0.11697583645582199, + -0.11304691433906555, + -0.046047408133745193, + -0.0542854480445385, + 0.04587730020284653, + -0.012150708585977554, + 0.006285725627094507, + 0.05040615424513817, + -0.023762140423059464, + -0.07985907793045044, + -0.11192364990711212, + 0.10189016163349152, + -0.060136765241622925, + -0.0045797983184456825, + -0.05888885632157326, + 0.03486146405339241, + 0.05931705981492996, + 0.018688436597585678, + -0.021912064403295517, + 0.003393254242837429, + 0.03480001538991928, + -0.05567473918199539, + -0.028087276965379715, + 0.054103415459394455, + 0.01772863045334816, + -0.09788274765014648, + 0.019465439021587372, + -0.08132140338420868, + 0.09603934735059738, + -0.04148917272686958, + 0.16371195018291473, + -0.004500369541347027, + -0.053607940673828125, + -0.07650648057460785, + 0.03987590968608856, + -0.03835117816925049, + 0.03776033967733383, + 0.041810162365436554, + 0.0628417506814003, + 0.016790427267551422, + -0.061725325882434845, + 0.09631823003292084, + 0.034476954489946365, + -0.05627333000302315, + -0.058845993131399155, + -0.04486531764268875, + -0.060280539095401764, + 0.01529710367321968, + 0.020937280729413033, + -0.09943728148937225, + -0.01247384399175644, + 0.0030751070007681847, + -0.02770974114537239, + 0.06942403316497803, + 0.13579750061035156, + 0.06446173042058945, + -0.1180371418595314 + ] + }, + "p244_085.wav": { + "name": "p244", + "embedding": [ + 0.018087055534124374, + 0.0933462604880333, + -0.0036630649119615555, + 0.0013941247016191483, + -0.001707153394818306, + 0.01125246286392212, + -0.143900066614151, + 0.054094523191452026, + -0.0603456124663353, + 0.1075640320777893, + -0.06990658491849899, + 0.056109458208084106, + -0.07267501205205917, + -0.1554218828678131, + -0.02299981564283371, + 0.024502132087945938, + 7.203221321105957e-05, + -0.012527445331215858, + -0.03593705594539642, + -0.010605812072753906, + 0.02705473266541958, + 0.0072975922375917435, + 0.05035639554262161, + -0.057835567742586136, + -0.04578536003828049, + 0.05118054896593094, + -0.007196454796940088, + 0.007599356584250927, + -0.0014428067952394485, + 0.02932841144502163, + 0.02643621899187565, + 0.061962079256772995, + 0.007674040272831917, + -0.02462301217019558, + 0.018094398081302643, + 0.04898426681756973, + -0.030484657734632492, + -0.039679307490587234, + -0.010059981606900692, + 0.024629417806863785, + -0.07595178484916687, + 0.024289939552545547, + 0.012777344323694706, + -0.035832587629556656, + 0.09996741265058517, + -0.05551682412624359, + -0.023658543825149536, + -0.010727426037192345, + -0.08434763550758362, + 0.08422692120075226, + 0.07921017706394196, + 0.039118826389312744, + -0.039305124431848526, + -0.012150153517723083, + 0.1050582230091095, + -0.022499412298202515, + -0.07330711930990219, + -0.07558267563581467, + 0.05910210311412811, + 0.11011790484189987, + -0.05361681059002876, + -0.03072173334658146, + 0.00934761855751276, + 0.03835664689540863, + 0.01825552247464657, + 0.07085765898227692, + 0.10325634479522705, + 0.026297535747289658, + -0.004400158300995827, + -0.03584076836705208, + 0.05724923685193062, + 0.06123337894678116, + -0.005622128024697304, + -0.05766342952847481, + 0.02699277736246586, + -0.008603029884397984, + -0.04304300248622894, + 0.03261411190032959, + 0.016424184665083885, + -0.03697900474071503, + -0.01802590861916542, + -0.050807561725378036, + -0.036922261118888855, + -0.013693712651729584, + -0.03206862509250641, + 0.0003787276800721884, + 0.06777765601873398, + -0.026665568351745605, + 0.07745389640331268, + 0.07400812208652496, + 0.006455200258642435, + 0.0296090729534626, + -0.014085926115512848, + -0.056382231414318085, + -0.002909161150455475, + 0.009341124445199966, + -0.02516353502869606, + 0.0503351166844368, + 0.017234181985259056, + 0.012665923684835434, + 0.047552742063999176, + 0.03175375610589981, + -0.007960866205394268, + 0.022750098258256912, + -0.1145852729678154, + 0.06509339064359665, + 0.0783756747841835, + -0.03670535981655121, + -0.005044805817306042, + -0.028172729536890984, + 0.007967358455061913, + 0.06971028447151184, + -0.01098247617483139, + -0.0416664183139801, + 0.047445230185985565, + 0.03468272462487221, + 0.045711714774370193, + 0.10030428320169449, + 0.032425347715616226, + -0.04412374272942543, + 0.12681105732917786, + -0.0804399847984314, + -0.106150783598423, + -0.06356216222047806, + 0.02112031728029251, + -0.06292861700057983, + 0.04266925901174545, + 0.0768735259771347, + 0.0052373274229466915, + -0.01824849843978882, + 0.06235845386981964, + 0.01196365151554346, + 0.00015286484267562628, + -0.04465065151453018, + -0.05017252638936043, + 0.03461996465921402, + -0.036610040813684464, + -0.034879498183727264, + 0.06972329318523407, + 0.055190056562423706, + 0.07166831195354462, + 0.02097162976861, + -0.004931293893605471, + -0.07623781263828278, + -0.008405450731515884, + 0.08921784162521362, + 0.007342057302594185, + -0.03738617151975632, + -0.01246339175850153, + -0.06843055784702301, + -0.03567283973097801, + 0.010461712256073952, + -0.07564270496368408, + 0.11346551775932312, + -0.0033607659861445427, + 0.015661735087633133, + 0.09067034721374512, + -0.04303101822733879, + 0.010769782587885857, + -0.030664116144180298, + -0.017958514392375946, + 0.0386456660926342, + 0.011988261714577675, + -0.11037346720695496, + -0.08271387219429016, + -0.09711509943008423, + 0.043262943625450134, + 0.03908117115497589, + -0.012103168293833733, + 0.029926935210824013, + -0.020721688866615295, + -0.01077366340905428, + -0.05128378048539162, + 0.07093960791826248, + -0.054347701370716095, + -0.03504074364900589, + -0.0441867932677269, + -0.05136359855532646, + 0.019310396164655685, + 0.08733035624027252, + -0.03214306756854057, + -0.028156131505966187, + -0.027446914464235306, + -0.12362004816532135, + -0.08885293453931808, + 0.016574662178754807, + 0.07487190514802933, + -0.010476477444171906, + 0.013593342155218124, + 0.016356026753783226, + -0.03763721138238907, + 0.024288944900035858, + 0.023187212646007538, + 0.09847237169742584, + -0.057714566588401794, + 0.003446787828579545, + -0.016983292996883392, + 0.011980373412370682, + 0.09920325875282288, + -0.06629854440689087, + -0.059505775570869446, + -0.05229927599430084, + -0.05217505991458893, + 0.0035718195140361786, + -0.052415888756513596, + -0.018414296209812164, + 0.016170214861631393, + -0.047011420130729675, + -0.09969283640384674, + -0.11133800446987152, + 0.05518141761422157, + 0.0028394125401973724, + -0.010484160855412483, + -0.06997545063495636, + 0.01673356629908085, + 0.006099766120314598, + 0.021040940657258034, + -0.0316634401679039, + 0.01940349116921425, + -0.0003433879464864731, + -0.035187605768442154, + -0.00431852089241147, + 0.019920406863093376, + 0.04871916398406029, + -0.022554144263267517, + 0.015205571427941322, + -0.06013894081115723, + 0.09862841665744781, + -0.0349789559841156, + 0.06779785454273224, + -0.004732479341328144, + -0.012840909883379936, + -0.04303565248847008, + 0.012043815106153488, + 0.002457635710015893, + 0.04344474524259567, + 0.0035958299413323402, + 0.0430680476129055, + -0.001043548807501793, + -0.06839619576931, + 0.06548592448234558, + 0.03918410837650299, + 0.030097827315330505, + -0.0629858747124672, + 0.03876311331987381, + -0.071984201669693, + -0.0004786290228366852, + -0.033461276441812515, + -0.049506548792123795, + 0.007829486392438412, + -0.02149169147014618, + 0.021478988230228424, + 0.03943754732608795, + 0.08372125029563904, + 0.008070766925811768, + -0.05953504890203476 + ] + }, + "p244_323.wav": { + "name": "p244", + "embedding": [ + 0.02871638536453247, + 0.051263488829135895, + -0.06377660483121872, + -0.0011825654655694962, + -0.062144167721271515, + 0.009119579568505287, + -0.09230530261993408, + 0.05599607899785042, + 0.010039747692644596, + 0.12691593170166016, + -0.03158995881676674, + 0.11866971850395203, + -0.01373649574816227, + -0.06472773104906082, + 0.035830430686473846, + 0.024272190406918526, + 0.0021013920195400715, + -0.032836731523275375, + 0.00861874409019947, + -0.07240842282772064, + 0.03786554932594299, + 0.03471728041768074, + 0.013183526694774628, + -0.05087427794933319, + 0.01974313333630562, + 0.08220608532428741, + -0.005121189635246992, + -0.032184090465307236, + -0.010909415781497955, + -0.07532564550638199, + -0.009868454188108444, + 0.056082457304000854, + -0.04622389376163483, + -0.023673072457313538, + 0.018023284152150154, + -0.016152994707226753, + -0.005786332301795483, + -0.021831970661878586, + 0.0301973894238472, + 0.04693290963768959, + -0.0706654042005539, + 0.086793452501297, + 0.027545075863599777, + -0.046459659934043884, + 0.015378075651824474, + -0.013875472359359264, + -0.03133957087993622, + 0.05000423640012741, + -0.04601828008890152, + 0.13840126991271973, + 0.05799878388643265, + 0.005497355945408344, + -0.045303866267204285, + -0.0010933764278888702, + 0.05176963657140732, + 0.029750416055321693, + -0.07023464888334274, + -0.03413277119398117, + -0.021266251802444458, + 0.04919935017824173, + -0.0023549627512693405, + -0.06728837639093399, + 0.053382910788059235, + 0.07895254343748093, + 0.0416635163128376, + -0.001432059332728386, + 0.06937859207391739, + 0.10092435777187347, + -0.022179771214723587, + -0.013597930781543255, + 0.05496983602643013, + 0.11263670772314072, + 0.057101696729660034, + -0.0059454431757330894, + 0.03954645246267319, + -0.009492919780313969, + -0.00903551746159792, + -0.055211760103702545, + -0.012809870764613152, + -0.05985936522483826, + -0.03533719480037689, + -0.030036769807338715, + 0.02666664496064186, + 0.06691686064004898, + -0.017516305670142174, + -0.005920063704252243, + 0.09066222608089447, + -0.048055559396743774, + 0.04691261798143387, + 0.014263049699366093, + 0.0005674464628100395, + 0.023161299526691437, + -0.09646491706371307, + -0.027800582349300385, + 0.02029002085328102, + -0.022283388301730156, + 0.06933422386646271, + 0.06327666342258453, + 0.030297348275780678, + 0.02270124852657318, + 0.07812336087226868, + 0.03223074972629547, + 0.005052454769611359, + -0.03579312935471535, + -0.04599575698375702, + 0.12966462969779968, + 0.10759195685386658, + -0.06264957040548325, + 0.015448414720594883, + 0.010730382055044174, + 0.02743333950638771, + -0.03560694307088852, + -0.09007301181554794, + -0.055008262395858765, + -0.02073560282588005, + 0.04592134803533554, + 0.0021925270557403564, + 0.11582744121551514, + 0.016268793493509293, + 0.06295105069875717, + 0.09980301558971405, + -0.03730154037475586, + -0.06772688031196594, + -0.03965190798044205, + 0.009277956560254097, + -0.10876169800758362, + 0.07391860336065292, + 0.06934487819671631, + 0.022319529205560684, + 0.03508362919092178, + 0.08821681886911392, + 0.0031576910987496376, + 0.022887010127305984, + -0.03740036115050316, + 0.005623174831271172, + 0.01935412362217903, + 0.018265677616000175, + 0.04518246278166771, + 0.0662398636341095, + 0.008614526130259037, + 0.11931255459785461, + 0.018186219036579132, + 0.017100248485803604, + -0.12548528611660004, + 0.055967703461647034, + 0.025920337066054344, + 0.014790941961109638, + -0.048439282923936844, + -0.03974846005439758, + 0.014888690784573555, + -0.06794696301221848, + -0.025159573182463646, + 0.0012388948816806078, + 0.05878271907567978, + -0.018764574080705643, + -0.014417821541428566, + 0.11121925711631775, + 0.029509639367461205, + 0.0007065150421112776, + 0.010009539313614368, + -0.03432059660553932, + -0.02066403068602085, + 0.05809623748064041, + -0.12603461742401123, + -0.09124049544334412, + -0.041157372295856476, + 0.021325435489416122, + 0.036489762365818024, + 0.04219236224889755, + 0.09379845857620239, + -0.021900057792663574, + 0.04154343158006668, + -0.01239454559981823, + -0.0066101509146392345, + -0.03764355182647705, + -0.04764707386493683, + -0.03731728345155716, + -0.07083473354578018, + -0.07130855321884155, + 0.06676249206066132, + -0.03487703204154968, + 0.07321414351463318, + -0.0342208668589592, + -0.023896537721157074, + -0.0660284161567688, + -0.002548346295952797, + 0.013067374937236309, + -0.05973179265856743, + 0.0015914635732769966, + 0.1021197959780693, + 0.014858659356832504, + -0.03718653321266174, + 0.023452315479516983, + 0.0683438777923584, + -0.0714542418718338, + -0.011024764738976955, + -0.05041978880763054, + 0.10450713336467743, + 0.06938096880912781, + -0.024714702740311623, + -0.02636539563536644, + -0.10218591243028641, + -0.05194422975182533, + 0.03712168335914612, + -0.040700528770685196, + 0.0009272522293031216, + 0.0009515304118394852, + -0.010160882025957108, + -0.055278852581977844, + -0.06971997767686844, + 0.03301675617694855, + -0.04334889352321625, + 0.004685009829699993, + -0.07197853922843933, + 0.006085403263568878, + 0.013866756111383438, + 0.06978773325681686, + -0.0544532835483551, + 0.045096561312675476, + 0.01829826831817627, + -0.013667093589901924, + 0.04202777519822121, + 0.0716504454612732, + 0.05905398726463318, + -0.028631076216697693, + -0.07850592583417892, + -0.0644499734044075, + 0.02972378209233284, + -0.04339110851287842, + 0.053262483328580856, + 0.02020193263888359, + -0.02496352419257164, + -0.05461408570408821, + 0.0017900094389915466, + -0.010763568803668022, + 0.0118790902197361, + 0.08973324298858643, + 0.06148537993431091, + 0.029789313673973083, + -0.04087475687265396, + 0.09612463414669037, + 0.0531892292201519, + 0.014539996162056923, + -0.06240740418434143, + -0.012929040938615799, + -0.020954158157110214, + 0.04648301750421524, + 0.06369830667972565, + -0.07293614745140076, + 0.0560353584587574, + 0.024033322930336, + 0.031354282051324844, + 0.052939482033252716, + 0.04367426782846451, + 0.07082176953554153, + -0.07048733532428741 + ] + }, + "p244_355.wav": { + "name": "p244", + "embedding": [ + 0.06036846339702606, + 0.08853242546319962, + -0.006428401451557875, + 0.0057867057621479034, + -0.05621178448200226, + 0.07643314450979233, + -0.14393797516822815, + 0.15075388550758362, + -0.04845606908202171, + 0.13624948263168335, + -0.05370578542351723, + 0.11401273310184479, + -0.017049454152584076, + -0.18980637192726135, + -0.037002988159656525, + 0.05715904384851456, + -0.07381679117679596, + -0.04442931339144707, + -0.059523701667785645, + -0.0323486290872097, + 0.0268989410251379, + 0.01874561980366707, + 0.0128057561814785, + 0.017308175563812256, + 0.030600521713495255, + 0.07107022404670715, + -0.007656680420041084, + 0.03900393098592758, + 0.002704054117202759, + -0.050151001662015915, + -0.015263024717569351, + 0.08578639477491379, + -0.052349597215652466, + 0.009188116528093815, + 0.055868931114673615, + -0.016971921548247337, + 0.0004109707660973072, + -0.06074458733201027, + -0.02889387682080269, + 0.014716987498104572, + -0.04133320227265358, + 0.09005272388458252, + 0.04280244931578636, + -0.0037300570402294397, + 0.027053333818912506, + 0.03978683054447174, + -0.006499607115983963, + -0.05823285132646561, + -0.10117165744304657, + 0.16214996576309204, + 0.07374725490808487, + -0.006576562765985727, + -0.06669057905673981, + -0.06315204501152039, + 0.10416731238365173, + -0.027336422353982925, + -0.127847820520401, + -0.044761914759874344, + 0.08030316978693008, + 0.15398317575454712, + -0.05999171733856201, + -0.03266638144850731, + 0.023023733869194984, + 0.1316802054643631, + 0.06947454065084457, + 0.09431891143321991, + 0.08449162542819977, + 0.11324270069599152, + -0.02958572842180729, + 0.014752449467778206, + 0.07405275851488113, + 0.05709080398082733, + 0.0714445561170578, + -0.001845009159296751, + 0.0357089638710022, + -0.004875649698078632, + 0.003105737268924713, + -0.01579306460916996, + -0.025587625801563263, + -0.004861369263380766, + -0.005901547148823738, + 0.021357715129852295, + 0.014941968023777008, + 0.03187756612896919, + -0.019702687859535217, + 0.0596734955906868, + 0.03226993978023529, + -0.01706724986433983, + 0.06491198390722275, + 0.04608175903558731, + 0.03139709308743477, + 0.07700126618146896, + -0.08459654450416565, + -0.08077813684940338, + 0.04145988076925278, + -0.0035000841598957777, + 0.03311444818973541, + 0.05329100042581558, + 0.037499383091926575, + -0.007407205179333687, + 0.11428084224462509, + 0.058987583965063095, + -0.02441546879708767, + 0.03157887980341911, + -0.10306955873966217, + 0.14112037420272827, + 0.07258675992488861, + -0.03568536043167114, + 0.04172355681657791, + -0.041546594351530075, + 0.07019535452127457, + 0.06077785789966583, + -0.13787710666656494, + -0.0791168212890625, + 0.032593343406915665, + 0.020355163142085075, + -0.03335819020867348, + 0.12284095585346222, + -0.011035183444619179, + 0.03483346849679947, + 0.10580459237098694, + -0.06588597595691681, + -0.03543132543563843, + -0.005835389252752066, + 0.04690001904964447, + -0.0812503919005394, + 0.051824286580085754, + 0.055925402790308, + -0.003960063215345144, + 0.02714613452553749, + 0.10642100870609283, + -0.001443480490706861, + -0.01698671653866768, + 0.008151775225996971, + -0.02514643967151642, + 0.027306247502565384, + -0.005876511801034212, + 0.002547395648434758, + 0.02831980213522911, + 0.03893304616212845, + 0.03358163684606552, + -0.0017246401403099298, + -0.0346517451107502, + -0.11204276233911514, + 0.018413864076137543, + 0.028104856610298157, + 0.0913316160440445, + -0.013658476993441582, + 0.00232383469119668, + -0.034915491938591, + -0.061004094779491425, + 0.0025341480504721403, + -0.009763648733496666, + 0.06943570077419281, + -0.021624647080898285, + -0.004388654604554176, + 0.1112128496170044, + 0.026822529733181, + 0.01602952927350998, + -0.043513745069503784, + -0.01502235233783722, + 0.022373944520950317, + 0.0614626482129097, + -0.0835481733083725, + -0.06088887155056, + -0.0020441864617168903, + 0.042370475828647614, + -0.01576180011034012, + 0.06601649522781372, + 0.04185749962925911, + 0.005543984472751617, + 0.01601308211684227, + -0.06310105323791504, + 0.028903983533382416, + -0.09743650257587433, + -0.06784515082836151, + 0.003060117596760392, + -0.025129593908786774, + -0.026015181094408035, + 0.066642627120018, + 0.013490845449268818, + 0.05782214552164078, + -0.02752104587852955, + -0.0952022522687912, + -0.07619073987007141, + 0.05597684532403946, + 0.08000271022319794, + -0.02649606764316559, + 0.036068618297576904, + 0.06840987503528595, + -0.018654316663742065, + 0.047797709703445435, + 0.06361024081707001, + 0.12446829676628113, + -0.03480725735425949, + 0.028284952044487, + -0.06907781958580017, + 0.0770389586687088, + 0.061118997633457184, + -0.08856939524412155, + -0.07044962048530579, + -0.010542751289904118, + -0.04937030002474785, + 0.020144402980804443, + -0.01816735789179802, + 0.017114227637648582, + 0.03734929859638214, + 0.0097791263833642, + -0.08579295128583908, + -0.0838615745306015, + 0.07927669584751129, + -0.0904659628868103, + 0.009595880284905434, + -0.08989790827035904, + 0.04700317978858948, + 0.10720080137252808, + 0.042399175465106964, + -0.023628637194633484, + -0.011450308375060558, + 0.034883882850408554, + -0.018237393349409103, + 0.004418144468218088, + 0.04620610177516937, + 0.03313702344894409, + -0.11405257135629654, + -0.011874860152602196, + -0.08303601294755936, + 0.04826189577579498, + -0.029718399047851562, + 0.15472456812858582, + 0.012197725474834442, + -0.04418008401989937, + -0.0826801210641861, + 0.01825789362192154, + -0.02464769408106804, + 0.0648951604962349, + 0.0428338497877121, + 0.07521780580282211, + 0.05374845862388611, + -0.03880413621664047, + 0.12024907767772675, + 0.04216542840003967, + -0.04555374011397362, + -0.067747101187706, + -0.040939636528491974, + -0.03998100757598877, + 0.023282814770936966, + 0.0054460447281599045, + -0.09071138501167297, + -0.020179126411676407, + 0.026966780424118042, + -0.029944490641355515, + 0.0648113340139389, + 0.13851043581962585, + 0.07271739840507507, + -0.11591905355453491 + ] + }, + "p244_293.wav": { + "name": "p244", + "embedding": [ + 0.018766077235341072, + 0.07832224667072296, + -0.01338904444128275, + 0.06080423295497894, + -0.0548609234392643, + 0.050576359033584595, + -0.09788424521684647, + 0.11394108831882477, + -0.056879106909036636, + 0.11803025007247925, + -0.10151873528957367, + 0.08068136870861053, + -0.08316683769226074, + -0.17655687034130096, + -0.01658007502555847, + 0.08558399975299835, + -0.03489235043525696, + -0.02801639586687088, + -0.03741428628563881, + -0.004323628731071949, + 0.023353835567831993, + 0.024913672357797623, + 0.013999580405652523, + 0.03661104664206505, + 0.005566709209233522, + 0.07210391759872437, + -0.020662488415837288, + 0.0316840298473835, + 0.009711146354675293, + -0.005394725129008293, + -0.03358791768550873, + 0.11052357405424118, + -0.034875884652137756, + 0.011503329500555992, + 0.06418995559215546, + 0.03379853069782257, + -0.024521518498659134, + -0.03241090103983879, + -0.006856228690594435, + -0.04489932954311371, + -0.10583367943763733, + 0.05011476203799248, + 0.024063870310783386, + 0.003499245271086693, + 0.052678219974040985, + 0.0156423207372427, + -0.03558489680290222, + -0.027634311467409134, + -0.1078028678894043, + 0.12505193054676056, + 0.07614916563034058, + -0.01134906429797411, + -0.05060739070177078, + -0.06302972882986069, + 0.11003569513559341, + -0.006011045537889004, + -0.13780753314495087, + -0.06591972708702087, + 0.11863414943218231, + 0.17017588019371033, + -0.022381220012903214, + -0.003695601597428322, + -0.0056387861259281635, + 0.1256171613931656, + 0.04616585373878479, + 0.11541697382926941, + 0.032799556851387024, + 0.1092979684472084, + 0.01792016252875328, + 0.009708814322948456, + 0.09480037540197372, + 0.039220839738845825, + 0.05978573113679886, + -0.0157419852912426, + -0.010820921510457993, + 0.016308126971125603, + -0.02257700264453888, + 0.03668336197733879, + -0.02355329319834709, + -0.01680375076830387, + -0.03980802744626999, + -0.027739854529500008, + -0.014905964024364948, + -0.03182728588581085, + 0.009705748409032822, + 0.045542094856500626, + 0.06020873785018921, + -0.00687247421592474, + 0.07128147780895233, + 0.037019360810518265, + -0.05557704344391823, + 0.06628328561782837, + -0.03983638435602188, + -0.04826798290014267, + -0.02397048845887184, + -0.0005372475134208798, + 0.012752880342304707, + 0.06341224908828735, + 0.03191596269607544, + -0.004981848411262035, + 0.11297659575939178, + 0.008063608780503273, + 0.03474205359816551, + 0.04326782375574112, + -0.10992805659770966, + 0.11436183750629425, + 0.05497283488512039, + -0.014645973220467567, + 0.03035632334649563, + -0.007069403771311045, + 0.06526973098516464, + 0.10979896038770676, + -0.1270352452993393, + -0.020149005576968193, + 0.01648905500769615, + -0.007942164316773415, + -0.037712834775447845, + 0.09686160087585449, + 0.0024537418503314257, + -0.006335014011710882, + 0.13672277331352234, + -0.10170070827007294, + -0.07488036155700684, + -0.012716513127088547, + 0.029769551008939743, + -0.08896783739328384, + 0.04051545262336731, + 0.04808410629630089, + -0.0030757482163608074, + 0.013942616991698742, + 0.08829846978187561, + -0.014227330684661865, + -0.009617168456315994, + 0.020743126049637794, + -0.0762581154704094, + 0.01839030720293522, + -0.05220619589090347, + 0.00865284912288189, + 0.08152864873409271, + 0.03222652152180672, + 0.05623181536793709, + -0.006721979938447475, + -0.01321941427886486, + -0.09449884295463562, + -0.007029630243778229, + 0.07050686329603195, + 0.06973870098590851, + 0.002110447734594345, + -0.005542682483792305, + -0.043368272483348846, + -0.07919786870479584, + 0.054487816989421844, + -0.022104062139987946, + 0.09615138918161392, + -0.0447135865688324, + -0.03454030677676201, + 0.1031801849603653, + 0.0011876635253429413, + -0.016548309475183487, + -0.11301251500844955, + -0.03576128929853439, + 0.0018747929716482759, + 0.044468630105257034, + -0.10457715392112732, + -0.06522348523139954, + 0.013756644912064075, + 0.05506196618080139, + -0.008104594424366951, + 0.026059618219733238, + 0.024717506021261215, + 0.01778505928814411, + 0.011430995538830757, + -0.04185657203197479, + 0.014964859932661057, + -0.09231160581111908, + -0.07081983983516693, + -0.0074061681516468525, + -0.038231849670410156, + 0.009655090980231762, + 0.05711817368865013, + 0.008274390362203121, + 0.004020174965262413, + 0.020683590322732925, + -0.09754687547683716, + -0.09733251482248306, + 0.07647679001092911, + 0.03809097409248352, + 0.003508695401251316, + 0.06882958859205246, + 0.06191876530647278, + -0.10502425581216812, + 0.04165640473365784, + 0.03898163139820099, + 0.1351521611213684, + -0.033675599843263626, + 0.0282076895236969, + -0.0727163627743721, + 0.044218823313713074, + 0.09947332739830017, + -0.10260143876075745, + -0.08041021227836609, + -0.04103296622633934, + -0.032291460782289505, + 0.07333236932754517, + -0.04375382140278816, + -0.02577655389904976, + 0.015982430428266525, + -0.036244653165340424, + -0.08553531765937805, + -0.0913504958152771, + 0.08446788787841797, + -0.05532671511173248, + -0.018455471843481064, + -0.0708339661359787, + 0.03648616001009941, + 0.028114615008234978, + 0.03032359853386879, + -0.01918690837919712, + 0.05045837536454201, + 0.0730222761631012, + -0.07147010415792465, + -0.017639808356761932, + 0.0766962543129921, + 0.001869450556114316, + -0.0802168995141983, + -0.03556222468614578, + -0.08752631396055222, + 0.08988158404827118, + -0.030184414237737656, + 0.15392524003982544, + -0.030985843390226364, + -0.04035087674856186, + -0.05721399188041687, + 0.02088957279920578, + -0.00838535651564598, + 0.04259791225194931, + 0.05062619224190712, + 0.07299064099788666, + 0.012801427394151688, + -0.015872951596975327, + 0.14752542972564697, + 0.011669939383864403, + -0.015471728518605232, + -0.02480458654463291, + -0.038634561002254486, + -0.0808815062046051, + -0.0224862489849329, + -0.012519699521362782, + -0.120182104408741, + -0.0019618342630565166, + 0.004150859545916319, + -0.022695783525705338, + 0.04961440712213516, + 0.12317359447479248, + 0.08003267645835876, + -0.07765915989875793 + ] + }, + "p244_193.wav": { + "name": "p244", + "embedding": [ + 0.028064658865332603, + 0.10093169659376144, + -0.0209024790674448, + 0.0005015037604607642, + -0.04624292626976967, + 0.07274523377418518, + -0.15114489197731018, + 0.11999926716089249, + -0.04301624372601509, + 0.15464086830615997, + -0.07388464361429214, + 0.09885291755199432, + -0.009067868813872337, + -0.19971846044063568, + -0.024177275598049164, + 0.02904629521071911, + -0.02677609771490097, + -0.013945994898676872, + -0.037669431418180466, + -0.025288552045822144, + 0.05819498747587204, + 0.0506451353430748, + -0.01479200180619955, + -0.05680122599005699, + 0.04410255327820778, + 0.049362678080797195, + 0.007612136658281088, + 0.019799187779426575, + -0.00015100942982826382, + -0.05961752310395241, + -0.03394631668925285, + 0.1318761557340622, + -0.035015612840652466, + 0.012703672051429749, + 0.048580244183540344, + -0.014072760939598083, + 0.0036075555253773928, + -0.05344409495592117, + 0.009733493439853191, + 0.038950033485889435, + -0.023327123373746872, + 0.07290294766426086, + 0.048989102244377136, + 0.03345615044236183, + 0.018166551366448402, + 0.05316765978932381, + 0.010791055858135223, + -0.06295697391033173, + -0.06711817532777786, + 0.19449837505817413, + 0.044383518397808075, + -0.02158026397228241, + -0.04870667681097984, + -0.06490049511194229, + 0.09780507534742355, + 0.01840827241539955, + -0.10608617961406708, + -0.053192123770713806, + 0.102013498544693, + 0.14631377160549164, + -0.02272331342101097, + -0.055770739912986755, + 0.018477950245141983, + 0.1361236423254013, + -0.0034078541211783886, + 0.089718759059906, + 0.06669244170188904, + 0.12168992310762405, + 0.0202292799949646, + 0.011864868924021721, + 0.04311855137348175, + 0.05122264847159386, + 0.017698725685477257, + -0.062245968729257584, + 0.04131901264190674, + -0.030735652893781662, + -0.01098595093935728, + 0.004761946387588978, + -0.029796747490763664, + -0.020606722682714462, + 0.019907385110855103, + 0.000877486658282578, + 0.005308923311531544, + 0.020342709496617317, + -0.040731605142354965, + 0.017835749313235283, + 0.04353313520550728, + -0.010599726811051369, + 0.094170942902565, + 0.03840005025267601, + 0.04946715012192726, + 0.04376824572682381, + -0.0874771773815155, + -0.09188377857208252, + 0.07096783816814423, + 0.016629032790660858, + 0.0019821543246507645, + 0.06621650606393814, + 0.05396273359656334, + -0.02276771329343319, + 0.12169624865055084, + 0.017844896763563156, + -0.018606580793857574, + 0.013554127886891365, + -0.10569509863853455, + 0.14705581963062286, + 0.08077208697795868, + -0.01915149949491024, + 0.047597579658031464, + -0.07196494936943054, + 0.07360904663801193, + 0.0430615171790123, + -0.15370124578475952, + -0.08593811094760895, + 0.04457654431462288, + 0.01647261157631874, + -0.04098517820239067, + 0.12814576923847198, + -0.01650349237024784, + 0.004972091410309076, + 0.09837710857391357, + -0.09899020940065384, + -0.0586339607834816, + -0.04442628473043442, + 0.029755819588899612, + -0.09374802559614182, + 0.04484346881508827, + 0.0703909620642662, + -0.03302557393908501, + 0.019055038690567017, + 0.07564608007669449, + -0.009183716028928757, + 0.034275613725185394, + -0.025118662044405937, + -0.017659621313214302, + 0.048619043081998825, + -0.020642878487706184, + 0.01947825588285923, + -0.006357635371387005, + 0.038111306726932526, + 0.06730303168296814, + -0.011889657005667686, + -0.04917293041944504, + -0.10561397671699524, + 0.023614857345819473, + 0.009614656679332256, + 0.055440161377191544, + -0.023745901882648468, + -0.004637076053768396, + -0.03961402550339699, + -0.07685063034296036, + 0.013602161779999733, + -0.022146614268422127, + 0.08944978564977646, + 0.02504526823759079, + -0.015570049174129963, + 0.12435919046401978, + 0.04165079444646835, + 0.003684479743242264, + -0.049653757363557816, + -0.044736072421073914, + 0.020284350961446762, + 0.019070114940404892, + -0.10015366226434708, + -0.04773537814617157, + -0.017175287008285522, + 0.00645119184628129, + -0.01676187291741371, + 0.03483615070581436, + 0.04950835928320885, + 0.029220538213849068, + 0.0433000773191452, + -0.07386346161365509, + 0.005387182347476482, + -0.08708079904317856, + -0.03846361115574837, + -0.008275208994746208, + -0.012573392130434513, + -0.051855187863111496, + 0.11334152519702911, + -0.011024225503206253, + 0.015157445333898067, + -0.044631943106651306, + -0.0408916138112545, + -0.04860717058181763, + 0.05073310807347298, + 0.07394257932901382, + -0.022264894098043442, + 0.026369821280241013, + 0.02444506250321865, + -0.011402787640690804, + 0.03376973047852516, + 0.0785791426897049, + 0.10599788278341293, + -0.015553602017462254, + 0.027493169531226158, + -0.06009837985038757, + 0.13035555183887482, + 0.049230996519327164, + -0.06425788998603821, + -0.08028513193130493, + -0.026675259694457054, + -0.06862812489271164, + 0.022149328142404556, + -0.023004727438092232, + 0.002290364122018218, + -0.007452433463186026, + 0.0032334483694285154, + -0.08550503104925156, + -0.06634517014026642, + 0.04706482216715813, + -0.06982442736625671, + -0.016020910814404488, + -0.10891351848840714, + 0.0779048353433609, + 0.11737146228551865, + 0.05526309460401535, + -0.048146817833185196, + -0.04920608177781105, + 0.04895175248384476, + -0.05627858266234398, + 0.01980765350162983, + 0.02313810959458351, + 0.04900076612830162, + -0.08923839032649994, + 0.01320543885231018, + -0.07215215265750885, + 0.04624795913696289, + -0.07483778148889542, + 0.13847589492797852, + 0.031741637736558914, + -0.07044603675603867, + -0.06914973258972168, + 0.06395974010229111, + -0.015005374327301979, + 0.031309694051742554, + 0.03386189788579941, + 0.04783611372113228, + 0.06502298265695572, + -0.07598915696144104, + 0.104585200548172, + 0.022739706560969353, + -0.005537805147469044, + -0.07495599240064621, + -0.04264640808105469, + -0.02485761232674122, + 0.046410996466875076, + 0.023422393947839737, + -0.11223297566175461, + -0.022592881694436073, + 0.057693783193826675, + 0.019227633252739906, + 0.08285953104496002, + 0.12196313589811325, + 0.045694947242736816, + -0.11441688239574432 + ] + }, + "p244_368.wav": { + "name": "p244", + "embedding": [ + 0.054597966372966766, + 0.06794026494026184, + -0.02768591418862343, + -0.005401697941124439, + -0.020188521593809128, + 0.04107090085744858, + -0.14340251684188843, + 0.12126179039478302, + -0.021215420216321945, + 0.10495319217443466, + -0.059717752039432526, + 0.09763114899396896, + -0.032423511147499084, + -0.152787446975708, + -0.03312711417675018, + 0.0368674211204052, + -0.02028288133442402, + -0.02517843246459961, + -0.027576742693781853, + -0.014677315019071102, + 0.0429673045873642, + 0.03135883808135986, + 0.002525127027183771, + -0.01153523102402687, + 0.004896932747215033, + 0.05532139539718628, + 0.00695518683642149, + 0.011402073316276073, + 0.014647096395492554, + 0.014217379502952099, + 0.005237075500190258, + 0.06142966076731682, + -0.024166006594896317, + 0.009274882264435291, + 0.05640403553843498, + 0.014400884509086609, + -0.024316739290952682, + -0.060479458421468735, + 0.0006956632132641971, + 0.024502307176589966, + -0.041442278772592545, + 0.07500746846199036, + 0.06557668745517731, + -0.022111516445875168, + 0.041771672666072845, + 0.0070436373353004456, + 0.005612244363874197, + -0.05346980690956116, + -0.10505198687314987, + 0.15771043300628662, + 0.053827062249183655, + 0.025785794481635094, + -0.06625185906887054, + -0.02419087290763855, + 0.09482318162918091, + 8.56202095746994e-05, + -0.08090624213218689, + -0.0659714862704277, + 0.06595274060964584, + 0.12809544801712036, + -0.0298458244651556, + -0.044891294091939926, + 0.023406565189361572, + 0.09892218559980392, + 0.0306496974080801, + 0.05206165462732315, + 0.11163072288036346, + 0.10073049366474152, + -0.017706627026200294, + 0.003945580683648586, + 0.057496510446071625, + 0.06304314732551575, + 0.012680932879447937, + -0.011091801337897778, + 0.011797195300459862, + -0.027157016098499298, + -0.011047573760151863, + 0.012354746460914612, + -0.0008024691487662494, + -0.04273931682109833, + -0.014057951048016548, + -0.001459690509364009, + -0.009018465876579285, + 0.05048226937651634, + -0.0195211973041296, + 0.049049124121665955, + 0.03578001260757446, + -0.02302272617816925, + 0.0659097284078598, + 0.03899890184402466, + -0.005676360335201025, + 0.017515873536467552, + -0.04500562697649002, + -0.08900042623281479, + 0.027018975466489792, + -0.005247652530670166, + 0.010233448818325996, + 0.064513199031353, + 0.03975391387939453, + 0.015497750602662563, + 0.10694428533315659, + 0.03259456902742386, + -0.017690710723400116, + 0.0008960801060311496, + -0.08283502608537674, + 0.12349831312894821, + 0.08296424150466919, + -0.028503989800810814, + 0.031295210123062134, + -0.07373412698507309, + 0.02208525501191616, + 0.05004064366221428, + -0.10610406845808029, + -0.052143897861242294, + 0.07557830214500427, + 0.03986836597323418, + 0.0187306459993124, + 0.12801772356033325, + 0.012325256131589413, + 0.0006934603443369269, + 0.10787783563137054, + -0.0833342894911766, + -0.06913228332996368, + -0.03961227834224701, + 0.04431707784533501, + -0.052155084908008575, + 0.05045519396662712, + 0.06766574084758759, + -0.014377645216882229, + -0.002127209212630987, + 0.06171921640634537, + -0.00032047121203504503, + -0.0026335555594414473, + -0.035901837050914764, + 0.01750933565199375, + 0.05526147410273552, + -0.01948964223265648, + -0.01272566244006157, + 0.02374565415084362, + 0.051132023334503174, + 0.04217388853430748, + 0.01760914921760559, + -0.05110933631658554, + -0.12104706466197968, + 0.002807683078572154, + 0.04644662141799927, + 0.07695146650075912, + -0.04856482893228531, + -0.02853672206401825, + -0.03597293794155121, + -0.04724053293466568, + -0.026257269084453583, + -0.016987793147563934, + 0.08190922439098358, + -0.006321170832961798, + 0.00892754178494215, + 0.08382084965705872, + 0.004374565090984106, + 0.01832118257880211, + -0.025459572672843933, + -0.027531318366527557, + 0.024592887610197067, + 0.015883151441812515, + -0.07838408648967743, + -0.074302077293396, + -0.03906022757291794, + 0.026572950184345245, + -0.012810841202735901, + 0.00791997741907835, + 0.013579031452536583, + 0.0035343915224075317, + 0.016205325722694397, + -0.08096267282962799, + 0.028728468343615532, + -0.10955439507961273, + -0.035989586263895035, + -0.010934676975011826, + -0.0073814066126942635, + 0.0007349936058744788, + 0.0874292254447937, + 0.0009223666856996715, + 0.04272165521979332, + -0.01941465586423874, + -0.07535108178853989, + -0.054687634110450745, + 0.052424073219299316, + 0.08294413983821869, + -0.023709189146757126, + 0.014289806596934795, + 0.035777926445007324, + -0.0030412874184548855, + 0.015678327530622482, + 0.033716361969709396, + 0.08050978928804398, + -0.040942296385765076, + -0.020942477509379387, + -0.027544483542442322, + 0.0814032331109047, + 0.07084417343139648, + -0.09136833250522614, + -0.048834603279829025, + -0.04359143227338791, + -0.045942436903715134, + -0.01427727472037077, + -0.04610138386487961, + 0.009285246022045612, + 0.0028468479868024588, + -0.026254139840602875, + -0.10221607983112335, + -0.090653195977211, + 0.02330595627427101, + -0.04653122276067734, + 0.01661672070622444, + -0.08013215661048889, + 0.058743562549352646, + 0.11125113815069199, + 0.01397441141307354, + -0.014740772545337677, + -0.02139434777200222, + -0.018331613391637802, + -0.03534567728638649, + -0.012891126796603203, + 0.013865387067198753, + 0.05214637145400047, + -0.0958641991019249, + -0.0034252412151545286, + -0.05333008989691734, + 0.061730869114398956, + -0.061814360320568085, + 0.11231162399053574, + 0.01744024083018303, + -0.04388999193906784, + -0.07586324214935303, + -0.0031678739469498396, + -0.004547739867120981, + 0.0561864972114563, + 0.011110684834420681, + 0.028143253177404404, + 0.026374276727437973, + -0.06230119988322258, + 0.09798835217952728, + 0.06055163964629173, + -0.025798462331295013, + -0.07412344217300415, + -0.01732182875275612, + -0.02169863134622574, + 0.03376752883195877, + 0.0015755556523799896, + -0.0434403195977211, + -0.021126046776771545, + 0.016976920887827873, + -0.0027252330910414457, + 0.05588299036026001, + 0.11567628383636475, + 0.034576695412397385, + -0.09895847737789154 + ] + }, + "p244_148.wav": { + "name": "p244", + "embedding": [ + 0.04248299449682236, + 0.1088084876537323, + -0.039898257702589035, + 0.016109680756926537, + -0.007761038839817047, + 0.032458849251270294, + -0.10358981043100357, + 0.11110831797122955, + -0.04506179690361023, + 0.13135957717895508, + -0.07696053385734558, + 0.10821495950222015, + -0.043233998119831085, + -0.11114148795604706, + -0.02046075649559498, + 0.057946763932704926, + -0.008570295758545399, + 0.026915019378066063, + 0.00514995539560914, + -0.008594631217420101, + 0.05259736627340317, + 0.022356022149324417, + 0.041673265397548676, + -0.04690439999103546, + -0.0031371526420116425, + 0.059676505625247955, + -0.012141656130552292, + -0.0055268798023462296, + 0.002419542521238327, + -0.02234533242881298, + -0.010623934678733349, + 0.06984658539295197, + 0.0016246447339653969, + 0.02020179107785225, + 0.05156949907541275, + 0.03143560141324997, + -0.02695651352405548, + -0.04271716624498367, + 0.012414712458848953, + -0.0036344260443001986, + -0.04752660542726517, + 0.0379205197095871, + 0.0074498895555734634, + -0.06874533742666245, + 0.060273632407188416, + -0.028537487611174583, + -0.02265193499624729, + 0.006309090182185173, + -0.04293375089764595, + 0.13157673180103302, + 0.0700802281498909, + 0.033397648483514786, + -0.07771100103855133, + -0.01575387641787529, + 0.09487232565879822, + 0.005112245678901672, + -0.08541784435510635, + -0.020819952711462975, + 0.0306388046592474, + 0.14434334635734558, + -0.012820703908801079, + -0.044141482561826706, + 0.03894544020295143, + 0.078412726521492, + 0.007539356593042612, + 0.07224211096763611, + 0.07755531370639801, + 0.0501728318631649, + 0.026598472148180008, + 0.015210765413939953, + 0.029122186824679375, + 0.09684719890356064, + 0.05640073120594025, + -0.03136436641216278, + -0.001794097712263465, + -0.028641223907470703, + -0.06381870806217194, + -0.006069047376513481, + -0.006458558142185211, + -0.07951106876134872, + -0.0599675327539444, + -0.04045707732439041, + 0.0038311833050101995, + -0.00022782199084758759, + -0.008839325979351997, + 0.006036813370883465, + 0.06356246769428253, + -0.058796174824237823, + 0.03489162400364876, + 0.06339679658412933, + 0.010602842085063457, + 0.00932422373443842, + -0.04932007938623428, + -0.10191045701503754, + 0.010955105535686016, + 0.011345273815095425, + 0.01914011687040329, + 0.05016087740659714, + 0.05357366055250168, + 0.02968147024512291, + 0.07375020533800125, + 0.03487242013216019, + 0.035464197397232056, + 0.0016346834599971771, + -0.08760132640600204, + 0.09856240451335907, + 0.11962580680847168, + -0.0428517609834671, + 0.035678066313266754, + -0.03504303842782974, + 0.03120984323322773, + 0.06372453272342682, + -0.10126155614852905, + -0.050504401326179504, + -0.006664739456027746, + 0.0156350489705801, + 0.0522531196475029, + 0.06485053151845932, + 0.043721262365579605, + 0.0033383150584995747, + 0.09240428358316422, + -0.09696812927722931, + -0.12102443724870682, + -0.08276250213384628, + 0.046721603721380234, + -0.07468682527542114, + 0.09312871098518372, + 0.06458370387554169, + 0.024062253534793854, + -0.007651632651686668, + 0.06311263144016266, + 0.013866707682609558, + 0.026757072657346725, + -0.029613759368658066, + -0.022419927641749382, + 0.0018990151584148407, + -0.08057676255702972, + 0.02023256942629814, + 0.0683978796005249, + 0.015799807384610176, + 0.074375681579113, + 0.032963573932647705, + 0.0141293965280056, + -0.07836262881755829, + -0.013821486383676529, + 0.0955047458410263, + 0.0025049839168787003, + -0.021450141444802284, + -0.0612109899520874, + -0.005396940279752016, + -0.060798950493335724, + 0.0039175283163785934, + -0.03677001968026161, + 0.07162518799304962, + 0.004333005752414465, + 0.038920190185308456, + 0.11667513847351074, + -0.02412485145032406, + -0.00836784765124321, + -0.04515838250517845, + -0.0004311520606279373, + 0.016081498935818672, + 0.016713464632630348, + -0.116643026471138, + -0.11761742830276489, + -0.04262144863605499, + 0.009450307115912437, + 0.015945205464959145, + 0.029861222952604294, + 0.054206930100917816, + -0.014322925359010696, + 0.016983643174171448, + -0.03505007177591324, + 0.022430334240198135, + -0.10759289562702179, + -0.07379721850156784, + -0.0471261665225029, + -0.07716687768697739, + 0.006430382374674082, + 0.08667804300785065, + 0.005794629920274019, + 0.013079619035124779, + -0.016471879556775093, + -0.07220794260501862, + -0.0874302014708519, + 0.03963758051395416, + 0.04099626466631889, + -0.012121981009840965, + 0.01696222834289074, + 0.03593946248292923, + -0.024275150150060654, + 0.012220092117786407, + 0.023516254499554634, + 0.09786400198936462, + -0.041868992149829865, + -0.015040406957268715, + -0.08167489618062973, + 0.050331830978393555, + 0.1317368447780609, + -0.08616477251052856, + -0.09435716271400452, + -0.1022263914346695, + -0.05445020645856857, + 0.02426890842616558, + -0.05544189363718033, + -0.011222044005990028, + 0.005908037535846233, + -0.05400668829679489, + -0.08300652354955673, + -0.11280298978090286, + 0.0708019807934761, + -0.02463448792695999, + -0.030180634930729866, + -0.04082821309566498, + 0.040906764566898346, + 0.0038041621446609497, + -0.0018810434266924858, + -0.06067786365747452, + 0.04300433024764061, + 0.0048789381980896, + -0.04923533648252487, + -0.01746589131653309, + 0.020950013771653175, + 0.0414959080517292, + -0.04940083250403404, + -0.005177237093448639, + -0.07816188782453537, + 0.08760306239128113, + -0.07669836282730103, + 0.12723694741725922, + -0.04411640390753746, + -0.06997726112604141, + -0.08404213190078735, + 0.014857415109872818, + 0.0036375648342072964, + 0.021724119782447815, + 0.04858018457889557, + 0.03941226750612259, + -0.009746450930833817, + -0.08930712938308716, + 0.0767572671175003, + 0.03971749171614647, + 0.03837615251541138, + -0.07917232811450958, + -0.04959459230303764, + -0.05392814055085182, + 0.002488921396434307, + -0.02051621675491333, + -0.050106726586818695, + 0.034129541367292404, + -0.03328149765729904, + 0.04441455379128456, + 0.06249994784593582, + 0.06472223252058029, + 0.019791193306446075, + -0.08799661695957184 + ] + }, + "p244_287.wav": { + "name": "p244", + "embedding": [ + 0.0692286342382431, + 0.05480683594942093, + 0.007684987038373947, + 0.0032945023849606514, + -0.02195264771580696, + 0.05035950988531113, + -0.14261296391487122, + 0.1083078533411026, + -0.03737542778253555, + 0.1022167056798935, + -0.06891612708568573, + 0.08420092612504959, + 0.005649595521390438, + -0.16731896996498108, + -0.05414462834596634, + 0.04770868644118309, + -0.04743783548474312, + -0.01798628829419613, + -0.05265462026000023, + -0.026190605014562607, + 0.015089110471308231, + 0.05945054441690445, + 0.040232300758361816, + -0.013521063141524792, + 0.03452802449464798, + 0.05620187520980835, + 0.009818429127335548, + 0.04042443260550499, + 0.0005402704700827599, + -0.04905647039413452, + -0.006263858638703823, + 0.09032385796308517, + -0.024130504578351974, + -0.015338076278567314, + 0.038439683616161346, + 0.002249504439532757, + 0.030774902552366257, + -0.08525492995977402, + -0.03178837522864342, + 0.026400890201330185, + -0.0451011136174202, + 0.08129338920116425, + 0.05663622170686722, + 0.0006870478391647339, + 0.023642301559448242, + 0.014209933578968048, + -0.0037164841778576374, + -0.07629619538784027, + -0.11188864707946777, + 0.17933812737464905, + 0.03267664462327957, + 0.032216623425483704, + -0.09039906412363052, + -0.04582812264561653, + 0.08925295621156693, + -0.01917594112455845, + -0.07608664780855179, + -0.04462350904941559, + 0.05636598914861679, + 0.1631850153207779, + -0.009876868687570095, + -0.0363830141723156, + 0.043847449123859406, + 0.10999936610460281, + 0.026485320180654526, + 0.04352160170674324, + 0.10503900051116943, + 0.08791948109865189, + 0.004083937965333462, + 0.022220395505428314, + 0.04441465437412262, + 0.048213113099336624, + 0.02719922550022602, + -0.02342405542731285, + 0.026014363393187523, + -0.013228056952357292, + -0.039156924933195114, + -0.01303048338741064, + -0.020297903567552567, + -0.01681068167090416, + 0.012318119406700134, + 0.015283848159015179, + 0.014192163944244385, + 0.042268432676792145, + -0.0550118088722229, + 0.04217224195599556, + 0.00210662093013525, + -0.012524041347205639, + 0.07037238776683807, + 0.04373300075531006, + 0.025661831721663475, + 0.014635907486081123, + -0.037032321095466614, + -0.08303970843553543, + 0.01293417438864708, + 0.017564896494150162, + 0.005596471950411797, + 0.036855876445770264, + 0.0346909798681736, + -0.04222099110484123, + 0.11262392997741699, + 0.01319817639887333, + -0.004733177833259106, + -0.004792144522070885, + -0.08267088234424591, + 0.0941539779305458, + 0.09530054032802582, + -0.003206122200936079, + 0.047448284924030304, + -0.04040597006678581, + 0.022858984768390656, + 0.06782518327236176, + -0.12642446160316467, + -0.07093212008476257, + 0.04961775243282318, + 0.019923804327845573, + 0.037647850811481476, + 0.11929202079772949, + 0.00948140025138855, + 0.029270555824041367, + 0.07347947359085083, + -0.07912205159664154, + -0.04406982287764549, + -0.0067990245297551155, + 0.0386674627661705, + -0.05977544188499451, + 0.03508898988366127, + 0.051611728966236115, + -0.004733145236968994, + -0.02855514921247959, + 0.06631622463464737, + -0.00045882631093263626, + 0.005783036816865206, + -0.039893604815006256, + 0.0017935745418071747, + 0.05008835345506668, + -0.013344003818929195, + -0.016096141189336777, + 0.032731786370277405, + 0.05889163166284561, + 0.01872183382511139, + 0.025728384032845497, + -0.0713554099202156, + -0.11876139044761658, + -0.01751829870045185, + 0.02349994331598282, + 0.06863129884004593, + -0.019667314365506172, + -0.025050390511751175, + -0.06488745659589767, + -0.01902407966554165, + 0.00878208503127098, + -0.010262690484523773, + 0.07641758024692535, + 0.02366775833070278, + -0.013284876942634583, + 0.09293458610773087, + -0.014687488786876202, + 0.017383567988872528, + -0.016538089141249657, + 0.0016597704961895943, + 0.020237665623426437, + 0.02548619918525219, + -0.025365207344293594, + -0.0640617087483406, + 0.007149113342165947, + 0.009432383812963963, + -0.011131688952445984, + 0.022257991135120392, + 0.01702532358467579, + 0.0013369610533118248, + 0.008878740482032299, + -0.08414817601442337, + 0.020464539527893066, + -0.08853347599506378, + -0.028630351647734642, + 0.03762521594762802, + -0.017337292432785034, + -0.0360490158200264, + 0.09711417555809021, + 0.036133892834186554, + 0.036103926599025726, + -0.03119988553225994, + -0.0778912901878357, + -0.03259140998125076, + 0.04367799311876297, + 0.06294777989387512, + -0.008116551674902439, + 0.0055156489834189415, + 0.015379343181848526, + 0.015287667512893677, + 0.05834120512008667, + 0.06027369573712349, + 0.053702905774116516, + -0.022857004776597023, + -0.03155399113893509, + -0.025409482419490814, + 0.10521921515464783, + 0.030779791995882988, + -0.06422463804483414, + -0.05962016433477402, + -0.004290957003831863, + -0.06072331964969635, + 0.02386871911585331, + 0.006661337800323963, + 0.035139523446559906, + 0.03961062803864479, + -0.018998555839061737, + -0.10254982858896255, + -0.07192068547010422, + 0.057048458606004715, + -0.07079260796308517, + -0.01409408263862133, + -0.055671386420726776, + 0.03869445621967316, + 0.0976174846291542, + 0.02797241508960724, + 0.01609788089990616, + -0.031307436525821686, + -0.00224253349006176, + -0.0715823769569397, + -0.02703169919550419, + 0.02031353861093521, + 0.024443984031677246, + -0.0876607820391655, + 0.013503563590347767, + -0.07867026329040527, + 0.06488778442144394, + -0.040746480226516724, + 0.11283106356859207, + 0.030320683494210243, + -0.06053103506565094, + -0.09321457892656326, + 0.008813604712486267, + -0.03633468225598335, + 0.0633057951927185, + 0.03598177060484886, + 0.03379935026168823, + 0.053377654403448105, + -0.06258979439735413, + 0.077357217669487, + 0.05837476626038551, + -0.04095661640167236, + -0.07174566388130188, + -0.04580726847052574, + -0.012428422458469868, + 0.03455574810504913, + -0.00936194509267807, + -0.04435930773615837, + 0.008833218365907669, + 0.03094535693526268, + -0.00499032624065876, + 0.06910305470228195, + 0.10018431395292282, + 0.04017564281821251, + -0.10175991803407669 + ] + }, + "p244_177.wav": { + "name": "p244", + "embedding": [ + 0.044507335871458054, + 0.10290037840604782, + -0.01942838914692402, + 0.0063907690346241, + -0.04126619175076485, + 0.0843627005815506, + -0.1418745219707489, + 0.14350973069667816, + -0.04559346288442612, + 0.15234117209911346, + -0.04654005169868469, + 0.11439628154039383, + -0.01790357381105423, + -0.18213427066802979, + -0.044224731624126434, + 0.042119164019823074, + -0.07358305901288986, + -0.038187477737665176, + -0.058632660657167435, + -0.017521066591143608, + 0.0413493886590004, + 0.02630498819053173, + 0.0078112343326210976, + -0.0012402207357808948, + 0.014448297210037708, + 0.06487567722797394, + -0.011467904783785343, + 0.04016463831067085, + 0.007768734358251095, + -0.07167845964431763, + -0.02149045094847679, + 0.10485772788524628, + -0.058698564767837524, + 0.03315238654613495, + 0.05382955074310303, + -0.022961340844631195, + -0.003142670262604952, + -0.04328037425875664, + -0.014102445915341377, + 0.015298848040401936, + -0.028260469436645508, + 0.08367998152971268, + 0.0210939422249794, + 0.009135067462921143, + 0.03220939636230469, + 0.02343090809881687, + -0.01149408146739006, + -0.04386613145470619, + -0.08241796493530273, + 0.16499371826648712, + 0.08151083439588547, + -0.020411022007465363, + -0.06182187795639038, + -0.0674542784690857, + 0.08925721794366837, + -0.026139482855796814, + -0.13917896151542664, + -0.044697415083646774, + 0.0769345611333847, + 0.15594087541103363, + -0.03628110885620117, + -0.03648683428764343, + 0.026295984163880348, + 0.13706699013710022, + 0.060307685285806656, + 0.09352603554725647, + 0.08576934039592743, + 0.10748005658388138, + -0.025145884603261948, + 0.011413290165364742, + 0.05874883010983467, + 0.05749337002635002, + 0.07069246470928192, + -0.007783948909491301, + 0.051094770431518555, + -0.019684571772813797, + 0.006331183481961489, + -0.020142074674367905, + -0.03404755890369415, + -0.015640851110219955, + -0.006409103516489267, + 0.024741489440202713, + 0.0010743311140686274, + 0.046937912702560425, + -0.019743602722883224, + 0.044876035302877426, + 0.036132004112005234, + -0.025616612285375595, + 0.0575033463537693, + 0.06666213274002075, + 0.05305125191807747, + 0.07089225202798843, + -0.08957815170288086, + -0.08050308376550674, + 0.04896273463964462, + -4.942466694046743e-05, + 0.029679100960493088, + 0.0570414699614048, + 0.037622272968292236, + -0.005926609970629215, + 0.10246354341506958, + 0.04696955159306526, + -0.025673234835267067, + 0.016343584284186363, + -0.10917592793703079, + 0.14109067618846893, + 0.07756783068180084, + -0.034430764615535736, + 0.03604024648666382, + -0.04463666304945946, + 0.06836666911840439, + 0.05606304481625557, + -0.12919269502162933, + -0.0906955748796463, + 0.03903983160853386, + 0.0145482262596488, + -0.03145833685994148, + 0.1191861629486084, + 0.009720953181385994, + 0.03448380529880524, + 0.09203238785266876, + -0.07754082977771759, + -0.04164496436715126, + -0.019547145813703537, + 0.04328896850347519, + -0.08834540843963623, + 0.05817221850156784, + 0.04665100574493408, + -0.0032242448069155216, + 0.01575862616300583, + 0.1058458685874939, + -0.0060029043816030025, + 0.0041887154802680016, + 0.005531563889235258, + -0.03112679347395897, + 0.02468976378440857, + -0.013656284660100937, + 0.010801400989294052, + 0.005599747411906719, + 0.02738834358751774, + 0.05051258206367493, + -0.017434172332286835, + -0.03983341529965401, + -0.10948289185762405, + 0.013040440157055855, + 0.03244007006287575, + 0.07351240515708923, + -0.015346869826316833, + -0.0029499991796910763, + -0.015452703461050987, + -0.05347593128681183, + 0.009149023331701756, + -0.028586266562342644, + 0.06400436908006668, + -0.011156049557030201, + -0.01872202195227146, + 0.11995216459035873, + 0.023755474016070366, + 0.004615433514118195, + -0.04865787923336029, + -0.01536521129310131, + 0.015331385657191277, + 0.062423255294561386, + -0.0918792113661766, + -0.06155911833047867, + 0.0020905390847474337, + 0.033234383910894394, + 0.0048028877936303616, + 0.07626350224018097, + 0.06587320566177368, + 0.005603136960417032, + 0.023449789732694626, + -0.06388477981090546, + 0.010032905265688896, + -0.09658244252204895, + -0.07583260536193848, + -0.011855741031467915, + -0.03673208877444267, + -0.026649339124560356, + 0.07699368894100189, + 0.010135439224541187, + 0.04810210317373276, + -0.03279845789074898, + -0.07675309479236603, + -0.07960840314626694, + 0.0640387237071991, + 0.07321665436029434, + -0.02039494179189205, + 0.03280410170555115, + 0.062203727662563324, + -0.0169824231415987, + 0.04802972823381424, + 0.06645660847425461, + 0.11753946542739868, + -0.04872111603617668, + 0.025700999423861504, + -0.08670076727867126, + 0.07631438970565796, + 0.07487630099058151, + -0.08698824793100357, + -0.0757039412856102, + -0.00127976736985147, + -0.056065235286951065, + 0.010733071714639664, + -0.038011085242033005, + 0.016188420355319977, + 0.04787304252386093, + -0.00043989234836772084, + -0.09895528852939606, + -0.08916385471820831, + 0.09480084478855133, + -0.0960225835442543, + 0.008184118196368217, + -0.08192850649356842, + 0.053381916135549545, + 0.09574402123689651, + 0.04957319051027298, + -0.05337437987327576, + -0.005033590365201235, + 0.04659406840801239, + -0.01844211108982563, + 0.011635253205895424, + 0.039850831031799316, + 0.04237517714500427, + -0.10864727199077606, + -0.008472432382404804, + -0.0758974552154541, + 0.03537415713071823, + -0.056284770369529724, + 0.14548859000205994, + 0.005222897510975599, + -0.06317712366580963, + -0.08173328638076782, + 0.041449468582868576, + -0.02393939159810543, + 0.053023483604192734, + 0.030388472601771355, + 0.08063406497240067, + 0.05251232534646988, + -0.06138286367058754, + 0.11442851275205612, + 0.03890982270240784, + -0.03311581537127495, + -0.08304301649332047, + -0.04845770448446274, + -0.0363117940723896, + 0.042048197239637375, + 0.021497942507267, + -0.09967577457427979, + -0.016620216891169548, + 0.024843836203217506, + -0.01707850955426693, + 0.07017605006694794, + 0.13972100615501404, + 0.060311540961265564, + -0.13035288453102112 + ] + }, + "p244_263.wav": { + "name": "p244", + "embedding": [ + 0.04128599539399147, + 0.07598605751991272, + -0.01703360117971897, + 0.02478514425456524, + -0.06335717439651489, + 0.08377527445554733, + -0.12763366103172302, + 0.11426429450511932, + -0.06585008651018143, + 0.130933940410614, + -0.07471145689487457, + 0.09078354388475418, + -0.03528660908341408, + -0.18902921676635742, + -0.04560801386833191, + 0.059346042573451996, + -0.07185767590999603, + -0.04309976100921631, + -0.07151428610086441, + -0.017230043187737465, + 0.029046662151813507, + 0.02187749184668064, + 0.003815083298832178, + 0.0077848127111792564, + 0.038880445063114166, + 0.05359562486410141, + -0.00587601400911808, + 0.03737001121044159, + 0.010253438726067543, + -0.022297155112028122, + -0.021236151456832886, + 0.11117593199014664, + -0.04131752997636795, + 0.009576773270964622, + 0.05776389688253403, + 0.015924660488963127, + 0.0037651374004781246, + -0.06612217426300049, + -0.030195903033018112, + 0.012611115351319313, + -0.06276153773069382, + 0.076931893825531, + 0.05328954756259918, + -0.0023592787329107523, + 0.02656152844429016, + 0.025806717574596405, + -0.023553449660539627, + -0.06257037818431854, + -0.1065969318151474, + 0.16351750493049622, + 0.05849403142929077, + 0.0027965775225311518, + -0.06692974269390106, + -0.07347643375396729, + 0.12299235165119171, + -0.016869191080331802, + -0.1290738582611084, + -0.04897785931825638, + 0.09080550074577332, + 0.18446344137191772, + -0.051156461238861084, + -0.014012139290571213, + 0.007214481942355633, + 0.12299323081970215, + 0.05643310770392418, + 0.09896814823150635, + 0.07080000638961792, + 0.11513865739107132, + 0.014350561425089836, + 0.012689726427197456, + 0.09455596655607224, + 0.055783070623874664, + 0.05863562971353531, + -0.01641079969704151, + 0.021119805052876472, + 0.009808136150240898, + -0.024745317175984383, + 0.012815197929739952, + -0.034563515335321426, + 0.004890691488981247, + -0.013302087783813477, + 0.01238696463406086, + 0.025868277996778488, + 0.011318932287395, + -0.027005527168512344, + 0.05232429504394531, + 0.0227592121809721, + -0.01808975450694561, + 0.06424864381551743, + 0.03846590965986252, + -0.02277255989611149, + 0.06032843142747879, + -0.0597979873418808, + -0.09974275529384613, + 0.004211927764117718, + 0.004095435608178377, + 0.018116604536771774, + 0.053751543164253235, + 0.03604555130004883, + -0.018202871084213257, + 0.11016976833343506, + 0.04118771478533745, + -0.0010136824566870928, + 0.04419294372200966, + -0.10390569269657135, + 0.11609356105327606, + 0.07350269705057144, + -0.014546538703143597, + 0.035217300057411194, + -0.03119894675910473, + 0.07928471267223358, + 0.07784344255924225, + -0.1420353800058365, + -0.06783810257911682, + 0.05091366544365883, + 0.013413838110864162, + -0.02013235352933407, + 0.11179488897323608, + -0.017391007393598557, + 0.006360135972499847, + 0.10977926850318909, + -0.07860468327999115, + -0.035291098058223724, + -0.008562113158404827, + 0.043972499668598175, + -0.05718036741018295, + 0.026436736807227135, + 0.0379178524017334, + -0.014167545363307, + 0.009817534126341343, + 0.08710454404354095, + -0.005403401795774698, + -0.015400934033095837, + 0.015755411237478256, + -0.03670327365398407, + 0.05373668670654297, + -0.0224139504134655, + -0.004703362472355366, + 0.07648744434118271, + 0.05891390144824982, + 0.04091031104326248, + 0.0071042245253920555, + -0.04414096847176552, + -0.10686540603637695, + 0.0027092299424111843, + 0.04072807729244232, + 0.0961134284734726, + -0.009441401809453964, + 0.01563969813287258, + -0.057062502950429916, + -0.0801522433757782, + 0.037142105400562286, + -0.014690391719341278, + 0.10363982617855072, + -0.012510514818131924, + -0.018634168431162834, + 0.0925869345664978, + 0.0008132611401379108, + -0.01129884272813797, + -0.05854763835668564, + -0.015685176476836205, + 0.016685033217072487, + 0.05314243584871292, + -0.07423895597457886, + -0.05283540487289429, + 0.01611187681555748, + 0.03279174864292145, + -0.024663999676704407, + 0.028591422364115715, + 0.020020995289087296, + 0.014441312290728092, + 0.032588060945272446, + -0.06198543682694435, + 0.01629823073744774, + -0.11632714420557022, + -0.04015820100903511, + 0.007386847399175167, + -0.03576727211475372, + -0.02159692347049713, + 0.07925155758857727, + 0.017603199928998947, + 0.02251569740474224, + -0.0007731998339295387, + -0.10292688012123108, + -0.05028044059872627, + 0.08091562986373901, + 0.061586037278175354, + 0.0030805757269263268, + 0.045238859951496124, + 0.0681837946176529, + -0.021632235497236252, + 0.041553035378456116, + 0.07853146642446518, + 0.12201513350009918, + -0.01677505485713482, + 0.010314326733350754, + -0.0555390864610672, + 0.09369504451751709, + 0.04927774518728256, + -0.09229934960603714, + -0.07560437172651291, + -0.019447151571512222, + -0.04411613941192627, + 0.03195546194911003, + -0.027498751878738403, + 0.015715764835476875, + 0.008266070857644081, + -0.0093894237652421, + -0.0955914855003357, + -0.08007149398326874, + 0.07545959949493408, + -0.07774260640144348, + -0.015143567696213722, + -0.07147689908742905, + 0.03594396263360977, + 0.10226476192474365, + 0.03887157142162323, + -0.003692230675369501, + 0.021670151501893997, + 0.052344802767038345, + -0.0735076442360878, + -0.021128442138433456, + 0.04399508982896805, + -0.0030346475541591644, + -0.10147459805011749, + 0.0016169245354831219, + -0.07501290738582611, + 0.07262503355741501, + -0.0329170897603035, + 0.1617656946182251, + -0.008428012952208519, + -0.04238666221499443, + -0.06451249867677689, + 0.028731701895594597, + -0.03555263951420784, + 0.05893290787935257, + 0.0522683821618557, + 0.07954270392656326, + 0.04428446665406227, + -0.03126406669616699, + 0.13565810024738312, + 0.026286523789167404, + -0.03735680133104324, + -0.052023373544216156, + -0.04361040145158768, + -0.047741711139678955, + -0.0012032240629196167, + -0.007811387535184622, + -0.07947827130556107, + 0.002552179852500558, + 0.02337745577096939, + -0.03732242062687874, + 0.04848259314894676, + 0.13554911315441132, + 0.09589840471744537, + -0.10047736018896103 + ] + }, + "p244_294.wav": { + "name": "p244", + "embedding": [ + 0.05459770932793617, + 0.09692078828811646, + 0.034110262989997864, + -0.0064083002507686615, + -0.0016159266233444214, + 0.06098071485757828, + -0.0019242726266384125, + 0.029791438952088356, + 0.043669626116752625, + 0.03141648694872856, + -0.13712216913700104, + 0.015368815511465073, + -0.04275570809841156, + -0.09147221595048904, + 0.0021834485232830048, + 0.003703085705637932, + -0.04947929084300995, + 0.033372387290000916, + -0.08244379609823227, + -0.04842475801706314, + -0.02709442377090454, + 0.01844625733792782, + 0.04003070294857025, + -0.012804122641682625, + 0.008990863338112831, + -0.0015538651496171951, + -0.033967334777116776, + 0.0038456767797470093, + -0.004893500357866287, + -0.02232736349105835, + -0.017596619203686714, + 0.052045293152332306, + -0.020494090393185616, + 0.003293451853096485, + -0.012989339418709278, + -0.01611274853348732, + 0.04672421142458916, + -0.058031462132930756, + -0.07602435350418091, + 0.08422161638736725, + -0.05447268858551979, + 0.039856910705566406, + 0.036663204431533813, + -0.03148551285266876, + 0.06773682683706284, + 0.028575213626027107, + -0.06859086453914642, + -0.018293052911758423, + -0.0930774137377739, + 0.12601858377456665, + 0.019773390144109726, + 0.0027833152562379837, + -0.043309565633535385, + -0.0038204602897167206, + 0.08016970753669739, + -0.026515642181038857, + -0.05711697041988373, + -0.013333331793546677, + 0.03941173851490021, + 0.01232369989156723, + 0.02178972214460373, + -0.018486149609088898, + -0.0008278060704469681, + 0.029108721762895584, + 0.032468684017658234, + 0.003423718735575676, + 0.07366481423377991, + 0.0882650762796402, + -0.034370917826890945, + 0.027483398094773293, + 0.041749030351638794, + -0.015110151842236519, + 0.035660263150930405, + -0.024566374719142914, + -0.002788074780255556, + 0.006025985814630985, + -0.0012370645999908447, + -0.00061781145632267, + -0.011827313341200352, + 0.0045961979776620865, + 0.05302602797746658, + -0.008314095437526703, + 0.005373794585466385, + -0.028439205139875412, + -0.06640344113111496, + -0.018115470185875893, + 0.020426370203495026, + 0.10739146918058395, + 0.06657235324382782, + 0.030314920470118523, + -0.02405921369791031, + 0.05070885270833969, + -0.004432052373886108, + -0.06371951103210449, + -0.014773405157029629, + 0.02326551079750061, + -0.0334271639585495, + 0.010177874937653542, + 0.0128205306828022, + -0.033079661428928375, + 0.10438427329063416, + -0.012929296121001244, + 0.017319563776254654, + 0.003089758800342679, + -0.05310531705617905, + 0.026461442932486534, + 0.06254327297210693, + -0.007300850469619036, + 0.05399668216705322, + 0.05127112194895744, + 0.07161993533372879, + 0.054211489856243134, + -0.04744037240743637, + 0.02229412831366062, + -0.01912686601281166, + 0.02145194821059704, + 0.027147062122821808, + 0.04858610779047012, + -0.014697854407131672, + 0.00962826982140541, + 0.11358815431594849, + -0.05141371488571167, + 0.045244377106428146, + 0.0693792775273323, + -0.013311095535755157, + 0.015627872198820114, + -0.010845188051462173, + 0.01296083815395832, + 0.0010310275247320533, + -0.018267296254634857, + 0.032023265957832336, + 0.02748061530292034, + 0.016742747277021408, + -0.058643072843551636, + 0.007779669016599655, + 0.014255264773964882, + -0.011432375758886337, + -0.032026465982198715, + 0.06818370521068573, + 0.0639820247888565, + -0.004529863595962524, + 0.03531370311975479, + -0.08471833169460297, + -0.041573092341423035, + 0.033655498176813126, + -0.029919598251581192, + -0.008899053558707237, + 0.0473807118833065, + 0.0228391382843256, + -0.07020162791013718, + -0.01822015270590782, + 0.0824078917503357, + -0.024868350476026535, + 0.05708181858062744, + 0.05647536367177963, + -0.04861126095056534, + 0.045512981712818146, + 0.007925758138298988, + 0.0029540322721004486, + -0.059834592044353485, + -0.08462066203355789, + -0.017674196511507034, + 0.02872186154127121, + -0.02420901134610176, + -0.03424072265625, + 0.00038669025525450706, + -0.036492180079221725, + 0.018306896090507507, + 0.003338536247611046, + 0.06238124147057533, + -0.05255705863237381, + -0.02036033384501934, + -0.07615116238594055, + 0.006157362833619118, + -0.01492508128285408, + -0.07994262129068375, + 0.07392583042383194, + 0.010979946702718735, + 0.03220098838210106, + 0.09884827584028244, + -0.0093125831335783, + -0.024086738005280495, + -0.02919691987335682, + -0.08508110046386719, + 0.03622109815478325, + 0.0648600310087204, + 0.014950856566429138, + 0.0005343131488189101, + 0.0695033073425293, + 0.07146354019641876, + -0.043819110840559006, + 0.06294053792953491, + 0.006943363696336746, + 0.04776650294661522, + -0.03678154945373535, + 0.02134629525244236, + 0.05925159901380539, + 0.021911825984716415, + -0.014504063874483109, + -0.05298515781760216, + -0.0887821614742279, + -0.03641137108206749, + -0.01660066470503807, + 0.0271434523165226, + 0.04009388014674187, + 0.0022525531239807606, + 0.029352184385061264, + -0.01085197739303112, + -0.014458512887358665, + -0.08562184125185013, + -0.02121656946837902, + 0.01790078915655613, + -0.03444860503077507, + -0.009848552756011486, + 0.010793544352054596, + 0.014673493802547455, + 0.032983336597681046, + 0.016017448157072067, + 0.057917576283216476, + 0.0021679699420928955, + -0.024285046383738518, + -0.06794047355651855, + -0.0030190758407115936, + 0.016725914552807808, + 0.023800421506166458, + -0.016430489718914032, + -0.08820229768753052, + 0.06737106293439865, + 0.04852858558297157, + 0.05988413840532303, + 0.04306931421160698, + 0.01472826860845089, + -0.02986275963485241, + 0.056540168821811676, + -0.05957406759262085, + 0.015854213386774063, + 0.008490528911352158, + -0.0008817892521619797, + 0.05486217141151428, + -0.005926603451371193, + 0.04668886959552765, + 0.013959752395749092, + -0.04538290947675705, + -0.0045194728299975395, + 0.02113373950123787, + -0.06746774166822433, + -0.06198063865303993, + -0.0027016643434762955, + -0.03714124858379364, + 0.014241979457437992, + 0.01456441730260849, + 0.03408201038837433, + 0.026708047837018967, + 0.05251551792025566, + 0.05870480462908745, + -0.029065687209367752 + ] + }, + "p244_135.wav": { + "name": "p244", + "embedding": [ + 0.023152079433202744, + 0.09741730242967606, + -0.0059401304461061954, + -0.005204157903790474, + 0.03634214773774147, + 0.03535531088709831, + -0.15766490995883942, + 0.09233208000659943, + -0.028851093724370003, + 0.1348705291748047, + -0.02905436046421528, + 0.08282940089702606, + -0.026874873787164688, + -0.10395929962396622, + -0.020957835018634796, + 0.04384145140647888, + -0.03349773585796356, + 0.005120584741234779, + 0.004561613313853741, + -0.04811861738562584, + 0.029772508889436722, + 0.018856395035982132, + 0.038218241184949875, + -0.07529878616333008, + -0.023433564230799675, + 0.09012305736541748, + -0.015199529007077217, + 0.020292077213525772, + -0.016277670860290527, + -0.05402466654777527, + -0.00019069109112024307, + 0.07217034697532654, + -0.017931345850229263, + -0.005795499309897423, + 0.0464404821395874, + 0.010099080391228199, + -0.019779304042458534, + -0.00823136791586876, + 0.0235019251704216, + 0.043510861694812775, + -0.04943716526031494, + 0.07658616453409195, + 0.011271169409155846, + 0.0025685979053378105, + 0.07787811756134033, + -0.024300359189510345, + -0.008092183619737625, + 0.02601260505616665, + -0.03273119404911995, + 0.08107335865497589, + 0.07730451971292496, + -0.035827118903398514, + -0.04903008043766022, + 0.0060870107263326645, + 0.07299045473337173, + -0.004551445133984089, + -0.11414709687232971, + -0.006249286234378815, + 0.04710996150970459, + 0.10727240145206451, + -0.03295926749706268, + -0.03396943211555481, + 0.03118891641497612, + 0.08713142573833466, + 0.01949862390756607, + 0.08233736455440521, + 0.0864095538854599, + 0.05616934224963188, + -0.002649313537403941, + -0.06313405930995941, + -0.0016063060611486435, + 0.06908921897411346, + 0.03489881008863449, + -0.008097958751022816, + 0.043651033192873, + -0.04006895795464516, + -0.03346656262874603, + -0.03596054017543793, + -0.030230427160859108, + -0.05994865298271179, + -0.055788472294807434, + -0.018438048660755157, + -0.004831886850297451, + 0.0500052385032177, + 0.005923507735133171, + 0.004992896690964699, + 0.07878495007753372, + -0.034897416830062866, + 0.027589812874794006, + 0.06915529072284698, + 0.05788910388946533, + 0.02284521982073784, + -0.055793389678001404, + -0.03556106984615326, + 0.01592733897268772, + -0.0023698201403021812, + 0.04201061278581619, + 0.03706873580813408, + 0.03596065938472748, + 0.02524399757385254, + 0.074647456407547, + 0.029606565833091736, + -0.02129148691892624, + -0.012736542150378227, + -0.07534854114055634, + 0.07479290664196014, + 0.11114946752786636, + -0.03819539397954941, + 0.01701013371348381, + -0.04315700754523277, + 0.001974867656826973, + 0.005336157977581024, + -0.08184857666492462, + -0.033932819962501526, + 0.030174821615219116, + 0.05284665524959564, + 0.017482154071331024, + 0.10176478326320648, + 0.03601876273751259, + 0.007964854128658772, + 0.06117773801088333, + -0.02712995745241642, + -0.06513582170009613, + -0.08050549775362015, + 0.0726812481880188, + -0.0772937461733818, + 0.08192472159862518, + 0.0410720556974411, + 0.053981244564056396, + -5.988357588648796e-05, + 0.07112900912761688, + 0.03771350905299187, + 0.002997546922415495, + -0.03868882730603218, + -0.011506887152791023, + 0.017934169620275497, + -0.02998996153473854, + 0.06013557314872742, + 0.0058275917544960976, + 0.006400484591722488, + 0.08703646063804626, + 0.010072679258883, + 0.018033944070339203, + -0.054202016443014145, + -0.012071235105395317, + 0.032916150987148285, + 0.009730007499456406, + -0.018693195655941963, + -0.052879441529512405, + -0.013050433248281479, + -0.06234798580408096, + -0.023303914815187454, + -0.08574208617210388, + 0.07188475131988525, + -0.007570648565888405, + 0.00465709064155817, + 0.10330045223236084, + 0.0035562007687985897, + 0.0039936089888215065, + -0.0093446159735322, + 0.0004977677017450333, + -0.024095721542835236, + 0.03508252277970314, + -0.12515079975128174, + -0.09142842143774033, + -0.01919148489832878, + 0.02442741021513939, + 0.04023757204413414, + 0.06503134965896606, + 0.0722869336605072, + -0.004145444370806217, + 0.013488314114511013, + 0.011189866811037064, + -0.008618982508778572, + -0.07647408545017242, + -0.07290400564670563, + -0.049331702291965485, + -0.07295039296150208, + -0.03239937126636505, + 0.07065114378929138, + -0.003519633784890175, + 0.061097707599401474, + -0.02508750930428505, + -0.045581988990306854, + -0.08626221120357513, + 0.04207466170191765, + 0.06388793885707855, + -0.04866380617022514, + 0.014923077076673508, + 0.06266094744205475, + -0.014633476734161377, + 0.023118089884519577, + 0.0540110319852829, + 0.06507842242717743, + -0.036700256168842316, + 0.01881781406700611, + -0.10154832899570465, + 0.03728842735290527, + 0.1263507604598999, + -0.0640719011425972, + -0.06301351636648178, + -0.028203463181853294, + -0.073729507625103, + 0.01431583147495985, + -0.058322980999946594, + -0.015351168811321259, + 0.011649432592093945, + -0.0032535537611693144, + -0.09025150537490845, + -0.08877411484718323, + 0.05652223527431488, + -0.05885806307196617, + 0.005997309461236, + -0.043803319334983826, + 0.032793596386909485, + 0.013186916708946228, + 0.06229151040315628, + -0.06326690316200256, + 0.03381779044866562, + 0.052496038377285004, + -0.005334106273949146, + 0.04825032502412796, + 0.03551916778087616, + 0.06365902721881866, + -0.06620834767818451, + -0.0168315302580595, + -0.06659018993377686, + 0.060722533613443375, + -0.07018409669399261, + 0.0692947655916214, + 0.0461626760661602, + -0.057385947555303574, + -0.04328979551792145, + 0.023377705365419388, + -0.007375683635473251, + 0.03373037651181221, + 0.03742073103785515, + 0.05114341527223587, + 0.019233204424381256, + -0.040658656507730484, + 0.05962540581822395, + 0.01966499537229538, + 0.02538778819143772, + -0.05764186009764671, + -0.027959484606981277, + -0.04696515575051308, + 0.033016059547662735, + 0.047041065990924835, + -0.07674629986286163, + 0.0011832164600491524, + -0.006663663312792778, + 0.01351076178252697, + 0.03883802145719528, + 0.07107052206993103, + 0.019237473607063293, + -0.0993230864405632 + ] + }, + "p244_039.wav": { + "name": "p244", + "embedding": [ + 0.03452495485544205, + 0.09113936126232147, + -0.02807021513581276, + 0.027674861252307892, + -0.06901799887418747, + 0.07104932516813278, + -0.1240689754486084, + 0.13344720005989075, + -0.05678536742925644, + 0.12918883562088013, + -0.04733916372060776, + 0.1164083257317543, + -0.0435982346534729, + -0.17250755429267883, + -0.019068442285060883, + 0.0685286745429039, + -0.06407567858695984, + -0.0567045658826828, + -0.05430130660533905, + -0.024232761934399605, + 0.02634439244866371, + 0.027563832700252533, + 0.021898195147514343, + 0.0037842821329832077, + 0.023540113121271133, + 0.07967697083950043, + -0.0024690390564501286, + 0.03802308812737465, + 0.006210951134562492, + -0.05959038436412811, + -0.038175068795681, + 0.07783909887075424, + -0.055609963834285736, + 0.004352572839707136, + 0.044309139251708984, + -0.006673365831375122, + 0.007752086967229843, + -0.05395379662513733, + -0.024816643446683884, + 0.010710205882787704, + -0.048644691705703735, + 0.0851868987083435, + 0.028173040598630905, + -0.015676124021410942, + 0.02468530274927616, + 0.01629478484392166, + -0.017444442957639694, + -0.04212478548288345, + -0.10894104838371277, + 0.16576528549194336, + 0.07792654633522034, + -0.011281299404799938, + -0.052508577704429626, + -0.07379334419965744, + 0.10837060213088989, + -0.01277498435229063, + -0.12587250769138336, + -0.05935867875814438, + 0.0760241448879242, + 0.1493900716304779, + -0.04268559068441391, + -0.028354642912745476, + 0.0199174452573061, + 0.11805108189582825, + 0.0691637396812439, + 0.08714838325977325, + 0.06688728928565979, + 0.11302471160888672, + -0.016877448186278343, + 0.0058128125965595245, + 0.07747972011566162, + 0.07227548956871033, + 0.05270903557538986, + 0.01096506230533123, + 0.03515718877315521, + -0.0074975392781198025, + -0.007881204597651958, + 0.0007107113488018513, + -0.0194461140781641, + -0.028660684823989868, + -0.005686155520379543, + 0.0169783066958189, + 0.012060223147273064, + 0.022798454388976097, + -0.002281412947922945, + 0.06908160448074341, + 0.039669353514909744, + -0.01327459141612053, + 0.06779712438583374, + 0.027073048055171967, + 0.003198810387402773, + 0.07844610512256622, + -0.08185259997844696, + -0.06457537412643433, + 0.03036617487668991, + 0.005941013339906931, + 0.029900038614869118, + 0.05931316316127777, + 0.03459172695875168, + -0.007403201423585415, + 0.1252930611371994, + 0.04622042179107666, + -0.001258991425856948, + 0.03196042776107788, + -0.09170105308294296, + 0.14176511764526367, + 0.06982070207595825, + -0.031273163855075836, + 0.03707767277956009, + -0.034169696271419525, + 0.06605812907218933, + 0.06151140481233597, + -0.12980085611343384, + -0.08624441921710968, + 0.02376975491642952, + 0.007056825328618288, + -0.03618696331977844, + 0.12434963881969452, + -0.0011281119659543037, + 0.03457741439342499, + 0.12813995778560638, + -0.09511110186576843, + -0.053252480924129486, + -0.001085975207388401, + 0.04598922282457352, + -0.07676871865987778, + 0.04736027866601944, + 0.05796707049012184, + -0.011520478874444962, + 0.029647361487150192, + 0.096123106777668, + -0.014565447345376015, + 0.0005589481443166733, + 0.027220789343118668, + -0.047706518322229385, + 0.015413366258144379, + -0.024416249245405197, + -0.008328471332788467, + 0.061628419905900955, + 0.03454606607556343, + 0.0511992946267128, + -0.02460273541510105, + -0.027242150157690048, + -0.1334373950958252, + 0.019158165901899338, + 0.034600451588630676, + 0.08311831951141357, + -0.011632947251200676, + -0.008430896326899529, + -0.036042604595422745, + -0.07167571783065796, + 0.008893825113773346, + -0.004112382419407368, + 0.08552367985248566, + -0.03929881751537323, + -0.011441257782280445, + 0.10401059687137604, + 0.032531190663576126, + 0.001271229819394648, + -0.05946318060159683, + -0.04089515283703804, + 0.01465566921979189, + 0.049633849412202835, + -0.07746708393096924, + -0.07782280445098877, + -0.003218310885131359, + 0.04652273654937744, + -0.012186771258711815, + 0.06431117653846741, + 0.04941924661397934, + 0.022992730140686035, + 0.019034449011087418, + -0.05408584326505661, + 0.02870144695043564, + -0.07829972356557846, + -0.06670744717121124, + -0.005202499683946371, + -0.02171381749212742, + -0.03455350920557976, + 0.07468392699956894, + 0.006643473170697689, + 0.05565433204174042, + -0.024039601907134056, + -0.07702488452196121, + -0.08659431338310242, + 0.059704288840293884, + 0.05510610342025757, + -0.010910090990364552, + 0.04358004778623581, + 0.0703972578048706, + -0.02365177683532238, + 0.03980516642332077, + 0.05007283017039299, + 0.11998628824949265, + -0.03361207991838455, + 0.010733604431152344, + -0.06827697157859802, + 0.07469190657138824, + 0.068604975938797, + -0.09395161271095276, + -0.05628751218318939, + -0.022331485524773598, + -0.05472203344106674, + 0.037674590945243835, + -0.03950042277574539, + 0.00900814589112997, + 0.0321948304772377, + 0.0036626129876822233, + -0.09853214770555496, + -0.09387937188148499, + 0.08493678271770477, + -0.08031099289655685, + -0.00446568476036191, + -0.07738938182592392, + 0.04300074279308319, + 0.08873571455478668, + 0.053508080542087555, + -0.03370709717273712, + 0.00267464155331254, + 0.05076988786458969, + -0.0256606787443161, + 0.027654945850372314, + 0.07335919141769409, + 0.04329894483089447, + -0.09374304860830307, + -0.013861390762031078, + -0.08887840807437897, + 0.04297950863838196, + -0.0341179184615612, + 0.16169285774230957, + 0.0035016387701034546, + -0.036780983209609985, + -0.08410822600126266, + 0.03573472797870636, + -0.03151992708444595, + 0.0613817535340786, + 0.032926950603723526, + 0.07025118172168732, + 0.05510089918971062, + -0.045611269772052765, + 0.13286525011062622, + 0.04163186624646187, + -0.04257578402757645, + -0.06335237622261047, + -0.04410955682396889, + -0.051591657102108, + 0.038163717836141586, + 0.020653005689382553, + -0.09552693367004395, + -0.021972300484776497, + 0.022965526208281517, + -0.008364957757294178, + 0.0680304765701294, + 0.13970616459846497, + 0.07336626946926117, + -0.09822914004325867 + ] + }, + "p244_250.wav": { + "name": "p244", + "embedding": [ + 0.062431447207927704, + 0.1055077388882637, + 0.0719587653875351, + -0.0017626192420721054, + 0.01648172177374363, + 0.011706388555467129, + -0.0732860416173935, + 0.07602834701538086, + 0.046242982149124146, + 0.08620595932006836, + -0.10527466237545013, + 0.07213811576366425, + -0.058775804936885834, + -0.10755819082260132, + -0.07280032336711884, + 0.0035202298313379288, + -0.07658751308917999, + -0.008769907057285309, + -0.011892813257873058, + -0.03454851359128952, + 0.017723968252539635, + 0.002853741869330406, + 0.07499523460865021, + -0.023043876513838768, + -0.025650162249803543, + 0.04952001944184303, + 0.01879957504570484, + 0.02826358750462532, + 0.034655049443244934, + -0.04409731179475784, + 0.059410445392131805, + 0.018725212663412094, + 0.019333552569150925, + 0.03222040832042694, + 0.04541291669011116, + 0.015718013048171997, + 0.01366178598254919, + -0.012472366914153099, + -0.015246894210577011, + 0.05869060009717941, + -0.011923854239284992, + 0.049618229269981384, + 0.017274901270866394, + -0.05264103040099144, + 0.05863826721906662, + 0.033894263207912445, + -0.037105221301317215, + 0.0021170377731323242, + -0.10726907849311829, + 0.1230846494436264, + 0.021869661286473274, + 0.02329801581799984, + -0.06757653504610062, + -0.004025541245937347, + 0.07061650604009628, + -0.042555369436740875, + -0.08233536779880524, + 0.00034937169402837753, + 0.04897359758615494, + 0.05953141674399376, + -0.03580698370933533, + -0.05203752964735031, + -0.017815086990594864, + 0.045831747353076935, + 0.03294871747493744, + 0.012103233486413956, + 0.10486552119255066, + 0.08104012161493301, + -0.019803527742624283, + 0.029939714819192886, + 0.0404583178460598, + 0.016506722196936607, + 0.04867973178625107, + 0.009029091335833073, + 0.014505889266729355, + -0.03871307522058487, + -0.005139422602951527, + -0.00021542096510529518, + -0.004956761375069618, + -0.035853900015354156, + 0.015884365886449814, + -0.02970482036471367, + 0.012992695905268192, + 0.01892855390906334, + -0.031174639239907265, + 0.02334025874733925, + -0.0011029792949557304, + 0.021739188581705093, + 0.05173725634813309, + 0.043126001954078674, + 0.033411115407943726, + 0.04900289699435234, + -0.04000385105609894, + -0.09918032586574554, + -0.031840428709983826, + -0.05493808910250664, + 0.05054762214422226, + 0.022552907466888428, + 0.03326025605201721, + 0.010650456883013248, + 0.08386949449777603, + 0.036290764808654785, + -0.0348379984498024, + -0.014407012611627579, + -0.08405423164367676, + 0.040549520403146744, + 0.09424307942390442, + -0.010251492261886597, + -0.00920802727341652, + -0.011925606057047844, + 0.057332783937454224, + 0.05337955802679062, + -0.037124279886484146, + -0.023837216198444366, + 0.005821993574500084, + 0.05783270299434662, + 0.03503227233886719, + 0.07044202089309692, + -0.013608439825475216, + 0.02767532505095005, + 0.1217494085431099, + -0.03475397825241089, + 0.008493371307849884, + -0.020756468176841736, + -0.00910147838294506, + -0.03746757656335831, + 0.04849274456501007, + 0.017566323280334473, + 0.013705388642847538, + -0.015677576884627342, + 0.044619832187891006, + 0.017076361924409866, + -0.011637162417173386, + -0.0628896951675415, + -0.015701444819569588, + 0.04721507802605629, + -0.00780488969758153, + 0.014239276759326458, + 0.034589026123285294, + 0.080256886780262, + 0.027128536254167557, + 0.06867227703332901, + -0.05274093151092529, + -0.028290964663028717, + 0.028087947517633438, + 0.030750615522265434, + -0.004874279722571373, + -0.008929851464927197, + -0.07355612516403198, + -0.040170133113861084, + 0.040504783391952515, + 0.06173902004957199, + -0.023618973791599274, + 0.047443144023418427, + 0.012195669114589691, + 0.003977837041020393, + 0.09765516966581345, + -0.011126579716801643, + -0.01099430676549673, + -0.027726374566555023, + -0.06543842703104019, + -0.025217559188604355, + 0.017444688826799393, + -0.14914390444755554, + -0.04372129216790199, + -0.04174049198627472, + 0.014871444553136826, + 0.011410490609705448, + 0.020001566037535667, + 0.05797942355275154, + -0.033873897045850754, + 0.01121208444237709, + 0.012561148963868618, + -0.0008125659078359604, + -0.040627654641866684, + -0.09612931311130524, + 0.009742990136146545, + -0.02788529545068741, + 0.013036103919148445, + 0.04047970846295357, + -0.02767289988696575, + 0.03477858379483223, + -0.02697950042784214, + -0.07211016863584518, + -0.02981290966272354, + 0.07507242262363434, + 0.02910318598151207, + 0.007929733023047447, + 0.041007086634635925, + 0.043032798916101456, + -0.018553080037236214, + 0.08752802014350891, + -0.021110326051712036, + 0.06976930797100067, + -0.06684784591197968, + 0.011702246963977814, + -0.022627564147114754, + 0.013361742720007896, + 0.08069506287574768, + -0.039607301354408264, + -0.10544412583112717, + -0.05867569148540497, + -0.03933628648519516, + 0.029441125690937042, + -0.015022898092865944, + -0.03169183060526848, + 0.019883954897522926, + -0.012003048323094845, + -0.0503416582942009, + -0.0827881395816803, + 0.014340793713927269, + 0.0034641996026039124, + 0.011428428813815117, + -0.06133219599723816, + 0.02851206809282303, + 0.006955187767744064, + 0.00915826391428709, + -0.012972543947398663, + 0.05632566660642624, + -0.025707431137561798, + -0.020661504939198494, + -0.0511556938290596, + -0.02719610556960106, + 0.04003056883811951, + 0.0014334768056869507, + -0.040297575294971466, + -0.05317388474941254, + 0.03939535841345787, + -0.008402019739151001, + 0.06413179636001587, + 0.02613222599029541, + -0.0028604064136743546, + 0.014601640403270721, + -0.005364725366234779, + -0.06329908967018127, + 0.038015615195035934, + 0.03844130039215088, + 0.0024194493889808655, + -0.00031972676515579224, + -0.042167793959379196, + 0.08011392503976822, + 0.03018803335726261, + -0.01578505150973797, + -0.05181126669049263, + -0.01699543185532093, + -0.0622689351439476, + -0.062031641602516174, + 0.00442867074161768, + -0.04469887539744377, + 0.005384992808103561, + -0.01816532388329506, + 0.029129192233085632, + 0.02449989877641201, + 0.0841723084449768, + 0.008989982306957245, + -0.01770438626408577 + ] + }, + "p244_395.wav": { + "name": "p244", + "embedding": [ + 0.06550323963165283, + 0.08433538675308228, + -0.01784982718527317, + 0.042128533124923706, + -0.0611109584569931, + 0.0825430303812027, + -0.11566765606403351, + 0.12361620366573334, + -0.048154883086681366, + 0.13537082076072693, + -0.07359838485717773, + 0.1323944330215454, + -0.023047588765621185, + -0.16341546177864075, + -0.04204190894961357, + 0.05769350379705429, + -0.045354656875133514, + -0.024428818374872208, + -0.05983767658472061, + -0.005813024938106537, + 0.030469555407762527, + 0.015851859003305435, + 0.04962851107120514, + 0.010186433792114258, + 0.019705165177583694, + 0.06448869407176971, + 0.010008448734879494, + 0.07087679952383041, + 0.04192063957452774, + -0.06828481703996658, + -0.044956106692552567, + 0.10697366297245026, + -0.041706833988428116, + 0.015813250094652176, + 0.05696561187505722, + -0.00443008728325367, + 0.005681009031832218, + -0.06760845333337784, + -0.019102338701486588, + -0.0051755537278950214, + -0.042273592203855515, + 0.07852160185575485, + 0.019778680056333542, + -0.02376950904726982, + 0.04094938561320305, + 0.016479993239045143, + -0.028815045952796936, + -0.04552776366472244, + -0.10375819355249405, + 0.1447528898715973, + 0.06393130123615265, + -0.011723598465323448, + -0.06754104793071747, + -0.05448810011148453, + 0.09959813952445984, + -0.029199954122304916, + -0.11930166929960251, + -0.055169977247714996, + 0.07341191172599792, + 0.15536415576934814, + -0.04089302942156792, + -0.023522716015577316, + 0.01840304583311081, + 0.12300778925418854, + 0.08684463798999786, + 0.09674455225467682, + 0.08758467435836792, + 0.12548743188381195, + -0.006790135521441698, + 0.042646609246730804, + 0.0560179203748703, + 0.06942833214998245, + 0.061708252876996994, + 0.013477151282131672, + 0.03933752700686455, + -0.008483430370688438, + 0.001742625143378973, + -0.0003776503726840019, + -0.03048553504049778, + -0.013693335466086864, + -0.004844842478632927, + 0.011782709509134293, + 0.012974073179066181, + 0.015144234523177147, + -0.0349220335483551, + 0.07906190305948257, + 0.02308282069861889, + -0.020901208743453026, + 0.050234150141477585, + 0.036390677094459534, + 0.0014946670271456242, + 0.06121912971138954, + -0.07839523255825043, + -0.09944514185190201, + 0.022250216454267502, + -0.0006318851956166327, + 0.02032862976193428, + 0.052526310086250305, + 0.031497515738010406, + -0.0024404043797403574, + 0.11751715838909149, + 0.061954744160175323, + -0.019176315516233444, + 0.055060286074876785, + -0.07769570499658585, + 0.14618411660194397, + 0.07447339594364166, + -0.021978769451379776, + 0.036761581897735596, + -0.037156060338020325, + 0.07684732973575592, + 0.06659726798534393, + -0.12881402671337128, + -0.07086119800806046, + 0.024343134835362434, + -0.021254505962133408, + -0.02728954888880253, + 0.09162120521068573, + -0.018867691978812218, + 0.02837556228041649, + 0.10054180026054382, + -0.06760302186012268, + -0.046280235052108765, + -0.00885520875453949, + 0.03753401339054108, + -0.08088141679763794, + 0.051847539842128754, + 0.021052204072475433, + 0.009135914035141468, + -0.006809916812926531, + 0.11279579252004623, + -0.008204659447073936, + -0.023509299382567406, + 0.03740396350622177, + -0.0526740737259388, + 0.03347979113459587, + -0.024213820695877075, + -0.004802764393389225, + 0.059255875647068024, + 0.03875081241130829, + 0.0485798642039299, + -0.019528187811374664, + -0.011809159070253372, + -0.10885215550661087, + 0.01261910516768694, + 0.031799495220184326, + 0.079539455473423, + -0.0022320784628391266, + -0.0003851871006190777, + -0.04649035632610321, + -0.06041101738810539, + 0.03568731248378754, + -0.015645936131477356, + 0.07626651227474213, + -0.026368524879217148, + 0.004640602506697178, + 0.10662159323692322, + -0.006209053099155426, + 0.02273491397500038, + -0.05773773044347763, + -0.007855311036109924, + 0.028580427169799805, + 0.05584920197725296, + -0.06564788520336151, + -0.06538498401641846, + 0.00945715606212616, + 0.02500418946146965, + -0.02937411703169346, + 0.049371227622032166, + 0.04602263122797012, + 0.01210583746433258, + 0.03564991056919098, + -0.053790681064128876, + 0.003295939415693283, + -0.0892810970544815, + -0.04139140993356705, + -0.012519673444330692, + -0.027147313579916954, + -0.02612319402396679, + 0.06090090423822403, + 0.0270896814763546, + 0.04251787066459656, + -0.008985700085759163, + -0.09190566837787628, + -0.08594243228435516, + 0.06631132960319519, + 0.059366270899772644, + 0.005575481336563826, + 0.04892541468143463, + 0.05515887588262558, + -0.020950686186552048, + 0.054844826459884644, + 0.06025625020265579, + 0.08997799456119537, + -0.014691060408949852, + -0.0008571925573050976, + -0.07554928958415985, + 0.08299057185649872, + 0.08920322358608246, + -0.09265848994255066, + -0.08691748976707458, + -0.01644587144255638, + -0.06504520028829575, + 0.03762195259332657, + -0.039312612265348434, + -0.008922424167394638, + 0.07188019901514053, + -0.008827592246234417, + -0.0992414727807045, + -0.09651048481464386, + 0.11100850999355316, + -0.1005588248372078, + -0.009016851894557476, + -0.0759815126657486, + 0.03321519121527672, + 0.07887186855077744, + 0.024975284934043884, + -0.0414896085858345, + 0.004556160420179367, + 0.05652583763003349, + -0.054578110575675964, + -0.003086267039179802, + 0.04762229323387146, + 0.014138929545879364, + -0.11925549805164337, + -0.00040640681982040405, + -0.07136248052120209, + 0.04329359158873558, + -0.04628782719373703, + 0.15944702923297882, + -0.0057054003700613976, + -0.031560610979795456, + -0.06449881941080093, + 0.0418616458773613, + -0.039061058312654495, + 0.05671829730272293, + 0.052179187536239624, + 0.06839682161808014, + 0.026597080752253532, + -0.07664692401885986, + 0.13425201177597046, + 0.04492074251174927, + -0.047954022884368896, + -0.08672016859054565, + -0.04469480738043785, + -0.05823684483766556, + 0.030289176851511, + 0.027064893394708633, + -0.09275262802839279, + -0.013293991796672344, + 0.030065184459090233, + -0.03977680951356888, + 0.06271173059940338, + 0.1367710381746292, + 0.07483130693435669, + -0.07990959286689758 + ] + }, + "p244_006.wav": { + "name": "p244", + "embedding": [ + 0.032584819942712784, + 0.1049271896481514, + -0.002525875810533762, + 0.003385673277080059, + -0.05324282497167587, + 0.043377261608839035, + -0.13818272948265076, + 0.14049102365970612, + -0.03734908252954483, + 0.12935465574264526, + -0.08139845728874207, + 0.10115008056163788, + -0.0506473183631897, + -0.17288002371788025, + -0.03645024076104164, + 0.048998553305864334, + -0.03691449016332626, + -0.02941044420003891, + -0.020614400506019592, + -0.031054820865392685, + 0.03942759335041046, + 0.03691130131483078, + 0.022531339898705482, + 0.0038436129689216614, + 0.024111609905958176, + 0.06306054443120956, + 0.00833013467490673, + 0.044451747089624405, + 0.017286362126469612, + -0.01843874156475067, + -0.021356038749217987, + 0.10783866047859192, + -0.04226216301321983, + 0.013979869894683361, + 0.03725777566432953, + 0.0003412840887904167, + 0.002151644788682461, + -0.04941617697477341, + -0.005643906537443399, + 0.004004535265266895, + -0.04352103918790817, + 0.06729330867528915, + 0.030861902981996536, + 0.0014430790906772017, + 0.032290518283843994, + 0.03224336728453636, + -0.009899266064167023, + -0.0457160547375679, + -0.10391190648078918, + 0.16303008794784546, + 0.06934019178152084, + -0.013200843706727028, + -0.07165385037660599, + -0.05886688083410263, + 0.10377968102693558, + -0.0190423633903265, + -0.11089439690113068, + -0.04303240403532982, + 0.09793652594089508, + 0.14531023800373077, + -0.03524527698755264, + -0.043960895389318466, + 0.02097223699092865, + 0.13054785132408142, + 0.027608783915638924, + 0.07388577610254288, + 0.07486177980899811, + 0.10373018682003021, + -0.03144093230366707, + 0.0023356922902166843, + 0.04236556962132454, + 0.05065072700381279, + 0.022266868501901627, + -0.017793145030736923, + 0.013374044559895992, + -0.014765307307243347, + -0.007625909522175789, + 0.023213110864162445, + -0.030211906880140305, + -0.029227502644062042, + -0.026578618213534355, + 0.007347418926656246, + -0.020503085106611252, + 0.0052078524604439735, + -0.013212007470428944, + 0.052431799471378326, + 0.02425723522901535, + 0.0011300855549052358, + 0.09152035415172577, + 0.03403962776064873, + 0.0031800991855561733, + 0.05837097391486168, + -0.06789390742778778, + -0.05538655072450638, + 0.021903950721025467, + -0.0018652449361979961, + 0.02344564162194729, + 0.07710041105747223, + 0.02651391550898552, + -0.0161783155053854, + 0.12691165506839752, + 0.038947202265262604, + -0.01102367602288723, + 0.01403308566659689, + -0.10447870194911957, + 0.13535141944885254, + 0.07990939170122147, + -0.029910052195191383, + 0.03957931324839592, + -0.043194729834795, + 0.05208694189786911, + 0.05332353711128235, + -0.1209440603852272, + -0.06707784533500671, + 0.020525116473436356, + 0.0413086861371994, + -0.027878012508153915, + 0.11308136582374573, + -0.013566798530519009, + 0.023569602519273758, + 0.11197449266910553, + -0.07672980427742004, + -0.06516806781291962, + -0.019179027527570724, + 0.04320067912340164, + -0.07537756860256195, + 0.03865492716431618, + 0.07633932679891586, + -0.015267954207956791, + 0.028615208342671394, + 0.07544175535440445, + 3.3990945667028427e-06, + 0.017168525606393814, + 0.01147286593914032, + -0.05397850275039673, + 0.010506335645914078, + -0.024102624505758286, + -0.003356616012752056, + 0.030709538608789444, + 0.059255875647068024, + 0.05510294809937477, + 0.009372744709253311, + -0.04574961960315704, + -0.10505867004394531, + 0.002091650851070881, + 0.04249827563762665, + 0.06434054672718048, + -0.0158955380320549, + -0.02750999480485916, + -0.03876878321170807, + -0.05259860306978226, + -0.005092475097626448, + 0.002838969463482499, + 0.07858627289533615, + -0.03373764082789421, + -0.018163787201046944, + 0.10624653100967407, + 0.03449534997344017, + -0.009036562405526638, + -0.06582380086183548, + -0.032328926026821136, + 0.0018797609955072403, + 0.03176433965563774, + -0.08226799219846725, + -0.07240099459886551, + -0.00923194270581007, + 0.050441548228263855, + -0.014044500887393951, + 0.05435492843389511, + 0.0474538579583168, + 0.009035871364176273, + 0.02526284009218216, + -0.06518673896789551, + 0.028520630672574043, + -0.0887334942817688, + -0.06937338411808014, + 0.006807276047766209, + -0.0011302940547466278, + -0.018455656245350838, + 0.07386765629053116, + 0.008288794197142124, + 0.04644479975104332, + 0.001334281638264656, + -0.07985314726829529, + -0.07701501995325089, + 0.05552231892943382, + 0.07348356395959854, + -0.014634881168603897, + 0.06306709349155426, + 0.06387119740247726, + -0.05427989736199379, + 0.06010766327381134, + 0.05643840879201889, + 0.10310705006122589, + -0.043063800781965256, + 0.016745667904615402, + -0.0649903193116188, + 0.047075483947992325, + 0.06403174251317978, + -0.1044611856341362, + -0.07372820377349854, + -0.04192366823554039, + -0.05399514362215996, + 0.027581652626395226, + -0.013948271051049232, + 0.015401473268866539, + 0.01587090641260147, + -0.008906680159270763, + -0.10232412815093994, + -0.08734972029924393, + 0.05813188850879669, + -0.05929386615753174, + 0.0036743972450494766, + -0.07567810267210007, + 0.05526915192604065, + 0.09819579124450684, + 0.034856781363487244, + -0.011518271639943123, + -0.023225978016853333, + 0.02949949912726879, + -0.04173942655324936, + -0.005806375294923782, + 0.03298297896981239, + 0.04307696223258972, + -0.08543585985898972, + 0.010868465527892113, + -0.08774351328611374, + 0.06024782359600067, + -0.035674452781677246, + 0.1530730426311493, + 0.019577646628022194, + -0.05333314463496208, + -0.08791891485452652, + 0.026680879294872284, + -0.03147127479314804, + 0.0434952974319458, + 0.029414352029561996, + 0.04575791209936142, + 0.03115924447774887, + -0.055549658834934235, + 0.12637826800346375, + 0.03869802877306938, + -0.04950588196516037, + -0.06578905880451202, + -0.036461152136325836, + -0.041822731494903564, + 0.018039824441075325, + 0.008888096548616886, + -0.08852120488882065, + -0.04211621731519699, + 0.015565511770546436, + -0.015324335545301437, + 0.0796964168548584, + 0.12744811177253723, + 0.06640426069498062, + -0.11343657225370407 + ] + }, + "p244_117.wav": { + "name": "p244", + "embedding": [ + 0.0663791298866272, + 0.06481096893548965, + -0.03348292037844658, + 0.020564712584018707, + -0.03492648899555206, + 0.02512381039559841, + -0.09711866080760956, + 0.07552213221788406, + -0.040559589862823486, + 0.11849957704544067, + -0.08109736442565918, + 0.08790730684995651, + -0.010697794146835804, + -0.11700117588043213, + -0.06738083064556122, + 0.03288768231868744, + -0.04765726998448372, + -0.04647444561123848, + -0.04495936632156372, + -0.01139787770807743, + 0.03867693245410919, + 0.043678607791662216, + 0.020771410316228867, + -0.03289779648184776, + 0.04199159890413284, + 0.05658009275794029, + 0.029611488804221153, + 0.025073807686567307, + -0.006493689492344856, + 0.026495207101106644, + 0.0011126045137643814, + 0.11153659224510193, + -0.044191014021635056, + -0.013819792307913303, + 0.0311887226998806, + 0.02249486930668354, + 0.011648205108940601, + -0.07382804155349731, + 0.008307871408760548, + 0.0019037476740777493, + -0.024948447942733765, + 0.08163805305957794, + 0.04867237061262131, + -0.010434059426188469, + -0.005144375376403332, + 0.029986664652824402, + -0.005942861549556255, + -0.054276760667562485, + -0.11896392703056335, + 0.1747700273990631, + 0.02796965464949608, + 0.026809019967913628, + -0.09365317970514297, + -0.04876662790775299, + 0.0796499028801918, + 0.0098640788346529, + -0.04191647097468376, + -0.045978181064128876, + 0.04680206626653671, + 0.15397390723228455, + -0.01689627207815647, + -0.04848678410053253, + 0.014617616310715675, + 0.08847671747207642, + 0.03875938802957535, + 0.023299671709537506, + 0.08159701526165009, + 0.09758806228637695, + 0.007904723286628723, + 0.047025568783283234, + 0.0659836083650589, + 0.029545437544584274, + 0.023729432374238968, + -0.05017070844769478, + 0.026821738108992577, + -0.025956720113754272, + -0.026093963533639908, + 0.0038982192054390907, + -0.040285468101501465, + -0.06192207336425781, + -0.010583801195025444, + -0.0030246595852077007, + 0.02301739528775215, + 0.03665097802877426, + -0.06552837789058685, + 0.051581718027591705, + 0.036703675985336304, + -0.058151982724666595, + 0.08319983631372452, + 0.03686737269163132, + -0.01637602411210537, + -0.0024369806051254272, + -0.06684253364801407, + -0.07785780727863312, + 0.035711102187633514, + 0.00615624850615859, + 0.018981322646141052, + 0.05096926540136337, + 0.04271988570690155, + -0.023800117895007133, + 0.08233090490102768, + 0.023124366998672485, + 0.0006741330726072192, + -0.02275349199771881, + -0.08901208639144897, + 0.12537899613380432, + 0.11221356689929962, + -0.01637592352926731, + -0.010132333263754845, + -0.02012024074792862, + 0.024066075682640076, + 0.06426465511322021, + -0.10625521093606949, + -0.08621283620595932, + 0.030181964859366417, + 0.00192217156291008, + 0.0046913279220461845, + 0.07177047431468964, + -0.01979185827076435, + 0.012640844099223614, + 0.07597804069519043, + -0.08043913543224335, + -0.04631512239575386, + -0.03861051797866821, + 0.014440439641475677, + -0.08531521260738373, + 0.020678933709859848, + 0.07579287886619568, + -0.01242291834205389, + -0.03175487369298935, + 0.06600604951381683, + 0.025848107412457466, + 0.004945406690239906, + -0.015682613477110863, + 0.03583322465419769, + 0.07717518508434296, + 0.002941790036857128, + -0.038786597549915314, + 0.02014279179275036, + 0.05632985010743141, + 0.051919858902692795, + 0.009324396960437298, + -0.002588793868198991, + -0.07343313843011856, + 0.031933434307575226, + 0.08379973471164703, + 0.021868597716093063, + -0.04236214607954025, + -0.04696473479270935, + -0.05884414166212082, + -0.0460367351770401, + 0.0138088408857584, + 0.017595849931240082, + 0.08983033150434494, + 0.030379775911569595, + 0.00941836554557085, + 0.1442602574825287, + -0.01569347269833088, + -0.009762893430888653, + -0.01568719372153282, + 0.0339643657207489, + 0.05143208056688309, + 0.032057058066129684, + -0.0357724130153656, + -0.07902616262435913, + 0.004774644039571285, + 0.010366776958107948, + -0.018539030104875565, + 0.029176995158195496, + 0.029292089864611626, + -0.020781368017196655, + 0.010427485220134258, + -0.06426107883453369, + 0.013449100777506828, + -0.08969840407371521, + 0.00946175865828991, + -0.001794168958440423, + -0.08096250891685486, + -0.03316441923379898, + 0.07327745854854584, + 0.023014485836029053, + 0.0393022745847702, + -0.027058064937591553, + -0.10035022348165512, + -0.023686770349740982, + 0.08339046686887741, + 0.0839746966958046, + -0.025258135050535202, + 0.015715466812253, + 0.023011572659015656, + 0.028393303975462914, + 0.011937202885746956, + 0.0633280873298645, + 0.0804753303527832, + -0.03716718405485153, + -0.06480783969163895, + -0.03089866042137146, + 0.116466224193573, + 0.021582720801234245, + -0.0926688015460968, + -0.04235338419675827, + -0.047869723290205, + -0.040671683847904205, + 0.00749615952372551, + 0.014579607173800468, + 0.04157961905002594, + 0.04385460168123245, + -0.04499632120132446, + -0.11614260077476501, + -0.10122857987880707, + 0.058299362659454346, + -0.04211875796318054, + -0.005418750457465649, + -0.05257604643702507, + 0.0265200212597847, + 0.0626673549413681, + 0.0114889619871974, + 0.01612227037549019, + -0.005144713446497917, + -0.03464069962501526, + -0.07651016861200333, + -0.03730890527367592, + -0.004086734727025032, + 0.03898791968822479, + -0.0624421052634716, + 0.003802548162639141, + -0.0599251314997673, + 0.08920934796333313, + -0.05726965144276619, + 0.12540869414806366, + -0.010254740715026855, + -0.036541931331157684, + -0.08108656108379364, + 0.008565537631511688, + -0.041284918785095215, + 0.07953342795372009, + 0.06964181363582611, + 0.017991025000810623, + -0.008446039631962776, + -0.07632865011692047, + 0.10225652903318405, + 0.07402639091014862, + -0.027663087472319603, + -0.07545515149831772, + -0.04524011164903641, + -0.02710394561290741, + 0.003935838118195534, + 0.01634923368692398, + -0.028507238253951073, + 0.014483869075775146, + 0.030218619853258133, + -0.030427830293774605, + 0.07724196463823318, + 0.09033051133155823, + 0.060144178569316864, + -0.06725859642028809 + ] + }, + "p244_414.wav": { + "name": "p244", + "embedding": [ + 0.05337275564670563, + 0.09347979724407196, + -0.01617208495736122, + 0.015344187617301941, + -0.051168859004974365, + 0.07525269687175751, + -0.12179407477378845, + 0.12432641535997391, + -0.06415523588657379, + 0.15049946308135986, + -0.07099460065364838, + 0.12227404117584229, + -0.02313445881009102, + -0.17240847647190094, + -0.04736506938934326, + 0.04944154620170593, + -0.0601639524102211, + -0.039453037083148956, + -0.032291024923324585, + 6.793421925976872e-05, + 0.05067278444766998, + 0.03623484447598457, + 0.021768562495708466, + 0.006948499940335751, + 0.00878700241446495, + 0.07093086838722229, + 0.014023074880242348, + 0.06032991409301758, + 0.028757669031620026, + -0.07819128036499023, + -0.03957583010196686, + 0.1095798909664154, + -0.04314263164997101, + 0.029746145009994507, + 0.060170628130435944, + -0.000363360159099102, + 0.007370705250650644, + -0.07157830893993378, + -0.016270935535430908, + -0.0039893025532364845, + -0.04488180950284004, + 0.07358165085315704, + 0.015919405966997147, + -0.012264054268598557, + 0.01863841712474823, + 0.02229408547282219, + -0.010928409174084663, + -0.05995403230190277, + -0.08643461018800735, + 0.1562034785747528, + 0.07088296115398407, + -0.004013930447399616, + -0.050174780189991, + -0.08669688552618027, + 0.10542869567871094, + -0.011490270495414734, + -0.12580139935016632, + -0.048519596457481384, + 0.07145947962999344, + 0.15937139093875885, + -0.03752167150378227, + -0.0384533628821373, + 0.024835262447595596, + 0.12317246198654175, + 0.044771235436201096, + 0.10647053271532059, + 0.08519617468118668, + 0.09169928729534149, + -0.001533685950562358, + 0.02733851782977581, + 0.06200683116912842, + 0.08383584022521973, + 0.059349097311496735, + -0.0019989125430583954, + 0.04737678915262222, + -0.0016305656172335148, + -0.022421574220061302, + 0.020158428698778152, + -0.016585052013397217, + -0.012505578808486462, + -0.017927024513483047, + 0.021225716918706894, + 0.0029016989283263683, + 0.020022213459014893, + -0.011623300611972809, + 0.061272792518138885, + 0.009784468449652195, + -0.015076527372002602, + 0.06223952770233154, + 0.033248208463191986, + 0.027849216014146805, + 0.06625443696975708, + -0.07395663857460022, + -0.10191988199949265, + 0.025953607633709908, + -0.0011344742961227894, + 0.02856616862118244, + 0.07920478284358978, + 0.03522225096821785, + -0.014241073280572891, + 0.10890447348356247, + 0.04155503958463669, + -0.0084445271641016, + 0.026931937783956528, + -0.09902231395244598, + 0.1268363893032074, + 0.0799713283777237, + -0.03023127093911171, + 0.028904562816023827, + -0.060109205543994904, + 0.09531669318675995, + 0.07547635585069656, + -0.14982913434505463, + -0.09231121838092804, + 0.033190034329891205, + 0.007038099691271782, + -0.02111329324543476, + 0.11351749300956726, + -0.025695431977510452, + 0.019240889698266983, + 0.1008530855178833, + -0.0826231837272644, + -0.0480121448636055, + -0.0257711261510849, + 0.037566471844911575, + -0.08659997582435608, + 0.06426386535167694, + 0.03095492161810398, + -0.009906553663313389, + -0.001334917964413762, + 0.09995832294225693, + -0.025347266346216202, + -0.00865009892731905, + 0.016087155789136887, + -0.05126236751675606, + 0.02221379242837429, + -0.043657850474119186, + 0.006328982301056385, + 0.03574098274111748, + 0.04346025735139847, + 0.04006488248705864, + -0.005997288040816784, + -0.04574074596166611, + -0.11877577006816864, + 0.016988495364785194, + 0.03338633477687836, + 0.06776638329029083, + -0.005708509124815464, + -0.025159288197755814, + -0.02828025631606579, + -0.0529685840010643, + 0.013637338764965534, + -0.01797289401292801, + 0.07487207651138306, + -0.005986368283629417, + 0.007802212610840797, + 0.0994187444448471, + 0.016678549349308014, + -0.00010740617290139198, + -0.05749409645795822, + -0.03445484861731529, + 0.024085022509098053, + 0.0630992203950882, + -0.07922924309968948, + -0.06572607159614563, + 0.010446312837302685, + 0.024683155119419098, + -0.01451587863266468, + 0.0391768142580986, + 0.05514409393072128, + 0.02439870312809944, + 0.04159264266490936, + -0.06749506294727325, + 0.01026029884815216, + -0.12275136262178421, + -0.07851161062717438, + -0.01657060533761978, + -0.02547772228717804, + -0.003994768485426903, + 0.07156360149383545, + 0.0017041168175637722, + 0.035028621554374695, + -0.01159695629030466, + -0.08217807114124298, + -0.08210548758506775, + 0.07249727100133896, + 0.08577492833137512, + 0.01932879537343979, + 0.04386300966143608, + 0.045057184994220734, + -0.01685880683362484, + 0.0473417304456234, + 0.044633276760578156, + 0.12211090326309204, + -0.019795356318354607, + 0.013241836801171303, + -0.0746978223323822, + 0.08316610753536224, + 0.07629567384719849, + -0.09628407657146454, + -0.07493922114372253, + -0.015265904366970062, + -0.059690605849027634, + 0.04075497016310692, + -0.02806091494858265, + 0.00484283734112978, + 0.026090744882822037, + -0.0063917869701981544, + -0.10699254274368286, + -0.07515783607959747, + 0.09153671562671661, + -0.07236147671937943, + -0.010375437326729298, + -0.09194009006023407, + 0.05121401324868202, + 0.09815976023674011, + 0.05290521681308746, + -0.03345044329762459, + 0.003943076357245445, + 0.058402158319950104, + -0.0485280379652977, + 0.00016099540516734123, + 0.04057348147034645, + 0.020463839173316956, + -0.09463279694318771, + 0.00874655693769455, + -0.08400268852710724, + 0.039982300251722336, + -0.0781797468662262, + 0.15764813125133514, + -0.020856384187936783, + -0.06966894865036011, + -0.08086109161376953, + 0.0453309565782547, + -0.021734872832894325, + 0.04313546419143677, + 0.04256168007850647, + 0.06295493990182877, + 0.041449107229709625, + -0.08462811261415482, + 0.12133316695690155, + 0.045901477336883545, + -0.0248493030667305, + -0.06361193209886551, + -0.048655495047569275, + -0.038715094327926636, + 0.03535463660955429, + 0.010105248540639877, + -0.08735272288322449, + -0.01854035258293152, + 0.02449534833431244, + -0.021589156240224838, + 0.06691836565732956, + 0.14419814944267273, + 0.05591727793216705, + -0.11574887484312057 + ] + }, + "p244_253.wav": { + "name": "p244", + "embedding": [ + 0.0659065991640091, + 0.07509010285139084, + -0.024440791457891464, + -0.001634875312447548, + -0.046231627464294434, + 0.03870411217212677, + -0.1354798674583435, + 0.14504340291023254, + -0.039977025240659714, + 0.09383848309516907, + -0.04805021360516548, + 0.10036615282297134, + 0.009969496168196201, + -0.11082163453102112, + -0.046134404838085175, + 0.023836283013224602, + 0.0014015557244420052, + -0.015952402725815773, + -0.028823979198932648, + -0.01151888445019722, + 0.015373526141047478, + 0.03339692950248718, + 0.009113047271966934, + -0.009018579497933388, + 0.037673816084861755, + 0.029065484181046486, + 0.005538268480449915, + 0.01837175339460373, + 0.007479529827833176, + 0.02990323305130005, + -0.0010585598647594452, + 0.08733303099870682, + -0.050202760845422745, + 0.010362047702074051, + 0.043523091822862625, + 0.011447603814303875, + -0.005951732397079468, + -0.0819530338048935, + -0.01541035994887352, + -0.0070488532073795795, + -0.029752040281891823, + 0.09017757326364517, + 0.05828443169593811, + -0.006793014705181122, + 0.007019433192908764, + 0.014472566545009613, + 0.01464794296771288, + -0.061176445335149765, + -0.10762913525104523, + 0.1486799418926239, + 0.004450784996151924, + 0.008131470531225204, + -0.12579701840877533, + -0.016540562734007835, + 0.0826941654086113, + -0.032750729471445084, + -0.03878742828965187, + -0.055116526782512665, + 0.03610720485448837, + 0.13918444514274597, + -0.015389349311590195, + -0.05884116515517235, + 0.005374635569751263, + 0.09946253150701523, + 0.05703935772180557, + 0.028374670073390007, + 0.1077100932598114, + 0.1067352443933487, + -0.030965689569711685, + 0.02396455779671669, + 0.03290452063083649, + 0.03955530375242233, + 0.011360063217580318, + -0.02434130758047104, + 0.012554807588458061, + -0.03345746174454689, + -0.006304372567683458, + 0.023870892822742462, + -0.022353515028953552, + -0.049800723791122437, + -0.02220963127911091, + 0.019474683329463005, + -0.004713356960564852, + 0.0714944452047348, + -0.06565125286579132, + 0.05690184235572815, + 0.040205713361501694, + -0.035322438925504684, + 0.07339352369308472, + 0.08051391690969467, + 0.006438813172280788, + 0.012984735891222954, + -0.07159963995218277, + -0.07156150043010712, + 0.02788781002163887, + -0.02782830037176609, + 0.05234832316637039, + 0.06279204785823822, + 0.021869642660021782, + 0.005398619454354048, + 0.08487403392791748, + 0.03819020837545395, + -0.006558696273714304, + -0.011617226526141167, + -0.06747996807098389, + 0.12636533379554749, + 0.09980346262454987, + -0.013211781159043312, + 0.020522916689515114, + -0.049001313745975494, + 0.010408591479063034, + 0.044483084231615067, + -0.0948638916015625, + -0.07751217484474182, + 0.067380890250206, + 0.05425296723842621, + 0.026540569961071014, + 0.09843991696834564, + 0.015075989998877048, + 0.01484285295009613, + 0.047278378158807755, + -0.07201935350894928, + -0.05516931414604187, + -0.008485788479447365, + 0.032912611961364746, + -0.05039115995168686, + 0.04347151517868042, + 0.061444345861673355, + 0.0006294646300375462, + -0.02945905737578869, + 0.06335999816656113, + 0.02476908639073372, + 0.01327902264893055, + -0.015673339366912842, + 0.03080238774418831, + 0.06649118661880493, + 0.025583066046237946, + -0.02487625926733017, + 0.02049708552658558, + 0.05804292485117912, + 0.05558866634964943, + 0.025322120636701584, + 0.0005338550545275211, + -0.09712747484445572, + 0.004549121484160423, + 0.08775191009044647, + 0.06214361637830734, + -0.059692010283470154, + -0.0601113960146904, + -0.03807923197746277, + -0.03510478138923645, + -0.01695621944963932, + 0.03143256902694702, + 0.06958773732185364, + -0.0020206328481435776, + 0.016987819224596024, + 0.11053489148616791, + -0.006412738934159279, + 0.007900618016719818, + -0.011927224695682526, + 0.04685390740633011, + 0.02254825457930565, + 0.046424709260463715, + -0.0289375688880682, + -0.0934915617108345, + -0.004640120547264814, + 0.033181458711624146, + -0.02525162324309349, + 0.02672378346323967, + 0.0471775084733963, + -0.026801731437444687, + 0.03799400478601456, + -0.08719084411859512, + 0.03613336756825447, + -0.11106973141431808, + -0.009208418428897858, + 0.0005084946751594543, + -0.029659219086170197, + -0.015466381795704365, + 0.07627661526203156, + 0.04467010125517845, + 0.07124413549900055, + -0.004158590454608202, + -0.09351237863302231, + -0.034465525299310684, + 0.048995740711688995, + 0.07400546967983246, + -0.04525791108608246, + 0.0006407536566257477, + 0.049952056258916855, + 0.012691473588347435, + 0.01874997466802597, + 0.08085097372531891, + 0.047892145812511444, + -0.0489029586315155, + -0.039329417049884796, + -0.044258613139390945, + 0.09503402560949326, + 0.04393851384520531, + -0.11533653736114502, + -0.0682753324508667, + -0.02465703897178173, + -0.037853043526411057, + -0.032204288989305496, + -0.016869917511940002, + 0.03891190141439438, + 0.0473678819835186, + -0.021637139841914177, + -0.12105533480644226, + -0.10460696369409561, + 0.047805506736040115, + -0.08263389021158218, + 0.029937192797660828, + -0.05965464189648628, + 0.01737012341618538, + 0.0810689851641655, + 0.01800205558538437, + -0.010326297953724861, + -0.04939088970422745, + -0.02670142985880375, + -0.051365356892347336, + -0.044225119054317474, + -0.006073169410228729, + 0.035165004432201385, + -0.0841970145702362, + 0.02438327670097351, + -0.05442404747009277, + 0.07993105798959732, + -0.03565894067287445, + 0.1460910439491272, + 0.020470960065722466, + -0.07599806040525436, + -0.09064380824565887, + -0.04182501882314682, + -0.03868559002876282, + 0.06587879359722137, + 0.032756395637989044, + 0.034168146550655365, + -1.4596618711948395e-05, + -0.05268435552716255, + 0.08482556790113449, + 0.09877606481313705, + -0.04556364566087723, + -0.0873718410730362, + -0.040023379027843475, + -0.015530819073319435, + 0.04508063197135925, + 0.01741029880940914, + -0.016096223145723343, + 0.0044369176030159, + 0.013603215105831623, + -0.04250704497098923, + 0.07414849102497101, + 0.10565780103206635, + 0.059978507459163666, + -0.11924143135547638 + ] + }, + "p244_109.wav": { + "name": "p244", + "embedding": [ + 0.05739546939730644, + 0.08613348007202148, + -0.006044930778443813, + 0.0352112278342247, + -0.06083273887634277, + 0.03468688577413559, + -0.14677467942237854, + 0.14680781960487366, + -0.021860700100660324, + 0.12390688061714172, + -0.06311961263418198, + 0.12757804989814758, + -0.022577140480279922, + -0.19756779074668884, + -0.008795039728283882, + 0.08517857640981674, + -0.032355278730392456, + -0.02848302572965622, + -0.025251664221286774, + -0.02377479337155819, + 0.02512427419424057, + 0.043954938650131226, + 0.060328077524900436, + 0.005702539347112179, + 0.031326524913311005, + 0.06979607045650482, + 0.002574204234406352, + 0.053611837327480316, + 0.0093069551512599, + -0.057945143431425095, + -0.035119932144880295, + 0.09045854210853577, + -0.03604564815759659, + -0.0005113724619150162, + 0.050318460911512375, + -0.011871270835399628, + 4.0381837607128546e-05, + -0.06830374896526337, + -0.0277443528175354, + -0.008360256440937519, + -0.040520697832107544, + 0.07810407876968384, + 0.0224294476211071, + -0.03035673499107361, + 0.060263119637966156, + 0.02106332592666149, + -0.033152010291814804, + -0.044141735881567, + -0.13355642557144165, + 0.1488659381866455, + 0.07038581371307373, + 0.02156125009059906, + -0.08391305059194565, + -0.07415102422237396, + 0.0971040353178978, + -0.030163947492837906, + -0.10386817157268524, + -0.04477739334106445, + 0.07305428385734558, + 0.16108199954032898, + -0.0229775533080101, + -0.034324757754802704, + 0.038250505924224854, + 0.11930715292692184, + 0.060493435710668564, + 0.09059705585241318, + 0.07020947337150574, + 0.1004265546798706, + -0.02927844226360321, + 0.016493503004312515, + 0.044844381511211395, + 0.07669737190008163, + 0.03551100939512253, + 0.006001103203743696, + 0.01228416245430708, + 0.007548165507614613, + -0.024507751688361168, + -0.008376196026802063, + -0.015511329285800457, + -0.017870772629976273, + -0.01723967306315899, + 0.008231448009610176, + 0.007556747179478407, + 0.011855248361825943, + -0.027854524552822113, + 0.062090061604976654, + 0.0341794528067112, + -0.004567167721688747, + 0.0724688395857811, + 0.019014395773410797, + -0.0008657457074150443, + 0.060691915452480316, + -0.07151425629854202, + -0.07954558730125427, + 0.020314980298280716, + 0.011950142681598663, + 0.022227173671126366, + 0.06036045774817467, + 0.023404493927955627, + -0.027063174173235893, + 0.1304457038640976, + 0.0630183145403862, + -0.0060635036788880825, + 0.03458651155233383, + -0.08411171287298203, + 0.11534597724676132, + 0.08304879069328308, + -0.014469115063548088, + 0.06840068101882935, + -0.041978105902671814, + 0.060439582914114, + 0.0727461725473404, + -0.1337536871433258, + -0.07041275501251221, + 0.015840495005249977, + 0.01233344804495573, + -0.013424286618828773, + 0.12322752177715302, + 0.005914837121963501, + 0.05673353001475334, + 0.117793969810009, + -0.09871840476989746, + -0.06949783861637115, + -0.0042399633675813675, + 0.0551203116774559, + -0.09464181959629059, + 0.06249776482582092, + 0.07012145966291428, + -0.02135149948298931, + 0.017793484032154083, + 0.07335391640663147, + -0.005597086623311043, + 0.011523909866809845, + 0.01644597016274929, + -0.058747705072164536, + 0.005872945301234722, + -0.04127098247408867, + -0.01425835769623518, + 0.0605582520365715, + 0.033361248672008514, + 0.04053114354610443, + -0.00681935204192996, + -0.03324224427342415, + -0.13778139650821686, + 0.003976250067353249, + 0.03389718756079674, + 0.08339881896972656, + -0.007886230945587158, + -0.030938230454921722, + -0.04448118805885315, + -0.0599418506026268, + 0.010695687495172024, + -0.009594394825398922, + 0.06870704889297485, + -0.02924153208732605, + 0.006847626995295286, + 0.08679477870464325, + 0.027226699516177177, + 0.0018853339133784175, + -0.04736558720469475, + -0.04945267736911774, + 0.016022196039557457, + 0.0454501137137413, + -0.08235573768615723, + -0.07084080576896667, + -0.0070708515122532845, + 0.04068135842680931, + -0.032321542501449585, + 0.04960598051548004, + 0.038274526596069336, + 0.022238314151763916, + 0.017885731533169746, + -0.05703619867563248, + 0.02338593453168869, + -0.09009230136871338, + -0.08075901865959167, + 0.002486435230821371, + 0.008224758319556713, + -0.029937084764242172, + 0.07189749926328659, + 0.030756091699004173, + 0.06540273129940033, + -0.02816474437713623, + -0.06498674303293228, + -0.09770011901855469, + 0.05295402556657791, + 0.05662689357995987, + 0.0015044284518808126, + 0.058535512536764145, + 0.04629106447100639, + -0.04560130834579468, + 0.061952006071805954, + 0.047713376581668854, + 0.09148293733596802, + -0.016202818602323532, + 0.012414633296430111, + -0.07333677262067795, + 0.07675021141767502, + 0.10897409170866013, + -0.08695634454488754, + -0.08112332224845886, + -0.036334481090307236, + -0.07327903062105179, + 0.057342421263456345, + -0.0145942447707057, + 0.0006856077234260738, + 0.04557185620069504, + -0.011704448610544205, + -0.1123899519443512, + -0.09791746735572815, + 0.08337440341711044, + -0.06064557284116745, + -0.004089634865522385, + -0.0628826916217804, + 0.04487769305706024, + 0.08675407618284225, + 0.02726869285106659, + -0.017857426777482033, + -0.031373947858810425, + 0.04116690158843994, + -0.042946889996528625, + 0.004726524464786053, + 0.06690191477537155, + 0.04441523179411888, + -0.10162967443466187, + 0.007017001509666443, + -0.07676421105861664, + 0.053607277572155, + -0.03338317945599556, + 0.15788988769054413, + 0.0119588328525424, + -0.04459541663527489, + -0.09059779345989227, + 0.026029985398054123, + -0.023152461275458336, + 0.05804430693387985, + 0.021228080615401268, + 0.05717020481824875, + 0.048421114683151245, + -0.06877723336219788, + 0.10947582125663757, + 0.04329445958137512, + -0.047781284898519516, + -0.06127448379993439, + -0.04130503535270691, + -0.055049192160367966, + 0.0326380580663681, + -0.005245511885732412, + -0.09330736100673676, + -0.028838014230132103, + 0.016722194850444794, + -0.010706339031457901, + 0.06182768568396568, + 0.1386440098285675, + 0.04118635505437851, + -0.11009286344051361 + ] + }, + "p244_312.wav": { + "name": "p244", + "embedding": [ + 0.015115632675588131, + 0.07223115861415863, + -0.0020533159840852022, + 0.04228286072611809, + -0.006371307652443647, + 0.04990001767873764, + -0.07020367681980133, + 0.0487297922372818, + -0.05339176952838898, + 0.15103980898857117, + -0.12234080582857132, + 0.08643540740013123, + -0.04453974962234497, + -0.14344476163387299, + -0.0251156073063612, + 0.02139274775981903, + -0.03654440864920616, + 0.03277100622653961, + -0.05478564649820328, + -0.03230539336800575, + 0.05921761319041252, + 0.07936245948076248, + 0.04668014496564865, + -0.052221983671188354, + 0.005212868098169565, + 0.06402292102575302, + -0.020825820043683052, + 0.036405764520168304, + 0.008070295676589012, + -0.13803991675376892, + -0.0482972115278244, + 0.11677175760269165, + -0.029670054093003273, + 0.02404903806746006, + -0.013602443039417267, + 0.017274048179388046, + -0.020915072411298752, + -0.018871530890464783, + -0.014337779954075813, + 0.0014606877230107784, + -0.052115097641944885, + 0.02135101892054081, + -0.02439035475254059, + -0.01282050646841526, + 0.04708550125360489, + -0.03330114856362343, + -0.03222230449318886, + -0.013768676668405533, + -0.07614147663116455, + 0.16634711623191833, + 0.053961075842380524, + -0.0026977118104696274, + -0.04983261972665787, + -0.08148597180843353, + 0.08884178847074509, + -0.004952655639499426, + -0.14231504499912262, + 0.011187897995114326, + 0.08110079169273376, + 0.13044947385787964, + -0.009287124499678612, + -0.04630175232887268, + 0.03958515077829361, + 0.05871117115020752, + -0.02902132272720337, + 0.0898125097155571, + 0.07278240472078323, + 0.041674237698316574, + 0.01308460533618927, + 0.020940300077199936, + 0.008747893385589123, + 0.08632219582796097, + 0.06605222821235657, + -0.0462956428527832, + 0.010121885687112808, + 0.007276811636984348, + -0.051074691116809845, + 0.028794409707188606, + -0.011513588950037956, + -0.029004141688346863, + 0.006922640837728977, + -0.049004796892404556, + -0.008345667272806168, + -0.06528280675411224, + -0.02787744626402855, + -0.0020188805647194386, + 0.03389494866132736, + -0.014308687299489975, + 0.07219575345516205, + 0.032453540712594986, + 0.01708252914249897, + 0.033069685101509094, + -0.030524233356118202, + -0.06059879809617996, + -0.002071019262075424, + 0.03162568435072899, + -0.0054235076531767845, + 0.06549955904483795, + 0.06157100945711136, + -0.028302693739533424, + 0.10277147591114044, + 0.011557220481336117, + 0.03959643468260765, + -0.018499260768294334, + -0.11130046099424362, + 0.06427522003650665, + 0.13470283150672913, + 0.003276452887803316, + 0.06343982368707657, + -0.017135923728346825, + 0.09468264132738113, + 0.0819682702422142, + -0.12226925790309906, + -0.05566508695483208, + -0.035344138741493225, + -0.017945565283298492, + 0.030227798968553543, + 0.08432887494564056, + -0.010283301584422588, + -0.020880941301584244, + 0.10020695626735687, + -0.13482952117919922, + -0.059246305376291275, + -0.03256281465291977, + 0.011748181656002998, + -0.11977741122245789, + 0.06418773531913757, + 0.04065250605344772, + -0.02072078175842762, + 0.014553282409906387, + 0.07624413073062897, + -0.05368376150727272, + 0.04327709600329399, + -0.024555768817663193, + -0.061816200613975525, + -0.041629400104284286, + -0.08573607355356216, + -0.0217968188226223, + 0.08240741491317749, + 0.0445537269115448, + 0.06262975931167603, + -0.019458848983049393, + -0.06651761382818222, + -0.10590438544750214, + 0.00962788239121437, + 0.05472379922866821, + -0.008921545930206776, + -0.010740948840975761, + 0.002315530553460121, + -0.03541753068566322, + -0.07608170062303543, + 0.07531290501356125, + -0.050457172095775604, + 0.06512399017810822, + 0.0033374689519405365, + -0.013107403181493282, + 0.12156622111797333, + 0.02566804364323616, + -0.04253965988755226, + -0.07956333458423615, + -0.04753100126981735, + 0.00883153360337019, + 0.009269867092370987, + -0.11197134852409363, + -0.06630025058984756, + -0.02749679610133171, + 0.004038706421852112, + 0.01835394650697708, + 0.0388292595744133, + 0.07381658256053925, + 0.01360377948731184, + 0.02391894906759262, + -0.04704713821411133, + 0.019652945920825005, + -0.08830897510051727, + -0.08141794055700302, + 0.007449087221175432, + -0.07520467042922974, + 0.03248056024312973, + 0.1157418042421341, + -0.032339610159397125, + -0.06660428643226624, + -0.05077730864286423, + -0.07081522792577744, + -0.0720144510269165, + 0.06092381104826927, + 0.04278179630637169, + 0.03951593488454819, + 0.03510010987520218, + 0.05421309918165207, + -0.048864975571632385, + 0.08979848772287369, + 0.041258305311203, + 0.14028732478618622, + -0.04146946221590042, + 0.03866475448012352, + -0.05740002170205116, + 0.05875694751739502, + 0.07405953109264374, + -0.024600287899374962, + -0.09972354769706726, + -0.039126377552747726, + -0.07141612470149994, + 0.10491704940795898, + -0.02136886492371559, + -0.04152430593967438, + 0.009420864284038544, + -0.04051225259900093, + -0.08547887951135635, + -0.04949510097503662, + 0.11076352000236511, + 0.016875144094228745, + -0.04979408159852028, + -0.07580237835645676, + 0.05460367724299431, + 0.02481137216091156, + 0.06275676190853119, + -0.015234648250043392, + 0.053780488669872284, + 0.05598363280296326, + -0.08687961101531982, + -0.004771187901496887, + 0.047404512763023376, + 0.004116476979106665, + -0.014873728156089783, + -0.009625840000808239, + -0.11008241772651672, + 0.058257095515728, + -0.06296917796134949, + 0.0923713743686676, + -0.026684515178203583, + -0.06853699684143066, + -0.06578568369150162, + 0.1008608266711235, + -0.01734708622097969, + 0.017783261835575104, + 0.08565252274274826, + 0.042901039123535156, + 0.08388683199882507, + -0.11167167127132416, + 0.06270655989646912, + 0.01114030834287405, + 0.021431084722280502, + -0.030852973461151123, + -0.03638945519924164, + -0.03772243857383728, + -0.006519352551549673, + -0.03680536150932312, + -0.09481385350227356, + 0.027113022282719612, + -0.012785693630576134, + 0.02386845275759697, + 0.02694052644073963, + 0.08384421467781067, + 0.009739955887198448, + -0.0888400673866272 + ] + }, + "p244_319.wav": { + "name": "p244", + "embedding": [ + 0.04419044405221939, + 0.09056366235017776, + -0.07513836026191711, + 0.048270877450704575, + -0.06125824153423309, + 0.02990613505244255, + -0.11891696602106094, + 0.1064797043800354, + 0.00932198017835617, + 0.11947310715913773, + -0.054237693548202515, + 0.11613690853118896, + -0.03302270919084549, + -0.13520264625549316, + 0.010527489706873894, + 0.025518450886011124, + 0.00029355473816394806, + -0.003963499329984188, + -0.0681152269244194, + -0.03505297377705574, + 0.03287924826145172, + 0.033635661005973816, + 0.03947008028626442, + -0.055014919489622116, + 0.0012865308672189713, + 0.06756991147994995, + -0.019457556307315826, + 0.00804508663713932, + -0.004007723182439804, + -0.03781922906637192, + -0.03979473561048508, + 0.09029709547758102, + -0.06172361597418785, + 0.002270035445690155, + 0.028337392956018448, + -0.016549136489629745, + -0.05441751703619957, + -0.04254625365138054, + 0.030088145285844803, + 0.0007468266412615776, + -0.044019412249326706, + 0.05973818153142929, + 0.02574634924530983, + -0.026936249807476997, + 0.046697117388248444, + -0.02530161291360855, + -0.04350415617227554, + -0.014194131828844547, + -0.07992391288280487, + 0.14254586398601532, + 0.07706809788942337, + 0.0025733564980328083, + -0.07799725979566574, + -0.012880346737802029, + 0.0860956460237503, + 0.0022530669812113047, + -0.10933447629213333, + -0.055939219892024994, + 0.03437776863574982, + 0.10422317683696747, + -0.012803660705685616, + -0.024806076660752296, + 0.035654909908771515, + 0.10237081348896027, + 0.07116690278053284, + 0.059178225696086884, + 0.09887969493865967, + 0.13833555579185486, + -0.025103075429797173, + 0.020181290805339813, + 0.03652666136622429, + 0.05671537667512894, + 0.0474429726600647, + -0.014889785088598728, + 0.033275529742240906, + -0.03486432880163193, + -0.002486539538949728, + -0.03660111129283905, + -0.020790424197912216, + -0.06735467910766602, + -0.004393347539007664, + -0.010831980966031551, + 0.006890885531902313, + 0.04052734375, + -0.05447879061102867, + 0.03268809616565704, + 0.10357707738876343, + -0.06316496431827545, + 0.052513524889945984, + 0.04743622615933418, + -0.000425887294113636, + 0.04073223099112511, + -0.0976434126496315, + -0.05778953433036804, + 0.037132732570171356, + -0.00030600622994825244, + 0.018300319090485573, + 0.06231734901666641, + 0.045891474932432175, + -0.005857191979885101, + 0.10039034485816956, + 0.04598373919725418, + -0.01883428730070591, + 0.016515430063009262, + -0.044203922152519226, + 0.1341182291507721, + 0.10516184568405151, + -0.03902968019247055, + 0.029400236904621124, + -0.04583703726530075, + 0.043536849319934845, + 0.029266290366649628, + -0.08817074447870255, + -0.05455995351076126, + 0.02221987210214138, + 0.005768245086073875, + -0.01587926596403122, + 0.11983644962310791, + 0.012560899369418621, + 0.04256709665060043, + 0.10850886255502701, + -0.08326700329780579, + -0.06865361332893372, + -0.03096238523721695, + 0.04412977024912834, + -0.06297232210636139, + 0.04253026098012924, + 0.06848850101232529, + 0.005618124268949032, + -0.007348539307713509, + 0.07355884462594986, + 0.004793113563209772, + 0.024968013167381287, + 0.004496053792536259, + -0.0257409680634737, + 0.042100951075553894, + 0.004556948319077492, + -0.015999233350157738, + 0.04011787101626396, + 0.019229650497436523, + 0.07722873985767365, + -0.027322782203555107, + 0.022300289943814278, + -0.09458456933498383, + 0.0307004377245903, + 0.055125877261161804, + 0.03879985213279724, + -0.03831888735294342, + -0.011866869404911995, + -0.029350044205784798, + -0.07556745409965515, + 0.02446538582444191, + -0.020898297429084778, + 0.0564456582069397, + -0.03940664976835251, + -0.01386672630906105, + 0.12792135775089264, + 0.017452819272875786, + 0.010838748887181282, + -0.03652416914701462, + -0.012017732486128807, + 0.009938303381204605, + 0.04889616370201111, + -0.09973563253879547, + -0.07184059172868729, + -0.03578529134392738, + 0.018186137080192566, + -0.014812970533967018, + 0.059717580676078796, + 0.08123335242271423, + 0.005960757844150066, + 0.018530843779444695, + -0.052632272243499756, + 0.013307937420904636, + -0.053198765963315964, + -0.0298524908721447, + -0.016808239743113518, + -0.05400118976831436, + -0.02831321954727173, + 0.08420003950595856, + 0.026544244959950447, + 0.03689193353056908, + -0.04465373605489731, + -0.05500436946749687, + -0.06921444833278656, + 0.038753002882003784, + 0.05172387510538101, + -0.056301530450582504, + 0.02814250811934471, + 0.06931400299072266, + -0.03347296640276909, + -0.0024425871670246124, + 0.07497180253267288, + 0.06604721397161484, + -0.04627583548426628, + -0.01683066040277481, + -0.08147799968719482, + 0.0840359628200531, + 0.10136692225933075, + -0.08423597365617752, + -0.07100728154182434, + -0.06724514067173004, + -0.06517535448074341, + 0.0012098010629415512, + -0.05655192583799362, + 0.0013812556862831116, + 0.056987032294273376, + -0.010655757039785385, + -0.09848500788211823, + -0.11914636939764023, + 0.08726778626441956, + -0.0534479022026062, + 0.015838682651519775, + -0.09185099601745605, + 0.036120302975177765, + 0.047316402196884155, + 0.015715980902314186, + -0.06873959302902222, + -0.002534897066652775, + 0.039400555193424225, + -0.006852324120700359, + 0.0453813336789608, + 0.061837416142225266, + 0.06594138592481613, + -0.09954193979501724, + -0.029201243072748184, + -0.052546679973602295, + 0.07438486814498901, + -0.06084191054105759, + 0.12268063426017761, + 0.03422657400369644, + -0.021232178434729576, + -0.08751991391181946, + 0.07305287569761276, + -0.01204090565443039, + 0.04914397373795509, + 0.05653859302401543, + 0.06471593677997589, + 0.015004511922597885, + -0.09018240869045258, + 0.10709134489297867, + 0.04311639815568924, + -0.020636938512325287, + -0.09339933842420578, + -0.03308381885290146, + -0.04181063547730446, + 0.05528061091899872, + 0.040337905287742615, + -0.06631528586149216, + 0.010500705800950527, + 0.023511139675974846, + -0.015705613419413567, + 0.05758930742740631, + 0.10737930238246918, + 0.08653219044208527, + -0.09123395383358002 + ] + }, + "p244_019.wav": { + "name": "p244", + "embedding": [ + 0.043645840138196945, + 0.09000486135482788, + -0.014766769483685493, + 0.024335574358701706, + -0.0678584948182106, + 0.05244502052664757, + -0.1327638179063797, + 0.14221879839897156, + -0.03032982163131237, + 0.13031697273254395, + -0.06544449180364609, + 0.12695704400539398, + -0.024368593469262123, + -0.1919749528169632, + -0.019306913018226624, + 0.06660457700490952, + -0.04614481329917908, + -0.0330330953001976, + -0.03133698180317879, + -0.031930774450302124, + 0.032004788517951965, + 0.03133589029312134, + 0.03268120810389519, + 0.007189165335148573, + 0.02343025617301464, + 0.0770869180560112, + 0.001116209547035396, + 0.04274427890777588, + 0.010093988850712776, + -0.04368862137198448, + -0.04230609908699989, + 0.09942979365587234, + -0.04613504558801651, + 0.010755178518593311, + 0.05125841498374939, + -0.019561579450964928, + -0.010448102839291096, + -0.05495961382985115, + -0.008619613945484161, + -0.0058892820961773396, + -0.040610186755657196, + 0.07927807420492172, + 0.03265079855918884, + -0.010018340311944485, + 0.04204524680972099, + 0.02684825100004673, + -0.02097545936703682, + -0.045395370572805405, + -0.11326402425765991, + 0.1502005159854889, + 0.08010874688625336, + -0.0087644774466753, + -0.0659211054444313, + -0.056693434715270996, + 0.09800469130277634, + -0.016896074637770653, + -0.11377488821744919, + -0.05146593973040581, + 0.0862141028046608, + 0.14185190200805664, + -0.03091595135629177, + -0.028108233585953712, + 0.021090393885970116, + 0.13312703371047974, + 0.04231356456875801, + 0.0971648097038269, + 0.06687565892934799, + 0.11238361895084381, + -0.02723124995827675, + 0.02333441935479641, + 0.05267775058746338, + 0.06660793721675873, + 0.041154082864522934, + -0.004256479907780886, + 0.017845699563622475, + -0.015710799023509026, + -0.007661410607397556, + 0.0005954798543825746, + -0.03233131021261215, + -0.0229560025036335, + -0.024913141503930092, + 0.000838741660118103, + 0.0021872781217098236, + 0.012059546075761318, + -0.012562994845211506, + 0.05847707390785217, + 0.04398197680711746, + -0.00904103647917509, + 0.0699722021818161, + 0.031126484274864197, + -0.004477318841964006, + 0.0674130842089653, + -0.0820566788315773, + -0.07817738503217697, + 0.030353788286447525, + 0.0009663403034210205, + 0.02671818993985653, + 0.07270333170890808, + 0.035691358149051666, + -0.014246786944568157, + 0.11493851244449615, + 0.05259993299841881, + -0.013765624724328518, + 0.02795824222266674, + -0.09309575706720352, + 0.13726358115673065, + 0.08433478325605392, + -0.01939130388200283, + 0.050675150007009506, + -0.05311408266425133, + 0.0750754252076149, + 0.06480636447668076, + -0.1301712691783905, + -0.05769859626889229, + 0.010755452327430248, + 0.010141793638467789, + -0.03680554777383804, + 0.11869124323129654, + -0.011384345591068268, + 0.04291548952460289, + 0.11379803717136383, + -0.0843738541007042, + -0.06104934215545654, + -0.017229463905096054, + 0.03901267051696777, + -0.09242506325244904, + 0.04979259893298149, + 0.06309882551431656, + -0.014141127467155457, + 0.030077943578362465, + 0.0837942585349083, + -0.004435176495462656, + 0.001128458185121417, + 0.030705690383911133, + -0.05405060574412346, + 0.009841765277087688, + -0.021983865648508072, + 0.005829300731420517, + 0.04252003878355026, + 0.03831961378455162, + 0.04597902297973633, + -0.00835330132395029, + -0.022460682317614555, + -0.11049767583608627, + 0.009778939187526703, + 0.03346436843276024, + 0.07855146378278732, + -0.009597251191735268, + -0.02321794629096985, + -0.03315868601202965, + -0.0723535344004631, + 0.005061472300440073, + -0.00934696290642023, + 0.06735693663358688, + -0.03835853189229965, + -0.0072474549524486065, + 0.09467984735965729, + 0.041568633168935776, + -0.001958973705768585, + -0.062190305441617966, + -0.038273438811302185, + 0.01835728995501995, + 0.048084139823913574, + -0.09380101412534714, + -0.0611860528588295, + -0.0055597214959561825, + 0.037320706993341446, + -0.03422966226935387, + 0.05231741815805435, + 0.04656871408224106, + 0.022631732746958733, + 0.02631610631942749, + -0.06933645159006119, + 0.017829904332756996, + -0.09372898191213608, + -0.07075932621955872, + -0.006447040941566229, + -0.009030413813889027, + -0.027176061645150185, + 0.06852483749389648, + 0.012436563149094582, + 0.05452544242143631, + -0.019362879917025566, + -0.0596567764878273, + -0.08112342655658722, + 0.05655614286661148, + 0.0631454661488533, + -0.007354711648076773, + 0.05686396360397339, + 0.0487113818526268, + -0.04727543145418167, + 0.04776395484805107, + 0.05420079827308655, + 0.11041741818189621, + -0.034343820065259933, + 0.02638939395546913, + -0.07589810341596603, + 0.07316949963569641, + 0.093514584004879, + -0.09648355841636658, + -0.07521901279687881, + -0.031918611377477646, + -0.05447818711400032, + 0.041970860213041306, + -0.031924474984407425, + -0.008569800294935703, + 0.027338897809386253, + -0.00042557166307233274, + -0.10086355358362198, + -0.09049829095602036, + 0.07902263104915619, + -0.07167840003967285, + 0.008777692914009094, + -0.08000784367322922, + 0.0513056218624115, + 0.09095417708158493, + 0.02948816679418087, + -0.0369478277862072, + -0.015693888068199158, + 0.051384251564741135, + -0.028523370623588562, + 0.010666112415492535, + 0.04596463218331337, + 0.047441937029361725, + -0.10504477471113205, + -0.0045044575817883015, + -0.06914548575878143, + 0.04738188907504082, + -0.03778764232993126, + 0.16144846379756927, + 0.016072994098067284, + -0.04059106856584549, + -0.07998155057430267, + 0.03733528032898903, + -0.016966860741376877, + 0.04525521770119667, + 0.03756619617342949, + 0.06081431731581688, + 0.03344818577170372, + -0.06778550893068314, + 0.13147157430648804, + 0.033681612461805344, + -0.04258108511567116, + -0.06240231916308403, + -0.03199373930692673, + -0.04285348206758499, + 0.03236526995897293, + 0.011768505908548832, + -0.10437305271625519, + -0.032722968608140945, + 0.02768459916114807, + -0.01433499064296484, + 0.07204347103834152, + 0.14273704588413239, + 0.07012146711349487, + -0.10024670511484146 + ] + }, + "p244_241.wav": { + "name": "p244", + "embedding": [ + 0.04855145141482353, + 0.10388829559087753, + 0.007621504832059145, + 0.014084719121456146, + -0.04301459342241287, + 0.06849325448274612, + -0.09801189601421356, + 0.10925611853599548, + -0.08141535520553589, + 0.13665910065174103, + -0.12346279621124268, + 0.09902921319007874, + -0.06005801260471344, + -0.16112415492534637, + -0.04238605499267578, + 0.04897911846637726, + -0.03166691213846207, + 0.008135289885103703, + -0.045518938452005386, + -0.02430955320596695, + 0.022337349131703377, + 0.03604353219270706, + 0.03823590651154518, + 0.01980532705783844, + 0.026693126186728477, + 0.06383757293224335, + -0.004623767454177141, + 0.05126023292541504, + 0.021751489490270615, + -0.05143981799483299, + -0.051273226737976074, + 0.11770674586296082, + -0.04369792342185974, + 0.013948287814855576, + 0.05998640134930611, + 0.021963942795991898, + 0.0004481850191950798, + -0.05225333198904991, + -0.021923648193478584, + -0.010574856773018837, + -0.06980741024017334, + 0.04147776961326599, + 0.003056139685213566, + -0.009921594522893429, + 0.05329664796590805, + 0.025850359350442886, + -0.011497590690851212, + -0.04397731274366379, + -0.09409703314304352, + 0.1313454806804657, + 0.04998315870761871, + -0.005225644912570715, + -0.061617471277713776, + -0.07721313089132309, + 0.11883231997489929, + -0.033477701246738434, + -0.12391061335802078, + -0.03029947727918625, + 0.0865338072180748, + 0.16138508915901184, + -0.04544484242796898, + -0.029190942645072937, + 0.010008024051785469, + 0.08031313121318817, + 0.02582111768424511, + 0.1161913275718689, + 0.0714988261461258, + 0.08074761927127838, + 0.005205424036830664, + 0.02900320664048195, + 0.06444621831178665, + 0.04472336918115616, + 0.053396329283714294, + -0.037300001829862595, + 0.005555342882871628, + 0.02497043088078499, + -0.03533528745174408, + 0.05489230901002884, + -0.014426913112401962, + -0.0039623393677175045, + -0.03082038089632988, + -0.0097047733142972, + -0.015025701373815536, + -0.0434880405664444, + -0.02828710898756981, + 0.05669764056801796, + 0.0005257711745798588, + 0.008027404546737671, + 0.07677888870239258, + 0.026675008237361908, + -0.04944892227649689, + 0.05094979703426361, + -0.03902903199195862, + -0.07506494224071503, + -0.014869222417473793, + 0.004144656006246805, + -0.026414018124341965, + 0.0847502052783966, + 0.030529940500855446, + -0.012968376278877258, + 0.1166490763425827, + 0.052746839821338654, + 0.0427168570458889, + 0.04046155512332916, + -0.10833506286144257, + 0.10884879529476166, + 0.08455890417098999, + -0.026933126151561737, + 0.048196226358413696, + -0.011005966924130917, + 0.0821273922920227, + 0.0976448506116867, + -0.14543811976909637, + -0.053050361573696136, + 0.017240280285477638, + -0.003042595461010933, + 0.003207179717719555, + 0.0640895813703537, + -0.030248042196035385, + -0.011854519136250019, + 0.11737500131130219, + -0.08714167773723602, + -0.061433304101228714, + -0.016499049961566925, + 0.036850713193416595, + -0.0701727420091629, + 0.040095001459121704, + 0.0403565987944603, + 0.0020230580121278763, + -0.0034932373091578484, + 0.09443716704845428, + -0.021341778337955475, + -0.012844682671129704, + 0.029157381504774094, + -0.05852624773979187, + 0.0026108077727258205, + -0.04634423553943634, + -0.002826808486133814, + 0.07767903804779053, + 0.06181219220161438, + 0.03926551714539528, + 0.008812297135591507, + -0.036281876266002655, + -0.09084829688072205, + -0.003346675308421254, + 0.06916650384664536, + 0.05068311095237732, + -0.0044388072565197945, + 0.0014686076901853085, + -0.05462687462568283, + -0.0681893527507782, + 0.04659188538789749, + -0.005526903551071882, + 0.10282546281814575, + -0.03730575367808342, + 0.009473313577473164, + 0.10287028551101685, + 0.014399701729416847, + -0.022871065884828568, + -0.09819097816944122, + -0.02461743727326393, + 0.007161572575569153, + 0.0411594919860363, + -0.06994098424911499, + -0.0859316885471344, + 0.00927063636481762, + 0.0360124297440052, + -0.0096918735653162, + 0.047297608107328415, + 0.03313833847641945, + 0.0044814180582761765, + 0.046500928699970245, + -0.06753655523061752, + 0.016161903738975525, + -0.10432673245668411, + -0.0543946772813797, + -0.020103605464100838, + -0.03209888935089111, + 0.007815122604370117, + 0.07899929583072662, + 0.009852278046309948, + 0.00455419160425663, + 0.02052672952413559, + -0.10859338194131851, + -0.07700277119874954, + 0.07874372601509094, + 0.06829214096069336, + 0.01762128807604313, + 0.05811459571123123, + 0.06048346310853958, + -0.060409173369407654, + 0.08008294552564621, + 0.07020724564790726, + 0.10097268223762512, + -0.019900325685739517, + 0.0370103120803833, + -0.050697922706604004, + 0.036122877150774, + 0.06127641350030899, + -0.10580562055110931, + -0.11345987021923065, + -0.046258002519607544, + -0.04944352060556412, + 0.08074247092008591, + -0.009374765679240227, + -0.0035515157505869865, + 0.008655051700770855, + -0.03376298397779465, + -0.06207156181335449, + -0.08288927376270294, + 0.09518016129732132, + -0.025089647620916367, + -0.0324341282248497, + -0.05632743984460831, + 0.03967411816120148, + 0.04602235555648804, + 0.03851163387298584, + -0.0002709056716412306, + 0.03235660493373871, + 0.04745863378047943, + -0.08346137404441833, + -0.03865830600261688, + 0.05321166664361954, + -0.010574307292699814, + -0.06656316667795181, + 0.023734666407108307, + -0.09398245811462402, + 0.11111139506101608, + -0.05355370044708252, + 0.1551147848367691, + -0.04079209640622139, + -0.05409376323223114, + -0.05981755256652832, + 0.03477563336491585, + -0.037898462265729904, + 0.019900977611541748, + 0.04998005926609039, + 0.05720070004463196, + 0.009731464087963104, + -0.042229704558849335, + 0.11460287123918533, + 0.009367861784994602, + -0.030984530225396156, + -0.03553812950849533, + -0.05675627291202545, + -0.05962741747498512, + -0.021136879920959473, + -0.0032997215166687965, + -0.10011956840753555, + 0.0004761507734656334, + -0.010803990997374058, + -0.024961348623037338, + 0.060372449457645416, + 0.13477203249931335, + 0.07770529389381409, + -0.1096356213092804 + ] + }, + "p244_306.wav": { + "name": "p244", + "embedding": [ + 0.05505622550845146, + 0.07680020481348038, + -0.03827314078807831, + 0.0035655181854963303, + -0.0046660639345645905, + 0.02073761634528637, + -0.1413261890411377, + 0.07939309626817703, + -0.03812088817358017, + 0.14609000086784363, + -0.04396982491016388, + 0.09468288719654083, + -0.029429864138364792, + -0.11848115921020508, + -0.009265345521271229, + 0.057256996631622314, + -0.0355813167989254, + -0.0283795353025198, + -0.0076742880046367645, + -0.028055639937520027, + 0.04498696327209473, + 0.04041751101613045, + 0.04749239981174469, + -0.03170397877693176, + -0.005378715228289366, + 0.07455624639987946, + -0.0028243588749319315, + 0.023833759129047394, + 0.016195468604564667, + -0.033213112503290176, + 0.007682809606194496, + 0.06728558242321014, + -0.0014248816296458244, + -0.01707622967660427, + 0.003660690039396286, + 0.019824368879199028, + -0.004316001199185848, + -0.0593959279358387, + 0.0025273840874433517, + 0.0374947153031826, + -0.040805961936712265, + 0.05585349723696709, + 0.018934044986963272, + -0.029842540621757507, + 0.03390195965766907, + -0.06957244127988815, + -0.05907613784074783, + -0.008028434589505196, + -0.06762120127677917, + 0.13579198718070984, + 0.10991869866847992, + 0.02149053104221821, + -0.04955786094069481, + 0.0034280698746442795, + 0.0963892936706543, + 0.01778365671634674, + -0.09388463199138641, + -0.049003083258867264, + 0.026032747700810432, + 0.13977527618408203, + -0.021188070997595787, + -0.02734021469950676, + 0.04864706099033356, + 0.09901722520589828, + 0.02095963805913925, + 0.049538541585206985, + 0.1066974550485611, + 0.047495778650045395, + 0.014780217781662941, + -0.013616404496133327, + 0.019388051703572273, + 0.08726206421852112, + 0.020648520439863205, + -0.010897047817707062, + 0.02282070927321911, + -0.013776706531643867, + -0.04380542039871216, + -0.01056300476193428, + -0.0001723114401102066, + -0.06448108702898026, + -0.06004903092980385, + -0.023561565205454826, + -0.01949315145611763, + 0.054675959050655365, + -0.0067515065893530846, + 0.0027969181537628174, + 0.026212245225906372, + -0.041123561561107635, + 0.035941608250141144, + 0.015969542786478996, + 0.023747731000185013, + 0.014893513172864914, + -0.033469509333372116, + -0.0790315568447113, + 0.014688857831060886, + 0.016097987070679665, + 0.021435314789414406, + 0.04335038363933563, + 0.033681608736515045, + 0.01696859858930111, + 0.10140206664800644, + 0.03156451880931854, + -0.00837996881455183, + -0.02197633683681488, + -0.05654747039079666, + 0.08613306283950806, + 0.11363258212804794, + -0.03464864194393158, + 0.048325322568416595, + -0.027570761740207672, + -0.010014321655035019, + 0.0037313923239707947, + -0.09995387494564056, + -0.03605522960424423, + 0.029343679547309875, + 0.05993777886033058, + 0.02685803920030594, + 0.09484286606311798, + 0.03450668230652809, + 0.03874657303094864, + 0.0922374352812767, + -0.04130696505308151, + -0.07843338698148727, + -0.05972140282392502, + 0.07574707269668579, + -0.060857005417346954, + 0.06701217591762543, + 0.05937100574374199, + 0.009569802321493626, + 0.0002467036247253418, + 0.06186249107122421, + 0.019481608644127846, + 0.014568346552550793, + -0.03743567690253258, + -0.023488711565732956, + 0.03462141752243042, + -0.0623919814825058, + 0.0265984907746315, + 0.046789415180683136, + 0.006928352639079094, + 0.06547141820192337, + 0.0300578810274601, + -0.0012788493186235428, + -0.09290700405836105, + 0.013414192944765091, + 0.036794938147068024, + 0.04122234135866165, + -0.024422885850071907, + -0.04641049727797508, + -0.006802916526794434, + -0.054350703954696655, + -0.030609797686338425, + -0.0559987835586071, + 0.0992480143904686, + -0.01778743416070938, + 0.03443723917007446, + 0.06636541336774826, + -0.03534723445773125, + -0.0029190946370363235, + -0.01694457232952118, + 0.015438850969076157, + 0.009172656573355198, + 0.028035113587975502, + -0.07191040366888046, + -0.08365357667207718, + 0.0023439358919858932, + 0.04300897568464279, + 0.02191540226340294, + 0.049554355442523956, + 0.05818035081028938, + -0.023233793675899506, + 0.013830053620040417, + -0.017325764521956444, + 0.017293429002165794, + -0.07358473539352417, + -0.06480465084314346, + -0.0010920651257038116, + -0.03592834994196892, + -0.024872202426195145, + 0.08201742172241211, + 0.011467477306723595, + 0.05391485244035721, + -0.01736217923462391, + -0.06846168637275696, + -0.08243231475353241, + 0.06161642074584961, + 0.07036758959293365, + -0.033649928867816925, + 0.00907411053776741, + 0.06846663355827332, + 0.01289813220500946, + 0.002310441806912422, + 0.026799112558364868, + 0.07719340175390244, + -0.03801887854933739, + -0.03133057430386543, + -0.08754429221153259, + 0.022657452151179314, + 0.10896364599466324, + -0.0877876877784729, + -0.04274103045463562, + -0.06856776773929596, + -0.09331691265106201, + 0.03670834004878998, + -0.03515349328517914, + 0.004988156724721193, + 0.030150409787893295, + -0.04532838612794876, + -0.11392181366682053, + -0.10930128395557404, + 0.06066618859767914, + -0.037151992321014404, + 0.006051860749721527, + -0.05155124142765999, + 0.025649290531873703, + 0.050248079001903534, + 0.04166022688150406, + -0.03138338401913643, + 0.027954040095210075, + 0.007608810439705849, + -0.028143342584371567, + 0.0008438541553914547, + 0.026732830330729485, + 0.05875341594219208, + -0.09967515617609024, + -0.010662459768354893, + -0.08705344796180725, + 0.06402252614498138, + -0.06523282825946808, + 0.08083129674196243, + 0.02737555280327797, + -0.01571253314614296, + -0.10060656070709229, + 0.014561232179403305, + -0.010295488871634007, + 0.05841793119907379, + 0.03223147988319397, + 0.03551070764660835, + 0.04109828919172287, + -0.07578560709953308, + 0.07033883780241013, + 0.058126144111156464, + 0.01752890646457672, + -0.08540873229503632, + 0.006016083061695099, + -0.027324464172124863, + 0.046412453055381775, + 0.005907483398914337, + -0.027537653222680092, + -0.004746068734675646, + -0.014799483120441437, + 0.003220837563276291, + 0.06860937178134918, + 0.06972348690032959, + 0.048717208206653595, + -0.10334914922714233 + ] + }, + "p244_027.wav": { + "name": "p244", + "embedding": [ + 0.04432281106710434, + 0.07354508340358734, + -0.03412673622369766, + 0.0028409529477357864, + -0.012658207677304745, + 0.05901127681136131, + -0.12379668653011322, + 0.08685243874788284, + 0.012447293847799301, + 0.13412760198116302, + -0.06889189779758453, + 0.11494535207748413, + 0.022990604862570763, + -0.15885275602340698, + -0.006521563045680523, + 0.004106161650270224, + 0.008960036560893059, + 0.0411091148853302, + -0.036406636238098145, + -0.02812749333679676, + 0.0601324662566185, + 0.05481727421283722, + 0.044593121856451035, + -0.14300663769245148, + 0.03986106812953949, + 0.05103269964456558, + 0.012283232063055038, + 0.052562467753887177, + -0.015370592474937439, + -0.10172130167484283, + -0.03452380746603012, + 0.10231205075979233, + -0.05644785612821579, + 0.01934194378554821, + 0.05006445199251175, + -0.019126635044813156, + -0.02801322564482689, + -0.042540453374385834, + 0.030695855617523193, + 0.031318336725234985, + 0.005516704171895981, + 0.053985387086868286, + 0.023677410557866096, + -0.03394247964024544, + 0.029108364135026932, + 0.04938003420829773, + 0.021068723872303963, + -0.055030401796102524, + -0.0659765899181366, + 0.16514599323272705, + 0.012818671762943268, + 0.016749534755945206, + -0.07091765105724335, + -0.05374474078416824, + 0.07389141619205475, + 0.012549187988042831, + -0.058447156101465225, + -0.027476154267787933, + 0.056489497423172, + 0.10836535692214966, + -0.02241826243698597, + -0.05815034359693527, + 0.05611545592546463, + 0.04972558468580246, + -0.012564528733491898, + 0.06321202218532562, + 0.1030239462852478, + 0.08244116604328156, + 0.029996566474437714, + 0.03186764940619469, + -0.0323331356048584, + 0.10459224879741669, + 0.03648272529244423, + -0.033128805458545685, + 0.0326327309012413, + -0.028120974078774452, + -0.04594683647155762, + -0.03663431853055954, + -0.05550771951675415, + -0.0330071821808815, + 0.03931658715009689, + -0.006884632632136345, + 0.0686824694275856, + 0.024757636711001396, + -0.06870334595441818, + 0.027374185621738434, + 0.040667325258255005, + -0.0534016378223896, + 0.046957019716501236, + -0.007710677571594715, + 0.02688753977417946, + 0.013953055255115032, + -0.1099095270037651, + -0.11291852593421936, + 0.04806957393884659, + 0.018868692219257355, + -0.025740426033735275, + 0.058151327073574066, + 0.07144999504089355, + -0.04021773487329483, + 0.09609010815620422, + 0.009181387722492218, + -0.038025110960006714, + -0.001317206653766334, + -0.040908198803663254, + 0.11304080486297607, + 0.13078133761882782, + 0.005507038906216621, + 0.03398223966360092, + -0.11903263628482819, + 0.035784296691417694, + 0.036333270370960236, + -0.14562994241714478, + -0.0747666209936142, + 0.0033839354291558266, + -0.01173822209239006, + 0.0062467013485729694, + 0.11940028518438339, + -0.003899088129401207, + 0.028578901663422585, + 0.10952045023441315, + -0.1148550808429718, + -0.053863491863012314, + -0.04510793089866638, + 0.03156639263033867, + -0.07044486701488495, + 0.06248483061790466, + 0.04448135197162628, + -0.026083804666996002, + 0.01805531047284603, + 0.044719040393829346, + -0.01635478250682354, + 0.03495458513498306, + -0.016607210040092468, + -0.014521969482302666, + 0.022298172116279602, + -0.05599301680922508, + -0.008513668552041054, + -0.0020260638557374477, + 0.04130125790834427, + 0.07170802354812622, + -0.010988626629114151, + -0.07091115415096283, + -0.10348059982061386, + 0.02258566953241825, + 0.009420241229236126, + 0.03773786500096321, + -0.03998532518744469, + -0.032974280416965485, + -0.03115672431886196, + -0.07251474261283875, + 0.04311061650514603, + -0.023966269567608833, + 0.06192421913146973, + 0.030083896592259407, + 0.023471448570489883, + 0.10188248008489609, + 0.02776740863919258, + -0.004157468676567078, + -0.034370824694633484, + -0.03946379944682121, + 0.0039813946932554245, + 0.004686253145337105, + -0.077348992228508, + -0.04909580573439598, + -0.03943309932947159, + -0.03568442538380623, + -0.03952997550368309, + 0.05051346868276596, + 0.04566514864563942, + 0.0454668328166008, + 0.026747507974505424, + -0.0385223850607872, + -0.0630970224738121, + -0.08967648446559906, + -0.04111894592642784, + -0.00871978234499693, + -0.026575561612844467, + -0.051508672535419464, + 0.12006650865077972, + 0.008227568119764328, + 0.03348005563020706, + -0.07317588478326797, + 0.0016684443689882755, + -0.07362757623195648, + 0.027828818187117577, + 0.04218640178442001, + -0.020466996356844902, + -0.002867426723241806, + -0.004060441628098488, + 0.00015130732208490372, + 0.053317341953516006, + 0.095311738550663, + 0.04253970831632614, + 0.013434167020022869, + -0.0034487536177039146, + -0.061610374599695206, + 0.15834152698516846, + 0.10514329373836517, + -0.01765006221830845, + -0.07048051059246063, + -0.036414600908756256, + -0.10194718092679977, + 0.02502007596194744, + -0.017176542431116104, + -0.010008294135332108, + 0.000814578088466078, + 0.018073352053761482, + -0.09646859765052795, + -0.05671139061450958, + 0.015663597732782364, + -0.04576176404953003, + -0.014507502317428589, + -0.08447213470935822, + 0.05495987460017204, + 0.09973976016044617, + 0.029841985553503036, + -0.0037116468884050846, + -0.031571075320243835, + 0.053076013922691345, + -0.05090910196304321, + 0.03330843150615692, + 0.01553352177143097, + 0.04024161398410797, + -0.06372494995594025, + 0.011975262314081192, + -0.03629833832383156, + -0.008213363587856293, + -0.06851102411746979, + 0.0992109403014183, + 0.04397306218743324, + -0.05417325720191002, + -0.05329791456460953, + 0.09340571612119675, + -0.02845717966556549, + 0.01837374083697796, + 0.03311600908637047, + 0.02748539298772812, + 0.04829017072916031, + -0.14807772636413574, + 0.07516683638095856, + 0.02214081585407257, + 0.0023267148062586784, + -0.09832902252674103, + -0.10687923431396484, + -0.024699702858924866, + 0.028222691267728806, + 0.02537519857287407, + -0.06494569778442383, + -0.003348737955093384, + 0.050109393894672394, + 0.03473294526338577, + 0.021052168682217598, + 0.11525900661945343, + 0.006066151428967714, + -0.08687369525432587 + ] + }, + "p244_077.wav": { + "name": "p244", + "embedding": [ + 0.0441247895359993, + 0.05577719584107399, + -0.011542562395334244, + 0.04647618532180786, + -0.07843305170536041, + 0.04447241127490997, + -0.12737514078617096, + 0.14008599519729614, + -0.022516822442412376, + 0.11242713034152985, + -0.05996832996606827, + 0.13259345293045044, + -0.02528795599937439, + -0.18848836421966553, + -0.00502127967774868, + 0.07134155929088593, + -0.014987419359385967, + -0.042251598089933395, + -0.008396918885409832, + -0.02066117525100708, + 0.030952034518122673, + 0.030579710379242897, + 0.05033896863460541, + 0.030778992921113968, + 0.014115611091256142, + 0.07981330156326294, + -0.013351555913686752, + 0.04463367164134979, + 0.019361531361937523, + -0.028901483863592148, + -0.0441368892788887, + 0.09508106112480164, + -0.06657519936561584, + 0.0026479996740818024, + 0.05398434400558472, + -0.017870793119072914, + -0.02787959761917591, + -0.05334862321615219, + -0.03318542614579201, + -0.021154779940843582, + -0.07629251480102539, + 0.07471948862075806, + 0.03834088519215584, + -0.01960926689207554, + 0.054473958909511566, + 0.008354767225682735, + -0.031763315200805664, + -0.019614068791270256, + -0.12774911522865295, + 0.11969154328107834, + 0.06087518483400345, + -0.0017305565997958183, + -0.07445700466632843, + -0.0444067120552063, + 0.10394944250583649, + -0.022765133529901505, + -0.11375965178012848, + -0.048930611461400986, + 0.09639698266983032, + 0.1404995620250702, + -0.03372683376073837, + -0.021637579426169395, + 0.02221793122589588, + 0.1013527512550354, + 0.08033356070518494, + 0.09617137908935547, + 0.07934974133968353, + 0.12718281149864197, + -0.026742536574602127, + 0.016393916681408882, + 0.053307823836803436, + 0.07378504425287247, + 0.037886109203100204, + -0.005526804365217686, + 0.0018383972346782684, + 0.02013028971850872, + 0.0002220624592155218, + 0.0023388895206153393, + -0.022234193980693817, + -0.00037703244015574455, + -0.021738335490226746, + -0.010839002206921577, + 0.010133093222975731, + 0.016255555674433708, + -0.02127884142100811, + 0.07280543446540833, + 0.05774432420730591, + 0.009844318963587284, + 0.06331487745046616, + 0.02046625316143036, + -0.03377727046608925, + 0.08063536137342453, + -0.09111381322145462, + -0.05468762665987015, + -0.0004921611398458481, + -0.009001150727272034, + 0.027706097811460495, + 0.09170880913734436, + 0.03438568115234375, + -0.009573924355208874, + 0.13051530718803406, + 0.046903930604457855, + -0.00993403047323227, + 0.04298553615808487, + -0.08616945147514343, + 0.1249568909406662, + 0.06969983875751495, + -0.02717544510960579, + 0.05156414955854416, + -0.05012320727109909, + 0.08062338083982468, + 0.061145517975091934, + -0.12330621480941772, + -0.030489381402730942, + 0.021639931946992874, + 0.00677353423088789, + -0.032268159091472626, + 0.1390179693698883, + -0.01703375019133091, + 0.041552312672138214, + 0.11843377351760864, + -0.08506986498832703, + -0.05398859083652496, + 0.0014515286311507225, + 0.03961411863565445, + -0.08837606012821198, + 0.058947350829839706, + 0.031523775309324265, + -0.005090508610010147, + 0.029098298400640488, + 0.0854685977101326, + -0.01350948866456747, + -0.010343389585614204, + 0.03508518636226654, + -0.06436306983232498, + 0.013971364125609398, + -0.020596493035554886, + 0.006497354246675968, + 0.07645373791456223, + 0.030720841139554977, + 0.06042849272489548, + -0.01582488603889942, + -0.008674650453031063, + -0.1221734881401062, + 0.012565107084810734, + 0.035887524485588074, + 0.09438872337341309, + -0.0019660682883113623, + -0.027055587619543076, + -0.052517496049404144, + -0.08269670605659485, + 0.026657959446310997, + 0.001751558156684041, + 0.07053229212760925, + -0.04909665882587433, + 0.0018528427463024855, + 0.06924028694629669, + 0.038046836853027344, + 0.0036381392274051905, + -0.06326187402009964, + -0.05350184440612793, + -0.010834218934178352, + 0.05925120413303375, + -0.09384602308273315, + -0.05921382084488869, + -0.014839387498795986, + 0.05338997393846512, + -0.03743450716137886, + 0.051080018281936646, + 0.04795766621828079, + 0.03266468644142151, + 0.01791839674115181, + -0.0691235139966011, + 0.011312424205243587, + -0.08719964325428009, + -0.07640030980110168, + -0.01496092975139618, + 0.0074958885088562965, + -0.013697894290089607, + 0.059496089816093445, + 0.02363206073641777, + 0.05525142699480057, + -0.005776542238891125, + -0.07624559104442596, + -0.10020535439252853, + 0.04826219007372856, + 0.03628809005022049, + -0.013998333364725113, + 0.06495166569948196, + 0.0707811713218689, + -0.08242375403642654, + 0.05237758159637451, + 0.045573752373456955, + 0.10469721257686615, + -0.04441332072019577, + 0.03467366099357605, + -0.0633363276720047, + 0.0810864269733429, + 0.10685169696807861, + -0.0902961939573288, + -0.08031240105628967, + -0.023051604628562927, + -0.0735018253326416, + 0.05149964615702629, + -0.030868660658597946, + -0.024761589244008064, + 0.030378814786672592, + 0.002915068995207548, + -0.10719775408506393, + -0.08636774122714996, + 0.07856257259845734, + -0.07141738384962082, + -0.0007749493233859539, + -0.09568405151367188, + 0.03428655490279198, + 0.08233478665351868, + 0.022525392472743988, + -0.02349892258644104, + -0.0033800352830439806, + 0.05736416205763817, + -0.02389426901936531, + 0.007860852405428886, + 0.0827043354511261, + 0.036795757710933685, + -0.10705377161502838, + -0.047763891518116, + -0.06690309196710587, + 0.049164410680532455, + -0.023161571472883224, + 0.15385277569293976, + 0.0024788815062493086, + -0.03624585270881653, + -0.04904076084494591, + 0.025826483964920044, + 0.0019155757036060095, + 0.04821204021573067, + 0.05015700310468674, + 0.07506665587425232, + 0.02887258306145668, + -0.04474882781505585, + 0.1433289647102356, + 0.04517758637666702, + -0.05305725708603859, + -0.056351616978645325, + -0.022155005484819412, + -0.05352121591567993, + 0.01626274362206459, + 0.02168426476418972, + -0.11227668076753616, + -0.020241057500243187, + 0.029854975640773773, + -0.029061123728752136, + 0.044770658016204834, + 0.14251279830932617, + 0.07589574158191681, + -0.09854022413492203 + ] + }, + "p244_364.wav": { + "name": "p244", + "embedding": [ + 0.07411766052246094, + 0.0688961073756218, + -0.03767406567931175, + -0.0035897730849683285, + -0.029766447842121124, + 0.046414099633693695, + -0.12934976816177368, + 0.09268532693386078, + -0.005761180073022842, + 0.14150846004486084, + -0.06534643471240997, + 0.1073131412267685, + 0.009341469034552574, + -0.10973008722066879, + -0.022096753120422363, + 0.019180428236722946, + -0.039482422173023224, + -0.018080715090036392, + -0.04646385833621025, + -0.03326559066772461, + 0.027837440371513367, + 0.05835944414138794, + 0.02847321890294552, + -0.03541101515293121, + 0.022809116169810295, + 0.047375187277793884, + -0.00468095950782299, + 0.011728998273611069, + -0.0037638982757925987, + -0.06544762849807739, + -0.001855323789641261, + 0.08075466006994247, + -0.05059591680765152, + 0.019316092133522034, + 0.009953207336366177, + 0.004052397795021534, + 0.00855876225978136, + -0.07630345970392227, + -0.009677673690021038, + 0.040510546416044235, + -0.010372968390583992, + 0.07524291425943375, + 0.022167598828673363, + -0.022396724671125412, + 0.00717608816921711, + -0.00957159511744976, + -0.016653750091791153, + -0.03913448378443718, + -0.08551868051290512, + 0.18275299668312073, + 0.048809558153152466, + 0.01193698775023222, + -0.08591070026159286, + -0.034239254891872406, + 0.060345228761434555, + -0.003848826512694359, + -0.06945644319057465, + -0.025525327771902084, + 0.02138989232480526, + 0.11611030995845795, + -0.01534538995474577, + -0.06660165637731552, + 0.037291429936885834, + 0.08991001546382904, + 0.030401840806007385, + 0.0201491080224514, + 0.11415170133113861, + 0.0930323451757431, + -0.03326226770877838, + 0.014700353145599365, + 0.03936295211315155, + 0.07029324024915695, + 0.08579345792531967, + -0.0018287412822246552, + 0.04666293412446976, + -0.029974348843097687, + -0.020235486328601837, + -0.01014566607773304, + -0.022014593705534935, + -0.056566379964351654, + -0.0003004016471095383, + -0.010959039442241192, + 0.018272504210472107, + 0.0851973295211792, + -0.04853484034538269, + 0.019574005156755447, + 0.03364041820168495, + -0.04355157911777496, + 0.05365624278783798, + 0.045190244913101196, + 0.03042224608361721, + 0.02210867404937744, + -0.07886255532503128, + -0.0850730836391449, + 0.053215377032756805, + 5.2145373047096655e-05, + 0.0519869439303875, + 0.05321744084358215, + 0.05672458931803703, + -0.013537104241549969, + 0.08900400251150131, + 0.02567974478006363, + -0.005181679967790842, + -0.04215504229068756, + -0.06359979510307312, + 0.11314573884010315, + 0.14001679420471191, + -0.037757281213998795, + 0.023854993283748627, + -0.042268212884664536, + 0.031940706074237823, + 0.027521274983882904, + -0.11223103106021881, + -0.07159793376922607, + 0.025317013263702393, + 0.027026234194636345, + 0.04232592508196831, + 0.09741935133934021, + 0.024838989600539207, + 0.04968748614192009, + 0.07410114258527756, + -0.06681782007217407, + -0.037675559520721436, + -0.025230515748262405, + 0.03447061777114868, + -0.07518871128559113, + 0.0433245524764061, + 0.05249509960412979, + 0.003272540867328644, + -0.02157735824584961, + 0.0655079334974289, + -0.008282921276986599, + 0.010799411684274673, + -0.04245069622993469, + 0.019343122839927673, + 0.0475752130150795, + 0.002618471859022975, + -0.0015741947572678328, + 0.022558771073818207, + 0.02955506555736065, + 0.044815391302108765, + 0.0234798863530159, + -0.04209362715482712, + -0.12220008671283722, + 0.03398098796606064, + 0.041929736733436584, + 0.03299722075462341, + -0.05535803362727165, + -0.03683823347091675, + -0.00916335266083479, + -0.048021018505096436, + 0.023520659655332565, + -0.005893264897167683, + 0.04973649978637695, + 0.02444392442703247, + -0.011596551164984703, + 0.11101164668798447, + 0.0012469416251406074, + -0.0016663861460983753, + -0.002089510438963771, + 0.005225991364568472, + 0.027256745845079422, + 0.05554088205099106, + -0.07215414196252823, + -0.08712362498044968, + -0.004855040460824966, + 0.005757532082498074, + 0.0021163932979106903, + 0.040705401450395584, + 0.06049233675003052, + -0.03540574014186859, + 0.028685539960861206, + -0.06474751234054565, + -0.003975156228989363, + -0.09975000470876694, + -0.0512579008936882, + 0.005521845072507858, + -0.05837303027510643, + -0.014604221098124981, + 0.09144848585128784, + 0.005041875876486301, + 0.05929539352655411, + -0.05762714892625809, + -0.05505233258008957, + -0.037216201424598694, + 0.049103111028671265, + 0.06742976605892181, + -0.0353429913520813, + -0.0027305083349347115, + 0.0564521849155426, + 0.04915950819849968, + 0.028110604733228683, + 0.06778980791568756, + 0.07989275455474854, + -0.05025125667452812, + -0.020636796951293945, + -0.05088840425014496, + 0.1061127632856369, + 0.0628167986869812, + -0.05226246640086174, + -0.06122283637523651, + -0.055083196610212326, + -0.0589204803109169, + 0.016531746834516525, + -0.02637522481381893, + 0.0182774867862463, + 0.04533546417951584, + -0.018756572157144547, + -0.0969420075416565, + -0.09481378644704819, + 0.0583159439265728, + -0.03491229563951492, + 0.008995480835437775, + -0.06785570830106735, + 0.04639941453933716, + 0.07237907499074936, + 0.048800449818372726, + -0.027813490480184555, + 0.011149127036333084, + -0.010462388396263123, + -0.04715214669704437, + -0.01963178999722004, + 0.0028442740440368652, + 0.03367045149207115, + -0.08749338239431381, + -0.01355995424091816, + -0.06922807544469833, + 0.04285108298063278, + -0.059916459023952484, + 0.10366028547286987, + 0.01412882935255766, + -0.058058008551597595, + -0.08771266788244247, + 0.02347324788570404, + -0.03683902323246002, + 0.04756538197398186, + 0.043209902942180634, + 0.028496388345956802, + 0.04044199734926224, + -0.09550120681524277, + 0.06856609880924225, + 0.0707521140575409, + -0.013329627923667431, + -0.08416861295700073, + -0.0413392037153244, + -0.0009588624234311283, + 0.04733605310320854, + 0.0095968097448349, + -0.022001352161169052, + 0.01775701902806759, + 0.008782084099948406, + 0.0021933193784207106, + 0.0537465438246727, + 0.09249182790517807, + 0.05076516792178154, + -0.1178692877292633 + ] + }, + "p244_205.wav": { + "name": "p244", + "embedding": [ + 0.03016308695077896, + 0.07631278038024902, + -0.02349473536014557, + -0.0017680339515209198, + -0.025959618389606476, + 0.011977539397776127, + -0.1266510784626007, + 0.07942116260528564, + -0.012677554972469807, + 0.1364721804857254, + -0.06258305162191391, + 0.0889732763171196, + -0.05844544619321823, + -0.09973613917827606, + 0.00487312488257885, + 0.04413086548447609, + -0.01881502754986286, + -0.005670476704835892, + 0.005553156137466431, + -0.07158921658992767, + 0.021017249673604965, + 0.0031952597200870514, + 0.028753286227583885, + -0.04739619791507721, + -0.008782098069787025, + 0.09371021389961243, + 0.001390613615512848, + -0.019207758828997612, + -0.01510784961283207, + -0.03508295863866806, + 0.011021770536899567, + 0.058934133499860764, + -0.022919263690710068, + -0.0034853527322411537, + 0.03721454739570618, + 0.02054639160633087, + -0.03435319662094116, + 0.0009646564722061157, + 0.049066949635744095, + 0.03440074995160103, + -0.06181098148226738, + 0.06955818831920624, + 0.007186093833297491, + -0.003993075340986252, + 0.057347480207681656, + -0.042310722172260284, + -0.04215339571237564, + 0.034727320075035095, + -0.04151586443185806, + 0.09577593207359314, + 0.06594061851501465, + 0.010294405743479729, + -0.06734541058540344, + 0.01236158236861229, + 0.07711176574230194, + 0.007514624390751123, + -0.11242041736841202, + -0.016460532322525978, + 0.03292901813983917, + 0.09196829050779343, + -0.031774237751960754, + -0.05448863282799721, + 0.00978437066078186, + 0.0871991366147995, + 0.003283141180872917, + 0.060162123292684555, + 0.08885753899812698, + 0.09054620563983917, + -0.00599433109164238, + -0.027453433722257614, + 0.040771447122097015, + 0.06526815891265869, + 0.06084730476140976, + -0.024752981960773468, + 0.03567638620734215, + -0.04636397585272789, + 0.0012313686311244965, + -0.025745250284671783, + -0.004358578473329544, + -0.08555863797664642, + -0.06419212371110916, + -0.041867781430482864, + 0.0004935902543365955, + 0.03392283245921135, + -0.0019047296373173594, + -0.015169690363109112, + 0.0805935189127922, + -0.04919591546058655, + 0.04117341339588165, + 0.04079952463507652, + -0.024259822443127632, + 0.006130870431661606, + -0.0655989721417427, + -0.019292734563350677, + 0.009497793391346931, + -0.019837111234664917, + 0.06371242552995682, + 0.04196896031498909, + 0.03817059099674225, + 0.044975943863391876, + 0.0781751498579979, + 0.041749581694602966, + 0.0076402341946959496, + -0.029130414128303528, + -0.062173351645469666, + 0.0958670824766159, + 0.11044518649578094, + -0.06733745336532593, + 0.027478892356157303, + -0.00026594940572977066, + 0.004652870818972588, + -0.0034995153546333313, + -0.08310652524232864, + -0.01802799291908741, + -0.013631366193294525, + 0.059266187250614166, + 0.011897288262844086, + 0.09876236319541931, + 0.016565734520554543, + 0.017642585560679436, + 0.10447601974010468, + -0.03063739836215973, + -0.06334168463945389, + -0.07251597195863724, + 0.03190169110894203, + -0.09228309988975525, + 0.06963847577571869, + 0.06185544282197952, + 0.04570194333791733, + 0.011232136748731136, + 0.06871529668569565, + 0.01743600331246853, + 0.009362057782709599, + -0.062454648315906525, + -0.0077316854149103165, + 0.009054852649569511, + -0.0016396455466747284, + 0.044532883912324905, + 0.05752849578857422, + -0.0030330857262015343, + 0.10861839354038239, + 0.037174634635448456, + 0.02606108784675598, + -0.0805550068616867, + 0.020083174109458923, + 0.03879685699939728, + 0.007034924812614918, + -0.05270201712846756, + -0.04865071922540665, + 0.01137634739279747, + -0.06903019547462463, + -0.005708023905754089, + -0.033123183995485306, + 0.073824942111969, + -0.007686281576752663, + -0.020624075084924698, + 0.11325747519731522, + 0.024462204426527023, + -0.019084304571151733, + -0.03392207622528076, + -0.02937910705804825, + -0.027688931673765182, + 0.048706650733947754, + -0.1823766827583313, + -0.07137907296419144, + -0.030675146728754044, + 0.0416785404086113, + 0.011940306052565575, + 0.024640271440148354, + 0.08288649469614029, + -0.003177657723426819, + 0.025145195424556732, + 0.032972194254398346, + 0.004632714670151472, + -0.0440162755548954, + -0.0829324722290039, + -0.023201609030365944, + -0.07680384814739227, + -0.035976164042949677, + 0.05989842861890793, + -0.032220836728811264, + 0.04643622040748596, + -0.03596806526184082, + -0.04324684664607048, + -0.0665208026766777, + 0.06019249185919762, + 0.013477716594934464, + -0.04814360290765762, + 0.0039572808891534805, + 0.07898157835006714, + -0.027035336941480637, + -0.005007045343518257, + 0.02664177678525448, + 0.09329436719417572, + -0.07667524367570877, + 0.020837122574448586, + -0.0740472599864006, + 0.038607027381658554, + 0.10655274987220764, + -0.04236876592040062, + -0.06561217457056046, + -0.09368140995502472, + -0.04921199381351471, + 0.059822387993335724, + -0.07126978784799576, + -0.031032122671604156, + -0.001142874825745821, + -0.04545274004340172, + -0.06689963489770889, + -0.0906432718038559, + 0.0516461580991745, + -0.014145022258162498, + 0.007073591463267803, + -0.06059178337454796, + 0.05127984285354614, + -0.008993417955935001, + 0.04388221353292465, + -0.06733091175556183, + 0.06072895973920822, + 0.020806273445487022, + -0.030553819611668587, + 0.025757934898138046, + 0.031326279044151306, + 0.06085589528083801, + -0.03650522977113724, + -0.07732366025447845, + -0.07856559753417969, + 0.05569041147828102, + -0.04994209483265877, + 0.05564780905842781, + 0.020791439339518547, + -0.03016388788819313, + -0.012631956487894058, + -0.016292493790388107, + -0.006613049656152725, + 0.023799734190106392, + 0.06291507184505463, + 0.06203335523605347, + 0.015896782279014587, + -0.029428161680698395, + 0.08116836845874786, + 0.03815999627113342, + 0.028297681361436844, + -0.04080859199166298, + 0.006520522758364677, + -0.0443902313709259, + 0.018002452328801155, + 0.0064173294231295586, + -0.10180249065160751, + 0.03926005959510803, + -0.016444198787212372, + 0.03178990259766579, + 0.0287665743380785, + 0.057476386427879333, + 0.031311824917793274, + -0.03543446585536003 + ] + }, + "p244_153.wav": { + "name": "p244", + "embedding": [ + 0.029908746480941772, + 0.08796428889036179, + 0.003561137244105339, + 0.05124139040708542, + -0.03838258981704712, + 0.0694885402917862, + -0.1072276160120964, + 0.11506807804107666, + -0.03839406371116638, + 0.09610925614833832, + -0.08132104575634003, + 0.1011568009853363, + -0.03140243515372276, + -0.16094990074634552, + -0.05393482372164726, + 0.053198784589767456, + -0.02203511819243431, + -0.016521615907549858, + 0.01955573260784149, + -0.0018976922146975994, + 0.03567659854888916, + 0.060260578989982605, + 0.06530128419399261, + 0.021815720945596695, + 0.034594371914863586, + 0.047837283462285995, + 0.009844763204455376, + 0.07774927467107773, + 0.05152718722820282, + -0.02773633413016796, + -0.049499064683914185, + 0.12236839532852173, + -0.034186042845249176, + 0.005283478647470474, + 0.04035300016403198, + 0.015342583879828453, + 0.022626454010605812, + -0.05843276157975197, + -0.02367490716278553, + -0.0004228993784636259, + -0.053719110786914825, + 0.06582271307706833, + 0.03062688186764717, + 0.006141499616205692, + 0.05435426905751228, + -0.01053429115563631, + -0.023255351930856705, + -0.027505073696374893, + -0.11757603287696838, + 0.1545579582452774, + 0.05283476412296295, + 0.011358948424458504, + -0.08650030195713043, + -0.07226473093032837, + 0.09286567568778992, + -0.012404659762978554, + -0.10434385389089584, + -0.004754845052957535, + 0.07416536659002304, + 0.1650507152080536, + 0.010440561920404434, + -0.029890703037381172, + 0.025686901062726974, + 0.11186371743679047, + 0.045836832374334335, + 0.07590942829847336, + 0.07507078349590302, + 0.08583184331655502, + 0.005289588123559952, + 0.011945978738367558, + 0.04197634011507034, + 0.057633113116025925, + -0.006659397855401039, + -0.022176772356033325, + -0.005409453064203262, + 0.02046557329595089, + -0.03861046954989433, + 0.042081087827682495, + -0.0004089409194421023, + -0.0010156872449442744, + -0.00868919026106596, + -0.0002444600686430931, + -0.018871985375881195, + 0.013513554818928242, + -0.028141943737864494, + 0.05924978852272034, + -0.015947844833135605, + 0.027160553261637688, + 0.08286624401807785, + 0.026302088052034378, + -0.014514127746224403, + 0.04845216125249863, + -0.040523711591959, + -0.06870316714048386, + -0.008588501252233982, + 0.01960325427353382, + 0.015888340771198273, + 0.08247237652540207, + 0.019546357914805412, + -0.03295070677995682, + 0.12452343106269836, + 0.0405028834939003, + 0.004306546412408352, + 0.03981367126107216, + -0.10950112342834473, + 0.0926700234413147, + 0.0770566314458847, + -0.006715069990605116, + 0.06003909930586815, + -0.023645147681236267, + 0.07512587308883667, + 0.06461478024721146, + -0.13270705938339233, + -0.051948510110378265, + 0.055488720536231995, + 0.043098319321870804, + 0.029987327754497528, + 0.10221464931964874, + -0.002652437426149845, + 0.009572223760187626, + 0.08839090168476105, + -0.08693386614322662, + -0.060796551406383514, + -0.028052741661667824, + 0.06288323551416397, + -0.056464701890945435, + 0.029760736972093582, + 0.04184230789542198, + -0.006167259067296982, + -0.029533741995692253, + 0.04234592989087105, + -0.004774926230311394, + 0.017861083149909973, + 0.04606383293867111, + -0.061881713569164276, + 0.02691880241036415, + -0.045809872448444366, + -0.0025958181358873844, + 0.06921854615211487, + 0.03920679911971092, + 0.045526109635829926, + 0.01668567769229412, + -0.044367674738168716, + -0.11068161576986313, + -0.022587129846215248, + 0.05972949415445328, + 0.055391937494277954, + -0.019681308418512344, + -0.05416606366634369, + -0.0694938525557518, + -0.05197073146700859, + 0.047747254371643066, + 0.02751024439930916, + 0.07250191271305084, + -0.024239996448159218, + -0.022324927151203156, + 0.08132641017436981, + -0.0012540584430098534, + -0.007914934307336807, + -0.04296570271253586, + -0.03436541184782982, + 0.002303579356521368, + 0.025939514860510826, + -0.06129169464111328, + -0.08254344761371613, + 0.009578917175531387, + 0.01595713384449482, + -0.02093738503754139, + 0.015819037333130836, + 0.04128260910511017, + 0.009775327518582344, + 0.033406831324100494, + -0.05089791119098663, + 0.008312804624438286, + -0.10598722100257874, + -0.057884979993104935, + -0.01282563991844654, + 0.02829064056277275, + -0.009662375785410404, + 0.0908101350069046, + 0.04490748420357704, + 0.03041825070977211, + 0.030597813427448273, + -0.07342524826526642, + -0.05376426875591278, + 0.06540121883153915, + 0.08210955560207367, + 0.027659712359309196, + 0.09065345674753189, + 0.06466289609670639, + -0.06027880311012268, + 0.07642999291419983, + 0.0599515363574028, + 0.07149791717529297, + -0.027665289118885994, + -0.00744996964931488, + -0.06514466553926468, + 0.0502924770116806, + 0.0699816346168518, + -0.10499098896980286, + -0.11024827510118484, + -0.016736045479774475, + -0.06558652222156525, + 0.05622667819261551, + -0.01895371451973915, + 0.014385553076863289, + 0.022288907319307327, + -0.03905046358704567, + -0.10988224297761917, + -0.10348936915397644, + 0.08278729766607285, + -0.03129652887582779, + -0.039153359830379486, + -0.055608995258808136, + 0.03957006335258484, + 0.07866915315389633, + 0.004229674115777016, + -0.013247305527329445, + -0.0019157640635967255, + 0.0330946147441864, + -0.06683085858821869, + -0.04622773081064224, + 0.04608287289738655, + -0.0011177631095051765, + -0.11169110238552094, + 0.025441113859415054, + -0.06304651498794556, + 0.10115350782871246, + -0.0571221262216568, + 0.14585107564926147, + -0.009756825864315033, + -0.05754952132701874, + -0.06882981956005096, + 0.04157806187868118, + -0.021346334367990494, + 0.022811686620116234, + 0.035449832677841187, + 0.039186086505651474, + 0.0056622447445988655, + -0.05191107094287872, + 0.10407206416130066, + 0.030057601630687714, + -0.057143434882164, + -0.06609752029180527, + -0.024134939536452293, + -0.026114612817764282, + 0.02671566978096962, + 0.01797613874077797, + -0.07374761998653412, + -0.01744576171040535, + 0.00899358931928873, + -0.02213093265891075, + 0.0421634316444397, + 0.1310834437608719, + 0.05119245499372482, + -0.12099143117666245 + ] + }, + "p244_413.wav": { + "name": "p244", + "embedding": [ + 0.05552748590707779, + 0.06643375009298325, + 0.0063137393444776535, + 0.038887862116098404, + -0.021131176501512527, + 0.08869626373052597, + -0.11887893080711365, + 0.11855585873126984, + -0.052547886967659, + 0.14150460064411163, + -0.07664511352777481, + 0.12353579699993134, + -0.008132260292768478, + -0.15871445834636688, + -0.057194918394088745, + 0.0658191367983818, + -0.03010125830769539, + -0.006774375215172768, + -0.026586201041936874, + 0.021808285266160965, + 0.04495798796415329, + 0.0243681613355875, + 0.06698594987392426, + -0.01693485863506794, + 0.027512365952134132, + 0.04701056331396103, + 0.032983992248773575, + 0.10896874219179153, + 0.05157843604683876, + -0.09362108260393143, + -0.020956801250576973, + 0.11279016733169556, + -0.04005863144993782, + 0.03653428703546524, + 0.0634993463754654, + 0.01574144884943962, + 0.018847458064556122, + -0.07978498935699463, + -0.0190176609903574, + -0.022713553160429, + -0.028643637895584106, + 0.06819503009319305, + 0.0020107771269977093, + -0.010499625466763973, + 0.02728862501680851, + 0.02273166924715042, + -0.025774050503969193, + -0.056974202394485474, + -0.10698744654655457, + 0.1389126181602478, + 0.03351801261305809, + 0.03023739904165268, + -0.079288549721241, + -0.09491343796253204, + 0.09026093035936356, + -0.019700828939676285, + -0.09688359498977661, + -0.0420842319726944, + 0.06795133650302887, + 0.18795260787010193, + -0.027427110821008682, + -0.02889133431017399, + 0.022119268774986267, + 0.10026641190052032, + 0.06310391426086426, + 0.09474997222423553, + 0.09602619707584381, + 0.09091298282146454, + 0.03454095125198364, + 0.044640809297561646, + 0.009785193018615246, + 0.09830987453460693, + 0.049372993409633636, + 0.03379545360803604, + 0.020351819694042206, + 0.008216971531510353, + -0.027445772662758827, + 0.005562667269259691, + -0.04314633458852768, + -0.011826267465949059, + -0.003884481033310294, + 0.01878754422068596, + 0.03315787389874458, + 0.025065675377845764, + -0.02491840161383152, + 0.07031452655792236, + -0.02640325203537941, + -0.03403852507472038, + 0.04275985062122345, + -0.004857080057263374, + -0.004863875452429056, + 0.038948945701122284, + -0.08327022939920425, + -0.12070327997207642, + -0.0023379367776215076, + 0.008535699918866158, + 0.011260807514190674, + 0.06192712485790253, + 0.027038482949137688, + -0.026114799082279205, + 0.11182981729507446, + 0.029974572360515594, + -0.019896410405635834, + 0.04478997737169266, + -0.08082740008831024, + 0.11399301886558533, + 0.0766785740852356, + 0.00101058732252568, + 0.03435847908258438, + -0.0655413419008255, + 0.06915264576673508, + 0.07939369231462479, + -0.15886840224266052, + -0.08740544319152832, + 0.024686507880687714, + -0.006875765044242144, + -0.0021982279140502214, + 0.0999336987733841, + -0.0126122385263443, + 0.027436088770627975, + 0.09133933484554291, + -0.08899252116680145, + -0.05001698434352875, + -0.007605938706547022, + 0.04212932661175728, + -0.06933107227087021, + 0.05320509523153305, + -0.0007477098843082786, + -0.002256180625408888, + -0.02303261309862137, + 0.08864404261112213, + -0.004568884614855051, + -0.014503145590424538, + 0.03994216024875641, + -0.06618905067443848, + 0.028465144336223602, + -0.06871537119150162, + -0.002379771787673235, + 0.04775664955377579, + 0.05490398406982422, + 0.06107613071799278, + -0.0026206476613879204, + -0.06289470195770264, + -0.11377197504043579, + -0.014492626301944256, + 0.0397581122815609, + 0.07092711329460144, + -0.00949084386229515, + -0.03062376007437706, + -0.050523847341537476, + -0.03790987282991409, + 0.050263628363609314, + -0.006090502254664898, + 0.08917921781539917, + 0.010893257334828377, + 0.027754753828048706, + 0.09274743497371674, + -0.03531840443611145, + 0.010466954670846462, + -0.05027315020561218, + -0.011201899498701096, + 0.01890147477388382, + 0.04252006858587265, + -0.051358383148908615, + -0.05104398354887962, + 0.030734572559595108, + 0.01547168754041195, + -0.038472339510917664, + 0.040820203721523285, + 0.031793635338544846, + 0.03252987563610077, + 0.04169648513197899, + -0.018572775647044182, + -0.04110284149646759, + -0.10871896147727966, + -0.05247989296913147, + -0.0007934365421533585, + -0.006549298297613859, + -0.025634920224547386, + 0.06595176458358765, + 0.038318850100040436, + 0.057129211723804474, + -0.0013733610976487398, + -0.06975972652435303, + -0.10146481543779373, + 0.06508670747280121, + 0.05807028338313103, + 0.02873513475060463, + 0.04772498086094856, + 0.03442928194999695, + -0.010035617277026176, + 0.06919601559638977, + 0.07061515003442764, + 0.07210110127925873, + -0.003882280085235834, + -0.01024559698998928, + -0.08845819532871246, + 0.10111252963542938, + 0.11110378801822662, + -0.07251887023448944, + -0.08826974034309387, + -0.004682965576648712, + -0.10096397250890732, + 0.05143251642584801, + -0.034302905201911926, + -0.012578219175338745, + 0.06033125892281532, + -0.030913520604372025, + -0.11542132496833801, + -0.07458457350730896, + 0.09471369534730911, + -0.09540969133377075, + -0.03394777700304985, + -0.056562505662441254, + 0.02710641361773014, + 0.08661946654319763, + 0.0342843160033226, + 0.013200325891375542, + -0.0048741428181529045, + 0.07087680697441101, + -0.0968417376279831, + -0.028699439018964767, + 0.05182900279760361, + -0.015251491218805313, + -0.10511530935764313, + 0.02316276915371418, + -0.0690665915608406, + 0.005918172188103199, + -0.0598493292927742, + 0.1405659019947052, + -0.026604073122143745, + -0.052839308977127075, + -0.06870703399181366, + 0.025515126064419746, + -0.04872877150774002, + 0.050505273044109344, + 0.033847369253635406, + 0.05386171489953995, + 0.03783049434423447, + -0.09490808099508286, + 0.14095443487167358, + 0.04343278333544731, + -0.038364771753549576, + -0.08966538310050964, + -0.08357422053813934, + -0.03950528800487518, + 0.016744229942560196, + -0.003149115713313222, + -0.06896740943193436, + -0.01977505348622799, + 0.026742100715637207, + -0.022353297099471092, + 0.03828902170062065, + 0.12637129426002502, + 0.039877377450466156, + -0.09273171424865723 + ] + }, + "p244_034.wav": { + "name": "p244", + "embedding": [ + 0.06562553346157074, + 0.048612311482429504, + 0.015203645452857018, + -0.0012235715985298157, + -0.03443368896842003, + 0.05501305311918259, + -0.1029471755027771, + 0.11168458312749863, + 0.017423667013645172, + 0.07007189095020294, + -0.08742016553878784, + 0.0821203738451004, + -0.006993485148996115, + -0.1573825180530548, + -0.008023237809538841, + 0.04416750371456146, + -0.03125345706939697, + -0.007048833183944225, + -0.05864045023918152, + -0.03840073198080063, + 0.012356491759419441, + 0.043636079877614975, + 0.053607277572155, + -0.0024839178659021854, + 0.03205051273107529, + 0.04524322599172592, + -0.01184853445738554, + 0.019582659006118774, + 0.0020372439175844193, + -0.046482667326927185, + -0.006112158298492432, + 0.06346125900745392, + -0.03171871230006218, + -0.010496973991394043, + 0.033257387578487396, + -0.006122102495282888, + 0.01347152516245842, + -0.08026003837585449, + -0.04488036781549454, + 0.04201894998550415, + -0.05190723389387131, + 0.07317086309194565, + 0.051554225385189056, + -0.015824010595679283, + 0.05274331197142601, + 0.0038529206067323685, + -0.03422069922089577, + -0.05027550086379051, + -0.1174953430891037, + 0.15826359391212463, + 0.04552783817052841, + 0.025667157024145126, + -0.09340095520019531, + -0.01947007328271866, + 0.07311001420021057, + -0.0266435444355011, + -0.06862623989582062, + -0.02304871380329132, + 0.059475041925907135, + 0.10230003297328949, + 0.014408551156520844, + -0.01942823827266693, + 0.032441359013319016, + 0.06341756135225296, + 0.01187172718346119, + 0.02172405831515789, + 0.10330133140087128, + 0.09432270377874374, + -0.020649559795856476, + 0.035143088549375534, + 0.04434032365679741, + 0.03849361091852188, + 0.03960993140935898, + -0.0031395829282701015, + 0.014636171981692314, + -0.019699156284332275, + -0.015449078753590584, + -0.018568111583590508, + -0.02272905968129635, + -0.003091132966801524, + 0.03170564025640488, + 0.01269453763961792, + 0.02450958453118801, + 0.027898622676730156, + -0.04987247288227081, + 0.04154077172279358, + 0.004989826586097479, + 0.05342442914843559, + 0.07077434659004211, + 0.029061879962682724, + 0.008336978033185005, + 0.03075072541832924, + -0.043387334793806076, + -0.09138722717761993, + 0.005141383036971092, + 0.010789508931338787, + 0.017937371507287025, + 0.030780762434005737, + 0.024082280695438385, + -0.025861745700240135, + 0.11531367152929306, + 0.02285810559988022, + -0.012274956330657005, + 0.0018036316614598036, + -0.07109217345714569, + 0.07755395770072937, + 0.09363259375095367, + 0.0005820145597681403, + 0.06153271347284317, + -0.04272299259901047, + 0.048228733241558075, + 0.052560191601514816, + -0.09407263994216919, + -0.02396334707736969, + 0.015526879578828812, + 0.018149055540561676, + 0.04114966094493866, + 0.11613212525844574, + 0.004743978381156921, + 0.04427904635667801, + 0.09413877129554749, + -0.08159561455249786, + -0.012154145166277885, + 0.025887874886393547, + 0.020455336198210716, + -0.03368502855300903, + 0.02239091321825981, + 0.039456807076931, + -0.00019180650997441262, + -0.01304236613214016, + 0.048595916479825974, + -0.0005361376097425818, + 0.013854669407010078, + -0.03764548897743225, + 0.008796806447207928, + 0.03606352210044861, + -0.029762111604213715, + -0.030115853995084763, + 0.06373052299022675, + 0.06733863055706024, + 0.011902834288775921, + 0.03505462035536766, + -0.06342729926109314, + -0.0978875458240509, + -0.0015799155225977302, + -0.007915060967206955, + 0.05789420008659363, + -0.012920069508254528, + -0.024410098791122437, + -0.06025725603103638, + -0.017454717308282852, + 0.028336133807897568, + -0.0020864568650722504, + 0.04961779713630676, + 0.03826633095741272, + -0.0179322250187397, + 0.05169997736811638, + 0.013553905300796032, + 0.0027613863348960876, + -0.041492484509944916, + -0.04961634799838066, + 0.0030799596570432186, + 0.037748388946056366, + -0.05053270608186722, + -0.0476413369178772, + -0.007074679713696241, + -0.01024414412677288, + -0.024845262989401817, + 0.01547197438776493, + 0.040204353630542755, + -0.010804510675370693, + -0.004049159586429596, + -0.08144941926002502, + 0.027288060635328293, + -0.0710800439119339, + -0.06883895397186279, + 0.05499356985092163, + 0.01186924334615469, + -0.004030154552310705, + 0.08174224197864532, + 0.023305434733629227, + 0.031559329479932785, + -0.047674696892499924, + -0.06275229901075363, + -0.01827729120850563, + 0.056984275579452515, + 0.034231606870889664, + -0.0018060453003272414, + 0.04879539832472801, + 0.026821276172995567, + -0.027623958885669708, + 0.07013483345508575, + 0.03366212174296379, + 0.06304562091827393, + -0.0448773130774498, + -0.00812606792896986, + -0.01052139699459076, + 0.08368801325559616, + 0.050083886831998825, + -0.04954775422811508, + -0.06648942083120346, + -0.018721820786595345, + -0.04476935788989067, + 0.03467569500207901, + 0.0025751139037311077, + -0.0037698138039559126, + 0.041302941739559174, + -0.014410212635993958, + -0.08020330965518951, + -0.06206473708152771, + 0.030090447515249252, + -0.03456461429595947, + -0.005840213503688574, + -0.058361537754535675, + 0.03530937433242798, + 0.09414809942245483, + -0.006623054854571819, + -0.003878684714436531, + -0.012763336300849915, + 0.0006068050861358643, + -0.03687785193324089, + -0.03678639605641365, + 0.01219350378960371, + 0.0361783504486084, + -0.07579641044139862, + -0.006687878631055355, + -0.06306930631399155, + 0.03952993080019951, + 0.0004062677617184818, + 0.09683389961719513, + 0.03247857838869095, + -0.020130399614572525, + -0.05690188705921173, + 0.031087344512343407, + -0.019660916179418564, + 0.05484982952475548, + 0.025913558900356293, + 0.01733427867293358, + 0.05963724106550217, + -0.05483750253915787, + 0.07693038135766983, + 0.038009028881788254, + -0.05759081989526749, + -0.0389627069234848, + -0.007351682987064123, + -0.030361158773303032, + -0.0009335912764072418, + -0.01841195672750473, + -0.05207183212041855, + 0.008091631345450878, + 0.020619958639144897, + 0.013020697981119156, + 0.04077501595020294, + 0.08046837151050568, + 0.038598451763391495, + -0.08290281891822815 + ] + }, + "p244_003.wav": { + "name": "p244", + "embedding": [ + 0.0295333843678236, + 0.06818605959415436, + -0.00016502142534591258, + 0.022960500791668892, + -0.04116135463118553, + 0.0252471175044775, + -0.13690705597400665, + 0.11414899677038193, + -0.0020723938941955566, + 0.11166918277740479, + -0.08013176918029785, + 0.09192591160535812, + -0.04262375459074974, + -0.16115251183509827, + -0.014802008867263794, + 0.043254509568214417, + -0.030447257682681084, + -0.053501784801483154, + -0.015254824422299862, + -0.009343627840280533, + 0.039815712720155716, + 0.035177480429410934, + 0.018444228917360306, + 0.016101902350783348, + 0.003158713225275278, + 0.054110314697027206, + -0.009109004400670528, + 0.02530478872358799, + 0.013888445682823658, + -0.008295020088553429, + 0.013123651035130024, + 0.06857029348611832, + -0.032917413860559464, + 0.032608598470687866, + 0.040043581277132034, + 0.017812302336096764, + -0.017666494473814964, + -0.039362866431474686, + -0.0261479951441288, + -0.0014135331148281693, + -0.0679730772972107, + 0.06807398051023483, + 0.0324995182454586, + -0.017256667837500572, + 0.043432679027318954, + 0.02631065621972084, + -0.02101738750934601, + -0.03066873922944069, + -0.1055397316813469, + 0.13855354487895966, + 0.05508971959352493, + 0.013379818759858608, + -0.06369727104902267, + -0.04134828597307205, + 0.08572905510663986, + -0.022043539211153984, + -0.09691758453845978, + -0.05206381157040596, + 0.08876153081655502, + 0.11121437698602676, + -0.030014842748641968, + -0.04228461906313896, + 0.011554970405995846, + 0.09005703777074814, + 0.052858322858810425, + 0.06045984849333763, + 0.07781072705984116, + 0.10947312414646149, + -0.026679182425141335, + -0.015123778954148293, + 0.06666175276041031, + 0.056673258543014526, + 0.04848107323050499, + -0.0026129595935344696, + 0.0132496552541852, + 0.011503173038363457, + -0.01166569348424673, + 0.016191817820072174, + -0.018551545217633247, + -0.0036922504659742117, + -0.021846560761332512, + -0.012725886888802052, + -0.004193407483398914, + 0.022679870948195457, + -0.014913520775735378, + 0.03395794704556465, + 0.04889579117298126, + -0.00021272581943776459, + 0.0750490352511406, + 0.0378580205142498, + -0.003489042865112424, + 0.05743644759058952, + -0.07021570205688477, + -0.05749934911727905, + -0.004176382906734943, + -0.011763731017708778, + 0.0321279875934124, + 0.066522978246212, + 0.031300242990255356, + 0.003982923924922943, + 0.10867124050855637, + 0.010436068288981915, + -0.015197833068668842, + 0.00872453860938549, + -0.11299969255924225, + 0.10792400687932968, + 0.05790141969919205, + -0.03113420307636261, + 0.013999111019074917, + -0.052892643958330154, + 0.046940870583057404, + 0.06055445224046707, + -0.08770355582237244, + -0.047328345477581024, + 0.0492437444627285, + 0.04116356000304222, + -0.010526577942073345, + 0.12705299258232117, + 0.007765599526464939, + 0.01837928220629692, + 0.12015612423419952, + -0.08633997291326523, + -0.05526984855532646, + -0.006431904621422291, + 0.028700610622763634, + -0.07456450164318085, + 0.049012281000614166, + 0.04659518599510193, + 0.0033286120742559433, + 0.015890272334218025, + 0.07810961455106735, + 0.0056940908543765545, + 0.011244875378906727, + -0.02638048306107521, + -0.026325030252337456, + 0.031601328402757645, + -0.024860238656401634, + -0.002651314018294215, + 0.05492263659834862, + 0.04224498197436333, + 0.05766316130757332, + 0.02264775149524212, + -0.0422237291932106, + -0.11385434865951538, + 0.016186775639653206, + 0.05067789554595947, + 0.06854478269815445, + -0.02093648724257946, + -0.033872880041599274, + -0.05047303065657616, + -0.04880719259381294, + 0.019625676795840263, + -0.010662071406841278, + 0.06729476153850555, + -0.0068361894227564335, + -0.010815287940204144, + 0.09018208831548691, + 0.011250493116676807, + -0.006714948918670416, + -0.05294112116098404, + -0.05251975730061531, + -0.018979543820023537, + 0.04257283732295036, + -0.10115806013345718, + -0.06125190481543541, + -0.023261789232492447, + 0.04930824041366577, + -0.0049368105828762054, + 0.029348323121666908, + 0.046581678092479706, + 0.017598140984773636, + 0.01052377000451088, + -0.05512464791536331, + 0.02366301603615284, + -0.08300351351499557, + -0.09226083755493164, + -0.0067525687627494335, + 0.008845457807183266, + 0.011241708882153034, + 0.06768151372671127, + -0.008157648146152496, + 0.04334553703665733, + -0.016736004501581192, + -0.08927588164806366, + -0.08907850831747055, + 0.058233629912137985, + 0.04732293635606766, + -0.016672369092702866, + 0.05053155496716499, + 0.04913689196109772, + -0.06880442053079605, + 0.03210317716002464, + 0.025231758132576942, + 0.11282401531934738, + -0.058189429342746735, + 0.035158172249794006, + -0.04620283097028732, + 0.07102667540311813, + 0.08196061849594116, + -0.0762406662106514, + -0.06024560332298279, + -0.03166374936699867, + -0.04267769679427147, + 0.0125054270029068, + -0.028068695217370987, + -0.006948710884898901, + 0.010740067809820175, + -0.017177550122141838, + -0.09047006070613861, + -0.08063143491744995, + 0.028889387845993042, + -0.050079572945833206, + 0.0014487378066405654, + -0.08759210258722305, + 0.03647930547595024, + 0.06456023454666138, + 0.028283119201660156, + -0.016644684597849846, + -0.007800982799381018, + 0.024897441267967224, + -0.03692768141627312, + -0.009652554988861084, + 0.054503507912158966, + 0.040738411247730255, + -0.0612194649875164, + -0.03147048503160477, + -0.07065439969301224, + 0.052066314965486526, + -0.03769790753722191, + 0.12280608713626862, + -0.0019774094689637423, + -0.04481757432222366, + -0.03552081808447838, + -0.010182089172303677, + -0.0035797045566141605, + 0.04381715878844261, + 0.019970109686255455, + 0.04968859627842903, + 0.03286181762814522, + -0.03224371001124382, + 0.11276187747716904, + 0.05984009429812431, + -0.024158863350749016, + -0.04718280956149101, + -0.03275075554847717, + -0.041144657880067825, + 0.0072350515983998775, + -0.007992195896804333, + -0.08522205799818039, + -0.0021310315933078527, + 0.012713230215013027, + -0.004684712737798691, + 0.04930267855525017, + 0.1318783164024353, + 0.06259594112634659, + -0.10558916628360748 + ] + }, + "p244_030.wav": { + "name": "p244", + "embedding": [ + 0.05470728129148483, + 0.07676955312490463, + -0.02762940526008606, + 0.05767924338579178, + -0.07619606703519821, + 0.04276008903980255, + -0.11171802133321762, + 0.13443566858768463, + 0.014216672629117966, + 0.12439748644828796, + -0.03545985370874405, + 0.1309659779071808, + -0.019644618034362793, + -0.1529431939125061, + 0.02912980690598488, + 0.05755430459976196, + -0.004274472594261169, + -0.02756984531879425, + -0.014871301129460335, + -0.025451336055994034, + 0.026815159246325493, + 0.05262542515993118, + 0.06884843111038208, + -0.025878513231873512, + 0.035344719886779785, + 0.08189433813095093, + -0.016676263883709908, + 0.03463464602828026, + -0.004183952230960131, + -0.1075097993016243, + -0.04870396852493286, + 0.06653337180614471, + -0.06726223230361938, + 0.01787535473704338, + 0.02079075574874878, + -0.031276315450668335, + -0.02352435514330864, + -0.05166897177696228, + -0.010286376811563969, + 0.0036683299113065004, + -0.03095962479710579, + 0.08559343218803406, + 0.019595187157392502, + -0.05610499531030655, + 0.02678229659795761, + -0.0016871335683390498, + -0.025511208921670914, + -0.019675660878419876, + -0.12104354798793793, + 0.15562313795089722, + 0.06929443776607513, + 0.0057962979190051556, + -0.07313663512468338, + -0.07135674357414246, + 0.06761529296636581, + -0.0007422398775815964, + -0.09742194414138794, + -0.03820406645536423, + 0.05416587367653847, + 0.11439339816570282, + -0.011249566450715065, + -0.03667866811156273, + 0.0433211624622345, + 0.09483082592487335, + 0.07048407196998596, + 0.06450808048248291, + 0.0841134786605835, + 0.11811643838882446, + -0.04232597351074219, + 0.021638095378875732, + 0.012464185245335102, + 0.09455686807632446, + 0.055138133466243744, + 0.03224926441907883, + 0.0006414596573449671, + -0.02130945771932602, + -0.015845898538827896, + -0.03467155247926712, + -0.01327726524323225, + -0.04097800701856613, + -0.0034745950251817703, + -0.010024461895227432, + 0.034938354045152664, + 0.02906501665711403, + -0.020026667043566704, + 0.05671773850917816, + 0.062143027782440186, + -0.0180739164352417, + 0.06378280371427536, + -0.008467407897114754, + -0.006435783114284277, + 0.06746965646743774, + -0.10297304391860962, + -0.05244568735361099, + 0.033282771706581116, + 0.014758987352252007, + 0.04851013422012329, + 0.0939134731888771, + 0.041356537491083145, + -0.022815290838479996, + 0.12511798739433289, + 0.04143769294023514, + -0.012946373783051968, + 0.0026330742985010147, + -0.052655741572380066, + 0.1248498409986496, + 0.09045326709747314, + -0.017180759459733963, + 0.07442940771579742, + -0.06850285083055496, + 0.07324356585741043, + 0.037742242217063904, + -0.12452586740255356, + -0.0637553334236145, + -0.013753941282629967, + -0.006501892115920782, + -0.01811373233795166, + 0.12327870726585388, + 0.018540682271122932, + 0.07552286982536316, + 0.11820340901613235, + -0.12442626059055328, + -0.05893946439027786, + -0.0007568219443783164, + 0.05576680600643158, + -0.09783821552991867, + 0.06099921464920044, + 0.06353416293859482, + -0.03922055661678314, + 0.03726281598210335, + 0.054679617285728455, + -0.010034135542809963, + 0.03613394498825073, + 0.03675030171871185, + -0.06013532727956772, + -0.01117075514048338, + -0.03954803943634033, + -0.005952105857431889, + 0.048808448016643524, + 0.009786593727767467, + 0.06733052432537079, + -0.043168265372514725, + -0.01037953794002533, + -0.13466255366802216, + 0.029157396405935287, + 0.034274522215127945, + 0.05720892176032066, + -0.029842007905244827, + -0.04731646180152893, + -0.02947131358087063, + -0.07857740670442581, + 0.026416301727294922, + -0.0038499748334288597, + 0.03999471664428711, + -0.03648192808032036, + 0.017898237332701683, + 0.08382024616003036, + 0.06179053336381912, + -0.014123756438493729, + -0.05873624235391617, + -0.06598500907421112, + 0.00648857094347477, + 0.050255510956048965, + -0.08953459560871124, + -0.07552239298820496, + -0.0285145565867424, + 0.02494506537914276, + -0.04001874476671219, + 0.07711224257946014, + 0.06339746713638306, + 0.03856305405497551, + 0.002129770815372467, + -0.03816752880811691, + -0.011841261759400368, + -0.05057452619075775, + -0.08925756067037582, + -0.005924629513174295, + -0.0015792513731867075, + -0.041762690991163254, + 0.08837725222110748, + 0.04063595086336136, + 0.08196276426315308, + -0.047005802392959595, + -0.010510338470339775, + -0.09416946768760681, + 0.025445953011512756, + 0.014178285375237465, + -0.01749601773917675, + 0.04425964504480362, + 0.059983398765325546, + -0.05745777487754822, + 0.04824567586183548, + 0.053836409002542496, + 0.07614849507808685, + -0.037899937480688095, + 0.017541049048304558, + -0.07810387760400772, + 0.0930262953042984, + 0.13822007179260254, + -0.06520669907331467, + -0.07337333261966705, + -0.0694187581539154, + -0.10342937707901001, + 0.041308846324682236, + -0.03650330752134323, + -0.013999367132782936, + 0.03666064143180847, + 0.002039629267528653, + -0.10853581130504608, + -0.1032566949725151, + 0.08476080000400543, + -0.04359114170074463, + 0.0030293113086372614, + -0.09174497425556183, + 0.044643521308898926, + 0.07275035977363586, + 0.057189296931028366, + -0.026364460587501526, + -0.01764502376317978, + 0.06311649084091187, + -0.008676948957145214, + 0.04276953265070915, + 0.10869312286376953, + 0.06944498419761658, + -0.09542709589004517, + -0.018323691561818123, + -0.05242624878883362, + 0.01803870126605034, + -0.037017881870269775, + 0.14510849118232727, + 0.029216380789875984, + -0.04170714318752289, + -0.07686308026313782, + 0.06558069586753845, + -0.017520304769277573, + 0.048418521881103516, + 0.01869634911417961, + 0.03934627026319504, + 0.05995792895555496, + -0.08986963331699371, + 0.1134452149271965, + 0.04789048433303833, + -0.0365600511431694, + -0.06660213321447372, + -0.05832260102033615, + -0.04478484392166138, + 0.05500505492091179, + 0.004616708494722843, + -0.0925792008638382, + -0.021152371540665627, + 0.024854060262441635, + 0.016134504228830338, + 0.04518268257379532, + 0.15707702934741974, + 0.05744396150112152, + -0.1055162101984024 + ] + }, + "p244_249.wav": { + "name": "p244", + "embedding": [ + 0.012935522012412548, + 0.09927419573068619, + -0.024993648752570152, + 0.04509132355451584, + -0.05368250608444214, + 0.060529448091983795, + -0.0839657261967659, + 0.10867979377508163, + -0.07567229121923447, + 0.10712631046772003, + -0.13276126980781555, + 0.07911356538534164, + -0.09166958183050156, + -0.14737306535243988, + -0.0715826228260994, + 0.04715517535805702, + -0.017219772562384605, + -0.04937504976987839, + 0.006780656054615974, + -0.010438249446451664, + 0.04826318472623825, + 0.03554379194974899, + 8.224325574701652e-05, + 0.06011860817670822, + 0.01483230385929346, + 0.05356563627719879, + -0.0007025262457318604, + 0.06787404417991638, + 0.038646623492240906, + 0.02557419240474701, + -0.019631613045930862, + 0.13727380335330963, + -0.05240580067038536, + -0.015167741104960442, + 0.021254021674394608, + 0.037348441779613495, + 0.0300596933811903, + -0.04376578703522682, + -0.007100844290107489, + -0.015584741719067097, + -0.10023512691259384, + 0.05997200310230255, + 0.009028336964547634, + 0.010574288666248322, + 0.031171562150120735, + -0.006243289913982153, + -0.02563583105802536, + -0.02633700706064701, + -0.12020395696163177, + 0.1268252730369568, + 0.06137459725141525, + 0.01221002172678709, + -0.09540942311286926, + -0.0676732212305069, + 0.12198535352945328, + -0.01483103260397911, + -0.08746879547834396, + -0.0397750660777092, + 0.07313300669193268, + 0.1875762939453125, + -0.013813882134854794, + -0.02578629180788994, + 0.019833292812108994, + 0.08182096481323242, + 0.07705184072256088, + 0.07122629880905151, + 0.07838647812604904, + 0.08692800253629684, + 0.016382649540901184, + -0.019005723297595978, + 0.08939873427152634, + 0.04651903733611107, + 0.023835137486457825, + -0.0531136579811573, + -0.0037986375391483307, + 0.03557954728603363, + -0.02296283096075058, + 0.06596098095178604, + -0.017140677198767662, + -0.007329446263611317, + -0.028013966977596283, + 0.01259949803352356, + -0.04364576190710068, + -0.004426313564181328, + -0.03909788280725479, + 0.06070079654455185, + 0.007922438904643059, + -0.008891773410141468, + 0.1033315435051918, + 0.038845568895339966, + -0.0515342652797699, + 0.05017722025513649, + -0.07063961029052734, + -0.04186994954943657, + -0.02348773553967476, + -0.0009436081745661795, + -0.0025916362646967173, + 0.10672426223754883, + 0.02616169862449169, + -0.018439998850226402, + 0.12969665229320526, + 0.02538936398923397, + 0.04393988475203514, + 0.03814641758799553, + -0.12770715355873108, + 0.10855274647474289, + 0.07451435923576355, + -0.036402951925992966, + 0.027284573763608932, + 0.03557748347520828, + 0.04942774400115013, + 0.06636208295822144, + -0.11313772201538086, + -0.05737714469432831, + 0.04062531888484955, + 0.04659825935959816, + 0.006506338715553284, + 0.07647179812192917, + -0.039271123707294464, + -0.009470909833908081, + 0.10287342965602875, + -0.055081818252801895, + -0.06007155403494835, + -0.03266264498233795, + 0.04245371371507645, + -0.04170932248234749, + 0.03218434005975723, + 0.0382448248565197, + 0.039504993706941605, + -0.012289178557693958, + 0.06953231245279312, + -0.007693782448768616, + -0.013923222199082375, + 0.03387003764510155, + -0.05377437174320221, + 0.05353546142578125, + -0.04104000702500343, + -0.03804019093513489, + 0.09091018885374069, + 0.05472839996218681, + 0.0798858106136322, + 0.02622653730213642, + -0.0010170680470764637, + -0.08546695113182068, + -0.006697039119899273, + 0.0795888602733612, + 0.062414806336164474, + -0.01590139977633953, + -0.028021443635225296, + -0.10086825489997864, + -0.052615344524383545, + 0.03260738402605057, + 0.03941960260272026, + 0.11866677552461624, + -0.018320243805646896, + 0.0005236418801359832, + 0.10138029605150223, + -0.006560175679624081, + -0.01788152940571308, + -0.05558563396334648, + -0.01329271961003542, + -0.021850038319826126, + 0.05118302255868912, + -0.04921804368495941, + -0.10621524602174759, + 0.011298242025077343, + 0.0506180115044117, + -0.0025212641339749098, + 0.052181415259838104, + 0.055101606994867325, + -0.007459715474396944, + 0.009913264773786068, + -0.09084285795688629, + 0.06088470295071602, + -0.09334676712751389, + -0.037019032984972, + -0.022635476663708687, + -0.018536237999796867, + 0.003790324553847313, + 0.07412982732057571, + 0.03162064775824547, + 0.01260063610970974, + 0.0646538957953453, + -0.15381334722042084, + -0.07888547331094742, + 0.07864928990602493, + 0.09040091186761856, + 0.011129902675747871, + 0.08324947953224182, + 0.08978580683469772, + -0.061792463064193726, + 0.06304390728473663, + 0.07358133047819138, + 0.10434794425964355, + -0.05192577838897705, + -0.0018468810012564063, + -0.02810545451939106, + 0.017826221883296967, + 0.03070542775094509, + -0.12759071588516235, + -0.08754231780767441, + -0.0346057154238224, + -0.04267074540257454, + 0.06150691956281662, + 0.001976055558770895, + 0.04200102016329765, + 0.019065219908952713, + -0.05994474142789841, + -0.10044196248054504, + -0.08682776242494583, + 0.07510696351528168, + -0.0410810261964798, + -0.047067947685718536, + -0.07730194181203842, + -0.002518618246540427, + 0.06757852435112, + 0.014476128853857517, + 0.000981855089776218, + 0.0257673729211092, + 0.020144488662481308, + -0.06789638847112656, + -0.0522676557302475, + 0.07216951996088028, + -0.021084681153297424, + -0.08619770407676697, + 0.01282979641109705, + -0.08609282225370407, + 0.13633054494857788, + -0.04155348241329193, + 0.14530400931835175, + -0.03721082583069801, + -0.05338159203529358, + -0.08183901011943817, + 0.039759375154972076, + -0.027577422559261322, + 0.05348000302910805, + 0.04731455445289612, + 0.05943932384252548, + -0.0067628007382154465, + -0.01098265964537859, + 0.13872428238391876, + 0.04102689027786255, + -0.07474246621131897, + -0.0558406226336956, + -0.03822559118270874, + -0.055315352976322174, + -0.015425224788486958, + 0.02848370373249054, + -0.06721736490726471, + 0.014461886137723923, + -0.009060640819370747, + -0.041844263672828674, + 0.06357363611459732, + 0.11187741905450821, + 0.09933291375637054, + -0.10855313390493393 + ] + }, + "p244_325.wav": { + "name": "p244", + "embedding": [ + 0.04966717213392258, + 0.08694766461849213, + -0.012625151313841343, + -0.00333605008199811, + -0.054571639746427536, + 0.06827566027641296, + -0.13681650161743164, + 0.14079231023788452, + -0.05652210861444473, + 0.1499648094177246, + -0.07269900292158127, + 0.12226858735084534, + -0.02143661491572857, + -0.18968161940574646, + -0.01778835989534855, + 0.04816300421953201, + -0.04101085662841797, + -0.02439987286925316, + -0.04568105936050415, + -0.0217617005109787, + 0.04689629375934601, + 0.02851555496454239, + 0.006267506163567305, + -0.01548614539206028, + 0.020500976592302322, + 0.06706105172634125, + -0.0013503337977454066, + 0.03221709281206131, + -0.0010236594825983047, + -0.05861405283212662, + -0.0418982207775116, + 0.1028124988079071, + -0.05563540756702423, + 0.017795199528336525, + 0.06905356049537659, + -0.012193439528346062, + -0.010338643565773964, + -0.06881534308195114, + -0.026384342461824417, + 0.0025092957075685263, + -0.04409679025411606, + 0.06917420029640198, + 0.027254996821284294, + -0.004066402558237314, + 0.034804701805114746, + 0.040940672159194946, + -0.0013422956690192223, + -0.05357092618942261, + -0.08283291012048721, + 0.15489768981933594, + 0.06422407925128937, + -0.007211022544652224, + -0.062371835112571716, + -0.07197795063257217, + 0.10829363018274307, + -0.01292574591934681, + -0.12013749778270721, + -0.03944230079650879, + 0.08368775993585587, + 0.14994242787361145, + -0.04818883538246155, + -0.0466359406709671, + 0.02133755013346672, + 0.10212883353233337, + 0.036463163793087006, + 0.10289247334003448, + 0.08162319660186768, + 0.10675529390573502, + -0.010096531361341476, + 0.022563256323337555, + 0.05517695099115372, + 0.07468937337398529, + 0.07003836333751678, + -0.02187785878777504, + 0.04528842866420746, + 0.010652739554643631, + -0.024704448878765106, + 0.006845420226454735, + -0.039860405027866364, + -0.010626170784235, + -0.007208168040961027, + 0.013719648122787476, + 0.02561389096081257, + 0.01668722555041313, + -0.01544229220598936, + 0.056099895387887955, + 0.039016760885715485, + -0.0065971361473202705, + 0.06699902564287186, + 0.028059016913175583, + 0.01333620399236679, + 0.07469695806503296, + -0.10454930365085602, + -0.0935489684343338, + 0.04098852723836899, + -0.0011533864308148623, + 0.007668512407690287, + 0.0752333253622055, + 0.04500114172697067, + -0.017139587551355362, + 0.11948438733816147, + 0.04693763330578804, + -0.003338349750265479, + 0.03240814805030823, + -0.10219991207122803, + 0.12679052352905273, + 0.08641367405653, + -0.04284123331308365, + 0.035013142973184586, + -0.07300899922847748, + 0.09186586737632751, + 0.06711637228727341, + -0.1508287787437439, + -0.08321239799261093, + 0.03424824774265289, + 0.004776747431606054, + -0.02780088223516941, + 0.13528096675872803, + -0.026613906025886536, + 0.02791471593081951, + 0.11105003952980042, + -0.09543438255786896, + -0.0535685233771801, + -0.013050749897956848, + 0.037612125277519226, + -0.08245661854743958, + 0.060058485716581345, + 0.03796648234128952, + -0.002163125667721033, + 0.02153128571808338, + 0.09307429939508438, + -0.01862884685397148, + -0.004344776272773743, + 0.0032302397303283215, + -0.03349637985229492, + 0.016122985631227493, + -0.031178709119558334, + -0.0061846645548939705, + 0.029227789491415024, + 0.04861590266227722, + 0.04031187295913696, + -0.003569886088371277, + -0.03822077065706253, + -0.11567361652851105, + 0.018854305148124695, + 0.03079787641763687, + 0.0776229053735733, + -0.010300492867827415, + -0.007661917246878147, + -0.0339072048664093, + -0.07512915134429932, + -0.0013691673520952463, + -0.016950692981481552, + 0.07187387347221375, + -0.008953878656029701, + 0.013965497724711895, + 0.10073987394571304, + 0.04174278676509857, + -0.0016268487088382244, + -0.06149154156446457, + -0.042421549558639526, + 0.012927472591400146, + 0.05488825589418411, + -0.08420486748218536, + -0.0717003345489502, + -0.012175071984529495, + 0.02066364511847496, + -0.019151728600263596, + 0.05008373409509659, + 0.04730449616909027, + 0.03039482608437538, + 0.03697170689702034, + -0.08086833357810974, + 0.017663858830928802, + -0.12649551033973694, + -0.07574167847633362, + -0.0068981279619038105, + -0.022750329226255417, + -0.011448211967945099, + 0.07025618851184845, + -0.0037273778580129147, + 0.038678668439388275, + -0.03346174955368042, + -0.07171659171581268, + -0.08048898726701736, + 0.06606294959783554, + 0.07402089238166809, + -0.010351193137466908, + 0.03651900961995125, + 0.05470327287912369, + -0.025639459490776062, + 0.03978167474269867, + 0.06857487559318542, + 0.12023566663265228, + -0.017861492931842804, + 0.03880258649587631, + -0.06221162527799606, + 0.10736630856990814, + 0.07197622954845428, + -0.07603555917739868, + -0.08909307420253754, + -0.013390164822340012, + -0.06062651425600052, + 0.033977534621953964, + -0.020843125879764557, + -0.005121609196066856, + 0.014978908933699131, + 0.005755345802754164, + -0.0876794382929802, + -0.06285345554351807, + 0.07738222181797028, + -0.06504037976264954, + -0.01028781570494175, + -0.09509485960006714, + 0.057529449462890625, + 0.105836421251297, + 0.04114073887467384, + -0.03801435977220535, + -0.011728797107934952, + 0.056232597678899765, + -0.038454413414001465, + 0.011725552380084991, + 0.033920325338840485, + 0.038447387516498566, + -0.09217006713151932, + 0.003505860222503543, + -0.06905852258205414, + 0.04261811822652817, + -0.06036914885044098, + 0.14646580815315247, + -0.008204489946365356, + -0.056593842804431915, + -0.07322032749652863, + 0.03865882754325867, + -0.003404405666515231, + 0.03998562693595886, + 0.03483697026968002, + 0.07470151782035828, + 0.044311121106147766, + -0.0735577791929245, + 0.12321104109287262, + 0.028826171532273293, + -0.028087828308343887, + -0.05595666170120239, + -0.05587945878505707, + -0.03696545213460922, + 0.01333977933973074, + 0.0031317879911512136, + -0.09466608613729477, + -0.015701090916991234, + 0.02463914081454277, + -0.008789020590484142, + 0.05304677039384842, + 0.1365112066268921, + 0.06213065981864929, + -0.12903247773647308 + ] + }, + "p244_198.wav": { + "name": "p244", + "embedding": [ + 0.04573114216327667, + 0.08617543429136276, + -0.02858794294297695, + 0.045825034379959106, + -0.05586448311805725, + 0.015705913305282593, + -0.14525958895683289, + 0.14441385865211487, + -0.007577837444841862, + 0.12012898176908493, + -0.08360494673252106, + 0.10557852685451508, + -0.036870889365673065, + -0.17176644504070282, + -0.003762185573577881, + 0.06278923898935318, + -0.007680974900722504, + -0.053558558225631714, + -0.01869705133140087, + -0.01734916865825653, + 0.032301511615514755, + 0.03452988341450691, + 0.02038854919373989, + 0.014368487522006035, + 0.013691375963389874, + 0.06397934257984161, + -0.013846836984157562, + 0.029486337676644325, + -0.0007169125601649284, + 0.010544600896537304, + -0.010950813069939613, + 0.10610571503639221, + -0.05792625993490219, + -0.012156374752521515, + 0.03588303551077843, + -0.0003430732467677444, + -0.015359587967395782, + -0.055918894708156586, + -0.017944518476724625, + -0.02053442783653736, + -0.07188434898853302, + 0.06898166239261627, + 0.019391119480133057, + -0.020578131079673767, + 0.05303849279880524, + 0.025202907621860504, + -0.033700939267873764, + -0.030474219471216202, + -0.12311089038848877, + 0.13435962796211243, + 0.0680011734366417, + 0.02365124598145485, + -0.09387233853340149, + -0.04124774783849716, + 0.08823093771934509, + -0.010408556088805199, + -0.07647858560085297, + -0.05022794008255005, + 0.07796560227870941, + 0.1482400894165039, + -0.03063991665840149, + -0.038071926683187485, + 0.03562512621283531, + 0.11228753626346588, + 0.09648095071315765, + 0.06766235828399658, + 0.08470303565263748, + 0.12467707693576813, + -0.034814320504665375, + -0.005743354558944702, + 0.06785984337329865, + 0.059568386524915695, + 0.058094535022974014, + -0.02290506288409233, + 0.010997187346220016, + 0.0072613125666975975, + -0.011212692596018314, + -0.011183119378983974, + -0.027541745454072952, + -0.031197141855955124, + -0.013685786165297031, + 0.004870687611401081, + -0.004314986988902092, + 0.045276716351509094, + -0.03659700229763985, + 0.05031836777925491, + 0.09069882333278656, + -0.025898782536387444, + 0.08491881191730499, + 0.03384856879711151, + -0.007800151128321886, + 0.06583129614591599, + -0.11183460056781769, + -0.04853647202253342, + 0.03173079341650009, + -0.0050321235321462154, + 0.027479570358991623, + 0.08051649481058121, + 0.03731761872768402, + -0.014671975746750832, + 0.12701721489429474, + 0.028830107301473618, + -0.0015379930846393108, + 0.025718828663229942, + -0.08901875466108322, + 0.13019844889640808, + 0.07983462512493134, + -0.05251915752887726, + 0.030518166720867157, + -0.025044186040759087, + 0.023425936698913574, + 0.05075475573539734, + -0.10527608543634415, + -0.05957867577672005, + 0.03125949949026108, + 0.021248646080493927, + -0.028054513037204742, + 0.13006699085235596, + 0.010323820635676384, + 0.04855002462863922, + 0.11611439287662506, + -0.09012424200773239, + -0.07026010751724243, + -0.004726876504719257, + 0.04934266209602356, + -0.08412440121173859, + 0.06654663383960724, + 0.06829831004142761, + 0.008332595229148865, + 0.01660689152777195, + 0.07168363034725189, + 0.0018737774807959795, + 0.009136000648140907, + -0.0175600815564394, + -0.041738223284482956, + 0.0398765429854393, + -0.02146129682660103, + -0.02454327791929245, + 0.03338729590177536, + 0.019490718841552734, + 0.07131679356098175, + -0.0028607449494302273, + 0.006023178808391094, + -0.12588702142238617, + 0.018045753240585327, + 0.05641790106892586, + 0.08506707847118378, + -0.017318833619356155, + -0.02772548422217369, + -0.05546362325549126, + -0.05531419441103935, + 0.00559897581115365, + -0.0008896330837160349, + 0.06779243052005768, + -0.02197936549782753, + 0.00267136562615633, + 0.11170823127031326, + 0.017964042723178864, + 0.013985203579068184, + -0.0338824987411499, + -0.029022324830293655, + 0.0008136490359902382, + 0.05989436060190201, + -0.0837642103433609, + -0.08694818615913391, + -0.025673506781458855, + 0.05180685222148895, + -0.017752964049577713, + 0.06915580481290817, + 0.04728826880455017, + 0.0171771552413702, + -0.008071793243288994, + -0.07093185186386108, + 0.03269710764288902, + -0.07537884265184402, + -0.07543797045946121, + -0.011488859541714191, + -0.0065704891458153725, + -0.023778622969985008, + 0.06810300052165985, + 0.025751084089279175, + 0.057915762066841125, + -0.017445450648665428, + -0.08929392695426941, + -0.10142609477043152, + 0.048392679542303085, + 0.06272386014461517, + -0.03545256704092026, + 0.048410121351480484, + 0.06473474204540253, + -0.0548214390873909, + 0.027810579165816307, + 0.05268535763025284, + 0.10579436272382736, + -0.03883456066250801, + 0.011074000969529152, + -0.06225326657295227, + 0.06963302195072174, + 0.09237271547317505, + -0.09263814985752106, + -0.07666580379009247, + -0.03390684723854065, + -0.06416483223438263, + 0.022711586207151413, + -0.013901068828999996, + 0.025143830105662346, + 0.042900338768959045, + -0.02062884159386158, + -0.11979401111602783, + -0.09554505348205566, + 0.06356225907802582, + -0.07423657178878784, + -0.0008085041772574186, + -0.09670431911945343, + 0.035818152129650116, + 0.07554256170988083, + 0.02146162837743759, + -0.028629526495933533, + -0.03222452104091644, + 0.02494540624320507, + -0.021514831110835075, + 0.0033187177032232285, + 0.07233118265867233, + 0.046795666217803955, + -0.09871554374694824, + -0.017479687929153442, + -0.06945660710334778, + 0.07331635057926178, + -0.03326781094074249, + 0.1357022076845169, + 0.020543619990348816, + -0.03964664414525032, + -0.09272287040948868, + 0.02300575003027916, + 0.008829619735479355, + 0.06554687768220901, + 0.020907409489154816, + 0.05970393866300583, + 0.03596484288573265, + -0.057768143713474274, + 0.12148874998092651, + 0.05166614055633545, + -0.03916317597031593, + -0.07552072405815125, + -0.04630008339881897, + -0.056811995804309845, + 0.02795395627617836, + 0.014243417419493198, + -0.08052065968513489, + -0.012850725091993809, + 0.014679081737995148, + -0.013156717643141747, + 0.058125466108322144, + 0.13021086156368256, + 0.06566799432039261, + -0.11359727382659912 + ] + }, + "p244_159.wav": { + "name": "p244", + "embedding": [ + 0.058413147926330566, + 0.0851493775844574, + -0.01938800700008869, + 0.034967441111803055, + -0.06543193757534027, + 0.07954458892345428, + -0.1346077024936676, + 0.14574402570724487, + -0.058722496032714844, + 0.1336444765329361, + -0.0524507611989975, + 0.1330804079771042, + -0.017090793699026108, + -0.16936129331588745, + -0.04304691404104233, + 0.05415913462638855, + -0.04199191927909851, + -0.0380057618021965, + -0.05088915675878525, + -0.009263405576348305, + 0.04141171649098396, + 0.023143654689192772, + 0.037514809519052505, + 0.005587120074778795, + 0.019456548616290092, + 0.05461234226822853, + 0.001579886768013239, + 0.059790968894958496, + 0.028279192745685577, + -0.07147859036922455, + -0.023932291194796562, + 0.09955228120088577, + -0.04808495193719864, + 0.013571491464972496, + 0.042836204171180725, + -0.017299702391028404, + 0.0015348431188613176, + -0.06544842571020126, + -0.028561929240822792, + -0.005550609435886145, + -0.02939167059957981, + 0.07087188959121704, + 0.021183058619499207, + -0.012081865221261978, + 0.045907698571681976, + -0.004005631431937218, + -0.03639606386423111, + -0.04180077835917473, + -0.11158914864063263, + 0.14163821935653687, + 0.06460636854171753, + 0.01153847761452198, + -0.08199407160282135, + -0.07088756561279297, + 0.11114148050546646, + -0.028697293251752853, + -0.12238836288452148, + -0.043736644089221954, + 0.0589846596121788, + 0.18154636025428772, + -0.03646986186504364, + -0.028366971760988235, + 0.034096501767635345, + 0.11927962303161621, + 0.08460699766874313, + 0.08264227211475372, + 0.10199432820081711, + 0.104372039437294, + -0.009565104730427265, + 0.02626793645322323, + 0.04569845646619797, + 0.07976773381233215, + 0.049327000975608826, + 0.015197510831058025, + 0.03785546496510506, + -0.0021829847246408463, + 0.0028939866460859776, + -0.011847763322293758, + -0.02904510498046875, + -0.01801573485136032, + -0.013712520711123943, + 0.03416603431105614, + 0.016758522018790245, + 0.03353836387395859, + -0.039441246539354324, + 0.07412821054458618, + 0.014228343032300472, + -0.022725345566868782, + 0.052542611956596375, + 0.03700548782944679, + 0.01803748682141304, + 0.06138095632195473, + -0.0786462277173996, + -0.09951856732368469, + 0.02177383378148079, + 0.004044240340590477, + 0.0341787151992321, + 0.05324501544237137, + 0.0178073700517416, + -0.007979007437825203, + 0.11131744086742401, + 0.05885232985019684, + -0.014886860735714436, + 0.035755183547735214, + -0.08536800742149353, + 0.1259189397096634, + 0.07854315638542175, + -0.01486610621213913, + 0.05409734696149826, + -0.0419207364320755, + 0.06442134082317352, + 0.05710768699645996, + -0.12515130639076233, + -0.09122486412525177, + 0.026567600667476654, + 0.0212209802120924, + -0.01835457980632782, + 0.12408091127872467, + -0.003833891125395894, + 0.051880791783332825, + 0.09631906449794769, + -0.07687751203775406, + -0.04282434284687042, + -0.002761050360277295, + 0.05375911295413971, + -0.06647136807441711, + 0.058102138340473175, + 0.037846677005290985, + -0.0060182781890034676, + 0.003675130195915699, + 0.0896177589893341, + -0.011278442107141018, + 0.002197357127442956, + 0.03172638639807701, + -0.06291276216506958, + 0.025404684245586395, + -0.021125055849552155, + -0.010551205836236477, + 0.05474591255187988, + 0.04287055879831314, + 0.056560762226581573, + -0.01729593239724636, + -0.025317426770925522, + -0.1177828311920166, + 0.0031550980638712645, + 0.028308046981692314, + 0.08317138254642487, + -0.007012281566858292, + -0.017009031027555466, + -0.03824325650930405, + -0.049531158059835434, + 0.015359850600361824, + -0.008112877607345581, + 0.08716776967048645, + -0.01764707639813423, + 0.013395133428275585, + 0.08997654914855957, + 0.013790569268167019, + 0.013510936871170998, + -0.04022020846605301, + -0.016576815396547318, + 0.013002024032175541, + 0.06430725008249283, + -0.06638894975185394, + -0.06313949823379517, + 0.0073865256272256374, + 0.04728049784898758, + -0.025099273771047592, + 0.057141780853271484, + 0.05243726447224617, + 0.01260291412472725, + 0.03382009267807007, + -0.05118957534432411, + 0.019361114129424095, + -0.09620572626590729, + -0.06528978794813156, + 0.007228863891214132, + -0.018684368580579758, + -0.03585337847471237, + 0.06467610597610474, + 0.04336762800812721, + 0.06281490623950958, + -0.0077796257100999355, + -0.0794244110584259, + -0.09477965533733368, + 0.05507725477218628, + 0.055404528975486755, + 0.00026303762570023537, + 0.040793463587760925, + 0.05808216333389282, + -0.015401584096252918, + 0.06726420670747757, + 0.0677766501903534, + 0.08394092321395874, + -0.025968968868255615, + -0.004199789837002754, + -0.08528822660446167, + 0.07715778052806854, + 0.0974041074514389, + -0.09428833425045013, + -0.08270764350891113, + -0.019037652760744095, + -0.07656624913215637, + 0.03579473868012428, + -0.03251129388809204, + 0.009883809834718704, + 0.07214915007352829, + -0.01128344889730215, + -0.12907877564430237, + -0.09040738642215729, + 0.10556988418102264, + -0.09632175415754318, + 0.0028497972525656223, + -0.07180330157279968, + 0.03239740803837776, + 0.1037566214799881, + 0.015980158001184464, + -0.025148779153823853, + -0.019905555993318558, + 0.0505656898021698, + -0.04484933614730835, + 0.004202523268759251, + 0.052196599543094635, + 0.0269288569688797, + -0.10545407235622406, + 0.0031444099731743336, + -0.07538380473852158, + 0.027356499806046486, + -0.0340481661260128, + 0.15492624044418335, + 0.001511018956080079, + -0.042291343212127686, + -0.08816663175821304, + 0.044423576444387436, + -0.036082275211811066, + 0.0653405711054802, + 0.032282911241054535, + 0.08144906908273697, + 0.05112887918949127, + -0.07640519738197327, + 0.12074606120586395, + 0.05320623517036438, + -0.05867772549390793, + -0.0895145982503891, + -0.04446505755186081, + -0.04716450348496437, + 0.03641282767057419, + 0.007578905206173658, + -0.0761210173368454, + -0.023382557556033134, + 0.018243834376335144, + -0.01702934131026268, + 0.06948816776275635, + 0.12938576936721802, + 0.05923928692936897, + -0.10708929598331451 + ] + }, + "p244_320.wav": { + "name": "p244", + "embedding": [ + 0.025520801544189453, + 0.07877252995967865, + -0.003103757742792368, + 0.033836882561445236, + -0.08043865859508514, + 0.0457850843667984, + -0.11211296170949936, + 0.11164680123329163, + -0.027138078585267067, + 0.11066503077745438, + -0.09568971395492554, + 0.0965370386838913, + -0.016866173595190048, + -0.19909408688545227, + -0.017862588167190552, + 0.05212496221065521, + -0.049090828746557236, + -0.02265555039048195, + -0.02733519673347473, + -0.04589300975203514, + 0.04851827770471573, + 0.055428534746170044, + 0.050118379294872284, + 0.0025774845853447914, + 0.043658867478370667, + 0.05856213718652725, + 0.015148472040891647, + 0.0464465357363224, + 0.02517641894519329, + -0.043575722724199295, + -0.05331163853406906, + 0.1046111211180687, + -0.009041492827236652, + -0.012373365461826324, + 0.032275933772325516, + -0.019374284893274307, + 0.007885291241109371, + -0.06459587812423706, + -0.03704747557640076, + 0.033120665699243546, + -0.05432902276515961, + 0.07299421727657318, + 0.06089409440755844, + -0.016993261873722076, + 0.037817858159542084, + 0.009072830900549889, + -0.03586292266845703, + -0.055808745324611664, + -0.12454576790332794, + 0.1887241005897522, + 0.07881983369588852, + -0.012671553529798985, + -0.057992804795503616, + -0.06267143785953522, + 0.12205424904823303, + 0.012421952560544014, + -0.10446374118328094, + -0.016401691362261772, + 0.09666335582733154, + 0.15409152209758759, + -0.013929875567555428, + -0.01580873876810074, + 0.036068208515644073, + 0.12577728927135468, + -0.005117212422192097, + 0.09175033122301102, + 0.05273692309856415, + 0.08473008871078491, + -0.006884884089231491, + 0.04424678534269333, + 0.05382002890110016, + 0.07339969277381897, + -0.029947789385914803, + -0.03862817957997322, + -0.004522421862930059, + 0.0015955782728269696, + -0.05324070155620575, + 0.030611634254455566, + -0.009906492196023464, + 0.00014639180153608322, + -0.003053084947168827, + -0.008608316071331501, + 0.009825386106967926, + -0.04046602174639702, + -0.028976455330848694, + 0.05257901921868324, + -0.004623483866453171, + 0.031562693417072296, + 0.07770092785358429, + 0.004387503489851952, + -0.014716900885105133, + 0.04621315374970436, + -0.028419988229870796, + -0.10382391512393951, + 0.003904375247657299, + 0.022020693868398666, + 0.011379226110875607, + 0.09337257593870163, + 0.0345635712146759, + -0.04893741384148598, + 0.13333404064178467, + 0.054878875613212585, + -0.004535716027021408, + 0.03689620643854141, + -0.09091217815876007, + 0.09812438488006592, + 0.09628951549530029, + 0.002807183191180229, + 0.07539047300815582, + -0.042548783123493195, + 0.10629554837942123, + 0.05668673291802406, + -0.14158661663532257, + -0.04556601867079735, + 0.012369860894978046, + 0.02958417497575283, + -0.001235730480402708, + 0.10671583563089371, + -0.01761295460164547, + 0.008461223915219307, + 0.11134716868400574, + -0.09489066898822784, + -0.06414701044559479, + -0.034735988825559616, + 0.05360417813062668, + -0.06968238949775696, + 0.031240612268447876, + 0.06621511280536652, + -0.03984420374035835, + 0.01821187511086464, + 0.04201790690422058, + -0.031000137329101562, + 0.022071823477745056, + 0.03235841915011406, + -0.05499796196818352, + 0.03371907398104668, + -0.0667421743273735, + 0.011573335155844688, + 0.08141951262950897, + 0.051439594477415085, + 0.030979935079813004, + 0.015057777054607868, + -0.04582558944821358, + -0.09321261197328568, + 0.016480151563882828, + 0.017121383920311928, + 0.07412862777709961, + 0.0035083144903182983, + -0.025581354275345802, + -0.062389880418777466, + -0.0835554450750351, + 0.025608256459236145, + -0.004866618663072586, + 0.07624217122793198, + -0.02494824305176735, + 0.0010127227287739515, + 0.056198667734861374, + 0.04309277981519699, + -0.029178284108638763, + -0.06340880692005157, + -0.07106196880340576, + 0.01193341612815857, + 0.02568979375064373, + -0.07379039376974106, + -0.05820883810520172, + -0.008504355326294899, + 0.022267483174800873, + -0.041610024869441986, + -0.0005361400544643402, + 0.011520364321768284, + 0.023507241159677505, + 0.04325632005929947, + -0.08259670436382294, + 0.03512035310268402, + -0.09949750453233719, + -0.04365795850753784, + -0.007120637688785791, + 0.013626787811517715, + -0.027239196002483368, + 0.08776382356882095, + 0.005865401588380337, + 0.014887961558997631, + 0.006898198276758194, + -0.03954825550317764, + -0.03754882887005806, + 0.06032465398311615, + 0.06547810137271881, + 0.027362583205103874, + 0.0935697853565216, + 0.062348753213882446, + -0.05896969139575958, + 0.057689473032951355, + 0.040895912796258926, + 0.09860705584287643, + -0.006726451683789492, + 0.000279892235994339, + -0.04421014338731766, + 0.06964688003063202, + 0.05661206692457199, + -0.09451404958963394, + -0.0817442461848259, + -0.048741914331912994, + -0.06386011093854904, + 0.07009054720401764, + 0.0011014719493687153, + -0.022415097802877426, + -0.017177147790789604, + -0.007621739991009235, + -0.07507762312889099, + -0.05295128375291824, + 0.04943493753671646, + -0.025051366537809372, + -0.03307938948273659, + -0.07187759131193161, + 0.04678461700677872, + 0.12320798635482788, + 0.03921324387192726, + -0.009760253131389618, + -0.02440573461353779, + 0.04600626975297928, + -0.06350357830524445, + -0.00517002958804369, + 0.049542710185050964, + 0.015346411615610123, + -0.08599340915679932, + 0.01961633935570717, + -0.0815107598900795, + 0.07330404222011566, + -0.05598717927932739, + 0.1525687724351883, + 0.021213382482528687, + -0.04798867553472519, + -0.0737653523683548, + 0.0767839252948761, + -0.01707714982330799, + 0.029994748532772064, + 0.050640784204006195, + 0.012454717420041561, + 0.051881421357393265, + -0.07105045020580292, + 0.11011287569999695, + 0.006932501681149006, + -0.04478736221790314, + -0.04011773318052292, + -0.005451499484479427, + -0.023584691807627678, + 0.0030439498368650675, + 0.001462601125240326, + -0.07537886500358582, + -0.03603881224989891, + 0.026913758367300034, + -0.02891014888882637, + 0.07795421779155731, + 0.13605740666389465, + 0.07035727053880692, + -0.09568221122026443 + ] + }, + "p244_267.wav": { + "name": "p244", + "embedding": [ + 0.04089002311229706, + 0.08040937781333923, + 0.05000807344913483, + -0.0070318905636668205, + 0.008723873645067215, + 0.07464659214019775, + -0.11834269762039185, + 0.1018214225769043, + -0.04301316291093826, + 0.13808655738830566, + -0.10668472945690155, + 0.06459633260965347, + 0.013080033473670483, + -0.16938516497612, + -0.0646447241306305, + 0.017802206799387932, + -0.04766518250107765, + 0.039930008351802826, + -0.03393450751900673, + -0.010385828092694283, + 0.062403604388237, + 0.057696856558322906, + 0.04255995899438858, + -0.061506301164627075, + 0.04749395698308945, + 0.009770615957677364, + 0.03562210500240326, + 0.07580393552780151, + 0.050825536251068115, + -0.08106863498687744, + -0.0231953002512455, + 0.13198384642601013, + 0.0015208730474114418, + 0.030939212068915367, + 0.04094603657722473, + 0.00992706511169672, + 0.031001130118966103, + -0.04581299051642418, + -0.031974270939826965, + 0.045957040041685104, + -0.013186722993850708, + 0.057713862508535385, + 0.035606760531663895, + 0.01743660680949688, + 0.03220895677804947, + 0.03501259535551071, + -0.012407653033733368, + -0.06057533621788025, + -0.08138827979564667, + 0.17724911868572235, + 0.026143399998545647, + -0.0017656413838267326, + -0.07492661476135254, + -0.08444344252347946, + 0.10468797385692596, + -0.013748415745794773, + -0.09538333117961884, + 0.017244767397642136, + 0.09012005478143692, + 0.17713619768619537, + 0.003649749793112278, + -0.041360899806022644, + 0.03068859502673149, + 0.08699106425046921, + -0.037116240710020065, + 0.07794386893510818, + 0.07276590168476105, + 0.039734940975904465, + 0.06012583523988724, + 0.05856478214263916, + -0.012993717566132545, + 0.06079424172639847, + -0.022939421236515045, + -0.06243829429149628, + 0.004789378494024277, + 0.004343423526734114, + -0.06441061198711395, + 0.033424824476242065, + -0.015343820676207542, + 0.025518257170915604, + 0.01456561591476202, + -0.01243472658097744, + 0.016527898609638214, + -0.015675794333219528, + -0.05754144489765167, + 0.016180193051695824, + -0.06933006644248962, + 0.015319699421525002, + 0.07244564592838287, + 0.026999380439519882, + 0.03303860127925873, + 0.014041176997125149, + -0.011146186850965023, + -0.13782307505607605, + -0.01228814572095871, + 0.022822659462690353, + -0.033740848302841187, + 0.04843050241470337, + 0.04773620888590813, + -0.06402254104614258, + 0.10926861315965652, + 0.019560925662517548, + -0.011908043175935745, + 0.02584703266620636, + -0.11332231760025024, + 0.04632158577442169, + 0.09927937388420105, + 0.028471410274505615, + 0.0660373866558075, + -0.0635748878121376, + 0.08980832993984222, + 0.06897356361150742, + -0.156078040599823, + -0.06994686275720596, + 0.034303344786167145, + 0.013385571539402008, + 0.055527638643980026, + 0.07519859075546265, + -0.009599572978913784, + -0.03178717568516731, + 0.05675498768687248, + -0.08693210780620575, + -0.04817034676671028, + -0.041984155774116516, + 0.05391543358564377, + -0.04625561088323593, + 0.03939437121152878, + 0.01379892136901617, + -0.032152507454156876, + -0.03476390242576599, + 0.037203822284936905, + -0.024082684889435768, + 0.04144737496972084, + -0.02462238073348999, + -0.027651842683553696, + 0.033668678253889084, + -0.08139661699533463, + 0.03142492100596428, + 0.035938624292612076, + 0.07558830082416534, + 0.031962353736162186, + 0.038796812295913696, + -0.10666034370660782, + -0.060587868094444275, + -0.031992703676223755, + 0.025321437045931816, + 0.02320745959877968, + -0.010833362117409706, + -0.02502829022705555, + -0.07051452994346619, + -0.05833090469241142, + 0.058272723108530045, + -0.02111818641424179, + 0.09312470257282257, + 0.041767701506614685, + -0.004681993275880814, + 0.09134726226329803, + -0.029596125707030296, + -0.023587215691804886, + -0.05084984377026558, + -0.027825910598039627, + 0.012946934439241886, + -0.01631007343530655, + -0.05537319555878639, + -0.02790706604719162, + 0.022779371589422226, + -0.025850091129541397, + -0.023266222327947617, + -0.021136850118637085, + 0.007566055282950401, + 0.020570658147335052, + 0.06101328134536743, + -0.08109825104475021, + -0.01259965542703867, + -0.12628933787345886, + -0.03314174339175224, + 0.006773616187274456, + -0.006627519614994526, + -0.019430387765169144, + 0.10877761989831924, + 0.014117586426436901, + -0.027515683323144913, + 0.005301102064549923, + -0.06428813934326172, + -0.026269692927598953, + 0.06154746562242508, + 0.07906775176525116, + 0.03647599369287491, + 0.04911907762289047, + 0.03478210046887398, + -0.018287887796759605, + 0.09326697885990143, + 0.07508493959903717, + 0.06459780037403107, + 0.026122933253645897, + -0.003883889876306057, + -0.04503998905420303, + 0.09965449571609497, + 0.035454824566841125, + -0.047789111733436584, + -0.11980824172496796, + -0.020889632403850555, + -0.09032846987247467, + 0.06199394911527634, + 0.010868974961340427, + -0.002025547670200467, + -0.019454307854175568, + -0.013309402391314507, + -0.08036572486162186, + -0.028606118634343147, + 0.047644853591918945, + -0.03588501363992691, + -0.0644679144024849, + -0.033684246242046356, + 0.05091279372572899, + 0.08927328884601593, + 0.034298285841941833, + 0.019498834386467934, + -0.016765590757131577, + 0.03656992316246033, + -0.12758934497833252, + -0.06662915647029877, + -0.011847520247101784, + -0.04146898165345192, + -0.05854378640651703, + 0.05294590815901756, + -0.06130136176943779, + 0.06894461810588837, + -0.0754314661026001, + 0.11578963696956635, + -0.004171848297119141, + -0.09924408793449402, + -0.05959136411547661, + 0.053625643253326416, + -0.04109543561935425, + 0.0036542071029543877, + 0.06296193599700928, + 0.013312599621713161, + 0.0511101633310318, + -0.0864224061369896, + 0.0662599727511406, + -0.0013344483450055122, + -0.0021012951619923115, + -0.06593005359172821, + -0.05514055863022804, + -0.00924589578062296, + -0.013202570378780365, + -0.024397898465394974, + -0.04346625134348869, + 0.0026541510596871376, + 0.01563926972448826, + -0.013218116015195847, + 0.04669560492038727, + 0.09310673177242279, + 0.007529200986027718, + -0.12247913330793381 + ] + }, + "p244_211.wav": { + "name": "p244", + "embedding": [ + 0.05561555176973343, + 0.07476101815700531, + -0.052211008965969086, + 0.026955675333738327, + -0.05322640389204025, + 0.03661806508898735, + -0.1373979151248932, + 0.1361597180366516, + -0.012683428823947906, + 0.1356649398803711, + -0.0324353352189064, + 0.12370516359806061, + 0.006509109400212765, + -0.17643816769123077, + -0.013529859483242035, + 0.03817180171608925, + -0.05228463560342789, + -0.037346456199884415, + -0.06533680856227875, + -0.03281663358211517, + 0.04387222230434418, + 0.050544463098049164, + 0.012072822079062462, + -0.04519437626004219, + 0.029870914295315742, + 0.06636123359203339, + -0.0035710344091057777, + 0.022054746747016907, + 0.005078745074570179, + -0.07734794914722443, + -0.031176943331956863, + 0.08020225167274475, + -0.06060321256518364, + 0.0051995860412716866, + 0.03883940726518631, + -0.036200523376464844, + -0.008651331067085266, + -0.05984622240066528, + -0.03858014941215515, + 0.036591291427612305, + -0.04583512246608734, + 0.08515188097953796, + 0.034839026629924774, + -0.01952531933784485, + 0.048758406192064285, + 0.017685972154140472, + -0.009091068059206009, + -0.053028590977191925, + -0.08681647479534149, + 0.18202757835388184, + 0.07922704517841339, + -0.0011413302272558212, + -0.07443785667419434, + -0.04456184059381485, + 0.08431188017129898, + -0.010584240779280663, + -0.11034146696329117, + -0.04460762068629265, + 0.0503133088350296, + 0.13076087832450867, + -0.036837439984083176, + -0.03333016484975815, + 0.04087750241160393, + 0.11446449160575867, + 0.08727821707725525, + 0.05246981978416443, + 0.09329789131879807, + 0.12436968088150024, + -0.015837140381336212, + 0.03008127771317959, + 0.057855479419231415, + 0.08494603633880615, + 0.06157143414020538, + -0.008879698812961578, + 0.04087744653224945, + -0.010015686973929405, + -0.009288820438086987, + -0.06433969736099243, + -0.02304484322667122, + -0.005173154175281525, + 0.02611020766198635, + 0.021895278245210648, + 0.027947112917900085, + 0.06532160937786102, + -0.03830118477344513, + 0.04961472749710083, + 0.06292508542537689, + -0.048523757606744766, + 0.046999916434288025, + 0.033453889191150665, + 0.026609007269144058, + 0.05786164849996567, + -0.11185987293720245, + -0.09477086365222931, + 0.04972974210977554, + 0.00779179111123085, + 0.01772131398320198, + 0.05159105360507965, + 0.05798032879829407, + -0.01643475331366062, + 0.12167476117610931, + 0.038890138268470764, + -0.034270405769348145, + 0.012571039609611034, + -0.08048106729984283, + 0.1291421353816986, + 0.0926733911037445, + -0.03286352753639221, + 0.043652333319187164, + -0.061568863689899445, + 0.07348719239234924, + 0.02780885249376297, + -0.13319814205169678, + -0.0759279727935791, + 0.04850144684314728, + -0.012471156194806099, + -0.01813753880560398, + 0.13866285979747772, + 0.009152228012681007, + 0.06203901022672653, + 0.10936550796031952, + -0.08230889588594437, + -0.04436946660280228, + -0.027178756892681122, + 0.06267385929822922, + -0.10013187676668167, + 0.06900951266288757, + 0.05117321386933327, + -0.01755327172577381, + 0.02061193250119686, + 0.0841592475771904, + -0.005175595637410879, + 0.0025618202053010464, + -0.02132461965084076, + -0.006105925887823105, + 0.040046803653240204, + -0.005014043301343918, + -0.014901263639330864, + 0.02035597339272499, + 0.017970576882362366, + 0.055543072521686554, + -0.028462860733270645, + -0.026065878570079803, + -0.119926318526268, + 0.03612257540225983, + 0.0034357786644250154, + 0.07882676273584366, + -0.023357613012194633, + 0.0021365750581026077, + -0.0362718403339386, + -0.07706248760223389, + -0.0027817520312964916, + -0.019782818853855133, + 0.060455694794654846, + -0.008558814413845539, + -0.004156298004090786, + 0.12639448046684265, + 0.02850279211997986, + 0.02800658345222473, + -0.0064366040751338005, + -0.017596498131752014, + 0.017183849588036537, + 0.05843152850866318, + -0.08233487606048584, + -0.07428313791751862, + -0.02307450771331787, + -0.0003148764371871948, + -0.00482788123190403, + 0.055707767605781555, + 0.033807434141635895, + 0.021727226674556732, + 0.02055608108639717, + -0.08225865662097931, + 0.003446632996201515, + -0.0926632434129715, + -0.05106983706355095, + -0.012522444128990173, + -0.03198954463005066, + -0.05880741775035858, + 0.080826535820961, + 0.007645905017852783, + 0.047904014587402344, + -0.047136273235082626, + -0.06485400348901749, + -0.06541036814451218, + 0.04404671490192413, + 0.06206110119819641, + -0.03320083022117615, + 0.009351923130452633, + 0.05454473942518234, + 0.0026818979531526566, + 0.011116365902125835, + 0.07128830254077911, + 0.0951414704322815, + -0.015848718583583832, + 0.008449976332485676, + -0.06262824684381485, + 0.13949379324913025, + 0.06430038064718246, + -0.06512638181447983, + -0.07184892892837524, + -0.022798646241426468, + -0.07825500518083572, + 0.003076508641242981, + -0.022325653582811356, + 0.02487379126250744, + 0.04365435242652893, + 0.013782620429992676, + -0.09706795960664749, + -0.08698441088199615, + 0.0768311470746994, + -0.08895616978406906, + -0.005962833762168884, + -0.09124652296304703, + 0.03530086204409599, + 0.11600761115550995, + 0.039607878774404526, + -0.03638194501399994, + -0.03423493728041649, + 0.03955703228712082, + -0.017453700304031372, + 0.027179241180419922, + 0.04660420119762421, + 0.06128426268696785, + -0.11945350468158722, + -0.013160161674022675, + -0.0415797233581543, + 0.0394231341779232, + -0.04532665014266968, + 0.11346608400344849, + 0.03232453763484955, + -0.0451977513730526, + -0.09722869098186493, + 0.056215204298496246, + -0.00927736982703209, + 0.0627959594130516, + 0.02523762360215187, + 0.06942947208881378, + 0.06505091488361359, + -0.07707616686820984, + 0.10791420191526413, + 0.05018983408808708, + -0.029584821313619614, + -0.07997827231884003, + -0.06634309887886047, + -0.016911637037992477, + 0.048534516245126724, + 0.036889348179101944, + -0.07415550947189331, + -0.010050700977444649, + 0.0272953100502491, + -0.012888816185295582, + 0.057177603244781494, + 0.11965953558683395, + 0.06349019706249237, + -0.11336217820644379 + ] + }, + "p244_165.wav": { + "name": "p244", + "embedding": [ + 0.03967594727873802, + 0.11585744470357895, + -0.008639282546937466, + 0.020129162818193436, + -0.06774327158927917, + 0.0625583678483963, + -0.11016085743904114, + 0.15146467089653015, + -0.04860122501850128, + 0.13405165076255798, + -0.08476852625608444, + 0.12267416715621948, + -0.04478985071182251, + -0.16407841444015503, + -0.03766641393303871, + 0.06088217720389366, + -0.040658533573150635, + -0.024455390870571136, + -0.037225570529699326, + -0.025911470875144005, + 0.02810397557914257, + 0.018418874591588974, + 0.02706461399793625, + 0.023228801786899567, + 0.02667958103120327, + 0.06969434022903442, + 0.00436252448707819, + 0.05329588055610657, + 0.025567099452018738, + -0.03724467381834984, + -0.04781217500567436, + 0.10602779686450958, + -0.049003686755895615, + 0.02519882097840309, + 0.06171729415655136, + -0.013418648391962051, + 0.0024574301205575466, + -0.04842984676361084, + -0.00952373631298542, + -0.0033513978123664856, + -0.036917783319950104, + 0.07925011217594147, + 0.023896804079413414, + 0.0006462677265517414, + 0.03923942893743515, + 0.036784667521715164, + -0.012810589745640755, + -0.04202618822455406, + -0.10374557226896286, + 0.15303929150104523, + 0.07213838398456573, + -0.026199575513601303, + -0.0721045583486557, + -0.0621412992477417, + 0.10370802134275436, + -0.0309724360704422, + -0.11170091480016708, + -0.04647126793861389, + 0.08283820748329163, + 0.13622578978538513, + -0.028179805725812912, + -0.034623660147190094, + 0.0015617292374372482, + 0.13400229811668396, + 0.044177573174238205, + 0.09309019148349762, + 0.05910392850637436, + 0.1103207916021347, + -0.035859934985637665, + 0.030682718381285667, + 0.0537598691880703, + 0.05562162399291992, + 0.03778868168592453, + -0.008430171757936478, + 0.022472640499472618, + -0.014264455996453762, + -0.0016798058059066534, + 0.02416589856147766, + -0.03488977998495102, + -0.023770660161972046, + -0.037995595484972, + 0.01511642336845398, + -0.015401272103190422, + -0.0016783864703029394, + -0.012259754352271557, + 0.07910149544477463, + 0.027622051537036896, + -0.0008163368329405785, + 0.0767674595117569, + 0.04940398782491684, + -0.011513065546751022, + 0.06224565953016281, + -0.08076849579811096, + -0.07767949253320694, + 0.020146973431110382, + -0.010552426800131798, + 0.02722552977502346, + 0.07289230078458786, + 0.026804868131875992, + -0.004942950326949358, + 0.11428235471248627, + 0.06732738763093948, + -0.006283899303525686, + 0.03265165910124779, + -0.09857062995433807, + 0.1445649266242981, + 0.0813715010881424, + -0.02178370952606201, + 0.04157993942499161, + -0.03250889480113983, + 0.07710427790880203, + 0.06216999143362045, + -0.12639182806015015, + -0.07282953709363937, + 0.0034495964646339417, + 0.008697226643562317, + -0.030725397169589996, + 0.08657179772853851, + -0.025908906012773514, + 0.030586540699005127, + 0.09950512647628784, + -0.07126377522945404, + -0.055402129888534546, + -0.019063675776124, + 0.034799061715602875, + -0.0755910575389862, + 0.04377538710832596, + 0.053865931928157806, + -0.0034394979011267424, + 0.02299828827381134, + 0.0909913033246994, + 0.0041182758286595345, + 0.0004711151123046875, + 0.05070638656616211, + -0.057587310671806335, + 0.009657394140958786, + -0.016324883326888084, + 0.004814613610506058, + 0.046114277094602585, + 0.056198835372924805, + 0.05687164515256882, + -0.0037865196354687214, + -0.0046349624171853065, + -0.09198613464832306, + 0.008206354454159737, + 0.0464017391204834, + 0.061579763889312744, + -0.011508050374686718, + -0.02121482416987419, + -0.0332116037607193, + -0.06690096855163574, + -0.0002730429987423122, + 0.006457747425884008, + 0.0766737163066864, + -0.04605969041585922, + 0.004488477949053049, + 0.11394591629505157, + 0.03200026601552963, + -0.015776630491018295, + -0.07389393448829651, + -0.025715522468090057, + 0.006654556840658188, + 0.048764050006866455, + -0.07982741296291351, + -0.07480873912572861, + 0.005237420555204153, + 0.03231421113014221, + -0.022735368460416794, + 0.06632789224386215, + 0.04875322803854942, + 0.008680691942572594, + 0.0384768545627594, + -0.06221424788236618, + 0.024033470079302788, + -0.093968465924263, + -0.05359342694282532, + -0.01922314614057541, + -0.022807035595178604, + -0.025805925950407982, + 0.06608009338378906, + 0.015927810221910477, + 0.05658772215247154, + 0.016445299610495567, + -0.08115064352750778, + -0.07686804980039597, + 0.07033812999725342, + 0.06715753674507141, + -0.0018075741827487946, + 0.06631970405578613, + 0.06917589157819748, + -0.047905974090099335, + 0.0630243793129921, + 0.06990984827280045, + 0.09791704267263412, + -0.03824529051780701, + 0.02791735529899597, + -0.0748954564332962, + 0.054023947566747665, + 0.07346709817647934, + -0.12069100141525269, + -0.09216158837080002, + -0.039735909551382065, + -0.043230753391981125, + 0.037867799401283264, + -0.029833585023880005, + 0.0035556077491492033, + 0.03954966366291046, + -0.0061808316968381405, + -0.08369222283363342, + -0.09028251469135284, + 0.09089213609695435, + -0.07503612339496613, + 0.00924255046993494, + -0.06325525790452957, + 0.039707720279693604, + 0.08755951374769211, + 0.03303712233901024, + -0.034828610718250275, + -0.0016722469590604305, + 0.05430574342608452, + -0.031120292842388153, + -0.010548003017902374, + 0.037798333913087845, + 0.0297946035861969, + -0.08675667643547058, + 0.014282351359724998, + -0.06989174336194992, + 0.07082843780517578, + -0.038404837250709534, + 0.16890528798103333, + 0.0020773860160261393, + -0.04848208278417587, + -0.07494451105594635, + 0.029797043651342392, + -0.03563976287841797, + 0.03672938048839569, + 0.035480476915836334, + 0.05658628046512604, + 0.014400872401893139, + -0.04764615744352341, + 0.14371421933174133, + 0.033516138792037964, + -0.061540957540273666, + -0.059838876128196716, + -0.0389665886759758, + -0.04797103628516197, + 0.02227701246738434, + 0.030173322185873985, + -0.09946665167808533, + -0.025316527113318443, + 0.011935308575630188, + -0.03308209031820297, + 0.08439870923757553, + 0.14766719937324524, + 0.08619862049818039, + -0.1089140772819519 + ] + }, + "p244_356.wav": { + "name": "p244", + "embedding": [ + 0.04086939990520477, + 0.08951200544834137, + -0.026374438777565956, + 0.03856663405895233, + -0.06730605661869049, + 0.0873529389500618, + -0.10553879290819168, + 0.11942847073078156, + -0.06356222182512283, + 0.151752769947052, + -0.06456775963306427, + 0.10343065857887268, + -0.03862103819847107, + -0.16911888122558594, + -0.03482303395867348, + 0.05769289284944534, + -0.06591907143592834, + -0.043339088559150696, + -0.06732074916362762, + -0.022766653448343277, + 0.03342362493276596, + 0.040194205939769745, + 0.01719977706670761, + 0.0039030457846820354, + 0.03261745721101761, + 0.06683658808469772, + -0.014979502186179161, + 0.030012287199497223, + 0.008016941137611866, + -0.08423100411891937, + -0.04582330584526062, + 0.10858146101236343, + -0.04576100409030914, + 0.025592606514692307, + 0.032217759639024734, + 0.0006537479348480701, + 0.004875914193689823, + -0.06298317015171051, + -0.019257143139839172, + 0.0005593490786850452, + -0.049346521496772766, + 0.07798685878515244, + 0.025978393852710724, + 0.0004016320453956723, + 0.02908991277217865, + -0.006298460997641087, + -0.033271800726652145, + -0.05221286416053772, + -0.0937284529209137, + 0.18031814694404602, + 0.07851989567279816, + -0.012121371924877167, + -0.05992363393306732, + -0.07952374219894409, + 0.10676153004169464, + -0.005858476273715496, + -0.14307348430156708, + -0.053222015500068665, + 0.07925372570753098, + 0.16216279566287994, + -0.020424779504537582, + -0.018776120617985725, + 0.0074111116118729115, + 0.1364484429359436, + 0.04707653820514679, + 0.09105082601308823, + 0.07038827240467072, + 0.10942619293928146, + 0.0017424310790374875, + 0.02338968962430954, + 0.07447397708892822, + 0.05923231691122055, + 0.06232087314128876, + -0.009397023357450962, + 0.03479659929871559, + -0.016016103327274323, + -0.015911351889371872, + -0.0009062483441084623, + -0.03415266424417496, + -0.023133162409067154, + -0.021057307720184326, + 0.005176630802452564, + 0.009483702480793, + 0.010469830594956875, + -0.01430918462574482, + 0.04501991719007492, + 0.034592047333717346, + -0.02202957309782505, + 0.06608723104000092, + 0.048086170107126236, + 0.009918369352817535, + 0.060980021953582764, + -0.06518412381410599, + -0.08466757833957672, + 0.02336093969643116, + 0.015045255422592163, + 0.026683226227760315, + 0.06649713963270187, + 0.033746909350156784, + -0.019483964890241623, + 0.1067667081952095, + 0.03334623947739601, + -0.002106674946844578, + 0.01401473954319954, + -0.10387741029262543, + 0.13408410549163818, + 0.08653315901756287, + -0.00869319960474968, + 0.04028468579053879, + -0.029592256993055344, + 0.08483413606882095, + 0.07535626739263535, + -0.14697687327861786, + -0.06821461021900177, + 0.01582537591457367, + -0.01609744317829609, + -0.02322383224964142, + 0.10218681395053864, + 0.0051074945367872715, + 0.022427907213568687, + 0.1023264229297638, + -0.09726029634475708, + -0.04470622539520264, + -0.01842515729367733, + 0.04056418687105179, + -0.08730257302522659, + 0.04035990685224533, + 0.04516203701496124, + -0.01682428829371929, + 0.018705403432250023, + 0.08134029805660248, + -0.008416708558797836, + 0.00244336761534214, + 0.02857125736773014, + -0.06176706403493881, + 0.027274195104837418, + -0.02988981455564499, + 0.0030025558080524206, + 0.05451573058962822, + 0.03475082665681839, + 0.054191768169403076, + -0.029301758855581284, + -0.019413653761148453, + -0.0967000424861908, + 0.01952831819653511, + 0.030948691070079803, + 0.06650516390800476, + -0.01649133302271366, + 0.0050955163314938545, + -0.026191718876361847, + -0.08118981868028641, + 0.03647289425134659, + -0.025159452110528946, + 0.08692571520805359, + -0.013840983621776104, + -0.014536605216562748, + 0.12050910294055939, + 0.02689511328935623, + -0.015167511999607086, + -0.06247050315141678, + -0.026502516120672226, + 0.021901793777942657, + 0.06385867297649384, + -0.08855246007442474, + -0.05560731887817383, + 0.017624270170927048, + 0.02216988615691662, + -0.01880536414682865, + 0.05033149570226669, + 0.046090055257081985, + 0.01750963181257248, + 0.028113212436437607, + -0.05739482492208481, + 0.011944243684411049, + -0.09569239616394043, + -0.05275866016745567, + 0.000302922329865396, + -0.054119616746902466, + -0.017465630546212196, + 0.08965660631656647, + 0.014668621122837067, + 0.02036041021347046, + -0.01609942875802517, + -0.08675159513950348, + -0.06559126079082489, + 0.07725353538990021, + 0.05012989044189453, + 0.003195937257260084, + 0.0420549213886261, + 0.06380848586559296, + -0.02766098827123642, + 0.03873578831553459, + 0.0595577135682106, + 0.11881475150585175, + -0.029372617602348328, + 0.024797804653644562, + -0.07991312444210052, + 0.08599613606929779, + 0.07942035794258118, + -0.09733115136623383, + -0.08269278705120087, + -0.03404483199119568, + -0.05191946402192116, + 0.04673101380467415, + -0.041733354330062866, + -0.00048792490269988775, + 0.03443985804915428, + -0.0145350880920887, + -0.10161145031452179, + -0.0894225686788559, + 0.11258187890052795, + -0.07217399775981903, + -0.011903337202966213, + -0.08650445938110352, + 0.0452762097120285, + 0.0853215903043747, + 0.0592464804649353, + -0.03526864945888519, + 0.027561983093619347, + 0.07129386067390442, + -0.05256011337041855, + 0.007490691263228655, + 0.05711611732840538, + 0.014849871397018433, + -0.09769967198371887, + -0.012917572632431984, + -0.07902374863624573, + 0.05670669674873352, + -0.053847476840019226, + 0.15977267920970917, + -0.003217934397980571, + -0.05182019621133804, + -0.07304446399211884, + 0.05916804075241089, + -0.025032419711351395, + 0.048482805490493774, + 0.044112756848335266, + 0.07247015833854675, + 0.04754685238003731, + -0.05276981741189957, + 0.12296392023563385, + 0.039938054978847504, + -0.02849949151277542, + -0.0488908514380455, + -0.03706773743033409, + -0.04777908697724342, + 0.0248568132519722, + -0.003756074234843254, + -0.09971877932548523, + 0.010898696258664131, + 0.026814734563231468, + -0.015190057456493378, + 0.07238695025444031, + 0.1374489814043045, + 0.08575549721717834, + -0.10293564200401306 + ] + }, + "p244_399.wav": { + "name": "p244", + "embedding": [ + 0.043407708406448364, + 0.08514630794525146, + -0.004393481649458408, + -0.017237260937690735, + -0.027270518243312836, + 0.038521382957696915, + -0.11699099838733673, + 0.1150565892457962, + -0.03607865050435066, + 0.1637323647737503, + -0.06965497136116028, + 0.07763926684856415, + -0.009350992739200592, + -0.14831416308879852, + -0.04423484951257706, + 0.012057676911354065, + -0.07149875909090042, + 0.020692303776741028, + -0.08802884817123413, + 0.0032151222694665194, + 0.07314873486757278, + 0.058580655604600906, + 0.02529294788837433, + -0.10331368446350098, + 0.03364839032292366, + 0.03980763256549835, + 0.06568023562431335, + 0.05860733613371849, + 0.04895852133631706, + -0.10105137526988983, + -0.010964975692331791, + 0.1181853711605072, + -0.02922952175140381, + 0.03131198137998581, + 0.04253586754202843, + -0.03794465959072113, + 0.009031357243657112, + -0.0376671701669693, + -0.040401890873909, + 0.06202126294374466, + -0.02167307771742344, + 0.06562337279319763, + 0.006518195383250713, + 0.011429822072386742, + 0.05421014875173569, + 0.03634736314415932, + -0.025013383477926254, + -0.08090966939926147, + -0.05387640744447708, + 0.1955152153968811, + 0.06107282638549805, + -0.005303638055920601, + -0.07695049792528152, + -0.08275580406188965, + 0.08707845211029053, + -0.009905875660479069, + -0.08993817865848541, + -0.034108612686395645, + 0.054829783737659454, + 0.1368941068649292, + -0.028208032250404358, + -0.015052329748868942, + 0.022843828424811363, + 0.0715927854180336, + -0.0010192799381911755, + 0.044366396963596344, + 0.07649503648281097, + 0.03229347988963127, + 0.05760540813207626, + 0.10044670850038528, + -0.003477548249065876, + 0.07733965665102005, + 0.0009144004434347153, + -0.022935424000024796, + 0.04968501254916191, + -0.005019399803131819, + -0.06939955055713654, + -0.0021369503811001778, + -0.014622367918491364, + 0.028308648616075516, + 0.03437855467200279, + 0.03125846013426781, + 0.019676368683576584, + 0.004109161905944347, + -0.04377274960279465, + 0.04807640612125397, + -0.0622292198240757, + -0.01346023939549923, + 0.048401277512311935, + -0.0034759631380438805, + 0.026329033076763153, + 0.03414757549762726, + -0.05391175299882889, + -0.17603802680969238, + -0.018477359786629677, + 0.0055984798818826675, + -0.01211104542016983, + 0.02662937343120575, + 0.04154057800769806, + -0.06734733283519745, + 0.09840120375156403, + 0.027053028345108032, + -0.031699128448963165, + 0.029967427253723145, + -0.09623030573129654, + 0.06701046228408813, + 0.07976463437080383, + 0.019208690151572227, + 0.032371360808610916, + -0.09073149412870407, + 0.09181475639343262, + 0.0308143999427557, + -0.1284741461277008, + -0.0825284868478775, + 0.04926585406064987, + -0.04131811857223511, + 0.023724224418401718, + 0.09970830380916595, + 0.00023345567751675844, + -0.019320406019687653, + 0.08103495836257935, + -0.08968541026115417, + -0.042313579469919205, + -0.040758296847343445, + 0.06690813601016998, + -0.06204451620578766, + 0.0415092371404171, + 0.008520049042999744, + -0.05466149002313614, + -0.01350567676126957, + 0.07163883745670319, + -0.019098002463579178, + 0.04717077314853668, + -0.018486324697732925, + -0.020546559244394302, + 0.04924091324210167, + -0.08019986003637314, + -0.002873710822314024, + 0.04371439293026924, + 0.09363424777984619, + 0.04580260440707207, + 0.014807956293225288, + -0.09634441137313843, + -0.06610545516014099, + 0.0019455874571576715, + 0.0017015831544995308, + 0.025520039722323418, + -0.01260680053383112, + -0.001566617051139474, + -0.06118291988968849, + -0.05729690566658974, + 0.0018601319752633572, + -0.017036782577633858, + 0.0833219438791275, + 0.022019457072019577, + 0.017744986340403557, + 0.1212051659822464, + -0.023838693276047707, + -0.01061723567545414, + -0.02597096934914589, + -0.028454719111323357, + 0.03623758256435394, + 0.02798575349152088, + -0.046151597052812576, + -0.04130226746201515, + 0.006558964028954506, + -0.02732974663376808, + 0.007865079678595066, + -0.010325999930500984, + -0.00023810472339391708, + 0.024877462536096573, + 0.055413391441106796, + -0.08336721360683441, + -0.01316053606569767, + -0.12758152186870575, + -0.02248723804950714, + -0.020609617233276367, + -0.039464905858039856, + -0.06324316561222076, + 0.09323467314243317, + -0.03642461821436882, + -0.011015796102583408, + -0.011010970920324326, + -0.07861576229333878, + -0.026543892920017242, + 0.08534091711044312, + 0.09695500880479813, + 0.023573437705636024, + 0.03926955536007881, + 0.02396240644156933, + 0.006417909637093544, + 0.043264664709568024, + 0.07744477689266205, + 0.08910040557384491, + 0.03543535992503166, + -0.02767322212457657, + -0.04132278636097908, + 0.11849206686019897, + 0.03320126235485077, + -0.06905090808868408, + -0.08573455363512039, + -0.02476121112704277, + -0.08664263784885406, + 0.030558835715055466, + -0.006718845572322607, + 0.00779906939715147, + 0.019522856920957565, + 0.016397511586546898, + -0.096031054854393, + -0.026959164068102837, + 0.05537264794111252, + -0.07411211729049683, + -0.050628259778022766, + -0.02682347409427166, + 0.026658786460757256, + 0.1291964203119278, + 0.07049524039030075, + 0.014440370723605156, + -0.03224454075098038, + 0.06706452369689941, + -0.11083965748548508, + -0.029099933803081512, + -0.023874379694461823, + -0.025118602439761162, + -0.05290934070944786, + 0.06555207818746567, + -0.03741598501801491, + 0.03360322117805481, + -0.09411516040563583, + 0.09540413320064545, + -0.02489689737558365, + -0.08482369035482407, + -0.09301001578569412, + 0.06976577639579773, + -0.046728700399398804, + 0.021285828202962875, + 0.030839871615171432, + 0.01062258891761303, + 0.07393287122249603, + -0.12058000266551971, + 0.10721905529499054, + 0.004731575958430767, + 0.013897083699703217, + -0.061224132776260376, + -0.07533226162195206, + -0.015477333217859268, + -0.010902968235313892, + 0.001196539495140314, + -0.03732926771044731, + 0.009925230406224728, + 0.012417476624250412, + -0.026409873738884926, + 0.049373526126146317, + 0.08713968098163605, + 0.010785295628011227, + -0.11902668327093124 + ] + }, + "p244_292.wav": { + "name": "p244", + "embedding": [ + 0.02978472411632538, + 0.00844737607985735, + -0.022143715992569923, + 0.07281013578176498, + -0.02330043911933899, + 0.07798058539628983, + -0.10541976243257523, + 0.07966556400060654, + -0.05141333118081093, + 0.1361052691936493, + -0.08067888021469116, + 0.05543431267142296, + -0.010731135495007038, + -0.17521022260189056, + -0.0180555060505867, + 0.061209071427583694, + -0.05542079731822014, + -0.0006583239301107824, + -0.08810283988714218, + 0.02877158857882023, + 0.06928957253694534, + 0.07792311161756516, + 0.02024732157588005, + -0.051773060113191605, + 0.010985376313328743, + 0.021596424281597137, + 0.01120042335242033, + 0.07479297369718552, + 0.04911467805504799, + -0.09630712866783142, + -0.005978746805340052, + 0.12200847268104553, + -0.01801954209804535, + 0.014994977973401546, + 0.030241530388593674, + 0.0155265424400568, + 0.0009099359740503132, + -0.03831105679273605, + -0.028641412034630775, + 0.016760200262069702, + -0.07368175685405731, + 0.05674555152654648, + 0.03237203136086464, + 0.03398388996720314, + 0.08281849324703217, + -0.008106161840260029, + -0.08759444206953049, + -0.07100453972816467, + -0.1120789647102356, + 0.1613544225692749, + 0.05960554629564285, + 0.009728522971272469, + -0.044778719544410706, + -0.07683882862329483, + 0.0909070074558258, + 0.01107009407132864, + -0.12459607422351837, + -0.08191263675689697, + 0.09382978826761246, + 0.1923878788948059, + -0.0019968939013779163, + 0.013254500925540924, + 0.03994491696357727, + 0.08640435338020325, + 0.04014137014746666, + 0.09069765359163284, + 0.053090475499629974, + 0.06117432564496994, + 0.09111525863409042, + 0.03566819801926613, + 0.01563529670238495, + 0.07747708261013031, + 0.0007923566736280918, + 0.0036026551388204098, + 0.0272341500967741, + 0.034250639379024506, + -0.04543229937553406, + 0.0031557055190205574, + -0.031035585328936577, + 0.0502319298684597, + 0.034504495561122894, + 0.018384940922260284, + 0.04751954227685928, + -0.006692108232527971, + -0.0625535175204277, + 0.043901484459638596, + -0.034086961299180984, + 0.0001770639355527237, + 0.0413428395986557, + -0.024855032563209534, + 0.001108216238208115, + 0.023319272324442863, + -0.01741201803088188, + -0.1326574683189392, + -0.04704342782497406, + 0.03093782067298889, + -0.021161584183573723, + 0.006018002517521381, + -0.00518689164891839, + -0.05481847748160362, + 0.12718717753887177, + -0.026280276477336884, + -0.027132853865623474, + 0.06241834536194801, + -0.08875400573015213, + 0.07980675250291824, + 0.05902193859219551, + 0.053044773638248444, + 0.050138067454099655, + -0.04974028468132019, + 0.060327544808387756, + 0.0655059739947319, + -0.14963261783123016, + -0.028454886749386787, + 0.06327219307422638, + -0.012809679843485355, + -0.007210670039057732, + 0.14251743257045746, + 0.024538135156035423, + -0.011140108108520508, + 0.11241748183965683, + -0.11833605170249939, + -0.033140141516923904, + 0.007824218831956387, + 0.06312833726406097, + -0.0639585480093956, + 0.053029920905828476, + -0.026817718520760536, + -0.0368630476295948, + 0.008135326206684113, + 0.07525601238012314, + -0.03474194183945656, + 0.02815941907465458, + 0.0048700966872274876, + -0.05952896922826767, + 0.0734386220574379, + -0.12032050639390945, + -0.010470408014953136, + 0.09427011758089066, + 0.05006031692028046, + 0.08284653723239899, + -0.029075944796204567, + -0.09600839763879776, + -0.11729686707258224, + -0.010005713440477848, + -0.0068902322091162205, + 0.07979514449834824, + 0.00613864092156291, + 0.026466138660907745, + -0.0870661586523056, + -0.07945363968610764, + 0.0769726112484932, + -0.05543803796172142, + 0.11835591495037079, + 0.0162125825881958, + 0.0027792956680059433, + 0.052065782248973846, + -0.049297869205474854, + 0.009339897893369198, + -0.04202976077795029, + -0.0557120218873024, + -0.0009214148158207536, + 0.023042500019073486, + -0.05398085340857506, + -0.0027062115259468555, + 0.044533368200063705, + 0.025707069784402847, + -0.011558673344552517, + -0.010034295730292797, + 0.012893454171717167, + 0.03819505125284195, + 0.020159991458058357, + -0.04656371846795082, + -0.006478699389845133, + -0.094541534781456, + -0.021168410778045654, + 0.011217146180570126, + -0.01657198742032051, + -0.0295425932854414, + 0.10062684118747711, + 0.008051402866840363, + -0.01711026020348072, + -0.001680716872215271, + -0.09159387648105621, + -0.09306102991104126, + 0.09266086667776108, + 0.04368305578827858, + 0.011623713187873363, + 0.05852610990405083, + 0.03634224086999893, + -0.03923001140356064, + 0.044802065938711166, + 0.05468299239873886, + 0.0972294807434082, + 0.046213969588279724, + -0.02021324262022972, + -0.05593721196055412, + 0.11970607936382294, + 0.09194639325141907, + -0.04186704382300377, + -0.0506104975938797, + 0.014429462142288685, + -0.11097955703735352, + 0.08465274423360825, + -0.03146445006132126, + -0.040149785578250885, + 0.053672537207603455, + -0.0060563478618860245, + -0.13333512842655182, + -0.019666306674480438, + 0.05323227122426033, + -0.1026659831404686, + -0.06263666599988937, + -0.04058093577623367, + 0.011989978142082691, + 0.10436394065618515, + 0.04677855595946312, + 0.030187595635652542, + -0.002272543963044882, + 0.07451274991035461, + -0.1316886693239212, + 0.0020504635758697987, + 0.05662250518798828, + -0.03712950646877289, + -0.07926171272993088, + 0.0037090876139700413, + -0.07958752661943436, + 0.00390845350921154, + -0.05563895404338837, + 0.09774356335401535, + -0.02173725515604019, + -0.034459371119737625, + -0.05764124169945717, + 0.08004993945360184, + -0.03101935051381588, + 0.04732012003660202, + 0.04447893425822258, + 0.05280740559101105, + 0.11529012024402618, + -0.06742821633815765, + 0.11136690527200699, + 0.021314358338713646, + -0.006134507711976767, + -0.037167228758335114, + -0.04780614748597145, + -0.06523802131414413, + -0.028220772743225098, + 0.003216435434296727, + -0.06819122284650803, + 0.005061344243586063, + 0.0370168499648571, + -0.01879378966987133, + 0.032584886997938156, + 0.08438259363174438, + 0.009825991466641426, + -0.09319378435611725 + ] + }, + "p244_079.wav": { + "name": "p244", + "embedding": [ + 0.06516256183385849, + 0.09580160677433014, + -0.010024912655353546, + 0.028830762952566147, + -0.0722404196858406, + 0.04410260170698166, + -0.12284588813781738, + 0.140308678150177, + -0.026371777057647705, + 0.13703271746635437, + -0.07013494521379471, + 0.14145883917808533, + -0.0287533737719059, + -0.1753140091896057, + -0.020089223980903625, + 0.06814181804656982, + -0.024494217708706856, + -0.01852126605808735, + -0.04487146437168121, + -0.009977125562727451, + 0.023365594446659088, + 0.026251815259456635, + 0.06408986449241638, + -0.009501132182776928, + 0.04037458822131157, + 0.07798200845718384, + 0.011470229364931583, + 0.06849347054958344, + 0.024142172187566757, + -0.07543677091598511, + -0.043644312769174576, + 0.09946713596582413, + -0.06297313421964645, + 0.01536078006029129, + 0.051502976566553116, + -0.021028434857726097, + -0.013401273638010025, + -0.05042524263262749, + -0.019526313990354538, + -0.0067052049562335014, + -0.03078743815422058, + 0.08218748867511749, + 0.012076299637556076, + -0.029669523239135742, + 0.04701274633407593, + 0.03221958875656128, + -0.0238468237221241, + -0.0433136522769928, + -0.11535975337028503, + 0.14637990295886993, + 0.04629471153020859, + 0.009074930101633072, + -0.09432247281074524, + -0.06899213790893555, + 0.0928945541381836, + -0.04236429184675217, + -0.10814248025417328, + -0.0603962168097496, + 0.06318166851997375, + 0.13227872550487518, + -0.03318799287080765, + -0.04776616394519806, + 0.014100514352321625, + 0.1020800769329071, + 0.07988174259662628, + 0.0888691172003746, + 0.07963944971561432, + 0.10757699608802795, + -0.02693941816687584, + 0.048616521060466766, + 0.04493517428636551, + 0.075970858335495, + 0.0588279590010643, + 0.013869773596525192, + 0.026416122913360596, + -0.003352896310389042, + -0.002936075208708644, + -0.007241982501000166, + -0.016357282176613808, + -0.015565671026706696, + -0.013938527554273605, + 0.015750925987958908, + 0.012026733718812466, + 0.0059774634428322315, + -0.02928123250603676, + 0.07431838661432266, + 0.036998599767684937, + -0.014820186421275139, + 0.06684798002243042, + 0.030558597296476364, + -0.0173952616751194, + 0.06289484351873398, + -0.10084779560565948, + -0.08981823921203613, + 0.01646825112402439, + -0.011834731325507164, + 0.030426006764173508, + 0.05790908262133598, + 0.026028063148260117, + -0.009957386180758476, + 0.11783450096845627, + 0.07251115143299103, + -0.005082995630800724, + 0.03915700316429138, + -0.07243093848228455, + 0.13601046800613403, + 0.08595867455005646, + -0.016306884586811066, + 0.05203995108604431, + -0.03906119614839554, + 0.07126761972904205, + 0.06326884031295776, + -0.12511089444160461, + -0.08278553187847137, + -0.008053545840084553, + -0.022284874692559242, + -0.030374838039278984, + 0.10552652180194855, + -0.027563486248254776, + 0.04734759032726288, + 0.11284604668617249, + -0.09717071056365967, + -0.054251790046691895, + 0.007773173041641712, + 0.031180864199995995, + -0.09953389316797256, + 0.05676734820008278, + 0.04854784160852432, + -0.006961371749639511, + 0.018301382660865784, + 0.10394886136054993, + -0.0035078434739261866, + 0.007843966595828533, + 0.02568798139691353, + -0.061050452291965485, + 0.005224249325692654, + -0.023605231195688248, + -0.0071538230404257774, + 0.07506098598241806, + 0.03730127587914467, + 0.0615386925637722, + -0.0086620282381773, + -0.007373702712357044, + -0.12529276311397552, + 0.011405468918383121, + 0.04152694344520569, + 0.06523949652910233, + -0.016931375488638878, + -0.017557824030518532, + -0.03932113200426102, + -0.060288846492767334, + 0.025387771427631378, + 0.01169002614915371, + 0.06566314399242401, + -0.03005640022456646, + 0.013669880107045174, + 0.1229715421795845, + 0.028635794296860695, + 0.0065623014234006405, + -0.06518053263425827, + -0.03174331411719322, + 0.011019711382687092, + 0.06399239599704742, + -0.09251774847507477, + -0.06803411990404129, + -0.0032121860422194004, + 0.03338535130023956, + -0.02481101080775261, + 0.06714528799057007, + 0.07079502195119858, + 0.022468185052275658, + 0.037124164402484894, + -0.04624837636947632, + 0.013048010878264904, + -0.08079132437705994, + -0.0706033855676651, + -0.00602807616814971, + -0.01950966939330101, + -0.03886004164814949, + 0.066257543861866, + 0.02169523760676384, + 0.06392017006874084, + -0.025257427245378494, + -0.07497726380825043, + -0.09656015038490295, + 0.061889246106147766, + 0.052845295518636703, + -0.0002559491840656847, + 0.05314617604017258, + 0.048261500895023346, + -0.047096386551856995, + 0.06495040655136108, + 0.058088771998882294, + 0.09279659390449524, + -0.034642692655324936, + 0.020721999928355217, + -0.07892473042011261, + 0.07680954039096832, + 0.09880086779594421, + -0.09906453639268875, + -0.09369700402021408, + -0.03440767526626587, + -0.07206651568412781, + 0.050891950726509094, + -0.02989235147833824, + -0.003563639475032687, + 0.06643103063106537, + -0.0022542979568243027, + -0.09432574361562729, + -0.10080718994140625, + 0.08983003348112106, + -0.06773792207241058, + -0.0012895718682557344, + -0.0749431848526001, + 0.035775937139987946, + 0.07154205441474915, + 0.03231631964445114, + -0.028951279819011688, + -0.012004037387669086, + 0.05119956284761429, + -0.03849438950419426, + -0.0009040175937116146, + 0.06436005979776382, + 0.030313212424516678, + -0.07667014002799988, + -0.003539234632626176, + -0.07074956595897675, + 0.04775746911764145, + -0.03263372927904129, + 0.1630285680294037, + -0.008396154269576073, + -0.04302608221769333, + -0.07123927772045135, + 0.028731761500239372, + -0.04127562791109085, + 0.05254625901579857, + 0.046864256262779236, + 0.0590631365776062, + 0.04338300973176956, + -0.07303330302238464, + 0.12959596514701843, + 0.048778362572193146, + -0.05276206508278847, + -0.06825324892997742, + -0.05494856834411621, + -0.05755572021007538, + 0.04025141894817352, + 0.0131063312292099, + -0.09747196733951569, + -0.00620085746049881, + 0.021146811544895172, + -0.027976226061582565, + 0.055900782346725464, + 0.13161638379096985, + 0.06194650009274483, + -0.09125107526779175 + ] + }, + "p244_417.wav": { + "name": "p244", + "embedding": [ + 0.05909836292266846, + 0.08160175383090973, + -0.07030828297138214, + 0.011782796122133732, + 0.025327229872345924, + 0.05053437128663063, + -0.13075393438339233, + 0.07129392772912979, + -0.038319140672683716, + 0.13663902878761292, + -0.04119236022233963, + 0.11303113400936127, + -0.011498070321977139, + -0.10368526726961136, + -0.03302355483174324, + 0.0602126345038414, + -0.015298991464078426, + -0.0010763611644506454, + -0.010557844303548336, + 0.017065340653061867, + 0.06165258586406708, + 0.03136908635497093, + 0.024239016696810722, + -0.05923013389110565, + 0.004103496670722961, + 0.05849559232592583, + 0.019867662340402603, + 0.007513002492487431, + -0.01094362698495388, + -0.026498273015022278, + 0.01610308326780796, + 0.06772201508283615, + 0.0048959869891405106, + 0.04399401322007179, + 0.028874894604086876, + 0.047758735716342926, + -0.01651011034846306, + -0.05631769448518753, + 0.024276209995150566, + 0.016915326938033104, + -0.006811744999140501, + 0.05868542939424515, + 0.011618515476584435, + -0.03999960422515869, + 0.045762963593006134, + -0.05200161039829254, + -0.021532367914915085, + -0.014844749122858047, + -0.05701658874750137, + 0.1442849040031433, + 0.05042952299118042, + 0.06697671860456467, + -0.08402715623378754, + -0.018702922388911247, + 0.08897987753152847, + 0.03815074637532234, + -0.06362417340278625, + -0.043369024991989136, + 0.02607535570859909, + 0.1534719467163086, + -0.0019072418799623847, + -0.04298985004425049, + 0.04340633749961853, + 0.0731189176440239, + 0.0009420793503522873, + 0.04949144646525383, + 0.10599350929260254, + 0.049234434962272644, + 0.04804335534572601, + 0.00664458516985178, + 0.015810616314411163, + 0.09508240222930908, + 0.04241625592112541, + -0.018506541848182678, + 0.02625420317053795, + -0.0387938916683197, + -0.04149240255355835, + -0.019300974905490875, + -0.019704679027199745, + -0.08427698165178299, + -0.04882911965250969, + -0.02197306603193283, + 0.02618379145860672, + 0.03960245102643967, + -0.016376499086618423, + -0.0038973260670900345, + 0.037387698888778687, + -0.09241961687803268, + 0.014897347427904606, + 0.0459207147359848, + 0.008868705481290817, + -0.015156161040067673, + -0.030490398406982422, + -0.11602529883384705, + 0.036987531930208206, + 0.02778133749961853, + 0.007633493281900883, + 0.04099714010953903, + 0.05399581044912338, + 0.03645102679729462, + 0.05131783336400986, + -0.0022190194576978683, + -0.010710250586271286, + -0.04364379122853279, + -0.03711196035146713, + 0.08210805058479309, + 0.11589988321065903, + -0.022554457187652588, + 0.03075755015015602, + -0.06686490774154663, + -0.01652601733803749, + 0.04832708090543747, + -0.08810297399759293, + -0.07225038856267929, + 0.02643495611846447, + 0.00782470591366291, + 0.05593413859605789, + 0.09123110771179199, + 0.04908927530050278, + 0.013989736326038837, + 0.07796026766300201, + -0.07409682869911194, + -0.09257493913173676, + -0.08532830327749252, + 0.04421807825565338, + -0.056917883455753326, + 0.09170624613761902, + 0.057820141315460205, + 0.020159270614385605, + -0.029578659683465958, + 0.04342036321759224, + 0.010445686988532543, + 0.03175807744264603, + -0.053649917244911194, + 0.014682024717330933, + 0.034018997102975845, + -0.06942272186279297, + 0.01105683483183384, + 0.025826385244727135, + 0.012040230445563793, + 0.05236422270536423, + 0.011512226425111294, + -0.02166522853076458, + -0.09067350625991821, + -0.010335113853216171, + 0.0841900110244751, + 0.015186644159257412, + -0.037455059587955475, + -0.05919199436903, + -0.009369528852403164, + -0.04918203130364418, + -0.008586794137954712, + -0.07027163356542587, + 0.08636704832315445, + 0.03705809637904167, + 0.045824263244867325, + 0.0931997075676918, + -0.04799710586667061, + -0.003033669199794531, + -0.022821493446826935, + 0.014738349243998528, + 0.04186870902776718, + 0.00905478373169899, + -0.08448685705661774, + -0.08272877335548401, + -0.036763694137334824, + 0.005915842019021511, + -0.01258518360555172, + 0.02452155016362667, + 0.019416294991970062, + 0.00042718928307294846, + 0.015424338169395924, + -0.04108411446213722, + -0.029329627752304077, + -0.1307343989610672, + -0.04976578801870346, + -0.03194744884967804, + -0.06242218613624573, + -0.001822001300752163, + 0.09731131792068481, + 0.02909584902226925, + 0.0361294224858284, + -0.04363678768277168, + -0.05799331143498421, + -0.06978301703929901, + 0.06613919883966446, + 0.07298628985881805, + -0.010914690792560577, + -0.006618715822696686, + 0.0006062202155590057, + 0.054281141608953476, + 0.014420747756958008, + 0.024333177134394646, + 0.05964489281177521, + -0.025259647518396378, + -0.04551899433135986, + -0.07691792398691177, + 0.08032470941543579, + 0.13576894998550415, + -0.07084605097770691, + -0.05785665661096573, + -0.06607513129711151, + -0.07666939496994019, + 0.004633105359971523, + -0.06901639699935913, + 0.0024745126720517874, + 0.030072888359427452, + -0.06653248518705368, + -0.14836283028125763, + -0.11879001557826996, + 0.04005735367536545, + -0.01500088069587946, + -0.001864453312009573, + -0.03363480046391487, + 0.05235423892736435, + 0.053054485470056534, + 0.0012810584157705307, + -0.03355234116315842, + 0.033964578062295914, + 0.00257265567779541, + -0.054090466350317, + 0.003916524816304445, + -0.005782747641205788, + 0.031482093036174774, + -0.08382150530815125, + -0.0027385219000279903, + -0.05115952342748642, + 0.05881929770112038, + -0.10346367955207825, + 0.10519222915172577, + -0.01679205149412155, + -0.06308574974536896, + -0.07517553120851517, + 0.026690855622291565, + -0.0042991191148757935, + 0.03806775063276291, + -0.0045922622084617615, + 0.03564491868019104, + -0.0004764758050441742, + -0.12449732422828674, + 0.06663791835308075, + 0.07047554850578308, + 0.04356139153242111, + -0.10867809504270554, + -0.04062619060277939, + -0.031341418623924255, + 0.04778260737657547, + -0.026821356266736984, + -0.019748523831367493, + 0.016232892870903015, + 0.0102919340133667, + 0.049607787281274796, + 0.060328833758831024, + 0.09035275876522064, + 0.0076279789209365845, + -0.07072833180427551 + ] + }, + "p244_108.wav": { + "name": "p244", + "embedding": [ + 0.037769027054309845, + 0.0710381492972374, + -0.013538839295506477, + 0.030405599623918533, + -0.048303909599781036, + 0.047502100467681885, + -0.12979720532894135, + 0.13112381100654602, + -0.04121986776590347, + 0.13865065574645996, + -0.06637080013751984, + 0.11918260157108307, + -0.02338600717484951, + -0.17452624440193176, + -0.03334740549325943, + 0.053329914808273315, + -0.052101992070674896, + -0.051867153495550156, + -0.02814045548439026, + -0.015195145271718502, + 0.06074162945151329, + 0.05908415466547012, + 0.027038339525461197, + 0.016313016414642334, + -0.0019269927870482206, + 0.06195680797100067, + 0.00941650103777647, + 0.05909734219312668, + 0.030846452340483665, + -0.06887990236282349, + -0.027073901146650314, + 0.09607156366109848, + -0.035451002418994904, + 0.019882015883922577, + 0.030511513352394104, + -0.006075890269130468, + 0.005407089367508888, + -0.060771238058805466, + -0.027218779549002647, + 0.0007485868409276009, + -0.04762926325201988, + 0.064360111951828, + 0.017738550901412964, + -0.004371512681245804, + 0.044193193316459656, + 0.010321813635528088, + -0.03718484193086624, + -0.049315135926008224, + -0.10986790060997009, + 0.15704680979251862, + 0.08583162724971771, + 0.002673715353012085, + -0.054422348737716675, + -0.08579865097999573, + 0.0989055335521698, + -0.014484390616416931, + -0.11814837157726288, + -0.03308306634426117, + 0.07271839678287506, + 0.16380542516708374, + -0.023201337084174156, + -0.04115494713187218, + 0.04155807942152023, + 0.1233464702963829, + 0.053849734365940094, + 0.07423166930675507, + 0.09269973635673523, + 0.09026002138853073, + -0.01808060333132744, + -0.0031782067380845547, + 0.04294588789343834, + 0.09047387540340424, + 0.04572029411792755, + 0.011087577790021896, + 0.03329905867576599, + 0.020404307171702385, + -0.016010120511054993, + 0.012689856812357903, + -0.02847563847899437, + -0.011781329289078712, + -0.013834763318300247, + 0.02012418769299984, + -0.001295606605708599, + 0.026633528992533684, + -0.01753336563706398, + 0.06517314910888672, + 0.009562328457832336, + 0.001202161773107946, + 0.06457757949829102, + 0.0090591199696064, + 0.026839464902877808, + 0.06940041482448578, + -0.06883049011230469, + -0.08096461743116379, + 0.017309095710515976, + 0.00798952765762806, + 0.030694887042045593, + 0.071352019906044, + 0.026322495192289352, + -0.02666120044887066, + 0.12993334233760834, + 0.031112438067793846, + -0.018255699425935745, + 0.0215463750064373, + -0.1017928346991539, + 0.11137932538986206, + 0.08648931980133057, + -0.022003335878252983, + 0.043162472546100616, + -0.05501672253012657, + 0.07904902845621109, + 0.056521736085414886, + -0.13755005598068237, + -0.07910493016242981, + 0.03956972807645798, + 0.03755289316177368, + -0.01744893193244934, + 0.13272981345653534, + -0.0025059031322598457, + 0.044972460716962814, + 0.10937439650297165, + -0.08695052564144135, + -0.0469745509326458, + -0.013501530513167381, + 0.05740271136164665, + -0.08264053612947464, + 0.058961138129234314, + 0.03909563645720482, + -0.013607785105705261, + 0.00901024229824543, + 0.08045458793640137, + -0.02897498570382595, + 0.01139548234641552, + 0.006714156828820705, + -0.06346580386161804, + 0.019933141767978668, + -0.051351290196180344, + -0.01442717295140028, + 0.04159499332308769, + 0.045513030141592026, + 0.045417528599500656, + -0.010866502299904823, + -0.05763040482997894, + -0.13829928636550903, + 0.013783352449536324, + 0.025993984192609787, + 0.07238723337650299, + -0.003234532428905368, + -0.034839000552892685, + -0.04261712729930878, + -0.0482478104531765, + 0.0030171263497322798, + -0.01660945639014244, + 0.06876339763402939, + -0.026470273733139038, + 0.007127915974706411, + 0.07978830486536026, + 0.014804217964410782, + -0.007156125735491514, + -0.03436718136072159, + -0.05446624383330345, + 0.0011916083749383688, + 0.050004031509160995, + -0.06330541521310806, + -0.06627877056598663, + 0.0073267011903226376, + 0.05267653614282608, + -0.014921151101589203, + 0.0441112220287323, + 0.04526621103286743, + 0.02363879606127739, + 0.027524542063474655, + -0.062001269310712814, + 0.017758777365088463, + -0.11300303786993027, + -0.08872376382350922, + 0.0010788652580231428, + 0.00575434323400259, + -0.0014929225435480475, + 0.06600398570299149, + 0.010372169315814972, + 0.05465450882911682, + -0.011330771259963512, + -0.07699830830097198, + -0.10192805528640747, + 0.06034308671951294, + 0.07360713183879852, + 0.013644381426274776, + 0.058742474764585495, + 0.05997880920767784, + -0.031363487243652344, + 0.06095287948846817, + 0.03652942180633545, + 0.10963128507137299, + -0.014189288020133972, + 0.0131861362606287, + -0.07598196715116501, + 0.07306838035583496, + 0.08477163314819336, + -0.07896190881729126, + -0.06811490654945374, + -0.01841197907924652, + -0.07801651209592819, + 0.05320187658071518, + -0.019152428954839706, + 0.004496054723858833, + 0.03913014009594917, + -0.006063781213015318, + -0.12831251323223114, + -0.06573736667633057, + 0.08094042539596558, + -0.0684390664100647, + -0.010018846951425076, + -0.0766594186425209, + 0.04366012662649155, + 0.11602740734815598, + 0.0430748425424099, + -0.01758422516286373, + -0.024480555206537247, + 0.05124711990356445, + -0.04431149363517761, + 0.008394647389650345, + 0.046755388379096985, + 0.03474678844213486, + -0.10223262757062912, + 0.0017594726523384452, + -0.09047816693782806, + 0.026896348223090172, + -0.058137476444244385, + 0.13104358315467834, + 0.0028527029789984226, + -0.05642174184322357, + -0.09072732925415039, + 0.04773995280265808, + -0.011190174147486687, + 0.05739889666438103, + 0.019390763714909554, + 0.05372073873877525, + 0.056175973266363144, + -0.0820341631770134, + 0.11841245740652084, + 0.0530717596411705, + -0.047464609146118164, + -0.06119228154420853, + -0.03717399388551712, + -0.03339669108390808, + 0.024605661630630493, + 0.009874189272522926, + -0.07432351261377335, + -0.03453310579061508, + 0.014192461967468262, + -0.015464729629456997, + 0.0650659054517746, + 0.13560165464878082, + 0.04126901552081108, + -0.12902331352233887 + ] + }, + "p244_404.wav": { + "name": "p244", + "embedding": [ + 0.06419070810079575, + 0.03918735682964325, + 0.018891897052526474, + -0.024760231375694275, + -0.0044189319014549255, + 0.061069127172231674, + -0.12353234738111496, + 0.11402365565299988, + -0.01301989983767271, + 0.0726519376039505, + -0.074640654027462, + 0.07257071137428284, + 0.013570642098784447, + -0.16925662755966187, + -0.016988839954137802, + 0.0402834415435791, + -0.033827416598796844, + 0.0018439119448885322, + -0.05225320905447006, + -0.023063872009515762, + 0.007399502210319042, + 0.035385504364967346, + 0.019246816635131836, + -0.019139209762215614, + 0.03528938814997673, + 0.051592618227005005, + 0.008245360106229782, + 0.030118336901068687, + -0.00805277656763792, + -0.02223818376660347, + -0.0024345237761735916, + 0.07700461149215698, + -0.047400347888469696, + -0.023779628798365593, + 0.07173925638198853, + -0.01097535528242588, + 0.024193670600652695, + -0.08065156638622284, + -0.03758898377418518, + 0.04157523065805435, + -0.07463541626930237, + 0.07886776328086853, + 0.05739801377058029, + 0.017474792897701263, + 0.030995994806289673, + 0.04302537068724632, + 0.0185097549110651, + -0.06454786658287048, + -0.08851965516805649, + 0.14850017428398132, + 0.03784302622079849, + 0.02680383250117302, + -0.09480651468038559, + -0.02694118022918701, + 0.06176032871007919, + -0.00958809070289135, + -0.05352582037448883, + -0.018147751688957214, + 0.052148692309856415, + 0.10750074684619904, + -0.002527217147871852, + -0.03069782257080078, + 0.034207865595817566, + 0.07760173082351685, + 0.02324984036386013, + 0.043913256376981735, + 0.10409825295209885, + 0.09321358054876328, + -0.0036606565117836, + 0.02431890368461609, + 0.05929890275001526, + 0.030513204634189606, + 0.05708102881908417, + -0.0316973477602005, + 0.03701934963464737, + 7.894884038250893e-05, + -0.030291549861431122, + -0.024996792897582054, + -0.02041189931333065, + -0.0008447397849522531, + 0.04634835943579674, + 0.033863142132759094, + 0.02291455678641796, + 0.06275485455989838, + -0.04199187085032463, + 0.04416771978139877, + 0.010940715670585632, + 0.041617464274168015, + 0.06766355037689209, + 0.039431121200323105, + 0.029266422614455223, + 0.0252792090177536, + -0.07499801367521286, + -0.08459967374801636, + 0.02049117721617222, + 0.0074583785608410835, + -0.001809485605917871, + 0.027394866570830345, + 0.0390801802277565, + -0.02715630829334259, + 0.10793386399745941, + 0.0133076636120677, + -0.013719815760850906, + 0.016668228432536125, + -0.07613083720207214, + 0.07515460252761841, + 0.07862353324890137, + -0.024481292814016342, + 0.047744035720825195, + -0.05333958566188812, + 0.034810639917850494, + 0.05320924520492554, + -0.11187504231929779, + -0.043811604380607605, + 0.04977675899863243, + 0.01474270410835743, + 0.03419841453433037, + 0.1369720995426178, + -0.008887114934623241, + 0.03133609890937805, + 0.059311773627996445, + -0.07049624621868134, + -0.02666119858622551, + 0.01818070188164711, + 0.023506611585617065, + -0.03075127862393856, + 0.0290546715259552, + 0.01889539323747158, + 0.02487761899828911, + -0.03740197792649269, + 0.06636646389961243, + 0.008534574881196022, + 0.0024177252780646086, + -0.07108943164348602, + 0.04890812560915947, + 0.04983970522880554, + -0.00212167389690876, + -0.029463589191436768, + 0.011981675401329994, + 0.05491115152835846, + 0.005321655422449112, + 0.044630855321884155, + -0.05937693640589714, + -0.11505681276321411, + -0.0185006782412529, + -0.0015292007010430098, + 0.07068949192762375, + -0.025997823104262352, + -0.01903698779642582, + -0.07173436880111694, + -0.0023146148305386305, + -0.023053180426359177, + -0.013655908405780792, + 0.03999319300055504, + 0.05996199697256088, + -0.02522510103881359, + 0.07778358459472656, + -0.017628181725740433, + 0.02842363715171814, + -0.011958295479416847, + -0.024478040635585785, + 0.00924835167825222, + 0.04183658957481384, + -0.01981481909751892, + -0.06968905031681061, + -0.0037176895420998335, + -0.03756232187151909, + -0.004527131095528603, + 0.017100661993026733, + 0.013365581631660461, + 0.005815163254737854, + -0.016466617584228516, + -0.10252156108617783, + 0.014748352579772472, + -0.09593423455953598, + -0.050770483911037445, + 0.04162231832742691, + 0.01304446067661047, + -0.024725615978240967, + 0.08434300124645233, + 0.019340988248586655, + 0.04165211319923401, + -0.0411079041659832, + -0.060147762298583984, + -0.016400877386331558, + 0.04762309044599533, + 0.0675269216299057, + -0.017000969499349594, + 0.014390714466571808, + 0.010720767080783844, + 0.004498566035181284, + 0.04444005340337753, + 0.05338844656944275, + 0.053616635501384735, + -0.023164525628089905, + -0.00481156911700964, + -0.0004819085297640413, + 0.11780031770467758, + 0.009947620332241058, + -0.03936826437711716, + -0.04667234420776367, + 0.032626569271087646, + -0.04150997847318649, + 0.006006588693708181, + 0.015647653490304947, + 0.03623216226696968, + 0.03108939155936241, + -0.013885598629713058, + -0.0617140494287014, + -0.04628079757094383, + 0.028406960889697075, + -0.07054746150970459, + -0.018730072304606438, + -0.06522786617279053, + 0.042094405740499496, + 0.1134909987449646, + 0.00495230033993721, + 0.002252227393910289, + -0.03561714291572571, + -0.0019150078296661377, + -0.021867990493774414, + -0.037140652537345886, + 0.0005945439334027469, + 0.035443346947431564, + -0.0881577655673027, + 0.006026825867593288, + -0.05300630256533623, + 0.0634591281414032, + -0.022257929667830467, + 0.07022680342197418, + 0.04091481864452362, + -0.046875618398189545, + -0.07154149562120438, + -0.005084961652755737, + 0.013852670788764954, + 0.04405937343835831, + 0.012489140033721924, + 0.0331738218665123, + 0.05204693228006363, + -0.040726177394390106, + 0.0817209854722023, + 0.03359841927886009, + -0.04797407612204552, + -0.05069175362586975, + -0.03561512380838394, + -0.00046914443373680115, + 0.016547078266739845, + -0.008146703243255615, + -0.04674345254898071, + 0.01621292345225811, + 0.030225535854697227, + -0.0018810307374224067, + 0.017799293622374535, + 0.0843789204955101, + 0.02765839919447899, + -0.09700661152601242 + ] + }, + "p244_049.wav": { + "name": "p244", + "embedding": [ + 0.0475463829934597, + 0.09513473510742188, + -0.006068339571356773, + 0.021098626777529716, + -0.04044165834784508, + 0.04198088496923447, + -0.14156155288219452, + 0.13876782357692719, + -0.03534679114818573, + 0.13478629291057587, + -0.09711000323295593, + 0.12022916972637177, + -0.02514369785785675, + -0.20709945261478424, + -0.023456240072846413, + 0.053956516087055206, + -0.0449865385890007, + -0.027352971956133842, + -0.008817016147077084, + -0.024683747440576553, + 0.048486825078725815, + 0.044479403644800186, + 0.00867047905921936, + 0.022702138870954514, + 0.0016932659782469273, + 0.07166951894760132, + 0.0005249902023933828, + 0.04029426351189613, + 0.02112444117665291, + -0.029109513387084007, + -0.04090667515993118, + 0.10708269476890564, + -0.03454422950744629, + 0.0020850077271461487, + 0.0637882649898529, + -0.004405135754495859, + -0.004943423438817263, + -0.05423498898744583, + -0.01772003062069416, + -0.006364059634506702, + -0.07122121751308441, + 0.059955839067697525, + 0.03056979738175869, + -0.02366606704890728, + 0.0536670908331871, + 0.047796089202165604, + -0.009355583228170872, + -0.05812649801373482, + -0.10274310410022736, + 0.15152902901172638, + 0.08465466648340225, + -0.011770433746278286, + -0.04562000185251236, + -0.05469464883208275, + 0.09929494559764862, + 5.6900560593931004e-05, + -0.10337064415216446, + -0.03899132087826729, + 0.0991852805018425, + 0.1506568193435669, + -0.031215783208608627, + -0.029513003304600716, + 0.039236750453710556, + 0.12928339838981628, + 0.03271016851067543, + 0.10827409476041794, + 0.06029234826564789, + 0.10210902988910675, + -0.01437874510884285, + 0.01629011332988739, + 0.06418173760175705, + 0.06052457541227341, + 0.05344700813293457, + -0.0374826155602932, + 0.019597206264734268, + 0.0101812444627285, + -0.032910238951444626, + 0.01618269644677639, + -0.014839684590697289, + -0.013028068467974663, + -0.008910229429602623, + -0.006597636267542839, + -0.012438446283340454, + 0.00730512198060751, + -0.025430859997868538, + 0.05521159619092941, + 0.039102017879486084, + 0.003691272111609578, + 0.06712035089731216, + 0.023203451186418533, + 0.012753480114042759, + 0.06530016660690308, + -0.07615182548761368, + -0.08094727247953415, + 0.03181953728199005, + -0.002851153491064906, + 0.004683312028646469, + 0.09019245207309723, + 0.05108082294464111, + -0.01864493452012539, + 0.13329198956489563, + 0.03792903572320938, + -0.0014252597466111183, + 0.04303397238254547, + -0.10739202797412872, + 0.1354880928993225, + 0.07648725807666779, + -0.04246428236365318, + 0.04589829221367836, + -0.05546974018216133, + 0.08001882582902908, + 0.08458433300256729, + -0.14827829599380493, + -0.04540344327688217, + 0.044439516961574554, + 0.02248564176261425, + -0.029364116489887238, + 0.12351515144109726, + -0.006620639003813267, + 0.023162584751844406, + 0.11297736316919327, + -0.08203953504562378, + -0.07665301859378815, + -0.04098742455244064, + 0.046205732971429825, + -0.11254053562879562, + 0.07936838269233704, + 0.052473943680524826, + -0.006090579088777304, + 0.01039053127169609, + 0.0940728634595871, + -0.03134115785360336, + -0.0054808794520795345, + -0.0039880163967609406, + -0.03030667081475258, + 0.01616595685482025, + -0.047957442700862885, + 0.011981154792010784, + 0.014473007060587406, + 0.023792922496795654, + 0.03315510228276253, + 0.0068056886084377766, + -0.036574095487594604, + -0.11832774430513382, + 0.018171975389122963, + 0.042477816343307495, + 0.08915697038173676, + 0.013131125830113888, + -0.03833124414086342, + -0.044536832720041275, + -0.06207020580768585, + 0.00030853203497827053, + -0.022233178839087486, + 0.06557407975196838, + -0.02755184844136238, + 0.006208732724189758, + 0.08769842982292175, + 0.027013512328267097, + 0.0049041141755878925, + -0.05983532592654228, + -0.041174035519361496, + 0.01868407614529133, + 0.03740725666284561, + -0.08608248829841614, + -0.07837054133415222, + -0.00900968722999096, + 0.03450753912329674, + -0.019652539864182472, + 0.0420735627412796, + 0.034488264471292496, + 0.024492621421813965, + 0.023953653872013092, + -0.09959570318460464, + 0.019592974334955215, + -0.11650485545396805, + -0.08623222261667252, + -0.027420461177825928, + 0.0019349019275978208, + -0.0024711433798074722, + 0.06545230746269226, + -0.009740003384649754, + 0.035744477063417435, + -0.013761785812675953, + -0.0660208910703659, + -0.08851736038923264, + 0.0549754835665226, + 0.08370275050401688, + 0.006444267462939024, + 0.05500565096735954, + 0.04012533277273178, + -0.05145742744207382, + 0.05105600506067276, + 0.033011242747306824, + 0.12542292475700378, + -0.010914579965174198, + 0.02344227023422718, + -0.05586374178528786, + 0.06902960687875748, + 0.08258596062660217, + -0.08731798082590103, + -0.07631795108318329, + -0.024579746648669243, + -0.06024374067783356, + 0.04319954290986061, + -0.016182495281100273, + -0.000923074665479362, + 0.0014819487696513534, + -0.008515158668160439, + -0.089241623878479, + -0.07614150643348694, + 0.057811181992292404, + -0.07190749794244766, + -0.019181611016392708, + -0.09324660897254944, + 0.05874720588326454, + 0.0962495282292366, + 0.033562399446964264, + -0.04117560759186745, + -0.027032088488340378, + 0.03990776091814041, + -0.045605093240737915, + 0.0015980829484760761, + 0.04379775747656822, + 0.05125972256064415, + -0.11862359941005707, + 0.0056625958532094955, + -0.08322019129991531, + 0.06070470064878464, + -0.07032650709152222, + 0.14923729002475739, + 0.008735728450119495, + -0.05821780860424042, + -0.08965730667114258, + 0.04144864156842232, + 0.006865859497338533, + 0.03835439682006836, + 0.03526514396071434, + 0.04721233993768692, + 0.02700684405863285, + -0.07600522041320801, + 0.1189938336610794, + 0.029594114050269127, + -0.019516535103321075, + -0.05715472251176834, + -0.04561162739992142, + -0.04984667897224426, + 0.017764806747436523, + 0.025110041722655296, + -0.10677909851074219, + -0.049841295927762985, + 0.03037760965526104, + -0.01036197878420353, + 0.07492029666900635, + 0.14541363716125488, + 0.037221912294626236, + -0.11960726231336594 + ] + }, + "p244_351.wav": { + "name": "p244", + "embedding": [ + 0.06704145669937134, + 0.05823506787419319, + 0.030241966247558594, + -0.03705039620399475, + 0.006909685209393501, + 0.0932241901755333, + -0.06810291856527328, + 0.06883310526609421, + 0.00155550055205822, + 0.04379822313785553, + -0.08923117816448212, + 0.04777928814291954, + 0.008395617827773094, + -0.136733740568161, + -0.01879725605249405, + 0.046538516879081726, + -0.05091383308172226, + 0.02822810597717762, + -0.06763501465320587, + -0.024408429861068726, + -0.010235240682959557, + 0.02395259216427803, + 0.059341199696063995, + -0.03244274854660034, + 0.0438317134976387, + 0.03897450119256973, + 0.0065063368529081345, + 0.02308381348848343, + -0.006782982498407364, + -0.03565731644630432, + -0.019158361479640007, + 0.0782981887459755, + -0.026104524731636047, + -0.02209126204252243, + 0.05125085264444351, + 0.009704766795039177, + 0.059460680931806564, + -0.10379713773727417, + -0.034776072949171066, + 0.043902166187763214, + -0.06420910358428955, + 0.0628296360373497, + 0.049240801483392715, + 0.0029306765645742416, + 0.032963827252388, + 0.004978878889232874, + -0.0046936082653701305, + -0.061599548906087875, + -0.07922981679439545, + 0.1526414155960083, + 0.030769091099500656, + 0.04064822569489479, + -0.08091539889574051, + -0.018084930256009102, + 0.048893265426158905, + -0.010109447874128819, + -0.04269569739699364, + -0.0027581676840782166, + 0.0360928438603878, + 0.08483288437128067, + 0.039877187460660934, + -0.007614978589117527, + 0.040842268615961075, + 0.064113549888134, + -0.014371966943144798, + 0.026534665375947952, + 0.09887561202049255, + 0.06561963260173798, + 0.022939587011933327, + 0.03532765805721283, + 0.05432305485010147, + 0.017604021355509758, + 0.05098516866564751, + -0.024919988587498665, + 0.03871893137693405, + -0.02850848063826561, + -0.03807409852743149, + -0.019279640167951584, + -0.013364613056182861, + -0.01836494728922844, + 0.067538321018219, + 0.028540581464767456, + 0.018481124192476273, + 0.041880302131175995, + -0.04994499683380127, + 0.02163398265838623, + -0.024133171886205673, + 0.08421847969293594, + 0.07045003026723862, + 0.044835299253463745, + 0.030816011130809784, + -0.006503632292151451, + -0.022939639165997505, + -0.09851651638746262, + 0.009312189184129238, + 0.032479122281074524, + -0.013365810737013817, + -0.002710772678256035, + 0.02432195097208023, + -0.04618127644062042, + 0.08671192824840546, + 0.0036795511841773987, + -0.006280895788222551, + 0.004515236243605614, + -0.06504005193710327, + 0.043493784964084625, + 0.0792287290096283, + 0.00462745688855648, + 0.05508670583367348, + -0.020342670381069183, + 0.03571278601884842, + 0.07519960403442383, + -0.08603756874799728, + -0.021520232781767845, + 0.011256717145442963, + -0.007585185579955578, + 0.07266493886709213, + 0.08963727951049805, + 0.008370034396648407, + 0.026655040681362152, + 0.041409529745578766, + -0.073029063642025, + -0.021643180400133133, + 0.03481026738882065, + -0.005380101501941681, + 0.0035184770822525024, + -0.013319611549377441, + 0.0224656630307436, + 0.03054683282971382, + -0.07471266388893127, + 0.034888170659542084, + 0.01191724743694067, + 0.015840142965316772, + -0.07374249398708344, + 0.03549838066101074, + 0.0224164929240942, + -0.017805660143494606, + -0.04488350823521614, + 0.03473108261823654, + 0.0675075501203537, + -0.016258355230093002, + 0.05133683979511261, + -0.06452854722738266, + -0.0906495749950409, + -0.03532847389578819, + -0.013745943084359169, + 0.03072349727153778, + -0.00711077218875289, + -0.020660752430558205, + -0.0649898573756218, + 0.03042362444102764, + 0.00642771553248167, + -0.027265753597021103, + 0.028220463544130325, + 0.09902530908584595, + -0.05122558772563934, + 0.060032181441783905, + -0.035985250025987625, + 0.01873202808201313, + -0.015580343082547188, + -0.0337342731654644, + 0.02912384457886219, + 0.027779292315244675, + -0.000771593302488327, + -0.06464264541864395, + 0.014612175524234772, + -0.0725935697555542, + -0.004106349777430296, + -0.0010228119790554047, + 0.02510572038590908, + -0.013170212507247925, + -0.03557687625288963, + -0.08968241512775421, + 0.006630235817283392, + -0.06688438355922699, + -0.04054092988371849, + 0.07745760679244995, + 0.014819085597991943, + -0.010020339861512184, + 0.09203378856182098, + 0.03292340785264969, + 0.0066065192222595215, + -0.05413554608821869, + -0.04648738354444504, + 0.02979138121008873, + 0.05529949814081192, + 0.050144582986831665, + 0.019709505140781403, + 0.022195138037204742, + -0.012681165710091591, + 0.012812916189432144, + 0.04796817898750305, + 0.028981631621718407, + 0.034979429095983505, + -0.027928978204727173, + -0.030164793133735657, + 0.02286100760102272, + 0.08644644170999527, + -0.0002261437475681305, + -0.03957487642765045, + -0.034387193620204926, + 0.02911531738936901, + -0.02363932505249977, + 0.016472451388835907, + 0.012730593793094158, + 0.019347818568348885, + 0.04383888095617294, + -0.040693968534469604, + -0.047640323638916016, + -0.06191657856106758, + 0.03659037500619888, + -0.04567191004753113, + -0.031197071075439453, + -0.026576252654194832, + 0.04854495823383331, + 0.08480000495910645, + -0.020679092034697533, + 0.0015879161655902863, + 0.013026267290115356, + -0.019762394949793816, + -0.0332379974424839, + -0.05657337233424187, + -0.024955058470368385, + 0.025027822703123093, + -0.07732786983251572, + 0.023637311533093452, + -0.05580015480518341, + 0.059601880609989166, + 0.00220605731010437, + 0.06466390192508698, + 0.04856862872838974, + -0.02864808402955532, + -0.06842250376939774, + 0.01873037777841091, + -0.001178903505206108, + 0.028635935857892036, + 0.0026000821962952614, + 0.00303029827773571, + 0.05007866397500038, + -0.05784064158797264, + 0.048221755772829056, + 0.024801796302199364, + -0.053993869572877884, + -0.04294169321656227, + -0.002083864063024521, + -0.0129734231159091, + 0.005749902687966824, + -0.04221602529287338, + -0.026547254994511604, + 0.03614458069205284, + 0.026439839974045753, + 0.03091368079185486, + 0.009394442662596703, + 0.0422995388507843, + 0.005992533639073372, + -0.036101650446653366 + ] + }, + "p244_184.wav": { + "name": "p244", + "embedding": [ + 0.043890755623579025, + 0.08505771309137344, + -0.014418607577681541, + 0.05119144171476364, + -0.07487911731004715, + 0.039904240518808365, + -0.0789528340101242, + 0.12820200622081757, + -0.038454413414001465, + 0.09622292220592499, + -0.07556413859128952, + 0.167055144906044, + -0.010330495424568653, + -0.17147041857242584, + -0.07540953159332275, + 0.03999222815036774, + -0.026614608243107796, + -0.028791245073080063, + 0.015424036420881748, + -0.02673296444118023, + 0.0702357217669487, + 0.08003674447536469, + 0.07933282852172852, + 0.018238360062241554, + 0.03354933112859726, + 0.07591891288757324, + 0.03875710442662239, + 0.09171140193939209, + 0.053987402468919754, + -0.09499023109674454, + -0.0666663721203804, + 0.08714472502470016, + -0.0329500250518322, + 0.012769694440066814, + 0.021275892853736877, + -0.019346900284290314, + 0.0480443574488163, + -0.043350137770175934, + -0.03835352882742882, + 0.027153311297297478, + -0.02492375485599041, + 0.06955984979867935, + 0.006105436943471432, + -0.025699805468320847, + 0.0529632568359375, + -0.005154609214514494, + -0.023983687162399292, + -0.03335484117269516, + -0.12110687792301178, + 0.16359923779964447, + 0.05461646988987923, + 0.031083887442946434, + -0.08836103975772858, + -0.08555283397436142, + 0.11411811411380768, + -0.02772662229835987, + -0.07916954159736633, + 0.00560044776648283, + 0.03567344322800636, + 0.16897299885749817, + 0.0020335703156888485, + -0.04417891427874565, + 0.0477592870593071, + 0.09379659593105316, + 0.04681135341525078, + 0.04155230149626732, + 0.09959916025400162, + 0.057315435260534286, + -0.008235082030296326, + 0.02711101807653904, + 0.018748415634036064, + 0.12074065953493118, + 0.027918657287955284, + -0.006959917023777962, + 0.0006813450600020587, + 0.023227302357554436, + -0.03171291947364807, + 0.016142068430781364, + -0.01406625472009182, + -0.0037790213245898485, + -0.019053807482123375, + 0.01949171908199787, + 0.015480420552194118, + -0.009981020353734493, + -0.037590038031339645, + 0.08450647443532944, + -0.02401881292462349, + -0.006191688124090433, + 0.04215914383530617, + 0.006862887181341648, + -0.011351067572832108, + 0.051584187895059586, + -0.06960795819759369, + -0.1019834503531456, + 0.001985696842893958, + 0.013733861967921257, + 0.0297338105738163, + 0.09063045680522919, + 0.03341888636350632, + -0.03361824154853821, + 0.11747490614652634, + 0.06494419276714325, + -0.0026375590823590755, + 0.01859324239194393, + -0.08523046225309372, + 0.07872146368026733, + 0.12975522875785828, + 0.006621855776757002, + 0.07833165675401688, + -0.03364546597003937, + 0.09074798971414566, + 0.0536341667175293, + -0.14509478211402893, + -0.08406513184309006, + 0.003765242639929056, + 0.03314562141895294, + 0.04313020408153534, + 0.07648768275976181, + -0.0283002108335495, + 0.06041765585541725, + 0.09415999054908752, + -0.0854165181517601, + -0.046685054898262024, + -0.053394865244627, + 0.057289306074380875, + -0.06280698627233505, + 0.06906235218048096, + 0.045254096388816833, + 0.0013116456102579832, + -0.021103205159306526, + 0.038884151726961136, + -0.030252229422330856, + 0.007258565630763769, + 0.05298084393143654, + -0.07948058098554611, + -0.012687699869275093, + -0.05962829664349556, + -0.01423613727092743, + 0.09236863255500793, + 0.04087842255830765, + 0.04636557027697563, + 0.017751868814229965, + -0.0312421265989542, + -0.12579035758972168, + 0.0071611590683460236, + 0.04106401652097702, + 0.03752791881561279, + -0.009522752836346626, + -0.08183171600103378, + -0.04686363786458969, + -0.05321026220917702, + 0.038066260516643524, + 0.0400669164955616, + 0.07196805626153946, + -0.036398086696863174, + 0.03303104639053345, + 0.0691780373454094, + 0.01096411608159542, + -0.025769485160708427, + -0.015307455323636532, + -0.02977103739976883, + -0.009425358846783638, + 0.03558971732854843, + -0.05349878594279289, + -0.09915625303983688, + -0.01775696873664856, + 0.02489335462450981, + -0.027579359710216522, + 0.04895031079649925, + 0.048750706017017365, + -0.0001891324936877936, + 0.04464235529303551, + -0.04382289573550224, + -0.006914936471730471, + -0.1152111068367958, + -0.06727608293294907, + -0.024730389937758446, + -0.007135397754609585, + -0.03739252686500549, + 0.07210288196802139, + 0.06634336709976196, + 0.05646740645170212, + 0.010103200562298298, + -0.04375826567411423, + -0.07646053284406662, + 0.03941487893462181, + 0.06055415794253349, + 0.06438817828893661, + 0.0835215374827385, + 0.06230328977108002, + -0.022786781191825867, + 0.12653151154518127, + 0.07117488235235214, + 0.05934397131204605, + -0.010505910031497478, + 0.005181418266147375, + -0.05573165789246559, + 0.06675601750612259, + 0.0884820744395256, + -0.09574930369853973, + -0.11331278085708618, + -0.06252880394458771, + -0.1048608049750328, + 0.08730683475732803, + -0.00012744062405545264, + 0.02955835498869419, + 0.046797964721918106, + 0.0008930893382057548, + -0.11105445772409439, + -0.0872381404042244, + 0.09520980715751648, + -0.02480298839509487, + -0.03677918016910553, + -0.04398595541715622, + 0.023222243413329124, + 0.11804411560297012, + 4.9878188292495906e-05, + 0.013271125964820385, + -0.017938243225216866, + 0.04117550700902939, + -0.05391534045338631, + -0.03508086875081062, + 0.04264451563358307, + 0.006528493016958237, + -0.09303133934736252, + 0.027545975521206856, + -0.07321067899465561, + 0.05899357423186302, + -0.05544789507985115, + 0.13341733813285828, + -0.018868740648031235, + -0.054445359855890274, + -0.09287986159324646, + 0.08792873471975327, + -0.031962037086486816, + 0.046662312000989914, + 0.033910978585481644, + 0.03124554082751274, + 0.008196335285902023, + -0.10700886696577072, + 0.10969391465187073, + 0.05273907631635666, + -0.09013558179140091, + -0.08190502971410751, + -0.05302773043513298, + -0.011819390580058098, + 0.027898680418729782, + 0.02523074485361576, + -0.034925032407045364, + -0.030958760529756546, + -0.004015491809695959, + -0.0022458883468061686, + 0.06051085889339447, + 0.13358932733535767, + 0.02728516235947609, + -0.10576461255550385 + ] + }, + "p244_002.wav": { + "name": "p244", + "embedding": [ + 0.02358773536980152, + 0.07826605439186096, + -0.027543067932128906, + 0.031680479645729065, + -0.07373817265033722, + 0.050326019525527954, + -0.12228147685527802, + 0.12812471389770508, + -0.03913921117782593, + 0.12552094459533691, + -0.063118577003479, + 0.1157759428024292, + -0.046507250517606735, + -0.18721237778663635, + 0.0004700678982771933, + 0.07076182961463928, + -0.028337620198726654, + -0.051535118371248245, + -0.025464870035648346, + -0.03454870358109474, + 0.029593035578727722, + 0.029509365558624268, + 0.003851971821859479, + 0.02604139782488346, + 0.015128349885344505, + 0.08368734270334244, + -0.02362710051238537, + 0.0106833316385746, + -0.0232837051153183, + -0.03319923207163811, + -0.045803382992744446, + 0.08455102145671844, + -0.06445177644491196, + 0.011724996380507946, + 0.047038301825523376, + 0.0013751982478424907, + -0.015428800135850906, + -0.04209304228425026, + -0.01663612760603428, + -0.00877833366394043, + -0.08127505332231522, + 0.07297591120004654, + 0.02443988062441349, + -0.016256440430879593, + 0.04076751321554184, + 0.017612911760807037, + -0.016523662954568863, + -0.031120549887418747, + -0.11199674755334854, + 0.14118105173110962, + 0.07491213083267212, + -0.01583864912390709, + -0.058698512613773346, + -0.060395874083042145, + 0.10201830416917801, + -0.008420097641646862, + -0.11700267344713211, + -0.04858531057834625, + 0.08741970360279083, + 0.1385299414396286, + -0.03007463552057743, + -0.032490409910678864, + 0.018984273076057434, + 0.10844701528549194, + 0.056400366127491, + 0.09863264113664627, + 0.054077714681625366, + 0.11717013269662857, + -0.039178911596536636, + -0.016189374029636383, + 0.07102316617965698, + 0.07059231400489807, + 0.07944108545780182, + -0.011055003851652145, + 0.009577132761478424, + 0.008006935007870197, + -0.013070395216345787, + 0.0075176190584897995, + -0.025560803711414337, + -0.025546584278345108, + -0.02846902422606945, + -0.010807862505316734, + 0.001602032221853733, + 0.008516959846019745, + -0.005555284209549427, + 0.05008368939161301, + 0.07965726405382156, + -0.013095414265990257, + 0.06566435098648071, + 0.03424368053674698, + -0.025594614446163177, + 0.08266881108283997, + -0.09044355154037476, + -0.04109787940979004, + 0.02378132753074169, + 0.0014220110606402159, + 0.02196289598941803, + 0.09291413426399231, + 0.04062889516353607, + -0.005350210703909397, + 0.1164693683385849, + 0.030876826494932175, + 0.012760510668158531, + 0.02262270823121071, + -0.09269329905509949, + 0.1272474229335785, + 0.07751910388469696, + -0.04080330953001976, + 0.041031546890735626, + -0.03814410790801048, + 0.07047991454601288, + 0.07510924339294434, + -0.12477375566959381, + -0.04994071647524834, + 0.01527847908437252, + 0.015763960778713226, + -0.03540327027440071, + 0.13015125691890717, + -0.0015134529676288366, + 0.034743472933769226, + 0.12304578721523285, + -0.09818711876869202, + -0.06383582204580307, + -0.010296138934791088, + 0.033754292875528336, + -0.09067896753549576, + 0.056689921766519547, + 0.05938276648521423, + 0.0013965866528451443, + 0.040264323353767395, + 0.08552718162536621, + -0.015032759867608547, + 0.0052743032574653625, + 0.017005007714033127, + -0.047505784779787064, + -0.0034433994442224503, + -0.01980522647500038, + 0.003273322246968746, + 0.06160595640540123, + 0.021210571750998497, + 0.05466904863715172, + -0.017585575580596924, + -0.009554693475365639, + -0.13104790449142456, + 0.02533816546201706, + 0.05835263431072235, + 0.08430012315511703, + -0.013944342732429504, + -0.024379678070545197, + -0.03711916506290436, + -0.08951502293348312, + 0.014764171093702316, + -0.00650345254689455, + 0.078699491918087, + -0.04668764770030975, + -0.004294841084629297, + 0.09571234881877899, + 0.0528540164232254, + -0.0220005065202713, + -0.07365991175174713, + -0.04793429747223854, + -0.013625634834170341, + 0.05680353194475174, + -0.09912532567977905, + -0.08124546706676483, + -0.019717229530215263, + 0.05668644234538078, + -0.011334139853715897, + 0.07291688770055771, + 0.05611800402402878, + 0.029576651751995087, + 0.01304707396775484, + -0.0732540637254715, + 0.015658125281333923, + -0.09017372131347656, + -0.08548907935619354, + -0.017555225640535355, + -0.027347825467586517, + -0.006128217093646526, + 0.06830267608165741, + 0.012454835698008537, + 0.04593104496598244, + -0.023782506585121155, + -0.06570237874984741, + -0.09388864040374756, + 0.05440802127122879, + 0.04032035171985626, + -0.01430125255137682, + 0.04942398518323898, + 0.07252196967601776, + -0.07328368723392487, + 0.042637377977371216, + 0.058200906962156296, + 0.1299072802066803, + -0.04843887686729431, + 0.057595498859882355, + -0.05590197071433067, + 0.07234153151512146, + 0.0904366672039032, + -0.08401448279619217, + -0.07548040896654129, + -0.039046335965394974, + -0.05667746067047119, + 0.04639512300491333, + -0.04596441984176636, + -0.0032003677915781736, + 0.0073587168008089066, + 0.001806933432817459, + -0.0926545113325119, + -0.08737234771251678, + 0.07453086972236633, + -0.051295891404151917, + 0.006884843576699495, + -0.09308046847581863, + 0.043042056262493134, + 0.06748859584331512, + 0.05167599022388458, + -0.03423576429486275, + 0.014277677051723003, + 0.06291401386260986, + -0.015866756439208984, + 0.02137969434261322, + 0.08569542318582535, + 0.046959757804870605, + -0.0943174958229065, + -0.0365343876183033, + -0.0801193118095398, + 0.06505569815635681, + -0.03039010800421238, + 0.1565544605255127, + 0.006734907627105713, + -0.04568962752819061, + -0.06981738656759262, + 0.02863404154777527, + -0.0015778010711073875, + 0.04543830826878548, + 0.0291912741959095, + 0.07866893708705902, + 0.03238718956708908, + -0.026903148740530014, + 0.13715890049934387, + 0.04452521353960037, + -0.03350624442100525, + -0.044210076332092285, + -0.04607298970222473, + -0.05255250632762909, + 0.022222690284252167, + 0.008832775056362152, + -0.10808197408914566, + -0.015592294745147228, + 0.02139430120587349, + -5.829939618706703e-05, + 0.051591672003269196, + 0.1530590057373047, + 0.08657270669937134, + -0.10864903032779694 + ] + }, + "p244_185.wav": { + "name": "p244", + "embedding": [ + 0.061931438744068146, + 0.0943182036280632, + 0.017586873844265938, + -0.016560431569814682, + -0.01549588143825531, + 0.06860578060150146, + -0.1735783964395523, + 0.10738663375377655, + -0.06024941802024841, + 0.1527029573917389, + -0.10229989886283875, + 0.0820830762386322, + -0.024862563237547874, + -0.1922997534275055, + -0.06880733370780945, + 0.04849780350923538, + -0.06502246856689453, + -0.03457893803715706, + 0.0012382371351122856, + -0.03095114231109619, + 0.038484349846839905, + 0.05193109065294266, + 0.008144903928041458, + 0.02631678432226181, + 0.0451781302690506, + 0.05656164139509201, + 0.010965327732264996, + 0.049336764961481094, + -0.005590734537690878, + -0.03349357470870018, + -0.02043190225958824, + 0.13056224584579468, + -0.03088408149778843, + -0.005155405029654503, + 0.028637176379561424, + 0.023479096591472626, + 0.03669722378253937, + -0.0857032984495163, + -0.002330233808606863, + -0.003384561976417899, + -0.03503650426864624, + 0.06760133057832718, + 0.02083505317568779, + 0.018323713913559914, + 0.0068146237172186375, + 0.04039827734231949, + 0.0028054174035787582, + -0.07450364530086517, + -0.10297901928424835, + 0.16271817684173584, + 0.04333998262882233, + 0.018857136368751526, + -0.0736873671412468, + -0.08138163387775421, + 0.10239444673061371, + -0.011204741895198822, + -0.08961302042007446, + -0.018971525132656097, + 0.08370642364025116, + 0.1880270391702652, + -0.045557837933301926, + -0.06589552760124207, + 0.03892253339290619, + 0.10237638652324677, + 0.01838921755552292, + 0.08959254622459412, + 0.08224697411060333, + 0.0660763531923294, + 0.012882357463240623, + -0.01609390787780285, + 0.060892581939697266, + 0.04428984969854355, + 0.04501251131296158, + -0.04964422062039375, + 0.026755765080451965, + 0.01607527770102024, + -0.04234948381781578, + 0.04744495451450348, + -0.0172147024422884, + -0.007962924428284168, + 0.0005255321739241481, + -0.008809900842607021, + -0.014055125415325165, + 0.017560552805662155, + -0.035148583352565765, + 0.015296468511223793, + -0.00401654839515686, + -0.009734917432069778, + 0.10195815563201904, + 0.02065407671034336, + 0.020383402705192566, + 0.060295410454273224, + -0.06215808168053627, + -0.07610048353672028, + 0.05746382474899292, + 0.021879538893699646, + -0.0019333818927407265, + 0.06846021860837936, + 0.04975048080086708, + -0.05284110829234123, + 0.12015827000141144, + 0.029055429622530937, + 0.019173379987478256, + 0.02234555594623089, + -0.12423446029424667, + 0.10854637622833252, + 0.0924525335431099, + -0.04406654089689255, + 0.038346078246831894, + -0.03121175616979599, + 0.06448947638273239, + 0.08739827573299408, + -0.15698984265327454, + -0.089156374335289, + 0.05125739797949791, + 0.04494181647896767, + 0.0008481969125568867, + 0.10862427949905396, + -0.028039967641234398, + -0.006550223100930452, + 0.08231733739376068, + -0.07706663012504578, + -0.061941809952259064, + -0.020563066005706787, + 0.04454972594976425, + -0.09160491824150085, + 0.03808602690696716, + 0.060925837606191635, + 0.005269246641546488, + -0.015477458946406841, + 0.06979642808437347, + -0.011888453736901283, + -0.015624463558197021, + -0.02562510408461094, + -0.020971886813640594, + 0.03489968553185463, + -0.029899869114160538, + -0.008173709735274315, + 0.014536741189658642, + 0.056775838136672974, + 0.014111342839896679, + 0.03855336830019951, + -0.06912229210138321, + -0.11743748188018799, + -0.0033062375150620937, + 0.054164811968803406, + 0.057940319180488586, + -0.017601799219846725, + -0.031252745538949966, + -0.072161465883255, + -0.03870869800448418, + 0.023170702159404755, + 0.005680281203240156, + 0.08354271948337555, + 0.015904748812317848, + 0.0032762247137725353, + 0.10606884956359863, + 0.023646127432584763, + -0.0023334778379648924, + -0.05040481314063072, + -0.012844240292906761, + 0.03589194267988205, + 0.03635179251432419, + -0.06052795797586441, + -0.06869138777256012, + -0.0025041282642632723, + 0.04248450696468353, + -0.01490707602351904, + 0.03628591075539589, + 0.03992671146988869, + 0.015115615911781788, + 0.02881280519068241, + -0.08762317895889282, + 0.04189129173755646, + -0.11166097223758698, + -0.05664055794477463, + 0.0014595371903851628, + -0.009036744944751263, + -0.0038564163260161877, + 0.08789880573749542, + 0.005479919724166393, + 0.028801556676626205, + -0.0506991371512413, + -0.0854375958442688, + -0.05812521651387215, + 0.06582494080066681, + 0.11485972255468369, + 0.005417494103312492, + 0.036176636815071106, + 0.02856173738837242, + -0.003962871618568897, + 0.061177995055913925, + 0.06648282706737518, + 0.13206112384796143, + -0.020873498171567917, + 0.019060513004660606, + -0.03514261171221733, + 0.06428977847099304, + 0.034177958965301514, + -0.07694768905639648, + -0.08694911003112793, + -0.00605004234239459, + -0.05699876323342323, + 0.05943584442138672, + 0.014504838734865189, + 0.025877878069877625, + -0.009845886379480362, + -0.03490893542766571, + -0.0897604376077652, + -0.07291705906391144, + 0.05996953696012497, + -0.02755383774638176, + -0.03472472354769707, + -0.08967968821525574, + 0.07644389569759369, + 0.08695225417613983, + 0.043586790561676025, + 0.00286676362156868, + -0.016348622739315033, + 0.005012219306081533, + -0.06722348928451538, + -0.022148026153445244, + 0.023505806922912598, + 0.00038319453597068787, + -0.1097593754529953, + 0.03014691174030304, + -0.09828896820545197, + 0.09809508919715881, + -0.06587450206279755, + 0.15200844407081604, + -0.007465310860425234, + -0.06238946691155434, + -0.09271591901779175, + 0.019227854907512665, + -0.025916390120983124, + 0.044934600591659546, + 0.0454816073179245, + 0.03466986119747162, + 0.03788481652736664, + -0.056064315140247345, + 0.07617609202861786, + 0.035814326256513596, + -0.02204306423664093, + -0.06533538550138474, + -0.04845082759857178, + -0.023975593969225883, + 0.009637643583118916, + -0.031131941825151443, + -0.07051219046115875, + -0.01244270522147417, + 0.033741891384124756, + -0.0015441062860190868, + 0.0764072835445404, + 0.11345212906599045, + 0.04249701276421547, + -0.13651220500469208 + ] + }, + "p244_382.wav": { + "name": "p244", + "embedding": [ + 0.012547873891890049, + 0.05160238593816757, + 0.011362994089722633, + 0.010442528873682022, + -0.02396126464009285, + 0.013589495792984962, + -0.11730173975229263, + 0.036210618913173676, + -0.010385122150182724, + 0.11090656369924545, + -0.06143496558070183, + 0.06634905934333801, + -0.045379187911748886, + -0.10618384927511215, + 0.01740165799856186, + 0.03435014933347702, + -0.006350047420710325, + -0.00864393636584282, + -0.031849052757024765, + -0.09376578032970428, + 0.020534124225378036, + 0.036604393273591995, + 0.036742858588695526, + -0.06433065235614777, + -0.03600381687283516, + 0.08359530568122864, + 0.01833106204867363, + 0.00012774299830198288, + -0.01433572731912136, + -0.05799144506454468, + 0.012074185535311699, + 0.05872979015111923, + -0.022189244627952576, + -0.04682639613747597, + 0.03789011389017105, + 0.021736960858106613, + -0.011056792922317982, + 0.032406531274318695, + 0.03573356941342354, + 0.048331134021282196, + -0.10984036326408386, + 0.08040735870599747, + 0.035817697644233704, + -0.013468739576637745, + 0.05903147906064987, + -0.010543732903897762, + -0.0302356518805027, + 0.04786694049835205, + -0.05198640376329422, + 0.10123961418867111, + 0.09019836783409119, + -0.01387955155223608, + -0.0026811081916093826, + -0.0028360895812511444, + 0.06472156941890717, + 0.006172278895974159, + -0.09047840535640717, + -0.06961512565612793, + 0.01754872500896454, + 0.048186399042606354, + -0.0459323488175869, + -0.03905865177512169, + 0.021418139338493347, + 0.07180844992399216, + 0.02538359723985195, + 0.08152899891138077, + 0.04512246698141098, + 0.06418582797050476, + -0.015758180990815163, + -0.03462575748562813, + 0.04637700319290161, + 0.06378970295190811, + 0.05963975191116333, + -0.009656872600317001, + 0.04629376903176308, + -0.027568265795707703, + -0.0015075068222358823, + -0.015118101611733437, + -0.0021336134523153305, + -0.02977989986538887, + -0.016649462282657623, + -0.03093707747757435, + 0.0054865069687366486, + -0.011831393465399742, + -0.02760191448032856, + -0.013728601858019829, + 0.07599321007728577, + -0.011270669288933277, + 0.05656953155994415, + 0.017831265926361084, + 0.010215329006314278, + 0.04234057292342186, + -0.024735376238822937, + 0.013357169926166534, + -0.021729113534092903, + -0.023060370236635208, + 0.05408324673771858, + 0.04192613810300827, + -0.009943902492523193, + 0.03809733688831329, + 0.07158517092466354, + 0.012510206550359726, + -0.01156134344637394, + 0.02253643423318863, + -0.08828597515821457, + 0.09063994139432907, + 0.07299457490444183, + -0.04215797781944275, + 0.011265666224062443, + 0.005750037729740143, + 0.0337931364774704, + 0.004370613023638725, + -0.04674713686108589, + -0.026644859462976456, + -0.017069317400455475, + 0.05421210452914238, + -0.023538794368505478, + 0.11078331619501114, + -0.004369608126580715, + -0.001963440328836441, + 0.13071255385875702, + -0.011764176189899445, + -0.0530334934592247, + -0.0342542938888073, + 0.0011928481981158257, + -0.11772595345973969, + 0.04352394863963127, + 0.061838164925575256, + 0.010597269982099533, + 0.04860387742519379, + 0.12782812118530273, + -0.001282795681618154, + 0.007060809060931206, + -0.04113354533910751, + -0.02608216181397438, + 0.005709658842533827, + 0.005518050864338875, + 0.03675176203250885, + 0.06943594664335251, + 0.022506503388285637, + 0.10988815128803253, + 0.00980820506811142, + 0.017211895436048508, + -0.10632960498332977, + 0.02222321182489395, + 0.029957246035337448, + -0.008503291755914688, + -0.03047473356127739, + -0.02670774981379509, + -0.0339556559920311, + -0.06403562426567078, + 0.020782222971320152, + -0.06388944387435913, + 0.08039310574531555, + -0.035465702414512634, + -0.03365049511194229, + 0.12671050429344177, + 0.011926470324397087, + -0.018395351245999336, + -0.0451463907957077, + -0.04775174707174301, + -0.03024212270975113, + 0.02390103042125702, + -0.15910173952579498, + -0.03548077493906021, + -0.06562969833612442, + 0.06842155754566193, + 0.061021797358989716, + 0.01578560657799244, + 0.08299657702445984, + -0.026273656636476517, + 0.024967610836029053, + 0.005361704155802727, + 0.007530272472649813, + -0.025087492540478706, + -0.07498277723789215, + -0.028843076899647713, + -0.09150299429893494, + -0.03826965391635895, + 0.04488532990217209, + -0.05601165071129799, + 0.025278553366661072, + -0.01570734940469265, + -0.08624249696731567, + -0.09655316174030304, + 0.01300131343305111, + 0.032063499093055725, + -0.034426964819431305, + 0.036032259464263916, + 0.06893187016248703, + -0.05150822922587395, + 0.02387727051973343, + 0.01330776046961546, + 0.1009955108165741, + -0.06870239228010178, + 0.02597085013985634, + -0.04178846627473831, + 0.015592994168400764, + 0.07868680357933044, + -0.02680528722703457, + -0.03693900629878044, + -0.05068472772836685, + -0.03574802726507187, + 0.06267403811216354, + -0.04315007105469704, + -0.03363295644521713, + -0.017319170758128166, + 0.028717953711748123, + -0.043894216418266296, + -0.060050118714571, + 0.05433402955532074, + -0.03880521282553673, + 0.0020879385992884636, + -0.06176038086414337, + 0.0007769614458084106, + -0.05895606428384781, + 0.11176969110965729, + -0.0466681532561779, + 0.046651311218738556, + 0.03920469433069229, + -0.036042407155036926, + 0.05796392634510994, + 0.06418243795633316, + 0.06173306331038475, + 0.013650529086589813, + -0.06049313396215439, + -0.0877370685338974, + 0.026592738926410675, + -0.016280457377433777, + 0.0243687704205513, + 0.03331802785396576, + -0.012801187112927437, + -0.0022738445550203323, + 0.00848740991204977, + -0.035573720932006836, + 0.012242107652127743, + 0.09276110678911209, + 0.06797154247760773, + 0.016932833939790726, + -0.020362310111522675, + 0.09237921237945557, + 0.023318475112318993, + 0.028431814163923264, + -0.029714711010456085, + 0.03502645716071129, + -0.06460855901241302, + 0.014962121844291687, + 0.05536523461341858, + -0.10144593566656113, + 0.024608131498098373, + 0.01699121668934822, + 0.012575887143611908, + 0.018135521560907364, + 0.05983434617519379, + 0.055573634803295135, + -0.037474654614925385 + ] + }, + "p244_054.wav": { + "name": "p244", + "embedding": [ + 0.044531773775815964, + 0.08339071273803711, + -0.043592821806669235, + 0.032639503479003906, + -0.041242025792598724, + 0.03188537061214447, + -0.12195440381765366, + 0.12405737489461899, + -0.039067547768354416, + 0.11954139173030853, + -0.06776689738035202, + 0.10958655178546906, + -0.036398995667696, + -0.15811637043952942, + -0.0032070246525108814, + 0.060783497989177704, + -0.013422037474811077, + -0.024434328079223633, + -0.0128059983253479, + -0.006297648884356022, + 0.05196934938430786, + 0.030873890966176987, + 0.02055971696972847, + 0.004828694276511669, + -0.0059669530019164085, + 0.06463739275932312, + -0.01451481319963932, + 0.016734275966882706, + 0.0023957248777151108, + -0.009596682153642178, + -0.028207283467054367, + 0.0838286280632019, + -0.025441495701670647, + -0.001375867985188961, + 0.04361264035105705, + 0.013163789175450802, + -0.027481794357299805, + -0.06679468601942062, + -0.014668326824903488, + -0.021882986649870872, + -0.06359701603651047, + 0.049910545349121094, + 0.011246456764638424, + -0.04057619720697403, + 0.05698006972670555, + -0.032979294657707214, + -0.03630266711115837, + -0.02610834687948227, + -0.08936958014965057, + 0.1295086145401001, + 0.08682025969028473, + 0.030690256506204605, + -0.07012548297643661, + -0.03371772915124893, + 0.10229375213384628, + 0.013465752825140953, + -0.08645573258399963, + -0.044837117195129395, + 0.048386506736278534, + 0.15683308243751526, + -0.008068239316344261, + -0.014551311731338501, + 0.03809425234794617, + 0.09007300436496735, + 0.04222553223371506, + 0.08796178549528122, + 0.08538471162319183, + 0.08014971017837524, + 0.0014690251555293798, + 0.007828207686543465, + 0.0482005700469017, + 0.07763230055570602, + 0.04141215234994888, + -0.027177661657333374, + 0.011572152376174927, + 0.009257100522518158, + -0.04612048715353012, + 0.008623328059911728, + -0.007388022728264332, + -0.04041937366127968, + -0.03299110010266304, + -0.008901793509721756, + -0.0006154334987513721, + 0.016461152583360672, + -0.023357797414064407, + 0.028125744313001633, + 0.05248458683490753, + -0.0352524071931839, + 0.051901452243328094, + 0.027309920638799667, + -0.01561039499938488, + 0.03811197355389595, + -0.07006604224443436, + -0.08662566542625427, + 0.023440055549144745, + 0.0154373524710536, + 0.00595161272212863, + 0.08428120613098145, + 0.04134146124124527, + -0.0005706424708478153, + 0.09696288406848907, + 0.035293079912662506, + 0.005181587301194668, + 0.02159595489501953, + -0.07563850283622742, + 0.10091414302587509, + 0.09128039330244064, + -0.03950861096382141, + 0.04708978161215782, + -0.047100722789764404, + 0.04237062856554985, + 0.07073447108268738, + -0.11546891927719116, + -0.04164433479309082, + 0.037117987871170044, + 0.019331369549036026, + 0.018671944737434387, + 0.10687331855297089, + 0.025190195068717003, + 0.022847510874271393, + 0.09897732734680176, + -0.0918402224779129, + -0.09489685297012329, + -0.045933157205581665, + 0.06433014571666718, + -0.07319973409175873, + 0.07652459293603897, + 0.05230450630187988, + 0.010129591450095177, + -0.00817757286131382, + 0.05129304528236389, + -0.010708371177315712, + 0.003669125959277153, + -0.002487152349203825, + -0.03125491365790367, + 0.027580542489886284, + -0.05913276597857475, + -0.011526434682309628, + 0.048139046877622604, + 0.015221628360450268, + 0.042926251888275146, + 0.0016710280906409025, + 0.011386695317924023, + -0.10330268740653992, + 0.006572123151272535, + 0.07021503895521164, + 0.06470756977796555, + -0.014764896593987942, + -0.042874034494161606, + -0.03324338048696518, + -0.07297824323177338, + -0.007540812250226736, + -0.035766687244176865, + 0.08067728579044342, + -0.011344107799232006, + 0.035138264298439026, + 0.07291869074106216, + -0.001958150416612625, + 0.0014686796348541975, + -0.04221239313483238, + -0.017281625419855118, + 0.018143512308597565, + 0.04632008820772171, + -0.06905063986778259, + -0.09081631898880005, + -0.022073036059737206, + 0.02567869983613491, + -0.016295934095978737, + 0.029283598065376282, + 0.03530899062752724, + 0.01007854100316763, + 0.009313436225056648, + -0.08200067281723022, + 0.029111281037330627, + -0.1150745078921318, + -0.0669938176870346, + -0.02214871160686016, + -0.017387447878718376, + 0.017351120710372925, + 0.07316271960735321, + 0.024209685623645782, + 0.029132088646292686, + -0.014923411421477795, + -0.0653960257768631, + -0.09251268953084946, + 0.05088326334953308, + 0.06618297845125198, + -0.010669587180018425, + 0.03743422031402588, + 0.044326361268758774, + -0.044679902493953705, + 0.017755715176463127, + 0.04266372323036194, + 0.09544762223958969, + -0.02135905995965004, + -0.0040208748541772366, + -0.06608234345912933, + 0.06355912238359451, + 0.11735900491476059, + -0.09566470980644226, + -0.07402803003787994, + -0.04731234163045883, + -0.06647393107414246, + 0.023328756913542747, + -0.04298260062932968, + -0.0005063054850324988, + 0.02435779571533203, + -0.040551625192165375, + -0.11309491842985153, + -0.10754703730344772, + 0.07565949857234955, + -0.032360099256038666, + -0.014236598275601864, + -0.07610159367322922, + 0.03851526975631714, + 0.068403460085392, + 0.008493021130561829, + -0.04496745765209198, + -0.0027959574945271015, + 0.025532986968755722, + -0.02969980798661709, + -0.010796865448355675, + 0.04664656147360802, + 0.037412308156490326, + -0.10859899967908859, + -0.0028363890014588833, + -0.06875377893447876, + 0.0795290470123291, + -0.0637238547205925, + 0.13003848493099213, + -0.008818810805678368, + -0.04281790554523468, + -0.10158710181713104, + 0.03621697053313255, + 0.036350153386592865, + 0.04004887118935585, + 0.015556114725768566, + 0.055863939225673676, + 0.009571072645485401, + -0.0766301304101944, + 0.09556584805250168, + 0.04306706786155701, + -0.006984502077102661, + -0.07146522402763367, + -0.030883878469467163, + -0.03619595617055893, + 0.02568429335951805, + -0.015237387269735336, + -0.058929115533828735, + -0.005680184345692396, + 0.000603125779889524, + -0.0004595927894115448, + 0.05696096271276474, + 0.11993834376335144, + 0.04048936069011688, + -0.11684443056583405 + ] + }, + "p244_315.wav": { + "name": "p244", + "embedding": [ + 0.03413383662700653, + 0.11248143017292023, + -0.04909581318497658, + -0.01946149580180645, + -0.05494026094675064, + 0.05198469012975693, + -0.10419207811355591, + 0.06858484447002411, + -0.03169497847557068, + 0.15407967567443848, + -0.045282673090696335, + 0.11573299020528793, + -0.048958953469991684, + -0.11797276884317398, + 0.01691889949142933, + 0.046824801713228226, + -0.011813892051577568, + -0.008026326075196266, + -0.07579988241195679, + -0.0490071140229702, + 0.006307331379503012, + 0.006721321493387222, + 0.055475570261478424, + -0.08238747715950012, + 0.025415092706680298, + 0.06830001622438431, + -0.02267875149846077, + 0.009058261290192604, + -0.022792411968111992, + -0.05325685441493988, + -0.05768198519945145, + 0.0705752819776535, + -0.07316683232784271, + -0.005149628035724163, + 0.015670960769057274, + -0.000647758599370718, + -0.007105298340320587, + -0.04145439714193344, + 0.04939868673682213, + 0.008313881233334541, + -0.008967209607362747, + 0.07133138179779053, + -0.018732253462076187, + -0.03521409258246422, + 0.02477094531059265, + -0.003414227394387126, + -0.025668339803814888, + -0.009604323655366898, + -0.05513915419578552, + 0.12803515791893005, + 0.0672895759344101, + -0.028591400012373924, + -0.05910041928291321, + -0.04063919931650162, + 0.0807579904794693, + -0.0106466393917799, + -0.09221473336219788, + -0.08951853215694427, + 0.018430430442094803, + 0.07097722589969635, + -0.014687201008200645, + -0.03409990295767784, + 0.006377875339239836, + 0.06148528680205345, + 0.032162778079509735, + 0.08445896208286285, + 0.06989485025405884, + 0.10910843312740326, + -0.028483934700489044, + 0.023875702172517776, + 0.03908916562795639, + 0.03176497668027878, + 0.03761683776974678, + -0.0023465966805815697, + 0.039592765271663666, + -0.06574079394340515, + -0.007427575532346964, + 0.010662117972970009, + -0.022269485518336296, + -0.09172341972589493, + -0.033294033259153366, + -0.044124770909547806, + -0.02916226163506508, + -0.001995379338040948, + -0.0143654216080904, + 0.018939625471830368, + 0.10067899525165558, + -0.027329163625836372, + 0.09213057160377502, + 0.05443928390741348, + 0.0037899818271398544, + 0.04963983595371246, + -0.09650826454162598, + -0.03462880477309227, + 0.034820307046175, + -0.0007875389419496059, + 0.004731725435703993, + 0.04835128039121628, + 0.024307332932949066, + -0.020640313625335693, + 0.07182465493679047, + 0.07269822061061859, + 0.002478731330484152, + 0.013228606432676315, + -0.06202029436826706, + 0.1436268836259842, + 0.11806733906269073, + -0.035913363099098206, + 0.0031225793063640594, + -0.018875202164053917, + 0.03541206941008568, + 0.04431717097759247, + -0.0552237369120121, + -0.0839335173368454, + -0.030153775587677956, + -0.028216522186994553, + -0.021700209006667137, + 0.056338679045438766, + 0.012501124292612076, + 0.012556970119476318, + 0.10519523918628693, + -0.07827557623386383, + -0.0943988561630249, + -0.001382332295179367, + 0.028694912791252136, + -0.06438609212636948, + 0.023066814988851547, + 0.09650695323944092, + 0.02172049880027771, + 0.022864725440740585, + 0.09543150663375854, + 0.019513897597789764, + 0.034896932542324066, + 0.02922985702753067, + -0.021459218114614487, + 0.009129984304308891, + 0.014786722138524055, + -0.029674747958779335, + 0.06844797730445862, + 0.04813861474394798, + 0.07747222483158112, + -0.02400597371160984, + 0.04565712809562683, + -0.07895905524492264, + 0.03376833349466324, + 0.06263545900583267, + -0.0058061107993125916, + -0.04849748685956001, + 0.015252277255058289, + -0.010260669514536858, + -0.09156184643507004, + 0.006445238366723061, + -0.022827867418527603, + 0.08660911023616791, + -0.03378603607416153, + -0.015216754749417305, + 0.1553623527288437, + 0.03669090196490288, + -0.013548744842410088, + -0.059314094483852386, + -0.027013130486011505, + 0.0441359281539917, + 0.03447284549474716, + -0.10293310880661011, + -0.0661337822675705, + -0.02860097587108612, + 0.024177582934498787, + 0.003979003056883812, + 0.08148729056119919, + 0.11319103837013245, + -0.0069936830550432205, + 0.029588159173727036, + -0.05135303735733032, + 0.0418066643178463, + -0.015039725229144096, + -0.013632766902446747, + -0.018243515864014626, + -0.09486951678991318, + -0.026181941851973534, + 0.07402196526527405, + -0.004380423575639725, + 0.0331728495657444, + -0.06885910779237747, + -0.07564035058021545, + -0.08704549074172974, + 0.02460172027349472, + 0.054089777171611786, + -0.05204082652926445, + 0.03461485356092453, + 0.05356509983539581, + -0.02620266191661358, + 0.010335616767406464, + 0.07561412453651428, + 0.07537376135587692, + -0.051287420094013214, + -0.00031730160117149353, + -0.08707383275032043, + 0.060790468007326126, + 0.09890241920948029, + -0.09302216023206711, + -0.049903638660907745, + -0.08977462351322174, + -0.023200221359729767, + 0.0029694996774196625, + -0.05973154306411743, + -0.004922495689243078, + 0.05704745650291443, + -0.00866637472063303, + -0.05818870663642883, + -0.14534473419189453, + 0.10099364817142487, + -0.03192056342959404, + 0.011476516723632812, + -0.05229166895151138, + 0.03170435130596161, + -0.010224081575870514, + 0.04247201606631279, + -0.07210371643304825, + 0.035147733986377716, + 0.03281755745410919, + 0.012498822063207626, + 0.05496523529291153, + 0.04321397840976715, + 0.06977403163909912, + -0.04002279415726662, + -0.016014492139220238, + -0.08187700808048248, + 0.09048968553543091, + -0.03173889219760895, + 0.1459461748600006, + 0.01020322646945715, + -0.001790856011211872, + -0.09119556844234467, + 0.048776544630527496, + -0.04592974856495857, + 0.04166581481695175, + 0.06384682655334473, + 0.0476040281355381, + 0.005869491025805473, + -0.04697089642286301, + 0.0986829400062561, + 0.03343397378921509, + -0.02489675022661686, + -0.07331164926290512, + -0.014144917018711567, + -0.0687505304813385, + 0.050350695848464966, + 0.014541254378855228, + -0.08110079914331436, + 0.02182883396744728, + 0.023041747510433197, + -0.013296023942530155, + 0.07973086088895798, + 0.09263253957033157, + 0.09798845648765564, + -0.07878242433071136 + ] + }, + "p244_290.wav": { + "name": "p244", + "embedding": [ + 0.01912044547498226, + 0.0878903716802597, + -0.00811822060495615, + 0.040054745972156525, + -0.05176994204521179, + 0.026453204452991486, + -0.029326923191547394, + 0.06288449466228485, + 0.03335327282547951, + 0.06359043717384338, + -0.0520898662507534, + 0.04585761949419975, + -0.061563968658447266, + -0.10855460166931152, + -0.010652425698935986, + 0.023728996515274048, + -0.005488347262144089, + 0.020646758377552032, + -0.03890529274940491, + -0.01703776977956295, + -0.04177787899971008, + -0.022052664309740067, + -0.04700027406215668, + 0.025646071881055832, + -0.05263756960630417, + 0.04717602580785751, + -0.033035993576049805, + -0.0008956827223300934, + -0.026933956891298294, + -0.04906585067510605, + 0.02629845216870308, + 0.05654216557741165, + -0.02185446210205555, + -0.039292111992836, + 0.04170616716146469, + -0.04133742302656174, + 0.008103480562567711, + -0.023746736347675323, + -0.044792115688323975, + -0.0015041893348097801, + -0.063213050365448, + 0.00797811895608902, + 0.015389461070299149, + -0.07636027783155441, + 0.002584769856184721, + 0.03233061358332634, + -0.011692564934492111, + -0.01648004725575447, + -0.036780282855033875, + 0.09442220628261566, + 0.0322970375418663, + 0.029101412743330002, + -0.028388291597366333, + -0.029950594529509544, + 0.12743638455867767, + 0.015334445051848888, + 0.021385349333286285, + -0.029812147840857506, + 0.012949611991643906, + 0.06365389376878738, + 0.009745093062520027, + -0.01222170889377594, + 0.0481518991291523, + 0.052945736795663834, + -0.0042460206896066666, + 0.0463312566280365, + 0.057978421449661255, + 0.10464777052402496, + -0.020650649443268776, + 0.007968008518218994, + 0.05429162085056305, + 0.0014821551740169525, + 0.053401075303554535, + 0.022862186655402184, + -0.02775970846414566, + 0.011058037169277668, + 0.00011264253407716751, + 0.02712939865887165, + -0.028745047748088837, + -0.03999347239732742, + 0.01725243777036667, + -0.000758882611989975, + 0.01597965508699417, + -0.042269542813301086, + -0.032369546592235565, + -0.03964819386601448, + 0.0617033913731575, + -0.0014846604317426682, + 0.06334895640611649, + -0.014688508585095406, + 0.04743838310241699, + 0.05074680224061012, + -0.05440659075975418, + -0.05539717525243759, + 0.014292231760919094, + -0.019001878798007965, + 0.03565326705574989, + 0.037062324583530426, + 0.009589990600943565, + 0.014036282896995544, + 0.06806677579879761, + -0.024226054549217224, + 0.05962487682700157, + 0.01211432833224535, + -0.07123999297618866, + -0.02635989338159561, + 0.03756067156791687, + 0.005959119647741318, + 0.024486029520630836, + 0.044524870812892914, + 0.03301968052983284, + 0.08831869065761566, + -0.04037364944815636, + -0.05762895196676254, + 0.030030623078346252, + 0.07834096252918243, + -0.06656120717525482, + 0.10810627043247223, + -0.021274428814649582, + 0.028830530121922493, + 0.07025730609893799, + -0.006297927349805832, + -0.001488884910941124, + 0.013544036075472832, + -0.0005233306437730789, + -0.033376362174749374, + 0.0672052726149559, + 0.03341102972626686, + -0.030123023316264153, + -0.033759087324142456, + 0.04925951734185219, + -0.023741915822029114, + -0.033747073262929916, + -0.043573372066020966, + 0.03504834324121475, + 0.008837351575493813, + 0.039331164211034775, + -0.02504708059132099, + -0.0018461518920958042, + 0.0803990587592125, + -0.0009807944297790527, + -0.03415236994624138, + -0.010165511630475521, + -0.04275501146912575, + 0.019379690289497375, + 0.03222106397151947, + 0.03502677381038666, + 0.06861163675785065, + -0.03326110169291496, + -0.06489211320877075, + -0.006306573748588562, + 0.03422148898243904, + -0.05326361954212189, + 0.08789268136024475, + 0.058206744492053986, + 0.01831907406449318, + 0.07299650460481644, + -0.03483293205499649, + -0.0014111967757344246, + -0.030852051451802254, + -0.08148300647735596, + -0.01032851543277502, + 0.01567525416612625, + -0.02900564856827259, + -0.03451034426689148, + -0.028528772294521332, + -0.007494870573282242, + 0.007547067478299141, + 0.022373061627149582, + 0.021143479272723198, + -0.01800907962024212, + 0.04096347093582153, + -0.0828053206205368, + -0.006824616342782974, + -0.0184059739112854, + -0.038303181529045105, + 0.04072409123182297, + 0.012901604175567627, + 0.0010232338681817055, + 0.022037165239453316, + 0.009273068979382515, + -0.0196218378841877, + -0.053866732865571976, + -0.08367647975683212, + 0.016084197908639908, + 0.027223750948905945, + 0.025060266256332397, + -0.01541376393288374, + -0.005240677855908871, + 0.04960779473185539, + 0.05163364112377167, + 0.011579295620322227, + 0.03604981675744057, + 0.07421388477087021, + -0.033744823187589645, + -0.0032753143459558487, + 0.027166450396180153, + 0.10652270913124084, + 0.03926441818475723, + -0.053613074123859406, + -0.09483854472637177, + -0.0335165411233902, + -0.036572933197021484, + 0.05009347200393677, + -0.022581521421670914, + 0.03593762218952179, + -0.0089015644043684, + 0.005714827217161655, + 0.020998116582632065, + -0.10319957137107849, + 0.020687537267804146, + 0.007287014275789261, + -0.014180734753608704, + -0.018811218440532684, + 0.008932719938457012, + 0.021662309765815735, + 0.04693171754479408, + -0.022302716970443726, + -0.021310104057192802, + 0.020492244511842728, + -0.0006692931056022644, + -0.0024574417620897293, + 0.04556262865662575, + 0.0514710433781147, + -0.0010628588497638702, + -0.01849389635026455, + -0.025267377495765686, + 0.04617158696055412, + 0.015502825379371643, + 0.05003879964351654, + 0.009656425565481186, + -0.008890802040696144, + -0.09754496812820435, + 0.06594467163085938, + -0.021181201562285423, + 0.06645216047763824, + -0.007990904152393341, + 0.0376305915415287, + 0.06180844083428383, + -0.00667180772870779, + 0.08812643587589264, + 0.005475944839417934, + -0.0222301222383976, + -0.044031497091054916, + -0.0431826077401638, + -0.02952864021062851, + -0.001858039409853518, + 0.05068175867199898, + -0.01804637908935547, + -0.03750092163681984, + 0.04238550737500191, + 0.016636352986097336, + 0.07106532156467438, + 0.07458914071321487, + 0.0646275132894516, + 0.0074406638741493225 + ] + }, + "p244_341.wav": { + "name": "p244", + "embedding": [ + 0.05144480988383293, + 0.09490710496902466, + -0.021923646330833435, + 0.025897063314914703, + -0.060403577983379364, + 0.07773204892873764, + -0.1412520408630371, + 0.13891853392124176, + -0.04217970371246338, + 0.1378546953201294, + -0.035827118903398514, + 0.11010695993900299, + -0.022878920659422874, + -0.17258340120315552, + -0.029567096382379532, + 0.07048855721950531, + -0.05807400494813919, + -0.04977872222661972, + -0.052923671901226044, + -0.009816604666411877, + 0.008188669569790363, + 0.015158360823988914, + 0.03498988598585129, + -0.00605994276702404, + 0.03965850546956062, + 0.06300187110900879, + -0.006520512513816357, + 0.055122967809438705, + 0.007679138332605362, + -0.06641988456249237, + -0.014704719185829163, + 0.08735961467027664, + -0.06784327328205109, + 0.017183993011713028, + 0.04393257945775986, + -0.01377885602414608, + -0.0021048171911388636, + -0.06173987686634064, + -0.014424381777644157, + -0.006023450754582882, + -0.034361060708761215, + 0.10261380672454834, + 0.02472495660185814, + -0.007815316319465637, + 0.01871519535779953, + 0.013764625415205956, + -0.017168574035167694, + -0.047201819717884064, + -0.1079639196395874, + 0.15566271543502808, + 0.06997188925743103, + 0.0003933088155463338, + -0.08531288057565689, + -0.07673226296901703, + 0.08558286726474762, + -0.0208512581884861, + -0.12377744913101196, + -0.07109367847442627, + 0.06526520103216171, + 0.1547544300556183, + -0.03256845101714134, + -0.025883059948682785, + 0.010721691884100437, + 0.12660090625286102, + 0.08642827719449997, + 0.08840705454349518, + 0.07699798047542572, + 0.11311851441860199, + -0.019651539623737335, + 0.026744019240140915, + 0.06717963516712189, + 0.05525387451052666, + 0.04959084466099739, + 0.014187723398208618, + 0.0288851261138916, + -0.03147173672914505, + -0.0007630875916220248, + -0.028616424649953842, + -0.018456537276506424, + -0.02608596906065941, + -0.021630095317959785, + 0.020860102027654648, + 0.005859169643372297, + 0.05097389221191406, + -0.008726393803954124, + 0.04270967096090317, + 0.034227192401885986, + -0.0370824933052063, + 0.07148225605487823, + 0.049353644251823425, + 0.013594419695436954, + 0.06155559420585632, + -0.09407760947942734, + -0.07176750898361206, + 0.028547782450914383, + 0.0036114000249654055, + 0.028942083939909935, + 0.05231490731239319, + 0.023434635251760483, + -0.007127637974917889, + 0.10949581861495972, + 0.046734586358070374, + -0.0178220197558403, + 0.015526052564382553, + -0.08812092244625092, + 0.14471960067749023, + 0.05609337240457535, + -0.014147101901471615, + 0.04629359394311905, + -0.036612898111343384, + 0.04154061898589134, + 0.060822244733572006, + -0.12675780057907104, + -0.0879315584897995, + 0.02080797404050827, + -0.003991410601884127, + -0.03631272166967392, + 0.11920009553432465, + 0.01180082093924284, + 0.045656461268663406, + 0.09535133838653564, + -0.08752863854169846, + -0.050203315913677216, + 0.007991038262844086, + 0.05196003243327141, + -0.08059116452932358, + 0.04225955903530121, + 0.06067333742976189, + -0.017503179609775543, + 0.02666880004107952, + 0.09904748201370239, + 0.012025121599435806, + 0.009307839907705784, + 0.027502041310071945, + -0.04676958918571472, + 0.029968073591589928, + -0.011394794099032879, + -0.002331534866243601, + 0.039806317538022995, + 0.017847564071416855, + 0.06357142329216003, + -0.01853979378938675, + -0.020683813840150833, + -0.11147885024547577, + -0.0007262104190886021, + 0.03840206190943718, + 0.08944395929574966, + -0.029955651611089706, + -0.0004986696876585484, + -0.02589883655309677, + -0.05605993792414665, + 0.012824616394937038, + -0.004544756840914488, + 0.08468576520681381, + -0.011032759211957455, + -0.015628637745976448, + 0.13016214966773987, + 0.02594016119837761, + 0.009066566824913025, + -0.04820541664958, + -0.011101684533059597, + 0.01899886690080166, + 0.07315941154956818, + -0.0899038016796112, + -0.05063747987151146, + 0.01304718665778637, + 0.036304451525211334, + -0.009482748806476593, + 0.07670986652374268, + 0.06042204797267914, + 0.01884995773434639, + 0.012809822335839272, + -0.04806660860776901, + 0.016181349754333496, + -0.059673674404621124, + -0.06470909714698792, + 0.0014662076719105244, + -0.023437581956386566, + -0.051634907722473145, + 0.08094987273216248, + 0.0331161692738533, + 0.06778091937303543, + -0.025496773421764374, + -0.0826568678021431, + -0.08372054249048233, + 0.055319420993328094, + 0.05553797632455826, + -0.034959372133016586, + 0.027661526575684547, + 0.0661623403429985, + -0.0268266424536705, + 0.030382946133613586, + 0.06150016188621521, + 0.09969155490398407, + -0.05662955343723297, + 0.01419757679104805, + -0.08851909637451172, + 0.07444809377193451, + 0.08771632611751556, + -0.10171777009963989, + -0.06157103180885315, + -0.010723607614636421, + -0.055419087409973145, + 0.0169186070561409, + -0.04167061299085617, + 0.022828031331300735, + 0.056738466024398804, + -0.018225129693746567, + -0.10133303701877594, + -0.11747681349515915, + 0.09777864813804626, + -0.0977693498134613, + 0.01351673062890768, + -0.07692878693342209, + 0.03325483947992325, + 0.07665561139583588, + 0.055152133107185364, + -0.028388746082782745, + -0.005988146178424358, + 0.04631059616804123, + -0.020998038351535797, + 0.012032933533191681, + 0.0781719982624054, + 0.029342520982027054, + -0.10526087880134583, + -0.00933622196316719, + -0.0654182881116867, + 0.04446505755186081, + -0.030080342665314674, + 0.16331614553928375, + 0.011038949713110924, + -0.04740135371685028, + -0.09075221419334412, + 0.01164920348674059, + -0.04199260473251343, + 0.06427827477455139, + 0.028239388018846512, + 0.07292013615369797, + 0.06301284581422806, + -0.03558768332004547, + 0.12175273895263672, + 0.05364023149013519, + -0.03373897075653076, + -0.06901658326387405, + -0.05237111449241638, + -0.04455861821770668, + 0.05221952497959137, + 0.0010546408593654633, + -0.10342967510223389, + 0.004786589182913303, + 0.03170613944530487, + -0.02323976904153824, + 0.06615154445171356, + 0.1356145441532135, + 0.08601370453834534, + -0.10246265679597855 + ] + }, + "p244_296.wav": { + "name": "p244", + "embedding": [ + 0.041318681091070175, + 0.0945296585559845, + -0.026775799691677094, + 0.045866094529628754, + -0.055853065103292465, + 0.04816087707877159, + -0.10735886543989182, + 0.13000677525997162, + -0.04410688579082489, + 0.13508228957653046, + -0.06848134845495224, + 0.10222294181585312, + -0.006338165141642094, + -0.1870807558298111, + -0.03953560069203377, + 0.03323279321193695, + -0.07274294644594193, + -0.029713099822402, + -0.0779244601726532, + -0.0008681975305080414, + 0.05867717042565346, + 0.04237307235598564, + 0.014544080942869186, + -0.0234934464097023, + 0.006065462715923786, + 0.044528622180223465, + 0.019178733229637146, + 0.056521471589803696, + 0.058167532086372375, + -0.04547460377216339, + -0.0328659862279892, + 0.12109345197677612, + -0.029036706313490868, + 0.03205665200948715, + 0.05403066426515579, + -0.02390475943684578, + -0.007008626591414213, + -0.037837665528059006, + -0.04116789251565933, + 0.030151614919304848, + -0.054543085396289825, + 0.06686088442802429, + 0.0665142685174942, + 0.004767619073390961, + 0.056362103670835495, + 0.015434455126523972, + -0.047723133116960526, + -0.05780066177248955, + -0.07999444007873535, + 0.18002712726593018, + 0.08711431920528412, + -0.02807789295911789, + -0.05149059370160103, + -0.047855574637651443, + 0.10140743106603622, + -0.0037548760883510113, + -0.15592895448207855, + -0.04236697033047676, + 0.10501722246408463, + 0.15432967245578766, + -0.016631536185741425, + 0.0028191402088850737, + 0.00797203928232193, + 0.15575803816318512, + 0.05745095759630203, + 0.0968722477555275, + 0.059764306992292404, + 0.11765952408313751, + 0.011920973658561707, + 0.05072137713432312, + 0.06883751600980759, + 0.06562920659780502, + 0.005385405849665403, + -0.026856614276766777, + 0.03951319679617882, + -0.006331588141620159, + -0.0206725113093853, + -0.005500771105289459, + -0.030993448570370674, + 0.022903921082615852, + -0.0052184490486979485, + 0.014078463427722454, + 0.0032910448499023914, + 0.014566889964044094, + -0.0353395976126194, + 0.07072412967681885, + 0.014765985310077667, + 0.005105732940137386, + 0.043322768062353134, + 0.04887993633747101, + 0.025364618748426437, + 0.04704684019088745, + -0.04609707370400429, + -0.11718489974737167, + -0.014623098075389862, + 0.001542488345876336, + 0.02529967576265335, + 0.06292904913425446, + 0.03873699903488159, + -0.015730854123830795, + 0.11337673664093018, + 0.039424363523721695, + -0.041698943823575974, + 0.029235277324914932, + -0.09620600938796997, + 0.12352906912565231, + 0.0674699917435646, + 0.008962842635810375, + 0.03628653660416603, + -0.05478410795331001, + 0.0964847132563591, + 0.04554268717765808, + -0.13312795758247375, + -0.045462604612112045, + 0.06395375728607178, + -0.003645610297098756, + -0.02261500246822834, + 0.1143454983830452, + 0.00031702342675998807, + 0.010378554463386536, + 0.09764956682920456, + -0.06914980709552765, + -0.04608475789427757, + -0.03610144555568695, + 0.05797521770000458, + -0.08386005461215973, + 0.046092256903648376, + 0.009382068179547787, + -0.047608595341444016, + -0.0012762827100232244, + 0.08843357861042023, + -0.012790529057383537, + 0.013585151173174381, + 0.022525502368807793, + -0.04850340262055397, + 0.07277356088161469, + -0.04308157414197922, + 0.023064637556672096, + 0.03960254788398743, + 0.04245040938258171, + 0.0598858967423439, + -0.022455569356679916, + -0.044262465089559555, + -0.0901675894856453, + 0.023209083825349808, + 0.014932384714484215, + 0.07892078161239624, + 0.004284909460693598, + -0.0022143537644296885, + -0.04088211432099342, + -0.08096452057361603, + 0.01720733940601349, + -0.03373314440250397, + 0.07582180947065353, + -0.021895410493016243, + -0.030406001955270767, + 0.10198938101530075, + -0.007291710469871759, + 0.0030485086608678102, + -0.05230522155761719, + -0.024559469893574715, + 0.015485113486647606, + 0.04864849895238876, + -0.09028993546962738, + -0.04405295476317406, + 0.024547187611460686, + 0.007781818974763155, + -0.010542208328843117, + 0.005231906659901142, + 0.017798909917473793, + 0.0024374243803322315, + 0.0523248016834259, + -0.08068772405385971, + 0.010028494521975517, + -0.12339293211698532, + -0.05186411365866661, + -0.021564709022641182, + -0.0227389857172966, + -0.016183309257030487, + 0.07365275919437408, + 0.0012940015876665711, + 0.017588775604963303, + 0.03823458403348923, + -0.08692120015621185, + -0.06424491107463837, + 0.08963587880134583, + 0.06753387302160263, + 0.002155711641535163, + 0.06636876612901688, + 0.06379912048578262, + -0.043997108936309814, + 0.03490740805864334, + 0.049191415309906006, + 0.09566248953342438, + -0.008505954407155514, + -0.0019705158192664385, + -0.08357450366020203, + 0.08678137511014938, + 0.06673752516508102, + -0.11800973117351532, + -0.07379437237977982, + -0.020728258416056633, + -0.05262252315878868, + 0.007787683513015509, + -0.029094474390149117, + 0.0003525139472912997, + 0.03164540231227875, + 0.015931393951177597, + -0.10209763795137405, + -0.07028472423553467, + 0.08402393013238907, + -0.1088315024971962, + -0.01746816374361515, + -0.07123661041259766, + 0.026188498362898827, + 0.12433307617902756, + 0.04734567925333977, + -0.029640348628163338, + -0.0016770545626059175, + 0.0705217719078064, + -0.07041095197200775, + -0.017768193036317825, + 0.02826724946498871, + 0.020265942439436913, + -0.10742716491222382, + 0.006870593409985304, + -0.05989695340394974, + 0.037293531000614166, + -0.07067269831895828, + 0.13812874257564545, + 0.015748854726552963, + -0.0676906406879425, + -0.08093681931495667, + 0.06581062823534012, + -0.019399330019950867, + 0.044615477323532104, + 0.05384982377290726, + 0.05743812769651413, + 0.04006803035736084, + -0.07658716291189194, + 0.1392107456922531, + 0.021193357184529305, + -0.02970031090080738, + -0.06526640057563782, + -0.0215093232691288, + -0.03709458187222481, + 0.016958212479948997, + 0.0481191910803318, + -0.08683504909276962, + -0.02103733830153942, + 0.024913201108574867, + -0.06485319137573242, + 0.07178670167922974, + 0.13823001086711884, + 0.07610105723142624, + -0.10873140394687653 + ] + }, + "p244_281.wav": { + "name": "p244", + "embedding": [ + 0.04316239804029465, + 0.09389373660087585, + -0.004338981583714485, + 0.02047625370323658, + -0.050993047654628754, + 0.068476602435112, + -0.1208743304014206, + 0.12484188377857208, + -0.07613775134086609, + 0.1500626802444458, + -0.11026425659656525, + 0.1104574203491211, + -0.04054606705904007, + -0.18952953815460205, + -0.0257693063467741, + 0.05206223577260971, + -0.0442204549908638, + 0.0008913697674870491, + -0.04847009479999542, + -0.03451327979564667, + 0.04897636920213699, + 0.036467544734478, + 0.025049470365047455, + -0.004559813067317009, + 0.02676309645175934, + 0.06207616627216339, + -0.01977812498807907, + 0.016210488975048065, + 0.004305846989154816, + -0.07645659148693085, + -0.049201600253582, + 0.11599043011665344, + -0.02723785862326622, + 0.0043502310290932655, + 0.048825591802597046, + -0.0014877127250656486, + -0.008433063514530659, + -0.07079911231994629, + -0.024381348863244057, + -0.008154544979333878, + -0.053825974464416504, + 0.04391765967011452, + 0.01588037610054016, + -0.022000059485435486, + 0.04293741658329964, + 0.012471312656998634, + -0.020323943346738815, + -0.04164234548807144, + -0.08783012628555298, + 0.1584375947713852, + 0.06209580972790718, + 0.003575683571398258, + -0.06467777490615845, + -0.07489050924777985, + 0.12742935121059418, + 0.0025154389441013336, + -0.12956053018569946, + -0.01891259476542473, + 0.09117413312196732, + 0.17949531972408295, + -0.03186075761914253, + -0.023736614733934402, + 0.0336587093770504, + 0.10539084672927856, + 0.0021025659516453743, + 0.10217355936765671, + 0.06640615314245224, + 0.08427748084068298, + 0.01719059981405735, + 0.042019739747047424, + 0.05327766388654709, + 0.0626484751701355, + 0.046641625463962555, + -0.05263303965330124, + 0.006512587424367666, + 0.0006292110774666071, + -0.048804864287376404, + 0.008333852514624596, + -0.03805795684456825, + -0.026150163263082504, + -0.01371549442410469, + -0.01841064728796482, + 0.015263654291629791, + -0.032870713621377945, + -0.03372101113200188, + 0.03469639644026756, + 0.024499110877513885, + -0.015447386540472507, + 0.0741010457277298, + 0.02746744453907013, + 0.004795158747583628, + 0.04854855313897133, + -0.055203042924404144, + -0.09991756826639175, + 0.021872874349355698, + 0.021441973745822906, + -0.010287429206073284, + 0.07411578297615051, + 0.058819130063056946, + -0.028419315814971924, + 0.1258266568183899, + 0.044557999819517136, + 0.027902871370315552, + 0.020803408697247505, + -0.10969652235507965, + 0.11149384081363678, + 0.10121595114469528, + -0.017748437821865082, + 0.060041315853595734, + -0.04024200141429901, + 0.10059916973114014, + 0.09553758800029755, + -0.160922110080719, + -0.05883362144231796, + 0.0019642841070890427, + -0.00855749100446701, + -3.0842842534184456e-05, + 0.10438629984855652, + -0.014789480715990067, + 0.015048881061375141, + 0.10627907514572144, + -0.10361991077661514, + -0.06523903459310532, + -0.036818645894527435, + 0.04138176143169403, + -0.08383512496948242, + 0.06932668387889862, + 0.05693099647760391, + -0.021924462169408798, + 0.01642550528049469, + 0.07105615735054016, + -0.03741040453314781, + -0.0012498274445533752, + 0.005890397354960442, + -0.05652263015508652, + 0.010543439537286758, + -0.059381477534770966, + -0.0016308611957356334, + 0.05255758389830589, + 0.048733849078416824, + 0.041055403649806976, + 0.00028462009504437447, + -0.03760337084531784, + -0.0806020051240921, + 0.007694039959460497, + 0.03671346604824066, + 0.05928145349025726, + 0.008565877564251423, + -0.007897469215095043, + -0.03692619130015373, + -0.07190090417861938, + 0.03099704720079899, + -0.034588899463415146, + 0.09157770127058029, + -0.00566551648080349, + 0.017080388963222504, + 0.0929098129272461, + 0.04333870857954025, + -0.01783258095383644, + -0.08507756888866425, + -0.039767101407051086, + 0.020575709640979767, + 0.03145882859826088, + -0.08532088249921799, + -0.06350696086883545, + -0.007995542138814926, + 0.020544854924082756, + -0.025409091264009476, + 0.041259557008743286, + 0.03125467151403427, + 0.021289899945259094, + 0.03556213900446892, + -0.07972882688045502, + 0.028546597808599472, + -0.11305233836174011, + -0.06000962853431702, + 0.004138820804655552, + -0.0448276624083519, + -0.0060881758108735085, + 0.09007851779460907, + 0.005987387616187334, + -0.004957599099725485, + -0.025380559265613556, + -0.06755310297012329, + -0.06653745472431183, + 0.05965537950396538, + 0.05057786777615547, + 0.009551698341965675, + 0.04264432191848755, + 0.04539789259433746, + -0.03645608201622963, + 0.06734208762645721, + 0.05736595019698143, + 0.11864569783210754, + -0.009800620377063751, + 0.020939519628882408, + -0.061349056661129, + 0.08253012597560883, + 0.0883067324757576, + -0.07265673577785492, + -0.10535315424203873, + -0.05579511076211929, + -0.06478118151426315, + 0.07777097821235657, + -0.012174505740404129, + -0.02264985628426075, + 0.0001900692004710436, + -0.030676869675517082, + -0.08952242136001587, + -0.06041882559657097, + 0.09801868349313736, + -0.038460567593574524, + -0.0325746014714241, + -0.08659961819648743, + 0.05395590141415596, + 0.08195780217647552, + 0.025128480046987534, + -0.024774737656116486, + 0.008562793023884296, + 0.05355486273765564, + -0.07659287750720978, + -0.006160122808068991, + 0.04255946725606918, + 0.017358507961034775, + -0.08650492131710052, + 0.007121242582798004, + -0.09494180232286453, + 0.07364729791879654, + -0.058140769600868225, + 0.15665312111377716, + -0.011113450862467289, + -0.05189599096775055, + -0.08183331787586212, + 0.07581934332847595, + -0.010511255823075771, + 0.03715214133262634, + 0.05822507292032242, + 0.06378577649593353, + 0.04279954731464386, + -0.08393155038356781, + 0.09939467161893845, + 0.00495325680822134, + -0.0136440210044384, + -0.04334452748298645, + -0.04805696755647659, + -0.046550579369068146, + -0.015952609479427338, + -0.024811657145619392, + -0.10690297186374664, + -0.00766246672719717, + 0.00816418882459402, + 0.011764800176024437, + 0.07797898352146149, + 0.1134762093424797, + 0.051282189786434174, + -0.10418900102376938 + ] + }, + "p244_200.wav": { + "name": "p244", + "embedding": [ + 0.024939430877566338, + 0.07433727383613586, + -0.02525252290070057, + -0.02982010878622532, + -0.04866282641887665, + 0.03008236363530159, + -0.10671471804380417, + 0.08964802324771881, + -0.02626296691596508, + 0.13251730799674988, + -0.031405266374349594, + 0.12363055348396301, + -0.012178616598248482, + -0.08940556645393372, + 0.0018033534288406372, + 0.03925182297825813, + -0.02653134986758232, + -0.018556490540504456, + 0.026375677436590195, + -0.09278352558612823, + 0.01694541983306408, + 0.012202143669128418, + 0.010271896608173847, + -0.02886061742901802, + 0.03657793253660202, + 0.08312389999628067, + -0.010484747588634491, + -0.015864841639995575, + -0.0163906030356884, + -0.07271693646907806, + -0.023432716727256775, + 0.07284985482692719, + -0.0495089590549469, + -0.036293063312768936, + 0.03591129183769226, + -0.017441047355532646, + 0.012030897662043571, + -0.030306216329336166, + 0.011072250083088875, + 0.050925251096487045, + -0.05886799469590187, + 0.09645560383796692, + 0.015479094348847866, + -0.012519692070782185, + 0.03595249354839325, + -0.0164759811013937, + -0.03039535880088806, + 0.04172850400209427, + -0.04935479164123535, + 0.09674926102161407, + 0.048564258962869644, + -0.000288613693555817, + -0.0673631876707077, + -0.014889011159539223, + 0.0623813234269619, + 6.916932761669159e-05, + -0.08723580837249756, + 0.014711225405335426, + -0.008832443505525589, + 0.08853672444820404, + 0.0005101468414068222, + -0.05904746800661087, + 0.03553440421819687, + 0.07162363827228546, + 0.01699855551123619, + 0.019998032599687576, + 0.07644030451774597, + 0.07371202111244202, + -0.024670282378792763, + -0.013962291181087494, + 0.050953831523656845, + 0.09373202919960022, + 0.042279232293367386, + -0.028921708464622498, + 0.029026946052908897, + -0.012677819468080997, + -0.01491071842610836, + -0.053724255412817, + -0.02286776900291443, + -0.04822743311524391, + -0.07667197287082672, + -0.008525769226253033, + 0.00692553399130702, + 0.06857479363679886, + -0.0091291144490242, + 0.0035489723086357117, + 0.05871639400720596, + -0.03512198105454445, + 0.043976426124572754, + 0.040980033576488495, + -0.004412780050188303, + 0.01763414777815342, + -0.09585338830947876, + -0.020235881209373474, + 0.0206478089094162, + -0.020029375329613686, + 0.055878497660160065, + 0.06788526475429535, + 0.026739640161395073, + 0.018899738788604736, + 0.08721262216567993, + 0.0679880827665329, + 0.024675853550434113, + -0.04514288902282715, + -0.06802409142255783, + 0.11047828197479248, + 0.10541452467441559, + -0.06352011114358902, + 0.02776617370545864, + 0.029069572687149048, + 0.028467632830142975, + -0.019322458654642105, + -0.1172647774219513, + -0.04296399652957916, + -0.017716901376843452, + 0.05623961612582207, + 0.028697222471237183, + 0.09767939895391464, + 0.014171984046697617, + 0.0632934719324112, + 0.0728757306933403, + -0.015174215659499168, + -0.043012503534555435, + -0.05897904187440872, + 0.035041432827711105, + -0.0940159261226654, + 0.08481593430042267, + 0.06827917695045471, + 0.0398956835269928, + 0.027891317382454872, + 0.07555405795574188, + 0.020095162093639374, + -0.001981164328753948, + -0.03519681468605995, + -0.005365423858165741, + 0.004899994470179081, + 0.0011436042841523886, + 0.05051884427666664, + 0.0682157501578331, + 0.006879162043333054, + 0.10563625395298004, + 0.03429514169692993, + 0.02302711457014084, + -0.07805975526571274, + 0.03918889909982681, + 0.013640772551298141, + 0.02186778001487255, + -0.040986474603414536, + -0.05063813924789429, + 0.01307217963039875, + -0.05762668699026108, + -0.03132152184844017, + 0.012684009969234467, + 0.08698233962059021, + -0.0092921182513237, + -0.00035212747752666473, + 0.09546104073524475, + 0.048112861812114716, + -0.014029380865395069, + 0.026199499145150185, + -0.027232758700847626, + -0.02722012996673584, + 0.07394665479660034, + -0.1244584321975708, + -0.08965231478214264, + -0.017049642279744148, + 0.023505130782723427, + 0.024891991168260574, + 0.06786487996578217, + 0.09854506701231003, + -0.023347780108451843, + 0.03873459994792938, + 0.002268165349960327, + 0.007273775991052389, + -0.052528440952301025, + -0.05805787444114685, + -0.04761459678411484, + -0.07977532595396042, + -0.08394771814346313, + 0.06359367072582245, + -0.021463530138134956, + 0.07687333971261978, + -0.019330628216266632, + -0.030743122100830078, + -0.05443199723958969, + 0.022308409214019775, + 0.015683092176914215, + -0.039642155170440674, + 0.005122012458741665, + 0.09998506307601929, + 0.022308651357889175, + 0.001636601984500885, + 0.04902666062116623, + 0.06823647022247314, + -0.07573557645082474, + 0.019600939005613327, + -0.06206582486629486, + 0.08165790140628815, + 0.06261108070611954, + -0.033628933131694794, + -0.06303587555885315, + -0.08612208068370819, + -0.04926425963640213, + 0.06854651123285294, + -0.015825580805540085, + 0.001919277012348175, + 0.004753971006721258, + -0.02591554820537567, + -0.05505221709609032, + -0.06278872489929199, + 0.0532737672328949, + -0.042514581233263016, + -0.0005053229979239404, + -0.04744567722082138, + 0.008204679004848003, + 0.025649558752775192, + 0.06280621141195297, + -0.04345583915710449, + 0.05438661575317383, + 0.025178682059049606, + -0.018067140132188797, + 0.021471034735441208, + 0.058836158365011215, + 0.03464612364768982, + -0.03089158982038498, + -0.05643361061811447, + -0.06605249643325806, + 0.058067843317985535, + -0.046560630202293396, + 0.06214062124490738, + 0.026599962264299393, + -0.044281624257564545, + -0.043504875153303146, + 0.0005766376852989197, + -0.023025842383503914, + 0.022232720628380775, + 0.08538094162940979, + 0.07625876367092133, + 0.022420961409807205, + -0.014766862615942955, + 0.07176991552114487, + 0.03368942439556122, + 0.0020218826830387115, + -0.033641137182712555, + -0.009077683091163635, + -0.020941833034157753, + 0.03228991478681564, + 0.053042322397232056, + -0.09055463969707489, + 0.05898561328649521, + 0.00012491096276789904, + 0.022904491052031517, + 0.05739465355873108, + 0.04272972792387009, + 0.052329860627651215, + -0.07928024232387543 + ] + }, + "p244_099.wav": { + "name": "p244", + "embedding": [ + 0.04797389730811119, + 0.05731881782412529, + -0.01664837822318077, + 0.06621331721544266, + -0.037036310881376266, + 0.04248513653874397, + -0.09955631196498871, + 0.09833134710788727, + -0.028889445587992668, + 0.1185491755604744, + -0.08084610104560852, + 0.12563496828079224, + -0.04067962244153023, + -0.12601245939731598, + 0.020635247230529785, + 0.03957397863268852, + -0.0029155127704143524, + -0.018910743296146393, + -0.03386684134602547, + 0.003915635868906975, + 0.018154732882976532, + 0.024123037233948708, + 0.08103647828102112, + -0.04928715154528618, + 0.01759207621216774, + 0.06991182267665863, + 0.019663583487272263, + 0.07400402426719666, + 0.029341569170355797, + -0.07665659487247467, + -0.03882969543337822, + 0.06719779968261719, + -0.061870746314525604, + -0.006127007771283388, + 0.035242341458797455, + -0.0017320187762379646, + -0.01734486222267151, + -0.06741787493228912, + -0.014015083201229572, + 0.005804424174129963, + -0.06314443796873093, + 0.06655818223953247, + -0.011562912724912167, + -0.06722623109817505, + 0.029264191165566444, + 0.0032405396923422813, + -0.0038957998622208834, + -0.012525351718068123, + -0.12379302084445953, + 0.12770959734916687, + 0.034488823264837265, + 0.017717232927680016, + -0.05976395308971405, + -0.08137929439544678, + 0.08960846066474915, + 0.017543073743581772, + -0.07438570261001587, + -0.04093882441520691, + 0.0653700977563858, + 0.11880487203598022, + -0.033533886075019836, + -0.029918277636170387, + 0.04755759611725807, + 0.06378337740898132, + 0.1010880395770073, + 0.06463412195444107, + 0.07664380967617035, + 0.11635836958885193, + 0.0021344833076000214, + 0.024340124800801277, + 0.032780971378088, + 0.0974268764257431, + 0.009732979349792004, + 0.03125299885869026, + -0.013230005279183388, + 0.03494032844901085, + -0.036179449409246445, + 0.007988890632987022, + -0.005469565745443106, + -0.03135570511221886, + 0.026901038363575935, + -0.030528370290994644, + 0.03191215917468071, + 0.012297059409320354, + -0.03444536775350571, + 0.06359434872865677, + 0.03217943012714386, + -0.02028823085129261, + 0.05408889055252075, + -0.04371800273656845, + -0.020244712010025978, + 0.046688586473464966, + -0.08195452392101288, + -0.07157929986715317, + 0.0015675760805606842, + 0.011018885299563408, + 0.005806446075439453, + 0.08384741842746735, + 0.0452895313501358, + -0.02232355624437332, + 0.14760661125183105, + 0.04032951965928078, + -0.011120690032839775, + 0.01873120665550232, + -0.023098144680261612, + 0.10003713518381119, + 0.08632374554872513, + -0.014551489613950253, + 0.03517834469676018, + -0.0368342250585556, + 0.05442814156413078, + 0.05583671107888222, + -0.12702547013759613, + -0.0734264925122261, + 0.012456387281417847, + -0.006074516102671623, + -0.002131884451955557, + 0.10714790225028992, + -0.0018328316509723663, + 0.029803579673171043, + 0.12262587249279022, + -0.11412858963012695, + -0.05872868373990059, + 0.0019734473899006844, + 0.0458216667175293, + -0.04639827832579613, + 0.05771676450967789, + 0.05319635942578316, + -0.013182412832975388, + -0.0181103702634573, + 0.0763944685459137, + -0.024806607514619827, + -0.0013747243210673332, + 0.030301911756396294, + -0.0450468584895134, + 0.03634897619485855, + -0.05253252759575844, + -0.02253030613064766, + 0.09377595037221909, + 0.025862909853458405, + 0.0702534019947052, + -0.04127182438969612, + -0.024843038991093636, + -0.1249043419957161, + 0.03717726096510887, + 0.04913254454731941, + 0.06471754610538483, + -0.039670512080192566, + -0.05141894146800041, + -0.06116370111703873, + -0.07510469853878021, + 0.03804895281791687, + -0.008929936215281487, + 0.07653331756591797, + -0.03723600506782532, + 0.026008635759353638, + 0.0677201971411705, + -0.0020098406821489334, + -0.017148375511169434, + -0.05122039467096329, + -0.07550272345542908, + -0.008807705715298653, + 0.025530848652124405, + -0.05315689742565155, + -0.08590848743915558, + -0.04814942553639412, + 0.017998334020376205, + -0.03655826300382614, + 0.04605000466108322, + 0.018693581223487854, + 0.0278000608086586, + 0.011537164449691772, + -0.02198604680597782, + -0.010920695960521698, + -0.06340960413217545, + -0.03395809605717659, + -0.03288775309920311, + 0.009680969640612602, + -0.01693061739206314, + 0.08156916499137878, + 0.029080234467983246, + 0.06477776169776917, + -0.02653038315474987, + -0.04795694723725319, + -0.09764037281274796, + 0.053057290613651276, + 0.029055697843432426, + -0.0038898885250091553, + 0.046625442802906036, + 0.08647708594799042, + -0.02352616935968399, + 0.02273315191268921, + 0.03572075068950653, + 0.052214041352272034, + 0.0035590827465057373, + -0.008618451654911041, + -0.06136263906955719, + 0.11565394699573517, + 0.10002350807189941, + -0.06544682383537292, + -0.04990899935364723, + -0.03754248097538948, + -0.09936943650245667, + 0.06782529503107071, + -0.03666696697473526, + -0.010957189835608006, + 0.047450751066207886, + -0.04349039867520332, + -0.09827381372451782, + -0.08476640284061432, + 0.0804053246974945, + -0.03720587491989136, + -0.02907801792025566, + -0.07870368659496307, + 0.009352538734674454, + 0.058842990547418594, + 0.06708842515945435, + 0.011715766042470932, + 0.01123451255261898, + 0.03538103401660919, + -0.03175191953778267, + 0.019035685807466507, + 0.11148630082607269, + 0.010102298110723495, + -0.08917774260044098, + -0.02202148549258709, + -0.059331461787223816, + 0.05914332717657089, + -0.048362839967012405, + 0.10305222868919373, + 0.0019009602256119251, + -0.020299125462770462, + -0.07116810977458954, + 0.05938335880637169, + -0.031602777540683746, + 0.05474865436553955, + 0.03143714740872383, + 0.034149542450904846, + 0.03435913473367691, + -0.09433424472808838, + 0.1179744154214859, + 0.032009437680244446, + -0.02853197604417801, + -0.06957449018955231, + -0.050554729998111725, + -0.042635612189769745, + 0.02992558665573597, + 0.029597483575344086, + -0.07063183188438416, + -0.0011022929102182388, + 0.016902685165405273, + -0.02418183907866478, + 0.03027252107858658, + 0.1287989318370819, + 0.048080917447805405, + -0.07848779857158661 + ] + }, + "p244_050.wav": { + "name": "p244", + "embedding": [ + 0.05023301765322685, + 0.08407358825206757, + 0.012249777093529701, + -0.004582732915878296, + 0.00921735167503357, + 0.03914384916424751, + -0.1385028064250946, + 0.10706543177366257, + -0.038663528859615326, + 0.13633409142494202, + -0.10946248471736908, + 0.10321488231420517, + -0.06059561297297478, + -0.16560634970664978, + -0.03220677375793457, + 0.03134256973862648, + -0.012396692298352718, + 0.007105602882802486, + -0.009908203966915607, + -0.027424683794379234, + 0.04879109188914299, + 0.032814767211675644, + 0.0404229611158371, + -0.016135631129145622, + -0.02184418961405754, + 0.06487292796373367, + 0.001284771948121488, + 0.03454388305544853, + 0.024741049855947495, + -0.0221596360206604, + 0.007210791110992432, + 0.07492826879024506, + -0.014464574865996838, + 0.023417605087161064, + 0.047493986785411835, + 0.03747191280126572, + -0.028197024017572403, + -0.043357040733098984, + -0.00019876348960679024, + 0.0013277034740895033, + -0.05088428780436516, + 0.050801992416381836, + 0.006723180413246155, + -0.01704547181725502, + 0.07095968723297119, + -0.01579451374709606, + -0.01814933679997921, + -0.016627049073576927, + -0.08284677565097809, + 0.1097920835018158, + 0.0793813094496727, + 0.030496686697006226, + -0.06401565670967102, + -0.022432729601860046, + 0.09402446448802948, + -0.02061808668076992, + -0.10900342464447021, + -0.04879279062151909, + 0.07701753079891205, + 0.14399832487106323, + -0.04000835120677948, + -0.039612721651792526, + 0.0062844278290867805, + 0.06933045387268066, + -0.0021418731193989515, + 0.08384978026151657, + 0.11210405826568604, + 0.07143969088792801, + 0.0017284353962168097, + 0.01101828645914793, + 0.01896217092871666, + 0.056189291179180145, + 0.041943322867155075, + -0.03135531395673752, + 0.011549843475222588, + -0.01569194719195366, + -0.018923219293355942, + 0.023408878594636917, + -0.02063116803765297, + -0.04125453904271126, + -0.030472127720713615, + -0.021046843379735947, + -0.023883666843175888, + -0.008352704346179962, + -0.018687037751078606, + 0.019816428422927856, + 0.03232010453939438, + -0.01079557090997696, + 0.050949014723300934, + 0.0433989092707634, + -0.005060452502220869, + 0.024456534534692764, + -0.04327687621116638, + -0.061716478317976, + 0.0017756118904799223, + 0.007055922411382198, + -0.019221888855099678, + 0.07131462544202805, + 0.035756729543209076, + 0.01814980059862137, + 0.10414302349090576, + 0.023390082642436028, + -0.009977656416594982, + 0.002370603382587433, + -0.09756433218717575, + 0.09115295112133026, + 0.09864702075719833, + -0.04001914709806442, + 0.03529156744480133, + -0.05400681495666504, + 0.02995765022933483, + 0.07381685078144073, + -0.09159816801548004, + -0.026553085073828697, + 0.024876292794942856, + 0.03304285556077957, + 0.025642594322562218, + 0.09719684720039368, + 0.002858811989426613, + -0.0025673508644104004, + 0.11778514087200165, + -0.06069906800985336, + -0.08164152503013611, + -0.050629623234272, + 0.023459255695343018, + -0.06639887392520905, + 0.07500357180833817, + 0.0432649664580822, + 0.0249970443546772, + 0.007935889065265656, + 0.0689091831445694, + -0.003879968076944351, + -0.003371685743331909, + -0.03303280472755432, + -0.03112868033349514, + 0.005660293623805046, + -0.06665004789829254, + -0.0003721409884747118, + 0.03621627390384674, + 0.045871801674366, + 0.0525544099509716, + 0.03317507728934288, + -0.03997926786541939, + -0.08191762864589691, + -0.009530076757073402, + 0.05157766863703728, + 0.042967699468135834, + -0.02040005475282669, + -0.03236093372106552, + -0.04035399481654167, + -0.04318874701857567, + 0.01618031971156597, + -0.061329469084739685, + 0.08321692794561386, + -0.010404542088508606, + 0.01469092071056366, + 0.07953208684921265, + -0.020822763442993164, + -0.011731987819075584, + -0.07514123618602753, + -0.015800151973962784, + -0.002479126676917076, + 0.008888563141226768, + -0.09747322648763657, + -0.07021086663007736, + -0.03552898392081261, + 0.03687005490064621, + -0.011990826576948166, + 0.03773476183414459, + 0.048297666013240814, + -0.0001280568540096283, + 0.004878080449998379, + -0.059530820697546005, + 0.006472278386354446, + -0.11003661155700684, + -0.08119408041238785, + -0.007553338073194027, + -0.025208037346601486, + 0.029597129672765732, + 0.06932783126831055, + -0.007433533668518066, + 0.011366916820406914, + -0.017465949058532715, + -0.10035966336727142, + -0.10316044092178345, + 0.06292540580034256, + 0.06025577336549759, + 0.0047773150727152824, + 0.04025264084339142, + 0.03914668411016464, + -0.04787943884730339, + 0.07229110598564148, + 0.02674618922173977, + 0.09172123670578003, + -0.04650774225592613, + 0.02007182314991951, + -0.05496493726968765, + 0.026629026979207993, + 0.1155325397849083, + -0.06653355062007904, + -0.08573679625988007, + -0.05051653832197189, + -0.06250812858343124, + 0.039306141436100006, + -0.028587397187948227, + -0.03125658631324768, + 0.01702810451388359, + -0.04568246006965637, + -0.09682674705982208, + -0.08427475392818451, + 0.048536404967308044, + -0.02547849714756012, + -0.001573527930304408, + -0.07549740374088287, + 0.05138392373919487, + 0.037759825587272644, + 0.02291359379887581, + -0.019467901438474655, + 0.017523251473903656, + 0.009189575910568237, + -0.05531178042292595, + -0.01360197365283966, + 0.016984183341264725, + 0.03654772788286209, + -0.0690145492553711, + -0.0010855160653591156, + -0.08244650065898895, + 0.06669095903635025, + -0.061314743012189865, + 0.08719583600759506, + -0.003984938375651836, + -0.037146057933568954, + -0.048084571957588196, + 0.0083693265914917, + 0.003241797909140587, + 0.03946899622678757, + 0.02690153382718563, + 0.043775223195552826, + 0.0009269304573535919, + -0.08752890676259995, + 0.0961446464061737, + 0.037892162799835205, + 0.003973602317273617, + -0.05850657448172569, + -0.02105182409286499, + -0.059252798557281494, + -0.0024594441056251526, + -0.019940117374062538, + -0.08833538740873337, + -0.01831350475549698, + -0.008458632044494152, + 0.0074912733398377895, + 0.03735307604074478, + 0.11042550206184387, + 0.013948485255241394, + -0.09502600878477097 + ] + }, + "p244_403.wav": { + "name": "p244", + "embedding": [ + 0.0377490296959877, + 0.0732356607913971, + -0.019850432872772217, + 0.0333767831325531, + -0.07099741697311401, + 0.05619765818119049, + -0.1509312242269516, + 0.1263742446899414, + -0.027428142726421356, + 0.1251850426197052, + -0.04978351294994354, + 0.1028362438082695, + -0.002218975918367505, + -0.22137275338172913, + 0.006918236147612333, + 0.0729297548532486, + -0.014897100627422333, + -0.022236498072743416, + -0.031686216592788696, + -0.025594644248485565, + 0.018437325954437256, + 0.05417141318321228, + 0.020603956654667854, + -0.017678197473287582, + 0.06263827532529831, + 0.055562734603881836, + -0.02087223157286644, + 0.01868341863155365, + -0.01220864336937666, + -0.048225805163383484, + -0.05367189645767212, + 0.09862232953310013, + -0.06352758407592773, + -0.008043133653700352, + 0.05733560770750046, + -0.011390184983611107, + -0.012570415623486042, + -0.04948428273200989, + -0.02673189342021942, + 0.024310864508152008, + -0.059616900980472565, + 0.09221051633358002, + 0.06049450486898422, + -0.0023746411316096783, + 0.05961926281452179, + 0.015207107178866863, + -0.007485062815248966, + -0.05887911468744278, + -0.11336857080459595, + 0.15759360790252686, + 0.04255159944295883, + -0.01151873730123043, + -0.07437939941883087, + -0.0654408186674118, + 0.09553039073944092, + -0.0043128496035933495, + -0.10397833585739136, + -0.04489545151591301, + 0.08238612115383148, + 0.1481323093175888, + -0.004289031028747559, + -0.03150048106908798, + 0.026212798431515694, + 0.09638091921806335, + 0.039877258241176605, + 0.10572708398103714, + 0.04421164095401764, + 0.09841453284025192, + -0.0050971657037734985, + 0.012710859067738056, + 0.06164707988500595, + 0.05109027028083801, + 0.010820966213941574, + -0.04045774042606354, + 0.01703864522278309, + 0.009230081923305988, + -0.030867155641317368, + -0.001352402614429593, + 0.001722430344671011, + 0.009927773848176003, + -0.0018683752277866006, + 0.003392999991774559, + 0.015851695090532303, + 0.011007177643477917, + -0.0496663823723793, + 0.03806179761886597, + 0.049583856016397476, + 0.016059570014476776, + 0.07973407208919525, + 0.03753602132201195, + -0.011931311339139938, + 0.05727504938840866, + -0.0767231434583664, + -0.07214605063199997, + 0.03396015614271164, + 0.016391996294260025, + -0.0017494803760200739, + 0.06703546643257141, + 0.03006320632994175, + -0.01927153207361698, + 0.12514999508857727, + 0.055862873792648315, + 0.002293237717822194, + 0.0503060556948185, + -0.08753368258476257, + 0.1179405152797699, + 0.07085679471492767, + -0.0001921962248161435, + 0.08866031467914581, + -0.04881196469068527, + 0.07010506093502045, + 0.06854349374771118, + -0.14733177423477173, + -0.05160451680421829, + 0.0433259978890419, + 0.007557045668363571, + -0.021415123715996742, + 0.15008965134620667, + 0.006820023991167545, + 0.01624210737645626, + 0.0982942134141922, + -0.11900971829891205, + -0.07204529643058777, + -0.0007706643082201481, + 0.0513414591550827, + -0.10332310944795609, + 0.04690876230597496, + 0.06416155397891998, + -0.040872395038604736, + 0.019163815304636955, + 0.06826205551624298, + 0.0007301387377083302, + 0.041555047035217285, + 0.008249817416071892, + -0.01041487231850624, + 0.03226141631603241, + -0.022251099348068237, + 0.007512851618230343, + 0.06927990168333054, + 0.00921021867543459, + 0.05257350206375122, + -0.013672875240445137, + -0.017679965123534203, + -0.13836930692195892, + 0.008151741698384285, + 0.03629102557897568, + 0.08736777305603027, + -0.02026567980647087, + -0.009210661053657532, + -0.06033314764499664, + -0.11327636986970901, + 0.028572317212820053, + -0.008258670568466187, + 0.09571856260299683, + -0.003611412364989519, + -0.005928050726652145, + 0.10117276757955551, + 0.04710693657398224, + -0.006630953401327133, + -0.051499143242836, + -0.04675263911485672, + 0.0014382260851562023, + 0.05600534379482269, + -0.08773181587457657, + -0.06035488471388817, + -0.016414295881986618, + 0.022271832451224327, + -0.02416715770959854, + 0.039517588913440704, + 0.04905982315540314, + 0.03403179347515106, + 0.043375611305236816, + -0.09376996755599976, + 0.022426482290029526, + -0.09017930179834366, + -0.0545673742890358, + -0.028377365320920944, + -0.002430593129247427, + -0.03984657675027847, + 0.10902615636587143, + 0.022513747215270996, + 0.035332273691892624, + -0.030425477772951126, + -0.0381329171359539, + -0.06094350665807724, + 0.058856137096881866, + 0.04914209246635437, + -0.010538293980062008, + 0.048013120889663696, + 0.04214265197515488, + -0.06385670602321625, + 0.04088686406612396, + 0.07497887313365936, + 0.08795854449272156, + -0.01327254343777895, + 0.03594272583723068, + -0.044732414186000824, + 0.10898943990468979, + 0.08237890899181366, + -0.08857299387454987, + -0.08345945179462433, + -0.017827525734901428, + -0.06994134187698364, + 0.04780062288045883, + -0.02667645923793316, + 0.0025994793977588415, + 0.014067212119698524, + -0.00599027331918478, + -0.07769648730754852, + -0.09515123814344406, + 0.05552405118942261, + -0.043748997151851654, + -0.014083610847592354, + -0.07232087850570679, + 0.046409305185079575, + 0.0833406001329422, + 0.04265587031841278, + -0.03337465226650238, + -0.037892088294029236, + 0.052113085985183716, + -0.04029715806245804, + 0.00981439184397459, + 0.08255501091480255, + 0.03312237560749054, + -0.10218776762485504, + 0.00043972209095954895, + -0.06067749112844467, + 0.09044945240020752, + -0.047911547124385834, + 0.16199392080307007, + 0.015095770359039307, + -0.05655485391616821, + -0.06871742010116577, + 0.03671246021986008, + -0.003715657629072666, + 0.03331994637846947, + 0.025603413581848145, + 0.06348010897636414, + 0.06485005468130112, + -0.019126396626234055, + 0.09705483168363571, + 0.037519216537475586, + -0.028215497732162476, + -0.033869847655296326, + -0.02794579043984413, + -0.04226047545671463, + 0.048254698514938354, + 0.012315713800489902, + -0.11845612525939941, + -0.0005446719587780535, + 0.04830523207783699, + -0.0038991388864815235, + 0.046570613980293274, + 0.1376451700925827, + 0.0616631954908371, + -0.13084611296653748 + ] + }, + "p244_051.wav": { + "name": "p244", + "embedding": [ + 0.045718200504779816, + 0.07814808189868927, + -0.022502843290567398, + 0.0345439612865448, + -0.051323942840099335, + 0.071048803627491, + -0.12195656448602676, + 0.1288100779056549, + 0.006800434552133083, + 0.13863827288150787, + -0.056577168405056, + 0.11115185916423798, + -0.013747458346188068, + -0.14130006730556488, + -0.00955258123576641, + 0.030395613983273506, + -0.0014988072216510773, + 0.018854573369026184, + -0.07543803751468658, + -0.030781254172325134, + 0.03106451779603958, + 0.04985269159078598, + 0.06654403358697891, + -0.07023470103740692, + 0.03807223588228226, + 0.04907004535198212, + -0.004326869733631611, + 0.060035914182662964, + 0.008692435920238495, + -0.10099340230226517, + -0.016854148358106613, + 0.11121881008148193, + -0.0654132142663002, + 0.029565026983618736, + 0.02955807000398636, + -0.039671700447797775, + -0.02099781297147274, + -0.032290175557136536, + -0.005050659645348787, + 0.01921827904880047, + -0.002769326791167259, + 0.07135940343141556, + 0.020010901615023613, + -0.002847805619239807, + 0.04927193373441696, + 0.014986333437263966, + -0.03531285747885704, + -0.03632693737745285, + -0.09852772951126099, + 0.16049720346927643, + 0.026491917669773102, + -0.002244291827082634, + -0.09792020171880722, + -0.05734919384121895, + 0.080751933157444, + -0.035606399178504944, + -0.09206739813089371, + -0.054172586649656296, + 0.0593574121594429, + 0.1254468709230423, + -0.01763366535305977, + -0.05385550111532211, + 0.026340872049331665, + 0.08332055807113647, + 0.061912551522254944, + 0.06390613317489624, + 0.09732405841350555, + 0.11813553422689438, + -0.016838407143950462, + 0.040032822638750076, + -0.022121939808130264, + 0.08001182973384857, + 0.03151440620422363, + 0.026716018095612526, + 0.016527488827705383, + -0.0277165025472641, + 0.011138040572404861, + -0.01962466537952423, + -0.04782872274518013, + -0.02105182409286499, + 0.012222223915159702, + 0.013110589236021042, + 0.03360828384757042, + 0.010957952588796616, + -0.047239482402801514, + 0.0485336109995842, + 0.03982091695070267, + -0.024835579097270966, + 0.06507693231105804, + 0.014884350821375847, + 0.004096033982932568, + 0.04506729543209076, + -0.09053198993206024, + -0.08962118625640869, + 0.008276755921542645, + 0.007184777408838272, + 0.012478053569793701, + 0.03677140176296234, + 0.0197935588657856, + -0.014974843710660934, + 0.11253708600997925, + 0.028747625648975372, + -0.030179714784026146, + 0.027362504974007607, + -0.06210380047559738, + 0.1302015632390976, + 0.09526360034942627, + 0.0033987753558903933, + 0.05254428833723068, + -0.07106545567512512, + 0.04407435655593872, + 0.03023122251033783, + -0.10974492877721786, + -0.0793764740228653, + -0.01271610613912344, + -0.005240126047283411, + -0.024861207231879234, + 0.10951578617095947, + -0.0011123642325401306, + 0.04358101636171341, + 0.11311906576156616, + -0.09732146561145782, + -0.030524391680955887, + 0.012786861509084702, + 0.03871888667345047, + -0.0693420022726059, + 0.026883520185947418, + 0.024641642346978188, + -0.010376667603850365, + 0.02571887895464897, + 0.07903122156858444, + 0.0032168482430279255, + 0.03503262996673584, + 0.03094591572880745, + -0.05997152626514435, + 0.03157106041908264, + -0.030329175293445587, + -0.011543367058038712, + 0.05789976567029953, + 0.060659561306238174, + 0.10066156089305878, + -0.03530433773994446, + -0.03605501353740692, + -0.10295362770557404, + 0.01207150612026453, + 0.008135126903653145, + 0.053194694221019745, + -0.02623765729367733, + 0.0026844320818781853, + -0.04492941126227379, + -0.07102026045322418, + 0.05340743437409401, + 0.0024783103726804256, + 0.07553350925445557, + -0.011634002439677715, + 0.011383520439267159, + 0.1108168438076973, + 0.034075766801834106, + 0.00588107667863369, + -0.06093894690275192, + -0.036231156438589096, + -0.024960467591881752, + 0.03524819388985634, + -0.0733175054192543, + -0.0526459738612175, + 0.0024429571349173784, + 0.023876946419477463, + -0.04030609875917435, + 0.07071715593338013, + 0.06764596700668335, + 0.028779897838830948, + 0.03869398683309555, + -0.012509806081652641, + -0.03194332495331764, + -0.04880797863006592, + -0.05567163974046707, + 0.00893435813486576, + -0.00252919876947999, + -0.05981268733739853, + 0.08401110768318176, + 0.035109564661979675, + 0.05701560899615288, + -0.03525567427277565, + -0.04844788461923599, + -0.10192984342575073, + 0.051501646637916565, + 0.012331448495388031, + -0.02791045419871807, + 0.035872284322977066, + 0.03841182589530945, + -0.05187975615262985, + 0.06851222366094589, + 0.09011781960725784, + 0.05522051453590393, + -0.03169730678200722, + 0.008116046898066998, + -0.0959625095129013, + 0.1069781631231308, + 0.11132871359586716, + -0.0743902251124382, + -0.09637438505887985, + -0.03360144793987274, + -0.09452845901250839, + 0.029925107955932617, + -0.03429165109992027, + -0.02270779386162758, + 0.06702468544244766, + 0.001764132408425212, + -0.1091214120388031, + -0.07458578050136566, + 0.06920494139194489, + -0.07603760063648224, + -0.002438775496557355, + -0.0638931393623352, + 0.030917895957827568, + 0.07071851193904877, + 0.03271857649087906, + -0.013270213268697262, + -0.029767053201794624, + 0.06868032366037369, + -0.04773161560297012, + 0.032205693423748016, + 0.06881655752658844, + 0.03367075324058533, + -0.05578242987394333, + -0.012317117303609848, + -0.04807884618639946, + 0.00622282549738884, + -0.01894450932741165, + 0.13298092782497406, + 0.027140147984027863, + -0.038350049406290054, + -0.050428710877895355, + 0.06762756407260895, + -0.06128579378128052, + 0.05508648231625557, + 0.019695326685905457, + 0.03885522484779358, + 0.06511763483285904, + -0.07835085690021515, + 0.11472852528095245, + 0.03113851509988308, + -0.061922840774059296, + -0.08783504366874695, + -0.07309067249298096, + -0.04796215146780014, + 0.04110460728406906, + 0.03031926602125168, + -0.08058655261993408, + -0.012373680248856544, + 0.03283856064081192, + -0.009387717582285404, + 0.05421913415193558, + 0.11533720791339874, + 0.06810104846954346, + -0.08834759145975113 + ] + }, + "p244_346.wav": { + "name": "p244", + "embedding": [ + 0.07210871577262878, + 0.11166694760322571, + -0.026589415967464447, + 0.030031569302082062, + -0.05290517210960388, + 0.06579455733299255, + -0.12648563086986542, + 0.13862329721450806, + -0.025357862934470177, + 0.14204758405685425, + -0.06121651083230972, + 0.1268324851989746, + -0.01438700221478939, + -0.16671913862228394, + -0.031155217438936234, + 0.05034483224153519, + -0.057185109704732895, + -0.027700150385499, + -0.03843969106674194, + -0.029972784221172333, + 0.025088196620345116, + 0.04572126269340515, + 0.033618099987506866, + 0.010355454869568348, + 0.03802390769124031, + 0.08006399869918823, + -0.012983969412744045, + 0.030424833297729492, + 0.0018929843790829182, + -0.06949885189533234, + -0.05493546277284622, + 0.1018865630030632, + -0.05870597064495087, + 0.016578517854213715, + 0.04055076837539673, + -0.016119560226798058, + -0.0006655063480138779, + -0.06159809231758118, + -0.019451359286904335, + 0.015043022111058235, + -0.035419102758169174, + 0.07804234325885773, + 0.02223268151283264, + -0.030461439862847328, + 0.03514702618122101, + 0.012019072659313679, + -0.007501565385609865, + -0.04286115616559982, + -0.10102902352809906, + 0.1699438989162445, + 0.07436004281044006, + -0.00016392780526075512, + -0.0704466700553894, + -0.0563688799738884, + 0.09077860414981842, + -0.011636397801339626, + -0.11089707165956497, + -0.023114528506994247, + 0.05805956572294235, + 0.13712985813617706, + -0.02690938301384449, + -0.042380958795547485, + 0.03662398084998131, + 0.13466346263885498, + 0.067609503865242, + 0.08088449388742447, + 0.07952743768692017, + 0.11223019659519196, + -0.04120715335011482, + 0.023579660803079605, + 0.0641297996044159, + 0.0662492960691452, + 0.08014080673456192, + -0.013523911125957966, + 0.02260228991508484, + -0.015035864897072315, + -0.01987355761229992, + -0.015860063955187798, + -0.01458186749368906, + -0.027581356465816498, + -0.01184071321040392, + -0.0022914642468094826, + 0.0015340391546487808, + 0.03595581278204918, + -0.03148810192942619, + 0.05267483741044998, + 0.05145016312599182, + -0.028606746345758438, + 0.0662049800157547, + 0.050139352679252625, + 0.02193133346736431, + 0.06545385718345642, + -0.08312764763832092, + -0.08141277730464935, + 0.050871506333351135, + 0.0019451389089226723, + 0.040741316974163055, + 0.07857110351324081, + 0.05487683415412903, + -0.012801513075828552, + 0.10977913439273834, + 0.056246720254421234, + -0.0006764865247532725, + 0.009939451701939106, + -0.08667836338281631, + 0.13208161294460297, + 0.103082075715065, + -0.04022331163287163, + 0.05104866623878479, + -0.03539847582578659, + 0.07707816362380981, + 0.07098853588104248, + -0.1389017254114151, + -0.07217241823673248, + 0.025976743549108505, + 0.009854231961071491, + -0.008709657937288284, + 0.0991295576095581, + 0.003028789535164833, + 0.049470946192741394, + 0.09339207410812378, + -0.08505438268184662, + -0.04880012199282646, + -0.03519634157419205, + 0.04732624068856239, + -0.10224151611328125, + 0.06668078899383545, + 0.06605608761310577, + -0.010493254289031029, + 3.6819837987422943e-06, + 0.07942492514848709, + -0.009084750898182392, + -0.005228916648775339, + 0.009002912789583206, + -0.033270735293626785, + 0.008502000942826271, + -0.014110216870903969, + 0.01087709330022335, + 0.024162493646144867, + 0.014641442336142063, + 0.03536529839038849, + -0.010668939910829067, + -0.011433234438300133, + -0.11826251447200775, + 0.03521667793393135, + 0.04551813751459122, + 0.06312485039234161, + -0.01719171553850174, + -0.0330636128783226, + -0.01640160381793976, + -0.06579912453889847, + 0.024562742561101913, + -0.009991688653826714, + 0.051906682550907135, + -0.022704631090164185, + -0.0007774537662044168, + 0.11164286732673645, + 0.038637712597846985, + -1.3448763638734818e-05, + -0.04170120507478714, + -0.022312477231025696, + 0.025479204952716827, + 0.059130266308784485, + -0.09289409220218658, + -0.09222902357578278, + -0.01051497831940651, + 0.012984300032258034, + -0.014248975552618504, + 0.07088484615087509, + 0.05621228367090225, + 0.003572426037862897, + 0.024213973432779312, + -0.061184998601675034, + 0.006932617165148258, + -0.10452644526958466, + -0.07151442021131516, + -0.020617865025997162, + -0.03697817400097847, + -0.021631551906466484, + 0.0833590179681778, + 0.022454526275396347, + 0.055356234312057495, + -0.03631935268640518, + -0.05389655381441116, + -0.06547439098358154, + 0.05798552185297012, + 0.07042905688285828, + 0.0003022877499461174, + 0.03276430815458298, + 0.05818331614136696, + -0.013985903933644295, + 0.049035146832466125, + 0.060382381081581116, + 0.10376324504613876, + -0.03490917384624481, + 0.01874351128935814, + -0.0734420046210289, + 0.077022023499012, + 0.08631910383701324, + -0.09909568727016449, + -0.09585420787334442, + -0.04311494529247284, + -0.06203712522983551, + 0.026148581877350807, + -0.029802629724144936, + 0.016733741387724876, + 0.034567661583423615, + -0.008480810560286045, + -0.08948124945163727, + -0.11097423732280731, + 0.10051584243774414, + -0.0623873770236969, + -0.0011464687995612621, + -0.08466720581054688, + 0.0560152530670166, + 0.07863102853298187, + 0.036488354206085205, + -0.042816877365112305, + 0.00606294721364975, + 0.04221480339765549, + -0.01655549183487892, + 0.00408388115465641, + 0.05716034024953842, + 0.04579092562198639, + -0.11718948185443878, + -0.004729651380330324, + -0.06429540365934372, + 0.07563677430152893, + -0.05978791415691376, + 0.15995538234710693, + 0.010114320553839207, + -0.054568588733673096, + -0.08873523771762848, + 0.05909750610589981, + -0.019260264933109283, + 0.04408474639058113, + 0.03442694619297981, + 0.055299047380685806, + 0.030035164207220078, + -0.07887953519821167, + 0.10196585953235626, + 0.04201589152216911, + -0.03978707641363144, + -0.07471296191215515, + -0.04805316776037216, + -0.03540157899260521, + 0.04803115129470825, + 0.020751869305968285, + -0.08235003054141998, + -0.01914026215672493, + 0.017218807712197304, + -0.0037166166584938765, + 0.07060544192790985, + 0.151498943567276, + 0.061921000480651855, + -0.11944206804037094 + ] + }, + "p244_280.wav": { + "name": "p244", + "embedding": [ + 0.060478486120700836, + 0.07014969736337662, + -0.0003303766716271639, + 0.03782152011990547, + -0.03082103468477726, + 0.07061322778463364, + -0.1573628932237625, + 0.12538211047649384, + -0.03756590187549591, + 0.13343311846256256, + -0.061775628477334976, + 0.09434889256954193, + -0.012579934671521187, + -0.18807080388069153, + -0.0476452074944973, + 0.06009714677929878, + -0.04862841218709946, + -0.030980505049228668, + -0.030674036592245102, + -0.0053529394790530205, + 0.02953764982521534, + 0.047824740409851074, + 0.037942495197057724, + 0.005611931439489126, + 0.04103648662567139, + 0.045796703547239304, + 0.0025880367029458284, + 0.06205648556351662, + 0.017863420769572258, + -0.05217069387435913, + -0.008744262158870697, + 0.11043752729892731, + -0.04434295743703842, + 0.012487146072089672, + 0.04547634348273277, + 0.01933441311120987, + 0.003564878599718213, + -0.0836782157421112, + -0.03571081534028053, + -0.0026182434521615505, + -0.057573460042476654, + 0.07964299619197845, + 0.048467136919498444, + -0.005043788347393274, + 0.034075137227773666, + 0.010259522125124931, + -0.01572520099580288, + -0.06692887842655182, + -0.12203095853328705, + 0.16736356914043427, + 0.04114377498626709, + 0.03100799024105072, + -0.07878031581640244, + -0.08628706634044647, + 0.10114747285842896, + -0.009735843166708946, + -0.11582085490226746, + -0.03876187652349472, + 0.08211887627840042, + 0.19482824206352234, + -0.032070789486169815, + -0.03762795031070709, + 0.03315575793385506, + 0.11731021106243134, + 0.07215867936611176, + 0.08511636406183243, + 0.09045302867889404, + 0.11017961800098419, + 0.01949392817914486, + -0.0006871321238577366, + 0.05344098061323166, + 0.0596701018512249, + 0.03936806321144104, + -0.0022030463442206383, + 0.016414135694503784, + 0.02472023293375969, + -0.028909089043736458, + 0.0037146545946598053, + -0.013230424374341965, + 0.0028750647325068712, + 0.005122964736074209, + 0.013863536529242992, + 0.01978185586631298, + 0.05334577336907387, + -0.04296736791729927, + 0.045819856226444244, + 0.0030826441943645477, + -0.015915557742118835, + 0.06957364082336426, + 0.01776098646223545, + 0.010859650559723377, + 0.05378272384405136, + -0.057663775980472565, + -0.09368374943733215, + 0.004344256594777107, + 0.008660512045025826, + 0.011232402175664902, + 0.05625608190894127, + 0.03634929656982422, + -0.034326665103435516, + 0.12762080132961273, + 0.0305621474981308, + -0.015298018231987953, + 0.03482647240161896, + -0.09564433246850967, + 0.09422804415225983, + 0.07521044462919235, + -0.0016128204297274351, + 0.0644950419664383, + -0.05217842757701874, + 0.05746022239327431, + 0.077559694647789, + -0.15510886907577515, + -0.07660350203514099, + 0.07537676393985748, + 0.038983121514320374, + 0.003099447349086404, + 0.14587566256523132, + 0.0094251474365592, + 0.03234625980257988, + 0.0948590487241745, + -0.09525232762098312, + -0.04483780264854431, + -0.007484804838895798, + 0.0642944797873497, + -0.07523420453071594, + 0.041439399123191833, + 0.034983936697244644, + -0.028654197230935097, + -0.01614030823111534, + 0.07284779846668243, + -0.0013894164003431797, + -0.00017082225531339645, + -0.010916239582002163, + -0.039183609187603, + 0.04822877049446106, + -0.03047354519367218, + -0.0013511828146874905, + 0.0478319376707077, + 0.0468166247010231, + 0.030552595853805542, + 0.011445598676800728, + -0.07172305881977081, + -0.14100781083106995, + -0.009380286559462547, + 0.04078041762113571, + 0.09323626756668091, + -0.0193291325122118, + -0.021773088723421097, + -0.059698499739170074, + -0.05373607575893402, + 0.04152636229991913, + -0.010325471870601177, + 0.09380179643630981, + 0.0008813398890197277, + -0.011472019366919994, + 0.09109489619731903, + -0.006185851059854031, + 0.011839545331895351, + -0.026966169476509094, + -0.02594616636633873, + 0.0022142822854220867, + 0.042140789330005646, + -0.06941162049770355, + -0.05290977656841278, + 0.011227907612919807, + 0.038221877068281174, + -0.019123263657093048, + 0.03171005845069885, + 0.025507617741823196, + 0.02013111114501953, + 0.034457430243492126, + -0.055262792855501175, + -0.002053313422948122, + -0.11382970213890076, + -0.06424825638532639, + 0.018081890419125557, + 0.007068316452205181, + -0.011743100360035896, + 0.0919254720211029, + 0.03653419762849808, + 0.05397625267505646, + -0.014124181121587753, + -0.07891079783439636, + -0.06933921575546265, + 0.0627862885594368, + 0.06671788543462753, + 0.003754342906177044, + 0.03462069109082222, + 0.04744644835591316, + -0.01629844680428505, + 0.05497806519269943, + 0.06399870663881302, + 0.09277167916297913, + -0.008421486243605614, + 0.0008284798823297024, + -0.07660794258117676, + 0.10520949959754944, + 0.07809194177389145, + -0.07596531510353088, + -0.07989215850830078, + -0.00189402315299958, + -0.07995735108852386, + 0.03510107845067978, + -0.018750691786408424, + 0.022173797711730003, + 0.021866794675588608, + -0.02222725749015808, + -0.10737795382738113, + -0.09425497055053711, + 0.07138977944850922, + -0.07614212483167648, + -0.018508248031139374, + -0.07459993660449982, + 0.03939858078956604, + 0.10009239614009857, + 0.04365496709942818, + 0.009761950932443142, + -0.015313250944018364, + 0.03632032871246338, + -0.0698617547750473, + -0.023288385942578316, + 0.06016835197806358, + -0.0010722246952354908, + -0.12363427132368088, + 0.005966808646917343, + -0.07906326651573181, + 0.06645837426185608, + -0.04923289269208908, + 0.15301790833473206, + 0.0033569803927093744, + -0.06137098744511604, + -0.08379287272691727, + 0.012940006330609322, + -0.025993112474679947, + 0.058549702167510986, + 0.029668355360627174, + 0.07477380335330963, + 0.05629333108663559, + -0.05086246877908707, + 0.10138367116451263, + 0.04571443423628807, + -0.03205813467502594, + -0.06697387993335724, + -0.05641714483499527, + -0.028425320982933044, + 0.023195780813694, + -0.016321396455168724, + -0.07328684628009796, + -0.008601004257798195, + 0.03166140615940094, + -0.0185615886002779, + 0.03842851147055626, + 0.12477824836969376, + 0.05128330737352371, + -0.12961441278457642 + ] + }, + "p244_065.wav": { + "name": "p244", + "embedding": [ + 0.007054517976939678, + 0.08852758258581161, + -0.0030881152488291264, + 0.0636865422129631, + -0.02267257496714592, + -0.024485107511281967, + -0.11980750411748886, + 0.05317477136850357, + 0.028464192524552345, + 0.08153848350048065, + -0.03808337822556496, + 0.08043301105499268, + -0.049214012920856476, + -0.1045268103480339, + 0.011294144205749035, + 0.007210413925349712, + 0.04944579675793648, + 0.012070726603269577, + 0.05308769270777702, + -0.00642412668094039, + -0.012724775820970535, + 0.014442275278270245, + -0.05375155061483383, + 0.010946331545710564, + -0.017190538346767426, + 0.00409560464322567, + -0.03997906297445297, + 0.030390020459890366, + -0.02666877582669258, + -0.03509528934955597, + 0.023254292085766792, + 0.024275124073028564, + -0.03428839519619942, + -0.00648182537406683, + -0.006953302770853043, + 0.020122431218624115, + -0.01958870142698288, + -0.019027702510356903, + -0.033361345529556274, + -0.053111203014850616, + -0.06355586647987366, + 0.007037436589598656, + 0.024053290486335754, + -0.041075557470321655, + 0.01932276040315628, + 0.04714740812778473, + -0.02205568179488182, + -0.007933729328215122, + -0.03981979936361313, + 0.06050863116979599, + 0.007435048930346966, + 0.09415753185749054, + -0.04852147772908211, + -0.04339141398668289, + 0.08928994089365005, + 0.032963402569293976, + 0.022321002557873726, + -0.009264932945370674, + 0.008072290569543839, + 0.08619340509176254, + 0.02580038085579872, + 0.0016125477850437164, + 0.05168456584215164, + 0.03864423930644989, + 0.021270928904414177, + 0.018495289608836174, + 0.05618312954902649, + 0.04735862463712692, + -0.024951014667749405, + -0.015342317521572113, + 0.032533105462789536, + 0.02854267694056034, + -0.003760816529393196, + 0.024109598249197006, + -0.01245660986751318, + 0.05564098805189133, + 0.0069576771929860115, + 0.052089814096689224, + -0.039382994174957275, + -0.007599366828799248, + -0.005017128773033619, + 0.02545362338423729, + 0.012090643867850304, + -0.003604564815759659, + -0.04543128237128258, + -0.044524699449539185, + 0.07269853353500366, + 0.03109152987599373, + 0.02478325180709362, + -0.0010882458882406354, + 0.04931827634572983, + 0.011062037199735641, + -0.07306485623121262, + -0.006963550113141537, + 0.029459502547979355, + -0.014439661987125874, + 0.05608278140425682, + 0.006197329610586166, + 0.004131363704800606, + -0.0008229962550103664, + 0.06696853786706924, + -0.038628462702035904, + 0.04334733635187149, + -0.01070895604789257, + -0.04666449502110481, + -0.00774046778678894, + 0.009578716941177845, + 0.011090116575360298, + 0.062096551060676575, + -0.005763772875070572, + 0.025457151234149933, + 0.07299954444169998, + -0.05411238968372345, + -0.036584626883268356, + 0.040011610835790634, + 0.08659297227859497, + -0.026051782071590424, + 0.105359748005867, + 0.012498749420046806, + 0.03378230705857277, + 0.03779051452875137, + -0.008045244961977005, + -0.04387284070253372, + 0.001744009554386139, + 0.018662968650460243, + -0.01628388836979866, + 0.060004279017448425, + 0.01878431998193264, + -0.026796922087669373, + -0.05688052996993065, + 0.04540418088436127, + -0.013780368492007256, + -0.006090857088565826, + -0.020738810300827026, + 0.03176988288760185, + -0.040732331573963165, + 0.05360192060470581, + -0.05600165203213692, + -0.018467068672180176, + 0.04460231214761734, + -0.021325290203094482, + -0.002376510761678219, + -0.010872955434024334, + -0.08862053602933884, + 0.019667156040668488, + 0.017193248495459557, + 0.00880078598856926, + 0.07495932281017303, + -0.07368112355470657, + -0.09551052004098892, + -0.02687603235244751, + 0.01950133591890335, + -0.011110908351838589, + 0.06437593698501587, + 0.07642767578363419, + 0.03576076775789261, + 0.026395520195364952, + -0.00975878443568945, + 0.016826525330543518, + 0.030054941773414612, + -0.12074629962444305, + -0.004736792296171188, + 0.003714575432240963, + 0.035051919519901276, + -0.021945547312498093, + 0.008539482951164246, + 0.02285677008330822, + -0.016836900264024734, + 0.008142596110701561, + 0.03265974298119545, + 0.03339824825525284, + 0.03713845834136009, + -0.11179555952548981, + -0.006665410939604044, + -0.041757918894290924, + -0.08026179671287537, + 0.028926577419042587, + 0.020995359867811203, + 0.004242144525051117, + 0.024909673258662224, + 0.044699542224407196, + 0.010940499603748322, + -0.030128225684165955, + -0.02363281510770321, + -0.04188314825296402, + -0.005710013676434755, + 0.0007939375936985016, + -0.0037873294204473495, + -0.010398989543318748, + 0.0022998731583356857, + 0.02183486893773079, + 0.02785884588956833, + 0.01234511286020279, + 0.044538822025060654, + -0.021557513624429703, + 0.009014240466058254, + 0.043109044432640076, + 0.1039772778749466, + 0.050274889916181564, + -0.06282788515090942, + -0.07150369882583618, + 0.01840965822339058, + -0.07788141071796417, + 0.023911356925964355, + -0.005105285905301571, + 0.036022037267684937, + -0.008091493509709835, + 0.006417714059352875, + 0.031618375331163406, + -0.12832170724868774, + 0.0010662898421287537, + -0.021570947021245956, + -0.03863372653722763, + 0.0058544352650642395, + -0.00021003000438213348, + 0.038972217589616776, + 0.01815401017665863, + -0.01616358757019043, + -0.08109483867883682, + 0.015411155298352242, + 0.018661584705114365, + 0.021232973784208298, + 0.07534293830394745, + 0.030911121517419815, + -0.01609310507774353, + -8.790404535830021e-05, + -0.038275957107543945, + 0.013330904766917229, + 0.008816724643111229, + 0.020381882786750793, + 0.016050497069954872, + -0.019882112741470337, + -0.07982417941093445, + 0.016075707972049713, + 0.01653657853603363, + 0.04855777323246002, + -0.05607140064239502, + 0.003358134999871254, + 0.03295283764600754, + -0.020481236279010773, + 0.0936817079782486, + 0.05501065403223038, + -0.004118446726351976, + -0.024199025705456734, + -0.022350359708070755, + -0.030676506459712982, + 0.06899551302194595, + 0.027223506942391396, + -0.04199513420462608, + -0.023756854236125946, + 0.06762238591909409, + 0.061578549444675446, + 0.06401962041854858, + 0.06752371788024902, + 0.0323612280189991, + 0.008513741195201874 + ] + }, + "p244_401.wav": { + "name": "p244", + "embedding": [ + 0.04489310085773468, + 0.07182004302740097, + 0.0011177249252796173, + -0.004109829664230347, + -0.034445881843566895, + 0.07682614028453827, + -0.11882264912128448, + 0.10732126235961914, + -0.028650319203734398, + 0.10478071868419647, + -0.07900713384151459, + 0.09189572930335999, + -0.03820741921663284, + -0.15655018389225006, + -0.040688566863536835, + 0.039437856525182724, + -0.028592970222234726, + -0.002292851684615016, + -0.023234358057379723, + -0.011581746861338615, + 0.031602825969457626, + 0.028258662670850754, + 0.012293512932956219, + -0.007524948567152023, + 0.03390558063983917, + 0.051076389849185944, + 0.01826249063014984, + 0.03736492991447449, + 0.019276108592748642, + -0.02670341730117798, + -0.0020804828964173794, + 0.08596721291542053, + -0.022331437095999718, + 0.006396051496267319, + 0.04163404181599617, + -0.004347694106400013, + 0.011006522923707962, + -0.06619955599308014, + 0.00893741101026535, + 0.035417478531599045, + -0.032548002898693085, + 0.07003971189260483, + 0.07857532799243927, + 0.0029592267237603664, + 0.025644049048423767, + 0.01917346566915512, + 0.021810319274663925, + -0.05014675483107567, + -0.09140770137310028, + 0.17448531091213226, + 0.029064586386084557, + -0.003430331591516733, + -0.08150865137577057, + -0.030426636338233948, + 0.0925912857055664, + 0.013099310919642448, + -0.07282260060310364, + -0.0327586755156517, + 0.08186417073011398, + 0.13813602924346924, + 0.005199912004172802, + -0.04613731801509857, + 0.01917032152414322, + 0.11498075723648071, + 0.00905969925224781, + 0.06572088599205017, + 0.08403681963682175, + 0.08654722571372986, + -0.001270835637114942, + 0.020083539187908173, + 0.03906271234154701, + 0.04610569030046463, + -0.010907359421253204, + -0.02932312712073326, + 0.015360893681645393, + -0.02838645689189434, + -0.04259275645017624, + 0.014861616306006908, + 0.0005569010972976685, + -0.02950633130967617, + -0.00064772495534271, + 0.009545441716909409, + 0.016760990023612976, + 0.012044175527989864, + -0.012275079265236855, + 0.04524761438369751, + -0.015177300199866295, + 0.024818813428282738, + 0.07859313488006592, + 0.015163875184953213, + 0.007043452933430672, + 0.02522212825715542, + -0.04402400180697441, + -0.08786113560199738, + -0.0013720368733629584, + 0.005846457555890083, + -0.007249782793223858, + 0.04216877743601799, + 0.04215012118220329, + -0.02289453148841858, + 0.11355797946453094, + 0.03916066139936447, + -0.01779448799788952, + 0.015762940049171448, + -0.06729009747505188, + 0.0975072979927063, + 0.07447269558906555, + 0.0046886904165148735, + 0.07150852680206299, + -0.07578445225954056, + 0.04128572344779968, + 0.04009030759334564, + -0.12140516936779022, + -0.038901109248399734, + 0.04106326401233673, + 0.019915258511900902, + 0.017193442210555077, + 0.13464881479740143, + -0.01360523235052824, + -0.006719199474900961, + 0.06171268969774246, + -0.09263436496257782, + -0.05506977066397667, + -0.020614199340343475, + 0.049023985862731934, + -0.028678346425294876, + 0.013152997009456158, + 0.04140090569853783, + -0.005198844708502293, + -0.009676923975348473, + 0.05090288817882538, + -0.02106054499745369, + -0.010947386734187603, + 0.0070092095993459225, + -0.0031143552623689175, + 0.05345790088176727, + -0.021911390125751495, + 0.014261135831475258, + 0.015416580252349377, + 0.056310348212718964, + 0.03309084475040436, + 0.028845787048339844, + -0.0822661742568016, + -0.08312277495861053, + -0.016405954957008362, + 0.02270328812301159, + 0.0729580968618393, + -0.020277883857488632, + -0.03376463055610657, + -0.04484662413597107, + -0.0312936007976532, + -0.003465568646788597, + 0.002198886126279831, + 0.07714059948921204, + 0.019428126513957977, + -0.0009956683497875929, + 0.09624773263931274, + 0.03908269852399826, + 0.004569241777062416, + -0.044861942529678345, + -0.03633127734065056, + -0.007806172128766775, + 0.035614993423223495, + -0.04768701642751694, + -0.055022209882736206, + -0.012597106397151947, + 0.0009983207564800978, + -0.022495344281196594, + -0.00691523402929306, + 0.011133741587400436, + 0.023090727627277374, + 0.028663285076618195, + -0.09162688255310059, + 0.0077186645939946175, + -0.10169520229101181, + -0.013930174522101879, + 0.003624526783823967, + -0.006425138097256422, + -0.02408706210553646, + 0.07169730961322784, + 0.027275746688246727, + 0.042725272476673126, + -0.012898693792521954, + -0.017067894339561462, + -0.018911590799689293, + 0.04049438238143921, + 0.08427852392196655, + -0.0075738802552223206, + 0.024786634370684624, + 0.03650485724210739, + -0.014552943408489227, + 0.0440838560461998, + 0.05364827439188957, + 0.04882293567061424, + -0.025804173201322556, + -0.01869308203458786, + -0.024130692705512047, + 0.0934181660413742, + 0.05555276572704315, + -0.06930126249790192, + -0.0791609063744545, + -0.023157767951488495, + -0.05146999657154083, + 0.031920306384563446, + -0.029901180416345596, + 0.00803244486451149, + 0.008386016823351383, + -0.02284039556980133, + -0.07294479757547379, + -0.052257053554058075, + 0.03019798919558525, + -0.025340361520648003, + 0.0014590885257348418, + -0.08998271077871323, + 0.062331221997737885, + 0.12441585958003998, + 0.012446841225028038, + -0.00011241436004638672, + -0.009898337535560131, + 0.008208958432078362, + -0.04118141531944275, + -0.017398323863744736, + 0.007388897240161896, + 0.011968409642577171, + -0.10124349594116211, + 0.010999663732945919, + -0.038165345788002014, + 0.07665795087814331, + -0.05123162269592285, + 0.13270463049411774, + 0.022762609645724297, + -0.07037785649299622, + -0.07649403810501099, + 0.04354443401098251, + -0.022880151867866516, + 0.026879917830228806, + 0.026550687849521637, + 0.002287554321810603, + 0.045405417680740356, + -0.04320551082491875, + 0.07766204327344894, + 0.012355471029877663, + -0.03675200417637825, + -0.052819471806287766, + -0.026048731058835983, + -0.007226914167404175, + 0.034377098083496094, + -0.02456560730934143, + -0.047170452773571014, + -0.03708440065383911, + 0.03570055961608887, + -0.00039428070886060596, + 0.07206713408231735, + 0.08851854503154755, + 0.05097908899188042, + -0.10105577111244202 + ] + }, + "p244_028.wav": { + "name": "p244", + "embedding": [ + 0.04755127429962158, + 0.10183662176132202, + 0.0010523957898840308, + 0.02922067604959011, + -0.04274490475654602, + 0.038365814834833145, + -0.06552916765213013, + 0.08610039204359055, + 0.035453494638204575, + 0.06006334349513054, + -0.07028511166572571, + 0.08537688106298447, + -0.04050898179411888, + -0.1390821784734726, + 0.024735689163208008, + 0.042568638920784, + -0.014613419771194458, + 0.014225073158740997, + -0.029939576983451843, + -0.034473054111003876, + -0.010743875056505203, + 0.00788539182394743, + 0.03904461860656738, + -0.02794816344976425, + 0.011626980267465115, + 0.03243539482355118, + -0.03089280053973198, + 0.0042264265939593315, + -0.02236943319439888, + -0.049150656908750534, + -0.03482130542397499, + 0.06426028907299042, + -0.039804838597774506, + -0.01849549077451229, + 0.007050680927932262, + -0.03167414292693138, + -0.008302778005599976, + -0.05966934561729431, + -0.040282219648361206, + 0.02036818116903305, + -0.05221115052700043, + 0.04385153949260712, + 0.0334717333316803, + -0.05056173354387283, + 0.052905336022377014, + 0.0016782870516180992, + -0.037295300513505936, + -0.01027694158256054, + -0.09702881425619125, + 0.11669182032346725, + 0.021666383370757103, + 0.03943680226802826, + -0.07181055843830109, + -0.018096525222063065, + 0.08736743777990341, + 0.00660637766122818, + -0.04432570934295654, + -0.01977316103875637, + 0.04292946308851242, + 0.06551717966794968, + 0.025621537119150162, + -0.023061856627464294, + 0.029861142858862877, + 0.051065441220998764, + 0.03569559007883072, + 0.03514891117811203, + 0.07030251622200012, + 0.10977679491043091, + -0.025406427681446075, + 0.02344321832060814, + 0.040315043181180954, + 0.016602082177996635, + 0.030591100454330444, + -0.0058657038025557995, + -0.00417511910200119, + -0.0190811138600111, + 0.007784759160131216, + -0.018561270087957382, + -0.012272404506802559, + -0.03856922313570976, + 0.0358729213476181, + -0.011877069249749184, + 0.024296961724758148, + 0.003412483958527446, + -0.03995659202337265, + 0.0005717501044273376, + 0.07475002855062485, + 0.04483198747038841, + 0.07419504970312119, + 0.023583896458148956, + 0.0038302745670080185, + 0.06575292348861694, + -0.08080480992794037, + -0.0626729428768158, + 0.02762717567384243, + 0.0047406721860170364, + 0.0345180444419384, + 0.03522268682718277, + 0.03593577444553375, + -0.021924622356891632, + 0.09303209185600281, + 0.016171371564269066, + 0.02173789218068123, + 0.0038622687570750713, + -0.06000085920095444, + 0.04291970655322075, + 0.06911487877368927, + -0.0031252149492502213, + 0.06710980087518692, + 0.003924044780433178, + 0.0574735552072525, + 0.0593157634139061, + -0.06362977623939514, + -0.007711254060268402, + -0.013962488621473312, + 0.014901747927069664, + -0.0062421150505542755, + 0.11572062224149704, + 0.005575128830969334, + 0.047401800751686096, + 0.11153077334165573, + -0.08428153395652771, + -0.017851917073130608, + 0.03323207423090935, + -0.006795029155910015, + -0.03945271670818329, + 0.04119458794593811, + 0.05774679034948349, + -0.023836631327867508, + -0.003152022836729884, + 0.02888466790318489, + 0.007186677306890488, + 0.013508424162864685, + -0.031240282580256462, + -0.00527383154258132, + -0.01741006039083004, + 0.013710341416299343, + -0.026303980499505997, + 0.04059672728180885, + 0.0510963499546051, + 0.005595838185399771, + 0.0031259420793503523, + -0.023735901340842247, + -0.0815017819404602, + 0.024494286626577377, + 0.005684319883584976, + 0.015271495096385479, + 0.027004096657037735, + -0.02345387265086174, + -0.05020205304026604, + -0.04126422107219696, + 0.05323927849531174, + -0.01286892220377922, + 0.0534650981426239, + 0.04284551739692688, + -0.02408970147371292, + 0.0656687468290329, + 0.04228387027978897, + 0.018443554639816284, + -0.03604736924171448, + -0.10777660459280014, + 0.011916114948689938, + 0.027050882577896118, + -0.06734307110309601, + -0.041548795998096466, + -0.03302937000989914, + -0.026736650615930557, + -0.02513352781534195, + 0.018220387399196625, + 0.06891888380050659, + -0.001024129567667842, + 0.005385813768953085, + -0.06709214299917221, + 0.01778745837509632, + -0.025751546025276184, + -0.08605223894119263, + 0.04397451505064964, + 0.013558605685830116, + -0.005675298627465963, + 0.07290878146886826, + 0.011174386367201805, + 0.007607316132634878, + -0.06834818422794342, + -0.03054022789001465, + 0.0006859104032628238, + 0.028349969536066055, + 0.009199216030538082, + -0.0023368187248706818, + 0.038524508476257324, + 0.03716970235109329, + -0.02000138722360134, + 0.03221309557557106, + 0.027532130479812622, + 0.0699729472398758, + -0.041125424206256866, + 0.011979207396507263, + -0.003780066967010498, + 0.09037631005048752, + 0.06973788142204285, + -0.0585121214389801, + -0.09334539622068405, + -0.0418572723865509, + -0.05219274386763573, + 0.03597882390022278, + -0.013921931385993958, + 0.0046239858493208885, + 0.0304935984313488, + -0.005541916936635971, + -0.027760235592722893, + -0.12137407064437866, + 0.03088071197271347, + -0.00470554968342185, + -0.011253468692302704, + -0.04905698448419571, + 0.03508400917053223, + 0.04082183167338371, + 0.013387786224484444, + -0.029505278915166855, + 0.0028569649439305067, + 0.021662142127752304, + 0.005729150027036667, + 0.0009606803650967777, + 0.03738084062933922, + 0.05761587247252464, + -0.032028183341026306, + -0.025989770889282227, + -0.05615795776247978, + 0.05168236419558525, + 0.025567544624209404, + 0.10789619386196136, + 0.03592901676893234, + 0.0039420402608811855, + -0.07238127291202545, + 0.05853618308901787, + -0.007556072436273098, + 0.044537194073200226, + -0.000889735936652869, + 0.03255235031247139, + 0.05939881503582001, + -0.05622616410255432, + 0.07850207388401031, + 0.02056068181991577, + -0.03140944242477417, + -0.02984531596302986, + 0.0037734932266175747, + -0.055665504187345505, + 0.018798034638166428, + -0.006064708344638348, + -0.06632205098867416, + -0.009425180032849312, + 0.04087073355913162, + 0.061400409787893295, + 0.039582133293151855, + 0.0802602469921112, + 0.028447499498724937, + -0.012771984562277794 + ] + }, + "p244_375.wav": { + "name": "p244", + "embedding": [ + 0.059578537940979004, + 0.09280254691839218, + -0.0066365948878228664, + 0.024891652166843414, + -0.053558267652988434, + 0.06540051102638245, + -0.11934581398963928, + 0.12229330837726593, + -0.0509914830327034, + 0.15572336316108704, + -0.07859791815280914, + 0.11564308404922485, + -0.021675940603017807, + -0.18438056111335754, + -0.015552418306469917, + 0.06570121645927429, + -0.02968379110097885, + -0.010172601789236069, + -0.05178419500589371, + -0.009660843759775162, + 0.01647229492664337, + 0.04650793597102165, + 0.04146043211221695, + -0.027816975489258766, + 0.06240103021264076, + 0.06358069181442261, + -0.017046866938471794, + 0.03668953850865364, + -0.0048728445544838905, + -0.10522384196519852, + -0.05157117545604706, + 0.10016235709190369, + -0.062238238751888275, + 0.015529388561844826, + 0.05061105638742447, + 0.00023448059801012278, + -0.002044137567281723, + -0.06672107428312302, + -0.03165212646126747, + 0.0012310049496591091, + -0.040847357362508774, + 0.07420497387647629, + 0.004687570966780186, + -0.029070932418107986, + 0.04449932277202606, + 0.014169570058584213, + -0.008884252980351448, + -0.050716713070869446, + -0.09780256450176239, + 0.14669272303581238, + 0.03418397158384323, + 0.021093983203172684, + -0.0908086970448494, + -0.09299582988023758, + 0.09701521694660187, + -0.025175780057907104, + -0.11251315474510193, + -0.03461805358529091, + 0.06012021750211716, + 0.1627790480852127, + -0.02188902720808983, + -0.04220303148031235, + 0.019917529076337814, + 0.07649338990449905, + 0.0470145046710968, + 0.09943431615829468, + 0.06948114931583405, + 0.07604683935642242, + 0.005181148182600737, + 0.03605261445045471, + 0.0520034059882164, + 0.07600453495979309, + 0.06825710088014603, + -0.01941586285829544, + 0.016241174191236496, + 0.002721425611525774, + -0.04470668360590935, + -0.010297677479684353, + -0.020321939140558243, + -0.009839298203587532, + -0.014528479427099228, + 0.0029372014105319977, + 0.028109008446335793, + -0.005147801712155342, + -0.02741917409002781, + 0.038570158183574677, + 0.03876641392707825, + -0.0266829002648592, + 0.06695496290922165, + 0.038391269743442535, + -0.01220671646296978, + 0.04704676568508148, + -0.08746813237667084, + -0.09188591688871384, + 0.02267633005976677, + 0.015564397908747196, + -0.0035276205744594336, + 0.06636932492256165, + 0.04641081020236015, + -0.023868784308433533, + 0.11050665378570557, + 0.04873201996088028, + 0.026215987280011177, + 0.02176022343337536, + -0.09232854843139648, + 0.10331210494041443, + 0.0937546119093895, + -0.012360389344394207, + 0.06315313279628754, + -0.03728475421667099, + 0.07729382812976837, + 0.08975464105606079, + -0.15307822823524475, + -0.0802825316786766, + -0.007423429749906063, + -0.0359358973801136, + 0.0044212304055690765, + 0.09970168769359589, + -0.012956305406987667, + 0.02692350186407566, + 0.09899879992008209, + -0.12060088664293289, + -0.05770988017320633, + -0.004800276830792427, + 0.040592700242996216, + -0.09787033498287201, + 0.0659930408000946, + 0.040485505014657974, + -0.01716802455484867, + 0.00959782488644123, + 0.07381284236907959, + -0.00859649758785963, + 0.00956201646476984, + 0.00805002823472023, + -0.04012591764330864, + 0.0008313688449561596, + -0.042600467801094055, + -0.008403842337429523, + 0.07794525474309921, + 0.032944850623607635, + 0.061015062034130096, + -0.011487586423754692, + -0.02267439104616642, + -0.11197391152381897, + 0.009205866605043411, + 0.040095292031764984, + 0.06204332411289215, + -0.0201509241014719, + -0.006357738748192787, + -0.043703507632017136, + -0.0847778171300888, + 0.04851159453392029, + -0.010166676715016365, + 0.08910751342773438, + 0.009700733236968517, + 0.021795623004436493, + 0.11651267111301422, + 0.036139898002147675, + -0.012692245654761791, + -0.063199482858181, + -0.029565289616584778, + 0.0086702611297369, + 0.06336972117424011, + -0.08738499879837036, + -0.07571856677532196, + 0.0010187309235334396, + -0.003994225990027189, + -0.021148551255464554, + 0.06660972535610199, + 0.052289340645074844, + 0.029873261228203773, + 0.03169350326061249, + -0.0618247352540493, + 0.0031243953853845596, + -0.10155005753040314, + -0.07095028460025787, + -0.016942543908953667, + -0.0493391677737236, + -0.030458148568868637, + 0.10075749456882477, + 0.022182809188961983, + 0.028399672359228134, + -0.037996806204319, + -0.0672098770737648, + -0.08322595059871674, + 0.06166207790374756, + 0.0402684286236763, + 0.0059422701597213745, + 0.021377118304371834, + 0.04352794587612152, + -0.03173092007637024, + 0.06193907931447029, + 0.07415612041950226, + 0.09858869016170502, + -0.018818747252225876, + 0.03497813642024994, + -0.05843231454491615, + 0.10435932129621506, + 0.09960930049419403, + -0.08169743418693542, + -0.10250139236450195, + -0.041442614048719406, + -0.07611596584320068, + 0.06408633291721344, + -0.019564621150493622, + 0.00157434050925076, + 0.030543766915798187, + -0.026445912197232246, + -0.08242195844650269, + -0.0919657051563263, + 0.0996866375207901, + -0.03322572633624077, + -0.028335459530353546, + -0.06936761736869812, + 0.04020280763506889, + 0.05407722294330597, + 0.049542464315891266, + -0.011735916137695312, + 0.015297822654247284, + 0.060945961624383926, + -0.05752795934677124, + -0.004825894255191088, + 0.07949329912662506, + 0.0022117667831480503, + -0.06799446791410446, + 0.0049944594502449036, + -0.06599101424217224, + 0.0729508101940155, + -0.05294749513268471, + 0.1609140783548355, + -0.023618346080183983, + -0.06585977971553802, + -0.07187116146087646, + 0.04707232490181923, + -0.029453633353114128, + 0.038448482751846313, + 0.04046997055411339, + 0.071866974234581, + 0.05872473120689392, + -0.06087472662329674, + 0.09252091497182846, + 0.03984646499156952, + -0.0178317129611969, + -0.04091453552246094, + -0.08009994775056839, + -0.05055548995733261, + 0.016472145915031433, + -0.020330043509602547, + -0.09813778102397919, + 0.031845033168792725, + 0.015062674880027771, + 0.006186965387314558, + 0.04824165254831314, + 0.13069140911102295, + 0.05769135057926178, + -0.11621339619159698 + ] + }, + "p244_092.wav": { + "name": "p244", + "embedding": [ + 0.046102799475193024, + 0.1064535602927208, + 0.03882990777492523, + 0.007487049326300621, + 0.00428888201713562, + 0.021372683346271515, + -0.03719458356499672, + 0.07438396662473679, + 0.05713196471333504, + 0.03525877371430397, + -0.08500215411186218, + 0.0642709955573082, + -0.04784000292420387, + -0.11319784820079803, + 0.00696053309366107, + 0.02920011430978775, + -0.04282845929265022, + 0.008282708004117012, + -0.017733167856931686, + -0.013514751568436623, + -0.008095936849713326, + -0.01753217726945877, + 0.038109809160232544, + -0.012525534257292747, + -0.021155208349227905, + 0.015163109637796879, + -0.03453231230378151, + 0.006535589229315519, + -0.008898885920643806, + -0.016865571960806847, + 0.0025727860629558563, + 0.03577691316604614, + 0.0010335445404052734, + 0.006816348992288113, + 0.0066894181072711945, + -0.023162085562944412, + 0.002310875803232193, + -0.051988910883665085, + -0.0719069167971611, + 0.04178440198302269, + -0.045457273721694946, + 0.038020215928554535, + 0.03348635882139206, + -0.07091621309518814, + 0.07716374099254608, + 0.017605872824788094, + -0.06732846796512604, + 0.002190190367400646, + -0.10653941333293915, + 0.0980999767780304, + 0.01689918152987957, + 0.02511964738368988, + -0.06662436574697495, + 0.007720688357949257, + 0.07335393875837326, + -0.02371140569448471, + -0.0503150150179863, + -0.0016451980918645859, + 0.04434879869222641, + 0.0359160378575325, + 0.029808776453137398, + -0.01780438795685768, + -0.006639616563916206, + 0.024667447432875633, + 0.05476382374763489, + 0.012440737336874008, + 0.0739692896604538, + 0.09163016825914383, + -0.03765476122498512, + 0.031139355152845383, + 0.025126319378614426, + -0.0078003183007240295, + 0.041260406374931335, + -0.003057287074625492, + -0.009109203703701496, + -0.019441546872258186, + -0.0030809524469077587, + -0.029171768575906754, + -0.000464538112282753, + -0.019734226167201996, + 0.03652775660157204, + -0.011969586834311485, + 0.03430986404418945, + 0.02560114488005638, + -0.0371861606836319, + -0.015020813792943954, + 0.05930951237678528, + 0.06193121522665024, + 0.055845413357019424, + 0.04522349685430527, + -0.0033451991621404886, + 0.08283627033233643, + -0.05941439047455788, + -0.08488892018795013, + -0.012808052822947502, + -0.012809467501938343, + 0.023438578471541405, + 0.034978240728378296, + 0.029422586783766747, + -0.014472197741270065, + 0.08584047853946686, + -0.0011968445032835007, + 0.007447962649166584, + 0.00256266538053751, + -0.07293926924467087, + 0.008252881467342377, + 0.05080214515328407, + -0.016282476484775543, + 0.05042785406112671, + 0.022402819246053696, + 0.07470276951789856, + 0.05985689163208008, + -0.0324404314160347, + 0.021031370386481285, + 0.007160048000514507, + 0.038123033940792084, + 0.02340659126639366, + 0.10042808949947357, + 0.008154327049851418, + 0.04819753021001816, + 0.1180533617734909, + -0.06895293295383453, + 0.028081845492124557, + 0.041626282036304474, + -0.009441891685128212, + -0.007816918194293976, + 0.0510195828974247, + 0.0171507578343153, + -0.013345770537853241, + 0.004236073233187199, + 0.007495969533920288, + 0.024195585399866104, + 0.010949238203465939, + -0.060463737696409225, + -0.0007464159280061722, + 0.009811539202928543, + -0.024902820587158203, + -0.004825470969080925, + 0.022217990830540657, + 0.05351581051945686, + -0.0034582987427711487, + 0.03593512624502182, + -0.05492741987109184, + -0.03803575038909912, + 0.029162567108869553, + 0.0038121212273836136, + 0.011272409930825233, + 0.03133147582411766, + -0.032537639141082764, + -0.05462552234530449, + 0.00949428603053093, + 0.06676427274942398, + -0.03231997787952423, + 0.04331296309828758, + 0.05982999503612518, + -0.012316036969423294, + 0.04005206748843193, + 0.02436148002743721, + 0.004238395486027002, + -0.03714202344417572, + -0.10295673459768295, + -0.017503172159194946, + 0.035558219999074936, + -0.08419470489025116, + -0.022950150072574615, + -0.04408934712409973, + -0.03376606106758118, + -0.005433212500065565, + -0.007501991465687752, + 0.07606455683708191, + -0.01956539787352085, + -0.023461323231458664, + -0.05429337918758392, + 0.02085306867957115, + -0.022151967510581017, + -0.11239247024059296, + 0.055110231041908264, + 0.017243439331650734, + 0.031251806765794754, + 0.061051297932863235, + -0.013462391681969166, + 0.007184591144323349, + -0.05044195428490639, + -0.04503496736288071, + 0.021522115916013718, + 0.04583548754453659, + -0.005309795029461384, + 0.00023113004863262177, + 0.05684908106923103, + 0.04979639872908592, + -0.04319640249013901, + 0.05203596502542496, + -0.016613345593214035, + 0.054124653339385986, + -0.04773581773042679, + 0.010217105969786644, + 0.02970133349299431, + 0.04535802826285362, + 0.06896093487739563, + -0.028549883514642715, + -0.12263995409011841, + -0.04257612302899361, + -0.042543064802885056, + 0.008781581185758114, + 0.005966579541563988, + -0.009652921929955482, + 0.03065895289182663, + -0.011680271476507187, + -0.03733941167593002, + -0.1088545098900795, + 0.001846805214881897, + 0.010092360898852348, + -0.00575418071821332, + -0.04098682478070259, + 0.01856289431452751, + 0.007557962089776993, + 0.0033586565405130386, + -0.023028098046779633, + 0.028080232441425323, + 0.0025641191750764847, + -0.0024903863668441772, + -0.03747071325778961, + -0.0052144937217235565, + 0.05973551794886589, + 0.010085277259349823, + -0.03185553476214409, + -0.0480203703045845, + 0.03725714981555939, + 0.0360775850713253, + 0.08504394441843033, + 0.040999654680490494, + 0.007665744051337242, + -0.022576870396733284, + 0.03460155427455902, + -0.019515953958034515, + 0.026071704924106598, + -0.014560465700924397, + 0.02562776952981949, + 0.05236086994409561, + -0.030892319977283478, + 0.053186215460300446, + 0.03204383701086044, + -0.012995278462767601, + -0.01589767076075077, + 0.009988261386752129, + -0.07885195314884186, + -0.035886481404304504, + -0.01613621599972248, + -0.0346883088350296, + -0.010800416581332684, + 0.007152854464948177, + 0.07665567845106125, + 0.02376319281756878, + 0.07549691945314407, + 0.015777645632624626, + -0.024306349456310272 + ] + }, + "p244_155.wav": { + "name": "p244", + "embedding": [ + 0.038709141314029694, + 0.043836869299411774, + -0.06396207213401794, + 0.04326394200325012, + -0.013039220124483109, + 0.0816001296043396, + -0.12744568288326263, + 0.04817115515470505, + -0.008936937898397446, + 0.13784155249595642, + -0.021501243114471436, + 0.07812226563692093, + 0.010580182075500488, + -0.1325506865978241, + -0.025479409843683243, + 0.009881933219730854, + -0.05875460058450699, + -0.012978470884263515, + -0.09415224194526672, + -0.01109527051448822, + 0.03044036589562893, + 0.04656811058521271, + 0.029310565441846848, + -0.07565078884363174, + -0.017435453832149506, + 0.041611168533563614, + -0.03085864707827568, + 0.032696839421987534, + 0.03225797787308693, + -0.06318903714418411, + -0.0015083067119121552, + 0.08648298680782318, + -0.05842342972755432, + 0.030528143048286438, + 0.028480829671025276, + 0.024362945929169655, + -0.014088524505496025, + -0.05996789038181305, + 0.015227108262479305, + 0.030005622655153275, + -0.05273135006427765, + 0.06654505431652069, + 0.016269003972411156, + 0.0005897665396332741, + 0.037468940019607544, + -0.02293059416115284, + -0.028184011578559875, + -0.04152239114046097, + -0.07217125594615936, + 0.15526792407035828, + 0.06199213117361069, + -0.04013952612876892, + -0.04978558421134949, + -0.03067539632320404, + 0.06878992170095444, + -0.0108029805123806, + -0.10697904974222183, + -0.0534791573882103, + 0.0492333360016346, + 0.12223925441503525, + -0.024633046239614487, + -0.0035367757081985474, + 0.03653936833143234, + 0.10729417204856873, + 0.07732705771923065, + 0.08159413188695908, + 0.08719471096992493, + 0.13844552636146545, + -0.003963734954595566, + -0.014521709643304348, + 0.02702314406633377, + 0.07397551834583282, + 0.04139146953821182, + 0.017629068344831467, + 0.046669792383909225, + 0.00708424299955368, + -0.016581423580646515, + -0.02016923762857914, + -0.03360714390873909, + -0.006741231307387352, + 0.03577711060643196, + -0.01876078173518181, + 0.009083036333322525, + 0.05862201750278473, + -0.047700248658657074, + 0.017685096710920334, + 0.06044720858335495, + -0.0414934903383255, + 0.025639966130256653, + 0.058089740574359894, + 0.04993915557861328, + 0.03617924451828003, + -0.05439300835132599, + -0.07959708571434021, + 0.018747450783848763, + 0.023512057960033417, + -0.01631442829966545, + 0.03148621693253517, + 0.02198919653892517, + -0.013070760294795036, + 0.08281363546848297, + 0.00024617649614810944, + -0.07482937723398209, + 0.023715108633041382, + -0.055486973375082016, + 0.13352099061012268, + 0.09609562158584595, + -0.014771975576877594, + -0.018591301515698433, + -0.06443176418542862, + 0.051209624856710434, + 0.04648289456963539, + -0.11433684825897217, + -0.05108414590358734, + 0.0841970443725586, + 0.003375728614628315, + -0.008407028391957283, + 0.12312732636928558, + 0.03540223836898804, + 0.005191072355955839, + 0.08774043619632721, + -0.03753364086151123, + -0.021206999197602272, + -0.017795555293560028, + 0.0500633642077446, + -0.039844218641519547, + 0.0184720978140831, + 0.010412727482616901, + 0.023461967706680298, + -0.019044948741793633, + 0.10482227802276611, + -0.00271056592464447, + 0.005580555647611618, + 0.004776953253895044, + -0.015123852528631687, + 0.0774531364440918, + -0.011077302508056164, + 0.0016978110652416945, + 0.040417931973934174, + 0.03850406035780907, + 0.07998046278953552, + -0.04676659032702446, + -0.03834376856684685, + -0.106003537774086, + 0.0288406889885664, + 0.04193590208888054, + 0.0633968785405159, + -0.02126298099756241, + 0.015216912142932415, + -0.06166090816259384, + -0.0843062549829483, + 0.06419310718774796, + -0.07349217683076859, + 0.0806356891989708, + -0.006198268383741379, + -0.04442786052823067, + 0.10852636396884918, + -0.041549552232027054, + 0.0294739231467247, + 0.002143656834959984, + -0.011323148384690285, + -0.011787602677941322, + 0.028720956295728683, + -0.07168862968683243, + -0.05025062710046768, + 0.00545505341142416, + 0.019485659897327423, + -0.0074730138294398785, + 0.044146038591861725, + 0.052180252969264984, + 0.009438680484890938, + 0.013756041415035725, + -0.04974091798067093, + -0.041357506066560745, + -0.07107856124639511, + 0.0017826128751039505, + -0.017409687861800194, + -0.03978564217686653, + -0.0028044055216014385, + 0.08520350605249405, + 0.005610228516161442, + 0.007441772148013115, + -0.04621688276529312, + -0.08248014748096466, + -0.06893877685070038, + 0.05399763211607933, + 0.06844192743301392, + -0.042343560606241226, + 0.02398272417485714, + 0.07128758728504181, + 0.00042195338755846024, + 0.0003962703049182892, + 0.08211225271224976, + 0.06570414453744888, + -0.02653568610548973, + 0.005126255098730326, + -0.09310240298509598, + 0.1334727704524994, + 0.07533380389213562, + -0.06525146216154099, + -0.04615272581577301, + 0.010399042628705502, + -0.07800833135843277, + -0.0011621806770563126, + -0.07775026559829712, + -0.01909555308520794, + 0.0613197460770607, + -0.012403747998178005, + -0.11790768802165985, + -0.08019264042377472, + 0.04837048426270485, + -0.09151708334684372, + -0.01653306744992733, + -0.07922130823135376, + 0.027308156713843346, + 0.055980268865823746, + 0.07508037984371185, + -0.04733382165431976, + 0.019509542733430862, + 0.05709865316748619, + -0.036791153252124786, + 0.03562687709927559, + 0.06118527427315712, + 0.01394906360656023, + -0.12607155740261078, + -0.030854877084493637, + -0.05060849338769913, + 0.05079884082078934, + -0.0685778260231018, + 0.09104838967323303, + 0.0360553078353405, + -0.048803217709064484, + -0.05063339322805405, + 0.07499854266643524, + -0.025002621114253998, + 0.055632367730140686, + 0.043725281953811646, + 0.05133059248328209, + 0.04578588157892227, + -0.05071654170751572, + 0.11553595960140228, + 0.022255556657910347, + -0.014213662594556808, + -0.09727587550878525, + -0.03352759778499603, + -0.03071572631597519, + 0.05789727717638016, + 0.06460973620414734, + -0.07017071545124054, + 0.007500883191823959, + 0.03614375740289688, + -0.0549197793006897, + 0.03965677320957184, + 0.11726978421211243, + 0.09742529690265656, + -0.09380317479372025 + ] + }, + "p244_147.wav": { + "name": "p244", + "embedding": [ + 0.01687598042190075, + 0.06943561881780624, + -0.007168432231992483, + 0.05266550928354263, + -0.042319826781749725, + 0.01016500499099493, + -0.09822674840688705, + 0.08250243216753006, + -0.0007278798148036003, + 0.0965728759765625, + -0.0959683209657669, + 0.0973936915397644, + -0.05587733909487724, + -0.1327417939901352, + 0.02922956645488739, + 0.0429067388176918, + 0.022647663950920105, + 0.025980796664953232, + -0.016756445169448853, + -0.06472177803516388, + 0.03813295066356659, + 0.049331240355968475, + 0.06756006181240082, + -0.0461440235376358, + -0.021891430020332336, + 0.07544268667697906, + -0.008549144491553307, + 0.019413096830248833, + 0.012278901413083076, + -0.055473875254392624, + -0.01793714426457882, + 0.09056406468153, + -0.006831254810094833, + -0.016637753695249557, + 0.03704149276018143, + 0.029418956488370895, + -0.045027729123830795, + -0.01147896982729435, + 0.0032222128938883543, + 0.007434912025928497, + -0.08236000686883926, + 0.04922019690275192, + 0.017478952184319496, + -0.0376509390771389, + 0.07833422720432281, + -0.047492578625679016, + -0.06431808322668076, + 0.031461507081985474, + -0.07579408586025238, + 0.09862212836742401, + 0.08787371963262558, + 0.008924763649702072, + -0.0470295324921608, + -0.021108150482177734, + 0.0765337124466896, + -0.005508362781256437, + -0.09920899569988251, + -0.03975412994623184, + 0.04680348560214043, + 0.11293455958366394, + -0.004147372208535671, + -0.008561430498957634, + 0.029330581426620483, + 0.07162770628929138, + -0.006370825227349997, + 0.08896437287330627, + 0.0730324387550354, + 0.07857243716716766, + -0.011741924099624157, + 0.016542578116059303, + 0.013277491554617882, + 0.08568202704191208, + 0.0365888848900795, + -0.009046215564012527, + 0.00134345144033432, + -0.010595113039016724, + -0.03115909919142723, + 0.001813046634197235, + -0.016159240156412125, + -0.0438741073012352, + -0.03822213411331177, + -0.0296674445271492, + 0.009476404637098312, + -0.03547278791666031, + -0.030248742550611496, + 0.0015751596074551344, + 0.08084380626678467, + -0.013797730207443237, + 0.05011191964149475, + 0.028738608583807945, + -0.017701828852295876, + 0.028609108179807663, + -0.04165536165237427, + -0.04038427770137787, + -0.033882759511470795, + 0.003850731998682022, + 0.029894759878516197, + 0.06803813576698303, + 0.010777734220027924, + 0.02098166011273861, + 0.10072540491819382, + 0.037381548434495926, + 0.013857911340892315, + 0.014234564267098904, + -0.08099372684955597, + 0.08434265851974487, + 0.1128661036491394, + -0.019581366330385208, + 0.05152810737490654, + -0.014639541506767273, + 0.04346306622028351, + 0.028025131672620773, + -0.07644529640674591, + -0.0149867944419384, + -0.03752937540411949, + 0.03354319557547569, + 0.01883382722735405, + 0.10219782590866089, + 0.024212142452597618, + 0.023683704435825348, + 0.12026466429233551, + -0.07696861028671265, + -0.07811364531517029, + -0.04685017466545105, + 0.020663248375058174, + -0.08006954193115234, + 0.06868821382522583, + 0.049958180636167526, + 0.018483765423297882, + 0.027916600927710533, + 0.0651274248957634, + 0.001998619642108679, + 0.03573717549443245, + 0.0033614288549870253, + -0.07070489972829819, + -0.02143549732863903, + -0.06060607358813286, + 0.025016959756612778, + 0.08599035441875458, + 0.02988770604133606, + 0.10118745267391205, + 0.006766083650290966, + 0.025512486696243286, + -0.08451934158802032, + -0.003950513433665037, + 0.04807303473353386, + 0.02188900113105774, + -0.0190617386251688, + -0.029232874512672424, + -0.019365286454558372, + -0.09402510523796082, + 0.03969733417034149, + -0.05569050833582878, + 0.08042807877063751, + -0.033141449093818665, + -4.494811219046824e-05, + 0.0841088518500328, + 0.0019143037497997284, + -0.030746646225452423, + -0.07616119086742401, + -0.03583524376153946, + -0.0154340248554945, + 0.025227200239896774, + -0.12619835138320923, + -0.0742165595293045, + -0.036740221083164215, + 0.025796081870794296, + -0.005953145679086447, + 0.02056020125746727, + 0.07888464629650116, + -0.017125576734542847, + 0.021695397794246674, + -0.0013919075718149543, + 0.014222665689885616, + -0.06085383892059326, + -0.08637982606887817, + -0.008353529497981071, + -0.052160099148750305, + -0.012566241435706615, + 0.0632978230714798, + -0.0007249763002619147, + 0.021564027294516563, + 0.006890064105391502, + -0.053601957857608795, + -0.10291656851768494, + 0.03308693692088127, + 0.011536362580955029, + 0.0006774887442588806, + 0.0648837760090828, + 0.07050660997629166, + -0.06708021461963654, + 0.04630706459283829, + 0.04192341864109039, + 0.08083929121494293, + -0.06159328669309616, + 0.018643440678715706, + -0.09010124206542969, + 0.03023688867688179, + 0.13584372401237488, + -0.051041215658187866, + -0.08429925888776779, + -0.07979002594947815, + -0.0765543133020401, + 0.07438375800848007, + -0.03615685552358627, + -0.05224291980266571, + 0.015784140676259995, + -0.026803268119692802, + -0.08065406233072281, + -0.07475551962852478, + 0.08840927481651306, + -0.019861675798892975, + 0.000561397522687912, + -0.0594276487827301, + 0.005635014735162258, + -0.011994479224085808, + 0.05452972650527954, + -0.05477689951658249, + 0.03244395554065704, + 0.06490307301282883, + -0.06395669281482697, + 0.018686428666114807, + 0.05370347201824188, + 0.055524300783872604, + -0.01574614644050598, + -0.01902826502919197, + -0.07318990677595139, + 0.04314978048205376, + -0.0285206139087677, + 0.0673958957195282, + 0.02181817591190338, + -0.027508800849318504, + -0.047594424337148666, + 0.04699129983782768, + -0.010133549571037292, + 0.01799565553665161, + 0.06949862837791443, + 0.06538397073745728, + 0.007716785650700331, + -0.08463312685489655, + 0.10020949691534042, + 0.009254100732505322, + 0.009770847856998444, + -0.029096392914652824, + 0.0018080523004755378, + -0.058436810970306396, + 0.02323175221681595, + 1.7389655113220215e-05, + -0.08250914514064789, + -0.002193694468587637, + -0.019860494881868362, + 0.00676284683868289, + 0.03341388329863548, + 0.08732720464468002, + 0.04965898394584656, + -0.06717147678136826 + ] + }, + "p244_229.wav": { + "name": "p244", + "embedding": [ + 0.017833705991506577, + 0.10620729625225067, + -0.02716187760233879, + 0.06193678453564644, + -0.05028887465596199, + -0.01674700900912285, + -0.08416841179132462, + 0.0586332343518734, + 0.018962420523166656, + 0.09082196652889252, + -0.024159403517842293, + 0.10156888514757156, + -0.04226793348789215, + -0.10385236889123917, + -0.004946193657815456, + 0.003811277449131012, + 0.015462502837181091, + 0.018416576087474823, + 0.012632036581635475, + -0.026110099628567696, + -0.03203895688056946, + 0.004537452943623066, + -0.03025299310684204, + 0.000410422682762146, + -0.013634571805596352, + 0.018337521702051163, + -0.0398084819316864, + 0.03187377005815506, + -0.019862772896885872, + -0.060700614005327225, + -0.004677378572523594, + 0.022295722737908363, + -0.03438471257686615, + -0.0035824680235236883, + -0.007223563268780708, + -0.008648294024169445, + -0.004147071857005358, + -0.01863870583474636, + -0.031555965542793274, + -0.0344526432454586, + -0.04499049484729767, + 0.0218128003180027, + 0.02852516621351242, + -0.059561338275671005, + 0.020503636449575424, + 0.02322128415107727, + -0.027357393875718117, + -0.01871231012046337, + -0.038537222892045975, + 0.0892009288072586, + 0.029826998710632324, + 0.07851661741733551, + -0.04619782790541649, + -0.03014095313847065, + 0.10330498218536377, + 0.01882355473935604, + -0.009541727602481842, + -0.027155457064509392, + -0.011539775878190994, + 0.07540429383516312, + 0.02208646759390831, + 0.013419600203633308, + 0.042072951793670654, + 0.06542489677667618, + 0.026318825781345367, + 0.0207879189401865, + 0.05928638577461243, + 0.05388724058866501, + -0.03340350463986397, + 0.032644789665937424, + 0.04676036536693573, + 0.035159528255462646, + 0.0031194668263196945, + 0.03228311240673065, + -0.005200378596782684, + 0.018861297518014908, + 0.01503603346645832, + 0.03180718049407005, + -0.031021390110254288, + -0.01753920689225197, + -0.003928624093532562, + 0.027134915813803673, + 0.007655126042664051, + -0.027180857956409454, + -0.04441680386662483, + -0.027815070003271103, + 0.07109994441270828, + 0.008170605637133121, + 0.018829017877578735, + 0.019240474328398705, + 0.04515431448817253, + 0.007108947262167931, + -0.06692110002040863, + -0.03214964270591736, + 0.03002394735813141, + -0.017836879938840866, + 0.0601254403591156, + 0.000507846474647522, + 0.00819731131196022, + 0.0015452175866812468, + 0.05034971609711647, + -0.012081120163202286, + 0.03314417600631714, + -0.006373772397637367, + -0.04044809937477112, + 0.011094868183135986, + 0.03351490944623947, + 0.021656449884176254, + 0.059381045401096344, + 0.006152201443910599, + 0.040625881403684616, + 0.07226324081420898, + -0.05167388543486595, + -0.036990970373153687, + 0.01653316803276539, + 0.04657892510294914, + -0.032473526895046234, + 0.08378227055072784, + 0.003351696766912937, + 0.05009856075048447, + 0.0572018139064312, + 0.0042100027203559875, + -0.03722354769706726, + -0.016422713175415993, + 0.010823165997862816, + -0.028255663812160492, + 0.054991669952869415, + 0.03505391627550125, + -0.0277281291782856, + -0.0378371886909008, + 0.06286531686782837, + -0.009166107513010502, + -0.0195931326597929, + 0.009264307096600533, + 0.01508574839681387, + -0.05154145881533623, + 0.06666966527700424, + -0.05569108948111534, + 0.008931046351790428, + 0.04931595176458359, + -0.019608136266469955, + -0.010359052568674088, + 0.007967304438352585, + -0.060940101742744446, + 0.037310630083084106, + 0.004216235596686602, + -0.004898916929960251, + 0.07396860420703888, + -0.05401541292667389, + -0.07106470316648483, + -0.030234647914767265, + 0.01728491485118866, + -0.016407834365963936, + 0.06678484380245209, + 0.06425316631793976, + 0.02962702140212059, + 0.04817122220993042, + 0.0010351669043302536, + 0.01694277673959732, + 0.019808391109108925, + -0.1101369857788086, + 0.009859793819487095, + 0.01395457610487938, + 0.0019650347530841827, + -0.022062331438064575, + 0.009369672276079655, + 0.0010352330282330513, + -0.02205272763967514, + 0.012263722717761993, + 0.041676051914691925, + 0.016890935599803925, + 0.046777721494436264, + -0.11090710759162903, + 0.003162207081913948, + -0.033976003527641296, + -0.050292376428842545, + 0.030784860253334045, + -0.025186769664287567, + -0.02213302068412304, + 0.02199498936533928, + 0.034588564187288284, + -0.005461312830448151, + -0.04336395859718323, + -0.035829924046993256, + -0.02146868407726288, + 0.006920505315065384, + 0.0031632333993911743, + -0.0021576033905148506, + -0.02171609178185463, + 0.007879875600337982, + 0.04192621260881424, + 0.016796531155705452, + 0.011167256161570549, + 0.056430600583553314, + -0.034959372133016586, + -0.0005472246557474136, + 0.024400025606155396, + 0.09771516919136047, + 0.04066973179578781, + -0.08596210181713104, + -0.07395122945308685, + 0.00012766290456056595, + -0.0559719055891037, + 0.023752085864543915, + -0.01878785341978073, + 0.0335935540497303, + 0.015935957431793213, + 0.014390076510608196, + 0.039736147969961166, + -0.14267529547214508, + 0.03004344180226326, + -0.030806226655840874, + -0.03931436687707901, + 0.00065656378865242, + 0.000554962083697319, + 0.040239207446575165, + 0.016702713444828987, + -0.03528685122728348, + -0.05296364799141884, + 0.021238017827272415, + 0.028150256723165512, + 0.029138362035155296, + 0.0690004751086235, + 0.04669996723532677, + -0.008775357156991959, + -0.0012180993799120188, + -0.03143259137868881, + 0.007968328893184662, + 0.011450434103608131, + 0.04193948954343796, + 0.016909148544073105, + -0.015046491287648678, + -0.08710579574108124, + 0.05308601260185242, + -0.010983648709952831, + 0.05314164608716965, + -0.02919692173600197, + 0.01054445095360279, + 0.03424951061606407, + -0.03450099378824234, + 0.11250001192092896, + 0.04888845607638359, + -0.02481604367494583, + -0.030990026891231537, + -0.017108354717493057, + -0.036871287971735, + 0.07498010993003845, + 0.04275849089026451, + -0.04594205319881439, + -0.016575051471590996, + 0.06173774600028992, + 0.04882063716650009, + 0.08966310322284698, + 0.06832963973283768, + 0.05440453067421913, + 0.03674720972776413 + ] + }, + "p244_305.wav": { + "name": "p244", + "embedding": [ + 0.03680841997265816, + 0.11020034551620483, + -0.005404968746006489, + 0.042662445455789566, + -0.08041616529226303, + 0.08192805200815201, + -0.09941112995147705, + 0.11860743165016174, + -0.0606069341301918, + 0.12563851475715637, + -0.09892147034406662, + 0.1306304782629013, + -0.014961876906454563, + -0.18951694667339325, + -0.03994905576109886, + 0.05225594714283943, + -0.028645865619182587, + 0.008471691980957985, + -0.04621202498674393, + -0.01793196052312851, + 0.05020938441157341, + 0.019284356385469437, + 0.06857504695653915, + -0.013151300139725208, + 0.031644877046346664, + 0.046304889023303986, + 0.015884162858128548, + 0.0573231503367424, + 0.0376487597823143, + -0.05762620270252228, + -0.07605525851249695, + 0.12885041534900665, + -0.014173022471368313, + 0.005599393509328365, + 0.05730842053890228, + -0.023400746285915375, + 0.0107292914763093, + -0.061165884137153625, + -0.008159165270626545, + 0.010970084927976131, + -0.025679657235741615, + 0.06106745824217796, + 0.020902398973703384, + -0.0282975472509861, + 0.06579822301864624, + -0.00013658902025781572, + -0.04225555807352066, + -0.023120585829019547, + -0.09900441765785217, + 0.14053599536418915, + 0.07213610410690308, + -0.02566283755004406, + -0.075237937271595, + -0.06398482620716095, + 0.12165427207946777, + -0.002922208048403263, + -0.11024611443281174, + -0.03415912017226219, + 0.07996848970651627, + 0.16135293245315552, + 0.007831237278878689, + 0.0005735987797379494, + 0.020971955731511116, + 0.11034524440765381, + -0.009645863436162472, + 0.10238414257764816, + 0.04607567936182022, + 0.07685147970914841, + 0.0033366908319294453, + 0.08128233253955841, + 0.02057475410401821, + 0.06220689043402672, + -0.030061066150665283, + -0.04662223532795906, + 0.01886085979640484, + -0.037505168467760086, + -0.03627442196011543, + 0.028389321640133858, + -0.03163444623351097, + -0.02072555013000965, + -0.03730696067214012, + -0.008698281832039356, + 0.004216532222926617, + -0.05045827850699425, + -0.05701678246259689, + 0.06090954318642616, + -0.0005308945546858013, + 0.0026624053716659546, + 0.07018835097551346, + 0.058347903192043304, + -0.015369430184364319, + 0.030175304040312767, + -0.03861163556575775, + -0.12848998606204987, + 0.003807591274380684, + 0.019269131124019623, + -0.011519728228449821, + 0.07888594269752502, + 0.015645693987607956, + -0.026519672945141792, + 0.10311182588338852, + 0.08790585398674011, + -0.003693113336339593, + 0.05167796090245247, + -0.07798141241073608, + 0.12200459837913513, + 0.10174231976270676, + 0.007830099202692509, + 0.05984542891383171, + -0.031067993491888046, + 0.09622670710086823, + 0.07772275805473328, + -0.12174350768327713, + -0.06391138583421707, + -0.015521051362156868, + -0.018069177865982056, + -0.0008157648844644427, + 0.07142185419797897, + -0.015518763102591038, + 0.007603475823998451, + 0.08897192031145096, + -0.07205375283956528, + -0.07780874520540237, + -0.040904443711042404, + 0.04534268006682396, + -0.06015076860785484, + 0.059068720787763596, + 0.04122454300522804, + -0.01691916584968567, + -0.0098841218277812, + 0.055033717304468155, + -0.017712585628032684, + 0.01491404790431261, + 0.07901303470134735, + -0.07045823335647583, + 0.022614985704421997, + -0.05301900580525398, + 0.011059349402785301, + 0.07335592061281204, + 0.05476197227835655, + 0.0561140775680542, + -0.008677709847688675, + 0.004275009501725435, + -0.05714411288499832, + -0.0068344492465257645, + 0.046769410371780396, + 0.04538201913237572, + 0.01631047949194908, + -0.025193823501467705, + -0.055848535150289536, + -0.09241708368062973, + 0.03677891939878464, + -0.01886765845119953, + 0.10332703590393066, + -0.014842845499515533, + 0.024641763418912888, + 0.07389681041240692, + 0.023641254752874374, + -0.01999754272401333, + -0.08563105762004852, + -0.03083745203912258, + 0.035126619040966034, + 0.025894906371831894, + -0.07319611310958862, + -0.057273030281066895, + 0.0014720156323164701, + 2.184821460105013e-05, + -0.04095613956451416, + 0.02348559908568859, + 0.04756169766187668, + 0.00873467419296503, + 0.06310738623142242, + -0.08655968308448792, + 0.027806872501969337, + -0.09011808782815933, + -0.01761840656399727, + -0.0385696180164814, + -0.043738093227148056, + -0.030356185510754585, + 0.08681339025497437, + 0.0356714241206646, + 0.005997860804200172, + 0.03047958016395569, + -0.05473127216100693, + -0.06523144990205765, + 0.06382925808429718, + 0.059864506125450134, + 0.022563794627785683, + 0.08718200027942657, + 0.047233566641807556, + -0.0451233796775341, + 0.08615673333406448, + 0.07195208966732025, + 0.05867895483970642, + -0.002825414063408971, + -0.011505942791700363, + -0.07360249757766724, + 0.06834246963262558, + 0.10501454770565033, + -0.11997657269239426, + -0.11935344338417053, + -0.06379147619009018, + -0.06624368578195572, + 0.06997809559106827, + -0.02433452196419239, + -0.0262463241815567, + 0.04251294583082199, + -0.023216083645820618, + -0.0944429561495781, + -0.08610774576663971, + 0.11461147665977478, + -0.057830873876810074, + -0.02340402454137802, + -0.03950190544128418, + 0.023174431174993515, + 0.07389065623283386, + 0.005727465730160475, + -0.04888283461332321, + -0.00010191417095484212, + 0.0781739354133606, + -0.07571560889482498, + -0.007918321527540684, + 0.02574598230421543, + 0.005559690296649933, + -0.08457118272781372, + 0.047549787908792496, + -0.07322046905755997, + 0.07703110575675964, + -0.06899742037057877, + 0.18086005747318268, + 0.004408083390444517, + -0.043381791561841965, + -0.07191946357488632, + 0.08766552805900574, + -0.039148908108472824, + 0.013512498699128628, + 0.052040182054042816, + 0.05019459128379822, + -0.004328541923314333, + -0.10064201802015305, + 0.12004023790359497, + 0.009381997399032116, + -0.03776310011744499, + -0.07108494639396667, + -0.016123419627547264, + -0.048631854355335236, + 0.011479893699288368, + 0.027229811996221542, + -0.09176034480333328, + -0.023768458515405655, + 0.018228860571980476, + -0.01637456752359867, + 0.09974496811628342, + 0.14912520349025726, + 0.08032150566577911, + -0.08421117812395096 + ] + }, + "p244_321.wav": { + "name": "p244", + "embedding": [ + 0.019796855747699738, + 0.04795306921005249, + -0.019162900745868683, + -0.0013976339250802994, + -0.05059266462922096, + 0.024233508855104446, + -0.11165747791528702, + 0.08841949701309204, + -0.009336846880614758, + 0.12800636887550354, + -0.042159970849752426, + 0.11095093935728073, + 0.0015247608534991741, + -0.1398591846227646, + 0.014686169102787971, + 0.026818890124559402, + -0.01941770501434803, + -0.017896147444844246, + -0.00888101477175951, + -0.08759269118309021, + 0.04669930413365364, + 0.06280328333377838, + 0.023890424519777298, + -0.03796340525150299, + 0.00501624308526516, + 0.07881958037614822, + -0.00682907784357667, + 0.004837107844650745, + -0.011024710722267628, + -0.09525908529758453, + -0.04165209084749222, + 0.07646425068378448, + -0.04464235156774521, + -0.024425994604825974, + 0.01538074016571045, + -0.02293332666158676, + -0.008042561821639538, + -0.020627465099096298, + -0.004315420985221863, + 0.04895251989364624, + -0.06276361644268036, + 0.07247351109981537, + 0.026428688317537308, + -0.01012672483921051, + 0.05220962315797806, + -0.01447707787156105, + -0.03048100508749485, + -0.0012980960309505463, + -0.07267862558364868, + 0.13778889179229736, + 0.07741786539554596, + -0.02722783014178276, + -0.028835080564022064, + -0.039682306349277496, + 0.06727282702922821, + 0.00670588668435812, + -0.10694492608308792, + -0.012221192941069603, + 0.03368746489286423, + 0.08983111381530762, + -0.018398467451334, + -0.05516328290104866, + 0.05287482589483261, + 0.08594126999378204, + 0.01762217842042446, + 0.05788952857255936, + 0.08418719470500946, + 0.07011488825082779, + -0.03242700919508934, + -0.022819530218839645, + 0.02979768067598343, + 0.0952475368976593, + 0.0562124066054821, + -0.020052915439009666, + 0.0411151684820652, + 0.002737700939178467, + -0.009134945459663868, + -0.029955647885799408, + -0.015836356207728386, + -0.01971692405641079, + -0.018036289140582085, + -0.009873829782009125, + 0.020086398348212242, + 0.03005480021238327, + -0.0292836781591177, + 0.01388915441930294, + 0.05110170692205429, + 0.004012066870927811, + 0.04873056337237358, + 0.007368580903857946, + 0.02270909771323204, + 0.054285578429698944, + -0.07641416788101196, + -0.027434296905994415, + 0.025849001482129097, + -0.0042922478169202805, + 0.035942044109106064, + 0.08234238624572754, + 0.03569891303777695, + -0.013023817911744118, + 0.10679589211940765, + 0.042937107384204865, + -0.006507156416773796, + -0.008870118297636509, + -0.07570001482963562, + 0.08984769880771637, + 0.11224710941314697, + -0.038124315440654755, + 0.0507424920797348, + -0.03510075435042381, + 0.0725833848118782, + -0.0006898492574691772, + -0.12000507861375809, + -0.04006369039416313, + 0.006407805718481541, + 0.04356196150183678, + -0.0028378437273204327, + 0.13622228801250458, + 0.006731804460287094, + 0.04774729162454605, + 0.10489606112241745, + -0.06673643738031387, + -0.048521216958761215, + -0.046600136905908585, + 0.035671234130859375, + -0.11617111414670944, + 0.07023552805185318, + 0.05316717550158501, + 0.0024900510907173157, + 0.0377872996032238, + 0.07560620456933975, + -0.023201899603009224, + 0.01714150607585907, + -0.026662565767765045, + -0.029489167034626007, + -0.005715946201235056, + -0.01771145686507225, + 0.01756838895380497, + 0.04702644795179367, + 0.017122114077210426, + 0.0696008950471878, + -0.002864556387066841, + -0.019465235993266106, + -0.11771953850984573, + 0.04103127121925354, + 0.009452946484088898, + 0.037627145648002625, + -0.025642866268754005, + -0.0359167642891407, + -0.011247633025050163, + -0.08937516808509827, + -0.003203418105840683, + -0.02582256682217121, + 0.058227479457855225, + -0.031154057011008263, + -0.001993859652429819, + 0.08229762315750122, + 0.057472631335258484, + -0.01950656995177269, + -0.001266084611415863, + -0.05629737675189972, + -0.01752004586160183, + 0.04999757558107376, + -0.11136072874069214, + -0.07291733473539352, + -0.03777594491839409, + 0.03453898802399635, + 0.017137693241238594, + 0.04605704918503761, + 0.07797226309776306, + -0.0021591167896986008, + 0.03852430358529091, + -0.045857787132263184, + 0.0037035192362964153, + -0.07883689552545547, + -0.08240285515785217, + -0.024815313518047333, + -0.047267187386751175, + -0.035947155207395554, + 0.0677686557173729, + -0.026642654091119766, + 0.04849773645401001, + -0.045029167085886, + -0.02876419387757778, + -0.07279334962368011, + 0.022052543237805367, + 0.042411379516124725, + -0.014073062688112259, + 0.024032149463891983, + 0.08131226152181625, + -0.025271791964769363, + 0.031216438859701157, + 0.0436992421746254, + 0.09169494360685349, + -0.03659851849079132, + 0.04318968579173088, + -0.05520794168114662, + 0.0829092338681221, + 0.07640048116445541, + -0.020023712888360023, + -0.063369020819664, + -0.043132685124874115, + -0.0794314593076706, + 0.06705223023891449, + -0.020340420305728912, + -0.014383744448423386, + -0.0043847993947565556, + 0.022201169282197952, + -0.0691576898097992, + -0.04532690346240997, + 0.06268709152936935, + -0.02989770844578743, + -0.00779334269464016, + -0.08017323911190033, + 0.02725606970489025, + 0.06483534723520279, + 0.07840752601623535, + -0.04323766380548477, + 0.003998568281531334, + 0.04557940363883972, + -0.02123401314020157, + 0.04879053309559822, + 0.051013581454753876, + 0.06213816627860069, + -0.06196678429841995, + -0.035608939826488495, + -0.07556778937578201, + 0.02215547114610672, + -0.05067184194922447, + 0.06656070053577423, + 0.037851981818675995, + -0.0398666076362133, + -0.0593203566968441, + 0.053124748170375824, + -0.0021822997368872166, + 0.022914491593837738, + 0.058885447680950165, + 0.06444264948368073, + 0.05139835178852081, + -0.06555067747831345, + 0.0732717290520668, + 0.03350609540939331, + -0.006020057946443558, + -0.03344335779547691, + -0.00962885096669197, + -0.01858488656580448, + 0.029179146513342857, + 0.036740198731422424, + -0.07965373992919922, + 0.0013965889811515808, + 0.01820480264723301, + 0.018503092229366302, + 0.03805097937583923, + 0.09350802004337311, + 0.03438076749444008, + -0.11205171793699265 + ] + }, + "p244_068.wav": { + "name": "p244", + "embedding": [ + 0.021957755088806152, + 0.08661796152591705, + -0.045143336057662964, + 0.045182548463344574, + -0.047540441155433655, + 0.010512247681617737, + -0.11310746520757675, + 0.10278674960136414, + -0.036397069692611694, + 0.11621536314487457, + -0.08819311112165451, + 0.10504996031522751, + -0.07022294402122498, + -0.15615186095237732, + -0.023822052404284477, + 0.0656767338514328, + -0.0005303770303726196, + -0.038710445165634155, + -0.006298385560512543, + -0.029215510934591293, + 0.07068923115730286, + 0.05148620530962944, + 0.017076954245567322, + 0.007087378762662411, + -0.012709235772490501, + 0.07656851410865784, + -0.008050093427300453, + 0.011457858607172966, + -0.004715288989245892, + 0.010694569908082485, + -0.012077799066901207, + 0.09943683445453644, + -0.014580751769244671, + -0.021040506660938263, + 0.02109205350279808, + 0.03495434671640396, + -0.019907262176275253, + -0.03617654740810394, + -0.000608989386819303, + -0.006250749342143536, + -0.0753464549779892, + 0.039726804941892624, + -0.0034810006618499756, + -0.02756824716925621, + 0.07469600439071655, + -0.03918081149458885, + -0.050030939280986786, + -0.008366195484995842, + -0.10358190536499023, + 0.13226330280303955, + 0.09312580525875092, + 0.042326267808675766, + -0.06573665142059326, + -0.035372018814086914, + 0.10529046505689621, + 0.009614803828299046, + -0.07926337420940399, + -0.055499326437711716, + 0.05049272999167442, + 0.16806785762310028, + -0.0018078784924000502, + -0.02924937568604946, + 0.04494518041610718, + 0.08643177151679993, + 0.04230610281229019, + 0.06142454966902733, + 0.08683254569768906, + 0.07367929816246033, + 0.007889879867434502, + -0.02790161967277527, + 0.05355392396450043, + 0.07458736002445221, + 0.03828192874789238, + -0.03543815761804581, + 0.01036419440060854, + 0.006485484540462494, + -0.029976023361086845, + 0.018398797139525414, + -0.023383930325508118, + -0.051529936492443085, + -0.022684192284941673, + -0.004640957340598106, + -0.013122609816491604, + 0.001032407395541668, + -0.04056040570139885, + 0.02226077765226364, + 0.06955316662788391, + -0.0331730917096138, + 0.06142030283808708, + 0.030625488609075546, + -0.015783414244651794, + 0.03583595156669617, + -0.05616746470332146, + -0.06951442360877991, + 0.02198934182524681, + 0.02224070392549038, + 0.0034164737444370985, + 0.07401338964700699, + 0.02572927437722683, + 0.002608424751088023, + 0.10432995855808258, + 0.023159176111221313, + 0.02326396480202675, + 0.01384873129427433, + -0.09176649153232574, + 0.1016901433467865, + 0.10549823939800262, + -0.03362666070461273, + 0.0482378713786602, + -0.009836315177381039, + 0.017206335440278053, + 0.05310118943452835, + -0.09218424558639526, + -0.04348192363977432, + 0.01949073001742363, + 0.02991928532719612, + 0.01068449392914772, + 0.10253587365150452, + 0.02146149054169655, + 0.028457026928663254, + 0.1260330080986023, + -0.09592334926128387, + -0.10011017322540283, + -0.057887911796569824, + 0.040403492748737335, + -0.0695645660161972, + 0.06672489643096924, + 0.06927646696567535, + 0.023627087473869324, + 0.004220356233417988, + 0.05582958087325096, + -0.006523303687572479, + 0.029547661542892456, + -0.014327874407172203, + -0.055371325463056564, + 0.017639292404055595, + -0.05609823018312454, + -0.015749260783195496, + 0.07552137225866318, + 0.02237766608595848, + 0.06844121217727661, + 0.008556347340345383, + 0.020640438422560692, + -0.12003402411937714, + 0.0007948220591060817, + 0.0727209597826004, + 0.03607843816280365, + -0.020361270755529404, + -0.044254548847675323, + -0.04218670725822449, + -0.06681978702545166, + 0.006706803105771542, + -0.03010953590273857, + 0.09841638803482056, + -0.023907622322440147, + 0.012109657749533653, + 0.08864200115203857, + -0.004977382719516754, + -0.007578730117529631, + -0.04252775013446808, + -0.02234969660639763, + -0.007929573766887188, + 0.03151892125606537, + -0.09064247459173203, + -0.1010613963007927, + -0.042087361216545105, + 0.05107451602816582, + -0.004260665737092495, + 0.042364686727523804, + 0.052337389439344406, + -0.013811245560646057, + 0.007843616418540478, + -0.06644966453313828, + 0.04462031275033951, + -0.08869294822216034, + -0.056289754807949066, + -0.014875976368784904, + -0.03884541988372803, + 0.006139889359474182, + 0.08160577714443207, + 0.013248255476355553, + 0.024326007813215256, + -0.0032954688649624586, + -0.08268805593252182, + -0.1023300513625145, + 0.05481996759772301, + 0.061673473566770554, + 0.003450061660259962, + 0.0645458847284317, + 0.04077550023794174, + -0.044062625616788864, + 0.038811683654785156, + 0.03586976230144501, + 0.10323973000049591, + -0.04386085271835327, + 0.004681393504142761, + -0.060749601572752, + 0.036128636449575424, + 0.10026691854000092, + -0.08631306886672974, + -0.07773762196302414, + -0.06431446224451065, + -0.07211191207170486, + 0.05085686594247818, + -0.03988942131400108, + 0.01222461462020874, + 0.028577325865626335, + -0.0391903892159462, + -0.12443135678768158, + -0.09700140357017517, + 0.07328532636165619, + -0.015357635915279388, + -0.014184346422553062, + -0.061515968292951584, + 0.03144798055291176, + 0.05173064395785332, + 0.008370292373001575, + -0.048340167850255966, + -0.0010128326248377562, + 0.011528288945555687, + -0.04620502144098282, + -0.009316708892583847, + 0.05019637197256088, + 0.04620800167322159, + -0.07486826181411743, + -0.013767186552286148, + -0.088576540350914, + 0.08730854839086533, + -0.05167301744222641, + 0.11671514809131622, + -0.004235226195305586, + -0.03978075832128525, + -0.09189099073410034, + 0.05710427090525627, + 0.028938813135027885, + 0.049866896122694016, + 0.02716229483485222, + 0.06394459307193756, + 0.0003793786163441837, + -0.07575772702693939, + 0.09853824973106384, + 0.04341161996126175, + -0.015513102523982525, + -0.07642939686775208, + -0.016793806105852127, + -0.05546639487147331, + 0.018490217626094818, + -0.0011689866660162807, + -0.05994240194559097, + -0.000582697510253638, + -0.0060240477323532104, + 0.025851421058177948, + 0.06462063640356064, + 0.09856706857681274, + 0.035542722791433334, + -0.09254105389118195 + ] + }, + "p244_376.wav": { + "name": "p244", + "embedding": [ + 0.08005376160144806, + 0.05755379796028137, + -0.06888500601053238, + -0.012651419267058372, + -0.035178836435079575, + 0.05041232705116272, + -0.14282119274139404, + 0.05526858940720558, + -0.017436450347304344, + 0.15130344033241272, + -0.03355814889073372, + 0.11094611138105392, + 0.027208877727389336, + -0.10332140326499939, + -0.02636384405195713, + 0.006753427907824516, + -0.017748337239027023, + -0.004211030900478363, + -0.06095856428146362, + -0.04716094210743904, + 0.010429040528833866, + 0.05530063062906265, + 0.03440217301249504, + -0.06851283460855484, + 0.02622714266180992, + 0.04758075624704361, + -0.002288578078150749, + 0.01325017586350441, + -0.02644115313887596, + -0.04145092889666557, + 0.00013965927064418793, + 0.08812232315540314, + -0.05831935256719589, + -0.007134494371712208, + -0.00359090487472713, + 0.00300761591643095, + -0.0018879435956478119, + -0.07648806273937225, + -0.002619081176817417, + 0.05342339351773262, + -0.0006017116829752922, + 0.08844119310379028, + 0.04588779807090759, + 0.012877222150564194, + -0.013752523809671402, + -0.02985967881977558, + -0.025843659415841103, + -0.0272990670055151, + -0.06780489534139633, + 0.18060865998268127, + 0.06884300708770752, + 0.005504269618541002, + -0.08884146809577942, + -0.017812181264162064, + 0.06815776228904724, + -0.013821378350257874, + -0.06650679558515549, + -0.051671311259269714, + -0.0009009093046188354, + 0.10872600972652435, + -0.018352646380662918, + -0.05834049731492996, + 0.02400658279657364, + 0.10218660533428192, + 0.024838706478476524, + 0.01669878512620926, + 0.10635505616664886, + 0.10029220581054688, + -0.030666068196296692, + 0.012608409859240055, + 0.03512316942214966, + 0.04906298592686653, + 0.05049573630094528, + -0.030832210555672646, + 0.0599546879529953, + -0.032943420112133026, + 0.0007438166067004204, + -0.020310375839471817, + -0.03576834127306938, + -0.07504996657371521, + 0.0055182864889502525, + -0.005051222629845142, + 0.019051004201173782, + 0.1001109629869461, + -0.10099520534276962, + 0.0008055642247200012, + 0.054867908358573914, + -0.061348363757133484, + 0.05157175660133362, + 0.07086262106895447, + 0.038022495806217194, + 0.0048141684383153915, + -0.059027619659900665, + -0.06818430125713348, + 0.06334421038627625, + 0.005557971075177193, + 0.030040446668863297, + 0.04530750960111618, + 0.03309766203165054, + -0.015002413652837276, + 0.06790737062692642, + 0.03983112424612045, + -0.028200428932905197, + -0.031751230359077454, + -0.04700809717178345, + 0.11032786965370178, + 0.1379425972700119, + -0.03843233734369278, + 0.007988182827830315, + -0.022303558886051178, + 0.0240476131439209, + 0.023102665320038795, + -0.09188297390937805, + -0.07471267879009247, + 0.04373764246702194, + 0.05013854801654816, + 0.04415269196033478, + 0.09229746460914612, + 0.01910434290766716, + 0.044870488345623016, + 0.058838970959186554, + -0.022323831915855408, + -0.05037125200033188, + -0.031643085181713104, + 0.014776039868593216, + -0.06577251851558685, + 0.020165421068668365, + 0.061019591987133026, + 0.004524789750576019, + -0.03427709639072418, + 0.07929814606904984, + 0.01673387736082077, + 0.013604751788079739, + -0.024389877915382385, + 0.043047912418842316, + 0.07457157224416733, + 0.02622353844344616, + -0.0023830030113458633, + 0.02857119031250477, + 0.020267723128199577, + 0.057761844247579575, + 0.026318516582250595, + -0.010373399592936039, + -0.11678669601678848, + 0.04177180677652359, + 0.038499727845191956, + 0.03413465619087219, + -0.07446363568305969, + -0.028032515197992325, + -0.011551225557923317, + -0.03445816785097122, + 0.0166546031832695, + -0.03555645793676376, + 0.04926202446222305, + 0.02559366077184677, + -0.03673495352268219, + 0.1158822774887085, + -0.033373527228832245, + -0.014727499336004257, + 0.01235896721482277, + 0.045747436583042145, + 0.019564781337976456, + 0.04482809826731682, + -0.06912360340356827, + -0.05930550396442413, + 0.001979677937924862, + 0.01577814482152462, + 0.013632276095449924, + 0.038298387080430984, + 0.07666600495576859, + -0.048963628709316254, + 0.041163742542266846, + -0.06342019140720367, + -0.009470120072364807, + -0.07057616114616394, + 0.0076567791402339935, + 0.010691531002521515, + -0.09257781505584717, + -0.03947608545422554, + 0.08207451552152634, + 0.01605331525206566, + 0.03958521783351898, + -0.08270879089832306, + -0.07009458541870117, + -0.021396761760115623, + 0.042822498828172684, + 0.0718824714422226, + -0.055736735463142395, + -0.010422486811876297, + 0.058570556342601776, + 0.04986683279275894, + 0.015990938991308212, + 0.08449632674455643, + 0.04153852164745331, + -0.061078086495399475, + -0.03711984306573868, + -0.03062603622674942, + 0.09993880987167358, + 0.04734416678547859, + -0.05824292451143265, + -0.04347402602434158, + -0.05519230663776398, + -0.049645937979221344, + -0.0006622616201639175, + -0.014162433333694935, + 0.024793529883027077, + 0.06623566150665283, + -0.021464698016643524, + -0.08998558670282364, + -0.0979444831609726, + 0.06329875439405441, + -0.05878762528300285, + 0.013441061601042747, + -0.05012490227818489, + 0.027473634108901024, + 0.043029628694057465, + 0.05713218078017235, + -0.040637753903865814, + 0.007757308892905712, + -0.020825708284974098, + -0.060269929468631744, + 0.0030862241983413696, + 0.013228049501776695, + 0.04468826949596405, + -0.08472061902284622, + -0.011824308894574642, + -0.06840802729129791, + 0.07352784276008606, + -0.07417911291122437, + 0.07702597230672836, + 0.03445609286427498, + -0.028549835085868835, + -0.07389676570892334, + 0.004822645336389542, + -0.04218965023756027, + 0.057287391275167465, + 0.07284535467624664, + 0.03744577243924141, + 0.02262120321393013, + -0.08249017596244812, + 0.06453859806060791, + 0.08595191687345505, + -0.007596771232783794, + -0.09834901243448257, + 0.0011981930583715439, + -0.0032746782526373863, + 0.060035690665245056, + 0.05292436107993126, + -0.025849156081676483, + 0.040095530450344086, + 0.029390152543783188, + -0.03652733191847801, + 0.04038412123918533, + 0.07081020623445511, + 0.0669822245836258, + -0.10407344251871109 + ] + }, + "p244_070.wav": { + "name": "p244", + "embedding": [ + 0.02991032972931862, + 0.09713266789913177, + -0.027360284700989723, + 0.02170083485543728, + -0.047729186713695526, + 0.055943526327610016, + -0.13302892446517944, + 0.09923289716243744, + -0.0437522754073143, + 0.14577391743659973, + -0.07060668617486954, + 0.08505018055438995, + -0.029882129281759262, + -0.18598291277885437, + -0.029957802966237068, + 0.06529025733470917, + -0.059457626193761826, + -0.03936466574668884, + -0.04785887897014618, + -0.023037217557430267, + 0.0352051705121994, + 0.05845373868942261, + 0.02115449495613575, + -0.022364582866430283, + 0.023670166730880737, + 0.06351901590824127, + 0.00473762396723032, + 0.039859239012002945, + 0.0013181092217564583, + -0.05319696292281151, + -0.029683595523238182, + 0.11725907027721405, + -0.03794175386428833, + 0.018588010221719742, + 0.025406356900930405, + 0.014373437501490116, + 0.018563341349363327, + -0.06947159767150879, + -0.010458077304065228, + 0.014902902767062187, + -0.0382770337164402, + 0.06767833232879639, + 0.028078097850084305, + 0.00964970514178276, + 0.03624027594923973, + 0.008601536974310875, + -0.03129652887582779, + -0.06333072483539581, + -0.09231466054916382, + 0.1972379833459854, + 0.08844916522502899, + -0.006180133670568466, + -0.048308469355106354, + -0.09691385924816132, + 0.09024622291326523, + 0.016768306493759155, + -0.12709854543209076, + -0.06816892325878143, + 0.0870758593082428, + 0.16377541422843933, + -0.015808267518877983, + -0.0325927734375, + 0.013753147795796394, + 0.13827481865882874, + 0.01878228224813938, + 0.09819979965686798, + 0.0577523335814476, + 0.09746627509593964, + 0.004603349603712559, + 0.0063022105023264885, + 0.07522371411323547, + 0.05628213658928871, + 0.03123718872666359, + -0.016654256731271744, + 0.035716086626052856, + -0.014248053543269634, + -0.025026725605130196, + 0.012815079651772976, + -0.009755978360772133, + -0.02446960285305977, + -0.0052015832625329494, + 0.002701279241591692, + -0.01197902113199234, + 0.015339416451752186, + -0.013912796974182129, + 0.02174682915210724, + 0.029543699696660042, + -0.009072719141840935, + 0.08121216297149658, + 0.03776708245277405, + 0.015159412287175655, + 0.04681462049484253, + -0.05047263950109482, + -0.08258160948753357, + 0.029082901775836945, + 0.030308786779642105, + 0.012764479964971542, + 0.06561272591352463, + 0.02340395748615265, + -0.03610274940729141, + 0.10929451882839203, + 0.02647586166858673, + -0.016308387741446495, + 0.012034917250275612, + -0.10742451250553131, + 0.1267780065536499, + 0.07977531850337982, + -0.011146089062094688, + 0.03917150944471359, + -0.0402151495218277, + 0.06598741561174393, + 0.07048916816711426, + -0.142117440700531, + -0.07743804156780243, + 0.025727108120918274, + 0.010038471780717373, + -0.028583722189068794, + 0.10993412137031555, + 0.0159462783485651, + 0.010519732721149921, + 0.1172567829489708, + -0.10484252125024796, + -0.07501819729804993, + -0.025926880538463593, + 0.047169029712677, + -0.09261322766542435, + 0.018937285989522934, + 0.07269708812236786, + -0.029842954128980637, + 0.007695285603404045, + 0.07650066912174225, + -0.0011957152746617794, + 0.034363117069005966, + 0.006253550760447979, + -0.04821476340293884, + 0.03430265188217163, + -0.0352766327559948, + -0.0020013500470668077, + 0.045845627784729004, + 0.038289979100227356, + 0.049407415091991425, + -0.01659550704061985, + -0.05738826096057892, + -0.1140483021736145, + 0.01262338925153017, + 0.033136963844299316, + 0.06008845195174217, + -0.01889149844646454, + -0.00403453316539526, + -0.03142246976494789, + -0.08135172724723816, + 0.021794293075799942, + -0.02001180127263069, + 0.08747489005327225, + -0.0022539724595844746, + -0.027037477120757103, + 0.11984295397996902, + 0.01634308136999607, + -0.013876904733479023, + -0.05187677592039108, + -0.04038695991039276, + 0.03837493807077408, + 0.04228370636701584, + -0.09457358717918396, + -0.061183761805295944, + 0.017095627263188362, + 0.027456611394882202, + -0.00366988405585289, + 0.034399040043354034, + 0.04362881928682327, + 0.011307156644761562, + 0.023048173636198044, + -0.07092536985874176, + 0.006714926101267338, + -0.08838729560375214, + -0.0592900887131691, + -0.006112528499215841, + -0.028270918875932693, + -0.022105993703007698, + 0.09926992654800415, + -0.009517538361251354, + 0.0219819787889719, + -0.021933868527412415, + -0.07600809633731842, + -0.06995662301778793, + 0.07575470209121704, + 0.08184435963630676, + 8.164811879396439e-05, + 0.0515405610203743, + 0.04392187297344208, + -0.0358964279294014, + 0.027801673859357834, + 0.05057409405708313, + 0.11894149333238602, + -0.03312252461910248, + 0.010453984141349792, + -0.07434603571891785, + 0.0778932273387909, + 0.06405719369649887, + -0.10046273469924927, + -0.05399708077311516, + -0.03222255781292915, + -0.05673178285360336, + 0.03812501206994057, + -0.032521992921829224, + 0.007975148037075996, + 0.023129835724830627, + -0.01954576186835766, + -0.10331720858812332, + -0.09622026234865189, + 0.08285944163799286, + -0.04898538440465927, + -0.014663532376289368, + -0.06842975318431854, + 0.05165817216038704, + 0.08830922842025757, + 0.07179246097803116, + -0.028822287917137146, + -0.004184132441878319, + 0.048411935567855835, + -0.06446801126003265, + 0.0017306981608271599, + 0.04234875738620758, + 0.037913233041763306, + -0.09251242130994797, + 0.004728993866592646, + -0.08809943497180939, + 0.0548415444791317, + -0.06621024012565613, + 0.14646996557712555, + 0.01086841244250536, + -0.06429386138916016, + -0.09507139772176743, + 0.04500804841518402, + -0.03568064421415329, + 0.038801148533821106, + 0.02710224688053131, + 0.04702979698777199, + 0.05346471816301346, + -0.058262720704078674, + 0.11559824645519257, + 0.04072568565607071, + -0.005541316233575344, + -0.052699729800224304, + -0.026144415140151978, + -0.042245879769325256, + 0.047387562692165375, + -0.0011509372852742672, + -0.09449885785579681, + -0.007616832386702299, + 0.03220047429203987, + -0.014819370582699776, + 0.07149173319339752, + 0.13382050395011902, + 0.06893161684274673, + -0.1137724369764328 + ] + }, + "p244_260.wav": { + "name": "p244", + "embedding": [ + 0.052443671971559525, + 0.058890312910079956, + -0.030283790081739426, + 0.054286450147628784, + -0.05942036956548691, + 0.03844401612877846, + -0.13732722401618958, + 0.08087147772312164, + -0.026981018483638763, + 0.1198892891407013, + -0.060615673661231995, + 0.07791361212730408, + -0.019531795755028725, + -0.18594130873680115, + -0.01834254525601864, + 0.06921707838773727, + -0.06945834308862686, + -0.057750023901462555, + -0.07611195743083954, + -0.032044682651758194, + 0.020030103623867035, + 0.05806142836809158, + 0.03044389933347702, + -0.013777684420347214, + 0.033260051161050797, + 0.053187862038612366, + -0.005918641574680805, + 0.027794208377599716, + 0.009298181161284447, + -0.034195128828287125, + -0.010616540908813477, + 0.10243809968233109, + -0.01972627080976963, + -0.011815393343567848, + 0.005173263140022755, + 0.03616705164313316, + 0.002077273791655898, + -0.08505409955978394, + -0.03782462701201439, + 0.01574067585170269, + -0.06782083213329315, + 0.06345131993293762, + 0.03816036134958267, + -0.0339784175157547, + 0.039595648646354675, + -0.025284461677074432, + -0.050554897636175156, + -0.05418383330106735, + -0.12210095673799515, + 0.18167096376419067, + 0.07810959219932556, + 0.021752292290329933, + -0.068272665143013, + -0.07620363682508469, + 0.09472226351499557, + 0.0032911384478211403, + -0.12374389171600342, + -0.050256822258234024, + 0.07356399297714233, + 0.17306257784366608, + -0.023705286905169487, + -0.0021210014820098877, + 0.027197862043976784, + 0.13342586159706116, + 0.06263761967420578, + 0.07645954191684723, + 0.06787553429603577, + 0.11010432988405228, + 0.002539274049922824, + 0.016204629093408585, + 0.09764999151229858, + 0.059212684631347656, + 0.03640780970454216, + -0.0123871685937047, + 0.01393324974924326, + -0.0020597586408257484, + -0.03439733386039734, + -0.006506206467747688, + -0.017389077693223953, + -0.02587355673313141, + 0.0013553816825151443, + -0.019604841247200966, + 0.009471730329096317, + 0.018233075737953186, + -0.03592627868056297, + 0.02556605450809002, + 0.054522350430488586, + -0.03486078977584839, + 0.06509394943714142, + 0.050987839698791504, + 0.003218352561816573, + 0.0436897911131382, + -0.03764643147587776, + -0.0888967365026474, + 0.009503361769020557, + 0.023859849199652672, + 0.024276316165924072, + 0.048773396760225296, + 0.03251905366778374, + -0.030649341642856598, + 0.1110071912407875, + 0.02671528235077858, + -0.011274587363004684, + 0.01955975592136383, + -0.09594254940748215, + 0.11146451532840729, + 0.09117516875267029, + -0.011454186402261257, + 0.040852826088666916, + -0.021633144468069077, + 0.05776110664010048, + 0.0782390683889389, + -0.12134939432144165, + -0.04581364244222641, + 0.025709660723805428, + -0.006021748296916485, + -0.006508306600153446, + 0.11656110733747482, + 0.02181277610361576, + 0.022313140332698822, + 0.11436766386032104, + -0.09455771744251251, + -0.05395294725894928, + -0.013253034092485905, + 0.0563943050801754, + -0.08456818014383316, + 0.03143411874771118, + 0.06915058195590973, + -0.024777468293905258, + 0.005611828062683344, + 0.06044044345617294, + -0.0011769109405577183, + 0.01612609066069126, + -0.017426365986466408, + -0.03795291483402252, + 0.06245235726237297, + -0.027717262506484985, + -0.0146824661642313, + 0.08564204722642899, + 0.030956588685512543, + 0.04711495339870453, + -0.011472516693174839, + -0.03338033705949783, + -0.10827721655368805, + 0.02675252966582775, + 0.04157167673110962, + 0.08721060305833817, + -0.019418086856603622, + 0.009227249771356583, + -0.058872297406196594, + -0.08381900936365128, + 0.056617505848407745, + -0.030123643577098846, + 0.08945368230342865, + -0.005842579994350672, + -0.030310453847050667, + 0.11009860038757324, + -0.009250789880752563, + -0.0023176763206720352, + -0.029247581958770752, + -0.023278385400772095, + 0.04241662472486496, + 0.0491216778755188, + -0.08824587613344193, + -0.05917992815375328, + 0.012933153659105301, + 0.022040069103240967, + -0.028918232768774033, + 0.01963481307029724, + 0.017823772504925728, + -0.003989948891103268, + 0.006159224547445774, + -0.07605648040771484, + 0.025758519768714905, + -0.09067247807979584, + -0.04475948214530945, + 0.021828006953001022, + -0.04493986442685127, + -0.00769712682813406, + 0.09507131576538086, + 0.012354816310107708, + 0.007893905974924564, + -0.03547287732362747, + -0.11190629750490189, + -0.06183738261461258, + 0.06806796044111252, + 0.06126062572002411, + -0.005525221116840839, + 0.044351838529109955, + 0.05669216066598892, + -0.01432847324758768, + 0.01546574104577303, + 0.04030876234173775, + 0.11800795793533325, + -0.03175816312432289, + -0.00919390469789505, + -0.06634333729743958, + 0.08731898665428162, + 0.07194938510656357, + -0.08271962404251099, + -0.053904324769973755, + -0.040673449635505676, + -0.062066707760095596, + 0.0386207140982151, + -0.021277619525790215, + 0.005010928027331829, + 0.04068051651120186, + -0.03413543850183487, + -0.12400849163532257, + -0.1026727557182312, + 0.08904910832643509, + -0.050866737961769104, + -0.02218184620141983, + -0.07930473238229752, + 0.03549589961767197, + 0.07337690144777298, + 0.04734059423208237, + -0.01640145853161812, + 0.008923745714128017, + 0.02853236347436905, + -0.07541575282812119, + -0.01096288301050663, + 0.04997691139578819, + 0.00787083525210619, + -0.10931070894002914, + -0.02784734219312668, + -0.0821065753698349, + 0.07258278131484985, + -0.04227996617555618, + 0.1414038985967636, + 0.01636827364563942, + -0.0457879975438118, + -0.08554629236459732, + 0.04441457241773605, + -0.024595730006694794, + 0.07259853184223175, + 0.06704141199588776, + 0.056777939200401306, + 0.05424455553293228, + -0.060157254338264465, + 0.09853781759738922, + 0.048772942274808884, + -0.010409444570541382, + -0.04846806824207306, + -0.01409197598695755, + -0.03018895536661148, + 0.028375796973705292, + -0.022878238931298256, + -0.06497061252593994, + 0.014018911868333817, + 0.024653032422065735, + -0.03470531478524208, + 0.05763044208288193, + 0.11638481914997101, + 0.08661766350269318, + -0.08111521601676941 + ] + }, + "p244_192.wav": { + "name": "p244", + "embedding": [ + 0.03262646123766899, + 0.12379908561706543, + 0.016163086518645287, + -0.00663268007338047, + -0.05911390855908394, + 0.09224914014339447, + -0.10246001183986664, + 0.13159795105457306, + -0.08496902137994766, + 0.14029830694198608, + -0.06387554854154587, + 0.12614262104034424, + -0.02968781255185604, + -0.18280376493930817, + -0.08825138211250305, + 0.038232047110795975, + -0.08782477676868439, + -0.012869427911937237, + -0.05663047358393669, + -0.03225100040435791, + 0.045121416449546814, + 0.021371454000473022, + 0.038543567061424255, + 0.014830940403044224, + 0.03173444792628288, + 0.06083229184150696, + 0.03976612165570259, + 0.06885115057229996, + 0.058115214109420776, + -0.09211589395999908, + -0.0532311350107193, + 0.0960359275341034, + -0.039316657930612564, + 0.01907646283507347, + 0.05744375288486481, + -0.027037344872951508, + 0.05597357451915741, + -0.026630999520421028, + -0.014653770253062248, + 0.0547000952064991, + -0.005754037760198116, + 0.08610182255506516, + 0.022965729236602783, + 0.026887163519859314, + 0.02968793734908104, + 0.03296804800629616, + -0.006874381564557552, + -0.04925329610705376, + -0.08828482031822205, + 0.17789803445339203, + 0.07549478858709335, + -0.04517019912600517, + -0.04509381577372551, + -0.08592663705348969, + 0.11843317002058029, + -0.047517500817775726, + -0.13891443610191345, + -0.0443793386220932, + 0.07666254788637161, + 0.14082317054271698, + -0.02262004092335701, + -0.025023939087986946, + 0.01558383833616972, + 0.12578435242176056, + 0.0017377515323460102, + 0.09159385412931442, + 0.06470347940921783, + 0.0568973682820797, + -0.006759846117347479, + 0.04127608239650726, + 0.04138202592730522, + 0.05442634969949722, + -0.003463547211140394, + -0.028999852016568184, + 0.04508412629365921, + -0.04047863930463791, + 0.007330487947911024, + 0.025570763275027275, + -0.001731345895677805, + 0.011806417256593704, + -0.025929901748895645, + 0.03188137710094452, + -0.032630082219839096, + -0.020052870735526085, + -0.028647303581237793, + 0.08918803185224533, + -0.06625811010599136, + 0.020840546116232872, + 0.08517219871282578, + 0.056607574224472046, + 0.03346594423055649, + 0.05179920047521591, + -0.026437651365995407, + -0.08375440537929535, + 0.01749361678957939, + 0.010003789328038692, + 0.0013587971916422248, + 0.06163894012570381, + 0.030074529349803925, + -0.009656962938606739, + 0.11676964163780212, + 0.0974079817533493, + -0.015413512475788593, + 0.018763558939099312, + -0.1064629852771759, + 0.13343174755573273, + 0.06986691802740097, + -0.0060981521382927895, + 0.048893094062805176, + -0.012913327664136887, + 0.0947539359331131, + 0.06055876240134239, + -0.13951069116592407, + -0.09990041702985764, + 0.02111734077334404, + 0.018239859491586685, + -0.006232604384422302, + 0.06367859989404678, + -0.038519486784935, + 0.0013844977365806699, + 0.09338568150997162, + -0.037311892956495285, + -0.03465544059872627, + -0.04517214000225067, + 0.047214996069669724, + -0.08431456983089447, + 0.04411686584353447, + 0.0476948618888855, + -0.03336651623249054, + 0.010245944373309612, + 0.10439297556877136, + -0.027889762073755264, + -0.006752275861799717, + 0.05106702446937561, + -0.05176100134849548, + 0.020060457289218903, + -0.043331947177648544, + 0.0307435542345047, + 0.05499693751335144, + 0.06152747943997383, + 0.0451640710234642, + -0.0065767355263233185, + -0.047320377081632614, + -0.07724594324827194, + 0.01527004037052393, + 0.007835125550627708, + 0.029460886493325233, + 0.002716443035751581, + -0.01829267293214798, + -0.04220691695809364, + -0.0415181890130043, + 0.009277798235416412, + 0.011681064032018185, + 0.10670042783021927, + -0.0373481810092926, + 0.011390705592930317, + 0.09584599733352661, + 0.02628462389111519, + -0.012467705644667149, + -0.06510966271162033, + -0.01812545396387577, + 0.018218478187918663, + 0.021362971514463425, + -0.06408677995204926, + -0.04967020824551582, + 0.015409364365041256, + 0.03610571473836899, + 0.007837394252419472, + 0.05593043565750122, + 0.055983323603868484, + -0.007863645441830158, + 0.06584001332521439, + -0.06082644313573837, + 0.04337921366095543, + -0.07438793033361435, + -0.04220271110534668, + -0.04701162502169609, + -0.04382346570491791, + -0.053444165736436844, + 0.07747042179107666, + 0.013824761845171452, + 0.030396370217204094, + 0.023242823779582977, + -0.08791415393352509, + -0.04846861958503723, + 0.06330010294914246, + 0.08721206337213516, + 0.022446848452091217, + 0.05515456572175026, + 0.0662652924656868, + -0.02282850444316864, + 0.10573237389326096, + 0.07012295722961426, + 0.08537440747022629, + -0.02867060713469982, + 0.02211076021194458, + -0.0632515475153923, + 0.032728876918554306, + 0.03469701483845711, + -0.11599639058113098, + -0.09122373908758163, + -0.03641390800476074, + -0.05869691073894501, + 0.053902365267276764, + -0.008009104989469051, + 0.014753764495253563, + 0.0302495788782835, + 0.012730518355965614, + -0.06036784127354622, + -0.08083370327949524, + 0.10071447491645813, + -0.06936222314834595, + -0.02176787331700325, + -0.04625125601887703, + 0.04283015802502632, + 0.10944625735282898, + 0.051922429352998734, + -0.017396582290530205, + -0.002459428273141384, + 0.03914971277117729, + -0.039964254945516586, + -0.022487320005893707, + 0.02524956688284874, + 0.0014459765516221523, + -0.08683238923549652, + 0.037161603569984436, + -0.11110566556453705, + 0.06750425696372986, + -0.06399993598461151, + 0.15809762477874756, + -0.018155252560973167, + -0.05730913206934929, + -0.07170087844133377, + 0.06281932443380356, + -0.08599540591239929, + 0.04444502294063568, + 0.045324452221393585, + 0.05362018570303917, + 0.03590121120214462, + -0.04842270910739899, + 0.11408175528049469, + 0.02636745199561119, + -0.05775199085474014, + -0.0828903317451477, + -0.021566241979599, + -0.040971413254737854, + 0.025289272889494896, + 0.049910563975572586, + -0.1077699288725853, + -0.01977474056184292, + 0.02118963748216629, + -0.036079291254282, + 0.1123875305056572, + 0.12693852186203003, + 0.05807378143072128, + -0.10722947120666504 + ] + }, + "p244_283.wav": { + "name": "p244", + "embedding": [ + 0.039232030510902405, + 0.04001661390066147, + -0.0031923092901706696, + 0.01469759177416563, + -0.030734937638044357, + 0.03192451596260071, + -0.11696989834308624, + 0.0813559889793396, + -0.0394848957657814, + 0.10779696702957153, + -0.08436741679906845, + 0.033969469368457794, + -0.038807567209005356, + -0.14530779421329498, + -0.014879296533763409, + 0.03799489140510559, + -0.06091165542602539, + -0.032437942922115326, + -0.0676305890083313, + -0.026015490293502808, + 0.030592216178774834, + 0.03598465025424957, + 0.016055293381214142, + -0.020193390548229218, + 0.007442080415785313, + 0.05791006609797478, + 0.021558858454227448, + 0.03837969899177551, + 0.007267209701240063, + -0.02674448862671852, + 0.0013659819960594177, + 0.08930043876171112, + -0.020491085946559906, + -0.048027679324150085, + 0.023123454302549362, + 0.01599838212132454, + 0.001458665356040001, + -0.05919037386775017, + -0.02921389788389206, + 0.02535497024655342, + -0.06072108447551727, + 0.050209060311317444, + 0.02088596671819687, + 0.009203490801155567, + 0.021353889256715775, + 0.020389307290315628, + -0.029122738167643547, + -0.060888539999723434, + -0.09751646220684052, + 0.17787866294384003, + 0.07247117161750793, + -0.002008268842473626, + -0.0502011701464653, + -0.06404097378253937, + 0.10148391127586365, + 0.0032503509428352118, + -0.07468050718307495, + -0.047246359288692474, + 0.07784225046634674, + 0.1442847102880478, + -0.033880677074193954, + -0.01677069440484047, + 0.025779258459806442, + 0.08851069211959839, + 0.012007324025034904, + 0.05170857533812523, + 0.08094961941242218, + 0.0826890617609024, + 0.019261198118329048, + 0.01898733153939247, + 0.08610763400793076, + 0.04475600644946098, + 0.04295939952135086, + -0.02593531832098961, + 0.05717357248067856, + 0.03452795743942261, + -0.04352286085486412, + 0.016954660415649414, + -0.01345846988260746, + -0.01772265136241913, + 0.04204338788986206, + -0.016601774841547012, + 0.013175204396247864, + 0.014141897670924664, + -0.03879683464765549, + 0.037507250905036926, + 0.00757070817053318, + 0.003475553123280406, + 0.07302048802375793, + 0.009177839383482933, + 0.019743120297789574, + 0.05916476249694824, + -0.04525167867541313, + -0.08441450446844101, + 0.019859010353684425, + 0.012698805890977383, + 0.014833247289061546, + 0.037402380257844925, + 0.05333958566188812, + -0.045696139335632324, + 0.11021425575017929, + 0.02164195105433464, + 0.011721721850335598, + 0.024101829156279564, + -0.11210121214389801, + 0.10297517478466034, + 0.09022724628448486, + -0.012470535933971405, + 0.023200623691082, + -0.02056589350104332, + 0.06078717112541199, + 0.05715538188815117, + -0.14052119851112366, + -0.056609563529491425, + 0.03597521781921387, + 0.002670317655429244, + 0.017241600900888443, + 0.11350379884243011, + -0.00435231626033783, + -0.026707038283348083, + 0.11042928695678711, + -0.10169180482625961, + -0.05147615075111389, + -0.008788736537098885, + 0.04958194121718407, + -0.08600907772779465, + 0.0028126961551606655, + 0.06777589023113251, + -0.03514304757118225, + -0.025616973638534546, + 0.09346672147512436, + -0.0063130296766757965, + -0.0005574353854171932, + -0.050451964139938354, + 0.009761122986674309, + 0.07647810131311417, + -0.035720814019441605, + -0.021647488698363304, + 0.03993307054042816, + 0.05119851976633072, + 0.013027305714786053, + 0.007492732256650925, + -0.06469928473234177, + -0.11385206878185272, + 0.020658567547798157, + 0.03075352869927883, + 0.04238678514957428, + -0.020495446398854256, + 0.001584527431987226, + -0.04922589659690857, + -0.056288160383701324, + 0.0074312081560492516, + -0.00858324859291315, + 0.07519644498825073, + 0.019060436636209488, + -0.03340581804513931, + 0.12344402074813843, + -0.020817503333091736, + 0.013176415115594864, + -0.02140885405242443, + -0.019554313272237778, + 0.04474584758281708, + 0.033792316913604736, + -0.054356422275304794, + -0.06857017427682877, + 0.0013102320954203606, + 0.01623266562819481, + 0.028343770653009415, + -0.018343066796660423, + 0.01499768253415823, + -0.011074679903686047, + 0.001171500189229846, + -0.08690568059682846, + 0.05001261830329895, + -0.09137199819087982, + -0.043171025812625885, + 0.0218740776181221, + -0.023452039808034897, + 0.006724332459270954, + 0.08522772789001465, + -0.03320242092013359, + -0.0005520532722584903, + -0.04186738654971123, + -0.09571130573749542, + -0.02740243636071682, + 0.0722603052854538, + 0.08467152714729309, + -0.0056976331397891045, + 0.039137668907642365, + 0.044860970228910446, + -0.012593826279044151, + 0.02291056327521801, + 0.04710756987333298, + 0.1249910220503807, + -0.015299561433494091, + -0.013998322188854218, + -0.03501644730567932, + 0.09460246562957764, + 0.03299938142299652, + -0.06793376803398132, + -0.04781394451856613, + -0.017772313207387924, + -0.0501258485019207, + 0.05202708765864372, + -0.00376477325335145, + 0.017450060695409775, + 0.02385827898979187, + -0.025509625673294067, + -0.08307081460952759, + -0.06406915932893753, + 0.059717610478401184, + -0.020572561770677567, + -0.04520442336797714, + -0.06958864629268646, + 0.05237307399511337, + 0.09158962965011597, + 0.057359956204891205, + -0.009468848817050457, + -0.016166023910045624, + 0.014479326084256172, + -0.058091334998607635, + -0.04781114310026169, + 0.006234246306121349, + 0.0026140189729630947, + -0.0882546454668045, + -0.0040228660218417645, + -0.10071736574172974, + 0.05490674078464508, + -0.04665672034025192, + 0.0811089426279068, + -0.018870998173952103, + -0.03884682059288025, + -0.0983276516199112, + 0.030058693140745163, + 0.01853208616375923, + 0.06611476838588715, + 0.06005669757723808, + 0.026961153373122215, + 0.06335900723934174, + -0.05181583762168884, + 0.09810954332351685, + 0.009274730458855629, + -0.000679048418533057, + -0.048414409160614014, + -0.011094672605395317, + -0.023080993443727493, + 0.00956993643194437, + -0.03550200164318085, + -0.08103357255458832, + 0.013593828305602074, + 0.026865746825933456, + -0.02848776802420616, + 0.041616037487983704, + 0.057346295565366745, + 0.034800585359334946, + -0.09665316343307495 + ] + }, + "p244_236.wav": { + "name": "p244", + "embedding": [ + 0.04820508509874344, + 0.10878953337669373, + -0.00947614386677742, + -0.0003535933792591095, + -0.04852373152971268, + 0.08393901586532593, + -0.11278443783521652, + 0.14334747195243835, + -0.08266112208366394, + 0.14938929677009583, + -0.09045444428920746, + 0.12153787910938263, + -0.03380352258682251, + -0.1644965559244156, + -0.06996169686317444, + 0.04691207408905029, + -0.06985533237457275, + -0.03311828896403313, + -0.05637100338935852, + -0.022647444158792496, + 0.03965609520673752, + 0.012664943002164364, + 0.009896627627313137, + 0.01723404787480831, + 0.03526989370584488, + 0.06919237226247787, + 0.0037125730887055397, + 0.040071550756692886, + 0.008713934570550919, + -0.051345594227313995, + -0.030846770852804184, + 0.10160335898399353, + -0.0481330007314682, + 0.016990812495350838, + 0.06602165102958679, + 0.0025146990083158016, + 0.014945178292691708, + -0.06995779275894165, + -0.02499580569565296, + 0.004144517704844475, + -0.03736572712659836, + 0.07600238174200058, + 0.00015054602408781648, + -0.00893908366560936, + 0.01967032440006733, + 0.03309566155076027, + -0.0016683717258274555, + -0.0550842210650444, + -0.08720910549163818, + 0.14490476250648499, + 0.06668956577777863, + 0.013609993271529675, + -0.08508859574794769, + -0.07864023745059967, + 0.1228390485048294, + -0.028607016429305077, + -0.10472586005926132, + -0.029922716319561005, + 0.055135756731033325, + 0.1741729974746704, + -0.05482381582260132, + -0.03255802392959595, + 0.017149999737739563, + 0.10389762371778488, + 0.0510408915579319, + 0.09742671251296997, + 0.08957777917385101, + 0.07893287390470505, + -0.007838211953639984, + 0.03179732710123062, + 0.07636762410402298, + 0.07055525481700897, + 0.08114434778690338, + -0.02431241236627102, + 0.029850732535123825, + -0.0014123732689768076, + -0.027026109397411346, + 0.015605702064931393, + -0.034852564334869385, + -0.014863528311252594, + -0.03151274472475052, + 0.023755531758069992, + 0.009298218414187431, + 0.009798758663237095, + -0.01909622736275196, + 0.06469061225652695, + 0.00819188542664051, + -0.03863329440355301, + 0.06194514408707619, + 0.05268247425556183, + 0.0052335914224386215, + 0.059845663607120514, + -0.08664561063051224, + -0.10503512620925903, + 0.02540104277431965, + -0.01200943998992443, + 0.016580455005168915, + 0.07227786630392075, + 0.05260920897126198, + -0.0127695482224226, + 0.09336817264556885, + 0.06439413875341415, + 0.0066719455644488335, + 0.015260877087712288, + -0.11065904796123505, + 0.10796335339546204, + 0.10224591940641403, + -0.041906751692295074, + 0.018132474273443222, + -0.017762072384357452, + 0.08129678666591644, + 0.08055371046066284, + -0.14529111981391907, + -0.10058961808681488, + 0.01881277561187744, + 0.007373459171503782, + 0.008507193997502327, + 0.07839669287204742, + -0.034401699900627136, + 0.020863482728600502, + 0.08997596055269241, + -0.05576471611857414, + -0.036810919642448425, + -0.03261200711131096, + 0.0408412329852581, + -0.054378122091293335, + 0.05939074605703354, + 0.0389554537832737, + 0.018266424536705017, + -0.00621865876019001, + 0.08780462294816971, + -0.012491317465901375, + -0.0341871939599514, + 0.02302609011530876, + -0.037475988268852234, + 0.023640180006623268, + -0.020730774849653244, + -0.008431666530668736, + 0.048404715955257416, + 0.06805644184350967, + 0.03736625984311104, + 0.014366347342729568, + -0.025486215949058533, + -0.08414452522993088, + 0.013811491429805756, + 0.05308109149336815, + 0.059004999697208405, + -0.014732841402292252, + -0.011847937479615211, + -0.033606112003326416, + -0.05253882706165314, + 0.012648035772144794, + 0.0009992653504014015, + 0.0962996631860733, + -0.010550910606980324, + 0.024433404207229614, + 0.10697051882743835, + 0.011619520373642445, + -0.015601426362991333, + -0.04500630497932434, + -0.00020239880541339517, + 0.020814690738916397, + 0.06258518248796463, + -0.06208540499210358, + -0.08312119543552399, + 0.0038182176649570465, + 0.018675215542316437, + -0.022086210548877716, + 0.061458975076675415, + 0.03930175304412842, + 0.005808436311781406, + 0.03233630582690239, + -0.06515025347471237, + 0.023756559938192368, + -0.12939141690731049, + -0.04911305010318756, + -0.024706944823265076, + -0.05979182571172714, + -0.018310382962226868, + 0.05946996062994003, + 0.023050716146826744, + 0.040581114590168, + 0.001777112134732306, + -0.10548600554466248, + -0.06767678260803223, + 0.06569081544876099, + 0.08394081890583038, + 0.014556505717337132, + 0.0347890630364418, + 0.07125942409038544, + 0.008142087608575821, + 0.06304094195365906, + 0.0910014659166336, + 0.11787177622318268, + -0.018391568213701248, + 0.014040175825357437, + -0.061126336455345154, + 0.07746598869562149, + 0.05195401608943939, + -0.10281551629304886, + -0.09707718342542648, + -0.036570996046066284, + -0.04190056398510933, + 0.03774503618478775, + -0.011199538595974445, + 0.03354952484369278, + 0.02544495463371277, + -0.011408906430006027, + -0.08432602882385254, + -0.08067432790994644, + 0.10441898554563522, + -0.05864937603473663, + -0.008841561153531075, + -0.06917839497327805, + 0.03518252819776535, + 0.09449824690818787, + 0.022959351539611816, + -0.005297847557812929, + 0.025215094909071922, + 0.04239176958799362, + -0.038950107991695404, + -0.025728100910782814, + 0.021930865943431854, + -0.006618882063776255, + -0.09107661247253418, + 0.019343502819538116, + -0.07480685412883759, + 0.09088470041751862, + -0.04888838902115822, + 0.15754434466362, + -0.02769552543759346, + -0.04993031173944473, + -0.0872674435377121, + 0.034873005002737045, + -0.03391573205590248, + 0.0581282377243042, + 0.04402262717485428, + 0.0796821117401123, + 0.010697830468416214, + -0.06277894228696823, + 0.11729097366333008, + 0.032235559076070786, + -0.04771881550550461, + -0.0723021849989891, + -0.06284220516681671, + -0.03661695495247841, + 0.0004031551070511341, + -9.724032133817673e-05, + -0.062462352216243744, + 0.0009330874308943748, + -0.0061837732791900635, + -0.026214733719825745, + 0.06998561322689056, + 0.13696980476379395, + 0.08397702127695084, + -0.11739620566368103 + ] + }, + "p244_252.wav": { + "name": "p244", + "embedding": [ + 0.07716768980026245, + 0.04761534184217453, + 0.022936426103115082, + -0.01818549446761608, + -0.02361423335969448, + 0.09606628119945526, + -0.11084376275539398, + 0.09879275411367416, + -0.01856781542301178, + 0.08185043931007385, + -0.0704033151268959, + 0.07855867594480515, + -0.0007906816899776459, + -0.14765167236328125, + -0.028049219399690628, + 0.049288731068372726, + -0.04007682576775551, + -0.007258512079715729, + -0.05120792239904404, + -0.017174510285258293, + 0.0006373462965711951, + 0.0317862294614315, + 0.04892366752028465, + -0.012307718396186829, + 0.04618589207530022, + 0.047960370779037476, + -0.0022773458622395992, + 0.033281974494457245, + -0.004639841616153717, + -0.06337213516235352, + -0.008107287809252739, + 0.07646127790212631, + -0.05012640357017517, + -0.005116280168294907, + 0.04253533482551575, + 0.004233282059431076, + 0.03603450953960419, + -0.09249454736709595, + -0.028095990419387817, + 0.029318884015083313, + -0.03973676264286041, + 0.08701322972774506, + 0.04862217232584953, + 0.010080568492412567, + 0.009718114510178566, + 0.010890218429267406, + -0.007595764007419348, + -0.05470741540193558, + -0.10715685784816742, + 0.15896251797676086, + 0.023291587829589844, + 0.02394668012857437, + -0.09805776923894882, + -0.042856305837631226, + 0.0678141862154007, + -0.02080141380429268, + -0.06842844188213348, + -0.020687028765678406, + 0.0457315556704998, + 0.12150713056325912, + 0.00650379341095686, + -0.038537707179784775, + 0.020190967246890068, + 0.06558647751808167, + 0.01745457760989666, + 0.03496813401579857, + 0.10727386176586151, + 0.09574540704488754, + -0.0043279025703668594, + 0.027904434129595757, + 0.047822266817092896, + 0.03478327766060829, + 0.05985298007726669, + -0.004163273144513369, + 0.034400686621665955, + -0.025424672290682793, + -0.019376840442419052, + -0.004690757021307945, + -0.020117968320846558, + -0.015141252428293228, + 0.035345081239938736, + 0.013400128111243248, + 0.032083556056022644, + 0.05194786190986633, + -0.04222938418388367, + 0.036896854639053345, + -0.010872950777411461, + 0.04008467122912407, + 0.07687951624393463, + 0.03662335127592087, + 0.022966397926211357, + 0.03104298934340477, + -0.062205057591199875, + -0.0847967267036438, + 0.026772333309054375, + 0.021584510803222656, + 0.024301722645759583, + 0.024316977709531784, + 0.022458655759692192, + -0.030945148319005966, + 0.10055385529994965, + 0.016075003892183304, + -0.0005864178529009223, + -0.0004686601459980011, + -0.07390236109495163, + 0.08552559465169907, + 0.08547310531139374, + -0.005103106610476971, + 0.04666489362716675, + -0.04283273220062256, + 0.04751395434141159, + 0.06039704382419586, + -0.10840564221143723, + -0.0551137775182724, + 0.02095617912709713, + 0.011739959940314293, + 0.041054725646972656, + 0.11576496064662933, + -0.006472109816968441, + 0.031181734055280685, + 0.057312365621328354, + -0.08539610356092453, + -0.013761365786194801, + 0.03754434734582901, + 0.010123850777745247, + -0.03408979997038841, + 0.008371716365218163, + 0.02369045466184616, + 0.012939779087901115, + -0.035803236067295074, + 0.06357365101575851, + 0.005891553126275539, + 0.006101024337112904, + -0.03183082863688469, + 0.01424261461943388, + 0.037585943937301636, + -0.006662173196673393, + -0.029049456119537354, + 0.04843834042549133, + 0.0595395490527153, + 0.012075426988303661, + 0.030909210443496704, + -0.061696119606494904, + -0.11236244440078735, + -0.017913268879055977, + 0.010937197133898735, + 0.0498560331761837, + -0.031363457441329956, + -0.024469276890158653, + -0.06001213192939758, + -0.009219100698828697, + 0.02502514235675335, + 0.003918850794434547, + 0.054274022579193115, + 0.06396757811307907, + -0.028168698772788048, + 0.07540445029735565, + -0.0026130876503884792, + 0.011308208107948303, + -0.03668171912431717, + -0.02977321669459343, + 0.016988396644592285, + 0.04607531055808067, + -0.03489614650607109, + -0.050719693303108215, + 0.011316904798150063, + -0.01980675384402275, + -0.012938972562551498, + 0.021747849881649017, + 0.04534756764769554, + -0.0015244546812027693, + -0.00390112167224288, + -0.06848718225955963, + 0.018934527412056923, + -0.07049661874771118, + -0.053243763744831085, + 0.05872231349349022, + 0.0002640386519487947, + -0.02055390551686287, + 0.08759373426437378, + 0.03117450885474682, + 0.03949025273323059, + -0.057931311428546906, + -0.0559668242931366, + -0.016329504549503326, + 0.058916669338941574, + 0.04654241353273392, + -0.0031460896134376526, + 0.02492399513721466, + 0.017247971147298813, + 0.002409940119832754, + 0.06758801639080048, + 0.04950052499771118, + 0.06565926223993301, + -0.0504579171538353, + -0.006733857095241547, + -0.004204904194921255, + 0.10001038759946823, + 0.032257337123155594, + -0.0443548820912838, + -0.060041576623916626, + 0.010238075628876686, + -0.045519229024648666, + 0.032666780054569244, + -0.004553451202809811, + 0.009114152751863003, + 0.04385507106781006, + -0.023009493947029114, + -0.08292701840400696, + -0.061900608241558075, + 0.046312179416418076, + -0.0468490794301033, + -0.011925039812922478, + -0.0627334862947464, + 0.046067014336586, + 0.08596786111593246, + 0.01104133389890194, + -0.0009143439820036292, + -0.0007118040230125189, + -3.193567317794077e-05, + -0.04350648075342178, + -0.03599806874990463, + 0.016398241743445396, + 0.024121612310409546, + -0.07949941605329514, + -0.0010461978381499648, + -0.06150464341044426, + 0.04389932006597519, + -0.009544586762785912, + 0.10946111381053925, + 0.018009494990110397, + -0.03305317461490631, + -0.05472590774297714, + 0.010353559628129005, + -0.029074829071760178, + 0.04577895253896713, + 0.030117368325591087, + 0.020630067214369774, + 0.058496929705142975, + -0.04316342994570732, + 0.07929673790931702, + 0.03900561481714249, + -0.053236447274684906, + -0.05053195357322693, + -0.023328524082899094, + -0.017847547307610512, + 0.018769679591059685, + -0.029451027512550354, + -0.049021925777196884, + 0.024573471397161484, + 0.03654532879590988, + 0.018014010041952133, + 0.029905572533607483, + 0.08131217211484909, + 0.03999240696430206, + -0.07961864769458771 + ] + }, + "p244_060.wav": { + "name": "p244", + "embedding": [ + 0.010319357737898827, + 0.0850897878408432, + -0.03894076868891716, + 0.026983702555298805, + -0.08828854560852051, + 0.02914612926542759, + -0.12848438322544098, + 0.1303921341896057, + -0.033224545419216156, + 0.11203675717115402, + -0.055660296231508255, + 0.11407133936882019, + -0.04252006858587265, + -0.1845645159482956, + 0.008322346024215221, + 0.06202714145183563, + -0.00772900553420186, + -0.06893395632505417, + -0.010762635618448257, + -0.058170855045318604, + 0.019024470821022987, + 0.05188191682100296, + 0.009776233695447445, + 0.02144307643175125, + 0.0466361939907074, + 0.08826763182878494, + -0.01392319891601801, + 0.008796894922852516, + -0.013954735361039639, + -0.02961748279631138, + -0.04825478047132492, + 0.06644025444984436, + -0.07807009667158127, + -0.013634485192596912, + 0.025580374523997307, + -0.012992185540497303, + 0.002267067087814212, + -0.05052456259727478, + -0.02736019529402256, + 0.023870903998613358, + -0.07653500139713287, + 0.09130758047103882, + 0.04592723026871681, + -0.015383795835077763, + 0.02227753773331642, + 0.026673022657632828, + 0.0010515314061194658, + -0.039813652634620667, + -0.12150304019451141, + 0.15330061316490173, + 0.06767918169498444, + -0.019426468759775162, + -0.0538233257830143, + -0.058774277567863464, + 0.11442490667104721, + 0.005418546963483095, + -0.08697262406349182, + -0.05489328131079674, + 0.0808868482708931, + 0.1208563894033432, + -0.023710474371910095, + -0.039113108068704605, + 0.029464852064847946, + 0.11568918824195862, + 0.06337639689445496, + 0.06569229811429977, + 0.05648089200258255, + 0.11258888244628906, + -0.0427105575799942, + -0.020454401150345802, + 0.07935763895511627, + 0.065859355032444, + 0.005731577984988689, + -0.0349247120320797, + -0.009022481739521027, + 0.01164968777447939, + -0.013493604026734829, + 0.0012932498939335346, + 0.0013600762467831373, + -0.025590956211090088, + -0.02267385646700859, + -0.0027841173578053713, + -0.014395585283637047, + 0.009059876203536987, + -0.018825633451342583, + 0.055172353982925415, + 0.07010673731565475, + 0.005263277795165777, + 0.0985979288816452, + 0.01685400679707527, + -0.02920975536108017, + 0.07298513501882553, + -0.09121734648942947, + -0.025173617526888847, + 0.026747766882181168, + 0.002089724177494645, + 0.0161639004945755, + 0.10048042982816696, + 0.04460211098194122, + -0.006978645455092192, + 0.15180979669094086, + 0.04709753021597862, + 0.00613615196198225, + 0.018375253304839134, + -0.07542149722576141, + 0.13488836586475372, + 0.06756802648305893, + -0.03203896805644035, + 0.06115478277206421, + -0.028003297746181488, + 0.05214086174964905, + 0.043575968593358994, + -0.13225015997886658, + -0.059863172471523285, + 0.019882699474692345, + 0.031307581812143326, + -0.045711699873209, + 0.13543730974197388, + -0.008268368430435658, + 0.038935061544179916, + 0.11968955397605896, + -0.09310030192136765, + -0.07240497320890427, + -0.011716950684785843, + 0.05096723139286041, + -0.07887426018714905, + 0.05373120307922363, + 0.08968839049339294, + -0.023526102304458618, + 0.05787473917007446, + 0.06969986110925674, + -0.006690591108053923, + 0.02990853786468506, + 0.025639597326517105, + -0.03730863705277443, + 0.01607578434050083, + -0.002495318418368697, + 0.0059391530230641365, + 0.06705472618341446, + 0.018811028450727463, + 0.07272481173276901, + -0.016190147027373314, + -0.002926398301497102, + -0.1372460424900055, + 0.03927961736917496, + 0.027552923187613487, + 0.09074218571186066, + -0.012215186841785908, + -0.03261037543416023, + -0.04710067808628082, + -0.08708988130092621, + -0.012460575439035892, + 0.024923868477344513, + 0.1019999086856842, + -0.05604429915547371, + 0.009859636425971985, + 0.09739726781845093, + 0.07259497046470642, + -0.022275546565651894, + -0.05157797783613205, + -0.05215566232800484, + -0.021176153793931007, + 0.056844379752874374, + -0.0702158585190773, + -0.08331730961799622, + -0.026942776516079903, + 0.06617077440023422, + -0.013111292384564877, + 0.08779062330722809, + 0.04665382578969002, + 0.02885263040661812, + 0.018075959756970406, + -0.08566723763942719, + 0.03140733763575554, + -0.050884511321783066, + -0.04698203131556511, + -0.03114417754113674, + 0.005914061330258846, + -0.04932389408349991, + 0.08828851580619812, + 0.02260974980890751, + 0.0691206157207489, + -0.007027794606983662, + -0.05315271392464638, + -0.07366085797548294, + 0.03419667109847069, + 0.04459504038095474, + -0.03229214996099472, + 0.046945732086896896, + 0.0862363874912262, + -0.06363877654075623, + 0.03426161780953407, + 0.060030825436115265, + 0.08963975310325623, + -0.044932879507541656, + 0.04023361951112747, + -0.03113686293363571, + 0.07413095980882645, + 0.049196142703294754, + -0.1073906198143959, + -0.04382339119911194, + -0.05128374695777893, + -0.06565576791763306, + 0.044274844229221344, + -0.011771533638238907, + 0.02642114832997322, + -0.012519543059170246, + 0.006477381102740765, + -0.08157273381948471, + -0.08441781997680664, + 0.04868568107485771, + -0.047600157558918, + 0.0062561542727053165, + -0.0975136086344719, + 0.03167145699262619, + 0.10504133254289627, + 0.06389369815587997, + -0.010879270732402802, + -0.03164425864815712, + 0.04633409529924393, + 0.00375395268201828, + 0.030372655019164085, + 0.1151462122797966, + 0.06429405510425568, + -0.08760999888181686, + -0.030764011666178703, + -0.08119678497314453, + 0.08690568804740906, + -0.021799977868795395, + 0.14866431057453156, + 0.0437784343957901, + -0.03950846940279007, + -0.09059536457061768, + 0.03331327065825462, + -0.014637211337685585, + 0.05456538498401642, + 0.02798890508711338, + 0.05034765228629112, + 0.05131957307457924, + -0.005473603960126638, + 0.1309117078781128, + 0.058576859533786774, + -0.04967375099658966, + -0.04827294871211052, + -0.028375117108225822, + -0.0350322425365448, + 0.049600750207901, + 0.05065053328871727, + -0.10405796021223068, + -0.023053869605064392, + 0.028034038841724396, + -0.009889252483844757, + 0.08101300895214081, + 0.1456712782382965, + 0.10626771301031113, + -0.11374877393245697 + ] + }, + "p244_345.wav": { + "name": "p244", + "embedding": [ + 0.045877546072006226, + 0.11875580251216888, + -0.017863981425762177, + 0.025564592331647873, + -0.0524015799164772, + 0.05442719906568527, + -0.13574808835983276, + 0.16307680308818817, + -0.039542656391859055, + 0.11975181102752686, + -0.07524090260267258, + 0.12576846778392792, + -0.03437037765979767, + -0.16086065769195557, + -0.03810508921742439, + 0.0649118721485138, + -0.03300544247031212, + -0.04286783188581467, + -0.022135574370622635, + -0.011394473724067211, + 0.023545145988464355, + 0.010001571848988533, + 0.013483229093253613, + 0.042971931397914886, + 0.024895548820495605, + 0.0677359402179718, + -0.0016721499850973487, + 0.05110224336385727, + 0.01848067156970501, + -0.016396086663007736, + -0.028569933027029037, + 0.10196627676486969, + -0.05123291537165642, + 0.022947272285819054, + 0.07415245473384857, + -0.009256826713681221, + 0.0021574050188064575, + -0.05563361570239067, + -0.015556368045508862, + -0.015096426010131836, + -0.042186420410871506, + 0.09021161496639252, + 0.036202408373355865, + -0.005907810293138027, + 0.027726221829652786, + 0.056590788066387177, + -0.0009712614119052887, + -0.03755756467580795, + -0.10771737992763519, + 0.13905805349349976, + 0.059124529361724854, + -0.004364447668194771, + -0.08264568448066711, + -0.051852934062480927, + 0.1013861745595932, + -0.03576742112636566, + -0.09168543666601181, + -0.03592255711555481, + 0.07751351594924927, + 0.14390945434570312, + -0.03813654184341431, + -0.039009541273117065, + 0.012218079529702663, + 0.13961222767829895, + 0.08239584416151047, + 0.08826127648353577, + 0.06760676205158234, + 0.1323280781507492, + -0.04040486738085747, + 0.007209773641079664, + 0.07157877087593079, + 0.06490863859653473, + 0.05382317304611206, + -0.010858990252017975, + 0.018394378945231438, + 0.0025679762475192547, + -0.003073283936828375, + 0.009680027142167091, + -0.037728674709796906, + -0.027807047590613365, + -0.031216097995638847, + 0.024840623140335083, + -0.008932779543101788, + 0.03718067705631256, + -0.011907346546649933, + 0.07937295734882355, + 0.0574285164475441, + -0.02353842183947563, + 0.07348953187465668, + 0.058348722755908966, + 0.005962574388831854, + 0.0689300000667572, + -0.10440932214260101, + -0.06982174515724182, + 0.03642618656158447, + -0.015895333141088486, + 0.038859959691762924, + 0.0743815153837204, + 0.0405430793762207, + 0.004581686109304428, + 0.1142737865447998, + 0.06260409206151962, + -0.007013286463916302, + 0.028690434992313385, + -0.09515450894832611, + 0.14377647638320923, + 0.06991235911846161, + -0.039168957620859146, + 0.033977773040533066, + -0.03357969969511032, + 0.05543025955557823, + 0.06131080910563469, + -0.12389364838600159, + -0.08814802020788193, + 0.03295309096574783, + 0.02797437272965908, + -0.028329655528068542, + 0.10221065580844879, + -0.013809229247272015, + 0.0428425595164299, + 0.08823131024837494, + -0.06793893873691559, + -0.05846641585230827, + -0.011932412162423134, + 0.037948958575725555, + -0.0711013600230217, + 0.06252309679985046, + 0.056145377457141876, + 0.008678766898810863, + 0.004064670763909817, + 0.0944502055644989, + 0.014080911874771118, + -0.009564951993525028, + 0.02134818211197853, + -0.03823674097657204, + 0.029147882014513016, + -0.004485559184104204, + 0.004731260240077972, + 0.01844809763133526, + 0.04029298946261406, + 0.0517243817448616, + 0.0017030885210260749, + 0.00338127464056015, + -0.11428224295377731, + 0.007480166386812925, + 0.05130084604024887, + 0.08715660870075226, + -0.010842518880963326, + -0.03009987436234951, + -0.032463982701301575, + -0.042041465640068054, + -0.013163061812520027, + -0.00044929361320100725, + 0.06675392389297485, + -0.029656700789928436, + 0.005936486646533012, + 0.11347314715385437, + 0.014091256074607372, + 0.00526619516313076, + -0.05493510887026787, + -0.009215408936142921, + 0.012615012004971504, + 0.06002745032310486, + -0.06845264136791229, + -0.08309277147054672, + 0.0008251086692325771, + 0.036288537085056305, + -0.023976562544703484, + 0.07259766757488251, + 0.03733580559492111, + 0.016606401652097702, + 0.022160761058330536, + -0.055476006120443344, + 0.022810615599155426, + -0.09436427056789398, + -0.06395740807056427, + -0.023368408903479576, + -0.0029617114923894405, + -0.02930443361401558, + 0.0593186616897583, + 0.03916984423995018, + 0.07658252120018005, + 0.0026528197340667248, + -0.0781402736902237, + -0.08464892953634262, + 0.058636393398046494, + 0.07157339155673981, + -0.011574629694223404, + 0.04964999482035637, + 0.06817468255758286, + -0.02451152727007866, + 0.04405029118061066, + 0.0652138888835907, + 0.09252564609050751, + -0.04052755609154701, + 0.014083432033658028, + -0.06899388134479523, + 0.06478458642959595, + 0.07376208156347275, + -0.11341925710439682, + -0.0793699398636818, + -0.01703120581805706, + -0.03897799551486969, + 0.010684812441468239, + -0.026505019515752792, + 0.023590460419654846, + 0.03499063476920128, + -0.009903956204652786, + -0.10002534091472626, + -0.09431063383817673, + 0.07781700789928436, + -0.0976959764957428, + 0.018235698342323303, + -0.07326072454452515, + 0.04077434539794922, + 0.09585803002119064, + 0.025075923651456833, + -0.04243334382772446, + -0.019204750657081604, + 0.04406733810901642, + -0.01527250837534666, + -0.010890774428844452, + 0.05198314040899277, + 0.03822604566812515, + -0.10163716971874237, + 0.010504502803087234, + -0.0579083077609539, + 0.07480528950691223, + -0.037262991070747375, + 0.16336590051651, + 0.010644020512700081, + -0.05460762977600098, + -0.08188417553901672, + 0.005301930010318756, + -0.01990138739347458, + 0.05716840922832489, + 0.021901428699493408, + 0.062422942370176315, + 0.019573554396629333, + -0.04018236696720123, + 0.14014992117881775, + 0.04381345957517624, + -0.06128812953829765, + -0.07661556452512741, + -0.04957921802997589, + -0.045815713703632355, + 0.03981441259384155, + 0.03583936765789986, + -0.09163767099380493, + -0.027579031884670258, + 0.01335985865443945, + -0.035417258739471436, + 0.07811953872442245, + 0.1480201929807663, + 0.07594288885593414, + -0.11549913138151169 + ] + }, + "p244_122.wav": { + "name": "p244", + "embedding": [ + 0.03743371739983559, + 0.10720232874155045, + -0.018781617283821106, + 0.04856396093964577, + -0.07787799090147018, + 0.09338998794555664, + -0.08635412901639938, + 0.132926344871521, + -0.09560003876686096, + 0.11818298697471619, + -0.08316017687320709, + 0.11397704482078552, + -0.06699466705322266, + -0.13302141427993774, + -0.03900410234928131, + 0.07091595232486725, + -0.03225522115826607, + -0.011559952981770039, + -0.03053993359208107, + 0.0019339919090270996, + 0.024532150477170944, + 0.004498928319662809, + 0.03958319500088692, + 0.006275035906583071, + 0.04688907414674759, + 0.058034494519233704, + 0.001993780955672264, + 0.046386830508708954, + 0.02587943710386753, + -0.05183255672454834, + -0.04817590117454529, + 0.11246327310800552, + -0.0480869896709919, + 0.004008980467915535, + 0.060408905148506165, + 0.009594632312655449, + -0.008777286857366562, + -0.06991462409496307, + -0.005293631460517645, + -0.02828967571258545, + -0.04537370055913925, + 0.06305830925703049, + 0.027596797794103622, + -0.012072106823325157, + 0.02364671789109707, + -0.00946541503071785, + -0.028811603784561157, + -0.027421480044722557, + -0.11157301068305969, + 0.13974159955978394, + 0.02989085391163826, + 0.009215213358402252, + -0.08537621796131134, + -0.08293554186820984, + 0.12916776537895203, + -0.0034411009401082993, + -0.11670493334531784, + -0.04251917451620102, + 0.07298141717910767, + 0.17307496070861816, + -0.007816367782652378, + -0.0010156766511499882, + -0.0017665550112724304, + 0.10236340761184692, + 0.042613349854946136, + 0.1062050610780716, + 0.04865824058651924, + 0.0957416445016861, + 0.03394673764705658, + 0.052192337810993195, + 0.06361228972673416, + 0.050172463059425354, + 0.0018313052132725716, + -0.014574884437024593, + 0.012013012543320656, + -0.018153436481952667, + -0.02861083298921585, + 0.04035335034132004, + -0.020496390759944916, + -0.04161035269498825, + -0.03830898553133011, + 0.010159906931221485, + 0.013967495411634445, + -0.00866398774087429, + -0.023196931928396225, + 0.07164852321147919, + 0.0011555850505828857, + -0.003916345536708832, + 0.07917851209640503, + 0.031976956874132156, + -0.039139606058597565, + 0.05405601114034653, + -0.049285341054201126, + -0.09560078382492065, + -0.010390949435532093, + 0.006245959550142288, + 0.028321517631411552, + 0.08238692581653595, + 0.022060247138142586, + -0.012857005931437016, + 0.10433919727802277, + 0.062318310141563416, + 0.043363239616155624, + 0.02795252576470375, + -0.09443861246109009, + 0.11549369990825653, + 0.06495235860347748, + 0.004485428333282471, + 0.051787763833999634, + -0.013774391263723373, + 0.08958699554204941, + 0.0867702066898346, + -0.14117901027202606, + -0.0677584707736969, + 0.010466031730175018, + -0.006722311954945326, + -0.0036849668249487877, + 0.0950571745634079, + -0.008553601801395416, + 0.005356732755899429, + 0.10411150008440018, + -0.09842915832996368, + -0.06597709655761719, + -0.014846889302134514, + 0.04449513554573059, + -0.04619382321834564, + 0.03834206238389015, + 0.05252353847026825, + -0.03631815314292908, + 0.006494474597275257, + 0.06149832159280777, + -0.005749039351940155, + 0.0011753792641684413, + 0.07839253544807434, + -0.07852672040462494, + 0.033325277268886566, + -0.0436285100877285, + 0.006331406533718109, + 0.08405425399541855, + 0.06468705832958221, + 0.062078624963760376, + -0.022429736331105232, + -0.0006883870810270309, + -0.07655367255210876, + -0.0037659863010048866, + 0.06873098760843277, + 0.05087975040078163, + -0.016011929139494896, + -0.027592938393354416, + -0.0344330370426178, + -0.07718139886856079, + 0.03035605698823929, + 0.00870976597070694, + 0.12011028826236725, + -0.025040265172719955, + 0.005098174326121807, + 0.08854014426469803, + 0.02952500618994236, + -0.016712194308638573, + -0.08891536295413971, + -0.03628239780664444, + 0.031522754579782486, + 0.04699038714170456, + -0.07000486552715302, + -0.05858318507671356, + 0.01704219914972782, + 0.02237371914088726, + -0.04608524218201637, + 0.028855513781309128, + 0.03540954738855362, + 0.018313037231564522, + 0.047766849398612976, + -0.045039497315883636, + 0.03940672427415848, + -0.09270790219306946, + -0.03135111927986145, + -0.007384052034467459, + -0.0429653562605381, + -0.03355783969163895, + 0.07964133471250534, + 0.04177909716963768, + 0.028094423934817314, + 0.03671655058860779, + -0.07740931212902069, + -0.04950239881873131, + 0.07339277863502502, + 0.040769919753074646, + 0.01997051015496254, + 0.0645984336733818, + 0.05923932045698166, + -0.03651990741491318, + 0.049070119857788086, + 0.07296834886074066, + 0.08073194324970245, + -0.02513333410024643, + -0.022510387003421783, + -0.07116544246673584, + 0.05991154536604881, + 0.08492305874824524, + -0.12777595221996307, + -0.09180017560720444, + -0.054328687489032745, + -0.04336068034172058, + 0.0594538152217865, + -0.03820797801017761, + -0.002230334095656872, + 0.014107787981629372, + -0.039769500494003296, + -0.10806524753570557, + -0.10429500043392181, + 0.11634322255849838, + -0.0626748725771904, + -0.019094964489340782, + -0.05899760127067566, + 0.029658494517207146, + 0.06473022699356079, + 0.03282465413212776, + -0.016576441004872322, + 0.030899109318852425, + 0.05824644863605499, + -0.07691401988267899, + -0.012888756580650806, + 0.06102752685546875, + -0.012921885587275028, + -0.06557910144329071, + 0.026414114981889725, + -0.07013809680938721, + 0.09113122522830963, + -0.04826099053025246, + 0.2017737329006195, + -0.03359649330377579, + -0.04099184274673462, + -0.07443004846572876, + 0.05125390738248825, + -0.04524015635251999, + 0.030260004103183746, + 0.044194724410772324, + 0.07291244715452194, + 0.011812632903456688, + -0.04344344884157181, + 0.12826985120773315, + 0.003006895072758198, + -0.03864568844437599, + -0.03855869174003601, + -0.032189831137657166, + -0.06864183396100998, + 0.006718698423355818, + -0.007533951196819544, + -0.09214520454406738, + 0.0040212357416749, + 0.011203983798623085, + -0.00021398533135652542, + 0.0785241574048996, + 0.1321500688791275, + 0.07848693430423737, + -0.07616489380598068 + ] + }, + "p244_170.wav": { + "name": "p244", + "embedding": [ + 0.05748377740383148, + 0.0796695351600647, + -0.008959709666669369, + 0.017229732125997543, + -0.03572970628738403, + 0.042074054479599, + -0.14395171403884888, + 0.12015019357204437, + -0.023967813700437546, + 0.12188416719436646, + -0.0479796901345253, + 0.10505375266075134, + -0.008924026042222977, + -0.1674666851758957, + -0.06612429022789001, + 0.045074429363012314, + -0.0664149671792984, + -0.020073339343070984, + -0.0651918277144432, + -0.009307630360126495, + 0.0353832021355629, + 0.053181421011686325, + 0.05575935170054436, + -0.02728326991200447, + 0.03762940689921379, + 0.046655409038066864, + 0.024258267134428024, + 0.0758737251162529, + 0.04325859248638153, + -0.0859338566660881, + -0.010597070679068565, + 0.08684079349040985, + -0.03945229575037956, + 0.002797730965539813, + 0.04961937293410301, + -0.0023637539707124233, + 0.019432269036769867, + -0.04971079155802727, + -0.032629162073135376, + 0.038272857666015625, + -0.03687658533453941, + 0.08606031537055969, + 0.014470947906374931, + 0.00042985318577848375, + 0.05761588364839554, + 0.022943397983908653, + -0.02185143157839775, + -0.06937938928604126, + -0.10850593447685242, + 0.16270595788955688, + 0.048342641443014145, + 0.020467355847358704, + -0.08551698923110962, + -0.07008664309978485, + 0.08488969504833221, + -0.060921430587768555, + -0.10177715867757797, + -0.04281995818018913, + 0.04743306338787079, + 0.15300270915031433, + -0.034507136791944504, + -0.021585840731859207, + 0.04405404254794121, + 0.09956991672515869, + 0.06956490129232407, + 0.0496709868311882, + 0.09219267219305038, + 0.07645878195762634, + 0.007524482905864716, + 0.029480105265975, + 0.03507820516824722, + 0.07300250977277756, + 0.03396718576550484, + 0.016427617520093918, + 0.025354888290166855, + 0.007970473729074001, + -0.025605706498026848, + -0.01369947474449873, + -0.021254710853099823, + 0.017700668424367905, + 0.0009108397061936557, + 0.0339067243039608, + 0.0005838572978973389, + 0.02060249075293541, + -0.036197926849126816, + 0.07709024846553802, + -0.027796588838100433, + -0.008777523413300514, + 0.05383291095495224, + 0.02646770142018795, + 0.01451475452631712, + 0.04008987918496132, + -0.053662534803152084, + -0.10190849006175995, + -0.016087394207715988, + 0.003562054131180048, + 0.009038129821419716, + 0.015864994376897812, + 0.01680494286119938, + -0.03324166685342789, + 0.11492624878883362, + 0.05243725702166557, + -0.02014010027050972, + 0.03435374051332474, + -0.0850381851196289, + 0.0909820944070816, + 0.07062637805938721, + -0.006881219334900379, + 0.03946191817522049, + -0.04892871901392937, + 0.04284268617630005, + 0.06308159232139587, + -0.11988546699285507, + -0.08542710542678833, + 0.0697358250617981, + 0.014273954555392265, + 0.017158182337880135, + 0.10223032534122467, + 0.004407420754432678, + 0.02800765447318554, + 0.09694602340459824, + -0.06870314478874207, + -0.030770590528845787, + -0.004913199692964554, + 0.058905959129333496, + -0.05724268779158592, + 0.04725160822272301, + 0.03419005870819092, + -0.006721088197082281, + -0.015799738466739655, + 0.09465306997299194, + -0.004607826471328735, + 0.010878166183829308, + -0.00011261676991125569, + -0.03291517123579979, + 0.030339231714606285, + -0.04807319492101669, + -0.022467290982604027, + 0.08329416811466217, + 0.07380926609039307, + 0.04109102487564087, + 0.01992044597864151, + -0.07709814608097076, + -0.1221996396780014, + -0.004207264166325331, + 0.019444618374109268, + 0.07642588019371033, + -0.012831549160182476, + -0.014584934338927269, + -0.06304802000522614, + -0.03221304342150688, + 0.024402514100074768, + 0.00975395180284977, + 0.08332888782024384, + -0.014043513685464859, + -0.008711714297533035, + 0.0906527191400528, + -0.03770761936903, + 0.010202913545072079, + -0.009045541286468506, + -0.007258260622620583, + 0.007969088852405548, + 0.03107650950551033, + -0.03641550987958908, + -0.06938638538122177, + 0.012345305643975735, + 0.02711482346057892, + -0.006814546883106232, + 0.04785529524087906, + 0.04359513148665428, + 0.006706336513161659, + 0.03680199012160301, + -0.041372548788785934, + 0.0026394943706691265, + -0.09423838555812836, + -0.053378552198410034, + 0.0013387305662035942, + -0.014718569815158844, + -0.05621272325515747, + 0.07806216925382614, + 0.02076493762433529, + 0.04274290055036545, + -0.01845531538128853, + -0.09669941663742065, + -0.06985851377248764, + 0.0628296285867691, + 0.06807747483253479, + 0.02067222259938717, + 0.0357564240694046, + 0.04432541877031326, + -0.009395377710461617, + 0.07972109317779541, + 0.0748312771320343, + 0.06763284653425217, + -0.004407945554703474, + -0.022697430104017258, + -0.05931934714317322, + 0.086830735206604, + 0.04781627655029297, + -0.07891084253787994, + -0.06726589053869247, + -0.004925444256514311, + -0.08367767184972763, + 0.023849986493587494, + -0.010991059243679047, + 0.03048563562333584, + 0.06296008825302124, + -0.004094384144991636, + -0.10446479171514511, + -0.08738195896148682, + 0.07364118099212646, + -0.09402193874120712, + -0.027812443673610687, + -0.023291196674108505, + 0.015333132818341255, + 0.0980805978178978, + 0.021116070449352264, + 0.01902790740132332, + -0.016613459214568138, + 0.04200465604662895, + -0.07272464036941528, + -0.029187094420194626, + 0.04031291604042053, + 0.0022139656357467175, + -0.07990922778844833, + 0.03259692341089249, + -0.07306845486164093, + 0.04753194749355316, + -0.044937558472156525, + 0.12213563919067383, + -0.013774930499494076, + -0.0411345511674881, + -0.08523625135421753, + 0.02425447478890419, + -0.0713401734828949, + 0.07204298675060272, + 0.022641194984316826, + 0.05019098520278931, + 0.05937380716204643, + -0.06890332698822021, + 0.12420996278524399, + 0.052706968039274216, + -0.05510779470205307, + -0.09198163449764252, + -0.07292493432760239, + -0.03229665011167526, + 0.022051174193620682, + 0.013844112865626812, + -0.05184826999902725, + 0.00027040144777856767, + 0.009622372686862946, + -0.031015580520033836, + 0.04380853474140167, + 0.11941279470920563, + 0.033248137682676315, + -0.11495515704154968 + ] + }, + "p244_069.wav": { + "name": "p244", + "embedding": [ + 0.042389072477817535, + 0.060909055173397064, + -0.03267619386315346, + 0.002641531638801098, + -0.01857568323612213, + 0.01183414924889803, + -0.1024591401219368, + 0.11261001229286194, + -0.03575439378619194, + 0.09899791330099106, + -0.06624089181423187, + 0.12662726640701294, + -0.042341820895671844, + -0.16291534900665283, + -0.00860240776091814, + 0.029767565429210663, + 0.04389046132564545, + 0.03515121340751648, + 0.021808674558997154, + 0.0020727962255477905, + 0.08016923069953918, + 0.020399831235408783, + 0.02387755550444126, + -0.061178356409072876, + -0.0027651293203234673, + 0.05555344745516777, + 0.015508322976529598, + 0.04360657185316086, + -0.0023571676574647427, + -0.003749505616724491, + 0.021052023395895958, + 0.09535599499940872, + -0.008906003087759018, + 0.01894993893802166, + 0.05497564375400543, + 0.014511961489915848, + -0.03168598189949989, + -0.05401148647069931, + -0.0075623453594744205, + -0.010130887851119041, + -0.03362499549984932, + 0.04273761436343193, + -0.00011577457189559937, + -0.0386732742190361, + 0.08641842007637024, + -0.021072236821055412, + -0.025557029992341995, + -0.022640634328126907, + -0.0796433687210083, + 0.09799011796712875, + 0.03548601269721985, + 0.07013832777738571, + -0.10872337222099304, + -0.04984432831406593, + 0.08539055287837982, + 0.0159637201577425, + -0.04192604497075081, + -0.027110770344734192, + 0.03984592482447624, + 0.1743972897529602, + 0.018841281533241272, + -0.016089502722024918, + 0.023046329617500305, + 0.01481558382511139, + 0.007711809128522873, + 0.08097852766513824, + 0.11568149924278259, + 0.03625311329960823, + 0.04287005960941315, + 0.04006768763065338, + -0.013683229684829712, + 0.10724496841430664, + -0.021905681118369102, + -0.052615076303482056, + -0.0004883408546447754, + 0.024844884872436523, + -0.07848293334245682, + 0.010138795711100101, + 0.004058877006173134, + -0.01877998560667038, + -0.012701638042926788, + -0.0051839714869856834, + 0.036180153489112854, + -0.004358217585831881, + -0.04561818391084671, + 0.0024591945111751556, + 0.027727672830224037, + -0.033819593489170074, + 0.03178202360868454, + 0.013203229755163193, + -0.022299204021692276, + 0.014154805801808834, + -0.07717344164848328, + -0.14431096613407135, + -0.02045532502233982, + 0.01677081175148487, + -0.024711361154913902, + 0.07528313994407654, + 0.016613762825727463, + -0.008961262181401253, + 0.0721164345741272, + 0.037327345460653305, + -0.004819595254957676, + 0.02987496741116047, + -0.05986471474170685, + 0.04961073771119118, + 0.08666570484638214, + -0.014121350832283497, + 0.0759602040052414, + -0.06417098641395569, + 0.017668139189481735, + 0.04760894179344177, + -0.09103067219257355, + -0.044606439769268036, + 0.02660381607711315, + 0.005931918043643236, + 0.06229817494750023, + 0.1233488991856575, + 0.03419329226016998, + 0.0265579205006361, + 0.06784731149673462, + -0.1113286018371582, + -0.10652370750904083, + -0.06957471370697021, + 0.06035409867763519, + -0.011010304093360901, + 0.08161742240190506, + 0.04019465669989586, + 0.012358935549855232, + 0.0049023712053895, + 0.018766041845083237, + -0.000120493583381176, + 0.047260113060474396, + 0.008240207098424435, + -0.033083610236644745, + 0.024753378704190254, + -0.08594093471765518, + -0.010837981477379799, + 0.05789615586400032, + 0.035636741667985916, + 0.044445864856243134, + 0.0333406999707222, + -0.027318958193063736, + -0.07351724058389664, + -0.023325413465499878, + 0.09436725080013275, + 0.0356861837208271, + -0.035730328410863876, + -0.043299898505210876, + -0.048382289707660675, + -0.07916504889726639, + -0.0031764497980475426, + -0.023856284096837044, + 0.0894659161567688, + 0.01325690932571888, + 0.0575961172580719, + 0.08197653293609619, + -0.021808994933962822, + 0.002389457542449236, + -0.03929046168923378, + -0.01464114896953106, + -0.011560480110347271, + 0.02792140655219555, + -0.07199744135141373, + -0.07748468220233917, + -0.062362540513277054, + 0.003370748832821846, + -0.04592014104127884, + -0.003650350496172905, + 0.02482995018362999, + 0.015676122158765793, + 0.02550121396780014, + -0.08696705102920532, + 0.0027029630728065968, + -0.13820025324821472, + -0.039592500776052475, + -0.022139739245176315, + 0.021407321095466614, + -0.005270976573228836, + 0.07514826208353043, + 0.02643505483865738, + 0.02515743114054203, + 0.0066955555230379105, + -0.05152153596282005, + -0.07023081183433533, + 0.04150098189711571, + 0.05895484983921051, + 0.006566681433469057, + 0.05536797642707825, + -0.003086986020207405, + -0.04773534834384918, + 0.04597030580043793, + 0.0845419317483902, + 0.059260379523038864, + 0.006793409585952759, + 0.005690903402864933, + -0.06108565628528595, + 0.08743776381015778, + 0.13043445348739624, + -0.058101505041122437, + -0.10552392899990082, + -0.044606540352106094, + -0.08202724158763885, + 0.02622777409851551, + -0.011979629285633564, + 0.008905715309083462, + 0.029565244913101196, + -0.03393614664673805, + -0.11569207906723022, + -0.06938490271568298, + 0.031257372349500656, + 0.01972610130906105, + -0.018224963918328285, + -0.06464698165655136, + 0.02669561468064785, + 0.07991744577884674, + -0.015330341644585133, + -0.009182688780128956, + -0.016383636742830276, + 0.012035254389047623, + -0.0684083104133606, + -0.024530213326215744, + 0.013870317488908768, + 0.012000054121017456, + -0.06282660365104675, + 0.01696491241455078, + -0.019633010029792786, + 0.07732855528593063, + -0.056663841009140015, + 0.09623023122549057, + -0.022688264027237892, + -0.06618054956197739, + -0.07370336353778839, + 0.04491158202290535, + 0.06285522133111954, + 0.00042776018381118774, + -0.0054189544171094894, + 0.0467192716896534, + -0.011271262541413307, + -0.10400275886058807, + 0.06921228766441345, + -0.008432026021182537, + 0.015983790159225464, + -0.06062867119908333, + -0.043254513293504715, + -0.019985631108283997, + 0.031779009848833084, + -0.05549731105566025, + -0.025366276502609253, + 0.002890250412747264, + 0.006617321632802486, + 0.021016422659158707, + 0.013747095130383968, + 0.09621340036392212, + 0.0036958791315555573, + -0.10211804509162903 + ] + }, + "p244_347.wav": { + "name": "p244", + "embedding": [ + 0.0412711426615715, + 0.05669066682457924, + 0.0026466804556548595, + -0.013535615056753159, + -0.012290127575397491, + 0.05207832157611847, + -0.11556962877511978, + 0.04488130658864975, + -0.03145916759967804, + 0.13418292999267578, + -0.05039643496274948, + 0.09852319955825806, + -0.008905481547117233, + -0.08545409142971039, + -0.029720518738031387, + 0.015832580626010895, + -0.05277622863650322, + -0.01431513112038374, + -0.008151955902576447, + -0.07682820409536362, + 0.02734529599547386, + 0.018164165318012238, + 0.04664066433906555, + -0.030748898163437843, + -0.01775631681084633, + 0.0599295012652874, + 0.008151862770318985, + 0.018725769594311714, + 0.019111307337880135, + -0.05802386254072189, + 0.016101142391562462, + 0.07306662946939468, + -0.03258818760514259, + -0.008821018040180206, + 0.036667704582214355, + 0.02222164161503315, + -0.001985148061066866, + -0.01419311948120594, + 0.009656942449510098, + 0.045648518949747086, + -0.06915364414453506, + 0.09444315731525421, + 0.017069676890969276, + -0.007167252246290445, + 0.03239572048187256, + -0.03653346747159958, + -0.04547145962715149, + 0.06134096533060074, + -0.037075694650411606, + 0.09916102886199951, + 0.0790301263332367, + -0.0058848136104643345, + -0.04327109456062317, + -0.003551008179783821, + 0.07426905632019043, + -0.013668294996023178, + -0.11215940862894058, + -0.007052119821310043, + -0.007789473980665207, + 0.08425324410200119, + -0.02867584489285946, + -0.05079594999551773, + 0.011486916802823544, + 0.08159174770116806, + 0.03348308429121971, + 0.04700622335076332, + 0.0868123322725296, + 0.07694805413484573, + -0.013397812843322754, + -0.009495899081230164, + 0.05626486986875534, + 0.07804311811923981, + 0.05993897467851639, + -0.01853775605559349, + 0.05605451017618179, + -0.022127756848931313, + -0.0038471929728984833, + -0.022197816520929337, + -0.016036830842494965, + -0.03030901774764061, + -0.055075276643037796, + -0.030812369659543037, + 0.004299653694033623, + 0.06146626174449921, + -0.02501361258327961, + -0.01709631085395813, + 0.029184209182858467, + -0.03381877392530441, + 0.023456662893295288, + 0.06639024615287781, + 0.015539669431746006, + 0.023865021765232086, + -0.04032358527183533, + -0.03108346462249756, + -0.009654205292463303, + -0.026263751089572906, + 0.0561036542057991, + 0.05736720934510231, + 0.020820975303649902, + 0.030338812619447708, + 0.05575665086507797, + 0.05765734612941742, + -0.018747318536043167, + -0.009165119379758835, + -0.08851375430822372, + 0.08497588336467743, + 0.09434656798839569, + -0.0587095245718956, + 0.002375600393861532, + 0.02574363723397255, + 0.05182548239827156, + 0.010134536772966385, + -0.08147353678941727, + -0.03569801151752472, + 0.014600043185055256, + 0.07553279399871826, + 0.037950627505779266, + 0.09037680923938751, + 0.0008282165508717299, + 0.021755561232566833, + 0.0763978660106659, + 0.03208310902118683, + -0.033214911818504333, + -0.054609719663858414, + 0.01931104250252247, + -0.08515143394470215, + 0.06209424138069153, + 0.014453418552875519, + 0.05049937963485718, + -0.013458872213959694, + 0.10869995504617691, + 0.0037034200504422188, + -0.027995191514492035, + -0.036268141120672226, + 0.00253349170088768, + 0.04465457797050476, + 0.0075359102338552475, + 0.05478878319263458, + 0.06163358315825462, + 0.011904487386345863, + 0.09669404476881027, + 0.04883698746562004, + 0.008974113501608372, + -0.08142051100730896, + 0.03174172341823578, + 0.0340711884200573, + 0.016802538186311722, + -0.03692558780312538, + -0.04192771017551422, + 0.00202106311917305, + -0.043695177882909775, + 0.02224118635058403, + -0.04560896009206772, + 0.0677952691912651, + 0.0011676126159727573, + -0.032591842114925385, + 0.09846597909927368, + -0.019296349957585335, + -0.01346222497522831, + 0.0036270413547754288, + -0.0007555702468380332, + -0.025264816358685493, + 0.054064296185970306, + -0.14167112112045288, + -0.055227093398571014, + -0.006791448220610619, + 0.037377677857875824, + 0.04774264618754387, + 0.01624024286866188, + 0.10128265619277954, + -0.058761972934007645, + 0.05141361057758331, + -0.0005744025111198425, + -0.006706186104565859, + -0.07836834341287613, + -0.0615382045507431, + -0.0359075590968132, + -0.0996285155415535, + -0.017887085676193237, + 0.03606034442782402, + -0.03364332765340805, + 0.041625794023275375, + -0.007175257429480553, + -0.08883555233478546, + -0.07037220895290375, + 0.03378533199429512, + 0.04039790853857994, + -0.026106970384716988, + 0.022121211513876915, + 0.11218108236789703, + 0.007509727030992508, + 0.02783248946070671, + 0.021564345806837082, + 0.0824040099978447, + -0.08386042714118958, + 0.014419618993997574, + -0.05962219089269638, + 0.031088335439562798, + 0.07668279111385345, + -0.03974822163581848, + -0.065896175801754, + -0.0494840107858181, + -0.025581711903214455, + 0.04325051233172417, + -0.03431348875164986, + -0.020339643582701683, + 0.015450803562998772, + -0.023189883679151535, + -0.04450700059533119, + -0.0699068158864975, + 0.07984033972024918, + -0.061840031296014786, + -0.0043916888535022736, + -0.03970395028591156, + -0.005336089059710503, + -0.02459822967648506, + 0.06447196751832962, + -0.06031797453761101, + 0.09303230792284012, + 0.015215856023132801, + -0.04186929762363434, + 0.002140691503882408, + 0.02776448428630829, + 0.015336650423705578, + -0.03899999335408211, + -0.06077704578638077, + -0.07876808196306229, + 0.05405525118112564, + -0.05180056020617485, + 0.04063853621482849, + -0.006929229944944382, + -0.035339005291461945, + -0.008251747116446495, + -0.022141527384519577, + -0.03096598945558071, + 0.02070022001862526, + 0.10553033649921417, + 0.08118073642253876, + -0.021488819271326065, + -0.02310914359986782, + 0.07726868242025375, + 0.04008672013878822, + 0.01673300936818123, + -0.05181705206632614, + 0.03634129464626312, + -0.029078567400574684, + 0.014757100492715836, + 0.05690399929881096, + -0.07162076234817505, + 0.05197465792298317, + -0.0025249968748539686, + -0.020353052765130997, + 0.014066814444959164, + 0.04892072081565857, + 0.06346987187862396, + -0.06699855625629425 + ] + }, + "p244_157.wav": { + "name": "p244", + "embedding": [ + 0.06274768710136414, + 0.03825800120830536, + -0.0033065180759876966, + -0.006682202219963074, + -0.01771368458867073, + 0.055959559977054596, + -0.13801440596580505, + 0.12309806793928146, + -0.034329187124967575, + 0.08862051367759705, + -0.06109682843089104, + 0.08656501770019531, + 0.007827946916222572, + -0.15208062529563904, + -0.03614667430520058, + 0.03548501431941986, + -0.024202939122915268, + -0.008609562180936337, + -0.054639190435409546, + -0.012602399103343487, + 0.02119191363453865, + 0.04405825585126877, + 0.0028640534728765488, + -0.023142129182815552, + 0.017828378826379776, + 0.05189964175224304, + 0.004527223762124777, + 0.023284612223505974, + -0.0057751489803195, + -0.01309884712100029, + 0.007959551177918911, + 0.08831426501274109, + -0.03701397776603699, + -0.010631110519170761, + 0.05668676644563675, + -0.010418376885354519, + 0.001741559011861682, + -0.07652382552623749, + -0.02150186523795128, + 0.02483842894434929, + -0.058899007737636566, + 0.07595877349376678, + 0.07162299752235413, + 0.015666477382183075, + 0.028073750436306, + 0.025942470878362656, + 0.014092875644564629, + -0.06324666738510132, + -0.10040765255689621, + 0.16741704940795898, + 0.027573097497224808, + 0.01804249919950962, + -0.10138100385665894, + -0.02015196904540062, + 0.07756535708904266, + -0.005804148968309164, + -0.06629043072462082, + -0.050849221646785736, + 0.055925674736499786, + 0.13648945093154907, + -0.006125593092292547, + -0.03875351697206497, + 0.02991393767297268, + 0.0978822112083435, + 0.0293409526348114, + 0.04434789717197418, + 0.11220666766166687, + 0.10735618323087692, + -0.003646738361567259, + 0.02512589655816555, + 0.044776543974876404, + 0.03431624174118042, + 0.030787356197834015, + -0.02672792598605156, + 0.036868393421173096, + -0.015505118295550346, + -0.026290182024240494, + -0.010984379798173904, + -0.03000492975115776, + -0.022326432168483734, + 0.018413206562399864, + 0.026656724512577057, + 0.021801531314849854, + 0.06617453694343567, + -0.05302262306213379, + 0.04811028763651848, + 0.02560536563396454, + -0.004730940796434879, + 0.06375011801719666, + 0.052400581538677216, + 0.02656303346157074, + 0.017524149268865585, + -0.06161477789282799, + -0.08669359982013702, + 0.018443187698721886, + 0.0006426457548514009, + 0.013397922739386559, + 0.03400969132781029, + 0.03068729117512703, + -0.021045871078968048, + 0.10060818493366241, + 0.0020663875620812178, + -0.01124049723148346, + 0.00016079223132692277, + -0.07695870101451874, + 0.10415235161781311, + 0.08591245114803314, + -0.013983006589114666, + 0.03742546588182449, + -0.06544427573680878, + 0.01936090551316738, + 0.04765874147415161, + -0.10838233679533005, + -0.058138199150562286, + 0.06782806664705276, + 0.028023432940244675, + 0.028606921434402466, + 0.14478760957717896, + 0.01191443856805563, + 0.025621986016631126, + 0.06474218517541885, + -0.08207213878631592, + -0.0389985665678978, + 0.0018848404288291931, + 0.03159947693347931, + -0.03883250057697296, + 0.03337228298187256, + 0.038793690502643585, + 0.010944174602627754, + -0.022375576198101044, + 0.07655879855155945, + 0.0033097839914262295, + 0.009736997075378895, + -0.04954742640256882, + 0.032036442309617996, + 0.07004294544458389, + 0.0069518922828137875, + -0.018580995500087738, + 0.01105495821684599, + 0.05577467009425163, + 0.024866636842489243, + 0.025071561336517334, + -0.059047795832157135, + -0.11163818836212158, + -0.019772712141275406, + 0.031170329079031944, + 0.07466323673725128, + -0.03351680934429169, + -0.023961633443832397, + -0.060349948704242706, + -0.021305903792381287, + -0.022203072905540466, + -0.015400081872940063, + 0.06040715426206589, + 0.029994137585163116, + -0.017065487802028656, + 0.08778540790081024, + -0.01113156508654356, + 0.03423745185136795, + -0.01649390161037445, + -0.0018926325719803572, + 0.013770075514912605, + 0.034245144575834274, + -0.026725511997938156, + -0.06654241681098938, + -0.0058194417506456375, + 0.001194218872115016, + -0.010738056153059006, + 0.012048224918544292, + 0.015798911452293396, + 0.0018528278451412916, + 0.004602747969329357, + -0.10483839362859726, + 0.0255399402230978, + -0.1051347479224205, + -0.02282046340405941, + 0.03679654747247696, + -0.013239650055766106, + -0.027232229709625244, + 0.09114474058151245, + 0.020934097468852997, + 0.04278257116675377, + -0.02396356873214245, + -0.07292294502258301, + -0.02666199766099453, + 0.04258349537849426, + 0.07128126919269562, + -0.035406723618507385, + 0.005308506544679403, + 0.014439131133258343, + 0.011806134134531021, + 0.03380893915891647, + 0.06416885554790497, + 0.05430710315704346, + -0.03258613124489784, + -0.030579276382923126, + -0.023772327229380608, + 0.12372585386037827, + 0.02314685843884945, + -0.0544075183570385, + -0.05280038341879845, + 0.016436295583844185, + -0.0444490909576416, + -0.006520816590636969, + -0.008584277704358101, + 0.031740956008434296, + 0.04188862442970276, + -0.008750460110604763, + -0.10833059996366501, + -0.05442196875810623, + 0.03239291161298752, + -0.08703356981277466, + 0.0047711823135614395, + -0.06967581808567047, + 0.03747133910655975, + 0.11157047748565674, + 0.017352882772684097, + -0.006289730779826641, + -0.049069903790950775, + -0.005863155238330364, + -0.0528264194726944, + -0.024261508136987686, + -0.0033458347897976637, + 0.04210058972239494, + -0.08488588035106659, + 0.004092587158083916, + -0.053820788860321045, + 0.059624847024679184, + -0.0436747744679451, + 0.09754639863967896, + 0.03522047400474548, + -0.0663733035326004, + -0.08282151818275452, + -0.0007431879639625549, + -0.005893544759601355, + 0.049697570502758026, + 0.026152510195970535, + 0.03760453313589096, + 0.046701349318027496, + -0.0530659519135952, + 0.08974557369947433, + 0.05037372559309006, + -0.03692547231912613, + -0.0663122832775116, + -0.04270852357149124, + -0.006302577909082174, + 0.03392454981803894, + 0.00201242184266448, + -0.04211777448654175, + 0.008807561360299587, + 0.03336133062839508, + -0.007241835352033377, + 0.0544072687625885, + 0.09891193360090256, + 0.04132698476314545, + -0.11022458970546722 + ] + }, + "p244_086.wav": { + "name": "p244", + "embedding": [ + 0.04058758541941643, + 0.05707496404647827, + -0.03836807608604431, + 0.03512593358755112, + -0.07383444905281067, + 0.04957398772239685, + -0.13017742335796356, + 0.11729548871517181, + -0.039957642555236816, + 0.12198658287525177, + -0.04513384401798248, + 0.1239967793226242, + -0.010964492335915565, + -0.19818654656410217, + -0.013189973309636116, + 0.05734149366617203, + -0.05365602672100067, + -0.0625680461525917, + -0.04966297373175621, + -0.034478046000003815, + 0.036917801946401596, + 0.05233831703662872, + 0.019359372556209564, + 0.0030397744849324226, + 0.020032258704304695, + 0.07939080893993378, + -0.009967454709112644, + 0.024669989943504333, + 0.001333344727754593, + -0.05349157005548477, + -0.048599258065223694, + 0.07821957767009735, + -0.06079249829053879, + -0.01427432894706726, + 0.036619942635297775, + -0.01747128553688526, + 0.0007379520684480667, + -0.05678967759013176, + -0.03972814604640007, + 0.02851865254342556, + -0.06608286499977112, + 0.07830791175365448, + 0.0477905198931694, + -0.015870993956923485, + 0.04767383635044098, + 0.008565939962863922, + -0.020001649856567383, + -0.045987483114004135, + -0.11187990009784698, + 0.15980158746242523, + 0.07865479588508606, + -0.012689968571066856, + -0.05196975916624069, + -0.054953932762145996, + 0.10646001994609833, + -0.011847546324133873, + -0.12508486211299896, + -0.04689028486609459, + 0.07448107749223709, + 0.14265106618404388, + -0.04204976186156273, + -0.03148014098405838, + 0.038656722754240036, + 0.10301309823989868, + 0.07791075110435486, + 0.0800962746143341, + 0.07613751292228699, + 0.11102531850337982, + -0.01735655963420868, + -0.006543383933603764, + 0.07973690330982208, + 0.07934500277042389, + 0.05118989571928978, + -0.012880037538707256, + 0.03483256697654724, + 0.020528405904769897, + -0.015322490595281124, + -0.01661631092429161, + -0.01214521937072277, + 0.004847847856581211, + 0.005531628616154194, + 0.008465563878417015, + 0.023781727999448776, + 0.03004276752471924, + -0.03144514933228493, + 0.07102768123149872, + 0.0543365404009819, + -0.003726797876879573, + 0.056550078094005585, + 0.024787262082099915, + 0.0032945151906460524, + 0.07655567675828934, + -0.08138968050479889, + -0.06683298945426941, + 0.03440267965197563, + 0.019296666607260704, + 0.009587163105607033, + 0.063373863697052, + 0.04588541015982628, + -0.018813274800777435, + 0.12973400950431824, + 0.04215530306100845, + -0.011943644843995571, + 0.03597428277134895, + -0.08418693393468857, + 0.1198873445391655, + 0.08880268037319183, + -0.029398974031209946, + 0.04533214494585991, + -0.049159400165081024, + 0.08031581342220306, + 0.05285089462995529, + -0.13597974181175232, + -0.06376269459724426, + 0.05149390548467636, + 0.006144902668893337, + -0.025638848543167114, + 0.1461046189069748, + -0.008281498216092587, + 0.040571462363004684, + 0.12188776582479477, + -0.08619432896375656, + -0.044897690415382385, + -0.01341365184634924, + 0.052110083401203156, + -0.08784531056880951, + 0.05693289265036583, + 0.049084704369306564, + -0.012311004102230072, + 0.022327056154608727, + 0.08460091054439545, + -0.02457287907600403, + -0.007772268261760473, + 0.0021988588850945234, + -0.027888190001249313, + 0.03187965601682663, + -0.011864447966217995, + -0.013593818061053753, + 0.06836052983999252, + 0.02206624671816826, + 0.03742603212594986, + -0.024825064465403557, + -0.0301041416823864, + -0.1429411917924881, + 0.03209402784705162, + 0.016581948846578598, + 0.09144237637519836, + -0.00959692057222128, + -0.005573159083724022, + -0.058278173208236694, + -0.09083827584981918, + 0.015277802012860775, + -0.01225945632904768, + 0.08049440383911133, + -0.03330737352371216, + -0.006423125043511391, + 0.08229725062847137, + 0.03271114453673363, + 0.006481239106506109, + -0.03171835467219353, + -0.04404463991522789, + 0.008224808610975742, + 0.05602450668811798, + -0.07359646260738373, + -0.07248391956090927, + -0.02017083391547203, + 0.04001403599977493, + -0.011114749126136303, + 0.050568774342536926, + 0.04193432256579399, + 0.02349749766290188, + 0.020095184445381165, + -0.0834217518568039, + 0.024718699976801872, + -0.09383046627044678, + -0.06108575314283371, + -0.01371628325432539, + -0.019321896135807037, + -0.022519215941429138, + 0.07915105670690536, + 0.01181795448064804, + 0.04354029893875122, + -0.03930105268955231, + -0.07850587368011475, + -0.07777340710163116, + 0.05252227932214737, + 0.0632658526301384, + -0.015045162290334702, + 0.03825882077217102, + 0.06574724614620209, + -0.026200678199529648, + 0.0372898206114769, + 0.051983561366796494, + 0.10803788900375366, + -0.01902872882783413, + 0.020945537835359573, + -0.0446934811770916, + 0.11168535053730011, + 0.06274493038654327, + -0.07197760790586472, + -0.05890105292201042, + -0.017712388187646866, + -0.0668000727891922, + 0.045169398188591, + -0.026235414668917656, + 0.007637351751327515, + 0.022234197705984116, + 0.02016567438840866, + -0.10075777024030685, + -0.08245828002691269, + 0.07092501223087311, + -0.06577587872743607, + -0.011416262947022915, + -0.0934334397315979, + 0.037599124014377594, + 0.10930037498474121, + 0.0385400652885437, + -0.02920175902545452, + -0.010879136621952057, + 0.039247818291187286, + -0.01921367272734642, + 0.026680922135710716, + 0.0700419545173645, + 0.04611950367689133, + -0.11677803099155426, + -0.030073177069425583, + -0.07577842473983765, + 0.0585419163107872, + -0.04171869158744812, + 0.14076575636863708, + 0.013987628743052483, + -0.0328177772462368, + -0.07807652652263641, + 0.049609191715717316, + -0.004282123409211636, + 0.06763955950737, + 0.04454671964049339, + 0.07316531240940094, + 0.06067637726664543, + -0.04748491942882538, + 0.11469197273254395, + 0.054574400186538696, + -0.040320541709661484, + -0.05957065522670746, + -0.0322323739528656, + -0.036504730582237244, + 0.03230755031108856, + 0.036879416555166245, + -0.08869340270757675, + -0.0110970139503479, + 0.030039120465517044, + -0.01634569838643074, + 0.052931975573301315, + 0.1340961903333664, + 0.06646884977817535, + -0.11248211562633514 + ] + }, + "p244_134.wav": { + "name": "p244", + "embedding": [ + 0.0622018463909626, + 0.1327560842037201, + -0.026491519063711166, + 0.03965924680233002, + -0.05983572453260422, + 0.07172872126102448, + -0.09572288393974304, + 0.15615679323673248, + -0.047941505908966064, + 0.11980122327804565, + -0.10109180957078934, + 0.14807407557964325, + -0.04070136696100235, + -0.1288943886756897, + -0.06004098430275917, + 0.04093494638800621, + -0.010518948547542095, + -0.011621727608144283, + -0.014310152269899845, + -0.013755956664681435, + 0.02872421219944954, + 0.009694254957139492, + 0.036946024745702744, + 0.029177136719226837, + 0.040951453149318695, + 0.063828244805336, + 0.0034961490891873837, + 0.06040937453508377, + 0.030641386285424232, + -0.03643089532852173, + -0.05544741451740265, + 0.11300627887248993, + -0.055516891181468964, + 0.017353275790810585, + 0.05894283950328827, + -0.00020205974578857422, + 0.0033030719496309757, + -0.04933089762926102, + -0.00725951325148344, + -0.016243144869804382, + -0.020947769284248352, + 0.06707493960857391, + 0.010141802951693535, + -0.03671390563249588, + 0.029064463451504707, + 0.027157649397850037, + 0.003513710107654333, + -0.026831332594156265, + -0.10181010514497757, + 0.1282554566860199, + 0.032813552767038345, + 0.016223134472966194, + -0.10427436232566833, + -0.05072477459907532, + 0.10793045908212662, + -0.0376259908080101, + -0.07871465384960175, + -0.0028020869940519333, + 0.05185255408287048, + 0.15715593099594116, + -0.03203558176755905, + -0.04067929834127426, + 0.01443856954574585, + 0.10073094069957733, + 0.08034796267747879, + 0.07018522918224335, + 0.09205205738544464, + 0.1086721271276474, + -0.025567198172211647, + 0.033587805926799774, + 0.05205640196800232, + 0.07386362552642822, + 0.07442335039377213, + -0.019369393587112427, + 0.008443720638751984, + -0.013719220645725727, + -0.007741993293166161, + 0.01937638595700264, + -0.03527840971946716, + -0.045300163328647614, + -0.024530448019504547, + 0.022466804832220078, + 0.00741222919896245, + 0.016732580959796906, + -0.04707795009016991, + 0.0869964212179184, + 0.03724443539977074, + -0.04334992915391922, + 0.06521935760974884, + 0.0508296936750412, + -0.02222064509987831, + 0.05124201253056526, + -0.10589244961738586, + -0.09038302302360535, + 0.036771975457668304, + -0.02868126891553402, + 0.040719956159591675, + 0.08264879882335663, + 0.05071950703859329, + 0.006061921827495098, + 0.10374876856803894, + 0.07461705058813095, + 0.014417007565498352, + 0.030950188636779785, + -0.0826287567615509, + 0.13508948683738708, + 0.10684458166360855, + -0.03642892464995384, + 0.04120572656393051, + -0.008325044065713882, + 0.061466529965400696, + 0.06510888040065765, + -0.1193639487028122, + -0.08827556669712067, + 0.003733537159860134, + 0.018154004588723183, + 0.017135079950094223, + 0.05855339393019676, + -0.031154703348875046, + 0.03954688087105751, + 0.08034920692443848, + -0.06683668494224548, + -0.04941023141145706, + -0.03574524074792862, + 0.03460447117686272, + -0.06021100655198097, + 0.0708598643541336, + 0.044335439801216125, + 0.019089361652731895, + -0.021764487028121948, + 0.07222854346036911, + 0.00030676904134452343, + -0.02399158477783203, + 0.04847247898578644, + -0.040297456085681915, + 0.0020639775320887566, + 0.002081210957840085, + -0.009715343825519085, + 0.041291698813438416, + 0.051991626620292664, + 0.05807889997959137, + 0.011871043592691422, + 0.019927164539694786, + -0.09270739555358887, + 0.007123466581106186, + 0.07272288203239441, + 0.05771661549806595, + -0.01963166706264019, + -0.04582394286990166, + -0.03658342361450195, + -0.03922621160745621, + 0.029612090438604355, + 0.031892791390419006, + 0.07143702358007431, + -0.02476927638053894, + 0.030063264071941376, + 0.11151249706745148, + 0.018040018156170845, + -0.005392676685005426, + -0.05694349855184555, + 0.005480976775288582, + 0.01041684951633215, + 0.05482897162437439, + -0.06139064580202103, + -0.10707433521747589, + -0.007486686110496521, + 0.013832524418830872, + -0.04370430111885071, + 0.07752937078475952, + 0.05068504810333252, + 0.005762046203017235, + 0.03755341097712517, + -0.03167432174086571, + 0.0015448546037077904, + -0.10362815111875534, + -0.047716014087200165, + -0.028951041400432587, + -0.030049197375774384, + -0.032629672437906265, + 0.05871205776929855, + 0.05865924060344696, + 0.07069949805736542, + 0.01280115358531475, + -0.059996623545885086, + -0.07138459384441376, + 0.05062780901789665, + 0.048659540712833405, + 0.02274874784052372, + 0.04370371997356415, + 0.06451734900474548, + -0.004164085723459721, + 0.08456026017665863, + 0.09698827564716339, + 0.07018941640853882, + -0.023288819938898087, + -0.010122159495949745, + -0.05788757652044296, + 0.057798102498054504, + 0.0836566835641861, + -0.11314018815755844, + -0.12190453708171844, + -0.06107761710882187, + -0.05114412680268288, + 0.03179720789194107, + -0.025040172040462494, + 0.03414640575647354, + 0.0466463640332222, + -0.027013324201107025, + -0.08368606865406036, + -0.11304448544979095, + 0.10386017709970474, + -0.05776321887969971, + 0.0014743907377123833, + -0.06786850839853287, + 0.03872167319059372, + 0.07316740602254868, + -0.011720423586666584, + -0.029916729778051376, + 0.013210982084274292, + 0.03754677623510361, + -0.0407559759914875, + -0.025794383138418198, + 0.04394083842635155, + 0.01615135371685028, + -0.09156452119350433, + 0.025174185633659363, + -0.055095139890909195, + 0.08706554770469666, + -0.03749625012278557, + 0.1771300882101059, + -0.007881375961005688, + -0.040389735251665115, + -0.0687192901968956, + 0.04410019516944885, + -0.040084898471832275, + 0.03894632309675217, + 0.04144362360239029, + 0.06238207966089249, + -0.012978958897292614, + -0.0763697549700737, + 0.11493854224681854, + 0.04401835426688194, + -0.07852423191070557, + -0.09453123807907104, + -0.07565627247095108, + -0.04914827644824982, + 0.026203107088804245, + 0.030564583837985992, + -0.06608007848262787, + -0.018777944147586823, + -0.00116734579205513, + -0.006987260654568672, + 0.06478210538625717, + 0.14419645071029663, + 0.06578686833381653, + -0.08597676455974579 + ] + }, + "p244_133.wav": { + "name": "p244", + "embedding": [ + 0.041297547519207, + 0.11455926299095154, + -0.0017132259672507644, + 0.018165865913033485, + -0.051963645964860916, + 0.09041957557201385, + -0.08692163974046707, + 0.12645292282104492, + -0.09143020957708359, + 0.15465213358402252, + -0.11593572795391083, + 0.11773064732551575, + -0.044806286692619324, + -0.1490412950515747, + -0.06706982851028442, + 0.03986232727766037, + -0.04833361506462097, + 0.002107993932440877, + -0.060350093990564346, + 0.0069448016583919525, + 0.05833254009485245, + 0.000788657576777041, + 0.03213661536574364, + -0.01207007747143507, + 0.021789170801639557, + 0.04163859784603119, + 0.03385450690984726, + 0.06263872981071472, + 0.04133098945021629, + -0.05485771596431732, + -0.03725240379571915, + 0.13898667693138123, + -0.02946937270462513, + 0.03784608840942383, + 0.0781920775771141, + 0.012042203918099403, + -0.0014045416610315442, + -0.06810173392295837, + -0.01753845065832138, + -0.02219734899699688, + -0.02109723538160324, + 0.04637330397963524, + 0.004315180238336325, + -0.009702122770249844, + 0.033445652574300766, + 0.023403994739055634, + -0.03825129196047783, + -0.03742963448166847, + -0.07289575785398483, + 0.1262144297361374, + 0.04913631081581116, + 0.004767424892634153, + -0.08466526865959167, + -0.08497320860624313, + 0.12530331313610077, + -0.010960602201521397, + -0.1129029244184494, + -0.030695561319589615, + 0.08174505084753036, + 0.18919098377227783, + -0.022884823381900787, + -0.012764216400682926, + -0.0019257356179878116, + 0.10391833633184433, + 0.021053628996014595, + 0.11531467735767365, + 0.0751236230134964, + 0.0809326320886612, + 0.04574631154537201, + 0.0760323777794838, + 0.05403928458690643, + 0.06185106188058853, + 0.03970938175916672, + -0.02811742015182972, + 0.039041414856910706, + -0.015278642065823078, + -0.028954897075891495, + 0.03921008110046387, + -0.05481412634253502, + -0.02577005885541439, + -0.03172075003385544, + 0.01496118400245905, + 0.02791183441877365, + -0.021887533366680145, + -0.026877062395215034, + 0.061779119074344635, + -0.008785966783761978, + -0.022177185863256454, + 0.053655318915843964, + 0.05277888476848602, + -0.010125143453478813, + 0.03967394307255745, + -0.06804991513490677, + -0.14738930761814117, + -0.012449276633560658, + -0.016071254387497902, + 0.011165747418999672, + 0.07467452436685562, + 0.036343421787023544, + -0.019686389714479446, + 0.08277130872011185, + 0.0648355633020401, + 0.008782033808529377, + 0.0366487056016922, + -0.11050742864608765, + 0.1022585779428482, + 0.08801715075969696, + -0.003631700063124299, + 0.016802899539470673, + -0.03087206557393074, + 0.10668429732322693, + 0.09522587060928345, + -0.13953015208244324, + -0.08506143093109131, + -0.00264726672321558, + -0.025648826733231544, + -0.0010603005066514015, + 0.06754474341869354, + -0.027455255389213562, + -0.008131668902933598, + 0.09003298729658127, + -0.0673074796795845, + -0.06193699687719345, + -0.04229079186916351, + 0.03137551620602608, + -0.04543914645910263, + 0.05138185992836952, + -0.004624051973223686, + 0.007637045346200466, + -0.03060484677553177, + 0.07636098563671112, + -0.019327733665704727, + -0.012097650207579136, + 0.053983524441719055, + -0.07345453649759293, + 0.042408209294080734, + -0.049985166639089584, + 0.008950160816311836, + 0.05210144445300102, + 0.08750709891319275, + 0.05141513794660568, + 0.002851310884580016, + -0.018281059339642525, + -0.04121723771095276, + -0.01046680472791195, + 0.055975887924432755, + 0.043200232088565826, + 0.012413250282406807, + -0.016545619815587997, + -0.027319665998220444, + -0.06217388063669205, + 0.03314356505870819, + -0.013571945950388908, + 0.09823563694953918, + 0.0019467358943074942, + 0.021671226248145103, + 0.09472833573818207, + -0.0051863593980669975, + -0.01598552241921425, + -0.07899544388055801, + -0.0031464819330722094, + 0.04760095104575157, + 0.052674226462841034, + -0.07419611513614655, + -0.05610281974077225, + 0.024660281836986542, + -0.0022799137514084578, + -0.04687836766242981, + 0.014581711031496525, + 0.02412720024585724, + 0.010095291770994663, + 0.06529437750577927, + -0.05785476788878441, + 0.004069725051522255, + -0.135610431432724, + -0.033472005277872086, + -0.02212948352098465, + -0.06666119396686554, + -0.011357763782143593, + 0.04767968878149986, + 0.02581382915377617, + 0.007326185703277588, + 0.04437337443232536, + -0.08830290287733078, + -0.061657555401325226, + 0.08468224108219147, + 0.05942381173372269, + 0.03753438964486122, + 0.060077324509620667, + 0.050926726311445236, + -0.01278261374682188, + 0.06519371271133423, + 0.08476236462593079, + 0.08517537266016006, + -0.0007953721797093749, + -0.012795460410416126, + -0.07919950038194656, + 0.07496115565299988, + 0.09045148640871048, + -0.11373654752969742, + -0.11356612294912338, + -0.039007291197776794, + -0.0497543029487133, + 0.04672514647245407, + -0.0340145118534565, + -0.00975661538541317, + 0.030717633664608, + -0.025635145604610443, + -0.09907827526330948, + -0.07132606953382492, + 0.13276441395282745, + -0.0745672658085823, + -0.028220923617482185, + -0.05113302171230316, + 0.02091464214026928, + 0.08047666400671005, + 0.01702745445072651, + -0.028631914407014847, + 0.034702155739068985, + 0.07751099765300751, + -0.10417625308036804, + -0.03942802548408508, + -0.004535287618637085, + -0.028360813856124878, + -0.07269437611103058, + 0.03828089311718941, + -0.06709221750497818, + 0.060136713087558746, + -0.07069261372089386, + 0.17005649209022522, + -0.0424695685505867, + -0.05571698769927025, + -0.06540583819150925, + 0.052116844803094864, + -0.038852546364068985, + 0.027352681383490562, + 0.05796901136636734, + 0.08096598833799362, + -0.018361283466219902, + -0.09400112181901932, + 0.13685202598571777, + 0.005040790420025587, + -0.022602172568440437, + -0.06846167892217636, + -0.04854939877986908, + -0.061454616487026215, + -0.023517979308962822, + -0.009991307742893696, + -0.06929834932088852, + 0.006569344084709883, + 0.0038476220797747374, + -0.026457427069544792, + 0.06944996118545532, + 0.13379625976085663, + 0.07714101672172546, + -0.07563582807779312 + ] + }, + "p244_129.wav": { + "name": "p244", + "embedding": [ + 0.05392615497112274, + 0.07443667948246002, + -0.009994728490710258, + -0.009014388546347618, + -0.02173648029565811, + 0.03859037905931473, + -0.12552936375141144, + 0.1256403923034668, + -0.06035454571247101, + 0.09997209906578064, + -0.06202982738614082, + 0.10489467531442642, + -0.005122889764606953, + -0.1571434736251831, + -0.0880635678768158, + 0.03198288381099701, + -0.045143015682697296, + -0.006307042203843594, + -0.027759509161114693, + -0.024430638179183006, + 0.03673839196562767, + 0.03499136120080948, + 0.020181884989142418, + -0.012590021826326847, + 0.04001505672931671, + 0.03888263180851936, + 0.028153423219919205, + 0.04097350686788559, + 0.027295127511024475, + 0.003928378224372864, + 0.002996165305376053, + 0.09662798047065735, + -0.018309295177459717, + 0.013687074184417725, + 0.07015502452850342, + 0.033664800226688385, + 0.004545565228909254, + -0.0794612467288971, + -0.02087850496172905, + 0.009411952458322048, + -0.045582108199596405, + 0.07155988365411758, + 0.040919363498687744, + -0.019065722823143005, + 0.0299101322889328, + 0.016979368403553963, + 0.0036395557690411806, + -0.07593900710344315, + -0.10309791564941406, + 0.15288719534873962, + 0.01870296709239483, + 0.047613222151994705, + -0.11891864240169525, + -0.06445339322090149, + 0.11014333367347717, + -0.03317048400640488, + -0.07327345013618469, + -0.020378394052386284, + 0.02845267578959465, + 0.17581988871097565, + -0.02416062355041504, + -0.027550997212529182, + 0.01721351221203804, + 0.10199615359306335, + 0.02705969847738743, + 0.04991358146071434, + 0.1079227477312088, + 0.06764909625053406, + 0.020355235785245895, + 0.04830589145421982, + 0.04662405699491501, + 0.0597914382815361, + 0.005850202403962612, + -0.04733363911509514, + 0.007627889513969421, + -0.003365917131304741, + -0.05620148777961731, + 0.011901435442268848, + -0.02279374748468399, + -0.019748002290725708, + -0.028799837455153465, + 0.030615627765655518, + 0.002194210421293974, + 0.0270709041506052, + -0.050927430391311646, + 0.05480382591485977, + -0.015551891177892685, + -0.04787268489599228, + 0.05460184067487717, + 0.07094497978687286, + -0.011764146387577057, + 0.013380622491240501, + -0.055755071341991425, + -0.10712259262800217, + -0.020806077867746353, + -0.01791190728545189, + 0.006997612304985523, + 0.06865952908992767, + 0.037363409996032715, + -0.019053038209676743, + 0.08073477447032928, + 0.05926159396767616, + -0.004894784651696682, + 0.0075787147507071495, + -0.09441211819648743, + 0.0782688558101654, + 0.10550709813833237, + -0.01682424172759056, + 0.017590994015336037, + -0.0476725772023201, + 0.05361957848072052, + 0.08424115926027298, + -0.12738361954689026, + -0.07545700669288635, + 0.07856108248233795, + 0.03635145723819733, + 0.05592794343829155, + 0.09744493663311005, + -0.005688908509910107, + -0.0019249757751822472, + 0.06625314056873322, + -0.06221519783139229, + -0.05811835080385208, + -0.05217359960079193, + 0.054616786539554596, + -0.04010135307908058, + 0.05409979820251465, + 0.04592623561620712, + 0.008029206655919552, + -0.04225748032331467, + 0.05206568166613579, + 0.010796322487294674, + -0.0030347637366503477, + -0.016415055841207504, + 0.018820129334926605, + 0.06336290389299393, + -0.01777966320514679, + -0.024717368185520172, + 0.037478700280189514, + 0.0927240252494812, + 0.02607731707394123, + 0.05414276197552681, + -0.04490037262439728, + -0.07333119958639145, + -0.010936434380710125, + 0.09308279305696487, + 0.05582552030682564, + -0.040384046733379364, + -0.05247347429394722, + -0.05684541165828705, + -0.021842073649168015, + 0.0004816511645913124, + 0.012069856747984886, + 0.09166248887777328, + -0.0019981549121439457, + 0.03308132290840149, + 0.11047571897506714, + -0.038139186799526215, + -0.007936987094581127, + 0.0028473716229200363, + 0.03919798135757446, + 0.026521438732743263, + 0.023982921615242958, + -0.03588304668664932, + -0.08112575113773346, + -0.0022799649741500616, + -0.001674160361289978, + -0.0358114168047905, + 0.0005139485001564026, + 0.010183852165937424, + -0.0015047881752252579, + 0.0435851514339447, + -0.0954829528927803, + 0.022527482360601425, + -0.16106975078582764, + -0.00900324247777462, + -0.015356677584350109, + -0.04914845898747444, + -0.006328769493848085, + 0.07458657026290894, + 0.04068043455481529, + 0.02095233090221882, + 0.012564263306558132, + -0.11711712181568146, + -0.024375971406698227, + 0.06816166639328003, + 0.09943650662899017, + 0.013466029427945614, + 0.0071571338921785355, + 0.028654180467128754, + 0.023938678205013275, + 0.032016463577747345, + 0.07807129621505737, + 0.05729295313358307, + -0.018133021891117096, + -0.04137236252427101, + -0.0445544607937336, + 0.09838218986988068, + 0.02983623556792736, + -0.09720556437969208, + -0.0902697890996933, + -0.027857154607772827, + -0.0417763777077198, + -0.0021216869354248047, + 0.00452845823019743, + 0.044691868126392365, + 0.014556209556758404, + -0.04080378636717796, + -0.11652612686157227, + -0.08267544209957123, + 0.05755245313048363, + -0.05149652063846588, + -0.01796053722500801, + -0.044719576835632324, + 0.02303094044327736, + 0.09662321209907532, + -0.003799034282565117, + 0.023075276985764503, + -0.022207390516996384, + -0.016091376543045044, + -0.09067900478839874, + -0.06383467465639114, + -0.02560262195765972, + -0.007304156199097633, + -0.08523023128509521, + 0.041381530463695526, + -0.05000466853380203, + 0.11790335178375244, + -0.06316035985946655, + 0.13298948109149933, + -0.01973225176334381, + -0.07779376953840256, + -0.08542152494192123, + -0.01643693633377552, + -0.02898472547531128, + 0.055288925766944885, + 0.044188156723976135, + 0.05746244639158249, + -0.022932549938559532, + -0.06478139758110046, + 0.09215466678142548, + 0.06123930588364601, + -0.035009823739528656, + -0.06930521130561829, + -0.0554036945104599, + 0.0020948778837919235, + 0.008704611100256443, + -0.007246280089020729, + -0.013204630464315414, + 0.007811293005943298, + -0.002652811584994197, + -0.04926186054944992, + 0.0598335862159729, + 0.10606255382299423, + 0.054550208151340485, + -0.12116880714893341 + ] + }, + "p244_113.wav": { + "name": "p244", + "embedding": [ + 0.05266711488366127, + 0.08582263439893723, + -0.02592119202017784, + 0.019899480044841766, + -0.06496009230613708, + 0.048812996596097946, + -0.1588859111070633, + 0.13600994646549225, + -0.030165988951921463, + 0.13593433797359467, + -0.04642648249864578, + 0.12987945973873138, + -0.020480554550886154, + -0.18912239372730255, + -0.021262919530272484, + 0.06009237468242645, + -0.02741141803562641, + -0.05052557960152626, + -0.015856029465794563, + -0.027928199619054794, + 0.02803090214729309, + 0.042347684502601624, + 0.025782620534300804, + 0.0022609729785472155, + 0.041953157633543015, + 0.07605547457933426, + -0.007571537978947163, + 0.03295883908867836, + -0.0030406098812818527, + -0.05938256159424782, + -0.03306674212217331, + 0.08316744863986969, + -0.06765448302030563, + -0.004874638747423887, + 0.033529132604599, + -0.014325467869639397, + 0.0013069804990664124, + -0.06559905409812927, + -0.018419045954942703, + 0.010221763513982296, + -0.04732197895646095, + 0.08943614363670349, + 0.026139071211218834, + -0.02501012571156025, + 0.023983489722013474, + 0.022603865712881088, + 0.002640419639647007, + -0.04471921920776367, + -0.11350669711828232, + 0.15213394165039062, + 0.05256342515349388, + 0.008560108952224255, + -0.07780388742685318, + -0.06634317338466644, + 0.09941860288381577, + -0.010311364196240902, + -0.09696295112371445, + -0.052800457924604416, + 0.06888774782419205, + 0.14631260931491852, + -0.03388986364006996, + -0.05362073704600334, + 0.03783417493104935, + 0.11092883348464966, + 0.07482509315013885, + 0.06419740617275238, + 0.0879727154970169, + 0.11161946505308151, + -0.02705576829612255, + -0.004465590231120586, + 0.05596315488219261, + 0.07429435104131699, + 0.04771411418914795, + -0.014407447539269924, + 0.02334466576576233, + -0.007317695766687393, + -0.011422003619372845, + -0.019164983183145523, + -0.015534501522779465, + -0.027109500020742416, + -0.012050880119204521, + 0.0062237330712378025, + 0.002427445026114583, + 0.042277999222278595, + -0.030984140932559967, + 0.047915127128362656, + 0.059436503797769547, + -0.025418559089303017, + 0.08329557627439499, + 0.034678295254707336, + 0.012928245589137077, + 0.07167655229568481, + -0.10910872370004654, + -0.05550219118595123, + 0.049642592668533325, + 0.001558721880428493, + 0.020475173369050026, + 0.06777223199605942, + 0.0511762760579586, + -0.015133535489439964, + 0.13422654569149017, + 0.048582110553979874, + -0.00784805603325367, + 0.014216885901987553, + -0.08218632638454437, + 0.1341009885072708, + 0.08056965470314026, + -0.035237401723861694, + 0.05655606836080551, + -0.04740045219659805, + 0.04677413031458855, + 0.05319509282708168, + -0.13338381052017212, + -0.08521207422018051, + 0.033410973846912384, + 0.01281578466296196, + -0.024215031415224075, + 0.14557114243507385, + -0.00869741104543209, + 0.04875190928578377, + 0.10435070097446442, + -0.09193342179059982, + -0.06268054246902466, + -0.013657070696353912, + 0.049857206642627716, + -0.09539420157670975, + 0.07522916793823242, + 0.06951335072517395, + -0.012824811972677708, + 0.02431079000234604, + 0.07977151870727539, + -0.004391202703118324, + 0.007424943149089813, + -0.003942327573895454, + -0.030067792162299156, + 0.015791919082403183, + -0.002340142149478197, + -0.008628172799944878, + 0.0364588238298893, + 0.021641982719302177, + 0.05973050743341446, + -0.004062551073729992, + -0.021350668743252754, + -0.14606045186519623, + 0.019084783270955086, + 0.03022613190114498, + 0.08562620729207993, + -0.017911944538354874, + -0.03051462396979332, + -0.04280445724725723, + -0.06004221737384796, + 0.002937659854069352, + 0.0018669666023924947, + 0.08669067174196243, + -0.016913872212171555, + 0.006382003892213106, + 0.11146383732557297, + 0.046541500836610794, + 0.012049530632793903, + -0.02926841750741005, + -0.030022265389561653, + 0.004241586197167635, + 0.057848334312438965, + -0.08068471401929855, + -0.07798247039318085, + -0.0290053877979517, + 0.04081055894494057, + -0.008505836129188538, + 0.08182427287101746, + 0.06039590761065483, + 0.021579179912805557, + 0.014276997186243534, + -0.07375432550907135, + 0.020761828869581223, + -0.07047093659639359, + -0.06523757427930832, + -0.011761642061173916, + -0.015990277752280235, + -0.045896563678979874, + 0.08601028472185135, + 0.028392210602760315, + 0.06888741999864578, + -0.04887698218226433, + -0.05965172126889229, + -0.0852140411734581, + 0.03415220230817795, + 0.05710722133517265, + -0.025758277624845505, + 0.02026914246380329, + 0.056293901056051254, + -0.019123535603284836, + 0.04892539605498314, + 0.06510180234909058, + 0.09337292611598969, + -0.0375477597117424, + 0.02333034574985504, + -0.052902404218912125, + 0.10347604751586914, + 0.08357144892215729, + -0.07872869819402695, + -0.06853903084993362, + -0.03240904584527016, + -0.0754864513874054, + 0.032725293189287186, + -0.014659631997346878, + 0.029350321739912033, + 0.02840963937342167, + -0.004350689705461264, + -0.10283681005239487, + -0.1052875965833664, + 0.07420540601015091, + -0.07010527700185776, + 0.008501279167830944, + -0.09442303329706192, + 0.04686177894473076, + 0.09679373353719711, + 0.040300656110048294, + -0.024278780445456505, + -0.02721174620091915, + 0.033263299614191055, + -0.010030240751802921, + 0.02370413951575756, + 0.07773198187351227, + 0.05175931379199028, + -0.10856864601373672, + -0.016282837837934494, + -0.07674230635166168, + 0.06133342161774635, + -0.03762954846024513, + 0.15692093968391418, + 0.02711891569197178, + -0.048004016280174255, + -0.09299994260072708, + 0.027254121378064156, + -0.020146537572145462, + 0.06552023440599442, + 0.03268613666296005, + 0.07247371971607208, + 0.05437099561095238, + -0.055424656718969345, + 0.10389180481433868, + 0.06420666724443436, + -0.03823890537023544, + -0.07564503699541092, + -0.05463288351893425, + -0.03448047488927841, + 0.05037635564804077, + 0.015081064775586128, + -0.09624598175287247, + -0.016583899036049843, + 0.03790034353733063, + 0.007881008088588715, + 0.06808155030012131, + 0.13471582531929016, + 0.061022914946079254, + -0.11671235412359238 + ] + }, + "p244_125.wav": { + "name": "p244", + "embedding": [ + 0.04512891545891762, + 0.10432637482881546, + -0.026215000078082085, + 0.03385285288095474, + -0.08149534463882446, + 0.10970335453748703, + -0.11565253883600235, + 0.1056872308254242, + -0.06380829960107803, + 0.1443595141172409, + -0.042785510420799255, + 0.11578189581632614, + -0.016190458089113235, + -0.17944610118865967, + -0.03558603301644325, + 0.06630606949329376, + -0.034195397049188614, + -0.005926445126533508, + -0.047937747091054916, + -0.0010083622764796019, + 0.01739398017525673, + 0.021829038858413696, + 0.04105433076620102, + -0.04893742874264717, + 0.07487490028142929, + 0.052493225783109665, + 0.008113069459795952, + 0.04738616198301315, + 0.002095246920362115, + -0.09708696603775024, + -0.06657794117927551, + 0.11366607248783112, + -0.059582456946372986, + 0.0235900841653347, + 0.053876057267189026, + -0.007159947883337736, + 0.010989903472363949, + -0.0587448813021183, + 0.011473600752651691, + 0.021653857082128525, + -0.006518281996250153, + 0.09408535063266754, + 0.03983663022518158, + -0.002927956636995077, + 0.011783753521740437, + 0.016308235004544258, + -0.0052011096850037575, + -0.04499087110161781, + -0.09166138619184494, + 0.16865481436252594, + 0.023754121735692024, + -0.026250839233398438, + -0.07726902514696121, + -0.09046296030282974, + 0.10517049580812454, + -0.005890835542231798, + -0.10882264375686646, + -0.06222473084926605, + 0.06772004067897797, + 0.1498308628797531, + -0.0031964019872248173, + -0.03413783013820648, + -0.009236854501068592, + 0.10852149873971939, + 0.011532392352819443, + 0.10324481129646301, + 0.03358490765094757, + 0.09139684587717056, + 0.019114602357149124, + 0.05334613099694252, + 0.03903999924659729, + 0.059925973415374756, + 0.003664352698251605, + -0.019248846918344498, + 0.034947361797094345, + -0.05856955796480179, + -0.019251830875873566, + 0.015843171626329422, + -0.0069058844819664955, + -0.023239202797412872, + -0.018647603690624237, + 0.005984857678413391, + 0.02566693350672722, + -0.009859294630587101, + -0.03400120139122009, + 0.04397953674197197, + 0.014859405346214771, + -0.01965768076479435, + 0.07944491505622864, + 0.06610117852687836, + -0.010992285795509815, + 0.03727010264992714, + -0.06801246851682663, + -0.10969861596822739, + 0.03757087141275406, + 0.02315947599709034, + 0.01897449977695942, + 0.06112867221236229, + 0.020707352086901665, + -0.01669279672205448, + 0.08805934339761734, + 0.06901668757200241, + 0.013307984918355942, + 0.030067598447203636, + -0.07806509733200073, + 0.13966026902198792, + 0.07341732084751129, + 0.020065249875187874, + 0.06132183223962784, + -0.038206715136766434, + 0.08776731789112091, + 0.07752826064825058, + -0.14298465847969055, + -0.09741400927305222, + -0.0070975469425320625, + -0.024273836985230446, + -0.02258213609457016, + 0.09308410435914993, + -0.024363458156585693, + -0.0012514310656115413, + 0.08733444660902023, + -0.09904124587774277, + -0.05525195598602295, + -0.015873271971940994, + 0.030854692682623863, + -0.0808526873588562, + 0.03413348272442818, + 0.046862296760082245, + -0.04644785448908806, + 0.013428938575088978, + 0.07309228181838989, + 0.003995553124696016, + 0.029969770461320877, + 0.065598264336586, + -0.039192795753479004, + 0.026482343673706055, + -0.026106547564268112, + 0.025038346648216248, + 0.07799410820007324, + 0.03637745976448059, + 0.07396122813224792, + -0.024779651314020157, + -0.0132305808365345, + -0.09724399447441101, + 0.0023832041770219803, + 0.04702654108405113, + 0.047006089240312576, + -0.02175857312977314, + -0.011672073043882847, + -0.03722044825553894, + -0.10271601378917694, + 0.052550312131643295, + 0.00657836627215147, + 0.11014967411756516, + 0.01651615835726261, + 0.005980789661407471, + 0.10929179191589355, + 0.04564369469881058, + -0.014958723448216915, + -0.07665686309337616, + -0.02384403720498085, + 0.03758100047707558, + 0.038161713629961014, + -0.09398920834064484, + -0.04468710348010063, + 0.010997436009347439, + -0.0045196665450930595, + -0.0298407394438982, + 0.046191826462745667, + 0.0697917491197586, + 0.02932918816804886, + 0.06488846242427826, + -0.05145473778247833, + 0.010845218785107136, + -0.06489353626966476, + -0.022748468443751335, + -0.03324192017316818, + -0.06173117458820343, + -0.06745723634958267, + 0.1137159988284111, + 0.025899073109030724, + 0.024418696761131287, + -0.02072727493941784, + -0.03085111640393734, + -0.03956538811326027, + 0.06374966353178024, + 0.037675824016332626, + 0.006032956298440695, + 0.03632340580224991, + 0.028634967282414436, + -0.02249719761312008, + 0.06109248474240303, + 0.09133797883987427, + 0.07837530970573425, + -0.032901983708143234, + 0.012392661534249783, + -0.06136041507124901, + 0.11161164194345474, + 0.09009142965078354, + -0.1054024025797844, + -0.0950327143073082, + -0.04629550501704216, + -0.06075979396700859, + 0.04947635531425476, + -0.048837777227163315, + -0.004198533017188311, + 0.02499806322157383, + -0.01532420702278614, + -0.07993901520967484, + -0.10609419643878937, + 0.09526405483484268, + -0.05893123894929886, + -0.017346439883112907, + -0.05751090124249458, + 0.04680261015892029, + 0.06576312333345413, + 0.06334643810987473, + -0.041471004486083984, + 0.007180421147495508, + 0.07584094256162643, + -0.06248830631375313, + 0.013814223930239677, + 0.0633963942527771, + 0.006562592461705208, + -0.06464602053165436, + 0.02832934632897377, + -0.06338690221309662, + 0.0677010789513588, + -0.06531787663698196, + 0.20250418782234192, + -0.011792201548814774, + -0.05663381516933441, + -0.057102687656879425, + 0.059156037867069244, + -0.0693090632557869, + 0.016006743535399437, + 0.04589393734931946, + 0.060533832758665085, + 0.046223729848861694, + -0.04861221835017204, + 0.11730561405420303, + 0.03099760413169861, + -0.017490530386567116, + -0.05587955191731453, + -0.04201593995094299, + -0.04608694091439247, + 0.06122569739818573, + 0.00919948611408472, + -0.1138974204659462, + 0.018559828400611877, + 0.05176904797554016, + 0.011245728470385075, + 0.07479051500558853, + 0.1446010321378708, + 0.08672527223825455, + -0.07816220819950104 + ] + }, + "p244_142.wav": { + "name": "p244", + "embedding": [ + 0.044091422110795975, + 0.07743866741657257, + -0.008428291417658329, + 0.030143287032842636, + -0.020201601088047028, + 0.08146895468235016, + -0.16609877347946167, + 0.10837343335151672, + -0.054010625928640366, + 0.14748694002628326, + -0.05846453085541725, + 0.08908722549676895, + -0.00979151576757431, + -0.21999913454055786, + -0.022897057235240936, + 0.06719061732292175, + -0.04753673076629639, + -0.022768575698137283, + -0.024456845596432686, + 0.02589966543018818, + 0.031428031623363495, + 0.01232027355581522, + 0.012082988396286964, + -0.009386545047163963, + 0.027116162702441216, + 0.04895694553852081, + -0.0206296406686306, + 0.038302868604660034, + -0.00407725153490901, + -0.012179161421954632, + -0.016930075362324715, + 0.1352418214082718, + -0.06851913034915924, + 0.001655557076446712, + 0.07899977266788483, + 0.0037230250891298056, + -0.04877312481403351, + -0.05199562385678291, + 0.0016954276943579316, + -0.023792948573827744, + -0.07425396889448166, + 0.07345152646303177, + 0.030001258477568626, + 0.009505374357104301, + 0.04755253344774246, + 0.015463468618690968, + -0.012125799432396889, + -0.035624660551548004, + -0.08789891749620438, + 0.11724990606307983, + 0.058107439428567886, + 0.00503843929618597, + -0.06582161784172058, + -0.06505601853132248, + 0.08617187291383743, + 0.015430380590260029, + -0.11312363296747208, + -0.06555827707052231, + 0.09202402830123901, + 0.16443733870983124, + -0.02339477278292179, + -0.019992755725979805, + 0.01177819725126028, + 0.10955788940191269, + 0.05824762210249901, + 0.13660144805908203, + 0.04057910665869713, + 0.10317262262105942, + 0.026862991973757744, + 0.03629329428076744, + 0.08264689147472382, + 0.036499351263046265, + 0.04852892458438873, + -0.047179389744997025, + 0.02811608836054802, + -0.00022103595256339759, + -0.030083760619163513, + -0.0045753479935228825, + -0.014025572687387466, + -0.00016731731011532247, + -0.001117827370762825, + -0.024101480841636658, + 0.0016721455613151193, + 0.03795992210507393, + -0.014634850434958935, + 0.008282522670924664, + 0.06142982468008995, + -0.021815435960888863, + 0.06625853478908539, + 0.06827973574399948, + 0.012328526936471462, + 0.06346876919269562, + -0.0868157371878624, + -0.08818034082651138, + 0.031383052468299866, + 0.006197072099894285, + 0.0005468082381412387, + 0.057138171046972275, + 0.04718642681837082, + -0.0053126877173781395, + 0.08353392779827118, + 0.03018593229353428, + 0.005062393378466368, + 0.046734608709812164, + -0.10961950570344925, + 0.11949074268341064, + 0.045873645693063736, + -0.017947908490896225, + 0.03215749189257622, + -0.050151146948337555, + 0.06887584179639816, + 0.1098480075597763, + -0.13919194042682648, + -0.046134889125823975, + 0.05155736953020096, + -0.024865809828042984, + -0.03445601835846901, + 0.14712075889110565, + 0.0021482466254383326, + -0.015834737569093704, + 0.0877358615398407, + -0.09279146045446396, + -0.06910572201013565, + -0.025697927922010422, + 0.03996589407324791, + -0.1131061464548111, + 0.06024720519781113, + 0.021332452073693275, + -0.008160749450325966, + -0.020695582032203674, + 0.09601693600416183, + -0.015088719315826893, + -0.011547433212399483, + -0.006499287206679583, + -0.018710995092988014, + 0.06689240038394928, + -0.03599360212683678, + 0.03126445412635803, + 0.035963233560323715, + -0.0025377669371664524, + 0.054147783666849136, + -0.0023579730186611414, + -0.01101789902895689, + -0.09605683386325836, + -0.009743058122694492, + 0.05777978524565697, + 0.08672703057527542, + -0.01718573272228241, + -0.00951284822076559, + -0.044255468994379044, + -0.09024734795093536, + 0.05528480187058449, + -0.0391538143157959, + 0.08561825007200241, + 0.04492386803030968, + -0.020393267273902893, + 0.1072118803858757, + 0.006132496986538172, + 0.026425933465361595, + -0.061918579041957855, + -0.009826728142797947, + 0.03627658635377884, + 0.0687282383441925, + -0.11699320375919342, + -0.03933601453900337, + 0.0048781465739011765, + 0.00863227155059576, + -0.0027903656009584665, + 0.012056820094585419, + 0.05353269726037979, + 0.023276688531041145, + 0.018112661316990852, + -0.07971055805683136, + 0.013795309700071812, + -0.10655240714550018, + -0.07264188677072525, + -0.03917001187801361, + -0.048284098505973816, + -0.0007066698744893074, + 0.07883720099925995, + -0.012125194072723389, + 0.003237518249079585, + -0.035836875438690186, + -0.06985735893249512, + -0.08264351636171341, + 0.061692140996456146, + 0.07784304767847061, + -0.01511172205209732, + 0.03541022911667824, + 0.02296164073050022, + -0.050339046865701675, + 0.019817473366856575, + 0.04740717262029648, + 0.13291172683238983, + -0.047311920672655106, + 0.023881183937191963, + -0.07386672496795654, + 0.10570187866687775, + 0.1119840145111084, + -0.08409196883440018, + -0.07879561930894852, + 0.025941869243979454, + -0.044020798057317734, + 0.024145582690835, + -0.06075059622526169, + -0.021853962913155556, + 0.02493392489850521, + -0.03968885540962219, + -0.08674146980047226, + -0.10423794388771057, + 0.08893847465515137, + -0.08463059365749359, + -0.023387346416711807, + -0.08728238940238953, + 0.039996951818466187, + 0.042412009090185165, + 0.030743541195988655, + -0.06090109050273895, + 0.012743172235786915, + 0.054827190935611725, + -0.04240451008081436, + -0.01562053058296442, + 0.05694739520549774, + -0.005967938341200352, + -0.1200098916888237, + -0.02897501550614834, + -0.05907841771841049, + 0.08186513185501099, + -0.07347573339939117, + 0.15074819326400757, + -0.03388827666640282, + -0.06125997006893158, + -0.06807532906532288, + 0.01246599294245243, + 0.019586147740483284, + 0.03979422524571419, + 0.051129817962646484, + 0.08657147735357285, + 0.02677091769874096, + -0.03884980082511902, + 0.11124187707901001, + 0.014219792559742928, + 0.02706090174615383, + -0.053942833095788956, + -0.017855612561106682, + -0.04901871457695961, + 0.028953639790415764, + -0.007471634075045586, + -0.12662649154663086, + 0.017938710749149323, + 0.046976376324892044, + -0.01961124874651432, + 0.028681958094239235, + 0.11557317525148392, + 0.04550383612513542, + -0.10988728702068329 + ] + }, + "p244_071.wav": { + "name": "p244", + "embedding": [ + 0.05807351693511009, + 0.0887608751654625, + -0.018991809338331223, + 0.026218712329864502, + -0.06738467514514923, + 0.06312461942434311, + -0.11771702021360397, + 0.13595294952392578, + -0.044640056788921356, + 0.13572809100151062, + -0.07144707441329956, + 0.12897056341171265, + -0.021063080057501793, + -0.17505864799022675, + -0.035056471824645996, + 0.051293086260557175, + -0.055298082530498505, + -0.036122217774391174, + -0.04738318920135498, + -0.03124941885471344, + 0.036118894815444946, + 0.03986750915646553, + 0.030062025412917137, + 0.008247941732406616, + 0.030315328389406204, + 0.07848373055458069, + -0.0013130693696439266, + 0.040251947939395905, + 0.011462969705462456, + -0.07026667892932892, + -0.0469355434179306, + 0.09271174669265747, + -0.05489548295736313, + 0.00905666220933199, + 0.04792410135269165, + -0.011996923014521599, + 0.0028056292794644833, + -0.061709921807050705, + -0.02898849919438362, + 0.012501413002610207, + -0.044021159410476685, + 0.07473638653755188, + 0.03001815639436245, + -0.02070397138595581, + 0.030848098918795586, + 0.0298746507614851, + -0.008098583668470383, + -0.0543169341981411, + -0.10264801234006882, + 0.16388052701950073, + 0.06808345019817352, + -0.0044543808326125145, + -0.06020621582865715, + -0.06678085029125214, + 0.107156902551651, + -0.021159198135137558, + -0.11694003641605377, + -0.03393065929412842, + 0.07648836076259613, + 0.1490037739276886, + -0.04737032949924469, + -0.0404522530734539, + 0.027859574183821678, + 0.11551656574010849, + 0.05921501666307449, + 0.08507843315601349, + 0.08967580646276474, + 0.10563677549362183, + -0.02200581505894661, + 0.017706282436847687, + 0.06513924896717072, + 0.07775908708572388, + 0.07296648621559143, + -0.006723630242049694, + 0.03007356822490692, + -0.0008583361050114036, + -0.013761173002421856, + -0.004629965405911207, + -0.02577507123351097, + -0.012327159754931927, + -0.01200829353183508, + 0.009919436648488045, + 0.02142050862312317, + 0.015394649468362331, + -0.024856513366103172, + 0.07157839834690094, + 0.03046455793082714, + -0.012260248884558678, + 0.06340380758047104, + 0.025663509964942932, + 0.001453674165531993, + 0.06762465089559555, + -0.08565789461135864, + -0.08278287947177887, + 0.03236193209886551, + -0.0008894894272089005, + 0.02836447022855282, + 0.07022207230329514, + 0.048096250742673874, + -0.01548395212739706, + 0.12118487805128098, + 0.055480197072029114, + -0.00924451369792223, + 0.0221734456717968, + -0.09177523851394653, + 0.12997305393218994, + 0.0964130312204361, + -0.030925147235393524, + 0.04553816840052605, + -0.04472580552101135, + 0.08717553317546844, + 0.06115412712097168, + -0.14649495482444763, + -0.07435113191604614, + 0.020150555297732353, + 0.006237914320081472, + -0.015351386740803719, + 0.10890376567840576, + -0.025419116020202637, + 0.03974146023392677, + 0.11107337474822998, + -0.08194974064826965, + -0.04027193784713745, + -0.019799618050456047, + 0.04232291132211685, + -0.0882759541273117, + 0.056093111634254456, + 0.05033014714717865, + -0.00853983499109745, + 0.018487893044948578, + 0.08929496258497238, + -0.01683453470468521, + -0.018333125859498978, + 0.01930348202586174, + -0.04238429293036461, + 0.00946978572756052, + -0.015492500737309456, + -0.0059771365486085415, + 0.04728580266237259, + 0.04450833797454834, + 0.03942327946424484, + -0.007866519503295422, + -0.0298530962318182, + -0.11994849890470505, + 0.028765495866537094, + 0.027658436447381973, + 0.07270434498786926, + -0.00797295942902565, + -0.015379039570689201, + -0.03664929419755936, + -0.06578201055526733, + 0.015182415023446083, + -0.0008842225070111454, + 0.06897900998592377, + -0.030236070975661278, + 0.007262660190463066, + 0.09760522097349167, + 0.03429961949586868, + -0.004371834918856621, + -0.049546971917152405, + -0.03016752004623413, + 0.01798054948449135, + 0.056147199124097824, + -0.07348093390464783, + -0.07664106786251068, + -0.0060156118124723434, + 0.031485747545957565, + -0.02355564385652542, + 0.06153585761785507, + 0.0442175529897213, + 0.01591101847589016, + 0.027632173150777817, + -0.058986809104681015, + 0.008831396698951721, + -0.10336852073669434, + -0.06577182561159134, + -0.007753692101687193, + -0.02752024494111538, + -0.02377166412770748, + 0.07231250405311584, + 0.01875799521803856, + 0.05377378687262535, + -0.02304949425160885, + -0.07208409905433655, + -0.0737532526254654, + 0.05691802501678467, + 0.06316342949867249, + 0.0032272636890411377, + 0.03649712726473808, + 0.06256909668445587, + -0.01961454749107361, + 0.061703138053417206, + 0.06847445666790009, + 0.10836170613765717, + -0.021329190582036972, + 0.024009298533201218, + -0.06080351397395134, + 0.08838444948196411, + 0.06952297687530518, + -0.08604490756988525, + -0.08216174691915512, + -0.03451235219836235, + -0.06587493419647217, + 0.045420825481414795, + -0.019218463450670242, + 0.010467138141393661, + 0.028323298320174217, + 0.007349638268351555, + -0.09139257669448853, + -0.08464118093252182, + 0.0891350656747818, + -0.063229501247406, + -0.004910801537334919, + -0.08516650646924973, + 0.04788077995181084, + 0.10579688847064972, + 0.03687785565853119, + -0.01713266223669052, + -0.00036536407424136996, + 0.04605476185679436, + -0.03225358948111534, + 0.004635300952941179, + 0.04822668433189392, + 0.03494442254304886, + -0.10395854711532593, + -0.004747320432215929, + -0.07803529500961304, + 0.0534597747027874, + -0.04090527817606926, + 0.15619845688343048, + 0.005727827083319426, + -0.043876927345991135, + -0.07576988637447357, + 0.04942955821752548, + -0.026885464787483215, + 0.05324612185359001, + 0.046804629266262054, + 0.06528818607330322, + 0.041673608124256134, + -0.06905834376811981, + 0.11932535469532013, + 0.041629157960414886, + -0.04979165643453598, + -0.06603531539440155, + -0.05023183673620224, + -0.04068956524133682, + 0.019361453130841255, + 0.015713181346654892, + -0.0864185094833374, + -0.019584305584430695, + 0.020179200917482376, + -0.014209382236003876, + 0.06364451348781586, + 0.14248047769069672, + 0.06541594862937927, + -0.106376051902771 + ] + }, + "p244_063.wav": { + "name": "p244", + "embedding": [ + 0.03105643019080162, + 0.08554035425186157, + 0.02433938905596733, + 0.019092461094260216, + -0.0036414898931980133, + -0.01012413576245308, + -0.029033754020929337, + 0.04582410305738449, + 0.06644009798765182, + 0.02422577328979969, + -0.08776270598173141, + 0.0483083538711071, + -0.056201156228780746, + -0.11252660304307938, + 0.02410043217241764, + 0.021764587610960007, + -0.04266195371747017, + 0.002342715859413147, + -0.040058959275484085, + -0.022652525454759598, + -0.022885702550411224, + -0.020170196890830994, + 0.030278079211711884, + -0.021206647157669067, + -0.036231908947229385, + 0.027360834181308746, + -0.0344056710600853, + -0.011803285218775272, + -0.018552079796791077, + 0.009720159694552422, + -0.001115383580327034, + 0.023647086694836617, + -0.00857304222881794, + -0.013584845699369907, + 0.009184879250824451, + -0.02673809602856636, + -0.009676256217062473, + -0.04102008789777756, + -0.06477876752614975, + 0.04573163762688637, + -0.0870649516582489, + 0.03277049958705902, + 0.046226851642131805, + -0.08387885242700577, + 0.08200499415397644, + 0.015560347586870193, + -0.0662885382771492, + 0.0077109914273023605, + -0.10351966321468353, + 0.0825604498386383, + 0.02445063367486, + 0.012079034931957722, + -0.0478934645652771, + 0.032485127449035645, + 0.06814618408679962, + -0.009565731510519981, + -0.060235340148210526, + -0.03071798011660576, + 0.04650052636861801, + 0.012404244393110275, + 0.010495691560208797, + -0.0052714878693223, + -0.01747097261250019, + 0.010691734030842781, + 0.07982178032398224, + 0.030011223629117012, + 0.0594479963183403, + 0.10784439742565155, + -0.03956669941544533, + 0.02430770732462406, + 0.05397195741534233, + -0.01737232506275177, + 0.037402622401714325, + -0.014770830981433392, + -0.00738118588924408, + 0.000979708507657051, + -0.014488596469163895, + -0.029111109673976898, + 0.01994919404387474, + -0.013119641691446304, + 0.0511932335793972, + -0.02710065245628357, + 0.023998023942112923, + 0.010849249549210072, + -0.04423877224326134, + -0.009255893528461456, + 0.10118195414543152, + 0.06053862348198891, + 0.04538895934820175, + 0.04245872050523758, + -0.030890226364135742, + 0.08711840212345123, + -0.05158989876508713, + -0.07107601314783096, + -0.03224097192287445, + -0.022391056641936302, + -0.0006772801280021667, + 0.036936912685632706, + 0.03606313467025757, + -0.018891457468271255, + 0.08996282517910004, + -0.0126413032412529, + 0.004430259577929974, + 0.021129967644810677, + -0.05228395760059357, + 0.014107000082731247, + 0.049310408532619476, + -0.028827577829360962, + 0.02147824689745903, + 0.03756196051836014, + 0.07700464129447937, + 0.0568147674202919, + -0.011988703161478043, + 0.04279327020049095, + 0.012430463917553425, + 0.020698750391602516, + -0.0008149035274982452, + 0.10153654217720032, + 0.00040434766560792923, + 0.031080074608325958, + 0.14214791357517242, + -0.05370105803012848, + 0.02049648016691208, + 0.043775737285614014, + -0.031228037551045418, + -0.014731254428625107, + 0.040111713111400604, + 0.014631280675530434, + -0.0007974607869982719, + 0.013930161483585835, + 0.02547520026564598, + 0.019608493894338608, + 0.0004660021513700485, + -0.07362757623195648, + 0.008002600632607937, + 0.03063669241964817, + -0.006437936797738075, + -0.008299417793750763, + 0.04793029651045799, + 0.04554450511932373, + -0.0013055391609668732, + 0.027068475261330605, + -0.04203086346387863, + -0.0392727367579937, + 0.0451681949198246, + 0.004858033731579781, + 0.01825796253979206, + 0.037626806646585464, + -0.008093742653727531, + -0.0695081353187561, + -0.00869007408618927, + 0.07364516705274582, + -0.04527127742767334, + 0.05107257515192032, + 0.025569718331098557, + -0.03791782259941101, + 0.04115404188632965, + 0.024648400023579597, + 0.009502576664090157, + -0.03840293735265732, + -0.11246615648269653, + -0.017843477427959442, + 0.03647778928279877, + -0.09027460217475891, + -0.029078323394060135, + -0.06343092769384384, + -0.01789630390703678, + 0.01277280692011118, + -0.015472803264856339, + 0.06734797358512878, + -0.021008610725402832, + -0.03386368229985237, + -0.0638267919421196, + 0.015611624345183372, + -0.003619130700826645, + -0.09523309022188187, + 0.039222851395606995, + 0.009249047376215458, + 0.035757191479206085, + 0.054674141108989716, + -0.03741035610437393, + -0.008628038689494133, + -0.045913130044937134, + -0.06450282782316208, + 0.019198831170797348, + 0.037115760147571564, + -0.007926956750452518, + -0.012477781623601913, + 0.055236831307411194, + 0.06221051514148712, + -0.057778459042310715, + 0.018592093139886856, + -0.01754257269203663, + 0.06259797513484955, + -0.045437343418598175, + 0.010842733085155487, + 0.04513061046600342, + 0.04570592939853668, + 0.047213684767484665, + -0.030376357957720757, + -0.09519802778959274, + -0.04083241522312164, + -0.02832810766994953, + 0.014120924286544323, + 0.002846464514732361, + -0.012063547968864441, + 0.022236157208681107, + 0.0012738360092043877, + -0.018109116703271866, + -0.10475285351276398, + -0.015032557770609856, + 0.010158160701394081, + -0.011292430572211742, + -0.06401592493057251, + 0.00038685090839862823, + -0.02081780880689621, + 0.03182196617126465, + -0.021548328921198845, + 0.04672554135322571, + 0.015559805557131767, + 0.00895227026194334, + -0.02360260672867298, + 0.014144625514745712, + 0.05879434943199158, + 0.02050899714231491, + -0.060546405613422394, + -0.05004870146512985, + 0.058372870087623596, + 0.039183273911476135, + 0.0634753406047821, + 0.0581124909222126, + 0.024736538529396057, + -0.01376645639538765, + 0.03098839521408081, + -0.01460226345807314, + 0.027210760861635208, + 0.018743272870779037, + 0.03199074789881706, + 0.04323304444551468, + -0.008895537815988064, + 0.07203303277492523, + 0.03568592295050621, + -0.0032968265004456043, + -0.001707201823592186, + 0.018686160445213318, + -0.09120447933673859, + -0.04628748074173927, + 0.017872925847768784, + -0.045394644141197205, + 0.005250438116490841, + 0.015030574053525925, + 0.05049777776002884, + 0.003858765121549368, + 0.07143180072307587, + 0.04214390367269516, + -0.0038417577743530273 + ] + }, + "p244_013.wav": { + "name": "p244", + "embedding": [ + 0.04180122911930084, + 0.09214162826538086, + -0.023953890427947044, + 0.033022597432136536, + -0.05570778250694275, + 0.062306858599185944, + -0.12841181457042694, + 0.15746766328811646, + -0.02411716803908348, + 0.13524729013442993, + -0.06339174509048462, + 0.12076590955257416, + -0.041479554027318954, + -0.15628328919410706, + 0.0033186450600624084, + 0.05365518853068352, + -0.0064680688083171844, + -0.02130661904811859, + -0.024971408769488335, + -0.01502863597124815, + 0.027534110471606255, + 0.022711116820573807, + 0.011029191315174103, + -0.006697091739624739, + 0.03608196973800659, + 0.06516958773136139, + -0.018898561596870422, + 0.029230449348688126, + -0.005271849688142538, + -0.05269036814570427, + -0.027185529470443726, + 0.09689103066921234, + -0.07007506489753723, + 0.014870780520141125, + 0.05317511409521103, + -0.021288137882947922, + -0.031244633719325066, + -0.04405716806650162, + 0.0020173387601971626, + -0.02095952257514, + -0.049467217177152634, + 0.07526838034391403, + 0.01684637740254402, + -0.012001371011137962, + 0.03228865563869476, + 0.027417033910751343, + -0.010017581284046173, + -0.026068396866321564, + -0.10345882177352905, + 0.1320187747478485, + 0.054364752024412155, + 0.010060951113700867, + -0.09031840413808823, + -0.050685565918684006, + 0.088133804500103, + -0.005484725348651409, + -0.09754212200641632, + -0.04370247572660446, + 0.07120070606470108, + 0.13908639550209045, + -0.02591714821755886, + -0.037886153906583786, + 0.019719060510396957, + 0.09992881864309311, + 0.07219521701335907, + 0.08328386396169662, + 0.07846216857433319, + 0.12435492128133774, + -0.019095713272690773, + 0.016601845622062683, + 0.04097136855125427, + 0.060054175555706024, + 0.06731104850769043, + -0.0005042863776907325, + 0.009632173925638199, + -0.016460828483104706, + -0.007587812375277281, + -0.019918402656912804, + -0.03549594432115555, + -0.04073633253574371, + -0.010511688888072968, + 0.011776662431657314, + 0.02103639952838421, + 0.035723209381103516, + -0.014737311750650406, + 0.05293334648013115, + 0.07555471360683441, + -0.03248133510351181, + 0.07212894409894943, + 0.019678011536598206, + -0.0035595810040831566, + 0.06935756653547287, + -0.12128299474716187, + -0.06480127573013306, + 0.03666117787361145, + -0.004663382191210985, + 0.02658022567629814, + 0.07021257281303406, + 0.04215478524565697, + -0.0014582121511921287, + 0.1214357241988182, + 0.03208373486995697, + 0.007184488233178854, + 0.02348063886165619, + -0.08203645050525665, + 0.14015400409698486, + 0.07637452334165573, + -0.03448845446109772, + 0.052705369889736176, + -0.050920527428388596, + 0.052040498703718185, + 0.05532774329185486, + -0.1277979612350464, + -0.06570499390363693, + 0.007321244105696678, + 0.0015962962061166763, + -0.036100488156080246, + 0.1262112259864807, + 0.004486396908760071, + 0.04735985025763512, + 0.10633707046508789, + -0.10624785721302032, + -0.058018118143081665, + -0.005772040691226721, + 0.04285059869289398, + -0.07732734829187393, + 0.06460559368133545, + 0.05450254678726196, + -0.006709379609674215, + 0.03220319747924805, + 0.07729875296354294, + 0.002653898438438773, + 0.007862737402319908, + 0.017341790720820427, + -0.0407961905002594, + 0.009697271510958672, + -0.020843302831053734, + -0.0047683995217084885, + 0.021697912365198135, + 0.022755347192287445, + 0.07159145176410675, + -0.018902845680713654, + -0.0014484189450740814, + -0.11145545542240143, + 0.008788513019680977, + 0.044541746377944946, + 0.0721859261393547, + -0.0292716845870018, + -0.020181458443403244, + -0.02958027832210064, + -0.06776988506317139, + 0.008942861109972, + -0.0021678556222468615, + 0.06922096014022827, + -0.017078066244721413, + 0.006485714577138424, + 0.10922037065029144, + 0.047116126865148544, + 0.008538180962204933, + -0.07208286225795746, + -0.0340455062687397, + -0.0003438859130255878, + 0.058403000235557556, + -0.09053274244070053, + -0.07285749912261963, + -0.01625024899840355, + 0.028661159798502922, + -0.03577844426035881, + 0.07629077881574631, + 0.05391363427042961, + 0.036884114146232605, + 0.013693151995539665, + -0.04572390764951706, + 0.010387314483523369, + -0.07715493440628052, + -0.07679317891597748, + -0.0039046690799295902, + -0.016595548018813133, + -0.03808900713920593, + 0.07443471252918243, + 0.029606353491544724, + 0.06747093796730042, + -0.027109559625387192, + -0.049743857234716415, + -0.09094046801328659, + 0.043254464864730835, + 0.031138062477111816, + -0.03484842926263809, + 0.03799951449036598, + 0.057091549038887024, + -0.04655960202217102, + 0.03534773737192154, + 0.07292725145816803, + 0.0973801463842392, + -0.035579096525907516, + 0.020460793748497963, + -0.0753767341375351, + 0.08986330032348633, + 0.1107315644621849, + -0.07787105441093445, + -0.08640953153371811, + -0.039389558136463165, + -0.0650918260216713, + 0.027072690427303314, + -0.039555057883262634, + 0.004868770018219948, + 0.030602451413869858, + -0.00993249099701643, + -0.09708236902952194, + -0.09578721225261688, + 0.08067167550325394, + -0.07769184559583664, + 0.005996673833578825, + -0.0971374660730362, + 0.04981131851673126, + 0.06969193369150162, + 0.0295806135982275, + -0.034254394471645355, + -0.017549563199281693, + 0.05788266286253929, + -0.01689348928630352, + 0.02332819625735283, + 0.07809992879629135, + 0.0437905415892601, + -0.09219998121261597, + -0.013689766637980938, + -0.052776336669921875, + 0.0472794733941555, + -0.031283989548683167, + 0.15503309667110443, + 0.011733030900359154, + -0.04290162771940231, + -0.07679995894432068, + 0.03731664642691612, + -0.0027612466365098953, + 0.04682622104883194, + 0.02213919721543789, + 0.06984446942806244, + 0.04407970607280731, + -0.05545263737440109, + 0.12399067729711533, + 0.03447185084223747, + -0.03532817214727402, + -0.06159738823771477, + -0.07154671847820282, + -0.056981466710567474, + 0.02826017700135708, + -0.0011807818664237857, + -0.10187993943691254, + -0.015239959582686424, + 0.02550121769309044, + 0.008778824470937252, + 0.05148731917142868, + 0.1295362412929535, + 0.062025539577007294, + -0.10440461337566376 + ] + }, + "p244_422.wav": { + "name": "p244", + "embedding": [ + 0.04541833698749542, + 0.08458312600851059, + -0.023454783484339714, + 0.034486714750528336, + -0.06569331139326096, + 0.08166154474020004, + -0.10306773334741592, + 0.11541111022233963, + -0.06664577126502991, + 0.1469326764345169, + -0.0744980201125145, + 0.1275518238544464, + -0.02101374790072441, + -0.17484790086746216, + -0.03702579811215401, + 0.046783193945884705, + -0.04963590204715729, + -0.020609663799405098, + -0.05518731102347374, + -0.008572538383305073, + 0.05503934249281883, + 0.04530587047338486, + 0.03069922886788845, + -0.02644139900803566, + 0.029758132994174957, + 0.05602380633354187, + 0.01148210372775793, + 0.0443878248333931, + 0.021111946552991867, + -0.09415147453546524, + -0.05215606093406677, + 0.10799876600503922, + -0.042590439319610596, + 0.024378152564167976, + 0.04700938239693642, + 0.006542799063026905, + 0.007808975875377655, + -0.06589578837156296, + -0.02965022251009941, + 0.014180677011609077, + -0.044283993542194366, + 0.06340132653713226, + 0.018022162839770317, + -0.016951337456703186, + 0.03702714294195175, + 0.005523263942450285, + -0.026546133682131767, + -0.03932574391365051, + -0.09015718102455139, + 0.1703866869211197, + 0.05058049410581589, + -0.0029137905221432447, + -0.0669962540268898, + -0.09811115264892578, + 0.1144866794347763, + 0.0038611034397035837, + -0.13156317174434662, + -0.030452024191617966, + 0.06977283954620361, + 0.1672186404466629, + -0.019561922177672386, + -0.04077700898051262, + 0.020243890583515167, + 0.10603959113359451, + 0.033650953322649, + 0.091997429728508, + 0.07575692236423492, + 0.09621387720108032, + 0.0177758801728487, + 0.03607472777366638, + 0.060398396104574203, + 0.08784779906272888, + 0.05488348379731178, + -0.015069113112986088, + 0.03863956034183502, + 8.72766540851444e-05, + -0.02677016332745552, + 0.012962518259882927, + -0.028015250340104103, + -0.015588689595460892, + -0.005776535719633102, + 0.013448293320834637, + 0.030180932953953743, + 0.00013139439397491515, + -0.030962733551859856, + 0.056462615728378296, + 0.02322574146091938, + -0.012342063710093498, + 0.05526026338338852, + 0.046231746673583984, + 0.0170885156840086, + 0.059908606112003326, + -0.07249534130096436, + -0.12434734404087067, + 0.0189268309623003, + 0.012780689634382725, + 0.02083045430481434, + 0.06770552694797516, + 0.039627399295568466, + -0.01924307458102703, + 0.10678678005933762, + 0.04480630159378052, + 0.004858614411205053, + 0.026508526876568794, + -0.09574019908905029, + 0.10585805773735046, + 0.10635103285312653, + -0.00851711817085743, + 0.037962574511766434, + -0.05263345688581467, + 0.10930723696947098, + 0.07997693121433258, + -0.14693857729434967, + -0.09290163964033127, + 0.018383167684078217, + -0.00992563832551241, + -0.0005949775222688913, + 0.11755628883838654, + -0.018640587106347084, + 0.02285652421414852, + 0.10849317163228989, + -0.1019386574625969, + -0.04690127819776535, + -0.03197425231337547, + 0.038750652223825455, + -0.0705902948975563, + 0.06172307953238487, + 0.02591230720281601, + -0.012785526923835278, + -0.003375417785719037, + 0.07257199287414551, + -0.03204205259680748, + 0.016749585047364235, + 0.013025358319282532, + -0.05999693647027016, + 0.024329418316483498, + -0.04753658547997475, + -0.004451957996934652, + 0.07646813988685608, + 0.04985387995839119, + 0.05346887931227684, + -0.014890183694660664, + -0.03708735108375549, + -0.11680256575345993, + 0.02105340175330639, + 0.0380379743874073, + 0.04715924710035324, + -0.011000190861523151, + -0.01658296398818493, + -0.029534200206398964, + -0.08115171641111374, + 0.04553832486271858, + -0.016616538166999817, + 0.09122822433710098, + 0.0007307507330551744, + 0.0025862623006105423, + 0.09746529906988144, + 0.01971001923084259, + -0.011201451532542706, + -0.04757167771458626, + -0.05075792968273163, + 0.01659035123884678, + 0.04615657031536102, + -0.09459192305803299, + -0.06831562519073486, + -0.006062419153749943, + 0.005153947044163942, + -0.02177676372230053, + 0.03420368582010269, + 0.05226865038275719, + 0.01881447620689869, + 0.050769686698913574, + -0.06105195730924606, + 0.004163816571235657, + -0.12745454907417297, + -0.06377451866865158, + -0.01025293581187725, + -0.055922988802194595, + -0.008037387393414974, + 0.08714110404253006, + 0.010349174961447716, + 0.014007600955665112, + -0.019033897668123245, + -0.06697788834571838, + -0.06847860664129257, + 0.06912989914417267, + 0.054943978786468506, + 0.026518283411860466, + 0.050358060747385025, + 0.0540132150053978, + -0.01333160325884819, + 0.06103567034006119, + 0.06090788170695305, + 0.10781397670507431, + -0.008715350180864334, + 0.015866965055465698, + -0.07559799402952194, + 0.11775265634059906, + 0.08472425490617752, + -0.07624869793653488, + -0.10165652632713318, + -0.040690235793590546, + -0.07324263453483582, + 0.061560120433568954, + -0.0384230874478817, + -0.0031766362953931093, + 0.026019444689154625, + -0.0035079438239336014, + -0.10405293107032776, + -0.07224126160144806, + 0.09929147362709045, + -0.052750762552022934, + -0.030151432380080223, + -0.0856558158993721, + 0.0414586067199707, + 0.09855987131595612, + 0.043341271579265594, + -0.03213178738951683, + 0.01844930462539196, + 0.07316546142101288, + -0.06688538193702698, + 0.00011240405001444742, + 0.03938597813248634, + 0.006907101254910231, + -0.0756271556019783, + -0.001042670919559896, + -0.0773075670003891, + 0.05040000006556511, + -0.07534458488225937, + 0.15776090323925018, + -0.02002742886543274, + -0.06325960159301758, + -0.07376483827829361, + 0.07833678275346756, + -0.019484220072627068, + 0.03947871923446655, + 0.05043086037039757, + 0.0736052617430687, + 0.03817128762602806, + -0.08851241320371628, + 0.11513213813304901, + 0.03098997473716736, + -0.02461356669664383, + -0.0550229586660862, + -0.04713433235883713, + -0.039751727133989334, + 0.019792353734374046, + -0.003768391441553831, + -0.07755888998508453, + 0.004410837776958942, + 0.022804660722613335, + 0.0012865568278357387, + 0.052790626883506775, + 0.13204078376293182, + 0.055120617151260376, + -0.09807848185300827 + ] + }, + "p244_349.wav": { + "name": "p244", + "embedding": [ + 0.08540891110897064, + 0.058250218629837036, + -0.012711707502603531, + 0.010913546197116375, + -0.02710677497088909, + 0.047694385051727295, + -0.124262735247612, + 0.09863723814487457, + 0.014355293475091457, + 0.10110175609588623, + -0.09421265125274658, + 0.08098426461219788, + 0.0105329230427742, + -0.13205063343048096, + -0.01683698408305645, + 0.02207673154771328, + -0.029234804213047028, + -0.011948125436902046, + -0.04459882900118828, + -0.02646157145500183, + 0.026781944558024406, + 0.05505087971687317, + 0.02969173714518547, + -0.028447303920984268, + 0.011826466768980026, + 0.047629959881305695, + 0.017836060374975204, + 0.030722439289093018, + 0.014373427256941795, + -0.019731616601347923, + -0.010528886690735817, + 0.09963102638721466, + -0.04415366053581238, + -0.001232187612913549, + 0.039728373289108276, + 0.012414194643497467, + 0.009998729452490807, + -0.08705490082502365, + -0.01833634451031685, + 0.02830887958407402, + -0.028729084879159927, + 0.08252543210983276, + 0.05862324684858322, + -0.022307252511382103, + 0.016683407127857208, + 0.03279050439596176, + -0.002284369198605418, + -0.05492330715060234, + -0.09989649057388306, + 0.18919336795806885, + 0.04894007369875908, + 0.009525242261588573, + -0.08266939967870712, + -0.028124278411269188, + 0.06982710212469101, + -0.01275735255330801, + -0.0371808260679245, + -0.02138627879321575, + 0.041986849159002304, + 0.1095627099275589, + -0.01373211294412613, + -0.056958239525556564, + 0.021656101569533348, + 0.08172081410884857, + 0.017425764352083206, + 0.04288431629538536, + 0.09412529319524765, + 0.11123912781476974, + -0.02966512367129326, + 0.020743966102600098, + 0.058004822582006454, + 0.06339043378829956, + 0.06896809488534927, + -0.015414141118526459, + 0.052423786371946335, + -0.011913759633898735, + -0.03395117074251175, + 0.0209461972117424, + -0.025050632655620575, + -0.03093639388680458, + 0.039338916540145874, + -0.007561462931334972, + 0.029064171016216278, + 0.057590946555137634, + -0.08605705201625824, + 0.03638822212815285, + 0.017086384817957878, + 0.011760610155761242, + 0.06750627607107162, + 0.017311399802565575, + 0.02671937644481659, + 0.030181407928466797, + -0.06563965976238251, + -0.0993516594171524, + 0.04442785307765007, + -0.004955397453159094, + 0.04499300569295883, + 0.04858509823679924, + 0.042385734617710114, + -0.025584038347005844, + 0.10022928565740585, + 0.03266632556915283, + -0.02193629741668701, + 0.0061015053652226925, + -0.06473364681005478, + 0.11887188255786896, + 0.12711608409881592, + -0.0025452065747231245, + 0.021680917590856552, + -0.059343963861465454, + 0.05260802060365677, + 0.03638646379113197, + -0.11722113192081451, + -0.04973914474248886, + 0.03135228902101517, + 0.040642909705638885, + 0.03446685150265694, + 0.10699605196714401, + -0.015008322894573212, + 0.030230766162276268, + 0.06898210942745209, + -0.07640878856182098, + -0.030434798449277878, + 0.0009467800846323371, + 0.0144145917147398, + -0.06574729084968567, + 0.01355134230107069, + 0.02871314063668251, + -0.011575380340218544, + -0.03486074507236481, + 0.07009276002645493, + -0.007925139740109444, + 0.0034914433490484953, + -0.02545424923300743, + 0.022998027503490448, + 0.06354846805334091, + -0.004102764185518026, + -0.024549957364797592, + 0.024519838392734528, + 0.042749207466840744, + 0.03245797008275986, + 0.03332022204995155, + -0.0439610593020916, + -0.13172119855880737, + 0.0188288651406765, + 0.0338139608502388, + 0.05362704396247864, + -0.03647772967815399, + -0.04939907789230347, + -0.052901264280080795, + -0.049329664558172226, + 0.02882273867726326, + -0.00579820154234767, + 0.03838112950325012, + 0.032717250287532806, + -0.029096631333231926, + 0.09640783071517944, + -0.008007340133190155, + -0.0013703161384910345, + -0.02021518163383007, + -0.015804030001163483, + 0.03113214671611786, + 0.04158685728907585, + -0.047837287187576294, + -0.0662064403295517, + 0.001580905169248581, + -0.003128214506432414, + -0.022414717823266983, + -0.011353373527526855, + 0.03561578691005707, + -0.01849271170794964, + 0.028660621494054794, + -0.09624510258436203, + 0.00881007220596075, + -0.11597937345504761, + -0.04871399328112602, + 0.013783697038888931, + -0.0026244446635246277, + 0.009489571675658226, + 0.07479843497276306, + -0.0009749364107847214, + 0.04950837418437004, + -0.04377108812332153, + -0.06294356286525726, + -0.02207951806485653, + 0.06318537890911102, + 0.0710412859916687, + -0.007000393234193325, + 0.03631216287612915, + 0.04741024971008301, + 0.019181789830327034, + 0.038925912231206894, + 0.06555253267288208, + 0.08878957480192184, + -0.018117303028702736, + -0.016201388090848923, + -0.014072326943278313, + 0.11503031104803085, + 0.0418236069381237, + -0.05530969426035881, + -0.05751148983836174, + -0.015735020861029625, + -0.0547705814242363, + 0.02074793539941311, + -0.0044256290420889854, + 0.020954011008143425, + 0.02769204042851925, + 0.005833758972585201, + -0.08535482734441757, + -0.05664476007223129, + 0.03385096788406372, + -0.03923582285642624, + -0.009810577146708965, + -0.07013048976659775, + 0.04954316467046738, + 0.0873485654592514, + 0.04243951290845871, + -0.02536085806787014, + -0.027801496908068657, + -0.013402402400970459, + -0.06600793451070786, + -0.05737914890050888, + -0.01806335151195526, + 0.03436524048447609, + -0.10731378197669983, + 0.016827620565891266, + -0.053686272352933884, + 0.04782935231924057, + -0.04589269682765007, + 0.10324844717979431, + 0.017581896856427193, + -0.054719746112823486, + -0.06637399643659592, + 0.025925684720277786, + -0.0315590426325798, + 0.04078938066959381, + 0.05448117107152939, + -0.009613792411983013, + 0.02574933134019375, + -0.08420148491859436, + 0.09530393779277802, + 0.03864520788192749, + -0.03345613181591034, + -0.06460580229759216, + -0.028467323631048203, + -0.020778222009539604, + 0.03040323406457901, + 0.01706008054316044, + -0.04301028698682785, + -0.003909021615982056, + 0.02198522910475731, + -0.02423027902841568, + 0.0343119315803051, + 0.09058769047260284, + 0.04472474008798599, + -0.096591055393219 + ] + }, + "p244_298.wav": { + "name": "p244", + "embedding": [ + 0.0783153623342514, + 0.04486734792590141, + -0.03558306023478508, + 0.022604607045650482, + -0.009468507021665573, + 0.017579689621925354, + -0.1448608785867691, + 0.09454167634248734, + -0.010854416526854038, + 0.09866137057542801, + -0.08153223991394043, + 0.07843281328678131, + 0.005925238132476807, + -0.1220955103635788, + -0.022552667185664177, + 0.04597381874918938, + -0.003340328112244606, + -0.0003471421077847481, + -0.05397111549973488, + 0.002467063721269369, + 0.013333065435290337, + 0.05771683529019356, + 0.02660403586924076, + -0.044326797127723694, + 0.024812573567032814, + 0.034753669053316116, + -0.0035345316864550114, + 0.015890037640929222, + -0.004101975355297327, + 0.02681456133723259, + 0.03311733528971672, + 0.10977243632078171, + -0.02149936929345131, + -0.0034764958545565605, + 0.03331802785396576, + 0.03492150083184242, + -0.017748737707734108, + -0.10053358227014542, + -0.006926415022462606, + -0.01801607757806778, + -0.0489988848567009, + 0.0686577633023262, + 0.05895029753446579, + -0.02180906943976879, + 0.026191536337137222, + -0.006195317953824997, + -0.020656749606132507, + -0.06300091743469238, + -0.11293397098779678, + 0.1733628511428833, + 0.010862482711672783, + 0.061366863548755646, + -0.12394580990076065, + -0.013097794726490974, + 0.058895308524370193, + -0.003234550356864929, + -0.035752613097429276, + -0.07516436278820038, + 0.041185539215803146, + 0.15332958102226257, + -0.00027687568217515945, + -0.04494452476501465, + 0.030546151101589203, + 0.09159915149211884, + 0.0491509884595871, + 0.04296111315488815, + 0.10902520269155502, + 0.09630227833986282, + 0.009345638565719128, + 0.04124707728624344, + 0.0423772856593132, + 0.038456812500953674, + 0.02613762952387333, + -0.025760576128959656, + 0.02131805010139942, + -0.0170186348259449, + -0.04316383972764015, + 0.006306009367108345, + -0.020465513691306114, + -0.05683024600148201, + 0.010927809402346611, + -0.004765205085277557, + 0.02153712511062622, + 0.07214502990245819, + -0.0712527334690094, + 0.012937184423208237, + 0.06659115105867386, + -0.0567387230694294, + 0.06816545128822327, + 0.06045649200677872, + 0.0018454701639711857, + -0.011259032413363457, + -0.051385410130023956, + -0.10195751488208771, + 0.008097678422927856, + 0.0003301333636045456, + 0.024047812446951866, + 0.02176598086953163, + 0.03327599912881851, + -0.019416116178035736, + 0.08248540014028549, + -0.008758355863392353, + 0.0007432121783494949, + -0.013671837747097015, + -0.06470733880996704, + 0.1097816675901413, + 0.11527879536151886, + -0.014673611149191856, + 0.013993321917951107, + -0.04987140744924545, + -0.01517330389469862, + 0.07111507654190063, + -0.09263627976179123, + -0.050832316279411316, + 0.055070918053388596, + 0.009448597207665443, + 0.04152873903512955, + 0.11458305269479752, + 0.039318718016147614, + 0.013146838173270226, + 0.06974419206380844, + -0.10073088109493256, + -0.06746795773506165, + -0.005582009442150593, + 0.02534407004714012, + -0.060782793909311295, + 0.028066866099834442, + 0.06245073676109314, + 0.0065525611862540245, + -0.044309474527835846, + 0.05730561167001724, + 0.015031469985842705, + 0.018446076661348343, + -0.05952349305152893, + 0.02918555960059166, + 0.09582728147506714, + -0.012697113677859306, + -0.03522792458534241, + 0.03355211764574051, + 0.04821883514523506, + 0.03775961697101593, + 0.032743506133556366, + -0.02601339854300022, + -0.11340316385030746, + -0.005859032738953829, + 0.08502575010061264, + 0.054179828613996506, + -0.05415614694356918, + -0.027379555627703667, + -0.0590558797121048, + -0.03867267817258835, + 0.021324295550584793, + -0.013695325702428818, + 0.060611508786678314, + 0.03834274411201477, + -0.007643892429769039, + 0.11931717395782471, + -0.04876114800572395, + 0.03685218095779419, + -0.01933169923722744, + 0.03703108802437782, + 0.0433482751250267, + 0.037367917597293854, + -0.04029347747564316, + -0.07037602365016937, + 0.0024285546969622374, + 0.010377885773777962, + -0.022722166031599045, + -0.00872567854821682, + 0.029660653322935104, + -0.021610666066408157, + 0.0057167490012943745, + -0.08704697340726852, + 0.023718245327472687, + -0.11360763013362885, + -0.012324569746851921, + 0.034791380167007446, + -0.037861838936805725, + 0.0048785824328660965, + 0.0975361168384552, + 0.030398281291127205, + 0.02705276757478714, + -0.03759271651506424, + -0.10856139659881592, + -0.0357990600168705, + 0.059820253401994705, + 0.08740724623203278, + -0.049302391707897186, + -0.005269133485853672, + 0.0003327936865389347, + 0.026355082169175148, + -0.012095901183784008, + 0.055634740740060806, + 0.06892257183790207, + -0.040863633155822754, + -0.07823437452316284, + -0.0519237220287323, + 0.11780060827732086, + 0.06420783698558807, + -0.07833965122699738, + -0.053266607224941254, + -0.009619832038879395, + -0.045403797179460526, + -0.012149225920438766, + -0.01588856428861618, + 0.013819454237818718, + 0.062056638300418854, + -0.05083910748362541, + -0.14196781814098358, + -0.10112844407558441, + 0.03565697371959686, + -0.05574406683444977, + -0.0027304021641612053, + -0.07112748175859451, + 0.02799573540687561, + 0.046260084956884384, + 0.0164666585624218, + -0.014325562864542007, + -0.03065035678446293, + -0.039814673364162445, + -0.10131550580263138, + -0.04837861657142639, + -0.010866813361644745, + 0.015578078106045723, + -0.0769130066037178, + 5.078595131635666e-05, + -0.056136466562747955, + 0.08581120520830154, + -0.049361880868673325, + 0.11011503636837006, + 0.008481668308377266, + -0.06276503205299377, + -0.09720103442668915, + -0.01675868220627308, + -0.0160441305488348, + 0.06392525881528854, + 0.047983601689338684, + 0.021097492426633835, + 0.029247887432575226, + -0.0867052972316742, + 0.06496419757604599, + 0.07208430767059326, + -0.0005047102458775043, + -0.07958857715129852, + -0.0334341861307621, + -0.020782334730029106, + 0.040011532604694366, + -0.016867419704794884, + -0.007381606847047806, + 0.0317048579454422, + 0.025594156235456467, + -0.02639741078019142, + 0.053974978625774384, + 0.06923414766788483, + 0.0375593937933445, + -0.09193511307239532 + ] + }, + "p244_061.wav": { + "name": "p244", + "embedding": [ + 0.010503833182156086, + 0.07383543252944946, + -0.016542084515094757, + 0.012019818648695946, + -0.04151562973856926, + -0.020791402086615562, + -0.11385171115398407, + 0.06947172433137894, + -0.03628823161125183, + 0.09727707505226135, + -0.05810140073299408, + 0.09898405522108078, + -0.057805225253105164, + -0.10939942300319672, + -0.022850457578897476, + 0.036566466093063354, + -0.0534239336848259, + -0.026703137904405594, + -0.013698762282729149, + -0.06186290830373764, + 0.03921116888523102, + 0.020700370892882347, + 0.0695619136095047, + -0.05865180492401123, + -0.009902337566018105, + 0.08839148283004761, + 0.03088214434683323, + 0.023921171203255653, + 0.018199335783720016, + -0.06475703418254852, + 0.013161275535821915, + 0.03705478832125664, + 0.0007729083299636841, + -0.004861840978264809, + 0.01599164865911007, + 0.01235099509358406, + -0.009464501403272152, + 0.006483843550086021, + 0.01098025031387806, + 0.04673808813095093, + -0.05720778927206993, + 0.0529603511095047, + 0.002980251330882311, + -0.04305103421211243, + 0.06909830868244171, + -0.054810021072626114, + -0.02551485039293766, + 0.04205501079559326, + -0.06361868232488632, + 0.09851347655057907, + 0.06359386444091797, + 0.03271337226033211, + -0.05402759462594986, + -0.0011928901076316833, + 0.09332353621721268, + -0.02536720782518387, + -0.13511063158512115, + -0.033564016222953796, + 0.03294172137975693, + 0.10094667971134186, + -0.02611926943063736, + -0.023370955139398575, + 0.026872577145695686, + 0.047649916261434555, + 0.026842184364795685, + 0.0445898212492466, + 0.1110273227095604, + 0.04294699802994728, + 0.02638382837176323, + -0.016651874408125877, + 0.03973395377397537, + 0.08609452843666077, + 0.0077682435512542725, + 0.003985174931585789, + 0.022044053301215172, + -0.05459677800536156, + -0.0046559590846300125, + -0.031538791954517365, + -0.008538326248526573, + -0.05782307684421539, + -0.0910380557179451, + -0.01406343188136816, + 0.0035837190225720406, + -0.02373800054192543, + -0.003686077892780304, + 0.014293171465396881, + 0.04337034747004509, + -0.03884441405534744, + 0.05448584258556366, + 0.04829871654510498, + -0.024612754583358765, + -0.006182447075843811, + -0.017899438738822937, + -0.03282230347394943, + -0.05259358137845993, + 0.020701829344034195, + 0.06864460557699203, + 0.024832911789417267, + 0.025403568521142006, + 0.07236802577972412, + 0.06778188049793243, + 0.04925151541829109, + 0.0033265934325754642, + -0.025807548314332962, + -0.08680272102355957, + 0.05969361588358879, + 0.09965786337852478, + -0.02880961075425148, + 0.040903665125370026, + -0.016247164458036423, + 0.014681282453238964, + -0.011436587199568748, + -0.014758501201868057, + -0.04151485487818718, + -0.01939372718334198, + 0.013222092762589455, + 0.016262739896774292, + 0.07775906473398209, + 0.00627591647207737, + 0.02597089484333992, + 0.10190996527671814, + -0.04874615743756294, + -0.06950819492340088, + -0.0687536895275116, + 0.04424936696887016, + -0.05221402272582054, + 0.06808855384588242, + 0.0745353102684021, + 0.029006335884332657, + 0.03840961679816246, + 0.0714312195777893, + 0.0459996834397316, + 0.030135516077280045, + -0.023774681612849236, + -0.05253520980477333, + 0.007193325087428093, + -0.011947530321776867, + 0.0031251590698957443, + 0.12023049592971802, + 0.034215740859508514, + 0.11386828124523163, + 0.021032562479376793, + 0.019968319684267044, + -0.05792011693120003, + -0.008707597851753235, + 0.04271010681986809, + -0.004224861040711403, + -0.05100340023636818, + -0.05411183089017868, + -0.027316758409142494, + -0.05744759365916252, + -0.016456816345453262, + -0.04456716775894165, + 0.0972992479801178, + -0.011926674284040928, + -0.0006774088833481073, + 0.10733026266098022, + 0.012175491079688072, + -0.04454914107918739, + -0.05713679641485214, + -0.027568140998482704, + -0.019110843539237976, + 0.03704819083213806, + -0.13727952539920807, + -0.07754117250442505, + -0.057516977190971375, + 0.04801909625530243, + 0.009561143815517426, + 0.04344985634088516, + 0.06921812891960144, + -0.0227131936699152, + 0.01063104160130024, + 0.01005251519382, + 0.04331858456134796, + -0.03098268434405327, + -0.07494499534368515, + -0.016767974942922592, + -0.07594367861747742, + -0.045961350202560425, + 0.09026035666465759, + -0.01376914419233799, + 0.059039242565631866, + -0.010324150323867798, + -0.0952242985367775, + -0.07355916500091553, + 0.05698993057012558, + 0.007061205338686705, + -0.0304392259567976, + 0.030798139050602913, + 0.026353420689702034, + -0.05475950613617897, + 0.02391527034342289, + 0.022022049874067307, + 0.06968840956687927, + -0.0952993631362915, + 0.0018919302383437753, + -0.06795518100261688, + 0.025494331493973732, + 0.09529565274715424, + -0.06826399266719818, + -0.04033336043357849, + -0.08081422746181488, + -0.04762030020356178, + 0.04861374944448471, + -0.030655009672045708, + -0.01004729513078928, + 0.006124161183834076, + -0.031252987682819366, + -0.088677778840065, + -0.10544636845588684, + 0.07235821336507797, + -0.024289406836032867, + -0.0010815453715622425, + -0.040017180144786835, + 0.007286242675036192, + 0.009337343275547028, + 0.025132909417152405, + -0.02728910744190216, + 0.04744695872068405, + 0.0029693227261304855, + -0.03418800234794617, + 0.028190884739160538, + 0.05699702724814415, + 0.08039338886737823, + 0.03288767486810684, + -0.04579857736825943, + -0.08449687063694, + 0.033274490386247635, + -0.0187789648771286, + 0.0910448208451271, + 0.004878797102719545, + -0.035113222897052765, + -0.02455628290772438, + 0.012131564319133759, + -0.03887154906988144, + 0.04349634796380997, + 0.06392054259777069, + 0.06324782967567444, + 0.011202742345631123, + -0.061195697635412216, + 0.07890881597995758, + 0.049680642783641815, + -0.0033997371792793274, + -0.04919392615556717, + -0.008915805257856846, + -0.038483768701553345, + 0.011282350867986679, + -0.013656266033649445, + -0.06140866130590439, + 0.05136915296316147, + -0.04518759250640869, + 0.0378573015332222, + 0.07140222936868668, + 0.07738418877124786, + 0.056116946041584015, + -0.03015414997935295 + ] + }, + "p244_036.wav": { + "name": "p244", + "embedding": [ + 0.039696451276540756, + 0.07900166511535645, + -0.03502984344959259, + 0.001488078385591507, + -0.04796702787280083, + -0.007704870775341988, + -0.11515000462532043, + 0.11792300641536713, + -0.006122824735939503, + 0.12819629907608032, + -0.05480644106864929, + 0.126910999417305, + -0.03232337534427643, + -0.0947665125131607, + 0.014001257717609406, + 0.0387929305434227, + -0.026176713407039642, + -0.021547775715589523, + 0.02614351361989975, + -0.03343471884727478, + 0.04482840374112129, + 0.03203378617763519, + 0.04191741347312927, + -0.03329453244805336, + 0.014557702466845512, + 0.08128000795841217, + -0.006069991737604141, + -0.010209326632320881, + 0.0017964591970667243, + -0.04160566255450249, + 0.006297718733549118, + 0.05584024265408516, + -0.029551396146416664, + 0.0172466691583395, + 0.033043429255485535, + -0.006160011515021324, + -0.0294638741761446, + -0.03317053243517876, + 0.002704608254134655, + 0.011645063757896423, + -0.054771557450294495, + 0.07515023648738861, + 0.010668998584151268, + -0.06582660228013992, + 0.03622075170278549, + -0.019955553114414215, + -0.021793009713292122, + 0.01973731815814972, + -0.05598358064889908, + 0.13411536812782288, + 0.04202825948596001, + 0.05436961352825165, + -0.08185459673404694, + 0.009210711345076561, + 0.06650005280971527, + 0.0002536596730351448, + -0.086894690990448, + -0.029942207038402557, + 0.024715105071663857, + 0.09667101502418518, + -0.014627203345298767, + -0.054063230752944946, + 0.04994397982954979, + 0.06874984502792358, + 0.03454384580254555, + 0.03129365295171738, + 0.10296916961669922, + 0.08128376305103302, + -0.004657566547393799, + 0.014649923890829086, + 0.03687429428100586, + 0.09047475457191467, + 0.04890032485127449, + -0.0023312317207455635, + 0.007084229029715061, + -0.030093371868133545, + -0.026402411982417107, + -0.04439539834856987, + -0.0024288874119520187, + -0.059110499918460846, + -0.08051137626171112, + -0.01982063613831997, + 0.01331713330000639, + 0.03629866987466812, + 0.009104162454605103, + 0.00870920717716217, + 0.07833587378263474, + -0.05017024278640747, + 0.04939065873622894, + 0.033726178109645844, + -0.01456803735345602, + 0.009120665490627289, + -0.09196499735116959, + -0.050080977380275726, + -0.005661372095346451, + -0.014132464304566383, + 0.07505285739898682, + 0.06012466549873352, + 0.048706162720918655, + 0.04341353103518486, + 0.08402121067047119, + 0.03331269696354866, + 0.007629400584846735, + -0.040091097354888916, + -0.07908697426319122, + 0.12384488433599472, + 0.10022184252738953, + -0.06589409708976746, + 0.032079536467790604, + -0.032655153423547745, + 0.006819132715463638, + -0.004454446956515312, + -0.07505501806735992, + -0.04442037642002106, + -0.010505639016628265, + 0.020856546238064766, + 0.021828463301062584, + 0.10846095532178879, + 0.0320945680141449, + 0.05220886319875717, + 0.0971718430519104, + -0.08202537894248962, + -0.08927089720964432, + -0.04340739548206329, + 0.039753615856170654, + -0.097220778465271, + 0.09664259105920792, + 0.0757996141910553, + 0.03085213340818882, + 0.03681663051247597, + 0.07658296823501587, + 0.04002885892987251, + 0.03453121706843376, + -0.04865395277738571, + -0.00394897535443306, + 0.006425143219530582, + -0.028068479150533676, + 0.015059907920658588, + 0.07034169882535934, + 0.019843172281980515, + 0.10434575378894806, + 0.037197694182395935, + 0.009082874283194542, + -0.09497249126434326, + 0.020384294912219048, + 0.06136561930179596, + 0.01703318953514099, + -0.043061237782239914, + -0.06168171018362045, + -0.009724212810397148, + -0.056085407733917236, + -0.03192100673913956, + 0.006132389418780804, + 0.058645397424697876, + -0.008427866734564304, + 0.023568224161863327, + 0.11412405967712402, + 0.020760629326105118, + -0.005317517556250095, + -0.03144900128245354, + -0.019740229472517967, + -0.01343044824898243, + 0.05508983135223389, + -0.11658359318971634, + -0.10302060842514038, + -0.047438159584999084, + 0.028975151479244232, + 0.0046210698783397675, + 0.0543365553021431, + 0.08943154662847519, + -0.006475461646914482, + 0.005902215372771025, + -0.008919097483158112, + 0.025085752829909325, + -0.06045353785157204, + -0.08726175129413605, + -0.020090853795409203, + -0.04674510657787323, + -0.04142329469323158, + 0.0830049067735672, + -0.00825763214379549, + 0.07419272512197495, + -0.02403843402862549, + -0.06681835651397705, + -0.07453533262014389, + 0.03593842312693596, + 0.015746906399726868, + -0.06332405656576157, + 0.0056026391685009, + 0.055119022727012634, + -0.026377443224191666, + -0.0183092150837183, + 0.014950566925108433, + 0.10145875811576843, + -0.0856412798166275, + -0.014706939458847046, + -0.07549495995044708, + 0.07272934913635254, + 0.1018032357096672, + -0.07302296161651611, + -0.05466547980904579, + -0.08435799181461334, + -0.05623549595475197, + 0.00935031846165657, + -0.03244401514530182, + -0.0003330435138195753, + 0.014386954717338085, + -0.04248708486557007, + -0.08264987170696259, + -0.11466667056083679, + 0.03702050447463989, + -0.03772899881005287, + 0.002540057757869363, + -0.06888452917337418, + 0.022443683817982674, + 0.01781071349978447, + 0.02222575806081295, + -0.03691492974758148, + 0.024909881874918938, + -0.014810662716627121, + -0.021678956225514412, + 0.010898753069341183, + 0.053276997059583664, + 0.07110464572906494, + -0.015498161315917969, + -0.060730189085006714, + -0.0829211175441742, + 0.04473395645618439, + -0.046907782554626465, + 0.10802876949310303, + -0.01765967160463333, + -0.05644248425960541, + -0.0660654753446579, + -0.023356230929493904, + -0.006721619050949812, + 0.03198873996734619, + 0.06324706971645355, + 0.05243811756372452, + 0.02564788982272148, + -0.06232444941997528, + 0.08388499170541763, + 0.07024085521697998, + 0.013579219579696655, + -0.06624753028154373, + -0.049042217433452606, + -0.030707955360412598, + 0.023042382672429085, + -0.00033287331461906433, + -0.063911572098732, + 0.05250997096300125, + -0.01413326058536768, + 0.03689776360988617, + 0.0767374336719513, + 0.07504931092262268, + 0.04817044734954834, + -0.08827077597379684 + ] + }, + "p244_137.wav": { + "name": "p244", + "embedding": [ + 0.07323402166366577, + 0.04701566323637962, + -0.03407219424843788, + -0.012443309649825096, + -0.052713777869939804, + 0.05072305351495743, + -0.1369348168373108, + 0.083346888422966, + -0.029676249250769615, + 0.1251402050256729, + -0.030146399512887, + 0.10617455840110779, + 0.0004471093416213989, + -0.14881309866905212, + -0.05102582275867462, + 0.026798482984304428, + -0.06987975537776947, + -0.019881077110767365, + -0.08919119834899902, + -0.04895108938217163, + 0.028941020369529724, + 0.03658512607216835, + 0.06155029684305191, + -0.081780806183815, + 0.04772460460662842, + 0.054173119366168976, + 0.0011837980709969997, + 0.03629201650619507, + -0.005539597012102604, + -0.0769825354218483, + -0.007821701467037201, + 0.07083937525749207, + -0.07476836442947388, + -0.015395007096230984, + 0.032972149550914764, + -0.010023701936006546, + -0.01503636222332716, + -0.07573936134576797, + -0.012586395256221294, + 0.048920415341854095, + -0.022296112030744553, + 0.09835036098957062, + 0.033725909888744354, + -0.045888371765613556, + 0.01916206255555153, + 0.0004385198699310422, + 0.000893506221473217, + -0.04467454180121422, + -0.09139126539230347, + 0.1573576033115387, + 0.011268718168139458, + 0.027591580525040627, + -0.09971460700035095, + -0.055402517318725586, + 0.0914253517985344, + -0.0517367348074913, + -0.09656410664319992, + -0.04162157326936722, + 0.015442490577697754, + 0.12979888916015625, + -0.049116406589746475, + -0.04449981451034546, + 0.04587629809975624, + 0.053686946630477905, + 0.08161471784114838, + 0.0282039325684309, + 0.12598221004009247, + 0.09968308359384537, + -0.006171942222863436, + 0.0403103269636631, + 0.05260257422924042, + 0.06849610805511475, + 0.029213018715381622, + 0.006409008987247944, + 0.042101070284843445, + -0.022989381104707718, + -0.012170197442173958, + -0.04559522494673729, + -0.02409525215625763, + -0.024511262774467468, + 0.017215341329574585, + 0.016802771016955376, + 0.04515107348561287, + 0.05234968662261963, + -0.06451591849327087, + 0.03960376977920532, + 0.04394268989562988, + -0.04873551055788994, + 0.0624396950006485, + 0.06528867781162262, + 0.02384638786315918, + 0.041767656803131104, + -0.09128506481647491, + -0.09978775680065155, + 0.012783454731106758, + 0.010417213663458824, + 0.030834242701530457, + 0.01819121278822422, + 0.04190941900014877, + -0.02935558743774891, + 0.08560215681791306, + 0.07491399347782135, + -0.02291879989206791, + 0.01884651929140091, + -0.06593538820743561, + 0.11619137227535248, + 0.10952077805995941, + -0.02838185988366604, + 0.016298631206154823, + -0.04978831112384796, + 0.03408537805080414, + 0.054956674575805664, + -0.0895986557006836, + -0.0922883152961731, + 0.037310995161533356, + -0.014090909622609615, + 0.02099648304283619, + 0.12910661101341248, + -0.008333265781402588, + 0.024744190275669098, + 0.08971239626407623, + -0.06946422159671783, + -0.026211461052298546, + 0.0037510537076741457, + 0.03790688514709473, + -0.04257971793413162, + 0.03757815062999725, + 0.05519421398639679, + 0.005291100591421127, + 0.008724266663193703, + 0.08928349614143372, + 0.004024004563689232, + 0.00590260187163949, + -0.010149299167096615, + 0.00730150006711483, + 0.07397693395614624, + 0.015930086374282837, + -0.034333303570747375, + 0.09817247837781906, + 0.07742985337972641, + 0.04726383090019226, + 0.010349077172577381, + -0.038224589079618454, + -0.1082267239689827, + 0.018956340849399567, + 0.025141257792711258, + 0.05967985838651657, + -0.047370050102472305, + 0.005567436572164297, + -0.060044705867767334, + -0.06234858185052872, + 0.04380882903933525, + 0.007086709141731262, + 0.08184448629617691, + 0.007063056342303753, + -0.025985410436987877, + 0.12440069764852524, + -0.0010097082704305649, + 0.025082135573029518, + 0.004870504140853882, + 0.0020038411021232605, + 0.01643371768295765, + 0.059934407472610474, + -0.050406575202941895, + -0.0577012374997139, + -0.029048709198832512, + 0.01412963680922985, + -0.00985980499535799, + 0.06265769153833389, + 0.08610108494758606, + -0.00437965476885438, + 0.02930818684399128, + -0.06474530696868896, + 0.018012654036283493, + -0.06760760396718979, + -0.004771389067173004, + 0.011742699891328812, + -0.07271106541156769, + -0.05105860158801079, + 0.09905054420232773, + 0.008971092291176319, + 0.034508515149354935, + -0.07160092890262604, + -0.10660918056964874, + -0.04197307676076889, + 0.027732256799936295, + 0.056387901306152344, + -0.025404997169971466, + -0.00295102596282959, + 0.0391593798995018, + 0.026075223460793495, + 0.038801200687885284, + 0.08246750384569168, + 0.06608185172080994, + -0.045813582837581635, + -0.03664502501487732, + -0.04121950641274452, + 0.14050422608852386, + 0.0377991683781147, + -0.04623603820800781, + -0.0512462854385376, + -0.021551743149757385, + -0.05791545659303665, + 0.002480804920196533, + -0.0013288995251059532, + 0.03373163938522339, + 0.06470980495214462, + 0.0011280989274382591, + -0.09180772304534912, + -0.09985987842082977, + 0.06479770690202713, + -0.0658077672123909, + -0.0053179021924734116, + -0.06633488833904266, + 0.009957075119018555, + 0.07213683426380157, + 0.031549811363220215, + -0.007009602151811123, + 0.005476254969835281, + -0.012819638475775719, + -0.04475744068622589, + 0.014464026317000389, + 0.04359792545437813, + 0.01910415105521679, + -0.05417538434267044, + -0.030229883268475533, + -0.0734155997633934, + 0.06711634993553162, + -0.028289776295423508, + 0.11958017945289612, + -0.0030914433300495148, + -0.03456159681081772, + -0.06999552249908447, + 0.03639760613441467, + -0.06454180181026459, + 0.07271772623062134, + 0.09131985902786255, + 0.06695115566253662, + 0.045604173094034195, + -0.059106260538101196, + 0.09006214886903763, + 0.05803312361240387, + -0.042356938123703, + -0.08483725786209106, + -0.05335173010826111, + -0.024826427921652794, + 0.03546859323978424, + 0.026413235813379288, + -0.04585723206400871, + 0.057613927870988846, + 0.033775992691516876, + -0.013522894121706486, + 0.02359507791697979, + 0.0853094831109047, + 0.06051453948020935, + -0.07958009839057922 + ] + }, + "p244_064.wav": { + "name": "p244", + "embedding": [ + 0.008073003962635994, + 0.08285491913557053, + -0.028157172724604607, + 0.06573159992694855, + -0.0554533526301384, + -0.02481571026146412, + -0.08226963877677917, + 0.05811410769820213, + 0.01850319467484951, + 0.07986201345920563, + -0.0282637607306242, + 0.09572188556194305, + -0.032036565244197845, + -0.12506912648677826, + 0.006754709407687187, + 0.006025562062859535, + 0.02327914535999298, + 0.016029734164476395, + 0.016798008233308792, + -0.024326611310243607, + -0.02280670404434204, + 0.0013512670993804932, + -0.04506585747003555, + 0.009816441684961319, + -0.015753760933876038, + 0.009264109656214714, + -0.043210867792367935, + 0.020358748733997345, + -0.024531273171305656, + -0.022729191929101944, + -0.00346355140209198, + 0.028613679111003876, + -0.03164613991975784, + -0.015002998523414135, + 0.007012704387307167, + -0.008996935561299324, + -0.018092893064022064, + -0.021090079098939896, + -0.04626358300447464, + -0.04103551059961319, + -0.07599478960037231, + 0.009250197559595108, + 0.04560007527470589, + -0.058144696056842804, + 0.03333031386137009, + 0.021891143172979355, + -0.02973495051264763, + -0.024465270340442657, + -0.041638825088739395, + 0.07266988605260849, + 0.025158818811178207, + 0.07875867187976837, + -0.04601132124662399, + -0.022743722423911095, + 0.11506137996912003, + 0.021386640146374702, + 0.002506434917449951, + -0.020643513649702072, + -0.0041916705667972565, + 0.08226695656776428, + 0.02678918093442917, + 0.01671762950718403, + 0.041184768080711365, + 0.04360993206501007, + 0.02105596289038658, + 0.04237477481365204, + 0.054725222289562225, + 0.0538550466299057, + -0.015155108645558357, + 0.02800930291414261, + 0.06236835569143295, + 0.02802305854856968, + -0.009396242909133434, + 0.004089821130037308, + -0.012259213253855705, + 0.04935428872704506, + -0.0016519725322723389, + 0.040427833795547485, + -0.025010839104652405, + 0.0007421821355819702, + 0.0003476180136203766, + 0.02041826955974102, + 0.016220219433307648, + -0.040934011340141296, + -0.050862230360507965, + -0.028849074617028236, + 0.07131238281726837, + 0.025313757359981537, + 0.020388789474964142, + 0.012514823116362095, + 0.021862730383872986, + 0.011575905606150627, + -0.06464927643537521, + -0.037729039788246155, + 0.014027376659214497, + -0.012412749230861664, + 0.038013506680727005, + 0.009691670536994934, + 0.007364816963672638, + -0.0003252946771681309, + 0.04953968524932861, + -0.019130192697048187, + 0.03827701136469841, + 0.018272604793310165, + -0.04982520267367363, + -0.0194728784263134, + 0.022449076175689697, + 0.018033284693956375, + 0.05674382671713829, + 0.005432464182376862, + 0.05533427372574806, + 0.0824822336435318, + -0.050678398460149765, + -0.01896451786160469, + 0.038239363580942154, + 0.0547531358897686, + -0.030329927802085876, + 0.10726689547300339, + -0.004390609450638294, + 0.036274608224630356, + 0.05998578295111656, + 0.005488622933626175, + -0.035031065344810486, + -0.012115872465074062, + 0.014282059855759144, + -0.019235748797655106, + 0.06082679331302643, + 0.01668960601091385, + -0.01851656287908554, + -0.04215440899133682, + 0.047648318111896515, + -0.023941755294799805, + -0.02541382610797882, + -0.005890370812267065, + 0.03238661214709282, + -0.032256510108709335, + 0.05578060448169708, + -0.05678391084074974, + 0.01750776544213295, + 0.05285665765404701, + -0.023921141400933266, + 0.00218186411075294, + 0.007912974804639816, + -0.05279063805937767, + 0.031054846942424774, + 0.011985421180725098, + 0.016678936779499054, + 0.08475092053413391, + -0.056048065423965454, + -0.09518636763095856, + -0.04432906210422516, + 0.018017835915088654, + -0.02686208114027977, + 0.07699866592884064, + 0.07470855861902237, + 0.03309299424290657, + 0.026293829083442688, + -0.005313487723469734, + 0.014934655278921127, + 0.014928527176380157, + -0.11858431994915009, + 0.0025797300040721893, + 0.018775252625346184, + 0.012170355767011642, + -0.018563110381364822, + 0.008147730492055416, + 0.0044998470693826675, + -0.031025545671582222, + -0.01478531863540411, + 0.02612193301320076, + 0.029462894424796104, + 0.047810621559619904, + -0.13897770643234253, + 0.009146193973720074, + -0.05225842818617821, + -0.052055828273296356, + 0.022394906729459763, + 0.0005108844488859177, + -0.006495494395494461, + 0.015602083876729012, + 0.02254321239888668, + -0.01711433008313179, + -0.03826015070080757, + -0.04095692187547684, + -0.015238618478178978, + 0.004249135032296181, + 0.006023623049259186, + 0.002120460383594036, + -0.012878527864813805, + 0.0017192941159009933, + 0.022670254111289978, + 0.0069946590811014175, + 0.013229338452219963, + 0.06178675591945648, + -0.02049620822072029, + 0.008565949276089668, + 0.04393836110830307, + 0.1151999831199646, + 0.037574078887701035, + -0.07984953373670578, + -0.07641103863716125, + 0.013078344985842705, + -0.050771456211805344, + 0.03375804424285889, + -0.009442889131605625, + 0.029631327837705612, + -0.006700159981846809, + 0.009019304066896439, + 0.039935238659381866, + -0.11725741624832153, + 0.0012909658253192902, + -0.02296554110944271, + -0.05315922945737839, + -0.003896240144968033, + -0.004889799281954765, + 0.049395281821489334, + 0.006247611716389656, + -0.031720440834760666, + -0.06393852829933167, + 0.020570116117596626, + 0.018650364130735397, + 0.018874062225222588, + 0.06854256242513657, + 0.03835316002368927, + -0.009198036044836044, + -0.002077037002891302, + -0.022908898070454597, + 0.034073200076818466, + 0.006593231111764908, + 0.044001415371894836, + 0.011244134046137333, + -0.012179341167211533, + -0.07697649300098419, + 0.04772772639989853, + 0.021452302113175392, + 0.048440106213092804, + -0.029465805739164352, + 0.017431490123271942, + 0.03159251809120178, + -0.019094113260507584, + 0.11066094040870667, + 0.03656743839383125, + -0.01628035679459572, + -0.012127243913710117, + -0.009914837777614594, + -0.03556737303733826, + 0.047875288873910904, + 0.03907151520252228, + -0.04478989169001579, + -0.017625361680984497, + 0.06298432499170303, + 0.038594506680965424, + 0.07337473332881927, + 0.0686052069067955, + 0.05127863958477974, + 0.030096881091594696 + ] + }, + "p244_116.wav": { + "name": "p244", + "embedding": [ + 0.026206303387880325, + 0.0870557427406311, + -0.031800564378499985, + 0.03391792252659798, + -0.046698667109012604, + 0.08534678816795349, + -0.16658273339271545, + 0.13364169001579285, + -0.03994257003068924, + 0.13041645288467407, + -0.042279601097106934, + 0.0682499036192894, + -0.04535885527729988, + -0.1648472249507904, + -0.0011063702404499054, + 0.06920823454856873, + -0.029199155047535896, + -0.05062545835971832, + -0.041224405169487, + -0.006878157611936331, + 0.00823267363011837, + 0.03437193110585213, + -0.01196223869919777, + -0.01792658120393753, + 0.04224570095539093, + 0.052962690591812134, + -0.01605040766298771, + 0.026313968002796173, + -0.02262882888317108, + -0.04536876082420349, + -0.006420617923140526, + 0.09725066274404526, + -0.05911702662706375, + -0.0040521943010389805, + 0.03993048146367073, + 0.0038983169943094254, + -0.0029922418761998415, + -0.07162532210350037, + 0.0008092247880995274, + -0.00086886843200773, + -0.0504748560488224, + 0.09489797055721283, + 0.05033232271671295, + 0.014569630846381187, + 0.013880239799618721, + 0.02584090270102024, + -0.002059028949588537, + -0.060770247131586075, + -0.10385298728942871, + 0.17202679812908173, + 0.06102000176906586, + -0.0003504775813780725, + -0.05936667323112488, + -0.06881854683160782, + 0.08519840985536575, + 0.021892044693231583, + -0.09799736738204956, + -0.09496836364269257, + 0.08372001349925995, + 0.16316553950309753, + -0.02758689969778061, + -0.03166946396231651, + 0.0193328894674778, + 0.12465889751911163, + 0.05687375366687775, + 0.07553974539041519, + 0.05244285985827446, + 0.12438154220581055, + 0.012407002970576286, + -0.012851450592279434, + 0.05765034630894661, + 0.03135097399353981, + 0.0207177996635437, + 0.005379687529057264, + 0.03346143662929535, + -0.027114737778902054, + -0.013732386752963066, + -0.009842348285019398, + -0.01835620030760765, + -0.03842465952038765, + 0.008297521620988846, + 0.03200364112854004, + 0.016961023211479187, + 0.061113446950912476, + -0.01410306990146637, + 0.02622094377875328, + 0.0455208346247673, + -0.03591391071677208, + 0.09161274135112762, + 0.010056025348603725, + 0.0018795325886458158, + 0.049939267337322235, + -0.08770015835762024, + -0.05661017447710037, + 0.049550555646419525, + 0.01573294587433338, + 0.008452299050986767, + 0.0465301051735878, + 0.01902879774570465, + -0.01893848180770874, + 0.13692250847816467, + 0.0063081649132072926, + -0.005656961817294359, + 0.02673012763261795, + -0.08552642166614532, + 0.15257230401039124, + 0.028820201754570007, + -0.009973833337426186, + 0.0537065714597702, + -0.05198920518159866, + 0.014364134520292282, + 0.045994147658348083, + -0.14206749200820923, + -0.0830812156200409, + 0.05460478365421295, + 0.0251338891685009, + -0.05105239525437355, + 0.1529836803674698, + 0.03480285778641701, + 0.026686403900384903, + 0.11159271001815796, + -0.11851374804973602, + -0.07005777955055237, + 0.009028308093547821, + 0.06546522676944733, + -0.06755473464727402, + 0.028424758464097977, + 0.08120614290237427, + -0.03927188739180565, + 0.030569370836019516, + 0.07677066326141357, + 0.020035814493894577, + 0.025743741542100906, + 0.004887916147708893, + -0.026523731648921967, + 0.04686063155531883, + -0.015688950195908546, + -0.008490651845932007, + 0.015294539742171764, + 0.018724041059613228, + 0.06374606490135193, + -0.029174381867051125, + -0.03510284423828125, + -0.1314167082309723, + -0.01545157190412283, + 0.024854429066181183, + 0.09983950108289719, + -0.027889424934983253, + 0.004549515899270773, + -0.04875047132372856, + -0.07016092538833618, + -0.007065870799124241, + -0.0117063969373703, + 0.10565370321273804, + 4.535890184342861e-05, + -0.015448075719177723, + 0.10956123471260071, + 0.03712017089128494, + 0.016568314284086227, + -0.05109051614999771, + -0.021917346864938736, + 0.01675349846482277, + 0.04576878249645233, + -0.06387738138437271, + -0.05400563403964043, + 0.0003287973813712597, + 0.04667960852384567, + -0.008596284314990044, + 0.06346990168094635, + 0.03464750200510025, + 0.046771030873060226, + 0.005699501372873783, + -0.053875576704740524, + 0.022539041936397552, + -0.04357587918639183, + -0.03636154532432556, + 0.011438531801104546, + 0.004058046266436577, + -0.07187315821647644, + 0.10332147777080536, + 0.028414800763130188, + 0.06598779559135437, + -0.025210976600646973, + -0.04689367115497589, + -0.06525686383247375, + 0.04820077866315842, + 0.04841648414731026, + -0.052594710141420364, + 0.019348938018083572, + 0.04825716093182564, + -0.019123604521155357, + 0.008446082472801208, + 0.07624737918376923, + 0.09311379492282867, + -0.02453649416565895, + -0.004148264415562153, + -0.0666135847568512, + 0.10110478103160858, + 0.07015637308359146, + -0.0842842161655426, + -0.04048370569944382, + -0.005877007730305195, + -0.06628985702991486, + 0.010554682463407516, + -0.04181568697094917, + 0.02767411433160305, + 0.019909244030714035, + -0.019710995256900787, + -0.10630884766578674, + -0.10019253939390182, + 0.056776415556669235, + -0.09683962166309357, + 0.007209221366792917, + -0.07556276023387909, + 0.045698381960392, + 0.09420475363731384, + 0.07326105237007141, + -0.028026890009641647, + -0.04498768597841263, + 0.049674808979034424, + -0.03841136395931244, + 0.041742339730262756, + 0.09235819429159164, + 0.047276757657527924, + -0.10901515185832977, + 0.014002731069922447, + -0.06860703974962234, + 0.053145959973335266, + -0.038949355483055115, + 0.1533702313899994, + 0.03870934993028641, + -0.039243437349796295, + -0.09733320772647858, + 0.016834599897265434, + -0.033303290605545044, + 0.05384053662419319, + -0.004111143760383129, + 0.06296724081039429, + 0.08997665345668793, + -0.01389042753726244, + 0.1130770742893219, + 0.042675409466028214, + -0.016742032021284103, + -0.052376970648765564, + -0.06528536975383759, + -0.049585774540901184, + 0.05759061127901077, + 0.0047167628072202206, + -0.10972248017787933, + -0.014114035293459892, + 0.05395267903804779, + 0.014432688243687153, + 0.07244445383548737, + 0.1318526566028595, + 0.07724472880363464, + -0.11529317498207092 + ] + }, + "p244_216.wav": { + "name": "p244", + "embedding": [ + 0.005050513427704573, + 0.03837194666266441, + 0.005418553948402405, + 0.055746566504240036, + -0.050176482647657394, + -0.014155305922031403, + -0.07702336460351944, + 0.07438337802886963, + 0.008550649508833885, + 0.0816316157579422, + -0.05169358104467392, + 0.10954662412405014, + -0.03955812007188797, + -0.13056251406669617, + 0.004008145071566105, + 0.02883581444621086, + -0.014740677550435066, + 0.0015757757937535644, + 0.0018871304346248507, + -0.08889325708150864, + 0.03142702579498291, + 0.041287243366241455, + 0.10917645692825317, + -0.04542539641261101, + -0.010929431766271591, + 0.08688090741634369, + 0.019439389929175377, + 0.038496531546115875, + 0.006717031821608543, + -0.06696125864982605, + -0.017160862684249878, + 0.046849410980939865, + -0.033362679183483124, + -0.034051209688186646, + 0.017070777714252472, + -0.03092655912041664, + -0.017797861248254776, + 0.023451250046491623, + -0.005198194645345211, + 0.03770628944039345, + -0.06574392318725586, + 0.061571091413497925, + 0.004475114401429892, + -0.0355054996907711, + 0.06688785552978516, + -0.0336417555809021, + -0.04801703989505768, + 0.060571085661649704, + -0.09510727971792221, + 0.1043686494231224, + 0.08565127104520798, + -0.006477054208517075, + -0.05472811311483383, + -0.03031889721751213, + 0.06610922515392303, + -0.02342265658080578, + -0.10264177620410919, + -0.02378898113965988, + 0.03450561687350273, + 0.0723593682050705, + -0.019676538184285164, + -0.03702038154006004, + 0.02346557006239891, + 0.0585310272872448, + 0.03663717210292816, + 0.027803806588053703, + 0.08438434451818466, + 0.056078698486089706, + -0.03789341077208519, + 0.023495744913816452, + 0.013664104044437408, + 0.08113572746515274, + 0.047856103628873825, + 0.012783223763108253, + 0.007815196178853512, + -0.022541433572769165, + -0.0013378288131207228, + -0.024215053766965866, + -0.01741562969982624, + -0.033809274435043335, + -0.026879753917455673, + -0.04576704651117325, + 0.02017657272517681, + -0.023189907893538475, + -0.004947920795530081, + 0.02598796784877777, + 0.055610816925764084, + 0.0063562532886862755, + 0.038349419832229614, + 0.023640867322683334, + -0.025260746479034424, + 0.06014727056026459, + -0.053290169686079025, + -0.004640375263988972, + -0.028023306280374527, + -0.011708798818290234, + 0.048023246228694916, + 0.05608978867530823, + 0.03543567657470703, + -0.005607225000858307, + 0.08987357467412949, + 0.05642988905310631, + -0.002444575307890773, + 0.006879492662847042, + -0.08711465448141098, + 0.05988682433962822, + 0.12077635526657104, + -0.020973442122340202, + 0.05374884232878685, + -0.011692593805491924, + 0.05550151318311691, + 0.018598265945911407, + -0.056220751255750656, + -0.016013164073228836, + -0.056455619633197784, + 0.015841584652662277, + 0.014797080308198929, + 0.08970996737480164, + -0.011381561867892742, + 0.034239333122968674, + 0.12139938771724701, + -0.05488577485084534, + -0.05754374712705612, + -0.052062734961509705, + 0.027437981218099594, + -0.08927728980779648, + 0.03894751891493797, + 0.05005880817770958, + 0.0023588924668729305, + 0.033137399703264236, + 0.06590083986520767, + -0.0010675042867660522, + 0.015768742188811302, + 0.0010590851306915283, + -0.055256910622119904, + -0.010855491273105145, + -0.030183736234903336, + 0.007347285747528076, + 0.10568894445896149, + 0.02490714192390442, + 0.0780995711684227, + 0.012859819456934929, + 0.021017147228121758, + -0.08323003351688385, + 0.0134481992572546, + 0.02905542403459549, + -0.010488798841834068, + -0.0433945469558239, + -0.05058302730321884, + -0.024740807712078094, + -0.0648549348115921, + 0.04095859080553055, + -0.016681663691997528, + 0.04605083912611008, + -0.039368972182273865, + -0.017245754599571228, + 0.09159683436155319, + 0.018118780106306076, + -0.03911110758781433, + -0.03853283077478409, + -0.04979106783866882, + -0.013144823722541332, + 0.024024493992328644, + -0.14373517036437988, + -0.07408706098794937, + -0.07393872737884521, + 0.05194120854139328, + 0.03831130266189575, + 0.03749269247055054, + 0.08431114256381989, + -0.040897566825151443, + -0.015654532238841057, + -0.0046629635617136955, + 0.0029440242797136307, + -0.0365060493350029, + -0.07701775431632996, + -0.028207622468471527, + -0.07155455648899078, + -0.023582246154546738, + 0.05362280458211899, + -0.01084048580378294, + 0.05410457402467728, + -0.042400434613227844, + -0.06520429253578186, + -0.08439745754003525, + 0.017195893451571465, + 0.007366342004388571, + -0.011369919404387474, + 0.06681790947914124, + 0.07491111010313034, + -0.07899633049964905, + 0.08052435517311096, + 0.016803188249468803, + 0.08231620490550995, + -0.08814448118209839, + 0.016920704394578934, + -0.064263254404068, + 0.01689610630273819, + 0.13715393841266632, + -0.04987175390124321, + -0.07743959873914719, + -0.0721811056137085, + -0.07619887590408325, + 0.08832260221242905, + -0.019805550575256348, + -0.047732871025800705, + 0.033461734652519226, + 0.003329787403345108, + -0.051791250705718994, + -0.09765299409627914, + 0.09773095697164536, + -0.013897779397666454, + -0.013289999216794968, + -0.044936250895261765, + 0.015601358376443386, + -0.004568840377032757, + 0.03622458875179291, + -0.02787911705672741, + 0.034366000443696976, + 0.027753150090575218, + 0.0070157740265131, + 0.013481042347848415, + 0.06054134666919708, + 0.07139156758785248, + -0.01143829058855772, + -0.07067518681287766, + -0.06704524159431458, + 0.03562408685684204, + -0.00837002508342266, + 0.05289943143725395, + 0.0018538765143603086, + -0.015500355511903763, + -0.030728653073310852, + 0.05081811174750328, + -0.013012362644076347, + 0.04631124436855316, + 0.09559158980846405, + 0.060394078493118286, + -0.0059871673583984375, + -0.07505792379379272, + 0.100405752658844, + 0.02583060786128044, + -0.032470159232616425, + -0.047120265662670135, + 0.013522963039577007, + -0.04196019470691681, + -0.014827296137809753, + 0.02837984822690487, + -0.08888687938451767, + 0.024314193055033684, + -0.008817065507173538, + 0.005312844179570675, + 0.005563404411077499, + 0.0775805339217186, + 0.036363132297992706, + -0.04132216423749924 + ] + }, + "p244_326.wav": { + "name": "p244", + "embedding": [ + 0.05647645890712738, + 0.07903605699539185, + -0.004121718928217888, + 0.0019325204193592072, + -0.049081914126873016, + 0.038870666176080704, + -0.17135155200958252, + 0.15737147629261017, + -0.027951620519161224, + 0.13319209218025208, + -0.05079863220453262, + 0.11452760547399521, + 0.0022181151434779167, + -0.20568430423736572, + -0.011569373309612274, + 0.05091247707605362, + -0.03208211064338684, + -0.03403328359127045, + -0.02147858217358589, + -0.04425549507141113, + 0.04236111789941788, + 0.05011980980634689, + 0.02916918322443962, + 0.0011963311117142439, + 0.022949669510126114, + 0.06001188978552818, + 0.00044258800335228443, + 0.03015023097395897, + -0.0040679313242435455, + -0.0348568819463253, + -0.03410216420888901, + 0.09089004993438721, + -0.03857149928808212, + -0.013817212544381618, + 0.04207659885287285, + -0.03440301492810249, + -0.00778503343462944, + -0.0743178129196167, + -0.029665200039744377, + 0.013971026986837387, + -0.04077344760298729, + 0.0804327130317688, + 0.03363679349422455, + -0.004382612183690071, + 0.061580829322338104, + 0.006162175443023443, + -0.01832357794046402, + -0.04825931787490845, + -0.11529036611318588, + 0.151228129863739, + 0.08180355280637741, + 0.009078157134354115, + -0.07779133319854736, + -0.044410672038793564, + 0.10451439023017883, + -0.01526350062340498, + -0.09601058810949326, + -0.03452193737030029, + 0.06472700834274292, + 0.14778700470924377, + -0.031788721680641174, + -0.03927962854504585, + 0.054874569177627563, + 0.11718955636024475, + 0.0390625074505806, + 0.07301878184080124, + 0.09164915978908539, + 0.09407659620046616, + -0.039267901331186295, + 0.012233918532729149, + 0.03642059117555618, + 0.05842337757349014, + 0.0138986362144351, + -0.027262387797236443, + 0.02389431558549404, + 0.004721355624496937, + -0.020589269697666168, + -0.00980563648045063, + -0.014243396930396557, + -0.007784364279359579, + -0.00384308397769928, + 0.00722363218665123, + -0.003884421195834875, + 0.033975034952163696, + -0.04485015198588371, + 0.04347986727952957, + 0.031524911522865295, + 0.0033555100671947002, + 0.0774640440940857, + 0.024448400363326073, + 0.03461942449212074, + 0.06385176628828049, + -0.07538408041000366, + -0.07524696737527847, + 0.0495070219039917, + 0.009413221850991249, + 0.010432607494294643, + 0.07613398879766464, + 0.037244245409965515, + -0.031528618186712265, + 0.12774954736232758, + 0.0625736266374588, + -0.02060304768383503, + 0.0313524454832077, + -0.09481717646121979, + 0.1129370629787445, + 0.09118568897247314, + -0.031262971460819244, + 0.06947764754295349, + -0.05978141352534294, + 0.05725526809692383, + 0.047938309609889984, + -0.12872180342674255, + -0.0648694857954979, + 0.0469001941382885, + 0.0385744608938694, + -0.008684594184160233, + 0.14922146499156952, + 0.011114565655589104, + 0.04434294253587723, + 0.10491957515478134, + -0.07646625488996506, + -0.06805442273616791, + -0.019770199432969093, + 0.07203864306211472, + -0.08883814513683319, + 0.07083283364772797, + 0.07794561982154846, + -0.01631910912692547, + 0.016206717118620872, + 0.06730979681015015, + -0.011082170531153679, + 0.010066624730825424, + -0.014413034543395042, + -0.023694686591625214, + 0.02766743116080761, + -0.02585180476307869, + -0.005592920817434788, + 0.020905254408717155, + 0.031094839796423912, + 0.03175541013479233, + 0.001233138027600944, + -0.029830869287252426, + -0.12184932082891464, + 0.010508127510547638, + 0.01802799664437771, + 0.07637999951839447, + -0.015570408664643764, + -0.029947910457849503, + -0.04754545912146568, + -0.06413667649030685, + -0.016748948022723198, + -0.015571588650345802, + 0.06889452040195465, + -0.015651628375053406, + 0.011496755294501781, + 0.08591806143522263, + 0.04651890695095062, + 0.014679962769150734, + -0.01411455124616623, + -0.04216204211115837, + 0.01124353613704443, + 0.049257613718509674, + -0.07660109549760818, + -0.0668872818350792, + -0.03297725319862366, + 0.039453309029340744, + -0.0196552574634552, + 0.040541429072618484, + 0.041925571858882904, + 0.015136521309614182, + 0.020173950120806694, + -0.10130882263183594, + 0.04977213591337204, + -0.10537748038768768, + -0.06801893562078476, + -0.0028433194383978844, + 0.006322941742837429, + -0.023407211527228355, + 0.08147451281547546, + 0.016330068930983543, + 0.05409392714500427, + -0.030439695343375206, + -0.06312473863363266, + -0.0732867568731308, + 0.03937825188040733, + 0.08545289933681488, + -0.022739550098776817, + 0.04721982777118683, + 0.048184268176555634, + -0.029300507158041, + 0.046093251556158066, + 0.054711490869522095, + 0.0953032597899437, + -0.011328532360494137, + 0.02001500129699707, + -0.06193692237138748, + 0.08260598033666611, + 0.08038806170225143, + -0.0836341604590416, + -0.08670918643474579, + -0.024671923369169235, + -0.06764788180589676, + 0.03385632485151291, + -0.0028617912903428078, + 0.015496130101382732, + 0.029228515923023224, + 0.00102093699388206, + -0.10297652333974838, + -0.08681529015302658, + 0.06565834581851959, + -0.05890960618853569, + -7.892772555351257e-05, + -0.08781218528747559, + 0.052917592227458954, + 0.1129583939909935, + 0.020902689546346664, + -0.026498064398765564, + -0.05960073322057724, + 0.021304255351424217, + -0.008080968633294106, + 0.012233974412083626, + 0.04004616290330887, + 0.05252767726778984, + -0.11715561151504517, + 0.008802996948361397, + -0.081198550760746, + 0.0649220198392868, + -0.043660055845975876, + 0.1275567263364792, + 0.02994544804096222, + -0.04751164838671684, + -0.1005706787109375, + 0.037465181201696396, + 0.010169055312871933, + 0.04947688430547714, + 0.01565558835864067, + 0.0547947995364666, + 0.04639807343482971, + -0.07283086329698563, + 0.08394279330968857, + 0.04525873064994812, + -0.04548519104719162, + -0.07351969927549362, + -0.017760049551725388, + -0.023599453270435333, + 0.039142947643995285, + 0.0019877138547599316, + -0.08344948291778564, + -0.036214396357536316, + 0.02449866198003292, + -0.008161312900483608, + 0.0730876475572586, + 0.12449346482753754, + 0.04325075075030327, + -0.14535921812057495 + ] + }, + "p244_419.wav": { + "name": "p244", + "embedding": [ + 0.06083516404032707, + 0.11662372946739197, + -0.010951412841677666, + 0.0263645201921463, + -0.0674663782119751, + 0.07690811157226562, + -0.13070333003997803, + 0.13485047221183777, + -0.03932299092411995, + 0.1097576692700386, + -0.04920841380953789, + 0.13261674344539642, + -0.01585199125111103, + -0.17799976468086243, + -0.037467412650585175, + 0.07317551970481873, + -0.04008955508470535, + -0.0023596957325935364, + -0.030376046895980835, + -0.007567227352410555, + 0.010918810963630676, + 0.007402253802865744, + 0.06254812330007553, + -0.012820769101381302, + 0.05959368497133255, + 0.05872346833348274, + 0.02781469002366066, + 0.07284603267908096, + 0.03543016314506531, + -0.03931150212883949, + -0.04573261737823486, + 0.09794783592224121, + -0.043906599283218384, + 0.01869359239935875, + 0.07258836925029755, + -0.002346000401303172, + 0.006400824524462223, + -0.07021138072013855, + -0.008998343721032143, + 0.006079293321818113, + -0.011671755462884903, + 0.08647403120994568, + 0.053747326135635376, + -0.02551126480102539, + 0.02642642892897129, + 0.03566354513168335, + -0.00420792680233717, + -0.047181226313114166, + -0.11689212918281555, + 0.15690991282463074, + 0.03090955875813961, + 0.005013628862798214, + -0.0859299749135971, + -0.08353278785943985, + 0.10580959916114807, + -0.016131579875946045, + -0.10650736093521118, + -0.0424816831946373, + 0.07766459882259369, + 0.15099643170833588, + -0.02301827259361744, + -0.0205608569085598, + 0.0033584285993129015, + 0.13728797435760498, + 0.04627763107419014, + 0.10518422722816467, + 0.05480710417032242, + 0.1170174852013588, + -0.010952591896057129, + 0.04857170954346657, + 0.05849912017583847, + 0.07163064926862717, + 0.009242474101483822, + 0.013024954125285149, + 0.014280444011092186, + -0.026946572586894035, + -0.01150105893611908, + 0.022526027634739876, + -0.012215487658977509, + -0.025782596319913864, + -0.031099211424589157, + 0.015242155641317368, + 0.010931520722806454, + 0.012196353636682034, + -0.026906870305538177, + 0.07545508444309235, + 0.010470365174114704, + -0.0011720983311533928, + 0.06510636955499649, + 0.04995344579219818, + -0.009989118203520775, + 0.05351223051548004, + -0.053027283400297165, + -0.1062372475862503, + 0.009820534847676754, + -0.0058873724192380905, + 0.04402993246912956, + 0.0660303458571434, + 0.02297598123550415, + -0.00495131453499198, + 0.09830664098262787, + 0.09491933882236481, + -0.008639329113066196, + 0.03967539966106415, + -0.06774254143238068, + 0.1321856677532196, + 0.06997360289096832, + 0.0021841833367943764, + 0.06331697851419449, + -0.04716039076447487, + 0.07264742255210876, + 0.08234654366970062, + -0.13311713933944702, + -0.08550317585468292, + 0.019442839547991753, + 0.019908394664525986, + -0.019610024988651276, + 0.10110601782798767, + -0.01835044100880623, + 0.028228241950273514, + 0.09351484477519989, + -0.07935181260108948, + -0.06512089818716049, + -0.012635830789804459, + 0.037400390952825546, + -0.06374944746494293, + 0.027713490650057793, + 0.0608680322766304, + -0.03684769198298454, + -0.00977357104420662, + 0.08218265324831009, + 0.016834445297718048, + 0.015206827782094479, + 0.06292486190795898, + -0.046363115310668945, + 0.024377569556236267, + -0.015522792935371399, + 0.020801743492484093, + 0.06598635017871857, + 0.057184718549251556, + 0.04022335261106491, + 0.0031346192117780447, + -0.029957424849271774, + -0.11696556955575943, + 0.0007094676839187741, + 0.058494724333286285, + 0.08337339758872986, + -0.02051680162549019, + -0.03961547464132309, + -0.026886215433478355, + -0.0662282332777977, + 0.023662175983190536, + 0.020926430821418762, + 0.08748117089271545, + -0.026798447594046593, + -0.01203005202114582, + 0.09355267137289047, + 0.017791345715522766, + -0.004080181010067463, + -0.05586542934179306, + -0.02533883973956108, + 0.04271090030670166, + 0.03122773766517639, + -0.09068462252616882, + -0.06610505282878876, + 0.008217401802539825, + 0.01269354298710823, + -0.04585854336619377, + 0.033451635390520096, + 0.03700171411037445, + 0.0045049479231238365, + 0.05514219403266907, + -0.03782859444618225, + 0.0029868311248719692, + -0.10349141061306, + -0.050935838371515274, + -0.013891038484871387, + -0.007841261103749275, + -0.038354843854904175, + 0.08054852485656738, + 0.03754604607820511, + 0.07043623924255371, + 0.009298709221184254, + -0.04432382062077522, + -0.05677574872970581, + 0.06236385926604271, + 0.0651523619890213, + 0.01677655056118965, + 0.060372285544872284, + 0.04500025138258934, + -0.021298842504620552, + 0.06054048612713814, + 0.07007988542318344, + 0.06017880141735077, + -0.031840041279792786, + -0.009376992471516132, + -0.08214021474123001, + 0.07381021231412888, + 0.09016189724206924, + -0.12650716304779053, + -0.07929831743240356, + -0.03434703126549721, + -0.04745608940720558, + 0.020430151373147964, + -0.03529493510723114, + 0.007513072807341814, + 0.033408813178539276, + -0.010800879448652267, + -0.08751987665891647, + -0.1251140981912613, + 0.08608241379261017, + -0.08125439286231995, + 0.006926291156560183, + -0.0435793474316597, + 0.04188838601112366, + 0.08625149726867676, + 0.02780303545296192, + -0.018457993865013123, + -0.006067521870136261, + 0.052661895751953125, + -0.057967767119407654, + -0.017828509211540222, + 0.04688819870352745, + 0.02235068380832672, + -0.09449154883623123, + 0.03194766864180565, + -0.05927123874425888, + 0.05683661997318268, + -0.04885485768318176, + 0.1955493539571762, + 0.006093400530517101, + -0.05609149485826492, + -0.07668501883745193, + 0.018956057727336884, + -0.06362532824277878, + 0.03209010884165764, + 0.03578523173928261, + 0.06080184131860733, + 0.008849730715155602, + -0.06689353287220001, + 0.13770708441734314, + 0.02647826075553894, + -0.05171520262956619, + -0.07367865741252899, + -0.03191560506820679, + -0.03901107236742973, + 0.05744992196559906, + 0.012534620240330696, + -0.08805913478136063, + -0.02861597016453743, + 0.030343791469931602, + -0.02510196343064308, + 0.06250257790088654, + 0.1583583652973175, + 0.07638853788375854, + -0.08378622680902481 + ] + }, + "p244_340.wav": { + "name": "p244", + "embedding": [ + 0.06639134883880615, + 0.08019162714481354, + -0.0027581891044974327, + 0.004180664662271738, + -0.030272439122200012, + 0.048977553844451904, + -0.1245986744761467, + 0.1365082561969757, + 0.009521890431642532, + 0.10858672857284546, + -0.09621915221214294, + 0.09146901220083237, + -0.03681021183729172, + -0.13924184441566467, + -0.007102347910404205, + 0.042863357812166214, + -0.03392926603555679, + -0.022205114364624023, + -0.038932789117097855, + -0.008115699514746666, + 0.015234426595270634, + 0.007234741002321243, + 0.01680072769522667, + 0.008193664252758026, + 0.020926427096128464, + 0.04164732247591019, + -0.015389865264296532, + 0.0136415995657444, + 0.008672126568853855, + -0.005748657509684563, + 0.014228813350200653, + 0.0760236456990242, + -0.04467058554291725, + 0.03631991893053055, + 0.07519757002592087, + 0.015932073816657066, + -0.023643437772989273, + -0.060222700238227844, + -0.013411266729235649, + -0.0013590147718787193, + -0.040331389755010605, + 0.07436111569404602, + 0.030003592371940613, + -0.02226611040532589, + 0.03718755394220352, + 0.043628811836242676, + -0.010191012173891068, + -0.03746765851974487, + -0.09806478023529053, + 0.13987596333026886, + 0.039679620414972305, + 0.010337457992136478, + -0.10140713304281235, + -0.029269620776176453, + 0.06586898863315582, + -0.02568648010492325, + -0.08333948999643326, + -0.0408974215388298, + 0.07074789702892303, + 0.10099364072084427, + -0.020467672497034073, + -0.04077022895216942, + -0.004249453544616699, + 0.08768243342638016, + 0.039876539260149, + 0.05888636037707329, + 0.07596106827259064, + 0.12785689532756805, + -0.03381903097033501, + 0.0382893830537796, + 0.06609951704740524, + 0.03227633982896805, + 0.08410327136516571, + 0.004174867644906044, + 0.01832503266632557, + -0.019428031519055367, + -0.015371739864349365, + 0.007760817185044289, + -0.02981926128268242, + -0.022213822230696678, + -0.015078537166118622, + -0.009039074182510376, + 0.006208865903317928, + 0.04495428502559662, + -0.014489944092929363, + 0.0324760302901268, + 0.04820657894015312, + -0.005023290403187275, + 0.07005922496318817, + 0.04904730245471001, + -0.008960306644439697, + 0.04829821735620499, + -0.08658397197723389, + -0.09277187287807465, + 0.013114173896610737, + -0.0337505042552948, + 0.04326009750366211, + 0.04207330942153931, + 0.039886631071567535, + 0.007571110036224127, + 0.10040537267923355, + 0.03025638870894909, + -0.006090020295232534, + 0.011271117255091667, + -0.09047084301710129, + 0.12773479521274567, + 0.07634005695581436, + -0.03252033144235611, + 0.014107977971434593, + -0.04958254098892212, + 0.03959175571799278, + 0.06129565089941025, + -0.09590176492929459, + -0.03559233248233795, + 0.028872815892100334, + 0.016722846776247025, + 0.00038526952266693115, + 0.10121827572584152, + 0.004214008338749409, + 0.02676658146083355, + 0.09626264870166779, + -0.08186472207307816, + -0.03469136729836464, + 0.007905438542366028, + 0.017963996157050133, + -0.05624501407146454, + 0.04268525540828705, + 0.04294935241341591, + 0.019407492130994797, + 0.008044121786952019, + 0.08362578600645065, + 0.01402804534882307, + -0.0015495724510401487, + -0.02666974812746048, + 0.00781327486038208, + 0.04793216660618782, + -0.01652440056204796, + 0.00012958655133843422, + 0.03809443861246109, + 0.05035661906003952, + 0.041099101305007935, + 0.0405113659799099, + -0.02772117219865322, + -0.09168410301208496, + 0.00730043975636363, + 0.052525199949741364, + 0.06806518137454987, + -0.03680209070444107, + -0.023750513792037964, + -0.022470341995358467, + -0.04228659346699715, + 0.024037525057792664, + 0.0025971680879592896, + 0.04648330435156822, + 0.010084804147481918, + -0.012208247557282448, + 0.10476034134626389, + 0.012795300222933292, + 0.0004179964307695627, + -0.06421824544668198, + -0.024929407984018326, + 0.0037254979833960533, + 0.05674167722463608, + -0.10214373469352722, + -0.061027493327856064, + -0.008299363777041435, + 0.012122754007577896, + -0.019059723243117332, + 0.03881477564573288, + 0.05121390521526337, + -0.007847309112548828, + 0.014536220580339432, + -0.054082807153463364, + 0.008495871908962727, + -0.09904608130455017, + -0.08127027004957199, + 0.013614809140563011, + -0.015359293669462204, + 0.00932619720697403, + 0.06560306251049042, + -0.00076671177521348, + 0.051303550601005554, + -0.02514202520251274, + -0.0811050534248352, + -0.05205173045396805, + 0.0779341459274292, + 0.04712040349841118, + -0.03177156671881676, + 0.040250204503536224, + 0.05301342159509659, + -0.030997931957244873, + 0.02893413044512272, + 0.05376358702778816, + 0.10341478139162064, + -0.0588308721780777, + 0.01917843706905842, + -0.055761415511369705, + 0.08098762482404709, + 0.07878062129020691, + -0.07567794620990753, + -0.08167435228824615, + -0.036413874477148056, + -0.020301852375268936, + 0.005011129193007946, + -0.03511064499616623, + -0.007393251173198223, + 0.02708134427666664, + -0.027660030871629715, + -0.06989926844835281, + -0.08587639778852463, + 0.04238252341747284, + -0.05383865535259247, + 0.020441412925720215, + -0.07664134353399277, + 0.0404881127178669, + 0.0507473461329937, + 0.012512242421507835, + -0.03588709980249405, + 0.014069817960262299, + 0.013960480690002441, + -0.035563401877880096, + -0.04448779299855232, + 0.01059906929731369, + 0.026837708428502083, + -0.07180899381637573, + -0.025497715920209885, + -0.045538775622844696, + 0.060949455946683884, + -0.032372038811445236, + 0.13015858829021454, + -0.005669048521667719, + -0.04213802143931389, + -0.04043497517704964, + -0.02032424882054329, + -0.02200600691139698, + 0.0392804890871048, + 0.03568727523088455, + 0.040386863052845, + 0.02337987907230854, + -0.03212041035294533, + 0.11466336995363235, + 0.03853045403957367, + -0.027079515159130096, + -0.0475112609565258, + -0.04738258570432663, + -0.04195820912718773, + 0.0007492341101169586, + -0.0158979631960392, + -0.07680543512105942, + 0.014782892540097237, + 0.004984106868505478, + -0.01322584692388773, + 0.033086612820625305, + 0.11723743379116058, + 0.07080477476119995, + -0.0995333269238472 + ] + }, + "p244_239.wav": { + "name": "p244", + "embedding": [ + 0.07127400487661362, + 0.019093776121735573, + 0.01414394099265337, + -0.011523932218551636, + -0.013843409717082977, + 0.0429999902844429, + -0.11181488633155823, + 0.09210527688264847, + -0.051988907158374786, + 0.06096595153212547, + -0.08969350904226303, + 0.08204600214958191, + 0.019030727446079254, + -0.12784619629383087, + -0.06960482895374298, + 0.026802966371178627, + -0.022742750123143196, + -0.0012724511325359344, + -0.05044564977288246, + -0.024079613387584686, + 0.022867467254400253, + 0.059336770325899124, + 0.03110773302614689, + -0.01116505078971386, + 0.008191319182515144, + 0.05949847400188446, + 0.027810193598270416, + 0.043228629976511, + 0.0029876260086894035, + -0.005984343588352203, + 0.0005563944578170776, + 0.09297096729278564, + -0.024394700303673744, + -0.02786426432430744, + 0.03871412202715874, + -0.0035634443629533052, + 0.027407187968492508, + -0.09005075693130493, + -0.02802146226167679, + 0.024221867322921753, + -0.058861080557107925, + 0.06764927506446838, + 0.06804198026657104, + 0.017803382128477097, + 0.015552683733403683, + 0.012702573090791702, + 0.004298015497624874, + -0.06711240112781525, + -0.10869817435741425, + 0.16304926574230194, + 0.0069725047796964645, + 0.03469327092170715, + -0.10918616503477097, + -0.004171609878540039, + 0.0829123854637146, + -0.007965498603880405, + -0.03523474186658859, + -0.031712256371974945, + 0.03830372542142868, + 0.14346832036972046, + 0.01051875576376915, + -0.0437149703502655, + 0.04311894625425339, + 0.08204641193151474, + 0.014975320547819138, + 0.020011013373732567, + 0.1371983289718628, + 0.08168377727270126, + 5.484931170940399e-05, + 0.03883256018161774, + 0.03779157996177673, + 0.04149949178099632, + 0.016846805810928345, + -0.036675140261650085, + 0.03393048048019409, + -0.007770964875817299, + -0.036692384630441666, + 0.011459278874099255, + -0.03477047011256218, + -0.03154977783560753, + 0.015536344610154629, + 0.016264664009213448, + 0.021259237080812454, + 0.044192470610141754, + -0.07296409457921982, + 0.05625876039266586, + -0.004139753058552742, + 0.0060454062186181545, + 0.0600721500813961, + 0.05596785992383957, + 0.01783670112490654, + -0.0015761107206344604, + -0.030506260693073273, + -0.09027876704931259, + -0.004364637657999992, + 0.007507472764700651, + 0.027169086039066315, + 0.03355260565876961, + 0.02715018205344677, + -0.03729039430618286, + 0.08606458455324173, + -0.007123356685042381, + 0.004398429300636053, + -0.01685267686843872, + -0.06783889979124069, + 0.07272452861070633, + 0.11239971965551376, + -0.004071911796927452, + 0.022723225876688957, + -0.047756996005773544, + 0.012102460488677025, + 0.0588613897562027, + -0.0905846357345581, + -0.05410899221897125, + 0.045872077345848083, + 0.03321833163499832, + 0.06676512211561203, + 0.11658039689064026, + -0.008802798576653004, + 0.02088093012571335, + 0.04114298149943352, + -0.06236909329891205, + -0.026366010308265686, + 0.0023633111268281937, + 0.008877340704202652, + -0.012683948501944542, + 0.02095046080648899, + 0.02316000498831272, + 0.034441880881786346, + -0.05924255773425102, + 0.06334992498159409, + -0.004052160307765007, + 0.002737640403211117, + -0.04595591500401497, + 0.027514228597283363, + 0.07666558772325516, + 0.00889552477747202, + -0.025774721056222916, + 0.038250602781772614, + 0.07810305058956146, + 0.007095523178577423, + 0.04939836636185646, + -0.06631563603878021, + -0.10145246982574463, + -0.029270604252815247, + 0.03936555236577988, + 0.04891711845993996, + -0.027486711740493774, + -0.053716253489255905, + -0.07629136741161346, + 0.005359183996915817, + -0.01069799717515707, + 0.007228119298815727, + 0.05622076243162155, + 0.044690702110528946, + -0.012043043971061707, + 0.07024528086185455, + -0.03508200868964195, + 0.027698000892996788, + -0.011489249765872955, + 0.010456315241754055, + 0.01987171545624733, + 0.025585021823644638, + 0.016467289999127388, + -0.07188097387552261, + 0.008071591146290302, + -0.001341152936220169, + -0.01675121672451496, + -0.005555272102355957, + 0.01658037304878235, + -0.018899204209446907, + -0.0030862707644701004, + -0.11138496547937393, + 0.033861398696899414, + -0.10947717726230621, + -0.002798810601234436, + 0.056818753480911255, + -0.021806513890624046, + -0.013877428136765957, + 0.08745700120925903, + 0.03198591619729996, + 0.033464930951595306, + -0.015329709276556969, + -0.08588293939828873, + -0.005722682923078537, + 0.03773140162229538, + 0.06973476707935333, + -0.007243748754262924, + 0.010962575674057007, + -0.0011178664863109589, + 0.022056449204683304, + 0.058426182717084885, + 0.056818168610334396, + 0.032578226178884506, + -0.042369045317173004, + -0.06312602758407593, + 0.010349487885832787, + 0.10465070605278015, + -0.012116104364395142, + -0.06008843332529068, + -0.05170039087533951, + 0.019996510818600655, + -0.042729154229164124, + 0.014916767366230488, + 0.014680233784019947, + 0.03672060742974281, + 0.05459703505039215, + -0.013234852813184261, + -0.11752871423959732, + -0.03486056253314018, + 0.03271418809890747, + -0.07190996408462524, + -0.008984608575701714, + -0.0554688386619091, + 0.02521122246980667, + 0.11016703397035599, + -0.001111089251935482, + 0.02533961459994316, + -0.035138338804244995, + -0.029855214059352875, + -0.08012183010578156, + -0.057451412081718445, + -0.030463306233286858, + 0.028177790343761444, + -0.04955669492483139, + 0.005125638097524643, + -0.07297259569168091, + 0.058610301464796066, + -0.03174437955021858, + 0.07638567686080933, + 0.02632550150156021, + -0.06413320451974869, + -0.08980400860309601, + 0.0011020172387361526, + -0.016635259613394737, + 0.05730810388922691, + 0.0527595616877079, + 0.012529173865914345, + 0.017594855278730392, + -0.07702326774597168, + 0.08198077231645584, + 0.06108960509300232, + -0.06026972830295563, + -0.07305431365966797, + -0.01985214650630951, + 0.012401393614709377, + 0.028201133012771606, + -0.0014108233153820038, + 0.0041879042983055115, + 0.0209663063287735, + 0.026940345764160156, + -0.011645923368632793, + 0.06098298728466034, + 0.07873081415891647, + 0.036621641367673874, + -0.07907790690660477 + ] + }, + "p244_227.wav": { + "name": "p244", + "embedding": [ + 0.06037134677171707, + 0.08570896089076996, + -0.019702520221471786, + 0.022366613149642944, + -0.07531517744064331, + 0.07544559985399246, + -0.12379723787307739, + 0.14445246756076813, + -0.04340231418609619, + 0.14070409536361694, + -0.07161542028188705, + 0.1391201764345169, + -0.0004176038783043623, + -0.18650177121162415, + -0.0181155763566494, + 0.03891553357243538, + -0.03167455270886421, + -0.005392352119088173, + -0.053561482578516006, + -0.029414039105176926, + 0.04016154631972313, + 0.029714740812778473, + 0.035814691334962845, + -0.023127835243940353, + 0.02899923175573349, + 0.06704011559486389, + -0.010245775803923607, + 0.034223780035972595, + 0.012145204469561577, + -0.07225147634744644, + -0.061436425894498825, + 0.10887479782104492, + -0.06607499718666077, + 0.005742373876273632, + 0.0644531399011612, + -0.03770455718040466, + -0.02444148249924183, + -0.06412821263074875, + -0.02814031019806862, + 0.0045563047751784325, + -0.0350966602563858, + 0.06708647310733795, + 0.034414179623126984, + -0.023326324298977852, + 0.05697493627667427, + 0.015522249042987823, + -0.011106668971478939, + -0.04738255962729454, + -0.08933813869953156, + 0.1410139501094818, + 0.06501325964927673, + -0.015082523226737976, + -0.07161733508110046, + -0.0435834676027298, + 0.1068471223115921, + -0.017745455726981163, + -0.12056022882461548, + -0.030402742326259613, + 0.07582388818264008, + 0.14390461146831512, + -0.039118990302085876, + -0.028490055352449417, + 0.029065797105431557, + 0.08872385323047638, + 0.04287610575556755, + 0.10764962434768677, + 0.08694794028997421, + 0.10373049974441528, + -0.011214769445359707, + 0.056350044906139374, + 0.03859269618988037, + 0.06862278282642365, + 0.04696699604392052, + -0.031149927526712418, + 0.0350484699010849, + -0.008445067331194878, + -0.025201544165611267, + -0.015529055148363113, + -0.028943222016096115, + -0.0017155238892883062, + -0.003591958899050951, + 0.006237707566469908, + 0.040478311479091644, + 0.0066591971553862095, + -0.04383482038974762, + 0.07017461955547333, + 0.028217725455760956, + -0.005691654048860073, + 0.05217348039150238, + 0.03057531639933586, + -0.007049663458019495, + 0.055375583469867706, + -0.09654393792152405, + -0.10485202074050903, + 0.031433381140232086, + 0.0061244722455739975, + -0.0027027763426303864, + 0.0787169486284256, + 0.04314332455396652, + -0.012910754419863224, + 0.1122114434838295, + 0.06743180751800537, + -0.010364268906414509, + 0.044879235327243805, + -0.0835464745759964, + 0.1287938952445984, + 0.09315474331378937, + -0.019612416625022888, + 0.0631938949227333, + -0.07716260105371475, + 0.10375265777111053, + 0.057239778339862823, + -0.14380934834480286, + -0.060594379901885986, + 0.01816524751484394, + -0.013938801363110542, + -0.02389213815331459, + 0.1250602751970291, + -0.022790445014834404, + 0.038707759231328964, + 0.10168983042240143, + -0.08606225252151489, + -0.053587380796670914, + -0.019488949328660965, + 0.048445168882608414, + -0.085906982421875, + 0.0631561428308487, + 0.03454866260290146, + -0.018750105053186417, + 0.022732049226760864, + 0.08373497426509857, + -0.019818153232336044, + -0.012598307803273201, + 0.03540262207388878, + -0.039321206510066986, + 0.0159012321382761, + -0.02145484834909439, + 0.0023860055953264236, + 0.039884619414806366, + 0.03538494557142258, + 0.04765427112579346, + -0.020397935062646866, + -0.01177804172039032, + -0.08741892129182816, + 0.01649581827223301, + 0.02263766899704933, + 0.07652141153812408, + -0.002356482669711113, + -0.006948956288397312, + -0.042637523263692856, + -0.0931013897061348, + 0.013425029814243317, + -0.020280778408050537, + 0.0697951465845108, + -0.018908970057964325, + 0.024380605667829514, + 0.08535847067832947, + 0.05487808585166931, + 0.004974113777279854, + -0.0680510550737381, + -0.029298128560185432, + 0.017211752012372017, + 0.06064422428607941, + -0.0817132443189621, + -0.06587617844343185, + -0.01283592451363802, + 0.008852152153849602, + -0.03935614973306656, + 0.04913647100329399, + 0.04603557661175728, + 0.030678432434797287, + 0.04446561634540558, + -0.09261421114206314, + 0.010217836126685143, + -0.11238285899162292, + -0.05385879427194595, + -0.018265459686517715, + -0.0251108817756176, + -0.03299194574356079, + 0.07536908239126205, + 0.01846587099134922, + 0.04141339287161827, + -0.019112002104520798, + -0.05137632042169571, + -0.07393202185630798, + 0.05355052277445793, + 0.055620186030864716, + -0.01335783489048481, + 0.04116807132959366, + 0.0487552247941494, + -0.036438003182411194, + 0.058290984481573105, + 0.07508772611618042, + 0.08659902215003967, + -0.015032120048999786, + 0.022882547229528427, + -0.06408246606588364, + 0.10252620279788971, + 0.09582817554473877, + -0.08702091872692108, + -0.10179796069860458, + -0.02871435508131981, + -0.07349397987127304, + 0.03968850523233414, + -0.02762385830283165, + -0.019550630822777748, + 0.027073998004198074, + 0.009995599277317524, + -0.09180231392383575, + -0.08091013878583908, + 0.09065079689025879, + -0.07136523723602295, + -0.01066931989043951, + -0.08579641580581665, + 0.04663429409265518, + 0.10176980495452881, + 0.01736580766737461, + -0.04070871323347092, + -0.01898895390331745, + 0.055287159979343414, + -0.034810587763786316, + 0.01455785147845745, + 0.04177185893058777, + 0.04016496241092682, + -0.10704472661018372, + 0.01202833466231823, + -0.048827074468135834, + 0.04372423142194748, + -0.048256728798151016, + 0.161650151014328, + 0.0031913002021610737, + -0.04870273917913437, + -0.06659187376499176, + 0.07048682123422623, + -0.010164874605834484, + 0.03241579234600067, + 0.04637807607650757, + 0.07134668529033661, + 0.035752009600400925, + -0.08948419243097305, + 0.11096765100955963, + 0.016276035457849503, + -0.03500794246792793, + -0.06615947186946869, + -0.050319962203502655, + -0.047357331961393356, + 0.013476955704391003, + 0.022592905908823013, + -0.10324914753437042, + -0.020539050921797752, + 0.026094775646924973, + -0.013407817110419273, + 0.06635773181915283, + 0.13746339082717896, + 0.06524045765399933, + -0.10997216403484344 + ] + }, + "p244_160.wav": { + "name": "p244", + "embedding": [ + 0.026559598743915558, + 0.1116848886013031, + -0.016116315498948097, + 0.051389217376708984, + -0.05837224796414375, + 0.017432451248168945, + -0.022781696170568466, + 0.04519841820001602, + 0.0255142729729414, + 0.07495652139186859, + -0.04130738973617554, + 0.07807604968547821, + -0.0513303279876709, + -0.09406927973031998, + -0.007932877168059349, + 0.020030591636896133, + -0.006581081077456474, + 0.02560054138302803, + -0.023602964356541634, + -0.010282590985298157, + -0.050811320543289185, + -0.00525493361055851, + 0.002204073593020439, + -0.008879566565155983, + -0.040683846920728683, + 0.03986447677016258, + -0.031193401664495468, + 0.012891063466668129, + -0.019032025709748268, + -0.1048523336648941, + -0.010010089725255966, + 0.05138653144240379, + -0.028826337307691574, + -0.026896072551608086, + 0.007702079601585865, + -0.03902773559093475, + 0.014631949365139008, + -0.028339151293039322, + -0.054345883429050446, + -0.015875523909926414, + -0.0364132821559906, + 0.00630771741271019, + -0.01191217266023159, + -0.07795916497707367, + 0.016351427882909775, + -0.0012911586090922356, + -0.04717263951897621, + -0.006497536785900593, + -0.04528365656733513, + 0.10074131935834885, + 0.025250926613807678, + 0.05538181960582733, + -0.04879321902990341, + -0.04657234624028206, + 0.12063401937484741, + 0.014146438799798489, + 0.005084522068500519, + -0.01622661016881466, + -0.01819690130650997, + 0.05265335366129875, + 0.04058893769979477, + -0.0028991326689720154, + 0.05349726974964142, + 0.05099568888545036, + 0.008044037967920303, + 0.037750180810689926, + 0.058458127081394196, + 0.06295692175626755, + -0.022748533636331558, + 0.036461763083934784, + 0.04959450662136078, + 0.026321707293391228, + 0.04101115092635155, + 0.041950855404138565, + -0.022483622655272484, + 0.005180465057492256, + 0.003750205971300602, + 0.025160280987620354, + -0.01991969719529152, + -0.042616672813892365, + 0.0027666196692734957, + -0.004818296059966087, + 0.01092077512294054, + -0.04666807875037193, + -0.02696220576763153, + -0.04495837166905403, + 0.06898374855518341, + 0.005142414942383766, + 0.047648072242736816, + 0.004516623914241791, + 0.053117770701646805, + 0.0462389811873436, + -0.040140800178050995, + -0.05522499606013298, + 0.02683410979807377, + 0.003386897034943104, + 0.050053078681230545, + 0.029816962778568268, + 0.005843058228492737, + 0.004132304340600967, + 0.04547717049717903, + -0.01720576174557209, + 0.06789544224739075, + -0.01553838700056076, + -0.05814449489116669, + -0.031201064586639404, + 0.04844619706273079, + 0.018837835639715195, + 0.033266641199588776, + 0.0484301894903183, + 0.0575186088681221, + 0.09253117442131042, + -0.03851114958524704, + -0.057117901742458344, + -0.00688267033547163, + 0.03141169622540474, + -0.039591070264577866, + 0.08456496894359589, + -0.005943231750279665, + 0.03955782949924469, + 0.05599345266819, + -0.029588595032691956, + -0.01905791088938713, + 0.016566919162869453, + -0.008770550601184368, + -0.05794387310743332, + 0.058530230075120926, + 0.031134668737649918, + -0.03416421636939049, + -0.04878013953566551, + 0.052470795810222626, + -0.021651186048984528, + -0.018802674487233162, + -0.014108812436461449, + -0.003923185169696808, + -0.02743849717080593, + 0.037589505314826965, + -0.04890361428260803, + 0.025228170678019524, + 0.0692390725016594, + -0.0014297310262918472, + -0.05619741976261139, + 0.001806040178053081, + -0.0505979098379612, + 0.03501978516578674, + 0.03337126970291138, + -0.010297193191945553, + 0.05970190465450287, + -0.04140562564134598, + -0.04531535506248474, + -0.02139427326619625, + 0.051135823130607605, + -0.0441482849419117, + 0.0745561495423317, + 0.05846432223916054, + 0.02120148204267025, + 0.07236268371343613, + -0.02390219457447529, + -0.006168705876916647, + -0.01925705373287201, + -0.10689781606197357, + 0.016164032742381096, + 0.025825107470154762, + -0.020861327648162842, + -0.03136304020881653, + -0.02024385705590248, + -0.024434704333543777, + -0.0028209052979946136, + 0.022269051522016525, + 0.04599447548389435, + -0.008368403650820255, + 0.049845099449157715, + -0.0799744501709938, + -0.005105664953589439, + -0.012980857864022255, + -0.05203929543495178, + 0.03248864412307739, + -0.020502634346485138, + -0.008597271516919136, + 0.033127136528491974, + 0.02249806933104992, + -0.037907686084508896, + -0.06620056182146072, + -0.07399959862232208, + 0.007195569574832916, + 0.029491569846868515, + 0.016986342146992683, + 0.007693079765886068, + -0.013965637423098087, + 0.03907273709774017, + 0.051342613995075226, + 0.01718650758266449, + 0.007847528904676437, + 0.07077126950025558, + -0.04855210334062576, + -0.006412457674741745, + 0.030008159577846527, + 0.09268131852149963, + 0.048097409307956696, + -0.07212166488170624, + -0.10743173211812973, + -0.03378477692604065, + -0.05552264675498009, + 0.0688861832022667, + -0.030944589525461197, + 0.020307613536715508, + 0.020808249711990356, + -0.007350586354732513, + 0.0056816451251506805, + -0.1304166167974472, + 0.061731744557619095, + 0.03215894103050232, + -0.03690272569656372, + -0.007082510739564896, + 0.006484119221568108, + -0.0048206280916929245, + 0.05094684660434723, + -0.03103126958012581, + -0.0005900515243411064, + 0.016392599791288376, + -0.003268212080001831, + 0.007919812574982643, + 0.055651649832725525, + 0.0423818975687027, + 0.018856879323720932, + -0.013363394886255264, + -0.023763928562402725, + 0.03382803127169609, + 0.006204478442668915, + 0.0458715595304966, + -0.003102308139204979, + -0.013315879739820957, + -0.106963150203228, + 0.08787776529788971, + -0.03548796474933624, + 0.057874154299497604, + -0.010665055364370346, + 0.017566632479429245, + 0.05890590697526932, + -0.03642525151371956, + 0.07835541665554047, + 0.021359838545322418, + -0.0193508081138134, + -0.03404254838824272, + -0.013302493840456009, + -0.035955529659986496, + 0.035202693194150925, + 0.042525772005319595, + -0.01032334566116333, + -0.006047356873750687, + 0.03645598888397217, + 0.042794372886419296, + 0.08431451767683029, + 0.07425171136856079, + 0.055540118366479874, + 0.027588654309511185 + ] + }, + "p244_056.wav": { + "name": "p244", + "embedding": [ + 0.038328371942043304, + 0.06367671489715576, + -0.027478108182549477, + 0.053355857729911804, + -0.05999847501516342, + 0.08225319534540176, + -0.14614485204219818, + 0.1154351755976677, + -0.02209380455315113, + 0.12605777382850647, + -0.03030681237578392, + 0.09915250539779663, + -0.02087361179292202, + -0.18541213870048523, + -0.0023089428432285786, + 0.08155229687690735, + -0.007917769253253937, + -0.01564657874405384, + -0.05361519753932953, + -0.005513269454240799, + 0.005140484776347876, + 0.030321989208459854, + 0.03555504232645035, + -0.027472959831357002, + 0.04679049551486969, + 0.03893141448497772, + -0.01573146879673004, + 0.053847476840019226, + 0.004548178054392338, + -0.06983290612697601, + -0.025777123868465424, + 0.08817800879478455, + -0.05765452980995178, + 0.027357857674360275, + 0.05434811860322952, + 0.005703633651137352, + -0.004371881019324064, + -0.04762175679206848, + -0.004995710216462612, + 0.0020579956471920013, + -0.04185333102941513, + 0.09500788152217865, + 0.0452316515147686, + -0.01057750266045332, + 0.042994141578674316, + 0.014600496739149094, + -0.01879080757498741, + -0.04451435059309006, + -0.11859199404716492, + 0.14696958661079407, + 0.029264669865369797, + -0.01479214709252119, + -0.08258024603128433, + -0.07070136070251465, + 0.09047552943229675, + -0.02678380161523819, + -0.10557340085506439, + -0.08048279583454132, + 0.0840415358543396, + 0.15198521316051483, + -0.010024361312389374, + -0.01821364276111126, + 0.002189514460042119, + 0.11044515669345856, + 0.06453007459640503, + 0.0904700979590416, + 0.0374385267496109, + 0.1305156946182251, + 0.0015142466872930527, + 0.007919435389339924, + 0.020688869059085846, + 0.06220712512731552, + 0.015139110386371613, + 0.01849103532731533, + 0.011681335046887398, + -0.014993296936154366, + -0.007299354765564203, + -0.004437160678207874, + -0.027512013912200928, + -0.011841649189591408, + -0.01434422843158245, + 0.0023328829556703568, + 0.027927620336413383, + 0.014589717611670494, + -0.036527119576931, + 0.04561164975166321, + 0.047775376588106155, + -0.028939470648765564, + 0.05588280409574509, + 0.040653008967638016, + -0.027852699160575867, + 0.040589358657598495, + -0.0725463405251503, + -0.07555719465017319, + 0.006225344259291887, + 0.01126736681908369, + -0.004792221821844578, + 0.03662295639514923, + 0.0037884991616010666, + -0.007372761145234108, + 0.11891268193721771, + 0.03254926949739456, + -0.01723564602434635, + 0.04737314209342003, + -0.0680658295750618, + 0.13920092582702637, + 0.05126619338989258, + 0.026127591729164124, + 0.06337494403123856, + -0.056040287017822266, + 0.03214118629693985, + 0.06679442524909973, + -0.12897734344005585, + -0.06014731898903847, + 0.01990739442408085, + -0.0070129260420799255, + -0.0365622341632843, + 0.12884365022182465, + 0.012689088471233845, + 0.021939659491181374, + 0.1049538105726242, + -0.10255618393421173, + -0.05850471928715706, + 0.020309578627347946, + 0.04694744199514389, + -0.07767294347286224, + 0.0318603441119194, + 0.030406324192881584, + -0.025112081319093704, + 0.021169589832425117, + 0.08431406319141388, + 0.022275879979133606, + 0.034444332122802734, + 0.04291002079844475, + -0.03720298409461975, + 0.03455735370516777, + -0.02514510229229927, + 0.007068756967782974, + 0.07924430072307587, + 0.029403533786535263, + 0.09271825850009918, + -0.03362305089831352, + -0.031318217515945435, + -0.13683345913887024, + -0.011278930120170116, + 0.03819924220442772, + 0.10330018401145935, + -0.018379729241132736, + 0.00244515435770154, + -0.058840662240982056, + -0.10101937502622604, + 0.05231962352991104, + -0.014565413817763329, + 0.1185389906167984, + -0.009202133864164352, + -0.004613430239260197, + 0.10359296202659607, + 0.015815144404768944, + 0.0018608442042022943, + -0.06523013859987259, + -0.02134281024336815, + -0.01475444994866848, + 0.03678862005472183, + -0.07916846871376038, + -0.03944757580757141, + 0.016942711547017097, + 0.032575272023677826, + -0.03222767263650894, + 0.05971198529005051, + 0.04335341602563858, + 0.038127753883600235, + 0.034792717546224594, + -0.044339898973703384, + -0.021466948091983795, + -0.04879412055015564, + -0.04230405390262604, + -0.0034981335047632456, + -0.008795037865638733, + -0.0518103651702404, + 0.0975133627653122, + 0.04820462316274643, + 0.05235876888036728, + -0.018672702834010124, + -0.051297612488269806, + -0.10104307532310486, + 0.054405152797698975, + 0.005037857685238123, + -0.027715278789401054, + 0.03686122968792915, + 0.044303834438323975, + -0.05497080832719803, + 0.050464704632759094, + 0.08660118281841278, + 0.059202197939157486, + -0.026598041877150536, + 0.02196887880563736, + -0.07423491775989532, + 0.12015064060688019, + 0.12374447286128998, + -0.08341850340366364, + -0.07052579522132874, + -0.019805671647191048, + -0.07627588510513306, + 0.027864931151270866, + -0.05387416481971741, + -0.004778549540787935, + 0.04778347909450531, + -0.019103879109025, + -0.10759029537439346, + -0.1048310399055481, + 0.06568128615617752, + -0.0942007452249527, + 0.0012340828543528914, + -0.0469803661108017, + 0.029530808329582214, + 0.06226624175906181, + 0.05579405277967453, + -0.015114019624888897, + -0.017105918377637863, + 0.08538550138473511, + -0.0633305162191391, + 0.020461436361074448, + 0.09949508309364319, + 0.01492242980748415, + -0.09198328852653503, + -0.007643409073352814, + -0.05490371584892273, + 0.039846695959568024, + -0.022794198244810104, + 0.16857904195785522, + 0.022090043872594833, + -0.04276996850967407, + -0.05042840540409088, + 0.014080922119319439, + -0.0516873337328434, + 0.053385525941848755, + 0.01847190037369728, + 0.06780648976564407, + 0.06270890682935715, + -0.01408656220883131, + 0.13060125708580017, + 0.0571218840777874, + -0.03772319480776787, + -0.05590088292956352, + -0.06338523328304291, + -0.05283889174461365, + 0.05294118821620941, + 0.01910148561000824, + -0.12151288986206055, + -0.0011200555600225925, + 0.04946079105138779, + -0.020088355988264084, + 0.04812328517436981, + 0.14391952753067017, + 0.09139038622379303, + -0.08823636174201965 + ] + }, + "p244_078.wav": { + "name": "p244", + "embedding": [ + 0.055630218237638474, + 0.1067352369427681, + 0.002760309260338545, + 0.020574919879436493, + -0.038188669830560684, + 0.0941101610660553, + -0.09879721701145172, + 0.106082983314991, + -0.08724622428417206, + 0.16249629855155945, + -0.09837605059146881, + 0.12139571458101273, + -0.018660595640540123, + -0.15788023173809052, + -0.06801563501358032, + 0.04094967246055603, + -0.07233306765556335, + -0.012670725584030151, + -0.030045168474316597, + -0.008351616561412811, + 0.05629514530301094, + 0.0474000982940197, + 0.05469570681452751, + -0.006902947090566158, + 0.0279505904763937, + 0.05331993103027344, + 0.006443081423640251, + 0.05493545904755592, + 0.02974170260131359, + -0.11172091215848923, + -0.06248054280877113, + 0.12382711470127106, + -0.023882700130343437, + 0.016918832436203957, + 0.027727941051125526, + 0.0012149892281740904, + 0.03127792105078697, + -0.08427728712558746, + -0.02286512218415737, + -0.004720490891486406, + -0.016724610701203346, + 0.05678213760256767, + -0.008819813840091228, + -0.020762315019965172, + 0.016446148976683617, + -0.020085155963897705, + -0.03122781589627266, + -0.042162854224443436, + -0.08499240130186081, + 0.15938058495521545, + 0.0632585734128952, + 0.016745148226618767, + -0.06889068335294724, + -0.08602249622344971, + 0.11774913221597672, + -0.0037802455481141806, + -0.11549004167318344, + -0.0056350515224039555, + 0.05256785452365875, + 0.19134508073329926, + -0.01288327481597662, + -0.028405997902154922, + 0.041795507073402405, + 0.09828393906354904, + 0.012277642264962196, + 0.09504145383834839, + 0.08769989758729935, + 0.04927289858460426, + 0.031748756766319275, + 0.04910534247756004, + 0.034943435341119766, + 0.07930120080709457, + 0.038688480854034424, + -0.037833523005247116, + 0.025218788534402847, + -0.019915523007512093, + -0.05998706817626953, + 0.021445412188768387, + -0.020591862499713898, + -0.02663932926952839, + -0.0153141338378191, + -0.008027773350477219, + 0.0070179784670472145, + -0.004541077185422182, + -0.03750359266996384, + 0.036534544080495834, + -0.027762984856963158, + -0.024407943710684776, + 0.07256761938333511, + 0.029750952497124672, + 0.02671189419925213, + 0.04122646898031235, + -0.0477452278137207, + -0.11737048625946045, + 0.020861215889453888, + 0.031394343823194504, + 0.0016068917466327548, + 0.08763805776834488, + 0.05224749073386192, + -0.04364006966352463, + 0.10341253876686096, + 0.04862023517489433, + 0.019776152446866035, + 0.0049330126494169235, + -0.11249294877052307, + 0.09830232709646225, + 0.11616941541433334, + -0.014970390126109123, + 0.04488604515790939, + -0.026193594560027122, + 0.10363094508647919, + 0.09409166127443314, + -0.16502316296100616, + -0.08759430050849915, + 0.008928144350647926, + -0.011504007503390312, + 0.0340847410261631, + 0.07251366227865219, + -0.01425595860928297, + 0.01328407134860754, + 0.08133666962385178, + -0.0839223712682724, + -0.058623820543289185, + -0.048220425844192505, + 0.05373107269406319, + -0.07759253680706024, + 0.06660626828670502, + 0.027627989649772644, + -0.011569928377866745, + -0.02027498558163643, + 0.05959482118487358, + -0.04370884597301483, + -0.00953164603561163, + 0.03459625318646431, + -0.06948640942573547, + 0.016997747123241425, + -0.07292965054512024, + 0.001577579416334629, + 0.0519273616373539, + 0.04581351578235626, + 0.040306150913238525, + -0.005860194563865662, + -0.04170579835772514, + -0.07742556929588318, + 0.007583111058920622, + 0.042086441069841385, + 0.028847387060523033, + -0.0007596837822347879, + -0.036219775676727295, + -0.03948000818490982, + -0.046713266521692276, + 0.04621388390660286, + -0.015276334248483181, + 0.0842442438006401, + 0.014856208115816116, + 0.028215540573000908, + 0.08941014111042023, + 0.01986808329820633, + -0.019871439784765244, + -0.05743054300546646, + -0.02193480357527733, + 0.040594082325696945, + 0.04170772805809975, + -0.06216242536902428, + -0.06606973707675934, + 0.015140027739107609, + 0.003207495668902993, + -0.026440391317009926, + 0.029404249042272568, + 0.05135619267821312, + 0.017684534192085266, + 0.045513201504945755, + -0.06714869290590286, + 0.024346038699150085, + -0.11197793483734131, + -0.04892519861459732, + -0.016080524772405624, + -0.05219294875860214, + -0.009945571422576904, + 0.08835085481405258, + 0.027112849056720734, + -0.0024880480486899614, + -0.013584609143435955, + -0.07527217268943787, + -0.05660012736916542, + 0.06697279959917068, + 0.07509242743253708, + 0.037866540253162384, + 0.038694173097610474, + 0.046378105878829956, + 0.0064362529665231705, + 0.07628372311592102, + 0.05895989015698433, + 0.10219667106866837, + -0.009982917457818985, + -0.01127435453236103, + -0.07062623649835587, + 0.06987965106964111, + 0.08156045526266098, + -0.0872301384806633, + -0.11450573056936264, + -0.04452529549598694, + -0.0767161026597023, + 0.08281093835830688, + -0.015804573893547058, + -0.0020173536613583565, + 0.021954553201794624, + -0.03985925018787384, + -0.10587214678525925, + -0.0773933157324791, + 0.13195228576660156, + -0.03250063955783844, + -0.05269068107008934, + -0.07849941402673721, + 0.051247190684080124, + 0.07176458835601807, + 0.03178824111819267, + -0.020844925194978714, + 0.03256065398454666, + 0.04053771495819092, + -0.0851791724562645, + -0.020112428814172745, + 0.03442341834306717, + -0.010670512914657593, + -0.09209192544221878, + 0.03319999575614929, + -0.0941704660654068, + 0.07270291447639465, + -0.08972466737031937, + 0.16377297043800354, + -0.0324772484600544, + -0.06603601574897766, + -0.08975996822118759, + 0.08654289692640305, + -0.03915800899267197, + 0.03179012984037399, + 0.06263607740402222, + 0.049225758761167526, + 0.02835780568420887, + -0.1102827712893486, + 0.07609602808952332, + 0.023705288767814636, + -0.016242744401097298, + -0.07431349158287048, + -0.045934394001960754, + -0.03657393902540207, + 0.007536218035966158, + -0.01845720410346985, + -0.0711108073592186, + 0.010064364410936832, + 0.0036284979432821274, + 0.007677001412957907, + 0.08542200177907944, + 0.12095218151807785, + 0.04364725574851036, + -0.10538380593061447 + ] + }, + "p244_062.wav": { + "name": "p244", + "embedding": [ + 0.021794212982058525, + 0.07907729595899582, + -0.02841346152126789, + -0.015859708189964294, + -0.06424835324287415, + 0.06387975811958313, + -0.11144575476646423, + 0.12209363281726837, + -0.06114812195301056, + 0.13196012377738953, + -0.07439765334129333, + 0.09188421815633774, + -0.05453932285308838, + -0.14907890558242798, + -0.0390595979988575, + 0.026605786755681038, + -0.04232645779848099, + -0.021957313641905785, + -0.087961845099926, + -0.04156852141022682, + 0.03828243538737297, + 0.007931772619485855, + -0.02519194968044758, + -0.008817838504910469, + 0.017104677855968475, + 0.05094083026051521, + 0.0004894123412668705, + 0.031202970072627068, + 0.002435644157230854, + -0.011450054123997688, + -0.015073923394083977, + 0.09006287902593613, + -0.05852273106575012, + 0.02499542385339737, + 0.06425312906503677, + 0.012921303510665894, + -0.025711527094244957, + -0.042459890246391296, + 0.0018460024148225784, + 0.026552977040410042, + -0.0718337818980217, + 0.06952087581157684, + 0.02226673811674118, + -0.0020950566977262497, + 0.0315837636590004, + 0.0329069122672081, + 0.0022115297615528107, + -0.06436945497989655, + -0.08765766024589539, + 0.1378021538257599, + 0.06539446115493774, + -0.028171617537736893, + -0.06404684484004974, + -0.06096411123871803, + 0.12313007563352585, + -0.04145287349820137, + -0.1264445036649704, + -0.04790085554122925, + 0.06480594724416733, + 0.13758891820907593, + -0.06513374298810959, + -0.02956644631922245, + -0.0007622246630489826, + 0.10006635636091232, + 0.05754372850060463, + 0.0836755633354187, + 0.09292846918106079, + 0.11577112227678299, + -0.026309117674827576, + 0.0005640224553644657, + 0.07485707104206085, + 0.04527078941464424, + 0.0684117004275322, + -0.0035286853089928627, + 0.034221578389406204, + 0.010326101444661617, + 0.0006285249255597591, + 0.024298526346683502, + -0.0360148586332798, + -0.010448945686221123, + -0.02834143489599228, + 0.0246539618819952, + -0.009179140441119671, + 0.0022719306871294975, + -0.02260502427816391, + 0.06468090415000916, + 0.04094701632857323, + -0.015857215970754623, + 0.06263691931962967, + 0.06454430520534515, + -0.028945326805114746, + 0.0730544775724411, + -0.07714489102363586, + -0.081499382853508, + -0.004363709129393101, + -0.027288399636745453, + 0.02606525830924511, + 0.0558144748210907, + 0.025309979915618896, + 0.005748945754021406, + 0.09176786243915558, + 0.04580090567469597, + -0.001802746206521988, + 0.04070059210062027, + -0.0878300666809082, + 0.11983676254749298, + 0.07847346365451813, + -0.035752587020397186, + 0.014184404164552689, + -0.04365314543247223, + 0.07216737419366837, + 0.0494089275598526, + -0.09954509139060974, + -0.07211105525493622, + 0.046957388520240784, + 0.029278963804244995, + -0.02720465511083603, + 0.09144176542758942, + -0.024550890550017357, + -0.015109876170754433, + 0.12353020161390305, + -0.06131336838006973, + -0.03163054585456848, + -0.00985715538263321, + 0.03938358277082443, + -0.03256215155124664, + 0.02536025643348694, + 0.04210666939616203, + 0.013145418837666512, + 0.019744323566555977, + 0.11745338141918182, + 0.002565953880548477, + -0.0046151974238455296, + 0.004640447441488504, + -0.01160176657140255, + 0.03936464712023735, + 0.006603270769119263, + -0.020428884774446487, + 0.07607868313789368, + 0.08538609743118286, + 0.041804492473602295, + 0.014903525821864605, + -0.039826810359954834, + -0.08922447264194489, + 0.013417287729680538, + 0.05620255321264267, + 0.07754065096378326, + -0.03470059856772423, + 0.017016157507896423, + -0.0518205426633358, + -0.08239337801933289, + 0.0068237208761274815, + -0.009328922256827354, + 0.09967579692602158, + -0.049350544810295105, + -0.014919477514922619, + 0.11594163626432419, + 0.0040334854274988174, + -0.008862588554620743, + -0.05128038302063942, + -0.01910565420985222, + -0.006497434340417385, + 0.057690273970365524, + -0.06555988639593124, + -0.0783952847123146, + -0.002121283207088709, + 0.03951757401227951, + 0.0036794249899685383, + 0.05851081758737564, + 0.04518513381481171, + -0.0038719484582543373, + 0.036255642771720886, + -0.08122381567955017, + 0.01836446113884449, + -0.12228478491306305, + -0.028511982411146164, + -0.011650661937892437, + -0.05292245000600815, + 0.0061986492946743965, + 0.07129751890897751, + -0.017159277573227882, + 0.025866545736789703, + 0.01357787661254406, + -0.13572727143764496, + -0.06041032820940018, + 0.06825228780508041, + 0.07815296202898026, + -0.016630569472908974, + 0.04512578248977661, + 0.0904008150100708, + -0.03705696761608124, + 0.029913946986198425, + 0.0918593555688858, + 0.11844207346439362, + -0.031447071582078934, + 0.024922136217355728, + -0.056631527841091156, + 0.08434765040874481, + 0.03192727267742157, + -0.09711845219135284, + -0.0736217349767685, + -0.0392693355679512, + -0.01587245613336563, + 0.0004422329366207123, + -0.03323450684547424, + 0.022801723331212997, + 0.021854812279343605, + -0.002091458300128579, + -0.07529273629188538, + -0.0779525488615036, + 0.05402090400457382, + -0.07683536410331726, + 0.016498014330863953, + -0.06550651788711548, + 0.02364080771803856, + 0.09570302069187164, + 0.05481031537055969, + -0.009080225601792336, + 0.01197740901261568, + 0.05472739040851593, + -0.03618208318948746, + -0.010378731414675713, + 0.019115785136818886, + 0.007613572292029858, + -0.06855800747871399, + 0.0037479265592992306, + -0.07659077644348145, + 0.07853808999061584, + -0.03008956089615822, + 0.1388910412788391, + -0.008087326772511005, + -0.04959932342171669, + -0.07068032026290894, + 0.008142957463860512, + -0.03131917491555214, + 0.053351350128650665, + 0.04390658438205719, + 0.0793236494064331, + 0.027297910302877426, + -0.02160029113292694, + 0.15010517835617065, + 0.04446285963058472, + -0.04441145062446594, + -0.048087507486343384, + -0.05718188360333443, + -0.04617037624120712, + -0.010363179259002209, + 0.020320087671279907, + -0.06806303560733795, + 0.014382373541593552, + -0.003251938149333, + -0.051646891981363297, + 0.040618300437927246, + 0.1404690146446228, + 0.11432871222496033, + -0.12149269878864288 + ] + }, + "p244_254.wav": { + "name": "p244", + "embedding": [ + 0.02267284132540226, + 0.08950132131576538, + 0.001772264949977398, + -0.007002172060310841, + -0.043781403452157974, + 0.07006856054067612, + -0.12842966616153717, + 0.1217845007777214, + -0.06789173930883408, + 0.15788127481937408, + -0.07104265689849854, + 0.08979351818561554, + -0.024333367124199867, + -0.20156364142894745, + -0.03780628368258476, + 0.05626312643289566, + -0.06781038641929626, + -0.011971860192716122, + -0.0709281712770462, + -0.016078006476163864, + 0.054661765694618225, + 0.03927809000015259, + 0.014632712118327618, + -0.026649275794625282, + 0.01823336072266102, + 0.05039310082793236, + 0.019736649468541145, + 0.055123135447502136, + 0.025863392278552055, + -0.08084969967603683, + -0.03343670070171356, + 0.10604381561279297, + -0.031401269137859344, + 0.03500845283269882, + 0.06250065565109253, + -0.006048311945050955, + 0.017024002969264984, + -0.041905052959918976, + -0.01837330125272274, + 0.030735468491911888, + -0.039884667843580246, + 0.06538999080657959, + 0.030266832560300827, + 0.0221833698451519, + 0.057657185941934586, + 0.029406949877738953, + -0.02092100866138935, + -0.06744278967380524, + -0.07698270678520203, + 0.18445947766304016, + 0.08587168902158737, + -0.034685175865888596, + -0.03320767357945442, + -0.10137896984815598, + 0.10593029111623764, + -0.02107778750360012, + -0.15286000072956085, + -0.06655935198068619, + 0.10060349851846695, + 0.15369179844856262, + -0.020365405827760696, + -0.02726658619940281, + 0.013924109749495983, + 0.12650908529758453, + -0.012485582381486893, + 0.1056627556681633, + 0.043741028755903244, + 0.0696001797914505, + 0.013850214891135693, + 0.02924380451440811, + 0.03949317708611488, + 0.06465169042348862, + 0.010466444306075573, + -0.019939659163355827, + 0.048722002655267715, + 0.0037677884101867676, + -0.027086449787020683, + 0.024974798783659935, + -0.02324608340859413, + 0.01931760273873806, + -0.0223697442561388, + 0.02485673315823078, + -0.011648105457425117, + -0.01984689012169838, + -0.014308599755167961, + 0.04988565295934677, + -0.02361106500029564, + 0.014154995791614056, + 0.06518375873565674, + 0.036780040711164474, + 0.019127173349261284, + 0.04675702378153801, + -0.03646767511963844, + -0.10256878286600113, + -0.0009558231104165316, + 0.016554323956370354, + -0.016134019941091537, + 0.04751855880022049, + 0.01622507907450199, + -0.03139703348278999, + 0.11870048195123672, + 0.038625456392765045, + -0.017814885824918747, + 0.03130226954817772, + -0.11381719261407852, + 0.11681395024061203, + 0.07140105217695236, + 0.008671518415212631, + 0.04424026608467102, + -0.06266017258167267, + 0.09019289165735245, + 0.0737273171544075, + -0.14745956659317017, + -0.0777050107717514, + 0.03056967817246914, + 0.0023697202559560537, + -0.024548741057515144, + 0.11161129921674728, + -0.008922174572944641, + -0.010600641369819641, + 0.1171237975358963, + -0.0916517972946167, + -0.05656455084681511, + -0.024845119565725327, + 0.04811275377869606, + -0.08362922072410583, + 0.03778211399912834, + 0.038325369358062744, + -0.03550461307168007, + 0.021209044381976128, + 0.09921400249004364, + -0.02430238574743271, + 0.0280729029327631, + 0.014888405799865723, + -0.05205099657177925, + 0.023402482271194458, + -0.06809167563915253, + 0.014149989001452923, + 0.05656815320253372, + 0.06378643214702606, + 0.04633314907550812, + -0.004467300605028868, + -0.0804833471775055, + -0.10245928168296814, + -0.002957882359623909, + 0.013201483525335789, + 0.05815167352557182, + -0.00012937959400005639, + 0.0006998542230576277, + -0.039799969643354416, + -0.08054407685995102, + 0.010311481542885303, + -0.03324545919895172, + 0.10333181172609329, + -0.009456876665353775, + -0.002893076278269291, + 0.10194623470306396, + 0.015406377613544464, + -0.020343879237771034, + -0.07443255931138992, + -0.04750433564186096, + 0.008626674301922321, + 0.03097820095717907, + -0.08455244451761246, + -0.03965308889746666, + 0.023441532626748085, + 0.027392562478780746, + 0.014931093901395798, + 0.03306759521365166, + 0.04002920165657997, + 0.013606026768684387, + 0.05221894755959511, + -0.08975961804389954, + 0.01714259944856167, + -0.11647796630859375, + -0.06259243935346603, + -0.01730668731033802, + -0.037339240312576294, + -0.00779766496270895, + 0.09336385875940323, + -0.025324106216430664, + 0.012019439600408077, + 0.00288563990034163, + -0.08692871779203415, + -0.08279089629650116, + 0.0888817235827446, + 0.08361510932445526, + 0.006263306830078363, + 0.06132703647017479, + 0.0456986203789711, + -0.047159235924482346, + 0.06329408288002014, + 0.05485544353723526, + 0.10920080542564392, + -0.008428208529949188, + 0.033179763704538345, + -0.0736638531088829, + 0.07989007234573364, + 0.06301747262477875, + -0.09383939951658249, + -0.07224112749099731, + -0.017554650083184242, + -0.05685288831591606, + 0.050482284277677536, + -0.022692793980240822, + -0.009400018490850925, + 0.016151705756783485, + 0.005223544780164957, + -0.08291236311197281, + -0.05807602405548096, + 0.06960805505514145, + -0.06974229216575623, + -0.019771402701735497, + -0.04360705614089966, + 0.0423688106238842, + 0.10989385843276978, + 0.07894083857536316, + -0.01238461583852768, + -0.006537243723869324, + 0.07101429253816605, + -0.06634881347417831, + -0.01016603410243988, + 0.016114355996251106, + 0.005355095025151968, + -0.07101620733737946, + 0.02863890677690506, + -0.09414098411798477, + 0.03883692994713783, + -0.07073958963155746, + 0.14297594130039215, + -0.014428096823394299, + -0.07590172439813614, + -0.08147718757390976, + 0.04531485214829445, + -0.04757470265030861, + 0.023833908140659332, + 0.029940733686089516, + 0.05362982675433159, + 0.06394033133983612, + -0.05830772966146469, + 0.12204479426145554, + 0.027873637154698372, + -0.013711145147681236, + -0.04286234453320503, + -0.04472770169377327, + -0.041315849870443344, + 0.009365711361169815, + 0.011626794934272766, + -0.10894149541854858, + -0.009801985695958138, + 0.022848108783364296, + -0.027861744165420532, + 0.07467971742153168, + 0.1273859292268753, + 0.05719268321990967, + -0.1358308345079422 + ] + }, + "p244_271.wav": { + "name": "p244", + "embedding": [ + 0.057645201683044434, + 0.0522216260433197, + -0.016730522736907005, + 0.04023532569408417, + -0.04599135369062424, + 0.01421796903014183, + -0.14918893575668335, + 0.13732680678367615, + -0.006119074299931526, + 0.12446120381355286, + -0.06242717057466507, + 0.12070503830909729, + -0.008513492532074451, + -0.1773672103881836, + -0.0035244268365204334, + 0.05956079065799713, + -0.023398486897349358, + -0.04099506139755249, + -0.022574730217456818, + -0.04124479740858078, + 0.039195407181978226, + 0.06727701425552368, + 0.042618099600076675, + 0.00013865064829587936, + 0.03249586373567581, + 0.06079108268022537, + -0.011989271268248558, + 0.03230298310518265, + -0.0014632532838732004, + -0.0675337165594101, + -0.013594978488981724, + 0.07291044294834137, + -0.035699307918548584, + -0.00637893658131361, + 0.026181882247328758, + -0.009651538915932178, + 0.0035682141315191984, + -0.08618289977312088, + -0.05564896762371063, + 0.0007229861803352833, + -0.05842367559671402, + 0.0689009502530098, + 0.028169099241495132, + -0.046671390533447266, + 0.051316551864147186, + 0.010972786694765091, + -0.02745550125837326, + -0.0518372617661953, + -0.13427606225013733, + 0.16263169050216675, + 0.06281419843435287, + 0.0428144708275795, + -0.07910054922103882, + -0.07005368173122406, + 0.10406118631362915, + -0.01458258368074894, + -0.08127206563949585, + -0.02513802796602249, + 0.05648406594991684, + 0.17644548416137695, + -0.03262477368116379, + -0.047475408762693405, + 0.06382229924201965, + 0.09621010720729828, + 0.0806242972612381, + 0.045787516981363297, + 0.10362613201141357, + 0.10905762016773224, + -0.01700802892446518, + -0.005089037586003542, + 0.0375291146337986, + 0.10394600033760071, + 0.056084200739860535, + -0.0007612472400069237, + 0.0024307407438755035, + 0.03590548038482666, + -0.038377776741981506, + -0.039751481264829636, + -0.033238984644412994, + -0.016377098858356476, + 0.005728748627007008, + 0.008211709558963776, + 0.038420505821704865, + 0.041770704090595245, + -0.0430108867585659, + 0.05411100015044212, + 0.04587821662425995, + -0.032544154673814774, + 0.06098322942852974, + -0.008483397774398327, + -0.0010454041184857488, + 0.061437271535396576, + -0.09184131026268005, + -0.07204633951187134, + 0.020317886024713516, + 0.02035820670425892, + 0.009742151945829391, + 0.06786319613456726, + 0.05574149638414383, + -0.04042826592922211, + 0.14737583696842194, + 0.034708138555288315, + -0.009336868301033974, + 0.014033161103725433, + -0.07744282484054565, + 0.09101902693510056, + 0.103970468044281, + -0.027645952999591827, + 0.07163559645414352, + -0.05604071915149689, + 0.049251753836870193, + 0.05181020870804787, + -0.147222638130188, + -0.07301433384418488, + 0.034258291125297546, + 0.01853165216743946, + 0.004912801552563906, + 0.1522858738899231, + 0.012938303872942924, + 0.08543366193771362, + 0.11822488903999329, + -0.10506215691566467, + -0.05713406205177307, + -0.012322880327701569, + 0.07293687760829926, + -0.0871485024690628, + 0.0767558366060257, + 0.05422208458185196, + -0.020910784602165222, + 0.021453406661748886, + 0.04741090536117554, + -0.018971379846334457, + 0.001412482582964003, + -0.025089384987950325, + -0.04493342712521553, + 0.020168103277683258, + -0.03967045992612839, + -0.035306405276060104, + 0.045289862900972366, + 0.03356914967298508, + 0.04138214513659477, + -0.004025834612548351, + -0.04669450595974922, + -0.1451512575149536, + 0.018440131098031998, + 0.016490837559103966, + 0.0952434241771698, + -0.006791363470256329, + -0.029295364394783974, + -0.05709148943424225, + -0.061325572431087494, + 0.005849067587405443, + -0.01900847628712654, + 0.07369867712259293, + -0.015769490972161293, + 0.02874220535159111, + 0.08293113112449646, + 0.024048801511526108, + 0.005152805242687464, + -0.011926950886845589, + -0.03857610374689102, + -0.0041598966345191, + 0.04460723325610161, + -0.05170983448624611, + -0.08146385103464127, + -0.023161929100751877, + 0.0389215350151062, + -0.030733171850442886, + 0.05901958793401718, + 0.008873896673321724, + 0.029586229473352432, + 0.0038467594422399998, + -0.0661846473813057, + 0.003719617612659931, + -0.09510025382041931, + -0.07293621450662613, + 0.01977679505944252, + 0.008334549143910408, + -0.031437139958143234, + 0.0715172216296196, + 0.041669655591249466, + 0.07302892208099365, + -0.0416928306221962, + -0.0628652423620224, + -0.09711092710494995, + 0.02791094407439232, + 0.035985175520181656, + -0.014699403196573257, + 0.021091777831315994, + 0.05986753851175308, + -0.012188548222184181, + 0.05124721676111221, + 0.05844375491142273, + 0.07975989580154419, + 0.0036592292599380016, + 0.008387072943150997, + -0.054620251059532166, + 0.12821269035339355, + 0.1001145988702774, + -0.04460150748491287, + -0.07461026310920715, + -0.03888298571109772, + -0.10516244918107986, + 0.04814879223704338, + 0.012637008912861347, + 0.0189889557659626, + 0.0300883986055851, + -0.00805343221873045, + -0.12038549035787582, + -0.06939695030450821, + 0.06515085697174072, + -0.053924404084682465, + -0.01570354960858822, + -0.08085495978593826, + 0.03609049320220947, + 0.11877266317605972, + 0.03245849162340164, + 0.017538949847221375, + -0.04086510092020035, + 0.028179019689559937, + -0.04456644877791405, + 0.01193064171820879, + 0.08079929649829865, + 0.0485471673309803, + -0.1125328317284584, + -0.009575989097356796, + -0.06625263392925262, + 0.04212479665875435, + -0.023885540664196014, + 0.12376153469085693, + 0.029859911650419235, + -0.04269330948591232, + -0.10050852596759796, + 0.03531353920698166, + -0.0015867208130657673, + 0.07996632903814316, + 0.0156500656157732, + 0.06358222663402557, + 0.06748707592487335, + -0.08029983937740326, + 0.09023921191692352, + 0.05495235696434975, + -0.04432224482297897, + -0.06448254734277725, + -0.07485339045524597, + -0.02856951765716076, + 0.010917482897639275, + -0.012713112868368626, + -0.05862396955490112, + -0.022699255496263504, + 0.015809088945388794, + 0.0043995073065161705, + 0.05281329154968262, + 0.11953572928905487, + 0.04049871116876602, + -0.12376582622528076 + ] + }, + "p244_203.wav": { + "name": "p244", + "embedding": [ + 0.05320492386817932, + 0.047799136489629745, + 0.011436599306762218, + -0.008054366335272789, + -0.023845171555876732, + 0.06632715463638306, + -0.09804938733577728, + 0.09147490561008453, + 0.0045898850075900555, + 0.06327089667320251, + -0.06883655488491058, + 0.07314512133598328, + 0.0008444140548817813, + -0.14797191321849823, + 0.006608190946280956, + 0.04039071500301361, + -0.024048037827014923, + -0.004019101615995169, + -0.027416495606303215, + -0.0368630588054657, + 0.011207511648535728, + 0.04311623424291611, + 0.049417950212955475, + -0.024218495935201645, + 0.03420667350292206, + 0.06108112633228302, + -0.0023637874983251095, + 0.01371063943952322, + -0.022748593240976334, + -0.049748972058296204, + -0.030147580429911613, + 0.06466563045978546, + -0.04744365066289902, + -0.022828012704849243, + 0.03418948873877525, + -0.012585325166583061, + 0.028086630627512932, + -0.07548638433218002, + -0.02437128871679306, + 0.038551606237888336, + -0.059517960995435715, + 0.07637225836515427, + 0.04218212887644768, + -0.0038494295440614223, + 0.026847651228308678, + 0.009754986502230167, + -0.006152359768748283, + -0.03972157835960388, + -0.09933986514806747, + 0.15292508900165558, + 0.04567469656467438, + 0.01721138320863247, + -0.07361916452646255, + -0.027512740343809128, + 0.05169306695461273, + 0.00804288499057293, + -0.05235716700553894, + -0.010487522929906845, + 0.047256242483854294, + 0.08451905101537704, + 0.01697452738881111, + -0.02971804141998291, + 0.05106857419013977, + 0.07204754650592804, + 0.012445634230971336, + 0.025537747889757156, + 0.09421484917402267, + 0.09218649566173553, + -0.015106268227100372, + 0.005118653178215027, + 0.039460767060518265, + 0.04211316257715225, + 0.057070206850767136, + -0.014465108513832092, + 0.02861526608467102, + -0.016212793067097664, + -0.023425936698913574, + -0.0255250483751297, + -0.019385553896427155, + -0.02792409062385559, + 0.04901750013232231, + 0.008402163162827492, + 0.026795990765094757, + 0.04951261729001999, + -0.04182060807943344, + 0.03410498797893524, + 0.02267496846616268, + 0.05738399177789688, + 0.06915000081062317, + 0.0239560604095459, + 0.02781721204519272, + 0.03333546966314316, + -0.06266138702630997, + -0.05615337938070297, + 0.03887941688299179, + 0.03169476240873337, + 0.015654591843485832, + 0.04569553956389427, + 0.03876877576112747, + -0.0370047427713871, + 0.1081358790397644, + 0.008898444473743439, + -0.0037924880161881447, + -0.004547609481960535, + -0.059149276465177536, + 0.07554659247398376, + 0.09009566158056259, + -0.01851879060268402, + 0.05776584893465042, + -0.04132988676428795, + 0.04004490748047829, + 0.048314645886421204, + -0.09926323592662811, + -0.03564335033297539, + 0.011855682358145714, + 0.007635089568793774, + 0.03141538053750992, + 0.12859253585338593, + 0.009843738749623299, + 0.045731477439403534, + 0.06879091262817383, + -0.09167176485061646, + -0.037506163120269775, + 0.02302504889667034, + 0.017064429819583893, + -0.03809773176908493, + 0.01874214969575405, + 0.04098629206418991, + 0.010148350149393082, + -0.028210317716002464, + 0.036555882543325424, + 0.0032372898422181606, + 0.0311819426715374, + -0.04642470180988312, + 0.01508938055485487, + 0.018128652125597, + -0.013283981010317802, + -0.03218214213848114, + 0.027341201901435852, + 0.036524105817079544, + 0.010732549242675304, + 0.01738336682319641, + -0.04456997662782669, + -0.12605251371860504, + -0.008674852550029755, + 0.0010722950100898743, + 0.03957218676805496, + -0.02159672975540161, + -0.041124794632196426, + -0.05869763344526291, + -0.01643262431025505, + 0.0005537364631891251, + -0.01112966425716877, + 0.024158060550689697, + 0.05013992637395859, + -0.03911668807268143, + 0.0631740391254425, + 0.013196773827075958, + 0.005221178289502859, + -0.020275859162211418, + -0.05122780054807663, + 0.013813035562634468, + 0.030995093286037445, + -0.03232130408287048, + -0.07681521028280258, + -0.022009892389178276, + -0.027872085571289062, + -0.00691666966304183, + 0.030607599765062332, + 0.043206244707107544, + 0.0057489401660859585, + -0.03163832426071167, + -0.08502250164747238, + 0.015029589645564556, + -0.05445132777094841, + -0.06380262225866318, + 0.047905921936035156, + 0.014210125431418419, + -0.02075188420712948, + 0.09374929964542389, + 0.027967195957899094, + 0.04231597110629082, + -0.06153659150004387, + -0.022731691598892212, + -0.012186696752905846, + 0.03814654424786568, + 0.03575189411640167, + -0.00915575958788395, + 0.033084526658058167, + 0.020828580483794212, + -0.016791023313999176, + 0.0513828806579113, + 0.03743875026702881, + 0.052771344780921936, + -0.03646264970302582, + -0.0021127290092408657, + 0.0041466159746050835, + 0.09631451964378357, + 0.033778030425310135, + -0.03219907730817795, + -0.04204895719885826, + 0.0024648234248161316, + -0.054525911808013916, + 0.02790418267250061, + 0.00226418930105865, + 0.016059136018157005, + 0.02665839157998562, + -0.009727763012051582, + -0.07046971470117569, + -0.06503443419933319, + 0.03668923303484917, + -0.03864191100001335, + -0.019197283312678337, + -0.06485207378864288, + 0.05504381284117699, + 0.0919666439294815, + 0.013247310183942318, + -0.011289517395198345, + -0.012406980618834496, + -0.0014653801918029785, + -0.008494708687067032, + -0.009265957400202751, + 0.025266608223319054, + 0.05778200924396515, + -0.08423022925853729, + -0.005291566252708435, + -0.06840603053569794, + 0.041275035589933395, + -0.01362069882452488, + 0.07468315958976746, + 0.05122219771146774, + -0.02949412912130356, + -0.07358384877443314, + 0.02857038378715515, + 0.01028354186564684, + 0.03694801777601242, + 0.007761284708976746, + 0.016958113759756088, + 0.047975361347198486, + -0.0629507526755333, + 0.07172977924346924, + 0.034149229526519775, + -0.04743167385458946, + -0.05342298373579979, + -0.015073215588927269, + -0.012188675813376904, + 0.02875084988772869, + -0.013990381732583046, + -0.05342768132686615, + 0.009889054112136364, + 0.035517312586307526, + 0.04193177819252014, + 0.017920322716236115, + 0.08575962483882904, + 0.022102240473031998, + -0.07489384710788727 + ] + }, + "p244_152.wav": { + "name": "p244", + "embedding": [ + 0.06568039953708649, + 0.07050301134586334, + 0.015121426433324814, + 0.03542715683579445, + -0.007639400660991669, + 0.000384732149541378, + -0.11704064905643463, + 0.06026551127433777, + 0.06049394607543945, + 0.0890810489654541, + -0.11136486381292343, + 0.06300534307956696, + -0.03144402056932449, + -0.11153105646371841, + 0.011645074933767319, + 0.004853077232837677, + -0.021283747628331184, + -0.019176630303263664, + -0.014977691695094109, + -0.03683779016137123, + 0.031739816069602966, + 0.028890985995531082, + 0.051894064992666245, + -0.051564548164606094, + -0.01084556058049202, + 0.03681202605366707, + -0.009445001371204853, + -0.02565644681453705, + 0.006432653404772282, + -0.007784731686115265, + 0.05918963626027107, + 0.011419139802455902, + -0.00481805857270956, + 0.04123397544026375, + 0.0390835665166378, + 0.037033021450042725, + -0.023634470999240875, + -0.0033903345465660095, + -0.015534022822976112, + 0.05760395526885986, + -0.049196623265743256, + 0.07449229061603546, + 0.05927181988954544, + -0.06591930985450745, + 0.054184507578611374, + -0.0069709280505776405, + -0.02410479262471199, + 0.012685774825513363, + -0.0924324095249176, + 0.1296849548816681, + 0.032415907829999924, + 0.049245622009038925, + -0.06852807104587555, + 0.011016981676220894, + 0.06610535085201263, + -0.0039020217955112457, + -0.0638691857457161, + -0.03165901079773903, + 0.02272486872971058, + 0.0452842190861702, + -0.02567441388964653, + -0.05181419476866722, + -0.006496144458651543, + 0.03539993241429329, + 0.024695932865142822, + 0.03415378928184509, + 0.07912105321884155, + 0.10679687559604645, + -0.033390022814273834, + 0.01811676099896431, + 0.07058060169219971, + 0.046678733080625534, + 0.05361613631248474, + -0.010610930621623993, + 0.008627021685242653, + -0.033300288021564484, + -0.028978338465094566, + -0.008193012326955795, + 0.034127965569496155, + -0.022994857281446457, + -0.005106198135763407, + -0.054289668798446655, + 0.00948486290872097, + 0.03841902315616608, + -0.0521470308303833, + -0.02019362896680832, + 0.08034151792526245, + -0.01214711181819439, + 0.05394124984741211, + 0.06095908582210541, + 0.0067995465360581875, + 0.015406320802867413, + -0.045767344534397125, + -0.06889083981513977, + -0.017969008535146713, + -0.0266830213367939, + 0.06068703159689903, + 0.03987390547990799, + 0.0448191873729229, + 0.02920946106314659, + 0.06690320372581482, + 0.01593732088804245, + -0.02332831360399723, + -0.027879005298018456, + -0.07674582302570343, + 0.09171070903539658, + 0.09511812776327133, + -0.03631272912025452, + 0.00815240852534771, + -0.01907288283109665, + 0.011825218796730042, + 0.03335467353463173, + -0.03220153972506523, + -0.024864561855793, + 0.015264173969626427, + 0.06606915593147278, + 0.050294890999794006, + 0.10389401018619537, + 0.030422233045101166, + 0.014141361229121685, + 0.11506776511669159, + -0.05551592633128166, + -0.037076231092214584, + -0.019839921966195107, + 0.0027153100818395615, + -0.07247728109359741, + 0.06413573026657104, + 0.046325549483299255, + 0.012318139895796776, + 0.002652701223269105, + 0.04738154262304306, + 0.0047084493562579155, + 0.021685883402824402, + -0.0804065614938736, + 0.02493578940629959, + 0.06412941962480545, + -0.004564137198030949, + 0.020893307402729988, + 0.07060474157333374, + 0.004942305386066437, + 0.08554500341415405, + 0.07560121268033981, + -0.017686428502202034, + -0.09360737353563309, + 0.03937064856290817, + 0.04402584582567215, + 0.011577093973755836, + -0.049636200070381165, + -0.04219415411353111, + -0.03464174270629883, + -0.050765715539455414, + 0.07800976932048798, + -0.03237457573413849, + 0.05607454851269722, + 0.03024885803461075, + -0.025695523247122765, + 0.11722832918167114, + -0.015280376188457012, + 0.0021266797557473183, + -0.03746919333934784, + -0.06223081052303314, + -0.02988281100988388, + 0.028580032289028168, + -0.1587752401828766, + -0.05835855007171631, + -0.06271016597747803, + 0.018332980573177338, + 0.02145416848361492, + -0.009620556607842445, + 0.07113045454025269, + -0.030116654932498932, + 0.01783253811299801, + -0.0028718672692775726, + 0.005618592724204063, + -0.04031171277165413, + -0.10369075834751129, + -0.008024596609175205, + -0.03695688396692276, + 0.012727197259664536, + 0.07196111977100372, + -0.0263172946870327, + 0.023576980456709862, + -0.025948306545615196, + -0.07018887996673584, + -0.05338285118341446, + 0.040716271847486496, + 0.008761843666434288, + -0.03361821919679642, + 0.0235324427485466, + 0.053621962666511536, + -0.030684035271406174, + 0.02026905119419098, + -0.0004247799515724182, + 0.08760958909988403, + -0.07562284916639328, + 0.007745894603431225, + -0.027319807559251785, + 0.05717445909976959, + 0.0958368331193924, + -0.031041249632835388, + -0.056582316756248474, + -0.08980703353881836, + -0.01526031643152237, + -0.0061603933572769165, + -0.03898739069700241, + -0.02920238859951496, + -0.012367170304059982, + -0.017699792981147766, + -0.02984776720404625, + -0.09936054050922394, + -0.017922768369317055, + 0.003220178186893463, + 0.016064416617155075, + -0.08474445343017578, + 0.016015449538826942, + -0.03626994043588638, + 0.016837196424603462, + -0.0303809717297554, + 0.0441390797495842, + -0.02560199610888958, + -0.03497883677482605, + -0.03319574519991875, + 0.02868572250008583, + 0.05245283991098404, + 0.002589680254459381, + -0.06905016303062439, + -0.060260094702243805, + 0.05613602697849274, + -0.017674973234534264, + 0.05546843633055687, + 0.007831376045942307, + -0.024376019835472107, + 0.011616818606853485, + -0.0378858782351017, + -0.025648297742009163, + 0.017465008422732353, + 0.05622566118836403, + 0.01388239860534668, + 0.010057474486529827, + -0.02033090963959694, + 0.06108627840876579, + 0.054762739688158035, + 0.02007434144616127, + -0.04783332347869873, + -0.011268765665590763, + -0.04247445985674858, + 0.000974167138338089, + -0.003802998922765255, + -0.052601687610149384, + 0.04212568327784538, + -0.012764737010002136, + 0.035188090056180954, + 0.008754042908549309, + 0.07769253104925156, + 0.03181547671556473, + -0.05080236494541168 + ] + }, + "p244_168.wav": { + "name": "p244", + "embedding": [ + 0.056565508246421814, + 0.10569661855697632, + 0.01976991631090641, + 0.016167454421520233, + -0.01686066761612892, + 0.05318206548690796, + -0.09300638735294342, + 0.1022619903087616, + -0.0028305761516094208, + 0.11097203195095062, + -0.07566644251346588, + 0.07825879007577896, + -0.04601753130555153, + -0.13325703144073486, + -0.03003876470029354, + 0.037246305495500565, + -0.06474657356739044, + -0.014575082808732986, + -0.0264684297144413, + -0.021955300122499466, + 0.009934083558619022, + 0.018253004178404808, + 0.043765172362327576, + -0.01032787561416626, + 0.004264790564775467, + 0.0464717335999012, + -0.0137382997199893, + 0.01764575019478798, + 0.003650949103757739, + -0.05782259255647659, + -0.010250275954604149, + 0.06251734495162964, + -0.02665332891047001, + 0.02203410305082798, + 0.0396132618188858, + 0.0016502225771546364, + -0.0013912394642829895, + -0.0550323985517025, + -0.03445427119731903, + 0.02622019499540329, + -0.0410459041595459, + 0.06113039329648018, + 0.028976740315556526, + -0.04266804829239845, + 0.04016966372728348, + 0.009342637844383717, + -0.03406491130590439, + -0.02069433033466339, + -0.10190615803003311, + 0.1413787454366684, + 0.04822705313563347, + 0.012435030192136765, + -0.06034659966826439, + -0.04195810854434967, + 0.09271474927663803, + -0.012511786073446274, + -0.10435543954372406, + -0.01934734545648098, + 0.05127720907330513, + 0.1035361960530281, + -0.015034444630146027, + -0.034601837396621704, + -0.0006921999156475067, + 0.0784897431731224, + 0.04153509438037872, + 0.06304416060447693, + 0.07200072705745697, + 0.09118663519620895, + -0.022404808551073074, + 0.028127577155828476, + 0.05848971754312515, + 0.03265898674726486, + 0.05510114133358002, + -0.006718305870890617, + 0.021895799785852432, + -0.017620040103793144, + -0.0296504907310009, + -0.0004278969136066735, + -0.004838461987674236, + -0.03186143562197685, + 0.008121516555547714, + -0.011741980910301208, + 0.014575828798115253, + 0.017020730301737785, + -0.026703685522079468, + 0.022150270640850067, + 0.026279255747795105, + 0.02104608342051506, + 0.06673584133386612, + 0.04156454652547836, + 0.02037002332508564, + 0.07593825459480286, + -0.056258246302604675, + -0.08281802386045456, + 0.0035218074917793274, + -0.011316908523440361, + 0.03560544550418854, + 0.05660180002450943, + 0.03805754333734512, + -0.015298187732696533, + 0.09920457005500793, + 0.03190723434090614, + 0.006925049237906933, + -0.002623538486659527, + -0.09016817808151245, + 0.08034653961658478, + 0.07268591970205307, + -0.01996028982102871, + 0.02928842231631279, + -0.01607932150363922, + 0.08490611612796783, + 0.08069181442260742, + -0.10030349344015121, + -0.03755411505699158, + 0.01686638779938221, + 0.023562200367450714, + 0.011748241260647774, + 0.10431400686502457, + 0.0036321133375167847, + 0.025132248178124428, + 0.11550642549991608, + -0.0804922953248024, + -0.019314246252179146, + -0.00261731818318367, + 0.01315247267484665, + -0.06227680668234825, + 0.0479128398001194, + 0.029852773994207382, + -0.016977770254015923, + 0.003962523303925991, + 0.056579262018203735, + -0.003590494394302368, + -0.0027589770033955574, + -0.014792868867516518, + -0.029546651989221573, + 0.025381311774253845, + -0.029416430741548538, + 0.011119483038783073, + 0.04061873257160187, + 0.04402565211057663, + 0.02762262523174286, + 0.020840629935264587, + -0.04530724883079529, + -0.07301972806453705, + 0.022980893030762672, + 0.0374937430024147, + 0.03745894134044647, + -0.0025378642603754997, + -0.042062897235155106, + -0.02515600249171257, + -0.02632288634777069, + 0.053740113973617554, + -0.02566761150956154, + 0.061681587249040604, + 0.009704223833978176, + -0.011917075142264366, + 0.08598228543996811, + 0.024193791672587395, + -0.012578501366078854, + -0.05083724856376648, + -0.06380100548267365, + 0.004806314595043659, + 0.044742271304130554, + -0.11028078198432922, + -0.054466620087623596, + -0.019980769604444504, + 0.00043937284499406815, + -0.004930587485432625, + 0.023000026121735573, + 0.056260038167238235, + -0.007063616067171097, + 0.012684051878750324, + -0.042122963815927505, + 0.015917006880044937, + -0.07711641490459442, + -0.09213312715291977, + 0.005742879584431648, + -0.02615552581846714, + 0.009976689703762531, + 0.07130679488182068, + -0.013923478312790394, + 0.02293221279978752, + -0.03153935819864273, + -0.06742885708808899, + -0.031680211424827576, + 0.0642232894897461, + 0.031702347099781036, + 0.008542610332369804, + 0.03702723607420921, + 0.06184356287121773, + -0.026360029354691505, + 0.0495012141764164, + 0.01424497738480568, + 0.09329962730407715, + -0.05293044447898865, + 0.01893806643784046, + -0.03423337638378143, + 0.05290659889578819, + 0.07764897495508194, + -0.06535385549068451, + -0.09471289813518524, + -0.040083594620227814, + -0.047701042145490646, + 0.03219965100288391, + -0.026276051998138428, + -0.010520808398723602, + 0.01824675314128399, + -0.01838953047990799, + -0.07038309425115585, + -0.09503281116485596, + 0.061373695731163025, + -0.027713842689990997, + -0.007684936746954918, + -0.07138590514659882, + 0.037943996489048004, + 0.030346957966685295, + 0.04433427378535271, + -0.021969594061374664, + 0.03747117146849632, + 0.027651622891426086, + -0.02950470894575119, + -0.021597977727651596, + 0.031217336654663086, + 0.032784946262836456, + -0.049545299261808395, + -0.018668031319975853, + -0.06159907206892967, + 0.05239469185471535, + -0.03028920479118824, + 0.12433380633592606, + 0.007899793796241283, + -0.03463663160800934, + -0.043083272874355316, + 0.030646683648228645, + -0.031581319868564606, + 0.03180946037173271, + 0.03660577908158302, + 0.03586579114198685, + 0.02999577485024929, + -0.043787047266960144, + 0.0906069427728653, + 0.03280480206012726, + -0.015752756968140602, + -0.0313909612596035, + -0.01949360966682434, + -0.06354457139968872, + -0.01424131914973259, + -0.008922316133975983, + -0.07690262049436569, + 0.003482172265648842, + 0.007449437864124775, + 0.02683500200510025, + 0.03875287249684334, + 0.11064650118350983, + 0.03921329975128174, + -0.08053995668888092 + ] + }, + "p244_412.wav": { + "name": "p244", + "embedding": [ + 0.059551071375608444, + 0.09396977722644806, + -0.007790356408804655, + 0.03827323019504547, + -0.031122148036956787, + 0.08021914213895798, + -0.13160111010074615, + 0.1297227442264557, + -0.03387943655252457, + 0.13853919506072998, + -0.08293893188238144, + 0.11878636479377747, + -0.006550307851284742, + -0.1708064079284668, + -0.041420020163059235, + 0.04908297583460808, + -0.01511390134692192, + 0.010826004669070244, + -0.00890287570655346, + 0.010085998103022575, + 0.050186432898044586, + 0.0425027534365654, + 0.04095324128866196, + -0.025668812915682793, + 0.0361940935254097, + 0.036053795367479324, + 0.01619900017976761, + 0.06936417520046234, + 0.02931908331811428, + -0.06283420324325562, + -0.03523242473602295, + 0.13757073879241943, + -0.03425612673163414, + 0.03379429876804352, + 0.07027476280927658, + 0.014631631784141064, + -0.012448492459952831, + -0.07274185866117477, + -0.0018677401822060347, + -0.02096092514693737, + -0.025742243975400925, + 0.05728081986308098, + 0.02749268338084221, + -0.006675062235444784, + 0.04198485240340233, + 0.01832471787929535, + -0.017652049660682678, + -0.051068760454654694, + -0.09912580251693726, + 0.15159271657466888, + 0.03060276061296463, + 0.024431198835372925, + -0.08318814635276794, + -0.0815662294626236, + 0.09044089913368225, + -0.00455247750505805, + -0.09931713342666626, + -0.018587984144687653, + 0.07565685361623764, + 0.18303295969963074, + -0.010835006833076477, + -0.041080743074417114, + 0.021704111248254776, + 0.10754959285259247, + 0.03294294327497482, + 0.10348986834287643, + 0.08616535365581512, + 0.09886334836483002, + 0.029273122549057007, + 0.03710238263010979, + 0.020716063678264618, + 0.07193975150585175, + 0.0438961498439312, + -0.014550592750310898, + 0.016445836052298546, + 0.00466400571167469, + -0.03322482854127884, + 0.024070069193840027, + -0.03337256237864494, + -0.015817489475011826, + -0.005727203097194433, + 0.006391867529600859, + 0.029035791754722595, + 0.025645751506090164, + -0.04106895625591278, + 0.04555663466453552, + 0.0073151011019945145, + -0.016664739698171616, + 0.058821287006139755, + 0.02043408527970314, + 0.00013909365225117654, + 0.04111506789922714, + -0.07460179179906845, + -0.12922067940235138, + 0.019843820482492447, + 0.002329119248315692, + 0.014328515157103539, + 0.07003022730350494, + 0.03540678322315216, + -0.03142236918210983, + 0.10023465007543564, + 0.036998823285102844, + -0.0054785399697721004, + 0.03650575131177902, + -0.09243693202733994, + 0.10729318112134933, + 0.09154709428548813, + 0.00496859522536397, + 0.058631282299757004, + -0.07062047719955444, + 0.08093982934951782, + 0.07895738631486893, + -0.1539396047592163, + -0.07585584372282028, + 0.03915075212717056, + 0.02207566797733307, + 0.012164573185145855, + 0.11254385113716125, + 0.0005174963735044003, + 0.024131037294864655, + 0.09192382544279099, + -0.10582148283720016, + -0.06048337742686272, + -0.035661470144987106, + 0.03839374706149101, + -0.0737416073679924, + 0.054281871765851974, + 0.02367679588496685, + -0.01686018332839012, + -0.022690005600452423, + 0.06175989657640457, + -0.00546395406126976, + 0.01441828440874815, + 0.017339123412966728, + -0.05324285849928856, + 0.02747204154729843, + -0.052139945328235626, + 0.00864584930241108, + 0.03275572136044502, + 0.04912107437849045, + 0.043823085725307465, + 0.012414149008691311, + -0.05398445576429367, + -0.11230254173278809, + -0.016785483807325363, + 0.05911783128976822, + 0.061964720487594604, + -0.020540151745080948, + -0.04015234857797623, + -0.03434581682085991, + -0.05891314148902893, + 0.05093757063150406, + -0.01295282319188118, + 0.06875548511743546, + 0.013460883870720863, + 0.00600619800388813, + 0.08526816964149475, + -0.0013410001993179321, + -0.000845342583488673, + -0.057320207357406616, + -0.03240108862519264, + 0.02450636401772499, + 0.03732983022928238, + -0.08661596477031708, + -0.05807797238230705, + 0.006895546801388264, + 0.0024755909107625484, + -0.047786809504032135, + 0.01871403679251671, + 0.03775128722190857, + 0.022860705852508545, + 0.05361276865005493, + -0.03679286688566208, + -0.026529472321271896, + -0.13456949591636658, + -0.06961002200841904, + -0.0020515008363872766, + -0.0010099774226546288, + -0.008797619491815567, + 0.08168214559555054, + 0.03459955006837845, + 0.043608199805021286, + -0.008597624488174915, + -0.04494110494852066, + -0.06701546907424927, + 0.06338801234960556, + 0.06272050738334656, + 0.030632514506578445, + 0.0563620924949646, + 0.019242025911808014, + -0.017249440774321556, + 0.06670928746461868, + 0.0789564922451973, + 0.08576953411102295, + -0.0011255552526563406, + -0.00410756841301918, + -0.09396969527006149, + 0.1029408797621727, + 0.11418573558330536, + -0.07202354073524475, + -0.11462907493114471, + -0.02302691899240017, + -0.07886506617069244, + 0.045495133846998215, + -0.033001236617565155, + -0.004796125926077366, + 0.02436123788356781, + -0.03048814833164215, + -0.10970458388328552, + -0.08865918964147568, + 0.08036887645721436, + -0.060385968536138535, + -0.021434027701616287, + -0.07117162644863129, + 0.054617077112197876, + 0.08526913821697235, + 0.012556545436382294, + -0.019951485097408295, + -0.012037888169288635, + 0.05951451510190964, + -0.09091498702764511, + -0.025194905698299408, + 0.020978357642889023, + 0.004785995930433273, + -0.10062437504529953, + 0.033920541405677795, + -0.05357489734888077, + 0.05097579583525658, + -0.07629111409187317, + 0.15890458226203918, + -0.015446837991476059, + -0.06800419092178345, + -0.0695822462439537, + 0.044950924813747406, + -0.017370080575346947, + 0.02149895951151848, + 0.03292621672153473, + 0.05680186673998833, + 0.01768268272280693, + -0.1016058549284935, + 0.10827549546957016, + 0.020568612962961197, + -0.02066868543624878, + -0.07249072939157486, + -0.06639677286148071, + -0.04306124895811081, + 0.021274492144584656, + -0.01809285394847393, + -0.07401397079229355, + -0.016246456652879715, + 0.02581849694252014, + 0.0021219714544713497, + 0.0340658500790596, + 0.13973397016525269, + 0.030186116695404053, + -0.1141631230711937 + ] + }, + "p244_120.wav": { + "name": "p244", + "embedding": [ + 0.0345221683382988, + 0.11285677552223206, + -0.006185987964272499, + 0.00444819126278162, + -0.04851618409156799, + 0.04443643242120743, + -0.14280781149864197, + 0.16455696523189545, + -0.054629914462566376, + 0.11926575005054474, + -0.08495447039604187, + 0.09751155972480774, + -0.0506727397441864, + -0.1767335832118988, + -0.04004449024796486, + 0.069318987429142, + -0.0488586388528347, + -0.04349035769701004, + -0.040879592299461365, + -0.02426302433013916, + 0.01655694469809532, + 0.004437287803739309, + -0.009126175194978714, + 0.057895857840776443, + 0.021293045952916145, + 0.0665641576051712, + -0.0037109688855707645, + 0.045338451862335205, + 0.017536109313368797, + 0.007746345363557339, + -0.009824639186263084, + 0.09418481588363647, + -0.029059838503599167, + 0.013081266544759274, + 0.07159115374088287, + -0.00026314088609069586, + 0.011893361806869507, + -0.043273866176605225, + -0.02280638925731182, + 0.005177565850317478, + -0.058620356023311615, + 0.07651512324810028, + 0.043367937207221985, + 0.00030603446066379547, + 0.03683783486485481, + 0.05965195223689079, + -0.0029484110418707132, + -0.05564282089471817, + -0.10472553968429565, + 0.14723926782608032, + 0.0845227986574173, + -0.02044135332107544, + -0.07024499028921127, + -0.055844470858573914, + 0.10607326030731201, + -0.03724218159914017, + -0.11428283900022507, + -0.05419738590717316, + 0.0979962944984436, + 0.15035147964954376, + -0.04854988306760788, + -0.01990264095366001, + 0.010210538282990456, + 0.16217073798179626, + 0.06145327538251877, + 0.09531673789024353, + 0.04559844732284546, + 0.11191905289888382, + -0.04619233310222626, + 0.004203858319669962, + 0.08833819627761841, + 0.041186489164829254, + 0.046529099345207214, + -0.014624322764575481, + 0.01584678143262863, + 0.005087331403046846, + 0.0007320850272662938, + 0.0194782093167305, + -0.02834141254425049, + -0.013659695163369179, + -0.04466176778078079, + 0.030789121985435486, + -0.03721405193209648, + 0.008746621198952198, + -0.006488821469247341, + 0.07020560652017593, + 0.04476916044950485, + -0.009815419092774391, + 0.07588279992341995, + 0.07513284683227539, + 0.010681292973458767, + 0.06956884264945984, + -0.06521964818239212, + -0.06147092580795288, + 0.011778132058680058, + -0.02267150580883026, + 0.02839742973446846, + 0.06304428726434708, + 0.031682223081588745, + 0.007486862130463123, + 0.11619949340820312, + 0.05684630572795868, + -0.0018135188147425652, + 0.03489911928772926, + -0.10900737345218658, + 0.14764909446239471, + 0.05465555936098099, + -0.04299356788396835, + 0.029297037050127983, + -0.014288803562521935, + 0.0414859876036644, + 0.07062771916389465, + -0.11803363263607025, + -0.06383292376995087, + 0.03299330174922943, + 0.037048954516649246, + -0.03904881328344345, + 0.0872720330953598, + -0.008770468644797802, + 0.01533513143658638, + 0.10238590091466904, + -0.05033291131258011, + -0.06311125308275223, + -0.01857956126332283, + 0.043770015239715576, + -0.07190638780593872, + 0.04814283549785614, + 0.06744087487459183, + 0.005141375586390495, + 0.0175476111471653, + 0.10697303712368011, + 0.014797304756939411, + -0.008125048130750656, + 0.017246047034859657, + -0.03243488073348999, + 0.03565003722906113, + -0.011775722727179527, + 0.014176595956087112, + 0.02908923104405403, + 0.04835540056228638, + 0.041539084166288376, + 0.015653640031814575, + -0.017810266464948654, + -0.09884323179721832, + 0.006732898764312267, + 0.04855845123529434, + 0.10380532592535019, + -0.003862161422148347, + -0.0040578898042440414, + -0.03480366989970207, + -0.04818146675825119, + -0.0247996523976326, + -0.003616938367486, + 0.08203420042991638, + -0.044428907334804535, + -0.009084219112992287, + 0.11731656640768051, + 0.003149626310914755, + 0.007940972223877907, + -0.060447268187999725, + 0.005992789752781391, + 0.004215777385979891, + 0.0528411865234375, + -0.0694071501493454, + -0.0820966362953186, + 0.015340112149715424, + 0.05275840312242508, + -0.003037865739315748, + 0.07079257071018219, + 0.023328151553869247, + -0.002711064647883177, + 0.015954559668898582, + -0.07223737239837646, + 0.04205968230962753, + -0.09430976212024689, + -0.059846825897693634, + -0.0208941288292408, + -0.018279600888490677, + -0.01656361296772957, + 0.052218444645404816, + 0.018482070416212082, + 0.05238855257630348, + 0.025909263640642166, + -0.11537493020296097, + -0.08688834309577942, + 0.06682883948087692, + 0.08272383362054825, + -0.02036820910871029, + 0.059195246547460556, + 0.07914192974567413, + -0.05107014626264572, + 0.04094104841351509, + 0.052519600838422775, + 0.10583151131868362, + -0.03903021663427353, + 0.016622763127088547, + -0.06429634243249893, + 0.035176992416381836, + 0.052942998707294464, + -0.13259881734848022, + -0.06305655837059021, + -0.03044966608285904, + -0.021380890160799026, + 0.006965217180550098, + -0.011119682341814041, + 0.03047073259949684, + 0.02747570537030697, + -0.014237066730856895, + -0.07584354281425476, + -0.0850161537528038, + 0.0657251700758934, + -0.1002492755651474, + 0.019911937415599823, + -0.06504003703594208, + 0.031941067427396774, + 0.0934300571680069, + 0.0373072549700737, + -0.02253125235438347, + -0.014421112835407257, + 0.03891584649682045, + -0.027869481593370438, + -0.01874903216958046, + 0.04147224500775337, + 0.026441780850291252, + -0.10136489570140839, + 0.009756246581673622, + -0.08010652661323547, + 0.0838051438331604, + -0.031622424721717834, + 0.1586567610502243, + 0.015823224559426308, + -0.053576741367578506, + -0.09206540882587433, + -0.016890795901417732, + -0.034552544355392456, + 0.057748619467020035, + 0.022549351677298546, + 0.061687394976615906, + 0.0239492766559124, + -0.005867598112672567, + 0.14386054873466492, + 0.0446644052863121, + -0.05506458878517151, + -0.05955399572849274, + -0.042109981179237366, + -0.054780587553977966, + 0.019849447533488274, + 0.030567895621061325, + -0.09644058346748352, + -0.03136271610856056, + 0.005498300772160292, + -0.05479053407907486, + 0.09022976458072662, + 0.14143067598342896, + 0.09358908236026764, + -0.12136007845401764 + ] + }, + "p244_067.wav": { + "name": "p244", + "embedding": [ + 0.020868409425020218, + 0.0868513286113739, + -0.012039963155984879, + 0.019087977707386017, + -0.0729515552520752, + 0.07583948224782944, + -0.10541653633117676, + 0.11873645335435867, + -0.07380959391593933, + 0.14194393157958984, + -0.08430862426757812, + 0.11622262746095657, + -0.0546979159116745, + -0.17934924364089966, + -0.017293427139520645, + 0.06783819198608398, + -0.04402795806527138, + -0.04271041601896286, + -0.04180052503943443, + -0.028469868004322052, + 0.03680458664894104, + 0.01561243087053299, + 0.01897319406270981, + 0.028721995651721954, + 0.006416977383196354, + 0.08553045243024826, + -0.012912136502563953, + 0.030799776315689087, + 0.01150369644165039, + -0.050855159759521484, + -0.05115745961666107, + 0.10553304851055145, + -0.056656867265701294, + 0.01121559552848339, + 0.04766120761632919, + -0.00876043550670147, + -0.008931387215852737, + -0.050337910652160645, + -0.011606164276599884, + -0.017599213868379593, + -0.06905359029769897, + 0.07020455598831177, + 0.00306877912953496, + 0.0001026339887175709, + 0.0311671681702137, + 0.00494158361107111, + -0.029914572834968567, + -0.026356277987360954, + -0.09261718392372131, + 0.12716248631477356, + 0.08353427797555923, + -0.031998563557863235, + -0.05076141282916069, + -0.06290306150913239, + 0.11054226756095886, + -0.014636765234172344, + -0.13588395714759827, + -0.06840340793132782, + 0.09216269105672836, + 0.13853719830513, + -0.032242052257061005, + -0.020886607468128204, + 0.005845916457474232, + 0.11510229110717773, + 0.040641821920871735, + 0.12292227149009705, + 0.049254514276981354, + 0.1059156283736229, + -0.023208286613225937, + 0.02244659513235092, + 0.06283772736787796, + 0.06280370056629181, + 0.05181184411048889, + -0.015416629612445831, + 0.025779955089092255, + -0.0022751784417778254, + -0.006654226686805487, + 0.03142628073692322, + -0.02260248363018036, + -0.01621728017926216, + -0.03134561702609062, + -0.014710749499499798, + -0.021795710548758507, + -0.021698681637644768, + 0.003551172325387597, + 0.054710499942302704, + 0.05024096369743347, + 0.000979394419118762, + 0.07397016882896423, + 0.04378657042980194, + -0.01866992563009262, + 0.08207811415195465, + -0.07188402116298676, + -0.05842689424753189, + 0.01084179151803255, + 0.004157151561230421, + 0.011689719744026661, + 0.08458214998245239, + 0.033798880875110626, + -0.003460160456597805, + 0.11204814910888672, + 0.04379774630069733, + 0.006874361541122198, + 0.03510897234082222, + -0.09786175191402435, + 0.14100712537765503, + 0.07588119804859161, + -0.035735756158828735, + 0.03177005052566528, + -0.02765769511461258, + 0.09233300387859344, + 0.07977771759033203, + -0.12316806614398956, + -0.05609642341732979, + -0.011355175636708736, + -0.015557361766695976, + -0.04847920686006546, + 0.09977260231971741, + -0.029047349467873573, + 0.005727539304643869, + 0.11568583548069, + -0.07327874004840851, + -0.05858144909143448, + -0.009706265293061733, + 0.018438544124364853, + -0.09241557121276855, + 0.050521910190582275, + 0.03653712198138237, + 0.007419217377901077, + 0.038794904947280884, + 0.10721154510974884, + -0.027727147564291954, + -0.01003716979175806, + 0.04247761145234108, + -0.06914205849170685, + 0.007558742538094521, + -0.032879382371902466, + 0.015886986628174782, + 0.07359768450260162, + 0.04000311717391014, + 0.061109937727451324, + -0.023807067424058914, + 0.0012497404823079705, + -0.09182318300008774, + 0.01841042935848236, + 0.037720777094364166, + 0.06340830028057098, + 0.0013550283620133996, + 0.0004873467842116952, + -0.034900542348623276, + -0.08777841925621033, + 0.016995344310998917, + -0.018115662038326263, + 0.08811838924884796, + -0.03945860639214516, + 0.001946773030795157, + 0.09453526139259338, + 0.045616745948791504, + -0.013560041785240173, + -0.10332232713699341, + -0.04099069535732269, + 0.003214046359062195, + 0.05721449851989746, + -0.0923265665769577, + -0.060605041682720184, + 0.007285548839718103, + 0.051176127046346664, + -0.01324876956641674, + 0.05760982632637024, + 0.06655386090278625, + 0.024315889924764633, + 0.025252368301153183, + -0.0742875188589096, + 0.03546706587076187, + -0.08509795367717743, + -0.06393812596797943, + -0.018804963678121567, + -0.040829822421073914, + -0.0029831058345735073, + 0.06176944822072983, + -0.008249293081462383, + 0.023371916264295578, + -0.000571876298636198, + -0.09278358519077301, + -0.09932700544595718, + 0.06875362992286682, + 0.05416400730609894, + -0.003684660652652383, + 0.06501224637031555, + 0.06914102286100388, + -0.07024751603603363, + 0.04835633188486099, + 0.042042143642902374, + 0.13709813356399536, + -0.049365803599357605, + 0.04294247180223465, + -0.07167274504899979, + 0.04976804181933403, + 0.08467129617929459, + -0.10611759126186371, + -0.07544932514429092, + -0.035962000489234924, + -0.04060329496860504, + 0.06351238489151001, + -0.043235473334789276, + -0.03657742962241173, + 0.024615004658699036, + -0.016037333756685257, + -0.08906956017017365, + -0.07769998908042908, + 0.10148769617080688, + -0.0646141767501831, + -0.0024357701186090708, + -0.09675583988428116, + 0.043204087764024734, + 0.052898846566677094, + 0.05180158466100693, + -0.046868979930877686, + 0.03207521140575409, + 0.0725894346833229, + -0.025808483362197876, + 0.01369834691286087, + 0.06474174559116364, + 0.022981004789471626, + -0.07859141379594803, + -0.03240450844168663, + -0.09464406967163086, + 0.06016550213098526, + -0.03589615598320961, + 0.160593181848526, + -0.016197221353650093, + -0.043579649180173874, + -0.06344643235206604, + 0.04137660935521126, + -0.012816869653761387, + 0.03843008354306221, + 0.06086871027946472, + 0.0787402018904686, + 0.030957505106925964, + -0.04526152461767197, + 0.14024889469146729, + 0.028170615434646606, + -0.02721204236149788, + -0.053903162479400635, + -0.020322106778621674, + -0.059405043721199036, + 0.0197504460811615, + 0.014078475534915924, + -0.1281036138534546, + -0.00748630054295063, + 0.019126102328300476, + -0.02727348729968071, + 0.07681892067193985, + 0.13779094815254211, + 0.0967927947640419, + -0.09268027544021606 + ] + }, + "p244_348.wav": { + "name": "p244", + "embedding": [ + 0.06416963785886765, + 0.0763169527053833, + -0.03299425542354584, + 0.04098282381892204, + -0.06967906653881073, + 0.047166064381599426, + -0.11756372451782227, + 0.11179213225841522, + -0.019342811778187752, + 0.14263132214546204, + -0.05705989897251129, + 0.13704779744148254, + -0.0022996054030954838, + -0.1816350519657135, + -0.030605586245656013, + 0.043044961988925934, + -0.04927428066730499, + -0.04703671112656593, + -0.0530998557806015, + -0.04178537428379059, + 0.03982323408126831, + 0.06660129129886627, + 0.0455942340195179, + 0.006632889620959759, + 0.024298429489135742, + 0.07572554796934128, + -0.010593682527542114, + 0.03301914781332016, + 0.011640319600701332, + -0.10006465017795563, + -0.05677707493305206, + 0.08164320886135101, + -0.05086119472980499, + 0.010672129690647125, + 0.014715148136019707, + -0.018537038937211037, + 0.014582466334104538, + -0.058439094573259354, + -0.036608338356018066, + 0.030830949544906616, + -0.04347511753439903, + 0.07392939925193787, + 0.018461402505636215, + -0.03597142547369003, + 0.05048117786645889, + -0.0034174006432294846, + -0.025858085602521896, + -0.04569001495838165, + -0.10903674364089966, + 0.17590458691120148, + 0.08129538595676422, + -0.008880347944796085, + -0.05846276879310608, + -0.06529244780540466, + 0.09038583934307098, + -0.025317519903182983, + -0.12211281061172485, + -0.03669178485870361, + 0.0553026981651783, + 0.13649219274520874, + -0.02917296066880226, + -0.04795972630381584, + 0.045753784477710724, + 0.12120044231414795, + 0.08033176511526108, + 0.05919057875871658, + 0.09365145862102509, + 0.10905051231384277, + -0.03795982152223587, + 0.0016961735673248768, + 0.05388873815536499, + 0.08848769217729568, + 0.08406290411949158, + -0.0003825872263405472, + 0.030380364507436752, + 0.005348149221390486, + -0.009688726626336575, + -0.031847935169935226, + -0.018902946263551712, + -0.005971909966319799, + -0.0016954416641965508, + -0.0025203523691743612, + 0.010228863917291164, + 0.02720189467072487, + -0.04551564157009125, + 0.06288662552833557, + 0.04906798154115677, + -0.022211231291294098, + 0.051218800246715546, + 0.03666144609451294, + 0.018922779709100723, + 0.06296109408140182, + -0.07955645024776459, + -0.0784418061375618, + 0.03906489908695221, + 0.01877228543162346, + 0.012471899390220642, + 0.06295335292816162, + 0.051156848669052124, + -0.024583876132965088, + 0.12628428637981415, + 0.04476037994027138, + -0.020415350794792175, + 0.012895047664642334, + -0.07944655418395996, + 0.12012055516242981, + 0.11362238228321075, + -0.026701495051383972, + 0.05360058695077896, + -0.04528056085109711, + 0.08192526549100876, + 0.056361161172389984, + -0.13404487073421478, + -0.07066284120082855, + 0.023433204740285873, + -0.008017717860639095, + -0.006984381470829248, + 0.1085088849067688, + -0.006292938254773617, + 0.06264964491128922, + 0.1077122688293457, + -0.08239695429801941, + -0.0391920767724514, + -0.03114943765103817, + 0.05154057592153549, + -0.10968014597892761, + 0.061816513538360596, + 0.04747128486633301, + -0.006041971500962973, + 0.006270749494433403, + 0.08324433118104935, + -0.024418562650680542, + -0.003103762399405241, + -0.0017465186538174748, + -0.04680066555738449, + 0.006634939461946487, + -0.013291368260979652, + -0.01601908728480339, + 0.06028125062584877, + 0.01936379447579384, + 0.040837325155735016, + -0.023072805255651474, + -0.024967461824417114, + -0.13793975114822388, + 0.042109642177820206, + 0.015544407069683075, + 0.06919063627719879, + -0.006869792938232422, + -0.01729438826441765, + -0.0438687726855278, + -0.07317142188549042, + 0.03169111907482147, + -0.014413293451070786, + 0.05965622514486313, + -0.030996613204479218, + 0.006164215505123138, + 0.09972159564495087, + 0.02927928976714611, + -0.0006327853770926595, + -0.019514229148626328, + -0.029328860342502594, + 0.005025753751397133, + 0.05842050909996033, + -0.07635505497455597, + -0.08322034776210785, + -0.012893766164779663, + 0.02761763334274292, + -0.00658753514289856, + 0.07751573622226715, + 0.057326652109622955, + 0.004889404866844416, + 0.024311507120728493, + -0.07353408634662628, + -0.005548990797251463, + -0.08532489836215973, + -0.06867697834968567, + -0.011845898814499378, + -0.03660754859447479, + -0.02051054872572422, + 0.0806734636425972, + 0.025295086205005646, + 0.05031318590044975, + -0.04750332981348038, + -0.06907308101654053, + -0.08586178719997406, + 0.04537511616945267, + 0.05123066529631615, + 0.0036835186183452606, + 0.02592979371547699, + 0.06370057910680771, + -0.019487395882606506, + 0.06826324760913849, + 0.057477302849292755, + 0.0885062888264656, + -0.022730223834514618, + 0.03245188668370247, + -0.060124047100543976, + 0.10704690217971802, + 0.08858537673950195, + -0.06782245635986328, + -0.08526552468538284, + -0.045309655368328094, + -0.08879561722278595, + 0.046389006078243256, + -0.026801470667123795, + 0.010144572705030441, + 0.04984457045793533, + 0.005001446232199669, + -0.10068418085575104, + -0.09918620437383652, + 0.10351140797138214, + -0.05554025247693062, + -0.01126169040799141, + -0.08422324061393738, + 0.03590209037065506, + 0.09755320101976395, + 0.045386701822280884, + -0.029424484819173813, + -0.0033509526401758194, + 0.04767423868179321, + -0.022274363785982132, + 0.014419065788388252, + 0.06711696088314056, + 0.04518205672502518, + -0.12307103723287582, + -0.022879544645547867, + -0.07614308595657349, + 0.05048812925815582, + -0.05015058442950249, + 0.1369452029466629, + 0.025236688554286957, + -0.042625993490219116, + -0.08200784027576447, + 0.06793235242366791, + -0.024855712428689003, + 0.0686807930469513, + 0.039610885083675385, + 0.0635165274143219, + 0.05367117375135422, + -0.08354263007640839, + 0.09824296832084656, + 0.0734625905752182, + -0.04576064646244049, + -0.0790901780128479, + -0.0505632683634758, + -0.03072902001440525, + 0.038853466510772705, + 0.02813848853111267, + -0.07984182983636856, + -0.004669418558478355, + 0.023210391402244568, + -0.012019085697829723, + 0.06310807913541794, + 0.14355075359344482, + 0.06386779248714447, + -0.11344774067401886 + ] + }, + "p244_044.wav": { + "name": "p244", + "embedding": [ + 0.05540139600634575, + 0.0351874977350235, + -0.0029585787560790777, + -0.0036408863961696625, + -0.009717918932437897, + 0.026989303529262543, + -0.13735339045524597, + 0.10246618837118149, + -0.02932894229888916, + 0.1057426854968071, + -0.08385153114795685, + 0.0787532776594162, + -0.005749681498855352, + -0.14476078748703003, + -0.03264135122299194, + 0.04958081245422363, + -0.02901853248476982, + -0.013268353417515755, + -0.04734598845243454, + -0.013348409906029701, + 0.03271309658885002, + 0.05585765093564987, + 0.017678800970315933, + -0.018751535564661026, + -2.394833973085042e-05, + 0.05371611565351486, + 0.008370274677872658, + 0.03865957260131836, + 0.009304262697696686, + -0.017450083047151566, + 0.015023577027022839, + 0.09004774689674377, + -0.026044484227895737, + 0.0009122826159000397, + 0.04927607998251915, + 0.02071547694504261, + -0.003611566498875618, + -0.0842553973197937, + -0.021370701491832733, + 0.013384552672505379, + -0.06065421551465988, + 0.060138292610645294, + 0.038274116814136505, + 0.0030879653058946133, + 0.024408888071775436, + 0.02827766351401806, + -0.0088332649320364, + -0.06442015618085861, + -0.10005885362625122, + 0.16790227591991425, + 0.04864255338907242, + 0.014047691598534584, + -0.08935472369194031, + -0.03855591267347336, + 0.08309578895568848, + -0.0077942973002791405, + -0.062055446207523346, + -0.04749360680580139, + 0.057343170046806335, + 0.1353236436843872, + -0.01041158102452755, + -0.044429339468479156, + 0.03171449154615402, + 0.09943391382694244, + 0.013505324721336365, + 0.06197275221347809, + 0.10125812143087387, + 0.09637221693992615, + -0.01094371359795332, + 0.020567288622260094, + 0.04689057916402817, + 0.05445460230112076, + 0.04057963192462921, + -0.014234514907002449, + 0.03683260828256607, + 0.0012604668736457825, + -0.0359886959195137, + 0.014987404458224773, + -0.03495274484157562, + -0.03806743025779724, + 0.020563479512929916, + 0.0005404595285654068, + 0.011878499761223793, + 0.04789520427584648, + -0.04487988352775574, + 0.03433726355433464, + 0.02138691209256649, + 0.0005418236833065748, + 0.06738737225532532, + 0.0329102948307991, + 0.030989371240139008, + 0.025151332840323448, + -0.0516933873295784, + -0.09323399513959885, + 0.008121470920741558, + -0.0024637330789119005, + 0.023736722767353058, + 0.043473612517118454, + 0.02698652073740959, + -0.028227433562278748, + 0.10058945417404175, + -0.002524597104638815, + -0.014985373243689537, + -0.0031128115952014923, + -0.07942080497741699, + 0.09619386494159698, + 0.099323570728302, + -0.015833454206585884, + 0.014053039252758026, + -0.06924107670783997, + 0.03721923753619194, + 0.05781635269522667, + -0.11579690873622894, + -0.0548018142580986, + 0.052189093083143234, + 0.03476516529917717, + 0.026683229953050613, + 0.13142159581184387, + 0.010898714885115623, + 0.020617790520191193, + 0.08051857352256775, + -0.07659701257944107, + -0.04957641288638115, + 0.0006005354225635529, + 0.02204623818397522, + -0.03960549086332321, + 0.03626979514956474, + 0.032854702323675156, + 0.010973429307341576, + -0.02172589860856533, + 0.08298837393522263, + -0.010839487425982952, + 0.020128600299358368, + -0.043658968061208725, + 0.0002710595726966858, + 0.060335662215948105, + -0.021085208281874657, + -0.009002873674035072, + 0.02431986853480339, + 0.0639747604727745, + 0.029162375256419182, + 0.025574831292033195, + -0.07356759160757065, + -0.11855047941207886, + -0.007786398287862539, + 0.03783252835273743, + 0.06678080558776855, + -0.02601083740592003, + -0.03537067398428917, + -0.05401691049337387, + -0.025844207033514977, + -0.0037404238246381283, + -0.029338188469409943, + 0.05766249820590019, + 0.021084189414978027, + -0.017874745652079582, + 0.09360738843679428, + -0.025284549221396446, + 0.013361017219722271, + -0.02724376693367958, + -0.022132039070129395, + 0.017302291467785835, + 0.03225565329194069, + -0.041591793298721313, + -0.05928799510002136, + 0.01305367611348629, + 0.015114177018404007, + -0.014453674666583538, + -0.001210155664011836, + 0.018828436732292175, + 0.004517893306910992, + 0.013616982847452164, + -0.10014872997999191, + 0.01490868628025055, + -0.1160678118467331, + -0.04340996965765953, + 0.030036643147468567, + -0.000349000736605376, + 0.006367855705320835, + 0.07502906769514084, + -0.0036811628378927708, + 0.03091811202466488, + -0.03298807889223099, + -0.08331942558288574, + -0.03943921998143196, + 0.05338000878691673, + 0.0753025934100151, + -0.009122584015130997, + 0.02758536860346794, + 0.029099121689796448, + -0.0034411102533340454, + 0.02397848293185234, + 0.05102162063121796, + 0.08103230595588684, + -0.030999958515167236, + -0.01997513882815838, + -0.03418756648898125, + 0.10940631479024887, + 0.03795918822288513, + -0.06236086040735245, + -0.04988820478320122, + 0.0030434816144406796, + -0.05253837630152702, + 0.020179901272058487, + -0.0199077520519495, + 0.01477649062871933, + 0.0338677354156971, + -0.014915850013494492, + -0.12014935910701752, + -0.03963743522763252, + 0.03166377171874046, + -0.06261864304542542, + -0.002676093950867653, + -0.07130350917577744, + 0.03663774952292442, + 0.1020917147397995, + 0.037786319851875305, + -0.014607070945203304, + -0.031856633722782135, + 0.002835892140865326, + -0.06941057741641998, + -0.03648950159549713, + -0.008691705763339996, + 0.037000514566898346, + -0.07694466412067413, + -0.002713435096666217, + -0.06846268475055695, + 0.049588948488235474, + -0.04926304146647453, + 0.09001024812459946, + 0.021845895797014236, + -0.06423349678516388, + -0.08003246039152145, + -0.0019804886542260647, + -0.003215455450117588, + 0.05571264028549194, + 0.03837262839078903, + 0.018403928726911545, + 0.044507842510938644, + -0.07045572996139526, + 0.10923983156681061, + 0.04475123807787895, + -0.02649056911468506, + -0.05786821246147156, + -0.027255138382315636, + -0.01597152277827263, + 0.03250078856945038, + -0.005201913416385651, + -0.03966651111841202, + -0.0032188917975872755, + 0.02061603218317032, + -0.021886512637138367, + 0.04958562180399895, + 0.09706853330135345, + 0.037583090364933014, + -0.10383137315511703 + ] + }, + "p244_057.wav": { + "name": "p244", + "embedding": [ + 0.042658597230911255, + 0.07373440265655518, + -0.042017921805381775, + 0.04971172660589218, + -0.08102007210254669, + 0.06125273555517197, + -0.11694268882274628, + 0.13449028134346008, + -0.03624627739191055, + 0.12037333846092224, + -0.04670920968055725, + 0.14087115228176117, + 0.00011318037286400795, + -0.17798201739788055, + -0.02754015475511551, + 0.040677260607481, + -0.04235752671957016, + -0.016533244401216507, + -0.0717368796467781, + -0.024673495441675186, + 0.05648712068796158, + 0.024630118161439896, + 0.05028512701392174, + -0.04432780295610428, + 0.006298882886767387, + 0.052003875374794006, + 0.008977169170975685, + 0.04707060009241104, + 0.02072804793715477, + -0.05827939510345459, + -0.04008573293685913, + 0.11003127694129944, + -0.05210462212562561, + 0.00895748008042574, + 0.05134767293930054, + -0.04342135041952133, + -0.029322419315576553, + -0.047930993139743805, + -0.018395300954580307, + 0.009645577520132065, + -0.03082261234521866, + 0.06193145364522934, + 0.025976713746786118, + -0.025547288358211517, + 0.07112058997154236, + -0.014389791525900364, + -0.05688486248254776, + -0.013784706592559814, + -0.1082160472869873, + 0.13892841339111328, + 0.08027221262454987, + -0.0033687162213027477, + -0.08491973578929901, + -0.047700412571430206, + 0.11100733280181885, + -0.014018434099853039, + -0.12360776215791702, + -0.04192376136779785, + 0.05141473934054375, + 0.15656176209449768, + -0.021107863634824753, + -0.011425882577896118, + 0.03725047409534454, + 0.1016295775771141, + 0.056882549077272415, + 0.08021517097949982, + 0.09563928842544556, + 0.10773084312677383, + -0.013878921046853065, + 0.0630386471748352, + 0.027519889175891876, + 0.0867965966463089, + 0.018995199352502823, + -0.00758158415555954, + 0.03319406509399414, + -0.020736895501613617, + -0.009845266118645668, + -0.03240451216697693, + -0.04514143243432045, + -0.019291093572974205, + -0.01708867773413658, + 0.017963888123631477, + 0.035908762365579605, + 0.012050234712660313, + -0.049016982316970825, + 0.07073120772838593, + 0.03209540247917175, + -0.024402478709816933, + 0.037249986082315445, + 0.04311056435108185, + -0.00636585708707571, + 0.050601810216903687, + -0.08048838376998901, + -0.11849690973758698, + 0.003383701667189598, + 0.011985288932919502, + 0.01919235847890377, + 0.0612993985414505, + 0.021035224199295044, + -0.0037703639827668667, + 0.09749886393547058, + 0.07026691734790802, + -0.02102075144648552, + 0.030336380004882812, + -0.06137215346097946, + 0.11697441339492798, + 0.10063496977090836, + -0.004330971743911505, + 0.04971890151500702, + -0.05922890827059746, + 0.08101237565279007, + 0.04440369829535484, + -0.10373479872941971, + -0.07120360434055328, + 0.006141620688140392, + -0.005235287360846996, + -0.023264802992343903, + 0.134757399559021, + -0.006947047542780638, + 0.055613260716199875, + 0.10629017651081085, + -0.07855509221553802, + -0.04463636502623558, + -0.021638011559844017, + 0.055245526134967804, + -0.04844392091035843, + 0.06252002716064453, + 0.032610103487968445, + -0.013118140399456024, + 0.01573919877409935, + 0.07210180163383484, + -0.02472047321498394, + 0.016713324934244156, + 0.049177348613739014, + -0.07215912640094757, + 0.041919007897377014, + -0.03672518953680992, + -0.007667713798582554, + 0.07663096487522125, + 0.04351896792650223, + 0.07501128315925598, + -0.028448665514588356, + -0.008285744115710258, + -0.08659380674362183, + 0.005693176295608282, + 0.024349119514226913, + 0.06949149817228317, + -0.009844282642006874, + -0.01269880123436451, + -0.029022859409451485, + -0.08014222979545593, + 0.025880802422761917, + -0.027504265308380127, + 0.08404827862977982, + -0.026718009263277054, + 0.010596396401524544, + 0.07617653906345367, + 0.02967570535838604, + -0.006403231993317604, + -0.04598081111907959, + -0.028654057532548904, + 0.008319772779941559, + 0.053879186511039734, + -0.0867946594953537, + -0.05442504584789276, + -0.021900422871112823, + 0.02703044004738331, + -0.028688717633485794, + 0.04261992126703262, + 0.0548551008105278, + 0.015629053115844727, + 0.034706294536590576, + -0.07209552824497223, + 0.014745630323886871, + -0.09644142538309097, + -0.04417610540986061, + -0.018349912017583847, + -0.04618903622031212, + -0.040281087160110474, + 0.07412734627723694, + 0.03254743665456772, + 0.0423596128821373, + -0.003541739657521248, + -0.05816451832652092, + -0.08474371582269669, + 0.05352664738893509, + 0.03902830183506012, + -0.007147971540689468, + 0.05684029310941696, + 0.058591827750205994, + -0.03242700546979904, + 0.056032270193099976, + 0.07266870141029358, + 0.07109204679727554, + -0.03621084615588188, + -0.003321175929158926, + -0.09544070065021515, + 0.09888750314712524, + 0.11192983388900757, + -0.08583962917327881, + -0.0921175628900528, + -0.037021514028310776, + -0.07837015390396118, + 0.03923950344324112, + -0.04536805674433708, + -0.014613630250096321, + 0.06497185677289963, + 0.0039850943721830845, + -0.1330309361219406, + -0.07600510865449905, + 0.10415568202733994, + -0.09434092044830322, + 0.0005877655930817127, + -0.061691198498010635, + 0.017683925107121468, + 0.10313122719526291, + 0.000999506562948227, + -0.03477863967418671, + -0.011027686297893524, + 0.062136210501194, + -0.03392190486192703, + 0.022306038066744804, + 0.03726818412542343, + 0.03559507429599762, + -0.08566252142190933, + -0.0013286432949826121, + -0.049543119966983795, + 0.02244129590690136, + -0.03894244134426117, + 0.13845036923885345, + 0.006760017946362495, + -0.038349516689777374, + -0.08156262338161469, + 0.08797506988048553, + -0.02791464887559414, + 0.053304776549339294, + 0.04674801975488663, + 0.07543385028839111, + 0.022843074053525925, + -0.10655760765075684, + 0.13490071892738342, + 0.02066524140536785, + -0.0457330048084259, + -0.09066809713840485, + -0.027774915099143982, + -0.04519465193152428, + 0.021998699754476547, + 0.029997579753398895, + -0.07456813752651215, + -0.018419792875647545, + 0.011191231198608875, + -0.01641165465116501, + 0.06939584016799927, + 0.12185235321521759, + 0.07355348765850067, + -0.08811970055103302 + ] + }, + "p244_033.wav": { + "name": "p244", + "embedding": [ + 0.05503704398870468, + 0.04126527160406113, + 0.028578555211424828, + -0.021874483674764633, + -0.009847121313214302, + 0.0940089076757431, + -0.06819070130586624, + 0.07790213078260422, + 0.012370242737233639, + 0.02222418040037155, + -0.0717296376824379, + 0.05137820169329643, + -0.0009726779535412788, + -0.13882096111774445, + -0.00807705894112587, + 0.0543212816119194, + -0.03527560085058212, + 0.014220127835869789, + -0.06138240173459053, + -0.019632671028375626, + -0.014992786571383476, + 0.01048943679779768, + 0.06166643649339676, + -0.0200663935393095, + 0.04159843176603317, + 0.03275735676288605, + 0.004174490459263325, + 0.025599969550967216, + 0.0024124151095747948, + -0.016274787485599518, + -0.009249405935406685, + 0.058753468096256256, + -0.03836642578244209, + -0.021624622866511345, + 0.049998216331005096, + -0.006679716520011425, + 0.04524123668670654, + -0.09250281751155853, + -0.032838352024555206, + 0.0467701256275177, + -0.06930014491081238, + 0.07942825555801392, + 0.07616984844207764, + 0.013530037365853786, + 0.03430735692381859, + 0.010687392204999924, + -0.013379319570958614, + -0.044989049434661865, + -0.09564291685819626, + 0.13972485065460205, + 0.02319157123565674, + 0.02359095774590969, + -0.0843544751405716, + -0.006598832085728645, + 0.05079162120819092, + -0.006757604889571667, + -0.04895760491490364, + -0.02604241855442524, + 0.05102890729904175, + 0.06556835025548935, + 0.047526516020298004, + -0.004110292065888643, + 0.01991882175207138, + 0.06621947139501572, + 0.009147971868515015, + 0.017581192776560783, + 0.09697175025939941, + 0.09611494839191437, + 0.011887033469974995, + 0.027554944157600403, + 0.0553416982293129, + 0.006610002368688583, + 0.014754112809896469, + -0.003383040428161621, + 0.025151968002319336, + -0.030998259782791138, + -0.012653917074203491, + -0.025196246802806854, + -0.0029356912709772587, + -0.008422995917499065, + 0.061520420014858246, + 0.03234238922595978, + 0.01717015542089939, + 0.050243716686964035, + -0.04374992847442627, + 0.033682480454444885, + -0.013783849775791168, + 0.10162042081356049, + 0.0746852234005928, + 0.0407617911696434, + 0.010323528200387955, + 0.0009243618696928024, + -0.028158560395240784, + -0.08587627112865448, + -0.008755132555961609, + 0.02521700970828533, + -0.003991944715380669, + -0.006430109962821007, + 0.006756959483027458, + -0.03189900517463684, + 0.10079100728034973, + 0.008428608067333698, + -0.02478889934718609, + 0.01860320009291172, + -0.05652153119444847, + 0.057058185338974, + 0.04892893135547638, + 0.01361973024904728, + 0.05956698954105377, + -0.025912873446941376, + 0.03085711970925331, + 0.0531538724899292, + -0.06980676203966141, + -0.00903877429664135, + 0.022771088406443596, + 0.004799459595233202, + 0.04482216387987137, + 0.11981566250324249, + 0.003450536634773016, + 0.03170914947986603, + 0.04556145519018173, + -0.06718897074460983, + -0.013340558856725693, + 0.062368884682655334, + 0.0018227379769086838, + 0.024645287543535233, + -0.027156272903084755, + 0.022594686597585678, + 0.02368982322514057, + -0.0520721971988678, + 0.0425841361284256, + 0.027727916836738586, + 0.025195419788360596, + -0.05521911010146141, + 0.035098329186439514, + 0.03956956788897514, + 0.000834080739878118, + -0.04249418526887894, + 0.050750792026519775, + 0.06984292715787888, + -0.0005850158631801605, + 0.043573640286922455, + -0.06163248047232628, + -0.09233947098255157, + -0.0383978933095932, + -0.02143182046711445, + 0.04378749802708626, + -0.006941661238670349, + -0.018346618860960007, + -0.0790707990527153, + 0.023840874433517456, + 1.263245940208435e-05, + -0.009724571369588375, + 0.038023218512535095, + 0.07959675043821335, + -0.05844411998987198, + 0.050648804754018784, + -0.025519538670778275, + 0.028987377882003784, + -0.022427359595894814, + -0.05055466294288635, + 0.007468527182936668, + 0.031119007617235184, + -0.00751885399222374, + -0.04164040833711624, + 0.011285919696092606, + -0.050722166895866394, + -0.004625143948942423, + 0.001974336802959442, + 0.039731934666633606, + -0.00563558004796505, + -0.03561624884605408, + -0.07944482564926147, + 0.013095082715153694, + -0.03421042114496231, + -0.03314093127846718, + 0.07991906255483627, + 0.04608798772096634, + -0.019420582801103592, + 0.08691956102848053, + 0.04034686088562012, + 0.02982557751238346, + -0.03717201203107834, + -0.04152484983205795, + 0.02425471693277359, + 0.05419965833425522, + 0.03612910583615303, + -0.005846992135047913, + 0.042186662554740906, + 0.005433021113276482, + -0.01671779900789261, + 0.04475399851799011, + 0.023597944527864456, + 0.02329040691256523, + -0.04797558858990669, + -0.027197031304240227, + 0.022699818015098572, + 0.08339535444974899, + 0.0032104365527629852, + -0.04503514617681503, + -0.021230213344097137, + 0.03628489375114441, + -0.023001430556178093, + 0.005420295055955648, + -0.0006123166531324387, + 0.011518686078488827, + 0.0485251322388649, + -0.027095016092061996, + -0.05361117050051689, + -0.0662553533911705, + 0.013231858611106873, + -0.058311667293310165, + -0.007921005599200726, + -0.0318119153380394, + 0.034134261310100555, + 0.09536511451005936, + -0.020250875502824783, + 0.0023607080802321434, + 0.0007106075063347816, + -0.014448193833231926, + -0.01130728516727686, + -0.039694465696811676, + -0.0023696087300777435, + 0.041263043880462646, + -0.07747235149145126, + -0.00010490883141756058, + -0.0497434064745903, + 0.050729431211948395, + 0.025525305420160294, + 0.06620647758245468, + 0.06714387983083725, + -0.008791105821728706, + -0.054592691361904144, + 0.003910398110747337, + -0.007692305371165276, + 0.035516027361154556, + -0.0005606263875961304, + 0.006531648337841034, + 0.06001660227775574, + -0.01902925781905651, + 0.07483260333538055, + 0.03050580620765686, + -0.0711502805352211, + -0.03632104769349098, + 0.02073141559958458, + -0.014771663583815098, + 0.018105216324329376, + -0.021234482526779175, + -0.040807321667671204, + 0.026090865954756737, + 0.04086343199014664, + 0.01827331632375717, + 0.006655510514974594, + 0.048183273524045944, + 0.028873968869447708, + -0.027636181563138962 + ] + }, + "p244_273.wav": { + "name": "p244", + "embedding": [ + 0.0026476019993424416, + 0.05040179193019867, + -0.02965957298874855, + -0.034782592207193375, + -0.022863516584038734, + 0.03144398704171181, + -0.14000385999679565, + 0.051099713891744614, + -0.04079238325357437, + 0.13728491961956024, + -0.007415551692247391, + 0.08959319442510605, + -0.013946100138127804, + -0.09861291199922562, + -0.0044763414189219475, + 0.05538463220000267, + -0.048577889800071716, + -0.032904960215091705, + 0.01900862343609333, + -0.08309365063905716, + 0.02128327637910843, + -0.003264501690864563, + -0.01786132901906967, + -0.033455558121204376, + 0.02312278002500534, + 0.07343585789203644, + -0.0038511897437274456, + -0.01767529733479023, + -0.028988216072320938, + -0.05128886178135872, + -0.004760146141052246, + 0.07865680009126663, + -0.031286630779504776, + -0.027404900640249252, + 0.0321369543671608, + -0.005473798606544733, + 0.006576112005859613, + -0.016731375828385353, + 0.028515463694930077, + 0.05061473324894905, + -0.08200086653232574, + 0.08887961506843567, + 0.02601844072341919, + 0.011357372626662254, + 0.03733556717634201, + -0.016124669462442398, + -0.02678702399134636, + 0.036197301000356674, + -0.029411114752292633, + 0.09708891808986664, + 0.05593682825565338, + -0.02425423264503479, + -0.0386524498462677, + -0.007788142189383507, + 0.0639965683221817, + 0.029921142384409904, + -0.10787051171064377, + 0.0056901611387729645, + 0.015934761613607407, + 0.09393545985221863, + -0.014263492077589035, + -0.05579478293657303, + 0.03485441952943802, + 0.0968020036816597, + 0.02439579740166664, + 0.04180368036031723, + 0.05488671362400055, + 0.07529357075691223, + 0.0026147146709263325, + -0.055362768471241, + 0.06008877977728844, + 0.07915298640727997, + 0.0430389828979969, + -0.01995036005973816, + 0.04954618960618973, + -0.011623811908066273, + -0.006167737767100334, + -0.05614133179187775, + -0.03622627258300781, + -0.048705801367759705, + -0.07243897020816803, + -0.014460626058280468, + 0.018311824649572372, + 0.07117718458175659, + 0.010565374977886677, + -0.025768399238586426, + 0.06887920200824738, + -0.042999908328056335, + 0.03278893977403641, + 0.04510287940502167, + 0.011646484956145287, + 0.018368449062108994, + -0.07040495425462723, + -0.01980988308787346, + 0.01990605518221855, + -0.006179517600685358, + 0.06271880865097046, + 0.03327307105064392, + 0.02138558402657509, + 0.03103802353143692, + 0.06835385411977768, + 0.03468228876590729, + 0.01039789617061615, + -0.02561241202056408, + -0.07081673294305801, + 0.09570132195949554, + 0.07046829909086227, + -0.06066931411623955, + 0.027953507378697395, + 0.011127099394798279, + 0.025985557585954666, + -0.014827873557806015, + -0.10529714822769165, + -0.03224654868245125, + 0.010995421558618546, + 0.05927664786577225, + -0.014649520628154278, + 0.12406080216169357, + 0.020794177427887917, + 0.03692144528031349, + 0.06189810112118721, + -0.009922102093696594, + -0.04693252220749855, + -0.06247655674815178, + 0.04660366475582123, + -0.0950712263584137, + 0.07217497378587723, + 0.05943816155195236, + 0.03775598853826523, + 0.02648629993200302, + 0.0937858447432518, + 0.031699247658252716, + 0.00045697903260588646, + -0.05652068182826042, + 0.005226939916610718, + 0.029063716530799866, + 0.011619489639997482, + 0.0555356927216053, + 0.056166961789131165, + -0.004735746420919895, + 0.09648586809635162, + 0.028552792966365814, + 0.008195789530873299, + -0.08477400988340378, + 0.018421396613121033, + 0.018365738913416862, + 0.0406486876308918, + -0.034434232860803604, + -0.03627825155854225, + 0.006090272217988968, + -0.06791737675666809, + -0.049891479313373566, + -0.03130611777305603, + 0.08802126348018646, + 0.011686543002724648, + -0.028816476464271545, + 0.09757503867149353, + 0.04058592766523361, + -0.009651847183704376, + 0.024637019261717796, + -0.025973135605454445, + -0.024761321023106575, + 0.06587699055671692, + -0.14869078993797302, + -0.0584012009203434, + -0.014292672276496887, + 0.03659965470433235, + 0.046618424355983734, + 0.04329434037208557, + 0.07247595489025116, + -0.006700476631522179, + 0.03669091314077377, + -0.006628260016441345, + 0.0065744612365961075, + -0.059426456689834595, + -0.05883348733186722, + -0.037214841693639755, + -0.07949355244636536, + -0.07062729448080063, + 0.06170422583818436, + -0.0452277846634388, + 0.055910624563694, + -0.031131815165281296, + -0.040166616439819336, + -0.044766124337911606, + 0.038244858384132385, + 0.020098481327295303, + -0.049127593636512756, + 0.004920534789562225, + 0.07999622821807861, + 0.007382713258266449, + -0.03009817749261856, + 0.03157437965273857, + 0.08087754249572754, + -0.06818441301584244, + 0.020835569128394127, + -0.058606937527656555, + 0.0851200595498085, + 0.055453091859817505, + -0.02522546611726284, + -0.031772222369909286, + -0.03446222096681595, + -0.042361222207546234, + 0.053891852498054504, + -0.048653945326805115, + -0.0010657142847776413, + -0.014853335916996002, + -0.021661918610334396, + -0.0667293444275856, + -0.05397786945104599, + 0.05126090347766876, + -0.07112500816583633, + -0.0023414152674376965, + -0.03467349335551262, + 0.01196509599685669, + 0.024627475067973137, + 0.06790965050458908, + -0.058424755930900574, + 0.05146559700369835, + 0.03203999623656273, + -0.03010169044137001, + 0.04194901883602142, + 0.04581429064273834, + 0.039138708263635635, + -0.048563115298748016, + -0.06794974207878113, + -0.0779951810836792, + 0.03790833055973053, + -0.04594273865222931, + 0.059765059500932693, + 0.0409092903137207, + -0.04962727427482605, + -0.02866518124938011, + -0.02079601213335991, + -0.014579536393284798, + 0.023257005959749222, + 0.07405896484851837, + 0.08979281038045883, + 0.03659071773290634, + 0.011373279616236687, + 0.08352388441562653, + 0.03708831965923309, + 0.028296543285250664, + -0.020455490797758102, + 0.005406586453318596, + -0.020148176699876785, + 0.022320300340652466, + 0.04028785973787308, + -0.09396903216838837, + 0.048410166054964066, + 0.021559784188866615, + 0.029390135779976845, + 0.04379183053970337, + 0.036473553627729416, + 0.05472201108932495, + -0.06304406374692917 + ] + }, + "p244_114.wav": { + "name": "p244", + "embedding": [ + 0.06669951975345612, + 0.10124754905700684, + -0.0022013874258846045, + 0.03649517148733139, + -0.021619021892547607, + 0.053168296813964844, + -0.16219760477542877, + 0.11655928194522858, + -0.01387164555490017, + 0.1186247318983078, + -0.06351030617952347, + 0.10898423194885254, + -0.01726130209863186, + -0.16677242517471313, + -0.024964701384305954, + 0.06468411535024643, + -0.026851870119571686, + -0.032134346663951874, + -0.0033342628739774227, + -0.008759641088545322, + 0.0032952409237623215, + 0.03859074413776398, + 0.049083881080150604, + -0.02073134109377861, + 0.06332868337631226, + 0.05428619682788849, + 0.014313665218651295, + 0.066304512321949, + -0.010303741320967674, + -0.051963094621896744, + -0.013814348727464676, + 0.0884525328874588, + -0.054471034556627274, + 0.006114103831350803, + 0.04680199548602104, + 0.026793599128723145, + 0.020099684596061707, + -0.08509883284568787, + -0.01705184578895569, + -0.005261139944195747, + -0.02789417654275894, + 0.09863394498825073, + 0.03861689195036888, + -0.0397944338619709, + 0.007458297535777092, + 0.04691072925925255, + 0.01988939195871353, + -0.0555143803358078, + -0.13748982548713684, + 0.15095984935760498, + 0.013565191067755222, + 0.05258611589670181, + -0.08982804417610168, + -0.09698932617902756, + 0.08381138741970062, + -0.004245487041771412, + -0.062168098986148834, + -0.03301975503563881, + 0.06551120430231094, + 0.16978979110717773, + -0.02783021330833435, + -0.0541827455163002, + 0.031541407108306885, + 0.09513824433088303, + 0.0769338458776474, + 0.07380522787570953, + 0.083738312125206, + 0.11341849714517593, + -0.0014829318970441818, + -0.016546843573451042, + 0.05440804362297058, + 0.07229621708393097, + 0.04665745794773102, + 0.014899211004376411, + -0.004094243980944157, + 0.008550656959414482, + -0.03569471091032028, + -0.002781311981379986, + -0.018585097044706345, + -0.035936299711465836, + -0.011547836475074291, + 0.016961177811026573, + 0.025844469666481018, + 0.05370710790157318, + -0.024885138496756554, + 0.05165655538439751, + 0.045758239924907684, + -0.03461221233010292, + 0.07788741588592529, + 0.016297314316034317, + -0.007213803008198738, + 0.03925038501620293, + -0.09498238563537598, + -0.07026637345552444, + 0.028194207698106766, + 0.007803819607943296, + 0.01729004830121994, + 0.0715162456035614, + 0.04602537304162979, + -0.02796456590294838, + 0.12523646652698517, + 0.03793541342020035, + 0.006545787677168846, + 0.011256947182118893, + -0.06981537491083145, + 0.11090090125799179, + 0.07812876999378204, + -0.01100641954690218, + 0.054404400289058685, + -0.04454074800014496, + 0.017416132614016533, + 0.08018931746482849, + -0.14238345623016357, + -0.1061008870601654, + 0.04114401340484619, + 0.030631156638264656, + 0.0026168236508965492, + 0.11518049240112305, + 0.0005010650493204594, + 0.04926629364490509, + 0.09329401701688766, + -0.11661004275083542, + -0.06290889531373978, + 0.0024043903686106205, + 0.06123144179582596, + -0.06810425221920013, + 0.04396265745162964, + 0.0688818171620369, + -0.02121102623641491, + -0.017339549958705902, + 0.05694655701518059, + 0.026569832116365433, + 0.008694757707417011, + -0.007300286553800106, + -0.02416439726948738, + 0.022513214498758316, + -0.019183343276381493, + -0.02127186954021454, + 0.04039110988378525, + 0.040891021490097046, + 0.032756298780441284, + 0.0137447165325284, + -0.04398074746131897, + -0.15867531299591064, + -0.004860861226916313, + 0.06436794251203537, + 0.08836264908313751, + -0.03412599861621857, + -0.047433964908123016, + -0.061883583664894104, + -0.046971842646598816, + 0.025024034082889557, + 0.014585485681891441, + 0.07874025404453278, + -0.004638315178453922, + 0.002713327994570136, + 0.11288897693157196, + 0.006145218852907419, + 0.0037173195742070675, + -0.017560182139277458, + -0.01592506282031536, + 0.009115886874496937, + 0.029176663607358932, + -0.056749127805233, + -0.09481942653656006, + -0.014187329448759556, + 0.019675396382808685, + -0.023463424295186996, + 0.08248897641897202, + 0.03267376869916916, + 0.02932296320796013, + 0.017345400527119637, + -0.03329450264573097, + -0.019061576575040817, + -0.08452650904655457, + -0.06144671142101288, + 0.0008327392861247063, + 0.005450002383440733, + -0.035220760852098465, + 0.0977049171924591, + 0.055239804089069366, + 0.09511526674032211, + -0.031255364418029785, + -0.04565175622701645, + -0.07411039620637894, + 0.0403832271695137, + 0.059165194630622864, + -0.005458163097500801, + 0.01866809092462063, + 0.043018363416194916, + 0.011813637800514698, + 0.056993789970874786, + 0.07636085152626038, + 0.06494415551424026, + -0.01523410715162754, + -0.0013035740703344345, + -0.06747864186763763, + 0.10821281373500824, + 0.09415844082832336, + -0.08186593651771545, + -0.06548730283975601, + -0.02638210356235504, + -0.08318708091974258, + 0.022101102396845818, + -0.0077890669927001, + 0.04065181314945221, + 0.0186697356402874, + -0.02592366747558117, + -0.0911296159029007, + -0.121262326836586, + 0.053475432097911835, + -0.056022629141807556, + -0.010926328599452972, + -0.059962570667266846, + 0.032457493245601654, + 0.07609052211046219, + 0.055883247405290604, + 0.020474789664149284, + -0.024406442418694496, + 0.03677567094564438, + -0.04756082966923714, + -0.0005149353528395295, + 0.09520062804222107, + 0.023777177557349205, + -0.1029689684510231, + 0.026280013844370842, + -0.06712538003921509, + 0.07708365470170975, + -0.04668726399540901, + 0.15436357259750366, + 0.021601703017950058, + -0.06359592825174332, + -0.09732343256473541, + -0.00601994851604104, + -0.04985116422176361, + 0.06155013293027878, + 0.011149303987622261, + 0.05528872460126877, + 0.046844758093357086, + -0.05233580619096756, + 0.09394358843564987, + 0.04739709198474884, + -0.03704778105020523, + -0.07554302364587784, + -0.09069973975419998, + -0.0346965566277504, + 0.04656268283724785, + -0.01053727325052023, + -0.06500908732414246, + -0.002842111513018608, + 0.033416878432035446, + 0.006041018292307854, + 0.0415038987994194, + 0.1435728669166565, + 0.050778940320014954, + -0.11512802541255951 + ] + }, + "p244_098.wav": { + "name": "p244", + "embedding": [ + 0.04837983846664429, + 0.07397189736366272, + -0.015257400460541248, + 0.004226955119520426, + -0.0217236690223217, + 0.04345892369747162, + -0.16690826416015625, + 0.10852667689323425, + -0.017744475975632668, + 0.12906280159950256, + -0.0865454226732254, + 0.09669071435928345, + -0.028869260102510452, + -0.1700381636619568, + 0.008216941729187965, + 0.04893476143479347, + 0.0021732402965426445, + -0.003368159756064415, + -0.02969559282064438, + -0.019953763112425804, + 0.04410291090607643, + 0.03686554357409477, + 0.03652225807309151, + -0.07071204483509064, + 0.018293865025043488, + 0.07157804071903229, + 0.0033935662358999252, + 0.053154293447732925, + -0.005582939367741346, + -0.03573019802570343, + -0.012815169990062714, + 0.09875959903001785, + -0.040312353521585464, + -0.02933599427342415, + 0.02862393856048584, + -0.0016386136412620544, + -0.0300297848880291, + -0.08071736991405487, + 0.021702971309423447, + -0.005472929682582617, + -0.04542834311723709, + 0.07055270671844482, + 0.020278697833418846, + -0.03449685871601105, + 0.031579796224832535, + 0.016280796378850937, + 0.004470291547477245, + -0.04703650623559952, + -0.10625828057527542, + 0.15504711866378784, + 0.05663695186376572, + 0.024519825354218483, + -0.08005991578102112, + -0.025812696665525436, + 0.08329600840806961, + 0.02192092500627041, + -0.06178736314177513, + -0.06989549100399017, + 0.08307104557752609, + 0.1362994909286499, + -0.0526692196726799, + -0.03864138573408127, + 0.058870889246463776, + 0.06797685474157333, + 0.028171837329864502, + 0.07244863361120224, + 0.09931854903697968, + 0.10579518973827362, + 0.011454739607870579, + 0.010721366852521896, + 0.005931943655014038, + 0.06777166575193405, + 0.0060185398906469345, + -0.0027391379699110985, + 0.020594749599695206, + -0.02383052371442318, + -0.037465650588274, + 0.005291081499308348, + -0.028236083686351776, + -0.051930129528045654, + 0.036599185317754745, + -0.0039236522279679775, + 0.01938287355005741, + 0.03994649648666382, + -0.0483199879527092, + 0.029257463291287422, + 0.046966832131147385, + -0.034857410937547684, + 0.09018257260322571, + -0.020626991987228394, + 0.011873006820678711, + 0.033042412251234055, + -0.10080374777317047, + -0.0901232659816742, + 0.0473480150103569, + 0.014334257692098618, + -0.002812618389725685, + 0.06270328909158707, + 0.047439202666282654, + -0.029730264097452164, + 0.14102405309677124, + 0.02559536322951317, + -0.027706529945135117, + 0.034407421946525574, + -0.06206132099032402, + 0.13693787157535553, + 0.10564863681793213, + -0.019914600998163223, + 0.043340325355529785, + -0.07963314652442932, + 0.004914093762636185, + 0.04742511361837387, + -0.12345616519451141, + -0.06824080646038055, + 0.03785701096057892, + 0.021179266273975372, + -0.012078160420060158, + 0.1373988687992096, + 0.00678655132651329, + 0.019382013007998466, + 0.119720458984375, + -0.11037038266658783, + -0.089786596596241, + -0.00984465517103672, + 0.05732637271285057, + -0.07139059156179428, + 0.05901322513818741, + 0.08729320019483566, + -0.01768692582845688, + 0.018650315701961517, + 0.06390143930912018, + -0.005462422035634518, + 0.021591048687696457, + -0.019534112885594368, + -0.017429277300834656, + 0.03725701570510864, + -0.046739932149648666, + -0.03273056447505951, + 0.015863344073295593, + 0.04314257949590683, + 0.05571836978197098, + -0.0027665982488542795, + -0.03711618110537529, + -0.1370280236005783, + -0.003486255183815956, + 0.031079839915037155, + 0.07326079159975052, + -0.03008180484175682, + -0.01804978959262371, + -0.0631231740117073, + -0.05878232419490814, + -0.011977490037679672, + -0.03093951940536499, + 0.07846591621637344, + 0.0038145771250128746, + 0.017129892483353615, + 0.09291879832744598, + 0.019267885014414787, + 0.032569874078035355, + -0.04674635827541351, + -0.04252927005290985, + 0.028227098286151886, + 0.015208818018436432, + -0.06798401474952698, + -0.06236961483955383, + -0.04348182678222656, + 0.024289807304739952, + -0.028147011995315552, + 0.04094310104846954, + 0.04463409632444382, + 0.04146460443735123, + 0.006917104125022888, + -0.07282091677188873, + 0.037571981549263, + -0.06347844749689102, + -0.03339000418782234, + 0.023619018495082855, + 0.011770635843276978, + -0.03156188502907753, + 0.09836532175540924, + 0.010770116932690144, + 0.0384446419775486, + -0.0594913549721241, + -0.043212853372097015, + -0.08475650101900101, + 0.032853178679943085, + 0.07375316321849823, + -0.041910912841558456, + 0.03750850260257721, + 0.024050042033195496, + -0.016666170209646225, + 0.019358089193701744, + 0.06663091480731964, + 0.08477072417736053, + 0.0016039833426475525, + -0.03596211224794388, + -0.04994069039821625, + 0.10153074562549591, + 0.09700529277324677, + -0.052259691059589386, + -0.04572824016213417, + -0.03073439933359623, + -0.08259276300668716, + 0.021225402131676674, + -0.019002296030521393, + -0.010798409581184387, + 0.029618043452501297, + -0.02029169350862503, + -0.10508082062005997, + -0.08839097619056702, + 0.031039409339427948, + -0.06059584766626358, + -0.005972542800009251, + -0.10417849570512772, + 0.0615026131272316, + 0.09850043058395386, + 0.02322964183986187, + -0.03207894787192345, + -0.05575793981552124, + 0.010520120151340961, + -0.044707559049129486, + 0.03450167179107666, + 0.043019164353609085, + 0.05543632060289383, + -0.10299453884363174, + 0.02348225936293602, + -0.07682305574417114, + 0.040648236870765686, + -0.03621683642268181, + 0.10659989714622498, + 0.04252257198095322, + -0.012846319004893303, + -0.09913890808820724, + 0.048100292682647705, + -0.001361750066280365, + 0.049081750214099884, + 0.026375235989689827, + 0.030131394043564796, + 0.07254589349031448, + -0.10557491332292557, + 0.09367348998785019, + 0.038298726081848145, + -0.020881816744804382, + -0.09438943862915039, + -0.050282105803489685, + -0.038230083882808685, + 0.04092351347208023, + -0.0033249109983444214, + -0.07708792388439178, + -0.03910594806075096, + 0.04860986769199371, + 0.009706912562251091, + 0.04692884534597397, + 0.09414441883563995, + 0.02205154299736023, + -0.08977436274290085 + ] + }, + "p244_286.wav": { + "name": "p244", + "embedding": [ + 0.03965359181165695, + 0.08334919065237045, + -0.03466814383864403, + 0.04762045666575432, + -0.05989878624677658, + 0.0547928623855114, + -0.11458101123571396, + 0.09626089781522751, + -0.04710391163825989, + 0.13282105326652527, + -0.0829072892665863, + 0.10916483402252197, + -0.0280429869890213, + -0.18205790221691132, + -0.05485405772924423, + 0.058250319212675095, + -0.071883425116539, + -0.0554778128862381, + -0.060775768011808395, + -0.023007620126008987, + 0.04706360399723053, + 0.053651344031095505, + 0.030458535999059677, + 0.014448348432779312, + 0.012662037275731564, + 0.06297767162322998, + 0.006117767654359341, + 0.04464814066886902, + 0.026059694588184357, + -0.05101980268955231, + -0.0373312383890152, + 0.11033035814762115, + -0.019709400832653046, + 0.017575323581695557, + 0.025407766923308372, + 0.014861850999295712, + 0.027334976941347122, + -0.06484168767929077, + -0.02902950346469879, + 0.012129507958889008, + -0.05121062695980072, + 0.06807412207126617, + 0.035225760191679, + -0.011037054471671581, + 0.03571804612874985, + 0.006440630182623863, + -0.04688020050525665, + -0.055549006909132004, + -0.10779765248298645, + 0.18085426092147827, + 0.08498485386371613, + 0.0013532856246456504, + -0.049499206244945526, + -0.07108765840530396, + 0.1134115681052208, + -0.010858546942472458, + -0.1234833225607872, + -0.05628567934036255, + 0.08164706081151962, + 0.17708179354667664, + -0.024145109578967094, + -0.01859411783516407, + 0.026249539107084274, + 0.1542750895023346, + 0.0541277639567852, + 0.07544867694377899, + 0.06862325966358185, + 0.1094503402709961, + 0.002875420032069087, + 0.00574179133400321, + 0.07665570080280304, + 0.07955022901296616, + 0.05018950626254082, + -0.012543427757918835, + 0.028607051819562912, + 0.000623376457951963, + -0.02043360285460949, + 0.005165505222976208, + -0.03938993066549301, + -0.01378672756254673, + -0.017424678429961205, + 0.0035220100544393063, + 0.0038184314034879208, + 0.005550440400838852, + -0.03064497373998165, + 0.05782994255423546, + 0.035546645522117615, + -0.02710813097655773, + 0.05448796600103378, + 0.046151816844940186, + 0.009554852731525898, + 0.049803655594587326, + -0.0439445897936821, + -0.09304702281951904, + 0.01230230089277029, + 0.01750217378139496, + 0.01815630868077278, + 0.057669252157211304, + 0.039531491696834564, + -0.030741414055228233, + 0.11637061834335327, + 0.028872525319457054, + -0.014081710949540138, + 0.01844765990972519, + -0.09600609540939331, + 0.12252411246299744, + 0.09930967539548874, + -0.01117746438831091, + 0.028271004557609558, + -0.023595262318849564, + 0.0728687047958374, + 0.07677887380123138, + -0.13526326417922974, + -0.06867365539073944, + 0.02532915771007538, + -0.002198990900069475, + -0.0194699726998806, + 0.0965455025434494, + -0.0052479831501841545, + 0.030898435041308403, + 0.10627418011426926, + -0.07768365740776062, + -0.050768714398145676, + -0.033573444932699203, + 0.03934682160615921, + -0.08280032128095627, + 0.037756457924842834, + 0.04382206127047539, + -0.007731298916041851, + -0.005797511897981167, + 0.08098673820495605, + -0.016620200127363205, + -0.004476112779229879, + 0.012059062719345093, + -0.06691382080316544, + 0.041057877242565155, + -0.03441961854696274, + -0.009010056033730507, + 0.06690674275159836, + 0.04378747195005417, + 0.04359416291117668, + -0.011721762828528881, + -0.03514957055449486, + -0.11276938766241074, + 0.016450412571430206, + 0.03223695605993271, + 0.07436487078666687, + 0.00576063571497798, + -0.005503570195287466, + -0.04481299966573715, + -0.0670711025595665, + 0.04269587993621826, + -0.025289416313171387, + 0.0870809555053711, + -0.02201303094625473, + -0.019382236525416374, + 0.10005062073469162, + -0.008835656568408012, + -0.013770369812846184, + -0.040185824036598206, + -0.014881419949233532, + 0.021023428067564964, + 0.039408572018146515, + -0.07216029614210129, + -0.06286806613206863, + 0.0189787857234478, + 0.034160830080509186, + -0.01696130447089672, + 0.03892875835299492, + 0.029355008155107498, + 0.00521048903465271, + 0.027820482850074768, + -0.06123510003089905, + 0.008841984905302525, + -0.09887248277664185, + -0.04599880427122116, + -0.0002470402978360653, + -0.04383402317762375, + -0.015362843871116638, + 0.07556407153606415, + 0.02148246578872204, + 0.0204310342669487, + -0.003336530877277255, + -0.09509699046611786, + -0.07216265797615051, + 0.07253819704055786, + 0.059912629425525665, + 0.021152537316083908, + 0.05105268582701683, + 0.05847620964050293, + -0.014046954922378063, + 0.0504198893904686, + 0.04916255176067352, + 0.10716527700424194, + -0.015229424461722374, + 1.4662742614746094e-05, + -0.06413403153419495, + 0.08112047612667084, + 0.06648196280002594, + -0.09531855583190918, + -0.06758002936840057, + -0.03555349260568619, + -0.06101922690868378, + 0.04711758717894554, + -0.02551228553056717, + 0.0076766228303313255, + 0.0366310216486454, + -0.007850791327655315, + -0.11808868497610092, + -0.08245821297168732, + 0.09915246069431305, + -0.07534398883581161, + -0.0184329766780138, + -0.0680866613984108, + 0.029651332646608353, + 0.09529390186071396, + 0.04011979699134827, + -0.02150655910372734, + 0.016918279230594635, + 0.05355050414800644, + -0.0731503963470459, + -0.00512725068256259, + 0.04470835253596306, + 0.01859690062701702, + -0.10760574042797089, + -0.008668920956552029, + -0.09228496998548508, + 0.055723294615745544, + -0.05420416593551636, + 0.14775095880031586, + 0.00951094925403595, + -0.043959733098745346, + -0.08135919272899628, + 0.05623441934585571, + -0.03840135782957077, + 0.06650450825691223, + 0.05323943495750427, + 0.06078232824802399, + 0.03487376868724823, + -0.07409492135047913, + 0.12832532823085785, + 0.054068438708782196, + -0.04190947860479355, + -0.07186160236597061, + -0.03206105902791023, + -0.03780420124530792, + 0.022655298933386803, + 0.020889680832624435, + -0.07102075219154358, + -0.008038150146603584, + 0.021124642342329025, + -0.029339898377656937, + 0.07949034869670868, + 0.13116487860679626, + 0.08380748331546783, + -0.08898495137691498 + ] + }, + "p244_145.wav": { + "name": "p244", + "embedding": [ + 0.000866294838488102, + 0.0798451155424118, + -0.013673443347215652, + 0.020723972469568253, + -0.06435421854257584, + 0.013350107707083225, + -0.12047069519758224, + 0.10891728103160858, + 0.016164865344762802, + 0.1136094480752945, + -0.06224357336759567, + 0.06195935606956482, + -0.058374445885419846, + -0.15152528882026672, + 0.055977534502744675, + 0.04750707745552063, + 0.021167410537600517, + -0.031977105885744095, + -0.04057375714182854, + -0.06225855275988579, + 0.004077243618667126, + 0.03531269729137421, + 0.030513400211930275, + -0.038371842354536057, + 0.023270083591341972, + 0.07396102696657181, + -0.02587416023015976, + -0.010700749233365059, + -0.04742564633488655, + -0.009029113687574863, + -0.05130244418978691, + 0.09797510504722595, + -0.06502918899059296, + -0.04335843399167061, + 0.04531361535191536, + -0.01698923669755459, + -0.02718903310596943, + -0.014191309921443462, + 0.005399320274591446, + 0.002884971909224987, + -0.0742228627204895, + 0.0817498117685318, + 0.03162350505590439, + 0.005313806235790253, + 0.03373723477125168, + 0.022291768342256546, + -0.00377840967848897, + -0.0063735488802194595, + -0.08136189728975296, + 0.11646412312984467, + 0.061205849051475525, + -0.010834423825144768, + -0.04973047599196434, + -0.02657543309032917, + 0.07113885879516602, + 0.005776381120085716, + -0.07698143273591995, + -0.0701075941324234, + 0.08882682025432587, + 0.06968583911657333, + -0.04100600630044937, + -0.020746076479554176, + 0.024267567321658134, + 0.07723593711853027, + 0.043395187705755234, + 0.08277633041143417, + 0.03791458159685135, + 0.11603325605392456, + -0.04079378396272659, + -0.008615761063992977, + 0.06929008662700653, + 0.01784130558371544, + 0.04518788680434227, + -0.03668772056698799, + -0.0043637314811348915, + -0.03244310989975929, + -0.007317100651562214, + -0.013275925070047379, + -0.0024896259419620037, + -0.041739773005247116, + 0.002316845115274191, + -0.05241987481713295, + -0.0029617012478411198, + -0.004984825849533081, + -0.00041303783655166626, + 0.01132383942604065, + 0.13004425168037415, + 0.002126149833202362, + 0.11696454882621765, + 0.014218205586075783, + -0.019793100655078888, + 0.07654641568660736, + -0.10456772148609161, + 0.024764958769083023, + 0.01925661787390709, + -0.026303928345441818, + 0.02189370058476925, + 0.07398516684770584, + 0.04710300266742706, + -0.013466921634972095, + 0.12686243653297424, + 0.020702531561255455, + 0.013879034668207169, + 0.04477982968091965, + -0.10073322802782059, + 0.13517625629901886, + 0.06391899287700653, + -0.060432784259319305, + 0.026656776666641235, + -0.016443196684122086, + 0.02790289930999279, + 0.026460178196430206, + -0.0722956657409668, + -0.03719186782836914, + -0.019390523433685303, + -0.0018782955594360828, + -0.05677981674671173, + 0.10295814275741577, + 0.006859760731458664, + -0.008002869784832, + 0.13616155087947845, + -0.10636334121227264, + -0.09849551320075989, + 0.006072650663554668, + 0.021749399602413177, + -0.12145094573497772, + 0.02007569745182991, + 0.07979589700698853, + 3.603869117796421e-05, + 0.05640546232461929, + 0.09385153651237488, + 0.010712558403611183, + 0.026797764003276825, + -0.016875602304935455, + -0.021045895293354988, + 0.012506329454481602, + 0.011942090466618538, + 0.0034771799109876156, + 0.053242526948451996, + 0.022998377680778503, + 0.08401992917060852, + -0.025539761409163475, + 0.028318075463175774, + -0.09664975851774216, + 0.027834001928567886, + 0.02957802824676037, + 0.04041682183742523, + -0.028063789010047913, + 0.018232114613056183, + -0.0432368703186512, + -0.10172879695892334, + 0.030729077756404877, + 0.01185903511941433, + 0.056991416960954666, + -0.04150890186429024, + -0.013196945190429688, + 0.14347302913665771, + 0.0668364018201828, + 0.0015882495790719986, + -0.07713723927736282, + -0.046904057264328, + 0.011026029475033283, + 0.05249374359846115, + -0.12046463787555695, + -0.07032088935375214, + -0.05698117986321449, + 0.041615184396505356, + 0.009288751520216465, + 0.0559646338224411, + 0.057193122804164886, + 0.03295191749930382, + 0.0011447503929957747, + -0.03908756002783775, + 0.03927215561270714, + -0.001677151769399643, + -0.039620012044906616, + -0.04620375484228134, + -0.026760349050164223, + -0.04354633390903473, + 0.08639715611934662, + -0.013604691252112389, + 0.02473180741071701, + -0.040581025183200836, + -0.05611288547515869, + -0.09409336745738983, + 0.004870757460594177, + 0.03614380210638046, + -0.06562957167625427, + 0.038515910506248474, + 0.06316792964935303, + -0.0866309329867363, + 0.0017547979950904846, + 0.05832800269126892, + 0.12391996383666992, + -0.05042435601353645, + 0.03219211846590042, + -0.05329654738306999, + 0.06256245821714401, + 0.07453096657991409, + -0.057908717542886734, + -0.05597337335348129, + -0.058611754328012466, + -0.036907948553562164, + 0.02614029310643673, + -0.02483871951699257, + -0.01442926935851574, + 0.005469983443617821, + 0.0015806432347744703, + -0.02993520349264145, + -0.10144856572151184, + 0.07258644700050354, + -0.020328521728515625, + -0.009655105881392956, + -0.10214070230722427, + 0.04523385316133499, + -0.001953795552253723, + 0.0534239187836647, + -0.04590844362974167, + -0.004398705437779427, + 0.043311767280101776, + 0.009254002943634987, + 0.06503857672214508, + 0.10150010883808136, + 0.0621287077665329, + -0.04731246083974838, + -0.05667645111680031, + -0.08424383401870728, + 0.08999298512935638, + -0.0075050294399261475, + 0.10175660997629166, + 0.03155006468296051, + -0.008158411830663681, + -0.046788379549980164, + 0.01786966808140278, + 0.004166973754763603, + 0.04085596650838852, + 0.06444135308265686, + 0.04867866262793541, + 0.04261824116110802, + 0.0021858741529285908, + 0.0928221046924591, + 0.03612302988767624, + -0.02014216221868992, + -0.04622621089220047, + -0.0173117034137249, + -0.06618103384971619, + 0.02471117675304413, + 0.03890076279640198, + -0.1259387731552124, + 0.016684317961335182, + 0.031813181936740875, + -0.008885195478796959, + 0.05564308911561966, + 0.09895449131727219, + 0.08597353100776672, + -0.08025602996349335 + ] + }, + "p244_352.wav": { + "name": "p244", + "embedding": [ + 0.027903886511921883, + 0.11415190249681473, + -0.04790414497256279, + 0.026707950979471207, + -0.018786540254950523, + 0.06470722705125809, + -0.1429920345544815, + 0.10831661522388458, + -0.034385357052087784, + 0.14468461275100708, + -0.057334356009960175, + 0.09034624695777893, + -0.05191733315587044, + -0.15536558628082275, + -0.00742834759876132, + 0.06274017691612244, + -0.02650057151913643, + -0.019660096615552902, + -0.03253774717450142, + 0.01039358600974083, + 0.022948743775486946, + 0.03404460847377777, + 0.01648814231157303, + -0.04296881705522537, + 0.01888411119580269, + 0.07106846570968628, + -0.002423522062599659, + 0.04482313245534897, + -0.014000087045133114, + -0.02699931338429451, + -0.028906112536787987, + 0.09947431087493896, + -0.05262455344200134, + 0.011102014221251011, + 0.0380474217236042, + 0.021925456821918488, + -0.022539017722010612, + -0.055622175335884094, + 0.03062969446182251, + -0.015329653397202492, + -0.05330852046608925, + 0.06953661143779755, + 0.02011418156325817, + -0.022405199706554413, + 0.03537743538618088, + 0.0013935146853327751, + 0.0005968024488538504, + -0.036983244121074677, + -0.0984746664762497, + 0.16575849056243896, + 0.09433721005916595, + 0.0035479580983519554, + -0.0513468012213707, + -0.05323337763547897, + 0.07536119222640991, + 0.02783386968076229, + -0.0995003879070282, + -0.07364583760499954, + 0.08300929516553879, + 0.15202495455741882, + -0.013569614849984646, + -0.021898936480283737, + 0.03672587871551514, + 0.11170487105846405, + 0.030833197757601738, + 0.0919969230890274, + 0.06481793522834778, + 0.09096160531044006, + 0.020300161093473434, + -0.002672998933121562, + 0.04485250264406204, + 0.04836146533489227, + 0.036209188401699066, + 0.00044649187475442886, + 0.02045116201043129, + -0.034408390522003174, + -0.03879784047603607, + 0.00043190945871174335, + -0.01596132293343544, + -0.06398924440145493, + -0.021290134638547897, + 3.605196252465248e-05, + 0.00096085574477911, + 0.03985308110713959, + 0.003571564331650734, + 0.022082265466451645, + 0.047020189464092255, + -0.0471661351621151, + 0.07490761578083038, + 0.020649980753660202, + -0.001139187254011631, + 0.03662538155913353, + -0.07390881329774857, + -0.06005021929740906, + 0.027182593941688538, + 0.015231535769999027, + -0.0006300150416791439, + 0.05722701549530029, + 0.03306960314512253, + -0.006450926885008812, + 0.11368940770626068, + 0.004762811586260796, + -0.004556384868919849, + 0.0221753790974617, + -0.07366780191659927, + 0.1262688785791397, + 0.06650125235319138, + -0.015598105266690254, + 0.03341161087155342, + -0.05215980112552643, + 0.0076317209750413895, + 0.06491941958665848, + -0.12095680832862854, + -0.07196345180273056, + 0.0449582040309906, + 0.017957298085093498, + -0.028348425403237343, + 0.11951908469200134, + 0.03818431496620178, + 0.014776283875107765, + 0.11245018988847733, + -0.11389647424221039, + -0.09117236733436584, + -0.030420556664466858, + 0.07737965881824493, + -0.06443020701408386, + 0.04842883348464966, + 0.08554523438215256, + -0.015290562994778156, + 0.005104021169245243, + 0.0626864954829216, + 0.006563291884958744, + 0.0270241592079401, + 0.010510570369660854, + -0.03985866159200668, + 0.014187393710017204, + -0.05674777925014496, + -0.0056015849113464355, + 0.018129663541913033, + 0.01700945943593979, + 0.055413588881492615, + -0.013049107044935226, + -0.03319576382637024, + -0.11505954712629318, + -0.016973815858364105, + 0.06654006242752075, + 0.07067476212978363, + -0.023813635110855103, + -0.03125523403286934, + -0.03188708424568176, + -0.06084626168012619, + -0.004812777973711491, + -0.03345659747719765, + 0.08851666748523712, + -0.014804107137024403, + -0.010163087397813797, + 0.11573286354541779, + 0.0019109472632408142, + -0.0005967402830719948, + -0.06391730904579163, + -0.01619056984782219, + 0.02532208524644375, + 0.032463036477565765, + -0.08146776258945465, + -0.07911534607410431, + -0.008213222026824951, + 0.024202415719628334, + 0.004798787645995617, + 0.06354346871376038, + 0.052032820880413055, + 0.0353596955537796, + -0.0008856877684593201, + -0.051867205649614334, + 0.006956511177122593, + -0.0706096887588501, + -0.04703080654144287, + -0.015954166650772095, + -0.030352376401424408, + -0.025803562253713608, + 0.0980248749256134, + 0.02150784246623516, + 0.04114314913749695, + -0.02575737237930298, + -0.04563649743795395, + -0.07864087074995041, + 0.055667150765657425, + 0.0779569000005722, + -0.03978807479143143, + 0.036223724484443665, + 0.05191851779818535, + -0.03555375337600708, + 0.007482793182134628, + 0.06534615904092789, + 0.09108556807041168, + -0.01974594220519066, + -0.025349974632263184, + -0.0822688415646553, + 0.06946583837270737, + 0.10867691040039062, + -0.09719139337539673, + -0.03970339894294739, + -0.03347230330109596, + -0.06146158277988434, + 0.007929987274110317, + -0.0631377249956131, + 0.01729501783847809, + 0.021671714261174202, + -0.02958552911877632, + -0.09739544987678528, + -0.1294325888156891, + 0.06472821533679962, + -0.06674446165561676, + -0.001584033714607358, + -0.05773462355136871, + 0.0472959503531456, + 0.06292291730642319, + 0.0546550378203392, + -0.043937746435403824, + 0.006834802217781544, + 0.04036595672369003, + -0.03309433162212372, + 0.039026204496622086, + 0.06429195404052734, + 0.03936392813920975, + -0.11006450653076172, + 0.024218343198299408, + -0.06988352537155151, + 0.07901452481746674, + -0.06447377800941467, + 0.15054550766944885, + 0.013008290901780128, + -0.03672163188457489, + -0.1127423346042633, + 0.03657326474785805, + -0.02566785365343094, + 0.03327825292944908, + 0.00048699136823415756, + 0.050732336938381195, + 0.04640598222613335, + -0.060877859592437744, + 0.11389008909463882, + 0.03285582736134529, + 0.007169988006353378, + -0.07271468639373779, + -0.061879776418209076, + -0.05909551680088043, + 0.03964494913816452, + 0.004095983691513538, + -0.07776191830635071, + -0.019568875432014465, + 0.02665437012910843, + 0.013542751781642437, + 0.07008476555347443, + 0.12661629915237427, + 0.056342367082834244, + -0.1183590292930603 + ] + }, + "p244_008.wav": { + "name": "p244", + "embedding": [ + 0.039513878524303436, + 0.07909629493951797, + -0.038770534098148346, + 0.0327041856944561, + -0.05641026049852371, + 0.014332274906337261, + -0.12009327858686447, + 0.10119545459747314, + -0.018728960305452347, + 0.10527503490447998, + -0.06064216420054436, + 0.12288598716259003, + -0.03122006729245186, + -0.13796360790729523, + -0.01639382541179657, + 0.0637514516711235, + -0.038995955139398575, + -0.046994589269161224, + -0.009234906174242496, + -0.03133096173405647, + 0.03958454728126526, + 0.04382617771625519, + 0.03852836415171623, + 0.007387572433799505, + 0.018128884956240654, + 0.0705672949552536, + 0.005204600282013416, + 0.028237273916602135, + -0.0016749268397688866, + -0.04088608920574188, + -0.012447429820895195, + 0.06859572976827621, + -0.01795373111963272, + 0.01633540913462639, + 0.029273319989442825, + 0.0016611374448984861, + 0.013443110510706902, + -0.049109604209661484, + -0.01720798760652542, + 0.006688239052891731, + -0.040972210466861725, + 0.07344033569097519, + 0.028256084769964218, + -0.03818638250231743, + 0.020737024024128914, + 0.007735445164144039, + -0.03072717785835266, + -0.02640649303793907, + -0.10358743369579315, + 0.15726891160011292, + 0.05397598445415497, + 0.023792622610926628, + -0.06669197976589203, + -0.04396532103419304, + 0.09702610224485397, + -0.010626784525811672, + -0.08489739149808884, + -0.03304330259561539, + 0.04935958981513977, + 0.1380203664302826, + -0.02528848499059677, + -0.040924470871686935, + 0.04238341003656387, + 0.11290633678436279, + 0.059677790850400925, + 0.0510471872985363, + 0.07893804460763931, + 0.10233412683010101, + -0.015668055042624474, + -0.010304788127541542, + 0.056144773960113525, + 0.09653525054454803, + 0.05569203943014145, + 0.01034574955701828, + 0.00625847652554512, + 0.00014209530490916222, + -0.031023502349853516, + -0.011181945912539959, + -0.021251436322927475, + -0.044935740530490875, + -0.041518982499837875, + -0.00843728706240654, + 0.022131910547614098, + 0.019020933657884598, + -0.006263173185288906, + 0.0436544269323349, + 0.06281575560569763, + -0.042734041810035706, + 0.05449814349412918, + 0.026043463498353958, + -0.01034363079816103, + 0.04628857597708702, + -0.07016055285930634, + -0.06909722834825516, + 0.012961129657924175, + 0.018828894942998886, + 0.04907117411494255, + 0.05535848066210747, + 0.04460000991821289, + -0.0017285272479057312, + 0.10297612845897675, + 0.026457324624061584, + 0.008337809704244137, + -0.006018521264195442, + -0.07360824942588806, + 0.11333294212818146, + 0.09616672247648239, + -0.03373955935239792, + 0.04212629050016403, + -0.04265093803405762, + 0.03882293030619621, + 0.04288604483008385, + -0.10755352675914764, + -0.07527566701173782, + 0.006028910167515278, + 0.01955416239798069, + -5.770226562162861e-05, + 0.09991393983364105, + 0.007132283877581358, + 0.05472737178206444, + 0.09964706748723984, + -0.08907028287649155, + -0.06829674541950226, + -0.028726322576403618, + 0.05415859818458557, + -0.06862740218639374, + 0.05374690890312195, + 0.07115484774112701, + 0.007600478362292051, + 0.013574568554759026, + 0.06500902771949768, + 0.00834614597260952, + 0.018878545612096786, + -0.009039871394634247, + -0.04007747396826744, + 0.02418578416109085, + -0.030702337622642517, + -0.00492717232555151, + 0.06748516857624054, + 0.028090212494134903, + 0.057854555547237396, + 0.0038598976098001003, + -0.012338299304246902, + -0.1263551414012909, + 0.016844825819134712, + 0.05090313404798508, + 0.05546088144183159, + -0.021372433751821518, + -0.04049351438879967, + -0.033505067229270935, + -0.05648123845458031, + -0.0021226233802735806, + -0.005176561418920755, + 0.06427891552448273, + -0.022564534097909927, + 0.014879985712468624, + 0.10262786597013474, + 0.013848081231117249, + -0.015709880739450455, + -0.035439178347587585, + -0.020820967853069305, + 0.006157045718282461, + 0.04766130447387695, + -0.0785871297121048, + -0.09080027043819427, + -0.018941668793559074, + 0.04475794732570648, + -0.011631695553660393, + 0.05054289102554321, + 0.037730228155851364, + 0.010627719573676586, + 0.007027782499790192, + -0.03486822545528412, + 0.013682324439287186, + -0.07636146247386932, + -0.0688614696264267, + -0.0037491396069526672, + -0.016645360738039017, + -0.030306901782751083, + 0.07677282392978668, + 0.033976390957832336, + 0.07495146244764328, + -0.024683427065610886, + -0.06513631343841553, + -0.0777592808008194, + 0.04816911742091179, + 0.03779111057519913, + -0.021404629573225975, + 0.033410802483558655, + 0.045552462339401245, + -0.02002175897359848, + 0.028809700161218643, + 0.04019254446029663, + 0.08596429228782654, + -0.04565665125846863, + -0.005720173008739948, + -0.06268956512212753, + 0.07553169131278992, + 0.09040579199790955, + -0.08701770752668381, + -0.05009842664003372, + -0.060127004981040955, + -0.05938676744699478, + 0.02922808937728405, + -0.025477472692728043, + 0.009625066071748734, + 0.01655624806880951, + -0.015479977242648602, + -0.11396532505750656, + -0.09799760580062866, + 0.061736732721328735, + -0.04954129084944725, + -0.0004789404047187418, + -0.06177568435668945, + 0.03774429112672806, + 0.07778225839138031, + 0.024979565292596817, + -0.014359983615577221, + 0.003015118418261409, + 0.022015955299139023, + -0.031146174296736717, + 0.010306322947144508, + 0.06568862497806549, + 0.05681601166725159, + -0.06998932361602783, + -0.023770418018102646, + -0.0756036639213562, + 0.05078805610537529, + -0.03409186005592346, + 0.13871105015277863, + 0.00909865740686655, + -0.053936123847961426, + -0.08164601027965546, + 0.014933167956769466, + -0.022704225033521652, + 0.0662720799446106, + 0.031069371849298477, + 0.039036720991134644, + 0.03828074783086777, + -0.06260357797145844, + 0.10861402750015259, + 0.06348785758018494, + -0.03521537780761719, + -0.07163076102733612, + -0.05024534463882446, + -0.033390264958143234, + 0.03413733094930649, + -0.0021868175826966763, + -0.052751123905181885, + 0.0025727166794240475, + 0.00847792997956276, + 0.0023390576243400574, + 0.07736755907535553, + 0.11673449724912643, + 0.06847669929265976, + -0.08555512875318527 + ] + }, + "p244_204.wav": { + "name": "p244", + "embedding": [ + 0.021620549261569977, + 0.07910554111003876, + -0.029602771624922752, + 0.005245045758783817, + -0.07521495968103409, + 0.02685179002583027, + -0.12578876316547394, + 0.15610788762569427, + -0.022922364994883537, + 0.14713451266288757, + -0.08117420971393585, + 0.1377536952495575, + -0.03466911241412163, + -0.18588680028915405, + 0.02607247792184353, + 0.03931224346160889, + 0.02169107086956501, + -0.016864748671650887, + -0.044106971472501755, + -0.045448750257492065, + 0.03236180171370506, + 0.03707735612988472, + 0.0025132019072771072, + -0.020725637674331665, + 0.03817856311798096, + 0.08177869021892548, + -0.024342479184269905, + -0.0037554181180894375, + -0.016854457557201385, + -0.04801994189620018, + -0.04592582955956459, + 0.08890283852815628, + -0.0953814685344696, + -0.011339335702359676, + 0.05178200826048851, + -0.049624595791101456, + -0.04213443771004677, + -0.03400759398937225, + -0.018996406346559525, + 0.015408488921821117, + -0.06682349741458893, + 0.07053438574075699, + 0.004916166886687279, + 0.005188826471567154, + 0.06428449600934982, + 0.04866940528154373, + 0.005172084551304579, + -0.03555886447429657, + -0.0917367935180664, + 0.12154380232095718, + 0.05958052724599838, + -0.013892536982893944, + -0.07621726393699646, + -0.03925538808107376, + 0.09524309635162354, + -0.006158028729259968, + -0.07950548082590103, + -0.06647326052188873, + 0.06954745948314667, + 0.09595178812742233, + -0.030090106651186943, + -0.0493813194334507, + 0.02632339671254158, + 0.07273902744054794, + 0.06166967377066612, + 0.08624575287103653, + 0.07580458372831345, + 0.10825874656438828, + -0.040398336946964264, + 0.02396935410797596, + 0.04443128779530525, + 0.03894231095910072, + 0.047293126583099365, + -0.054341211915016174, + 0.013147315010428429, + 0.01396704651415348, + -0.0033481356222182512, + -0.028694532811641693, + -0.02588217332959175, + -0.010961364023387432, + -0.010297078639268875, + 0.0047026327811181545, + -0.0010811975225806236, + 0.0031684867572039366, + -0.03889324143528938, + 0.05109832063317299, + 0.08500693738460541, + -0.0009861905127763748, + 0.09225407242774963, + 0.010104137472808361, + -0.022546740248799324, + 0.07191568613052368, + -0.14134357869625092, + -0.04597463831305504, + 0.03677152097225189, + -0.022138582542538643, + -0.02792692743241787, + 0.0762842670083046, + 0.05191322788596153, + -0.000995749607682228, + 0.14354124665260315, + 0.04801831394433975, + -0.00037388806231319904, + 0.03427601605653763, + -0.08139047026634216, + 0.13231946527957916, + 0.08073902130126953, + -0.05076228082180023, + 0.0578991174697876, + -0.04984896630048752, + 0.05862916260957718, + 0.025643032044172287, + -0.11973633617162704, + -0.0525621697306633, + 0.0032067110296338797, + -0.02235792577266693, + -0.057501956820487976, + 0.1392737627029419, + -0.027735510841012, + 0.048089221119880676, + 0.11955547332763672, + -0.0974925085902214, + -0.06753597408533096, + -0.0023316359147429466, + 0.037860386073589325, + -0.09910393506288528, + 0.07272092252969742, + 0.05784321203827858, + 0.002411584137007594, + 0.07156773656606674, + 0.10577785968780518, + -0.006294758524745703, + 0.015425491146743298, + -0.0051282658241689205, + -0.019897883757948875, + 0.01092411670833826, + 0.0016404323978349566, + -0.013521437533199787, + 0.0346493162214756, + 0.033270370215177536, + 0.0848134309053421, + -0.023158662021160126, + 0.016552351415157318, + -0.09683579206466675, + 0.039614275097846985, + 0.025033194571733475, + 0.06819972395896912, + -0.016517875716090202, + -0.0012368502793833613, + -0.05667738616466522, + -0.0866817981004715, + -0.020541131496429443, + 0.0038866258691996336, + 0.08593631535768509, + -0.045914459973573685, + 0.0413024015724659, + 0.12665170431137085, + 0.07821060717105865, + 0.00013071556168142706, + -0.05476207286119461, + -0.05856912583112717, + -0.031504206359386444, + 0.07027675211429596, + -0.0809619277715683, + -0.07815688103437424, + -0.04652511700987816, + 0.037681177258491516, + -0.007138380780816078, + 0.10270943492650986, + 0.058885350823402405, + 0.027535097673535347, + 0.027343537658452988, + -0.103610098361969, + 0.019108954817056656, + -0.06506158411502838, + -0.04881369695067406, + -0.044671546667814255, + -0.021028753370046616, + -0.054578594863414764, + 0.08287395536899567, + -0.005928212311118841, + 0.0646088719367981, + -0.03127380833029747, + -0.0658736526966095, + -0.09443346410989761, + 0.039175309240818024, + 0.05237019434571266, + -0.058106910437345505, + 0.03092692419886589, + 0.06382396817207336, + -0.05578877404332161, + 0.036983609199523926, + 0.08623147755861282, + 0.09601902961730957, + -0.02972327545285225, + 0.06982023268938065, + -0.049849867820739746, + 0.1053542047739029, + 0.07236816734075546, + -0.07546801120042801, + -0.08463121950626373, + -0.03607209399342537, + -0.07658535242080688, + 0.045290689915418625, + -0.013076988980174065, + 0.0059357136487960815, + 0.029451463371515274, + 0.015801111236214638, + -0.06129278242588043, + -0.06774111837148666, + 0.06390300393104553, + -0.0494936965405941, + 0.005540984217077494, + -0.10533817112445831, + 0.03350371867418289, + 0.08554068207740784, + 0.043537333607673645, + -0.035782717168331146, + -0.04976189136505127, + 0.047483887523412704, + 0.022914495319128036, + 0.037533048540353775, + 0.07122839987277985, + 0.05834416672587395, + -0.07703907787799835, + -0.027631178498268127, + -0.057438384741544724, + 0.08356929570436478, + -0.036973875015974045, + 0.1234494298696518, + 0.022361617535352707, + -0.030692601576447487, + -0.07844868302345276, + 0.04921601340174675, + 0.016829973086714745, + 0.0415031723678112, + 0.031282126903533936, + 0.06980385631322861, + 0.054031457751989365, + -0.044957246631383896, + 0.1195613369345665, + 0.033129509538412094, + -0.03471432998776436, + -0.04458899423480034, + -0.060265179723501205, + -0.04377664253115654, + 0.014578146860003471, + 0.049820538610219955, + -0.12224040925502777, + 0.002240369562059641, + 0.019118357449769974, + -0.009389598853886127, + 0.06701179593801498, + 0.12330880016088486, + 0.08151233941316605, + -0.134560689330101 + ] + }, + "p244_081.wav": { + "name": "p244", + "embedding": [ + 0.03213370591402054, + 0.0979895368218422, + -0.012609624303877354, + 0.048052191734313965, + -0.0562005490064621, + 0.07871226966381073, + -0.12662386894226074, + 0.12949472665786743, + -0.04685886204242706, + 0.12473385781049728, + -0.07641522586345673, + 0.10852976143360138, + -0.025535428896546364, + -0.19434329867362976, + -0.04311336949467659, + 0.05754229426383972, + -0.032044123858213425, + -0.0032568282913416624, + -0.03204956278204918, + 0.002665461041033268, + 0.043540313839912415, + 0.026270674541592598, + 0.03089885041117668, + -0.010260563343763351, + 0.022191310301423073, + 0.04829544946551323, + 0.004813422914594412, + 0.06099959462881088, + 0.03897271677851677, + -0.018686043098568916, + -0.0417955107986927, + 0.1457860767841339, + -0.05086737126111984, + 0.02043311670422554, + 0.06907306611537933, + 0.0006892679375596344, + -0.02304399572312832, + -0.03535531461238861, + 0.0022397604770958424, + -0.0036825707647949457, + -0.04613088443875313, + 0.06442543119192123, + 0.05690540745854378, + 0.019137680530548096, + 0.05947133153676987, + 0.021372394636273384, + -0.03565455973148346, + -0.03948509320616722, + -0.1022753119468689, + 0.15575294196605682, + 0.04468391463160515, + -0.021333055570721626, + -0.0652478039264679, + -0.060193486511707306, + 0.10389100015163422, + 0.0026625385507941246, + -0.13639198243618011, + -0.044928062707185745, + 0.11714807152748108, + 0.1639849692583084, + -0.009660583920776844, + -0.025412529706954956, + -0.002576845698058605, + 0.12975521385669708, + 0.037616174668073654, + 0.11934775114059448, + 0.0599881149828434, + 0.11855623871088028, + 0.015588351525366306, + 0.03530234098434448, + 0.06565146148204803, + 0.04178553447127342, + 0.007349045947194099, + -0.028251519426703453, + 0.029389014467597008, + -0.012512795627117157, + 0.005195807199925184, + 0.03841552138328552, + -0.017168011516332626, + -0.008922298438847065, + -0.006632693111896515, + 0.005583820398896933, + -0.0034381363075226545, + 0.005803799722343683, + -0.03664793819189072, + 0.0656885877251625, + 0.024731013923883438, + 0.02787303738296032, + 0.07271914184093475, + 0.06153174489736557, + -0.002128938678652048, + 0.05529940873384476, + -0.05544855073094368, + -0.09829540550708771, + 0.013611490838229656, + -0.002596162725239992, + 0.03281403332948685, + 0.06703225523233414, + 0.022330395877361298, + -0.007098186761140823, + 0.10069988667964935, + 0.06033281981945038, + -0.010919515043497086, + 0.05001094564795494, + -0.09959090501070023, + 0.13427840173244476, + 0.06541270017623901, + 0.01142967026680708, + 0.05221201851963997, + -0.04324822872877121, + 0.08778797835111618, + 0.07631527632474899, + -0.1288968026638031, + -0.050719600170850754, + 0.04300855100154877, + 0.0260040033608675, + -0.025349507108330727, + 0.12612482905387878, + -0.007611442357301712, + -0.0021340330131351948, + 0.10850021988153458, + -0.09003597497940063, + -0.06333781778812408, + -0.027979085221886635, + 0.031626224517822266, + -0.08314096927642822, + 0.03670233115553856, + 0.030735015869140625, + -0.03317011892795563, + -0.009088266640901566, + 0.08486603200435638, + -0.008403741754591465, + 0.020784305408596992, + 0.03625890985131264, + -0.04986405000090599, + 0.049977947026491165, + -0.02965582348406315, + 0.02761470340192318, + 0.055096790194511414, + 0.044264595955610275, + 0.05940474569797516, + -0.003939729183912277, + -0.032343845814466476, + -0.10818034410476685, + 0.0023454930633306503, + 0.05126441270112991, + 0.06651972234249115, + -0.011429212056100368, + -0.019640181213617325, + -0.036482539027929306, + -0.08061010390520096, + 0.0513400174677372, + -0.009244145825505257, + 0.09090688079595566, + -0.0151980584487319, + -0.03436033055186272, + 0.08398816734552383, + 0.013349571265280247, + 0.007005738560110331, + -0.0803329199552536, + -0.05062820017337799, + 0.02000533975660801, + 0.033226415514945984, + -0.11413382738828659, + -0.0446985587477684, + 0.01275942474603653, + 0.028429506346583366, + -0.031280722469091415, + 0.011581659317016602, + 0.055851973593235016, + 0.008818534202873707, + 0.05434439703822136, + -0.05087029188871384, + 0.01276406180113554, + -0.10937576740980148, + -0.0671301856637001, + -0.01922297477722168, + -0.008153161965310574, + -0.010482192039489746, + 0.08286858350038528, + 0.009223862551152706, + 0.021133888512849808, + 0.01188607607036829, + -0.064598947763443, + -0.06657154113054276, + 0.07595282047986984, + 0.06222962588071823, + 0.01599958725273609, + 0.08065498620271683, + 0.03951767086982727, + -0.06793556362390518, + 0.06399747729301453, + 0.05769545957446098, + 0.10521434992551804, + -0.03498142957687378, + 0.0023059917148202658, + -0.08800952136516571, + 0.06736696511507034, + 0.09266314655542374, + -0.11013470590114594, + -0.09424010664224625, + -0.01322482991963625, + -0.04873482510447502, + 0.039785467088222504, + -0.050593774765729904, + -0.0182709489017725, + 0.03194830194115639, + -0.009394100867211819, + -0.09513884782791138, + -0.096921905875206, + 0.07279365509748459, + -0.08087120205163956, + -0.013512670062482357, + -0.07499399781227112, + 0.05270504951477051, + 0.08768204599618912, + 0.01209377869963646, + -0.05245205760002136, + -0.0009882780723273754, + 0.057265426963567734, + -0.07470221072435379, + -0.019615644589066505, + 0.030566250905394554, + 0.0185557771474123, + -0.09472685307264328, + 0.0028135227039456367, + -0.07665684074163437, + 0.05617022514343262, + -0.0562426820397377, + 0.1731330007314682, + -0.010448402725160122, + -0.05660713091492653, + -0.052503615617752075, + 0.05048142001032829, + -0.023679519072175026, + 0.029432743787765503, + 0.052778951823711395, + 0.07074064016342163, + 0.015421571210026741, + -0.0555206723511219, + 0.13676826655864716, + 0.006412816699594259, + -0.035486191511154175, + -0.06173129752278328, + -0.001885883859358728, + -0.06570940464735031, + 0.02868037112057209, + 0.024407723918557167, + -0.11543022096157074, + -0.029168330132961273, + 0.04029463231563568, + -0.021747678518295288, + 0.05247454717755318, + 0.13362474739551544, + 0.0449431836605072, + -0.09310270100831985 + ] + }, + "p244_385.wav": { + "name": "p244", + "embedding": [ + 0.045871417969465256, + 0.11186913400888443, + 0.00438494049012661, + -0.011742634698748589, + -0.04474398121237755, + 0.09747549146413803, + -0.1404711753129959, + 0.1555105298757553, + -0.06613657623529434, + 0.16012690961360931, + -0.0687192901968956, + 0.1107354387640953, + -0.018052924424409866, + -0.18716958165168762, + -0.05368705466389656, + 0.03638600558042526, + -0.06502287089824677, + -0.016972960904240608, + -0.04884461686015129, + -0.008174742572009563, + 0.04831221327185631, + 0.007531135343015194, + -0.0047982861287891865, + -0.0019827138166874647, + 0.017027605324983597, + 0.054750051349401474, + 0.01732824370265007, + 0.05932663008570671, + 0.021189065650105476, + -0.062108445912599564, + -0.02803128771483898, + 0.11786743253469467, + -0.049675535410642624, + 0.03487037494778633, + 0.08826304227113724, + -0.031047485768795013, + 0.0022557186894118786, + -0.04956532642245293, + -0.0028623149264603853, + 0.00996128749102354, + -0.016439735889434814, + 0.0840008407831192, + 0.031104199588298798, + 0.028288541361689568, + 0.02927723526954651, + 0.0585792176425457, + 0.011306039057672024, + -0.06859191507101059, + -0.06719674915075302, + 0.15906275808811188, + 0.07665354758501053, + -0.030672527849674225, + -0.04710652306675911, + -0.07172360271215439, + 0.10005084425210953, + -0.03228176757693291, + -0.1188296303153038, + -0.055814746767282486, + 0.08605849742889404, + 0.15157842636108398, + -0.04420950263738632, + -0.03782351315021515, + 0.011202430352568626, + 0.12784533202648163, + 0.017743747681379318, + 0.11453984677791595, + 0.07027567923069, + 0.0843321830034256, + -0.003724726615473628, + 0.03982752189040184, + 0.03881325572729111, + 0.04802235960960388, + 0.043487437069416046, + -0.019419943913817406, + 0.05808219313621521, + -0.016763733699917793, + -0.005238555371761322, + 0.014152929186820984, + -0.024627618491649628, + 0.006610215175896883, + -0.01443529687821865, + 0.03908499702811241, + 0.008336817845702171, + 0.01766454242169857, + -0.010166262276470661, + 0.059298932552337646, + -0.01987832598388195, + -0.007360312156379223, + 0.06711704283952713, + 0.04001389071345329, + 0.035235047340393066, + 0.05773480609059334, + -0.08370012044906616, + -0.10547614842653275, + 0.042522888630628586, + -0.005578859709203243, + 0.007751731667667627, + 0.06490164250135422, + 0.024526158347725868, + -0.00856785848736763, + 0.1030300185084343, + 0.05986305698752403, + -0.02195248194038868, + 0.038277577608823776, + -0.1145762950181961, + 0.14229969680309296, + 0.053986333310604095, + -0.023819994181394577, + 0.041623108088970184, + -0.0687195286154747, + 0.09064706414937973, + 0.056877076625823975, + -0.15005357563495636, + -0.09600003063678741, + 0.03820410370826721, + 0.019480934366583824, + -0.04020973667502403, + 0.10717343538999557, + -0.029797552153468132, + 0.009655368514358997, + 0.09000623226165771, + -0.0618533231317997, + -0.04383796826004982, + -0.02796785533428192, + 0.04741745442152023, + -0.08143442124128342, + 0.05012882873415947, + 0.03258078545331955, + -0.010219903662800789, + 0.01636679284274578, + 0.11275582760572433, + -0.010713944211602211, + -0.01651557721197605, + 0.02912227250635624, + -0.0266458448022604, + 0.03346564993262291, + -0.036162324249744415, + 0.02600618451833725, + -0.0030781321693211794, + 0.0527995340526104, + 0.04263389855623245, + 0.003189775859937072, + -0.043684836477041245, + -0.07907427847385406, + 0.0006774531793780625, + 0.019977513700723648, + 0.06711924076080322, + -0.0071228258311748505, + -0.012071134522557259, + -0.03611143305897713, + -0.0524408333003521, + -0.013392012566328049, + -0.01527265552431345, + 0.07425066828727722, + -0.0012095257407054305, + 0.020006101578474045, + 0.10346958786249161, + 0.029455851763486862, + 0.0007626976585015655, + -0.07459330558776855, + -0.016935721039772034, + 0.020794715732336044, + 0.05543822795152664, + -0.07505100965499878, + -0.044984616339206696, + 0.012338891625404358, + 0.02657809853553772, + -0.010118257254362106, + 0.04897993803024292, + 0.04975210875272751, + 0.025209985673427582, + 0.04663657024502754, + -0.07825689017772675, + 0.02224918268620968, + -0.11303100734949112, + -0.06090568006038666, + -0.02896808460354805, + -0.018171295523643494, + -0.0316518098115921, + 0.06599346548318863, + -0.0007092852029018104, + 0.04945264011621475, + -0.00348032102920115, + -0.07399351894855499, + -0.06731084734201431, + 0.07268933951854706, + 0.09860076010227203, + -0.013203510083258152, + 0.042342592030763626, + 0.04282982274889946, + -0.02149653621017933, + 0.0605279877781868, + 0.07342345267534256, + 0.11338246613740921, + -0.023849500343203545, + 0.02937689609825611, + -0.07826597988605499, + 0.07550396025180817, + 0.06194820627570152, + -0.09974642097949982, + -0.08785484731197357, + 0.005303366109728813, + -0.049881331622600555, + 0.019132710993289948, + -0.0242499690502882, + 0.006114527117460966, + 0.0212209802120924, + 0.00938879419118166, + -0.07497288286685944, + -0.06556227803230286, + 0.07407844811677933, + -0.09435851126909256, + -0.0073996190913021564, + -0.07422924786806107, + 0.05978701636195183, + 0.11779443919658661, + 0.055191319435834885, + -0.03697899356484413, + -0.0272142942994833, + 0.05121101438999176, + -0.03528626263141632, + -0.0016348283970728517, + 0.01197389978915453, + 0.020866582170128822, + -0.1000773087143898, + 0.04218969866633415, + -0.0723632350564003, + 0.04216983914375305, + -0.06630398333072662, + 0.15699294209480286, + -0.016808493062853813, + -0.07099200785160065, + -0.07270801812410355, + 0.03401869535446167, + -0.03845476359128952, + 0.03282615542411804, + 0.02502809837460518, + 0.06195691227912903, + 0.04220603033900261, + -0.05840633809566498, + 0.12266574054956436, + 0.017571592703461647, + -0.029280629009008408, + -0.07419605553150177, + -0.055782463401556015, + -0.041236817836761475, + 0.024900421500205994, + 0.024229034781455994, + -0.11052656918764114, + -0.027387814596295357, + 0.031266603618860245, + -0.03102274239063263, + 0.08931320160627365, + 0.1403033435344696, + 0.05686182156205177, + -0.13733287155628204 + ] + }, + "p244_284.wav": { + "name": "p244", + "embedding": [ + 0.04141642898321152, + 0.06979545950889587, + -0.019032523036003113, + 0.0390816256403923, + -0.043868135660886765, + 0.06532397866249084, + -0.11736100912094116, + 0.09019085019826889, + -0.06744042038917542, + 0.12230528891086578, + -0.06797505915164948, + 0.09747536480426788, + -0.01648901030421257, + -0.17341503500938416, + -0.054784566164016724, + 0.0424853190779686, + -0.06551390886306763, + -0.032326653599739075, + -0.07067592442035675, + -0.0049887532368302345, + 0.04271107539534569, + 0.04007439315319061, + 0.03347145393490791, + -0.019418317824602127, + 0.033270448446273804, + 0.04106369614601135, + 0.005285894498229027, + 0.042339012026786804, + 0.03307656571269035, + -0.04388793557882309, + -0.024313900619745255, + 0.11311817169189453, + -0.021848518401384354, + -0.007152605801820755, + 0.03852579742670059, + 0.01580837368965149, + -0.003727669594809413, + -0.07809041440486908, + -0.03819633647799492, + 0.00834386795759201, + -0.056444283574819565, + 0.06837356090545654, + 0.03744346648454666, + -0.017337609082460403, + 0.04702596366405487, + -0.025707252323627472, + -0.037150632590055466, + -0.05421062931418419, + -0.1029304713010788, + 0.1610407531261444, + 0.05368327349424362, + 0.018700847402215004, + -0.08519278466701508, + -0.0660209059715271, + 0.11482568830251694, + -0.013651309534907341, + -0.11893503367900848, + -0.044651664793491364, + 0.06012747436761856, + 0.1813526749610901, + -0.020620031282305717, + 0.0038448225241154432, + 0.026122961193323135, + 0.10145090520381927, + 0.048468392342329025, + 0.08712530136108398, + 0.08492505550384521, + 0.08808408677577972, + 0.027660097926855087, + 0.033076416701078415, + 0.06910654157400131, + 0.05137063190340996, + 0.022279199212789536, + -0.03102794848382473, + 0.029225781559944153, + 0.0017949480097740889, + -0.04483289644122124, + 0.003275876631960273, + -0.022943561896681786, + -0.002547027077525854, + -0.004529222846031189, + 0.006550888530910015, + 0.021823525428771973, + 0.024601589888334274, + -0.05423561856150627, + 0.04232274740934372, + 0.006816928740590811, + -0.0280821081250906, + 0.05533795803785324, + 0.042043350636959076, + 0.0007511208532378078, + 0.027507033199071884, + -0.038378119468688965, + -0.10773613303899765, + -0.010008382610976696, + 0.014144865795969963, + -0.01612825319170952, + 0.0561729297041893, + 0.04122903198003769, + -0.030249420553445816, + 0.10074333846569061, + 0.0488659143447876, + -0.015792477875947952, + 0.03387673944234848, + -0.10013174265623093, + 0.09112514555454254, + 0.0901968702673912, + 0.0022102929651737213, + 0.042065154761075974, + -0.02508392557501793, + 0.0649300217628479, + 0.07821866869926453, + -0.1372946947813034, + -0.05955647677183151, + 0.06794905662536621, + -0.0034256819635629654, + 0.02056579664349556, + 0.1159113198518753, + 0.00536385178565979, + 0.005847449414432049, + 0.08433307707309723, + -0.07659203559160233, + -0.04995877668261528, + -0.02838127873837948, + 0.062301672995090485, + -0.06246389448642731, + 0.043179526925086975, + 0.031634822487831116, + -0.01866913214325905, + -0.024759050458669662, + 0.07096080482006073, + -0.011106367222964764, + -0.0032295244745910168, + 0.008477922528982162, + -0.031070424243807793, + 0.06400710344314575, + -0.041499435901641846, + -0.014915753155946732, + 0.07021591067314148, + 0.05228372663259506, + 0.0431116484105587, + -0.010864054784178734, + -0.03191244229674339, + -0.09366914629936218, + 0.0002226183860329911, + 0.039261579513549805, + 0.07691851258277893, + -0.009308917447924614, + 0.01134653389453888, + -0.06734026968479156, + -0.06866125762462616, + 0.03303215652704239, + -0.033099010586738586, + 0.10547616332769394, + 0.006046065595000982, + -0.006494411267340183, + 0.09562556445598602, + -0.022267041727900505, + 0.0013959072530269623, + -0.01959322951734066, + -0.002048219321295619, + 0.02998843416571617, + 0.049768831580877304, + -0.05107250437140465, + -0.050383299589157104, + 0.015026159584522247, + 0.00774481613188982, + -0.02084973081946373, + 0.002089640125632286, + 0.025806095451116562, + 0.008929691277444363, + 0.04049064591526985, + -0.08050184696912766, + 0.027125172317028046, + -0.11228012293577194, + -0.020122552290558815, + 0.002663110150024295, + -0.04198998957872391, + -0.0131063936278224, + 0.08673688024282455, + 0.03347950428724289, + -0.0008789798012003303, + 0.004454189911484718, + -0.10653974860906601, + -0.042314063757658005, + 0.06982344388961792, + 0.06771819293498993, + 0.01876017637550831, + 0.035832278430461884, + 0.057350873947143555, + 0.005859625991433859, + 0.03373382240533829, + 0.07599811255931854, + 0.07678279280662537, + 0.0023659071885049343, + -0.028074581176042557, + -0.05995447561144829, + 0.1001565009355545, + 0.05846802517771721, + -0.08766864985227585, + -0.07658152282238007, + -0.016321495175361633, + -0.061697762459516525, + 0.035262107849121094, + -0.020403580740094185, + 0.02010262943804264, + 0.034007780253887177, + -0.03171507641673088, + -0.10942661017179489, + -0.10004278272390366, + 0.10807790607213974, + -0.06583673506975174, + -0.03333992883563042, + -0.05982062965631485, + 0.01562969945371151, + 0.08392059057950974, + 0.021171271800994873, + -0.011283649131655693, + 0.010521436110138893, + 0.030436046421527863, + -0.0862221047282219, + -0.025896865874528885, + 0.03126629441976547, + -0.012270445935428143, + -0.11129117012023926, + 0.017236925661563873, + -0.076917365193367, + 0.09629207849502563, + -0.06398941576480865, + 0.14145654439926147, + -0.008674035780131817, + -0.04693850874900818, + -0.08016742765903473, + 0.04609028249979019, + -0.029501326382160187, + 0.05558779835700989, + 0.04978852719068527, + 0.08113552629947662, + 0.0382465198636055, + -0.06253757327795029, + 0.09452789276838303, + 0.03421499580144882, + -0.021824760362505913, + -0.06579199433326721, + -0.031653475016355515, + -0.03478645533323288, + 0.01003987342119217, + -0.009544308297336102, + -0.05965317413210869, + 0.015635376796126366, + 0.02291708067059517, + -0.03659220039844513, + 0.0568128377199173, + 0.11286088079214096, + 0.07105669379234314, + -0.09920184314250946 + ] + }, + "p244_082.wav": { + "name": "p244", + "embedding": [ + 0.009411174803972244, + 0.08323510736227036, + -0.04857800900936127, + 0.029742909595370293, + -0.057362064719200134, + 0.04094798117876053, + -0.1382228434085846, + 0.08897451311349869, + -0.04493768885731697, + 0.10658545792102814, + -0.07055925577878952, + 0.10487526655197144, + -0.030202943831682205, + -0.20856811106204987, + -0.06325679272413254, + 0.06275913864374161, + -0.05976363271474838, + -0.07527010142803192, + -0.04118075221776962, + -0.018783489242196083, + 0.05728233978152275, + 0.042633481323719025, + -0.009143693372607231, + 0.011600812897086143, + 0.0013446449302136898, + 0.0663529708981514, + 0.015016966499388218, + 0.03444671258330345, + 0.01594073511660099, + 0.007594255730509758, + -0.02965313382446766, + 0.11619430035352707, + -0.02377568744122982, + 0.007002450991421938, + 0.047205667942762375, + 0.03281540423631668, + 0.030444353818893433, + -0.04127202183008194, + -0.011317635886371136, + 0.035685937851667404, + -0.07206816971302032, + 0.07363279163837433, + 0.034547243267297745, + 0.010727166198194027, + 0.05058418959379196, + 0.02445879578590393, + -0.03089790791273117, + -0.049073249101638794, + -0.10659847408533096, + 0.1731153428554535, + 0.08125479519367218, + -0.015048407018184662, + -0.0494743287563324, + -0.07082439959049225, + 0.1080903559923172, + -0.008389386348426342, + -0.11675167828798294, + -0.06075400859117508, + 0.09706941992044449, + 0.15158149600028992, + -0.018457647413015366, + -0.026260415092110634, + 0.016313740983605385, + 0.1482800394296646, + 0.04631701856851578, + 0.07797910273075104, + 0.04749668389558792, + 0.12294045090675354, + -0.00970434956252575, + -0.02651379629969597, + 0.12090296298265457, + 0.0732836127281189, + 0.023590464144945145, + -0.04570477828383446, + 0.0390847809612751, + 0.0214807391166687, + -0.011423197574913502, + 0.030962955206632614, + -0.02656143717467785, + -0.006641690153628588, + -0.008897986263036728, + 0.01583193615078926, + -0.03470209985971451, + 0.016625670716166496, + -0.02421959862112999, + 0.0678267702460289, + 0.07286550104618073, + -0.01156865805387497, + 0.05863085016608238, + 0.09633757919073105, + 0.020386775955557823, + 0.05461570620536804, + -0.06643228232860565, + -0.08959316462278366, + 0.03463796153664589, + 0.00827353447675705, + 0.018163369968533516, + 0.06372036039829254, + 0.03379521146416664, + -0.017196208238601685, + 0.10332553088665009, + 0.03757525980472565, + -0.01448835339397192, + 0.026851868256926537, + -0.10643801093101501, + 0.12773369252681732, + 0.09552449733018875, + -0.02199445478618145, + -0.008014488965272903, + -0.020254118368029594, + 0.06972513347864151, + 0.07754160463809967, + -0.10743217170238495, + -0.07968710362911224, + 0.055382125079631805, + 0.023620393127202988, + -0.021427322179079056, + 0.12267042696475983, + -0.008210848085582256, + 0.0027259818743914366, + 0.11488700658082962, + -0.06672704964876175, + -0.06719198077917099, + -0.043614983558654785, + 0.020578186959028244, + -0.07784849405288696, + 0.048601940274238586, + 0.0639006495475769, + 0.017551138997077942, + -0.019592275843024254, + 0.08678491413593292, + -0.00807617511600256, + 0.004243718925863504, + -0.025327831506729126, + -0.019358357414603233, + 0.06537950783967972, + -0.010837739333510399, + -0.012346676550805569, + 0.07549881935119629, + 0.03967012092471123, + 0.045830607414245605, + 0.0013602623948827386, + -0.03151504695415497, + -0.1291232407093048, + 0.024233289062976837, + 0.04815968498587608, + 0.07571224123239517, + -0.015101255849003792, + -0.01381041668355465, + -0.05592862889170647, + -0.07876960188150406, + 0.03084312379360199, + -0.02304004691541195, + 0.10026149451732635, + -0.005592876113951206, + -0.04701017960906029, + 0.1049978956580162, + -0.018784694373607635, + -0.0066004260443151, + -0.025569746270775795, + -0.036011822521686554, + 0.013088454492390156, + 0.036392226815223694, + -0.09904009103775024, + -0.0846695527434349, + -0.004475453868508339, + 0.022818515077233315, + 0.0068465229123830795, + 0.026776809245347977, + 0.04669120907783508, + 0.001870704465545714, + 0.027750639244914055, + -0.08918944001197815, + 0.03525206074118614, + -0.11673890799283981, + -0.05327051132917404, + -0.029964253306388855, + -0.04133564233779907, + -0.0030565818306058645, + 0.08169017732143402, + -0.008359239436686039, + 0.004224564414471388, + -0.011324957013130188, + -0.10791286826133728, + -0.07242006808519363, + 0.08339009433984756, + 0.09452908486127853, + 0.02411576732993126, + 0.07288530468940735, + 0.0544586218893528, + -0.006983669940382242, + 0.041727472096681595, + 0.042256295680999756, + 0.13072146475315094, + -0.02864881046116352, + 0.010814046487212181, + -0.047910600900650024, + 0.08523382991552353, + 0.033189740031957626, + -0.10427984595298767, + -0.056293684989213943, + -0.013072704896330833, + -0.03354141116142273, + 0.032415322959423065, + -0.03511476144194603, + 0.026913179084658623, + 0.026824524626135826, + 0.0010047397809103131, + -0.11934097111225128, + -0.08471548557281494, + 0.051463719457387924, + -0.06151154637336731, + -0.009184977039694786, + -0.07765986770391464, + 0.03273706138134003, + 0.10582055151462555, + 0.03917999938130379, + -0.056362319737672806, + 0.009582164697349072, + 0.03869963809847832, + -0.051336877048015594, + -0.012613809667527676, + 0.007583669852465391, + 0.027266785502433777, + -0.0950557067990303, + -0.018024984747171402, + -0.09256584942340851, + 0.08323374390602112, + -0.06041473150253296, + 0.12585674226284027, + 0.0070867701433598995, + -0.05049802362918854, + -0.07285327464342117, + 0.035981278866529465, + -0.023722613230347633, + 0.06461898237466812, + 0.04261399060487747, + 0.06368102133274078, + 0.009700990281999111, + -0.048192787915468216, + 0.13488326966762543, + 0.05653298273682594, + -0.03816651925444603, + -0.0662367194890976, + -0.0075411563739180565, + -0.025510886684060097, + 0.05108931288123131, + 0.05768226459622383, + -0.07609832286834717, + -0.014019026421010494, + 0.028443632647395134, + -0.03756922110915184, + 0.05862042307853699, + 0.12917949259281158, + 0.06986866146326065, + -0.09145446121692657 + ] + }, + "p244_218.wav": { + "name": "p244", + "embedding": [ + 0.06673995405435562, + 0.09241461753845215, + -0.04671558737754822, + 0.005720822140574455, + -0.04166216030716896, + 0.021131504327058792, + -0.13404692709445953, + 0.09596005827188492, + 0.009214630350470543, + 0.12595249712467194, + -0.06881837546825409, + 0.08258086442947388, + -0.04355539381504059, + -0.10822881758213043, + 0.009794319979846478, + 0.03366012126207352, + 0.00036196294240653515, + -0.01178551372140646, + -0.05208093672990799, + -0.04542585089802742, + 0.015606909990310669, + 0.05928616225719452, + 0.03245805948972702, + -0.08387447148561478, + 0.02475116401910782, + 0.08091872930526733, + -0.011844740249216557, + 0.004846625030040741, + -0.013500849716365337, + -0.036631010472774506, + -0.011087826453149319, + 0.07231725752353668, + -0.07530510425567627, + -0.016270868480205536, + 0.026694197207689285, + 0.01794445887207985, + -0.02220413088798523, + -0.06130357086658478, + 0.009617235511541367, + 0.026830632239580154, + -0.04883992671966553, + 0.08181708306074142, + 0.03895075246691704, + -0.0401669442653656, + 0.025874869897961617, + 0.027915049344301224, + 0.010074172168970108, + -0.04031967371702194, + -0.08327020704746246, + 0.18530426919460297, + 0.050702378153800964, + -0.00048330845311284065, + -0.07360462844371796, + -0.02074882946908474, + 0.07327612489461899, + -0.008302642963826656, + -0.05100390687584877, + -0.07220813632011414, + 0.05020608752965927, + 0.08551609516143799, + -0.04471487179398537, + -0.05941503494977951, + 0.03845163807272911, + 0.08454490453004837, + 0.04414811730384827, + 0.042242731899023056, + 0.09319295734167099, + 0.1278742551803589, + -0.031150344759225845, + -0.0013818519655615091, + 0.03789704293012619, + 0.06335889548063278, + 0.0383380763232708, + -0.002171811182051897, + 0.025673845782876015, + -0.028235426172614098, + -0.01745263859629631, + -0.004064389504492283, + -0.018047470599412918, + -0.06305825710296631, + 0.02313840761780739, + -0.00674998015165329, + 0.004048997536301613, + 0.048994652926921844, + -0.03848019987344742, + 0.023486563935875893, + 0.09877488017082214, + -0.04409158602356911, + 0.08935674279928207, + 0.02204792946577072, + 0.012775031849741936, + 0.030318424105644226, + -0.09796352684497833, + -0.055483508855104446, + 0.03484194353222847, + -0.00657587731257081, + 0.024930257350206375, + 0.06521096080541611, + 0.04179495573043823, + -0.022350311279296875, + 0.12113296985626221, + 0.017137957736849785, + -0.015005506575107574, + -0.002767186611890793, + -0.06037360429763794, + 0.15837937593460083, + 0.1218695268034935, + -0.03505280613899231, + 0.014612356200814247, + -0.04748029261827469, + 0.01335287094116211, + 0.03550170361995697, + -0.11038891226053238, + -0.07553435862064362, + 0.017396938055753708, + 0.03284015506505966, + -0.0008369721472263336, + 0.10557593405246735, + 0.013690419495105743, + 0.012181827798485756, + 0.13112908601760864, + -0.0927133858203888, + -0.07104067504405975, + -0.0042142667807638645, + 0.037650760263204575, + -0.0820700079202652, + 0.032728411257267, + 0.10643388330936432, + -0.013440646231174469, + 0.02328268624842167, + 0.07236253470182419, + 0.021005120128393173, + 0.032534319907426834, + -0.032793428748846054, + 0.003447011113166809, + 0.036398567259311676, + 0.0006801164126954973, + -0.01696469448506832, + 0.03490343689918518, + 0.05360676720738411, + 0.08189666271209717, + -0.006878489162772894, + -0.02048259973526001, + -0.1363704949617386, + 0.039053499698638916, + 0.03193531185388565, + 0.037786729633808136, + -0.04440353065729141, + -0.007418894208967686, + -0.029864240437746048, + -0.07562088221311569, + 0.001393111888319254, + -0.011884447187185287, + 0.05794353783130646, + -0.022241737693548203, + -0.01787719316780567, + 0.1491033434867859, + 0.027059899643063545, + 0.021256128326058388, + -0.021346963942050934, + -0.016197465360164642, + 0.014491203241050243, + 0.026206161826848984, + -0.09537866711616516, + -0.09075523912906647, + -0.046413715928792953, + 0.018450338393449783, + 0.00672380905598402, + 0.05369650572538376, + 0.0625077337026596, + 0.006286041811108589, + 0.018740981817245483, + -0.0527520515024662, + 0.019446130841970444, + -0.047873418778181076, + -0.023290500044822693, + -0.005407287739217281, + -0.037413738667964935, + -0.027827031910419464, + 0.09225767850875854, + -0.004187794402241707, + 0.041743017733097076, + -0.046815741807222366, + -0.06845550239086151, + -0.05745353549718857, + 0.028204983100295067, + 0.062291186302900314, + -0.0586608462035656, + 0.010917039588093758, + 0.06356892734766006, + -0.014507530257105827, + -0.0026156194508075714, + 0.070974200963974, + 0.07693815976381302, + -0.035423390567302704, + -0.01701207086443901, + -0.05271977186203003, + 0.10168087482452393, + 0.06159539520740509, + -0.08040063083171844, + -0.03370402753353119, + -0.07339389622211456, + -0.05034111440181732, + -0.012771296314895153, + -0.025148048996925354, + 0.01490765530616045, + 0.019698305055499077, + -0.00143462885171175, + -0.07982230186462402, + -0.10257213562726974, + 0.0267894696444273, + -0.03584497794508934, + 0.007640083320438862, + -0.09003444761037827, + 0.041306376457214355, + 0.055980607867240906, + 0.07535381615161896, + -0.027003316208720207, + -0.020421011373400688, + -0.005871819332242012, + -0.030469907447695732, + 0.024197686463594437, + 0.04127150774002075, + 0.05883333459496498, + -0.06733577698469162, + -0.012668863870203495, + -0.06967277079820633, + 0.08528416603803635, + -0.04000786691904068, + 0.09443873912096024, + 0.027870740741491318, + -0.033193059265613556, + -0.0991239994764328, + 0.03142354637384415, + -0.03074929304420948, + 0.03852801024913788, + 0.04193933680653572, + 0.0056736283004283905, + 0.05675719678401947, + -0.047608088701963425, + 0.10432156175374985, + 0.04758857190608978, + -0.014785085804760456, + -0.06801826506853104, + -0.050628721714019775, + -0.052018903195858, + 0.049489185214042664, + 0.03528051823377609, + -0.067943274974823, + 0.004121929407119751, + 0.029231710359454155, + -0.0023907579015940428, + 0.05455969274044037, + 0.08119166642427444, + 0.06660211086273193, + -0.10265371948480606 + ] + }, + "p244_258.wav": { + "name": "p244", + "embedding": [ + 0.07679141312837601, + 0.03285347297787666, + -0.005191308446228504, + 0.017157545313239098, + -0.01648176833987236, + 0.04638223722577095, + -0.088742196559906, + 0.057948336005210876, + -0.022573599591851234, + 0.07319176197052002, + -0.11689199507236481, + 0.021522829309105873, + -0.003921594470739365, + -0.0912213921546936, + 0.002323621418327093, + 0.014264101162552834, + 0.002201654016971588, + 0.012111756019294262, + -0.09432931244373322, + -0.01385512389242649, + 0.0003177318722009659, + 0.034604333341121674, + 0.01753060147166252, + -0.059732384979724884, + -0.0020971104968339205, + 0.042796872556209564, + 0.010780866257846355, + 0.005441932938992977, + 0.004265574738383293, + -0.002715539187192917, + -0.009840097278356552, + 0.11150279641151428, + -0.04598115012049675, + -0.01988230086863041, + 0.03898988664150238, + 0.04225374758243561, + 0.007714281789958477, + -0.10172348469495773, + -0.019400203600525856, + 0.0038004154339432716, + -0.07217127084732056, + 0.06552952527999878, + 0.055657122284173965, + -0.015563245862722397, + 0.007612681016325951, + 0.012087170034646988, + 0.007316205650568008, + -0.013617804273962975, + -0.06583358347415924, + 0.15554118156433105, + 0.031136982142925262, + 0.0055865030735731125, + -0.07283760607242584, + -0.021615318953990936, + 0.10212336480617523, + -0.0070214164443314075, + -0.036226727068424225, + -0.030113667249679565, + 0.026174569502472878, + 0.10048529505729675, + 0.008407581597566605, + -0.03803853318095207, + -0.01644132472574711, + 0.017940891906619072, + -0.014630669727921486, + 0.055051594972610474, + 0.09959582984447479, + 0.11093810200691223, + 0.0049186935648322105, + 0.025319887325167656, + 0.06981988251209259, + 0.0289970301091671, + 0.04492059350013733, + -0.05474399775266647, + 0.06897800415754318, + 0.005950739607214928, + -0.06861895322799683, + 0.05169109255075455, + -0.04048681631684303, + -0.03773059695959091, + 0.0584164597094059, + -0.015366610139608383, + 0.034149251878261566, + 0.006377383600920439, + -0.11505354195833206, + 0.0046930452808737755, + 0.005290476605296135, + 0.038996078073978424, + 0.10869783163070679, + 0.018349923193454742, + 0.009688381105661392, + 0.01598978228867054, + -0.036223456263542175, + -0.08092721551656723, + 0.01347358338534832, + 0.00746909761801362, + 0.013366539031267166, + 0.029650598764419556, + 0.0247380118817091, + -0.018677975982427597, + 0.07955006510019302, + -0.025160063058137894, + 0.00850014016032219, + -0.009872529655694962, + -0.03528575599193573, + 0.0710277408361435, + 0.11302268505096436, + 0.02511666528880596, + 0.01139133796095848, + -0.041211847215890884, + 0.04427892342209816, + 0.05170672759413719, + -0.07742707431316376, + -0.05129126459360123, + 0.028028609231114388, + 0.037942662835121155, + 0.06499990075826645, + 0.09817469865083694, + -0.040436845272779465, + -0.02128174901008606, + 0.05847795307636261, + -0.06975678354501724, + -0.004629859700798988, + 0.04635251313447952, + -0.007115555927157402, + -0.007278773933649063, + -0.007724538445472717, + -0.0016099689528346062, + -0.029732869938015938, + -0.058376964181661606, + 0.055915676057338715, + -0.027520939707756042, + 0.0052959127351641655, + -0.0474945567548275, + 0.02992713451385498, + 0.08013647794723511, + 0.006267134100198746, + -0.06800227612257004, + 0.04786580801010132, + 0.05581164360046387, + 0.03627294301986694, + 0.01124153845012188, + -0.04230596125125885, + -0.08089552074670792, + 0.0007849982939660549, + 0.0416392907500267, + 0.042494021356105804, + -0.021547436714172363, + -0.026843221858143806, + -0.10129571706056595, + -0.043941665440797806, + 0.027755694463849068, + -0.0478389635682106, + 0.0665149912238121, + 0.0659036710858345, + -0.043209102004766464, + 0.08743710815906525, + -0.03005043976008892, + -0.006855689454823732, + -0.07787776738405228, + -0.043079689145088196, + 0.03751013055443764, + 0.03974080830812454, + 0.0006978809833526611, + -0.04671081155538559, + 0.021193694323301315, + 0.0026710564270615578, + -0.010079368948936462, + -0.04505263641476631, + 0.034987062215805054, + -0.010533876717090607, + 0.01829933375120163, + -0.1373869776725769, + 0.019953547045588493, + -0.12611842155456543, + -0.029317855834960938, + 0.034984566271305084, + 0.01392775122076273, + 0.04856440797448158, + 0.07969792187213898, + -0.013384771533310413, + 0.0044553703628480434, + -0.044323064386844635, + -0.12362749874591827, + 0.006815183907747269, + 0.0634303092956543, + 0.06017370522022247, + -0.005435607396066189, + 0.037726692855358124, + 0.05026915669441223, + 0.00932311825454235, + 0.027295488864183426, + 0.07428344339132309, + 0.07999062538146973, + -0.01062973402440548, + -0.019960129633545876, + 0.005895745009183884, + 0.11012575030326843, + 0.02762814797461033, + -0.05788486450910568, + -0.04115934297442436, + 0.01942356303334236, + -0.032451555132865906, + 0.03567459434270859, + 0.00912648718804121, + 0.013185901567339897, + 0.026380911469459534, + -0.015013724565505981, + -0.08134867250919342, + -0.016082588583230972, + 0.03090437687933445, + -0.011898979544639587, + -0.019635427743196487, + -0.06859276443719864, + 0.01730221137404442, + 0.050356995314359665, + 0.04189112037420273, + -0.024182943627238274, + -0.02373354136943817, + 0.006139649078249931, + -0.08314862102270126, + -0.07653996348381042, + -0.024275556206703186, + 0.008871578611433506, + -0.066228486597538, + 0.042074281722307205, + -0.0472719706594944, + 0.07996881753206253, + -0.02567720040678978, + 0.07942695915699005, + 0.0016464916989207268, + -0.05625027418136597, + -0.04452471807599068, + 0.05419591814279556, + -0.011272326111793518, + 0.04632297530770302, + 0.07949044555425644, + -0.029907487332820892, + 0.01672234944999218, + -0.08599400520324707, + 0.08126738667488098, + 0.006985564716160297, + -0.0048313080333173275, + -0.03543149679899216, + -0.0006830152124166489, + -0.04757782071828842, + -0.009476684965193272, + -0.011244406923651695, + -0.058826301246881485, + 0.0307366494089365, + 0.015632303431630135, + -0.03818799927830696, + 0.01670285500586033, + 0.041338443756103516, + 0.051368676126003265, + -0.06183270364999771 + ] + }, + "p244_091.wav": { + "name": "p244", + "embedding": [ + 0.04309367388486862, + 0.0720987468957901, + -0.0132478391751647, + 0.017731424421072006, + -0.06165162846446037, + 0.06395068019628525, + -0.13169601559638977, + 0.14464542269706726, + -0.046683065593242645, + 0.1385502815246582, + -0.04386259242892265, + 0.12500441074371338, + -0.01278278511017561, + -0.19199281930923462, + -0.02863188646733761, + 0.05434998869895935, + -0.057081859558820724, + -0.04133368283510208, + -0.053575754165649414, + -0.024377061054110527, + 0.04223744198679924, + 0.0311942920088768, + 0.0261395126581192, + -0.0014756987802684307, + 0.021796882152557373, + 0.0695478767156601, + -0.0006583810318261385, + 0.047250326722860336, + 0.012663107365369797, + -0.07275444269180298, + -0.025742821395397186, + 0.08432137966156006, + -0.058854520320892334, + 0.010051047429442406, + 0.04828295856714249, + -0.028486598283052444, + -0.009382815100252628, + -0.04764934629201889, + -0.03271391987800598, + 0.013127505779266357, + -0.047004178166389465, + 0.08635374158620834, + 0.0333406999707222, + -0.00034673017216846347, + 0.042563408613204956, + 0.013922426849603653, + -0.02209658920764923, + -0.04705999791622162, + -0.10563153028488159, + 0.1506836712360382, + 0.075776606798172, + -0.006607173942029476, + -0.0648643970489502, + -0.06669889390468597, + 0.10503864288330078, + -0.025230523198843002, + -0.13188141584396362, + -0.047879062592983246, + 0.07593496143817902, + 0.15364305675029755, + -0.041862230747938156, + -0.031919319182634354, + 0.02820572629570961, + 0.1098124235868454, + 0.06707937270402908, + 0.0889878123998642, + 0.09234442561864853, + 0.10160738229751587, + -0.01282145269215107, + 0.019284797832369804, + 0.05580781027674675, + 0.0751730427145958, + 0.04807524383068085, + -0.0008225438068620861, + 0.037131816148757935, + 0.0014572007348760962, + -0.0006831804057583213, + -0.021310074254870415, + -0.023456593975424767, + -0.003276883391663432, + -0.0038925036787986755, + 0.02375621162354946, + 0.017930250614881516, + 0.028639446943998337, + -0.02274405211210251, + 0.06532417982816696, + 0.02309400588274002, + -0.010117791593074799, + 0.05741807818412781, + 0.03127700090408325, + 0.018069909885525703, + 0.07340972870588303, + -0.09006212651729584, + -0.07940064370632172, + 0.0225283931940794, + 0.0030012200586497784, + 0.024960016831755638, + 0.06134403869509697, + 0.031337201595306396, + -0.00855853222310543, + 0.11929445713758469, + 0.052166104316711426, + -0.01905599795281887, + 0.028067348524928093, + -0.09640559554100037, + 0.12266942858695984, + 0.08031803369522095, + -0.022284023463726044, + 0.04782688617706299, + -0.051695507019758224, + 0.0787573754787445, + 0.05408960208296776, + -0.1350681036710739, + -0.0754668191075325, + 0.0330924391746521, + 0.009739085100591183, + -0.02826535701751709, + 0.13806474208831787, + -0.010384946130216122, + 0.04305350407958031, + 0.11038455367088318, + -0.08230754733085632, + -0.03646830469369888, + -0.0055635301396250725, + 0.054766371846199036, + -0.08317561447620392, + 0.05998267978429794, + 0.03684881329536438, + -0.013172414153814316, + 0.02731870859861374, + 0.09247037768363953, + -0.018216188997030258, + -0.004504123702645302, + 0.016312040388584137, + -0.04332476109266281, + 0.022890862077474594, + -0.025876715779304504, + -0.002924907486885786, + 0.049809135496616364, + 0.036981649696826935, + 0.05224273353815079, + -0.017538845539093018, + -0.037159230560064316, + -0.119931161403656, + 0.016010232269763947, + 0.01986614614725113, + 0.08030147850513458, + -0.014970451593399048, + -0.006482881959527731, + -0.0401659831404686, + -0.06644508987665176, + 0.007841970771551132, + -0.008373289369046688, + 0.07976173609495163, + -0.021678447723388672, + 0.0011113336076959968, + 0.10172917693853378, + 0.03010474517941475, + 0.008834779262542725, + -0.04021097347140312, + -0.035399019718170166, + 0.003066539764404297, + 0.05836181342601776, + -0.0846424549818039, + -0.05683001130819321, + -0.004309183917939663, + 0.043701838701963425, + -0.010717585682868958, + 0.05616123974323273, + 0.05136401578783989, + 0.022349296137690544, + 0.028967753052711487, + -0.06828059256076813, + 0.02481108531355858, + -0.0951242744922638, + -0.0741296261548996, + -0.003367321565747261, + -0.0185336172580719, + -0.02813224494457245, + 0.07075908035039902, + 0.011294732801616192, + 0.051759183406829834, + -0.023240529000759125, + -0.08101250976324081, + -0.08983057737350464, + 0.05698192119598389, + 0.06296256184577942, + -0.016562119126319885, + 0.03837001323699951, + 0.0679793655872345, + -0.03630131110548973, + 0.050037138164043427, + 0.06037301942706108, + 0.11213769018650055, + -0.031672198325395584, + 0.02792520448565483, + -0.07070574164390564, + 0.09044340252876282, + 0.0789322555065155, + -0.08119912445545197, + -0.07228894531726837, + -0.008563557639718056, + -0.06970565021038055, + 0.04068715497851372, + -0.02785094641149044, + 0.0017837516497820616, + 0.0431668758392334, + 0.012809227220714092, + -0.0992497056722641, + -0.07491475343704224, + 0.08240143954753876, + -0.08449393510818481, + -0.00450856564566493, + -0.08662715554237366, + 0.04068160802125931, + 0.11025522649288177, + 0.0415530726313591, + -0.023766905069351196, + -0.017375074326992035, + 0.050013281404972076, + -0.02350243180990219, + 0.012389621697366238, + 0.0574544295668602, + 0.03179460018873215, + -0.10195067524909973, + -0.01964683085680008, + -0.07553237676620483, + 0.03137651085853577, + -0.033169474452733994, + 0.1412326544523239, + 0.0024874797090888023, + -0.04609978199005127, + -0.07931625097990036, + 0.03564610704779625, + -0.01348478626459837, + 0.060373455286026, + 0.03673099726438522, + 0.07927213609218597, + 0.0639696940779686, + -0.055534981191158295, + 0.12298642098903656, + 0.04358307272195816, + -0.04595636948943138, + -0.06615161895751953, + -0.04008050262928009, + -0.03524373471736908, + 0.023251861333847046, + 0.014349992386996746, + -0.09259232878684998, + -0.01610407419502735, + 0.024809114634990692, + -0.020766835659742355, + 0.05673844739794731, + 0.12615686655044556, + 0.05869127810001373, + -0.11874385923147202 + ] + }, + "p244_149.wav": { + "name": "p244", + "embedding": [ + 0.03768186271190643, + 0.08385203778743744, + 0.003771065967157483, + 0.016704736277461052, + -0.02278084307909012, + 0.04204532504081726, + -0.16192631423473358, + 0.16337457299232483, + -0.028415264561772346, + 0.13345271348953247, + -0.07519504427909851, + 0.10003703832626343, + -0.02614821307361126, + -0.18881404399871826, + -0.024122655391693115, + 0.05158974230289459, + -0.0221388041973114, + -0.018566664308309555, + -0.016828352585434914, + 0.005564190912991762, + 0.05611561983823776, + 0.049695853143930435, + 0.004307721275836229, + -0.001803562045097351, + 0.012524161487817764, + 0.04730432853102684, + 0.00986695196479559, + 0.06021067500114441, + 0.02476823329925537, + -0.03380019590258598, + -0.00223548524081707, + 0.11448952555656433, + -0.04335777088999748, + 0.030037984251976013, + 0.07191549241542816, + -0.00968906655907631, + -0.024295175448060036, + -0.04914316534996033, + -0.018657123669981956, + -0.0071354638785123825, + -0.054571714252233505, + 0.06066074222326279, + 0.043791115283966064, + 0.02487028017640114, + 0.052724555134773254, + 0.0570414774119854, + -0.007172238547354937, + -0.05884827673435211, + -0.0950125902891159, + 0.16391783952713013, + 0.06042741984128952, + 0.0028025214560329914, + -0.06446389108896255, + -0.07849854975938797, + 0.09417851269245148, + -0.010156840085983276, + -0.11376545578241348, + -0.04148290306329727, + 0.10617800801992416, + 0.16100741922855377, + -0.0250163022428751, + -0.04480304569005966, + 0.0320194736123085, + 0.1292324811220169, + 0.04362428933382034, + 0.09016602486371994, + 0.08338652551174164, + 0.10966627299785614, + -0.002137948991730809, + 0.006961085833609104, + 0.035613901913166046, + 0.053405776619911194, + 0.033508457243442535, + -0.011102542281150818, + 0.024848341941833496, + 0.027205847203731537, + -0.010422540828585625, + 0.007268413435667753, + -0.03176813945174217, + 0.001368687953799963, + -0.005691193044185638, + 0.034977711737155914, + 0.002772694919258356, + 0.037705063819885254, + -0.014800334349274635, + 0.058759916573762894, + 0.013955675065517426, + 0.010913911275565624, + 0.07828021049499512, + 0.01347639411687851, + 0.02955559641122818, + 0.06418874859809875, + -0.0798056498169899, + -0.08031607419252396, + 0.017876846715807915, + -0.004576188512146473, + 0.014666064642369747, + 0.07051225751638412, + 0.028934121131896973, + -0.01445766631513834, + 0.13701120018959045, + 0.02543218433856964, + -0.01817462593317032, + 0.03026607260107994, + -0.11601606756448746, + 0.11854873597621918, + 0.04868794232606888, + -0.0228131003677845, + 0.05795200914144516, + -0.077306367456913, + 0.06261872500181198, + 0.055262207984924316, + -0.15220719575881958, + -0.06971816718578339, + 0.06351606547832489, + 0.04874006286263466, + -0.03217070549726486, + 0.1579434871673584, + -0.002579244552180171, + 0.028287317603826523, + 0.10888787358999252, + -0.09761328995227814, + -0.06145886331796646, + -0.011445235460996628, + 0.060192376375198364, + -0.08660709112882614, + 0.05724826455116272, + 0.03938935697078705, + -0.027138710021972656, + 0.005414584651589394, + 0.09243336319923401, + -0.00719593046233058, + 0.02358940802514553, + -0.015410438179969788, + -0.03600359335541725, + 0.03849741071462631, + -0.05553814396262169, + 0.00407925620675087, + -0.007076476700603962, + 0.04599997401237488, + 0.04391339793801308, + 0.007961018942296505, + -0.07285860925912857, + -0.12969304621219635, + -0.009119763039052486, + 0.022251714020967484, + 0.08857829123735428, + -0.00926095899194479, + -0.027449872344732285, + -0.03495349735021591, + -0.04527740180492401, + -0.010584015399217606, + -0.01791813038289547, + 0.06671866774559021, + -0.00796806626021862, + -0.005068654660135508, + 0.09341266751289368, + 0.015182343311607838, + 0.009166423231363297, + -0.054214511066675186, + -0.04482874274253845, + -0.006100847385823727, + 0.041935257613658905, + -0.07273270189762115, + -0.05464041605591774, + 0.0032572061754763126, + 0.04191582649946213, + -0.007699319627135992, + 0.03734232112765312, + 0.029372671619057655, + 0.029092110693454742, + 0.02629699930548668, + -0.06226622313261032, + 0.006399726029485464, + -0.12177871912717819, + -0.09955225884914398, + 0.0018630328122526407, + 0.028377551585435867, + -0.00882348045706749, + 0.07371123135089874, + 0.01345228124409914, + 0.056676216423511505, + 0.0026063756085932255, + -0.07180155813694, + -0.09480110555887222, + 0.05946919322013855, + 0.07905697077512741, + -0.016860011965036392, + 0.0557427853345871, + 0.04409220069646835, + -0.058635152876377106, + 0.05230488255620003, + 0.04737548902630806, + 0.097597636282444, + -0.016359668225049973, + 0.018242985010147095, + -0.07807204127311707, + 0.08407483994960785, + 0.08453156054019928, + -0.08569619059562683, + -0.07536394894123077, + 0.00361895770765841, + -0.07456056773662567, + 0.019792921841144562, + -0.011527043767273426, + 0.017840590327978134, + 0.017282098531723022, + -0.003985610790550709, + -0.10447810590267181, + -0.0651320070028305, + 0.05125219374895096, + -0.08799359202384949, + -0.00356765603646636, + -0.07514673471450806, + 0.053844936192035675, + 0.12126345932483673, + 0.038374364376068115, + -0.011949478648602962, + -0.0579039603471756, + 0.042095355689525604, + -0.048414088785648346, + -0.00973714143037796, + 0.03740885481238365, + 0.03555256500840187, + -0.09930659830570221, + 0.016074690967798233, + -0.07543778419494629, + 0.03346505016088486, + -0.06566616892814636, + 0.1308433711528778, + 0.002985036000609398, + -0.07399366796016693, + -0.08267852663993835, + 0.013626091182231903, + -0.0031136367470026016, + 0.04493806138634682, + 0.003336617723107338, + 0.05804196745157242, + 0.05074665695428848, + -0.054444264620542526, + 0.12769778072834015, + 0.03700132668018341, + -0.0334160141646862, + -0.05462217703461647, + -0.05680021643638611, + -0.04155223071575165, + 0.014036959037184715, + 0.008526414632797241, + -0.09706000983715057, + -0.040051259100437164, + 0.027229513972997665, + -0.016197683289647102, + 0.0530916228890419, + 0.1305728554725647, + 0.028189923614263535, + -0.1510210782289505 + ] + }, + "p244_282.wav": { + "name": "p244", + "embedding": [ + 0.04918473958969116, + 0.08637490123510361, + -0.007416686043143272, + 0.011736655607819557, + -0.034126728773117065, + 0.09576372057199478, + -0.16671088337898254, + 0.11537657678127289, + -0.07332129776477814, + 0.15138636529445648, + -0.06084202975034714, + 0.08286546170711517, + -0.016679655760526657, + -0.19939547777175903, + -0.04118802025914192, + 0.060039639472961426, + -0.0485377162694931, + -0.03061012551188469, + -0.061128370463848114, + -0.021811429411172867, + 0.02710186503827572, + 0.03617182374000549, + 0.003836966585367918, + -0.015880730003118515, + 0.06001034751534462, + 0.04411380738019943, + -0.009789112024009228, + 0.02384761907160282, + -0.023135032504796982, + -0.07027004659175873, + -0.017313463613390923, + 0.11355763673782349, + -0.04108476638793945, + 0.0054458873346447945, + 0.049676381051540375, + 0.010946200229227543, + 0.022713428363204002, + -0.0690869390964508, + -0.025180278345942497, + 0.022344209253787994, + -0.03395051136612892, + 0.08637428283691406, + 0.04206613823771477, + 0.02410716935992241, + 0.018926391378045082, + 0.022452645003795624, + -0.0033003794960677624, + -0.0629497617483139, + -0.09105990827083588, + 0.1637907326221466, + 0.03488153591752052, + 0.02003924548625946, + -0.07264581322669983, + -0.09036867320537567, + 0.11691020429134369, + -0.01661752536892891, + -0.11093058437108994, + -0.041040897369384766, + 0.07760954648256302, + 0.1973458081483841, + -0.03649074211716652, + -0.04468505457043648, + 0.024507921189069748, + 0.10280981659889221, + 0.033941738307476044, + 0.0926000103354454, + 0.07198548316955566, + 0.09376473724842072, + 0.02536942809820175, + -0.006938672624528408, + 0.06506480276584625, + 0.05119505152106285, + 0.04949592798948288, + -0.04402872920036316, + 0.038263265043497086, + 0.0034496309235692024, + -0.033596690744161606, + -0.004746205173432827, + -0.026907946914434433, + -0.005863695405423641, + 0.005246943794190884, + 0.013683231547474861, + 0.02701464667916298, + 0.022461578249931335, + -0.04446312412619591, + 0.01840929128229618, + 0.03137648478150368, + -0.030592940747737885, + 0.08245187997817993, + 0.04999903216958046, + 0.029997780919075012, + 0.05336563289165497, + -0.07607252895832062, + -0.08314183354377747, + 0.04955289512872696, + 0.030490122735500336, + -0.0097513347864151, + 0.04004715383052826, + 0.04669622331857681, + -0.029973922297358513, + 0.11153507232666016, + 0.03164280578494072, + 0.011941333301365376, + 0.028219493106007576, + -0.11870015412569046, + 0.11242745816707611, + 0.07347170263528824, + -0.019780682399868965, + 0.05719504505395889, + -0.03001154586672783, + 0.058226972818374634, + 0.08163052797317505, + -0.15437033772468567, + -0.10382787883281708, + 0.0460633710026741, + 0.011677831411361694, + -0.002385564148426056, + 0.12334049493074417, + -0.005099774803966284, + 0.00373261421918869, + 0.08679091930389404, + -0.09700756520032883, + -0.04592788964509964, + -0.008215099573135376, + 0.051422297954559326, + -0.07695111632347107, + 0.04211403429508209, + 0.05514785274863243, + -0.01441549975425005, + -0.002632137155160308, + 0.0784575343132019, + 0.0010088167618960142, + 0.003617632668465376, + -0.020375492051243782, + -0.00885198824107647, + 0.04245833307504654, + -0.019077708944678307, + -0.0023816616740077734, + 0.040753982961177826, + 0.041563913226127625, + 0.04827522486448288, + -0.0011446280404925346, + -0.048880934715270996, + -0.11934922635555267, + -0.005425691604614258, + 0.031441982835531235, + 0.0708688497543335, + -0.019094662740826607, + 0.015499190427362919, + -0.05891560763120651, + -0.06943809986114502, + 0.03880215436220169, + -0.022658992558717728, + 0.11601532995700836, + 0.03702371567487717, + 0.0017082486301660538, + 0.12184203416109085, + 0.01326817087829113, + 0.003069052705541253, + -0.04492931067943573, + -0.007773939054459333, + 0.01448272354900837, + 0.0442669615149498, + -0.06655454635620117, + -0.0586044043302536, + 0.002862915163859725, + 0.02099073864519596, + -0.006853929720818996, + 0.052816517651081085, + 0.03505631536245346, + 0.02370835654437542, + 0.02798202447593212, + -0.06569341570138931, + 0.021529115736484528, + -0.09267281740903854, + -0.041293468326330185, + 0.0020594631787389517, + -0.03777649253606796, + -0.04203295335173607, + 0.11180447787046432, + 0.031770844012498856, + 0.022221706807613373, + -0.04405190050601959, + -0.07476504147052765, + -0.05941647291183472, + 0.05638466775417328, + 0.059406913816928864, + -0.01249806396663189, + 0.008707843720912933, + 0.036489181220531464, + 0.008604108355939388, + 0.05506923794746399, + 0.09578022360801697, + 0.10153677314519882, + -0.013855861499905586, + 0.023530006408691406, + -0.045515142381191254, + 0.11799225211143494, + 0.054027266800403595, + -0.06644414365291595, + -0.0875316858291626, + -0.015532460063695908, + -0.06729471683502197, + 0.04164282605051994, + -0.015173353254795074, + 0.0241103433072567, + 0.01613209769129753, + -0.024961547926068306, + -0.08904419094324112, + -0.08301189541816711, + 0.08476808667182922, + -0.06067796051502228, + -0.021545374765992165, + -0.07147687673568726, + 0.051183976233005524, + 0.08135366439819336, + 0.0504799410700798, + -0.012078030034899712, + -0.012088810093700886, + 0.04369615390896797, + -0.06308901309967041, + 0.002464691177010536, + 0.05622190982103348, + 0.0018578750314190984, + -0.09580859541893005, + 0.013557873666286469, + -0.08640974760055542, + 0.0827709287405014, + -0.049802280962467194, + 0.15335458517074585, + -0.002155531430616975, + -0.06400637328624725, + -0.072476327419281, + 0.02539350464940071, + -0.031643129885196686, + 0.05469140410423279, + 0.030460383743047714, + 0.08160100877285004, + 0.07404012233018875, + -0.026813236996531487, + 0.07912090420722961, + 0.03971291333436966, + -0.018852807581424713, + -0.06498745828866959, + -0.05719950795173645, + -0.033781807869672775, + 0.027375701814889908, + -0.025486808270215988, + -0.09414863586425781, + 0.019231317564845085, + 0.04031920060515404, + 0.014105978421866894, + 0.06413815915584564, + 0.11309399455785751, + 0.058938100934028625, + -0.12928643822669983 + ] + }, + "p244_144.wav": { + "name": "p244", + "embedding": [ + 0.06451576948165894, + 0.07863955944776535, + -0.054214559495449066, + -0.0013287020847201347, + -0.04699229821562767, + 0.05234336107969284, + -0.11202690005302429, + 0.1264936923980713, + -0.04261700063943863, + 0.1227116659283638, + -0.05619831755757332, + 0.1020348072052002, + -0.0021212296560406685, + -0.0959632620215416, + -0.031342703849077225, + 0.031068187206983566, + -0.016820518299937248, + -0.012836553156375885, + -0.0575728565454483, + -0.007126937620341778, + 0.01864396035671234, + 0.042010921984910965, + -0.0033465642482042313, + -0.04457543045282364, + 0.03951434791088104, + 0.04612615704536438, + -0.003626084653660655, + -0.0012710131704807281, + -9.020802099257708e-05, + -0.014274194836616516, + 0.002750260755419731, + 0.09270736575126648, + -0.0549585297703743, + 0.02991463616490364, + 0.04406115040183067, + 0.013795966282486916, + -0.0028166677802801132, + -0.0755537897348404, + -0.004171857610344887, + 0.0017133401706814766, + -0.020847436040639877, + 0.09847398102283478, + 0.04870182275772095, + -0.01996915228664875, + 0.0008741049095988274, + 0.023187611252069473, + 0.0064304484985768795, + -0.06064082682132721, + -0.0796089768409729, + 0.18075178563594818, + 0.021234050393104553, + 0.007563202176243067, + -0.10967054218053818, + -0.030316786840558052, + 0.07097498327493668, + -0.011462385766208172, + -0.04815720021724701, + -0.06891772150993347, + 0.022153671830892563, + 0.12933334708213806, + -0.008986820466816425, + -0.06296688318252563, + 0.00954245962202549, + 0.10089502483606339, + 0.04547721892595291, + 0.03384922072291374, + 0.08851581066846848, + 0.1031089574098587, + -0.014161994680762291, + 0.0418732725083828, + 0.05211334675550461, + 0.06060950458049774, + 0.04798581451177597, + -0.013754267245531082, + 0.041533492505550385, + -0.04157410189509392, + -0.021936986595392227, + 0.00012329593300819397, + -0.026196949183940887, + -0.06331545859575272, + -0.0151357501745224, + 0.012079700827598572, + 0.018896345049142838, + 0.07096876204013824, + -0.05173385143280029, + 0.03253144398331642, + 0.05863405019044876, + -0.057456113398075104, + 0.07040925323963165, + 0.07698200643062592, + 0.019345292821526527, + 0.010062191635370255, + -0.07948547601699829, + -0.0973343774676323, + 0.04828553646802902, + -0.017899371683597565, + 0.05202047899365425, + 0.042936474084854126, + 0.03044051304459572, + 0.017331190407276154, + 0.07494838535785675, + 0.017454246059060097, + 0.0014740910846740007, + -0.021523334085941315, + -0.06535103172063828, + 0.15509024262428284, + 0.11784021556377411, + -0.01838667131960392, + 0.008557137101888657, + -0.03870384395122528, + 0.015690870583057404, + 0.04523897171020508, + -0.11500421166419983, + -0.09417371451854706, + 0.02455427311360836, + 0.010425731539726257, + 0.011744928546249866, + 0.09375882148742676, + 0.026946041733026505, + 0.016524648293852806, + 0.05758378282189369, + -0.09494365751743317, + -0.06495655328035355, + -0.006743422709405422, + 0.010163147002458572, + -0.08007995039224625, + 0.041595760732889175, + 0.07645824551582336, + -0.010622847825288773, + -0.00458108726888895, + 0.07820293307304382, + 0.02537374198436737, + 0.02983633056282997, + -0.020779289305210114, + 0.03136895224452019, + 0.05646835267543793, + 0.009946179576218128, + -0.006923624314367771, + 0.02413981407880783, + 0.03297823667526245, + 0.07414369285106659, + 0.007161813322454691, + -0.00267966091632843, + -0.10024695098400116, + 0.022871360182762146, + 0.07752461731433868, + 0.03979470208287239, + -0.05954083800315857, + -0.0264838095754385, + -0.007483895402401686, + -0.05975719541311264, + -0.004031844437122345, + 0.006820830050855875, + 0.07728968560695648, + 0.019074691459536552, + 0.002906989539042115, + 0.1524740308523178, + -0.007221294566988945, + 0.011522188782691956, + -0.028411056846380234, + 0.04153662919998169, + 0.034812286496162415, + 0.05945446342229843, + -0.04929729923605919, + -0.09740880131721497, + 0.0042921812273561954, + 0.01036841794848442, + -0.014612752012908459, + 0.03148571774363518, + 0.05867883190512657, + -0.027848713099956512, + 0.04501333832740784, + -0.07449093461036682, + 0.01893012970685959, + -0.11056061834096909, + -0.013285566121339798, + -0.006873646751046181, + -0.061138808727264404, + -0.030024878680706024, + 0.0877450704574585, + 0.016684407368302345, + 0.05443602427840233, + -0.028466980904340744, + -0.09104223549365997, + -0.03484445437788963, + 0.05966056138277054, + 0.07343141734600067, + -0.054386381059885025, + -0.004553365521132946, + 0.05119304358959198, + 0.036805443465709686, + -0.01783037930727005, + 0.0653134137392044, + 0.0833202451467514, + -0.048128098249435425, + -0.03658363223075867, + -0.06021568924188614, + 0.12124153971672058, + 0.04905258119106293, + -0.10331075638532639, + -0.05194811522960663, + -0.0427817665040493, + -0.031648486852645874, + -0.020182698965072632, + -0.026452865451574326, + 0.030227527022361755, + 0.05226399004459381, + -0.027822185307741165, + -0.1087491512298584, + -0.1005541980266571, + 0.05035927891731262, + -0.07216939330101013, + 0.0235403161495924, + -0.06493920087814331, + 0.03590066730976105, + 0.05739014595746994, + 0.04634343832731247, + -0.044089142233133316, + -0.01857799105346203, + -0.023557066917419434, + -0.061096809804439545, + -0.03005470335483551, + -0.008483832702040672, + 0.03132792189717293, + -0.06305155158042908, + 0.00618013646453619, + -0.05518964305520058, + 0.05967462807893753, + -0.05417861044406891, + 0.13946104049682617, + -0.011814150959253311, + -0.08001607656478882, + -0.09965641796588898, + -0.015382720157504082, + -0.038887836039066315, + 0.05071520432829857, + 0.04677646607160568, + 0.025949567556381226, + 0.020992448553442955, + -0.06595253944396973, + 0.09091810882091522, + 0.08341232687234879, + -0.007141642272472382, + -0.07471198588609695, + -0.051463689655065536, + -0.026010246947407722, + 0.05512811616063118, + 0.016546163707971573, + -0.03272877633571625, + 0.029712345451116562, + 0.016880350187420845, + -0.023146355524659157, + 0.08148369193077087, + 0.07711365818977356, + 0.0578840896487236, + -0.10065698623657227 + ] + }, + "p244_318.wav": { + "name": "p244", + "embedding": [ + 0.04507553204894066, + 0.10920147597789764, + -0.022158142179250717, + 0.011556160636246204, + -0.06520803272724152, + 0.05223945528268814, + -0.13449203968048096, + 0.13945050537586212, + -0.03241237252950668, + 0.13587743043899536, + -0.06733669340610504, + 0.11064039915800095, + -0.04449087381362915, + -0.14924824237823486, + -0.014828489162027836, + 0.059912145137786865, + -0.051316335797309875, + -0.04313979297876358, + -0.06568493694067001, + -0.04600934311747551, + 0.018532564863562584, + 0.023898029699921608, + 0.02709241770207882, + 0.014347524382174015, + 0.035172414034605026, + 0.07545115798711777, + 6.184587255120277e-05, + 0.03931276127696037, + 0.002304574241861701, + -0.043067969381809235, + -0.03390832245349884, + 0.08618511259555817, + -0.05207951366901398, + 0.00672593479976058, + 0.03976500779390335, + -0.022910870611667633, + 0.009279772639274597, + -0.04141080379486084, + -0.008341005071997643, + 0.018926098942756653, + -0.027027040719985962, + 0.09029260277748108, + 0.009867168962955475, + -0.005765540990978479, + 0.025646712630987167, + 0.03594989329576492, + -0.006896687671542168, + -0.044028256088495255, + -0.10330000519752502, + 0.16128036379814148, + 0.08075575530529022, + -0.01955389976501465, + -0.06548656523227692, + -0.05060984194278717, + 0.09168876707553864, + -0.0356663353741169, + -0.1006714403629303, + -0.06021656095981598, + 0.07082536816596985, + 0.11834166198968887, + -0.047988057136535645, + -0.04068361595273018, + 0.02116357535123825, + 0.13058772683143616, + 0.07561755925416946, + 0.07317395508289337, + 0.0645039975643158, + 0.11565060913562775, + -0.06145942956209183, + 0.002869861666113138, + 0.06504159420728683, + 0.052801087498664856, + 0.06237401068210602, + 0.009972390718758106, + 0.022321166470646858, + -0.01706426590681076, + 0.009798907674849033, + -0.003948776051402092, + -0.022489584982395172, + -0.0320168063044548, + -0.01852479949593544, + 0.013525784946978092, + -0.015719957649707794, + 0.019091691821813583, + -0.012450532987713814, + 0.059192802757024765, + 0.06244989112019539, + -0.02332986518740654, + 0.08280375599861145, + 0.03874257206916809, + 0.015305336564779282, + 0.07569806277751923, + -0.0913001000881195, + -0.05676039680838585, + 0.04459819197654724, + -0.003976620268076658, + 0.03136901929974556, + 0.046301960945129395, + 0.03205833584070206, + -0.004987073130905628, + 0.12204782664775848, + 0.058196671307086945, + -0.008118255995213985, + 0.029100563377141953, + -0.0868886336684227, + 0.15975579619407654, + 0.08245521783828735, + -0.04829215258359909, + 0.04312577843666077, + -0.017702851444482803, + 0.03541550412774086, + 0.040521711111068726, + -0.10498850047588348, + -0.08655978739261627, + 0.0007403949275612831, + 0.006318551953881979, + -0.049518685787916183, + 0.08220335841178894, + -0.0022732438519597054, + 0.040700219571590424, + 0.11848847568035126, + -0.07807755470275879, + -0.05293574556708336, + 0.007153650745749474, + 0.045477889478206635, + -0.08164584636688232, + 0.0372631810605526, + 0.08606104552745819, + 0.002052789553999901, + 0.042651813477277756, + 0.11153598874807358, + 0.010337131097912788, + 0.0033313168678432703, + 0.013698937371373177, + -0.03761139512062073, + 0.009935274720191956, + 0.0017573998775333166, + -0.009830291382968426, + 0.03997397422790527, + 0.03306715190410614, + 0.05466125160455704, + -0.01318013109266758, + -0.0031720383558422327, + -0.12026414275169373, + 0.02907611057162285, + 0.038955021649599075, + 0.06646828353404999, + -0.02589097060263157, + 0.0007897550240159035, + -0.03274973854422569, + -0.06406117975711823, + -0.005779765546321869, + 0.004290500655770302, + 0.06758448481559753, + -0.049288880079984665, + -0.007854145020246506, + 0.1344522088766098, + 0.036866143345832825, + 0.009831075556576252, + -0.06030388921499252, + -0.018817909061908722, + 0.011213169433176517, + 0.052855901420116425, + -0.07131435722112656, + -0.08908241987228394, + -0.011078552342951298, + 0.05069715529680252, + -0.0054439883679151535, + 0.10068371146917343, + 0.058539845049381256, + -0.0010237207170575857, + 0.015886269509792328, + -0.04767495393753052, + 0.03443163260817528, + -0.054864950478076935, + -0.055831171572208405, + -0.007442827802151442, + -0.022288542240858078, + -0.045784592628479004, + 0.07440043985843658, + 0.010203235782682896, + 0.06714300066232681, + -0.025977984070777893, + -0.08768455684185028, + -0.08800902962684631, + 0.05272018164396286, + 0.06623592972755432, + -0.03501349315047264, + 0.049074240028858185, + 0.08077995479106903, + -0.02768271416425705, + 0.03973587974905968, + 0.06374876946210861, + 0.11115764826536179, + -0.03982605040073395, + 0.022942883893847466, + -0.07662893831729889, + 0.049810923635959625, + 0.05544648319482803, + -0.10768159478902817, + -0.07013879716396332, + -0.038094114512205124, + -0.04538816958665848, + 0.0239694956690073, + -0.022712329402565956, + 0.02705361135303974, + 0.05473530292510986, + 0.0023576742969453335, + -0.07717382162809372, + -0.11067014932632446, + 0.087740957736969, + -0.0760345607995987, + 0.019093003123998642, + -0.07037229835987091, + 0.045412786304950714, + 0.0776141807436943, + 0.05505777895450592, + -0.029280412942171097, + -0.015065735206007957, + 0.03831012174487114, + 0.0002976396935991943, + 0.02039031870663166, + 0.05480428412556648, + 0.05185496434569359, + -0.09379037469625473, + -0.0010709408670663834, + -0.09537047892808914, + 0.0642523318529129, + -0.014521993696689606, + 0.1528104990720749, + 0.027624811977148056, + -0.03512641787528992, + -0.09572188556194305, + 0.021997952833771706, + -0.04331353306770325, + 0.058442965149879456, + 0.021160349249839783, + 0.05122164264321327, + 0.05405889451503754, + -0.039488621056079865, + 0.11723458766937256, + 0.04998578876256943, + -0.05880585312843323, + -0.07599344104528427, + -0.04550326615571976, + -0.04497572034597397, + 0.047326985746622086, + 0.021340832114219666, + -0.08772169798612595, + -0.023435043171048164, + 0.011185297742486, + -0.02631141059100628, + 0.08280722796916962, + 0.13119782507419586, + 0.08854357898235321, + -0.10515636205673218 + ] + }, + "p244_007.wav": { + "name": "p244", + "embedding": [ + 0.045149561017751694, + 0.09462827444076538, + -0.004983566235750914, + 0.01441553607583046, + -0.040921974927186966, + 0.0460314117372036, + -0.1374877691268921, + 0.14266598224639893, + -0.02844548225402832, + 0.14590361714363098, + -0.10295730829238892, + 0.10899394005537033, + -0.03622077777981758, + -0.1817992627620697, + -0.010942138731479645, + 0.049713678658008575, + -0.018514594063162804, + -0.01720358617603779, + -0.01836828701198101, + -0.02213156782090664, + 0.05242509767413139, + 0.03886376693844795, + 0.011565125547349453, + 0.0005401832750067115, + 0.008142187260091305, + 0.060174088925123215, + -0.002350371330976486, + 0.036150168627500534, + 0.009359965100884438, + -0.028012793511152267, + -0.02911045402288437, + 0.11387284845113754, + -0.042926009744405746, + 0.01754629611968994, + 0.05512300133705139, + -0.0023006401024758816, + -0.015515687875449657, + -0.059416264295578, + -0.0034726187586784363, + -0.01844344660639763, + -0.052459970116615295, + 0.051387228071689606, + 0.018303057178854942, + -0.006816095672547817, + 0.048413462936878204, + 0.04628662019968033, + -0.016710927709937096, + -0.04815246909856796, + -0.0959140956401825, + 0.14691177010536194, + 0.07315322756767273, + 0.0010720882564783096, + -0.060489654541015625, + -0.05905752629041672, + 0.09213852137327194, + -0.004349768161773682, + -0.09773315489292145, + -0.03875022754073143, + 0.09545882046222687, + 0.15052419900894165, + -0.03678842633962631, + -0.04767787456512451, + 0.029551643878221512, + 0.11777134984731674, + 0.03265444561839104, + 0.09840225428342819, + 0.07757331430912018, + 0.10743063688278198, + -0.01601983606815338, + 0.0037266486324369907, + 0.0393899604678154, + 0.06142648309469223, + 0.05681558698415756, + -0.024123316630721092, + 0.019066978245973587, + 0.005068219266831875, + -0.021948404610157013, + 0.018842605873942375, + -0.03453856706619263, + -0.024402549490332603, + -0.01040874794125557, + -0.0016926064854487777, + -0.0013946382096037269, + 0.014890472404658794, + -0.02607232891023159, + 0.04491014406085014, + 0.04575467109680176, + -0.0022593028843402863, + 0.07943510264158249, + 0.00871972180902958, + 0.0077266693115234375, + 0.06365819275379181, + -0.08963986486196518, + -0.07812100648880005, + 0.03682796657085419, + 0.0006405137246474624, + 0.006351283751428127, + 0.0839984342455864, + 0.04083499312400818, + -0.02534095197916031, + 0.1304074376821518, + 0.027666514739394188, + -0.001957169035449624, + 0.028884446248412132, + -0.10244368016719818, + 0.13300222158432007, + 0.0867403969168663, + -0.040909938514232635, + 0.040179602801799774, + -0.06159123778343201, + 0.06630713492631912, + 0.06784448772668839, + -0.14018531143665314, + -0.05995617434382439, + 0.027340415865182877, + 0.02889484167098999, + -0.032858945429325104, + 0.11932780593633652, + -0.007023673038929701, + 0.029417915269732475, + 0.11900245398283005, + -0.0956362634897232, + -0.07041047513484955, + -0.024063672870397568, + 0.04008038341999054, + -0.08925782144069672, + 0.059200387448072433, + 0.05558852478861809, + -0.00468786945566535, + 0.023262869566679, + 0.0776807963848114, + -0.019946567714214325, + 0.006450870539993048, + -0.002378875855356455, + -0.05001462623476982, + 0.01711973547935486, + -0.045849110931158066, + -0.0012377402745187283, + 0.01026424765586853, + 0.041825130581855774, + 0.052442729473114014, + 0.005560107529163361, + -0.03959401324391365, + -0.11477609723806381, + 0.011388657614588737, + 0.0426616445183754, + 0.06983286142349243, + -0.006180457770824432, + -0.030488889664411545, + -0.03860398381948471, + -0.056340109556913376, + 0.005566542502492666, + -0.01672866940498352, + 0.05992467328906059, + -0.02122928760945797, + 0.009386766701936722, + 0.09203469753265381, + 0.03568700700998306, + -0.001121892943046987, + -0.06701791286468506, + -0.05225416272878647, + 0.006604105234146118, + 0.03601774573326111, + -0.08915388584136963, + -0.0722610354423523, + -0.01153799332678318, + 0.041301801800727844, + -0.02586875855922699, + 0.052861955016851425, + 0.04162454232573509, + 0.023200949653983116, + 0.02434510551393032, + -0.07235388457775116, + 0.015180274844169617, + -0.10750853270292282, + -0.08713891357183456, + -0.004747116472572088, + 0.003373709972947836, + -6.0791149735450745e-05, + 0.06760033965110779, + -0.0034182898234575987, + 0.045295488089323044, + -0.0170745886862278, + -0.06334178149700165, + -0.0921957939863205, + 0.059231236577034, + 0.07021010667085648, + -0.01315352227538824, + 0.0540599450469017, + 0.04610733315348625, + -0.057014286518096924, + 0.04529346153140068, + 0.05259294435381889, + 0.11683603376150131, + -0.017661986872553825, + 0.031231671571731567, + -0.06803632527589798, + 0.07313703000545502, + 0.09136772155761719, + -0.07618334889411926, + -0.08612386882305145, + -0.036052532494068146, + -0.06151314824819565, + 0.039730288088321686, + -0.019058262929320335, + -0.006168651860207319, + 0.0071921637281775475, + -0.010274677537381649, + -0.09668649733066559, + -0.0691647082567215, + 0.05889381095767021, + -0.06229701638221741, + -0.010126300156116486, + -0.09735549986362457, + 0.06448353826999664, + 0.09117724001407623, + 0.03756062686443329, + -0.029363583773374557, + -0.03031315468251705, + 0.040525857359170914, + -0.04621623083949089, + 0.0024459604173898697, + 0.03496124967932701, + 0.04540511965751648, + -0.09806956350803375, + 0.008444282226264477, + -0.07950171828269958, + 0.04574510455131531, + -0.05788262188434601, + 0.1417692005634308, + 0.009513124823570251, + -0.054678451269865036, + -0.08371474593877792, + 0.03866763785481453, + 0.003159400075674057, + 0.030905848369002342, + 0.020846746861934662, + 0.04654347896575928, + 0.03371462970972061, + -0.08124206960201263, + 0.11730848252773285, + 0.024292364716529846, + -0.023562973365187645, + -0.061257652938365936, + -0.05499252676963806, + -0.050434406846761703, + 0.009189965203404427, + -0.002579478081315756, + -0.09833388030529022, + -0.037157781422138214, + 0.018929090350866318, + 9.888783097267151e-05, + 0.0609932541847229, + 0.13144658505916595, + 0.046483367681503296, + -0.12329264730215073 + ] + }, + "p244_161.wav": { + "name": "p244", + "embedding": [ + 0.06870262324810028, + 0.10832621902227402, + 0.018237516283988953, + 0.0003815444651991129, + -0.018562277778983116, + 0.07336337864398956, + -0.15925759077072144, + 0.13991522789001465, + -0.060507576912641525, + 0.15200191736221313, + -0.08756881207227707, + 0.10665490478277206, + -0.03218308091163635, + -0.1784062385559082, + -0.051562707871198654, + 0.06383423507213593, + -0.051114290952682495, + -0.021441539749503136, + -0.010848100297152996, + -0.00442859809845686, + 0.03806187957525253, + 0.026988688856363297, + 0.028587399050593376, + 0.029623044654726982, + 0.022562410682439804, + 0.06481856107711792, + 0.006737282034009695, + 0.05229507014155388, + 0.0069920942187309265, + -0.05479402840137482, + -0.018677551299333572, + 0.11925399303436279, + -0.029504429548978806, + 0.025281410664319992, + 0.06654888391494751, + 0.013784918002784252, + 0.007076592650264502, + -0.08078533411026001, + -0.010977746918797493, + -0.02224605530500412, + -0.035707853734493256, + 0.06702031940221786, + 0.013324787840247154, + -0.002375748474150896, + 0.020236758515238762, + 0.04379139095544815, + 0.0005133097874931991, + -0.04975833743810654, + -0.09307645261287689, + 0.1431887149810791, + 0.05501990765333176, + 0.012574536725878716, + -0.0724792629480362, + -0.0848955512046814, + 0.10336392372846603, + -0.027185775339603424, + -0.11092164367437363, + -0.025609731674194336, + 0.08587907254695892, + 0.17760726809501648, + -0.046085044741630554, + -0.050447843968868256, + 0.029222603887319565, + 0.12457051873207092, + 0.03412794694304466, + 0.10647805780172348, + 0.07635490596294403, + 0.09448458254337311, + -0.010382408276200294, + 0.008122078143060207, + 0.048811670392751694, + 0.05862194299697876, + 0.06506988406181335, + -0.020888125523924828, + 0.02912452444434166, + 0.006172207184135914, + -0.027292665094137192, + 0.025266330689191818, + -0.023525765165686607, + -0.024357467889785767, + -0.02253073826432228, + -0.00208936701528728, + -0.011701757088303566, + 0.01969437301158905, + -0.015462040901184082, + 0.039249107241630554, + 0.01680240035057068, + -0.018924657255411148, + 0.08197642862796783, + 0.040215566754341125, + 0.037328775972127914, + 0.06807029247283936, + -0.065538689494133, + -0.0797659158706665, + 0.04386014863848686, + 0.0059586199931800365, + 0.0171256922185421, + 0.07328593730926514, + 0.044418882578611374, + -0.022651297971606255, + 0.11246055364608765, + 0.04188261553645134, + 0.009091696701943874, + 0.015819981694221497, + -0.1156444177031517, + 0.12238971889019012, + 0.07270428538322449, + -0.04746101424098015, + 0.03256046026945114, + -0.0442255400121212, + 0.07173807919025421, + 0.09776537120342255, + -0.15303656458854675, + -0.09183570742607117, + 0.04038841277360916, + 0.02522859536111355, + -0.0050983852706849575, + 0.10459312796592712, + -0.014848722144961357, + 0.011565989814698696, + 0.09376179426908493, + -0.07401733100414276, + -0.05897212028503418, + -0.022061064839363098, + 0.039304040372371674, + -0.09357898682355881, + 0.06608165055513382, + 0.0492662712931633, + 0.0027238510083407164, + -0.017883144319057465, + 0.09324191510677338, + -0.01609242893755436, + -0.01770544983446598, + -0.008201437070965767, + -0.04062352329492569, + 0.017123602330684662, + -0.04358793422579765, + 0.011792747303843498, + 0.002367309993132949, + 0.04382942244410515, + 0.025523971766233444, + 0.015377247706055641, + -0.05584787577390671, + -0.11316414922475815, + -0.0018854388035833836, + 0.0531994067132473, + 0.06586024910211563, + -0.0036472126375883818, + -0.039595119655132294, + -0.03285756707191467, + -0.02714969962835312, + 0.022000622004270554, + -0.0215320885181427, + 0.07059452682733536, + 0.005336389876902103, + 0.006951726507395506, + 0.1057104766368866, + 0.014294530265033245, + 0.011490853503346443, + -0.06466006487607956, + -0.019668901339173317, + 0.03289859741926193, + 0.04279383271932602, + -0.07607969641685486, + -0.07183100283145905, + 0.0034481151960790157, + 0.03494783490896225, + -0.014473985880613327, + 0.0458655022084713, + 0.03803864121437073, + 0.014231516048312187, + 0.025620516389608383, + -0.0582166388630867, + 0.014855700545012951, + -0.11558549106121063, + -0.08754715323448181, + -0.008582242764532566, + -0.011124735698103905, + 0.003764317836612463, + 0.06719385087490082, + 0.01484648883342743, + 0.03679465875029564, + -0.03116190806031227, + -0.0819769948720932, + -0.08818960189819336, + 0.06477537751197815, + 0.09183748066425323, + 0.006224717013537884, + 0.03845309466123581, + 0.0348658561706543, + -0.020722847431898117, + 0.06271000951528549, + 0.05161736533045769, + 0.11731331795454025, + -0.027741428464651108, + 0.02158561907708645, + -0.06975573301315308, + 0.07015620172023773, + 0.08249412477016449, + -0.08361397683620453, + -0.09463249891996384, + -0.019229568541049957, + -0.05283684656023979, + 0.04383622109889984, + -0.008865853771567345, + 0.005712880752980709, + 0.015254969708621502, + -0.032408811151981354, + -0.09880499541759491, + -0.08109933882951736, + 0.09112220257520676, + -0.06285277009010315, + -0.009766589850187302, + -0.08192508667707443, + 0.07207295298576355, + 0.07351924479007721, + 0.04085075855255127, + -0.024230893701314926, + -0.004076804965734482, + 0.03783038258552551, + -0.05463511496782303, + -0.019450504332780838, + 0.03397679701447487, + 0.016385337337851524, + -0.10431455075740814, + 0.01707218773663044, + -0.09213979542255402, + 0.07221890985965729, + -0.07339034974575043, + 0.16168177127838135, + -0.02109682373702526, + -0.07328248023986816, + -0.08050103485584259, + 0.009347349405288696, + -0.01990067958831787, + 0.045343443751335144, + 0.029147714376449585, + 0.0550139918923378, + 0.02574208192527294, + -0.06777419149875641, + 0.10246551036834717, + 0.03721686452627182, + -0.017056453973054886, + -0.07194140553474426, + -0.05997295305132866, + -0.04421697184443474, + 0.022755298763513565, + -0.020484410226345062, + -0.09410213679075241, + -0.023953229188919067, + 0.018044713884592056, + -0.0023260421585291624, + 0.07099057734012604, + 0.13451765477657318, + 0.03564916178584099, + -0.12935785949230194 + ] + }, + "p244_322.wav": { + "name": "p244", + "embedding": [ + 0.05867404490709305, + 0.08776416629552841, + -0.009117075242102146, + 0.006275969557464123, + -0.05828960984945297, + 0.05608009174466133, + -0.15756559371948242, + 0.15339866280555725, + -0.043311361223459244, + 0.12987080216407776, + -0.04376037046313286, + 0.13991306722164154, + -4.772613010572968e-06, + -0.19379335641860962, + -0.037924982607364655, + 0.0577777698636055, + -0.056644003838300705, + -0.04867164045572281, + -0.009366032667458057, + -0.03086036816239357, + 0.04147467762231827, + 0.04401761293411255, + 0.03154900297522545, + 0.021233724430203438, + 0.025893524289131165, + 0.08144257962703705, + 0.015503056347370148, + 0.05473456159234047, + 0.020258257165551186, + -0.06304898113012314, + -0.04084392264485359, + 0.07913471013307571, + -0.05371316149830818, + -0.007965032942593098, + 0.04409767687320709, + -0.03573685139417648, + 0.007143785711377859, + -0.06800752133131027, + -0.02970271185040474, + 0.017500991001725197, + -0.03473828732967377, + 0.09454252570867538, + 0.03404957056045532, + -0.01597454585134983, + 0.023009149357676506, + 0.03175893798470497, + -0.0014671747339889407, + -0.05008109658956528, + -0.1111796572804451, + 0.14726674556732178, + 0.08040410280227661, + -0.002775174332782626, + -0.06350021809339523, + -0.05659450590610504, + 0.10560932010412216, + -0.016208071261644363, + -0.1032608300447464, + -0.03512602671980858, + 0.07019481062889099, + 0.1424742490053177, + -0.04023712873458862, + -0.04222244396805763, + 0.04894430190324783, + 0.1261807233095169, + 0.05756570026278496, + 0.07596937566995621, + 0.09350641071796417, + 0.09585306793451309, + -0.03165556862950325, + 0.018457213416695595, + 0.049356598407030106, + 0.08357895910739899, + 0.025122439488768578, + -0.008470152504742146, + 0.025872208178043365, + -0.00923940259963274, + -0.014261228032410145, + -0.011694937944412231, + -0.007796307094395161, + -0.010588720440864563, + -0.008430177345871925, + 0.014417783357203007, + -0.0044074226170778275, + 0.03972719609737396, + -0.02282765321433544, + 0.07116247713565826, + 0.010834299959242344, + -0.006394419819116592, + 0.07449810951948166, + 0.021347124129533768, + 0.03531501069664955, + 0.07125614583492279, + -0.086465023458004, + -0.07489131391048431, + 0.04830196872353554, + -0.0001503361272625625, + 0.037160806357860565, + 0.07645300030708313, + 0.04441075026988983, + -0.015106570906937122, + 0.13763055205345154, + 0.06629740446805954, + -0.02261001244187355, + 0.023913847282528877, + -0.08670985698699951, + 0.1360081434249878, + 0.07539215683937073, + -0.03781836852431297, + 0.05808195844292641, + -0.057647716253995895, + 0.07614754140377045, + 0.049175336956977844, + -0.14671207964420319, + -0.08810988813638687, + 0.04085970297455788, + 0.039393968880176544, + -0.022739311680197716, + 0.14198949933052063, + -0.01827811822295189, + 0.05077064409852028, + 0.09974881261587143, + -0.06040159985423088, + -0.0496547557413578, + -0.018630361184477806, + 0.06358248740434647, + -0.09324121475219727, + 0.08466548472642899, + 0.06435555219650269, + -0.01880018040537834, + 0.01887170970439911, + 0.09250757098197937, + -0.019450407475233078, + -0.008574271574616432, + 0.013556569814682007, + -0.03143060952425003, + 0.0165313258767128, + -0.021760541945695877, + 0.007706217002123594, + 0.020902518182992935, + 0.0266584400087595, + 0.03983909636735916, + -0.0017553266370669007, + -0.04117373377084732, + -0.1326344758272171, + 0.01696479506790638, + 0.009681995026767254, + 0.0847819596529007, + -0.0011977946851402521, + -0.04532928764820099, + -0.041529830545186996, + -0.0410635843873024, + -0.020994078367948532, + 0.007407172117382288, + 0.06456858664751053, + -0.028331449255347252, + 0.013436204753816128, + 0.08333013206720352, + 0.04634971171617508, + 0.015180795453488827, + -0.030198749154806137, + -0.03350245580077171, + 0.020259691402316093, + 0.05327599495649338, + -0.07026441395282745, + -0.06719457358121872, + -0.011357349343597889, + 0.04443669319152832, + -0.02031329646706581, + 0.05439165607094765, + 0.0497092641890049, + 0.028534119948744774, + 0.02472635731101036, + -0.07578153163194656, + 0.04309258237481117, + -0.08571420609951019, + -0.07007020711898804, + -0.015253056772053242, + 0.011146986857056618, + -0.047452718019485474, + 0.06553606688976288, + 0.01987873949110508, + 0.07775586098432541, + -0.026488518342375755, + -0.05859935283660889, + -0.07976828515529633, + 0.03688163310289383, + 0.08365271240472794, + -0.011485207825899124, + 0.041748978197574615, + 0.0557313933968544, + -0.012076572515070438, + 0.0557733029127121, + 0.04484863951802254, + 0.10123520344495773, + -0.025056693702936172, + 0.00805388018488884, + -0.05475130304694176, + 0.07183671742677689, + 0.06349208950996399, + -0.09084787964820862, + -0.06388452649116516, + -0.01715942658483982, + -0.06846684217453003, + 0.039339762181043625, + -0.0042763021774590015, + 0.017304273322224617, + 0.0237430389970541, + 0.008652533404529095, + -0.1057690903544426, + -0.08377397805452347, + 0.07391486316919327, + -0.08307552337646484, + 0.0057650376111269, + -0.08851455897092819, + 0.05180005356669426, + 0.12259875237941742, + 0.028729919344186783, + -0.025784656405448914, + -0.04210766777396202, + 0.027388472110033035, + -0.008438419550657272, + 0.02171332761645317, + 0.057243864983320236, + 0.05695510655641556, + -0.11887624114751816, + 0.0033189682289958, + -0.08494004607200623, + 0.03907385095953941, + -0.04326308146119118, + 0.1467370092868805, + 0.023233477026224136, + -0.0502345971763134, + -0.0973343551158905, + 0.03095272183418274, + -0.023961668834090233, + 0.06033830717206001, + 0.03715446963906288, + 0.05577002838253975, + 0.05007936432957649, + -0.07353881001472473, + 0.10891478508710861, + 0.05222782492637634, + -0.048930149525403976, + -0.08264405280351639, + -0.02988201566040516, + -0.02504650317132473, + 0.049169961363077164, + 0.03359472379088402, + -0.08841452747583389, + -0.048421625047922134, + 0.02786114625632763, + -0.011260537430644035, + 0.08766349405050278, + 0.13737866282463074, + 0.047570183873176575, + -0.1182001456618309 + ] + }, + "p244_029.wav": { + "name": "p244", + "embedding": [ + 0.02780189737677574, + 0.06881777197122574, + -0.02166341058909893, + 0.035300370305776596, + -0.08039987087249756, + 0.03737490996718407, + -0.13218814134597778, + 0.10533221811056137, + -0.025261640548706055, + 0.13056746125221252, + -0.06294182687997818, + 0.11150313168764114, + -0.04067876562476158, + -0.19179928302764893, + 0.01603834703564644, + 0.07331312447786331, + -0.009981782175600529, + -0.05697910487651825, + -0.030502507463097572, + -0.03456566482782364, + 0.018658112734556198, + 0.04433068633079529, + 0.030695535242557526, + 0.009590781293809414, + 0.030597832053899765, + 0.08441580086946487, + -0.01755676046013832, + 0.020735016092658043, + -0.011478307656943798, + -0.03744737058877945, + -0.05290212854743004, + 0.08481673896312714, + -0.06441842019557953, + -0.016748838126659393, + 0.022417467087507248, + -0.007377291098237038, + -0.008932935073971748, + -0.04833114892244339, + -0.009816067293286324, + 0.0020654138643294573, + -0.06729279458522797, + 0.0770978033542633, + 0.012322187423706055, + -0.013452468439936638, + 0.03841298446059227, + 0.011561397463083267, + -0.024539481848478317, + -0.02239598147571087, + -0.1207062155008316, + 0.13176241517066956, + 0.06389179825782776, + -0.01150287501513958, + -0.06859362870454788, + -0.05717504769563675, + 0.09275449812412262, + -0.008093236945569515, + -0.09542311728000641, + -0.07539010047912598, + 0.08015977591276169, + 0.11930983513593674, + -0.026469871401786804, + -0.03782252222299576, + 0.023962363600730896, + 0.09392349421977997, + 0.06957662850618362, + 0.08792545646429062, + 0.05430028215050697, + 0.11039911210536957, + -0.03676654398441315, + -0.007545675151050091, + 0.0666150227189064, + 0.05513319373130798, + 0.03976689279079437, + -0.019877765327692032, + 0.010215479880571365, + 0.007984207943081856, + -0.0031649149022996426, + 0.008714050054550171, + -0.00264170253649354, + -0.021914878860116005, + -0.012283986434340477, + -0.026817915961146355, + -0.011580743826925755, + -0.002369352150708437, + -0.021885622292757034, + 0.04338505491614342, + 0.08456631004810333, + -0.0020076162181794643, + 0.08473724871873856, + 0.02747882902622223, + -0.02704799361526966, + 0.0778418481349945, + -0.08801056444644928, + -0.028749868273735046, + 0.03529080003499985, + 0.006499058101326227, + 0.003503114450722933, + 0.0772712379693985, + 0.03805812448263168, + -0.017157312482595444, + 0.12923437356948853, + 0.04269561544060707, + 0.006646237336099148, + 0.03647709637880325, + -0.08015980571508408, + 0.13249893486499786, + 0.07367956638336182, + -0.037179671227931976, + 0.04943344369530678, + -0.02214723825454712, + 0.051948897540569305, + 0.05367725342512131, + -0.10972532629966736, + -0.05366886779665947, + -0.00395756121724844, + -0.01649671234190464, + -0.05136849731206894, + 0.12127330899238586, + -0.013668501749634743, + 0.02866087108850479, + 0.12481474876403809, + -0.09382082521915436, + -0.07580876350402832, + 0.008934416808187962, + 0.027468513697385788, + -0.10574019700288773, + 0.049265168607234955, + 0.06492609530687332, + 0.001026851125061512, + 0.036990828812122345, + 0.08854550123214722, + -0.01331368274986744, + 0.019535653293132782, + 0.006677671801298857, + -0.04297717660665512, + 0.014578481204807758, + -0.010654295794665813, + -0.009864230640232563, + 0.08132299035787582, + 0.011906872503459454, + 0.06819181144237518, + -0.025784719735383987, + 0.006931353360414505, + -0.1369224637746811, + 0.028833262622356415, + 0.04176367074251175, + 0.0686354860663414, + -0.012330367229878902, + -0.008494798094034195, + -0.057070568203926086, + -0.09885986149311066, + 0.02841872163116932, + -0.0012829565675929189, + 0.08452381193637848, + -0.0442269928753376, + 0.005829977802932262, + 0.09953711926937103, + 0.05012792348861694, + -0.005873378366231918, + -0.0641418918967247, + -0.049663521349430084, + 0.00015880540013313293, + 0.05739030987024307, + -0.0848923772573471, + -0.06908732652664185, + -0.026412172242999077, + 0.05897587910294533, + -0.01342968363314867, + 0.07305772602558136, + 0.06559213995933533, + 0.026138633489608765, + 0.004874559119343758, + -0.07479707151651382, + 0.03167376294732094, + -0.041544221341609955, + -0.05901027098298073, + -0.023487603291869164, + -0.020500417798757553, + -0.03167291730642319, + 0.08064433932304382, + 0.013003415428102016, + 0.04186970368027687, + -0.03767181560397148, + -0.07162640243768692, + -0.10102683305740356, + 0.03790765255689621, + 0.046678703278303146, + -0.029464757069945335, + 0.04837606102228165, + 0.06666761636734009, + -0.06644361466169357, + 0.04189606010913849, + 0.046696633100509644, + 0.10919620096683502, + -0.04652491956949234, + 0.0415828600525856, + -0.044446270912885666, + 0.07271315157413483, + 0.08629599958658218, + -0.0788758173584938, + -0.06641732156276703, + -0.04304632544517517, + -0.0710979551076889, + 0.06476205587387085, + -0.027910947799682617, + -0.0032920720987021923, + 0.03390655666589737, + -0.007626053877174854, + -0.09001055359840393, + -0.10095858573913574, + 0.07489994913339615, + -0.038231879472732544, + -0.006134871859103441, + -0.09589746594429016, + 0.038394395262002945, + 0.04740843176841736, + 0.054574836045503616, + -0.03585117310285568, + -0.007327437400817871, + 0.046828169375658035, + -0.012232083827257156, + 0.027652762830257416, + 0.09809942543506622, + 0.04111935943365097, + -0.08717308938503265, + -0.04641895741224289, + -0.09534372389316559, + 0.08270589262247086, + -0.027644727379083633, + 0.1443927139043808, + 0.017893584445118904, + -0.023883726447820663, + -0.063459612429142, + 0.02851518988609314, + -0.010903319343924522, + 0.05522590130567551, + 0.045986589044332504, + 0.06351014971733093, + 0.045878518372774124, + -0.02977527305483818, + 0.11506573855876923, + 0.05919646471738815, + -0.031413257122039795, + -0.05762070417404175, + -0.0213331189006567, + -0.05005037412047386, + 0.04196877032518387, + 0.022439155727624893, + -0.1201159879565239, + 0.0053299106657505035, + 0.03308534622192383, + -0.013428907841444016, + 0.06381815671920776, + 0.1387225091457367, + 0.08890995383262634, + -0.09253202378749847 + ] + }, + "p244_407.wav": { + "name": "p244", + "embedding": [ + -0.003104584291577339, + 0.04657316207885742, + -0.032337043434381485, + 0.006645446643233299, + -0.05889582633972168, + 0.023109564557671547, + -0.0836152508854866, + 0.05858964845538139, + -0.03308698907494545, + 0.1238940954208374, + -0.03413597121834755, + 0.1005193442106247, + -0.01499311812222004, + -0.08105746656656265, + 0.023426655679941177, + 0.05755702406167984, + -0.011530330404639244, + -0.040308378636837006, + -0.0003295931965112686, + -0.08617779612541199, + 0.026843346655368805, + 0.013807281851768494, + -0.005035571753978729, + -0.01111688930541277, + 0.0010062993969768286, + 0.08500957489013672, + -0.016075022518634796, + -0.013842049986124039, + -0.019869215786457062, + -0.0630098357796669, + -0.04138507694005966, + 0.09601067006587982, + -0.037356168031692505, + -0.05952814221382141, + 0.02426801063120365, + -0.012836904264986515, + -0.005598604213446379, + -0.011211697943508625, + 0.02020454593002796, + 0.008303358219563961, + -0.10945820808410645, + 0.0837821438908577, + -0.018392261117696762, + -0.011588041670620441, + 0.05007948726415634, + -0.034542445093393326, + -0.05800371617078781, + 0.05362749844789505, + -0.042021967470645905, + 0.07242666929960251, + 0.08492620289325714, + -0.02868054062128067, + -0.04110778868198395, + -0.02114693820476532, + 0.05137369781732559, + 0.019055377691984177, + -0.1011195182800293, + -0.024596519768238068, + -0.0002370290458202362, + 0.07408127188682556, + -0.0005028368905186653, + -0.033601824194192886, + 0.03478960692882538, + 0.09339827299118042, + 0.06205793470144272, + 0.04223657771945, + 0.05290503799915314, + 0.06885270029306412, + -0.022216254845261574, + -0.029701411724090576, + 0.06996627151966095, + 0.0864732414484024, + 0.08215707540512085, + -0.0019089310662820935, + 0.02766697108745575, + -0.006614426150918007, + 0.0011562397703528404, + -0.05672324076294899, + -0.03587431460618973, + -0.028931934386491776, + -0.05705353617668152, + -0.021391846239566803, + -0.0013540992513298988, + 0.03384846821427345, + 0.0011343229562044144, + -0.006994025781750679, + 0.08271786570549011, + -0.02858877182006836, + 0.04757063835859299, + 0.031527962535619736, + -0.014183513820171356, + 0.04894658550620079, + -0.08426105231046677, + 0.008590849116444588, + 0.016310518607497215, + -0.019878674298524857, + 0.05104648321866989, + 0.07355128228664398, + 0.007673108018934727, + 0.017706256359815598, + 0.08254500478506088, + 0.029020095244050026, + 0.020456653088331223, + -0.0029742568731307983, + -0.07228829711675644, + 0.1103634387254715, + 0.07806919515132904, + -0.0640028715133667, + 0.006874486804008484, + 0.03914283961057663, + 0.040454551577568054, + -0.004827793687582016, + -0.09616594016551971, + -0.023870384320616722, + -0.024942860007286072, + 0.012525135651230812, + -0.012076758779585361, + 0.09087841212749481, + 0.01347122248262167, + 0.03773888200521469, + 0.09482701122760773, + -0.02195243164896965, + -0.0607881098985672, + -0.05246800556778908, + 0.02600812539458275, + -0.12688294053077698, + 0.0887662023305893, + 0.05488528311252594, + 0.045933984220027924, + 0.05349424108862877, + 0.10580737888813019, + 0.005932166241109371, + -0.008115613833069801, + -0.03361114114522934, + -0.03186650201678276, + -0.003121431451290846, + -0.00012975651770830154, + 0.04425520822405815, + 0.07043840736150742, + -0.006851738318800926, + 0.10119348019361496, + -0.007384748198091984, + 0.060464370995759964, + -0.07564433664083481, + 0.03929874673485756, + 0.0343942791223526, + 0.02475239336490631, + -0.03344819322228432, + -0.02465083636343479, + 0.0072366707026958466, + -0.06678535044193268, + -0.02442559227347374, + -0.023924626410007477, + 0.06874669343233109, + -0.029876066371798515, + -0.009793409146368504, + 0.09930677711963654, + 0.031654663383960724, + -0.0060859257355332375, + -0.002396952360868454, + -0.03451858088374138, + -0.013528370298445225, + 0.0750058963894844, + -0.13117572665214539, + -0.07055386900901794, + -0.020009178668260574, + 0.032913632690906525, + 0.045135047286748886, + 0.053581275045871735, + 0.08896920830011368, + -0.018656853586435318, + 0.026856394484639168, + -0.020285427570343018, + 0.024043720215559006, + -0.053148895502090454, + -0.05038430914282799, + -0.046974774450063705, + -0.08690065145492554, + -0.057863496243953705, + 0.04483678936958313, + -0.04021107405424118, + 0.045361801981925964, + -0.028334293514490128, + -0.07365195453166962, + -0.08450794219970703, + 0.017343856394290924, + 0.03447098284959793, + -0.026992756873369217, + 0.03211980685591698, + 0.10205669701099396, + -0.02623457834124565, + -0.01944817788898945, + 0.015529869124293327, + 0.10556671023368835, + -0.0641951709985733, + 0.02835429087281227, + -0.06852920353412628, + 0.05496248975396156, + 0.0796789675951004, + -0.024761170148849487, + -0.061186533421278, + -0.0679822713136673, + -0.03255509212613106, + 0.08795242756605148, + -0.04374832659959793, + -0.016944946721196175, + 0.026646820828318596, + -0.027378231287002563, + -0.061976246535778046, + -0.05818817391991615, + 0.0926298126578331, + -0.05986655876040459, + -0.012708021327853203, + -0.06789904087781906, + 0.008965477347373962, + -0.015787430107593536, + 0.07708202302455902, + -0.07744063436985016, + 0.05499912053346634, + 0.05589529499411583, + -0.016781218349933624, + 0.05208747088909149, + 0.08026955276727676, + 0.03256071358919144, + -0.04298686236143112, + -0.07182008028030396, + -0.06363420188426971, + 0.0448843352496624, + -0.026755396276712418, + 0.0501389242708683, + 0.026474572718143463, + -0.026602022349834442, + -0.046603161841630936, + 0.02742432802915573, + 0.01171579398214817, + 0.010041594505310059, + 0.1002071425318718, + 0.1084214597940445, + 0.01527472585439682, + -0.016209213063120842, + 0.07432680577039719, + 0.028180165216326714, + 0.0075395843014121056, + -0.022618385031819344, + 0.007898639887571335, + -0.04450123757123947, + 0.016117246821522713, + 0.049493271857500076, + -0.11122187972068787, + 0.06742001324892044, + 0.015724629163742065, + 0.01118016429245472, + 0.04433777183294296, + 0.05172194540500641, + 0.0658288300037384, + -0.06423455476760864 + ] + }, + "p244_235.wav": { + "name": "p244", + "embedding": [ + 0.08414724469184875, + 0.031948335468769073, + 0.008943088352680206, + -0.02238096296787262, + -0.02330591529607773, + 0.047428738325834274, + -0.10531490296125412, + 0.09980402886867523, + -0.04704798012971878, + 0.0699850395321846, + -0.08023872971534729, + 0.08879193663597107, + 0.017676588147878647, + -0.12182343006134033, + -0.0659368485212326, + 0.02796243131160736, + -0.03592311963438988, + 0.005282433703541756, + -0.06951486319303513, + -0.029010048136115074, + 0.011277561075985432, + 0.05407358705997467, + 0.033470313996076584, + -0.02317504957318306, + 0.029628541320562363, + 0.058356016874313354, + 0.03048108145594597, + 0.03721782565116882, + -0.00400970783084631, + -0.021969571709632874, + -0.0018918104469776154, + 0.08224688470363617, + -0.019491994753479958, + -0.022157397121191025, + 0.0456538200378418, + -0.0007916120812296867, + 0.03099163994193077, + -0.09128797054290771, + -0.03188329190015793, + 0.03247610852122307, + -0.04240315407514572, + 0.07372508943080902, + 0.06276065111160278, + -0.0047044456005096436, + 0.009728895500302315, + 0.015967829152941704, + 0.009108318015933037, + -0.08033211529254913, + -0.11000896990299225, + 0.17768913507461548, + 0.005370305851101875, + 0.04462099075317383, + -0.11519655585289001, + -0.01280895620584488, + 0.08057249337434769, + -0.022846464067697525, + -0.03344767168164253, + -0.03641297668218613, + 0.024675730615854263, + 0.14093877375125885, + -0.002063194289803505, + -0.03948536887764931, + 0.03993751108646393, + 0.07905098795890808, + 0.01084806490689516, + 0.021227842196822166, + 0.1313486546278, + 0.0696532279253006, + -0.0011959066614508629, + 0.0597175657749176, + 0.04390156269073486, + 0.0480753555893898, + 0.030905958265066147, + -0.021440064534544945, + 0.03045884147286415, + -0.02206547185778618, + -0.045527294278144836, + 0.0067911092191934586, + -0.028769362717866898, + -0.032696593552827835, + 0.010667145252227783, + 0.024968117475509644, + 0.037860311567783356, + 0.032501377165317535, + -0.0674109160900116, + 0.060953445732593536, + -0.010538906790316105, + -0.012828954495489597, + 0.055500272661447525, + 0.05890392139554024, + 0.008883259259164333, + -0.010890992358326912, + -0.027336928993463516, + -0.11041491478681564, + -0.003958722576498985, + 0.002464384539052844, + 0.03246554732322693, + 0.027331676334142685, + 0.026970436796545982, + -0.02828892692923546, + 0.07926802337169647, + 0.011447388678789139, + 0.013722170144319534, + -0.01360907033085823, + -0.06630753725767136, + 0.0808674767613411, + 0.11701808869838715, + -0.006666000932455063, + 0.025465281680226326, + -0.04413112998008728, + 0.021561142057180405, + 0.06509619951248169, + -0.09490412473678589, + -0.06714627891778946, + 0.03217704966664314, + 0.01808125711977482, + 0.07384863495826721, + 0.09053315222263336, + -0.00805019773542881, + 0.019038518890738487, + 0.04889168590307236, + -0.07183147966861725, + -0.026759475469589233, + -8.155964314937592e-05, + 0.012430368922650814, + -0.02079918049275875, + 0.02140168286859989, + 0.036056291311979294, + 0.02562927082180977, + -0.0455782487988472, + 0.06624790281057358, + 0.0035619856789708138, + -0.004401146434247494, + -0.039004165679216385, + 0.038433872163295746, + 0.0660308301448822, + 0.0013722097501158714, + -0.03185052424669266, + 0.049162380397319794, + 0.09024513512849808, + 0.004282768815755844, + 0.053114861249923706, + -0.062113165855407715, + -0.0957697331905365, + -0.019128186628222466, + 0.04619210585951805, + 0.047117047011852264, + -0.035239361226558685, + -0.0407211072742939, + -0.06313902139663696, + -0.004834108054637909, + -0.008600874803960323, + 0.014729546383023262, + 0.05742064118385315, + 0.03767884150147438, + 0.0048480164259672165, + 0.07689369469881058, + -0.03033529780805111, + 0.018571069464087486, + -0.017184583470225334, + 0.026356305927038193, + 0.034995414316654205, + 0.027773484587669373, + 0.009876169264316559, + -0.08222924172878265, + 0.004199131391942501, + -0.015613555908203125, + -0.026801731437444687, + -0.0025995224714279175, + 0.010991642251610756, + -0.024151857942342758, + 0.007024191319942474, + -0.10378921031951904, + 0.03716892749071121, + -0.11630301922559738, + 0.0037630535662174225, + 0.050034526735544205, + -0.04498978704214096, + -0.02551146224141121, + 0.09027744829654694, + 0.0293334499001503, + 0.03520354628562927, + -0.02103339321911335, + -0.0888897180557251, + 0.00338873453438282, + 0.04604913294315338, + 0.06833773851394653, + -0.005775232799351215, + 0.00189307052642107, + -0.004502268508076668, + 0.04314936324954033, + 0.05591220408678055, + 0.06444937735795975, + 0.0380018949508667, + -0.03494517505168915, + -0.06984288990497589, + 0.008918458595871925, + 0.10586248338222504, + -0.007336929440498352, + -0.06716549396514893, + -0.056028276681900024, + -0.002254173159599304, + -0.03827476128935814, + 0.006087338551878929, + 0.01722545549273491, + 0.037802811712026596, + 0.053151801228523254, + -0.013767322525382042, + -0.10574370622634888, + -0.046843286603689194, + 0.04101041331887245, + -0.06096049025654793, + -0.009861629456281662, + -0.041982538998126984, + 0.026280207559466362, + 0.10085171461105347, + 0.005654484033584595, + 0.03152710199356079, + -0.02600701153278351, + -0.03461811691522598, + -0.0877743661403656, + -0.0573757141828537, + -0.032806240022182465, + 0.019656050950288773, + -0.040631845593452454, + 0.024713240563869476, + -0.06452464312314987, + 0.06095213443040848, + -0.031063474714756012, + 0.09285181760787964, + 0.013319146819412708, + -0.06253103911876678, + -0.08947643637657166, + -0.0007865540683269501, + -0.04162108525633812, + 0.05814853683114052, + 0.05279542878270149, + 0.010547339916229248, + 0.021966557949781418, + -0.08115498721599579, + 0.07450666278600693, + 0.062321167439222336, + -0.05725353956222534, + -0.06883177161216736, + -0.037378374487161636, + 0.006283266469836235, + 0.026729024946689606, + -0.01295035146176815, + 0.014990851283073425, + 0.026568707078695297, + 0.016074951738119125, + -0.013926400803029537, + 0.06668197363615036, + 0.08498382568359375, + 0.04286962375044823, + -0.07782401889562607 + ] + }, + "p244_162.wav": { + "name": "p244", + "embedding": [ + 0.04829081892967224, + 0.07129817456007004, + 0.051060669124126434, + 0.01499593909829855, + 0.006851959973573685, + -0.03260171040892601, + -0.08099651336669922, + 0.0637405589222908, + 0.042777325958013535, + 0.07052373886108398, + -0.1430099606513977, + 0.07106330990791321, + -0.08491027355194092, + -0.10734517872333527, + -0.0011229310184717178, + 0.0048606786876916885, + -0.0260935015976429, + 0.004033581353724003, + 0.0005641123279929161, + -0.030605744570493698, + 0.024690553545951843, + 0.002459196373820305, + 0.063155397772789, + -0.03677212446928024, + -0.020689982920885086, + 0.061141762882471085, + 0.01590825244784355, + 0.01885281503200531, + 0.01796097308397293, + -0.014633886516094208, + 0.0576229952275753, + -0.004206769168376923, + -0.004706941545009613, + 0.03355146571993828, + 0.044683653861284256, + 0.04711952432990074, + -0.031321462243795395, + 0.01808738335967064, + -0.011247927322983742, + 0.03334259241819382, + -0.05550412833690643, + 0.02937045320868492, + 0.01106729544699192, + -0.06507216393947601, + 0.05344980210065842, + 0.03527987003326416, + -0.01651758700609207, + -0.010242031887173653, + -0.1056196391582489, + 0.07300670444965363, + -0.00381536316126585, + 0.05724401772022247, + -0.07236778736114502, + 0.008820079267024994, + 0.06905412673950195, + -0.027067359536886215, + -0.06065972149372101, + -0.002367055043578148, + 0.0663047507405281, + 0.05490785464644432, + -0.057445064187049866, + -0.04136288911104202, + -0.015054792165756226, + -0.009747395291924477, + 0.019799938425421715, + 0.05514756962656975, + 0.09970948100090027, + 0.07663170993328094, + -0.001820526085793972, + 0.012564287520945072, + 0.04491446539759636, + 0.030097443610429764, + 0.07451489567756653, + 0.003090151585638523, + -0.025342805311083794, + -0.01995203085243702, + -0.018643762916326523, + 0.021785348653793335, + 0.029633793979883194, + -0.03783007711172104, + -0.005959200672805309, + -0.05608599632978439, + 0.030384628102183342, + -0.020527375862002373, + -0.024479135870933533, + 0.0070673758164048195, + 0.04662042483687401, + 0.0055808331817388535, + 0.05391581356525421, + 0.006396042183041573, + -0.05223555862903595, + 0.016951095312833786, + -0.04365228861570358, + -0.06470535695552826, + -0.06035321578383446, + -0.04102332144975662, + 0.05799346789717674, + 0.04061641916632652, + 0.05916895717382431, + 0.03652959316968918, + 0.08606840670108795, + 0.01245332695543766, + 0.01622013933956623, + -0.007563130930066109, + -0.07510185986757278, + 0.04551553726196289, + 0.07953262329101562, + -0.03560539335012436, + 0.01461092010140419, + -0.02374665066599846, + 0.017668411135673523, + 0.04932129383087158, + -0.03196987882256508, + 0.0005330704152584076, + -0.0102433105930686, + 0.0466730110347271, + 0.03221350535750389, + 0.06516797095537186, + -0.013123176991939545, + 0.014387490227818489, + 0.14503583312034607, + -0.07748457789421082, + -0.021284718066453934, + -0.016460951417684555, + -0.00297079561278224, + -0.045399948954582214, + 0.07853630185127258, + 0.022576481103897095, + 0.03634403645992279, + 0.02891157940030098, + 0.04597816243767738, + -6.0051679611206055e-06, + 0.007174585945904255, + -0.07001560181379318, + -0.0062933992594480515, + 0.033886175602674484, + -0.049763910472393036, + -0.0002592746168375015, + 0.08288367092609406, + 0.044630762189626694, + 0.07149235904216766, + 0.08638546615839005, + -0.03478264436125755, + -0.058708563446998596, + 0.022461488842964172, + 0.052463121712207794, + 0.013278926722705364, + -0.030438873916864395, + -0.06200844794511795, + -0.050558045506477356, + -0.009217949584126472, + 0.07866780459880829, + -0.005517421755939722, + 0.05016082525253296, + 0.006720272824168205, + 0.013659686781466007, + 0.08834490180015564, + 0.015174908563494682, + -0.03221818804740906, + -0.07967913150787354, + -0.08492235839366913, + -0.042138565331697464, + 0.011063575744628906, + -0.16297471523284912, + -0.059360262006521225, + -0.0707269161939621, + 0.04095064103603363, + -0.019250744953751564, + 0.007106492295861244, + 0.03798842430114746, + 0.0003156587481498718, + -0.0002084793522953987, + 0.03658463805913925, + 0.012920170091092587, + -0.015694666653871536, + -0.12953589856624603, + 0.031466078013181686, + -0.015922950580716133, + 0.01862953044474125, + 0.03950270265340805, + -0.03379764035344124, + 0.0347873829305172, + -0.026543226093053818, + -0.0705251470208168, + -0.04750291630625725, + 0.06966233253479004, + -0.03216658532619476, + -0.007991489954292774, + 0.028201598674058914, + 0.016452794894576073, + -0.0805661603808403, + 0.05922037363052368, + -0.001249874010682106, + 0.09122666716575623, + -0.0651148334145546, + 0.022558391094207764, + -0.008464845828711987, + 0.0015021003782749176, + 0.085782989859581, + -0.0171499066054821, + -0.07387082278728485, + -0.08045917749404907, + -0.024955278262495995, + 0.04449775815010071, + -0.016574623063206673, + -0.03539040684700012, + -0.03342164307832718, + -0.02457502856850624, + -0.01841406151652336, + -0.06822459399700165, + -0.031038597226142883, + 0.028844032436609268, + -0.012666555121541023, + -0.08779608458280563, + 0.030437305569648743, + -0.03140716254711151, + -0.009308185428380966, + 0.016618382185697556, + 0.04579534754157066, + -0.021695084869861603, + -0.05439550429582596, + -0.04313071072101593, + 0.03656603395938873, + 0.061044517904520035, + 0.048750195652246475, + -0.07004205137491226, + -0.08202021569013596, + 0.030084650963544846, + 0.010904965922236443, + 0.0544193834066391, + -0.007780302315950394, + -0.01956063136458397, + 0.038042858242988586, + -0.05090366303920746, + -0.021977724507451057, + 0.026563208550214767, + 0.046450383961200714, + -0.003090105950832367, + 0.01573701575398445, + -0.02198765240609646, + 0.08512962609529495, + 0.027058618143200874, + -7.81303970143199e-06, + -0.022902492433786392, + -0.06274542212486267, + -0.061719294637441635, + -0.059388771653175354, + -0.05725156143307686, + -0.05289582535624504, + 0.031797170639038086, + -0.05301262065768242, + 0.05503222346305847, + 0.0015455090906471014, + 0.09750083088874817, + 0.010077114216983318, + -0.01228514313697815 + ] + }, + "p244_179.wav": { + "name": "p244", + "embedding": [ + 0.030571645125746727, + 0.08619459718465805, + -0.016192864626646042, + 0.031087905168533325, + -0.057278215885162354, + 0.07416775077581406, + -0.09019750356674194, + 0.10113927721977234, + -0.060720138251781464, + 0.1361154019832611, + -0.09812057018280029, + 0.12131239473819733, + -0.04670654982328415, + -0.17017166316509247, + -0.02837412618100643, + 0.058825891464948654, + -0.034396205097436905, + 0.0024779802188277245, + -0.05535587668418884, + -0.024263184517621994, + 0.04062965139746666, + 0.02393612638115883, + 0.04757293313741684, + -0.020466435700654984, + 0.01712745800614357, + 0.07184048742055893, + -0.0002682122285477817, + 0.04832533001899719, + 0.007551028858870268, + -0.07667022198438644, + -0.058858178555965424, + 0.10712940990924835, + -0.04223278909921646, + 0.019811954349279404, + 0.05423697084188461, + 0.011132519692182541, + -0.003056335262954235, + -0.0478329062461853, + -0.0034378503914922476, + -0.011444422416388988, + -0.044155582785606384, + 0.05112019181251526, + -0.006352514028549194, + -0.023807942867279053, + 0.05234072729945183, + 0.01447363942861557, + -0.028755847364664078, + -0.027758397161960602, + -0.09399205446243286, + 0.13870251178741455, + 0.0579192154109478, + -0.013906346634030342, + -0.06775277853012085, + -0.0807543396949768, + 0.10503064841032028, + -0.01718464121222496, + -0.12325428426265717, + -0.0415889248251915, + 0.07923341542482376, + 0.1536082923412323, + -0.02759230136871338, + -0.034631647169589996, + 0.013573359698057175, + 0.09162097424268723, + 0.018155556172132492, + 0.10615106672048569, + 0.06383427232503891, + 0.09351585805416107, + -0.004068485461175442, + 0.032757192850112915, + 0.04195607453584671, + 0.08625063300132751, + 0.07285959273576736, + -0.007157584186643362, + 0.03145573288202286, + -0.0011888457229360938, + -0.02785051427781582, + 0.025799527764320374, + -0.04441903159022331, + -0.031139878556132317, + -0.01888282783329487, + -0.010782881639897823, + 0.020020633935928345, + -0.04007243737578392, + -0.018312649801373482, + 0.05557441711425781, + 0.04506079480051994, + -0.015550896525382996, + 0.052601590752601624, + 0.03852296993136406, + -0.02566887065768242, + 0.055641066282987595, + -0.07030117511749268, + -0.0899798721075058, + 0.014209027402102947, + 0.01588517427444458, + -0.0013428847305476665, + 0.061403971165418625, + 0.031709328293800354, + -0.016449660062789917, + 0.0992315411567688, + 0.04493049904704094, + 0.0154700493440032, + 0.03664861619472504, + -0.0863228440284729, + 0.11838136613368988, + 0.11464715003967285, + -0.015835151076316833, + 0.030355069786310196, + -0.037218958139419556, + 0.08494094014167786, + 0.09600099176168442, + -0.13206098973751068, + -0.07194055616855621, + -0.027682622894644737, + -0.03497975692152977, + -0.01695835217833519, + 0.08218910545110703, + -0.022721877321600914, + 0.010010723024606705, + 0.11872994154691696, + -0.1014866828918457, + -0.06436829268932343, + -0.021778110414743423, + 0.018398024141788483, + -0.07755455374717712, + 0.04881449043750763, + 0.036511510610580444, + 0.017951201647520065, + 0.004995942115783691, + 0.08541607856750488, + -0.029691128060221672, + 0.0033705513924360275, + 0.036358386278152466, + -0.07027767598628998, + -0.008424963802099228, + -0.05272942781448364, + -0.012739395722746849, + 0.08978040516376495, + 0.05215379595756531, + 0.05632282793521881, + -0.018879681825637817, + -0.016407718881964684, + -0.10121433436870575, + -0.0013988418504595757, + 0.053860437124967575, + 0.044518791139125824, + -0.006905117072165012, + -0.005888267885893583, + -0.030689379200339317, + -0.08670379966497421, + 0.051256321370601654, + -0.025720639154314995, + 0.0827542170882225, + -0.0174130667001009, + 0.0017660766607150435, + 0.10364135354757309, + 0.02007053606212139, + -0.023596424609422684, + -0.08628662675619125, + -0.03753092885017395, + 0.015446661040186882, + 0.03851909190416336, + -0.09172306954860687, + -0.08230212330818176, + -0.006774085573852062, + 0.02032453566789627, + -0.021618491038680077, + 0.04923762381076813, + 0.054791249334812164, + 0.018143504858016968, + 0.027777664363384247, + -0.05341195687651634, + -0.003582623554393649, + -0.10147850960493088, + -0.058054789900779724, + -0.0103674391284585, + -0.06462931632995605, + -0.0018470166251063347, + 0.0738021582365036, + 0.0049993619322776794, + 0.012638866901397705, + -0.01818142831325531, + -0.06478318572044373, + -0.09603165090084076, + 0.06740697473287582, + 0.04037811607122421, + 0.02259417250752449, + 0.05606265366077423, + 0.04504580423235893, + -0.048457350581884384, + 0.07444643974304199, + 0.06457282602787018, + 0.10059687495231628, + -0.024822916835546494, + 0.02699822001159191, + -0.07105910778045654, + 0.07941639423370361, + 0.10358962416648865, + -0.0788687989115715, + -0.10156002640724182, + -0.04550536721944809, + -0.059704940766096115, + 0.07852086424827576, + -0.04858074709773064, + -0.034332044422626495, + 0.040348827838897705, + -0.022306490689516068, + -0.09576012194156647, + -0.08172659575939178, + 0.10498189181089401, + -0.044428423047065735, + -0.023250237107276917, + -0.06271548569202423, + 0.04286088049411774, + 0.05300229415297508, + 0.030528580769896507, + -0.03509475290775299, + 0.037150751799345016, + 0.0760376825928688, + -0.06404687464237213, + -0.0011810499709099531, + 0.04259870573878288, + 0.013071316294372082, + -0.061304450035095215, + -0.005143480841070414, + -0.08300714194774628, + 0.046151161193847656, + -0.05058329552412033, + 0.15314170718193054, + -0.02044074609875679, + -0.04971642792224884, + -0.05920543521642685, + 0.06445460766553879, + -0.026811551302671432, + 0.029481317847967148, + 0.05114942789077759, + 0.06528611481189728, + 0.018429845571517944, + -0.08800383657217026, + 0.12919296324253082, + 0.016551926732063293, + -0.02735801599919796, + -0.05854961276054382, + -0.0559699647128582, + -0.05918307229876518, + 0.0008963110740296543, + -0.009198951534926891, + -0.09892384707927704, + 0.004933548625558615, + 0.009357663802802563, + 0.0010615966748446226, + 0.04635327309370041, + 0.13274195790290833, + 0.0661928653717041, + -0.07634106278419495 + ] + }, + "p244_151.wav": { + "name": "p244", + "embedding": [ + 0.05338154733181, + 0.07692953944206238, + -0.014915263280272484, + 0.017773957923054695, + -0.06250782310962677, + 0.07432658970355988, + -0.1349685788154602, + 0.126249760389328, + -0.04604538530111313, + 0.15463483333587646, + -0.053544916212558746, + 0.10725729167461395, + -0.030185209587216377, + -0.18928208947181702, + -0.010301225818693638, + 0.06485643982887268, + -0.057404763996601105, + -0.03540218621492386, + -0.07023858278989792, + -0.027816802263259888, + 0.025902029126882553, + 0.047697313129901886, + 0.0183144211769104, + -0.00888589583337307, + 0.032714106142520905, + 0.07206510752439499, + -0.019219059497117996, + 0.02560625970363617, + -0.021043477579951286, + -0.0932825356721878, + -0.03926796466112137, + 0.0931343212723732, + -0.055780746042728424, + 0.009114207699894905, + 0.03935887664556503, + -0.010610794648528099, + -0.002836352214217186, + -0.04435507953166962, + -0.02503439411520958, + 0.019594432786107063, + -0.040795788168907166, + 0.07587078213691711, + 0.016821514815092087, + -0.0006884306785650551, + 0.0466751754283905, + 0.014027215540409088, + -0.02387208491563797, + -0.05771256238222122, + -0.10067372769117355, + 0.17035824060440063, + 0.06818369030952454, + -0.0034879762679338455, + -0.060495488345623016, + -0.07923023402690887, + 0.09581132233142853, + -0.03183387219905853, + -0.134304940700531, + -0.05645330250263214, + 0.07098782062530518, + 0.1509125530719757, + -0.04128161072731018, + -0.04748644679784775, + 0.027616092935204506, + 0.09805630147457123, + 0.049848735332489014, + 0.09751050174236298, + 0.06945262849330902, + 0.0908101499080658, + -0.01977325975894928, + 0.006688814610242844, + 0.061421941965818405, + 0.05686631053686142, + 0.08493521809577942, + 0.0004338165745139122, + 0.042795952409505844, + -0.0010274001397192478, + -0.011535627767443657, + -0.01253002043813467, + -0.015385286882519722, + -0.0053469715639948845, + 0.0023587404284626245, + 0.015199463814496994, + 0.021320056170225143, + 0.008909085765480995, + -0.022398579865694046, + 0.04738030955195427, + 0.04108746349811554, + -0.012559186667203903, + 0.06764794886112213, + 0.030138878151774406, + 0.016081376001238823, + 0.07339587062597275, + -0.0819292888045311, + -0.06931192427873611, + 0.04381158575415611, + 0.017003946006298065, + 0.011945467442274094, + 0.04491691291332245, + 0.025100961327552795, + -0.01912400871515274, + 0.11456035822629929, + 0.038164470344781876, + 0.005056596361100674, + 0.03075678087770939, + -0.10413150489330292, + 0.12567977607250214, + 0.08012968301773071, + -0.030693447217345238, + 0.050216399133205414, + -0.03954636678099632, + 0.07639139890670776, + 0.06447548419237137, + -0.13578617572784424, + -0.07799884676933289, + 0.020948413759469986, + -0.004169312305748463, + -0.020297545939683914, + 0.12309718877077103, + -0.0006718793883919716, + 0.029021989554166794, + 0.12414532899856567, + -0.11150306463241577, + -0.03991929814219475, + 0.006012200377881527, + 0.04379991441965103, + -0.10680531710386276, + 0.050182685256004333, + 0.05441530421376228, + -0.01033379603177309, + 0.03289240226149559, + 0.09933243691921234, + -0.016157232224941254, + 0.007249072194099426, + -0.004718083888292313, + -0.03527181223034859, + 0.0015940385637804866, + -0.02847292274236679, + -0.01587466150522232, + 0.058956194669008255, + 0.02762434259057045, + 0.04672842472791672, + -0.020860277116298676, + -0.04069723188877106, + -0.13734041154384613, + 0.02481251023709774, + 0.02375340461730957, + 0.0650215893983841, + -0.01844874769449234, + 0.012373916804790497, + -0.03875350207090378, + -0.07846923172473907, + 0.02957528829574585, + -0.015639083459973335, + 0.07587534934282303, + -0.018191874027252197, + -0.0012868910562247038, + 0.10822582244873047, + 0.041814275085926056, + 0.004464832134544849, + -0.05965173989534378, + -0.04472074657678604, + 0.006731791887432337, + 0.05795472860336304, + -0.0859435573220253, + -0.0651235356926918, + -0.00693739578127861, + 0.039246946573257446, + -0.0027100276201963425, + 0.06693608313798904, + 0.06515911221504211, + 0.02362545020878315, + 0.022761203348636627, + -0.05538514256477356, + 0.0250663124024868, + -0.08307922631502151, + -0.08149533718824387, + -0.0006556776352226734, + -0.039784662425518036, + -0.02876432053744793, + 0.08780990540981293, + 0.002508232370018959, + 0.030806537717580795, + -0.0612480491399765, + -0.07779560983181, + -0.08647386729717255, + 0.0672992467880249, + 0.06014605611562729, + -0.01298338733613491, + 0.029198117554187775, + 0.049173541367053986, + -0.03662455826997757, + 0.059224989265203476, + 0.06037263572216034, + 0.13589826226234436, + -0.023976674303412437, + 0.04590022563934326, + -0.062300749123096466, + 0.09153693914413452, + 0.07727071642875671, + -0.06391610205173492, + -0.08505367487668991, + -0.020878100767731667, + -0.0698758065700531, + 0.053322214633226395, + -0.032328225672245026, + 0.0019058722537010908, + 0.042897243052721024, + 0.0021038458216935396, + -0.09081218391656876, + -0.08085671067237854, + 0.08750441670417786, + -0.04706183448433876, + -0.01079383585602045, + -0.07860804349184036, + 0.05731835216283798, + 0.07274751365184784, + 0.05638352781534195, + -0.034406356513500214, + -0.003083118936046958, + 0.047633200883865356, + -0.03546527400612831, + 0.025678370147943497, + 0.06251882761716843, + 0.030412035062909126, + -0.08691278100013733, + -0.013631895184516907, + -0.08894501626491547, + 0.05345285311341286, + -0.03952764719724655, + 0.1526717245578766, + -0.010541461408138275, + -0.03926369547843933, + -0.06898391991853714, + 0.04631609842181206, + -0.026039013639092445, + 0.05616597831249237, + 0.03304118663072586, + 0.070219486951828, + 0.08123277127742767, + -0.03954586759209633, + 0.09585540741682053, + 0.045004505664110184, + -0.03133155405521393, + -0.04682401195168495, + -0.05581985414028168, + -0.05603248253464699, + 0.024348953738808632, + -0.006897169630974531, + -0.1039557158946991, + 0.0009472938254475594, + 0.026775918900966644, + 0.0035683715250343084, + 0.05396405979990959, + 0.13006016612052917, + 0.04612473398447037, + -0.12077564001083374 + ] + }, + "p244_047.wav": { + "name": "p244", + "embedding": [ + 0.06592823565006256, + 0.08634445816278458, + -0.05203823000192642, + 0.022983569651842117, + -0.00553181953728199, + 0.04818369075655937, + -0.1382196545600891, + 0.100897878408432, + -0.02517542988061905, + 0.12603816390037537, + -0.07611290365457535, + 0.11310906708240509, + 0.002127218060195446, + -0.12196719646453857, + -0.04750456660985947, + 0.0340161994099617, + -0.022115785628557205, + -0.005590872839093208, + -0.021228544414043427, + -0.005754104815423489, + 0.04956686869263649, + 0.031655631959438324, + 0.01635877788066864, + -0.02284124679863453, + 0.012919880449771881, + 0.05458870902657509, + 0.030053364112973213, + 0.035363420844078064, + 0.010314006358385086, + 0.004139812663197517, + 0.018835382536053658, + 0.10752004384994507, + -0.024731086567044258, + 0.021443117409944534, + 0.0341707319021225, + 0.011841820552945137, + -0.025024110451340675, + -0.06894447654485703, + 0.007605442777276039, + 0.006737133488059044, + -0.02988891862332821, + 0.07450156658887863, + 0.04596211761236191, + -0.012590151280164719, + 0.01613054983317852, + -0.0033343154937028885, + -0.01497122272849083, + -0.05013280361890793, + -0.09199265390634537, + 0.16674596071243286, + 0.05915763974189758, + 0.030991625040769577, + -0.09406575560569763, + -0.009818894788622856, + 0.09341020882129669, + 0.020607685670256615, + -0.041559766978025436, + -0.05375760793685913, + 0.049641311168670654, + 0.15271402895450592, + -0.017432039603590965, + -0.043175965547561646, + 0.03913137689232826, + 0.12286661565303802, + 0.03423837572336197, + 0.05694129690527916, + 0.10740529000759125, + 0.09109769761562347, + 0.0035390518605709076, + 0.038384366780519485, + 0.033550769090652466, + 0.07336247712373734, + 0.03583502024412155, + -0.030067026615142822, + 0.029840033501386642, + -0.024235369637608528, + -0.019593534991145134, + -0.0034263969864696264, + -0.02303505316376686, + -0.06312770396471024, + -0.020670877769589424, + 0.002357965800911188, + 0.01862325705587864, + 0.06174740195274353, + -0.041777193546295166, + 0.028745215386152267, + 0.04310256987810135, + -0.07678806781768799, + 0.03418527916073799, + 0.050089623779058456, + 0.01349277887493372, + 0.002735711634159088, + -0.05580076947808266, + -0.11501264572143555, + 0.033295489847660065, + -0.006879905238747597, + 0.02203415147960186, + 0.06237472593784332, + 0.05400538444519043, + 0.011446223594248295, + 0.07700318843126297, + 0.021614382043480873, + -0.022246181964874268, + -0.024690061807632446, + -0.050893597304821014, + 0.116461381316185, + 0.11012955009937286, + -0.02678968757390976, + 0.025255849584937096, + -0.059779297560453415, + 0.01227518729865551, + 0.06082569435238838, + -0.11335492134094238, + -0.06902417540550232, + 0.03451678156852722, + 0.02915201708674431, + 0.01753680780529976, + 0.10128960013389587, + 0.006060037761926651, + 0.01746409572660923, + 0.065096415579319, + -0.056160781532526016, + -0.0627235397696495, + -0.07041087746620178, + 0.04766854643821716, + -0.06201068311929703, + 0.05851907283067703, + 0.045629046857357025, + 0.011815855279564857, + -0.05049819126725197, + 0.07386770844459534, + -0.0033091730438172817, + -0.00961120706051588, + -0.019955364987254143, + 0.028728440403938293, + 0.06521470099687576, + -0.03563466668128967, + 0.007318600080907345, + -0.003750898875296116, + 0.026417143642902374, + 0.03748757019639015, + 0.026447271928191185, + -0.01050395518541336, + -0.08193591237068176, + 0.009270614013075829, + 0.06918269395828247, + 0.056311193853616714, + -0.03413223475217819, + -0.05644124746322632, + -0.02421751618385315, + -0.04152216762304306, + -0.0011794923339039087, + -0.02481546625494957, + 0.06741110980510712, + 0.024912703782320023, + 0.023557016626000404, + 0.10761044919490814, + -0.0313621424138546, + 0.014151579700410366, + -0.01747249811887741, + 0.03744783252477646, + 0.03733870014548302, + 0.027481097728013992, + -0.06134762614965439, + -0.07908773422241211, + -0.010789117775857449, + 0.009928219020366669, + -0.019895588979125023, + 0.012810485437512398, + 0.017583327367901802, + -0.006856146268546581, + 0.024190029129385948, + -0.07462447881698608, + -0.010698225349187851, + -0.1276930570602417, + -0.028874143958091736, + -0.01974429003894329, + -0.04464239254593849, + -0.00983351655304432, + 0.06675009429454803, + 0.037056177854537964, + 0.04110782593488693, + -0.013327017426490784, + -0.0669906735420227, + -0.04840049147605896, + 0.06413404643535614, + 0.09464256465435028, + -0.01924043893814087, + 0.0026499461382627487, + 0.027335720136761665, + 0.03339831903576851, + 0.012847086414694786, + 0.062497250735759735, + 0.06524231284856796, + -0.03510156273841858, + -0.05481558293104172, + -0.060433171689510345, + 0.0923689529299736, + 0.08497798442840576, + -0.10058562457561493, + -0.06161234527826309, + -0.03219972923398018, + -0.06334944814443588, + -0.0018226122483611107, + -0.03567150980234146, + 0.01452193409204483, + 0.044877488166093826, + -0.038239486515522, + -0.12325076758861542, + -0.10446220636367798, + 0.0528663769364357, + -0.06480579078197479, + 0.005558964796364307, + -0.0653512179851532, + 0.044351108372211456, + 0.08800370991230011, + 0.015784073621034622, + -0.025861406698822975, + -0.00241960515268147, + -0.010029720142483711, + -0.06049330532550812, + -0.01963091269135475, + -0.012720050290226936, + 0.026492467150092125, + -0.1071920320391655, + 0.0017960708355531096, + -0.05885661393404007, + 0.07329477369785309, + -0.07474247366189957, + 0.11086786538362503, + -0.0019602221436798573, + -0.06511756032705307, + -0.09652253985404968, + 0.018370740115642548, + -0.01414383202791214, + 0.05176272243261337, + 0.0293699000030756, + 0.032051242887973785, + 0.0016629381570965052, + -0.10479559749364853, + 0.09490065276622772, + 0.06754730641841888, + -0.00018845684826374054, + -0.10491541028022766, + -0.031102946028113365, + -0.009768453426659107, + 0.0564497634768486, + 0.016670752316713333, + -0.014845199882984161, + -0.015359252691268921, + 0.031931206583976746, + -0.019525855779647827, + 0.07610532641410828, + 0.09976024925708771, + 0.04823916405439377, + -0.09098787605762482 + ] + }, + "p244_387.wav": { + "name": "p244", + "embedding": [ + 0.05354906618595123, + 0.09765110909938812, + -0.05324000120162964, + 0.01336327288299799, + 0.0005212724208831787, + 0.04374198615550995, + -0.17443504929542542, + 0.11053217947483063, + -0.03025122359395027, + 0.14385399222373962, + -0.03728903830051422, + 0.09514616429805756, + -0.04378384351730347, + -0.13015100359916687, + -0.020348254591226578, + 0.0590820387005806, + -0.020964570343494415, + -0.008310393430292606, + -0.013095324859023094, + -0.005703997798264027, + 0.0466109998524189, + 0.02175387553870678, + 0.01760837994515896, + -0.018259473145008087, + -0.02049732580780983, + 0.06909360736608505, + -0.016545677557587624, + 0.01709672249853611, + -0.009089938364923, + 0.0025545363314449787, + 0.004110085777938366, + 0.0888431966304779, + 0.0026269257068634033, + 0.006760727148503065, + 0.030522389337420464, + 0.03299310430884361, + -0.03321494162082672, + -0.05414698272943497, + 0.024370180442929268, + -0.0019585900008678436, + -0.037366438657045364, + 0.04417842999100685, + 0.0027837734669446945, + -0.025961261242628098, + 0.05526050552725792, + -0.06428706645965576, + -0.02854008600115776, + -0.013471122831106186, + -0.06524255126714706, + 0.13522595167160034, + 0.10719707608222961, + 0.027081046253442764, + -0.06699232757091522, + 0.0013939402997493744, + 0.09225818514823914, + 0.013461964204907417, + -0.08650701493024826, + -0.052536047995090485, + 0.038395099341869354, + 0.15935875475406647, + -0.023923469707369804, + -0.02494906261563301, + 0.03567003458738327, + 0.11294953525066376, + 0.020205214619636536, + 0.07185454666614532, + 0.09708480536937714, + 0.07319282740354538, + 0.00600969884544611, + -0.021706517785787582, + 0.009677791967988014, + 0.05809071660041809, + 0.06017580255866051, + -0.007883155718445778, + 0.03415533900260925, + -0.03268399089574814, + -0.02937799133360386, + 2.344651147723198e-05, + -0.02055910788476467, + -0.08310361951589584, + -0.03602138161659241, + -0.009546364657580853, + -0.019303947687149048, + 0.055985722690820694, + -0.016760921105742455, + -0.008992908522486687, + 0.0577261745929718, + -0.0758432000875473, + 0.03576980531215668, + 0.04526446759700775, + 0.021973520517349243, + 0.026411227881908417, + -0.05568648874759674, + -0.09455728530883789, + 0.050509948283433914, + 0.002184647135436535, + 0.013582345098257065, + 0.04680690914392471, + 0.0325813964009285, + 0.016247186809778214, + 0.07681549340486526, + 0.013082959689199924, + -0.009824356995522976, + -0.0007351897656917572, + -0.06217750906944275, + 0.10632684826850891, + 0.10209167748689651, + -0.04193472862243652, + 0.040388159453868866, + -0.04647144675254822, + -0.0163577813655138, + 0.04564157873392105, + -0.08820956200361252, + -0.04130534455180168, + 0.056680403649806976, + 0.053834687918424606, + 0.02340078353881836, + 0.10123381018638611, + 0.05094054341316223, + 0.02665385603904724, + 0.0934397503733635, + -0.06041048839688301, + -0.08739293366670609, + -0.0709250420331955, + 0.07208696007728577, + -0.05781517177820206, + 0.07073374092578888, + 0.0641392394900322, + 0.02788388356566429, + -0.011555745266377926, + 0.05087069422006607, + 0.01812530681490898, + 0.006914706900715828, + -0.03490523621439934, + -0.024205069988965988, + 0.01688438653945923, + -0.05153709277510643, + 0.017614539712667465, + 0.005037687718868256, + 0.004737320356070995, + 0.04738428071141243, + 0.0252805408090353, + 0.009697499684989452, + -0.09615115076303482, + -0.02097797393798828, + 0.07822176069021225, + 0.045730650424957275, + -0.029787501320242882, + -0.04409850388765335, + -0.011932299472391605, + -0.043656785041093826, + -0.01956712268292904, + -0.07777930051088333, + 0.08318998664617538, + -0.004047340247780085, + 0.021316220983862877, + 0.08009546250104904, + -0.03045850247144699, + 0.019091876223683357, + -0.02928493730723858, + 0.021585237234830856, + 0.012359283864498138, + 0.01861005462706089, + -0.09552836418151855, + -0.08658338338136673, + -0.023134730756282806, + 0.032868642359972, + 0.004126129671931267, + 0.042933389544487, + 0.04229239374399185, + -0.00515346135944128, + 0.006446721963584423, + -0.03709350526332855, + 0.013891741633415222, + -0.09959129989147186, + -0.05918333679437637, + -0.0018269403371959925, + -0.035192832350730896, + 0.0006221001967787743, + 0.07590551674365997, + 0.026714149862527847, + 0.03314167261123657, + -0.04623878002166748, + -0.04831302911043167, + -0.07755360007286072, + 0.05093060061335564, + 0.07633493840694427, + -0.02667674794793129, + 0.018942879512906075, + 0.03513457626104355, + 0.004706918261945248, + 0.01301814615726471, + 0.057114146649837494, + 0.09225666522979736, + -0.02478555589914322, + -0.01479764562100172, + -0.10062605142593384, + 0.03879788890480995, + 0.13930216431617737, + -0.08616366982460022, + -0.08117936551570892, + -0.04904048517346382, + -0.07912970334291458, + -0.0022717141546308994, + -0.07979755103588104, + 0.010628344491124153, + 0.040879394859075546, + -0.04890758544206619, + -0.11566022038459778, + -0.125263050198555, + 0.06886452436447144, + -0.045262426137924194, + 0.010862018913030624, + -0.057173795998096466, + 0.0657719150185585, + 0.0443018302321434, + 0.012802252545952797, + -0.07093697786331177, + 0.00039125699549913406, + 0.021834442391991615, + -0.027714937925338745, + 0.012332821264863014, + 0.008706901222467422, + 0.050707317888736725, + -0.12938737869262695, + 0.013751399703323841, + -0.06924933940172195, + 0.07748182117938995, + -0.0754193365573883, + 0.11137852072715759, + 0.022869590669870377, + -0.028854383155703545, + -0.09795855730772018, + 0.03347766026854515, + 0.016184503212571144, + 0.041924718767404556, + -0.004175333306193352, + 0.053666599094867706, + 0.017667608335614204, + -0.08689325302839279, + 0.07405539602041245, + 0.04489438980817795, + 0.01188390702009201, + -0.099245086312294, + -0.02994922548532486, + -0.036934610456228256, + 0.05011643469333649, + -0.020317981019616127, + -0.036633025854825974, + -0.03258639946579933, + -0.0011051604524254799, + 0.02551230788230896, + 0.05911894142627716, + 0.08626800775527954, + 0.0274351816624403, + -0.10613103955984116 + ] + }, + "p244_370.wav": { + "name": "p244", + "embedding": [ + 0.06358363479375839, + 0.052086930721998215, + -0.033375632017850876, + 0.024352174252271652, + -0.029548410326242447, + 0.04322075471282005, + -0.12358683347702026, + 0.0980907678604126, + -0.028239868581295013, + 0.09883289039134979, + -0.06776271760463715, + 0.10071702301502228, + -0.003912396728992462, + -0.13626070320606232, + -0.036885831505060196, + 0.049305807799100876, + -0.029518790543079376, + -0.02014755643904209, + -0.04283095523715019, + -0.0034735207445919514, + 0.034562982618808746, + 0.04898704215884209, + 0.02501325123012066, + -0.016140256077051163, + 0.003224332584068179, + 0.050173815339803696, + 0.004041686188429594, + 0.025037167593836784, + 0.010121937841176987, + -0.0007708693738095462, + -0.00936773233115673, + 0.10003810375928879, + -0.020182596519589424, + 0.008550230413675308, + 0.04188136011362076, + 0.02348760887980461, + -0.005613319575786591, + -0.0899352952837944, + -0.009353580884635448, + -0.0033507130574434996, + -0.05088331922888756, + 0.06189851090312004, + 0.0455242395401001, + -0.03018762730062008, + 0.026718024164438248, + -0.005332240369170904, + -0.022811628878116608, + -0.04764222726225853, + -0.10759177058935165, + 0.17088580131530762, + 0.043301060795784, + 0.030866894870996475, + -0.08962439745664597, + -0.02926292084157467, + 0.07840068638324738, + 0.007265242747962475, + -0.06605461984872818, + -0.05507994815707207, + 0.04273151978850365, + 0.1474609375, + 0.0053265998139977455, + -0.0353923998773098, + 0.03343440592288971, + 0.11094405502080917, + 0.038835376501083374, + 0.051008909940719604, + 0.10195668786764145, + 0.10674421489238739, + -0.0032077631913125515, + 0.03315971419215202, + 0.05357072502374649, + 0.06047172471880913, + 0.03474898263812065, + -0.012428490445017815, + 0.026341404765844345, + -0.014956079423427582, + -0.037227459251880646, + 0.015154647640883923, + -0.030725430697202682, + -0.05124049633741379, + -0.004478194285184145, + -0.0011889568995684385, + 0.01397707499563694, + 0.05128103122115135, + -0.04815045744180679, + 0.03926636651158333, + 0.046017538756132126, + -0.035012852400541306, + 0.057239383459091187, + 0.05723331496119499, + 0.011852627620100975, + 0.020283186808228493, + -0.05228623002767563, + -0.10401515662670135, + 0.011727344244718552, + 0.00226261536590755, + 0.0369267612695694, + 0.04888961836695671, + 0.03214789554476738, + -0.017729442566633224, + 0.08660130947828293, + 0.010889412835240364, + -0.0039831423200666904, + 0.0024034357629716396, + -0.07095792889595032, + 0.11455190181732178, + 0.10765324532985687, + -0.01739230751991272, + 0.011458965949714184, + -0.05707177519798279, + 0.03527267277240753, + 0.07158884406089783, + -0.09827883541584015, + -0.05695202574133873, + 0.05055902525782585, + 0.01594480313360691, + 0.025098759680986404, + 0.11537399142980576, + 0.024101069197058678, + 0.027589883655309677, + 0.08033628761768341, + -0.09245534241199493, + -0.05840960144996643, + -0.01812942698597908, + 0.02659742906689644, + -0.04826899990439415, + 0.04274073988199234, + 0.047342848032712936, + 0.009312302805483341, + -0.03238561376929283, + 0.06430177390575409, + -0.004671956412494183, + 0.013287797570228577, + -0.025483980774879456, + -0.003528903005644679, + 0.06853683292865753, + -0.018641289323568344, + -0.020502910017967224, + 0.04244101047515869, + 0.05076661705970764, + 0.028665540739893913, + 0.01829468458890915, + -0.03106623888015747, + -0.11081772297620773, + -0.0005156360566616058, + 0.07608922570943832, + 0.06021679937839508, + -0.030876431614160538, + -0.045001864433288574, + -0.046545885503292084, + -0.03892975673079491, + 0.014904765412211418, + -0.0188447292894125, + 0.05615964159369469, + 0.0101771280169487, + -0.0049799103289842606, + 0.09185302257537842, + -0.028422880917787552, + 0.016626134514808655, + -0.026544060558080673, + -0.0035445517860352993, + 0.03769306093454361, + 0.03424353152513504, + -0.049838386476039886, + -0.07820651680231094, + -0.0031218070071190596, + 0.00999393966048956, + -0.02342018485069275, + 0.007535461336374283, + 0.037368044257164, + -0.00901389867067337, + 0.01478247344493866, + -0.08844810724258423, + 0.018496345728635788, + -0.12130551040172577, + -0.028652943670749664, + 0.01603725180029869, + -0.0366351418197155, + 0.010690420866012573, + 0.08611470460891724, + 0.018213268369436264, + 0.032499413937330246, + -0.02826966904103756, + -0.08564408868551254, + -0.04284198582172394, + 0.06024631857872009, + 0.07628051936626434, + -0.011440441012382507, + 0.02643408440053463, + 0.01984279789030552, + 0.01848333515226841, + 0.013331098482012749, + 0.039503421634435654, + 0.08019526302814484, + -0.04073656350374222, + -0.04949706420302391, + -0.05718610808253288, + 0.10537546873092651, + 0.0680176317691803, + -0.07953892648220062, + -0.06308607757091522, + -0.016499940305948257, + -0.04990826174616814, + 0.0013425549259409308, + -0.033544380217790604, + 0.006573493592441082, + 0.04878033325076103, + -0.027558881789445877, + -0.1395055055618286, + -0.08631736040115356, + 0.054967280477285385, + -0.06340521574020386, + -0.00035998784005641937, + -0.07162298262119293, + 0.030102554708719254, + 0.07785527408123016, + 0.014623328112065792, + -0.03358393907546997, + -0.008013874292373657, + -0.0011572515359148383, + -0.072145015001297, + -0.026260074228048325, + -0.005862375255674124, + 0.03931247442960739, + -0.08920542895793915, + -0.0023228744976222515, + -0.061324357986450195, + 0.06155848503112793, + -0.06112359091639519, + 0.12354496121406555, + 0.007984168827533722, + -0.05936148017644882, + -0.08903499692678452, + 0.018638623878359795, + -0.01284672599285841, + 0.05320116877555847, + 0.04392097517848015, + 0.035797856748104095, + 0.010480914264917374, + -0.09665390104055405, + 0.09956544637680054, + 0.06119024008512497, + -0.021366572007536888, + -0.07915973663330078, + -0.02441607415676117, + -0.017493724822998047, + 0.04341648146510124, + -0.0002006373106269166, + -0.023859083652496338, + 0.009792476892471313, + 0.02212761901319027, + -0.015774572268128395, + 0.058409400284290314, + 0.10812409967184067, + 0.05167866498231888, + -0.09207665175199509 + ] + }, + "p244_094.wav": { + "name": "p244", + "embedding": [ + 0.036822110414505005, + 0.07242009043693542, + -0.03309670090675354, + -0.003048468381166458, + -0.04386954382061958, + -0.0069147199392318726, + -0.12519848346710205, + 0.09353595972061157, + 0.0010776873677968979, + 0.1182837188243866, + -0.04163239896297455, + 0.1122724711894989, + -0.042727746069431305, + -0.10052508860826492, + 0.0033552562817931175, + 0.03179413080215454, + -0.04065268486738205, + -0.018443435430526733, + 0.013175498694181442, + -0.0526496022939682, + 0.028364267200231552, + 0.025354256853461266, + 0.048551734536886215, + -0.048213206231594086, + 0.015067324042320251, + 0.08254222571849823, + 0.007271159440279007, + -0.009745016694068909, + -0.006072564981877804, + -0.05856800079345703, + 0.025633469223976135, + 0.03369980677962303, + -0.020547989755868912, + 0.028014807030558586, + 0.021404704079031944, + 0.007647130638360977, + -0.018102232366800308, + -0.02085983008146286, + 0.020786212757229805, + 0.03888123482465744, + -0.041176121681928635, + 0.07970619201660156, + 0.025005556643009186, + -0.043162617832422256, + 0.04116996377706528, + -0.052835602313280106, + -0.02516220323741436, + 0.02510622888803482, + -0.06655316054821014, + 0.13633355498313904, + 0.04500214383006096, + 0.047181203961372375, + -0.077740877866745, + 0.004249364137649536, + 0.06375887989997864, + 0.006304305978119373, + -0.12372950464487076, + -0.02603471837937832, + 0.035960450768470764, + 0.09387969970703125, + -0.008010385558009148, + -0.04498652368783951, + 0.02632390335202217, + 0.07419561594724655, + 0.010307151824235916, + 0.02524694614112377, + 0.11624124646186829, + 0.09580099582672119, + 0.004578115418553352, + 0.0006483753677457571, + 0.026631953194737434, + 0.08535744249820709, + 0.02605813927948475, + 0.011120393872261047, + 0.009190461598336697, + -0.06851828843355179, + -0.003289947286248207, + -0.045305199921131134, + 0.003732684999704361, + -0.07966253161430359, + -0.08729877322912216, + -0.017239820212125778, + 0.011701574549078941, + 0.03995276987552643, + 0.016065631061792374, + 0.0032900068908929825, + 0.0605255551636219, + -0.05310510843992233, + 0.04639972001314163, + 0.04993167147040367, + -0.02462589181959629, + -0.006307780742645264, + -0.057300861924886703, + -0.04256671667098999, + -0.01977190002799034, + -0.002005410846322775, + 0.08204307407140732, + 0.05164267122745514, + 0.043841101229190826, + 0.06345724314451218, + 0.07971853762865067, + 0.03579944744706154, + -0.0014951155753806233, + -0.06037520244717598, + -0.06967750936746597, + 0.09940171241760254, + 0.10683947801589966, + -0.054134123027324677, + 0.044979795813560486, + -0.03446132689714432, + -0.004506383091211319, + -0.014328483492136002, + -0.05021153390407562, + -0.03431627154350281, + -0.007207631133496761, + 0.03747543692588806, + 0.030941026285290718, + 0.10742281377315521, + 0.03565647080540657, + 0.046510279178619385, + 0.09481403231620789, + -0.0695134848356247, + -0.06875143945217133, + -0.06445220857858658, + 0.05341656506061554, + -0.06355087459087372, + 0.08065932244062424, + 0.07191523164510727, + 0.022466683760285378, + 0.03860599920153618, + 0.043286219239234924, + 0.04631999135017395, + 0.04550920054316521, + -0.04700487107038498, + -0.009830931201577187, + 0.01268603652715683, + -0.00519970990717411, + 0.017201753333210945, + 0.08121289312839508, + 0.0255601704120636, + 0.09990699589252472, + 0.037457071244716644, + -0.004490953870117664, + -0.08814029395580292, + 0.014860142022371292, + 0.04880005866289139, + 0.015370822511613369, + -0.0703241229057312, + -0.05383877083659172, + 0.00047181732952594757, + -0.0644407570362091, + -0.02265036478638649, + -0.007319060154259205, + 0.07243052124977112, + -0.001426486298441887, + -0.00921764224767685, + 0.10356497764587402, + 0.02925504744052887, + -0.022865386679768562, + -0.03902352601289749, + -0.030284838750958443, + -0.011967724189162254, + 0.03957284241914749, + -0.15744337439537048, + -0.07778098434209824, + -0.0451216958463192, + 0.02714158594608307, + -0.0036962516605854034, + 0.0470903106033802, + 0.08343033492565155, + -0.00291498564183712, + 0.007713680155575275, + 0.009778233245015144, + 0.017260070890188217, + -0.0405857115983963, + -0.08749169111251831, + -0.0031842044554650784, + -0.05087461695075035, + -0.03871949762105942, + 0.10236622393131256, + -0.0058644115924835205, + 0.07155845314264297, + -0.03593955561518669, + -0.05258514732122421, + -0.051043830811977386, + 0.05202056095004082, + 0.00041935592889785767, + -0.06088961660861969, + 0.006526827812194824, + 0.0462937131524086, + -0.030801162123680115, + -0.004340748302638531, + 0.029814936220645905, + 0.08274928480386734, + -0.10477759689092636, + -0.005980929359793663, + -0.0748855471611023, + 0.05844786390662193, + 0.10525840520858765, + -0.05913669615983963, + -0.04547093063592911, + -0.09805968403816223, + -0.05136168375611305, + 0.011522175744175911, + -0.04839431867003441, + -0.012120232917368412, + 0.0010702842846512794, + -0.04265597090125084, + -0.08253851532936096, + -0.11632935702800751, + 0.037482257932424545, + -0.02459690347313881, + 0.016678372398018837, + -0.06416452676057816, + 0.04302721098065376, + 0.031156009063124657, + 0.02446451038122177, + -0.03664455562829971, + 0.048583198338747025, + -0.007140323519706726, + -0.02506367489695549, + 0.029407629743218422, + 0.04427163675427437, + 0.0771368145942688, + -0.008016351610422134, + -0.06885376572608948, + -0.07182422280311584, + 0.029722614213824272, + -0.0405505932867527, + 0.09799253940582275, + 0.011097833514213562, + -0.048780474811792374, + -0.03552151098847389, + -0.025461331009864807, + -0.02536981739103794, + 0.03774099051952362, + 0.05317344516515732, + 0.054422132670879364, + 0.027769843116402626, + -0.047993600368499756, + 0.07540889084339142, + 0.06735294312238693, + 0.005908850580453873, + -0.05712722986936569, + -0.02110944874584675, + -0.0179589856415987, + 0.03770499303936958, + -0.015163765288889408, + -0.06058238819241524, + 0.04539172723889351, + -0.013005126267671585, + 0.05264304578304291, + 0.06468474864959717, + 0.08613322675228119, + 0.04964660480618477, + -0.05588657408952713 + ] + }, + "p244_377.wav": { + "name": "p244", + "embedding": [ + 0.04733222723007202, + 0.09046431630849838, + -0.007729042321443558, + 0.023351922631263733, + -0.045406218618154526, + 0.0695141851902008, + -0.14895758032798767, + 0.13072697818279266, + -0.03740275651216507, + 0.13736365735530853, + -0.061719201505184174, + 0.11193593591451645, + -0.012872840277850628, + -0.19223563373088837, + -0.04125719517469406, + 0.05775046348571777, + -0.05566421151161194, + -0.04179064556956291, + -0.01767709106206894, + -0.016842788085341454, + 0.04336528107523918, + 0.039042405784130096, + 0.024615731090307236, + 0.019655853509902954, + 0.018564637750387192, + 0.06023978441953659, + 0.006099242717027664, + 0.04876285791397095, + 0.011892968788743019, + -0.04463401436805725, + -0.03324940428137779, + 0.10493414103984833, + -0.033655568957328796, + 0.016802456229925156, + 0.04893812537193298, + -0.005977705121040344, + 0.010311475023627281, + -0.07104698568582535, + -0.01493571326136589, + 0.005471229087561369, + -0.04094529524445534, + 0.08284159004688263, + 0.0349363274872303, + -0.0021036460530012846, + 0.02977772057056427, + 0.020967869088053703, + -0.01297469437122345, + -0.05224353075027466, + -0.10763004422187805, + 0.16375944018363953, + 0.07977543026208878, + -0.004425516352057457, + -0.057821862399578094, + -0.07021655887365341, + 0.09861578792333603, + -0.005678652785718441, + -0.1081778034567833, + -0.045505356043577194, + 0.07989533990621567, + 0.16195233166217804, + -0.02595449611544609, + -0.0380433015525341, + 0.03098231554031372, + 0.14104890823364258, + 0.040164824575185776, + 0.09193927049636841, + 0.07257379591464996, + 0.10661174356937408, + -0.02201034501194954, + 0.005454308819025755, + 0.051565513014793396, + 0.06457283347845078, + 0.03750522434711456, + -0.01008233055472374, + 0.026899609714746475, + -0.004043132066726685, + -0.015529944561421871, + 0.011348563246428967, + -0.01910034939646721, + -0.011130217462778091, + -0.017013324424624443, + 0.004208702128380537, + -0.0074163442477583885, + 0.03168845921754837, + -0.022276248782873154, + 0.05006998032331467, + 0.021145593374967575, + -0.010872529819607735, + 0.06869891285896301, + 0.03454512357711792, + 0.02676863595843315, + 0.06201603263616562, + -0.06676843017339706, + -0.08428718894720078, + 0.03883475065231323, + 0.011023982428014278, + 0.020811481401324272, + 0.07552500814199448, + 0.03640558943152428, + -0.02461135946214199, + 0.11043436825275421, + 0.044609084725379944, + -0.022144397720694542, + 0.02399427816271782, + -0.10074125230312347, + 0.12465481460094452, + 0.07897934317588806, + -0.02425292693078518, + 0.0445183627307415, + -0.054526086896657944, + 0.07095321267843246, + 0.0692463219165802, + -0.13837578892707825, + -0.07763507217168808, + 0.04583822935819626, + 0.03376290202140808, + -0.01840008795261383, + 0.12454652786254883, + -0.0008544350857846439, + 0.030636047944426537, + 0.09778328984975815, + -0.07056055217981339, + -0.05649099871516228, + -0.031130269169807434, + 0.05065948888659477, + -0.08655708283185959, + 0.05324557423591614, + 0.05073268339037895, + -0.012185122817754745, + -0.0032959484960883856, + 0.07827114313840866, + -0.009260710328817368, + -0.0033345255069434643, + 0.011785428039729595, + -0.039946116507053375, + 0.03251684457063675, + -0.029809778556227684, + 0.012041283771395683, + 0.02555250935256481, + 0.03331790864467621, + 0.031097471714019775, + 0.0016900639748200774, + -0.04283086583018303, + -0.11885258555412292, + 0.007231834810227156, + 0.036401525139808655, + 0.07811887562274933, + -0.010405996814370155, + -0.034443892538547516, + -0.042231760919094086, + -0.058891575783491135, + 0.013215364888310432, + -0.015550191514194012, + 0.07276944816112518, + -0.01287914626300335, + -0.003698386251926422, + 0.08664282411336899, + 0.015264466404914856, + 0.0011708190431818366, + -0.04073679447174072, + -0.031158100813627243, + 0.019602570682764053, + 0.038766101002693176, + -0.07748782634735107, + -0.06124364584684372, + -0.00022036582231521606, + 0.03349297121167183, + -0.01661285199224949, + 0.03932264819741249, + 0.04105234518647194, + 0.015920568257570267, + 0.027934208512306213, + -0.0695836991071701, + 0.013799848966300488, + -0.10334327071905136, + -0.06709205359220505, + -0.014693690463900566, + -0.0046608950942754745, + -0.015061387792229652, + 0.07610457390546799, + 0.017258161678910255, + 0.051063209772109985, + -0.016528960317373276, + -0.06407789885997772, + -0.0741993859410286, + 0.056603118777275085, + 0.08332005143165588, + 0.004241840448230505, + 0.04837234318256378, + 0.04887954518198967, + -0.023131929337978363, + 0.05168752372264862, + 0.05290812999010086, + 0.10788771510124207, + -0.023714736104011536, + 0.015375932678580284, + -0.07529333233833313, + 0.08378778398036957, + 0.08201092481613159, + -0.0899907574057579, + -0.07696673274040222, + -0.02056359499692917, + -0.06307683885097504, + 0.03234029561281204, + -0.02875496819615364, + 0.008930492214858532, + 0.022837094962596893, + -0.00964735820889473, + -0.10226570814847946, + -0.09338478744029999, + 0.0775962695479393, + -0.07447759807109833, + -0.0003247287531848997, + -0.07987533509731293, + 0.05032431334257126, + 0.10073523223400116, + 0.0409855842590332, + -0.027450840920209885, + -0.018690699711441994, + 0.04257289692759514, + -0.034710608422756195, + 3.053806722164154e-05, + 0.039272792637348175, + 0.031003182753920555, + -0.12332575023174286, + 0.00576448580250144, + -0.0801028460264206, + 0.05784715712070465, + -0.06268148869276047, + 0.15345041453838348, + 0.01110049244016409, + -0.05558255314826965, + -0.08508320152759552, + 0.029661260545253754, + -0.02098817378282547, + 0.04710116982460022, + 0.02508586458861828, + 0.0568326860666275, + 0.028572171926498413, + -0.06707557290792465, + 0.11390320956707001, + 0.04429692029953003, + -0.033711306750774384, + -0.07568075507879257, + -0.03493708744645119, + -0.027595657855272293, + 0.040212761610746384, + 0.012148179113864899, + -0.08643628656864166, + -0.03368380293250084, + 0.03219104930758476, + -0.01587980054318905, + 0.07350198924541473, + 0.1479368358850479, + 0.06011173129081726, + -0.1269829273223877 + ] + }, + "p244_277.wav": { + "name": "p244", + "embedding": [ + 0.04264187067747116, + 0.06311096251010895, + -0.023551030084490776, + 0.0025000344030559063, + -0.057646460831165314, + 0.00225723534822464, + -0.11004720628261566, + 0.07569189369678497, + -0.03535941243171692, + 0.13863961398601532, + -0.05673816427588463, + 0.09984621405601501, + -0.02892191894352436, + -0.12817013263702393, + 0.010409042239189148, + 0.04462805762887001, + -0.034322742372751236, + -0.0507219135761261, + -0.0610097199678421, + -0.057701073586940765, + 0.026611264795064926, + 0.060849081724882126, + 0.028283659368753433, + -0.02435755357146263, + 0.02505907416343689, + 0.07433561980724335, + -0.014201589860022068, + -0.0020288852974772453, + -0.024021558463573456, + -0.07985426485538483, + -0.0157223641872406, + 0.03277362138032913, + -0.0407225526869297, + -0.016750629991292953, + 0.012855478562414646, + 0.0014595035463571548, + 0.0031131920404732227, + -0.0452728196978569, + -0.034499913454055786, + 0.02210972085595131, + -0.07554882019758224, + 0.06354205310344696, + 0.0002334974706172943, + -0.07364454865455627, + 0.022563796490430832, + -0.00024508778005838394, + -0.0025662570260465145, + -0.013982882723212242, + -0.07237289100885391, + 0.14286483824253082, + 0.07294850051403046, + 0.024620216339826584, + -0.044067081063985825, + -0.03783527389168739, + 0.087599977850914, + -0.024627361446619034, + -0.08886294811964035, + -0.06635920703411102, + 0.01920413412153721, + 0.09394382685422897, + -0.05642993748188019, + -0.04926179349422455, + 0.059584908187389374, + 0.046132609248161316, + 0.0660858228802681, + 0.03160572052001953, + 0.07284341007471085, + 0.06849180907011032, + -0.02200448140501976, + -0.002484874567016959, + 0.059769004583358765, + 0.08756299316883087, + 0.0719323381781578, + -0.0010794373229146004, + 0.021357227116823196, + 0.028888575732707977, + -0.042473286390304565, + -0.026766955852508545, + -0.021503642201423645, + -0.016207046806812286, + -0.0060727521777153015, + -0.0017984514124691486, + 0.028757430613040924, + -0.018070241436362267, + -0.018856022506952286, + 0.04063067585229874, + 0.05448971688747406, + -0.03964638337492943, + 0.060966476798057556, + 0.004664110951125622, + -0.011398667469620705, + 0.04361611604690552, + -0.08058154582977295, + -0.03437003120779991, + 0.01716829091310501, + 0.01690690591931343, + -0.012456999160349369, + 0.05685466527938843, + 0.03253331780433655, + -0.003275204449892044, + 0.099212646484375, + 0.017133908346295357, + 0.00788399949669838, + -0.004772128537297249, + -0.07832632213830948, + 0.12250611931085587, + 0.08846046775579453, + -0.04815295338630676, + 0.014907857403159142, + -0.03462682291865349, + 0.03354254737496376, + 0.04674684256315231, + -0.09301337599754333, + -0.087657630443573, + -0.006601814646273851, + -0.018905671313405037, + 0.0013481024652719498, + 0.09413935244083405, + 0.0020515201613307, + 0.04556795582175255, + 0.1325456202030182, + -0.08294179290533066, + -0.07228812575340271, + -0.0012694617034867406, + 0.02431389130651951, + -0.09716517478227615, + 0.07305336743593216, + 0.0702163353562355, + 0.004958189092576504, + 0.04787379875779152, + 0.0946945995092392, + -0.015924906358122826, + -0.0011008083820343018, + -0.02557320147752762, + -0.025193018838763237, + -0.018104009330272675, + -0.029397133737802505, + -0.02496369741857052, + 0.08315920829772949, + 0.03424597904086113, + 0.053083233535289764, + -0.005343281663954258, + -0.015508508309721947, + -0.12803561985492706, + 0.03876134380698204, + 0.03950865566730499, + 0.04070867970585823, + -0.019142312929034233, + 0.009575407952070236, + -0.04028969258069992, + -0.07258483022451401, + -0.008832355029881, + -0.038102902472019196, + 0.07548213005065918, + -0.03485502302646637, + 0.04116066172719002, + 0.10541260987520218, + 0.01915627345442772, + -0.00029413867741823196, + -0.05262730270624161, + -0.021592440083622932, + -0.008701791986823082, + 0.04718241095542908, + -0.04831003397703171, + -0.09325270354747772, + -0.04639029875397682, + 0.03858348727226257, + 0.018506933003664017, + 0.07129750400781631, + 0.0396333746612072, + 0.0033629750832915306, + 0.00828552059829235, + -0.07426701486110687, + 0.03370433300733566, + -0.05994594097137451, + -0.05434270575642586, + -0.008889112621545792, + -0.05110438913106918, + -0.02826916053891182, + 0.06683064252138138, + -0.008082222193479538, + 0.04435339570045471, + -0.04691636562347412, + -0.09931562095880508, + -0.11064563691616058, + 0.004934659227728844, + 0.036238037049770355, + -0.029476074501872063, + 0.008395855315029621, + 0.05499150976538658, + -0.012559883296489716, + 0.02311696857213974, + 0.020174259319901466, + 0.09117074310779572, + -0.03786388784646988, + 0.012111879885196686, + -0.023081757128238678, + 0.0757397934794426, + 0.06704360246658325, + -0.055841103196144104, + -0.037043072283267975, + -0.07037146389484406, + -0.07031042873859406, + 0.03177401423454285, + -0.0011859583901241422, + 0.008750032633543015, + 0.018187981098890305, + -0.0074934326112270355, + -0.0681600496172905, + -0.07481291890144348, + 0.057219941169023514, + -0.041216135025024414, + -0.017641713842749596, + -0.06915230304002762, + 0.0043623484671115875, + 0.03144053742289543, + 0.058244090527296066, + 0.0012780011165887117, + -0.0020744120702147484, + 0.012411200441420078, + -0.0251882616430521, + 0.037169575691223145, + 0.09109952300786972, + 0.036118537187576294, + -0.03495539352297783, + -0.01692371442914009, + -0.08257092535495758, + 0.05267810821533203, + -0.015549730509519577, + 0.09850166738033295, + -0.013627718202769756, + -0.02539307251572609, + -0.08449490368366241, + 0.015916192904114723, + -0.0176605936139822, + 0.063267782330513, + 0.04489488899707794, + 0.06108396500349045, + 0.04919436573982239, + -0.06144469976425171, + 0.0855003073811531, + 0.07372401654720306, + -0.011811371892690659, + -0.05288457125425339, + -0.0619916133582592, + -0.049867428839206696, + -0.011114935390651226, + 0.006419411860406399, + -0.06830126792192459, + 0.02813584730029106, + 0.003600649768486619, + 0.0007874211296439171, + 0.07652373611927032, + 0.09360671043395996, + 0.06632298231124878, + -0.10903823375701904 + ] + }, + "p244_010.wav": { + "name": "p244", + "embedding": [ + 0.028725378215312958, + 0.10670597106218338, + -0.013663104735314846, + 0.049690186977386475, + -0.06104345619678497, + 0.06506575644016266, + -0.12935765087604523, + 0.1428772509098053, + -0.03178021311759949, + 0.0916590467095375, + -0.09041033685207367, + 0.14234593510627747, + -0.028014011681079865, + -0.17712175846099854, + -0.026547489687800407, + 0.0555666945874691, + 0.003901268355548382, + -0.005483678076416254, + 0.023041341453790665, + -0.011615506373345852, + 0.05064955726265907, + 0.01587148942053318, + 0.05886288732290268, + 0.013373097404837608, + 0.03190702944993973, + 0.056823499500751495, + 0.018164364621043205, + 0.06301610171794891, + 0.029072750359773636, + -0.016369102522730827, + -0.05543539673089981, + 0.10893231630325317, + -0.0157815869897604, + 0.002462020143866539, + 0.06886240839958191, + -0.007040664553642273, + -0.0037082922644913197, + -0.06262369453907013, + -0.0014248085208237171, + -0.02177208662033081, + -0.02147660031914711, + 0.06623233109712601, + 0.040154967457056046, + -0.0349268913269043, + 0.03514464199542999, + 0.0244491808116436, + -0.009560373611748219, + -0.015133281238377094, + -0.12620337307453156, + 0.128758504986763, + 0.043029993772506714, + 0.013383596204221249, + -0.08306790143251419, + -0.05327610298991203, + 0.11673308908939362, + 0.0037154806777834892, + -0.0717497318983078, + -0.012218031100928783, + 0.08629606664180756, + 0.18141299486160278, + -0.005386904813349247, + -0.02255343273282051, + 0.03178722783923149, + 0.10652004927396774, + 0.028859883546829224, + 0.0872742235660553, + 0.07398101687431335, + 0.11215727776288986, + -0.0018404878210276365, + 0.02770141139626503, + 0.017030417919158936, + 0.08586126565933228, + -0.0024256715551018715, + -0.020028676837682724, + -0.010820229537785053, + -0.005327487830072641, + -0.02738869935274124, + 0.03361598029732704, + -0.0383361354470253, + -0.0462166853249073, + -0.022930003702640533, + -0.009437731467187405, + 0.01947222836315632, + 6.002793088555336e-05, + -0.04381745308637619, + 0.06869108974933624, + 0.026850320398807526, + -0.012992391362786293, + 0.0617077462375164, + 0.010400219820439816, + -0.024428587406873703, + 0.0535995289683342, + -0.07261838018894196, + -0.10296855866909027, + 0.02543533593416214, + -0.0024873341899365187, + 0.025066573172807693, + 0.0891386941075325, + 0.04712182655930519, + -0.020786520093679428, + 0.11509157717227936, + 0.06848638504743576, + -0.0008477892260998487, + 0.04748477041721344, + -0.07441697269678116, + 0.12000942975282669, + 0.09091515839099884, + -0.004055557306855917, + 0.07382682710886002, + -0.04909979924559593, + 0.0602409765124321, + 0.06179901957511902, + -0.12094734609127045, + -0.07089880108833313, + 0.014706685207784176, + 0.041342414915561676, + 0.002742488868534565, + 0.10451318323612213, + -0.00913223810493946, + 0.04099633917212486, + 0.0883367657661438, + -0.0933537483215332, + -0.07883404195308685, + -0.0391116663813591, + 0.04052465781569481, + -0.04352322965860367, + 0.05479617416858673, + 0.05855022370815277, + -0.008855506777763367, + -0.01494442019611597, + 0.045939669013023376, + -0.0074395835399627686, + 0.014088914729654789, + 0.06511983275413513, + -0.06878434866666794, + 0.008816284127533436, + -0.03868421912193298, + 0.00898418202996254, + 0.05127020180225372, + 0.04162725433707237, + 0.040688395500183105, + 0.018520019948482513, + -0.015696054324507713, + -0.1123669371008873, + -0.025542566552758217, + 0.07176807522773743, + 0.07686452567577362, + -0.0035655226092785597, + -0.06837192177772522, + -0.04631870985031128, + -0.05864271521568298, + 0.02417045831680298, + 0.009200849570333958, + 0.07643677294254303, + -0.027439165860414505, + 0.01286247093230486, + 0.051882702857255936, + 0.024856867268681526, + -0.008481026627123356, + -0.07212729752063751, + -0.03712907433509827, + 0.019971342757344246, + 0.011348159983754158, + -0.06558899581432343, + -0.07371678948402405, + -0.021353378891944885, + 0.03119572065770626, + -0.06447643041610718, + 0.03798682242631912, + 0.038434408605098724, + 0.02241576462984085, + 0.03698313236236572, + -0.037804167717695236, + -0.002959656063467264, + -0.09651385247707367, + -0.05180474743247032, + -0.009964662604033947, + 0.031705763190984726, + -0.0287723857909441, + 0.06844978779554367, + 0.06184413656592369, + 0.06942988187074661, + 0.008909285999834538, + -0.006876582279801369, + -0.07053043693304062, + 0.030965980142354965, + 0.04503471404314041, + 0.028909485787153244, + 0.08840499818325043, + 0.04474673792719841, + -0.036640655249357224, + 0.08059094846248627, + 0.08203427493572235, + 0.06344818323850632, + -0.01037412229925394, + -0.020454753190279007, + -0.07374860346317291, + 0.06970997154712677, + 0.11968529224395752, + -0.09022782742977142, + -0.1003156453371048, + -0.04872199892997742, + -0.07762288302183151, + 0.04848495498299599, + -0.028974764049053192, + -0.002572589088231325, + 0.01237446814775467, + -0.017692934721708298, + -0.1055043637752533, + -0.099042609333992, + 0.07173991203308105, + -0.0579565092921257, + -0.0008106371387839317, + -0.05996666103601456, + 0.04513000696897507, + 0.0959613025188446, + -0.016461580991744995, + -0.02952190488576889, + -0.02839544788002968, + 0.054464954882860184, + -0.05942635238170624, + -0.008524757809937, + 0.04394569620490074, + 0.03610827773809433, + -0.10853509604930878, + 0.03327574580907822, + -0.0647948831319809, + 0.05671197175979614, + -0.047558050602674484, + 0.17820847034454346, + 0.01884525641798973, + -0.03572610765695572, + -0.08030148595571518, + 0.05138568580150604, + -0.016077954322099686, + 0.03466182202100754, + 0.03344974294304848, + 0.05271591618657112, + -0.013466671109199524, + -0.10121957957744598, + 0.12472590804100037, + 0.010765277780592442, + -0.05773167312145233, + -0.09374077618122101, + -0.04166870564222336, + -0.03574949502944946, + 0.028676796704530716, + 0.0072265565395355225, + -0.07576675713062286, + -0.06061454489827156, + 0.022106267511844635, + 0.010483967140316963, + 0.0645110011100769, + 0.14586959779262543, + 0.051320455968379974, + -0.08237648010253906 + ] + }, + "p244_303.wav": { + "name": "p244", + "embedding": [ + 0.05086994171142578, + 0.08072485029697418, + 0.040910255163908005, + 0.0013891905546188354, + -0.014478957280516624, + 0.03669634088873863, + -0.09335188567638397, + 0.07901257276535034, + 0.014464322477579117, + 0.08860625326633453, + -0.12932388484477997, + 0.0366247333586216, + -0.05844385549426079, + -0.12876854836940765, + -0.03077705204486847, + 0.021804828196763992, + -0.04318710044026375, + 0.007399998605251312, + -0.04967281594872475, + -0.04463738575577736, + 0.019266493618488312, + 0.01893220655620098, + 0.05309247225522995, + -0.0314900204539299, + -0.027108270674943924, + 0.02366781048476696, + 0.0024859225377440453, + 0.010353431105613708, + 0.018924426287412643, + 0.0027833953499794006, + 0.027088072150945663, + 0.04175854101777077, + -0.000131973996758461, + 0.008983499370515347, + 0.04687155783176422, + 0.04443495720624924, + -0.010417547076940536, + -0.0334966778755188, + -0.026688016951084137, + 0.06783045828342438, + -0.04978682100772858, + 0.0629938393831253, + 0.048324186354875565, + -0.01743905618786812, + 0.05304032564163208, + -0.002429172396659851, + -0.0651036947965622, + -0.005244677886366844, + -0.10726199299097061, + 0.14259158074855804, + 0.054975174367427826, + 0.018864206969738007, + -0.07321242988109589, + -0.01979796402156353, + 0.11842131614685059, + -0.02936933934688568, + -0.08809123188257217, + -0.04840527102351189, + 0.036557577550411224, + 0.07616955786943436, + -0.006615160498768091, + -0.03273646533489227, + -0.040768593549728394, + 0.043823353946208954, + -0.019574299454689026, + 0.06636378914117813, + 0.08028679341077805, + 0.07933355867862701, + -0.01782982051372528, + 0.035356756299734116, + 0.08476553857326508, + 0.00943467952311039, + 0.01453235000371933, + -0.033368516713380814, + 0.027517026290297508, + -0.024607796221971512, + -0.027229975908994675, + 0.04379443824291229, + 0.010878156870603561, + -0.022651487961411476, + 0.019058922305703163, + -0.020240318030118942, + -0.00400744192302227, + -0.007379990536719561, + -0.06787237524986267, + -0.001393275335431099, + -0.006609325297176838, + 0.05506915599107742, + 0.07482090592384338, + 0.06983830779790878, + 0.0030721938237547874, + 0.03625817596912384, + -0.014485575258731842, + -0.09609570354223251, + -0.03183092921972275, + -0.02788097783923149, + 0.022880004718899727, + 0.0371972993016243, + 0.015818441286683083, + -0.004957647994160652, + 0.07519248872995377, + 0.04007837176322937, + 0.003095117397606373, + 0.0005476865917444229, + -0.11065604537725449, + 0.045733485370874405, + 0.09538108110427856, + -0.0049351295456290245, + 0.005513550713658333, + -0.010928180068731308, + 0.09307888895273209, + 0.07535122334957123, + -0.0694999024271965, + -0.022451302036643028, + 0.02165895700454712, + 0.06930910795927048, + 0.0748559907078743, + 0.08120141178369522, + -0.009417391382157803, + -0.03359581530094147, + 0.13591331243515015, + -0.05253691226243973, + -0.0068921782076358795, + -0.0020351381972432137, + -0.0020439699292182922, + -0.010730847716331482, + 0.019805535674095154, + 0.020882681012153625, + 0.0009033810347318649, + -0.02671380713582039, + 0.042021244764328, + -0.00638983678072691, + 0.002193121239542961, + -0.047575682401657104, + 0.006564216688275337, + 0.06948788464069366, + -0.025066815316677094, + 0.0034740683622658253, + 0.08385401964187622, + 0.07601861655712128, + 0.04497477784752846, + 0.07866920530796051, + -0.05052900314331055, + -0.045000601559877396, + 0.020842349156737328, + 0.03276495635509491, + 0.008508268743753433, + -0.015079807490110397, + -0.04481314867734909, + -0.050781890749931335, + -0.029487382620573044, + 0.08121202886104584, + -0.027118362486362457, + 0.0812443345785141, + 0.015863755717873573, + -0.034007616341114044, + 0.07388241589069366, + -0.031191222369670868, + -0.022215748205780983, + -0.04986584186553955, + -0.07730323821306229, + -0.0037364806048572063, + 0.017251040786504745, + -0.12774981558322906, + -0.03113045170903206, + -0.02424062043428421, + 0.005722923204302788, + 0.0077817002311348915, + -0.050905559211969376, + 0.06880206614732742, + -0.04607398435473442, + 0.0271031241863966, + -0.06728782504796982, + 0.04851977527141571, + -0.08129298686981201, + -0.06558481603860855, + 0.006172357127070427, + -0.03902430087327957, + 0.035720452666282654, + 0.07345400750637054, + -0.03674108535051346, + -0.02113676443696022, + -0.018549378961324692, + -0.11090287566184998, + -0.013332740403711796, + 0.07086677849292755, + 0.04954908415675163, + 0.011247997172176838, + 0.06500115990638733, + 0.0801166296005249, + -0.039803557097911835, + 0.0606718473136425, + 0.01620657369494438, + 0.0858481153845787, + -0.07190751284360886, + 0.012757385149598122, + -0.005361108109354973, + 0.03920765221118927, + 0.04750397056341171, + -0.05647473409771919, + -0.0880991667509079, + -0.06131656840443611, + -0.02567828819155693, + 0.02819378301501274, + -0.029608365148305893, + -0.03244323283433914, + 0.005862005054950714, + -0.017094694077968597, + -0.051371246576309204, + -0.07057394087314606, + 0.019255897030234337, + 0.010236331261694431, + -0.0066207945346832275, + -0.04347224533557892, + 0.020936865359544754, + 0.002386130392551422, + 0.02471340447664261, + -0.020868349820375443, + 0.03521343320608139, + -0.008208176121115685, + -0.057333897799253464, + -0.07976987957954407, + -0.027563974261283875, + 0.006840787827968597, + -0.0043005309998989105, + -0.006566083058714867, + -0.06918224692344666, + 0.08459626883268356, + -0.012925414368510246, + 0.06600619852542877, + -0.007634011562913656, + -0.009500415995717049, + -0.0029632877558469772, + -0.0020032599568367004, + -0.04413478076457977, + 0.03092007152736187, + 0.0714048370718956, + 0.006414875388145447, + -0.0025811661034822464, + -0.02007622830569744, + 0.08884145319461823, + 0.02687453106045723, + -0.012341579422354698, + -0.02021118625998497, + 0.05025880038738251, + -0.06245449185371399, + -0.04651808738708496, + -0.010262799449265003, + -0.05070169270038605, + 0.03186872974038124, + -0.02141043171286583, + -0.009322119876742363, + 0.0147930346429348, + 0.06873107701539993, + 0.02929753065109253, + -0.06964659690856934 + ] + }, + "p244_232.wav": { + "name": "p244", + "embedding": [ + 0.030955003574490547, + 0.08225686848163605, + -0.026167739182710648, + 0.034364327788352966, + -0.055399082601070404, + 0.05940912663936615, + -0.1497858315706253, + 0.1509069800376892, + -0.03663818538188934, + 0.1248239278793335, + -0.0603150948882103, + 0.1123816967010498, + -0.026475079357624054, + -0.1824588179588318, + -0.02223712019622326, + 0.06200999766588211, + -0.03276641666889191, + -0.05313640087842941, + -0.028874503448605537, + -0.008750061504542828, + 0.026636511087417603, + 0.022036101669073105, + -0.0004767272621393204, + 0.035958029329776764, + 0.018418053165078163, + 0.057225774973630905, + -0.00893328245729208, + 0.04563155770301819, + 0.019728491082787514, + -0.013275843113660812, + -0.028433043509721756, + 0.100715771317482, + -0.05943729728460312, + 0.008357983082532883, + 0.06376755982637405, + -0.013840243220329285, + -0.014781555160880089, + -0.05871795117855072, + -0.019421186298131943, + -0.007225473411381245, + -0.06464377045631409, + 0.08721588551998138, + 0.04328744113445282, + 0.0009219245985150337, + 0.04154667630791664, + 0.03276629000902176, + -0.009504780173301697, + -0.04713617265224457, + -0.1121065691113472, + 0.1356859803199768, + 0.07888346910476685, + -0.013625338673591614, + -0.06818297505378723, + -0.04119180887937546, + 0.10064180195331573, + -0.016587089747190475, + -0.10427527129650116, + -0.05555611848831177, + 0.0860384851694107, + 0.14325544238090515, + -0.03649243712425232, + -0.025906547904014587, + 0.017998311668634415, + 0.13315555453300476, + 0.08517007529735565, + 0.08853767812252045, + 0.06979244202375412, + 0.1303124874830246, + -0.028727956116199493, + -0.0018185931257903576, + 0.06994375586509705, + 0.05707184225320816, + 0.04032492637634277, + -0.0053398082964122295, + 0.019982216879725456, + 0.011023357510566711, + -0.00556158646941185, + 0.005987999495118856, + -0.02921021357178688, + -0.004633207805454731, + -0.01667523756623268, + 0.02470996230840683, + -0.004161872435361147, + 0.04750695824623108, + -0.017112310975790024, + 0.06861309707164764, + 0.05199010670185089, + -0.01693868823349476, + 0.07043921947479248, + 0.03453134372830391, + -0.0027603227645158768, + 0.06514585763216019, + -0.09954482316970825, + -0.07337656617164612, + 0.028049040585756302, + -0.010628284886479378, + 0.018603162840008736, + 0.07038712501525879, + 0.03109721466898918, + -0.0019274418009445071, + 0.13062971830368042, + 0.04392148554325104, + -0.01758021116256714, + 0.045508481562137604, + -0.0909043699502945, + 0.13980942964553833, + 0.058309681713581085, + -0.026628196239471436, + 0.042237989604473114, + -0.049634356051683426, + 0.05781242251396179, + 0.0522179901599884, + -0.1284443885087967, + -0.059402432292699814, + 0.06277811527252197, + 0.035799045115709305, + -0.04045063629746437, + 0.13847792148590088, + -0.0049690427258610725, + 0.038601987063884735, + 0.10101017355918884, + -0.0708998590707779, + -0.05300513654947281, + -0.009106209501624107, + 0.05786249786615372, + -0.06362000852823257, + 0.05602806806564331, + 0.04469164088368416, + -0.00024171569384634495, + 0.013101227581501007, + 0.09494341909885406, + 0.004752127919346094, + -0.013464430347084999, + 0.01538572832942009, + -0.03090580180287361, + 0.04443518444895744, + -0.010465172119438648, + 0.0006785569712519646, + 0.033403921872377396, + 0.028841624036431313, + 0.05300929397344589, + -0.007053093984723091, + -0.012311217375099659, + -0.12023797631263733, + 0.0045458474196493626, + 0.03103308193385601, + 0.11261628568172455, + -0.013627579435706139, + -0.01721094362437725, + -0.05851977318525314, + -0.060338519513607025, + -0.016285033896565437, + -0.008334862068295479, + 0.08106769621372223, + -0.028965385630726814, + 0.0035702052991837263, + 0.087030328810215, + 0.020359423011541367, + 0.01530112512409687, + -0.04681496322154999, + -0.024376949295401573, + -0.005033688619732857, + 0.06387915462255478, + -0.07089253515005112, + -0.06645822525024414, + 0.002432561945170164, + 0.042131394147872925, + -0.020987922325730324, + 0.05834024399518967, + 0.03505070134997368, + 0.03231378644704819, + 0.023026399314403534, + -0.07291001826524734, + 0.02770531177520752, + -0.09786864370107651, + -0.05986499786376953, + -0.01803792268037796, + 0.016358211636543274, + -0.024587152525782585, + 0.06809000670909882, + 0.025577712804079056, + 0.06966913491487503, + 0.004402273800224066, + -0.07678177952766418, + -0.08311372995376587, + 0.060352958738803864, + 0.0684356614947319, + -0.025736043229699135, + 0.052126433700323105, + 0.0699366107583046, + -0.0360199511051178, + 0.027775436639785767, + 0.064737468957901, + 0.09838823974132538, + -0.02781607210636139, + 0.020914599299430847, + -0.06858585774898529, + 0.08611253648996353, + 0.07740860432386398, + -0.10443754494190216, + -0.06946203112602234, + 0.0011498844251036644, + -0.0512927770614624, + 0.012925932183861732, + -0.039728835225105286, + 0.013339024968445301, + 0.028628556057810783, + -0.0028679983224719763, + -0.09937349706888199, + -0.09012958407402039, + 0.06622787564992905, + -0.10237047076225281, + 0.012176545336842537, + -0.08945709466934204, + 0.031761594116687775, + 0.11416492611169815, + 0.027827873826026917, + -0.03773145377635956, + -0.03059513121843338, + 0.055243417620658875, + -0.012641758657991886, + 0.00845520943403244, + 0.0636475682258606, + 0.0392475463449955, + -0.12736910581588745, + -0.0009595244191586971, + -0.059611327946186066, + 0.06867016851902008, + -0.03509185463190079, + 0.1494835764169693, + 0.021333612501621246, + -0.03771695867180824, + -0.07975314557552338, + 0.017768308520317078, + -0.004101933911442757, + 0.05537090077996254, + 0.014293333515524864, + 0.07221437990665436, + 0.04722786694765091, + -0.03195471316576004, + 0.14044740796089172, + 0.050141796469688416, + -0.0511203296482563, + -0.06355500966310501, + -0.041622135788202286, + -0.04044727236032486, + 0.03785739466547966, + 0.0339277908205986, + -0.09896513819694519, + -0.03048505261540413, + 0.026035085320472717, + -0.039641860872507095, + 0.06470636278390884, + 0.14841541647911072, + 0.08750447630882263, + -0.12302286922931671 + ] + }, + "p244_386.wav": { + "name": "p244", + "embedding": [ + 0.031649477779865265, + 0.07646173983812332, + -0.03148992359638214, + 0.052173126488924026, + -0.009548192843794823, + 0.05671019107103348, + -0.11025732755661011, + 0.04974089190363884, + -0.032562751322984695, + 0.13640549778938293, + -0.07717396318912506, + 0.07606972008943558, + -0.03287271782755852, + -0.16226907074451447, + -0.03962043672800064, + 0.06625166535377502, + -0.06991659104824066, + -0.03414027392864227, + -0.07099336385726929, + 0.004159691743552685, + 0.021393030881881714, + 0.045025646686553955, + 0.04835662245750427, + -0.02847697213292122, + 0.015876639634370804, + 0.07108022272586823, + 0.005270687863230705, + 0.053520023822784424, + 0.019035978242754936, + -0.014788918197154999, + -0.017116323113441467, + 0.11924406886100769, + -0.025705359876155853, + 0.011664564721286297, + 0.012256763875484467, + 0.05011039972305298, + 0.0011061616241931915, + -0.0535585917532444, + 0.006119484081864357, + 0.0008402115199714899, + -0.0679161548614502, + 0.05726798623800278, + 0.01713777333498001, + 0.00038415100425481796, + 0.04642557352781296, + -0.026818644255399704, + -0.057028114795684814, + -0.041265588253736496, + -0.10324981808662415, + 0.18313279747962952, + 0.09561291337013245, + 0.002732375171035528, + -0.06283178925514221, + -0.06810610741376877, + 0.08464275300502777, + 0.0027346834540367126, + -0.11771519482135773, + -0.05812404304742813, + 0.07848899066448212, + 0.1573343276977539, + 0.0008205575868487358, + -0.012080795131623745, + 0.013525392860174179, + 0.13324788212776184, + 0.044215209782123566, + 0.09904691576957703, + 0.06427250802516937, + 0.09096527099609375, + 0.024918677285313606, + 0.012453887611627579, + 0.09327840059995651, + 0.051750071346759796, + 0.05452318862080574, + -0.025828810408711433, + 0.02530427649617195, + 0.008843940682709217, + -0.03821789473295212, + 0.007995064370334148, + -0.00885915569961071, + -0.027870621532201767, + -0.01016781385987997, + -0.038475148379802704, + -0.020360104739665985, + 0.022097362205386162, + -0.012947442941367626, + 0.019672485068440437, + 0.04778805375099182, + -0.03624803200364113, + 0.05572628229856491, + 0.06616448611021042, + 0.004147545900195837, + 0.0384577177464962, + -0.022854197770357132, + -0.0798768550157547, + -0.005360814742743969, + 0.021205708384513855, + 0.0058741495013237, + 0.04019877314567566, + 0.04669239744544029, + -0.02885352075099945, + 0.07884927839040756, + 0.013295728713274002, + -0.011601023375988007, + 0.015225466340780258, + -0.0960804671049118, + 0.09479682147502899, + 0.10039801895618439, + -0.011088932864367962, + -0.002814692445099354, + -0.0030156525317579508, + 0.05556480959057808, + 0.09981440752744675, + -0.11694090068340302, + -0.04579015076160431, + 0.035769350826740265, + -0.020206402987241745, + 0.004826541990041733, + 0.0826086699962616, + 0.020274579524993896, + -0.010239641182124615, + 0.10876694321632385, + -0.07385456562042236, + -0.057519882917404175, + -0.04038620367646217, + 0.04464328661561012, + -0.08643260598182678, + 0.012069916352629662, + 0.05321726202964783, + 0.01035312470048666, + -0.048268113285303116, + 0.07908546179533005, + -0.008166933432221413, + 0.0024181418120861053, + -0.01672356389462948, + -0.032482050359249115, + 0.06223515793681145, + -0.054473478347063065, + -0.004516275599598885, + 0.06853006780147552, + 0.01806415431201458, + 0.04293894022703171, + -0.0002868594601750374, + -0.027835572138428688, + -0.0888238251209259, + 0.016806710511446, + 0.06457258015871048, + 0.036462608724832535, + -0.018106846138834953, + -0.012780562043190002, + -0.04917676001787186, + -0.06469360738992691, + 0.08024219423532486, + -0.037855107337236404, + 0.080410435795784, + 0.0010232441127300262, + -0.05984511598944664, + 0.1319093406200409, + -0.05424684286117554, + -0.005210271570831537, + -0.03288478031754494, + -0.01364852860569954, + 0.03927774727344513, + 0.031974393874406815, + -0.09523142874240875, + -0.06245991215109825, + 0.023493686690926552, + 0.007143914699554443, + 0.011369949206709862, + 0.004833690822124481, + 0.04307461157441139, + -0.006663513835519552, + -0.004109029192477465, + -0.04627680778503418, + -0.009475663304328918, + -0.09625554084777832, + -0.04432388022542, + -0.012137578800320625, + -0.06808105111122131, + 0.020495522767305374, + 0.08719237148761749, + 0.011581341736018658, + -0.02281828224658966, + -0.020354295149445534, + -0.11550386250019073, + -0.06183753162622452, + 0.09062296897172928, + 0.10387173295021057, + 0.006936357822269201, + 0.053012944757938385, + 0.053312644362449646, + -0.027003593742847443, + 0.017472604289650917, + 0.0384615883231163, + 0.11574673652648926, + -0.03329072892665863, + -0.013949348591268063, + -0.08618734776973724, + 0.07743092626333237, + 0.07602544873952866, + -0.09142109751701355, + -0.06249772757291794, + -0.021195027977228165, + -0.04711662232875824, + 0.05338535085320473, + -0.04962320253252983, + -0.000934468349441886, + 0.05762859433889389, + -0.04432222247123718, + -0.10845957696437836, + -0.12000110745429993, + 0.09313343465328217, + -0.03256407752633095, + -0.03908460959792137, + -0.0546737015247345, + 0.038468413054943085, + 0.024689989164471626, + 0.038590602576732635, + -0.0395713709294796, + 0.07005934417247772, + 0.03545287996530533, + -0.07135067135095596, + -0.037966590374708176, + 0.01848294399678707, + -0.013839974999427795, + -0.10702270269393921, + -0.0300307497382164, + -0.07974396646022797, + 0.11046966910362244, + -0.06991369277238846, + 0.1135016530752182, + -0.02276787720620632, + -0.04138772934675217, + -0.06875388324260712, + 0.049664974212646484, + -0.03177066892385483, + 0.05610818788409233, + 0.060398831963539124, + 0.046858787536621094, + 0.011969218030571938, + -0.06032554805278778, + 0.10747948288917542, + 0.03370114415884018, + 0.012704925611615181, + -0.071434885263443, + -0.0022916351445019245, + -0.04706091061234474, + 0.04040273278951645, + 0.0057310545817017555, + -0.05830095708370209, + 0.029064958915114403, + 0.021631691604852676, + -0.0445687472820282, + 0.04271232336759567, + 0.09893974661827087, + 0.07274339348077774, + -0.08253943175077438 + ] + }, + "p244_301.wav": { + "name": "p244", + "embedding": [ + 0.057568274438381195, + 0.09223821014165878, + 0.007904359139502048, + 0.009360878728330135, + -0.05180535838007927, + 0.048424966633319855, + -0.13868360221385956, + 0.12880083918571472, + -0.05091404169797897, + 0.14076541364192963, + -0.0888776183128357, + 0.11056727170944214, + -0.028841275721788406, + -0.19478873908519745, + -0.031966038048267365, + 0.06778732687234879, + -0.05272502452135086, + -0.017331931740045547, + -0.030604835599660873, + -0.03833030164241791, + 0.030700307339429855, + 0.04406757280230522, + 0.04959128051996231, + 0.0025467961095273495, + 0.036366261541843414, + 0.06365272402763367, + -0.0035961742978543043, + 0.038380078971385956, + -0.0005476729711517692, + -0.06377257406711578, + -0.040321171283721924, + 0.10129543393850327, + -0.027603134512901306, + 0.0005738348118029535, + 0.04033486917614937, + -0.0038666005712002516, + 0.01028286200016737, + -0.07850514352321625, + -0.028521744534373283, + -0.005902342032641172, + -0.030111927539110184, + 0.062242597341537476, + 0.018771197646856308, + -0.023722808808088303, + 0.04266452044248581, + 0.016253197565674782, + -0.02212587371468544, + -0.051569223403930664, + -0.11230802536010742, + 0.15956172347068787, + 0.058610379695892334, + 0.01764579676091671, + -0.08062902092933655, + -0.08030031621456146, + 0.11157318204641342, + -0.020428361371159554, + -0.11070533841848373, + -0.029925629496574402, + 0.07958759367465973, + 0.1769854724407196, + -0.03261929750442505, + -0.03844251483678818, + 0.03673999011516571, + 0.10619242489337921, + 0.021103203296661377, + 0.09065048396587372, + 0.07233696430921555, + 0.07809402793645859, + -0.007173887919634581, + 0.02198970690369606, + 0.043946199119091034, + 0.06531546264886856, + 0.03806215897202492, + -0.02396574430167675, + 0.008523855358362198, + -0.0003651070292107761, + -0.039425112307071686, + 0.007121828384697437, + -0.02786560356616974, + -0.02154955267906189, + -0.02398958057165146, + -0.013112209737300873, + 0.00716791208833456, + -0.00997895561158657, + -0.029585793614387512, + 0.037681058049201965, + 0.018233096227049828, + -0.011726005002856255, + 0.08116354048252106, + 0.020696040242910385, + 0.0010887833777815104, + 0.05523429065942764, + -0.05894294008612633, + -0.08556370437145233, + 0.019801979884505272, + 0.018817182630300522, + 0.0012730273883789778, + 0.06652579456567764, + 0.04354375600814819, + -0.04097859561443329, + 0.12280085682868958, + 0.0563124418258667, + 0.011998578906059265, + 0.016338754445314407, + -0.10847403109073639, + 0.10571916401386261, + 0.10303105413913727, + -0.018500104546546936, + 0.057639554142951965, + -0.03330636024475098, + 0.07022090256214142, + 0.09000542014837265, + -0.14976483583450317, + -0.06731857359409332, + 0.005179397761821747, + 0.004760426934808493, + 0.004492407664656639, + 0.10216490924358368, + -0.008764456026256084, + 0.03062225878238678, + 0.10736056417226791, + -0.09608791768550873, + -0.06707940995693207, + -0.01942978985607624, + 0.047624245285987854, + -0.09213035553693771, + 0.05182105302810669, + 0.06826537847518921, + -0.016363760456442833, + 0.014646435156464577, + 0.06341733783483505, + -0.013831235468387604, + 0.0006679337238892913, + 0.014714477583765984, + -0.057459622621536255, + 0.004620720632374287, + -0.040540874004364014, + -0.013093220070004463, + 0.05659019201993942, + 0.056231118738651276, + 0.03017984889447689, + 0.008781541138887405, + -0.04713290184736252, + -0.10730623453855515, + 0.0018080560257658362, + 0.039404671639204025, + 0.0640001893043518, + -0.004524265415966511, + -0.01980147510766983, + -0.040244586765766144, + -0.06377777457237244, + 0.019537638872861862, + -0.006887010298669338, + 0.08165401220321655, + -0.015925323590636253, + 0.011493921279907227, + 0.09520278871059418, + 0.0398494154214859, + -0.015489242970943451, + -0.059635013341903687, + -0.03367886692285538, + 0.024076364934444427, + 0.031787239015102386, + -0.07955163717269897, + -0.064188152551651, + -0.004629002884030342, + 0.033348675817251205, + -0.030268795788288116, + 0.048232655972242355, + 0.0365501344203949, + 0.017679031938314438, + 0.031582847237586975, + -0.06808843463659286, + 0.03319443389773369, + -0.09929189085960388, + -0.0706048309803009, + 0.010325675830245018, + -0.021829819306731224, + -0.01639660820364952, + 0.07677091658115387, + 0.019103065133094788, + 0.030340274795889854, + -0.03465960547327995, + -0.07381446659564972, + -0.07497461140155792, + 0.059479884803295135, + 0.05848969146609306, + 0.007035806775093079, + 0.04001577943563461, + 0.04349610209465027, + -0.036494385451078415, + 0.06861573457717896, + 0.06017628312110901, + 0.10490620136260986, + -0.018062766641378403, + 0.019025573506951332, + -0.06426830589771271, + 0.07456734776496887, + 0.08552327752113342, + -0.08499103784561157, + -0.09438055008649826, + -0.0479549877345562, + -0.06438026577234268, + 0.06781607121229172, + 0.0005342429503798485, + 0.000799510336946696, + 0.017691489309072495, + -0.024699386209249496, + -0.09493192285299301, + -0.0831979364156723, + 0.09308241307735443, + -0.03512897342443466, + -0.020412854850292206, + -0.06987360864877701, + 0.051389843225479126, + 0.07810716331005096, + 0.028827784582972527, + -9.47900116443634e-05, + -0.007626057602465153, + 0.03066258132457733, + -0.06585600972175598, + -0.008351843804121017, + 0.040980204939842224, + 0.024061432108283043, + -0.09204276651144028, + 0.010062674060463905, + -0.09098725020885468, + 0.07235553860664368, + -0.04125840216875076, + 0.16192816197872162, + -0.00015349453315138817, + -0.046393897384405136, + -0.09159310907125473, + 0.034498684108257294, + -0.029201602563261986, + 0.046501275151968, + 0.040973108261823654, + 0.05589176341891289, + 0.037237588316202164, + -0.06892435997724533, + 0.09393317997455597, + 0.02951010689139366, + -0.036253638565540314, + -0.05330682545900345, + -0.04663770645856857, + -0.04110775142908096, + 0.001878537004813552, + -0.03317738324403763, + -0.08862005174160004, + -0.0120218051597476, + 0.013715273700654507, + 0.0009218305349349976, + 0.07436086982488632, + 0.12232868373394012, + 0.05545676499605179, + -0.11029675602912903 + ] + }, + "p244_270.wav": { + "name": "p244", + "embedding": [ + 0.06799270212650299, + 0.06986050307750702, + -0.030308954417705536, + 0.009406200610101223, + -0.0280753206461668, + 0.04757925122976303, + -0.15357211232185364, + 0.07828021049499512, + -0.025264710187911987, + 0.14144983887672424, + -0.08151759207248688, + 0.08363526314496994, + -0.038718331605196, + -0.1377076953649521, + -0.035343438386917114, + 0.03952331840991974, + -0.038099486380815506, + -0.026263367384672165, + -0.03320247679948807, + -0.04013172537088394, + 0.035255067050457, + 0.04455157741904259, + 0.03481442481279373, + -0.02171032503247261, + 0.013106733560562134, + 0.05328827351331711, + -0.006691508926451206, + 0.004149415530264378, + -0.0027372678741812706, + -0.015064834617078304, + 0.015518597327172756, + 0.0787128284573555, + -0.025712989270687103, + 0.008137466385960579, + 0.027371030300855637, + 0.04111115634441376, + -0.00980415754020214, + -0.07554060220718384, + -0.002641502767801285, + 0.027434928342700005, + -0.04423069208860397, + 0.07521319389343262, + 0.05543341860175133, + -0.029544582590460777, + 0.013403094373643398, + -0.02985316514968872, + -0.022139674052596092, + -0.028378035873174667, + -0.08750086277723312, + 0.17022018134593964, + 0.049229517579078674, + 0.04327505826950073, + -0.08021430671215057, + -0.02661857381463051, + 0.10918998718261719, + 0.002991946181282401, + -0.08516161143779755, + -0.05540993809700012, + 0.04097442328929901, + 0.14431564509868622, + -0.03581167757511139, + -0.05663484334945679, + 0.014659020118415356, + 0.09168395400047302, + 0.02321115881204605, + 0.05371744930744171, + 0.10288208723068237, + 0.10380702465772629, + -0.004797391593456268, + 0.00024840733385644853, + 0.07075881958007812, + 0.06166936084628105, + 0.04630058631300926, + -0.030442573130130768, + 0.02644006535410881, + -0.02474067732691765, + -0.027147820219397545, + 0.013351775705814362, + -0.00498542096465826, + -0.05953351780772209, + -0.018255535513162613, + -0.022663993760943413, + 0.009124348871409893, + 0.04385858029127121, + -0.048377107828855515, + -0.00128183513879776, + 0.055021341890096664, + -0.04844118282198906, + 0.06293805688619614, + 0.05118151754140854, + 0.004495254717767239, + 0.017500076442956924, + -0.05158805102109909, + -0.08397918939590454, + 0.0215607937425375, + -1.3715277418668848e-05, + 0.029940873384475708, + 0.04640599340200424, + 0.04902661591768265, + -0.001838482916355133, + 0.09337493032217026, + 0.036085344851017, + 0.0014516152441501617, + -0.008137430064380169, + -0.08914171904325485, + 0.10762730240821838, + 0.11927849054336548, + -0.03658577427268028, + 0.030142251402139664, + -0.0354972742497921, + 0.031178509816527367, + 0.056456953287124634, + -0.10893867909908295, + -0.05645158514380455, + 0.04027913138270378, + 0.048129916191101074, + 0.03372490406036377, + 0.11904533207416534, + 0.0066388314589858055, + 0.006417814642190933, + 0.09890909492969513, + -0.06482607126235962, + -0.05654880031943321, + -0.03464934229850769, + 0.029620913788676262, + -0.06323816627264023, + 0.040416471660137177, + 0.05517037957906723, + 0.0026294346898794174, + -0.012145090848207474, + 0.06144228205084801, + 0.004542961250990629, + 0.001486417604610324, + -0.04767225310206413, + 0.0011693686246871948, + 0.058297790586948395, + -0.0051822843961417675, + 0.001652231439948082, + 0.06307755410671234, + 0.04204031452536583, + 0.060373857617378235, + 0.04696718603372574, + -0.02939853072166443, + -0.1203867718577385, + 0.017689043655991554, + 0.05398954078555107, + 0.045486174523830414, + -0.039891310036182404, + -0.02353554219007492, + -0.029192402958869934, + -0.06690873205661774, + 0.04063386097550392, + -0.023980434983968735, + 0.09611372649669647, + 0.019894331693649292, + -0.008288721553981304, + 0.11201837658882141, + -0.011443797498941422, + -0.0014377329498529434, + -0.029375141486525536, + 0.0017132697394117713, + 0.012996098026633263, + 0.037378232926130295, + -0.1013718992471695, + -0.06755703687667847, + -0.02031397819519043, + 0.03224779665470123, + 0.0060243732295930386, + 0.016036614775657654, + 0.061923276633024216, + -0.017473440617322922, + 0.03167106211185455, + -0.05162401497364044, + 0.014683408662676811, + -0.09121719002723694, + -0.040306106209754944, + 0.010868720710277557, + -0.061787452548742294, + 0.0035548019222915173, + 0.09469505399465561, + 0.0020755156874656677, + 0.021223535761237144, + -0.04330555722117424, + -0.08449256420135498, + -0.05020967125892639, + 0.05761520192027092, + 0.05676736682653427, + -0.023077700287103653, + 0.004592872224748135, + 0.06153615564107895, + 0.017525020986795425, + 0.019843533635139465, + 0.04900500923395157, + 0.10481980443000793, + -0.055756598711013794, + -0.015864495187997818, + -0.04481380432844162, + 0.08426442742347717, + 0.0744682177901268, + -0.07107919454574585, + -0.06658408045768738, + -0.06271475553512573, + -0.0548674538731575, + 0.015327002853155136, + -0.03906814754009247, + 0.007808073423802853, + 0.007038188632577658, + -0.03538782522082329, + -0.09278490394353867, + -0.10324453562498093, + 0.05112820118665695, + -0.02323496900498867, + 0.010151720605790615, + -0.07668624818325043, + 0.0360274463891983, + 0.044782306998968124, + 0.04083431512117386, + -0.021566664800047874, + 0.03244791179895401, + -0.00563589483499527, + -0.059588849544525146, + -0.0204447191208601, + 0.019399069249629974, + 0.027902822941541672, + -0.0801028311252594, + -0.027346324175596237, + -0.08761890977621078, + 0.08654701709747314, + -0.05193805322051048, + 0.10969868302345276, + 0.004548600409179926, + -0.03667440637946129, + -0.06438678503036499, + -0.005068215541541576, + -0.029014956206083298, + 0.05610468611121178, + 0.06325861811637878, + 0.04696780443191528, + 0.027549726888537407, + -0.05382007360458374, + 0.08028334379196167, + 0.06447622179985046, + -0.0007913423469290137, + -0.06454464048147202, + -0.00570499524474144, + -0.02104426920413971, + 0.026596155017614365, + -0.011489320546388626, + -0.04393615573644638, + 0.025307562202215195, + 0.011626522056758404, + 0.0023843436501920223, + 0.04302237555384636, + 0.07981114834547043, + 0.06109225004911423, + -0.08637422323226929 + ] + }, + "p244_173.wav": { + "name": "p244", + "embedding": [ + 0.07176820933818817, + 0.09407888352870941, + -0.011364780366420746, + 0.010159902274608612, + -0.016106361523270607, + 0.05601426213979721, + -0.15782994031906128, + 0.10752272605895996, + -0.01731758937239647, + 0.16062405705451965, + -0.0568208247423172, + 0.10075299441814423, + -0.006862226873636246, + -0.1627231240272522, + -0.005759446881711483, + 0.04793665558099747, + -0.022647885605692863, + -0.01614522375166416, + -0.012670285999774933, + -0.011533843353390694, + 0.0270843468606472, + 0.06354396045207977, + 0.02789982780814171, + -0.04641401022672653, + 0.04943964257836342, + 0.07072983682155609, + -0.026536909863352776, + 0.020545681938529015, + -0.03066398948431015, + -0.09755146503448486, + -0.028680959716439247, + 0.09456484019756317, + -0.0629541426897049, + 0.004870763048529625, + 0.010024232789874077, + 0.0037586414255201817, + -0.009080039337277412, + -0.07031209766864777, + 0.003934313543140888, + 0.006634276360273361, + -0.026572339236736298, + 0.07697838544845581, + 0.008321565575897694, + -0.028096474707126617, + 0.018405137583613396, + 0.008620363660156727, + 0.015106569975614548, + -0.046957701444625854, + -0.09293113648891449, + 0.1733725517988205, + 0.040017981082201004, + 0.018934788182377815, + -0.0762978121638298, + -0.06529507786035538, + 0.05791374295949936, + 0.011339535936713219, + -0.07870632410049438, + -0.026602882891893387, + 0.06393817067146301, + 0.12505125999450684, + -0.01607131026685238, + -0.06907400488853455, + 0.05594916269183159, + 0.09082278609275818, + 0.031827427446842194, + 0.06660838425159454, + 0.08085164427757263, + 0.08245068043470383, + -0.014189053326845169, + -0.0047857495956122875, + 0.023275600746273994, + 0.06424253433942795, + 0.06848644465208054, + -0.019990667700767517, + 0.022112617269158363, + -0.02770320326089859, + -0.03607051074504852, + -0.02559647522866726, + -0.015543723478913307, + -0.043046653270721436, + 0.010368452407419682, + -0.023759517818689346, + 0.0066072107292711735, + 0.047005683183670044, + -0.03279145061969757, + -0.00031907856464385986, + 0.06352050602436066, + -0.03349427133798599, + 0.0873803198337555, + 0.03147701919078827, + 0.047228965908288956, + 0.04499738663434982, + -0.0993172824382782, + -0.05194021761417389, + 0.0814802423119545, + 0.02768086828291416, + 0.021833667531609535, + 0.06721874326467514, + 0.06602063030004501, + -0.026171432808041573, + 0.11556895077228546, + 0.01782584935426712, + 0.006803395226597786, + -0.01679006777703762, + -0.0866253674030304, + 0.1195625513792038, + 0.10142633318901062, + -0.03202471882104874, + 0.05930221080780029, + -0.05675867572426796, + 0.03749794512987137, + 0.061748430132865906, + -0.1386668086051941, + -0.07783924788236618, + 0.01595931686460972, + -0.004411232192069292, + -0.0006495704874396324, + 0.12575292587280273, + 0.01999078318476677, + 0.029421869665384293, + 0.07984790951013565, + -0.12089603394269943, + -0.07428208738565445, + -0.014167513698339462, + 0.04148555174469948, + -0.13301032781600952, + 0.07904093712568283, + 0.07656114548444748, + -0.027148105204105377, + 0.017414215952157974, + 0.05377041548490524, + -0.007800941821187735, + 0.03367157652974129, + -0.041114598512649536, + -0.004928048234432936, + 0.0014044824056327343, + -0.03247660771012306, + -0.011709107086062431, + -0.007882753387093544, + 0.0020699799060821533, + 0.04860632121562958, + -0.009369758889079094, + -0.031571898609399796, + -0.1366378366947174, + 0.02385927364230156, + 0.04236344248056412, + 0.04399466887116432, + -0.026446310803294182, + -0.03849812597036362, + -0.029361609369516373, + -0.06658098101615906, + 0.01916542835533619, + -0.027384649962186813, + 0.049863725900650024, + 0.026535917073488235, + 0.0006802743300795555, + 0.1292160153388977, + 0.04050588980317116, + 0.008325567469000816, + -0.034439072012901306, + -0.0182051844894886, + 0.035081617534160614, + 0.03761845454573631, + -0.08179673552513123, + -0.07960256934165955, + -0.035053886473178864, + 0.0015208013355731964, + 0.00039042532444000244, + 0.07526734471321106, + 0.06694494932889938, + 0.02038998156785965, + 0.00393206812441349, + -0.07140673696994781, + 0.015561315231025219, + -0.07188624143600464, + -0.07797953486442566, + -0.0011919899843633175, + -0.038577593863010406, + -0.023005720227956772, + 0.11078164726495743, + 0.011829000897705555, + 0.030275991186499596, + -0.09112456440925598, + -0.03231711685657501, + -0.0775674432516098, + 0.03312600031495094, + 0.06938186287879944, + -0.027957189828157425, + -0.005439095199108124, + 0.03145615756511688, + -0.01234870683401823, + 0.04460148513317108, + 0.06083906441926956, + 0.10649219155311584, + -0.031135428696870804, + 0.01706313155591488, + -0.04707447439432144, + 0.10066907107830048, + 0.09728628396987915, + -0.0434102863073349, + -0.06789210438728333, + -0.027286015450954437, + -0.09110747277736664, + 0.024142339825630188, + -0.01407662034034729, + 0.010439066216349602, + 0.027954814955592155, + -0.0264646764844656, + -0.09735719859600067, + -0.10639109462499619, + 0.06820908188819885, + -0.03417264297604561, + -0.01120026409626007, + -0.09239445626735687, + 0.07127836346626282, + 0.05764802545309067, + 0.062376610934734344, + -0.02964300662279129, + -0.021027889102697372, + 0.01798599399626255, + -0.023972038179636, + 0.019715020433068275, + 0.055095501244068146, + 0.04365352541208267, + -0.10191469639539719, + 0.0012429035268723965, + -0.0725974589586258, + 0.06259524077177048, + -0.05908035486936569, + 0.12826167047023773, + 0.019626274704933167, + -0.055374495685100555, + -0.09822532534599304, + 0.0451180674135685, + -0.012566395103931427, + 0.038176268339157104, + 0.025728680193424225, + 0.03536828234791756, + 0.07543665915727615, + -0.08609627932310104, + 0.05570127069950104, + 0.056159213185310364, + 0.008486177772283554, + -0.07039356976747513, + -0.06544645130634308, + -0.027505137026309967, + 0.05889352411031723, + -0.014390192925930023, + -0.08508481085300446, + -0.002448371611535549, + 0.04183949902653694, + 0.04390355199575424, + 0.05432435870170593, + 0.11898042261600494, + 0.014156199991703033, + -0.1298334300518036 + ] + }, + "p244_212.wav": { + "name": "p244", + "embedding": [ + 0.04926248639822006, + 0.09347432851791382, + -0.02989881858229637, + 0.04287482425570488, + -0.07121097296476364, + 0.06113899499177933, + -0.12194943428039551, + 0.1443902850151062, + -0.026454035192728043, + 0.12350095808506012, + -0.06389691680669785, + 0.13769842684268951, + -0.010839363560080528, + -0.1748703420162201, + -0.009052792564034462, + 0.051553875207901, + -0.03032657504081726, + -0.027276592329144478, + -0.01762459985911846, + -0.02490421012043953, + 0.04523976519703865, + 0.026174617931246758, + 0.042886923998594284, + -0.0011535920202732086, + 0.02268734574317932, + 0.06813979893922806, + -0.008159923367202282, + 0.03383906930685043, + 0.012882075272500515, + -0.04250115901231766, + -0.05369354039430618, + 0.09711077809333801, + -0.04795306175947189, + 0.005942797288298607, + 0.04737791419029236, + -0.029083454981446266, + -0.016851384192705154, + -0.06789243221282959, + -0.015624778345227242, + -0.004724005237221718, + -0.03770575299859047, + 0.07108642160892487, + 0.03683258593082428, + -0.04691920056939125, + 0.040689773857593536, + 0.0017856033518910408, + -0.025633830577135086, + -0.022076554596424103, + -0.1124044805765152, + 0.1485075056552887, + 0.08334562182426453, + 0.004351007752120495, + -0.06874970346689224, + -0.04564416781067848, + 0.10296206921339035, + 0.011801138520240784, + -0.10092521458864212, + -0.02880946546792984, + 0.06590692698955536, + 0.14732694625854492, + -0.017298776656389236, + -0.01934986189007759, + 0.03992252051830292, + 0.12292594462633133, + 0.05581901967525482, + 0.08670341968536377, + 0.08431488275527954, + 0.12420819699764252, + -0.02458467148244381, + 0.036521416157484055, + 0.04772704094648361, + 0.08484551310539246, + 0.03571600466966629, + -0.013911524787545204, + 0.016172481700778008, + -0.01837928779423237, + -0.022812267765402794, + -0.011723371222615242, + -0.03292742371559143, + -0.041716281324625015, + -0.014236153103411198, + -0.0020793424919247627, + 0.022282516583800316, + 0.028689857572317123, + -0.03425309807062149, + 0.06377941370010376, + 0.05432802066206932, + -0.014670338481664658, + 0.05781891196966171, + 0.02322547324001789, + 0.0008584093884564936, + 0.06046289950609207, + -0.0935458093881607, + -0.09158241748809814, + 0.03851895034313202, + 0.009966236539185047, + 0.03802908957004547, + 0.09636756032705307, + 0.04850156977772713, + -0.015959028154611588, + 0.11254779249429703, + 0.06478337943553925, + -0.009102988056838512, + 0.024678101763129234, + -0.07216702401638031, + 0.13344532251358032, + 0.09953349828720093, + -0.028674017637968063, + 0.05954040586948395, + -0.05857591703534126, + 0.08252397179603577, + 0.0627819150686264, + -0.12963241338729858, + -0.059737276285886765, + 0.015851616859436035, + 0.010762259364128113, + -0.021799711510539055, + 0.12426159530878067, + 0.009573590941727161, + 0.05866051837801933, + 0.10245257616043091, + -0.09398536384105682, + -0.06916390359401703, + -0.03563554212450981, + 0.053915515542030334, + -0.0720360055565834, + 0.06783805042505264, + 0.05705127865076065, + -0.016505202278494835, + 0.008189246989786625, + 0.05618195980787277, + -0.018990276381373405, + 0.005063587799668312, + 0.04427889734506607, + -0.055357616394758224, + 0.021597588434815407, + -0.029596343636512756, + 0.007059850730001926, + 0.038379229605197906, + 0.018356427550315857, + 0.04641779139637947, + -0.017772115767002106, + 0.005433990154415369, + -0.10581168532371521, + 0.018909212201833725, + 0.041864145547151566, + 0.08023247122764587, + -0.00948785524815321, + -0.04590172320604324, + -0.027374034747481346, + -0.07832708954811096, + 0.009802371263504028, + -0.015804335474967957, + 0.05598200112581253, + -0.02208850346505642, + 0.006917305290699005, + 0.07315942645072937, + 0.038381580263376236, + -0.002510452875867486, + -0.053397759795188904, + -0.03993199020624161, + 0.026768989861011505, + 0.04826163500547409, + -0.0876753032207489, + -0.07765023410320282, + -0.01559979934245348, + 0.017758280038833618, + -0.043765634298324585, + 0.0477977991104126, + 0.044568829238414764, + 0.023309417068958282, + 0.022982459515333176, + -0.07431454956531525, + 0.014876702800393105, + -0.09874092042446136, + -0.06252795457839966, + -0.013873577117919922, + -0.010914936661720276, + -0.023025624454021454, + 0.07346211373806, + 0.028459902852773666, + 0.06103762984275818, + -0.012941684573888779, + -0.03182506188750267, + -0.0742461234331131, + 0.04373345524072647, + 0.04771711304783821, + -0.0023526393342763186, + 0.055207058787345886, + 0.06242801249027252, + -0.032313913106918335, + 0.03726121038198471, + 0.05519833415746689, + 0.08633619546890259, + -0.02889649197459221, + -0.0041061509400606155, + -0.08075399696826935, + 0.08854243159294128, + 0.11216777563095093, + -0.09398438781499863, + -0.08515109121799469, + -0.046981871128082275, + -0.07143368571996689, + 0.02817981131374836, + -0.04188070446252823, + -0.008412213064730167, + 0.024546276777982712, + -0.006018579937517643, + -0.11036016047000885, + -0.09961618483066559, + 0.09249331057071686, + -0.07802318036556244, + -0.0007111175800673664, + -0.088178351521492, + 0.04190279543399811, + 0.10098787397146225, + 0.012273182161152363, + -0.05088677257299423, + -0.013336263597011566, + 0.049407146871089935, + -0.022840479388833046, + 0.01786416582763195, + 0.05521143227815628, + 0.058342739939689636, + -0.11871907860040665, + -0.0011970819905400276, + -0.05556679144501686, + 0.037498194724321365, + -0.05119210481643677, + 0.15708871185779572, + 0.021797113120555878, + -0.042812660336494446, + -0.08902624249458313, + 0.06639361381530762, + 2.842256799340248e-05, + 0.038995031267404556, + 0.03430986404418945, + 0.057846926152706146, + 0.015145277604460716, + -0.10340934246778488, + 0.1268310844898224, + 0.02518150396645069, + -0.03879963606595993, + -0.08295939862728119, + -0.02969885803759098, + -0.03879639133810997, + 0.03559086471796036, + 0.018966900184750557, + -0.08289770036935806, + -0.036304399371147156, + 0.02229735255241394, + -0.0009657228365540504, + 0.06664615869522095, + 0.14926570653915405, + 0.06402461975812912, + -0.10259199142456055 + ] + }, + "p244_297.wav": { + "name": "p244", + "embedding": [ + 0.07629692554473877, + 0.019971350207924843, + -0.03802793100476265, + -0.006920741870999336, + -0.012514205649495125, + 0.008400335907936096, + -0.1661592721939087, + 0.05450918525457382, + -0.005334441550076008, + 0.1383333057165146, + -0.04782237857580185, + 0.09122902154922485, + 0.05695922300219536, + -0.11926629394292831, + -0.026478007435798645, + -0.0032569197937846184, + -0.0037452802062034607, + -0.01487928256392479, + -0.03494531288743019, + -0.03976662829518318, + 0.018306411802768707, + 0.0729287788271904, + 0.018423713743686676, + -0.02867380529642105, + 0.022599918767809868, + 0.03466223552823067, + 0.016785111278295517, + 0.03369872644543648, + -0.012988896109163761, + -0.0051640113815665245, + 0.03835226222872734, + 0.09454752504825592, + -0.03953073173761368, + -0.015669522807002068, + 0.0002562357112765312, + -0.0037231799215078354, + 0.010481055825948715, + -0.06576351821422577, + -0.031258899718523026, + 0.060968827456235886, + -0.026809804141521454, + 0.08423973619937897, + 0.07316368818283081, + 0.03806396946310997, + -0.015905175358057022, + 0.007131893187761307, + -0.015634985640645027, + -0.04342108592391014, + -0.07481781393289566, + 0.17867104709148407, + 0.059898246079683304, + 0.01981240138411522, + -0.08707676827907562, + -0.014873607084155083, + 0.05679138004779816, + -0.020422862842679024, + -0.042762722820043564, + -0.03297768533229828, + 0.023651596158742905, + 0.11516857147216797, + -0.011122106574475765, + -0.061041586101055145, + 0.03531097620725632, + 0.0985541045665741, + 0.026169762015342712, + -0.0008743098005652428, + 0.10756926238536835, + 0.09035806357860565, + -0.022079408168792725, + 0.0003854893147945404, + 0.027243316173553467, + 0.04686136543750763, + 0.03756828233599663, + -0.057963777333498, + 0.0463244803249836, + 0.017470043152570724, + -0.002822326496243477, + -0.009697090834379196, + -0.0333847813308239, + -0.030203914269804955, + 0.029083535075187683, + -0.007038524374365807, + 0.014345266856253147, + 0.10834480077028275, + -0.12180013209581375, + 0.0009901653975248337, + 0.02897222340106964, + -0.039978988468647, + 0.06123960018157959, + 0.04182210564613342, + 0.05178956314921379, + 0.0012031756341457367, + -0.04275290668010712, + -0.041629284620285034, + 0.04267159476876259, + 0.001502116210758686, + 0.026989420875906944, + 0.03683321550488472, + 0.03040151484310627, + -0.02361932024359703, + 0.0913555696606636, + 0.0122599545866251, + -0.04111108183860779, + -0.03137291222810745, + -0.05846916139125824, + 0.09025005996227264, + 0.10722416639328003, + -0.04756893217563629, + 0.010950114578008652, + -0.00423665065318346, + -0.0002347724512219429, + 0.003550526686012745, + -0.10134103894233704, + -0.062464095652103424, + 0.07700498402118683, + 0.08343572914600372, + 0.04594942554831505, + 0.12246283888816833, + 0.021112067624926567, + 0.045787788927555084, + 0.05157501623034477, + -0.00040265917778015137, + -0.03345586359500885, + -0.01539759524166584, + 0.028891535475850105, + -0.07772502303123474, + 0.029788680374622345, + 0.0491885244846344, + -0.0067960843443870544, + -0.049767691642045975, + 0.08093934506177902, + 0.007673865184187889, + 0.01841999962925911, + -0.0654219314455986, + 0.06309318542480469, + 0.09555287659168243, + 0.01710500940680504, + 0.01704421639442444, + 0.003249748144298792, + 0.008811423555016518, + 0.055022697895765305, + 0.054727066308259964, + -0.054593898355960846, + -0.14069455862045288, + 0.03490566834807396, + 0.030424585565924644, + 0.04977791756391525, + -0.06496742367744446, + -0.047632452100515366, + -0.05405411124229431, + -0.002910137176513672, + 0.005666239187121391, + -0.01811882108449936, + 0.04784992337226868, + 0.03455706685781479, + -0.039973221719264984, + 0.1071385070681572, + -0.06219460070133209, + -0.004876335151493549, + 0.02228272147476673, + 0.0539839044213295, + -0.008913730271160603, + 0.03449740260839462, + -0.036798641085624695, + -0.04819076135754585, + 0.01632244884967804, + 0.039813846349716187, + 0.030323179438710213, + 0.01755298301577568, + 0.04531760513782501, + -0.04706723988056183, + 0.03339900076389313, + -0.07254259288311005, + -0.01250685378909111, + -0.06893104314804077, + -0.0036847665905952454, + 0.025534726679325104, + -0.03282387554645538, + -0.04400666430592537, + 0.06764364242553711, + 0.02060113474726677, + 0.05287296324968338, + -0.05018552392721176, + -0.07889688014984131, + -0.02753717079758644, + 0.025382716208696365, + 0.08142886310815811, + -0.06796963512897491, + -0.005324011668562889, + 0.0546257346868515, + 0.034353598952293396, + 0.02660982683300972, + 0.07399705797433853, + 0.03870521858334541, + -0.04743567481637001, + -0.025365836918354034, + -0.012146467342972755, + 0.11036759614944458, + 0.01119477953761816, + -0.0339694581925869, + -0.03719257563352585, + -0.03000205010175705, + -0.06114179641008377, + 0.010866746306419373, + 0.04313436895608902, + 0.04434502124786377, + 0.062102459371089935, + -0.016348928213119507, + -0.08330464363098145, + -0.052538808435201645, + 0.011660106480121613, + -0.0668366402387619, + 2.127978950738907e-05, + -0.04786863550543785, + 0.01919173076748848, + 0.05848894268274307, + 0.06234728917479515, + -0.0020749401301145554, + -0.0330393947660923, + -0.032533567398786545, + -0.07975277304649353, + -0.027455519884824753, + 0.019928976893424988, + 0.03278620168566704, + -0.08646176755428314, + -0.016873378306627274, + -0.09054318070411682, + 0.06774342060089111, + -0.06268683075904846, + 0.033310286700725555, + 0.048422921448946, + -0.04793819412589073, + -0.06293939054012299, + -0.034452885389328, + -0.030322391539812088, + 0.060948535799980164, + 0.057113468647003174, + 0.02951253205537796, + 0.04063909128308296, + -0.06381344050168991, + 0.053798358887434006, + 0.09327006340026855, + -0.011326191015541553, + -0.0931345596909523, + 8.282624185085297e-05, + 0.024634400382637978, + 0.03995777666568756, + 0.062418267130851746, + -0.023690296337008476, + 0.017248474061489105, + 0.03683752566576004, + -0.05682305991649628, + 0.03897673264145851, + 0.05409426987171173, + 0.05446132645010948, + -0.12581440806388855 + ] + }, + "p244_208.wav": { + "name": "p244", + "embedding": [ + 0.05125076323747635, + 0.11419150233268738, + -0.025501761585474014, + 0.026101000607013702, + -0.008544359356164932, + 0.06391303241252899, + -0.11612982302904129, + 0.08943429589271545, + -0.051306888461112976, + 0.12412339448928833, + -0.0921008288860321, + 0.09335722029209137, + -0.0444030836224556, + -0.11974431574344635, + -0.03559380769729614, + 0.03892037272453308, + -0.024653399363160133, + -0.009654968976974487, + -0.027000732719898224, + 0.013440657407045364, + 0.01123119704425335, + 0.0397481694817543, + 0.027141539379954338, + -0.03496481478214264, + 0.057529255747795105, + 0.051261916756629944, + 0.014046593569219112, + 0.05508347228169441, + 0.009758812375366688, + -0.03700024634599686, + -0.016322080045938492, + 0.0984763503074646, + -0.058843642473220825, + 0.012739856727421284, + 0.03934529796242714, + 0.04367176815867424, + 0.0019126555416733027, + -0.06717853993177414, + -0.00011252891272306442, + -0.0013750223442912102, + -0.04891732707619667, + 0.0629829615354538, + 0.01425075065344572, + -0.04114707559347153, + 0.004804631229490042, + 0.02511514350771904, + 0.024984922260046005, + -0.05233056843280792, + -0.09256522357463837, + 0.13978534936904907, + 0.007139792665839195, + 0.029415536671876907, + -0.07998111099004745, + -0.08232612907886505, + 0.08668428659439087, + 0.009077733382582664, + -0.06827464699745178, + -0.03016751818358898, + 0.0566578209400177, + 0.1562870293855667, + -0.021291103214025497, + -0.03526361286640167, + 0.021431736648082733, + 0.07608122378587723, + 0.06751179695129395, + 0.08654499053955078, + 0.07225680351257324, + 0.08797501027584076, + 0.03173702582716942, + 0.012589674443006516, + 0.06281158328056335, + 0.05196135491132736, + 0.04360462725162506, + -0.0199274979531765, + -0.00046735070645809174, + -0.0003736445214599371, + -0.04351101815700531, + 0.02821057289838791, + -0.0018056074623018503, + -0.05079984664916992, + -0.002817056141793728, + 0.004377659875899553, + 0.001524798572063446, + 0.028849530965089798, + -0.027030812576413155, + 0.037783533334732056, + 0.04753422737121582, + -0.0519958958029747, + 0.07566116005182266, + 0.0326567068696022, + -0.010243198834359646, + 0.03281642124056816, + -0.07016395032405853, + -0.08529186993837357, + 0.009472963400185108, + -0.0013765832409262657, + 0.001708323135972023, + 0.07339968532323837, + 0.05608911067247391, + -0.006538934540003538, + 0.09834583103656769, + 0.016034189611673355, + 0.03622647747397423, + 0.01470652874559164, + -0.0769614726305008, + 0.10847531259059906, + 0.07698879390954971, + -0.028939982876181602, + 0.032963041216135025, + -0.02088911645114422, + 0.027025917544960976, + 0.09028632938861847, + -0.13116732239723206, + -0.08939984440803528, + 0.039894949644804, + 0.004922441206872463, + 0.005088046193122864, + 0.08056143671274185, + -0.0014945559669286013, + -0.0068378872238099575, + 0.09679040312767029, + -0.1027953177690506, + -0.07012687623500824, + -0.021615853533148766, + 0.05138783901929855, + -0.054190538823604584, + 0.039423245936632156, + 0.06339075416326523, + -0.013208101503551006, + -0.04085865616798401, + 0.06894146651029587, + 0.008153419941663742, + 0.020064057782292366, + 9.135343134403229e-05, + -0.014587385579943657, + 0.03393830358982086, + -0.03440434858202934, + -0.009682769887149334, + 0.04648035764694214, + 0.03619641438126564, + 0.051738858222961426, + 0.004564904607832432, + -0.034195683896541595, + -0.11797688156366348, + 0.010923285037279129, + 0.08597961813211441, + 0.05481487140059471, + -0.03411075472831726, + -0.03295685723423958, + -0.03991026058793068, + -0.05341802537441254, + 0.03717910498380661, + 0.014164534397423267, + 0.09592233598232269, + 0.005031134933233261, + -0.004775440786033869, + 0.13432247936725616, + -0.005793027579784393, + 0.00704911258071661, + -0.03959937393665314, + 0.0026470068842172623, + 0.02113662101328373, + 0.03298279270529747, + -0.058486148715019226, + -0.10803937166929245, + -0.007899343967437744, + 0.00174621120095253, + -0.011188600212335587, + 0.05900624021887779, + 0.03674301132559776, + 0.01179041713476181, + 0.028104089200496674, + -0.0358993224799633, + -0.010864193551242352, + -0.09579557180404663, + -0.04460500553250313, + -0.020270323380827904, + -0.032305702567100525, + -0.011009836569428444, + 0.09381204843521118, + 0.03437057510018349, + 0.032235510647296906, + -0.0011680247262120247, + -0.07181525230407715, + -0.05891504883766174, + 0.05968004837632179, + 0.06921112537384033, + 9.620329365134239e-05, + 0.01788141205906868, + 0.04756581783294678, + -0.002611130475997925, + 0.02369558997452259, + 0.07196229696273804, + 0.07695899158716202, + -0.01221809908747673, + -0.03209751099348068, + -0.058739446103572845, + 0.08297953754663467, + 0.05804389715194702, + -0.11153349280357361, + -0.06065557897090912, + -0.0368708074092865, + -0.05111505836248398, + 0.016518335789442062, + -0.02241358533501625, + 0.05150509998202324, + 0.003765938337892294, + -0.04792702943086624, + -0.07965269684791565, + -0.12038996815681458, + 0.06834189593791962, + -0.037262238562107086, + -0.028588397428393364, + -0.06584685295820236, + 0.028936758637428284, + 0.031042225658893585, + 0.05225653946399689, + 0.0010111918672919273, + 0.024980131536722183, + 0.03724896162748337, + -0.06834117323160172, + -0.020135698840022087, + 0.07245460152626038, + -0.001701096072793007, + -0.07039386034011841, + 0.020550265908241272, + -0.07188960909843445, + 0.10665726661682129, + -0.06960248947143555, + 0.15118984878063202, + -0.01805129647254944, + -0.07085611671209335, + -0.10296998918056488, + 0.017364734783768654, + -0.034966666251420975, + 0.034675318747758865, + 0.021118618547916412, + 0.046076975762844086, + 0.021706534549593925, + -0.04627785086631775, + 0.09942415356636047, + 0.03874754533171654, + -0.004360751248896122, + -0.06609224528074265, + -0.089366115629673, + -0.04460126906633377, + 0.033301226794719696, + -0.0055572260171175, + -0.05169789493083954, + 0.013971950858831406, + 0.016396237537264824, + 0.00987611897289753, + 0.04228082299232483, + 0.1234031617641449, + 0.060734257102012634, + -0.09420932829380035 + ] + }, + "p244_126.wav": { + "name": "p244", + "embedding": [ + 0.060276102274656296, + 0.10743342339992523, + 0.022987917065620422, + -0.021033264696598053, + -0.021439027041196823, + 0.07483284175395966, + -0.06769314408302307, + 0.09959492087364197, + -0.003704679664224386, + 0.06015157699584961, + -0.10082963109016418, + 0.08416327834129333, + -0.0033188601955771446, + -0.13983041048049927, + -0.02683335356414318, + 0.03296198695898056, + -0.039197247475385666, + 0.011853891424834728, + -0.028025781735777855, + -0.03097955510020256, + 0.0131643395870924, + 0.017187735065817833, + 0.055144302546978, + -0.004673599265515804, + 0.03625783324241638, + 0.04145725816488266, + 0.01909453794360161, + 0.0378464050590992, + 0.01077343337237835, + -0.036670975387096405, + -0.044595759361982346, + 0.07184606790542603, + -0.037301287055015564, + -0.006060857325792313, + 0.05372486636042595, + -0.021383030340075493, + 0.04996330291032791, + -0.08223645389080048, + -0.04609699174761772, + 0.033471666276454926, + -0.04277456924319267, + 0.06639231741428375, + 0.0306229367852211, + -0.006403905339539051, + 0.03139862045645714, + 0.04951004683971405, + -0.0010821273317560554, + -0.04407871887087822, + -0.07879745960235596, + 0.13030210137367249, + 0.03422272205352783, + 0.016165826469659805, + -0.0627593994140625, + -0.031019166111946106, + 0.08138328790664673, + -0.028556479141116142, + -0.04194782301783562, + 0.008330968208611012, + 0.051011376082897186, + 0.07240282744169235, + 0.010012256912887096, + -0.03621017187833786, + 0.03859952837228775, + 0.07630112022161484, + 0.012344986200332642, + 0.038448430597782135, + 0.09056162089109421, + 0.07001557946205139, + -0.009482350200414658, + 0.013522451743483543, + 0.04224702715873718, + 0.046314649283885956, + 0.03834046423435211, + -0.02975088357925415, + 0.03224742412567139, + -0.0036381403915584087, + -0.021601876243948936, + -0.006208098493516445, + -0.019239753484725952, + -0.006544872187077999, + 0.03382453694939613, + 0.02823467180132866, + 0.006495587527751923, + 0.010953640565276146, + -0.04835706949234009, + 0.04895298182964325, + -0.016508445143699646, + 0.07658147811889648, + 0.07289744913578033, + 0.027002310380339622, + 0.01608724519610405, + 0.029596593230962753, + -0.05557520315051079, + -0.08576392382383347, + 0.03198881819844246, + 0.016156647354364395, + -0.010536057874560356, + 0.035520993173122406, + 0.04566342383623123, + -0.031579237431287766, + 0.1086253970861435, + 0.03952968120574951, + -0.01291958149522543, + 0.01971152424812317, + -0.07607865333557129, + 0.06416411697864532, + 0.07246428728103638, + -0.01685943268239498, + 0.050458960235118866, + -0.01639564149081707, + 0.06503182649612427, + 0.06319156289100647, + -0.10356451570987701, + -0.052363067865371704, + 0.005080516450107098, + 0.01879105716943741, + 0.03251377493143082, + 0.08255527913570404, + -0.03586138039827347, + 0.03309435397386551, + 0.06900020688772202, + -0.049934666603803635, + -0.02494620904326439, + 0.015644891187548637, + 0.007722519338130951, + -0.02038024365901947, + 0.02241111546754837, + 0.03562706708908081, + 0.017094654962420464, + -0.04560891538858414, + 0.043694984167814255, + 0.0060726492665708065, + 0.005004418548196554, + -0.035136040300130844, + 0.007139201276004314, + -0.005530822090804577, + -0.020593177527189255, + -0.028182528913021088, + 0.01247173361480236, + 0.05715559050440788, + 0.006377595476806164, + 0.037852250039577484, + -0.043610453605651855, + -0.09432698786258698, + -0.0010650096228346229, + -0.009283925406634808, + 0.024017006158828735, + 0.02309003286063671, + -0.041179824620485306, + -0.052725329995155334, + 0.01539422757923603, + -0.0031656306236982346, + -0.004998265765607357, + 0.02614317461848259, + 0.04530863091349602, + -0.01980159431695938, + 0.06348380446434021, + 0.002737609203904867, + 0.007668794598430395, + -0.02342359535396099, + -0.04502991959452629, + 0.018195219337940216, + 0.03136162459850311, + -0.010419152677059174, + -0.07989799976348877, + -0.006481997203081846, + -0.03328252583742142, + -0.013683601282536983, + 0.03470136970281601, + 0.05236878618597984, + -0.0052366117015480995, + -0.00716061657294631, + -0.07312414050102234, + 0.0032258755527436733, + -0.07030171900987625, + -0.06507742404937744, + 0.025859151035547256, + 0.040030330419540405, + -0.017705120146274567, + 0.07526713609695435, + 0.032592982053756714, + 0.04028020054101944, + -0.03211855888366699, + -0.043448612093925476, + -0.0046804845333099365, + 0.048828691244125366, + 0.05837429687380791, + 0.01816587708890438, + 0.04255989193916321, + 0.031063003465533257, + -0.009992222301661968, + 0.06856922805309296, + 0.050552479922771454, + 0.04652805253863335, + -0.009125716984272003, + 0.009852642193436623, + 0.012126500718295574, + 0.06528227031230927, + 0.01505771093070507, + -0.0673830509185791, + -0.05860796198248863, + -0.0058288476429879665, + -0.04162576422095299, + 0.031100472435355186, + 0.03190494328737259, + 0.02960197627544403, + 0.026081394404172897, + -0.0081310560926795, + -0.04280052334070206, + -0.07205747812986374, + 0.028458010405302048, + -0.04414428770542145, + -0.026520688086748123, + -0.03470790013670921, + 0.051165830343961716, + 0.09821806848049164, + -0.006167824380099773, + -0.0010318731656298041, + -0.006127180065959692, + 0.0061864531598985195, + -0.012101506814360619, + -0.04184962809085846, + -0.0015382766723632812, + 0.03160073608160019, + -0.06789115071296692, + 0.03475356101989746, + -0.07483793795108795, + 0.05938262864947319, + -0.003016571281477809, + 0.0904371440410614, + 0.03648079186677933, + -0.02464001625776291, + -0.07144004106521606, + 0.025891322642564774, + -0.009742679074406624, + 0.03344042971730232, + 0.000156499445438385, + 0.014185163192451, + 0.02812061831355095, + -0.06517656147480011, + 0.06944935023784637, + 0.03066737949848175, + -0.07193551957607269, + -0.06680554151535034, + -0.009874850511550903, + -0.030184758827090263, + 0.0028842329047620296, + 0.0014550735941156745, + -0.053957514464855194, + -0.008624620735645294, + 0.023186035454273224, + 0.01699202135205269, + 0.0342695377767086, + 0.0812079906463623, + 0.014652922749519348, + -0.05705541372299194 + ] + }, + "p244_343.wav": { + "name": "p244", + "embedding": [ + 0.04048285260796547, + 0.050855204463005066, + -0.04111466184258461, + -0.01708024926483631, + -0.045686352998018265, + 0.041656494140625, + -0.1261962652206421, + 0.07455097138881683, + -0.005745976231992245, + 0.15562069416046143, + -0.02061404287815094, + 0.11013163626194, + 0.007303598336875439, + -0.10282115638256073, + 0.018437756225466728, + 0.024569332599639893, + -0.02578464150428772, + -0.004576869308948517, + -0.01225886307656765, + -0.07069813460111618, + 0.028024721890687943, + 0.030405886471271515, + 0.02746352180838585, + -0.06279630959033966, + 0.01839635893702507, + 0.06060687080025673, + -0.013895709998905659, + -0.004747550003230572, + -0.010169142857193947, + -0.07565844058990479, + -0.01652393490076065, + 0.08838427066802979, + -0.04680223390460014, + -0.016897987574338913, + 0.01990644633769989, + -0.017104018479585648, + -0.026446189731359482, + -0.03877663612365723, + 0.01733200065791607, + 0.04610736668109894, + -0.043801404535770416, + 0.08983806520700455, + 0.020851127803325653, + -0.013959072530269623, + 0.029988856986165047, + -0.05556454882025719, + -0.058505598455667496, + 0.0375538133084774, + -0.04095020890235901, + 0.11656245589256287, + 0.08041796088218689, + 0.0031306305900216103, + -0.06218336150050163, + -0.004902448505163193, + 0.057975783944129944, + 0.00917382724583149, + -0.10093078762292862, + -0.019349712878465652, + -0.009282464161515236, + 0.09114935994148254, + -0.001632831059396267, + -0.05908629298210144, + 0.031125348061323166, + 0.08755418658256531, + 0.02008543536067009, + 0.02993987500667572, + 0.09234490990638733, + 0.08019337058067322, + -0.014564476907253265, + 0.008977140299975872, + 0.03931872546672821, + 0.08820055425167084, + 0.05184897407889366, + -0.02005847916007042, + 0.04542212188243866, + -0.030288120731711388, + -0.012041673064231873, + -0.058913350105285645, + -0.010794056579470634, + -0.05675097927451134, + -0.053684256970882416, + -0.026349803432822227, + 0.010762011632323265, + 0.089112788438797, + -0.02302808128297329, + -0.027715425938367844, + 0.06155753880739212, + -0.05336911231279373, + 0.03030720353126526, + 0.047166936099529266, + 0.010137850418686867, + 0.011287245899438858, + -0.08667226880788803, + -0.05202798545360565, + 0.02901623025536537, + -0.010442557744681835, + 0.05318186804652214, + 0.05278075486421585, + 0.03072032891213894, + 0.007445366121828556, + 0.07861006259918213, + 0.06375391036272049, + 0.0005516544915735722, + -0.026715759187936783, + -0.06337056308984756, + 0.09740497171878815, + 0.10956341028213501, + -0.04964444041252136, + 0.0407428964972496, + -0.0003967657685279846, + 0.039645757526159286, + -0.01401291973888874, + -0.10797692835330963, + -0.03048950433731079, + 0.0006152484565973282, + 0.050987523049116135, + 0.030641769990324974, + 0.10672831535339355, + 0.029062816873192787, + 0.0520622543990612, + 0.07446759194135666, + -0.028189940378069878, + -0.05075071007013321, + -0.05501377955079079, + 0.03480115532875061, + -0.09697028249502182, + 0.06871119141578674, + 0.03955377638339996, + 0.027193769812583923, + 0.005783365108072758, + 0.07503387331962585, + 0.01007310301065445, + 0.009224120527505875, + -0.04262863099575043, + 0.006299678236246109, + 0.025967424735426903, + -0.006247186101973057, + 0.043900266289711, + 0.05639313906431198, + -0.008831813000142574, + 0.10313312709331512, + 0.033233642578125, + 0.010255120694637299, + -0.09374222904443741, + 0.04032016545534134, + 0.008093034848570824, + 0.04000284895300865, + -0.0517435185611248, + -0.032055214047431946, + 0.02673550881445408, + -0.0746106207370758, + -0.0048705581575632095, + -0.018290644511580467, + 0.061789728701114655, + 0.013421861454844475, + -0.016090987250208855, + 0.08622059971094131, + 0.015592485666275024, + -0.007235540077090263, + 0.018917901441454887, + -0.005323478952050209, + -0.0019005760550498962, + 0.07276856899261475, + -0.13172996044158936, + -0.06415256857872009, + -0.002425233833491802, + 0.01210082694888115, + 0.027545087039470673, + 0.02959677204489708, + 0.10955505073070526, + -0.03130568936467171, + 0.04264047369360924, + -0.011558061465620995, + -0.0036917943507432938, + -0.05989084765315056, + -0.05101752281188965, + -0.021976713091135025, + -0.08806974440813065, + -0.058260489255189896, + 0.0745333731174469, + -0.025795953348279, + 0.049068886786699295, + -0.052847445011138916, + -0.03229995444417, + -0.05956869199872017, + 0.022989457473158836, + 0.026988033205270767, + -0.04920592159032822, + -0.01300679799169302, + 0.10437968373298645, + 0.023749232292175293, + -0.02082212083041668, + 0.04441311955451965, + 0.07953150570392609, + -0.07751595228910446, + 0.0014803651720285416, + -0.0711224228143692, + 0.08944322168827057, + 0.09335390478372574, + -0.025321798399090767, + -0.06632337719202042, + -0.07104109972715378, + -0.06386034190654755, + 0.04492798447608948, + -0.04763428866863251, + -0.01699564978480339, + 0.032989297062158585, + -0.038258809596300125, + -0.05784458667039871, + -0.0793478935956955, + 0.08160287886857986, + -0.05243944376707077, + 0.0033914465457201004, + -0.052534617483615875, + 0.015824686735868454, + 0.02074095606803894, + 0.06124778836965561, + -0.0765281394124031, + 0.051489442586898804, + 0.033592574298381805, + -0.031927138566970825, + 0.021895835176110268, + 0.0362342894077301, + 0.03668513149023056, + -0.0640970841050148, + -0.05757332593202591, + -0.055847086012363434, + 0.037555575370788574, + -0.060103073716163635, + 0.05226214975118637, + 0.022088661789894104, + -0.036174941807985306, + -0.051780179142951965, + -0.00021217763423919678, + -0.016391150653362274, + 0.025964174419641495, + 0.09227732568979263, + 0.08194012194871902, + 0.03681248053908348, + -0.05572652444243431, + 0.05870746076107025, + 0.053479552268981934, + 0.031480200588703156, + -0.052254222333431244, + 0.017325764521956444, + -0.013203416019678116, + 0.04549732059240341, + 0.03555392101407051, + -0.06641463190317154, + 0.062012121081352234, + 0.003890520893037319, + 0.003987109288573265, + 0.028409229591488838, + 0.036373719573020935, + 0.04860718920826912, + -0.08962382376194 + ] + }, + "p244_072.wav": { + "name": "p244", + "embedding": [ + 0.05091477558016777, + 0.11082984507083893, + 0.051068346947431564, + -6.896443665027618e-05, + 0.004510428756475449, + 0.02594395913183689, + -0.04000703990459442, + 0.08396007865667343, + 0.05519246309995651, + 0.03307126834988594, + -0.09776068478822708, + 0.0557841882109642, + -0.061339594423770905, + -0.10850565135478973, + -0.00012551993131637573, + 0.030610868707299232, + -0.0343116819858551, + 0.0137474425137043, + -0.04527265951037407, + -0.0024438651744276285, + -0.024632621556520462, + -0.026822201907634735, + 0.02566588670015335, + 0.01287630945444107, + -0.020881423726677895, + 0.012098722159862518, + -0.032319575548172, + 0.012072020210325718, + -0.00538181746378541, + -0.008382931351661682, + 0.013652271591126919, + 0.04279010370373726, + -0.012426517903804779, + 0.010377652943134308, + 0.020282883197069168, + -0.02840505540370941, + 0.003805076703429222, + -0.03410978615283966, + -0.06279856711626053, + 0.04059663787484169, + -0.050617292523384094, + 0.04934890940785408, + 0.040801938623189926, + -0.04486571252346039, + 0.07830934226512909, + 0.04147917032241821, + -0.05824130028486252, + -0.005142692476511002, + -0.10169768333435059, + 0.09046393632888794, + 0.01140446774661541, + 0.012037391774356365, + -0.06532743573188782, + 0.013636242598295212, + 0.06930286437273026, + -0.040415309369564056, + -0.044998809695243835, + -0.028575116768479347, + 0.04460948333144188, + 0.024814743548631668, + 0.01968178153038025, + -0.020989829674363136, + -0.023300884291529655, + 0.02660304680466652, + 0.06825980544090271, + 0.02043815143406391, + 0.06954092532396317, + 0.0983593612909317, + -0.05290396884083748, + 0.028369782492518425, + 0.032488152384757996, + -0.0331563875079155, + 0.052240923047065735, + 0.002033014316111803, + -0.00991674792021513, + -0.015759840607643127, + 0.021839089691638947, + -0.021720899268984795, + 0.011581401340663433, + -0.0016735438257455826, + 0.0380132682621479, + 0.0005111955106258392, + 0.014836706221103668, + 0.026892144232988358, + -0.03513069450855255, + -0.009438976645469666, + 0.055736325681209564, + 0.060582391917705536, + 0.06524187326431274, + 0.05387242138385773, + -0.002449044259265065, + 0.07538674771785736, + -0.058331429958343506, + -0.07883276045322418, + -0.013998386450111866, + -0.024245578795671463, + 0.010735786519944668, + 0.012819748371839523, + 0.0171203650534153, + -0.0027646017260849476, + 0.08516664803028107, + 0.0024237781763076782, + 0.0030618617311120033, + 0.01611291989684105, + -0.07569067180156708, + 0.014593832194805145, + 0.03155166283249855, + -0.021580228582024574, + 0.04565523564815521, + 0.038734547793865204, + 0.05454707145690918, + 0.05893401801586151, + -0.026516977697610855, + 0.01660340465605259, + 0.010513239540159702, + 0.041991882026195526, + 0.020761560648679733, + 0.09022515267133713, + 0.00021610985277220607, + 0.03162631392478943, + 0.11191713809967041, + -0.05030633881688118, + 0.03419942408800125, + 0.0578744001686573, + -0.014067539945244789, + -0.007369965314865112, + 0.04264577478170395, + 0.007035624235868454, + 0.003830372355878353, + -0.009351001121103764, + 0.043671220541000366, + 0.029724854975938797, + -0.001637422014027834, + -0.06448015570640564, + 0.013684873469173908, + 0.016040632501244545, + 0.0004542004317045212, + -0.0029164364095777273, + 0.017174653708934784, + 0.05282069742679596, + -0.009367251768708229, + 0.048460058867931366, + -0.04815210774540901, + -0.03313309699296951, + 0.027842078357934952, + -0.005812202580273151, + 0.02107108384370804, + 0.04077579826116562, + -0.016027728095650673, + -0.059943415224552155, + 0.02154986746609211, + 0.05715598538517952, + -0.020085208117961884, + 0.051889996975660324, + 0.05069435387849808, + -0.014212406240403652, + 0.05441562086343765, + 0.014320979826152325, + 0.03053002804517746, + -0.054683975875377655, + -0.08944999426603317, + -0.023147616535425186, + 0.040887556970119476, + -0.06970347464084625, + -0.014076425693929195, + -0.02496548369526863, + -0.022463548928499222, + 0.018935494124889374, + 0.0006937161087989807, + 0.0747917890548706, + -0.030357692390680313, + -0.010939407162368298, + -0.050109103322029114, + 0.024446573108434677, + -0.005866717547178268, + -0.11105966567993164, + 0.051256075501441956, + 0.02396795153617859, + 0.028293127194046974, + 0.04782991111278534, + -0.0033507151529192924, + 0.013028092682361603, + -0.03827323392033577, + -0.06591889262199402, + 0.010163530707359314, + 0.04859050735831261, + 0.015476723201572895, + -0.010164043866097927, + 0.056660957634449005, + 0.04535314440727234, + -0.049201227724552155, + 0.05555194988846779, + -0.00920093059539795, + 0.05638732761144638, + -0.056285761296749115, + 0.01770615205168724, + 0.027490660548210144, + 0.029073908925056458, + 0.052364032715559006, + -0.04126725718379021, + -0.11722627282142639, + -0.021119151264429092, + -0.02100757136940956, + 0.0005582878366112709, + -0.0005367044359445572, + 0.0036107914056628942, + 0.048533424735069275, + -0.004896373022347689, + -0.007967781275510788, + -0.1081191897392273, + -0.003447897732257843, + 0.0002133697271347046, + 0.009057855233550072, + -0.034529320895671844, + 0.013528825715184212, + -0.00154181569814682, + 0.0035048341378569603, + -0.02506220154464245, + 0.02238447777926922, + 0.001650981605052948, + 0.013996691443026066, + -0.05007544159889221, + -0.005328020080924034, + 0.04637805372476578, + 0.007008839398622513, + -0.029255885630846024, + -0.05403870344161987, + 0.054928045719861984, + 0.045772429555654526, + 0.08533405512571335, + 0.031425803899765015, + 0.014947559684515, + -0.02466295287013054, + 0.012441747821867466, + -0.032198794186115265, + 0.029913613572716713, + -0.02174210734665394, + 0.028558528050780296, + 0.05295272916555405, + 0.007579335011541843, + 0.060258980840444565, + 0.03201170638203621, + -0.017680102959275246, + -0.01360813993960619, + -0.0015189871191978455, + -0.08491042256355286, + -0.028589241206645966, + -0.00767325796186924, + -0.03906512260437012, + -0.007060392759740353, + 0.012488571926951408, + 0.054467055946588516, + 0.03447853773832321, + 0.07207818329334259, + 0.020658820867538452, + -0.030700940638780594 + ] + }, + "p244_371.wav": { + "name": "p244", + "embedding": [ + 0.03227641433477402, + 0.07893455028533936, + -0.003008049912750721, + -0.02006196603178978, + -0.012401927262544632, + 0.020664788782596588, + -0.13638852536678314, + 0.07639500498771667, + -0.022286780178546906, + 0.1394807994365692, + -0.05815175175666809, + 0.09103092551231384, + -0.017967024818062782, + -0.13092158734798431, + -0.026399848982691765, + 0.03507838025689125, + -0.07203131169080734, + -0.009481187909841537, + -0.010336998850107193, + -0.06760882586240768, + 0.03291138634085655, + 0.006558132357895374, + 0.04447223246097565, + -0.06333409249782562, + -0.005651502870023251, + 0.06446963548660278, + 0.025199880823493004, + 0.015213461592793465, + 0.021492887288331985, + -0.025948047637939453, + 0.017750808969140053, + 0.06744347512722015, + -0.010210562497377396, + 0.007555130869150162, + 0.051741406321525574, + 0.0046320101246237755, + -0.013758942484855652, + -0.015026512555778027, + 0.022221513092517853, + 0.0648978129029274, + -0.03392181172966957, + 0.08260823786258698, + 0.04356994479894638, + 0.004897799808532, + 0.06078849732875824, + -0.0277726911008358, + -0.0462493970990181, + 0.01788242533802986, + -0.05303872004151344, + 0.1206045150756836, + 0.06604209542274475, + -0.004654387012124062, + -0.06057612597942352, + 0.010613691061735153, + 0.09292103350162506, + -0.0040059383027255535, + -0.1242314949631691, + -0.00563264824450016, + 0.03555014356970787, + 0.10576723515987396, + -0.03464776650071144, + -0.04644881188869476, + 0.0024156481958925724, + 0.10119637846946716, + -0.0018182694911956787, + 0.06835620105266571, + 0.09282024204730988, + 0.07859265804290771, + 0.004812122788280249, + 0.007401864975690842, + 0.054654866456985474, + 0.06204240769147873, + 0.017942586913704872, + -0.03141889348626137, + 0.05323202908039093, + -0.04748234152793884, + -0.007433713413774967, + -0.024028928950428963, + -0.003700780216604471, + -0.05373591184616089, + -0.05975489690899849, + -0.021994510665535927, + 0.005917379632592201, + 0.04507405683398247, + -0.009225860238075256, + 0.0019493326544761658, + 0.02532758191227913, + -0.020517483353614807, + 0.0316905602812767, + 0.0638870894908905, + 0.004317956045269966, + 0.0017329230904579163, + -0.04223298281431198, + -0.06712155044078827, + -0.007157105952501297, + -0.021823067218065262, + 0.06653784215450287, + 0.03614731505513191, + 0.03914476931095123, + 0.030541783198714256, + 0.0668286606669426, + 0.07110290229320526, + -0.023772098124027252, + -0.010852713137865067, + -0.07836492359638214, + 0.0844816267490387, + 0.10738882422447205, + -0.03860627859830856, + 0.02868693321943283, + -0.021105684340000153, + 0.04606686905026436, + -0.00011913105845451355, + -0.08615939319133759, + -0.025819644331932068, + 0.018519770354032516, + 0.07057251036167145, + 0.018239911645650864, + 0.10097189247608185, + 0.008362851105630398, + 0.016340095549821854, + 0.08805924654006958, + -0.0026069916784763336, + -0.042908355593681335, + -0.07718533277511597, + 0.042381614446640015, + -0.07085731625556946, + 0.05826074630022049, + 0.03642083704471588, + 0.029401075094938278, + -0.005581636913120747, + 0.07468406856060028, + 0.0231492817401886, + 0.0003915046399924904, + -0.05088362470269203, + 0.005963008850812912, + 0.06247413903474808, + -0.006602025590837002, + 0.050059158354997635, + 0.058450911194086075, + 0.020052675157785416, + 0.09255939722061157, + 0.053725678473711014, + -0.008070921525359154, + -0.060385435819625854, + 0.022250596433877945, + 0.01926630735397339, + 0.020541919395327568, + -0.035011403262615204, + -0.04660602658987045, + -0.009186917915940285, + -0.06800634413957596, + -0.0007893447764217854, + -0.03717979043722153, + 0.07326235622167587, + 0.011153215542435646, + -0.022582361474633217, + 0.1033172607421875, + 0.0005239443853497505, + -0.015004586428403854, + 0.0018104743212461472, + -0.021707868203520775, + -0.0069784484803676605, + 0.05017644912004471, + -0.16441015899181366, + -0.053960446268320084, + -0.013316246680915356, + 0.03525568172335625, + 0.01271000038832426, + -0.0021763681434094906, + 0.07563194632530212, + -0.020028769969940186, + 0.039418213069438934, + -0.0026795826852321625, + 0.008740264922380447, + -0.0803966149687767, + -0.06385741382837296, + -0.035338547080755234, + -0.07374973595142365, + -0.03639139235019684, + 0.05982355400919914, + -0.03856709972023964, + 0.04521141201257706, + -0.011947247199714184, + -0.06854445487260818, + -0.03994475677609444, + 0.06963108479976654, + 0.0475093349814415, + -0.03724616765975952, + 0.020763475447893143, + 0.0793621614575386, + -0.0019649025052785873, + 0.009077351540327072, + 0.024843920022249222, + 0.08805812895298004, + -0.0656127855181694, + -0.0009819060796871781, + -0.07022621482610703, + 0.046319104731082916, + 0.0814773365855217, + -0.06484180688858032, + -0.06355142593383789, + -0.05763907730579376, + -0.039179425686597824, + 0.036811403930187225, + -0.049308329820632935, + -0.02700643055140972, + 0.0033810893073678017, + -0.022560294717550278, + -0.06166971102356911, + -0.08655437082052231, + 0.04492838680744171, + -0.04982927441596985, + -0.0020562559366226196, + -0.040295813232660294, + 0.029725197702646255, + 0.03380037844181061, + 0.030435828492045403, + -0.05710452422499657, + 0.05291185900568962, + 0.005867356434464455, + -0.04476577416062355, + -0.0017581810243427753, + -0.0075097717344760895, + 0.04464172571897507, + -0.04374231398105621, + -0.04347284883260727, + -0.07547937333583832, + 0.053342245519161224, + -0.053910695016384125, + 0.06947334855794907, + 0.009540295228362083, + -0.04560142010450363, + -0.016805680468678474, + -0.023156872019171715, + -0.038032419979572296, + 0.037289898842573166, + 0.07728054374456406, + 0.05242393910884857, + 0.007996432483196259, + -0.03643183782696724, + 0.09355387836694717, + 0.03745007514953613, + 0.01697434112429619, + -0.04983559250831604, + 0.03119225986301899, + -0.03829854726791382, + 0.012120218947529793, + 0.03494340926408768, + -0.07356956601142883, + 0.029912598431110382, + -0.015489637851715088, + -0.00717683881521225, + 0.040845803916454315, + 0.06143088638782501, + 0.03821150213479996, + -0.05639513581991196 + ] + }, + "p244_237.wav": { + "name": "p244", + "embedding": [ + 0.062478117644786835, + 0.08805671334266663, + -0.02701466903090477, + 0.03598133474588394, + -0.07690879702568054, + 0.06420727074146271, + -0.12137028574943542, + 0.15541139245033264, + -0.03752361610531807, + 0.12034769356250763, + -0.05400796979665756, + 0.15097662806510925, + -0.011816158890724182, + -0.16544224321842194, + -0.009200764819979668, + 0.05478277802467346, + -0.03287597373127937, + -0.02415657415986061, + -0.03408486023545265, + -0.025752220302820206, + 0.03161536902189255, + 0.016185950487852097, + 0.048119641840457916, + -0.004026359878480434, + 0.027900943532586098, + 0.07276415824890137, + -0.005021668039262295, + 0.037588223814964294, + 0.013086924329400063, + -0.06067211925983429, + -0.053979743272066116, + 0.08161202073097229, + -0.061278510838747025, + 0.0006353624630719423, + 0.05743684619665146, + -0.03418692946434021, + -0.016989169642329216, + -0.07235880941152573, + -0.024300675839185715, + -0.005221587140113115, + -0.028233444318175316, + 0.07381439208984375, + 0.025142934173345566, + -0.046350352466106415, + 0.043835945427417755, + 0.010748608969151974, + -0.012153811752796173, + -0.021170055493712425, + -0.11025504767894745, + 0.13349317014217377, + 0.069571852684021, + 0.002749471925199032, + -0.08233949542045593, + -0.048098716884851456, + 0.104718878865242, + -0.013645684346556664, + -0.10558249056339264, + -0.03026825562119484, + 0.057154491543769836, + 0.14035625755786896, + -0.036229223012924194, + -0.027161872014403343, + 0.03229169920086861, + 0.09954825043678284, + 0.0756656602025032, + 0.08606154471635818, + 0.08958965539932251, + 0.12150564789772034, + -0.03269243612885475, + 0.04268181324005127, + 0.04451560229063034, + 0.08201420307159424, + 0.04899541288614273, + -0.00022266758605837822, + 0.02575509063899517, + -0.013191865757107735, + -0.01470563467592001, + -0.019229203462600708, + -0.029503345489501953, + -0.03195473551750183, + -0.011629972606897354, + 0.009657690301537514, + 0.0330524742603302, + 0.029375743120908737, + -0.031165163964033127, + 0.08170977234840393, + 0.04960762336850166, + -0.01955675147473812, + 0.053336236625909805, + 0.021318037062883377, + -0.0055083041079342365, + 0.07204363495111465, + -0.10473954677581787, + -0.09303762763738632, + 0.042858708649873734, + 0.0008611101657152176, + 0.031141679733991623, + 0.07449442148208618, + 0.04478573799133301, + -0.008067564107477665, + 0.11609692871570587, + 0.07905703037977219, + -0.009608324617147446, + 0.033123329281806946, + -0.06986745446920395, + 0.1358831226825714, + 0.09568972885608673, + -0.033319856971502304, + 0.05726880580186844, + -0.05880068242549896, + 0.08086007833480835, + 0.05691419541835785, + -0.1282206028699875, + -0.07169242203235626, + 0.013588154688477516, + -0.00384822441264987, + -0.017541950568556786, + 0.1223708838224411, + -0.0063660042360424995, + 0.06443572044372559, + 0.10724899917840958, + -0.08622677624225616, + -0.057326652109622955, + -0.01775958761572838, + 0.051261596381664276, + -0.0701296254992485, + 0.06919596344232559, + 0.05582398921251297, + -0.009145856834948063, + 0.02050151117146015, + 0.0777398869395256, + -0.01273889560252428, + -0.009545340202748775, + 0.046829573810100555, + -0.04941624402999878, + 0.011287465691566467, + -0.01271025463938713, + -0.006767892278730869, + 0.045659709721803665, + 0.02967599779367447, + 0.041732121258974075, + -0.0246922355145216, + 0.005342630669474602, + -0.10961102694272995, + 0.01791636273264885, + 0.035969555377960205, + 0.07793932408094406, + -0.014361567795276642, + -0.030218031257390976, + -0.029936406761407852, + -0.0731051042675972, + 0.0035858757328242064, + -0.005743669345974922, + 0.059719935059547424, + -0.03382924944162369, + 0.01874733529984951, + 0.07892933487892151, + 0.04624543339014053, + 0.008689455687999725, + -0.05614771693944931, + -0.03463371470570564, + 0.028909631073474884, + 0.059867795556783676, + -0.07605750113725662, + -0.0788099616765976, + -0.02278270199894905, + 0.02078505977988243, + -0.04565538465976715, + 0.0618792399764061, + 0.04627395421266556, + 0.02144698053598404, + 0.024966023862361908, + -0.06481112539768219, + 0.018386628478765488, + -0.09612500667572021, + -0.059061888605356216, + -0.009723568335175514, + -0.01764582097530365, + -0.03347139433026314, + 0.06480272859334946, + 0.03506843000650406, + 0.0765841156244278, + -0.02614673599600792, + -0.049033064395189285, + -0.08097899705171585, + 0.04008316993713379, + 0.04488355293869972, + -0.012902098707854748, + 0.045022401958703995, + 0.06370033323764801, + -0.01737222447991371, + 0.04609743505716324, + 0.06887859851121902, + 0.07918258756399155, + -0.026797780767083168, + 0.002684700768440962, + -0.0785614401102066, + 0.09555377066135406, + 0.10551431775093079, + -0.08648798614740372, + -0.09077871590852737, + -0.04114428535103798, + -0.06787050515413284, + 0.03233399987220764, + -0.036318860948085785, + -0.0015345574356615543, + 0.04481567442417145, + 0.003793739713728428, + -0.10578152537345886, + -0.10483092069625854, + 0.10364645719528198, + -0.0776587724685669, + 0.008925843052566051, + -0.0856873095035553, + 0.04074029624462128, + 0.09557828307151794, + 0.008781029842793941, + -0.04159076511859894, + -0.014469398185610771, + 0.04487713426351547, + -0.00967913307249546, + 0.021334808319807053, + 0.05455067753791809, + 0.05536310374736786, + -0.1128218024969101, + -0.0036477381363511086, + -0.04945822060108185, + 0.041252292692661285, + -0.03801654651761055, + 0.16559556126594543, + 0.012511742301285267, + -0.03287249058485031, + -0.0847829058766365, + 0.0574336051940918, + -0.010976465418934822, + 0.04984276741743088, + 0.041278913617134094, + 0.07160691171884537, + 0.02191673219203949, + -0.09028167277574539, + 0.1194876953959465, + 0.03112691268324852, + -0.05098661035299301, + -0.08122666925191879, + -0.044997625052928925, + -0.04622385650873184, + 0.03200463950634003, + 0.01595987007021904, + -0.09011881053447723, + -0.025714095681905746, + 0.018508657813072205, + -0.007140908390283585, + 0.061176598072052, + 0.14482010900974274, + 0.06545878201723099, + -0.09433522820472717 + ] + }, + "p244_150.wav": { + "name": "p244", + "embedding": [ + 0.05445127934217453, + 0.09504492580890656, + -0.017335087060928345, + 0.0005590729415416718, + -0.006677444092929363, + 0.04324043542146683, + -0.1598438173532486, + 0.1521265208721161, + 0.015800952911376953, + 0.1326429843902588, + -0.048835158348083496, + 0.0989331379532814, + -0.005136210471391678, + -0.14589878916740417, + -0.04850536957383156, + 0.011442350223660469, + -0.030728237703442574, + 0.014277603477239609, + -0.05103939399123192, + -0.01851794309914112, + 0.045180030167102814, + 0.03869707137346268, + 0.033563558012247086, + -0.06366416066884995, + 0.025235624983906746, + 0.029222752898931503, + 0.017475837841629982, + 0.06741766631603241, + 0.02338658645749092, + -0.06970561295747757, + 0.024240758270025253, + 0.09504877775907516, + -0.05197633430361748, + 0.033248111605644226, + 0.07017750293016434, + -0.013887058012187481, + -0.024386439472436905, + -0.048670120537281036, + -0.01240481436252594, + 0.029740747064352036, + -0.024747541174292564, + 0.07934467494487762, + 0.01621522381901741, + -0.005670198705047369, + 0.053112003952264786, + 0.03493073582649231, + 0.009446266107261181, + -0.056866712868213654, + -0.08870917558670044, + 0.17104384303092957, + 0.042898599058389664, + 0.01768159680068493, + -0.10744079947471619, + -0.05929476022720337, + 0.06378844380378723, + -0.047138895839452744, + -0.07429944723844528, + -0.03783268854022026, + 0.04104207083582878, + 0.11972683668136597, + -0.02845608815550804, + -0.05077710002660751, + 0.03715653344988823, + 0.10548093914985657, + 0.05520070344209671, + 0.043782852590084076, + 0.09991559386253357, + 0.10533083975315094, + -0.01836565136909485, + 0.04458494111895561, + -0.00521993450820446, + 0.06749764829874039, + 0.03679005801677704, + 0.01765529438853264, + 0.02865200862288475, + -0.008177322335541248, + -0.007171163335442543, + -0.03467854857444763, + -0.04015803709626198, + -0.0035336739383637905, + 0.018306873738765717, + 0.04459645599126816, + 0.002496963134035468, + 0.061544694006443024, + -0.03148921951651573, + 0.050127506256103516, + 0.0038662105798721313, + -0.03732423856854439, + 0.05701339617371559, + 0.03474909067153931, + 0.04054331034421921, + 0.027622219175100327, + -0.08793716132640839, + -0.11432887613773346, + 0.0007522208616137505, + -0.01896682381629944, + 0.003803498111665249, + 0.038041431456804276, + 0.02822987735271454, + -0.012858950532972813, + 0.10713546723127365, + 0.03951896354556084, + -0.05070802941918373, + 0.01302795298397541, + -0.07655227929353714, + 0.10519850254058838, + 0.07445921003818512, + -0.012636429630219936, + 0.033837221562862396, + -0.09579169750213623, + 0.03084684908390045, + 0.0460226908326149, + -0.11251669377088547, + -0.08904886990785599, + 0.05482660233974457, + 0.026281513273715973, + 0.014545917510986328, + 0.12108919024467468, + 0.01869647018611431, + 0.03808961808681488, + 0.09633824229240417, + -0.06543208658695221, + -0.042110469192266464, + -0.03323754668235779, + 0.0576302707195282, + -0.05046115070581436, + 0.052969273179769516, + 0.030514420941472054, + 0.0023071318864822388, + -0.007951482199132442, + 0.08881241083145142, + 0.0023535944055765867, + 0.020196449011564255, + -0.021460825577378273, + -0.010890054516494274, + 0.04041213542222977, + -0.038867317140102386, + -0.013536549173295498, + 0.009058648720383644, + 0.07553917914628983, + 0.05397619679570198, + 0.023913858458399773, + -0.06078393757343292, + -0.08743506669998169, + -0.0055031250230968, + 0.02007358893752098, + 0.07694711536169052, + -0.040580905973911285, + -0.026430224999785423, + -0.04195965453982353, + -0.02747427113354206, + 0.0014347780961543322, + -0.00816923938691616, + 0.05164854973554611, + 0.004903111141175032, + -0.001956344349309802, + 0.1120600700378418, + -0.01691797375679016, + 0.02195458672940731, + -0.00655318982899189, + 0.0007120408117771149, + -0.018527142703533173, + 0.03203348070383072, + -0.05274778604507446, + -0.07529155910015106, + -0.009422887116670609, + 0.0026912791654467583, + -0.01571531407535076, + 0.054356373846530914, + 0.036526329815387726, + 0.019234666600823402, + 0.0369151309132576, + -0.053116705268621445, + -0.03291326388716698, + -0.10476283729076385, + -0.057671964168548584, + -0.008893082849681377, + -0.0005948860198259354, + -0.04530104622244835, + 0.07100029289722443, + 0.018888205289840698, + 0.05772804468870163, + -0.01787591353058815, + -0.06595436483621597, + -0.07405616343021393, + 0.04277785122394562, + 0.06701213121414185, + -0.01245732419192791, + 0.018164178356528282, + 0.03243707865476608, + -0.009980788454413414, + 0.06199754774570465, + 0.0889868512749672, + 0.04605251923203468, + -0.022417619824409485, + -0.007732506841421127, + -0.09337057173252106, + 0.1175006777048111, + 0.07790759950876236, + -0.06739962846040726, + -0.08892644941806793, + -0.00017318621394224465, + -0.08638440817594528, + -0.031016670167446136, + -0.026220280677080154, + 0.025334432721138, + 0.051826294511556625, + -0.015674695372581482, + -0.0880260020494461, + -0.07810349017381668, + 0.050383590161800385, + -0.09572884440422058, + -0.008797546848654747, + -0.045625604689121246, + 0.020948154851794243, + 0.10767039656639099, + 0.03592601791024208, + -0.0036805658601224422, + -0.05265194922685623, + 0.03810866177082062, + -0.038443513214588165, + -0.01184895634651184, + 0.023958120495080948, + 0.019777752459049225, + -0.08414611220359802, + 0.03260072320699692, + -0.03366226702928543, + 0.03722888231277466, + -0.061745695769786835, + 0.09403915703296661, + 0.018213409930467606, + -0.0672248899936676, + -0.07968960702419281, + 0.023506173864006996, + -0.05182614177465439, + 0.053563233464956284, + -0.010357051156461239, + 0.03555510565638542, + 0.04073306918144226, + -0.07910112291574478, + 0.11850571632385254, + 0.03808992728590965, + -0.037928007543087006, + -0.09998872876167297, + -0.10208195447921753, + -0.02480815351009369, + 0.04088554158806801, + 0.023231646046042442, + -0.05354025959968567, + -0.00515914848074317, + 0.012200551107525826, + -0.033005621284246445, + 0.035563550889492035, + 0.12522609531879425, + 0.032806456089019775, + -0.12793779373168945 + ] + }, + "p244_123.wav": { + "name": "p244", + "embedding": [ + 0.047935813665390015, + 0.09868910163640976, + -0.02358902618288994, + 0.039254672825336456, + -0.08080698549747467, + 0.01979684643447399, + -0.1290421485900879, + 0.14838680624961853, + -0.01925787329673767, + 0.09545451402664185, + -0.0655849352478981, + 0.15221551060676575, + -0.026543449610471725, + -0.1803678274154663, + -0.031248360872268677, + 0.07790245115756989, + -0.022635377943515778, + -0.042884618043899536, + -0.011101074516773224, + -0.024351127445697784, + 0.018490398302674294, + 0.02723417431116104, + 0.06314945220947266, + 0.03816467151045799, + 0.026572411879897118, + 0.08199214190244675, + 0.016079099848866463, + 0.06612670421600342, + 0.03773189336061478, + -0.026156505569815636, + -0.049615275114774704, + 0.07632870972156525, + -0.04222646355628967, + -0.007784062065184116, + 0.05659156292676926, + -0.020539313554763794, + 0.010034045204520226, + -0.0572444312274456, + -0.02125987783074379, + -0.006358354352414608, + -0.03878733515739441, + 0.08554770797491074, + 0.02923593483865261, + -0.041204482316970825, + 0.04980042204260826, + 0.034969545900821686, + -0.012981700710952282, + -0.031637709587812424, + -0.136001318693161, + 0.12609539926052094, + 0.06247280538082123, + 0.0049299378879368305, + -0.0876971036195755, + -0.04676724597811699, + 0.0985020250082016, + -0.050785817205905914, + -0.08533252775669098, + -0.04530923813581467, + 0.07116612046957016, + 0.13595515489578247, + -0.027138888835906982, + -0.028523694723844528, + 0.02811417728662491, + 0.12468639016151428, + 0.08511309325695038, + 0.07142630219459534, + 0.07455113530158997, + 0.11343652009963989, + -0.04902837797999382, + 0.016779478639364243, + 0.05108056589961052, + 0.08679787814617157, + 0.02159731835126877, + 0.00569456210359931, + 0.0042259581387043, + 0.0007285761530511081, + -0.009510291740298271, + 0.006272531114518642, + -0.02393496036529541, + -0.018868491053581238, + -0.04187668487429619, + 0.012432875111699104, + -0.008963399566709995, + 0.011986427009105682, + -0.022273089736700058, + 0.1004435271024704, + 0.042855530977249146, + -0.00926428847014904, + 0.06705661863088608, + 0.03570529818534851, + -0.02310272864997387, + 0.06416408717632294, + -0.08750297874212265, + -0.0670657679438591, + 0.011473655700683594, + -0.015031831339001656, + 0.024471379816532135, + 0.0659395381808281, + 0.037837572395801544, + -0.0075630322098731995, + 0.1322927474975586, + 0.08378434181213379, + -0.010745341889560223, + 0.040007565170526505, + -0.06994685530662537, + 0.1312371790409088, + 0.08377501368522644, + -0.02062736451625824, + 0.05747717618942261, + -0.034366365522146225, + 0.04676353931427002, + 0.05633261054754257, + -0.11159484088420868, + -0.06889460235834122, + 0.015194023959338665, + 0.012482589110732079, + -0.017916742712259293, + 0.10312461107969284, + -0.02651827782392502, + 0.059082500636577606, + 0.10515463352203369, + -0.06520505249500275, + -0.06996916234493256, + -0.012537147849798203, + 0.04434474557638168, + -0.0749981477856636, + 0.060916464775800705, + 0.0659603402018547, + 0.00183815136551857, + 0.00949239544570446, + 0.08374138176441193, + 0.004408447537571192, + -0.008399765007197857, + 0.04493667930364609, + -0.06115281209349632, + 0.00882935244590044, + -0.009041817858815193, + -0.011205955408513546, + 0.06833150237798691, + 0.04499555379152298, + 0.044427044689655304, + 0.005526232998818159, + -0.0013271027710288763, + -0.13187739253044128, + 0.0029732505790889263, + 0.03732961416244507, + 0.09435002505779266, + 0.0006489133229479194, + -0.04298786818981171, + -0.051117103546857834, + -0.04414571449160576, + -0.007264079060405493, + 0.020839324221014977, + 0.06787355244159698, + -0.0624614879488945, + 0.008336108177900314, + 0.08739246428012848, + 0.01971442624926567, + 0.008241701871156693, + -0.04189733415842056, + -0.020518694072961807, + 0.006500543095171452, + 0.0513586699962616, + -0.0604424886405468, + -0.08609747886657715, + -0.012232346460223198, + 0.046607114374637604, + -0.0355626605451107, + 0.06916355341672897, + 0.04407934471964836, + 0.012806417420506477, + 0.020992964506149292, + -0.05804038792848587, + 0.023951802402734756, + -0.07645511627197266, + -0.05613651126623154, + -0.02277601882815361, + 0.012747762724757195, + -0.039644304662942886, + 0.055075209587812424, + 0.05049785226583481, + 0.08725063502788544, + 0.0011182089801877737, + -0.07058509439229965, + -0.09501567482948303, + 0.04005023092031479, + 0.06036540865898132, + 0.004332630895078182, + 0.06460879743099213, + 0.05896572768688202, + -0.036681003868579865, + 0.06764934957027435, + 0.055881284177303314, + 0.06115977466106415, + -0.028115984052419662, + -0.00039863772690296173, + -0.06316331028938293, + 0.057546548545360565, + 0.09326006472110748, + -0.11558821052312851, + -0.07488150149583817, + -0.03998482972383499, + -0.056760214269161224, + 0.04024461284279823, + -0.01527421921491623, + 0.017751840874552727, + 0.047286100685596466, + 0.001247235108166933, + -0.1040644496679306, + -0.11439242213964462, + 0.08464350551366806, + -0.07662586867809296, + 0.017329208552837372, + -0.0555596649646759, + 0.0290832556784153, + 0.09408316016197205, + 0.00019073513976763934, + -0.02277049422264099, + -0.029403764754533768, + 0.03492112457752228, + -0.015735380351543427, + -0.0010919775813817978, + 0.06162617728114128, + 0.04125378653407097, + -0.10668320953845978, + 0.00865055900067091, + -0.06471343338489532, + 0.06943607330322266, + -0.023811817169189453, + 0.16725806891918182, + 0.021339697763323784, + -0.032372549176216125, + -0.09002547711133957, + 0.016651824116706848, + -0.0340128093957901, + 0.06592398881912231, + 0.03635784238576889, + 0.054862987250089645, + 0.011859702877700329, + -0.06403880566358566, + 0.13180667161941528, + 0.05661667138338089, + -0.07817618548870087, + -0.08639197051525116, + -0.03598418086767197, + -0.04523245990276337, + 0.04229831323027611, + 0.04203055053949356, + -0.090467169880867, + -0.03499970957636833, + 0.00952528603374958, + -0.03472364693880081, + 0.07906821370124817, + 0.14434456825256348, + 0.07129251956939697, + -0.086697518825531 + ] + }, + "p244_279.wav": { + "name": "p244", + "embedding": [ + 0.0520191453397274, + 0.06683322042226791, + -0.05218029022216797, + 0.009071988984942436, + -0.00949503667652607, + 0.018779944628477097, + -0.1245230883359909, + 0.07804550975561142, + -0.056330606341362, + 0.13133792579174042, + -0.07470617443323135, + 0.08096323162317276, + -0.020086199045181274, + -0.13068002462387085, + -0.054525647312402725, + 0.032097481191158295, + -0.04229017347097397, + -0.019590429961681366, + -0.07944805175065994, + -0.025222357362508774, + 0.035048045217990875, + 0.05781761556863785, + 0.025801002979278564, + -0.05447918176651001, + 0.012016301974654198, + 0.0608753003180027, + 0.012441380880773067, + 0.017905104905366898, + 0.007546348962932825, + -0.007106134667992592, + 0.01191239058971405, + 0.0835629403591156, + -0.03399771451950073, + -0.010156111791729927, + 0.012086132541298866, + 0.03906512260437012, + -0.00043959449976682663, + -0.06790551543235779, + 0.010043170303106308, + 0.016791533678770065, + -0.042105402797460556, + 0.054084762930870056, + 0.03865585848689079, + -0.022079667076468468, + 0.0368582159280777, + -0.0146127725020051, + -0.03163152188062668, + -0.07022309303283691, + -0.08575502783060074, + 0.17867203056812286, + 0.07932297885417938, + 0.04412449896335602, + -0.07738173007965088, + -0.03472016006708145, + 0.10072579979896545, + 0.004298762418329716, + -0.06597690284252167, + -0.07603298127651215, + 0.016661036759614944, + 0.1536272019147873, + -0.024027584120631218, + -0.03949277848005295, + 0.020423799753189087, + 0.09840992093086243, + 0.005495581775903702, + 0.03965126350522041, + 0.10977207124233246, + 0.05614548176527023, + 0.019403541460633278, + 0.024645822122693062, + 0.0408913716673851, + 0.050808850675821304, + 0.030882734805345535, + -0.05330682173371315, + 0.05576683208346367, + -0.02075422741472721, + -0.04296060651540756, + 0.0017399471253156662, + -0.026645533740520477, + -0.07209558039903641, + -0.0076570333912968636, + 0.015097926370799541, + 0.006781320553272963, + 0.02138354815542698, + -0.06528018414974213, + 0.029388809576630592, + 0.027205435559153557, + -0.058518312871456146, + 0.06716534495353699, + 0.038299545645713806, + -0.00743325287476182, + -0.024749377742409706, + -0.04626326262950897, + -0.08060380816459656, + 0.022845624014735222, + 0.006770520471036434, + -0.016435548663139343, + 0.030038874596357346, + 0.03380761295557022, + -0.026185167953372, + 0.07946860045194626, + 0.02947250008583069, + -0.019602373242378235, + -0.027460381388664246, + -0.06599431484937668, + 0.11118429154157639, + 0.1396806687116623, + -0.006802147254347801, + 0.0026200972497463226, + -0.032686181366443634, + 0.01057338248938322, + 0.06713508814573288, + -0.11419455707073212, + -0.07052184641361237, + 0.0548800453543663, + 0.030668586492538452, + 0.030700329691171646, + 0.07999694347381592, + 0.019764676690101624, + -0.009286267682909966, + 0.08549840748310089, + -0.08144000172615051, + -0.07725387811660767, + -0.060516178607940674, + 0.04315546527504921, + -0.07481749355792999, + 0.03985782712697983, + 0.07825423777103424, + -0.006186093669384718, + -0.037569183856248856, + 0.06172458082437515, + 0.012102059088647366, + -0.006403912790119648, + -0.04141402989625931, + 0.043237313628196716, + 0.054311491549015045, + -0.026584520936012268, + -0.04333289712667465, + 0.01529704686254263, + 0.0445157065987587, + 0.04538054019212723, + 0.021498408168554306, + -0.012310020625591278, + -0.0844266340136528, + 0.024476516991853714, + 0.06225130707025528, + 0.025506403297185898, + -0.03862001374363899, + -0.023227086290717125, + -0.030311886221170425, + -0.03701767325401306, + -0.015341464430093765, + -0.04773303493857384, + 0.09846585988998413, + 0.00785382091999054, + 0.029214119538664818, + 0.11849590390920639, + -0.05175226554274559, + -0.0027003567665815353, + -0.005204865708947182, + 0.04099271073937416, + 0.04894743859767914, + 0.013694122433662415, + -0.036463987082242966, + -0.07727885246276855, + 0.0074785854667425156, + 0.007762848865240812, + 0.006016571074724197, + 0.011575054377317429, + 0.022281501442193985, + -0.019407734274864197, + 0.006433653645217419, + -0.07725550979375839, + 0.01835590973496437, + -0.12018996477127075, + 0.003141818568110466, + -0.007673362269997597, + -0.07878651469945908, + 0.00708797387778759, + 0.08978602290153503, + 0.01866057701408863, + 0.013536175712943077, + -0.045769430696964264, + -0.11441882699728012, + -0.042273275554180145, + 0.08821281790733337, + 0.10511176288127899, + -0.015396878123283386, + -0.01159561425447464, + 0.024827174842357635, + 0.037263356149196625, + -0.008314723148941994, + 0.06436347216367722, + 0.06946414709091187, + -0.008239863440394402, + -0.07226821780204773, + -0.0398029088973999, + 0.08776760846376419, + 0.04970499873161316, + -0.09706464409828186, + -0.03450682386755943, + -0.05589821934700012, + -0.05155661329627037, + 0.01245830673724413, + -0.022623302415013313, + 0.02387787215411663, + 0.03990945219993591, + -0.039009034633636475, + -0.12075541913509369, + -0.09642039239406586, + 0.06341516971588135, + -0.040683284401893616, + -0.008881762623786926, + -0.04353077709674835, + 0.034678421914577484, + 0.06704499572515488, + 0.008364738896489143, + -0.009846445173025131, + -0.014528504572808743, + -0.02198714017868042, + -0.06812019646167755, + -0.0252497848123312, + -0.0285518616437912, + 0.0410170704126358, + -0.08738823235034943, + 0.031555213034152985, + -0.0722704827785492, + 0.0873974859714508, + -0.06831436604261398, + 0.08111992478370667, + 0.0020491108298301697, + -0.02732449769973755, + -0.11388514935970306, + 0.029330717399716377, + -0.018018225207924843, + 0.07232734560966492, + 0.049911100417375565, + 0.033157579600811005, + 0.02780042588710785, + -0.09500128030776978, + 0.08650533854961395, + 0.08225865662097931, + -0.005279342643916607, + -0.07847237586975098, + -0.02644912153482437, + -0.03823351860046387, + 0.022987350821495056, + 0.001889458973892033, + -0.010943258181214333, + -0.0028536678291857243, + 0.006852135527879, + -0.03145923465490341, + 0.0767761617898941, + 0.07135774195194244, + 0.022094519808888435, + -0.10847096145153046 + ] + }, + "p244_186.wav": { + "name": "p244", + "embedding": [ + 0.049780651926994324, + 0.09498939663171768, + -0.011941144242882729, + 0.025888066738843918, + -0.037194035947322845, + 0.05615521967411041, + -0.1325494647026062, + 0.13605374097824097, + -0.02295851707458496, + 0.13731497526168823, + -0.06083249673247337, + 0.09459879249334335, + -0.016566215083003044, + -0.15367192029953003, + -0.03788261115550995, + 0.04270133376121521, + -0.0591256245970726, + -0.023712610825896263, + -0.03981366753578186, + -0.0033279280178248882, + 0.039632685482501984, + 0.0440482571721077, + 0.020980030298233032, + -0.03662561997771263, + 0.044919371604919434, + 0.048804059624671936, + 0.020211923867464066, + 0.057196978479623795, + 0.03199577331542969, + -0.05255095660686493, + -0.015256383456289768, + 0.11538469046354294, + -0.04307785630226135, + 0.019466117024421692, + 0.03486809879541397, + -0.00032154936343431473, + -0.009850124828517437, + -0.07209324836730957, + -0.019919173792004585, + 0.017468048259615898, + -0.03899131715297699, + 0.08111665397882462, + 0.03616027906537056, + -0.008590081706643105, + 0.025768987834453583, + 0.014063315466046333, + -0.006635394878685474, + -0.06832893192768097, + -0.10622978955507278, + 0.1869138926267624, + 0.056873105466365814, + 0.007400006987154484, + -0.08579879999160767, + -0.07059236615896225, + 0.08114106953144073, + -0.0040430836379528046, + -0.10034534335136414, + -0.033646032214164734, + 0.06214534491300583, + 0.15712344646453857, + -0.023823387920856476, + -0.03319559618830681, + 0.018809616565704346, + 0.12001721560955048, + 0.057272713631391525, + 0.07024353742599487, + 0.08927302062511444, + 0.10318976640701294, + 0.0013709496706724167, + 0.04490320011973381, + 0.03413322567939758, + 0.05794113874435425, + 0.023188617080450058, + -0.00040143157821148634, + 0.02711189165711403, + -0.020066890865564346, + -0.03524855896830559, + 0.0030172038823366165, + -0.01195192988961935, + -0.02428671531379223, + 0.005008189473301172, + 0.02575261890888214, + 0.011594429612159729, + 0.056109216064214706, + -0.024052705615758896, + 0.05364781618118286, + 0.0024599097669124603, + -0.025418920442461967, + 0.07601740956306458, + 0.020341258496046066, + 0.013301611877977848, + 0.050985176116228104, + -0.07911110669374466, + -0.11158083379268646, + 0.009729173965752125, + -0.0071069360710680485, + 0.046111881732940674, + 0.06801579892635345, + 0.03950390964746475, + -0.026529837399721146, + 0.11196405440568924, + 0.04042007774114609, + -0.022448640316724777, + 0.014554007910192013, + -0.0860765278339386, + 0.11390452086925507, + 0.08796030282974243, + -0.016473572701215744, + 0.048987872898578644, + -0.060133930295705795, + 0.06924648582935333, + 0.04526021331548691, + -0.13611623644828796, + -0.07596048712730408, + 0.04822613671422005, + 0.022315096110105515, + -0.004644811153411865, + 0.12823879718780518, + 0.005842046346515417, + 0.031274229288101196, + 0.08919675648212433, + -0.09538307785987854, + -0.0461282804608345, + -0.021206222474575043, + 0.06171686202287674, + -0.07238461077213287, + 0.039248351007699966, + 0.05201123654842377, + -0.03691919893026352, + 0.0013806335628032684, + 0.06983670592308044, + -0.0011842255480587482, + 0.020656948909163475, + 0.00756952166557312, + -0.0357440784573555, + 0.05000495910644531, + -0.03807573765516281, + 0.0036224927753210068, + 0.031258419156074524, + 0.0527312308549881, + 0.0484200045466423, + 0.004734721500426531, + -0.047661200165748596, + -0.10588062554597855, + 0.0045497845858335495, + 0.04596410319209099, + 0.06315878033638, + -0.03719942271709442, + -0.030062830075621605, + -0.04634224250912666, + -0.051202692091464996, + 0.015086007304489613, + 0.004031861200928688, + 0.06949175894260406, + -0.003637679386883974, + -0.012160002253949642, + 0.1269933432340622, + 0.011015105992555618, + -0.0008069919422268867, + -0.032828234136104584, + -0.025377415120601654, + 0.015222224406898022, + 0.0528106614947319, + -0.07549412548542023, + -0.06384138017892838, + 0.006625814363360405, + 0.008787952363491058, + -0.021066462621092796, + 0.027520207688212395, + 0.036008816212415695, + 0.025656141340732574, + 0.03806747496128082, + -0.060057297348976135, + 0.010157227516174316, + -0.11259924620389938, + -0.05163257569074631, + 0.001529137371107936, + -0.00845365971326828, + -0.031535740941762924, + 0.0914374589920044, + 0.012499975971877575, + 0.05353322625160217, + -0.001693258062005043, + -0.06909862160682678, + -0.0455293282866478, + 0.06612171232700348, + 0.08565175533294678, + 0.002202434465289116, + 0.046733416616916656, + 0.049875035881996155, + -0.0014274637214839458, + 0.030810199677944183, + 0.06460615992546082, + 0.10363326966762543, + -0.022446565330028534, + -0.01786843314766884, + -0.09056596457958221, + 0.09339028596878052, + 0.060664091259241104, + -0.09198956191539764, + -0.08776917308568954, + -0.017218543216586113, + -0.07294963300228119, + 0.01954902522265911, + -0.025054577738046646, + 0.026129813864827156, + 0.026914816349744797, + -0.01855437271296978, + -0.11046057939529419, + -0.08695186674594879, + 0.06816712021827698, + -0.0699438750743866, + -0.012322836555540562, + -0.08002462983131409, + 0.04649566859006882, + 0.10242058336734772, + 0.04990389943122864, + -0.013408978469669819, + -0.020994018763303757, + 0.035579584538936615, + -0.057652220129966736, + -0.009350299835205078, + 0.02777467481791973, + 0.010307356715202332, + -0.09487438201904297, + 0.027934473007917404, + -0.05723356083035469, + 0.06135866045951843, + -0.06065633147954941, + 0.15114903450012207, + 0.007244945503771305, + -0.0714966356754303, + -0.09494678676128387, + 0.04025014862418175, + -0.03390611708164215, + 0.04048825800418854, + 0.034435372799634933, + 0.04029976204037666, + 0.049797311425209045, + -0.08118963241577148, + 0.11395411938428879, + 0.027208494022488594, + -0.02166212722659111, + -0.06798888742923737, + -0.05895119160413742, + -0.018733887001872063, + 0.036244772374629974, + 0.006609201431274414, + -0.058978307992219925, + -0.016218818724155426, + 0.019838619977235794, + -0.022571798413991928, + 0.061886150389909744, + 0.12519052624702454, + 0.05719219893217087, + -0.12144674360752106 + ] + }, + "p244_389.wav": { + "name": "p244", + "embedding": [ + 0.04964253306388855, + 0.07147164642810822, + -0.023855488747358322, + 0.009601152502000332, + -0.03650026023387909, + 0.0252509918063879, + -0.14053422212600708, + 0.13478609919548035, + -0.017778024077415466, + 0.1325148046016693, + -0.06748643517494202, + 0.12535309791564941, + -0.005407724529504776, + -0.18714392185211182, + -0.0038822144269943237, + 0.029013734310865402, + -0.02789529412984848, + -0.013960222713649273, + -0.029330529272556305, + -0.032227523624897, + 0.06844169646501541, + 0.05408642813563347, + 0.011623265221714973, + -0.02318566106259823, + -0.015936443582177162, + 0.06676285713911057, + 0.0077512613497674465, + 0.035172995179891586, + 0.009118190966546535, + -0.048626817762851715, + -0.03151613101363182, + 0.08784034103155136, + -0.03133663162589073, + 0.013059570454061031, + 0.05865493416786194, + -0.01998130790889263, + -0.02221369557082653, + -0.05281658098101616, + -0.0278736874461174, + 0.01690276525914669, + -0.05741718411445618, + 0.051280390471220016, + 0.021318530663847923, + -0.03186129033565521, + 0.07071669399738312, + 0.018691975623369217, + -0.011189226061105728, + -0.0458110049366951, + -0.09346655011177063, + 0.15409106016159058, + 0.08942298591136932, + 0.00563018349930644, + -0.055634163320064545, + -0.04712982475757599, + 0.08556137979030609, + -0.011394977569580078, + -0.09742304682731628, + -0.02711251750588417, + 0.0626111775636673, + 0.1299046277999878, + -0.03835728019475937, + -0.035862356424331665, + 0.05873362347483635, + 0.09533900022506714, + 0.03565296158194542, + 0.08913514018058777, + 0.0988224670290947, + 0.09537652134895325, + -0.024873949587345123, + 0.009020083583891392, + 0.03127939999103546, + 0.08881151676177979, + 0.0618852898478508, + -0.01940850540995598, + 0.04258141666650772, + 0.03239329159259796, + -0.035421356558799744, + -0.003220668062567711, + -0.024362778291106224, + -0.0025995809119194746, + 0.006880385335534811, + 0.018820548430085182, + 0.023136839270591736, + 0.030249077826738358, + -0.04412847384810448, + 0.05700276419520378, + 0.03787606582045555, + -0.0025889745447784662, + 0.04101213812828064, + 0.01078611146658659, + 0.025310678407549858, + 0.06093835085630417, + -0.09138470888137817, + -0.09233307838439941, + 0.026226183399558067, + -0.000831136479973793, + -0.0036285407841205597, + 0.08612217754125595, + 0.048663657158613205, + -0.018391352146863937, + 0.11880064010620117, + 0.041312217712402344, + -0.024444010108709335, + 0.03639297932386398, + -0.08512981235980988, + 0.10115258395671844, + 0.10371828079223633, + -0.038159266114234924, + 0.049265604466199875, + -0.0879659578204155, + 0.07459738105535507, + 0.047489386051893234, + -0.12783177196979523, + -0.06034495681524277, + 0.05674789473414421, + 0.024518083781003952, + -0.00571811106055975, + 0.148992657661438, + 0.004579258617013693, + 0.04639511555433273, + 0.11653193831443787, + -0.09323574602603912, + -0.06669460237026215, + -0.037002742290496826, + 0.05766318365931511, + -0.08456750214099884, + 0.0829339325428009, + 0.03849758580327034, + -0.00476697226986289, + 0.007714379578828812, + 0.07273873686790466, + -0.03140334412455559, + 0.013713590800762177, + -0.025193532928824425, + -0.02423720806837082, + 0.017991913482546806, + -0.04869674891233444, + -0.009695064276456833, + 0.015489794313907623, + 0.033399488776922226, + 0.02593194507062435, + 0.0020804922096431255, + -0.04575156420469284, + -0.1324165165424347, + 0.017629174515604973, + 0.034133076667785645, + 0.07721230387687683, + -0.011460991576313972, + -0.030183393508195877, + -0.04280737042427063, + -0.06815729290246964, + -0.011978501453995705, + -0.046983253210783005, + 0.04523259401321411, + -0.02150619775056839, + 0.018531300127506256, + 0.08077391982078552, + 0.016388606280088425, + 0.004657186102122068, + -0.024618666619062424, + -0.04792141169309616, + 0.0007916279137134552, + 0.04553179070353508, + -0.0725981742143631, + -0.08912689983844757, + -0.033685874193906784, + 0.020242737606167793, + -0.012520924210548401, + 0.03694436699151993, + 0.03833423927426338, + 0.02411615662276745, + 0.02653633803129196, + -0.10931293666362762, + 0.012123778462409973, + -0.13374003767967224, + -0.08708872646093369, + -0.01953904889523983, + 0.0017591805662959814, + 0.009442574344575405, + 0.06969283521175385, + -0.001415996695868671, + 0.0444008968770504, + -0.03092077001929283, + -0.05863282084465027, + -0.0863884910941124, + 0.048835813999176025, + 0.08602620661258698, + -0.004547545686364174, + 0.04455546289682388, + 0.04448841139674187, + -0.02577764168381691, + 0.04145362228155136, + 0.05063789710402489, + 0.1003967672586441, + 0.006545286625623703, + 0.023936178535223007, + -0.0645827054977417, + 0.10333234071731567, + 0.09196887910366058, + -0.054392870515584946, + -0.08496984094381332, + -0.017037218436598778, + -0.07981628179550171, + 0.020779818296432495, + -0.013802110217511654, + 0.006919558625668287, + 0.01613161526620388, + 0.013877051882445812, + -0.09816001355648041, + -0.06542323529720306, + 0.05088915675878525, + -0.05183778703212738, + -0.012386116199195385, + -0.0886194109916687, + 0.05039968341588974, + 0.11728017032146454, + 0.03749311715364456, + -0.03848762437701225, + -0.04207203537225723, + 0.034046150743961334, + -0.025762498378753662, + 0.01390274427831173, + 0.02045624516904354, + 0.05512845516204834, + -0.1097072884440422, + 0.01596188172698021, + -0.06605931371450424, + 0.04116734117269516, + -0.07096131891012192, + 0.10229065269231796, + 0.011715034954249859, + -0.05940639227628708, + -0.09298370778560638, + 0.05071388930082321, + 0.02423255145549774, + 0.03490743041038513, + 0.009444080293178558, + 0.05541565269231796, + 0.036875348538160324, + -0.10995044559240341, + 0.09450041502714157, + 0.031227100640535355, + -0.02044413797557354, + -0.06892361491918564, + -0.05475762486457825, + -0.02239786647260189, + 0.022677583619952202, + 0.016151851043105125, + -0.0708613321185112, + -0.032538071274757385, + 0.011150333099067211, + -0.012001276016235352, + 0.04270801693201065, + 0.13865134119987488, + 0.02483021467924118, + -0.14446961879730225 + ] + }, + "p244_025.wav": { + "name": "p244", + "embedding": [ + 0.04728066176176071, + 0.09132519364356995, + -0.0266993660479784, + 0.014039554633200169, + -0.06971262395381927, + 0.0015893001109361649, + -0.06117280572652817, + 0.1088259220123291, + -0.017518499866127968, + 0.10607945173978806, + -0.09705836325883865, + 0.1183314323425293, + -0.060748979449272156, + -0.07807207852602005, + -0.015277368016541004, + 0.01768813468515873, + 0.00882519967854023, + -0.015771502628922462, + -0.03676807880401611, + -0.013335805386304855, + 0.04646868258714676, + 0.03957943618297577, + 0.032906629145145416, + -0.021989382803440094, + 0.0050403159111738205, + 0.07141248136758804, + 0.006551366299390793, + -0.0022186916321516037, + 0.01907799020409584, + -0.01741943508386612, + 0.00974871963262558, + 0.044684696942567825, + -0.031482212245464325, + 0.03326811641454697, + 0.04526546597480774, + 0.03129633888602257, + -0.037986814975738525, + -0.017496518790721893, + -0.012590011581778526, + 0.000543401634786278, + -0.06637702137231827, + 0.045201633125543594, + 0.009126069024205208, + -0.08740653842687607, + 0.03196221590042114, + 0.0008265916258096695, + -0.0031872917897999287, + -0.0008214432746171951, + -0.07785055041313171, + 0.13492977619171143, + 0.022686874493956566, + 0.049052923917770386, + -0.08332902193069458, + -0.018849007785320282, + 0.09554073214530945, + -0.02876932919025421, + -0.06366067379713058, + -0.07523071765899658, + 0.02019379287958145, + 0.0781453400850296, + -0.032315660268068314, + -0.04980345442891121, + 0.01791449822485447, + 0.039823293685913086, + 0.032374948263168335, + 0.04197629913687706, + 0.08284154534339905, + 0.08710107207298279, + -0.022611506283283234, + 0.042292509227991104, + 0.06746797263622284, + 0.08345398306846619, + 0.04449405521154404, + -0.00808747485280037, + 0.006780174560844898, + -0.01332017034292221, + -0.02537577971816063, + 0.02388228476047516, + -3.645848482847214e-05, + -0.03148433566093445, + -0.03693670779466629, + -0.000999006791971624, + 0.009746003895998001, + -0.04150763154029846, + -0.03425607830286026, + 0.06543602049350739, + 0.055986642837524414, + -0.03789931535720825, + 0.05830211192369461, + 0.054321613162755966, + -0.037993114441633224, + 0.021350963041186333, + -0.062318190932273865, + -0.07305333018302917, + -0.030844910070300102, + -0.03561857342720032, + 0.045457303524017334, + 0.08888489007949829, + 0.02863730490207672, + 0.05255160480737686, + 0.06512414664030075, + 0.02646852843463421, + 0.03002905286848545, + -0.009629910811781883, + -0.08390727639198303, + 0.1374681293964386, + 0.0997086614370346, + -0.039803870022296906, + -0.01094500720500946, + -0.031186792999505997, + 0.030149733647704124, + 0.04288199171423912, + -0.055234357714653015, + -0.07929259538650513, + -0.02113642729818821, + -0.0023737112060189247, + 0.025490527972579002, + 0.07405589520931244, + -0.003513803705573082, + -0.0003266558051109314, + 0.1349898725748062, + -0.09396745264530182, + -0.08919544517993927, + -0.02063814364373684, + -0.02076747640967369, + -0.07658687233924866, + 0.070269376039505, + 0.060781680047512054, + 0.011432209983468056, + 0.029541268944740295, + 0.09501159191131592, + -0.001910191960632801, + 0.02806958183646202, + -0.011061329394578934, + -0.02147325873374939, + -0.004888467490673065, + -0.025288943201303482, + 0.005936942063271999, + 0.10234484076499939, + 0.06296571344137192, + 0.1000697985291481, + 0.026982193812727928, + 0.01060149073600769, + -0.0879545658826828, + 0.022408539429306984, + 0.10782898217439651, + -0.007051026448607445, + -0.03832744434475899, + -0.03476756811141968, + -0.014071768149733543, + -0.06264172494411469, + 0.02122318744659424, + 0.007265170104801655, + 0.07849688827991486, + -0.033829424530267715, + 0.027128618210554123, + 0.12101788818836212, + -0.003733959048986435, + -0.0019902344793081284, + -0.08114194869995117, + -0.017888862639665604, + -0.02297256328165531, + 0.0381234809756279, + -0.09798060357570648, + -0.11297637969255447, + -0.06335989385843277, + 0.025235041975975037, + -0.011736004613339901, + 0.026038821786642075, + 0.057422883808612823, + -0.017501628026366234, + 0.04528648033738136, + -0.04488951712846756, + 0.05101536214351654, + -0.0784270241856575, + -0.049702972173690796, + -0.048079974949359894, + -0.06671763956546783, + 0.0022890325635671616, + 0.06637407839298248, + -0.018089480698108673, + 0.02861608937382698, + 0.025617124512791634, + -0.10746562480926514, + -0.09760837256908417, + 0.02613038569688797, + 0.03304443135857582, + -0.01710517145693302, + 0.043048322200775146, + 0.05472904443740845, + -0.045455992221832275, + 0.022019008174538612, + 0.010858343914151192, + 0.09878860414028168, + -0.07357415556907654, + -0.0042722392827272415, + -0.038643043488264084, + 0.05250518023967743, + 0.07596319913864136, + -0.10704830288887024, + -0.060466423630714417, + -0.12184098362922668, + -0.029531046748161316, + -0.004727337509393692, + -0.027492262423038483, + 0.0058106123469769955, + 0.012840759940445423, + -0.02136811800301075, + -0.06257054954767227, + -0.0891914963722229, + 0.02585662342607975, + -0.014219660311937332, + 0.0016826819628477097, + -0.06680537015199661, + 0.010963051579892635, + -0.0003173463046550751, + 0.03191859647631645, + -0.011891636997461319, + 0.018400467932224274, + -0.011010151356458664, + -0.056199342012405396, + -0.022005779668688774, + 0.05189729481935501, + 0.026533037424087524, + 0.032330870628356934, + -0.02206023968756199, + -0.06971227377653122, + 0.06681889295578003, + -0.042676106095314026, + 0.13253949582576752, + -0.06805618852376938, + -0.05376983806490898, + -0.044418513774871826, + 0.0011334531009197235, + -0.02395021542906761, + 0.01614169403910637, + 0.06772264093160629, + 0.03880290314555168, + -0.02249978482723236, + -0.07261064648628235, + 0.11414507031440735, + 0.06347735226154327, + -0.009585547260940075, + -0.06244874373078346, + -0.053595464676618576, + -0.06424856930971146, + -0.004242710769176483, + 0.0030150925740599632, + -0.053490862250328064, + 0.04673640429973602, + -0.023656141012907028, + 0.0003688698634505272, + 0.0835297629237175, + 0.1028333380818367, + 0.07413534820079803, + -0.07562227547168732 + ] + }, + "p244_329.wav": { + "name": "p244", + "embedding": [ + -0.005544627085328102, + 0.06198248267173767, + 0.004634879529476166, + 0.021113816648721695, + -0.044267334043979645, + -0.031414665281772614, + -0.09524384140968323, + 0.07862409204244614, + -0.029118720442056656, + 0.09866597503423691, + -0.07544707506895065, + 0.09305178374052048, + -0.05698026344180107, + -0.12308865785598755, + 0.0180025827139616, + 0.033627789467573166, + 0.009352291002869606, + -0.02268972061574459, + -0.01778477057814598, + -0.04896176978945732, + 0.03435751050710678, + 0.06365825980901718, + 0.02586447075009346, + -0.021655237302184105, + -0.008241991512477398, + 0.07650616019964218, + -0.012857471592724323, + -0.003986007999628782, + -0.022557053714990616, + -0.06080430746078491, + -0.00031503589707426727, + 0.03554786369204521, + -0.022862931713461876, + -0.0228655394166708, + 0.018445748835802078, + 0.021002281457185745, + -0.023799780756235123, + 0.01135361846536398, + -0.02672605589032173, + 0.012114268727600574, + -0.12098908424377441, + 0.030034363269805908, + -0.0048117609694600105, + -0.048177570104599, + 0.06104302033782005, + 0.016689537093043327, + -0.006458019372075796, + 0.016416212543845177, + -0.06254874169826508, + 0.08453187346458435, + 0.061173390597105026, + 0.01850994862616062, + -0.03041110932826996, + -0.01941123604774475, + 0.06710182875394821, + -0.01897074654698372, + -0.07495981454849243, + -0.06148586794734001, + 0.04911886900663376, + 0.062065910547971725, + -0.05005854368209839, + -0.03270219638943672, + 0.04875677451491356, + 0.039867546409368515, + 0.02703641913831234, + 0.055593665689229965, + 0.05901962146162987, + 0.03524057939648628, + -0.011570108123123646, + -0.03959264978766441, + 0.057695675641298294, + 0.07419515401124954, + 0.06387314945459366, + -0.01761275716125965, + 0.013430282473564148, + 0.03664001449942589, + -0.03950544074177742, + -0.008957642130553722, + -0.010413320735096931, + -0.01036157738417387, + -0.03097372129559517, + -0.013436786830425262, + -0.00023613292432855815, + -0.05614519864320755, + -0.0077747986651957035, + 0.03682340309023857, + 0.07967673242092133, + 0.0007643811404705048, + 0.059014905244112015, + 0.026371365413069725, + -0.014461099170148373, + 0.04225132241845131, + -0.05795370414853096, + 0.008060790598392487, + -0.030709654092788696, + -0.01028340682387352, + 0.020751409232616425, + 0.07499875873327255, + 0.017875991761684418, + 0.030727699398994446, + 0.07834219187498093, + -0.007102827075868845, + 0.026036430150270462, + 0.004032354801893234, + -0.10909755527973175, + 0.09570895880460739, + 0.0696415975689888, + -0.04072205349802971, + 0.0034895152784883976, + -0.02699539065361023, + 0.027414733543992043, + 0.04818747192621231, + -0.05155643820762634, + -0.049935758113861084, + -0.01530660130083561, + -0.0020182596053928137, + -0.00699925422668457, + 0.0961560532450676, + 0.015446463599801064, + 0.005732082761824131, + 0.13439252972602844, + -0.09265976399183273, + -0.10652390867471695, + -0.018225042149424553, + -0.006649364717304707, + -0.10694273561239243, + 0.07759647816419601, + 0.07681707292795181, + 0.012503315694630146, + 0.057671286165714264, + 0.11152992397546768, + 0.006875825580209494, + 0.02438422292470932, + -0.03399043157696724, + -0.04218409210443497, + -0.033269450068473816, + -0.03208575397729874, + 5.464367495733313e-05, + 0.07965957373380661, + 0.03992646560072899, + 0.07209324091672897, + 0.006200456526130438, + -0.0037965283263474703, + -0.09806735813617706, + 0.01492305751889944, + 0.076610267162323, + 0.004444792866706848, + -0.024339355528354645, + -0.024795832112431526, + -0.037871815264225006, + -0.053092874586582184, + 0.005128528457134962, + -0.041391272097826004, + 0.06062359735369682, + -0.04469582438468933, + 0.018589405342936516, + 0.11447858065366745, + -0.0017805651295930147, + -0.027430733665823936, + -0.0734269767999649, + -0.031009305268526077, + -0.016635244712233543, + 0.031740203499794006, + -0.09768009185791016, + -0.09541608393192291, + -0.07081269472837448, + 0.06204848363995552, + 0.03061353601515293, + 0.052115004509687424, + 0.044423289597034454, + 0.0016121268272399902, + 0.005247681401669979, + -0.04739367589354515, + 0.043722111731767654, + -0.03980259224772453, + -0.08861198276281357, + -0.03918468579649925, + -0.053784485906362534, + -0.009916325099766254, + 0.06018403172492981, + -0.035982247442007065, + 0.024668967351317406, + -0.0211794376373291, + -0.10341373831033707, + -0.11254493147134781, + 0.0018819079268723726, + 0.02707829140126705, + -0.011820084415376186, + 0.03811441734433174, + 0.02679506316781044, + -0.08152776211500168, + 0.0311566349118948, + 0.013653472065925598, + 0.08790870755910873, + -0.05919070169329643, + 0.0336502380669117, + -0.015940843150019646, + 0.01199861615896225, + 0.07962381839752197, + -0.05437647923827171, + -0.037804629653692245, + -0.06536708027124405, + -0.045384764671325684, + 0.05194753408432007, + -0.005883814301341772, + -0.014137446880340576, + -0.00609972421079874, + 0.003839246230199933, + -0.05598258972167969, + -0.06314468383789062, + 0.04020438715815544, + -0.024574175477027893, + -0.015057406388223171, + -0.08187941461801529, + -0.004326094873249531, + -0.014390842989087105, + 0.07337900251150131, + 0.0031799187418073416, + -0.0037213906180113554, + 0.030000625178217888, + -0.039977043867111206, + 0.028816191479563713, + 0.10328862816095352, + 0.06476470828056335, + 0.0350937619805336, + -0.02926509641110897, + -0.08768477290868759, + 0.04801398143172264, + -0.024401629343628883, + 0.0722629725933075, + -0.006581056397408247, + -0.04384986683726311, + -0.04814082011580467, + 0.0001794517011148855, + -0.002577307168394327, + 0.022349826991558075, + 0.05108978971838951, + 0.060505837202072144, + 0.015153774991631508, + -0.053677525371313095, + 0.0886063203215599, + 0.05088115856051445, + 0.01599227450788021, + -0.034507203847169876, + -0.037383854389190674, + -0.06879597902297974, + -0.02244390733540058, + -0.0009749099845066667, + -0.08880208432674408, + 0.029364068061113358, + -0.015180820599198341, + 0.019148169085383415, + 0.05424491688609123, + 0.09361078590154648, + 0.040511246770620346, + -0.0897696241736412 + ] + }, + "p244_357.wav": { + "name": "p244", + "embedding": [ + 0.06972910463809967, + 0.06739023327827454, + -0.06170198693871498, + 0.018775634467601776, + -0.03588758781552315, + 0.0649954304099083, + -0.13766621053218842, + 0.10362699627876282, + -0.03624305874109268, + 0.10524637997150421, + -0.046022526919841766, + 0.09719941020011902, + -0.002834675367921591, + -0.10584241151809692, + -0.0377446785569191, + 0.03572224825620651, + -0.0021057967096567154, + 0.0013607954606413841, + -0.041360754519701004, + 0.009375831112265587, + 0.03295276686549187, + 0.03323345631361008, + 0.012944510206580162, + -0.041706379503011703, + 0.025914648547768593, + 0.030174151062965393, + 0.014126356691122055, + 0.02248372882604599, + 0.0036759087815880775, + 0.0009140335023403168, + -0.0012793485075235367, + 0.0893627256155014, + -0.0299682654440403, + 0.02160615473985672, + 0.04417218267917633, + 0.011334434151649475, + -0.01733045093715191, + -0.08580219745635986, + 0.0105465492233634, + -0.0010910485871136189, + -0.01050049439072609, + 0.08448060601949692, + 0.07084998488426208, + -0.00499091949313879, + 0.0025040628388524055, + -0.006714037619531155, + -0.005206972360610962, + -0.05556436628103256, + -0.0966198742389679, + 0.1689758151769638, + 0.0143450191244483, + 0.03579188883304596, + -0.10329142212867737, + -0.015243053436279297, + 0.09332321584224701, + 0.008697101846337318, + -0.04352220520377159, + -0.08054336905479431, + 0.026705633848905563, + 0.14721164107322693, + -0.002385042142122984, + -0.05746109038591385, + 0.018784577026963234, + 0.10421192646026611, + 0.039660222828388214, + 0.0409710593521595, + 0.10622353851795197, + 0.09024246037006378, + 0.002522810362279415, + 0.024903880432248116, + 0.02735091745853424, + 0.060085512697696686, + -0.0017608420457690954, + 0.003584047546610236, + 0.02670731022953987, + -0.03584801405668259, + -0.02187918871641159, + 0.021168118342757225, + -0.00762348435819149, + -0.05962866172194481, + -0.013089446350932121, + 0.02323010191321373, + 0.027965519577264786, + 0.06914739310741425, + -0.05049928277730942, + 0.02922941744327545, + 0.028659392148256302, + -0.05947839841246605, + 0.05637276545166969, + 0.05255650728940964, + -0.010411053895950317, + -0.008278166875243187, + -0.04766537994146347, + -0.12366069108247757, + 0.030465014278888702, + 0.00013085361570119858, + 0.032128140330314636, + 0.04259221628308296, + 0.021499060094356537, + 0.00375279039144516, + 0.0713067501783371, + 0.02708558738231659, + -0.008532686159014702, + -0.006281804293394089, + -0.04381237551569939, + 0.12141285836696625, + 0.10051020979881287, + 0.0014802692458033562, + 0.03445610776543617, + -0.06818720698356628, + 0.017130697146058083, + 0.049766018986701965, + -0.101842001080513, + -0.08296908438205719, + 0.06256444752216339, + 0.03921586647629738, + 0.03046710044145584, + 0.10825768113136292, + 0.011512940749526024, + 0.005230730399489403, + 0.05423043668270111, + -0.08202383667230606, + -0.0667533352971077, + -0.02116292156279087, + 0.03881089389324188, + -0.03389594331383705, + 0.024548720568418503, + 0.05810442566871643, + -0.016244828701019287, + -0.029061466455459595, + 0.05179385095834732, + 0.010683749802410603, + 0.00983046367764473, + -0.006054816767573357, + 0.02387930080294609, + 0.08193044364452362, + -0.005693188868463039, + -0.013211306184530258, + 0.027593664824962616, + 0.051229268312454224, + 0.04209590330719948, + 0.01836562156677246, + -0.018793325871229172, + -0.11360463500022888, + -0.008760695345699787, + 0.0781717598438263, + 0.05345386266708374, + -0.056430596858263016, + -0.03362216427922249, + -0.028318308293819427, + -0.049307338893413544, + -0.009060056880116463, + -0.011526191607117653, + 0.07274100929498672, + 0.017242776229977608, + 0.032199710607528687, + 0.08604419976472855, + -0.016052665188908577, + 0.018490906804800034, + -0.024630920961499214, + 0.023259969428181648, + 0.04637088626623154, + 0.033066749572753906, + -0.0375385507941246, + -0.07127895951271057, + -0.009788970462977886, + 0.016655512154102325, + -0.028947461396455765, + -0.004227755591273308, + 0.03065069019794464, + -0.009251004084944725, + 0.0477210097014904, + -0.0722513496875763, + 0.012178759090602398, + -0.1234005019068718, + 0.01049613207578659, + -0.00025842548348009586, + -0.035158053040504456, + -0.01364965084940195, + 0.09684853255748749, + 0.04605598747730255, + 0.056741323322057724, + -0.01744954288005829, + -0.05632244795560837, + -0.021669741719961166, + 0.05704730749130249, + 0.08692049980163574, + -0.030953887850046158, + 0.0007817652076482773, + 0.01813158392906189, + 0.045482292771339417, + 0.004471767693758011, + 0.07399888336658478, + 0.040188610553741455, + -0.028395257890224457, + -0.06494726985692978, + -0.045659083873033524, + 0.10116519033908844, + 0.0771910771727562, + -0.09601793438196182, + -0.05631272494792938, + -0.027462515980005264, + -0.05516643449664116, + -0.02065207064151764, + -0.0525970533490181, + 0.012513198889791965, + 0.04407810419797897, + -0.02918807417154312, + -0.13304215669631958, + -0.10536287724971771, + 0.03618479520082474, + -0.05555425584316254, + 0.021637538447976112, + -0.06295222043991089, + 0.037156254053115845, + 0.09378945827484131, + 0.020421963185071945, + -0.022969432175159454, + -0.03247111290693283, + -0.01447397843003273, + -0.07073706388473511, + -0.016013137996196747, + 0.0003811251372098923, + 0.023362331092357635, + -0.09457676112651825, + 0.03389350324869156, + -0.048120371997356415, + 0.07254493236541748, + -0.05955251678824425, + 0.1370476484298706, + 0.009384021162986755, + -0.05852793529629707, + -0.09808972477912903, + 0.0009142011404037476, + -0.03109685331583023, + 0.04899543523788452, + 0.022091086953878403, + 0.021921755746006966, + 0.02702271193265915, + -0.07844947278499603, + 0.0810246467590332, + 0.07411861419677734, + -0.027226194739341736, + -0.09629100561141968, + -0.023695094510912895, + -0.013731062412261963, + 0.0657021701335907, + 0.0005412332247942686, + -0.0006784871220588684, + 0.0008903555572032928, + 0.03201688826084137, + -0.020708387717604637, + 0.06397310644388199, + 0.0922405943274498, + 0.048202451318502426, + -0.09531234204769135 + ] + }, + "p244_016.wav": { + "name": "p244", + "embedding": [ + 0.04051810875535011, + 0.06690486520528793, + -0.033708859235048294, + 0.03671709820628166, + -0.03845207020640373, + 0.032780032604932785, + -0.14912444353103638, + 0.13018101453781128, + -0.0010805726051330566, + 0.12852822244167328, + -0.04286907985806465, + 0.10912932455539703, + -0.00573818851262331, + -0.177122101187706, + 0.0028319985140115023, + 0.051830168813467026, + -0.030473405495285988, + -0.05070249363780022, + -0.010931533761322498, + -0.016053451225161552, + 0.0456344299018383, + 0.06058346852660179, + 0.01461214479058981, + -0.004392530303448439, + 0.014387959614396095, + 0.06585042923688889, + -0.009662941098213196, + 0.0324079766869545, + 0.007896742783486843, + -0.050136029720306396, + -0.026401950046420097, + 0.08292513340711594, + -0.04552718997001648, + 0.008650950156152248, + 0.03522353619337082, + -0.013688315637409687, + -0.015335598960518837, + -0.06033455207943916, + -0.02980225160717964, + 0.009661932475864887, + -0.05967609956860542, + 0.08095196634531021, + 0.03956491872668266, + -0.034930385649204254, + 0.035889722406864166, + 0.011980006471276283, + -0.01231046486645937, + -0.04335959628224373, + -0.10692300647497177, + 0.1572565734386444, + 0.08295287936925888, + 0.0073030912317335606, + -0.0570632703602314, + -0.04932660609483719, + 0.08073550462722778, + 0.008689356036484241, + -0.0966644138097763, + -0.0378798246383667, + 0.07101687043905258, + 0.1358330249786377, + -0.019165491685271263, + -0.02883703075349331, + 0.05291098356246948, + 0.11967045068740845, + 0.06932578235864639, + 0.06779652088880539, + 0.08289850503206253, + 0.11162374168634415, + -0.019288862124085426, + -0.0031644494738429785, + 0.04786653816699982, + 0.08686845749616623, + 0.04189016669988632, + -0.0001112177997129038, + 0.01635715179145336, + 0.008836068212985992, + -0.028658390045166016, + -0.01963823474943638, + -0.015792587772011757, + -0.01580667681992054, + 0.0040189181454479694, + 0.008919058367609978, + 0.014408099465072155, + 0.05892181396484375, + -0.025555426254868507, + 0.04514877125620842, + 0.05674052983522415, + -0.022173216566443443, + 0.05973997339606285, + 0.011843579821288586, + 0.024693438783288002, + 0.0603720061480999, + -0.09063177555799484, + -0.06547486037015915, + 0.03342488408088684, + 0.005790857598185539, + 0.029917040839791298, + 0.0837230235338211, + 0.05385090783238411, + -0.01909828558564186, + 0.12960182130336761, + 0.023425666615366936, + -0.021913761273026466, + 0.019606955349445343, + -0.0787922590970993, + 0.11407951265573502, + 0.07720455527305603, + -0.027124259620904922, + 0.05694260820746422, + -0.07036172598600388, + 0.06096518784761429, + 0.04461970180273056, + -0.13190896809101105, + -0.058255910873413086, + 0.055646199733018875, + 0.028786802664399147, + -0.016899121925234795, + 0.1520422101020813, + 0.02525480091571808, + 0.05128249153494835, + 0.10620071738958359, + -0.09688061475753784, + -0.06232024356722832, + -0.02122008055448532, + 0.06690078973770142, + -0.0887972041964531, + 0.0786643847823143, + 0.048729509115219116, + -0.028080791234970093, + 0.013619333505630493, + 0.0625675618648529, + -0.0130501389503479, + 0.017447112128138542, + -0.014992785640060902, + -0.024081243202090263, + 0.028229236602783203, + -0.0367024801671505, + 0.003026180434972048, + 0.016970409080386162, + 0.008277904242277145, + 0.044564470648765564, + -0.01177924033254385, + -0.0393252819776535, + -0.14389453828334808, + 0.018038541078567505, + 0.027318662032485008, + 0.09478374570608139, + -0.013233949430286884, + -0.03757332265377045, + -0.0450616255402565, + -0.06943442672491074, + -0.0020399573259055614, + -0.02811126410961151, + 0.05477302893996239, + -0.014403223991394043, + -0.0010520702926442027, + 0.08142606914043427, + 0.020454496145248413, + 0.011113223619759083, + -0.025445638224482536, + -0.038584448397159576, + 0.007810632232576609, + 0.04612548276782036, + -0.07453037053346634, + -0.07559381425380707, + -0.014829359948635101, + 0.02373846247792244, + -0.018207039684057236, + 0.0480978861451149, + 0.037044707685709, + 0.03864092379808426, + 0.01082706544548273, + -0.08361036330461502, + 0.00647435337305069, + -0.09939318150281906, + -0.08051186054944992, + -0.00996298249810934, + 0.013587194494903088, + -0.019608015194535255, + 0.08560257405042648, + 0.01767372153699398, + 0.05805790051817894, + -0.027385732159018517, + -0.04634594917297363, + -0.08442296087741852, + 0.036416199058294296, + 0.06011306121945381, + -0.018580064177513123, + 0.03815450146794319, + 0.0541682243347168, + -0.026287520304322243, + 0.02207903191447258, + 0.04216459393501282, + 0.09922679513692856, + -0.011121436953544617, + 0.004603381734341383, + -0.06368358433246613, + 0.1052146926522255, + 0.09675245732069016, + -0.06895194947719574, + -0.05487356707453728, + -0.020620230585336685, + -0.08344074338674545, + 0.01203469093888998, + -0.019137948751449585, + 0.013086751103401184, + 0.012765067629516125, + 0.003509512171149254, + -0.11139048635959625, + -0.085530124604702, + 0.053799260407686234, + -0.07429026067256927, + -0.0024241183418780565, + -0.09297332912683487, + 0.04146304354071617, + 0.10614720731973648, + 0.045611411333084106, + -0.028677864000201225, + -0.03646695613861084, + 0.04328562691807747, + -0.022161992266774178, + 0.026895800605416298, + 0.07181604951620102, + 0.05712796375155449, + -0.1235656887292862, + -0.007126865442842245, + -0.06264682859182358, + 0.038573626428842545, + -0.05264133960008621, + 0.12364890426397324, + 0.03203369304537773, + -0.05668767914175987, + -0.0939750075340271, + 0.039070554077625275, + 0.009730945341289043, + 0.05214281752705574, + 0.012974734418094158, + 0.05390125513076782, + 0.06048962101340294, + -0.07861433178186417, + 0.10344332456588745, + 0.05393049865961075, + -0.019272439181804657, + -0.06681125611066818, + -0.04907776042819023, + -0.02446931041777134, + 0.04851621761918068, + 0.021766094490885735, + -0.07594799250364304, + -0.033533915877342224, + 0.02563137374818325, + -0.0046650259755551815, + 0.048620808869600296, + 0.14016841351985931, + 0.04956796392798424, + -0.13117723166942596 + ] + }, + "p244_337.wav": { + "name": "p244", + "embedding": [ + 0.06357072293758392, + 0.12591025233268738, + 0.07006644457578659, + -0.015215903520584106, + 0.02714518830180168, + 0.03264628350734711, + -0.06606484949588776, + 0.06581936031579971, + 0.05310523509979248, + 0.09040797501802444, + -0.09511347115039825, + 0.035431869328022, + -0.04092997685074806, + -0.11102703213691711, + -0.01735813170671463, + 0.017631951719522476, + -0.07755692303180695, + 0.011045120656490326, + -0.03363728150725365, + -0.03453698009252548, + -0.014923900365829468, + -0.0030812565237283707, + 0.07160196453332901, + -0.04828950762748718, + 0.002502996474504471, + 0.03974238783121109, + -0.01536097563803196, + -0.0005635404959321022, + -0.009577825665473938, + -0.06541632115840912, + 0.02475626766681671, + 0.022668685764074326, + 0.005876651033759117, + 0.03617662936449051, + 0.030242349952459335, + 0.007141558453440666, + 0.003515218384563923, + -0.029527120292186737, + -0.0292219165712595, + 0.07796933501958847, + -0.009438793174922466, + 0.0568702295422554, + 0.023875031620264053, + -0.05550827458500862, + 0.0599316842854023, + 0.011658438481390476, + -0.0370093509554863, + -0.010489502921700478, + -0.09112150967121124, + 0.12110947072505951, + 0.021221477538347244, + 0.020916149020195007, + -0.06362378597259521, + -0.001623939722776413, + 0.05629764497280121, + -0.02382519282400608, + -0.08513681590557098, + 0.0033728405833244324, + 0.035544488579034805, + 0.02385822683572769, + -0.01722223497927189, + -0.03426945582032204, + -0.024537622928619385, + 0.025006119161844254, + 0.0008355386089533567, + 0.03662567958235741, + 0.06661416590213776, + 0.054919660091400146, + -0.027265775948762894, + 0.04690919816493988, + 0.034029848873615265, + -0.008298519998788834, + 0.06274469941854477, + 9.690411388874054e-05, + 0.016773881390690804, + -0.0643966943025589, + -0.01949666626751423, + -0.020516373217105865, + 0.024980969727039337, + -0.036277443170547485, + 0.03005598857998848, + -0.03174200654029846, + 0.027659287676215172, + 0.018558474257588387, + -0.032030120491981506, + -0.023672999814152718, + 0.020671119913458824, + 0.03555385023355484, + 0.062437884509563446, + 0.05043475329875946, + 0.03648427873849869, + 0.056479066610336304, + -0.03731931373476982, + -0.09246250241994858, + -0.013015715405344963, + -0.03496254235506058, + 0.04955560714006424, + 0.017191331833600998, + 0.043338462710380554, + -0.0008696811273694038, + 0.07697781920433044, + 0.030423954129219055, + -0.01410999707877636, + -0.025233402848243713, + -0.0676155835390091, + 0.03485284000635147, + 0.08324001729488373, + -0.011431500315666199, + 0.02322409860789776, + -0.0007219631224870682, + 0.0694468766450882, + 0.060692198574543, + -0.04339031130075455, + -0.00032777339220046997, + -0.020498031750321388, + 0.02604079432785511, + 0.04291475564241409, + 0.06246257573366165, + 0.006132986396551132, + 0.02121514081954956, + 0.11166727542877197, + -0.06699950993061066, + 0.030972689390182495, + 0.003795386292040348, + -0.012878019362688065, + -0.0490633100271225, + 0.04782489687204361, + 0.020377017557621002, + -0.003418991342186928, + 0.0001584421843290329, + 0.02110578492283821, + 0.02077466994524002, + 0.003818400204181671, + -0.054585035890340805, + 0.0018689632415771484, + 0.02700348012149334, + -0.02421363815665245, + 0.022694306448101997, + 0.03226364403963089, + 0.04870469868183136, + 0.016613781452178955, + 0.06239878386259079, + -0.0503784716129303, + -0.015207886695861816, + 0.03068344108760357, + 0.012323945760726929, + -0.009966287761926651, + -0.012963440269231796, + -0.04543355852365494, + -0.02260706201195717, + -0.002241317182779312, + 0.09423957020044327, + -0.025701560080051422, + 0.03858235850930214, + 0.04459567740559578, + -0.001337686786428094, + 0.1019161120057106, + 0.034563373774290085, + -0.021709445863962173, + -0.04325784742832184, + -0.07394756376743317, + -0.010701078921556473, + 0.03200690075755119, + -0.1614108383655548, + -0.021555878221988678, + -0.03734583780169487, + -0.03584977611899376, + 0.006048415321856737, + 0.013734642416238785, + 0.07061280310153961, + -0.027480563148856163, + 0.007907764054834843, + 0.0013669952750205994, + 0.011461102403700352, + -0.02868250384926796, + -0.11659567058086395, + 0.020381135866045952, + -0.047726765275001526, + 0.01552228257060051, + 0.07287449389696121, + -0.04410259798169136, + 0.004859298933297396, + -0.04880005866289139, + -0.04692478105425835, + 0.015201244503259659, + 0.07477204501628876, + 0.017476705834269524, + -2.1323212422430515e-05, + 0.020455945283174515, + 0.034225694835186005, + -0.026310931891202927, + 0.05604342371225357, + -0.009844496846199036, + 0.0813305675983429, + -0.06089827045798302, + 0.027818668633699417, + -0.005416626110672951, + 0.014772187918424606, + 0.06832297146320343, + -0.021546149626374245, + -0.11031489074230194, + -0.06080133467912674, + -0.02116691693663597, + 0.027910171076655388, + -0.016317958012223244, + -0.03824947774410248, + 0.007023532874882221, + -0.011336670257151127, + -0.013859203085303307, + -0.09113756567239761, + 0.02342355065047741, + 0.02837616205215454, + 0.004606687463819981, + -0.06532706320285797, + 0.027152802795171738, + -0.03189672529697418, + 0.02507844939827919, + -0.032639749348163605, + 0.07138194888830185, + 0.0022166483104228973, + -0.014683031477034092, + -0.0430789440870285, + -0.01697285659611225, + 0.031949955970048904, + 0.011931685730814934, + -0.03563685342669487, + -0.0554065927863121, + 0.047775380313396454, + 0.007679596543312073, + 0.07990893721580505, + 0.03215881809592247, + -0.011561330407857895, + 0.015731219202280045, + 0.0026624388992786407, + -0.06192142516374588, + 0.003511176211759448, + 0.033074114471673965, + 0.005636034533381462, + 0.03974713757634163, + -0.024308715015649796, + 0.03552728891372681, + 0.027024682611227036, + 0.01616571843624115, + -0.007707834243774414, + -0.014502554200589657, + -0.06470315903425217, + -0.043164581060409546, + -0.023556098341941833, + -0.04584721848368645, + 0.021824803203344345, + -0.022979341447353363, + 0.06951957941055298, + 0.01898857206106186, + 0.08085615932941437, + 0.011693358421325684, + -0.047889843583106995 + ] + }, + "p244_396.wav": { + "name": "p244", + "embedding": [ + 0.06517630815505981, + 0.10721991956233978, + -0.026210322976112366, + 0.02655503898859024, + -0.03522571548819542, + 0.06942230463027954, + -0.11102457344532013, + 0.12470437586307526, + -0.028148166835308075, + 0.16116848587989807, + -0.05939150229096413, + 0.12537911534309387, + 0.002466081641614437, + -0.16047430038452148, + -0.025566497817635536, + 0.039198294281959534, + -0.044055912643671036, + -0.003115265630185604, + -0.04788688197731972, + 0.003106349613517523, + 0.04585167393088341, + 0.04467109218239784, + 0.04544520378112793, + -0.04946667701005936, + 0.02919802814722061, + 0.05480317771434784, + -0.0013365903869271278, + 0.04785804823040962, + 0.011247104965150356, + -0.10752403736114502, + -0.04367070645093918, + 0.10983128845691681, + -0.042708106338977814, + 0.04068087786436081, + 0.05139332264661789, + -0.01772719994187355, + -0.012709896080195904, + -0.06883697211742401, + -0.013414707034826279, + 0.005680189933627844, + -0.022992700338363647, + 0.06731124222278595, + 0.008581933565437794, + -0.03604145720601082, + 0.0368812121450901, + 0.004855903796851635, + -0.019964639097452164, + -0.04552185535430908, + -0.07436802983283997, + 0.1696459949016571, + 0.06883874535560608, + 0.011203248053789139, + -0.06979367136955261, + -0.07916714251041412, + 0.07860253751277924, + -0.0017830193974077702, + -0.11333741247653961, + -0.027933157980442047, + 0.04430707171559334, + 0.14919014275074005, + -0.010751070454716682, + -0.028372839093208313, + 0.03801906853914261, + 0.11634698510169983, + 0.040157102048397064, + 0.088083915412426, + 0.0870276689529419, + 0.08878590166568756, + 0.006489753723144531, + 0.05652322992682457, + 0.028659621253609657, + 0.08469879627227783, + 0.06456289440393448, + -0.010897435247898102, + 0.03275791183114052, + -0.024754337966442108, + -0.04490974545478821, + -0.02952863834798336, + -0.025987200438976288, + -0.026346305385231972, + -0.007786503527313471, + 0.006081285420805216, + 0.027438336983323097, + 0.03851122781634331, + -0.030722923576831818, + 0.03364578261971474, + 0.024736011400818825, + -0.04859985038638115, + 0.048089176416397095, + 0.038405902683734894, + 0.03868989273905754, + 0.04249880835413933, + -0.08509248495101929, + -0.11658293008804321, + 0.029262281954288483, + 0.014601492322981358, + 0.017014412209391594, + 0.08175350725650787, + 0.049749284982681274, + -0.027871903032064438, + 0.09385992586612701, + 0.03826487809419632, + -0.013534833677113056, + 0.0005872240290045738, + -0.07795710116624832, + 0.11196853220462799, + 0.10102922469377518, + -0.016416946426033974, + 0.046119365841150284, + -0.06792338192462921, + 0.08339055627584457, + 0.06787735223770142, + -0.14817942678928375, + -0.08350761979818344, + 0.019396947696805, + -0.024958504363894463, + 0.0075767082162201405, + 0.09991246461868286, + 0.02037220448255539, + 0.04211430996656418, + 0.08934465050697327, + -0.10430359840393066, + -0.06072365492582321, + -0.04291628673672676, + 0.055879466235637665, + -0.09226059913635254, + 0.0775848776102066, + 0.03358490392565727, + -0.0186989214271307, + -0.011364801786839962, + 0.06770117580890656, + -0.015590742230415344, + 0.01835024170577526, + 0.008083555847406387, + -0.04789236560463905, + 0.022914139553904533, + -0.058133624494075775, + 0.013061843812465668, + 0.012555889785289764, + 0.02218298800289631, + 0.05212775990366936, + -0.01836366392672062, + -0.0316888652741909, + -0.09081701934337616, + 0.0176241472363472, + 0.04111219942569733, + 0.04795978218317032, + -0.01748806983232498, + -0.03008992224931717, + -0.014394992962479591, + -0.05571184307336807, + 0.03071283921599388, + -0.03396749123930931, + 0.05361219868063927, + 0.01325300894677639, + 0.015651697292923927, + 0.11935000866651535, + 0.008567150682210922, + -0.001899931812658906, + -0.03708351030945778, + -0.019476210698485374, + 0.031346894800662994, + 0.058785729110240936, + -0.08987122774124146, + -0.06835330277681351, + -0.0011888910084962845, + -0.016794703900814056, + -0.0119209298864007, + 0.04924074932932854, + 0.0498056560754776, + 0.018354468047618866, + 0.03197338059544563, + -0.059796907007694244, + -0.02137620747089386, + -0.11094969511032104, + -0.06660529971122742, + -0.026609044522047043, + -0.053207144141197205, + -0.022704333066940308, + 0.09328952431678772, + 0.02344149351119995, + 0.03072524629533291, + -0.0297149159014225, + -0.04843574017286301, + -0.07187207788228989, + 0.05697520077228546, + 0.06802003085613251, + 0.0008193914545699954, + 0.022981014102697372, + 0.03956327214837074, + -0.0033469372428953648, + 0.033217623829841614, + 0.05818531662225723, + 0.08356843888759613, + -0.017114058136940002, + 0.001056239940226078, + -0.09554487466812134, + 0.10885017365217209, + 0.11455187201499939, + -0.07943351566791534, + -0.09818488359451294, + -0.03901026397943497, + -0.08240342885255814, + 0.02317032217979431, + -0.035247549414634705, + 0.0040632588788867, + 0.03994818031787872, + -0.01680007204413414, + -0.1005466878414154, + -0.09014047682285309, + 0.10579557716846466, + -0.06792503595352173, + -0.021382413804531097, + -0.0751475915312767, + 0.0429789237678051, + 0.0774446502327919, + 0.04907786846160889, + -0.041583120822906494, + 0.006374651566147804, + 0.06434763967990875, + -0.049181804060935974, + 0.0031090732663869858, + 0.04416338726878166, + 0.023342810571193695, + -0.09791085124015808, + 0.01773425191640854, + -0.04863790050148964, + 0.04365210235118866, + -0.09506496787071228, + 0.14368534088134766, + -0.005144298542290926, + -0.07950660586357117, + -0.09214206039905548, + 0.07147965580224991, + -0.01729930005967617, + 0.02507266029715538, + 0.029670685529708862, + 0.051528457552194595, + 0.03800062835216522, + -0.11955156922340393, + 0.09893016517162323, + 0.03362716734409332, + 0.00511011341586709, + -0.0811774730682373, + -0.07450739294290543, + -0.0336877778172493, + 0.03602423518896103, + 0.0038190397899597883, + -0.07339638471603394, + 0.01095831673592329, + 0.015445513650774956, + 0.0006300406530499458, + 0.05763588100671768, + 0.13967403769493103, + 0.04407641664147377, + -0.12899541854858398 + ] + }, + "p244_266.wav": { + "name": "p244", + "embedding": [ + 0.06275972723960876, + 0.10458409786224365, + -0.016859009861946106, + 0.041719552129507065, + -0.05976272374391556, + 0.08425871282815933, + -0.1139720231294632, + 0.11842691898345947, + -0.06820785999298096, + 0.1367681324481964, + -0.059513628482818604, + 0.11924424767494202, + -0.029219742864370346, + -0.15291652083396912, + -0.055678531527519226, + 0.056495338678359985, + -0.05656929314136505, + -0.03382333368062973, + -0.053548652678728104, + -0.012108069844543934, + 0.019336778670549393, + 0.026876257732510567, + 0.06881733238697052, + 0.010827560909092426, + 0.03989651799201965, + 0.05641339346766472, + -0.0027742963284254074, + 0.055488113313913345, + 0.030304603278636932, + -0.08616435527801514, + -0.050449904054403305, + 0.09712797403335571, + -0.04303281009197235, + 0.01880800724029541, + 0.034522153437137604, + -0.0034501992631703615, + 0.018394574522972107, + -0.07735978066921234, + -0.03030386194586754, + -0.003677834989503026, + -0.027858294546604156, + 0.08223546296358109, + 0.020708100870251656, + -0.034314870834350586, + 0.022450122982263565, + -0.03282851725816727, + -0.024700362235307693, + -0.028004543855786324, + -0.10558931529521942, + 0.15091395378112793, + 0.06254488974809647, + 0.008824310265481472, + -0.0832078605890274, + -0.07657890021800995, + 0.11659140139818192, + -0.027609556913375854, + -0.13063302636146545, + -0.03658204525709152, + 0.05352015420794487, + 0.17844796180725098, + -0.015451924875378609, + -0.00901712104678154, + 0.024675089865922928, + 0.12304750084877014, + 0.0773555338382721, + 0.07592643797397614, + 0.0871802270412445, + 0.09822160005569458, + -0.003057264257222414, + 0.035391438752412796, + 0.052185989916324615, + 0.0679408460855484, + 0.03263004869222641, + -0.005798683501780033, + 0.01762537658214569, + -0.021588413044810295, + -0.03007441759109497, + -0.006682452280074358, + -0.020017992705106735, + -0.03128517419099808, + -0.040192827582359314, + 0.0009146551601588726, + 0.003359758760780096, + 0.02354622073471546, + -0.03548082709312439, + 0.0556405633687973, + 0.008179174736142159, + -0.03888179361820221, + 0.062490176409482956, + 0.05662870407104492, + 0.006768522784113884, + 0.047149911522865295, + -0.0548359751701355, + -0.08042454719543457, + 0.0018875326495617628, + 0.010982846841216087, + 0.012556401081383228, + 0.0741402804851532, + 0.042389899492263794, + -0.019322898238897324, + 0.11022689938545227, + 0.06383726000785828, + 0.005732770077884197, + 0.01422690600156784, + -0.08839423209428787, + 0.11207915842533112, + 0.08923239260911942, + -0.011756308376789093, + 0.05343710258603096, + -0.013429244048893452, + 0.06370701640844345, + 0.08137749135494232, + -0.1313275843858719, + -0.08043543994426727, + 0.024216052144765854, + -0.012891063466668129, + 0.01359106320887804, + 0.08228619396686554, + 0.0016628594603389502, + 0.032983340322971344, + 0.07362677901983261, + -0.07221278548240662, + -0.050070129334926605, + -0.01869276538491249, + 0.06632186472415924, + -0.06181447207927704, + 0.0451107956469059, + 0.04258367419242859, + -0.01631988026201725, + -0.019103124737739563, + 0.0688035786151886, + -0.005099877715110779, + -0.00914565846323967, + 0.05334053188562393, + -0.06745366752147675, + 0.030854910612106323, + -0.021866487339138985, + 0.00345616415143013, + 0.06318770349025726, + 0.034494396299123764, + 0.051546044647693634, + -0.020824428647756577, + -0.008118115365505219, + -0.08988383412361145, + 0.0050772977992892265, + 0.05215409770607948, + 0.06953738629817963, + -0.010564915835857391, + -0.01703966036438942, + -0.040006499737501144, + -0.05445738881826401, + 0.04455437883734703, + -0.011390249244868755, + 0.09923287481069565, + -0.019289400428533554, + 0.01112386118620634, + 0.11131057143211365, + 0.007414557505398989, + -0.009932797402143478, + -0.04962749779224396, + 0.004140329547226429, + 0.020935652777552605, + 0.05963125824928284, + -0.05633137747645378, + -0.07001110911369324, + 0.021303271874785423, + 0.018475018441677094, + -0.01819244772195816, + 0.06341169029474258, + 0.04877929389476776, + 0.00554093811661005, + 0.03536195680499077, + -0.05592143535614014, + 0.015182938426733017, + -0.08435918390750885, + -0.03751921281218529, + -0.01346663199365139, + -0.04503343254327774, + -0.026056470349431038, + 0.08853857219219208, + 0.06391701102256775, + 0.04124690219759941, + 0.005767180118709803, + -0.08943105489015579, + -0.07201839983463287, + 0.06090395152568817, + 0.046102941036224365, + 0.006043666508048773, + 0.032095517963171005, + 0.07614442706108093, + -0.01004391722381115, + 0.05742378905415535, + 0.07475529611110687, + 0.05713532119989395, + -0.029169835150241852, + -0.013026731088757515, + -0.08042380958795547, + 0.06478587538003922, + 0.09427034854888916, + -0.1158149242401123, + -0.092522531747818, + -0.044841885566711426, + -0.06462964415550232, + 0.03804730623960495, + -0.024530325084924698, + 0.018008101731538773, + 0.0534059964120388, + -0.03458288311958313, + -0.10203512758016586, + -0.1257103830575943, + 0.14744949340820312, + -0.0744117796421051, + -0.008387519046664238, + -0.061107221990823746, + 0.022889189422130585, + 0.06047376990318298, + 0.03595353662967682, + -0.01875624805688858, + 0.030477866530418396, + 0.05256212502717972, + -0.05230649560689926, + -0.004871675278991461, + 0.07330705225467682, + -0.0023340322077274323, + -0.1180487796664238, + 0.01086245384067297, + -0.07277999073266983, + 0.08402067422866821, + -0.050315700471401215, + 0.175079345703125, + -0.009606784209609032, + -0.04910197854042053, + -0.08703337609767914, + 0.04491184651851654, + -0.05352848768234253, + 0.05318020284175873, + 0.0428909957408905, + 0.0743495300412178, + 0.021179206669330597, + -0.06641532480716705, + 0.10372385382652283, + 0.0538320317864418, + -0.04913196340203285, + -0.08250683546066284, + -0.04653572291135788, + -0.0360957607626915, + 0.03450682386755943, + 0.004789314232766628, + -0.07222826778888702, + 0.01192548405379057, + 0.011586499400436878, + -0.024299541488289833, + 0.08379250019788742, + 0.13765215873718262, + 0.09894561767578125, + -0.10718527436256409 + ] + }, + "p244_088.wav": { + "name": "p244", + "embedding": [ + 0.04236525297164917, + 0.0754239484667778, + -0.045186206698417664, + 0.017724841833114624, + -0.05314382165670395, + 0.039793021976947784, + -0.10560227930545807, + 0.08876095712184906, + -0.024642176926136017, + 0.13936582207679749, + -0.056469183415174484, + 0.11251355707645416, + -0.025432568043470383, + -0.131851464509964, + 0.016572829335927963, + 0.05110277235507965, + 0.00490798382088542, + 0.002525883726775646, + -0.022889379411935806, + -0.011963474564254284, + 0.03135685250163078, + 0.02465794049203396, + 0.027101527899503708, + -0.0571042001247406, + 0.030960900709033012, + 0.06672944873571396, + -0.020442238077521324, + -0.0123983733355999, + -0.0274873785674572, + -0.04356111213564873, + -0.014801619574427605, + 0.0810440331697464, + -0.049000270664691925, + 0.021360039710998535, + 0.047575559467077255, + 0.014525718986988068, + -0.05328334867954254, + -0.04646814987063408, + 0.018019547685980797, + -0.005874117370694876, + -0.06566236168146133, + 0.07170110940933228, + 0.021989118307828903, + -0.05264194309711456, + 0.03709504008293152, + -0.02321106567978859, + -0.01464831456542015, + 0.0007167396834120154, + -0.06337251514196396, + 0.1360478699207306, + 0.03794759511947632, + 0.024134796112775803, + -0.08403553068637848, + -0.035290926694869995, + 0.06470327079296112, + 0.019074328243732452, + -0.10654830187559128, + -0.058657824993133545, + 0.04420551657676697, + 0.11027829349040985, + -0.004422395955771208, + -0.03993586450815201, + 0.021196871995925903, + 0.07929973304271698, + 0.022144824266433716, + 0.0743233785033226, + 0.06557686626911163, + 0.11367546021938324, + 0.004306766204535961, + 0.033876389265060425, + 0.04230637475848198, + 0.07662834227085114, + 0.05118350312113762, + -0.013198355212807655, + 0.01101980172097683, + -0.029172873124480247, + -0.03249881789088249, + -0.01671185903251171, + -0.015918301418423653, + -0.05581733211874962, + -0.04373576492071152, + -0.03005111590027809, + 0.017875809222459793, + 0.012417186051607132, + -0.012060903012752533, + 0.0020107373129576445, + 0.10785671323537827, + -0.047186147421598434, + 0.04970058426260948, + 0.06769898533821106, + -0.01986728049814701, + 0.022695254534482956, + -0.08581473678350449, + -0.06847154349088669, + 0.011790100485086441, + 0.0014627976343035698, + 0.02513846568763256, + 0.0700957402586937, + 0.03988618776202202, + 0.02200813964009285, + 0.0703100636601448, + 0.023964952677488327, + 0.014909503981471062, + -0.010527588427066803, + -0.060880087316036224, + 0.1303771585226059, + 0.10453125834465027, + -0.0334869921207428, + 0.029558852314949036, + -0.04625929892063141, + 0.028897378593683243, + 0.05807436630129814, + -0.09177964180707932, + -0.057013027369976044, + -0.010535283014178276, + -0.019309118390083313, + -0.0007236426463350654, + 0.11596311628818512, + 0.02552586793899536, + 0.0073189823888242245, + 0.10318364948034286, + -0.11327483505010605, + -0.09830202162265778, + -0.02680278941988945, + 0.010000979527831078, + -0.0974183902144432, + 0.06776617467403412, + 0.0634193941950798, + 0.009705807082355022, + 0.009710841812193394, + 0.07640868425369263, + 0.015296265482902527, + 0.04788470268249512, + -0.02279328927397728, + -0.004113178700208664, + 0.019310237839818, + -0.02490140311419964, + 0.022229334339499474, + 0.07778877764940262, + 0.018070844933390617, + 0.08573661744594574, + 0.001061081886291504, + 0.015682900324463844, + -0.10538306087255478, + 0.011464020237326622, + 0.08083142340183258, + 0.026681188493967056, + -0.047883540391922, + -0.02291342429816723, + -0.009277289733290672, + -0.0929560661315918, + 0.025853481143712997, + -0.02502596192061901, + 0.07388801872730255, + 0.007943443953990936, + -0.009611682966351509, + 0.13422970473766327, + 0.012996269389986992, + 0.0029671199154108763, + -0.06125715374946594, + -0.01954694092273712, + 0.004312800709158182, + 0.05019153282046318, + -0.1347048580646515, + -0.08504339307546616, + -0.03595571592450142, + -0.003675208194181323, + 0.004475640133023262, + 0.03553519770503044, + 0.08206185698509216, + 0.002802877454087138, + 0.027015861123800278, + -0.04695117101073265, + 0.006720840930938721, + -0.07637880742549896, + -0.05834929645061493, + -0.022947674617171288, + -0.07970127463340759, + -0.004842136055231094, + 0.09929104894399643, + -0.007080617360770702, + 0.018930353224277496, + -0.034353189170360565, + -0.054217901080846786, + -0.07930701225996017, + 0.045394912362098694, + 0.029179122298955917, + -0.04350883886218071, + 0.015973228961229324, + 0.04174887388944626, + -0.044578202068805695, + -0.017151078209280968, + 0.03466076776385307, + 0.09698228538036346, + -0.0734417662024498, + 0.004493778105825186, + -0.07623273134231567, + 0.10808276385068893, + 0.11594148725271225, + -0.07232116907835007, + -0.07124092429876328, + -0.07698666304349899, + -0.03539056330919266, + 0.01261798944324255, + -0.06289085745811462, + -0.02799104154109955, + 0.023715287446975708, + -0.05077308043837547, + -0.0756128579378128, + -0.1193140372633934, + 0.062068209052085876, + -0.03669997677206993, + 0.007340624928474426, + -0.07714134454727173, + 0.032271284610033035, + -0.0031958750914782286, + 0.04009813070297241, + -0.0646197497844696, + 0.044082652777433395, + 0.03337187319993973, + -0.03719500079751015, + 0.012969679199159145, + 0.058170340955257416, + 0.02635194920003414, + -0.0319247841835022, + -0.05222412943840027, + -0.06367869675159454, + 0.06894227862358093, + -0.05995966121554375, + 0.12644216418266296, + -0.02645149454474449, + -0.06243101879954338, + -0.06587567180395126, + -0.002566605806350708, + 0.009437533095479012, + 0.013487285003066063, + 0.06623219698667526, + 0.06982529908418655, + 0.017574332654476166, + -0.06234272941946983, + 0.10064071416854858, + 0.05192526429891586, + 0.0380561426281929, + -0.056160181760787964, + -0.04067622125148773, + -0.04052918031811714, + 0.03014150820672512, + -0.004749623127281666, + -0.09433123469352722, + 0.06469447910785675, + 0.02332175150513649, + 0.024281909689307213, + 0.04411012679338455, + 0.09125831723213196, + 0.06726011633872986, + -0.08644570410251617 + ] + }, + "p244_251.wav": { + "name": "p244", + "embedding": [ + 0.049328289926052094, + 0.059953488409519196, + -0.01054478157311678, + 0.020352214574813843, + -0.0199117548763752, + 0.05276632308959961, + -0.11319814622402191, + 0.06005311757326126, + -0.03570986166596413, + 0.16524741053581238, + -0.10067404061555862, + 0.09237560629844666, + -0.010569012723863125, + -0.17408621311187744, + -0.021804997697472572, + 0.04224531352519989, + -0.04727105796337128, + 0.00436815619468689, + -0.04831356555223465, + -0.03102274239063263, + 0.06311007589101791, + 0.09043288230895996, + 0.04414050281047821, + -0.05400954931974411, + 0.0042407820001244545, + 0.06681108474731445, + -0.025087375193834305, + 0.03582890331745148, + -0.028526578098535538, + -0.14018011093139648, + -0.07212929427623749, + 0.11119742691516876, + -0.027697492390871048, + 0.025717835873365402, + -0.0017318916507065296, + 0.018676547333598137, + 0.00516867870464921, + -0.03892746567726135, + -0.005725560709834099, + 0.00348449544981122, + -0.017069881781935692, + 0.0355876162648201, + -0.015043491497635841, + -0.008019731380045414, + 0.06229155510663986, + 0.0017029240261763334, + -0.03863031417131424, + -0.04859350621700287, + -0.08093905448913574, + 0.1773947775363922, + 0.06079889088869095, + -0.005341731011867523, + -0.0387200228869915, + -0.07986727356910706, + 0.07623015344142914, + -0.026826025918126106, + -0.13215351104736328, + -0.026669472455978394, + 0.07634372264146805, + 0.14381921291351318, + -0.022608619183301926, + -0.07395382225513458, + 0.05345578119158745, + 0.06411219388246536, + -0.025302492082118988, + 0.07952225208282471, + 0.07111746072769165, + 0.03671516478061676, + 0.0023251762613654137, + -0.015842296183109283, + 0.009580474346876144, + 0.0881299078464508, + 0.10273173451423645, + -0.02085926942527294, + 0.04295113682746887, + 0.013505339622497559, + -0.046422675251960754, + 0.01220475509762764, + -0.04360032081604004, + -0.005511448718607426, + 0.011075293645262718, + -0.032045405358076096, + 0.014161832630634308, + -0.034202009439468384, + -0.03750857710838318, + 0.009857445023953915, + 0.03544248268008232, + -0.014740318059921265, + 0.05080818012356758, + 0.0199776329100132, + 0.03391994535923004, + 0.035608358681201935, + -0.05160940811038017, + -0.0641646683216095, + 0.058570489287376404, + 0.05968838930130005, + -0.0176845695823431, + 0.04797288775444031, + 0.046034883707761765, + -0.07386460900306702, + 0.102744922041893, + -0.005570786073803902, + 0.014623268507421017, + -0.005881818942725658, + -0.10371869057416916, + 0.08173513412475586, + 0.14124202728271484, + -0.002029349096119404, + 0.03605691343545914, + -0.05607824772596359, + 0.08291968703269958, + 0.07880977541208267, + -0.14043837785720825, + -0.06603536754846573, + -0.006447142921388149, + -0.018748588860034943, + 0.02126128599047661, + 0.09051737189292908, + 0.00649992935359478, + 0.009501633234322071, + 0.11749141663312912, + -0.1311604231595993, + -0.05950690060853958, + -0.012895062565803528, + 0.019873417913913727, + -0.1369878649711609, + 0.05963912606239319, + 0.04787156730890274, + 0.002567657735198736, + 0.009192496538162231, + 0.0749645084142685, + -0.045056115835905075, + 0.023208580911159515, + -0.040937650948762894, + -0.050383709371089935, + -0.03924104943871498, + -0.07999251782894135, + -0.04218427836894989, + 0.05701034143567085, + 0.029537491500377655, + 0.03700511157512665, + -0.017973028123378754, + -0.0868062824010849, + -0.140301913022995, + 0.014460212551057339, + 0.0260839331895113, + 0.01212030928581953, + -0.0024296967312693596, + -0.00913532916456461, + -0.03982291370630264, + -0.08167420327663422, + 0.0697038471698761, + -0.058382548391819, + 0.03966904431581497, + 0.0042314352467656136, + 0.0007226946763694286, + 0.08827710151672363, + 0.020843632519245148, + -0.027329083532094955, + -0.056936465203762054, + -0.05073275417089462, + 0.022085975855588913, + 0.019711047410964966, + -0.08167755603790283, + -0.06705820560455322, + -0.017035579308867455, + 0.019519371911883354, + 0.011421735398471355, + 0.05200369656085968, + 0.07803940773010254, + 0.019217800348997116, + 0.006655774544924498, + -0.0657368004322052, + 0.00040613164310343564, + -0.10277131199836731, + -0.09155014157295227, + 0.008352401666343212, + -0.06651359796524048, + 0.023270629346370697, + 0.11062470078468323, + -0.02021205425262451, + -0.02643536776304245, + -0.10284361243247986, + -0.061432551592588425, + -0.0966632068157196, + 0.06050602346658707, + 0.06663714349269867, + 0.02348233386874199, + 0.020204821601510048, + 0.02230023592710495, + -0.03305267542600632, + 0.08827963471412659, + 0.04610329121351242, + 0.13187098503112793, + -0.007613573223352432, + 0.04823947325348854, + -0.039790716022253036, + 0.09473560750484467, + 0.08938881754875183, + -0.005552427843213081, + -0.08788211643695831, + -0.02698804996907711, + -0.08806759119033813, + 0.09903028607368469, + -0.02297016605734825, + -0.04481854289770126, + 0.03193691745400429, + -0.008596988394856453, + -0.10733656585216522, + -0.05774542689323425, + 0.0790112167596817, + 0.009053654037415981, + -0.04344800114631653, + -0.06411679834127426, + 0.0662645697593689, + 0.052377767860889435, + 0.0593242421746254, + -0.018326755613088608, + 0.024680186063051224, + 0.04674012213945389, + -0.07952851802110672, + 0.012883469462394714, + 0.02382596954703331, + 0.024478016421198845, + -0.06606549024581909, + 0.005899862386286259, + -0.10745332390069962, + 0.023255206644535065, + -0.07051318883895874, + 0.1077079176902771, + -0.014976700767874718, + -0.05343962460756302, + -0.06335050612688065, + 0.08788689970970154, + -0.03633427247405052, + 0.027967587113380432, + 0.050388187170028687, + 0.03291618078947067, + 0.08403430879116058, + -0.11826460808515549, + 0.0543389655649662, + 0.052195750176906586, + 0.008650942705571651, + -0.04869018495082855, + -0.06905244290828705, + -0.0529961958527565, + -0.005277123302221298, + -0.028453629463911057, + -0.08558467030525208, + 0.020153438672423363, + 0.01427987590432167, + 0.04202116280794144, + 0.03267994523048401, + 0.10085238516330719, + -0.009471339173614979, + -0.1218496710062027 + ] + }, + "p244_406.wav": { + "name": "p244", + "embedding": [ + 0.022433273494243622, + 0.11010242998600006, + -0.00825293455272913, + 0.0286464411765337, + -0.07395180314779282, + 0.05012383684515953, + -0.12714862823486328, + 0.14757871627807617, + -0.04032038152217865, + 0.10994261503219604, + -0.07795362919569016, + 0.12456173449754715, + -0.06213505193591118, + -0.18791791796684265, + -0.023377323523163795, + 0.08217857033014297, + 0.008465186692774296, + -0.004512334708124399, + -0.004613865632563829, + -0.011728457175195217, + 0.014283307828009129, + -0.004827337339520454, + 0.03108474239706993, + 0.008688081987202168, + 0.046692222356796265, + 0.0611715242266655, + 0.01224487740546465, + 0.0638929083943367, + 0.004131973255425692, + 0.0055716331116855145, + -0.027185827493667603, + 0.10582759976387024, + -0.05903424695134163, + 0.021410971879959106, + 0.08168889582157135, + 0.011746183037757874, + -0.015315328724682331, + -0.03388787806034088, + 0.009365646168589592, + -0.024647563695907593, + -0.046410251408815384, + 0.07175841182470322, + 0.024881821125745773, + 0.008763165213167667, + 0.04082033410668373, + 0.0612298883497715, + -0.004612419288605452, + -0.0269665215164423, + -0.12224484980106354, + 0.12598580121994019, + 0.01978444680571556, + 0.002172099193558097, + -0.10446738451719284, + -0.0774807408452034, + 0.10754960775375366, + -0.021365001797676086, + -0.09653037041425705, + -0.05904841050505638, + 0.10277979075908661, + 0.1550615131855011, + -0.02624199166893959, + -0.043827105313539505, + -0.02491120621562004, + 0.11231652647256851, + 0.04204030707478523, + 0.10449327528476715, + 0.0451502650976181, + 0.13080008327960968, + -0.01876417174935341, + 0.02138260006904602, + 0.05753375217318535, + 0.04959304258227348, + 0.02698889933526516, + -0.01137266494333744, + -0.0019854996353387833, + -0.008908815681934357, + 0.01426773052662611, + 0.041263844817876816, + -0.02699982188642025, + -0.03687213733792305, + -0.043809905648231506, + 0.012480275705456734, + -0.0067670284770429134, + -0.015618935227394104, + -0.005444853100925684, + 0.06822241842746735, + 0.056879524141550064, + -0.005852878093719482, + 0.08322931081056595, + 0.05207604542374611, + -0.05484650284051895, + 0.06743285059928894, + -0.09576766192913055, + -0.06958533078432083, + 0.009045041166245937, + -0.019883116707205772, + 0.03549882769584656, + 0.07247328758239746, + 0.012957296334207058, + 0.013708283193409443, + 0.10199087858200073, + 0.061259057372808456, + 0.01730342209339142, + 0.04120148718357086, + -0.08406860381364822, + 0.13011270761489868, + 0.06231855973601341, + -0.012005441822111607, + 0.04700308293104172, + -0.03417704626917839, + 0.04836944490671158, + 0.07589543610811234, + -0.1075824648141861, + -0.07824350148439407, + -0.01381006371229887, + 0.016014596447348595, + -0.04581049457192421, + 0.1094963327050209, + -0.036450717598199844, + 0.028939707204699516, + 0.11604727059602737, + -0.0929003581404686, + -0.07065986841917038, + -0.006767651066184044, + 0.018073400482535362, + -0.06184563785791397, + 0.035943079739809036, + 0.060829613357782364, + 0.0009416225366294384, + 0.025887329131364822, + 0.08263947069644928, + 0.02154458314180374, + 0.023379093036055565, + 0.03917766362428665, + -0.06726950407028198, + 0.007558941841125488, + -0.013419078662991524, + 0.0044156648218631744, + 0.08153006434440613, + 0.055984947830438614, + 0.07435870170593262, + 0.012628359720110893, + -0.007919891737401485, + -0.10971485078334808, + -0.015739768743515015, + 0.07960822433233261, + 0.06753089278936386, + -0.03338081017136574, + -0.030068732798099518, + -0.029494402930140495, + -0.07300763577222824, + 0.02699226699769497, + 0.03174315392971039, + 0.10782495141029358, + -0.030381515622138977, + -0.006868352647870779, + 0.11232158541679382, + 0.0364680290222168, + -0.016050897538661957, + -0.08812564611434937, + -0.04741069674491882, + -0.010606169700622559, + 0.03333564102649689, + -0.12429565191268921, + -0.06682263314723969, + -0.017341116443276405, + 0.04887819662690163, + -0.03813241794705391, + 0.05993665009737015, + 0.04879587143659592, + 0.022781575098633766, + 0.033962611109018326, + -0.029881419613957405, + 0.006083779968321323, + -0.0786898210644722, + -0.07324090600013733, + -0.007931698113679886, + -0.011931668035686016, + -0.03465215489268303, + 0.06462141126394272, + 0.02420193701982498, + 0.06448564678430557, + 0.011100980453193188, + -0.06012969836592674, + -0.09225257486104965, + 0.057550642639398575, + 0.03213885799050331, + -0.0028893230482935905, + 0.0760091170668602, + 0.04881973937153816, + -0.0874478742480278, + 0.07650589942932129, + 0.07824760675430298, + 0.09871044754981995, + -0.06014077737927437, + 0.04279525205492973, + -0.07939570397138596, + 0.06016266718506813, + 0.09840571880340576, + -0.11393151432275772, + -0.10124827176332474, + -0.044690296053886414, + -0.04529865086078644, + 0.0433080717921257, + -0.04151226207613945, + 0.007362959906458855, + 0.026500094681978226, + -0.016556164249777794, + -0.0832802802324295, + -0.10136456787586212, + 0.05681251361966133, + -0.06221964955329895, + 0.008924389258027077, + -0.06465260684490204, + 0.04324430227279663, + 0.06933638453483582, + 0.018118569627404213, + -0.018436025828123093, + -0.008176364004611969, + 0.06551843136548996, + -0.04315779358148575, + -0.02036682888865471, + 0.05997240170836449, + 0.025921640917658806, + -0.04682108759880066, + -0.008312494494020939, + -0.06844659149646759, + 0.07077407091856003, + -0.018362656235694885, + 0.18124262988567352, + -0.005586482584476471, + -0.049223992973566055, + -0.055040910840034485, + -0.0043085478246212006, + -0.03021119348704815, + 0.040172625333070755, + 0.026781173422932625, + 0.07101870328187943, + 0.0014859841903671622, + -0.018747827038168907, + 0.16909834742546082, + 0.025779128074645996, + -0.058207977563142776, + -0.05218813568353653, + -0.04835975915193558, + -0.058003440499305725, + 0.021850500255823135, + -0.0049940901808440685, + -0.11896137148141861, + -0.019330821931362152, + 0.019596410915255547, + -0.012157253921031952, + 0.04467516019940376, + 0.14526787400245667, + 0.08396502584218979, + -0.07826828956604004 + ] + }, + "p244_018.wav": { + "name": "p244", + "embedding": [ + 0.03764362633228302, + 0.09154234081506729, + -0.01500939205288887, + 0.028700580820441246, + -0.04713848978281021, + 0.04220254719257355, + -0.14503705501556396, + 0.14676356315612793, + -0.026814399287104607, + 0.1316307634115219, + -0.07282541692256927, + 0.10995055735111237, + -0.030329391360282898, + -0.18260616064071655, + -0.024929527193307877, + 0.060952335596084595, + -0.057107873260974884, + -0.05216919258236885, + -0.029472116380929947, + -0.03406848385930061, + 0.03186372295022011, + 0.043869826942682266, + 0.02480209805071354, + 0.042479485273361206, + 0.009154178202152252, + 0.07734604179859161, + -0.012624327093362808, + 0.03543419390916824, + 0.014923883602023125, + -0.029815804213285446, + -0.026638299226760864, + 0.09449411928653717, + -0.044534169137477875, + 0.0047486284747719765, + 0.03883387893438339, + -0.015306773595511913, + -0.006794194225221872, + -0.05252738669514656, + -0.02585734613239765, + -0.0024617682211101055, + -0.06378418207168579, + 0.07526711374521255, + 0.026857584714889526, + -0.013827614486217499, + 0.04137516766786575, + 0.017740922048687935, + -0.02246253192424774, + -0.03978245332837105, + -0.10990358889102936, + 0.1443898230791092, + 0.10094386339187622, + -0.011521545238792896, + -0.0602971687912941, + -0.04417018964886665, + 0.09648551791906357, + -0.01685475744307041, + -0.12209080159664154, + -0.03975705802440643, + 0.09193167835474014, + 0.14617785811424255, + -0.03656116873025894, + -0.024837318807840347, + 0.041759323328733444, + 0.14488957822322845, + 0.07192541658878326, + 0.0860205739736557, + 0.0774093046784401, + 0.11114364862442017, + -0.04562363773584366, + -0.004283388610929251, + 0.06778092682361603, + 0.06189418584108353, + 0.052877843379974365, + -0.007849927060306072, + 0.009774241596460342, + -0.0023856530897319317, + -0.009205885231494904, + -0.005678159184753895, + -0.02607208862900734, + -0.018539177253842354, + -0.02201419323682785, + -0.0015125880017876625, + -0.0222533717751503, + 0.032405536621809006, + -0.01320338062942028, + 0.055061180144548416, + 0.05358836054801941, + -0.011499579064548016, + 0.07383372634649277, + 0.039092641323804855, + 0.022722944617271423, + 0.07295548915863037, + -0.07043106108903885, + -0.052647124975919724, + 0.022289332002401352, + -0.005592279136180878, + 0.02574138157069683, + 0.07316920161247253, + 0.05053160339593887, + -0.012173017486929893, + 0.13138136267662048, + 0.039022963494062424, + -0.015197357162833214, + 0.022221194580197334, + -0.10390225797891617, + 0.1305568367242813, + 0.07771643251180649, + -0.041435956954956055, + 0.043465472757816315, + -0.03624916821718216, + 0.056415800005197525, + 0.06254167854785919, + -0.12350660562515259, + -0.050076842308044434, + 0.03929123282432556, + 0.03178086876869202, + -0.02937980927526951, + 0.12179442495107651, + 0.006015018559992313, + 0.04337229207158089, + 0.1066557839512825, + -0.06533510237932205, + -0.05633750930428505, + -0.02094077132642269, + 0.05509558320045471, + -0.08800698071718216, + 0.060511376708745956, + 0.058736544102430344, + -0.004252209793776274, + 0.017218418419361115, + 0.08921100199222565, + -0.011730597354471684, + -0.009119277819991112, + 0.003968897275626659, + -0.0507071390748024, + 0.019811999052762985, + -0.018805263563990593, + 0.008205834776163101, + 0.026582758873701096, + 0.02569599449634552, + 0.03908529132604599, + -0.005167054478079081, + -0.029924875125288963, + -0.11901851743459702, + 0.01826886460185051, + 0.027276957407593727, + 0.09127062559127808, + 0.0017137329559773207, + -0.02138015814125538, + -0.037254586815834045, + -0.04874496906995773, + -0.0005164108006283641, + -0.017661932855844498, + 0.05890849605202675, + -0.04590122401714325, + -0.018569065257906914, + 0.09410692751407623, + 0.027656808495521545, + 0.010529249906539917, + -0.050668325275182724, + -0.027563506737351418, + 0.0026391465216875076, + 0.05307858809828758, + -0.08083528280258179, + -0.07554952800273895, + -0.0001614801585674286, + 0.052309438586235046, + -0.010271302424371243, + 0.06478386372327805, + 0.042986806482076645, + 0.013125678524374962, + 0.00799109973013401, + -0.07204458117485046, + 0.022329751402139664, + -0.09145520627498627, + -0.08002033084630966, + -0.007434266619384289, + 0.0012075421400368214, + -0.008884293027222157, + 0.0639994814991951, + 0.016127046197652817, + 0.05375587195158005, + -0.011737806722521782, + -0.08225305378437042, + -0.0935329869389534, + 0.05271512642502785, + 0.07052402198314667, + -0.01769179478287697, + 0.05305507034063339, + 0.07153312861919403, + -0.04968443140387535, + 0.04087692126631737, + 0.04003684222698212, + 0.11682800203561783, + -0.03704041242599487, + 0.017538178712129593, + -0.07418105006217957, + 0.04964343458414078, + 0.08312442898750305, + -0.10155589133501053, + -0.06480942666530609, + -0.025586828589439392, + -0.05473422259092331, + 0.03188405930995941, + -0.024246953427791595, + 0.006356997415423393, + 0.025086306035518646, + -0.0049482667818665504, + -0.1010873094201088, + -0.09280122071504593, + 0.08394641429185867, + -0.08323238790035248, + 0.011020710691809654, + -0.08684509247541428, + 0.04471810907125473, + 0.08881159871816635, + 0.029325654730200768, + -0.032305918633937836, + -0.012388265691697598, + 0.041262850165367126, + -0.010964948683977127, + 0.011134950444102287, + 0.06203185394406319, + 0.04745800048112869, + -0.12669628858566284, + -0.022570312023162842, + -0.08204594254493713, + 0.062097832560539246, + -0.03753640875220299, + 0.14323924481868744, + 0.025786053389310837, + -0.045844126492738724, + -0.0949782133102417, + 0.030293602496385574, + -0.004052481148391962, + 0.06212465465068817, + 0.03314443677663803, + 0.06611765921115875, + 0.03992925211787224, + -0.057246748358011246, + 0.11820288002490997, + 0.04609298333525658, + -0.04439686983823776, + -0.07164696604013443, + -0.03039267472922802, + -0.040580786764621735, + 0.02873329073190689, + 0.025070957839488983, + -0.09447844326496124, + -0.038386739790439606, + 0.014619055204093456, + -0.02579638361930847, + 0.07778245955705643, + 0.13773494958877563, + 0.07198118418455124, + -0.11946538090705872 + ] + }, + "p244_171.wav": { + "name": "p244", + "embedding": [ + 0.048756081610918045, + 0.10788099467754364, + -0.015114023350179195, + 0.011512534692883492, + -0.04713154211640358, + 0.06162680685520172, + -0.1253783404827118, + 0.13322007656097412, + -0.03776686638593674, + 0.13973170518875122, + -0.07304860651493073, + 0.13877861201763153, + -0.01722518913447857, + -0.178676575422287, + -0.0655965805053711, + 0.041443996131420135, + -0.0508502796292305, + -0.02661816030740738, + -0.03518000245094299, + -0.010728603228926659, + 0.06004888564348221, + 0.031563468277454376, + 0.025766754522919655, + 0.008738480508327484, + 0.004412919748574495, + 0.06819488108158112, + 0.027018524706363678, + 0.07064399123191833, + 0.047100163996219635, + -0.05526864156126976, + -0.0397224985063076, + 0.11563403904438019, + -0.030901232734322548, + 0.0389702282845974, + 0.05596928298473358, + -0.005339030176401138, + 0.016688555479049683, + -0.04657135531306267, + 0.005024332087486982, + 0.011187591589987278, + -0.02432718500494957, + 0.07588692009449005, + 0.018434898927807808, + -0.003303242614492774, + 0.03780677169561386, + 0.040311750024557114, + -0.013515792787075043, + -0.05391480028629303, + -0.08915295451879501, + 0.16478806734085083, + 0.07315248996019363, + -0.018548952415585518, + -0.0543912872672081, + -0.0677674412727356, + 0.0878400057554245, + -0.02745378017425537, + -0.1169440895318985, + -0.0463714599609375, + 0.08114601671695709, + 0.14538335800170898, + -0.026894118636846542, + -0.04318784922361374, + 0.022913847118616104, + 0.15118637681007385, + 0.04801703244447708, + 0.08850812911987305, + 0.08872583508491516, + 0.11048711091279984, + -0.02008085697889328, + 0.016718624159693718, + 0.051669590175151825, + 0.07550366222858429, + 0.04862320423126221, + -0.001224815845489502, + 0.04683710262179375, + -0.01575394719839096, + 0.014198355376720428, + 0.016827991232275963, + -0.02759290486574173, + -0.01795351132750511, + -0.016925204545259476, + 0.02255924418568611, + -0.02233215980231762, + 0.026395462453365326, + -0.029256489127874374, + 0.07548694312572479, + 0.019365482032299042, + -0.010187491774559021, + 0.05716826766729355, + 0.05902569741010666, + 0.041420385241508484, + 0.060123853385448456, + -0.07182320952415466, + -0.10445757955312729, + 0.0424509271979332, + -0.012181096710264683, + 0.037834297865629196, + 0.06358584761619568, + 0.03178483247756958, + -0.0027521606534719467, + 0.10499188303947449, + 0.05855675786733627, + -0.037732724100351334, + 0.032149188220500946, + -0.09303632378578186, + 0.14386561512947083, + 0.09384411573410034, + -0.02661513350903988, + 0.027049528434872627, + -0.04984838515520096, + 0.07522110641002655, + 0.060198865830898285, + -0.12207189202308655, + -0.09108433872461319, + 0.029622238129377365, + 0.02106487937271595, + -0.027309224009513855, + 0.09333403408527374, + -0.01536241453140974, + 0.031974077224731445, + 0.09518208354711533, + -0.060793448239564896, + -0.05631709843873978, + -0.03943692892789841, + 0.028135620057582855, + -0.08980363607406616, + 0.0626974105834961, + 0.04496128857135773, + 0.002481867093592882, + -0.007878376170992851, + 0.10467808693647385, + -0.00851157121360302, + 0.008898183703422546, + 0.011487308889627457, + -0.04572311043739319, + 0.023658456280827522, + -0.02107226848602295, + 0.011845976114273071, + 0.021882344037294388, + 0.04806576669216156, + 0.041651174426078796, + 0.0021060099825263023, + -0.036074213683605194, + -0.11784979701042175, + 0.014952259138226509, + 0.037581268697977066, + 0.05971430242061615, + -0.007005677092820406, + -0.035375431180000305, + -0.024502793326973915, + -0.04102998226881027, + 0.009020538069307804, + -0.01272731926292181, + 0.06389932334423065, + -0.024287838488817215, + -0.014425510540604591, + 0.10816574096679688, + -0.00445717154070735, + 0.004040740430355072, + -0.04767029359936714, + -0.02507316693663597, + 0.027433931827545166, + 0.04105466604232788, + -0.08448050916194916, + -0.06702357530593872, + 0.002646862296387553, + 0.033555034548044205, + -0.017439104616642, + 0.05496995896100998, + 0.06342251598834991, + 0.0007091599400155246, + 0.04484397545456886, + -0.061908598989248276, + 0.005099175963550806, + -0.10752078890800476, + -0.06950725615024567, + -0.020398156717419624, + -0.01927923783659935, + -0.01337464153766632, + 0.06500561535358429, + 0.008506903424859047, + 0.04837486147880554, + -0.008027157746255398, + -0.07648869603872299, + -0.08697380125522614, + 0.06110098212957382, + 0.08827006816864014, + 0.023793108761310577, + 0.06287623941898346, + 0.04477966949343681, + -0.013410470448434353, + 0.06897540390491486, + 0.05162268131971359, + 0.10352706909179688, + -0.022335799410939217, + 0.008817421272397041, + -0.08764206618070602, + 0.06651510298252106, + 0.07290469110012054, + -0.09856373071670532, + -0.08053789287805557, + -0.021058687940239906, + -0.05695857107639313, + 0.021678728982806206, + -0.032520830631256104, + 0.018302321434020996, + 0.05524074658751488, + 0.0036722910590469837, + -0.10566379129886627, + -0.09024463593959808, + 0.08234959840774536, + -0.09206800162792206, + 0.003938575275242329, + -0.07406823337078094, + 0.05583396926522255, + 0.11015675961971283, + 0.03372165188193321, + -0.05074060708284378, + -0.013541603460907936, + 0.044080086052417755, + -0.044000640511512756, + -0.008936327882111073, + 0.005447791889309883, + 0.03692197799682617, + -0.10317489504814148, + 0.01576639898121357, + -0.08872266113758087, + 0.03166333585977554, + -0.06905488669872284, + 0.1497354656457901, + 0.01104644499719143, + -0.06141091138124466, + -0.08196337521076202, + 0.04192446544766426, + -0.03701178729534149, + 0.04831523448228836, + 0.039102789014577866, + 0.055049218237400055, + 0.01417083851993084, + -0.09580568224191666, + 0.12973815202713013, + 0.05164837837219238, + -0.04808277636766434, + -0.09841989725828171, + -0.03322279453277588, + -0.034084200859069824, + 0.052762411534786224, + 0.040813714265823364, + -0.082816943526268, + -0.04035034775733948, + 0.026957236230373383, + -0.03289157897233963, + 0.07755455374717712, + 0.14474698901176453, + 0.04329165071249008, + -0.10240413248538971 + ] + }, + "p244_045.wav": { + "name": "p244", + "embedding": [ + 0.036409180611371994, + 0.06373345851898193, + -0.04850875213742256, + 0.0012590696569532156, + -0.0655830129981041, + 0.043895818293094635, + -0.12458140403032303, + 0.10167236626148224, + -0.01149693038314581, + 0.13705159723758698, + -0.03965980187058449, + 0.10947172343730927, + -0.007635345682501793, + -0.16530273854732513, + -0.010866695083677769, + 0.021307123824954033, + -0.02756701223552227, + -0.006040188483893871, + -0.07994157075881958, + -0.0484396256506443, + 0.03522863984107971, + 0.043894726783037186, + 0.03130299597978592, + -0.09033254534006119, + 0.04276881739497185, + 0.049529194831848145, + 0.009891757741570473, + 0.036779966205358505, + -0.00973771046847105, + -0.07737540453672409, + -0.02124992571771145, + 0.09549771249294281, + -0.07894158363342285, + 0.015054848045110703, + 0.04750899225473404, + -0.02162482589483261, + -0.023351959884166718, + -0.038765259087085724, + -0.0073468806222081184, + 0.04152461886405945, + -0.036400359123945236, + 0.07820509374141693, + 0.03232400119304657, + -0.028038693591952324, + 0.05439256131649017, + 0.019738323986530304, + -0.011991242878139019, + -0.05228567123413086, + -0.08575982600450516, + 0.15669089555740356, + 0.03329421579837799, + -0.003134464845061302, + -0.08130383491516113, + -0.0701078474521637, + 0.08273150771856308, + -0.03147679939866066, + -0.10889844596385956, + -0.05446823686361313, + 0.04780600219964981, + 0.11897586286067963, + -0.03460344299674034, + -0.04509624466300011, + 0.032144591212272644, + 0.07155874371528625, + 0.05732978135347366, + 0.06744895875453949, + 0.0877368301153183, + 0.10208085179328918, + -0.010492564179003239, + 0.03598418086767197, + 0.03696993365883827, + 0.0879252701997757, + 0.03163312003016472, + -0.005844987463206053, + 0.03779713064432144, + -0.011790177784860134, + -0.015229344367980957, + -0.03421752154827118, + -0.030828654766082764, + -0.006605314090847969, + 0.006194352172315121, + 0.023673221468925476, + 0.04953373968601227, + 0.014020876958966255, + -0.05010061711072922, + 0.05289199575781822, + 0.054383210837841034, + -0.028982415795326233, + 0.054083094000816345, + 0.04069673269987106, + -0.006503037177026272, + 0.045567888766527176, + -0.09922129660844803, + -0.0970517247915268, + -0.004961349070072174, + -0.0029878681525588036, + 0.005250225774943829, + 0.04367164522409439, + 0.022428929805755615, + -0.016702774912118912, + 0.10158343613147736, + 0.04256047308444977, + -0.014677779749035835, + 0.03042411431670189, + -0.06267350167036057, + 0.11361376196146011, + 0.09337268769741058, + -0.016695033758878708, + 0.033519189804792404, + -0.07685229182243347, + 0.05857387185096741, + 0.04186607152223587, + -0.10366949439048767, + -0.08254759013652802, + 0.02052883617579937, + -0.012891009449958801, + -0.028348566964268684, + 0.13967370986938477, + -0.006839882582426071, + 0.021905580535531044, + 0.12210458517074585, + -0.09927570074796677, + -0.04383537918329239, + -0.009029564447700977, + 0.04083845391869545, + -0.06358872354030609, + 0.04009952396154404, + 0.038503486663103104, + -0.014631219208240509, + 0.0349312424659729, + 0.0866166204214096, + -0.001095527783036232, + 0.03843126818537712, + 0.0076775867491960526, + -0.021519560366868973, + 0.03769470378756523, + -0.015402357093989849, + -0.015597800724208355, + 0.07944595813751221, + 0.06551666557788849, + 0.0781731903553009, + -0.014774523675441742, + -0.04573675990104675, + -0.10937036573886871, + 0.024098757654428482, + 0.02056432142853737, + 0.07296841591596603, + -0.030045025050640106, + 0.0053977956995368, + -0.04413025826215744, + -0.09769289195537567, + 0.031458646059036255, + 0.0046644010581076145, + 0.08497168123722076, + -0.009289938025176525, + -0.0042288536205887794, + 0.11800014972686768, + 0.037131939083337784, + -0.0033342335373163223, + -0.038018785417079926, + -0.03281279280781746, + -0.014849001541733742, + 0.056446775794029236, + -0.0863642692565918, + -0.06582127511501312, + -0.02366805635392666, + 0.014046663418412209, + -0.014413945376873016, + 0.06533527374267578, + 0.0694565549492836, + 0.024139652028679848, + 0.04405529797077179, + -0.07130910456180573, + -0.014843943528831005, + -0.08857505023479462, + -0.0410175621509552, + -0.0230402834713459, + -0.04828879237174988, + -0.05237221345305443, + 0.09565780311822891, + -0.005147187039256096, + 0.04034685716032982, + -0.031523481011390686, + -0.07084348797798157, + -0.07660600543022156, + 0.05688017979264259, + 0.03928137570619583, + -0.023704711347818375, + 0.020886853337287903, + 0.04073280468583107, + -0.03065858967602253, + 0.03230053558945656, + 0.08439664542675018, + 0.06984895467758179, + -0.02489544451236725, + 0.007882220670580864, + -0.0605912059545517, + 0.13794445991516113, + 0.06979639083147049, + -0.07512485235929489, + -0.06894218176603317, + -0.03242199122905731, + -0.06852367520332336, + 0.010146543383598328, + -0.02471516840159893, + 0.011098667047917843, + 0.02745484560728073, + 0.01733534224331379, + -0.09166112542152405, + -0.07267217338085175, + 0.05370981618762016, + -0.06865569949150085, + -0.00790631864219904, + -0.06420284509658813, + 0.014538805931806564, + 0.08597350865602493, + 0.05690353736281395, + -0.00878701452165842, + -0.008382181636989117, + 0.057446569204330444, + -0.04996214807033539, + 0.03720337152481079, + 0.056372448801994324, + 0.033424291759729385, + -0.04152454063296318, + -0.01176535151898861, + -0.048215679824352264, + 0.027980845421552658, + -0.039744336158037186, + 0.13341759145259857, + 0.014345242641866207, + -0.058308348059654236, + -0.05801123380661011, + 0.051401592791080475, + -0.0452803373336792, + 0.043751880526542664, + 0.04491008073091507, + 0.06822976469993591, + 0.05634336918592453, + -0.07143687456846237, + 0.11643654853105545, + 0.04153633117675781, + -0.025006501004099846, + -0.06321591138839722, + -0.07403762638568878, + -0.04065658897161484, + 0.030912788584828377, + 0.038822632282972336, + -0.0725584551692009, + 0.023880701512098312, + 0.03400370478630066, + -0.007432215381413698, + 0.03394685685634613, + 0.12482020258903503, + 0.08397350460290909, + -0.09825662523508072 + ] + }, + "p244_011.wav": { + "name": "p244", + "embedding": [ + 0.04693511500954628, + 0.09151306003332138, + -0.015350173227488995, + 0.01501099206507206, + -0.05352330207824707, + 0.024777594953775406, + -0.11958026885986328, + 0.13174134492874146, + -0.03121187724173069, + 0.11712955683469772, + -0.07886708527803421, + 0.12884557247161865, + -0.03458358719944954, + -0.1426384150981903, + -0.037757065147161484, + 0.044479768723249435, + -0.041767336428165436, + -0.043814342468976974, + -0.005046903621405363, + -0.03032349981367588, + 0.03716897591948509, + 0.03688639774918556, + 0.03818846866488457, + 0.0272796880453825, + 0.016458002850413322, + 0.07186990231275558, + 0.0034022170584648848, + 0.035620372742414474, + 0.02769152633845806, + -0.026159582659602165, + -0.0077646332792937756, + 0.06918182224035263, + -0.04000372067093849, + 0.022949062287807465, + 0.03956812992691994, + 0.0021731534507125616, + 0.0021572664845734835, + -0.05360705778002739, + -0.02615455724298954, + 0.006823182106018066, + -0.050907909870147705, + 0.07867929339408875, + 0.021527081727981567, + -0.034393176436424255, + 0.02676575817167759, + 0.00946024339646101, + -0.01362234354019165, + -0.016480371356010437, + -0.09921713173389435, + 0.14778493344783783, + 0.05703011155128479, + 0.022879837080836296, + -0.08257072418928146, + -0.03717171773314476, + 0.10028153657913208, + -0.02581956796348095, + -0.1014406681060791, + -0.030647045001387596, + 0.059790290892124176, + 0.13068018853664398, + -0.028375966474413872, + -0.04566575959324837, + 0.02301890030503273, + 0.10864495486021042, + 0.056900300085544586, + 0.0498492605984211, + 0.09485321491956711, + 0.10639964789152145, + -0.03414921835064888, + 0.011846917681396008, + 0.061606764793395996, + 0.08003950119018555, + 0.041194938123226166, + -0.010102824307978153, + 0.004090904723852873, + -0.007145411800593138, + -0.013436323963105679, + 0.004326218273490667, + -0.016671283170580864, + -0.028611352667212486, + -0.05065273866057396, + -0.002835388295352459, + -0.015028364956378937, + 0.02607208490371704, + -0.010497629642486572, + 0.05200168490409851, + 0.03615011274814606, + -0.02207058109343052, + 0.06440500915050507, + 0.05203700065612793, + -0.005159619729965925, + 0.04691538214683533, + -0.0748772844672203, + -0.05882537364959717, + -0.001121237874031067, + -0.01175533514469862, + 0.044174011796712875, + 0.08308183401823044, + 0.04617855325341225, + 0.01403222419321537, + 0.11239280551671982, + 0.049323976039886475, + -0.006587873678654432, + -0.013005129992961884, + -0.09525784850120544, + 0.12376048415899277, + 0.09235859662294388, + -0.042835406959056854, + 0.030474955216050148, + -0.02863466553390026, + 0.042455077171325684, + 0.04740241914987564, + -0.10655175894498825, + -0.06431827694177628, + 0.020908359438180923, + 0.03831387683749199, + 0.010186552070081234, + 0.10208350419998169, + -0.007704551797360182, + 0.041669271886348724, + 0.09961819648742676, + -0.05906952545046806, + -0.06040550395846367, + -0.027082595974206924, + 0.03710734471678734, + -0.06680440157651901, + 0.07056431472301483, + 0.05684357509016991, + 0.012937569990754128, + 0.013492563739418983, + 0.07756072282791138, + 0.004854758270084858, + 0.0016230002511292696, + -0.004766053054481745, + -0.031538475304841995, + 0.023391051217913628, + -0.017501024529337883, + 0.00579298147931695, + 0.056401170790195465, + 0.043436940759420395, + 0.06694584339857101, + 0.02649066410958767, + -0.02080940082669258, + -0.10680897533893585, + 0.021535338833928108, + 0.05269007757306099, + 0.06138451769948006, + -0.02455325424671173, + -0.04900142550468445, + -0.027948278933763504, + -0.03953804820775986, + -0.003613616107031703, + 0.010626162402331829, + 0.07250669598579407, + -0.029650498181581497, + 0.00503036892041564, + 0.1020331159234047, + 0.01196464616805315, + -0.00870331097394228, + -0.04239264130592346, + -0.019085511565208435, + -0.011673356406390667, + 0.04814722761511803, + -0.08738696575164795, + -0.08782561123371124, + -0.016146989539265633, + 0.040562499314546585, + -0.00870204996317625, + 0.05808655172586441, + 0.05818870663642883, + -0.008133861236274242, + 0.017620747908949852, + -0.05324352905154228, + 0.026560891419649124, + -0.09001462906599045, + -0.07081657648086548, + -0.013763591647148132, + -0.020148402079939842, + -0.011310645379126072, + 0.06907995045185089, + 0.01780843548476696, + 0.06420137733221054, + 0.001113583566620946, + -0.09472236782312393, + -0.08345158398151398, + 0.05078394338488579, + 0.05246732756495476, + -0.02011728286743164, + 0.04108734801411629, + 0.07679054141044617, + -0.029277771711349487, + 0.043227437883615494, + 0.033382292836904526, + 0.09315013885498047, + -0.07060300558805466, + 0.007743968162685633, + -0.05747741460800171, + 0.052234042435884476, + 0.07412166148424149, + -0.10356845706701279, + -0.06901421397924423, + -0.058231987059116364, + -0.04774828255176544, + 0.02056937851011753, + -0.014962839893996716, + 0.013775983825325966, + 0.024671588093042374, + -0.02619941532611847, + -0.09307463467121124, + -0.09923496097326279, + 0.06260036677122116, + -0.060408320277929306, + 0.008377525955438614, + -0.07549357414245605, + 0.03015982173383236, + 0.07258807122707367, + 0.02156328223645687, + -0.013451685197651386, + 0.00790953729301691, + 0.005418199580162764, + -0.02525339089334011, + -0.018708324059844017, + 0.05127616599202156, + 0.038760047405958176, + -0.06665867567062378, + -0.026355160400271416, + -0.07957812398672104, + 0.06650206446647644, + -0.03824251517653465, + 0.1345810741186142, + -0.008153272792696953, + -0.05615853890776634, + -0.07514964044094086, + -0.0017292529810220003, + -0.022700471803545952, + 0.053166139870882034, + 0.04759633541107178, + 0.05596443638205528, + 0.010722211562097073, + -0.0535164549946785, + 0.1146818995475769, + 0.0649646446108818, + -0.043889325112104416, + -0.07289095222949982, + -0.033148143440485, + -0.028311440721154213, + 0.022350577637553215, + 0.019162673503160477, + -0.06904880702495575, + -0.0017095506191253662, + -0.005666177719831467, + -0.015931710600852966, + 0.07856272906064987, + 0.11935938894748688, + 0.0751008614897728, + -0.10518162697553635 + ] + }, + "p244_138.wav": { + "name": "p244", + "embedding": [ + 0.0700933188199997, + 0.0377182811498642, + -0.006153803318738937, + -0.008792988955974579, + -0.01029633916914463, + 0.06081300973892212, + -0.10449773818254471, + 0.05837077274918556, + -0.016417216509580612, + 0.08198314905166626, + -0.08462048321962357, + 0.07559515535831451, + 0.010649865493178368, + -0.1105349063873291, + -0.049864549189805984, + 0.028284763917326927, + -0.0215237308293581, + 0.0077948011457920074, + -0.05577688664197922, + 0.004510017111897469, + 0.015806157141923904, + 0.029210276901721954, + 0.0397406741976738, + -0.046633027493953705, + 0.016121678054332733, + 0.02957761660218239, + 0.02926536090672016, + 0.047166623175144196, + 0.04204349219799042, + 0.011825904250144958, + 0.007843952625989914, + 0.08851593732833862, + -0.013868517242372036, + -0.01586082950234413, + 0.04913341626524925, + 0.029168786481022835, + 0.013422926887869835, + -0.08862494677305222, + -0.0008264980278909206, + 0.0478745736181736, + -0.022770477458834648, + 0.0700978934764862, + 0.05314859747886658, + 0.011500800028443336, + -0.01110411062836647, + 0.012603465467691422, + -0.020398985594511032, + -0.049812182784080505, + -0.09821194410324097, + 0.16786211729049683, + 0.03350654989480972, + -0.001977858366444707, + -0.10501866787672043, + -0.017769109457731247, + 0.08057454228401184, + -0.008657335303723812, + -0.029612254351377487, + -0.045323342084884644, + 0.020617350935935974, + 0.11189388483762741, + 0.014370227232575417, + -0.036810312420129776, + 0.0023287988733500242, + 0.08959723263978958, + -0.0040346551686525345, + 0.048174213618040085, + 0.10340115427970886, + 0.10218804329633713, + -0.0018373546190559864, + 0.03814993053674698, + 0.07398408651351929, + 0.04268969967961311, + 0.019909044727683067, + -0.02334015816450119, + 0.04232386499643326, + -0.01496145874261856, + -0.03174427151679993, + 0.03793960064649582, + -0.01772383600473404, + -0.055531736463308334, + 0.025936629623174667, + -0.012942067347466946, + 0.008283143863081932, + 0.08056256920099258, + -0.07879214733839035, + 0.04175274074077606, + -2.6310328394174576e-05, + 0.016693077981472015, + 0.06180515140295029, + 0.06533603370189667, + 0.028443939983844757, + 0.004371471703052521, + -0.02654329314827919, + -0.11455459892749786, + 0.007954401895403862, + -0.004122806712985039, + 0.025998856872320175, + 0.029509756714105606, + 0.030390221625566483, + -0.008637006394565105, + 0.06519265472888947, + 0.04027631878852844, + -0.017089582979679108, + 0.01539282500743866, + -0.05229375511407852, + 0.09466859698295593, + 0.12216692417860031, + 0.008287385106086731, + 0.0025515519082546234, + -0.048837412148714066, + 0.04525119438767433, + 0.03641248121857643, + -0.098570317029953, + -0.05471383035182953, + 0.060472600162029266, + 0.04027802497148514, + 0.06161133944988251, + 0.0813916027545929, + -0.0029232604429125786, + -0.0002641519531607628, + 0.04492009058594704, + -0.05212651938199997, + -0.045050930231809616, + 0.005184590816497803, + 0.003385903313755989, + 0.0001318417489528656, + -0.005962742492556572, + 0.011397925205528736, + 0.005217838101089001, + -0.08035160601139069, + 0.083350270986557, + 0.005274652503430843, + 0.010940833017230034, + -0.041902244091033936, + 0.03870531916618347, + 0.113883376121521, + -0.0008794106543064117, + -0.009889818727970123, + 0.05096101015806198, + 0.06472828984260559, + 0.03843250498175621, + 0.04841066896915436, + -0.03987744078040123, + -0.10456392168998718, + 0.0015691224252805114, + 0.04382818192243576, + 0.046617865562438965, + -0.056362759321928024, + -0.04848276078701019, + -0.05004505068063736, + -0.009818851947784424, + 0.02410774677991867, + -0.015900276601314545, + 0.0555308535695076, + 0.04682601988315582, + -0.04986138641834259, + 0.09564351290464401, + -0.0859374925494194, + 0.003384761279448867, + -0.006825659424066544, + -0.0012053176760673523, + 0.03988638147711754, + 0.025213807821273804, + -0.030601859092712402, + -0.06182052195072174, + 0.031095515936613083, + -0.018277062103152275, + -0.015841705724596977, + -0.048798274248838425, + 0.03619398921728134, + -0.0316365584731102, + 0.03343591094017029, + -0.0954868346452713, + 0.011421136558055878, + -0.09681153297424316, + 0.00432366319000721, + 0.016019439324736595, + -0.026051219552755356, + -0.003913429100066423, + 0.07487329095602036, + 0.012472547590732574, + 0.012945892289280891, + -0.024861523881554604, + -0.08066530525684357, + 0.003796197474002838, + 0.07142336666584015, + 0.08017975836992264, + 0.0042107198387384415, + 0.035059794783592224, + 0.04922247678041458, + 0.040788229554891586, + 0.0242929644882679, + 0.06684544682502747, + 0.03171093016862869, + -0.038825489580631256, + -0.06607095152139664, + -0.01302734762430191, + 0.11494527012109756, + 0.01928497664630413, + -0.07260964810848236, + -0.046309322118759155, + -0.016786161810159683, + -0.05228213220834732, + 0.022402217611670494, + -0.03037768043577671, + 0.018248820677399635, + 0.05267509073019028, + -0.03130359202623367, + -0.09463240206241608, + -0.06523000448942184, + 0.03587363287806511, + -0.04817706346511841, + -0.007058877032250166, + -0.04091645032167435, + 0.023375002667307854, + 0.07097339630126953, + 0.02264590561389923, + -0.025574853643774986, + 0.002775501925498247, + -0.03003949113190174, + -0.08194026350975037, + -0.09228100627660751, + -0.043983664363622665, + 0.014984121546149254, + -0.08094244450330734, + 0.012860621325671673, + -0.04829484969377518, + 0.07830144464969635, + -0.05900753289461136, + 0.08163068443536758, + 0.022269975394010544, + -0.0518019013106823, + -0.05760157108306885, + -0.018490605056285858, + -0.046950988471508026, + 0.061665259301662445, + 0.06822863221168518, + -0.01342926174402237, + 0.00778565090149641, + -0.06658805906772614, + 0.10745098441839218, + 0.042737770825624466, + -0.02777242660522461, + -0.09870735555887222, + 0.014597277157008648, + -0.010621944442391396, + 0.05519593879580498, + 0.017933133989572525, + -0.0048694908618927, + 0.029852233827114105, + 0.010921476408839226, + -0.0545937642455101, + 0.023371294140815735, + 0.07272682338953018, + 0.05420816317200661, + -0.06974054872989655 + ] + }, + "p244_121.wav": { + "name": "p244", + "embedding": [ + 0.05420980975031853, + 0.10433891415596008, + -0.002371707931160927, + 0.020668279379606247, + -0.062030401080846786, + 0.04665670171380043, + -0.14484882354736328, + 0.16389036178588867, + -0.03254805877804756, + 0.1299302577972412, + -0.04473206400871277, + 0.13779394328594208, + -0.023932889103889465, + -0.16968263685703278, + -0.03426493704319, + 0.06643204391002655, + -0.037543244659900665, + -0.03569311648607254, + -0.018265314400196075, + -0.020131167024374008, + 0.023475490510463715, + 0.04014807194471359, + 0.0508076474070549, + 0.018009144812822342, + 0.038952454924583435, + 0.07226864248514175, + 0.00013127876445651054, + 0.05769720673561096, + 0.015796735882759094, + -0.08617471158504486, + -0.028159286826848984, + 0.07532615959644318, + -0.0640748143196106, + 0.023477481678128242, + 0.050398264080286026, + -0.027185093611478806, + 0.0007421582704409957, + -0.052032992243766785, + -0.03202911466360092, + 5.494197830557823e-05, + -0.026282360777258873, + 0.08942057192325592, + 0.0127931609749794, + -0.013073738664388657, + 0.03898070007562637, + 0.029325444251298904, + -0.007269487716257572, + -0.039107270538806915, + -0.11962693929672241, + 0.14749082922935486, + 0.05608372390270233, + 0.003949814476072788, + -0.09281918406486511, + -0.07841530442237854, + 0.0938212126493454, + -0.052570588886737823, + -0.10997049510478973, + -0.03562942147254944, + 0.06064043939113617, + 0.14383962750434875, + -0.02476629428565502, + -0.05246924236416817, + 0.03413013368844986, + 0.11553512513637543, + 0.07347337901592255, + 0.06802143156528473, + 0.08190984278917313, + 0.09528174251317978, + -0.04751479625701904, + 0.013920800760388374, + 0.033005841076374054, + 0.07544243335723877, + 0.04563790559768677, + 0.011751430109143257, + 0.015539208427071571, + -1.2705335393548012e-05, + -0.0038763682823628187, + -0.019443053752183914, + -0.017570193856954575, + -0.014361182227730751, + -0.033393293619155884, + 0.02703552320599556, + -0.0016232822090387344, + 0.03060579113662243, + -0.01138681173324585, + 0.07251236587762833, + 0.017457157373428345, + -0.010640464723110199, + 0.06827431917190552, + 0.03848595172166824, + 0.01570388302206993, + 0.06788620352745056, + -0.09191546589136124, + -0.05857941880822182, + 0.02314208820462227, + -0.0037599471397697926, + 0.03216229006648064, + 0.06510032713413239, + 0.026834748685359955, + -0.007788940332829952, + 0.12890613079071045, + 0.06693337112665176, + -0.006075536832213402, + 0.0040418291464447975, + -0.09198859333992004, + 0.12205406278371811, + 0.06841802597045898, + -0.018052613362669945, + 0.06684797257184982, + -0.04273418337106705, + 0.05855492874979973, + 0.05181191861629486, + -0.13271838426589966, + -0.09420039504766464, + 0.0129048777744174, + 0.016212984919548035, + -0.0145639106631279, + 0.12382704764604568, + -0.0074400519952178, + 0.06595636904239655, + 0.09348036348819733, + -0.08727648109197617, + -0.048237577080726624, + 0.0034920484758913517, + 0.055652230978012085, + -0.09223422408103943, + 0.07151056826114655, + 0.06163690611720085, + -0.017924435436725616, + 0.027824589982628822, + 0.08913451433181763, + 0.0011070951586589217, + 0.013404087163507938, + 0.022202227264642715, + -0.05987752974033356, + -0.010100746527314186, + -0.022031325846910477, + -0.0036397739313542843, + 0.03698786720633507, + 0.032855454832315445, + 0.05669660121202469, + -0.00853847898542881, + -0.03218870237469673, + -0.13003608584403992, + 0.002222585491836071, + 0.03106776811182499, + 0.07201901078224182, + -0.011891582980751991, + -0.03763050585985184, + -0.026040777564048767, + -0.04013928025960922, + -0.003471312578767538, + 0.00908602960407734, + 0.06965924799442291, + -0.03596119582653046, + 0.015903249382972717, + 0.10955451428890228, + 0.047489821910858154, + -0.0040491316467523575, + -0.04420807957649231, + -0.027716761454939842, + -0.008892526850104332, + 0.06171005219221115, + -0.0735800638794899, + -0.07369723170995712, + -0.005328902043402195, + 0.04626666009426117, + -0.006353202275931835, + 0.08953050523996353, + 0.059936851263046265, + 0.01968693919479847, + 0.024121977388858795, + -0.05000599846243858, + 0.01973305456340313, + -0.07669686526060104, + -0.08990556001663208, + -0.009098267182707787, + -0.002223168732598424, + -0.04789714515209198, + 0.07107093930244446, + 0.04477805644273758, + 0.08857405930757523, + -0.020753053948283195, + -0.06478407233953476, + -0.09558364003896713, + 0.044731177389621735, + 0.051224276423454285, + -0.011965077370405197, + 0.03919252008199692, + 0.066912442445755, + -0.03924969956278801, + 0.0796569287776947, + 0.0604277066886425, + 0.07815545797348022, + -0.04826827347278595, + 0.03236033022403717, + -0.07221107184886932, + 0.060588933527469635, + 0.09354443848133087, + -0.09701211750507355, + -0.08625448495149612, + -0.026837002485990524, + -0.07930216193199158, + 0.042531609535217285, + -0.011242630891501904, + 0.023232558742165565, + 0.05087307095527649, + -0.0017697298899292946, + -0.10703520476818085, + -0.09764380753040314, + 0.09167136996984482, + -0.07334596663713455, + 0.01491341833025217, + -0.058493319898843765, + 0.040147699415683746, + 0.09295397251844406, + 0.03933216631412506, + -0.01162954792380333, + -0.03260267525911331, + 0.04031674563884735, + -0.009134911000728607, + 0.0050201937556266785, + 0.07226568460464478, + 0.04269695281982422, + -0.09170492738485336, + 0.005055755842477083, + -0.07237952202558517, + 0.04862818494439125, + -0.029337037354707718, + 0.15892544388771057, + 0.004040901083499193, + -0.06510515511035919, + -0.08938401937484741, + 0.01596609130501747, + -0.0412583127617836, + 0.061232030391693115, + 0.01430846843868494, + 0.0633939728140831, + 0.054595205932855606, + -0.048005711287260056, + 0.11012687534093857, + 0.05717059224843979, + -0.063078373670578, + -0.06797784566879272, + -0.06504462659358978, + -0.03918616101145744, + 0.04230204224586487, + 0.01452500931918621, + -0.09345594048500061, + -0.024548668414354324, + 0.01076485589146614, + -0.006039399653673172, + 0.08096581697463989, + 0.13920244574546814, + 0.055372096598148346, + -0.13247406482696533 + ] + }, + "p244_331.wav": { + "name": "p244", + "embedding": [ + 0.03541579097509384, + 0.0816521942615509, + -0.012221673503518105, + 0.012426997534930706, + -0.040238942950963974, + 0.08783203363418579, + -0.14746879041194916, + 0.09265685081481934, + -0.08654499053955078, + 0.1622808426618576, + -0.09461624175310135, + 0.09993752092123032, + -0.038974132388830185, + -0.17777110636234283, + -0.057347845286130905, + 0.04853283241391182, + -0.05085389316082001, + -0.05372815206646919, + -0.04684190824627876, + -0.0032470766454935074, + 0.061999496072530746, + 0.03692714124917984, + 0.0014325641095638275, + 0.010339765809476376, + 0.015984781086444855, + 0.051798634231090546, + -0.003846462583169341, + 0.04651078209280968, + 0.0055691152811050415, + -0.05945006012916565, + -0.017140604555606842, + 0.1259884536266327, + -0.04461679607629776, + 0.012495743110775948, + 0.019269734621047974, + 0.02090282551944256, + 0.02442237362265587, + -0.06516962498426437, + -0.008429610170423985, + -0.001907103811390698, + -0.03992881253361702, + 0.05954951047897339, + -0.005811501760035753, + 0.028921978548169136, + 0.011498075909912586, + 0.007941762916743755, + -0.03373553603887558, + -0.04980475455522537, + -0.09024978429079056, + 0.14310427010059357, + 0.051989879459142685, + 0.009912103414535522, + -0.06032196804881096, + -0.09596925228834152, + 0.11927606165409088, + 0.0018951395759359002, + -0.11591041088104248, + -0.05492280051112175, + 0.07581627368927002, + 0.19796814024448395, + -0.03416939824819565, + -0.04985221475362778, + 0.03073951043188572, + 0.0916435718536377, + 0.048828016966581345, + 0.09417574107646942, + 0.09466355293989182, + 0.08180411159992218, + 0.021081503480672836, + -0.024011464789509773, + 0.07200424373149872, + 0.06034855544567108, + 0.06768033653497696, + -0.02673531509935856, + 0.047355808317661285, + 0.019006023183465004, + -0.00662753963842988, + 0.03522117808461189, + -0.03266746923327446, + -0.014477008953690529, + -0.008514937944710255, + 0.010027474723756313, + -0.011535647325217724, + 0.012374328449368477, + -0.03871690854430199, + 0.03026578016579151, + 0.028054356575012207, + -0.018768228590488434, + 0.08365121483802795, + 0.04314650222659111, + 0.03223786875605583, + 0.06849844008684158, + -0.0776033103466034, + -0.07629218697547913, + 0.05171087384223938, + 0.02957124449312687, + 0.002694519469514489, + 0.05777736008167267, + 0.030600065365433693, + -0.03157910332083702, + 0.10725909471511841, + 0.022535985335707664, + 0.012225919403135777, + 0.016766047105193138, + -0.12019062042236328, + 0.1189369186758995, + 0.08406544476747513, + -0.04210780933499336, + 0.02105756849050522, + -0.014496641233563423, + 0.05981947109103203, + 0.07588721811771393, + -0.13372643291950226, + -0.10916389524936676, + 0.0372701920568943, + 0.02367197722196579, + -0.022109616547822952, + 0.11264190077781677, + -0.020507248118519783, + 0.00626147398725152, + 0.09513746947050095, + -0.08201045542955399, + -0.050255924463272095, + -0.0029273105319589376, + 0.034200429916381836, + -0.07355986535549164, + 0.04518639296293259, + 0.03625653684139252, + 0.02164197340607643, + -0.01521256286650896, + 0.09786180406808853, + -0.02204759605228901, + 0.006522484589368105, + -0.013778411783277988, + -0.043217483907938004, + 0.04097282886505127, + -0.032853610813617706, + -0.02832372859120369, + 0.05739249661564827, + 0.04623105004429817, + 0.06224474683403969, + -0.0027581541799008846, + -0.04563479870557785, + -0.13216279447078705, + 0.008978284895420074, + 0.050044041126966476, + 0.05378037318587303, + -0.010215730406343937, + -0.002609184244647622, + -0.05991087481379509, + -0.058252375572919846, + 0.034909091889858246, + -0.014852546155452728, + 0.11469104140996933, + 0.016988882794976234, + 0.0025289137847721577, + 0.10041376203298569, + -0.00028351403307169676, + -0.0020893134642392397, + -0.04796756058931351, + -0.021590260788798332, + 0.013540289364755154, + 0.053607601672410965, + -0.058453384786844254, + -0.06942971050739288, + 0.005301427561789751, + 0.06184694916009903, + 0.010216601192951202, + 0.07055143266916275, + 0.07513122260570526, + 0.0007667512982152402, + 0.020512782037258148, + -0.05919606611132622, + 0.034454457461833954, + -0.08991119265556335, + -0.06496554613113403, + 0.004474753513932228, + -0.04367688670754433, + -0.0024121080059558153, + 0.08297397196292877, + 0.013606883585453033, + 0.01881113089621067, + -0.03440484032034874, + -0.1082039400935173, + -0.09895014762878418, + 0.06505335867404938, + 0.08122184127569199, + -0.0016685303999111056, + 0.03677600994706154, + 0.059178099036216736, + -0.009844358079135418, + 0.06286277621984482, + 0.07264810055494308, + 0.1308685690164566, + -0.03740754351019859, + 0.018966030329465866, + -0.05577864497900009, + 0.07950403541326523, + 0.055514488369226456, + -0.07599318772554398, + -0.06791509687900543, + -0.010446444153785706, + -0.07375945150852203, + 0.06095854192972183, + -0.021290533244609833, + 0.019405076280236244, + 0.048066675662994385, + -0.03073003515601158, + -0.11433113366365433, + -0.07640784978866577, + 0.09234999865293503, + -0.059330545365810394, + -0.019570494070649147, + -0.0894651785492897, + 0.04015011340379715, + 0.07895421981811523, + 0.04484124109148979, + -0.015935782343149185, + 0.01086941733956337, + 0.04565582796931267, + -0.06120605394244194, + -0.004541727248579264, + 0.05140858143568039, + 0.00817751232534647, + -0.09109561145305634, + -0.006130436901003122, + -0.1253180205821991, + 0.05774698778986931, + -0.06462391465902328, + 0.1439346969127655, + -0.016630418598651886, + -0.05334024503827095, + -0.08961011469364166, + 0.04076334089040756, + -0.02999519370496273, + 0.0687546655535698, + 0.042265649884939194, + 0.07961881905794144, + 0.05788794159889221, + -0.05281192064285278, + 0.10735557228326797, + 0.05628572776913643, + -0.030042653903365135, + -0.07711321860551834, + -0.04306810349225998, + -0.04259932413697243, + 0.016305210068821907, + -0.019216010347008705, + -0.07786834239959717, + 0.009043860249221325, + 0.02674337476491928, + 0.0008316270541399717, + 0.06443923711776733, + 0.11581195145845413, + 0.05936264619231224, + -0.11903617531061172 + ] + }, + "p244_009.wav": { + "name": "p244", + "embedding": [ + 0.03290610387921333, + 0.08333328366279602, + -0.014391103759407997, + 0.03857538476586342, + -0.057077277451753616, + 0.0047579314559698105, + -0.10529172420501709, + 0.12756314873695374, + -0.004455195739865303, + 0.104286789894104, + -0.07982030510902405, + 0.12462792545557022, + -0.05842305347323418, + -0.14488382637500763, + -0.014104433357715607, + 0.0633617490530014, + -0.01144502405077219, + -0.01146823912858963, + 0.006739433854818344, + -0.03120742179453373, + 0.03622310236096382, + 0.046508997678756714, + 0.06616988778114319, + -0.0016240356490015984, + 0.008199850097298622, + 0.08053796738386154, + -0.0022529433481395245, + 0.030590787529945374, + 0.011158742010593414, + -0.03716909885406494, + -0.007432682439684868, + 0.061043620109558105, + -0.013746824115514755, + 0.01777333952486515, + 0.025905504822731018, + 0.014887186698615551, + -0.00883655808866024, + -0.03131641447544098, + -0.006488006561994553, + -0.010581636801362038, + -0.05273634195327759, + 0.05792669579386711, + 0.0069999173283576965, + -0.04620152711868286, + 0.05337395891547203, + -0.003029255196452141, + -0.03159916028380394, + -0.011096817441284657, + -0.10760626196861267, + 0.14992429316043854, + 0.04811668395996094, + 0.02662993222475052, + -0.08908692002296448, + -0.0403478778898716, + 0.08363235741853714, + -0.025169089436531067, + -0.0932357981801033, + -0.04197346419095993, + 0.0749293714761734, + 0.1356501281261444, + -0.01578334905207157, + -0.042207829654216766, + 0.031088298186659813, + 0.09933555871248245, + 0.03422577306628227, + 0.05418774113059044, + 0.08088222146034241, + 0.09444867074489594, + -0.02446182817220688, + 0.003708901349455118, + 0.02211766317486763, + 0.08883614093065262, + 0.047666702419519424, + 0.015000523068010807, + -0.014961561188101768, + -0.021019399166107178, + -0.013484487310051918, + 0.0034485410433262587, + -0.020270880311727524, + -0.04885249212384224, + -0.048257194459438324, + -0.027113303542137146, + -0.0027742625679820776, + -0.01651928760111332, + -0.005384180229157209, + 0.043192241340875626, + 0.05892901122570038, + -0.018471181392669678, + 0.06013456732034683, + 0.035338740795850754, + -0.022221896797418594, + 0.044151850044727325, + -0.05702565610408783, + -0.04898470640182495, + -0.013930716551840305, + -0.0022831978276371956, + 0.04580358415842056, + 0.06563348323106766, + 0.03550197184085846, + 0.007841670885682106, + 0.10671895742416382, + 0.02599121630191803, + 0.0043195998296141624, + -0.0025952039286494255, + -0.0934603214263916, + 0.10964865237474442, + 0.10816070437431335, + -0.024411596357822418, + 0.046036675572395325, + -0.034352269023656845, + 0.01966046541929245, + 0.04859580844640732, + -0.08874480426311493, + -0.04727163910865784, + -0.02022959478199482, + 0.0157342329621315, + 0.016454599797725677, + 0.09834884107112885, + 0.01735919900238514, + 0.03737746551632881, + 0.12326224148273468, + -0.10016807913780212, + -0.09266705811023712, + -0.03160642459988594, + 0.03176315873861313, + -0.09092157334089279, + 0.06275834143161774, + 0.07296454906463623, + 0.008957098238170147, + 0.029911672696471214, + 0.059294555336236954, + 0.011397802270948887, + 0.03669579699635506, + -0.004788540303707123, + -0.061024945229291916, + -0.018016789108514786, + -0.04988691210746765, + -0.007763370871543884, + 0.08740144968032837, + 0.04229965806007385, + 0.07493235915899277, + 0.01616298407316208, + -0.020788973197340965, + -0.11774794012308121, + 0.0003076753346249461, + 0.06607553362846375, + 0.03273431584239006, + -0.023462504148483276, + -0.0511879101395607, + -0.023802796378731728, + -0.057312972843647, + 0.023569168522953987, + 0.0038475836627185345, + 0.06572814285755157, + -0.038017284125089645, + -0.0033452454954385757, + 0.10601448267698288, + 0.014992693439126015, + -0.014330792240798473, + -0.056976012885570526, + -0.038848187774419785, + -0.011372795328497887, + 0.020188990980386734, + -0.11092783510684967, + -0.0934695452451706, + -0.04296105355024338, + 0.055108942091464996, + -0.01912037841975689, + 0.04681546241044998, + 0.05948136746883392, + -0.0024230442941188812, + -0.0009722725953906775, + -0.02059830352663994, + 0.011703070253133774, + -0.06589550524950027, + -0.09323522448539734, + -0.001835276372730732, + -0.021795958280563354, + -0.007641312200576067, + 0.06791874766349792, + 0.020152149721980095, + 0.05164969339966774, + -0.022221006453037262, + -0.0693928673863411, + -0.10133972764015198, + 0.038995932787656784, + 0.02053011581301689, + -0.00844467245042324, + 0.05497853830456734, + 0.04694122448563576, + -0.07966507971286774, + 0.06087392568588257, + 0.02980203740298748, + 0.10071810334920883, + -0.06234333664178848, + 0.007728932425379753, + -0.07707223296165466, + 0.04718461632728577, + 0.12590500712394714, + -0.08345238119363785, + -0.07745872437953949, + -0.08545085787773132, + -0.06679253280162811, + 0.04591762647032738, + -0.029235392808914185, + -0.010717829689383507, + 0.03232759237289429, + -0.025126105174422264, + -0.10085204243659973, + -0.10697224736213684, + 0.056809864938259125, + -0.03047030046582222, + -0.004984191618859768, + -0.06127926707267761, + 0.04727930948138237, + 0.039400458335876465, + 0.013793750666081905, + -0.015099452808499336, + 0.007690818980336189, + 0.015575211495161057, + -0.045287180691957474, + -0.0115211121737957, + 0.05708640068769455, + 0.05113761126995087, + -0.042249903082847595, + -0.038948528468608856, + -0.09032081067562103, + 0.05272318795323372, + -0.03209463506937027, + 0.13962438702583313, + -0.004263963550329208, + -0.048091232776641846, + -0.06869148463010788, + 0.010186580941081047, + -0.016271507367491722, + 0.05376783758401871, + 0.043973468244075775, + 0.04174920916557312, + 0.012833533808588982, + -0.06805049628019333, + 0.10944811999797821, + 0.0558023527264595, + -0.032690275460481644, + -0.066848024725914, + -0.047987475991249084, + -0.04779447615146637, + 0.013941776007413864, + -0.020745795220136642, + -0.08239023387432098, + -0.0035557392984628677, + -0.0050284368917346, + 0.01777922734618187, + 0.06079863756895065, + 0.114070825278759, + 0.04020806774497032, + -0.07465103268623352 + ] + }, + "p244_127.wav": { + "name": "p244", + "embedding": [ + 0.04658830910921097, + 0.06260549277067184, + -0.006287736352533102, + 0.024215614423155785, + -0.019602863118052483, + 0.06372515857219696, + -0.13202497363090515, + 0.11467951536178589, + -0.011525056324899197, + 0.13998782634735107, + -0.08808180689811707, + 0.11441274732351303, + -0.0037071583792567253, + -0.1515623927116394, + -0.019572248682379723, + 0.031747639179229736, + -0.00026290927780792117, + 0.014862647280097008, + -0.007206363137811422, + -0.01091399323195219, + 0.06945531070232391, + 0.07098910212516785, + 0.040798820555210114, + -0.04977024346590042, + 0.034653451293706894, + 0.05427345260977745, + 0.005055768880993128, + 0.06353043019771576, + 0.0022681551054120064, + -0.09526313841342926, + -0.023277804255485535, + 0.11598458141088486, + -0.017313525080680847, + 0.014803117141127586, + 0.014584030024707317, + -0.007661606650799513, + -0.014505650848150253, + -0.0625762939453125, + 0.011438107118010521, + 0.01185659971088171, + -0.01616045832633972, + 0.049701690673828125, + 0.023318318650126457, + -0.015806090086698532, + 0.034538254141807556, + -0.0009171826532110572, + -0.011900722980499268, + -0.05578138679265976, + -0.10989811271429062, + 0.17207221686840057, + 0.024038737639784813, + 0.02493540570139885, + -0.07878866046667099, + -0.06328605860471725, + 0.08350934088230133, + 0.0077207498252391815, + -0.06403134018182755, + -0.016696106642484665, + 0.06292547285556793, + 0.16110067069530487, + -0.010943852365016937, + -0.058716218918561935, + 0.06317492574453354, + 0.06314487755298615, + -0.005325620528310537, + 0.0704900324344635, + 0.10005318373441696, + 0.07264034450054169, + 0.02517593279480934, + 0.0148459542542696, + -0.021879859268665314, + 0.08725609630346298, + 0.016613127663731575, + -0.0073416875675320625, + 0.02053922228515148, + -0.0033455914817750454, + -0.035645242780447006, + 0.01729992777109146, + -0.03468381613492966, + -0.03027549386024475, + 0.023294072598218918, + 0.0029266304336488247, + 0.03214956820011139, + 0.023959046229720116, + -0.055630505084991455, + 0.0348842591047287, + 0.0011369313579052687, + -0.014479635283350945, + 0.06491304188966751, + -0.0171013455837965, + 0.020700231194496155, + 0.03855355829000473, + -0.06517244130373001, + -0.11348254978656769, + 0.03670442849397659, + 0.021799206733703613, + 0.011915899813175201, + 0.06533152610063553, + 0.05046561360359192, + -0.04921099543571472, + 0.11094015836715698, + 0.01865033246576786, + -0.01207005139440298, + 0.003989707678556442, + -0.06642302870750427, + 0.0855250284075737, + 0.12379711866378784, + 0.004956814460456371, + 0.08126046508550644, + -0.0907628983259201, + 0.05807500332593918, + 0.03417370468378067, + -0.13315434753894806, + -0.08021371066570282, + 0.01635052263736725, + 0.029660116881132126, + 0.022714344784617424, + 0.1263212263584137, + 0.0037559240590780973, + 0.03628788888454437, + 0.08916031569242477, + -0.1201762780547142, + -0.05086067318916321, + -0.02359720878303051, + 0.039999544620513916, + -0.07151632010936737, + 0.059445809572935104, + 0.04963528364896774, + -0.02567708119750023, + 0.0016434730496257544, + 0.03686103969812393, + -0.032526928931474686, + 0.03571029379963875, + -0.010871256701648235, + -0.04564623534679413, + 0.021675823256373405, + -0.06487111747264862, + -0.022027797996997833, + 0.024676360189914703, + 0.052233144640922546, + 0.044405072927474976, + 0.0022868788801133633, + -0.07289264351129532, + -0.1260998249053955, + -0.004170695319771767, + 0.03340679407119751, + 0.037976693361997604, + -0.028692152351140976, + -0.039732035249471664, + -0.056720905005931854, + -0.06840913742780685, + 0.03389532119035721, + -0.028629226610064507, + 0.06423278152942657, + 0.01169472187757492, + 0.01982017420232296, + 0.07205839455127716, + 0.019033191725611687, + -0.00809904932975769, + -0.04061006382107735, + -0.048766326159238815, + 0.008097197860479355, + 0.010801266878843307, + -0.04781961441040039, + -0.05832257866859436, + -0.02562042325735092, + 0.01620791107416153, + -0.041379477828741074, + 0.028882190585136414, + 0.041352707892656326, + 0.03783556818962097, + 0.03214290365576744, + -0.05074073374271393, + -0.011035635136067867, + -0.10127341747283936, + -0.06457854807376862, + 0.016947541385889053, + 0.008741732686758041, + -0.019055141136050224, + 0.09269105643033981, + 0.02707105502486229, + 0.033004049211740494, + -0.05711086839437485, + -0.017399966716766357, + -0.06857027113437653, + 0.04161455109715462, + 0.05821641534566879, + 0.015034226700663567, + 0.04238680750131607, + 0.013804599642753601, + -0.012920196168124676, + 0.07800231873989105, + 0.07381346821784973, + 0.07853017002344131, + 0.01876921020448208, + -0.01598728448152542, + -0.06785853952169418, + 0.1082458347082138, + 0.10947208106517792, + -0.02701704204082489, + -0.08586087077856064, + -0.025790922343730927, + -0.11441995948553085, + 0.06302960216999054, + -0.013127107173204422, + -0.009299460798501968, + 0.01957782171666622, + -0.015136376023292542, + -0.1261642873287201, + -0.05232756584882736, + 0.03815246373414993, + -0.021039143204689026, + -0.014643959701061249, + -0.07588966190814972, + 0.05869888886809349, + 0.10201459378004074, + 0.025809211656451225, + -0.003931641578674316, + -0.038445066660642624, + 0.03567447513341904, + -0.06961512565612793, + 0.0071885958313941956, + 0.018263740465044975, + 0.025493260473012924, + -0.0879364013671875, + 0.03344513103365898, + -0.06425642967224121, + 0.022746529430150986, + -0.0661846324801445, + 0.12518291175365448, + 0.018635880202054977, + -0.04994634538888931, + -0.07431639730930328, + 0.08005322515964508, + -0.012550096027553082, + 0.02522459253668785, + 0.020094329491257668, + 0.01730910688638687, + 0.06951040029525757, + -0.13160404562950134, + 0.0784558355808258, + 0.027975033968687057, + -0.027666527777910233, + -0.07800722122192383, + -0.07368484139442444, + -0.020990831777453423, + 0.028741326183080673, + -0.017479144036769867, + -0.04319344088435173, + -0.03360884636640549, + 0.03481416776776314, + 0.038555216044187546, + 0.049933891743421555, + 0.11130048334598541, + -0.0071829236112535, + -0.11586718261241913 + ] + }, + "p244_131.wav": { + "name": "p244", + "embedding": [ + 0.051773663610219955, + 0.11920531839132309, + -0.017388202250003815, + 0.00801470223814249, + -0.053291283547878265, + 0.08008962869644165, + -0.14152702689170837, + 0.13869786262512207, + -0.06063380464911461, + 0.13399645686149597, + -0.08124585449695587, + 0.1243433803319931, + -0.02791563980281353, + -0.16790561378002167, + -0.03832479566335678, + 0.056006934493780136, + -0.02642492949962616, + -0.021153349429368973, + -0.029843613505363464, + -0.01801777444779873, + 0.02627597376704216, + 0.0016101183136925101, + 0.014214443042874336, + 0.0020707491785287857, + 0.04575660079717636, + 0.05909210443496704, + 0.0027672320138663054, + 0.03775542601943016, + -0.0012633068254217505, + -0.0262643750756979, + -0.04282417148351669, + 0.10847103595733643, + -0.05040731281042099, + 0.005238312296569347, + 0.0695110410451889, + 0.004018851555883884, + 0.0013476479798555374, + -0.08221562951803207, + -0.006653761025518179, + -0.012197775766253471, + -0.027806490659713745, + 0.07341498136520386, + 0.0196712426841259, + -0.024899905547499657, + 0.02405600994825363, + 0.038215458393096924, + 0.009255281649529934, + -0.046461135149002075, + -0.09786874055862427, + 0.13107037544250488, + 0.04400842636823654, + 0.011600933969020844, + -0.09161623567342758, + -0.06429623812437057, + 0.11179177463054657, + -0.014369804412126541, + -0.08008041232824326, + -0.02826160565018654, + 0.06530298292636871, + 0.15863749384880066, + -0.03980468586087227, + -0.042695533484220505, + 0.014585405588150024, + 0.10486936569213867, + 0.04771605134010315, + 0.09672224521636963, + 0.07401271909475327, + 0.10617061704397202, + -0.014771237038075924, + 0.02012082003057003, + 0.06321466714143753, + 0.06497268378734589, + 0.05378652736544609, + -0.031599752604961395, + 0.030269965529441833, + -0.00839713029563427, + -0.027909105643630028, + 0.01970379427075386, + -0.04190796613693237, + -0.040651991963386536, + -0.02526729367673397, + 0.011208882555365562, + 0.011837984435260296, + 0.017618713900446892, + -0.030671343207359314, + 0.054828397929668427, + 0.04742934927344322, + -0.030792851001024246, + 0.0753750279545784, + 0.05128327012062073, + -0.007923362776637077, + 0.057089969515800476, + -0.10551302134990692, + -0.0930054634809494, + 0.05335550010204315, + -0.004006318747997284, + 0.011687538586556911, + 0.07276883721351624, + 0.0472969114780426, + -0.008699174039065838, + 0.10147623717784882, + 0.07395502924919128, + 0.010805686935782433, + 0.03500901162624359, + -0.08613039553165436, + 0.13689228892326355, + 0.08635851740837097, + -0.03649013116955757, + 0.03314037621021271, + -0.038866739720106125, + 0.06129535287618637, + 0.0781913697719574, + -0.13437868654727936, + -0.09328192472457886, + 0.02348935417830944, + 0.007293185219168663, + -0.013193312101066113, + 0.0976811870932579, + -0.02401071786880493, + 0.019212350249290466, + 0.08764948695898056, + -0.0785221979022026, + -0.07158657908439636, + -0.022475769743323326, + 0.03214990720152855, + -0.06492529809474945, + 0.06085385009646416, + 0.057107701897621155, + 0.013710787519812584, + -0.0067566074430942535, + 0.07545354962348938, + 0.004002261906862259, + -0.015050138346850872, + 0.025699054822325706, + -0.02662610076367855, + 0.026017412543296814, + -0.006892682518810034, + -0.009361796081066132, + 0.027427449822425842, + 0.05025481432676315, + 0.044319652020931244, + 0.009692894294857979, + 0.004204666707664728, + -0.10147213190793991, + 0.0006517904694192111, + 0.06280013918876648, + 0.07969294488430023, + -0.014023507945239544, + -0.026885345578193665, + -0.03972513601183891, + -0.06018434092402458, + 0.0011818509083241224, + -0.004179387353360653, + 0.08737614005804062, + -0.0017851374577730894, + 0.02197900041937828, + 0.10882064700126648, + 0.027451803907752037, + -0.0006058961153030396, + -0.0544869601726532, + -0.003399872686713934, + 0.037098612636327744, + 0.055405810475349426, + -0.06441332399845123, + -0.0911090224981308, + -0.012462671846151352, + 0.012206878513097763, + -0.03538180887699127, + 0.05990897864103317, + 0.03708581626415253, + 0.01570219174027443, + 0.03672369197010994, + -0.06958041340112686, + 0.021782031282782555, + -0.1099281907081604, + -0.03805774822831154, + -0.02388021908700466, + -0.03261515498161316, + -0.026013564318418503, + 0.06997651606798172, + 0.03265005722641945, + 0.053749483078718185, + -0.015251873061060905, + -0.06236136704683304, + -0.07106058299541473, + 0.05539129301905632, + 0.07320192456245422, + 0.00047182230628095567, + 0.03349994122982025, + 0.04923785850405693, + 0.0042983125895261765, + 0.04841270670294762, + 0.09075738489627838, + 0.08412593603134155, + -0.020233657211065292, + 0.011173320934176445, + -0.05772450566291809, + 0.0908752977848053, + 0.07853017747402191, + -0.0999670922756195, + -0.09733794629573822, + -0.0314897857606411, + -0.044976554811000824, + 0.023222923278808594, + -0.023158585652709007, + 0.018883084878325462, + 0.026271507143974304, + -0.026486029848456383, + -0.0903608426451683, + -0.0990128144621849, + 0.08923383802175522, + -0.06793790310621262, + 0.0019103498198091984, + -0.0708601325750351, + 0.043945472687482834, + 0.08585767447948456, + 0.015695583075284958, + -0.03577731177210808, + -0.007984409108757973, + 0.04524214193224907, + -0.040539972484111786, + -0.006983797065913677, + 0.03293531760573387, + 0.023067450150847435, + -0.10118408501148224, + 0.03308899700641632, + -0.059888310730457306, + 0.08571215718984604, + -0.05049239099025726, + 0.1737249344587326, + 0.0047993953339755535, + -0.04805077239871025, + -0.08287292718887329, + 0.023064663633704185, + -0.023640461266040802, + 0.04154631122946739, + 0.03071696124970913, + 0.06575850397348404, + 0.004734584596008062, + -0.06670975685119629, + 0.1147979125380516, + 0.029987230896949768, + -0.038460299372673035, + -0.07809272408485413, + -0.05830715224146843, + -0.04498923569917679, + 0.027115676552057266, + 0.0030816548969596624, + -0.08249428868293762, + -0.014225131832063198, + 0.019196022301912308, + -0.006374415010213852, + 0.07042526453733444, + 0.14711768925189972, + 0.07646961510181427, + -0.1051764190196991 + ] + }, + "p244_220.wav": { + "name": "p244", + "embedding": [ + 0.03879730403423309, + 0.09055493772029877, + -0.013449713587760925, + 0.02201610803604126, + -0.05717796832323074, + 0.0815148651599884, + -0.12207820266485214, + 0.11224985122680664, + -0.060486312955617905, + 0.1440199613571167, + -0.07286649197340012, + 0.11312384903430939, + -0.019619306549429893, + -0.19507959485054016, + -0.04555293545126915, + 0.052274953573942184, + -0.05741092190146446, + -0.026642274111509323, + -0.03728384152054787, + -0.025818457826972008, + 0.0455283522605896, + 0.05022699758410454, + 0.028865983709692955, + 0.0031799792777746916, + 0.03064601682126522, + 0.05860237404704094, + -0.00041064945980906487, + 0.04074525833129883, + 0.011033182963728905, + -0.06751112639904022, + -0.05683927983045578, + 0.11227892339229584, + -0.045693494379520416, + 0.023093216121196747, + 0.04455939680337906, + 0.005104595795273781, + 0.012291442602872849, + -0.06127537041902542, + -0.02649378776550293, + 0.015792740508913994, + -0.04402081295847893, + 0.06688160449266434, + 0.03025428019464016, + -0.0003331135958433151, + 0.039093393832445145, + 0.0072454228065907955, + -0.019478455185890198, + -0.0503864660859108, + -0.09392698854207993, + 0.1703638881444931, + 0.062744140625, + -0.0065002660267055035, + -0.05478322133421898, + -0.09012486040592194, + 0.11785050481557846, + -0.0051047103479504585, + -0.13170382380485535, + -0.027212215587496758, + 0.0818513035774231, + 0.16934679448604584, + -0.020376477390527725, + -0.040059130638837814, + 0.01990499161183834, + 0.11665328592061996, + 0.019441386684775352, + 0.1002735048532486, + 0.06772534549236298, + 0.08665567636489868, + 0.0014297913294285536, + 0.007924351841211319, + 0.06708859652280807, + 0.07308071851730347, + 0.04511871561408043, + -0.026148442178964615, + 0.02646047994494438, + 0.005571114830672741, + -0.02838445082306862, + 0.025852523744106293, + -0.019251462072134018, + -0.002665368840098381, + -0.020315591245889664, + 0.0013356282142922282, + 0.005613367073237896, + -0.0006534084677696228, + -0.026520565152168274, + 0.04145396500825882, + 0.012017980217933655, + 0.004497114103287458, + 0.06751247495412827, + 0.04404584318399429, + 0.00844128429889679, + 0.06120280548930168, + -0.05212843045592308, + -0.0926857441663742, + 0.022167038172483444, + 0.01979418843984604, + 0.011135349981486797, + 0.07833263278007507, + 0.03854385018348694, + -0.02573969028890133, + 0.11011773347854614, + 0.05281824991106987, + 0.0032901037484407425, + 0.024407315999269485, + -0.10709923505783081, + 0.10679684579372406, + 0.09270425140857697, + -0.009921396151185036, + 0.05202547833323479, + -0.045261450111866, + 0.10293298959732056, + 0.08683113753795624, + -0.15195858478546143, + -0.07544927299022675, + 0.03328393027186394, + 0.021967818960547447, + -0.0022797503042966127, + 0.1113390251994133, + -0.013943596743047237, + 0.01276822667568922, + 0.10044863820075989, + -0.09282051771879196, + -0.054333608597517014, + -0.033119358122348785, + 0.042725201696157455, + -0.08001001924276352, + 0.0430799201130867, + 0.039619144052267075, + -0.01773996464908123, + 0.00014796573668718338, + 0.07431536167860031, + -0.024226512759923935, + 0.004928186535835266, + 0.02313924953341484, + -0.050774913281202316, + 0.019231736660003662, + -0.037040047347545624, + 0.008389119058847427, + 0.06587131321430206, + 0.04547805339097977, + 0.03970226272940636, + -8.527810859959573e-05, + -0.04865244776010513, + -0.11709722131490707, + 0.01301967166364193, + 0.04203265905380249, + 0.06552766263484955, + -0.008239119313657284, + -0.02330688200891018, + -0.03644777834415436, + -0.08237116038799286, + 0.04103248938918114, + -0.012745723128318787, + 0.09000204503536224, + -0.01131061464548111, + -0.00408023688942194, + 0.08427457511425018, + 0.03021332249045372, + -0.025550007820129395, + -0.05551968142390251, + -0.04676496610045433, + 0.01076146587729454, + 0.042087048292160034, + -0.08938419073820114, + -0.06806981563568115, + 0.0052156224846839905, + 0.023495769128203392, + -0.016163988038897514, + 0.03915276378393173, + 0.049200914800167084, + 0.01324817817658186, + 0.05049874633550644, + -0.07602536678314209, + 0.009448867291212082, + -0.12491156905889511, + -0.0672941654920578, + -0.018088815733790398, + -0.03395524621009827, + -0.001566180377267301, + 0.09039953351020813, + 0.008829125203192234, + 0.021368809044361115, + -0.01361086405813694, + -0.06383176892995834, + -0.06541204452514648, + 0.07006420195102692, + 0.06460034847259521, + 0.025414317846298218, + 0.053112201392650604, + 0.05500742793083191, + -0.03475232422351837, + 0.06942816823720932, + 0.06279851496219635, + 0.11005311459302902, + -0.022728553041815758, + 0.03446103632450104, + -0.061128031462430954, + 0.08493976294994354, + 0.0739341750741005, + -0.09063868224620819, + -0.09390824288129807, + -0.032900579273700714, + -0.06158585473895073, + 0.057387083768844604, + -0.02975746989250183, + -0.0012641990324482322, + 0.008109633810818195, + -0.008847979828715324, + -0.08933817595243454, + -0.08393734693527222, + 0.09103529155254364, + -0.0433959886431694, + -0.022728756070137024, + -0.0708194375038147, + 0.048191651701927185, + 0.09499004483222961, + 0.04553939402103424, + -0.02243354730308056, + 0.014007735066115856, + 0.05793747305870056, + -0.058781158179044724, + -0.006644446402788162, + 0.047453057020902634, + 0.015412582084536552, + -0.09625618159770966, + 0.008070964366197586, + -0.08590416610240936, + 0.0674610584974289, + -0.06626740097999573, + 0.16323433816432953, + -0.012062348425388336, + -0.06744888424873352, + -0.0719728171825409, + 0.058629315346479416, + -0.027350004762411118, + 0.032272979617118835, + 0.039434365928173065, + 0.06757237762212753, + 0.031247874721884727, + -0.06235533207654953, + 0.1072753369808197, + 0.032561205327510834, + -0.0334937646985054, + -0.05052363872528076, + -0.03174809366464615, + -0.0367119163274765, + 0.02287173829972744, + -0.0005507778259925544, + -0.08926013112068176, + -0.008259646594524384, + 0.023013412952423096, + -0.006786442827433348, + 0.05982303246855736, + 0.14092090725898743, + 0.06602182984352112, + -0.12202151119709015 + ] + }, + "p244_374.wav": { + "name": "p244", + "embedding": [ + 0.023449799045920372, + 0.09643372893333435, + -0.032250478863716125, + 0.005322292447090149, + -0.016022540628910065, + 0.0508054755628109, + -0.13578638434410095, + 0.09502934664487839, + -0.056720755994319916, + 0.1447373479604721, + -0.03489553555846214, + 0.09041651338338852, + -0.03130771964788437, + -0.1395520269870758, + -0.027699880301952362, + 0.05204661935567856, + -0.051412902772426605, + -0.02630513161420822, + -0.0019895657896995544, + -0.04401072859764099, + 0.046441029757261276, + 0.03166159242391586, + 0.011625888757407665, + -0.029704419896006584, + 0.004238383378833532, + 0.08030026406049728, + 0.005667436867952347, + 0.014578722417354584, + -0.0003715492784976959, + -0.06751219928264618, + -0.03447506204247475, + 0.09523941576480865, + -0.022197291254997253, + -0.008337460458278656, + 0.027852412313222885, + 0.009596243500709534, + 0.0008364307577721775, + -0.050223857164382935, + 0.000549623160623014, + 0.02582681179046631, + -0.0528397411108017, + 0.0737689957022667, + 0.023051604628562927, + -0.005195187404751778, + 0.05737006664276123, + -0.05281570181250572, + -0.02818243019282818, + -0.017421789467334747, + -0.06383350491523743, + 0.1298730969429016, + 0.10277587175369263, + -0.007928198203444481, + -0.0379345640540123, + -0.037560053169727325, + 0.08777811378240585, + 0.022373056039214134, + -0.1208801120519638, + -0.0252310112118721, + 0.04938438534736633, + 0.14853988587856293, + -0.011800747364759445, + -0.026561260223388672, + 0.03328322991728783, + 0.11597199738025665, + 0.012417681515216827, + 0.07975783944129944, + 0.08920113742351532, + 0.05056234821677208, + 0.02026141993701458, + -0.016240660101175308, + 0.03821743652224541, + 0.08321662247180939, + 0.03376757353544235, + -0.0201406367123127, + 0.03548591211438179, + -0.03312789648771286, + -0.033397823572158813, + -0.024128664284944534, + -0.011269854381680489, + -0.04666639864444733, + -0.050403352826833725, + -0.00040141059434972703, + 0.002832874422892928, + 0.03926333785057068, + 0.0014116069069132209, + 0.013494587503373623, + 0.028113186359405518, + -0.038565732538700104, + 0.038569074124097824, + 0.03380490094423294, + 0.028290167450904846, + 0.028291037306189537, + -0.050817154347896576, + -0.06457144021987915, + 0.02594846300780773, + 0.009456822648644447, + 0.030960887670516968, + 0.06504091620445251, + 0.03901662677526474, + 0.0018195733428001404, + 0.09513044357299805, + 0.04242563992738724, + 0.0013941613724455237, + -0.00964332651346922, + -0.08384327590465546, + 0.08617278188467026, + 0.09848646819591522, + -0.030436735600233078, + 0.04858040809631348, + -0.026909753680229187, + 0.037407875061035156, + 0.030659686774015427, + -0.12841413915157318, + -0.044140756130218506, + 0.029600482434034348, + 0.03816960006952286, + 0.0023257534485310316, + 0.10797127336263657, + 0.03385370224714279, + 0.02210618183016777, + 0.08123153448104858, + -0.06448104977607727, + -0.06887614727020264, + -0.09283602237701416, + 0.06871804594993591, + -0.09410824626684189, + 0.07797706127166748, + 0.05561335012316704, + 0.007313728332519531, + 0.008195910602807999, + 0.055985815823078156, + 0.008309325203299522, + -0.003935560584068298, + -0.01303067710250616, + -0.04327896237373352, + 0.004225160926580429, + -0.04742027074098587, + 0.03935592621564865, + 0.027425501495599747, + 0.008239563554525375, + 0.05436950549483299, + 0.002620019717141986, + -0.0037700410466641188, + -0.07606267184019089, + 0.004679839126765728, + 0.025717658922076225, + 0.03588217869400978, + -0.021849848330020905, + -0.041657865047454834, + 0.001358928857371211, + -0.07490625232458115, + -0.020749058574438095, + -0.045521121472120285, + 0.08894895762205124, + -0.0032843926455825567, + 0.0088884886354208, + 0.0840899869799614, + 0.01933881640434265, + -0.0074418894946575165, + -0.016723372042179108, + -0.009743014350533485, + 0.02282208763062954, + 0.04553689807653427, + -0.10854979604482651, + -0.07491825520992279, + -0.006919624283909798, + 0.01743520423769951, + 0.012150495313107967, + 0.03819242864847183, + 0.056162089109420776, + 0.00873025692999363, + 0.038402944803237915, + -0.022650912404060364, + 0.017682809382677078, + -0.09988783299922943, + -0.06519915908575058, + -0.031922828406095505, + -0.06194712966680527, + -0.03511340543627739, + 0.07849004864692688, + -0.007298754062503576, + 0.03678799793124199, + -0.01956704631447792, + -0.048037197440862656, + -0.053779806941747665, + 0.06473030894994736, + 0.07054997980594635, + 0.00425155321136117, + 0.017644930630922318, + 0.05806760489940643, + 0.006640546955168247, + 0.009750778786838055, + 0.041887760162353516, + 0.104054294526577, + -0.022354010492563248, + 0.0025161877274513245, + -0.08518111705780029, + 0.05406004935503006, + 0.09197567403316498, + -0.06775777041912079, + -0.06599339097738266, + -0.03665510565042496, + -0.07428398728370667, + 0.04573630914092064, + -0.0492304265499115, + 0.000265246257185936, + -0.008219039998948574, + -0.013596093282103539, + -0.10187450051307678, + -0.08742545545101166, + 0.0933118388056755, + -0.045064859092235565, + -0.01372772827744484, + -0.0618569515645504, + 0.04460422322154045, + 0.0685817301273346, + 0.05725841969251633, + -0.057626865804195404, + 0.027187949046492577, + 0.047102004289627075, + -0.04292602464556694, + 0.03270243853330612, + 0.025353293865919113, + 0.04611819237470627, + -0.09895791113376617, + -0.0016420434694737196, + -0.06781023740768433, + 0.05189454182982445, + -0.07250219583511353, + 0.09858774393796921, + 0.017517752945423126, + -0.050958409905433655, + -0.08054932951927185, + 0.05003558099269867, + -0.008419888094067574, + 0.029420314356684685, + 0.03812549635767937, + 0.07518221437931061, + 0.030836796388030052, + -0.06830979883670807, + 0.0732167661190033, + 0.02889445424079895, + 0.016833506524562836, + -0.048200011253356934, + -0.009828130714595318, + -0.03241066634654999, + 0.041101641952991486, + 0.006099475082010031, + -0.06915758550167084, + -0.006090696435421705, + 0.00019398207950871438, + 0.020913206040859222, + 0.06758694350719452, + 0.08900843560695648, + 0.02920929156243801, + -0.09521955251693726 + ] + }, + "p244_384.wav": { + "name": "p244", + "embedding": [ + 0.05566015467047691, + 0.11395697295665741, + 0.016208510845899582, + 0.01644066348671913, + -0.024002349004149437, + 0.054477911442518234, + -0.06622035056352615, + 0.08821912854909897, + 0.020203595981001854, + 0.07493787258863449, + -0.08233807235956192, + 0.07063636928796768, + -0.040873635560274124, + -0.1317119002342224, + -0.002980649471282959, + 0.0365707166492939, + -0.03391682356595993, + 0.007290172390639782, + -0.03264535591006279, + -0.028852222487330437, + -0.013985025696456432, + 0.010282794013619423, + 0.03223650902509689, + 0.0045434534549713135, + -0.0029877275228500366, + 0.027245599776506424, + -0.030182931572198868, + 0.013489204458892345, + -0.006926137953996658, + -0.0492633581161499, + -0.023077093064785004, + 0.07702772319316864, + -0.02443801425397396, + 0.0008054872741922736, + 0.014587613753974438, + -0.030850771814584732, + 0.010230448096990585, + -0.0658850222826004, + -0.04567558690905571, + 0.02418021485209465, + -0.043879434466362, + 0.051380373537540436, + 0.025394242256879807, + -0.042888231575489044, + 0.039149150252342224, + 0.0022595818154513836, + -0.04928196594119072, + -0.00761794438585639, + -0.09855502843856812, + 0.10403876006603241, + 0.033704712986946106, + 0.022440306842327118, + -0.06818641722202301, + -0.020435117185115814, + 0.1011800765991211, + -0.0034335616510361433, + -0.05934975668787956, + -0.009920991957187653, + 0.042349811643362045, + 0.08056049793958664, + 0.01637434959411621, + -0.020987948402762413, + 0.023552950471639633, + 0.07456541061401367, + 0.04375208169221878, + 0.04541177302598953, + 0.07541152834892273, + 0.10399436950683594, + -0.033417265862226486, + 0.027119828388094902, + 0.03373056650161743, + 0.011724199168384075, + 0.04241838678717613, + -0.012726284563541412, + -0.004522574134171009, + -0.017244575545191765, + -0.002019263803958893, + -0.009453907608985901, + -0.01497898530215025, + -0.04106542095541954, + 0.02151159942150116, + -0.022283729165792465, + 0.003852484282106161, + 0.011755655519664288, + -0.040615763515233994, + -0.009845077991485596, + 0.057101499289274216, + 0.03894852101802826, + 0.07229340076446533, + 0.03508644551038742, + 0.026812713593244553, + 0.07455843687057495, + -0.06594584882259369, + -0.06658811867237091, + 0.014251867309212685, + -0.004513641819357872, + 0.034751296043395996, + 0.04799506068229675, + 0.03846416622400284, + -0.016666464507579803, + 0.10123103857040405, + 0.00968961976468563, + 0.026942379772663116, + 0.0037530555855482817, + -0.06388043612241745, + 0.042672865092754364, + 0.06472232192754745, + -0.012896097265183926, + 0.06440748274326324, + 0.01062367670238018, + 0.06981091946363449, + 0.06846883147954941, + -0.07536599785089493, + -0.014261203818023205, + -0.003836844116449356, + 0.031877219676971436, + 0.0012222162913531065, + 0.10023045539855957, + -0.003363877534866333, + 0.036561690270900726, + 0.08934098482131958, + -0.059772785753011703, + 0.0007901564240455627, + 0.030527103692293167, + 0.0047083026729524136, + -0.03602129593491554, + 0.045893482863903046, + 0.02402573451399803, + -0.018750881776213646, + -0.01842883974313736, + 0.04225537180900574, + 0.009178774431347847, + -0.002205016789957881, + -0.023625221103429794, + -0.014965901151299477, + 0.0016625039279460907, + 0.0035599893890321255, + 7.717932749073952e-05, + 0.027427583932876587, + 0.04772336408495903, + 0.012440296821296215, + 0.006515865679830313, + -0.04017090052366257, + -0.06528477370738983, + 0.024902252480387688, + 0.0067955926060676575, + 0.025829432532191277, + 0.03323550522327423, + -0.02986619435250759, + -0.04087820276618004, + -0.027270019054412842, + 0.062224578112363815, + -0.025220494717359543, + 0.06402501463890076, + 0.04003491252660751, + -0.010010424070060253, + 0.07204889506101608, + 0.03619522601366043, + 0.013378968462347984, + -0.04099726676940918, + -0.07827086746692657, + -0.004374640993773937, + 0.042702071368694305, + -0.07098110020160675, + -0.034417614340782166, + -0.012448584660887718, + -0.024141617119312286, + -0.01612934097647667, + 0.01713244616985321, + 0.06172192841768265, + -0.01600707694888115, + 0.012988138012588024, + -0.07074102759361267, + 0.015045110136270523, + -0.044114768505096436, + -0.08719181269407272, + 0.035293471068143845, + 0.0063250502571463585, + 0.009485555812716484, + 0.07353170216083527, + 0.015584670007228851, + 0.00660300999879837, + -0.036142997443675995, + -0.051705487072467804, + -0.00463007902726531, + 0.04233451187610626, + 0.026176786050200462, + -0.0022782832384109497, + 0.03917685151100159, + 0.05707709491252899, + -0.016167620196938515, + 0.0413212776184082, + 0.02133442834019661, + 0.0711769312620163, + -0.043713055551052094, + 0.01626548171043396, + -0.005085880868136883, + 0.06328696012496948, + 0.06897328048944473, + -0.0725037008523941, + -0.10481145977973938, + -0.04440099745988846, + -0.044441476464271545, + 0.031490959227085114, + -0.009176194667816162, + 0.0003801745770033449, + 0.03060680627822876, + -0.018050074577331543, + -0.03994433581829071, + -0.11339092254638672, + 0.05120830237865448, + -0.017044490203261375, + -0.007945175282657146, + -0.053484879434108734, + 0.03012763522565365, + 0.028895672410726547, + 0.031500112265348434, + -0.027842644602060318, + 0.022633550688624382, + 0.03358602151274681, + -0.005996193736791611, + -0.020609170198440552, + 0.03077751025557518, + 0.035197652876377106, + -0.04148676618933678, + -0.026999717578291893, + -0.05664321780204773, + 0.059217438101768494, + 0.01310439221560955, + 0.10835233330726624, + 0.03155405446887016, + -0.01899263821542263, + -0.07134135067462921, + 0.05220211669802666, + -0.025549456477165222, + 0.04190117120742798, + 0.008280213922262192, + 0.03209483623504639, + 0.047817789018154144, + -0.0439918115735054, + 0.07255464047193527, + 0.025607986375689507, + -0.028876788914203644, + -0.03586782515048981, + 0.0011342864017933607, + -0.05578766390681267, + 0.0039499131962656975, + 0.000495461979880929, + -0.05514378473162651, + -0.01818789914250374, + 0.024498112499713898, + 0.042953379452228546, + 0.05583646148443222, + 0.08736936748027802, + 0.05355657637119293, + -0.04766364023089409 + ] + }, + "p244_311.wav": { + "name": "p244", + "embedding": [ + 0.051357634365558624, + 0.08640292286872864, + -0.023266131058335304, + 0.02229953557252884, + -0.06447425484657288, + 0.07222622632980347, + -0.13573625683784485, + 0.1333259791135788, + -0.04352742061018944, + 0.14977094531059265, + -0.05300269275903702, + 0.11877299845218658, + -0.01130568515509367, + -0.17859090864658356, + -0.04289994761347771, + 0.0334707610309124, + -0.03931748867034912, + -0.039801016449928284, + -0.04093143343925476, + -0.03651154786348343, + 0.036497943103313446, + 0.05618300288915634, + 0.015927409753203392, + 0.009223002940416336, + 0.04482416808605194, + 0.05732090026140213, + -0.009629062376916409, + 0.03104410693049431, + 0.005513321608304977, + -0.07702966779470444, + -0.038203924894332886, + 0.0964803695678711, + -0.06254828721284866, + 0.029088163748383522, + 0.028710223734378815, + -0.010501404292881489, + 0.010291682556271553, + -0.06586772203445435, + -0.03337614983320236, + 0.027852701023221016, + -0.03957948088645935, + 0.08354207873344421, + 0.03790400177240372, + -0.0027799096424132586, + 0.029529694467782974, + 0.006164429243654013, + -0.0006938234437257051, + -0.05417706072330475, + -0.09687276184558868, + 0.1767762005329132, + 0.05619187653064728, + -0.007181104738265276, + -0.06980688869953156, + -0.0776086151599884, + 0.11143673956394196, + -0.016323860734701157, + -0.1179150640964508, + -0.02359612286090851, + 0.06593306362628937, + 0.15822909772396088, + -0.029200537130236626, + -0.056219637393951416, + 0.025904085487127304, + 0.12358596920967102, + 0.055603161454200745, + 0.06216292828321457, + 0.09565773606300354, + 0.10930820554494858, + -0.02649831771850586, + -0.0010681552812457085, + 0.05225870758295059, + 0.07488647103309631, + 0.052707020193338394, + -0.021133607253432274, + 0.023522090166807175, + 0.003000113647431135, + -0.014402510598301888, + -0.0042637246660888195, + -0.023517247289419174, + -0.006714884657412767, + -0.016419006511569023, + 0.016467660665512085, + 0.010034924373030663, + 0.03235607594251633, + -0.038288574665784836, + 0.046929627656936646, + 0.028022320941090584, + -0.018424823880195618, + 0.06956097483634949, + 0.047474659979343414, + 0.0226121935993433, + 0.06090710312128067, + -0.08389033377170563, + -0.0798303559422493, + 0.035781875252723694, + 0.007912063039839268, + 0.02175053581595421, + 0.07769251614809036, + 0.04378724843263626, + -0.01348889246582985, + 0.12146754562854767, + 0.044603876769542694, + -0.012466082349419594, + 0.007494073361158371, + -0.09475603699684143, + 0.11331655085086823, + 0.09762737154960632, + -0.019908040761947632, + 0.06147930026054382, + -0.056610412895679474, + 0.08070899546146393, + 0.05401461198925972, + -0.14500020444393158, + -0.08816921710968018, + 0.040170855820178986, + 0.030931632965803146, + -0.005460510030388832, + 0.131168395280838, + -0.011465403251349926, + 0.044736944139003754, + 0.08541398495435715, + -0.08328656852245331, + -0.03487028554081917, + -0.027626361697912216, + 0.06220778077840805, + -0.07433606684207916, + 0.053497716784477234, + 0.0505019947886467, + -0.019700603559613228, + 0.013632059097290039, + 0.06955055147409439, + -0.008388577029109001, + 0.005705136340111494, + 0.004309090785682201, + -0.037476446479558945, + 0.02089506760239601, + -0.004578168969601393, + 0.001466446090489626, + 0.043698713183403015, + 0.03842398524284363, + 0.054924771189689636, + -0.006294566672295332, + -0.037312932312488556, + -0.11995771527290344, + 0.026603087782859802, + 0.027026604861021042, + 0.07196778059005737, + -0.022917944937944412, + -0.02381109818816185, + -0.04027148336172104, + -0.07303570210933685, + 0.02255737967789173, + -0.003647993318736553, + 0.09252651035785675, + -0.011052945628762245, + 0.010942134074866772, + 0.10676807165145874, + 0.04383505508303642, + -0.01471814326941967, + -0.02746441960334778, + -0.029986966401338577, + -0.017777137458324432, + 0.06124287098646164, + -0.07759775966405869, + -0.07165796309709549, + -0.007651845924556255, + 0.025621674954891205, + -0.01494077779352665, + 0.07042072713375092, + 0.04821113869547844, + 0.01670840196311474, + 0.04153861105442047, + -0.07673287391662598, + 0.0016940627247095108, + -0.10998199135065079, + -0.06242836266756058, + -0.008893463760614395, + -0.022390324622392654, + -0.023218736052513123, + 0.09397567808628082, + 0.03106657788157463, + 0.05410348251461983, + -0.02080501988530159, + -0.060123544186353683, + -0.06440001726150513, + 0.05380197614431381, + 0.053523868322372437, + -0.0066789621487259865, + 0.027786459773778915, + 0.06938782334327698, + -0.0177437923848629, + 0.06584183126688004, + 0.08010941743850708, + 0.08836636692285538, + -0.03083617426455021, + 0.04386240243911743, + -0.06199156492948532, + 0.10994042456150055, + 0.06841009855270386, + -0.0839373916387558, + -0.09480857849121094, + -0.035347942262887955, + -0.07720832526683807, + 0.030661912634968758, + -0.02123548835515976, + 0.026769477874040604, + 0.018754659220576286, + 0.0011099257972091436, + -0.09803085029125214, + -0.08783013373613358, + 0.08327104151248932, + -0.057306498289108276, + -0.00015311618335545063, + -0.09112933278083801, + 0.04500465840101242, + 0.11834831535816193, + 0.05302465707063675, + -0.012607109732925892, + -0.013908649794757366, + 0.05101641267538071, + -0.023482875898480415, + 0.0057307276874780655, + 0.060634415596723557, + 0.02579566463828087, + -0.10661022365093231, + -0.0024223041255027056, + -0.06767679005861282, + 0.06707805395126343, + -0.04907575249671936, + 0.15105122327804565, + 0.01744437776505947, + -0.06619874387979507, + -0.07671445608139038, + 0.0547390878200531, + -0.023104017600417137, + 0.050892770290374756, + 0.02182084694504738, + 0.06905778497457504, + 0.05052930861711502, + -0.05335437133908272, + 0.10176366567611694, + 0.05871710553765297, + -0.050939638167619705, + -0.06275615096092224, + -0.05191664397716522, + -0.011560317128896713, + 0.03879278153181076, + 0.011536180973052979, + -0.07817871868610382, + -0.011468037962913513, + 0.026277780532836914, + -0.009750363416969776, + 0.06902795284986496, + 0.1414240151643753, + 0.0844682902097702, + -0.13844546675682068 + ] + }, + "p244_276.wav": { + "name": "p244", + "embedding": [ + 0.07513131946325302, + 0.02545362338423729, + -0.0007975666667334735, + 0.0007347576320171356, + -0.014446436427533627, + -0.0018529929220676422, + -0.1630624234676361, + 0.12214868515729904, + -0.001670363126322627, + 0.07535199820995331, + -0.051437895745038986, + 0.09921683371067047, + 0.013241864740848541, + -0.15327613055706024, + -0.021063577383756638, + 0.04479089006781578, + -0.005546256899833679, + -0.015442103147506714, + -0.022954702377319336, + -0.03150840848684311, + 0.020176153630018234, + 0.06058849021792412, + 0.031246734783053398, + -0.019195646047592163, + 0.025389356538653374, + 0.05622461438179016, + 0.015163104049861431, + 0.03469700366258621, + -0.01221897266805172, + -0.009008258581161499, + 0.01926465332508087, + 0.061990123242139816, + -0.028483707457780838, + -0.032817672938108444, + 0.03926622122526169, + -0.0018425974994897842, + -0.0015973140252754092, + -0.08711747825145721, + -0.03546024113893509, + 0.015213991515338421, + -0.06350058317184448, + 0.08013074845075607, + 0.05164342746138573, + -0.03413361310958862, + 0.03368685394525528, + 0.025439295917749405, + 0.011682569049298763, + -0.064358189702034, + -0.1342936009168625, + 0.151157945394516, + 0.014985228888690472, + 0.06193343922495842, + -0.11136561632156372, + -0.018629081547260284, + 0.07343872636556625, + -0.02206953428685665, + -0.02288104221224785, + -0.04405027627944946, + 0.04169435799121857, + 0.13684767484664917, + -0.019486747682094574, + -0.0519028902053833, + 0.06259241700172424, + 0.07143506407737732, + 0.06255485862493515, + 0.016289565712213516, + 0.12722131609916687, + 0.0883333832025528, + -0.02125145122408867, + 0.006384031381458044, + 0.02852659486234188, + 0.06598511338233948, + 0.02192794531583786, + -0.007386332377791405, + 0.013409084640443325, + 0.018812738358974457, + -0.03646520525217056, + -0.022810813039541245, + -0.021267544478178024, + -0.024511411786079407, + 0.01405554823577404, + 0.02284611389040947, + 0.02818315289914608, + 0.06552787125110626, + -0.06397907435894012, + 0.05365968868136406, + 0.0382208451628685, + -0.025596462190151215, + 0.06153101846575737, + 0.027358587831258774, + 0.007291970308870077, + 0.01601489633321762, + -0.07241231948137283, + -0.07202789932489395, + 0.011328734457492828, + -0.0033673529978841543, + 0.015303499065339565, + 0.040278173983097076, + 0.03942414000630379, + -0.0285886712372303, + 0.11708387732505798, + 0.025230389088392258, + -0.01589309796690941, + 0.0013176712673157454, + -0.05587373673915863, + 0.08489914983510971, + 0.09609320014715195, + -0.023247260600328445, + 0.04496036469936371, + -0.05696377158164978, + -0.011959615163505077, + 0.04828553646802902, + -0.10010834783315659, + -0.06327567249536514, + 0.05855641886591911, + 0.03563724085688591, + 0.045757003128528595, + 0.1486397087574005, + 0.012655029073357582, + 0.0502140074968338, + 0.08141949772834778, + -0.08284391462802887, + -0.05485440418124199, + 0.004507214762270451, + 0.04715452343225479, + -0.05526868253946304, + 0.06577930599451065, + 0.05322889983654022, + 0.006675058510154486, + -0.016785262152552605, + 0.056993406265974045, + 0.011212694458663464, + -0.00012188901746412739, + -0.06596982479095459, + 0.036848943680524826, + 0.05157247930765152, + -0.005241219885647297, + -0.043959300965070724, + 0.025657981634140015, + 0.059320058673620224, + 0.014650347642600536, + 0.04271932691335678, + -0.05382728576660156, + -0.1463930308818817, + -0.008406261913478374, + 0.041148796677589417, + 0.08537115156650543, + -0.032415278255939484, + -0.04834642633795738, + -0.07863584160804749, + -0.023011289536952972, + -0.029490754008293152, + -0.001999839209020138, + 0.057922668755054474, + 0.008890870027244091, + 0.017409829422831535, + 0.07651060819625854, + -0.017208917066454887, + 0.04339132830500603, + 0.01516370102763176, + 0.002494536340236664, + 0.008127131499350071, + 0.028701579198241234, + -0.0042880079708993435, + -0.08832081407308578, + -0.03724939376115799, + 0.023126747459173203, + -0.01982273906469345, + 0.027472496032714844, + 0.007182744797319174, + -0.002531040459871292, + -0.008446760475635529, + -0.10211595147848129, + 0.029691239818930626, + -0.09596455097198486, + -0.029073771089315414, + 0.03172459453344345, + 0.0033631238620728254, + -0.026961371302604675, + 0.07979995012283325, + 0.04175744205713272, + 0.07449490576982498, + -0.042166538536548615, + -0.07729753851890564, + -0.053343381732702255, + 0.012318165972828865, + 0.06639628112316132, + -0.03494974225759506, + -0.002078404650092125, + 0.009801940992474556, + 0.02757570892572403, + 0.04453955590724945, + 0.058736201375722885, + 0.04062897711992264, + -0.01466267928481102, + -0.039879556745290756, + -0.008759453892707825, + 0.12539933621883392, + 0.048204414546489716, + -0.0434136837720871, + -0.04680304974317551, + 0.0005535235395655036, + -0.07774858176708221, + -0.000574390112888068, + 0.03343776613473892, + 0.04662688076496124, + 0.05060954391956329, + -0.01016424410045147, + -0.11285319179296494, + -0.06839986145496368, + 0.015341583639383316, + -0.060285188257694244, + -0.0014953764621168375, + -0.05849572271108627, + 0.029280435293912888, + 0.10980862379074097, + 0.015062114223837852, + 0.027394801378250122, + -0.0706247091293335, + -0.036756765097379684, + -0.046370141208171844, + -0.019908517599105835, + 0.02065538987517357, + 0.045064907521009445, + -0.08134107291698456, + 0.006947098299860954, + -0.06597991287708282, + 0.06346414983272552, + -0.01968800649046898, + 0.08218702673912048, + 0.040747594088315964, + -0.05304236710071564, + -0.10162591189146042, + -0.020573318004608154, + -0.011410156264901161, + 0.07832687348127365, + 0.02096492424607277, + 0.039235204458236694, + 0.04070473089814186, + -0.07032576948404312, + 0.06468284130096436, + 0.07685994356870651, + -0.046594396233558655, + -0.07684477418661118, + -0.054644010961055756, + -0.0035267286002635956, + 0.03640913590788841, + -0.004815790336579084, + -0.011477336287498474, + -0.004399165511131287, + 0.02710307203233242, + -0.008676138706505299, + 0.0436553955078125, + 0.09508110582828522, + 0.01512140966951847, + -0.11000603437423706 + ] + }, + "p244_119.wav": { + "name": "p244", + "embedding": [ + 0.041035328060388565, + 0.1171216368675232, + -0.01179348025470972, + 0.03046359308063984, + -0.04702170193195343, + 0.09453181177377701, + -0.10668397694826126, + 0.12248910963535309, + -0.08323294669389725, + 0.14492663741111755, + -0.09888210147619247, + 0.10447487235069275, + -0.05675545334815979, + -0.1498221755027771, + -0.05997239425778389, + 0.05494444817304611, + -0.06274647265672684, + -0.023233912885189056, + -0.04553444683551788, + -0.005147829651832581, + 0.03341696783900261, + 0.012462028302252293, + 0.025516755878925323, + 0.022354155778884888, + 0.027508899569511414, + 0.06286543607711792, + 0.001179900486022234, + 0.048382315784692764, + 0.022447364404797554, + -0.050107475370168686, + -0.040904365479946136, + 0.12279647588729858, + -0.04318425804376602, + 0.014436806552112103, + 0.05204117298126221, + 0.019102005288004875, + 0.006252304185181856, + -0.06737777590751648, + -0.0053457641042768955, + -0.021111296489834785, + -0.04827390983700752, + 0.06416188925504684, + 0.00558291282504797, + -0.004469968844205141, + 0.028955701738595963, + 0.006233080290257931, + -0.019877638667821884, + -0.04545636475086212, + -0.09355872869491577, + 0.15283310413360596, + 0.07247988134622574, + -0.002529071643948555, + -0.07150186598300934, + -0.07887449860572815, + 0.10880424082279205, + -0.007559535093605518, + -0.12024316191673279, + -0.04662764444947243, + 0.07981253415346146, + 0.17828938364982605, + -0.02430693805217743, + -0.01474565640091896, + 0.010893961414694786, + 0.12074629962444305, + 0.044923555105924606, + 0.10954049229621887, + 0.06623528152704239, + 0.08859512209892273, + 0.017126547172665596, + 0.031472571194171906, + 0.07967846095561981, + 0.0410277396440506, + 0.05896005779504776, + -0.021644819527864456, + 0.03180265426635742, + -0.01761065609753132, + -0.01831923797726631, + 0.032657016068696976, + -0.02466539293527603, + -0.03449594974517822, + -0.030181854963302612, + 0.00802590325474739, + -0.004851335193961859, + 0.005722460336983204, + -0.021320605650544167, + 0.05398112162947655, + 0.009338266216218472, + -0.0218175258487463, + 0.07274986803531647, + 0.051705602556467056, + -0.002791539765894413, + 0.05145624279975891, + -0.05410643666982651, + -0.0874621570110321, + 0.01553080789744854, + 0.0018303999677300453, + 0.010888876393437386, + 0.07250514626502991, + 0.03416242077946663, + -0.015027493238449097, + 0.0963885635137558, + 0.052156828343868256, + 0.018163956701755524, + 0.02427164651453495, + -0.1131306141614914, + 0.12617751955986023, + 0.0781724825501442, + -0.02230972982943058, + 0.028605753555893898, + -0.0042348201386630535, + 0.07369662076234818, + 0.09680469334125519, + -0.1422722339630127, + -0.07125332206487656, + 0.022511953487992287, + -0.007162821479141712, + -0.008128483779728413, + 0.07181699573993683, + -0.0035393889993429184, + 0.0033530760556459427, + 0.09313615411520004, + -0.07921084761619568, + -0.06184364855289459, + -0.03161986917257309, + 0.045311339199543, + -0.07356663048267365, + 0.043095991015434265, + 0.04346722364425659, + 0.001474400283768773, + -0.01761433854699135, + 0.08378525078296661, + -0.010551784187555313, + -0.015932224690914154, + 0.042461566627025604, + -0.05689840763807297, + 0.02786139026284218, + -0.037262171506881714, + 0.0036523835733532906, + 0.04492847993969917, + 0.05050475895404816, + 0.04371700435876846, + -0.007069278042763472, + -0.009565704502165318, + -0.0784645527601242, + -0.0012035290710628033, + 0.06865569949150085, + 0.05565640330314636, + -0.008396778255701065, + -0.013615313917398453, + -0.03218509256839752, + -0.056504637002944946, + 0.02951989322900772, + -0.011214896105229855, + 0.09775665402412415, + -0.01146942563354969, + -0.005394458770751953, + 0.10931695997714996, + 0.005259362049400806, + -0.009987985715270042, + -0.07161106169223785, + -0.006231918931007385, + 0.03999503329396248, + 0.05255555734038353, + -0.06762631237506866, + -0.07490804046392441, + 0.02168220467865467, + 0.023013144731521606, + -0.019276540726423264, + 0.04656728357076645, + 0.042168669402599335, + 0.004543937277048826, + 0.031079240143299103, + -0.05665223300457001, + 0.02340463176369667, + -0.0977492481470108, + -0.04623570665717125, + -0.01847703568637371, + -0.05729732662439346, + -0.01188218966126442, + 0.0690579041838646, + 0.02865620329976082, + 0.02114933356642723, + 0.013684026896953583, + -0.0934654101729393, + -0.06491606682538986, + 0.07864168286323547, + 0.0688200294971466, + 0.018624501302838326, + 0.05195033177733421, + 0.06353733688592911, + -0.024179628118872643, + 0.050453878939151764, + 0.07028040289878845, + 0.1048823893070221, + -0.022610560059547424, + -0.0059287287294864655, + -0.07370325177907944, + 0.05497792363166809, + 0.07311097532510757, + -0.11497239768505096, + -0.08855105191469193, + -0.035394515842199326, + -0.04312887787818909, + 0.04550495371222496, + -0.0346343070268631, + 0.013257147744297981, + 0.03421206399798393, + -0.04018382728099823, + -0.08878929913043976, + -0.1068856343626976, + 0.1229618713259697, + -0.06971406936645508, + -0.022279294207692146, + -0.06242777034640312, + 0.04196704179048538, + 0.06394918262958527, + 0.03370310366153717, + -0.0312601774930954, + 0.03787950053811073, + 0.04882405698299408, + -0.06794276833534241, + -0.02030945010483265, + 0.03759439289569855, + -0.00434664823114872, + -0.10304947197437286, + 0.022803107276558876, + -0.08713734149932861, + 0.09344163537025452, + -0.06279364228248596, + 0.17406919598579407, + -0.029436789453029633, + -0.048017099499702454, + -0.08457805216312408, + 0.04212973266839981, + -0.036227550357580185, + 0.03667278587818146, + 0.039252158254384995, + 0.07407870888710022, + 0.00952131673693657, + -0.05543564260005951, + 0.11899800598621368, + 0.021641097962856293, + -0.0313698872923851, + -0.06194864958524704, + -0.0465119443833828, + -0.058486443012952805, + 0.010606616735458374, + -0.008879156783223152, + -0.09011583030223846, + 0.003236854914575815, + 0.012624252587556839, + -0.015175329521298409, + 0.0782565027475357, + 0.1355554461479187, + 0.07503320276737213, + -0.0978284627199173 + ] + }, + "p244_183.wav": { + "name": "p244", + "embedding": [ + 0.04004361480474472, + 0.1142340749502182, + 0.01573406346142292, + 0.008702335879206657, + -0.026102041825652122, + 0.01421207096427679, + -0.05444011092185974, + 0.09331192076206207, + 0.030600570142269135, + 0.06351393461227417, + -0.08533996343612671, + 0.07840592414140701, + -0.06860426068305969, + -0.10734489560127258, + 0.008671983145177364, + 0.035235267132520676, + -0.037064485251903534, + -0.006941264029592276, + -0.020846206694841385, + -0.04411144182085991, + -0.019091255962848663, + 0.01464475691318512, + 0.023537633940577507, + 0.02783234789967537, + -0.0023410916328430176, + 0.05802048742771149, + -0.022554244846105576, + 0.002357428427785635, + -0.009786895476281643, + -0.0505397766828537, + -0.01694747619330883, + 0.03900054097175598, + -0.03462659940123558, + -0.012639855965971947, + -4.806742072105408e-05, + -0.032658763229846954, + 0.014093822799623013, + -0.0402003675699234, + -0.046144478023052216, + 0.03959941864013672, + -0.0663345605134964, + 0.051373012363910675, + 0.0051093799993395805, + -0.06451612710952759, + 0.031120896339416504, + 0.02127220295369625, + -0.02785540372133255, + -0.009320992045104504, + -0.11060484498739243, + 0.10683252662420273, + 0.042785607278347015, + 0.01784227229654789, + -0.05954263359308243, + -0.02501940354704857, + 0.08733145892620087, + -0.0021991929970681667, + -0.03732706606388092, + -0.0202924907207489, + 0.02913406305015087, + 0.04478723928332329, + 0.002322676358744502, + -0.03601595014333725, + 0.029787488281726837, + 0.06767427176237106, + 0.06451044231653214, + 0.028775891289114952, + 0.06827805936336517, + 0.08838818967342377, + -0.0701795443892479, + 0.001795570133253932, + 0.05021118372678757, + 0.020627638325095177, + 0.06979973614215851, + 0.005090269260108471, + -0.02057863026857376, + 0.0007662351126782596, + 0.009133713319897652, + -0.009617729112505913, + 0.009377913549542427, + -0.043493762612342834, + 0.017148837447166443, + -0.02034933678805828, + -0.01801767572760582, + 0.00206182524561882, + -0.020618274807929993, + 0.006135655101388693, + 0.07763402909040451, + 0.0382198840379715, + 0.08375623822212219, + 0.02762819454073906, + 0.012393539771437645, + 0.09375175088644028, + -0.07711796462535858, + -0.040032483637332916, + 0.006372353993356228, + -0.024415001273155212, + 0.04663130268454552, + 0.058602865785360336, + 0.054348163306713104, + -0.007863905280828476, + 0.10615401715040207, + 0.01535364892333746, + 0.032873425632715225, + -0.006063016131520271, + -0.06522908806800842, + 0.05220669507980347, + 0.0654420554637909, + -0.04212576150894165, + 0.04679134488105774, + 0.04497436434030533, + 0.04629715532064438, + 0.06347309052944183, + -0.06397742033004761, + -0.013589812442660332, + -0.019445527344942093, + 0.035097844898700714, + -0.005463359411805868, + 0.08890075981616974, + -0.015350909903645515, + 0.03926539421081543, + 0.1120821163058281, + -0.059573426842689514, + -0.00844486616551876, + 0.025637462735176086, + -0.006960737518966198, + -0.057128291577100754, + 0.05967188999056816, + 0.036719538271427155, + -0.0010291710495948792, + 0.011213904246687889, + 0.05888380855321884, + 0.0024499837309122086, + -0.0001847290841396898, + -0.037351541221141815, + -0.006991258822381496, + -0.026712220162153244, + 0.008545072749257088, + -0.008541903458535671, + 0.03254855424165726, + 0.05428321287035942, + 0.010814297012984753, + 0.02313941717147827, + -0.026378391310572624, + -0.08601202815771103, + 0.047178126871585846, + 0.015321163460612297, + 0.021147971972823143, + 0.03083699196577072, + -0.04194445535540581, + -0.03578154370188713, + -0.01372518204152584, + 0.029537610709667206, + -0.0041631124913692474, + 0.05572943389415741, + -0.0008132308721542358, + -0.0012410444905981421, + 0.07629962265491486, + 0.04363131523132324, + 0.014784732833504677, + -0.030621131882071495, + -0.08758185803890228, + -0.009393461048603058, + 0.036248113960027695, + -0.06479854881763458, + -0.07270146161317825, + -0.035207197070121765, + -0.009832712821662426, + 0.01271092426031828, + 0.045438237488269806, + 0.06104039400815964, + -0.02665194869041443, + -0.002569361124187708, + -0.06129225343465805, + 0.0247060414403677, + -0.01936211995780468, + -0.09773583710193634, + 0.018274758011102676, + 0.0011608017375692725, + 0.003764840541407466, + 0.052485670894384384, + -0.0030179969035089016, + 0.02800317108631134, + -0.04018954560160637, + -0.057796746492385864, + -0.014679154381155968, + 0.02069707028567791, + 0.02277674898505211, + -0.001057436689734459, + 0.031517356634140015, + 0.07840427756309509, + -0.01953011006116867, + 0.04013515263795853, + 0.011267222464084625, + 0.08430679887533188, + -0.05262231081724167, + 0.023029936477541924, + 0.01687745377421379, + 0.03873715549707413, + 0.048860371112823486, + -0.07173056900501251, + -0.07870382815599442, + -0.062005363404750824, + -0.05009894073009491, + 0.03723980486392975, + 0.0012853461084887385, + 0.02723969891667366, + 0.025289051234722137, + -0.005822490435093641, + -0.00565047562122345, + -0.10714810341596603, + 0.03927227854728699, + -0.0018325697164982557, + -0.005222877021878958, + -0.05847787857055664, + 0.02401411533355713, + 0.02280975691974163, + 0.052191611379384995, + -0.00558630283921957, + 0.01785661280155182, + 0.01825030893087387, + 0.032320376485586166, + -0.016544198617339134, + 0.05133195221424103, + 0.0547487698495388, + -0.0240594781935215, + -0.04512994736433029, + -0.0745638757944107, + 0.07238838076591492, + 0.023735735565423965, + 0.08931230753660202, + 0.03413977846503258, + -0.008464518934488297, + -0.08797469735145569, + 0.03390021622180939, + -0.02840748056769371, + 0.04909130930900574, + 0.005772958509624004, + 0.026611965149641037, + 0.053455837070941925, + -0.018304210156202316, + 0.08503516763448715, + 0.04462161287665367, + -0.03644011169672012, + -0.02813814952969551, + -0.02026468515396118, + -0.05901561304926872, + 0.000768480240367353, + 0.014603976160287857, + -0.04559175670146942, + -0.01959086023271084, + 0.013073625974357128, + 0.050295960158109665, + 0.057487405836582184, + 0.09151953458786011, + 0.04710816591978073, + -0.0457567498087883 + ] + }, + "p244_225.wav": { + "name": "p244", + "embedding": [ + 0.051310356706380844, + 0.0834568589925766, + -0.007183582987636328, + 0.024922311305999756, + -0.05904063582420349, + 0.05854015052318573, + -0.12535451352596283, + 0.13923655450344086, + -0.048962414264678955, + 0.13454389572143555, + -0.08436745405197144, + 0.12003946304321289, + -0.018191056326031685, + -0.18622538447380066, + -0.04205184429883957, + 0.05584371089935303, + -0.05870799347758293, + -0.03711184859275818, + -0.04091525822877884, + -0.024240415543317795, + 0.04846750944852829, + 0.046098366379737854, + 0.02297571860253811, + 0.023305930197238922, + 0.0161106176674366, + 0.0672079548239708, + 0.006895146332681179, + 0.05087154358625412, + 0.025754354894161224, + -0.05391912907361984, + -0.04346948117017746, + 0.10569560527801514, + -0.029959870502352715, + 0.012836702167987823, + 0.05633143335580826, + -0.008604303002357483, + 0.007666845805943012, + -0.0707116574048996, + -0.03749518841505051, + 0.002286672592163086, + -0.046102285385131836, + 0.0695449560880661, + 0.03421386331319809, + -0.0005849180743098259, + 0.04492742940783501, + 0.026415377855300903, + -0.02220986597239971, + -0.06214544177055359, + -0.10468965023756027, + 0.1593395471572876, + 0.08075140416622162, + 0.0007237071986310184, + -0.056593798100948334, + -0.06586285680532455, + 0.11136949062347412, + -0.023772722110152245, + -0.12023966014385223, + -0.032618336379528046, + 0.08353757858276367, + 0.1662822961807251, + -0.03776085376739502, + -0.03253000229597092, + 0.02880828082561493, + 0.12897907197475433, + 0.04153900220990181, + 0.09347943961620331, + 0.0847809910774231, + 0.09913381934165955, + -0.013993805274367332, + 0.02056264504790306, + 0.06070602685213089, + 0.075182244181633, + 0.050415150821208954, + -0.011057760566473007, + 0.028329208493232727, + 0.019188813865184784, + -0.024003982543945312, + 0.013095136731863022, + -0.03203959763050079, + 0.0020693736150860786, + -0.016150690615177155, + 0.015914611518383026, + 0.00934388767927885, + 0.004301947541534901, + -0.021690620109438896, + 0.07170313596725464, + 0.012773110531270504, + 0.0011356908362358809, + 0.062143921852111816, + 0.024439770728349686, + 0.009733228944242, + 0.06504429131746292, + -0.0682581290602684, + -0.09829120337963104, + 0.02016337215900421, + 0.004274268634617329, + 0.021691270172595978, + 0.07123589515686035, + 0.0369928702712059, + -0.02347165159881115, + 0.12361294031143188, + 0.048631519079208374, + -0.010325217619538307, + 0.03487465903162956, + -0.1055663675069809, + 0.11801376193761826, + 0.08848124742507935, + -0.024073978886008263, + 0.044693246483802795, + -0.05175858736038208, + 0.09415145218372345, + 0.06779108941555023, + -0.14691698551177979, + -0.07015042752027512, + 0.03770233690738678, + 0.021970687434077263, + -0.01646597310900688, + 0.11501292884349823, + -0.022866234183311462, + 0.03493736684322357, + 0.10662199556827545, + -0.07663226872682571, + -0.04691013693809509, + -0.02115100994706154, + 0.04523073136806488, + -0.08182382583618164, + 0.05350396782159805, + 0.042129211127758026, + -0.008851347491145134, + 0.010719409212470055, + 0.08423992991447449, + -0.018655668944120407, + -0.017582222819328308, + 0.016056731343269348, + -0.053253501653671265, + 0.022326787933707237, + -0.03952012211084366, + -0.0036005841102451086, + 0.04588611051440239, + 0.05219850689172745, + 0.0284300334751606, + 0.0018955932464450598, + -0.04513990506529808, + -0.11290672421455383, + 0.013492641970515251, + 0.021745748817920685, + 0.07653792947530746, + 0.0019345910986885428, + -0.016105739399790764, + -0.04283713549375534, + -0.06032940745353699, + 0.010123149491846561, + -0.014821472577750683, + 0.06825020164251328, + -0.025392016395926476, + 0.009346231818199158, + 0.08582484722137451, + 0.018835386261343956, + -0.002730567706748843, + -0.05414818227291107, + -0.03663495182991028, + 0.014556418173015118, + 0.050860535353422165, + -0.07009952515363693, + -0.06716781109571457, + 0.009577251970767975, + 0.029556702822446823, + -0.028313755989074707, + 0.03512787073850632, + 0.031155100092291832, + 0.019702419638633728, + 0.0357375293970108, + -0.06907254457473755, + 0.022252175956964493, + -0.12954393029212952, + -0.06845229119062424, + -0.0014752396382391453, + -0.0039057238027453423, + -0.007702663540840149, + 0.06386175751686096, + 0.01073797419667244, + 0.042002737522125244, + -0.004782171919941902, + -0.08473232388496399, + -0.0756043940782547, + 0.06864666938781738, + 0.08150909841060638, + 0.016689594835042953, + 0.05930107459425926, + 0.05765974149107933, + -0.02660529874265194, + 0.059486594051122665, + 0.052595850080251694, + 0.1166267842054367, + -0.009347288869321346, + 0.01946708932518959, + -0.06721298396587372, + 0.07768040895462036, + 0.06711600720882416, + -0.09189391136169434, + -0.08728042244911194, + -0.022854052484035492, + -0.059434063732624054, + 0.05167289078235626, + -0.01226080022752285, + -0.0005905249854549766, + 0.02559918724000454, + 0.001991212833672762, + -0.10102181881666183, + -0.06682616472244263, + 0.08294108510017395, + -0.06717744469642639, + -0.010215646587312222, + -0.08186393231153488, + 0.04807831346988678, + 0.11755266040563583, + 0.02768605202436447, + -0.017336614429950714, + -0.012437839061021805, + 0.049414195120334625, + -0.05128028243780136, + -0.007469031028449535, + 0.03093288466334343, + 0.024964459240436554, + -0.10463273525238037, + 0.010376625694334507, + -0.079476498067379, + 0.05149449035525322, + -0.04900449141860008, + 0.14601962268352509, + -0.004348237533122301, + -0.04973670840263367, + -0.08056377619504929, + 0.04329552501440048, + -0.015312936156988144, + 0.05326518043875694, + 0.04006648436188698, + 0.059056758880615234, + 0.038145314902067184, + -0.0742846131324768, + 0.1193387508392334, + 0.033959515392780304, + -0.051414769142866135, + -0.05939514562487602, + -0.036965176463127136, + -0.03650502488017082, + 0.008558135479688644, + 0.009751654230058193, + -0.08333491533994675, + -0.033416714519262314, + 0.015308569185435772, + -0.031427640467882156, + 0.07233746349811554, + 0.13444292545318604, + 0.05726928636431694, + -0.11903858184814453 + ] + }, + "p244_181.wav": { + "name": "p244", + "embedding": [ + 0.04853549972176552, + 0.07374346256256104, + -0.001116683823056519, + -0.004097479395568371, + -0.05194046348333359, + 0.032380111515522, + -0.15319423377513885, + 0.1677865833044052, + -0.03134298697113991, + 0.14076322317123413, + -0.05758073553442955, + 0.13522285223007202, + -0.0045502083376049995, + -0.2062889188528061, + -0.01282620057463646, + 0.05268338695168495, + -0.023829998448491096, + -0.017512261867523193, + -0.029962552711367607, + -0.01580413244664669, + 0.056428417563438416, + 0.03410758450627327, + 0.01014520600438118, + -0.012165883556008339, + 0.01225997693836689, + 0.05962875112891197, + 0.025165636092424393, + 0.061515845358371735, + 0.011232085525989532, + -0.05249512940645218, + -0.017271436750888824, + 0.08193641901016235, + -0.04830748960375786, + 0.015094342641532421, + 0.07996463775634766, + -0.03762584179639816, + -0.01477043516933918, + -0.0492141991853714, + -0.040189262479543686, + 0.012100317515432835, + -0.05262179672718048, + 0.07870141416788101, + 0.04001838341355324, + -0.0012544456403702497, + 0.06015627086162567, + 0.06565815955400467, + -0.006570492871105671, + -0.06202240660786629, + -0.10482068359851837, + 0.1445426493883133, + 0.07270271331071854, + 0.0028371138032525778, + -0.06960224360227585, + -0.0651412233710289, + 0.10882683098316193, + -0.027654144912958145, + -0.09092991054058075, + -0.04937249794602394, + 0.08291393518447876, + 0.14302006363868713, + -0.039390768855810165, + -0.041358478367328644, + 0.03378795087337494, + 0.10844965279102325, + 0.04374459385871887, + 0.0949270948767662, + 0.08207087218761444, + 0.09717680513858795, + -0.011792026460170746, + 0.0363716296851635, + 0.032117169350385666, + 0.08845886588096619, + 0.03672913461923599, + -0.007556884549558163, + 0.03091672994196415, + 0.02143774926662445, + -0.01366843469440937, + -0.013842469081282616, + -0.02877255156636238, + 0.008468045853078365, + -0.008475390262901783, + 0.040177036076784134, + 0.029854124411940575, + 0.014830820262432098, + -0.018003882840275764, + 0.07784435153007507, + 0.0208574328571558, + -0.0002615501289255917, + 0.052651312202215195, + 0.013198098167777061, + 0.013720996677875519, + 0.06634802371263504, + -0.1027640625834465, + -0.10428232699632645, + 0.014153995551168919, + -0.015950949862599373, + 0.010771851055324078, + 0.0733986347913742, + 0.0238480381667614, + -0.005900437943637371, + 0.1312226802110672, + 0.0532442107796669, + -0.02058122307062149, + 0.04952317848801613, + -0.10026396065950394, + 0.1128343939781189, + 0.06282803416252136, + -0.030719399452209473, + 0.052864156663417816, + -0.08830054104328156, + 0.08695419132709503, + 0.051488880068063736, + -0.14639277756214142, + -0.07902682572603226, + 0.03511642664670944, + 0.022750703617930412, + -0.03486593812704086, + 0.1531457006931305, + -0.025465352460741997, + 0.046481434255838394, + 0.11906690150499344, + -0.07846203446388245, + -0.055537011474370956, + -0.016915205866098404, + 0.0648004338145256, + -0.08302264660596848, + 0.08443479239940643, + 0.026740243658423424, + -0.009410153143107891, + 0.027778157964348793, + 0.09605671465396881, + -0.017449194565415382, + 0.0035791348200291395, + 0.0011096944799646735, + -0.026050278916954994, + 0.018737956881523132, + -0.05604676529765129, + 0.0008088279282674193, + 0.022545162588357925, + 0.05101313441991806, + 0.05300116911530495, + 0.009291495196521282, + -0.046177081763744354, + -0.11584735661745071, + 0.008204870857298374, + 0.007565791253000498, + 0.09485208988189697, + 0.00445913802832365, + -0.02815094403922558, + -0.045742250978946686, + -0.06417097896337509, + -0.029459692537784576, + -0.007919691503047943, + 0.07071837037801743, + -0.015393108129501343, + 0.040643878281116486, + 0.08823003619909286, + 0.02858070842921734, + 0.011487992480397224, + -0.040893036872148514, + -0.04137302190065384, + -0.0060546607710421085, + 0.05033597722649574, + -0.07571807503700256, + -0.06315838545560837, + -0.01347871869802475, + 0.03451967239379883, + -0.022088471800088882, + 0.04240419343113899, + 0.024976396933197975, + 0.041568558663129807, + 0.03842240199446678, + -0.09280429035425186, + 0.020226500928401947, + -0.11809604614973068, + -0.08533738553524017, + -0.022438112646341324, + 0.003981985151767731, + -0.03767376393079758, + 0.05087290331721306, + 0.005034510046243668, + 0.06469130516052246, + -0.002973736496642232, + -0.06831032782793045, + -0.09751009196043015, + 0.048866864293813705, + 0.07535960525274277, + -0.019422877579927444, + 0.046537987887859344, + 0.04640880599617958, + -0.04698324576020241, + 0.05519653111696243, + 0.06034466251730919, + 0.0976715013384819, + 8.228563092416152e-05, + 0.03282411769032478, + -0.05300220474600792, + 0.1086861789226532, + 0.08543731272220612, + -0.07902968674898148, + -0.08156649023294449, + -0.008789177052676678, + -0.08046814799308777, + 0.026485934853553772, + -0.002566782757639885, + 0.0038669253699481487, + 0.02527458965778351, + 0.026181191205978394, + -0.09029557555913925, + -0.04500250890851021, + 0.04789915680885315, + -0.09012192487716675, + -0.009148224256932735, + -0.0724482461810112, + 0.03745226189494133, + 0.132490336894989, + 0.03726755455136299, + -0.01586213894188404, + -0.06267713755369186, + 0.05438413843512535, + -0.03506023809313774, + 0.013881347142159939, + 0.042518507689237595, + 0.043448496609926224, + -0.08421245217323303, + 0.015443815849721432, + -0.06268421560525894, + 0.020667875185608864, + -0.04616343230009079, + 0.12721915543079376, + 0.0010249214246869087, + -0.06269851326942444, + -0.0810132846236229, + 0.01638193242251873, + -0.005842297337949276, + 0.049309249967336655, + 0.010862704366445541, + 0.06154543161392212, + 0.05593006685376167, + -0.06132841482758522, + 0.13494554162025452, + 0.03964308649301529, + -0.04365214705467224, + -0.05405324697494507, + -0.059244342148303986, + -0.03747475892305374, + 0.01179627887904644, + 0.022646265104413033, + -0.08147099614143372, + -0.04162844642996788, + 0.0229788850992918, + -0.024886325001716614, + 0.06388237327337265, + 0.13688220083713531, + 0.044621385633945465, + -0.13598714768886566 + ] + }, + "p244_107.wav": { + "name": "p244", + "embedding": [ + 0.018986329436302185, + 0.07078036665916443, + 0.006265767849981785, + 0.02359943464398384, + -0.021356943994760513, + 0.08659772574901581, + -0.13949386775493622, + 0.07979732751846313, + -0.06393814086914062, + 0.1497763693332672, + -0.06465169787406921, + 0.07656559348106384, + -0.024128064513206482, + -0.18016406893730164, + -0.08015492558479309, + 0.03792214393615723, + -0.08288389444351196, + -0.05135296285152435, + -0.012154608964920044, + -0.01092481892555952, + 0.07797106355428696, + 0.06504654139280319, + 0.010650359094142914, + 0.013227639719843864, + -0.00042673488496802747, + 0.04103270173072815, + 0.01009832601994276, + 0.050835248082876205, + 0.01654806360602379, + -0.0785716325044632, + -0.029552340507507324, + 0.11881434917449951, + -0.04304300993680954, + 0.047803036868572235, + 0.011636339128017426, + 0.03811034560203552, + 0.030043434351682663, + -0.040382977575063705, + -0.030305400490760803, + 0.019964013248682022, + -0.036857783794403076, + 0.06805232167243958, + 0.006876373663544655, + 0.044883519411087036, + 0.017787471413612366, + -0.016511091962456703, + -0.024941591545939445, + -0.03105109930038452, + -0.08011465519666672, + 0.17052917182445526, + 0.06246097385883331, + -0.014357741922140121, + -0.04994981735944748, + -0.11703971028327942, + 0.1090301126241684, + -0.0014445552369579673, + -0.1395440548658371, + -0.008596444502472878, + 0.08908972144126892, + 0.17083905637264252, + 0.006106068380177021, + -0.052606768906116486, + 0.022033292800188065, + 0.09799718856811523, + 0.0003657626803033054, + 0.0765744149684906, + 0.06276323646306992, + 0.05974283441901207, + 0.007905557751655579, + -0.036622487008571625, + 0.052865348756313324, + 0.06904914975166321, + 0.03529331088066101, + -0.04167652130126953, + 0.045096442103385925, + 0.01656993106007576, + -0.014775793068110943, + 0.052089761942625046, + -0.01925453543663025, + 0.003051417414098978, + -0.015225245617330074, + -0.015594327822327614, + -0.015718944370746613, + 0.011332297697663307, + -0.022591035813093185, + 0.010972678661346436, + -0.012020682916045189, + 0.002858270425349474, + 0.07237361371517181, + 0.07124389708042145, + 0.05658094212412834, + 0.06093538552522659, + -0.03981662169098854, + -0.06070934236049652, + 0.03469102829694748, + 0.03705674037337303, + 0.016070283949375153, + 0.08140319585800171, + 0.0365169420838356, + -0.02945508062839508, + 0.09506413340568542, + 0.01847119815647602, + -0.004679569974541664, + -0.012284490279853344, + -0.15561553835868835, + 0.0781673789024353, + 0.08458705991506577, + -0.014894695952534676, + 0.014846181496977806, + -0.039537906646728516, + 0.1071552187204361, + 0.09049631655216217, + -0.13942833244800568, + -0.08672802895307541, + 0.04133039712905884, + 0.0416400283575058, + 0.020161911845207214, + 0.11683528870344162, + -0.014187408611178398, + -0.015081814490258694, + 0.07005643844604492, + -0.0705585703253746, + -0.03392527997493744, + -0.03995451703667641, + 0.04487442597746849, + -0.08848090469837189, + 0.03944464772939682, + 0.007544742431491613, + -0.004261431284248829, + -0.02394506335258484, + 0.060046106576919556, + -0.03800112009048462, + 0.012030383571982384, + -0.002693778369575739, + -0.042180873453617096, + 0.024834778159856796, + -0.048504095524549484, + 0.014299875125288963, + 0.06087065488100052, + 0.04069444164633751, + 0.0522843673825264, + -0.0036741429939866066, + -0.07643705606460571, + -0.11633668839931488, + 0.0056757754646241665, + 0.0534629225730896, + 0.028400704264640808, + -0.01787242852151394, + -0.039167050272226334, + -0.04316931217908859, + -0.07920325547456741, + 0.07119631767272949, + -0.01749090477824211, + 0.0982508659362793, + 0.029152927920222282, + -0.02141754887998104, + 0.0911213755607605, + 0.011613093316555023, + -0.03806714713573456, + -0.037456244230270386, + -0.047122322022914886, + -0.0009285841952078044, + 0.02391948364675045, + -0.08757875859737396, + -0.05143696069717407, + 0.015609733760356903, + 0.028181953355669975, + 0.0180954709649086, + 0.03240957856178284, + 0.06839299201965332, + 0.00494399294257164, + 0.0423361174762249, + -0.08937080204486847, + 0.011890641413629055, + -0.12494389712810516, + -0.09722138941287994, + -0.0166076198220253, + -0.04433054476976395, + 0.03799745440483093, + 0.09615711867809296, + -0.0030421435367316008, + -0.018143337219953537, + -0.01988799311220646, + -0.08525364100933075, + -0.07768607139587402, + 0.07390022277832031, + 0.0739513635635376, + 0.03481234610080719, + 0.055766306817531586, + 0.06132469326257706, + -0.03944970294833183, + 0.08940285444259644, + 0.053724393248558044, + 0.1362406462430954, + -0.05846592038869858, + 0.05685748904943466, + -0.05243150144815445, + 0.0797581672668457, + 0.05632391571998596, + -0.06626347452402115, + -0.08350029587745667, + -0.00929337926208973, + -0.0768534392118454, + 0.06385917961597443, + -0.033822763711214066, + 0.006117173936218023, + 0.008199060335755348, + -0.017200030386447906, + -0.11949693411588669, + -0.06962133944034576, + 0.09143565595149994, + -0.027929916977882385, + -0.03770570456981659, + -0.07410022616386414, + 0.052244603633880615, + 0.08327490091323853, + 0.06563417613506317, + -0.010562488809227943, + 0.028810199350118637, + 0.04854373261332512, + -0.056534282863140106, + -0.0273711197078228, + 0.022549763321876526, + -0.019329529255628586, + -0.09160171449184418, + -0.016648469492793083, + -0.10516708344221115, + 0.05289390683174133, + -0.08231537789106369, + 0.12841537594795227, + -0.0357721745967865, + -0.09255094826221466, + -0.05272103101015091, + 0.047350283712148666, + -0.021463148295879364, + 0.03665878623723984, + 0.039248254150152206, + 0.06672525405883789, + 0.02034568041563034, + -0.04230334609746933, + 0.07991709560155869, + 0.05416296049952507, + -0.023108704015612602, + -0.045002829283475876, + -0.010626382194459438, + 0.003869683248922229, + 0.027586787939071655, + -0.0053460909985005856, + -0.08179886639118195, + 0.013816035352647305, + 0.02730204164981842, + -0.002952365204691887, + 0.042515143752098083, + 0.11149786412715912, + 0.05035954713821411, + -0.1337471604347229 + ] + }, + "p244_224.wav": { + "name": "p244", + "embedding": [ + 0.04962719604372978, + 0.09732125699520111, + -0.0143382977694273, + 0.02728196047246456, + -0.06896641850471497, + 0.0552939847111702, + -0.10239609330892563, + 0.14319078624248505, + -0.052431076765060425, + 0.1283714473247528, + -0.08825169503688812, + 0.1425744891166687, + -0.034931644797325134, + -0.16779926419258118, + -0.031961627304553986, + 0.059813402593135834, + -0.04328319430351257, + -0.03515210375189781, + -0.030132224783301353, + -0.038394536823034286, + 0.035689376294612885, + 0.027956193313002586, + 0.039848215878009796, + 0.0350717194378376, + 0.012987012974917889, + 0.08265584707260132, + 0.0008173746755346656, + 0.04667996987700462, + 0.02069834992289543, + -0.05261540412902832, + -0.05512323975563049, + 0.08663111180067062, + -0.045588575303554535, + 0.011046282947063446, + 0.04991162568330765, + -0.010892706923186779, + 0.009458189830183983, + -0.06487947702407837, + -0.0286991186439991, + -0.009078212082386017, + -0.051371634006500244, + 0.06625634431838989, + 0.016617964953184128, + -0.03296768665313721, + 0.03816141188144684, + 0.025730393826961517, + -0.021823478862643242, + -0.035476066172122955, + -0.11402949690818787, + 0.14825060963630676, + 0.0843455046415329, + -0.004118979908525944, + -0.06286304444074631, + -0.06260013580322266, + 0.11318610608577728, + -0.023049727082252502, + -0.10841351002454758, + -0.025535790249705315, + 0.07253169268369675, + 0.15246140956878662, + -0.03746199607849121, + -0.03258427605032921, + 0.028609059751033783, + 0.12159141898155212, + 0.05789707228541374, + 0.0897446870803833, + 0.08512584865093231, + 0.10896792262792587, + -0.03643473982810974, + 0.01998995989561081, + 0.061563991010189056, + 0.08648942410945892, + 0.06491782516241074, + -0.004056436475366354, + 0.011502666398882866, + 0.005630706436932087, + -0.02097097411751747, + 0.00923735648393631, + -0.03812224417924881, + -0.029163045808672905, + -0.03368283808231354, + 0.0007098371861502528, + 0.00538286566734314, + 0.0009792795171961188, + -0.015939347445964813, + 0.08044539391994476, + 0.030145376920700073, + -0.0072248405776917934, + 0.06023592874407768, + 0.020126961171627045, + -0.012134900316596031, + 0.0692741721868515, + -0.08108511567115784, + -0.0763382539153099, + 0.017370417714118958, + 0.002023442182689905, + 0.022333841770887375, + 0.0892980545759201, + 0.04410454258322716, + -0.013034462928771973, + 0.12683239579200745, + 0.060135047882795334, + 0.0009284485131502151, + 0.02179778181016445, + -0.09034089744091034, + 0.12779009342193604, + 0.09989762306213379, + -0.03615942224860191, + 0.041501980274915695, + -0.03599080070853233, + 0.08386196196079254, + 0.0731990858912468, + -0.1398015022277832, + -0.06821295619010925, + 0.006960911210626364, + 0.012176195159554482, + -0.013337856158614159, + 0.08957992494106293, + -0.018812956288456917, + 0.05378841608762741, + 0.10989981889724731, + -0.07602980732917786, + -0.05461965128779411, + -0.02553100883960724, + 0.04327293485403061, + -0.07406872510910034, + 0.06069129332900047, + 0.053797103464603424, + 0.0065932548604905605, + 0.016853980720043182, + 0.08326350152492523, + -0.02526889741420746, + -0.019924145191907883, + 0.04177658259868622, + -0.06791895627975464, + -0.000978151336312294, + -0.03056339919567108, + -0.007666699588298798, + 0.05261984467506409, + 0.04701119288802147, + 0.04026451334357262, + -0.005929887294769287, + -0.013597341254353523, + -0.10850181430578232, + 0.02067003771662712, + 0.04102496802806854, + 0.07485508173704147, + 0.0013909948756918311, + -0.0361965149641037, + -0.03173280507326126, + -0.05560848116874695, + 0.004811486229300499, + -0.0008209968218579888, + 0.06774955242872238, + -0.054226890206336975, + 0.014018885791301727, + 0.08759158849716187, + 0.03004780039191246, + -0.01708192378282547, + -0.059488922357559204, + -0.03584703058004379, + 0.008219394832849503, + 0.04993153735995293, + -0.06751155108213425, + -0.0873916894197464, + -0.0032585635781288147, + 0.040782149881124496, + -0.03189239278435707, + 0.0657217726111412, + 0.03473864495754242, + 0.012142978608608246, + 0.02388724684715271, + -0.06332354992628098, + 0.01221928559243679, + -0.10184069722890854, + -0.06907028704881668, + -0.012476525269448757, + -0.01689266972243786, + -0.01256043091416359, + 0.05241880938410759, + 0.025876570492982864, + 0.06134306639432907, + -0.0024604620411992073, + -0.07519222795963287, + -0.08729800581932068, + 0.05448159575462341, + 0.057663559913635254, + 0.010470318607985973, + 0.05588189885020256, + 0.07581347227096558, + -0.03498871251940727, + 0.06422655284404755, + 0.05413016304373741, + 0.09791615605354309, + -0.026707544922828674, + 0.02322123572230339, + -0.06447356939315796, + 0.06213940680027008, + 0.08329996466636658, + -0.09603621810674667, + -0.08694516122341156, + -0.04871954023838043, + -0.061167120933532715, + 0.054186563938856125, + -0.024595504626631737, + 0.00024648121325299144, + 0.02719011716544628, + -0.00308419531211257, + -0.09797334671020508, + -0.08452215045690536, + 0.09873801469802856, + -0.06415601074695587, + -0.0030830642208456993, + -0.07649759948253632, + 0.040085867047309875, + 0.09742473065853119, + 0.02509359084069729, + -0.021539052948355675, + 0.004630350973457098, + 0.04759451746940613, + -0.030850231647491455, + -0.0027519073337316513, + 0.054138630628585815, + 0.03846846520900726, + -0.1047482118010521, + -0.0027216044254601, + -0.07578456401824951, + 0.05717060714960098, + -0.0362926721572876, + 0.1545051634311676, + 0.004095475655049086, + -0.03923984244465828, + -0.08584123104810715, + 0.0467841736972332, + -0.01851397007703781, + 0.05204775929450989, + 0.04069438576698303, + 0.05585354566574097, + 0.013542990200221539, + -0.07543648034334183, + 0.13558673858642578, + 0.03662727028131485, + -0.06127173826098442, + -0.06918633729219437, + -0.04369966685771942, + -0.04464063048362732, + 0.010191565379500389, + 0.020701343193650246, + -0.08413331210613251, + -0.0305267833173275, + 0.001832252717576921, + -0.022537413984537125, + 0.07631073892116547, + 0.1475430577993393, + 0.07468569278717041, + -0.10101490467786789 + ] + }, + "p244_141.wav": { + "name": "p244", + "embedding": [ + 0.068923220038414, + 0.0924782082438469, + 0.02698499709367752, + -0.01698596216738224, + -0.022123616188764572, + 0.07684674113988876, + -0.08014806360006332, + 0.11866427958011627, + 0.013518492691218853, + 0.06179654598236084, + -0.09089430421590805, + 0.09500541538000107, + -0.0075258477590978146, + -0.14115139842033386, + -0.019810549914836884, + 0.039922088384628296, + -0.03582993149757385, + 0.015733567997813225, + -0.04923884570598602, + -0.024042293429374695, + 0.004346251487731934, + 0.009345974773168564, + 0.05112504959106445, + 0.004298120737075806, + 0.029690828174352646, + 0.037295252084732056, + -0.0033339790534228086, + 0.028432216495275497, + 0.01325818058103323, + -0.03045157715678215, + -0.02788727544248104, + 0.07552196830511093, + -0.03660047799348831, + 0.0074586328119039536, + 0.061181288212537766, + -0.0200702715665102, + 0.023195739835500717, + -0.07623811811208725, + -0.036821089684963226, + 0.02984483540058136, + -0.040129657834768295, + 0.07058500498533249, + 0.05127548426389694, + -0.015639178454875946, + 0.05347995460033417, + 0.03377233445644379, + -0.008445807732641697, + -0.034044049680233, + -0.09286578744649887, + 0.1335347592830658, + 0.03304428979754448, + 0.009045018814504147, + -0.08136817067861557, + -0.010237561538815498, + 0.06691109389066696, + -0.03663356602191925, + -0.06309717893600464, + -0.007281227968633175, + 0.05802008509635925, + 0.07650483399629593, + 0.021154876798391342, + -0.022795071825385094, + 0.02272713929414749, + 0.07861630618572235, + 0.02577219158411026, + 0.03663335740566254, + 0.0939372181892395, + 0.10263802856206894, + -0.025683850049972534, + 0.03480205684900284, + 0.04027433693408966, + 0.026075702160596848, + 0.04253336042165756, + -0.009162602946162224, + 0.01882908120751381, + -0.022082194685935974, + -0.006963628809899092, + -0.018189910799264908, + -0.023454774171113968, + -0.006281568668782711, + 0.024233005940914154, + 0.024674441665410995, + 0.01229693740606308, + 0.03318728134036064, + -0.04538854956626892, + 0.04809953272342682, + 0.005983038805425167, + 0.06514596939086914, + 0.06771441549062729, + 0.05024484544992447, + 0.015811212360858917, + 0.03091355413198471, + -0.055564917623996735, + -0.0970439463853836, + 0.01133184414356947, + 0.0005957087269052863, + 0.004527910612523556, + 0.028108973056077957, + 0.026921523734927177, + -0.015116693452000618, + 0.1057809516787529, + 0.042175233364105225, + -0.017813026905059814, + 0.02040094882249832, + -0.07687985152006149, + 0.0824103131890297, + 0.06754721701145172, + -0.010242084972560406, + 0.057601384818553925, + -0.029330871999263763, + 0.05856937915086746, + 0.061335694044828415, + -0.08648469299077988, + -0.025834694504737854, + 0.012828582897782326, + 0.01590515673160553, + 0.03241315111517906, + 0.09338172525167465, + -0.00867719016969204, + 0.045204129070043564, + 0.0653485581278801, + -0.06094851344823837, + -0.015735197812318802, + 0.026987185701727867, + 0.011037036776542664, + -0.015367105603218079, + 0.021218154579401016, + 0.030355684459209442, + 0.01667485013604164, + -0.03186711296439171, + 0.06219978258013725, + 0.01475514005869627, + 0.00443243607878685, + -0.028041090816259384, + 0.009053267538547516, + 0.009680083952844143, + -0.00848004687577486, + -0.019272593781352043, + 0.025945579633116722, + 0.06428781151771545, + 0.003554773982614279, + 0.03786199167370796, + -0.04213632270693779, + -0.08019794523715973, + -0.009167403914034367, + -0.0004635453224182129, + 0.04594936966896057, + 0.012174731120467186, + -0.030211467295885086, + -0.05239854380488396, + 0.002455689013004303, + 0.004877150058746338, + -0.0075872777961194515, + 0.031820811331272125, + 0.03895227238535881, + -0.02012220397591591, + 0.06151208281517029, + 0.007341994903981686, + 0.018575768917798996, + -0.0442054346203804, + -0.0441681444644928, + 0.005569660570472479, + 0.041040368378162384, + -0.034946098923683167, + -0.05877748131752014, + -0.0004004749353043735, + -0.032616838812828064, + -0.014384198933839798, + 0.032256826758384705, + 0.05332021042704582, + -0.011078780516982079, + 0.001790625392459333, + -0.08127550780773163, + 0.00835905410349369, + -0.07179434597492218, + -0.06660371273756027, + 0.038152486085891724, + 0.027067236602306366, + -0.004106359090656042, + 0.06933911144733429, + 0.036187149584293365, + 0.043000128120183945, + -0.027768274769186974, + -0.04768511280417442, + -0.010287761688232422, + 0.053026072680950165, + 0.043087996542453766, + 0.0040331194177269936, + 0.05106344819068909, + 0.028503969311714172, + -0.023405587300658226, + 0.06892295181751251, + 0.03908409923315048, + 0.041366592049598694, + -0.04180203005671501, + 0.0004790624079760164, + -0.0073122731409966946, + 0.06569291651248932, + 0.044690437614917755, + -0.0682908445596695, + -0.07503515481948853, + 0.0014045065036043525, + -0.032103247940540314, + 0.007540534250438213, + -7.934620225569233e-05, + 0.006172175519168377, + 0.047262903302907944, + -0.01286875270307064, + -0.05351176857948303, + -0.08234937489032745, + 0.03974941745400429, + -0.05515018850564957, + 0.0029463693499565125, + -0.03557360917329788, + 0.040601350367069244, + 0.08469371497631073, + -0.01683524250984192, + -0.023156389594078064, + -0.001939891604706645, + 0.002462851582095027, + -0.0087631456553936, + -0.03998411074280739, + -0.006535450927913189, + 0.044557806104421616, + -0.08075080811977386, + 0.01455008890479803, + -0.050404518842697144, + 0.05211418867111206, + 0.0033184513449668884, + 0.10874741524457932, + 0.04036594182252884, + -0.028343355283141136, + -0.05510684847831726, + 0.025554046034812927, + -0.02090444043278694, + 0.032358042895793915, + 0.004022589884698391, + 0.02583552896976471, + 0.03393810614943504, + -0.05043305456638336, + 0.07956372201442719, + 0.027327917516231537, + -0.06777572631835938, + -0.051680758595466614, + -0.011212892830371857, + -0.036767132580280304, + 0.007731962949037552, + -0.00023343414068222046, + -0.05771992728114128, + -0.003808550536632538, + 0.02401779592037201, + 0.012112687341868877, + 0.042980797588825226, + 0.08600609004497528, + 0.033650681376457214, + -0.0658734142780304 + ] + }, + "p244_180.wav": { + "name": "p244", + "embedding": [ + 0.04287217929959297, + 0.08562701940536499, + -0.015287653543055058, + 0.036764249205589294, + -0.04638880491256714, + 0.04878851771354675, + -0.1254628598690033, + 0.13322418928146362, + -0.04258638620376587, + 0.13999226689338684, + -0.09335038810968399, + 0.10710559785366058, + -0.03508500009775162, + -0.1945321261882782, + -0.03503262996673584, + 0.06371995806694031, + -0.06115536019206047, + -0.03210833668708801, + -0.05164248123764992, + -0.014452077448368073, + 0.04337220638990402, + 0.04441754147410393, + 0.02052772045135498, + 0.012482683174312115, + 0.012612485326826572, + 0.0665159672498703, + -0.009948942810297012, + 0.0402454249560833, + 0.00976457167416811, + -0.03758953511714935, + -0.022761408239603043, + 0.1160731166601181, + -0.037258755415678024, + 0.023569952696561813, + 0.05849108844995499, + 0.0050984835252165794, + -0.005451524164527655, + -0.055714357644319534, + -0.03563567250967026, + -0.007449758239090443, + -0.06463293731212616, + 0.06334054470062256, + 0.025538090616464615, + -0.004314308986067772, + 0.051937881857156754, + 0.026081426069140434, + -0.0381358340382576, + -0.04920509457588196, + -0.10323816537857056, + 0.159244567155838, + 0.08181116729974747, + 0.019467290490865707, + -0.07092482596635818, + -0.07579121738672256, + 0.11322926729917526, + -0.012180223129689693, + -0.1223359927535057, + -0.039783768355846405, + 0.08074229955673218, + 0.1788947880268097, + -0.033803459256887436, + -0.031111378222703934, + 0.0253484845161438, + 0.12656015157699585, + 0.05155251920223236, + 0.1021069884300232, + 0.07734425365924835, + 0.10235083103179932, + -0.0037702443078160286, + 0.02231024019420147, + 0.07893197238445282, + 0.07348102331161499, + 0.07408797740936279, + -0.02287248894572258, + 0.020641451701521873, + 0.021848231554031372, + -0.032741837203502655, + -0.0005036769434809685, + -0.03305608034133911, + -0.006087020039558411, + -0.015949970111250877, + 0.011261356994509697, + 0.010060756467282772, + 0.009770382195711136, + -0.019627364352345467, + 0.048058610409498215, + 0.04291192442178726, + -0.022824563086032867, + 0.062159132212400436, + 0.039522890001535416, + 0.004643607884645462, + 0.06180132180452347, + -0.07286012172698975, + -0.09708299487829208, + 0.008771114982664585, + 0.0035176516976207495, + 0.021517109125852585, + 0.06355897337198257, + 0.044992536306381226, + -0.021221591159701347, + 0.11107702553272247, + 0.03340764343738556, + -0.0004985607229173183, + 0.02741919830441475, + -0.11414609849452972, + 0.10387134552001953, + 0.09328484535217285, + -0.028874654322862625, + 0.03562599793076515, + -0.0332423634827137, + 0.0846838504076004, + 0.0898602306842804, + -0.14424557983875275, + -0.06692004948854446, + 0.02809644117951393, + 0.009229492396116257, + -0.010721873492002487, + 0.119399294257164, + -0.010611619800329208, + 0.031077859923243523, + 0.10898005962371826, + -0.09330882877111435, + -0.04938614368438721, + -0.023604173213243484, + 0.04384623467922211, + -0.08141624927520752, + 0.05874110385775566, + 0.03711886331439018, + -0.0003137262538075447, + -0.0015751449391245842, + 0.08045978844165802, + -0.018024854362010956, + -0.006810707040131092, + -0.0032768247183412313, + -0.05479854717850685, + 0.031644560396671295, + -0.04633217304944992, + -0.010116659104824066, + 0.05587824434041977, + 0.03809250891208649, + 0.04481849446892738, + 0.005171018186956644, + -0.03733333200216293, + -0.11193248629570007, + 0.011853637173771858, + 0.03896187245845795, + 0.07517776638269424, + -0.003814305877313018, + -0.009121467359364033, + -0.03450698405504227, + -0.0647905170917511, + 0.033882513642311096, + -0.025436406955122948, + 0.07367978990077972, + -0.009349098429083824, + -0.004832168109714985, + 0.104781873524189, + 0.006044739857316017, + -0.009774036705493927, + -0.05064236372709274, + -0.03197922557592392, + 0.004540130961686373, + 0.0560140535235405, + -0.0912093073129654, + -0.06879136711359024, + 0.008184043690562248, + 0.028505831956863403, + -0.011029754765331745, + 0.03687044605612755, + 0.035428911447525024, + 0.018672361969947815, + 0.019027046859264374, + -0.06336243450641632, + 0.00952989887446165, + -0.1304386854171753, + -0.08182943612337112, + -0.004146466497331858, + -0.03175421059131622, + -0.0003050958039239049, + 0.07162944972515106, + 0.01157375518232584, + 0.02589418739080429, + -0.009354421868920326, + -0.08987092971801758, + -0.08629173785448074, + 0.07768312096595764, + 0.07189644128084183, + 0.00918702781200409, + 0.05069814994931221, + 0.05711710825562477, + -0.043779946863651276, + 0.05178084224462509, + 0.05450008064508438, + 0.13465994596481323, + -0.020610075443983078, + 0.024871082976460457, + -0.07336477935314178, + 0.08318401873111725, + 0.08415284752845764, + -0.08872678875923157, + -0.09011656045913696, + -0.02447526715695858, + -0.05621317774057388, + 0.0489952452480793, + -0.021398957818746567, + 0.003726938273757696, + 0.029173649847507477, + -0.01271715760231018, + -0.10573464632034302, + -0.0675889179110527, + 0.08780509233474731, + -0.06232892721891403, + -0.015668850392103195, + -0.0789867490530014, + 0.03913281857967377, + 0.08829204738140106, + 0.024565041065216064, + -0.024829076603055, + 0.011869668029248714, + 0.055623821914196014, + -0.054621972143650055, + -0.020805392414331436, + 0.041097190231084824, + 0.016251320019364357, + -0.09385091066360474, + -0.013513226062059402, + -0.07502492517232895, + 0.06739393621683121, + -0.04968585819005966, + 0.13732515275478363, + -0.016053739935159683, + -0.056435588747262955, + -0.08078397810459137, + 0.04247337579727173, + -0.0038466856349259615, + 0.05834244564175606, + 0.041751060634851456, + 0.07223579287528992, + 0.03435615450143814, + -0.06490053981542587, + 0.12374728918075562, + 0.02952367626130581, + -0.03260251507163048, + -0.054583314806222916, + -0.04587647318840027, + -0.04500049725174904, + 0.003952471073716879, + -0.005704508163034916, + -0.08034328371286392, + -0.007313928566873074, + 0.006328531075268984, + -0.024210944771766663, + 0.047043636441230774, + 0.12548011541366577, + 0.05870911478996277, + -0.11604777723550797 + ] + }, + "p244_167.wav": { + "name": "p244", + "embedding": [ + 0.04707973822951317, + 0.08512790501117706, + 0.017433252185583115, + -0.010049238801002502, + -0.027678970247507095, + 0.09129085391759872, + -0.07708367705345154, + 0.10728625953197479, + -0.023322490975260735, + 0.06904000043869019, + -0.0714399516582489, + 0.08210638165473938, + -0.011329654604196548, + -0.12147276848554611, + -0.0015023425221443176, + 0.05498618632555008, + -0.029536675661802292, + 0.0027658964972943068, + -0.04268315061926842, + -0.014539126306772232, + -0.009536261670291424, + 0.00696258619427681, + 0.058693867176771164, + -0.020710289478302002, + 0.03857957199215889, + 0.05058648809790611, + -0.000273537531029433, + 0.027161478996276855, + 0.0004217643290758133, + -0.0439465194940567, + -0.03740622475743294, + 0.07502558082342148, + -0.056660816073417664, + -0.008298594504594803, + 0.05187267065048218, + -0.013564445078372955, + 0.024587390944361687, + -0.09216286987066269, + -0.03276935964822769, + 0.009169310331344604, + -0.056369051337242126, + 0.07358594238758087, + 0.02663174830377102, + 0.007156963460147381, + 0.024815743789076805, + 0.0062155211344361305, + -0.0034827683120965958, + -0.023563673719763756, + -0.08253515511751175, + 0.12691868841648102, + 0.03767480328679085, + 0.019493775442242622, + -0.07521302253007889, + -0.0295400470495224, + 0.07755976170301437, + -0.018448349088430405, + -0.06302373856306076, + -0.012354684993624687, + 0.04073628783226013, + 0.0865408405661583, + 0.025180846452713013, + -0.023361138999462128, + 0.021092116832733154, + 0.06708208471536636, + 0.023151254281401634, + 0.053722649812698364, + 0.08739151805639267, + 0.08955836296081543, + -0.0065083070658147335, + 0.027378231287002563, + 0.048375409096479416, + 0.036388516426086426, + 0.02471884712576866, + -0.010595530271530151, + 0.028296595439314842, + -0.01590379700064659, + -0.03191643953323364, + -0.008536002598702908, + -0.017039146274328232, + -0.01747817173600197, + 0.022909987717866898, + 0.022554030641913414, + 0.009545434266328812, + 0.027733517810702324, + -0.028594069182872772, + 0.04081657528877258, + -0.0029537356458604336, + 0.06451727449893951, + 0.08688073605298996, + 0.02574579045176506, + 0.014948733150959015, + 0.03415994346141815, + -0.060237299650907516, + -0.06995562463998795, + 0.020499086007475853, + 0.031554386019706726, + 0.0036485109012573957, + 0.03065515123307705, + 0.025369582697749138, + -0.027931563556194305, + 0.10070967674255371, + 0.023287784308195114, + -0.0009688375284895301, + 0.001203195541165769, + -0.06778344511985779, + 0.07224768400192261, + 0.05726079270243645, + -0.0040361955761909485, + 0.048369914293289185, + -0.025990938767790794, + 0.0551203116774559, + 0.05932316184043884, + -0.09196369349956512, + -0.04974181577563286, + 0.007547107990831137, + 0.0041877878829836845, + 0.035280995070934296, + 0.10521729290485382, + -0.009196754544973373, + 0.0372876301407814, + 0.058194637298583984, + -0.08105669170618057, + -0.02356204390525818, + 0.039087925106287, + 0.010740846395492554, + -0.007051540073007345, + 0.007526857312768698, + 0.0390218049287796, + 0.005931292660534382, + -0.02777162566781044, + 0.05320620536804199, + 0.008385999128222466, + 0.009738633409142494, + -0.01149764470756054, + -0.009483715519309044, + 0.0010052463039755821, + -0.015930140390992165, + -0.038347966969013214, + 0.03739845007658005, + 0.051481373608112335, + 0.029979199171066284, + 0.003185371635481715, + -0.025677524507045746, + -0.0847093015909195, + -0.019944485276937485, + 0.010563371703028679, + 0.031666189432144165, + -0.00785780604928732, + -0.0317373163998127, + -0.05702310800552368, + -0.00612629484385252, + -0.009472507983446121, + -0.009091544896364212, + 0.0502474308013916, + 0.04683661460876465, + -0.026863310486078262, + 0.06821515411138535, + 0.007443234324455261, + 0.004543836694210768, + -0.040841296315193176, + -0.062287937849760056, + 0.011087912134826183, + 0.04299960657954216, + -0.01109161227941513, + -0.07103273272514343, + 0.0023626885376870632, + -0.027720585465431213, + -0.01672457903623581, + 0.02954830974340439, + 0.04956777021288872, + 0.009142892435193062, + -0.0127300675958395, + -0.06628468632698059, + 0.014434169046580791, + -0.07022538781166077, + -0.05645657703280449, + 0.03632683306932449, + 0.031128432601690292, + -0.024220317602157593, + 0.07866879552602768, + 0.03261057287454605, + 0.04827475547790527, + -0.0349263995885849, + -0.05173870921134949, + -0.015932749956846237, + 0.05100814625620842, + 0.03704618662595749, + 0.002308618277311325, + 0.038799941539764404, + 0.0432167574763298, + -0.020732365548610687, + 0.037445541471242905, + 0.051251985132694244, + 0.0512886568903923, + -0.03503634035587311, + 0.008252796716988087, + -0.014522379264235497, + 0.07860466837882996, + 0.03661031275987625, + -0.07371249049901962, + -0.05090833455324173, + 0.01257159560918808, + -0.04109746217727661, + 0.0277106873691082, + -0.006819318979978561, + 0.011071180924773216, + 0.04564926028251648, + -0.02753159962594509, + -0.06565520167350769, + -0.07913267612457275, + 0.06392000615596771, + -0.05291129648685455, + -0.009865141473710537, + -0.044501226395368576, + 0.04317125305533409, + 0.079008549451828, + 0.0036972227972000837, + -0.01048391591757536, + 0.005263200029730797, + 0.02147604152560234, + 0.004751445725560188, + -0.02239108644425869, + 0.024752311408519745, + 0.037187036126852036, + -0.07118416577577591, + 0.015515079721808434, + -0.046753764152526855, + 0.0659591406583786, + 0.008004775270819664, + 0.10493459552526474, + 0.027253877371549606, + -0.03027404099702835, + -0.07307233661413193, + 0.03192661702632904, + 0.0001670519559411332, + 0.03432702645659447, + 0.004586372058838606, + 0.023750942200422287, + 0.04797280579805374, + -0.05145956203341484, + 0.08629883825778961, + 0.025798249989748, + -0.05911736935377121, + -0.044936250895261765, + -0.008365584537386894, + -0.03264952823519707, + 0.02177836373448372, + -0.02301935665309429, + -0.06799818575382233, + 0.01904139295220375, + 0.021186351776123047, + 0.011413270607590675, + 0.029889201745390892, + 0.07833109050989151, + 0.036050260066986084, + -0.06394705176353455 + ] + }, + "p244_080.wav": { + "name": "p244", + "embedding": [ + 0.022935442626476288, + 0.09640032052993774, + -0.00262433011084795, + 0.00919140875339508, + -0.022395236417651176, + -0.0027653351426124573, + -0.10289772599935532, + 0.0792112648487091, + -0.025138236582279205, + 0.11822348088026047, + -0.10249543190002441, + 0.08955548703670502, + -0.07592034339904785, + -0.10798313468694687, + -0.02383330650627613, + 0.03619668260216713, + -0.006831965409219265, + 0.006147237494587898, + -0.026636846363544464, + -0.06548704206943512, + 0.04381079971790314, + 0.023009691387414932, + 0.05674208700656891, + -0.05197969824075699, + -0.02874726429581642, + 0.10414999723434448, + 0.0033289343118667603, + 0.014779753983020782, + -0.005131295416504145, + -0.035717450082302094, + 0.0016329586505889893, + 0.03423984721302986, + -0.018916528671979904, + 0.014781697653234005, + 0.03858477249741554, + 0.04465959221124649, + -0.041259974241256714, + 0.018253441900014877, + 0.013986133970320225, + 0.02905401401221752, + -0.06952391564846039, + 0.052167169749736786, + -0.004307717550545931, + -0.035446494817733765, + 0.08575202524662018, + -0.025628745555877686, + -0.01232240255922079, + 0.009164616465568542, + -0.06502345204353333, + 0.0973408967256546, + 0.06095746159553528, + 0.015500586479902267, + -0.05821622908115387, + -0.011755358427762985, + 0.1052543893456459, + -0.027858003973960876, + -0.10372836887836456, + -0.028162376955151558, + 0.047136325389146805, + 0.09003078937530518, + -0.06292364001274109, + -0.05182661861181259, + 0.009000720456242561, + 0.049195241183042526, + 0.03263609856367111, + 0.08903387188911438, + 0.11052943021059036, + 0.06148676201701164, + -0.008279198780655861, + -0.04386623203754425, + 0.0374402292072773, + 0.08248496055603027, + 0.06774741411209106, + -0.010443861596286297, + 0.025451309978961945, + -0.03772726282477379, + 0.007184172514826059, + 0.0012357961386442184, + -0.010979774408042431, + -0.06406047195196152, + -0.03685372695326805, + -0.028270073235034943, + 0.0037496155127882957, + -0.03674938529729843, + -0.03346597030758858, + 0.022938372567296028, + 0.0737951248884201, + -0.026175372302532196, + 0.04679589718580246, + 0.04721876233816147, + -0.020461056381464005, + 0.01643197052180767, + -0.03926379233598709, + -0.025848062708973885, + -0.0250605009496212, + -0.012646771036088467, + 0.058042388409376144, + 0.06492941826581955, + 0.037546515464782715, + 0.06273335963487625, + 0.06380569189786911, + 0.039636969566345215, + 0.0002344781532883644, + -0.0022067087702453136, + -0.08454318344593048, + 0.057148903608322144, + 0.12178117781877518, + -0.042248956859111786, + 0.026501305401325226, + -0.034538887441158295, + 0.03554641455411911, + 0.02890169620513916, + -0.04485159367322922, + -0.04294715076684952, + -0.023335903882980347, + 0.026320401579141617, + 0.02236473560333252, + 0.06880465894937515, + -0.005760335363447666, + -0.014488864690065384, + 0.12077110260725021, + -0.06384418904781342, + -0.07678333669900894, + -0.07603100687265396, + 0.022697359323501587, + -0.0791313648223877, + 0.07144536823034286, + 0.04848698899149895, + 0.03562559187412262, + 0.019893446937203407, + 0.06547132879495621, + 0.010206692852079868, + 0.020238369703292847, + -0.034656405448913574, + -0.03764572739601135, + -0.010647440329194069, + -0.019053788855671883, + 0.014916029758751392, + 0.09002663940191269, + 0.03564060479402542, + 0.09896186739206314, + 0.01198516320437193, + 0.03503521531820297, + -0.07820829749107361, + 0.010020527057349682, + 0.06754842400550842, + -0.019115395843982697, + -0.042204827070236206, + -0.05533764511346817, + -0.02979818731546402, + -0.06848762929439545, + 0.01644035428762436, + -0.05761922150850296, + 0.07225719094276428, + -0.026507336646318436, + 0.014494970440864563, + 0.1318766474723816, + 0.019118081778287888, + -0.04242726042866707, + -0.05576483905315399, + -0.040118467062711716, + -0.03527712821960449, + 0.023533428087830544, + -0.16723714768886566, + -0.08374740183353424, + -0.07266789674758911, + 0.04033157601952553, + 0.005697854794561863, + 0.03307320177555084, + 0.05674409866333008, + -0.00736004114151001, + 0.025302359834313393, + -0.008941157720983028, + 0.024136634543538094, + -0.06608708202838898, + -0.08500169217586517, + -0.03722498565912247, + -0.0820484310388565, + 0.0030963472090661526, + 0.06611262261867523, + -0.027501927688717842, + 0.02997785061597824, + -0.014206597581505775, + -0.0897846519947052, + -0.09211274981498718, + 0.06178612634539604, + 0.025527819991111755, + -0.004660853184759617, + 0.029044259339571, + 0.04766248166561127, + -0.08930860459804535, + 0.041857700794935226, + 0.021609416231513023, + 0.09293758869171143, + -0.06496190279722214, + 0.04089675098657608, + -0.04615473374724388, + 0.008139315992593765, + 0.10298070311546326, + -0.07245919108390808, + -0.06786300241947174, + -0.08537886291742325, + -0.04386327043175697, + 0.03143146634101868, + -0.06382175534963608, + -0.022953975945711136, + -0.014260202646255493, + -0.00770226726308465, + -0.0735427588224411, + -0.08604089915752411, + 0.054536253213882446, + -0.002473333850502968, + -0.007351551204919815, + -0.05520911514759064, + 0.04073307663202286, + -0.005512945353984833, + 0.04282146319746971, + -0.034995317459106445, + 0.038817062973976135, + 0.01078060083091259, + -0.03456932306289673, + 0.014562118798494339, + 0.04662066698074341, + 0.06337518990039825, + 0.015382414683699608, + -0.03802090138196945, + -0.08534346520900726, + 0.05308078974485397, + -0.025435537099838257, + 0.0836106389760971, + -0.008187885396182537, + -0.04709063470363617, + -0.006285067647695541, + 0.012433654628694057, + -0.005599376279860735, + 0.02429061010479927, + 0.04455827176570892, + 0.05604148656129837, + -0.008471336215734482, + -0.06035800278186798, + 0.0891936868429184, + 0.03530941158533096, + 0.0009362921118736267, + -0.04584295675158501, + -0.02124122902750969, + -0.06280230730772018, + -0.007850621826946735, + -0.006578205153346062, + -0.07067693769931793, + 0.022704359143972397, + -0.03307250887155533, + 0.025164103135466576, + 0.029459595680236816, + 0.09369748830795288, + 0.028062455356121063, + -0.050122179090976715 + ] + }, + "p244_310.wav": { + "name": "p244", + "embedding": [ + 0.062333762645721436, + 0.11135416477918625, + -0.010516969487071037, + -0.006485992576926947, + -0.05130276083946228, + 0.06126203387975693, + -0.14945679903030396, + 0.1642509400844574, + -0.053004682064056396, + 0.13242875039577484, + -0.0558055154979229, + 0.1253504604101181, + -0.013647131621837616, + -0.1708347499370575, + -0.048024486750364304, + 0.04792303591966629, + -0.06457256525754929, + -0.04175776243209839, + -0.04514404758810997, + -0.042643945664167404, + 0.023041173815727234, + 0.02632591687142849, + 0.009444857016205788, + 0.019633198156952858, + 0.0445408932864666, + 0.06953977048397064, + 0.0009119375608861446, + 0.02979297563433647, + 0.0033158750738948584, + -0.056146290153265, + -0.022432927042245865, + 0.07109639048576355, + -0.05427337437868118, + 0.006242684554308653, + 0.056439489126205444, + -0.023334486410021782, + 0.019439522176980972, + -0.07142479717731476, + -0.03865321725606918, + 0.02475246600806713, + -0.023804016411304474, + 0.09528770297765732, + 0.03319437801837921, + -0.015879716724157333, + 0.020103946328163147, + 0.04602956399321556, + 0.018373748287558556, + -0.05385857820510864, + -0.09695323556661606, + 0.1576339304447174, + 0.060154348611831665, + 0.003256745170801878, + -0.08038675785064697, + -0.06254622340202332, + 0.10964995622634888, + -0.033896103501319885, + -0.09776374697685242, + -0.02907993644475937, + 0.056550975888967514, + 0.14644931256771088, + -0.050270020961761475, + -0.044469814747571945, + 0.03467117249965668, + 0.12549498677253723, + 0.06777068227529526, + 0.06362436711788177, + 0.08401626348495483, + 0.10009558498859406, + -0.04259272664785385, + 0.014622258953750134, + 0.06307181715965271, + 0.06722456216812134, + 0.05293458327651024, + -0.01901255175471306, + 0.0256817527115345, + -0.004500877112150192, + -0.014562606811523438, + -0.016639545559883118, + -0.022020038217306137, + -0.018084583804011345, + -0.02398824319243431, + 0.02738938480615616, + 0.00420380337163806, + 0.03587711974978447, + -0.021967288106679916, + 0.06440689414739609, + 0.030048459768295288, + -0.030402695760130882, + 0.07170552015304565, + 0.05547770857810974, + 0.03398648649454117, + 0.06849531829357147, + -0.09338508546352386, + -0.07385315746068954, + 0.04826626926660538, + -0.00901690311729908, + 0.020674970000982285, + 0.06259172409772873, + 0.0551062673330307, + -0.005868728272616863, + 0.12045145034790039, + 0.0753273293375969, + -0.00876203179359436, + 0.00862166564911604, + -0.09939444065093994, + 0.13078439235687256, + 0.08275123685598373, + -0.046129416674375534, + 0.047482818365097046, + -0.03654826059937477, + 0.053228553384542465, + 0.05904535949230194, + -0.13952064514160156, + -0.10209541022777557, + 0.03199651837348938, + 0.02433048002421856, + -0.009237615391612053, + 0.11519865691661835, + -0.009365643374621868, + 0.04630453884601593, + 0.08908770978450775, + -0.05981840938329697, + -0.05235005542635918, + -0.020699501037597656, + 0.05867981165647507, + -0.07363149523735046, + 0.0775236189365387, + 0.07276376336812973, + -0.0017665711930021644, + 0.020374348387122154, + 0.09087875485420227, + 0.0007007376989349723, + -0.014258968643844128, + 0.002553727477788925, + -0.013424744829535484, + 0.01827506348490715, + 0.0010108643909916282, + 0.000856323167681694, + 0.012265734374523163, + 0.04437711089849472, + 0.036183103919029236, + 0.007288246415555477, + -0.02180321328341961, + -0.10839347541332245, + 0.021832622587680817, + 0.030520638450980186, + 0.08195261657238007, + -0.009910766035318375, + -0.020321935415267944, + -0.024892106652259827, + -0.04641749709844589, + -0.022338520735502243, + -0.0005006389692425728, + 0.0804557204246521, + -0.027200235053896904, + 0.02207481861114502, + 0.1158241257071495, + 0.03636608272790909, + 0.010507237166166306, + -0.026340406388044357, + 0.002669725101441145, + 0.01554177887737751, + 0.059437137097120285, + -0.05581275373697281, + -0.08813385665416718, + -0.01614191010594368, + 0.028714101761579514, + -0.010185315273702145, + 0.0893682986497879, + 0.03561735153198242, + 0.003323871176689863, + 0.021243175491690636, + -0.07853252440690994, + 0.0366552472114563, + -0.09887391328811646, + -0.05439227446913719, + -0.017395587638020515, + -0.03081517666578293, + -0.048097848892211914, + 0.06837590038776398, + 0.03603004664182663, + 0.075649693608284, + -0.020068824291229248, + -0.08150546252727509, + -0.07169344276189804, + 0.03834502771496773, + 0.0763382837176323, + -0.025374209508299828, + 0.018010210245847702, + 0.0705205574631691, + 0.014005008153617382, + 0.05430516600608826, + 0.07449464499950409, + 0.08702366054058075, + -0.031685881316661835, + 0.016271088272333145, + -0.05655751749873161, + 0.07943019270896912, + 0.04702039062976837, + -0.09766217321157455, + -0.07521934807300568, + -0.03131193667650223, + -0.052844297140836716, + 0.010865757241845131, + 0.007213325705379248, + 0.04729142040014267, + 0.02575257048010826, + 0.003015512600541115, + -0.0818973034620285, + -0.09146809577941895, + 0.08307889103889465, + -0.08757950365543365, + 0.013212001882493496, + -0.0730065256357193, + 0.0410885252058506, + 0.11009232699871063, + 0.03561345115303993, + -0.0081672677770257, + -0.0246304702013731, + 0.019638020545244217, + -0.0005461095715872943, + 0.0066030896268785, + 0.04522112011909485, + 0.03942589461803436, + -0.1044793352484703, + 0.015239045023918152, + -0.07528360933065414, + 0.07470488548278809, + -0.03606195002794266, + 0.15367625653743744, + 0.01645088382065296, + -0.059046514332294464, + -0.10648392885923386, + 0.014447370544075966, + -0.03611423447728157, + 0.06656364351511002, + 0.02394464984536171, + 0.06695408374071121, + 0.03547429293394089, + -0.042541008442640305, + 0.10056301951408386, + 0.047229327261447906, + -0.05342699587345123, + -0.07886892557144165, + -0.06227856129407883, + -0.023887883871793747, + 0.03216726332902908, + 0.018341396003961563, + -0.0730758085846901, + -0.02213200554251671, + 0.01135922595858574, + -0.015492855571210384, + 0.094337098300457, + 0.13425292074680328, + 0.07430572807788849, + -0.13209103047847748 + ] + }, + "p244_390.wav": { + "name": "p244", + "embedding": [ + 0.05390515550971031, + 0.08928265422582626, + -0.009095130488276482, + 0.0331672802567482, + -0.03521709889173508, + 0.07289695739746094, + -0.134585902094841, + 0.12634585797786713, + -0.04289443790912628, + 0.15653173625469208, + -0.058817293494939804, + 0.10553275793790817, + -0.0011788542615249753, + -0.1952839344739914, + -0.04377306252717972, + 0.04105088487267494, + -0.07260677218437195, + -0.02957030013203621, + -0.06161730736494064, + 0.0018908885540440679, + 0.04718029499053955, + 0.04348362237215042, + 0.031137706711888313, + -7.213740173028782e-05, + 0.007394982967525721, + 0.05135253071784973, + 7.532518066000193e-05, + 0.05643025413155556, + 0.03473090007901192, + -0.06871864944696426, + -0.036472972482442856, + 0.12149496376514435, + -0.04107067734003067, + 0.026809513568878174, + 0.055561088025569916, + -0.02963853068649769, + -0.007271257229149342, + -0.04845721274614334, + -0.029888229444622993, + 0.016986336559057236, + -0.045228127390146255, + 0.07154866307973862, + 0.03585415706038475, + 0.013049333356320858, + 0.05837123468518257, + 0.005929145030677319, + -0.03145897388458252, + -0.05738860368728638, + -0.08443523198366165, + 0.1713896542787552, + 0.09075279533863068, + -0.014891610480844975, + -0.049283236265182495, + -0.05789681524038315, + 0.09286869317293167, + -0.015881182625889778, + -0.1446750909090042, + -0.054379530251026154, + 0.0792398601770401, + 0.15658412873744965, + -0.016973700374364853, + -0.018962474539875984, + 0.025595594197511673, + 0.1400173306465149, + 0.05862336978316307, + 0.10565488040447235, + 0.07664918154478073, + 0.09592867642641068, + 0.0021817826200276613, + 0.03837255761027336, + 0.05230647325515747, + 0.0448959618806839, + 0.037463411688804626, + -0.020335907116532326, + 0.050175171345472336, + 0.003201348939910531, + -0.019272953271865845, + -0.010164099745452404, + -0.006473494693636894, + 0.02481451816856861, + -0.001570268883369863, + 0.01204477995634079, + -0.0032795509323477745, + 0.034901563078165054, + -0.03703448921442032, + 0.049503225833177567, + -0.002315206453204155, + -0.0015280717052519321, + 0.05702874809503555, + 0.039399269968271255, + 0.04136405140161514, + 0.061849117279052734, + -0.05117488279938698, + -0.09778434038162231, + 0.015687324106693268, + 0.010577641427516937, + -6.401844439096749e-05, + 0.05919798091053963, + 0.038666751235723495, + -0.023059936240315437, + 0.1095709279179573, + 0.046080607920885086, + -0.03148084506392479, + 0.036561522632837296, + -0.10593611747026443, + 0.11764362454414368, + 0.06253674626350403, + -0.010973717086017132, + 0.053999822586774826, + -0.04982920363545418, + 0.08696375042200089, + 0.06308745592832565, + -0.14470164477825165, + -0.05770739167928696, + 0.06784173846244812, + -0.00554050225764513, + -0.01823246106505394, + 0.12491173297166824, + 0.006918720435351133, + 0.016837649047374725, + 0.09361709654331207, + -0.0745864138007164, + -0.04860581085085869, + -0.02651151642203331, + 0.06534599512815475, + -0.10346052050590515, + 0.04956859350204468, + 0.02006286382675171, + -0.026648448780179024, + -0.012086551636457443, + 0.10539241135120392, + -0.018278049305081367, + -0.002573288744315505, + 0.009611809626221657, + -0.03760271146893501, + 0.05780063197016716, + -0.04063032940030098, + 0.022076835855841637, + 0.020960509777069092, + 0.018808521330356598, + 0.03726546838879585, + -0.01462057139724493, + -0.045741137117147446, + -0.1042439416050911, + 0.012642532587051392, + 0.02781568467617035, + 0.07075914740562439, + -0.001994219608604908, + -0.005888078361749649, + -0.043102920055389404, + -0.06279237568378448, + 0.02562461420893669, + -0.038862429559230804, + 0.06611211597919464, + -0.0100297462195158, + -0.010633885860443115, + 0.10490754246711731, + -0.0032152431085705757, + 0.013908391818404198, + -0.050229016691446304, + -0.01925613358616829, + 0.017270535230636597, + 0.06111428141593933, + -0.08161693066358566, + -0.04565566033124924, + 0.019952932372689247, + 0.021331798285245895, + 0.0056177591904997826, + 0.03059665858745575, + 0.05080237612128258, + 0.010925977490842342, + 0.04018120467662811, + -0.08479554206132889, + 0.011016296222805977, + -0.11183982342481613, + -0.06443434953689575, + -0.025700028985738754, + -0.019076114520430565, + -0.00666585611179471, + 0.08366718888282776, + 0.00783555954694748, + 0.028873024508357048, + -0.004083580337464809, + -0.08913102000951767, + -0.07488339394330978, + 0.07882171869277954, + 0.09218160063028336, + -0.005183601286262274, + 0.04809688776731491, + 0.049967970699071884, + -0.03552994504570961, + 0.04761362075805664, + 0.04599515721201897, + 0.10308775305747986, + -0.01695864088833332, + 0.014222340658307076, + -0.09289102256298065, + 0.07657654583454132, + 0.08020355552434921, + -0.09848613291978836, + -0.08836112916469574, + 0.0039378684014081955, + -0.06599529832601547, + 0.025393830612301826, + -0.02892601117491722, + 0.0049562654457986355, + 0.04748081415891647, + 6.835884414613247e-05, + -0.09207058697938919, + -0.08813222497701645, + 0.10073535144329071, + -0.09169846773147583, + -0.019248684868216515, + -0.0721120685338974, + 0.04407724365592003, + 0.09232749789953232, + 0.04549960047006607, + -0.03842763602733612, + -0.008677591569721699, + 0.05421547591686249, + -0.04442988708615303, + -0.007950632832944393, + 0.039528023451566696, + 0.01881370320916176, + -0.1321561634540558, + 0.00788298062980175, + -0.0783316120505333, + 0.06109057739377022, + -0.08186092972755432, + 0.140180766582489, + -0.007290482986718416, + -0.06880410015583038, + -0.08298700302839279, + 0.05013761669397354, + -0.01638776622712612, + 0.04276889190077782, + 0.03441886231303215, + 0.06435059010982513, + 0.0453796423971653, + -0.06823495030403137, + 0.10489839315414429, + 0.031164808198809624, + -0.018003329634666443, + -0.07761579006910324, + -0.02650955319404602, + -0.040319573134183884, + 0.03270123898983002, + 0.026091286912560463, + -0.10452570021152496, + -0.009347882121801376, + 0.02893173322081566, + -0.04637656360864639, + 0.06974027305841446, + 0.1362844705581665, + 0.05342552065849304, + -0.1435653567314148 + ] + }, + "p244_272.wav": { + "name": "p244", + "embedding": [ + 0.07805004715919495, + 0.031246481463313103, + 0.0403924360871315, + -0.05527679994702339, + 0.024828551337122917, + 0.07462207973003387, + -0.12186755239963531, + 0.07680010050535202, + -0.014242593199014664, + 0.057926736772060394, + -0.08840712904930115, + 0.04659002274274826, + 0.025284886360168457, + -0.1520388126373291, + -0.03570377081632614, + 0.030892131850123405, + -0.04072274640202522, + 0.024306446313858032, + -0.05477508157491684, + -0.03034302592277527, + -0.0067830272018909454, + 0.04069060832262039, + 0.036249976605176926, + -0.04064023867249489, + 0.040984589606523514, + 0.047366317361593246, + 0.013311544433236122, + 0.02635137364268303, + -0.02134903520345688, + -0.036444611847400665, + 0.0006156200543045998, + 0.07961243391036987, + -0.03660359978675842, + -0.04000692814588547, + 0.05057183653116226, + 0.005644030403345823, + 0.05831284448504448, + -0.09285643696784973, + -0.022177865728735924, + 0.051782768219709396, + -0.05667605251073837, + 0.07458725571632385, + 0.05092700198292732, + 0.030888816341757774, + 0.014505833387374878, + 0.030910607427358627, + 0.02317505143582821, + -0.07474349439144135, + -0.08601969480514526, + 0.1618729531764984, + 0.014286966994404793, + 0.041374675929546356, + -0.10537150502204895, + -0.013100223615765572, + 0.04306437075138092, + -0.011819606646895409, + -0.027152301743626595, + -0.007410903926938772, + 0.038424551486968994, + 0.09972322732210159, + 0.022540202364325523, + -0.03822816163301468, + 0.04328371584415436, + 0.055118706077337265, + -0.026188569143414497, + 0.014896324835717678, + 0.11809432506561279, + 0.06560206413269043, + 0.008971446193754673, + 0.026067521423101425, + 0.039699532091617584, + 0.01513068750500679, + 0.06188390403985977, + -0.04368027299642563, + 0.04448987543582916, + -0.027908308431506157, + -0.04238244146108627, + -0.01628924533724785, + -0.02337472140789032, + -0.01637083664536476, + 0.06354888528585434, + 0.018838247284293175, + 0.017638787627220154, + 0.06269198656082153, + -0.05855787545442581, + 0.018404502421617508, + -0.018946334719657898, + 0.0524844229221344, + 0.0754566490650177, + 0.04872932657599449, + 0.04560946673154831, + -0.005865195766091347, + -0.04433590918779373, + -0.0777931660413742, + 0.03516163304448128, + 0.027359621599316597, + -0.012207778170704842, + 0.007468577474355698, + 0.03845154866576195, + -0.049091488122940063, + 0.09061408787965775, + -0.010038855485618114, + 0.002318674698472023, + -0.01295918133109808, + -0.07040002197027206, + 0.060140158981084824, + 0.09907764196395874, + -0.015951979905366898, + 0.04184911027550697, + -0.03884124010801315, + 0.008190998807549477, + 0.06033554673194885, + -0.09694486856460571, + -0.041078198701143265, + 0.03351639211177826, + 0.012129362672567368, + 0.07398790866136551, + 0.11422621458768845, + -0.0016760625876486301, + 0.018616054207086563, + 0.029490642249584198, + -0.06932834535837173, + -0.02365504764020443, + 0.02712034061551094, + -0.0032923854887485504, + -0.022457998245954514, + 0.0092119500041008, + 0.023451542481780052, + 0.040889251977205276, + -0.06427560746669769, + 0.0527741014957428, + 0.010937150567770004, + 0.009991750121116638, + -0.10067594796419144, + 0.07235223054885864, + 0.04502633959054947, + -0.0011446168646216393, + -0.04225616529583931, + 0.007886041887104511, + 0.06918466091156006, + -0.014319105073809624, + 0.06925106048583984, + -0.08320833742618561, + -0.10994590073823929, + -0.038774192333221436, + 0.0011140275746583939, + 0.03918425738811493, + -0.035329923033714294, + -0.02905648574233055, + -0.07947008311748505, + 0.032268088310956955, + -0.01167863979935646, + -0.01231518667191267, + 0.030090592801570892, + 0.09888110309839249, + -0.04613158106803894, + 0.07447901368141174, + -0.03751831501722336, + 0.022598695009946823, + -0.009025701321661472, + -0.007163614500313997, + 0.02782125025987625, + 0.017612474039196968, + 0.005257181823253632, + -0.06694945693016052, + -0.0005585253238677979, + -0.059513263404369354, + 0.005501090548932552, + 0.00797060877084732, + 0.020931215956807137, + -0.012566907331347466, + -0.03347695246338844, + -0.11056963354349136, + 0.021343054249882698, + -0.07710330188274384, + -0.033407628536224365, + 0.07335171103477478, + 0.0013008173555135727, + -0.02465185523033142, + 0.10292619466781616, + 0.018680822104215622, + 0.017956409603357315, + -0.07259131222963333, + -0.05193762108683586, + 0.017226621508598328, + 0.04458422213792801, + 0.06698817759752274, + -0.005020072218030691, + -0.0042329225689172745, + -0.025899047031998634, + 0.03187107667326927, + 0.0690484419465065, + 0.05349622666835785, + 0.03670891746878624, + -0.03689820319414139, + -0.02484549582004547, + 0.035276077687740326, + 0.10420235991477966, + -0.02229044958949089, + -0.011279079131782055, + -0.03782124072313309, + 0.04193677753210068, + -0.0345267578959465, + 0.014670413918793201, + 0.029176101088523865, + 0.03896758332848549, + 0.03579922765493393, + -0.032069213688373566, + -0.060753900557756424, + -0.03974713385105133, + 0.017953645437955856, + -0.05051875859498978, + -0.030922263860702515, + -0.04569966718554497, + 0.055334389209747314, + 0.09403257071971893, + -0.006817622110247612, + 0.016337305307388306, + -0.022613225504755974, + -0.039114195853471756, + -0.04312022030353546, + -0.05394390597939491, + -0.036319658160209656, + 0.026847518980503082, + -0.07230760902166367, + 0.02256101928651333, + -0.06537202000617981, + 0.06207843869924545, + -0.016198329627513885, + 0.04776257649064064, + 0.04713447019457817, + -0.04444450885057449, + -0.07119201868772507, + -0.006379054859280586, + -0.008983755484223366, + 0.03671051934361458, + 0.022441480308771133, + -0.0002881418913602829, + 0.05042334645986557, + -0.056568440049886703, + 0.04519500955939293, + 0.032964859157800674, + -0.04395901784300804, + -0.05827764794230461, + -0.02664433792233467, + 0.010392685420811176, + 0.021448174491524696, + -0.030511366203427315, + -0.022718951106071472, + 0.03794592246413231, + 0.037708837538957596, + 0.030361898243427277, + 0.02101735584437847, + 0.05144747719168663, + 0.001114354468882084, + -0.07820219546556473 + ] + }, + "p244_210.wav": { + "name": "p244", + "embedding": [ + 0.030596919357776642, + 0.0841556191444397, + 0.012820704840123653, + 0.010635925456881523, + 0.008473701775074005, + 0.028797658160328865, + -0.1492796540260315, + 0.14613549411296844, + -0.003934000618755817, + 0.12034957110881805, + -0.07674948126077652, + 0.05096691846847534, + -0.03624391183257103, + -0.1290227472782135, + -0.03811531886458397, + 0.02606789767742157, + -0.034172289073467255, + -0.02522493712604046, + -0.006144885439425707, + -0.006501024588942528, + 0.03783539682626724, + 0.019031988456845284, + -0.0009674839675426483, + 0.01439635083079338, + 0.037747837603092194, + 0.012713033705949783, + 0.016097357496619225, + 0.061483800411224365, + 0.025261247530579567, + -0.013186433352530003, + 0.03253801539540291, + 0.11990076303482056, + -0.0628390684723854, + -0.009552542120218277, + 0.048650167882442474, + 0.007677403278648853, + -0.027684640139341354, + -0.03144530951976776, + -0.058763280510902405, + 0.026295050978660583, + -0.044312141835689545, + 0.05063920468091965, + 0.01699085719883442, + 0.0011239736340939999, + 0.03825441375374794, + 0.022916747257113457, + -0.0019340435974299908, + -0.034722182899713516, + -0.08818639814853668, + 0.13072866201400757, + 0.06585775315761566, + 0.012756201438605785, + -0.08909894526004791, + -0.090900719165802, + 0.06726817786693573, + 0.007602536119520664, + -0.07183565199375153, + 0.002192273736000061, + 0.06536427140235901, + 0.14639964699745178, + -0.007427135482430458, + -0.01235495787113905, + 0.018868179991841316, + 0.07820919156074524, + 0.07840124517679214, + 0.045271143317222595, + 0.04875032603740692, + 0.0846790075302124, + 0.029304085299372673, + 0.029179414734244347, + 0.059164032340049744, + 0.021112974733114243, + 0.009686710312962532, + -0.042836036533117294, + 0.030365262180566788, + 0.03601401299238205, + -0.02768142893910408, + 0.004443887621164322, + 0.01381439995020628, + 0.0046913400292396545, + 0.03584422916173935, + -1.531653106212616e-05, + -0.013592083938419819, + 0.06888803839683533, + -0.039438508450984955, + 0.042061954736709595, + -0.004070714116096497, + -0.01485615223646164, + 0.08001046627759933, + 0.03558462858200073, + 0.023850612342357635, + 0.07595677673816681, + -0.07829700410366058, + -0.08305729925632477, + -0.006581442430615425, + -0.003209050977602601, + 0.024796640500426292, + 0.05243242159485817, + 0.037644971162080765, + -0.02066842094063759, + 0.12771877646446228, + 0.034893687814474106, + 0.013780414126813412, + -0.0042670974507927895, + -0.1260133981704712, + 0.07696455717086792, + 0.04633644223213196, + -0.02695537358522415, + 0.0515616312623024, + -0.012208234518766403, + 0.04175709933042526, + 0.04974275454878807, + -0.13143886625766754, + -0.03920525684952736, + 0.05118044093251228, + 0.0059749591164290905, + 0.01594759337604046, + 0.1069403663277626, + 0.03104320913553238, + -0.01620885170996189, + 0.07889629900455475, + -0.08621074259281158, + -0.055649906396865845, + -0.033559974282979965, + 0.1016840785741806, + -0.08952215313911438, + 0.027700264006853104, + 0.024675438180565834, + -0.014423297718167305, + -0.04531712830066681, + 0.07375186681747437, + 0.000415031798183918, + -0.00015851296484470367, + -0.028294507414102554, + 0.01749030500650406, + 0.08891933411359787, + -0.021659063175320625, + 0.03105173259973526, + 0.01992894522845745, + 0.04125868156552315, + 0.025921441614627838, + 0.01935938559472561, + -0.049375589936971664, + -0.07961546629667282, + -0.009436559863388538, + 0.0684974193572998, + 0.06708923727273941, + -0.0491051971912384, + -0.030637552961707115, + -0.0654284656047821, + -0.05686984211206436, + 0.02030065283179283, + 0.04222528636455536, + 0.08421556651592255, + 0.046449583023786545, + -0.029040930792689323, + 0.13530217111110687, + -0.03105255588889122, + 0.007283971644937992, + -0.020225167274475098, + 0.025831453502178192, + 0.009825004264712334, + 0.04207317531108856, + -0.06330402940511703, + -0.07473613321781158, + 0.02230144292116165, + 0.0007133600302040577, + 0.022106168791651726, + 0.029444189742207527, + -0.0011781472712755203, + -0.0005464546848088503, + 0.019190713763237, + -0.06677652150392532, + 0.013764157891273499, + -0.0881725549697876, + -0.07823389768600464, + -0.007210577372461557, + 0.013173889368772507, + -0.019713273271918297, + 0.07604013383388519, + -0.00691785104572773, + 0.047817979007959366, + 0.027661941945552826, + -0.09357676655054092, + -0.07103085517883301, + 0.06767357885837555, + 0.05215778946876526, + -0.012474924325942993, + 0.04100147634744644, + 0.06916986405849457, + -0.0339847169816494, + 0.023280568420886993, + 0.06203930824995041, + 0.07159791886806488, + -0.05701250582933426, + -0.012226616963744164, + -0.08411754667758942, + 0.09320881962776184, + 0.047804687172174454, + -0.09929536283016205, + -0.08394557982683182, + -0.011899353936314583, + -0.05481933802366257, + 0.012348607182502747, + -0.004481784068048, + 0.06157462298870087, + 0.007839015685021877, + -0.0472693033516407, + -0.06354792416095734, + -0.08071665465831757, + 0.07271368056535721, + -0.06602893024682999, + -0.04005580395460129, + -0.04836101830005646, + 0.03449997678399086, + 0.08083398640155792, + 0.05337708070874214, + 0.03816365450620651, + -0.039333928376436234, + 0.034648336470127106, + -0.05005088075995445, + -0.07325781136751175, + 0.04599399119615555, + -0.026650480926036835, + -0.10073283314704895, + -0.017291313037276268, + -0.050028689205646515, + 0.09322719275951385, + -0.06154647096991539, + 0.10789820551872253, + -0.013691608794033527, + -0.07906541228294373, + -0.07174591720104218, + -0.025496678426861763, + 0.0209258534014225, + 0.03191053494811058, + 0.027914701029658318, + 0.04535887390375137, + 0.031264886260032654, + -0.011600816622376442, + 0.08953496813774109, + 0.01850002072751522, + 0.009259818121790886, + -0.048829250037670135, + -0.0622490718960762, + 0.0012840889394283295, + 0.01808755099773407, + -0.0008657914586365223, + -0.09528379887342453, + 0.04542069509625435, + 0.0033216187730431557, + -0.0407499261200428, + 0.015438757836818695, + 0.0888296440243721, + 0.051443349570035934, + -0.14641030132770538 + ] + }, + "p244_201.wav": { + "name": "p244", + "embedding": [ + 0.05511818081140518, + 0.11212310194969177, + -0.011525323614478111, + 0.016972655430436134, + -0.04211655631661415, + 0.0638246089220047, + -0.16440251469612122, + 0.1507434844970703, + -0.026916876435279846, + 0.13388268649578094, + -0.037310678511857986, + 0.12266439944505692, + -0.020745359361171722, + -0.17097729444503784, + -0.03719726949930191, + 0.059551902115345, + -0.04489855840802193, + -0.036431364715099335, + -0.014066828414797783, + -0.01691630855202675, + 0.009256268851459026, + 0.02300920896232128, + 0.040245041251182556, + 0.02279983088374138, + 0.03718739002943039, + 0.06513645499944687, + 0.0007651466876268387, + 0.05713482201099396, + 0.00963128823786974, + -0.03747817873954773, + -0.029261961579322815, + 0.08851687610149384, + -0.06712214648723602, + 0.023853596299886703, + 0.05486403405666351, + -0.013791164383292198, + 0.003468405921012163, + -0.05426535755395889, + -0.011016378179192543, + 0.003150020493194461, + -0.025247231125831604, + 0.10075338929891586, + 0.03476456552743912, + -0.008219363167881966, + 0.01719394326210022, + 0.03493858128786087, + 0.008156637661159039, + -0.0324087031185627, + -0.11855581402778625, + 0.1498035192489624, + 0.06533762067556381, + -0.0043103876523673534, + -0.0772293359041214, + -0.05846061557531357, + 0.08848056942224503, + -0.027996767312288284, + -0.10237906873226166, + -0.03466286510229111, + 0.07236357033252716, + 0.14088992774486542, + -0.031598836183547974, + -0.0486932098865509, + 0.023812200874090195, + 0.13915732502937317, + 0.08070148527622223, + 0.07763877511024475, + 0.07992343604564667, + 0.12148387730121613, + -0.050063468515872955, + -0.0021491101942956448, + 0.050942204892635345, + 0.0586591511964798, + 0.04539824277162552, + 0.009091577492654324, + 0.012125764042139053, + -0.017939668148756027, + -0.004847826436161995, + -0.005730635020881891, + -0.014895502477884293, + -0.029740257188677788, + -0.029120707884430885, + 0.013473547995090485, + -0.011863608844578266, + 0.06011473387479782, + -0.012197759002447128, + 0.0584108941257, + 0.034900542348623276, + -0.018841322511434555, + 0.0773913562297821, + 0.05043083429336548, + 0.0210711732506752, + 0.06707257777452469, + -0.0912616178393364, + -0.05538351833820343, + 0.0398763008415699, + -0.008284758776426315, + 0.038146667182445526, + 0.07084225118160248, + 0.041463833302259445, + -0.0010061735520139337, + 0.12212863564491272, + 0.06449627876281738, + -0.014100637286901474, + 0.016240563243627548, + -0.08583803474903107, + 0.13689729571342468, + 0.06536121666431427, + -0.03450407832860947, + 0.055621471256017685, + -0.04011617228388786, + 0.04346810281276703, + 0.060454487800598145, + -0.12322668731212616, + -0.0895187184214592, + 0.04595860093832016, + 0.04117373004555702, + -0.0230595450848341, + 0.12120827287435532, + -0.001005854457616806, + 0.0545198880136013, + 0.08080488443374634, + -0.07027877867221832, + -0.04748065769672394, + -0.009639699943363667, + 0.06234338507056236, + -0.06941592693328857, + 0.05164248123764992, + 0.06436388194561005, + -0.013249555602669716, + 0.010334555990993977, + 0.08919903635978699, + 0.011683602817356586, + 0.000299295992590487, + 0.02489382028579712, + -0.036725860089063644, + 0.014538826420903206, + -0.0019320540595799685, + 0.012876464053988457, + 0.015764329582452774, + 0.021520916372537613, + 0.04543602466583252, + 0.005655610002577305, + -0.024667367339134216, + -0.1309337466955185, + 0.003189387731254101, + 0.0531509593129158, + 0.08745987713336945, + -0.024010051041841507, + -0.040880054235458374, + -0.030893104150891304, + -0.03797308728098869, + 0.0009898971766233444, + 0.006269948557019234, + 0.0656789243221283, + -0.03542296215891838, + -0.009637041948735714, + 0.10649190843105316, + 0.030321605503559113, + 0.0031170290894806385, + -0.04022235423326492, + -0.016823559999465942, + 0.0015661268262192607, + 0.047295406460762024, + -0.08259402215480804, + -0.07387891411781311, + -0.004735726863145828, + 0.04221796989440918, + -0.01233053021132946, + 0.08891333639621735, + 0.05673213303089142, + 0.016745546832680702, + 0.0222429558634758, + -0.048097945749759674, + 0.011405489407479763, + -0.07478676736354828, + -0.07258903235197067, + -0.018395038321614265, + 0.009205790236592293, + -0.03617504984140396, + 0.07776371389627457, + 0.04206109046936035, + 0.09293448179960251, + -0.023142961785197258, + -0.05291867256164551, + -0.07306499779224396, + 0.04751640930771828, + 0.06554031372070312, + -0.025272902101278305, + 0.03950625658035278, + 0.07353940606117249, + -0.024351969361305237, + 0.05548709258437157, + 0.07088024914264679, + 0.08119156956672668, + -0.05111321806907654, + 0.024134550243616104, + -0.07701750099658966, + 0.060233116149902344, + 0.0856102705001831, + -0.10147425532341003, + -0.07619839906692505, + -0.013500827364623547, + -0.061241574585437775, + 0.006847718730568886, + -0.0328960083425045, + 0.029118482023477554, + 0.03181857243180275, + -0.005155395716428757, + -0.08790645003318787, + -0.12165117263793945, + 0.08395262062549591, + -0.08868646621704102, + 0.019166551530361176, + -0.06920987367630005, + 0.05198763310909271, + 0.08661377429962158, + 0.03899727016687393, + -0.029150929301977158, + -0.018633730709552765, + 0.034087590873241425, + 0.0008559771813452244, + 0.008367626927793026, + 0.07127957046031952, + 0.04484396427869797, + -0.12551236152648926, + 0.008474432863295078, + -0.06450192630290985, + 0.06808453798294067, + -0.035618893802165985, + 0.16381029784679413, + 0.021532177925109863, + -0.054629646241664886, + -0.08315492421388626, + 0.003878412302583456, + -0.04005561023950577, + 0.05593789368867874, + 0.015326911583542824, + 0.06255761533975601, + 0.03487628698348999, + -0.041331011801958084, + 0.11909664422273636, + 0.049699876457452774, + -0.05620461702346802, + -0.08857350051403046, + -0.045126304030418396, + -0.030415156856179237, + 0.06337439268827438, + 0.0274224691092968, + -0.08693434298038483, + -0.03429974988102913, + 0.021948659792542458, + -0.018025502562522888, + 0.0702352374792099, + 0.14869332313537598, + 0.07642989605665207, + -0.12858504056930542 + ] + }, + "p244_136.wav": { + "name": "p244", + "embedding": [ + 0.05141834914684296, + 0.09384244680404663, + 0.0027724015526473522, + 0.048024777323007584, + -0.03925531357526779, + 0.06964029371738434, + -0.07960496842861176, + 0.08917447924613953, + -0.05906029790639877, + 0.14789757132530212, + -0.11277738213539124, + 0.11306633800268173, + -0.021489301696419716, + -0.16951832175254822, + -0.03842146694660187, + 0.06441636383533478, + -0.027990078553557396, + 0.030925128608942032, + -0.030577704310417175, + 0.0270548015832901, + 0.04513400420546532, + 0.0441758967936039, + 0.07102750241756439, + -0.051528967916965485, + 0.062090471386909485, + 0.049823418259620667, + 0.029422150924801826, + 0.08429831266403198, + 0.04295084625482559, + -0.10208781063556671, + -0.052613869309425354, + 0.13765741884708405, + -0.036743395030498505, + 0.026554159820079803, + 0.04950394481420517, + 0.011309279128909111, + 0.0005480997497215867, + -0.061575815081596375, + 0.000676786876283586, + -0.0182732492685318, + -0.01846231147646904, + 0.056750133633613586, + 0.006017546635121107, + -0.010398592799901962, + 0.0258325282484293, + 0.021399367600679398, + -0.04424873739480972, + -0.0469798780977726, + -0.09055374562740326, + 0.14626476168632507, + 0.02010076679289341, + 0.022107237949967384, + -0.07736627757549286, + -0.09531641006469727, + 0.09994763135910034, + 0.01042456366121769, + -0.10447446256875992, + -0.026107992976903915, + 0.07764921337366104, + 0.17855390906333923, + 0.0013499065535143018, + -0.03455064073204994, + 0.004637734033167362, + 0.08558331429958344, + 0.012575481086969376, + 0.11652513593435287, + 0.050336919724941254, + 0.05314097926020622, + 0.06140861660242081, + 0.08126457035541534, + 0.02980859950184822, + 0.07705634832382202, + 0.01710939221084118, + -0.026365702971816063, + 0.013730703853070736, + -0.013302801176905632, + -0.0603434219956398, + 0.03303295373916626, + -0.010137918405234814, + -0.011267154477536678, + -0.004585144575685263, + -0.014200631529092789, + 0.03355584293603897, + -0.039536818861961365, + -0.033892177045345306, + 0.032373566180467606, + -0.010474840179085732, + -0.009296310134232044, + 0.06975413113832474, + 0.01981363445520401, + -0.022136781364679337, + 0.02798370271921158, + -0.05673570930957794, + -0.1416313648223877, + -0.006681807804852724, + 0.02671816758811474, + 0.013314202427864075, + 0.06863708794116974, + 0.03743428364396095, + -0.045212581753730774, + 0.08942880481481552, + 0.04641281068325043, + 0.02805173024535179, + 0.03454264998435974, + -0.08436690270900726, + 0.09035779535770416, + 0.09968797862529755, + 0.025750044733285904, + 0.05775569751858711, + -0.03618744760751724, + 0.11050941050052643, + 0.1042468398809433, + -0.16119490563869476, + -0.07683303207159042, + -0.024384746327996254, + -0.034818004816770554, + 0.007066630758345127, + 0.06654946506023407, + -0.027014728635549545, + -0.01130053773522377, + 0.09593239426612854, + -0.11562374979257584, + -0.0719260573387146, + -0.032707080245018005, + 0.02501877211034298, + -0.08276085555553436, + 0.049125753343105316, + 0.013773162849247456, + -0.03938998281955719, + -0.018643083050847054, + 0.06344294548034668, + -0.024832408875226974, + 0.01686427742242813, + 0.04303388670086861, + -0.07249826937913895, + 0.025042152032256126, + -0.09079482406377792, + 0.016426056623458862, + 0.09090790152549744, + 0.04403422027826309, + 0.06044825538992882, + -0.0033124065957963467, + -0.04384984076023102, + -0.08292171359062195, + -0.0028851458337157965, + 0.0525209978222847, + 0.020323116332292557, + -0.010496784932911396, + -0.028149064630270004, + -0.04103463143110275, + -0.07869160175323486, + 0.07913064956665039, + -0.0011206634808331728, + 0.08580173552036285, + 0.030030835419893265, + 0.018346428871154785, + 0.0923272967338562, + 0.006899341009557247, + -0.01107434555888176, + -0.0821005254983902, + -0.04700682684779167, + 0.05453604459762573, + 0.03173323720693588, + -0.10375726222991943, + -0.038108717650175095, + 0.020120572298765182, + -0.01418862584978342, + -0.04396382346749306, + 0.002357538789510727, + 0.04429242014884949, + 0.02557266503572464, + 0.052937597036361694, + -0.03040521964430809, + 0.00023684941697865725, + -0.1077771782875061, + -0.050389159470796585, + -0.022212030366063118, + -0.04610762372612953, + -0.018408508971333504, + 0.09210646152496338, + 0.00935431569814682, + -0.005422515328973532, + -0.0002923562133219093, + -0.05018161982297897, + -0.061742525547742844, + 0.07599705457687378, + 0.05665174126625061, + 0.04734191298484802, + 0.06706345081329346, + 0.014234588481485844, + -0.04093615710735321, + 0.06819590926170349, + 0.05485409498214722, + 0.09729917347431183, + -0.0037351511418819427, + -0.012426167726516724, + -0.07035854458808899, + 0.08780263364315033, + 0.10930603742599487, + -0.09341315180063248, + -0.1024673730134964, + -0.0436556302011013, + -0.07118580490350723, + 0.09446816146373749, + -0.02589349076151848, + -0.03805803135037422, + 0.02255435660481453, + -0.04031994566321373, + -0.08825281262397766, + -0.07669749855995178, + 0.09607619047164917, + -0.03330562263727188, + -0.06764556467533112, + -0.06447035074234009, + 0.03951749578118324, + 0.0531640350818634, + 0.03523951768875122, + -0.00457668537274003, + 0.02532750740647316, + 0.06489630043506622, + -0.11835372447967529, + -0.03565382584929466, + 0.04792428016662598, + -0.028515227138996124, + -0.0448799729347229, + 0.03351759910583496, + -0.07020387053489685, + 0.061290137469768524, + -0.08577300608158112, + 0.1748303323984146, + -0.05219673365354538, + -0.06337454915046692, + -0.06802007555961609, + 0.0746140107512474, + -0.037712790071964264, + 0.009680218994617462, + 0.07229800522327423, + 0.03549128398299217, + 0.036690570414066315, + -0.1087617352604866, + 0.10996214300394058, + -0.0017096211668103933, + 0.008962016552686691, + -0.04340721666812897, + -0.0443255677819252, + -0.06405270099639893, + 0.0012607452226802707, + -0.03241158276796341, + -0.08377400040626526, + 0.02377261407673359, + 0.020100770518183708, + 0.002682886552065611, + 0.04253046214580536, + 0.11782117187976837, + 0.03330816701054573, + -0.0671708881855011 + ] + }, + "p244_238.wav": { + "name": "p244", + "embedding": [ + 0.048192255198955536, + 0.0856732502579689, + -0.024784784764051437, + 0.034956980496644974, + -0.06625073403120041, + 0.05187675356864929, + -0.1189003437757492, + 0.1366071105003357, + -0.02329511195421219, + 0.13937202095985413, + -0.06657830625772476, + 0.13776913285255432, + -0.015011260285973549, + -0.17779940366744995, + -0.020704206079244614, + 0.04880214482545853, + -0.041755590587854385, + -0.039138369262218475, + -0.024401327595114708, + -0.02936430647969246, + 0.0556807667016983, + 0.055693209171295166, + 0.03320441395044327, + 0.00034835212863981724, + 0.017719268798828125, + 0.07283156365156174, + -0.003327935701236129, + 0.03543262183666229, + 0.00414060615003109, + -0.07725800573825836, + -0.05338648706674576, + 0.09614154696464539, + -0.050617948174476624, + 0.018481513485312462, + 0.03167777135968208, + -0.02287757396697998, + 0.0005867118015885353, + -0.0536423958837986, + -0.020605625584721565, + 0.011464349925518036, + -0.030290240421891212, + 0.0711221992969513, + 0.020660096779465675, + -0.015318632125854492, + 0.04880041256546974, + 0.01688324846327305, + -0.028967643156647682, + -0.03955049067735672, + -0.11184601485729218, + 0.17146752774715424, + 0.08238431811332703, + -0.002738955896347761, + -0.058955587446689606, + -0.06897035241127014, + 0.09003840386867523, + -0.009812616743147373, + -0.10784505307674408, + -0.027097230777144432, + 0.06440021097660065, + 0.14617036283016205, + -0.01969076506793499, + -0.055733270943164825, + 0.038849085569381714, + 0.11995720863342285, + 0.049979887902736664, + 0.07123299688100815, + 0.08621516823768616, + 0.10666322708129883, + -0.032921262085437775, + 0.006459346506744623, + 0.041732095181941986, + 0.0870308130979538, + 0.07335962355136871, + -0.0020383328665047884, + 0.033529508858919144, + 0.0009053430985659361, + -0.015052133239805698, + -0.014228877611458302, + -0.0341176837682724, + -0.022708691656589508, + -0.0058417534455657005, + 0.008260474540293217, + 0.020324915647506714, + 0.027046389877796173, + -0.02797975018620491, + 0.0632672905921936, + 0.041860174387693405, + -0.00863546784967184, + 0.05933716893196106, + 0.01817016303539276, + 0.01571546122431755, + 0.07002922892570496, + -0.09937640279531479, + -0.08078598976135254, + 0.04861612617969513, + 0.017239488661289215, + 0.03527238965034485, + 0.07749965786933899, + 0.040935199707746506, + -0.02634143829345703, + 0.11926497519016266, + 0.04318404942750931, + -0.010764160193502903, + 0.013201180845499039, + -0.09105083346366882, + 0.12342653423547745, + 0.11026807874441147, + -0.027273029088974, + 0.051274314522743225, + -0.05674508959054947, + 0.08958464115858078, + 0.051044873893260956, + -0.13859692215919495, + -0.07745301723480225, + 0.015450185164809227, + 0.015069538727402687, + -0.017095256596803665, + 0.12328608334064484, + -0.0021681305952370167, + 0.06407656520605087, + 0.10999579727649689, + -0.10157221555709839, + -0.05042215436697006, + -0.025978311896324158, + 0.048142313957214355, + -0.09797748923301697, + 0.059781208634376526, + 0.05708244442939758, + -0.011131984181702137, + 0.020146246999502182, + 0.06837328523397446, + -0.021472342312335968, + 0.009674872271716595, + 0.01459462009370327, + -0.05541980266571045, + 0.0023015919141471386, + -0.031046949326992035, + -0.011620761826634407, + 0.03468741849064827, + 0.027203360572457314, + 0.046746961772441864, + -0.0187997967004776, + -0.029246270656585693, + -0.13109919428825378, + 0.025988835841417313, + 0.03092006966471672, + 0.056365422904491425, + -0.012007994577288628, + -0.039373014122247696, + -0.034047313034534454, + -0.07035766541957855, + 0.013507400639355183, + -0.007875584997236729, + 0.05060463398694992, + -0.02387099526822567, + 0.007717732340097427, + 0.09041944891214371, + 0.041866544634103775, + -0.01242828369140625, + -0.03630158677697182, + -0.05333526059985161, + 0.010161603800952435, + 0.05040629208087921, + -0.08434578776359558, + -0.08028256148099899, + -0.016978222876787186, + 0.029886778444051743, + -0.019844239577651024, + 0.061177946627140045, + 0.05779300630092621, + 0.02064438909292221, + 0.022764405235648155, + -0.06299805641174316, + 0.006624080240726471, + -0.1037154346704483, + -0.08396510779857635, + -0.011568926274776459, + -0.016440793871879578, + -0.020698431879281998, + 0.07582233846187592, + 0.013021954335272312, + 0.06354506313800812, + -0.038435399532318115, + -0.04189471900463104, + -0.08367975056171417, + 0.053421203047037125, + 0.05864348262548447, + 0.006749191787093878, + 0.05156416445970535, + 0.05735238268971443, + -0.02956988848745823, + 0.06539896130561829, + 0.05777057260274887, + 0.10557493567466736, + -0.023623373359441757, + 0.028875652700662613, + -0.06988620012998581, + 0.09637941420078278, + 0.09502626955509186, + -0.06928315758705139, + -0.08859211206436157, + -0.036927372217178345, + -0.08109502494335175, + 0.048474378883838654, + -0.0327536016702652, + -0.001456666854210198, + 0.03568661957979202, + 0.00914892740547657, + -0.11304029822349548, + -0.08176206052303314, + 0.08448360860347748, + -0.05312156304717064, + -0.006756352260708809, + -0.08260433375835419, + 0.05436480790376663, + 0.109525166451931, + 0.037000566720962524, + -0.0370929092168808, + -0.0195329487323761, + 0.0471968874335289, + -0.025126691907644272, + 0.016944408416748047, + 0.0459243580698967, + 0.05811868607997894, + -0.10650826245546341, + -0.001933423918671906, + -0.07025714218616486, + 0.031967777758836746, + -0.05384049564599991, + 0.1429595649242401, + 0.01064557395875454, + -0.0460495725274086, + -0.08517690747976303, + 0.068721242249012, + -0.008044741116464138, + 0.04722782224416733, + 0.024256261065602303, + 0.05122235417366028, + 0.043867725878953934, + -0.09508968889713287, + 0.1171967089176178, + 0.042246345430612564, + -0.046473052352666855, + -0.06898881494998932, + -0.04760158807039261, + -0.03766796737909317, + 0.03268912807106972, + 0.016161737963557243, + -0.08264794945716858, + -0.02973749116063118, + 0.02060704305768013, + 0.009672337211668491, + 0.06370183825492859, + 0.14448684453964233, + 0.041367240250110626, + -0.12331701815128326 + ] + }, + "p244_196.wav": { + "name": "p244", + "embedding": [ + 0.021600846201181412, + 0.004570044577121735, + -0.07494718581438065, + 0.11656808853149414, + -0.08416303992271423, + -0.0036705578677356243, + -0.0676426962018013, + 0.028364302590489388, + 0.004655107855796814, + 0.0421636700630188, + -0.020549116656184196, + 0.10482598096132278, + -0.007486165966838598, + -0.15837056934833527, + 0.017453154549002647, + 0.05888497084379196, + -0.018500788137316704, + -0.04646013304591179, + -0.0852256640791893, + 0.0017188191413879395, + 0.0239394661039114, + 0.058483004570007324, + 0.09829157590866089, + -0.11539868265390396, + 0.05027247592806816, + 0.06059977039694786, + 0.03152298182249069, + 0.0605325847864151, + 0.006205031182616949, + -0.08786999434232712, + -0.02531738579273224, + 0.07218952476978302, + -0.04300328716635704, + -0.04287872835993767, + -0.006608361378312111, + -0.017997456714510918, + 0.006549905054271221, + -0.05062362551689148, + -0.00022188297589309514, + 0.060666222125291824, + -0.03764817863702774, + 0.08683430403470993, + 0.0381389781832695, + -0.06500234454870224, + 0.044205278158187866, + -0.014747124165296555, + -0.07458034157752991, + -0.011999599635601044, + -0.14061351120471954, + 0.1476481556892395, + 0.0013768341159448028, + 0.03952260687947273, + -0.07445188611745834, + -0.10498807579278946, + 0.08857572078704834, + 0.03125270456075668, + -0.07170958071947098, + -0.07785048335790634, + 0.019192785024642944, + 0.14542174339294434, + 0.01966034434735775, + 0.031899575144052505, + 0.060237716883420944, + 0.04126972332596779, + 0.10605190694332123, + 0.022118283435702324, + 0.04622618108987808, + 0.09566080570220947, + 0.03816326707601547, + 0.04114250838756561, + 0.05145137757062912, + 0.10741766542196274, + -0.03579790145158768, + 0.03237021714448929, + -0.0016727469628676772, + 0.0007892122375778854, + -0.04242180287837982, + -0.05049879848957062, + -0.00753529230132699, + -0.021233510226011276, + 0.029774416238069534, + -0.01037671323865652, + 0.08324018120765686, + 0.008410842157900333, + -0.07947350293397903, + 0.05544404685497284, + 0.07956980913877487, + -0.051099494099617004, + 0.03790952265262604, + 0.015305854380130768, + -0.028178324922919273, + 0.04381226375699043, + -0.05355055630207062, + -0.09496687352657318, + -0.038160040974617004, + 0.0489855632185936, + 0.03625588119029999, + 0.025230666622519493, + 0.011667909100651741, + -0.04750958830118179, + 0.09341155737638474, + 0.028735613450407982, + -0.002344172215089202, + 0.014013756066560745, + 0.011318717151880264, + 0.06484272330999374, + 0.1116248294711113, + 0.02786775305867195, + 0.03783769533038139, + -0.005671270191669464, + 0.02077414095401764, + 0.028183581307530403, + -0.07662416249513626, + -0.08070453256368637, + 0.002776081906631589, + -0.04332665726542473, + 0.0015102250035852194, + 0.12315301597118378, + 0.012537411414086819, + 0.04657234251499176, + 0.11499587446451187, + -0.12760981917381287, + -0.0385301373898983, + 0.013204270973801613, + 0.05735161900520325, + -0.014100005850195885, + 0.016016315668821335, + 0.057698749005794525, + -0.0548892468214035, + -0.011758845299482346, + 0.03290052339434624, + -0.0022033657878637314, + 0.07848820835351944, + 0.041470713913440704, + -0.05197889357805252, + 0.11259084939956665, + -0.049750421196222305, + -0.04358360916376114, + 0.1818459928035736, + 0.02459142357110977, + 0.085120290517807, + -0.0760008692741394, + -0.025670839473605156, + -0.12971827387809753, + 0.05193028599023819, + 0.027295392006635666, + 0.05988822504878044, + -0.036803022027015686, + -0.01406625285744667, + -0.0860980674624443, + -0.1182086393237114, + 0.09125997126102448, + 0.026377592235803604, + 0.12329612672328949, + -0.01577657461166382, + -0.004697935190051794, + 0.07087470591068268, + -0.01746348850429058, + -0.02045099250972271, + 0.00040763261495158076, + -0.05951942503452301, + 0.02545331045985222, + 0.03147123381495476, + -0.04082140326499939, + -0.04136192798614502, + -0.03162946552038193, + 0.02418454922735691, + -0.02802218496799469, + 0.04737013578414917, + 0.04965860769152641, + 0.004983807448297739, + -0.007092426065355539, + -0.0015535918064415455, + -0.0005961758433841169, + -0.012993017211556435, + 0.01917100138962269, + -0.023778550326824188, + -0.062470052391290665, + -0.0899285301566124, + 0.11358119547367096, + 0.060554951429367065, + 0.050150010734796524, + -0.03811769187450409, + -0.046608246862888336, + -0.06418602913618088, + 0.04399752989411354, + -0.0017196411499753594, + -0.016996687278151512, + 0.06712747365236282, + 0.05948321148753166, + -0.006635765545070171, + 0.02376386895775795, + 0.056312933564186096, + 0.018657678738236427, + -0.013202209025621414, + -0.07997986674308777, + -0.05439700558781624, + 0.16799308359622955, + 0.09062279015779495, + -0.06793129444122314, + 0.003616803791373968, + -0.06300493329763412, + -0.10651971399784088, + 0.0637146532535553, + -0.01129967998713255, + 0.014622806571424007, + 0.07740678638219833, + -0.0005111450445838273, + -0.14024436473846436, + -0.08714594691991806, + 0.0643690973520279, + -0.049423135817050934, + -0.026361502707004547, + -0.042946238070726395, + -0.045069437474012375, + 0.07249227166175842, + 0.06336527317762375, + 0.02762836031615734, + 0.01384671963751316, + 0.05033210292458534, + -0.05946294963359833, + 0.053952306509017944, + 0.1397915631532669, + 0.023047752678394318, + -0.0274214930832386, + -0.044140443205833435, + -0.043370265513658524, + 0.04463500529527664, + -0.059287115931510925, + 0.11878107488155365, + 0.026769720017910004, + -0.001993618905544281, + -0.07708421349525452, + 0.12255621701478958, + -0.06935304403305054, + 0.09766803681850433, + 0.07733367383480072, + 0.047418490052223206, + 0.058376822620630264, + -0.0943300724029541, + 0.12575404345989227, + 0.04397275671362877, + -0.03334272652864456, + -0.07298876345157623, + -0.04376649111509323, + -0.03700684756040573, + 0.06267010420560837, + 0.05292423442006111, + -0.029407741501927376, + 0.05177991837263107, + 0.0552787110209465, + -0.009431647136807442, + 0.025952467694878578, + 0.12382227927446365, + 0.0839836448431015, + -0.017081599682569504 + ] + }, + "p244_257.wav": { + "name": "p244", + "embedding": [ + 0.054217152297496796, + 0.06817907840013504, + 0.03713423013687134, + -0.010684062726795673, + 0.01508484035730362, + 0.02617986500263214, + -0.1607087105512619, + 0.0865040272474289, + -0.027016805484890938, + 0.13708442449569702, + -0.10475902259349823, + 0.05688543990254402, + -0.010460307821631432, + -0.18352359533309937, + -0.03182586282491684, + 0.046695150434970856, + -0.04403897002339363, + -0.00015656184405088425, + -0.03932412341237068, + -0.007941464893519878, + 0.01766897365450859, + 0.05982992425560951, + 0.010327210649847984, + -0.03081132099032402, + 0.06301897764205933, + 0.03556942567229271, + 0.026293715462088585, + 0.06525366008281708, + 0.015808887779712677, + -0.007385138422250748, + 0.03630516678094864, + 0.1110234260559082, + -0.015532521530985832, + -0.021643897518515587, + 0.024781692773103714, + 0.03119952790439129, + 0.02551283687353134, + -0.06725099682807922, + -0.0099920853972435, + 0.03957259654998779, + -0.03227991983294487, + 0.059548743069171906, + 0.04365657642483711, + 0.013627806678414345, + 0.022105857729911804, + 0.03285133093595505, + 0.007680032402276993, + -0.07825607061386108, + -0.10873427987098694, + 0.15644240379333496, + 0.031608760356903076, + 0.014791199006140232, + -0.09001362323760986, + -0.06924799084663391, + 0.053502969443798065, + -0.002283245325088501, + -0.05754539743065834, + -0.03387531638145447, + 0.08830463886260986, + 0.15600371360778809, + -0.006379101425409317, + -0.04725562408566475, + 0.031896013766527176, + 0.08861653506755829, + 0.014177089557051659, + 0.08891838043928146, + 0.07531522214412689, + 0.054293036460876465, + 0.02357693575322628, + 0.011974422261118889, + 0.04840375855565071, + 0.02700851298868656, + -0.003739798441529274, + -0.034415025264024734, + 0.023159505799412727, + 0.021604256704449654, + -0.06547054648399353, + 0.023687567561864853, + 0.007296266499906778, + 0.010971713811159134, + 0.019776316359639168, + 0.0020363214425742626, + -0.014962133951485157, + 0.032938964664936066, + -0.0303499773144722, + 0.022993918508291245, + -0.00038847560063004494, + 0.01102515496313572, + 0.0934532880783081, + 0.03400835394859314, + 0.03465603291988373, + 0.026850994676351547, + -0.03414849564433098, + -0.09130959957838058, + 0.010474520735442638, + 0.021718217059969902, + -0.014649230986833572, + 0.030711600556969643, + 0.042217232286930084, + -0.03350149840116501, + 0.11534915864467621, + 0.010818365961313248, + 0.004705140367150307, + 0.005516288802027702, + -0.09385565668344498, + 0.08167917281389236, + 0.09037114679813385, + -0.025205662474036217, + 0.05022481828927994, + -0.0373944453895092, + 0.010105933994054794, + 0.07151336222887039, + -0.13596861064434052, + -0.0687650740146637, + 0.04273831471800804, + 0.015815328806638718, + 0.01326176431030035, + 0.11737816035747528, + -0.003587041050195694, + -0.01472906768321991, + 0.06475979089736938, + -0.06688492745161057, + -0.0668620839715004, + -0.006667150184512138, + 0.060433533042669296, + -0.0788603350520134, + 0.011358421295881271, + 0.06165245175361633, + -0.014212185516953468, + -0.031060297042131424, + 0.06001724302768707, + -0.005857196636497974, + 0.016740523278713226, + -0.05987732112407684, + 0.017589537426829338, + 0.0864129289984703, + -0.04939686134457588, + -0.002140121068805456, + 0.016073305159807205, + 0.0471375435590744, + 0.009931059554219246, + 0.047132834792137146, + -0.07978732883930206, + -0.10603523999452591, + -0.011530506424605846, + 0.03299398720264435, + 0.05002181977033615, + -0.03655140474438667, + -0.015670813620090485, + -0.08277647197246552, + -0.056168489158153534, + 0.02863014116883278, + -0.0033410582691431046, + 0.07885763794183731, + 0.03353947773575783, + -0.043872468173503876, + 0.1273277848958969, + -0.030313070863485336, + 0.021686825901269913, + -0.026045599952340126, + 0.013170342892408371, + 0.015548569150269032, + 0.025662554427981377, + -0.03252416104078293, + -0.06663279980421066, + 0.0026471256278455257, + 0.004096983931958675, + 0.0015172576531767845, + -0.003519449383020401, + 0.01300845481455326, + 0.0012318952940404415, + 0.01108726765960455, + -0.08890679478645325, + 0.024663930758833885, + -0.10311698913574219, + -0.044249389320611954, + 0.010110977105796337, + 0.007091917097568512, + 0.0025250613689422607, + 0.09350241720676422, + 0.014535675756633282, + 0.026898739859461784, + -0.012900945730507374, + -0.09027010202407837, + -0.042928844690322876, + 0.06134141981601715, + 0.1257837563753128, + -0.017717817798256874, + 0.027924351394176483, + 0.018012765794992447, + -0.0049772243946790695, + 0.03948676586151123, + 0.055222801864147186, + 0.07461942732334137, + -0.011198907159268856, + -0.029866714030504227, + -0.050751943141222, + 0.08282352238893509, + 0.035378821194171906, + -0.07516846060752869, + -0.061053477227687836, + 0.012696491554379463, + -0.05744007229804993, + 0.036156993359327316, + 0.007852068170905113, + 0.03852957487106323, + 0.01347978413105011, + -0.0425565168261528, + -0.07943952828645706, + -0.08678993582725525, + 0.016128182411193848, + -0.016244612634181976, + -0.034425437450408936, + -0.06773430109024048, + 0.06063462048768997, + 0.05729877948760986, + 0.05248463153839111, + 0.026279035955667496, + -0.0323423333466053, + -0.015695445239543915, + -0.07194054871797562, + -0.054092179983854294, + 0.0022027073428034782, + -0.03613854572176933, + -0.09956088662147522, + 0.024854637682437897, + -0.06626009941101074, + 0.10389111936092377, + -0.056514859199523926, + 0.10046537220478058, + 0.018408868461847305, + -0.07223938405513763, + -0.099718376994133, + -0.0012365737929940224, + -0.019542958587408066, + 0.05479367822408676, + 0.037622544914484024, + 0.013263262808322906, + 0.05212530121207237, + -0.048746272921562195, + 0.05929608270525932, + 0.020935308188199997, + 0.010361323133111, + -0.06887972354888916, + -0.034353163093328476, + -0.011098933406174183, + 0.03636820986866951, + -0.01962437480688095, + -0.049291301518678665, + 0.014690026640892029, + 0.02708308771252632, + -0.03550346940755844, + 0.05014926195144653, + 0.07363013178110123, + 0.03114086017012596, + -0.1266014575958252 + ] + }, + "p244_243.wav": { + "name": "p244", + "embedding": [ + 0.0496537983417511, + 0.07148614525794983, + 0.021776840090751648, + -0.04420365393161774, + -0.01760343834757805, + 0.10234972089529037, + -0.057350486516952515, + 0.055450133979320526, + -0.026158912107348442, + 0.04957691580057144, + -0.09098969399929047, + 0.018589302897453308, + 0.013466292060911655, + -0.13033759593963623, + -0.006506165489554405, + 0.017749708145856857, + -0.04192372038960457, + 0.022413771599531174, + -0.03578998148441315, + -0.03640943393111229, + 0.0020634308457374573, + 0.009275656193494797, + 0.05191638693213463, + -0.03734276816248894, + 0.046207915991544724, + 0.05116480216383934, + 0.03750753402709961, + 0.03076435811817646, + -0.008631564676761627, + -0.0362841933965683, + -0.04665122553706169, + 0.07105650007724762, + -0.048958275467157364, + -0.02607041411101818, + 0.06438344717025757, + -0.03418348729610443, + 0.053798459470272064, + -0.08436086773872375, + -0.035632822662591934, + 0.04042034223675728, + -0.06375569105148315, + 0.0798109918832779, + 0.028169002383947372, + 0.03995240479707718, + -0.0016235699877142906, + 0.02437409944832325, + 0.013301012106239796, + -0.04227359965443611, + -0.0427711196243763, + 0.125056654214859, + 0.04826640710234642, + 0.0048364270478487015, + -0.04363624006509781, + -0.022009389474987984, + 0.07150287926197052, + -0.011498454958200455, + -0.03685254231095314, + -0.0005462775006890297, + 0.03539516404271126, + 0.04325321316719055, + 0.00407005287706852, + -0.029902592301368713, + 0.04099159687757492, + 0.0728224515914917, + -0.01900591515004635, + 0.05258384346961975, + 0.07483074814081192, + 0.06308706849813461, + 0.012157123535871506, + 0.01546664908528328, + 0.05176263302564621, + 0.031836096197366714, + 0.03280312940478325, + -0.05306887626647949, + 0.0751296803355217, + 0.007853830233216286, + -0.03479786962270737, + -0.0008172448724508286, + -0.019581403583288193, + 0.0011207624338567257, + 0.058312512934207916, + 0.02676708996295929, + 0.00859091803431511, + 0.0021422291174530983, + -0.044636260718107224, + 0.03409015014767647, + -0.032026100903749466, + 0.11473701894283295, + 0.06617042422294617, + 0.015520346350967884, + 0.04059837386012077, + 0.005340930074453354, + -0.035301968455314636, + -0.0752391442656517, + 0.05727509781718254, + 0.043912678956985474, + -0.026067981496453285, + 0.019499771296977997, + 0.060590069741010666, + -0.046020012348890305, + 0.08839106559753418, + 0.013256851583719254, + -0.01371961459517479, + 0.026423536241054535, + -0.04773329570889473, + 0.04620172828435898, + 0.06265450268983841, + -0.015434358268976212, + 0.05078808590769768, + -0.030986063182353973, + 0.0565127395093441, + 0.061163291335105896, + -0.09150287508964539, + -0.04668935388326645, + -0.008939883671700954, + -0.02446798048913479, + 0.025457177311182022, + 0.09199629724025726, + -0.0632307156920433, + -0.003209749236702919, + 0.03623364865779877, + -0.04287661612033844, + -0.024834370240569115, + 0.028979206457734108, + -0.015589846298098564, + -0.016861289739608765, + -0.024578209966421127, + 0.011902537196874619, + 0.02433544024825096, + -0.06909365952014923, + 0.036940060555934906, + 0.008511897176504135, + 0.021490387618541718, + -0.03275580704212189, + 0.015811150893568993, + 0.006363799795508385, + -0.013089841231703758, + -0.05089762806892395, + 0.012664316222071648, + 0.040065620094537735, + 0.0045433808118104935, + 0.018461642786860466, + -0.011409259401261806, + -0.08628358691930771, + -0.028506871312856674, + -0.043545424938201904, + 0.014133861288428307, + 0.014757659286260605, + -0.007810079492628574, + -0.05664723739027977, + 0.005982495844364166, + -0.031260378658771515, + -0.03412795811891556, + 0.005835369229316711, + 0.08807926625013351, + -0.07623422890901566, + 0.06397680193185806, + -0.008761722594499588, + -0.0024147694930434227, + -0.02402361109852791, + -0.039437536150217056, + 0.038130760192871094, + 0.03420870006084442, + 0.01828708127140999, + -0.08088166266679764, + 0.008070899173617363, + -0.058747030794620514, + -0.016414711251854897, + 0.007791649550199509, + 0.03728866949677467, + 0.011414555832743645, + -0.03592882305383682, + -0.10362247377634048, + 0.008158802054822445, + -0.059648364782333374, + -0.03001588210463524, + 0.05846205726265907, + 0.03796972706913948, + -0.029759153723716736, + 0.08839068561792374, + 0.015214415267109871, + 0.01153050921857357, + -0.044976428151130676, + -0.04810979217290878, + 0.02229764312505722, + 0.049450017511844635, + 0.05249151960015297, + 0.010856163688004017, + 0.02078171819448471, + 0.019478069618344307, + -0.013212203048169613, + 0.019681233912706375, + 0.05850540101528168, + 0.040312185883522034, + 0.012158304452896118, + 0.018736816942691803, + 0.033820632845163345, + 0.0789564847946167, + -0.03840504586696625, + -0.05302596464753151, + -0.011583568528294563, + 0.03829023614525795, + -0.030618302524089813, + 0.03171209990978241, + 0.03412092849612236, + 0.029437704011797905, + 0.01697186566889286, + -0.0162479430437088, + -0.019336581230163574, + -0.04806980863213539, + 0.04005665332078934, + -0.05400575324892998, + -0.053565315902233124, + -0.04512491077184677, + 0.06284303963184357, + 0.09372460842132568, + 0.003204282373189926, + -0.010787910781800747, + 0.007113994099199772, + 0.024702662602066994, + 0.002831178717315197, + -0.04153360798954964, + -0.005381220951676369, + 0.0162077397108078, + -0.06178746744990349, + 0.03063601441681385, + -0.07237537205219269, + 0.0566478967666626, + 0.0004073847085237503, + 0.04033561423420906, + 0.034208349883556366, + -0.03643691539764404, + -0.06485859304666519, + 0.00234314426779747, + 0.023937370628118515, + 0.01727699488401413, + 0.015712106600403786, + 0.0025768503546714783, + 0.02442970499396324, + -0.05173017829656601, + 0.06560733914375305, + 0.018253043293952942, + -0.062135741114616394, + -0.06955192238092422, + 0.019178681075572968, + -0.009437156841158867, + -0.0030983006581664085, + -0.017779942601919174, + -0.06672994792461395, + 0.031055737286806107, + 0.044334687292575836, + 0.007163724862039089, + -0.003793437033891678, + 0.04955937713384628, + 0.016003098338842392, + -0.03738771751523018 + ] + }, + "p244_314.wav": { + "name": "p244", + "embedding": [ + 0.058189090341329575, + 0.08328896015882492, + -0.019870830699801445, + 0.04033106565475464, + -0.05518024414777756, + 0.05683111771941185, + -0.14662623405456543, + 0.15226973593235016, + -0.017862394452095032, + 0.12585902214050293, + -0.04486176371574402, + 0.11680450290441513, + -0.0017784859519451857, + -0.18154475092887878, + -0.014797395095229149, + 0.05158832296729088, + -0.03777815029025078, + -0.03121890127658844, + -0.036893799901008606, + -0.019995711743831635, + 0.027361994609236717, + 0.04641467332839966, + 0.03780312463641167, + -0.011549239978194237, + 0.033320337533950806, + 0.06110489368438721, + -0.006291741039603949, + 0.04302414506673813, + 0.00817878358066082, + -0.05899279564619064, + -0.032528720796108246, + 0.09335144609212875, + -0.06489218771457672, + 0.0038668960332870483, + 0.04622727259993553, + -0.03809979557991028, + -0.020089540630578995, + -0.06341849267482758, + -0.026350483298301697, + 0.008132942020893097, + -0.03756358474493027, + 0.08730803430080414, + 0.04473651200532913, + -0.009048603475093842, + 0.04271477460861206, + 0.01764708012342453, + -0.014358106069266796, + -0.0492914542555809, + -0.11002098023891449, + 0.15273647010326385, + 0.07353895902633667, + 0.0044957115314900875, + -0.07629137486219406, + -0.04969843477010727, + 0.09433846175670624, + -0.012889936566352844, + -0.10728929936885834, + -0.04489409178495407, + 0.07027588039636612, + 0.14630010724067688, + -0.02927815169095993, + -0.028377022594213486, + 0.03878505155444145, + 0.11661815643310547, + 0.0734134167432785, + 0.0770699605345726, + 0.08848022669553757, + 0.1081513911485672, + -0.02446851134300232, + 0.027669355273246765, + 0.03946433216333389, + 0.06152413412928581, + 0.027478236705064774, + -0.006568976677954197, + 0.017857316881418228, + -0.013308866880834103, + -0.022153761237859726, + -0.035098083317279816, + -0.016449620947241783, + -0.007675682660192251, + -0.009231727570295334, + 0.013680900447070599, + 0.01681022346019745, + 0.05187910050153732, + -0.033181335777044296, + 0.058382004499435425, + 0.031433332711458206, + -0.020052604377269745, + 0.07001323252916336, + 0.017471078783273697, + 0.015135802328586578, + 0.05827289819717407, + -0.09021304547786713, + -0.07201912254095078, + 0.027981897816061974, + 0.008285891264677048, + 0.019174732267856598, + 0.0709538534283638, + 0.0399681031703949, + -0.019897790625691414, + 0.12926897406578064, + 0.049333423376083374, + -0.02260538749396801, + 0.021187951788306236, + -0.07937096059322357, + 0.12588301301002502, + 0.06677859276533127, + -0.018462661653757095, + 0.06658520549535751, + -0.0637638121843338, + 0.059569936245679855, + 0.04461345076560974, + -0.1420869529247284, + -0.06438659131526947, + 0.04538906738162041, + 0.024091191589832306, + -0.020170483738183975, + 0.14517489075660706, + 0.008319725282490253, + 0.05785977467894554, + 0.09981721639633179, + -0.08425429463386536, + -0.05074786767363548, + -0.0065811555832624435, + 0.0756840705871582, + -0.08425749838352203, + 0.057109665125608444, + 0.05769902467727661, + -0.03566598519682884, + 0.019076049327850342, + 0.07852409034967422, + -0.0024287491105496883, + 0.001566002145409584, + 0.020290274173021317, + -0.03629479557275772, + 0.03554604947566986, + -0.02274053357541561, + 0.00030595375574193895, + 0.020214663818478584, + 0.019848506897687912, + 0.05514785274863243, + -0.01920432038605213, + -0.033546604216098785, + -0.11244093626737595, + 0.012729580514132977, + 0.014519269578158855, + 0.09060710668563843, + -0.016394881531596184, + -0.025541752576828003, + -0.04367658495903015, + -0.06002841517329216, + 0.005690529011189938, + -0.005733620375394821, + 0.06822238862514496, + -0.02594325691461563, + 0.009213937446475029, + 0.09218312799930573, + 0.04258815944194794, + 0.012296490371227264, + -0.038743309676647186, + -0.028646690770983696, + 0.008165912702679634, + 0.06090899556875229, + -0.07143577933311462, + -0.05946118384599686, + -0.004967029672116041, + 0.028952833265066147, + -0.023998720571398735, + 0.05868818610906601, + 0.044262226670980453, + 0.029638690873980522, + 0.017709076404571533, + -0.0644371509552002, + 0.01606839708983898, + -0.08243139088153839, + -0.06460702419281006, + -0.011517878621816635, + 0.003940228838473558, + -0.05052667111158371, + 0.08392050862312317, + 0.03881645202636719, + 0.0732821524143219, + -0.014804787933826447, + -0.054264187812805176, + -0.07968159019947052, + 0.04153744876384735, + 0.060080237686634064, + -0.03577987104654312, + 0.02996356412768364, + 0.05711451917886734, + -0.030609674751758575, + 0.03967222571372986, + 0.06678580492734909, + 0.07600799947977066, + -0.026193827390670776, + 0.006314205937087536, + -0.07750841230154037, + 0.08896313607692719, + 0.09156018495559692, + -0.09196722507476807, + -0.07050235569477081, + -0.01968182437121868, + -0.07564805448055267, + 0.02069227211177349, + -0.017966702580451965, + 0.01135404221713543, + 0.03758442401885986, + 0.0012297378852963448, + -0.10626548528671265, + -0.09850363433361053, + 0.08135496824979782, + -0.08703020215034485, + 0.008375107310712337, + -0.08168002218008041, + 0.03508300334215164, + 0.10222812741994858, + 0.03336772322654724, + -0.016128789633512497, + -0.039159901440143585, + 0.04077637940645218, + -0.01705327443778515, + 0.023092731833457947, + 0.07385499775409698, + 0.04902614280581474, + -0.12242518365383148, + 0.003336608875542879, + -0.054648544639348984, + 0.04984314367175102, + -0.04390290379524231, + 0.14673185348510742, + 0.027665581554174423, + -0.04729912430047989, + -0.09152021259069443, + 0.040928665548563004, + -0.024485599249601364, + 0.05533696338534355, + 0.018295910209417343, + 0.060188330709934235, + 0.05471951887011528, + -0.06382420659065247, + 0.10541071742773056, + 0.0420050248503685, + -0.040507327765226364, + -0.07317264378070831, + -0.05019377917051315, + -0.033423732966184616, + 0.03914516419172287, + 0.02516632340848446, + -0.09057886898517609, + -0.02471725456416607, + 0.026833143085241318, + -0.015160108916461468, + 0.06940527260303497, + 0.13769495487213135, + 0.06705563515424728, + -0.1282826066017151 + ] + }, + "p244_084.wav": { + "name": "p244", + "embedding": [ + 0.051604341715574265, + 0.09811769425868988, + -0.014263994991779327, + 0.0610053651034832, + -0.0416816845536232, + 0.08750665187835693, + -0.12090042233467102, + 0.12208235263824463, + -0.03654148057103157, + 0.14760874211788177, + -0.07977951318025589, + 0.11291170120239258, + -0.02385380119085312, + -0.1708386391401291, + -0.02671956829726696, + 0.05178339406847954, + -0.026934895664453506, + 0.00409318134188652, + -0.02340730093419552, + 0.0346224382519722, + 0.03688936308026314, + 0.018883828073740005, + 0.0432685948908329, + -0.025522038340568542, + 0.017313934862613678, + 0.04718276485800743, + 0.010341386310756207, + 0.07456313073635101, + 0.039054397493600845, + -0.05054716020822525, + -0.04417014122009277, + 0.14093933999538422, + -0.0545610673725605, + 0.032919444143772125, + 0.0736430212855339, + 0.001354882726445794, + -0.0376882366836071, + -0.04634205996990204, + 0.019827060401439667, + -0.026523705571889877, + -0.04861428216099739, + 0.06439264863729477, + 0.02031162567436695, + -0.008433395996689796, + 0.05738072469830513, + 0.014285392127931118, + -0.03192329779267311, + -0.03650354593992233, + -0.0944942757487297, + 0.1373983472585678, + 0.06005046144127846, + -0.010155048221349716, + -0.059394270181655884, + -0.06725683808326721, + 0.07570242136716843, + 0.011265772394835949, + -0.11842174082994461, + -0.06226905807852745, + 0.08579135686159134, + 0.14969249069690704, + 0.002429233631119132, + -0.020549530163407326, + 0.0024186880327761173, + 0.11962328106164932, + 0.0493924543261528, + 0.13044627010822296, + 0.056852683424949646, + 0.10640191286802292, + 0.022912979125976562, + 0.07021445035934448, + 0.05065598338842392, + 0.04676847159862518, + 0.03733495622873306, + -0.012725704349577427, + 0.03820490837097168, + -0.019375376403331757, + -0.013355287723243237, + 0.02856229618191719, + -0.00545619847252965, + -0.02089039795100689, + -0.006917298771440983, + -0.0023123316932469606, + 0.006824534386396408, + 0.015750303864479065, + -0.02445332705974579, + 0.05177246406674385, + 0.024833135306835175, + -0.0024375231005251408, + 0.05845513567328453, + 0.04720700904726982, + -0.004579523578286171, + 0.048411156982183456, + -0.07170287519693375, + -0.10785875469446182, + 0.02008138969540596, + -0.0035158831160515547, + 0.022593645378947258, + 0.07504834234714508, + 0.020558828487992287, + -0.0062482766807079315, + 0.08665294200181961, + 0.046918921172618866, + 0.002952472073957324, + 0.05231308937072754, + -0.09236903488636017, + 0.13568313419818878, + 0.05673353374004364, + -0.002633399562910199, + 0.05058702081441879, + -0.05336853116750717, + 0.09097936749458313, + 0.08665481209754944, + -0.13190144300460815, + -0.05041259527206421, + 0.02217324823141098, + -0.02286217175424099, + -0.029726730659604073, + 0.11200840026140213, + 0.004216296132653952, + 0.00020546141604427248, + 0.10521154850721359, + -0.10657675564289093, + -0.07603424042463303, + -0.028257951140403748, + 0.04241570830345154, + -0.1027575209736824, + 0.056877363473176956, + 0.01674332097172737, + -0.020381741225719452, + -0.02296331711113453, + 0.09616480767726898, + -0.015201859176158905, + 0.017796436324715614, + 0.039782628417015076, + -0.05108533799648285, + 0.037633053958415985, + -0.055824849754571915, + 0.02805270068347454, + 0.04100172221660614, + 0.013236277736723423, + 0.06155730411410332, + -0.009169825352728367, + -0.009187893010675907, + -0.09479092806577682, + -0.0055715106427669525, + 0.07103476673364639, + 0.05320173129439354, + -0.012456915341317654, + -0.03242434561252594, + -0.028705483302474022, + -0.07609817385673523, + 0.05597716569900513, + -0.02447592467069626, + 0.06675741076469421, + 0.006179492454975843, + -0.017926599830389023, + 0.09886594116687775, + 0.000275897269602865, + 0.013314693234860897, + -0.08470045775175095, + -0.038066793233156204, + 0.03989410772919655, + 0.05198024585843086, + -0.1146978810429573, + -0.054715439677238464, + 0.011165555566549301, + -0.0004064561799168587, + -0.02484569512307644, + 0.016470544040203094, + 0.06268839538097382, + 0.023333106189966202, + 0.03522251173853874, + -0.057563938200473785, + -0.007925435900688171, + -0.10611504316329956, + -0.07634145766496658, + -0.03927495330572128, + -0.031650058925151825, + -0.008765924721956253, + 0.07862423360347748, + 0.00533115491271019, + 0.023257698863744736, + 0.0031812211964279413, + -0.049759391695261, + -0.08077029883861542, + 0.07584704458713531, + 0.06460115313529968, + 0.013984402641654015, + 0.07015544921159744, + 0.024263303726911545, + -0.059308186173439026, + 0.04224339872598648, + 0.03889017552137375, + 0.1080479845404625, + -0.02980426885187626, + -0.0014536608941853046, + -0.10237404704093933, + 0.07834376394748688, + 0.12810739874839783, + -0.10312961786985397, + -0.09728986769914627, + -0.008417700417339802, + -0.06349428743124008, + 0.03650590032339096, + -0.06534174829721451, + -0.022363172844052315, + 0.048402391374111176, + -0.03054070472717285, + -0.0976184755563736, + -0.11152041703462601, + 0.09158995002508163, + -0.08530271798372269, + -0.028057396411895752, + -0.07118166983127594, + 0.05288759246468544, + 0.05012667179107666, + 0.03095475398004055, + -0.06199873983860016, + 0.013133074156939983, + 0.07272883504629135, + -0.061854228377342224, + -0.009538339450955391, + 0.042992960661649704, + 0.01094140112400055, + -0.09632518142461777, + 0.014837837778031826, + -0.059064172208309174, + 0.049364279955625534, + -0.09104690700769424, + 0.16856735944747925, + -0.036067042499780655, + -0.06645169109106064, + -0.06130995973944664, + 0.05301263928413391, + -0.008653507567942142, + 0.00774807995185256, + 0.04118992015719414, + 0.05217945948243141, + 0.010038829408586025, + -0.0882728099822998, + 0.1309017390012741, + 0.0032823383808135986, + 0.004697061609476805, + -0.06261685490608215, + -0.03354364633560181, + -0.07051791995763779, + 0.039884086698293686, + 0.0049809785559773445, + -0.11908350884914398, + -0.0051313587464392185, + 0.04084852710366249, + -0.010133069939911366, + 0.04241776093840599, + 0.14744196832180023, + 0.03705946356058121, + -0.09257277101278305 + ] + }, + "p244_381.wav": { + "name": "p244", + "embedding": [ + 0.04341677948832512, + 0.1073475107550621, + -0.008771320804953575, + 0.025793597102165222, + -0.06034603342413902, + 0.05284808203577995, + -0.12969771027565002, + 0.15179681777954102, + -0.03252333030104637, + 0.13070034980773926, + -0.07093685865402222, + 0.12346307933330536, + -0.02149377390742302, + -0.1783321499824524, + -0.029719378799200058, + 0.05239094793796539, + -0.042203910648822784, + -0.023475302383303642, + -0.03338625654578209, + -0.02097449079155922, + 0.04296841844916344, + 0.04079088196158409, + 0.03570307791233063, + 0.006935593672096729, + 0.019928239285945892, + 0.06358444690704346, + 0.012185068801045418, + 0.05421772599220276, + 0.024306144565343857, + -0.05819404125213623, + -0.044390082359313965, + 0.10158322751522064, + -0.03824760019779205, + 0.016141919419169426, + 0.05444764718413353, + -0.028317561373114586, + 0.0009654347086325288, + -0.05414428561925888, + -0.018788300454616547, + 0.010425617918372154, + -0.03227647393941879, + 0.07732071727514267, + 0.033353567123413086, + -0.006563347764313221, + 0.04413064569234848, + 0.03297431766986847, + -0.01601649448275566, + -0.04956702142953873, + -0.10220091789960861, + 0.16640128195285797, + 0.08102753013372421, + -0.01479036919772625, + -0.061633482575416565, + -0.06500162929296494, + 0.09764530509710312, + -0.019478721544146538, + -0.11207052320241928, + -0.03911671042442322, + 0.08399231731891632, + 0.14033445715904236, + -0.020377619192004204, + -0.03329949826002121, + 0.032989464700222015, + 0.1351226419210434, + 0.03600941225886345, + 0.08121860027313232, + 0.07209289073944092, + 0.09634991735219955, + -0.03067067079246044, + 0.02809285745024681, + 0.036013782024383545, + 0.06857641786336899, + 0.024744777008891106, + -0.0057105920277535915, + 0.023424573242664337, + -0.013522958382964134, + -0.013475018553435802, + 0.0030408918391913176, + -0.02372049167752266, + -0.017203763127326965, + -0.023289095610380173, + 0.020534060895442963, + -0.004774767439812422, + 0.014394199475646019, + -0.021375581622123718, + 0.07199624180793762, + 0.01304722111672163, + 0.0014974919613450766, + 0.07224538922309875, + 0.030003635212779045, + 0.021132756024599075, + 0.05846944451332092, + -0.06949639320373535, + -0.08348613232374191, + 0.025071745738387108, + 0.002429547719657421, + 0.025900837033987045, + 0.07609982788562775, + 0.028654366731643677, + -0.018264619633555412, + 0.1265159696340561, + 0.06027061864733696, + -0.017972778528928757, + 0.025379231199622154, + -0.0926315188407898, + 0.13038262724876404, + 0.07949034869670868, + -0.01922530308365822, + 0.05550000071525574, + -0.05309709161520004, + 0.07634508609771729, + 0.048877447843551636, + -0.13367250561714172, + -0.07862475514411926, + 0.02520143985748291, + 0.02739669941365719, + -0.021427828818559647, + 0.11429973691701889, + -0.006505858153104782, + 0.04265352711081505, + 0.10180032253265381, + -0.07890903949737549, + -0.056678272783756256, + -0.021216150373220444, + 0.05551435053348541, + -0.08390554040670395, + 0.057996638119220734, + 0.06116005405783653, + -0.02618424966931343, + 0.014149047434329987, + 0.07943625003099442, + -0.00888913869857788, + 0.009824625216424465, + 0.024802178144454956, + -0.05356365442276001, + 0.013201368972659111, + -0.03795601427555084, + 0.003438686951994896, + 0.023607995361089706, + 0.04340258240699768, + 0.04475387558341026, + -0.005942606832832098, + -0.03690020367503166, + -0.11095878481864929, + 0.01246271189302206, + 0.023430785164237022, + 0.06750155240297318, + -0.0032700037118047476, + -0.03140381723642349, + -0.03426390513777733, + -0.05181468650698662, + -0.004592780023813248, + -0.004905383102595806, + 0.06533487141132355, + -0.03434694558382034, + 0.00934026949107647, + 0.0926489531993866, + 0.03468146175146103, + -0.006690116599202156, + -0.05517193675041199, + -0.03978569060564041, + 0.015130773186683655, + 0.04002753272652626, + -0.07221086323261261, + -0.0672585517168045, + -0.006059734150767326, + 0.034211110323667526, + -0.016887914389371872, + 0.05225538834929466, + 0.046110399067401886, + 0.01715187355875969, + 0.03540686517953873, + -0.06373138725757599, + 0.021797746419906616, + -0.09525369107723236, + -0.07104472070932388, + -0.016137883067131042, + -0.00022903134231455624, + -0.028076112270355225, + 0.07450765371322632, + 0.02187679521739483, + 0.05859164148569107, + 0.0001997953950194642, + -0.05988259240984917, + -0.07644517719745636, + 0.05538828298449516, + 0.07648622989654541, + -0.0015153571730479598, + 0.060034848749637604, + 0.05793853849172592, + -0.03835876286029816, + 0.06262432038784027, + 0.05504261702299118, + 0.09003640711307526, + -0.022267840802669525, + 0.01021746639162302, + -0.07668166607618332, + 0.06484633684158325, + 0.08177302032709122, + -0.10056883096694946, + -0.08299553394317627, + -0.03199594467878342, + -0.0659000426530838, + 0.037376366555690765, + -0.015332475304603577, + 0.004760111216455698, + 0.034978121519088745, + 0.0030747801065444946, + -0.09585627168416977, + -0.0832873210310936, + 0.08112706243991852, + -0.07522360235452652, + 0.0017717391019687057, + -0.06651327013969421, + 0.04485924169421196, + 0.11069697141647339, + 0.03757959231734276, + -0.030086612328886986, + -0.03303404897451401, + 0.05046907067298889, + -0.03137282282114029, + 0.00520274369046092, + 0.039818476885557175, + 0.04454108700156212, + -0.10190726816654205, + 0.024199089035391808, + -0.07636377215385437, + 0.04972470551729202, + -0.05510641634464264, + 0.1527385711669922, + 0.016285350546240807, + -0.05682217329740524, + -0.08974766731262207, + 0.04562423378229141, + -0.03084569051861763, + 0.04445897042751312, + 0.019047817215323448, + 0.047827742993831635, + 0.03978996351361275, + -0.07643681764602661, + 0.12102888524532318, + 0.0374063216149807, + -0.0512007437646389, + -0.06802412867546082, + -0.039206959307193756, + -0.0369035080075264, + 0.032420527189970016, + 0.030841780826449394, + -0.08794756978750229, + -0.04251791536808014, + 0.016675978899002075, + -0.016585037112236023, + 0.08672520518302917, + 0.14482924342155457, + 0.05615047737956047, + -0.12799817323684692 + ] + }, + "p244_213.wav": { + "name": "p244", + "embedding": [ + 0.06063387542963028, + 0.09088286012411118, + -0.02059152163565159, + 0.032020073384046555, + -0.05988572537899017, + 0.0723220556974411, + -0.12940607964992523, + 0.12636318802833557, + -0.045298121869564056, + 0.14331963658332825, + -0.07684795558452606, + 0.12841464579105377, + -0.012536706402897835, + -0.1828201413154602, + -0.044974327087402344, + 0.051794108003377914, + -0.04740993306040764, + -0.041843660175800323, + -0.02893747203052044, + -0.02371636964380741, + 0.045474354177713394, + 0.03983817994594574, + 0.021494602784514427, + 0.026943404227495193, + 0.019927185028791428, + 0.07009950280189514, + -0.016969742253422737, + 0.030348345637321472, + 0.007913130335509777, + -0.05619708448648453, + -0.04856492951512337, + 0.11403857171535492, + -0.04882218688726425, + 0.02130783721804619, + 0.04543076828122139, + -0.002714884001761675, + 0.0006889792857691646, + -0.07370182126760483, + -0.024890892207622528, + -0.005919487681239843, + -0.04606601595878601, + 0.07007649540901184, + 0.030724164098501205, + -0.018031666055321693, + 0.03520209714770317, + 0.012746227905154228, + -0.016881104558706284, + -0.049773335456848145, + -0.0956871286034584, + 0.15483318269252777, + 0.06869284808635712, + -0.0011774423765018582, + -0.0601097047328949, + -0.05916410684585571, + 0.10911138355731964, + -0.015386508777737617, + -0.11659061163663864, + -0.027826296165585518, + 0.08022873848676682, + 0.165179044008255, + -0.036213479936122894, + -0.03594476357102394, + 0.02946079894900322, + 0.1263713389635086, + 0.05523587018251419, + 0.09272502362728119, + 0.08768778294324875, + 0.11858895421028137, + -0.020024627447128296, + 0.008001770824193954, + 0.06450255215167999, + 0.07732878625392914, + 0.07727347314357758, + -0.024613752961158752, + 0.025937147438526154, + 0.000599780585616827, + -0.020001614466309547, + -0.001691059791482985, + -0.03903985023498535, + -0.013570407405495644, + -0.020673740655183792, + -0.006278165150433779, + 0.008135601878166199, + 0.0234671700745821, + -0.0320683978497982, + 0.05334707722067833, + 0.048380665481090546, + -0.022934040054678917, + 0.059396419674158096, + 0.04593002051115036, + 0.013499906286597252, + 0.06337950378656387, + -0.08464644849300385, + -0.08219234645366669, + 0.04468477889895439, + 0.011790798977017403, + 0.022599758580327034, + 0.08553504943847656, + 0.048905011266469955, + -0.019148368388414383, + 0.1093948557972908, + 0.044121526181697845, + -0.0097575131803751, + 0.015011338517069817, + -0.09894067049026489, + 0.13299092650413513, + 0.09569236636161804, + -0.032668206840753555, + 0.03816305845975876, + -0.050188012421131134, + 0.08525186777114868, + 0.0781351774930954, + -0.14882831275463104, + -0.06755466014146805, + 0.03740571439266205, + 0.014290702529251575, + -0.0098529988899827, + 0.10992084443569183, + -0.007624533027410507, + 0.036408040672540665, + 0.09409704059362411, + -0.07637786865234375, + -0.052537258714437485, + -0.034368086606264114, + 0.04037864878773689, + -0.09293404221534729, + 0.06529705226421356, + 0.04387310892343521, + 7.978349458426237e-06, + 0.0015003073494881392, + 0.0818190947175026, + -0.015662573277950287, + -0.02210635133087635, + 0.014920007437467575, + -0.04609011486172676, + 0.01984061487019062, + -0.018978284671902657, + 0.006479289848357439, + 0.03024590015411377, + 0.02935195341706276, + 0.03965607285499573, + -0.01035943441092968, + -0.021309878677129745, + -0.11072330176830292, + 0.02414010278880596, + 0.033938195556402206, + 0.08211563527584076, + -0.0038225895259529352, + -0.026569539681077003, + -0.03467546030879021, + -0.06863697618246078, + 0.02942180633544922, + -0.0234998669475317, + 0.06906381249427795, + -0.009515669196844101, + 0.009773293510079384, + 0.09443320333957672, + 0.028624791651964188, + -0.005111118778586388, + -0.051091037690639496, + -0.021682217717170715, + 0.019416645169258118, + 0.06139908358454704, + -0.08284991979598999, + -0.07208112627267838, + -0.0005695982254110277, + 0.025722220540046692, + -0.02664319798350334, + 0.05433739349246025, + 0.04429156333208084, + 0.015179401263594627, + 0.02893536165356636, + -0.0710892453789711, + 0.006091423332691193, + -0.11605669558048248, + -0.06645922362804413, + -0.016112936660647392, + -0.02972782775759697, + -0.005067059304565191, + 0.0714607834815979, + 0.023215025663375854, + 0.03936361148953438, + -0.02654155343770981, + -0.07252992689609528, + -0.07677987217903137, + 0.06006006896495819, + 0.06129022315144539, + 0.007644683122634888, + 0.035955075174570084, + 0.05441352725028992, + -0.022394627332687378, + 0.05596000701189041, + 0.06422705948352814, + 0.10887253284454346, + -0.029055092483758926, + 0.02862909436225891, + -0.06333247572183609, + 0.09343652427196503, + 0.08779172599315643, + -0.08787742257118225, + -0.0927564799785614, + -0.031325407326221466, + -0.05740939825773239, + 0.03480291739106178, + -0.03157632425427437, + -0.0014722924679517746, + 0.024180792272090912, + -0.008458137512207031, + -0.10711413621902466, + -0.08941973745822906, + 0.09954413771629333, + -0.07037326693534851, + -0.00012685442925430834, + -0.09443262219429016, + 0.050966449081897736, + 0.09769462049007416, + 0.029412291944026947, + -0.0374615453183651, + 0.007662616670131683, + 0.04703688994050026, + -0.041162941604852676, + 0.0004979684017598629, + 0.04832858592271805, + 0.03411160409450531, + -0.12340855598449707, + -0.008817218244075775, + -0.0711788758635521, + 0.05617929995059967, + -0.057425230741500854, + 0.16144156455993652, + 0.003938300535082817, + -0.05674717202782631, + -0.0717567503452301, + 0.05079909786581993, + -0.010037404485046864, + 0.05019071698188782, + 0.04167948290705681, + 0.07027153670787811, + 0.023701779544353485, + -0.07378491014242172, + 0.11376636475324631, + 0.047560617327690125, + -0.0373103991150856, + -0.07237299531698227, + -0.04365935176610947, + -0.041462577879428864, + 0.024233229458332062, + 0.009656170383095741, + -0.09177235513925552, + -0.01771819218993187, + 0.026168525218963623, + -0.013938544318079948, + 0.07142147421836853, + 0.14851415157318115, + 0.0678894966840744, + -0.11533859372138977 + ] + }, + "p244_199.wav": { + "name": "p244", + "embedding": [ + 0.0515253059566021, + 0.0781516581773758, + 0.015591202303767204, + -0.005454557947814465, + -0.03741706162691116, + 0.09951154887676239, + -0.07629392296075821, + 0.08876053988933563, + -0.013808196410536766, + 0.055125392973423004, + -0.06339573860168457, + 0.07058443129062653, + -0.002876791637390852, + -0.15375757217407227, + -0.02818797528743744, + 0.054943330585956573, + -0.052403684705495834, + -0.007417659275233746, + -0.037122081965208054, + -0.022135278210043907, + -0.0006558820605278015, + 0.017426174134016037, + 0.05053384602069855, + 0.00025323405861854553, + 0.04605891928076744, + 0.03659071773290634, + 0.005085747689008713, + 0.03032520040869713, + 0.0009314244380220771, + -0.029023315757513046, + -0.037253063172101974, + 0.0771118551492691, + -0.04358398914337158, + -0.001609722850844264, + 0.051771130412817, + -0.0059588197618722916, + 0.04467284679412842, + -0.09088999032974243, + -0.040643706917762756, + 0.030002977699041367, + -0.057238172739744186, + 0.08236318826675415, + 0.06345027685165405, + 0.013683294877409935, + 0.03155011683702469, + 0.013654729351401329, + -0.013940221630036831, + -0.047814320772886276, + -0.09062564373016357, + 0.14417046308517456, + 0.030901728197932243, + 0.016144953668117523, + -0.0670660138130188, + -0.037469156086444855, + 0.08255068957805634, + -0.01054874062538147, + -0.06896492838859558, + -0.016996651887893677, + 0.060067903250455856, + 0.09527142345905304, + 0.025904245674610138, + -0.013279530219733715, + 0.017953775823116302, + 0.08883076906204224, + 0.014384515583515167, + 0.04394923895597458, + 0.07358303666114807, + 0.0882086306810379, + 0.010242545045912266, + 0.016005199402570724, + 0.06312528252601624, + 0.030802391469478607, + 0.017024725675582886, + -0.018670205026865005, + 0.02225683629512787, + -0.012782796286046505, + -0.01938924752175808, + -0.004006456583738327, + -0.01123197190463543, + 0.00039204536005854607, + 0.025888491421937943, + 0.02536902390420437, + 0.014358571730554104, + 0.028790762647986412, + -0.032772935926914215, + 0.0362735390663147, + -0.01699935644865036, + 0.07525705546140671, + 0.07198284566402435, + 0.0420040488243103, + 0.0051080710254609585, + 0.02759743109345436, + -0.03666677698493004, + -0.0857694074511528, + 0.006321651395410299, + 0.029647931456565857, + 0.0049115633592009544, + 0.02932656928896904, + 0.015420947223901749, + -0.03279978036880493, + 0.09893001616001129, + 0.027584057301282883, + -0.009622467681765556, + 0.016130313277244568, + -0.07808174192905426, + 0.06371686607599258, + 0.05084025859832764, + 0.014175447635352612, + 0.05897212028503418, + -0.025428589433431625, + 0.06895413994789124, + 0.07201745361089706, + -0.10541494190692902, + -0.03378060460090637, + 0.022057391703128815, + 0.019664252176880836, + 0.028965357691049576, + 0.11104699224233627, + -0.01027052104473114, + 0.030104324221611023, + 0.05868934094905853, + -0.06381748616695404, + -0.019420616328716278, + 0.029764844104647636, + 0.01786114275455475, + -0.006150787230581045, + -0.007064702920615673, + 0.029903193935751915, + -0.0004061249492224306, + -0.03964140638709068, + 0.0388387069106102, + 0.016306452453136444, + 0.007765031419694424, + -0.01647040620446205, + -0.000404862075811252, + 0.02117948979139328, + -0.011917376890778542, + -0.016646403819322586, + 0.05356692522764206, + 0.05714408680796623, + 0.007617838680744171, + 0.029117939993739128, + -0.05081919953227043, + -0.09269057959318161, + -0.01836255006492138, + -0.004589974880218506, + 0.045294612646102905, + 0.004566108342260122, + -0.030165761709213257, + -0.05856022983789444, + -0.01573970727622509, + 0.01829385571181774, + -0.0027406129520386457, + 0.05774373933672905, + 0.05793432518839836, + -0.03559926897287369, + 0.05678500235080719, + 0.004939840640872717, + 0.001797561882995069, + -0.026711363345384598, + -0.052105896174907684, + 0.010459581390023232, + 0.04185253009200096, + -0.03387986123561859, + -0.045205067843198776, + 0.014369356445968151, + -0.03208669275045395, + -0.01850346103310585, + 0.008973083458840847, + 0.039684563875198364, + 0.00264127179980278, + -0.0026501468382775784, + -0.07483922690153122, + 0.012152040377259254, + -0.06846988201141357, + -0.05148279294371605, + 0.041076380759477615, + 0.028126057237386703, + -0.015078878030180931, + 0.0859799012541771, + 0.0395595021545887, + 0.03200735151767731, + -0.02169964089989662, + -0.046125270426273346, + 0.0105536337941885, + 0.059758510440588, + 0.04317406937479973, + 0.011927935294806957, + 0.046162813901901245, + 0.02862430177628994, + -0.021896351128816605, + 0.0499800369143486, + 0.040697354823350906, + 0.052120983600616455, + -0.0375836044549942, + 0.00671741645783186, + 0.003652925370261073, + 0.0829562097787857, + 0.02082514390349388, + -0.07640743255615234, + -0.05182170122861862, + 0.01458804216235876, + -0.027261679992079735, + 0.022989584133028984, + -0.005417493637651205, + 0.012950967065989971, + 0.021657045930624008, + -0.01648538000881672, + -0.06083444878458977, + -0.08671491593122482, + 0.03897317871451378, + -0.05076318979263306, + -0.016939355060458183, + -0.03590865433216095, + 0.04006796330213547, + 0.10057501494884491, + 0.006605468690395355, + 0.004110180772840977, + 0.0146378418430686, + 0.01325188484042883, + -0.021154653280973434, + -0.03682897612452507, + 0.017494268715381622, + 0.020619060844182968, + -0.08293524384498596, + 0.010754333809018135, + -0.05873020738363266, + 0.0646713599562645, + 0.005118402652442455, + 0.11330229043960571, + 0.034359484910964966, + -0.028638577088713646, + -0.060726698487997055, + 0.0177301112562418, + -0.015682987868785858, + 0.033456556499004364, + 2.7138739824295044e-05, + 0.02812274917960167, + 0.04326074570417404, + -0.021995989605784416, + 0.08204948157072067, + 0.03323245048522949, + -0.06520384550094604, + -0.035167545080184937, + 0.009964263066649437, + -0.019823363050818443, + 0.015459887683391571, + -0.018587229773402214, + -0.059443216770887375, + 0.01209951937198639, + 0.0385206863284111, + 0.010227099061012268, + 0.029104044660925865, + 0.08205370604991913, + 0.0484386645257473, + -0.052750274538993835 + ] + }, + "p244_411.wav": { + "name": "p244", + "embedding": [ + 0.059642016887664795, + 0.07965384423732758, + -0.017480334267020226, + 0.032382380217313766, + -0.07022543251514435, + 0.06445472687482834, + -0.10327498614788055, + 0.13157373666763306, + -0.036996614187955856, + 0.1204289123415947, + -0.07153010368347168, + 0.155553936958313, + 0.010817132890224457, + -0.16849181056022644, + -0.04421375319361687, + 0.021253231912851334, + -0.028402701020240784, + -0.012568382546305656, + -0.030665863305330276, + -0.03868956118822098, + 0.06314156204462051, + 0.046973612159490585, + 0.06632973253726959, + -0.01128307543694973, + 0.02419472299516201, + 0.06172002851963043, + 0.015814218670129776, + 0.06072750687599182, + 0.035288579761981964, + -0.08502109348773956, + -0.062420718371868134, + 0.08902939409017563, + -0.038452401757240295, + 0.008308952674269676, + 0.043627720326185226, + -0.027807191014289856, + 0.009850320406258106, + -0.06962423026561737, + -0.04141726344823837, + 0.022096317261457443, + -0.02695256471633911, + 0.06750936806201935, + 0.018040001392364502, + -0.05057733878493309, + 0.05104286968708038, + -0.006933089345693588, + -0.017996080219745636, + -0.03484554588794708, + -0.1068103164434433, + 0.14827364683151245, + 0.06700162589550018, + 0.006629972718656063, + -0.07882218807935715, + -0.06683379411697388, + 0.11319448798894882, + -0.01637943647801876, + -0.09796091169118881, + -0.0016170380404219031, + 0.04051607847213745, + 0.1608947515487671, + -0.026370510458946228, + -0.03198838233947754, + 0.057372357696294785, + 0.08653994649648666, + 0.0500403568148613, + 0.06373332440853119, + 0.11838296055793762, + 0.08643607795238495, + -0.020476695150136948, + 0.043690260499715805, + 0.0178915336728096, + 0.11327745765447617, + 0.04557464271783829, + -0.013138031587004662, + 0.025271516293287277, + 0.0052980175241827965, + -0.028383862227201462, + -0.010867412202060223, + -0.034048523753881454, + -0.011182970367372036, + -0.009061112999916077, + 0.008970201015472412, + 0.04037800058722496, + 0.012237053364515305, + -0.06042659282684326, + 0.07673083990812302, + 0.003307380247861147, + -0.013342324644327164, + 0.03753608465194702, + 0.01959865540266037, + 0.002677563112229109, + 0.05220995843410492, + -0.07945673167705536, + -0.11511530727148056, + 0.01810387335717678, + 0.006329129450023174, + 0.009757252410054207, + 0.08746608346700668, + 0.05137185379862785, + -0.023995978757739067, + 0.1150900349020958, + 0.07158038765192032, + -0.02294269949197769, + 0.031177883967757225, + -0.06514222919940948, + 0.09730362147092819, + 0.1279926598072052, + -0.017209332436323166, + 0.0668187066912651, + -0.06833834946155548, + 0.09236054122447968, + 0.05210068076848984, + -0.13655820488929749, + -0.08375281095504761, + 0.01709597557783127, + 0.007149823009967804, + 0.02225184068083763, + 0.10935956239700317, + -0.02106388472020626, + 0.06052929908037186, + 0.09163307398557663, + -0.07616027444601059, + -0.047462575137615204, + -0.043469011783599854, + 0.05833851546049118, + -0.059093162417411804, + 0.07242715358734131, + 0.027418464422225952, + -0.000650362460874021, + -0.013235678896307945, + 0.056720178574323654, + -0.03717149794101715, + -0.001577108516357839, + 0.037457406520843506, + -0.05954141914844513, + 0.008438026532530785, + -0.03850235044956207, + -0.013227644376456738, + 0.06570252031087875, + 0.04044290632009506, + 0.04002637788653374, + -0.0018446396570652723, + -0.022247005254030228, + -0.10768553614616394, + 0.017005234956741333, + 0.028609465807676315, + 0.06350462883710861, + -0.004099434241652489, + -0.046471428126096725, + -0.040874313563108444, + -0.06923195719718933, + 0.02761455439031124, + -0.005744852125644684, + 0.06792791187763214, + -0.02293807826936245, + 0.03558617830276489, + 0.0674629658460617, + 0.024610860273241997, + -0.011549009941518307, + -0.026513127610087395, + -0.02507929317653179, + 0.002460843650624156, + 0.04694586619734764, + -0.05512771010398865, + -0.08525311946868896, + -0.02097456157207489, + 0.009609050117433071, + -0.039024487137794495, + 0.049171432852745056, + 0.04547758400440216, + 0.013903401792049408, + 0.044464945793151855, + -0.07740233838558197, + -0.011149285361170769, + -0.12093240022659302, + -0.05409657210111618, + -0.015307456254959106, + -0.019875865429639816, + -0.021997680887579918, + 0.0676405131816864, + 0.049756284803152084, + 0.05250708758831024, + -0.0076362574473023415, + -0.044720955193042755, + -0.07624244689941406, + 0.034617550671100616, + 0.05160931497812271, + 0.027246862649917603, + 0.050259172916412354, + 0.07049086689949036, + -0.011070910841226578, + 0.08765627443790436, + 0.07695408165454865, + 0.054932139813899994, + -0.0009012601221911609, + 0.000523355498444289, + -0.06777406483888626, + 0.10285179316997528, + 0.09677831828594208, + -0.0737035721540451, + -0.10990612208843231, + -0.04993361234664917, + -0.10232850164175034, + 0.052597083151340485, + -0.013450665399432182, + 0.0073304190300405025, + 0.04062133654952049, + 0.004405973479151726, + -0.1042993888258934, + -0.08016376197338104, + 0.10289587825536728, + -0.0550079345703125, + -0.01939805969595909, + -0.0683455765247345, + 0.026967894285917282, + 0.11921452730894089, + 0.003333637025207281, + -0.012289858423173428, + -0.013178294524550438, + 0.05088487267494202, + -0.041406817734241486, + -0.003390500321984291, + 0.037062354385852814, + 0.027096610516309738, + -0.11242251098155975, + 0.016056720167398453, + -0.06145979464054108, + 0.036496102809906006, + -0.057857006788253784, + 0.1338413655757904, + 0.0107206329703331, + -0.053046815097332, + -0.08198243379592896, + 0.08529528975486755, + -0.017694635316729546, + 0.04824059456586838, + 0.04041486233472824, + 0.05968394875526428, + 0.010600298643112183, + -0.12796449661254883, + 0.10162600874900818, + 0.041107047349214554, + -0.06083913892507553, + -0.09762345999479294, + -0.05575675889849663, + -0.017922712489962578, + 0.018007460981607437, + 0.021308384835720062, + -0.049284156411886215, + -0.025588875636458397, + 0.011685170233249664, + -0.010148978792130947, + 0.0561300590634346, + 0.1417427659034729, + 0.05263352394104004, + -0.11148035526275635 + ] + }, + "p244_388.wav": { + "name": "p244", + "embedding": [ + 0.04279913753271103, + 0.07683821767568588, + -0.026776723563671112, + 0.07242654263973236, + -0.041509196162223816, + 0.08325468748807907, + -0.11956910789012909, + 0.0950818732380867, + -0.06007285416126251, + 0.13210678100585938, + -0.05847552418708801, + 0.08813778311014175, + -0.026149384677410126, + -0.166579008102417, + -0.03903099149465561, + 0.06916274130344391, + -0.06989790499210358, + -0.03631317615509033, + -0.06221272796392441, + 0.021014785394072533, + 0.02736428566277027, + 0.026379816234111786, + 0.05020748823881149, + -0.01987309381365776, + 0.02562793344259262, + 0.04216475039720535, + 0.004907548427581787, + 0.06414937973022461, + 0.034772150218486786, + -0.05441029369831085, + -0.02326892502605915, + 0.11783410608768463, + -0.03291363641619682, + 0.00463519711047411, + 0.037077855318784714, + 0.017232390120625496, + -0.006739448290318251, + -0.07905983924865723, + -0.017322368919849396, + -0.014660489745438099, + -0.057602040469646454, + 0.07148434221744537, + 0.03681974112987518, + -0.012246139347553253, + 0.03827977180480957, + -0.025573786348104477, + -0.05503149330615997, + -0.05449046194553375, + -0.11662720143795013, + 0.15778791904449463, + 0.07166272401809692, + 0.02231377176940441, + -0.06547696888446808, + -0.07713396847248077, + 0.10203243792057037, + 0.010455077514052391, + -0.11760962009429932, + -0.07778866589069366, + 0.06702810525894165, + 0.19254183769226074, + -0.0036716212052851915, + 0.015085672028362751, + 0.017253438010811806, + 0.13102467358112335, + 0.07079978287220001, + 0.10580535233020782, + 0.06114555895328522, + 0.08859376609325409, + 0.049201663583517075, + 0.04329535365104675, + 0.06624916940927505, + 0.05105634033679962, + 0.008615442551672459, + -0.0015586973167955875, + 0.02643129602074623, + -0.017454002052545547, + -0.03980826586484909, + 0.0027183685451745987, + -0.013855315744876862, + -0.01874593272805214, + -0.007366466335952282, + 0.0052628587000072, + 0.017303651198744774, + 0.03559975326061249, + -0.03322942554950714, + 0.04605250805616379, + -0.002605109941214323, + -0.03245530650019646, + 0.05909179896116257, + 0.023929957300424576, + -0.004493983928114176, + 0.03573611378669739, + -0.03361702337861061, + -0.10492219030857086, + -0.020809030160307884, + 0.016633985564112663, + 0.006826149765402079, + 0.057173892855644226, + 0.021113403141498566, + -0.036426786333322525, + 0.10008427500724792, + 0.03455492854118347, + -0.0063270339742302895, + 0.03484489023685455, + -0.08495824038982391, + 0.10796129703521729, + 0.057817794382572174, + 0.01556601282209158, + 0.03847911208868027, + -0.02231740392744541, + 0.06039247289299965, + 0.0912465751171112, + -0.14322376251220703, + -0.046759672462940216, + 0.05461625009775162, + -0.015554108656942844, + -0.008884796872735023, + 0.11654456704854965, + 0.0292135551571846, + 0.012401707470417023, + 0.09945473819971085, + -0.09154458343982697, + -0.05989929288625717, + -0.015061425045132637, + 0.07276488840579987, + -0.0658910721540451, + 0.03373792767524719, + 0.027579613029956818, + -0.04053768515586853, + -0.01888340525329113, + 0.07095083594322205, + -0.009811142459511757, + -0.0018079401925206184, + 0.04503504931926727, + -0.06619847565889359, + 0.07701301574707031, + -0.06334106624126434, + 0.006077686324715614, + 0.06886855512857437, + 0.03303665667772293, + 0.0552871897816658, + -0.02377418428659439, + -0.029360270127654076, + -0.09309427440166473, + -0.001175562385469675, + 0.055718690156936646, + 0.08294275403022766, + -0.010206620208919048, + -0.009148720651865005, + -0.05876978114247322, + -0.05823804438114166, + 0.05029996484518051, + -0.024256860837340355, + 0.10300520807504654, + -0.002360205166041851, + -0.007017430849373341, + 0.0888165757060051, + -0.029025930911302567, + 0.0034471487160772085, + -0.04323210194706917, + -0.014927180483937263, + 0.04266569763422012, + 0.04807581007480621, + -0.06337089836597443, + -0.036115776747465134, + 0.03981133550405502, + 0.024569189175963402, + -0.023068321868777275, + 0.007855734787881374, + 0.0272002425044775, + 0.021283529698848724, + 0.02660639025270939, + -0.05040641129016876, + 0.015161116607487202, + -0.0889514833688736, + -0.027425331994891167, + -0.010627709329128265, + -0.0389995276927948, + -0.022576503455638885, + 0.08996008336544037, + 0.039212338626384735, + 0.021808478981256485, + 0.01612863689661026, + -0.09127653390169144, + -0.06314870715141296, + 0.07969259470701218, + 0.061603933572769165, + 0.01238252967596054, + 0.04394424706697464, + 0.04798119142651558, + -0.014167435467243195, + 0.02011752687394619, + 0.055331334471702576, + 0.08263795077800751, + -0.007037494797259569, + -0.039183031767606735, + -0.09339691698551178, + 0.08077463507652283, + 0.1007310152053833, + -0.10723181068897247, + -0.060186564922332764, + -0.009054746478796005, + -0.06860488653182983, + 0.04117028787732124, + -0.04818103462457657, + -0.0016779854195192456, + 0.05251266807317734, + -0.037330422550439835, + -0.1221676766872406, + -0.10664443671703339, + 0.11448432505130768, + -0.09559007734060287, + -0.03472454100847244, + -0.056931011378765106, + 0.012130238115787506, + 0.06436227262020111, + 0.04443691298365593, + -0.014441188424825668, + 0.023071687668561935, + 0.055191535502672195, + -0.09020151942968369, + -0.009086200036108494, + 0.06647901237010956, + -0.017854567617177963, + -0.12300018966197968, + 0.013689089566469193, + -0.07876016199588776, + 0.07024633884429932, + -0.06827641278505325, + 0.1647666096687317, + -0.01431102305650711, + -0.03801912069320679, + -0.08726654946804047, + 0.04681612551212311, + -0.042981911450624466, + 0.04898793250322342, + 0.04049469530582428, + 0.06898501515388489, + 0.04306660592556, + -0.06444372236728668, + 0.11984724551439285, + 0.02570509910583496, + -0.009208137169480324, + -0.06738410890102386, + -0.028124570846557617, + -0.053668469190597534, + 0.026429519057273865, + -0.003367878030985594, + -0.07821069657802582, + 0.014155484735965729, + 0.03093869984149933, + -0.03153420239686966, + 0.06198987364768982, + 0.12716275453567505, + 0.07299923896789551, + -0.08960578590631485 + ] + }, + "p244_223.wav": { + "name": "p244", + "embedding": [ + 0.06746435165405273, + 0.03453626111149788, + 0.018802262842655182, + -0.007825586944818497, + -0.009814387187361717, + 0.05579018592834473, + -0.09531286358833313, + 0.08952674269676208, + 0.0019092746078968048, + 0.05800749734044075, + -0.11425498127937317, + 0.04001835361123085, + -0.015883518382906914, + -0.13597381114959717, + -0.015742767602205276, + 0.026558123528957367, + -0.014288059435784817, + 0.012245727702975273, + -0.07787568122148514, + -0.017433255910873413, + 0.0023683421313762665, + 0.019502606242895126, + 0.050130944699048996, + -0.026344383135437965, + 0.006037736311554909, + 0.03134957328438759, + 0.002301743719726801, + 0.0222611166536808, + 0.020945867523550987, + -0.0011597732082009315, + -0.00016056932508945465, + 0.06718454509973526, + -0.04193013533949852, + -0.02041812427341938, + 0.05378752201795578, + 0.016655851155519485, + 0.00016847462393343449, + -0.10018790513277054, + -0.03738325089216232, + 0.01944802887737751, + -0.07587802410125732, + 0.07158413529396057, + 0.06043025106191635, + -0.01085681188851595, + 0.0450977198779583, + 0.028120337054133415, + -0.00813515204936266, + -0.036066360771656036, + -0.09710974991321564, + 0.15066704154014587, + 0.038202062249183655, + 0.027333775535225868, + -0.09030097723007202, + -0.001152288168668747, + 0.09088161587715149, + -0.04268059879541397, + -0.049777813255786896, + -0.046671949326992035, + 0.04771159216761589, + 0.08742760866880417, + 0.00888905394822359, + -0.03385370224714279, + 0.0025641024112701416, + 0.034780971705913544, + -0.0037024933844804764, + 0.024121368303894997, + 0.11470529437065125, + 0.09740065038204193, + -0.01528053916990757, + 0.03571304678916931, + 0.06648300588130951, + 0.022431544959545135, + 0.018335528671741486, + -0.020860392600297928, + 0.051991596817970276, + -0.006882551126182079, + -0.03494260832667351, + 0.027872798964381218, + -0.029020942747592926, + 0.004292902071028948, + 0.04804347828030586, + 0.014665561728179455, + 0.021233877167105675, + -0.0003202699590474367, + -0.083039790391922, + 0.03834843263030052, + -0.016299637034535408, + 0.07488923519849777, + 0.09508562088012695, + 0.028424490243196487, + -0.006975365336984396, + 0.018224479630589485, + -0.0227232426404953, + -0.08809474855661392, + 0.0008995940443128347, + 0.006419919431209564, + -0.006341836880892515, + 0.012546876445412636, + 0.022339818999171257, + -0.027169516310095787, + 0.09633686393499374, + 0.008606428280472755, + -0.008391025476157665, + 0.011947759427130222, + -0.07165030390024185, + 0.07237375527620316, + 0.08989352732896805, + 0.022913016378879547, + 0.023092111572623253, + -0.045838937163352966, + 0.04516831040382385, + 0.06434302777051926, + -0.06889235228300095, + -0.02109365724027157, + 0.03842272609472275, + 0.025691688060760498, + 0.05670637637376785, + 0.11166322231292725, + -0.0345115028321743, + -0.011355207301676273, + 0.09559209644794464, + -0.07128887623548508, + -0.01865301840007305, + 0.04849075898528099, + -0.00918085128068924, + -0.0009427517652511597, + -0.009787343442440033, + 0.016089409589767456, + -0.008708180859684944, + -0.04379244148731232, + 0.06666576862335205, + -0.003015415742993355, + -0.003960400819778442, + -0.04926044121384621, + 0.03294874355196953, + 0.06298403441905975, + -0.02058054506778717, + -0.06400218605995178, + 0.061980441212654114, + 0.09161941707134247, + 0.014620400033891201, + 0.05029816925525665, + -0.06642168015241623, + -0.0890839472413063, + -0.024814171716570854, + 0.018034877255558968, + 0.05135874077677727, + -0.014013483189046383, + -0.022425733506679535, + -0.08444146811962128, + -0.0036991946399211884, + 0.019659902900457382, + -0.02198571339249611, + 0.05597304925322533, + 0.051497142761945724, + -0.0462024100124836, + 0.04202788323163986, + -0.0357813760638237, + 0.015549814328551292, + -0.06311838328838348, + -0.046413298696279526, + 0.024547286331653595, + 0.02782253921031952, + -0.006012763828039169, + -0.04778391867876053, + 3.1763920560479164e-06, + -0.0034371763467788696, + -0.007133588194847107, + -0.030627738684415817, + 0.04526460915803909, + -0.01648622751235962, + -0.013359026052057743, + -0.12920153141021729, + 0.044889360666275024, + -0.10495211184024811, + -0.0398227833211422, + 0.04703351482748985, + 0.021594205871224403, + 0.03445103019475937, + 0.0868418887257576, + -0.00621281610801816, + 0.005866593681275845, + -0.03537328913807869, + -0.11428296566009521, + -0.008001536130905151, + 0.05816343426704407, + 0.054338183254003525, + -0.000516034197062254, + 0.05152300000190735, + 0.033930640667676926, + -0.029608864337205887, + 0.05167367309331894, + 0.04011283814907074, + 0.06017167493700981, + -0.04184175655245781, + -0.020825427025556564, + 0.023401325568556786, + 0.0852283462882042, + 0.030077341943979263, + -0.06352971494197845, + -0.044702935963869095, + 0.005877570249140263, + -0.03520646318793297, + 0.018040383234620094, + 0.009867937304079533, + 0.006362102925777435, + 0.0412251241505146, + -0.012140120379626751, + -0.06588228046894073, + -0.04345769062638283, + 0.0077348146587610245, + -0.04040368273854256, + -0.015698954463005066, + -0.049078017473220825, + 0.022461842745542526, + 0.08226238936185837, + -0.004554638639092445, + 0.0009399037808179855, + -0.029615182429552078, + -0.015239452943205833, + -0.052473507821559906, + -0.08298250287771225, + -0.02115788124501705, + 0.016536949202418327, + -0.06285444647073746, + 0.026906626299023628, + -0.059773217886686325, + 0.06849846988916397, + 0.002102002501487732, + 0.07467304170131683, + 0.008652590215206146, + -0.014532679691910744, + -0.04937524348497391, + 0.02046164870262146, + -0.015169277787208557, + 0.053184084594249725, + 0.0541355162858963, + -0.014002952724695206, + 0.03024912253022194, + -0.06051519513130188, + 0.09172870218753815, + 0.03860616311430931, + -0.05396216735243797, + -0.03711579740047455, + 0.021270081400871277, + -0.046472761780023575, + -0.038003433495759964, + -0.015979822725057602, + -0.07203540205955505, + 0.031466804444789886, + 0.013499826192855835, + -0.03028171882033348, + 0.010555773973464966, + 0.047102928161621094, + 0.038047753274440765, + -0.06640853732824326 + ] + }, + "p244_105.wav": { + "name": "p244", + "embedding": [ + 0.04199103266000748, + 0.11617829650640488, + -0.03822670131921768, + 0.009970361366868019, + -0.06180695816874504, + 0.06572401523590088, + -0.08995041251182556, + 0.11087144911289215, + -0.040161289274692535, + 0.13533596694469452, + -0.06050288677215576, + 0.14237496256828308, + -0.021519970148801804, + -0.11296205967664719, + -0.051377072930336, + 0.041018079966306686, + -0.022327013313770294, + -0.010821400210261345, + -0.022188197821378708, + -0.026308249682188034, + 0.04904230684041977, + 0.013542171567678452, + 0.03373991698026657, + -0.0049488781951367855, + 0.023509174585342407, + 0.07685306668281555, + 0.015896936878561974, + 0.026470517739653587, + 0.015008306130766869, + -0.06461623311042786, + -0.053206026554107666, + 0.08346156775951385, + -0.04098587483167648, + 0.03245013207197189, + 0.05041162669658661, + -0.01328854076564312, + 0.013459051959216595, + -0.03604253754019737, + 0.02108015865087509, + 0.009602932259440422, + -0.022856276482343674, + 0.09376966953277588, + 0.01483251340687275, + -0.012880812399089336, + 0.03298836201429367, + 0.002260367153212428, + -0.012784450314939022, + -0.008848486468195915, + -0.06271973252296448, + 0.14742425084114075, + 0.05345187708735466, + -0.012334037572145462, + -0.07585030794143677, + -0.035776086151599884, + 0.0950363501906395, + -0.011479789391160011, + -0.0965292900800705, + -0.029636627063155174, + 0.03452540189027786, + 0.10701115429401398, + -0.0075934394262731075, + -0.0507061704993248, + 0.018968705087900162, + 0.10936087369918823, + 0.04047444462776184, + 0.05904686450958252, + 0.08163207024335861, + 0.10283955186605453, + -0.01567039266228676, + 0.012343108654022217, + 0.0296616293489933, + 0.08516241610050201, + 0.041909486055374146, + -0.006416182965040207, + 0.03499855101108551, + -0.038104794919490814, + 0.002573432633653283, + -0.006903701927512884, + -0.022830557078123093, + -0.03757607936859131, + -0.04911191761493683, + -0.0002809514699038118, + 0.0036431001499295235, + 0.01604396104812622, + -0.02919423207640648, + 0.05229528993368149, + 0.033879198133945465, + -0.04292520508170128, + 0.04799105226993561, + 0.057570502161979675, + 0.0033685490489006042, + 0.02855800651013851, + -0.0737912654876709, + -0.08116500079631805, + 0.04370058700442314, + 0.00637834845110774, + 0.026995999738574028, + 0.06688733398914337, + 0.04066891968250275, + 0.016165295615792274, + 0.08344607800245285, + 0.06817913055419922, + -0.015432355925440788, + -0.00027492642402648926, + -0.06354711949825287, + 0.1339571177959442, + 0.10456337779760361, + -0.033188626170158386, + 0.035492658615112305, + -0.027127256616950035, + 0.04902885481715202, + 0.03730037435889244, + -0.11478836834430695, + -0.09133437275886536, + 0.0011801639338955283, + 0.007715168409049511, + 0.005701042246073484, + 0.06321602314710617, + -0.0112722497433424, + 0.01958681084215641, + 0.07128651440143585, + -0.04924658685922623, + -0.07035790383815765, + -0.06190721318125725, + 0.029390333220362663, + -0.08773978799581528, + 0.06134861707687378, + 0.05012189596891403, + 0.02364715188741684, + -0.011407758109271526, + 0.08381160348653793, + 0.008381902240216732, + 0.01218886487185955, + 0.028661102056503296, + -0.024244703352451324, + 0.013345081359148026, + -0.007471784017980099, + 0.027959231287240982, + 0.04590198025107384, + 0.029659461230039597, + 0.06869475543498993, + -0.003996455110609531, + 0.02499471977353096, + -0.09376915544271469, + 0.0142821054905653, + 0.05111538618803024, + 0.014123952016234398, + -0.029080867767333984, + -0.045803528279066086, + -0.004303361289203167, + -0.06708916276693344, + -0.008562937378883362, + 0.0004720357828773558, + 0.07649107277393341, + -0.016655217856168747, + 0.017006948590278625, + 0.11920279264450073, + 0.018184518441557884, + -0.004393253941088915, + -0.04132121056318283, + -0.0013265833258628845, + 0.012190218083560467, + 0.04753274470567703, + -0.09258278459310532, + -0.07506147772073746, + -0.012659948319196701, + 0.011759753338992596, + -0.0015334058552980423, + 0.060365330427885056, + 0.07053540647029877, + -0.009500524029135704, + 0.05847875401377678, + -0.03705691546201706, + 0.005697905085980892, + -0.08066649734973907, + -0.03547865152359009, + -0.04819463938474655, + -0.06096942350268364, + -0.03281617909669876, + 0.07650876045227051, + 0.028784727677702904, + 0.056127794086933136, + 0.00027082115411758423, + -0.052896372973918915, + -0.06711860001087189, + 0.04537341743707657, + 0.06605416536331177, + -0.009477265179157257, + 0.03768934682011604, + 0.06395058333873749, + -0.01625695638358593, + 0.035413436591625214, + 0.05967690050601959, + 0.06340722739696503, + -0.04060867428779602, + 0.005485305096954107, + -0.06729786843061447, + 0.06758986413478851, + 0.0797397568821907, + -0.09445779025554657, + -0.08244279026985168, + -0.07224215567111969, + -0.042787104845047, + 0.01698298007249832, + -0.0538453571498394, + 0.007955098524689674, + 0.03596549481153488, + -0.01485449355095625, + -0.07828149944543839, + -0.11134330928325653, + 0.09029387682676315, + -0.05784526467323303, + 0.006046132650226355, + -0.051734842360019684, + 0.04293915256857872, + 0.06485158205032349, + 0.023911166936159134, + -0.05744285508990288, + 0.02017601951956749, + 0.03542225807905197, + -0.02280627191066742, + -0.0026409588754177094, + 0.03412122651934624, + 0.024010812863707542, + -0.07832947373390198, + -0.004358840640634298, + -0.06650857627391815, + 0.06273084878921509, + -0.0652836412191391, + 0.14062075316905975, + -0.005476667545735836, + -0.05514318495988846, + -0.06831812858581543, + 0.03729721158742905, + -0.02953445166349411, + 0.024901991710066795, + 0.0492917075753212, + 0.05519666522741318, + -0.009218895807862282, + -0.06570367515087128, + 0.1017032191157341, + 0.05959945172071457, + -0.033283643424510956, + -0.09524615854024887, + -0.03677475452423096, + -0.03181833028793335, + 0.04096755385398865, + 0.041259877383708954, + -0.0825209766626358, + 0.01629863865673542, + 0.023485228419303894, + -0.007235379423946142, + 0.08249468356370926, + 0.10868488997220993, + 0.06357407569885254, + -0.07810883224010468 + ] + }, + "p244_104.wav": { + "name": "p244", + "embedding": [ + 0.041993312537670135, + 0.0927915871143341, + -0.023635217919945717, + 0.03401413932442665, + -0.049704767763614655, + 0.09235957264900208, + -0.14399084448814392, + 0.12129074335098267, + -0.035267945379018784, + 0.1398114264011383, + -0.0600535050034523, + 0.11325986683368683, + -0.01964443549513817, + -0.18756522238254547, + -0.03948917239904404, + 0.05671172961592674, + -0.04484950006008148, + -0.035275910049676895, + -0.028493095189332962, + -0.00710280891507864, + 0.03766641765832901, + 0.02786479890346527, + 0.01050695963203907, + -0.005582625046372414, + 0.036100637167692184, + 0.06363923847675323, + -0.0031729359179735184, + 0.0393981859087944, + -0.00662595359608531, + -0.04091174155473709, + -0.03039582073688507, + 0.12437931448221207, + -0.06014012545347214, + 0.02942153438925743, + 0.05367758497595787, + 0.012539195828139782, + -0.00719422334805131, + -0.0525921992957592, + 0.0013659711694344878, + -0.001498503959737718, + -0.04412698373198509, + 0.08894520252943039, + 0.044096942991018295, + 0.010714509524405003, + 0.015667196363210678, + 0.031097274273633957, + -0.010116101242601871, + -0.04669087007641792, + -0.10243485867977142, + 0.1666468381881714, + 0.052448805421590805, + -0.0005351711879484355, + -0.06775981932878494, + -0.07216373085975647, + 0.0963415578007698, + 0.010191711597144604, + -0.11463125795125961, + -0.04616400599479675, + 0.09615646302700043, + 0.16290272772312164, + -0.029554234817624092, + -0.0435260534286499, + 0.006799326743930578, + 0.1317562609910965, + 0.04758976772427559, + 0.10423439741134644, + 0.0695679560303688, + 0.1393681913614273, + -0.0003243259561713785, + 0.006876935251057148, + 0.07549900561571121, + 0.060671474784612656, + 0.07056000828742981, + -0.01331544853746891, + 0.030147327110171318, + -0.024076879024505615, + 0.002624780172482133, + 0.0034128520637750626, + -0.034796204417943954, + -0.029568351805210114, + -0.0034408981446176767, + 0.003702497808262706, + 0.017516933381557465, + 0.04001220315694809, + -0.02220405824482441, + 0.04312530905008316, + 0.059406884014606476, + -0.027831654995679855, + 0.06485036015510559, + 0.062060121446847916, + 0.01610192470252514, + 0.058809198439121246, + -0.09474047273397446, + -0.08720813691616058, + 0.052215974777936935, + 0.006189660634845495, + 0.04568372666835785, + 0.07502438873052597, + 0.04258298873901367, + -0.004303544294089079, + 0.09306040406227112, + 0.028608692809939384, + -0.009236309677362442, + 0.022480159997940063, + -0.09946560859680176, + 0.14175835251808167, + 0.07973980903625488, + -0.018995195627212524, + 0.03168212249875069, + -0.055136825889348984, + 0.07474605739116669, + 0.07685787975788116, + -0.13622409105300903, + -0.0823507308959961, + 0.031062833964824677, + 0.019721344113349915, + -0.0368209145963192, + 0.1260622888803482, + -0.008385525085031986, + 0.0227363184094429, + 0.09151863306760788, + -0.09415683150291443, + -0.04459966719150543, + -0.0226836409419775, + 0.027638548985123634, + -0.08480838686227798, + 0.04222169145941734, + 0.040965426713228226, + -0.008196350187063217, + -0.0003213175805285573, + 0.08301109075546265, + 0.0029568444006145, + 0.004396231845021248, + 0.009786475449800491, + -0.03255288675427437, + 0.03162181377410889, + -0.010582532733678818, + 0.01605938747525215, + 0.031386442482471466, + 0.0246969535946846, + 0.05496756732463837, + -0.008291056379675865, + -0.026500826701521873, + -0.1195041611790657, + 0.009853058494627476, + 0.050079572945833206, + 0.07675682008266449, + -0.025990569964051247, + -0.0202273391187191, + -0.030775107443332672, + -0.08036734163761139, + 0.05014772340655327, + -0.01097302045673132, + 0.08064179122447968, + 0.013332556001842022, + -0.028773589059710503, + 0.11192211508750916, + 0.02456790953874588, + -0.0011019870871677995, + -0.05334194004535675, + -0.03009355068206787, + 0.02187325805425644, + 0.044389836490154266, + -0.11591000109910965, + -0.05547906830906868, + 0.0003466318594291806, + 0.015130819752812386, + -0.027434542775154114, + 0.04612204432487488, + 0.05507882311940193, + 0.025138316676020622, + 0.02772468514740467, + -0.045911893248558044, + -0.01048254780471325, + -0.10145393759012222, + -0.07158402353525162, + -0.008819213137030602, + -0.028672033920884132, + -0.02248135395348072, + 0.08878090232610703, + 0.012591863982379436, + 0.038297638297080994, + -0.0318383052945137, + -0.04675601050257683, + -0.06739017367362976, + 0.0647347941994667, + 0.05494198203086853, + 0.0007818698068149388, + 0.044629428535699844, + 0.04337198659777641, + -0.026525886729359627, + 0.04575919732451439, + 0.07308197766542435, + 0.12743665277957916, + -0.046412572264671326, + 0.02811635658144951, + -0.07216516882181168, + 0.1074354276061058, + 0.0878455713391304, + -0.08247501403093338, + -0.07868802547454834, + -0.012309428304433823, + -0.056923747062683105, + 0.018798766657710075, + -0.05857264995574951, + -0.0014582837466150522, + 0.020307812839746475, + -0.005348965059965849, + -0.10183601826429367, + -0.09745538979768753, + 0.0751880407333374, + -0.08353032916784286, + -0.000499181856866926, + -0.09331083297729492, + 0.0567728728055954, + 0.0895451009273529, + 0.04269560053944588, + -0.04776900261640549, + 0.006110005080699921, + 0.06342826038599014, + -0.04685213416814804, + 0.00283640343695879, + 0.050748687237501144, + 0.026887770742177963, + -0.10592646151781082, + -0.016883304342627525, + -0.06643162667751312, + 0.039897117763757706, + -0.05434108525514603, + 0.16183307766914368, + 0.0026806907262653112, + -0.054454121738672256, + -0.052208393812179565, + 0.03219299390912056, + -0.01592209003865719, + 0.04684852808713913, + 0.040493886917829514, + 0.07390118390321732, + 0.031165460124611855, + -0.0572657473385334, + 0.13536448776721954, + 0.03932786360383034, + -0.02746889367699623, + -0.06881848722696304, + -0.0402451790869236, + -0.035189367830753326, + 0.05021411180496216, + 0.009485137648880482, + -0.0997840166091919, + -0.012666463851928711, + 0.051296088844537735, + 0.000514302751980722, + 0.04523845762014389, + 0.14479690790176392, + 0.0645727589726448, + -0.09413698315620422 + ] + }, + "p244_228.wav": { + "name": "p244", + "embedding": [ + 0.036547183990478516, + 0.05494793504476547, + -0.03381495177745819, + -0.010115750133991241, + -0.04059382155537605, + 0.02810145542025566, + -0.13210858404636383, + 0.09303756058216095, + 0.005028697662055492, + 0.16204020380973816, + -0.05217421054840088, + 0.09659303724765778, + -0.0012686308473348618, + -0.11723019182682037, + 0.023297203704714775, + 0.03521076962351799, + -0.006184345111250877, + -0.0019950508140027523, + -0.004529932513833046, + -0.05533728748559952, + 0.03424292802810669, + 0.049391716718673706, + 0.007852649316191673, + -0.04434743896126747, + 0.02525271102786064, + 0.06144176423549652, + -0.024894338101148605, + -0.006331412121653557, + -0.01832963526248932, + -0.0581718273460865, + 0.011025835759937763, + 0.11011952906847, + -0.04667455703020096, + -0.004206397570669651, + 0.010972622781991959, + -0.013248814269900322, + -0.028623323887586594, + -0.04633243381977081, + 0.020680660381913185, + 0.033447153866291046, + -0.04960118979215622, + 0.0838746726512909, + 0.01760770007967949, + 0.010426776483654976, + 0.026980679482221603, + -0.030386094003915787, + -0.06536616384983063, + 0.004335332661867142, + -0.048969727009534836, + 0.14194506406784058, + 0.07445313036441803, + 0.007051954045891762, + -0.07249372452497482, + -0.01101214811205864, + 0.04477895796298981, + 0.02705524116754532, + -0.08595451712608337, + -0.034307949244976044, + 0.030470481142401695, + 0.10671170055866241, + 0.009791238233447075, + -0.06108497828245163, + 0.03524329140782356, + 0.10987058281898499, + 0.009562487713992596, + 0.03315334767103195, + 0.08764147758483887, + 0.10279177874326706, + -0.010249885730445385, + 0.006959708407521248, + 0.020144307985901833, + 0.07273457199335098, + 0.051266320049762726, + -0.025711428374052048, + 0.03318297117948532, + -0.018727295100688934, + -0.016509534791111946, + -0.04951774328947067, + -0.022715087980031967, + -0.05312328413128853, + -0.0448157861828804, + -0.022821705788373947, + -0.003900387790054083, + 0.09170660376548767, + -0.022880928590893745, + -0.029494643211364746, + 0.07554402202367783, + -0.04855826869606972, + 0.04615463316440582, + 0.03903011232614517, + 0.017772603780031204, + 0.006154010072350502, + -0.10188841074705124, + -0.05236378312110901, + 0.038186024874448776, + -0.002766687422990799, + 0.047838497906923294, + 0.06418476998806, + 0.027539290487766266, + 0.0002491651102900505, + 0.09445770829916, + 0.02097795158624649, + -0.005377943627536297, + -0.04734991118311882, + -0.07401047646999359, + 0.11700354516506195, + 0.11375206708908081, + -0.04591304063796997, + 0.03777534142136574, + -0.014602947980165482, + 0.014844397082924843, + -0.0070088207721710205, + -0.12812571227550507, + -0.029767531901597977, + -0.004303273744881153, + 0.0478520393371582, + 0.019742488861083984, + 0.11558857560157776, + 0.04125234857201576, + 0.05158422887325287, + 0.0784287303686142, + -0.05399606004357338, + -0.06061099097132683, + -0.05072500556707382, + 0.038478169590234756, + -0.10721170902252197, + 0.060248248279094696, + 0.055300697684288025, + 0.022702792659401894, + 0.003910653293132782, + 0.06804215162992477, + 0.024405136704444885, + 0.03485392779111862, + -0.05654182285070419, + 0.005347827449440956, + 0.036358222365379333, + -0.020238889381289482, + 0.041469231247901917, + 0.031049851328134537, + -0.006746730767190456, + 0.09990570694208145, + 0.029759474098682404, + -0.007160266861319542, + -0.09072452783584595, + 0.037418484687805176, + 0.007801290135830641, + 0.03955089673399925, + -0.052426502108573914, + -0.03093225508928299, + 0.01665990985929966, + -0.0764579176902771, + -0.0004300791770219803, + -0.009757639840245247, + 0.06864982843399048, + 0.030672062188386917, + -0.0229633841663599, + 0.10047703981399536, + 0.015504911541938782, + -0.00018723157700151205, + 0.010967081412672997, + -0.010971481911838055, + -0.005989436060190201, + 0.06344471871852875, + -0.12709718942642212, + -0.05961715802550316, + 0.011622114107012749, + 0.0128859244287014, + 0.011815086007118225, + 0.03485803306102753, + 0.09618727117776871, + -0.02078128233551979, + 0.024947889149188995, + -0.01679592952132225, + -0.003832906950265169, + -0.05250580608844757, + -0.06677301228046417, + 0.0032298071309924126, + -0.05456282198429108, + -0.0497753843665123, + 0.08213728666305542, + -0.02136092260479927, + 0.04913489520549774, + -0.04758963733911514, + -0.03340229019522667, + -0.0676318109035492, + 0.03568369895219803, + 0.03104977309703827, + -0.06299667060375214, + -0.0007210280746221542, + 0.08407070487737656, + -0.00670292042195797, + -0.02887452393770218, + 0.055874817073345184, + 0.09213539212942123, + -0.08104171603918076, + 0.005033660680055618, + -0.08486886322498322, + 0.1096893697977066, + 0.08756161481142044, + -0.0345761701464653, + -0.062121979892253876, + -0.06690338999032974, + -0.06330153346061707, + 0.0373421311378479, + -0.03550054132938385, + -0.017497580498456955, + 0.040321316570043564, + -0.05281955376267433, + -0.07797092199325562, + -0.07407867908477783, + 0.05309075862169266, + -0.05857566371560097, + 0.007959308102726936, + -0.07371783256530762, + 0.036032311618328094, + 0.04185828939080238, + 0.06944239884614944, + -0.06200557202100754, + 0.015215501189231873, + 0.02768900617957115, + -0.04563862830400467, + 0.006325381342321634, + 0.03160887211561203, + 0.034379299730062485, + -0.06544091552495956, + -0.06208460405468941, + -0.06095083802938461, + 0.03927738964557648, + -0.06617523729801178, + 0.055638596415519714, + 0.03216254338622093, + -0.05052667111158371, + -0.0727718323469162, + -0.004142915830016136, + 0.004101710394024849, + 0.03420416638255119, + 0.07264456152915955, + 0.06035304069519043, + 0.0509200245141983, + -0.053581397980451584, + 0.06901642680168152, + 0.05423349514603615, + 0.03478659316897392, + -0.05042131245136261, + -0.00014366023242473602, + -0.0034629814326763153, + 0.05168410390615463, + 0.018149469047784805, + -0.0771474614739418, + 0.04962316155433655, + 0.01681504398584366, + 0.004121999256312847, + 0.044393714517354965, + 0.04761321097612381, + 0.04781375825405121, + -0.10872853547334671 + ] + }, + "p244_188.wav": { + "name": "p244", + "embedding": [ + 0.017317287623882294, + 0.04498537629842758, + -0.049431826919317245, + 0.026250295341014862, + -0.07159970700740814, + 0.041431911289691925, + -0.14220894873142242, + 0.09918121993541718, + -0.02404780313372612, + 0.11870583891868591, + -0.033757831901311874, + 0.10897046327590942, + -0.01274899858981371, + -0.2121933251619339, + 0.01909901574254036, + 0.06232907623052597, + -0.03920887038111687, + -0.04471857100725174, + -0.06435555219650269, + -0.03345201909542084, + 0.03468197584152222, + 0.0357145331799984, + 0.025104904547333717, + -0.05580104887485504, + 0.01387088280171156, + 0.07723259925842285, + -0.008191756904125214, + 0.013709424063563347, + -0.023945387452840805, + -0.03753571957349777, + -0.049597322940826416, + 0.0883735865354538, + -0.06499285250902176, + -0.028659116476774216, + 0.0505051389336586, + -0.023918859660625458, + -0.028258681297302246, + -0.04561741650104523, + -0.009612597525119781, + 0.03508784621953964, + -0.06720846891403198, + 0.07514676451683044, + 0.051419928669929504, + -0.013838039711117744, + 0.05048087611794472, + 0.006804631091654301, + -0.022727705538272858, + -0.030414143577218056, + -0.10152660310268402, + 0.14894217252731323, + 0.06898372620344162, + -0.025127515196800232, + -0.05135069042444229, + -0.0408470593392849, + 0.08696570992469788, + 0.008966525085270405, + -0.13095322251319885, + -0.07086822390556335, + 0.0888456180691719, + 0.1253010779619217, + -0.035244591534137726, + -0.021543893963098526, + 0.03895064443349838, + 0.07749058306217194, + 0.06122463941574097, + 0.10049092024564743, + 0.06332235038280487, + 0.12807497382164001, + -0.0027650382835417986, + 0.0040116989985108376, + 0.0695246160030365, + 0.06422119587659836, + 0.030354848131537437, + -0.017443187534809113, + 0.04658213257789612, + 0.0029388070106506348, + -0.010607457719743252, + -0.022464144974946976, + -0.018317895010113716, + -0.012762738391757011, + 0.03116878867149353, + -0.007134473882615566, + 0.0351099967956543, + 0.02266528084874153, + -0.03112887218594551, + 0.04863879829645157, + 0.08685256540775299, + -0.0017822063528001308, + 0.06073993071913719, + 0.02116236463189125, + -0.0073343669064342976, + 0.07774338126182556, + -0.09492166340351105, + -0.06570316851139069, + 0.031402237713336945, + 0.0057772016152739525, + -0.0017051721224561334, + 0.05516954883933067, + 0.047507453709840775, + -0.020640410482883453, + 0.1228819489479065, + 0.03544235974550247, + -0.016452038660645485, + 0.04918748140335083, + -0.07279971987009048, + 0.12608854472637177, + 0.08431540429592133, + -0.030415885150432587, + 0.030399909242987633, + -0.06336770951747894, + 0.07243360579013824, + 0.043131835758686066, + -0.10869661718606949, + -0.049188461154699326, + 0.044710587710142136, + -0.023325065150856972, + -0.050837837159633636, + 0.16665911674499512, + -0.003387659788131714, + 0.01691051758825779, + 0.14217683672904968, + -0.1043357402086258, + -0.057786524295806885, + -0.0008437793585471809, + 0.030060134828090668, + -0.08626771718263626, + 0.04105145484209061, + 0.05152350664138794, + -0.00994603056460619, + 0.03077283501625061, + 0.09150253981351852, + -0.017743868753314018, + 0.015175789594650269, + -0.005155642982572317, + -0.015340684913098812, + 0.049425624310970306, + -0.010346350260078907, + -0.01423791516572237, + 0.07959248125553131, + 0.029327072203159332, + 0.04215708002448082, + -0.035785987973213196, + -0.027502745389938354, + -0.131309375166893, + 0.02814522758126259, + 0.01983937993645668, + 0.0819053202867508, + -0.014491342008113861, + 0.01907731592655182, + -0.06289822608232498, + -0.11390458047389984, + 0.02779809758067131, + -0.025660209357738495, + 0.07574279606342316, + -0.027025040239095688, + -0.03143087029457092, + 0.09052151441574097, + 0.04678970202803612, + 0.01202697865664959, + -0.05012039095163345, + -0.06305918097496033, + 0.016918502748012543, + 0.045033156871795654, + -0.10097062587738037, + -0.058853622525930405, + -0.046271972358226776, + 0.037637338042259216, + -0.009079734794795513, + 0.038432247936725616, + 0.06502270698547363, + 0.04015757888555527, + 0.015586724504828453, + -0.08537141978740692, + 0.017619166523218155, + -0.0705195963382721, + -0.04243101924657822, + -0.01802583411335945, + -0.02883341535925865, + -0.03243012726306915, + 0.08826066553592682, + -0.013770588673651218, + 0.023792801424860954, + -0.07443833351135254, + -0.06121410056948662, + -0.07203206419944763, + 0.05678550899028778, + 0.055465664714574814, + -0.03217874839901924, + 0.046823397278785706, + 0.04638488590717316, + -0.04013500362634659, + 0.0026283422484993935, + 0.06033400818705559, + 0.11864417791366577, + -0.026256369426846504, + 0.011101892217993736, + -0.055907152593135834, + 0.12708517909049988, + 0.07068803906440735, + -0.055651649832725525, + -0.0484439879655838, + -0.005763031542301178, + -0.06660846620798111, + 0.04331723600625992, + -0.04608432203531265, + -0.021472645923495293, + 0.020690463483333588, + 0.023847879841923714, + -0.0916101336479187, + -0.07911588251590729, + 0.05280515179038048, + -0.059972479939460754, + -0.01347692497074604, + -0.09861786663532257, + 0.04117956385016441, + 0.07657027244567871, + 0.044892556965351105, + -0.06180015206336975, + -0.007300299592316151, + 0.052679285407066345, + -0.020200956612825394, + 0.05991438776254654, + 0.0642707422375679, + 0.05839382857084274, + -0.09800872951745987, + -0.04367532953619957, + -0.07133033871650696, + 0.04467225819826126, + -0.046147119253873825, + 0.12688976526260376, + 0.02022826112806797, + -0.02163371443748474, + -0.060631610453128815, + 0.05313608795404434, + -0.00031630881130695343, + 0.06005815416574478, + 0.0646965503692627, + 0.08532170951366425, + 0.06233343482017517, + -0.056034162640571594, + 0.1290823519229889, + 0.030907586216926575, + -0.01748138852417469, + -0.06116333603858948, + -0.01653577759861946, + -0.04848343878984451, + 0.0357728973031044, + 0.045651160180568695, + -0.10712676495313644, + 0.001083730487152934, + 0.05164897441864014, + -0.002481299452483654, + 0.030789662152528763, + 0.12179458141326904, + 0.06833023577928543, + -0.08677087724208832 + ] + }, + "p244_176.wav": { + "name": "p244", + "embedding": [ + 0.06590309739112854, + 0.08273713290691376, + -0.022031202912330627, + 0.027331626042723656, + -0.05132855474948883, + 0.04373977705836296, + -0.15334570407867432, + 0.1566563993692398, + -0.009727679193019867, + 0.13052597641944885, + -0.03915196657180786, + 0.12613728642463684, + -0.00921361893415451, + -0.17011556029319763, + -0.0031224607955664396, + 0.05452784150838852, + -0.03364328294992447, + -0.0348631925880909, + -0.02278713509440422, + -0.029857030138373375, + 0.029342498630285263, + 0.04183362051844597, + 0.031725432723760605, + -0.0046009584330022335, + 0.028559327125549316, + 0.06831564009189606, + -0.017405208200216293, + 0.027609815821051598, + -0.0089272391051054, + -0.0710478276014328, + -0.02805780991911888, + 0.07103975862264633, + -0.0609106719493866, + 0.005562937818467617, + 0.03896316513419151, + -0.026390373706817627, + -0.013575540855526924, + -0.06560267508029938, + -0.029591700062155724, + 0.007092623971402645, + -0.037789665162563324, + 0.08400766551494598, + 0.02115662395954132, + -0.03572472184896469, + 0.03886793181300163, + 0.014422359876334667, + -0.004600794520229101, + -0.03717661648988724, + -0.11260801553726196, + 0.15533767640590668, + 0.07325652241706848, + 0.014653614722192287, + -0.08307540416717529, + -0.05747218057513237, + 0.08501579612493515, + -0.015743855386972427, + -0.09778197854757309, + -0.027945932000875473, + 0.05563493072986603, + 0.1365983933210373, + -0.032644666731357574, + -0.04546068608760834, + 0.04818868637084961, + 0.10732771456241608, + 0.07704716920852661, + 0.06185056269168854, + 0.09420525282621384, + 0.11288021504878998, + -0.04673559218645096, + 0.009247522801160812, + 0.036061182618141174, + 0.0793636366724968, + 0.0696311891078949, + 0.007205704227089882, + 0.018164895474910736, + -0.007456387858837843, + -0.015886083245277405, + -0.040691327303647995, + -0.023670226335525513, + -0.02646796964108944, + -0.003542952938005328, + 0.013792181387543678, + 0.020862823352217674, + 0.05419101566076279, + -0.026225855574011803, + 0.05407482013106346, + 0.057271093130111694, + -0.02712639793753624, + 0.0665774717926979, + 0.018475593999028206, + 0.020073935389518738, + 0.07006167620420456, + -0.1084972470998764, + -0.06667543947696686, + 0.05201352387666702, + 0.003527058055624366, + 0.03386840224266052, + 0.07018347829580307, + 0.048327378928661346, + -0.013828898780047894, + 0.12828075885772705, + 0.052020035684108734, + -0.01700139231979847, + 0.009118321351706982, + -0.07842226326465607, + 0.125259667634964, + 0.08640637993812561, + -0.03948485851287842, + 0.06417527794837952, + -0.06240531802177429, + 0.056600913405418396, + 0.048333585262298584, + -0.13238009810447693, + -0.07555337995290756, + 0.03135322779417038, + 0.01871408149600029, + -0.006715088617056608, + 0.14097750186920166, + 0.014059068635106087, + 0.07226261496543884, + 0.10537798702716827, + -0.09489516913890839, + -0.053132764995098114, + -0.013518152758479118, + 0.06651130318641663, + -0.09357684850692749, + 0.08118122071027756, + 0.06574410200119019, + -0.019548101350665092, + 0.030379649251699448, + 0.07033946365118027, + -0.004461872857064009, + 0.003948649857193232, + -0.0030166504438966513, + -0.025986608117818832, + 0.0010310538345947862, + -0.020243503153324127, + -0.015815503895282745, + 0.017549216747283936, + 0.016868874430656433, + 0.04138512164354324, + -0.011960888281464577, + -0.022519264370203018, + -0.13396292924880981, + 0.0199708491563797, + 0.025134574621915817, + 0.0808676928281784, + -0.021772390231490135, + -0.03277274966239929, + -0.030811121687293053, + -0.05993056297302246, + -0.006899719592183828, + -0.014716587960720062, + 0.05033014714717865, + -0.01804148405790329, + 0.015124909579753876, + 0.09540446847677231, + 0.049196772277355194, + 0.009166347794234753, + -0.032705970108509064, + -0.03616961091756821, + 0.006587449461221695, + 0.05745156854391098, + -0.07765307277441025, + -0.08155323565006256, + -0.029043225571513176, + 0.024371540173888206, + -0.020367398858070374, + 0.0753738135099411, + 0.04553629457950592, + 0.024564266204833984, + 0.007722645998001099, + -0.06545669585466385, + 0.01615370437502861, + -0.08819540590047836, + -0.08529090881347656, + -0.0008315509185194969, + -0.007010858040302992, + -0.03731034696102142, + 0.07583478093147278, + 0.03277184069156647, + 0.07850177586078644, + -0.05062877759337425, + -0.04603683948516846, + -0.08216080069541931, + 0.032328709959983826, + 0.04931224137544632, + -0.027668422088027, + 0.02368195913732052, + 0.059348881244659424, + -0.018062911927700043, + 0.051102038472890854, + 0.0644771158695221, + 0.09227493405342102, + -0.026067791506648064, + 0.022217441350221634, + -0.07000530511140823, + 0.10057233273983002, + 0.10241001844406128, + -0.0660070925951004, + -0.0833776593208313, + -0.034672241657972336, + -0.08395908772945404, + 0.018026867881417274, + -0.01758812554180622, + 0.020316768437623978, + 0.03906296193599701, + -0.0018471296643838286, + -0.1044909656047821, + -0.0998966246843338, + 0.08310158550739288, + -0.0647507905960083, + 0.00958292931318283, + -0.087298184633255, + 0.04991710186004639, + 0.09902515262365341, + 0.031223490834236145, + -0.026738043874502182, + -0.033829011023044586, + 0.03121050074696541, + -0.0005048485472798347, + 0.027047235518693924, + 0.06736314296722412, + 0.0641685351729393, + -0.11556115746498108, + -0.0037295869551599026, + -0.0594022274017334, + 0.04243311285972595, + -0.03628578037023544, + 0.13820697367191315, + 0.028575977310538292, + -0.04545023664832115, + -0.09418241679668427, + 0.04028555005788803, + -0.009200192987918854, + 0.06230112910270691, + 0.014625227078795433, + 0.06447426974773407, + 0.05719239264726639, + -0.07228986918926239, + 0.09338214993476868, + 0.050442688167095184, + -0.042689792811870575, + -0.07106788456439972, + -0.063497394323349, + -0.0327129140496254, + 0.04167948290705681, + 0.002049120608717203, + -0.0810183435678482, + -0.02905045449733734, + 0.021104484796524048, + 0.007179769687354565, + 0.05495418235659599, + 0.1424550712108612, + 0.04495810717344284, + -0.12958046793937683 + ] + }, + "p244_275.wav": { + "name": "p244", + "embedding": [ + 0.0372111052274704, + 0.050547100603580475, + -0.039791930466890335, + 0.06428533792495728, + -0.06765749305486679, + 0.040432676672935486, + -0.14868861436843872, + 0.10640327632427216, + -0.021880440413951874, + 0.10772843658924103, + -0.05929896980524063, + 0.08378919959068298, + -0.017492609098553658, + -0.19753682613372803, + -0.006421403028070927, + 0.06478886306285858, + -0.04720301553606987, + -0.03194117918610573, + -0.0735669732093811, + -0.028677726164460182, + 0.03851275146007538, + 0.0534440279006958, + 0.047147490084171295, + -0.0267333947122097, + 0.016785763204097748, + 0.05823175981640816, + -0.011137187480926514, + 0.028506604954600334, + 0.0070802937261760235, + -0.03567471727728844, + -0.029264654964208603, + 0.11077967286109924, + -0.006142396479845047, + -0.027134299278259277, + 0.033171698451042175, + -0.005992839112877846, + -0.01941157504916191, + -0.07562747597694397, + -0.027822960168123245, + 0.01068776287138462, + -0.06396210193634033, + 0.06659205257892609, + 0.0473058745265007, + -0.04108644276857376, + 0.06850926578044891, + -0.037930749356746674, + -0.05754496157169342, + -0.047843314707279205, + -0.13164585828781128, + 0.16440364718437195, + 0.09240882843732834, + 0.02109512872993946, + -0.07503265142440796, + -0.03818577900528908, + 0.11606360226869583, + -0.004305548965930939, + -0.11100426316261292, + -0.07306322455406189, + 0.07542389631271362, + 0.18429842591285706, + -0.016988929361104965, + 0.019483918324112892, + 0.05982273817062378, + 0.11252015829086304, + 0.04116428643465042, + 0.07991175353527069, + 0.07670343667268753, + 0.0956476479768753, + 0.014019510708749294, + 0.036897871643304825, + 0.04997949302196503, + 0.0666642040014267, + -0.0033631548285484314, + -0.018157746642827988, + 0.020306186750531197, + -0.01118550170212984, + -0.0523250550031662, + -0.02172210067510605, + -0.028238940984010696, + -0.01570945419371128, + 0.0034297779202461243, + -0.003977117128670216, + 0.028729159384965897, + 0.012515516951680183, + -0.06733973324298859, + 0.04054859280586243, + 0.04000149667263031, + -0.04084627702832222, + 0.05878767371177673, + 0.02424379624426365, + -0.010608808137476444, + 0.028196848928928375, + -0.030981626361608505, + -0.1025228425860405, + -0.005650188773870468, + 0.018151061609387398, + -0.009235326200723648, + 0.0494488850235939, + 0.03304683044552803, + -0.04707948863506317, + 0.12458515167236328, + 0.03188218176364899, + -0.015951815992593765, + 0.04687663912773132, + -0.07101300358772278, + 0.10087639838457108, + 0.09593609720468521, + 0.004735417664051056, + 0.0658436268568039, + -0.04067708179354668, + 0.04357825219631195, + 0.06105254963040352, + -0.11678953468799591, + -0.039993468672037125, + 0.046250149607658386, + -0.002066663233563304, + 0.0014543826691806316, + 0.13816797733306885, + 0.03370920568704605, + 0.035824354737997055, + 0.12066216766834259, + -0.09924739599227905, + -0.06310063600540161, + -0.01783032715320587, + 0.07728970795869827, + -0.06144742667675018, + 0.051109518855810165, + 0.06654154509305954, + -0.03428902104496956, + 0.013600043021142483, + 0.05042201653122902, + -0.01720242388546467, + 0.015457747504115105, + 0.00633569061756134, + -0.05480961129069328, + 0.05744437128305435, + -0.05916483327746391, + -0.02087836153805256, + 0.08025971055030823, + 0.032897986471652985, + 0.04981597512960434, + -0.0178227461874485, + -0.029598254710435867, + -0.10776936262845993, + -0.005454982630908489, + 0.02400267869234085, + 0.1018771380186081, + 0.0014026444405317307, + 0.006253059022128582, + -0.07616347074508667, + -0.0826883316040039, + 0.03763645514845848, + -0.053547292947769165, + 0.09755547344684601, + -0.02633102610707283, + -0.004980175755918026, + 0.06643056124448776, + 0.0013255062513053417, + 0.006942296400666237, + -0.043009497225284576, + -0.025869157165288925, + 0.0230241846293211, + 0.03868516907095909, + -0.061113178730010986, + -0.04628463089466095, + -0.006677571684122086, + 0.032870154827833176, + -0.03237747773528099, + 0.017305508255958557, + 0.021627631038427353, + 0.028258226811885834, + 0.0037730673793703318, + -0.09021933376789093, + 0.036487333476543427, + -0.07960869371891022, + -0.016955388709902763, + 0.013353020884096622, + -0.016371123492717743, + -0.04316435009241104, + 0.10222162306308746, + 0.04196551814675331, + 0.007445049472153187, + -0.02195524424314499, + -0.08111335337162018, + -0.06170753389596939, + 0.050415799021720886, + 0.04873126745223999, + -0.013593791052699089, + 0.0507008358836174, + 0.04373297095298767, + -0.022381126880645752, + 0.0268389955163002, + 0.06883329898118973, + 0.08232976496219635, + 0.0065101878717541695, + -0.039970606565475464, + -0.07118874788284302, + 0.10195834189653397, + 0.09972754120826721, + -0.07307245582342148, + -0.06400041282176971, + -0.03322445973753929, + -0.08305425196886063, + 0.045970916748046875, + -0.02062268927693367, + -0.010524102486670017, + 0.04042370617389679, + -0.018243473023176193, + -0.13788217306137085, + -0.09079774469137192, + 0.08598054200410843, + -0.07443965971469879, + -0.013190265744924545, + -0.06539787352085114, + 0.02527713030576706, + 0.09252861887216568, + 0.015022635459899902, + -0.028417464345693588, + -0.018887314945459366, + 0.04335290938615799, + -0.07408102601766586, + 0.022785726934671402, + 0.05588337033987045, + 0.02137768268585205, + -0.12280511856079102, + 0.010940550826489925, + -0.07326871156692505, + 0.06430086493492126, + -0.03907422348856926, + 0.13647128641605377, + 0.032093070447444916, + -0.023616179823875427, + -0.08593961596488953, + 0.07636019587516785, + -0.02165522798895836, + 0.0666738748550415, + 0.04711022973060608, + 0.06940796971321106, + 0.06648463010787964, + -0.09064563363790512, + 0.09680681675672531, + 0.034255027770996094, + -0.028422709554433823, + -0.07090790569782257, + -0.031739503145217896, + -0.04116027057170868, + 0.020132046192884445, + 0.001373582985252142, + -0.06732317805290222, + -0.009879304096102715, + 0.02314138039946556, + -0.01892411895096302, + 0.07125674933195114, + 0.11903060972690582, + 0.067520871758461, + -0.08741383999586105 + ] + }, + "p244_222.wav": { + "name": "p244", + "embedding": [ + 0.06108405068516731, + 0.10647977888584137, + -0.000617398414760828, + 0.02306094579398632, + -0.03677089512348175, + 0.06461239606142044, + -0.14455847442150116, + 0.1188560351729393, + -0.037819743156433105, + 0.1366496980190277, + -0.0777558982372284, + 0.1260986626148224, + -0.013707634061574936, + -0.20751075446605682, + -0.057540133595466614, + 0.06460794806480408, + -0.05266393721103668, + -0.015345701947808266, + -0.031993567943573, + -0.0010810154490172863, + 0.027816448360681534, + 0.026042643934488297, + 0.057558976113796234, + -0.013864386826753616, + 0.04250806197524071, + 0.06557751446962357, + 0.02284429594874382, + 0.07405853271484375, + 0.026938017457723618, + -0.04421895742416382, + -0.04515006020665169, + 0.12181121110916138, + -0.03756125271320343, + 0.004845899064093828, + 0.07181832939386368, + -0.001529536210000515, + 0.017629370093345642, + -0.06470608711242676, + -0.002787746489048004, + 0.009170708246529102, + -0.028057973831892014, + 0.08416552096605301, + 0.032940350472927094, + -0.014416085556149483, + 0.04113847017288208, + 0.04639853164553642, + -0.0049102287739515305, + -0.053554147481918335, + -0.11086501181125641, + 0.15409603714942932, + 0.045271433889865875, + 0.01465653907507658, + -0.07471352070569992, + -0.07080671191215515, + 0.09942316263914108, + -0.023636285215616226, + -0.09994032233953476, + -0.055198147892951965, + 0.08141282200813293, + 0.16549062728881836, + -0.028426170349121094, + -0.038404498249292374, + 0.02772606536746025, + 0.12711147964000702, + 0.04499347135424614, + 0.09814967215061188, + 0.0759621188044548, + 0.10287846624851227, + 0.007442581932991743, + 0.03093777596950531, + 0.05855100601911545, + 0.06003308296203613, + 0.0315227210521698, + -0.020807866007089615, + 0.028356939554214478, + -0.011214344762265682, + -0.026853125542402267, + -0.0011568637564778328, + -0.023175891488790512, + -0.008345823734998703, + -0.01349436305463314, + 0.0054573859088122845, + 0.003318965435028076, + 0.020443931221961975, + -0.034833770245313644, + 0.062183864414691925, + 0.019940689206123352, + -0.01843925006687641, + 0.07633303105831146, + 0.04648476094007492, + 0.006451481021940708, + 0.04481981694698334, + -0.07290449738502502, + -0.0989399403333664, + 0.024432167410850525, + -0.0006473178509622812, + -0.0009979411261156201, + 0.05842795968055725, + 0.0470779687166214, + -0.023900527507066727, + 0.11235892027616501, + 0.0650775134563446, + -0.009484140202403069, + 0.041433170437812805, + -0.08686938881874084, + 0.13090765476226807, + 0.08511263132095337, + -0.0171419158577919, + 0.035695623606443405, + -0.03681721165776253, + 0.05405735969543457, + 0.08810330927371979, + -0.14205609261989594, + -0.08561797440052032, + 0.0380837544798851, + -0.0025956700555980206, + -0.013711372390389442, + 0.10192014276981354, + -0.026365328580141068, + 0.01982794515788555, + 0.09954655170440674, + -0.07655389606952667, + -0.06609588861465454, + -0.02775553986430168, + 0.03888038173317909, + -0.09195458889007568, + 0.05020830035209656, + 0.045806337147951126, + -0.007562024053186178, + -0.025427894666790962, + 0.0920066088438034, + -0.002037553582340479, + -0.014566872268915176, + 0.01678907871246338, + -0.03626510500907898, + 0.04148344695568085, + -0.032590076327323914, + 0.006460740230977535, + 0.044672563672065735, + 0.04504762962460518, + 0.03837810829281807, + 0.01426954660564661, + -0.03653022274374962, + -0.11600615084171295, + -0.00519973412156105, + 0.0408778190612793, + 0.07300679385662079, + -0.007406510412693024, + -0.027017386630177498, + -0.05593958497047424, + -0.047655969858169556, + 0.038142282515764236, + -0.001864137127995491, + 0.08079181611537933, + -0.008619028143584728, + -0.009942388162016869, + 0.10925580561161041, + -0.0028608774300664663, + 0.015234522521495819, + -0.04282653331756592, + -0.011723631992936134, + 0.03105689026415348, + 0.03336199000477791, + -0.07925215363502502, + -0.06928686052560806, + 0.0021465288009494543, + 0.011984403245151043, + -0.018805846571922302, + 0.04306516796350479, + 0.050752654671669006, + 0.015741048380732536, + 0.036435529589653015, + -0.054405488073825836, + 0.002457967959344387, + -0.09544603526592255, + -0.04390803351998329, + -0.03200002387166023, + -0.025547679513692856, + -0.03497427701950073, + 0.08301126956939697, + 0.02629021927714348, + 0.043635718524456024, + -0.01585550606250763, + -0.06971190869808197, + -0.07166323810815811, + 0.06328172236680984, + 0.08925635367631912, + 0.009984223172068596, + 0.0418478325009346, + 0.028708338737487793, + -0.010551339015364647, + 0.06710711121559143, + 0.06426020711660385, + 0.08199739456176758, + -0.012986479327082634, + -0.0061281174421310425, + -0.07090484350919724, + 0.09049259126186371, + 0.08384969830513, + -0.10082690417766571, + -0.08927126228809357, + -0.015235744416713715, + -0.06333670020103455, + 0.035051699727773666, + -0.021348778158426285, + 0.015651199966669083, + 0.038222990930080414, + -0.015520840883255005, + -0.086278036236763, + -0.1118512749671936, + 0.08274443447589874, + -0.07864677906036377, + -0.01918899267911911, + -0.05852116644382477, + 0.04227006435394287, + 0.07503014802932739, + 0.02317352220416069, + -0.024019388481974602, + -0.0008100592531263828, + 0.034582674503326416, + -0.0597623735666275, + -0.01632051169872284, + 0.03955225646495819, + 0.012612666934728622, + -0.1105913370847702, + 0.02210206352174282, + -0.07639829069375992, + 0.0775880217552185, + -0.07166879624128342, + 0.16558100283145905, + -0.0013572783209383488, + -0.04954211413860321, + -0.07835662364959717, + 0.028120549395680428, + -0.05300430953502655, + 0.051034968346357346, + 0.05053573101758957, + 0.060512661933898926, + 0.012358414940536022, + -0.08027291297912598, + 0.12044014781713486, + 0.03400711715221405, + -0.033008355647325516, + -0.09692864120006561, + -0.05187544226646423, + -0.051885444670915604, + 0.03630934655666351, + 0.02796216681599617, + -0.09565617144107819, + -0.00820917822420597, + 0.03872651606798172, + -0.0242586862295866, + 0.06536050885915756, + 0.13753463327884674, + 0.049971528351306915, + -0.0948898121714592 + ] + }, + "p244_405.wav": { + "name": "p244", + "embedding": [ + 0.006150184199213982, + 0.07486303895711899, + -0.02663586288690567, + 0.0396827831864357, + -0.07888508588075638, + 0.010312719270586967, + -0.12243877351284027, + 0.13704636693000793, + -0.028949812054634094, + 0.09931938350200653, + -0.055680595338344574, + 0.10770174860954285, + -0.04940880835056305, + -0.16307318210601807, + 0.013370392844080925, + 0.0590081624686718, + 0.01580122858285904, + -0.0392984114587307, + 0.004905190784484148, + -0.04926897957921028, + 0.03190212696790695, + 0.029246345162391663, + 0.023797329515218735, + 0.012916888110339642, + 0.018231522291898727, + 0.08257376402616501, + -0.004941157530993223, + 0.016237521544098854, + -0.02850126102566719, + -0.029211970046162605, + -0.040705520659685135, + 0.08973772823810577, + -0.05868818610906601, + -0.019737152382731438, + 0.027195440605282784, + -0.022931616753339767, + -0.011572642251849174, + -0.027735145762562752, + -0.012257655151188374, + -0.003778803627938032, + -0.07221400737762451, + 0.0690208375453949, + 0.007677680812776089, + 0.0059084706008434296, + 0.04964328184723854, + 0.0069380514323711395, + -0.014495120383799076, + 0.00042348168790340424, + -0.1041998416185379, + 0.10878968238830566, + 0.07086145877838135, + -0.014892393723130226, + -0.07496088743209839, + -0.04954609274864197, + 0.10084711015224457, + -0.0036116731353104115, + -0.07893861830234528, + -0.03851358965039253, + 0.08017651736736298, + 0.11820194125175476, + -0.021269669756293297, + -0.025731150060892105, + 0.028402242809534073, + 0.09672196209430695, + 0.05306058004498482, + 0.06293874233961105, + 0.06270907819271088, + 0.10115713626146317, + -0.03169447183609009, + -0.017554961144924164, + 0.04578503593802452, + 0.0643862634897232, + 0.03271199390292168, + -0.03324565291404724, + -0.0011138077825307846, + -0.007808767259120941, + -0.010554883629083633, + -0.007996179163455963, + -0.02066575363278389, + -0.040589839220047, + -0.03887881711125374, + -0.023241635411977768, + 0.0036468892358243465, + -0.002424311824142933, + -0.016072357073426247, + 0.04164430499076843, + 0.0916631892323494, + -0.012127167545258999, + 0.09183749556541443, + 0.032345131039619446, + -0.027274835854768753, + 0.08409694582223892, + -0.09570327401161194, + -0.010594004765152931, + 0.028875943273305893, + 0.004311061929911375, + 0.03434719890356064, + 0.09402434527873993, + 0.04503396153450012, + -0.010267440229654312, + 0.11724266409873962, + 0.03866402804851532, + 0.02592509798705578, + 0.020174629986286163, + -0.08992619812488556, + 0.09675423055887222, + 0.08227004110813141, + -0.047772254794836044, + 0.06291826069355011, + -0.029017098248004913, + 0.046312734484672546, + 0.038410574197769165, + -0.10050421953201294, + -0.052188120782375336, + -0.010445058345794678, + 0.0026838649064302444, + -0.022569473832845688, + 0.11409549415111542, + 0.0013011815026402473, + 0.030930712819099426, + 0.1021089106798172, + -0.09437777101993561, + -0.08424870669841766, + -0.03104417771100998, + 0.06071043014526367, + -0.07492244243621826, + 0.05981636419892311, + 0.07829509675502777, + -0.0015183121431618929, + 0.04802033305168152, + 0.052258338779211044, + 0.003569698426872492, + 0.027483439072966576, + 0.02442401647567749, + -0.05770420283079147, + 0.007335989736020565, + -0.008484814316034317, + 0.010443726554512978, + 0.055802639573812485, + 0.018053952604532242, + 0.07853730767965317, + -0.01988217793405056, + 0.02538875676691532, + -0.10057611763477325, + 0.012353873811662197, + 0.050762537866830826, + 0.04853710159659386, + -0.02888815477490425, + -0.042304977774620056, + -0.03410155326128006, + -0.08970526605844498, + 0.006184403318911791, + 0.008147899992763996, + 0.08079163730144501, + -0.02827638015151024, + 0.009538035839796066, + 0.10582235455513, + 0.06337680667638779, + -0.02251357212662697, + -0.0641975998878479, + -0.0424477644264698, + 3.231666050851345e-05, + 0.06074313074350357, + -0.09988382458686829, + -0.0822218731045723, + -0.048506107181310654, + 0.05525355041027069, + -0.011318358592689037, + 0.06881704926490784, + 0.04739636555314064, + 0.013998052105307579, + -0.0018474189564585686, + -0.08094143122434616, + 0.04934513196349144, + -0.04532060772180557, + -0.06087994948029518, + -0.03767145797610283, + -0.02540403977036476, + -0.037186309695243835, + 0.07746666669845581, + 0.03033493459224701, + 0.05804086849093437, + -0.02209402807056904, + -0.06133315712213516, + -0.08052507042884827, + 0.018595688045024872, + 0.040038686245679855, + -0.0474863238632679, + 0.06294899433851242, + 0.06302913278341293, + -0.08780153840780258, + 0.04541824758052826, + 0.08086102455854416, + 0.09481661021709442, + -0.05498076602816582, + 0.040893882513046265, + -0.04828319698572159, + 0.06915664672851562, + 0.09316052496433258, + -0.08082294464111328, + -0.07157042622566223, + -0.06226029992103577, + -0.05875064432621002, + 0.05325916409492493, + -0.006705602630972862, + 0.007173493038862944, + 0.008922797627747059, + 0.0010051140561699867, + -0.08783672749996185, + -0.08716591447591782, + 0.09316055476665497, + -0.03933382406830788, + 0.001842681085690856, + -0.08648964017629623, + 0.05154842883348465, + 0.0715637058019638, + 0.03526312857866287, + -0.031575605273246765, + -0.018471233546733856, + 0.049379266798496246, + 0.0066135115921497345, + 0.024725373834371567, + 0.08367547392845154, + 0.05745554342865944, + -0.0649101734161377, + -0.03061269223690033, + -0.06204616278409958, + 0.07283425331115723, + -0.020063556730747223, + 0.1344831883907318, + 0.012971446849405766, + -0.04990969970822334, + -0.08142311871051788, + 0.04272284358739853, + 0.01761619932949543, + 0.04632534831762314, + 0.03681449592113495, + 0.06272977590560913, + 0.01905830018222332, + -0.03894062712788582, + 0.10986852645874023, + 0.03639582172036171, + -0.03918122500181198, + -0.05495746433734894, + -0.02624659799039364, + -0.03168144449591637, + 0.031790416687726974, + 0.0030091446824371815, + -0.10187118500471115, + -0.001163753680884838, + 0.01260887086391449, + 0.008416254073381424, + 0.06408717483282089, + 0.12489663064479828, + 0.07984329760074615, + -0.0996938943862915 + ] + }, + "p244_209.wav": { + "name": "p244", + "embedding": [ + 0.04554061219096184, + 0.11203058063983917, + -0.022690575569868088, + 0.012570882216095924, + -0.0615958496928215, + 0.07376416027545929, + -0.14235931634902954, + 0.15235722064971924, + -0.046706777065992355, + 0.12507732212543488, + -0.046855293214321136, + 0.129477858543396, + -0.024960055947303772, + -0.17176952958106995, + -0.021041613072156906, + 0.06449992954730988, + -0.045246973633766174, + -0.024001698940992355, + -0.03731225058436394, + -0.023389948531985283, + 0.012416157871484756, + 0.00969479326158762, + 0.02865147590637207, + -0.005654540844261646, + 0.04920028895139694, + 0.07328611612319946, + -0.004259578417986631, + 0.03601548820734024, + 0.008022502064704895, + -0.041606515645980835, + -0.045118484646081924, + 0.08548715710639954, + -0.0744706243276596, + 0.00891790259629488, + 0.06726544350385666, + -0.027431055903434753, + -0.009889774955809116, + -0.05986803025007248, + -0.01781226322054863, + 0.0095668388530612, + -0.03194738179445267, + 0.09477731585502625, + 0.03949063643813133, + -0.013258501887321472, + 0.027089383453130722, + 0.03415452316403389, + 0.013282028026878834, + -0.029356781393289566, + -0.10565045475959778, + 0.14943604171276093, + 0.050647784024477005, + -0.012686577625572681, + -0.08229793608188629, + -0.05077778548002243, + 0.10782690346240997, + -0.013646011240780354, + -0.10708905011415482, + -0.04757320135831833, + 0.07076491415500641, + 0.13209493458271027, + -0.032981354743242264, + -0.02989504486322403, + 0.014626540243625641, + 0.11616101861000061, + 0.07205488532781601, + 0.0941612720489502, + 0.06344182044267654, + 0.12834662199020386, + -0.02709992229938507, + 0.02772194892168045, + 0.05921303480863571, + 0.05661766231060028, + 0.03217185288667679, + -0.010190636850893497, + 0.020447812974452972, + -0.015202559530735016, + -0.009804517030715942, + -0.007958756759762764, + -0.020177006721496582, + -0.026570476591587067, + -0.020499303936958313, + 0.01465735025703907, + 0.006320127286016941, + 0.0368126705288887, + -0.019491689279675484, + 0.06378576904535294, + 0.049740225076675415, + -0.01400289498269558, + 0.07588404417037964, + 0.0477759912610054, + -0.004408291541039944, + 0.07181099057197571, + -0.0982455164194107, + -0.07705365866422653, + 0.030861997976899147, + -0.011823715642094612, + 0.02100476250052452, + 0.06868617236614227, + 0.052775196731090546, + 0.005227831192314625, + 0.12321065366268158, + 0.08036582916975021, + -0.0026582195423543453, + 0.03345930576324463, + -0.08013419061899185, + 0.1489182710647583, + 0.06777560710906982, + -0.032821498811244965, + 0.0617402046918869, + -0.0419139489531517, + 0.060627661645412445, + 0.06578347086906433, + -0.13268868625164032, + -0.08071302622556686, + 0.03206353634595871, + 0.007593153510242701, + -0.03766091167926788, + 0.12570424377918243, + -0.012996343895792961, + 0.040022894740104675, + 0.09272041916847229, + -0.08462142944335938, + -0.060799576342105865, + -0.005340151954442263, + 0.046294644474983215, + -0.06936579197645187, + 0.05176942050457001, + 0.059186920523643494, + -0.014587939716875553, + 0.026085246354341507, + 0.10344952344894409, + 0.006480107083916664, + 0.0066401599906384945, + 0.039710916578769684, + -0.026408351957798004, + 0.02463318407535553, + -0.0038742409087717533, + 0.013036051765084267, + 0.039368100464344025, + 0.0274701826274395, + 0.05387243628501892, + -0.010584131814539433, + 0.0007623103447258472, + -0.11440053582191467, + 0.007891575805842876, + 0.044833824038505554, + 0.09002957493066788, + -0.015656176954507828, + -0.019652806222438812, + -0.02561333030462265, + -0.07534916698932648, + -0.007397412322461605, + 0.0013407572405412793, + 0.08129993081092834, + -0.03605617210268974, + -0.002478420501574874, + 0.11295334994792938, + 0.052500493824481964, + 0.008838511072099209, + -0.05739651247859001, + -0.021529018878936768, + 0.009963859803974628, + 0.052483148872852325, + -0.08580954372882843, + -0.07665330171585083, + -0.013039784505963326, + 0.023344095796346664, + -0.0171915665268898, + 0.08285190910100937, + 0.05510025471448898, + 0.01969613879919052, + 0.03363834321498871, + -0.06921479105949402, + 0.023840559646487236, + -0.0830773338675499, + -0.04601935297250748, + -0.025027308613061905, + -0.017561502754688263, + -0.05032380670309067, + 0.08441346138715744, + 0.02640497125685215, + 0.07303734123706818, + -0.013393362984061241, + -0.05665639787912369, + -0.06498357653617859, + 0.05435187369585037, + 0.056136228144168854, + -0.029903363436460495, + 0.03915030509233475, + 0.07154837995767593, + -0.02146207168698311, + 0.03729398921132088, + 0.07908403873443604, + 0.08505338430404663, + -0.042784012854099274, + 0.018649999052286148, + -0.06908175349235535, + 0.08047108352184296, + 0.07198572903871536, + -0.11198446154594421, + -0.07691173255443573, + -0.014908134937286377, + -0.05353359878063202, + 0.011819988489151001, + -0.034393392503261566, + 0.01607479900121689, + 0.026513660326600075, + -0.0025348826311528683, + -0.07555601745843887, + -0.11043053865432739, + 0.08997412025928497, + -0.09585773944854736, + 0.011909783817827702, + -0.07016541063785553, + 0.03988944739103317, + 0.08187173306941986, + 0.0337202213704586, + -0.040319688618183136, + -0.009234657511115074, + 0.04479823634028435, + -0.0054154894314706326, + 0.017220513895154, + 0.07073770463466644, + 0.04830370098352432, + -0.1012454479932785, + 0.005688146688044071, + -0.06045256182551384, + 0.06970404088497162, + -0.03492727130651474, + 0.17103973031044006, + 0.009815742261707783, + -0.04843275994062424, + -0.08546597510576248, + 0.02463780902326107, + -0.033158447593450546, + 0.04538648948073387, + 0.03275530785322189, + 0.07747878134250641, + 0.03365189582109451, + -0.037520162761211395, + 0.13304531574249268, + 0.029347743839025497, + -0.046014294028282166, + -0.07504291832447052, + -0.047618694603443146, + -0.04382602125406265, + 0.04885208606719971, + 0.034145064651966095, + -0.10433944314718246, + -0.017432769760489464, + 0.02739243023097515, + -0.011629210785031319, + 0.07152494043111801, + 0.14030449092388153, + 0.0901455283164978, + -0.1088985800743103 + ] + }, + "p244_262.wav": { + "name": "p244", + "embedding": [ + 0.05120299756526947, + 0.10064674913883209, + -0.009198248386383057, + 0.03181561827659607, + -0.027464676648378372, + 0.059713803231716156, + -0.12019693851470947, + 0.10171031951904297, + -0.0549749955534935, + 0.14529161155223846, + -0.10167531669139862, + 0.08058565109968185, + -0.04520229250192642, + -0.1540006399154663, + -0.030811607837677002, + 0.05386172980070114, + -0.053299810737371445, + -0.01922711730003357, + -0.0534542016685009, + -0.014393138699233532, + 0.01883978210389614, + 0.0478510782122612, + 0.04279084503650665, + 0.000983256846666336, + 0.025578733533620834, + 0.048070650547742844, + -0.008330855518579483, + 0.046740561723709106, + 0.018217366188764572, + -0.04601719602942467, + -0.03640662133693695, + 0.10691242665052414, + -0.03787381947040558, + 0.013880571350455284, + 0.03360014408826828, + 0.02640683576464653, + 0.005446490831673145, + -0.07871174812316895, + -0.022228408604860306, + -0.01679687201976776, + -0.051559366285800934, + 0.05953097343444824, + 0.014877522364258766, + -0.02390565536916256, + 0.047724224627017975, + -0.001975785940885544, + -0.02440449222922325, + -0.04622616991400719, + -0.10330905765295029, + 0.14947204291820526, + 0.07587133347988129, + 0.011020049452781677, + -0.06762873381376266, + -0.07256826758384705, + 0.0993395671248436, + -0.017549198120832443, + -0.11445820331573486, + -0.03620462864637375, + 0.07281570881605148, + 0.16579386591911316, + -0.03506751358509064, + -0.020623572170734406, + 0.025090089067816734, + 0.09251000732183456, + 0.043006882071495056, + 0.09177093207836151, + 0.07299482077360153, + 0.08901026099920273, + 0.009673969820141792, + 0.019041597843170166, + 0.054912857711315155, + 0.05111443251371384, + 0.04096747934818268, + -0.02290019765496254, + 0.015500959008932114, + 0.010975207202136517, + -0.05548204109072685, + 0.029323814436793327, + -0.021801603958010674, + -0.0268276147544384, + -0.01562955603003502, + -0.01665002852678299, + 0.004028484225273132, + 0.0057489871978759766, + -0.02529078722000122, + 0.03868642449378967, + 0.017912309616804123, + -0.025504259392619133, + 0.081025630235672, + 0.01614363305270672, + -0.021524760872125626, + 0.039032407104969025, + -0.05297297239303589, + -0.0774117112159729, + 0.0019693090580403805, + 0.02007894031703472, + -0.020108114928007126, + 0.06561096757650375, + 0.032936111092567444, + -0.03397076576948166, + 0.11859112977981567, + 0.02914871647953987, + 0.012230394408106804, + 0.026038264855742455, + -0.10060828924179077, + 0.10992293059825897, + 0.09210561215877533, + -0.025584470480680466, + 0.04101255163550377, + -0.026945700868964195, + 0.05010461062192917, + 0.094532310962677, + -0.1409962922334671, + -0.06595657020807266, + 0.03477557376027107, + 0.005723160691559315, + 0.003163047833368182, + 0.08979048579931259, + 0.011873684823513031, + 0.009905392304062843, + 0.10700945556163788, + -0.09858332574367523, + -0.07193516194820404, + -0.010667238384485245, + 0.06605319678783417, + -0.07471666485071182, + 0.03627766668796539, + 0.05868104100227356, + -0.007499083876609802, + -0.012288684025406837, + 0.07106181234121323, + -0.011516093276441097, + -0.002640204969793558, + 0.01817549578845501, + -0.05530492216348648, + 0.016140220686793327, + -0.05048815533518791, + -0.021855786442756653, + 0.06002534180879593, + 0.042694251984357834, + 0.040740713477134705, + -0.007539510261267424, + -0.03849566727876663, + -0.09793002903461456, + -0.00781581737101078, + 0.05755595490336418, + 0.06336479634046555, + -0.015316218137741089, + -0.006803087890148163, + -0.04839935153722763, + -0.06794807314872742, + 0.03540760278701782, + -0.026256216689944267, + 0.08967643976211548, + -0.01670888438820839, + 0.0030486376490443945, + 0.10669426620006561, + 0.005334311630576849, + -0.012910946272313595, + -0.0673343613743782, + -0.017182420939207077, + 0.022405754774808884, + 0.0445699505507946, + -0.06255318224430084, + -0.07514600455760956, + 0.01455737091600895, + 0.02201361209154129, + -0.015958227217197418, + 0.04392615705728531, + 0.02607680857181549, + 0.024369925260543823, + 0.02490142360329628, + -0.0620080940425396, + 0.017749782651662827, + -0.09628967940807343, + -0.05716310441493988, + 0.0007887704996392131, + -0.016899889335036278, + 0.00347130442969501, + 0.0864909216761589, + 0.023680610582232475, + 0.019430886954069138, + -0.004094429314136505, + -0.09232793748378754, + -0.0800931453704834, + 0.0773281455039978, + 0.07245152443647385, + -0.002572190947830677, + 0.04278305172920227, + 0.05977634713053703, + -0.03460359200835228, + 0.04080736264586449, + 0.05990650877356529, + 0.09472056478261948, + -0.010851381346583366, + 0.0008565721800550818, + -0.0702894851565361, + 0.060493744909763336, + 0.07853777706623077, + -0.09640085697174072, + -0.08468067646026611, + -0.034121692180633545, + -0.05222040042281151, + 0.05006510019302368, + -0.02324375882744789, + 0.00355984247289598, + 0.02056746557354927, + -0.04795808717608452, + -0.10008635371923447, + -0.10249678790569305, + 0.0991460531949997, + -0.040329381823539734, + -0.03207778185606003, + -0.062081363052129745, + 0.038931041955947876, + 0.05032260715961456, + 0.04021667689085007, + -0.012123688124120235, + 0.023056063801050186, + 0.03829475864768028, + -0.07204142212867737, + -0.01737365499138832, + 0.05538780987262726, + 0.006631760857999325, + -0.09748014807701111, + 0.02391437254846096, + -0.07799693197011948, + 0.09640856832265854, + -0.0530552864074707, + 0.14040398597717285, + -0.012564594857394695, + -0.04234730452299118, + -0.08746644109487534, + 0.03843048959970474, + -0.01989157125353813, + 0.0356820747256279, + 0.027692623436450958, + 0.04851682111620903, + 0.03417710214853287, + -0.05843823403120041, + 0.09970708191394806, + 0.03376253694295883, + -0.019092349335551262, + -0.05432802438735962, + -0.05789197236299515, + -0.04716051369905472, + -0.0011810425203293562, + -0.020108606666326523, + -0.08368172496557236, + 0.0032345810905098915, + -0.0013456593733280897, + -0.014470599591732025, + 0.055579543113708496, + 0.12378937005996704, + 0.06954917311668396, + -0.11114807426929474 + ] + }, + "p244_307.wav": { + "name": "p244", + "embedding": [ + 0.07949461787939072, + 0.060568638145923615, + 0.011187783442437649, + -0.012897009961307049, + -0.021683555096387863, + 0.038954585790634155, + -0.11727048456668854, + 0.12728755176067352, + -0.01069733314216137, + 0.0712699443101883, + -0.10045093297958374, + 0.08795025944709778, + -0.009208133444190025, + -0.1474396288394928, + -0.05166105553507805, + 0.03411835432052612, + -0.04587198421359062, + 0.0029495980124920607, + -0.07381324470043182, + -0.0390251986682415, + 0.006124039646238089, + 0.03995516896247864, + 0.04736756533384323, + 0.0026155165396630764, + 0.02561923861503601, + 0.04640624672174454, + 0.00765447411686182, + 0.03446386754512787, + 0.022265907377004623, + -0.030223004519939423, + -0.001370082376524806, + 0.06214786693453789, + -0.024774428457021713, + -0.013426894322037697, + 0.06032898277044296, + 0.004201333969831467, + 0.025060102343559265, + -0.08458250761032104, + -0.053098034113645554, + 0.03669635206460953, + -0.04677743837237358, + 0.0747847780585289, + 0.04658300802111626, + -0.0320415161550045, + 0.04678977280855179, + 0.025038182735443115, + -0.007283718325197697, + -0.065359927713871, + -0.11309584230184555, + 0.16030576825141907, + 0.03372855484485626, + 0.038035694509744644, + -0.11493288725614548, + -0.020032528787851334, + 0.08441051840782166, + -0.051686905324459076, + -0.06517340987920761, + -0.021187935024499893, + 0.041899263858795166, + 0.1304379403591156, + -0.010436488315463066, + -0.02348453179001808, + 0.035457950085401535, + 0.07750619947910309, + 0.03274114429950714, + 0.02156207524240017, + 0.12371983379125595, + 0.08539639413356781, + -0.022217383608222008, + 0.046658843755722046, + 0.050084859132766724, + 0.049062035977840424, + 0.06012868136167526, + -0.007840721867978573, + 0.019550366327166557, + -0.013254883699119091, + -0.03472450375556946, + -0.007717333734035492, + -0.03391638025641441, + -0.013201042078435421, + 0.018303032964468002, + 0.029951438307762146, + 0.026134736835956573, + 0.03313012048602104, + -0.06049787625670433, + 0.06319088488817215, + -0.007476852275431156, + 0.012833978049457073, + 0.05554402992129326, + 0.0520857572555542, + 0.0007505137473344803, + 0.01314343698322773, + -0.04405715689063072, + -0.101631760597229, + -0.00985995028167963, + -0.012346148490905762, + 0.00989186018705368, + 0.021427204832434654, + 0.04406476020812988, + -0.020252034068107605, + 0.11778900027275085, + 0.04004111886024475, + -0.0057243406772613525, + 0.0118165984749794, + -0.07032965868711472, + 0.07441701740026474, + 0.1132490485906601, + -0.01473800279200077, + 0.04842686653137207, + -0.03676936775445938, + 0.03227347880601883, + 0.06824705004692078, + -0.10059110820293427, + -0.050666436553001404, + 0.034025922417640686, + 0.01992403343319893, + 0.06628663092851639, + 0.09773280471563339, + -0.00686648627743125, + 0.03480812534689903, + 0.07369277626276016, + -0.06246021017432213, + -0.02311760187149048, + 0.004844106733798981, + 0.025671040639281273, + -0.023734595626592636, + 0.035982199013233185, + 0.03417159616947174, + 0.02171308360993862, + -0.03762689232826233, + 0.06432121247053146, + 0.00026883557438850403, + -0.010563733987510204, + -0.04531251639127731, + 0.01793282851576805, + 0.04393079876899719, + -0.01043899916112423, + -0.03221121057868004, + 0.05454322695732117, + 0.08619183301925659, + -7.935737812658772e-05, + 0.057754889130592346, + -0.06459271907806396, + -0.0988495945930481, + -0.014938399195671082, + 0.013154792599380016, + 0.07626243680715561, + -0.011631235480308533, + -0.023521875962615013, + -0.0593317411839962, + 0.0027350708842277527, + 0.008922724053263664, + -0.0015894817188382149, + 0.05241117998957634, + 0.019609250128269196, + -0.0074869743548333645, + 0.07494091987609863, + -0.02073526754975319, + 0.005760747008025646, + -0.027702657505869865, + 0.0036679785698652267, + 0.013160894624888897, + 0.03709305822849274, + -0.01999766007065773, + -0.07556463778018951, + 0.003888395382091403, + -0.012878922745585442, + -0.021384499967098236, + 0.021495744585990906, + 0.018334360793232918, + -0.01882268860936165, + 0.007084686309099197, + -0.0957961231470108, + 0.024479221552610397, + -0.11162912845611572, + -0.044010233134031296, + 0.04427838325500488, + -0.010144739411771297, + -0.01014002040028572, + 0.07332593947649002, + 0.035177893936634064, + 0.04477391391992569, + -0.02435200661420822, + -0.0928417444229126, + -0.01848919317126274, + 0.05670997500419617, + 0.05213698372244835, + 0.006668459624052048, + 0.024060701951384544, + 0.03254369646310806, + 0.015387165360152721, + 0.07812749594449997, + 0.059329282492399216, + 0.043402787297964096, + -0.026623714715242386, + -0.0352184996008873, + -0.009905691258609295, + 0.08500052988529205, + 0.026410698890686035, + -0.06237661466002464, + -0.07447698712348938, + -0.013357012532651424, + -0.038861218839883804, + 0.014166364446282387, + 0.01808328554034233, + 0.03062797151505947, + 0.045820802450180054, + -0.017765365540981293, + -0.08114000409841537, + -0.06574037671089172, + 0.04714152216911316, + -0.05616933852434158, + -0.008574734441936016, + -0.04053812474012375, + 0.025975925847887993, + 0.09962654113769531, + -0.012783469632267952, + 0.012731073424220085, + -0.014211846515536308, + -0.0182407908141613, + -0.05733984708786011, + -0.058074288070201874, + -0.012579414062201977, + 0.016277872025966644, + -0.07515512406826019, + 0.02345399372279644, + -0.061218541115522385, + 0.06251329183578491, + -0.011283209547400475, + 0.09383877366781235, + 0.019841421395540237, + -0.04171907156705856, + -0.07871886342763901, + 0.006532335188239813, + -0.037885598838329315, + 0.06602694094181061, + 0.03854357451200485, + 0.026059377938508987, + 0.027344686910510063, + -0.07157064974308014, + 0.08329394459724426, + 0.04517119750380516, + -0.06972470879554749, + -0.062236689031124115, + -0.0462288074195385, + -0.020593494176864624, + -0.0034223159309476614, + -0.008592184633016586, + -0.024082964286208153, + 0.010761437937617302, + -0.0004382531042210758, + -0.015213320031762123, + 0.04773759841918945, + 0.08949684351682663, + 0.04265237972140312, + -0.09109517931938171 + ] + }, + "p244_317.wav": { + "name": "p244", + "embedding": [ + 0.07287262380123138, + 0.09812655299901962, + -0.021208832040429115, + 0.03850402310490608, + -0.07162696123123169, + 0.0648140236735344, + -0.12628519535064697, + 0.13974134624004364, + -0.02610226720571518, + 0.129885733127594, + -0.06640173494815826, + 0.14288440346717834, + -0.010287001729011536, + -0.1601899266242981, + -0.021731993183493614, + 0.04952923208475113, + -0.021700704470276833, + -0.02625288814306259, + -0.023985104635357857, + -0.028499871492385864, + 0.03118227608501911, + 0.04160599410533905, + 0.05332249402999878, + -0.002992046996951103, + 0.054745152592659, + 0.06966624408960342, + -0.0009395353263244033, + 0.04502046853303909, + 0.008063578978180885, + -0.08579669147729874, + -0.057160384953022, + 0.0945606380701065, + -0.061264101415872574, + 0.0032800287008285522, + 0.029076963663101196, + -0.022528348490595818, + 0.00380022544413805, + -0.06907157599925995, + -0.023876851424574852, + 0.007949399761855602, + -0.01676177605986595, + 0.08136487007141113, + 0.023283667862415314, + -0.036747563630342484, + 0.02962793968617916, + 0.012359404936432838, + -0.008387601934373379, + -0.03573586046695709, + -0.11570741981267929, + 0.1545926034450531, + 0.044398095458745956, + 0.014608017168939114, + -0.09082023799419403, + -0.06231624633073807, + 0.09607076644897461, + -0.018600165843963623, + -0.08647225052118301, + -0.01390514150261879, + 0.05296076089143753, + 0.14547762274742126, + -0.02452581189572811, + -0.054665327072143555, + 0.03569508343935013, + 0.09698200225830078, + 0.07168664038181305, + 0.061679258942604065, + 0.09329447150230408, + 0.10733305662870407, + -0.030396249145269394, + 0.026943553239107132, + 0.03952915221452713, + 0.08464960753917694, + 0.0612327866256237, + -0.005286802537739277, + 0.01881735771894455, + -0.011168573051691055, + -0.016965147107839584, + -0.015385551378130913, + -0.024055443704128265, + -0.031704798340797424, + -0.00820000097155571, + 0.0071626221761107445, + 0.02996157482266426, + 0.022731129080057144, + -0.0473756417632103, + 0.06988761574029922, + 0.03998790681362152, + -0.021025387570261955, + 0.0691564679145813, + 0.02385052666068077, + 0.0004879394546151161, + 0.06089800223708153, + -0.10552428662776947, + -0.08132579922676086, + 0.05395034700632095, + 0.010697264224290848, + 0.041333168745040894, + 0.07342034578323364, + 0.05016401782631874, + -0.01877385377883911, + 0.12157661467790604, + 0.06947772204875946, + 0.004803154617547989, + 0.02142377942800522, + -0.07109080255031586, + 0.13085311651229858, + 0.10612626373767853, + -0.027801712974905968, + 0.06976963579654694, + -0.043461378663778305, + 0.07607149332761765, + 0.050334494560956955, + -0.1334487795829773, + -0.0855933129787445, + 0.0005198372527956963, + 0.0016730213537812233, + -0.00435918103903532, + 0.10285373032093048, + -0.017508653923869133, + 0.0595431849360466, + 0.0861605703830719, + -0.09845541417598724, + -0.04790602624416351, + -0.011123725213110447, + 0.05006946250796318, + -0.09202638268470764, + 0.06582152098417282, + 0.060340359807014465, + -0.013127563521265984, + 0.010660240426659584, + 0.06433922052383423, + -0.008391168899834156, + -8.185161277651787e-05, + 0.026775870472192764, + -0.03909194469451904, + 0.003920567687600851, + -0.014250450767576694, + -0.013476291671395302, + 0.044944800436496735, + 0.024158291518688202, + 0.053910691291093826, + -0.011822624132037163, + 0.0022026468068361282, + -0.12252455204725266, + 0.023967724293470383, + 0.040107645094394684, + 0.06133612245321274, + -0.01878652721643448, + -0.039683207869529724, + -0.0421222485601902, + -0.0647391751408577, + 0.026795582845807076, + 0.014656484127044678, + 0.06179057061672211, + -0.013332745991647243, + 0.0279209166765213, + 0.10027885437011719, + 0.04867444187402725, + -0.0032559907995164394, + -0.04472486302256584, + -0.027477780357003212, + 0.0199548602104187, + 0.058781616389751434, + -0.06735870242118835, + -0.0880742073059082, + -0.01830691657960415, + 0.015597738325595856, + -0.03948426619172096, + 0.07772333920001984, + 0.056880123913288116, + 0.018179992213845253, + 0.025067970156669617, + -0.050757184624671936, + 0.0135984281077981, + -0.08538985252380371, + -0.06018362566828728, + -0.010940629988908768, + -0.018102725967764854, + -0.045388177037239075, + 0.08171119540929794, + 0.046842060983181, + 0.07542505860328674, + -0.03924477845430374, + -0.03681180253624916, + -0.07686837017536163, + 0.040634848177433014, + 0.04490532726049423, + 0.0009370064362883568, + 0.038233280181884766, + 0.054543301463127136, + -0.011375145986676216, + 0.07440096884965897, + 0.07758422195911407, + 0.07506166398525238, + -0.024680450558662415, + 0.009687655605375767, + -0.05667247623205185, + 0.09242541342973709, + 0.09380477666854858, + -0.08070839196443558, + -0.10032813251018524, + -0.0528007373213768, + -0.08782586455345154, + 0.047522641718387604, + -0.012635288760066032, + 0.009085020050406456, + 0.04629762843251228, + -0.00791641604155302, + -0.09959010779857635, + -0.10159891843795776, + 0.09411372244358063, + -0.05321040377020836, + -0.005753286182880402, + -0.08195038139820099, + 0.04734867811203003, + 0.0924757719039917, + 0.021127838641405106, + -0.02258911356329918, + -0.018679888918995857, + 0.04119525104761124, + -0.028386883437633514, + 0.011035250499844551, + 0.06891360878944397, + 0.043381884694099426, + -0.10275459289550781, + 0.010195378214120865, + -0.06297419965267181, + 0.05426783859729767, + -0.03645864129066467, + 0.16502799093723297, + 0.01321455743163824, + -0.04021880403161049, + -0.07766009122133255, + 0.06149517372250557, + -0.03305260092020035, + 0.049475111067295074, + 0.038428179919719696, + 0.04784597083926201, + 0.04143907129764557, + -0.08937501907348633, + 0.09718994051218033, + 0.0493609681725502, + -0.06215425580739975, + -0.0791134238243103, + -0.06024787575006485, + -0.03535911440849304, + 0.0430782288312912, + 0.01140533946454525, + -0.07397814095020294, + -0.01946890540421009, + 0.02563999593257904, + 0.008153471164405346, + 0.06780000776052475, + 0.14000800251960754, + 0.054974816739559174, + -0.10458836704492569 + ] + }, + "p244_415.wav": { + "name": "p244", + "embedding": [ + 0.058067284524440765, + 0.0893227607011795, + -0.030312389135360718, + 0.04646793380379677, + -0.07127591222524643, + 0.04332885518670082, + -0.12645582854747772, + 0.1532977819442749, + -0.025171171873807907, + 0.11037133634090424, + -0.04186585918068886, + 0.14367029070854187, + -0.02286054939031601, + -0.1568336933851242, + -0.00952941458672285, + 0.06290179491043091, + -0.02803073823451996, + -0.03793657571077347, + -0.027420761063694954, + -0.02836836315691471, + 0.025234702974557877, + 0.03681153804063797, + 0.048528462648391724, + 0.004666874185204506, + 0.033877380192279816, + 0.07434079051017761, + 0.000545359100215137, + 0.04132701829075813, + 0.005177669692784548, + -0.0808003693819046, + -0.03775056451559067, + 0.05911478400230408, + -0.045480161905288696, + 0.0018779075471684337, + 0.043788984417915344, + -0.02096332050859928, + 0.009326329454779625, + -0.06752228736877441, + -0.03043370321393013, + 0.009451724588871002, + -0.028687600046396255, + 0.08782792836427689, + 0.023714181035757065, + -0.05109623819589615, + 0.03368489816784859, + 0.016965797170996666, + -0.012417862191796303, + -0.034621674567461014, + -0.1304643750190735, + 0.15918204188346863, + 0.06985440850257874, + 0.02254994958639145, + -0.07797078788280487, + -0.0716136246919632, + 0.10306482017040253, + -0.01833372190594673, + -0.0862683653831482, + -0.03610682860016823, + 0.04159664362668991, + 0.14838957786560059, + -0.03147515654563904, + -0.0333709716796875, + 0.04611481726169586, + 0.11668632924556732, + 0.08487186580896378, + 0.05578969419002533, + 0.0848270058631897, + 0.1147758811712265, + -0.0378837063908577, + 0.014784060418605804, + 0.04396802932024002, + 0.09811017662286758, + 0.05499691516160965, + 0.02712377905845642, + 0.012732685543596745, + -0.0035715075209736824, + -0.017779627814888954, + -0.030222231522202492, + -0.01923312246799469, + -0.03810152783989906, + -0.011781765148043633, + 0.028557024896144867, + 0.031861163675785065, + 0.035915203392505646, + -0.02787952683866024, + 0.08333998918533325, + 0.04314670339226723, + -0.036074694246053696, + 0.05345572531223297, + 0.010091962292790413, + -0.0012261332012712955, + 0.06143466383218765, + -0.09292957186698914, + -0.07938869297504425, + 0.0391998291015625, + 0.007879040203988552, + 0.04109611734747887, + 0.06540139019489288, + 0.03824850171804428, + -0.011523354798555374, + 0.12833857536315918, + 0.06414703279733658, + -0.008417329750955105, + 0.015326978638768196, + -0.06074152886867523, + 0.12265419960021973, + 0.09261180460453033, + -0.02315191552042961, + 0.0666816234588623, + -0.04495909810066223, + 0.05614197999238968, + 0.051403872668743134, + -0.13539981842041016, + -0.09437233954668045, + 0.013843344524502754, + 0.016391493380069733, + -0.0013717780821025372, + 0.1151512861251831, + 0.004831231199204922, + 0.08363498747348785, + 0.11100906878709793, + -0.09734444320201874, + -0.05176212638616562, + -0.017288226634263992, + 0.06478697806596756, + -0.07065464556217194, + 0.07043248414993286, + 0.07251787185668945, + -0.02083948627114296, + 0.013036048971116543, + 0.06383423507213593, + -0.005000622943043709, + 0.005346992984414101, + 0.029670171439647675, + -0.04830852150917053, + 0.0018671108409762383, + -0.023306110873818398, + -0.020518699660897255, + 0.05410680174827576, + 0.029584288597106934, + 0.042308881878852844, + -0.021279219537973404, + -0.012007934972643852, + -0.1413489580154419, + 0.020468702539801598, + 0.025663383305072784, + 0.08102765679359436, + -0.01640687882900238, + -0.04258911311626434, + -0.03528730571269989, + -0.05767165124416351, + -0.0024513958487659693, + 0.002797134220600128, + 0.06926766037940979, + -0.03796062618494034, + 0.026113150641322136, + 0.08327862620353699, + 0.03159724548459053, + 0.0011524453293532133, + -0.026547076180577278, + -0.030328424647450447, + 0.011921278201043606, + 0.0483260303735733, + -0.054908387362957, + -0.09149367362260818, + -0.02303958497941494, + 0.03207702189683914, + -0.03456190228462219, + 0.07238362729549408, + 0.03153205290436745, + 0.02135132998228073, + 0.014784670434892178, + -0.03967716544866562, + 0.009070847183465958, + -0.07512524724006653, + -0.06463807076215744, + -0.0033189565874636173, + -0.007927434518933296, + -0.05632192641496658, + 0.06921432912349701, + 0.05591483414173126, + 0.09423528611660004, + -0.02666090801358223, + -0.039530448615550995, + -0.08316946029663086, + 0.029457014054059982, + 0.03649041801691055, + -0.003669874044135213, + 0.0331098698079586, + 0.06503357738256454, + -0.0008020875975489616, + 0.060752056539058685, + 0.06747779995203018, + 0.06465288996696472, + -0.011219233274459839, + -0.004629882052540779, + -0.06862035393714905, + 0.10259202867746353, + 0.10305620729923248, + -0.07967409491539001, + -0.07247686386108398, + -0.05361294746398926, + -0.08480080962181091, + 0.031255416572093964, + -0.019485395401716232, + 0.026248019188642502, + 0.04815208166837692, + 0.0016986991977319121, + -0.11271826922893524, + -0.10436701774597168, + 0.08799659460783005, + -0.06697031855583191, + 0.008180145174264908, + -0.06587572395801544, + 0.03425324708223343, + 0.10831750929355621, + 0.028170038014650345, + -0.013335422612726688, + -0.03229941800236702, + 0.04446359723806381, + -0.017090871930122375, + 0.022185014560818672, + 0.08182848989963531, + 0.05815521627664566, + -0.10734014213085175, + 0.006630954798310995, + -0.05975199118256569, + 0.046057406812906265, + -0.030730079859495163, + 0.1507444679737091, + 0.025428546592593193, + -0.0332195870578289, + -0.100026436150074, + 0.0454246923327446, + -0.032541461288928986, + 0.07304184883832932, + 0.01367249060422182, + 0.057981640100479126, + 0.04804261028766632, + -0.07732157409191132, + 0.11484897881746292, + 0.05566709488630295, + -0.06280164420604706, + -0.07976042479276657, + -0.06635139137506485, + -0.03813374415040016, + 0.050071291625499725, + 0.017020627856254578, + -0.06796260178089142, + -0.029163800179958344, + 0.011476422660052776, + 0.002468606922775507, + 0.0651286318898201, + 0.15095466375350952, + 0.0551203116774559, + -0.1047293096780777 + ] + }, + "p244_015.wav": { + "name": "p244", + "embedding": [ + 0.04768791422247887, + 0.1038023978471756, + -0.008375261910259724, + 0.02361338585615158, + -0.04966993257403374, + 0.04966174438595772, + -0.13655820488929749, + 0.1499980390071869, + -0.03699888288974762, + 0.12817606329917908, + -0.07830827683210373, + 0.11906859278678894, + -0.03640062361955643, + -0.1703571379184723, + -0.038617633283138275, + 0.0552348867058754, + -0.040082044899463654, + -0.028848471119999886, + -0.02262851595878601, + -0.022506285458803177, + 0.03725938871502876, + 0.03424092382192612, + 0.02840529754757881, + 0.030595460906624794, + 0.011483050882816315, + 0.06076318025588989, + 0.003220993559807539, + 0.05165772885084152, + 0.02488390915095806, + -0.034632109105587006, + -0.02764706313610077, + 0.10113180428743362, + -0.031724605709314346, + 0.026377566158771515, + 0.05848006531596184, + 0.004901512060314417, + -0.00010101590305566788, + -0.060751866549253464, + -0.025395167991518974, + -0.009939974173903465, + -0.04935191199183464, + 0.0657394751906395, + 0.03179045766592026, + -0.025397110730409622, + 0.04179215058684349, + 0.030536971986293793, + -0.01239502802491188, + -0.04455961659550667, + -0.11052795499563217, + 0.15598750114440918, + 0.07115281373262405, + 0.00021465029567480087, + -0.0696483626961708, + -0.0649842619895935, + 0.10455935448408127, + -0.029638420790433884, + -0.11381565034389496, + -0.027551673352718353, + 0.08945506066083908, + 0.16281172633171082, + -0.03651569411158562, + -0.03665367141366005, + 0.028626572340726852, + 0.14046983420848846, + 0.05646975710988045, + 0.08372870087623596, + 0.08327992260456085, + 0.11525706946849823, + -0.03297501429915428, + 0.005391135346144438, + 0.05052007734775543, + 0.07390698790550232, + 0.056996751576662064, + 0.002330843359231949, + 0.010515816509723663, + 0.0046604713425040245, + -0.011606510728597641, + 0.016207868233323097, + -0.03990662842988968, + -0.025540757924318314, + -0.033042244613170624, + 0.012594479136168957, + -0.005486670881509781, + 0.017588326707482338, + -0.01607774943113327, + 0.06642503291368484, + 0.033493414521217346, + -0.0109384311363101, + 0.06355946511030197, + 0.03995100408792496, + 0.009713450446724892, + 0.06375499814748764, + -0.06752899289131165, + -0.07547534257173538, + 0.009767625480890274, + -0.011508455500006676, + 0.029611457139253616, + 0.07538942992687225, + 0.03697431460022926, + -0.009724915027618408, + 0.12485173344612122, + 0.047102976590394974, + -0.008874129503965378, + 0.025667879730463028, + -0.10017427802085876, + 0.12589143216609955, + 0.0819205492734909, + -0.0282256081700325, + 0.045261189341545105, + -0.04803197830915451, + 0.06286067515611649, + 0.07022027671337128, + -0.12824732065200806, + -0.07029028236865997, + 0.034385766834020615, + 0.037629384547472, + -0.012226099148392677, + 0.11054117977619171, + -0.002343215746805072, + 0.04066471382975578, + 0.10653765499591827, + -0.07831638306379318, + -0.05854064226150513, + -0.026472916826605797, + 0.047836773097515106, + -0.06946991384029388, + 0.05861261487007141, + 0.05053884908556938, + -0.003966029733419418, + 0.007339124102145433, + 0.08144031465053558, + -0.008454571478068829, + -0.0008470308966934681, + 0.015244506299495697, + -0.06007556989789009, + 0.006225106306374073, + -0.03031955100595951, + 0.000731293112039566, + 0.030719637870788574, + 0.05225618928670883, + 0.037865765392780304, + 0.010966302827000618, + -0.04077623784542084, + -0.11998993903398514, + 0.0026885599363595247, + 0.04770486801862717, + 0.09139063954353333, + -0.0013836813159286976, + -0.0351170152425766, + -0.032790206372737885, + -0.041779905557632446, + 0.0065431976690888405, + -0.011324722319841385, + 0.06559690833091736, + -0.04281152784824371, + -0.0033611564431339502, + 0.09369189292192459, + 0.014679024927318096, + -0.005216902121901512, + -0.055509135127067566, + -0.02560071274638176, + 0.002007425297051668, + 0.04050833359360695, + -0.07383427023887634, + -0.08304480463266373, + -0.0002447531442157924, + 0.041305284947156906, + -0.02455410361289978, + 0.058123134076595306, + 0.032818008214235306, + 0.00947754830121994, + 0.03128841519355774, + -0.0596349872648716, + 0.004870274104177952, + -0.11454420536756516, + -0.08269444108009338, + -0.000829013530164957, + 0.00200573168694973, + -0.0019308160990476608, + 0.06140463799238205, + 0.02870461903512478, + 0.05767691880464554, + 0.0036675629671663046, + -0.07797309756278992, + -0.08698533475399017, + 0.0574752539396286, + 0.0593416765332222, + 0.006689848378300667, + 0.05444847047328949, + 0.06600314378738403, + -0.03726369887590408, + 0.06448431313037872, + 0.05622803419828415, + 0.09721706062555313, + -0.028397785499691963, + 0.014910204336047173, + -0.07911734282970428, + 0.06420159339904785, + 0.08964196592569351, + -0.09473291039466858, + -0.08922693878412247, + -0.03390422463417053, + -0.058025240898132324, + 0.025755729526281357, + -0.022725708782672882, + 0.013013463467359543, + 0.02353849448263645, + -0.00919348280876875, + -0.10230857878923416, + -0.09148150682449341, + 0.08303786814212799, + -0.07841156423091888, + 0.005270365159958601, + -0.06845597922801971, + 0.04583996906876564, + 0.1019999161362648, + 0.030643977224826813, + -0.024208730086684227, + -0.011073879897594452, + 0.044817790389060974, + -0.04460766911506653, + -0.0075659602880477905, + 0.04045931622385979, + 0.03475702553987503, + -0.10747605562210083, + 0.01045961119234562, + -0.07758840918540955, + 0.05325476452708244, + -0.04263392463326454, + 0.15609893202781677, + 0.0094844875857234, + -0.06034635007381439, + -0.08462570607662201, + 0.021879073232412338, + -0.02535025030374527, + 0.050990503281354904, + 0.023496998474001884, + 0.0638401210308075, + 0.022477077320218086, + -0.06755144894123077, + 0.12847772240638733, + 0.043955229222774506, + -0.05313151329755783, + -0.0669863373041153, + -0.05408445745706558, + -0.042849231511354446, + 0.019862400367856026, + 0.008999675512313843, + -0.08073919266462326, + -0.041148602962493896, + 0.007624457590281963, + -0.022051235660910606, + 0.07023415714502335, + 0.1460942178964615, + 0.06400677561759949, + -0.11963648349046707 + ] + }, + "p244_032.wav": { + "name": "p244", + "embedding": [ + -0.01188711915165186, + 0.06625522673130035, + -0.00831049308180809, + -0.004781907424330711, + -0.052668534219264984, + -0.0048242006450891495, + -0.11836540699005127, + 0.08616682142019272, + -0.04351551830768585, + 0.1175503134727478, + -0.05088035762310028, + 0.09620077908039093, + -0.061810627579689026, + -0.10452895611524582, + 0.01632961817085743, + 0.042015574872493744, + 0.005897304974496365, + -0.03409339860081673, + 0.027958499267697334, + -0.0645514577627182, + 0.03647718206048012, + 0.030470484867691994, + 0.030655601993203163, + -0.01934850588440895, + 0.003906670957803726, + 0.10976450890302658, + -0.00640774006024003, + -0.0059716845862567425, + -0.02210822142660618, + -0.06405752152204514, + -0.019168052822351456, + 0.058570604771375656, + -0.04099530354142189, + -0.03509947657585144, + 0.017616426572203636, + 0.005466646980494261, + -0.01976843550801277, + 0.00806850753724575, + 0.013202630914747715, + 0.020887523889541626, + -0.10191480070352554, + 0.07419765740633011, + 0.014681350439786911, + -0.028000010177493095, + 0.04671332985162735, + -0.027274053543806076, + -0.009805994108319283, + 0.05115870013833046, + -0.05446751415729523, + 0.07528532296419144, + 0.056024834513664246, + 0.02607259340584278, + -0.0389796607196331, + -0.005889305844902992, + 0.0819193422794342, + -0.0019398597069084644, + -0.10414610803127289, + -0.0556391105055809, + 0.03510364517569542, + 0.08774062991142273, + -0.020911961793899536, + -0.03733760491013527, + 0.03289172425866127, + 0.043754030019044876, + 0.02807454764842987, + 0.053819455206394196, + 0.079327292740345, + 0.04505787044763565, + 0.01673889346420765, + -0.043045904487371445, + 0.04236074909567833, + 0.08083927631378174, + 0.017340268939733505, + -0.01643211580812931, + 0.005147438496351242, + -0.01772492378950119, + -0.0033138245344161987, + -0.023161349818110466, + 0.0021698414348065853, + -0.04750949889421463, + -0.07763303816318512, + -0.010324839502573013, + -0.01793944649398327, + -0.017057523131370544, + 0.0038300591986626387, + 0.011483555659651756, + 0.0899091362953186, + -0.015438033267855644, + 0.07464599609375, + 0.021847082301974297, + -0.03105020895600319, + 0.024164939299225807, + -0.0552210807800293, + 0.02267400547862053, + -0.032534364610910416, + 0.0014012441970407963, + 0.07328041642904282, + 0.07513455301523209, + 0.018158914521336555, + 0.05976384878158569, + 0.07564116269350052, + 0.04120542109012604, + 0.03481660783290863, + -0.01308203674852848, + -0.10204945504665375, + 0.09059125185012817, + 0.08239862322807312, + -0.052623942494392395, + 0.02987281233072281, + 0.009111860767006874, + 0.019559646025300026, + -0.007728610187768936, + -0.04271340370178223, + -0.038701750338077545, + -0.028318999335169792, + 0.01738334447145462, + -0.009474573656916618, + 0.10328489542007446, + 0.008171099238097668, + 0.013271029107272625, + 0.10169035941362381, + -0.06226537749171257, + -0.09379822760820389, + -0.04555366188287735, + 0.006536991335451603, + -0.09034588932991028, + 0.0816916897892952, + 0.08206852525472641, + 0.025976384058594704, + 0.05753330886363983, + 0.10056596994400024, + 0.04490719735622406, + 0.028951425105333328, + -0.012007491663098335, + -0.0375346876680851, + -0.02729448676109314, + -0.0016618762165307999, + 0.03772684186697006, + 0.09772370010614395, + 0.022057216614484787, + 0.11797572672367096, + 0.017297696322202682, + 0.03930283337831497, + -0.08895692229270935, + -0.0028343163430690765, + 0.052743859589099884, + -0.005000583827495575, + -0.04438042640686035, + -0.057568684220314026, + -0.02071535773575306, + -0.0772814080119133, + -0.02856944128870964, + -0.015664374455809593, + 0.10269123315811157, + -0.02886970527470112, + 0.002438697963953018, + 0.10477792471647263, + 0.03162193298339844, + -0.035482730716466904, + -0.0743105486035347, + -0.027705896645784378, + -0.030887611210346222, + 0.03420909866690636, + -0.12244793772697449, + -0.08316662907600403, + -0.06264621019363403, + 0.056584492325782776, + 0.024196021258831024, + 0.0590653121471405, + 0.08234939724206924, + -0.0035608764737844467, + 0.024543220177292824, + -0.0035933051258325577, + 0.041111912578344345, + -0.0173359178006649, + -0.07775815576314926, + -0.03748437762260437, + -0.0736989974975586, + -0.055103011429309845, + 0.09780008345842361, + -0.02854042686522007, + 0.05790594220161438, + -0.005274574272334576, + -0.07474908232688904, + -0.09095799922943115, + 0.01939188688993454, + 0.009807697497308254, + -0.03281751275062561, + 0.034140028059482574, + 0.045652925968170166, + -0.07827167212963104, + 0.00867852196097374, + 0.027385763823986053, + 0.10019810497760773, + -0.08702340722084045, + 0.020692003890872, + -0.0337986946105957, + 0.037198178470134735, + 0.07832574844360352, + -0.056864477694034576, + -0.03808499872684479, + -0.0748356282711029, + -0.0433616116642952, + 0.0624387264251709, + -0.02401670813560486, + -0.003761251224204898, + -0.028872497379779816, + -0.010717782191932201, + -0.06464382261037827, + -0.08557192981243134, + 0.05694718658924103, + -0.0225386805832386, + -0.0021352171897888184, + -0.07006906718015671, + 0.00639671366661787, + -0.028113337233662605, + 0.07894715666770935, + -0.03238864988088608, + 0.04183259978890419, + 0.03258354961872101, + -0.027144934982061386, + 0.043469663709402084, + 0.10967309772968292, + 0.07313565909862518, + 0.04370087385177612, + -0.06198803335428238, + -0.09775716066360474, + 0.04039975255727768, + -0.013393670320510864, + 0.08587761968374252, + 0.003024713834747672, + -0.0345228835940361, + -0.03793001174926758, + -0.007078884169459343, + -0.009705470874905586, + 0.011357232928276062, + 0.08665861189365387, + 0.08444835245609283, + 0.017336489632725716, + -0.025160761550068855, + 0.09940199553966522, + 0.05023011937737465, + 0.019195787608623505, + -0.03249872103333473, + -0.007951718755066395, + -0.052655283361673355, + 0.02440662682056427, + 0.017055300995707512, + -0.09439820796251297, + 0.052865300327539444, + -0.014228131622076035, + 0.045272815972566605, + 0.06708119809627533, + 0.07031679153442383, + 0.06069574132561684, + -0.077654629945755 + ] + }, + "p244_269.wav": { + "name": "p244", + "embedding": [ + 0.043188270181417465, + 0.06754006445407867, + -0.0046090250834822655, + 0.03543921187520027, + -0.00901294406503439, + 0.016896938905119896, + -0.17503750324249268, + 0.1317102611064911, + -0.016218213364481926, + 0.11818666756153107, + -0.07899683713912964, + 0.0836830735206604, + -0.03136177733540535, + -0.18524695932865143, + -0.023374861106276512, + 0.0700950101017952, + -0.0433889776468277, + -0.04634470120072365, + -0.014967952854931355, + -0.019687380641698837, + 0.025393595919013023, + 0.05063102766871452, + 0.017916766926646233, + 0.04127265140414238, + 0.012588636949658394, + 0.05260131508111954, + -0.008248372934758663, + 0.04324382171034813, + 0.011535861529409885, + -0.011157146655023098, + 0.00830159243196249, + 0.09009288251399994, + -0.008959900587797165, + -0.012100247666239738, + 0.04191485419869423, + 0.02804763987660408, + 0.015345752239227295, + -0.08738559484481812, + -0.04963134601712227, + -0.013319544494152069, + -0.08665508776903152, + 0.06355902552604675, + 0.0249958299100399, + -0.044417623430490494, + 0.049563728272914886, + 0.014120201580226421, + -0.02172059938311577, + -0.05984076112508774, + -0.13904255628585815, + 0.15283802151679993, + 0.07860483974218369, + 0.05056928098201752, + -0.07592335343360901, + -0.06460545212030411, + 0.10170937329530716, + -0.015339731238782406, + -0.07761327922344208, + -0.033291544765233994, + 0.0715920701622963, + 0.19502979516983032, + -0.03760373592376709, + -0.020331304520368576, + 0.0625385195016861, + 0.11397353559732437, + 0.07562453299760818, + 0.0665394514799118, + 0.08445276319980621, + 0.09562565386295319, + -0.004549246747046709, + -0.018947312608361244, + 0.058560777455568314, + 0.07362554967403412, + 0.05120028555393219, + -0.009791478514671326, + -0.006725577637553215, + 0.0453454926609993, + -0.0548599474132061, + -0.0026478907093405724, + -0.019585244357585907, + -0.013843489810824394, + 0.00030223093926906586, + 0.011205877177417278, + -0.003757013939321041, + 0.04755447804927826, + -0.03764592483639717, + 0.044770389795303345, + 0.028700197115540504, + -0.04432448744773865, + 0.07111864537000656, + 0.003461036831140518, + -0.003499911166727543, + 0.04571731016039848, + -0.060762062668800354, + -0.06865407526493073, + 0.00071398273576051, + 0.004833770915865898, + -0.01154659129679203, + 0.06705448031425476, + 0.05232331156730652, + -0.037748683243989944, + 0.14481626451015472, + 0.026373064145445824, + -0.0021234648302197456, + 0.03736547753214836, + -0.09914448857307434, + 0.08727934956550598, + 0.07670259475708008, + -0.04015442356467247, + 0.054956886917352676, + -0.025876769796013832, + 0.02189938724040985, + 0.08436337113380432, + -0.13968423008918762, + -0.05992065370082855, + 0.07738327234983444, + 0.05129336938261986, + 0.020247388631105423, + 0.13317638635635376, + 0.03032919391989708, + 0.046734005212783813, + 0.10777594149112701, + -0.0812952071428299, + -0.07100014388561249, + -0.023438122123479843, + 0.08249648660421371, + -0.0684526115655899, + 0.07754072546958923, + 0.051120027899742126, + -0.003098198212683201, + -0.013298695906996727, + 0.0563349686563015, + -0.010315867140889168, + -0.014417883940041065, + -0.043545931577682495, + -0.02614917978644371, + 0.03231782093644142, + -0.0559900626540184, + -0.025218794122338295, + 0.029969472438097, + 0.038159675896167755, + 0.01856156624853611, + 0.031086310744285583, + -0.05751354992389679, + -0.14432883262634277, + -0.00914852600544691, + 0.047526322305202484, + 0.12105955183506012, + 0.001871981774456799, + -0.03011206164956093, + -0.07796687632799149, + -0.028393574059009552, + -0.006057681515812874, + -0.03213135153055191, + 0.0854203850030899, + -0.019392486661672592, + 0.01712975651025772, + 0.0738794356584549, + -0.028170831501483917, + 0.017100265249609947, + -0.013195020146667957, + -0.006544120144098997, + 0.00022461963817477226, + 0.02575882524251938, + -0.03552587702870369, + -0.08761981129646301, + -0.006609617732465267, + 0.04760165512561798, + -0.012265356257557869, + 0.04584185406565666, + -0.008293370716273785, + 0.02469658851623535, + -0.006775896996259689, + -0.0814058929681778, + 0.01850796677172184, + -0.10996183753013611, + -0.06694521754980087, + 0.010238923132419586, + 0.02293381839990616, + -0.005405546631664038, + 0.07504110783338547, + 0.04271293431520462, + 0.05312616750597954, + -0.012783853337168694, + -0.09331725537776947, + -0.08945153653621674, + 0.04453081637620926, + 0.07193391025066376, + -0.006654529832303524, + 0.028781499713659286, + 0.053874991834163666, + -0.0065183802507817745, + 0.043916866183280945, + 0.05222728103399277, + 0.0969514325261116, + 0.012298735789954662, + -0.012213082984089851, + -0.05426079407334328, + 0.08864711225032806, + 0.08832566440105438, + -0.06675060093402863, + -0.06448246538639069, + -0.01771804317831993, + -0.0857917070388794, + 0.02745750918984413, + 0.005977815482765436, + 0.03675169497728348, + 0.014475969597697258, + -0.03921148180961609, + -0.1100311353802681, + -0.08065205812454224, + 0.05797690898180008, + -0.07158307731151581, + -0.025568712502717972, + -0.06325100362300873, + 0.03438715264201164, + 0.09574148058891296, + 0.02740497514605522, + 0.012809514999389648, + -0.03570249304175377, + 0.014045970514416695, + -0.059785354882478714, + -0.019405698403716087, + 0.0686202123761177, + 0.0145002081990242, + -0.1368439942598343, + 0.019005727022886276, + -0.08088831603527069, + 0.08610788732767105, + -0.039045244455337524, + 0.11963413655757904, + 0.0189470537006855, + -0.04442707449197769, + -0.11223796010017395, + 0.00230557844042778, + 0.0001906536053866148, + 0.0760858952999115, + 0.004620065912604332, + 0.06601983308792114, + 0.05221652239561081, + -0.05759742483496666, + 0.09414134919643402, + 0.055526018142700195, + -0.027415843680500984, + -0.07023858278989792, + -0.0772908478975296, + -0.03206964209675789, + 0.00921714399009943, + -0.017963599413633347, + -0.053240980952978134, + -0.031061403453350067, + 0.0010671745985746384, + -0.020833026617765427, + 0.051593609154224396, + 0.12104552984237671, + 0.04042566195130348, + -0.13464613258838654 + ] + }, + "p244_037.wav": { + "name": "p244", + "embedding": [ + 0.04609669744968414, + 0.09222640097141266, + -0.021580945700407028, + -0.007860828191041946, + -0.061783574521541595, + 0.06006797030568123, + -0.13974528014659882, + 0.1572941690683365, + -0.01893703080713749, + 0.15708225965499878, + -0.04577142745256424, + 0.11284228414297104, + -0.018952466547489166, + -0.16305415332317352, + 0.016773587092757225, + 0.03552253544330597, + -0.025087224319577217, + -0.009207624942064285, + -0.04919926077127457, + -0.0416649729013443, + 0.03713240846991539, + 0.05016947537660599, + 0.0034473116975277662, + -0.04233551770448685, + 0.04089212790131569, + 0.06757853925228119, + -0.01526365801692009, + 0.014758951961994171, + -0.020787740126252174, + -0.09067264199256897, + -0.029084565117955208, + 0.0824318379163742, + -0.07493158429861069, + 0.02193271741271019, + 0.04490305483341217, + -0.033598922193050385, + -0.02999694272875786, + -0.048222094774246216, + -0.016400400549173355, + 0.026411881670355797, + -0.030350323766469955, + 0.07466590404510498, + 0.031496476382017136, + -0.013369981199502945, + 0.034805312752723694, + 0.02624635025858879, + 0.010254791006445885, + -0.05790404975414276, + -0.08454491198062897, + 0.17806588113307953, + 0.06169036775827408, + -0.010130185633897781, + -0.07536923140287399, + -0.06999798119068146, + 0.07886391878128052, + -0.010923977941274643, + -0.10704685747623444, + -0.035509947687387466, + 0.06493796408176422, + 0.1167929470539093, + -0.03196975216269493, + -0.05899728834629059, + 0.036019884049892426, + 0.09695275872945786, + 0.033059410750865936, + 0.08582562953233719, + 0.08032701909542084, + 0.10065419971942902, + -0.0390830934047699, + 0.018514294177293777, + 0.02781863324344158, + 0.06818731129169464, + 0.06486813724040985, + -0.0036366276908665895, + 0.035354167222976685, + -0.01616598106920719, + -0.006658309139311314, + -0.02056843973696232, + -0.02860332280397415, + -0.02609509788453579, + 0.005031350534409285, + 0.03522000461816788, + 0.034547239542007446, + 0.02819076180458069, + -0.01877441443502903, + 0.04965593293309212, + 0.045803338289260864, + -0.005627406761050224, + 0.06998837739229202, + 0.02237764373421669, + 0.0272560752928257, + 0.06686674803495407, + -0.10932575166225433, + -0.07156263291835785, + 0.047745078802108765, + -0.0029689257498830557, + 0.023999961093068123, + 0.07677839696407318, + 0.037881746888160706, + -0.005913769826292992, + 0.12067724019289017, + 0.04483922943472862, + -0.004491080529987812, + 0.014486407861113548, + -0.08959780633449554, + 0.13031843304634094, + 0.08334760367870331, + -0.03728418052196503, + 0.06964993476867676, + -0.09102222323417664, + 0.08135947585105896, + 0.033127930015325546, + -0.13510015606880188, + -0.08155511319637299, + 0.009679942391812801, + 0.013115852139890194, + -0.03724256902933121, + 0.1454598307609558, + -0.0009383014403283596, + 0.046949610114097595, + 0.11815674602985382, + -0.11829824000597, + -0.05062666907906532, + -0.0031384832691401243, + 0.05140610784292221, + -0.09652836620807648, + 0.05646078288555145, + 0.057847727090120316, + -0.033176254481077194, + 0.05630228668451309, + 0.08088172227144241, + -0.00880347564816475, + 0.03843264654278755, + -0.0032733329571783543, + -0.019882170483469963, + -0.00621398352086544, + -0.02687975764274597, + -0.009145697578787804, + 0.009932249784469604, + 0.04096008837223053, + 0.060400865972042084, + -0.01653945818543434, + -0.036286938935518265, + -0.12436745315790176, + 0.028956200927495956, + 0.023186005651950836, + 0.0665820837020874, + -0.026146600022912025, + -0.01369603630155325, + -0.02332121506333351, + -0.08666503429412842, + -0.014629652723670006, + -0.008633685298264027, + 0.052349481731653214, + -0.017126744613051414, + 0.013444039970636368, + 0.10813011229038239, + 0.08143388479948044, + -0.001739000785164535, + -0.055203285068273544, + -0.04999531805515289, + -0.003291212022304535, + 0.05781901627779007, + -0.08451740443706512, + -0.08357247710227966, + -0.026935193687677383, + 0.017547722905874252, + -0.015352196991443634, + 0.07713228464126587, + 0.0567568838596344, + 0.031177904456853867, + 0.03036363795399666, + -0.0856899619102478, + 0.0108160600066185, + -0.09755423665046692, + -0.0910363644361496, + -0.0035922054667025805, + -0.02248934842646122, + -0.034227244555950165, + 0.09109952300786972, + -0.0031366595067083836, + 0.058473341166973114, + -0.04336543381214142, + -0.03557639569044113, + -0.07899877429008484, + 0.044662900269031525, + 0.053626999258995056, + -0.03456380218267441, + 0.027364976704120636, + 0.052126195281744, + -0.03719847649335861, + 0.04360978305339813, + 0.07095316797494888, + 0.10449156165122986, + -0.028690554201602936, + 0.040072932839393616, + -0.06536900997161865, + 0.10065025091171265, + 0.08322034031152725, + -0.06778895854949951, + -0.08254542946815491, + -0.029918517917394638, + -0.08285269141197205, + 0.013713628053665161, + -0.020251410081982613, + 0.008273718878626823, + 0.014594011008739471, + 0.018047023564577103, + -0.08213038742542267, + -0.06951283663511276, + 0.06144186854362488, + -0.05227737873792648, + 0.003920239396393299, + -0.08412112295627594, + 0.058473143726587296, + 0.10167743265628815, + 0.06815382093191147, + -0.03507998585700989, + -0.043486788868904114, + 0.04966083914041519, + -0.010655608028173447, + 0.037047214806079865, + 0.05253640562295914, + 0.062124013900756836, + -0.0771397203207016, + 0.014247935265302658, + -0.06520361453294754, + 0.02729090303182602, + -0.044595688581466675, + 0.14254812896251678, + 0.02001035213470459, + -0.06780388951301575, + -0.08250142633914948, + 0.049276575446128845, + -0.015911217778921127, + 0.03274648264050484, + 0.005543240811675787, + 0.056914784014225006, + 0.08050018548965454, + -0.06584154069423676, + 0.10323192179203033, + 0.037204086780548096, + -0.0305505208671093, + -0.04460560530424118, + -0.0715683251619339, + -0.033582091331481934, + 0.03321485593914986, + 0.01046678051352501, + -0.09335173666477203, + -0.021143507212400436, + 0.022524219006299973, + 0.015885308384895325, + 0.05675407499074936, + 0.13817960023880005, + 0.05248038470745087, + -0.143670916557312 + ] + }, + "p244_393.wav": { + "name": "p244", + "embedding": [ + 0.05530662089586258, + 0.1088857501745224, + 0.008988786488771439, + 0.01784309186041355, + -0.030639272183179855, + 0.07027558982372284, + -0.10097402334213257, + 0.1023658961057663, + -0.0766238421201706, + 0.16351431608200073, + -0.10559310019016266, + 0.10644276440143585, + -0.02578745223581791, + -0.1821451485157013, + -0.03532141447067261, + 0.059792470186948776, + -0.0461631715297699, + 0.01539262942969799, + -0.046933915466070175, + 0.01586638204753399, + 0.04203175753355026, + 0.01844155415892601, + 0.046235255897045135, + -0.022742722183465958, + 0.02208073064684868, + 0.05181122571229935, + 0.01358347199857235, + 0.06403128057718277, + 0.03775842860341072, + -0.06724154949188232, + -0.0505983792245388, + 0.1335136890411377, + -0.030034013092517853, + 0.037271201610565186, + 0.07619142532348633, + 0.0005601946031674743, + -0.00622314028441906, + -0.06347787380218506, + -0.0028285153675824404, + -0.02228790894150734, + -0.03871477395296097, + 0.05279888957738876, + 0.007102621719241142, + -0.0027087335474789143, + 0.050753604620695114, + 0.026941947638988495, + -0.03679877519607544, + -0.04683280736207962, + -0.06946438550949097, + 0.13554079830646515, + 0.06651115417480469, + -0.0076645174995064735, + -0.055342089384794235, + -0.0814715325832367, + 0.09769266843795776, + -0.006122160237282515, + -0.1286291927099228, + -0.03884165734052658, + 0.08187872171401978, + 0.15789306163787842, + -0.01255965419113636, + -0.01965622790157795, + 0.000936754746362567, + 0.11203307658433914, + 0.013742724433541298, + 0.13842903077602386, + 0.047786012291908264, + 0.07087390124797821, + 0.030398428440093994, + 0.07165579497814178, + 0.053150005638599396, + 0.05984397977590561, + 0.029337119311094284, + -0.03959588706493378, + 0.03824008256196976, + -0.0011095469817519188, + -0.055469684302806854, + 0.03651096299290657, + -0.016719479113817215, + -0.002931940369307995, + -0.02610219642519951, + -0.010150215588510036, + 0.000319132290314883, + -0.029345188289880753, + -0.01799951121211052, + 0.03866168111562729, + -0.00132135977037251, + 0.002645906526595354, + 0.06611339002847672, + 0.0475812666118145, + -0.0018685436807572842, + 0.04292016848921776, + -0.05228336900472641, + -0.11982500553131104, + 0.005134557839483023, + 0.024468548595905304, + -0.013861969113349915, + 0.07783159613609314, + 0.03244499862194061, + -0.027328571304678917, + 0.08965101838111877, + 0.05981936305761337, + 0.013851205818355083, + 0.03916709125041962, + -0.10425898432731628, + 0.11276708543300629, + 0.07240784913301468, + -0.007321341894567013, + 0.03561032935976982, + -0.04126888886094093, + 0.1098979264497757, + 0.11309238523244858, + -0.1570119857788086, + -0.0599294975399971, + 0.009163441136479378, + -0.044725172221660614, + -0.011734546162188053, + 0.07368879020214081, + -0.02177392691373825, + -0.01804506964981556, + 0.09623777866363525, + -0.08770816028118134, + -0.08303876966238022, + -0.036671463400125504, + 0.03571299463510513, + -0.09542216360569, + 0.05138307809829712, + 0.013270329684019089, + -0.016620106995105743, + -0.021379929035902023, + 0.09141936898231506, + -0.0257705245167017, + 0.0022647941950708628, + 0.03724340721964836, + -0.05840606242418289, + 0.03802359104156494, + -0.07776792347431183, + 0.024501170963048935, + 0.048821136355400085, + 0.039485346525907516, + 0.04355578124523163, + -0.003665660973638296, + -0.02845750004053116, + -0.07236877083778381, + 0.0011151626240462065, + 0.05966826528310776, + 0.038260750472545624, + 0.002763192867860198, + -0.015233759768307209, + -0.03216845542192459, + -0.0736001506447792, + 0.03771291673183441, + -0.037575677037239075, + 0.0781431645154953, + 0.019384153187274933, + 0.012083210051059723, + 0.10935518145561218, + -0.000770034734159708, + -0.004057230893522501, + -0.0916900783777237, + -0.03057168610394001, + 0.052336398512125015, + 0.051838260143995285, + -0.09908740222454071, + -0.04938942939043045, + 0.03215978294610977, + -0.009341701865196228, + -0.01763584464788437, + 0.004455825313925743, + 0.0385122187435627, + 0.012533154338598251, + 0.051012393087148666, + -0.08356431126594543, + 0.018377896398305893, + -0.12244333326816559, + -0.06145000457763672, + -0.040509212762117386, + -0.049166321754455566, + 0.014641071669757366, + 0.07391637563705444, + -0.011827418580651283, + -0.01098037138581276, + 0.010094106197357178, + -0.08562122285366058, + -0.07483024895191193, + 0.09132589399814606, + 0.09051018208265305, + 0.019135357812047005, + 0.06368987262248993, + 0.025856012478470802, + -0.052498724311590195, + 0.04427434504032135, + 0.03813819959759712, + 0.101869598031044, + -0.01590631902217865, + 0.01648394949734211, + -0.07157225906848907, + 0.06433074176311493, + 0.09952537715435028, + -0.1102757602930069, + -0.10353618115186691, + -0.0224351417273283, + -0.042653314769268036, + 0.061965398490428925, + -0.029270488768815994, + -0.03451372683048248, + 0.027202606201171875, + -0.03634292632341385, + -0.08256484568119049, + -0.07669669389724731, + 0.1102551817893982, + -0.05407509207725525, + -0.04677741229534149, + -0.0627153068780899, + 0.048075832426548004, + 0.05095774307847023, + 0.04005669802427292, + -0.041475966572761536, + 0.026560351252555847, + 0.06449370086193085, + -0.0905550867319107, + -0.03770618885755539, + 0.024762704968452454, + -0.01287880726158619, + -0.07591540366411209, + 0.036659061908721924, + -0.06936539709568024, + 0.0742499977350235, + -0.09778933227062225, + 0.16195210814476013, + -0.04923267662525177, + -0.07773558050394058, + -0.07250361144542694, + 0.04834870994091034, + -0.014704234898090363, + 0.005917171016335487, + 0.05249428376555443, + 0.0451120063662529, + 0.010318396613001823, + -0.09057088196277618, + 0.11524202674627304, + -0.0012188596883788705, + 0.016066759824752808, + -0.0481545627117157, + -0.026720672845840454, + -0.06104463338851929, + 0.004469484090805054, + -0.009005793370306492, + -0.11097265779972076, + 0.01585230976343155, + 0.013256056234240532, + -0.030193552374839783, + 0.05704198032617569, + 0.13108649849891663, + 0.05106084793806076, + -0.10437096655368805 + ] + }, + "p244_195.wav": { + "name": "p244", + "embedding": [ + 0.04827830195426941, + 0.1026773452758789, + -0.01689162105321884, + 0.008859441615641117, + -0.053340598940849304, + 0.09638083726167679, + -0.0787772461771965, + 0.06287100166082382, + -0.08969427645206451, + 0.14988696575164795, + -0.10372394323348999, + 0.10696819424629211, + -0.026919838041067123, + -0.1417953073978424, + -0.07515859603881836, + 0.023175358772277832, + -0.052820585668087006, + 0.004614276811480522, + -0.0941750705242157, + -0.022364124655723572, + 0.04345572367310524, + 0.028496183454990387, + 0.06338748335838318, + -0.06624269485473633, + 0.05804012715816498, + 0.0455804280936718, + 0.014261881820857525, + 0.03877191245555878, + 0.021478688344359398, + -0.08018092811107635, + -0.05144444853067398, + 0.12878336012363434, + -0.041159532964229584, + 5.4697273299098015e-05, + 0.026911098510026932, + 0.011828627437353134, + 0.020086782053112984, + -0.06743556261062622, + -0.01238650269806385, + 0.026590799912810326, + -0.006153291091322899, + 0.055473826825618744, + -0.0046122707426548, + -0.024382077157497406, + 0.03174358606338501, + -0.010593142360448837, + -0.0375235341489315, + -0.03798094019293785, + -0.07185395807027817, + 0.1392531394958496, + 0.013006547465920448, + 0.0051694344729185104, + -0.09977493435144424, + -0.08611531555652618, + 0.12495452165603638, + -0.013304970227181911, + -0.10877165198326111, + -0.02003926783800125, + 0.04133256524801254, + 0.16522929072380066, + -0.02026687189936638, + -0.023397861048579216, + 0.020558368414640427, + 0.05235397070646286, + 0.02622240036725998, + 0.08548520505428314, + 0.09239251911640167, + 0.05220084264874458, + 0.034933604300022125, + 0.06399345397949219, + 0.05254298821091652, + 0.05128464102745056, + 0.03251422941684723, + -0.05417541787028313, + 0.04583678022027016, + -0.022759929299354553, + -0.03942933678627014, + 0.021520845592021942, + -0.03069712594151497, + -0.023581866174936295, + -0.006994626484811306, + -0.009042274206876755, + 0.03154977783560753, + -0.0341607928276062, + -0.08512470126152039, + 0.03482208028435707, + 0.0014998046681284904, + -0.019316941499710083, + 0.06912466883659363, + 0.06364008039236069, + -0.013631962239742279, + 0.02291388250887394, + -0.04950866475701332, + -0.12543661892414093, + 0.007727420423179865, + 0.020109748467803, + -0.02706182189285755, + 0.04560813307762146, + 0.04506213963031769, + -0.031866759061813354, + 0.07338059693574905, + 0.07352188974618912, + 0.020141100510954857, + 0.03188269957900047, + -0.09585852921009064, + 0.09127768874168396, + 0.11855800449848175, + -0.004327746573835611, + 0.02535541169345379, + 0.003577028401196003, + 0.08735962212085724, + 0.0874512791633606, + -0.12125638872385025, + -0.08865316957235336, + -0.0029713171534240246, + -0.05501050874590874, + 0.026011072099208832, + 0.052746064960956573, + -0.041187748312950134, + -0.026186328381299973, + 0.07902298867702484, + -0.06251072138547897, + -0.04418815299868584, + -0.030518215149641037, + 0.026305746287107468, + -0.04918249323964119, + 0.023371178656816483, + 0.02602410316467285, + -0.0003217114135622978, + -0.04035555198788643, + 0.06755928695201874, + -0.012393257580697536, + 0.013387958519160748, + 0.03462494909763336, + -0.03782178461551666, + 0.049526944756507874, + -0.025624113157391548, + -0.01968296989798546, + 0.10213899612426758, + 0.07237976789474487, + 0.05314534902572632, + -0.014990391209721565, + -0.00989020150154829, + -0.057128746062517166, + 0.017620353028178215, + 0.050104714930057526, + 0.01121944934129715, + -0.004682846367359161, + 0.019977612420916557, + -0.053008489310741425, + -0.08430016040802002, + 0.07264824956655502, + -0.0054061030969023705, + 0.12139920890331268, + 0.030680332332849503, + 0.014131243340671062, + 0.12432843446731567, + 0.002406906569376588, + -0.021691888570785522, + -0.044126734137535095, + 0.0058551691472530365, + 0.050916217267513275, + 0.045913346111774445, + -0.05325181037187576, + -0.06442204862833023, + 0.006222454831004143, + -0.013687129132449627, + -0.029885344207286835, + 0.03246060013771057, + 0.06582270562648773, + -0.013692069798707962, + 0.056936606764793396, + -0.06321452558040619, + 0.01233991701155901, + -0.09779045730829239, + 0.0073458291590213776, + -0.01484096609055996, + -0.10484959930181503, + -0.027622409164905548, + 0.09994994103908539, + 0.027432512491941452, + -0.0310318935662508, + -0.002121277153491974, + -0.10270730406045914, + -0.035300299525260925, + 0.07726682722568512, + 0.06102374941110611, + 0.03319225460290909, + 0.031189538538455963, + 0.050749506801366806, + 0.009378794580698013, + 0.0708124116063118, + 0.10507477819919586, + 0.05962938815355301, + 0.002073658164590597, + -0.026424942538142204, + -0.03950697183609009, + 0.0863160789012909, + 0.04411986097693443, + -0.10357911884784698, + -0.11163439601659775, + -0.05810891091823578, + -0.05505013093352318, + 0.0678786188364029, + -0.012645282782614231, + 0.014367069117724895, + 0.04535038396716118, + -0.03366231173276901, + -0.09086362272500992, + -0.10210288316011429, + 0.13081035017967224, + -0.024153484031558037, + -0.04369209334254265, + -0.042092785239219666, + 0.00964060053229332, + 0.03819739818572998, + 0.013664958998560905, + -0.005954277701675892, + 0.05341121181845665, + 0.04564730077981949, + -0.10502029210329056, + -0.029897810891270638, + 0.01573743298649788, + -0.034548185765743256, + -0.04748248681426048, + 0.021264715120196342, + -0.08316272497177124, + 0.10343590378761292, + -0.0662560984492302, + 0.15785500407218933, + -0.026739593595266342, + -0.04268960654735565, + -0.05823993682861328, + 0.08184152841567993, + -0.06470668315887451, + 0.03490499034523964, + 0.0829772800207138, + 0.07067333906888962, + 0.005528803914785385, + -0.08498436212539673, + 0.07747524976730347, + 0.017556020990014076, + -0.026148110628128052, + -0.07471171766519547, + -0.02921218052506447, + -0.05034668743610382, + -0.008241147734224796, + -0.004831814207136631, + -0.050959695130586624, + 0.05425529181957245, + 0.01966894418001175, + -0.004743877798318863, + 0.059194616973400116, + 0.10701952874660492, + 0.08642970025539398, + -0.06446842104196548 + ] + }, + "p244_066.wav": { + "name": "p244", + "embedding": [ + -0.0077630914747715, + 0.06212679296731949, + -0.029095031321048737, + 0.04807800427079201, + -0.09979154914617538, + -0.011325799860060215, + -0.09859539568424225, + 0.15455757081508636, + -0.0015637085307389498, + 0.09077074378728867, + -0.03634503856301308, + 0.11789576709270477, + -0.07192665338516235, + -0.1492106169462204, + 0.04691343754529953, + 0.07298552244901657, + 0.009551596827805042, + -0.060885265469551086, + -0.02599423937499523, + -0.05117535591125488, + 0.0178248081356287, + 0.03961044177412987, + 0.030315300449728966, + 0.0029597708489745855, + 0.01364608108997345, + 0.09334566444158554, + -0.004621140193194151, + 0.0198704581707716, + -0.009454210288822651, + -0.039348237216472626, + -0.0231894813477993, + 0.03402078524231911, + -0.07006881386041641, + -0.009674010798335075, + 0.024007730185985565, + -0.030278092250227928, + -0.02311311848461628, + -0.009588251821696758, + -0.028285054489970207, + 0.004965323954820633, + -0.08157123625278473, + 0.07757959514856339, + 0.023187167942523956, + -0.008365483023226261, + 0.05268028378486633, + 0.022256221622228622, + -0.038879770785570145, + -0.009175663813948631, + -0.1420152634382248, + 0.13813042640686035, + 0.07626407593488693, + -0.007778852712363005, + -0.07167428731918335, + -0.05480652302503586, + 0.09999435395002365, + -0.020814230665564537, + -0.08670436590909958, + -0.08495119959115982, + 0.07406032085418701, + 0.08715644478797913, + -0.022856593132019043, + -0.02539408765733242, + 0.018550610169768333, + 0.10273498296737671, + 0.07932594418525696, + 0.05336213484406471, + 0.03845370560884476, + 0.12385544180870056, + -0.05201958864927292, + -0.018596675246953964, + 0.05020606517791748, + 0.07094452530145645, + 0.01430055033415556, + 0.021955527365207672, + -0.017246752977371216, + 0.01157557312399149, + 0.021831808611750603, + -0.020078126341104507, + -0.011346502229571342, + -0.03046273998916149, + -0.023327527567744255, + 0.012779390439391136, + 0.006772393360733986, + -0.0042129154317080975, + 0.010185056366026402, + 0.08764004707336426, + 0.08824951946735382, + 0.008867944590747356, + 0.08223341405391693, + -0.00814065057784319, + -0.05953953042626381, + 0.08589067310094833, + -0.08400532603263855, + 0.0028118337504565716, + -0.016205905005335808, + -0.0018033592496067286, + 0.02545177936553955, + 0.08047227561473846, + 0.016994329169392586, + 7.825583452358842e-05, + 0.14811724424362183, + 0.027818048372864723, + 0.0010605386923998594, + 0.02271421067416668, + -0.06731268018484116, + 0.11856039613485336, + 0.061971329152584076, + -0.024232719093561172, + 0.048001643270254135, + -0.030434083193540573, + 0.037176962941884995, + 0.020549774169921875, + -0.09958325326442719, + -0.04676205664873123, + -0.02926865965127945, + 0.0057694269344210625, + -0.06073998287320137, + 0.13464143872261047, + 0.0002716788148973137, + 0.07382065802812576, + 0.17005881667137146, + -0.10015648603439331, + -0.0661592185497284, + 0.016334420070052147, + 0.05094142630696297, + -0.06953908503055573, + 0.043612148612737656, + 0.07132256776094437, + -0.01812724769115448, + 0.09500343352556229, + 0.06924550980329514, + -0.005538359750062227, + 0.045102961361408234, + 0.03517475724220276, + -0.07806044816970825, + -0.007951498031616211, + -0.027830777689814568, + -0.010484833270311356, + 0.09616238623857498, + 0.040282197296619415, + 0.10220807790756226, + -0.04751453548669815, + 0.00697948457673192, + -0.12977319955825806, + 0.023978019133210182, + 0.018472399562597275, + 0.07261732220649719, + -0.018571898341178894, + -0.02471042424440384, + -0.04819144681096077, + -0.08690645545721054, + -0.014551068656146526, + 0.02832389622926712, + 0.08143433928489685, + -0.0949617326259613, + 0.002755220979452133, + 0.08852490037679672, + 0.06482809782028198, + -0.022307103499770164, + -0.06576360762119293, + -0.08091609925031662, + -0.04684533178806305, + 0.04214273765683174, + -0.08497485518455505, + -0.08144988119602203, + -0.03612879663705826, + 0.09052322804927826, + -0.02720281481742859, + 0.08269672095775604, + 0.03126678615808487, + 0.04002169519662857, + -0.005330238025635481, + -0.05054665356874466, + 0.0319494791328907, + -0.007297709118574858, + -0.06955704838037491, + -0.010123031213879585, + 0.003082114504650235, + -0.05732957273721695, + 0.06033637747168541, + 0.02445564977824688, + 0.08980266004800797, + 0.008264157921075821, + -0.07539556920528412, + -0.11840244382619858, + 0.015741858631372452, + 0.0013391778338700533, + -0.06326083093881607, + 0.0636846199631691, + 0.09257593005895615, + -0.10514184087514877, + 0.04345356300473213, + 0.042700331658124924, + 0.08348044008016586, + -0.050993554294109344, + 0.03936244174838066, + -0.05943295359611511, + 0.07016190141439438, + 0.08867181092500687, + -0.08903425186872482, + -0.0440947525203228, + -0.07404907047748566, + -0.07128720730543137, + 0.05602087825536728, + -0.022398825734853745, + 0.0049375249072909355, + 0.024634554982185364, + 0.027141854166984558, + -0.09741058200597763, + -0.07526490837335587, + 0.04396592453122139, + -0.04957457259297371, + 0.00836198776960373, + -0.07985610514879227, + 0.024887222796678543, + 0.08291107416152954, + 0.06635834276676178, + 0.009280542843043804, + -0.03171687200665474, + 0.05296330526471138, + 0.015414518304169178, + 0.0478878878057003, + 0.13087497651576996, + 0.07354786247015, + -0.04201474413275719, + -0.0597412995994091, + -0.07587701082229614, + 0.043904103338718414, + 0.007860701531171799, + 0.12986992299556732, + 0.03976213559508324, + -0.027728118002414703, + -0.07746711373329163, + 0.01437259279191494, + -0.017655204981565475, + 0.06583189219236374, + 0.015605567023158073, + 0.04948633164167404, + 0.06586628407239914, + 0.005641864147037268, + 0.15866614878177643, + 0.05696696415543556, + -0.06103023141622543, + -0.03497155383229256, + -0.04244257137179375, + -0.06665113568305969, + 0.02710285410284996, + 0.041648995131254196, + -0.10715588927268982, + -0.0061855376698076725, + -0.00026045882259495556, + -0.017139311879873276, + 0.06754108518362045, + 0.1394340991973877, + 0.09705255925655365, + -0.08978267014026642 + ] + }, + "p244_012.wav": { + "name": "p244", + "embedding": [ + 0.040413081645965576, + 0.0830603837966919, + -0.022774528712034225, + -0.0005341863725334406, + -0.03794672340154648, + 0.05234938859939575, + -0.13388767838478088, + 0.13372640311717987, + -0.054108500480651855, + 0.12199720740318298, + -0.06777148693799973, + 0.09525827318429947, + -0.019477128982543945, + -0.15096716582775116, + -0.046066202223300934, + 0.043353330343961716, + -0.04619592800736427, + -0.03893730044364929, + -0.03926585242152214, + -0.02710663340985775, + 0.02975194714963436, + 0.030209191143512726, + -0.001423071837052703, + 0.01767009124159813, + 0.014533063396811485, + 0.061789803206920624, + 0.0020770556293427944, + 0.02855536714196205, + 0.0038799364119768143, + -0.007374171167612076, + -0.002614937722682953, + 0.08625348657369614, + -0.039034005254507065, + 0.01809553988277912, + 0.04712323471903801, + 0.00043094437569379807, + 0.0002795322798192501, + -0.07171767950057983, + -0.017839526757597923, + 0.0036740691866725683, + -0.04642723873257637, + 0.08478469401597977, + 0.043637968599796295, + 0.010240818373858929, + 0.01705770753324032, + 0.014662904664874077, + -0.004455404356122017, + -0.057040736079216, + -0.09834709763526917, + 0.16067162156105042, + 0.07033324241638184, + -0.0013096407055854797, + -0.08616489171981812, + -0.04449496790766716, + 0.10010585933923721, + -0.01945388689637184, + -0.09247705340385437, + -0.058926187455654144, + 0.06421282142400742, + 0.1438712179660797, + -0.02765613980591297, + -0.03928995877504349, + 0.015414133667945862, + 0.13032019138336182, + 0.03821246325969696, + 0.07300262898206711, + 0.08500176668167114, + 0.09541250020265579, + -0.03380883112549782, + 0.01018277183175087, + 0.060074418783187866, + 0.05779407545924187, + 0.032267194241285324, + -0.019839877262711525, + 0.023644432425498962, + -0.006142120808362961, + -0.01140713132917881, + 0.018052203580737114, + -0.025781875476241112, + -0.03170400857925415, + -0.027480022981762886, + 0.014921372756361961, + -0.00871280673891306, + 0.039258237928152084, + -0.023124337196350098, + 0.044205326586961746, + 0.03527587652206421, + -0.025986485183238983, + 0.06543485075235367, + 0.0649804174900055, + 0.017514225095510483, + 0.039923880249261856, + -0.060173433274030685, + -0.07515958696603775, + 0.021156642585992813, + -0.008265395648777485, + 0.02679346315562725, + 0.06942324340343475, + 0.03512595593929291, + -0.0003028702922165394, + 0.09636136144399643, + 0.035126201808452606, + -0.012339252978563309, + -0.005447839852422476, + -0.09485568106174469, + 0.12439955770969391, + 0.09117837995290756, + -0.029637495055794716, + 0.021180735900998116, + -0.04134117066860199, + 0.0428343266248703, + 0.0649833232164383, + -0.12068703770637512, + -0.06943859159946442, + 0.04117913544178009, + 0.03987664356827736, + -0.0014027506113052368, + 0.1096196174621582, + -0.0018225936219096184, + 0.014029955491423607, + 0.07854866981506348, + -0.06031420826911926, + -0.05430252104997635, + -0.02439490146934986, + 0.034904103726148605, + -0.06098751351237297, + 0.041726984083652496, + 0.05456957221031189, + 0.007434066850692034, + 0.0013277474790811539, + 0.0830441266298294, + 0.0019958200864493847, + -0.005506281740963459, + 0.0014513880014419556, + -0.010258546099066734, + 0.04812612384557724, + -0.012265488505363464, + 0.0007846709340810776, + 0.026168784126639366, + 0.047913338989019394, + 0.04084065929055214, + 0.015754010528326035, + -0.025927996262907982, + -0.09728501737117767, + 0.008215617388486862, + 0.0512690395116806, + 0.07119515538215637, + -0.028330130502581596, + -0.02829846739768982, + -0.025761589407920837, + -0.050660714507102966, + -0.018066642805933952, + -0.008528130128979683, + 0.07430551946163177, + -0.010310914367437363, + -0.0003291988978162408, + 0.1055549830198288, + 0.006170269101858139, + 0.0007037622854113579, + -0.041791822761297226, + 0.008994637057185173, + 0.008524062111973763, + 0.05217408388853073, + -0.0591299943625927, + -0.0724165141582489, + 0.008244737982749939, + 0.03672463446855545, + -0.009449097327888012, + 0.038269344717264175, + 0.03830341994762421, + -0.0043996647000312805, + 0.023331737145781517, + -0.08940884470939636, + 0.0342443510890007, + -0.1152038723230362, + -0.04307142645120621, + -0.0029060086235404015, + -0.031247032806277275, + -0.0012998562306165695, + 0.06992219388484955, + 0.01841125637292862, + 0.04389849305152893, + -0.0015250639989972115, + -0.10019814223051071, + -0.06024879589676857, + 0.0624699592590332, + 0.0886591300368309, + -0.02521747723221779, + 0.030167827382683754, + 0.06203741580247879, + -0.015615621581673622, + 0.025053836405277252, + 0.057888247072696686, + 0.09942366927862167, + -0.04888495057821274, + 0.0014969538897275925, + -0.052007272839546204, + 0.06846464425325394, + 0.04695957154035568, + -0.11025058478116989, + -0.05957163870334625, + -0.018552543595433235, + -0.03677377104759216, + 0.006400046870112419, + -0.020499147474765778, + 0.020892156288027763, + 0.027435507625341415, + -0.01587257906794548, + -0.10476444661617279, + -0.08054275810718536, + 0.06192772835493088, + -0.07315119355916977, + 0.01484622061252594, + -0.0769607424736023, + 0.03674861043691635, + 0.09326650947332382, + 0.04202606901526451, + -0.018240241333842278, + -0.013393988832831383, + 0.014037182554602623, + -0.03273104503750801, + -0.020009201020002365, + 0.016858907416462898, + 0.02530338615179062, + -0.09205272793769836, + -0.0017449520528316498, + -0.07689408212900162, + 0.075095534324646, + -0.042808711528778076, + 0.1277589350938797, + 0.009178093634545803, + -0.0628858283162117, + -0.09408976137638092, + -0.0038892626762390137, + -0.0174001082777977, + 0.056130461394786835, + 0.034797925502061844, + 0.04990113154053688, + 0.022978410124778748, + -0.0423492006957531, + 0.1094752624630928, + 0.06085175648331642, + -0.03767654299736023, + -0.06893106549978256, + -0.02513839676976204, + -0.017312169075012207, + 0.033020514994859695, + 0.014636870473623276, + -0.05768581107258797, + -0.008866620250046253, + 0.012733858078718185, + -0.03952283039689064, + 0.07950504869222641, + 0.11891117691993713, + 0.07795403897762299, + -0.1198640912771225 + ] + }, + "p244_166.wav": { + "name": "p244", + "embedding": [ + 0.053655095398426056, + 0.08844296634197235, + -0.04649278149008751, + 0.013936445116996765, + -0.03935004398226738, + 0.05479462072253227, + -0.13360700011253357, + 0.09471850097179413, + -0.033660002052783966, + 0.14835643768310547, + -0.0453655831515789, + 0.10396459698677063, + -0.005942014046013355, + -0.1326616257429123, + -0.019591329619288445, + 0.05505815148353577, + -0.03377779573202133, + -0.03852098807692528, + -0.018543312326073647, + -0.008368187583982944, + 0.03672625869512558, + 0.04902494698762894, + 0.02710963599383831, + -0.02074635587632656, + 0.032913096249103546, + 0.06197277829051018, + 0.0014466014690697193, + 0.021820535883307457, + -0.004275509621948004, + -0.04222218692302704, + -0.01896977797150612, + 0.09863245487213135, + -0.047002747654914856, + 0.004972544964402914, + 0.012576624751091003, + 0.007321698125451803, + 0.002351941540837288, + -0.07046922296285629, + 0.0007005079532973468, + 0.011394213885068893, + -0.03256703168153763, + 0.08399521559476852, + 0.014998058788478374, + -0.009147625416517258, + 0.0016161799430847168, + -0.018606062978506088, + -0.027188047766685486, + -0.026936573907732964, + -0.08517339080572128, + 0.17683064937591553, + 0.06996860355138779, + 0.0134064219892025, + -0.0780750960111618, + -0.04408973455429077, + 0.07826656103134155, + 0.026923730969429016, + -0.08075837790966034, + -0.05972130224108696, + 0.042407527565956116, + 0.13886141777038574, + -0.006989161483943462, + -0.05610661953687668, + 0.037248872220516205, + 0.12740808725357056, + 0.04869261384010315, + 0.053280092775821686, + 0.08517199009656906, + 0.09312839806079865, + -0.008113425225019455, + 0.007785463239997625, + 0.05904529243707657, + 0.07313312590122223, + 0.05591530725359917, + -0.010565748438239098, + 0.03037749044597149, + -0.028928544372320175, + -0.021889498457312584, + -0.012656692415475845, + -0.010193328373134136, + -0.05816423147916794, + -0.03159976750612259, + -0.014443970285356045, + -0.0038853748701512814, + 0.06717607378959656, + -0.01202497910708189, + 0.007008690387010574, + 0.058460675179958344, + -0.05275978893041611, + 0.06169342249631882, + 0.05394720286130905, + 0.02610999345779419, + 0.03156259283423424, + -0.07510482519865036, + -0.07358689606189728, + 0.06123858690261841, + 0.016693050041794777, + 0.03272085636854172, + 0.07263780385255814, + 0.045775532722473145, + -0.0033907294273376465, + 0.09135275334119797, + 0.019397348165512085, + 0.0024353615008294582, + -0.025197505950927734, + -0.07514859735965729, + 0.1269388198852539, + 0.10129731148481369, + -0.03968110680580139, + 0.030582956969738007, + -0.027220046147704124, + 0.023323342204093933, + 0.053116559982299805, + -0.12632519006729126, + -0.08291628956794739, + 0.018998507410287857, + 0.012775188311934471, + 0.0009156353771686554, + 0.09909415245056152, + 0.020280232653021812, + 0.030194073915481567, + 0.08315100520849228, + -0.08419731259346008, + -0.07775819301605225, + -0.03509482368826866, + 0.042510997503995895, + -0.0927007645368576, + 0.05401131138205528, + 0.06861019134521484, + 0.0017825644463300705, + -0.019021783024072647, + 0.07022847980260849, + 0.006236842833459377, + 0.0200313962996006, + -0.028062177821993828, + -0.0035452123265713453, + 0.04423457384109497, + -0.032316889613866806, + 0.006350439041852951, + 0.02390877716243267, + 0.0013469619443640113, + 0.06261691451072693, + 0.0019134643953293562, + -0.005199687089771032, + -0.11554916203022003, + 0.025548560544848442, + 0.05696594715118408, + 0.04851735755801201, + -0.04421606287360191, + -0.0370418019592762, + -0.004539420362561941, + -0.060816265642642975, + 0.010482232086360455, + -0.01083883922547102, + 0.07470370084047318, + 0.01877404749393463, + -0.001411761506460607, + 0.11913126707077026, + -0.004110011272132397, + 0.004352550953626633, + -0.014912760816514492, + 0.003801812883466482, + 0.04109359532594681, + 0.047184623777866364, + -0.08498860895633698, + -0.09137731045484543, + -0.0035503755789250135, + 0.014921177178621292, + 0.009820891544222832, + 0.04925699159502983, + 0.06569939851760864, + -0.015355650335550308, + 0.014127960428595543, + -0.0537368580698967, + 0.00809969287365675, + -0.07779267430305481, + -0.05698656663298607, + -0.014641610905528069, + -0.05571281537413597, + -0.024360492825508118, + 0.09402160346508026, + 0.018509771674871445, + 0.04330350086092949, + -0.050333172082901, + -0.0650399774312973, + -0.06768766045570374, + 0.051043443381786346, + 0.07187633216381073, + -0.03471110016107559, + 0.008212946355342865, + 0.06329125165939331, + 0.009072072803974152, + -0.0045273578725755215, + 0.04547902196645737, + 0.09381411969661713, + -0.056555137038230896, + -0.01935093104839325, + -0.06621578335762024, + 0.08163195848464966, + 0.08475353568792343, + -0.09308450669050217, + -0.05736543983221054, + -0.04593092203140259, + -0.06394603103399277, + 0.016700323671102524, + -0.04219955950975418, + 0.015847934409976006, + 0.0418318510055542, + -0.04094365984201431, + -0.10128842294216156, + -0.12677882611751556, + 0.08536802232265472, + -0.05766047164797783, + -0.0029032262973487377, + -0.07675062865018845, + 0.05029436945915222, + 0.057624541223049164, + 0.04686463996767998, + -0.04399394989013672, + 0.011516179889440536, + 0.010614532046020031, + -0.030909806489944458, + -0.00030715082539245486, + 0.04352226108312607, + 0.035192977637052536, + -0.10074742138385773, + -0.022891204804182053, + -0.08016446232795715, + 0.06337811052799225, + -0.07264944165945053, + 0.12457223981618881, + -0.006055818870663643, + -0.0585329607129097, + -0.10827597230672836, + 0.013784579001367092, + -0.014256780967116356, + 0.05224742740392685, + 0.03585461899638176, + 0.0427403599023819, + 0.038721948862075806, + -0.07541250437498093, + 0.0892203152179718, + 0.07800555229187012, + 0.005114484112709761, + -0.0927131399512291, + -0.025002729147672653, + -0.01710965856909752, + 0.06794629991054535, + 0.002855605911463499, + -0.04696786403656006, + 0.019650055095553398, + 0.023444827646017075, + 0.0013756786938756704, + 0.07318668812513351, + 0.10128151625394821, + 0.06210120767354965, + -0.10976234078407288 + ] + }, + "p244_075.wav": { + "name": "p244", + "embedding": [ + 0.03428453952074051, + 0.11064719408750534, + 0.0017526668962091208, + 0.0246326494961977, + -0.052845899015665054, + 0.06611949950456619, + -0.10521318018436432, + 0.13429750502109528, + -0.05651460960507393, + 0.1235857903957367, + -0.10048773884773254, + 0.10598120838403702, + -0.05684275180101395, + -0.1783761978149414, + -0.04228542745113373, + 0.06294967234134674, + -0.03110467828810215, + -0.00095291284378618, + -0.035121794790029526, + -0.013944773003458977, + 0.03131048008799553, + 0.010594845749437809, + 0.02496732771396637, + 0.014946140348911285, + 0.017528658732771873, + 0.06434151530265808, + 0.0018713257741183043, + 0.05689927935600281, + 0.017997276037931442, + -0.018579233437776566, + -0.03409453481435776, + 0.12057538330554962, + -0.03753228113055229, + 0.034450069069862366, + 0.08555713295936584, + 0.017218297347426414, + -0.012218305841088295, + -0.030455391854047775, + -0.008164172992110252, + -0.0141185587272048, + -0.0620722770690918, + 0.060246072709560394, + 0.024739062413573265, + 0.003376284148544073, + 0.04835595563054085, + 0.04146186634898186, + -0.01341229397803545, + -0.030139166861772537, + -0.09043428301811218, + 0.13250896334648132, + 0.055999018251895905, + -0.017828024923801422, + -0.07457873970270157, + -0.0697483941912651, + 0.11246555298566818, + -0.026754135265946388, + -0.12838967144489288, + -0.039564717561006546, + 0.10323658585548401, + 0.1580001413822174, + -0.027325229719281197, + -0.026766734197735786, + -0.01096925139427185, + 0.12341856956481934, + 0.023739060387015343, + 0.11721930652856827, + 0.051521383225917816, + 0.11331139504909515, + -0.0067277573980391026, + 0.03533324971795082, + 0.07012540847063065, + 0.053036224097013474, + 0.0504441000521183, + -0.02651439979672432, + 0.014645046554505825, + -0.004943884443491697, + -0.010933781042695045, + 0.034601617604494095, + -0.036210693418979645, + -0.016005119308829308, + -0.04069426655769348, + 0.0009622778743505478, + -0.016917364671826363, + -0.029449395835399628, + -0.005007491912692785, + 0.0615730881690979, + 0.03990306705236435, + -0.0031221776735037565, + 0.06841331720352173, + 0.07175624370574951, + -0.024039003998041153, + 0.061780400574207306, + -0.06226837635040283, + -0.07848657667636871, + -0.0046257274225354195, + -0.012960809282958508, + 0.022535288706421852, + 0.07917551696300507, + 0.03100755624473095, + 0.008274837397038937, + 0.09721153974533081, + 0.050989262759685516, + 0.012677839025855064, + 0.041036203503608704, + -0.10639114677906036, + 0.12764522433280945, + 0.07278670370578766, + -0.022095121443271637, + 0.03098338097333908, + -0.02898004837334156, + 0.0809275209903717, + 0.09534987807273865, + -0.1227051168680191, + -0.05885526165366173, + 0.0005997233092784882, + -0.0035510878078639507, + -0.021237578243017197, + 0.08182498067617416, + -0.024508893489837646, + -0.005949174519628286, + 0.11049088835716248, + -0.07752488553524017, + -0.06652219593524933, + -0.02911338210105896, + 0.0212554968893528, + -0.07800594717264175, + 0.047917529940605164, + 0.0359664224088192, + 0.008974568918347359, + 0.00486976932734251, + 0.09449593722820282, + -0.0018899358110502362, + -0.0003257538191974163, + 0.032444246113300323, + -0.055867474526166916, + 0.017791595309972763, + -0.0351385772228241, + 0.01986345462501049, + 0.057327769696712494, + 0.05041804909706116, + 0.059155598282814026, + 0.008122799918055534, + -0.01083378866314888, + -0.07895449548959732, + -0.00627483893185854, + 0.06800520420074463, + 0.05703945457935333, + -0.008550484664738178, + -0.015090275555849075, + -0.02927681803703308, + -0.07012715935707092, + 0.041542742401361465, + -0.012928883545100689, + 0.08516597747802734, + -0.024356510490179062, + -0.014819096773862839, + 0.12005850672721863, + 0.010945495218038559, + -0.017246559262275696, + -0.09791474044322968, + -0.024770662188529968, + 0.0011850083246827126, + 0.04086858779191971, + -0.11034372448921204, + -0.07452259212732315, + 0.006218722090125084, + 0.02181953378021717, + -0.016521282494068146, + 0.03904792293906212, + 0.03824132680892944, + 0.007279010955244303, + 0.037137240171432495, + -0.0573769137263298, + 0.007877781987190247, + -0.11130785197019577, + -0.06729962676763535, + -0.028296589851379395, + -0.04508214816451073, + -0.001398736611008644, + 0.061989620327949524, + 0.009105633944272995, + 0.016468387097120285, + 0.027100328356027603, + -0.08886811137199402, + -0.08833437412977219, + 0.07652020454406738, + 0.05635393410921097, + 0.010490206070244312, + 0.070200115442276, + 0.054011017084121704, + -0.08097734302282333, + 0.07192501425743103, + 0.0603579543530941, + 0.11222146451473236, + -0.04411302134394646, + 0.03944786638021469, + -0.07513889670372009, + 0.04705259948968887, + 0.08648710697889328, + -0.11583252251148224, + -0.10839773714542389, + -0.041446663439273834, + -0.0290602408349514, + 0.0446256548166275, + -0.031314633786678314, + -0.01224291231483221, + 0.024069389328360558, + -0.024504881352186203, + -0.07408291101455688, + -0.08164675533771515, + 0.08596008270978928, + -0.0648287758231163, + -0.00760210957378149, + -0.06233181804418564, + 0.04306813329458237, + 0.05370538681745529, + 0.025317681953310966, + -0.04027901962399483, + 0.03136410936713219, + 0.07048152387142181, + -0.06131252273917198, + -0.03257821127772331, + 0.039197325706481934, + 0.007110740523785353, + -0.06356337666511536, + -0.0007188073359429836, + -0.07171986997127533, + 0.07497894018888474, + -0.048499248921871185, + 0.1626286804676056, + -0.026472043246030807, + -0.07052823156118393, + -0.04782993346452713, + 0.02265041135251522, + -0.026331990957260132, + 0.02763562649488449, + 0.05033141374588013, + 0.06911881268024445, + -0.0130761181935668, + -0.03996057063341141, + 0.14837083220481873, + 0.008677903562784195, + -0.03402414172887802, + -0.050040263682603836, + -0.045453377068042755, + -0.06450536847114563, + 0.0004788478836417198, + 0.008729243651032448, + -0.11051183938980103, + -0.008394391275942326, + 0.007968345656991005, + -0.030474970117211342, + 0.054275304079055786, + 0.13971665501594543, + 0.0805155485868454, + -0.09118019044399261 + ] + }, + "p244_074.wav": { + "name": "p244", + "embedding": [ + 0.06014510244131088, + 0.09971879422664642, + 0.015584892593324184, + 0.021699270233511925, + -0.024226326495409012, + 0.11392833292484283, + -0.12430501729249954, + 0.1162688136100769, + -0.06320066750049591, + 0.16092291474342346, + -0.08765741437673569, + 0.09969928860664368, + -0.01792548969388008, + -0.15745452046394348, + -0.06303291022777557, + 0.041449688374996185, + -0.057555653154850006, + 0.0035726502537727356, + -0.0486614927649498, + -0.004805471282452345, + 0.0411190502345562, + 0.024463845416903496, + 0.058623261749744415, + -0.02493543177843094, + 0.031117452308535576, + 0.03865686058998108, + 0.015451236627995968, + 0.07207752764225006, + 0.02641092613339424, + -0.09324994683265686, + -0.027758805081248283, + 0.13227424025535583, + -0.03424966707825661, + 0.03947920352220535, + 0.04767537862062454, + 0.013357278890907764, + 0.006342347711324692, + -0.07750484347343445, + -0.014071457087993622, + -0.010173224844038486, + -0.014226230792701244, + 0.06542043387889862, + 0.014675341546535492, + -0.012166031636297703, + 0.01956893689930439, + 0.0038894633762538433, + -0.024501653388142586, + -0.049184542149305344, + -0.09260393679141998, + 0.15617680549621582, + 0.0518491193652153, + 0.004771186038851738, + -0.07177138328552246, + -0.08619700372219086, + 0.1051219254732132, + -0.015336241573095322, + -0.1134636402130127, + -0.02775711566209793, + 0.07479526102542877, + 0.1931106001138687, + -0.03001069277524948, + -0.03331910818815231, + 0.02120731770992279, + 0.11004520952701569, + 0.025130605325102806, + 0.10477791726589203, + 0.09282625466585159, + 0.08586355298757553, + 0.028017833828926086, + 0.05219336599111557, + 0.017089825123548508, + 0.06498713791370392, + 0.04176153987646103, + -0.011089975014328957, + 0.032536521553993225, + -0.03093256987631321, + -0.02084430307149887, + 0.015571310184895992, + -0.026068685576319695, + -0.02726149931550026, + -0.0037109642289578915, + -0.005104261916130781, + 0.02641938626766205, + 0.010872980579733849, + -0.03922935575246811, + 0.041547566652297974, + -0.020551878958940506, + -0.03216097131371498, + 0.06253150850534439, + 0.03755345195531845, + 0.0200633741915226, + 0.035502105951309204, + -0.05118311941623688, + -0.12056100368499756, + 0.013987716287374496, + 0.011165215633809566, + 0.008817262947559357, + 0.06909926235675812, + 0.039913907647132874, + -0.033625729382038116, + 0.0953153669834137, + 0.042153771966695786, + -0.007515524048358202, + 0.028902916237711906, + -0.10698682069778442, + 0.11187740415334702, + 0.08660847693681717, + -0.002844938775524497, + 0.042121924459934235, + -0.05157402530312538, + 0.08466915041208267, + 0.09120398759841919, + -0.1502046287059784, + -0.08364871889352798, + 0.0071958694607019424, + -0.008172833360731602, + 0.005273364018648863, + 0.08534418046474457, + -0.0036859335377812386, + -0.0008797831833362579, + 0.08766975998878479, + -0.08068522810935974, + -0.04992228001356125, + -0.03241259977221489, + 0.04746837168931961, + -0.0714477151632309, + 0.04672529175877571, + 0.012449185363948345, + -0.010422405786812305, + -0.0232987180352211, + 0.07312832027673721, + -0.01991652324795723, + -0.004882699344307184, + 0.03331601247191429, + -0.05931270122528076, + 0.02828357368707657, + -0.05358045548200607, + 0.019374718889594078, + 0.03794638067483902, + 0.05631332844495773, + 0.044307444244623184, + -0.0029720335733145475, + -0.05184668302536011, + -0.07062087208032608, + -0.009222757071256638, + 0.046010393649339676, + 0.051999520510435104, + -0.005567926447838545, + -0.02045314572751522, + -0.042064715176820755, + -0.05380910634994507, + 0.06741416454315186, + -0.01949601247906685, + 0.08342263102531433, + 0.02181383967399597, + 0.011088564991950989, + 0.10065892338752747, + -0.0020942343398928642, + -0.0040198094211518764, + -0.06658720225095749, + -0.0055602192878723145, + 0.035565100610256195, + 0.032847922295331955, + -0.07245933264493942, + -0.04627860337495804, + 0.027647484093904495, + 0.008904751390218735, + -0.03301059827208519, + 0.033254869282245636, + 0.04260602965950966, + 0.02298501878976822, + 0.043577805161476135, + -0.047388236969709396, + -0.01514421310275793, + -0.1021120473742485, + -0.046782445162534714, + -0.002416311064735055, + -0.03638681024312973, + -0.018268844112753868, + 0.08079420030117035, + 0.02545928955078125, + 0.018413040786981583, + -0.005437190178781748, + -0.07254447042942047, + -0.06903161108493805, + 0.06818627566099167, + 0.057744596153497696, + 0.022661438211798668, + 0.032348740845918655, + 0.0380667969584465, + -0.012004202231764793, + 0.07510870695114136, + 0.07461467385292053, + 0.09118086099624634, + -0.018249865621328354, + -0.007719416171312332, + -0.08865920454263687, + 0.08385604619979858, + 0.09812474250793457, + -0.0825810432434082, + -0.1069522574543953, + -0.028723765164613724, + -0.0832420140504837, + 0.0513782799243927, + -0.032212719321250916, + -0.014716488309204578, + 0.033219143748283386, + -0.032289646565914154, + -0.09897318482398987, + -0.07787275314331055, + 0.11439277976751328, + -0.07389659434556961, + -0.0342634841799736, + -0.06562066823244095, + 0.04722801595926285, + 0.0693758949637413, + 0.04545104503631592, + -0.016056319698691368, + 0.015001444146037102, + 0.05746561288833618, + -0.09436094015836716, + -0.0166219100356102, + 0.029135093092918396, + -0.01431970577687025, + -0.09565816819667816, + 0.022905312478542328, + -0.08642274141311646, + 0.039538733661174774, + -0.06991507858037949, + 0.16500133275985718, + -0.02460383251309395, + -0.07045608758926392, + -0.05873553454875946, + 0.04520758241415024, + -0.054409317672252655, + 0.028254954144358635, + 0.05157051980495453, + 0.06067713350057602, + 0.02536693960428238, + -0.09536367654800415, + 0.10134699940681458, + 0.024042507633566856, + -0.010347208008170128, + -0.08685632795095444, + -0.06046932190656662, + -0.042557694017887115, + 0.015346228145062923, + -0.018939699977636337, + -0.07674851268529892, + 0.0009209541603922844, + 0.02602284401655197, + -0.003074691630899906, + 0.0657355859875679, + 0.13165289163589478, + 0.05196277052164078, + -0.09723721444606781 + ] + }, + "p244_128.wav": { + "name": "p244", + "embedding": [ + 0.04285028576850891, + 0.10291832685470581, + -0.008294271305203438, + 0.0031440667808055878, + -0.05854008346796036, + 0.0744505375623703, + -0.11892271786928177, + 0.13265547156333923, + -0.0472327321767807, + 0.13479766249656677, + -0.0745711624622345, + 0.10561913251876831, + -0.02285316213965416, + -0.17996175587177277, + -0.05359140783548355, + 0.0317937433719635, + -0.05796866863965988, + -0.028445810079574585, + -0.057495832443237305, + -0.03565075248479843, + 0.035307884216308594, + 0.04116383194923401, + 0.0032741716131567955, + -0.014355423860251904, + 0.054791174829006195, + 0.06258786469697952, + 0.014593180269002914, + 0.04019845277070999, + 0.009189827367663383, + -0.0422927550971508, + -0.030498847365379333, + 0.10371505469083786, + -0.061426594853401184, + 0.023316510021686554, + 0.05623096972703934, + -0.004318609833717346, + 0.020198138430714607, + -0.050899848341941833, + -0.02848580852150917, + 0.04583275318145752, + -0.03608536720275879, + 0.08068013936281204, + 0.046967070549726486, + 0.010805629193782806, + 0.021731525659561157, + 0.05317696928977966, + 0.01321185939013958, + -0.06421341001987457, + -0.09013538062572479, + 0.18424123525619507, + 0.04776057228446007, + -0.0028770838398486376, + -0.07243786007165909, + -0.08860738575458527, + 0.10992558300495148, + -0.0163470096886158, + -0.1031622439622879, + -0.027590710669755936, + 0.0751342847943306, + 0.14967505633831024, + -0.04495275020599365, + -0.052671369165182114, + 0.00747661991044879, + 0.11520727723836899, + 0.03702854737639427, + 0.07464918494224548, + 0.08499055355787277, + 0.09904549270868301, + -0.00922226719558239, + 0.01108636986464262, + 0.0748717337846756, + 0.06487390398979187, + 0.05631181225180626, + -0.0338699109852314, + 0.031233523041009903, + 0.0019018733873963356, + -0.01824387162923813, + 0.008348758332431316, + -0.02586912177503109, + -0.0011229927185922861, + -0.009843980893492699, + 0.028770998120307922, + 0.018397890031337738, + 0.019719939678907394, + -0.02686728537082672, + 0.059890665113925934, + 0.017812829464673996, + -0.009032066911458969, + 0.07787267118692398, + 0.050689518451690674, + 0.004880410619080067, + 0.06256155669689178, + -0.08774784952402115, + -0.0894698053598404, + 0.03025517612695694, + -0.0019432483240962029, + 0.024727607145905495, + 0.07191336154937744, + 0.05225212499499321, + -0.015936629846692085, + 0.11002478748559952, + 0.05299503728747368, + -0.008342195302248001, + 0.021948836743831635, + -0.10554119944572449, + 0.11696275323629379, + 0.09277379512786865, + -0.03175366297364235, + 0.037857118993997574, + -0.04454944282770157, + 0.08099643886089325, + 0.058050110936164856, + -0.14657199382781982, + -0.09842027723789215, + 0.03615438938140869, + 0.023691225796937943, + -0.013943508267402649, + 0.10753928124904633, + -0.031842827796936035, + 0.015001642517745495, + 0.10138988494873047, + -0.08231890201568604, + -0.037937577813863754, + -0.028225857764482498, + 0.04748796671628952, + -0.06992723047733307, + 0.03258610889315605, + 0.05220450460910797, + -0.015021104365587234, + 0.00970245711505413, + 0.07571221888065338, + 0.0008274917490780354, + 0.0009434851817786694, + 0.0037812944501638412, + -0.016594819724559784, + 0.036868512630462646, + -0.006621015723794699, + -0.003088216530159116, + 0.04144478589296341, + 0.0634017288684845, + 0.05363544076681137, + 0.012106486596167088, + -0.04248375445604324, + -0.10744935274124146, + 0.02323581650853157, + 0.03876125067472458, + 0.06020769476890564, + -0.02511535957455635, + -0.013027509674429893, + -0.042832955718040466, + -0.07413189858198166, + 0.020877759903669357, + 0.015493260696530342, + 0.08876348286867142, + -0.01178110670298338, + 0.0026183626614511013, + 0.11945134401321411, + 0.024575982242822647, + -0.016531767323613167, + -0.03488043695688248, + -0.022817201912403107, + 0.0055765812285244465, + 0.050697289407253265, + -0.07481823861598969, + -0.0817171037197113, + -0.0049058618023991585, + 0.011322863399982452, + -0.009867454878985882, + 0.06068001687526703, + 0.03517413139343262, + 0.006912395358085632, + 0.039578747004270554, + -0.06977661699056625, + 0.003621757263317704, + -0.1171189397573471, + -0.04958612844347954, + -0.02333132177591324, + -0.037408117204904556, + -0.03562555089592934, + 0.09097154438495636, + 0.012545136734843254, + 0.04913122206926346, + -0.0006547458469867706, + -0.07709072530269623, + -0.048051562160253525, + 0.06257225573062897, + 0.08023197203874588, + -0.0017389459535479546, + 0.03188994526863098, + 0.06737224757671356, + -0.011643451638519764, + 0.05946042388677597, + 0.09167708456516266, + 0.10151728987693787, + -0.029805200174450874, + 0.031096410006284714, + -0.04898339882493019, + 0.10016895830631256, + 0.028483262285590172, + -0.09008339047431946, + -0.08827924728393555, + -0.03344443812966347, + -0.055373258888721466, + 0.02298158034682274, + -0.004768986254930496, + 0.03892204165458679, + 0.004340828862041235, + 0.009070918895304203, + -0.07332377135753632, + -0.07707536220550537, + 0.06340166926383972, + -0.056554581969976425, + -0.014352606609463692, + -0.07638509571552277, + 0.045238036662340164, + 0.11974451690912247, + 0.0533909797668457, + -0.004737730138003826, + -0.006433691363781691, + 0.04213054105639458, + -0.037932198494672775, + -0.020381726324558258, + 0.03291946277022362, + 0.013733863830566406, + -0.08372844755649567, + 0.013640576042234898, + -0.0693979412317276, + 0.07794291526079178, + -0.051908183842897415, + 0.14760559797286987, + 0.0021405257284641266, + -0.06954716891050339, + -0.07093621045351028, + 0.0385231152176857, + -0.03931885212659836, + 0.04432768374681473, + 0.03189799189567566, + 0.060877010226249695, + 0.033880751579999924, + -0.041171252727508545, + 0.11780042946338654, + 0.032729074358940125, + -0.04795774817466736, + -0.06289391964673996, + -0.06086689978837967, + -0.017920324578881264, + 0.01632593385875225, + 0.02147575467824936, + -0.07005555927753448, + -0.002590891905128956, + 0.022513344883918762, + -0.021650727838277817, + 0.059205275028944016, + 0.13990139961242676, + 0.08244998008012772, + -0.12977442145347595 + ] + }, + "p244_363.wav": { + "name": "p244", + "embedding": [ + 0.06403273344039917, + 0.06051492691040039, + -0.02012384496629238, + -0.017881762236356735, + -0.027586935088038445, + 0.04949760064482689, + -0.14439056813716888, + 0.09276485443115234, + -0.003955709747970104, + 0.15863388776779175, + -0.04848731309175491, + 0.11708610504865646, + 0.008923175744712353, + -0.1183699294924736, + -0.0009529429371468723, + 0.02462594211101532, + -0.026231907308101654, + -0.0009149847319349647, + -0.03142998367547989, + -0.04107664152979851, + 0.024890966713428497, + 0.027374088764190674, + 0.022732285782694817, + -0.02660374343395233, + 0.027254194021224976, + 0.06170704960823059, + -0.0024491813965141773, + 0.027911990880966187, + 0.0008403199608437717, + -0.05736023187637329, + 0.007845464162528515, + 0.10094092786312103, + -0.06058371067047119, + 0.014089441858232021, + 0.038132261484861374, + -0.011506977491080761, + -0.016614658758044243, + -0.06505867093801498, + -0.0033435611985623837, + 0.03163169324398041, + -0.042566388845443726, + 0.08961649239063263, + 0.02474232017993927, + 0.004860918037593365, + 0.020051240921020508, + 0.005838615354150534, + -0.0267366673797369, + -0.016912490129470825, + -0.06767590343952179, + 0.137917160987854, + 0.06183375418186188, + 0.002839596476405859, + -0.0751606747508049, + -0.019900521263480186, + 0.05900411307811737, + 0.0002964561281260103, + -0.0757521390914917, + -0.023973045870661736, + 0.02944762632250786, + 0.11183631420135498, + -0.033953357487916946, + -0.06368960440158844, + 0.027156000956892967, + 0.09929130971431732, + 0.04181322082877159, + 0.052422426640987396, + 0.099247507750988, + 0.10775365680456161, + -0.03121456503868103, + 0.013795128092169762, + 0.03532084822654724, + 0.06895013898611069, + 0.08076289296150208, + -0.004452466033399105, + 0.05283006280660629, + 0.0028274524956941605, + -0.003868196625262499, + -0.03429003059864044, + -0.022063929587602615, + -0.03299005329608917, + -0.02209332585334778, + -0.008881988003849983, + 0.023418426513671875, + 0.09854018688201904, + -0.02846275269985199, + 0.011028441600501537, + 0.049822621047496796, + -0.0425729975104332, + 0.02990562468767166, + 0.037396471947431564, + 0.014230488799512386, + 0.030722465366125107, + -0.09800295531749725, + -0.0838424414396286, + 0.03957703709602356, + -0.020706502720713615, + 0.0446818582713604, + 0.055889274924993515, + 0.04385174810886383, + -0.004087240435183048, + 0.08500337600708008, + 0.04163333773612976, + -0.022932028397917747, + -0.007839178666472435, + -0.05945534259080887, + 0.11431651562452316, + 0.10057404637336731, + -0.05528843402862549, + 0.030194278806447983, + -0.033868640661239624, + 0.043563853949308395, + 0.018794789910316467, + -0.12945233285427094, + -0.055467233061790466, + 0.024301959201693535, + 0.036756157875061035, + 0.008293507620692253, + 0.10468360036611557, + 0.008604477159678936, + 0.05039508268237114, + 0.07051946222782135, + -0.026770269498229027, + -0.03179869055747986, + -0.03430252894759178, + 0.036310695111751556, + -0.07879462838172913, + 0.04594317823648453, + 0.02598048560321331, + 0.024373015388846397, + -0.024430004879832268, + 0.09700754284858704, + 0.0073061189614236355, + -0.012344546616077423, + -0.03343578428030014, + 0.02182130143046379, + 0.055880945175886154, + -0.0009930426022037864, + 0.03629352152347565, + 0.02050788328051567, + 0.01343727670609951, + 0.05896482616662979, + 0.029373139142990112, + -0.019857658073306084, + -0.1102408915758133, + 0.03269043564796448, + 0.024887867271900177, + 0.06146380305290222, + -0.041399724781513214, + -0.02417270466685295, + -0.00849065463989973, + -0.06280441582202911, + 0.0016684045549482107, + -0.01296325959265232, + 0.05026625841856003, + 0.01690084859728813, + -0.006596662104129791, + 0.09954860806465149, + -0.0010454729199409485, + 0.012931148521602154, + 0.0148419588804245, + 0.004123309161514044, + 0.013352934271097183, + 0.07219018042087555, + -0.0987880676984787, + -0.06607095897197723, + 0.011087624356150627, + 0.015368583612143993, + 0.0029961182735860348, + 0.039021141827106476, + 0.05914757773280144, + -0.022443201392889023, + 0.0360303670167923, + -0.04600170999765396, + -0.02771448716521263, + -0.0938287079334259, + -0.04784083366394043, + -0.0161521527916193, + -0.046595387160778046, + -0.03091784566640854, + 0.061463065445423126, + -0.010084379464387894, + 0.07136915624141693, + -0.02919497899711132, + -0.047360315918922424, + -0.05189887806773186, + 0.03612043708562851, + 0.05802188441157341, + -0.04861808940768242, + 0.00468931719660759, + 0.07599315047264099, + 0.019815105944871902, + 0.008400033228099346, + 0.07461564242839813, + 0.07611342519521713, + -0.046885859221220016, + 0.001462546526454389, + -0.06221631169319153, + 0.11272623389959335, + 0.0724392980337143, + -0.05227070301771164, + -0.06521911919116974, + -0.03691735491156578, + -0.05702916905283928, + 0.017825230956077576, + -0.03583719953894615, + -0.0038431144785135984, + 0.04523668810725212, + -0.019796017557382584, + -0.0704396590590477, + -0.07848221808671951, + 0.05864795669913292, + -0.0761282667517662, + 0.0054170056246221066, + -0.0638924315571785, + 0.029236098751425743, + 0.06813766807317734, + 0.06036188453435898, + -0.03969743102788925, + 0.019263770431280136, + 0.029042627662420273, + -0.04254719242453575, + -0.0076590306125581264, + 0.030446184799075127, + 0.01466970331966877, + -0.09990754723548889, + -0.03380292281508446, + -0.06023750826716423, + 0.042855702340602875, + -0.0609348826110363, + 0.08603771775960922, + 0.014863325282931328, + -0.05509550869464874, + -0.05701571702957153, + -0.013307898305356503, + -0.012660689651966095, + 0.043151408433914185, + 0.054835908114910126, + 0.06222027167677879, + 0.03838126361370087, + -0.06193374842405319, + 0.0959349125623703, + 0.05506696552038193, + 0.0024874459486454725, + -0.0725620910525322, + -0.02287134900689125, + -0.009760105982422829, + 0.04641138017177582, + 0.03347271308302879, + -0.05269720405340195, + 0.017612092196941376, + 0.028211530297994614, + -0.03257675841450691, + 0.037428416311740875, + 0.08168216049671173, + 0.06732090562582016, + -0.11743035167455673 + ] + }, + "p244_295.wav": { + "name": "p244", + "embedding": [ + 0.05290251970291138, + 0.08866578340530396, + -0.014172036200761795, + 0.03047887608408928, + -0.0520898699760437, + 0.09630829095840454, + -0.13036440312862396, + 0.09883075952529907, + -0.05007344111800194, + 0.15091755986213684, + -0.04731025546789169, + 0.11103080213069916, + 0.011929815635085106, + -0.2080869972705841, + -0.029904644936323166, + 0.05783097445964813, + -0.08765420317649841, + -0.013555746525526047, + -0.08613084256649017, + -0.020421000197529793, + 0.03315795958042145, + 0.031439635902643204, + 0.04728688299655914, + -0.040597423911094666, + 0.02959975227713585, + 0.05423350632190704, + -0.017078906297683716, + 0.02361954376101494, + -0.004263904877007008, + -0.08039578795433044, + -0.06475915014743805, + 0.12110821902751923, + -0.028802108019590378, + 0.012491578236222267, + 0.05075102299451828, + -0.016131596639752388, + -0.007037237752228975, + -0.06531859934329987, + -0.028068624436855316, + 0.024828573688864708, + -0.02811659500002861, + 0.06960184872150421, + 0.03310901299118996, + -0.01496448926627636, + 0.056352488696575165, + -0.017263544723391533, + -0.039818596094846725, + -0.03839851915836334, + -0.08592745661735535, + 0.16973444819450378, + 0.08115704357624054, + -0.00883428193628788, + -0.06046222895383835, + -0.062448158860206604, + 0.09827961027622223, + -0.007846922613680363, + -0.14564767479896545, + -0.0326983705163002, + 0.07282871007919312, + 0.15935982763767242, + -0.015399754047393799, + -0.012290704995393753, + 0.024149175733327866, + 0.12355045229196548, + 0.01387656107544899, + 0.11754472553730011, + 0.05576509237289429, + 0.09296070039272308, + 0.0019340356811881065, + 0.051164157688617706, + 0.063483826816082, + 0.05950479209423065, + 0.043938253074884415, + -0.03550262749195099, + 0.041027605533599854, + -0.0240523349493742, + -0.037449248135089874, + -0.01831389218568802, + -0.025988414883613586, + 0.0010719280689954758, + -0.003004832658916712, + -0.021211858838796616, + 0.026496581733226776, + 0.0051918174140155315, + -0.03328615054488182, + 0.027924194931983948, + 0.030187323689460754, + -0.012468209490180016, + 0.051449112594127655, + 0.07266655564308167, + 0.03139781579375267, + 0.04979772865772247, + -0.04544838145375252, + -0.11425669491291046, + 0.03663652762770653, + 0.03352591395378113, + -0.0007319997530430555, + 0.052891675382852554, + 0.04801598936319351, + -0.031236916780471802, + 0.08309122920036316, + 0.06788374483585358, + -0.013497358188033104, + 0.0316450297832489, + -0.10186915844678879, + 0.11284466087818146, + 0.09876660257577896, + -0.002314150333404541, + 0.04355976730585098, + -0.039824169129133224, + 0.10397098958492279, + 0.08934269845485687, + -0.13914325833320618, + -0.05876270309090614, + 0.027994800359010696, + -0.03508389741182327, + 0.002701176330447197, + 0.10860823094844818, + 0.01188700832426548, + 0.011183975264430046, + 0.09440584480762482, + -0.08775536715984344, + -0.05217909440398216, + -0.03048260696232319, + 0.04033491015434265, + -0.10106860101222992, + 0.04850113391876221, + 0.037350866943597794, + -0.01968272402882576, + -0.007441813126206398, + 0.07533790171146393, + -0.021646160632371902, + -0.0017310635885223746, + 0.013509604148566723, + -0.037927478551864624, + 0.03929981589317322, + -0.036784231662750244, + 0.01562993973493576, + 0.055752623826265335, + 0.02243494987487793, + 0.03153522312641144, + -0.022017188370227814, + -0.02360452711582184, + -0.09017859399318695, + 0.012063869275152683, + 0.032551586627960205, + 0.058903768658638, + -0.005659362301230431, + 0.01366327702999115, + -0.03107360377907753, + -0.09516414254903793, + 0.06370949745178223, + -0.0582180917263031, + 0.06526194512844086, + 0.011835404671728611, + -0.02400565706193447, + 0.0968305915594101, + 0.015253373421728611, + -0.0012897446285933256, + -0.05431203544139862, + -0.025147121399641037, + 0.05116645246744156, + 0.044625066220760345, + -0.10463736206293106, + -0.04806501418352127, + 0.0033200837206095457, + -0.009190395474433899, + -0.014074652455747128, + 0.014267812483012676, + 0.053471509367227554, + 0.011426469311118126, + 0.039148926734924316, + -0.07803167402744293, + 0.016493376344442368, + -0.10991061478853226, + -0.04326704144477844, + -0.021416686475276947, + -0.0697161927819252, + -0.0099858483299613, + 0.10108533501625061, + 0.00226034433580935, + -0.011492466554045677, + -0.04758329689502716, + -0.06428387016057968, + -0.05141941457986832, + 0.06912635266780853, + 0.071955606341362, + 0.008642706088721752, + 0.036815255880355835, + 0.03473331779241562, + -0.008092626929283142, + 0.04696999490261078, + 0.054040051996707916, + 0.11258342862129211, + -0.01833399012684822, + 0.01800486631691456, + -0.08299419283866882, + 0.09973357617855072, + 0.09477218985557556, + -0.0731373280286789, + -0.10853767395019531, + -0.021285444498062134, + -0.05653847008943558, + 0.04914431646466255, + -0.04716038703918457, + -0.033013030886650085, + 0.04293026030063629, + -0.010498236864805222, + -0.08922325074672699, + -0.0917540043592453, + 0.11912663280963898, + -0.055475734174251556, + -0.02718234434723854, + -0.06428301334381104, + 0.04882869869470596, + 0.059380047023296356, + 0.026572778820991516, + -0.06824323534965515, + 0.03023555502295494, + 0.062191300094127655, + -0.05923333764076233, + 0.003709199372678995, + 0.02580970898270607, + 0.012109932489693165, + -0.11526891589164734, + -0.001838963944464922, + -0.07267390191555023, + 0.06847310811281204, + -0.07226385176181793, + 0.15533387660980225, + -0.004655337426811457, + -0.057828888297080994, + -0.062104471027851105, + 0.07144276797771454, + -0.02231518179178238, + 0.030752034857869148, + 0.059447064995765686, + 0.0737541913986206, + 0.035599373281002045, + -0.08204565942287445, + 0.08413322269916534, + 0.007639879826456308, + -0.0029468019492924213, + -0.06997314095497131, + -0.006133362650871277, + -0.041792504489421844, + 0.029643665999174118, + 0.00013725587632507086, + -0.10018723458051682, + 0.016295988112688065, + 0.027648676186800003, + -0.008695149794220924, + 0.06170041859149933, + 0.12852692604064941, + 0.058018703013658524, + -0.10498124361038208 + ] + }, + "p244_265.wav": { + "name": "p244", + "embedding": [ + 0.06141588091850281, + 0.0863850861787796, + -0.00772889144718647, + 0.006429128814488649, + -0.04527030885219574, + 0.05000637099146843, + -0.14279066026210785, + 0.1320023536682129, + -0.056966036558151245, + 0.14200010895729065, + -0.0780944675207138, + 0.12522992491722107, + -0.019226575270295143, + -0.17627684772014618, + -0.04489091783761978, + 0.05379902198910713, + -0.06346271932125092, + -0.04697665572166443, + -0.03622979298233986, + -0.04041717201471329, + 0.04363404959440231, + 0.053445830941200256, + 0.02921658754348755, + 0.01965351402759552, + 0.024492040276527405, + 0.07114890217781067, + 0.0007303707534447312, + 0.03748464584350586, + 0.008124567568302155, + -0.07660400867462158, + -0.03315816819667816, + 0.08190691471099854, + -0.028733596205711365, + 0.00120810407679528, + 0.03400120139122009, + -0.0018271005246788263, + 0.030979255214333534, + -0.08918013423681259, + -0.045051414519548416, + 0.007627800107002258, + -0.0354047492146492, + 0.06582905352115631, + 0.013605700805783272, + -0.030955586582422256, + 0.02764042653143406, + 0.021312881261110306, + -0.010659478604793549, + -0.06219052895903587, + -0.10788904130458832, + 0.16770416498184204, + 0.07065357267856598, + 0.022713806480169296, + -0.05951463431119919, + -0.08140042424201965, + 0.11799120903015137, + -0.02215052768588066, + -0.10574284195899963, + -0.02035026252269745, + 0.05858565866947174, + 0.18034133315086365, + -0.050429366528987885, + -0.048468366265296936, + 0.057583488523960114, + 0.11438995599746704, + 0.05638664960861206, + 0.064597487449646, + 0.10252750664949417, + 0.08532530069351196, + -0.016957592219114304, + -0.003322306089103222, + 0.056352391839027405, + 0.094028539955616, + 0.0768650472164154, + -0.007835718803107738, + 0.027863772585988045, + 0.022023748606443405, + -0.03772643208503723, + -0.005641659256070852, + -0.031409166753292084, + -0.02106664888560772, + -0.010805588215589523, + 0.013345547951757908, + 0.013816862367093563, + 0.02314738556742668, + -0.028986215591430664, + 0.06092710793018341, + 0.012848379090428352, + -0.02544492483139038, + 0.06588050723075867, + 0.01309226918965578, + 0.02681158483028412, + 0.0668388232588768, + -0.07371874153614044, + -0.0790446400642395, + 0.040636513382196426, + 0.015440435148775578, + 0.009443160146474838, + 0.06674832850694656, + 0.05638415366411209, + -0.035714857280254364, + 0.13445249199867249, + 0.051664482802152634, + 0.0027419414836913347, + 0.01137523166835308, + -0.09602459520101547, + 0.10689400136470795, + 0.10667445510625839, + -0.04308803379535675, + 0.051937036216259, + -0.041244879364967346, + 0.06648872047662735, + 0.06827705353498459, + -0.15634435415267944, + -0.10099723935127258, + 0.03558790683746338, + 0.022423533722758293, + 0.0029250963125377893, + 0.11810757219791412, + -0.009108901023864746, + 0.05770644173026085, + 0.10427931696176529, + -0.08280959725379944, + -0.05646088346838951, + -0.020561296492815018, + 0.057388439774513245, + -0.0824371948838234, + 0.07191649079322815, + 0.06053715944290161, + -0.004701548255980015, + 0.0077123260125517845, + 0.07615099847316742, + -0.02628055214881897, + -0.016148649156093597, + -0.010600737296044827, + -0.047366973012685776, + 0.004877621307969093, + -0.03101721592247486, + -0.026803234592080116, + 0.031856268644332886, + 0.048052143305540085, + 0.021104853600263596, + 0.005830016452819109, + -0.05748726427555084, + -0.13851776719093323, + 0.0194392092525959, + 0.027735350653529167, + 0.07751675695180893, + 0.0011948405299335718, + -0.025190945714712143, + -0.03790529817342758, + -0.04290200024843216, + -0.002937731798738241, + -0.017169035971164703, + 0.07741132378578186, + -0.02447914332151413, + 0.025848161429166794, + 0.09395711123943329, + 0.022960063070058823, + -0.004125075880438089, + -0.02629566192626953, + -0.018751507624983788, + 0.018105752766132355, + 0.04463201016187668, + -0.046960942447185516, + -0.09143471717834473, + -0.013318241573870182, + 0.04128715395927429, + -0.013524128124117851, + 0.06687702238559723, + 0.02442941442131996, + 0.01055664848536253, + 0.019471533596515656, + -0.0704900473356247, + 0.02539224922657013, + -0.11442510038614273, + -0.0675152838230133, + 0.009721603244543076, + -0.02033161371946335, + -0.01928350329399109, + 0.0666721984744072, + 0.027444487437605858, + 0.05788690596818924, + -0.038635265082120895, + -0.0817505270242691, + -0.08335334062576294, + 0.04522058367729187, + 0.07481241971254349, + 0.004759491421282291, + 0.023886388167738914, + 0.06340890377759933, + 0.015949996188282967, + 0.06555631756782532, + 0.057088494300842285, + 0.10183705389499664, + -0.004194200038909912, + 0.010300399735569954, + -0.051059022545814514, + 0.08699583262205124, + 0.06291025131940842, + -0.06870310008525848, + -0.07695413380861282, + -0.03393455967307091, + -0.07696463167667389, + 0.05199280008673668, + 0.011047711595892906, + 0.029042871668934822, + 0.023142365738749504, + -0.0053185345605015755, + -0.10475137084722519, + -0.07338863611221313, + 0.0940384715795517, + -0.05864279717206955, + -0.012832490727305412, + -0.07504788786172867, + 0.0514068566262722, + 0.11660397052764893, + 0.032704733312129974, + 0.004244822543114424, + -0.014622854068875313, + 0.022180471569299698, + -0.04421330988407135, + 0.0025789428036659956, + 0.04622779041528702, + 0.039170339703559875, + -0.11233170330524445, + 0.016567479819059372, + -0.09519881010055542, + 0.05243542045354843, + -0.046724990010261536, + 0.14224502444267273, + 0.006798848044127226, + -0.05118474364280701, + -0.11130020767450333, + 0.03792344033718109, + -0.026183992624282837, + 0.07226990908384323, + 0.02974279224872589, + 0.06457917392253876, + 0.04768770933151245, + -0.08781243860721588, + 0.0921948179602623, + 0.051670871675014496, + -0.04571196436882019, + -0.07563783973455429, + -0.06704097986221313, + -0.0293809175491333, + 0.011358235031366348, + -0.009815889410674572, + -0.05694393813610077, + -0.028338033705949783, + 0.005018941126763821, + 0.000653441995382309, + 0.07874833047389984, + 0.12727107107639313, + 0.04640696197748184, + -0.12975960969924927 + ] + }, + "p244_038.wav": { + "name": "p244", + "embedding": [ + 0.06439477205276489, + 0.11627796292304993, + -0.018857136368751526, + -0.011145049706101418, + -0.025873221457004547, + 0.049101777374744415, + -0.1650121510028839, + 0.13044854998588562, + -0.027952594682574272, + 0.15885549783706665, + -0.08671392500400543, + 0.11310912668704987, + -0.016927197575569153, + -0.14900633692741394, + -0.033550798892974854, + 0.018714770674705505, + -0.036722928285598755, + -0.014324760064482689, + -0.022692708298563957, + -0.02819386124610901, + 0.054330985993146896, + 0.05505513772368431, + 0.009814209304749966, + -0.018059393391013145, + 0.008099757134914398, + 0.05739843472838402, + 0.0039299605414271355, + 0.0375874787569046, + 0.014269409701228142, + -0.05008117854595184, + -0.025907929986715317, + 0.10695318877696991, + -0.03858288377523422, + 0.01771639473736286, + 0.03339051455259323, + -0.005038121249526739, + -0.0033116545528173447, + -0.07335206121206284, + 0.0052226148545742035, + 0.008138231001794338, + -0.018129779025912285, + 0.06418715417385101, + 0.017314670607447624, + -0.023593097925186157, + 0.026232846081256866, + 0.02572501264512539, + 0.011489740572869778, + -0.06279759854078293, + -0.07686542719602585, + 0.168763667345047, + 0.06735078990459442, + -0.00111345702316612, + -0.05967877432703972, + -0.03979071229696274, + 0.08087699115276337, + -0.018116841092705727, + -0.074142687022686, + -0.032986100763082504, + 0.054672449827194214, + 0.13474556803703308, + -0.03676103800535202, + -0.06252637505531311, + 0.05071040615439415, + 0.11635462939739227, + 0.026544924825429916, + 0.06582682579755783, + 0.10050135850906372, + 0.09124962985515594, + -0.026495974510908127, + -0.0028315093368291855, + 0.013345044106245041, + 0.06011321395635605, + 0.05108907073736191, + -0.025840725749731064, + 0.04631713032722473, + -0.020554862916469574, + -0.024403532966971397, + 0.014409735798835754, + -0.02092524617910385, + -0.045812174677848816, + -0.0015328023582696915, + 0.011809545569121838, + -0.012846815399825573, + 0.04751688241958618, + -0.04888773709535599, + 0.031168799847364426, + 0.024889757856726646, + -0.03402239829301834, + 0.07779605686664581, + 0.028156638145446777, + 0.04669620841741562, + 0.04032839462161064, + -0.08856549859046936, + -0.07841338217258453, + 0.06819409877061844, + -0.0027875984087586403, + 0.013581261038780212, + 0.08013671636581421, + 0.04817834496498108, + -0.02230714075267315, + 0.11979600042104721, + 0.04247979074716568, + -0.019626734778285027, + 0.0074136629700660706, + -0.09032045304775238, + 0.14209407567977905, + 0.1045672819018364, + -0.05363459512591362, + 0.036355264484882355, + -0.06699031591415405, + 0.047368377447128296, + 0.04370930418372154, + -0.12915927171707153, + -0.08462279289960861, + 0.05312618613243103, + 0.04017074406147003, + -0.00770151149481535, + 0.10889987647533417, + 0.0024326108396053314, + 0.02700762078166008, + 0.08302212506532669, + -0.0719294399023056, + -0.06971342861652374, + -0.037190478295087814, + 0.05197039246559143, + -0.09291410446166992, + 0.06969888508319855, + 0.07189285755157471, + -0.0032593084033578634, + 0.0007802906329743564, + 0.0739070475101471, + -0.010575811378657818, + 0.008843726478517056, + -0.017711874097585678, + -0.01732797920703888, + 0.020265422761440277, + -0.0185215063393116, + -0.007625448517501354, + -0.03312220424413681, + 0.040559276938438416, + 0.04554632306098938, + 0.008804453536868095, + -0.03333550691604614, + -0.11797411739826202, + 0.018385019153356552, + 0.046660587191581726, + 0.05299576371908188, + -0.011743198148906231, + -0.03923667594790459, + -0.04114318639039993, + -0.03889688849449158, + -0.021580945700407028, + -0.024570494890213013, + 0.05154753848910332, + -0.010507899336516857, + 0.018989600241184235, + 0.1126655861735344, + 0.027028437703847885, + 0.006295781582593918, + -0.027226507663726807, + -0.004959492944180965, + 0.026845797896385193, + 0.03674827516078949, + -0.051401712000370026, + -0.08731059730052948, + -0.02251921407878399, + 0.030141083523631096, + -0.006006236188113689, + 0.06439631432294846, + 0.05828789621591568, + 0.013215817511081696, + 0.03246751427650452, + -0.09111323207616806, + 0.023509180173277855, + -0.10091763734817505, + -0.050731733441352844, + -0.012368658557534218, + -0.01097035314887762, + -0.012854345142841339, + 0.079320028424263, + 0.0087592713534832, + 0.05264304205775261, + -0.03827190026640892, + -0.055144526064395905, + -0.07200711965560913, + 0.04566948115825653, + 0.09830781817436218, + -0.01894742250442505, + 0.022245291620492935, + 0.04311996325850487, + 0.0045318896882236, + 0.04133991897106171, + 0.06632495671510696, + 0.09142457693815231, + -0.010978798381984234, + -0.0015562947373837233, + -0.05638126656413078, + 0.07100266218185425, + 0.06787656992673874, + -0.0793527215719223, + -0.0751798003911972, + -0.029535826295614243, + -0.06890953332185745, + 0.004041846841573715, + -0.007809102535247803, + 0.02664385735988617, + 0.01961926743388176, + -0.01260912325233221, + -0.1013621985912323, + -0.08399906754493713, + 0.0572051964700222, + -0.06348063051700592, + 0.0034241406247019768, + -0.085358165204525, + 0.06912264227867126, + 0.09726061671972275, + 0.04884674400091171, + -0.0440090075135231, + -0.045738112181425095, + 0.011684160679578781, + -0.03165445476770401, + 0.01865381747484207, + 0.012331570498645306, + 0.06041670963168144, + -0.11584147810935974, + 0.0500732883810997, + -0.07793223857879639, + 0.05905335396528244, + -0.07582663744688034, + 0.13418897986412048, + 0.029116196557879448, + -0.06510952115058899, + -0.10680127143859863, + 0.04201100394129753, + -0.021726496517658234, + 0.0337463840842247, + 0.01406768523156643, + 0.027783513069152832, + 0.03574041277170181, + -0.10570641607046127, + 0.08106917887926102, + 0.04952608793973923, + -0.023613858968019485, + -0.09165468066930771, + -0.061425477266311646, + -0.02786344848573208, + 0.04794113337993622, + 0.02549189329147339, + -0.062400832772254944, + -0.04226354509592056, + 0.024085480719804764, + 0.004088684916496277, + 0.09167845547199249, + 0.1242532879114151, + 0.034429892897605896, + -0.14338025450706482 + ] + }, + "p244_217.wav": { + "name": "p244", + "embedding": [ + 0.05695503577589989, + 0.07583010196685791, + -0.016389742493629456, + 0.018431421369314194, + -0.040894389152526855, + 0.04120801016688347, + -0.1546989530324936, + 0.14659383893013, + -0.015423774719238281, + 0.13480515778064728, + -0.06425818055868149, + 0.12210576236248016, + 0.0032971855252981186, + -0.20861417055130005, + -0.013658901676535606, + 0.051295384764671326, + -0.028287667781114578, + -0.022000018507242203, + -0.03859560191631317, + -0.009296084754168987, + 0.0401318296790123, + 0.03239862620830536, + 0.001549319364130497, + -0.009849275462329388, + 0.020781300961971283, + 0.054708003997802734, + 0.0013669790932908654, + 0.046801090240478516, + 0.002334756776690483, + -0.029335247352719307, + -0.030995184555649757, + 0.10988393425941467, + -0.05703957751393318, + 0.017359916120767593, + 0.08969232439994812, + -0.016148347407579422, + -0.03298070654273033, + -0.0500020869076252, + -0.029819557443261147, + 0.003663610899820924, + -0.05784587189555168, + 0.07706837356090546, + 0.04449599236249924, + -0.008327395655214787, + 0.06315970420837402, + 0.055972568690776825, + 0.0015063886530697346, + -0.054875247180461884, + -0.09596193581819534, + 0.138583242893219, + 0.0606389194726944, + 0.00836460292339325, + -0.07635632157325745, + -0.04892273247241974, + 0.09018982946872711, + -0.027881067246198654, + -0.10177905112504959, + -0.03320343419909477, + 0.08164609968662262, + 0.14266330003738403, + -0.04466687887907028, + -0.04286735877394676, + 0.017054174095392227, + 0.10297219455242157, + 0.06363245099782944, + 0.10223960876464844, + 0.08230701088905334, + 0.12241026759147644, + -0.014631897211074829, + 0.025025956332683563, + 0.059896860271692276, + 0.0698169618844986, + 0.07432568073272705, + -0.023188291117548943, + 0.03386310115456581, + 0.02448231168091297, + -0.023037364706397057, + -0.012589871883392334, + -0.033811695873737335, + 0.01158376969397068, + 0.001882069744169712, + 0.02314615249633789, + 0.03053019940853119, + 0.03674817085266113, + -0.029230520129203796, + 0.05880194902420044, + 0.06158149614930153, + -0.01925525814294815, + 0.04934092238545418, + 0.03643257915973663, + -0.004568001255393028, + 0.062270596623420715, + -0.12189958244562149, + -0.1047031581401825, + 0.031784188002347946, + -0.015407895669341087, + 0.012638932093977928, + 0.06763593852519989, + 0.04626145958900452, + -0.005873025394976139, + 0.11342759430408478, + 0.05139974504709244, + -0.020759545266628265, + 0.05428338423371315, + -0.09721888601779938, + 0.1181439608335495, + 0.0793595165014267, + -0.031073730438947678, + 0.0436832532286644, + -0.07522480189800262, + 0.08172430098056793, + 0.06279304623603821, + -0.13817885518074036, + -0.06196904182434082, + 0.05790138989686966, + 0.010804906487464905, + -0.02299630269408226, + 0.1456695795059204, + -0.019599225372076035, + 0.03169623762369156, + 0.10761342942714691, + -0.08864068984985352, + -0.049610260874032974, + -0.017023073509335518, + 0.04631923884153366, + -0.08943146467208862, + 0.07312345504760742, + 0.024890314787626266, + 0.002169303596019745, + 0.0080955158919096, + 0.09349853545427322, + -0.0017502279952168465, + -0.01249099150300026, + -0.018021676689386368, + -0.0033812960609793663, + 0.03437964990735054, + -0.022166170179843903, + -0.002121887868270278, + 0.02192838490009308, + 0.029682371765375137, + 0.04028315842151642, + 0.010425377637147903, + -0.028041765093803406, + -0.1250048577785492, + 0.008147882297635078, + 0.034634895622730255, + 0.10226175934076309, + -0.01784675195813179, + -0.010427807457745075, + -0.05093197152018547, + -0.07607053220272064, + 0.003930846229195595, + -0.020810648798942566, + 0.055109620094299316, + 0.0025551526341587305, + 0.013672232627868652, + 0.10381767153739929, + 0.014201506972312927, + 0.01283918134868145, + -0.04554907977581024, + -0.027497630566358566, + 0.005998424254357815, + 0.06512703746557236, + -0.09334829449653625, + -0.06682019680738449, + -0.010354258120059967, + 0.004766783677041531, + -0.025279425084590912, + 0.037344325333833694, + 0.03449561819434166, + 0.036036308854818344, + 0.036823682487010956, + -0.08531507104635239, + 0.0018016083631664515, + -0.1394508183002472, + -0.0815252959728241, + -0.02151612378656864, + -0.0015938917640596628, + -0.012259655632078648, + 0.0693151131272316, + 0.0033840928226709366, + 0.052119988948106766, + -0.026590734720230103, + -0.06745981425046921, + -0.07988043129444122, + 0.06508442759513855, + 0.07555993646383286, + -0.010908445343375206, + 0.038952335715293884, + 0.04205147176980972, + -0.03055877983570099, + 0.03896339610219002, + 0.07675856351852417, + 0.11281244456768036, + -0.008918274194002151, + 0.03658916801214218, + -0.06202957034111023, + 0.12142127752304077, + 0.0861264169216156, + -0.06951456516981125, + -0.09837830066680908, + 0.005457638297230005, + -0.06019698828458786, + 0.01422215811908245, + -0.02416147291660309, + 0.005793252028524876, + 0.023187510669231415, + 0.0074515496380627155, + -0.08348351716995239, + -0.07295876741409302, + 0.05929452180862427, + -0.07700511068105698, + -0.003775406628847122, + -0.0873730480670929, + 0.047739215195178986, + 0.10900114476680756, + 0.024313991889357567, + -0.04424477368593216, + -0.03279256820678711, + 0.05699847638607025, + -0.03447532653808594, + -0.0061314767226576805, + 0.03095804899930954, + 0.035259686410427094, + -0.10586991906166077, + 0.004525955766439438, + -0.04176730290055275, + 0.05354766547679901, + -0.04886385798454285, + 0.13047727942466736, + -0.0014129416085779667, + -0.05769328773021698, + -0.061096373945474625, + 0.017582561820745468, + 0.010860014706850052, + 0.042609430849552155, + 0.027057643979787827, + 0.07789435982704163, + 0.04094276577234268, + -0.06281334161758423, + 0.12140953540802002, + 0.03557422012090683, + -0.03031773492693901, + -0.057436373084783554, + -0.06296677887439728, + -0.03395545110106468, + 0.021839486435055733, + 0.01674625836312771, + -0.09285302460193634, + -0.019008222967386246, + 0.026923567056655884, + -0.03376341238617897, + 0.02698184736073017, + 0.14462527632713318, + 0.05075627937912941, + -0.13280043005943298 + ] + }, + "p244_175.wav": { + "name": "p244", + "embedding": [ + 0.06346789002418518, + 0.07751361280679703, + -0.061345186084508896, + 0.0059855300933122635, + -0.06816507875919342, + 0.050359081476926804, + -0.1395430713891983, + 0.12861904501914978, + -0.0015069455839693546, + 0.13703063130378723, + -0.02308640256524086, + 0.12194506824016571, + 0.00845268089324236, + -0.14056716859340668, + -0.010019214823842049, + 0.016649287194013596, + -0.01854596473276615, + -0.010776717215776443, + -0.07068033516407013, + -0.052345190197229385, + 0.03140375390648842, + 0.02599193900823593, + 0.027596620842814445, + -0.06848743557929993, + 0.04689355939626694, + 0.047257475554943085, + -0.015023407526314259, + 0.013693500310182571, + -0.011562461964786053, + -0.07093634456396103, + -0.019092991948127747, + 0.08376101404428482, + -0.09498448669910431, + 0.008083469234406948, + 0.03845779597759247, + -0.04263698309659958, + -0.051721327006816864, + -0.037724271416664124, + 0.007709467317909002, + 0.023672278970479965, + -0.020013734698295593, + 0.08998864889144897, + 0.03202503174543381, + -0.030420318245887756, + 0.03258658945560455, + 0.001791088841855526, + -0.006609803065657616, + -0.03055848926305771, + -0.07270245999097824, + 0.13985535502433777, + 0.04490544646978378, + 0.010950845666229725, + -0.09802262485027313, + -0.03327689319849014, + 0.07671360671520233, + -0.03424697741866112, + -0.10362584888935089, + -0.035309724509716034, + 0.020134149119257927, + 0.10259351879358292, + -0.034387215971946716, + -0.04813402146100998, + 0.03244548290967941, + 0.08628875762224197, + 0.0844549611210823, + 0.0418822281062603, + 0.11302679032087326, + 0.12304940819740295, + -0.03118106722831726, + 0.042952124029397964, + 0.03557780757546425, + 0.0666932687163353, + 0.04517190530896187, + -0.014657807536423206, + 0.03452032059431076, + -0.046633247286081314, + 0.011902025900781155, + -0.06789163500070572, + -0.024341249838471413, + -0.037758272141218185, + -0.006508654914796352, + 0.018251894041895866, + 0.02663244679570198, + 0.05192834883928299, + -0.062040265649557114, + 0.02899051085114479, + 0.0837457999587059, + -0.0628102719783783, + 0.0670715719461441, + 0.06139007955789566, + 0.010444831103086472, + 0.042947880923748016, + -0.12700915336608887, + -0.07083833962678909, + 0.04285401478409767, + -0.0016075544990599155, + 0.04289363697171211, + 0.04432043060660362, + 0.037159513682127, + 0.003587345825508237, + 0.0998082309961319, + 0.0711551383137703, + -0.020768309012055397, + 0.003666960634291172, + -0.05657308176159859, + 0.1488042175769806, + 0.08466958999633789, + -0.04089108854532242, + 0.046057868748903275, + -0.05397312343120575, + 0.04399727284908295, + 0.03330078348517418, + -0.08752667903900146, + -0.07684275507926941, + 0.01432211697101593, + 0.006382961757481098, + -0.01619766280055046, + 0.13093313574790955, + 0.0027348671574145555, + 0.04161256179213524, + 0.08714604377746582, + -0.08063099533319473, + -0.04750104993581772, + -0.008746836334466934, + 0.04431828111410141, + -0.0802057683467865, + 0.05823252350091934, + 0.06678904592990875, + -0.006550130434334278, + 0.03733261674642563, + 0.09099490195512772, + 0.009603897109627724, + 0.02753298729658127, + 0.0021466300822794437, + 0.010971230454742908, + 0.04248962178826332, + 0.02431904710829258, + -0.01051582582294941, + 0.04359505698084831, + 0.028018495067954063, + 0.08911307901144028, + -0.007681314367800951, + 0.006342812441289425, + -0.09554597735404968, + 0.025849614292383194, + 0.03165729343891144, + 0.0675920695066452, + -0.057238973677158356, + -0.008086977526545525, + -0.026148777455091476, + -0.06742510199546814, + 0.017159990966320038, + 0.00811290554702282, + 0.06082607060670853, + 0.002425331389531493, + -0.011956543661653996, + 0.1416836380958557, + 0.04129130765795708, + 0.014940298162400723, + -0.03290032222867012, + 0.010639454238116741, + 0.00022791652008891106, + 0.07365251332521439, + -0.09108705073595047, + -0.05736298859119415, + -0.02716674469411373, + 0.013833167031407356, + -0.012481394223868847, + 0.08955036848783493, + 0.09413868188858032, + 0.0075254542753100395, + 0.03182124346494675, + -0.05812346190214157, + 0.013353829272091389, + -0.04923943802714348, + -0.03914391249418259, + -0.004920173902064562, + -0.055269740521907806, + -0.06653085350990295, + 0.09049324691295624, + 0.017146818339824677, + 0.053514279425144196, + -0.05546388775110245, + -0.06544967740774155, + -0.06264512985944748, + 0.023702749982476234, + 0.02649877779185772, + -0.060478150844573975, + -0.004596519283950329, + 0.05585126578807831, + -0.027569957077503204, + 0.019031893461942673, + 0.09241661429405212, + 0.06888863444328308, + -0.06637530773878098, + -0.00018554739654064178, + -0.05951085686683655, + 0.11070995032787323, + 0.07835686951875687, + -0.07178416848182678, + -0.07632406800985336, + -0.046406686305999756, + -0.051771312952041626, + -0.018572799861431122, + -0.02746032178401947, + 0.02444702759385109, + 0.056583959609270096, + -0.009931129403412342, + -0.08003847301006317, + -0.11080262809991837, + 0.08064588904380798, + -0.08228999376296997, + 0.024792760610580444, + -0.08462819457054138, + 0.028489451855421066, + 0.06298046559095383, + 0.026346109807491302, + -0.03569354489445686, + -0.023774772882461548, + 0.017565038055181503, + -0.005380216985940933, + 0.039895229041576385, + 0.060947537422180176, + 0.05775279179215431, + -0.06291563808917999, + -0.028329215943813324, + -0.04761023074388504, + 0.044990167021751404, + -0.023175090551376343, + 0.12658056616783142, + 0.026585116982460022, + -0.03660263866186142, + -0.07988627254962921, + 0.039842698723077774, + -0.037337832152843475, + 0.04629252478480339, + 0.06123068183660507, + 0.07132358849048615, + 0.04912687465548515, + -0.062370799481868744, + 0.08713943511247635, + 0.0624421201646328, + -0.027981458231806755, + -0.08425964415073395, + -0.060185227543115616, + -0.02597776986658573, + 0.04996762052178383, + 0.032887209206819534, + -0.0841042548418045, + 0.034382712095975876, + 0.028365720063447952, + -0.004861542489379644, + 0.03693706914782524, + 0.09719918668270111, + 0.0782008022069931, + -0.09507626295089722 + ] + }, + "p244_207.wav": { + "name": "p244", + "embedding": [ + 0.005714900325983763, + 0.06457733362913132, + 0.004187434911727905, + -0.021525951102375984, + -0.0065626781433820724, + 0.02792624942958355, + -0.14002498984336853, + 0.06731373071670532, + -0.01818159781396389, + 0.1356664001941681, + -0.05324416235089302, + 0.06830120831727982, + -0.034483082592487335, + -0.10734449326992035, + -0.007863657549023628, + 0.022485030815005302, + -0.05902174860239029, + -0.026858985424041748, + -0.0009185560047626495, + -0.08321932703256607, + 0.02623319998383522, + 0.005208658054471016, + 0.013213034719228745, + -0.04361630231142044, + -0.02752767875790596, + 0.07028138637542725, + 0.002143390476703644, + -0.0146803492680192, + -0.009182943031191826, + -0.04172234237194061, + 0.01835324987769127, + 0.06217292696237564, + -0.0318247489631176, + 0.004048257600516081, + 0.04170429706573486, + 0.007519562728703022, + -0.01493147574365139, + 0.01532783918082714, + 0.0287703275680542, + 0.06161107122898102, + -0.06338603794574738, + 0.07941804826259613, + 0.036901164799928665, + 0.014048144221305847, + 0.06236494705080986, + -0.01656649261713028, + -0.028536368161439896, + 0.034821610897779465, + -0.03549067676067352, + 0.10615966469049454, + 0.06451530009508133, + -0.017689723521471024, + -0.027370542287826538, + 0.012758234515786171, + 0.07373268902301788, + 0.0021164226345717907, + -0.11973743140697479, + -0.004540946334600449, + 0.03217212110757828, + 0.08122918009757996, + -0.040893152356147766, + -0.06576414406299591, + 0.014500039629638195, + 0.07964563369750977, + -0.0014269910752773285, + 0.062040407210588455, + 0.07595833390951157, + 0.07689637690782547, + -0.026510760188102722, + -0.040906645357608795, + 0.04899820685386658, + 0.05743949115276337, + 0.05673843249678612, + -0.024928472936153412, + 0.06329768896102905, + -0.034276604652404785, + 0.012909727171063423, + -0.02175063267350197, + -0.010366223752498627, + -0.04512477666139603, + -0.05208081007003784, + -0.02282804436981678, + 0.003028125036507845, + 0.045927394181489944, + -0.0029825950041413307, + -0.014140933752059937, + 0.06439346075057983, + -0.02593814767897129, + 0.03771301358938217, + 0.050027865916490555, + 0.014379791915416718, + 0.0230235792696476, + -0.05738743022084236, + -0.013791057281196117, + 0.003596492111682892, + -0.03006008267402649, + 0.07999237626791, + 0.036222681403160095, + 0.036017417907714844, + 0.03391757607460022, + 0.06323987990617752, + 0.04017386585474014, + -0.017293326556682587, + -0.019558804109692574, + -0.09338685870170593, + 0.09457619488239288, + 0.09398174285888672, + -0.06248994916677475, + 0.014357410371303558, + -5.624443292617798e-05, + 0.03288285806775093, + -0.015759091824293137, + -0.06893797963857651, + -0.023726005107164383, + 0.009546736255288124, + 0.08211015909910202, + 0.0017561540007591248, + 0.1265469193458557, + 0.016067221760749817, + 0.009599420242011547, + 0.09014800190925598, + -0.007023267447948456, + -0.026835009455680847, + -0.06230008974671364, + 0.018501663580536842, + -0.09613300859928131, + 0.06004936248064041, + 0.04435037449002266, + 0.03709470108151436, + 0.017522094771265984, + 0.09381219744682312, + 0.015421802178025246, + -0.004207766614854336, + -0.06147175654768944, + 0.00561306020244956, + 0.03227153420448303, + 0.020716127008199692, + 0.04621957987546921, + 0.054952818900346756, + 0.008233473636209965, + 0.1018039733171463, + 0.04387457296252251, + -0.013423305004835129, + -0.08311109244823456, + 0.021318968385457993, + 0.019052643328905106, + 0.01211455836892128, + -0.03850438445806503, + -0.03483520820736885, + -0.008608279749751091, + -0.07386927306652069, + -0.005466017872095108, + -0.03254125639796257, + 0.07076390087604523, + 0.0018328777514398098, + -0.034657251089811325, + 0.10914607346057892, + 0.03254685923457146, + -0.020932482555508614, + -0.007662458345293999, + -0.03775492310523987, + -0.036882780492305756, + 0.05189044028520584, + -0.16695855557918549, + -0.05213463306427002, + -0.03214156627655029, + 0.05830372869968414, + 0.04806680604815483, + 0.02171982452273369, + 0.09682385623455048, + -0.01593824289739132, + 0.034122928977012634, + 0.019758760929107666, + 0.0075564393773674965, + -0.05600166320800781, + -0.09161937236785889, + -0.0397486612200737, + -0.08457554876804352, + -0.03153682500123978, + 0.049176983535289764, + -0.05968166142702103, + 0.043516017496585846, + -0.016835235059261322, + -0.06165733188390732, + -0.052258171141147614, + 0.04853470250964165, + 0.022019289433956146, + -0.0495682992041111, + 0.008231607265770435, + 0.09220928698778152, + -0.01490121241658926, + 0.010350488126277924, + 0.02598405070602894, + 0.11678995937108994, + -0.07933177053928375, + 0.034209318459033966, + -0.05690230056643486, + 0.04964562505483627, + 0.06604070961475372, + -0.024854913353919983, + -0.04516545683145523, + -0.04230199381709099, + -0.033467452973127365, + 0.04247598350048065, + -0.05804087966680527, + -0.023922963067889214, + -0.02045528031885624, + 0.001905662938952446, + -0.043074484914541245, + -0.06196685880422592, + 0.04031866788864136, + -0.042273685336112976, + 0.01316012255847454, + -0.048686493188142776, + 0.014568752609193325, + -0.0010052993893623352, + 0.06246006488800049, + -0.06711981445550919, + 0.06435006111860275, + 0.013680890202522278, + -0.02490854635834694, + 0.025920730084180832, + 0.01244838535785675, + 0.048085447400808334, + -0.02043239399790764, + -0.07742955535650253, + -0.09716372936964035, + 0.026665080338716507, + -0.04094772785902023, + 0.04497615993022919, + 0.010428737848997116, + -0.038724079728126526, + 0.001246955245733261, + -0.029422644525766373, + -0.03412716090679169, + 0.021321220323443413, + 0.07773859053850174, + 0.07390090823173523, + 0.02460348978638649, + -0.0009994925931096077, + 0.09132890403270721, + 0.039713699370622635, + 0.02696148492395878, + -0.02657892368733883, + 0.013455790467560291, + -0.03710121288895607, + 0.006606810260564089, + 0.042904119938611984, + -0.09355448186397552, + 0.03492759168148041, + -0.006384681910276413, + 0.022673599421977997, + 0.025408102199435234, + 0.05549946799874306, + 0.03747066855430603, + -0.06575259566307068 + ] + }, + "p244_410.wav": { + "name": "p244", + "embedding": [ + 0.06138628348708153, + 0.11542730033397675, + 0.013618210330605507, + 0.0043386900797486305, + -0.02632880210876465, + 0.07874049246311188, + -0.12588030099868774, + 0.1312543749809265, + -0.06868959963321686, + 0.15047144889831543, + -0.07057936489582062, + 0.11297422647476196, + -0.024098871275782585, + -0.1708507537841797, + -0.04770872741937637, + 0.06264124810695648, + -0.04859438166022301, + 0.002145136473700404, + -0.02605314552783966, + 0.02059422805905342, + 0.03261344134807587, + 0.010087705217301846, + 0.050151657313108444, + -0.019247662276029587, + 0.036634813994169235, + 0.049692511558532715, + 0.022401003167033195, + 0.0738116055727005, + 0.031047113239765167, + -0.059921614825725555, + -0.029059529304504395, + 0.11814715713262558, + -0.03588221222162247, + 0.03566500544548035, + 0.08219851553440094, + 0.003195669502019882, + -0.0030348829459398985, + -0.07293616235256195, + -0.008689919486641884, + -0.01337275467813015, + -0.027580013498663902, + 0.06656365841627121, + 0.013780351728200912, + -0.007230506278574467, + 0.03034483641386032, + 0.02612973004579544, + -0.005744854919612408, + -0.04188116639852524, + -0.08389604091644287, + 0.13862720131874084, + 0.047218628227710724, + 0.00871156807988882, + -0.0780838280916214, + -0.09332337975502014, + 0.09848659485578537, + -0.018711350858211517, + -0.1180376410484314, + -0.03769146651029587, + 0.07095952332019806, + 0.1657940149307251, + -0.01791992597281933, + -0.026444222778081894, + 0.009156377986073494, + 0.11890661716461182, + 0.028830749914050102, + 0.12218604981899261, + 0.06318780034780502, + 0.08197610825300217, + 0.01749119721353054, + 0.05555614084005356, + 0.04741935059428215, + 0.05871226638555527, + 0.020235486328601837, + -0.01295311190187931, + 0.02967890165746212, + -0.010496165603399277, + -0.03945232182741165, + 0.02183038368821144, + -0.010659299790859222, + -0.016780901700258255, + -0.034632548689842224, + 0.007578754797577858, + -0.0019083371153101325, + 0.01640445366501808, + -0.008604365400969982, + 0.045778315514326096, + -0.009708210825920105, + -0.008862346410751343, + 0.07167281210422516, + 0.050735436379909515, + 0.020126227289438248, + 0.053325824439525604, + -0.05838897079229355, + -0.10883063077926636, + 0.003109367098659277, + 0.0016980597283691168, + 0.0108483312651515, + 0.07835330814123154, + 0.03138541430234909, + -0.014842085540294647, + 0.08973574638366699, + 0.06415779888629913, + 0.007397042587399483, + 0.026149261742830276, + -0.10174152255058289, + 0.10870009660720825, + 0.06329715251922607, + -0.019336581230163574, + 0.04037659615278244, + -0.04727781563997269, + 0.08257965743541718, + 0.09861951321363449, + -0.14841406047344208, + -0.08689580857753754, + 0.03101716935634613, + -0.00731317326426506, + -5.131463331053965e-05, + 0.09431871771812439, + -0.012281810864806175, + 0.001758349477313459, + 0.08549165725708008, + -0.08166474103927612, + -0.06902052462100983, + -0.026373399421572685, + 0.049318306148052216, + -0.06889750063419342, + 0.05453240126371384, + 0.031536247581243515, + -0.017920486629009247, + -0.02202051505446434, + 0.08621321618556976, + -0.006947343237698078, + 0.004568722099065781, + 0.034689128398895264, + -0.047042228281497955, + 0.0336570180952549, + -0.05507899448275566, + 0.029752647504210472, + 0.02880193293094635, + 0.0472036674618721, + 0.042597874999046326, + 0.007979786954820156, + -0.04230373352766037, + -0.08210102468729019, + -0.010056205093860626, + 0.06830783188343048, + 0.054157599806785583, + -0.015459793619811535, + -0.03502073884010315, + -0.025027073919773102, + -0.04586402326822281, + 0.024098828434944153, + -0.013705159537494183, + 0.08127333968877792, + 0.009081423282623291, + 0.0028022523038089275, + 0.11192270368337631, + -0.0038240584544837475, + 0.003933777566999197, + -0.06656401604413986, + -0.020861174911260605, + 0.03896436467766762, + 0.04738524183630943, + -0.08721837401390076, + -0.0633912906050682, + 0.02096131443977356, + -0.00287054106593132, + -0.015570729970932007, + 0.02618386410176754, + 0.04338506981730461, + 0.011953679844737053, + 0.05130385980010033, + -0.06290173530578613, + 0.009931986220180988, + -0.12084567546844482, + -0.06573657691478729, + -0.03267340362071991, + -0.02831471711397171, + -0.00558051560074091, + 0.07871821522712708, + 0.014146724715828896, + 0.03070511668920517, + 0.009243200533092022, + -0.07759562134742737, + -0.0696643590927124, + 0.07821585237979889, + 0.09075450897216797, + 0.007773653604090214, + 0.05091632157564163, + 0.037621937692165375, + -0.02680756151676178, + 0.0488693043589592, + 0.05618232488632202, + 0.08351285755634308, + -0.027692638337612152, + 0.005666225682944059, + -0.0912637710571289, + 0.0723094791173935, + 0.09403886646032333, + -0.11352118104696274, + -0.09781872481107712, + -0.018661251291632652, + -0.05001499876379967, + 0.03118080273270607, + -0.025698017328977585, + 0.006016460247337818, + 0.030104126781225204, + -0.036268360912799835, + -0.08565820753574371, + -0.09698472917079926, + 0.10658232867717743, + -0.07032830268144608, + -0.020525306463241577, + -0.05380408093333244, + 0.04795943200588226, + 0.06001579016447067, + 0.041961412876844406, + -0.027583729475736618, + 0.013682641088962555, + 0.046150289475917816, + -0.06453683227300644, + -0.03261297568678856, + 0.02873014286160469, + -0.006042590364813805, + -0.08512724936008453, + 0.03716982528567314, + -0.06654595583677292, + 0.07547879219055176, + -0.08775123953819275, + 0.1703391969203949, + -0.04174051806330681, + -0.08346080780029297, + -0.08242104947566986, + 0.016172874718904495, + -0.031128808856010437, + 0.016164379194378853, + 0.031993091106414795, + 0.05852271243929863, + 0.008681602776050568, + -0.07399953901767731, + 0.11765526235103607, + 0.012885339558124542, + -0.0033774811308830976, + -0.06865650415420532, + -0.04924626275897026, + -0.04310857504606247, + 0.0314045250415802, + -0.012140999548137188, + -0.08920430392026901, + 0.002188728656619787, + 0.014187728986144066, + -0.020532403141260147, + 0.061600007116794586, + 0.1364554464817047, + 0.05143813416361809, + -0.12346476316452026 + ] + }, + "p244_268.wav": { + "name": "p244", + "embedding": [ + 0.06310431659221649, + 0.08891062438488007, + 0.057315338402986526, + -0.008858971297740936, + 0.031672459095716476, + 0.02658783830702305, + -0.07486759126186371, + 0.07301227748394012, + 0.050209399312734604, + 0.0840902104973793, + -0.11808949708938599, + 0.04236871376633644, + -0.052433691918849945, + -0.12814535200595856, + -0.051364652812480927, + 0.020134927704930305, + -0.0855218842625618, + -0.00544728385284543, + -0.04091191291809082, + -0.025319723412394524, + 0.009479985572397709, + 0.01872437074780464, + 0.05280330032110214, + -0.022985313087701797, + 0.00765775702893734, + 0.026311120018363, + -0.01164957880973816, + 0.0036260634660720825, + 0.0226412583142519, + -0.02220800518989563, + 0.055221930146217346, + 0.031026408076286316, + 0.009599806740880013, + 0.03356578201055527, + 0.04034927859902382, + 0.0368569940328598, + 0.003639408852905035, + -0.03918633610010147, + -0.03377586230635643, + 0.06772951036691666, + -0.0343666709959507, + 0.04551781713962555, + 0.04054827243089676, + -0.037262845784425735, + 0.06552249193191528, + 0.017257429659366608, + -0.04550604522228241, + -0.017996232956647873, + -0.10338733345270157, + 0.1516112983226776, + 0.028339693322777748, + 0.040444083511829376, + -0.08263899385929108, + -0.009530819952487946, + 0.06374624371528625, + -0.021870657801628113, + -0.0972333624958992, + -0.0007095485925674438, + 0.06050730496644974, + 0.06377357989549637, + 0.0028351168148219585, + -0.027675624936819077, + -0.017260735854506493, + 0.042442962527275085, + 0.0008119605481624603, + 0.012130390852689743, + 0.08333855122327805, + 0.08334726095199585, + 0.00598897784948349, + 0.03944366052746773, + 0.06778285652399063, + -0.009524425491690636, + 0.04882204160094261, + -0.013460765592753887, + 0.007070770487189293, + -0.030017070472240448, + -0.02819071151316166, + -0.002772220876067877, + -0.0037603285163640976, + -0.020120825618505478, + 0.02786005474627018, + -0.02203180640935898, + 0.013314452953636646, + 0.028675565496087074, + -0.03209492936730385, + -0.01110602542757988, + -0.007717551663517952, + 0.04579617455601692, + 0.06896176934242249, + 0.05184534192085266, + 0.017284339293837547, + 0.033198677003383636, + -0.02694527618587017, + -0.10608524084091187, + -0.04547639191150665, + -0.029947763308882713, + 0.02002204954624176, + 0.005893515422940254, + 0.04120960831642151, + -0.0018764566630125046, + 0.09274991601705551, + 0.015705928206443787, + -0.017828630283474922, + -0.016607899218797684, + -0.10144427418708801, + 0.038542818278074265, + 0.08532913029193878, + -0.00023947053705342114, + 0.011417156085371971, + -0.012561132200062275, + 0.05507110059261322, + 0.07522506266832352, + -0.06105435639619827, + 0.006394127383828163, + 0.032938163727521896, + 0.04430108889937401, + 0.051403701305389404, + 0.08237497508525848, + 0.011897895485162735, + 0.01515619270503521, + 0.1135254055261612, + -0.06646746397018433, + 0.00946538895368576, + -0.0026697758585214615, + -0.000601351261138916, + -0.01414368487894535, + 0.026824194937944412, + 0.015875209122896194, + 0.008434277027845383, + -0.023086605593562126, + 0.02801133133471012, + 0.01820078119635582, + 0.007520037703216076, + -0.08520317077636719, + 0.021558113396167755, + 0.06758968532085419, + -0.028813021257519722, + 0.01090240478515625, + 0.06225084140896797, + 0.07790062576532364, + 0.009946642443537712, + 0.08515550941228867, + -0.07937370240688324, + -0.03198190778493881, + 0.016087235882878304, + 0.025300810113549232, + 0.016921505331993103, + -0.01847926713526249, + -0.041926927864551544, + -0.04404903203248978, + 0.010373488068580627, + 0.07995498180389404, + -0.022619884461164474, + 0.04849045351147652, + 0.051200851798057556, + -0.02890632301568985, + 0.09097415208816528, + -0.029832040891051292, + -0.014637788757681847, + -0.03373027592897415, + -0.06292355060577393, + -0.017978297546505928, + 0.025941012427210808, + -0.14169664680957794, + -0.028501026332378387, + -0.012339752167463303, + -0.02788308635354042, + 0.002613095100969076, + -0.0028673741035163403, + 0.05240756645798683, + -0.03357310593128204, + 0.005628190003335476, + -0.03130502998828888, + 0.00947977788746357, + -0.06364037096500397, + -0.08878746628761292, + 0.03150235116481781, + -0.018351947888731956, + 0.039620839059352875, + 0.08282946050167084, + -0.03261521831154823, + -0.0008367574773728848, + -0.03674977272748947, + -0.0852208212018013, + 0.008686866611242294, + 0.101239874958992, + 0.031720276921987534, + 0.005959689617156982, + 0.0405784547328949, + 0.0440894216299057, + -0.024530742317438126, + 0.05612146109342575, + -0.007912315428256989, + 0.07587370276451111, + -0.07104907929897308, + 0.008375139907002449, + -0.012511083856225014, + 0.04508136957883835, + 0.04878731817007065, + -0.03532436862587929, + -0.09116031229496002, + -0.04800465330481529, + -0.017353862524032593, + 0.021244684234261513, + -0.016801459714770317, + -0.025423120707273483, + 0.008604750968515873, + -0.04332951456308365, + -0.037103623151779175, + -0.0843779593706131, + 0.004076346755027771, + 0.012920545414090157, + -0.007513933815062046, + -0.050823867321014404, + 0.02897595427930355, + 0.017536111176013947, + -0.0022208113223314285, + -0.01085618231445551, + 0.06907113641500473, + -0.035663239657878876, + -0.04684930294752121, + -0.07966738194227219, + -0.028518524020910263, + 0.011889120563864708, + -0.022107306867837906, + -0.04321623593568802, + -0.048167552798986435, + 0.07959474623203278, + -0.015826363116502762, + 0.07123249769210815, + 0.009701437316834927, + -0.00923224724829197, + 0.0072501786053180695, + -0.011874960735440254, + -0.04539987072348595, + 0.028477970510721207, + 0.03939606994390488, + 0.0022410042583942413, + 0.03137281537055969, + -0.0145358145236969, + 0.06984752416610718, + 0.025273308157920837, + -0.004561700392514467, + -0.016134023666381836, + -0.0041047632694244385, + -0.05413687601685524, + -0.059700362384319305, + -0.028672901913523674, + -0.0455009862780571, + 0.044798754155635834, + -0.011599814519286156, + 0.03188484162092209, + 0.011966836638748646, + 0.0701262354850769, + 0.017792966216802597, + -0.0608154833316803 + ] + }, + "p244_020.wav": { + "name": "p244", + "embedding": [ + 0.020111050456762314, + 0.09247728437185287, + 0.025166435167193413, + 0.010333132930099964, + -0.056210409849882126, + 0.01853836700320244, + -0.09827360510826111, + 0.07573895156383514, + -0.04189908131957054, + 0.07756853103637695, + -0.05870659276843071, + 0.08700592815876007, + -0.06342567503452301, + -0.14062091708183289, + -0.031100889667868614, + 0.021081268787384033, + -0.03437665104866028, + -0.02160629630088806, + -0.04198909550905228, + -0.012814931571483612, + 0.01871916651725769, + -0.020449180155992508, + 0.035803817212581635, + 0.008470350876450539, + -0.03875792771577835, + 0.05794673413038254, + 0.0016769858775660396, + 0.019986871629953384, + 0.005749349948018789, + -0.02471870183944702, + 0.02758297324180603, + 0.06641179323196411, + -0.010039208456873894, + -0.005528332199901342, + 0.03912268579006195, + -0.005993373226374388, + -0.005713280290365219, + -0.05293441563844681, + -0.04953199625015259, + 0.014004185795783997, + -0.07651299983263016, + 0.030638379976153374, + 0.023359425365924835, + -0.0324578583240509, + 0.05405449867248535, + 0.0034008524380624294, + -0.03579028695821762, + -0.015064412727952003, + -0.08754132688045502, + 0.09980251640081406, + 0.06604974716901779, + -0.0009139559115283191, + -0.02642335742712021, + -0.038833267986774445, + 0.11125248670578003, + -0.03282087296247482, + -0.07986927032470703, + -0.04186466336250305, + 0.07153049111366272, + 0.1067778468132019, + -0.03292055428028107, + -0.035826176404953, + -0.011656848713755608, + 0.07207497954368591, + 0.053108539432287216, + 0.06990865617990494, + 0.07931245863437653, + 0.08371011912822723, + -0.03666648268699646, + -0.007143992930650711, + 0.06109270453453064, + 0.051477786153554916, + 0.022509783506393433, + -0.015039490535855293, + 0.021543193608522415, + 0.016744941473007202, + -0.026245316490530968, + 0.024499056860804558, + -0.007970703765749931, + 0.0026396973989903927, + -0.018890388309955597, + -0.009461496025323868, + -0.005383766256272793, + -0.013061519712209702, + -0.021321987733244896, + 0.04273631423711777, + 0.03139588236808777, + 0.011878791265189648, + 0.06219147890806198, + 0.05063939839601517, + 0.0008488788153044879, + 0.08594416081905365, + -0.04098690301179886, + -0.07568081468343735, + -0.017578821629285812, + -0.003560521174222231, + 0.016415735706686974, + 0.05457286164164543, + 0.0023028801660984755, + -0.010014718398451805, + 0.07237141579389572, + 0.02977786771953106, + -0.0027614531572908163, + 0.024141548201441765, + -0.11407139897346497, + 0.054244957864284515, + 0.04059650003910065, + -0.015274407342076302, + 0.006759863346815109, + -0.025715915486216545, + 0.09273432195186615, + 0.07683676481246948, + -0.03982778638601303, + -0.06374648213386536, + 0.03759436309337616, + 0.04261960834264755, + -0.00803883746266365, + 0.10744534432888031, + -0.017380472272634506, + 0.006272796541452408, + 0.11523531377315521, + -0.06526540219783783, + -0.03705465421080589, + -0.012595325708389282, + 0.010098084807395935, + -0.04520164430141449, + 0.0245953481644392, + 0.042069196701049805, + -0.022006560117006302, + 0.01372842863202095, + 0.08870820701122284, + -0.006402289029210806, + -0.013793490827083588, + -0.006970482878386974, + -0.059971489012241364, + 0.03013474866747856, + -0.0041718631982803345, + -0.015474086627364159, + 0.022079743444919586, + 0.08087258040904999, + 0.028789296746253967, + -0.0023215345572680235, + -0.02867100201547146, + -0.05714616924524307, + 0.023201212286949158, + 0.0642385333776474, + 0.040239740163087845, + 0.011647403240203857, + -0.02849597856402397, + -0.07064931839704514, + -0.013435274362564087, + 0.022055521607398987, + -0.04722315073013306, + 0.0829038918018341, + -0.023268667981028557, + 0.0057359253987669945, + 0.06697870790958405, + -0.003052075859159231, + -0.017235036939382553, + -0.05294032394886017, + -0.05445124953985214, + 0.01674816571176052, + 0.04757261276245117, + -0.07878684252500534, + -0.05606096237897873, + -0.05666513741016388, + 0.052628397941589355, + 0.026166167110204697, + 0.0031677584629505873, + 0.037842586636543274, + -0.01681971177458763, + 0.008235390298068523, + -0.053279027342796326, + 0.03407876938581467, + -0.04982725530862808, + -0.04811428114771843, + 0.00028219912201166153, + -0.007377403788268566, + 0.01042214222252369, + 0.03375440090894699, + -0.029170675203204155, + 0.02626769058406353, + -0.018943093717098236, + -0.1053246557712555, + -0.05474048852920532, + 0.04039070010185242, + 0.03152260184288025, + 0.0017168143531307578, + 0.04159450903534889, + 0.067286416888237, + -0.035605937242507935, + 0.045907825231552124, + 0.04507463425397873, + 0.08741877973079681, + -0.060339268296957016, + 0.022528639063239098, + -0.004920828156173229, + 0.042768143117427826, + 0.059048693627119064, + -0.07067345827817917, + -0.09288397431373596, + -0.023263832554221153, + -0.062192898243665695, + 0.025707727298140526, + -0.01939145103096962, + -0.021507736295461655, + 0.029672157019376755, + -0.005507215857505798, + -0.08770778030157089, + -0.0758291482925415, + 0.07726240158081055, + -0.03542296588420868, + 0.014739079400897026, + -0.06024390086531639, + 0.008896338753402233, + 0.047745928168296814, + 0.07181842625141144, + -0.005642815493047237, + 0.007414764724671841, + 0.039597287774086, + -0.0265686996281147, + -0.009603145532310009, + 0.025013327598571777, + 0.05142961069941521, + -0.026072543114423752, + 0.017455385997891426, + -0.04093378409743309, + 0.04691533371806145, + -0.007908816449344158, + 0.09570178389549255, + 0.01324513927102089, + -0.03373609855771065, + -0.04519186541438103, + 0.011305350810289383, + -0.017221562564373016, + 0.04737751930952072, + 0.009630376473069191, + 0.05060143396258354, + 0.027384359389543533, + -0.05469958111643791, + 0.11512438952922821, + 0.03068365715444088, + -0.007685971911996603, + -0.04486910253763199, + 0.015228860080242157, + -0.06025262176990509, + -0.01608678698539734, + -0.010557505302131176, + -0.057354506105184555, + -0.0034065209329128265, + -0.0003556075389496982, + -0.0018839886179193854, + 0.051765598356723785, + 0.12646539509296417, + 0.06309166550636292, + -0.05137067288160324 + ] + }, + "p244_163.wav": { + "name": "p244", + "embedding": [ + 0.05841439217329025, + 0.09662588685750961, + -0.0061739301308989525, + -0.002237170934677124, + -0.0277771707624197, + 0.10140382498502731, + -0.04726060479879379, + 0.07432474195957184, + -0.00906817615032196, + 0.08759608864784241, + -0.08986325562000275, + 0.05857470631599426, + -0.031229551881551743, + -0.11394838988780975, + -0.02688022330403328, + 0.04017500579357147, + -0.04897162318229675, + -0.00450885808095336, + -0.038108449429273605, + -0.023775113746523857, + 0.0035048499703407288, + 0.006729887332767248, + 0.018333856016397476, + -0.0008832204039208591, + 0.0207950659096241, + 0.0375790111720562, + -0.0007985268603079021, + 0.01566438376903534, + -0.001614327309653163, + -0.03306248039007187, + -0.03332936018705368, + 0.07491204142570496, + -0.030627798289060593, + 0.0007486430695280433, + 0.04377755522727966, + -0.002278407569974661, + 0.02718573808670044, + -0.09462835639715195, + -0.0294888224452734, + 0.033161405473947525, + -0.04029253125190735, + 0.06710030138492584, + 0.019457699730992317, + -0.00834108330309391, + -0.002293851226568222, + 0.020104432478547096, + -0.029140889644622803, + -0.028434645384550095, + -0.06606759130954742, + 0.1440230906009674, + 0.053341470658779144, + 0.005462430417537689, + -0.05329783260822296, + -0.036008354276418686, + 0.08846418559551239, + -0.0031364555470645428, + -0.06557545810937881, + -0.020512767136096954, + 0.048026930540800095, + 0.07501393556594849, + 0.01893289014697075, + -0.029027706012129784, + 0.009401940740644932, + 0.10228752344846725, + 0.015846794471144676, + 0.0614558681845665, + 0.06616979837417603, + 0.10708193480968475, + -0.005989402532577515, + 0.020386233925819397, + 0.07188090682029724, + 0.026576941832900047, + 0.04715946316719055, + -0.023954156786203384, + 0.044818129390478134, + -0.021003147587180138, + -0.019935499876737595, + 0.01245113741606474, + -0.0332430861890316, + -0.0432429164648056, + 0.03391849994659424, + 0.004320711828768253, + 0.009877056814730167, + 0.004860926419496536, + -0.04436563700437546, + 0.024806179106235504, + 0.013585629872977734, + 0.06439605355262756, + 0.0663529634475708, + 0.036417096853256226, + 0.03045489452779293, + 0.047612227499485016, + -0.05296152085065842, + -0.08916735649108887, + 0.03690622001886368, + 0.02019021287560463, + 0.00821962021291256, + 0.039982110261917114, + 0.0407865010201931, + -0.02024291828274727, + 0.08885294198989868, + 0.019455110654234886, + -0.0012448076158761978, + 0.011308285407721996, + -0.06887713074684143, + 0.07067835330963135, + 0.06961586326360703, + -0.008308272808790207, + 0.036000657826662064, + -0.015452384017407894, + 0.09051434695720673, + 0.07199264317750931, + -0.09637239575386047, + -0.04512724280357361, + 0.0006475374102592468, + -0.005851843860000372, + -0.006102154962718487, + 0.09125592559576035, + -0.030349669978022575, + 0.017558574676513672, + 0.0658513754606247, + -0.05648725479841232, + -0.006466813385486603, + 0.02142878621816635, + -0.011057816445827484, + -0.008932436816394329, + 0.007018874399363995, + 0.020267408341169357, + -0.0030883229337632656, + -0.036680594086647034, + 0.04770880192518234, + 0.010833981446921825, + 0.0029827263206243515, + -0.020794425159692764, + -0.004892662167549133, + 0.02534985914826393, + -0.0098141860216856, + -0.02050180360674858, + 0.023007284849882126, + 0.04670095443725586, + 0.01775568164885044, + -0.0026280980091542006, + -0.03649647533893585, + -0.07093364000320435, + 0.00864366628229618, + 0.007204011082649231, + 0.01648777350783348, + 0.014602276496589184, + -0.012358425185084343, + -0.03325846046209335, + -0.01984560303390026, + 0.021259360015392303, + -0.04084467515349388, + 0.04148033261299133, + 0.059877678751945496, + -0.05124928802251816, + 0.08260767161846161, + -0.0012720997910946608, + -0.0076899281702935696, + -0.03545330837368965, + -0.045284971594810486, + 0.034459054470062256, + 0.042196448892354965, + -0.053837403655052185, + -0.05046524852514267, + 0.0033853824716061354, + -0.039978958666324615, + -0.029626306146383286, + 0.006336470600217581, + 0.05984225124120712, + -0.011045667342841625, + -0.012948170304298401, + -0.08348678797483444, + 0.00969365332275629, + -0.07289309054613113, + -0.04234948754310608, + 0.040735792368650436, + -0.003280259668827057, + 0.00513502536341548, + 0.07622112333774567, + 0.0023975037038326263, + 0.006626129150390625, + -0.04571637511253357, + -0.06639240682125092, + 0.018399417400360107, + 0.06874015182256699, + 0.03879721835255623, + 0.014644498936831951, + 0.0469251349568367, + 0.06297238171100616, + 0.0021610483527183533, + 0.027958616614341736, + 0.039892397820949554, + 0.0855751782655716, + -0.023211505264043808, + 0.012845052406191826, + 0.0016873478889465332, + 0.082424595952034, + 0.021720226854085922, + -0.0700012668967247, + -0.05708795040845871, + -0.015773000195622444, + -0.038030482828617096, + 0.031374819576740265, + -0.004319166298955679, + 0.011662925593554974, + 0.023937970399856567, + -0.022233333438634872, + -0.07208476960659027, + -0.08108754456043243, + 0.05409551411867142, + -0.05163487046957016, + -0.02346532605588436, + -0.05439407378435135, + 0.04438807815313339, + 0.0686459168791771, + 0.032846350222826004, + -0.03742487356066704, + 0.03992089629173279, + 0.02078905701637268, + -0.028435055166482925, + -0.05065528303384781, + -0.006213558372110128, + 0.025874238461256027, + -0.06516356021165848, + 0.0005761708016507328, + -0.0627983808517456, + 0.06496476382017136, + -0.01604381576180458, + 0.09772796928882599, + 0.02124573104083538, + -0.011922435835003853, + -0.05777374655008316, + 0.034009236842393875, + -0.011686310172080994, + 0.03818716108798981, + 0.036626510322093964, + 0.01663830690085888, + 0.026756130158901215, + -0.06055809557437897, + 0.09657292068004608, + 0.022792678326368332, + -0.04041813313961029, + -0.05038847774267197, + 0.020560598000884056, + -0.04055638983845711, + -0.002742315409705043, + -0.0030675954185426235, + -0.07888146489858627, + 0.002169286832213402, + 0.037083711475133896, + 0.009535001590847969, + 0.01609252393245697, + 0.08241428434848785, + 0.05649503320455551, + -0.04198306053876877 + ] + }, + "p244_174.wav": { + "name": "p244", + "embedding": [ + 0.06053908169269562, + 0.08558464050292969, + -0.018965184688568115, + 0.0060822078958153725, + -0.058025211095809937, + 0.04829690605401993, + -0.15755316615104675, + 0.15240031480789185, + -0.044602636247873306, + 0.137856587767601, + -0.07941167801618576, + 0.12801824510097504, + -0.031585097312927246, + -0.18661773204803467, + -0.03130514174699783, + 0.05720669776201248, + -0.02270910143852234, + -0.035225965082645416, + -0.016919728368520737, + -0.03193862363696098, + 0.040963124483823776, + 0.019222203642129898, + 0.016967246308922768, + 0.02326958440244198, + 0.010996158234775066, + 0.07366849482059479, + -0.00920411478728056, + 0.028062259778380394, + -0.015596326440572739, + -0.014677177183330059, + -0.03142034634947777, + 0.10493294894695282, + -0.043143488466739655, + -0.01729748398065567, + 0.039214786142110825, + -0.015097531490027905, + -0.008306695148348808, + -0.06746401637792587, + 0.004913870710879564, + -0.02021232433617115, + -0.04165096580982208, + 0.06204339116811752, + -0.006956617813557386, + -0.012596439570188522, + 0.0532010979950428, + 0.011642388999462128, + -0.020254941657185555, + -0.036211512982845306, + -0.1110805869102478, + 0.12352153658866882, + 0.0714971274137497, + 0.02566937543451786, + -0.09412231296300888, + -0.03582538664340973, + 0.10712945461273193, + -0.023610206320881844, + -0.08403027802705765, + -0.05404921621084213, + 0.06401799619197845, + 0.16266614198684692, + -0.044669680297374725, + -0.046707071363925934, + 0.03989778459072113, + 0.10140331089496613, + 0.053454235196113586, + 0.07785943895578384, + 0.09924812614917755, + 0.09417085349559784, + -0.034340281039476395, + 0.015459941700100899, + 0.04340926557779312, + 0.05862921476364136, + 0.06078168377280235, + -0.03103979304432869, + 0.027251489460468292, + -0.014847335405647755, + -0.011730505153536797, + 0.0032020213548094034, + -0.031521931290626526, + -0.03952204808592796, + -0.021138817071914673, + 0.001015878631733358, + -0.00703272083774209, + 0.017776522785425186, + -0.046797264367341995, + 0.04575476422905922, + 0.054252494126558304, + -0.03515557944774628, + 0.07513362914323807, + 0.037983037531375885, + 0.004451265092939138, + 0.06522634625434875, + -0.09930534660816193, + -0.07327760756015778, + 0.0673816129565239, + -0.002339091617614031, + 0.012199750170111656, + 0.06315010786056519, + 0.036556266248226166, + -0.02129976451396942, + 0.1067400574684143, + 0.050953444093465805, + 0.0050945100374519825, + 0.02508370392024517, + -0.09362341463565826, + 0.1274382472038269, + 0.10374052822589874, + -0.05730605870485306, + 0.04155851528048515, + -0.03230087459087372, + 0.03375503048300743, + 0.06299611926078796, + -0.11127364635467529, + -0.07434968650341034, + 0.021692616865038872, + 0.017203565686941147, + -0.007193603552877903, + 0.11787600815296173, + -0.0026278397999703884, + 0.03939511626958847, + 0.10966388881206512, + -0.07608084380626678, + -0.07123257219791412, + -0.024885917082428932, + 0.045376308262348175, + -0.08241355419158936, + 0.08154720067977905, + 0.08450458198785782, + 0.025532372295856476, + 0.015833169221878052, + 0.07506553083658218, + -0.008143452927470207, + -0.013271811418235302, + -0.007883160375058651, + -0.040905918926000595, + 0.013033452443778515, + -0.014070827513933182, + -0.022556472569704056, + 0.030848516151309013, + 0.03128411993384361, + 0.048257872462272644, + 0.010475965216755867, + -0.005857937037944794, + -0.11833178997039795, + 0.005440273322165012, + 0.057075582444667816, + 0.06255810707807541, + -0.02172510325908661, + -0.032551079988479614, + -0.036506086587905884, + -0.047954998910427094, + -0.0022448524832725525, + -0.0046116653829813, + 0.07790759205818176, + -0.012245937250554562, + 0.01959780603647232, + 0.0952703207731247, + 0.037075772881507874, + 0.017934000119566917, + -0.0387270450592041, + -0.0182648878544569, + 0.020462749525904655, + 0.05743202939629555, + -0.081120565533638, + -0.07685534656047821, + -0.043960489332675934, + 0.05843103304505348, + -0.022667063400149345, + 0.06382974982261658, + 0.06521397829055786, + 0.0032231160439550877, + -0.0037277741357684135, + -0.08563626557588577, + 0.05547960847616196, + -0.09182780236005783, + -0.05968383699655533, + -0.005924026481807232, + -0.033981502056121826, + -0.023522641509771347, + 0.06392447650432587, + 0.019974686205387115, + 0.051858775317668915, + -0.052253663539886475, + -0.08003184199333191, + -0.08746812492609024, + 0.039200589060783386, + 0.08401018381118774, + -0.021278902888298035, + 0.043560490012168884, + 0.03696700558066368, + -0.02436467446386814, + 0.06060680001974106, + 0.06839732825756073, + 0.1203126609325409, + -0.029048707336187363, + 0.01523737981915474, + -0.05702322721481323, + 0.07002775371074677, + 0.08962385356426239, + -0.07633150368928909, + -0.09829647839069366, + -0.04284178465604782, + -0.05069104582071304, + 0.044792987406253815, + -0.01423504576086998, + 0.02151448279619217, + 0.049060989171266556, + -0.016450626775622368, + -0.12159506976604462, + -0.09810302406549454, + 0.08257488906383514, + -0.05797458440065384, + 0.0109921395778656, + -0.0930691733956337, + 0.06734311580657959, + 0.08471283316612244, + -0.008471265435218811, + -0.04161234200000763, + -0.02609671652317047, + 0.012457402423024178, + -0.013217940926551819, + 0.0031602447852492332, + 0.024377934634685516, + 0.04004962369799614, + -0.10128220915794373, + -0.0013495211023837328, + -0.08456601947546005, + 0.07523411512374878, + -0.03479805216193199, + 0.15023118257522583, + 0.008240321651101112, + -0.025441840291023254, + -0.10053075850009918, + 0.041153669357299805, + 0.00902634859085083, + 0.057733193039894104, + 0.03792540729045868, + 0.06747318059206009, + 0.015904121100902557, + -0.08649022877216339, + 0.08776737749576569, + 0.04737918823957443, + -0.049008697271347046, + -0.0898362547159195, + -0.03831641003489494, + -0.04605083167552948, + 0.024221740663051605, + -0.01501629687845707, + -0.0882963240146637, + -0.02549821138381958, + 0.01554032787680626, + 0.009332826361060143, + 0.07228730618953705, + 0.12009193003177643, + 0.03756209462881088, + -0.10823303461074829 + ] + }, + "p244_264.wav": { + "name": "p244", + "embedding": [ + 0.061170563101768494, + 0.0708121731877327, + -0.021257635205984116, + 0.01069109607487917, + -0.040154241025447845, + 0.07165251672267914, + -0.1463283896446228, + 0.1330227255821228, + -0.02723396196961403, + 0.15805542469024658, + -0.022783884778618813, + 0.11406855285167694, + 0.0049973949790000916, + -0.16913628578186035, + -0.01917419582605362, + 0.043057698756456375, + -0.05838467925786972, + -0.0277927964925766, + -0.05301709100604057, + -0.032037436962127686, + 0.04029052332043648, + 0.0528525710105896, + 0.032823655754327774, + -0.0474269762635231, + 0.03485497087240219, + 0.06042475998401642, + -0.018764130771160126, + 0.026501458138227463, + -0.024335134774446487, + -0.10746573656797409, + -0.033123914152383804, + 0.08541350066661835, + -0.056892432272434235, + 0.014906872063875198, + 0.024899205192923546, + -0.027130426838994026, + -0.0026952363550662994, + -0.06057935953140259, + -0.026362087577581406, + 0.024887191131711006, + -0.01079667080193758, + 0.07780696451663971, + 0.019829317927360535, + -0.0123857157304883, + 0.029647447168827057, + -0.0032248913776129484, + -0.015579422004520893, + -0.049463145434856415, + -0.09595844149589539, + 0.18051806092262268, + 0.07073637843132019, + 0.014501250348985195, + -0.06670577079057693, + -0.07222127914428711, + 0.08422359824180603, + -0.016195133328437805, + -0.117047518491745, + -0.02392880618572235, + 0.05013751983642578, + 0.15348616242408752, + -0.03439287096261978, + -0.056075289845466614, + 0.0506671741604805, + 0.09622706472873688, + 0.04493853449821472, + 0.054402466863393784, + 0.1061578094959259, + 0.08969119191169739, + -0.020474471151828766, + 0.011118492111563683, + 0.021666109561920166, + 0.08146689832210541, + 0.07790334522724152, + 0.00850432924926281, + 0.041391126811504364, + -0.019355138763785362, + -0.021714605391025543, + -0.0469542071223259, + -0.03980112448334694, + -0.02237231843173504, + 0.012850751169025898, + 0.017891250550746918, + 0.04626927524805069, + 0.0576079860329628, + -0.026667367666959763, + 0.03776039183139801, + 0.027250248938798904, + -0.03271190822124481, + 0.06143586337566376, + 0.017719008028507233, + 0.043225184082984924, + 0.06251790374517441, + -0.10524812340736389, + -0.0806269496679306, + 0.060623615980148315, + 0.019871611148118973, + 0.02424066886305809, + 0.05451924726366997, + 0.04766447842121124, + -0.03062250278890133, + 0.11262212693691254, + 0.03681463003158569, + -0.01660098508000374, + -0.002976907417178154, + -0.0903116762638092, + 0.11418511718511581, + 0.10884575545787811, + -0.024835417047142982, + 0.05217685550451279, + -0.0696776956319809, + 0.06651949882507324, + 0.04097208380699158, + -0.14030703902244568, + -0.09351084381341934, + 0.0297505222260952, + 0.006893041543662548, + 0.0013177674263715744, + 0.14301751554012299, + 0.020266547799110413, + 0.06687614321708679, + 0.10617867112159729, + -0.10518555343151093, + -0.036028746515512466, + -0.01152839045971632, + 0.062018394470214844, + -0.09279567748308182, + 0.06243874132633209, + 0.05241338163614273, + -0.02619791403412819, + 0.03498176485300064, + 0.06206202507019043, + -0.014992700889706612, + 0.005642796400934458, + -0.008870108984410763, + -0.03202883526682854, + 0.002469003200531006, + -0.028763562440872192, + -0.021907683461904526, + 0.014602002687752247, + 0.029262810945510864, + 0.04242852330207825, + -0.01813708245754242, + -0.05406168848276138, + -0.12713457643985748, + 0.020240655168890953, + 0.012656119652092457, + 0.05605028197169304, + -0.028521768748760223, + -0.007609011605381966, + -0.02470196783542633, + -0.0640157163143158, + 0.015513423830270767, + -0.02379671484231949, + 0.057583123445510864, + 0.0030892388895154, + 0.007311254274100065, + 0.100212462246418, + 0.042428627610206604, + 0.0025723862927407026, + -0.024301942437887192, + -0.03729318082332611, + 0.00872349739074707, + 0.0480252206325531, + -0.07708413898944855, + -0.06433989107608795, + -0.019324276596307755, + 0.014511507004499435, + -0.012205028906464577, + 0.0673813745379448, + 0.0568520613014698, + 0.030706971883773804, + 0.019773781299591064, + -0.04987790435552597, + 0.008274450898170471, + -0.09333652257919312, + -0.07631611824035645, + 0.01272669155150652, + -0.03200675547122955, + -0.040890756994485855, + 0.09280463308095932, + 0.015433721244335175, + 0.051651064306497574, + -0.07728773355484009, + -0.043639373034238815, + -0.06989146769046783, + 0.044980552047491074, + 0.05253284052014351, + -0.02048523537814617, + 0.005327143706381321, + 0.0474584624171257, + 0.012078986503183842, + 0.05485370010137558, + 0.07238372415304184, + 0.10454734414815903, + -0.016847819089889526, + 0.02153768762946129, + -0.07578417658805847, + 0.11806175112724304, + 0.09070637077093124, + -0.038415685296058655, + -0.08808137476444244, + -0.01870245486497879, + -0.09472069144248962, + 0.030040353536605835, + -0.0241569671779871, + 0.008800324983894825, + 0.04111138731241226, + 0.008878892287611961, + -0.1063944399356842, + -0.08212573826313019, + 0.08964437246322632, + -0.05568983778357506, + -0.007774032652378082, + -0.08109153807163239, + 0.05996863916516304, + 0.10082027316093445, + 0.03871668875217438, + -0.02253272570669651, + -0.019287575036287308, + 0.03597132861614227, + -0.024417150765657425, + 0.039355453103780746, + 0.04196571186184883, + 0.04748799651861191, + -0.10886409878730774, + 0.002635924145579338, + -0.0655687153339386, + 0.015472646802663803, + -0.04091915115714073, + 0.129876047372818, + 0.015315208584070206, + -0.041399046778678894, + -0.08035553246736526, + 0.061411887407302856, + -0.022989546880126, + 0.05643794685602188, + 0.018910111859440804, + 0.06725603342056274, + 0.07677512615919113, + -0.0904262587428093, + 0.07782033830881119, + 0.04176116734743118, + -0.03365887328982353, + -0.07620540261268616, + -0.06524284183979034, + -0.02479676902294159, + 0.03360970318317413, + -0.005805825814604759, + -0.06837321072816849, + -0.015479182824492455, + 0.023814361542463303, + 0.02572166547179222, + 0.05136411637067795, + 0.1195039451122284, + 0.028964992612600327, + -0.1339917778968811 + ] + }, + "p244_240.wav": { + "name": "p244", + "embedding": [ + 0.07945258915424347, + 0.037747014313936234, + -0.012152545154094696, + 0.007275744341313839, + -0.014487722888588905, + 0.03468915820121765, + -0.12849202752113342, + 0.11345958709716797, + 0.013497058302164078, + 0.08077574521303177, + -0.0872984230518341, + 0.0822061076760292, + 0.0016370187513530254, + -0.11219489574432373, + -0.030771251767873764, + 0.023793870583176613, + -0.014414789155125618, + 0.0005447063595056534, + -0.03974929824471474, + -0.011801485903561115, + 0.0245984997600317, + 0.059601105749607086, + 0.03990330919623375, + -0.031564414501190186, + 0.018286608159542084, + 0.03809820115566254, + 0.002444220706820488, + 0.023952443152666092, + 0.017742546275258064, + -0.0024557597935199738, + 0.023994049057364464, + 0.08010049164295197, + -0.042573895305395126, + 0.006394711323082447, + 0.03645411878824234, + 0.014577844180166721, + -0.010644922964274883, + -0.0915645956993103, + -0.007276620715856552, + 0.020632022991776466, + -0.030547045171260834, + 0.07944682240486145, + 0.05260749161243439, + -0.023790664970874786, + 0.02275526523590088, + 0.004906552378088236, + -0.008267361670732498, + -0.050835464149713516, + -0.11496752500534058, + 0.17796942591667175, + 0.01652267947793007, + 0.038168445229530334, + -0.12758690118789673, + -0.015560433268547058, + 0.05775945633649826, + -0.00300811231136322, + -0.03468114137649536, + -0.04003487899899483, + 0.02979302406311035, + 0.12023387849330902, + 0.020758872851729393, + -0.05356209725141525, + 0.03158777952194214, + 0.06444811820983887, + 0.023464851081371307, + 0.0087087731808424, + 0.13327732682228088, + 0.09698787331581116, + -0.0204075425863266, + 0.044966477900743484, + 0.03150532767176628, + 0.036849506199359894, + 0.03115699253976345, + -0.007958273403346539, + 0.026652969419956207, + -0.03630942106246948, + -0.031139474362134933, + 0.01702917367219925, + -0.017358968034386635, + -0.04958589747548103, + 0.02184557355940342, + -0.001390503835864365, + 0.01721680350601673, + 0.08281633257865906, + -0.07614994049072266, + 0.027157723903656006, + 0.0061440966092050076, + -0.0018952672835439444, + 0.07651069760322571, + 0.045599356293678284, + 0.007365130819380283, + 0.002516951411962509, + -0.05274444818496704, + -0.0972677543759346, + 0.008244259282946587, + -0.011233488097786903, + 0.056871604174375534, + 0.03745889291167259, + 0.035175494849681854, + -0.018397707492113113, + 0.09340852499008179, + 0.012594624422490597, + -0.010898916982114315, + -0.022984102368354797, + -0.060990530997514725, + 0.0979171022772789, + 0.12481649219989777, + 0.0024895616807043552, + 0.03210488706827164, + -0.06360240280628204, + 0.014394976198673248, + 0.041251152753829956, + -0.0887005627155304, + -0.043185044080019, + 0.05143744498491287, + 0.0423990860581398, + 0.06395760178565979, + 0.11878544092178345, + 0.026364324614405632, + 0.026161154732108116, + 0.06311032921075821, + -0.08785594999790192, + -0.03784794360399246, + 0.008842014707624912, + 0.024887248873710632, + -0.029665281996130943, + 0.023432079702615738, + 0.04108967259526253, + -0.0015136916190385818, + -0.0415712408721447, + 0.04753076285123825, + 0.0020745694637298584, + 0.031828783452510834, + -0.04287783056497574, + 0.03687690570950508, + 0.09085529297590256, + -0.005477588623762131, + -0.02045380137860775, + 0.03153949975967407, + 0.06132512167096138, + 0.032796140760183334, + 0.04804295673966408, + -0.06140383332967758, + -0.11391064524650574, + -0.008075371384620667, + 0.05906808376312256, + 0.043983783572912216, + -0.05965961515903473, + -0.06208455190062523, + -0.04980771616101265, + -0.02059316262602806, + 0.02420753613114357, + 0.009649348445236683, + 0.045536912977695465, + 0.038392938673496246, + -0.019172009080648422, + 0.08760308474302292, + -0.013360435143113136, + 0.011101778596639633, + -0.015698373317718506, + -0.00834093801677227, + 0.0266251377761364, + 0.03771558031439781, + -0.038136813789606094, + -0.06483782082796097, + -0.004165465943515301, + 0.0039901044219732285, + -0.020854417234659195, + -0.007284097373485565, + 0.04928981140255928, + -0.028580283746123314, + 0.006293036043643951, + -0.09898647665977478, + 0.020142365247011185, + -0.10804945975542068, + -0.0278143510222435, + 0.03615271672606468, + -0.01160081010311842, + 0.0078703872859478, + 0.1000448614358902, + 0.021497631445527077, + 0.05574941262602806, + -0.03412169963121414, + -0.07285572588443756, + -0.011138292029500008, + 0.05459606274962425, + 0.07091782987117767, + -0.03213128447532654, + 0.025681670755147934, + 0.02844378724694252, + 0.01579461060464382, + 0.02972789853811264, + 0.05796937644481659, + 0.053558215498924255, + -0.058030787855386734, + -0.06176538020372391, + -0.028024667873978615, + 0.10882784426212311, + 0.052942514419555664, + -0.06703929603099823, + -0.05992818623781204, + -0.023831607773900032, + -0.0470818430185318, + 0.0012477822601795197, + -0.011533379554748535, + 0.019788701087236404, + 0.05094805732369423, + -0.03088667429983616, + -0.11719512939453125, + -0.0796465203166008, + 0.016997097060084343, + -0.04180814325809479, + 0.010835467837750912, + -0.06469458341598511, + 0.03327431157231331, + 0.08082059025764465, + 0.013061001896858215, + -0.005433460231870413, + -0.03264967352151871, + -0.045302554965019226, + -0.07096290588378906, + -0.0670178011059761, + -0.021672651171684265, + 0.03161638230085373, + -0.0751357227563858, + 0.0054919826798141, + -0.04638237506151199, + 0.06188648194074631, + -0.04609490931034088, + 0.09754610061645508, + 0.013642609119415283, + -0.063230499625206, + -0.0821678638458252, + 0.0019817333668470383, + -0.02547764964401722, + 0.049427520483732224, + 0.04247651621699333, + -0.004833294078707695, + 0.018832392990589142, + -0.08992515504360199, + 0.0752616748213768, + 0.057467587292194366, + -0.034379757940769196, + -0.07014762610197067, + -0.022873571142554283, + -0.0086132250726223, + 0.034332435578107834, + -0.007526383735239506, + -0.013657476752996445, + 0.022340625524520874, + 0.012931828387081623, + -0.00490580964833498, + 0.03775404021143913, + 0.08461810648441315, + 0.038802288472652435, + -0.10554558038711548 + ] + }, + "p244_124.wav": { + "name": "p244", + "embedding": [ + 0.03170587867498398, + 0.08337774127721786, + 0.005988603457808495, + 0.022015362977981567, + -0.03809655085206032, + 0.04862849786877632, + -0.17864833772182465, + 0.11590668559074402, + -0.004251439590007067, + 0.11418318748474121, + -0.06332193315029144, + 0.12706343829631805, + 0.007978797890245914, + -0.21318550407886505, + -0.025420328602194786, + 0.052706990391016006, + -0.004550730809569359, + -0.032258786261081696, + 0.05641491338610649, + -0.0051533617079257965, + 0.05624686926603317, + 0.05355072021484375, + 0.030250616371631622, + -0.00528571056202054, + 0.04349508509039879, + 0.050252728164196014, + 0.02283732406795025, + 0.07225767523050308, + 0.026461178436875343, + -0.022242756560444832, + -0.04346585273742676, + 0.10946331173181534, + -0.04760754853487015, + 0.007036465220153332, + 0.04530885070562363, + 0.006022229790687561, + 0.0027556954883038998, + -0.03855211287736893, + 0.015568596310913563, + 0.007916059345006943, + -0.039558637887239456, + 0.0829901397228241, + 0.04689755290746689, + -0.006185658276081085, + 0.02769695781171322, + 0.06560301780700684, + 0.014573135413229465, + -0.04673599451780319, + -0.12139610946178436, + 0.14271366596221924, + 0.02954898774623871, + -0.010554103180766106, + -0.06857357174158096, + -0.06143921613693237, + 0.08245620131492615, + 0.004737256094813347, + -0.058175064623355865, + -0.01705184020102024, + 0.10011923313140869, + 0.13233692944049835, + -0.00607535894960165, + -0.06560482084751129, + 0.029593029990792274, + 0.11501942574977875, + 0.02782154642045498, + 0.08473536372184753, + 0.06236148253083229, + 0.10173208266496658, + -0.01613222248852253, + -0.024523122236132622, + 0.026860609650611877, + 0.07221655547618866, + 0.007049261592328548, + -0.03168938681483269, + 0.011986669152975082, + 0.0017140938434749842, + -0.014257064089179039, + 0.039836686104536057, + -0.0046739340759813786, + -0.007756643928587437, + -0.011570341885089874, + -0.016560228541493416, + -0.015016797930002213, + 0.027744995430111885, + -0.03683807700872421, + 0.038525283336639404, + 0.02958448976278305, + 0.024273499846458435, + 0.07799981534481049, + 0.01855200156569481, + 0.00717667443677783, + 0.05616503208875656, + -0.08753527700901031, + -0.06484109163284302, + 0.06581572443246841, + 0.0005181650631129742, + 0.028639022260904312, + 0.09741240739822388, + 0.035708338022232056, + -0.02880062162876129, + 0.12707358598709106, + 0.04755779355764389, + -0.016986733302474022, + 0.03022596426308155, + -0.08656430244445801, + 0.1457136869430542, + 0.06571777909994125, + -0.01340070553123951, + 0.057336896657943726, + -0.06582877784967422, + 0.05227863788604736, + 0.05573532357811928, + -0.14566341042518616, + -0.058580536395311356, + 0.05270298570394516, + 0.05646684765815735, + -0.028481710702180862, + 0.13403955101966858, + -0.011803973466157913, + 0.008416474796831608, + 0.08787916600704193, + -0.09145224094390869, + -0.08116000890731812, + -0.026079412549734116, + 0.036661870777606964, + -0.10347755253314972, + 0.06219000369310379, + 0.05738727003335953, + -0.015513967722654343, + -0.0009644592646509409, + 0.07257674634456635, + -0.012942686676979065, + 0.03661982715129852, + 0.005432886071503162, + -0.014694012701511383, + 0.021071139723062515, + -0.041059546172618866, + 0.027589980512857437, + 0.013847963884472847, + 0.0013940695207566023, + 0.053623657673597336, + 0.02588818408548832, + -0.041975319385528564, + -0.16352543234825134, + -0.0020953137427568436, + 0.06650181114673615, + 0.08624054491519928, + -0.016762496903538704, + -0.08626042306423187, + -0.06894153356552124, + -0.06362982094287872, + 0.02273893728852272, + 0.019530976191163063, + 0.06194871664047241, + -0.009592647664248943, + -0.010934796184301376, + 0.07108527421951294, + 0.027290258556604385, + -0.0021267954725772142, + -0.029089268296957016, + -0.05554259568452835, + 0.01095462217926979, + 0.015999842435121536, + -0.08508267998695374, + -0.063910573720932, + -0.02453514188528061, + 0.04000595211982727, + -0.02731701359152794, + 0.04292478784918785, + 0.06084790825843811, + 0.03235755115747452, + 0.04052947461605072, + -0.07176034152507782, + -0.003871637163683772, + -0.08743201196193695, + -0.080325186252594, + -0.03779982775449753, + 0.05357345938682556, + -0.02694448083639145, + 0.0908622145652771, + 0.02377660758793354, + 0.06642621755599976, + -0.02637840062379837, + -0.009373457171022892, + -0.08071614801883698, + 0.0342387780547142, + 0.07000908255577087, + 0.015808602795004845, + 0.07223792374134064, + 0.032930366694927216, + -0.05480942130088806, + 0.07242150604724884, + 0.05716224014759064, + 0.08938159048557281, + -0.025073565542697906, + 0.03268623724579811, + -0.03881744295358658, + 0.08041863143444061, + 0.09149853885173798, + -0.07416573166847229, + -0.07900340855121613, + -0.008463677950203419, + -0.08851130306720734, + 0.04195529967546463, + -0.021565068513154984, + 0.016400709748268127, + -0.007465182337909937, + -0.0030099733266979456, + -0.09339006245136261, + -0.09322210401296616, + 0.009683771058917046, + -0.05928615480661392, + -0.016967447474598885, + -0.0799696147441864, + 0.07500840723514557, + 0.10562212020158768, + 0.031572375446558, + -0.02784167230129242, + -0.06569699943065643, + 0.03901921212673187, + -0.039085812866687775, + 0.00012580468319356441, + 0.05484466999769211, + 0.04465609788894653, + -0.1222488060593605, + 0.02164340950548649, + -0.07860557734966278, + 0.045376431196928024, + -0.07000018656253815, + 0.15229500830173492, + 0.026605168357491493, + -0.06785998493432999, + -0.06001497805118561, + 0.02592596411705017, + -0.014781899750232697, + 0.02684714086353779, + 0.021956829354166985, + 0.02227221243083477, + 0.02568269520998001, + -0.06728293746709824, + 0.11107145249843597, + 0.05057144910097122, + -0.034160859882831573, + -0.07631144672632217, + -0.033525384962558746, + -0.030538246035575867, + 0.07135964184999466, + 0.03325861692428589, + -0.10000577569007874, + -0.054031096398830414, + 0.06677914410829544, + 0.007879644632339478, + 0.04934922605752945, + 0.1542784869670868, + 0.028544317930936813, + -0.1159692108631134 + ] + }, + "p244_140.wav": { + "name": "p244", + "embedding": [ + 0.032106462866067886, + 0.10258646309375763, + -0.03863545134663582, + 0.033056873828172684, + -0.047408685088157654, + 0.06788535416126251, + -0.10650399327278137, + 0.08408309519290924, + -0.051745232194662094, + 0.1439906358718872, + -0.08300479501485825, + 0.09365612268447876, + -0.03637726232409477, + -0.18144014477729797, + -0.023146042600274086, + 0.05650520324707031, + -0.06916254758834839, + -0.007570366840809584, + -0.10011936724185944, + -0.025479473173618317, + 0.033929843455553055, + 0.031131725758314133, + 0.036277081817388535, + -0.05022752285003662, + 0.00512390211224556, + 0.06359908729791641, + -0.013848669826984406, + 0.01940905675292015, + -0.002903031650930643, + -0.052057087421417236, + -0.054398469626903534, + 0.12623244524002075, + -0.02393820695579052, + 0.010701628401875496, + 0.041291724890470505, + 0.006800917908549309, + -0.023599712178111076, + -0.05122655630111694, + 0.0024571120738983154, + 0.01036273967474699, + -0.05014950782060623, + 0.04443689063191414, + 0.012572221457958221, + -0.027460843324661255, + 0.06866328418254852, + -0.024788357317447662, + -0.04691766947507858, + -0.02474340982735157, + -0.07061152160167694, + 0.16436609625816345, + 0.0976928323507309, + -0.019638914614915848, + -0.061314284801483154, + -0.061559274792671204, + 0.08832861483097076, + -0.0034463140182197094, + -0.15653139352798462, + -0.05037454515695572, + 0.07711216062307358, + 0.14175602793693542, + -0.007941044867038727, + -0.008940596133470535, + 0.019500672817230225, + 0.10958696901798248, + 0.010021863505244255, + 0.11309292912483215, + 0.051235757768154144, + 0.08879242092370987, + -0.0009065513731911778, + 0.04219233617186546, + 0.07376864552497864, + 0.046731702983379364, + 0.05028190091252327, + -0.035868722945451736, + 0.045829400420188904, + -0.023557033389806747, + -0.04582108557224274, + 0.004530781880021095, + -0.03949066251516342, + -0.03243137151002884, + -0.016561349853873253, + -0.02351978048682213, + -0.0009434190578758717, + -0.018667828291654587, + -0.02451932057738304, + 0.026422306895256042, + 0.06407799571752548, + -0.016930431127548218, + 0.05635236203670502, + 0.0839669480919838, + 0.013598821125924587, + 0.04602637141942978, + -0.04804681986570358, + -0.09976606070995331, + 0.010982569307088852, + 0.01683744788169861, + -0.009247435256838799, + 0.03935539722442627, + 0.04463207721710205, + -0.025607701390981674, + 0.08564548194408417, + 0.05055559426546097, + -0.004110095556825399, + 0.028953861445188522, + -0.09502167999744415, + 0.11557327210903168, + 0.11670465767383575, + -0.009867667220532894, + 0.016392692923545837, + -0.02477916143834591, + 0.08448526263237, + 0.08767551183700562, + -0.10353397578001022, + -0.04955824464559555, + 0.009557865560054779, + -0.04511438310146332, + -0.0010399797465652227, + 0.08924844861030579, + 0.011568907648324966, + -0.008110846392810345, + 0.11209669709205627, + -0.09427085518836975, + -0.06674505025148392, + -0.03728098422288895, + 0.02603866159915924, + -0.08407330513000488, + 0.036358293145895004, + 0.05977318435907364, + 0.004564437083899975, + -0.008266814984381199, + 0.08175940811634064, + -0.01644720509648323, + 0.012890792451798916, + 0.012213528156280518, + -0.04958978295326233, + 0.03690819814801216, + -0.03605053573846817, + -0.010096623562276363, + 0.06823625415563583, + 0.03848765790462494, + 0.04159748926758766, + -0.021061619743704796, + -0.005195945501327515, + -0.07666628062725067, + 0.012601872906088829, + 0.051536425948143005, + 0.03423471376299858, + -0.006671909708529711, + 0.024622339755296707, + -0.03014795482158661, + -0.08822052925825119, + 0.05422282591462135, + -0.06322105973958969, + 0.06704350560903549, + -0.013142933137714863, + -0.038733117282390594, + 0.12557129561901093, + 0.006835254840552807, + -0.01664559915661812, + -0.07807378470897675, + -0.028825603425502777, + 0.04406910389661789, + 0.04852832481265068, + -0.10376385599374771, + -0.06857436895370483, + 0.0002958932891488075, + -0.0040213665924966335, + 0.003764195367693901, + 0.028094250708818436, + 0.06835572421550751, + -0.004557745531201363, + 0.025327123701572418, + -0.07800909876823425, + 0.02716459333896637, + -0.10865183174610138, + -0.03786635398864746, + -0.018588313832879066, + -0.09402740001678467, + 0.014487672597169876, + 0.09529520571231842, + -0.008645059540867805, + -0.024473730474710464, + -0.03339703008532524, + -0.09031054377555847, + -0.06751986593008041, + 0.08582481741905212, + 0.0816536620259285, + 0.00204279413446784, + 0.058895424008369446, + 0.04315165430307388, + -0.025246107950806618, + 0.032529447227716446, + 0.05211769789457321, + 0.11295288801193237, + -0.027575239539146423, + 0.006363452412188053, + -0.0968601256608963, + 0.07241726666688919, + 0.09214647859334946, + -0.08937746286392212, + -0.09590311348438263, + -0.044798385351896286, + -0.03440181165933609, + 0.053835880011320114, + -0.051275983452796936, + -0.027386613190174103, + 0.05266179144382477, + -0.026864871382713318, + -0.09085887670516968, + -0.10242354869842529, + 0.12072047591209412, + -0.03682032600045204, + -0.012964700348675251, + -0.059800196439027786, + 0.03209955245256424, + 0.031012140214443207, + 0.031149979680776596, + -0.08320239186286926, + 0.0573907308280468, + 0.06590268015861511, + -0.05510091036558151, + 0.008635872043669224, + 0.008013262413442135, + 0.011779405176639557, + -0.08518533408641815, + -0.0024354278575628996, + -0.07600978761911392, + 0.0963110625743866, + -0.07082103937864304, + 0.1437510848045349, + -0.004958377219736576, + -0.044762689620256424, + -0.07384620606899261, + 0.08307861536741257, + -0.02379506081342697, + 0.03228211775422096, + 0.07300714403390884, + 0.07005840539932251, + 0.011233575642108917, + -0.08835166692733765, + 0.0944766253232956, + 0.0034095614682883024, + 0.0017764036310836673, + -0.05539702624082565, + -0.012404147535562515, + -0.06053109094500542, + 0.010805798694491386, + 0.011267581954598427, + -0.09127777814865112, + 0.02628166973590851, + 0.015385827049612999, + -0.01762445829808712, + 0.0643961951136589, + 0.1152602881193161, + 0.07447779923677444, + -0.08879270404577255 + ] + }, + "p244_004.wav": { + "name": "p244", + "embedding": [ + 0.057244203984737396, + 0.051239121705293655, + -0.006493191234767437, + 0.0046587856486439705, + -0.014370900578796864, + 0.04889317974448204, + -0.1505855768918991, + 0.11744870990514755, + -0.02296508103609085, + 0.10681253671646118, + -0.0728701651096344, + 0.08201058208942413, + -0.00767209567129612, + -0.16516365110874176, + -0.041001345962285995, + 0.04549176245927811, + -0.03501646965742111, + -0.027579933404922485, + -0.0311755258589983, + -0.008836065419018269, + 0.03076852858066559, + 0.0471736416220665, + -0.0001659514382481575, + 0.009035672061145306, + 0.012241963297128677, + 0.04364144057035446, + -0.0051876576617360115, + 0.026616103947162628, + -0.004384532570838928, + 0.00222670566290617, + 0.0057466886937618256, + 0.10275017470121384, + -0.03850072622299194, + 0.009041273966431618, + 0.05855696648359299, + 0.013160438276827335, + -0.006170983891934156, + -0.06826630234718323, + -0.020206864923238754, + 0.01614033244550228, + -0.05412178859114647, + 0.06679560244083405, + 0.051490284502506256, + 0.012002089992165565, + 0.027559733018279076, + 0.028028646484017372, + -0.00822331104427576, + -0.05394599959254265, + -0.09966468065977097, + 0.15860942006111145, + 0.04013802856206894, + 0.017943119630217552, + -0.0922805443406105, + -0.03724759444594383, + 0.0840732753276825, + -0.004480568692088127, + -0.07635274529457092, + -0.028386738151311874, + 0.06654711067676544, + 0.15144842863082886, + -0.006654726341366768, + -0.044933855533599854, + 0.027211084961891174, + 0.10585152357816696, + 0.034167565405368805, + 0.05825532227754593, + 0.09924449026584625, + 0.10678430646657944, + -0.01214150246232748, + 0.007117943838238716, + 0.06554816663265228, + 0.0388072170317173, + 0.05638907104730606, + -0.031034370884299278, + 0.025171399116516113, + 0.0017415564507246017, + -0.028098978102207184, + 0.009883041493594646, + -0.031081851571798325, + -0.024425338953733444, + 0.008048723451793194, + 0.008548153564333916, + 0.008548242971301079, + 0.062324102967977524, + -0.04049144312739372, + 0.03220600262284279, + 0.03287477791309357, + -0.006772756110876799, + 0.06856678426265717, + 0.059678614139556885, + 0.020501142367720604, + 0.03826247155666351, + -0.06959246844053268, + -0.08232609927654266, + 0.019670691341161728, + -0.0022162762470543385, + 0.03304598107933998, + 0.04985179752111435, + 0.03948202356696129, + -0.01198204979300499, + 0.09804360568523407, + 0.008098515681922436, + -0.0002941172569990158, + 0.00815909169614315, + -0.09762193262577057, + 0.09791037440299988, + 0.08280383795499802, + -0.02812999300658703, + 0.028420105576515198, + -0.058993589133024216, + 0.04419970139861107, + 0.0630403384566307, + -0.11383549869060516, + -0.052459198981523514, + 0.06827473640441895, + 0.04491904005408287, + 0.02058722823858261, + 0.13593994081020355, + 0.011091722175478935, + 0.021835027262568474, + 0.0744437426328659, + -0.07690946757793427, + -0.03526616841554642, + -0.006011516787111759, + 0.035444751381874084, + -0.04602028429508209, + 0.04425273463129997, + 0.03155776113271713, + 0.009502381086349487, + -0.024248994886875153, + 0.06927596032619476, + 0.00029218941926956177, + 0.00799286738038063, + -0.05023977532982826, + 0.01537276804447174, + 0.0709199532866478, + -0.009143814444541931, + 0.0015159700997173786, + 0.017510656267404556, + 0.04747721925377846, + 0.02624204196035862, + 0.03590153902769089, + -0.06248483061790466, + -0.11470767855644226, + -0.004738791845738888, + 0.04673238843679428, + 0.07807391881942749, + -0.02831854298710823, + -0.03755154460668564, + -0.0521104596555233, + -0.02906210348010063, + 0.010854961350560188, + -0.012914886698126793, + 0.06041932851076126, + 0.0300108902156353, + -0.012922441586852074, + 0.08949941396713257, + -0.00761021114885807, + 0.008169690147042274, + -0.02969200164079666, + -0.015670523047447205, + 0.009761703200638294, + 0.0460873618721962, + -0.05769249051809311, + -0.06362049281597137, + 0.0023356154561042786, + 0.013007670640945435, + -0.012593654915690422, + 0.01909327134490013, + 0.031186336651444435, + 0.0023230817168951035, + 0.007525439839810133, + -0.08917870372533798, + 0.014167784713208675, + -0.1180512011051178, + -0.059466756880283356, + 0.0179979857057333, + -0.012941773980855942, + 0.0009621425997465849, + 0.0856703668832779, + 0.015797816216945648, + 0.03727533668279648, + -0.03235930949449539, + -0.07736298441886902, + -0.04276653006672859, + 0.06202222406864166, + 0.07064232230186462, + -0.01980535127222538, + 0.025075972080230713, + 0.029654894024133682, + -0.005805652588605881, + 0.04072924703359604, + 0.05624306946992874, + 0.08792721480131149, + -0.05024013668298721, + -0.004494858905673027, + -0.03317595273256302, + 0.10440943390130997, + 0.04974979907274246, + -0.06304767727851868, + -0.07033741474151611, + 0.005304677411913872, + -0.047600824385881424, + 0.005815478973090649, + -0.019581694155931473, + 0.02000458724796772, + 0.02556712180376053, + -0.0237729549407959, + -0.11421756446361542, + -0.06738296151161194, + 0.03838469460606575, + -0.06318210810422897, + 0.00331917149014771, + -0.07444030046463013, + 0.04339484125375748, + 0.09425723552703857, + 0.02007249742746353, + -0.017583642154932022, + -0.021532295271754265, + 0.00424446165561676, + -0.05374759063124657, + -0.03725024685263634, + 0.004368685185909271, + 0.030680663883686066, + -0.08983869850635529, + -0.009140770882368088, + -0.058546602725982666, + 0.06307493895292282, + -0.049770474433898926, + 0.11064916849136353, + 0.011756817810237408, + -0.06703746318817139, + -0.0680784210562706, + -0.003931783139705658, + -0.0014525093138217926, + 0.05368048697710037, + 0.02675137296319008, + 0.04655763506889343, + 0.03197465464472771, + -0.04880567640066147, + 0.1013551652431488, + 0.05008199065923691, + -0.030540935695171356, + -0.05939823016524315, + -0.02996395155787468, + -0.014429381117224693, + 0.0277912225574255, + -0.006201401352882385, + -0.04977040737867355, + 0.004798954352736473, + 0.02141060307621956, + -0.009165780618786812, + 0.04160452261567116, + 0.11496564745903015, + 0.049962591379880905, + -0.12135732918977737 + ] + }, + "p244_169.wav": { + "name": "p244", + "embedding": [ + 0.057029567658901215, + 0.08338451385498047, + -0.01734072156250477, + 0.038463957607746124, + -0.05738261714577675, + 0.08633057028055191, + -0.13482148945331573, + 0.11841713637113571, + -0.0672321617603302, + 0.13830581307411194, + -0.04638269916176796, + 0.10157979279756546, + -0.02636878751218319, + -0.1886727213859558, + -0.02977590076625347, + 0.07470418512821198, + -0.07409191876649857, + -0.04069636017084122, + -0.07145829498767853, + -0.003243983956053853, + 0.01020850706845522, + 0.019279690459370613, + 0.037069663405418396, + 0.0052407956682145596, + 0.0376032255589962, + 0.0675714835524559, + -0.01886574551463127, + 0.043965794146060944, + 0.01845916360616684, + -0.06929130852222443, + -0.03393295407295227, + 0.09713002294301987, + -0.05504804104566574, + -0.008165374398231506, + 0.04820776730775833, + -0.007374047301709652, + -0.009997377172112465, + -0.06639043241739273, + -0.025024890899658203, + -0.00019767200865317136, + -0.05997892841696739, + 0.08781640231609344, + 0.0316188745200634, + -0.016193915158510208, + 0.04006927087903023, + -0.010623528622090816, + -0.02601289562880993, + -0.055488407611846924, + -0.10404876619577408, + 0.1514267474412918, + 0.07180014997720718, + 0.0007413647253997624, + -0.0652066171169281, + -0.06657960265874863, + 0.10237142443656921, + -0.016412867233157158, + -0.14202113449573517, + -0.07418593764305115, + 0.07471315562725067, + 0.16235481202602386, + -0.03485307842493057, + 0.0017970151966437697, + 0.02049916237592697, + 0.12295348942279816, + 0.0891043022274971, + 0.11592104285955429, + 0.06453748047351837, + 0.09670441597700119, + 0.006898547988384962, + 0.03541051968932152, + 0.08895045518875122, + 0.04363706707954407, + 0.04513071849942207, + -0.0030966391786932945, + 0.03634212166070938, + -0.009360048919916153, + -0.01824885979294777, + -0.015100239776074886, + 0.001968139549717307, + 0.0007456461898982525, + -0.0065033650025725365, + 0.00976000726222992, + 0.0030725549440830946, + 0.027006959542632103, + -0.027332181110978127, + 0.051742322742938995, + 0.02186988666653633, + -0.016360126435756683, + 0.06705182045698166, + 0.04799802601337433, + 0.012044823728501797, + 0.05976928398013115, + -0.051586706191301346, + -0.07648489624261856, + 0.015033205971121788, + 0.012112302705645561, + 0.007237287238240242, + 0.04883294925093651, + 0.029767388477921486, + -0.011775006540119648, + 0.11153513938188553, + 0.05835574492812157, + -0.004567086696624756, + 0.042401619255542755, + -0.09106332808732986, + 0.13329333066940308, + 0.04985566809773445, + -0.011587032116949558, + 0.05712316930294037, + -0.015900438651442528, + 0.06157167628407478, + 0.08525945246219635, + -0.14287279546260834, + -0.058312006294727325, + 0.047777220606803894, + -0.019714927300810814, + -0.022126100957393646, + 0.11741900444030762, + 0.010651095770299435, + 0.014133838005363941, + 0.10121676325798035, + -0.08445888012647629, + -0.05385727062821388, + -0.0005828676512464881, + 0.06015734001994133, + -0.0936628058552742, + 0.05022328346967697, + 0.04663466662168503, + -0.02767125703394413, + 0.004958232864737511, + 0.10852095484733582, + -0.009199898689985275, + -0.012001347728073597, + 0.02455342933535576, + -0.0366758368909359, + 0.0424298495054245, + -0.029558448120951653, + 0.006994884926825762, + 0.06476634740829468, + 0.013324043713510036, + 0.04511486366391182, + -0.025048796087503433, + -0.017671888694167137, + -0.1164848804473877, + 0.009979200549423695, + 0.03409599885344505, + 0.0973581075668335, + -0.011334016919136047, + 0.01386767067015171, + -0.04685838520526886, + -0.071267269551754, + 0.0312788300216198, + -0.027630312368273735, + 0.09542803466320038, + -0.015073378570377827, + -0.016483070328831673, + 0.10623481124639511, + 0.010985083878040314, + 0.02556760236620903, + -0.052403368055820465, + -0.01147842314094305, + 0.03319564089179039, + 0.069051593542099, + -0.07736990600824356, + -0.05358013138175011, + 0.017084144055843353, + 0.03136401250958443, + -0.0032287281937897205, + 0.04497158154845238, + 0.049444250762462616, + 0.007242798339575529, + 0.019563665613532066, + -0.06911169737577438, + 0.037850528955459595, + -0.07883647829294205, + -0.04935717582702637, + -0.013661636970937252, + -0.03714895620942116, + -0.02986377477645874, + 0.08735671639442444, + 0.022886047139763832, + 0.027004661038517952, + -0.017222218215465546, + -0.10290086269378662, + -0.07346212863922119, + 0.06715315580368042, + 0.06836634129285812, + -0.01346024964004755, + 0.031949419528245926, + 0.05771039426326752, + -0.027490884065628052, + 0.030200574547052383, + 0.049648597836494446, + 0.1049681082367897, + -0.03021169826388359, + 0.000637968594674021, + -0.07491497695446014, + 0.07274871319532394, + 0.08364419639110565, + -0.1093386709690094, + -0.061665698885917664, + -0.0003366165328770876, + -0.052009209990501404, + 0.035503089427948, + -0.0368952751159668, + 0.008412673138082027, + 0.055118121206760406, + -0.023035917431116104, + -0.0857432633638382, + -0.11854654550552368, + 0.11555308848619461, + -0.09432242810726166, + -0.014157623052597046, + -0.07081761956214905, + 0.03196137398481369, + 0.06329343467950821, + 0.044685300439596176, + -0.034853242337703705, + 0.015262763015925884, + 0.040013570338487625, + -0.04142971709370613, + 0.0026692869141697884, + 0.08138493448495865, + 0.005325319245457649, + -0.12417425960302353, + -0.006527154240757227, + -0.0869840532541275, + 0.07885152846574783, + -0.04930106922984123, + 0.16691666841506958, + -0.00925438292324543, + -0.040394578129053116, + -0.08786991238594055, + 0.0327502004802227, + -0.03264082968235016, + 0.06058737635612488, + 0.046394918113946915, + 0.08468504995107651, + 0.06254935264587402, + -0.03359273448586464, + 0.10600753873586655, + 0.03855243697762489, + -0.019256064668297768, + -0.05811845138669014, + -0.027169078588485718, + -0.060603175312280655, + 0.03630848228931427, + 0.004633820150047541, + -0.11385249346494675, + 0.01475260965526104, + 0.030828822404146194, + -0.033128850162029266, + 0.06024675443768501, + 0.1311168521642685, + 0.06941784173250198, + -0.10493093729019165 + ] + }, + "p244_313.wav": { + "name": "p244", + "embedding": [ + 0.02142168954014778, + 0.049886684864759445, + -0.04737619683146477, + 0.03312927111983299, + -0.0724833682179451, + 0.025982335209846497, + -0.10125404596328735, + 0.11237995326519012, + -0.016938187181949615, + 0.1240723729133606, + -0.057187702506780624, + 0.112162284553051, + -0.03423161059617996, + -0.17403459548950195, + 0.01640089601278305, + 0.04892852157354355, + -0.026485878974199295, + -0.036173831671476364, + -0.07597172260284424, + -0.05111394077539444, + 0.03252503648400307, + 0.04747713729739189, + 0.020761726424098015, + -0.030358506366610527, + 0.007589813321828842, + 0.08350235223770142, + -0.01819518767297268, + 0.008206741884350777, + -0.01724264770746231, + -0.06443729251623154, + -0.047212135046720505, + 0.07249844074249268, + -0.0695524588227272, + 0.0015347761800512671, + 0.036939892917871475, + -0.02219861000776291, + -0.0233923252671957, + -0.028293907642364502, + -0.02022527903318405, + 0.013947761617600918, + -0.07670603692531586, + 0.0656580775976181, + 0.029969459399580956, + -0.008617842569947243, + 0.05774608999490738, + 0.01041030790656805, + -0.02956559881567955, + -0.03704890236258507, + -0.09309722483158112, + 0.15833771228790283, + 0.07991187274456024, + -0.0236746184527874, + -0.04585540294647217, + -0.04510103911161423, + 0.08938821405172348, + -0.009732533246278763, + -0.12872089445590973, + -0.06405602395534515, + 0.07925166189670563, + 0.11178164929151535, + -0.0383923202753067, + -0.02909669280052185, + 0.028173549100756645, + 0.0861702412366867, + 0.0682726725935936, + 0.07643285393714905, + 0.07359316945075989, + 0.12612062692642212, + -0.02053428627550602, + 0.0034753684885799885, + 0.06644515693187714, + 0.072492316365242, + 0.0769229531288147, + -0.0005894061177968979, + 0.021558700129389763, + 0.0148240951821208, + -0.004262634553015232, + -0.0337153784930706, + -0.03341085463762283, + -0.01247863657772541, + 0.008604643866419792, + -0.0028425739146769047, + 0.02461695298552513, + 0.004409964196383953, + -0.012768270447850227, + 0.0563889816403389, + 0.09075548499822617, + -0.012507534585893154, + 0.05127323791384697, + 0.017769459635019302, + -0.019381878897547722, + 0.07396526634693146, + -0.09262778609991074, + -0.04413747042417526, + 0.01436161994934082, + 0.009535644203424454, + -0.00625405041500926, + 0.061799537390470505, + 0.04148771986365318, + -0.01660812273621559, + 0.12313693761825562, + 0.01719614677131176, + -0.00957178883254528, + 0.02671133726835251, + -0.07920872420072556, + 0.12369725108146667, + 0.09580912441015244, + -0.030843552201986313, + 0.029534852132201195, + -0.050272103399038315, + 0.0692659318447113, + 0.040993209928274155, + -0.11497996747493744, + -0.05024636536836624, + 0.008883442729711533, + -0.02624170482158661, + -0.04495804011821747, + 0.1271926760673523, + 0.004026795271784067, + 0.03888726234436035, + 0.14366203546524048, + -0.10506200790405273, + -0.05239793658256531, + -0.0012600127374753356, + 0.03464144468307495, + -0.08841224759817123, + 0.04136303812265396, + 0.05112754553556442, + 0.0011233033146709204, + 0.0516161248087883, + 0.09388379752635956, + -0.017144110053777695, + 0.008297096937894821, + -0.004844239912927151, + -0.03991668298840523, + 0.013256723992526531, + -0.015149693936109543, + -0.023126162588596344, + 0.07030081003904343, + 0.036917105317115784, + 0.05841983109712601, + -0.04302629083395004, + -0.021770363673567772, + -0.11899854242801666, + 0.03372488543391228, + 0.024367112666368484, + 0.06567483395338058, + -0.02054380625486374, + 0.02614741027355194, + -0.047301650047302246, + -0.10456521809101105, + 0.024221524596214294, + -0.02210712991654873, + 0.06742219626903534, + -0.054348863661289215, + -0.013684777542948723, + 0.11857466399669647, + 0.04056893661618233, + -0.007575647439807653, + -0.05717083811759949, + -0.052838217467069626, + -0.006848352961242199, + 0.04980176314711571, + -0.09226065129041672, + -0.07509312778711319, + -0.030813217163085938, + 0.04452245682477951, + -0.00011402818927308545, + 0.06774844229221344, + 0.04638856649398804, + 0.02343478798866272, + 0.006943050771951675, + -0.07064477354288101, + -0.0006331975455395877, + -0.06736897677183151, + -0.057541511952877045, + -0.011784079484641552, + -0.040383338928222656, + -0.021517081186175346, + 0.072021484375, + -0.006972750183194876, + 0.034830741584300995, + -0.04687376320362091, + -0.08340221643447876, + -0.08604519814252853, + 0.048979684710502625, + 0.035802148282527924, + -0.04106026515364647, + 0.03976672887802124, + 0.06865504384040833, + -0.0578019917011261, + 0.020123563706874847, + 0.05720202252268791, + 0.11239179223775864, + -0.03434876352548599, + 0.038983166217803955, + -0.05767671763896942, + 0.1055237203836441, + 0.07481840997934341, + -0.06025584787130356, + -0.06102852150797844, + -0.03594226390123367, + -0.06284841895103455, + 0.049261629581451416, + -0.04006171226501465, + -0.016076108440756798, + 0.029867185279726982, + 0.025098517537117004, + -0.07913494110107422, + -0.0733911395072937, + 0.0698438286781311, + -0.05169570446014404, + -0.005870752036571503, + -0.09513655304908752, + 0.032577306032180786, + 0.07396671921014786, + 0.05974563956260681, + -0.031271547079086304, + 0.00485944002866745, + 0.05167495459318161, + -0.014154445379972458, + 0.04268321394920349, + 0.07700317353010178, + 0.05174528807401657, + -0.08144669234752655, + -0.04967574402689934, + -0.06901288032531738, + 0.03783658891916275, + -0.03139082342386246, + 0.11470809578895569, + 0.014636139385402203, + -0.02812395617365837, + -0.06898641586303711, + 0.051667165011167526, + -0.005063525401055813, + 0.06066303700208664, + 0.04841357469558716, + 0.07028861343860626, + 0.059153005480766296, + -0.04929915815591812, + 0.13303810358047485, + 0.0391136072576046, + -0.031435348093509674, + -0.04060107469558716, + -0.05390309542417526, + -0.052223604172468185, + 0.012352163903415203, + 0.034251339733600616, + -0.09305623173713684, + 0.007786917500197887, + 0.02105364017188549, + -0.018030185252428055, + 0.04245876520872116, + 0.11875030398368835, + 0.08289225399494171, + -0.09679828584194183 + ] + }, + "p244_189.wav": { + "name": "p244", + "embedding": [ + 0.054061584174633026, + 0.11470216512680054, + 0.016316469758749008, + -0.020602762699127197, + -0.02756618522107601, + 0.06860370934009552, + -0.15209344029426575, + 0.12005740404129028, + -0.060834091156721115, + 0.14446377754211426, + -0.09283483028411865, + 0.10139843076467514, + -0.014834349974989891, + -0.16928303241729736, + -0.05371050536632538, + 0.050717901438474655, + -0.04537893086671829, + -0.010936446487903595, + -0.01692710630595684, + -0.027092676609754562, + 0.03606000542640686, + 0.04401242733001709, + 0.04083456099033356, + -0.011781331151723862, + 0.051066093146800995, + 0.0534324124455452, + 0.03273087739944458, + 0.07584463804960251, + 0.02319362759590149, + -0.05936663597822189, + -0.03450694680213928, + 0.10983429849147797, + -0.02830195426940918, + 0.011660071089863777, + 0.0442812405526638, + 0.002715721260756254, + 0.034936338663101196, + -0.08276695758104324, + -0.007814133539795876, + 0.009511386975646019, + -0.006412091664969921, + 0.07810306549072266, + 0.027308408170938492, + -0.0023602754808962345, + 0.016765834763646126, + 0.03881479799747467, + 0.011776605620980263, + -0.07582377642393112, + -0.09905959665775299, + 0.1619507074356079, + 0.04109371826052666, + 0.011514004319906235, + -0.06973206996917725, + -0.08052308857440948, + 0.10235860198736191, + -0.023670658469200134, + -0.08146195113658905, + -0.033827897161245346, + 0.07704507559537888, + 0.15914320945739746, + -0.040653541684150696, + -0.05438581109046936, + 0.034578584134578705, + 0.10603852570056915, + 0.00698121590539813, + 0.08897261321544647, + 0.07400938123464584, + 0.060290850698947906, + 0.009071099571883678, + 0.014636531472206116, + 0.02936544641852379, + 0.06479693949222565, + -0.0038491198793053627, + -0.017406105995178223, + 0.021649464964866638, + -0.004924245178699493, + -0.03714916855096817, + 0.0400061160326004, + -0.010739690624177456, + -0.014694343321025372, + -0.012363161891698837, + 0.01900310069322586, + -0.010543467476963997, + 0.008182458579540253, + -0.02884434163570404, + 0.045528560876846313, + -0.023044809699058533, + -0.002590528456494212, + 0.09047289937734604, + 0.012260100804269314, + 0.016220485791563988, + 0.034721896052360535, + -0.05224500596523285, + -0.09895993769168854, + 0.03114529699087143, + 0.016769982874393463, + -0.001952069578692317, + 0.06945250928401947, + 0.031156614422798157, + -0.039112742990255356, + 0.12584392726421356, + 0.05463337153196335, + 0.0014311475679278374, + 0.024224836379289627, + -0.09696173667907715, + 0.12023141235113144, + 0.08631692826747894, + -0.0130640072748065, + 0.05441105365753174, + -0.053509727120399475, + 0.05512527748942375, + 0.07659163326025009, + -0.1541886329650879, + -0.09999258816242218, + 0.031785473227500916, + 0.032652467489242554, + -0.003077820874750614, + 0.08291192352771759, + -0.020125795155763626, + 0.0013200268149375916, + 0.08556358516216278, + -0.08341815322637558, + -0.0733201652765274, + -0.0185023732483387, + 0.052630871534347534, + -0.07558268308639526, + 0.039250582456588745, + 0.07296265661716461, + -0.023450978100299835, + -0.003632880514487624, + 0.0705694928765297, + -0.0021453395020216703, + 0.0062775034457445145, + 0.016538191586732864, + -0.033143579959869385, + 0.018510211259126663, + -0.04315420985221863, + -0.0027942857705056667, + 0.021535461768507957, + 0.06784075498580933, + 0.02893092855811119, + 0.021419523283839226, + -0.06008894369006157, + -0.11445252597332001, + -0.009073866531252861, + 0.034023817628622055, + 0.05537131428718567, + -0.012290950864553452, + -0.035908497869968414, + -0.05667175352573395, + -0.04714053124189377, + -0.00381668983027339, + 0.005961798131465912, + 0.08780786395072937, + -0.0020860484801232815, + 0.022010212764143944, + 0.09874808043241501, + 0.024450024589896202, + -0.004167753271758556, + -0.054217346012592316, + -0.013665186241269112, + 0.03161023557186127, + 0.02077224850654602, + -0.046125851571559906, + -0.07084117829799652, + 0.008410995826125145, + 0.024053949862718582, + -0.02418225072324276, + 0.041069842875003815, + 0.031204944476485252, + 0.022411314770579338, + 0.05253579840064049, + -0.07542093843221664, + 0.03250299021601677, + -0.10383333265781403, + -0.04506240412592888, + -0.004484906792640686, + 0.007167072035372257, + -0.028640177100896835, + 0.09136617183685303, + 0.017007891088724136, + 0.04663955792784691, + -0.008205385878682137, + -0.0667840987443924, + -0.0615413598716259, + 0.061117734760046005, + 0.0996965765953064, + 0.0084078935906291, + 0.04220139607787132, + 0.032252345234155655, + -0.0048997774720191956, + 0.06294463574886322, + 0.06534877419471741, + 0.07824238389730453, + -0.0006872769445180893, + -0.01005035825073719, + -0.047618985176086426, + 0.06074374541640282, + 0.04725376516580582, + -0.10643108189105988, + -0.07524313032627106, + -0.0251776035875082, + -0.06120811402797699, + 0.042097002267837524, + 0.008933242410421371, + 0.018248479813337326, + 0.0032928939908742905, + -0.019674506038427353, + -0.08447685837745667, + -0.0873546451330185, + 0.061360131949186325, + -0.05344153568148613, + -0.023623239248991013, + -0.054395854473114014, + 0.05509696528315544, + 0.09705829620361328, + 0.05161996930837631, + 0.0072556789964437485, + -0.03857619687914848, + 0.022206325083971024, + -0.07385842502117157, + -0.016611680388450623, + 0.02502818964421749, + 0.013440942391753197, + -0.08975663036108017, + 0.0679871141910553, + -0.0937887653708458, + 0.06893813610076904, + -0.055279821157455444, + 0.1566605567932129, + 0.004919194150716066, + -0.06815310567617416, + -0.10012626647949219, + 0.015767451375722885, + -0.0593147873878479, + 0.028425073251128197, + 0.02212471514940262, + 0.022095924243330956, + 0.05156773328781128, + -0.0739322081208229, + 0.08749933540821075, + 0.04144130274653435, + -0.03708742931485176, + -0.07542967051267624, + -0.05963771790266037, + -0.028486791998147964, + 0.03200472891330719, + -0.00276842899620533, + -0.0686369389295578, + -0.032860077917575836, + 0.025503020733594894, + -0.011452632956206799, + 0.09059660136699677, + 0.12143524736166, + 0.04256148263812065, + -0.1243513822555542 + ] + }, + "p244_014.wav": { + "name": "p244", + "embedding": [ + 0.0456618033349514, + 0.09947610646486282, + -0.0351579487323761, + 0.01769324578344822, + -0.03846055269241333, + 0.03294319659471512, + -0.1384236067533493, + 0.1454164683818817, + -0.03573080152273178, + 0.11553234606981277, + -0.0607529878616333, + 0.1252995729446411, + -0.039623670279979706, + -0.1287994235754013, + -0.025616401806473732, + 0.059261664748191833, + 0.0065677352249622345, + -0.024798106402158737, + 0.012047134339809418, + -0.011180071160197258, + 0.045637913048267365, + 0.02454722300171852, + 0.013781548477709293, + 0.02438787743449211, + 0.025713670998811722, + 0.062442049384117126, + 0.008027640171349049, + 0.023942165076732635, + -0.004922201856970787, + -0.02145509049296379, + 0.0020491499453783035, + 0.08045138418674469, + -0.028491167351603508, + 0.029588503763079643, + 0.047634731978178024, + 0.006369514856487513, + -0.016286443918943405, + -0.07070358097553253, + -0.010438184253871441, + -0.024547982960939407, + -0.038875553756952286, + 0.07682274281978607, + 0.017487555742263794, + -0.029269102960824966, + 0.027799539268016815, + 0.006001647561788559, + -0.0035741108004003763, + -0.03324389457702637, + -0.1038001999258995, + 0.12629824876785278, + 0.042398691177368164, + 0.04587283730506897, + -0.09751556068658829, + -0.04450879245996475, + 0.10620276629924774, + -0.007475041784346104, + -0.05505678430199623, + -0.0349879153072834, + 0.05194047465920448, + 0.1577078402042389, + -0.012517052702605724, + -0.040527522563934326, + 0.03556269407272339, + 0.10202843695878983, + 0.04841536283493042, + 0.0538499541580677, + 0.0951853096485138, + 0.0903569832444191, + -0.02120477706193924, + 0.00038562389090657234, + 0.023219358175992966, + 0.08689197152853012, + 0.025803115218877792, + -0.012411314994096756, + -0.007968703284859657, + -0.002945534884929657, + -0.027890753000974655, + -0.0026419139467179775, + -0.019570011645555496, + -0.05071458965539932, + -0.05330786854028702, + 0.012360257096588612, + 0.0007026037201285362, + 0.02548249252140522, + -0.015036750584840775, + 0.0378415510058403, + 0.04665284976363182, + -0.058008939027786255, + 0.0587211437523365, + 0.02665218524634838, + -0.01011449471116066, + 0.03193049877882004, + -0.076620914041996, + -0.07339684665203094, + 0.025463296100497246, + 0.0021541332826018333, + 0.022215019911527634, + 0.08271461725234985, + 0.03895801305770874, + 0.004185925237834454, + 0.10523208975791931, + 0.03697848320007324, + 0.005295770242810249, + -0.019892394542694092, + -0.06409311294555664, + 0.11022298038005829, + 0.07042629271745682, + -0.03810158371925354, + 0.05560486763715744, + -0.0493827685713768, + 0.015588978305459023, + 0.053994275629520416, + -0.11514697968959808, + -0.07873079180717468, + 0.027407001703977585, + 0.035015251487493515, + 0.01579325459897518, + 0.10628814995288849, + 0.01557882595807314, + 0.04157496988773346, + 0.07264241576194763, + -0.07872103899717331, + -0.07472427934408188, + -0.04022175073623657, + 0.05695508047938347, + -0.05361801013350487, + 0.08196534216403961, + 0.07280725240707397, + 0.007446852512657642, + 0.0009589539840817451, + 0.054964397102594376, + 0.00770481675863266, + 0.006735594943165779, + 0.0017329519614577293, + -0.023623213171958923, + 0.006417369470000267, + -0.03334959223866463, + -0.0058499048464000225, + 0.013856390491127968, + 0.036187827587127686, + 0.05148895084857941, + 0.012061990797519684, + -0.01096294168382883, + -0.10962604731321335, + -0.005911238957196474, + 0.07075758278369904, + 0.0666264072060585, + -0.0211165938526392, + -0.060836538672447205, + -0.02669548988342285, + -0.03672284632921219, + -0.030006997287273407, + -0.00560013996437192, + 0.08636757731437683, + -0.012779127806425095, + 0.04771970212459564, + 0.09276529401540756, + 0.020862631499767303, + 0.0015486115589737892, + -0.03773873299360275, + 0.0011763554066419601, + 0.0017245570197701454, + 0.04134422913193703, + -0.05242372304201126, + -0.0871952474117279, + -0.02570885792374611, + 0.037271082401275635, + -0.02657049521803856, + 0.05901411175727844, + 0.01927550882101059, + 0.016223667189478874, + 0.016166068613529205, + -0.05623400956392288, + 0.01310694683343172, + -0.10516701638698578, + -0.05479121580719948, + -0.015248250216245651, + 0.0053838989697396755, + -0.02046903781592846, + 0.07061156630516052, + 0.057423245161771774, + 0.07197509706020355, + 0.006083223968744278, + -0.05638034641742706, + -0.07956670224666595, + 0.03524193912744522, + 0.05869004875421524, + -0.01918291673064232, + 0.019595062360167503, + 0.04000133275985718, + -0.013602444902062416, + 0.034899353981018066, + 0.06724784523248672, + 0.06343290209770203, + -0.03596850484609604, + 0.0012189392000436783, + -0.053810086101293564, + 0.07253456115722656, + 0.09896670281887054, + -0.09662356227636337, + -0.07373400777578354, + -0.05366010218858719, + -0.06369131058454514, + 0.009729236364364624, + -0.023127544671297073, + 0.027799593284726143, + 0.021347586065530777, + -0.0376795269548893, + -0.12406335771083832, + -0.09899730980396271, + 0.06215960904955864, + -0.048071980476379395, + 0.024179209023714066, + -0.0599585585296154, + 0.036651648581027985, + 0.09318123012781143, + 0.01891211047768593, + -0.00443354994058609, + -0.02552139014005661, + 0.02204076573252678, + -0.03201678395271301, + -0.00341423531062901, + 0.05311751738190651, + 0.032578807324171066, + -0.09171418845653534, + 0.010781090706586838, + -0.058642059564590454, + 0.07592502236366272, + -0.043430980294942856, + 0.14329004287719727, + 0.006454888731241226, + -0.06720374524593353, + -0.09921152144670486, + 0.002791309729218483, + 0.0005907490849494934, + 0.046496711671352386, + -0.010645516216754913, + 0.05001773312687874, + 0.01717197336256504, + -0.06269966810941696, + 0.0962488055229187, + 0.06484914571046829, + -0.03050391748547554, + -0.07122256606817245, + -0.061058107763528824, + -0.02213059365749359, + 0.03828231245279312, + -0.012656682170927525, + -0.047123540192842484, + -0.024648265913128853, + 0.010331484489142895, + 0.012792368419468403, + 0.08453378081321716, + 0.12315244227647781, + 0.05332903936505318, + -0.11324436217546463 + ] + }, + "p244_093.wav": { + "name": "p244", + "embedding": [ + 0.05074314773082733, + 0.090809166431427, + -0.013290628790855408, + 0.015098122879862785, + -0.03353681415319443, + 0.07280128449201584, + -0.16247853636741638, + 0.12200742959976196, + -0.038645461201667786, + 0.140935480594635, + -0.06970199942588806, + 0.10677939653396606, + -0.015908164903521538, + -0.19865746796131134, + -0.0289695393294096, + 0.057447899132966995, + -0.04007676616311073, + -0.0360996276140213, + 0.009147069416940212, + -0.003172045573592186, + 0.04778694361448288, + 0.03840216249227524, + -0.0015303976833820343, + -0.0033095041289925575, + 0.03224800154566765, + 0.05935615301132202, + 0.00954018160700798, + 0.04134117066860199, + -0.005329861771315336, + -0.02657070755958557, + -0.03769402205944061, + 0.11924472451210022, + -0.05533643439412117, + 0.006156974472105503, + 0.05714326351881027, + 0.010049121454358101, + -4.3819774873554707e-05, + -0.06700471043586731, + -0.0012456621043384075, + -0.0037426804192364216, + -0.0500551238656044, + 0.0754559114575386, + 0.04676090180873871, + 0.00682303961366415, + 0.016727151349186897, + 0.05280639976263046, + 0.007143775001168251, + -0.05887789651751518, + -0.0993725061416626, + 0.16611286997795105, + 0.04758661240339279, + 0.006035572849214077, + -0.05677713453769684, + -0.07110647857189178, + 0.09511614590883255, + 0.019881442189216614, + -0.08745481818914413, + -0.03761862590909004, + 0.09009537845849991, + 0.15992924571037292, + -0.028263116255402565, + -0.05992526561021805, + 0.02318868786096573, + 0.11784019321203232, + 0.03675505518913269, + 0.10231959819793701, + 0.06000570207834244, + 0.11065860092639923, + 0.009880606085062027, + -0.0056321825832128525, + 0.06433378159999847, + 0.06186582148075104, + 0.0557703897356987, + -0.03159122169017792, + 0.03314778581261635, + 0.0030629471875727177, + -0.027840513736009598, + 0.024595201015472412, + -0.01803481951355934, + -0.017497047781944275, + 0.005985913798213005, + -0.0021278513595461845, + 0.0140004251152277, + 0.03877772390842438, + -0.02312973514199257, + 0.03503366932272911, + 0.0379556380212307, + -0.005760233383625746, + 0.08118031919002533, + 0.02081253193318844, + 0.018608156591653824, + 0.06975807994604111, + -0.09668467938899994, + -0.08453261852264404, + 0.06258927285671234, + 0.01369533222168684, + 0.025164879858493805, + 0.08311672508716583, + 0.051353029906749725, + -0.026406943798065186, + 0.11544302850961685, + 0.02830936759710312, + 0.004805782809853554, + 0.035251013934612274, + -0.10384169220924377, + 0.13374894857406616, + 0.0701487809419632, + -0.03527000546455383, + 0.0386669896543026, + -0.06636445224285126, + 0.07947658002376556, + 0.08027878403663635, + -0.16000542044639587, + -0.07755297422409058, + 0.055938445031642914, + 0.03538131341338158, + -0.03299558162689209, + 0.14470471441745758, + -0.01536556240171194, + 0.011838282458484173, + 0.09792724251747131, + -0.09889156371355057, + -0.06377687305212021, + -0.028526391834020615, + 0.03751164674758911, + -0.09809593111276627, + 0.0531526580452919, + 0.04835750162601471, + -0.014352550730109215, + 0.0021915100514888763, + 0.07922118902206421, + -0.014146468602120876, + 0.00040054344572126865, + -0.006033643148839474, + -0.01888749934732914, + 0.038111671805381775, + -0.0358765684068203, + 0.016435174271464348, + 0.010315737687051296, + 0.020565688610076904, + 0.03732144832611084, + 0.011628430336713791, + -0.04108860343694687, + -0.13757212460041046, + 0.010281476192176342, + 0.05475397780537605, + 0.07942627370357513, + -0.018292147666215897, + -0.04738131910562515, + -0.047075577080249786, + -0.06998344510793686, + 0.018743351101875305, + -0.0010394174605607986, + 0.06967242062091827, + 0.016308948397636414, + -0.004125738050788641, + 0.09388042986392975, + 0.030768249183893204, + 0.002254853490740061, + -0.047350138425827026, + -0.04300922155380249, + 0.0307645034044981, + 0.03491809219121933, + -0.09616328775882721, + -0.06445501744747162, + -0.015645071864128113, + 0.02320963703095913, + -0.023742932826280594, + 0.03132423013448715, + 0.04512029141187668, + 0.03353787958621979, + 0.030718671157956123, + -0.07515047490596771, + 0.014204693958163261, + -0.11770935356616974, + -0.07615149021148682, + -0.019917674362659454, + -0.0024251937866210938, + -0.012518848292529583, + 0.0842566192150116, + -0.004955656360834837, + 0.04481224715709686, + -0.0415770560503006, + -0.04331125319004059, + -0.06461913883686066, + 0.0594070665538311, + 0.08434751629829407, + 0.0023477990180253983, + 0.04480049014091492, + 0.02785741537809372, + -0.026571273803710938, + 0.03960242494940758, + 0.05644042044878006, + 0.12907400727272034, + -0.022564353421330452, + 0.0271480493247509, + -0.049875058233737946, + 0.10417333245277405, + 0.07374027371406555, + -0.07385571300983429, + -0.07694696635007858, + -0.0014689902309328318, + -0.0646185502409935, + 0.0317489355802536, + -0.029963523149490356, + 0.007138731423765421, + -0.011343549937009811, + -0.008046459406614304, + -0.0948844850063324, + -0.08245319128036499, + 0.048624053597450256, + -0.06483778357505798, + -0.02410692349076271, + -0.10119737684726715, + 0.06962455809116364, + 0.09975449740886688, + 0.047382839024066925, + -0.03321690857410431, + -0.025760939344763756, + 0.03593400865793228, + -0.046623896807432175, + 0.0031484849750995636, + 0.04533783346414566, + 0.03373042866587639, + -0.11636415123939514, + 0.010867936536669731, + -0.07314219325780869, + 0.055471889674663544, + -0.07504880428314209, + 0.1612653136253357, + -0.004218073096126318, + -0.06314291059970856, + -0.07583891600370407, + 0.029648810625076294, + -0.0033663371577858925, + 0.03395656496286392, + 0.030652225017547607, + 0.050599485635757446, + 0.031894005835056305, + -0.06051668897271156, + 0.11911025643348694, + 0.03137093037366867, + -0.012358525767922401, + -0.05907273665070534, + -0.04374746233224869, + -0.03692643344402313, + 0.03913130238652229, + 0.002792461309581995, + -0.09477012604475021, + -0.02743423357605934, + 0.05291053652763367, + 0.011326944455504417, + 0.05075114592909813, + 0.137893944978714, + 0.03861163556575775, + -0.12447661906480789 + ] + }, + "p244_333.wav": { + "name": "p244", + "embedding": [ + 0.014325177296996117, + 0.11449761688709259, + 0.012907424010336399, + 0.02295769192278385, + -0.02159927971661091, + 0.08031825721263885, + -0.08673080801963806, + 0.089596226811409, + -0.08615908026695251, + 0.1452193558216095, + -0.12105554342269897, + 0.06368371844291687, + -0.061172179877758026, + -0.17030206322669983, + -0.059386245906353, + 0.05200222134590149, + -0.061178386211395264, + -0.0033570416271686554, + -0.04070690646767616, + -0.020595546811819077, + 0.036457717418670654, + 0.04992419108748436, + 0.030987495556473732, + 0.0071773407980799675, + 0.026273498311638832, + 0.046439576894044876, + -0.01594150811433792, + 0.042374029755592346, + 0.022514771670103073, + -0.043104641139507294, + -0.03561869263648987, + 0.14091166853904724, + -0.027828924357891083, + 0.0056991600431501865, + 0.02491716854274273, + 0.02859354019165039, + 0.026210512965917587, + -0.05052930861711502, + -0.013044025748968124, + 0.009513557888567448, + -0.06214935705065727, + 0.042675912380218506, + -0.002387512242421508, + 0.03468039259314537, + 0.055267397314310074, + -0.017738917842507362, + -0.03823193535208702, + -0.035165783017873764, + -0.07704415917396545, + 0.17336824536323547, + 0.085908904671669, + -0.014627894386649132, + -0.06946154683828354, + -0.09298597276210785, + 0.10219079256057739, + 0.0032926856074482203, + -0.14382252097129822, + -0.02091677486896515, + 0.08752000331878662, + 0.17398592829704285, + 0.007514073979109526, + -0.017070455476641655, + 0.006985836662352085, + 0.11117805540561676, + -0.005598222836852074, + 0.10442517697811127, + 0.045129984617233276, + 0.06134156882762909, + 0.027165057137608528, + 0.012549011036753654, + 0.06926406919956207, + 0.019101139158010483, + 0.015344534069299698, + -0.06840186566114426, + 0.018872717395424843, + 0.006669655907899141, + -0.05188501626253128, + 0.04140395671129227, + -0.004680470563471317, + -0.009352735243737698, + -0.012629471719264984, + -0.018779274076223373, + -0.04645264893770218, + -0.02054588496685028, + -0.027635712176561356, + 0.012356160208582878, + -0.009202951565384865, + 0.01766585186123848, + 0.10236281156539917, + 0.05875537171959877, + 0.006056458689272404, + 0.04346970096230507, + -0.021999120712280273, + -0.06923200190067291, + -0.006203395314514637, + 0.04469767212867737, + -0.03433457389473915, + 0.07388408482074738, + 0.021825894713401794, + -0.03577183932065964, + 0.10948977619409561, + 0.033876899629831314, + 0.022338975220918655, + 0.013979647308588028, + -0.14595705270767212, + 0.10110965371131897, + 0.08872570097446442, + -0.017452171072363853, + 0.03066416271030903, + 0.014129428192973137, + 0.08227038383483887, + 0.10475742816925049, + -0.15073342621326447, + -0.05055554583668709, + 0.03314922749996185, + 2.4902168661355972e-05, + 0.02677762880921364, + 0.06092622131109238, + 0.001700022374279797, + -0.029652591794729233, + 0.09441964328289032, + -0.08368164300918579, + -0.07247618585824966, + -0.04964471235871315, + 0.05269414186477661, + -0.07956992834806442, + 0.006856137420982122, + 0.05506017059087753, + -0.005718818865716457, + -0.025411920621991158, + 0.06056251376867294, + -0.010853514075279236, + 0.013400735333561897, + 0.025045031681656837, + -0.05244510993361473, + 0.038665324449539185, + -0.05577777326107025, + -0.0031976664904505014, + 0.05971081927418709, + 0.04759639501571655, + 0.046779509633779526, + -0.002805879805237055, + -0.04341663047671318, + -0.06454512476921082, + 0.001617221161723137, + 0.06299180537462234, + 0.014177510514855385, + -0.019614066928625107, + 0.00024880608543753624, + -0.05706607550382614, + -0.07140447199344635, + 0.0518784299492836, + -0.011081857606768608, + 0.10744550079107285, + 0.010400813072919846, + -0.02988320402801037, + 0.13033558428287506, + -0.0014120237901806831, + -0.020904697477817535, + -0.0692158043384552, + -0.0308064054697752, + 0.015778839588165283, + 0.024709677323698997, + -0.08348163962364197, + -0.07419822365045547, + 0.02880706638097763, + 0.007583524566143751, + 0.011873099021613598, + 0.01575925573706627, + 0.04312850162386894, + -0.010429495945572853, + 0.037689998745918274, + -0.07981939613819122, + 0.03625351935625076, + -0.09346616268157959, + -0.04569482058286667, + -0.014393470250070095, + -0.050761498510837555, + 0.02313956245779991, + 0.10098429024219513, + -0.0046724844723939896, + -0.03694465756416321, + 0.02082902565598488, + -0.11700962483882904, + -0.05665389448404312, + 0.09227119386196136, + 0.09701196849346161, + 0.016451703384518623, + 0.0752602219581604, + 0.06502072513103485, + -0.06645902246236801, + 0.05917561799287796, + 0.06014357879757881, + 0.1082269549369812, + -0.03990686684846878, + 0.02011851780116558, + -0.06517590582370758, + 0.039902880787849426, + 0.044074639678001404, + -0.1100197583436966, + -0.11120107769966125, + -0.04242481663823128, + -0.03375177085399628, + 0.07429786026477814, + -0.01551996823400259, + 0.004195597488433123, + 0.023307176306843758, + -0.06684321165084839, + -0.07075336575508118, + -0.09011738747358322, + 0.11423295736312866, + -0.008603518828749657, + -0.06628627330064774, + -0.059577569365501404, + 0.05242491513490677, + 0.04369697719812393, + 0.03867795690894127, + -0.02787746489048004, + 0.040127720683813095, + 0.03824784606695175, + -0.08688057214021683, + -0.05431417375802994, + 0.03451377898454666, + -0.01647210493683815, + -0.08394553512334824, + 0.01727335713803768, + -0.09145916998386383, + 0.14186407625675201, + -0.07816192507743835, + 0.13590964674949646, + -0.034235186874866486, + -0.0706147849559784, + -0.08537694811820984, + 0.06276419758796692, + -0.015496889129281044, + 0.019552160054445267, + 0.04243379831314087, + 0.04914851114153862, + 0.012894198298454285, + -0.026504509150981903, + 0.08944068849086761, + 0.000611976720392704, + -0.011331465095281601, + -0.0376971960067749, + -0.009449148550629616, + -0.04812125861644745, + -0.002982812002301216, + -0.010595280677080154, + -0.10758279263973236, + 0.025325309485197067, + -0.0011015544878318906, + -0.023155320435762405, + 0.06819279491901398, + 0.10175779461860657, + 0.06305922567844391, + -0.12680867314338684 + ] + }, + "p244_362.wav": { + "name": "p244", + "embedding": [ + 0.03714986890554428, + 0.11861540377140045, + -0.02694416418671608, + 0.018069982528686523, + -0.06029801815748215, + 0.06273024529218674, + -0.09477032721042633, + 0.13931161165237427, + -0.03693581372499466, + 0.13718795776367188, + -0.08105975389480591, + 0.11021724343299866, + -0.062452685087919235, + -0.1252080649137497, + -0.012359030544757843, + 0.03384510055184364, + -0.0191726703196764, + -0.0022099781781435013, + -0.061176497489213943, + -0.05286918208003044, + 0.020209483802318573, + 0.016866516321897507, + 0.006714319810271263, + -0.005302141886204481, + 0.016877098008990288, + 0.06890036165714264, + -0.016572443768382072, + 0.02256537787616253, + -0.005866106599569321, + -0.03498264029622078, + -0.04177607595920563, + 0.09079831838607788, + -0.043500836938619614, + 0.014600591734051704, + 0.044675786048173904, + -0.0011057229712605476, + -0.014213219285011292, + -0.029972242191433907, + -0.005092155653983355, + 0.0165712907910347, + -0.06285179406404495, + 0.05990879610180855, + 0.013404877856373787, + -0.02127569355070591, + 0.03938429802656174, + 0.017529966309666634, + 0.0025645866990089417, + -0.0315263532102108, + -0.0941479504108429, + 0.14149542152881622, + 0.07550904899835587, + -0.02064705826342106, + -0.06563283503055573, + -0.04693109542131424, + 0.10806945711374283, + -0.014377479441463947, + -0.10845473408699036, + -0.028144216164946556, + 0.06368552148342133, + 0.12150625884532928, + -0.04792851209640503, + -0.03814571350812912, + 0.01005981769412756, + 0.1209573745727539, + 0.045149363577365875, + 0.08341637253761292, + 0.073396697640419, + 0.1257757693529129, + -0.05149020254611969, + 0.0047470335848629475, + 0.06224173307418823, + 0.05636017024517059, + 0.08150970935821533, + -0.004099342506378889, + 0.009345509111881256, + -0.02637176774442196, + 0.0007333536632359028, + 0.0012962855398654938, + -0.0281669944524765, + -0.049601804465055466, + -0.019783865660429, + -0.006203534081578255, + -0.01857660338282585, + -0.002953978255391121, + -0.016848746687173843, + 0.06084948778152466, + 0.08057194203138351, + -0.02419147826731205, + 0.07164037227630615, + 0.053120002150535583, + -0.0002075880765914917, + 0.06655681878328323, + -0.0820050835609436, + -0.060152534395456314, + 0.014284870587289333, + -0.02120385505259037, + 0.04449407011270523, + 0.0728786438703537, + 0.03976330906152725, + 0.017309065908193588, + 0.11342354118824005, + 0.039738647639751434, + 0.012049498036503792, + 0.025491636246442795, + -0.07365502417087555, + 0.14513546228408813, + 0.0999944806098938, + -0.05388166755437851, + 0.02957596816122532, + -0.015162109397351742, + 0.054915815591812134, + 0.04895123094320297, + -0.10357514023780823, + -0.06921754032373428, + -0.0004478837363421917, + 0.024426940828561783, + -0.02955877222120762, + 0.08053833246231079, + -0.008099090307950974, + 0.017462952062487602, + 0.1267172396183014, + -0.07129847258329391, + -0.047261983156204224, + -0.03093167021870613, + 0.030397800728678703, + -0.0729895532131195, + 0.047438330948352814, + 0.07170914858579636, + 0.010131323710083961, + 0.02670990489423275, + 0.09648784250020981, + -0.00031225383281707764, + -0.004033057484775782, + 0.015619473531842232, + -0.043840061873197556, + 0.00024279503850266337, + -0.004729769192636013, + -0.0022626626305282116, + 0.047340791672468185, + 0.044742316007614136, + 0.07039082795381546, + -0.010655401274561882, + 0.0035246331244707108, + -0.09063299000263214, + 0.035034943372011185, + 0.05182880908250809, + 0.0462273508310318, + -0.022194791585206985, + -0.004890982992947102, + -0.03134872764348984, + -0.07135814428329468, + 0.015117624774575233, + -0.0014271652325987816, + 0.07455414533615112, + -0.05122922360897064, + -0.004802582785487175, + 0.14125652611255646, + 0.03219471871852875, + -0.0038775685243308544, + -0.06265702843666077, + -0.03045324981212616, + -0.0151737742125988, + 0.04008708521723747, + -0.11106640100479126, + -0.1059940829873085, + -0.022385109215974808, + 0.030467946082353592, + -0.00916038267314434, + 0.07014982402324677, + 0.03957320749759674, + -0.001113635953515768, + 0.03728679567575455, + -0.03269844502210617, + 0.023429932072758675, + -0.07356943935155869, + -0.045245274901390076, + -0.023619238287210464, + -0.05043447017669678, + -0.015969255939126015, + 0.0663817822933197, + -0.002460706979036331, + 0.03434757515788078, + 0.0013443343341350555, + -0.08223195374011993, + -0.07770854234695435, + 0.046657003462314606, + 0.047073714435100555, + -0.017923103645443916, + 0.03930729255080223, + 0.08944554626941681, + -0.0469549298286438, + 0.03953076899051666, + 0.07125431299209595, + 0.1110820472240448, + -0.03320571780204773, + 0.03872177377343178, + -0.07537054270505905, + 0.06179335340857506, + 0.07532834261655807, + -0.09486472606658936, + -0.10171042382717133, + -0.07866500318050385, + -0.028609924018383026, + 0.02569190412759781, + -0.046558927744627, + 0.003873845562338829, + 0.02945076674222946, + -0.013101544231176376, + -0.05669301375746727, + -0.09358786791563034, + 0.08399897813796997, + -0.04926712065935135, + 0.00591583177447319, + -0.08540445566177368, + 0.04149056226015091, + 0.05383109673857689, + 0.04541078209877014, + -0.04073396325111389, + 0.016913186758756638, + 0.06351201981306076, + -0.0194476917386055, + 0.024849308654665947, + 0.06731212139129639, + 0.03595453500747681, + -0.07395228743553162, + -0.018031014129519463, + -0.07708698511123657, + 0.07212372124195099, + -0.026801716536283493, + 0.1407599151134491, + 0.021320484578609467, + -0.045722898095846176, + -0.06706468015909195, + 0.04540078341960907, + -0.025644458830356598, + 0.04586338996887207, + 0.03935934603214264, + 0.05735268443822861, + 0.022805247455835342, + -0.04245341941714287, + 0.12603536248207092, + 0.023159151896834373, + -0.0430176705121994, + -0.05810045450925827, + -0.050544872879981995, + -0.06093861907720566, + 0.010261114686727524, + 0.033409520983695984, + -0.08241680264472961, + -0.022583546116948128, + -0.006148810498416424, + -0.008769982494413853, + 0.07730481028556824, + 0.12032492458820343, + 0.09402702748775482, + -0.09408625960350037 + ] + }, + "p244_402.wav": { + "name": "p244", + "embedding": [ + 0.0508735328912735, + 0.07379981130361557, + -0.0406593456864357, + 0.037621837109327316, + -0.036522991955280304, + 0.05845237895846367, + -0.1042163074016571, + 0.09248632192611694, + -0.0330301970243454, + 0.1548629105091095, + -0.06278659403324127, + 0.12126767635345459, + 0.00612430227920413, + -0.16300934553146362, + -0.025052737444639206, + 0.0379757396876812, + -0.03638918325304985, + -0.012205805629491806, + -0.048974018543958664, + -0.022220304235816002, + 0.05700377747416496, + 0.0723387822508812, + 0.032509442418813705, + -0.04959699138998985, + 0.02640809491276741, + 0.055027998983860016, + -0.02195710502564907, + 0.01272258348762989, + -0.008890101686120033, + -0.12577980756759644, + -0.06351986527442932, + 0.09425278753042221, + -0.03645401448011398, + 0.03239458054304123, + 0.01819569244980812, + 0.008899547159671783, + 0.010858158580958843, + -0.05905009061098099, + -0.0254974327981472, + 0.02161114476621151, + -0.03308264911174774, + 0.05033128708600998, + -0.0018922369927167892, + -0.04131113737821579, + 0.05364016443490982, + -0.016715360805392265, + -0.017162229865789413, + -0.02491765096783638, + -0.08130045980215073, + 0.1714319884777069, + 0.05640130490064621, + 0.013079941272735596, + -0.06929761916399002, + -0.08488892018795013, + 0.08526989072561264, + -0.009844035841524601, + -0.12087604403495789, + -3.451605880400166e-05, + 0.043561987578868866, + 0.14840668439865112, + -0.006341175641864538, + -0.051768358796834946, + 0.045168694108724594, + 0.08870804309844971, + 0.02943137288093567, + 0.06059722602367401, + 0.08375724405050278, + 0.07937578856945038, + 0.0016159487422555685, + 0.004422195255756378, + 0.031079735606908798, + 0.11223737895488739, + 0.10097592324018478, + -0.028863202780485153, + 0.029681768268346786, + 0.0026491829194128513, + -0.05049065500497818, + -0.025705374777317047, + -0.04260547086596489, + -0.025787746533751488, + 0.000731926120352, + -0.012470347806811333, + 0.03584346920251846, + 0.013764582574367523, + -0.04847987741231918, + 0.02870183251798153, + 0.0612388513982296, + -0.04680672287940979, + 0.03681580722332001, + 0.052709661424160004, + 0.04116778075695038, + 0.036362018436193466, + -0.08563335984945297, + -0.09518816322088242, + 0.04457642138004303, + 0.03660421073436737, + 0.00043100863695144653, + 0.06126052886247635, + 0.06995650380849838, + -0.03779887780547142, + 0.09688234329223633, + 0.017242174595594406, + 0.008235731162130833, + -0.010043280199170113, + -0.08334952592849731, + 0.08413618803024292, + 0.14761894941329956, + -0.014356866478919983, + 0.045407623052597046, + -0.056622978299856186, + 0.08711928129196167, + 0.07282703369855881, + -0.14034190773963928, + -0.07816387712955475, + 0.006479734554886818, + -0.026812221854925156, + 0.02828856185078621, + 0.1035076230764389, + 0.014560109935700893, + 0.04915304109454155, + 0.09340524673461914, + -0.11248641461133957, + -0.049020834267139435, + -0.045334458351135254, + 0.03757977485656738, + -0.09982053935527802, + 0.08366958796977997, + 0.03844127804040909, + -0.0037756150122731924, + -0.0020173736847937107, + 0.047444261610507965, + -0.03268556669354439, + 0.02319594845175743, + -0.032461978495121, + -0.045328907668590546, + -0.013971710577607155, + -0.044613298028707504, + -0.01694551669061184, + 0.05389242619276047, + 0.0199870802462101, + 0.051351398229599, + -0.022664040327072144, + -0.04059381037950516, + -0.12111130356788635, + 0.02624417096376419, + 0.03731387481093407, + 0.03083357959985733, + -0.016961323097348213, + -0.025061853229999542, + -0.029168304055929184, + -0.08020936697721481, + 0.06208762526512146, + -0.046974681317806244, + 0.0634661316871643, + 0.022950230166316032, + 0.007771766744554043, + 0.1115635484457016, + 0.010986441746354103, + -0.02087082341313362, + -0.022358935326337814, + -0.037896811962127686, + 0.008442696183919907, + 0.04136109724640846, + -0.0935450941324234, + -0.08827902376651764, + -0.018671076744794846, + -0.019474998116493225, + -0.011375385336577892, + 0.06158566474914551, + 0.05662206932902336, + 0.017474018037319183, + 0.024866504594683647, + -0.06552673876285553, + -0.021970730274915695, + -0.12603862583637238, + -0.07713282108306885, + -0.012118677608668804, + -0.07413344085216522, + -0.000942267186474055, + 0.10987742245197296, + 0.01569310389459133, + 0.0030647581443190575, + -0.07118270546197891, + -0.051316093653440475, + -0.07931159436702728, + 0.04717697948217392, + 0.03994818776845932, + 0.021829068660736084, + 0.008511672727763653, + 0.04116184636950493, + 0.011327322572469711, + 0.06375991553068161, + 0.06705322116613388, + 0.09342639893293381, + -0.0019416648428887129, + 0.03156933933496475, + -0.06465055793523788, + 0.1387975662946701, + 0.10464684665203094, + -0.023013398051261902, + -0.11047522723674774, + -0.04860864579677582, + -0.09196440875530243, + 0.05945059657096863, + -0.033380985260009766, + -0.006021165754646063, + 0.03114924393594265, + -0.006030192598700523, + -0.11608670651912689, + -0.08018843829631805, + 0.1011839359998703, + -0.019012505188584328, + -0.03212039917707443, + -0.08153139799833298, + 0.04545474797487259, + 0.07152257859706879, + 0.03886404260993004, + -0.03274347633123398, + 0.023190123960375786, + 0.06713353097438812, + -0.05542673170566559, + 0.011438285931944847, + 0.04052858054637909, + 0.019948141649365425, + -0.08865487575531006, + -0.00962294451892376, + -0.06575658917427063, + 0.043593283742666245, + -0.07244224846363068, + 0.12439824640750885, + 0.0002766617981251329, + -0.07151350378990173, + -0.07043205201625824, + 0.09591775387525558, + -0.0038696867413818836, + 0.03135880455374718, + 0.039293088018894196, + 0.06671574711799622, + 0.052934497594833374, + -0.12110096216201782, + 0.06568339467048645, + 0.05482257530093193, + -0.004840767942368984, + -0.06641611456871033, + -0.07954990863800049, + -0.020583869889378548, + 0.022653883323073387, + -0.007633887231349945, + -0.06359496712684631, + 0.0257723368704319, + 0.004820989444851875, + 0.037046290934085846, + 0.03749874234199524, + 0.11962032318115234, + 0.026607941836118698, + -0.11625548452138901 + ] + }, + "p244_361.wav": { + "name": "p244", + "embedding": [ + 0.011926394887268543, + 0.06210249662399292, + -0.017835557460784912, + -0.01735677197575569, + -0.020619401708245277, + 0.028118301182985306, + -0.13155071437358856, + 0.0676778256893158, + -0.03457015007734299, + 0.13890595734119415, + -0.011586526408791542, + 0.08402418345212936, + -0.02614414319396019, + -0.1015537828207016, + -0.00249448511749506, + 0.050869256258010864, + -0.07413353025913239, + -0.029104825109243393, + 0.011877566576004028, + -0.07702042907476425, + 0.014003106392920017, + 0.004240121692419052, + 0.030682045966386795, + -0.05778014659881592, + 0.010506515391170979, + 0.07814309000968933, + 0.005116107873618603, + -0.010419691912829876, + -0.008949613198637962, + -0.07176841795444489, + 0.006712498143315315, + 0.061862438917160034, + -0.02689170278608799, + -0.008617695420980453, + 0.020216556265950203, + -0.0031817900016903877, + -0.00239486969076097, + -0.024698350578546524, + 0.025762923061847687, + 0.05596732720732689, + -0.04905436187982559, + 0.08756843209266663, + 0.03150226175785065, + -0.001595320412889123, + 0.04404531791806221, + -0.054801687598228455, + -0.04728090018033981, + 0.037360504269599915, + -0.0491497702896595, + 0.1084604412317276, + 0.06694461405277252, + -0.012261574156582355, + -0.04498547315597534, + -0.006163235753774643, + 0.07266216725111008, + 0.026168860495090485, + -0.12393708527088165, + 0.000909857451915741, + 0.017232131212949753, + 0.10199634730815887, + -0.014873003587126732, + -0.052437350153923035, + 0.022934047505259514, + 0.09842145442962646, + 0.007212614640593529, + 0.0503145270049572, + 0.07597789168357849, + 0.06822536885738373, + 0.0014334091683849692, + -0.02090320736169815, + 0.05105771869421005, + 0.08020811527967453, + 0.02390703186392784, + -0.00915088877081871, + 0.048017989844083786, + -0.04172316938638687, + -0.012648390606045723, + -0.05305678769946098, + -0.0018478273414075375, + -0.07383989542722702, + -0.07785394042730331, + -0.025790760293602943, + 0.01661345735192299, + 0.06963403522968292, + 0.023828279227018356, + -0.014390707015991211, + 0.05120624229311943, + -0.043101049959659576, + 0.032904960215091705, + 0.0441870354115963, + 0.015095490962266922, + 0.012522710487246513, + -0.05493451654911041, + -0.03461775556206703, + 0.0038149338215589523, + -0.009417260996997356, + 0.08902069181203842, + 0.028932757675647736, + 0.03136727213859558, + 0.02723829448223114, + 0.0671997219324112, + 0.05518867075443268, + 0.0028429776430130005, + -0.037112124264240265, + -0.06971690058708191, + 0.08399337530136108, + 0.09831470251083374, + -0.04336649179458618, + 0.03436507657170296, + 0.003378668799996376, + 0.03170507028698921, + -0.015983428806066513, + -0.09478430449962616, + -0.026415903121232986, + -0.00772077776491642, + 0.06072218716144562, + 0.005304585210978985, + 0.12128622829914093, + 0.04068703576922417, + 0.044860366731882095, + 0.07096271216869354, + -0.024594897404313087, + -0.037789031863212585, + -0.07295336574316025, + 0.05428667366504669, + -0.08637398481369019, + 0.0680186003446579, + 0.05840304493904114, + 0.024261580780148506, + 0.0199790820479393, + 0.06717151403427124, + 0.028107551857829094, + 0.005176726263016462, + -0.04185377061367035, + -0.019797256216406822, + 0.028216931968927383, + 0.0006682863458991051, + 0.05167779326438904, + 0.07252205908298492, + -0.0023833205923438072, + 0.09705781936645508, + 0.02792045846581459, + 0.0002648690715432167, + -0.06792549043893814, + 0.017863335087895393, + 0.013883218169212341, + 0.020725630223751068, + -0.03879057615995407, + -0.04778476431965828, + 0.015979815274477005, + -0.0791681557893753, + -0.01946365088224411, + -0.02372746355831623, + 0.08049359917640686, + 0.008949203416705132, + -0.027766037732362747, + 0.09724756330251694, + 0.03667234256863594, + -0.01743493601679802, + 0.01892685703933239, + -0.033436112105846405, + -0.004656711593270302, + 0.06611120700836182, + -0.16065530478954315, + -0.06247282773256302, + -0.009763971902430058, + 0.04171407222747803, + 0.027861274778842926, + 0.02400818094611168, + 0.08764767646789551, + -0.00726656336337328, + 0.029627498239278793, + 0.02908611111342907, + 0.011773352511227131, + -0.0522930733859539, + -0.07493104040622711, + -0.03004358522593975, + -0.08556779474020004, + -0.06650198251008987, + 0.06261762231588364, + -0.03993543982505798, + 0.06129869818687439, + -0.026727210730314255, + -0.03586728498339653, + -0.03839658200740814, + 0.05009118467569351, + 0.012728995643556118, + -0.042257070541381836, + -0.0008904095739126205, + 0.08502168208360672, + 0.015666598454117775, + -0.020299626514315605, + 0.025418436154723167, + 0.09600627422332764, + -0.07311512529850006, + 0.004467342980206013, + -0.08632595837116241, + 0.06632199883460999, + 0.083644337952137, + -0.03791866451501846, + -0.03993052989244461, + -0.053744133561849594, + -0.051202625036239624, + 0.060480110347270966, + -0.06026186794042587, + -0.01937800645828247, + -0.00283963605761528, + -0.02168123982846737, + -0.07485203444957733, + -0.0799861028790474, + 0.06528396904468536, + -0.04957328736782074, + 0.0045782532542943954, + -0.041151441633701324, + 0.014797884039580822, + 0.02262934483587742, + 0.05956597626209259, + -0.06028364598751068, + 0.071349136531353, + 0.024354899302124977, + -0.02623426541686058, + 0.04037865996360779, + 0.026476269587874413, + 0.0479184091091156, + -0.040939413011074066, + -0.07319542020559311, + -0.08010071516036987, + 0.03327075392007828, + -0.04423072561621666, + 0.07101716846227646, + 0.023721270263195038, + -0.04136078432202339, + -0.03521153703331947, + -0.017769034951925278, + -0.03665494918823242, + 0.035116832703351974, + 0.07723022997379303, + 0.06804180145263672, + 0.03684590384364128, + -0.014876087196171284, + 0.0800434947013855, + 0.03677428141236305, + 0.033866897225379944, + -0.022375160828232765, + 0.02145783230662346, + -0.02475687302649021, + 0.035890039056539536, + 0.018056144937872887, + -0.07325161248445511, + 0.04230191931128502, + -0.009376225993037224, + 0.03160526230931282, + 0.04663422703742981, + 0.04431857913732529, + 0.04164893552660942, + -0.049721576273441315 + ] + }, + "p244_291.wav": { + "name": "p244", + "embedding": [ + 0.05653196573257446, + 0.05744553357362747, + -0.010101023130118847, + 0.03477645665407181, + 0.009010691195726395, + 0.03316812589764595, + -0.16285166144371033, + 0.08147744089365005, + -0.009365832433104515, + 0.13844230771064758, + -0.07716867327690125, + 0.07004237174987793, + -0.00985901802778244, + -0.17918479442596436, + -0.022741595283150673, + 0.06453901529312134, + -0.04945105314254761, + -0.029401374980807304, + -0.06174631416797638, + -0.00577281229197979, + 0.026523195207118988, + 0.06619623303413391, + 0.04189817234873772, + -0.02920486405491829, + 0.001042497344315052, + 0.05541340261697769, + -0.02161526493728161, + 0.044304490089416504, + -0.009373464621603489, + -0.04095196723937988, + -0.0032643554732203484, + 0.10909703373908997, + -0.009142058901488781, + -0.007068801671266556, + 0.019824158400297165, + 0.033456288278102875, + 0.01448397058993578, + -0.07869595289230347, + -0.01614023558795452, + -0.007305679377168417, + -0.04907343536615372, + 0.06283993273973465, + 0.011824797838926315, + -0.003527384717017412, + 0.06333991885185242, + -0.011748899705708027, + -0.042461931705474854, + -0.059883859008550644, + -0.12348918616771698, + 0.16513605415821075, + 0.07370646297931671, + 0.028700843453407288, + -0.0699508860707283, + -0.04859967529773712, + 0.07200693339109421, + -0.024003902450203896, + -0.08906427025794983, + -0.06390678137540817, + 0.07664825767278671, + 0.16959789395332336, + -0.01744137518107891, + -0.027310781180858612, + 0.06106606125831604, + 0.10061557590961456, + 0.04850436747074127, + 0.07381200790405273, + 0.07796597480773926, + 0.08826704323291779, + 0.009567253291606903, + -0.024113329127430916, + 0.031289830803871155, + 0.04872254282236099, + 0.04984084516763687, + -0.004073705989867449, + 0.02214059792459011, + 0.03283502534031868, + -0.054000403732061386, + -0.01370060071349144, + -0.03259289637207985, + -0.004622192122042179, + 0.01529073528945446, + -0.016702119261026382, + -0.005910279229283333, + 0.05146987736225128, + -0.04720882326364517, + 0.01871165633201599, + 0.04463500529527664, + -0.03925901651382446, + 0.06355088204145432, + 0.03098701313138008, + 0.029529860243201256, + 0.025433247908949852, + -0.043836772441864014, + -0.06708760559558868, + 0.018870966508984566, + 0.04181307926774025, + -0.040593285113573074, + 0.032822348177433014, + 0.031903281807899475, + -0.05954078957438469, + 0.11365513503551483, + -0.013360017910599709, + -0.02449231594800949, + 0.019175786525011063, + -0.08929558843374252, + 0.0828859731554985, + 0.10547081381082535, + -0.014093929901719093, + 0.023713380098342896, + -0.03266219049692154, + -0.0021490007638931274, + 0.07845509052276611, + -0.1201271265745163, + -0.06347402930259705, + 0.0733075886964798, + 0.011677144095301628, + 0.02490481361746788, + 0.11678928136825562, + 0.04689744859933853, + 0.031108636409044266, + 0.09833311289548874, + -0.08828514814376831, + -0.0675790011882782, + 0.0002295470330864191, + 0.06222303956747055, + -0.08815935254096985, + 0.044006749987602234, + 0.0561574324965477, + 0.009411957114934921, + -0.022000424563884735, + 0.06423250585794449, + -0.0007938900380395353, + 0.0011680489405989647, + -0.058905091136693954, + -0.025374790653586388, + 0.04440532624721527, + -0.05525900423526764, + -0.04058346897363663, + 0.027781018987298012, + 0.03461107611656189, + 0.025873281061649323, + -0.006481332238763571, + -0.06672745943069458, + -0.14000210165977478, + -0.003837387077510357, + 0.04243334382772446, + 0.06932566314935684, + -0.011297444812953472, + 0.0016276300884783268, + -0.0831928551197052, + -0.054975565522909164, + 0.03477539122104645, + -0.07214365154504776, + 0.07728385180234909, + -0.003395428415387869, + -0.02345716580748558, + 0.09611286967992783, + -0.055531494319438934, + 0.024228377267718315, + -0.015129270032048225, + -0.00016601057723164558, + 0.006085158325731754, + 0.01693904772400856, + -0.03595491126179695, + -0.06455264985561371, + 0.0006522396579384804, + 0.03174114599823952, + 0.00576036749407649, + 0.042818546295166016, + 0.03130481392145157, + 0.01311424095183611, + -0.010274097323417664, + -0.07109777629375458, + 0.0022865617647767067, + -0.08382311463356018, + -0.04510429874062538, + 0.02398776076734066, + -0.008675994351506233, + 0.004675428383052349, + 0.09344565868377686, + 0.034400805830955505, + 0.014322618022561073, + -0.0612013153731823, + -0.10590728372335434, + -0.09243351966142654, + 0.06331376731395721, + 0.09841512888669968, + -0.02659648284316063, + 0.027998030185699463, + 0.03496672213077545, + -0.003518480807542801, + 0.043661653995513916, + 0.0556676983833313, + 0.08575332164764404, + 0.007445987313985825, + -0.014939786866307259, + -0.07363130897283554, + 0.1023159995675087, + 0.09045994281768799, + -0.046829983592033386, + -0.05536901578307152, + 0.0099516985937953, + -0.08499684929847717, + 0.03546002507209778, + -0.011773918755352497, + 0.007577155716717243, + 0.06328392028808594, + -0.03762400150299072, + -0.12730145454406738, + -0.09601770341396332, + 0.05835698917508125, + -0.05064333230257034, + -0.025512665510177612, + -0.04877271503210068, + 0.043280553072690964, + 0.04968026280403137, + 0.04338892549276352, + -0.006041164975613356, + -0.010160963051021099, + 0.009188663214445114, + -0.06626776605844498, + -0.006650590803474188, + 0.03760852664709091, + 0.01120177935808897, + -0.12998977303504944, + 0.01460969913750887, + -0.07528911530971527, + 0.09206510335206985, + -0.05481262505054474, + 0.09221293032169342, + 0.022736545652151108, + -0.03006705641746521, + -0.09784440696239471, + 0.03020942211151123, + -0.021444763988256454, + 0.07392783463001251, + 0.017632948234677315, + 0.04561767354607582, + 0.062301427125930786, + -0.07722395658493042, + 0.06893503665924072, + 0.047920286655426025, + -0.005739230662584305, + -0.08970271050930023, + -0.060988862067461014, + -0.04112662374973297, + 0.028439588844776154, + -0.006277387961745262, + -0.057027190923690796, + 0.0037156955804675817, + 0.01790113002061844, + -0.024796364828944206, + 0.045733410865068436, + 0.10559581220149994, + 0.02144555002450943, + -0.13053618371486664 + ] + }, + "p244_017.wav": { + "name": "p244", + "embedding": [ + 0.04551132768392563, + 0.06415122002363205, + -0.017733527347445488, + 0.03264474496245384, + -0.07500273734331131, + 0.020579088479280472, + -0.1253458857536316, + 0.14299044013023376, + -0.00961694959551096, + 0.13035373389720917, + -0.07003148645162582, + 0.13815540075302124, + -0.02762509696185589, + -0.19022342562675476, + 0.004209984093904495, + 0.053910475224256516, + -0.017790915444493294, + -0.03436313569545746, + -0.021709471940994263, + -0.04708186909556389, + 0.0494837760925293, + 0.058601364493370056, + 0.04033002257347107, + -0.0033888574689626694, + 0.01651679538190365, + 0.08687520027160645, + -0.006717074662446976, + 0.03210324048995972, + -0.006902260240167379, + -0.0688478872179985, + -0.03937457501888275, + 0.08154523372650146, + -0.047710441052913666, + -0.0034445729106664658, + 0.022727204486727715, + -0.028142675757408142, + -0.01970871165394783, + -0.04205350577831268, + -0.024377483874559402, + 0.0020326629746705294, + -0.05211620032787323, + 0.06269744038581848, + 0.01649254932999611, + -0.02494468353688717, + 0.05550023913383484, + 0.01424156129360199, + -0.033675581216812134, + -0.039072006940841675, + -0.12252863496541977, + 0.15420544147491455, + 0.07669760286808014, + 0.009820655919611454, + -0.0753401592373848, + -0.05156977102160454, + 0.09463080018758774, + -0.019091788679361343, + -0.10122635215520859, + -0.03978918120265007, + 0.07927292585372925, + 0.1420087218284607, + -0.033467408269643784, + -0.04978711158037186, + 0.045224979519844055, + 0.09982176870107651, + 0.047859981656074524, + 0.07166547328233719, + 0.08884882926940918, + 0.10237070173025131, + -0.03612620383501053, + 0.01046236976981163, + 0.03317948430776596, + 0.08862706273794174, + 0.062111109495162964, + -0.003372638951987028, + 0.01489005982875824, + 0.0020809494890272617, + -0.010987769812345505, + -0.022202875465154648, + -0.03120948001742363, + -0.026399977505207062, + -0.0015130944084376097, + -8.469614840578288e-05, + 0.025568857789039612, + 0.0031969361007213593, + -0.025830646976828575, + 0.06517083197832108, + 0.061920296400785446, + -0.008120927959680557, + 0.06156442314386368, + 0.004203286953270435, + -0.0047052945010364056, + 0.07692272961139679, + -0.09793667495250702, + -0.0626755803823471, + 0.03350024297833443, + 0.007563699968159199, + 0.030076518654823303, + 0.07627351582050323, + 0.04246315360069275, + -0.021636895835399628, + 0.13168179988861084, + 0.037125565111637115, + -0.004069649614393711, + 0.0195348858833313, + -0.08348248898983002, + 0.1167168915271759, + 0.11068558692932129, + -0.030621081590652466, + 0.0626697838306427, + -0.0600992813706398, + 0.07373440265655518, + 0.044265203177928925, + -0.12565574049949646, + -0.05848854035139084, + -0.00881976168602705, + 0.0045157852582633495, + -0.023772848770022392, + 0.13803784549236298, + -0.009123890660703182, + 0.06756705045700073, + 0.13475897908210754, + -0.10733338445425034, + -0.058913104236125946, + -0.01531960442662239, + 0.04756344109773636, + -0.1066696047782898, + 0.07106006890535355, + 0.06615190207958221, + -0.01328849047422409, + 0.05136212706565857, + 0.06530500948429108, + -0.0272357240319252, + 0.010920132510364056, + 0.0036190941464155912, + -0.05993682146072388, + -0.01378500834107399, + -0.037842459976673126, + -0.0210232213139534, + 0.05585433542728424, + 0.03165086358785629, + 0.056189026683568954, + -0.012611661106348038, + -0.02951662801206112, + -0.13414493203163147, + 0.0244239941239357, + 0.024080296978354454, + 0.06328719109296799, + -0.009367435239255428, + -0.027340954169631004, + -0.03853777050971985, + -0.0716903805732727, + 0.012366360984742641, + -0.003340009367093444, + 0.052719950675964355, + -0.04044071584939957, + 0.010161965154111385, + 0.08515878766775131, + 0.05905775725841522, + -0.004965747706592083, + -0.055269382894039154, + -0.06255163997411728, + -0.005615612026304007, + 0.04623153805732727, + -0.09525196999311447, + -0.0752137154340744, + -0.03790876269340515, + 0.05037284642457962, + -0.036295101046562195, + 0.059920281171798706, + 0.052922483533620834, + 0.031520258635282516, + 0.009990028105676174, + -0.0676911398768425, + 0.022685334086418152, + -0.08050095289945602, + -0.09212951362133026, + 0.007913382723927498, + -0.008901170454919338, + -0.02691173180937767, + 0.06328042596578598, + 0.011979928240180016, + 0.05409592390060425, + -0.05048719048500061, + -0.04822889715433121, + -0.09685957431793213, + 0.034914687275886536, + 0.036640822887420654, + -0.009118038229644299, + 0.05351642891764641, + 0.0505867563188076, + -0.06257537007331848, + 0.0674782544374466, + 0.05028088018298149, + 0.11296842992305756, + -0.027889098972082138, + 0.03151630982756615, + -0.06035736948251724, + 0.08891995251178741, + 0.1049027144908905, + -0.05697165057063103, + -0.08397306501865387, + -0.05400363355875015, + -0.08573877811431885, + 0.06583724170923233, + -0.016489189118146896, + -0.011132235638797283, + 0.032532453536987305, + 0.01319345086812973, + -0.11198969930410385, + -0.07107928395271301, + 0.06660787761211395, + -0.040029145777225494, + -0.006766983773559332, + -0.09840899705886841, + 0.061110369861125946, + 0.09982843697071075, + 0.026168126612901688, + -0.02273973450064659, + -0.030583884567022324, + 0.03935161605477333, + -0.025035209953784943, + 0.02752809040248394, + 0.06146261841058731, + 0.06354182213544846, + -0.08621850609779358, + -0.02619505487382412, + -0.08017340302467346, + 0.02744808793067932, + -0.025768090039491653, + 0.13682353496551514, + 0.020675629377365112, + -0.03231636807322502, + -0.07989175617694855, + 0.05841931328177452, + 0.002659314312040806, + 0.06054389476776123, + 0.03865800052881241, + 0.054399751126766205, + 0.05783791095018387, + -0.08701840043067932, + 0.10963024944067001, + 0.04223506152629852, + -0.04994489252567291, + -0.059356510639190674, + -0.04454854130744934, + -0.043831657618284225, + 0.020010121166706085, + -0.0014113312354311347, + -0.09292681515216827, + -0.03428909555077553, + 0.021666087210178375, + 0.009830035269260406, + 0.05867670476436615, + 0.12548168003559113, + 0.03800232708454132, + -0.10345952957868576 + ] + }, + "p244_424.wav": { + "name": "p244", + "embedding": [ + 0.001892124768346548, + 0.0772138237953186, + -0.05105011910200119, + 0.08649444580078125, + -0.06884513050317764, + -0.0190134197473526, + -0.07367052882909775, + 0.017979174852371216, + 0.022998588159680367, + 0.08416342735290527, + -0.022213542833924294, + 0.07985962927341461, + -0.04986017569899559, + -0.11662525683641434, + -0.006861692760139704, + 0.010529093444347382, + 0.00916682742536068, + -0.004596509039402008, + -0.011971337720751762, + -0.03673101216554642, + -0.03320680186152458, + 0.009705863893032074, + -0.04170793294906616, + 0.005271383561193943, + -0.02524394355714321, + 0.02333664894104004, + -0.04947361722588539, + 0.011702897027134895, + -0.03431544452905655, + -0.041045695543289185, + -0.011258951388299465, + 0.030208313837647438, + -0.025297805666923523, + -0.014371076598763466, + -0.021888524293899536, + 0.0097556347027421, + 0.005079334601759911, + -0.018675310537219048, + -0.02694312483072281, + -0.025036359205842018, + -0.06483050435781479, + 0.011079924181103706, + 0.038781020790338516, + -0.05759361386299133, + 0.023310624063014984, + -0.001765955239534378, + -0.04806482791900635, + -0.017630165442824364, + -0.03928813710808754, + 0.10365454852581024, + 0.04273460432887077, + 0.06820251792669296, + -0.025177232921123505, + -0.02783232182264328, + 0.10823054611682892, + 0.03038344904780388, + -0.01864982396364212, + -0.04602112993597984, + -0.0005400218069553375, + 0.08031546324491501, + 0.02614920772612095, + 0.021776292473077774, + 0.03543626517057419, + 0.06318740546703339, + 0.01108668465167284, + 0.019740842282772064, + 0.041690222918987274, + 0.06949252635240555, + -0.017195500433444977, + 0.017991041764616966, + 0.07301604002714157, + 0.021120239049196243, + -0.006679270416498184, + 0.025009671226143837, + -0.004963694140315056, + 0.020498983561992645, + 0.013965277932584286, + 0.04474381357431412, + -0.034953176975250244, + -0.017981886863708496, + 0.00047330581583082676, + 0.013516085222363472, + 0.004257809836417437, + -0.047235190868377686, + -0.0456538125872612, + -0.03226173296570778, + 0.08474662899971008, + 0.007308783009648323, + 0.018003705888986588, + 0.02876271866261959, + 0.027806201949715614, + 0.004568150267004967, + -0.04330280050635338, + -0.02593892067670822, + 0.026001999154686928, + 0.003323769196867943, + 0.045396678149700165, + -0.0034433137625455856, + -0.001234445720911026, + -0.005669116508215666, + 0.046726785600185394, + -0.028828799724578857, + 0.037842635065317154, + -0.00912972167134285, + -0.04166071116924286, + -0.0012883618474006653, + 0.04236513748764992, + 0.0365850105881691, + 0.04079907387495041, + 0.02312416583299637, + 0.045103807002305984, + 0.07970334589481354, + -0.03381809592247009, + -0.027355695143342018, + 0.01703854650259018, + 0.03694966062903404, + -0.04440494626760483, + 0.08193200826644897, + 0.004134703427553177, + 0.03884819522500038, + 0.07160670310258865, + 0.00787758082151413, + -0.02921435236930847, + -0.018526839092373848, + -0.0002670101821422577, + -0.020455019548535347, + 0.03478541970252991, + 0.044058382511138916, + -0.02747879922389984, + -0.03507460653781891, + 0.042751893401145935, + -0.014009594917297363, + -0.019881609827280045, + 0.005095541477203369, + 0.012303829193115234, + -0.025181781500577927, + 0.07532091438770294, + -0.06336486339569092, + 0.043386999517679214, + 0.055714838206768036, + -0.01950147934257984, + -0.022999467328190804, + 0.012332761660218239, + -0.059406716376543045, + 0.03855019807815552, + 0.008160186000168324, + -0.0043372660875320435, + 0.07506471872329712, + -0.028780676424503326, + -0.09152845293283463, + -0.05286616086959839, + 0.046648021787405014, + -0.03389543294906616, + 0.08285452425479889, + 0.06334945559501648, + 0.006106425076723099, + 0.040543332695961, + -0.015038829296827316, + -0.004678965546190739, + 0.012173406779766083, + -0.10825236886739731, + 0.01270017959177494, + 0.003984680399298668, + -0.005302663892507553, + -0.011670955456793308, + 0.008671769872307777, + 0.010861430317163467, + -0.021331295371055603, + 0.0015154052525758743, + 0.03517214208841324, + 0.007879979908466339, + 0.03798873722553253, + -0.11924606561660767, + 0.006683839485049248, + -0.01857401430606842, + -0.027625910937786102, + 0.03697021305561066, + -0.04582538083195686, + -0.004122628830373287, + 0.029169471934437752, + 0.026857441291213036, + -0.036605942994356155, + -0.05907382816076279, + -0.05671650916337967, + 0.00041788816452026367, + 0.017625387758016586, + -0.005624011158943176, + -0.0006361128762364388, + -0.009943610057234764, + 0.00891917385160923, + 0.045022912323474884, + 0.007917322218418121, + 0.010795578360557556, + 0.06558217108249664, + -0.03762105107307434, + 0.003218233585357666, + 0.027659520506858826, + 0.1093207448720932, + 0.030215095728635788, + -0.0753413587808609, + -0.06082756817340851, + -0.009038607589900494, + -0.04680025205016136, + 0.03892268240451813, + -0.031270358711481094, + 0.028085455298423767, + 0.008766830898821354, + 0.013674145564436913, + 0.02871040254831314, + -0.1364755779504776, + 0.028236977756023407, + -0.012823724187910557, + -0.04241030663251877, + -0.002849690616130829, + -0.006056215614080429, + 0.030734006315469742, + 0.024353256449103355, + -0.04100526124238968, + -0.031241128221154213, + 0.025435829535126686, + 0.012575473636388779, + 0.034635163843631744, + 0.06672202050685883, + 0.034462615847587585, + -0.009500522166490555, + -0.01987200789153576, + -0.03887777402997017, + 0.023832570761442184, + 0.011506957933306694, + 0.03953535854816437, + 0.021431051194667816, + 0.003945156931877136, + -0.07682430744171143, + 0.06606461107730865, + -0.011586638167500496, + 0.06724752485752106, + -0.009915713220834732, + 0.010711012408137321, + 0.02962656319141388, + -0.021923230960965157, + 0.11724457144737244, + 0.049839720129966736, + -0.02063119038939476, + -0.02429637312889099, + 0.005326147191226482, + -0.031162194907665253, + 0.06698041409254074, + 0.05022807419300079, + -0.04585089161992073, + -0.0038546943105757236, + 0.06947977840900421, + 0.03226684778928757, + 0.08526334166526794, + 0.05644106864929199, + 0.08154194802045822, + 0.06088612973690033 + ] + }, + "p244_132.wav": { + "name": "p244", + "embedding": [ + 0.03260638937354088, + 0.09399698674678802, + -0.035386864095926285, + 0.05806262791156769, + -0.08149316161870956, + 0.043726928532123566, + -0.0940699651837349, + 0.134440615773201, + -0.05114878714084625, + 0.10476505756378174, + -0.08709513396024704, + 0.1573345810174942, + -0.051515739411115646, + -0.16643977165222168, + -0.04075360298156738, + 0.07093706727027893, + -0.01389460451900959, + -0.041025321930646896, + -0.0026325047947466373, + -0.025880133733153343, + 0.030740557238459587, + 0.03304968401789665, + 0.053043920546770096, + 0.04788118973374367, + 0.026182854548096657, + 0.09770189970731735, + -0.002955665113404393, + 0.04950987920165062, + 0.02381107024848461, + -0.04350738972425461, + -0.07612182945013046, + 0.08906009048223495, + -0.06307755410671234, + -0.013278120197355747, + 0.03531384468078613, + -0.007287627086043358, + 0.011101476848125458, + -0.03917499631643295, + -0.017185188829898834, + -0.011529114097356796, + -0.06620696932077408, + 0.06883741170167923, + -0.006378654856234789, + -0.03500991314649582, + 0.04777050018310547, + 0.007460827007889748, + -0.012459388934075832, + -0.013197670690715313, + -0.12156148999929428, + 0.12092535197734833, + 0.060598257929086685, + 0.0007129204459488392, + -0.0844765305519104, + -0.051393844187259674, + 0.11440671235322952, + -0.026712127029895782, + -0.09053613990545273, + -0.03214731067419052, + 0.06702802330255508, + 0.14992451667785645, + -0.019853565841913223, + -0.032586097717285156, + 0.02203180082142353, + 0.09293755143880844, + 0.08520234376192093, + 0.07199826836585999, + 0.07808248698711395, + 0.09867506474256516, + -0.032448358833789825, + 0.008202950470149517, + 0.06359554827213287, + 0.08268047869205475, + 0.061312563717365265, + -0.0198469590395689, + 0.004455184563994408, + 0.008482166565954685, + -0.018621699884533882, + 0.01714889518916607, + -0.0220473725348711, + -0.030542364344000816, + -0.03594156354665756, + -0.008346921764314175, + -0.011205275543034077, + -0.0067113363184034824, + -0.030816983431577682, + 0.08600862324237823, + 0.05690658092498779, + -0.018294651061296463, + 0.07089287787675858, + 0.0367298386991024, + -0.04338241368532181, + 0.07423049956560135, + -0.09959115087985992, + -0.05026960000395775, + 0.02022615820169449, + -0.005251947324723005, + 0.020974071696400642, + 0.08046488463878632, + 0.051035162061452866, + -0.00633549178019166, + 0.12704136967658997, + 0.06459269672632217, + 0.02370535209774971, + 0.03212760388851166, + -0.07726636528968811, + 0.1268271803855896, + 0.10775546729564667, + -0.03617163002490997, + 0.051975004374980927, + 5.0303096941206604e-05, + 0.058961864560842514, + 0.0694785863161087, + -0.11963710188865662, + -0.064275823533535, + 0.003734781639650464, + -0.0014558644033968449, + -0.00025247837766073644, + 0.0831163078546524, + -0.026175325736403465, + 0.04558470845222473, + 0.10177630931138992, + -0.08110617101192474, + -0.06506282836198807, + -0.028316976502537727, + 0.03614886477589607, + -0.07896237820386887, + 0.07235944271087646, + 0.058452311903238297, + 0.019652705639600754, + 0.005900269839912653, + 0.08191858232021332, + -0.016376137733459473, + -0.02049291506409645, + 0.04943307489156723, + -0.0644930750131607, + -0.012972029857337475, + -0.010747896507382393, + -0.014048404060304165, + 0.08476679027080536, + 0.027141321450471878, + 0.06009293720126152, + -0.004161167424172163, + 0.023482363671064377, + -0.12726831436157227, + 0.009498685598373413, + 0.06570904701948166, + 0.06216664984822273, + -0.006843872833997011, + -0.04708636552095413, + -0.05319267511367798, + -0.061546746641397476, + 0.02431337721645832, + 0.024048957973718643, + 0.0908319428563118, + -0.05391200631856918, + 0.013125956989824772, + 0.0983332172036171, + 0.028251992538571358, + -0.010638647712767124, + -0.057336390018463135, + -0.03091302141547203, + -0.004886920098215342, + 0.0541202686727047, + -0.06740494817495346, + -0.1109127402305603, + -0.02370842732489109, + 0.0466248020529747, + -0.015590556897222996, + 0.08520086854696274, + 0.06365678459405899, + 0.0039962646551430225, + 0.013784377835690975, + -0.05601000040769577, + 0.02084384858608246, + -0.08098699897527695, + -0.053172845393419266, + -0.03875025734305382, + -0.028264416381716728, + -0.030976612120866776, + 0.06523030251264572, + 0.044615738093853, + 0.06615976244211197, + -0.0029882071539759636, + -0.06888537108898163, + -0.09621395915746689, + 0.04152441769838333, + 0.04183657839894295, + 0.019423827528953552, + 0.06345868110656738, + 0.07092377543449402, + -0.042487408965826035, + 0.08566654473543167, + 0.07208713889122009, + 0.08675440400838852, + -0.0327550545334816, + 0.01740824058651924, + -0.050104349851608276, + 0.05790972709655762, + 0.09300605207681656, + -0.10995476692914963, + -0.09736377000808716, + -0.056880753487348557, + -0.06394055485725403, + 0.07422906160354614, + -0.029384411871433258, + 0.017187846824526787, + 0.04619833454489708, + -0.013021755963563919, + -0.09317721426486969, + -0.12109997868537903, + 0.10906024277210236, + -0.04892798140645027, + -0.005154452286660671, + -0.07026378810405731, + 0.030873756855726242, + 0.06785143911838531, + -0.0014085366856306791, + -0.02773134969174862, + 0.014761348254978657, + 0.046958766877651215, + -0.013604813255369663, + -0.0045954086817801, + 0.08245713263750076, + 0.03253864496946335, + -0.09620503336191177, + -0.015460392460227013, + -0.07779322564601898, + 0.09320205450057983, + -0.028716111555695534, + 0.1694604903459549, + -0.00520617701113224, + -0.025842033326625824, + -0.08260329067707062, + 0.06074840575456619, + -0.013271425850689411, + 0.053757015615701675, + 0.05105070397257805, + 0.06906425207853317, + 0.0011770090786740184, + -0.06531141698360443, + 0.1297733187675476, + 0.05122879892587662, + -0.07624483853578568, + -0.07589210569858551, + -0.05109146237373352, + -0.05203467234969139, + 0.02747061476111412, + 0.03636185824871063, + -0.0942639708518982, + -0.01957610249519348, + 0.0039090346544981, + -0.004059700295329094, + 0.06686082482337952, + 0.1402718722820282, + 0.0708284005522728, + -0.08142716437578201 + ] + }, + "p244_101.wav": { + "name": "p244", + "embedding": [ + 0.04393080621957779, + 0.07435603439807892, + -0.05854286253452301, + 0.032097429037094116, + -0.057750627398490906, + 0.05548716336488724, + -0.12118790298700333, + 0.12042001634836197, + -0.0008363872766494751, + 0.14400643110275269, + -0.023708384484052658, + 0.12623317539691925, + 0.0017389392014592886, + -0.14117203652858734, + -0.005656491965055466, + 0.025246016681194305, + -0.03841045871376991, + -0.03833971917629242, + -0.05910252407193184, + -0.0404319241642952, + 0.03692815825343132, + 0.05090132728219032, + 0.029159987345337868, + -0.03643464669585228, + 0.022817090153694153, + 0.07085692882537842, + -0.0162968747317791, + 0.025756381452083588, + 0.009590355679392815, + -0.12203177809715271, + -0.03894274681806564, + 0.06515449285507202, + -0.0720425397157669, + 0.024638934060931206, + 0.019399764016270638, + -0.048048362135887146, + 0.002327980473637581, + -0.048224203288555145, + -0.020821284502744675, + 0.0350300669670105, + -0.03278016671538353, + 0.09893735498189926, + 0.014127345755696297, + -0.012538513168692589, + 0.023425765335559845, + 0.005040713120251894, + -0.013049292378127575, + -0.03376048803329468, + -0.09110219776630402, + 0.1761135756969452, + 0.07616430521011353, + -0.027057670056819916, + -0.06762366741895676, + -0.04664966091513634, + 0.06678256392478943, + -0.014770272187888622, + -0.11345554888248444, + -0.04930358752608299, + 0.04347904771566391, + 0.10480742156505585, + -0.030313408002257347, + -0.04478244483470917, + 0.037645209580659866, + 0.11807277798652649, + 0.103485606610775, + 0.040309756994247437, + 0.09568393230438232, + 0.1371174156665802, + -0.03508085012435913, + 0.013373331166803837, + 0.022291868925094604, + 0.09891407191753387, + 0.07263055443763733, + 0.028245192021131516, + 0.023090720176696777, + -0.01891189068555832, + 0.007848791778087616, + -0.06283363699913025, + -0.037548258900642395, + -0.019962536171078682, + 0.026574475690722466, + 0.006854726932942867, + 0.029698016121983528, + 0.06273766607046127, + -0.025400731712579727, + 0.04461083933711052, + 0.0685114860534668, + -0.04776136204600334, + 0.044669076800346375, + 0.021701261401176453, + 0.03225504606962204, + 0.06272798776626587, + -0.12017607688903809, + -0.06843782216310501, + 0.048636823892593384, + 0.017193008214235306, + 0.020065564662218094, + 0.056193627417087555, + 0.049998946487903595, + -0.00976267084479332, + 0.1330414116382599, + 0.01617378182709217, + -0.04352360963821411, + -0.0023975172080099583, + -0.06166123226284981, + 0.14340612292289734, + 0.09357452392578125, + -0.0378553681075573, + 0.036752935498952866, + -0.06734546273946762, + 0.07444983720779419, + 0.019914958626031876, + -0.12749674916267395, + -0.08508291840553284, + 0.023080896586179733, + -0.008569952100515366, + -0.029328078031539917, + 0.1212901622056961, + 0.011001866310834885, + 0.07051713764667511, + 0.10095645487308502, + -0.07959383726119995, + -0.02739454060792923, + -0.015415861271321774, + 0.051321402192115784, + -0.09417974948883057, + 0.05687381699681282, + 0.03739936649799347, + -0.0036201062612235546, + 0.027840476483106613, + 0.09118669480085373, + -0.0037724217399954796, + 0.0061034816317260265, + 0.00661796610802412, + -0.027808792889118195, + 0.017984122037887573, + -0.00478682154789567, + -0.008896744810044765, + 0.02155323326587677, + 0.020121334120631218, + 0.08162852376699448, + -0.050899870693683624, + -0.022332090884447098, + -0.12257926166057587, + 0.041842021048069, + -0.0020697112195193768, + 0.06557897478342056, + -0.024463139474391937, + -0.0031010392121970654, + -0.03318736329674721, + -0.0735674500465393, + 0.008096644654870033, + -0.016462737694382668, + 0.05191255733370781, + -0.019359173253178596, + 0.0039686416275799274, + 0.11881740391254425, + 0.040744598954916, + 0.01764502003788948, + -0.027964893728494644, + -0.028498679399490356, + -0.003936432767659426, + 0.05654461681842804, + -0.0764678567647934, + -0.07045317441225052, + -0.01335081271827221, + 0.013610102236270905, + -0.013680093921720982, + 0.08456757664680481, + 0.05939373001456261, + 0.030316825956106186, + 0.020607996731996536, + -0.052867621183395386, + -0.025318045169115067, + -0.04939018189907074, + -0.05645453929901123, + -0.013354497030377388, + -0.018715478479862213, + -0.0613485649228096, + 0.08285346627235413, + 0.022038612514734268, + 0.07016417384147644, + -0.06262849271297455, + -0.04494304955005646, + -0.08057421445846558, + 0.03565920889377594, + 0.0308663509786129, + -0.038832079619169235, + 0.009409904479980469, + 0.06978203356266022, + -0.007524227257817984, + 0.015855573117733, + 0.06958257406949997, + 0.07760700583457947, + -0.03471839800477028, + 0.018965618684887886, + -0.06736879795789719, + 0.13152381777763367, + 0.08391255140304565, + -0.053618501871824265, + -0.06412506103515625, + -0.025526680052280426, + -0.09217415004968643, + 0.0057884398847818375, + -0.0467953160405159, + -0.007205738686025143, + 0.051461488008499146, + 0.006017627194523811, + -0.10712246596813202, + -0.08681885898113251, + 0.0851973295211792, + -0.08631724119186401, + -0.004221698734909296, + -0.10155054181814194, + 0.03763340413570404, + 0.09219184517860413, + 0.05993299186229706, + -0.042895130813121796, + -0.021885735914111137, + 0.06038403883576393, + 9.364041034132242e-06, + 0.06076393648982048, + 0.08356288820505142, + 0.06483960151672363, + -0.11414799839258194, + -0.02804030105471611, + -0.03811675310134888, + 0.00848240964114666, + -0.028482656925916672, + 0.10550107061862946, + 0.04504585638642311, + -0.035646818578243256, + -0.08085301518440247, + 0.06802998483181, + -0.025425676256418228, + 0.07374214380979538, + 0.019013788551092148, + 0.055566709488630295, + 0.08171863853931427, + -0.07945773005485535, + 0.1155330240726471, + 0.0620589442551136, + -0.04441720247268677, + -0.08999545872211456, + -0.0701604038476944, + -0.014728373847901821, + 0.06278650462627411, + 0.05661192163825035, + -0.08293735980987549, + -0.01895913854241371, + 0.02844253182411194, + -0.009349027648568153, + 0.06700235605239868, + 0.12397964298725128, + 0.08363264799118042, + -0.10710255801677704 + ] + }, + "p244_058.wav": { + "name": "p244", + "embedding": [ + 0.040095459669828415, + 0.08464542031288147, + -0.04939677566289902, + 0.014512901194393635, + -0.07138354331254959, + 0.04491971433162689, + -0.10891199856996536, + 0.1074625551700592, + -0.018529588356614113, + 0.14358967542648315, + -0.04172215983271599, + 0.10718019306659698, + -0.029614493250846863, + -0.1654200255870819, + -0.02470208704471588, + 0.033946696668863297, + -0.061574261635541916, + -0.039167966693639755, + -0.1046236976981163, + -0.057243213057518005, + 0.028788022696971893, + 0.041503019630908966, + 0.023259451612830162, + -0.05123131722211838, + 0.04018116742372513, + 0.07723955810070038, + -0.0037555000744760036, + 0.02745998650789261, + -0.009026124142110348, + -0.08279910683631897, + -0.02577996999025345, + 0.0779109001159668, + -0.07188583165407181, + 0.013400848954916, + 0.02771996334195137, + -0.021952811628580093, + 0.002271291334182024, + -0.02076265588402748, + 0.0015286747366189957, + 0.04080076515674591, + -0.02674764022231102, + 0.09794457256793976, + 0.026061145588755608, + -0.005648459307849407, + 0.024599438533186913, + 0.03318100795149803, + -0.012113397940993309, + -0.05698513612151146, + -0.06834378093481064, + 0.18212305009365082, + 0.06183427572250366, + -0.01667407713830471, + -0.06017722934484482, + -0.0626637190580368, + 0.0802101194858551, + -0.036388546228408813, + -0.12866735458374023, + -0.06929294764995575, + 0.06191838160157204, + 0.11942581832408905, + -0.04503461718559265, + -0.041215017437934875, + 0.01962238922715187, + 0.09320805966854095, + 0.07015824317932129, + 0.05225303769111633, + 0.08624694496393204, + 0.11506983637809753, + -0.020544448867440224, + 0.00987608078867197, + 0.06508006155490875, + 0.0620880052447319, + 0.07603543996810913, + 0.007600646466016769, + 0.034637436270713806, + -0.030395209789276123, + 0.013141512870788574, + -0.046201255172491074, + -0.03336643800139427, + -0.017351767048239708, + 0.0030971807427704334, + 0.01595836877822876, + 0.01205148734152317, + 0.013282045722007751, + -0.017725473269820213, + 0.04133062809705734, + 0.06863003224134445, + -0.03953195735812187, + 0.06554718315601349, + 0.048890337347984314, + 0.024386338889598846, + 0.06082901358604431, + -0.10012871026992798, + -0.047424085438251495, + 0.029217731207609177, + 0.008305085822939873, + 0.021794088184833527, + 0.025527501478791237, + 0.03165813535451889, + -0.013124652206897736, + 0.1059289425611496, + 0.041483789682388306, + -0.03520410507917404, + 0.008428756147623062, + -0.07794594019651413, + 0.15078213810920715, + 0.08974793553352356, + -0.024279996752738953, + 0.027033494785428047, + -0.03267820179462433, + 0.04069007560610771, + 0.03302048146724701, + -0.09919734299182892, + -0.10005587339401245, + 0.004104494582861662, + -0.013532605953514576, + -0.043864574283361435, + 0.09833259880542755, + 0.0065202871337533, + 0.03401154652237892, + 0.12143230438232422, + -0.08350333571434021, + -0.03641325235366821, + 0.0043602604418993, + 0.036070115864276886, + -0.09031931310892105, + 0.029859870672225952, + 0.0739813968539238, + -0.008123692125082016, + 0.0523805245757103, + 0.1155560165643692, + 0.007525917142629623, + 0.018350474536418915, + -0.010702775791287422, + -0.01918228156864643, + 0.022715440019965172, + 0.004538293462246656, + -0.02426518127322197, + 0.06786809116601944, + 0.042829547077417374, + 0.07436146587133408, + -0.02296571619808674, + -0.038298338651657104, + -0.11370620876550674, + 0.04181668907403946, + 0.018801283091306686, + 0.051418814808130264, + -0.03838001936674118, + 0.029144568368792534, + -0.033389121294021606, + -0.07871393859386444, + 0.03047719970345497, + -5.7707540690898895e-05, + 0.07840865850448608, + -0.028981033712625504, + -0.02751855179667473, + 0.16068927943706512, + 0.02838863432407379, + -0.00025691185146570206, + -0.04189702868461609, + -0.016339469701051712, + 0.005008699372410774, + 0.05224251747131348, + -0.08856847137212753, + -0.05894537270069122, + -0.01632559485733509, + 0.04332207143306732, + 0.006242827512323856, + 0.09948636591434479, + 0.08242589235305786, + -0.0016651973128318787, + 0.010041027329862118, + -0.035589877516031265, + 0.0014838525094091892, + -0.03982983157038689, + -0.04284268990159035, + 0.0014124466106295586, + -0.06503404676914215, + -0.05635921657085419, + 0.08021029084920883, + -0.0012482330203056335, + 0.0435648038983345, + -0.05897326022386551, + -0.0940689966082573, + -0.07942241430282593, + 0.04363465681672096, + 0.04206574335694313, + -0.043560825288295746, + 0.022975264117121696, + 0.06940773874521255, + -0.025889672338962555, + 0.037286754697561264, + 0.07076471298933029, + 0.11400671303272247, + -0.05141589790582657, + 0.020602580159902573, + -0.0713539570569992, + 0.09544692933559418, + 0.04542768746614456, + -0.06997442990541458, + -0.04869373142719269, + -0.04131823778152466, + -0.050733186304569244, + 0.016862383112311363, + -0.027418747544288635, + 0.02805482968688011, + 0.057703107595443726, + 0.018549412488937378, + -0.07145245373249054, + -0.10544666647911072, + 0.0726003348827362, + -0.07308027148246765, + 0.007214994169771671, + -0.07264198362827301, + 0.02439333312213421, + 0.06990259885787964, + 0.07494648545980453, + -0.017653556540608406, + 0.008677108213305473, + 0.028631966561079025, + -0.014501434750854969, + 0.033806782215833664, + 0.06531447917222977, + 0.04266134649515152, + -0.06118036061525345, + -0.030454672873020172, + -0.09307092428207397, + 0.03885189816355705, + -0.021546320989727974, + 0.13097772002220154, + 0.020692095160484314, + -0.03433218225836754, + -0.0835191160440445, + 0.04706661030650139, + -0.06663493812084198, + 0.08518781512975693, + 0.05078582465648651, + 0.06582995504140854, + 0.06733830273151398, + -0.04006108641624451, + 0.11541539430618286, + 0.05684829503297806, + -0.03704323619604111, + -0.07099970430135727, + -0.07046829909086227, + -0.04796279966831207, + 0.032388441264629364, + 0.031165868043899536, + -0.0913955569267273, + 0.01884661801159382, + 0.030615055933594704, + -0.02289772219955921, + 0.05372690409421921, + 0.1057821586728096, + 0.08194398880004883, + -0.0843496173620224 + ] + }, + "p244_024.wav": { + "name": "p244", + "embedding": [ + 0.04860005900263786, + 0.13365040719509125, + 0.005188239272683859, + -0.007631541229784489, + -0.06357205659151077, + 0.055444296449422836, + -0.11113158613443375, + 0.14507606625556946, + -0.06605346500873566, + 0.12376834452152252, + -0.09833568334579468, + 0.12805351614952087, + -0.046480391174554825, + -0.13841275870800018, + -0.06650926917791367, + 0.044916536659002304, + -0.04643157869577408, + -0.015450340695679188, + -0.03431691601872444, + -0.03474448248744011, + 0.032083820551633835, + 0.023633794859051704, + 0.04697386175394058, + 0.023828618228435516, + 0.03568379953503609, + 0.0631122812628746, + 0.026003241539001465, + 0.06289685517549515, + 0.04021076858043671, + -0.04751605540513992, + -0.03811714053153992, + 0.09202314168214798, + -0.034220077097415924, + 0.02479376830160618, + 0.05797666311264038, + -0.004366706591099501, + 0.027224576100707054, + -0.06366776674985886, + -0.02344970405101776, + 0.0027259918861091137, + -0.015660934150218964, + 0.07009530067443848, + 0.019623158499598503, + -0.021674981340765953, + 0.025135308504104614, + 0.041232265532016754, + 0.0028540731873363256, + -0.04730714112520218, + -0.10117337852716446, + 0.1489221751689911, + 0.04751132056117058, + -0.007243161555379629, + -0.07903963327407837, + -0.07444322109222412, + 0.1213841661810875, + -0.05554497241973877, + -0.09977951645851135, + -0.024243319407105446, + 0.06540544331073761, + 0.14674149453639984, + -0.03724440559744835, + -0.04374585300683975, + 0.01693914085626602, + 0.11825428158044815, + 0.03569081053137779, + 0.0753612145781517, + 0.08030637353658676, + 0.08412176370620728, + -0.0316772535443306, + 0.027474910020828247, + 0.04578263685107231, + 0.07438791543245316, + 0.018667394295334816, + -0.01057466585189104, + 0.015312567353248596, + -0.004980470519512892, + -0.017349613830447197, + 0.039941322058439255, + -0.030104318633675575, + -0.02378353476524353, + -0.05073578283190727, + 0.020296549424529076, + -0.021932750940322876, + -0.01929684914648533, + -0.02258743718266487, + 0.08814115822315216, + -0.012019251473248005, + -0.003507012501358986, + 0.07939010858535767, + 0.047040652483701706, + -0.003144817193970084, + 0.05297129973769188, + -0.05507722496986389, + -0.0809173434972763, + 0.00025035813450813293, + -0.011652662418782711, + 0.021493054926395416, + 0.07551927119493484, + 0.03094794787466526, + -0.014037019573152065, + 0.11400190740823746, + 0.07999470084905624, + 0.005635857582092285, + 0.015396341681480408, + -0.10169004648923874, + 0.12436876446008682, + 0.08504507690668106, + -0.026727071031928062, + 0.03709007427096367, + -0.027228647843003273, + 0.06766551733016968, + 0.06970846652984619, + -0.12298206239938736, + -0.0971146747469902, + 0.004526240285485983, + 0.02746000699698925, + 0.0027486197650432587, + 0.062490131705999374, + -0.03380702808499336, + 0.019239531829953194, + 0.09373849630355835, + -0.05814457684755325, + -0.05950869992375374, + -0.02160336822271347, + 0.03824774548411369, + -0.05608155205845833, + 0.04353508725762367, + 0.06766485422849655, + -0.003041743068024516, + 0.004225033801048994, + 0.08421509712934494, + 0.00017703957564663142, + -0.0010390699608251452, + 0.04705546796321869, + -0.06358326226472855, + 0.00034183525713160634, + -0.015891849994659424, + -0.002021754626184702, + 0.05134209617972374, + 0.08724097162485123, + 0.04011628031730652, + 0.019229834899306297, + -0.03025737963616848, + -0.08454438298940659, + 0.005993340630084276, + 0.04916848614811897, + 0.05402490124106407, + 0.00048129374044947326, + -0.03917890414595604, + -0.03408196195960045, + -0.03487294539809227, + -0.008320807479321957, + 0.021197954192757607, + 0.08605959266424179, + -0.04811973497271538, + 0.016008159145712852, + 0.10645530372858047, + 0.025218332186341286, + -0.017298437654972076, + -0.06314175575971603, + -0.008154580369591713, + 0.015691498294472694, + 0.03530903533101082, + -0.04360399395227432, + -0.09208467602729797, + 0.010146601125597954, + 0.03526558727025986, + -0.020250951871275902, + 0.06626804172992706, + 0.03982805833220482, + -0.006070274394005537, + 0.04938044771552086, + -0.05812805891036987, + 0.029701484367251396, + -0.10431033372879028, + -0.048345278948545456, + -0.016431819647550583, + -0.014630720019340515, + -0.02587161399424076, + 0.05953620746731758, + 0.030425986275076866, + 0.059347450733184814, + 0.03141079470515251, + -0.0968332439661026, + -0.07510203123092651, + 0.05774034187197685, + 0.07826472818851471, + 0.018633490428328514, + 0.05628128722310066, + 0.06899655610322952, + -0.02497268281877041, + 0.08149556070566177, + 0.07042711228132248, + 0.06955641508102417, + -0.028492186218500137, + 0.0019789652433246374, + -0.060929059982299805, + 0.03403991833329201, + 0.04915456846356392, + -0.13164399564266205, + -0.08483780920505524, + -0.05679689720273018, + -0.040560707449913025, + 0.03440957888960838, + 0.008089478127658367, + 0.02630826272070408, + 0.02569650113582611, + -0.010009543038904667, + -0.08766819536685944, + -0.08839675784111023, + 0.08809170871973038, + -0.062497496604919434, + 0.006235625594854355, + -0.038621556013822556, + 0.032127439975738525, + 0.09276729077100754, + 0.026825709268450737, + 0.0031276263762265444, + -0.006966277491301298, + 0.032421525567770004, + -0.05033433437347412, + -0.026408985257148743, + 0.02409588173031807, + 0.017501119524240494, + -0.06563516706228256, + 0.04499836638569832, + -0.08486517518758774, + 0.07676851749420166, + -0.037436340004205704, + 0.17410025000572205, + -0.008606033399701118, + -0.06391268223524094, + -0.09141229093074799, + 0.018358217552304268, + -0.0684792771935463, + 0.04056498035788536, + 0.03488364443182945, + 0.04328327998518944, + 0.0009061801247298717, + -0.0624275878071785, + 0.12078380584716797, + 0.037144459784030914, + -0.07165496051311493, + -0.07345613092184067, + -0.053707756102085114, + -0.04189889505505562, + 0.007667348720133305, + 0.01936129480600357, + -0.06773543357849121, + -0.029206300154328346, + -0.006783606018871069, + -0.030652347952127457, + 0.10359456390142441, + 0.13664346933364868, + 0.07869520038366318, + -0.10931243747472763 + ] + }, + "p244_365.wav": { + "name": "p244", + "embedding": [ + 0.04112584516406059, + 0.08726230263710022, + 0.00127321295440197, + 0.010671555995941162, + 0.0015711896121501923, + 0.0467485636472702, + -0.12623216211795807, + 0.10142230242490768, + -0.04352802783250809, + 0.13175086677074432, + -0.10391835868358612, + 0.076558917760849, + -0.04221866652369499, + -0.15657715499401093, + -0.05823620781302452, + 0.05103347450494766, + -0.062332674860954285, + -0.04096382483839989, + -0.01970863528549671, + -0.0045085689052939415, + 0.039077937602996826, + 0.03307407349348068, + 0.016010694205760956, + 0.011748049408197403, + 0.0069719599559903145, + 0.050648033618927, + 0.012161587364971638, + 0.04174281284213066, + 0.034639906138181686, + -0.005568390712141991, + 0.0030991919338703156, + 0.09042387455701828, + -0.021874770522117615, + -0.003955637104809284, + 0.039373524487018585, + 0.02128692716360092, + 0.010052254423499107, + -0.06381519883871078, + -0.004180500283837318, + 0.011333816684782505, + -0.0465678907930851, + 0.054415784776210785, + 0.026203203946352005, + -0.0018796678632497787, + 0.024655090644955635, + 0.01858300156891346, + -0.023569587618112564, + -0.04451902583241463, + -0.10099248588085175, + 0.15526244044303894, + 0.08120197057723999, + 0.028176836669445038, + -0.06371336430311203, + -0.04195840656757355, + 0.10417163372039795, + 0.01197050604969263, + -0.08476345986127853, + -0.04097287356853485, + 0.06222613528370857, + 0.16537320613861084, + -0.02098729833960533, + -0.032440803945064545, + 0.025616241618990898, + 0.11778637766838074, + 0.025889577344059944, + 0.07177326828241348, + 0.09140962362289429, + 0.08379519730806351, + 0.011768057942390442, + 0.01607573963701725, + 0.06931505352258682, + 0.04476068168878555, + 0.03727860748767853, + -0.03985612094402313, + 0.016967138275504112, + 0.0008534220978617668, + -0.030293578281998634, + 0.018324896693229675, + -0.023679357022047043, + -0.046116020530462265, + -0.009451212361454964, + 0.005411647260189056, + -0.012021057307720184, + 0.030059784650802612, + -0.014583633281290531, + 0.037205930799245834, + 0.009698644280433655, + -0.01826796494424343, + 0.07759881764650345, + 0.0224064439535141, + 0.002851322293281555, + 0.02503081224858761, + -0.05489741638302803, + -0.08285070955753326, + 0.014180326834321022, + 0.008382025174796581, + -0.002772320993244648, + 0.061474066227674484, + 0.05221863090991974, + -0.01393075566738844, + 0.10943654924631119, + 0.02581770345568657, + -0.00017723068594932556, + 0.007316095754504204, + -0.10933838039636612, + 0.10973824560642242, + 0.0835016518831253, + -0.03164515644311905, + 0.020785687491297722, + -0.02924453467130661, + 0.04409591853618622, + 0.0824899896979332, + -0.13250473141670227, + -0.05412771552801132, + 0.04982062429189682, + 0.031956009566783905, + 6.668455898761749e-05, + 0.09407924860715866, + -0.00658376095816493, + 0.0060056885704398155, + 0.10368411988019943, + -0.07001943141222, + -0.06153719499707222, + -0.04400152340531349, + 0.04230962693691254, + -0.05268959701061249, + 0.050423964858055115, + 0.04410075768828392, + 0.0024622040800750256, + -0.025723040103912354, + 0.06466230750083923, + -0.005422959104180336, + -0.009957254864275455, + -0.027571795508265495, + -0.012881789356470108, + 0.06236990541219711, + -0.0556793287396431, + -0.0014831596054136753, + 0.012708916328847408, + 0.04171910881996155, + 0.03606502339243889, + 0.030228327959775925, + -0.03435101360082626, + -0.07704522460699081, + 0.005444097798317671, + 0.039757706224918365, + 0.06681306660175323, + -0.006908778101205826, + -0.043528519570827484, + -0.04595840349793434, + -0.012746384367346764, + -0.0036422049161046743, + -0.02871209941804409, + 0.08052375167608261, + 0.015930969268083572, + 0.010621496476233006, + 0.09187150746583939, + -0.027965731918811798, + -6.091967225074768e-05, + -0.040724802762269974, + -0.017955511808395386, + 0.031000010669231415, + 0.022714396938681602, + -0.06409069150686264, + -0.07308612763881683, + 0.016763221472501755, + 0.010439878329634666, + -0.009144148789346218, + 0.022250358015298843, + 0.018423013389110565, + 0.007613107096403837, + 0.0018019573763012886, + -0.062012240290641785, + 0.01793850213289261, + -0.09877065569162369, + -0.051235560327768326, + -0.0012287469580769539, + -0.024206828325986862, + -0.003313561202958226, + 0.07147953659296036, + 0.008255045861005783, + 0.025920119136571884, + -0.009584838524460793, + -0.09076570719480515, + -0.060340553522109985, + 0.08660906553268433, + 0.08346366137266159, + 0.004642804153263569, + 0.03309104964137077, + 0.050737038254737854, + -0.005033697001636028, + 0.03554762527346611, + 0.030979547649621964, + 0.09034738689661026, + -0.031212197616696358, + -0.03361131250858307, + -0.043710581958293915, + 0.05813612416386604, + 0.06395599246025085, + -0.09340469539165497, + -0.060637347400188446, + -0.03221616521477699, + -0.06122324615716934, + 0.031303949654102325, + -0.021684149280190468, + 0.010560864582657814, + 0.018786268308758736, + -0.050503358244895935, + -0.10379624366760254, + -0.08728988468647003, + 0.057631514966487885, + -0.05874260142445564, + -0.02306721732020378, + -0.07183223962783813, + 0.04564748331904411, + 0.08136852085590363, + 0.012906410731375217, + -0.01273279171437025, + 0.005995762534439564, + 0.005747789517045021, + -0.05391283705830574, + -0.03464343398809433, + 0.012833112850785255, + 0.028973987326025963, + -0.09113708138465881, + 0.005296451970934868, + -0.07694781571626663, + 0.06952116638422012, + -0.0602588877081871, + 0.10060738027095795, + -0.008128389716148376, + -0.0403563529253006, + -0.09242768585681915, + 0.01637028530240059, + -0.00890114065259695, + 0.06383129954338074, + 0.031996216624975204, + 0.03165358304977417, + 0.02813158743083477, + -0.06673400849103928, + 0.12569426000118256, + 0.0421484038233757, + -0.018706554546952248, + -0.07676831632852554, + -0.028314810246229172, + -0.0475817546248436, + 0.005302261561155319, + -0.00678743002936244, + -0.05808396637439728, + -0.011384803801774979, + 0.004848166834563017, + -0.016317343339323997, + 0.06753429025411606, + 0.11009517312049866, + 0.03625589236617088, + -0.1056508868932724 + ] + }, + "p244_031.wav": { + "name": "p244", + "embedding": [ + -0.0031721927225589752, + 0.08524402976036072, + -0.03624449670314789, + 0.007653478533029556, + -0.07755075395107269, + 0.013027937151491642, + -0.07759065181016922, + 0.10879097133874893, + -0.06021568924188614, + 0.13402292132377625, + -0.03959908336400986, + 0.11754312366247177, + -0.05208691954612732, + -0.09908919781446457, + 0.006137712858617306, + 0.05045641213655472, + -0.013862957246601582, + -0.030133042484521866, + -0.021975351497530937, + -0.06501494348049164, + 0.03146013617515564, + 0.036248765885829926, + 0.03857751190662384, + -0.030518101528286934, + 0.015737639740109444, + 0.09964320063591003, + -0.014124457724392414, + -0.004658829420804977, + -0.03618874400854111, + -0.09830702841281891, + -0.0565132275223732, + 0.04885271191596985, + -0.04080817103385925, + -0.021246083080768585, + 0.011830486357212067, + -0.023814676329493523, + -0.008890162222087383, + -0.024142621085047722, + 0.0032822154462337494, + 0.0011559776030480862, + -0.06783229112625122, + 0.07031477987766266, + 0.008366720750927925, + -0.04857456684112549, + 0.037570614367723465, + -0.02686663344502449, + -0.022127103060483932, + 0.004770314320921898, + -0.05465042591094971, + 0.12126389145851135, + 0.07148054242134094, + 0.0013978746719658375, + -0.052000582218170166, + -0.038945917040109634, + 0.0877581313252449, + -0.0012853490188717842, + -0.1108427494764328, + -0.0606062151491642, + 0.018383409827947617, + 0.09237228333950043, + -0.01754496805369854, + -0.022982580587267876, + 0.04116424173116684, + 0.08166461437940598, + 0.021070770919322968, + 0.05902737379074097, + 0.06914369761943817, + 0.06157761067152023, + 0.0006750235334038734, + -0.005168559029698372, + 0.0316203273832798, + 0.08342833817005157, + 0.03138510510325432, + 0.0012933446560055017, + 0.01936165615916252, + -0.037838663905858994, + -0.024873023852705956, + -0.03308756649494171, + -0.021764367818832397, + -0.06759238988161087, + -0.05789382755756378, + 0.0017544161528348923, + 0.014489218592643738, + -0.027200797572731972, + -0.005004999227821827, + 0.040076881647109985, + 0.08280247449874878, + -0.03549404442310333, + 0.07287822663784027, + 0.028236713260412216, + 0.005485543981194496, + 0.037038326263427734, + -0.06721062958240509, + -0.01733156479895115, + -0.008239630609750748, + 0.013282595202326775, + 0.060987960547208786, + 0.07531580328941345, + 0.028587471693754196, + 0.01072730217128992, + 0.07777917385101318, + 0.04216352105140686, + 0.029492966830730438, + -0.013710791245102882, + -0.08731023967266083, + 0.09865622222423553, + 0.11385050415992737, + -0.028927259147167206, + 0.02764062210917473, + -0.017414452508091927, + 0.0449213832616806, + 0.01242845319211483, + -0.07170018553733826, + -0.07027943432331085, + -0.04182536154985428, + -0.015742875635623932, + -0.003213199321180582, + 0.09362383186817169, + 0.019830595701932907, + 0.023868106305599213, + 0.09431757032871246, + -0.09610351920127869, + -0.10151641815900803, + -0.04136377573013306, + 0.03665371984243393, + -0.08635959774255753, + 0.0752180740237236, + 0.09716824442148209, + -0.0036956556141376495, + 0.05878785252571106, + 0.06644292175769806, + 0.03405730798840523, + 0.04098832607269287, + 0.029591821134090424, + -0.06001533195376396, + -0.02920944057404995, + -0.008939823135733604, + 0.014368940144777298, + 0.08213324844837189, + 0.05014430731534958, + 0.08771958202123642, + -0.021660495549440384, + 0.034290019422769547, + -0.07653642445802689, + 0.01075804140418768, + 0.035639986395835876, + -0.006889358162879944, + -0.03735308349132538, + -0.034836456179618835, + 0.0062777139246463776, + -0.0801110491156578, + -0.03233237937092781, + -0.013735095970332623, + 0.0917508453130722, + -0.0327858105301857, + 0.01868968829512596, + 0.1274670660495758, + 0.05708180367946625, + -0.03218041732907295, + -0.04901830852031708, + -0.024625025689601898, + 0.0012115312274545431, + 0.04969457909464836, + -0.10093742609024048, + -0.08161555975675583, + -0.043133363127708435, + 0.033579617738723755, + 0.019424431025981903, + 0.06229546666145325, + 0.07398265600204468, + 0.015393667854368687, + 0.025826681405305862, + -0.03185419365763664, + 0.05849052220582962, + -0.03296176344156265, + -0.04562387615442276, + -0.0325213260948658, + -0.09356756508350372, + -0.04916716739535332, + 0.0909791886806488, + -0.001040048897266388, + 0.05649947375059128, + -0.0184773076325655, + -0.06064695864915848, + -0.08358320593833923, + 0.011102572083473206, + 0.02335767261683941, + -0.025431666523218155, + 0.030378557741642, + 0.04727745056152344, + -0.06678543984889984, + -0.004855260252952576, + 0.042953010648489, + 0.09259198606014252, + -0.04301677271723747, + -0.0035032983869314194, + -0.05748031288385391, + 0.06704645603895187, + 0.09279294312000275, + -0.08104707300662994, + -0.03734207525849342, + -0.10613393038511276, + -0.026010671630501747, + 0.03861268609762192, + -0.023124318569898605, + 0.005864271894097328, + -0.007030686363577843, + 0.011617453768849373, + -0.06166680157184601, + -0.0882810652256012, + 0.09725643694400787, + -0.03475767746567726, + 0.011090045794844627, + -0.06370721757411957, + 0.019157353788614273, + 0.019455373287200928, + 0.06488795578479767, + -0.039806053042411804, + 0.023175522685050964, + 0.04877842217683792, + -6.431154906749725e-05, + 0.06412075459957123, + 0.08830168098211288, + 0.0709967091679573, + 0.01203211024403572, + -0.035194747149944305, + -0.08956709504127502, + 0.04621568322181702, + -0.027156643569469452, + 0.12659144401550293, + 0.008517014794051647, + -0.03722283989191055, + -0.09492410719394684, + 0.03638170287013054, + -0.008441217243671417, + 0.0255669504404068, + 0.07092460989952087, + 0.06971216946840286, + 0.02679571323096752, + -0.053276143968105316, + 0.09300364553928375, + 0.05749564245343208, + -0.0035181809216737747, + -0.03821427375078201, + -0.03906550258398056, + -0.05522899329662323, + 0.017660778015851974, + 0.007254130207002163, + -0.0853128731250763, + 0.039259783923625946, + -0.005107475910335779, + 0.037499185651540756, + 0.09226663410663605, + 0.0829063355922699, + 0.06584793329238892, + -0.09056061506271362 + ] + }, + "p244_245.wav": { + "name": "p244", + "embedding": [ + 0.040469616651535034, + 0.06697149574756622, + -0.028536299243569374, + 0.03860078006982803, + -0.03649842366576195, + 0.08415406197309494, + -0.13170062005519867, + 0.1127922534942627, + -0.03434142842888832, + 0.13944363594055176, + -0.048680078238248825, + 0.10478870570659637, + 0.002407509833574295, + -0.1726829707622528, + -0.03935525566339493, + 0.0237045306712389, + -0.0475279837846756, + -0.009100881405174732, + -0.0736503005027771, + -0.02344600111246109, + 0.060068707913160324, + 0.03575403243303299, + 0.02900128997862339, + -0.04906942695379257, + -0.0032114554196596146, + 0.04482799023389816, + -0.012749578803777695, + 0.03877810016274452, + 0.01054377667605877, + -0.07627420872449875, + -0.02277340739965439, + 0.11499439179897308, + -0.048417653888463974, + 0.026249002665281296, + 0.040331415832042694, + -0.006751219276338816, + -0.017194421961903572, + -0.04119975119829178, + -0.014180649071931839, + 0.01706862263381481, + -0.02906564436852932, + 0.05582103133201599, + 0.020991722121834755, + -0.0034312624484300613, + 0.06332585960626602, + -0.015573405660688877, + -0.039775263518095016, + -0.024358276277780533, + -0.08939310908317566, + 0.157721146941185, + 0.06292953342199326, + -0.010863220319151878, + -0.07574648410081863, + -0.06337282061576843, + 0.09160132706165314, + -0.012078986503183842, + -0.13812774419784546, + -0.026275936514139175, + 0.07188798487186432, + 0.1630236804485321, + -0.023256924003362656, + -0.03001389466226101, + 0.03802190348505974, + 0.09937144815921783, + 0.05001205578446388, + 0.08253724873065948, + 0.09962158650159836, + 0.1048799455165863, + -0.007802274543792009, + 0.02256222814321518, + 0.027724727988243103, + 0.0760016068816185, + 0.06456547975540161, + -0.007335794623941183, + 0.04875495657324791, + -0.005384575575590134, + 0.004458636976778507, + -0.021884478628635406, + -0.04839785024523735, + -0.01384691521525383, + 0.01243191584944725, + 0.005546243861317635, + 0.032536011189222336, + 0.02778775244951248, + -0.05343516543507576, + 0.040348172187805176, + 0.03786475956439972, + -0.01819605566561222, + 0.04128112643957138, + 0.060705363750457764, + 0.035927243530750275, + 0.04794657230377197, + -0.07246753573417664, + -0.0977635383605957, + 0.021170837804675102, + 0.01245868019759655, + 0.01223048660904169, + 0.045533470809459686, + 0.028808288276195526, + -0.0068528070114552975, + 0.09040618687868118, + 0.037028685212135315, + -0.03731880709528923, + 0.024439087137579918, + -0.08863583207130432, + 0.11545675992965698, + 0.10208885371685028, + -0.011238603852689266, + 0.03215021640062332, + -0.06371717154979706, + 0.071348175406456, + 0.057960424572229385, + -0.1159331202507019, + -0.07033968716859818, + 0.0311172716319561, + 0.008666956797242165, + -0.00534119363874197, + 0.1311578005552292, + 0.013315784744918346, + 0.02748023346066475, + 0.09390349686145782, + -0.07587197422981262, + -0.033088281750679016, + -0.023208852857351303, + 0.04134207218885422, + -0.06593947857618332, + 0.04860245808959007, + 0.014203306287527084, + -0.00037322891876101494, + -0.003943283576518297, + 0.07663953304290771, + -0.020262496545910835, + 0.021513596177101135, + 0.007742593064904213, + -0.047884151339530945, + 0.033850912004709244, + -0.02896062284708023, + -2.3963861167430878e-05, + 0.042762577533721924, + 0.03897835686802864, + 0.063753642141819, + -0.02734399400651455, + -0.0418197363615036, + -0.10401983559131622, + 0.01063578762114048, + 0.02953163906931877, + 0.06402745097875595, + -0.014130592346191406, + 0.0007553929463028908, + -0.03305567055940628, + -0.07836858928203583, + 0.05484578758478165, + -0.04186864569783211, + 0.07789556682109833, + 0.0054706912487745285, + -0.011557930149137974, + 0.09604483097791672, + 0.0058167120441794395, + 0.0031894436106085777, + -0.039714790880680084, + -0.023130377754569054, + 0.00124570750631392, + 0.041653916239738464, + -0.08527734875679016, + -0.054195620119571686, + -0.006153625901788473, + 0.023451585322618484, + -0.016231298446655273, + 0.04577047750353813, + 0.0631980374455452, + 0.010974802076816559, + 0.02405364438891411, + -0.06229448318481445, + -0.0193592868745327, + -0.1025584489107132, + -0.06289488077163696, + -0.006051839794963598, + -0.047883838415145874, + -0.009523879736661911, + 0.08666342496871948, + 0.024977881461381912, + 0.01414379384368658, + -0.03422355651855469, + -0.06939958781003952, + -0.08586375415325165, + 0.05577857419848442, + 0.04572942480444908, + -0.006547700613737106, + 0.0334157794713974, + 0.05490213632583618, + -0.02856912463903427, + 0.06284814327955246, + 0.07645009458065033, + 0.08860714733600616, + -0.031002987176179886, + 0.009740835055708885, + -0.08953236043453217, + 0.1090899184346199, + 0.10271036624908447, + -0.05937965214252472, + -0.0976703017950058, + -0.009388644248247147, + -0.08970456570386887, + 0.027566464617848396, + -0.054483138024806976, + -0.015807637944817543, + 0.06063133478164673, + -0.006865249015390873, + -0.1236935406923294, + -0.08057098090648651, + 0.09565722942352295, + -0.07615500688552856, + -0.013083500787615776, + -0.07414872199296951, + 0.0373181477189064, + 0.08579879254102707, + 0.01893925666809082, + -0.04318736121058464, + 0.0015953457914292812, + 0.06155230849981308, + -0.05155723914504051, + 0.009965279139578342, + 0.03288400173187256, + 0.023278342559933662, + -0.10208860784769058, + -0.01829860359430313, + -0.06304147094488144, + 0.008918233215808868, + -0.05091467499732971, + 0.1172068864107132, + 0.010979154147207737, + -0.056741323322057724, + -0.05618629604578018, + 0.07545953243970871, + -0.022234296426177025, + 0.05180518701672554, + 0.04076996445655823, + 0.08367861807346344, + 0.04136915132403374, + -0.09157460927963257, + 0.10898593068122864, + 0.030023545026779175, + -0.030543768778443336, + -0.09345605224370956, + -0.03846116364002228, + -0.043233878910541534, + 0.02639087289571762, + 0.017378129065036774, + -0.0801430344581604, + -0.003115958534181118, + 0.0249668937176466, + -0.006593803409487009, + 0.04361836239695549, + 0.12243619561195374, + 0.046990104019641876, + -0.10784579813480377 + ] + }, + "p244_219.wav": { + "name": "p244", + "embedding": [ + 0.07222731411457062, + 0.020960157737135887, + -0.012612464837729931, + -0.010866774246096611, + -0.024798311293125153, + 0.041596509516239166, + -0.12056693434715271, + 0.1051354855298996, + -0.014153889380395412, + 0.07093960791826248, + -0.0833030492067337, + 0.09026588499546051, + -0.0006825346499681473, + -0.11566475033760071, + -0.04158276319503784, + 0.027302339673042297, + -0.015957005321979523, + -0.016128556802868843, + -0.06023886427283287, + -0.022953743115067482, + 0.013349421322345734, + 0.0479513481259346, + 0.01142415963113308, + -0.0032521607354283333, + 0.026839502155780792, + 0.0386260524392128, + -0.009299049153923988, + 0.010715622454881668, + 0.002526539145037532, + 0.016378700733184814, + 0.024460837244987488, + 0.07257473468780518, + -0.03677280619740486, + -0.0036418421659618616, + 0.041019268333911896, + 0.01662302576005459, + 0.009967396035790443, + -0.09088870882987976, + -0.026297269389033318, + 0.029302295297384262, + -0.05176599323749542, + 0.07723300158977509, + 0.06828534603118896, + -0.012409724295139313, + 0.010292649269104004, + 0.011088041588664055, + 0.0020930839236825705, + -0.05703490227460861, + -0.11804747581481934, + 0.16962739825248718, + -0.0030464492738246918, + 0.036971334367990494, + -0.12387686967849731, + -0.005087150260806084, + 0.0691189244389534, + -0.01608886942267418, + -0.04239609092473984, + -0.04493209347128868, + 0.03722387179732323, + 0.12413974851369858, + 0.00318712554872036, + -0.04723324626684189, + 0.018990851938724518, + 0.06539860367774963, + 0.04080486670136452, + 0.0038003958761692047, + 0.13416001200675964, + 0.10878852009773254, + -0.01956210285425186, + 0.028149627149105072, + 0.0668376013636589, + 0.03167200833559036, + 0.036696452647447586, + -0.014818298630416393, + 0.013944604434072971, + -0.02147645317018032, + -0.02467886172235012, + 0.011683049611747265, + -0.027359914034605026, + -0.03582581877708435, + 0.009972562082111835, + 0.011266171932220459, + 0.016464529559016228, + 0.07649891078472137, + -0.06265327334403992, + 0.05017147213220596, + 0.030588701367378235, + -0.0023483335971832275, + 0.06914664804935455, + 0.07247161120176315, + -0.005590131971985102, + 0.0004338361322879791, + -0.05602840334177017, + -0.08998550474643707, + -0.005046145990490913, + -0.00946731586009264, + 0.04419659078121185, + 0.02627626061439514, + 0.03161316365003586, + -0.0028024488128721714, + 0.09361158311367035, + 0.007027469575405121, + 0.004248812794685364, + -0.014038534834980965, + -0.06931654363870621, + 0.09949930012226105, + 0.1126985251903534, + -0.01706080138683319, + 0.015995021909475327, + -0.04667337238788605, + 0.007100168615579605, + 0.04082728177309036, + -0.07544156163930893, + -0.042587485164403915, + 0.05652504414319992, + 0.031760238111019135, + 0.06085653230547905, + 0.11034698784351349, + 0.01021426822990179, + 0.023538703098893166, + 0.05772740766406059, + -0.07498112320899963, + -0.025298113003373146, + 0.01985420659184456, + 0.014938198029994965, + -0.01102566346526146, + 0.01983753964304924, + 0.0340501107275486, + 0.030473582446575165, + -0.02773580327630043, + 0.06282347440719604, + 0.011202976107597351, + 0.0073677608743309975, + -0.05712639167904854, + 0.04998690262436867, + 0.09543541073799133, + 0.026846786960959435, + -0.02943497709929943, + 0.05854041129350662, + 0.08381514251232147, + 0.02618376538157463, + 0.055659547448158264, + -0.05341917276382446, + -0.10958400368690491, + -0.005204768851399422, + 0.049045201390981674, + 0.06588643789291382, + -0.05262218043208122, + -0.024723384529352188, + -0.06857429444789886, + -0.01420474611222744, + 0.005946789868175983, + 0.018610086292028427, + 0.06461013853549957, + 0.03411216288805008, + -0.013558970764279366, + 0.0823804959654808, + -0.02489832043647766, + 0.022905703634023666, + -0.017179548740386963, + 0.01042818184942007, + 0.009969260543584824, + 0.04411905258893967, + -0.011171195656061172, + -0.07573098689317703, + 0.0016736872494220734, + 0.0069807711988687515, + -0.01731184870004654, + 0.01400594413280487, + 0.032033585011959076, + -0.03228658437728882, + 0.003496539546176791, + -0.10312718152999878, + 0.031407810747623444, + -0.09921270608901978, + -0.004203546792268753, + 0.04617861658334732, + -0.030386850237846375, + -0.0023897187784314156, + 0.09489292651414871, + 0.022600259631872177, + 0.0468139722943306, + -0.025521378964185715, + -0.09814317524433136, + -0.01159774698317051, + 0.049467772245407104, + 0.061336699873209, + -0.04028693586587906, + 0.010425148531794548, + 0.024396009743213654, + 0.03187078982591629, + 0.03316335380077362, + 0.05949288606643677, + 0.050487831234931946, + -0.06617512553930283, + -0.05275246128439903, + -0.005630879662930965, + 0.11891871690750122, + 0.014252698980271816, + -0.062019020318984985, + -0.04791417717933655, + -0.009605512954294682, + -0.030403906479477882, + -0.012217089533805847, + -0.0018911436200141907, + 0.02707720547914505, + 0.05189976468682289, + -0.03051159903407097, + -0.1098608449101448, + -0.06041586399078369, + 0.00713726133108139, + -0.055069535970687866, + 0.014702294021844864, + -0.0674569383263588, + 0.017536701634526253, + 0.09175148606300354, + 0.007593287155032158, + 0.015194819308817387, + -0.022600969299674034, + -0.04721808433532715, + -0.06713007390499115, + -0.060297027230262756, + -0.011572282761335373, + 0.02616897039115429, + -0.0563252717256546, + -0.015114138834178448, + -0.052414096891880035, + 0.07349498569965363, + -0.023053035140037537, + 0.09905221313238144, + 0.026766197755932808, + -0.0525803379714489, + -0.06694452464580536, + -0.02237970568239689, + -0.030701957643032074, + 0.06547613441944122, + 0.05125664174556732, + 0.014116205275058746, + 0.0268840454518795, + -0.04486292600631714, + 0.08183442056179047, + 0.0683550089597702, + -0.054693207144737244, + -0.06583307683467865, + -0.02677665464580059, + 0.002136124297976494, + 0.025869105011224747, + 0.0006372611969709396, + -0.0019800327718257904, + 0.03802599385380745, + 0.015055319294333458, + -0.021273203194141388, + 0.04764735698699951, + 0.0814167708158493, + 0.06924223154783249, + -0.09193402528762817 + ] + }, + "p244_046.wav": { + "name": "p244", + "embedding": [ + 0.04791818931698799, + 0.08609864115715027, + -0.02030625194311142, + 0.019749164581298828, + -0.04697047173976898, + 0.06421241909265518, + -0.1733590066432953, + 0.14996123313903809, + -0.036069706082344055, + 0.14066368341445923, + -0.06150658428668976, + 0.0978202074766159, + -0.026696739718317986, + -0.18999455869197845, + 0.00092223787214607, + 0.058914393186569214, + -0.005148790776729584, + -0.037921808660030365, + -0.006316957529634237, + -0.015434525907039642, + 0.023458244279026985, + 0.021961109712719917, + -0.008580186404287815, + 0.013651471585035324, + 0.03340781107544899, + 0.05684586986899376, + -0.029509807005524635, + 0.003958610817790031, + -0.01880345493555069, + -0.00290899770334363, + -0.026967283338308334, + 0.1127498671412468, + -0.06037798523902893, + -0.00849539041519165, + 0.06841224431991577, + -0.007149490527808666, + -0.03532452508807182, + -0.06844106316566467, + -0.0024724407121539116, + -0.021227112039923668, + -0.07278308272361755, + 0.0775364339351654, + 0.041226793080568314, + -0.013608792796730995, + 0.039751432836055756, + 0.024538526311516762, + 0.008911735378205776, + -0.03718043863773346, + -0.0983007401227951, + 0.1237051710486412, + 0.06161168962717056, + -0.005780732724815607, + -0.07843081653118134, + -0.03526226058602333, + 0.09053707867860794, + 0.005079975351691246, + -0.09155043959617615, + -0.05482185259461403, + 0.09161026030778885, + 0.1439078152179718, + -0.03793584555387497, + -0.03414825350046158, + 0.023337747901678085, + 0.12157924473285675, + 0.05672366917133331, + 0.09753498435020447, + 0.05818276107311249, + 0.1317387819290161, + -0.021914232522249222, + 0.007747824303805828, + 0.05691039562225342, + 0.036855340003967285, + 0.04286675155162811, + -0.044416047632694244, + 0.014036049135029316, + -0.011720127426087856, + -0.022281821817159653, + -0.0031427089124917984, + -0.02866743877530098, + -0.02997453510761261, + -0.007567734457552433, + -0.01350860670208931, + -0.002449492923915386, + 0.04129207879304886, + -0.02476903423666954, + 0.02982398308813572, + 0.09159794449806213, + -0.0196663960814476, + 0.08686796575784683, + 0.04026409238576889, + 0.00786940474063158, + 0.06666909158229828, + -0.11174146831035614, + -0.05790012702345848, + 0.05675750970840454, + -0.007265503518283367, + 0.002614246681332588, + 0.07997490465641022, + 0.04901735484600067, + -0.009443875402212143, + 0.12860631942749023, + 0.022172836586833, + 0.006866768002510071, + 0.036836639046669006, + -0.09122829139232635, + 0.14913401007652283, + 0.05719463527202606, + -0.04908089339733124, + 0.04208863526582718, + -0.06420233845710754, + 0.04331347718834877, + 0.07234324514865875, + -0.13189789652824402, + -0.04517822712659836, + 0.054003894329071045, + 0.012185444124042988, + -0.04223601892590523, + 0.15393370389938354, + 0.008404126390814781, + 0.014087095856666565, + 0.10197106748819351, + -0.08806939423084259, + -0.07262252271175385, + -0.019862279295921326, + 0.04963568598031998, + -0.09022919833660126, + 0.0740722194314003, + 0.06498444825410843, + -0.004559494089335203, + 0.021265864372253418, + 0.07214614748954773, + -0.0029693455435335636, + -0.001893337583169341, + -0.009868279099464417, + -0.020660530775785446, + 0.03809455782175064, + -0.015640880912542343, + 0.01762366108596325, + 0.005972175393253565, + 0.005791465751826763, + 0.05788028985261917, + -0.004773234482854605, + 0.006649308372288942, + -0.10859546065330505, + 0.006629674695432186, + 0.04130848869681358, + 0.10004925727844238, + -0.01395219936966896, + -0.02369247004389763, + -0.04772362858057022, + -0.07501162588596344, + 0.0024065510369837284, + -0.02374560758471489, + 0.07877032458782196, + 0.005498568993061781, + 0.0076546743512153625, + 0.10204358398914337, + 0.04980762302875519, + 0.027168525382876396, + -0.06702670454978943, + -0.022298963740468025, + 0.008537614718079567, + 0.062157463282346725, + -0.09259136021137238, + -0.06668514013290405, + -0.021348848938941956, + 0.028708118945360184, + -0.027795374393463135, + 0.0534653477370739, + 0.04086209088563919, + 0.04209458455443382, + 0.012112114578485489, + -0.08924613893032074, + 0.02957664057612419, + -0.0890149474143982, + -0.06426816433668137, + -0.01918785274028778, + -0.0034944163635373116, + -0.02150624617934227, + 0.0808963030576706, + 0.014248626306653023, + 0.03842344135046005, + -0.03283168375492096, + -0.05696577578783035, + -0.07742127776145935, + 0.045184046030044556, + 0.059112273156642914, + -0.04070518910884857, + 0.02882145345211029, + 0.04365237057209015, + -0.04898493364453316, + 0.01126204151660204, + 0.06374762952327728, + 0.10832351446151733, + -0.029205352067947388, + 0.028193579986691475, + -0.05941461771726608, + 0.10252612829208374, + 0.0975145474076271, + -0.08362990617752075, + -0.08715152740478516, + -0.020395338535308838, + -0.04796089231967926, + 0.013318775221705437, + -0.03955643251538277, + -0.0023355367593467236, + 0.0001646681921556592, + -0.023714236915111542, + -0.09558136016130447, + -0.09607821702957153, + 0.06602247059345245, + -0.07804249227046967, + 0.004021617118269205, + -0.11487875133752823, + 0.05909181013703346, + 0.07432693243026733, + 0.03395532816648483, + -0.05898323655128479, + -0.03330725058913231, + 0.04996313899755478, + -0.017530035227537155, + 0.025102373212575912, + 0.06493964791297913, + 0.04012791067361832, + -0.1265983283519745, + -0.016959384083747864, + -0.05619068816304207, + 0.08316856622695923, + -0.04807935655117035, + 0.15506158769130707, + 0.024122335016727448, + -0.04619833081960678, + -0.07194448262453079, + 0.017747873440384865, + 0.024276399984955788, + 0.04009713977575302, + 0.019906984642148018, + 0.06824712455272675, + 0.04056765139102936, + -0.036776453256607056, + 0.10655753314495087, + 0.036514878273010254, + -0.009652627632021904, + -0.05594159662723541, + -0.04375306889414787, + -0.04857981204986572, + 0.030800441280007362, + 0.00521886209025979, + -0.12298768013715744, + -0.022811580449342728, + 0.046436429023742676, + 0.0037898181471973658, + 0.06626251339912415, + 0.13355503976345062, + 0.06465938687324524, + -0.12205636501312256 + ] + }, + "p244_300.wav": { + "name": "p244", + "embedding": [ + 0.049968041479587555, + 0.09801331162452698, + 0.01460002176463604, + -0.005377164110541344, + -0.0104905404150486, + 0.07790542393922806, + -0.1693437546491623, + 0.1378060132265091, + -0.05347730219364166, + 0.1628655195236206, + -0.0824340283870697, + 0.08920694887638092, + -0.012255407869815826, + -0.2125743329524994, + -0.04178578406572342, + 0.03335980325937271, + -0.04350697249174118, + 0.005362793803215027, + -0.042598895728588104, + -0.02142670378088951, + 0.03858514130115509, + 0.03654477000236511, + 0.0021675927564501762, + -0.00543582160025835, + 0.02252454124391079, + 0.04389685019850731, + -0.011978646740317345, + 0.029601523652672768, + -0.009745283983647823, + -0.042751483619213104, + -0.024842703714966774, + 0.13371127843856812, + -0.04272344708442688, + 0.02748459205031395, + 0.07552188634872437, + -0.002824552357196808, + -0.01807442493736744, + -0.043116770684719086, + -0.013014223426580429, + 0.014325144700706005, + -0.04472476989030838, + 0.05777670443058014, + 0.024044761434197426, + 0.017070749774575233, + 0.057123128324747086, + 0.039233241230249405, + 0.011941354721784592, + -0.04855477064847946, + -0.07187508046627045, + 0.14665763080120087, + 0.06575113534927368, + -0.007841753773391247, + -0.06874606758356094, + -0.0667777806520462, + 0.10466133803129196, + -0.021709300577640533, + -0.11968672275543213, + -0.015139508992433548, + 0.09630942344665527, + 0.1690642237663269, + -0.03314473479986191, + -0.04365881532430649, + 0.02511690929532051, + 0.11127861589193344, + 0.0002902494743466377, + 0.11083859205245972, + 0.07260331511497498, + 0.08234839141368866, + -0.005470833275467157, + 0.017871864140033722, + 0.03815460950136185, + 0.03642918914556503, + 0.06226321682333946, + -0.061770565807819366, + 0.027827410027384758, + 0.0015827817842364311, + -0.031456634402275085, + 0.010313575156033039, + -0.02652036026120186, + 2.4028937332332134e-05, + -0.01255882903933525, + -0.0021326979622244835, + -0.006473037879914045, + 0.006419507786631584, + -0.03508232906460762, + 0.015024224296212196, + 0.026230130344629288, + -0.012025833129882812, + 0.07365226745605469, + 0.06338165700435638, + 0.03642941638827324, + 0.053670480847358704, + -0.06668940931558609, + -0.08650785684585571, + 0.03812621161341667, + -0.002086791442707181, + -0.0179511196911335, + 0.0647687315940857, + 0.05084738880395889, + -0.010798136703670025, + 0.10493838787078857, + 0.04226839542388916, + 0.0013655535876750946, + 0.03332860767841339, + -0.12789404392242432, + 0.10738347470760345, + 0.07821457087993622, + -0.033362314105033875, + 0.054702404886484146, + -0.05284057557582855, + 0.07704795897006989, + 0.09062460064888, + -0.14442186057567596, + -0.06370437145233154, + 0.046465251594781876, + 0.024929773062467575, + -0.0005151897203177214, + 0.11791570484638214, + -0.00872720219194889, + -0.005677691660821438, + 0.0838419571518898, + -0.07578405737876892, + -0.05144283547997475, + -0.04001475125551224, + 0.05565605312585831, + -0.09013524651527405, + 0.06665147095918655, + 0.03782406076788902, + -0.0024431077763438225, + -0.004615898244082928, + 0.08816733956336975, + -0.016630027443170547, + -0.0006712350295856595, + -0.024540826678276062, + -0.005647690035402775, + 0.020359162241220474, + -0.03564242273569107, + 0.02166319079697132, + 0.0017500901594758034, + 0.037341468036174774, + 0.03697217255830765, + 0.024965092539787292, + -0.053579505532979965, + -0.0859847366809845, + -0.005547437816858292, + 0.04842324182391167, + 0.07005086541175842, + -0.009699261747300625, + -0.012924430891871452, + -0.04207606986165047, + -0.06437771022319794, + 0.033018600195646286, + -0.04126707464456558, + 0.08047182857990265, + 0.01330801472067833, + 0.007306352723389864, + 0.10757339000701904, + 0.02102476917207241, + -0.006282346323132515, + -0.0706862136721611, + -0.014108334667980671, + -0.003657124238088727, + 0.039428357034921646, + -0.09215399622917175, + -0.06160061061382294, + -0.006053785793483257, + 0.009721261449158192, + -0.007377368398010731, + 0.0491500049829483, + 0.04245437681674957, + 0.01808256283402443, + 0.0395950973033905, + -0.08897961676120758, + 0.005591139663010836, + -0.13117045164108276, + -0.07865756750106812, + -0.023884737864136696, + -0.03147459775209427, + 0.001926939468830824, + 0.09207874536514282, + 0.002940988866612315, + 0.00806216336786747, + -0.02848585695028305, + -0.07214745134115219, + -0.07034303992986679, + 0.0618055984377861, + 0.07659806311130524, + -0.01004987582564354, + 0.03028515726327896, + 0.03506414592266083, + -0.038056470453739166, + 0.07746073603630066, + 0.08469566702842712, + 0.11450894176959991, + -0.019682489335536957, + 0.052997857332229614, + -0.0664597749710083, + 0.08537492156028748, + 0.07700799405574799, + -0.06556370854377747, + -0.11971497535705566, + -0.014681736938655376, + -0.057039935141801834, + 0.02835647016763687, + -0.015776991844177246, + 0.005518275313079357, + 0.007290154695510864, + -0.019666224718093872, + -0.06684578210115433, + -0.0738009661436081, + 0.08203267306089401, + -0.054844025522470474, + -0.01612848788499832, + -0.07367096096277237, + 0.06959375739097595, + 0.07275247573852539, + 0.034886546432971954, + -0.037770915776491165, + -0.010585675947368145, + 0.04974190145730972, + -0.05061698704957962, + -0.010638154111802578, + 0.014809029176831245, + 0.008751391433179379, + -0.10545440763235092, + 0.019290614873170853, + -0.07960225641727448, + 0.08578118681907654, + -0.07007355988025665, + 0.13631197810173035, + -0.013089260086417198, + -0.08219916373491287, + -0.06222696602344513, + 0.031383223831653595, + -0.005087338387966156, + 0.024380620568990707, + 0.024639854207634926, + 0.07244230806827545, + 0.029566925019025803, + -0.051001351326704025, + 0.08489914238452911, + 0.01831376738846302, + -0.008295181207358837, + -0.05863580107688904, + -0.05338042974472046, + -0.031499359756708145, + 0.01197637990117073, + -0.011564143002033234, + -0.1041250228881836, + -0.011529695242643356, + 0.01753697171807289, + -0.002906979527324438, + 0.05715493857860565, + 0.1306975781917572, + 0.04335624724626541, + -0.1530175358057022 + ] + }, + "p244_359.wav": { + "name": "p244", + "embedding": [ + 0.030348509550094604, + 0.07768439501523972, + 0.008555657230317593, + 0.026563158258795738, + -0.003425696399062872, + 0.03968236595392227, + -0.14213767647743225, + 0.09931924939155579, + -0.03579817712306976, + 0.11898067593574524, + -0.1088065654039383, + 0.03258625045418739, + -0.05459073558449745, + -0.1744261384010315, + -0.03414885699748993, + 0.047865115106105804, + -0.059553518891334534, + -0.027496717870235443, + -0.018090086057782173, + 0.0011552581563591957, + 0.039432890713214874, + 0.02287905663251877, + -0.021516846492886543, + 0.022532237693667412, + 0.019280992448329926, + 0.036701351404190063, + 0.02423138916492462, + 0.0501369908452034, + 0.014246553182601929, + 0.024666864424943924, + 0.009850061498582363, + 0.1277129352092743, + -0.013467584736645222, + 0.008990117348730564, + 0.0611703135073185, + 0.04214859753847122, + -0.02114127390086651, + -0.043290071189403534, + -0.015811145305633545, + 0.0068585313856601715, + -0.0882788747549057, + 0.04824105650186539, + 0.053009338676929474, + 0.01199687086045742, + 0.029852204024791718, + 0.04430702328681946, + 0.007568409666419029, + -0.05850266292691231, + -0.09625974297523499, + 0.15484432876110077, + 0.07401220500469208, + -0.017841212451457977, + -0.050559982657432556, + -0.0809403508901596, + 0.08972951024770737, + 0.00837460346519947, + -0.09471327066421509, + -0.02482648566365242, + 0.11383843421936035, + 0.16216732561588287, + -0.03047655150294304, + -0.01958788000047207, + 0.003326050005853176, + 0.12937864661216736, + 0.03136890381574631, + 0.10415197163820267, + 0.03820474445819855, + 0.0994965136051178, + 0.014583373442292213, + 0.018332550302147865, + 0.09276241809129715, + 0.0392945222556591, + 0.03993486240506172, + -0.044743433594703674, + 0.016079897060990334, + 0.04637405276298523, + -0.044201891869306564, + 0.05792469531297684, + 0.003222801722586155, + -5.4017058573663235e-05, + 0.002703331410884857, + -0.018949167802929878, + -0.01241887267678976, + 0.00048419320955872536, + -0.010416262783110142, + 0.029480237513780594, + 0.023609528318047523, + -0.004579249769449234, + 0.0852782130241394, + 0.04276464879512787, + -0.0032359501346945763, + 0.06789330393075943, + -0.038316838443279266, + -0.09003821015357971, + -0.004708915017545223, + -0.019900182262063026, + 0.027956852689385414, + 0.06483131647109985, + 0.046050697565078735, + -0.010565008036792278, + 0.09901370108127594, + 0.011695018038153648, + 0.015961287543177605, + 0.037968698889017105, + -0.13788272440433502, + 0.10301129519939423, + 0.05034896731376648, + -0.034958381205797195, + 0.01763630285859108, + -0.023578613996505737, + 0.0717649757862091, + 0.10025953501462936, + -0.14547041058540344, + -0.0309885423630476, + 0.06549885123968124, + 0.028332870453596115, + -0.007599616423249245, + 0.11848878860473633, + -0.010113263502717018, + -0.056973766535520554, + 0.11067688465118408, + -0.08056318759918213, + -0.0626942366361618, + -0.04061775654554367, + 0.05491669476032257, + -0.08855116367340088, + 0.01893702708184719, + 0.04150834679603577, + -0.008965986780822277, + -0.03933119773864746, + 0.08321428298950195, + -0.018402911722660065, + -0.004150300286710262, + -0.02816198393702507, + -0.001608746126294136, + 0.08218800276517868, + -0.0534159317612648, + 0.03766867518424988, + 0.03371047601103783, + 0.0400828942656517, + 0.015166142955422401, + 0.04485899955034256, + -0.06117885187268257, + -0.09417816996574402, + 0.002391309477388859, + 0.07609342038631439, + 0.07274405658245087, + -0.019503481686115265, + -0.03525914251804352, + -0.05850470811128616, + -0.06206020712852478, + 0.05045386776328087, + -0.001446128822863102, + 0.07098669558763504, + 0.023719200864434242, + -0.04152993857860565, + 0.12781396508216858, + -0.024683237075805664, + 0.006563086993992329, + -0.07417108863592148, + -0.011478226631879807, + 0.01909732073545456, + 0.043920695781707764, + -0.08255484700202942, + -0.07366518676280975, + 0.012730870395898819, + 0.020668990910053253, + 0.012241153046488762, + -0.0249724630266428, + 0.00860169529914856, + 0.010125966742634773, + 0.021382739767432213, + -0.07976174354553223, + 0.012401029467582703, + -0.13077697157859802, + -0.06890575587749481, + -0.023223867639899254, + -0.005381791386753321, + 0.030310755595564842, + 0.0655221939086914, + -0.019187504425644875, + -0.010231351479887962, + 0.014959679916501045, + -0.09263556450605392, + -0.04564449563622475, + 0.09276473522186279, + 0.10907714068889618, + 0.012481685727834702, + 0.0659794807434082, + 0.04486147314310074, + -0.06362027674913406, + 0.019148707389831543, + 0.04368545487523079, + 0.14140041172504425, + -0.03712480515241623, + 0.007988227531313896, + -0.05061483383178711, + 0.08063691854476929, + 0.04381818324327469, + -0.09705153107643127, + -0.086191326379776, + -0.005536822602152824, + -0.03728656470775604, + 0.0372922383248806, + -0.02223260886967182, + 0.012410702183842659, + -0.020342914387583733, + -0.04747268930077553, + -0.06914907693862915, + -0.07041965425014496, + 0.045562516897916794, + -0.031698767095804214, + -0.029494337737560272, + -0.07949737459421158, + 0.06260428577661514, + 0.0687737762928009, + 0.05155980587005615, + -0.013788032345473766, + 0.006924600340425968, + 0.037457339465618134, + -0.08222178369760513, + -0.06086341291666031, + 0.007522867992520332, + -0.03559621796011925, + -0.10168305039405823, + -0.003255570773035288, + -0.07277602702379227, + 0.10974694788455963, + -0.07327708601951599, + 0.12061531841754913, + -0.03703213110566139, + -0.07921376824378967, + -0.06840967386960983, + -0.004409912042319775, + 0.00881499145179987, + 0.03542075678706169, + 0.04922432824969292, + 0.03733903169631958, + 0.007337949704378843, + -0.01376580074429512, + 0.1118457168340683, + 0.004669263958930969, + 0.0177265927195549, + -0.032833073288202286, + -0.02352018468081951, + -0.022904200479388237, + 0.00863576028496027, + -0.019273050129413605, + -0.09106748551130295, + -0.0032625719904899597, + 0.01978735812008381, + -0.04562909156084061, + 0.030306469649076462, + 0.11061010509729385, + 0.055528730154037476, + -0.11465846002101898 + ] + }, + "p244_102.wav": { + "name": "p244", + "embedding": [ + 0.0430225133895874, + 0.0539373978972435, + -0.03737715631723404, + 0.03839384764432907, + -0.07569047063589096, + 0.0445113405585289, + -0.13211029767990112, + 0.11113637685775757, + -0.041927166283130646, + 0.1266823709011078, + -0.05347640812397003, + 0.11221153289079666, + -0.01134815625846386, + -0.21096853911876678, + -0.01795266941189766, + 0.061899203807115555, + -0.06458897888660431, + -0.06837959587574005, + -0.053076136857271194, + -0.04615628719329834, + 0.03242522478103638, + 0.060048721730709076, + 0.018194379284977913, + 0.023188291117548943, + 0.019636016339063644, + 0.07649858295917511, + -0.020031925290822983, + 0.018023021519184113, + -0.002662018174305558, + -0.048287149518728256, + -0.059319376945495605, + 0.08876129984855652, + -0.05029842257499695, + -0.01397632248699665, + 0.03139262646436691, + -0.009115978144109249, + 0.004804037511348724, + -0.0705767571926117, + -0.05654650554060936, + 0.023940205574035645, + -0.07582558691501617, + 0.07638464868068695, + 0.049024228006601334, + -0.019833985716104507, + 0.05372598394751549, + -0.010075511410832405, + -0.03245002403855324, + -0.05059707164764404, + -0.11141987144947052, + 0.16354015469551086, + 0.09242982417345047, + -0.004909676034003496, + -0.04896428436040878, + -0.05694033205509186, + 0.11498412489891052, + -0.011041943915188313, + -0.13472098112106323, + -0.03895661234855652, + 0.07875931262969971, + 0.15260660648345947, + -0.03568674623966217, + -0.023113053292036057, + 0.036222200840711594, + 0.11538784205913544, + 0.06419387459754944, + 0.08427874743938446, + 0.07476839423179626, + 0.10366985201835632, + -0.021568220108747482, + -0.002773015294224024, + 0.10140321403741837, + 0.07675415277481079, + 0.04877643659710884, + -0.0250396691262722, + 0.024526633322238922, + 0.028665583580732346, + -0.031440041959285736, + -0.009204463101923466, + -0.009552412666380405, + 0.0131557397544384, + -0.004523593001067638, + -0.004756622016429901, + 0.016074756160378456, + 0.017824772745370865, + -0.027924057096242905, + 0.0570589043200016, + 0.05087224394083023, + -0.0014556339010596275, + 0.05766984075307846, + 0.03507053107023239, + -0.0019134795293211937, + 0.06863532215356827, + -0.06402253359556198, + -0.07259349524974823, + 0.02617669850587845, + 0.02047777734696865, + 0.008621025830507278, + 0.07255026698112488, + 0.045982763171195984, + -0.02597293257713318, + 0.12951169908046722, + 0.04235372692346573, + -0.008816368877887726, + 0.03464014083147049, + -0.09544213116168976, + 0.1047326922416687, + 0.09472894668579102, + -0.02723640203475952, + 0.04840164631605148, + -0.0429169200360775, + 0.09450362622737885, + 0.06854903697967529, + -0.14027078449726105, + -0.04946266859769821, + 0.04936899244785309, + 0.009163052774965763, + -0.010623672045767307, + 0.13939180970191956, + -0.004662188235670328, + 0.038035519421100616, + 0.11626236885786057, + -0.08133769035339355, + -0.044369108974933624, + -0.022429462522268295, + 0.05786089971661568, + -0.0917532816529274, + 0.0550692155957222, + 0.051606930792331696, + -0.014153923839330673, + 0.017764169722795486, + 0.07237815856933594, + -0.027876053005456924, + -0.01682601310312748, + -0.003176904283463955, + -0.03572098910808563, + 0.0347004309296608, + -0.014770491980016232, + -0.009532537311315536, + 0.08457052707672119, + 0.02287433296442032, + 0.02701174095273018, + -0.016597239300608635, + -0.030893463641405106, + -0.13113197684288025, + 0.035148635506629944, + 0.010990448296070099, + 0.09693142026662827, + -0.006166107952594757, + 0.0016965181566774845, + -0.05810495465993881, + -0.09464967250823975, + 0.023657631129026413, + -0.019306715577840805, + 0.08095501363277435, + -0.02825925499200821, + -0.009544768370687962, + 0.07593156397342682, + 0.03461727872490883, + -0.00948033481836319, + -0.035972680896520615, + -0.0491919219493866, + 0.01014435850083828, + 0.06618952006101608, + -0.08035778999328613, + -0.06676628440618515, + -0.005774345248937607, + 0.03371158987283707, + -0.01720990613102913, + 0.03451649844646454, + 0.03245050460100174, + 0.024616623297333717, + 0.02158227376639843, + -0.09568929672241211, + 0.03199521079659462, + -0.11019712686538696, + -0.06290261447429657, + -0.01081261970102787, + -0.018080558627843857, + -0.007430730387568474, + 0.08192767202854156, + 0.005604485981166363, + 0.02585793286561966, + -0.03650568053126335, + -0.08845193684101105, + -0.06960691511631012, + 0.06260506808757782, + 0.06530150771141052, + 0.0011411313898861408, + 0.04428445175290108, + 0.06581991910934448, + -0.03202700614929199, + 0.03726353496313095, + 0.04070156067609787, + 0.12071744352579117, + -0.01693282276391983, + 0.031210407614707947, + -0.04292115569114685, + 0.10087241977453232, + 0.060816869139671326, + -0.07864196598529816, + -0.06585988402366638, + -0.020686758682131767, + -0.05931799113750458, + 0.05354519188404083, + -0.022308506071567535, + 0.002782419789582491, + 0.011945844627916813, + 0.006805784069001675, + -0.10159777104854584, + -0.08181186020374298, + 0.08036187291145325, + -0.04692530632019043, + -0.01781248301267624, + -0.09689954668283463, + 0.0362117625772953, + 0.10981318354606628, + 0.03773040324449539, + -0.026323864236474037, + 0.00456186942756176, + 0.043397460132837296, + -0.028127577155828476, + 0.016535427421331406, + 0.06927508860826492, + 0.03388071805238724, + -0.12066423147916794, + -0.034208547323942184, + -0.07544130831956863, + 0.07587596774101257, + -0.04062763974070549, + 0.14039717614650726, + 0.015053401701152325, + -0.03591234236955643, + -0.07308107614517212, + 0.05595755949616432, + 0.0017035757191479206, + 0.06483720242977142, + 0.05129917711019516, + 0.0727454125881195, + 0.052974216639995575, + -0.04354061931371689, + 0.10226841270923615, + 0.04978279024362564, + -0.041273295879364014, + -0.043258845806121826, + -0.013074418529868126, + -0.030807897448539734, + 0.02389458194375038, + 0.022466275840997696, + -0.08973407000303268, + -0.0030692466534674168, + 0.02394942194223404, + -0.030545353889465332, + 0.05711883306503296, + 0.1369554102420807, + 0.07677972316741943, + -0.11180759966373444 + ] + }, + "p244_073.wav": { + "name": "p244", + "embedding": [ + 0.050025369971990585, + 0.09468891471624374, + -0.006306699477136135, + 0.025102226063609123, + -0.04868593439459801, + 0.07750745117664337, + -0.13614723086357117, + 0.1285698562860489, + -0.03822711482644081, + 0.14091086387634277, + -0.06929503381252289, + 0.12306427955627441, + -0.010437111370265484, + -0.18395625054836273, + -0.04701977223157883, + 0.04812866076827049, + -0.051997050642967224, + -0.02401163801550865, + -0.035993412137031555, + -0.020998410880565643, + 0.042366739362478256, + 0.035661038011312485, + 0.04340088367462158, + 0.008436123840510845, + 0.02057529240846634, + 0.061848919838666916, + 0.014651848934590816, + 0.06731360405683517, + 0.02986729145050049, + -0.05034512281417847, + -0.039283379912376404, + 0.115561842918396, + -0.04078389331698418, + 0.024425527080893517, + 0.04877111315727234, + -0.009167520329356194, + 0.007816383615136147, + -0.06248391419649124, + -0.012126735411584377, + 0.009464703500270844, + -0.030846383422613144, + 0.07554687559604645, + 0.03140247240662575, + 0.00025807012571021914, + 0.03240381181240082, + 0.023040732368826866, + -0.018590042367577553, + -0.045769866555929184, + -0.1027064248919487, + 0.16036877036094666, + 0.07553015649318695, + -0.003921149764209986, + -0.06191285699605942, + -0.06800320744514465, + 0.10461169481277466, + -0.014925338327884674, + -0.11423198878765106, + -0.02995961904525757, + 0.0834035575389862, + 0.16206830739974976, + -0.034719228744506836, + -0.036888182163238525, + 0.024924151599407196, + 0.1350749135017395, + 0.043276816606521606, + 0.09140702337026596, + 0.08970780670642853, + 0.11004974693059921, + -0.013502801768481731, + 0.02018960565328598, + 0.04397713392972946, + 0.07516889274120331, + 0.04350581392645836, + -0.0042374818585813046, + 0.028446203097701073, + -0.009860394522547722, + -0.007762949448078871, + 0.014648607932031155, + -0.034249454736709595, + -0.017816556617617607, + -0.014192802831530571, + 0.007740188390016556, + 0.0055510373786091805, + 0.020933568477630615, + -0.024694232270121574, + 0.058536797761917114, + 0.011033186689019203, + -0.007938012480735779, + 0.06242240592837334, + 0.03340506553649902, + 0.013554271310567856, + 0.061150263994932175, + -0.06900466978549957, + -0.09568478167057037, + 0.02689513936638832, + 0.004911785013973713, + 0.027743559330701828, + 0.07634192705154419, + 0.04007009416818619, + -0.013964062556624413, + 0.11124905198812485, + 0.055918898433446884, + -0.023619771003723145, + 0.03462102264165878, + -0.09409746527671814, + 0.1252983808517456, + 0.08816325664520264, + -0.018559778109192848, + 0.04702261835336685, + -0.060387998819351196, + 0.08684112876653671, + 0.06394079327583313, + -0.13587582111358643, + -0.07668689638376236, + 0.0288423802703619, + 0.024168789386749268, + -0.021931758150458336, + 0.10796979069709778, + -0.0223039910197258, + 0.032515764236450195, + 0.09685595333576202, + -0.06980850547552109, + -0.04726937413215637, + -0.027023321017622948, + 0.04679577052593231, + -0.07220196723937988, + 0.040553875267505646, + 0.03369423374533653, + -0.007609399035573006, + -0.00770993297919631, + 0.08336915820837021, + -0.010960239917039871, + -0.007674570195376873, + 0.029892727732658386, + -0.05243418738245964, + 0.02836260199546814, + -0.030233047902584076, + 0.011005209758877754, + 0.03724243491888046, + 0.04648425430059433, + 0.04421566054224968, + 0.0024422656279057264, + -0.038187094032764435, + -0.10685497522354126, + 0.00795949250459671, + 0.034948933869600296, + 0.07179580628871918, + -0.009818065911531448, + -0.03200843930244446, + -0.041476961225271225, + -0.05986769497394562, + 0.030073752626776695, + -0.012694183737039566, + 0.07140501588582993, + -0.0210605226457119, + -0.0019267270108684897, + 0.08836772292852402, + 0.014559405855834484, + -0.004175232257694006, + -0.05113280564546585, + -0.0276580061763525, + 0.01576733961701393, + 0.04091668874025345, + -0.08266079425811768, + -0.0626341849565506, + 0.0060415118932724, + 0.02659047767519951, + -0.03424331173300743, + 0.04230711981654167, + 0.04197145253419876, + 0.015760626643896103, + 0.03797220438718796, + -0.06182323396205902, + -0.0037741544656455517, + -0.11045217514038086, + -0.06344986706972122, + -0.012600040063261986, + -0.009686823934316635, + -0.014872429892420769, + 0.0753248929977417, + 0.021330304443836212, + 0.049755584448575974, + -0.009720422327518463, + -0.06223946809768677, + -0.07657334208488464, + 0.061113081872463226, + 0.07651621103286743, + 0.009165244176983833, + 0.059780895709991455, + 0.056060634553432465, + -0.024654731154441833, + 0.06656038016080856, + 0.06306269019842148, + 0.09853903949260712, + -0.027438243851065636, + 0.01570606417953968, + -0.07912309467792511, + 0.07436473667621613, + 0.08575873076915741, + -0.0932183489203453, + -0.09049467742443085, + -0.02201438508927822, + -0.07154171168804169, + 0.03490672633051872, + -0.029067521914839745, + -0.004530402831733227, + 0.03233179450035095, + -0.004893789999186993, + -0.10126271098852158, + -0.08511736243963242, + 0.08919872343540192, + -0.07849450409412384, + -0.010427067056298256, + -0.07118475437164307, + 0.05186426267027855, + 0.10312867164611816, + 0.030673181638121605, + -0.029781712219119072, + -0.008348381146788597, + 0.056848566979169846, + -0.04707678407430649, + -0.0067833526991307735, + 0.03531728312373161, + 0.024210384115576744, + -0.11635036766529083, + 0.013965512625873089, + -0.07389486581087112, + 0.04277389869093895, + -0.05636947974562645, + 0.15073639154434204, + 0.0035770591348409653, + -0.057158462703228, + -0.07108616083860397, + 0.04859982430934906, + -0.03221463784575462, + 0.04725079983472824, + 0.036441951990127563, + 0.05647174268960953, + 0.02352149784564972, + -0.0855683833360672, + 0.13024096190929413, + 0.03629671782255173, + -0.04844909906387329, + -0.08672253787517548, + -0.030435342341661453, + -0.029809799045324326, + 0.03421724960207939, + 0.019117143005132675, + -0.08216220140457153, + -0.03539983183145523, + 0.025588396936655045, + -0.0269588902592659, + 0.06715121865272522, + 0.1439489722251892, + 0.06829582154750824, + -0.11346214264631271 + ] + }, + "p244_380.wav": { + "name": "p244", + "embedding": [ + 0.013977156952023506, + 0.06790954619646072, + -0.04052652418613434, + 0.031308140605688095, + -0.06747622042894363, + 0.04213244467973709, + -0.11638307571411133, + 0.08593550324440002, + -0.05164726823568344, + 0.11586429178714752, + -0.057797424495220184, + 0.08693459630012512, + -0.05798383429646492, + -0.16135907173156738, + -0.004745818674564362, + 0.08203017711639404, + -0.029021086171269417, + -0.045582547783851624, + -0.045329272747039795, + -0.027362871915102005, + 0.021520139649510384, + 0.01095966063439846, + 0.036966145038604736, + -0.024295005947351456, + 0.029374420642852783, + 0.06388232111930847, + -0.015622885897755623, + 0.00853461492806673, + -0.020870843902230263, + 0.006142172962427139, + -0.02938772365450859, + 0.08799991011619568, + -0.0328793004155159, + -0.04465601593255997, + 0.03385099396109581, + 0.007239095866680145, + -0.010864785872399807, + -0.07567732036113739, + 0.020904667675495148, + -0.02299526333808899, + -0.05988239124417305, + 0.07587135583162308, + 0.019331030547618866, + -0.038673289120197296, + 0.03174209967255592, + -0.030125092715024948, + -0.037907037883996964, + -0.007095793262124062, + -0.11728226393461227, + 0.13979537785053253, + 0.05963439494371414, + 0.008984653279185295, + -0.084353506565094, + -0.052475836127996445, + 0.10475218296051025, + 0.018175670877099037, + -0.09120997786521912, + -0.08472849428653717, + 0.06579320132732391, + 0.14563682675361633, + -0.011699935421347618, + -0.013315165415406227, + 0.02523159421980381, + 0.08954809606075287, + 0.04779740795493126, + 0.07663659751415253, + 0.05395541340112686, + 0.09860788285732269, + 0.00479824049398303, + 0.020014436915516853, + 0.07727955281734467, + 0.03503269702196121, + 0.010948042385280132, + -0.02449103444814682, + 0.016600431874394417, + -0.030751654878258705, + -0.03424938768148422, + -0.0009031300432980061, + -0.023626547306776047, + -0.06795116513967514, + -0.02011554315686226, + -0.037875354290008545, + 0.014735216274857521, + 0.009382423013448715, + -0.021297704428434372, + 0.018951866775751114, + 0.07411405444145203, + -0.038430437445640564, + 0.08233015239238739, + 0.03920704126358032, + -0.028404532000422478, + 0.04277238994836807, + -0.07377149164676666, + -0.061056748032569885, + 0.025939863175153732, + 0.003056139685213566, + -0.005695072002708912, + 0.054062873125076294, + 0.037920013070106506, + -0.03033341094851494, + 0.10569413751363754, + 0.04000004008412361, + 0.02254459448158741, + 0.029939282685518265, + -0.08991887420415878, + 0.11167331039905548, + 0.0881820023059845, + -0.021342061460018158, + 0.020952347666025162, + -0.007511255331337452, + 0.0290372371673584, + 0.08119228482246399, + -0.1016245111823082, + -0.05910422280430794, + 0.005798760801553726, + -0.025263924151659012, + -0.01820685714483261, + 0.1013495922088623, + 0.020612603053450584, + 0.0031752996146678925, + 0.11809593439102173, + -0.1006234809756279, + -0.09614263474941254, + -0.022758638486266136, + 0.04308545961976051, + -0.06667616218328476, + 0.03673451021313667, + 0.09041289240121841, + 0.004973910748958588, + 0.0020864875987172127, + 0.05238916724920273, + 0.002670613117516041, + 0.013621492311358452, + 0.013434219174087048, + -0.0373506061732769, + 0.05703084543347359, + -0.031240394338965416, + -0.02986977808177471, + 0.07929966598749161, + 0.03415234014391899, + 0.05755551904439926, + -0.021560262888669968, + 0.03445431590080261, + -0.09477758407592773, + 0.007923225872218609, + 0.059557944536209106, + 0.047068119049072266, + -0.01991090178489685, + 0.006372484378516674, + -0.04884664714336395, + -0.09643448889255524, + 0.02145705185830593, + -0.016571827232837677, + 0.10778673738241196, + -0.012352574616670609, + -0.008642743341624737, + 0.11329932510852814, + 0.018727000802755356, + 0.0071049961261451244, + -0.03396013379096985, + -0.023094134405255318, + 0.048170171678066254, + 0.043377846479415894, + -0.08602429926395416, + -0.05497325584292412, + -0.0309092216193676, + 0.04159211367368698, + -0.005331383552402258, + 0.028301598504185677, + 0.05750802159309387, + 0.01612606830894947, + -0.0077966381795704365, + -0.07166031002998352, + 0.06478056311607361, + -0.04721618443727493, + -0.0059195272624492645, + -0.009956683032214642, + -0.06868822127580643, + -0.022694185376167297, + 0.08215251564979553, + 0.021549042314291, + 0.0036403872072696686, + -0.04225257411599159, + -0.0926898941397667, + -0.06481640785932541, + 0.03595063090324402, + 0.0550440177321434, + -0.03400982916355133, + 0.04179961606860161, + 0.05777309834957123, + -0.027368739247322083, + -0.010111319832503796, + 0.055434584617614746, + 0.09657125174999237, + -0.027499718591570854, + -0.03702538460493088, + -0.06309280544519424, + 0.08289249241352081, + 0.0918731838464737, + -0.09060847759246826, + -0.05475857853889465, + -0.056424424052238464, + -0.03783833608031273, + 0.03533169627189636, + -0.040616475045681, + 0.0018740375526249409, + 0.03135288879275322, + -0.0343964584171772, + -0.10193973779678345, + -0.13044196367263794, + 0.10127010196447372, + -0.04929221421480179, + -0.021886035799980164, + -0.06672253459692001, + 0.027334121987223625, + 0.030293557792901993, + 0.00800785981118679, + -0.04374115914106369, + 0.014034748077392578, + 0.0197441466152668, + -0.04227215796709061, + 0.0261215977370739, + 0.05880095809698105, + 0.015579446218907833, + -0.08835114538669586, + -0.02471441961824894, + -0.08328090608119965, + 0.11049963533878326, + -0.030021781101822853, + 0.14694847166538239, + -0.006484383717179298, + -0.0024389512836933136, + -0.08935835212469101, + 0.03483014926314354, + -0.006636002566665411, + 0.07277784496545792, + 0.06277797371149063, + 0.06766960769891739, + 0.017642345279455185, + -0.04242781922221184, + 0.1022244542837143, + 0.03702020272612572, + -0.02042987011373043, + -0.06337658315896988, + -0.0010861065238714218, + -0.06406739354133606, + 0.007201822474598885, + -0.006285202689468861, + -0.07866798341274261, + 0.021153774112462997, + 0.032188691198825836, + -0.007751215249300003, + 0.07644884288311005, + 0.0912589281797409, + 0.07644154131412506, + -0.06099837273359299 + ] + }, + "p244_366.wav": { + "name": "p244", + "embedding": [ + 0.05085409805178642, + 0.0670686736702919, + -0.017226673662662506, + 0.0293086227029562, + -0.044026538729667664, + -0.0011953134089708328, + -0.14928144216537476, + 0.13163118064403534, + 0.011134255677461624, + 0.13107284903526306, + -0.07640716433525085, + 0.11196180433034897, + -0.01359421294182539, + -0.20764228701591492, + -0.005072839558124542, + 0.052787747234106064, + -0.028041161596775055, + -0.04100683331489563, + -0.028515605255961418, + -0.03610483929514885, + 0.042826395481824875, + 0.06877894699573517, + 0.019374005496501923, + 0.012615036219358444, + 0.007909136824309826, + 0.0772084891796112, + -0.007314398419111967, + 0.029493529349565506, + 0.0008794280583970249, + -0.027700548991560936, + -0.017559165135025978, + 0.09173493832349777, + -0.0403544120490551, + -0.004228388424962759, + 0.0382133387029171, + -0.016267284750938416, + -0.01226496696472168, + -0.044029563665390015, + -0.025033926591277122, + 0.019150715321302414, + -0.0724925547838211, + 0.068132184445858, + 0.02039487473666668, + -0.019460193812847137, + 0.07364826649427414, + 0.028724944218993187, + -0.023469015955924988, + -0.05228933319449425, + -0.11072307825088501, + 0.15626144409179688, + 0.09449710696935654, + -0.000653789087664336, + -0.06498056650161743, + -0.046945542097091675, + 0.06887988746166229, + -0.017642518505454063, + -0.09521948546171188, + -0.048091333359479904, + 0.08075737953186035, + 0.12235631048679352, + -0.026006614789366722, + -0.04016610234975815, + 0.05044165998697281, + 0.12413829565048218, + 0.06748602539300919, + 0.06921380013227463, + 0.07931749522686005, + 0.10358836501836777, + -0.04982781410217285, + -0.0075846146792173386, + 0.056043967604637146, + 0.06321180611848831, + 0.06375768780708313, + -0.015242952853441238, + 0.01914917677640915, + 0.01893724501132965, + -0.01899206079542637, + -0.020946774631738663, + -0.015297727659344673, + 0.004510984756052494, + -0.004505652468651533, + 0.005002297926694155, + -0.020885147154331207, + 0.03709785267710686, + -0.032443128526210785, + 0.047464869916439056, + 0.07302549481391907, + -0.007000552024692297, + 0.06750082224607468, + 0.037738338112831116, + 0.020419891923666, + 0.0640973448753357, + -0.09228697419166565, + -0.0656832680106163, + 0.02940038964152336, + -0.004019502084702253, + 0.006502562668174505, + 0.07582731544971466, + 0.049078747630119324, + -0.025137916207313538, + 0.13060736656188965, + 0.031714390963315964, + -0.0243767611682415, + 0.025476818904280663, + -0.09873418509960175, + 0.11460059136152267, + 0.09725730121135712, + -0.04103093594312668, + 0.03775591775774956, + -0.04929732531309128, + 0.050757259130477905, + 0.05530647560954094, + -0.1175805851817131, + -0.04079030081629753, + 0.04339802265167236, + 0.013811683282256126, + -0.01518404483795166, + 0.13868063688278198, + 0.00020996108651161194, + 0.04843778535723686, + 0.11880333721637726, + -0.07298990339040756, + -0.06130088120698929, + -0.033031392842531204, + 0.057804226875305176, + -0.11218637228012085, + 0.06844715774059296, + 0.05549861118197441, + 0.0032898352947086096, + 0.01518731564283371, + 0.07789964973926544, + -0.011777608655393124, + 0.002540184184908867, + -0.04070531576871872, + -0.019211189821362495, + 0.029824092984199524, + -0.025816660374403, + -0.009925898164510727, + 0.02613704651594162, + 0.020925652235746384, + 0.03841459006071091, + 0.00516651663929224, + -0.030071567744016647, + -0.13356314599514008, + 0.03662843257188797, + 0.02257009968161583, + 0.08171272277832031, + -0.013699542731046677, + -0.02153829112648964, + -0.0628013163805008, + -0.06399285793304443, + 0.005680585280060768, + -0.018062133342027664, + 0.04864518344402313, + -0.029082879424095154, + -0.005540390498936176, + 0.10222171247005463, + 0.01824648678302765, + 0.02005079947412014, + -0.01191074587404728, + -0.04252376779913902, + -0.0077728345058858395, + 0.05392754077911377, + -0.08858421444892883, + -0.08242686092853546, + -0.024000003933906555, + 0.027447447180747986, + 0.0007757818093523383, + 0.0593448132276535, + 0.04908888041973114, + 0.007528652902692556, + 0.004842091351747513, + -0.10006989538669586, + 0.01182630192488432, + -0.09884762018918991, + -0.08765855431556702, + -0.01826735958456993, + -0.003998443018645048, + 0.0015570521354675293, + 0.07226147502660751, + -0.0009670673753134906, + 0.044813916087150574, + -0.037501826882362366, + -0.08301500976085663, + -0.0931137204170227, + 0.046649396419525146, + 0.08539436757564545, + -0.02161845564842224, + 0.04968719184398651, + 0.048751816153526306, + -0.05311344563961029, + 0.04359713941812515, + 0.04705842584371567, + 0.10929615795612335, + -0.024895353242754936, + 0.038282353430986404, + -0.060064613819122314, + 0.09248365461826324, + 0.08937928080558777, + -0.07307444512844086, + -0.07582604885101318, + -0.02635362558066845, + -0.07325046509504318, + 0.03173784911632538, + -0.009884057566523552, + 0.01593635231256485, + 0.036145277321338654, + 0.00439275149255991, + -0.08528005331754684, + -0.08604592084884644, + 0.05700783431529999, + -0.05143602937459946, + -0.0041984873823821545, + -0.09667955338954926, + 0.04341677948832512, + 0.09445275366306305, + 0.04271339997649193, + -0.03443188592791557, + -0.04000169038772583, + 0.027259886264801025, + -0.008615976199507713, + 0.004325446672737598, + 0.044155314564704895, + 0.04436783120036125, + -0.12072961032390594, + -0.021931877359747887, + -0.06812672317028046, + 0.07399549335241318, + -0.0575198195874691, + 0.10598163306713104, + 0.03043750487267971, + -0.04580631107091904, + -0.09369494765996933, + 0.03592119365930557, + 0.012223056517541409, + 0.06361805647611618, + 0.02238444611430168, + 0.05402231961488724, + 0.042594872415065765, + -0.06385616958141327, + 0.10012947767972946, + 0.0571836493909359, + -0.0303624477237463, + -0.05940689891576767, + -0.038931287825107574, + -0.025729596614837646, + 0.03405177593231201, + 0.03150327131152153, + -0.08148278295993805, + -0.02010997384786606, + 0.023361992090940475, + -0.0273139588534832, + 0.04828052222728729, + 0.13030493259429932, + 0.04777144640684128, + -0.13580790162086487 + ] + }, + "p244_372.wav": { + "name": "p244", + "embedding": [ + 0.05733104795217514, + 0.09035584330558777, + -0.0674799457192421, + 0.01678674854338169, + -0.02285352163016796, + 0.051871947944164276, + -0.14151254296302795, + 0.10145170241594315, + -0.04185459762811661, + 0.13366682827472687, + -0.03486177325248718, + 0.10930806398391724, + -0.0007387548685073853, + -0.12698563933372498, + -0.02672582119703293, + 0.043290864676237106, + 0.013508656993508339, + -0.00466608302667737, + -0.03365962207317352, + 0.000635968055576086, + 0.03677349537611008, + 0.017415087670087814, + 0.016871776431798935, + -0.052286166697740555, + 0.021442992612719536, + 0.04421444237232208, + 0.0150107741355896, + 0.010867506265640259, + 0.0008865110576152802, + 0.0034209704026579857, + 0.0069201430305838585, + 0.08041664958000183, + -0.04085970297455788, + -0.00730693805962801, + 0.05829421803355217, + 0.017184995114803314, + -0.03687230497598648, + -0.06707696616649628, + 0.00912418495863676, + 0.02171766757965088, + -0.04473855346441269, + 0.0750008076429367, + 0.03293878957629204, + -0.03214138746261597, + 0.05211421102285385, + -0.030220355838537216, + -0.0071022603660821915, + -0.013494142331182957, + -0.06668394058942795, + 0.13318251073360443, + 0.06431329250335693, + 0.017523903399705887, + -0.0957476869225502, + -0.009879414923489094, + 0.09297850728034973, + 0.011899620294570923, + -0.058020077645778656, + -0.07234961539506912, + 0.02504071407020092, + 0.129949152469635, + -0.007936263456940651, + -0.03676142916083336, + 0.030724268406629562, + 0.09560272842645645, + 0.04965270310640335, + 0.05461284890770912, + 0.08459322154521942, + 0.09206856787204742, + 0.004799109883606434, + 0.024314353242516518, + 0.036570191383361816, + 0.06704433262348175, + 0.009090223349630833, + -0.025997400283813477, + 0.029857806861400604, + -0.026604363694787025, + -0.031231887638568878, + -0.017487429082393646, + -0.020572379231452942, + -0.05050205439329147, + -0.025242380797863007, + 0.0005858428776264191, + 0.014840181916952133, + 0.0555109977722168, + -0.05065262317657471, + 0.021962732076644897, + 0.0536637008190155, + -0.061104051768779755, + 0.03855361044406891, + 0.0710848867893219, + 0.001259309588931501, + -0.0029928572475910187, + -0.061065398156642914, + -0.1031339019536972, + 0.033726662397384644, + -0.0077224550768733025, + -0.02910834550857544, + 0.06257793307304382, + 0.024022288620471954, + 0.02959100529551506, + 0.07827945053577423, + 0.04612663760781288, + -0.014843754470348358, + 0.00977691076695919, + -0.0459158793091774, + 0.12566959857940674, + 0.09223836660385132, + -0.018394213169813156, + 0.033365506678819656, + -0.04731784015893936, + -0.004409823566675186, + 0.041355542838573456, + -0.09878554940223694, + -0.07866127789020538, + 0.052483223378658295, + 0.030176879838109016, + 0.02491014637053013, + 0.11451079696416855, + 0.022274555638432503, + 0.008571521379053593, + 0.0778849720954895, + -0.04630091041326523, + -0.10109050571918488, + -0.05816987156867981, + 0.04357404261827469, + -0.0649087131023407, + 0.06832358241081238, + 0.04452177882194519, + 0.01403038576245308, + -0.024561025202274323, + 0.08152192831039429, + 0.01438787393271923, + 0.012281514704227448, + -0.011794395744800568, + 0.027140209451317787, + 0.05973951518535614, + -0.028061334043741226, + 0.02277158945798874, + 0.03398044779896736, + 0.021174680441617966, + 0.07734952121973038, + 0.013620274141430855, + 0.014688989147543907, + -0.09958376735448837, + -0.003773623611778021, + 0.0702660009264946, + 0.06208153814077377, + -0.042771726846694946, + -0.03063330054283142, + -0.013423687778413296, + -0.06739537417888641, + -0.017742808908224106, + -0.04598553851246834, + 0.09883978962898254, + 0.012268861755728722, + 0.025962816551327705, + 0.10167396068572998, + -0.03406553715467453, + 0.028727801516652107, + -0.018112368881702423, + 0.038294363766908646, + 0.015364090912044048, + 0.04440914839506149, + -0.07276734709739685, + -0.09709705412387848, + -0.033611685037612915, + 0.0015493594110012054, + 0.00544988177716732, + 0.02899564430117607, + 0.04482974112033844, + -0.027257267385721207, + 0.05124206840991974, + -0.08262453973293304, + 0.004344735760241747, + -0.10727809369564056, + -0.011226003058254719, + -0.05117690935730934, + -0.059016767889261246, + -0.01636984385550022, + 0.07590500265359879, + 0.025758033618330956, + 0.0504256896674633, + -0.013828850351274014, + -0.06937123090028763, + -0.06957569718360901, + 0.0428764633834362, + 0.07960563898086548, + -0.04210585728287697, + 0.012439573183655739, + 0.054749779403209686, + 0.026797067373991013, + 0.0030076801776885986, + 0.057123132050037384, + 0.03404882550239563, + -0.04285070300102234, + -0.03743429109454155, + -0.06306368112564087, + 0.08651576936244965, + 0.10523722320795059, + -0.09650164842605591, + -0.05970654636621475, + -0.05139657109975815, + -0.05676249414682388, + -0.02443491667509079, + -0.06439773738384247, + 0.02167343534529209, + 0.04126442223787308, + -0.04472264274954796, + -0.09704603254795074, + -0.12901823222637177, + 0.06351842731237411, + -0.07181698083877563, + 0.009529278613626957, + -0.03975483775138855, + 0.018235305324196815, + 0.05253224074840546, + 0.024941300973296165, + -0.0569583959877491, + -0.008068302646279335, + 0.00033845938742160797, + -0.03012045845389366, + -0.009283711202442646, + 0.019301997497677803, + 0.024861197918653488, + -0.10825774818658829, + 0.014226483181118965, + -0.03699026256799698, + 0.09965601563453674, + -0.07935299724340439, + 0.10811513662338257, + -0.005107831209897995, + -0.046056970953941345, + -0.09999237209558487, + 0.0037021860480308533, + 0.0023497771471738815, + 0.03718119487166405, + 0.027923423796892166, + 0.06295756995677948, + -0.010731782764196396, + -0.06636888533830643, + 0.09514481574296951, + 0.06648585200309753, + 0.007089182734489441, + -0.09984470158815384, + -0.02658105455338955, + -0.030848020687699318, + 0.0550755150616169, + 0.03441673889756203, + -0.05427945777773857, + 0.019471045583486557, + 0.024769499897956848, + -0.016197985038161278, + 0.05553022772073746, + 0.0916881263256073, + 0.05958426743745804, + -0.10344059765338898 + ] + }, + "p244_409.wav": { + "name": "p244", + "embedding": [ + 0.04685479402542114, + 0.08793620765209198, + -0.04375693202018738, + 0.02922828122973442, + -0.04073556512594223, + 0.048139847815036774, + -0.12432301044464111, + 0.10058197379112244, + -0.043299127370119095, + 0.14477354288101196, + -0.07895662635564804, + 0.10296115279197693, + -0.02315559796988964, + -0.13970181345939636, + -0.03226865455508232, + 0.04191824048757553, + -0.017668165266513824, + -0.026027221232652664, + -0.050915420055389404, + -0.026309136301279068, + 0.04001901298761368, + 0.04038793593645096, + 0.03480706736445427, + -0.01849052496254444, + -0.0022871121764183044, + 0.07005549967288971, + 0.004157315474003553, + 0.0292053185403347, + 0.006603945046663284, + -0.005187880247831345, + 0.0023290254175662994, + 0.09867174923419952, + -0.0269942507147789, + -0.01603705622255802, + 0.010927428491413593, + 0.011978043243288994, + -0.016052542254328728, + -0.05749648064374924, + 0.01834302395582199, + 0.010225404985249043, + -0.03608110174536705, + 0.06224112585186958, + 0.025711048394441605, + 0.004586122930049896, + 0.037158068269491196, + -0.0499148815870285, + -0.05249282717704773, + -0.027453351765871048, + -0.09517663717269897, + 0.16614505648612976, + 0.10721215605735779, + 0.007173639256507158, + -0.08721701800823212, + -0.020116083323955536, + 0.09986774623394012, + 0.00765939150005579, + -0.07520962506532669, + -0.07176291942596436, + 0.042786870151758194, + 0.14679358899593353, + -0.01359262503683567, + -0.04063251242041588, + 0.02059154585003853, + 0.127417653799057, + 0.01747730001807213, + 0.06593339890241623, + 0.09820875525474548, + 0.08636270463466644, + -0.017594821751117706, + 0.01667419821023941, + 0.03657269850373268, + 0.04605276510119438, + 0.03849438577890396, + -0.038436055183410645, + 0.03968048095703125, + -0.03194167837500572, + -0.0075933621264994144, + 0.0039037386886775494, + -0.028130915015935898, + -0.07411304116249084, + -0.02016177773475647, + -0.005383030045777559, + -0.00918504036962986, + 0.03807658702135086, + -0.05168043076992035, + 0.020047640427947044, + 0.04268265888094902, + -0.04129219800233841, + 0.058822210878133774, + 0.04602697864174843, + 0.016203677281737328, + 0.0070342086255550385, + -0.05871604382991791, + -0.07247129827737808, + 0.05148777365684509, + 0.005216647870838642, + 0.0015004808083176613, + 0.06330367177724838, + 0.028280191123485565, + -0.0035252743400633335, + 0.10147664695978165, + 0.03806959092617035, + -0.017253413796424866, + -0.012614872306585312, + -0.07122364640235901, + 0.11995884776115417, + 0.1300797164440155, + -0.021409673616290092, + 0.025097183883190155, + -0.023122824728488922, + 0.01762845367193222, + 0.04973446577787399, + -0.11322826147079468, + -0.05679073929786682, + 0.022512219846248627, + 0.03559865057468414, + 0.013029510155320168, + 0.0857982337474823, + 0.01186261884868145, + 0.010817972011864185, + 0.08849571645259857, + -0.05632779747247696, + -0.07177706807851791, + -0.06310583651065826, + 0.04269396513700485, + -0.08041463792324066, + 0.039707157760858536, + 0.06490860879421234, + 0.01983034797012806, + -0.031055090948939323, + 0.0718628317117691, + -0.00395666528493166, + -0.0010917802574113011, + -0.007577957585453987, + -0.006820116192102432, + 0.04068881645798683, + -0.03394937887787819, + -0.011689173057675362, + 0.010379351675510406, + 0.004798884503543377, + 0.06318500638008118, + 0.006048180628567934, + 0.03342343121767044, + -0.07824191451072693, + 0.02239268459379673, + 0.048955388367176056, + 0.03480323776602745, + -0.027532635256648064, + -0.03347981348633766, + -0.018102135509252548, + -0.05839384347200394, + 0.006764193996787071, + -0.042738210409879684, + 0.08275645971298218, + 0.004514245316386223, + 0.011263545602560043, + 0.10799264907836914, + -0.020866746082901955, + 0.0016718126134946942, + -0.02056361921131611, + 0.016043413430452347, + 0.023401670157909393, + 0.0368221290409565, + -0.07489927113056183, + -0.07478682696819305, + 0.0030160630121827126, + 0.030737020075321198, + 3.1249597668647766e-05, + 0.029846955090761185, + 0.05880098044872284, + -0.01874908246099949, + 0.017438052222132683, + -0.06023382395505905, + 0.0256100594997406, + -0.07969028502702713, + -0.025224952027201653, + -0.007644301746040583, + -0.06536135822534561, + 0.0027620792388916016, + 0.06685669720172882, + 0.02920559048652649, + 0.023602580651640892, + -0.035304196178913116, + -0.07948566973209381, + -0.07861854881048203, + 0.07067568600177765, + 0.09690631926059723, + -0.02623526006937027, + 0.028365906327962875, + 0.06704262644052505, + -0.00489993579685688, + 0.01765313744544983, + 0.056844357401132584, + 0.08495189994573593, + -0.03747512400150299, + -0.024069178849458694, + -0.07115550339221954, + 0.0529637336730957, + 0.09276048839092255, + -0.09650485217571259, + -0.0758967250585556, + -0.06013265252113342, + -0.06398917734622955, + 0.037336770445108414, + -0.04513486474752426, + 0.0010640843538567424, + 0.06461844593286514, + -0.038739580661058426, + -0.1080198734998703, + -0.10775075852870941, + 0.08864559233188629, + -0.044962890446186066, + -0.0010441341437399387, + -0.06791872531175613, + 0.04533177614212036, + 0.057183071970939636, + 0.02732718363404274, + -0.06489136815071106, + -0.006031383760273457, + 0.011503057554364204, + -0.03434861823916435, + -0.00504462793469429, + 0.005573205649852753, + 0.043108440935611725, + -0.11503780633211136, + 0.00022062845528125763, + -0.07902361452579498, + 0.09089290350675583, + -0.06943564116954803, + 0.09067340940237045, + 0.016049236059188843, + -0.021370848640799522, + -0.09845273196697235, + 0.04548756778240204, + -0.003312797285616398, + 0.0626494288444519, + 0.03883887827396393, + 0.037379782646894455, + 0.020783545449376106, + -0.08334361016750336, + 0.09147583693265915, + 0.06296940892934799, + -0.01402687281370163, + -0.09347584843635559, + 0.008111551403999329, + -0.04015237092971802, + 0.04742976650595665, + 0.020302262157201767, + -0.04552299156785011, + -0.009486149996519089, + 0.012873087078332901, + -0.027863290160894394, + 0.08127377927303314, + 0.08999764919281006, + 0.04994462803006172, + -0.09845499694347382 + ] + }, + "p244_383.wav": { + "name": "p244", + "embedding": [ + 0.051961928606033325, + 0.1003323644399643, + -0.017048493027687073, + 0.018067607656121254, + -0.07055257260799408, + 0.08750578761100769, + -0.12543126940727234, + 0.13217034935951233, + -0.07462392747402191, + 0.13187451660633087, + -0.056843094527721405, + 0.12461845576763153, + -0.023163778707385063, + -0.18079997599124908, + -0.0441136509180069, + 0.06553854793310165, + -0.06358849257230759, + -0.0434214249253273, + -0.044098399579524994, + -0.021019574254751205, + 0.029718656092882156, + 0.017701543867588043, + 0.029648669064044952, + 0.012301245704293251, + 0.040944695472717285, + 0.07280528545379639, + 0.00027831620536744595, + 0.04027874767780304, + 0.016047129407525063, + -0.05634850636124611, + -0.0489109642803669, + 0.09499888122081757, + -0.048477064818143845, + 0.008584467694163322, + 0.057903241366147995, + -0.01419786922633648, + 0.01219463162124157, + -0.07800684869289398, + -0.028425432741642, + 0.00809280201792717, + -0.03446090221405029, + 0.09030009061098099, + 0.04687321186065674, + -0.010356348939239979, + 0.016451876610517502, + 0.01680051162838936, + -0.008619408123195171, + -0.04263073578476906, + -0.10421565175056458, + 0.15752077102661133, + 0.056104473769664764, + -0.009202159941196442, + -0.06626339256763458, + -0.06975889205932617, + 0.12783098220825195, + -0.01600278913974762, + -0.12269507348537445, + -0.043098825961351395, + 0.07372093200683594, + 0.15820667147636414, + -0.033350471407175064, + -0.023331576958298683, + 0.013287276029586792, + 0.12921252846717834, + 0.05306554585695267, + 0.0991314947605133, + 0.06547370553016663, + 0.1119549348950386, + -0.0055655972100794315, + 0.03039177507162094, + 0.07324860990047455, + 0.06838526576757431, + 0.023079385980963707, + -0.021022500470280647, + 0.03220806270837784, + -0.0046750339679419994, + -0.025149229913949966, + 0.011302920058369637, + -0.023519933223724365, + -0.015441217459738255, + -0.023698799312114716, + 0.0074646794237196445, + 0.010292783379554749, + 0.014224608428776264, + -0.02153194695711136, + 0.06688288599252701, + 0.022209059447050095, + -0.006022770889103413, + 0.07282760739326477, + 0.044977832585573196, + 0.005059376358985901, + 0.06954288482666016, + -0.07200536131858826, + -0.09265932440757751, + 0.027055755257606506, + 0.008123675361275673, + 0.024042509496212006, + 0.07340489327907562, + 0.04390253126621246, + -0.012373756617307663, + 0.11459733545780182, + 0.0699889063835144, + 0.0016110099386423826, + 0.027886558324098587, + -0.09250708669424057, + 0.1322990208864212, + 0.07789024710655212, + -0.01871161162853241, + 0.045396819710731506, + -0.03997617959976196, + 0.09187410771846771, + 0.07895757257938385, + -0.14746510982513428, + -0.08441343903541565, + 0.03229851275682449, + 0.0033712172880768776, + -0.020488983020186424, + 0.11600017547607422, + -0.02533874660730362, + 0.023185715079307556, + 0.0937386229634285, + -0.07268008589744568, + -0.05123534053564072, + -0.01627180352807045, + 0.04241780936717987, + -0.07002796232700348, + 0.047854818403720856, + 0.05044017359614372, + -0.016877397894859314, + 0.009910564869642258, + 0.08756381273269653, + -0.011729761958122253, + -0.01523641124367714, + 0.04429970309138298, + -0.04510272666811943, + 0.037817202508449554, + -0.018301397562026978, + 0.014023780822753906, + 0.054726339876651764, + 0.04314921796321869, + 0.03982646018266678, + -0.012394670397043228, + -0.010857694782316685, + -0.10159504413604736, + 0.015221023932099342, + 0.03230646252632141, + 0.07798334956169128, + -0.0017948232125490904, + -0.019101493060588837, + -0.03811134397983551, + -0.07298411428928375, + 0.011663136072456837, + -0.009585989639163017, + 0.09579212963581085, + -0.01879912242293358, + 0.006130516063421965, + 0.09789858758449554, + 0.0342482291162014, + -0.0011248192749917507, + -0.05996484309434891, + -0.023943185806274414, + 0.02453167736530304, + 0.05605415627360344, + -0.07065753638744354, + -0.06291016936302185, + 0.009846445173025131, + 0.023003805428743362, + -0.027681700885295868, + 0.04410000145435333, + 0.03913647308945656, + 0.01910785399377346, + 0.04239189624786377, + -0.07289816439151764, + 0.034440405666828156, + -0.10424042493104935, + -0.04052029550075531, + -0.015168413519859314, + -0.028848329558968544, + -0.03157287836074829, + 0.0802823007106781, + 0.026244379580020905, + 0.04280152916908264, + -0.006335328333079815, + -0.0749741643667221, + -0.05914945900440216, + 0.06858363002538681, + 0.07021918892860413, + 0.000763176241889596, + 0.04322409629821777, + 0.06144925579428673, + -0.010214393958449364, + 0.04603702202439308, + 0.06312006711959839, + 0.0953521579504013, + -0.028142109513282776, + 0.010612444020807743, + -0.06260417401790619, + 0.08707071840763092, + 0.06325779110193253, + -0.11406780779361725, + -0.07898841798305511, + -0.021939242258667946, + -0.04755283147096634, + 0.037323251366615295, + -0.027789587154984474, + 0.0020862098317593336, + 0.015445382334291935, + -0.005642781034111977, + -0.0980280339717865, + -0.09309989213943481, + 0.09758290648460388, + -0.08088277280330658, + -0.005045594647526741, + -0.08008280396461487, + 0.041569650173187256, + 0.09665770828723907, + 0.040046967566013336, + -0.031826864928007126, + 0.006445502862334251, + 0.05165369063615799, + -0.034595124423503876, + 0.0036665690131485462, + 0.055092327296733856, + 0.02016792632639408, + -0.10122118890285492, + 0.005300299264490604, + -0.07198093086481094, + 0.0713411420583725, + -0.04767174273729324, + 0.17677190899848938, + -0.0032451448496431112, + -0.04714808613061905, + -0.07698563486337662, + 0.04146338999271393, + -0.03307162970304489, + 0.04928438365459442, + 0.0498884841799736, + 0.06690670549869537, + 0.031358830630779266, + -0.04890427365899086, + 0.1271275132894516, + 0.02913709171116352, + -0.04459039866924286, + -0.06731998920440674, + -0.027370931580662727, + -0.038073860108852386, + 0.03338006138801575, + 0.020839311182498932, + -0.09409113973379135, + -0.012980536557734013, + 0.02861589938402176, + -0.02328113466501236, + 0.08477555215358734, + 0.14055627584457397, + 0.08853550255298615, + -0.10171560943126678 + ] + }, + "p244_378.wav": { + "name": "p244", + "embedding": [ + 0.07356055825948715, + 0.05589265376329422, + -0.05945421755313873, + 0.03800595924258232, + -0.03501341491937637, + 0.02806919999420643, + -0.1278119683265686, + 0.09322462975978851, + 0.021685456857085228, + 0.1050618439912796, + -0.08123091608285904, + 0.0777692124247551, + -0.01877608150243759, + -0.09897693991661072, + 0.007780164014548063, + 0.0407402403652668, + -0.01226705964654684, + -0.019103296101093292, + -0.04354848712682724, + -0.007672389969229698, + 0.018578730523586273, + 0.03378306329250336, + 0.02888748236000538, + -0.040145620703697205, + 0.0014858078211545944, + 0.029446661472320557, + -0.013040252029895782, + -0.010183245874941349, + 0.01235133595764637, + 0.03054446540772915, + 0.022034214809536934, + 0.08431374281644821, + -0.03189873322844505, + 0.01479547843337059, + 0.04258693754673004, + 0.03870873153209686, + -0.034444473683834076, + -0.08442743122577667, + 0.006506294943392277, + -0.0027760425582528114, + -0.04542090743780136, + 0.07608649134635925, + 0.06165623292326927, + -0.06301800906658173, + 0.026480767875909805, + -0.00973721593618393, + -0.03223550692200661, + -0.02224026806652546, + -0.09143906831741333, + 0.16835880279541016, + 0.039792563766241074, + 0.020243171602487564, + -0.10544183850288391, + 0.0020604245364665985, + 0.06060638278722763, + 0.009718148969113827, + -0.04116726666688919, + -0.06553290784358978, + 0.025907723233103752, + 0.10810049623250961, + 0.004344447515904903, + -0.05155990272760391, + 0.016360482200980186, + 0.08970555663108826, + 0.04541507735848427, + 0.03530251979827881, + 0.07450313866138458, + 0.11716167628765106, + -0.024232065305113792, + 0.03948289155960083, + 0.07270722836256027, + 0.06019134819507599, + 0.04584244266152382, + 0.00047132931649684906, + 0.030714111402630806, + -0.026641711592674255, + -0.038248371332883835, + 0.01883004605770111, + -0.008875141851603985, + -0.06477877497673035, + -0.004779006354510784, + -0.0374729186296463, + 0.021545862779021263, + 0.06831329315900803, + -0.05458468198776245, + 0.00617500115185976, + 0.0787617638707161, + -0.0373375341296196, + 0.05991886556148529, + 0.0575408935546875, + 0.0020321765914559364, + 0.015993759036064148, + -0.0632714182138443, + -0.11278493702411652, + 0.009301645681262016, + -0.0337182953953743, + 0.06480618566274643, + 0.027052270248532295, + 0.039097510278224945, + 0.004699346609413624, + 0.07877302914857864, + 0.020960720255970955, + -0.006511107087135315, + 0.006062701344490051, + -0.060463957488536835, + 0.1382732391357422, + 0.12174190580844879, + -0.011481370776891708, + -0.0029270295053720474, + -0.043971166014671326, + 0.012903242371976376, + 0.045638203620910645, + -0.08375333249568939, + -0.03309832140803337, + 0.027462894096970558, + 0.03223282843828201, + 0.031752005219459534, + 0.12050914764404297, + 0.03856905922293663, + 0.022082416340708733, + 0.08624481409788132, + -0.08006644248962402, + -0.0688156932592392, + -0.00579611724242568, + 0.010021553374826908, + -0.058083657175302505, + 0.028511494398117065, + 0.057241059839725494, + 0.0008386839181184769, + -0.019197754561901093, + 0.06484843790531158, + 0.014739526435732841, + 0.024629533290863037, + -0.0394451878964901, + 0.02764122374355793, + 0.09091601520776749, + -0.005300463642925024, + 0.002080010250210762, + 0.07260888814926147, + 0.034074895083904266, + 0.06224292516708374, + 0.04912911355495453, + -0.0018699094653129578, + -0.11282136291265488, + 0.017588814720511436, + 0.08783174306154251, + 0.0471578873693943, + -0.05129261687397957, + -0.04582088440656662, + -0.02439703419804573, + -0.07250069826841354, + 0.04735745117068291, + -0.007515303790569305, + 0.05026981979608536, + 0.018632452934980392, + -0.02232292667031288, + 0.11856301128864288, + -0.03178063780069351, + 0.01418782863765955, + -0.02839784510433674, + 0.0079102274030447, + 0.025792010128498077, + 0.055774617940187454, + -0.08857817947864532, + -0.08377858996391296, + -0.0154368095099926, + 0.014051815494894981, + -0.015000306069850922, + -0.015888558700680733, + 0.06890768557786942, + -0.042123377323150635, + 0.032062508165836334, + -0.06658543646335602, + 0.014344142749905586, + -0.1122901663184166, + -0.037244632840156555, + -0.007160098757594824, + -0.039838001132011414, + 0.021749725565314293, + 0.08088943362236023, + -0.00023683346807956696, + 0.04669029638171196, + -0.030722428113222122, + -0.08501829206943512, + -0.0318550169467926, + 0.06577138602733612, + 0.05816980451345444, + -0.052318256348371506, + 0.02558310329914093, + 0.06252837926149368, + 0.02095206454396248, + -0.022422535344958305, + 0.0358896404504776, + 0.09545740485191345, + -0.0512487068772316, + -0.05405928194522858, + -0.06993772834539413, + 0.1120176613330841, + 0.09925265610218048, + -0.08723784238100052, + -0.05390038341283798, + -0.06408318132162094, + -0.028612671419978142, + -0.006222091615200043, + -0.05771072953939438, + -0.002332533011212945, + 0.04149501025676727, + -0.03364880383014679, + -0.10011672973632812, + -0.11556599289178848, + 0.028742685914039612, + -0.034020379185676575, + 0.019509855657815933, + -0.0727621465921402, + 0.01974644511938095, + 0.0215227622538805, + 0.027389343827962875, + -0.06032874435186386, + 0.019723227247595787, + -0.028119247406721115, + -0.061273664236068726, + -0.0449526384472847, + -0.01403660699725151, + 0.021733634173870087, + -0.08589866012334824, + -0.03290513530373573, + -0.05381286144256592, + 0.08086198568344116, + -0.04885432869195938, + 0.12307758629322052, + -0.007276137359440327, + -0.04249221086502075, + -0.07332247495651245, + -0.014989707618951797, + -0.026630859822034836, + 0.042871274054050446, + 0.07317540049552917, + 0.02236509695649147, + 0.0022440142929553986, + -0.06589357554912567, + 0.09296076744794846, + 0.062490496784448624, + 0.006272461730986834, + -0.06615958362817764, + -0.0058995019644498825, + -0.03407098352909088, + 0.039558045566082, + 0.00854878406971693, + -0.03187225013971329, + 0.047718171030282974, + 0.009061017073690891, + -0.02550385892391205, + 0.03765734285116196, + 0.06623832136392593, + 0.07305961102247238, + -0.08090965449810028 + ] + }, + "p244_316.wav": { + "name": "p244", + "embedding": [ + 0.052700091153383255, + 0.0929516851902008, + -0.023888561874628067, + 0.0279436893761158, + -0.06362634897232056, + 0.06653910875320435, + -0.1519125998020172, + 0.15338334441184998, + -0.03791432827711105, + 0.1356513798236847, + -0.05498111620545387, + 0.11340752243995667, + -0.02968265861272812, + -0.18666476011276245, + -0.009932130575180054, + 0.06142764165997505, + -0.02104286104440689, + -0.029441412538290024, + -0.027081826701760292, + -0.026479169726371765, + 0.023233771324157715, + 0.03504034876823425, + 0.012360403314232826, + 0.00651122909039259, + 0.041588641703128815, + 0.06240413337945938, + -0.022528182715177536, + 0.02042488567531109, + -0.011082634329795837, + -0.04184785485267639, + -0.04227110743522644, + 0.10580919682979584, + -0.06375288963317871, + 0.0057821571826934814, + 0.05385284870862961, + -0.012872878462076187, + -0.017697293311357498, + -0.06033528596162796, + -0.019461628049612045, + -0.001991869416087866, + -0.048481088131666183, + 0.07852614670991898, + 0.04392426088452339, + -0.007684227079153061, + 0.04456692934036255, + 0.017552457749843597, + -0.004163527395576239, + -0.043853141367435455, + -0.10957206040620804, + 0.15362334251403809, + 0.05158037692308426, + 0.0018751485040411353, + -0.08021630346775055, + -0.05423900485038757, + 0.10426251590251923, + -0.014155292883515358, + -0.10936152935028076, + -0.03749626874923706, + 0.08116064965724945, + 0.15562471747398376, + -0.030938956886529922, + -0.04333607852458954, + 0.023340702056884766, + 0.11511082202196121, + 0.059885162860155106, + 0.08908820152282715, + 0.07134212553501129, + 0.12082219123840332, + -0.022596009075641632, + 0.004966703709214926, + 0.058523282408714294, + 0.05392798036336899, + 0.05120730400085449, + -0.020771343261003494, + 0.017915882170200348, + -0.0011706710793077946, + -0.017064567655324936, + -0.0023517608642578125, + -0.024368327111005783, + -0.022327203303575516, + -0.01021807361394167, + 0.007941008545458317, + 0.010619237087666988, + 0.031403254717588425, + -0.0317842923104763, + 0.05075250566005707, + 0.0616997629404068, + -0.009904734790325165, + 0.08016122877597809, + 0.035082437098026276, + 0.0042455620132386684, + 0.0721815824508667, + -0.09732714295387268, + -0.06773847341537476, + 0.04387860745191574, + 9.427615441381931e-05, + 0.02445049025118351, + 0.06994818150997162, + 0.03845995292067528, + -0.012764198705554008, + 0.12626715004444122, + 0.04812723770737648, + 0.006713204551488161, + 0.03481718525290489, + -0.0925331637263298, + 0.13354972004890442, + 0.0752970352768898, + -0.026998694986104965, + 0.06647384911775589, + -0.05032973736524582, + 0.0625457763671875, + 0.06192457303404808, + -0.13637584447860718, + -0.06534100323915482, + 0.04106352850794792, + 0.02742895483970642, + -0.02337820641696453, + 0.1424683779478073, + 0.005762106738984585, + 0.04011613875627518, + 0.10318666696548462, + -0.10421924293041229, + -0.05735648050904274, + -0.007292265072464943, + 0.05085386335849762, + -0.08383700251579285, + 0.05903032049536705, + 0.07045300304889679, + -0.019930727779865265, + 0.02935514971613884, + 0.07605119794607162, + 0.001593107241205871, + 0.009753161109983921, + 0.009368106722831726, + -0.03470921516418457, + 0.016810979694128036, + -0.009193592704832554, + 0.0027433810755610466, + 0.0350138358771801, + 0.02556873857975006, + 0.05376753956079483, + -0.007857490330934525, + -0.01575278863310814, + -0.127521812915802, + 0.009785253554582596, + 0.04219074547290802, + 0.08773767203092575, + -0.01986626349389553, + -0.019652361050248146, + -0.040934719145298004, + -0.07552634179592133, + 0.012308219447731972, + -0.005414648912847042, + 0.08072786033153534, + -0.019961705431342125, + 0.0008645387133583426, + 0.1032775342464447, + 0.053825534880161285, + 0.002344182226806879, + -0.05937627702951431, + -0.03791382536292076, + 0.0008208039798773825, + 0.057626109570264816, + -0.09082728624343872, + -0.07520343363285065, + -0.01682969741523266, + 0.035550136119127274, + -0.027083538472652435, + 0.06699420511722565, + 0.04934248328208923, + 0.027304351329803467, + 0.02773827686905861, + -0.06642135977745056, + 0.02544267475605011, + -0.09791061282157898, + -0.06968384981155396, + -0.004751099739223719, + -0.005411320365965366, + -0.03227407857775688, + 0.08906125277280807, + 0.02509111911058426, + 0.05626029521226883, + -0.03150084614753723, + -0.05263696610927582, + -0.07094071060419083, + 0.054428473114967346, + 0.05072002485394478, + -0.02138522081077099, + 0.038732171058654785, + 0.05407753214240074, + -0.03880320116877556, + 0.04613623768091202, + 0.07538020610809326, + 0.10260307043790817, + -0.030366992577910423, + 0.03377996012568474, + -0.06664805114269257, + 0.09236228466033936, + 0.08922755718231201, + -0.08803154528141022, + -0.0937456339597702, + -0.02727394551038742, + -0.061081238090991974, + 0.02961682714521885, + -0.03202976658940315, + 0.009151730686426163, + 0.02037006802856922, + -0.007407433353364468, + -0.09795951843261719, + -0.09833365678787231, + 0.07409115135669708, + -0.06667649000883102, + 0.0068628969602286816, + -0.09085752069950104, + 0.053731128573417664, + 0.09055349230766296, + 0.034323737025260925, + -0.03714621812105179, + -0.023434627801179886, + 0.04656856507062912, + -0.02731327898800373, + 0.017679894343018532, + 0.06925743073225021, + 0.04674549773335457, + -0.10776910185813904, + -0.0018035814864560962, + -0.0635765790939331, + 0.07072868943214417, + -0.03822845220565796, + 0.16871008276939392, + 0.017064228653907776, + -0.04961357265710831, + -0.07662384957075119, + 0.036921948194503784, + -0.00830315425992012, + 0.04372786730527878, + 0.021670814603567123, + 0.07118090242147446, + 0.05179349333047867, + -0.042572442442178726, + 0.11008737981319427, + 0.03477926552295685, + -0.043584711849689484, + -0.054557688534259796, + -0.047779954969882965, + -0.04735986888408661, + 0.03721203655004501, + 0.0026129158213734627, + -0.10442133247852325, + -0.022919142618775368, + 0.03027445822954178, + 0.005656575318425894, + 0.06177434325218201, + 0.13987630605697632, + 0.06399593502283096, + -0.12579426169395447 + ] + }, + "p244_221.wav": { + "name": "p244", + "embedding": [ + 0.07544361799955368, + 0.04451741650700569, + -0.027681507170200348, + -0.004374104086309671, + -0.03241364285349846, + 0.03483644127845764, + -0.1356535702943802, + 0.12629100680351257, + -0.02857455611228943, + 0.08419238775968552, + -0.060268834233284, + 0.09003345668315887, + 0.008131748996675014, + -0.11563482880592346, + -0.033083476126194, + 0.025542940944433212, + 0.0027588587254285812, + -0.0035776710137724876, + -0.05997627601027489, + -0.022124825045466423, + 0.016603093594312668, + 0.0442960150539875, + 0.0009426684118807316, + -0.03988586738705635, + 0.03324153274297714, + 0.04289409518241882, + 0.010043145157396793, + 0.007975700311362743, + -0.005881816148757935, + 0.026675695553421974, + 0.009460016153752804, + 0.08440985530614853, + -0.05186442658305168, + -0.006030024960637093, + 0.059637054800987244, + 0.0069310637190938, + -0.015985246747732162, + -0.09521479904651642, + -0.016185719519853592, + 0.0013244310393929482, + -0.04903902858495712, + 0.08735046535730362, + 0.07502584159374237, + -0.02874191664159298, + 0.022333383560180664, + 0.026043782010674477, + 0.02701025828719139, + -0.06272056698799133, + -0.11332813650369644, + 0.16552746295928955, + -0.0015889890491962433, + 0.03540879487991333, + -0.12433241307735443, + -0.0137989092618227, + 0.08850128948688507, + -0.023125357925891876, + -0.0268558356910944, + -0.059244394302368164, + 0.02296876162290573, + 0.12654384970664978, + -0.01724345237016678, + -0.06185368075966835, + 0.02098693512380123, + 0.06467089056968689, + 0.05114338546991348, + 0.0362543947994709, + 0.11736927926540375, + 0.10611967742443085, + -0.026200182735919952, + 0.03454611822962761, + 0.04848644509911537, + 0.044430576264858246, + 0.013795167207717896, + -0.0289194006472826, + 0.027604494243860245, + -0.016849443316459656, + -0.03174396604299545, + 0.014437769539654255, + -0.02487555332481861, + -0.046981073915958405, + 0.010058768093585968, + 0.029266290366649628, + 0.03528539091348648, + 0.058564089238643646, + -0.08809112757444382, + 0.0531306117773056, + 0.046964868903160095, + -0.03604850545525551, + 0.07159565389156342, + 0.05380944535136223, + -0.0048292772844433784, + 0.0006522573530673981, + -0.07115405052900314, + -0.09153519570827484, + 0.019619170576334, + -0.014065293595194817, + 0.02214129827916622, + 0.04206022620201111, + 0.029126591980457306, + -0.00046254461631178856, + 0.09456859529018402, + 0.03324053809046745, + -0.0020092418417334557, + 0.00805889442563057, + -0.05740227550268173, + 0.11870633065700531, + 0.10924728214740753, + -0.010181987658143044, + 0.023776385933160782, + -0.0701700747013092, + 0.015464826487004757, + 0.049053654074668884, + -0.0961197093129158, + -0.07427269220352173, + 0.06160321831703186, + 0.032257817685604095, + 0.029683345928788185, + 0.1301005333662033, + -0.00784414354711771, + 0.013699506409466267, + 0.062298692762851715, + -0.08916642516851425, + -0.049913786351680756, + 0.008299124427139759, + 0.024506159126758575, + -0.03554802015423775, + 0.03293517231941223, + 0.05522609502077103, + -0.0003453441895544529, + -0.015393728390336037, + 0.06837913393974304, + 0.012430734932422638, + 0.010460647754371166, + -0.03049779310822487, + 0.04884966090321541, + 0.07646574079990387, + 0.02368527092039585, + -0.041405435651540756, + 0.028268422931432724, + 0.06265530735254288, + 0.046602096408605576, + 0.025626882910728455, + -0.013589153066277504, + -0.10694529116153717, + 0.002043513348326087, + 0.07029065489768982, + 0.06960459798574448, + -0.04823829233646393, + -0.037672240287065506, + -0.06410814076662064, + -0.04821501672267914, + -0.016810446977615356, + 0.0041579026728868484, + 0.0732460767030716, + 0.01337234303355217, + 0.01848025992512703, + 0.11203384399414062, + -0.00029760412871837616, + 0.028643043711781502, + -0.02242138981819153, + 0.021852931007742882, + 0.01564384438097477, + 0.0515604168176651, + -0.013542469590902328, + -0.08595363795757294, + -0.014480408281087875, + 0.012784597463905811, + -0.02818400040268898, + 0.00942278653383255, + 0.02582516148686409, + -0.00949062779545784, + 0.034442827105522156, + -0.12301231920719147, + 0.04304298385977745, + -0.12715674936771393, + 0.009744586423039436, + 0.006621603854000568, + -0.027041062712669373, + -0.008574966341257095, + 0.0894930437207222, + 0.025788266211748123, + 0.05943181738257408, + -0.01720021292567253, + -0.09868359565734863, + -0.028377655893564224, + 0.04999697208404541, + 0.08452276885509491, + -0.04848510026931763, + 0.004371732473373413, + 0.029633231461048126, + 0.03038657084107399, + 0.006165863946080208, + 0.07798436284065247, + 0.05496424436569214, + -0.030187522992491722, + -0.04236677289009094, + -0.020290227606892586, + 0.13149237632751465, + 0.03132545202970505, + -0.0879700630903244, + -0.05835426598787308, + -0.010684439912438393, + -0.04421423748135567, + -0.02981261909008026, + 0.002373363357037306, + 0.041454046964645386, + 0.03771060332655907, + -0.007370452396571636, + -0.11240511387586594, + -0.07204774022102356, + 0.019258588552474976, + -0.06044713780283928, + 0.014948980882763863, + -0.06785193085670471, + 0.023733096197247505, + 0.09173132479190826, + 0.026040010154247284, + -0.0038448739796876907, + -0.061807870864868164, + -0.03989121690392494, + -0.058476440608501434, + -0.03318732976913452, + -0.008631851524114609, + 0.034299299120903015, + -0.07333514094352722, + 0.025858450680971146, + -0.041163887828588486, + 0.08868387341499329, + -0.033839523792266846, + 0.12196126580238342, + 0.010845334269106388, + -0.07047492265701294, + -0.0878961831331253, + -0.010384556837379932, + -0.023336024954915047, + 0.0555521659553051, + 0.04085809737443924, + 0.018407411873340607, + 0.014211077243089676, + -0.06210947781801224, + 0.07970467209815979, + 0.0685562789440155, + -0.040377214550971985, + -0.06374724209308624, + -0.04796559363603592, + -0.015626423060894012, + 0.029782220721244812, + 0.015717513859272003, + -0.013266988098621368, + 0.014829211868345737, + 0.021852387115359306, + -0.03533736616373062, + 0.06431969255208969, + 0.0846015214920044, + 0.0581100769340992, + -0.10572266578674316 + ] + }, + "p244_187.wav": { + "name": "p244", + "embedding": [ + 0.012596029788255692, + 0.061141159385442734, + -0.05705878883600235, + 0.05083771422505379, + -0.07559505850076675, + 0.06834843754768372, + -0.12949217855930328, + 0.10235853493213654, + -0.04765508323907852, + 0.1339765042066574, + -0.03977084532380104, + 0.09403165429830551, + -0.04301803931593895, + -0.1925627440214157, + -0.010889668017625809, + 0.068511001765728, + -0.055938709527254105, + -0.07704132050275803, + -0.05660233274102211, + -0.022700419649481773, + 0.029209647327661514, + 0.04498206824064255, + -0.012401353567838669, + 0.010396387428045273, + 0.002286086091771722, + 0.08178050071001053, + -0.04011232405900955, + -0.006387907080352306, + -0.025729957967996597, + -0.031707413494586945, + -0.048216212540864944, + 0.10317922383546829, + -0.06678211688995361, + -0.010074969381093979, + 0.01823790743947029, + 0.00016468582907691598, + -0.0065436577424407005, + -0.0403321273624897, + 0.0036215484142303467, + 0.007762003690004349, + -0.07703083008527756, + 0.0746045932173729, + 0.029316946864128113, + 0.015015416778624058, + 0.05132196843624115, + -0.018086260184645653, + -0.04280591756105423, + -0.03409750387072563, + -0.10172679275274277, + 0.15774837136268616, + 0.09488138556480408, + -0.025287648662924767, + -0.042640987783670425, + -0.04880565032362938, + 0.09212595224380493, + 0.01593508943915367, + -0.14055019617080688, + -0.0841282308101654, + 0.08707362413406372, + 0.1419597566127777, + -0.017066320404410362, + -0.02310837060213089, + 0.018172737210989, + 0.11889756470918655, + 0.06390821188688278, + 0.08446422219276428, + 0.052047405391931534, + 0.11497338861227036, + -0.014206906780600548, + -0.025666479021310806, + 0.09210590273141861, + 0.04044613987207413, + 0.06135544553399086, + -0.01846320927143097, + 0.03767913207411766, + -0.012173598632216454, + -0.0037247275467962027, + -0.0049050841480493546, + -0.020324071869254112, + -0.02007388137280941, + -2.7015663363272324e-05, + -0.0033866402227431536, + -0.007547921501100063, + 0.035591065883636475, + -0.0162662323564291, + 0.03591470420360565, + 0.08923507481813431, + -0.020721787586808205, + 0.06747323274612427, + 0.05030103027820587, + -0.00071132299490273, + 0.07596778124570847, + -0.08439666032791138, + -0.044020406901836395, + 0.05147150158882141, + 0.015285339206457138, + 0.010167823173105717, + 0.05438341200351715, + 0.024745512753725052, + -0.01831781305372715, + 0.10467488318681717, + 0.004066504072397947, + -0.0061568450182676315, + 0.02328832820057869, + -0.10010657459497452, + 0.13986125588417053, + 0.08326171338558197, + -0.022993624210357666, + 0.01926986686885357, + -0.021677298471331596, + 0.05835209786891937, + 0.05689062923192978, + -0.11279657483100891, + -0.0498005636036396, + 0.045727308839559555, + 0.0048836832866072655, + -0.044865477830171585, + 0.14888601005077362, + 0.026633255183696747, + 0.027824513614177704, + 0.12680459022521973, + -0.10056325048208237, + -0.04986267909407616, + -0.013736365363001823, + 0.036769237369298935, + -0.08810079097747803, + 0.041473980993032455, + 0.07428628206253052, + -0.008025162853300571, + 0.03350050374865532, + 0.0784645527601242, + -0.00801876187324524, + 0.007479770574718714, + -4.6828266931697726e-05, + -0.04600667208433151, + 0.032336801290512085, + 0.0022146268747746944, + -0.007334074471145868, + 0.06355356425046921, + 0.0016760729486122727, + 0.058715928345918655, + -0.04301973432302475, + -0.00919408816844225, + -0.1290985494852066, + 0.028733201324939728, + 0.039158087223768234, + 0.06416044384241104, + -0.02491261437535286, + 0.012849229387938976, + -0.045506205409765244, + -0.0949413850903511, + 0.027799611911177635, + -0.027233976870775223, + 0.09099190682172775, + -0.033994294703006744, + -0.035373471677303314, + 0.09827195852994919, + 0.03844418004155159, + 9.681371011538431e-05, + -0.05182254686951637, + -0.049993935972452164, + 0.008803656324744225, + 0.061391640454530716, + -0.10460279881954193, + -0.055654119700193405, + -0.017895681783556938, + 0.05463574081659317, + 0.002846270566806197, + 0.05532701313495636, + 0.07213053852319717, + 0.02373330108821392, + 0.0012804149882867932, + -0.06415741890668869, + 0.0357990637421608, + -0.06807565689086914, + -0.05571776628494263, + -0.0122703080996871, + -0.04815077409148216, + -0.019920460879802704, + 0.09116028249263763, + 0.0012234277091920376, + 0.020913096144795418, + -0.055766765028238297, + -0.07920531183481216, + -0.06939610093832016, + 0.06947250664234161, + 0.06028511002659798, + -0.029401525855064392, + 0.04803619533777237, + 0.06251256167888641, + -0.04168091341853142, + 0.017523834481835365, + 0.052871666848659515, + 0.14806526899337769, + -0.04210107773542404, + 0.033903852105140686, + -0.06969629973173141, + 0.09020831435918808, + 0.07265383005142212, + -0.0707852691411972, + -0.05689510703086853, + -0.017131086438894272, + -0.04732293635606766, + 0.048709820955991745, + -0.06991229951381683, + 0.0026000456418842077, + 0.03500436618924141, + 0.005721741355955601, + -0.1188526526093483, + -0.10222496092319489, + 0.07778771966695786, + -0.06075313314795494, + 0.003890916472300887, + -0.10510808229446411, + 0.04672253131866455, + 0.065401092171669, + 0.047018345445394516, + -0.06819487363100052, + 0.018421677872538567, + 0.05455322191119194, + -0.012032059021294117, + 0.04431229457259178, + 0.0657096654176712, + 0.043636422604322433, + -0.11881764233112335, + -0.0529114231467247, + -0.08091261237859726, + 0.07293780148029327, + -0.03999851271510124, + 0.14216472208499908, + 0.01532393041998148, + -0.01431943941861391, + -0.07718434184789658, + 0.06583579629659653, + 0.006376232951879501, + 0.058955155313014984, + 0.038301605731248856, + 0.08492980152368546, + 0.057431332767009735, + -0.022452017292380333, + 0.11928348988294601, + 0.04299422726035118, + -0.024492546916007996, + -0.04528416320681572, + -0.012552957981824875, + -0.05504211038351059, + 0.04242349788546562, + 0.020605294033885002, + -0.1146371066570282, + -0.001904359902255237, + 0.04225528985261917, + 0.0016734092496335506, + 0.05993179231882095, + 0.12889130413532257, + 0.07609815895557404, + -0.09642072767019272 + ] + }, + "p244_244.wav": { + "name": "p244", + "embedding": [ + 0.015157620422542095, + 0.1280662566423416, + 0.012902977876365185, + 0.008541541174054146, + -0.023153753951191902, + 0.07905904203653336, + -0.10465726256370544, + 0.13588006794452667, + -0.09854014217853546, + 0.15237274765968323, + -0.11579623818397522, + 0.08611460775136948, + -0.05950622260570526, + -0.16523081064224243, + -0.061877913773059845, + 0.04828590527176857, + -0.05972617492079735, + 0.02642555721104145, + -0.05299194157123566, + 0.012029719538986683, + 0.056963786482810974, + 0.01583811081945896, + 0.01436976995319128, + -0.023658983409404755, + 0.023346658796072006, + 0.02925366349518299, + 0.034538548439741135, + 0.06582436710596085, + 0.05200430005788803, + -0.0500522181391716, + -0.019896874204277992, + 0.14044435322284698, + -0.015244483016431332, + 0.027770008891820908, + 0.08281218260526657, + 0.014411162585020065, + 0.009064699523150921, + -0.045264992862939835, + -0.001370408572256565, + 0.0006966405780985951, + -0.027426065877079964, + 0.03869946300983429, + 0.007182638626545668, + 0.02760354056954384, + 0.04760516434907913, + 0.04462026432156563, + -0.032199230045080185, + -0.0444796048104763, + -0.06649202108383179, + 0.16035136580467224, + 0.057884152978658676, + -0.016115663573145866, + -0.06668198108673096, + -0.10085226595401764, + 0.11680220067501068, + 0.003864242462441325, + -0.1287318915128708, + -0.03475351259112358, + 0.10727717727422714, + 0.18859662115573883, + -0.009541080333292484, + -0.008865938521921635, + -0.0021360195241868496, + 0.11548824608325958, + -0.02306295558810234, + 0.115117147564888, + 0.04356386139988899, + 0.05877058953046799, + 0.06309426575899124, + 0.06548969447612762, + 0.0502641424536705, + 0.03158501535654068, + -0.007655811496078968, + -0.04324665293097496, + 0.03878512233495712, + -0.021659985184669495, + -0.03017851710319519, + 0.05297819897532463, + -0.02193160355091095, + -0.024461058899760246, + -0.014537391252815723, + 0.02656308002769947, + -0.010496634989976883, + -0.02818768285214901, + -0.02320687659084797, + 0.05188872665166855, + -0.03935471922159195, + 0.006939942017197609, + 0.08570580929517746, + 0.04858342185616493, + 0.015884390100836754, + 0.030341383069753647, + -0.026812471449375153, + -0.13850785791873932, + -0.015858955681324005, + -0.003745785215869546, + -0.008354886434972286, + 0.05596143379807472, + 0.01924893818795681, + -0.021216878667473793, + 0.10027248412370682, + 0.061965975910425186, + 0.014054552651941776, + 0.03820875659584999, + -0.13620363175868988, + 0.10815736651420593, + 0.06344486773014069, + 0.005911736749112606, + 0.03330852836370468, + -0.02108769491314888, + 0.09143178910017014, + 0.09591739624738693, + -0.1506294161081314, + -0.08359047025442123, + 0.018436571583151817, + 0.002948738867416978, + 0.0035635745152831078, + 0.07334635406732559, + -0.010056732222437859, + -0.033189211040735245, + 0.09899751842021942, + -0.07976589351892471, + -0.07831475883722305, + -0.05339564010500908, + 0.049559157341718674, + -0.04860967397689819, + 0.04483095929026604, + 0.021273093298077583, + -0.02921343222260475, + -0.02183394506573677, + 0.07835209369659424, + -0.016324905678629875, + 0.025435157120227814, + 0.0355246365070343, + -0.051567915827035904, + 0.03772864490747452, + -0.07808506488800049, + 0.019515827298164368, + 0.03784070536494255, + 0.09629470109939575, + 0.04965567961335182, + 0.01230591256171465, + -0.06264735013246536, + -0.05170727148652077, + -0.019810933619737625, + 0.052450526505708694, + 0.026648562401533127, + 0.0005201101885177195, + -0.0082823121920228, + -0.028736691921949387, + -0.0499672070145607, + 0.014001957140862942, + -0.012483155354857445, + 0.11741535365581512, + 0.005480760242789984, + -0.0007769843796268106, + 0.10091301053762436, + -0.009140508249402046, + -0.011305494233965874, + -0.08737270534038544, + -0.02917810156941414, + 0.04699983447790146, + 0.00973961316049099, + -0.08278350532054901, + -0.04763023182749748, + 0.03154463320970535, + 0.0026425619143992662, + -0.018831267952919006, + 0.0025461509358137846, + 0.02188570238649845, + 0.007187790237367153, + 0.06341048330068588, + -0.055779047310352325, + 0.02527732029557228, + -0.11441327631473541, + -0.04378209263086319, + -0.0200076662003994, + -0.04527204856276512, + -0.018684620037674904, + 0.07624778151512146, + -0.0027864093426615, + -0.00929536484181881, + 0.04374432563781738, + -0.08929353207349777, + -0.048692017793655396, + 0.09048879891633987, + 0.0808616653084755, + 0.026113083586096764, + 0.07289928942918777, + 0.03635279834270477, + -0.03004615381360054, + 0.0690738782286644, + 0.07146404683589935, + 0.09707856178283691, + -0.0014301573392003775, + -0.02368122525513172, + -0.08191797137260437, + 0.05331761762499809, + 0.06625315546989441, + -0.11483199894428253, + -0.0994897335767746, + -0.0410405695438385, + -0.04697568342089653, + 0.052460819482803345, + -0.024758759886026382, + 0.007315436843782663, + 0.013924474827945232, + -0.03480202332139015, + -0.07345923036336899, + -0.06326351314783096, + 0.10047326982021332, + -0.06961528211832047, + -0.04817875847220421, + -0.03589896112680435, + 0.049925725907087326, + 0.08763585239648819, + 0.03277474641799927, + -0.02049325220286846, + 0.005890677683055401, + 0.059558264911174774, + -0.11488718539476395, + -0.04705577343702316, + -0.007321113720536232, + -0.017281435430049896, + -0.05174028128385544, + 0.06147269532084465, + -0.09238504618406296, + 0.07521699368953705, + -0.08781251311302185, + 0.16216593980789185, + -0.04535123333334923, + -0.07118268311023712, + -0.0862535834312439, + 0.04955045133829117, + -0.04490290582180023, + 0.013406594283878803, + 0.03827185928821564, + 0.06513432413339615, + 0.01425163447856903, + -0.06357578933238983, + 0.12632222473621368, + -0.014399769715964794, + -0.005276745185256004, + -0.04854385182261467, + -0.04046763479709625, + -0.06491805613040924, + -0.015935152769088745, + -0.015658725053071976, + -0.09553497284650803, + -0.009389840066432953, + 0.004181795287877321, + -0.013229004107415676, + 0.07735807448625565, + 0.11161790043115616, + 0.03208980709314346, + -0.09762602299451828 + ] + }, + "p244_158.wav": { + "name": "p244", + "embedding": [ + 0.03636794909834862, + 0.07408522069454193, + -0.029218478128314018, + 0.08177635073661804, + -0.06782162934541702, + 0.0618540421128273, + -0.09660547971725464, + 0.11868441104888916, + -0.03968634083867073, + 0.12036117911338806, + -0.06789775937795639, + 0.10166685283184052, + -0.053389035165309906, + -0.15586525201797485, + -0.010718374513089657, + 0.07490645349025726, + -0.04263267293572426, + -0.038016337901353836, + -0.07048040628433228, + -0.0015694987960159779, + 0.024698931723833084, + 0.028321029618382454, + 0.05222189426422119, + 0.005631127394735813, + -0.003852994879707694, + 0.05570049211382866, + -0.005814242176711559, + 0.0503392294049263, + 0.03300800174474716, + -0.059968627989292145, + -0.036748550832271576, + 0.10470617562532425, + -0.027219461277127266, + 0.013587514869868755, + 0.037255171686410904, + 0.011195352301001549, + -0.00705090444535017, + -0.057694315910339355, + -0.0158570297062397, + -0.029805712401866913, + -0.061803851276636124, + 0.06483978033065796, + 0.006504404824227095, + -0.02211831510066986, + 0.06239274889230728, + -0.023987803608179092, + -0.06901973485946655, + -0.0169401615858078, + -0.1138477474451065, + 0.14198577404022217, + 0.08901195973157883, + -0.005303285550326109, + -0.07042433321475983, + -0.0670144259929657, + 0.09023643285036087, + -0.018352758139371872, + -0.13455168902873993, + -0.06878501176834106, + 0.07643783092498779, + 0.16312626004219055, + 0.0027912412770092487, + 0.006091908551752567, + 0.01098263543099165, + 0.13018983602523804, + 0.08016090095043182, + 0.0921977311372757, + 0.06344588845968246, + 0.12187433242797852, + 0.0032693627290427685, + 0.03604263812303543, + 0.05848647654056549, + 0.05705815181136131, + 0.04459799826145172, + 0.024683550000190735, + 0.016520438715815544, + -0.011246333830058575, + -0.011799464002251625, + 0.0022719241678714752, + -0.03526310622692108, + -0.034555867314338684, + -0.0224318765103817, + -0.00931625533849001, + 0.00201701489277184, + 0.0015893243253231049, + -0.017011523246765137, + 0.05614441633224487, + 0.04730871319770813, + -0.028897108510136604, + 0.057838715612888336, + 0.03517724946141243, + -0.012876738794147968, + 0.054476045072078705, + -0.04793250933289528, + -0.07878871262073517, + -0.01127027627080679, + 0.012375024147331715, + 0.023755429312586784, + 0.044638101011514664, + 0.010993423871695995, + -0.014322813600301743, + 0.11365317553281784, + 0.027714502066373825, + -0.006206504534929991, + 0.04823929816484451, + -0.08984355628490448, + 0.12267597019672394, + 0.07083822786808014, + -0.0011475087376311421, + 0.036867767572402954, + -0.01526604499667883, + 0.06316839903593063, + 0.07226600497961044, + -0.10068142414093018, + -0.048931967467069626, + 0.007679302245378494, + -0.02346210926771164, + -0.02364109456539154, + 0.09442295134067535, + 0.031209997832775116, + 0.03442900627851486, + 0.11493868380784988, + -0.09506888687610626, + -0.05987504497170448, + 0.002745419042184949, + 0.053859613835811615, + -0.0700913816690445, + 0.046697113662958145, + 0.04093196988105774, + 0.0009490498341619968, + 0.00941290333867073, + 0.08174094557762146, + -0.006261578761041164, + 0.014371974393725395, + 0.03929998725652695, + -0.08935508131980896, + 0.03423840180039406, + -0.054238349199295044, + -0.014292575418949127, + 0.07969090342521667, + 0.030051421374082565, + 0.07168838381767273, + -0.042200855910778046, + 0.003494914388284087, + -0.0920737087726593, + -0.002001882530748844, + 0.046577922999858856, + 0.07320979237556458, + -0.0016381286550313234, + 0.002057683654129505, + -0.04588992893695831, + -0.06321508437395096, + 0.04935348033905029, + -0.03699737787246704, + 0.07722482085227966, + -0.042431462556123734, + -0.016282720491290092, + 0.10615359246730804, + -0.01031394861638546, + -0.009273335337638855, + -0.07583662867546082, + -0.03662590682506561, + 0.023021847009658813, + 0.05599135532975197, + -0.08044606447219849, + -0.05300554633140564, + 0.016175316646695137, + 0.0391780324280262, + -0.029483648017048836, + 0.040394652634859085, + 0.041059065610170364, + 0.013634743168950081, + 0.007760524749755859, + -0.0399499386548996, + 0.012870780192315578, + -0.07050175964832306, + -0.0517011433839798, + 0.004763354081660509, + -0.030512569472193718, + -0.014255639165639877, + 0.06707319617271423, + 0.03871876746416092, + 0.029323376715183258, + -0.0002216622233390808, + -0.09811811149120331, + -0.10160472244024277, + 0.07107927650213242, + 0.026411235332489014, + 0.0017819879576563835, + 0.07137942314147949, + 0.06284067779779434, + -0.05381152778863907, + 0.03594835847616196, + 0.04912285506725311, + 0.09870834648609161, + -0.026932405307888985, + -0.004567543510347605, + -0.11137527227401733, + 0.06321048736572266, + 0.122107595205307, + -0.09028545767068863, + -0.08155925571918488, + -0.03774857893586159, + -0.059436630457639694, + 0.056765250861644745, + -0.057279862463474274, + -0.021987317129969597, + 0.07938526570796967, + -0.03716309368610382, + -0.12952059507369995, + -0.10323606431484222, + 0.1277615875005722, + -0.08645600080490112, + -0.01288935262709856, + -0.06378473341464996, + 0.020325936377048492, + 0.048718489706516266, + 0.03205057233572006, + -0.05221455171704292, + 0.024769719690084457, + 0.07441788911819458, + -0.05886536091566086, + 0.010278910398483276, + 0.06928111612796783, + 0.013816374354064465, + -0.09825587272644043, + -0.016557861119508743, + -0.07341115921735764, + 0.049111366271972656, + -0.037480395287275314, + 0.1439986526966095, + -0.004929577466100454, + -0.02724667266011238, + -0.07297278940677643, + 0.0574522390961647, + -0.02209884487092495, + 0.06392282992601395, + 0.04267135262489319, + 0.06446905434131622, + 0.034349579364061356, + -0.06657631695270538, + 0.13590319454669952, + 0.034329745918512344, + -0.03836118057370186, + -0.05765734985470772, + -0.03171355649828911, + -0.0681348592042923, + 0.024496179074048996, + -0.003957423381507397, + -0.09631752967834473, + 0.0013710327912122011, + 0.009104754775762558, + -0.03447079658508301, + 0.06533177196979523, + 0.13263574242591858, + 0.08009309321641922, + -0.07407161593437195 + ] + }, + "p244_278.wav": { + "name": "p244", + "embedding": [ + 0.05478248745203018, + 0.0654914528131485, + -0.030155498534440994, + 0.05006328225135803, + -0.06119343638420105, + 0.035684555768966675, + -0.10848580300807953, + 0.1078013926744461, + -0.021831056103110313, + 0.13676849007606506, + -0.05876852571964264, + 0.11819253861904144, + -0.012822561897337437, + -0.16776534914970398, + -0.008926431648433208, + 0.05648058280348778, + -0.05177285149693489, + -0.035407066345214844, + -0.06169877201318741, + -0.02790026180446148, + 0.03653136268258095, + 0.06757098436355591, + 0.07132668793201447, + -0.023736946284770966, + 0.022700008004903793, + 0.06713889539241791, + -0.007135279942303896, + 0.04096405580639839, + 0.021322842687368393, + -0.10620146989822388, + -0.05070004612207413, + 0.08898956328630447, + -0.04560593143105507, + 0.016671057790517807, + 0.014638209715485573, + -0.01341228187084198, + 0.0010660383850336075, + -0.0646844357252121, + -0.056926026940345764, + 0.019003257155418396, + -0.053564853966236115, + 0.06721173226833344, + 0.01438442338258028, + -0.048880890011787415, + 0.053169410675764084, + -0.024588685482740402, + -0.048022232949733734, + -0.030644766986370087, + -0.10996608436107635, + 0.17169854044914246, + 0.07533164322376251, + 0.004216858185827732, + -0.06320375204086304, + -0.08148860186338425, + 0.09647262096405029, + -0.013156525790691376, + -0.13923096656799316, + -0.03373803198337555, + 0.06174682453274727, + 0.14544759690761566, + -0.016228679567575455, + -0.026643428951501846, + 0.05127153545618057, + 0.10532969236373901, + 0.0773783028125763, + 0.06499829143285751, + 0.08367543667554855, + 0.10377830266952515, + -0.015506149269640446, + 0.0350506454706192, + 0.04926124960184097, + 0.10120592266321182, + 0.05283767729997635, + 0.007985003292560577, + 0.01713675446808338, + 0.015566572546958923, + -0.032079484313726425, + -0.024455683305859566, + -0.015665283426642418, + -0.008391076698899269, + -0.006056316662579775, + -0.017124952748417854, + 0.017281435430049896, + 0.009548640809953213, + -0.033266644924879074, + 0.04581880569458008, + 0.04136952757835388, + -0.013271613977849483, + 0.056870944797992706, + 0.02831896021962166, + 0.011884119361639023, + 0.06806081533432007, + -0.059026796370744705, + -0.07520255446434021, + -0.007246255408972502, + 0.019319647923111916, + 0.021197669208049774, + 0.06681819260120392, + 0.04678625240921974, + -0.033802807331085205, + 0.1316288262605667, + 0.037030622363090515, + -0.005198957864195108, + 0.008820366114377975, + -0.07641861587762833, + 0.09652912616729736, + 0.10601826012134552, + -0.01883583888411522, + 0.05614205449819565, + -0.03866414725780487, + 0.08375433087348938, + 0.061983682215213776, + -0.12790998816490173, + -0.06512638181447983, + 0.012298696674406528, + -0.02458438277244568, + -0.001408421783708036, + 0.12263201177120209, + 0.013288180343806744, + 0.04702261835336685, + 0.11125840991735458, + -0.10991761088371277, + -0.05253775790333748, + -0.004227515310049057, + 0.05360811948776245, + -0.09626469761133194, + 0.06017468497157097, + 0.03829836845397949, + -0.02324896678328514, + 0.009931113570928574, + 0.07641367614269257, + -0.0294354110956192, + 0.02223369851708412, + 0.004720824770629406, + -0.06985270977020264, + 0.01434963196516037, + -0.0460321307182312, + -0.012183459475636482, + 0.08463872969150543, + 0.024527626112103462, + 0.05627722293138504, + -0.03708511218428612, + -0.04226204752922058, + -0.13128814101219177, + 0.03298772871494293, + 0.026217985898256302, + 0.06580395251512527, + -0.00681707076728344, + -0.009905772283673286, + -0.03391108289361, + -0.08708173036575317, + 0.05146803334355354, + -0.028685929253697395, + 0.07056191563606262, + -0.025998076424002647, + -0.007207034155726433, + 0.10676755011081696, + 0.02210184931755066, + -0.012761189602315426, + -0.0402388796210289, + -0.049234528094530106, + 0.005367421545088291, + 0.055032193660736084, + -0.08735334128141403, + -0.07822079956531525, + -0.008211322128772736, + 0.017171088606119156, + -0.006194661371409893, + 0.05070827156305313, + 0.0503276027739048, + 0.012079538777470589, + 0.019724011421203613, + -0.06969340890645981, + 0.0020727338269352913, + -0.0971924364566803, + -0.07336390763521194, + -0.007661875803023577, + -0.032338328659534454, + -0.010613098740577698, + 0.0916496217250824, + 0.012261785566806793, + 0.02863418683409691, + -0.03354836255311966, + -0.08079648017883301, + -0.09543775767087936, + 0.0639791339635849, + 0.037300340831279755, + 0.002587447641417384, + 0.043982330709695816, + 0.07693731784820557, + -0.03697185218334198, + 0.04250878095626831, + 0.03332526981830597, + 0.0956505760550499, + -0.025455493479967117, + 0.011223061010241508, + -0.07478432357311249, + 0.10043232142925262, + 0.0954500138759613, + -0.07794070243835449, + -0.07680858671665192, + -0.045787833631038666, + -0.08818846195936203, + 0.05907116085290909, + -0.016416313126683235, + -0.009622457437217236, + 0.04702538996934891, + -0.007945523597300053, + -0.11236733198165894, + -0.08484476059675217, + 0.11448071897029877, + -0.05408007279038429, + -0.023011289536952972, + -0.07300858944654465, + 0.026208505034446716, + 0.07481840252876282, + 0.057982541620731354, + -0.01708587259054184, + 0.02267123945057392, + 0.058120012283325195, + -0.046625152230262756, + 0.017153888940811157, + 0.08223636448383331, + 0.032293591648340225, + -0.08871110528707504, + -0.029793445020914078, + -0.07229975610971451, + 0.03841162472963333, + -0.051842860877513885, + 0.13208141922950745, + 0.0022065092343837023, + -0.057998765259981155, + -0.08510474860668182, + 0.06994156539440155, + -0.02224171906709671, + 0.05679536983370781, + 0.049887172877788544, + 0.06279656291007996, + 0.059543073177337646, + -0.098089300096035, + 0.1073068231344223, + 0.05193856731057167, + -0.03036480024456978, + -0.05680491030216217, + -0.044343676418066025, + -0.038341205567121506, + 0.029765717685222626, + 0.010471574030816555, + -0.07372936606407166, + 0.004315624013543129, + 0.009176323190331459, + -0.013452151790261269, + 0.053752653300762177, + 0.12671160697937012, + 0.06682229042053223, + -0.1108715832233429 + ] + }, + "p244_334.wav": { + "name": "p244", + "embedding": [ + 0.04873369261622429, + 0.10693557560443878, + -0.0036122030578553677, + 0.027499958872795105, + -0.03217095881700516, + 0.03909189999103546, + -0.07382022589445114, + 0.09170767664909363, + 0.03452327474951744, + 0.06702721118927002, + -0.07194428890943527, + 0.08427950739860535, + -0.02937258780002594, + -0.1347297728061676, + 0.016911733895540237, + 0.0387294664978981, + -0.020503666251897812, + 0.0031855504494160414, + -0.025329967960715294, + -0.021834973245859146, + -0.005436833016574383, + 0.015500199049711227, + 0.025590229779481888, + -0.017003227025270462, + 0.012133880518376827, + 0.024779539555311203, + -0.02642269991338253, + 0.016506386920809746, + -0.013045243918895721, + -0.044783830642700195, + -0.030460629612207413, + 0.06558965146541595, + -0.03640653192996979, + -0.0047957925125956535, + 0.009877799078822136, + -0.03595206141471863, + 0.0030451274942606688, + -0.06579308956861496, + -0.04624996334314346, + 0.02209617756307125, + -0.052699975669384, + 0.05233551189303398, + 0.03917326778173447, + -0.04705752432346344, + 0.04233626276254654, + 0.01647038199007511, + -0.0319753997027874, + -0.018268324434757233, + -0.09570550918579102, + 0.12502112984657288, + 0.032487884163856506, + 0.03818941116333008, + -0.06252004951238632, + -0.02137906849384308, + 0.08839713782072067, + 0.011459152214229107, + -0.0364052951335907, + -0.020795777440071106, + 0.033172428607940674, + 0.07304715365171432, + 0.030338570475578308, + -0.025331459939479828, + 0.033425796777009964, + 0.07909417152404785, + 0.044216569513082504, + 0.030128872022032738, + 0.07211612910032272, + 0.11590670794248581, + -0.024705886840820312, + 0.02309587225317955, + 0.03916897624731064, + 0.024899309501051903, + 0.02518191561102867, + -0.004878608509898186, + -0.0018378261011093855, + -0.0080089271068573, + -0.00011170034849783406, + -0.015379799529910088, + -0.017086666077375412, + -0.03629455342888832, + 0.03411717340350151, + 0.00014239922165870667, + 0.008746813982725143, + 0.018694989383220673, + -0.03848152980208397, + -0.004877845756709576, + 0.06771387904882431, + 0.038313619792461395, + 0.07434645295143127, + 0.023253921419382095, + 0.02067210152745247, + 0.05656753107905388, + -0.07962983101606369, + -0.07256370782852173, + 0.02649257332086563, + 0.0085770757868886, + 0.034118637442588806, + 0.04059663414955139, + 0.03565572202205658, + -0.022544417530298233, + 0.09793820977210999, + 0.006642095744609833, + 0.012323970906436443, + 0.0027670941781252623, + -0.05990158021450043, + 0.0496484600007534, + 0.05955754965543747, + -0.00415319949388504, + 0.06258679926395416, + 0.0010111108422279358, + 0.05643618851900101, + 0.058291252702474594, + -0.07653731107711792, + -0.014202798716723919, + -0.0010597892105579376, + 0.030780520290136337, + -0.005337671376764774, + 0.11156058311462402, + 0.010762704536318779, + 0.053148671984672546, + 0.09943026304244995, + -0.06494399905204773, + -0.018177129328250885, + 0.02894250676035881, + 0.006910689175128937, + -0.025696545839309692, + 0.04709519073367119, + 0.04810675233602524, + -0.019044259563088417, + -0.016387324780225754, + 0.0316070131957531, + 0.008910607546567917, + 0.016313519328832626, + -0.031074119731783867, + -0.003475576639175415, + -0.005818442907184362, + 0.006374956574290991, + -0.021304359659552574, + 0.018476711586117744, + 0.04271669685840607, + 0.009739421308040619, + 0.012309007346630096, + -0.030352434143424034, + -0.08430805057287216, + 0.023059625178575516, + -0.008350951597094536, + 0.0301833376288414, + 0.038034502416849136, + -0.0340069904923439, + -0.05100385472178459, + -0.028611307963728905, + 0.03031962178647518, + -0.020830025896430016, + 0.05372178182005882, + 0.052251748740673065, + -0.021049227565526962, + 0.061715610325336456, + 0.02695293352007866, + 0.026425324380397797, + -0.02373645454645157, + -0.09614600986242294, + 0.007587619125843048, + 0.02758411131799221, + -0.04478609561920166, + -0.048353008925914764, + -0.010006466880440712, + -0.030420511960983276, + -0.018697096034884453, + 0.015556196682155132, + 0.0558282844722271, + 0.0019114328315481544, + 0.0035986441653221846, + -0.0758344829082489, + 0.007346875965595245, + -0.03445557504892349, + -0.08681651204824448, + 0.04090768098831177, + 0.02839125506579876, + -0.0070141032338142395, + 0.07862793654203415, + 0.02051617205142975, + 0.018865486606955528, + -0.049923479557037354, + -0.028671864420175552, + -0.004431804176419973, + 0.028754226863384247, + 0.020658444613218307, + -0.004458627663552761, + 0.035873278975486755, + 0.03657901659607887, + -0.008428744040429592, + 0.023152269423007965, + 0.026673417538404465, + 0.061416976153850555, + -0.029842248186469078, + 0.004579775966703892, + -0.0046555399894714355, + 0.08981090039014816, + 0.0633201077580452, + -0.07316349446773529, + -0.07605834305286407, + -0.028967570513486862, + -0.048072449862957, + 0.015740511938929558, + -0.007654663175344467, + 0.019183872267603874, + 0.028416959568858147, + -0.009511109441518784, + -0.03297748044133186, + -0.11363355815410614, + 0.02397424541413784, + -0.029421448707580566, + -0.010374137200415134, + -0.046779390424489975, + 0.029495395720005035, + 0.058524906635284424, + 0.02355324476957321, + -0.031237466260790825, + -0.011365748941898346, + 0.02737213671207428, + 0.008947036229074001, + -0.0042488775216042995, + 0.038352008908987045, + 0.05719178542494774, + -0.04179975017905235, + -0.009760278277099133, + -0.05449621379375458, + 0.04594341665506363, + 0.014411951415240765, + 0.10113872587680817, + 0.04233062267303467, + -0.009858286008238792, + -0.08939790725708008, + 0.05329596623778343, + -0.008047381415963173, + 0.04138759523630142, + -0.02176138013601303, + 0.023307902738451958, + 0.058196406811475754, + -0.055288344621658325, + 0.08841335028409958, + 0.027476457878947258, + -0.03257935121655464, + -0.03810466080904007, + -0.007382941897958517, + -0.04656383395195007, + 0.030206400901079178, + 0.004072529263794422, + -0.05502880737185478, + -0.021597426384687424, + 0.038785599172115326, + 0.05064279958605766, + 0.051770783960819244, + 0.0858384221792221, + 0.03550642728805542, + -0.031274985522031784 + ] + }, + "p244_373.wav": { + "name": "p244", + "embedding": [ + 0.025988437235355377, + 0.09820541739463806, + -0.07655295729637146, + 0.019693441689014435, + 0.0015632472932338715, + 0.002512953244149685, + -0.13236570358276367, + 0.0769578069448471, + -0.019709181040525436, + 0.12228292971849442, + -0.04034237936139107, + 0.10550229251384735, + -0.06892996281385422, + -0.10437479615211487, + 0.011496221646666527, + 0.061133645474910736, + 0.003962080925703049, + -0.00980973057448864, + 0.00441686250269413, + -0.029012421146035194, + 0.057221878319978714, + 0.037220560014247894, + 0.024961143732070923, + -0.06629408895969391, + -0.021362772211432457, + 0.10583087056875229, + -0.016717858612537384, + -0.01013021357357502, + -0.03688303381204605, + -0.040557119995355606, + -0.015322180464863777, + 0.05310952663421631, + -0.0063266269862651825, + -0.006088280584663153, + 0.019386611878871918, + 0.026945384219288826, + -0.032562606036663055, + -0.02129427343606949, + 0.02387141063809395, + 0.014932794496417046, + -0.049344636499881744, + 0.04137878492474556, + 0.011501285247504711, + -0.04507818445563316, + 0.07293133437633514, + -0.05540666729211807, + -0.021381376311182976, + -0.009606706909835339, + -0.05594944953918457, + 0.11514291167259216, + 0.09847469627857208, + 0.01235372107475996, + -0.041726164519786835, + 0.006693335250020027, + 0.0688067227602005, + 0.033672209829092026, + -0.08874674141407013, + -0.045205000787973404, + 0.04132102057337761, + 0.11455559730529785, + -0.011413728818297386, + -0.02181203104555607, + 0.05688142031431198, + 0.07123453915119171, + 0.0074554383754730225, + 0.07296687364578247, + 0.0906069278717041, + 0.05650331825017929, + 0.012263098731637001, + -0.05245373770594597, + 0.005300190299749374, + 0.10092728585004807, + 0.04076027870178223, + -0.0005190724041312933, + 0.016314871609210968, + -0.029129959642887115, + -0.05042188987135887, + -0.025791462510824203, + -0.012380285188555717, + -0.09108548611402512, + -0.042661506682634354, + -0.01534661091864109, + 0.00789736956357956, + 0.02617065981030464, + 0.006602557376027107, + 0.018134452402591705, + 0.09590338170528412, + -0.0702386125922203, + 0.02530999667942524, + 0.004429425112903118, + 0.023549677804112434, + 0.008688906207680702, + -0.05143841728568077, + -0.06301959604024887, + 0.03597753122448921, + 0.039433401077985764, + 0.022894442081451416, + 0.0422198548913002, + 0.04887760058045387, + 0.030597684904932976, + 0.08671444654464722, + -0.0022908179089426994, + 0.009263802319765091, + -0.0226020235568285, + -0.03954731300473213, + 0.0862768143415451, + 0.11853201687335968, + -0.038837067782878876, + 0.04914525896310806, + -0.06082789599895477, + -0.023989427834749222, + 0.0034458301961421967, + -0.07507243007421494, + -0.03266632929444313, + 0.01374002918601036, + 0.02326524630188942, + 0.006310518831014633, + 0.10992632806301117, + 0.06194300949573517, + 0.036353904753923416, + 0.09295313060283661, + -0.0928887128829956, + -0.09954400360584259, + -0.08038656413555145, + 0.07480818778276443, + -0.06612022966146469, + 0.08799386024475098, + 0.09594659507274628, + 0.013327401131391525, + 0.029001597315073013, + 0.036311887204647064, + 0.027989590540528297, + 0.03874170035123825, + -0.03448348119854927, + -0.03784364089369774, + -0.01644155941903591, + -0.057676397264003754, + 0.011099273338913918, + 0.029926974326372147, + -0.002386469393968582, + 0.0668230950832367, + -0.01530742272734642, + 0.013561587780714035, + -0.10623090714216232, + -0.007145174778997898, + 0.0587586984038353, + 0.009654166176915169, + -0.03397119417786598, + -0.05040347948670387, + -0.0074806222692132, + -0.07279738038778305, + -0.05282333120703697, + -0.0766778513789177, + 0.08115430176258087, + -0.017442453652620316, + 0.025579238310456276, + 0.09499223530292511, + 0.011951069347560406, + -0.00854148156940937, + -0.034677669405937195, + -0.015701044350862503, + 0.004493666812777519, + 0.016761906445026398, + -0.10517837107181549, + -0.10933873057365417, + -0.05259307101368904, + 0.02531185746192932, + 0.016538385301828384, + 0.06609632074832916, + 0.04936101287603378, + 0.019311608746647835, + -0.0027266854885965586, + -0.011622831225395203, + 0.010196343064308167, + -0.07101771235466003, + -0.08215239644050598, + -0.01632404886186123, + -0.036348022520542145, + -0.02212928794324398, + 0.10357800871133804, + 0.00830297265201807, + 0.05375465750694275, + -0.0353054478764534, + -0.01025029644370079, + -0.08879391849040985, + 0.045894771814346313, + 0.047377828508615494, + -0.030138906091451645, + 0.015525770373642445, + 0.010622154921293259, + -0.02707100100815296, + -0.003325197845697403, + 0.04586614668369293, + 0.07359784096479416, + -0.016822580248117447, + -0.006815088912844658, + -0.08205129206180573, + 0.039483003318309784, + 0.13273406028747559, + -0.07597324997186661, + -0.03539995849132538, + -0.07370650768280029, + -0.08235020935535431, + 0.018575873225927353, + -0.07696881890296936, + 0.0021603491622954607, + -0.009484760463237762, + -0.0041832514107227325, + -0.12185937911272049, + -0.11209568381309509, + 0.04404143989086151, + -0.0019835233688354492, + 0.015067500062286854, + -0.05630561709403992, + 0.046252425760030746, + 0.04974498227238655, + 0.025762362405657768, + -0.05616918206214905, + 0.02369961515069008, + 0.03976144641637802, + -0.005783764645457268, + 0.05185233801603317, + 0.043437644839286804, + 0.10268016159534454, + -0.07472864538431168, + -0.014422083273530006, + -0.07585626095533371, + 0.04222417622804642, + -0.06329778581857681, + 0.09328177571296692, + 0.05219300091266632, + -0.02957436442375183, + -0.09310401976108551, + 0.05537908151745796, + 0.02255186066031456, + 0.03306068480014801, + -0.013540109619498253, + 0.0282684788107872, + 0.045438721776008606, + -0.09567025303840637, + 0.0685226321220398, + 0.03649486228823662, + 0.02875138819217682, + -0.07151172310113907, + -0.04839157685637474, + -0.04036583751440048, + 0.06036647409200668, + -0.00438026525080204, + -0.03908253088593483, + -0.02415274828672409, + -0.00627659447491169, + 0.07473570108413696, + 0.05670511722564697, + 0.07765699177980423, + 0.013433671556413174, + -0.078646719455719 + ] + }, + "p244_304.wav": { + "name": "p244", + "embedding": [ + 0.022711295634508133, + 0.07748173177242279, + 0.025834525004029274, + 0.008184421807527542, + -0.023033270612359047, + 0.08437056839466095, + -0.13064096868038177, + 0.08926959335803986, + -0.0762484073638916, + 0.14807948470115662, + -0.08903578668832779, + 0.051704198122024536, + -0.05598234012722969, + -0.19571346044540405, + -0.017107469961047173, + 0.06931046396493912, + -0.05810039862990379, + 0.0059250290505588055, + -0.08474580943584442, + -0.010211730375885963, + 0.014573503285646439, + 0.0010009087854996324, + 0.01747260056436062, + 0.020306620746850967, + 0.007357908878475428, + 0.055135417729616165, + -0.030081573873758316, + 0.027837570756673813, + -0.020328463986516, + -0.03754015266895294, + -0.01681126281619072, + 0.12032558768987656, + -0.03685387969017029, + 0.01620105281472206, + 0.08825662732124329, + 0.01890682615339756, + -0.03712807968258858, + -0.02135617844760418, + -0.005642293952405453, + -0.008479191921651363, + -0.07152386009693146, + 0.054391048848629, + -0.0012594076106324792, + 0.03424086794257164, + 0.07749515771865845, + 0.024106694385409355, + -0.016839729622006416, + -0.03357970342040062, + -0.07907180488109589, + 0.11650526523590088, + 0.08169906586408615, + -0.028337819501757622, + -0.026532793417572975, + -0.07965946942567825, + 0.08826316148042679, + -0.0355621762573719, + -0.15203070640563965, + -0.08715762197971344, + 0.10039637982845306, + 0.14046311378479004, + -0.046632762998342514, + -0.00476363068446517, + -0.006527372635900974, + 0.10522933304309845, + 0.011653348803520203, + 0.15772445499897003, + 0.006807137280702591, + 0.08539994060993195, + -0.000572943827137351, + 0.0258883535861969, + 0.07486965507268906, + 0.013907882384955883, + 0.06873930990695953, + -0.03511760011315346, + 0.039504941552877426, + 0.022473732009530067, + -0.0008677373407408595, + 0.026532527059316635, + 0.01022608857601881, + 0.014962945133447647, + -0.0024661002680659294, + -0.03310469165444374, + -0.03692680597305298, + -0.0394938588142395, + -0.0026312265545129776, + 0.019223330542445183, + 0.04809681326150894, + 0.0001370495738228783, + 0.06026380881667137, + 0.06940500438213348, + -0.016827460378408432, + 0.06810729950666428, + -0.021628154441714287, + -0.05956669896841049, + 0.010129084810614586, + 0.011063181795179844, + -0.028331128880381584, + 0.022709282115101814, + 0.010611528530716896, + 0.006038271356374025, + 0.07363495975732803, + 0.04817867651581764, + 0.00877306703478098, + 0.05714738741517067, + -0.12362018972635269, + 0.12945257127285004, + 0.038387883454561234, + -0.016903875395655632, + 0.04234904795885086, + -0.0001951254380401224, + 0.06232089176774025, + 0.110261470079422, + -0.11998284608125687, + -0.0339704193174839, + 0.0010467983083799481, + -0.053432803601026535, + -0.041706573218107224, + 0.0825280174612999, + 0.006255296058952808, + -0.05825299769639969, + 0.1329822689294815, + -0.08691225945949554, + -0.06604604423046112, + -0.008038188330829144, + 0.00900148507207632, + -0.13898621499538422, + 0.0192754827439785, + 0.04680553451180458, + 0.0102784913033247, + 0.00036384587292559445, + 0.15025316178798676, + -0.012897887267172337, + -0.0046776640228927135, + -0.008564743213355541, + -0.027394231408834457, + 0.02482428029179573, + -0.03371784836053848, + 0.03647928684949875, + 0.08281941711902618, + 0.015171117149293423, + 0.030740104615688324, + -0.017334870994091034, + -0.026558881625533104, + -0.08479554206132889, + -0.010086203925311565, + 0.05589460954070091, + 0.04483935981988907, + -0.008999710902571678, + 0.05178820714354515, + -0.03989846259355545, + -0.10083739459514618, + 0.06717672199010849, + -0.056261930614709854, + 0.09425389766693115, + 0.0036978188436478376, + -0.027439208701252937, + 0.12801530957221985, + -0.006857945583760738, + 0.006916288286447525, + -0.12446922063827515, + -0.00043053089757449925, + 0.03536829724907875, + 0.046749476343393326, + -0.10868663340806961, + -0.031571030616760254, + 0.02713542990386486, + 0.04419597610831261, + 0.02856263518333435, + 0.025127867236733437, + 0.04229838401079178, + 0.0008241615723818541, + 0.02129506878554821, + -0.04658876359462738, + 0.019512450322508812, + -0.06809564679861069, + -0.06443101912736893, + -0.023213515058159828, + -0.06891179084777832, + 0.007952879182994366, + 0.06904541701078415, + -0.04823429509997368, + -0.029340645298361778, + -0.014090826734900475, + -0.11455170810222626, + -0.09613367170095444, + 0.08904501795768738, + 0.07175253331661224, + -0.007502212654799223, + 0.04700871556997299, + 0.03642822057008743, + -0.08982168883085251, + 0.0499243326485157, + 0.042581163346767426, + 0.15260908007621765, + -0.052219536155462265, + 0.06762342154979706, + -0.08329164236783981, + 0.04724467918276787, + 0.0754045620560646, + -0.0763833075761795, + -0.08398013561964035, + 0.00939631462097168, + -0.012717029079794884, + 0.06586272269487381, + -0.055741336196660995, + -0.04147971048951149, + 0.04621530696749687, + -0.044215064495801926, + -0.04343722388148308, + -0.08591325581073761, + 0.10127062350511551, + -0.05069053918123245, + -0.01004981342703104, + -0.04669785127043724, + 0.046343009918928146, + -0.010672826319932938, + 0.07424084097146988, + -0.040462784469127655, + 0.041603416204452515, + 0.06315108388662338, + -0.05816970393061638, + -0.03648746758699417, + 0.04510973393917084, + -0.024843839928507805, + -0.06066644564270973, + -0.04027685523033142, + -0.11766115576028824, + 0.10020244121551514, + -0.049527671188116074, + 0.12818704545497894, + -0.05834294110536575, + -0.04999767988920212, + -0.031744468957185745, + -0.015066524967551231, + -0.010042618028819561, + 0.026611095294356346, + 0.06379668414592743, + 0.08535535633563995, + 0.03816480562090874, + 0.00819784589111805, + 0.10248463600873947, + -0.005560922436416149, + 0.038531430065631866, + -0.028577744960784912, + -0.017214465886354446, + -0.07231894880533218, + 0.0017309447284787893, + -0.016719846054911613, + -0.17118534445762634, + 0.043390046805143356, + 0.014364867471158504, + -0.04175948724150658, + 0.030008237808942795, + 0.11371616274118423, + 0.05733555927872658, + -0.10070354491472244 + ] + }, + "p244_115.wav": { + "name": "p244", + "embedding": [ + 0.043387725949287415, + 0.11231091618537903, + -0.003916000481694937, + 0.009882601909339428, + -0.054747194051742554, + 0.07636934518814087, + -0.12208505719900131, + 0.14207975566387177, + -0.05527171492576599, + 0.1381472498178482, + -0.06776908040046692, + 0.11894410848617554, + -0.03930240124464035, + -0.16356351971626282, + -0.05396844074130058, + 0.05102023482322693, + -0.0496596023440361, + -0.029463768005371094, + -0.04164385423064232, + -0.019953353330492973, + 0.022780798375606537, + 0.004782961681485176, + 0.02691066637635231, + 0.026409871876239777, + 0.03607138618826866, + 0.06601843982934952, + 0.008632799610495567, + 0.06571470201015472, + 0.028668176382780075, + -0.03407922387123108, + -0.03384008631110191, + 0.10132303088903427, + -0.054539501667022705, + 0.036883652210235596, + 0.07302998006343842, + -0.00542761106044054, + 0.0032011528965085745, + -0.047096531838178635, + -0.004907770082354546, + -0.0015979751478880644, + -0.039088062942028046, + 0.08952777832746506, + 0.02241676114499569, + 0.00442493474110961, + 0.02193446457386017, + 0.03968430683016777, + 0.0028938695322722197, + -0.04308926686644554, + -0.09924664348363876, + 0.14455197751522064, + 0.06625208258628845, + -0.01932726614177227, + -0.06858550012111664, + -0.07320526242256165, + 0.1061343252658844, + -0.037628136575222015, + -0.11545932292938232, + -0.04847247153520584, + 0.07793942838907242, + 0.1472417414188385, + -0.039471399039030075, + -0.03440989553928375, + -0.002847484080120921, + 0.1367272436618805, + 0.06090783327817917, + 0.09846580028533936, + 0.07505609095096588, + 0.1156468391418457, + -0.023791294544935226, + 0.0214972123503685, + 0.07073168456554413, + 0.05553985387086868, + 0.0449344739317894, + -0.005026431754231453, + 0.021073712036013603, + -0.0075178625993430614, + 0.003391070058569312, + 0.019270282238721848, + -0.025024106726050377, + -0.01593026891350746, + -0.0399935357272625, + 0.016689486801624298, + -0.01982315070927143, + 0.017254436388611794, + -0.0063963234424591064, + 0.06769010424613953, + 0.021447142586112022, + -0.01378849521279335, + 0.06907767802476883, + 0.06431375443935394, + -0.003343365853652358, + 0.06677393615245819, + -0.07856949418783188, + -0.07840704172849655, + 0.017980866134166718, + -0.013636510819196701, + 0.03128594905138016, + 0.07158458232879639, + 0.03643043339252472, + 0.004429791122674942, + 0.10795672982931137, + 0.06717909872531891, + -0.008991558104753494, + 0.028005464002490044, + -0.09401147067546844, + 0.1403331458568573, + 0.06828339397907257, + -0.03059801459312439, + 0.03733018785715103, + -0.025316689163446426, + 0.06774851679801941, + 0.07324408739805222, + -0.12855027616024017, + -0.08557166159152985, + 0.021088851615786552, + 0.00902944803237915, + -0.03106229566037655, + 0.08071941882371902, + -0.026057027280330658, + 0.019811101257801056, + 0.09252659976482391, + -0.0596553236246109, + -0.044678620994091034, + -0.019683992490172386, + 0.04097326844930649, + -0.06778547167778015, + 0.03849031776189804, + 0.04769861698150635, + 0.0038790679536759853, + 0.008564174175262451, + 0.10526256263256073, + 0.005555190145969391, + -0.013000641018152237, + 0.040261100977659225, + -0.045331161469221115, + 0.027491208165884018, + -0.010354146361351013, + 0.014817701652646065, + 0.044352225959300995, + 0.04833199828863144, + 0.053873978555202484, + 0.005366505589336157, + -0.0115616200491786, + -0.09530405700206757, + 0.0033737346529960632, + 0.055167488753795624, + 0.07145251333713531, + -0.02232576161623001, + -0.020091822370886803, + -0.028691880404949188, + -0.05672793090343475, + 0.010987645015120506, + 0.0018404526636004448, + 0.08758819103240967, + -0.03067968599498272, + -0.0027938554994761944, + 0.11813554167747498, + 0.014427493326365948, + -0.010303257033228874, + -0.06665486842393875, + -0.014806526713073254, + 0.004433467518538237, + 0.05507759377360344, + -0.08299261331558228, + -0.06513661891222, + 0.01767323911190033, + 0.03315040096640587, + -0.01806546561419964, + 0.07016691565513611, + 0.0455411896109581, + 0.006543578114360571, + 0.037425436079502106, + -0.0536341667175293, + 0.014983810484409332, + -0.08933089673519135, + -0.05407053232192993, + -0.028554178774356842, + -0.021868420764803886, + -0.02078847587108612, + 0.06556010246276855, + 0.02104736864566803, + 0.05847422406077385, + 0.013757916167378426, + -0.09379404038190842, + -0.07511549443006516, + 0.06460367143154144, + 0.06682710349559784, + -0.004587736912071705, + 0.04965873062610626, + 0.07594504207372665, + -0.039351027458906174, + 0.05320898815989494, + 0.07116397470235825, + 0.09496461600065231, + -0.04457472264766693, + 0.03189108520746231, + -0.07518292963504791, + 0.05866130813956261, + 0.06410959362983704, + -0.11716088652610779, + -0.0836414247751236, + -0.021253909915685654, + -0.03601228445768356, + 0.023579150438308716, + -0.030452851206064224, + 0.01744082383811474, + 0.03475135564804077, + -0.017504658550024033, + -0.07475198805332184, + -0.10161813348531723, + 0.09390457719564438, + -0.08480685204267502, + 0.004718102049082518, + -0.0679241269826889, + 0.04134657233953476, + 0.08306419849395752, + 0.04661604017019272, + -0.02856295369565487, + 0.01010741014033556, + 0.05332493036985397, + -0.026185041293501854, + -0.020032932981848717, + 0.04892241582274437, + 0.011737219989299774, + -0.09750422090291977, + 0.0054626609198749065, + -0.07203347980976105, + 0.07435194402933121, + -0.038043662905693054, + 0.16533881425857544, + -0.005695355590432882, + -0.05823620781302452, + -0.06599204242229462, + 0.009580838494002819, + -0.04067467898130417, + 0.04476385563611984, + 0.032868191599845886, + 0.06642282754182816, + 0.01357905101031065, + -0.032919712364673615, + 0.14244388043880463, + 0.03732621669769287, + -0.055055998265743256, + -0.07384319603443146, + -0.04408877342939377, + -0.04036155715584755, + 0.028797946870326996, + 0.02469916269183159, + -0.09745009243488312, + -0.010940195992588997, + 0.01534411683678627, + -0.04468837380409241, + 0.07173287123441696, + 0.14669269323349, + 0.09920390695333481, + -0.10882420837879181 + ] + }, + "p244_392.wav": { + "name": "p244", + "embedding": [ + 0.03167426958680153, + 0.10426194965839386, + -0.009920000098645687, + 0.05975175276398659, + -0.051560111343860626, + 0.002617916092276573, + -0.041866034269332886, + 0.044262245297431946, + 0.023521175608038902, + 0.07011357694864273, + -0.04536845535039902, + 0.0609307698905468, + -0.05406789854168892, + -0.09309213608503342, + -0.02389051765203476, + 0.007743997499346733, + -0.017074065282940865, + 0.02355622686445713, + -0.04101406782865524, + -0.014707939699292183, + -0.04180413484573364, + -0.0053919292986392975, + -0.014366772025823593, + 0.009368307888507843, + -0.05638735741376877, + 0.03238476812839508, + -0.018987352028489113, + 0.028417643159627914, + 0.00207655131816864, + -0.0936736986041069, + 0.009874638170003891, + 0.046511806547641754, + -0.010442698374390602, + -0.024606214836239815, + 0.011192393489181995, + -0.03466886281967163, + 0.0229241531342268, + -0.02251732163131237, + -0.052576255053281784, + -0.0013754535466432571, + -0.0446104034781456, + 0.011387551203370094, + 0.010763168334960938, + -0.07146912813186646, + 0.011566242203116417, + 0.01195025909692049, + -0.042745307087898254, + -0.02464255318045616, + -0.044301148504018784, + 0.11016646027565002, + 0.03779337555170059, + 0.0480181910097599, + -0.03398082032799721, + -0.04161173850297928, + 0.12668584287166595, + 0.013045506551861763, + -0.008224982768297195, + -0.0280438382178545, + -0.00505722314119339, + 0.07046718150377274, + 0.024526391178369522, + 0.019032027572393417, + 0.05669151246547699, + 0.07353459298610687, + 0.015029383823275566, + 0.03478962928056717, + 0.06489060819149017, + 0.07210944592952728, + -0.025110721588134766, + 0.033205196261405945, + 0.05080725997686386, + 0.01700931042432785, + 0.030414501205086708, + 0.04642302170395851, + -0.016246598213911057, + 0.01746777445077896, + 0.015920985490083694, + 0.032687414437532425, + -0.015234909020364285, + -0.029043670743703842, + 0.0059959497302770615, + 0.0030358266085386276, + -0.0024327002465724945, + -0.04927331954240799, + -0.051496781408786774, + -0.03316938132047653, + 0.04965706169605255, + 0.01234703604131937, + 0.041611090302467346, + -0.005302524194121361, + 0.07120639085769653, + 0.034922804683446884, + -0.01566764898598194, + -0.062077272683382034, + 0.015825804322957993, + -0.016143178567290306, + 0.051017627120018005, + 0.014940548688173294, + 0.002984323538839817, + 0.007143537979573011, + 0.05848165228962898, + -0.013863109052181244, + 0.03863525390625, + -0.00472786370664835, + -0.048347145318984985, + -0.012241236865520477, + 0.03483852371573448, + 0.02262440323829651, + 0.03246890380978584, + 0.05019484460353851, + 0.04098641127347946, + 0.08366838842630386, + -0.04658963531255722, + -0.04764125123620033, + 0.017100946977734566, + 0.052166521549224854, + -0.04593181982636452, + 0.07495757192373276, + -0.004719093907624483, + 0.0313219279050827, + 0.05603533983230591, + 0.006932998076081276, + -0.014059900306165218, + 0.00938648171722889, + 0.0014455020427703857, + -0.05241686478257179, + 0.050783656537532806, + 0.021564047783613205, + -0.044760480523109436, + -0.0585191547870636, + 0.07667779177427292, + -0.015426401048898697, + -0.024842334911227226, + -0.005533996503800154, + 0.007311370223760605, + -0.00817357562482357, + 0.04728040099143982, + -0.03528156131505966, + 0.019626516848802567, + 0.07099315524101257, + -0.015459954738616943, + -0.04206259176135063, + -0.012673921883106232, + -0.05273896083235741, + 0.03760179132223129, + 0.014722894877195358, + 0.0070520732551813126, + 0.07482288032770157, + -0.03879670798778534, + -0.05430058017373085, + -0.011570228263735771, + 0.04430118575692177, + -0.04889555647969246, + 0.08682427555322647, + 0.04381496459245682, + 0.020590102300047874, + 0.07151583582162857, + -0.04233044013381004, + 0.005601249635219574, + -0.011790143325924873, + -0.09783865511417389, + 0.010344371199607849, + 0.017214806750416756, + -0.001142384484410286, + -0.022605106234550476, + 0.00040830671787261963, + -0.006040768697857857, + -0.00026063359109684825, + 0.014820680022239685, + 0.025661464780569077, + -0.02437320537865162, + 0.05740160495042801, + -0.08502158522605896, + -0.004859911277890205, + -0.01352146826684475, + -0.03860706463456154, + 0.035165444016456604, + -0.012399137951433659, + -0.004625169560313225, + 0.023134753108024597, + 0.030916044488549232, + -0.030799563974142075, + -0.036819979548454285, + -0.08939138054847717, + 0.00655374675989151, + 0.028716757893562317, + 0.028335902839899063, + 0.003733353689312935, + -0.013399647548794746, + 0.042861200869083405, + 0.055462975054979324, + 0.020656302571296692, + 0.009753655642271042, + 0.06613370776176453, + -0.025952599942684174, + -0.022081241011619568, + 0.025753017514944077, + 0.08026733249425888, + 0.02579480968415737, + -0.08054385334253311, + -0.08532196283340454, + -0.03218194842338562, + -0.04993097484111786, + 0.049469754099845886, + -0.017412006855010986, + 0.03988263010978699, + 0.025414496660232544, + 0.005081942770630121, + 0.017681274563074112, + -0.13362669944763184, + 0.05527804419398308, + 0.00039356574416160583, + -0.031461045145988464, + -0.006021600216627121, + 0.0017837323248386383, + 0.019522959366440773, + 0.05130888521671295, + -0.020038940012454987, + -0.015512117184698582, + 0.021845843642950058, + -0.0066452473402023315, + 0.0017231928650289774, + 0.04843810573220253, + 0.034658752381801605, + -0.007764648646116257, + -0.006077399477362633, + -0.042845241725444794, + 0.016369037330150604, + 0.005373429507017136, + 0.034566015005111694, + 0.012757807038724422, + -0.016425279900431633, + -0.11399167776107788, + 0.07710530608892441, + -0.05213498696684837, + 0.07460986077785492, + -0.006902020424604416, + 0.017613302916288376, + 0.0500674769282341, + -0.02228529006242752, + 0.08610643446445465, + 0.029319485649466515, + -0.035165365785360336, + -0.04674747213721275, + -0.013413554057478905, + -0.0360177643597126, + 0.0384388342499733, + 0.0586557574570179, + -0.007834583520889282, + -0.02187827229499817, + 0.04739297926425934, + 0.009366696700453758, + 0.09909434616565704, + 0.06780128926038742, + 0.06554730981588364, + 0.026013102382421494 + ] + }, + "p244_172.wav": { + "name": "p244", + "embedding": [ + 0.05328046530485153, + 0.10069956630468369, + -0.015530981123447418, + 0.015568692237138748, + -0.03409476578235626, + 0.05483525991439819, + -0.13426366448402405, + 0.12839853763580322, + -0.05357379838824272, + 0.14794568717479706, + -0.0880264863371849, + 0.11787037551403046, + -0.021268021315336227, + -0.1846957802772522, + -0.039139121770858765, + 0.047906529158353806, + -0.05005773529410362, + -0.015305576846003532, + -0.05758603662252426, + -0.003040645271539688, + 0.04655206948518753, + 0.029886111617088318, + 0.017577793449163437, + -0.015141883864998817, + 0.016078172251582146, + 0.06496861577033997, + 0.006860947236418724, + 0.050126463174819946, + 0.01896042190492153, + -0.05026520416140556, + -0.03194788843393326, + 0.12021004408597946, + -0.04205349087715149, + 0.006707796361297369, + 0.06351794302463531, + -0.010104700922966003, + -0.008936571888625622, + -0.054179079830646515, + -0.009878999553620815, + 0.0009941949974745512, + -0.03997116535902023, + 0.06543129682540894, + 0.0131410276517272, + -0.0035837600007653236, + 0.05563399940729141, + 0.036036573350429535, + -0.014707996509969234, + -0.06272609531879425, + -0.09007234871387482, + 0.14857691526412964, + 0.06974101066589355, + 0.006612904369831085, + -0.06900987029075623, + -0.05858932435512543, + 0.0926736444234848, + -0.023383229970932007, + -0.10982576012611389, + -0.05123686045408249, + 0.07350354641675949, + 0.15843841433525085, + -0.03553340211510658, + -0.028127815574407578, + 0.03344814479351044, + 0.10828813910484314, + 0.05147753283381462, + 0.1048969253897667, + 0.07873382419347763, + 0.0800885334610939, + 0.0014799063792452216, + 0.03434686362743378, + 0.055983975529670715, + 0.05410975217819214, + 0.059437450021505356, + -0.0249684676527977, + 0.046496957540512085, + -0.00011265433568041772, + -0.02718399092555046, + -0.0018388144671916962, + -0.022165369242429733, + -0.0060430532321333885, + -0.004844858311116695, + 0.020409464836120605, + 0.005303974263370037, + 0.02365877293050289, + -0.04108075052499771, + 0.060492824763059616, + 0.02005637437105179, + -0.020773939788341522, + 0.0633162260055542, + 0.035031870007514954, + 0.02114015631377697, + 0.04657658189535141, + -0.07545431703329086, + -0.09998656809329987, + 0.031956739723682404, + 0.0006938837468624115, + -0.0056634037755429745, + 0.0512889139354229, + 0.03894150257110596, + -0.01717195473611355, + 0.1073397845029831, + 0.05296548828482628, + -0.009820147417485714, + 0.03681395947933197, + -0.09293647110462189, + 0.12162409722805023, + 0.08498598635196686, + -0.029003962874412537, + 0.04302334412932396, + -0.0393243134021759, + 0.0640905424952507, + 0.07003886252641678, + -0.13617388904094696, + -0.07703156024217606, + 0.04188472777605057, + -0.0027434974908828735, + -0.01546061784029007, + 0.1062188670039177, + -0.0072964271530508995, + 0.025952285155653954, + 0.09513642638921738, + -0.07974665611982346, + -0.05862666293978691, + -0.023430872708559036, + 0.04660612344741821, + -0.09293046593666077, + 0.0656660944223404, + 0.04869203269481659, + -0.009260022081434727, + -0.00439292099326849, + 0.10360374301671982, + -0.014487972483038902, + -0.0055283112451434135, + -0.0013810943346470594, + -0.03009209781885147, + 0.03186986222863197, + -0.03980226442217827, + -0.0073716845363378525, + 0.02353905700147152, + 0.03632710501551628, + 0.040201179683208466, + -0.0023763279896229506, + -0.03501234948635101, + -0.11208435148000717, + 0.009459732100367546, + 0.041710641235113144, + 0.06681032478809357, + -0.0059346770867705345, + -0.005967825651168823, + -0.04604911059141159, + -0.05021928995847702, + 0.004382844548672438, + -0.026179373264312744, + 0.07537036389112473, + -0.010914250276982784, + 0.006028651259839535, + 0.11042088270187378, + 0.000616279779933393, + 0.011490372940897942, + -0.050919823348522186, + -0.01174293365329504, + 0.030776500701904297, + 0.05170102417469025, + -0.06650855392217636, + -0.06819067150354385, + 0.00012394911027513444, + 0.026248008012771606, + -0.008239896968007088, + 0.04866882413625717, + 0.04761533439159393, + 0.010837987065315247, + 0.0285421684384346, + -0.07714320719242096, + 0.024356942623853683, + -0.11078554391860962, + -0.05829313024878502, + -0.02049107477068901, + -0.03182903304696083, + -0.023296533152461052, + 0.07409697026014328, + 0.012120941653847694, + 0.030805163085460663, + -0.018653515726327896, + -0.0897546038031578, + -0.08098743855953217, + 0.06678366661071777, + 0.0935417041182518, + -0.0020603658631443977, + 0.03990597277879715, + 0.03770091384649277, + -0.01316265668720007, + 0.05057818442583084, + 0.06646673381328583, + 0.10557480156421661, + -0.002194773405790329, + -0.0006860420107841492, + -0.06764396280050278, + 0.07547280192375183, + 0.07125060260295868, + -0.08722849935293198, + -0.07954218238592148, + -0.008046845905482769, + -0.0590706467628479, + 0.03370240703225136, + -0.017962973564863205, + 0.016899481415748596, + 0.04597979411482811, + -0.008341102860867977, + -0.09900788962841034, + -0.09048245847225189, + 0.0896284207701683, + -0.07918136566877365, + -0.0111524797976017, + -0.06500230729579926, + 0.04423707351088524, + 0.08531510829925537, + 0.02041160687804222, + -0.03175988793373108, + -0.013171052560210228, + 0.0306834913790226, + -0.05320463702082634, + -0.009222344495356083, + 0.023275045678019524, + 0.02134796231985092, + -0.10521458089351654, + 0.030978351831436157, + -0.08062485605478287, + 0.06755636632442474, + -0.06620991230010986, + 0.143857941031456, + -0.008605197072029114, + -0.05112457275390625, + -0.09345197677612305, + 0.04196741431951523, + -0.021997880190610886, + 0.04844974726438522, + 0.03618605434894562, + 0.06631191819906235, + 0.04038413614034653, + -0.08559726923704147, + 0.10513557493686676, + 0.02961728349328041, + -0.021717406809329987, + -0.07660029828548431, + -0.05497099086642265, + -0.053230129182338715, + 0.02041519619524479, + 0.018541604280471802, + -0.08590307086706161, + -0.011757295578718185, + 0.01535176020115614, + -0.021901747211813927, + 0.06670995056629181, + 0.1253884881734848, + 0.03364139422774315, + -0.12070481479167938 + ] + }, + "p244_143.wav": { + "name": "p244", + "embedding": [ + 0.04184994101524353, + 0.09428860992193222, + 0.010645839385688305, + 0.010888501070439816, + -0.029055725783109665, + 0.06402722001075745, + -0.15584418177604675, + 0.1271580457687378, + -0.06619051098823547, + 0.11769188940525055, + -0.08112804591655731, + 0.08851327747106552, + -0.02373885177075863, + -0.1908387839794159, + -0.06657776981592178, + 0.059456080198287964, + -0.04148675501346588, + -0.026541031897068024, + -0.008902423083782196, + -0.006662983447313309, + 0.036217715591192245, + 0.011808092705905437, + 0.021532896906137466, + 0.0334765799343586, + 0.022541530430316925, + 0.04832759499549866, + 0.013400953263044357, + 0.059601813554763794, + 0.014490913599729538, + -0.00476585328578949, + -0.011603492312133312, + 0.12306865304708481, + -0.03193487226963043, + -0.008044440299272537, + 0.07113578170537949, + 0.00410066545009613, + 0.00383190019056201, + -0.0649915337562561, + -0.004404890816658735, + -0.013429416343569756, + -0.05097422003746033, + 0.07641692459583282, + 0.02889288030564785, + 0.019557824358344078, + 0.04021153971552849, + 0.02833852916955948, + -0.00547438021749258, + -0.047851454466581345, + -0.10886617749929428, + 0.1315833032131195, + 0.05208972096443176, + 0.008821885101497173, + -0.08736114948987961, + -0.059351228177547455, + 0.11320991814136505, + -0.025807496160268784, + -0.09121562540531158, + -0.04701714962720871, + 0.08738429844379425, + 0.17206811904907227, + -0.03326084464788437, + -0.024036094546318054, + 0.024509388953447342, + 0.11141562461853027, + 0.0381050705909729, + 0.09966093301773071, + 0.06681782007217407, + 0.08818402141332626, + 0.001934309839271009, + 0.0152193708345294, + 0.06099681556224823, + 0.036837417632341385, + 0.016656646504998207, + -0.04221617430448532, + 0.026002466678619385, + 0.016049271449446678, + -0.02466241829097271, + 0.02905607782304287, + -0.018843408674001694, + -0.0032626772299408913, + -0.02033657394349575, + 0.006928074639290571, + -0.016060620546340942, + 0.015299877151846886, + -0.03568081185221672, + 0.04823293536901474, + 0.007566848304122686, + -0.004285029135644436, + 0.07963285595178604, + 0.05325556918978691, + 0.003978057764470577, + 0.04841625317931175, + -0.059608228504657745, + -0.08044113963842392, + 0.02077154442667961, + 0.0003820030833594501, + -0.016218222677707672, + 0.06474467366933823, + 0.02580983005464077, + -0.022742342203855515, + 0.09970265626907349, + 0.05864737555384636, + -0.0007104115793481469, + 0.03276856243610382, + -0.11037733405828476, + 0.11361926794052124, + 0.06760273873806, + -0.016312066465616226, + 0.04291301220655441, + -0.028618205338716507, + 0.04881608113646507, + 0.08824889361858368, + -0.13560786843299866, + -0.07566869258880615, + 0.05233592912554741, + 0.02483828365802765, + 0.002956368727609515, + 0.10989207029342651, + -0.015415707603096962, + -0.007515076547861099, + 0.08407189697027206, + -0.060011789202690125, + -0.07183945178985596, + -0.025250663980841637, + 0.04685008153319359, + -0.07184488326311111, + 0.04701438546180725, + 0.04618222266435623, + 0.01143421046435833, + -0.030484478920698166, + 0.0887065976858139, + -3.5829223634209484e-05, + -0.017796283587813377, + 0.005997110158205032, + -0.01966599002480507, + 0.05021780729293823, + -0.0293545201420784, + 0.0037592952139675617, + 0.031366609036922455, + 0.047960132360458374, + 0.031941745430231094, + 0.023489337414503098, + -0.028179382905364037, + -0.09630221128463745, + -0.023424675688147545, + 0.056784313172101974, + 0.07821419835090637, + -0.013793924823403358, + -0.025265701115131378, + -0.06158892437815666, + -0.045521851629018784, + 0.009584767743945122, + -0.008200234733521938, + 0.09907764196395874, + 0.008400815539062023, + 0.006592373829334974, + 0.09405991435050964, + -0.004040364176034927, + 0.013872742652893066, + -0.04959714412689209, + 0.0009657462942413986, + 0.02421344444155693, + 0.04896105080842972, + -0.057883404195308685, + -0.06314706057310104, + 0.003681553527712822, + 0.03518075495958328, + -0.012151641771197319, + 0.022868311032652855, + 0.03299618512392044, + 0.009383068419992924, + 0.025491898879408836, + -0.08730727434158325, + 0.04629608243703842, + -0.10041502118110657, + -0.04661624878644943, + -0.020765312016010284, + -0.010293352417647839, + -0.013416923582553864, + 0.07175701856613159, + 0.03053620271384716, + 0.028793223202228546, + 0.0034427910577505827, + -0.09598682820796967, + -0.06499901413917542, + 0.06358711421489716, + 0.09655596315860748, + 0.0029036931227892637, + 0.05007064342498779, + 0.039479102939367294, + -0.025728216394782066, + 0.060825273394584656, + 0.07051520049571991, + 0.08499304950237274, + -0.03300131857395172, + 0.0010429683607071638, + -0.04955942928791046, + 0.06396093964576721, + 0.05872654542326927, + -0.10223034024238586, + -0.08746303617954254, + 0.002991980640217662, + -0.041445694863796234, + 0.035602591931819916, + -0.014818340539932251, + 0.019820790737867355, + 0.025072623044252396, + -0.037108395248651505, + -0.09280560910701752, + -0.09614585340023041, + 0.0807623416185379, + -0.07481952011585236, + -0.015103710815310478, + -0.05831623822450638, + 0.041433896869421005, + 0.08630160987377167, + 0.015765566378831863, + -0.018387479707598686, + -0.020461130887269974, + 0.020097073167562485, + -0.05137387663125992, + -0.039864230901002884, + 0.024097442626953125, + -0.006324879825115204, + -0.10931193828582764, + 0.030139263719320297, + -0.0839049369096756, + 0.10349252074956894, + -0.054028645157814026, + 0.14437945187091827, + -0.016675271093845367, + -0.05906803905963898, + -0.08442769944667816, + -0.0025296476669609547, + -0.01479028444737196, + 0.04959484934806824, + 0.029672494158148766, + 0.06280151009559631, + 0.013846802525222301, + -0.03165620192885399, + 0.10608835518360138, + 0.03363058343529701, + -0.036029115319252014, + -0.07054778933525085, + -0.027592726051807404, + -0.04054246097803116, + 0.018527820706367493, + -0.0056319586001336575, + -0.09324796497821808, + -0.006910949945449829, + 0.02273549698293209, + -0.03458410128951073, + 0.0704135149717331, + 0.12127451598644257, + 0.04999300092458725, + -0.12125937640666962 + ] + } +} diff --git a/TTS/tests/data/dummy_speakers.pth b/TTS/tests/data/dummy_speakers.pth new file mode 100644 index 0000000000000000000000000000000000000000..bcb3e80ef73d1761e2aed2f0df8c0aab4042bb01 --- /dev/null +++ b/TTS/tests/data/dummy_speakers.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:7d615cfb7f8244a21d506b8b69574cdb88f8b9559b4b8d504c3e472692ed25c9 +size 905903 diff --git a/TTS/tests/data/dummy_speakers2.json b/TTS/tests/data/dummy_speakers2.json new file mode 100644 index 0000000000000000000000000000000000000000..9c431d609f711f00317a372496982a9507fd9825 --- /dev/null +++ b/TTS/tests/data/dummy_speakers2.json @@ -0,0 +1,100226 @@ +{ + "p245_302.wav": { + "name": "p245", + "embedding": [ + 0.05539746582508087, + 0.08493061363697052, + -0.010013150051236153, + 0.04369359463453293, + -0.05871078372001648, + 0.07792330533266068, + -0.12001194059848785, + 0.09205509722232819, + -0.053687505424022675, + 0.13110113143920898, + -0.0672345906496048, + 0.09076011180877686, + -0.012022187933325768, + -0.1773194968700409, + -0.03690509498119354, + 0.052139587700366974, + -0.06511855870485306, + -0.014169753529131413, + -0.0788075178861618, + -0.022713735699653625, + 0.026002388447523117, + 0.04142642393708229, + 0.06633599102497101, + -0.040966324508190155, + 0.05216488242149353, + 0.043708473443984985, + 0.008947450667619705, + 0.043884553015232086, + 0.015242422930896282, + -0.07271697372198105, + -0.03943272680044174, + 0.11445401608943939, + -0.01976911909878254, + -0.001584329642355442, + 0.03226276487112045, + -0.002877067308872938, + 0.006218053866177797, + -0.09210439026355743, + -0.023884698748588562, + 0.019102394580841064, + -0.023189997300505638, + 0.07678322494029999, + 0.04511963576078415, + -0.028598245233297348, + 0.02654365450143814, + -0.026303084567189217, + -0.036059144884347916, + -0.04994352161884308, + -0.10899694263935089, + 0.16808779537677765, + 0.0568464957177639, + 0.017774248495697975, + -0.0766686350107193, + -0.08056356757879257, + 0.11318203061819077, + -0.0009237118065357208, + -0.11983267217874527, + -0.04011853411793709, + 0.06481920927762985, + 0.18528658151626587, + -0.020618144422769547, + 0.0030966848134994507, + 0.030582068488001823, + 0.11048240959644318, + 0.026203282177448273, + 0.08886025100946426, + 0.0776662528514862, + 0.08468905836343765, + 0.02009391225874424, + 0.053141623735427856, + 0.04102938249707222, + 0.059041380882263184, + -0.006237464025616646, + -0.018360337242484093, + 0.015418153256177902, + -0.03559226542711258, + -0.05805520713329315, + -0.00861218199133873, + -0.021234268322587013, + -0.025556275621056557, + -0.012332704849541187, + -0.009777471423149109, + 0.03721384331583977, + 0.010376224294304848, + -0.05210898444056511, + 0.035450324416160583, + 0.0026437342166900635, + -0.03329150378704071, + 0.07028764486312866, + 0.03101171739399433, + 0.003101848065853119, + 0.029428653419017792, + -0.03445912152528763, + -0.11992329359054565, + -0.006469260435551405, + 0.02472860924899578, + -0.0021879260893911123, + 0.06576769798994064, + 0.04159736633300781, + -0.044104330241680145, + 0.10868340730667114, + 0.06065361574292183, + -0.00814537052065134, + 0.029497724026441574, + -0.0820949599146843, + 0.09694784879684448, + 0.10299994796514511, + 0.007466038689017296, + 0.0573151595890522, + -0.04003140702843666, + 0.0748046338558197, + 0.07954449951648712, + -0.14061805605888367, + -0.07225356996059418, + 0.030713198706507683, + -0.01169175747781992, + 0.015277700498700142, + 0.101996049284935, + 0.0023796744644641876, + 0.013835912570357323, + 0.08836984634399414, + -0.08798637241125107, + -0.053786784410476685, + -0.025867177173495293, + 0.07090725004673004, + -0.05228910967707634, + 0.024839768186211586, + 0.0543626993894577, + -0.048099253326654434, + -0.01027676835656166, + 0.04654526337981224, + -0.0034045036882162094, + 0.003895972855389118, + 0.04250902682542801, + -0.05232023075222969, + 0.06287448853254318, + -0.04146592691540718, + -0.0022073618602007627, + 0.07169511169195175, + 0.057035692036151886, + 0.04202979430556297, + -0.01752091944217682, + -0.03615778684616089, + -0.07597745209932327, + 0.0076013305224478245, + 0.03388708084821701, + 0.06191568076610565, + -0.01607775315642357, + 0.004401837941259146, + -0.06070601940155029, + -0.07674850523471832, + 0.059249889105558395, + -0.02222420647740364, + 0.10215721279382706, + -0.000883960397914052, + 0.010600706562399864, + 0.09869417548179626, + 0.011313805356621742, + -0.01187396701425314, + -0.04851905256509781, + -0.020747501403093338, + 0.043711841106414795, + 0.04022590070962906, + -0.06653523445129395, + -0.04014153778553009, + 0.012923783622682095, + 0.0024894566740840673, + -0.03801071271300316, + 0.017412755638360977, + 0.03090047463774681, + 0.021060986444354057, + 0.04588426649570465, + -0.061013057827949524, + 0.022323710843920708, + -0.0921829417347908, + -0.009262383915483952, + -0.0024641728959977627, + -0.04311069846153259, + -0.02953970432281494, + 0.11183556914329529, + 0.041883185505867004, + 0.01362229697406292, + -0.009713159874081612, + -0.07398185133934021, + -0.03448636084794998, + 0.06774093955755234, + 0.06281304359436035, + 0.005423923954367638, + 0.04070146754384041, + 0.04723779857158661, + 0.0025808606296777725, + 0.04067641496658325, + 0.0840836763381958, + 0.0662192553281784, + 6.253225728869438e-05, + -0.03287994861602783, + -0.07941965758800507, + 0.09294897317886353, + 0.08651109039783478, + -0.09662938117980957, + -0.08838298916816711, + -0.05120178312063217, + -0.06626439094543457, + 0.04893879592418671, + -0.017820902168750763, + -0.007398976478725672, + 0.02896031364798546, + -0.025766948238015175, + -0.10214102268218994, + -0.10014186799526215, + 0.1211889386177063, + -0.0510331466794014, + -0.02461140602827072, + -0.06880723685026169, + 0.02751768007874489, + 0.07350686937570572, + 0.038249749690294266, + -0.009252945892512798, + 0.013650302775204182, + 0.04884907230734825, + -0.08785197138786316, + 0.003136417828500271, + 0.05015810579061508, + -0.00904669426381588, + -0.10715165734291077, + 0.026881497353315353, + -0.07288249582052231, + 0.08610662072896957, + -0.06228051334619522, + 0.1673828363418579, + 0.006395484320819378, + -0.0426831915974617, + -0.08067314326763153, + 0.06747708469629288, + -0.049200400710105896, + 0.0475490465760231, + 0.05716557055711746, + 0.060844384133815765, + 0.04086177423596382, + -0.08346255123615265, + 0.0869344025850296, + 0.019769223406910896, + -0.020300764590501785, + -0.0708683505654335, + -0.030514180660247803, + -0.027429744601249695, + 0.021853724494576454, + -0.012019682675600052, + -0.0613793209195137, + 0.009929075837135315, + 0.0261012464761734, + -0.018161576241254807, + 0.07936893403530121, + 0.12791746854782104, + 0.08958099782466888, + -0.09469571709632874 + ] + }, + "p245_342.wav": { + "name": "p245", + "embedding": [ + 0.05005024001002312, + 0.10739441215991974, + -0.015767700970172882, + 0.03197174146771431, + -0.049751877784729004, + 0.07368919253349304, + -0.11086710542440414, + 0.12266570329666138, + -0.055884428322315216, + 0.14480051398277283, + -0.09230168908834457, + 0.10953367501497269, + -0.0357954278588295, + -0.1691109836101532, + -0.04994215443730354, + 0.05317877233028412, + -0.04780467599630356, + -0.028082450851798058, + -0.030347973108291626, + -0.0015789138851687312, + 0.03955546021461487, + 0.04067610204219818, + 0.028119998052716255, + 0.00921852607280016, + 0.030067767947912216, + 0.061427608132362366, + -0.0016679083928465843, + 0.05357091501355171, + 0.023015424609184265, + -0.050316497683525085, + -0.04255743324756622, + 0.1287825107574463, + -0.04624408483505249, + 0.023578952997922897, + 0.047039519995450974, + 0.00930054672062397, + 0.004682430997490883, + -0.06462899595499039, + -0.019383519887924194, + -0.008494102396070957, + -0.048186637461185455, + 0.07191027700901031, + 0.015244226902723312, + -0.0003928039222955704, + 0.03503163531422615, + 0.008267269469797611, + -0.02512257918715477, + -0.05235607177019119, + -0.09180445224046707, + 0.15558570623397827, + 0.06139551103115082, + 0.006414560601115227, + -0.07681959867477417, + -0.07630625367164612, + 0.10429195314645767, + -0.00981030985713005, + -0.11445462703704834, + -0.036746423691511154, + 0.07292406260967255, + 0.16880059242248535, + -0.01842034049332142, + -0.033148035407066345, + 0.013845782727003098, + 0.11980786919593811, + 0.050728216767311096, + 0.10279352217912674, + 0.07316798716783524, + 0.09072566032409668, + 0.0038510854355990887, + 0.02752499468624592, + 0.06867751479148865, + 0.0616176500916481, + 0.05001520365476608, + -0.024926170706748962, + 0.026522532105445862, + 0.004151749890297651, + -0.03625208139419556, + 0.026617109775543213, + -0.01584431901574135, + -0.010617567226290703, + -0.020938802510499954, + 0.008502485230565071, + -0.004227738361805677, + 0.014398372732102871, + -0.025087807327508926, + 0.045862697064876556, + 0.023492811247706413, + -0.015581879764795303, + 0.07379084825515747, + 0.05002640560269356, + 0.004349455237388611, + 0.05815402418375015, + -0.07435561716556549, + -0.10093250125646591, + 0.012758184224367142, + 0.0040325382724404335, + 0.02395264059305191, + 0.08153457194566727, + 0.033792220056056976, + -0.019414838403463364, + 0.1033405214548111, + 0.0384766086935997, + 0.006529564969241619, + 0.027514591813087463, + -0.10867736488580704, + 0.1150912344455719, + 0.09220621734857559, + -0.024154093116521835, + 0.03327079489827156, + -0.029712006449699402, + 0.08647294342517853, + 0.08700971305370331, + -0.14513355493545532, + -0.07308748364448547, + 0.03144310414791107, + 0.007094813045114279, + 0.0018512541428208351, + 0.0968799740076065, + -0.016651807352900505, + 0.013502601534128189, + 0.09198576211929321, + -0.0859537273645401, + -0.054299745708703995, + -0.030169349163770676, + 0.04377683997154236, + -0.0789153128862381, + 0.04800377041101456, + 0.03584020584821701, + -0.0009612710564397275, + -0.012059178203344345, + 0.07625425606966019, + -0.007969949394464493, + -0.003650201950222254, + 0.025299428030848503, + -0.05164157599210739, + 0.033006470650434494, + -0.03845863789319992, + 0.0038426616229116917, + 0.05190078914165497, + 0.04112619906663895, + 0.05069519951939583, + 0.001691763405688107, + -0.022290080785751343, + -0.09915561228990555, + 0.013304539024829865, + 0.05602234601974487, + 0.05504598468542099, + -0.01420528907328844, + -0.025512415915727615, + -0.04316616803407669, + -0.0638405904173851, + 0.036458369344472885, + -0.0006715459749102592, + 0.08267225325107574, + 0.0027876130770891905, + 0.0013964123791083694, + 0.11250487715005875, + 0.014469620771706104, + -0.007276642601937056, + -0.05617782846093178, + -0.027922146022319794, + 0.01478651538491249, + 0.06186310201883316, + -0.08734073489904404, + -0.07542749494314194, + 0.015517745167016983, + 0.012257397174835205, + -0.020948491990566254, + 0.03487060219049454, + 0.054895590990781784, + 0.013588862493634224, + 0.04263032600283623, + -0.0647064745426178, + 0.01728040724992752, + -0.12200611084699631, + -0.06621172279119492, + -0.019416222348809242, + -0.030050568282604218, + -0.0017845522379502654, + 0.08169281482696533, + 0.017037319019436836, + 0.02421201765537262, + 0.0037975357845425606, + -0.08823724091053009, + -0.07071515917778015, + 0.08511896431446075, + 0.08436156809329987, + 0.01660916581749916, + 0.057988524436950684, + 0.05465036630630493, + -0.032873932272195816, + 0.05294205993413925, + 0.06271162629127502, + 0.11366848647594452, + -0.02610023133456707, + 0.015349031426012516, + -0.07377832382917404, + 0.07414689660072327, + 0.07684557139873505, + -0.11574330925941467, + -0.10163731873035431, + -0.023144066333770752, + -0.051269568502902985, + 0.045116886496543884, + -0.026288434863090515, + 0.011183633469045162, + 0.03164569288492203, + -0.030619151890277863, + -0.10015660524368286, + -0.09329545497894287, + 0.09745553135871887, + -0.04969329759478569, + -0.02546953782439232, + -0.08311304450035095, + 0.04494427889585495, + 0.07559853792190552, + 0.036820605397224426, + -0.030338197946548462, + 0.01947575807571411, + 0.05258313566446304, + -0.06045728921890259, + -0.023316536098718643, + 0.04226306453347206, + 0.0016495431773364544, + -0.09124850481748581, + 0.011782881803810596, + -0.06902118027210236, + 0.09021267294883728, + -0.06915663182735443, + 0.16398003697395325, + -0.022971302270889282, + -0.06647606194019318, + -0.08104446530342102, + 0.05106651410460472, + -0.017583303153514862, + 0.03503591939806938, + 0.042305998504161835, + 0.05885643512010574, + 0.02223961427807808, + -0.0645500048995018, + 0.11483395099639893, + 0.03016156330704689, + -0.03008243814110756, + -0.0585399866104126, + -0.04248024523258209, + -0.04242590814828873, + 0.026500295847654343, + 0.002028970280662179, + -0.08147037774324417, + 0.0017442512325942516, + 0.01499109622091055, + -0.02363378368318081, + 0.06126737967133522, + 0.1384272277355194, + 0.06977587938308716, + -0.11724086105823517 + ] + }, + "p245_379.wav": { + "name": "p245", + "embedding": [ + 0.04385417327284813, + 0.08368086814880371, + 0.0004669101908802986, + -0.010091540403664112, + -0.03873376548290253, + 0.046230755746364594, + -0.14813315868377686, + 0.13340362906455994, + -0.03948982059955597, + 0.15426620841026306, + -0.06360238790512085, + 0.11138015985488892, + -0.008127805776894093, + -0.18019263446331024, + -0.03770577162504196, + 0.04193387180566788, + -0.057793062180280685, + -0.04214119166135788, + -0.056620948016643524, + -0.04057123512029648, + 0.051402948796749115, + 0.05183681845664978, + 0.013680952601134777, + 0.018274657428264618, + 0.0034123891964554787, + 0.062409352511167526, + 0.02043917216360569, + 0.055918335914611816, + 0.023541729897260666, + -0.08195513486862183, + -0.02083502523601055, + 0.08724872767925262, + -0.028091277927160263, + 0.018559720367193222, + 0.04656890779733658, + -0.025418013334274292, + 0.030472083017230034, + -0.05127841979265213, + -0.03467317670583725, + 0.03528723865747452, + -0.03902474045753479, + 0.07907763868570328, + 0.0074369898065924644, + 0.007716057356446981, + 0.05388845503330231, + 0.029956858605146408, + -0.015823351219296455, + -0.0724020004272461, + -0.09075143933296204, + 0.1657782644033432, + 0.10434740036725998, + -0.019610103219747543, + -0.04357729107141495, + -0.07185962796211243, + 0.08603136241436005, + -0.052245061844587326, + -0.10766220092773438, + -0.05293136462569237, + 0.06449665129184723, + 0.12944144010543823, + -0.042106788605451584, + -0.04758021980524063, + 0.049494460225105286, + 0.12775693833827972, + 0.040527358651161194, + 0.07349203526973724, + 0.0795803964138031, + 0.0761307030916214, + -0.044778965413570404, + 0.003302923869341612, + 0.03309907764196396, + 0.07771170139312744, + 0.04621581360697746, + 0.005038945935666561, + 0.044806189835071564, + 0.020960239693522453, + -0.0068280380219221115, + 8.056375372689217e-05, + -0.019911594688892365, + 0.02049337327480316, + -0.010624206624925137, + 0.03540490195155144, + -0.021328754723072052, + 0.012203291058540344, + -0.02071482688188553, + 0.06538721919059753, + -0.008392799645662308, + 0.000987844541668892, + 0.060524582862854004, + 0.023379843682050705, + 0.04655498266220093, + 0.054990898817777634, + -0.05890372022986412, + -0.08285146206617355, + 0.028673967346549034, + 0.008595142513513565, + -0.011616579256951809, + 0.056019872426986694, + 0.017910296097397804, + -0.02655627205967903, + 0.1350702941417694, + 0.049260806292295456, + -0.028640856966376305, + 0.03055524453520775, + -0.10077312588691711, + 0.12397953122854233, + 0.07329561561346054, + -0.034036532044410706, + 0.03970664367079735, + -0.05486592650413513, + 0.06752245128154755, + 0.04661741852760315, + -0.1333666741847992, + -0.09235265851020813, + 0.043007396161556244, + 0.02136904001235962, + -0.02561361901462078, + 0.10230007022619247, + -0.005486679263412952, + 0.033191148191690445, + 0.10709051787853241, + -0.056307561695575714, + -0.04276499152183533, + -0.01762603223323822, + 0.05830918997526169, + -0.0918903574347496, + 0.060251664370298386, + 0.04541034623980522, + 0.0014724340289831161, + 0.017731232568621635, + 0.1095895916223526, + -0.022439848631620407, + -0.006722745485603809, + -0.012465088628232479, + -0.03208261355757713, + 0.01631762459874153, + -0.04512239620089531, + -0.009204409085214138, + 0.021059151738882065, + 0.0491592101752758, + 0.03468703478574753, + -0.0031415175180882215, + -0.0552615225315094, + -0.12650644779205322, + 0.018601013347506523, + -0.0013559520011767745, + 0.07058518379926682, + 0.0008318508043885231, + -0.0053475843742489815, + -0.05491418391466141, + -0.049462370574474335, + -0.024400413036346436, + -0.024958988651633263, + 0.06559912860393524, + -0.024860378354787827, + 0.02269887924194336, + 0.09741535037755966, + 0.012000896036624908, + 0.0035986807197332382, + -0.034669265151023865, + -0.025829574093222618, + -0.003224350977689028, + 0.047697536647319794, + -0.046893130987882614, + -0.06946690380573273, + 0.005941083189100027, + 0.04294610768556595, + 0.01209615170955658, + 0.06000249832868576, + 0.03875409811735153, + 0.012823483906686306, + 0.03734605759382248, + -0.09658080339431763, + 0.0314655676484108, + -0.10068618506193161, + -0.06583625078201294, + -0.01892363652586937, + -0.0025274772197008133, + -0.01628824882209301, + 0.0637492835521698, + -0.008107378147542477, + 0.048660408705472946, + -0.010005421936511993, + -0.10025914013385773, + -0.0969337448477745, + 0.059523966163396835, + 0.0996452122926712, + -0.004202151205390692, + 0.045321013778448105, + 0.05651431530714035, + -0.014919697307050228, + 0.06441773474216461, + 0.04368766397237778, + 0.10110782086849213, + -0.0043152268044650555, + 0.03423415124416351, + -0.059874605387449265, + 0.06583072245121002, + 0.04978032037615776, + -0.08416496962308884, + -0.073335662484169, + -0.010527554899454117, + -0.07210519164800644, + 0.035875968635082245, + -0.0031813548412173986, + 0.012447054497897625, + 0.04415292665362358, + 0.00752978352829814, + -0.08800460398197174, + -0.05641252547502518, + 0.07591962814331055, + -0.07787096500396729, + -0.011992206797003746, + -0.057379916310310364, + 0.036020129919052124, + 0.12026499956846237, + 0.0666547641158104, + -0.017779793590307236, + -0.04473390430212021, + 0.04401383921504021, + -0.02994568645954132, + 0.004939892329275608, + 0.027159716933965683, + 0.030616983771324158, + -0.10693733394145966, + 0.02875242382287979, + -0.09080235660076141, + 0.04131399840116501, + -0.05450586974620819, + 0.1073312759399414, + 0.010020781308412552, + -0.0629810318350792, + -0.09145230054855347, + 0.026476040482521057, + -0.0383373461663723, + 0.060232680290937424, + 0.0011733348947018385, + 0.04009602963924408, + 0.069184809923172, + -0.06585222482681274, + 0.10212516039609909, + 0.05953359603881836, + -0.04728677496314049, + -0.06880010664463043, + -0.04774005338549614, + -0.024935949593782425, + 0.03395010158419609, + 0.03719611465930939, + -0.07992134988307953, + -0.03410416841506958, + 0.012216593138873577, + -0.04541661962866783, + 0.09453573077917099, + 0.13344059884548187, + 0.05227658897638321, + -0.1507265418767929 + ] + }, + "p245_146.wav": { + "name": "p245", + "embedding": [ + 0.05173081159591675, + 0.08781048655509949, + 0.03257787972688675, + 0.005466929636895657, + -0.023618539795279503, + 0.015054089948534966, + -0.11388292163610458, + 0.1028447076678276, + 0.007264353334903717, + 0.07433748990297318, + -0.11498712748289108, + 0.10358240455389023, + -0.05607076734304428, + -0.1409558355808258, + -0.04124286398291588, + 0.03587265685200691, + -0.04401744529604912, + -0.01768949255347252, + -0.02214878797531128, + -0.010046346113085747, + 0.035469312220811844, + 0.014919303357601166, + 0.04470502957701683, + 0.018321475014090538, + -0.00444794399663806, + 0.04457274079322815, + -0.004052337259054184, + 0.03477124497294426, + 0.021253926679491997, + -0.005067147314548492, + 0.021340904757380486, + 0.039399079978466034, + -0.007815222255885601, + 0.055303506553173065, + 0.06028258427977562, + 0.02536826580762863, + -0.0054739429615437984, + -0.018883245065808296, + -0.03618921339511871, + 0.013414287939667702, + -0.04407748207449913, + 0.055351853370666504, + 0.02702566236257553, + -0.03960036486387253, + 0.0490243062376976, + 0.04641438648104668, + -0.016285691410303116, + -0.01790410652756691, + -0.10511147230863571, + 0.12259026616811752, + 0.010291787795722485, + 0.03289821743965149, + -0.08099640905857086, + -0.026124536991119385, + 0.09215167164802551, + -0.050865575671195984, + -0.09459369629621506, + -0.028084008023142815, + 0.07599273324012756, + 0.09264038503170013, + -0.023951835930347443, + -0.041913505643606186, + -0.005671866238117218, + 0.0582917258143425, + 0.041189368814229965, + 0.05618399381637573, + 0.0817662701010704, + 0.09764754772186279, + -0.03388510271906853, + 0.010172495618462563, + 0.06193658709526062, + 0.03605092316865921, + 0.06660737097263336, + 0.006852769758552313, + -0.004304143600165844, + -0.006190738640725613, + 0.0004641196574084461, + 0.019091667607426643, + -0.009173627942800522, + -0.004967373795807362, + -0.027705632150173187, + -0.008259315975010395, + -0.0029292358085513115, + 0.002002920024096966, + -0.02405666932463646, + 0.03258177638053894, + 0.031177019700407982, + 0.008372969925403595, + 0.06282497942447662, + 0.06677483022212982, + -0.01705140992999077, + 0.046009503304958344, + -0.03578224405646324, + -0.07554700970649719, + -0.03225565701723099, + -0.020589854568243027, + 0.03575562685728073, + 0.035922177135944366, + 0.03503880649805069, + 0.023354357108473778, + 0.0855662077665329, + 0.0254385843873024, + -0.0036251756828278303, + 0.0032674050889909267, + -0.10853132605552673, + 0.08199082314968109, + 0.05580103024840355, + -0.027594666928052902, + 0.019852720201015472, + -0.036443717777729034, + 0.048316389322280884, + 0.07583539932966232, + -0.05360352247953415, + -0.03800172358751297, + 0.024394333362579346, + 0.03642188012599945, + 0.03318864107131958, + 0.07662512362003326, + -0.01152440719306469, + 0.016784314066171646, + 0.11875718086957932, + -0.07176057249307632, + -0.024109384045004845, + 0.005587983876466751, + 0.009327013045549393, + -0.03365793824195862, + 0.05791780352592468, + 0.029259514063596725, + 0.02902703545987606, + 0.004038798622786999, + 0.06939239799976349, + 0.00478143896907568, + 0.009569157846271992, + -0.036234915256500244, + -0.015711260959506035, + 0.02211536280810833, + -0.02117694728076458, + 0.0007077722693793476, + 0.06763876974582672, + 0.06141200661659241, + 0.04103091359138489, + 0.06552741676568985, + -0.05750571936368942, + -0.0852167159318924, + 0.011977690272033215, + 0.05217904597520828, + 0.047709863632917404, + -0.007119899149984121, + -0.03633209317922592, + -0.04580448567867279, + -0.007685321383178234, + 0.04970385879278183, + -0.0024655070155858994, + 0.05368969962000847, + -0.0014410652220249176, + -0.009220248088240623, + 0.08319792151451111, + 0.004213802516460419, + -0.008937712758779526, + -0.07948096841573715, + -0.05960806831717491, + -0.025604955852031708, + 0.024362564086914062, + -0.10140591114759445, + -0.054099615663290024, + -0.023109978064894676, + 0.037883318960666656, + -0.0025205023121088743, + 0.0227670781314373, + 0.05524842441082001, + -0.005986891686916351, + 0.01179206557571888, + -0.03954809904098511, + 0.01663348637521267, + -0.06980662047863007, + -0.10311965644359589, + 0.01984083279967308, + -0.00989723764359951, + 0.021990396082401276, + 0.05811266228556633, + 0.005904274992644787, + 0.03793155774474144, + -0.01590459607541561, + -0.09037895500659943, + -0.06753981113433838, + 0.061282679438591, + 0.021295949816703796, + 0.0032610055059194565, + 0.05217217653989792, + 0.0253852941095829, + -0.0741269439458847, + 0.07798756659030914, + 0.01668640784919262, + 0.0862961933016777, + -0.07870747148990631, + 0.02164555713534355, + -0.027306711301207542, + 0.03223402425646782, + 0.06706254184246063, + -0.06367616355419159, + -0.08458103984594345, + -0.050511181354522705, + -0.02036047726869583, + 0.0028320476412773132, + -0.016799330711364746, + -0.005957796238362789, + 0.017700176686048508, + -0.01823967508971691, + -0.06084313616156578, + -0.08374806493520737, + 0.014344906434416771, + -0.03149090334773064, + 0.012745125219225883, + -0.05736103653907776, + 0.03571572154760361, + 0.025993801653385162, + -0.019825372844934464, + -0.0036927226465195417, + 0.021637266501784325, + -0.002274036407470703, + -0.04890124127268791, + -0.0485353097319603, + 0.024078156799077988, + 0.04139643907546997, + -0.011267557740211487, + -0.03186582773923874, + -0.07837104797363281, + 0.04924409091472626, + -0.010795444250106812, + 0.12591981887817383, + -0.012514190748333931, + -0.04951813071966171, + -0.0067854104563593864, + -0.032804928719997406, + -0.04248955100774765, + 0.03967583552002907, + 0.029716845601797104, + 0.032708458602428436, + 0.007038564886897802, + -0.02184302732348442, + 0.0928443893790245, + 0.05198834463953972, + -0.04275655746459961, + -0.04693467542529106, + -0.048397552222013474, + -0.05464000627398491, + -0.01461903564631939, + -0.031152945011854172, + -0.0545472614467144, + 0.0027494654059410095, + -0.013447854667901993, + 0.017987411469221115, + 0.04795508086681366, + 0.11922390758991241, + 0.04045257717370987, + -0.07620753347873688 + ] + }, + "p245_190.wav": { + "name": "p245", + "embedding": [ + 0.03891666978597641, + 0.08618548512458801, + -0.012352603487670422, + 0.0023647616617381573, + -0.04511157423257828, + 0.08262351155281067, + -0.15334278345108032, + 0.11335278302431107, + -0.07073113322257996, + 0.1437074840068817, + -0.05526787042617798, + 0.11605475842952728, + -0.02294749766588211, + -0.19488683342933655, + -0.06092676520347595, + 0.062192484736442566, + -0.07134442031383514, + -0.06475155055522919, + 0.005238390993326902, + -0.011493239551782608, + 0.05193570256233215, + 0.025915730744600296, + 0.013390488922595978, + 0.035989910364151, + 0.013592299073934555, + 0.07172174751758575, + 0.015837375074625015, + 0.05136915296316147, + 0.013818459585309029, + -0.02149501070380211, + -0.04269518703222275, + 0.1095333993434906, + -0.04994969069957733, + 0.008344747126102448, + 0.04553315043449402, + 0.002721929457038641, + 0.019683293998241425, + -0.07648376375436783, + -0.011557327583432198, + 0.005703666713088751, + -0.04630947858095169, + 0.08604322373867035, + 0.024151362478733063, + 0.009969284757971764, + 0.006591316312551498, + 0.016788501292467117, + -0.008936790749430656, + -0.04407847672700882, + -0.10332876443862915, + 0.14969968795776367, + 0.07188258320093155, + -0.004159452393651009, + -0.05464881286025047, + -0.07255028188228607, + 0.117868572473526, + 0.005936199799180031, + -0.10220304131507874, + -0.03999566659331322, + 0.07501912117004395, + 0.16038082540035248, + -0.03320574760437012, + -0.04479363560676575, + 0.02120385691523552, + 0.1265159398317337, + 0.044165074825286865, + 0.0974731296300888, + 0.07087424397468567, + 0.09011547267436981, + -0.011436786502599716, + -0.008907885290682316, + 0.07551225274801254, + 0.0740157887339592, + 0.028836743906140327, + -0.020702751353383064, + 0.04140472412109375, + 0.007198440842330456, + -0.02204008214175701, + 0.05030984431505203, + -0.012128639966249466, + -0.01338435523211956, + -0.02191055938601494, + -0.001331954263150692, + -0.0150510398671031, + 0.03325839340686798, + -0.01166414376348257, + 0.046062763780355453, + 0.010720659047365189, + -0.0016609709709882736, + 0.07922933995723724, + 0.03723090887069702, + 0.02604392170906067, + 0.08400508016347885, + -0.07623007893562317, + -0.07979101687669754, + 0.05053455010056496, + 0.008680237457156181, + 0.03445329889655113, + 0.08768151700496674, + 0.0446850061416626, + -0.024085253477096558, + 0.10533446818590164, + 0.05589498579502106, + -0.006498263217508793, + 0.02790868654847145, + -0.1080659031867981, + 0.12004449218511581, + 0.07869429886341095, + -0.04090873897075653, + 0.019370591267943382, + -0.04255497828125954, + 0.09387113153934479, + 0.08306798338890076, + -0.1440945565700531, + -0.08431284129619598, + 0.055854879319667816, + 0.042773813009262085, + -0.014650602824985981, + 0.13262630999088287, + -0.031001346185803413, + 0.007896746508777142, + 0.08489559590816498, + -0.05678100138902664, + -0.04893491417169571, + -0.033049799501895905, + 0.0443098209798336, + -0.07036128640174866, + 0.05185675621032715, + 0.03613513708114624, + 0.004043039865791798, + -0.011045982129871845, + 0.07997813820838928, + -0.0227487925440073, + -0.025182552635669708, + 0.02432696893811226, + -0.03223945200443268, + 0.046007998287677765, + -0.022601153701543808, + 0.016615698114037514, + 0.043354518711566925, + 0.04039819538593292, + 0.032384030520915985, + 0.01469055563211441, + -0.03640322387218475, + -0.12419065833091736, + 0.015508345328271389, + 0.05666865408420563, + 0.07116006314754486, + -0.015323542058467865, + -0.05304718390107155, + -0.05137743800878525, + -0.0591328926384449, + 0.012484293431043625, + 0.0029017780907452106, + 0.091408371925354, + -0.001773263793438673, + -0.00022884283680468798, + 0.07577857375144958, + 0.0194857157766819, + -0.003263377584517002, + -0.03675318509340286, + -0.041201747953891754, + 0.023517003282904625, + 0.04719114303588867, + -0.08032232522964478, + -0.06488973647356033, + -0.0009055742993950844, + 0.036279790103435516, + -0.015142029151320457, + 0.028365613892674446, + 0.05698738992214203, + 0.017797598615288734, + 0.0376548208296299, + -0.08761591464281082, + 0.043355900794267654, + -0.12279794365167618, + -0.06551626324653625, + -0.0320172980427742, + -0.010431734845042229, + 0.0024665198288857937, + 0.07042818516492844, + -0.004997836891561747, + 0.040651585906744, + -0.022141478955745697, + -0.07916876673698425, + -0.06485278904438019, + 0.07047265768051147, + 0.103216752409935, + 0.012911692261695862, + 0.062018103897571564, + 0.057831525802612305, + -0.012101317755877972, + 0.046879060566425323, + 0.05007849261164665, + 0.13482853770256042, + -0.03489668667316437, + 0.019783727824687958, + -0.04995163530111313, + 0.0744292289018631, + 0.05259699746966362, + -0.10245924443006516, + -0.06838458776473999, + 6.273388862609863e-05, + -0.04936979338526726, + 0.04081407189369202, + -0.02829176001250744, + 0.012483715079724789, + 0.003441236913204193, + -0.005567100830376148, + -0.1050506979227066, + -0.08585310727357864, + 0.07601556181907654, + -0.06117270886898041, + -0.012992369942367077, + -0.09122200310230255, + 0.055312518030405045, + 0.10301375389099121, + 0.037872932851314545, + -0.030580706894397736, + 0.005703204311430454, + 0.03272298350930214, + -0.025252459570765495, + -0.004251203499734402, + 0.03085319697856903, + 0.01622661016881466, + -0.1204351857304573, + 0.00017932639457285404, + -0.09284012019634247, + 0.0756625235080719, + -0.06378820538520813, + 0.16047629714012146, + -0.02003616839647293, + -0.05094631761312485, + -0.08163866400718689, + 0.028918597847223282, + -0.017792830243706703, + 0.04300200566649437, + 0.039597608149051666, + 0.06194380670785904, + 0.009485496208071709, + -0.0545857697725296, + 0.12352314591407776, + 0.042216140776872635, + -0.037687428295612335, + -0.07131104171276093, + -0.005493655800819397, + -0.01561376266181469, + 0.04466020315885544, + 0.016033610329031944, + -0.0759623795747757, + -0.029592476785182953, + 0.034450795501470566, + -0.020359832793474197, + 0.0662091001868248, + 0.13950827717781067, + 0.06911428272724152, + -0.1255066841840744 + ] + }, + "p245_369.wav": { + "name": "p245", + "embedding": [ + 0.028199300169944763, + 0.10727851092815399, + 0.0007854877039790154, + 0.014856789261102676, + -0.02383865788578987, + 0.05175522714853287, + -0.15402263402938843, + 0.14111328125, + -0.0471477210521698, + 0.14013467729091644, + -0.1019069105386734, + 0.093677818775177, + -0.03452619910240173, + -0.18918216228485107, + -0.06011847034096718, + 0.040417589247226715, + -0.04967929795384407, + -0.033519256860017776, + -0.0112451845780015, + -0.002914853859692812, + 0.06663721054792404, + 0.03348027914762497, + -0.009950281120836735, + 0.03041946142911911, + -0.001922254334203899, + 0.039967119693756104, + 0.01975911855697632, + 0.06062823534011841, + 0.0386592298746109, + -0.010230815038084984, + -0.009711163118481636, + 0.13572587072849274, + -0.018907783553004265, + 0.037021297961473465, + 0.06497976928949356, + 0.009449531324207783, + 0.008329341188073158, + -0.040101662278175354, + -0.015024878084659576, + 0.0030898405238986015, + -0.047345276921987534, + 0.061730872839689255, + 0.037560299038887024, + 0.011270963586866856, + 0.039189569652080536, + 0.05919507145881653, + -0.014882213436067104, + -0.054816409945487976, + -0.08506748080253601, + 0.1604343056678772, + 0.07355619966983795, + -0.016493886709213257, + -0.05894913151860237, + -0.06987728178501129, + 0.1099076122045517, + -0.01109024416655302, + -0.1018749549984932, + -0.033475831151008606, + 0.11122995615005493, + 0.1727573424577713, + -0.02717198245227337, + -0.03787035495042801, + 0.021621355786919594, + 0.14679546654224396, + 0.02834227867424488, + 0.09194448590278625, + 0.056256502866744995, + 0.10263821482658386, + 0.002833115868270397, + 0.008135393261909485, + 0.0622495636343956, + 0.05787428468465805, + 0.028404200449585915, + -0.04193072021007538, + 0.034289535135030746, + 0.008783059194684029, + -0.011217325925827026, + 0.040299057960510254, + -0.028623204678297043, + -0.01079061534255743, + -0.009426545351743698, + 0.02032358944416046, + -0.02184356190264225, + 0.011745870113372803, + -0.025703642517328262, + 0.052416764199733734, + 0.022887282073497772, + -0.006816552951931953, + 0.07264624536037445, + 0.0622590035200119, + 0.03945743665099144, + 0.05528624355792999, + -0.06214742362499237, + -0.10373042523860931, + 0.022373618558049202, + -0.013525377959012985, + 0.023544378578662872, + 0.07536736130714417, + 0.03749381750822067, + -0.011822872795164585, + 0.11691711843013763, + 0.038871005177497864, + -0.007304166443645954, + 0.03464965522289276, + -0.13144895434379578, + 0.12909510731697083, + 0.06521330028772354, + -0.02801908552646637, + 0.024824976921081543, + -0.04462732374668121, + 0.07613295316696167, + 0.07967578619718552, + -0.13630422949790955, + -0.07441186904907227, + 0.05125047266483307, + 0.0413830429315567, + -0.02172214165329933, + 0.11135700345039368, + -0.012063495814800262, + -0.002701223362237215, + 0.09428876638412476, + -0.06454937905073166, + -0.0689682736992836, + -0.049475304782390594, + 0.0462544709444046, + -0.082177072763443, + 0.06637449562549591, + 0.026514071971178055, + 0.0003492333344183862, + -0.017994390800595284, + 0.0893142968416214, + -0.018672045320272446, + 0.00800756923854351, + -0.00570314098149538, + -0.029605116695165634, + 0.049831829965114594, + -0.048813529312610626, + 0.019458573311567307, + 0.008507682010531425, + 0.04998883605003357, + 0.04737384617328644, + 0.025580327957868576, + -0.04806726425886154, + -0.10428784042596817, + -0.0008538421243429184, + 0.04670098423957825, + 0.08045955002307892, + 0.007464645896106958, + -0.036868758499622345, + -0.043867629021406174, + -0.04719647020101547, + 0.007677203975617886, + -0.01655011810362339, + 0.0799948200583458, + 0.003716093488037586, + -0.006608342751860619, + 0.09437038004398346, + -0.0012841126881539822, + -0.00011603336315602064, + -0.06334536522626877, + -0.01437787152826786, + 0.011144244112074375, + 0.02807004377245903, + -0.08281341195106506, + -0.06476549804210663, + 0.011694781482219696, + 0.03234819322824478, + -0.01226583868265152, + 0.028073497116565704, + 0.030791539698839188, + 0.018071219325065613, + 0.04037819057703018, + -0.08583992719650269, + 0.025005552917718887, + -0.12360372394323349, + -0.07989845424890518, + -0.022651176899671555, + -0.002108201151713729, + 0.0013351314701139927, + 0.06324441730976105, + 0.0018283510580658913, + 0.01843988336622715, + 0.016505595296621323, + -0.08618628233671188, + -0.08267609030008316, + 0.07102423906326294, + 0.08336284756660461, + 0.013562096282839775, + 0.06645528972148895, + 0.04629442095756531, + -0.03991423547267914, + 0.06404398381710052, + 0.04608313366770744, + 0.11671169102191925, + -0.02419842779636383, + 0.007976994849741459, + -0.06375421583652496, + 0.06935905665159225, + 0.06549336016178131, + -0.10340673476457596, + -0.08530882000923157, + -0.013326704502105713, + -0.05254099518060684, + 0.02138952538371086, + -0.01734915003180504, + 0.018607545644044876, + 0.007718452252447605, + -0.01408150140196085, + -0.09854468703269958, + -0.05838078260421753, + 0.06029728427529335, + -0.09261518716812134, + -0.01981927827000618, + -0.07572667300701141, + 0.05167001485824585, + 0.11062225699424744, + 0.037236444652080536, + -0.0400782972574234, + -0.02766759879887104, + 0.04832552373409271, + -0.07503670454025269, + -0.02767399698495865, + 0.010355996899306774, + 0.022310465574264526, + -0.09718108177185059, + 0.023773279041051865, + -0.08914737403392792, + 0.054145485162734985, + -0.07524878531694412, + 0.14482787251472473, + -0.0031678318046033382, + -0.08146260678768158, + -0.07533472776412964, + 0.02277853712439537, + -0.01881023868918419, + 0.04335108771920204, + 0.029217790812253952, + 0.05414988100528717, + 0.01590767502784729, + -0.055966816842556, + 0.12878789007663727, + 0.03935732692480087, + -0.029454415664076805, + -0.06619588285684586, + -0.03981907665729523, + -0.039492495357990265, + 0.022052889689803123, + 0.025556489825248718, + -0.09094993770122528, + -0.04063460975885391, + 0.02391265705227852, + -0.02889437787234783, + 0.07761697471141815, + 0.13333022594451904, + 0.045225322246551514, + -0.12099325656890869 + ] + }, + "p245_055.wav": { + "name": "p245", + "embedding": [ + 0.046574436128139496, + 0.08913436532020569, + -0.0023929483722895384, + 0.004350261762738228, + -0.04254953935742378, + 0.06514020264148712, + -0.1442471146583557, + 0.1451658010482788, + -0.0565878227353096, + 0.1407376527786255, + -0.09106993675231934, + 0.11484470963478088, + -0.03148968145251274, + -0.19993528723716736, + -0.022515378892421722, + 0.048772528767585754, + -0.04098231717944145, + -0.017407460138201714, + -0.029846753925085068, + -0.025409795343875885, + 0.04550321400165558, + 0.01899908110499382, + 0.009541154839098454, + 0.009712934494018555, + 0.007824135944247246, + 0.07307508587837219, + -0.004122601822018623, + 0.03266330435872078, + 0.002577691338956356, + -0.026551980525255203, + -0.03578141704201698, + 0.11213751137256622, + -0.05473366379737854, + 0.004312671720981598, + 0.07759320735931396, + -0.01027532760053873, + -0.024935448542237282, + -0.0615367516875267, + -0.014649576507508755, + -0.008107008412480354, + -0.06940373033285141, + 0.05909372866153717, + 0.024877093732357025, + -0.008142421022057533, + 0.04316188395023346, + 0.04451502859592438, + 0.0028448961675167084, + -0.043630972504615784, + -0.09380718320608139, + 0.1379014253616333, + 0.07744523882865906, + -0.004231967031955719, + -0.05677090585231781, + -0.05916500836610794, + 0.11454176902770996, + -0.003850226290524006, + -0.11819355189800262, + -0.04130569100379944, + 0.10107502341270447, + 0.15562397241592407, + -0.05671142041683197, + -0.026052938774228096, + 0.028546340763568878, + 0.10549560189247131, + 0.03289832919836044, + 0.11902220547199249, + 0.08150166273117065, + 0.1073945164680481, + -0.01186227984726429, + 0.024482499808073044, + 0.06277100741863251, + 0.055194370448589325, + 0.0640106201171875, + -0.03717948496341705, + 0.022137347608804703, + 0.011258618906140327, + -0.024129696190357208, + 0.016543114557862282, + -0.03129882737994194, + -0.01165520865470171, + -0.019313769415020943, + -0.005342992953956127, + 0.0018325226847082376, + 0.009058971889317036, + -0.019726015627384186, + 0.05271347239613533, + 0.03635776415467262, + -0.000942105136346072, + 0.07288220524787903, + 0.017791273072361946, + -0.0028136475011706352, + 0.07125572860240936, + -0.08712626248598099, + -0.07857319712638855, + 0.02426619827747345, + -0.011976849287748337, + -0.0002128448977600783, + 0.09163360297679901, + 0.05353984609246254, + -0.011702270247042179, + 0.12337925285100937, + 0.04680298641324043, + -0.0005060539115220308, + 0.03358887881040573, + -0.10153765976428986, + 0.12774483859539032, + 0.07750610262155533, + -0.05008864402770996, + 0.04139804095029831, + -0.059163689613342285, + 0.08013476431369781, + 0.08006198704242706, + -0.14718866348266602, + -0.0539596751332283, + 0.04259147495031357, + 0.02254943922162056, + -0.026735395193099976, + 0.1272776573896408, + -0.02291165292263031, + 0.0169075895100832, + 0.11666344106197357, + -0.08210164308547974, + -0.059017203748226166, + -0.024821419268846512, + 0.043551139533519745, + -0.08164355158805847, + 0.06433211266994476, + 0.04648889973759651, + -0.0016722474247217178, + 0.013577437028288841, + 0.10247376561164856, + -0.027321791276335716, + -0.02072293311357498, + 0.005596350412815809, + -0.03557903319597244, + 0.02170388586819172, + -0.03603385388851166, + 0.0076075354591012, + 0.024209316819906235, + 0.04263443499803543, + 0.0333988256752491, + 0.008780399337410927, + -0.037260085344314575, + -0.10201187431812286, + 0.012085439637303352, + 0.04208651930093765, + 0.08861590176820755, + -0.00486858282238245, + -0.02041034586727619, + -0.03934132307767868, + -0.06423559039831161, + 0.004675803240388632, + -0.02093695104122162, + 0.07811477780342102, + -0.027870360761880875, + 0.007149981334805489, + 0.08687368035316467, + 0.03586791083216667, + -0.003421555971726775, + -0.07692418992519379, + -0.03912508487701416, + 0.00718061625957489, + 0.047734081745147705, + -0.08591185510158539, + -0.07083427906036377, + -0.014545300975441933, + 0.03895916789770126, + -0.017533330246806145, + 0.05183684080839157, + 0.03833241015672684, + 0.025639843195676804, + 0.02463449165225029, + -0.08224032819271088, + 0.015124998986721039, + -0.11992624402046204, + -0.07971511036157608, + -0.01891009509563446, + -0.013322421349585056, + -0.004228496458381414, + 0.06551694869995117, + -0.0019042243948206306, + 0.03481516242027283, + -0.014965128153562546, + -0.07622719556093216, + -0.08238254487514496, + 0.06252120435237885, + 0.07650018483400345, + -0.011789831332862377, + 0.04586467891931534, + 0.05817842483520508, + -0.049839988350868225, + 0.0470852330327034, + 0.06303859502077103, + 0.1288510262966156, + -0.02223774418234825, + 0.03674256429076195, + -0.06645467132329941, + 0.07680311799049377, + 0.07735106348991394, + -0.08554330468177795, + -0.0876953974366188, + -0.018741222098469734, + -0.05704496055841446, + 0.03937928378582001, + -0.019623935222625732, + -0.0041176192462444305, + -0.0019676941446959972, + -0.0062654884532094, + -0.08003780245780945, + -0.07332847267389297, + 0.07443499565124512, + -0.0674520954489708, + -0.005016189534217119, + -0.09536699950695038, + 0.05337999761104584, + 0.0944749191403389, + 0.031060732901096344, + -0.026241417974233627, + -0.005389410071074963, + 0.04848342016339302, + -0.03311874344944954, + 0.0016810663510113955, + 0.0416463166475296, + 0.03446490317583084, + -0.11019304394721985, + -0.003943437710404396, + -0.08162915706634521, + 0.06479348242282867, + -0.05929083377122879, + 0.1414589285850525, + -0.00805061124265194, + -0.04871737211942673, + -0.0753415897488594, + 0.035351913422346115, + 0.00344419339671731, + 0.036168865859508514, + 0.03754804655909538, + 0.07143204659223557, + 0.02240382507443428, + -0.06710101664066315, + 0.12995368242263794, + 0.014064205810427666, + -0.023517899215221405, + -0.06127078831195831, + -0.04899080842733383, + -0.04501912370324135, + -0.0015472689410671592, + 0.005220281425863504, + -0.10901229083538055, + -0.028873872011899948, + 0.019628137350082397, + -0.016123972833156586, + 0.056438006460666656, + 0.14413830637931824, + 0.06163401901721954, + -0.12603460252285004 + ] + }, + "p245_416.wav": { + "name": "p245", + "embedding": [ + 0.0567907989025116, + 0.06137121841311455, + 0.03674077242612839, + -0.03178399056196213, + 0.00300041027367115, + 0.11558578163385391, + -0.09009912610054016, + 0.09349261224269867, + -0.0014780350029468536, + 0.027230067178606987, + -0.067775659263134, + 0.034372493624687195, + 0.0031084883958101273, + -0.1340586543083191, + -0.011272762902081013, + 0.047002751380205154, + -0.03475184738636017, + 0.025634601712226868, + -0.04725174978375435, + -0.01655474305152893, + -0.02471337839961052, + 0.008841507136821747, + 0.04945560172200203, + -0.02523030713200569, + 0.05547273904085159, + 0.03038673661649227, + 0.004403010942041874, + 0.019978735595941544, + -0.013245188631117344, + -0.014343657530844212, + -0.012119540013372898, + 0.07473617792129517, + -0.040856122970581055, + -0.032392777502536774, + 0.06482695788145065, + -0.003955521620810032, + 0.04602472856640816, + -0.09960207343101501, + -0.021383536979556084, + 0.03907986357808113, + -0.06382596492767334, + 0.08577613532543182, + 0.07248856127262115, + 0.031154153868556023, + 0.024028554558753967, + 0.012702086009085178, + 0.004519999492913485, + -0.050253767520189285, + -0.09138837456703186, + 0.14109325408935547, + 0.019830642268061638, + 0.030226966366171837, + -0.08460353314876556, + -0.0027941223233938217, + 0.05003519356250763, + 0.0001817962620407343, + -0.03909480199217796, + -0.01801268942654133, + 0.04741377383470535, + 0.08155964314937592, + 0.04193412885069847, + -0.00751175731420517, + 0.0282631553709507, + 0.07708166539669037, + -0.0008111521601676941, + 0.026783302426338196, + 0.08534255623817444, + 0.09093628823757172, + 0.020387357100844383, + 0.0287494957447052, + 0.05056292191147804, + -0.011136289685964584, + 0.012760885059833527, + -0.02051311917603016, + 0.034366849809885025, + -0.03974774479866028, + -0.014197340235114098, + -0.014851966872811317, + -0.0009447336196899414, + -0.02088828943669796, + 0.06970079243183136, + 0.03769897669553757, + 0.01453565526753664, + 0.06822018325328827, + -0.04767470434308052, + 0.027288168668746948, + -0.02114154025912285, + 0.09532777965068817, + 0.08049063384532928, + 0.044545844197273254, + 0.03397013992071152, + 0.00405912846326828, + -0.025210492312908173, + -0.08055074512958527, + 0.01917753927409649, + 0.028193194419145584, + 0.0009263250976800919, + 0.00024887174367904663, + 0.016075773164629936, + -0.03548377379775047, + 0.09358718991279602, + 0.007819762453436852, + -0.0052802651189267635, + 0.010923583060503006, + -0.06192692369222641, + 0.05942104011774063, + 0.04144691675901413, + 0.012968428432941437, + 0.06518562883138657, + -0.021607359871268272, + 0.0213124118745327, + 0.0648246482014656, + -0.08226243406534195, + -0.018341904506087303, + 0.029112935066223145, + 0.018069801852107048, + 0.049465928226709366, + 0.11785601824522018, + 0.015189849771559238, + 0.021076707169413567, + 0.035244591534137726, + -0.07194758206605911, + -0.019156519323587418, + 0.04732681065797806, + 0.001741865649819374, + 0.018829703330993652, + -0.0234701968729496, + 0.029811378568410873, + 0.01583380252122879, + -0.07465830445289612, + 0.03607070446014404, + 0.02948310784995556, + 0.024294618517160416, + -0.05371376872062683, + 0.04280327633023262, + 0.042849522083997726, + -0.0021061180159449577, + -0.025993550196290016, + 0.025131581351161003, + 0.05759604647755623, + -0.009550297632813454, + 0.041474323719739914, + -0.051814183592796326, + -0.09134930372238159, + -0.051411066204309464, + -0.017881054431200027, + 0.04415519908070564, + -0.020648781210184097, + -0.02756025455892086, + -0.06745801866054535, + 0.023630425333976746, + -0.0011830441653728485, + -0.007896332070231438, + 0.03980392962694168, + 0.09757402539253235, + -0.06991977989673615, + 0.05163955315947533, + -0.02070273831486702, + 0.032362744212150574, + -0.01946130022406578, + -0.03826843574643135, + 0.024332456290721893, + 0.023941773921251297, + -0.0042892321944236755, + -0.047967202961444855, + 0.014726214110851288, + -0.06178019195795059, + -0.012573277577757835, + -0.005452342331409454, + 0.02859993278980255, + -0.0017840638756752014, + -0.03733401000499725, + -0.07862615585327148, + 0.020164823159575462, + -0.043614305555820465, + -0.03302149847149849, + 0.07899540662765503, + 0.04223420098423958, + -0.03670389950275421, + 0.09814518690109253, + 0.044447124004364014, + 0.02855328656733036, + -0.03492702916264534, + -0.028882192447781563, + 0.04290291666984558, + 0.04755566641688347, + 0.0358084999024868, + -0.0017981259152293205, + 0.02763209491968155, + -0.006372924894094467, + -0.0008250924292951822, + 0.03864503279328346, + 0.039031289517879486, + 0.020886069163680077, + -0.037478022277355194, + -0.03772738575935364, + 0.022353626787662506, + 0.08378852903842926, + -0.006557576358318329, + -0.050600141286849976, + -0.029572520405054092, + 0.04553770646452904, + -0.017793282866477966, + 0.001892803586088121, + -0.00015062838792800903, + 0.025224143639206886, + 0.03570117801427841, + -0.033847302198410034, + -0.048651739954948425, + -0.0749111995100975, + 0.02383178099989891, + -0.0725645124912262, + -0.019341357052326202, + -0.033219676464796066, + 0.0482814759016037, + 0.08746325969696045, + -0.015543824061751366, + -0.004597595892846584, + -0.008085458539426327, + -0.017453357577323914, + -0.019890829920768738, + -0.042361900210380554, + -0.0017944574356079102, + 0.02992306649684906, + -0.0801640972495079, + 0.018427453935146332, + -0.051806218922138214, + 0.06349413841962814, + 0.015992505475878716, + 0.07570898532867432, + 0.059676650911569595, + -0.02038032002747059, + -0.06252992898225784, + -0.004649071022868156, + -0.0071282461285591125, + 0.027470968663692474, + -0.008077695034444332, + 0.0085157360881567, + 0.05133112519979477, + -0.021400058642029762, + 0.05884072184562683, + 0.018169095739722252, + -0.06082256883382797, + -0.04509517922997475, + 0.013953562825918198, + -0.016391271725296974, + 0.025656264275312424, + -0.027521420270204544, + -0.046593815088272095, + 0.025631526485085487, + 0.04764686897397041, + 0.03699498623609543, + 0.011318061500787735, + 0.04729567468166351, + 0.014677945524454117, + -0.04137536883354187 + ] + }, + "p245_022.wav": { + "name": "p245", + "embedding": [ + 0.05324256047606468, + 0.061302293092012405, + -0.005025130696594715, + 0.01198851503431797, + -0.057215042412281036, + 0.04223097488284111, + -0.10840871185064316, + 0.13754360377788544, + -0.02465054765343666, + 0.09339778870344162, + -0.07185589522123337, + 0.11825723946094513, + -0.030186904594302177, + -0.14125891029834747, + -0.016872841864824295, + 0.05601181462407112, + -0.025600483641028404, + -0.0234761293977499, + -0.04188695177435875, + -0.024710973724722862, + 0.013375586830079556, + 0.026865586638450623, + 0.0398847833275795, + 0.01684473268687725, + 0.022400561720132828, + 0.06845802068710327, + -0.0006524207419715822, + 0.038663335144519806, + 0.012818616814911366, + -0.037854522466659546, + -0.01886928454041481, + 0.06561212986707687, + -0.05319884419441223, + 0.0071054003201425076, + 0.05396874621510506, + -0.005310772452503443, + -0.008902838453650475, + -0.062401723116636276, + -0.026669198647141457, + -0.0033368864096701145, + -0.05418379232287407, + 0.07686834782361984, + 0.026250198483467102, + -0.018549030646681786, + 0.03559478744864464, + 0.017564356327056885, + -0.011372784152626991, + -0.035834427922964096, + -0.11986465752124786, + 0.13321977853775024, + 0.042802900075912476, + 0.00832411739975214, + -0.10078143328428268, + -0.040594760328531265, + 0.0821743980050087, + -0.038213491439819336, + -0.08589424192905426, + -0.04702872782945633, + 0.058764275163412094, + 0.11749287694692612, + -0.017929598689079285, + -0.029212012887001038, + 0.01113861333578825, + 0.08081115782260895, + 0.05228882655501366, + 0.057697027921676636, + 0.09072805941104889, + 0.10422497242689133, + -0.03733307123184204, + 0.034734275192022324, + 0.048660267144441605, + 0.05916241556406021, + 0.05137226730585098, + 0.012145251035690308, + 0.00894327461719513, + -0.010723164305090904, + -0.007460992783308029, + 0.009404128417372704, + -0.023798830807209015, + -0.022367704659700394, + -0.019436601549386978, + 0.009480023756623268, + 0.007161378860473633, + 0.020561737939715385, + -0.01759173348546028, + 0.07141675055027008, + 0.02871347777545452, + 0.0041181789711117744, + 0.0652528628706932, + 0.03488336130976677, + -0.027383113279938698, + 0.04738170653581619, + -0.07045860588550568, + -0.06743291020393372, + -0.007237815298140049, + -0.01465634722262621, + 0.03835726156830788, + 0.0582859106361866, + 0.023977557197213173, + 0.0012763416161760688, + 0.11218085139989853, + 0.04241640120744705, + 0.0026273243129253387, + 0.013760223984718323, + -0.0759207010269165, + 0.11506791412830353, + 0.08514852821826935, + -0.018498443067073822, + 0.03904011473059654, + -0.04295190051198006, + 0.048243194818496704, + 0.05668666958808899, + -0.10186289995908737, + -0.047524306923151016, + 0.008349123410880566, + 0.004310175776481628, + 0.0033535838592797518, + 0.1038592979311943, + -0.010126795619726181, + 0.03911980614066124, + 0.09584072232246399, + -0.08150944113731384, + -0.04041064903140068, + 0.016518017277121544, + 0.02416919730603695, + -0.056308772414922714, + 0.04082862287759781, + 0.042970508337020874, + 0.010659074410796165, + 0.01760186068713665, + 0.08590855449438095, + -0.0026000705547630787, + 0.0016993418103083968, + 0.010413152165710926, + -0.028262360021471977, + 0.020225364714860916, + -0.016469767317175865, + -0.014491048641502857, + 0.0718434676527977, + 0.06346558779478073, + 0.04298487305641174, + 0.009037402458488941, + -0.02301657944917679, + -0.10575832426548004, + -0.001162229455076158, + 0.04356175288558006, + 0.06886432319879532, + -0.029556620866060257, + -0.028247911483049393, + -0.041098855435848236, + -0.0413292832672596, + 0.006152871064841747, + 0.014197251759469509, + 0.062205392867326736, + -0.024410007521510124, + 0.004270531237125397, + 0.08781793713569641, + 0.02211890183389187, + -0.00658487668260932, + -0.06471861898899078, + -0.026197416707873344, + 0.000420949247200042, + 0.055853601545095444, + -0.059295106679201126, + -0.0691130980849266, + -0.003671650541946292, + 0.034395016729831696, + -0.027208132669329643, + 0.04693871736526489, + 0.04393736645579338, + 0.004974675364792347, + 0.014129765331745148, + -0.06800070405006409, + 0.024692555889487267, + -0.08237608522176743, + -0.058275967836380005, + 0.015931254252791405, + -0.01525780837982893, + -0.015050581656396389, + 0.06195163354277611, + 0.023209623992443085, + 0.06388459354639053, + -0.011865590699017048, + -0.08598818629980087, + -0.06828141212463379, + 0.05322566255927086, + 0.04108474776148796, + -0.015175786800682545, + 0.04581515118479729, + 0.0505252368748188, + -0.04002430662512779, + 0.0537480004131794, + 0.05123565346002579, + 0.07857302576303482, + -0.05612390115857124, + 0.0047832028940320015, + -0.04561203345656395, + 0.06616338342428207, + 0.06934478878974915, + -0.08487281948328018, + -0.0690789446234703, + -0.028633838519454002, + -0.04422156512737274, + 0.03621666878461838, + -0.020767319947481155, + -0.003627300728112459, + 0.04623904824256897, + -0.012674671597778797, + -0.09455786645412445, + -0.07809048891067505, + 0.06553131341934204, + -0.057748373597860336, + 0.013004057109355927, + -0.06921438127756119, + 0.02716211788356304, + 0.07098933309316635, + 0.02222384326159954, + -0.0037244276609271765, + -0.007137469481676817, + 0.023656774312257767, + -0.03247683122754097, + -0.022201651707291603, + 0.046808600425720215, + 0.031671714037656784, + -0.06424158811569214, + -0.01589217036962509, + -0.06142134591937065, + 0.052113499492406845, + -0.015291360206902027, + 0.133778914809227, + 0.0006001185975037515, + -0.04379967600107193, + -0.06352009624242783, + 0.0006721764802932739, + -0.029346132650971413, + 0.05153700336813927, + 0.041114747524261475, + 0.04483325406908989, + 0.029850849881768227, + -0.0434134267270565, + 0.11956961452960968, + 0.050123121589422226, + -0.05864757299423218, + -0.04936657473444939, + -0.04123452678322792, + -0.03550001233816147, + 0.014122906140983105, + -0.0006522267940454185, + -0.0715562105178833, + 0.0065712593495845795, + 0.0033439528197050095, + -0.022484436631202698, + 0.05486337095499039, + 0.12036079168319702, + 0.07447535544633865, + -0.09200917929410934 + ] + }, + "p245_335.wav": { + "name": "p245", + "embedding": [ + 0.04199257493019104, + 0.08892996609210968, + 0.008641382679343224, + -0.009453978389501572, + -0.02137896604835987, + 0.06362928450107574, + -0.12301419675350189, + 0.08644839376211166, + -0.03773996978998184, + 0.13767001032829285, + -0.05482705309987068, + 0.07192657887935638, + -0.008518553338944912, + -0.1373392939567566, + -0.05108211934566498, + 0.034587059170007706, + -0.07831590622663498, + -0.005116255953907967, + -0.05878249555826187, + -0.008343957364559174, + 0.03481651097536087, + 0.036918655037879944, + 0.04181723669171333, + -0.060623109340667725, + 0.0587172657251358, + 0.037981703877449036, + 0.0530821867287159, + 0.06958456337451935, + 0.06090376898646355, + -0.059416964650154114, + -0.020414866507053375, + 0.10418006777763367, + -0.02444155141711235, + 0.016964247450232506, + 0.03525381162762642, + 0.002311745658516884, + 0.04806772246956825, + -0.06123020499944687, + -0.021319659426808357, + 0.06647691130638123, + -0.012859487906098366, + 0.08751493692398071, + 0.027104495093226433, + 0.0101105822250247, + 0.009353546425700188, + 0.04908143728971481, + -0.005352572537958622, + -0.08023662865161896, + -0.07675178349018097, + 0.1825820505619049, + 0.040736597031354904, + -0.01549578458070755, + -0.05682007223367691, + -0.07847986370325089, + 0.09336146712303162, + -0.019799184054136276, + -0.06816112995147705, + -0.031503286212682724, + 0.07169219851493835, + 0.14021651446819305, + -0.029171908274292946, + 0.005227888002991676, + 0.016633763909339905, + 0.11838006973266602, + 0.022399093955755234, + 0.05357801541686058, + 0.06887462735176086, + 0.08455190062522888, + 0.04138166457414627, + 0.048407185822725296, + 0.025311864912509918, + 0.06889475882053375, + -0.015499012544751167, + -0.011595621705055237, + 0.029313433915376663, + -0.02255629375576973, + -0.0514276847243309, + 0.012401705607771873, + -0.007684722077101469, + -0.0027304328978061676, + 0.015446944162249565, + -0.0002575097605586052, + -0.0019865259528160095, + 0.023443857207894325, + -0.03219224512577057, + 0.04208652302622795, + -0.03812112659215927, + -0.006978310644626617, + 0.07214789092540741, + 0.01456240564584732, + 0.006361637730151415, + 0.04026614874601364, + -0.04209909215569496, + -0.12104970961809158, + -0.007916999980807304, + 0.005739630199968815, + 0.01301302295178175, + 0.05009947717189789, + 0.04211876913905144, + -0.049872443079948425, + 0.10778867453336716, + 0.041849687695503235, + -0.025697171688079834, + 0.02777659147977829, + -0.09451504051685333, + 0.11773648858070374, + 0.0697186291217804, + -0.007269886787980795, + 0.023536888882517815, + -0.04603276774287224, + 0.06318366527557373, + 0.044546082615852356, + -0.14325019717216492, + -0.06988342106342316, + 0.05604244023561478, + -0.02932731807231903, + 0.008439527824521065, + 0.06855004280805588, + -0.0033898716792464256, + -0.018165534362196922, + 0.07283703237771988, + -0.06284299492835999, + -0.04674302041530609, + -0.022204400971531868, + 0.0673355832695961, + -0.05229955166578293, + 0.0053389910608530045, + 0.03211677819490433, + -0.03647319972515106, + -0.01811276748776436, + 0.07836821675300598, + 0.01435836497694254, + 0.02559647150337696, + 0.020600534975528717, + -0.012520981952548027, + 0.06220254302024841, + -0.03484669327735901, + 0.029449913650751114, + 0.04761910066008568, + 0.08200129121541977, + 0.05170191079378128, + 0.007448915857821703, + -0.07090297341346741, + -0.08006048202514648, + 0.006199871655553579, + 0.01693909242749214, + 0.048258572816848755, + -0.019243672490119934, + -0.014141546562314034, + -0.06672597676515579, + -0.058080561459064484, + 0.022938579320907593, + 0.01846778579056263, + 0.10079550743103027, + 0.014553926885128021, + -0.03154242783784866, + 0.1280750185251236, + -0.0310067031532526, + -0.004371006973087788, + -0.008714258670806885, + -0.010095467790961266, + 0.04211525619029999, + 0.005994373932480812, + -0.04314360395073891, + -0.04779992997646332, + 0.025909392163157463, + -0.022329673171043396, + -0.017854366451501846, + -0.0004951246082782745, + -0.003264857456088066, + 0.020975276827812195, + 0.04464074224233627, + -0.05537869781255722, + -0.014321788214147091, + -0.07688619196414948, + 0.0074501242488622665, + -0.009183879010379314, + -0.010820964351296425, + -0.07537836581468582, + 0.10119102895259857, + -0.008822977542877197, + 0.013086620718240738, + 0.012761054560542107, + -0.07155165821313858, + -0.008827300742268562, + 0.06906633824110031, + 0.08144252002239227, + 0.017893217504024506, + 0.035997506231069565, + 0.04988212138414383, + 0.013876711949706078, + 0.03241956979036331, + 0.0907677710056305, + 0.060314640402793884, + 0.0072409361600875854, + -0.021741919219493866, + -0.03993678092956543, + 0.1135089099407196, + 0.010460760444402695, + -0.09237933903932571, + -0.06321438401937485, + -0.02145492658019066, + -0.07221998274326324, + 0.015705164521932602, + -0.007785316091030836, + 0.02918567880988121, + 0.016829241067171097, + -0.010494627989828587, + -0.08744720369577408, + -0.0733645111322403, + 0.06126019358634949, + -0.09093831479549408, + -0.0495544895529747, + -0.029355553910136223, + 0.04723712056875229, + 0.10146286338567734, + 0.07382183521986008, + 0.0197888370603323, + -0.01096520759165287, + 0.053285837173461914, + -0.10108982771635056, + -0.042458269745111465, + 0.01303887739777565, + -0.014631019905209541, + -0.07976728677749634, + 0.039096347987651825, + -0.05399172380566597, + 0.05580270290374756, + -0.06278306990861893, + 0.128276988863945, + 0.00547771668061614, + -0.0711478441953659, + -0.07058806717395782, + 0.03497830778360367, + -0.064044289290905, + 0.023915551602840424, + 0.0412735752761364, + 0.015875883400440216, + 0.043776970356702805, + -0.05875685065984726, + 0.12558326125144958, + 0.014873407781124115, + -0.021190688014030457, + -0.09137672930955887, + -0.04988788813352585, + -0.00418389867991209, + 0.04000279679894447, + 0.021027863025665283, + -0.0600716695189476, + -0.0002337014302611351, + 0.03781680762767792, + -0.03509362041950226, + 0.06237088888883591, + 0.1147623062133789, + 0.06811603158712387, + -0.0892682820558548 + ] + }, + "p245_234.wav": { + "name": "p245", + "embedding": [ + 0.03859855234622955, + 0.06536020338535309, + -0.05317090451717377, + 0.048265717923641205, + -0.07475513219833374, + 0.03391978517174721, + -0.11376482248306274, + 0.07741101086139679, + -0.024729568511247635, + 0.10837063938379288, + -0.06549143046140671, + 0.0974111258983612, + -0.03725048527121544, + -0.16334807872772217, + -0.022786781191825867, + 0.029134754091501236, + -0.021586617454886436, + -0.034028712660074234, + -0.07125753164291382, + -0.05357389524579048, + 0.03808830678462982, + 0.04620485007762909, + 0.037542980164289474, + -0.03874049335718155, + 0.024919772520661354, + 0.07656604051589966, + -0.0012513245455920696, + 0.020306438207626343, + -0.0073990351520478725, + -0.02825022302567959, + -0.033680260181427, + 0.12117268145084381, + -0.05313227325677872, + -0.02491612732410431, + 0.0220029316842556, + -0.011181545443832874, + -0.026563022285699844, + -0.06553985178470612, + 0.00677464809268713, + 0.0188668854534626, + -0.06003882735967636, + 0.07544171065092087, + 0.037750158458948135, + -0.02425515465438366, + 0.03790944069623947, + -0.02394789643585682, + -0.03895793855190277, + -0.031601451337337494, + -0.1135723739862442, + 0.15090526640415192, + 0.06480830907821655, + 0.005111951846629381, + -0.07643724977970123, + -0.03469008952379227, + 0.11702896654605865, + 0.00011325161904096603, + -0.10391978174448013, + -0.0601520910859108, + 0.05091874301433563, + 0.13522972166538239, + -0.021721580997109413, + -0.010522306896746159, + 0.04580019786953926, + 0.08238363265991211, + 0.05134568735957146, + 0.05934164673089981, + 0.09767190366983414, + 0.11020466685295105, + -0.01940980926156044, + 0.026963967829942703, + 0.0635671317577362, + 0.0512508898973465, + 0.004070617258548737, + -0.03484227508306503, + 0.028774341568350792, + -0.023614415898919106, + -0.03152000159025192, + -0.021742310374975204, + -0.0170968659222126, + -0.03713006153702736, + -0.014190487563610077, + -0.006610504351556301, + 0.023592984303832054, + 0.013758573681116104, + -0.07379648089408875, + 0.03989016264677048, + 0.05868522822856903, + -0.04482884332537651, + 0.07561008632183075, + 0.04234018176794052, + -0.02142864651978016, + 0.02775394916534424, + -0.06345707178115845, + -0.06695277243852615, + 0.006896377075463533, + 0.015231841243803501, + -0.002263029105961323, + 0.07118502259254456, + 0.041825756430625916, + -0.01341099664568901, + 0.1182360053062439, + 0.05332415923476219, + -0.00010971445590257645, + 0.016209347173571587, + -0.05489329993724823, + 0.11478199064731598, + 0.09783156961202621, + -0.021169234067201614, + 0.04628896340727806, + -0.025693543255329132, + 0.04850009083747864, + 0.03727053850889206, + -0.0980229601264, + -0.05620863288640976, + 0.01675214245915413, + -0.0005779140628874302, + -0.016480816528201103, + 0.12641844153404236, + -0.023657022044062614, + 0.029201500117778778, + 0.1001882255077362, + -0.07846298068761826, + -0.0468326061964035, + -0.02599833346903324, + 0.0507347472012043, + -0.05261535570025444, + 0.03368260711431503, + 0.06303907930850983, + -0.010581274516880512, + 0.010219539515674114, + 0.07421673089265823, + -0.0032368479296565056, + 0.011091831140220165, + 0.022239116951823235, + -0.030271630734205246, + 0.06623533368110657, + -0.009648853912949562, + -0.014935877174139023, + 0.08406563848257065, + 0.03172847628593445, + 0.07616819441318512, + -0.020973140373826027, + 0.0075493683107197285, + -0.08079719543457031, + 0.034587062895298004, + 0.03369280695915222, + 0.07178688794374466, + -0.02151252143085003, + -0.002016404177993536, + -0.06350171566009521, + -0.09410462528467178, + 0.036443352699279785, + -0.0070542446337640285, + 0.11022815108299255, + -0.02414689213037491, + 0.0006169844418764114, + 0.10694345086812973, + 0.03461815416812897, + -0.0037476629950106144, + -0.039060309529304504, + -0.012701804749667645, + 0.0005930531769990921, + 0.0647931694984436, + -0.06514895707368851, + -0.05673503875732422, + -0.017224684357643127, + 0.028163854032754898, + -0.013866370543837547, + 0.06153073161840439, + 0.06615598499774933, + 0.007006385363638401, + 0.015415019355714321, + -0.09403462707996368, + 0.040469661355018616, + -0.0571637861430645, + 0.0030420292168855667, + -0.018780099228024483, + -0.05402619391679764, + -0.03947633132338524, + 0.10606244206428528, + 0.028492046520113945, + 0.018114376813173294, + -0.00851733423769474, + -0.08809319138526917, + -0.05415783450007439, + 0.04925578832626343, + 0.0618937686085701, + -0.03630887717008591, + 0.04230650141835213, + 0.06619949638843536, + -0.02612951397895813, + 0.02468230575323105, + 0.08153250068426132, + 0.06665295362472534, + -0.05009851232171059, + -0.010692842304706573, + -0.046283796429634094, + 0.0961911752820015, + 0.057161860167980194, + -0.08834637701511383, + -0.058778949081897736, + -0.05279126390814781, + -0.0705227255821228, + 0.032884445041418076, + -0.00844891369342804, + 0.011212746612727642, + 0.04085033759474754, + -0.01949182152748108, + -0.11022347211837769, + -0.09587196260690689, + 0.08932378888130188, + -0.05024102330207825, + 0.0008833149913698435, + -0.08373536169528961, + 0.011574815027415752, + 0.07716451585292816, + 0.030302952975034714, + -0.018663160502910614, + 0.003427368588745594, + 0.026869148015975952, + -0.03749735653400421, + 0.025821998715400696, + 0.06695492565631866, + 0.030477840453386307, + -0.08606046438217163, + -0.01636342518031597, + -0.07262247055768967, + 0.09376001358032227, + -0.045824408531188965, + 0.13435187935829163, + 0.030832357704639435, + -0.029940340667963028, + -0.0678267776966095, + 0.08531317859888077, + -0.038513388484716415, + 0.0648491233587265, + 0.07825575023889542, + 0.06580692529678345, + 0.023558005690574646, + -0.07233178615570068, + 0.10416823625564575, + 0.0473080649971962, + -0.03588294982910156, + -0.07229477912187576, + -0.020407695323228836, + -0.02657570317387581, + 0.03915943577885628, + 0.04880320280790329, + -0.06501597911119461, + 0.018592577427625656, + 0.0319160558283329, + -0.024493027478456497, + 0.08041813969612122, + 0.110394686460495, + 0.11622071266174316, + -0.07773072272539139 + ] + }, + "p245_397.wav": { + "name": "p245", + "embedding": [ + 0.057540830224752426, + 0.06532454490661621, + -0.02408442460000515, + 0.042704205960035324, + -0.062366336584091187, + 0.056560419499874115, + -0.1079028993844986, + 0.11655204743146896, + -0.04469050094485283, + 0.13947443664073944, + -0.07262063026428223, + 0.11737707257270813, + -0.01949811726808548, + -0.17521195113658905, + -0.03316901624202728, + 0.05325757712125778, + -0.06746870279312134, + -0.04792320355772972, + -0.0665336474776268, + -0.03227730095386505, + 0.0373370423913002, + 0.05137907713651657, + 0.035126909613609314, + 0.02016899548470974, + 0.014160270802676678, + 0.07044355571269989, + -0.012833474203944206, + 0.03222101554274559, + 0.015369421802461147, + -0.07165725529193878, + -0.04738829657435417, + 0.09383641928434372, + -0.0397530198097229, + 0.011873606592416763, + 0.03279845416545868, + 0.00019890815019607544, + 0.00031969169504009187, + -0.08078673481941223, + -0.044617921113967896, + 0.0028171264566481113, + -0.05969257652759552, + 0.06437467038631439, + 0.01772245019674301, + -0.031186606734991074, + 0.04823547601699829, + -0.010540718212723732, + -0.04005371034145355, + -0.04987271875143051, + -0.10491453111171722, + 0.1607937067747116, + 0.09455075860023499, + 0.005585236009210348, + -0.06001652032136917, + -0.06775936484336853, + 0.10809382051229477, + -0.0183560773730278, + -0.1331251561641693, + -0.031904272735118866, + 0.06258156150579453, + 0.16119226813316345, + -0.03705383464694023, + -0.02197418175637722, + 0.034684278070926666, + 0.12138589471578598, + 0.06770135462284088, + 0.08071542531251907, + 0.09527765959501266, + 0.10467272996902466, + -0.023244358599185944, + 0.02007889375090599, + 0.07369059324264526, + 0.07845441997051239, + 0.0824674516916275, + -0.004242807626724243, + 0.028644919395446777, + 0.015267936512827873, + -0.029963966459035873, + -0.012296195141971111, + -0.03389760106801987, + -0.008340008556842804, + -0.016823895275592804, + -0.0030051961075514555, + 0.018570445477962494, + 0.015772460028529167, + -0.02580837905406952, + 0.05877598747611046, + 0.03376041352748871, + -0.023342913016676903, + 0.047215916216373444, + 0.027569323778152466, + -0.0004563244874589145, + 0.06384430825710297, + -0.06534422934055328, + -0.08968979120254517, + 0.01588067226111889, + 0.011095504276454449, + 0.014128206297755241, + 0.06967657804489136, + 0.04535719379782677, + -0.02505848929286003, + 0.11780580133199692, + 0.04420093819499016, + -0.010124864988029003, + 0.0207502581179142, + -0.0945325717329979, + 0.10449769347906113, + 0.10750206559896469, + -0.02789856493473053, + 0.03669149801135063, + -0.0426027774810791, + 0.09445399045944214, + 0.07198980450630188, + -0.14391843974590302, + -0.05636026710271835, + 0.030613554641604424, + -0.012263334356248379, + -0.004027357324957848, + 0.10700099170207977, + -0.006462668534368277, + 0.04592222720384598, + 0.10730355978012085, + -0.08114545047283173, + -0.03928473964333534, + -0.023136427626013756, + 0.053239788860082626, + -0.08261683583259583, + 0.052216537296772, + 0.036352451890707016, + -0.0025719678960740566, + 0.003824323182925582, + 0.07800237834453583, + -0.02541550248861313, + -0.026276595890522003, + 0.011455315165221691, + -0.05827484652400017, + 0.02425011619925499, + -0.02965531498193741, + -0.02056877315044403, + 0.06409473717212677, + 0.03817122057080269, + 0.02788360044360161, + -0.020514635369181633, + -0.02869958057999611, + -0.11039724946022034, + 0.0313028059899807, + 0.026596589013934135, + 0.07606153935194016, + -0.007155153900384903, + -0.00208934280090034, + -0.03904145956039429, + -0.07480637729167938, + 0.03183102607727051, + -0.030751032754778862, + 0.06840033829212189, + -0.030961211770772934, + 0.004520168527960777, + 0.09241440147161484, + 0.013798135332763195, + -0.011791705153882504, + -0.036504633724689484, + -0.029024504125118256, + 0.017915723845362663, + 0.06781511008739471, + -0.07024537026882172, + -0.070942722260952, + 0.004237617366015911, + 0.02153971791267395, + -0.023881524801254272, + 0.04084716737270355, + 0.028243567794561386, + 0.012064069509506226, + 0.02149488590657711, + -0.07491093128919601, + 0.008561758324503899, + -0.12347130477428436, + -0.060442790389060974, + 0.00012538924056570977, + -0.04127415642142296, + 0.00697859562933445, + 0.06804788112640381, + 0.016223493963479996, + 0.029025528579950333, + -0.022596752271056175, + -0.09798000752925873, + -0.07826878130435944, + 0.07046032696962357, + 0.06413925439119339, + 0.010672470554709435, + 0.04109174758195877, + 0.07330833375453949, + -0.016872752457857132, + 0.044797904789447784, + 0.05065843462944031, + 0.11130677163600922, + -0.015410601161420345, + 0.021907702088356018, + -0.07040541619062424, + 0.09405621141195297, + 0.07999931275844574, + -0.07885131239891052, + -0.08681308478116989, + -0.034416936337947845, + -0.06607018411159515, + 0.049803461879491806, + -0.025917261838912964, + 0.0004382620973046869, + 0.03776116669178009, + -0.005550956353545189, + -0.11164825409650803, + -0.08303257077932358, + 0.11659802496433258, + -0.05695090815424919, + -0.015014204196631908, + -0.08481454849243164, + 0.03651123866438866, + 0.09869354963302612, + 0.034791506826877594, + -0.018765516579151154, + 0.020810086280107498, + 0.05472680926322937, + -0.04323801025748253, + -0.004003293812274933, + 0.04698282107710838, + 0.019797801971435547, + -0.12165190279483795, + -0.017747284844517708, + -0.0698779746890068, + 0.06123388931155205, + -0.051786281168460846, + 0.13769465684890747, + -0.0026503829285502434, + -0.03999355062842369, + -0.08109214156866074, + 0.06105998158454895, + -0.005325633566826582, + 0.06430846452713013, + 0.04729950428009033, + 0.07043691724538803, + 0.0337294302880764, + -0.08141229301691055, + 0.11539270728826523, + 0.04767915606498718, + -0.04081384465098381, + -0.05705872178077698, + -0.038658443838357925, + -0.034047093242406845, + 0.007532726041972637, + 8.991795766633004e-05, + -0.07070273905992508, + -0.0014495283830910921, + 0.005676197819411755, + -0.0341653935611248, + 0.05727916583418846, + 0.14224930107593536, + 0.08008070290088654, + -0.11024807393550873 + ] + }, + "p245_106.wav": { + "name": "p245", + "embedding": [ + 0.0427519716322422, + 0.07694810628890991, + -0.02245134301483631, + -0.005665434058755636, + -0.010476135648787022, + 0.06258927285671234, + -0.1418188214302063, + 0.10302042961120605, + -0.06556939333677292, + 0.11914758384227753, + -0.07776011526584625, + 0.08804655075073242, + -0.011592025868594646, + -0.1432502567768097, + -0.08018187433481216, + 0.027180248871445656, + -0.01970004104077816, + -0.004508022218942642, + -0.026844289153814316, + -0.01862291246652603, + 0.04567750543355942, + 0.018382199108600616, + 0.0061140842735767365, + -0.00606498122215271, + 0.010840908624231815, + 0.03474259749054909, + 0.033002011477947235, + 0.03733992204070091, + -0.004828840494155884, + 0.02688691020011902, + 0.020637158304452896, + 0.10734124481678009, + -0.01397402212023735, + 0.027543287724256516, + 0.05704706907272339, + 0.030004329979419708, + -0.008690332062542439, + -0.07661132514476776, + 0.010858278721570969, + -0.0017732740379869938, + -0.024860268458724022, + 0.0724225789308548, + 0.05331461876630783, + 0.031018195673823357, + 0.016407746821641922, + -0.0012391991913318634, + -0.012477651238441467, + -0.0644802451133728, + -0.08840176463127136, + 0.15691760182380676, + 0.04493248835206032, + 0.024969400838017464, + -0.10528482496738434, + -0.04488055408000946, + 0.11523723602294922, + -0.004678588360548019, + -0.06408601999282837, + -0.0564829558134079, + 0.05434976890683174, + 0.1709747016429901, + -0.020079301670193672, + -0.04213612526655197, + 0.005624804645776749, + 0.11440606415271759, + -0.010934830643236637, + 0.06499598920345306, + 0.10186415910720825, + 0.08263866603374481, + 0.012216202914714813, + 0.020930536091327667, + 0.02490309253334999, + 0.04082687944173813, + 0.0038823112845420837, + -0.05641651153564453, + 0.028496716171503067, + -0.01733851246535778, + -0.016198333352804184, + 0.03138786926865578, + -0.03411983326077461, + -0.05369788780808449, + -0.02596319653093815, + 0.016600243747234344, + 0.005684027448296547, + 0.02999354712665081, + -0.05634834244847298, + 0.025477098301053047, + 0.0038183159194886684, + -0.04912189394235611, + 0.05777186527848244, + 0.0677749514579773, + -0.003958894871175289, + -0.005723932757973671, + -0.04160679131746292, + -0.09642630815505981, + 0.016420360654592514, + 0.00039441417902708054, + -0.009193778969347477, + 0.0674218237400055, + 0.021623987704515457, + -0.002396136522293091, + 0.07411657273769379, + 0.033429283648729324, + -0.019676407799124718, + -0.015580292791128159, + -0.08421895653009415, + 0.09572944790124893, + 0.09954970329999924, + -0.01319190114736557, + 0.009538757614791393, + -0.062058378010988235, + 0.02598610892891884, + 0.07688501477241516, + -0.1164083480834961, + -0.08166754990816116, + 0.06654050201177597, + 0.05794944614171982, + 0.03165165334939957, + 0.09595367312431335, + -0.007649307604879141, + -0.022623702883720398, + 0.059548377990722656, + -0.05058114230632782, + -0.06607181578874588, + -0.06546132266521454, + 0.040819473564624786, + -0.04138847067952156, + 0.024085860699415207, + 0.03412676602602005, + 0.02466416172683239, + -0.05497874319553375, + 0.06199301406741142, + 0.01113943662494421, + -0.008335095830261707, + -0.010134845972061157, + 0.026606829836964607, + 0.0726943239569664, + -0.021889425814151764, + -0.010633549652993679, + 0.009030130691826344, + 0.07020898163318634, + 0.032597240060567856, + 0.04164118692278862, + -0.030050138011574745, + -0.06943956017494202, + -0.014498108997941017, + 0.07804124057292938, + 0.04547502100467682, + -0.0435788631439209, + -0.05152851343154907, + -0.04110708460211754, + -0.032782066613435745, + -0.0016359263099730015, + -0.015720851719379425, + 0.09455867111682892, + 0.031994856894016266, + 0.031123023480176926, + 0.10014209151268005, + -0.02973327413201332, + -0.01036190614104271, + -0.02443264052271843, + 0.04108366742730141, + 0.018774792551994324, + 0.015921510756015778, + -0.045924410223960876, + -0.05289851874113083, + 0.003566407598555088, + 0.024182381108403206, + -0.022433005273342133, + -0.005906634032726288, + 0.01901666820049286, + -0.0029092319309711456, + 0.041755907237529755, + -0.08814629912376404, + 0.013949907384812832, + -0.13104656338691711, + -0.007741441950201988, + -0.008114174008369446, + -0.04755556955933571, + 0.012878422625362873, + 0.0642852932214737, + 0.03845012187957764, + 0.013791058212518692, + -0.004724073689430952, + -0.09635418653488159, + -0.03396987542510033, + 0.08273695409297943, + 0.10104820132255554, + -0.013546517118811607, + 0.007590843364596367, + 0.025754503905773163, + 0.004993945360183716, + 0.02900567278265953, + 0.0814787894487381, + 0.061993952840566635, + -0.04452437907457352, + -0.029020089656114578, + -0.04106205329298973, + 0.09100213646888733, + 0.0467894971370697, + -0.09919969737529755, + -0.0771709531545639, + -0.019369514659047127, + -0.04193383455276489, + -0.00019593536853790283, + -0.025279633700847626, + 0.017453771084547043, + 0.02317841723561287, + -0.04758284240961075, + -0.11623245477676392, + -0.08040468394756317, + 0.0547233484685421, + -0.05182869732379913, + -0.0026939632371068, + -0.05191291868686676, + 0.04142235592007637, + 0.0949823260307312, + 0.020158160477876663, + -0.007058457471430302, + -0.024548951536417007, + -0.00752929225564003, + -0.07997819781303406, + -0.043783482164144516, + -0.03655308857560158, + 0.006962346378713846, + -0.09107588231563568, + 0.02590060979127884, + -0.06737266480922699, + 0.09787330776453018, + -0.07624639570713043, + 0.10886448621749878, + -0.006393615156412125, + -0.06544225662946701, + -0.07187162339687347, + -0.02109329029917717, + -0.0179626252502203, + 0.05293448269367218, + 0.025958435609936714, + 0.04295800253748894, + -0.021494261920452118, + -0.057783521711826324, + 0.09629243612289429, + 0.07330377399921417, + -0.020481985062360764, + -0.08109760284423828, + -0.018762478604912758, + -0.002446417696774006, + 0.02659645862877369, + -0.004103943705558777, + -0.03248944133520126, + 0.004662847146391869, + 0.024305369704961777, + -0.04136628657579422, + 0.06538631021976471, + 0.10389071702957153, + 0.0602184496819973, + -0.10899677872657776 + ] + }, + "p245_191.wav": { + "name": "p245", + "embedding": [ + 0.022175565361976624, + 0.0747724249958992, + -0.027321409434080124, + 0.030165312811732292, + -0.05689185485243797, + 0.07187459617853165, + -0.15050649642944336, + 0.10399547219276428, + -0.037636712193489075, + 0.1342366337776184, + -0.04982148855924606, + 0.10650668293237686, + -0.008327571675181389, + -0.22470709681510925, + -0.04590329900383949, + 0.054470378905534744, + -0.06933785229921341, + -0.05900704115629196, + -0.051514819264411926, + -0.025101831182837486, + 0.044221095740795135, + 0.03885680064558983, + 0.0031743545550853014, + 0.0074349381029605865, + 0.009667285718023777, + 0.06393073499202728, + -0.009768174961209297, + 0.03430560976266861, + 0.008768603205680847, + -0.014811355620622635, + -0.028077878057956696, + 0.1162358820438385, + -0.04909404367208481, + 0.004908096045255661, + 0.04136002063751221, + -0.005539552308619022, + 0.007891043089330196, + -0.036787621676921844, + -0.0105166370049119, + 0.03261182829737663, + -0.05397137999534607, + 0.08123006671667099, + 0.056336089968681335, + 0.02756069228053093, + 0.042793285101652145, + 0.01947682537138462, + -0.03352392092347145, + -0.052572377026081085, + -0.10145284980535507, + 0.1726909726858139, + 0.08373115211725235, + -0.02637336030602455, + -0.042922284454107285, + -0.05629683658480644, + 0.1016121581196785, + 0.006244222167879343, + -0.13506515324115753, + -0.06101066246628761, + 0.10683766007423401, + 0.15685945749282837, + -0.027135232463479042, + -0.02631394751369953, + 0.016621630638837814, + 0.14870795607566833, + 0.046060968190431595, + 0.09830193221569061, + 0.06431888043880463, + 0.1227603331208229, + -0.012555280700325966, + -0.012496725656092167, + 0.08732208609580994, + 0.048278260976076126, + 0.02975551038980484, + -0.031862739473581314, + 0.03687242045998573, + -0.010816832073032856, + 0.013931049965322018, + 0.0018217662582173944, + -0.021716777235269547, + 0.004080775193870068, + 0.005389925092458725, + 0.008121881633996964, + -0.01443731039762497, + 0.031808264553546906, + -0.03613647073507309, + 0.046505335718393326, + 0.04709441959857941, + 0.0026023699901998043, + 0.06788568198680878, + 0.06565072387456894, + 0.026158148422837257, + 0.0611119419336319, + -0.06408911198377609, + -0.0799141675233841, + 0.04541116580367088, + 0.014736386016011238, + 0.01829720474779606, + 0.06068801134824753, + 0.033604465425014496, + -0.008374703116714954, + 0.10796406120061874, + 0.04096109792590141, + -0.03924153372645378, + 0.03126382827758789, + -0.10777614265680313, + 0.14503967761993408, + 0.07615648210048676, + -0.011648321524262428, + 0.028465423732995987, + -0.0382898710668087, + 0.07624278217554092, + 0.06406006217002869, + -0.12477913498878479, + -0.06001076102256775, + 0.05483951047062874, + 0.02717859297990799, + -0.04498917981982231, + 0.13747744262218475, + -0.009407522156834602, + 0.015672191977500916, + 0.10710211843252182, + -0.061838794499635696, + -0.043705619871616364, + -0.03202421963214874, + 0.03577689453959465, + -0.0925050601363182, + 0.03193860873579979, + 0.046968456357717514, + -0.015962304547429085, + 0.00843830220401287, + 0.0938134416937828, + -0.009952452965080738, + 0.004126099403947592, + 0.0025766040198504925, + -0.02352413907647133, + 0.0604381188750267, + -0.00112285150680691, + 0.010314145125448704, + 0.04976432025432587, + 0.023834409192204475, + 0.05055885761976242, + -0.012612798251211643, + -0.0377265028655529, + -0.12382485717535019, + 0.025742942467331886, + 0.024966957047581673, + 0.08417195081710815, + -0.013430200517177582, + 0.0034405088517814875, + -0.04963560029864311, + -0.08324241638183594, + 0.030722662806510925, + -0.02228548191487789, + 0.09034071862697601, + -0.008055459707975388, + -0.037861380726099014, + 0.08979056030511856, + 0.016244126483798027, + 0.0017152815125882626, + -0.035636186599731445, + -0.03838826343417168, + 0.013545718975365162, + 0.03792436048388481, + -0.10829644650220871, + -0.03670772165060043, + 0.002010050928220153, + 0.042315997183322906, + -0.0072885481640696526, + 0.037247128784656525, + 0.055533722043037415, + 0.011021795682609081, + 0.028642475605010986, + -0.07372120767831802, + 0.016794823110103607, + -0.08757111430168152, + -0.05934591963887215, + -0.014382150024175644, + -0.021497951820492744, + -0.013199860230088234, + 0.0862390547990799, + -0.0036681336350739002, + 0.019779764115810394, + -0.02517828717827797, + -0.07932916283607483, + -0.0665304884314537, + 0.0705956220626831, + 0.07664357870817184, + -0.0077321394346654415, + 0.054230138659477234, + 0.05223070830106735, + -0.039549436420202255, + 0.04978561773896217, + 0.055477555841207504, + 0.1299421638250351, + -0.04276376590132713, + 0.029367748647928238, + -0.0633784830570221, + 0.08539832383394241, + 0.05862031131982803, + -0.08714938163757324, + -0.059677526354789734, + 0.0008904297719709575, + -0.052549783140420914, + 0.02825263887643814, + -0.04864303395152092, + 0.005762938410043716, + 0.030967002734541893, + 0.009038272313773632, + -0.1029125452041626, + -0.08618417382240295, + 0.06293707340955734, + -0.08058104664087296, + -0.005472587421536446, + -0.09468360990285873, + 0.04746519774198532, + 0.10620653629302979, + 0.03684850037097931, + -0.049029648303985596, + -0.008159715682268143, + 0.04514487460255623, + -0.039109472185373306, + 0.0007048398838378489, + 0.039099399000406265, + 0.037268124520778656, + -0.12623754143714905, + -0.03399093076586723, + -0.09068727493286133, + 0.050463948398828506, + -0.0474587008357048, + 0.13753531873226166, + 0.028787899762392044, + -0.03845091164112091, + -0.060725659132003784, + 0.04398157447576523, + -0.016064437106251717, + 0.06347043067216873, + 0.047907594591379166, + 0.074980728328228, + 0.04420159384608269, + -0.03178921714425087, + 0.12935315072536469, + 0.04517108201980591, + -0.03804997354745865, + -0.07401292026042938, + 0.010099492967128754, + -0.032603826373815536, + 0.0480019710958004, + 0.04429735988378525, + -0.11224681884050369, + -0.02244671806693077, + 0.0525258332490921, + -0.03385701775550842, + 0.05783668905496597, + 0.1340969055891037, + 0.07120203226804733, + -0.0999627485871315 + ] + }, + "p245_408.wav": { + "name": "p245", + "embedding": [ + 0.05795387923717499, + 0.07993321120738983, + -0.028890900313854218, + 0.04526165500283241, + -0.053827352821826935, + 0.07763614505529404, + -0.1255510449409485, + 0.10473877191543579, + -0.03808465227484703, + 0.14794796705245972, + -0.054261621087789536, + 0.1166784018278122, + 0.008465890772640705, + -0.1844589114189148, + -0.033687327057123184, + 0.0470532588660717, + -0.05057710409164429, + -0.02854839526116848, + -0.0529794916510582, + -0.0006592115387320518, + 0.048261843621730804, + 0.05804350972175598, + 0.03579185903072357, + -0.034539684653282166, + 0.030921176075935364, + 0.04982202500104904, + 0.001303676050156355, + 0.04713825136423111, + 0.02033761329948902, + -0.09648922085762024, + -0.04627399146556854, + 0.11619056016206741, + -0.04022083058953285, + 0.02874002419412136, + 0.037012986838817596, + -0.004669602029025555, + 0.008763359859585762, + -0.06490179896354675, + -0.02678809128701687, + 0.02365734800696373, + -0.036279380321502686, + 0.0786181092262268, + 0.032284680753946304, + -0.007165825460106134, + 0.042665693908929825, + -0.0048924582079052925, + -0.030786365270614624, + -0.05162402242422104, + -0.0943618193268776, + 0.1822013556957245, + 0.05752633512020111, + -0.0026272409595549107, + -0.061701394617557526, + -0.08332651853561401, + 0.09486395120620728, + 0.002730137901380658, + -0.12565092742443085, + -0.04224316030740738, + 0.062358319759368896, + 0.15870404243469238, + -0.00639377674087882, + -0.03632984310388565, + 0.027366695925593376, + 0.12502487003803253, + 0.048423781991004944, + 0.09107780456542969, + 0.07537348568439484, + 0.10573868453502655, + 0.00944077130407095, + 0.03287335857748985, + 0.052275948226451874, + 0.07837960124015808, + 0.04395738244056702, + -0.017929136753082275, + 0.040936488658189774, + -0.0040151197463274, + -0.027951855212450027, + -0.008947746828198433, + -0.011454056948423386, + -0.0007989341393113136, + 0.003869995940476656, + 0.004563618451356888, + 0.021159760653972626, + 0.030073046684265137, + -0.047005705535411835, + 0.03801552206277847, + 0.02660352922976017, + -0.017359985038638115, + 0.05702454596757889, + 0.04981996864080429, + 0.0342940129339695, + 0.049222953617572784, + -0.0661940649151802, + -0.11556795239448547, + 0.03198021277785301, + 0.025216955691576004, + 0.0177287720143795, + 0.06385821104049683, + 0.03505943715572357, + -0.026817122474312782, + 0.10143935680389404, + 0.033250562846660614, + -0.01962314546108246, + 0.022350860759615898, + -0.08895082771778107, + 0.11319520324468613, + 0.09378618746995926, + -0.0030606850050389767, + 0.05085260793566704, + -0.058879315853118896, + 0.09249942004680634, + 0.0699605941772461, + -0.14641055464744568, + -0.08140605688095093, + 0.041800521314144135, + -0.00790295097976923, + -0.0018841137643903494, + 0.12380842864513397, + 0.00541010731831193, + 0.027493659406900406, + 0.08993594348430634, + -0.10014893859624863, + -0.047284893691539764, + -0.0257110595703125, + 0.04882792383432388, + -0.09543190151453018, + 0.05618387460708618, + 0.030164871364831924, + -0.026353899389505386, + -0.012837149202823639, + 0.0756593570113182, + -0.017210397869348526, + 0.026204951107501984, + 0.0013834394048899412, + -0.04166504740715027, + 0.04386794939637184, + -0.039340242743492126, + 0.007611640263348818, + 0.05172627419233322, + 0.01723569631576538, + 0.054618194699287415, + -0.024440079927444458, + -0.037975117564201355, + -0.1261913776397705, + 0.023831166326999664, + 0.031019095331430435, + 0.057257261127233505, + -0.01631343923509121, + -0.013952294364571571, + -0.039183732122182846, + -0.08422552049160004, + 0.052201323211193085, + -0.03210868313908577, + 0.07844893634319305, + 0.019184023141860962, + -0.007348168641328812, + 0.10857681930065155, + 0.006041594315320253, + 0.002210104838013649, + -0.03175653889775276, + -0.038547806441783905, + 0.02191019244492054, + 0.05476086214184761, + -0.09116437286138535, + -0.0550079345703125, + 0.0073479898273944855, + 0.0009390049381181598, + -0.012643402442336082, + 0.02743622660636902, + 0.05711442977190018, + 0.020645011216402054, + 0.04290563613176346, + -0.07044471055269241, + -0.007050788961350918, + -0.10893266648054123, + -0.05954836308956146, + -0.01748489774763584, + -0.035437729209661484, + -0.01827521063387394, + 0.10539530217647552, + 0.01852291449904442, + 0.020397283136844635, + -0.03199456259608269, + -0.061375267803668976, + -0.06714057922363281, + 0.06909464299678802, + 0.06822487711906433, + 0.010802545584738255, + 0.03910788893699646, + 0.04038555175065994, + -0.012726346030831337, + 0.04964650049805641, + 0.05538329482078552, + 0.09894035756587982, + -0.010316697880625725, + 0.012042976915836334, + -0.07650133967399597, + 0.12115707993507385, + 0.08962982147932053, + -0.0786755159497261, + -0.09203052520751953, + -0.020763112232089043, + -0.08135312795639038, + 0.03938748687505722, + -0.039056919515132904, + 0.0013477166648954153, + 0.04168971627950668, + -0.00751902861520648, + -0.1154029369354248, + -0.08849278092384338, + 0.09200016409158707, + -0.06380036473274231, + -0.024448929354548454, + -0.08399520814418793, + 0.04543715715408325, + 0.09038315713405609, + 0.05097802355885506, + -0.04044061526656151, + -0.001345152035355568, + 0.06383608281612396, + -0.060351815074682236, + 0.0017298684688284993, + 0.04822154343128204, + 0.017030300572514534, + -0.10195666551589966, + 0.0010009845718741417, + -0.06511762738227844, + 0.05057504400610924, + -0.08186712861061096, + 0.14817070960998535, + -5.755014717578888e-05, + -0.070331871509552, + -0.0739428848028183, + 0.0715414509177208, + -0.01954510062932968, + 0.040190234780311584, + 0.0398549884557724, + 0.05801467224955559, + 0.05601721629500389, + -0.08724776655435562, + 0.09807078540325165, + 0.0446489080786705, + -0.01285366527736187, + -0.07045096158981323, + -0.03892212361097336, + -0.031981877982616425, + 0.053543977439403534, + 0.012469088658690453, + -0.0838434100151062, + 0.00615954864770174, + 0.039289359003305435, + -0.010561258532106876, + 0.05536743998527527, + 0.13979165256023407, + 0.05070715770125389, + -0.11497946083545685 + ] + }, + "p245_197.wav": { + "name": "p245", + "embedding": [ + 0.058055635541677475, + 0.1074618473649025, + 0.021068284288048744, + -0.0010020845802500844, + -0.04170786216855049, + 0.08451616019010544, + -0.17002679407596588, + 0.1508990228176117, + -0.03895324096083641, + 0.1541563868522644, + -0.051700741052627563, + 0.10365165024995804, + -0.002696135314181447, + -0.19420285522937775, + -0.04791633039712906, + 0.055123891681432724, + -0.06069289147853851, + -0.027404047548770905, + -0.017811425030231476, + -0.03357461839914322, + 0.030294299125671387, + 0.04507025331258774, + 0.04362129047513008, + -0.0014828925486654043, + 0.05933642014861107, + 0.05420345440506935, + 0.009121217764914036, + 0.049728456884622574, + -0.000526254007127136, + -0.06650300323963165, + -0.025423135608434677, + 0.10703492909669876, + -0.048015132546424866, + 0.011957149021327496, + 0.04159965738654137, + -0.021543148905038834, + 0.009015759453177452, + -0.07240532338619232, + -0.01671900972723961, + 0.014973951503634453, + -0.01312252227216959, + 0.09170165657997131, + 0.04914812743663788, + 0.0187879279255867, + 0.014517447911202908, + 0.029300352558493614, + -0.004633763805031776, + -0.06220166012644768, + -0.11511097848415375, + 0.17847901582717896, + 0.05609407275915146, + 0.009741229005157948, + -0.06864548474550247, + -0.0787307620048523, + 0.10420095175504684, + -0.01636802777647972, + -0.10933462530374527, + -0.027812931686639786, + 0.08134518563747406, + 0.1686745285987854, + -0.029305512085556984, + -0.05873207747936249, + 0.0376870222389698, + 0.1378747969865799, + 0.0232933908700943, + 0.08510619401931763, + 0.08449776470661163, + 0.09587737172842026, + -0.013932125642895699, + 0.0073706479743123055, + 0.034882497042417526, + 0.05307560786604881, + 0.009565510787069798, + -0.020982712507247925, + 0.017607592046260834, + -0.019956450909376144, + -0.021204426884651184, + -0.0021228892728686333, + -0.013767629861831665, + -0.013673433102667332, + -0.007005990482866764, + 0.003988579381257296, + -0.0010128997964784503, + 0.04044744744896889, + -0.02840178832411766, + 0.03810817375779152, + -0.011452930979430676, + 0.002437965013086796, + 0.09827789664268494, + 0.019896171987056732, + 0.04258324205875397, + 0.06000569462776184, + -0.06600376218557358, + -0.06905841082334518, + 0.04455297067761421, + 0.01811547577381134, + 0.026311039924621582, + 0.07242988795042038, + 0.04268445074558258, + -0.03791908547282219, + 0.13067877292633057, + 0.05285258963704109, + -0.012711300514638424, + 0.008694911375641823, + -0.10869701951742172, + 0.12411991506814957, + 0.07382039725780487, + -0.017362473532557487, + 0.06939296424388885, + -0.054552335292100906, + 0.0707441046833992, + 0.06080062687397003, + -0.15742075443267822, + -0.0933922603726387, + 0.03836025297641754, + 0.05100821331143379, + -0.015163294039666653, + 0.1337669938802719, + 7.327039929805323e-05, + 0.034779444336891174, + 0.08967702835798264, + -0.0820172056555748, + -0.047974471002817154, + -0.013950485736131668, + 0.06435086578130722, + -0.0925464779138565, + 0.04168618097901344, + 0.07407135516405106, + -0.03881368413567543, + 0.016208147630095482, + 0.06853528320789337, + -0.008164691738784313, + 0.0060318936593830585, + 0.008668231777846813, + -0.042966317385435104, + 0.02779749222099781, + -0.02616289258003235, + 0.02356853149831295, + 0.006193407811224461, + 0.043752271682024, + 0.04131161794066429, + 0.00846865028142929, + -0.061276935040950775, + -0.11208146810531616, + 0.0010961816878989339, + 0.020529426634311676, + 0.06525661796331406, + -0.016497058793902397, + -0.040986113250255585, + -0.04217483103275299, + -0.03932361677289009, + 0.016968177631497383, + 0.005211802199482918, + 0.07559551298618317, + -0.0035012983717024326, + -0.0009613845031708479, + 0.09929198771715164, + 0.05012435466051102, + -0.0016848078230395913, + -0.04078972712159157, + -0.03895736113190651, + 0.014426643960177898, + 0.03421925753355026, + -0.08102822303771973, + -0.05011318251490593, + 0.005671427585184574, + 0.04207475110888481, + -0.020724017173051834, + 0.052591726183891296, + 0.044406261295080185, + 0.02426319569349289, + 0.03639514371752739, + -0.05352209508419037, + 0.026526305824518204, + -0.08224309980869293, + -0.06781580299139023, + 0.001592017593793571, + 0.010638938285410404, + -0.045833855867385864, + 0.09403815120458603, + 0.022935403510928154, + 0.0695425346493721, + -0.02482745051383972, + -0.04397549480199814, + -0.06354080885648727, + 0.047804396599531174, + 0.07627888023853302, + -0.016450703144073486, + 0.031017674133181572, + 0.04734286665916443, + -0.02203744277358055, + 0.06639260798692703, + 0.0652126893401146, + 0.09491625428199768, + -0.0347813256084919, + 0.02320261299610138, + -0.07312561571598053, + 0.07098966091871262, + 0.06723051518201828, + -0.08712327480316162, + -0.08389002829790115, + -0.02102913334965706, + -0.07230132818222046, + 0.038018643856048584, + -0.008482086472213268, + 0.008950849995017052, + 0.007707138080149889, + -0.006337166763842106, + -0.09167716652154922, + -0.08920707553625107, + 0.07076869159936905, + -0.07141191512346268, + -0.0038407405372709036, + -0.07515989989042282, + 0.06482430547475815, + 0.10594165325164795, + 0.05566047504544258, + -0.001486341585405171, + -0.03975987061858177, + 0.026226256042718887, + -0.03154412657022476, + 0.005256484728306532, + 0.053102798759937286, + 0.028496958315372467, + -0.11359695345163345, + 0.01944729872047901, + -0.08850865811109543, + 0.052623454481363297, + -0.04521642252802849, + 0.16470223665237427, + 0.021295713260769844, + -0.0673568993806839, + -0.08467940241098404, + 0.019602719694375992, + -0.04269549995660782, + 0.042172446846961975, + 0.022178830578923225, + 0.04342152178287506, + 0.058471474796533585, + -0.0572822168469429, + 0.0899905413389206, + 0.0321134477853775, + -0.04098472371697426, + -0.08059430122375488, + -0.03718848153948784, + -0.023323047906160355, + 0.03747283294796944, + -0.0025357201229780912, + -0.09115681052207947, + -0.030114056542515755, + 0.03872305899858475, + 0.004737819544970989, + 0.0894341990351677, + 0.1272176206111908, + 0.05156904458999634, + -0.14191167056560516 + ] + }, + "p245_336.wav": { + "name": "p245", + "embedding": [ + 0.04297199845314026, + 0.06637506932020187, + 0.0003252355381846428, + -0.04164819419384003, + -0.0164704080671072, + 0.02591972053050995, + -0.13879114389419556, + 0.09573985636234283, + -0.004450442269444466, + 0.15151214599609375, + -0.05243874341249466, + 0.09468136727809906, + -0.024470534175634384, + -0.09278792887926102, + 0.021567203104496002, + 0.02131728082895279, + -0.027086731046438217, + 9.04211774468422e-05, + -0.0008207745850086212, + -0.08896653354167938, + 0.010634129866957664, + 0.01587599143385887, + 0.02689112164080143, + -0.05673631653189659, + 0.014687832444906235, + 0.08172720670700073, + -0.007245142012834549, + -0.017211776226758957, + -0.014790334738790989, + -0.07775133848190308, + 0.02428421750664711, + 0.06400258839130402, + -0.05009445175528526, + -0.008332937024533749, + 0.03116048499941826, + -0.012234840542078018, + -0.021201271563768387, + -0.02297772653400898, + 0.02111024223268032, + 0.05742549151182175, + -0.044390276074409485, + 0.08910342305898666, + 0.03663421422243118, + 0.004380689933896065, + 0.03484594449400902, + -0.019738275557756424, + -0.028948847204446793, + 0.020697079598903656, + -0.04744671657681465, + 0.1116088479757309, + 0.05790285766124725, + -0.0015091700479388237, + -0.06089019030332565, + 0.013046946376562119, + 0.06016375496983528, + 0.0027748923748731613, + -0.08971203118562698, + -0.0043679457157850266, + 0.018695957958698273, + 0.07477156817913055, + -0.037917912006378174, + -0.07455902546644211, + 0.021636972203850746, + 0.06878378987312317, + -0.005640862509608269, + 0.047774724662303925, + 0.09340020269155502, + 0.07889383286237717, + -0.0365731380879879, + 0.0011922679841518402, + 0.02478170022368431, + 0.07595258951187134, + 0.05987626314163208, + -0.02564232610166073, + 0.053052566945552826, + -0.03301495686173439, + -0.004700921941548586, + -0.05111683905124664, + -0.000600697472691536, + -0.05951221287250519, + -0.04950045794248581, + -0.022256068885326385, + 0.021153628826141357, + 0.07263054698705673, + -3.6852434277534485e-05, + -0.010028915479779243, + 0.06456665694713593, + -0.040224798023700714, + 0.0445375069975853, + 0.02239389345049858, + 0.015698667615652084, + 0.021052440628409386, + -0.09284137189388275, + -0.02747391164302826, + 0.021850164979696274, + -0.038596514612436295, + 0.0730225071310997, + 0.044772081077098846, + 0.044825874269008636, + 0.020545249804854393, + 0.08739449083805084, + 0.05544038861989975, + 0.001629092963412404, + -0.04035439342260361, + -0.06761690974235535, + 0.10777570307254791, + 0.10720673203468323, + -0.07259534299373627, + 0.03398248925805092, + -0.005189461633563042, + 0.02227882668375969, + -0.0324593111872673, + -0.10422004014253616, + -0.029190029948949814, + -0.020331036299467087, + 0.06648590415716171, + 0.01597311906516552, + 0.12341463565826416, + 0.011800015345215797, + 0.04585743322968483, + 0.08070963621139526, + -0.019063778221607208, + -0.022774135693907738, + -0.05218600109219551, + 0.027308207005262375, + -0.10546234250068665, + 0.0696202740073204, + 0.05264337360858917, + 0.03131499141454697, + 0.03148127719759941, + 0.08422926068305969, + 0.01298036240041256, + -0.011416951194405556, + -0.05168282240629196, + 0.009225451387465, + 0.011088758707046509, + 0.010594906285405159, + 0.050012726336717606, + 0.03542950749397278, + 0.011802375316619873, + 0.10038711130619049, + 0.04961829632520676, + -0.007886858657002449, + -0.0796830803155899, + 0.036881640553474426, + 0.003776947967708111, + 0.02053573727607727, + -0.04421299695968628, + -0.031965840607881546, + 0.015910228714346886, + -0.07837881147861481, + -0.015975290909409523, + -0.00562854390591383, + 0.06497380137443542, + 0.004884698428213596, + -0.006149151362478733, + 0.10936041176319122, + 0.05248694121837616, + 0.0030342661775648594, + -0.0033281277865171432, + -0.014363911002874374, + -0.019560104236006737, + 0.07094424962997437, + -0.1463857740163803, + -0.06753361225128174, + -0.021173985674977303, + 0.03479725494980812, + 0.021704215556383133, + 0.042933911085128784, + 0.09864449501037598, + -0.018615618348121643, + 0.0384952686727047, + 0.023089613765478134, + 0.0036072293296456337, + -0.050257302820682526, + -0.08452620357275009, + -0.02091260440647602, + -0.07687711715698242, + -0.06702183932065964, + 0.04567151144146919, + -0.043574102222919464, + 0.06908570230007172, + -0.02905118092894554, + -0.027556948363780975, + -0.05216683819890022, + 0.026882434263825417, + 0.021881554275751114, + -0.0668681263923645, + -0.015298723243176937, + 0.09534942358732224, + 0.01464770920574665, + 0.0020034611225128174, + 0.05454543977975845, + 0.09636372327804565, + -0.07684508711099625, + 0.02490130253136158, + -0.06378153711557388, + 0.07028444111347198, + 0.07099933922290802, + -0.020072638988494873, + -0.054828282445669174, + -0.06908369064331055, + -0.054092518985271454, + 0.04419594630599022, + -0.0267596747726202, + -0.02340739406645298, + -0.0006609074771404266, + -0.004478516057133675, + -0.04075480252504349, + -0.053550899028778076, + 0.04134989529848099, + -0.031349148601293564, + 0.021280432119965553, + -0.06925119459629059, + 0.02097034826874733, + 0.018761366605758667, + 0.07122942805290222, + -0.04583998769521713, + 0.05291718244552612, + 0.01850764825940132, + -0.023767197504639626, + 0.030848052352666855, + 0.02042655646800995, + 0.05000197887420654, + -0.03353630751371384, + -0.06380531936883926, + -0.07287409901618958, + 0.029993098229169846, + -0.038242340087890625, + 0.0485946424305439, + 0.02599048614501953, + -0.031193427741527557, + -0.03089020401239395, + -0.02484181709587574, + -0.037060145288705826, + 0.025059210136532784, + 0.07898952066898346, + 0.055542346090078354, + 0.048502467572689056, + -0.023209938779473305, + 0.07391097396612167, + 0.03547685593366623, + 0.027104074135422707, + -0.026511378586292267, + -0.0020484812557697296, + -0.023154495283961296, + 0.032872721552848816, + 0.02549217827618122, + -0.07073508948087692, + 0.024470817297697067, + 0.0013566603884100914, + 0.022015897557139397, + 0.03684920445084572, + 0.03721669688820839, + 0.040202103555202484, + -0.0817594826221466 + ] + }, + "p245_246.wav": { + "name": "p245", + "embedding": [ + 0.062234725803136826, + 0.06518390029668808, + -0.03540882468223572, + 0.037405289709568024, + -0.05455930903553963, + 0.03411645069718361, + -0.14325088262557983, + 0.14795808494091034, + 0.02645295485854149, + 0.12226879596710205, + -0.04102587699890137, + 0.12960875034332275, + 0.0007471313001587987, + -0.16069212555885315, + 0.008489241823554039, + 0.02835860289633274, + -0.0019056424498558044, + 0.009615087881684303, + -0.06737266480922699, + -0.032690081745386124, + 0.028827182948589325, + 0.03656414896249771, + 0.05571463704109192, + -0.06944573670625687, + 0.0347844660282135, + 0.051989588886499405, + -0.007428913842886686, + 0.04363567754626274, + -0.004475218243896961, + -0.07549194246530533, + -0.014238673262298107, + 0.08848488330841064, + -0.07911901921033859, + 0.005589722190052271, + 0.05654514580965042, + -0.04831772297620773, + -0.04138533025979996, + -0.03560688719153404, + -0.01955695077776909, + 0.022490136325359344, + -0.030201975256204605, + 0.08055878430604935, + 0.025492113083600998, + -0.029204340651631355, + 0.07459831982851028, + 0.029252590611577034, + -0.016695860773324966, + -0.03644099831581116, + -0.11087613552808762, + 0.1458817720413208, + 0.03860539570450783, + 0.019598830491304398, + -0.11119317263364792, + -0.036532312631607056, + 0.06928285956382751, + -0.044481340795755386, + -0.08801126480102539, + -0.04170284420251846, + 0.048794571310281754, + 0.11482498794794083, + -0.0402633398771286, + -0.05157041549682617, + 0.041940752416849136, + 0.06955446302890778, + 0.1100507378578186, + 0.055275656282901764, + 0.11011705547571182, + 0.13010051846504211, + -0.03663085773587227, + 0.031186329200863838, + 0.008879574947059155, + 0.07947991788387299, + 0.0680614709854126, + 0.020778140053153038, + 0.02273562178015709, + -0.0005222858744673431, + 0.002409461885690689, + -0.06968048214912415, + -0.043244630098342896, + -0.006703294813632965, + 0.025375161319971085, + 0.028511039912700653, + 0.05909962207078934, + 0.052408598363399506, + -0.05707280710339546, + 0.07115450501441956, + 0.07252462208271027, + -0.03190404921770096, + 0.047037675976753235, + 0.014114072546362877, + -0.0008033867925405502, + 0.05534384399652481, + -0.13608433306217194, + -0.08927701413631439, + 0.021495027467608452, + -0.008207659237086773, + 0.0085078040137887, + 0.02958180382847786, + 0.036678846925497055, + -0.009311249479651451, + 0.12113740295171738, + 0.05633220821619034, + -0.038567107170820236, + 0.04020875319838524, + -0.05341002345085144, + 0.1243322342634201, + 0.09695638716220856, + -0.022481311112642288, + 0.051924265921115875, + -0.07940144836902618, + 0.041989393532276154, + 0.024286450818181038, + -0.10995928943157196, + -0.06781532615423203, + 0.026161516085267067, + -0.007904996164143085, + -0.012699516490101814, + 0.1411893218755722, + -0.0014471127651631832, + 0.07202480733394623, + 0.1189289391040802, + -0.09899033606052399, + -0.03218572214245796, + 0.0066069141030311584, + 0.054606273770332336, + -0.0759187713265419, + 0.04832048714160919, + 0.028710562735795975, + 0.0003779493272304535, + 0.022543838247656822, + 0.08694420754909515, + 0.01130138523876667, + 0.005096713081002235, + 0.0017715028952807188, + -0.018005847930908203, + 0.03301377221941948, + -0.004401381127536297, + -0.03748319670557976, + 0.043648861348629, + 0.04363642632961273, + 0.07328172028064728, + -0.017843572422862053, + -0.02216685563325882, + -0.12259674072265625, + 0.021692872047424316, + 0.008032059296965599, + 0.08469515293836594, + -0.03329864889383316, + 0.0017294064164161682, + -0.05610518157482147, + -0.06764674931764603, + 0.02713514119386673, + 0.0034611541777849197, + 0.04947759211063385, + -0.01971656084060669, + 0.013315335847437382, + 0.10871091485023499, + 0.03157930076122284, + 0.03563417121767998, + -0.02640039473772049, + -0.0332062803208828, + -0.021624762564897537, + 0.057052142918109894, + -0.07201257348060608, + -0.07685928046703339, + -0.028159311041235924, + 0.01147978100925684, + -0.033475611358881, + 0.07518038153648376, + 0.057338301092386246, + 0.027355404570698738, + 0.0265045128762722, + -0.03906038776040077, + -0.02538939006626606, + -0.07170476019382477, + -0.06387759745121002, + -0.004573984537273645, + -0.002391337649896741, + -0.05780286341905594, + 0.07712560892105103, + 0.03469777852296829, + 0.08039484918117523, + -0.053021810948848724, + -0.052227720618247986, + -0.09603653848171234, + 0.037728890776634216, + 0.02811294049024582, + -0.045195624232292175, + 0.02005293034017086, + 0.04451301693916321, + -0.030211258679628372, + 0.04744444414973259, + 0.09658835828304291, + 0.05439599230885506, + -0.013864046894013882, + 0.009558364748954773, + -0.08252006024122238, + 0.14363832771778107, + 0.11120176315307617, + -0.05009642243385315, + -0.09617748111486435, + -0.0201492290943861, + -0.095227912068367, + 0.006009896285831928, + -0.02647731453180313, + -0.0001439920160919428, + 0.0760733112692833, + 0.01558336429297924, + -0.09346333146095276, + -0.09026537835597992, + 0.06560471653938293, + -0.07884369790554047, + 0.00162464939057827, + -0.0754927396774292, + 0.02557339332997799, + 0.09053429216146469, + 0.007992707192897797, + -0.021941013634204865, + -0.04882774129509926, + 0.04420505836606026, + -0.01772095449268818, + 0.032647646963596344, + 0.06194338947534561, + 0.05249716341495514, + -0.09589116275310516, + -0.013015180826187134, + -0.02547292411327362, + 0.024815011769533157, + -0.014813199639320374, + 0.11465806514024734, + 0.02971246838569641, + -0.027110066264867783, + -0.05960920825600624, + 0.04442355036735535, + -0.028591053560376167, + 0.07079499959945679, + 0.02038370445370674, + 0.06699541211128235, + 0.058832522481679916, + -0.07945895195007324, + 0.10569782555103302, + 0.03929407522082329, + -0.06036685034632683, + -0.08901453763246536, + -0.08659602701663971, + -0.04641169309616089, + 0.031386587768793106, + 0.03945339098572731, + -0.07684697955846786, + -0.00206894613802433, + 0.025160953402519226, + -0.01587875746190548, + 0.02038617432117462, + 0.11597073823213577, + 0.05066359043121338, + -0.10850891470909119 + ] + }, + "p245_130.wav": { + "name": "p245", + "embedding": [ + 0.0483817420899868, + 0.07082764804363251, + -0.018744714558124542, + 0.039659298956394196, + -0.06096640229225159, + 0.004679184406995773, + -0.12546823918819427, + 0.14823207259178162, + 0.015305161476135254, + 0.10067307949066162, + -0.04685888811945915, + 0.15098433196544647, + -0.0017455627676099539, + -0.15939916670322418, + 0.024027159437537193, + 0.03704172372817993, + 0.009130998514592648, + -0.02013785019516945, + 0.013401441276073456, + -0.03525494039058685, + 0.055074721574783325, + 0.04819576069712639, + 0.05984567850828171, + -0.023445401340723038, + 0.027696605771780014, + 0.07229888439178467, + 0.004518445115536451, + 0.03639143705368042, + -0.0005885710706934333, + -0.06751259416341782, + -0.03823664039373398, + 0.05809609219431877, + -0.05971789360046387, + -0.0018191959243267775, + 0.035165827721357346, + -0.04505794495344162, + -0.034337569028139114, + -0.04791431874036789, + -0.022435128688812256, + 0.0128852017223835, + -0.038900792598724365, + 0.07302288711071014, + 0.02277919463813305, + -0.06429733335971832, + 0.04632265865802765, + 0.02333163097500801, + -0.0068079340271651745, + -0.010877195745706558, + -0.12315338850021362, + 0.13772797584533691, + 0.056093987077474594, + 0.02339167706668377, + -0.07882283627986908, + -0.05833493918180466, + 0.07601308822631836, + 0.0037426683120429516, + -0.06516733765602112, + -0.0029292176477611065, + 0.04751995950937271, + 0.10647952556610107, + -0.02084764465689659, + -0.045451950281858444, + 0.06714346259832382, + 0.07580310106277466, + 0.0760878473520279, + 0.04512735456228256, + 0.10616996139287949, + 0.11047235131263733, + -0.05297979712486267, + 0.006176195573061705, + 0.011929850094020367, + 0.10621093213558197, + 0.044848229736089706, + 0.0064920722506940365, + 0.004785965662449598, + 0.017359241843223572, + -0.017422406002879143, + -0.03614243492484093, + -0.022749029099941254, + -0.03305765613913536, + -0.0007780059240758419, + 0.006115839816629887, + 0.03840500861406326, + 0.046187907457351685, + -0.038807954639196396, + 0.06955067813396454, + 0.07115959376096725, + -0.0002790192957036197, + 0.054900094866752625, + -0.011141876690089703, + 0.008288074284791946, + 0.07651889324188232, + -0.1249968409538269, + -0.06300756335258484, + 0.038186654448509216, + -0.0006003642920404673, + 0.04554593563079834, + 0.10180588811635971, + 0.060806434601545334, + -0.021724587306380272, + 0.12779487669467926, + 0.06763186305761337, + -0.022588923573493958, + 0.00411205692216754, + -0.05090319737792015, + 0.1054033562541008, + 0.11008894443511963, + -0.03677869960665703, + 0.0696030706167221, + -0.07315269112586975, + 0.06190277636051178, + 0.026881014928221703, + -0.11970995366573334, + -0.06826762855052948, + 0.016256017610430717, + 0.019804831594228745, + 0.002884648507460952, + 0.14632290601730347, + 0.005431973375380039, + 0.08432426303625107, + 0.10937955230474472, + -0.1110774576663971, + -0.06225376948714256, + -0.0221081729978323, + 0.06104288622736931, + -0.07780227065086365, + 0.08430743217468262, + 0.060042139142751694, + -0.0233868770301342, + 0.016126718372106552, + 0.043488308787345886, + -0.01603449508547783, + 0.029745182022452354, + 0.006045798771083355, + -0.032596390694379807, + 0.006203831639140844, + -0.028141643851995468, + -0.019225429743528366, + 0.029528316110372543, + 0.019331365823745728, + 0.041358958929777145, + -0.014365693554282188, + -0.00958995334804058, + -0.1453835368156433, + 0.033181048929691315, + 0.03359852731227875, + 0.06236536428332329, + -0.030696779489517212, + -0.06875710934400558, + -0.04039425402879715, + -0.06977571547031403, + -0.005077578127384186, + 0.004829036071896553, + 0.02970641665160656, + -0.031681668013334274, + 0.030496647581458092, + 0.06999583542346954, + 0.052733615040779114, + -0.00029541010735556483, + -0.012492012232542038, + -0.07217376679182053, + 0.000859053514432162, + 0.04456605762243271, + -0.06580594182014465, + -0.09546233713626862, + -0.058730967342853546, + 0.022496569901704788, + -0.03035735711455345, + 0.06908684223890305, + 0.049859922379255295, + 0.026896487921476364, + 0.010915283113718033, + -0.05993424355983734, + -8.503844583174214e-05, + -0.08358120173215866, + -0.09428979456424713, + -0.018427304923534393, + 0.018659524619579315, + -0.02153618261218071, + 0.07418867945671082, + 0.03727605938911438, + 0.10246787965297699, + -0.03685007244348526, + -0.009295267052948475, + -0.08450650423765182, + 0.011907926760613918, + 0.03609730303287506, + -0.012805852107703686, + 0.048492640256881714, + 0.06477619707584381, + -0.03512146696448326, + 0.0536235086619854, + 0.05676162242889404, + 0.05978219956159592, + -0.014764445833861828, + 0.01151392050087452, + -0.06268353760242462, + 0.10880293697118759, + 0.12007027864456177, + -0.054786890745162964, + -0.07946425676345825, + -0.054703157395124435, + -0.10350140184164047, + 0.031033804640173912, + -0.005409087985754013, + 0.013613267801702023, + 0.0285273939371109, + 0.017124783247709274, + -0.09336404502391815, + -0.08844578266143799, + 0.05829755589365959, + -0.036124564707279205, + 0.005765251349657774, + -0.09375389665365219, + 0.0365976057946682, + 0.11474370211362839, + 0.02573411725461483, + -0.02051503211259842, + -0.051311880350112915, + 0.03134428337216377, + 0.016199007630348206, + 0.028238758444786072, + 0.07190842926502228, + 0.07987867295742035, + -0.09940101206302643, + -0.013664326630532742, + -0.05342360958456993, + 0.03217547386884689, + -0.045086801052093506, + 0.11238980293273926, + 0.03454163670539856, + -0.04369392246007919, + -0.09124766290187836, + 0.0571213960647583, + 0.016971921548247337, + 0.05072672665119171, + 0.009725001640617847, + 0.047851428389549255, + 0.03121873550117016, + -0.107744500041008, + 0.0983891412615776, + 0.04270121455192566, + -0.049248456954956055, + -0.07582562416791916, + -0.05434579402208328, + -0.02231798693537712, + 0.04242752492427826, + 0.018614668399095535, + -0.06351149082183838, + -0.03136802464723587, + 0.022570988163352013, + 0.019011355936527252, + 0.03019523248076439, + 0.14833936095237732, + 0.02832471951842308, + -0.1262088119983673 + ] + }, + "p245_327.wav": { + "name": "p245", + "embedding": [ + 0.013196651823818684, + 0.11890305578708649, + -0.004542496986687183, + 0.049333371222019196, + -0.05395256727933884, + 0.0022604726254940033, + -0.05548735707998276, + 0.0603465661406517, + -0.014438347890973091, + 0.08676643669605255, + -0.052193012088537216, + 0.09676573425531387, + -0.05464395508170128, + -0.08851510286331177, + -0.03548905625939369, + -0.008346905000507832, + 0.0050183795392513275, + 0.048899952322244644, + -0.007851855829358101, + -0.02263437584042549, + -0.029554076492786407, + -0.00037205033004283905, + -0.03293415904045105, + 0.005970536265522242, + -0.025503309443593025, + 0.0040174443274736404, + -0.029574351385235786, + 0.03110436350107193, + -0.002543959766626358, + -0.059578247368335724, + -0.0057619791477918625, + 0.03986481577157974, + -0.015394826419651508, + 0.006114695221185684, + 0.02552868239581585, + 0.001054611406289041, + 0.019006647169589996, + -0.016406074166297913, + -0.03704599663615227, + -0.028000200167298317, + -0.040925282984972, + 0.0011538434773683548, + 0.026364922523498535, + -0.056655582040548325, + 0.016938969492912292, + 0.03360353037714958, + -0.016993260011076927, + -0.016701243817806244, + -0.020338548347353935, + 0.09648387879133224, + 0.007653282955288887, + 0.06300763785839081, + -0.03990523889660835, + -0.05223686620593071, + 0.1198267787694931, + 0.010891223326325417, + -0.0231698676943779, + -0.014122292399406433, + -0.0020603127777576447, + 0.08130665123462677, + 0.027541426941752434, + 0.02126936987042427, + 0.02333941124379635, + 0.06686248630285263, + -0.008235132321715355, + 0.04003538936376572, + 0.055872298777103424, + 0.04654872789978981, + -0.020082751289010048, + 0.04276534169912338, + 0.041740477085113525, + 0.029323045164346695, + 0.014010610990226269, + 0.020290682092308998, + -0.026327984407544136, + 0.023227673023939133, + 0.004990508779883385, + 0.06915926933288574, + -0.04206033796072006, + -0.018709737807512283, + -0.02613747864961624, + 0.022307364270091057, + 0.00408798037096858, + -0.06944576650857925, + -0.04495447501540184, + -0.023478373885154724, + 0.03557122126221657, + 0.02305559627711773, + 0.021976882591843605, + 0.0325840562582016, + 0.04724317416548729, + -0.0015440434217453003, + -0.02642081491649151, + -0.06250319629907608, + 0.015172623097896576, + -0.02207833342254162, + 0.03864607959985733, + 0.0144144706428051, + 0.0005683731287717819, + 0.010063673369586468, + 0.040375966578722, + 0.006904032081365585, + 0.04348159208893776, + -0.008989842608571053, + -0.05335412546992302, + -0.011677954345941544, + 0.03380510210990906, + 0.01941431313753128, + 0.039031945168972015, + 0.02557201497256756, + 0.05923229828476906, + 0.09882311522960663, + -0.06384085863828659, + -0.04046373441815376, + 0.011066386476159096, + 0.04982154443860054, + -0.022073134779930115, + 0.05861622840166092, + -0.017771786078810692, + 0.019810007885098457, + 0.041077595204114914, + 0.013836231082677841, + -0.03430665656924248, + -0.026773793622851372, + -0.006333686411380768, + -0.01762358285486698, + 0.04304005578160286, + 0.020030632615089417, + -0.021824978291988373, + -0.05765622854232788, + 0.06692032516002655, + -0.014795970171689987, + -0.024689458310604095, + 0.02167966216802597, + -0.0006019920110702515, + -0.04315555468201637, + 0.05104271322488785, + -0.0393759086728096, + 0.02606905624270439, + 0.0695122629404068, + -0.025692598894238472, + 0.0008956068195402622, + 0.0042330604046583176, + -0.02331354282796383, + 0.03711045905947685, + 0.021936826407909393, + -0.024474799633026123, + 0.08449864387512207, + -0.05076161399483681, + -0.048262130469083786, + -0.031435199081897736, + 0.0399453341960907, + -0.03153136372566223, + 0.0893363282084465, + 0.058858778327703476, + 0.0398516021668911, + 0.0380668006837368, + -0.01898638904094696, + -0.005924876779317856, + -0.007116112858057022, + -0.10884974151849747, + 0.009590805508196354, + 0.0033424077555537224, + 0.0107746422290802, + -0.01896841824054718, + 0.015878286212682724, + -0.006613150238990784, + -0.01575806364417076, + 0.0012081637978553772, + 0.0272452961653471, + -0.004351332318037748, + 0.06987175345420837, + -0.10034775733947754, + -0.01674550212919712, + -0.06565854698419571, + -0.037267934530973434, + 0.023031752556562424, + -0.041140004992485046, + 0.008332076482474804, + 0.02062748372554779, + 0.04425511136651039, + -0.038273658603429794, + -0.009828265756368637, + -0.06143855303525925, + -0.00410238653421402, + 0.016067249700427055, + 0.018080443143844604, + 0.02678677812218666, + -0.007922947406768799, + 0.017894580960273743, + 0.035755135118961334, + 0.03582911938428879, + 0.022619053721427917, + 0.059399135410785675, + -0.021487753838300705, + 0.007093596272170544, + 0.02828720584511757, + 0.07983069121837616, + 0.018252849578857422, + -0.08761118352413177, + -0.11072571575641632, + -0.011294991709291935, + -0.04015304520726204, + 0.044461559504270554, + -0.010170679539442062, + 0.03207830339670181, + 0.001340415794402361, + 0.014513084664940834, + 0.04576552286744118, + -0.12580646574497223, + 0.04471628740429878, + -0.0003653205931186676, + -0.05186966434121132, + 0.013936681672930717, + 0.010181711986660957, + 0.02096298709511757, + 0.015369715169072151, + -0.02131561003625393, + -0.009356766939163208, + 0.023700354620814323, + -0.006348747760057449, + -0.015089953318238258, + 0.037345971912145615, + 0.010826123878359795, + 0.015073135495185852, + 0.020365171134471893, + -0.04196001961827278, + 0.029436469078063965, + -0.006438283249735832, + 0.04570543020963669, + -0.009088899940252304, + -0.03538886830210686, + -0.07537313550710678, + 0.07549562305212021, + -0.04007522761821747, + 0.04426063224673271, + -0.01176130399107933, + 0.02230175957083702, + 0.002984285354614258, + -0.022502023726701736, + 0.11341774463653564, + 0.021770846098661423, + -0.02735484205186367, + -0.020341908559203148, + -0.020718947052955627, + -0.04231278598308563, + 0.044872500002384186, + 0.046704672276973724, + -0.027051502838730812, + -0.011136801913380623, + 0.04829796031117439, + 0.03519148379564285, + 0.0918767973780632, + 0.06966596841812134, + 0.05598558858036995, + 0.03039107844233513 + ] + }, + "p245_118.wav": { + "name": "p245", + "embedding": [ + 0.08021856844425201, + 0.10969100892543793, + 0.03342356160283089, + 0.009949089959263802, + 0.057601261883974075, + 0.04524441435933113, + -0.1211153045296669, + 0.059965021908283234, + -0.020339827984571457, + 0.14657330513000488, + -0.11284252256155014, + 0.06286406517028809, + -0.020700976252555847, + -0.11063581705093384, + -0.030577220022678375, + 0.0448831170797348, + -0.009756211191415787, + 0.04334409534931183, + -0.02051616460084915, + 0.033768441528081894, + 0.00885817687958479, + 0.015843801200389862, + 0.05865012854337692, + -0.07426120340824127, + 0.08317530900239944, + 0.022432656958699226, + 0.05704435333609581, + 0.08689700067043304, + 0.03175964951515198, + -0.018328966572880745, + 0.029209870845079422, + 0.11342711746692657, + -0.02476494200527668, + 0.01682024449110031, + 0.032519806176424026, + 0.04995492845773697, + -0.0070250630378723145, + -0.07192917168140411, + 0.03270074352622032, + -0.005756274797022343, + 0.010225449688732624, + 0.05691733583807945, + 0.04085694998502731, + -0.029640285298228264, + -0.005855883471667767, + 0.05865361541509628, + 0.021647760644555092, + -0.04638085886836052, + -0.11118754744529724, + 0.12052658200263977, + 0.008098968304693699, + 0.023148424923419952, + -0.08550912141799927, + -0.07185272872447968, + 0.0470857210457325, + 0.029950033873319626, + -0.02184305340051651, + -0.021323945373296738, + 0.08827625215053558, + 0.1475561559200287, + -0.013476436957716942, + -0.051205698400735855, + 0.011677843518555164, + 0.08581048250198364, + 0.024764016270637512, + 0.09175382554531097, + 0.06725993007421494, + 0.06867270171642303, + 0.042651742696762085, + 0.0678689032793045, + 0.014246590435504913, + 0.03924500569701195, + -0.004332654178142548, + -0.014721066690981388, + -0.014425585977733135, + -0.023758664727211, + -0.046216245740652084, + 0.018436932936310768, + 0.008266807533800602, + -0.07028249651193619, + 0.0003694252809509635, + -0.05090713873505592, + 0.011282239109277725, + 0.027101241052150726, + -0.014320816844701767, + 0.0067093707621097565, + 0.03240598738193512, + -0.04147815704345703, + 0.0968562513589859, + 0.006448704749345779, + 0.01083011832088232, + -0.0035309400409460068, + -0.04104558378458023, + -0.12041911482810974, + -0.005356861278414726, + -0.00500280037522316, + 0.004404408857226372, + 0.027927152812480927, + 0.04572881758213043, + -0.018008248880505562, + 0.09197898209095001, + 0.008144675754010677, + 0.018935229629278183, + -0.010596564039587975, + -0.035210855305194855, + 0.09775760769844055, + 0.08336663246154785, + -0.004042668268084526, + 0.021012291312217712, + -0.042535874992609024, + -0.016166996210813522, + 0.11024556308984756, + -0.13234774768352509, + -0.0879531130194664, + 0.018417388200759888, + -0.011912384070456028, + -0.0057600741274654865, + 0.0507965162396431, + 0.007791630923748016, + -0.03545762598514557, + 0.06614147126674652, + -0.08127156645059586, + -0.07742097973823547, + -0.030510179698467255, + 0.05978544056415558, + -0.05713605880737305, + 0.00915742851793766, + 0.06365719437599182, + -0.02868960052728653, + -0.06758248060941696, + 0.05223947763442993, + -0.0006843593437224627, + 0.011516544967889786, + -0.021365884691476822, + -0.010801957920193672, + 0.07555743306875229, + -0.07588811218738556, + 0.03540682792663574, + 0.004379707388579845, + 0.025115743279457092, + 0.03285476192831993, + 0.022581836208701134, + -0.058954305946826935, + -0.060113325715065, + -0.007974544540047646, + 0.07487452775239944, + 0.0357213169336319, + -0.038779035210609436, + -0.07104304432868958, + -0.031658660620450974, + -0.02254287339746952, + 0.0645938515663147, + 0.011461847461760044, + 0.06996951997280121, + 0.06303934007883072, + 0.0007822467014193535, + 0.1435275375843048, + -0.0425516739487648, + 0.033266160637140274, + -0.05716407299041748, + 0.012439013458788395, + 0.06893227994441986, + 0.0005773305892944336, + -0.07196105271577835, + -0.058866627514362335, + 0.01889757066965103, + -0.016617491841316223, + -0.014492619782686234, + 0.005629643797874451, + 0.006959831342101097, + 0.015503142029047012, + 0.020521223545074463, + 0.002555912360548973, + -0.036060627549886703, + -0.06164941564202309, + -0.025468356907367706, + -0.020932916551828384, + -0.009335173293948174, + -0.00503320898860693, + 0.06612639874219894, + 0.03306607902050018, + 0.026818640530109406, + 0.005393319763243198, + -0.03500642254948616, + -0.044147342443466187, + 0.06242217868566513, + 0.10573065280914307, + -0.002897303318604827, + 0.018014175817370415, + 0.01841695047914982, + -0.009610586799681187, + 0.014421416446566582, + 0.05665088817477226, + 0.04340434819459915, + -0.006976466625928879, + -0.07730883359909058, + -0.07915009558200836, + 0.09371644258499146, + 0.08577200770378113, + -0.10061462968587875, + -0.06727772951126099, + -0.03836091235280037, + -0.055724043399095535, + 0.03469405323266983, + -0.03803228586912155, + -0.003129224292933941, + 0.011618871241807938, + -0.07181718200445175, + -0.0581618957221508, + -0.1111060157418251, + 0.04286568611860275, + -0.030137211084365845, + -0.03444654121994972, + -0.06273093819618225, + 0.04339297115802765, + 0.019260574132204056, + 0.05937652289867401, + 0.02199064940214157, + 0.01679362542927265, + 0.01639135368168354, + -0.10649415850639343, + -0.051960788667201996, + 0.027338160201907158, + -0.030154366046190262, + -0.06931205093860626, + 0.024207327514886856, + -0.04473692923784256, + 0.09450338035821915, + -0.06879223883152008, + 0.10711175948381424, + -0.007084609009325504, + -0.05299802124500275, + -0.09194636344909668, + -0.00240876991301775, + -0.052422549575567245, + 0.040736839175224304, + 0.03356121852993965, + -0.02506815455853939, + 0.02232864871621132, + -0.07647602260112762, + 0.08005044609308243, + 0.004780407063663006, + 0.04597420245409012, + -0.08066266030073166, + -0.05446663498878479, + -0.053460489958524704, + 0.03453965485095978, + -0.028911877423524857, + -0.025795945897698402, + 0.0029121432453393936, + 0.03358977660536766, + -0.004812704399228096, + 0.03617364540696144, + 0.0719185322523117, + 0.02065223827958107, + -0.05530675873160362 + ] + }, + "p245_400.wav": { + "name": "p245", + "embedding": [ + 0.05053942650556564, + 0.09646899998188019, + -0.027374617755413055, + 0.024246055632829666, + -0.05257076025009155, + 0.09351804107427597, + -0.11137928813695908, + 0.12616947293281555, + -0.04456082731485367, + 0.15492606163024902, + -0.051945388317108154, + 0.11233455687761307, + -0.018775006756186485, + -0.1520809829235077, + -0.04695861041545868, + 0.018748905509710312, + -0.07124253362417221, + -0.023805759847164154, + -0.10862024128437042, + -0.02287735417485237, + 0.030787251889705658, + 0.03205721080303192, + 0.025626754388213158, + -0.021082360297441483, + 0.031791239976882935, + 0.06859797239303589, + 0.00863736867904663, + 0.05237775295972824, + 0.02464832365512848, + -0.09288458526134491, + -0.03058764711022377, + 0.09527076780796051, + -0.06832201778888702, + 0.02968393638730049, + 0.050669021904468536, + -0.02569620870053768, + 0.014991317875683308, + -0.040170539170503616, + -0.009432490915060043, + 0.040505848824977875, + -0.022939687594771385, + 0.09011654555797577, + -0.0009731203899718821, + 0.035227663815021515, + 0.034676164388656616, + 0.024047493934631348, + -0.014489714056253433, + -0.07286138832569122, + -0.07280115783214569, + 0.18246901035308838, + 0.08122102916240692, + -0.023695914074778557, + -0.056694891303777695, + -0.08033302426338196, + 0.0821426510810852, + -0.029088255017995834, + -0.1365344226360321, + -0.06719265133142471, + 0.05663881450891495, + 0.1370963752269745, + -0.04770912975072861, + -0.028637737035751343, + 0.0112940464168787, + 0.12040476500988007, + 0.08527788519859314, + 0.0839025229215622, + 0.09662358462810516, + 0.10660937428474426, + -0.016998691484332085, + 0.024155355989933014, + 0.06180451065301895, + 0.04467274248600006, + 0.08433789014816284, + 0.018324395641684532, + 0.0502580925822258, + -0.013541549444198608, + 0.015926234424114227, + -0.02741243503987789, + -0.017203042283654213, + 0.009793896228075027, + 0.009469199925661087, + 0.036539480090141296, + -0.003526360262185335, + 0.04668328911066055, + -0.030008362606167793, + 0.06147938221693039, + 0.00850432738661766, + -0.026476800441741943, + 0.0516519770026207, + 0.03651402145624161, + 0.03542536869645119, + 0.06543764472007751, + -0.07363831996917725, + -0.0862838476896286, + 0.04344604164361954, + 0.01410445012152195, + 0.0037103150971233845, + 0.036826543509960175, + 0.03100178763270378, + -0.007787529844790697, + 0.10383725166320801, + 0.0494295209646225, + -0.042055025696754456, + 0.02392265386879444, + -0.08150888979434967, + 0.14098212122917175, + 0.07739824056625366, + -0.030676715075969696, + 0.03343028202652931, + -0.03434886783361435, + 0.0699676126241684, + 0.03870538994669914, + -0.13470511138439178, + -0.10837861895561218, + 0.04302896559238434, + -0.00874422024935484, + -0.029670823365449905, + 0.07562843710184097, + -0.002656846772879362, + 0.03161662817001343, + 0.10219651460647583, + -0.066884845495224, + -0.01801367662847042, + -0.012202414683997631, + 0.05396562069654465, + -0.07898958027362823, + 0.015454623848199844, + 0.04010533541440964, + -0.001971959136426449, + -0.00276409974321723, + 0.13414739072322845, + 0.005273330956697464, + -0.012891230173408985, + 0.01833406835794449, + -0.022578798234462738, + 0.041748158633708954, + -0.0066428473219275475, + -0.01478208415210247, + 0.03524940460920334, + 0.03562815487384796, + 0.055995918810367584, + -0.03283051773905754, + -0.0418962687253952, + -0.10740187764167786, + 0.033719323575496674, + 0.02134593203663826, + 0.05213851481676102, + -0.038598574697971344, + 0.021210819482803345, + -0.03093128278851509, + -0.06231634318828583, + 0.02418169006705284, + -0.009159738197922707, + 0.0772741436958313, + -0.03150858357548714, + -0.007958821952342987, + 0.13126052916049957, + 0.0033897990360856056, + 0.007149349432438612, + -0.03360576927661896, + -0.018871353939175606, + 0.013747945427894592, + 0.060412608087062836, + -0.06583832949399948, + -0.06400668621063232, + 0.006678346544504166, + 0.022931678220629692, + 0.0033535792026668787, + 0.0803307294845581, + 0.051240451633930206, + -0.009944802150130272, + 0.031103044748306274, + -0.036846745759248734, + -0.016207732260227203, + -0.07806430757045746, + -0.0458969846367836, + -0.023766152560710907, + -0.044228918850421906, + -0.041395753622055054, + 0.08404529094696045, + 0.012381714768707752, + 0.05741448700428009, + -0.02016575261950493, + -0.09285682439804077, + -0.06741909682750702, + 0.07487379759550095, + 0.07823365926742554, + -0.01932818815112114, + 0.029713913798332214, + 0.07107331603765488, + -0.005012538284063339, + 0.04666861146688461, + 0.08552233874797821, + 0.09391190111637115, + -0.023120302706956863, + 0.027389535680413246, + -0.091127410531044, + 0.09053464233875275, + 0.0428406186401844, + -0.09005285799503326, + -0.073916494846344, + -0.007085512392222881, + -0.057615190744400024, + 0.016361400485038757, + -0.0413484200835228, + 0.029719578102231026, + 0.07708516716957092, + 0.0002740445779636502, + -0.07349929213523865, + -0.10459575057029724, + 0.11195839941501617, + -0.09053973108530045, + -0.009640864096581936, + -0.0689467042684555, + 0.03942933678627014, + 0.08978866785764694, + 0.06725664436817169, + -0.018309906125068665, + -0.00024114875122904778, + 0.05321994796395302, + -0.016517654061317444, + 0.00033383630216121674, + 0.04865456372499466, + 0.015678534284234047, + -0.11634225398302078, + 0.006422641221433878, + -0.07633957266807556, + 0.051836688071489334, + -0.05980987101793289, + 0.1252908706665039, + 0.0033604034688323736, + -0.04055309295654297, + -0.08084645867347717, + 0.0545833483338356, + -0.049858130514621735, + 0.06814046204090118, + 0.013050705194473267, + 0.0619654543697834, + 0.05434957146644592, + -0.054302092641592026, + 0.12178653478622437, + 0.044727351516485214, + -0.04462964087724686, + -0.08999882638454437, + -0.06695359945297241, + -0.03502817451953888, + 0.043355923146009445, + 0.03577809035778046, + -0.08695538341999054, + 0.008675831370055676, + 0.023106645792722702, + -0.04838944226503372, + 0.05734530836343765, + 0.13678139448165894, + 0.08542408049106598, + -0.12853728234767914 + ] + }, + "p245_076.wav": { + "name": "p245", + "embedding": [ + 0.04037095233798027, + 0.13764843344688416, + 0.007012718357145786, + 0.02261301875114441, + -0.032263197004795074, + 0.07159577310085297, + -0.08193717896938324, + 0.11613215506076813, + -0.06130309775471687, + 0.13961389660835266, + -0.11655938625335693, + 0.10490601509809494, + -0.06449037790298462, + -0.13848866522312164, + -0.037140801548957825, + 0.05259323492646217, + -0.0348464697599411, + 0.03234892711043358, + -0.02132207714021206, + 0.0030829589813947678, + 0.030819809064269066, + 0.017189502716064453, + 0.06872552633285522, + -0.02526131644845009, + 0.04082213714718819, + 0.05645167455077171, + 0.02694776840507984, + 0.07625964283943176, + 0.04195638373494148, + -0.0509735643863678, + -0.04752815514802933, + 0.1251574158668518, + -0.032261840999126434, + 0.033561546355485916, + 0.0576615184545517, + 0.016482248902320862, + -0.0012533895205706358, + -0.05587492138147354, + -0.0011165686883032322, + -0.021076317876577377, + -0.0334252268075943, + 0.040446631610393524, + 0.0008315485902130604, + -0.02376745082437992, + 0.027616413310170174, + 0.024395866319537163, + -0.020841583609580994, + -0.025382153689861298, + -0.08509089052677155, + 0.1477886587381363, + 0.05559735745191574, + -0.0015781987458467484, + -0.07457108795642853, + -0.09058764576911926, + 0.10822287201881409, + 0.005029873922467232, + -0.11035969853401184, + -0.012881547212600708, + 0.08433149755001068, + 0.16410008072853088, + -0.009644023142755032, + -0.027379069477319717, + 0.0023826458491384983, + 0.10790708661079407, + -6.020348519086838e-05, + 0.112828828394413, + 0.0586782842874527, + 0.07315827906131744, + 0.031227514147758484, + 0.07111864537000656, + 0.037119604647159576, + 0.06497267633676529, + 0.017160294577479362, + -0.024218998849391937, + 0.004126985557377338, + -0.026237523183226585, + -0.0459447056055069, + 0.052518054842948914, + -0.015375608578324318, + -0.04730473831295967, + -0.0329255647957325, + -0.017924068495631218, + -0.008379505947232246, + -0.03960617259144783, + -0.00845858734101057, + 0.04162054508924484, + -0.009148597717285156, + -0.00582651374861598, + 0.08696100115776062, + 0.02784571796655655, + -0.023738257586956024, + 0.0439765527844429, + -0.037809647619724274, + -0.09898503124713898, + -0.01753910258412361, + 0.00706604216247797, + 0.019492272287607193, + 0.08926250040531158, + 0.03702676296234131, + -0.021501606330275536, + 0.10189008712768555, + 0.05460657551884651, + 0.03087984025478363, + 0.025580208748579025, + -0.09864602237939835, + 0.10859756916761398, + 0.08049934357404709, + -0.01699146255850792, + 0.04073077812790871, + -0.0175881776958704, + 0.08812698721885681, + 0.10243579745292664, + -0.14123377203941345, + -0.06874243170022964, + -0.01940654031932354, + -0.008445695042610168, + 0.0031498530879616737, + 0.05005911365151405, + -0.020407598465681076, + -0.014747008681297302, + 0.10300946235656738, + -0.09670090675354004, + -0.08348426222801208, + -0.04263151437044144, + 0.044025786221027374, + -0.057726748287677765, + 0.037608884274959564, + 0.041304659098386765, + -0.015584757551550865, + -0.018973151221871376, + 0.06120190769433975, + -0.013975674286484718, + 0.021961238235235214, + 0.060964688658714294, + -0.07643675804138184, + 0.0016423962078988552, + -0.07740730047225952, + 0.020345179364085197, + 0.056520938873291016, + 0.06204928457736969, + 0.05876106768846512, + 0.012037435546517372, + -0.029501445591449738, + -0.05763449892401695, + -0.013333426788449287, + 0.08377092331647873, + 0.025010403245687485, + -0.012123534455895424, + -0.04990389943122864, + -0.021398276090621948, + -0.051785264164209366, + 0.04337175190448761, + 0.0074604470282793045, + 0.0799565464258194, + -0.010167635045945644, + -0.005495373625308275, + 0.11491915583610535, + 0.009996838867664337, + -0.02934999018907547, + -0.09868563711643219, + -0.03302093967795372, + 0.03735147789120674, + 0.014893303625285625, + -0.09818150848150253, + -0.08328143507242203, + 0.014430168084800243, + -0.006564276292920113, + -0.027671217918395996, + 0.02406672202050686, + 0.03553932532668114, + 0.009732716716825962, + 0.041021060198545456, + -0.031582195311784744, + -0.0006226208060979843, + -0.09954287856817245, + -0.060952745378017426, + -0.023160364478826523, + -0.0334116593003273, + -0.007443828973919153, + 0.07629574835300446, + 0.010202744975686073, + 0.010963167995214462, + 0.03494274243712425, + -0.061509981751441956, + -0.05982247740030289, + 0.08414982259273529, + 0.0643981397151947, + 0.023676443845033646, + 0.07315056025981903, + 0.050914157181978226, + -0.06682533025741577, + 0.060128938406705856, + 0.05861974135041237, + 0.08930563181638718, + -0.027293624356389046, + -0.005892493762075901, + -0.0803760439157486, + 0.03835541754961014, + 0.09374020993709564, + -0.12522566318511963, + -0.1097838431596756, + -0.06733863055706024, + -0.050214678049087524, + 0.06219257414340973, + -0.02199053019285202, + -0.010140171274542809, + 0.01084477361291647, + -0.051775116473436356, + -0.07259685546159744, + -0.08979864418506622, + 0.10459926724433899, + -0.035193461924791336, + -0.04423952102661133, + -0.04723978042602539, + 0.05199592188000679, + 0.03887098655104637, + 0.03169165924191475, + -0.019173385575413704, + 0.04122205078601837, + 0.06062355637550354, + -0.093259796500206, + -0.03810175880789757, + 0.04094254598021507, + -0.000958690419793129, + -0.05110141262412071, + 0.036421142518520355, + -0.07109324634075165, + 0.08266282826662064, + -0.07566773146390915, + 0.17352139949798584, + -0.03900402411818504, + -0.07110479474067688, + -0.0783536285161972, + 0.05334654822945595, + -0.039068467915058136, + -0.0055625224485993385, + 0.04592191427946091, + 0.034208592027425766, + -0.010556260123848915, + -0.08727201819419861, + 0.1313057243824005, + -0.011344349943101406, + -0.009854376316070557, + -0.057933785021305084, + -0.05131971091032028, + -0.05881940945982933, + 0.00033874576911330223, + -0.024586688727140427, + -0.08287695050239563, + -0.005483762361109257, + -0.004566133953630924, + -0.0017496270593255758, + 0.057817209511995316, + 0.13085409998893738, + 0.06414993107318878, + -0.0817672535777092 + ] + }, + "p245_421.wav": { + "name": "p245", + "embedding": [ + 0.052359603345394135, + 0.08491339534521103, + -0.0052977679297327995, + 0.027988698333501816, + -0.054709941148757935, + 0.0558035783469677, + -0.13452669978141785, + 0.13362833857536316, + -0.03757494315505028, + 0.14037875831127167, + -0.06648547202348709, + 0.10888543725013733, + -0.029858548194169998, + -0.18481528759002686, + -0.024504847824573517, + 0.0695403665304184, + -0.043456271290779114, + -0.03300505131483078, + -0.03962382674217224, + -0.012660928070545197, + 0.02752881869673729, + 0.037373535335063934, + 0.04065645858645439, + 0.012203475460410118, + 0.021803414449095726, + 0.060740821063518524, + 0.002221314236521721, + 0.05864550918340683, + 0.018737390637397766, + -0.05807553976774216, + -0.02747165411710739, + 0.10151033103466034, + -0.042212747037410736, + 0.020324809476733208, + 0.053468845784664154, + -0.0034837238490581512, + -0.005158654879778624, + -0.06351504474878311, + -0.02001127414405346, + -0.00910661369562149, + -0.04769226163625717, + 0.08150672167539597, + 0.023300809785723686, + -0.005530927330255508, + 0.045759882777929306, + 0.015095775946974754, + -0.030782124027609825, + -0.053303610533475876, + -0.11417430639266968, + 0.14903146028518677, + 0.07275809347629547, + 0.0021658800542354584, + -0.06897446513175964, + -0.07877419888973236, + 0.09227396547794342, + -0.028562214225530624, + -0.1202654093503952, + -0.05955028161406517, + 0.07685442268848419, + 0.15787135064601898, + -0.02730032429099083, + -0.03053065948188305, + 0.019903123378753662, + 0.128347709774971, + 0.05918174609541893, + 0.09720789641141891, + 0.07236267626285553, + 0.10033013671636581, + -0.02036476880311966, + 0.02200353518128395, + 0.05133114755153656, + 0.061604928225278854, + 0.042029526084661484, + 0.011000072583556175, + 0.021969132125377655, + 0.00298164295963943, + -0.013397286646068096, + 0.009743070229887962, + -0.016798675060272217, + -0.0074360668659210205, + -0.024280427023768425, + 0.01408606581389904, + -0.002260783454403281, + 0.01663368195295334, + -0.013697940856218338, + 0.05663369223475456, + 0.021143531426787376, + -0.005746930837631226, + 0.0695028007030487, + 0.03222574293613434, + 0.00443997560068965, + 0.05952133238315582, + -0.06665770709514618, + -0.08225062489509583, + 0.009627111256122589, + 0.004235336557030678, + 0.022029904648661613, + 0.06457825005054474, + 0.0189584419131279, + -0.01946914941072464, + 0.11743514239788055, + 0.046374596655368805, + -0.00821107067167759, + 0.033387795090675354, + -0.09662780165672302, + 0.11897893249988556, + 0.06971326470375061, + -0.014988185837864876, + 0.051024388521909714, + -0.048399847000837326, + 0.06919652223587036, + 0.07528217881917953, + -0.13261821866035461, + -0.06689087301492691, + 0.025559432804584503, + 0.008176721632480621, + -0.021581675857305527, + 0.11641605943441391, + -0.00542498379945755, + 0.03229762613773346, + 0.10619594156742096, + -0.08651252090930939, + -0.05318313091993332, + -0.006541445851325989, + 0.04954063147306442, + -0.0865594670176506, + 0.045327093452215195, + 0.0434432327747345, + -0.01434248685836792, + 0.011201722547411919, + 0.0901261568069458, + -0.0059002055786550045, + 0.003480600891634822, + 0.02298714779317379, + -0.05986514315009117, + 0.02254810743033886, + -0.04001174867153168, + 0.0009383925935253501, + 0.05553753674030304, + 0.04159386828541756, + 0.0430096760392189, + -0.004365541972219944, + -0.034328117966651917, + -0.11798670142889023, + 0.005010065156966448, + 0.03674982488155365, + 0.07754839956760406, + -0.0124696409329772, + -0.015956806018948555, + -0.043485648930072784, + -0.06129337474703789, + 0.020878370851278305, + -0.009759507142007351, + 0.07530860602855682, + -0.024133212864398956, + 0.00018365922733210027, + 0.09656389057636261, + 0.01610649935901165, + 0.0009305290877819061, + -0.054944634437561035, + -0.035191625356674194, + 0.008118957281112671, + 0.057478539645671844, + -0.08140076696872711, + -0.05751657485961914, + 0.013857441954314709, + 0.04003417119383812, + -0.018604308366775513, + 0.0471780002117157, + 0.0489465668797493, + 0.018174225464463234, + 0.029334744438529015, + -0.06177128851413727, + 0.016143137589097023, + -0.09872758388519287, + -0.07609512656927109, + -0.0018860509153455496, + -0.007533456198871136, + -0.01084181945770979, + 0.07288126647472382, + 0.01838839054107666, + 0.05020969361066818, + -0.008386634290218353, + -0.08623592555522919, + -0.09076200425624847, + 0.06908263266086578, + 0.06968741118907928, + -0.0013668525498360395, + 0.05549834296107292, + 0.0528520867228508, + -0.05103222653269768, + 0.053178735077381134, + 0.04785279929637909, + 0.104213647544384, + -0.029271148145198822, + 0.02190653793513775, + -0.08060689270496368, + 0.06930804252624512, + 0.09676992893218994, + -0.09904275834560394, + -0.08024166524410248, + -0.020491164177656174, + -0.06414781510829926, + 0.04435170441865921, + -0.028730478137731552, + -0.003296114271506667, + 0.043042369186878204, + -0.014094225130975246, + -0.10101969540119171, + -0.09378762543201447, + 0.08977267146110535, + -0.06952670216560364, + -0.0030763084068894386, + -0.07000904530286789, + 0.03830642253160477, + 0.08000911772251129, + 0.04903144761919975, + -0.02160087786614895, + -0.011179282329976559, + 0.05266395956277847, + -0.045007988810539246, + -0.004609322175383568, + 0.05822475999593735, + 0.01822805032134056, + -0.09958585351705551, + 0.0022085928358137608, + -0.0774078443646431, + 0.05633009225130081, + -0.0453941784799099, + 0.15446597337722778, + -0.005352163687348366, + -0.05346453934907913, + -0.07835906744003296, + 0.020546667277812958, + -0.027687987312674522, + 0.05097168684005737, + 0.02886008284986019, + 0.06206386536359787, + 0.04512518644332886, + -0.05445303022861481, + 0.12324132025241852, + 0.04730850085616112, + -0.03821056708693504, + -0.05541013181209564, + -0.039593156427145004, + -0.04679294675588608, + 0.029032841324806213, + 0.00022608294966630638, + -0.09560677409172058, + -0.01142454706132412, + 0.02166072651743889, + -0.0305277518928051, + 0.05913497135043144, + 0.14018478989601135, + 0.0649317055940628, + -0.11952614784240723 + ] + }, + "p245_394.wav": { + "name": "p245", + "embedding": [ + 0.04221281781792641, + 0.07372567802667618, + -0.0659819096326828, + 0.006157597526907921, + -0.02978031150996685, + 0.03945683687925339, + -0.12181125581264496, + 0.058032795786857605, + -0.03868616372346878, + 0.14774687588214874, + -0.07240644097328186, + 0.09537186473608017, + -0.013648711144924164, + -0.11537807434797287, + -0.04489489644765854, + 0.024008475244045258, + -0.017972923815250397, + -0.02762364223599434, + -0.07296928763389587, + -0.05663127824664116, + 0.04322358965873718, + 0.047203414142131805, + 0.01330507267266512, + -0.054803602397441864, + 0.0009810198098421097, + 0.07010701298713684, + 0.004903367720544338, + 0.002591957338154316, + -0.004884074442088604, + 0.0023916661739349365, + 0.007890032604336739, + 0.09013614058494568, + -0.03697314113378525, + -0.013693119399249554, + 0.0155577901750803, + 0.030582480132579803, + -0.010209169238805771, + -0.04287702590227127, + 0.009402159601449966, + 0.05422542989253998, + -0.04355786740779877, + 0.07451993972063065, + 0.02853311412036419, + -0.0025416752323508263, + 0.032882463186979294, + -0.03931282460689545, + -0.03843151777982712, + 0.002634061500430107, + -0.052503764629364014, + 0.17036250233650208, + 0.10296783596277237, + 0.007376339286565781, + -0.07343405485153198, + -0.031032774597406387, + 0.09722359478473663, + -0.005868859123438597, + -0.08558053523302078, + -0.06655317544937134, + 0.002623163163661957, + 0.1131540983915329, + -0.012632308527827263, + -0.06558747589588165, + 0.00698844064027071, + 0.10186818242073059, + 0.02486557886004448, + 0.03929458558559418, + 0.0945490300655365, + 0.08909730613231659, + -0.021795857697725296, + 0.0030776322819292545, + 0.07897725701332092, + 0.06378591805696487, + 0.049082182347774506, + -0.06440963596105576, + 0.06504374742507935, + -0.01625491864979267, + -0.008609740994870663, + -0.01093031745404005, + -0.02692103572189808, + -0.06158566102385521, + -0.0005314182490110397, + -0.011568897403776646, + -0.017167942598462105, + 0.04275604337453842, + -0.08168315142393112, + -1.0542571544647217e-06, + 0.06265141069889069, + -0.05579163879156113, + 0.05064044147729874, + 0.09218795597553253, + 0.02366851642727852, + 0.0011337138712406158, + -0.0610482320189476, + -0.06813901662826538, + 0.04482470825314522, + -0.0032767076045274734, + 0.0015504853799939156, + 0.04853503406047821, + 0.033751919865608215, + 0.0024062134325504303, + 0.07271923124790192, + 0.04323473200201988, + -0.02236836776137352, + -0.019747108221054077, + -0.07916384190320969, + 0.11579327285289764, + 0.13964106142520905, + -0.03967355564236641, + -0.011013301089406013, + 0.0017855498008430004, + 0.037831664085388184, + 0.03917057067155838, + -0.09499269723892212, + -0.0749216079711914, + 0.028514113277196884, + 0.03920985758304596, + 0.037640832364559174, + 0.08007712662220001, + -0.0013311905786395073, + -0.002193443477153778, + 0.09710744023323059, + -0.02258693240582943, + -0.06172921508550644, + -0.06625495105981827, + 0.008981116116046906, + -0.07737134397029877, + 0.03650752827525139, + 0.061724476516246796, + 0.033231399953365326, + -0.02998354844748974, + 0.08500725775957108, + 0.002355338539928198, + 0.003857824020087719, + -0.045823559165000916, + 0.02854788862168789, + 0.05841199308633804, + 0.011052394285798073, + -0.003450383897870779, + 0.0456831119954586, + 0.013796903192996979, + 0.0868886411190033, + 0.021950632333755493, + 0.022808659821748734, + -0.09523002803325653, + 0.04796866700053215, + 0.0413176454603672, + 0.0050698332488536835, + -0.0522797517478466, + -0.01754833571612835, + -0.020438849925994873, + -0.06216639280319214, + 0.015912078320980072, + -0.048053402453660965, + 0.08413240313529968, + 0.02139638550579548, + -0.028737042099237442, + 0.14665734767913818, + -0.037699125707149506, + -0.007535828277468681, + 0.006085017696022987, + 0.032038867473602295, + -0.0022094841115176678, + 0.04081571847200394, + -0.10109880566596985, + -0.07877299189567566, + -0.014130750671029091, + 0.012173613533377647, + 0.04750073328614235, + 0.01893373392522335, + 0.08463788032531738, + -0.048994410783052444, + 0.03135241940617561, + -0.06985719501972198, + 0.016635265201330185, + -0.09746984392404556, + 0.003945829346776009, + -0.0282443817704916, + -0.11036363244056702, + -0.0005139214918017387, + 0.07725851982831955, + -0.01924262009561062, + 0.010488408617675304, + -0.05139767751097679, + -0.10992743074893951, + -0.06320053339004517, + 0.05239824950695038, + 0.10323932766914368, + -0.02312656305730343, + 0.01673564314842224, + 0.08824264258146286, + 0.028324509039521217, + 0.008866289630532265, + 0.045627690851688385, + 0.08047404885292053, + -0.0641738772392273, + -0.00593201257288456, + -0.04705319553613663, + 0.07765305042266846, + 0.05012659728527069, + -0.08386698365211487, + -0.0650007575750351, + -0.07331133633852005, + -0.03916112333536148, + 0.013628602959215641, + -0.04112265259027481, + 0.02014829032123089, + 0.05306567996740341, + -0.03210524469614029, + -0.0801018625497818, + -0.09217952191829681, + 0.07033544033765793, + -0.0350370891392231, + -0.0052529750391840935, + -0.05333959311246872, + 0.024838626384735107, + 0.02708384022116661, + 0.05357912555336952, + -0.06930997967720032, + 0.021345606073737144, + 0.0037568937987089157, + -0.037808675318956375, + -0.01639874465763569, + -0.003400258719921112, + 0.030739542096853256, + -0.07515322417020798, + -0.026407957077026367, + -0.0663398802280426, + 0.11452736705541611, + -0.07026782631874084, + 0.05067889764904976, + 0.004596891347318888, + -0.03442615643143654, + -0.0711522325873375, + 0.025660306215286255, + -0.011127292178571224, + 0.05089222639799118, + 0.08250969648361206, + 0.055533066391944885, + -0.006250837817788124, + -0.06509929150342941, + 0.07760076224803925, + 0.06454917043447495, + 0.002327009104192257, + -0.08449520915746689, + 0.02630813792347908, + -0.0261441208422184, + 0.038046471774578094, + 0.061569489538669586, + -0.05411284416913986, + 0.04874954745173454, + 0.004920903593301773, + -0.03563157096505165, + 0.050731562077999115, + 0.04804393649101257, + 0.05965430289506912, + -0.08994707465171814 + ] + }, + "p245_059.wav": { + "name": "p245", + "embedding": [ + 0.05211058259010315, + 0.09031020849943161, + -0.016787324100732803, + 0.044890522956848145, + -0.07434713840484619, + 0.04509442672133446, + -0.138683021068573, + 0.15274880826473236, + -0.014317094348371029, + 0.11448056995868683, + -0.05287359654903412, + 0.1250535100698471, + -0.025392839685082436, + -0.19026386737823486, + -0.003872975707054138, + 0.06730380654335022, + -0.008804458193480968, + -0.024860791862010956, + 0.006314050406217575, + -0.02803061529994011, + 0.02479531429708004, + 0.04429391771554947, + 0.043818652629852295, + 0.0028664530254900455, + 0.05632931739091873, + 0.06739361584186554, + -0.010996385477483273, + 0.030286163091659546, + 0.0024190880358219147, + -0.053098730742931366, + -0.04355702921748161, + 0.08344703912734985, + -0.05834344029426575, + 0.005014099180698395, + 0.051025375723838806, + -0.01388503983616829, + -0.020580502226948738, + -0.060148969292640686, + -0.02872304990887642, + -0.0010775126283988357, + -0.054255276918411255, + 0.0857522115111351, + 0.05023276060819626, + -0.03782668337225914, + 0.03837617114186287, + 0.01860402524471283, + -0.003439562860876322, + -0.03719545155763626, + -0.1267479658126831, + 0.1542169451713562, + 0.04489909112453461, + 0.012139051221311092, + -0.08407258987426758, + -0.06525923311710358, + 0.10446441173553467, + 0.0014876071363687515, + -0.09852991253137589, + -0.03226218745112419, + 0.08392706513404846, + 0.1515682339668274, + -0.01122039183974266, + -0.03162868693470955, + 0.028277942910790443, + 0.11791953444480896, + 0.05518379434943199, + 0.07797396183013916, + 0.06564490497112274, + 0.11697226762771606, + -0.019241739064455032, + 0.024206530302762985, + 0.04920335114002228, + 0.0724349096417427, + 0.018184814602136612, + -0.01683025434613228, + -0.01598476432263851, + -0.004768064711242914, + -0.023378970101475716, + -0.011343930847942829, + -0.005287173204123974, + -0.02188873663544655, + -0.024261534214019775, + -0.005456279031932354, + 0.011974446475505829, + 0.014671731740236282, + -0.023219861090183258, + 0.05448531731963158, + 0.0510338731110096, + -0.004323908593505621, + 0.07310354709625244, + 0.022049546241760254, + -0.015815729275345802, + 0.06292496621608734, + -0.08115273714065552, + -0.06564487516880035, + 0.018000714480876923, + -0.0011353300651535392, + 0.039665453135967255, + 0.09368514269590378, + 0.04481733590364456, + -0.015207127667963505, + 0.13545510172843933, + 0.0574614554643631, + 0.008050581440329552, + 0.018052363768219948, + -0.07626637071371078, + 0.12130442261695862, + 0.06759084761142731, + -0.010168075561523438, + 0.08639216423034668, + -0.04942810907959938, + 0.06838169693946838, + 0.06409639120101929, + -0.14163321256637573, + -0.0523344948887825, + 0.015249529853463173, + 0.022128598764538765, + -0.01690315082669258, + 0.14046034216880798, + 0.005391120444983244, + 0.05108964443206787, + 0.10216464102268219, + -0.10790012776851654, + -0.06773235648870468, + -0.01801345869898796, + 0.056593433022499084, + -0.09005950391292572, + 0.06811849772930145, + 0.07202481478452682, + -0.039467282593250275, + 0.031007032841444016, + 0.05758289992809296, + -0.002961705904453993, + 0.024321893230080605, + 0.024886082857847214, + -0.048783764243125916, + 0.008189593441784382, + -0.030337151139974594, + 0.01699521765112877, + 0.059775106608867645, + 0.016814284026622772, + 0.057762689888477325, + -0.001238397671841085, + -0.021220512688159943, + -0.12438033521175385, + 0.008859913796186447, + 0.04408992826938629, + 0.08999302238225937, + -0.0163830928504467, + -0.04759235680103302, + -0.03438553214073181, + -0.08179104328155518, + 0.02691732719540596, + 0.010365668684244156, + 0.07743996381759644, + -0.027045879513025284, + 0.004372643772512674, + 0.08790628612041473, + 0.056354813277721405, + -0.012188902124762535, + -0.05727371573448181, + -0.049839019775390625, + -0.00020913488697260618, + 0.043822042644023895, + -0.10179653763771057, + -0.06975045055150986, + -0.02184605598449707, + 0.028134597465395927, + -0.04036519303917885, + 0.05948321521282196, + 0.039885878562927246, + 0.031334299594163895, + 0.022022534161806107, + -0.05822766572237015, + 0.007934393361210823, + -0.084077388048172, + -0.0759524330496788, + -0.01076965406537056, + 0.008049480617046356, + -0.04031803458929062, + 0.08851504325866699, + 0.03602299839258194, + 0.06514918804168701, + -0.009855658747255802, + -0.03239437937736511, + -0.06953404098749161, + 0.03346630930900574, + 0.023713747039437294, + -0.007787439506500959, + 0.05046822875738144, + 0.06018594279885292, + -0.06341789662837982, + 0.0562901496887207, + 0.060678452253341675, + 0.0846179872751236, + -0.0357646644115448, + 0.022774893790483475, + -0.06300573796033859, + 0.08778300881385803, + 0.10481292009353638, + -0.09367352724075317, + -0.08410625159740448, + -0.053423330187797546, + -0.07847580313682556, + 0.04153309017419815, + -0.019026286900043488, + 0.0061453827656805515, + 0.004096143878996372, + -0.0075471303425729275, + -0.09132785350084305, + -0.10212084650993347, + 0.06480856239795685, + -0.055305205285549164, + 5.991733632981777e-05, + -0.08395881950855255, + 0.041417863219976425, + 0.09231184422969818, + 0.03960429131984711, + -0.004887227434664965, + -0.021804237738251686, + 0.05057108402252197, + -0.03523723781108856, + 0.01057150773704052, + 0.09661002457141876, + 0.0465642586350441, + -0.09745390713214874, + -0.01476682722568512, + -0.062276691198349, + 0.06255712360143661, + -0.03646198660135269, + 0.1689663827419281, + 0.021374596282839775, + -0.05630611628293991, + -0.0784098207950592, + 0.03436777740716934, + -0.018948176875710487, + 0.04361008107662201, + 0.02956235781311989, + 0.05381504446268082, + 0.03879433125257492, + -0.04818301647901535, + 0.11761713773012161, + 0.0379662811756134, + -0.040918607264757156, + -0.04715179651975632, + -0.047564469277858734, + -0.039870284497737885, + 0.037253767251968384, + 0.003212657291442156, + -0.09977522492408752, + -0.02584272250533104, + 0.03237131983041763, + 0.007361389230936766, + 0.058573536574840546, + 0.14789551496505737, + 0.06627048552036285, + -0.10891734063625336 + ] + }, + "p245_100.wav": { + "name": "p245", + "embedding": [ + 0.0663197785615921, + 0.09439428150653839, + -0.05860540270805359, + 0.04420878365635872, + -0.0157189778983593, + 0.05247534066438675, + -0.10924509167671204, + 0.10548478364944458, + -0.029878534376621246, + 0.11963379383087158, + -0.06781339645385742, + 0.09859782457351685, + -0.04731093719601631, + -0.10407844930887222, + -0.025321464985609055, + 0.0381789356470108, + -0.028281522914767265, + -0.005352920852601528, + -0.018945593386888504, + -0.016972610726952553, + 0.04892675578594208, + 0.009979571215808392, + 0.04857354611158371, + -0.043624814599752426, + -0.007384458556771278, + 0.059436164796352386, + -0.004885569680482149, + -0.010640589520335197, + 0.011995124630630016, + -0.007840579375624657, + 0.0026341602206230164, + 0.04913713037967682, + -0.017757225781679153, + 0.000975143164396286, + 0.04100700840353966, + 0.026308663189411163, + -0.03971042484045029, + -0.05527646467089653, + 0.016162578016519547, + 0.0015194378793239594, + -0.033707112073898315, + 0.059089966118335724, + 0.026121221482753754, + -0.0753602385520935, + 0.062055837363004684, + -0.05959121510386467, + -0.02531673014163971, + -0.007754381280392408, + -0.08055133372545242, + 0.13634063303470612, + 0.0722898468375206, + 0.04264960065484047, + -0.09108496457338333, + -0.0037523843348026276, + 0.0923738032579422, + 0.021413519978523254, + -0.08120468258857727, + -0.03694716840982437, + 0.020819321274757385, + 0.13331222534179688, + -0.026344316080212593, + -0.046072062104940414, + 0.04454554617404938, + 0.062435977160930634, + 0.038268934935331345, + 0.04812190681695938, + 0.11056789755821228, + 0.06409688293933868, + -0.0023174136877059937, + 0.030247226357460022, + 0.048067860305309296, + 0.08169476687908173, + 0.05583852529525757, + -0.01167504582554102, + 0.014711730182170868, + -0.048491790890693665, + -0.04016498476266861, + -0.008022511377930641, + 0.008780616335570812, + -0.0828246995806694, + -0.03210859373211861, + -0.037795573472976685, + 0.01731165125966072, + 0.031443674117326736, + -0.023595400154590607, + 0.01804482564330101, + 0.05807250365614891, + -0.057509537786245346, + 0.03341579809784889, + 0.04593736678361893, + -0.002328613307327032, + 0.019688639789819717, + -0.052042510360479355, + -0.10841652005910873, + 0.026302458718419075, + -0.010919563472270966, + 0.029422741383314133, + 0.038488660007715225, + 0.06177400052547455, + 0.026608601212501526, + 0.0835871696472168, + 0.04342842847108841, + 0.006749723106622696, + 0.0043671149760484695, + -0.0627894401550293, + 0.11522842943668365, + 0.1276656687259674, + -0.037673670798540115, + 0.029498660936951637, + -0.03411189839243889, + 0.007968232035636902, + 0.05691046267747879, + -0.08458146452903748, + -0.051257744431495667, + 0.01903976872563362, + 0.024734729900956154, + 0.045076634734869, + 0.10741623491048813, + 0.02892608568072319, + 0.009291954338550568, + 0.10416583716869354, + -0.09102657437324524, + -0.08732734620571136, + -0.07047225534915924, + 0.044792789965867996, + -0.06465359032154083, + 0.07475265115499496, + 0.07118361443281174, + 0.0050682323053479195, + -0.003476560115814209, + 0.04940428584814072, + -0.008041362278163433, + 0.00932995229959488, + -0.025251735001802444, + -0.00887626688927412, + 0.03655785694718361, + -0.05850313603878021, + -0.009714930318295956, + 0.06718210875988007, + 0.017471838742494583, + 0.06314821541309357, + 0.021001707762479782, + 0.017348608002066612, + -0.09711773693561554, + 0.00856832042336464, + 0.08780636638402939, + 0.012186123058199883, + -0.04391637444496155, + -0.04549715295433998, + -0.0033802613615989685, + -0.05527162551879883, + 0.016970159485936165, + -0.028318775817751884, + 0.07493670284748077, + -0.0031198784708976746, + 0.03987174108624458, + 0.10714699327945709, + -0.003863329067826271, + 0.004510321654379368, + -0.03685054928064346, + -0.008681939914822578, + 0.03332715481519699, + 0.03084845468401909, + -0.11221206933259964, + -0.10365574061870575, + -0.06344129145145416, + 0.022486770525574684, + 0.00369067769497633, + 0.025880323722958565, + 0.06596258282661438, + -0.009321731515228748, + 0.0115674939006567, + -0.028061628341674805, + 0.03308183327317238, + -0.10043562948703766, + -0.054394111037254333, + -0.033737242221832275, + -0.07232873886823654, + 0.012167712673544884, + 0.08024148643016815, + 0.008952250704169273, + 0.028988581150770187, + -0.03271050006151199, + -0.06773829460144043, + -0.06748488545417786, + 0.0571545735001564, + 0.05134906619787216, + -0.02053200639784336, + 0.009943072684109211, + 0.06056932732462883, + 0.011697516776621342, + 0.01142505556344986, + 0.022412709891796112, + 0.1010124683380127, + -0.03607857972383499, + -0.048399388790130615, + -0.07639270275831223, + 0.04189855605363846, + 0.12902554869651794, + -0.08879778534173965, + -0.07785983383655548, + -0.09564165025949478, + -0.05752214044332504, + 0.019074978306889534, + -0.07030005753040314, + -0.007959501817822456, + 0.019897159188985825, + -0.05385321378707886, + -0.09478220343589783, + -0.13109785318374634, + 0.06463485211133957, + -0.010974442586302757, + -0.004489540588110685, + -0.07305482029914856, + 0.04138777405023575, + 0.026729801669716835, + -0.014840628951787949, + -0.043802786618471146, + 0.05128946155309677, + -0.019664419814944267, + -0.02324110083281994, + -0.002534065395593643, + 0.012591449543833733, + 0.0510978102684021, + -0.0857885554432869, + -0.02150963433086872, + -0.06154468655586243, + 0.09006279706954956, + -0.06946229934692383, + 0.11457448452711105, + -0.027412837371230125, + -0.026068881154060364, + -0.08111831545829773, + 0.03654753044247627, + -0.008012485690414906, + 0.047931745648384094, + 0.04473424702882767, + 0.040938958525657654, + 0.0036564096808433533, + -0.09383370727300644, + 0.06946577876806259, + 0.042330384254455566, + 0.008626967668533325, + -0.09750566631555557, + -0.02568056248128414, + -0.05529318377375603, + 0.008041676133871078, + -0.01950201578438282, + -0.039776209741830826, + 0.018483854830265045, + -0.007487908937036991, + 0.04015301913022995, + 0.048131756484508514, + 0.07871736586093903, + 0.02605525404214859, + -0.05583636462688446 + ] + }, + "p245_023.wav": { + "name": "p245", + "embedding": [ + 0.03908824548125267, + 0.1017199233174324, + -0.009959769435226917, + 0.021438581869006157, + -0.06452645361423492, + 0.044496528804302216, + -0.13400962948799133, + 0.1451302468776703, + -0.044776733964681625, + 0.11464640498161316, + -0.07916643470525742, + 0.12784340977668762, + -0.029615890234708786, + -0.1755208522081375, + -0.048016875982284546, + 0.05921188369393349, + -0.0343744233250618, + -0.045235276222229004, + -0.0074041178449988365, + -0.0253108162432909, + 0.039457403123378754, + 0.03610103577375412, + 0.03011571429669857, + 0.03964009881019592, + 0.02795795351266861, + 0.06703013181686401, + 0.016632018610835075, + 0.05980275571346283, + 0.03333541005849838, + -0.029680419713258743, + -0.03519735857844353, + 0.09383947402238846, + -0.04114807769656181, + 0.014151819981634617, + 0.053443919867277145, + -0.0067961798049509525, + 0.016943257302045822, + -0.06032857298851013, + -0.02663329243659973, + -0.00046618329361081123, + -0.039308350533246994, + 0.07699462026357651, + 0.04193534702062607, + -0.005273374263197184, + 0.02674288861453533, + 0.04383581504225731, + -0.0043047694489359856, + -0.0473567396402359, + -0.11646394431591034, + 0.14727148413658142, + 0.05183038488030434, + -0.00142720399890095, + -0.06901705265045166, + -0.06773066520690918, + 0.11674400418996811, + -0.031111136078834534, + -0.0977528765797615, + -0.029965033754706383, + 0.08769207447767258, + 0.15565212070941925, + -0.03476284071803093, + -0.04429098591208458, + 0.023429809138178825, + 0.13291653990745544, + 0.057654645293951035, + 0.07660049945116043, + 0.07403185218572617, + 0.10676908493041992, + -0.02657163515686989, + -0.0007726012845523655, + 0.05820402503013611, + 0.08041516691446304, + 0.01997154764831066, + -0.012673151679337025, + 0.008889789693057537, + 0.0164633821696043, + -0.010283536277711391, + 0.027073834091424942, + -0.025768082588911057, + -0.011276870965957642, + -0.033658891916275024, + 0.016812419518828392, + -0.011569165624678135, + 0.010936538688838482, + -0.01961156167089939, + 0.08063401281833649, + 0.019893674179911613, + 0.0028532263822853565, + 0.07736208289861679, + 0.029046129435300827, + 0.0002845727140083909, + 0.06905665993690491, + -0.07306993007659912, + -0.06884765625, + 0.017564628273248672, + -0.0046822004951536655, + 0.029821451753377914, + 0.07846148312091827, + 0.0375356562435627, + -0.012686869129538536, + 0.13154901564121246, + 0.05841303989291191, + -0.005561016034334898, + 0.023732321336865425, + -0.09533876925706863, + 0.12531165778636932, + 0.07549038529396057, + -0.021976590156555176, + 0.04789264127612114, + -0.04142708331346512, + 0.0662362203001976, + 0.05911421775817871, + -0.13633295893669128, + -0.08132922649383545, + 0.03302367776632309, + 0.044984545558691025, + -0.02104741893708706, + 0.10965011268854141, + -0.028814515098929405, + 0.035344772040843964, + 0.09868381917476654, + -0.06828127056360245, + -0.056365661323070526, + -0.01856410503387451, + 0.04307914897799492, + -0.07022472470998764, + 0.05234229564666748, + 0.05905531346797943, + -0.009590099565684795, + 0.010263609699904919, + 0.08055105805397034, + -0.0061597395688295364, + -0.003881992306560278, + 0.028562072664499283, + -0.057598669081926346, + 0.019651295617222786, + -0.0191297959536314, + 0.005933896638453007, + 0.043608468025922775, + 0.05449352785944939, + 0.04584034904837608, + 0.011709746904671192, + -0.03451947867870331, + -0.12400718033313751, + 0.007686857134103775, + 0.03464972600340843, + 0.08371372520923615, + -0.0009035574039444327, + -0.044929251074790955, + -0.043272312730550766, + -0.04334426671266556, + -0.001561360084451735, + 0.01567970961332321, + 0.08219204843044281, + -0.039747532457113266, + 0.010228430852293968, + 0.08703365921974182, + 0.025471672415733337, + -0.006671713199466467, + -0.052804186940193176, + -0.030194992199540138, + 0.0002452497137710452, + 0.04281293973326683, + -0.059373751282691956, + -0.07548919320106506, + 0.0015809343894943595, + 0.052883878350257874, + -0.027732735499739647, + 0.05769096314907074, + 0.03231029957532883, + 0.013555985875427723, + 0.03596971556544304, + -0.05700072646141052, + 0.022291073575615883, + -0.10057568550109863, + -0.06620828062295914, + -0.014416437596082687, + 0.015316369943320751, + -0.025401776656508446, + 0.063944011926651, + 0.034537337720394135, + 0.07000309973955154, + 0.011429321952164173, + -0.0725812315940857, + -0.08231204748153687, + 0.053027551621198654, + 0.06893660128116608, + 0.007796157151460648, + 0.0591251477599144, + 0.06391574442386627, + -0.03666124865412712, + 0.06755539029836655, + 0.05735276639461517, + 0.08449211716651917, + -0.030076559633016586, + 0.014660472981631756, + -0.05635940283536911, + 0.06003953889012337, + 0.06228463724255562, + -0.11223392188549042, + -0.07457417994737625, + -0.03092467039823532, + -0.05540286377072334, + 0.04038581624627113, + -0.00673317164182663, + 0.01929626055061817, + 0.013313712552189827, + -0.0018207458779215813, + -0.10298387706279755, + -0.08288252353668213, + 0.06628750264644623, + -0.0733165293931961, + 0.005856611765921116, + -0.07208412885665894, + 0.040309373289346695, + 0.1149497926235199, + 0.02881626971065998, + -0.004198829643428326, + -0.029416609555482864, + 0.03783728554844856, + -0.036783572286367416, + -0.012174882926046848, + 0.05171601101756096, + 0.029560891911387444, + -0.09624523669481277, + 0.011329907923936844, + -0.08156187832355499, + 0.06035470962524414, + -0.03657836839556694, + 0.1633358746767044, + 0.011731870472431183, + -0.05558416619896889, + -0.08446737378835678, + 0.01829644851386547, + -0.03290078416466713, + 0.05489852651953697, + 0.0303493719547987, + 0.04956279695034027, + 0.02715081349015236, + -0.0494561493396759, + 0.1296415776014328, + 0.04800746962428093, + -0.06840189546346664, + -0.07137420773506165, + -0.03960240259766579, + -0.03337593004107475, + 0.027055565267801285, + 0.027266275137662888, + -0.08271216601133347, + -0.040648285299539566, + 0.015020700171589851, + -0.02820698171854019, + 0.08464384078979492, + 0.1389710009098053, + 0.07099004834890366, + -0.1135907769203186 + ] + }, + "p245_001.wav": { + "name": "p245", + "embedding": [ + 0.015332179144024849, + 0.07108315825462341, + -0.020739970728754997, + 0.05744510889053345, + -0.04570154845714569, + 0.020833274349570274, + -0.1109994649887085, + 0.14159035682678223, + 0.009848130866885185, + 0.11420293152332306, + -0.07159987092018127, + 0.0914527103304863, + -0.0625762864947319, + -0.17988622188568115, + 0.052134789526462555, + 0.051672205328941345, + 0.04731632024049759, + -0.006856944411993027, + 0.003111025085672736, + -0.007992730475962162, + 0.027882717549800873, + 0.05588168278336525, + -0.014738529920578003, + -0.02105940505862236, + 0.01581038162112236, + 0.06336754560470581, + -0.04263804107904434, + -0.01843671128153801, + -0.029094256460666656, + -0.018652595579624176, + -0.02964254654943943, + 0.0827953964471817, + -0.0799579918384552, + 0.010914979502558708, + 0.06217946112155914, + 0.009177275002002716, + -0.07105202972888947, + 0.016001801937818527, + -0.01115439087152481, + -0.005310261622071266, + -0.10693271458148956, + 0.047822482883930206, + 0.015527957119047642, + -0.018014488741755486, + 0.08667831122875214, + 0.029291581362485886, + 0.0021342034451663494, + -0.0023415519390255213, + -0.0867738425731659, + 0.1013704240322113, + 0.05490349233150482, + -0.02102711796760559, + -0.0681600347161293, + -0.05408202111721039, + 0.043294474482536316, + 0.01799607463181019, + -0.09437404572963715, + -0.021127671003341675, + 0.09878145158290863, + 0.11597470939159393, + 0.012194476090371609, + -0.03993900120258331, + 0.0261235274374485, + 0.0897771418094635, + 0.04261494427919388, + 0.08973386883735657, + 0.04110422730445862, + 0.11391530930995941, + -0.03944727033376694, + -0.02352098375558853, + 0.03497697040438652, + 0.0508694052696228, + 0.08620239794254303, + -0.032662659883499146, + -0.015647606924176216, + 0.00278669036924839, + -0.028113259002566338, + -0.012908965349197388, + -0.017692675814032555, + -0.018312573432922363, + -0.014719038270413876, + -0.021705131977796555, + -0.007278572767972946, + -0.0012894890969619155, + -0.0078122434206306934, + 0.018887579441070557, + 0.12920019030570984, + 0.009379029273986816, + 0.06988713145256042, + 0.03569526970386505, + -0.025971459224820137, + 0.07317141443490982, + -0.1158798336982727, + -0.003239100333303213, + 0.0035500172525644302, + -0.022510454058647156, + 0.02235689014196396, + 0.1020098477602005, + 0.04558086395263672, + 0.010756200179457664, + 0.12658396363258362, + 0.0006218478083610535, + 0.03367367386817932, + 0.03445741534233093, + -0.09070102870464325, + 0.11754370480775833, + 0.0624704584479332, + -0.042367011308670044, + 0.058698706328868866, + -0.043965213000774384, + 0.0372648686170578, + 0.06139852851629257, + -0.09974567592144012, + -0.01718933880329132, + 0.0024605211801826954, + 0.01508396491408348, + -0.04705511033535004, + 0.16210293769836426, + 0.026749365031719208, + 0.009849561378359795, + 0.11299304664134979, + -0.1387653350830078, + -0.09164271503686905, + -0.005564861930906773, + 0.028440717607736588, + -0.12368398904800415, + 0.07504577934741974, + 0.05022487789392471, + -0.006364494562149048, + 0.05789971351623535, + 0.07559937238693237, + -0.008155264891684055, + 0.06495187431573868, + -0.022819023579359055, + -0.022629395127296448, + -0.01611892506480217, + -0.03801148384809494, + 0.018936779350042343, + 0.036104340106248856, + -0.008834347128868103, + 0.09331975877285004, + -0.02421494573354721, + -0.00135873444378376, + -0.1277925968170166, + 0.0049688429571688175, + 0.08407506346702576, + 0.061537016183137894, + -0.030716441571712494, + -0.035312190651893616, + -0.04310460388660431, + -0.10013379901647568, + 0.03536054864525795, + -0.011094405315816402, + 0.038348257541656494, + -0.02725199982523918, + -0.011467266827821732, + 0.1260988712310791, + 0.05621485784649849, + -0.029998809099197388, + -0.07546477019786835, + -0.05859825015068054, + -0.04499642923474312, + 0.04695644602179527, + -0.1449158936738968, + -0.09980586171150208, + -0.055393971502780914, + 0.017905019223690033, + 0.0026516574434936047, + 0.06350744515657425, + 0.058349281549453735, + 0.038489554077386856, + -0.0006957833538763225, + -0.0564144067466259, + -0.004356719553470612, + -0.08724237978458405, + -0.11274762451648712, + -0.04256569966673851, + -0.018790483474731445, + 0.005788655020296574, + 0.07858725637197495, + -0.009145157411694527, + 0.03569881618022919, + -0.01142931543290615, + -0.02560727298259735, + -0.10053502768278122, + 0.04588941112160683, + 0.00034770439378917217, + -0.02873968705534935, + 0.047554414719343185, + 0.06538181006908417, + -0.1378755271434784, + 0.04275937378406525, + 0.06216815114021301, + 0.1073300838470459, + -0.04981303960084915, + 0.08144046366214752, + -0.05596820265054703, + 0.06934529542922974, + 0.12503361701965332, + -0.05679711326956749, + -0.09968920052051544, + -0.041347332298755646, + -0.06743539869785309, + 0.03525843098759651, + -0.06051412224769592, + -0.009532234631478786, + -0.004692481830716133, + -0.015292897820472717, + -0.06887029111385345, + -0.08320097625255585, + 0.057233698666095734, + -0.016128353774547577, + -0.0017727082595229149, + -0.09885057806968689, + 0.0449804849922657, + 0.015024697408080101, + 0.06777267158031464, + -0.039914682507514954, + -0.01014675758779049, + 0.0651957169175148, + -0.01678445190191269, + 0.023181021213531494, + 0.10439378023147583, + 0.05277450382709503, + -0.05962442234158516, + -0.05271410197019577, + -0.04789105802774429, + 0.05983292683959007, + -0.04893389344215393, + 0.10914941132068634, + 0.008151409216225147, + -0.07194779068231583, + -0.05372968316078186, + 0.026354417204856873, + 0.039717897772789, + 0.00383058562874794, + 0.010209467262029648, + 0.07519416511058807, + 0.03247915208339691, + -0.021991681307554245, + 0.12093430757522583, + 0.02438914030790329, + 0.013897374272346497, + -0.013209586963057518, + -0.07147912681102753, + -0.06426887214183807, + 0.01133603323251009, + 0.0048578823916614056, + -0.12598922848701477, + 0.004515137057751417, + 0.018026068806648254, + 0.030099008232355118, + 0.002299480140209198, + 0.13964521884918213, + 0.052897028625011444, + -0.12555529177188873 + ] + }, + "p245_418.wav": { + "name": "p245", + "embedding": [ + 0.03042732924222946, + 0.08651362359523773, + -0.013920066878199577, + 0.048780761659145355, + -0.052090711891651154, + 0.08329790085554123, + -0.11538572609424591, + 0.11805260181427002, + -0.05403435230255127, + 0.1214764341711998, + -0.06727450340986252, + 0.1027962788939476, + -0.03265245258808136, + -0.1598365306854248, + -0.04812697693705559, + 0.06039876490831375, + -0.060169413685798645, + -0.03810255974531174, + -0.027802687138319016, + 0.0004598855448421091, + 0.0426812581717968, + 0.03234236687421799, + 0.03217286616563797, + 0.005338083952665329, + 0.026176458224654198, + 0.05210056155920029, + 0.01715407334268093, + 0.0640350729227066, + 0.04269653186202049, + -0.043983157724142075, + -0.031350284814834595, + 0.11005459725856781, + -0.032013725489377975, + 0.01277065183967352, + 0.03910341486334801, + 0.017702404409646988, + 0.009509921073913574, + -0.07261432707309723, + -0.017713073641061783, + 0.0029306281358003616, + -0.056677162647247314, + 0.07570306211709976, + 0.03297759220004082, + 0.0011304605286568403, + 0.032163284718990326, + 0.0020733103156089783, + -0.033347513526678085, + -0.044419534504413605, + -0.11861996352672577, + 0.1733040064573288, + 0.07114322483539581, + 0.00046034157276153564, + -0.06837894022464752, + -0.08171238005161285, + 0.11344584077596664, + 0.008522684685885906, + -0.11059318482875824, + -0.040410589426755905, + 0.07804276794195175, + 0.16771946847438812, + -0.00998427253216505, + -0.012965536676347256, + 0.007841771468520164, + 0.13953067362308502, + 0.046284958720207214, + 0.08596092462539673, + 0.061943650245666504, + 0.1144830510020256, + 0.023485522717237473, + 0.02887917123734951, + 0.06789934635162354, + 0.06649571657180786, + 0.012322461232542992, + -0.008861749432981014, + 0.026057785376906395, + -0.0032019380014389753, + -0.022234968841075897, + 0.03055218979716301, + -0.016919052228331566, + -0.027719389647245407, + -0.006482791155576706, + 0.004953575320541859, + -0.00019641872495412827, + 0.02074054628610611, + -0.0189328882843256, + 0.061738744378089905, + -0.0003138644096907228, + -0.007053555455058813, + 0.06543485820293427, + 0.03294426202774048, + -0.007979125715792179, + 0.05275658890604973, + -0.047497041523456573, + -0.10310500860214233, + 0.008370448835194111, + 0.012577819637954235, + 0.032337382435798645, + 0.07281038165092468, + 0.025696445256471634, + -0.02632003091275692, + 0.11227305978536606, + 0.04462633281946182, + -0.0026685483753681183, + 0.029009569436311722, + -0.10383844375610352, + 0.11793702840805054, + 0.06773589551448822, + 0.0013511746656149626, + 0.04369799420237541, + -0.035197317600250244, + 0.0898575484752655, + 0.07476542890071869, + -0.14476880431175232, + -0.06473158299922943, + 0.04074136167764664, + 0.011845901608467102, + -0.010365951806306839, + 0.1114029511809349, + 0.0005197376012802124, + 0.01257854700088501, + 0.10317005217075348, + -0.09022516012191772, + -0.05977262184023857, + -0.027801748365163803, + 0.05695301294326782, + -0.06449718028306961, + 0.03565460443496704, + 0.03788425028324127, + -0.017154905945062637, + -0.019174739718437195, + 0.06904801726341248, + -0.007908841595053673, + 0.01101063471287489, + 0.034281887114048004, + -0.0528271421790123, + 0.047352395951747894, + -0.04941331595182419, + 0.008191721513867378, + 0.0674145519733429, + 0.04438894987106323, + 0.05146746337413788, + -0.006602135952562094, + -0.030637752264738083, + -0.1019003689289093, + -0.0015331199392676353, + 0.05343484878540039, + 0.06839784979820251, + -0.015266354195773602, + -0.03592716157436371, + -0.047860078513622284, + -0.07134748995304108, + 0.03448622301220894, + -0.006113764829933643, + 0.09391947835683823, + -0.010928637348115444, + -0.021680442616343498, + 0.09492798149585724, + -0.010043883696198463, + -0.004402143880724907, + -0.03908437117934227, + -0.03171183168888092, + 0.029661845415830612, + 0.034044280648231506, + -0.07901380956172943, + -0.06244722008705139, + 0.018996838480234146, + 0.015304110944271088, + -0.029031287878751755, + 0.007591585628688335, + 0.022095542401075363, + 0.01805446296930313, + 0.028784144669771194, + -0.059311896562576294, + 0.013762134127318859, + -0.10258348286151886, + -0.04074089229106903, + -0.0035348222590982914, + -0.018314126878976822, + -0.02378804050385952, + 0.08394932746887207, + 0.01932479813694954, + 0.02460772916674614, + 0.015703296288847923, + -0.08019258081912994, + -0.05558403581380844, + 0.0718565583229065, + 0.07005901634693146, + 0.022349661216139793, + 0.06703704595565796, + 0.06528645753860474, + -0.021125029772520065, + 0.03852381184697151, + 0.05289817973971367, + 0.10172756761312485, + -0.022602692246437073, + -0.011527790687978268, + -0.07194548845291138, + 0.08536722511053085, + 0.06805568933486938, + -0.10020886361598969, + -0.07833231985569, + -0.026089251041412354, + -0.06174907088279724, + 0.044399045407772064, + -0.04184674471616745, + 0.0021067787893116474, + 0.026352612301707268, + -0.026897024363279343, + -0.11908938735723495, + -0.0906689390540123, + 0.08755158632993698, + -0.08036810159683228, + -0.031581226736307144, + -0.06086207926273346, + 0.04355759546160698, + 0.09889324009418488, + 0.03754740208387375, + -0.02637976035475731, + 0.005788288079202175, + 0.05877317488193512, + -0.07560603320598602, + -0.024257352575659752, + 0.042853742837905884, + 0.0026402100920677185, + -0.10282234847545624, + 0.00972248986363411, + -0.07420995086431503, + 0.06533047556877136, + -0.06502285599708557, + 0.15314491093158722, + -0.012376468628644943, + -0.05757790058851242, + -0.07536821812391281, + 0.04355122894048691, + -0.024933792650699615, + 0.03695180267095566, + 0.042136382311582565, + 0.05257222056388855, + 0.029036542400717735, + -0.06018456071615219, + 0.13721179962158203, + 0.030541544780135155, + -0.031840644776821136, + -0.06002620980143547, + -0.02252354845404625, + -0.032839205116033554, + 0.03107338957488537, + 0.007079975213855505, + -0.0801437497138977, + -0.01041292492300272, + 0.024479543790221214, + -0.02416488528251648, + 0.061183638870716095, + 0.13520441949367523, + 0.06480760872364044, + -0.09626524150371552 + ] + }, + "p245_035.wav": { + "name": "p245", + "embedding": [ + 0.047512274235486984, + 0.08609914034605026, + -0.046957552433013916, + 0.027574673295021057, + -0.03924497961997986, + 0.03821911662817001, + -0.13186554610729218, + 0.10746931284666061, + -0.027431121096014977, + 0.12437397241592407, + -0.04287900775671005, + 0.11486640572547913, + -0.015343727543950081, + -0.1584114283323288, + -0.025371000170707703, + 0.04812903702259064, + -0.021808108314871788, + -0.027373217046260834, + -0.007206720300018787, + -0.021419469267129898, + 0.06363151967525482, + 0.04318461939692497, + 0.036855049431324005, + -0.022972911596298218, + -0.002549968659877777, + 0.06865663826465607, + 0.00332033634185791, + 0.019372913986444473, + 0.004853181075304747, + -0.03148690611124039, + -0.018673807382583618, + 0.08538803458213806, + -0.02187051624059677, + 0.007954302243888378, + 0.0301038920879364, + 0.008952243253588676, + -0.02129673957824707, + -0.05781055614352226, + -0.007296671159565449, + 0.015679871663451195, + -0.03887028619647026, + 0.06691883504390717, + 0.01664990559220314, + -0.03335646912455559, + 0.05290444940328598, + -0.053276486694812775, + -0.037761978805065155, + -0.019499806687235832, + -0.0798143744468689, + 0.14589202404022217, + 0.09664269536733627, + 0.027677249163389206, + -0.06830545514822006, + -0.03380965813994408, + 0.09383022040128708, + 0.018186433240771294, + -0.0948326587677002, + -0.0416414812207222, + 0.04243795573711395, + 0.14704479277133942, + 0.005419223569333553, + -0.02080828696489334, + 0.041589777916669846, + 0.10111330449581146, + 0.021087510511279106, + 0.06361795216798782, + 0.10026641935110092, + 0.07566763460636139, + -0.00036413720226846635, + 0.013197584077715874, + 0.02729940041899681, + 0.09100913256406784, + 0.014969943091273308, + -0.031735554337501526, + 0.017868466675281525, + -0.025481805205345154, + -0.03786304593086243, + -0.011180998757481575, + -0.008563697338104248, + -0.045560143887996674, + -0.030515586957335472, + -0.009088415652513504, + -0.0014375986065715551, + 0.02741953730583191, + -0.033017996698617935, + 0.017747124657034874, + 0.03437551483511925, + -0.040561579167842865, + 0.04603039473295212, + 0.045318882912397385, + 0.015366427600383759, + 0.022925768047571182, + -0.05694061145186424, + -0.08957916498184204, + 0.02947296015918255, + 0.02426670305430889, + 0.01292937807738781, + 0.08937977254390717, + 0.031166646629571915, + 0.00403913389891386, + 0.09304189682006836, + 0.038550134748220444, + -0.01802215538918972, + -0.009072205051779747, + -0.07091206312179565, + 0.1043706089258194, + 0.09936642646789551, + -0.0253828726708889, + 0.053714536130428314, + -0.05511198565363884, + 0.03667735308408737, + 0.04630982503294945, + -0.1055835410952568, + -0.05516941472887993, + 0.034832291305065155, + 0.03261159360408783, + 0.025443535298109055, + 0.11465909332036972, + 0.03726130723953247, + 0.030363252386450768, + 0.09185874462127686, + -0.08185656368732452, + -0.09117460250854492, + -0.06671448051929474, + 0.0653037577867508, + -0.07601243257522583, + 0.08106499910354614, + 0.05676394701004028, + -0.0019281134009361267, + -0.0022406044881790876, + 0.047236502170562744, + -0.0026236686389893293, + 0.02866353653371334, + -0.005930222570896149, + -0.03171057999134064, + 0.02295582741498947, + -0.059072356671094894, + 0.010003656148910522, + 0.03996270149946213, + 0.0051517183892428875, + 0.05573644861578941, + 0.0027772970497608185, + -0.0032236739061772823, + -0.10150401294231415, + 0.008834552951157093, + 0.05883560702204704, + 0.045625656843185425, + -0.027181189507246017, + -0.054899148643016815, + -0.01451468002051115, + -0.06837444007396698, + 0.002241502283141017, + -0.045617520809173584, + 0.07822269201278687, + -0.0005640421877615154, + 0.02417202852666378, + 0.07696916162967682, + 0.000522322952747345, + -0.005944509990513325, + -0.03242078423500061, + -0.013525960966944695, + 0.013982011005282402, + 0.03526326268911362, + -0.09811844676733017, + -0.07592052221298218, + -0.033725377172231674, + 0.014820109121501446, + -0.015350266359746456, + 0.02785833738744259, + 0.05280764028429985, + 0.004163810517638922, + 0.02141760103404522, + -0.07109146565198898, + 0.02428961917757988, + -0.09811060130596161, + -0.05941072106361389, + -0.027518145740032196, + -0.02331431210041046, + -0.0032530315220355988, + 0.08884786814451218, + 0.02086341381072998, + 0.028346367180347443, + -0.027570350095629692, + -0.057705070823431015, + -0.07781679183244705, + 0.05320239067077637, + 0.06403405964374542, + -0.0035114018246531487, + 0.03885791823267937, + 0.04390726983547211, + -0.02458917163312435, + 0.022658567875623703, + 0.036476388573646545, + 0.08441587537527084, + -0.046668022871017456, + -0.006689698901027441, + -0.07432778179645538, + 0.05822507664561272, + 0.11375582218170166, + -0.08773978054523468, + -0.07553941011428833, + -0.0564013347029686, + -0.07821381092071533, + 0.020092494785785675, + -0.04410077631473541, + 0.000687162100803107, + 0.027942299842834473, + -0.03650069236755371, + -0.12579014897346497, + -0.10675406455993652, + 0.0777093842625618, + -0.03278997540473938, + -0.006179330870509148, + -0.06986880302429199, + 0.0446537584066391, + 0.07444396615028381, + 0.02134857140481472, + -0.05210947245359421, + -0.0038992948830127716, + 0.020999623462557793, + -0.03290301188826561, + 0.004802831914275885, + 0.03310735523700714, + 0.052572257816791534, + -0.10819780826568604, + -0.0009580999612808228, + -0.06278321146965027, + 0.06290467083454132, + -0.07500292360782623, + 0.11263549327850342, + 0.007468120660632849, + -0.056552112102508545, + -0.0906960591673851, + 0.04758359119296074, + 0.021654268726706505, + 0.03939587622880936, + 0.01717129349708557, + 0.050779130309820175, + 0.00842757523059845, + -0.09632016718387604, + 0.08334605395793915, + 0.051021527498960495, + 0.0013994028558954597, + -0.08277277648448944, + -0.005998106673359871, + -0.020790688693523407, + 0.0514594130218029, + -0.0009228637209162116, + -0.06089923903346062, + -0.006041245069354773, + 0.005709233693778515, + 0.013314230367541313, + 0.06248827278614044, + 0.11817269772291183, + 0.03676634654402733, + -0.10958908498287201 + ] + }, + "p245_226.wav": { + "name": "p245", + "embedding": [ + 0.017812533304095268, + 0.09059041738510132, + -0.03313907980918884, + 0.04103659838438034, + -0.07077332586050034, + 0.0858350545167923, + -0.09737630188465118, + 0.08155152946710587, + -0.08273117989301682, + 0.12696227431297302, + -0.06535467505455017, + 0.07652875781059265, + -0.054977089166641235, + -0.1634788066148758, + -0.019013606011867523, + 0.06683763116598129, + -0.05668655410408974, + -0.02705809473991394, + -0.08173489570617676, + -0.014207035303115845, + 0.021991947665810585, + -0.0008913557976484299, + 0.0338105782866478, + -0.043577641248703, + 0.01690848171710968, + 0.061247799545526505, + -0.007964516058564186, + 0.014899916015565395, + -0.0015098992735147476, + -0.030810566619038582, + -0.041758790612220764, + 0.11071734130382538, + -0.048800788819789886, + -0.02021772228181362, + 0.03633880615234375, + 0.007430911995470524, + -0.021571576595306396, + -0.06781338155269623, + 0.023993993178009987, + -0.013845808804035187, + -0.04508243501186371, + 0.06458313018083572, + 0.01562678813934326, + -0.007549887988716364, + 0.03832894191145897, + -0.032098378986120224, + -0.04359281063079834, + -0.021026315167546272, + -0.09502652287483215, + 0.14071117341518402, + 0.0716174989938736, + -0.014656499028205872, + -0.07088983803987503, + -0.06469035148620605, + 0.1039232462644577, + 0.021482126787304878, + -0.12525664269924164, + -0.08519650995731354, + 0.07195033133029938, + 0.14371412992477417, + -0.0143812270835042, + 0.0027439752593636513, + -0.0018545370548963547, + 0.08409930765628815, + 0.032359957695007324, + 0.12321692705154419, + 0.050845690071582794, + 0.08650851249694824, + 0.01957816071808338, + 0.042425885796546936, + 0.07798807322978973, + 0.025242211297154427, + 0.017986726015806198, + -0.027062153443694115, + 0.05001316964626312, + -0.041238922625780106, + -0.021431762725114822, + 0.02151731587946415, + -0.011262292042374611, + -0.05123452469706535, + -0.007807143963873386, + -0.02646128460764885, + 0.015259671956300735, + -0.0050367871299386024, + -0.018694862723350525, + 0.03231633082032204, + 0.049393001943826675, + -0.009402278810739517, + 0.08503606170415878, + 0.05327557027339935, + -0.020933054387569427, + 0.0507267564535141, + -0.05928286910057068, + -0.07814568281173706, + 0.0231265090405941, + 0.010647416114807129, + -0.006972522474825382, + 0.054435472935438156, + 0.020305711776018143, + -0.020595472306013107, + 0.07533472031354904, + 0.062298484146595, + 0.0049236612394452095, + 0.038266535848379135, + -0.09032192826271057, + 0.13072529435157776, + 0.08264055848121643, + -0.0016047056997194886, + 0.01971760205924511, + -0.002422597259283066, + 0.06372210383415222, + 0.08181428164243698, + -0.11387448012828827, + -0.06097695976495743, + 0.0058185202069580555, + -0.03437022492289543, + -0.026582656428217888, + 0.10046318173408508, + 0.010077845305204391, + -0.01973363757133484, + 0.12020901590585709, + -0.09582118690013885, + -0.07433643937110901, + -0.017314458265900612, + 0.02952229604125023, + -0.06504113972187042, + 0.019193297252058983, + 0.07229027152061462, + -0.014313793741166592, + 0.006998042576014996, + 0.07392776757478714, + -0.00953326653689146, + 0.013012412935495377, + 0.05263940244913101, + -0.0539824441075325, + 0.05201076343655586, + -0.029374677687883377, + -0.008439918048679829, + 0.07707489281892776, + 0.03963133692741394, + 0.06181463971734047, + -0.03984887897968292, + 0.023428667336702347, + -0.07353004068136215, + 0.007975846529006958, + 0.06959986686706543, + 0.034159399569034576, + -0.020396485924720764, + 0.02756473794579506, + -0.03465186804533005, + -0.09888540208339691, + 0.03113856539130211, + -0.03112836368381977, + 0.10586914420127869, + -0.016313310712575912, + -0.010148300789296627, + 0.10745478421449661, + 0.02456034906208515, + 0.0011929835891351104, + -0.08267434686422348, + -0.036593787372112274, + 0.06966713070869446, + 0.05008133500814438, + -0.09171774238348007, + -0.046621330082416534, + -0.003816711250692606, + 0.03263888135552406, + -0.019197531044483185, + 0.024892134591937065, + 0.07395240664482117, + 0.01321241445839405, + 0.022703152149915695, + -0.06322157382965088, + 0.06555382907390594, + -0.06085039675235748, + -0.014930887147784233, + -0.01683466136455536, + -0.07916229963302612, + -0.021217316389083862, + 0.08617821335792542, + 0.009829986840486526, + -0.009620287455618382, + -0.014620725065469742, + -0.08855455368757248, + -0.05156542360782623, + 0.06566715985536575, + 0.06902584433555603, + -0.0161186084151268, + 0.05520292744040489, + 0.051071230322122574, + -0.02909225970506668, + 0.007875243201851845, + 0.06917604058980942, + 0.10452248156070709, + -0.03878478333353996, + -0.0131932832300663, + -0.09000295400619507, + 0.06527124345302582, + 0.08763380348682404, + -0.10467067360877991, + -0.0676594004034996, + -0.04176659137010574, + -0.031584903597831726, + 0.05053078010678291, + -0.06521078944206238, + -0.02410782314836979, + 0.05019301921129227, + -0.03197476267814636, + -0.09199391305446625, + -0.11977519094944, + 0.12044841796159744, + -0.052169881761074066, + -0.01880607008934021, + -0.07795597612857819, + 0.02965570241212845, + 0.02910565584897995, + 0.028086815029382706, + -0.06644060462713242, + 0.03515669330954552, + 0.046732522547245026, + -0.05202682316303253, + 0.02212521620094776, + 0.04053444415330887, + 0.0047126454301178455, + -0.08312739431858063, + 0.0004059639759361744, + -0.09185010194778442, + 0.0974762812256813, + -0.04912235960364342, + 0.16276174783706665, + -0.021926935762166977, + -0.015017393045127392, + -0.08026532828807831, + 0.0661572590470314, + -0.016571369022130966, + 0.043669480830430984, + 0.0596039779484272, + 0.0794236809015274, + 0.02443462237715721, + -0.04566018655896187, + 0.11101384460926056, + -0.003603626973927021, + -0.005719837266951799, + -0.0508153960108757, + 0.014219369739294052, + -0.07715022563934326, + 0.02015441283583641, + -0.016168801113963127, + -0.102598175406456, + 0.022079816088080406, + 0.03219984471797943, + -0.011841347441077232, + 0.07455947995185852, + 0.11495341360569, + 0.08404475450515747, + -0.0624585822224617 + ] + }, + "p245_299.wav": { + "name": "p245", + "embedding": [ + 0.06525465846061707, + 0.10495209693908691, + 0.03223846107721329, + 0.016825005412101746, + -0.022490717470645905, + 0.0565137080848217, + -0.09467238932847977, + 0.09756150096654892, + -0.04944169148802757, + 0.1523725688457489, + -0.11396205425262451, + 0.10953082144260406, + -0.03651455044746399, + -0.1839219629764557, + -0.08920477330684662, + 0.04318549856543541, + -0.1008606106042862, + 0.0006701675010845065, + -0.06478724628686905, + -0.025530997663736343, + 0.0459497906267643, + 0.054662637412548065, + 0.07263357192277908, + -0.0009710810845717788, + 0.04059436917304993, + 0.07352381944656372, + 0.019158611074090004, + 0.07684890180826187, + 0.04121684283018112, + -0.10462955385446548, + -0.028435807675123215, + 0.12060249596834183, + -0.021402571350336075, + 0.029443880543112755, + 0.02644909732043743, + 0.012790137901902199, + 0.03859560564160347, + -0.03909823298454285, + -0.02449653670191765, + 0.023418409749865532, + -0.022774219512939453, + 0.06648801267147064, + -0.0018441944848746061, + -0.003679991699755192, + 0.03021998703479767, + 0.0245768204331398, + -0.03373754769563675, + -0.04800606891512871, + -0.10045932978391647, + 0.17561951279640198, + 0.06669551879167557, + 0.022984713315963745, + -0.07473025470972061, + -0.0914839655160904, + 0.1033722385764122, + -0.04138606786727905, + -0.1324692666530609, + -0.015400592237710953, + 0.07188437879085541, + 0.1745031625032425, + -0.02837865985929966, + -0.04367165267467499, + 0.029865633696317673, + 0.1106882244348526, + 0.022444233298301697, + 0.085270456969738, + 0.0994037613272667, + 0.05433196946978569, + 0.009999201633036137, + 0.046106431633234024, + 0.0537010096013546, + 0.07132069766521454, + 0.07379911839962006, + -0.026058921590447426, + 0.024111108854413033, + -0.011033689603209496, + -0.020490849390625954, + 0.007766140624880791, + -0.014132874086499214, + 0.0008325775270350277, + -0.012159896083176136, + -0.004228881560266018, + -0.007673243060708046, + -0.030775906518101692, + -0.03162151202559471, + 0.050704240798950195, + -0.02407735399901867, + -0.01223254669457674, + 0.07154654711484909, + 0.057108353823423386, + 0.02514728531241417, + 0.03744937852025032, + -0.03559383004903793, + -0.10221049189567566, + 0.004771812818944454, + 0.006398889701813459, + 0.021163037046790123, + 0.05676198750734329, + 0.05728333070874214, + -0.03295552730560303, + 0.1011909544467926, + 0.057710736989974976, + 0.003964595962315798, + 0.0016684905858710408, + -0.12661729753017426, + 0.09040845185518265, + 0.12222171574831009, + -0.017466116696596146, + 0.03753943368792534, + 0.010324040427803993, + 0.09317605942487717, + 0.10224784910678864, + -0.14613954722881317, + -0.07852289080619812, + -0.01632460206747055, + -0.021364035084843636, + 0.024501658976078033, + 0.046979501843452454, + -0.04010120779275894, + 0.010432679206132889, + 0.09373456984758377, + -0.06838951259851456, + -0.03329191729426384, + -0.04200923815369606, + 0.03089362382888794, + -0.10082848370075226, + 0.04401632770895958, + 0.03614797443151474, + -0.0037154927849769592, + -0.025383666157722473, + 0.08150732517242432, + -0.024260053411126137, + -0.009058866649866104, + -0.0022542846854776144, + -0.06266731023788452, + 0.00518936850130558, + -0.06299592554569244, + 0.00224533979780972, + 0.07850766181945801, + 0.047631315886974335, + 0.030845433473587036, + 0.019286898896098137, + -0.057110559195280075, + -0.08896134048700333, + 0.018198121339082718, + 0.04260723292827606, + 0.008305331692099571, + -0.007923095487058163, + -0.01071025338023901, + -0.03632080554962158, + -0.04154243320226669, + 0.08141613006591797, + -0.0034014841075986624, + 0.07047772407531738, + 0.0032769411336630583, + -0.013654384762048721, + 0.12524522840976715, + -0.009069817140698433, + -0.012858973816037178, + -0.050339873880147934, + -0.012125964276492596, + 0.031177598983049393, + 0.028574947267770767, + -0.0954546183347702, + -0.06267496198415756, + 0.020996076986193657, + 0.009550933726131916, + -0.004062483552843332, + 0.04714687168598175, + 0.06491273641586304, + -0.01572195254266262, + 0.02811150625348091, + -0.040634118020534515, + 0.016217274591326714, + -0.10074228048324585, + -0.07388980686664581, + -0.005860468838363886, + -0.0651792660355568, + -0.002756331115961075, + 0.07921024411916733, + 0.012623680755496025, + -0.006509409751743078, + -0.01404818519949913, + -0.11291965842247009, + -0.06609392911195755, + 0.0731973797082901, + 0.09069140255451202, + 0.043645575642585754, + 0.05095747858285904, + 0.053662076592445374, + -0.026429863646626472, + 0.11103732138872147, + 0.05484195426106453, + 0.13079118728637695, + -0.032712168991565704, + 0.02296675741672516, + -0.06567157804965973, + 0.04224824532866478, + 0.05530143901705742, + -0.08168598264455795, + -0.10931160300970078, + -0.044377122074365616, + -0.0723477303981781, + 0.08402661234140396, + 0.014698334969580173, + 0.009212006814777851, + 0.05181252956390381, + -0.015379744581878185, + -0.07406057417392731, + -0.0743553563952446, + 0.11936365813016891, + -0.026120983064174652, + -0.050299275666475296, + -0.06002526730298996, + 0.049183186143636703, + 0.05959730222821236, + 0.026089487597346306, + -0.0026231701485812664, + 0.04825114831328392, + 0.030927781015634537, + -0.08415275067090988, + -0.05903004854917526, + 0.02372831664979458, + -0.024885375052690506, + -0.0731138363480568, + 0.00032999555696733296, + -0.11139626055955887, + 0.07734385877847672, + -0.06374754756689072, + 0.13184620440006256, + -0.04206470027565956, + -0.06348712742328644, + -0.07138999551534653, + 0.06452766060829163, + -0.05767722800374031, + 0.06281332671642303, + 0.08663783222436905, + 0.05028331279754639, + 0.023744475096464157, + -0.09078331291675568, + 0.09316637367010117, + 0.021749479696154594, + -0.042131755501031876, + -0.07219576835632324, + -0.03430481627583504, + -0.0368807390332222, + -0.003160016844049096, + -0.015943780541419983, + -0.06629819422960281, + 0.01755841262638569, + 0.0013367170467972755, + -0.025492778047919273, + 0.05650454759597778, + 0.10607189685106277, + 0.03448333963751793, + -0.08789954334497452 + ] + }, + "p245_344.wav": { + "name": "p245", + "embedding": [ + 0.05785099416971207, + 0.1109224408864975, + -0.007159736007452011, + 0.008349551819264889, + -0.0435284748673439, + 0.08217641711235046, + -0.13609643280506134, + 0.1284220814704895, + -0.05251353979110718, + 0.14806871116161346, + -0.08109495043754578, + 0.09958012402057648, + -0.014049846678972244, + -0.1978411078453064, + -0.035785600543022156, + 0.051955997943878174, + -0.04597517102956772, + -0.0016738830599933863, + -0.04772093892097473, + -0.010143155232071877, + 0.028294147923588753, + 0.02395155280828476, + 0.00914748478680849, + -0.02986595779657364, + 0.04369159787893295, + 0.05366864055395126, + -0.005277041345834732, + 0.030500197783112526, + -0.005059400107711554, + -0.04588552936911583, + -0.0467258058488369, + 0.13302773237228394, + -0.047579213976860046, + 0.026921693235635757, + 0.08929920196533203, + 0.0012285778066143394, + -0.017531603574752808, + -0.06672068685293198, + -0.010465852916240692, + 0.006913275923579931, + -0.03499038890004158, + 0.07198087126016617, + 0.04544607177376747, + 0.007247472647577524, + 0.04198122397065163, + 0.04771246761083603, + 0.010499674826860428, + -0.06133449077606201, + -0.06975804269313812, + 0.16359329223632812, + 0.04251303896307945, + -0.010465221479535103, + -0.07099996507167816, + -0.07582181692123413, + 0.09738533198833466, + -0.00836309976875782, + -0.11989572644233704, + -0.03652895241975784, + 0.09124121814966202, + 0.1507948487997055, + -0.03502993285655975, + -0.04249962419271469, + -0.0014890988823026419, + 0.11999700963497162, + 0.010711725801229477, + 0.11983908712863922, + 0.05363166332244873, + 0.10856938362121582, + 0.006699001416563988, + 0.04155507683753967, + 0.06656653434038162, + 0.047099314630031586, + 0.052688296884298325, + -0.047392070293426514, + 0.036343201994895935, + -0.005509236361831427, + -0.037099990993738174, + 0.015293164178729057, + -0.03229137510061264, + -0.002235549734905362, + -0.011757569387555122, + 0.0027793976478278637, + 0.019965749233961105, + 0.00708624254912138, + -0.017573408782482147, + 0.032505013048648834, + 0.040242984890937805, + -0.007144433446228504, + 0.07299722731113434, + 0.06345395743846893, + 0.007595045492053032, + 0.05285285413265228, + -0.08416520059108734, + -0.11388155817985535, + 0.04209868982434273, + -0.0005669667152687907, + 0.0016788875218480825, + 0.07130926847457886, + 0.04701681062579155, + -0.017556920647621155, + 0.09558342397212982, + 0.050410110503435135, + -0.0016123120440170169, + 0.03228164091706276, + -0.1072370707988739, + 0.1308879256248474, + 0.08197914063930511, + -0.013330936431884766, + 0.0350673533976078, + -0.06423955410718918, + 0.09303425252437592, + 0.09237924218177795, + -0.16140779852867126, + -0.07283392548561096, + 0.03918175399303436, + -0.008261866867542267, + -0.013359136879444122, + 0.11424532532691956, + -0.02375209704041481, + -0.005212510470300913, + 0.09676734358072281, + -0.09837020933628082, + -0.060571637004613876, + -0.03379792720079422, + 0.025965919718146324, + -0.09258256107568741, + 0.04301176220178604, + 0.044763460755348206, + -0.014842348173260689, + -0.002080074045807123, + 0.08291754871606827, + -0.0008366527035832405, + -0.002387942746281624, + 0.004649616777896881, + -0.019002005457878113, + 0.04031208157539368, + -0.023888621479272842, + 0.022209666669368744, + 0.0252758227288723, + 0.046621281653642654, + 0.03824624419212341, + 0.00593279954046011, + -0.028868485242128372, + -0.08815938234329224, + 0.003064821008592844, + 0.04442959278821945, + 0.06529945135116577, + -0.02092544361948967, + -0.002192132640630007, + -0.028183037415146828, + -0.08209900557994843, + 0.03580604866147041, + -0.026423681527376175, + 0.0711858868598938, + 0.02154758758842945, + -0.004989531822502613, + 0.12286464124917984, + 0.03290189057588577, + -0.005588519386947155, + -0.07340742647647858, + -0.026646949350833893, + 0.029122980311512947, + 0.05568907409906387, + -0.11040371656417847, + -0.06192261725664139, + 0.0011645122431218624, + -0.016356736421585083, + -0.025905780494213104, + 0.02242409810423851, + 0.04045805335044861, + 0.02268514223396778, + 0.05503729358315468, + -0.07334285229444504, + 0.0019255736842751503, + -0.13436110317707062, + -0.05416038632392883, + -0.025928620249032974, + -0.039887990802526474, + -0.010550256818532944, + 0.09001092612743378, + -0.0047018942423164845, + 0.01399797573685646, + -0.02610042691230774, + -0.05919145047664642, + -0.046540625393390656, + 0.08017183840274811, + 0.08122405409812927, + 0.0015265726251527667, + 0.03560664504766464, + 0.026534922420978546, + -0.023910829797387123, + 0.040683895349502563, + 0.07533729076385498, + 0.11010071635246277, + -0.022893184795975685, + 0.03910081833600998, + -0.07094786316156387, + 0.11056504398584366, + 0.07315543293952942, + -0.09186962246894836, + -0.11349812895059586, + -0.015909504145383835, + -0.037440814077854156, + 0.027942873537540436, + -0.0347382128238678, + -0.009762267582118511, + 0.004904330708086491, + -0.018296372145414352, + -0.0684630423784256, + -0.08263783156871796, + 0.0775475949048996, + -0.05198180675506592, + -0.013393385335803032, + -0.08564633131027222, + 0.061585888266563416, + 0.08239369839429855, + 0.040338799357414246, + -0.05126342922449112, + 0.005704818293452263, + 0.06052856519818306, + -0.060382381081581116, + -0.01515639666467905, + 0.016332531347870827, + 0.01277819462120533, + -0.08798089623451233, + 0.018368098884820938, + -0.04996307194232941, + 0.08702942728996277, + -0.0796576589345932, + 0.16390392184257507, + -0.014727666042745113, + -0.07781647145748138, + -0.05855898559093475, + 0.03564026579260826, + -0.015868691727519035, + 0.01871754601597786, + 0.04221160337328911, + 0.06321880221366882, + 0.021970443427562714, + -0.05272405967116356, + 0.1074758768081665, + 0.005036352202296257, + -0.0061488039791584015, + -0.04770372807979584, + -0.04779090732336044, + -0.04319775104522705, + 0.02141861990094185, + -0.0026098531670868397, + -0.1130748987197876, + 0.007606293074786663, + 0.03627312183380127, + -0.013938918709754944, + 0.052663687616586685, + 0.13975360989570618, + 0.06305785477161407, + -0.12126585841178894 + ] + }, + "p245_360.wav": { + "name": "p245", + "embedding": [ + 0.04818341135978699, + 0.0892372876405716, + -0.023963045328855515, + 0.03353828936815262, + -0.0587724894285202, + 0.04637666046619415, + -0.1390831172466278, + 0.13001206517219543, + -0.028515413403511047, + 0.13336704671382904, + -0.06780992448329926, + 0.12324316054582596, + -0.00434302631765604, + -0.20527401566505432, + -0.03509523347020149, + 0.052356064319610596, + -0.05108198896050453, + -0.04220440983772278, + -0.02751733362674713, + -0.024607710540294647, + 0.05460461974143982, + 0.0598616898059845, + 0.024827798828482628, + -0.0009294659830629826, + 0.0215434767305851, + 0.06283250451087952, + 0.007106424774974585, + 0.04856424406170845, + 0.019958490505814552, + -0.05086905509233475, + -0.04544483870267868, + 0.11000079661607742, + -0.04285122826695442, + 0.010822150856256485, + 0.04023807495832443, + -0.0172361321747303, + 0.004100871738046408, + -0.05445122346282005, + -0.03459722921252251, + 0.019841361790895462, + -0.04251132905483246, + 0.07924088835716248, + 0.049969062209129333, + -0.007279278244823217, + 0.049436770379543304, + 0.02144922874867916, + -0.02620839700102806, + -0.05495361238718033, + -0.10778412222862244, + 0.17434734106063843, + 0.07190129160881042, + 0.004165538586676121, + -0.05924128741025925, + -0.06530208140611649, + 0.1076882928609848, + -0.005999373272061348, + -0.11085349321365356, + -0.033510591834783554, + 0.07840707898139954, + 0.15708011388778687, + -0.020719420164823532, + -0.04222678393125534, + 0.035200491547584534, + 0.12964297831058502, + 0.0483706071972847, + 0.08025745302438736, + 0.07878462970256805, + 0.10153041779994965, + -0.007564951665699482, + 0.014279303140938282, + 0.062808096408844, + 0.08337651193141937, + 0.03345275670289993, + -0.027589987963438034, + 0.032149627804756165, + 0.010095231235027313, + -0.02473561465740204, + -0.0009514203993603587, + -0.01662163808941841, + -0.0019060338381677866, + -0.0013230836484581232, + 0.011667110957205296, + 0.008785568177700043, + 0.02372272126376629, + -0.03692757338285446, + 0.05743300914764404, + 0.034976400434970856, + -0.001934751751832664, + 0.06716115772724152, + 0.034734297543764114, + 0.01959652453660965, + 0.06311195343732834, + -0.07915162295103073, + -0.09368149936199188, + 0.033322520554065704, + 0.011361178010702133, + 0.02762276493012905, + 0.07484801113605499, + 0.04263082146644592, + -0.02613668702542782, + 0.12353827804327011, + 0.04825718328356743, + -0.017903637140989304, + 0.029046356678009033, + -0.09762896597385406, + 0.11958770453929901, + 0.09574230760335922, + -0.016620857641100883, + 0.05462227016687393, + -0.05322267860174179, + 0.08577287197113037, + 0.06266245990991592, + -0.1443309336900711, + -0.07345615327358246, + 0.043604299426078796, + 0.026158498600125313, + -0.012653142213821411, + 0.13935181498527527, + -0.006468495354056358, + 0.03820013999938965, + 0.10803616046905518, + -0.08957557380199432, + -0.059089384973049164, + -0.03278517723083496, + 0.05207153409719467, + -0.09878183901309967, + 0.06484998762607574, + 0.05092233419418335, + -0.021630026400089264, + 0.005786439403891563, + 0.07191776484251022, + -0.019467100501060486, + 0.009732222184538841, + 0.0004570989403873682, + -0.03916069120168686, + 0.034367792308330536, + -0.03271656483411789, + 0.0025011892430484295, + 0.042799726128578186, + 0.02957453764975071, + 0.047085750848054886, + -0.0011959981638938189, + -0.03680147975683212, + -0.13563141226768494, + 0.020480960607528687, + 0.026251450181007385, + 0.07421793043613434, + -0.007241176441311836, + -0.0312972366809845, + -0.04691696912050247, + -0.07139088213443756, + 0.019030258059501648, + -0.01212640292942524, + 0.07105046510696411, + -0.00853114016354084, + -0.0007098466157913208, + 0.0941433310508728, + 0.023770665749907494, + -0.0034995628520846367, + -0.03423214703798294, + -0.043204404413700104, + 0.013585953041911125, + 0.046025656163692474, + -0.08780065178871155, + -0.0678306445479393, + -0.0053627812303602695, + 0.026609428226947784, + -0.019446764141321182, + 0.03454305976629257, + 0.04616714268922806, + 0.023568496108055115, + 0.036026448011398315, + -0.08049984276294708, + 0.02272200398147106, + -0.1157190352678299, + -0.073982372879982, + -0.016189996153116226, + -0.0065652416087687016, + -0.02246159315109253, + 0.08463318645954132, + 0.009956256486475468, + 0.043271202594041824, + -0.019988102838397026, + -0.061487823724746704, + -0.07361534237861633, + 0.06201750785112381, + 0.07731617242097855, + 0.009294477291405201, + 0.05246388912200928, + 0.04720202833414078, + -0.028537709265947342, + 0.05688081309199333, + 0.04749014228582382, + 0.10813334584236145, + -0.01687084697186947, + 0.014279123395681381, + -0.06130410358309746, + 0.09323512017726898, + 0.07583028823137283, + -0.09023593366146088, + -0.08087369054555893, + -0.022342924028635025, + -0.06757941842079163, + 0.04381515085697174, + -0.016919147223234177, + 0.00869122613221407, + 0.02092628926038742, + 0.005649100057780743, + -0.10753688216209412, + -0.08004668354988098, + 0.06542098522186279, + -0.06795226037502289, + -0.015878837555646896, + -0.08632469177246094, + 0.048127323389053345, + 0.1169637143611908, + 0.03337424620985985, + -0.03121248260140419, + -0.026110628619790077, + 0.04236619919538498, + -0.044278666377067566, + 0.004427822306752205, + 0.04517524689435959, + 0.04218100756406784, + -0.10436249524354935, + 0.0029109488241374493, + -0.07495289295911789, + 0.05299672856926918, + -0.059955574572086334, + 0.14652499556541443, + 0.014607176184654236, + -0.0617627277970314, + -0.08570197224617004, + 0.05610182136297226, + -0.011980456300079823, + 0.04974393546581268, + 0.036598946899175644, + 0.053706955164670944, + 0.044027894735336304, + -0.07756789028644562, + 0.10961734503507614, + 0.03991749882698059, + -0.03993002325296402, + -0.06623899191617966, + -0.02951471321284771, + -0.03404852747917175, + 0.038766007870435715, + 0.026224222034215927, + -0.08289890736341476, + -0.029031813144683838, + 0.029849905520677567, + -0.013806086964905262, + 0.06660966575145721, + 0.13615640997886658, + 0.04583241790533066, + -0.12063522636890411 + ] + }, + "p245_090.wav": { + "name": "p245", + "embedding": [ + 0.04064396768808365, + 0.08127425611019135, + 0.0626651868224144, + 0.010515211150050163, + -0.0006475523114204407, + 0.006266243755817413, + -0.06174740567803383, + 0.0465511754155159, + 0.02600579708814621, + 0.0719980001449585, + -0.08814815431833267, + 0.07031863927841187, + -0.05689362809062004, + -0.12588611245155334, + -0.054793424904346466, + 0.0026247650384902954, + -0.08458973467350006, + -0.019523780792951584, + -0.022977255284786224, + -0.027991391718387604, + 0.01419652346521616, + -0.005771474912762642, + 0.07965461164712906, + -0.03457125648856163, + -0.025750059634447098, + 0.059703342616558075, + 0.012465003877878189, + 0.02703074924647808, + 0.03189624100923538, + -0.021269138902425766, + 0.03828392177820206, + 0.016185134649276733, + 0.008575506508350372, + 0.01700453646481037, + 0.030969278886914253, + 0.012255815789103508, + 0.0023500584065914154, + -0.018851539120078087, + -0.03283969312906265, + 0.054762423038482666, + -0.051807552576065063, + 0.054250169545412064, + 0.03277702257037163, + -0.06027974560856819, + 0.06507537513971329, + 0.01832493022084236, + -0.04006722941994667, + 0.010587694123387337, + -0.11249355971813202, + 0.10613133013248444, + 0.02595362439751625, + 0.02173946425318718, + -0.046614184975624084, + 0.001112576574087143, + 0.07961267232894897, + -0.022676020860671997, + -0.10368247330188751, + -0.020038418471813202, + 0.062287941575050354, + 0.05499210208654404, + -0.038513362407684326, + -0.03270542994141579, + -0.03815265744924545, + 0.0267141405493021, + 0.05871954560279846, + 0.028176359832286835, + 0.10708551853895187, + 0.08919653296470642, + -0.004631532821804285, + 0.028754757717251778, + 0.06231595575809479, + 0.01567215472459793, + 0.027146045118570328, + 0.004878790117800236, + 0.015389010310173035, + -0.03102223202586174, + -0.006385800428688526, + -0.004703775513917208, + 0.009810584597289562, + -0.01857198029756546, + 0.018842706456780434, + -0.03814390301704407, + 0.019134651869535446, + 0.011757351458072662, + -0.028971102088689804, + 0.017234614118933678, + 0.02773413062095642, + 0.03158588334918022, + 0.04936652630567551, + 0.0501798540353775, + -0.005821910221129656, + 0.058594685047864914, + -0.02979329042136669, + -0.08756905049085617, + -0.050675250589847565, + -0.03978967294096947, + 0.04243859648704529, + 0.037334974855184555, + 0.03551529347896576, + 0.019609754905104637, + 0.0737939178943634, + 0.02514183335006237, + -0.034302689135074615, + 0.0092157032340765, + -0.08985643833875656, + 0.03873419761657715, + 0.07328743487596512, + -0.012470136396586895, + -0.005603881552815437, + -0.0046141669154167175, + 0.08125514537096024, + 0.06594736129045486, + -0.02226751297712326, + 0.0002889372408390045, + 0.01647973246872425, + 0.03091169334948063, + 0.011780399829149246, + 0.07843362540006638, + -0.02702299878001213, + 0.0038549555465579033, + 0.13695725798606873, + -0.050181373953819275, + 0.005859868600964546, + -0.012817978858947754, + -0.010104721412062645, + -0.03332233428955078, + 0.030030228197574615, + 0.011784368194639683, + -0.00015557464212179184, + -0.004663496743887663, + 0.048312947154045105, + 0.019948840141296387, + -0.01283595897257328, + -0.04992695897817612, + -0.0158180333673954, + 0.06533131003379822, + -0.00957013200968504, + 0.007416803855448961, + 0.07714344561100006, + 0.0678035318851471, + 0.031001625582575798, + 0.045978475362062454, + -0.03039032220840454, + -0.022971563041210175, + 0.0387633852660656, + 0.03797642141580582, + 0.01062517799437046, + -0.0077188946306705475, + -0.054019927978515625, + -0.06872181594371796, + 0.011401109397411346, + 0.0697874128818512, + -0.0304543599486351, + 0.060097914189100266, + 0.01463514007627964, + -0.010936297476291656, + 0.08449341356754303, + -0.010837298817932606, + -0.009675005450844765, + -0.0336470901966095, + -0.08266518265008926, + -0.015317079611122608, + 0.025599392130970955, + -0.15433835983276367, + -0.03613152354955673, + -0.050635382533073425, + 0.01456288993358612, + 0.008349638432264328, + 0.00025600194931030273, + 0.06447562575340271, + -0.023840826004743576, + -0.005452310666441917, + -0.012684334069490433, + 0.009937944822013378, + -0.034454409033060074, + -0.07915346324443817, + 0.00742768682539463, + -0.031095465645194054, + 0.022986911237239838, + 0.05516264960169792, + -0.05528753623366356, + 0.015599982813000679, + -0.024020100012421608, + -0.0912422388792038, + -0.023345571011304855, + 0.07813675701618195, + 0.01678263209760189, + 0.007619466166943312, + 0.05370423197746277, + 0.043600715696811676, + -0.057052865624427795, + 0.056252673268318176, + -0.033938370645046234, + 0.08170104771852493, + -0.07578510046005249, + 0.012209897860884666, + -0.0052476003766059875, + 0.021156426519155502, + 0.07137377560138702, + -0.04816038906574249, + -0.08887307345867157, + -0.03825104236602783, + -0.034095779061317444, + 0.020649783313274384, + -0.021899720653891563, + -0.05128190666437149, + 0.01892632246017456, + -0.01499510370194912, + -0.05113307014107704, + -0.09644712507724762, + 0.017037585377693176, + -0.006728529930114746, + -0.002356880810111761, + -0.0784783661365509, + 0.015572423115372658, + -0.008868716657161713, + 0.021705541759729385, + -0.012285393662750721, + 0.06398647278547287, + -0.00813133642077446, + -0.01981765776872635, + -0.03380812704563141, + 0.010599728673696518, + 0.043498069047927856, + 0.015872284770011902, + -0.06370401382446289, + -0.05483846738934517, + 0.03882104158401489, + 0.003696262836456299, + 0.06969879567623138, + 0.02077825553715229, + 0.0002292674034833908, + 0.028231801465153694, + -6.337091326713562e-05, + -0.037019550800323486, + 0.04078030586242676, + 0.05615423619747162, + 0.01964956894516945, + 0.0013615414500236511, + -0.03153536841273308, + 0.09341824054718018, + 0.03599722683429718, + -0.0029991213232278824, + -0.03623276948928833, + 0.015962064266204834, + -0.06498231738805771, + -0.056303344666957855, + 0.0014917273074388504, + -0.05723215267062187, + 0.017543850466609, + -0.004169324412941933, + 0.018473897129297256, + 0.005040300078690052, + 0.08774666488170624, + 0.03280787914991379, + 0.00721321627497673 + ] + }, + "p245_330.wav": { + "name": "p245", + "embedding": [ + 0.028775177896022797, + 0.0942976251244545, + -0.007552044931799173, + 0.008686493150889874, + -0.050842370837926865, + 0.04642527550458908, + -0.1547546088695526, + 0.14853498339653015, + -0.04556361213326454, + 0.1401551365852356, + -0.07498010993003845, + 0.09947290271520615, + -0.028957396745681763, + -0.20971153676509857, + -0.024361716583371162, + 0.05742349475622177, + -0.049325551837682724, + -0.03760281205177307, + -0.028330618515610695, + -0.036062952131032944, + 0.04246811196208, + 0.05712404474616051, + 0.0010933857411146164, + 0.006788269616663456, + 0.035417355597019196, + 0.060848068445920944, + -0.00593825476244092, + 0.022392529994249344, + -0.002645763335749507, + -0.04228941351175308, + -0.02704721689224243, + 0.10263815522193909, + -0.04541067034006119, + -0.0016553238965570927, + 0.04527520015835762, + -0.012980104424059391, + 0.005061643663793802, + -0.05632397159934044, + -0.035657983273267746, + 0.021175328642129898, + -0.05598392337560654, + 0.07094807922840118, + 0.04540979862213135, + 0.009661754593253136, + 0.048433270305395126, + 0.03346649929881096, + -0.015975601971149445, + -0.0627770870923996, + -0.10571716725826263, + 0.1799689680337906, + 0.06859327852725983, + -0.0010220753028988838, + -0.06429551541805267, + -0.077412910759449, + 0.11247684061527252, + -0.0012093563564121723, + -0.1156325712800026, + -0.03648144379258156, + 0.09239096939563751, + 0.16624177992343903, + -0.019953126087784767, + -0.04572741314768791, + 0.040032509714365005, + 0.1287534534931183, + 0.02503649890422821, + 0.08262725919485092, + 0.06323330104351044, + 0.08655506372451782, + -0.009852055460214615, + 4.258615444996394e-05, + 0.06674792617559433, + 0.05819473788142204, + 0.02464931644499302, + -0.04103938490152359, + 0.022542722523212433, + 0.011651113629341125, + -0.031608715653419495, + -0.0006100579630583525, + -0.017362941056489944, + -0.006360533647239208, + -0.00681935902684927, + 0.019258219748735428, + -0.004623271990567446, + 0.01647677831351757, + -0.02628968469798565, + 0.04284828156232834, + 0.02720942720770836, + 0.0063293566927313805, + 0.08645815402269363, + 0.03611991927027702, + 0.02872610278427601, + 0.06712743639945984, + -0.07143925130367279, + -0.07111746072769165, + 0.028093665838241577, + 0.011730422265827656, + 0.008528018370270729, + 0.07223747670650482, + 0.046128008514642715, + -0.027298910543322563, + 0.13931550085544586, + 0.04103231057524681, + 0.004401904530823231, + 0.025906242430210114, + -0.11898987740278244, + 0.11477471888065338, + 0.07792922109365463, + -0.026407528668642044, + 0.058479174971580505, + -0.04493040218949318, + 0.07228315621614456, + 0.06652665138244629, + -0.152790829539299, + -0.07113491743803024, + 0.03901821747422218, + 0.034688226878643036, + -0.020282993093132973, + 0.15232884883880615, + -0.0008881477988325059, + 0.027568671852350235, + 0.10801813006401062, + -0.0980055034160614, + -0.06507053226232529, + -0.024508953094482422, + 0.060099925845861435, + -0.09166676551103592, + 0.05855695903301239, + 0.07104960829019547, + -0.029177578166127205, + 0.02858414128422737, + 0.06988789141178131, + -0.017563609406352043, + 0.020906032994389534, + -0.016088807955384254, + -0.03398805856704712, + 0.029657838866114616, + -0.036932263523340225, + 0.000521114852745086, + 0.030030759051442146, + 0.042283255606889725, + 0.04619602859020233, + 0.004907483235001564, + -0.05178247392177582, + -0.12175274640321732, + 0.015008042566478252, + 0.01987510174512863, + 0.07778052240610123, + -0.003235435811802745, + -0.020022328943014145, + -0.044971998780965805, + -0.06584125012159348, + -0.004014094825834036, + -0.005116398446261883, + 0.09099182486534119, + -0.011174105107784271, + -0.0026409414131194353, + 0.1033637747168541, + 0.0485977828502655, + -0.004749538376927376, + -0.04129302501678467, + -0.046134140342473984, + -0.001764293061569333, + 0.0420251227915287, + -0.08176632225513458, + -0.06909742951393127, + -0.011056512594223022, + 0.04126637801527977, + -0.003850417211651802, + 0.04995927959680557, + 0.03722752258181572, + 0.024100279435515404, + 0.027754345908761024, + -0.09293355792760849, + 0.03915109857916832, + -0.10830654948949814, + -0.0761324018239975, + -0.006361217238008976, + -0.012022493407130241, + -0.0258127823472023, + 0.09199270606040955, + 0.002167552476748824, + 0.03620534390211105, + -0.017047669738531113, + -0.06860188394784927, + -0.07338572293519974, + 0.055204544216394424, + 0.07647529244422913, + -0.011820715852081776, + 0.04574711248278618, + 0.0529719814658165, + -0.04489642381668091, + 0.053750310093164444, + 0.05419224128127098, + 0.11394426226615906, + -0.022352589294314384, + 0.02878769114613533, + -0.05205736309289932, + 0.08080983906984329, + 0.05842039734125137, + -0.08768323063850403, + -0.07520138472318649, + -0.023953553289175034, + -0.06678587943315506, + 0.04522787407040596, + -0.00245091924443841, + 0.01864619180560112, + 0.0017047241562977433, + -0.0016624588752165437, + -0.09359132498502731, + -0.06657226383686066, + 0.05649025738239288, + -0.05803738534450531, + -0.016047485172748566, + -0.08337128162384033, + 0.05354076251387596, + 0.11559978127479553, + 0.049841102212667465, + -0.015008434653282166, + -0.03896990790963173, + 0.03340882807970047, + -0.038215503096580505, + 0.0042031267657876015, + 0.05201674625277519, + 0.03596038743853569, + -0.09438767284154892, + 0.0034492751583456993, + -0.08936912566423416, + 0.07114681601524353, + -0.053649820387363434, + 0.14778290688991547, + 0.014951919205486774, + -0.06981822103261948, + -0.1001640185713768, + 0.0405099056661129, + -0.010781927965581417, + 0.048182617872953415, + 0.023616915568709373, + 0.06275665014982224, + 0.06097223609685898, + -0.040008544921875, + 0.1036645770072937, + 0.03136811405420303, + -0.03299437835812569, + -0.04510760307312012, + -0.03755544498562813, + -0.03452673926949501, + 0.018769390881061554, + 0.006894656457006931, + -0.0962354764342308, + -0.023216702044010162, + 0.024768684059381485, + 0.002940610283985734, + 0.08153677731752396, + 0.1194208562374115, + 0.04961024224758148, + -0.1429012417793274 + ] + }, + "p245_005.wav": { + "name": "p245", + "embedding": [ + 0.025751689448952675, + 0.09247411042451859, + -0.01481679081916809, + 0.002580709755420685, + -0.047820497304201126, + 0.031276993453502655, + -0.15323218703269958, + 0.13633522391319275, + -0.0312531478703022, + 0.12312326580286026, + -0.05915254354476929, + 0.10241879522800446, + -0.04438268765807152, + -0.16465875506401062, + -0.013169439509510994, + 0.06484699249267578, + -0.02492721937596798, + -0.03713805228471756, + 0.012213650159537792, + -0.02052169106900692, + 0.028823306784033775, + 0.019845543429255486, + 0.010030052624642849, + 0.0174336526542902, + 0.01750507764518261, + 0.07105695456266403, + -0.0018580554751679301, + 0.023838896304368973, + -8.113496005535126e-05, + -0.0011915796203538775, + -0.012518675997853279, + 0.08900490403175354, + -0.039401229470968246, + 0.007327149156481028, + 0.061140816658735275, + 0.0033923436421900988, + -0.008418516255915165, + -0.0373876616358757, + 0.009603055194020271, + -0.0022687034215778112, + -0.05736105516552925, + 0.08183414489030838, + 0.03330230340361595, + -0.003914451692253351, + 0.03413618728518486, + 0.030132634565234184, + -0.00441955029964447, + -0.01882593147456646, + -0.08758299052715302, + 0.13185621798038483, + 0.0608295276761055, + 0.009664368815720081, + -0.06682051718235016, + -0.034202467650175095, + 0.08539756387472153, + -0.013197868131101131, + -0.09733202308416367, + -0.05651670694351196, + 0.07982601225376129, + 0.1298866719007492, + -0.02178170159459114, + -0.041950952261686325, + 0.020245349034667015, + 0.11902689933776855, + 0.029456421732902527, + 0.07493413984775543, + 0.06037766858935356, + 0.10166652500629425, + -0.02030940353870392, + -0.009444179013371468, + 0.053118105977773666, + 0.05621718242764473, + 0.025752825662493706, + -0.015468365512788296, + 0.010053319856524467, + -0.012781363911926746, + -0.008865932933986187, + 0.012631827965378761, + -0.014924371615052223, + -0.03145730495452881, + -0.05392680689692497, + 0.004488821607083082, + -0.023478878661990166, + 0.026279447600245476, + 0.005703621078282595, + 0.03302256390452385, + 0.05726640298962593, + -0.012014302425086498, + 0.08122263103723526, + 0.042374927550554276, + -0.008360168896615505, + 0.04747333750128746, + -0.0784466490149498, + -0.04162577539682388, + 0.02184409275650978, + -0.007953012362122536, + 0.03751415014266968, + 0.06978607922792435, + 0.02579343318939209, + 0.016692832112312317, + 0.1087413802742958, + 0.03914780169725418, + 0.004087178036570549, + 0.007513151969760656, + -0.09907539933919907, + 0.1404232233762741, + 0.06030994653701782, + -0.0458175390958786, + 0.03655023127794266, + -0.032442737370729446, + 0.023660805076360703, + 0.042734142392873764, + -0.10230907052755356, + -0.05554288253188133, + 0.030258584767580032, + 0.044573355466127396, + -0.022863119840621948, + 0.12222959101200104, + 0.004582211375236511, + 0.022670665755867958, + 0.10225160419940948, + -0.07203736156225204, + -0.08265693485736847, + -0.023847756907343864, + 0.035272691398859024, + -0.08250445127487183, + 0.06003674864768982, + 0.07833289355039597, + 0.007364712655544281, + 0.027607271447777748, + 0.08703519403934479, + 0.0236942358314991, + 0.019190281629562378, + -0.005353455897420645, + -0.02498854510486126, + 0.01818469725549221, + -0.02052154950797558, + 0.020734982565045357, + 0.03831108286976814, + 0.028344979509711266, + 0.06835141032934189, + 0.026013633236289024, + -0.014806079678237438, + -0.11593671143054962, + -0.0050568473525345325, + 0.05435812473297119, + 0.06633037328720093, + -0.027806712314486504, + -0.043762363493442535, + -0.02780364826321602, + -0.05236717686057091, + -0.02628963626921177, + 0.0030397993978112936, + 0.08151530474424362, + -0.022789010778069496, + -0.005302906036376953, + 0.09771472215652466, + 0.02625555731356144, + -0.004160396289080381, + -0.06628470122814178, + -0.026820192113518715, + -0.005690340884029865, + 0.039222847670316696, + -0.09614644199609756, + -0.0746803879737854, + -0.0171371977776289, + 0.0507940910756588, + -0.004642564337700605, + 0.05241745337843895, + 0.057788994163274765, + 0.013224628753960133, + 0.015903351828455925, + -0.045140378177165985, + 0.035480767488479614, + -0.0744086354970932, + -0.0786619707942009, + -0.02025953121483326, + -0.004782547242939472, + -0.029815783724188805, + 0.07740012556314468, + 0.006323916371911764, + 0.06174571067094803, + -0.005351876374334097, + -0.06544952839612961, + -0.08191382139921188, + 0.049945052713155746, + 0.05891530588269234, + -0.03241581842303276, + 0.04496927559375763, + 0.04943684861063957, + -0.05588522180914879, + 0.023241456598043442, + 0.04074364900588989, + 0.10572715103626251, + -0.06369687616825104, + 0.019643960520625114, + -0.05950211361050606, + 0.05306880548596382, + 0.07781235128641129, + -0.09480667859315872, + -0.06370726972818375, + -0.03584478050470352, + -0.041032467037439346, + 0.019404901191592216, + -0.032237228006124496, + 0.0116353090852499, + 0.006078171543776989, + -0.025051867589354515, + -0.08602433651685715, + -0.10105009377002716, + 0.04299122467637062, + -0.0635981485247612, + 0.012628167867660522, + -0.06944680958986282, + 0.04417206719517708, + 0.057485032826662064, + 0.033591967076063156, + -0.040401894599199295, + -0.01090376265347004, + 0.02220587246119976, + -0.02587585709989071, + 0.002378108911216259, + 0.05339096859097481, + 0.04920055344700813, + -0.06807062029838562, + -0.015053587034344673, + -0.08359590172767639, + 0.06522922217845917, + -0.04064479470252991, + 0.1401396095752716, + 0.00669890409335494, + -0.051161497831344604, + -0.0719616636633873, + -0.01930060237646103, + -0.01189219206571579, + 0.034772831946611404, + 0.030210062861442566, + 0.057875823229551315, + 0.02430647611618042, + -0.022067708894610405, + 0.11881152540445328, + 0.04928240925073624, + -0.022224219515919685, + -0.060008931905031204, + -0.030271828174591064, + -0.04335605353116989, + 0.03636306896805763, + 0.014109629206359386, + -0.10383329540491104, + -0.01007533073425293, + 0.017167722806334496, + 0.003292742418125272, + 0.07619378715753555, + 0.11934701353311539, + 0.061288367956876755, + -0.11134073883295059 + ] + }, + "p245_338.wav": { + "name": "p245", + "embedding": [ + 0.04102391004562378, + 0.09404051303863525, + -0.013703575357794762, + 0.043323636054992676, + -0.0589664988219738, + 0.0326029509305954, + -0.12760983407497406, + 0.14680981636047363, + -0.02417687140405178, + 0.12538829445838928, + -0.08796220272779465, + 0.11340855807065964, + -0.03165631368756294, + -0.19505028426647186, + -0.02535703033208847, + 0.07253023982048035, + -0.047131799161434174, + -0.04184499382972717, + -0.037942349910736084, + -0.01847253367304802, + 0.038353584706783295, + 0.04341405630111694, + 0.028912773355841637, + 0.03292600065469742, + 0.0030481999274343252, + 0.06400053203105927, + -0.005463878624141216, + 0.04588539898395538, + 0.031159546226263046, + -0.013155660592019558, + -0.03663887083530426, + 0.11392031610012054, + -0.023835692554712296, + 0.009370487183332443, + 0.050447773188352585, + -0.006495075300335884, + -0.004920381121337414, + -0.05598188936710358, + -0.033462539315223694, + -0.007103222422301769, + -0.060744114220142365, + 0.06411627680063248, + 0.03661311790347099, + -0.008307775482535362, + 0.07547600567340851, + 0.020827434957027435, + -0.050890058279037476, + -0.050755392760038376, + -0.11806660145521164, + 0.15462371706962585, + 0.09738489240407944, + -0.0014778965851292014, + -0.06550323963165283, + -0.051741503179073334, + 0.09798663854598999, + -0.019104696810245514, + -0.11481021344661713, + -0.04825432598590851, + 0.0923953503370285, + 0.15434959530830383, + -0.01551961712539196, + -0.020738907158374786, + 0.0250251404941082, + 0.15619820356369019, + 0.05627680569887161, + 0.09270654618740082, + 0.062010325491428375, + 0.11288772523403168, + -0.03001170977950096, + 0.017727412283420563, + 0.07268472015857697, + 0.0596601627767086, + 0.035544008016586304, + -0.012070360593497753, + 0.019215280190110207, + 0.012073686346411705, + -0.017725301906466484, + 0.007525689899921417, + -0.034538932144641876, + -0.007980989292263985, + -0.025446800515055656, + 0.009731393307447433, + -0.016469363123178482, + 0.010556772351264954, + -0.01962146908044815, + 0.06840859353542328, + 0.04780596122145653, + 0.0061414241790771484, + 0.06742027401924133, + 0.04598572850227356, + 0.004867593292146921, + 0.06456311792135239, + -0.06450364738702774, + -0.086041659116745, + 0.009608002379536629, + -0.001914256950840354, + 0.024147581309080124, + 0.06559255719184875, + 0.02723701111972332, + -0.01865668222308159, + 0.1240086778998375, + 0.04605934023857117, + -0.01619747094810009, + 0.04223329573869705, + -0.10692392289638519, + 0.126690074801445, + 0.08142156898975372, + -0.021290220320224762, + 0.040113888680934906, + -0.03608899936079979, + 0.07253705710172653, + 0.07166515290737152, + -0.12288157641887665, + -0.04304562136530876, + 0.029197407886385918, + 0.014444700442254543, + -0.027562733739614487, + 0.11656133830547333, + 0.004667364992201328, + 0.042792391031980515, + 0.11476494371891022, + -0.07899925112724304, + -0.0684492439031601, + -0.02288840524852276, + 0.04763060808181763, + -0.09656398743391037, + 0.053603172302246094, + 0.05281418561935425, + -0.007395615801215172, + 0.010420829057693481, + 0.07941490411758423, + -0.005900798365473747, + 0.00013526731345336884, + 0.014369579032063484, + -0.06391957402229309, + 0.030904870480298996, + -0.03508904576301575, + -0.003078195033594966, + 0.04659448564052582, + 0.040982797741889954, + 0.040698982775211334, + -0.0021367508452385664, + -0.018278196454048157, + -0.10974903404712677, + 0.010570976883172989, + 0.031058212742209435, + 0.08584713935852051, + 0.008872914128005505, + -0.01721477322280407, + -0.04305783659219742, + -0.0623776875436306, + 0.005800226703286171, + -0.02083773724734783, + 0.06063871830701828, + -0.04043854400515556, + -0.013258038088679314, + 0.0933605283498764, + 0.009024466387927532, + 0.003986444789916277, + -0.047592610120773315, + -0.03874823451042175, + 0.011362962424755096, + 0.05025026202201843, + -0.08625790476799011, + -0.07113875448703766, + 0.011010151356458664, + 0.03381587564945221, + -0.025479283183813095, + 0.03287027031183243, + 0.02819760888814926, + 0.010258961468935013, + 0.023746557533740997, + -0.07637040317058563, + 0.029231026768684387, + -0.11355855315923691, + -0.07538261264562607, + -0.007543667685240507, + -0.0021072616800665855, + -0.0033139530569314957, + 0.05932000279426575, + 0.008054036647081375, + 0.039663612842559814, + 0.010288329795002937, + -0.09107789397239685, + -0.09306816756725311, + 0.0720660462975502, + 0.07757392525672913, + 0.007989971898496151, + 0.0750846266746521, + 0.0554271899163723, + -0.05560479313135147, + 0.048159655183553696, + 0.030037513002753258, + 0.11011700332164764, + -0.019759507849812508, + 0.013727596960961819, + -0.08091473579406738, + 0.05746433138847351, + 0.09096956253051758, + -0.11060699820518494, + -0.08227789402008057, + -0.025494307279586792, + -0.050003327429294586, + 0.039126306772232056, + -0.026564180850982666, + -0.003959990106523037, + 0.04524245113134384, + -0.009651796892285347, + -0.11342038959264755, + -0.08504398912191391, + 0.07966822385787964, + -0.07838701456785202, + -0.0018658809131011367, + -0.0688696950674057, + 0.03626197576522827, + 0.0955563336610794, + 0.01767021417617798, + -0.04212246090173721, + -0.017780475318431854, + 0.0479314848780632, + -0.044675808399915695, + -0.010200833901762962, + 0.032487496733665466, + 0.0371989831328392, + -0.11207787692546844, + -0.001362629234790802, + -0.07121067494153976, + 0.06254415214061737, + -0.04630634933710098, + 0.14817757904529572, + 0.017550859600305557, + -0.045733314007520676, + -0.08875660598278046, + 0.03624237701296806, + -0.004451698623597622, + 0.05125384032726288, + 0.029379427433013916, + 0.05633626878261566, + 0.02399054914712906, + -0.06488151848316193, + 0.129984050989151, + 0.03490384668111801, + -0.049936018884181976, + -0.056096404790878296, + -0.015089405700564384, + -0.052996568381786346, + 0.016771573573350906, + 0.02335342764854431, + -0.0932389348745346, + -0.03478509187698364, + 0.012313449755311012, + -0.04063805937767029, + 0.07577440142631531, + 0.13775473833084106, + 0.06095390021800995, + -0.11094637960195541 + ] + }, + "p245_391.wav": { + "name": "p245", + "embedding": [ + 0.04475565627217293, + 0.08445829898118973, + -0.03482842072844505, + 0.028779076412320137, + -0.05144379660487175, + 0.07730261981487274, + -0.1261998862028122, + 0.10576523840427399, + -0.034466277807950974, + 0.14886286854743958, + -0.0728699266910553, + 0.13544268906116486, + -0.005417270120233297, + -0.17050045728683472, + -0.019191410392522812, + 0.04791611060500145, + -0.0217113196849823, + -0.021417034789919853, + -0.04494427144527435, + -0.02324852906167507, + 0.04740201681852341, + 0.04067324101924896, + 0.04741324856877327, + -0.041410841047763824, + 0.031443677842617035, + 0.06916915625333786, + -0.01657356135547161, + 0.03314198926091194, + -0.008323051035404205, + -0.09121359139680862, + -0.06360432505607605, + 0.10366450250148773, + -0.06279800087213516, + 0.006447340361773968, + 0.030507370829582214, + -0.008925455622375011, + 0.010416969656944275, + -0.06755886226892471, + -0.010517291724681854, + 0.014069553464651108, + -0.024344198405742645, + 0.06747173517942429, + -0.009081847034394741, + -0.025300128385424614, + 0.03991752862930298, + 0.0052709029987454414, + -0.014901787042617798, + -0.028051448985934258, + -0.09598222374916077, + 0.15395468473434448, + 0.05070444568991661, + 0.0026327979285269976, + -0.07729495316743851, + -0.07014848291873932, + 0.0927153006196022, + -0.00932000856846571, + -0.09822805225849152, + -0.034471482038497925, + 0.05725415423512459, + 0.14293190836906433, + -0.024730799719691277, + -0.05496111884713173, + 0.049386873841285706, + 0.07950408011674881, + 0.049979060888290405, + 0.07378515601158142, + 0.10072334855794907, + 0.10587462782859802, + -0.016188785433769226, + 0.003911721520125866, + 0.031614284962415695, + 0.09812268614768982, + 0.0813341811299324, + -0.014089087955653667, + 0.040813107043504715, + -0.0020376797765493393, + -0.025137141346931458, + -0.019072165712714195, + -0.05207672342658043, + -0.03556160256266594, + 0.0030249105766415596, + -0.006976144388318062, + 0.024737738072872162, + 0.024147195741534233, + -0.047896239906549454, + 0.0465267039835453, + 0.06678692996501923, + -0.034494489431381226, + 0.06862171739339828, + 0.03676571324467659, + 0.015841543674468994, + 0.05871529132127762, + -0.12004963308572769, + -0.07510169595479965, + 0.0632457286119461, + 0.02912026271224022, + -0.01038141269236803, + 0.07163555920124054, + 0.0556488111615181, + -0.026362119242548943, + 0.11318233609199524, + 0.035304829478263855, + -0.0005532089853659272, + 0.012245634570717812, + -0.08129800111055374, + 0.13182812929153442, + 0.1263558715581894, + -0.04192619025707245, + 0.027076663449406624, + -0.04925129562616348, + 0.057712405920028687, + 0.06085308641195297, + -0.13565240800380707, + -0.09596654772758484, + 0.012001050636172295, + -0.020846327766776085, + -0.003182913176715374, + 0.1101795956492424, + -0.012469641864299774, + 0.044291310012340546, + 0.10889151692390442, + -0.10956189036369324, + -0.058276236057281494, + -0.0070252083241939545, + 0.03585992753505707, + -0.09176762402057648, + 0.06521953642368317, + 0.04517240822315216, + 0.015312273986637592, + -0.00339338555932045, + 0.07249868661165237, + -0.013997214846313, + 0.007416174281388521, + 0.0038231033831834793, + -0.037874698638916016, + 0.008054663427174091, + -0.027380961924791336, + -0.03448547050356865, + 0.0436052642762661, + 0.03516879305243492, + 0.06869257241487503, + -0.029147779569029808, + -0.017612360417842865, + -0.13826081156730652, + 0.024862486869096756, + 0.03652787581086159, + 0.04917508363723755, + -0.01798488013446331, + -0.015032642520964146, + -0.049134574830532074, + -0.07683062553405762, + 0.04029630869626999, + -0.020044395700097084, + 0.07759607583284378, + 0.004628386348485947, + 0.014294054359197617, + 0.11544560641050339, + 0.029482055455446243, + 0.00648410152643919, + -0.031085975468158722, + -0.03396117314696312, + 0.007486049085855484, + 0.043998751789331436, + -0.06972501426935196, + -0.10206920653581619, + -0.029392996802926064, + 0.0035860100761055946, + -0.005114537198096514, + 0.08452353626489639, + 0.07642000168561935, + 0.020112834870815277, + 0.01829945109784603, + -0.060348283499479294, + -0.009538174606859684, + -0.08370153605937958, + -0.0578397698700428, + -0.020565152168273926, + -0.050570763647556305, + -0.030210578814148903, + 0.10048534721136093, + 0.023672735318541527, + 0.03672643378376961, + -0.06911935657262802, + -0.05053436756134033, + -0.09950694441795349, + 0.04814744368195534, + 0.05687841400504112, + -0.009804955683648586, + 0.019170355051755905, + 0.05248704552650452, + -0.0027235078159719706, + 0.05640871077775955, + 0.08356982469558716, + 0.08389993011951447, + -0.02409106120467186, + 0.022876331582665443, + -0.060714107006788254, + 0.12603406608104706, + 0.10261187702417374, + -0.06148110702633858, + -0.0946405827999115, + -0.03647901862859726, + -0.09201876074075699, + 0.04842294007539749, + -0.031402166932821274, + -0.003240474732592702, + 0.05512641742825508, + -0.014015892520546913, + -0.10799790173768997, + -0.09559755772352219, + 0.09522709250450134, + -0.048895835876464844, + -0.017499355599284172, + -0.08222983032464981, + 0.04866539686918259, + 0.07448327541351318, + 0.02879994362592697, + -0.04282752051949501, + 0.0011830126168206334, + 0.05681319534778595, + -0.027522733435034752, + 0.024755720049142838, + 0.055269505828619, + 0.040254633873701096, + -0.10236751288175583, + -0.007689174730330706, + -0.07135006785392761, + 0.04229961708188057, + -0.06378545612096786, + 0.13410131633281708, + 0.0108482139185071, + -0.045616161078214645, + -0.07834893465042114, + 0.07525690644979477, + -0.016149261966347694, + 0.04846128448843956, + 0.030103370547294617, + 0.06719794124364853, + 0.04558586701750755, + -0.10772771388292313, + 0.10215885937213898, + 0.04660838097333908, + -0.03494365140795708, + -0.09867776930332184, + -0.07350967079401016, + -0.036285027861595154, + 0.03467181324958801, + 0.01720988005399704, + -0.08759579807519913, + 0.00595390098169446, + 0.024533240124583244, + 0.02508567087352276, + 0.05026039108633995, + 0.1316027194261551, + 0.05401219055056572, + -0.11442084610462189 + ] + }, + "p245_255.wav": { + "name": "p245", + "embedding": [ + 0.05430874228477478, + 0.09774158895015717, + 0.01347745954990387, + 0.004972044378519058, + -0.012308331206440926, + 0.05372491478919983, + -0.015709009021520615, + 0.0686049535870552, + 0.058810096234083176, + 0.028306618332862854, + -0.08619813621044159, + 0.04947549104690552, + -0.022378897294402122, + -0.09923802316188812, + 0.025608714669942856, + 0.026873666793107986, + -0.018502648919820786, + 0.015591317787766457, + -0.043779533356428146, + -0.026002051308751106, + -0.014537546783685684, + 0.006839936599135399, + 0.03584045544266701, + -0.018978744745254517, + 0.011685444973409176, + 0.002531846985220909, + -0.03858165442943573, + -0.007537835277616978, + -0.015930943191051483, + -0.04945084825158119, + -0.030241888016462326, + 0.03820665180683136, + -0.024072200059890747, + -0.010192835703492165, + -0.004791846964508295, + -0.04764346033334732, + 0.024696966633200645, + -0.07823380082845688, + -0.06926882266998291, + 0.04884723201394081, + -0.055877409875392914, + 0.042214974761009216, + 0.02864380180835724, + -0.0466630794107914, + 0.0625571608543396, + 0.011679427698254585, + -0.047914013266563416, + -0.00826011598110199, + -0.08712661266326904, + 0.12145355343818665, + 0.0217595212161541, + 0.022263966500759125, + -0.06696166843175888, + 0.005346570163965225, + 0.054151393473148346, + -0.008380424231290817, + -0.0278440173715353, + 0.00017682649195194244, + 0.02487005665898323, + 0.014670856297016144, + 0.06343583017587662, + -0.02097918838262558, + 0.0275642741471529, + 0.04632057994604111, + 0.04389994218945503, + -0.014888783916831017, + 0.07998812198638916, + 0.10132572799921036, + -0.03211326524615288, + 0.020754342898726463, + 0.01418408565223217, + 0.009712819010019302, + 0.042468585073947906, + -0.007901829667389393, + 0.00095329899340868, + -0.02055731974542141, + 0.008386963978409767, + -0.04433564469218254, + -0.02692912518978119, + -0.028600141406059265, + 0.06794092804193497, + 0.007959078066051006, + 0.02130330353975296, + 0.027074065059423447, + -0.0463731549680233, + -0.013050507754087448, + 0.05219823122024536, + 0.08347707986831665, + 0.06172531843185425, + 0.030457882210612297, + 0.01658627577126026, + 0.04357363283634186, + -0.06571778655052185, + -0.07064215838909149, + 0.015229208394885063, + 0.021436570212244987, + 0.0027671707794070244, + 0.013337412849068642, + 0.03716866672039032, + -0.027809806168079376, + 0.10106607526540756, + -0.011955322697758675, + 0.004767312668263912, + -0.00479104183614254, + -0.05073666572570801, + 0.012240037322044373, + 0.061280716210603714, + -0.00638702604919672, + 0.0681275874376297, + 0.017029546201229095, + 0.06522238254547119, + 0.043957993388175964, + -0.04780182987451553, + 0.013337705284357071, + -0.022062424570322037, + 0.008388960734009743, + 0.026759816333651543, + 0.10155860334634781, + 0.010886836796998978, + 0.057982828468084335, + 0.08869235217571259, + -0.06098257005214691, + 0.01550203375518322, + 0.05748186632990837, + -0.011237148195505142, + 0.004615951329469681, + 0.03253023326396942, + 0.02515196055173874, + -0.0034752970095723867, + -0.0286130141466856, + 0.0004828236997127533, + 0.01972118951380253, + 0.029773356392979622, + -0.07508664578199387, + 0.01647849939763546, + -0.01317545399069786, + -0.0030111498199403286, + -0.027988936752080917, + 0.01638893596827984, + 0.04712340235710144, + -0.006316136568784714, + 0.022809334099292755, + -0.049131277948617935, + -0.059588637202978134, + 0.02155737392604351, + -0.042042024433612823, + 0.005092935636639595, + 0.05131315439939499, + -0.02260187827050686, + -0.05235358327627182, + 0.00721769779920578, + 0.03811686858534813, + -0.028150059282779694, + 0.019183780997991562, + 0.08530475199222565, + -0.04081461951136589, + 0.05118509382009506, + 0.024056170135736465, + 0.029365716502070427, + -0.018594348803162575, + -0.09280963987112045, + -0.006896346341818571, + 0.03319235518574715, + -0.030784036964178085, + -0.044725202023983, + -0.016633763909339905, + -0.07315071672201157, + -0.0031818910501897335, + 0.015321135520935059, + 0.07648880779743195, + -0.018735330551862717, + -0.02757854200899601, + -0.0827283188700676, + -0.0026331646367907524, + -0.008053064346313477, + -0.0910884439945221, + 0.07206295430660248, + 0.038100820034742355, + 0.013404693454504013, + 0.0881463885307312, + 0.019160162657499313, + 0.00919361412525177, + -0.06912365555763245, + -0.027963832020759583, + 0.034555308520793915, + 0.031073711812496185, + 0.0018057804554700851, + -0.0025843651965260506, + 0.04371615871787071, + 0.041177865117788315, + -0.012960391119122505, + 0.035534925758838654, + 0.013252072036266327, + 0.0353245809674263, + -0.02948800101876259, + 0.0122229577973485, + 0.029015105217695236, + 0.09154590219259262, + 0.04014185443520546, + -0.027290519326925278, + -0.0880202203989029, + -0.026353871449828148, + -0.042294666171073914, + 0.013319004327058792, + 0.01445453055202961, + 0.012715521268546581, + 0.04443905130028725, + -0.01205204613506794, + -0.025969084352254868, + -0.09695051610469818, + -0.0004797913134098053, + -0.0025463085621595383, + -0.01854422315955162, + -0.028552358970046043, + 0.026280077174305916, + 0.05005079135298729, + 0.004732104018330574, + -0.025891238823533058, + 0.017430447041988373, + 0.00866516213864088, + 0.018742449581623077, + -0.022751860320568085, + 0.005694802850484848, + 0.050899628549814224, + -0.016456685960292816, + -0.01385124959051609, + -0.05806155502796173, + 0.04041241109371185, + 0.04801962897181511, + 0.0625956729054451, + 0.05974408611655235, + 0.017898771911859512, + -0.0724748894572258, + 0.05567363649606705, + -0.004642583429813385, + 0.03655055910348892, + -0.03209227696061134, + 0.014330834150314331, + 0.07109825313091278, + -0.04922118037939072, + 0.04186179116368294, + 0.02869436703622341, + -0.03642933815717697, + -0.0290510430932045, + 0.011721570044755936, + -0.045564111322164536, + -0.010473456233739853, + -0.009366411715745926, + -0.03548828139901161, + -0.004731165710836649, + 0.029181640595197678, + 0.07118245959281921, + 0.026769788935780525, + 0.049811460077762604, + 0.012321382761001587, + -0.018462814390659332 + ] + }, + "p245_248.wav": { + "name": "p245", + "embedding": [ + 0.03326428309082985, + 0.10503867268562317, + -0.006563019473105669, + 0.021382618695497513, + -0.035181332379579544, + 0.06641621887683868, + -0.14270910620689392, + 0.14689882099628448, + -0.0529194101691246, + 0.14005199074745178, + -0.08515670150518417, + 0.10863259434700012, + -0.02142701856791973, + -0.19966208934783936, + -0.05129221826791763, + 0.04734417796134949, + -0.037114884704351425, + -0.021756403148174286, + -0.020290590822696686, + 0.02037068083882332, + 0.054260432720184326, + 0.0197905283421278, + -0.008160501718521118, + 0.005950427148491144, + 0.011820094659924507, + 0.04632983356714249, + 0.018941283226013184, + 0.07119020819664001, + 0.038772545754909515, + -0.008806821890175343, + -0.021929437294602394, + 0.1389164924621582, + -0.04237101599574089, + 0.023965582251548767, + 0.09051065146923065, + -0.010492709465324879, + -0.010640027932822704, + -0.04174468666315079, + 0.0015000661369413137, + -0.005619301460683346, + -0.04801660403609276, + 0.07297725975513458, + 0.04421119764447212, + 0.029680799692869186, + 0.044248875230550766, + 0.06206236407160759, + -0.006960523780435324, + -0.059761714190244675, + -0.08272796124219894, + 0.14419464766979218, + 0.061015497893095016, + -0.013569101691246033, + -0.06060367450118065, + -0.06195567548274994, + 0.09821299463510513, + -0.0053466870449483395, + -0.10537618398666382, + -0.059383925050497055, + 0.10277719050645828, + 0.16306942701339722, + -0.025835031643509865, + -0.029996497556567192, + 0.005888940766453743, + 0.13256876170635223, + 0.038057293742895126, + 0.11651652306318283, + 0.06195082142949104, + 0.1047007367014885, + 0.016978176310658455, + 0.031210927292704582, + 0.06324133276939392, + 0.0424971729516983, + 0.018749108538031578, + -0.03604646399617195, + 0.041535235941410065, + 0.0004186670994386077, + -0.010627089068293571, + 0.029011476784944534, + -0.024011215195059776, + 0.0014914039056748152, + -0.008591105230152607, + 0.03372807055711746, + -0.007432431913912296, + 0.027847113087773323, + -0.02181638590991497, + 0.06372219324111938, + 0.016094636172056198, + 0.0001664205628912896, + 0.07467986643314362, + 0.04773971810936928, + 0.020981866866350174, + 0.05578187480568886, + -0.08660785108804703, + -0.11086946725845337, + 0.027062853798270226, + -0.011498336680233479, + 0.010076425038278103, + 0.07281024754047394, + 0.028779448941349983, + -0.0022513512521982193, + 0.10478446632623672, + 0.044505927711725235, + -0.015915464609861374, + 0.05098680406808853, + -0.11171170324087143, + 0.1369580328464508, + 0.05428781360387802, + -0.017963018268346786, + 0.03188413381576538, + -0.06151900812983513, + 0.07348376512527466, + 0.07083126157522202, + -0.14331021904945374, + -0.07584619522094727, + 0.06422212719917297, + 0.0241533350199461, + -0.03761085495352745, + 0.12506811320781708, + -0.023752253502607346, + 0.001755036530084908, + 0.09748087078332901, + -0.07048944383859634, + -0.0653095692396164, + -0.037154119461774826, + 0.04394792392849922, + -0.08155908435583115, + 0.05932453274726868, + 0.020151883363723755, + -0.01049033086746931, + -0.012261648662388325, + 0.09844256937503815, + -0.007093452848494053, + -0.0038391880225390196, + 0.01670568436384201, + -0.02559264935553074, + 0.06542926281690598, + -0.04142296314239502, + 0.02087036520242691, + 0.006950828246772289, + 0.04439277946949005, + 0.054226797074079514, + 0.011732866056263447, + -0.033627741038799286, + -0.10067842155694962, + -0.003911444917321205, + 0.039438504725694656, + 0.07828150689601898, + -0.008904989808797836, + -0.023920999839901924, + -0.04549529775977135, + -0.0516778863966465, + 0.00099505006801337, + -0.012249048799276352, + 0.0849609225988388, + 0.00759790139272809, + 0.0008260492468252778, + 0.09692353010177612, + -0.0005662136245518923, + 0.017252637073397636, + -0.06549599021673203, + -0.025167036801576614, + 0.01781909354031086, + 0.04906206578016281, + -0.08635608851909637, + -0.049549639225006104, + 0.014585984870791435, + 0.021570555865764618, + -0.02042437717318535, + 0.01902623102068901, + 0.040436070412397385, + 0.026762712746858597, + 0.049159519374370575, + -0.07578486204147339, + 0.021188899874687195, + -0.12176697701215744, + -0.06806919723749161, + -0.03642034903168678, + 0.0004002218774985522, + -0.015886256471276283, + 0.06698358058929443, + 0.0039036013185977936, + 0.037194326519966125, + 0.015204844065010548, + -0.0767972469329834, + -0.07526036351919174, + 0.07649330794811249, + 0.0991264134645462, + -0.001367559190839529, + 0.06216452270746231, + 0.031130140647292137, + -0.04054833948612213, + 0.04654073342680931, + 0.056162938475608826, + 0.10860594362020493, + -0.019133972004055977, + 0.00453865947201848, + -0.077931247651577, + 0.08217664062976837, + 0.07550106942653656, + -0.1111370176076889, + -0.08311592042446136, + 0.00900371465831995, + -0.044097039848566055, + 0.01728678308427334, + -0.03302762284874916, + 0.01365702971816063, + 0.0205699373036623, + -0.007566655054688454, + -0.09120527654886246, + -0.07581083476543427, + 0.058440614491701126, + -0.10131945461034775, + -0.016129354014992714, + -0.08538387715816498, + 0.05188335105776787, + 0.11250221729278564, + 0.02571343630552292, + -0.046410802751779556, + -0.03351137414574623, + 0.051456283777952194, + -0.05524391308426857, + -0.02375953458249569, + 0.017551101744174957, + 0.015847980976104736, + -0.10280276089906693, + 0.028751088306307793, + -0.06517082452774048, + 0.05934521183371544, + -0.0794801115989685, + 0.15510199964046478, + -0.013200648128986359, + -0.06854457408189774, + -0.07437928766012192, + 0.025352315977215767, + -0.006819678470492363, + 0.03801553323864937, + 0.028141608461737633, + 0.061457544565200806, + 0.019665881991386414, + -0.0542270727455616, + 0.13810986280441284, + 0.020569251850247383, + -0.0248253270983696, + -0.07060646265745163, + -0.039414022117853165, + -0.05000360682606697, + 0.02745663933455944, + 0.03320255130529404, + -0.10911651700735092, + -0.031119652092456818, + 0.03785828873515129, + -0.03898182511329651, + 0.0671602189540863, + 0.13517501950263977, + 0.042723946273326874, + -0.12259938567876816 + ] + }, + "p245_052.wav": { + "name": "p245", + "embedding": [ + 0.02461729198694229, + 0.11220350861549377, + 0.00576367974281311, + 0.019884226843714714, + -0.04553502798080444, + 0.09078769385814667, + -0.1215575635433197, + 0.1318088173866272, + -0.07248298823833466, + 0.1112847551703453, + -0.08531473577022552, + 0.0903068482875824, + -0.046396393328905106, + -0.16560135781764984, + -0.0748433843255043, + 0.03916962072253227, + -0.023979267105460167, + -0.00828811526298523, + 0.019866470247507095, + -0.017199667170643806, + 0.034716784954071045, + 0.024099452421069145, + 0.031233252957463264, + 0.047742970287799835, + 0.02351890131831169, + 0.04149694740772247, + -0.0010612073820084333, + 0.06147298216819763, + 0.02914806455373764, + -0.0073667969554662704, + -0.0359785333275795, + 0.1282387673854828, + -0.04221896827220917, + 0.022699439898133278, + 0.05404910445213318, + 0.008744747377932072, + 0.00874701701104641, + -0.04250281676650047, + -0.0013972679153084755, + -0.014133111573755741, + -0.06006339192390442, + 0.07375790178775787, + 0.046959202736616135, + 0.015315026976168156, + 0.037660617381334305, + -0.0009997468441724777, + -0.005216027610003948, + -0.03204164654016495, + -0.10133330523967743, + 0.1442474126815796, + 0.054993636906147, + -0.019869307056069374, + -0.08211657404899597, + -0.05116325616836548, + 0.12014009058475494, + -0.022556878626346588, + -0.11318440735340118, + -0.016502240672707558, + 0.09668166935443878, + 0.16815432906150818, + -0.008910097181797028, + -0.02278093434870243, + 0.008447269909083843, + 0.11771362274885178, + 0.0171053446829319, + 0.0892338976264, + 0.05988588184118271, + 0.09027130901813507, + 0.002936731092631817, + 0.017418542876839638, + 0.03888275474309921, + 0.03919089213013649, + -0.016603533178567886, + -0.05297697335481644, + -0.008933966048061848, + -0.01466728001832962, + -0.01987205632030964, + 0.053971461951732635, + -0.007564156781882048, + -0.014675319194793701, + -0.03689700365066528, + -0.0019894482102245092, + -0.03175489977002144, + -0.003526933491230011, + -0.031240373849868774, + 0.04904472082853317, + -0.018115155398845673, + 0.006456083618104458, + 0.08571235090494156, + 0.061489421874284744, + -0.013132041320204735, + 0.04120257869362831, + -0.03525439277291298, + -0.053384676575660706, + -0.0025698337703943253, + 0.011682536453008652, + 0.0021088719367980957, + 0.103084035217762, + 0.015489468351006508, + -0.0075929369777441025, + 0.11186592280864716, + 0.048607371747493744, + 0.017590107396245003, + 0.025880703702569008, + -0.1165463998913765, + 0.11485552787780762, + 0.06032179296016693, + -0.006168113090097904, + 0.054958827793598175, + -0.020840175449848175, + 0.07374560832977295, + 0.08006364107131958, + -0.13088193535804749, + -0.049307700246572495, + 0.05015387758612633, + 0.053890161216259, + 0.017599359154701233, + 0.09057211875915527, + -0.006140542216598988, + -0.013789824210107327, + 0.07432764768600464, + -0.059044960886240005, + -0.06589166074991226, + -0.04651696979999542, + 0.059359584003686905, + -0.05485941097140312, + 0.04034537449479103, + 0.04481913894414902, + -0.004485502373427153, + -0.015887927263975143, + 0.04910779371857643, + -0.005915951449424028, + -0.0010451485868543386, + 0.05398301035165787, + -0.049914829432964325, + 0.025554336607456207, + -0.03148936852812767, + 0.024627970531582832, + 0.03483326733112335, + 0.04228203371167183, + 0.056894294917583466, + 0.02319403737783432, + -0.026692498475313187, + -0.07117032259702682, + -0.025391101837158203, + 0.07293614745140076, + 0.06483370065689087, + -0.012316869571805, + -0.05095524340867996, + -0.05656690150499344, + -0.053292274475097656, + 0.03591407835483551, + 0.014254285022616386, + 0.10420675575733185, + -0.012310061603784561, + -0.009402175433933735, + 0.08443333208560944, + 0.021613098680973053, + -0.012500266544520855, + -0.07796072214841843, + -0.007898930460214615, + -0.009853281080722809, + 0.02404339239001274, + -0.0710131824016571, + -0.06594668328762054, + 0.012925908900797367, + 0.033652301877737045, + -0.02251022681593895, + 0.02441975474357605, + 0.04228997230529785, + 0.011201804503798485, + 0.051938001066446304, + -0.08097703754901886, + 0.03697438910603523, + -0.09129761904478073, + -0.052359070628881454, + -0.0262919832020998, + 0.0056367493234574795, + -0.006701742764562368, + 0.0776686817407608, + 0.04400784522294998, + 0.010905489325523376, + 0.04755881801247597, + -0.081350177526474, + -0.050006281584501266, + 0.06667609512805939, + 0.0676199346780777, + 0.005168521776795387, + 0.07405666261911392, + 0.06712150573730469, + -0.0817323848605156, + 0.07908907532691956, + 0.06922781467437744, + 0.07884333282709122, + -0.04767966270446777, + 0.013489321805536747, + -0.04463464021682739, + 0.03492811322212219, + 0.06259921193122864, + -0.12189766764640808, + -0.11362707614898682, + -0.02967889793217182, + -0.0356282964348793, + 0.035641077905893326, + -0.01859964244067669, + 0.009658269584178925, + -0.005589451640844345, + -0.03788786008954048, + -0.08369266986846924, + -0.09335709363222122, + 0.07418875396251678, + -0.055459871888160706, + -0.023473430424928665, + -0.06079328805208206, + 0.046317920088768005, + 0.07799415290355682, + 0.014707422815263271, + -0.024482211098074913, + 0.0015435069799423218, + 0.033230993896722794, + -0.06597688794136047, + -0.036313995718955994, + 0.04239746183156967, + -0.006132114678621292, + -0.10634181648492813, + 0.0341251865029335, + -0.07060961425304413, + 0.11117818206548691, + -0.041971705853939056, + 0.16613945364952087, + -0.016668274998664856, + -0.06820325553417206, + -0.0623968169093132, + 0.02231348678469658, + -0.026286892592906952, + 0.017103224992752075, + 0.02587055414915085, + 0.04509027674794197, + -0.012744843028485775, + -0.016076557338237762, + 0.1124788373708725, + 0.027185829356312752, + -0.05542168766260147, + -0.05452360212802887, + -0.021760813891887665, + -0.033542174845933914, + 0.01871402934193611, + 0.01952582411468029, + -0.09221219271421432, + -0.027059849351644516, + 0.01278475858271122, + -0.021847978234291077, + 0.07726338505744934, + 0.12456287443637848, + 0.07813167572021484, + -0.1188732385635376 + ] + }, + "p245_353.wav": { + "name": "p245", + "embedding": [ + 0.043939970433712006, + 0.10691487789154053, + -0.03382353112101555, + 0.024774219840765, + -0.06259916722774506, + 0.04711415618658066, + -0.14136506617069244, + 0.14516456425189972, + -0.02197573333978653, + 0.12541812658309937, + -0.06838381290435791, + 0.12074869871139526, + -0.029490657150745392, + -0.1730169951915741, + -0.0169266015291214, + 0.06136977672576904, + -0.024157673120498657, + -0.027413394302129745, + -0.023489084094762802, + -0.03913910314440727, + 0.026756517589092255, + 0.027055714279413223, + 0.02038307674229145, + 0.006067059934139252, + 0.027422845363616943, + 0.07447230815887451, + -0.01915745995938778, + 0.012766714207828045, + -0.013059066608548164, + -0.020452678203582764, + -0.042938947677612305, + 0.09641903638839722, + -0.04826776683330536, + -0.001437250291928649, + 0.04582596942782402, + -0.011489923112094402, + -0.01030330266803503, + -0.05598995089530945, + -0.00026965251890942454, + -0.004197809379547834, + -0.04700184985995293, + 0.07193886488676071, + 0.024902895092964172, + -0.026057027280330658, + 0.04780525714159012, + 0.016849588602781296, + -0.012146556749939919, + -0.031586647033691406, + -0.10496874153614044, + 0.14691615104675293, + 0.07423444092273712, + -0.0008038997184485197, + -0.08242611587047577, + -0.038067616522312164, + 0.09638342261314392, + -0.0076970322988927364, + -0.09671672433614731, + -0.03786900267004967, + 0.07513648271560669, + 0.13381272554397583, + -0.029442651197314262, + -0.03760174661874771, + 0.03242933750152588, + 0.12780199944972992, + 0.05309326946735382, + 0.07383023947477341, + 0.07119062542915344, + 0.1162438690662384, + -0.03798314929008484, + 0.002081445185467601, + 0.05844908207654953, + 0.061394400894641876, + 0.060104578733444214, + -0.02254362404346466, + 0.00842240173369646, + -0.02575605735182762, + -0.01775575987994671, + -0.017861973494291306, + -0.032954730093479156, + -0.04290040582418442, + -0.029251541942358017, + -0.006941178347915411, + -0.004586758092045784, + 0.02825237065553665, + -0.02763018012046814, + 0.044173017144203186, + 0.0750226154923439, + -0.032377734780311584, + 0.07098361104726791, + 0.04978755861520767, + -0.003548018168658018, + 0.058121442794799805, + -0.09239117801189423, + -0.060137294232845306, + 0.05180661007761955, + -0.002339379396289587, + 0.018108706921339035, + 0.07394929230213165, + 0.04876463860273361, + -0.011561593972146511, + 0.11747635900974274, + 0.049650516360998154, + 0.0027373291086405516, + 0.014396516606211662, + -0.0818329006433487, + 0.13982510566711426, + 0.09525132179260254, + -0.04213577136397362, + 0.042720548808574677, + -0.0363873690366745, + 0.04285022243857384, + 0.062207844108343124, + -0.12231659144163132, + -0.059776198118925095, + 0.017880823463201523, + 0.02003583498299122, + -0.01886848174035549, + 0.10633452981710434, + 0.008891570381820202, + 0.044902052730321884, + 0.10354335606098175, + -0.08470162749290466, + -0.07425521314144135, + -0.034826043993234634, + 0.047132622450590134, + -0.08839268982410431, + 0.06450497359037399, + 0.08593564480543137, + 0.0030951513908803463, + 0.01817740686237812, + 0.06573298573493958, + 0.0024766316637396812, + 0.0007607733714394271, + 0.007003994192928076, + -0.03736093267798424, + 0.01061282865703106, + -0.01007426530122757, + 0.0012555706780403852, + 0.025982683524489403, + 0.020591700449585915, + 0.05436306446790695, + -0.0006632544100284576, + 0.005667123943567276, + -0.11041754484176636, + 0.015894755721092224, + 0.047319523990154266, + 0.07157841324806213, + -0.017311550676822662, + -0.027808040380477905, + -0.02620134875178337, + -0.06364040821790695, + 0.005542825907468796, + -0.007868200540542603, + 0.06593191623687744, + -0.03174726665019989, + -0.001960505498573184, + 0.10873977839946747, + 0.04383071884512901, + 0.0022285464219748974, + -0.04395073652267456, + -0.020196333527565002, + 0.012962227687239647, + 0.04972103238105774, + -0.09548301994800568, + -0.08497324585914612, + -0.028217127546668053, + 0.033452823758125305, + -0.016314763575792313, + 0.07153943181037903, + 0.04869813472032547, + 0.010796202346682549, + 0.012075768783688545, + -0.06252385675907135, + 0.024236634373664856, + -0.07974513620138168, + -0.05849669873714447, + -0.020876843482255936, + -0.03045497089624405, + -0.031504787504673004, + 0.07692693173885345, + 0.030361225828528404, + 0.05152229219675064, + -0.034591592848300934, + -0.05497196316719055, + -0.07747530937194824, + 0.03953031823039055, + 0.058082230389118195, + -0.027342036366462708, + 0.035873111337423325, + 0.05944370478391647, + -0.03729637712240219, + 0.0356731116771698, + 0.06934027373790741, + 0.09381049871444702, + -0.037000373005867004, + 0.018823441118001938, + -0.06490135192871094, + 0.07236181944608688, + 0.09311109781265259, + -0.08784578740596771, + -0.08716148138046265, + -0.05564112961292267, + -0.05037158355116844, + 0.023461824283003807, + -0.0335405170917511, + 0.01222970336675644, + 0.02390909194946289, + -0.012353017926216125, + -0.09205956757068634, + -0.11025117337703705, + 0.0797870084643364, + -0.06430177390575409, + 0.009054852649569511, + -0.07965712249279022, + 0.05632390081882477, + 0.07357460260391235, + 0.013699891977012157, + -0.043824464082717896, + -0.0116160549223423, + 0.03202202543616295, + -0.016615988686680794, + 0.016063343733549118, + 0.053188424557447433, + 0.04957496374845505, + -0.11299188435077667, + -0.0062429821118712425, + -0.06451284140348434, + 0.07691487669944763, + -0.03716975077986717, + 0.1552359163761139, + 0.02833961695432663, + -0.03954467177391052, + -0.08787109702825546, + 0.03880289942026138, + -0.013706794008612633, + 0.04677604138851166, + 0.0314050018787384, + 0.06105167791247368, + 0.020481619983911514, + -0.05866445600986481, + 0.10519498586654663, + 0.04149964451789856, + -0.04062721133232117, + -0.07529982924461365, + -0.04706866666674614, + -0.04687320813536644, + 0.030921760946512222, + 0.01699727028608322, + -0.08952122926712036, + -0.020645545795559883, + 0.018967652693390846, + 0.0038050522562116385, + 0.07898121327161789, + 0.12863728404045105, + 0.06583650410175323, + -0.1036527007818222 + ] + }, + "p245_164.wav": { + "name": "p245", + "embedding": [ + 0.0594656839966774, + 0.10709811747074127, + -0.009478701278567314, + 0.014008665457367897, + -0.04990536719560623, + 0.07834392786026001, + -0.14610826969146729, + 0.15572059154510498, + -0.03834958374500275, + 0.14458638429641724, + -0.05045820772647858, + 0.11260189116001129, + -0.020351529121398926, + -0.17301446199417114, + -0.019511312246322632, + 0.060571715235710144, + -0.04906829446554184, + -0.03699567914009094, + -0.018836725503206253, + -0.026801511645317078, + 0.015098942443728447, + 0.03914260119199753, + 0.020265765488147736, + 0.011904153972864151, + 0.055603377521038055, + 0.07252798974514008, + -0.018950436264276505, + 0.028585443273186684, + -0.010216201655566692, + -0.07654242217540741, + -0.03248701989650726, + 0.09222359955310822, + -0.06877975165843964, + 0.017660843208432198, + 0.0494048148393631, + -0.01843917928636074, + -0.010575932450592518, + -0.06733650714159012, + -0.02305220626294613, + 6.938248407095671e-05, + -0.04125489294528961, + 0.09556032717227936, + 0.03692626953125, + -0.010760156437754631, + 0.01643647439777851, + 0.02905668318271637, + 0.003687824122607708, + -0.05119138956069946, + -0.10591503977775574, + 0.1611585021018982, + 0.05903426185250282, + -0.002332336502149701, + -0.07803048193454742, + -0.0695740357041359, + 0.0932781994342804, + -0.011613067239522934, + -0.11296188831329346, + -0.029901567846536636, + 0.07225608825683594, + 0.14319384098052979, + -0.030803438276052475, + -0.0417182520031929, + 0.025613486766815186, + 0.128589928150177, + 0.05874600261449814, + 0.09313248097896576, + 0.06954358518123627, + 0.11018253117799759, + -0.02993832528591156, + 0.022344328463077545, + 0.057668283581733704, + 0.057046227157115936, + 0.05641727149486542, + -0.017789684236049652, + 0.016078609973192215, + -0.0170163344591856, + -0.020496416836977005, + -0.02113696187734604, + -0.013186370953917503, + -0.025964956730604172, + -0.0121114831417799, + 0.0024513863027095795, + 0.008113515563309193, + 0.03615376353263855, + -0.011661062017083168, + 0.04284850135445595, + 0.044131629168987274, + -0.018957529217004776, + 0.08339321613311768, + 0.03797092288732529, + 0.021465379744768143, + 0.0708024799823761, + -0.09454603493213654, + -0.0607772096991539, + 0.0449020117521286, + 0.001478975173085928, + 0.03833973407745361, + 0.08255483955144882, + 0.04951360821723938, + -0.009843872860074043, + 0.12479770183563232, + 0.04491530358791351, + 0.006890221498906612, + 0.006743225269019604, + -0.09826315939426422, + 0.14281581342220306, + 0.06024184450507164, + -0.035629577934741974, + 0.06203886866569519, + -0.049200527369976044, + 0.0762380063533783, + 0.07117051631212234, + -0.15567734837532043, + -0.07161803543567657, + 0.020707186311483383, + 0.009617948904633522, + -0.026887325569987297, + 0.1291286051273346, + 0.0006019645370543003, + 0.03635036200284958, + 0.08926235884428024, + -0.0951957032084465, + -0.0520201250910759, + -0.011026940308511257, + 0.05075107142329216, + -0.10613619536161423, + 0.06694957613945007, + 0.0646403357386589, + -0.02390226349234581, + 0.03278383985161781, + 0.08511307835578918, + -0.0027913691010326147, + 0.004280788358300924, + 0.014742509461939335, + -0.029447827488183975, + 0.009352752938866615, + -0.024173688143491745, + 0.019747614860534668, + 0.011975567787885666, + 0.01541026122868061, + 0.051368460059165955, + -0.010944240726530552, + -0.021711276844143867, + -0.10878575593233109, + 0.01868097484111786, + 0.031388815492391586, + 0.07991840690374374, + -0.01489272527396679, + -0.029355479404330254, + -0.021170616149902344, + -0.0625380128622055, + 0.009269311092793941, + -0.0035207602195441723, + 0.0640183687210083, + -0.006121315993368626, + 0.003834654577076435, + 0.11720642447471619, + 0.06327647715806961, + 0.002736604306846857, + -0.059557244181632996, + -0.024205023422837257, + 0.015541747212409973, + 0.0673469677567482, + -0.09150288999080658, + -0.06817245483398438, + -0.001982145244255662, + 0.020541556179523468, + -0.023838162422180176, + 0.07395950704813004, + 0.04975065961480141, + 0.032182611525058746, + 0.014874253422021866, + -0.0633438229560852, + 0.016460036858916283, + -0.08519095182418823, + -0.07817889750003815, + -0.01045701839029789, + -0.01665334962308407, + -0.04219694808125496, + 0.0875631719827652, + 0.021297477185726166, + 0.05953603237867355, + -0.03363807871937752, + -0.05494934320449829, + -0.06964477896690369, + 0.05072474107146263, + 0.056322548538446426, + -0.02381245605647564, + 0.02447160705924034, + 0.05777783691883087, + -0.03476788476109505, + 0.040135473012924194, + 0.059586044400930405, + 0.11007022112607956, + -0.04677971452474594, + 0.032591432332992554, + -0.06050638109445572, + 0.07805934548377991, + 0.07897111773490906, + -0.0944739356637001, + -0.07798964530229568, + -0.02272661402821541, + -0.062202565371990204, + 0.02518220990896225, + -0.021116480231285095, + 0.009551675990223885, + 0.011311385780572891, + -0.012302102521061897, + -0.09029628336429596, + -0.09280556440353394, + 0.08553604781627655, + -0.07617902010679245, + -0.0009349153842777014, + -0.09397603571414948, + 0.0600925013422966, + 0.08066295087337494, + 0.06040782481431961, + -0.024022653698921204, + -0.014285099692642689, + 0.05054769665002823, + -0.01797836646437645, + 0.017552226781845093, + 0.085203155875206, + 0.040570832788944244, + -0.10100072622299194, + -0.007374167907983065, + -0.0655958279967308, + 0.06040674448013306, + -0.04505102336406708, + 0.1660071611404419, + 0.009140953421592712, + -0.06578747183084488, + -0.08166655898094177, + 0.027246372774243355, + -0.019429907202720642, + 0.043643347918987274, + 0.030838103964924812, + 0.057012416422367096, + 0.058647431433200836, + -0.038849279284477234, + 0.10850533097982407, + 0.040856122970581055, + -0.026720594614744186, + -0.051427848637104034, + -0.055083267390728, + -0.041140928864479065, + 0.04029040038585663, + 0.0024347722064703703, + -0.1077069416642189, + -0.014998281374573708, + 0.03404555842280388, + 0.004768904764205217, + 0.0754873976111412, + 0.14448189735412598, + 0.06581549346446991, + -0.12508776783943176 + ] + }, + "p245_230.wav": { + "name": "p245", + "embedding": [ + 0.056013286113739014, + 0.03714391589164734, + -0.006162726785987616, + 0.0007905091042630374, + -0.025705358013510704, + 0.06713633239269257, + -0.14226174354553223, + 0.11263689398765564, + -0.05571219325065613, + 0.08893713355064392, + -0.055112458765506744, + 0.0731644481420517, + -0.010182168334722519, + -0.14791817963123322, + -0.02855006977915764, + 0.06242036819458008, + -0.021413318812847137, + -0.022249605506658554, + -0.04029892757534981, + -0.006370568182319403, + 0.008403691463172436, + 0.031938906759023666, + 0.00801350362598896, + -0.01641983352601528, + 0.027265042066574097, + 0.05362307280302048, + -0.00018361459660809487, + 0.01898009516298771, + -0.027236532419919968, + 0.0019029267132282257, + 0.0025387518107891083, + 0.09532196819782257, + -0.037012532353401184, + -0.030520524829626083, + 0.05299223214387894, + 0.010502032935619354, + 0.0012134239077568054, + -0.09347701072692871, + -0.004099187906831503, + -0.006725732237100601, + -0.06607513129711151, + 0.07849696278572083, + 0.055674102157354355, + 0.01100136712193489, + 0.01824071630835533, + 0.006606068462133408, + -0.004261543974280357, + -0.05974356457591057, + -0.11420981585979462, + 0.15129908919334412, + 0.02386198565363884, + 0.03897732496261597, + -0.10510300099849701, + -0.029018577188253403, + 0.07838630676269531, + 0.00835583359003067, + -0.056262172758579254, + -0.07234429568052292, + 0.04734432324767113, + 0.15339669585227966, + -0.002796964254230261, + -0.03464989364147186, + 0.027139555662870407, + 0.09072297811508179, + 0.03211933374404907, + 0.06043105572462082, + 0.09267735481262207, + 0.0948609709739685, + 0.01259525865316391, + 0.026584986597299576, + 0.05674136430025101, + 0.027040211483836174, + 0.017330823466181755, + -0.025926560163497925, + 0.03535137325525284, + -0.02139151841402054, + -0.03667180985212326, + 0.005609530955553055, + -0.02083970420062542, + -0.045055702328681946, + 0.013960529118776321, + 0.012674015015363693, + 0.024131156504154205, + 0.05503500625491142, + -0.04470612108707428, + 0.03360062465071678, + 0.03432310372591019, + -0.01707579381763935, + 0.08083848655223846, + 0.044244568794965744, + 0.004788603167980909, + 0.020985690876841545, + -0.060382239520549774, + -0.08003890514373779, + 0.022601094096899033, + 0.012500055134296417, + 0.01914467290043831, + 0.030573755502700806, + 0.01478942297399044, + -0.02975829504430294, + 0.0911652073264122, + -0.005542195402085781, + 0.015651334077119827, + 0.008869946002960205, + -0.07910382002592087, + 0.10676756501197815, + 0.0715847983956337, + -0.01695254072546959, + 0.021068355068564415, + -0.046003829687833786, + 0.010163719765841961, + 0.07535072416067123, + -0.10606637597084045, + -0.058830954134464264, + 0.055338650941848755, + 0.017236042767763138, + 0.023401563987135887, + 0.14160703122615814, + 0.02438358962535858, + 0.010803459212183952, + 0.07776294648647308, + -0.09656594693660736, + -0.053666189312934875, + 0.007733501028269529, + 0.02650153636932373, + -0.03803712874650955, + 0.030671386048197746, + 0.05915973335504532, + 0.012527081184089184, + -0.0209103561937809, + 0.0619325265288353, + 0.00918325874954462, + 0.009638451039791107, + -0.031693607568740845, + 0.013476742431521416, + 0.07048434019088745, + -0.006475945934653282, + -0.022134929895401, + 0.03836553916335106, + 0.0501384399831295, + 0.026009608060121536, + 0.018488086760044098, + -0.03790687769651413, + -0.11187230050563812, + -0.029584437608718872, + 0.05646776407957077, + 0.06525199115276337, + -0.04061385989189148, + -0.030117198824882507, + -0.06170855462551117, + -0.030808523297309875, + -0.012271692976355553, + -0.002872450975701213, + 0.08010086417198181, + 0.042493920773267746, + -0.009057383984327316, + 0.08383893221616745, + -0.007440716028213501, + 0.03570020943880081, + -0.034287407994270325, + -0.004831552505493164, + 0.03721839562058449, + 0.03959018737077713, + -0.032654035836458206, + -0.05974603816866875, + -0.003963192459195852, + 0.014841060154139996, + -0.02452170103788376, + 0.0013139372458681464, + 0.0249284990131855, + 0.0124655244871974, + -0.007256511598825455, + -0.0891616940498352, + 0.0518822968006134, + -0.09128762781620026, + -0.01488957554101944, + 0.03961503505706787, + -0.02482362650334835, + -0.02994430810213089, + 0.09405364841222763, + 0.022211674600839615, + 0.03581884503364563, + -0.03610766679048538, + -0.08008735626935959, + -0.027728348970413208, + 0.04441916570067406, + 0.06797396391630173, + -0.03148669749498367, + 0.00954367034137249, + -0.0015327533474192023, + 0.005271201487630606, + 0.01340256817638874, + 0.056852132081985474, + 0.07405798882246017, + -0.03730624169111252, + -0.046241119503974915, + -0.022990159690380096, + 0.11287641525268555, + 0.035534534603357315, + -0.0650450587272644, + -0.05100494250655174, + 0.011640718206763268, + -0.034434724599123, + 0.009442973881959915, + -0.023103205487132072, + 0.019912462681531906, + 0.04292803257703781, + -0.03275977075099945, + -0.1272137612104416, + -0.07149083912372589, + 0.04267006739974022, + -0.07501514256000519, + -0.004336903803050518, + -0.07462344318628311, + 0.038579944521188736, + 0.0790209099650383, + 0.016775555908679962, + -0.01168876327574253, + -0.03275301679968834, + -0.004615466110408306, + -0.06482589244842529, + -0.016674190759658813, + 0.012881053611636162, + 0.030085651203989983, + -0.07199843227863312, + -0.0031549804843962193, + -0.06372497975826263, + 0.07417309284210205, + -0.03465184196829796, + 0.11975656449794769, + 0.0172154288738966, + -0.04511001706123352, + -0.08861349523067474, + -0.00874839536845684, + -0.0005107658798806369, + 0.05078420042991638, + 0.03108431026339531, + 0.04208550974726677, + 0.042323093861341476, + -0.041673868894577026, + 0.08590114116668701, + 0.048882972449064255, + -0.025937674567103386, + -0.054015349596738815, + -0.026187313720583916, + -0.025463899597525597, + 0.038449134677648544, + -0.030729934573173523, + -0.04977121576666832, + 0.020411644130945206, + 0.04302361235022545, + 0.008658559061586857, + 0.05402036011219025, + 0.09839686751365662, + 0.03958921879529953, + -0.08683746308088303 + ] + }, + "p245_178.wav": { + "name": "p245", + "embedding": [ + 0.03712261840701103, + 0.10299722105264664, + -0.00403292803093791, + 0.026907529681921005, + -0.05853986740112305, + 0.03755905106663704, + -0.12841719388961792, + 0.138652503490448, + -0.02681763470172882, + 0.13290223479270935, + -0.08146893233060837, + 0.12259525805711746, + -0.04527243226766586, + -0.19801700115203857, + -0.01635902002453804, + 0.06641770899295807, + -0.014850256964564323, + -0.007043277844786644, + -0.013415524736046791, + -0.021864118054509163, + 0.02971971407532692, + 0.04869363456964493, + 0.032104432582855225, + -0.0032524587586522102, + 0.039779260754585266, + 0.0765891820192337, + -0.0010581850074231625, + 0.04524082690477371, + 0.0003628884442150593, + -0.06143292412161827, + -0.038828812539577484, + 0.10332119464874268, + -0.054013416171073914, + 0.02078835293650627, + 0.052907370030879974, + -0.00028266478329896927, + -0.014157673344016075, + -0.025893185287714005, + -0.0017233524704352021, + 0.0013958578929305077, + -0.0463557168841362, + 0.06737864017486572, + 0.01205834373831749, + -3.2813288271427155e-05, + 0.04619474709033966, + 0.051478177309036255, + -0.004143240861594677, + -0.048191919922828674, + -0.10256132483482361, + 0.1568867266178131, + 0.050495970994234085, + -0.007260498590767384, + -0.07333797961473465, + -0.08386564254760742, + 0.08568930625915527, + -0.018067941069602966, + -0.11281709372997284, + -0.03989407420158386, + 0.10002265870571136, + 0.14609214663505554, + -0.02461106702685356, + -0.053070612251758575, + 0.012777771800756454, + 0.11683471500873566, + 0.023663681000471115, + 0.09530059248209, + 0.0567760095000267, + 0.0915597677230835, + -0.028181027621030807, + 0.012626001611351967, + 0.04473212733864784, + 0.062812939286232, + 0.06605339795351028, + -0.01565207540988922, + 0.006290452554821968, + -0.015162407420575619, + -0.003137855790555477, + 0.011556969955563545, + -0.01576746255159378, + -0.022488679736852646, + -0.020964205265045166, + 0.0021488498896360397, + -0.010705877095460892, + -0.01569433882832527, + -0.00373866967856884, + 0.04473067820072174, + 0.050707243382930756, + -0.0014077355153858662, + 0.08103881776332855, + 0.039343755692243576, + -0.007086962927132845, + 0.06777282804250717, + -0.08286634087562561, + -0.05878179147839546, + 0.03190059959888458, + -0.004369435366243124, + 0.034629739820957184, + 0.07383552938699722, + 0.03243429213762283, + -0.005696788430213928, + 0.11846515536308289, + 0.04383081942796707, + 0.011523867957293987, + 0.01973215863108635, + -0.10149984061717987, + 0.13023534417152405, + 0.08018310368061066, + -0.018835747614502907, + 0.06438010185956955, + -0.03974708169698715, + 0.06656348705291748, + 0.06779806315898895, + -0.13369201123714447, + -0.06812851130962372, + -0.009644665755331516, + 0.00868218857795, + -0.029070354998111725, + 0.11089421808719635, + -0.018454821780323982, + 0.02712063118815422, + 0.11820265650749207, + -0.1116076409816742, + -0.06902912259101868, + -0.020521564409136772, + 0.02741391584277153, + -0.11555635184049606, + 0.05735808610916138, + 0.07042264938354492, + -0.02060883305966854, + 0.03749286010861397, + 0.08846522867679596, + -0.0023412886075675488, + 0.031236154958605766, + 0.005439474247395992, + -0.05126297101378441, + -0.020799510180950165, + -0.03759344667196274, + 0.005050658714026213, + 0.0493328683078289, + 0.03366320580244064, + 0.06276095658540726, + 0.0029723765328526497, + -0.040692634880542755, + -0.12779691815376282, + 0.006258119363337755, + 0.055015888065099716, + 0.053064413368701935, + -0.02270687371492386, + -0.02574940398335457, + -0.024883266538381577, + -0.06726200133562088, + 0.029306646436452866, + 0.0072535243816673756, + 0.06752286106348038, + -0.02773122861981392, + -0.008305350318551064, + 0.12045978009700775, + 0.04753173887729645, + -0.019304681569337845, + -0.07876787334680557, + -0.04941553622484207, + 0.002045764122158289, + 0.03578618913888931, + -0.12068357318639755, + -0.07415036857128143, + -0.024593252688646317, + 0.03917188569903374, + -0.016258222982287407, + 0.067776620388031, + 0.0617227777838707, + 0.018349483609199524, + 0.023837992921471596, + -0.04080554097890854, + 0.0026069162413477898, + -0.08595094829797745, + -0.09882542490959167, + -0.011610809713602066, + -0.02239689975976944, + -0.02791624143719673, + 0.07917069643735886, + 0.002631774637848139, + 0.04317404329776764, + -0.03080374374985695, + -0.0523606538772583, + -0.08598465472459793, + 0.05262487009167671, + 0.04452838748693466, + 0.004893545061349869, + 0.05870331823825836, + 0.042578838765621185, + -0.08084826916456223, + 0.07944075763225555, + 0.061727993190288544, + 0.12253653258085251, + -0.04733484238386154, + 0.05089572072029114, + -0.06677445769309998, + 0.05795943737030029, + 0.09437147527933121, + -0.08475182950496674, + -0.0939042940735817, + -0.0475880429148674, + -0.0678853988647461, + 0.06170334294438362, + -0.02545233443379402, + 0.0018410562770441175, + 0.02366887778043747, + -0.005163310095667839, + -0.07524684071540833, + -0.08914919942617416, + 0.0695025697350502, + -0.037062037736177444, + -0.003804852720350027, + -0.07871198654174805, + 0.06456378102302551, + 0.06850453466176987, + 0.04466533660888672, + -0.02215014584362507, + -0.014458067715168, + 0.05620088428258896, + -0.046637795865535736, + -0.0033499212004244328, + 0.06430047750473022, + 0.04652746021747589, + -0.06467356532812119, + -0.00737482775002718, + -0.08667854964733124, + 0.057117097079753876, + -0.047693487256765366, + 0.16161498427391052, + -0.0028951384592801332, + -0.06593134999275208, + -0.07063286006450653, + 0.03259924054145813, + -0.023492828011512756, + 0.03652738407254219, + 0.03287685662508011, + 0.05605044215917587, + 0.0444687083363533, + -0.050842177122831345, + 0.12692990899085999, + 0.035019032657146454, + -0.0317072719335556, + -0.04341932758688927, + -0.05827448517084122, + -0.05472496151924133, + 0.029848232865333557, + -0.01177220605313778, + -0.1171531230211258, + -0.024804072454571724, + 0.022816404700279236, + 0.01220932137221098, + 0.05075586214661598, + 0.1443537473678589, + 0.04555417224764824, + -0.1103561520576477 + ] + }, + "p245_040.wav": { + "name": "p245", + "embedding": [ + 0.04495055601000786, + 0.08091925084590912, + -0.023899100720882416, + 0.06364770233631134, + 0.0043339719995856285, + 0.017842553555965424, + -0.15235336124897003, + 0.10670260339975357, + 0.007963153533637524, + 0.12191521376371384, + -0.08412328362464905, + 0.10776207596063614, + -0.0026113111525774, + -0.19686566293239594, + -0.025430435314774513, + 0.04363745450973511, + 0.0063882204703986645, + -0.0392884835600853, + 0.04481268301606178, + 0.020669160410761833, + 0.06594237685203552, + 0.0764748603105545, + 0.004484226461499929, + -0.007977046072483063, + 0.030034303665161133, + 0.037923891097307205, + 0.002517371205613017, + 0.04114250838756561, + 0.0273317638784647, + 0.012979288585484028, + 0.014537165872752666, + 0.1215284988284111, + -0.018760859966278076, + 0.010456711985170841, + 0.03460221737623215, + 0.021090570837259293, + -0.003616174915805459, + -0.05582403019070625, + -0.0283343605697155, + 0.006691006477922201, + -0.07339166104793549, + 0.06644338369369507, + 0.05084121599793434, + -0.02697248011827469, + 0.04172699525952339, + 0.023947030305862427, + -0.01215349417179823, + -0.038375936448574066, + -0.0995880514383316, + 0.15816575288772583, + 0.06119965761899948, + 0.03348084166646004, + -0.08770403265953064, + -0.05057140439748764, + 0.07704555243253708, + 0.044308632612228394, + -0.046811506152153015, + -0.013155868276953697, + 0.08359432965517044, + 0.18490557372570038, + 0.013240848667919636, + -0.03752153739333153, + 0.046499382704496384, + 0.13724452257156372, + 0.06937169283628464, + 0.06601040065288544, + 0.07093054801225662, + 0.11323708295822144, + 0.018576711416244507, + -0.0031576817855238914, + 0.0498509481549263, + 0.08755046129226685, + 0.014901616610586643, + -0.058390967547893524, + -0.019455134868621826, + 0.033823806792497635, + -0.06609778106212616, + -0.005165450274944305, + -0.009029597975313663, + -0.005711965728551149, + 0.00858728401362896, + -0.013741516508162022, + -0.005588752217590809, + 0.06467785686254501, + -0.028528055176138878, + 0.00831794273108244, + 0.08257483690977097, + -0.03213237598538399, + 0.060412608087062836, + 0.036047499626874924, + 0.03468085080385208, + 0.03456924483180046, + -0.08877044171094894, + -0.10367810726165771, + 0.018753085285425186, + 0.019932083785533905, + 0.001656953594647348, + 0.0951651781797409, + 0.06465445458889008, + -0.02606094628572464, + 0.12595856189727783, + -0.010712393559515476, + -0.014769189059734344, + 0.009770405478775501, + -0.09444763511419296, + 0.10428347438573837, + 0.0815771222114563, + -0.02266279049217701, + 0.0435517318546772, + -0.051708173006772995, + 0.024538608267903328, + 0.07642997056245804, + -0.14907562732696533, + -0.05421648919582367, + 0.08253740519285202, + 0.03526829183101654, + 0.01327831856906414, + 0.1492481231689453, + 0.03444350138306618, + 0.03188977390527725, + 0.08572719991207123, + -0.08569172769784927, + -0.09323955327272415, + -0.07331091910600662, + 0.07598268240690231, + -0.07419396936893463, + 0.08765041083097458, + 0.028623564168810844, + -0.001634847023524344, + -0.03797255828976631, + 0.0289253331720829, + -0.02151227928698063, + 0.029429927468299866, + -0.05495020002126694, + -0.015399664640426636, + 0.07979043573141098, + -0.0740356594324112, + 0.021387577056884766, + 0.006761624943464994, + -0.01709704101085663, + 0.05385821685194969, + 0.03471032530069351, + -0.03326821327209473, + -0.12563538551330566, + 0.003685401752591133, + 0.05497492477297783, + 0.09479479491710663, + -0.019053932279348373, + -0.07465942949056625, + -0.06583745777606964, + -0.05240589380264282, + 0.037893157452344894, + -0.028790488839149475, + 0.06153125315904617, + 0.038089219480752945, + -0.01391951460391283, + 0.10477640479803085, + -0.047057848423719406, + 0.030479364097118378, + -0.0016953053418546915, + -0.015339018777012825, + -0.007733749225735664, + 0.018341461196541786, + -0.0906587690114975, + -0.08532994240522385, + -0.02004626952111721, + -0.011209310963749886, + -0.019155094400048256, + 0.006984043400734663, + 0.00710704131051898, + 0.025630448013544083, + 0.0109371617436409, + -0.07828947901725769, + -0.02800135686993599, + -0.11755731701850891, + -0.07833923399448395, + -0.0259071234613657, + 0.02926010638475418, + -0.0016416204161942005, + 0.07786545902490616, + 0.04187348112463951, + 0.020147088915109634, + 0.0015260165091603994, + -0.048953574150800705, + -0.0736822634935379, + 0.03856421262025833, + 0.070896677672863, + -0.004274791106581688, + 0.05022195726633072, + 0.037424735724925995, + -0.024672996252775192, + 0.027671197429299355, + 0.04090285301208496, + 0.07970910519361496, + -0.006848360877484083, + -0.022482862696051598, + -0.06558993458747864, + 0.13110531866550446, + 0.11166006326675415, + -0.08023499697446823, + -0.08536139130592346, + -0.023370882496237755, + -0.08703171461820602, + 0.009509020484983921, + -0.02097439020872116, + 0.028122292831540108, + -0.00030433348729275167, + -0.03710223734378815, + -0.11090395599603653, + -0.09562809020280838, + 0.025277476757764816, + -0.05576304718852043, + -0.05077287554740906, + -0.10832804441452026, + 0.04808374494314194, + 0.09711091220378876, + 0.01782788150012493, + -0.02110099047422409, + -0.03539315611124039, + 0.030252281576395035, + -0.06695185601711273, + -0.03145667165517807, + 0.05306421220302582, + 0.02451188676059246, + -0.13823451101779938, + -0.019514748826622963, + -0.03546757251024246, + 0.09687231481075287, + -0.09072501212358475, + 0.101354219019413, + 0.021578939631581306, + -0.08464367687702179, + -0.10189229995012283, + 0.039914533495903015, + 0.04118196293711662, + 0.05118982493877411, + 0.008239515125751495, + 0.030299313366413116, + 0.018764406442642212, + -0.07884528487920761, + 0.09468279033899307, + 0.04409037530422211, + 0.01662810891866684, + -0.09230504930019379, + -0.05334858596324921, + -0.012485414743423462, + 0.056828539818525314, + 0.015249905176460743, + -0.05182284861803055, + -0.016369830816984177, + 0.035126689821481705, + -0.006698464043438435, + 0.030547412112355232, + 0.11847157776355743, + 0.03373018279671669, + -0.12432920932769775 + ] + }, + "p245_112.wav": { + "name": "p245", + "embedding": [ + -0.0009802263230085373, + 0.08174587786197662, + -0.022297613322734833, + 0.05671565979719162, + -0.07533954083919525, + 0.04122024402022362, + -0.07901707291603088, + 0.07334195077419281, + -0.040008895099163055, + 0.09940716624259949, + -0.074732705950737, + 0.10062313079833984, + -0.058968156576156616, + -0.16907745599746704, + 0.011732298880815506, + 0.07067835330963135, + -0.010217098519206047, + 0.015776891261339188, + -0.054323963820934296, + -0.03308413177728653, + 0.02753547951579094, + 0.004149802029132843, + 0.07034067809581757, + -0.07410216331481934, + 0.016815539449453354, + 0.0816277414560318, + 0.020690444856882095, + 0.03366517275571823, + -0.01031907182186842, + -0.056505244225263596, + -0.046657562255859375, + 0.10779893398284912, + -0.03677147626876831, + -0.02187792956829071, + 0.03771497309207916, + -0.01023287232965231, + -0.039262332022190094, + -0.03292806074023247, + 0.03921150416135788, + -0.012086894363164902, + -0.04110576957464218, + 0.04990589618682861, + 0.002277469728142023, + -0.022117502987384796, + 0.053709499537944794, + -0.029078945517539978, + -0.05086686089634895, + 0.008605746552348137, + -0.10042262077331543, + 0.12241555750370026, + 0.06355815380811691, + -0.009840436279773712, + -0.07614320516586304, + -0.06971330940723419, + 0.09044612944126129, + 0.026915261521935463, + -0.11820939183235168, + -0.05908767879009247, + 0.08081290125846863, + 0.1179690808057785, + -0.00016829418018460274, + -0.0023905811831355095, + 0.018842794001102448, + 0.07030780613422394, + -0.009298200719058514, + 0.10999328643083572, + 0.048297613859176636, + 0.08664128929376602, + 0.0066216373816132545, + 0.05596403032541275, + 0.0380781926214695, + 0.05797659605741501, + 0.005250042304396629, + -0.020069502294063568, + 0.017919423058629036, + -0.054512910544872284, + -0.024967892095446587, + -3.842124715447426e-05, + -0.009181708097457886, + -0.07244692742824554, + -0.022843975573778152, + -0.04403878375887871, + 0.024410400539636612, + -0.052098535001277924, + -0.009675349108874798, + 0.03293566405773163, + 0.07328155636787415, + -0.012279498390853405, + 0.08596457540988922, + 0.052158892154693604, + -0.03150991350412369, + 0.051902152597904205, + -0.055141765624284744, + -0.06645189225673676, + -0.0039552850648760796, + 0.01636188104748726, + 0.020017027854919434, + 0.06412402540445328, + 0.030177609995007515, + -0.009816373698413372, + 0.07664959132671356, + 0.07388676702976227, + 0.024874798953533173, + 0.0273908618837595, + -0.06444159895181656, + 0.09397181123495102, + 0.11117450892925262, + -0.002812185324728489, + 0.04502446949481964, + -0.019359134137630463, + 0.06258551776409149, + 0.06892985850572586, + -0.07889647036790848, + -0.061794668436050415, + -0.058790531009435654, + -0.04438777267932892, + -0.028374426066875458, + 0.09670434892177582, + -0.004261840134859085, + -0.004163431003689766, + 0.12552669644355774, + -0.12190863490104675, + -0.08938755095005035, + -0.03409399837255478, + 0.023814234882593155, + -0.0643991008400917, + 0.03387078270316124, + 0.07639537751674652, + -0.030473146587610245, + 0.02189747989177704, + 0.049688275903463364, + -0.013621720485389233, + 0.04722753167152405, + 0.05327651649713516, + -0.07378670573234558, + 0.009556584060192108, + -0.04394747316837311, + -0.00473697017878294, + 0.09845617413520813, + 0.05024895817041397, + 0.07578941434621811, + -0.041455067694187164, + 0.020339036360383034, + -0.07199618965387344, + -0.00032202573493123055, + 0.06411229074001312, + 0.005231868475675583, + -0.03483327478170395, + 0.001881057396531105, + -0.017777256667613983, + -0.10686129331588745, + 0.0411837063729763, + -0.01494716014713049, + 0.09120506793260574, + -0.022627366706728935, + -0.009103327989578247, + 0.11127546429634094, + 0.05352877080440521, + -0.025964023545384407, + -0.09588244557380676, + -0.06749939918518066, + 0.05777214094996452, + 0.02400066889822483, + -0.13540257513523102, + -0.05402431637048721, + -0.04703710973262787, + 0.014835123904049397, + -0.015248063951730728, + 0.028131704777479172, + 0.07688596844673157, + 0.02474958449602127, + 0.013577042147517204, + -0.03989001363515854, + 0.057824112474918365, + -0.04226052016019821, + -0.03806401416659355, + -0.023969005793333054, + -0.08808296173810959, + -0.024581748992204666, + 0.09127004444599152, + -0.00015879381680861115, + -0.0023662401363253593, + -0.011115769855678082, + -0.03736710548400879, + -0.06828293949365616, + 0.04172505810856819, + 0.03899235278367996, + -0.013100661337375641, + 0.07425445318222046, + 0.03501540422439575, + -0.07611650973558426, + 0.03888406977057457, + 0.05817209929227829, + 0.0886860191822052, + -0.05818326398730278, + -0.01082757767289877, + -0.08797362446784973, + 0.06570108234882355, + 0.12596997618675232, + -0.07915858924388885, + -0.07743801176548004, + -0.08394711464643478, + -0.04512365162372589, + 0.07957577705383301, + -0.05289927124977112, + -0.04932757839560509, + 0.03850160539150238, + -0.025188328698277473, + -0.08130116015672684, + -0.10619225353002548, + 0.12219294160604477, + -0.021180758252739906, + -0.008895516395568848, + -0.0709991455078125, + 0.03743146359920502, + 0.02384989894926548, + 0.01840767078101635, + -0.06096290424466133, + 0.04182836785912514, + 0.06620658189058304, + -0.03637291491031647, + 0.03359926491975784, + 0.04802922531962395, + 0.03619861230254173, + -0.02270526997745037, + -0.017054516822099686, + -0.0744648277759552, + 0.06370579451322556, + -0.03850877285003662, + 0.14627712965011597, + -0.008775411173701286, + -0.02794124186038971, + -0.06970594823360443, + 0.07781580835580826, + -0.014483317732810974, + 0.02895738184452057, + 0.06764410436153412, + 0.07853825390338898, + 0.01507125236093998, + -0.08431023359298706, + 0.1134813129901886, + -0.01131184957921505, + 0.0026457877829670906, + -0.04900173097848892, + 0.011052620597183704, + -0.0666150152683258, + 0.024891305714845657, + -0.025077415630221367, + -0.10422015190124512, + 0.01919066347181797, + 0.020873498171567917, + 0.016923341900110245, + 0.0581284761428833, + 0.1151733249425888, + 0.06967391073703766, + -0.027923349291086197 + ] + }, + "p245_214.wav": { + "name": "p245", + "embedding": [ + 0.047064945101737976, + 0.09374096989631653, + -0.029795479029417038, + 0.021070312708616257, + -0.05589009076356888, + 0.07865388691425323, + -0.09673842787742615, + 0.11000014841556549, + -0.05048755556344986, + 0.131479412317276, + -0.05370466411113739, + 0.12335020303726196, + -0.015409699641168118, + -0.14077019691467285, + -0.06206444278359413, + 0.04187578707933426, + -0.08741737902164459, + -0.03439265489578247, + -0.057838551700115204, + -0.02681402675807476, + 0.039697375148534775, + 0.025438295677304268, + 0.0642424076795578, + -0.03531991317868233, + 0.03902808204293251, + 0.06412626057863235, + 0.030178818851709366, + 0.060814641416072845, + 0.03210289403796196, + -0.08688667416572571, + -0.044193901121616364, + 0.09137901663780212, + -0.049057118594646454, + 0.02080947905778885, + 0.04218422248959541, + 0.0006431713700294495, + 0.015838002786040306, + -0.0843123123049736, + -0.02381298318505287, + 0.018406018614768982, + -0.015955021604895592, + 0.07347764074802399, + 0.013104238547384739, + -0.0401352196931839, + 0.006440825294703245, + -0.00018069567158818245, + -0.01934182085096836, + -0.04337479919195175, + -0.10113073885440826, + 0.18702459335327148, + 0.07387524843215942, + 0.015530914068222046, + -0.06757976114749908, + -0.09620954096317291, + 0.11589176207780838, + -0.007667948491871357, + -0.11702315509319305, + -0.024702582508325577, + 0.039730995893478394, + 0.15890994668006897, + -0.034337423741817474, + -0.020275689661502838, + 0.029227253049612045, + 0.12411117553710938, + 0.042949289083480835, + 0.062421295791864395, + 0.09880602359771729, + 0.09733450412750244, + 0.006113381125032902, + 0.05861132964491844, + 0.05956602841615677, + 0.10144306719303131, + 0.04811899736523628, + 0.006292167119681835, + 0.030547291040420532, + -0.02756848931312561, + -0.036115359514951706, + -0.016231752932071686, + -0.04358946532011032, + -0.041516147553920746, + -0.015501786023378372, + 0.009788262657821178, + 0.03226057067513466, + 0.019569098949432373, + -0.01108971331268549, + 0.07296542823314667, + -0.015121547505259514, + -0.04750765860080719, + 0.046328455209732056, + 0.022960711270570755, + -0.006325690075755119, + 0.041848886758089066, + -0.06744523346424103, + -0.10826902836561203, + 0.011240575462579727, + 0.01573677361011505, + 0.031987763941287994, + 0.07897083461284637, + 0.05564790964126587, + -0.033009812235832214, + 0.09721823036670685, + 0.06314319372177124, + -0.01413993164896965, + -0.0028952702414244413, + -0.07780136168003082, + 0.11032142490148544, + 0.111485555768013, + -0.01416182890534401, + 0.022237898781895638, + -0.05350640416145325, + 0.09373100101947784, + 0.06556052714586258, + -0.1477869749069214, + -0.09696733206510544, + 0.005461027845740318, + -0.019313577562570572, + 0.004709434229880571, + 0.0838983878493309, + -0.013766838237643242, + 0.03721331059932709, + 0.10485678166151047, + -0.08244822919368744, + -0.044463638216257095, + -0.03709612786769867, + 0.053563982248306274, + -0.050841473042964935, + 0.03447488695383072, + 0.04613909497857094, + -0.01970847323536873, + -0.010802707634866238, + 0.06719760596752167, + -0.018274515867233276, + -0.009892809204757214, + 0.045708656311035156, + -0.05996613949537277, + 0.02718154340982437, + -0.04021844640374184, + -0.010672122240066528, + 0.06381121277809143, + 0.06861798465251923, + 0.04255390912294388, + -0.013168737292289734, + -0.04493601620197296, + -0.07938000559806824, + 0.016043849289417267, + 0.03960055857896805, + 0.05487310141324997, + -0.029077205806970596, + -0.03648816794157028, + -0.01762356236577034, + -0.0602191686630249, + 0.030928272753953934, + -0.00013626401778310537, + 0.07913556694984436, + -0.01807384565472603, + 0.00330669479444623, + 0.10706989467144012, + 0.006294815801084042, + -0.032156262546777725, + -0.030468961223959923, + -0.008995155803859234, + 0.04417487606406212, + 0.043615393340587616, + -0.06412704288959503, + -0.07915131747722626, + 0.007170567288994789, + -0.0034205028787255287, + -0.02790575660765171, + 0.038497958332300186, + 0.02190997079014778, + 0.011776771396398544, + 0.02892483025789261, + -0.04509740322828293, + -0.013596253469586372, + -0.11366325616836548, + -0.02900163270533085, + -0.010162962600588799, + -0.06506217271089554, + -0.04136526957154274, + 0.08132496476173401, + 0.02283637784421444, + 0.04748018458485603, + -0.006393404211848974, + -0.07064872235059738, + -0.050806254148483276, + 0.06312011182308197, + 0.06869572401046753, + 0.023169487714767456, + 0.03028082475066185, + 0.07200144976377487, + 0.026990236714482307, + 0.0423385351896286, + 0.06885185837745667, + 0.07954250276088715, + -0.030644822865724564, + -0.022927861660718918, + -0.0760050043463707, + 0.09944835305213928, + 0.06745614856481552, + -0.09499670565128326, + -0.07299520075321198, + -0.05125616863369942, + -0.07023270428180695, + 0.03086809068918228, + -0.03088713437318802, + 0.010799797251820564, + 0.0277373306453228, + -0.015600482001900673, + -0.11233333498239517, + -0.09321694076061249, + 0.11651705205440521, + -0.06504756212234497, + -0.019255002960562706, + -0.05156809836626053, + 0.030898239463567734, + 0.11055074632167816, + 0.043039415031671524, + 0.0038550500757992268, + 0.03207135945558548, + 0.04429542273283005, + -0.05662743002176285, + -0.016363929957151413, + 0.0314166434109211, + 0.009591658599674702, + -0.09701497852802277, + 0.013765759766101837, + -0.05995069444179535, + 0.03888368234038353, + -0.06455570459365845, + 0.14857006072998047, + -0.013764876872301102, + -0.05282110720872879, + -0.0901290774345398, + 0.0639055147767067, + -0.06208319962024689, + 0.04900985211133957, + 0.05416499078273773, + 0.05222054570913315, + 0.014623776078224182, + -0.11301794648170471, + 0.13485057651996613, + 0.03911841660737991, + -0.03812802955508232, + -0.08746892213821411, + -0.06006479263305664, + -0.016906699165701866, + 0.01666960120201111, + 0.008866417221724987, + -0.04860284924507141, + 0.00625983439385891, + -0.0016223359853029251, + -0.022989757359027863, + 0.062379077076911926, + 0.14042839407920837, + 0.08589006960391998, + -0.08640982210636139 + ] + }, + "p245_215.wav": { + "name": "p245", + "embedding": [ + 0.05340327322483063, + 0.10633864998817444, + 0.016881447285413742, + 0.011955846101045609, + -0.028103653341531754, + 0.039301495999097824, + -0.007915105670690536, + 0.07690724730491638, + 0.03343275189399719, + 0.0071962811052799225, + -0.10044921934604645, + 0.05461234971880913, + -0.05114267021417618, + -0.1005287915468216, + 0.03138060122728348, + 0.04352860525250435, + -0.028951672837138176, + 0.011115949600934982, + -0.05946015566587448, + -0.027463845908641815, + -0.04222572222352028, + -0.01483626663684845, + 0.0420759841799736, + -0.007125634700059891, + 0.017293814569711685, + 0.02452283538877964, + -0.04159819334745407, + -0.008275894448161125, + -0.033947646617889404, + -0.015321293845772743, + -0.04088747873902321, + 0.02245538868010044, + -0.026904450729489326, + -0.017765305936336517, + 0.003981326706707478, + -0.03462702035903931, + 0.02976091578602791, + -0.06605526804924011, + -0.0760427936911583, + 0.035450588911771774, + -0.061423659324645996, + 0.043719857931137085, + 0.03152107819914818, + -0.06027592718601227, + 0.07246733456850052, + 0.03666800633072853, + -0.05529148504137993, + -0.0057771094143390656, + -0.10241740942001343, + 0.10199737548828125, + 0.015739869326353073, + 0.03047354705631733, + -0.06237658113241196, + -0.0009945407509803772, + 0.07519080489873886, + -0.02481830306351185, + -0.033776238560676575, + -0.019413195550441742, + 0.028561802580952644, + 0.019934870302677155, + 0.028781460598111153, + -0.007138711400330067, + 0.00945344753563404, + 0.030890248715877533, + 0.06488597393035889, + 0.005041081458330154, + 0.06499192118644714, + 0.09021380543708801, + -0.04256809875369072, + 0.02328052558004856, + 0.049421776086091995, + 0.0002708360552787781, + 0.048158034682273865, + -0.007632295601069927, + -0.0066888523288071156, + -0.0028166454285383224, + -0.0018488089554011822, + -0.036213528364896774, + -0.013678686693310738, + -0.020208947360515594, + 0.036172378808259964, + 0.009933008812367916, + 0.026395440101623535, + 0.003233599476516247, + -0.03619940206408501, + 0.0026943646371364594, + 0.06542219966650009, + 0.074161097407341, + 0.06696416437625885, + 0.03806217014789581, + -0.031037840992212296, + 0.06247745454311371, + -0.046704474836587906, + -0.0468948557972908, + 0.0014159264974296093, + 0.01603846065700054, + -0.007557017263025045, + 0.012560242787003517, + 0.030513733625411987, + -0.021396394819021225, + 0.09735725820064545, + -0.00040161237120628357, + 0.03699781745672226, + 0.00926295481622219, + -0.04896874353289604, + 0.022798974066972733, + 0.053600162267684937, + -0.025863278657197952, + 0.06389139592647552, + 0.05553627386689186, + 0.05068339407444, + 0.06422695517539978, + -0.04759574681520462, + 0.012998662889003754, + -0.03497140854597092, + 0.009746340103447437, + 0.030462805181741714, + 0.07011143863201141, + 0.002916098339483142, + 0.05067679286003113, + 0.1155703067779541, + -0.06528075039386749, + 0.015539305284619331, + 0.07424341887235641, + -0.001646561548113823, + 0.01806781068444252, + 0.02655821666121483, + 0.045040328055620193, + -0.003527548164129257, + -0.004002511501312256, + 0.009933184832334518, + 0.027712196111679077, + 0.012289375066757202, + -0.05542512238025665, + 0.0071549974381923676, + -0.02295861765742302, + 0.0007631317712366581, + -0.03404443711042404, + 0.04421551153063774, + 0.047018758952617645, + -0.0211980938911438, + 0.03315199539065361, + -0.03931222856044769, + -0.060177698731422424, + 0.029677048325538635, + -0.025737091898918152, + 0.0119534432888031, + 0.056419603526592255, + -0.0043476177379488945, + -0.05137646943330765, + 0.003010384738445282, + 0.042700670659542084, + -0.0047316947020590305, + 0.04177888110280037, + 0.04720599949359894, + -0.04274782910943031, + 0.04149050638079643, + 0.032853126525878906, + 0.02865358255803585, + -0.04825536534190178, + -0.09471835941076279, + -0.006813532207161188, + 0.03889298439025879, + -0.018483903259038925, + -0.05374060198664665, + -0.019268011674284935, + -0.03440209850668907, + 0.00211772951297462, + 0.023846661671996117, + 0.0755378007888794, + -0.025281261652708054, + -0.044753298163414, + -0.0645294263958931, + 0.022926198318600655, + 0.00519133172929287, + -0.10383737087249756, + 0.06645971536636353, + 0.019896792247891426, + 0.010932762175798416, + 0.09003394097089767, + 0.028335466980934143, + 0.016694311052560806, + -0.04772309213876724, + -0.05228255316615105, + 0.01909811794757843, + 0.03237741440534592, + -0.001835099421441555, + -0.01396514568477869, + 0.04869674891233444, + 0.04550394043326378, + -0.036374419927597046, + 0.04230061173439026, + 0.00609235092997551, + 0.037768810987472534, + -0.0290360189974308, + 0.011342196725308895, + 0.04197467863559723, + 0.0473606251180172, + 0.031079819425940514, + -0.05481845512986183, + -0.08514288812875748, + -0.04372561350464821, + -0.013911528512835503, + 0.015830835327506065, + 0.029978711158037186, + 0.02546517923474312, + 0.045097097754478455, + -0.0013326751068234444, + -0.010913103818893433, + -0.1187296062707901, + -0.004345055669546127, + 0.009404845535755157, + -0.015766851603984833, + -0.014623725786805153, + 0.019849084317684174, + 0.013312287628650665, + -0.00048827752470970154, + -0.003574371337890625, + 0.034068118780851364, + -0.00222137663513422, + 0.022723587229847908, + -0.033382244408130646, + 0.024314584210515022, + 0.038221798837184906, + 0.018750663846731186, + -0.019439980387687683, + -0.08463259041309357, + 0.06716679036617279, + 0.06160535290837288, + 0.09457183629274368, + 0.03948646038770676, + 0.03383138030767441, + -0.06190531700849533, + 0.038250964134931564, + -0.023806357756257057, + 0.02556297369301319, + -0.025996921584010124, + 0.0302744060754776, + 0.051189325749874115, + -0.009792758151888847, + 0.04220205917954445, + 0.02648290991783142, + -0.04122382029891014, + -0.01870855689048767, + 0.005629613995552063, + -0.07677137106657028, + -0.025150945410132408, + -0.022165482863783836, + -0.042740389704704285, + 0.010031008161604404, + 0.011736268177628517, + 0.07382740825414658, + 0.029676204547286034, + 0.056366175413131714, + 0.031996890902519226, + -0.006148543208837509 + ] + }, + "p245_110.wav": { + "name": "p245", + "embedding": [ + 0.02555643394589424, + 0.07235626876354218, + 0.01770714856684208, + 0.026068637147545815, + -0.04630326107144356, + 0.03194857016205788, + -0.11019507050514221, + 0.13463464379310608, + -0.0429706908762455, + 0.1285693645477295, + -0.09663064777851105, + 0.08202726393938065, + -0.07185394316911697, + -0.1800156533718109, + 0.020058924332261086, + 0.04866713285446167, + 0.0034322692081332207, + 0.006989171728491783, + -0.03739259019494057, + -0.01714503951370716, + 0.013698607683181763, + 0.022624261677265167, + 0.020074687898159027, + 0.012232186272740364, + 0.004504336975514889, + 0.0857618898153305, + -0.01760084182024002, + 0.02221524715423584, + -0.012096527963876724, + -0.021842781454324722, + -0.03781283646821976, + 0.11227633059024811, + -0.07059779763221741, + -0.0024249600246548653, + 0.09085740149021149, + -0.016050709411501884, + -0.07173023372888565, + -0.007009584456682205, + -0.010077418759465218, + -0.034766700118780136, + -0.09529420733451843, + 0.05475795269012451, + 0.01458156481385231, + 0.016427000984549522, + 0.06712383776903152, + 0.049199193716049194, + -0.0038540740497410297, + -0.018240638077259064, + -0.08559584617614746, + 0.08013657480478287, + 0.06938417255878448, + -0.015711436048150063, + -0.03539039194583893, + -0.05248210206627846, + 0.07989786565303802, + -0.016821742057800293, + -0.10916199535131454, + -0.059557169675827026, + 0.11869795620441437, + 0.11590433120727539, + -0.05694813281297684, + -0.02093386836349964, + 0.003558643162250519, + 0.086424820125103, + 0.029945047572255135, + 0.1258133053779602, + 0.047477301210165024, + 0.09240173548460007, + -0.01444920152425766, + 0.029028236865997314, + 0.052897460758686066, + 0.036802634596824646, + 0.07295069098472595, + -0.034984417259693146, + -0.0023337118327617645, + 0.023935696110129356, + -0.00937301479279995, + 0.015886934474110603, + -0.006022213026881218, + 0.0020228582434356213, + -0.01804099604487419, + -0.04307274892926216, + -0.009423762559890747, + -0.035697948187589645, + 0.013644331134855747, + 0.03897920995950699, + 0.08407110720872879, + 0.007962756790220737, + 0.08778700977563858, + 0.007871446199715137, + -0.05993299186229706, + 0.07932788878679276, + -0.07809124886989594, + -0.017535602673888206, + -0.011218776926398277, + -0.03262505680322647, + 0.012550795450806618, + 0.08188579976558685, + 0.03862619400024414, + 0.007160184904932976, + 0.11518634855747223, + 0.022629477083683014, + 0.028711212798953056, + 0.05931922793388367, + -0.11019732058048248, + 0.1228824257850647, + 0.048726409673690796, + -0.042014531791210175, + 0.0452614389359951, + -0.028597736731171608, + 0.0609288364648819, + 0.0787540152668953, + -0.11722566932439804, + -0.01935793273150921, + -0.016635458916425705, + -0.019967833533883095, + -0.05789241939783096, + 0.11276793479919434, + -0.023669414222240448, + -0.020678788423538208, + 0.1348908543586731, + -0.10980445146560669, + -0.07240233570337296, + -0.0003691096499096602, + 0.01737053133547306, + -0.13624191284179688, + 0.04622536897659302, + 0.04442868381738663, + -0.013762760907411575, + 0.04043731838464737, + 0.12342032045125961, + -0.01572316884994507, + -0.008604258298873901, + 0.0054579731076955795, + -0.051671016961336136, + -0.0074430713430047035, + -0.03893083333969116, + 0.02852053940296173, + 0.060383982956409454, + 0.03592574596405029, + 0.060844436287879944, + -0.01535792276263237, + -0.0077037084847688675, + -0.08128048479557037, + -0.008699445053935051, + 0.054758574813604355, + 0.05283838510513306, + -0.010027196258306503, + 0.003271749010309577, + -0.042886462062597275, + -0.08479133248329163, + 0.03776728734374046, + -0.013723475858569145, + 0.055247992277145386, + -0.040381886065006256, + 0.004527071490883827, + 0.11329612135887146, + 0.046185653656721115, + -0.013349653221666813, + -0.12891486287117004, + -0.038776032626628876, + 0.0022130890283733606, + 0.05557439476251602, + -0.12151066213846207, + -0.05831880867481232, + -0.02554401010274887, + 0.057104989886283875, + -0.009181196801364422, + 0.03971859812736511, + 0.03621897101402283, + 0.039036307483911514, + 0.011169672012329102, + -0.0295325368642807, + 0.014777950942516327, + -0.059585779905319214, + -0.087800994515419, + -0.0345965139567852, + -0.027754995971918106, + -0.014154193922877312, + 0.04475027322769165, + -0.032369453459978104, + 0.01805879734456539, + -0.0025275805965065956, + -0.07460813224315643, + -0.09717938303947449, + 0.0600360706448555, + 0.0318426676094532, + -0.018791604787111282, + 0.04684809595346451, + 0.041291236877441406, + -0.13143031299114227, + 0.036254823207855225, + 0.04524070769548416, + 0.14362019300460815, + -0.047457944601774216, + 0.06435289978981018, + -0.05861120671033859, + 0.03930116444826126, + 0.09640099853277206, + -0.08042299747467041, + -0.0909884124994278, + -0.018367188051342964, + -0.035890843719244, + 0.07536790519952774, + -0.03099660575389862, + -0.04874314367771149, + 0.0047473907470703125, + -0.01652522385120392, + -0.039226893335580826, + -0.06445834040641785, + 0.07846919447183609, + -0.03068755567073822, + -0.009995811618864536, + -0.09745784103870392, + 0.0478726401925087, + 0.003368699923157692, + 0.06446559727191925, + -0.014516664668917656, + 0.011852843686938286, + 0.0683678388595581, + -0.0370762012898922, + 0.004386263433843851, + 0.09676545113325119, + 0.02815013751387596, + -0.04111116752028465, + -0.052117787301540375, + -0.07754398137331009, + 0.07877151668071747, + -0.03502999246120453, + 0.11218953877687454, + -0.03431636095046997, + -0.0400056354701519, + -0.03413724526762962, + -0.0019906521774828434, + 0.01643894612789154, + 0.01642376184463501, + 0.059626124799251556, + 0.0699956938624382, + 0.02787698619067669, + -0.020561281591653824, + 0.1302621066570282, + -0.007433319464325905, + 0.011815494857728481, + -0.01599222794175148, + -0.03756856173276901, + -0.0720696672797203, + -0.021684154868125916, + -0.010201646015048027, + -0.15179437398910522, + 0.009371409192681313, + 0.00499859731644392, + -0.02156764827668667, + 0.02268831990659237, + 0.12261008471250534, + 0.06367574632167816, + -0.09981290996074677 + ] + }, + "p245_261.wav": { + "name": "p245", + "embedding": [ + 0.028719626367092133, + 0.0682663768529892, + -0.04940575361251831, + 0.03504057228565216, + -0.016620462760329247, + 0.04279787093400955, + -0.12955424189567566, + 0.06353916227817535, + -0.04909253492951393, + 0.14170783758163452, + -0.09153395891189575, + 0.06715115904808044, + -0.02883533574640751, + -0.1582050621509552, + -0.02464410848915577, + 0.055761996656656265, + -0.01921982318162918, + -0.00347290001809597, + -0.06350982189178467, + -0.015356123447418213, + 0.05540609359741211, + 0.06547226011753082, + 0.01876433566212654, + -0.049175627529621124, + 0.006675088312476873, + 0.05275445431470871, + -0.02564014494419098, + -0.0010150463785976171, + -0.03351340442895889, + -0.03141164034605026, + -0.008707764558494091, + 0.12295949459075928, + 0.0034940880723297596, + 0.003139996435493231, + 0.015117807313799858, + 0.051158081740140915, + -0.021998688578605652, + -0.07792427390813828, + -0.0007367711514234543, + -0.008576905354857445, + -0.0631859079003334, + 0.035880327224731445, + 0.006141346879303455, + -0.038210514932870865, + 0.07119050621986389, + -0.07058751583099365, + -0.04105035215616226, + -0.03922830522060394, + -0.08949838578701019, + 0.17172160744667053, + 0.06163036823272705, + 0.045889709144830704, + -0.09138541668653488, + -0.05498262494802475, + 0.1072787344455719, + 0.014204464852809906, + -0.08314104378223419, + -0.048729151487350464, + 0.05059795081615448, + 0.1794515699148178, + -0.004692745860666037, + -0.020559659227728844, + 0.060942020267248154, + 0.060778748244047165, + -0.015036608092486858, + 0.09242556989192963, + 0.07661066204309464, + 0.05347227305173874, + 0.0388450026512146, + 0.005949879996478558, + 0.04976240545511246, + 0.07206512987613678, + 0.027056021615862846, + -0.06214090436697006, + 0.02311357483267784, + 0.00044776126742362976, + -0.07447825372219086, + 0.011545495130121708, + -0.027642032131552696, + -0.05656038597226143, + 0.014318699017167091, + -0.026159826666116714, + 0.023067116737365723, + -0.005185766611248255, + -0.07371778786182404, + -0.02234519273042679, + 0.07163495570421219, + -0.06722832471132278, + 0.05723799020051956, + 0.06098293885588646, + 0.024096745997667313, + -0.001870916225016117, + -0.027889618650078773, + -0.10887596011161804, + 0.0246100053191185, + 0.04710167646408081, + -0.03869970142841339, + 0.04575304687023163, + 0.04728969559073448, + -0.03264822065830231, + 0.07574567198753357, + -0.002339482307434082, + 0.013620937243103981, + 0.006478495895862579, + -0.09110035747289658, + 0.07065313309431076, + 0.14203159511089325, + -0.0036951114889234304, + 0.04770747199654579, + -0.04089842364192009, + 0.021626245230436325, + 0.09142092615365982, + -0.10794660449028015, + -0.07400927692651749, + 0.027334842830896378, + -0.008714540861546993, + 0.051466234028339386, + 0.1170751303434372, + 0.0508880615234375, + -0.0033791083842515945, + 0.10336221754550934, + -0.12567271292209625, + -0.08851557970046997, + -0.04820217937231064, + 0.03977808356285095, + -0.06521207094192505, + 0.06675456464290619, + 0.07564829289913177, + 0.005411386024206877, + -0.016224874183535576, + 0.0325373075902462, + -0.022063452750444412, + 0.04771711677312851, + -0.05338918790221214, + -0.022877052426338196, + 0.039339084178209305, + -0.06750660389661789, + -0.03709257021546364, + 0.07008512318134308, + 0.0391334593296051, + 0.0582529678940773, + -0.012380555272102356, + -0.027346568182110786, + -0.10309469699859619, + -0.009733662940561771, + 0.07755441963672638, + 0.03022763319313526, + -0.020615937188267708, + -0.001985626295208931, + -0.05781591311097145, + -0.08478523045778275, + 0.05125606432557106, + -0.08793842792510986, + 0.10906244814395905, + 0.03553424030542374, + 0.012464728206396103, + 0.12585753202438354, + -0.020334316417574883, + -0.01074310578405857, + -0.050014056265354156, + -0.010473500937223434, + 0.03056339919567108, + 0.03348955512046814, + -0.07469385117292404, + -0.07651777565479279, + -0.02957879565656185, + 0.005555484443902969, + -0.013957532122731209, + 0.008994956500828266, + 0.04029555991292, + 0.015366200357675552, + 0.01623581536114216, + -0.1108129471540451, + 0.04026583582162857, + -0.11875109374523163, + -0.03266284987330437, + 0.007016483228653669, + -0.06607335805892944, + 0.018608558923006058, + 0.12396019697189331, + 0.01859358139336109, + -0.050637125968933105, + -0.058687955141067505, + -0.09448264539241791, + -0.060775838792324066, + 0.06692124903202057, + 0.07513782382011414, + -0.00427282927557826, + 0.020299918949604034, + 0.011965272948145866, + 0.0041732583194971085, + 0.015369415283203125, + 0.06248774379491806, + 0.10406634956598282, + -0.0048499819822609425, + -0.030295372009277344, + -0.06337064504623413, + 0.10416190326213837, + 0.09583314508199692, + -0.050846487283706665, + -0.07677732408046722, + -0.04408232867717743, + -0.06627500057220459, + 0.054286010563373566, + -0.04040510952472687, + -0.007627756800502539, + 0.03301994502544403, + -0.05689230561256409, + -0.14404836297035217, + -0.0914098471403122, + 0.07674422115087509, + 0.007081826217472553, + -0.023436736315488815, + -0.07264649868011475, + 0.03708415478467941, + 0.03996081277728081, + 0.01779070869088173, + -0.046048760414123535, + 0.01382038276642561, + 0.014750783331692219, + -0.08491375297307968, + -0.008266124874353409, + 0.0039771609008312225, + 0.0008199198637157679, + -0.07435379922389984, + 0.008985860273241997, + -0.07965540885925293, + 0.11350997537374496, + -0.06394005566835403, + 0.10732769966125488, + -0.013949532061815262, + -0.060727380216121674, + -0.08874869346618652, + 0.0719105526804924, + 0.01938960887491703, + 0.033333919942379, + 0.03244972229003906, + 0.05756678059697151, + 0.050989627838134766, + -0.0989881157875061, + 0.0424191839993, + 0.04609941691160202, + 0.024677548557519913, + -0.05812446027994156, + -0.04080793634057045, + -0.032777562737464905, + 0.02581276372075081, + -0.046896569430828094, + -0.046861421316862106, + 0.03433758765459061, + 0.009798077866435051, + 0.02808917500078678, + 0.06244601309299469, + 0.07803112268447876, + 0.032547835260629654, + -0.10110392421483994 + ] + }, + "p245_111.wav": { + "name": "p245", + "embedding": [ + 0.03550855442881584, + 0.14485898613929749, + -0.010829811915755272, + -0.03280510753393173, + -0.03996242582798004, + 0.039297379553318024, + -0.14222826063632965, + 0.1331581324338913, + -0.016904544085264206, + 0.12735259532928467, + -0.10943038016557693, + 0.11034969985485077, + -0.08529987931251526, + -0.10741734504699707, + -0.02197076380252838, + 0.012994790449738503, + 0.025103982537984848, + 0.02306518144905567, + -0.022478360682725906, + -0.030524447560310364, + 0.03684055060148239, + 0.03498847037553787, + 0.01673566922545433, + -0.02004510723054409, + 0.007751945871859789, + 0.0461181104183197, + -0.0013326248154044151, + 0.05583211034536362, + 0.012679265812039375, + -0.016813842579722404, + 0.0006979331374168396, + 0.08946909010410309, + -0.045991286635398865, + 0.041900523006916046, + 0.05703932046890259, + 0.010381726548075676, + -0.024921881034970284, + -0.0243266262114048, + 0.036851316690444946, + -0.0033594791311770678, + -0.0234886035323143, + 0.061311401426792145, + 0.022858023643493652, + -0.01987280137836933, + 0.0304512158036232, + 0.06362675130367279, + 0.028783652931451797, + -0.03097056970000267, + -0.07412416487932205, + 0.13080735504627228, + 0.02817368507385254, + -0.013529549352824688, + -0.07549724727869034, + -0.03104124590754509, + 0.08248063921928406, + -0.0479760579764843, + -0.05786697939038277, + -0.07814197987318039, + 0.060501545667648315, + 0.08764363825321198, + -0.048179976642131805, + -0.0659920945763588, + 0.007014569826424122, + 0.09848722815513611, + 0.018647005781531334, + 0.06673350185155869, + 0.08258254826068878, + 0.12289552390575409, + -0.041442207992076874, + -0.010779842734336853, + -0.0037249941378831863, + 0.04359939694404602, + 0.008133910596370697, + -0.0006030024960637093, + 0.016861408948898315, + -0.03304049000144005, + 0.009248674847185612, + 0.054975561797618866, + -0.04692225903272629, + -0.04663801193237305, + -0.03479180485010147, + 0.02962360344827175, + -0.047401636838912964, + -0.013485975563526154, + -0.021126369014382362, + 0.06323599815368652, + 0.044344738125801086, + -0.02065996080636978, + 0.09202764928340912, + 0.045098792761564255, + 0.004654675256460905, + 0.029217151924967766, + -0.08452662825584412, + -0.04490996152162552, + 0.013734543696045876, + -0.03426099568605423, + 0.004958480596542358, + 0.08601246774196625, + 0.014770184643566608, + 0.006437203846871853, + 0.11453334987163544, + 0.02017252892255783, + -0.00776681350544095, + 0.01847825199365616, + -0.0804281085729599, + 0.1612178385257721, + 0.07517047226428986, + -0.04474687576293945, + 0.015668615698814392, + -0.06843627244234085, + -0.0033770427107810974, + 0.03790973871946335, + -0.07300029695034027, + -0.08607394993305206, + 0.01222588773816824, + 0.041114211082458496, + -0.019171588122844696, + 0.07914507389068604, + -0.011501951143145561, + 0.0008063190616667271, + 0.12321918457746506, + -0.07063327729701996, + -0.08817235380411148, + -0.008862371556460857, + 0.030997196212410927, + -0.047107189893722534, + 0.04081398993730545, + 0.08151167631149292, + 0.007638392969965935, + 0.03005233407020569, + 0.08584250509738922, + 0.019545547664165497, + 0.046437494456768036, + 0.006292250473052263, + -0.04177769646048546, + 0.00728335976600647, + -0.013473732396960258, + -0.012093758210539818, + 0.0013461187481880188, + 0.09340496361255646, + 0.090224489569664, + 0.024059699848294258, + -0.02864828333258629, + -0.10220964252948761, + -0.010555543005466461, + 0.06303481757640839, + 0.03227592632174492, + -0.030729053542017937, + -0.019810186699032784, + -0.0417516827583313, + -0.03278498351573944, + -0.018932055681943893, + -0.0021347845904529095, + 0.07034353911876678, + -0.051769934594631195, + 0.01090044155716896, + 0.13358326256275177, + 0.037237100303173065, + 0.009262293577194214, + -0.06731415539979935, + -0.014622404240071774, + -0.02947082556784153, + 0.01738361455500126, + -0.07015276700258255, + -0.09717075526714325, + -0.03522675111889839, + 0.05434386804699898, + -0.006228724494576454, + 0.0832095593214035, + 0.060385528951883316, + 0.006247204728424549, + 0.044586025178432465, + -0.05626225844025612, + 0.02354953996837139, + -0.05149802565574646, + -0.051610447466373444, + -0.017696933820843697, + -0.0015532439574599266, + -0.009260283783078194, + 0.06963570415973663, + 0.008927978575229645, + 0.066965252161026, + 0.01630980521440506, + -0.08143803477287292, + -0.11671242117881775, + 0.015963826328516006, + 0.06909096240997314, + -0.041098590940237045, + 0.051891714334487915, + 0.04089884087443352, + -0.05928340181708336, + 0.0590372160077095, + 0.06834644079208374, + 0.0473015271127224, + -0.03937268629670143, + 0.009194767102599144, + -0.055180251598358154, + 0.02112501859664917, + 0.07843370735645294, + -0.10434204339981079, + -0.06425374746322632, + -0.06442097574472427, + -0.022550711408257484, + -0.03478993475437164, + -0.010842906311154366, + 0.014627031050622463, + 0.013083430007100105, + 0.0014417776837944984, + -0.0695328414440155, + -0.08121350407600403, + 0.011930480599403381, + -0.058943212032318115, + 0.034701064229011536, + -0.06020333617925644, + 0.04696594178676605, + 0.06092483177781105, + 0.04206293821334839, + -0.032730501145124435, + -0.04312049597501755, + 0.028974315151572227, + -0.029506759718060493, + 0.019039565697312355, + 0.0474838986992836, + 0.05166543275117874, + -0.032307956367731094, + 0.04034123569726944, + -0.08381982147693634, + 0.06599937379360199, + -0.047803476452827454, + 0.1456785947084427, + 0.027119625359773636, + -0.07268694043159485, + -0.08589650690555573, + -0.0002403393154963851, + -0.052077047526836395, + 0.021691421046853065, + -0.006582115776836872, + 0.016479825600981712, + 0.012505254708230495, + -0.046623602509498596, + 0.12616442143917084, + 0.0442710742354393, + -0.05161421746015549, + -0.08115414530038834, + -0.07762987911701202, + -0.06402859091758728, + 0.020394140854477882, + 0.030192259699106216, + -0.08394274115562439, + -0.0313834585249424, + 0.006412512622773647, + -0.014594304375350475, + 0.08737412095069885, + 0.12215501070022583, + 0.07093289494514465, + -0.12070630490779877 + ] + }, + "p245_041.wav": { + "name": "p245", + "embedding": [ + 0.0477493517100811, + 0.09237784147262573, + -0.04194314032793045, + 0.015993749722838402, + -0.06453871726989746, + 0.04421694204211235, + -0.11807951331138611, + 0.12396105378866196, + -0.02690242789685726, + 0.1365990936756134, + -0.06510811299085617, + 0.13611844182014465, + -0.008770588785409927, + -0.16155876219272614, + -0.034966230392456055, + 0.02737453207373619, + -0.043871812522411346, + -0.025151420384645462, + -0.061628472059965134, + -0.049977779388427734, + 0.051731400191783905, + 0.048346951603889465, + 0.03644756227731705, + -0.02840607985854149, + 0.016115382313728333, + 0.06663861870765686, + 0.005010311957448721, + 0.0280466228723526, + 0.007017101161181927, + -0.06567616760730743, + -0.044305138289928436, + 0.09010188281536102, + -0.05202030390501022, + 0.012884674593806267, + 0.038975901901721954, + -0.021395020186901093, + -0.004304943140596151, + -0.06211567670106888, + -0.026561586186289787, + 0.02595832198858261, + -0.03137664496898651, + 0.06644094735383987, + 0.01489008218050003, + -0.033769767731428146, + 0.05108369514346123, + 0.0031738176476210356, + -0.019590381532907486, + -0.04465639218688011, + -0.09283270686864853, + 0.1672413945198059, + 0.07739828526973724, + 0.004435134120285511, + -0.07296284288167953, + -0.05701959878206253, + 0.10157613456249237, + -0.024667665362358093, + -0.10168250650167465, + -0.029142102226614952, + 0.04136113449931145, + 0.1286768764257431, + -0.03394491225481033, + -0.04360955208539963, + 0.04500718042254448, + 0.10438748449087143, + 0.051580771803855896, + 0.05864544212818146, + 0.1077108085155487, + 0.10473759472370148, + -0.0309605710208416, + 0.023109566420316696, + 0.04447374865412712, + 0.09272312372922897, + 0.05901356786489487, + -0.011929653584957123, + 0.03504199534654617, + -0.004105374217033386, + -0.01844783127307892, + -0.020031172782182693, + -0.03811773657798767, + -0.02390196919441223, + -0.006757264956831932, + 0.012772822752594948, + 0.01802491582930088, + 0.02396896481513977, + -0.04342176765203476, + 0.06574518978595734, + 0.04898051545023918, + -0.03049437701702118, + 0.05111781880259514, + 0.041526615619659424, + 0.01291646622121334, + 0.05399622023105621, + -0.0910683199763298, + -0.09725426137447357, + 0.03494423255324364, + 0.0060155875980854034, + 0.00856709759682417, + 0.07191620767116547, + 0.05017685517668724, + -0.02178741991519928, + 0.10842698812484741, + 0.05835350602865219, + -0.02091311663389206, + 0.009147617034614086, + -0.07842686772346497, + 0.1159372627735138, + 0.12462387979030609, + -0.03323308005928993, + 0.033219143748283386, + -0.05944114178419113, + 0.0759272575378418, + 0.047366105020046234, + -0.1181628555059433, + -0.08785824477672577, + 0.024486316367983818, + 0.0008049008320085704, + 0.0021551456302404404, + 0.11213827133178711, + -0.004702751990407705, + 0.05059404298663139, + 0.11286967992782593, + -0.07962623238563538, + -0.054937005043029785, + -0.04110291972756386, + 0.045597486197948456, + -0.07029402256011963, + 0.060428276658058167, + 0.06039038300514221, + 0.004759245552122593, + 0.007408760488033295, + 0.06954717636108398, + -0.017764568328857422, + 0.004618425853550434, + 0.00407846225425601, + -0.041635021567344666, + 0.017860565334558487, + -0.013863824307918549, + -0.0257607102394104, + 0.04759707674384117, + 0.05385126918554306, + 0.0446147620677948, + -0.00906505435705185, + -0.022154850885272026, + -0.10992348194122314, + 0.032542936503887177, + 0.027880478650331497, + 0.05512824282050133, + -0.020555822178721428, + -0.01608181558549404, + -0.02974173054099083, + -0.0684344619512558, + 0.009244384244084358, + -0.01695946604013443, + 0.061791520565748215, + -0.02952212654054165, + 0.00883636437356472, + 0.10563653707504272, + 0.026330173015594482, + -0.009894780814647675, + -0.02149779722094536, + -0.0250079445540905, + 0.010634174570441246, + 0.050586216151714325, + -0.06921441853046417, + -0.09290610253810883, + -0.029016582295298576, + 0.012191740795969963, + -0.018572300672531128, + 0.06368248164653778, + 0.053111325949430466, + 0.007641030475497246, + 0.0381646454334259, + -0.07638256251811981, + 0.007735195569694042, + -0.11101382225751877, + -0.051872946321964264, + -0.016163796186447144, + -0.040560003370046616, + -0.021449659019708633, + 0.07260923087596893, + 0.012661389075219631, + 0.04406234622001648, + -0.030989903956651688, + -0.07271388918161392, + -0.06864629685878754, + 0.05229887366294861, + 0.06854039430618286, + 0.0027720890939235687, + 0.032364506274461746, + 0.06306475400924683, + -0.0015725692501291633, + 0.04637237638235092, + 0.07249733060598373, + 0.08299090713262558, + -0.020934831351041794, + 0.009450020268559456, + -0.0701339840888977, + 0.1035202294588089, + 0.07218052446842194, + -0.07887984812259674, + -0.08870985358953476, + -0.0490020290017128, + -0.06473680585622787, + 0.023912271484732628, + -0.022393954917788506, + 0.01675771176815033, + 0.03506441041827202, + 0.009061263874173164, + -0.10205816477537155, + -0.0841464027762413, + 0.08850695192813873, + -0.055125847458839417, + -0.0012489210348576307, + -0.0738770142197609, + 0.03230364993214607, + 0.10851822793483734, + 0.02782110497355461, + -0.030705278739333153, + -0.010481758043169975, + 0.041074901819229126, + -0.022446414455771446, + 0.01784534752368927, + 0.025507211685180664, + 0.045900341123342514, + -0.0955275446176529, + 0.0034386366605758667, + -0.06259236484766006, + 0.054756324738264084, + -0.055079083889722824, + 0.12476056814193726, + 0.016941087320446968, + -0.05011047050356865, + -0.09257613122463226, + 0.06569737941026688, + -0.01717977412045002, + 0.05570942163467407, + 0.02985534630715847, + 0.059644948691129684, + 0.022495320066809654, + -0.10366769880056381, + 0.10545758903026581, + 0.042949795722961426, + -0.0459798239171505, + -0.08494843542575836, + -0.05034906417131424, + -0.0250820592045784, + 0.030237583443522453, + 0.02807774394750595, + -0.05646726116538048, + -0.006900464650243521, + 0.005302296485751867, + -0.01282959058880806, + 0.06398545205593109, + 0.13197055459022522, + 0.06530894339084625, + -0.11476507037878036 + ] + }, + "p245_328.wav": { + "name": "p245", + "embedding": [ + 0.05617386847734451, + 0.07904292643070221, + -0.05768284201622009, + 0.01280163787305355, + -0.01526748575270176, + 0.0485241636633873, + -0.15064625442028046, + 0.10934114456176758, + -0.03235384821891785, + 0.1413254737854004, + -0.04893331974744797, + 0.10392957925796509, + 0.00040120165795087814, + -0.14071737229824066, + -0.03232470527291298, + 0.0321141853928566, + -0.0015894435346126556, + -0.011904029175639153, + -0.011431677266955376, + -0.021638354286551476, + 0.06593276560306549, + 0.03981903940439224, + 0.0029544932767748833, + -0.018907058984041214, + 0.001344342716038227, + 0.06283427029848099, + 0.007014612667262554, + 0.005726813338696957, + -0.027804411947727203, + -0.01787494495511055, + 0.003961613401770592, + 0.10440093278884888, + -0.013393338769674301, + 0.014731412753462791, + 0.02829013019800186, + 0.008674138225615025, + -0.026389606297016144, + -0.08025700598955154, + 0.0073259854689240456, + 0.007017776370048523, + -0.02491014450788498, + 0.07158514857292175, + 0.018068892881274223, + -0.009878246113657951, + 0.04825524240732193, + -0.05671892687678337, + -0.02168121188879013, + -0.03901250660419464, + -0.07670150697231293, + 0.15379369258880615, + 0.08683139830827713, + 0.05515015125274658, + -0.08740255981683731, + -0.01735696569085121, + 0.09593777358531952, + 0.02081870101392269, + -0.05083323270082474, + -0.04623928293585777, + 0.024533364921808243, + 0.16087546944618225, + -0.011430121958255768, + -0.0456274151802063, + 0.04772263020277023, + 0.0976860374212265, + 0.00822538137435913, + 0.04963439702987671, + 0.11910323798656464, + 0.0733649879693985, + 0.0013680141419172287, + 0.009420438669621944, + 0.006742628291249275, + 0.09184914827346802, + 0.0413745641708374, + -0.04767830669879913, + 0.035659365355968475, + -0.02246152237057686, + -0.03310563415288925, + -0.019495779648423195, + -0.025863494724035263, + -0.06216835603117943, + -0.008380716666579247, + 0.0034364003222435713, + 0.019272930920124054, + 0.049597930163145065, + -0.05142837390303612, + -0.00502572488039732, + 0.04930359125137329, + -0.08180411159992218, + 0.03782174736261368, + 0.04454237222671509, + 0.018986109644174576, + 0.007577402517199516, + -0.07519514858722687, + -0.10205693542957306, + 0.06489294767379761, + 0.02303912863135338, + -0.008926928974688053, + 0.0840153843164444, + 0.0438527949154377, + 0.0008392501622438431, + 0.06922023743391037, + 0.01919633522629738, + -0.019355930387973785, + -0.027148349210619926, + -0.05884486436843872, + 0.10010324418544769, + 0.12095650285482407, + -0.037342801690101624, + 0.04775581508874893, + -0.07086178660392761, + 0.008903516456484795, + 0.05004771426320076, + -0.11418317258358002, + -0.07147450000047684, + 0.046104028820991516, + 0.02718237228691578, + 0.04102572798728943, + 0.11280116438865662, + 0.03383931145071983, + 0.027148520573973656, + 0.07994554191827774, + -0.0745246633887291, + -0.0801478698849678, + -0.09133970737457275, + 0.05698493495583534, + -0.07129272818565369, + 0.08108112215995789, + 0.05352579057216644, + 0.019657142460346222, + -0.02620226889848709, + 0.0318094827234745, + -0.006074388511478901, + -0.0001315223053097725, + -0.03856272250413895, + 0.006228663958609104, + 0.03147214278578758, + -0.04583292454481125, + -0.003433307632803917, + -0.0030966829508543015, + 0.008602485060691833, + 0.0375945046544075, + 0.012672887183725834, + 0.0012815799564123154, + -0.0956883430480957, + -0.0017617587000131607, + 0.05918446183204651, + 0.038543879985809326, + -0.04297349974513054, + -0.04934300109744072, + -0.023013826459646225, + -0.05868016183376312, + -0.006701629608869553, + -0.056717418134212494, + 0.07512792199850082, + 0.04180514067411423, + 0.04520123079419136, + 0.09287647902965546, + -0.006895776838064194, + 0.017783477902412415, + -0.003460145089775324, + 0.02473307028412819, + 0.02298557572066784, + 0.03354668244719505, + -0.07770553976297379, + -0.07962100952863693, + -0.04650557041168213, + 0.0017606260953471065, + -0.024057237431406975, + 0.013286969624459743, + 0.02535199001431465, + 0.0076537225395441055, + 0.017590194940567017, + -0.09013740718364716, + 0.007999510504305363, + -0.12707996368408203, + -0.03398171067237854, + -0.021966902539134026, + -0.03939962014555931, + -0.0012892317026853561, + 0.08144719153642654, + 0.030042706057429314, + 0.017198117449879646, + -0.05104053393006325, + -0.05589691549539566, + -0.054754309356212616, + 0.05088431015610695, + 0.08637966215610504, + -0.015134629793465137, + -0.002071704715490341, + 0.012231019325554371, + 0.027255753055214882, + 0.014431443996727467, + 0.06546209752559662, + 0.08026807010173798, + -0.02532717026770115, + -0.009718581102788448, + -0.05980297923088074, + 0.1069805696606636, + 0.10707004368305206, + -0.0614449679851532, + -0.09145216643810272, + -0.04136540740728378, + -0.07436417043209076, + 0.00538298673927784, + -0.044389039278030396, + 0.008544267155230045, + 0.03614173084497452, + -0.04093204438686371, + -0.13392260670661926, + -0.09538638591766357, + 0.06791391968727112, + -0.02935994416475296, + -0.0032106838189065456, + -0.07973016798496246, + 0.0651625320315361, + 0.09330111742019653, + 0.011324265971779823, + -0.05224213749170303, + -0.025258494541049004, + 0.0014371015131473541, + -0.03626387566328049, + 0.0013702819123864174, + -0.005832750350236893, + 0.030596623197197914, + -0.12303905189037323, + 0.011951295658946037, + -0.0479188933968544, + 0.07796569168567657, + -0.08250056207180023, + 0.09229965507984161, + 0.00027545448392629623, + -0.0613454170525074, + -0.09219121932983398, + 0.04239840433001518, + 0.046963680535554886, + 0.036961205303668976, + -0.00227383803576231, + 0.05158303678035736, + 0.007124053314328194, + -0.11739473789930344, + 0.05927913635969162, + 0.062101248651742935, + 0.011960633099079132, + -0.09744171798229218, + -0.02750169299542904, + -0.0009344723075628281, + 0.05877801030874252, + -0.01584586128592491, + -0.03744545578956604, + -0.0023435503244400024, + 0.02005106210708618, + 0.023712754249572754, + 0.061332784593105316, + 0.09847626835107803, + 0.020485959947109222, + -0.11655662953853607 + ] + }, + "p245_048.wav": { + "name": "p245", + "embedding": [ + 0.04827209562063217, + 0.07733197510242462, + -0.003094793064519763, + 0.04265182465314865, + -0.04931697994470596, + 0.07825329899787903, + -0.13045519590377808, + 0.13008370995521545, + -0.05213911086320877, + 0.13751989603042603, + -0.08746270835399628, + 0.1242460161447525, + -0.019425880163908005, + -0.18289387226104736, + -0.044179804623126984, + 0.06216875836253166, + -0.01563127711415291, + -0.02073816768825054, + -0.0048699751496315, + 0.006337813567370176, + 0.05005989223718643, + 0.02714351937174797, + 0.04588029533624649, + 0.01888325996696949, + 0.014225313439965248, + 0.05118347331881523, + 0.010695486329495907, + 0.07697305828332901, + 0.037662725895643234, + -0.048459917306900024, + -0.03948194161057472, + 0.12638385593891144, + -0.04402773827314377, + 0.02371201291680336, + 0.05820462480187416, + 0.0047158473171293736, + -0.0040702433325350285, + -0.07582718133926392, + -0.015208657830953598, + -0.036827657371759415, + -0.048001714050769806, + 0.06616838276386261, + 0.018180236220359802, + -0.008400265127420425, + 0.039698801934719086, + 0.0044549996964633465, + -0.029463913291692734, + -0.0380723774433136, + -0.11143915355205536, + 0.12026453018188477, + 0.056759580969810486, + 0.011729151010513306, + -0.0793977826833725, + -0.07146266102790833, + 0.10772228240966797, + -0.014417052268981934, + -0.10487514734268188, + -0.03818989172577858, + 0.08424211293458939, + 0.18898943066596985, + -0.017520999535918236, + -0.030518971383571625, + 0.021288853138685226, + 0.10361947119235992, + 0.0527152344584465, + 0.1059795469045639, + 0.09200204908847809, + 0.09676412492990494, + 0.00929214246571064, + 0.03070054203271866, + 0.025073019787669182, + 0.08254441618919373, + 0.034201644361019135, + -0.006474196910858154, + 0.011831933632493019, + 0.012454196810722351, + -0.02525544911623001, + 0.02861812710762024, + -0.033858414739370346, + -0.012108471244573593, + -0.02703946642577648, + -0.001300246687605977, + 0.01257583498954773, + 0.011897867545485497, + -0.030838433653116226, + 0.05659656971693039, + 0.005704890005290508, + -0.013511136174201965, + 0.06260167807340622, + 0.019151829183101654, + -0.01630425825715065, + 0.05332048237323761, + -0.08144542574882507, + -0.10232388973236084, + 0.005137446336448193, + 0.0044280909933149815, + 0.009218962863087654, + 0.08582229912281036, + 0.028914859518408775, + -0.020744170993566513, + 0.1139017641544342, + 0.03861263766884804, + -0.0056467317044734955, + 0.04693478345870972, + -0.09190023690462112, + 0.11143511533737183, + 0.08087579905986786, + -0.009290654212236404, + 0.051562365144491196, + -0.06122512370347977, + 0.0812540128827095, + 0.08307251334190369, + -0.1430470496416092, + -0.06673327088356018, + 0.027310559526085854, + 0.016199221834540367, + -0.008983487263321877, + 0.11584265530109406, + -0.018362928181886673, + 0.02473014034330845, + 0.091159887611866, + -0.08273765444755554, + -0.05975021421909332, + -0.018027430400252342, + 0.04511408507823944, + -0.07047255337238312, + 0.05964837223291397, + 0.01350078172981739, + 0.0006645230459980667, + -0.011342974379658699, + 0.07541333138942719, + -0.017483746632933617, + -0.014441552571952343, + 0.04478956013917923, + -0.07441110908985138, + 0.02282283641397953, + -0.05053841695189476, + 0.0024701296351850033, + 0.054625071585178375, + 0.04182734340429306, + 0.055346667766571045, + 0.004719394259154797, + -0.030691489577293396, + -0.10647712647914886, + -0.014974161051213741, + 0.051886290311813354, + 0.080818310379982, + -0.0012216406175866723, + -0.04254882410168648, + -0.05467415973544121, + -0.057816725224256516, + 0.03811957687139511, + -0.008121978491544724, + 0.08739885687828064, + -0.00270849303342402, + 0.023016218096017838, + 0.0714796930551529, + 0.006914336234331131, + -0.001389464596286416, + -0.070253387093544, + -0.030554182827472687, + 0.006429283879697323, + 0.05303538218140602, + -0.0715801864862442, + -0.05467407405376434, + 0.016154427081346512, + 0.033158719539642334, + -0.042429156601428986, + 0.03310069441795349, + 0.04770341515541077, + 0.032174259424209595, + 0.04236266762018204, + -0.06367494910955429, + -0.00280338479205966, + -0.12100141495466232, + -0.06949446350336075, + -0.009603125043213367, + 0.007858033291995525, + -0.001059834728948772, + 0.0625513419508934, + 0.037704311311244965, + 0.04697214812040329, + 0.007810885552316904, + -0.06778083741664886, + -0.09864729642868042, + 0.062486808747053146, + 0.06209496408700943, + 0.023577526211738586, + 0.06678949296474457, + 0.045135557651519775, + -0.05043257400393486, + 0.07210192084312439, + 0.06486591696739197, + 0.09128132462501526, + -0.022669468075037003, + 0.012239282950758934, + -0.08310054242610931, + 0.08222278952598572, + 0.11855454742908478, + -0.09039004147052765, + -0.1022348403930664, + -0.016433820128440857, + -0.0805412083864212, + 0.05964312702417374, + -0.033202290534973145, + -0.017606928944587708, + 0.03513156622648239, + -0.03205867111682892, + -0.12043394148349762, + -0.08593438565731049, + 0.09556235373020172, + -0.07492953538894653, + -0.01863514631986618, + -0.07923662662506104, + 0.03670211881399155, + 0.0882929265499115, + 0.016785964369773865, + -0.019328579306602478, + -0.006718709133565426, + 0.06685979664325714, + -0.06807854771614075, + -0.019682439044117928, + 0.04808364808559418, + 1.0044197551906109e-05, + -0.11420659720897675, + 0.014631063677370548, + -0.06839814782142639, + 0.04320947080850601, + -0.05270499736070633, + 0.16021078824996948, + -0.01832277700304985, + -0.055416032671928406, + -0.0695975124835968, + 0.03730277344584465, + -0.012677269987761974, + 0.040440868586301804, + 0.03587840497493744, + 0.06559747457504272, + 0.014560209587216377, + -0.08525940775871277, + 0.13062810897827148, + 0.03711410611867905, + -0.040612734854221344, + -0.0745595246553421, + -0.04604172334074974, + -0.04146720468997955, + 0.015205984935164452, + -0.005205302499234676, + -0.08903783559799194, + -0.02617494761943817, + 0.02137882076203823, + -0.02170909382402897, + 0.052738163620233536, + 0.1374872624874115, + 0.05957169085741043, + -0.10747544467449188 + ] + }, + "p245_026.wav": { + "name": "p245", + "embedding": [ + 0.06586799025535583, + 0.11278679966926575, + 0.0049434844404459, + 0.028054434806108475, + -0.050383105874061584, + 0.060185957700014114, + -0.11728794127702713, + 0.14155426621437073, + -0.0459170788526535, + 0.13404732942581177, + -0.10389409959316254, + 0.11975269019603729, + -0.032792992889881134, + -0.16663172841072083, + -0.0439152866601944, + 0.04642602801322937, + -0.026820560917258263, + 0.004712419584393501, + -0.046308018267154694, + -0.03168323636054993, + 0.019950177520513535, + 0.045187026262283325, + 0.05844635143876076, + 0.016566717997193336, + 0.03047313541173935, + 0.0620131641626358, + -0.010942035354673862, + 0.05403365194797516, + 0.03414197266101837, + -0.053701892495155334, + -0.044500626623630524, + 0.11905394494533539, + -0.051627591252326965, + 0.012245481833815575, + 0.050309598445892334, + -0.007627889513969421, + -0.009441401809453964, + -0.0470849871635437, + -0.023912079632282257, + 0.00040835142135620117, + -0.04580874741077423, + 0.05982600152492523, + 0.017169905826449394, + -0.01894812285900116, + 0.07335232943296432, + 0.008407972753047943, + -0.021488133817911148, + -0.04493880271911621, + -0.10867172479629517, + 0.14045865833759308, + 0.05867236852645874, + -0.0006718453951179981, + -0.08618460595607758, + -0.05350463092327118, + 0.09918363392353058, + -0.04780343919992447, + -0.12267208844423294, + -0.030448067933321, + 0.07761223614215851, + 0.1502697616815567, + -0.029043741524219513, + -0.028298037126660347, + 0.02671806327998638, + 0.1055757999420166, + 0.05961158126592636, + 0.09839142858982086, + 0.08869531750679016, + 0.09445095807313919, + -0.028137894347310066, + 0.03457392752170563, + 0.04931679368019104, + 0.042325008660554886, + 0.04774358868598938, + -0.023446764796972275, + 0.009804775938391685, + -0.00511131901293993, + -0.008887168951332569, + 0.013712966814637184, + -0.014532960951328278, + -0.006879265420138836, + -0.027192190289497375, + 0.0052452050149440765, + -0.018263498321175575, + -0.0020943335257470608, + -0.054482102394104004, + 0.0717814564704895, + 0.020618127658963203, + 0.004537150729447603, + 0.07351469993591309, + 0.05744819715619087, + -0.009114952757954597, + 0.04616812244057655, + -0.05194506421685219, + -0.0707567036151886, + 0.002746155485510826, + -0.003859890392050147, + 0.00025226082652807236, + 0.0743798166513443, + 0.02977294661104679, + -0.008410993963479996, + 0.12026776373386383, + 0.0699431449174881, + 0.009360147640109062, + 0.03390972316265106, + -0.09845301508903503, + 0.12943825125694275, + 0.09846656024456024, + -0.019256005063652992, + 0.06757931411266327, + -0.02021576464176178, + 0.06509047001600266, + 0.07466380298137665, + -0.12672531604766846, + -0.04961514100432396, + 0.023249352350831032, + 0.005390803329646587, + 0.004474075045436621, + 0.08171842992305756, + -0.004117000848054886, + 0.022824615240097046, + 0.10177913308143616, + -0.07870312035083771, + -0.0565452016890049, + -0.019559189677238464, + 0.04730800539255142, + -0.0931725949048996, + 0.0495491698384285, + 0.05466557294130325, + -0.010689627379179, + -0.004761622287333012, + 0.09053339064121246, + -0.00405983766540885, + 0.0013721450231969357, + 0.028684459626674652, + -0.05138193070888519, + 0.010132534429430962, + -0.02009863778948784, + 0.00040217209607362747, + 0.053819164633750916, + 0.042085856199264526, + 0.05309782177209854, + -0.000862735090777278, + -0.0193669144064188, + -0.09966550767421722, + 0.004759381525218487, + 0.053793154656887054, + 0.06253529340028763, + -0.008933543227612972, + -0.01144277211278677, + -0.045943230390548706, + -0.06170273572206497, + 0.03640960901975632, + 0.0006338045932352543, + 0.07830873131752014, + -0.04069656506180763, + -0.0017511346377432346, + 0.11064109951257706, + 0.023758316412568092, + 0.0019833254627883434, + -0.06366121768951416, + -0.012429897673428059, + 0.005104259122163057, + 0.05324679985642433, + -0.07818473875522614, + -0.08689823746681213, + 0.00674787349998951, + 0.0329638235270977, + -0.01725333370268345, + 0.0686255618929863, + 0.05748320370912552, + -0.01090861577540636, + 0.04167197272181511, + -0.06881002336740494, + 0.023425288498401642, + -0.097846120595932, + -0.06627470254898071, + -0.018358347937464714, + -0.023377839475870132, + -0.010047231800854206, + 0.07810098677873611, + 0.03274979069828987, + 0.03823040425777435, + 0.01940709911286831, + -0.09928067773580551, + -0.08621026575565338, + 0.06613142788410187, + 0.065971240401268, + 0.004101244267076254, + 0.05681080371141434, + 0.0645536407828331, + -0.06128019839525223, + 0.0822572112083435, + 0.06855404376983643, + 0.07632607966661453, + -0.03120030090212822, + 0.01882569119334221, + -0.0711621642112732, + 0.0410422645509243, + 0.08664519339799881, + -0.11697583645582199, + -0.11304691433906555, + -0.046047408133745193, + -0.0542854480445385, + 0.04587730020284653, + -0.012150708585977554, + 0.006285725627094507, + 0.05040615424513817, + -0.023762140423059464, + -0.07985907793045044, + -0.11192364990711212, + 0.10189016163349152, + -0.060136765241622925, + -0.0045797983184456825, + -0.05888885632157326, + 0.03486146405339241, + 0.05931705981492996, + 0.018688436597585678, + -0.021912064403295517, + 0.003393254242837429, + 0.03480001538991928, + -0.05567473918199539, + -0.028087276965379715, + 0.054103415459394455, + 0.01772863045334816, + -0.09788274765014648, + 0.019465439021587372, + -0.08132140338420868, + 0.09603934735059738, + -0.04148917272686958, + 0.16371195018291473, + -0.004500369541347027, + -0.053607940673828125, + -0.07650648057460785, + 0.03987590968608856, + -0.03835117816925049, + 0.03776033967733383, + 0.041810162365436554, + 0.0628417506814003, + 0.016790427267551422, + -0.061725325882434845, + 0.09631823003292084, + 0.034476954489946365, + -0.05627333000302315, + -0.058845993131399155, + -0.04486531764268875, + -0.060280539095401764, + 0.01529710367321968, + 0.020937280729413033, + -0.09943728148937225, + -0.01247384399175644, + 0.0030751070007681847, + -0.02770974114537239, + 0.06942403316497803, + 0.13579750061035156, + 0.06446173042058945, + -0.1180371418595314 + ] + }, + "p245_085.wav": { + "name": "p245", + "embedding": [ + 0.018087055534124374, + 0.0933462604880333, + -0.0036630649119615555, + 0.0013941247016191483, + -0.001707153394818306, + 0.01125246286392212, + -0.143900066614151, + 0.054094523191452026, + -0.0603456124663353, + 0.1075640320777893, + -0.06990658491849899, + 0.056109458208084106, + -0.07267501205205917, + -0.1554218828678131, + -0.02299981564283371, + 0.024502132087945938, + 7.203221321105957e-05, + -0.012527445331215858, + -0.03593705594539642, + -0.010605812072753906, + 0.02705473266541958, + 0.0072975922375917435, + 0.05035639554262161, + -0.057835567742586136, + -0.04578536003828049, + 0.05118054896593094, + -0.007196454796940088, + 0.007599356584250927, + -0.0014428067952394485, + 0.02932841144502163, + 0.02643621899187565, + 0.061962079256772995, + 0.007674040272831917, + -0.02462301217019558, + 0.018094398081302643, + 0.04898426681756973, + -0.030484657734632492, + -0.039679307490587234, + -0.010059981606900692, + 0.024629417806863785, + -0.07595178484916687, + 0.024289939552545547, + 0.012777344323694706, + -0.035832587629556656, + 0.09996741265058517, + -0.05551682412624359, + -0.023658543825149536, + -0.010727426037192345, + -0.08434763550758362, + 0.08422692120075226, + 0.07921017706394196, + 0.039118826389312744, + -0.039305124431848526, + -0.012150153517723083, + 0.1050582230091095, + -0.022499412298202515, + -0.07330711930990219, + -0.07558267563581467, + 0.05910210311412811, + 0.11011790484189987, + -0.05361681059002876, + -0.03072173334658146, + 0.00934761855751276, + 0.03835664689540863, + 0.01825552247464657, + 0.07085765898227692, + 0.10325634479522705, + 0.026297535747289658, + -0.004400158300995827, + -0.03584076836705208, + 0.05724923685193062, + 0.06123337894678116, + -0.005622128024697304, + -0.05766342952847481, + 0.02699277736246586, + -0.008603029884397984, + -0.04304300248622894, + 0.03261411190032959, + 0.016424184665083885, + -0.03697900474071503, + -0.01802590861916542, + -0.050807561725378036, + -0.036922261118888855, + -0.013693712651729584, + -0.03206862509250641, + 0.0003787276800721884, + 0.06777765601873398, + -0.026665568351745605, + 0.07745389640331268, + 0.07400812208652496, + 0.006455200258642435, + 0.0296090729534626, + -0.014085926115512848, + -0.056382231414318085, + -0.002909161150455475, + 0.009341124445199966, + -0.02516353502869606, + 0.0503351166844368, + 0.017234181985259056, + 0.012665923684835434, + 0.047552742063999176, + 0.03175375610589981, + -0.007960866205394268, + 0.022750098258256912, + -0.1145852729678154, + 0.06509339064359665, + 0.0783756747841835, + -0.03670535981655121, + -0.005044805817306042, + -0.028172729536890984, + 0.007967358455061913, + 0.06971028447151184, + -0.01098247617483139, + -0.0416664183139801, + 0.047445230185985565, + 0.03468272462487221, + 0.045711714774370193, + 0.10030428320169449, + 0.032425347715616226, + -0.04412374272942543, + 0.12681105732917786, + -0.0804399847984314, + -0.106150783598423, + -0.06356216222047806, + 0.02112031728029251, + -0.06292861700057983, + 0.04266925901174545, + 0.0768735259771347, + 0.0052373274229466915, + -0.01824849843978882, + 0.06235845386981964, + 0.01196365151554346, + 0.00015286484267562628, + -0.04465065151453018, + -0.05017252638936043, + 0.03461996465921402, + -0.036610040813684464, + -0.034879498183727264, + 0.06972329318523407, + 0.055190056562423706, + 0.07166831195354462, + 0.02097162976861, + -0.004931293893605471, + -0.07623781263828278, + -0.008405450731515884, + 0.08921784162521362, + 0.007342057302594185, + -0.03738617151975632, + -0.01246339175850153, + -0.06843055784702301, + -0.03567283973097801, + 0.010461712256073952, + -0.07564270496368408, + 0.11346551775932312, + -0.0033607659861445427, + 0.015661735087633133, + 0.09067034721374512, + -0.04303101822733879, + 0.010769782587885857, + -0.030664116144180298, + -0.017958514392375946, + 0.0386456660926342, + 0.011988261714577675, + -0.11037346720695496, + -0.08271387219429016, + -0.09711509943008423, + 0.043262943625450134, + 0.03908117115497589, + -0.012103168293833733, + 0.029926935210824013, + -0.020721688866615295, + -0.01077366340905428, + -0.05128378048539162, + 0.07093960791826248, + -0.054347701370716095, + -0.03504074364900589, + -0.0441867932677269, + -0.05136359855532646, + 0.019310396164655685, + 0.08733035624027252, + -0.03214306756854057, + -0.028156131505966187, + -0.027446914464235306, + -0.12362004816532135, + -0.08885293453931808, + 0.016574662178754807, + 0.07487190514802933, + -0.010476477444171906, + 0.013593342155218124, + 0.016356026753783226, + -0.03763721138238907, + 0.024288944900035858, + 0.023187212646007538, + 0.09847237169742584, + -0.057714566588401794, + 0.003446787828579545, + -0.016983292996883392, + 0.011980373412370682, + 0.09920325875282288, + -0.06629854440689087, + -0.059505775570869446, + -0.05229927599430084, + -0.05217505991458893, + 0.0035718195140361786, + -0.052415888756513596, + -0.018414296209812164, + 0.016170214861631393, + -0.047011420130729675, + -0.09969283640384674, + -0.11133800446987152, + 0.05518141761422157, + 0.0028394125401973724, + -0.010484160855412483, + -0.06997545063495636, + 0.01673356629908085, + 0.006099766120314598, + 0.021040940657258034, + -0.0316634401679039, + 0.01940349116921425, + -0.0003433879464864731, + -0.035187605768442154, + -0.00431852089241147, + 0.019920406863093376, + 0.04871916398406029, + -0.022554144263267517, + 0.015205571427941322, + -0.06013894081115723, + 0.09862841665744781, + -0.0349789559841156, + 0.06779785454273224, + -0.004732479341328144, + -0.012840909883379936, + -0.04303565248847008, + 0.012043815106153488, + 0.002457635710015893, + 0.04344474524259567, + 0.0035958299413323402, + 0.0430680476129055, + -0.001043548807501793, + -0.06839619576931, + 0.06548592448234558, + 0.03918410837650299, + 0.030097827315330505, + -0.0629858747124672, + 0.03876311331987381, + -0.071984201669693, + -0.0004786290228366852, + -0.033461276441812515, + -0.049506548792123795, + 0.007829486392438412, + -0.02149169147014618, + 0.021478988230228424, + 0.03943754732608795, + 0.08372125029563904, + 0.008070766925811768, + -0.05953504890203476 + ] + }, + "p245_323.wav": { + "name": "p245", + "embedding": [ + 0.02871638536453247, + 0.051263488829135895, + -0.06377660483121872, + -0.0011825654655694962, + -0.062144167721271515, + 0.009119579568505287, + -0.09230530261993408, + 0.05599607899785042, + 0.010039747692644596, + 0.12691593170166016, + -0.03158995881676674, + 0.11866971850395203, + -0.01373649574816227, + -0.06472773104906082, + 0.035830430686473846, + 0.024272190406918526, + 0.0021013920195400715, + -0.032836731523275375, + 0.00861874409019947, + -0.07240842282772064, + 0.03786554932594299, + 0.03471728041768074, + 0.013183526694774628, + -0.05087427794933319, + 0.01974313333630562, + 0.08220608532428741, + -0.005121189635246992, + -0.032184090465307236, + -0.010909415781497955, + -0.07532564550638199, + -0.009868454188108444, + 0.056082457304000854, + -0.04622389376163483, + -0.023673072457313538, + 0.018023284152150154, + -0.016152994707226753, + -0.005786332301795483, + -0.021831970661878586, + 0.0301973894238472, + 0.04693290963768959, + -0.0706654042005539, + 0.086793452501297, + 0.027545075863599777, + -0.046459659934043884, + 0.015378075651824474, + -0.013875472359359264, + -0.03133957087993622, + 0.05000423640012741, + -0.04601828008890152, + 0.13840126991271973, + 0.05799878388643265, + 0.005497355945408344, + -0.045303866267204285, + -0.0010933764278888702, + 0.05176963657140732, + 0.029750416055321693, + -0.07023464888334274, + -0.03413277119398117, + -0.021266251802444458, + 0.04919935017824173, + -0.0023549627512693405, + -0.06728837639093399, + 0.053382910788059235, + 0.07895254343748093, + 0.0416635163128376, + -0.001432059332728386, + 0.06937859207391739, + 0.10092435777187347, + -0.022179771214723587, + -0.013597930781543255, + 0.05496983602643013, + 0.11263670772314072, + 0.057101696729660034, + -0.0059454431757330894, + 0.03954645246267319, + -0.009492919780313969, + -0.00903551746159792, + -0.055211760103702545, + -0.012809870764613152, + -0.05985936522483826, + -0.03533719480037689, + -0.030036769807338715, + 0.02666664496064186, + 0.06691686064004898, + -0.017516305670142174, + -0.005920063704252243, + 0.09066222608089447, + -0.048055559396743774, + 0.04691261798143387, + 0.014263049699366093, + 0.0005674464628100395, + 0.023161299526691437, + -0.09646491706371307, + -0.027800582349300385, + 0.02029002085328102, + -0.022283388301730156, + 0.06933422386646271, + 0.06327666342258453, + 0.030297348275780678, + 0.02270124852657318, + 0.07812336087226868, + 0.03223074972629547, + 0.005052454769611359, + -0.03579312935471535, + -0.04599575698375702, + 0.12966462969779968, + 0.10759195685386658, + -0.06264957040548325, + 0.015448414720594883, + 0.010730382055044174, + 0.02743333950638771, + -0.03560694307088852, + -0.09007301181554794, + -0.055008262395858765, + -0.02073560282588005, + 0.04592134803533554, + 0.0021925270557403564, + 0.11582744121551514, + 0.016268793493509293, + 0.06295105069875717, + 0.09980301558971405, + -0.03730154037475586, + -0.06772688031196594, + -0.03965190798044205, + 0.009277956560254097, + -0.10876169800758362, + 0.07391860336065292, + 0.06934487819671631, + 0.022319529205560684, + 0.03508362919092178, + 0.08821681886911392, + 0.0031576910987496376, + 0.022887010127305984, + -0.03740036115050316, + 0.005623174831271172, + 0.01935412362217903, + 0.018265677616000175, + 0.04518246278166771, + 0.0662398636341095, + 0.008614526130259037, + 0.11931255459785461, + 0.018186219036579132, + 0.017100248485803604, + -0.12548528611660004, + 0.055967703461647034, + 0.025920337066054344, + 0.014790941961109638, + -0.048439282923936844, + -0.03974846005439758, + 0.014888690784573555, + -0.06794696301221848, + -0.025159573182463646, + 0.0012388948816806078, + 0.05878271907567978, + -0.018764574080705643, + -0.014417821541428566, + 0.11121925711631775, + 0.029509639367461205, + 0.0007065150421112776, + 0.010009539313614368, + -0.03432059660553932, + -0.02066403068602085, + 0.05809623748064041, + -0.12603461742401123, + -0.09124049544334412, + -0.041157372295856476, + 0.021325435489416122, + 0.036489762365818024, + 0.04219236224889755, + 0.09379845857620239, + -0.021900057792663574, + 0.04154343158006668, + -0.01239454559981823, + -0.0066101509146392345, + -0.03764355182647705, + -0.04764707386493683, + -0.03731728345155716, + -0.07083473354578018, + -0.07130855321884155, + 0.06676249206066132, + -0.03487703204154968, + 0.07321414351463318, + -0.0342208668589592, + -0.023896537721157074, + -0.0660284161567688, + -0.002548346295952797, + 0.013067374937236309, + -0.05973179265856743, + 0.0015914635732769966, + 0.1021197959780693, + 0.014858659356832504, + -0.03718653321266174, + 0.023452315479516983, + 0.0683438777923584, + -0.0714542418718338, + -0.011024764738976955, + -0.05041978880763054, + 0.10450713336467743, + 0.06938096880912781, + -0.024714702740311623, + -0.02636539563536644, + -0.10218591243028641, + -0.05194422975182533, + 0.03712168335914612, + -0.040700528770685196, + 0.0009272522293031216, + 0.0009515304118394852, + -0.010160882025957108, + -0.055278852581977844, + -0.06971997767686844, + 0.03301675617694855, + -0.04334889352321625, + 0.004685009829699993, + -0.07197853922843933, + 0.006085403263568878, + 0.013866756111383438, + 0.06978773325681686, + -0.0544532835483551, + 0.045096561312675476, + 0.01829826831817627, + -0.013667093589901924, + 0.04202777519822121, + 0.0716504454612732, + 0.05905398726463318, + -0.028631076216697693, + -0.07850592583417892, + -0.0644499734044075, + 0.02972378209233284, + -0.04339110851287842, + 0.053262483328580856, + 0.02020193263888359, + -0.02496352419257164, + -0.05461408570408821, + 0.0017900094389915466, + -0.010763568803668022, + 0.0118790902197361, + 0.08973324298858643, + 0.06148537993431091, + 0.029789313673973083, + -0.04087475687265396, + 0.09612463414669037, + 0.0531892292201519, + 0.014539996162056923, + -0.06240740418434143, + -0.012929040938615799, + -0.020954158157110214, + 0.04648301750421524, + 0.06369830667972565, + -0.07293614745140076, + 0.0560353584587574, + 0.024033322930336, + 0.031354282051324844, + 0.052939482033252716, + 0.04367426782846451, + 0.07082176953554153, + -0.07048733532428741 + ] + }, + "p245_355.wav": { + "name": "p245", + "embedding": [ + 0.06036846339702606, + 0.08853242546319962, + -0.006428401451557875, + 0.0057867057621479034, + -0.05621178448200226, + 0.07643314450979233, + -0.14393797516822815, + 0.15075388550758362, + -0.04845606908202171, + 0.13624948263168335, + -0.05370578542351723, + 0.11401273310184479, + -0.017049454152584076, + -0.18980637192726135, + -0.037002988159656525, + 0.05715904384851456, + -0.07381679117679596, + -0.04442931339144707, + -0.059523701667785645, + -0.0323486290872097, + 0.0268989410251379, + 0.01874561980366707, + 0.0128057561814785, + 0.017308175563812256, + 0.030600521713495255, + 0.07107022404670715, + -0.007656680420041084, + 0.03900393098592758, + 0.002704054117202759, + -0.050151001662015915, + -0.015263024717569351, + 0.08578639477491379, + -0.052349597215652466, + 0.009188116528093815, + 0.055868931114673615, + -0.016971921548247337, + 0.0004109707660973072, + -0.06074458733201027, + -0.02889387682080269, + 0.014716987498104572, + -0.04133320227265358, + 0.09005272388458252, + 0.04280244931578636, + -0.0037300570402294397, + 0.027053333818912506, + 0.03978683054447174, + -0.006499607115983963, + -0.05823285132646561, + -0.10117165744304657, + 0.16214996576309204, + 0.07374725490808487, + -0.006576562765985727, + -0.06669057905673981, + -0.06315204501152039, + 0.10416731238365173, + -0.027336422353982925, + -0.127847820520401, + -0.044761914759874344, + 0.08030316978693008, + 0.15398317575454712, + -0.05999171733856201, + -0.03266638144850731, + 0.023023733869194984, + 0.1316802054643631, + 0.06947454065084457, + 0.09431891143321991, + 0.08449162542819977, + 0.11324270069599152, + -0.02958572842180729, + 0.014752449467778206, + 0.07405275851488113, + 0.05709080398082733, + 0.0714445561170578, + -0.001845009159296751, + 0.0357089638710022, + -0.004875649698078632, + 0.003105737268924713, + -0.01579306460916996, + -0.025587625801563263, + -0.004861369263380766, + -0.005901547148823738, + 0.021357715129852295, + 0.014941968023777008, + 0.03187756612896919, + -0.019702687859535217, + 0.0596734955906868, + 0.03226993978023529, + -0.01706724986433983, + 0.06491198390722275, + 0.04608175903558731, + 0.03139709308743477, + 0.07700126618146896, + -0.08459654450416565, + -0.08077813684940338, + 0.04145988076925278, + -0.0035000841598957777, + 0.03311444818973541, + 0.05329100042581558, + 0.037499383091926575, + -0.007407205179333687, + 0.11428084224462509, + 0.058987583965063095, + -0.02441546879708767, + 0.03157887980341911, + -0.10306955873966217, + 0.14112037420272827, + 0.07258675992488861, + -0.03568536043167114, + 0.04172355681657791, + -0.041546594351530075, + 0.07019535452127457, + 0.06077785789966583, + -0.13787710666656494, + -0.0791168212890625, + 0.032593343406915665, + 0.020355163142085075, + -0.03335819020867348, + 0.12284095585346222, + -0.011035183444619179, + 0.03483346849679947, + 0.10580459237098694, + -0.06588597595691681, + -0.03543132543563843, + -0.005835389252752066, + 0.04690001904964447, + -0.0812503919005394, + 0.051824286580085754, + 0.055925402790308, + -0.003960063215345144, + 0.02714613452553749, + 0.10642100870609283, + -0.001443480490706861, + -0.01698671653866768, + 0.008151775225996971, + -0.02514643967151642, + 0.027306247502565384, + -0.005876511801034212, + 0.002547395648434758, + 0.02831980213522911, + 0.03893304616212845, + 0.03358163684606552, + -0.0017246401403099298, + -0.0346517451107502, + -0.11204276233911514, + 0.018413864076137543, + 0.028104856610298157, + 0.0913316160440445, + -0.013658476993441582, + 0.00232383469119668, + -0.034915491938591, + -0.061004094779491425, + 0.0025341480504721403, + -0.009763648733496666, + 0.06943570077419281, + -0.021624647080898285, + -0.004388654604554176, + 0.1112128496170044, + 0.026822529733181, + 0.01602952927350998, + -0.043513745069503784, + -0.01502235233783722, + 0.022373944520950317, + 0.0614626482129097, + -0.0835481733083725, + -0.06088887155056, + -0.0020441864617168903, + 0.042370475828647614, + -0.01576180011034012, + 0.06601649522781372, + 0.04185749962925911, + 0.005543984472751617, + 0.01601308211684227, + -0.06310105323791504, + 0.028903983533382416, + -0.09743650257587433, + -0.06784515082836151, + 0.003060117596760392, + -0.025129593908786774, + -0.026015181094408035, + 0.066642627120018, + 0.013490845449268818, + 0.05782214552164078, + -0.02752104587852955, + -0.0952022522687912, + -0.07619073987007141, + 0.05597684532403946, + 0.08000271022319794, + -0.02649606764316559, + 0.036068618297576904, + 0.06840987503528595, + -0.018654316663742065, + 0.047797709703445435, + 0.06361024081707001, + 0.12446829676628113, + -0.03480725735425949, + 0.028284952044487, + -0.06907781958580017, + 0.0770389586687088, + 0.061118997633457184, + -0.08856939524412155, + -0.07044962048530579, + -0.010542751289904118, + -0.04937030002474785, + 0.020144402980804443, + -0.01816735789179802, + 0.017114227637648582, + 0.03734929859638214, + 0.0097791263833642, + -0.08579295128583908, + -0.0838615745306015, + 0.07927669584751129, + -0.0904659628868103, + 0.009595880284905434, + -0.08989790827035904, + 0.04700317978858948, + 0.10720080137252808, + 0.042399175465106964, + -0.023628637194633484, + -0.011450308375060558, + 0.034883882850408554, + -0.018237393349409103, + 0.004418144468218088, + 0.04620610177516937, + 0.03313702344894409, + -0.11405257135629654, + -0.011874860152602196, + -0.08303601294755936, + 0.04826189577579498, + -0.029718399047851562, + 0.15472456812858582, + 0.012197725474834442, + -0.04418008401989937, + -0.0826801210641861, + 0.01825789362192154, + -0.02464769408106804, + 0.0648951604962349, + 0.0428338497877121, + 0.07521780580282211, + 0.05374845862388611, + -0.03880413621664047, + 0.12024907767772675, + 0.04216542840003967, + -0.04555374011397362, + -0.067747101187706, + -0.040939636528491974, + -0.03998100757598877, + 0.023282814770936966, + 0.0054460447281599045, + -0.09071138501167297, + -0.020179126411676407, + 0.026966780424118042, + -0.029944490641355515, + 0.0648113340139389, + 0.13851043581962585, + 0.07271739840507507, + -0.11591905355453491 + ] + }, + "p245_293.wav": { + "name": "p245", + "embedding": [ + 0.018766077235341072, + 0.07832224667072296, + -0.01338904444128275, + 0.06080423295497894, + -0.0548609234392643, + 0.050576359033584595, + -0.09788424521684647, + 0.11394108831882477, + -0.056879106909036636, + 0.11803025007247925, + -0.10151873528957367, + 0.08068136870861053, + -0.08316683769226074, + -0.17655687034130096, + -0.01658007502555847, + 0.08558399975299835, + -0.03489235043525696, + -0.02801639586687088, + -0.03741428628563881, + -0.004323628731071949, + 0.023353835567831993, + 0.024913672357797623, + 0.013999580405652523, + 0.03661104664206505, + 0.005566709209233522, + 0.07210391759872437, + -0.020662488415837288, + 0.0316840298473835, + 0.009711146354675293, + -0.005394725129008293, + -0.03358791768550873, + 0.11052357405424118, + -0.034875884652137756, + 0.011503329500555992, + 0.06418995559215546, + 0.03379853069782257, + -0.024521518498659134, + -0.03241090103983879, + -0.006856228690594435, + -0.04489932954311371, + -0.10583367943763733, + 0.05011476203799248, + 0.024063870310783386, + 0.003499245271086693, + 0.052678219974040985, + 0.0156423207372427, + -0.03558489680290222, + -0.027634311467409134, + -0.1078028678894043, + 0.12505193054676056, + 0.07614916563034058, + -0.01134906429797411, + -0.05060739070177078, + -0.06302972882986069, + 0.11003569513559341, + -0.006011045537889004, + -0.13780753314495087, + -0.06591972708702087, + 0.11863414943218231, + 0.17017588019371033, + -0.022381220012903214, + -0.003695601597428322, + -0.0056387861259281635, + 0.1256171613931656, + 0.04616585373878479, + 0.11541697382926941, + 0.032799556851387024, + 0.1092979684472084, + 0.01792016252875328, + 0.009708814322948456, + 0.09480037540197372, + 0.039220839738845825, + 0.05978573113679886, + -0.0157419852912426, + -0.010820921510457993, + 0.016308126971125603, + -0.02257700264453888, + 0.03668336197733879, + -0.02355329319834709, + -0.01680375076830387, + -0.03980802744626999, + -0.027739854529500008, + -0.014905964024364948, + -0.03182728588581085, + 0.009705748409032822, + 0.045542094856500626, + 0.06020873785018921, + -0.00687247421592474, + 0.07128147780895233, + 0.037019360810518265, + -0.05557704344391823, + 0.06628328561782837, + -0.03983638435602188, + -0.04826798290014267, + -0.02397048845887184, + -0.0005372475134208798, + 0.012752880342304707, + 0.06341224908828735, + 0.03191596269607544, + -0.004981848411262035, + 0.11297659575939178, + 0.008063608780503273, + 0.03474205359816551, + 0.04326782375574112, + -0.10992805659770966, + 0.11436183750629425, + 0.05497283488512039, + -0.014645973220467567, + 0.03035632334649563, + -0.007069403771311045, + 0.06526973098516464, + 0.10979896038770676, + -0.1270352452993393, + -0.020149005576968193, + 0.01648905500769615, + -0.007942164316773415, + -0.037712834775447845, + 0.09686160087585449, + 0.0024537418503314257, + -0.006335014011710882, + 0.13672277331352234, + -0.10170070827007294, + -0.07488036155700684, + -0.012716513127088547, + 0.029769551008939743, + -0.08896783739328384, + 0.04051545262336731, + 0.04808410629630089, + -0.0030757482163608074, + 0.013942616991698742, + 0.08829846978187561, + -0.014227330684661865, + -0.009617168456315994, + 0.020743126049637794, + -0.0762581154704094, + 0.01839030720293522, + -0.05220619589090347, + 0.00865284912288189, + 0.08152864873409271, + 0.03222652152180672, + 0.05623181536793709, + -0.006721979938447475, + -0.01321941427886486, + -0.09449884295463562, + -0.007029630243778229, + 0.07050686329603195, + 0.06973870098590851, + 0.002110447734594345, + -0.005542682483792305, + -0.043368272483348846, + -0.07919786870479584, + 0.054487816989421844, + -0.022104062139987946, + 0.09615138918161392, + -0.0447135865688324, + -0.03454030677676201, + 0.1031801849603653, + 0.0011876635253429413, + -0.016548309475183487, + -0.11301251500844955, + -0.03576128929853439, + 0.0018747929716482759, + 0.044468630105257034, + -0.10457715392112732, + -0.06522348523139954, + 0.013756644912064075, + 0.05506196618080139, + -0.008104594424366951, + 0.026059618219733238, + 0.024717506021261215, + 0.01778505928814411, + 0.011430995538830757, + -0.04185657203197479, + 0.014964859932661057, + -0.09231160581111908, + -0.07081983983516693, + -0.0074061681516468525, + -0.038231849670410156, + 0.009655090980231762, + 0.05711817368865013, + 0.008274390362203121, + 0.004020174965262413, + 0.020683590322732925, + -0.09754687547683716, + -0.09733251482248306, + 0.07647679001092911, + 0.03809097409248352, + 0.003508695401251316, + 0.06882958859205246, + 0.06191876530647278, + -0.10502425581216812, + 0.04165640473365784, + 0.03898163139820099, + 0.1351521611213684, + -0.033675599843263626, + 0.0282076895236969, + -0.0727163627743721, + 0.044218823313713074, + 0.09947332739830017, + -0.10260143876075745, + -0.08041021227836609, + -0.04103296622633934, + -0.032291460782289505, + 0.07333236932754517, + -0.04375382140278816, + -0.02577655389904976, + 0.015982430428266525, + -0.036244653165340424, + -0.08553531765937805, + -0.0913504958152771, + 0.08446788787841797, + -0.05532671511173248, + -0.018455471843481064, + -0.0708339661359787, + 0.03648616001009941, + 0.028114615008234978, + 0.03032359853386879, + -0.01918690837919712, + 0.05045837536454201, + 0.0730222761631012, + -0.07147010415792465, + -0.017639808356761932, + 0.0766962543129921, + 0.001869450556114316, + -0.0802168995141983, + -0.03556222468614578, + -0.08752631396055222, + 0.08988158404827118, + -0.030184414237737656, + 0.15392524003982544, + -0.030985843390226364, + -0.04035087674856186, + -0.05721399188041687, + 0.02088957279920578, + -0.00838535651564598, + 0.04259791225194931, + 0.05062619224190712, + 0.07299064099788666, + 0.012801427394151688, + -0.015872951596975327, + 0.14752542972564697, + 0.011669939383864403, + -0.015471728518605232, + -0.02480458654463291, + -0.038634561002254486, + -0.0808815062046051, + -0.0224862489849329, + -0.012519699521362782, + -0.120182104408741, + -0.0019618342630565166, + 0.004150859545916319, + -0.022695783525705338, + 0.04961440712213516, + 0.12317359447479248, + 0.08003267645835876, + -0.07765915989875793 + ] + }, + "p245_193.wav": { + "name": "p245", + "embedding": [ + 0.028064658865332603, + 0.10093169659376144, + -0.0209024790674448, + 0.0005015037604607642, + -0.04624292626976967, + 0.07274523377418518, + -0.15114489197731018, + 0.11999926716089249, + -0.04301624372601509, + 0.15464086830615997, + -0.07388464361429214, + 0.09885291755199432, + -0.009067868813872337, + -0.19971846044063568, + -0.024177275598049164, + 0.02904629521071911, + -0.02677609771490097, + -0.013945994898676872, + -0.037669431418180466, + -0.025288552045822144, + 0.05819498747587204, + 0.0506451353430748, + -0.01479200180619955, + -0.05680122599005699, + 0.04410255327820778, + 0.049362678080797195, + 0.007612136658281088, + 0.019799187779426575, + -0.00015100942982826382, + -0.05961752310395241, + -0.03394631668925285, + 0.1318761557340622, + -0.035015612840652466, + 0.012703672051429749, + 0.048580244183540344, + -0.014072760939598083, + 0.0036075555253773928, + -0.05344409495592117, + 0.009733493439853191, + 0.038950033485889435, + -0.023327123373746872, + 0.07290294766426086, + 0.048989102244377136, + 0.03345615044236183, + 0.018166551366448402, + 0.05316765978932381, + 0.010791055858135223, + -0.06295697391033173, + -0.06711817532777786, + 0.19449837505817413, + 0.044383518397808075, + -0.02158026397228241, + -0.04870667681097984, + -0.06490049511194229, + 0.09780507534742355, + 0.01840827241539955, + -0.10608617961406708, + -0.053192123770713806, + 0.102013498544693, + 0.14631377160549164, + -0.02272331342101097, + -0.055770739912986755, + 0.018477950245141983, + 0.1361236423254013, + -0.0034078541211783886, + 0.089718759059906, + 0.06669244170188904, + 0.12168992310762405, + 0.0202292799949646, + 0.011864868924021721, + 0.04311855137348175, + 0.05122264847159386, + 0.017698725685477257, + -0.062245968729257584, + 0.04131901264190674, + -0.030735652893781662, + -0.01098595093935728, + 0.004761946387588978, + -0.029796747490763664, + -0.020606722682714462, + 0.019907385110855103, + 0.000877486658282578, + 0.005308923311531544, + 0.020342709496617317, + -0.040731605142354965, + 0.017835749313235283, + 0.04353313520550728, + -0.010599726811051369, + 0.094170942902565, + 0.03840005025267601, + 0.04946715012192726, + 0.04376824572682381, + -0.0874771773815155, + -0.09188377857208252, + 0.07096783816814423, + 0.016629032790660858, + 0.0019821543246507645, + 0.06621650606393814, + 0.05396273359656334, + -0.02276771329343319, + 0.12169624865055084, + 0.017844896763563156, + -0.018606580793857574, + 0.013554127886891365, + -0.10569509863853455, + 0.14705581963062286, + 0.08077208697795868, + -0.01915149949491024, + 0.047597579658031464, + -0.07196494936943054, + 0.07360904663801193, + 0.0430615171790123, + -0.15370124578475952, + -0.08593811094760895, + 0.04457654431462288, + 0.01647261157631874, + -0.04098517820239067, + 0.12814576923847198, + -0.01650349237024784, + 0.004972091410309076, + 0.09837710857391357, + -0.09899020940065384, + -0.0586339607834816, + -0.04442628473043442, + 0.029755819588899612, + -0.09374802559614182, + 0.04484346881508827, + 0.0703909620642662, + -0.03302557393908501, + 0.019055038690567017, + 0.07564608007669449, + -0.009183716028928757, + 0.034275613725185394, + -0.025118662044405937, + -0.017659621313214302, + 0.048619043081998825, + -0.020642878487706184, + 0.01947825588285923, + -0.006357635371387005, + 0.038111306726932526, + 0.06730303168296814, + -0.011889657005667686, + -0.04917293041944504, + -0.10561397671699524, + 0.023614857345819473, + 0.009614656679332256, + 0.055440161377191544, + -0.023745901882648468, + -0.004637076053768396, + -0.03961402550339699, + -0.07685063034296036, + 0.013602161779999733, + -0.022146614268422127, + 0.08944978564977646, + 0.02504526823759079, + -0.015570049174129963, + 0.12435919046401978, + 0.04165079444646835, + 0.003684479743242264, + -0.049653757363557816, + -0.044736072421073914, + 0.020284350961446762, + 0.019070114940404892, + -0.10015366226434708, + -0.04773537814617157, + -0.017175287008285522, + 0.00645119184628129, + -0.01676187291741371, + 0.03483615070581436, + 0.04950835928320885, + 0.029220538213849068, + 0.0433000773191452, + -0.07386346161365509, + 0.005387182347476482, + -0.08708079904317856, + -0.03846361115574837, + -0.008275208994746208, + -0.012573392130434513, + -0.051855187863111496, + 0.11334152519702911, + -0.011024225503206253, + 0.015157445333898067, + -0.044631943106651306, + -0.0408916138112545, + -0.04860717058181763, + 0.05073310807347298, + 0.07394257932901382, + -0.022264894098043442, + 0.026369821280241013, + 0.02444506250321865, + -0.011402787640690804, + 0.03376973047852516, + 0.0785791426897049, + 0.10599788278341293, + -0.015553602017462254, + 0.027493169531226158, + -0.06009837985038757, + 0.13035555183887482, + 0.049230996519327164, + -0.06425788998603821, + -0.08028513193130493, + -0.026675259694457054, + -0.06862812489271164, + 0.022149328142404556, + -0.023004727438092232, + 0.002290364122018218, + -0.007452433463186026, + 0.0032334483694285154, + -0.08550503104925156, + -0.06634517014026642, + 0.04706482216715813, + -0.06982442736625671, + -0.016020910814404488, + -0.10891351848840714, + 0.0779048353433609, + 0.11737146228551865, + 0.05526309460401535, + -0.048146817833185196, + -0.04920608177781105, + 0.04895175248384476, + -0.05627858266234398, + 0.01980765350162983, + 0.02313810959458351, + 0.04900076612830162, + -0.08923839032649994, + 0.01320543885231018, + -0.07215215265750885, + 0.04624795913696289, + -0.07483778148889542, + 0.13847589492797852, + 0.031741637736558914, + -0.07044603675603867, + -0.06914973258972168, + 0.06395974010229111, + -0.015005374327301979, + 0.031309694051742554, + 0.03386189788579941, + 0.04783611372113228, + 0.06502298265695572, + -0.07598915696144104, + 0.104585200548172, + 0.022739706560969353, + -0.005537805147469044, + -0.07495599240064621, + -0.04264640808105469, + -0.02485761232674122, + 0.046410996466875076, + 0.023422393947839737, + -0.11223297566175461, + -0.022592881694436073, + 0.057693783193826675, + 0.019227633252739906, + 0.08285953104496002, + 0.12196313589811325, + 0.045694947242736816, + -0.11441688239574432 + ] + }, + "p245_368.wav": { + "name": "p245", + "embedding": [ + 0.054597966372966766, + 0.06794026494026184, + -0.02768591418862343, + -0.005401697941124439, + -0.020188521593809128, + 0.04107090085744858, + -0.14340251684188843, + 0.12126179039478302, + -0.021215420216321945, + 0.10495319217443466, + -0.059717752039432526, + 0.09763114899396896, + -0.032423511147499084, + -0.152787446975708, + -0.03312711417675018, + 0.0368674211204052, + -0.02028288133442402, + -0.02517843246459961, + -0.027576742693781853, + -0.014677315019071102, + 0.0429673045873642, + 0.03135883808135986, + 0.002525127027183771, + -0.01153523102402687, + 0.004896932747215033, + 0.05532139539718628, + 0.00695518683642149, + 0.011402073316276073, + 0.014647096395492554, + 0.014217379502952099, + 0.005237075500190258, + 0.06142966076731682, + -0.024166006594896317, + 0.009274882264435291, + 0.05640403553843498, + 0.014400884509086609, + -0.024316739290952682, + -0.060479458421468735, + 0.0006956632132641971, + 0.024502307176589966, + -0.041442278772592545, + 0.07500746846199036, + 0.06557668745517731, + -0.022111516445875168, + 0.041771672666072845, + 0.0070436373353004456, + 0.005612244363874197, + -0.05346980690956116, + -0.10505198687314987, + 0.15771043300628662, + 0.053827062249183655, + 0.025785794481635094, + -0.06625185906887054, + -0.02419087290763855, + 0.09482318162918091, + 8.56202095746994e-05, + -0.08090624213218689, + -0.0659714862704277, + 0.06595274060964584, + 0.12809544801712036, + -0.0298458244651556, + -0.044891294091939926, + 0.023406565189361572, + 0.09892218559980392, + 0.0306496974080801, + 0.05206165462732315, + 0.11163072288036346, + 0.10073049366474152, + -0.017706627026200294, + 0.003945580683648586, + 0.057496510446071625, + 0.06304314732551575, + 0.012680932879447937, + -0.011091801337897778, + 0.011797195300459862, + -0.027157016098499298, + -0.011047573760151863, + 0.012354746460914612, + -0.0008024691487662494, + -0.04273931682109833, + -0.014057951048016548, + -0.001459690509364009, + -0.009018465876579285, + 0.05048226937651634, + -0.0195211973041296, + 0.049049124121665955, + 0.03578001260757446, + -0.02302272617816925, + 0.0659097284078598, + 0.03899890184402466, + -0.005676360335201025, + 0.017515873536467552, + -0.04500562697649002, + -0.08900042623281479, + 0.027018975466489792, + -0.005247652530670166, + 0.010233448818325996, + 0.064513199031353, + 0.03975391387939453, + 0.015497750602662563, + 0.10694428533315659, + 0.03259456902742386, + -0.017690710723400116, + 0.0008960801060311496, + -0.08283502608537674, + 0.12349831312894821, + 0.08296424150466919, + -0.028503989800810814, + 0.031295210123062134, + -0.07373412698507309, + 0.02208525501191616, + 0.05004064366221428, + -0.10610406845808029, + -0.052143897861242294, + 0.07557830214500427, + 0.03986836597323418, + 0.0187306459993124, + 0.12801772356033325, + 0.012325256131589413, + 0.0006934603443369269, + 0.10787783563137054, + -0.0833342894911766, + -0.06913228332996368, + -0.03961227834224701, + 0.04431707784533501, + -0.052155084908008575, + 0.05045519396662712, + 0.06766574084758759, + -0.014377645216882229, + -0.002127209212630987, + 0.06171921640634537, + -0.00032047121203504503, + -0.0026335555594414473, + -0.035901837050914764, + 0.01750933565199375, + 0.05526147410273552, + -0.01948964223265648, + -0.01272566244006157, + 0.02374565415084362, + 0.051132023334503174, + 0.04217388853430748, + 0.01760914921760559, + -0.05110933631658554, + -0.12104706466197968, + 0.002807683078572154, + 0.04644662141799927, + 0.07695146650075912, + -0.04856482893228531, + -0.02853672206401825, + -0.03597293794155121, + -0.04724053293466568, + -0.026257269084453583, + -0.016987793147563934, + 0.08190922439098358, + -0.006321170832961798, + 0.00892754178494215, + 0.08382084965705872, + 0.004374565090984106, + 0.01832118257880211, + -0.025459572672843933, + -0.027531318366527557, + 0.024592887610197067, + 0.015883151441812515, + -0.07838408648967743, + -0.074302077293396, + -0.03906022757291794, + 0.026572950184345245, + -0.012810841202735901, + 0.00791997741907835, + 0.013579031452536583, + 0.0035343915224075317, + 0.016205325722694397, + -0.08096267282962799, + 0.028728468343615532, + -0.10955439507961273, + -0.035989586263895035, + -0.010934676975011826, + -0.0073814066126942635, + 0.0007349936058744788, + 0.0874292254447937, + 0.0009223666856996715, + 0.04272165521979332, + -0.01941465586423874, + -0.07535108178853989, + -0.054687634110450745, + 0.052424073219299316, + 0.08294413983821869, + -0.023709189146757126, + 0.014289806596934795, + 0.035777926445007324, + -0.0030412874184548855, + 0.015678327530622482, + 0.033716361969709396, + 0.08050978928804398, + -0.040942296385765076, + -0.020942477509379387, + -0.027544483542442322, + 0.0814032331109047, + 0.07084417343139648, + -0.09136833250522614, + -0.048834603279829025, + -0.04359143227338791, + -0.045942436903715134, + -0.01427727472037077, + -0.04610138386487961, + 0.009285246022045612, + 0.0028468479868024588, + -0.026254139840602875, + -0.10221607983112335, + -0.090653195977211, + 0.02330595627427101, + -0.04653122276067734, + 0.01661672070622444, + -0.08013215661048889, + 0.058743562549352646, + 0.11125113815069199, + 0.01397441141307354, + -0.014740772545337677, + -0.02139434777200222, + -0.018331613391637802, + -0.03534567728638649, + -0.012891126796603203, + 0.013865387067198753, + 0.05214637145400047, + -0.0958641991019249, + -0.0034252412151545286, + -0.05333008989691734, + 0.061730869114398956, + -0.061814360320568085, + 0.11231162399053574, + 0.01744024083018303, + -0.04388999193906784, + -0.07586324214935303, + -0.0031678739469498396, + -0.004547739867120981, + 0.0561864972114563, + 0.011110684834420681, + 0.028143253177404404, + 0.026374276727437973, + -0.06230119988322258, + 0.09798835217952728, + 0.06055163964629173, + -0.025798462331295013, + -0.07412344217300415, + -0.01732182875275612, + -0.02169863134622574, + 0.03376752883195877, + 0.0015755556523799896, + -0.0434403195977211, + -0.021126046776771545, + 0.016976920887827873, + -0.0027252330910414457, + 0.05588299036026001, + 0.11567628383636475, + 0.034576695412397385, + -0.09895847737789154 + ] + }, + "p245_148.wav": { + "name": "p245", + "embedding": [ + 0.04248299449682236, + 0.1088084876537323, + -0.039898257702589035, + 0.016109680756926537, + -0.007761038839817047, + 0.032458849251270294, + -0.10358981043100357, + 0.11110831797122955, + -0.04506179690361023, + 0.13135957717895508, + -0.07696053385734558, + 0.10821495950222015, + -0.043233998119831085, + -0.11114148795604706, + -0.02046075649559498, + 0.057946763932704926, + -0.008570295758545399, + 0.026915019378066063, + 0.00514995539560914, + -0.008594631217420101, + 0.05259736627340317, + 0.022356022149324417, + 0.041673265397548676, + -0.04690439999103546, + -0.0031371526420116425, + 0.059676505625247955, + -0.012141656130552292, + -0.0055268798023462296, + 0.002419542521238327, + -0.02234533242881298, + -0.010623934678733349, + 0.06984658539295197, + 0.0016246447339653969, + 0.02020179107785225, + 0.05156949907541275, + 0.03143560141324997, + -0.02695651352405548, + -0.04271716624498367, + 0.012414712458848953, + -0.0036344260443001986, + -0.04752660542726517, + 0.0379205197095871, + 0.0074498895555734634, + -0.06874533742666245, + 0.060273632407188416, + -0.028537487611174583, + -0.02265193499624729, + 0.006309090182185173, + -0.04293375089764595, + 0.13157673180103302, + 0.0700802281498909, + 0.033397648483514786, + -0.07771100103855133, + -0.01575387641787529, + 0.09487232565879822, + 0.005112245678901672, + -0.08541784435510635, + -0.020819952711462975, + 0.0306388046592474, + 0.14434334635734558, + -0.012820703908801079, + -0.044141482561826706, + 0.03894544020295143, + 0.078412726521492, + 0.007539356593042612, + 0.07224211096763611, + 0.07755531370639801, + 0.0501728318631649, + 0.026598472148180008, + 0.015210765413939953, + 0.029122186824679375, + 0.09684719890356064, + 0.05640073120594025, + -0.03136436641216278, + -0.001794097712263465, + -0.028641223907470703, + -0.06381870806217194, + -0.006069047376513481, + -0.006458558142185211, + -0.07951106876134872, + -0.0599675327539444, + -0.04045707732439041, + 0.0038311833050101995, + -0.00022782199084758759, + -0.008839325979351997, + 0.006036813370883465, + 0.06356246769428253, + -0.058796174824237823, + 0.03489162400364876, + 0.06339679658412933, + 0.010602842085063457, + 0.00932422373443842, + -0.04932007938623428, + -0.10191045701503754, + 0.010955105535686016, + 0.011345273815095425, + 0.01914011687040329, + 0.05016087740659714, + 0.05357366055250168, + 0.02968147024512291, + 0.07375020533800125, + 0.03487242013216019, + 0.035464197397232056, + 0.0016346834599971771, + -0.08760132640600204, + 0.09856240451335907, + 0.11962580680847168, + -0.0428517609834671, + 0.035678066313266754, + -0.03504303842782974, + 0.03120984323322773, + 0.06372453272342682, + -0.10126155614852905, + -0.050504401326179504, + -0.006664739456027746, + 0.0156350489705801, + 0.0522531196475029, + 0.06485053151845932, + 0.043721262365579605, + 0.0033383150584995747, + 0.09240428358316422, + -0.09696812927722931, + -0.12102443724870682, + -0.08276250213384628, + 0.046721603721380234, + -0.07468682527542114, + 0.09312871098518372, + 0.06458370387554169, + 0.024062253534793854, + -0.007651632651686668, + 0.06311263144016266, + 0.013866707682609558, + 0.026757072657346725, + -0.029613759368658066, + -0.022419927641749382, + 0.0018990151584148407, + -0.08057676255702972, + 0.02023256942629814, + 0.0683978796005249, + 0.015799807384610176, + 0.074375681579113, + 0.032963573932647705, + 0.0141293965280056, + -0.07836262881755829, + -0.013821486383676529, + 0.0955047458410263, + 0.0025049839168787003, + -0.021450141444802284, + -0.0612109899520874, + -0.005396940279752016, + -0.060798950493335724, + 0.0039175283163785934, + -0.03677001968026161, + 0.07162518799304962, + 0.004333005752414465, + 0.038920190185308456, + 0.11667513847351074, + -0.02412485145032406, + -0.00836784765124321, + -0.04515838250517845, + -0.0004311520606279373, + 0.016081498935818672, + 0.016713464632630348, + -0.116643026471138, + -0.11761742830276489, + -0.04262144863605499, + 0.009450307115912437, + 0.015945205464959145, + 0.029861222952604294, + 0.054206930100917816, + -0.014322925359010696, + 0.016983643174171448, + -0.03505007177591324, + 0.022430334240198135, + -0.10759289562702179, + -0.07379721850156784, + -0.0471261665225029, + -0.07716687768697739, + 0.006430382374674082, + 0.08667804300785065, + 0.005794629920274019, + 0.013079619035124779, + -0.016471879556775093, + -0.07220794260501862, + -0.0874302014708519, + 0.03963758051395416, + 0.04099626466631889, + -0.012121981009840965, + 0.01696222834289074, + 0.03593946248292923, + -0.024275150150060654, + 0.012220092117786407, + 0.023516254499554634, + 0.09786400198936462, + -0.041868992149829865, + -0.015040406957268715, + -0.08167489618062973, + 0.050331830978393555, + 0.1317368447780609, + -0.08616477251052856, + -0.09435716271400452, + -0.1022263914346695, + -0.05445020645856857, + 0.02426890842616558, + -0.05544189363718033, + -0.011222044005990028, + 0.005908037535846233, + -0.05400668829679489, + -0.08300652354955673, + -0.11280298978090286, + 0.0708019807934761, + -0.02463448792695999, + -0.030180634930729866, + -0.04082821309566498, + 0.040906764566898346, + 0.0038041621446609497, + -0.0018810434266924858, + -0.06067786365747452, + 0.04300433024764061, + 0.0048789381980896, + -0.04923533648252487, + -0.01746589131653309, + 0.020950013771653175, + 0.0414959080517292, + -0.04940083250403404, + -0.005177237093448639, + -0.07816188782453537, + 0.08760306239128113, + -0.07669836282730103, + 0.12723694741725922, + -0.04411640390753746, + -0.06997726112604141, + -0.08404213190078735, + 0.014857415109872818, + 0.0036375648342072964, + 0.021724119782447815, + 0.04858018457889557, + 0.03941226750612259, + -0.009746450930833817, + -0.08930712938308716, + 0.0767572671175003, + 0.03971749171614647, + 0.03837615251541138, + -0.07917232811450958, + -0.04959459230303764, + -0.05392814055085182, + 0.002488921396434307, + -0.02051621675491333, + -0.050106726586818695, + 0.034129541367292404, + -0.03328149765729904, + 0.04441455379128456, + 0.06249994784593582, + 0.06472223252058029, + 0.019791193306446075, + -0.08799661695957184 + ] + }, + "p245_287.wav": { + "name": "p245", + "embedding": [ + 0.0692286342382431, + 0.05480683594942093, + 0.007684987038373947, + 0.0032945023849606514, + -0.02195264771580696, + 0.05035950988531113, + -0.14261296391487122, + 0.1083078533411026, + -0.03737542778253555, + 0.1022167056798935, + -0.06891612708568573, + 0.08420092612504959, + 0.005649595521390438, + -0.16731896996498108, + -0.05414462834596634, + 0.04770868644118309, + -0.04743783548474312, + -0.01798628829419613, + -0.05265462026000023, + -0.026190605014562607, + 0.015089110471308231, + 0.05945054441690445, + 0.040232300758361816, + -0.013521063141524792, + 0.03452802449464798, + 0.05620187520980835, + 0.009818429127335548, + 0.04042443260550499, + 0.0005402704700827599, + -0.04905647039413452, + -0.006263858638703823, + 0.09032385796308517, + -0.024130504578351974, + -0.015338076278567314, + 0.038439683616161346, + 0.002249504439532757, + 0.030774902552366257, + -0.08525492995977402, + -0.03178837522864342, + 0.026400890201330185, + -0.0451011136174202, + 0.08129338920116425, + 0.05663622170686722, + 0.0006870478391647339, + 0.023642301559448242, + 0.014209933578968048, + -0.0037164841778576374, + -0.07629619538784027, + -0.11188864707946777, + 0.17933812737464905, + 0.03267664462327957, + 0.032216623425483704, + -0.09039906412363052, + -0.04582812264561653, + 0.08925295621156693, + -0.01917594112455845, + -0.07608664780855179, + -0.04462350904941559, + 0.05636598914861679, + 0.1631850153207779, + -0.009876868687570095, + -0.0363830141723156, + 0.043847449123859406, + 0.10999936610460281, + 0.026485320180654526, + 0.04352160170674324, + 0.10503900051116943, + 0.08791948109865189, + 0.004083937965333462, + 0.022220395505428314, + 0.04441465437412262, + 0.048213113099336624, + 0.02719922550022602, + -0.02342405542731285, + 0.026014363393187523, + -0.013228056952357292, + -0.039156924933195114, + -0.01303048338741064, + -0.020297903567552567, + -0.01681068167090416, + 0.012318119406700134, + 0.015283848159015179, + 0.014192163944244385, + 0.042268432676792145, + -0.0550118088722229, + 0.04217224195599556, + 0.00210662093013525, + -0.012524041347205639, + 0.07037238776683807, + 0.04373300075531006, + 0.025661831721663475, + 0.014635907486081123, + -0.037032321095466614, + -0.08303970843553543, + 0.01293417438864708, + 0.017564896494150162, + 0.005596471950411797, + 0.036855876445770264, + 0.0346909798681736, + -0.04222099110484123, + 0.11262392997741699, + 0.01319817639887333, + -0.004733177833259106, + -0.004792144522070885, + -0.08267088234424591, + 0.0941539779305458, + 0.09530054032802582, + -0.003206122200936079, + 0.047448284924030304, + -0.04040597006678581, + 0.022858984768390656, + 0.06782518327236176, + -0.12642446160316467, + -0.07093212008476257, + 0.04961775243282318, + 0.019923804327845573, + 0.037647850811481476, + 0.11929202079772949, + 0.00948140025138855, + 0.029270555824041367, + 0.07347947359085083, + -0.07912205159664154, + -0.04406982287764549, + -0.0067990245297551155, + 0.0386674627661705, + -0.05977544188499451, + 0.03508898988366127, + 0.051611728966236115, + -0.004733145236968994, + -0.02855514921247959, + 0.06631622463464737, + -0.00045882631093263626, + 0.005783036816865206, + -0.039893604815006256, + 0.0017935745418071747, + 0.05008835345506668, + -0.013344003818929195, + -0.016096141189336777, + 0.032731786370277405, + 0.05889163166284561, + 0.01872183382511139, + 0.025728384032845497, + -0.0713554099202156, + -0.11876139044761658, + -0.01751829870045185, + 0.02349994331598282, + 0.06863129884004593, + -0.019667314365506172, + -0.025050390511751175, + -0.06488745659589767, + -0.01902407966554165, + 0.00878208503127098, + -0.010262690484523773, + 0.07641758024692535, + 0.02366775833070278, + -0.013284876942634583, + 0.09293458610773087, + -0.014687488786876202, + 0.017383567988872528, + -0.016538089141249657, + 0.0016597704961895943, + 0.020237665623426437, + 0.02548619918525219, + -0.025365207344293594, + -0.0640617087483406, + 0.007149113342165947, + 0.009432383812963963, + -0.011131688952445984, + 0.022257991135120392, + 0.01702532358467579, + 0.0013369610533118248, + 0.008878740482032299, + -0.08414817601442337, + 0.020464539527893066, + -0.08853347599506378, + -0.028630351647734642, + 0.03762521594762802, + -0.017337292432785034, + -0.0360490158200264, + 0.09711417555809021, + 0.036133892834186554, + 0.036103926599025726, + -0.03119988553225994, + -0.0778912901878357, + -0.03259140998125076, + 0.04367799311876297, + 0.06294777989387512, + -0.008116551674902439, + 0.0055156489834189415, + 0.015379343181848526, + 0.015287667512893677, + 0.05834120512008667, + 0.06027369573712349, + 0.053702905774116516, + -0.022857004776597023, + -0.03155399113893509, + -0.025409482419490814, + 0.10521921515464783, + 0.030779791995882988, + -0.06422463804483414, + -0.05962016433477402, + -0.004290957003831863, + -0.06072331964969635, + 0.02386871911585331, + 0.006661337800323963, + 0.035139523446559906, + 0.03961062803864479, + -0.018998555839061737, + -0.10254982858896255, + -0.07192068547010422, + 0.057048458606004715, + -0.07079260796308517, + -0.01409408263862133, + -0.055671386420726776, + 0.03869445621967316, + 0.0976174846291542, + 0.02797241508960724, + 0.01609788089990616, + -0.031307436525821686, + -0.00224253349006176, + -0.0715823769569397, + -0.02703169919550419, + 0.02031353861093521, + 0.024443984031677246, + -0.0876607820391655, + 0.013503563590347767, + -0.07867026329040527, + 0.06488778442144394, + -0.040746480226516724, + 0.11283106356859207, + 0.030320683494210243, + -0.06053103506565094, + -0.09321457892656326, + 0.008813604712486267, + -0.03633468225598335, + 0.0633057951927185, + 0.03598177060484886, + 0.03379935026168823, + 0.053377654403448105, + -0.06258979439735413, + 0.077357217669487, + 0.05837476626038551, + -0.04095661640167236, + -0.07174566388130188, + -0.04580726847052574, + -0.012428422458469868, + 0.03455574810504913, + -0.00936194509267807, + -0.04435930773615837, + 0.008833218365907669, + 0.03094535693526268, + -0.00499032624065876, + 0.06910305470228195, + 0.10018431395292282, + 0.04017564281821251, + -0.10175991803407669 + ] + }, + "p245_177.wav": { + "name": "p245", + "embedding": [ + 0.044507335871458054, + 0.10290037840604782, + -0.01942838914692402, + 0.0063907690346241, + -0.04126619175076485, + 0.0843627005815506, + -0.1418745219707489, + 0.14350973069667816, + -0.04559346288442612, + 0.15234117209911346, + -0.04654005169868469, + 0.11439628154039383, + -0.01790357381105423, + -0.18213427066802979, + -0.044224731624126434, + 0.042119164019823074, + -0.07358305901288986, + -0.038187477737665176, + -0.058632660657167435, + -0.017521066591143608, + 0.0413493886590004, + 0.02630498819053173, + 0.0078112343326210976, + -0.0012402207357808948, + 0.014448297210037708, + 0.06487567722797394, + -0.011467904783785343, + 0.04016463831067085, + 0.007768734358251095, + -0.07167845964431763, + -0.02149045094847679, + 0.10485772788524628, + -0.058698564767837524, + 0.03315238654613495, + 0.05382955074310303, + -0.022961340844631195, + -0.003142670262604952, + -0.04328037425875664, + -0.014102445915341377, + 0.015298848040401936, + -0.028260469436645508, + 0.08367998152971268, + 0.0210939422249794, + 0.009135067462921143, + 0.03220939636230469, + 0.02343090809881687, + -0.01149408146739006, + -0.04386613145470619, + -0.08241796493530273, + 0.16499371826648712, + 0.08151083439588547, + -0.020411022007465363, + -0.06182187795639038, + -0.0674542784690857, + 0.08925721794366837, + -0.026139482855796814, + -0.13917896151542664, + -0.044697415083646774, + 0.0769345611333847, + 0.15594087541103363, + -0.03628110885620117, + -0.03648683428764343, + 0.026295984163880348, + 0.13706699013710022, + 0.060307685285806656, + 0.09352603554725647, + 0.08576934039592743, + 0.10748005658388138, + -0.025145884603261948, + 0.011413290165364742, + 0.05874883010983467, + 0.05749337002635002, + 0.07069246470928192, + -0.007783948909491301, + 0.051094770431518555, + -0.019684571772813797, + 0.006331183481961489, + -0.020142074674367905, + -0.03404755890369415, + -0.015640851110219955, + -0.006409103516489267, + 0.024741489440202713, + 0.0010743311140686274, + 0.046937912702560425, + -0.019743602722883224, + 0.044876035302877426, + 0.036132004112005234, + -0.025616612285375595, + 0.0575033463537693, + 0.06666213274002075, + 0.05305125191807747, + 0.07089225202798843, + -0.08957815170288086, + -0.08050308376550674, + 0.04896273463964462, + -4.942466694046743e-05, + 0.029679100960493088, + 0.0570414699614048, + 0.037622272968292236, + -0.005926609970629215, + 0.10246354341506958, + 0.04696955159306526, + -0.025673234835267067, + 0.016343584284186363, + -0.10917592793703079, + 0.14109067618846893, + 0.07756783068180084, + -0.034430764615535736, + 0.03604024648666382, + -0.04463666304945946, + 0.06836666911840439, + 0.05606304481625557, + -0.12919269502162933, + -0.0906955748796463, + 0.03903983160853386, + 0.0145482262596488, + -0.03145833685994148, + 0.1191861629486084, + 0.009720953181385994, + 0.03448380529880524, + 0.09203238785266876, + -0.07754082977771759, + -0.04164496436715126, + -0.019547145813703537, + 0.04328896850347519, + -0.08834540843963623, + 0.05817221850156784, + 0.04665100574493408, + -0.0032242448069155216, + 0.01575862616300583, + 0.1058458685874939, + -0.0060029043816030025, + 0.0041887154802680016, + 0.005531563889235258, + -0.03112679347395897, + 0.02468976378440857, + -0.013656284660100937, + 0.010801400989294052, + 0.005599747411906719, + 0.02738834358751774, + 0.05051258206367493, + -0.017434172332286835, + -0.03983341529965401, + -0.10948289185762405, + 0.013040440157055855, + 0.03244007006287575, + 0.07351240515708923, + -0.015346869826316833, + -0.0029499991796910763, + -0.015452703461050987, + -0.05347593128681183, + 0.009149023331701756, + -0.028586266562342644, + 0.06400436908006668, + -0.011156049557030201, + -0.01872202195227146, + 0.11995216459035873, + 0.023755474016070366, + 0.004615433514118195, + -0.04865787923336029, + -0.01536521129310131, + 0.015331385657191277, + 0.062423255294561386, + -0.0918792113661766, + -0.06155911833047867, + 0.0020905390847474337, + 0.033234383910894394, + 0.0048028877936303616, + 0.07626350224018097, + 0.06587320566177368, + 0.005603136960417032, + 0.023449789732694626, + -0.06388477981090546, + 0.010032905265688896, + -0.09658244252204895, + -0.07583260536193848, + -0.011855741031467915, + -0.03673208877444267, + -0.026649339124560356, + 0.07699368894100189, + 0.010135439224541187, + 0.04810210317373276, + -0.03279845789074898, + -0.07675309479236603, + -0.07960840314626694, + 0.0640387237071991, + 0.07321665436029434, + -0.02039494179189205, + 0.03280410170555115, + 0.062203727662563324, + -0.0169824231415987, + 0.04802972823381424, + 0.06645660847425461, + 0.11753946542739868, + -0.04872111603617668, + 0.025700999423861504, + -0.08670076727867126, + 0.07631438970565796, + 0.07487630099058151, + -0.08698824793100357, + -0.0757039412856102, + -0.00127976736985147, + -0.056065235286951065, + 0.010733071714639664, + -0.038011085242033005, + 0.016188420355319977, + 0.04787304252386093, + -0.00043989234836772084, + -0.09895528852939606, + -0.08916385471820831, + 0.09480084478855133, + -0.0960225835442543, + 0.008184118196368217, + -0.08192850649356842, + 0.053381916135549545, + 0.09574402123689651, + 0.04957319051027298, + -0.05337437987327576, + -0.005033590365201235, + 0.04659406840801239, + -0.01844211108982563, + 0.011635253205895424, + 0.039850831031799316, + 0.04237517714500427, + -0.10864727199077606, + -0.008472432382404804, + -0.0758974552154541, + 0.03537415713071823, + -0.056284770369529724, + 0.14548859000205994, + 0.005222897510975599, + -0.06317712366580963, + -0.08173328638076782, + 0.041449468582868576, + -0.02393939159810543, + 0.053023483604192734, + 0.030388472601771355, + 0.08063406497240067, + 0.05251232534646988, + -0.06138286367058754, + 0.11442851275205612, + 0.03890982270240784, + -0.03311581537127495, + -0.08304301649332047, + -0.04845770448446274, + -0.0363117940723896, + 0.042048197239637375, + 0.021497942507267, + -0.09967577457427979, + -0.016620216891169548, + 0.024843836203217506, + -0.01707850955426693, + 0.07017605006694794, + 0.13972100615501404, + 0.060311540961265564, + -0.13035288453102112 + ] + }, + "p245_263.wav": { + "name": "p245", + "embedding": [ + 0.04128599539399147, + 0.07598605751991272, + -0.01703360117971897, + 0.02478514425456524, + -0.06335717439651489, + 0.08377527445554733, + -0.12763366103172302, + 0.11426429450511932, + -0.06585008651018143, + 0.130933940410614, + -0.07471145689487457, + 0.09078354388475418, + -0.03528660908341408, + -0.18902921676635742, + -0.04560801386833191, + 0.059346042573451996, + -0.07185767590999603, + -0.04309976100921631, + -0.07151428610086441, + -0.017230043187737465, + 0.029046662151813507, + 0.02187749184668064, + 0.003815083298832178, + 0.0077848127111792564, + 0.038880445063114166, + 0.05359562486410141, + -0.00587601400911808, + 0.03737001121044159, + 0.010253438726067543, + -0.022297155112028122, + -0.021236151456832886, + 0.11117593199014664, + -0.04131752997636795, + 0.009576773270964622, + 0.05776389688253403, + 0.015924660488963127, + 0.0037651374004781246, + -0.06612217426300049, + -0.030195903033018112, + 0.012611115351319313, + -0.06276153773069382, + 0.076931893825531, + 0.05328954756259918, + -0.0023592787329107523, + 0.02656152844429016, + 0.025806717574596405, + -0.023553449660539627, + -0.06257037818431854, + -0.1065969318151474, + 0.16351750493049622, + 0.05849403142929077, + 0.0027965775225311518, + -0.06692974269390106, + -0.07347643375396729, + 0.12299235165119171, + -0.016869191080331802, + -0.1290738582611084, + -0.04897785931825638, + 0.09080550074577332, + 0.18446344137191772, + -0.051156461238861084, + -0.014012139290571213, + 0.007214481942355633, + 0.12299323081970215, + 0.05643310770392418, + 0.09896814823150635, + 0.07080000638961792, + 0.11513865739107132, + 0.014350561425089836, + 0.012689726427197456, + 0.09455596655607224, + 0.055783070623874664, + 0.05863562971353531, + -0.01641079969704151, + 0.021119805052876472, + 0.009808136150240898, + -0.024745317175984383, + 0.012815197929739952, + -0.034563515335321426, + 0.004890691488981247, + -0.013302087783813477, + 0.01238696463406086, + 0.025868277996778488, + 0.011318932287395, + -0.027005527168512344, + 0.05232429504394531, + 0.0227592121809721, + -0.01808975450694561, + 0.06424864381551743, + 0.03846590965986252, + -0.02277255989611149, + 0.06032843142747879, + -0.0597979873418808, + -0.09974275529384613, + 0.004211927764117718, + 0.004095435608178377, + 0.018116604536771774, + 0.053751543164253235, + 0.03604555130004883, + -0.018202871084213257, + 0.11016976833343506, + 0.04118771478533745, + -0.0010136824566870928, + 0.04419294372200966, + -0.10390569269657135, + 0.11609356105327606, + 0.07350269705057144, + -0.014546538703143597, + 0.035217300057411194, + -0.03119894675910473, + 0.07928471267223358, + 0.07784344255924225, + -0.1420353800058365, + -0.06783810257911682, + 0.05091366544365883, + 0.013413838110864162, + -0.02013235352933407, + 0.11179488897323608, + -0.017391007393598557, + 0.006360135972499847, + 0.10977926850318909, + -0.07860468327999115, + -0.035291098058223724, + -0.008562113158404827, + 0.043972499668598175, + -0.05718036741018295, + 0.026436736807227135, + 0.0379178524017334, + -0.014167545363307, + 0.009817534126341343, + 0.08710454404354095, + -0.005403401795774698, + -0.015400934033095837, + 0.015755411237478256, + -0.03670327365398407, + 0.05373668670654297, + -0.0224139504134655, + -0.004703362472355366, + 0.07648744434118271, + 0.05891390144824982, + 0.04091031104326248, + 0.0071042245253920555, + -0.04414096847176552, + -0.10686540603637695, + 0.0027092299424111843, + 0.04072807729244232, + 0.0961134284734726, + -0.009441401809453964, + 0.01563969813287258, + -0.057062502950429916, + -0.0801522433757782, + 0.037142105400562286, + -0.014690391719341278, + 0.10363982617855072, + -0.012510514818131924, + -0.018634168431162834, + 0.0925869345664978, + 0.0008132611401379108, + -0.01129884272813797, + -0.05854763835668564, + -0.015685176476836205, + 0.016685033217072487, + 0.05314243584871292, + -0.07423895597457886, + -0.05283540487289429, + 0.01611187681555748, + 0.03279174864292145, + -0.024663999676704407, + 0.028591422364115715, + 0.020020995289087296, + 0.014441312290728092, + 0.032588060945272446, + -0.06198543682694435, + 0.01629823073744774, + -0.11632714420557022, + -0.04015820100903511, + 0.007386847399175167, + -0.03576727211475372, + -0.02159692347049713, + 0.07925155758857727, + 0.017603199928998947, + 0.02251569740474224, + -0.0007731998339295387, + -0.10292688012123108, + -0.05028044059872627, + 0.08091562986373901, + 0.061586037278175354, + 0.0030805757269263268, + 0.045238859951496124, + 0.0681837946176529, + -0.021632235497236252, + 0.041553035378456116, + 0.07853146642446518, + 0.12201513350009918, + -0.01677505485713482, + 0.010314326733350754, + -0.0555390864610672, + 0.09369504451751709, + 0.04927774518728256, + -0.09229934960603714, + -0.07560437172651291, + -0.019447151571512222, + -0.04411613941192627, + 0.03195546194911003, + -0.027498751878738403, + 0.015715764835476875, + 0.008266070857644081, + -0.0093894237652421, + -0.0955914855003357, + -0.08007149398326874, + 0.07545959949493408, + -0.07774260640144348, + -0.015143567696213722, + -0.07147689908742905, + 0.03594396263360977, + 0.10226476192474365, + 0.03887157142162323, + -0.003692230675369501, + 0.021670151501893997, + 0.052344802767038345, + -0.0735076442360878, + -0.021128442138433456, + 0.04399508982896805, + -0.0030346475541591644, + -0.10147459805011749, + 0.0016169245354831219, + -0.07501290738582611, + 0.07262503355741501, + -0.0329170897603035, + 0.1617656946182251, + -0.008428012952208519, + -0.04238666221499443, + -0.06451249867677689, + 0.028731701895594597, + -0.03555263951420784, + 0.05893290787935257, + 0.0522683821618557, + 0.07954270392656326, + 0.04428446665406227, + -0.03126406669616699, + 0.13565810024738312, + 0.026286523789167404, + -0.03735680133104324, + -0.052023373544216156, + -0.04361040145158768, + -0.047741711139678955, + -0.0012032240629196167, + -0.007811387535184622, + -0.07947827130556107, + 0.002552179852500558, + 0.02337745577096939, + -0.03732242062687874, + 0.04848259314894676, + 0.13554911315441132, + 0.09589840471744537, + -0.10047736018896103 + ] + }, + "p245_294.wav": { + "name": "p245", + "embedding": [ + 0.05459770932793617, + 0.09692078828811646, + 0.034110262989997864, + -0.0064083002507686615, + -0.0016159266233444214, + 0.06098071485757828, + -0.0019242726266384125, + 0.029791438952088356, + 0.043669626116752625, + 0.03141648694872856, + -0.13712216913700104, + 0.015368815511465073, + -0.04275570809841156, + -0.09147221595048904, + 0.0021834485232830048, + 0.003703085705637932, + -0.04947929084300995, + 0.033372387290000916, + -0.08244379609823227, + -0.04842475801706314, + -0.02709442377090454, + 0.01844625733792782, + 0.04003070294857025, + -0.012804122641682625, + 0.008990863338112831, + -0.0015538651496171951, + -0.033967334777116776, + 0.0038456767797470093, + -0.004893500357866287, + -0.02232736349105835, + -0.017596619203686714, + 0.052045293152332306, + -0.020494090393185616, + 0.003293451853096485, + -0.012989339418709278, + -0.01611274853348732, + 0.04672421142458916, + -0.058031462132930756, + -0.07602435350418091, + 0.08422161638736725, + -0.05447268858551979, + 0.039856910705566406, + 0.036663204431533813, + -0.03148551285266876, + 0.06773682683706284, + 0.028575213626027107, + -0.06859086453914642, + -0.018293052911758423, + -0.0930774137377739, + 0.12601858377456665, + 0.019773390144109726, + 0.0027833152562379837, + -0.043309565633535385, + -0.0038204602897167206, + 0.08016970753669739, + -0.026515642181038857, + -0.05711697041988373, + -0.013333331793546677, + 0.03941173851490021, + 0.01232369989156723, + 0.02178972214460373, + -0.018486149609088898, + -0.0008278060704469681, + 0.029108721762895584, + 0.032468684017658234, + 0.003423718735575676, + 0.07366481423377991, + 0.0882650762796402, + -0.034370917826890945, + 0.027483398094773293, + 0.041749030351638794, + -0.015110151842236519, + 0.035660263150930405, + -0.024566374719142914, + -0.002788074780255556, + 0.006025985814630985, + -0.0012370645999908447, + -0.00061781145632267, + -0.011827313341200352, + 0.0045961979776620865, + 0.05302602797746658, + -0.008314095437526703, + 0.005373794585466385, + -0.028439205139875412, + -0.06640344113111496, + -0.018115470185875893, + 0.020426370203495026, + 0.10739146918058395, + 0.06657235324382782, + 0.030314920470118523, + -0.02405921369791031, + 0.05070885270833969, + -0.004432052373886108, + -0.06371951103210449, + -0.014773405157029629, + 0.02326551079750061, + -0.0334271639585495, + 0.010177874937653542, + 0.0128205306828022, + -0.033079661428928375, + 0.10438427329063416, + -0.012929296121001244, + 0.017319563776254654, + 0.003089758800342679, + -0.05310531705617905, + 0.026461442932486534, + 0.06254327297210693, + -0.007300850469619036, + 0.05399668216705322, + 0.05127112194895744, + 0.07161993533372879, + 0.054211489856243134, + -0.04744037240743637, + 0.02229412831366062, + -0.01912686601281166, + 0.02145194821059704, + 0.027147062122821808, + 0.04858610779047012, + -0.014697854407131672, + 0.00962826982140541, + 0.11358815431594849, + -0.05141371488571167, + 0.045244377106428146, + 0.0693792775273323, + -0.013311095535755157, + 0.015627872198820114, + -0.010845188051462173, + 0.01296083815395832, + 0.0010310275247320533, + -0.018267296254634857, + 0.032023265957832336, + 0.02748061530292034, + 0.016742747277021408, + -0.058643072843551636, + 0.007779669016599655, + 0.014255264773964882, + -0.011432375758886337, + -0.032026465982198715, + 0.06818370521068573, + 0.0639820247888565, + -0.004529863595962524, + 0.03531370311975479, + -0.08471833169460297, + -0.041573092341423035, + 0.033655498176813126, + -0.029919598251581192, + -0.008899053558707237, + 0.0473807118833065, + 0.0228391382843256, + -0.07020162791013718, + -0.01822015270590782, + 0.0824078917503357, + -0.024868350476026535, + 0.05708181858062744, + 0.05647536367177963, + -0.04861126095056534, + 0.045512981712818146, + 0.007925758138298988, + 0.0029540322721004486, + -0.059834592044353485, + -0.08462066203355789, + -0.017674196511507034, + 0.02872186154127121, + -0.02420901134610176, + -0.03424072265625, + 0.00038669025525450706, + -0.036492180079221725, + 0.018306896090507507, + 0.003338536247611046, + 0.06238124147057533, + -0.05255705863237381, + -0.02036033384501934, + -0.07615116238594055, + 0.006157362833619118, + -0.01492508128285408, + -0.07994262129068375, + 0.07392583042383194, + 0.010979946702718735, + 0.03220098838210106, + 0.09884827584028244, + -0.0093125831335783, + -0.024086738005280495, + -0.02919691987335682, + -0.08508110046386719, + 0.03622109815478325, + 0.0648600310087204, + 0.014950856566429138, + 0.0005343131488189101, + 0.0695033073425293, + 0.07146354019641876, + -0.043819110840559006, + 0.06294053792953491, + 0.006943363696336746, + 0.04776650294661522, + -0.03678154945373535, + 0.02134629525244236, + 0.05925159901380539, + 0.021911825984716415, + -0.014504063874483109, + -0.05298515781760216, + -0.0887821614742279, + -0.03641137108206749, + -0.01660066470503807, + 0.0271434523165226, + 0.04009388014674187, + 0.0022525531239807606, + 0.029352184385061264, + -0.01085197739303112, + -0.014458512887358665, + -0.08562184125185013, + -0.02121656946837902, + 0.01790078915655613, + -0.03444860503077507, + -0.009848552756011486, + 0.010793544352054596, + 0.014673493802547455, + 0.032983336597681046, + 0.016017448157072067, + 0.057917576283216476, + 0.0021679699420928955, + -0.024285046383738518, + -0.06794047355651855, + -0.0030190758407115936, + 0.016725914552807808, + 0.023800421506166458, + -0.016430489718914032, + -0.08820229768753052, + 0.06737106293439865, + 0.04852858558297157, + 0.05988413840532303, + 0.04306931421160698, + 0.01472826860845089, + -0.02986275963485241, + 0.056540168821811676, + -0.05957406759262085, + 0.015854213386774063, + 0.008490528911352158, + -0.0008817892521619797, + 0.05486217141151428, + -0.005926603451371193, + 0.04668886959552765, + 0.013959752395749092, + -0.04538290947675705, + -0.0045194728299975395, + 0.02113373950123787, + -0.06746774166822433, + -0.06198063865303993, + -0.0027016643434762955, + -0.03714124858379364, + 0.014241979457437992, + 0.01456441730260849, + 0.03408201038837433, + 0.026708047837018967, + 0.05251551792025566, + 0.05870480462908745, + -0.029065687209367752 + ] + }, + "p245_135.wav": { + "name": "p245", + "embedding": [ + 0.023152079433202744, + 0.09741730242967606, + -0.0059401304461061954, + -0.005204157903790474, + 0.03634214773774147, + 0.03535531088709831, + -0.15766490995883942, + 0.09233208000659943, + -0.028851093724370003, + 0.1348705291748047, + -0.02905436046421528, + 0.08282940089702606, + -0.026874873787164688, + -0.10395929962396622, + -0.020957835018634796, + 0.04384145140647888, + -0.03349773585796356, + 0.005120584741234779, + 0.004561613313853741, + -0.04811861738562584, + 0.029772508889436722, + 0.018856395035982132, + 0.038218241184949875, + -0.07529878616333008, + -0.023433564230799675, + 0.09012305736541748, + -0.015199529007077217, + 0.020292077213525772, + -0.016277670860290527, + -0.05402466654777527, + -0.00019069109112024307, + 0.07217034697532654, + -0.017931345850229263, + -0.005795499309897423, + 0.0464404821395874, + 0.010099080391228199, + -0.019779304042458534, + -0.00823136791586876, + 0.0235019251704216, + 0.043510861694812775, + -0.04943716526031494, + 0.07658616453409195, + 0.011271169409155846, + 0.0025685979053378105, + 0.07787811756134033, + -0.024300359189510345, + -0.008092183619737625, + 0.02601260505616665, + -0.03273119404911995, + 0.08107335865497589, + 0.07730451971292496, + -0.035827118903398514, + -0.04903008043766022, + 0.0060870107263326645, + 0.07299045473337173, + -0.004551445133984089, + -0.11414709687232971, + -0.006249286234378815, + 0.04710996150970459, + 0.10727240145206451, + -0.03295926749706268, + -0.03396943211555481, + 0.03118891641497612, + 0.08713142573833466, + 0.01949862390756607, + 0.08233736455440521, + 0.0864095538854599, + 0.05616934224963188, + -0.002649313537403941, + -0.06313405930995941, + -0.0016063060611486435, + 0.06908921897411346, + 0.03489881008863449, + -0.008097958751022816, + 0.043651033192873, + -0.04006895795464516, + -0.03346656262874603, + -0.03596054017543793, + -0.030230427160859108, + -0.05994865298271179, + -0.055788472294807434, + -0.018438048660755157, + -0.004831886850297451, + 0.0500052385032177, + 0.005923507735133171, + 0.004992896690964699, + 0.07878495007753372, + -0.034897416830062866, + 0.027589812874794006, + 0.06915529072284698, + 0.05788910388946533, + 0.02284521982073784, + -0.055793389678001404, + -0.03556106984615326, + 0.01592733897268772, + -0.0023698201403021812, + 0.04201061278581619, + 0.03706873580813408, + 0.03596065938472748, + 0.02524399757385254, + 0.074647456407547, + 0.029606565833091736, + -0.02129148691892624, + -0.012736542150378227, + -0.07534854114055634, + 0.07479290664196014, + 0.11114946752786636, + -0.03819539397954941, + 0.01701013371348381, + -0.04315700754523277, + 0.001974867656826973, + 0.005336157977581024, + -0.08184857666492462, + -0.033932819962501526, + 0.030174821615219116, + 0.05284665524959564, + 0.017482154071331024, + 0.10176478326320648, + 0.03601876273751259, + 0.007964854128658772, + 0.06117773801088333, + -0.02712995745241642, + -0.06513582170009613, + -0.08050549775362015, + 0.0726812481880188, + -0.0772937461733818, + 0.08192472159862518, + 0.0410720556974411, + 0.053981244564056396, + -5.988357588648796e-05, + 0.07112900912761688, + 0.03771350905299187, + 0.002997546922415495, + -0.03868882730603218, + -0.011506887152791023, + 0.017934169620275497, + -0.02998996153473854, + 0.06013557314872742, + 0.0058275917544960976, + 0.006400484591722488, + 0.08703646063804626, + 0.010072679258883, + 0.018033944070339203, + -0.054202016443014145, + -0.012071235105395317, + 0.032916150987148285, + 0.009730007499456406, + -0.018693195655941963, + -0.052879441529512405, + -0.013050433248281479, + -0.06234798580408096, + -0.023303914815187454, + -0.08574208617210388, + 0.07188475131988525, + -0.007570648565888405, + 0.00465709064155817, + 0.10330045223236084, + 0.0035562007687985897, + 0.0039936089888215065, + -0.0093446159735322, + 0.0004977677017450333, + -0.024095721542835236, + 0.03508252277970314, + -0.12515079975128174, + -0.09142842143774033, + -0.01919148489832878, + 0.02442741021513939, + 0.04023757204413414, + 0.06503134965896606, + 0.0722869336605072, + -0.004145444370806217, + 0.013488314114511013, + 0.011189866811037064, + -0.008618982508778572, + -0.07647408545017242, + -0.07290400564670563, + -0.049331702291965485, + -0.07295039296150208, + -0.03239937126636505, + 0.07065114378929138, + -0.003519633784890175, + 0.061097707599401474, + -0.02508750930428505, + -0.045581988990306854, + -0.08626221120357513, + 0.04207466170191765, + 0.06388793885707855, + -0.04866380617022514, + 0.014923077076673508, + 0.06266094744205475, + -0.014633476734161377, + 0.023118089884519577, + 0.0540110319852829, + 0.06507842242717743, + -0.036700256168842316, + 0.01881781406700611, + -0.10154832899570465, + 0.03728842735290527, + 0.1263507604598999, + -0.0640719011425972, + -0.06301351636648178, + -0.028203463181853294, + -0.073729507625103, + 0.01431583147495985, + -0.058322980999946594, + -0.015351168811321259, + 0.011649432592093945, + -0.0032535537611693144, + -0.09025150537490845, + -0.08877411484718323, + 0.05652223527431488, + -0.05885806307196617, + 0.005997309461236, + -0.043803319334983826, + 0.032793596386909485, + 0.013186916708946228, + 0.06229151040315628, + -0.06326690316200256, + 0.03381779044866562, + 0.052496038377285004, + -0.005334106273949146, + 0.04825032502412796, + 0.03551916778087616, + 0.06365902721881866, + -0.06620834767818451, + -0.0168315302580595, + -0.06659018993377686, + 0.060722533613443375, + -0.07018409669399261, + 0.0692947655916214, + 0.0461626760661602, + -0.057385947555303574, + -0.04328979551792145, + 0.023377705365419388, + -0.007375683635473251, + 0.03373037651181221, + 0.03742073103785515, + 0.05114341527223587, + 0.019233204424381256, + -0.040658656507730484, + 0.05962540581822395, + 0.01966499537229538, + 0.02538778819143772, + -0.05764186009764671, + -0.027959484606981277, + -0.04696515575051308, + 0.033016059547662735, + 0.047041065990924835, + -0.07674629986286163, + 0.0011832164600491524, + -0.006663663312792778, + 0.01351076178252697, + 0.03883802145719528, + 0.07107052206993103, + 0.019237473607063293, + -0.0993230864405632 + ] + }, + "p245_039.wav": { + "name": "p245", + "embedding": [ + 0.03452495485544205, + 0.09113936126232147, + -0.02807021513581276, + 0.027674861252307892, + -0.06901799887418747, + 0.07104932516813278, + -0.1240689754486084, + 0.13344720005989075, + -0.05678536742925644, + 0.12918883562088013, + -0.04733916372060776, + 0.1164083257317543, + -0.0435982346534729, + -0.17250755429267883, + -0.019068442285060883, + 0.0685286745429039, + -0.06407567858695984, + -0.0567045658826828, + -0.05430130660533905, + -0.024232761934399605, + 0.02634439244866371, + 0.027563832700252533, + 0.021898195147514343, + 0.0037842821329832077, + 0.023540113121271133, + 0.07967697083950043, + -0.0024690390564501286, + 0.03802308812737465, + 0.006210951134562492, + -0.05959038436412811, + -0.038175068795681, + 0.07783909887075424, + -0.055609963834285736, + 0.004352572839707136, + 0.044309139251708984, + -0.006673365831375122, + 0.007752086967229843, + -0.05395379662513733, + -0.024816643446683884, + 0.010710205882787704, + -0.048644691705703735, + 0.0851868987083435, + 0.028173040598630905, + -0.015676124021410942, + 0.02468530274927616, + 0.01629478484392166, + -0.017444442957639694, + -0.04212478548288345, + -0.10894104838371277, + 0.16576528549194336, + 0.07792654633522034, + -0.011281299404799938, + -0.052508577704429626, + -0.07379334419965744, + 0.10837060213088989, + -0.01277498435229063, + -0.12587250769138336, + -0.05935867875814438, + 0.0760241448879242, + 0.1493900716304779, + -0.04268559068441391, + -0.028354642912745476, + 0.0199174452573061, + 0.11805108189582825, + 0.0691637396812439, + 0.08714838325977325, + 0.06688728928565979, + 0.11302471160888672, + -0.016877448186278343, + 0.0058128125965595245, + 0.07747972011566162, + 0.07227548956871033, + 0.05270903557538986, + 0.01096506230533123, + 0.03515718877315521, + -0.0074975392781198025, + -0.007881204597651958, + 0.0007107113488018513, + -0.0194461140781641, + -0.028660684823989868, + -0.005686155520379543, + 0.0169783066958189, + 0.012060223147273064, + 0.022798454388976097, + -0.002281412947922945, + 0.06908160448074341, + 0.039669353514909744, + -0.01327459141612053, + 0.06779712438583374, + 0.027073048055171967, + 0.003198810387402773, + 0.07844610512256622, + -0.08185259997844696, + -0.06457537412643433, + 0.03036617487668991, + 0.005941013339906931, + 0.029900038614869118, + 0.05931316316127777, + 0.03459172695875168, + -0.007403201423585415, + 0.1252930611371994, + 0.04622042179107666, + -0.001258991425856948, + 0.03196042776107788, + -0.09170105308294296, + 0.14176511764526367, + 0.06982070207595825, + -0.031273163855075836, + 0.03707767277956009, + -0.034169696271419525, + 0.06605812907218933, + 0.06151140481233597, + -0.12980085611343384, + -0.08624441921710968, + 0.02376975491642952, + 0.007056825328618288, + -0.03618696331977844, + 0.12434963881969452, + -0.0011281119659543037, + 0.03457741439342499, + 0.12813995778560638, + -0.09511110186576843, + -0.053252480924129486, + -0.001085975207388401, + 0.04598922282457352, + -0.07676871865987778, + 0.04736027866601944, + 0.05796707049012184, + -0.011520478874444962, + 0.029647361487150192, + 0.096123106777668, + -0.014565447345376015, + 0.0005589481443166733, + 0.027220789343118668, + -0.047706518322229385, + 0.015413366258144379, + -0.024416249245405197, + -0.008328471332788467, + 0.061628419905900955, + 0.03454606607556343, + 0.0511992946267128, + -0.02460273541510105, + -0.027242150157690048, + -0.1334373950958252, + 0.019158165901899338, + 0.034600451588630676, + 0.08311831951141357, + -0.011632947251200676, + -0.008430896326899529, + -0.036042604595422745, + -0.07167571783065796, + 0.008893825113773346, + -0.004112382419407368, + 0.08552367985248566, + -0.03929881751537323, + -0.011441257782280445, + 0.10401059687137604, + 0.032531190663576126, + 0.001271229819394648, + -0.05946318060159683, + -0.04089515283703804, + 0.01465566921979189, + 0.049633849412202835, + -0.07746708393096924, + -0.07782280445098877, + -0.003218310885131359, + 0.04652273654937744, + -0.012186771258711815, + 0.06431117653846741, + 0.04941924661397934, + 0.022992730140686035, + 0.019034449011087418, + -0.05408584326505661, + 0.02870144695043564, + -0.07829972356557846, + -0.06670744717121124, + -0.005202499683946371, + -0.02171381749212742, + -0.03455350920557976, + 0.07468392699956894, + 0.006643473170697689, + 0.05565433204174042, + -0.024039601907134056, + -0.07702488452196121, + -0.08659431338310242, + 0.059704288840293884, + 0.05510610342025757, + -0.010910090990364552, + 0.04358004778623581, + 0.0703972578048706, + -0.02365177683532238, + 0.03980516642332077, + 0.05007283017039299, + 0.11998628824949265, + -0.03361207991838455, + 0.010733604431152344, + -0.06827697157859802, + 0.07469190657138824, + 0.068604975938797, + -0.09395161271095276, + -0.05628751218318939, + -0.022331485524773598, + -0.05472203344106674, + 0.037674590945243835, + -0.03950042277574539, + 0.00900814589112997, + 0.0321948304772377, + 0.0036626129876822233, + -0.09853214770555496, + -0.09387937188148499, + 0.08493678271770477, + -0.08031099289655685, + -0.00446568476036191, + -0.07738938182592392, + 0.04300074279308319, + 0.08873571455478668, + 0.053508080542087555, + -0.03370709717273712, + 0.00267464155331254, + 0.05076988786458969, + -0.0256606787443161, + 0.027654945850372314, + 0.07335919141769409, + 0.04329894483089447, + -0.09374304860830307, + -0.013861390762031078, + -0.08887840807437897, + 0.04297950863838196, + -0.0341179184615612, + 0.16169285774230957, + 0.0035016387701034546, + -0.036780983209609985, + -0.08410822600126266, + 0.03573472797870636, + -0.03151992708444595, + 0.0613817535340786, + 0.032926950603723526, + 0.07025118172168732, + 0.05510089918971062, + -0.045611269772052765, + 0.13286525011062622, + 0.04163186624646187, + -0.04257578402757645, + -0.06335237622261047, + -0.04410955682396889, + -0.051591657102108, + 0.038163717836141586, + 0.020653005689382553, + -0.09552693367004395, + -0.021972300484776497, + 0.022965526208281517, + -0.008364957757294178, + 0.0680304765701294, + 0.13970616459846497, + 0.07336626946926117, + -0.09822914004325867 + ] + }, + "p245_250.wav": { + "name": "p245", + "embedding": [ + 0.062431447207927704, + 0.1055077388882637, + 0.0719587653875351, + -0.0017626192420721054, + 0.01648172177374363, + 0.011706388555467129, + -0.0732860416173935, + 0.07602834701538086, + 0.046242982149124146, + 0.08620595932006836, + -0.10527466237545013, + 0.07213811576366425, + -0.058775804936885834, + -0.10755819082260132, + -0.07280032336711884, + 0.0035202298313379288, + -0.07658751308917999, + -0.008769907057285309, + -0.011892813257873058, + -0.03454851359128952, + 0.017723968252539635, + 0.002853741869330406, + 0.07499523460865021, + -0.023043876513838768, + -0.025650162249803543, + 0.04952001944184303, + 0.01879957504570484, + 0.02826358750462532, + 0.034655049443244934, + -0.04409731179475784, + 0.059410445392131805, + 0.018725212663412094, + 0.019333552569150925, + 0.03222040832042694, + 0.04541291669011116, + 0.015718013048171997, + 0.01366178598254919, + -0.012472366914153099, + -0.015246894210577011, + 0.05869060009717941, + -0.011923854239284992, + 0.049618229269981384, + 0.017274901270866394, + -0.05264103040099144, + 0.05863826721906662, + 0.033894263207912445, + -0.037105221301317215, + 0.0021170377731323242, + -0.10726907849311829, + 0.1230846494436264, + 0.021869661286473274, + 0.02329801581799984, + -0.06757653504610062, + -0.004025541245937347, + 0.07061650604009628, + -0.042555369436740875, + -0.08233536779880524, + 0.00034937169402837753, + 0.04897359758615494, + 0.05953141674399376, + -0.03580698370933533, + -0.05203752964735031, + -0.017815086990594864, + 0.045831747353076935, + 0.03294871747493744, + 0.012103233486413956, + 0.10486552119255066, + 0.08104012161493301, + -0.019803527742624283, + 0.029939714819192886, + 0.0404583178460598, + 0.016506722196936607, + 0.04867973178625107, + 0.009029091335833073, + 0.014505889266729355, + -0.03871307522058487, + -0.005139422602951527, + -0.00021542096510529518, + -0.004956761375069618, + -0.035853900015354156, + 0.015884365886449814, + -0.02970482036471367, + 0.012992695905268192, + 0.01892855390906334, + -0.031174639239907265, + 0.02334025874733925, + -0.0011029792949557304, + 0.021739188581705093, + 0.05173725634813309, + 0.043126001954078674, + 0.033411115407943726, + 0.04900289699435234, + -0.04000385105609894, + -0.09918032586574554, + -0.031840428709983826, + -0.05493808910250664, + 0.05054762214422226, + 0.022552907466888428, + 0.03326025605201721, + 0.010650456883013248, + 0.08386949449777603, + 0.036290764808654785, + -0.0348379984498024, + -0.014407012611627579, + -0.08405423164367676, + 0.040549520403146744, + 0.09424307942390442, + -0.010251492261886597, + -0.00920802727341652, + -0.011925606057047844, + 0.057332783937454224, + 0.05337955802679062, + -0.037124279886484146, + -0.023837216198444366, + 0.005821993574500084, + 0.05783270299434662, + 0.03503227233886719, + 0.07044202089309692, + -0.013608439825475216, + 0.02767532505095005, + 0.1217494085431099, + -0.03475397825241089, + 0.008493371307849884, + -0.020756468176841736, + -0.00910147838294506, + -0.03746757656335831, + 0.04849274456501007, + 0.017566323280334473, + 0.013705388642847538, + -0.015677576884627342, + 0.044619832187891006, + 0.017076361924409866, + -0.011637162417173386, + -0.0628896951675415, + -0.015701444819569588, + 0.04721507802605629, + -0.00780488969758153, + 0.014239276759326458, + 0.034589026123285294, + 0.080256886780262, + 0.027128536254167557, + 0.06867227703332901, + -0.05274093151092529, + -0.028290964663028717, + 0.028087947517633438, + 0.030750615522265434, + -0.004874279722571373, + -0.008929851464927197, + -0.07355612516403198, + -0.040170133113861084, + 0.040504783391952515, + 0.06173902004957199, + -0.023618973791599274, + 0.047443144023418427, + 0.012195669114589691, + 0.003977837041020393, + 0.09765516966581345, + -0.011126579716801643, + -0.01099430676549673, + -0.027726374566555023, + -0.06543842703104019, + -0.025217559188604355, + 0.017444688826799393, + -0.14914390444755554, + -0.04372129216790199, + -0.04174049198627472, + 0.014871444553136826, + 0.011410490609705448, + 0.020001566037535667, + 0.05797942355275154, + -0.033873897045850754, + 0.01121208444237709, + 0.012561148963868618, + -0.0008125659078359604, + -0.040627654641866684, + -0.09612931311130524, + 0.009742990136146545, + -0.02788529545068741, + 0.013036103919148445, + 0.04047970846295357, + -0.02767289988696575, + 0.03477858379483223, + -0.02697950042784214, + -0.07211016863584518, + -0.02981290966272354, + 0.07507242262363434, + 0.02910318598151207, + 0.007929733023047447, + 0.041007086634635925, + 0.043032798916101456, + -0.018553080037236214, + 0.08752802014350891, + -0.021110326051712036, + 0.06976930797100067, + -0.06684784591197968, + 0.011702246963977814, + -0.022627564147114754, + 0.013361742720007896, + 0.08069506287574768, + -0.039607301354408264, + -0.10544412583112717, + -0.05867569148540497, + -0.03933628648519516, + 0.029441125690937042, + -0.015022898092865944, + -0.03169183060526848, + 0.019883954897522926, + -0.012003048323094845, + -0.0503416582942009, + -0.0827881395816803, + 0.014340793713927269, + 0.0034641996026039124, + 0.011428428813815117, + -0.06133219599723816, + 0.02851206809282303, + 0.006955187767744064, + 0.00915826391428709, + -0.012972543947398663, + 0.05632566660642624, + -0.025707431137561798, + -0.020661504939198494, + -0.0511556938290596, + -0.02719610556960106, + 0.04003056883811951, + 0.0014334768056869507, + -0.040297575294971466, + -0.05317388474941254, + 0.03939535841345787, + -0.008402019739151001, + 0.06413179636001587, + 0.02613222599029541, + -0.0028604064136743546, + 0.014601640403270721, + -0.005364725366234779, + -0.06329908967018127, + 0.038015615195035934, + 0.03844130039215088, + 0.0024194493889808655, + -0.00031972676515579224, + -0.042167793959379196, + 0.08011392503976822, + 0.03018803335726261, + -0.01578505150973797, + -0.05181126669049263, + -0.01699543185532093, + -0.0622689351439476, + -0.062031641602516174, + 0.00442867074161768, + -0.04469887539744377, + 0.005384992808103561, + -0.01816532388329506, + 0.029129192233085632, + 0.02449989877641201, + 0.0841723084449768, + 0.008989982306957245, + -0.01770438626408577 + ] + }, + "p245_395.wav": { + "name": "p245", + "embedding": [ + 0.06550323963165283, + 0.08433538675308228, + -0.01784982718527317, + 0.042128533124923706, + -0.0611109584569931, + 0.0825430303812027, + -0.11566765606403351, + 0.12361620366573334, + -0.048154883086681366, + 0.13537082076072693, + -0.07359838485717773, + 0.1323944330215454, + -0.023047588765621185, + -0.16341546177864075, + -0.04204190894961357, + 0.05769350379705429, + -0.045354656875133514, + -0.024428818374872208, + -0.05983767658472061, + -0.005813024938106537, + 0.030469555407762527, + 0.015851859003305435, + 0.04962851107120514, + 0.010186433792114258, + 0.019705165177583694, + 0.06448869407176971, + 0.010008448734879494, + 0.07087679952383041, + 0.04192063957452774, + -0.06828481703996658, + -0.044956106692552567, + 0.10697366297245026, + -0.041706833988428116, + 0.015813250094652176, + 0.05696561187505722, + -0.00443008728325367, + 0.005681009031832218, + -0.06760845333337784, + -0.019102338701486588, + -0.0051755537278950214, + -0.042273592203855515, + 0.07852160185575485, + 0.019778680056333542, + -0.02376950904726982, + 0.04094938561320305, + 0.016479993239045143, + -0.028815045952796936, + -0.04552776366472244, + -0.10375819355249405, + 0.1447528898715973, + 0.06393130123615265, + -0.011723598465323448, + -0.06754104793071747, + -0.05448810011148453, + 0.09959813952445984, + -0.029199954122304916, + -0.11930166929960251, + -0.055169977247714996, + 0.07341191172599792, + 0.15536415576934814, + -0.04089302942156792, + -0.023522716015577316, + 0.01840304583311081, + 0.12300778925418854, + 0.08684463798999786, + 0.09674455225467682, + 0.08758467435836792, + 0.12548743188381195, + -0.006790135521441698, + 0.042646609246730804, + 0.0560179203748703, + 0.06942833214998245, + 0.061708252876996994, + 0.013477151282131672, + 0.03933752700686455, + -0.008483430370688438, + 0.001742625143378973, + -0.0003776503726840019, + -0.03048553504049778, + -0.013693335466086864, + -0.004844842478632927, + 0.011782709509134293, + 0.012974073179066181, + 0.015144234523177147, + -0.0349220335483551, + 0.07906190305948257, + 0.02308282069861889, + -0.020901208743453026, + 0.050234150141477585, + 0.036390677094459534, + 0.0014946670271456242, + 0.06121912971138954, + -0.07839523255825043, + -0.09944514185190201, + 0.022250216454267502, + -0.0006318851956166327, + 0.02032862976193428, + 0.052526310086250305, + 0.031497515738010406, + -0.0024404043797403574, + 0.11751715838909149, + 0.061954744160175323, + -0.019176315516233444, + 0.055060286074876785, + -0.07769570499658585, + 0.14618411660194397, + 0.07447339594364166, + -0.021978769451379776, + 0.036761581897735596, + -0.037156060338020325, + 0.07684732973575592, + 0.06659726798534393, + -0.12881402671337128, + -0.07086119800806046, + 0.024343134835362434, + -0.021254505962133408, + -0.02728954888880253, + 0.09162120521068573, + -0.018867691978812218, + 0.02837556228041649, + 0.10054180026054382, + -0.06760302186012268, + -0.046280235052108765, + -0.00885520875453949, + 0.03753401339054108, + -0.08088141679763794, + 0.051847539842128754, + 0.021052204072475433, + 0.009135914035141468, + -0.006809916812926531, + 0.11279579252004623, + -0.008204659447073936, + -0.023509299382567406, + 0.03740396350622177, + -0.0526740737259388, + 0.03347979113459587, + -0.024213820695877075, + -0.004802764393389225, + 0.059255875647068024, + 0.03875081241130829, + 0.0485798642039299, + -0.019528187811374664, + -0.011809159070253372, + -0.10885215550661087, + 0.01261910516768694, + 0.031799495220184326, + 0.079539455473423, + -0.0022320784628391266, + -0.0003851871006190777, + -0.04649035632610321, + -0.06041101738810539, + 0.03568731248378754, + -0.015645936131477356, + 0.07626651227474213, + -0.026368524879217148, + 0.004640602506697178, + 0.10662159323692322, + -0.006209053099155426, + 0.02273491397500038, + -0.05773773044347763, + -0.007855311036109924, + 0.028580427169799805, + 0.05584920197725296, + -0.06564788520336151, + -0.06538498401641846, + 0.00945715606212616, + 0.02500418946146965, + -0.02937411703169346, + 0.049371227622032166, + 0.04602263122797012, + 0.01210583746433258, + 0.03564991056919098, + -0.053790681064128876, + 0.003295939415693283, + -0.0892810970544815, + -0.04139140993356705, + -0.012519673444330692, + -0.027147313579916954, + -0.02612319402396679, + 0.06090090423822403, + 0.0270896814763546, + 0.04251787066459656, + -0.008985700085759163, + -0.09190566837787628, + -0.08594243228435516, + 0.06631132960319519, + 0.059366270899772644, + 0.005575481336563826, + 0.04892541468143463, + 0.05515887588262558, + -0.020950686186552048, + 0.054844826459884644, + 0.06025625020265579, + 0.08997799456119537, + -0.014691060408949852, + -0.0008571925573050976, + -0.07554928958415985, + 0.08299057185649872, + 0.08920322358608246, + -0.09265848994255066, + -0.08691748976707458, + -0.01644587144255638, + -0.06504520028829575, + 0.03762195259332657, + -0.039312612265348434, + -0.008922424167394638, + 0.07188019901514053, + -0.008827592246234417, + -0.0992414727807045, + -0.09651048481464386, + 0.11100850999355316, + -0.1005588248372078, + -0.009016851894557476, + -0.0759815126657486, + 0.03321519121527672, + 0.07887186855077744, + 0.024975284934043884, + -0.0414896085858345, + 0.004556160420179367, + 0.05652583763003349, + -0.054578110575675964, + -0.003086267039179802, + 0.04762229323387146, + 0.014138929545879364, + -0.11925549805164337, + -0.00040640681982040405, + -0.07136248052120209, + 0.04329359158873558, + -0.04628782719373703, + 0.15944702923297882, + -0.0057054003700613976, + -0.031560610979795456, + -0.06449881941080093, + 0.0418616458773613, + -0.039061058312654495, + 0.05671829730272293, + 0.052179187536239624, + 0.06839682161808014, + 0.026597080752253532, + -0.07664692401885986, + 0.13425201177597046, + 0.04492074251174927, + -0.047954022884368896, + -0.08672016859054565, + -0.04469480738043785, + -0.05823684483766556, + 0.030289176851511, + 0.027064893394708633, + -0.09275262802839279, + -0.013293991796672344, + 0.030065184459090233, + -0.03977680951356888, + 0.06271173059940338, + 0.1367710381746292, + 0.07483130693435669, + -0.07990959286689758 + ] + }, + "p245_006.wav": { + "name": "p245", + "embedding": [ + 0.032584819942712784, + 0.1049271896481514, + -0.002525875810533762, + 0.003385673277080059, + -0.05324282497167587, + 0.043377261608839035, + -0.13818272948265076, + 0.14049102365970612, + -0.03734908252954483, + 0.12935465574264526, + -0.08139845728874207, + 0.10115008056163788, + -0.0506473183631897, + -0.17288002371788025, + -0.03645024076104164, + 0.048998553305864334, + -0.03691449016332626, + -0.02941044420003891, + -0.020614400506019592, + -0.031054820865392685, + 0.03942759335041046, + 0.03691130131483078, + 0.022531339898705482, + 0.0038436129689216614, + 0.024111609905958176, + 0.06306054443120956, + 0.00833013467490673, + 0.044451747089624405, + 0.017286362126469612, + -0.01843874156475067, + -0.021356038749217987, + 0.10783866047859192, + -0.04226216301321983, + 0.013979869894683361, + 0.03725777566432953, + 0.0003412840887904167, + 0.002151644788682461, + -0.04941617697477341, + -0.005643906537443399, + 0.004004535265266895, + -0.04352103918790817, + 0.06729330867528915, + 0.030861902981996536, + 0.0014430790906772017, + 0.032290518283843994, + 0.03224336728453636, + -0.009899266064167023, + -0.0457160547375679, + -0.10391190648078918, + 0.16303008794784546, + 0.06934019178152084, + -0.013200843706727028, + -0.07165385037660599, + -0.05886688083410263, + 0.10377968102693558, + -0.0190423633903265, + -0.11089439690113068, + -0.04303240403532982, + 0.09793652594089508, + 0.14531023800373077, + -0.03524527698755264, + -0.043960895389318466, + 0.02097223699092865, + 0.13054785132408142, + 0.027608783915638924, + 0.07388577610254288, + 0.07486177980899811, + 0.10373018682003021, + -0.03144093230366707, + 0.0023356922902166843, + 0.04236556962132454, + 0.05065072700381279, + 0.022266868501901627, + -0.017793145030736923, + 0.013374044559895992, + -0.014765307307243347, + -0.007625909522175789, + 0.023213110864162445, + -0.030211906880140305, + -0.029227502644062042, + -0.026578618213534355, + 0.007347418926656246, + -0.020503085106611252, + 0.0052078524604439735, + -0.013212007470428944, + 0.052431799471378326, + 0.02425723522901535, + 0.0011300855549052358, + 0.09152035415172577, + 0.03403962776064873, + 0.0031800991855561733, + 0.05837097391486168, + -0.06789390742778778, + -0.05538655072450638, + 0.021903950721025467, + -0.0018652449361979961, + 0.02344564162194729, + 0.07710041105747223, + 0.02651391550898552, + -0.0161783155053854, + 0.12691165506839752, + 0.038947202265262604, + -0.01102367602288723, + 0.01403308566659689, + -0.10447870194911957, + 0.13535141944885254, + 0.07990939170122147, + -0.029910052195191383, + 0.03957931324839592, + -0.043194729834795, + 0.05208694189786911, + 0.05332353711128235, + -0.1209440603852272, + -0.06707784533500671, + 0.020525116473436356, + 0.0413086861371994, + -0.027878012508153915, + 0.11308136582374573, + -0.013566798530519009, + 0.023569602519273758, + 0.11197449266910553, + -0.07672980427742004, + -0.06516806781291962, + -0.019179027527570724, + 0.04320067912340164, + -0.07537756860256195, + 0.03865492716431618, + 0.07633932679891586, + -0.015267954207956791, + 0.028615208342671394, + 0.07544175535440445, + 3.3990945667028427e-06, + 0.017168525606393814, + 0.01147286593914032, + -0.05397850275039673, + 0.010506335645914078, + -0.024102624505758286, + -0.003356616012752056, + 0.030709538608789444, + 0.059255875647068024, + 0.05510294809937477, + 0.009372744709253311, + -0.04574961960315704, + -0.10505867004394531, + 0.002091650851070881, + 0.04249827563762665, + 0.06434054672718048, + -0.0158955380320549, + -0.02750999480485916, + -0.03876878321170807, + -0.05259860306978226, + -0.005092475097626448, + 0.002838969463482499, + 0.07858627289533615, + -0.03373764082789421, + -0.018163787201046944, + 0.10624653100967407, + 0.03449534997344017, + -0.009036562405526638, + -0.06582380086183548, + -0.032328926026821136, + 0.0018797609955072403, + 0.03176433965563774, + -0.08226799219846725, + -0.07240099459886551, + -0.00923194270581007, + 0.050441548228263855, + -0.014044500887393951, + 0.05435492843389511, + 0.0474538579583168, + 0.009035871364176273, + 0.02526284009218216, + -0.06518673896789551, + 0.028520630672574043, + -0.0887334942817688, + -0.06937338411808014, + 0.006807276047766209, + -0.0011302940547466278, + -0.018455656245350838, + 0.07386765629053116, + 0.008288794197142124, + 0.04644479975104332, + 0.001334281638264656, + -0.07985314726829529, + -0.07701501995325089, + 0.05552231892943382, + 0.07348356395959854, + -0.014634881168603897, + 0.06306709349155426, + 0.06387119740247726, + -0.05427989736199379, + 0.06010766327381134, + 0.05643840879201889, + 0.10310705006122589, + -0.043063800781965256, + 0.016745667904615402, + -0.0649903193116188, + 0.047075483947992325, + 0.06403174251317978, + -0.1044611856341362, + -0.07372820377349854, + -0.04192366823554039, + -0.05399514362215996, + 0.027581652626395226, + -0.013948271051049232, + 0.015401473268866539, + 0.01587090641260147, + -0.008906680159270763, + -0.10232412815093994, + -0.08734972029924393, + 0.05813188850879669, + -0.05929386615753174, + 0.0036743972450494766, + -0.07567810267210007, + 0.05526915192604065, + 0.09819579124450684, + 0.034856781363487244, + -0.011518271639943123, + -0.023225978016853333, + 0.02949949912726879, + -0.04173942655324936, + -0.005806375294923782, + 0.03298297896981239, + 0.04307696223258972, + -0.08543585985898972, + 0.010868465527892113, + -0.08774351328611374, + 0.06024782359600067, + -0.035674452781677246, + 0.1530730426311493, + 0.019577646628022194, + -0.05333314463496208, + -0.08791891485452652, + 0.026680879294872284, + -0.03147127479314804, + 0.0434952974319458, + 0.029414352029561996, + 0.04575791209936142, + 0.03115924447774887, + -0.055549658834934235, + 0.12637826800346375, + 0.03869802877306938, + -0.04950588196516037, + -0.06578905880451202, + -0.036461152136325836, + -0.041822731494903564, + 0.018039824441075325, + 0.008888096548616886, + -0.08852120488882065, + -0.04211621731519699, + 0.015565511770546436, + -0.015324335545301437, + 0.0796964168548584, + 0.12744811177253723, + 0.06640426069498062, + -0.11343657225370407 + ] + }, + "p245_117.wav": { + "name": "p245", + "embedding": [ + 0.0663791298866272, + 0.06481096893548965, + -0.03348292037844658, + 0.020564712584018707, + -0.03492648899555206, + 0.02512381039559841, + -0.09711866080760956, + 0.07552213221788406, + -0.040559589862823486, + 0.11849957704544067, + -0.08109736442565918, + 0.08790730684995651, + -0.010697794146835804, + -0.11700117588043213, + -0.06738083064556122, + 0.03288768231868744, + -0.04765726998448372, + -0.04647444561123848, + -0.04495936632156372, + -0.01139787770807743, + 0.03867693245410919, + 0.043678607791662216, + 0.020771410316228867, + -0.03289779648184776, + 0.04199159890413284, + 0.05658009275794029, + 0.029611488804221153, + 0.025073807686567307, + -0.006493689492344856, + 0.026495207101106644, + 0.0011126045137643814, + 0.11153659224510193, + -0.044191014021635056, + -0.013819792307913303, + 0.0311887226998806, + 0.02249486930668354, + 0.011648205108940601, + -0.07382804155349731, + 0.008307871408760548, + 0.0019037476740777493, + -0.024948447942733765, + 0.08163805305957794, + 0.04867237061262131, + -0.010434059426188469, + -0.005144375376403332, + 0.029986664652824402, + -0.005942861549556255, + -0.054276760667562485, + -0.11896392703056335, + 0.1747700273990631, + 0.02796965464949608, + 0.026809019967913628, + -0.09365317970514297, + -0.04876662790775299, + 0.0796499028801918, + 0.0098640788346529, + -0.04191647097468376, + -0.045978181064128876, + 0.04680206626653671, + 0.15397390723228455, + -0.01689627207815647, + -0.04848678410053253, + 0.014617616310715675, + 0.08847671747207642, + 0.03875938802957535, + 0.023299671709537506, + 0.08159701526165009, + 0.09758806228637695, + 0.007904723286628723, + 0.047025568783283234, + 0.0659836083650589, + 0.029545437544584274, + 0.023729432374238968, + -0.05017070844769478, + 0.026821738108992577, + -0.025956720113754272, + -0.026093963533639908, + 0.0038982192054390907, + -0.040285468101501465, + -0.06192207336425781, + -0.010583801195025444, + -0.0030246595852077007, + 0.02301739528775215, + 0.03665097802877426, + -0.06552837789058685, + 0.051581718027591705, + 0.036703675985336304, + -0.058151982724666595, + 0.08319983631372452, + 0.03686737269163132, + -0.01637602411210537, + -0.0024369806051254272, + -0.06684253364801407, + -0.07785780727863312, + 0.035711102187633514, + 0.00615624850615859, + 0.018981322646141052, + 0.05096926540136337, + 0.04271988570690155, + -0.023800117895007133, + 0.08233090490102768, + 0.023124366998672485, + 0.0006741330726072192, + -0.02275349199771881, + -0.08901208639144897, + 0.12537899613380432, + 0.11221356689929962, + -0.01637592352926731, + -0.010132333263754845, + -0.02012024074792862, + 0.024066075682640076, + 0.06426465511322021, + -0.10625521093606949, + -0.08621283620595932, + 0.030181964859366417, + 0.00192217156291008, + 0.0046913279220461845, + 0.07177047431468964, + -0.01979185827076435, + 0.012640844099223614, + 0.07597804069519043, + -0.08043913543224335, + -0.04631512239575386, + -0.03861051797866821, + 0.014440439641475677, + -0.08531521260738373, + 0.020678933709859848, + 0.07579287886619568, + -0.01242291834205389, + -0.03175487369298935, + 0.06600604951381683, + 0.025848107412457466, + 0.004945406690239906, + -0.015682613477110863, + 0.03583322465419769, + 0.07717518508434296, + 0.002941790036857128, + -0.038786597549915314, + 0.02014279179275036, + 0.05632985010743141, + 0.051919858902692795, + 0.009324396960437298, + -0.002588793868198991, + -0.07343313843011856, + 0.031933434307575226, + 0.08379973471164703, + 0.021868597716093063, + -0.04236214607954025, + -0.04696473479270935, + -0.05884414166212082, + -0.0460367351770401, + 0.0138088408857584, + 0.017595849931240082, + 0.08983033150434494, + 0.030379775911569595, + 0.00941836554557085, + 0.1442602574825287, + -0.01569347269833088, + -0.009762893430888653, + -0.01568719372153282, + 0.0339643657207489, + 0.05143208056688309, + 0.032057058066129684, + -0.0357724130153656, + -0.07902616262435913, + 0.004774644039571285, + 0.010366776958107948, + -0.018539030104875565, + 0.029176995158195496, + 0.029292089864611626, + -0.020781368017196655, + 0.010427485220134258, + -0.06426107883453369, + 0.013449100777506828, + -0.08969840407371521, + 0.00946175865828991, + -0.001794168958440423, + -0.08096250891685486, + -0.03316441923379898, + 0.07327745854854584, + 0.023014485836029053, + 0.0393022745847702, + -0.027058064937591553, + -0.10035022348165512, + -0.023686770349740982, + 0.08339046686887741, + 0.0839746966958046, + -0.025258135050535202, + 0.015715466812253, + 0.023011572659015656, + 0.028393303975462914, + 0.011937202885746956, + 0.0633280873298645, + 0.0804753303527832, + -0.03716718405485153, + -0.06480783969163895, + -0.03089866042137146, + 0.116466224193573, + 0.021582720801234245, + -0.0926688015460968, + -0.04235338419675827, + -0.047869723290205, + -0.040671683847904205, + 0.00749615952372551, + 0.014579607173800468, + 0.04157961905002594, + 0.04385460168123245, + -0.04499632120132446, + -0.11614260077476501, + -0.10122857987880707, + 0.058299362659454346, + -0.04211875796318054, + -0.005418750457465649, + -0.05257604643702507, + 0.0265200212597847, + 0.0626673549413681, + 0.0114889619871974, + 0.01612227037549019, + -0.005144713446497917, + -0.03464069962501526, + -0.07651016861200333, + -0.03730890527367592, + -0.004086734727025032, + 0.03898791968822479, + -0.0624421052634716, + 0.003802548162639141, + -0.0599251314997673, + 0.08920934796333313, + -0.05726965144276619, + 0.12540869414806366, + -0.010254740715026855, + -0.036541931331157684, + -0.08108656108379364, + 0.008565537631511688, + -0.041284918785095215, + 0.07953342795372009, + 0.06964181363582611, + 0.017991025000810623, + -0.008446039631962776, + -0.07632865011692047, + 0.10225652903318405, + 0.07402639091014862, + -0.027663087472319603, + -0.07545515149831772, + -0.04524011164903641, + -0.02710394561290741, + 0.003935838118195534, + 0.01634923368692398, + -0.028507238253951073, + 0.014483869075775146, + 0.030218619853258133, + -0.030427830293774605, + 0.07724196463823318, + 0.09033051133155823, + 0.060144178569316864, + -0.06725859642028809 + ] + }, + "p245_414.wav": { + "name": "p245", + "embedding": [ + 0.05337275564670563, + 0.09347979724407196, + -0.01617208495736122, + 0.015344187617301941, + -0.051168859004974365, + 0.07525269687175751, + -0.12179407477378845, + 0.12432641535997391, + -0.06415523588657379, + 0.15049946308135986, + -0.07099460065364838, + 0.12227404117584229, + -0.02313445881009102, + -0.17240847647190094, + -0.04736506938934326, + 0.04944154620170593, + -0.0601639524102211, + -0.039453037083148956, + -0.032291024923324585, + 6.793421925976872e-05, + 0.05067278444766998, + 0.03623484447598457, + 0.021768562495708466, + 0.006948499940335751, + 0.00878700241446495, + 0.07093086838722229, + 0.014023074880242348, + 0.06032991409301758, + 0.028757669031620026, + -0.07819128036499023, + -0.03957583010196686, + 0.1095798909664154, + -0.04314263164997101, + 0.029746145009994507, + 0.060170628130435944, + -0.000363360159099102, + 0.007370705250650644, + -0.07157830893993378, + -0.016270935535430908, + -0.0039893025532364845, + -0.04488180950284004, + 0.07358165085315704, + 0.015919405966997147, + -0.012264054268598557, + 0.01863841712474823, + 0.02229408547282219, + -0.010928409174084663, + -0.05995403230190277, + -0.08643461018800735, + 0.1562034785747528, + 0.07088296115398407, + -0.004013930447399616, + -0.050174780189991, + -0.08669688552618027, + 0.10542869567871094, + -0.011490270495414734, + -0.12580139935016632, + -0.048519596457481384, + 0.07145947962999344, + 0.15937139093875885, + -0.03752167150378227, + -0.0384533628821373, + 0.024835262447595596, + 0.12317246198654175, + 0.044771235436201096, + 0.10647053271532059, + 0.08519617468118668, + 0.09169928729534149, + -0.001533685950562358, + 0.02733851782977581, + 0.06200683116912842, + 0.08383584022521973, + 0.059349097311496735, + -0.0019989125430583954, + 0.04737678915262222, + -0.0016305656172335148, + -0.022421574220061302, + 0.020158428698778152, + -0.016585052013397217, + -0.012505578808486462, + -0.017927024513483047, + 0.021225716918706894, + 0.0029016989283263683, + 0.020022213459014893, + -0.011623300611972809, + 0.061272792518138885, + 0.009784468449652195, + -0.015076527372002602, + 0.06223952770233154, + 0.033248208463191986, + 0.027849216014146805, + 0.06625443696975708, + -0.07395663857460022, + -0.10191988199949265, + 0.025953607633709908, + -0.0011344742961227894, + 0.02856616862118244, + 0.07920478284358978, + 0.03522225096821785, + -0.014241073280572891, + 0.10890447348356247, + 0.04155503958463669, + -0.0084445271641016, + 0.026931937783956528, + -0.09902231395244598, + 0.1268363893032074, + 0.0799713283777237, + -0.03023127093911171, + 0.028904562816023827, + -0.060109205543994904, + 0.09531669318675995, + 0.07547635585069656, + -0.14982913434505463, + -0.09231121838092804, + 0.033190034329891205, + 0.007038099691271782, + -0.02111329324543476, + 0.11351749300956726, + -0.025695431977510452, + 0.019240889698266983, + 0.1008530855178833, + -0.0826231837272644, + -0.0480121448636055, + -0.0257711261510849, + 0.037566471844911575, + -0.08659997582435608, + 0.06426386535167694, + 0.03095492161810398, + -0.009906553663313389, + -0.001334917964413762, + 0.09995832294225693, + -0.025347266346216202, + -0.00865009892731905, + 0.016087155789136887, + -0.05126236751675606, + 0.02221379242837429, + -0.043657850474119186, + 0.006328982301056385, + 0.03574098274111748, + 0.04346025735139847, + 0.04006488248705864, + -0.005997288040816784, + -0.04574074596166611, + -0.11877577006816864, + 0.016988495364785194, + 0.03338633477687836, + 0.06776638329029083, + -0.005708509124815464, + -0.025159288197755814, + -0.02828025631606579, + -0.0529685840010643, + 0.013637338764965534, + -0.01797289401292801, + 0.07487207651138306, + -0.005986368283629417, + 0.007802212610840797, + 0.0994187444448471, + 0.016678549349308014, + -0.00010740617290139198, + -0.05749409645795822, + -0.03445484861731529, + 0.024085022509098053, + 0.0630992203950882, + -0.07922924309968948, + -0.06572607159614563, + 0.010446312837302685, + 0.024683155119419098, + -0.01451587863266468, + 0.0391768142580986, + 0.05514409393072128, + 0.02439870312809944, + 0.04159264266490936, + -0.06749506294727325, + 0.01026029884815216, + -0.12275136262178421, + -0.07851161062717438, + -0.01657060533761978, + -0.02547772228717804, + -0.003994768485426903, + 0.07156360149383545, + 0.0017041168175637722, + 0.035028621554374695, + -0.01159695629030466, + -0.08217807114124298, + -0.08210548758506775, + 0.07249727100133896, + 0.08577492833137512, + 0.01932879537343979, + 0.04386300966143608, + 0.045057184994220734, + -0.01685880683362484, + 0.0473417304456234, + 0.044633276760578156, + 0.12211090326309204, + -0.019795356318354607, + 0.013241836801171303, + -0.0746978223323822, + 0.08316610753536224, + 0.07629567384719849, + -0.09628407657146454, + -0.07493922114372253, + -0.015265904366970062, + -0.059690605849027634, + 0.04075497016310692, + -0.02806091494858265, + 0.00484283734112978, + 0.026090744882822037, + -0.0063917869701981544, + -0.10699254274368286, + -0.07515783607959747, + 0.09153671562671661, + -0.07236147671937943, + -0.010375437326729298, + -0.09194009006023407, + 0.05121401324868202, + 0.09815976023674011, + 0.05290521681308746, + -0.03345044329762459, + 0.003943076357245445, + 0.058402158319950104, + -0.0485280379652977, + 0.00016099540516734123, + 0.04057348147034645, + 0.020463839173316956, + -0.09463279694318771, + 0.00874655693769455, + -0.08400268852710724, + 0.039982300251722336, + -0.0781797468662262, + 0.15764813125133514, + -0.020856384187936783, + -0.06966894865036011, + -0.08086109161376953, + 0.0453309565782547, + -0.021734872832894325, + 0.04313546419143677, + 0.04256168007850647, + 0.06295493990182877, + 0.041449107229709625, + -0.08462811261415482, + 0.12133316695690155, + 0.045901477336883545, + -0.0248493030667305, + -0.06361193209886551, + -0.048655495047569275, + -0.038715094327926636, + 0.03535463660955429, + 0.010105248540639877, + -0.08735272288322449, + -0.01854035258293152, + 0.02449534833431244, + -0.021589156240224838, + 0.06691836565732956, + 0.14419814944267273, + 0.05591727793216705, + -0.11574887484312057 + ] + }, + "p245_253.wav": { + "name": "p245", + "embedding": [ + 0.0659065991640091, + 0.07509010285139084, + -0.024440791457891464, + -0.001634875312447548, + -0.046231627464294434, + 0.03870411217212677, + -0.1354798674583435, + 0.14504340291023254, + -0.039977025240659714, + 0.09383848309516907, + -0.04805021360516548, + 0.10036615282297134, + 0.009969496168196201, + -0.11082163453102112, + -0.046134404838085175, + 0.023836283013224602, + 0.0014015557244420052, + -0.015952402725815773, + -0.028823979198932648, + -0.01151888445019722, + 0.015373526141047478, + 0.03339692950248718, + 0.009113047271966934, + -0.009018579497933388, + 0.037673816084861755, + 0.029065484181046486, + 0.005538268480449915, + 0.01837175339460373, + 0.007479529827833176, + 0.02990323305130005, + -0.0010585598647594452, + 0.08733303099870682, + -0.050202760845422745, + 0.010362047702074051, + 0.043523091822862625, + 0.011447603814303875, + -0.005951732397079468, + -0.0819530338048935, + -0.01541035994887352, + -0.0070488532073795795, + -0.029752040281891823, + 0.09017757326364517, + 0.05828443169593811, + -0.006793014705181122, + 0.007019433192908764, + 0.014472566545009613, + 0.01464794296771288, + -0.061176445335149765, + -0.10762913525104523, + 0.1486799418926239, + 0.004450784996151924, + 0.008131470531225204, + -0.12579701840877533, + -0.016540562734007835, + 0.0826941654086113, + -0.032750729471445084, + -0.03878742828965187, + -0.055116526782512665, + 0.03610720485448837, + 0.13918444514274597, + -0.015389349311590195, + -0.05884116515517235, + 0.005374635569751263, + 0.09946253150701523, + 0.05703935772180557, + 0.028374670073390007, + 0.1077100932598114, + 0.1067352443933487, + -0.030965689569711685, + 0.02396455779671669, + 0.03290452063083649, + 0.03955530375242233, + 0.011360063217580318, + -0.02434130758047104, + 0.012554807588458061, + -0.03345746174454689, + -0.006304372567683458, + 0.023870892822742462, + -0.022353515028953552, + -0.049800723791122437, + -0.02220963127911091, + 0.019474683329463005, + -0.004713356960564852, + 0.0714944452047348, + -0.06565125286579132, + 0.05690184235572815, + 0.040205713361501694, + -0.035322438925504684, + 0.07339352369308472, + 0.08051391690969467, + 0.006438813172280788, + 0.012984735891222954, + -0.07159963995218277, + -0.07156150043010712, + 0.02788781002163887, + -0.02782830037176609, + 0.05234832316637039, + 0.06279204785823822, + 0.021869642660021782, + 0.005398619454354048, + 0.08487403392791748, + 0.03819020837545395, + -0.006558696273714304, + -0.011617226526141167, + -0.06747996807098389, + 0.12636533379554749, + 0.09980346262454987, + -0.013211781159043312, + 0.020522916689515114, + -0.049001313745975494, + 0.010408591479063034, + 0.044483084231615067, + -0.0948638916015625, + -0.07751217484474182, + 0.067380890250206, + 0.05425296723842621, + 0.026540569961071014, + 0.09843991696834564, + 0.015075989998877048, + 0.01484285295009613, + 0.047278378158807755, + -0.07201935350894928, + -0.05516931414604187, + -0.008485788479447365, + 0.032912611961364746, + -0.05039115995168686, + 0.04347151517868042, + 0.061444345861673355, + 0.0006294646300375462, + -0.02945905737578869, + 0.06335999816656113, + 0.02476908639073372, + 0.01327902264893055, + -0.015673339366912842, + 0.03080238774418831, + 0.06649118661880493, + 0.025583066046237946, + -0.02487625926733017, + 0.02049708552658558, + 0.05804292485117912, + 0.05558866634964943, + 0.025322120636701584, + 0.0005338550545275211, + -0.09712747484445572, + 0.004549121484160423, + 0.08775191009044647, + 0.06214361637830734, + -0.059692010283470154, + -0.0601113960146904, + -0.03807923197746277, + -0.03510478138923645, + -0.01695621944963932, + 0.03143256902694702, + 0.06958773732185364, + -0.0020206328481435776, + 0.016987819224596024, + 0.11053489148616791, + -0.006412738934159279, + 0.007900618016719818, + -0.011927224695682526, + 0.04685390740633011, + 0.02254825457930565, + 0.046424709260463715, + -0.0289375688880682, + -0.0934915617108345, + -0.004640120547264814, + 0.033181458711624146, + -0.02525162324309349, + 0.02672378346323967, + 0.0471775084733963, + -0.026801731437444687, + 0.03799400478601456, + -0.08719084411859512, + 0.03613336756825447, + -0.11106973141431808, + -0.009208418428897858, + 0.0005084946751594543, + -0.029659219086170197, + -0.015466381795704365, + 0.07627661526203156, + 0.04467010125517845, + 0.07124413549900055, + -0.004158590454608202, + -0.09351237863302231, + -0.034465525299310684, + 0.048995740711688995, + 0.07400546967983246, + -0.04525791108608246, + 0.0006407536566257477, + 0.049952056258916855, + 0.012691473588347435, + 0.01874997466802597, + 0.08085097372531891, + 0.047892145812511444, + -0.0489029586315155, + -0.039329417049884796, + -0.044258613139390945, + 0.09503402560949326, + 0.04393851384520531, + -0.11533653736114502, + -0.0682753324508667, + -0.02465703897178173, + -0.037853043526411057, + -0.032204288989305496, + -0.016869917511940002, + 0.03891190141439438, + 0.0473678819835186, + -0.021637139841914177, + -0.12105533480644226, + -0.10460696369409561, + 0.047805506736040115, + -0.08263389021158218, + 0.029937192797660828, + -0.05965464189648628, + 0.01737012341618538, + 0.0810689851641655, + 0.01800205558538437, + -0.010326297953724861, + -0.04939088970422745, + -0.02670142985880375, + -0.051365356892347336, + -0.044225119054317474, + -0.006073169410228729, + 0.035165004432201385, + -0.0841970145702362, + 0.02438327670097351, + -0.05442404747009277, + 0.07993105798959732, + -0.03565894067287445, + 0.1460910439491272, + 0.020470960065722466, + -0.07599806040525436, + -0.09064380824565887, + -0.04182501882314682, + -0.03868559002876282, + 0.06587879359722137, + 0.032756395637989044, + 0.034168146550655365, + -1.4596618711948395e-05, + -0.05268435552716255, + 0.08482556790113449, + 0.09877606481313705, + -0.04556364566087723, + -0.0873718410730362, + -0.040023379027843475, + -0.015530819073319435, + 0.04508063197135925, + 0.01741029880940914, + -0.016096223145723343, + 0.0044369176030159, + 0.013603215105831623, + -0.04250704497098923, + 0.07414849102497101, + 0.10565780103206635, + 0.059978507459163666, + -0.11924143135547638 + ] + }, + "p245_109.wav": { + "name": "p245", + "embedding": [ + 0.05739546939730644, + 0.08613348007202148, + -0.006044930778443813, + 0.0352112278342247, + -0.06083273887634277, + 0.03468688577413559, + -0.14677467942237854, + 0.14680781960487366, + -0.021860700100660324, + 0.12390688061714172, + -0.06311961263418198, + 0.12757804989814758, + -0.022577140480279922, + -0.19756779074668884, + -0.008795039728283882, + 0.08517857640981674, + -0.032355278730392456, + -0.02848302572965622, + -0.025251664221286774, + -0.02377479337155819, + 0.02512427419424057, + 0.043954938650131226, + 0.060328077524900436, + 0.005702539347112179, + 0.031326524913311005, + 0.06979607045650482, + 0.002574204234406352, + 0.053611837327480316, + 0.0093069551512599, + -0.057945143431425095, + -0.035119932144880295, + 0.09045854210853577, + -0.03604564815759659, + -0.0005113724619150162, + 0.050318460911512375, + -0.011871270835399628, + 4.0381837607128546e-05, + -0.06830374896526337, + -0.0277443528175354, + -0.008360256440937519, + -0.040520697832107544, + 0.07810407876968384, + 0.0224294476211071, + -0.03035673499107361, + 0.060263119637966156, + 0.02106332592666149, + -0.033152010291814804, + -0.044141735881567, + -0.13355642557144165, + 0.1488659381866455, + 0.07038581371307373, + 0.02156125009059906, + -0.08391305059194565, + -0.07415102422237396, + 0.0971040353178978, + -0.030163947492837906, + -0.10386817157268524, + -0.04477739334106445, + 0.07305428385734558, + 0.16108199954032898, + -0.0229775533080101, + -0.034324757754802704, + 0.038250505924224854, + 0.11930715292692184, + 0.060493435710668564, + 0.09059705585241318, + 0.07020947337150574, + 0.1004265546798706, + -0.02927844226360321, + 0.016493503004312515, + 0.044844381511211395, + 0.07669737190008163, + 0.03551100939512253, + 0.006001103203743696, + 0.01228416245430708, + 0.007548165507614613, + -0.024507751688361168, + -0.008376196026802063, + -0.015511329285800457, + -0.017870772629976273, + -0.01723967306315899, + 0.008231448009610176, + 0.007556747179478407, + 0.011855248361825943, + -0.027854524552822113, + 0.062090061604976654, + 0.0341794528067112, + -0.004567167721688747, + 0.0724688395857811, + 0.019014395773410797, + -0.0008657457074150443, + 0.060691915452480316, + -0.07151425629854202, + -0.07954558730125427, + 0.020314980298280716, + 0.011950142681598663, + 0.022227173671126366, + 0.06036045774817467, + 0.023404493927955627, + -0.027063174173235893, + 0.1304457038640976, + 0.0630183145403862, + -0.0060635036788880825, + 0.03458651155233383, + -0.08411171287298203, + 0.11534597724676132, + 0.08304879069328308, + -0.014469115063548088, + 0.06840068101882935, + -0.041978105902671814, + 0.060439582914114, + 0.0727461725473404, + -0.1337536871433258, + -0.07041275501251221, + 0.015840495005249977, + 0.01233344804495573, + -0.013424286618828773, + 0.12322752177715302, + 0.005914837121963501, + 0.05673353001475334, + 0.117793969810009, + -0.09871840476989746, + -0.06949783861637115, + -0.0042399633675813675, + 0.0551203116774559, + -0.09464181959629059, + 0.06249776482582092, + 0.07012145966291428, + -0.02135149948298931, + 0.017793484032154083, + 0.07335391640663147, + -0.005597086623311043, + 0.011523909866809845, + 0.01644597016274929, + -0.058747705072164536, + 0.005872945301234722, + -0.04127098247408867, + -0.01425835769623518, + 0.0605582520365715, + 0.033361248672008514, + 0.04053114354610443, + -0.00681935204192996, + -0.03324224427342415, + -0.13778139650821686, + 0.003976250067353249, + 0.03389718756079674, + 0.08339881896972656, + -0.007886230945587158, + -0.030938230454921722, + -0.04448118805885315, + -0.0599418506026268, + 0.010695687495172024, + -0.009594394825398922, + 0.06870704889297485, + -0.02924153208732605, + 0.006847626995295286, + 0.08679477870464325, + 0.027226699516177177, + 0.0018853339133784175, + -0.04736558720469475, + -0.04945267736911774, + 0.016022196039557457, + 0.0454501137137413, + -0.08235573768615723, + -0.07084080576896667, + -0.0070708515122532845, + 0.04068135842680931, + -0.032321542501449585, + 0.04960598051548004, + 0.038274526596069336, + 0.022238314151763916, + 0.017885731533169746, + -0.05703619867563248, + 0.02338593453168869, + -0.09009230136871338, + -0.08075901865959167, + 0.002486435230821371, + 0.008224758319556713, + -0.029937084764242172, + 0.07189749926328659, + 0.030756091699004173, + 0.06540273129940033, + -0.02816474437713623, + -0.06498674303293228, + -0.09770011901855469, + 0.05295402556657791, + 0.05662689357995987, + 0.0015044284518808126, + 0.058535512536764145, + 0.04629106447100639, + -0.04560130834579468, + 0.061952006071805954, + 0.047713376581668854, + 0.09148293733596802, + -0.016202818602323532, + 0.012414633296430111, + -0.07333677262067795, + 0.07675021141767502, + 0.10897409170866013, + -0.08695634454488754, + -0.08112332224845886, + -0.036334481090307236, + -0.07327903062105179, + 0.057342421263456345, + -0.0145942447707057, + 0.0006856077234260738, + 0.04557185620069504, + -0.011704448610544205, + -0.1123899519443512, + -0.09791746735572815, + 0.08337440341711044, + -0.06064557284116745, + -0.004089634865522385, + -0.0628826916217804, + 0.04487769305706024, + 0.08675407618284225, + 0.02726869285106659, + -0.017857426777482033, + -0.031373947858810425, + 0.04116690158843994, + -0.042946889996528625, + 0.004726524464786053, + 0.06690191477537155, + 0.04441523179411888, + -0.10162967443466187, + 0.007017001509666443, + -0.07676421105861664, + 0.053607277572155, + -0.03338317945599556, + 0.15788988769054413, + 0.0119588328525424, + -0.04459541663527489, + -0.09059779345989227, + 0.026029985398054123, + -0.023152461275458336, + 0.05804430693387985, + 0.021228080615401268, + 0.05717020481824875, + 0.048421114683151245, + -0.06877723336219788, + 0.10947582125663757, + 0.04329445958137512, + -0.047781284898519516, + -0.06127448379993439, + -0.04130503535270691, + -0.055049192160367966, + 0.0326380580663681, + -0.005245511885732412, + -0.09330736100673676, + -0.028838014230132103, + 0.016722194850444794, + -0.010706339031457901, + 0.06182768568396568, + 0.1386440098285675, + 0.04118635505437851, + -0.11009286344051361 + ] + }, + "p245_312.wav": { + "name": "p245", + "embedding": [ + 0.015115632675588131, + 0.07223115861415863, + -0.0020533159840852022, + 0.04228286072611809, + -0.006371307652443647, + 0.04990001767873764, + -0.07020367681980133, + 0.0487297922372818, + -0.05339176952838898, + 0.15103980898857117, + -0.12234080582857132, + 0.08643540740013123, + -0.04453974962234497, + -0.14344476163387299, + -0.0251156073063612, + 0.02139274775981903, + -0.03654440864920616, + 0.03277100622653961, + -0.05478564649820328, + -0.03230539336800575, + 0.05921761319041252, + 0.07936245948076248, + 0.04668014496564865, + -0.052221983671188354, + 0.005212868098169565, + 0.06402292102575302, + -0.020825820043683052, + 0.036405764520168304, + 0.008070295676589012, + -0.13803991675376892, + -0.0482972115278244, + 0.11677175760269165, + -0.029670054093003273, + 0.02404903806746006, + -0.013602443039417267, + 0.017274048179388046, + -0.020915072411298752, + -0.018871530890464783, + -0.014337779954075813, + 0.0014606877230107784, + -0.052115097641944885, + 0.02135101892054081, + -0.02439035475254059, + -0.01282050646841526, + 0.04708550125360489, + -0.03330114856362343, + -0.03222230449318886, + -0.013768676668405533, + -0.07614147663116455, + 0.16634711623191833, + 0.053961075842380524, + -0.0026977118104696274, + -0.04983261972665787, + -0.08148597180843353, + 0.08884178847074509, + -0.004952655639499426, + -0.14231504499912262, + 0.011187897995114326, + 0.08110079169273376, + 0.13044947385787964, + -0.009287124499678612, + -0.04630175232887268, + 0.03958515077829361, + 0.05871117115020752, + -0.02902132272720337, + 0.0898125097155571, + 0.07278240472078323, + 0.041674237698316574, + 0.01308460533618927, + 0.020940300077199936, + 0.008747893385589123, + 0.08632219582796097, + 0.06605222821235657, + -0.0462956428527832, + 0.010121885687112808, + 0.007276811636984348, + -0.051074691116809845, + 0.028794409707188606, + -0.011513588950037956, + -0.029004141688346863, + 0.006922640837728977, + -0.049004796892404556, + -0.008345667272806168, + -0.06528280675411224, + -0.02787744626402855, + -0.0020188805647194386, + 0.03389494866132736, + -0.014308687299489975, + 0.07219575345516205, + 0.032453540712594986, + 0.01708252914249897, + 0.033069685101509094, + -0.030524233356118202, + -0.06059879809617996, + -0.002071019262075424, + 0.03162568435072899, + -0.0054235076531767845, + 0.06549955904483795, + 0.06157100945711136, + -0.028302693739533424, + 0.10277147591114044, + 0.011557220481336117, + 0.03959643468260765, + -0.018499260768294334, + -0.11130046099424362, + 0.06427522003650665, + 0.13470283150672913, + 0.003276452887803316, + 0.06343982368707657, + -0.017135923728346825, + 0.09468264132738113, + 0.0819682702422142, + -0.12226925790309906, + -0.05566508695483208, + -0.035344138741493225, + -0.017945565283298492, + 0.030227798968553543, + 0.08432887494564056, + -0.010283301584422588, + -0.020880941301584244, + 0.10020695626735687, + -0.13482952117919922, + -0.059246305376291275, + -0.03256281465291977, + 0.011748181656002998, + -0.11977741122245789, + 0.06418773531913757, + 0.04065250605344772, + -0.02072078175842762, + 0.014553282409906387, + 0.07624413073062897, + -0.05368376150727272, + 0.04327709600329399, + -0.024555768817663193, + -0.061816200613975525, + -0.041629400104284286, + -0.08573607355356216, + -0.0217968188226223, + 0.08240741491317749, + 0.0445537269115448, + 0.06262975931167603, + -0.019458848983049393, + -0.06651761382818222, + -0.10590438544750214, + 0.00962788239121437, + 0.05472379922866821, + -0.008921545930206776, + -0.010740948840975761, + 0.002315530553460121, + -0.03541753068566322, + -0.07608170062303543, + 0.07531290501356125, + -0.050457172095775604, + 0.06512399017810822, + 0.0033374689519405365, + -0.013107403181493282, + 0.12156622111797333, + 0.02566804364323616, + -0.04253965988755226, + -0.07956333458423615, + -0.04753100126981735, + 0.00883153360337019, + 0.009269867092370987, + -0.11197134852409363, + -0.06630025058984756, + -0.02749679610133171, + 0.004038706421852112, + 0.01835394650697708, + 0.0388292595744133, + 0.07381658256053925, + 0.01360377948731184, + 0.02391894906759262, + -0.04704713821411133, + 0.019652945920825005, + -0.08830897510051727, + -0.08141794055700302, + 0.007449087221175432, + -0.07520467042922974, + 0.03248056024312973, + 0.1157418042421341, + -0.032339610159397125, + -0.06660428643226624, + -0.05077730864286423, + -0.07081522792577744, + -0.0720144510269165, + 0.06092381104826927, + 0.04278179630637169, + 0.03951593488454819, + 0.03510010987520218, + 0.05421309918165207, + -0.048864975571632385, + 0.08979848772287369, + 0.041258305311203, + 0.14028732478618622, + -0.04146946221590042, + 0.03866475448012352, + -0.05740002170205116, + 0.05875694751739502, + 0.07405953109264374, + -0.024600287899374962, + -0.09972354769706726, + -0.039126377552747726, + -0.07141612470149994, + 0.10491704940795898, + -0.02136886492371559, + -0.04152430593967438, + 0.009420864284038544, + -0.04051225259900093, + -0.08547887951135635, + -0.04949510097503662, + 0.11076352000236511, + 0.016875144094228745, + -0.04979408159852028, + -0.07580237835645676, + 0.05460367724299431, + 0.02481137216091156, + 0.06275676190853119, + -0.015234648250043392, + 0.053780488669872284, + 0.05598363280296326, + -0.08687961101531982, + -0.004771187901496887, + 0.047404512763023376, + 0.004116476979106665, + -0.014873728156089783, + -0.009625840000808239, + -0.11008241772651672, + 0.058257095515728, + -0.06296917796134949, + 0.0923713743686676, + -0.026684515178203583, + -0.06853699684143066, + -0.06578568369150162, + 0.1008608266711235, + -0.01734708622097969, + 0.017783261835575104, + 0.08565252274274826, + 0.042901039123535156, + 0.08388683199882507, + -0.11167167127132416, + 0.06270655989646912, + 0.01114030834287405, + 0.021431084722280502, + -0.030852973461151123, + -0.03638945519924164, + -0.03772243857383728, + -0.006519352551549673, + -0.03680536150932312, + -0.09481385350227356, + 0.027113022282719612, + -0.012785693630576134, + 0.02386845275759697, + 0.02694052644073963, + 0.08384421467781067, + 0.009739955887198448, + -0.0888400673866272 + ] + }, + "p245_319.wav": { + "name": "p245", + "embedding": [ + 0.04419044405221939, + 0.09056366235017776, + -0.07513836026191711, + 0.048270877450704575, + -0.06125824153423309, + 0.02990613505244255, + -0.11891696602106094, + 0.1064797043800354, + 0.00932198017835617, + 0.11947310715913773, + -0.054237693548202515, + 0.11613690853118896, + -0.03302270919084549, + -0.13520264625549316, + 0.010527489706873894, + 0.025518450886011124, + 0.00029355473816394806, + -0.003963499329984188, + -0.0681152269244194, + -0.03505297377705574, + 0.03287924826145172, + 0.033635661005973816, + 0.03947008028626442, + -0.055014919489622116, + 0.0012865308672189713, + 0.06756991147994995, + -0.019457556307315826, + 0.00804508663713932, + -0.004007723182439804, + -0.03781922906637192, + -0.03979473561048508, + 0.09029709547758102, + -0.06172361597418785, + 0.002270035445690155, + 0.028337392956018448, + -0.016549136489629745, + -0.05441751703619957, + -0.04254625365138054, + 0.030088145285844803, + 0.0007468266412615776, + -0.044019412249326706, + 0.05973818153142929, + 0.02574634924530983, + -0.026936249807476997, + 0.046697117388248444, + -0.02530161291360855, + -0.04350415617227554, + -0.014194131828844547, + -0.07992391288280487, + 0.14254586398601532, + 0.07706809788942337, + 0.0025733564980328083, + -0.07799725979566574, + -0.012880346737802029, + 0.0860956460237503, + 0.0022530669812113047, + -0.10933447629213333, + -0.055939219892024994, + 0.03437776863574982, + 0.10422317683696747, + -0.012803660705685616, + -0.024806076660752296, + 0.035654909908771515, + 0.10237081348896027, + 0.07116690278053284, + 0.059178225696086884, + 0.09887969493865967, + 0.13833555579185486, + -0.025103075429797173, + 0.020181290805339813, + 0.03652666136622429, + 0.05671537667512894, + 0.0474429726600647, + -0.014889785088598728, + 0.033275529742240906, + -0.03486432880163193, + -0.002486539538949728, + -0.03660111129283905, + -0.020790424197912216, + -0.06735467910766602, + -0.004393347539007664, + -0.010831980966031551, + 0.006890885531902313, + 0.04052734375, + -0.05447879061102867, + 0.03268809616565704, + 0.10357707738876343, + -0.06316496431827545, + 0.052513524889945984, + 0.04743622615933418, + -0.000425887294113636, + 0.04073223099112511, + -0.0976434126496315, + -0.05778953433036804, + 0.037132732570171356, + -0.00030600622994825244, + 0.018300319090485573, + 0.06231734901666641, + 0.045891474932432175, + -0.005857191979885101, + 0.10039034485816956, + 0.04598373919725418, + -0.01883428730070591, + 0.016515430063009262, + -0.044203922152519226, + 0.1341182291507721, + 0.10516184568405151, + -0.03902968019247055, + 0.029400236904621124, + -0.04583703726530075, + 0.043536849319934845, + 0.029266290366649628, + -0.08817074447870255, + -0.05455995351076126, + 0.02221987210214138, + 0.005768245086073875, + -0.01587926596403122, + 0.11983644962310791, + 0.012560899369418621, + 0.04256709665060043, + 0.10850886255502701, + -0.08326700329780579, + -0.06865361332893372, + -0.03096238523721695, + 0.04412977024912834, + -0.06297232210636139, + 0.04253026098012924, + 0.06848850101232529, + 0.005618124268949032, + -0.007348539307713509, + 0.07355884462594986, + 0.004793113563209772, + 0.024968013167381287, + 0.004496053792536259, + -0.0257409680634737, + 0.042100951075553894, + 0.004556948319077492, + -0.015999233350157738, + 0.04011787101626396, + 0.019229650497436523, + 0.07722873985767365, + -0.027322782203555107, + 0.022300289943814278, + -0.09458456933498383, + 0.0307004377245903, + 0.055125877261161804, + 0.03879985213279724, + -0.03831888735294342, + -0.011866869404911995, + -0.029350044205784798, + -0.07556745409965515, + 0.02446538582444191, + -0.020898297429084778, + 0.0564456582069397, + -0.03940664976835251, + -0.01386672630906105, + 0.12792135775089264, + 0.017452819272875786, + 0.010838748887181282, + -0.03652416914701462, + -0.012017732486128807, + 0.009938303381204605, + 0.04889616370201111, + -0.09973563253879547, + -0.07184059172868729, + -0.03578529134392738, + 0.018186137080192566, + -0.014812970533967018, + 0.059717580676078796, + 0.08123335242271423, + 0.005960757844150066, + 0.018530843779444695, + -0.052632272243499756, + 0.013307937420904636, + -0.053198765963315964, + -0.0298524908721447, + -0.016808239743113518, + -0.05400118976831436, + -0.02831321954727173, + 0.08420003950595856, + 0.026544244959950447, + 0.03689193353056908, + -0.04465373605489731, + -0.05500436946749687, + -0.06921444833278656, + 0.038753002882003784, + 0.05172387510538101, + -0.056301530450582504, + 0.02814250811934471, + 0.06931400299072266, + -0.03347296640276909, + -0.0024425871670246124, + 0.07497180253267288, + 0.06604721397161484, + -0.04627583548426628, + -0.01683066040277481, + -0.08147799968719482, + 0.0840359628200531, + 0.10136692225933075, + -0.08423597365617752, + -0.07100728154182434, + -0.06724514067173004, + -0.06517535448074341, + 0.0012098010629415512, + -0.05655192583799362, + 0.0013812556862831116, + 0.056987032294273376, + -0.010655757039785385, + -0.09848500788211823, + -0.11914636939764023, + 0.08726778626441956, + -0.0534479022026062, + 0.015838682651519775, + -0.09185099601745605, + 0.036120302975177765, + 0.047316402196884155, + 0.015715980902314186, + -0.06873959302902222, + -0.002534897066652775, + 0.039400555193424225, + -0.006852324120700359, + 0.0453813336789608, + 0.061837416142225266, + 0.06594138592481613, + -0.09954193979501724, + -0.029201243072748184, + -0.052546679973602295, + 0.07438486814498901, + -0.06084191054105759, + 0.12268063426017761, + 0.03422657400369644, + -0.021232178434729576, + -0.08751991391181946, + 0.07305287569761276, + -0.01204090565443039, + 0.04914397373795509, + 0.05653859302401543, + 0.06471593677997589, + 0.015004511922597885, + -0.09018240869045258, + 0.10709134489297867, + 0.04311639815568924, + -0.020636938512325287, + -0.09339933842420578, + -0.03308381885290146, + -0.04181063547730446, + 0.05528061091899872, + 0.040337905287742615, + -0.06631528586149216, + 0.010500705800950527, + 0.023511139675974846, + -0.015705613419413567, + 0.05758930742740631, + 0.10737930238246918, + 0.08653219044208527, + -0.09123395383358002 + ] + }, + "p245_019.wav": { + "name": "p245", + "embedding": [ + 0.043645840138196945, + 0.09000486135482788, + -0.014766769483685493, + 0.024335574358701706, + -0.0678584948182106, + 0.05244502052664757, + -0.1327638179063797, + 0.14221879839897156, + -0.03032982163131237, + 0.13031697273254395, + -0.06544449180364609, + 0.12695704400539398, + -0.024368593469262123, + -0.1919749528169632, + -0.019306913018226624, + 0.06660457700490952, + -0.04614481329917908, + -0.0330330953001976, + -0.03133698180317879, + -0.031930774450302124, + 0.032004788517951965, + 0.03133589029312134, + 0.03268120810389519, + 0.007189165335148573, + 0.02343025617301464, + 0.0770869180560112, + 0.001116209547035396, + 0.04274427890777588, + 0.010093988850712776, + -0.04368862137198448, + -0.04230609908699989, + 0.09942979365587234, + -0.04613504558801651, + 0.010755178518593311, + 0.05125841498374939, + -0.019561579450964928, + -0.010448102839291096, + -0.05495961382985115, + -0.008619613945484161, + -0.0058892820961773396, + -0.040610186755657196, + 0.07927807420492172, + 0.03265079855918884, + -0.010018340311944485, + 0.04204524680972099, + 0.02684825100004673, + -0.02097545936703682, + -0.045395370572805405, + -0.11326402425765991, + 0.1502005159854889, + 0.08010874688625336, + -0.0087644774466753, + -0.0659211054444313, + -0.056693434715270996, + 0.09800469130277634, + -0.016896074637770653, + -0.11377488821744919, + -0.05146593973040581, + 0.0862141028046608, + 0.14185190200805664, + -0.03091595135629177, + -0.028108233585953712, + 0.021090393885970116, + 0.13312703371047974, + 0.04231356456875801, + 0.0971648097038269, + 0.06687565892934799, + 0.11238361895084381, + -0.02723124995827675, + 0.02333441935479641, + 0.05267775058746338, + 0.06660793721675873, + 0.041154082864522934, + -0.004256479907780886, + 0.017845699563622475, + -0.015710799023509026, + -0.007661410607397556, + 0.0005954798543825746, + -0.03233131021261215, + -0.0229560025036335, + -0.024913141503930092, + 0.000838741660118103, + 0.0021872781217098236, + 0.012059546075761318, + -0.012562994845211506, + 0.05847707390785217, + 0.04398197680711746, + -0.00904103647917509, + 0.0699722021818161, + 0.031126484274864197, + -0.004477318841964006, + 0.0674130842089653, + -0.0820566788315773, + -0.07817738503217697, + 0.030353788286447525, + 0.0009663403034210205, + 0.02671818993985653, + 0.07270333170890808, + 0.035691358149051666, + -0.014246786944568157, + 0.11493851244449615, + 0.05259993299841881, + -0.013765624724328518, + 0.02795824222266674, + -0.09309575706720352, + 0.13726358115673065, + 0.08433478325605392, + -0.01939130388200283, + 0.050675150007009506, + -0.05311408266425133, + 0.0750754252076149, + 0.06480636447668076, + -0.1301712691783905, + -0.05769859626889229, + 0.010755452327430248, + 0.010141793638467789, + -0.03680554777383804, + 0.11869124323129654, + -0.011384345591068268, + 0.04291548952460289, + 0.11379803717136383, + -0.0843738541007042, + -0.06104934215545654, + -0.017229463905096054, + 0.03901267051696777, + -0.09242506325244904, + 0.04979259893298149, + 0.06309882551431656, + -0.014141127467155457, + 0.030077943578362465, + 0.0837942585349083, + -0.004435176495462656, + 0.001128458185121417, + 0.030705690383911133, + -0.05405060574412346, + 0.009841765277087688, + -0.021983865648508072, + 0.005829300731420517, + 0.04252003878355026, + 0.03831961378455162, + 0.04597902297973633, + -0.00835330132395029, + -0.022460682317614555, + -0.11049767583608627, + 0.009778939187526703, + 0.03346436843276024, + 0.07855146378278732, + -0.009597251191735268, + -0.02321794629096985, + -0.03315868601202965, + -0.0723535344004631, + 0.005061472300440073, + -0.00934696290642023, + 0.06735693663358688, + -0.03835853189229965, + -0.0072474549524486065, + 0.09467984735965729, + 0.041568633168935776, + -0.001958973705768585, + -0.062190305441617966, + -0.038273438811302185, + 0.01835728995501995, + 0.048084139823913574, + -0.09380101412534714, + -0.0611860528588295, + -0.0055597214959561825, + 0.037320706993341446, + -0.03422966226935387, + 0.05231741815805435, + 0.04656871408224106, + 0.022631732746958733, + 0.02631610631942749, + -0.06933645159006119, + 0.017829904332756996, + -0.09372898191213608, + -0.07075932621955872, + -0.006447040941566229, + -0.009030413813889027, + -0.027176061645150185, + 0.06852483749389648, + 0.012436563149094582, + 0.05452544242143631, + -0.019362879917025566, + -0.0596567764878273, + -0.08112342655658722, + 0.05655614286661148, + 0.0631454661488533, + -0.007354711648076773, + 0.05686396360397339, + 0.0487113818526268, + -0.04727543145418167, + 0.04776395484805107, + 0.05420079827308655, + 0.11041741818189621, + -0.034343820065259933, + 0.02638939395546913, + -0.07589810341596603, + 0.07316949963569641, + 0.093514584004879, + -0.09648355841636658, + -0.07521901279687881, + -0.031918611377477646, + -0.05447818711400032, + 0.041970860213041306, + -0.031924474984407425, + -0.008569800294935703, + 0.027338897809386253, + -0.00042557166307233274, + -0.10086355358362198, + -0.09049829095602036, + 0.07902263104915619, + -0.07167840003967285, + 0.008777692914009094, + -0.08000784367322922, + 0.0513056218624115, + 0.09095417708158493, + 0.02948816679418087, + -0.0369478277862072, + -0.015693888068199158, + 0.051384251564741135, + -0.028523370623588562, + 0.010666112415492535, + 0.04596463218331337, + 0.047441937029361725, + -0.10504477471113205, + -0.0045044575817883015, + -0.06914548575878143, + 0.04738188907504082, + -0.03778764232993126, + 0.16144846379756927, + 0.016072994098067284, + -0.04059106856584549, + -0.07998155057430267, + 0.03733528032898903, + -0.016966860741376877, + 0.04525521770119667, + 0.03756619617342949, + 0.06081431731581688, + 0.03344818577170372, + -0.06778550893068314, + 0.13147157430648804, + 0.033681612461805344, + -0.04258108511567116, + -0.06240231916308403, + -0.03199373930692673, + -0.04285348206758499, + 0.03236526995897293, + 0.011768505908548832, + -0.10437305271625519, + -0.032722968608140945, + 0.02768459916114807, + -0.01433499064296484, + 0.07204347103834152, + 0.14273704588413239, + 0.07012146711349487, + -0.10024670511484146 + ] + }, + "p245_241.wav": { + "name": "p245", + "embedding": [ + 0.04855145141482353, + 0.10388829559087753, + 0.007621504832059145, + 0.014084719121456146, + -0.04301459342241287, + 0.06849325448274612, + -0.09801189601421356, + 0.10925611853599548, + -0.08141535520553589, + 0.13665910065174103, + -0.12346279621124268, + 0.09902921319007874, + -0.06005801260471344, + -0.16112415492534637, + -0.04238605499267578, + 0.04897911846637726, + -0.03166691213846207, + 0.008135289885103703, + -0.045518938452005386, + -0.02430955320596695, + 0.022337349131703377, + 0.03604353219270706, + 0.03823590651154518, + 0.01980532705783844, + 0.026693126186728477, + 0.06383757293224335, + -0.004623767454177141, + 0.05126023292541504, + 0.021751489490270615, + -0.05143981799483299, + -0.051273226737976074, + 0.11770674586296082, + -0.04369792342185974, + 0.013948287814855576, + 0.05998640134930611, + 0.021963942795991898, + 0.0004481850191950798, + -0.05225333198904991, + -0.021923648193478584, + -0.010574856773018837, + -0.06980741024017334, + 0.04147776961326599, + 0.003056139685213566, + -0.009921594522893429, + 0.05329664796590805, + 0.025850359350442886, + -0.011497590690851212, + -0.04397731274366379, + -0.09409703314304352, + 0.1313454806804657, + 0.04998315870761871, + -0.005225644912570715, + -0.061617471277713776, + -0.07721313089132309, + 0.11883231997489929, + -0.033477701246738434, + -0.12391061335802078, + -0.03029947727918625, + 0.0865338072180748, + 0.16138508915901184, + -0.04544484242796898, + -0.029190942645072937, + 0.010008024051785469, + 0.08031313121318817, + 0.02582111768424511, + 0.1161913275718689, + 0.0714988261461258, + 0.08074761927127838, + 0.005205424036830664, + 0.02900320664048195, + 0.06444621831178665, + 0.04472336918115616, + 0.053396329283714294, + -0.037300001829862595, + 0.005555342882871628, + 0.02497043088078499, + -0.03533528745174408, + 0.05489230901002884, + -0.014426913112401962, + -0.0039623393677175045, + -0.03082038089632988, + -0.0097047733142972, + -0.015025701373815536, + -0.0434880405664444, + -0.02828710898756981, + 0.05669764056801796, + 0.0005257711745798588, + 0.008027404546737671, + 0.07677888870239258, + 0.026675008237361908, + -0.04944892227649689, + 0.05094979703426361, + -0.03902903199195862, + -0.07506494224071503, + -0.014869222417473793, + 0.004144656006246805, + -0.026414018124341965, + 0.0847502052783966, + 0.030529940500855446, + -0.012968376278877258, + 0.1166490763425827, + 0.052746839821338654, + 0.0427168570458889, + 0.04046155512332916, + -0.10833506286144257, + 0.10884879529476166, + 0.08455890417098999, + -0.026933126151561737, + 0.048196226358413696, + -0.011005966924130917, + 0.0821273922920227, + 0.0976448506116867, + -0.14543811976909637, + -0.053050361573696136, + 0.017240280285477638, + -0.003042595461010933, + 0.003207179717719555, + 0.0640895813703537, + -0.030248042196035385, + -0.011854519136250019, + 0.11737500131130219, + -0.08714167773723602, + -0.061433304101228714, + -0.016499049961566925, + 0.036850713193416595, + -0.0701727420091629, + 0.040095001459121704, + 0.0403565987944603, + 0.0020230580121278763, + -0.0034932373091578484, + 0.09443716704845428, + -0.021341778337955475, + -0.012844682671129704, + 0.029157381504774094, + -0.05852624773979187, + 0.0026108077727258205, + -0.04634423553943634, + -0.002826808486133814, + 0.07767903804779053, + 0.06181219220161438, + 0.03926551714539528, + 0.008812297135591507, + -0.036281876266002655, + -0.09084829688072205, + -0.003346675308421254, + 0.06916650384664536, + 0.05068311095237732, + -0.0044388072565197945, + 0.0014686076901853085, + -0.05462687462568283, + -0.0681893527507782, + 0.04659188538789749, + -0.005526903551071882, + 0.10282546281814575, + -0.03730575367808342, + 0.009473313577473164, + 0.10287028551101685, + 0.014399701729416847, + -0.022871065884828568, + -0.09819097816944122, + -0.02461743727326393, + 0.007161572575569153, + 0.0411594919860363, + -0.06994098424911499, + -0.0859316885471344, + 0.00927063636481762, + 0.0360124297440052, + -0.0096918735653162, + 0.047297608107328415, + 0.03313833847641945, + 0.0044814180582761765, + 0.046500928699970245, + -0.06753655523061752, + 0.016161903738975525, + -0.10432673245668411, + -0.0543946772813797, + -0.020103605464100838, + -0.03209888935089111, + 0.007815122604370117, + 0.07899929583072662, + 0.009852278046309948, + 0.00455419160425663, + 0.02052672952413559, + -0.10859338194131851, + -0.07700277119874954, + 0.07874372601509094, + 0.06829214096069336, + 0.01762128807604313, + 0.05811459571123123, + 0.06048346310853958, + -0.060409173369407654, + 0.08008294552564621, + 0.07020724564790726, + 0.10097268223762512, + -0.019900325685739517, + 0.0370103120803833, + -0.050697922706604004, + 0.036122877150774, + 0.06127641350030899, + -0.10580562055110931, + -0.11345987021923065, + -0.046258002519607544, + -0.04944352060556412, + 0.08074247092008591, + -0.009374765679240227, + -0.0035515157505869865, + 0.008655051700770855, + -0.03376298397779465, + -0.06207156181335449, + -0.08288927376270294, + 0.09518016129732132, + -0.025089647620916367, + -0.0324341282248497, + -0.05632743984460831, + 0.03967411816120148, + 0.04602235555648804, + 0.03851163387298584, + -0.0002709056716412306, + 0.03235660493373871, + 0.04745863378047943, + -0.08346137404441833, + -0.03865830600261688, + 0.05321166664361954, + -0.010574307292699814, + -0.06656316667795181, + 0.023734666407108307, + -0.09398245811462402, + 0.11111139506101608, + -0.05355370044708252, + 0.1551147848367691, + -0.04079209640622139, + -0.05409376323223114, + -0.05981755256652832, + 0.03477563336491585, + -0.037898462265729904, + 0.019900977611541748, + 0.04998005926609039, + 0.05720070004463196, + 0.009731464087963104, + -0.042229704558849335, + 0.11460287123918533, + 0.009367861784994602, + -0.030984530225396156, + -0.03553812950849533, + -0.05675627291202545, + -0.05962741747498512, + -0.021136879920959473, + -0.0032997215166687965, + -0.10011956840753555, + 0.0004761507734656334, + -0.010803990997374058, + -0.024961348623037338, + 0.060372449457645416, + 0.13477203249931335, + 0.07770529389381409, + -0.1096356213092804 + ] + }, + "p245_306.wav": { + "name": "p245", + "embedding": [ + 0.05505622550845146, + 0.07680020481348038, + -0.03827314078807831, + 0.0035655181854963303, + -0.0046660639345645905, + 0.02073761634528637, + -0.1413261890411377, + 0.07939309626817703, + -0.03812088817358017, + 0.14609000086784363, + -0.04396982491016388, + 0.09468288719654083, + -0.029429864138364792, + -0.11848115921020508, + -0.009265345521271229, + 0.057256996631622314, + -0.0355813167989254, + -0.0283795353025198, + -0.0076742880046367645, + -0.028055639937520027, + 0.04498696327209473, + 0.04041751101613045, + 0.04749239981174469, + -0.03170397877693176, + -0.005378715228289366, + 0.07455624639987946, + -0.0028243588749319315, + 0.023833759129047394, + 0.016195468604564667, + -0.033213112503290176, + 0.007682809606194496, + 0.06728558242321014, + -0.0014248816296458244, + -0.01707622967660427, + 0.003660690039396286, + 0.019824368879199028, + -0.004316001199185848, + -0.0593959279358387, + 0.0025273840874433517, + 0.0374947153031826, + -0.040805961936712265, + 0.05585349723696709, + 0.018934044986963272, + -0.029842540621757507, + 0.03390195965766907, + -0.06957244127988815, + -0.05907613784074783, + -0.008028434589505196, + -0.06762120127677917, + 0.13579198718070984, + 0.10991869866847992, + 0.02149053104221821, + -0.04955786094069481, + 0.0034280698746442795, + 0.0963892936706543, + 0.01778365671634674, + -0.09388463199138641, + -0.049003083258867264, + 0.026032747700810432, + 0.13977527618408203, + -0.021188070997595787, + -0.02734021469950676, + 0.04864706099033356, + 0.09901722520589828, + 0.02095963805913925, + 0.049538541585206985, + 0.1066974550485611, + 0.047495778650045395, + 0.014780217781662941, + -0.013616404496133327, + 0.019388051703572273, + 0.08726206421852112, + 0.020648520439863205, + -0.010897047817707062, + 0.02282070927321911, + -0.013776706531643867, + -0.04380542039871216, + -0.01056300476193428, + -0.0001723114401102066, + -0.06448108702898026, + -0.06004903092980385, + -0.023561565205454826, + -0.01949315145611763, + 0.054675959050655365, + -0.0067515065893530846, + 0.0027969181537628174, + 0.026212245225906372, + -0.041123561561107635, + 0.035941608250141144, + 0.015969542786478996, + 0.023747731000185013, + 0.014893513172864914, + -0.033469509333372116, + -0.0790315568447113, + 0.014688857831060886, + 0.016097987070679665, + 0.021435314789414406, + 0.04335038363933563, + 0.033681608736515045, + 0.01696859858930111, + 0.10140206664800644, + 0.03156451880931854, + -0.00837996881455183, + -0.02197633683681488, + -0.05654747039079666, + 0.08613306283950806, + 0.11363258212804794, + -0.03464864194393158, + 0.048325322568416595, + -0.027570761740207672, + -0.010014321655035019, + 0.0037313923239707947, + -0.09995387494564056, + -0.03605522960424423, + 0.029343679547309875, + 0.05993777886033058, + 0.02685803920030594, + 0.09484286606311798, + 0.03450668230652809, + 0.03874657303094864, + 0.0922374352812767, + -0.04130696505308151, + -0.07843338698148727, + -0.05972140282392502, + 0.07574707269668579, + -0.060857005417346954, + 0.06701217591762543, + 0.05937100574374199, + 0.009569802321493626, + 0.0002467036247253418, + 0.06186249107122421, + 0.019481608644127846, + 0.014568346552550793, + -0.03743567690253258, + -0.023488711565732956, + 0.03462141752243042, + -0.0623919814825058, + 0.0265984907746315, + 0.046789415180683136, + 0.006928352639079094, + 0.06547141820192337, + 0.0300578810274601, + -0.0012788493186235428, + -0.09290700405836105, + 0.013414192944765091, + 0.036794938147068024, + 0.04122234135866165, + -0.024422885850071907, + -0.04641049727797508, + -0.006802916526794434, + -0.054350703954696655, + -0.030609797686338425, + -0.0559987835586071, + 0.0992480143904686, + -0.01778743416070938, + 0.03443723917007446, + 0.06636541336774826, + -0.03534723445773125, + -0.0029190946370363235, + -0.01694457232952118, + 0.015438850969076157, + 0.009172656573355198, + 0.028035113587975502, + -0.07191040366888046, + -0.08365357667207718, + 0.0023439358919858932, + 0.04300897568464279, + 0.02191540226340294, + 0.049554355442523956, + 0.05818035081028938, + -0.023233793675899506, + 0.013830053620040417, + -0.017325764521956444, + 0.017293429002165794, + -0.07358473539352417, + -0.06480465084314346, + -0.0010920651257038116, + -0.03592834994196892, + -0.024872202426195145, + 0.08201742172241211, + 0.011467477306723595, + 0.05391485244035721, + -0.01736217923462391, + -0.06846168637275696, + -0.08243231475353241, + 0.06161642074584961, + 0.07036758959293365, + -0.033649928867816925, + 0.00907411053776741, + 0.06846663355827332, + 0.01289813220500946, + 0.002310441806912422, + 0.026799112558364868, + 0.07719340175390244, + -0.03801887854933739, + -0.03133057430386543, + -0.08754429221153259, + 0.022657452151179314, + 0.10896364599466324, + -0.0877876877784729, + -0.04274103045463562, + -0.06856776773929596, + -0.09331691265106201, + 0.03670834004878998, + -0.03515349328517914, + 0.004988156724721193, + 0.030150409787893295, + -0.04532838612794876, + -0.11392181366682053, + -0.10930128395557404, + 0.06066618859767914, + -0.037151992321014404, + 0.006051860749721527, + -0.05155124142765999, + 0.025649290531873703, + 0.050248079001903534, + 0.04166022688150406, + -0.03138338401913643, + 0.027954040095210075, + 0.007608810439705849, + -0.028143342584371567, + 0.0008438541553914547, + 0.026732830330729485, + 0.05875341594219208, + -0.09967515617609024, + -0.010662459768354893, + -0.08705344796180725, + 0.06402252614498138, + -0.06523282825946808, + 0.08083129674196243, + 0.02737555280327797, + -0.01571253314614296, + -0.10060656070709229, + 0.014561232179403305, + -0.010295488871634007, + 0.05841793119907379, + 0.03223147988319397, + 0.03551070764660835, + 0.04109828919172287, + -0.07578560709953308, + 0.07033883780241013, + 0.058126144111156464, + 0.01752890646457672, + -0.08540873229503632, + 0.006016083061695099, + -0.027324464172124863, + 0.046412453055381775, + 0.005907483398914337, + -0.027537653222680092, + -0.004746068734675646, + -0.014799483120441437, + 0.003220837563276291, + 0.06860937178134918, + 0.06972348690032959, + 0.048717208206653595, + -0.10334914922714233 + ] + }, + "p245_027.wav": { + "name": "p245", + "embedding": [ + 0.04432281106710434, + 0.07354508340358734, + -0.03412673622369766, + 0.0028409529477357864, + -0.012658207677304745, + 0.05901127681136131, + -0.12379668653011322, + 0.08685243874788284, + 0.012447293847799301, + 0.13412760198116302, + -0.06889189779758453, + 0.11494535207748413, + 0.022990604862570763, + -0.15885275602340698, + -0.006521563045680523, + 0.004106161650270224, + 0.008960036560893059, + 0.0411091148853302, + -0.036406636238098145, + -0.02812749333679676, + 0.0601324662566185, + 0.05481727421283722, + 0.044593121856451035, + -0.14300663769245148, + 0.03986106812953949, + 0.05103269964456558, + 0.012283232063055038, + 0.052562467753887177, + -0.015370592474937439, + -0.10172130167484283, + -0.03452380746603012, + 0.10231205075979233, + -0.05644785612821579, + 0.01934194378554821, + 0.05006445199251175, + -0.019126635044813156, + -0.02801322564482689, + -0.042540453374385834, + 0.030695855617523193, + 0.031318336725234985, + 0.005516704171895981, + 0.053985387086868286, + 0.023677410557866096, + -0.03394247964024544, + 0.029108364135026932, + 0.04938003420829773, + 0.021068723872303963, + -0.055030401796102524, + -0.0659765899181366, + 0.16514599323272705, + 0.012818671762943268, + 0.016749534755945206, + -0.07091765105724335, + -0.05374474078416824, + 0.07389141619205475, + 0.012549187988042831, + -0.058447156101465225, + -0.027476154267787933, + 0.056489497423172, + 0.10836535692214966, + -0.02241826243698597, + -0.05815034359693527, + 0.05611545592546463, + 0.04972558468580246, + -0.012564528733491898, + 0.06321202218532562, + 0.1030239462852478, + 0.08244116604328156, + 0.029996566474437714, + 0.03186764940619469, + -0.0323331356048584, + 0.10459224879741669, + 0.03648272529244423, + -0.033128805458545685, + 0.0326327309012413, + -0.028120974078774452, + -0.04594683647155762, + -0.03663431853055954, + -0.05550771951675415, + -0.0330071821808815, + 0.03931658715009689, + -0.006884632632136345, + 0.0686824694275856, + 0.024757636711001396, + -0.06870334595441818, + 0.027374185621738434, + 0.040667325258255005, + -0.0534016378223896, + 0.046957019716501236, + -0.007710677571594715, + 0.02688753977417946, + 0.013953055255115032, + -0.1099095270037651, + -0.11291852593421936, + 0.04806957393884659, + 0.018868692219257355, + -0.025740426033735275, + 0.058151327073574066, + 0.07144999504089355, + -0.04021773487329483, + 0.09609010815620422, + 0.009181387722492218, + -0.038025110960006714, + -0.001317206653766334, + -0.040908198803663254, + 0.11304080486297607, + 0.13078133761882782, + 0.005507038906216621, + 0.03398223966360092, + -0.11903263628482819, + 0.035784296691417694, + 0.036333270370960236, + -0.14562994241714478, + -0.0747666209936142, + 0.0033839354291558266, + -0.01173822209239006, + 0.0062467013485729694, + 0.11940028518438339, + -0.003899088129401207, + 0.028578901663422585, + 0.10952045023441315, + -0.1148550808429718, + -0.053863491863012314, + -0.04510793089866638, + 0.03156639263033867, + -0.07044486701488495, + 0.06248483061790466, + 0.04448135197162628, + -0.026083804666996002, + 0.01805531047284603, + 0.044719040393829346, + -0.01635478250682354, + 0.03495458513498306, + -0.016607210040092468, + -0.014521969482302666, + 0.022298172116279602, + -0.05599301680922508, + -0.008513668552041054, + -0.0020260638557374477, + 0.04130125790834427, + 0.07170802354812622, + -0.010988626629114151, + -0.07091115415096283, + -0.10348059982061386, + 0.02258566953241825, + 0.009420241229236126, + 0.03773786500096321, + -0.03998532518744469, + -0.032974280416965485, + -0.03115672431886196, + -0.07251474261283875, + 0.04311061650514603, + -0.023966269567608833, + 0.06192421913146973, + 0.030083896592259407, + 0.023471448570489883, + 0.10188248008489609, + 0.02776740863919258, + -0.004157468676567078, + -0.034370824694633484, + -0.03946379944682121, + 0.0039813946932554245, + 0.004686253145337105, + -0.077348992228508, + -0.04909580573439598, + -0.03943309932947159, + -0.03568442538380623, + -0.03952997550368309, + 0.05051346868276596, + 0.04566514864563942, + 0.0454668328166008, + 0.026747507974505424, + -0.0385223850607872, + -0.0630970224738121, + -0.08967648446559906, + -0.04111894592642784, + -0.00871978234499693, + -0.026575561612844467, + -0.051508672535419464, + 0.12006650865077972, + 0.008227568119764328, + 0.03348005563020706, + -0.07317588478326797, + 0.0016684443689882755, + -0.07362757623195648, + 0.027828818187117577, + 0.04218640178442001, + -0.020466996356844902, + -0.002867426723241806, + -0.004060441628098488, + 0.00015130732208490372, + 0.053317341953516006, + 0.095311738550663, + 0.04253970831632614, + 0.013434167020022869, + -0.0034487536177039146, + -0.061610374599695206, + 0.15834152698516846, + 0.10514329373836517, + -0.01765006221830845, + -0.07048051059246063, + -0.036414600908756256, + -0.10194718092679977, + 0.02502007596194744, + -0.017176542431116104, + -0.010008294135332108, + 0.000814578088466078, + 0.018073352053761482, + -0.09646859765052795, + -0.05671139061450958, + 0.015663597732782364, + -0.04576176404953003, + -0.014507502317428589, + -0.08447213470935822, + 0.05495987460017204, + 0.09973976016044617, + 0.029841985553503036, + -0.0037116468884050846, + -0.031571075320243835, + 0.053076013922691345, + -0.05090910196304321, + 0.03330843150615692, + 0.01553352177143097, + 0.04024161398410797, + -0.06372494995594025, + 0.011975262314081192, + -0.03629833832383156, + -0.008213363587856293, + -0.06851102411746979, + 0.0992109403014183, + 0.04397306218743324, + -0.05417325720191002, + -0.05329791456460953, + 0.09340571612119675, + -0.02845717966556549, + 0.01837374083697796, + 0.03311600908637047, + 0.02748539298772812, + 0.04829017072916031, + -0.14807772636413574, + 0.07516683638095856, + 0.02214081585407257, + 0.0023267148062586784, + -0.09832902252674103, + -0.10687923431396484, + -0.024699702858924866, + 0.028222691267728806, + 0.02537519857287407, + -0.06494569778442383, + -0.003348737955093384, + 0.050109393894672394, + 0.03473294526338577, + 0.021052168682217598, + 0.11525900661945343, + 0.006066151428967714, + -0.08687369525432587 + ] + }, + "p245_077.wav": { + "name": "p245", + "embedding": [ + 0.0441247895359993, + 0.05577719584107399, + -0.011542562395334244, + 0.04647618532180786, + -0.07843305170536041, + 0.04447241127490997, + -0.12737514078617096, + 0.14008599519729614, + -0.022516822442412376, + 0.11242713034152985, + -0.05996832996606827, + 0.13259345293045044, + -0.02528795599937439, + -0.18848836421966553, + -0.00502127967774868, + 0.07134155929088593, + -0.014987419359385967, + -0.042251598089933395, + -0.008396918885409832, + -0.02066117525100708, + 0.030952034518122673, + 0.030579710379242897, + 0.05033896863460541, + 0.030778992921113968, + 0.014115611091256142, + 0.07981330156326294, + -0.013351555913686752, + 0.04463367164134979, + 0.019361531361937523, + -0.028901483863592148, + -0.0441368892788887, + 0.09508106112480164, + -0.06657519936561584, + 0.0026479996740818024, + 0.05398434400558472, + -0.017870793119072914, + -0.02787959761917591, + -0.05334862321615219, + -0.03318542614579201, + -0.021154779940843582, + -0.07629251480102539, + 0.07471948862075806, + 0.03834088519215584, + -0.01960926689207554, + 0.054473958909511566, + 0.008354767225682735, + -0.031763315200805664, + -0.019614068791270256, + -0.12774911522865295, + 0.11969154328107834, + 0.06087518483400345, + -0.0017305565997958183, + -0.07445700466632843, + -0.0444067120552063, + 0.10394944250583649, + -0.022765133529901505, + -0.11375965178012848, + -0.048930611461400986, + 0.09639698266983032, + 0.1404995620250702, + -0.03372683376073837, + -0.021637579426169395, + 0.02221793122589588, + 0.1013527512550354, + 0.08033356070518494, + 0.09617137908935547, + 0.07934974133968353, + 0.12718281149864197, + -0.026742536574602127, + 0.016393916681408882, + 0.053307823836803436, + 0.07378504425287247, + 0.037886109203100204, + -0.005526804365217686, + 0.0018383972346782684, + 0.02013028971850872, + 0.0002220624592155218, + 0.0023388895206153393, + -0.022234193980693817, + -0.00037703244015574455, + -0.021738335490226746, + -0.010839002206921577, + 0.010133093222975731, + 0.016255555674433708, + -0.02127884142100811, + 0.07280543446540833, + 0.05774432420730591, + 0.009844318963587284, + 0.06331487745046616, + 0.02046625316143036, + -0.03377727046608925, + 0.08063536137342453, + -0.09111381322145462, + -0.05468762665987015, + -0.0004921611398458481, + -0.009001150727272034, + 0.027706097811460495, + 0.09170880913734436, + 0.03438568115234375, + -0.009573924355208874, + 0.13051530718803406, + 0.046903930604457855, + -0.00993403047323227, + 0.04298553615808487, + -0.08616945147514343, + 0.1249568909406662, + 0.06969983875751495, + -0.02717544510960579, + 0.05156414955854416, + -0.05012320727109909, + 0.08062338083982468, + 0.061145517975091934, + -0.12330621480941772, + -0.030489381402730942, + 0.021639931946992874, + 0.00677353423088789, + -0.032268159091472626, + 0.1390179693698883, + -0.01703375019133091, + 0.041552312672138214, + 0.11843377351760864, + -0.08506986498832703, + -0.05398859083652496, + 0.0014515286311507225, + 0.03961411863565445, + -0.08837606012821198, + 0.058947350829839706, + 0.031523775309324265, + -0.005090508610010147, + 0.029098298400640488, + 0.0854685977101326, + -0.01350948866456747, + -0.010343389585614204, + 0.03508518636226654, + -0.06436306983232498, + 0.013971364125609398, + -0.020596493035554886, + 0.006497354246675968, + 0.07645373791456223, + 0.030720841139554977, + 0.06042849272489548, + -0.01582488603889942, + -0.008674650453031063, + -0.1221734881401062, + 0.012565107084810734, + 0.035887524485588074, + 0.09438872337341309, + -0.0019660682883113623, + -0.027055587619543076, + -0.052517496049404144, + -0.08269670605659485, + 0.026657959446310997, + 0.001751558156684041, + 0.07053229212760925, + -0.04909665882587433, + 0.0018528427463024855, + 0.06924028694629669, + 0.038046836853027344, + 0.0036381392274051905, + -0.06326187402009964, + -0.05350184440612793, + -0.010834218934178352, + 0.05925120413303375, + -0.09384602308273315, + -0.05921382084488869, + -0.014839387498795986, + 0.05338997393846512, + -0.03743450716137886, + 0.051080018281936646, + 0.04795766621828079, + 0.03266468644142151, + 0.01791839674115181, + -0.0691235139966011, + 0.011312424205243587, + -0.08719964325428009, + -0.07640030980110168, + -0.01496092975139618, + 0.0074958885088562965, + -0.013697894290089607, + 0.059496089816093445, + 0.02363206073641777, + 0.05525142699480057, + -0.005776542238891125, + -0.07624559104442596, + -0.10020535439252853, + 0.04826219007372856, + 0.03628809005022049, + -0.013998333364725113, + 0.06495166569948196, + 0.0707811713218689, + -0.08242375403642654, + 0.05237758159637451, + 0.045573752373456955, + 0.10469721257686615, + -0.04441332072019577, + 0.03467366099357605, + -0.0633363276720047, + 0.0810864269733429, + 0.10685169696807861, + -0.0902961939573288, + -0.08031240105628967, + -0.023051604628562927, + -0.0735018253326416, + 0.05149964615702629, + -0.030868660658597946, + -0.024761589244008064, + 0.030378814786672592, + 0.002915068995207548, + -0.10719775408506393, + -0.08636774122714996, + 0.07856257259845734, + -0.07141738384962082, + -0.0007749493233859539, + -0.09568405151367188, + 0.03428655490279198, + 0.08233478665351868, + 0.022525392472743988, + -0.02349892258644104, + -0.0033800352830439806, + 0.05736416205763817, + -0.02389426901936531, + 0.007860852405428886, + 0.0827043354511261, + 0.036795757710933685, + -0.10705377161502838, + -0.047763891518116, + -0.06690309196710587, + 0.049164410680532455, + -0.023161571472883224, + 0.15385277569293976, + 0.0024788815062493086, + -0.03624585270881653, + -0.04904076084494591, + 0.025826483964920044, + 0.0019155757036060095, + 0.04821204021573067, + 0.05015700310468674, + 0.07506665587425232, + 0.02887258306145668, + -0.04474882781505585, + 0.1433289647102356, + 0.04517758637666702, + -0.05305725708603859, + -0.056351616978645325, + -0.022155005484819412, + -0.05352121591567993, + 0.01626274362206459, + 0.02168426476418972, + -0.11227668076753616, + -0.020241057500243187, + 0.029854975640773773, + -0.029061123728752136, + 0.044770658016204834, + 0.14251279830932617, + 0.07589574158191681, + -0.09854022413492203 + ] + }, + "p245_364.wav": { + "name": "p245", + "embedding": [ + 0.07411766052246094, + 0.0688961073756218, + -0.03767406567931175, + -0.0035897730849683285, + -0.029766447842121124, + 0.046414099633693695, + -0.12934976816177368, + 0.09268532693386078, + -0.005761180073022842, + 0.14150846004486084, + -0.06534643471240997, + 0.1073131412267685, + 0.009341469034552574, + -0.10973008722066879, + -0.022096753120422363, + 0.019180428236722946, + -0.039482422173023224, + -0.018080715090036392, + -0.04646385833621025, + -0.03326559066772461, + 0.027837440371513367, + 0.05835944414138794, + 0.02847321890294552, + -0.03541101515293121, + 0.022809116169810295, + 0.047375187277793884, + -0.00468095950782299, + 0.011728998273611069, + -0.0037638982757925987, + -0.06544762849807739, + -0.001855323789641261, + 0.08075466006994247, + -0.05059591680765152, + 0.019316092133522034, + 0.009953207336366177, + 0.004052397795021534, + 0.00855876225978136, + -0.07630345970392227, + -0.009677673690021038, + 0.040510546416044235, + -0.010372968390583992, + 0.07524291425943375, + 0.022167598828673363, + -0.022396724671125412, + 0.00717608816921711, + -0.00957159511744976, + -0.016653750091791153, + -0.03913448378443718, + -0.08551868051290512, + 0.18275299668312073, + 0.048809558153152466, + 0.01193698775023222, + -0.08591070026159286, + -0.034239254891872406, + 0.060345228761434555, + -0.003848826512694359, + -0.06945644319057465, + -0.025525327771902084, + 0.02138989232480526, + 0.11611030995845795, + -0.01534538995474577, + -0.06660165637731552, + 0.037291429936885834, + 0.08991001546382904, + 0.030401840806007385, + 0.0201491080224514, + 0.11415170133113861, + 0.0930323451757431, + -0.03326226770877838, + 0.014700353145599365, + 0.03936295211315155, + 0.07029324024915695, + 0.08579345792531967, + -0.0018287412822246552, + 0.04666293412446976, + -0.029974348843097687, + -0.020235486328601837, + -0.01014566607773304, + -0.022014593705534935, + -0.056566379964351654, + -0.0003004016471095383, + -0.010959039442241192, + 0.018272504210472107, + 0.0851973295211792, + -0.04853484034538269, + 0.019574005156755447, + 0.03364041820168495, + -0.04355157911777496, + 0.05365624278783798, + 0.045190244913101196, + 0.03042224608361721, + 0.02210867404937744, + -0.07886255532503128, + -0.0850730836391449, + 0.053215377032756805, + 5.2145373047096655e-05, + 0.0519869439303875, + 0.05321744084358215, + 0.05672458931803703, + -0.013537104241549969, + 0.08900400251150131, + 0.02567974478006363, + -0.005181679967790842, + -0.04215504229068756, + -0.06359979510307312, + 0.11314573884010315, + 0.14001679420471191, + -0.037757281213998795, + 0.023854993283748627, + -0.042268212884664536, + 0.031940706074237823, + 0.027521274983882904, + -0.11223103106021881, + -0.07159793376922607, + 0.025317013263702393, + 0.027026234194636345, + 0.04232592508196831, + 0.09741935133934021, + 0.024838989600539207, + 0.04968748614192009, + 0.07410114258527756, + -0.06681782007217407, + -0.037675559520721436, + -0.025230515748262405, + 0.03447061777114868, + -0.07518871128559113, + 0.0433245524764061, + 0.05249509960412979, + 0.003272540867328644, + -0.02157735824584961, + 0.0655079334974289, + -0.008282921276986599, + 0.010799411684274673, + -0.04245069622993469, + 0.019343122839927673, + 0.0475752130150795, + 0.002618471859022975, + -0.0015741947572678328, + 0.022558771073818207, + 0.02955506555736065, + 0.044815391302108765, + 0.0234798863530159, + -0.04209362715482712, + -0.12220008671283722, + 0.03398098796606064, + 0.041929736733436584, + 0.03299722075462341, + -0.05535803362727165, + -0.03683823347091675, + -0.00916335266083479, + -0.048021018505096436, + 0.023520659655332565, + -0.005893264897167683, + 0.04973649978637695, + 0.02444392442703247, + -0.011596551164984703, + 0.11101164668798447, + 0.0012469416251406074, + -0.0016663861460983753, + -0.002089510438963771, + 0.005225991364568472, + 0.027256745845079422, + 0.05554088205099106, + -0.07215414196252823, + -0.08712362498044968, + -0.004855040460824966, + 0.005757532082498074, + 0.0021163932979106903, + 0.040705401450395584, + 0.06049233675003052, + -0.03540574014186859, + 0.028685539960861206, + -0.06474751234054565, + -0.003975156228989363, + -0.09975000470876694, + -0.0512579008936882, + 0.005521845072507858, + -0.05837303027510643, + -0.014604221098124981, + 0.09144848585128784, + 0.005041875876486301, + 0.05929539352655411, + -0.05762714892625809, + -0.05505233258008957, + -0.037216201424598694, + 0.049103111028671265, + 0.06742976605892181, + -0.0353429913520813, + -0.0027305083349347115, + 0.0564521849155426, + 0.04915950819849968, + 0.028110604733228683, + 0.06778980791568756, + 0.07989275455474854, + -0.05025125667452812, + -0.020636796951293945, + -0.05088840425014496, + 0.1061127632856369, + 0.0628167986869812, + -0.05226246640086174, + -0.06122283637523651, + -0.055083196610212326, + -0.0589204803109169, + 0.016531746834516525, + -0.02637522481381893, + 0.0182774867862463, + 0.04533546417951584, + -0.018756572157144547, + -0.0969420075416565, + -0.09481378644704819, + 0.0583159439265728, + -0.03491229563951492, + 0.008995480835437775, + -0.06785570830106735, + 0.04639941453933716, + 0.07237907499074936, + 0.048800449818372726, + -0.027813490480184555, + 0.011149127036333084, + -0.010462388396263123, + -0.04715214669704437, + -0.01963178999722004, + 0.0028442740440368652, + 0.03367045149207115, + -0.08749338239431381, + -0.01355995424091816, + -0.06922807544469833, + 0.04285108298063278, + -0.059916459023952484, + 0.10366028547286987, + 0.01412882935255766, + -0.058058008551597595, + -0.08771266788244247, + 0.02347324788570404, + -0.03683902323246002, + 0.04756538197398186, + 0.043209902942180634, + 0.028496388345956802, + 0.04044199734926224, + -0.09550120681524277, + 0.06856609880924225, + 0.0707521140575409, + -0.013329627923667431, + -0.08416861295700073, + -0.0413392037153244, + -0.0009588624234311283, + 0.04733605310320854, + 0.0095968097448349, + -0.022001352161169052, + 0.01775701902806759, + 0.008782084099948406, + 0.0021933193784207106, + 0.0537465438246727, + 0.09249182790517807, + 0.05076516792178154, + -0.1178692877292633 + ] + }, + "p245_205.wav": { + "name": "p245", + "embedding": [ + 0.03016308695077896, + 0.07631278038024902, + -0.02349473536014557, + -0.0017680339515209198, + -0.025959618389606476, + 0.011977539397776127, + -0.1266510784626007, + 0.07942116260528564, + -0.012677554972469807, + 0.1364721804857254, + -0.06258305162191391, + 0.0889732763171196, + -0.05844544619321823, + -0.09973613917827606, + 0.00487312488257885, + 0.04413086548447609, + -0.01881502754986286, + -0.005670476704835892, + 0.005553156137466431, + -0.07158921658992767, + 0.021017249673604965, + 0.0031952597200870514, + 0.028753286227583885, + -0.04739619791507721, + -0.008782098069787025, + 0.09371021389961243, + 0.001390613615512848, + -0.019207758828997612, + -0.01510784961283207, + -0.03508295863866806, + 0.011021770536899567, + 0.058934133499860764, + -0.022919263690710068, + -0.0034853527322411537, + 0.03721454739570618, + 0.02054639160633087, + -0.03435319662094116, + 0.0009646564722061157, + 0.049066949635744095, + 0.03440074995160103, + -0.06181098148226738, + 0.06955818831920624, + 0.007186093833297491, + -0.003993075340986252, + 0.057347480207681656, + -0.042310722172260284, + -0.04215339571237564, + 0.034727320075035095, + -0.04151586443185806, + 0.09577593207359314, + 0.06594061851501465, + 0.010294405743479729, + -0.06734541058540344, + 0.01236158236861229, + 0.07711176574230194, + 0.007514624390751123, + -0.11242041736841202, + -0.016460532322525978, + 0.03292901813983917, + 0.09196829050779343, + -0.031774237751960754, + -0.05448863282799721, + 0.00978437066078186, + 0.0871991366147995, + 0.003283141180872917, + 0.060162123292684555, + 0.08885753899812698, + 0.09054620563983917, + -0.00599433109164238, + -0.027453433722257614, + 0.040771447122097015, + 0.06526815891265869, + 0.06084730476140976, + -0.024752981960773468, + 0.03567638620734215, + -0.04636397585272789, + 0.0012313686311244965, + -0.025745250284671783, + -0.004358578473329544, + -0.08555863797664642, + -0.06419212371110916, + -0.041867781430482864, + 0.0004935902543365955, + 0.03392283245921135, + -0.0019047296373173594, + -0.015169690363109112, + 0.0805935189127922, + -0.04919591546058655, + 0.04117341339588165, + 0.04079952463507652, + -0.024259822443127632, + 0.006130870431661606, + -0.0655989721417427, + -0.019292734563350677, + 0.009497793391346931, + -0.019837111234664917, + 0.06371242552995682, + 0.04196896031498909, + 0.03817059099674225, + 0.044975943863391876, + 0.0781751498579979, + 0.041749581694602966, + 0.0076402341946959496, + -0.029130414128303528, + -0.062173351645469666, + 0.0958670824766159, + 0.11044518649578094, + -0.06733745336532593, + 0.027478892356157303, + -0.00026594940572977066, + 0.004652870818972588, + -0.0034995153546333313, + -0.08310652524232864, + -0.01802799291908741, + -0.013631366193294525, + 0.059266187250614166, + 0.011897288262844086, + 0.09876236319541931, + 0.016565734520554543, + 0.017642585560679436, + 0.10447601974010468, + -0.03063739836215973, + -0.06334168463945389, + -0.07251597195863724, + 0.03190169110894203, + -0.09228309988975525, + 0.06963847577571869, + 0.06185544282197952, + 0.04570194333791733, + 0.011232136748731136, + 0.06871529668569565, + 0.01743600331246853, + 0.009362057782709599, + -0.062454648315906525, + -0.0077316854149103165, + 0.009054852649569511, + -0.0016396455466747284, + 0.044532883912324905, + 0.05752849578857422, + -0.0030330857262015343, + 0.10861839354038239, + 0.037174634635448456, + 0.02606108784675598, + -0.0805550068616867, + 0.020083174109458923, + 0.03879685699939728, + 0.007034924812614918, + -0.05270201712846756, + -0.04865071922540665, + 0.01137634739279747, + -0.06903019547462463, + -0.005708023905754089, + -0.033123183995485306, + 0.073824942111969, + -0.007686281576752663, + -0.020624075084924698, + 0.11325747519731522, + 0.024462204426527023, + -0.019084304571151733, + -0.03392207622528076, + -0.02937910705804825, + -0.027688931673765182, + 0.048706650733947754, + -0.1823766827583313, + -0.07137907296419144, + -0.030675146728754044, + 0.0416785404086113, + 0.011940306052565575, + 0.024640271440148354, + 0.08288649469614029, + -0.003177657723426819, + 0.025145195424556732, + 0.032972194254398346, + 0.004632714670151472, + -0.0440162755548954, + -0.0829324722290039, + -0.023201609030365944, + -0.07680384814739227, + -0.035976164042949677, + 0.05989842861890793, + -0.032220836728811264, + 0.04643622040748596, + -0.03596806526184082, + -0.04324684664607048, + -0.0665208026766777, + 0.06019249185919762, + 0.013477716594934464, + -0.04814360290765762, + 0.0039572808891534805, + 0.07898157835006714, + -0.027035336941480637, + -0.005007045343518257, + 0.02664177678525448, + 0.09329436719417572, + -0.07667524367570877, + 0.020837122574448586, + -0.0740472599864006, + 0.038607027381658554, + 0.10655274987220764, + -0.04236876592040062, + -0.06561217457056046, + -0.09368140995502472, + -0.04921199381351471, + 0.059822387993335724, + -0.07126978784799576, + -0.031032122671604156, + -0.001142874825745821, + -0.04545274004340172, + -0.06689963489770889, + -0.0906432718038559, + 0.0516461580991745, + -0.014145022258162498, + 0.007073591463267803, + -0.06059178337454796, + 0.05127984285354614, + -0.008993417955935001, + 0.04388221353292465, + -0.06733091175556183, + 0.06072895973920822, + 0.020806273445487022, + -0.030553819611668587, + 0.025757934898138046, + 0.031326279044151306, + 0.06085589528083801, + -0.03650522977113724, + -0.07732366025447845, + -0.07856559753417969, + 0.05569041147828102, + -0.04994209483265877, + 0.05564780905842781, + 0.020791439339518547, + -0.03016388788819313, + -0.012631956487894058, + -0.016292493790388107, + -0.006613049656152725, + 0.023799734190106392, + 0.06291507184505463, + 0.06203335523605347, + 0.015896782279014587, + -0.029428161680698395, + 0.08116836845874786, + 0.03815999627113342, + 0.028297681361436844, + -0.04080859199166298, + 0.006520522758364677, + -0.0443902313709259, + 0.018002452328801155, + 0.0064173294231295586, + -0.10180249065160751, + 0.03926005959510803, + -0.016444198787212372, + 0.03178990259766579, + 0.0287665743380785, + 0.057476386427879333, + 0.031311824917793274, + -0.03543446585536003 + ] + }, + "p245_153.wav": { + "name": "p245", + "embedding": [ + 0.029908746480941772, + 0.08796428889036179, + 0.003561137244105339, + 0.05124139040708542, + -0.03838258981704712, + 0.0694885402917862, + -0.1072276160120964, + 0.11506807804107666, + -0.03839406371116638, + 0.09610925614833832, + -0.08132104575634003, + 0.1011568009853363, + -0.03140243515372276, + -0.16094990074634552, + -0.05393482372164726, + 0.053198784589767456, + -0.02203511819243431, + -0.016521615907549858, + 0.01955573260784149, + -0.0018976922146975994, + 0.03567659854888916, + 0.060260578989982605, + 0.06530128419399261, + 0.021815720945596695, + 0.034594371914863586, + 0.047837283462285995, + 0.009844763204455376, + 0.07774927467107773, + 0.05152718722820282, + -0.02773633413016796, + -0.049499064683914185, + 0.12236839532852173, + -0.034186042845249176, + 0.005283478647470474, + 0.04035300016403198, + 0.015342583879828453, + 0.022626454010605812, + -0.05843276157975197, + -0.02367490716278553, + -0.0004228993784636259, + -0.053719110786914825, + 0.06582271307706833, + 0.03062688186764717, + 0.006141499616205692, + 0.05435426905751228, + -0.01053429115563631, + -0.023255351930856705, + -0.027505073696374893, + -0.11757603287696838, + 0.1545579582452774, + 0.05283476412296295, + 0.011358948424458504, + -0.08650030195713043, + -0.07226473093032837, + 0.09286567568778992, + -0.012404659762978554, + -0.10434385389089584, + -0.004754845052957535, + 0.07416536659002304, + 0.1650507152080536, + 0.010440561920404434, + -0.029890703037381172, + 0.025686901062726974, + 0.11186371743679047, + 0.045836832374334335, + 0.07590942829847336, + 0.07507078349590302, + 0.08583184331655502, + 0.005289588123559952, + 0.011945978738367558, + 0.04197634011507034, + 0.057633113116025925, + -0.006659397855401039, + -0.022176772356033325, + -0.005409453064203262, + 0.02046557329595089, + -0.03861046954989433, + 0.042081087827682495, + -0.0004089409194421023, + -0.0010156872449442744, + -0.00868919026106596, + -0.0002444600686430931, + -0.018871985375881195, + 0.013513554818928242, + -0.028141943737864494, + 0.05924978852272034, + -0.015947844833135605, + 0.027160553261637688, + 0.08286624401807785, + 0.026302088052034378, + -0.014514127746224403, + 0.04845216125249863, + -0.040523711591959, + -0.06870316714048386, + -0.008588501252233982, + 0.01960325427353382, + 0.015888340771198273, + 0.08247237652540207, + 0.019546357914805412, + -0.03295070677995682, + 0.12452343106269836, + 0.0405028834939003, + 0.004306546412408352, + 0.03981367126107216, + -0.10950112342834473, + 0.0926700234413147, + 0.0770566314458847, + -0.006715069990605116, + 0.06003909930586815, + -0.023645147681236267, + 0.07512587308883667, + 0.06461478024721146, + -0.13270705938339233, + -0.051948510110378265, + 0.055488720536231995, + 0.043098319321870804, + 0.029987327754497528, + 0.10221464931964874, + -0.002652437426149845, + 0.009572223760187626, + 0.08839090168476105, + -0.08693386614322662, + -0.060796551406383514, + -0.028052741661667824, + 0.06288323551416397, + -0.056464701890945435, + 0.029760736972093582, + 0.04184230789542198, + -0.006167259067296982, + -0.029533741995692253, + 0.04234592989087105, + -0.004774926230311394, + 0.017861083149909973, + 0.04606383293867111, + -0.061881713569164276, + 0.02691880241036415, + -0.045809872448444366, + -0.0025958181358873844, + 0.06921854615211487, + 0.03920679911971092, + 0.045526109635829926, + 0.01668567769229412, + -0.044367674738168716, + -0.11068161576986313, + -0.022587129846215248, + 0.05972949415445328, + 0.055391937494277954, + -0.019681308418512344, + -0.05416606366634369, + -0.0694938525557518, + -0.05197073146700859, + 0.047747254371643066, + 0.02751024439930916, + 0.07250191271305084, + -0.024239996448159218, + -0.022324927151203156, + 0.08132641017436981, + -0.0012540584430098534, + -0.007914934307336807, + -0.04296570271253586, + -0.03436541184782982, + 0.002303579356521368, + 0.025939514860510826, + -0.06129169464111328, + -0.08254344761371613, + 0.009578917175531387, + 0.01595713384449482, + -0.02093738503754139, + 0.015819037333130836, + 0.04128260910511017, + 0.009775327518582344, + 0.033406831324100494, + -0.05089791119098663, + 0.008312804624438286, + -0.10598722100257874, + -0.057884979993104935, + -0.01282563991844654, + 0.02829064056277275, + -0.009662375785410404, + 0.0908101350069046, + 0.04490748420357704, + 0.03041825070977211, + 0.030597813427448273, + -0.07342524826526642, + -0.05376426875591278, + 0.06540121883153915, + 0.08210955560207367, + 0.027659712359309196, + 0.09065345674753189, + 0.06466289609670639, + -0.06027880311012268, + 0.07642999291419983, + 0.0599515363574028, + 0.07149791717529297, + -0.027665289118885994, + -0.00744996964931488, + -0.06514466553926468, + 0.0502924770116806, + 0.0699816346168518, + -0.10499098896980286, + -0.11024827510118484, + -0.016736045479774475, + -0.06558652222156525, + 0.05622667819261551, + -0.01895371451973915, + 0.014385553076863289, + 0.022288907319307327, + -0.03905046358704567, + -0.10988224297761917, + -0.10348936915397644, + 0.08278729766607285, + -0.03129652887582779, + -0.039153359830379486, + -0.055608995258808136, + 0.03957006335258484, + 0.07866915315389633, + 0.004229674115777016, + -0.013247305527329445, + -0.0019157640635967255, + 0.0330946147441864, + -0.06683085858821869, + -0.04622773081064224, + 0.04608287289738655, + -0.0011177631095051765, + -0.11169110238552094, + 0.025441113859415054, + -0.06304651498794556, + 0.10115350782871246, + -0.0571221262216568, + 0.14585107564926147, + -0.009756825864315033, + -0.05754952132701874, + -0.06882981956005096, + 0.04157806187868118, + -0.021346334367990494, + 0.022811686620116234, + 0.035449832677841187, + 0.039186086505651474, + 0.0056622447445988655, + -0.05191107094287872, + 0.10407206416130066, + 0.030057601630687714, + -0.057143434882164, + -0.06609752029180527, + -0.024134939536452293, + -0.026114612817764282, + 0.02671566978096962, + 0.01797613874077797, + -0.07374761998653412, + -0.01744576171040535, + 0.00899358931928873, + -0.02213093265891075, + 0.0421634316444397, + 0.1310834437608719, + 0.05119245499372482, + -0.12099143117666245 + ] + }, + "p245_413.wav": { + "name": "p245", + "embedding": [ + 0.05552748590707779, + 0.06643375009298325, + 0.0063137393444776535, + 0.038887862116098404, + -0.021131176501512527, + 0.08869626373052597, + -0.11887893080711365, + 0.11855585873126984, + -0.052547886967659, + 0.14150460064411163, + -0.07664511352777481, + 0.12353579699993134, + -0.008132260292768478, + -0.15871445834636688, + -0.057194918394088745, + 0.0658191367983818, + -0.03010125830769539, + -0.006774375215172768, + -0.026586201041936874, + 0.021808285266160965, + 0.04495798796415329, + 0.0243681613355875, + 0.06698594987392426, + -0.01693485863506794, + 0.027512365952134132, + 0.04701056331396103, + 0.032983992248773575, + 0.10896874219179153, + 0.05157843604683876, + -0.09362108260393143, + -0.020956801250576973, + 0.11279016733169556, + -0.04005863144993782, + 0.03653428703546524, + 0.0634993463754654, + 0.01574144884943962, + 0.018847458064556122, + -0.07978498935699463, + -0.0190176609903574, + -0.022713553160429, + -0.028643637895584106, + 0.06819503009319305, + 0.0020107771269977093, + -0.010499625466763973, + 0.02728862501680851, + 0.02273166924715042, + -0.025774050503969193, + -0.056974202394485474, + -0.10698744654655457, + 0.1389126181602478, + 0.03351801261305809, + 0.03023739904165268, + -0.079288549721241, + -0.09491343796253204, + 0.09026093035936356, + -0.019700828939676285, + -0.09688359498977661, + -0.0420842319726944, + 0.06795133650302887, + 0.18795260787010193, + -0.027427110821008682, + -0.02889133431017399, + 0.022119268774986267, + 0.10026641190052032, + 0.06310391426086426, + 0.09474997222423553, + 0.09602619707584381, + 0.09091298282146454, + 0.03454095125198364, + 0.044640809297561646, + 0.009785193018615246, + 0.09830987453460693, + 0.049372993409633636, + 0.03379545360803604, + 0.020351819694042206, + 0.008216971531510353, + -0.027445772662758827, + 0.005562667269259691, + -0.04314633458852768, + -0.011826267465949059, + -0.003884481033310294, + 0.01878754422068596, + 0.03315787389874458, + 0.025065675377845764, + -0.02491840161383152, + 0.07031452655792236, + -0.02640325203537941, + -0.03403852507472038, + 0.04275985062122345, + -0.004857080057263374, + -0.004863875452429056, + 0.038948945701122284, + -0.08327022939920425, + -0.12070327997207642, + -0.0023379367776215076, + 0.008535699918866158, + 0.011260807514190674, + 0.06192712485790253, + 0.027038482949137688, + -0.026114799082279205, + 0.11182981729507446, + 0.029974572360515594, + -0.019896410405635834, + 0.04478997737169266, + -0.08082740008831024, + 0.11399301886558533, + 0.0766785740852356, + 0.00101058732252568, + 0.03435847908258438, + -0.0655413419008255, + 0.06915264576673508, + 0.07939369231462479, + -0.15886840224266052, + -0.08740544319152832, + 0.024686507880687714, + -0.006875765044242144, + -0.0021982279140502214, + 0.0999336987733841, + -0.0126122385263443, + 0.027436088770627975, + 0.09133933484554291, + -0.08899252116680145, + -0.05001698434352875, + -0.007605938706547022, + 0.04212932661175728, + -0.06933107227087021, + 0.05320509523153305, + -0.0007477098843082786, + -0.002256180625408888, + -0.02303261309862137, + 0.08864404261112213, + -0.004568884614855051, + -0.014503145590424538, + 0.03994216024875641, + -0.06618905067443848, + 0.028465144336223602, + -0.06871537119150162, + -0.002379771787673235, + 0.04775664955377579, + 0.05490398406982422, + 0.06107613071799278, + -0.0026206476613879204, + -0.06289470195770264, + -0.11377197504043579, + -0.014492626301944256, + 0.0397581122815609, + 0.07092711329460144, + -0.00949084386229515, + -0.03062376007437706, + -0.050523847341537476, + -0.03790987282991409, + 0.050263628363609314, + -0.006090502254664898, + 0.08917921781539917, + 0.010893257334828377, + 0.027754753828048706, + 0.09274743497371674, + -0.03531840443611145, + 0.010466954670846462, + -0.05027315020561218, + -0.011201899498701096, + 0.01890147477388382, + 0.04252006858587265, + -0.051358383148908615, + -0.05104398354887962, + 0.030734572559595108, + 0.01547168754041195, + -0.038472339510917664, + 0.040820203721523285, + 0.031793635338544846, + 0.03252987563610077, + 0.04169648513197899, + -0.018572775647044182, + -0.04110284149646759, + -0.10871896147727966, + -0.05247989296913147, + -0.0007934365421533585, + -0.006549298297613859, + -0.025634920224547386, + 0.06595176458358765, + 0.038318850100040436, + 0.057129211723804474, + -0.0013733610976487398, + -0.06975972652435303, + -0.10146481543779373, + 0.06508670747280121, + 0.05807028338313103, + 0.02873513475060463, + 0.04772498086094856, + 0.03442928194999695, + -0.010035617277026176, + 0.06919601559638977, + 0.07061515003442764, + 0.07210110127925873, + -0.003882280085235834, + -0.01024559698998928, + -0.08845819532871246, + 0.10111252963542938, + 0.11110378801822662, + -0.07251887023448944, + -0.08826974034309387, + -0.004682965576648712, + -0.10096397250890732, + 0.05143251642584801, + -0.034302905201911926, + -0.012578219175338745, + 0.06033125892281532, + -0.030913520604372025, + -0.11542132496833801, + -0.07458457350730896, + 0.09471369534730911, + -0.09540969133377075, + -0.03394777700304985, + -0.056562505662441254, + 0.02710641361773014, + 0.08661946654319763, + 0.0342843160033226, + 0.013200325891375542, + -0.0048741428181529045, + 0.07087680697441101, + -0.0968417376279831, + -0.028699439018964767, + 0.05182900279760361, + -0.015251491218805313, + -0.10511530935764313, + 0.02316276915371418, + -0.0690665915608406, + 0.005918172188103199, + -0.0598493292927742, + 0.1405659019947052, + -0.026604073122143745, + -0.052839308977127075, + -0.06870703399181366, + 0.025515126064419746, + -0.04872877150774002, + 0.050505273044109344, + 0.033847369253635406, + 0.05386171489953995, + 0.03783049434423447, + -0.09490808099508286, + 0.14095443487167358, + 0.04343278333544731, + -0.038364771753549576, + -0.08966538310050964, + -0.08357422053813934, + -0.03950528800487518, + 0.016744229942560196, + -0.003149115713313222, + -0.06896740943193436, + -0.01977505348622799, + 0.026742100715637207, + -0.022353297099471092, + 0.03828902170062065, + 0.12637129426002502, + 0.039877377450466156, + -0.09273171424865723 + ] + }, + "p245_034.wav": { + "name": "p245", + "embedding": [ + 0.06562553346157074, + 0.048612311482429504, + 0.015203645452857018, + -0.0012235715985298157, + -0.03443368896842003, + 0.05501305311918259, + -0.1029471755027771, + 0.11168458312749863, + 0.017423667013645172, + 0.07007189095020294, + -0.08742016553878784, + 0.0821203738451004, + -0.006993485148996115, + -0.1573825180530548, + -0.008023237809538841, + 0.04416750371456146, + -0.03125345706939697, + -0.007048833183944225, + -0.05864045023918152, + -0.03840073198080063, + 0.012356491759419441, + 0.043636079877614975, + 0.053607277572155, + -0.0024839178659021854, + 0.03205051273107529, + 0.04524322599172592, + -0.01184853445738554, + 0.019582659006118774, + 0.0020372439175844193, + -0.046482667326927185, + -0.006112158298492432, + 0.06346125900745392, + -0.03171871230006218, + -0.010496973991394043, + 0.033257387578487396, + -0.006122102495282888, + 0.01347152516245842, + -0.08026003837585449, + -0.04488036781549454, + 0.04201894998550415, + -0.05190723389387131, + 0.07317086309194565, + 0.051554225385189056, + -0.015824010595679283, + 0.05274331197142601, + 0.0038529206067323685, + -0.03422069922089577, + -0.05027550086379051, + -0.1174953430891037, + 0.15826359391212463, + 0.04552783817052841, + 0.025667157024145126, + -0.09340095520019531, + -0.01947007328271866, + 0.07311001420021057, + -0.0266435444355011, + -0.06862623989582062, + -0.02304871380329132, + 0.059475041925907135, + 0.10230003297328949, + 0.014408551156520844, + -0.01942823827266693, + 0.032441359013319016, + 0.06341756135225296, + 0.01187172718346119, + 0.02172405831515789, + 0.10330133140087128, + 0.09432270377874374, + -0.020649559795856476, + 0.035143088549375534, + 0.04434032365679741, + 0.03849361091852188, + 0.03960993140935898, + -0.0031395829282701015, + 0.014636171981692314, + -0.019699156284332275, + -0.015449078753590584, + -0.018568111583590508, + -0.02272905968129635, + -0.003091132966801524, + 0.03170564025640488, + 0.01269453763961792, + 0.02450958453118801, + 0.027898622676730156, + -0.04987247288227081, + 0.04154077172279358, + 0.004989826586097479, + 0.05342442914843559, + 0.07077434659004211, + 0.029061879962682724, + 0.008336978033185005, + 0.03075072541832924, + -0.043387334793806076, + -0.09138722717761993, + 0.005141383036971092, + 0.010789508931338787, + 0.017937371507287025, + 0.030780762434005737, + 0.024082280695438385, + -0.025861745700240135, + 0.11531367152929306, + 0.02285810559988022, + -0.012274956330657005, + 0.0018036316614598036, + -0.07109217345714569, + 0.07755395770072937, + 0.09363259375095367, + 0.0005820145597681403, + 0.06153271347284317, + -0.04272299259901047, + 0.048228733241558075, + 0.052560191601514816, + -0.09407263994216919, + -0.02396334707736969, + 0.015526879578828812, + 0.018149055540561676, + 0.04114966094493866, + 0.11613212525844574, + 0.004743978381156921, + 0.04427904635667801, + 0.09413877129554749, + -0.08159561455249786, + -0.012154145166277885, + 0.025887874886393547, + 0.020455336198210716, + -0.03368502855300903, + 0.02239091321825981, + 0.039456807076931, + -0.00019180650997441262, + -0.01304236613214016, + 0.048595916479825974, + -0.0005361376097425818, + 0.013854669407010078, + -0.03764548897743225, + 0.008796806447207928, + 0.03606352210044861, + -0.029762111604213715, + -0.030115853995084763, + 0.06373052299022675, + 0.06733863055706024, + 0.011902834288775921, + 0.03505462035536766, + -0.06342729926109314, + -0.0978875458240509, + -0.0015799155225977302, + -0.007915060967206955, + 0.05789420008659363, + -0.012920069508254528, + -0.024410098791122437, + -0.06025725603103638, + -0.017454717308282852, + 0.028336133807897568, + -0.0020864568650722504, + 0.04961779713630676, + 0.03826633095741272, + -0.0179322250187397, + 0.05169997736811638, + 0.013553905300796032, + 0.0027613863348960876, + -0.041492484509944916, + -0.04961634799838066, + 0.0030799596570432186, + 0.037748388946056366, + -0.05053270608186722, + -0.0476413369178772, + -0.007074679713696241, + -0.01024414412677288, + -0.024845262989401817, + 0.01547197438776493, + 0.040204353630542755, + -0.010804510675370693, + -0.004049159586429596, + -0.08144941926002502, + 0.027288060635328293, + -0.0710800439119339, + -0.06883895397186279, + 0.05499356985092163, + 0.01186924334615469, + -0.004030154552310705, + 0.08174224197864532, + 0.023305434733629227, + 0.031559329479932785, + -0.047674696892499924, + -0.06275229901075363, + -0.01827729120850563, + 0.056984275579452515, + 0.034231606870889664, + -0.0018060453003272414, + 0.04879539832472801, + 0.026821276172995567, + -0.027623958885669708, + 0.07013483345508575, + 0.03366212174296379, + 0.06304562091827393, + -0.0448773130774498, + -0.00812606792896986, + -0.01052139699459076, + 0.08368801325559616, + 0.050083886831998825, + -0.04954775422811508, + -0.06648942083120346, + -0.018721820786595345, + -0.04476935788989067, + 0.03467569500207901, + 0.0025751139037311077, + -0.0037698138039559126, + 0.041302941739559174, + -0.014410212635993958, + -0.08020330965518951, + -0.06206473708152771, + 0.030090447515249252, + -0.03456461429595947, + -0.005840213503688574, + -0.058361537754535675, + 0.03530937433242798, + 0.09414809942245483, + -0.006623054854571819, + -0.003878684714436531, + -0.012763336300849915, + 0.0006068050861358643, + -0.03687785193324089, + -0.03678639605641365, + 0.01219350378960371, + 0.0361783504486084, + -0.07579641044139862, + -0.006687878631055355, + -0.06306930631399155, + 0.03952993080019951, + 0.0004062677617184818, + 0.09683389961719513, + 0.03247857838869095, + -0.020130399614572525, + -0.05690188705921173, + 0.031087344512343407, + -0.019660916179418564, + 0.05484982952475548, + 0.025913558900356293, + 0.01733427867293358, + 0.05963724106550217, + -0.05483750253915787, + 0.07693038135766983, + 0.038009028881788254, + -0.05759081989526749, + -0.0389627069234848, + -0.007351682987064123, + -0.030361158773303032, + -0.0009335912764072418, + -0.01841195672750473, + -0.05207183212041855, + 0.008091631345450878, + 0.020619958639144897, + 0.013020697981119156, + 0.04077501595020294, + 0.08046837151050568, + 0.038598451763391495, + -0.08290281891822815 + ] + }, + "p245_003.wav": { + "name": "p245", + "embedding": [ + 0.0295333843678236, + 0.06818605959415436, + -0.00016502142534591258, + 0.022960500791668892, + -0.04116135463118553, + 0.0252471175044775, + -0.13690705597400665, + 0.11414899677038193, + -0.0020723938941955566, + 0.11166918277740479, + -0.08013176918029785, + 0.09192591160535812, + -0.04262375459074974, + -0.16115251183509827, + -0.014802008867263794, + 0.043254509568214417, + -0.030447257682681084, + -0.053501784801483154, + -0.015254824422299862, + -0.009343627840280533, + 0.039815712720155716, + 0.035177480429410934, + 0.018444228917360306, + 0.016101902350783348, + 0.003158713225275278, + 0.054110314697027206, + -0.009109004400670528, + 0.02530478872358799, + 0.013888445682823658, + -0.008295020088553429, + 0.013123651035130024, + 0.06857029348611832, + -0.032917413860559464, + 0.032608598470687866, + 0.040043581277132034, + 0.017812302336096764, + -0.017666494473814964, + -0.039362866431474686, + -0.0261479951441288, + -0.0014135331148281693, + -0.0679730772972107, + 0.06807398051023483, + 0.0324995182454586, + -0.017256667837500572, + 0.043432679027318954, + 0.02631065621972084, + -0.02101738750934601, + -0.03066873922944069, + -0.1055397316813469, + 0.13855354487895966, + 0.05508971959352493, + 0.013379818759858608, + -0.06369727104902267, + -0.04134828597307205, + 0.08572905510663986, + -0.022043539211153984, + -0.09691758453845978, + -0.05206381157040596, + 0.08876153081655502, + 0.11121437698602676, + -0.030014842748641968, + -0.04228461906313896, + 0.011554970405995846, + 0.09005703777074814, + 0.052858322858810425, + 0.06045984849333763, + 0.07781072705984116, + 0.10947312414646149, + -0.026679182425141335, + -0.015123778954148293, + 0.06666175276041031, + 0.056673258543014526, + 0.04848107323050499, + -0.0026129595935344696, + 0.0132496552541852, + 0.011503173038363457, + -0.01166569348424673, + 0.016191817820072174, + -0.018551545217633247, + -0.0036922504659742117, + -0.021846560761332512, + -0.012725886888802052, + -0.004193407483398914, + 0.022679870948195457, + -0.014913520775735378, + 0.03395794704556465, + 0.04889579117298126, + -0.00021272581943776459, + 0.0750490352511406, + 0.0378580205142498, + -0.003489042865112424, + 0.05743644759058952, + -0.07021570205688477, + -0.05749934911727905, + -0.004176382906734943, + -0.011763731017708778, + 0.0321279875934124, + 0.066522978246212, + 0.031300242990255356, + 0.003982923924922943, + 0.10867124050855637, + 0.010436068288981915, + -0.015197833068668842, + 0.00872453860938549, + -0.11299969255924225, + 0.10792400687932968, + 0.05790141969919205, + -0.03113420307636261, + 0.013999111019074917, + -0.052892643958330154, + 0.046940870583057404, + 0.06055445224046707, + -0.08770355582237244, + -0.047328345477581024, + 0.0492437444627285, + 0.04116356000304222, + -0.010526577942073345, + 0.12705299258232117, + 0.007765599526464939, + 0.01837928220629692, + 0.12015612423419952, + -0.08633997291326523, + -0.05526984855532646, + -0.006431904621422291, + 0.028700610622763634, + -0.07456450164318085, + 0.049012281000614166, + 0.04659518599510193, + 0.0033286120742559433, + 0.015890272334218025, + 0.07810961455106735, + 0.0056940908543765545, + 0.011244875378906727, + -0.02638048306107521, + -0.026325030252337456, + 0.031601328402757645, + -0.024860238656401634, + -0.002651314018294215, + 0.05492263659834862, + 0.04224498197436333, + 0.05766316130757332, + 0.02264775149524212, + -0.0422237291932106, + -0.11385434865951538, + 0.016186775639653206, + 0.05067789554595947, + 0.06854478269815445, + -0.02093648724257946, + -0.033872880041599274, + -0.05047303065657616, + -0.04880719259381294, + 0.019625676795840263, + -0.010662071406841278, + 0.06729476153850555, + -0.0068361894227564335, + -0.010815287940204144, + 0.09018208831548691, + 0.011250493116676807, + -0.006714948918670416, + -0.05294112116098404, + -0.05251975730061531, + -0.018979543820023537, + 0.04257283732295036, + -0.10115806013345718, + -0.06125190481543541, + -0.023261789232492447, + 0.04930824041366577, + -0.0049368105828762054, + 0.029348323121666908, + 0.046581678092479706, + 0.017598140984773636, + 0.01052377000451088, + -0.05512464791536331, + 0.02366301603615284, + -0.08300351351499557, + -0.09226083755493164, + -0.0067525687627494335, + 0.008845457807183266, + 0.011241708882153034, + 0.06768151372671127, + -0.008157648146152496, + 0.04334553703665733, + -0.016736004501581192, + -0.08927588164806366, + -0.08907850831747055, + 0.058233629912137985, + 0.04732293635606766, + -0.016672369092702866, + 0.05053155496716499, + 0.04913689196109772, + -0.06880442053079605, + 0.03210317716002464, + 0.025231758132576942, + 0.11282401531934738, + -0.058189429342746735, + 0.035158172249794006, + -0.04620283097028732, + 0.07102667540311813, + 0.08196061849594116, + -0.0762406662106514, + -0.06024560332298279, + -0.03166374936699867, + -0.04267769679427147, + 0.0125054270029068, + -0.028068695217370987, + -0.006948710884898901, + 0.010740067809820175, + -0.017177550122141838, + -0.09047006070613861, + -0.08063143491744995, + 0.028889387845993042, + -0.050079572945833206, + 0.0014487378066405654, + -0.08759210258722305, + 0.03647930547595024, + 0.06456023454666138, + 0.028283119201660156, + -0.016644684597849846, + -0.007800982799381018, + 0.024897441267967224, + -0.03692768141627312, + -0.009652554988861084, + 0.054503507912158966, + 0.040738411247730255, + -0.0612194649875164, + -0.03147048503160477, + -0.07065439969301224, + 0.052066314965486526, + -0.03769790753722191, + 0.12280608713626862, + -0.0019774094689637423, + -0.04481757432222366, + -0.03552081808447838, + -0.010182089172303677, + -0.0035797045566141605, + 0.04381715878844261, + 0.019970109686255455, + 0.04968859627842903, + 0.03286181762814522, + -0.03224371001124382, + 0.11276187747716904, + 0.05984009429812431, + -0.024158863350749016, + -0.04718280956149101, + -0.03275075554847717, + -0.041144657880067825, + 0.0072350515983998775, + -0.007992195896804333, + -0.08522205799818039, + -0.0021310315933078527, + 0.012713230215013027, + -0.004684712737798691, + 0.04930267855525017, + 0.1318783164024353, + 0.06259594112634659, + -0.10558916628360748 + ] + }, + "p245_030.wav": { + "name": "p245", + "embedding": [ + 0.05470728129148483, + 0.07676955312490463, + -0.02762940526008606, + 0.05767924338579178, + -0.07619606703519821, + 0.04276008903980255, + -0.11171802133321762, + 0.13443566858768463, + 0.014216672629117966, + 0.12439748644828796, + -0.03545985370874405, + 0.1309659779071808, + -0.019644618034362793, + -0.1529431939125061, + 0.02912980690598488, + 0.05755430459976196, + -0.004274472594261169, + -0.02756984531879425, + -0.014871301129460335, + -0.025451336055994034, + 0.026815159246325493, + 0.05262542515993118, + 0.06884843111038208, + -0.025878513231873512, + 0.035344719886779785, + 0.08189433813095093, + -0.016676263883709908, + 0.03463464602828026, + -0.004183952230960131, + -0.1075097993016243, + -0.04870396852493286, + 0.06653337180614471, + -0.06726223230361938, + 0.01787535473704338, + 0.02079075574874878, + -0.031276315450668335, + -0.02352435514330864, + -0.05166897177696228, + -0.010286376811563969, + 0.0036683299113065004, + -0.03095962479710579, + 0.08559343218803406, + 0.019595187157392502, + -0.05610499531030655, + 0.02678229659795761, + -0.0016871335683390498, + -0.025511208921670914, + -0.019675660878419876, + -0.12104354798793793, + 0.15562313795089722, + 0.06929443776607513, + 0.0057962979190051556, + -0.07313663512468338, + -0.07135674357414246, + 0.06761529296636581, + -0.0007422398775815964, + -0.09742194414138794, + -0.03820406645536423, + 0.05416587367653847, + 0.11439339816570282, + -0.011249566450715065, + -0.03667866811156273, + 0.0433211624622345, + 0.09483082592487335, + 0.07048407196998596, + 0.06450808048248291, + 0.0841134786605835, + 0.11811643838882446, + -0.04232597351074219, + 0.021638095378875732, + 0.012464185245335102, + 0.09455686807632446, + 0.055138133466243744, + 0.03224926441907883, + 0.0006414596573449671, + -0.02130945771932602, + -0.015845898538827896, + -0.03467155247926712, + -0.01327726524323225, + -0.04097800701856613, + -0.0034745950251817703, + -0.010024461895227432, + 0.034938354045152664, + 0.02906501665711403, + -0.020026667043566704, + 0.05671773850917816, + 0.062143027782440186, + -0.0180739164352417, + 0.06378280371427536, + -0.008467407897114754, + -0.006435783114284277, + 0.06746965646743774, + -0.10297304391860962, + -0.05244568735361099, + 0.033282771706581116, + 0.014758987352252007, + 0.04851013422012329, + 0.0939134731888771, + 0.041356537491083145, + -0.022815290838479996, + 0.12511798739433289, + 0.04143769294023514, + -0.012946373783051968, + 0.0026330742985010147, + -0.052655741572380066, + 0.1248498409986496, + 0.09045326709747314, + -0.017180759459733963, + 0.07442940771579742, + -0.06850285083055496, + 0.07324356585741043, + 0.037742242217063904, + -0.12452586740255356, + -0.0637553334236145, + -0.013753941282629967, + -0.006501892115920782, + -0.01811373233795166, + 0.12327870726585388, + 0.018540682271122932, + 0.07552286982536316, + 0.11820340901613235, + -0.12442626059055328, + -0.05893946439027786, + -0.0007568219443783164, + 0.05576680600643158, + -0.09783821552991867, + 0.06099921464920044, + 0.06353416293859482, + -0.03922055661678314, + 0.03726281598210335, + 0.054679617285728455, + -0.010034135542809963, + 0.03613394498825073, + 0.03675030171871185, + -0.06013532727956772, + -0.01117075514048338, + -0.03954803943634033, + -0.005952105857431889, + 0.048808448016643524, + 0.009786593727767467, + 0.06733052432537079, + -0.043168265372514725, + -0.01037953794002533, + -0.13466255366802216, + 0.029157396405935287, + 0.034274522215127945, + 0.05720892176032066, + -0.029842007905244827, + -0.04731646180152893, + -0.02947131358087063, + -0.07857740670442581, + 0.026416301727294922, + -0.0038499748334288597, + 0.03999471664428711, + -0.03648192808032036, + 0.017898237332701683, + 0.08382024616003036, + 0.06179053336381912, + -0.014123756438493729, + -0.05873624235391617, + -0.06598500907421112, + 0.00648857094347477, + 0.050255510956048965, + -0.08953459560871124, + -0.07552239298820496, + -0.0285145565867424, + 0.02494506537914276, + -0.04001874476671219, + 0.07711224257946014, + 0.06339746713638306, + 0.03856305405497551, + 0.002129770815372467, + -0.03816752880811691, + -0.011841261759400368, + -0.05057452619075775, + -0.08925756067037582, + -0.005924629513174295, + -0.0015792513731867075, + -0.041762690991163254, + 0.08837725222110748, + 0.04063595086336136, + 0.08196276426315308, + -0.047005802392959595, + -0.010510338470339775, + -0.09416946768760681, + 0.025445953011512756, + 0.014178285375237465, + -0.01749601773917675, + 0.04425964504480362, + 0.059983398765325546, + -0.05745777487754822, + 0.04824567586183548, + 0.053836409002542496, + 0.07614849507808685, + -0.037899937480688095, + 0.017541049048304558, + -0.07810387760400772, + 0.0930262953042984, + 0.13822007179260254, + -0.06520669907331467, + -0.07337333261966705, + -0.0694187581539154, + -0.10342937707901001, + 0.041308846324682236, + -0.03650330752134323, + -0.013999367132782936, + 0.03666064143180847, + 0.002039629267528653, + -0.10853581130504608, + -0.1032566949725151, + 0.08476080000400543, + -0.04359114170074463, + 0.0030293113086372614, + -0.09174497425556183, + 0.044643521308898926, + 0.07275035977363586, + 0.057189296931028366, + -0.026364460587501526, + -0.01764502376317978, + 0.06311649084091187, + -0.008676948957145214, + 0.04276953265070915, + 0.10869312286376953, + 0.06944498419761658, + -0.09542709589004517, + -0.018323691561818123, + -0.05242624878883362, + 0.01803870126605034, + -0.037017881870269775, + 0.14510849118232727, + 0.029216380789875984, + -0.04170714318752289, + -0.07686308026313782, + 0.06558069586753845, + -0.017520304769277573, + 0.048418521881103516, + 0.01869634911417961, + 0.03934627026319504, + 0.05995792895555496, + -0.08986963331699371, + 0.1134452149271965, + 0.04789048433303833, + -0.0365600511431694, + -0.06660213321447372, + -0.05832260102033615, + -0.04478484392166138, + 0.05500505492091179, + 0.004616708494722843, + -0.0925792008638382, + -0.021152371540665627, + 0.024854060262441635, + 0.016134504228830338, + 0.04518268257379532, + 0.15707702934741974, + 0.05744396150112152, + -0.1055162101984024 + ] + }, + "p245_249.wav": { + "name": "p245", + "embedding": [ + 0.012935522012412548, + 0.09927419573068619, + -0.024993648752570152, + 0.04509132355451584, + -0.05368250608444214, + 0.060529448091983795, + -0.0839657261967659, + 0.10867979377508163, + -0.07567229121923447, + 0.10712631046772003, + -0.13276126980781555, + 0.07911356538534164, + -0.09166958183050156, + -0.14737306535243988, + -0.0715826228260994, + 0.04715517535805702, + -0.017219772562384605, + -0.04937504976987839, + 0.006780656054615974, + -0.010438249446451664, + 0.04826318472623825, + 0.03554379194974899, + 8.224325574701652e-05, + 0.06011860817670822, + 0.01483230385929346, + 0.05356563627719879, + -0.0007025262457318604, + 0.06787404417991638, + 0.038646623492240906, + 0.02557419240474701, + -0.019631613045930862, + 0.13727380335330963, + -0.05240580067038536, + -0.015167741104960442, + 0.021254021674394608, + 0.037348441779613495, + 0.0300596933811903, + -0.04376578703522682, + -0.007100844290107489, + -0.015584741719067097, + -0.10023512691259384, + 0.05997200310230255, + 0.009028336964547634, + 0.010574288666248322, + 0.031171562150120735, + -0.006243289913982153, + -0.02563583105802536, + -0.02633700706064701, + -0.12020395696163177, + 0.1268252730369568, + 0.06137459725141525, + 0.01221002172678709, + -0.09540942311286926, + -0.0676732212305069, + 0.12198535352945328, + -0.01483103260397911, + -0.08746879547834396, + -0.0397750660777092, + 0.07313300669193268, + 0.1875762939453125, + -0.013813882134854794, + -0.02578629180788994, + 0.019833292812108994, + 0.08182096481323242, + 0.07705184072256088, + 0.07122629880905151, + 0.07838647812604904, + 0.08692800253629684, + 0.016382649540901184, + -0.019005723297595978, + 0.08939873427152634, + 0.04651903733611107, + 0.023835137486457825, + -0.0531136579811573, + -0.0037986375391483307, + 0.03557954728603363, + -0.02296283096075058, + 0.06596098095178604, + -0.017140677198767662, + -0.007329446263611317, + -0.028013966977596283, + 0.01259949803352356, + -0.04364576190710068, + -0.004426313564181328, + -0.03909788280725479, + 0.06070079654455185, + 0.007922438904643059, + -0.008891773410141468, + 0.1033315435051918, + 0.038845568895339966, + -0.0515342652797699, + 0.05017722025513649, + -0.07063961029052734, + -0.04186994954943657, + -0.02348773553967476, + -0.0009436081745661795, + -0.0025916362646967173, + 0.10672426223754883, + 0.02616169862449169, + -0.018439998850226402, + 0.12969665229320526, + 0.02538936398923397, + 0.04393988475203514, + 0.03814641758799553, + -0.12770715355873108, + 0.10855274647474289, + 0.07451435923576355, + -0.036402951925992966, + 0.027284573763608932, + 0.03557748347520828, + 0.04942774400115013, + 0.06636208295822144, + -0.11313772201538086, + -0.05737714469432831, + 0.04062531888484955, + 0.04659825935959816, + 0.006506338715553284, + 0.07647179812192917, + -0.039271123707294464, + -0.009470909833908081, + 0.10287342965602875, + -0.055081818252801895, + -0.06007155403494835, + -0.03266264498233795, + 0.04245371371507645, + -0.04170932248234749, + 0.03218434005975723, + 0.0382448248565197, + 0.039504993706941605, + -0.012289178557693958, + 0.06953231245279312, + -0.007693782448768616, + -0.013923222199082375, + 0.03387003764510155, + -0.05377437174320221, + 0.05353546142578125, + -0.04104000702500343, + -0.03804019093513489, + 0.09091018885374069, + 0.05472839996218681, + 0.0798858106136322, + 0.02622653730213642, + -0.0010170680470764637, + -0.08546695113182068, + -0.006697039119899273, + 0.0795888602733612, + 0.062414806336164474, + -0.01590139977633953, + -0.028021443635225296, + -0.10086825489997864, + -0.052615344524383545, + 0.03260738402605057, + 0.03941960260272026, + 0.11866677552461624, + -0.018320243805646896, + 0.0005236418801359832, + 0.10138029605150223, + -0.006560175679624081, + -0.01788152940571308, + -0.05558563396334648, + -0.01329271961003542, + -0.021850038319826126, + 0.05118302255868912, + -0.04921804368495941, + -0.10621524602174759, + 0.011298242025077343, + 0.0506180115044117, + -0.0025212641339749098, + 0.052181415259838104, + 0.055101606994867325, + -0.007459715474396944, + 0.009913264773786068, + -0.09084285795688629, + 0.06088470295071602, + -0.09334676712751389, + -0.037019032984972, + -0.022635476663708687, + -0.018536237999796867, + 0.003790324553847313, + 0.07412982732057571, + 0.03162064775824547, + 0.01260063610970974, + 0.0646538957953453, + -0.15381334722042084, + -0.07888547331094742, + 0.07864928990602493, + 0.09040091186761856, + 0.011129902675747871, + 0.08324947953224182, + 0.08978580683469772, + -0.061792463064193726, + 0.06304390728473663, + 0.07358133047819138, + 0.10434794425964355, + -0.05192577838897705, + -0.0018468810012564063, + -0.02810545451939106, + 0.017826221883296967, + 0.03070542775094509, + -0.12759071588516235, + -0.08754231780767441, + -0.0346057154238224, + -0.04267074540257454, + 0.06150691956281662, + 0.001976055558770895, + 0.04200102016329765, + 0.019065219908952713, + -0.05994474142789841, + -0.10044196248054504, + -0.08682776242494583, + 0.07510696351528168, + -0.0410810261964798, + -0.047067947685718536, + -0.07730194181203842, + -0.002518618246540427, + 0.06757852435112, + 0.014476128853857517, + 0.000981855089776218, + 0.0257673729211092, + 0.020144488662481308, + -0.06789638847112656, + -0.0522676557302475, + 0.07216951996088028, + -0.021084681153297424, + -0.08619770407676697, + 0.01282979641109705, + -0.08609282225370407, + 0.13633054494857788, + -0.04155348241329193, + 0.14530400931835175, + -0.03721082583069801, + -0.05338159203529358, + -0.08183901011943817, + 0.039759375154972076, + -0.027577422559261322, + 0.05348000302910805, + 0.04731455445289612, + 0.05943932384252548, + -0.0067628007382154465, + -0.01098265964537859, + 0.13872428238391876, + 0.04102689027786255, + -0.07474246621131897, + -0.0558406226336956, + -0.03822559118270874, + -0.055315352976322174, + -0.015425224788486958, + 0.02848370373249054, + -0.06721736490726471, + 0.014461886137723923, + -0.009060640819370747, + -0.041844263672828674, + 0.06357363611459732, + 0.11187741905450821, + 0.09933291375637054, + -0.10855313390493393 + ] + }, + "p245_325.wav": { + "name": "p245", + "embedding": [ + 0.04966717213392258, + 0.08694766461849213, + -0.012625151313841343, + -0.00333605008199811, + -0.054571639746427536, + 0.06827566027641296, + -0.13681650161743164, + 0.14079231023788452, + -0.05652210861444473, + 0.1499648094177246, + -0.07269900292158127, + 0.12226858735084534, + -0.02143661491572857, + -0.18968161940574646, + -0.01778835989534855, + 0.04816300421953201, + -0.04101085662841797, + -0.02439987286925316, + -0.04568105936050415, + -0.0217617005109787, + 0.04689629375934601, + 0.02851555496454239, + 0.006267506163567305, + -0.01548614539206028, + 0.020500976592302322, + 0.06706105172634125, + -0.0013503337977454066, + 0.03221709281206131, + -0.0010236594825983047, + -0.05861405283212662, + -0.0418982207775116, + 0.1028124988079071, + -0.05563540756702423, + 0.017795199528336525, + 0.06905356049537659, + -0.012193439528346062, + -0.010338643565773964, + -0.06881534308195114, + -0.026384342461824417, + 0.0025092957075685263, + -0.04409679025411606, + 0.06917420029640198, + 0.027254996821284294, + -0.004066402558237314, + 0.034804701805114746, + 0.040940672159194946, + -0.0013422956690192223, + -0.05357092618942261, + -0.08283291012048721, + 0.15489768981933594, + 0.06422407925128937, + -0.007211022544652224, + -0.062371835112571716, + -0.07197795063257217, + 0.10829363018274307, + -0.01292574591934681, + -0.12013749778270721, + -0.03944230079650879, + 0.08368775993585587, + 0.14994242787361145, + -0.04818883538246155, + -0.0466359406709671, + 0.02133755013346672, + 0.10212883353233337, + 0.036463163793087006, + 0.10289247334003448, + 0.08162319660186768, + 0.10675529390573502, + -0.010096531361341476, + 0.022563256323337555, + 0.05517695099115372, + 0.07468937337398529, + 0.07003836333751678, + -0.02187785878777504, + 0.04528842866420746, + 0.010652739554643631, + -0.024704448878765106, + 0.006845420226454735, + -0.039860405027866364, + -0.010626170784235, + -0.007208168040961027, + 0.013719648122787476, + 0.02561389096081257, + 0.01668722555041313, + -0.01544229220598936, + 0.056099895387887955, + 0.039016760885715485, + -0.0065971361473202705, + 0.06699902564287186, + 0.028059016913175583, + 0.01333620399236679, + 0.07469695806503296, + -0.10454930365085602, + -0.0935489684343338, + 0.04098852723836899, + -0.0011533864308148623, + 0.007668512407690287, + 0.0752333253622055, + 0.04500114172697067, + -0.017139587551355362, + 0.11948438733816147, + 0.04693763330578804, + -0.003338349750265479, + 0.03240814805030823, + -0.10219991207122803, + 0.12679052352905273, + 0.08641367405653, + -0.04284123331308365, + 0.035013142973184586, + -0.07300899922847748, + 0.09186586737632751, + 0.06711637228727341, + -0.1508287787437439, + -0.08321239799261093, + 0.03424824774265289, + 0.004776747431606054, + -0.02780088223516941, + 0.13528096675872803, + -0.026613906025886536, + 0.02791471593081951, + 0.11105003952980042, + -0.09543438255786896, + -0.0535685233771801, + -0.013050749897956848, + 0.037612125277519226, + -0.08245661854743958, + 0.060058485716581345, + 0.03796648234128952, + -0.002163125667721033, + 0.02153128571808338, + 0.09307429939508438, + -0.01862884685397148, + -0.004344776272773743, + 0.0032302397303283215, + -0.03349637985229492, + 0.016122985631227493, + -0.031178709119558334, + -0.0061846645548939705, + 0.029227789491415024, + 0.04861590266227722, + 0.04031187295913696, + -0.003569886088371277, + -0.03822077065706253, + -0.11567361652851105, + 0.018854305148124695, + 0.03079787641763687, + 0.0776229053735733, + -0.010300492867827415, + -0.007661917246878147, + -0.0339072048664093, + -0.07512915134429932, + -0.0013691673520952463, + -0.016950692981481552, + 0.07187387347221375, + -0.008953878656029701, + 0.013965497724711895, + 0.10073987394571304, + 0.04174278676509857, + -0.0016268487088382244, + -0.06149154156446457, + -0.042421549558639526, + 0.012927472591400146, + 0.05488825589418411, + -0.08420486748218536, + -0.0717003345489502, + -0.012175071984529495, + 0.02066364511847496, + -0.019151728600263596, + 0.05008373409509659, + 0.04730449616909027, + 0.03039482608437538, + 0.03697170689702034, + -0.08086833357810974, + 0.017663858830928802, + -0.12649551033973694, + -0.07574167847633362, + -0.0068981279619038105, + -0.022750329226255417, + -0.011448211967945099, + 0.07025618851184845, + -0.0037273778580129147, + 0.038678668439388275, + -0.03346174955368042, + -0.07171659171581268, + -0.08048898726701736, + 0.06606294959783554, + 0.07402089238166809, + -0.010351193137466908, + 0.03651900961995125, + 0.05470327287912369, + -0.025639459490776062, + 0.03978167474269867, + 0.06857487559318542, + 0.12023566663265228, + -0.017861492931842804, + 0.03880258649587631, + -0.06221162527799606, + 0.10736630856990814, + 0.07197622954845428, + -0.07603555917739868, + -0.08909307420253754, + -0.013390164822340012, + -0.06062651425600052, + 0.033977534621953964, + -0.020843125879764557, + -0.005121609196066856, + 0.014978908933699131, + 0.005755345802754164, + -0.0876794382929802, + -0.06285345554351807, + 0.07738222181797028, + -0.06504037976264954, + -0.01028781570494175, + -0.09509485960006714, + 0.057529449462890625, + 0.105836421251297, + 0.04114073887467384, + -0.03801435977220535, + -0.011728797107934952, + 0.056232597678899765, + -0.038454413414001465, + 0.011725552380084991, + 0.033920325338840485, + 0.038447387516498566, + -0.09217006713151932, + 0.003505860222503543, + -0.06905852258205414, + 0.04261811822652817, + -0.06036914885044098, + 0.14646580815315247, + -0.008204489946365356, + -0.056593842804431915, + -0.07322032749652863, + 0.03865882754325867, + -0.003404405666515231, + 0.03998562693595886, + 0.03483697026968002, + 0.07470151782035828, + 0.044311121106147766, + -0.0735577791929245, + 0.12321104109287262, + 0.028826171532273293, + -0.028087828308343887, + -0.05595666170120239, + -0.05587945878505707, + -0.03696545213460922, + 0.01333977933973074, + 0.0031317879911512136, + -0.09466608613729477, + -0.015701090916991234, + 0.02463914081454277, + -0.008789020590484142, + 0.05304677039384842, + 0.1365112066268921, + 0.06213065981864929, + -0.12903247773647308 + ] + }, + "p245_198.wav": { + "name": "p245", + "embedding": [ + 0.04573114216327667, + 0.08617543429136276, + -0.02858794294297695, + 0.045825034379959106, + -0.05586448311805725, + 0.015705913305282593, + -0.14525958895683289, + 0.14441385865211487, + -0.007577837444841862, + 0.12012898176908493, + -0.08360494673252106, + 0.10557852685451508, + -0.036870889365673065, + -0.17176644504070282, + -0.003762185573577881, + 0.06278923898935318, + -0.007680974900722504, + -0.053558558225631714, + -0.01869705133140087, + -0.01734916865825653, + 0.032301511615514755, + 0.03452988341450691, + 0.02038854919373989, + 0.014368487522006035, + 0.013691375963389874, + 0.06397934257984161, + -0.013846836984157562, + 0.029486337676644325, + -0.0007169125601649284, + 0.010544600896537304, + -0.010950813069939613, + 0.10610571503639221, + -0.05792625993490219, + -0.012156374752521515, + 0.03588303551077843, + -0.0003430732467677444, + -0.015359587967395782, + -0.055918894708156586, + -0.017944518476724625, + -0.02053442783653736, + -0.07188434898853302, + 0.06898166239261627, + 0.019391119480133057, + -0.020578131079673767, + 0.05303849279880524, + 0.025202907621860504, + -0.033700939267873764, + -0.030474219471216202, + -0.12311089038848877, + 0.13435962796211243, + 0.0680011734366417, + 0.02365124598145485, + -0.09387233853340149, + -0.04124774783849716, + 0.08823093771934509, + -0.010408556088805199, + -0.07647858560085297, + -0.05022794008255005, + 0.07796560227870941, + 0.1482400894165039, + -0.03063991665840149, + -0.038071926683187485, + 0.03562512621283531, + 0.11228753626346588, + 0.09648095071315765, + 0.06766235828399658, + 0.08470303565263748, + 0.12467707693576813, + -0.034814320504665375, + -0.005743354558944702, + 0.06785984337329865, + 0.059568386524915695, + 0.058094535022974014, + -0.02290506288409233, + 0.010997187346220016, + 0.0072613125666975975, + -0.011212692596018314, + -0.011183119378983974, + -0.027541745454072952, + -0.031197141855955124, + -0.013685786165297031, + 0.004870687611401081, + -0.004314986988902092, + 0.045276716351509094, + -0.03659700229763985, + 0.05031836777925491, + 0.09069882333278656, + -0.025898782536387444, + 0.08491881191730499, + 0.03384856879711151, + -0.007800151128321886, + 0.06583129614591599, + -0.11183460056781769, + -0.04853647202253342, + 0.03173079341650009, + -0.0050321235321462154, + 0.027479570358991623, + 0.08051649481058121, + 0.03731761872768402, + -0.014671975746750832, + 0.12701721489429474, + 0.028830107301473618, + -0.0015379930846393108, + 0.025718828663229942, + -0.08901875466108322, + 0.13019844889640808, + 0.07983462512493134, + -0.05251915752887726, + 0.030518166720867157, + -0.025044186040759087, + 0.023425936698913574, + 0.05075475573539734, + -0.10527608543634415, + -0.05957867577672005, + 0.03125949949026108, + 0.021248646080493927, + -0.028054513037204742, + 0.13006699085235596, + 0.010323820635676384, + 0.04855002462863922, + 0.11611439287662506, + -0.09012424200773239, + -0.07026010751724243, + -0.004726876504719257, + 0.04934266209602356, + -0.08412440121173859, + 0.06654663383960724, + 0.06829831004142761, + 0.008332595229148865, + 0.01660689152777195, + 0.07168363034725189, + 0.0018737774807959795, + 0.009136000648140907, + -0.0175600815564394, + -0.041738223284482956, + 0.0398765429854393, + -0.02146129682660103, + -0.02454327791929245, + 0.03338729590177536, + 0.019490718841552734, + 0.07131679356098175, + -0.0028607449494302273, + 0.006023178808391094, + -0.12588702142238617, + 0.018045753240585327, + 0.05641790106892586, + 0.08506707847118378, + -0.017318833619356155, + -0.02772548422217369, + -0.05546362325549126, + -0.05531419441103935, + 0.00559897581115365, + -0.0008896330837160349, + 0.06779243052005768, + -0.02197936549782753, + 0.00267136562615633, + 0.11170823127031326, + 0.017964042723178864, + 0.013985203579068184, + -0.0338824987411499, + -0.029022324830293655, + 0.0008136490359902382, + 0.05989436060190201, + -0.0837642103433609, + -0.08694818615913391, + -0.025673506781458855, + 0.05180685222148895, + -0.017752964049577713, + 0.06915580481290817, + 0.04728826880455017, + 0.0171771552413702, + -0.008071793243288994, + -0.07093185186386108, + 0.03269710764288902, + -0.07537884265184402, + -0.07543797045946121, + -0.011488859541714191, + -0.0065704891458153725, + -0.023778622969985008, + 0.06810300052165985, + 0.025751084089279175, + 0.057915762066841125, + -0.017445450648665428, + -0.08929392695426941, + -0.10142609477043152, + 0.048392679542303085, + 0.06272386014461517, + -0.03545256704092026, + 0.048410121351480484, + 0.06473474204540253, + -0.0548214390873909, + 0.027810579165816307, + 0.05268535763025284, + 0.10579436272382736, + -0.03883456066250801, + 0.011074000969529152, + -0.06225326657295227, + 0.06963302195072174, + 0.09237271547317505, + -0.09263814985752106, + -0.07666580379009247, + -0.03390684723854065, + -0.06416483223438263, + 0.022711586207151413, + -0.013901068828999996, + 0.025143830105662346, + 0.042900338768959045, + -0.02062884159386158, + -0.11979401111602783, + -0.09554505348205566, + 0.06356225907802582, + -0.07423657178878784, + -0.0008085041772574186, + -0.09670431911945343, + 0.035818152129650116, + 0.07554256170988083, + 0.02146162837743759, + -0.028629526495933533, + -0.03222452104091644, + 0.02494540624320507, + -0.021514831110835075, + 0.0033187177032232285, + 0.07233118265867233, + 0.046795666217803955, + -0.09871554374694824, + -0.017479687929153442, + -0.06945660710334778, + 0.07331635057926178, + -0.03326781094074249, + 0.1357022076845169, + 0.020543619990348816, + -0.03964664414525032, + -0.09272287040948868, + 0.02300575003027916, + 0.008829619735479355, + 0.06554687768220901, + 0.020907409489154816, + 0.05970393866300583, + 0.03596484288573265, + -0.057768143713474274, + 0.12148874998092651, + 0.05166614055633545, + -0.03916317597031593, + -0.07552072405815125, + -0.04630008339881897, + -0.056811995804309845, + 0.02795395627617836, + 0.014243417419493198, + -0.08052065968513489, + -0.012850725091993809, + 0.014679081737995148, + -0.013156717643141747, + 0.058125466108322144, + 0.13021086156368256, + 0.06566799432039261, + -0.11359727382659912 + ] + }, + "p245_159.wav": { + "name": "p245", + "embedding": [ + 0.058413147926330566, + 0.0851493775844574, + -0.01938800700008869, + 0.034967441111803055, + -0.06543193757534027, + 0.07954458892345428, + -0.1346077024936676, + 0.14574402570724487, + -0.058722496032714844, + 0.1336444765329361, + -0.0524507611989975, + 0.1330804079771042, + -0.017090793699026108, + -0.16936129331588745, + -0.04304691404104233, + 0.05415913462638855, + -0.04199191927909851, + -0.0380057618021965, + -0.05088915675878525, + -0.009263405576348305, + 0.04141171649098396, + 0.023143654689192772, + 0.037514809519052505, + 0.005587120074778795, + 0.019456548616290092, + 0.05461234226822853, + 0.001579886768013239, + 0.059790968894958496, + 0.028279192745685577, + -0.07147859036922455, + -0.023932291194796562, + 0.09955228120088577, + -0.04808495193719864, + 0.013571491464972496, + 0.042836204171180725, + -0.017299702391028404, + 0.0015348431188613176, + -0.06544842571020126, + -0.028561929240822792, + -0.005550609435886145, + -0.02939167059957981, + 0.07087188959121704, + 0.021183058619499207, + -0.012081865221261978, + 0.045907698571681976, + -0.004005631431937218, + -0.03639606386423111, + -0.04180077835917473, + -0.11158914864063263, + 0.14163821935653687, + 0.06460636854171753, + 0.01153847761452198, + -0.08199407160282135, + -0.07088756561279297, + 0.11114148050546646, + -0.028697293251752853, + -0.12238836288452148, + -0.043736644089221954, + 0.0589846596121788, + 0.18154636025428772, + -0.03646986186504364, + -0.028366971760988235, + 0.034096501767635345, + 0.11927962303161621, + 0.08460699766874313, + 0.08264227211475372, + 0.10199432820081711, + 0.104372039437294, + -0.009565104730427265, + 0.02626793645322323, + 0.04569845646619797, + 0.07976773381233215, + 0.049327000975608826, + 0.015197510831058025, + 0.03785546496510506, + -0.0021829847246408463, + 0.0028939866460859776, + -0.011847763322293758, + -0.02904510498046875, + -0.01801573485136032, + -0.013712520711123943, + 0.03416603431105614, + 0.016758522018790245, + 0.03353836387395859, + -0.039441246539354324, + 0.07412821054458618, + 0.014228343032300472, + -0.022725345566868782, + 0.052542611956596375, + 0.03700548782944679, + 0.01803748682141304, + 0.06138095632195473, + -0.0786462277173996, + -0.09951856732368469, + 0.02177383378148079, + 0.004044240340590477, + 0.0341787151992321, + 0.05324501544237137, + 0.0178073700517416, + -0.007979007437825203, + 0.11131744086742401, + 0.05885232985019684, + -0.014886860735714436, + 0.035755183547735214, + -0.08536800742149353, + 0.1259189397096634, + 0.07854315638542175, + -0.01486610621213913, + 0.05409734696149826, + -0.0419207364320755, + 0.06442134082317352, + 0.05710768699645996, + -0.12515130639076233, + -0.09122486412525177, + 0.026567600667476654, + 0.0212209802120924, + -0.01835457980632782, + 0.12408091127872467, + -0.003833891125395894, + 0.051880791783332825, + 0.09631906449794769, + -0.07687751203775406, + -0.04282434284687042, + -0.002761050360277295, + 0.05375911295413971, + -0.06647136807441711, + 0.058102138340473175, + 0.037846677005290985, + -0.0060182781890034676, + 0.003675130195915699, + 0.0896177589893341, + -0.011278442107141018, + 0.002197357127442956, + 0.03172638639807701, + -0.06291276216506958, + 0.025404684245586395, + -0.021125055849552155, + -0.010551205836236477, + 0.05474591255187988, + 0.04287055879831314, + 0.056560762226581573, + -0.01729593239724636, + -0.025317426770925522, + -0.1177828311920166, + 0.0031550980638712645, + 0.028308046981692314, + 0.08317138254642487, + -0.007012281566858292, + -0.017009031027555466, + -0.03824325650930405, + -0.049531158059835434, + 0.015359850600361824, + -0.008112877607345581, + 0.08716776967048645, + -0.01764707639813423, + 0.013395133428275585, + 0.08997654914855957, + 0.013790569268167019, + 0.013510936871170998, + -0.04022020846605301, + -0.016576815396547318, + 0.013002024032175541, + 0.06430725008249283, + -0.06638894975185394, + -0.06313949823379517, + 0.0073865256272256374, + 0.04728049784898758, + -0.025099273771047592, + 0.057141780853271484, + 0.05243726447224617, + 0.01260291412472725, + 0.03382009267807007, + -0.05118957534432411, + 0.019361114129424095, + -0.09620572626590729, + -0.06528978794813156, + 0.007228863891214132, + -0.018684368580579758, + -0.03585337847471237, + 0.06467610597610474, + 0.04336762800812721, + 0.06281490623950958, + -0.0077796257100999355, + -0.0794244110584259, + -0.09477965533733368, + 0.05507725477218628, + 0.055404528975486755, + 0.00026303762570023537, + 0.040793463587760925, + 0.05808216333389282, + -0.015401584096252918, + 0.06726420670747757, + 0.0677766501903534, + 0.08394092321395874, + -0.025968968868255615, + -0.004199789837002754, + -0.08528822660446167, + 0.07715778052806854, + 0.0974041074514389, + -0.09428833425045013, + -0.08270764350891113, + -0.019037652760744095, + -0.07656624913215637, + 0.03579473868012428, + -0.03251129388809204, + 0.009883809834718704, + 0.07214915007352829, + -0.01128344889730215, + -0.12907877564430237, + -0.09040738642215729, + 0.10556988418102264, + -0.09632175415754318, + 0.0028497972525656223, + -0.07180330157279968, + 0.03239740803837776, + 0.1037566214799881, + 0.015980158001184464, + -0.025148779153823853, + -0.019905555993318558, + 0.0505656898021698, + -0.04484933614730835, + 0.004202523268759251, + 0.052196599543094635, + 0.0269288569688797, + -0.10545407235622406, + 0.0031444099731743336, + -0.07538380473852158, + 0.027356499806046486, + -0.0340481661260128, + 0.15492624044418335, + 0.001511018956080079, + -0.042291343212127686, + -0.08816663175821304, + 0.044423576444387436, + -0.036082275211811066, + 0.0653405711054802, + 0.032282911241054535, + 0.08144906908273697, + 0.05112887918949127, + -0.07640519738197327, + 0.12074606120586395, + 0.05320623517036438, + -0.05867772549390793, + -0.0895145982503891, + -0.04446505755186081, + -0.04716450348496437, + 0.03641282767057419, + 0.007578905206173658, + -0.0761210173368454, + -0.023382557556033134, + 0.018243834376335144, + -0.01702934131026268, + 0.06948816776275635, + 0.12938576936721802, + 0.05923928692936897, + -0.10708929598331451 + ] + }, + "p245_320.wav": { + "name": "p245", + "embedding": [ + 0.025520801544189453, + 0.07877252995967865, + -0.003103757742792368, + 0.033836882561445236, + -0.08043865859508514, + 0.0457850843667984, + -0.11211296170949936, + 0.11164680123329163, + -0.027138078585267067, + 0.11066503077745438, + -0.09568971395492554, + 0.0965370386838913, + -0.016866173595190048, + -0.19909408688545227, + -0.017862588167190552, + 0.05212496221065521, + -0.049090828746557236, + -0.02265555039048195, + -0.02733519673347473, + -0.04589300975203514, + 0.04851827770471573, + 0.055428534746170044, + 0.050118379294872284, + 0.0025774845853447914, + 0.043658867478370667, + 0.05856213718652725, + 0.015148472040891647, + 0.0464465357363224, + 0.02517641894519329, + -0.043575722724199295, + -0.05331163853406906, + 0.1046111211180687, + -0.009041492827236652, + -0.012373365461826324, + 0.032275933772325516, + -0.019374284893274307, + 0.007885291241109371, + -0.06459587812423706, + -0.03704747557640076, + 0.033120665699243546, + -0.05432902276515961, + 0.07299421727657318, + 0.06089409440755844, + -0.016993261873722076, + 0.037817858159542084, + 0.009072830900549889, + -0.03586292266845703, + -0.055808745324611664, + -0.12454576790332794, + 0.1887241005897522, + 0.07881983369588852, + -0.012671553529798985, + -0.057992804795503616, + -0.06267143785953522, + 0.12205424904823303, + 0.012421952560544014, + -0.10446374118328094, + -0.016401691362261772, + 0.09666335582733154, + 0.15409152209758759, + -0.013929875567555428, + -0.01580873876810074, + 0.036068208515644073, + 0.12577728927135468, + -0.005117212422192097, + 0.09175033122301102, + 0.05273692309856415, + 0.08473008871078491, + -0.006884884089231491, + 0.04424678534269333, + 0.05382002890110016, + 0.07339969277381897, + -0.029947789385914803, + -0.03862817957997322, + -0.004522421862930059, + 0.0015955782728269696, + -0.05324070155620575, + 0.030611634254455566, + -0.009906492196023464, + 0.00014639180153608322, + -0.003053084947168827, + -0.008608316071331501, + 0.009825386106967926, + -0.04046602174639702, + -0.028976455330848694, + 0.05257901921868324, + -0.004623483866453171, + 0.031562693417072296, + 0.07770092785358429, + 0.004387503489851952, + -0.014716900885105133, + 0.04621315374970436, + -0.028419988229870796, + -0.10382391512393951, + 0.003904375247657299, + 0.022020693868398666, + 0.011379226110875607, + 0.09337257593870163, + 0.0345635712146759, + -0.04893741384148598, + 0.13333404064178467, + 0.054878875613212585, + -0.004535716027021408, + 0.03689620643854141, + -0.09091217815876007, + 0.09812438488006592, + 0.09628951549530029, + 0.002807183191180229, + 0.07539047300815582, + -0.042548783123493195, + 0.10629554837942123, + 0.05668673291802406, + -0.14158661663532257, + -0.04556601867079735, + 0.012369860894978046, + 0.02958417497575283, + -0.001235730480402708, + 0.10671583563089371, + -0.01761295460164547, + 0.008461223915219307, + 0.11134716868400574, + -0.09489066898822784, + -0.06414701044559479, + -0.034735988825559616, + 0.05360417813062668, + -0.06968238949775696, + 0.031240612268447876, + 0.06621511280536652, + -0.03984420374035835, + 0.01821187511086464, + 0.04201790690422058, + -0.031000137329101562, + 0.022071823477745056, + 0.03235841915011406, + -0.05499796196818352, + 0.03371907398104668, + -0.0667421743273735, + 0.011573335155844688, + 0.08141951262950897, + 0.051439594477415085, + 0.030979935079813004, + 0.015057777054607868, + -0.04582558944821358, + -0.09321261197328568, + 0.016480151563882828, + 0.017121383920311928, + 0.07412862777709961, + 0.0035083144903182983, + -0.025581354275345802, + -0.062389880418777466, + -0.0835554450750351, + 0.025608256459236145, + -0.004866618663072586, + 0.07624217122793198, + -0.02494824305176735, + 0.0010127227287739515, + 0.056198667734861374, + 0.04309277981519699, + -0.029178284108638763, + -0.06340880692005157, + -0.07106196880340576, + 0.01193341612815857, + 0.02568979375064373, + -0.07379039376974106, + -0.05820883810520172, + -0.008504355326294899, + 0.022267483174800873, + -0.041610024869441986, + -0.0005361400544643402, + 0.011520364321768284, + 0.023507241159677505, + 0.04325632005929947, + -0.08259670436382294, + 0.03512035310268402, + -0.09949750453233719, + -0.04365795850753784, + -0.007120637688785791, + 0.013626787811517715, + -0.027239196002483368, + 0.08776382356882095, + 0.005865401588380337, + 0.014887961558997631, + 0.006898198276758194, + -0.03954825550317764, + -0.03754882887005806, + 0.06032465398311615, + 0.06547810137271881, + 0.027362583205103874, + 0.0935697853565216, + 0.062348753213882446, + -0.05896969139575958, + 0.057689473032951355, + 0.040895912796258926, + 0.09860705584287643, + -0.006726451683789492, + 0.000279892235994339, + -0.04421014338731766, + 0.06964688003063202, + 0.05661206692457199, + -0.09451404958963394, + -0.0817442461848259, + -0.048741914331912994, + -0.06386011093854904, + 0.07009054720401764, + 0.0011014719493687153, + -0.022415097802877426, + -0.017177147790789604, + -0.007621739991009235, + -0.07507762312889099, + -0.05295128375291824, + 0.04943493753671646, + -0.025051366537809372, + -0.03307938948273659, + -0.07187759131193161, + 0.04678461700677872, + 0.12320798635482788, + 0.03921324387192726, + -0.009760253131389618, + -0.02440573461353779, + 0.04600626975297928, + -0.06350357830524445, + -0.00517002958804369, + 0.049542710185050964, + 0.015346411615610123, + -0.08599340915679932, + 0.01961633935570717, + -0.0815107598900795, + 0.07330404222011566, + -0.05598717927932739, + 0.1525687724351883, + 0.021213382482528687, + -0.04798867553472519, + -0.0737653523683548, + 0.0767839252948761, + -0.01707714982330799, + 0.029994748532772064, + 0.050640784204006195, + 0.012454717420041561, + 0.051881421357393265, + -0.07105045020580292, + 0.11011287569999695, + 0.006932501681149006, + -0.04478736221790314, + -0.04011773318052292, + -0.005451499484479427, + -0.023584691807627678, + 0.0030439498368650675, + 0.001462601125240326, + -0.07537886500358582, + -0.03603881224989891, + 0.026913758367300034, + -0.02891014888882637, + 0.07795421779155731, + 0.13605740666389465, + 0.07035727053880692, + -0.09568221122026443 + ] + }, + "p245_267.wav": { + "name": "p245", + "embedding": [ + 0.04089002311229706, + 0.08040937781333923, + 0.05000807344913483, + -0.0070318905636668205, + 0.008723873645067215, + 0.07464659214019775, + -0.11834269762039185, + 0.1018214225769043, + -0.04301316291093826, + 0.13808655738830566, + -0.10668472945690155, + 0.06459633260965347, + 0.013080033473670483, + -0.16938516497612, + -0.0646447241306305, + 0.017802206799387932, + -0.04766518250107765, + 0.039930008351802826, + -0.03393450751900673, + -0.010385828092694283, + 0.062403604388237, + 0.057696856558322906, + 0.04255995899438858, + -0.061506301164627075, + 0.04749395698308945, + 0.009770615957677364, + 0.03562210500240326, + 0.07580393552780151, + 0.050825536251068115, + -0.08106863498687744, + -0.0231953002512455, + 0.13198384642601013, + 0.0015208730474114418, + 0.030939212068915367, + 0.04094603657722473, + 0.00992706511169672, + 0.031001130118966103, + -0.04581299051642418, + -0.031974270939826965, + 0.045957040041685104, + -0.013186722993850708, + 0.057713862508535385, + 0.035606760531663895, + 0.01743660680949688, + 0.03220895677804947, + 0.03501259535551071, + -0.012407653033733368, + -0.06057533621788025, + -0.08138827979564667, + 0.17724911868572235, + 0.026143399998545647, + -0.0017656413838267326, + -0.07492661476135254, + -0.08444344252347946, + 0.10468797385692596, + -0.013748415745794773, + -0.09538333117961884, + 0.017244767397642136, + 0.09012005478143692, + 0.17713619768619537, + 0.003649749793112278, + -0.041360899806022644, + 0.03068859502673149, + 0.08699106425046921, + -0.037116240710020065, + 0.07794386893510818, + 0.07276590168476105, + 0.039734940975904465, + 0.06012583523988724, + 0.05856478214263916, + -0.012993717566132545, + 0.06079424172639847, + -0.022939421236515045, + -0.06243829429149628, + 0.004789378494024277, + 0.004343423526734114, + -0.06441061198711395, + 0.033424824476242065, + -0.015343820676207542, + 0.025518257170915604, + 0.01456561591476202, + -0.01243472658097744, + 0.016527898609638214, + -0.015675794333219528, + -0.05754144489765167, + 0.016180193051695824, + -0.06933006644248962, + 0.015319699421525002, + 0.07244564592838287, + 0.026999380439519882, + 0.03303860127925873, + 0.014041176997125149, + -0.011146186850965023, + -0.13782307505607605, + -0.01228814572095871, + 0.022822659462690353, + -0.033740848302841187, + 0.04843050241470337, + 0.04773620888590813, + -0.06402254104614258, + 0.10926861315965652, + 0.019560925662517548, + -0.011908043175935745, + 0.02584703266620636, + -0.11332231760025024, + 0.04632158577442169, + 0.09927937388420105, + 0.028471410274505615, + 0.0660373866558075, + -0.0635748878121376, + 0.08980832993984222, + 0.06897356361150742, + -0.156078040599823, + -0.06994686275720596, + 0.034303344786167145, + 0.013385571539402008, + 0.055527638643980026, + 0.07519859075546265, + -0.009599572978913784, + -0.03178717568516731, + 0.05675498768687248, + -0.08693210780620575, + -0.04817034676671028, + -0.041984155774116516, + 0.05391543358564377, + -0.04625561088323593, + 0.03939437121152878, + 0.01379892136901617, + -0.032152507454156876, + -0.03476390242576599, + 0.037203822284936905, + -0.024082684889435768, + 0.04144737496972084, + -0.02462238073348999, + -0.027651842683553696, + 0.033668678253889084, + -0.08139661699533463, + 0.03142492100596428, + 0.035938624292612076, + 0.07558830082416534, + 0.031962353736162186, + 0.038796812295913696, + -0.10666034370660782, + -0.060587868094444275, + -0.031992703676223755, + 0.025321437045931816, + 0.02320745959877968, + -0.010833362117409706, + -0.02502829022705555, + -0.07051452994346619, + -0.05833090469241142, + 0.058272723108530045, + -0.02111818641424179, + 0.09312470257282257, + 0.041767701506614685, + -0.004681993275880814, + 0.09134726226329803, + -0.029596125707030296, + -0.023587215691804886, + -0.05084984377026558, + -0.027825910598039627, + 0.012946934439241886, + -0.01631007343530655, + -0.05537319555878639, + -0.02790706604719162, + 0.022779371589422226, + -0.025850091129541397, + -0.023266222327947617, + -0.021136850118637085, + 0.007566055282950401, + 0.020570658147335052, + 0.06101328134536743, + -0.08109825104475021, + -0.01259965542703867, + -0.12628933787345886, + -0.03314174339175224, + 0.006773616187274456, + -0.006627519614994526, + -0.019430387765169144, + 0.10877761989831924, + 0.014117586426436901, + -0.027515683323144913, + 0.005301102064549923, + -0.06428813934326172, + -0.026269692927598953, + 0.06154746562242508, + 0.07906775176525116, + 0.03647599369287491, + 0.04911907762289047, + 0.03478210046887398, + -0.018287887796759605, + 0.09326697885990143, + 0.07508493959903717, + 0.06459780037403107, + 0.026122933253645897, + -0.003883889876306057, + -0.04503998905420303, + 0.09965449571609497, + 0.035454824566841125, + -0.047789111733436584, + -0.11980824172496796, + -0.020889632403850555, + -0.09032846987247467, + 0.06199394911527634, + 0.010868974961340427, + -0.002025547670200467, + -0.019454307854175568, + -0.013309402391314507, + -0.08036572486162186, + -0.028606118634343147, + 0.047644853591918945, + -0.03588501363992691, + -0.0644679144024849, + -0.033684246242046356, + 0.05091279372572899, + 0.08927328884601593, + 0.034298285841941833, + 0.019498834386467934, + -0.016765590757131577, + 0.03656992316246033, + -0.12758934497833252, + -0.06662915647029877, + -0.011847520247101784, + -0.04146898165345192, + -0.05854378640651703, + 0.05294590815901756, + -0.06130136176943779, + 0.06894461810588837, + -0.0754314661026001, + 0.11578963696956635, + -0.004171848297119141, + -0.09924408793449402, + -0.05959136411547661, + 0.053625643253326416, + -0.04109543561935425, + 0.0036542071029543877, + 0.06296193599700928, + 0.013312599621713161, + 0.0511101633310318, + -0.0864224061369896, + 0.0662599727511406, + -0.0013344483450055122, + -0.0021012951619923115, + -0.06593005359172821, + -0.05514055863022804, + -0.00924589578062296, + -0.013202570378780365, + -0.024397898465394974, + -0.04346625134348869, + 0.0026541510596871376, + 0.01563926972448826, + -0.013218116015195847, + 0.04669560492038727, + 0.09310673177242279, + 0.007529200986027718, + -0.12247913330793381 + ] + }, + "p245_211.wav": { + "name": "p245", + "embedding": [ + 0.05561555176973343, + 0.07476101815700531, + -0.052211008965969086, + 0.026955675333738327, + -0.05322640389204025, + 0.03661806508898735, + -0.1373979151248932, + 0.1361597180366516, + -0.012683428823947906, + 0.1356649398803711, + -0.0324353352189064, + 0.12370516359806061, + 0.006509109400212765, + -0.17643816769123077, + -0.013529859483242035, + 0.03817180171608925, + -0.05228463560342789, + -0.037346456199884415, + -0.06533680856227875, + -0.03281663358211517, + 0.04387222230434418, + 0.050544463098049164, + 0.012072822079062462, + -0.04519437626004219, + 0.029870914295315742, + 0.06636123359203339, + -0.0035710344091057777, + 0.022054746747016907, + 0.005078745074570179, + -0.07734794914722443, + -0.031176943331956863, + 0.08020225167274475, + -0.06060321256518364, + 0.0051995860412716866, + 0.03883940726518631, + -0.036200523376464844, + -0.008651331067085266, + -0.05984622240066528, + -0.03858014941215515, + 0.036591291427612305, + -0.04583512246608734, + 0.08515188097953796, + 0.034839026629924774, + -0.01952531933784485, + 0.048758406192064285, + 0.017685972154140472, + -0.009091068059206009, + -0.053028590977191925, + -0.08681647479534149, + 0.18202757835388184, + 0.07922704517841339, + -0.0011413302272558212, + -0.07443785667419434, + -0.04456184059381485, + 0.08431188017129898, + -0.010584240779280663, + -0.11034146696329117, + -0.04460762068629265, + 0.0503133088350296, + 0.13076087832450867, + -0.036837439984083176, + -0.03333016484975815, + 0.04087750241160393, + 0.11446449160575867, + 0.08727821707725525, + 0.05246981978416443, + 0.09329789131879807, + 0.12436968088150024, + -0.015837140381336212, + 0.03008127771317959, + 0.057855479419231415, + 0.08494603633880615, + 0.06157143414020538, + -0.008879698812961578, + 0.04087744653224945, + -0.010015686973929405, + -0.009288820438086987, + -0.06433969736099243, + -0.02304484322667122, + -0.005173154175281525, + 0.02611020766198635, + 0.021895278245210648, + 0.027947112917900085, + 0.06532160937786102, + -0.03830118477344513, + 0.04961472749710083, + 0.06292508542537689, + -0.048523757606744766, + 0.046999916434288025, + 0.033453889191150665, + 0.026609007269144058, + 0.05786164849996567, + -0.11185987293720245, + -0.09477086365222931, + 0.04972974210977554, + 0.00779179111123085, + 0.01772131398320198, + 0.05159105360507965, + 0.05798032879829407, + -0.01643475331366062, + 0.12167476117610931, + 0.038890138268470764, + -0.034270405769348145, + 0.012571039609611034, + -0.08048106729984283, + 0.1291421353816986, + 0.0926733911037445, + -0.03286352753639221, + 0.043652333319187164, + -0.061568863689899445, + 0.07348719239234924, + 0.02780885249376297, + -0.13319814205169678, + -0.0759279727935791, + 0.04850144684314728, + -0.012471156194806099, + -0.01813753880560398, + 0.13866285979747772, + 0.009152228012681007, + 0.06203901022672653, + 0.10936550796031952, + -0.08230889588594437, + -0.04436946660280228, + -0.027178756892681122, + 0.06267385929822922, + -0.10013187676668167, + 0.06900951266288757, + 0.05117321386933327, + -0.01755327172577381, + 0.02061193250119686, + 0.0841592475771904, + -0.005175595637410879, + 0.0025618202053010464, + -0.02132461965084076, + -0.006105925887823105, + 0.040046803653240204, + -0.005014043301343918, + -0.014901263639330864, + 0.02035597339272499, + 0.017970576882362366, + 0.055543072521686554, + -0.028462860733270645, + -0.026065878570079803, + -0.119926318526268, + 0.03612257540225983, + 0.0034357786644250154, + 0.07882676273584366, + -0.023357613012194633, + 0.0021365750581026077, + -0.0362718403339386, + -0.07706248760223389, + -0.0027817520312964916, + -0.019782818853855133, + 0.060455694794654846, + -0.008558814413845539, + -0.004156298004090786, + 0.12639448046684265, + 0.02850279211997986, + 0.02800658345222473, + -0.0064366040751338005, + -0.017596498131752014, + 0.017183849588036537, + 0.05843152850866318, + -0.08233487606048584, + -0.07428313791751862, + -0.02307450771331787, + -0.0003148764371871948, + -0.00482788123190403, + 0.055707767605781555, + 0.033807434141635895, + 0.021727226674556732, + 0.02055608108639717, + -0.08225865662097931, + 0.003446632996201515, + -0.0926632434129715, + -0.05106983706355095, + -0.012522444128990173, + -0.03198954463005066, + -0.05880741775035858, + 0.080826535820961, + 0.007645905017852783, + 0.047904014587402344, + -0.047136273235082626, + -0.06485400348901749, + -0.06541036814451218, + 0.04404671490192413, + 0.06206110119819641, + -0.03320083022117615, + 0.009351923130452633, + 0.05454473942518234, + 0.0026818979531526566, + 0.011116365902125835, + 0.07128830254077911, + 0.0951414704322815, + -0.015848718583583832, + 0.008449976332485676, + -0.06262824684381485, + 0.13949379324913025, + 0.06430038064718246, + -0.06512638181447983, + -0.07184892892837524, + -0.022798646241426468, + -0.07825500518083572, + 0.003076508641242981, + -0.022325653582811356, + 0.02487379126250744, + 0.04365435242652893, + 0.013782620429992676, + -0.09706795960664749, + -0.08698441088199615, + 0.0768311470746994, + -0.08895616978406906, + -0.005962833762168884, + -0.09124652296304703, + 0.03530086204409599, + 0.11600761115550995, + 0.039607878774404526, + -0.03638194501399994, + -0.03423493728041649, + 0.03955703228712082, + -0.017453700304031372, + 0.027179241180419922, + 0.04660420119762421, + 0.06128426268696785, + -0.11945350468158722, + -0.013160161674022675, + -0.0415797233581543, + 0.0394231341779232, + -0.04532665014266968, + 0.11346608400344849, + 0.03232453763484955, + -0.0451977513730526, + -0.09722869098186493, + 0.056215204298496246, + -0.00927736982703209, + 0.0627959594130516, + 0.02523762360215187, + 0.06942947208881378, + 0.06505091488361359, + -0.07707616686820984, + 0.10791420191526413, + 0.05018983408808708, + -0.029584821313619614, + -0.07997827231884003, + -0.06634309887886047, + -0.016911637037992477, + 0.048534516245126724, + 0.036889348179101944, + -0.07415550947189331, + -0.010050700977444649, + 0.0272953100502491, + -0.012888816185295582, + 0.057177603244781494, + 0.11965953558683395, + 0.06349019706249237, + -0.11336217820644379 + ] + }, + "p245_165.wav": { + "name": "p245", + "embedding": [ + 0.03967594727873802, + 0.11585744470357895, + -0.008639282546937466, + 0.020129162818193436, + -0.06774327158927917, + 0.0625583678483963, + -0.11016085743904114, + 0.15146467089653015, + -0.04860122501850128, + 0.13405165076255798, + -0.08476852625608444, + 0.12267416715621948, + -0.04478985071182251, + -0.16407841444015503, + -0.03766641393303871, + 0.06088217720389366, + -0.040658533573150635, + -0.024455390870571136, + -0.037225570529699326, + -0.025911470875144005, + 0.02810397557914257, + 0.018418874591588974, + 0.02706461399793625, + 0.023228801786899567, + 0.02667958103120327, + 0.06969434022903442, + 0.00436252448707819, + 0.05329588055610657, + 0.025567099452018738, + -0.03724467381834984, + -0.04781217500567436, + 0.10602779686450958, + -0.049003686755895615, + 0.02519882097840309, + 0.06171729415655136, + -0.013418648391962051, + 0.0024574301205575466, + -0.04842984676361084, + -0.00952373631298542, + -0.0033513978123664856, + -0.036917783319950104, + 0.07925011217594147, + 0.023896804079413414, + 0.0006462677265517414, + 0.03923942893743515, + 0.036784667521715164, + -0.012810589745640755, + -0.04202618822455406, + -0.10374557226896286, + 0.15303929150104523, + 0.07213838398456573, + -0.026199575513601303, + -0.0721045583486557, + -0.0621412992477417, + 0.10370802134275436, + -0.0309724360704422, + -0.11170091480016708, + -0.04647126793861389, + 0.08283820748329163, + 0.13622578978538513, + -0.028179805725812912, + -0.034623660147190094, + 0.0015617292374372482, + 0.13400229811668396, + 0.044177573174238205, + 0.09309019148349762, + 0.05910392850637436, + 0.1103207916021347, + -0.035859934985637665, + 0.030682718381285667, + 0.0537598691880703, + 0.05562162399291992, + 0.03778868168592453, + -0.008430171757936478, + 0.022472640499472618, + -0.014264455996453762, + -0.0016798058059066534, + 0.02416589856147766, + -0.03488977998495102, + -0.023770660161972046, + -0.037995595484972, + 0.01511642336845398, + -0.015401272103190422, + -0.0016783864703029394, + -0.012259754352271557, + 0.07910149544477463, + 0.027622051537036896, + -0.0008163368329405785, + 0.0767674595117569, + 0.04940398782491684, + -0.011513065546751022, + 0.06224565953016281, + -0.08076849579811096, + -0.07767949253320694, + 0.020146973431110382, + -0.010552426800131798, + 0.02722552977502346, + 0.07289230078458786, + 0.026804868131875992, + -0.004942950326949358, + 0.11428235471248627, + 0.06732738763093948, + -0.006283899303525686, + 0.03265165910124779, + -0.09857062995433807, + 0.1445649266242981, + 0.0813715010881424, + -0.02178370952606201, + 0.04157993942499161, + -0.03250889480113983, + 0.07710427790880203, + 0.06216999143362045, + -0.12639182806015015, + -0.07282953709363937, + 0.0034495964646339417, + 0.008697226643562317, + -0.030725397169589996, + 0.08657179772853851, + -0.025908906012773514, + 0.030586540699005127, + 0.09950512647628784, + -0.07126377522945404, + -0.055402129888534546, + -0.019063675776124, + 0.034799061715602875, + -0.0755910575389862, + 0.04377538710832596, + 0.053865931928157806, + -0.0034394979011267424, + 0.02299828827381134, + 0.0909913033246994, + 0.0041182758286595345, + 0.0004711151123046875, + 0.05070638656616211, + -0.057587310671806335, + 0.009657394140958786, + -0.016324883326888084, + 0.004814613610506058, + 0.046114277094602585, + 0.056198835372924805, + 0.05687164515256882, + -0.0037865196354687214, + -0.0046349624171853065, + -0.09198613464832306, + 0.008206354454159737, + 0.0464017391204834, + 0.061579763889312744, + -0.011508050374686718, + -0.02121482416987419, + -0.0332116037607193, + -0.06690096855163574, + -0.0002730429987423122, + 0.006457747425884008, + 0.0766737163066864, + -0.04605969041585922, + 0.004488477949053049, + 0.11394591629505157, + 0.03200026601552963, + -0.015776630491018295, + -0.07389393448829651, + -0.025715522468090057, + 0.006654556840658188, + 0.048764050006866455, + -0.07982741296291351, + -0.07480873912572861, + 0.005237420555204153, + 0.03231421113014221, + -0.022735368460416794, + 0.06632789224386215, + 0.04875322803854942, + 0.008680691942572594, + 0.0384768545627594, + -0.06221424788236618, + 0.024033470079302788, + -0.093968465924263, + -0.05359342694282532, + -0.01922314614057541, + -0.022807035595178604, + -0.025805925950407982, + 0.06608009338378906, + 0.015927810221910477, + 0.05658772215247154, + 0.016445299610495567, + -0.08115064352750778, + -0.07686804980039597, + 0.07033812999725342, + 0.06715753674507141, + -0.0018075741827487946, + 0.06631970405578613, + 0.06917589157819748, + -0.047905974090099335, + 0.0630243793129921, + 0.06990984827280045, + 0.09791704267263412, + -0.03824529051780701, + 0.02791735529899597, + -0.0748954564332962, + 0.054023947566747665, + 0.07346709817647934, + -0.12069100141525269, + -0.09216158837080002, + -0.039735909551382065, + -0.043230753391981125, + 0.037867799401283264, + -0.029833585023880005, + 0.0035556077491492033, + 0.03954966366291046, + -0.0061808316968381405, + -0.08369222283363342, + -0.09028251469135284, + 0.09089213609695435, + -0.07503612339496613, + 0.00924255046993494, + -0.06325525790452957, + 0.039707720279693604, + 0.08755951374769211, + 0.03303712233901024, + -0.034828610718250275, + -0.0016722469590604305, + 0.05430574342608452, + -0.031120292842388153, + -0.010548003017902374, + 0.037798333913087845, + 0.0297946035861969, + -0.08675667643547058, + 0.014282351359724998, + -0.06989174336194992, + 0.07082843780517578, + -0.038404837250709534, + 0.16890528798103333, + 0.0020773860160261393, + -0.04848208278417587, + -0.07494451105594635, + 0.029797043651342392, + -0.03563976287841797, + 0.03672938048839569, + 0.035480476915836334, + 0.05658628046512604, + 0.014400872401893139, + -0.04764615744352341, + 0.14371421933174133, + 0.033516138792037964, + -0.061540957540273666, + -0.059838876128196716, + -0.0389665886759758, + -0.04797103628516197, + 0.02227701246738434, + 0.030173322185873985, + -0.09946665167808533, + -0.025316527113318443, + 0.011935308575630188, + -0.03308209031820297, + 0.08439870923757553, + 0.14766719937324524, + 0.08619862049818039, + -0.1089140772819519 + ] + }, + "p245_356.wav": { + "name": "p245", + "embedding": [ + 0.04086939990520477, + 0.08951200544834137, + -0.026374438777565956, + 0.03856663405895233, + -0.06730605661869049, + 0.0873529389500618, + -0.10553879290819168, + 0.11942847073078156, + -0.06356222182512283, + 0.151752769947052, + -0.06456775963306427, + 0.10343065857887268, + -0.03862103819847107, + -0.16911888122558594, + -0.03482303395867348, + 0.05769289284944534, + -0.06591907143592834, + -0.043339088559150696, + -0.06732074916362762, + -0.022766653448343277, + 0.03342362493276596, + 0.040194205939769745, + 0.01719977706670761, + 0.0039030457846820354, + 0.03261745721101761, + 0.06683658808469772, + -0.014979502186179161, + 0.030012287199497223, + 0.008016941137611866, + -0.08423100411891937, + -0.04582330584526062, + 0.10858146101236343, + -0.04576100409030914, + 0.025592606514692307, + 0.032217759639024734, + 0.0006537479348480701, + 0.004875914193689823, + -0.06298317015171051, + -0.019257143139839172, + 0.0005593490786850452, + -0.049346521496772766, + 0.07798685878515244, + 0.025978393852710724, + 0.0004016320453956723, + 0.02908991277217865, + -0.006298460997641087, + -0.033271800726652145, + -0.05221286416053772, + -0.0937284529209137, + 0.18031814694404602, + 0.07851989567279816, + -0.012121371924877167, + -0.05992363393306732, + -0.07952374219894409, + 0.10676153004169464, + -0.005858476273715496, + -0.14307348430156708, + -0.053222015500068665, + 0.07925372570753098, + 0.16216279566287994, + -0.020424779504537582, + -0.018776120617985725, + 0.0074111116118729115, + 0.1364484429359436, + 0.04707653820514679, + 0.09105082601308823, + 0.07038827240467072, + 0.10942619293928146, + 0.0017424310790374875, + 0.02338968962430954, + 0.07447397708892822, + 0.05923231691122055, + 0.06232087314128876, + -0.009397023357450962, + 0.03479659929871559, + -0.016016103327274323, + -0.015911351889371872, + -0.0009062483441084623, + -0.03415266424417496, + -0.023133162409067154, + -0.021057307720184326, + 0.005176630802452564, + 0.009483702480793, + 0.010469830594956875, + -0.01430918462574482, + 0.04501991719007492, + 0.034592047333717346, + -0.02202957309782505, + 0.06608723104000092, + 0.048086170107126236, + 0.009918369352817535, + 0.060980021953582764, + -0.06518412381410599, + -0.08466757833957672, + 0.02336093969643116, + 0.015045255422592163, + 0.026683226227760315, + 0.06649713963270187, + 0.033746909350156784, + -0.019483964890241623, + 0.1067667081952095, + 0.03334623947739601, + -0.002106674946844578, + 0.01401473954319954, + -0.10387741029262543, + 0.13408410549163818, + 0.08653315901756287, + -0.00869319960474968, + 0.04028468579053879, + -0.029592256993055344, + 0.08483413606882095, + 0.07535626739263535, + -0.14697687327861786, + -0.06821461021900177, + 0.01582537591457367, + -0.01609744317829609, + -0.02322383224964142, + 0.10218681395053864, + 0.0051074945367872715, + 0.022427907213568687, + 0.1023264229297638, + -0.09726029634475708, + -0.04470622539520264, + -0.01842515729367733, + 0.04056418687105179, + -0.08730257302522659, + 0.04035990685224533, + 0.04516203701496124, + -0.01682428829371929, + 0.018705403432250023, + 0.08134029805660248, + -0.008416708558797836, + 0.00244336761534214, + 0.02857125736773014, + -0.06176706403493881, + 0.027274195104837418, + -0.02988981455564499, + 0.0030025558080524206, + 0.05451573058962822, + 0.03475082665681839, + 0.054191768169403076, + -0.029301758855581284, + -0.019413653761148453, + -0.0967000424861908, + 0.01952831819653511, + 0.030948691070079803, + 0.06650516390800476, + -0.01649133302271366, + 0.0050955163314938545, + -0.026191718876361847, + -0.08118981868028641, + 0.03647289425134659, + -0.025159452110528946, + 0.08692571520805359, + -0.013840983621776104, + -0.014536605216562748, + 0.12050910294055939, + 0.02689511328935623, + -0.015167511999607086, + -0.06247050315141678, + -0.026502516120672226, + 0.021901793777942657, + 0.06385867297649384, + -0.08855246007442474, + -0.05560731887817383, + 0.017624270170927048, + 0.02216988615691662, + -0.01880536414682865, + 0.05033149570226669, + 0.046090055257081985, + 0.01750963181257248, + 0.028113212436437607, + -0.05739482492208481, + 0.011944243684411049, + -0.09569239616394043, + -0.05275866016745567, + 0.000302922329865396, + -0.054119616746902466, + -0.017465630546212196, + 0.08965660631656647, + 0.014668621122837067, + 0.02036041021347046, + -0.01609942875802517, + -0.08675159513950348, + -0.06559126079082489, + 0.07725353538990021, + 0.05012989044189453, + 0.003195937257260084, + 0.0420549213886261, + 0.06380848586559296, + -0.02766098827123642, + 0.03873578831553459, + 0.0595577135682106, + 0.11881475150585175, + -0.029372617602348328, + 0.024797804653644562, + -0.07991312444210052, + 0.08599613606929779, + 0.07942035794258118, + -0.09733115136623383, + -0.08269278705120087, + -0.03404483199119568, + -0.05191946402192116, + 0.04673101380467415, + -0.041733354330062866, + -0.00048792490269988775, + 0.03443985804915428, + -0.0145350880920887, + -0.10161145031452179, + -0.0894225686788559, + 0.11258187890052795, + -0.07217399775981903, + -0.011903337202966213, + -0.08650445938110352, + 0.0452762097120285, + 0.0853215903043747, + 0.0592464804649353, + -0.03526864945888519, + 0.027561983093619347, + 0.07129386067390442, + -0.05256011337041855, + 0.007490691263228655, + 0.05711611732840538, + 0.014849871397018433, + -0.09769967198371887, + -0.012917572632431984, + -0.07902374863624573, + 0.05670669674873352, + -0.053847476840019226, + 0.15977267920970917, + -0.003217934397980571, + -0.05182019621133804, + -0.07304446399211884, + 0.05916804075241089, + -0.025032419711351395, + 0.048482805490493774, + 0.044112756848335266, + 0.07247015833854675, + 0.04754685238003731, + -0.05276981741189957, + 0.12296392023563385, + 0.039938054978847504, + -0.02849949151277542, + -0.0488908514380455, + -0.03706773743033409, + -0.04777908697724342, + 0.0248568132519722, + -0.003756074234843254, + -0.09971877932548523, + 0.010898696258664131, + 0.026814734563231468, + -0.015190057456493378, + 0.07238695025444031, + 0.1374489814043045, + 0.08575549721717834, + -0.10293564200401306 + ] + }, + "p245_399.wav": { + "name": "p245", + "embedding": [ + 0.043407708406448364, + 0.08514630794525146, + -0.004393481649458408, + -0.017237260937690735, + -0.027270518243312836, + 0.038521382957696915, + -0.11699099838733673, + 0.1150565892457962, + -0.03607865050435066, + 0.1637323647737503, + -0.06965497136116028, + 0.07763926684856415, + -0.009350992739200592, + -0.14831416308879852, + -0.04423484951257706, + 0.012057676911354065, + -0.07149875909090042, + 0.020692303776741028, + -0.08802884817123413, + 0.0032151222694665194, + 0.07314873486757278, + 0.058580655604600906, + 0.02529294788837433, + -0.10331368446350098, + 0.03364839032292366, + 0.03980763256549835, + 0.06568023562431335, + 0.05860733613371849, + 0.04895852133631706, + -0.10105137526988983, + -0.010964975692331791, + 0.1181853711605072, + -0.02922952175140381, + 0.03131198137998581, + 0.04253586754202843, + -0.03794465959072113, + 0.009031357243657112, + -0.0376671701669693, + -0.040401890873909, + 0.06202126294374466, + -0.02167307771742344, + 0.06562337279319763, + 0.006518195383250713, + 0.011429822072386742, + 0.05421014875173569, + 0.03634736314415932, + -0.025013383477926254, + -0.08090966939926147, + -0.05387640744447708, + 0.1955152153968811, + 0.06107282638549805, + -0.005303638055920601, + -0.07695049792528152, + -0.08275580406188965, + 0.08707845211029053, + -0.009905875660479069, + -0.08993817865848541, + -0.034108612686395645, + 0.054829783737659454, + 0.1368941068649292, + -0.028208032250404358, + -0.015052329748868942, + 0.022843828424811363, + 0.0715927854180336, + -0.0010192799381911755, + 0.044366396963596344, + 0.07649503648281097, + 0.03229347988963127, + 0.05760540813207626, + 0.10044670850038528, + -0.003477548249065876, + 0.07733965665102005, + 0.0009144004434347153, + -0.022935424000024796, + 0.04968501254916191, + -0.005019399803131819, + -0.06939955055713654, + -0.0021369503811001778, + -0.014622367918491364, + 0.028308648616075516, + 0.03437855467200279, + 0.03125846013426781, + 0.019676368683576584, + 0.004109161905944347, + -0.04377274960279465, + 0.04807640612125397, + -0.0622292198240757, + -0.01346023939549923, + 0.048401277512311935, + -0.0034759631380438805, + 0.026329033076763153, + 0.03414757549762726, + -0.05391175299882889, + -0.17603802680969238, + -0.018477359786629677, + 0.0055984798818826675, + -0.01211104542016983, + 0.02662937343120575, + 0.04154057800769806, + -0.06734733283519745, + 0.09840120375156403, + 0.027053028345108032, + -0.031699128448963165, + 0.029967427253723145, + -0.09623030573129654, + 0.06701046228408813, + 0.07976463437080383, + 0.019208690151572227, + 0.032371360808610916, + -0.09073149412870407, + 0.09181475639343262, + 0.0308143999427557, + -0.1284741461277008, + -0.0825284868478775, + 0.04926585406064987, + -0.04131811857223511, + 0.023724224418401718, + 0.09970830380916595, + 0.00023345567751675844, + -0.019320406019687653, + 0.08103495836257935, + -0.08968541026115417, + -0.042313579469919205, + -0.040758296847343445, + 0.06690813601016998, + -0.06204451620578766, + 0.0415092371404171, + 0.008520049042999744, + -0.05466149002313614, + -0.01350567676126957, + 0.07163883745670319, + -0.019098002463579178, + 0.04717077314853668, + -0.018486324697732925, + -0.020546559244394302, + 0.04924091324210167, + -0.08019986003637314, + -0.002873710822314024, + 0.04371439293026924, + 0.09363424777984619, + 0.04580260440707207, + 0.014807956293225288, + -0.09634441137313843, + -0.06610545516014099, + 0.0019455874571576715, + 0.0017015831544995308, + 0.025520039722323418, + -0.01260680053383112, + -0.001566617051139474, + -0.06118291988968849, + -0.05729690566658974, + 0.0018601319752633572, + -0.017036782577633858, + 0.0833219438791275, + 0.022019457072019577, + 0.017744986340403557, + 0.1212051659822464, + -0.023838693276047707, + -0.01061723567545414, + -0.02597096934914589, + -0.028454719111323357, + 0.03623758256435394, + 0.02798575349152088, + -0.046151597052812576, + -0.04130226746201515, + 0.006558964028954506, + -0.02732974663376808, + 0.007865079678595066, + -0.010325999930500984, + -0.00023810472339391708, + 0.024877462536096573, + 0.055413391441106796, + -0.08336721360683441, + -0.01316053606569767, + -0.12758152186870575, + -0.02248723804950714, + -0.020609617233276367, + -0.039464905858039856, + -0.06324316561222076, + 0.09323467314243317, + -0.03642461821436882, + -0.011015796102583408, + -0.011010970920324326, + -0.07861576229333878, + -0.026543892920017242, + 0.08534091711044312, + 0.09695500880479813, + 0.023573437705636024, + 0.03926955536007881, + 0.02396240644156933, + 0.006417909637093544, + 0.043264664709568024, + 0.07744477689266205, + 0.08910040557384491, + 0.03543535992503166, + -0.02767322212457657, + -0.04132278636097908, + 0.11849206686019897, + 0.03320126235485077, + -0.06905090808868408, + -0.08573455363512039, + -0.02476121112704277, + -0.08664263784885406, + 0.030558835715055466, + -0.006718845572322607, + 0.00779906939715147, + 0.019522856920957565, + 0.016397511586546898, + -0.096031054854393, + -0.026959164068102837, + 0.05537264794111252, + -0.07411211729049683, + -0.050628259778022766, + -0.02682347409427166, + 0.026658786460757256, + 0.1291964203119278, + 0.07049524039030075, + 0.014440370723605156, + -0.03224454075098038, + 0.06706452369689941, + -0.11083965748548508, + -0.029099933803081512, + -0.023874379694461823, + -0.025118602439761162, + -0.05290934070944786, + 0.06555207818746567, + -0.03741598501801491, + 0.03360322117805481, + -0.09411516040563583, + 0.09540413320064545, + -0.02489689737558365, + -0.08482369035482407, + -0.09301001578569412, + 0.06976577639579773, + -0.046728700399398804, + 0.021285828202962875, + 0.030839871615171432, + 0.01062258891761303, + 0.07393287122249603, + -0.12058000266551971, + 0.10721905529499054, + 0.004731575958430767, + 0.013897083699703217, + -0.061224132776260376, + -0.07533226162195206, + -0.015477333217859268, + -0.010902968235313892, + 0.001196539495140314, + -0.03732926771044731, + 0.009925230406224728, + 0.012417476624250412, + -0.026409873738884926, + 0.049373526126146317, + 0.08713968098163605, + 0.010785295628011227, + -0.11902668327093124 + ] + }, + "p245_292.wav": { + "name": "p245", + "embedding": [ + 0.02978472411632538, + 0.00844737607985735, + -0.022143715992569923, + 0.07281013578176498, + -0.02330043911933899, + 0.07798058539628983, + -0.10541976243257523, + 0.07966556400060654, + -0.05141333118081093, + 0.1361052691936493, + -0.08067888021469116, + 0.05543431267142296, + -0.010731135495007038, + -0.17521022260189056, + -0.0180555060505867, + 0.061209071427583694, + -0.05542079731822014, + -0.0006583239301107824, + -0.08810283988714218, + 0.02877158857882023, + 0.06928957253694534, + 0.07792311161756516, + 0.02024732157588005, + -0.051773060113191605, + 0.010985376313328743, + 0.021596424281597137, + 0.01120042335242033, + 0.07479297369718552, + 0.04911467805504799, + -0.09630712866783142, + -0.005978746805340052, + 0.12200847268104553, + -0.01801954209804535, + 0.014994977973401546, + 0.030241530388593674, + 0.0155265424400568, + 0.0009099359740503132, + -0.03831105679273605, + -0.028641412034630775, + 0.016760200262069702, + -0.07368175685405731, + 0.05674555152654648, + 0.03237203136086464, + 0.03398388996720314, + 0.08281849324703217, + -0.008106161840260029, + -0.08759444206953049, + -0.07100453972816467, + -0.1120789647102356, + 0.1613544225692749, + 0.05960554629564285, + 0.009728522971272469, + -0.044778719544410706, + -0.07683882862329483, + 0.0909070074558258, + 0.01107009407132864, + -0.12459607422351837, + -0.08191263675689697, + 0.09382978826761246, + 0.1923878788948059, + -0.0019968939013779163, + 0.013254500925540924, + 0.03994491696357727, + 0.08640435338020325, + 0.04014137014746666, + 0.09069765359163284, + 0.053090475499629974, + 0.06117432564496994, + 0.09111525863409042, + 0.03566819801926613, + 0.01563529670238495, + 0.07747708261013031, + 0.0007923566736280918, + 0.0036026551388204098, + 0.0272341500967741, + 0.034250639379024506, + -0.04543229937553406, + 0.0031557055190205574, + -0.031035585328936577, + 0.0502319298684597, + 0.034504495561122894, + 0.018384940922260284, + 0.04751954227685928, + -0.006692108232527971, + -0.0625535175204277, + 0.043901484459638596, + -0.034086961299180984, + 0.0001770639355527237, + 0.0413428395986557, + -0.024855032563209534, + 0.001108216238208115, + 0.023319272324442863, + -0.01741201803088188, + -0.1326574683189392, + -0.04704342782497406, + 0.03093782067298889, + -0.021161584183573723, + 0.006018002517521381, + -0.00518689164891839, + -0.05481847748160362, + 0.12718717753887177, + -0.026280276477336884, + -0.027132853865623474, + 0.06241834536194801, + -0.08875400573015213, + 0.07980675250291824, + 0.05902193859219551, + 0.053044773638248444, + 0.050138067454099655, + -0.04974028468132019, + 0.060327544808387756, + 0.0655059739947319, + -0.14963261783123016, + -0.028454886749386787, + 0.06327219307422638, + -0.012809679843485355, + -0.007210670039057732, + 0.14251743257045746, + 0.024538135156035423, + -0.011140108108520508, + 0.11241748183965683, + -0.11833605170249939, + -0.033140141516923904, + 0.007824218831956387, + 0.06312833726406097, + -0.0639585480093956, + 0.053029920905828476, + -0.026817718520760536, + -0.0368630476295948, + 0.008135326206684113, + 0.07525601238012314, + -0.03474194183945656, + 0.02815941907465458, + 0.0048700966872274876, + -0.05952896922826767, + 0.0734386220574379, + -0.12032050639390945, + -0.010470408014953136, + 0.09427011758089066, + 0.05006031692028046, + 0.08284653723239899, + -0.029075944796204567, + -0.09600839763879776, + -0.11729686707258224, + -0.010005713440477848, + -0.0068902322091162205, + 0.07979514449834824, + 0.00613864092156291, + 0.026466138660907745, + -0.0870661586523056, + -0.07945363968610764, + 0.0769726112484932, + -0.05543803796172142, + 0.11835591495037079, + 0.0162125825881958, + 0.0027792956680059433, + 0.052065782248973846, + -0.049297869205474854, + 0.009339897893369198, + -0.04202976077795029, + -0.0557120218873024, + -0.0009214148158207536, + 0.023042500019073486, + -0.05398085340857506, + -0.0027062115259468555, + 0.044533368200063705, + 0.025707069784402847, + -0.011558673344552517, + -0.010034295730292797, + 0.012893454171717167, + 0.03819505125284195, + 0.020159991458058357, + -0.04656371846795082, + -0.006478699389845133, + -0.094541534781456, + -0.021168410778045654, + 0.011217146180570126, + -0.01657198742032051, + -0.0295425932854414, + 0.10062684118747711, + 0.008051402866840363, + -0.01711026020348072, + -0.001680716872215271, + -0.09159387648105621, + -0.09306102991104126, + 0.09266086667776108, + 0.04368305578827858, + 0.011623713187873363, + 0.05852610990405083, + 0.03634224086999893, + -0.03923001140356064, + 0.044802065938711166, + 0.05468299239873886, + 0.0972294807434082, + 0.046213969588279724, + -0.02021324262022972, + -0.05593721196055412, + 0.11970607936382294, + 0.09194639325141907, + -0.04186704382300377, + -0.0506104975938797, + 0.014429462142288685, + -0.11097955703735352, + 0.08465274423360825, + -0.03146445006132126, + -0.040149785578250885, + 0.053672537207603455, + -0.0060563478618860245, + -0.13333512842655182, + -0.019666306674480438, + 0.05323227122426033, + -0.1026659831404686, + -0.06263666599988937, + -0.04058093577623367, + 0.011989978142082691, + 0.10436394065618515, + 0.04677855595946312, + 0.030187595635652542, + -0.002272543963044882, + 0.07451274991035461, + -0.1316886693239212, + 0.0020504635758697987, + 0.05662250518798828, + -0.03712950646877289, + -0.07926171272993088, + 0.0037090876139700413, + -0.07958752661943436, + 0.00390845350921154, + -0.05563895404338837, + 0.09774356335401535, + -0.02173725515604019, + -0.034459371119737625, + -0.05764124169945717, + 0.08004993945360184, + -0.03101935051381588, + 0.04732012003660202, + 0.04447893425822258, + 0.05280740559101105, + 0.11529012024402618, + -0.06742821633815765, + 0.11136690527200699, + 0.021314358338713646, + -0.006134507711976767, + -0.037167228758335114, + -0.04780614748597145, + -0.06523802131414413, + -0.028220772743225098, + 0.003216435434296727, + -0.06819122284650803, + 0.005061344243586063, + 0.0370168499648571, + -0.01879378966987133, + 0.032584886997938156, + 0.08438259363174438, + 0.009825991466641426, + -0.09319378435611725 + ] + }, + "p245_079.wav": { + "name": "p245", + "embedding": [ + 0.06516256183385849, + 0.09580160677433014, + -0.010024912655353546, + 0.028830762952566147, + -0.0722404196858406, + 0.04410260170698166, + -0.12284588813781738, + 0.140308678150177, + -0.026371777057647705, + 0.13703271746635437, + -0.07013494521379471, + 0.14145883917808533, + -0.0287533737719059, + -0.1753140091896057, + -0.020089223980903625, + 0.06814181804656982, + -0.024494217708706856, + -0.01852126605808735, + -0.04487146437168121, + -0.009977125562727451, + 0.023365594446659088, + 0.026251815259456635, + 0.06408986449241638, + -0.009501132182776928, + 0.04037458822131157, + 0.07798200845718384, + 0.011470229364931583, + 0.06849347054958344, + 0.024142172187566757, + -0.07543677091598511, + -0.043644312769174576, + 0.09946713596582413, + -0.06297313421964645, + 0.01536078006029129, + 0.051502976566553116, + -0.021028434857726097, + -0.013401273638010025, + -0.05042524263262749, + -0.019526313990354538, + -0.0067052049562335014, + -0.03078743815422058, + 0.08218748867511749, + 0.012076299637556076, + -0.029669523239135742, + 0.04701274633407593, + 0.03221958875656128, + -0.0238468237221241, + -0.0433136522769928, + -0.11535975337028503, + 0.14637990295886993, + 0.04629471153020859, + 0.009074930101633072, + -0.09432247281074524, + -0.06899213790893555, + 0.0928945541381836, + -0.04236429184675217, + -0.10814248025417328, + -0.0603962168097496, + 0.06318166851997375, + 0.13227872550487518, + -0.03318799287080765, + -0.04776616394519806, + 0.014100514352321625, + 0.1020800769329071, + 0.07988174259662628, + 0.0888691172003746, + 0.07963944971561432, + 0.10757699608802795, + -0.02693941816687584, + 0.048616521060466766, + 0.04493517428636551, + 0.075970858335495, + 0.0588279590010643, + 0.013869773596525192, + 0.026416122913360596, + -0.003352896310389042, + -0.002936075208708644, + -0.007241982501000166, + -0.016357282176613808, + -0.015565671026706696, + -0.013938527554273605, + 0.015750925987958908, + 0.012026733718812466, + 0.0059774634428322315, + -0.02928123250603676, + 0.07431838661432266, + 0.036998599767684937, + -0.014820186421275139, + 0.06684798002243042, + 0.030558597296476364, + -0.0173952616751194, + 0.06289484351873398, + -0.10084779560565948, + -0.08981823921203613, + 0.01646825112402439, + -0.011834731325507164, + 0.030426006764173508, + 0.05790908262133598, + 0.026028063148260117, + -0.009957386180758476, + 0.11783450096845627, + 0.07251115143299103, + -0.005082995630800724, + 0.03915700316429138, + -0.07243093848228455, + 0.13601046800613403, + 0.08595867455005646, + -0.016306884586811066, + 0.05203995108604431, + -0.03906119614839554, + 0.07126761972904205, + 0.06326884031295776, + -0.12511089444160461, + -0.08278553187847137, + -0.008053545840084553, + -0.022284874692559242, + -0.030374838039278984, + 0.10552652180194855, + -0.027563486248254776, + 0.04734759032726288, + 0.11284604668617249, + -0.09717071056365967, + -0.054251790046691895, + 0.007773173041641712, + 0.031180864199995995, + -0.09953389316797256, + 0.05676734820008278, + 0.04854784160852432, + -0.006961371749639511, + 0.018301382660865784, + 0.10394886136054993, + -0.0035078434739261866, + 0.007843966595828533, + 0.02568798139691353, + -0.061050452291965485, + 0.005224249325692654, + -0.023605231195688248, + -0.0071538230404257774, + 0.07506098598241806, + 0.03730127587914467, + 0.0615386925637722, + -0.0086620282381773, + -0.007373702712357044, + -0.12529276311397552, + 0.011405468918383121, + 0.04152694344520569, + 0.06523949652910233, + -0.016931375488638878, + -0.017557824030518532, + -0.03932113200426102, + -0.060288846492767334, + 0.025387771427631378, + 0.01169002614915371, + 0.06566314399242401, + -0.03005640022456646, + 0.013669880107045174, + 0.1229715421795845, + 0.028635794296860695, + 0.0065623014234006405, + -0.06518053263425827, + -0.03174331411719322, + 0.011019711382687092, + 0.06399239599704742, + -0.09251774847507477, + -0.06803411990404129, + -0.0032121860422194004, + 0.03338535130023956, + -0.02481101080775261, + 0.06714528799057007, + 0.07079502195119858, + 0.022468185052275658, + 0.037124164402484894, + -0.04624837636947632, + 0.013048010878264904, + -0.08079132437705994, + -0.0706033855676651, + -0.00602807616814971, + -0.01950966939330101, + -0.03886004164814949, + 0.066257543861866, + 0.02169523760676384, + 0.06392017006874084, + -0.025257427245378494, + -0.07497726380825043, + -0.09656015038490295, + 0.061889246106147766, + 0.052845295518636703, + -0.0002559491840656847, + 0.05314617604017258, + 0.048261500895023346, + -0.047096386551856995, + 0.06495040655136108, + 0.058088771998882294, + 0.09279659390449524, + -0.034642692655324936, + 0.020721999928355217, + -0.07892473042011261, + 0.07680954039096832, + 0.09880086779594421, + -0.09906453639268875, + -0.09369700402021408, + -0.03440767526626587, + -0.07206651568412781, + 0.050891950726509094, + -0.02989235147833824, + -0.003563639475032687, + 0.06643103063106537, + -0.0022542979568243027, + -0.09432574361562729, + -0.10080718994140625, + 0.08983003348112106, + -0.06773792207241058, + -0.0012895718682557344, + -0.0749431848526001, + 0.035775937139987946, + 0.07154205441474915, + 0.03231631964445114, + -0.028951279819011688, + -0.012004037387669086, + 0.05119956284761429, + -0.03849438950419426, + -0.0009040175937116146, + 0.06436005979776382, + 0.030313212424516678, + -0.07667014002799988, + -0.003539234632626176, + -0.07074956595897675, + 0.04775746911764145, + -0.03263372927904129, + 0.1630285680294037, + -0.008396154269576073, + -0.04302608221769333, + -0.07123927772045135, + 0.028731761500239372, + -0.04127562791109085, + 0.05254625901579857, + 0.046864256262779236, + 0.0590631365776062, + 0.04338300973176956, + -0.07303330302238464, + 0.12959596514701843, + 0.048778362572193146, + -0.05276206508278847, + -0.06825324892997742, + -0.05494856834411621, + -0.05755572021007538, + 0.04025141894817352, + 0.0131063312292099, + -0.09747196733951569, + -0.00620085746049881, + 0.021146811544895172, + -0.027976226061582565, + 0.055900782346725464, + 0.13161638379096985, + 0.06194650009274483, + -0.09125107526779175 + ] + }, + "p245_417.wav": { + "name": "p245", + "embedding": [ + 0.05909836292266846, + 0.08160175383090973, + -0.07030828297138214, + 0.011782796122133732, + 0.025327229872345924, + 0.05053437128663063, + -0.13075393438339233, + 0.07129392772912979, + -0.038319140672683716, + 0.13663902878761292, + -0.04119236022233963, + 0.11303113400936127, + -0.011498070321977139, + -0.10368526726961136, + -0.03302355483174324, + 0.0602126345038414, + -0.015298991464078426, + -0.0010763611644506454, + -0.010557844303548336, + 0.017065340653061867, + 0.06165258586406708, + 0.03136908635497093, + 0.024239016696810722, + -0.05923013389110565, + 0.004103496670722961, + 0.05849559232592583, + 0.019867662340402603, + 0.007513002492487431, + -0.01094362698495388, + -0.026498273015022278, + 0.01610308326780796, + 0.06772201508283615, + 0.0048959869891405106, + 0.04399401322007179, + 0.028874894604086876, + 0.047758735716342926, + -0.01651011034846306, + -0.05631769448518753, + 0.024276209995150566, + 0.016915326938033104, + -0.006811744999140501, + 0.05868542939424515, + 0.011618515476584435, + -0.03999960422515869, + 0.045762963593006134, + -0.05200161039829254, + -0.021532367914915085, + -0.014844749122858047, + -0.05701658874750137, + 0.1442849040031433, + 0.05042952299118042, + 0.06697671860456467, + -0.08402715623378754, + -0.018702922388911247, + 0.08897987753152847, + 0.03815074637532234, + -0.06362417340278625, + -0.043369024991989136, + 0.02607535570859909, + 0.1534719467163086, + -0.0019072418799623847, + -0.04298985004425049, + 0.04340633749961853, + 0.0731189176440239, + 0.0009420793503522873, + 0.04949144646525383, + 0.10599350929260254, + 0.049234434962272644, + 0.04804335534572601, + 0.00664458516985178, + 0.015810616314411163, + 0.09508240222930908, + 0.04241625592112541, + -0.018506541848182678, + 0.02625420317053795, + -0.0387938916683197, + -0.04149240255355835, + -0.019300974905490875, + -0.019704679027199745, + -0.08427698165178299, + -0.04882911965250969, + -0.02197306603193283, + 0.02618379145860672, + 0.03960245102643967, + -0.016376499086618423, + -0.0038973260670900345, + 0.037387698888778687, + -0.09241961687803268, + 0.014897347427904606, + 0.0459207147359848, + 0.008868705481290817, + -0.015156161040067673, + -0.030490398406982422, + -0.11602529883384705, + 0.036987531930208206, + 0.02778133749961853, + 0.007633493281900883, + 0.04099714010953903, + 0.05399581044912338, + 0.03645102679729462, + 0.05131783336400986, + -0.0022190194576978683, + -0.010710250586271286, + -0.04364379122853279, + -0.03711196035146713, + 0.08210805058479309, + 0.11589988321065903, + -0.022554457187652588, + 0.03075755015015602, + -0.06686490774154663, + -0.01652601733803749, + 0.04832708090543747, + -0.08810297399759293, + -0.07225038856267929, + 0.02643495611846447, + 0.00782470591366291, + 0.05593413859605789, + 0.09123110771179199, + 0.04908927530050278, + 0.013989736326038837, + 0.07796026766300201, + -0.07409682869911194, + -0.09257493913173676, + -0.08532830327749252, + 0.04421807825565338, + -0.056917883455753326, + 0.09170624613761902, + 0.057820141315460205, + 0.020159270614385605, + -0.029578659683465958, + 0.04342036321759224, + 0.010445686988532543, + 0.03175807744264603, + -0.053649917244911194, + 0.014682024717330933, + 0.034018997102975845, + -0.06942272186279297, + 0.01105683483183384, + 0.025826385244727135, + 0.012040230445563793, + 0.05236422270536423, + 0.011512226425111294, + -0.02166522853076458, + -0.09067350625991821, + -0.010335113853216171, + 0.0841900110244751, + 0.015186644159257412, + -0.037455059587955475, + -0.05919199436903, + -0.009369528852403164, + -0.04918203130364418, + -0.008586794137954712, + -0.07027163356542587, + 0.08636704832315445, + 0.03705809637904167, + 0.045824263244867325, + 0.0931997075676918, + -0.04799710586667061, + -0.003033669199794531, + -0.022821493446826935, + 0.014738349243998528, + 0.04186870902776718, + 0.00905478373169899, + -0.08448685705661774, + -0.08272877335548401, + -0.036763694137334824, + 0.005915842019021511, + -0.01258518360555172, + 0.02452155016362667, + 0.019416294991970062, + 0.00042718928307294846, + 0.015424338169395924, + -0.04108411446213722, + -0.029329627752304077, + -0.1307343989610672, + -0.04976578801870346, + -0.03194744884967804, + -0.06242218613624573, + -0.001822001300752163, + 0.09731131792068481, + 0.02909584902226925, + 0.0361294224858284, + -0.04363678768277168, + -0.05799331143498421, + -0.06978301703929901, + 0.06613919883966446, + 0.07298628985881805, + -0.010914690792560577, + -0.006618715822696686, + 0.0006062202155590057, + 0.054281141608953476, + 0.014420747756958008, + 0.024333177134394646, + 0.05964489281177521, + -0.025259647518396378, + -0.04551899433135986, + -0.07691792398691177, + 0.08032470941543579, + 0.13576894998550415, + -0.07084605097770691, + -0.05785665661096573, + -0.06607513129711151, + -0.07666939496994019, + 0.004633105359971523, + -0.06901639699935913, + 0.0024745126720517874, + 0.030072888359427452, + -0.06653248518705368, + -0.14836283028125763, + -0.11879001557826996, + 0.04005735367536545, + -0.01500088069587946, + -0.001864453312009573, + -0.03363480046391487, + 0.05235423892736435, + 0.053054485470056534, + 0.0012810584157705307, + -0.03355234116315842, + 0.033964578062295914, + 0.00257265567779541, + -0.054090466350317, + 0.003916524816304445, + -0.005782747641205788, + 0.031482093036174774, + -0.08382150530815125, + -0.0027385219000279903, + -0.05115952342748642, + 0.05881929770112038, + -0.10346367955207825, + 0.10519222915172577, + -0.01679205149412155, + -0.06308574974536896, + -0.07517553120851517, + 0.026690855622291565, + -0.0042991191148757935, + 0.03806775063276291, + -0.0045922622084617615, + 0.03564491868019104, + -0.0004764758050441742, + -0.12449732422828674, + 0.06663791835308075, + 0.07047554850578308, + 0.04356139153242111, + -0.10867809504270554, + -0.04062619060277939, + -0.031341418623924255, + 0.04778260737657547, + -0.026821356266736984, + -0.019748523831367493, + 0.016232892870903015, + 0.0102919340133667, + 0.049607787281274796, + 0.060328833758831024, + 0.09035275876522064, + 0.0076279789209365845, + -0.07072833180427551 + ] + }, + "p245_108.wav": { + "name": "p245", + "embedding": [ + 0.037769027054309845, + 0.0710381492972374, + -0.013538839295506477, + 0.030405599623918533, + -0.048303909599781036, + 0.047502100467681885, + -0.12979720532894135, + 0.13112381100654602, + -0.04121986776590347, + 0.13865065574645996, + -0.06637080013751984, + 0.11918260157108307, + -0.02338600717484951, + -0.17452624440193176, + -0.03334740549325943, + 0.053329914808273315, + -0.052101992070674896, + -0.051867153495550156, + -0.02814045548439026, + -0.015195145271718502, + 0.06074162945151329, + 0.05908415466547012, + 0.027038339525461197, + 0.016313016414642334, + -0.0019269927870482206, + 0.06195680797100067, + 0.00941650103777647, + 0.05909734219312668, + 0.030846452340483665, + -0.06887990236282349, + -0.027073901146650314, + 0.09607156366109848, + -0.035451002418994904, + 0.019882015883922577, + 0.030511513352394104, + -0.006075890269130468, + 0.005407089367508888, + -0.060771238058805466, + -0.027218779549002647, + 0.0007485868409276009, + -0.04762926325201988, + 0.064360111951828, + 0.017738550901412964, + -0.004371512681245804, + 0.044193193316459656, + 0.010321813635528088, + -0.03718484193086624, + -0.049315135926008224, + -0.10986790060997009, + 0.15704680979251862, + 0.08583162724971771, + 0.002673715353012085, + -0.054422348737716675, + -0.08579865097999573, + 0.0989055335521698, + -0.014484390616416931, + -0.11814837157726288, + -0.03308306634426117, + 0.07271839678287506, + 0.16380542516708374, + -0.023201337084174156, + -0.04115494713187218, + 0.04155807942152023, + 0.1233464702963829, + 0.053849734365940094, + 0.07423166930675507, + 0.09269973635673523, + 0.09026002138853073, + -0.01808060333132744, + -0.0031782067380845547, + 0.04294588789343834, + 0.09047387540340424, + 0.04572029411792755, + 0.011087577790021896, + 0.03329905867576599, + 0.020404307171702385, + -0.016010120511054993, + 0.012689856812357903, + -0.02847563847899437, + -0.011781329289078712, + -0.013834763318300247, + 0.02012418769299984, + -0.001295606605708599, + 0.026633528992533684, + -0.01753336563706398, + 0.06517314910888672, + 0.009562328457832336, + 0.001202161773107946, + 0.06457757949829102, + 0.0090591199696064, + 0.026839464902877808, + 0.06940041482448578, + -0.06883049011230469, + -0.08096461743116379, + 0.017309095710515976, + 0.00798952765762806, + 0.030694887042045593, + 0.071352019906044, + 0.026322495192289352, + -0.02666120044887066, + 0.12993334233760834, + 0.031112438067793846, + -0.018255699425935745, + 0.0215463750064373, + -0.1017928346991539, + 0.11137932538986206, + 0.08648931980133057, + -0.022003335878252983, + 0.043162472546100616, + -0.05501672253012657, + 0.07904902845621109, + 0.056521736085414886, + -0.13755005598068237, + -0.07910493016242981, + 0.03956972807645798, + 0.03755289316177368, + -0.01744893193244934, + 0.13272981345653534, + -0.0025059031322598457, + 0.044972460716962814, + 0.10937439650297165, + -0.08695052564144135, + -0.0469745509326458, + -0.013501530513167381, + 0.05740271136164665, + -0.08264053612947464, + 0.058961138129234314, + 0.03909563645720482, + -0.013607785105705261, + 0.00901024229824543, + 0.08045458793640137, + -0.02897498570382595, + 0.01139548234641552, + 0.006714156828820705, + -0.06346580386161804, + 0.019933141767978668, + -0.051351290196180344, + -0.01442717295140028, + 0.04159499332308769, + 0.045513030141592026, + 0.045417528599500656, + -0.010866502299904823, + -0.05763040482997894, + -0.13829928636550903, + 0.013783352449536324, + 0.025993984192609787, + 0.07238723337650299, + -0.003234532428905368, + -0.034839000552892685, + -0.04261712729930878, + -0.0482478104531765, + 0.0030171263497322798, + -0.01660945639014244, + 0.06876339763402939, + -0.026470273733139038, + 0.007127915974706411, + 0.07978830486536026, + 0.014804217964410782, + -0.007156125735491514, + -0.03436718136072159, + -0.05446624383330345, + 0.0011916083749383688, + 0.050004031509160995, + -0.06330541521310806, + -0.06627877056598663, + 0.0073267011903226376, + 0.05267653614282608, + -0.014921151101589203, + 0.0441112220287323, + 0.04526621103286743, + 0.02363879606127739, + 0.027524542063474655, + -0.062001269310712814, + 0.017758777365088463, + -0.11300303786993027, + -0.08872376382350922, + 0.0010788652580231428, + 0.00575434323400259, + -0.0014929225435480475, + 0.06600398570299149, + 0.010372169315814972, + 0.05465450882911682, + -0.011330771259963512, + -0.07699830830097198, + -0.10192805528640747, + 0.06034308671951294, + 0.07360713183879852, + 0.013644381426274776, + 0.058742474764585495, + 0.05997880920767784, + -0.031363487243652344, + 0.06095287948846817, + 0.03652942180633545, + 0.10963128507137299, + -0.014189288020133972, + 0.0131861362606287, + -0.07598196715116501, + 0.07306838035583496, + 0.08477163314819336, + -0.07896190881729126, + -0.06811490654945374, + -0.01841197907924652, + -0.07801651209592819, + 0.05320187658071518, + -0.019152428954839706, + 0.004496054723858833, + 0.03913014009594917, + -0.006063781213015318, + -0.12831251323223114, + -0.06573736667633057, + 0.08094042539596558, + -0.0684390664100647, + -0.010018846951425076, + -0.0766594186425209, + 0.04366012662649155, + 0.11602740734815598, + 0.0430748425424099, + -0.01758422516286373, + -0.024480555206537247, + 0.05124711990356445, + -0.04431149363517761, + 0.008394647389650345, + 0.046755388379096985, + 0.03474678844213486, + -0.10223262757062912, + 0.0017594726523384452, + -0.09047816693782806, + 0.026896348223090172, + -0.058137476444244385, + 0.13104358315467834, + 0.0028527029789984226, + -0.05642174184322357, + -0.09072732925415039, + 0.04773995280265808, + -0.011190174147486687, + 0.05739889666438103, + 0.019390763714909554, + 0.05372073873877525, + 0.056175973266363144, + -0.0820341631770134, + 0.11841245740652084, + 0.0530717596411705, + -0.047464609146118164, + -0.06119228154420853, + -0.03717399388551712, + -0.03339669108390808, + 0.024605661630630493, + 0.009874189272522926, + -0.07432351261377335, + -0.03453310579061508, + 0.014192461967468262, + -0.015464729629456997, + 0.0650659054517746, + 0.13560165464878082, + 0.04126901552081108, + -0.12902331352233887 + ] + }, + "p245_404.wav": { + "name": "p245", + "embedding": [ + 0.06419070810079575, + 0.03918735682964325, + 0.018891897052526474, + -0.024760231375694275, + -0.0044189319014549255, + 0.061069127172231674, + -0.12353234738111496, + 0.11402365565299988, + -0.01301989983767271, + 0.0726519376039505, + -0.074640654027462, + 0.07257071137428284, + 0.013570642098784447, + -0.16925662755966187, + -0.016988839954137802, + 0.0402834415435791, + -0.033827416598796844, + 0.0018439119448885322, + -0.05225320905447006, + -0.023063872009515762, + 0.007399502210319042, + 0.035385504364967346, + 0.019246816635131836, + -0.019139209762215614, + 0.03528938814997673, + 0.051592618227005005, + 0.008245360106229782, + 0.030118336901068687, + -0.00805277656763792, + -0.02223818376660347, + -0.0024345237761735916, + 0.07700461149215698, + -0.047400347888469696, + -0.023779628798365593, + 0.07173925638198853, + -0.01097535528242588, + 0.024193670600652695, + -0.08065156638622284, + -0.03758898377418518, + 0.04157523065805435, + -0.07463541626930237, + 0.07886776328086853, + 0.05739801377058029, + 0.017474792897701263, + 0.030995994806289673, + 0.04302537068724632, + 0.0185097549110651, + -0.06454786658287048, + -0.08851965516805649, + 0.14850017428398132, + 0.03784302622079849, + 0.02680383250117302, + -0.09480651468038559, + -0.02694118022918701, + 0.06176032871007919, + -0.00958809070289135, + -0.05352582037448883, + -0.018147751688957214, + 0.052148692309856415, + 0.10750074684619904, + -0.002527217147871852, + -0.03069782257080078, + 0.034207865595817566, + 0.07760173082351685, + 0.02324984036386013, + 0.043913256376981735, + 0.10409825295209885, + 0.09321358054876328, + -0.0036606565117836, + 0.02431890368461609, + 0.05929890275001526, + 0.030513204634189606, + 0.05708102881908417, + -0.0316973477602005, + 0.03701934963464737, + 7.894884038250893e-05, + -0.030291549861431122, + -0.024996792897582054, + -0.02041189931333065, + -0.0008447397849522531, + 0.04634835943579674, + 0.033863142132759094, + 0.02291455678641796, + 0.06275485455989838, + -0.04199187085032463, + 0.04416771978139877, + 0.010940715670585632, + 0.041617464274168015, + 0.06766355037689209, + 0.039431121200323105, + 0.029266422614455223, + 0.0252792090177536, + -0.07499801367521286, + -0.08459967374801636, + 0.02049117721617222, + 0.0074583785608410835, + -0.001809485605917871, + 0.027394866570830345, + 0.0390801802277565, + -0.02715630829334259, + 0.10793386399745941, + 0.0133076636120677, + -0.013719815760850906, + 0.016668228432536125, + -0.07613083720207214, + 0.07515460252761841, + 0.07862353324890137, + -0.024481292814016342, + 0.047744035720825195, + -0.05333958566188812, + 0.034810639917850494, + 0.05320924520492554, + -0.11187504231929779, + -0.043811604380607605, + 0.04977675899863243, + 0.01474270410835743, + 0.03419841453433037, + 0.1369720995426178, + -0.008887114934623241, + 0.03133609890937805, + 0.059311773627996445, + -0.07049624621868134, + -0.02666119858622551, + 0.01818070188164711, + 0.023506611585617065, + -0.03075127862393856, + 0.0290546715259552, + 0.01889539323747158, + 0.02487761899828911, + -0.03740197792649269, + 0.06636646389961243, + 0.008534574881196022, + 0.0024177252780646086, + -0.07108943164348602, + 0.04890812560915947, + 0.04983970522880554, + -0.00212167389690876, + -0.029463589191436768, + 0.011981675401329994, + 0.05491115152835846, + 0.005321655422449112, + 0.044630855321884155, + -0.05937693640589714, + -0.11505681276321411, + -0.0185006782412529, + -0.0015292007010430098, + 0.07068949192762375, + -0.025997823104262352, + -0.01903698779642582, + -0.07173436880111694, + -0.0023146148305386305, + -0.023053180426359177, + -0.013655908405780792, + 0.03999319300055504, + 0.05996199697256088, + -0.02522510103881359, + 0.07778358459472656, + -0.017628181725740433, + 0.02842363715171814, + -0.011958295479416847, + -0.024478040635585785, + 0.00924835167825222, + 0.04183658957481384, + -0.01981481909751892, + -0.06968905031681061, + -0.0037176895420998335, + -0.03756232187151909, + -0.004527131095528603, + 0.017100661993026733, + 0.013365581631660461, + 0.005815163254737854, + -0.016466617584228516, + -0.10252156108617783, + 0.014748352579772472, + -0.09593423455953598, + -0.050770483911037445, + 0.04162231832742691, + 0.01304446067661047, + -0.024725615978240967, + 0.08434300124645233, + 0.019340988248586655, + 0.04165211319923401, + -0.0411079041659832, + -0.060147762298583984, + -0.016400877386331558, + 0.04762309044599533, + 0.0675269216299057, + -0.017000969499349594, + 0.014390714466571808, + 0.010720767080783844, + 0.004498566035181284, + 0.04444005340337753, + 0.05338844656944275, + 0.053616635501384735, + -0.023164525628089905, + -0.00481156911700964, + -0.0004819085297640413, + 0.11780031770467758, + 0.009947620332241058, + -0.03936826437711716, + -0.04667234420776367, + 0.032626569271087646, + -0.04150997847318649, + 0.006006588693708181, + 0.015647653490304947, + 0.03623216226696968, + 0.03108939155936241, + -0.013885598629713058, + -0.0617140494287014, + -0.04628079757094383, + 0.028406960889697075, + -0.07054746150970459, + -0.018730072304606438, + -0.06522786617279053, + 0.042094405740499496, + 0.1134909987449646, + 0.00495230033993721, + 0.002252227393910289, + -0.03561714291572571, + -0.0019150078296661377, + -0.021867990493774414, + -0.037140652537345886, + 0.0005945439334027469, + 0.035443346947431564, + -0.0881577655673027, + 0.006026825867593288, + -0.05300630256533623, + 0.0634591281414032, + -0.022257929667830467, + 0.07022680342197418, + 0.04091481864452362, + -0.046875618398189545, + -0.07154149562120438, + -0.005084961652755737, + 0.013852670788764954, + 0.04405937343835831, + 0.012489140033721924, + 0.0331738218665123, + 0.05204693228006363, + -0.040726177394390106, + 0.0817209854722023, + 0.03359841927886009, + -0.04797407612204552, + -0.05069175362586975, + -0.03561512380838394, + -0.00046914443373680115, + 0.016547078266739845, + -0.008146703243255615, + -0.04674345254898071, + 0.01621292345225811, + 0.030225535854697227, + -0.0018810307374224067, + 0.017799293622374535, + 0.0843789204955101, + 0.02765839919447899, + -0.09700661152601242 + ] + }, + "p245_049.wav": { + "name": "p245", + "embedding": [ + 0.0475463829934597, + 0.09513473510742188, + -0.006068339571356773, + 0.021098626777529716, + -0.04044165834784508, + 0.04198088496923447, + -0.14156155288219452, + 0.13876782357692719, + -0.03534679114818573, + 0.13478629291057587, + -0.09711000323295593, + 0.12022916972637177, + -0.02514369785785675, + -0.20709945261478424, + -0.023456240072846413, + 0.053956516087055206, + -0.0449865385890007, + -0.027352971956133842, + -0.008817016147077084, + -0.024683747440576553, + 0.048486825078725815, + 0.044479403644800186, + 0.00867047905921936, + 0.022702138870954514, + 0.0016932659782469273, + 0.07166951894760132, + 0.0005249902023933828, + 0.04029426351189613, + 0.02112444117665291, + -0.029109513387084007, + -0.04090667515993118, + 0.10708269476890564, + -0.03454422950744629, + 0.0020850077271461487, + 0.0637882649898529, + -0.004405135754495859, + -0.004943423438817263, + -0.05423498898744583, + -0.01772003062069416, + -0.006364059634506702, + -0.07122121751308441, + 0.059955839067697525, + 0.03056979738175869, + -0.02366606704890728, + 0.0536670908331871, + 0.047796089202165604, + -0.009355583228170872, + -0.05812649801373482, + -0.10274310410022736, + 0.15152902901172638, + 0.08465466648340225, + -0.011770433746278286, + -0.04562000185251236, + -0.05469464883208275, + 0.09929494559764862, + 5.6900560593931004e-05, + -0.10337064415216446, + -0.03899132087826729, + 0.0991852805018425, + 0.1506568193435669, + -0.031215783208608627, + -0.029513003304600716, + 0.039236750453710556, + 0.12928339838981628, + 0.03271016851067543, + 0.10827409476041794, + 0.06029234826564789, + 0.10210902988910675, + -0.01437874510884285, + 0.01629011332988739, + 0.06418173760175705, + 0.06052457541227341, + 0.05344700813293457, + -0.0374826155602932, + 0.019597206264734268, + 0.0101812444627285, + -0.032910238951444626, + 0.01618269644677639, + -0.014839684590697289, + -0.013028068467974663, + -0.008910229429602623, + -0.006597636267542839, + -0.012438446283340454, + 0.00730512198060751, + -0.025430859997868538, + 0.05521159619092941, + 0.039102017879486084, + 0.003691272111609578, + 0.06712035089731216, + 0.023203451186418533, + 0.012753480114042759, + 0.06530016660690308, + -0.07615182548761368, + -0.08094727247953415, + 0.03181953728199005, + -0.002851153491064906, + 0.004683312028646469, + 0.09019245207309723, + 0.05108082294464111, + -0.01864493452012539, + 0.13329198956489563, + 0.03792903572320938, + -0.0014252597466111183, + 0.04303397238254547, + -0.10739202797412872, + 0.1354880928993225, + 0.07648725807666779, + -0.04246428236365318, + 0.04589829221367836, + -0.05546974018216133, + 0.08001882582902908, + 0.08458433300256729, + -0.14827829599380493, + -0.04540344327688217, + 0.044439516961574554, + 0.02248564176261425, + -0.029364116489887238, + 0.12351515144109726, + -0.006620639003813267, + 0.023162584751844406, + 0.11297736316919327, + -0.08203953504562378, + -0.07665301859378815, + -0.04098742455244064, + 0.046205732971429825, + -0.11254053562879562, + 0.07936838269233704, + 0.052473943680524826, + -0.006090579088777304, + 0.01039053127169609, + 0.0940728634595871, + -0.03134115785360336, + -0.0054808794520795345, + -0.0039880163967609406, + -0.03030667081475258, + 0.01616595685482025, + -0.047957442700862885, + 0.011981154792010784, + 0.014473007060587406, + 0.023792922496795654, + 0.03315510228276253, + 0.0068056886084377766, + -0.036574095487594604, + -0.11832774430513382, + 0.018171975389122963, + 0.042477816343307495, + 0.08915697038173676, + 0.013131125830113888, + -0.03833124414086342, + -0.044536832720041275, + -0.06207020580768585, + 0.00030853203497827053, + -0.022233178839087486, + 0.06557407975196838, + -0.02755184844136238, + 0.006208732724189758, + 0.08769842982292175, + 0.027013512328267097, + 0.0049041141755878925, + -0.05983532592654228, + -0.041174035519361496, + 0.01868407614529133, + 0.03740725666284561, + -0.08608248829841614, + -0.07837054133415222, + -0.00900968722999096, + 0.03450753912329674, + -0.019652539864182472, + 0.0420735627412796, + 0.034488264471292496, + 0.024492621421813965, + 0.023953653872013092, + -0.09959570318460464, + 0.019592974334955215, + -0.11650485545396805, + -0.08623222261667252, + -0.027420461177825928, + 0.0019349019275978208, + -0.0024711433798074722, + 0.06545230746269226, + -0.009740003384649754, + 0.035744477063417435, + -0.013761785812675953, + -0.0660208910703659, + -0.08851736038923264, + 0.0549754835665226, + 0.08370275050401688, + 0.006444267462939024, + 0.05500565096735954, + 0.04012533277273178, + -0.05145742744207382, + 0.05105600506067276, + 0.033011242747306824, + 0.12542292475700378, + -0.010914579965174198, + 0.02344227023422718, + -0.05586374178528786, + 0.06902960687875748, + 0.08258596062660217, + -0.08731798082590103, + -0.07631795108318329, + -0.024579746648669243, + -0.06024374067783356, + 0.04319954290986061, + -0.016182495281100273, + -0.000923074665479362, + 0.0014819487696513534, + -0.008515158668160439, + -0.089241623878479, + -0.07614150643348694, + 0.057811181992292404, + -0.07190749794244766, + -0.019181611016392708, + -0.09324660897254944, + 0.05874720588326454, + 0.0962495282292366, + 0.033562399446964264, + -0.04117560759186745, + -0.027032088488340378, + 0.03990776091814041, + -0.045605093240737915, + 0.0015980829484760761, + 0.04379775747656822, + 0.05125972256064415, + -0.11862359941005707, + 0.0056625958532094955, + -0.08322019129991531, + 0.06070470064878464, + -0.07032650709152222, + 0.14923729002475739, + 0.008735728450119495, + -0.05821780860424042, + -0.08965730667114258, + 0.04144864156842232, + 0.006865859497338533, + 0.03835439682006836, + 0.03526514396071434, + 0.04721233993768692, + 0.02700684405863285, + -0.07600522041320801, + 0.1189938336610794, + 0.029594114050269127, + -0.019516535103321075, + -0.05715472251176834, + -0.04561162739992142, + -0.04984667897224426, + 0.017764806747436523, + 0.025110041722655296, + -0.10677909851074219, + -0.049841295927762985, + 0.03037760965526104, + -0.01036197878420353, + 0.07492029666900635, + 0.14541363716125488, + 0.037221912294626236, + -0.11960726231336594 + ] + }, + "p245_351.wav": { + "name": "p245", + "embedding": [ + 0.06704145669937134, + 0.05823506787419319, + 0.030241966247558594, + -0.03705039620399475, + 0.006909685209393501, + 0.0932241901755333, + -0.06810291856527328, + 0.06883310526609421, + 0.00155550055205822, + 0.04379822313785553, + -0.08923117816448212, + 0.04777928814291954, + 0.008395617827773094, + -0.136733740568161, + -0.01879725605249405, + 0.046538516879081726, + -0.05091383308172226, + 0.02822810597717762, + -0.06763501465320587, + -0.024408429861068726, + -0.010235240682959557, + 0.02395259216427803, + 0.059341199696063995, + -0.03244274854660034, + 0.0438317134976387, + 0.03897450119256973, + 0.0065063368529081345, + 0.02308381348848343, + -0.006782982498407364, + -0.03565731644630432, + -0.019158361479640007, + 0.0782981887459755, + -0.026104524731636047, + -0.02209126204252243, + 0.05125085264444351, + 0.009704766795039177, + 0.059460680931806564, + -0.10379713773727417, + -0.034776072949171066, + 0.043902166187763214, + -0.06420910358428955, + 0.0628296360373497, + 0.049240801483392715, + 0.0029306765645742416, + 0.032963827252388, + 0.004978878889232874, + -0.0046936082653701305, + -0.061599548906087875, + -0.07922981679439545, + 0.1526414155960083, + 0.030769091099500656, + 0.04064822569489479, + -0.08091539889574051, + -0.018084930256009102, + 0.048893265426158905, + -0.010109447874128819, + -0.04269569739699364, + -0.0027581676840782166, + 0.0360928438603878, + 0.08483288437128067, + 0.039877187460660934, + -0.007614978589117527, + 0.040842268615961075, + 0.064113549888134, + -0.014371966943144798, + 0.026534665375947952, + 0.09887561202049255, + 0.06561963260173798, + 0.022939587011933327, + 0.03532765805721283, + 0.05432305485010147, + 0.017604021355509758, + 0.05098516866564751, + -0.024919988587498665, + 0.03871893137693405, + -0.02850848063826561, + -0.03807409852743149, + -0.019279640167951584, + -0.013364613056182861, + -0.01836494728922844, + 0.067538321018219, + 0.028540581464767456, + 0.018481124192476273, + 0.041880302131175995, + -0.04994499683380127, + 0.02163398265838623, + -0.024133171886205673, + 0.08421847969293594, + 0.07045003026723862, + 0.044835299253463745, + 0.030816011130809784, + -0.006503632292151451, + -0.022939639165997505, + -0.09851651638746262, + 0.009312189184129238, + 0.032479122281074524, + -0.013365810737013817, + -0.002710772678256035, + 0.02432195097208023, + -0.04618127644062042, + 0.08671192824840546, + 0.0036795511841773987, + -0.006280895788222551, + 0.004515236243605614, + -0.06504005193710327, + 0.043493784964084625, + 0.0792287290096283, + 0.00462745688855648, + 0.05508670583367348, + -0.020342670381069183, + 0.03571278601884842, + 0.07519960403442383, + -0.08603756874799728, + -0.021520232781767845, + 0.011256717145442963, + -0.007585185579955578, + 0.07266493886709213, + 0.08963727951049805, + 0.008370034396648407, + 0.026655040681362152, + 0.041409529745578766, + -0.073029063642025, + -0.021643180400133133, + 0.03481026738882065, + -0.005380101501941681, + 0.0035184770822525024, + -0.013319611549377441, + 0.0224656630307436, + 0.03054683282971382, + -0.07471266388893127, + 0.034888170659542084, + 0.01191724743694067, + 0.015840142965316772, + -0.07374249398708344, + 0.03549838066101074, + 0.0224164929240942, + -0.017805660143494606, + -0.04488350823521614, + 0.03473108261823654, + 0.0675075501203537, + -0.016258355230093002, + 0.05133683979511261, + -0.06452854722738266, + -0.0906495749950409, + -0.03532847389578819, + -0.013745943084359169, + 0.03072349727153778, + -0.00711077218875289, + -0.020660752430558205, + -0.0649898573756218, + 0.03042362444102764, + 0.00642771553248167, + -0.027265753597021103, + 0.028220463544130325, + 0.09902530908584595, + -0.05122558772563934, + 0.060032181441783905, + -0.035985250025987625, + 0.01873202808201313, + -0.015580343082547188, + -0.0337342731654644, + 0.02912384457886219, + 0.027779292315244675, + -0.000771593302488327, + -0.06464264541864395, + 0.014612175524234772, + -0.0725935697555542, + -0.004106349777430296, + -0.0010228119790554047, + 0.02510572038590908, + -0.013170212507247925, + -0.03557687625288963, + -0.08968241512775421, + 0.006630235817283392, + -0.06688438355922699, + -0.04054092988371849, + 0.07745760679244995, + 0.014819085597991943, + -0.010020339861512184, + 0.09203378856182098, + 0.03292340785264969, + 0.0066065192222595215, + -0.05413554608821869, + -0.04648738354444504, + 0.02979138121008873, + 0.05529949814081192, + 0.050144582986831665, + 0.019709505140781403, + 0.022195138037204742, + -0.012681165710091591, + 0.012812916189432144, + 0.04796817898750305, + 0.028981631621718407, + 0.034979429095983505, + -0.027928978204727173, + -0.030164793133735657, + 0.02286100760102272, + 0.08644644170999527, + -0.0002261437475681305, + -0.03957487642765045, + -0.034387193620204926, + 0.02911531738936901, + -0.02363932505249977, + 0.016472451388835907, + 0.012730593793094158, + 0.019347818568348885, + 0.04383888095617294, + -0.040693968534469604, + -0.047640323638916016, + -0.06191657856106758, + 0.03659037500619888, + -0.04567191004753113, + -0.031197071075439453, + -0.026576252654194832, + 0.04854495823383331, + 0.08480000495910645, + -0.020679092034697533, + 0.0015879161655902863, + 0.013026267290115356, + -0.019762394949793816, + -0.0332379974424839, + -0.05657337233424187, + -0.024955058470368385, + 0.025027822703123093, + -0.07732786983251572, + 0.023637311533093452, + -0.05580015480518341, + 0.059601880609989166, + 0.00220605731010437, + 0.06466390192508698, + 0.04856862872838974, + -0.02864808402955532, + -0.06842250376939774, + 0.01873037777841091, + -0.001178903505206108, + 0.028635935857892036, + 0.0026000821962952614, + 0.00303029827773571, + 0.05007866397500038, + -0.05784064158797264, + 0.048221755772829056, + 0.024801796302199364, + -0.053993869572877884, + -0.04294169321656227, + -0.002083864063024521, + -0.0129734231159091, + 0.005749902687966824, + -0.04221602529287338, + -0.026547254994511604, + 0.03614458069205284, + 0.026439839974045753, + 0.03091368079185486, + 0.009394442662596703, + 0.0422995388507843, + 0.005992533639073372, + -0.036101650446653366 + ] + }, + "p245_184.wav": { + "name": "p245", + "embedding": [ + 0.043890755623579025, + 0.08505771309137344, + -0.014418607577681541, + 0.05119144171476364, + -0.07487911731004715, + 0.039904240518808365, + -0.0789528340101242, + 0.12820200622081757, + -0.038454413414001465, + 0.09622292220592499, + -0.07556413859128952, + 0.167055144906044, + -0.010330495424568653, + -0.17147041857242584, + -0.07540953159332275, + 0.03999222815036774, + -0.026614608243107796, + -0.028791245073080063, + 0.015424036420881748, + -0.02673296444118023, + 0.0702357217669487, + 0.08003674447536469, + 0.07933282852172852, + 0.018238360062241554, + 0.03354933112859726, + 0.07591891288757324, + 0.03875710442662239, + 0.09171140193939209, + 0.053987402468919754, + -0.09499023109674454, + -0.0666663721203804, + 0.08714472502470016, + -0.0329500250518322, + 0.012769694440066814, + 0.021275892853736877, + -0.019346900284290314, + 0.0480443574488163, + -0.043350137770175934, + -0.03835352882742882, + 0.027153311297297478, + -0.02492375485599041, + 0.06955984979867935, + 0.006105436943471432, + -0.025699805468320847, + 0.0529632568359375, + -0.005154609214514494, + -0.023983687162399292, + -0.03335484117269516, + -0.12110687792301178, + 0.16359923779964447, + 0.05461646988987923, + 0.031083887442946434, + -0.08836103975772858, + -0.08555283397436142, + 0.11411811411380768, + -0.02772662229835987, + -0.07916954159736633, + 0.00560044776648283, + 0.03567344322800636, + 0.16897299885749817, + 0.0020335703156888485, + -0.04417891427874565, + 0.0477592870593071, + 0.09379659593105316, + 0.04681135341525078, + 0.04155230149626732, + 0.09959916025400162, + 0.057315435260534286, + -0.008235082030296326, + 0.02711101807653904, + 0.018748415634036064, + 0.12074065953493118, + 0.027918657287955284, + -0.006959917023777962, + 0.0006813450600020587, + 0.023227302357554436, + -0.03171291947364807, + 0.016142068430781364, + -0.01406625472009182, + -0.0037790213245898485, + -0.019053807482123375, + 0.01949171908199787, + 0.015480420552194118, + -0.009981020353734493, + -0.037590038031339645, + 0.08450647443532944, + -0.02401881292462349, + -0.006191688124090433, + 0.04215914383530617, + 0.006862887181341648, + -0.011351067572832108, + 0.051584187895059586, + -0.06960795819759369, + -0.1019834503531456, + 0.001985696842893958, + 0.013733861967921257, + 0.0297338105738163, + 0.09063045680522919, + 0.03341888636350632, + -0.03361824154853821, + 0.11747490614652634, + 0.06494419276714325, + -0.0026375590823590755, + 0.01859324239194393, + -0.08523046225309372, + 0.07872146368026733, + 0.12975522875785828, + 0.006621855776757002, + 0.07833165675401688, + -0.03364546597003937, + 0.09074798971414566, + 0.0536341667175293, + -0.14509478211402893, + -0.08406513184309006, + 0.003765242639929056, + 0.03314562141895294, + 0.04313020408153534, + 0.07648768275976181, + -0.0283002108335495, + 0.06041765585541725, + 0.09415999054908752, + -0.0854165181517601, + -0.046685054898262024, + -0.053394865244627, + 0.057289306074380875, + -0.06280698627233505, + 0.06906235218048096, + 0.045254096388816833, + 0.0013116456102579832, + -0.021103205159306526, + 0.038884151726961136, + -0.030252229422330856, + 0.007258565630763769, + 0.05298084393143654, + -0.07948058098554611, + -0.012687699869275093, + -0.05962829664349556, + -0.01423613727092743, + 0.09236863255500793, + 0.04087842255830765, + 0.04636557027697563, + 0.017751868814229965, + -0.0312421265989542, + -0.12579035758972168, + 0.0071611590683460236, + 0.04106401652097702, + 0.03752791881561279, + -0.009522752836346626, + -0.08183171600103378, + -0.04686363786458969, + -0.05321026220917702, + 0.038066260516643524, + 0.0400669164955616, + 0.07196805626153946, + -0.036398086696863174, + 0.03303104639053345, + 0.0691780373454094, + 0.01096411608159542, + -0.025769485160708427, + -0.015307455323636532, + -0.02977103739976883, + -0.009425358846783638, + 0.03558971732854843, + -0.05349878594279289, + -0.09915625303983688, + -0.01775696873664856, + 0.02489335462450981, + -0.027579359710216522, + 0.04895031079649925, + 0.048750706017017365, + -0.0001891324936877936, + 0.04464235529303551, + -0.04382289573550224, + -0.006914936471730471, + -0.1152111068367958, + -0.06727608293294907, + -0.024730389937758446, + -0.007135397754609585, + -0.03739252686500549, + 0.07210288196802139, + 0.06634336709976196, + 0.05646740645170212, + 0.010103200562298298, + -0.04375826567411423, + -0.07646053284406662, + 0.03941487893462181, + 0.06055415794253349, + 0.06438817828893661, + 0.0835215374827385, + 0.06230328977108002, + -0.022786781191825867, + 0.12653151154518127, + 0.07117488235235214, + 0.05934397131204605, + -0.010505910031497478, + 0.005181418266147375, + -0.05573165789246559, + 0.06675601750612259, + 0.0884820744395256, + -0.09574930369853973, + -0.11331278085708618, + -0.06252880394458771, + -0.1048608049750328, + 0.08730683475732803, + -0.00012744062405545264, + 0.02955835498869419, + 0.046797964721918106, + 0.0008930893382057548, + -0.11105445772409439, + -0.0872381404042244, + 0.09520980715751648, + -0.02480298839509487, + -0.03677918016910553, + -0.04398595541715622, + 0.023222243413329124, + 0.11804411560297012, + 4.9878188292495906e-05, + 0.013271125964820385, + -0.017938243225216866, + 0.04117550700902939, + -0.05391534045338631, + -0.03508086875081062, + 0.04264451563358307, + 0.006528493016958237, + -0.09303133934736252, + 0.027545975521206856, + -0.07321067899465561, + 0.05899357423186302, + -0.05544789507985115, + 0.13341733813285828, + -0.018868740648031235, + -0.054445359855890274, + -0.09287986159324646, + 0.08792873471975327, + -0.031962037086486816, + 0.046662312000989914, + 0.033910978585481644, + 0.03124554082751274, + 0.008196335285902023, + -0.10700886696577072, + 0.10969391465187073, + 0.05273907631635666, + -0.09013558179140091, + -0.08190502971410751, + -0.05302773043513298, + -0.011819390580058098, + 0.027898680418729782, + 0.02523074485361576, + -0.034925032407045364, + -0.030958760529756546, + -0.004015491809695959, + -0.0022458883468061686, + 0.06051085889339447, + 0.13358932733535767, + 0.02728516235947609, + -0.10576461255550385 + ] + }, + "p245_002.wav": { + "name": "p245", + "embedding": [ + 0.02358773536980152, + 0.07826605439186096, + -0.027543067932128906, + 0.031680479645729065, + -0.07373817265033722, + 0.050326019525527954, + -0.12228147685527802, + 0.12812471389770508, + -0.03913921117782593, + 0.12552094459533691, + -0.063118577003479, + 0.1157759428024292, + -0.046507250517606735, + -0.18721237778663635, + 0.0004700678982771933, + 0.07076182961463928, + -0.028337620198726654, + -0.051535118371248245, + -0.025464870035648346, + -0.03454870358109474, + 0.029593035578727722, + 0.029509365558624268, + 0.003851971821859479, + 0.02604139782488346, + 0.015128349885344505, + 0.08368734270334244, + -0.02362710051238537, + 0.0106833316385746, + -0.0232837051153183, + -0.03319923207163811, + -0.045803382992744446, + 0.08455102145671844, + -0.06445177644491196, + 0.011724996380507946, + 0.047038301825523376, + 0.0013751982478424907, + -0.015428800135850906, + -0.04209304228425026, + -0.01663612760603428, + -0.00877833366394043, + -0.08127505332231522, + 0.07297591120004654, + 0.02443988062441349, + -0.016256440430879593, + 0.04076751321554184, + 0.017612911760807037, + -0.016523662954568863, + -0.031120549887418747, + -0.11199674755334854, + 0.14118105173110962, + 0.07491213083267212, + -0.01583864912390709, + -0.058698512613773346, + -0.060395874083042145, + 0.10201830416917801, + -0.008420097641646862, + -0.11700267344713211, + -0.04858531057834625, + 0.08741970360279083, + 0.1385299414396286, + -0.03007463552057743, + -0.032490409910678864, + 0.018984273076057434, + 0.10844701528549194, + 0.056400366127491, + 0.09863264113664627, + 0.054077714681625366, + 0.11717013269662857, + -0.039178911596536636, + -0.016189374029636383, + 0.07102316617965698, + 0.07059231400489807, + 0.07944108545780182, + -0.011055003851652145, + 0.009577132761478424, + 0.008006935007870197, + -0.013070395216345787, + 0.0075176190584897995, + -0.025560803711414337, + -0.025546584278345108, + -0.02846902422606945, + -0.010807862505316734, + 0.001602032221853733, + 0.008516959846019745, + -0.005555284209549427, + 0.05008368939161301, + 0.07965726405382156, + -0.013095414265990257, + 0.06566435098648071, + 0.03424368053674698, + -0.025594614446163177, + 0.08266881108283997, + -0.09044355154037476, + -0.04109787940979004, + 0.02378132753074169, + 0.0014220110606402159, + 0.02196289598941803, + 0.09291413426399231, + 0.04062889516353607, + -0.005350210703909397, + 0.1164693683385849, + 0.030876826494932175, + 0.012760510668158531, + 0.02262270823121071, + -0.09269329905509949, + 0.1272474229335785, + 0.07751910388469696, + -0.04080330953001976, + 0.041031546890735626, + -0.03814410790801048, + 0.07047991454601288, + 0.07510924339294434, + -0.12477375566959381, + -0.04994071647524834, + 0.01527847908437252, + 0.015763960778713226, + -0.03540327027440071, + 0.13015125691890717, + -0.0015134529676288366, + 0.034743472933769226, + 0.12304578721523285, + -0.09818711876869202, + -0.06383582204580307, + -0.010296138934791088, + 0.033754292875528336, + -0.09067896753549576, + 0.056689921766519547, + 0.05938276648521423, + 0.0013965866528451443, + 0.040264323353767395, + 0.08552718162536621, + -0.015032759867608547, + 0.0052743032574653625, + 0.017005007714033127, + -0.047505784779787064, + -0.0034433994442224503, + -0.01980522647500038, + 0.003273322246968746, + 0.06160595640540123, + 0.021210571750998497, + 0.05466904863715172, + -0.017585575580596924, + -0.009554693475365639, + -0.13104790449142456, + 0.02533816546201706, + 0.05835263431072235, + 0.08430012315511703, + -0.013944342732429504, + -0.024379678070545197, + -0.03711916506290436, + -0.08951502293348312, + 0.014764171093702316, + -0.00650345254689455, + 0.078699491918087, + -0.04668764770030975, + -0.004294841084629297, + 0.09571234881877899, + 0.0528540164232254, + -0.0220005065202713, + -0.07365991175174713, + -0.04793429747223854, + -0.013625634834170341, + 0.05680353194475174, + -0.09912532567977905, + -0.08124546706676483, + -0.019717229530215263, + 0.05668644234538078, + -0.011334139853715897, + 0.07291688770055771, + 0.05611800402402878, + 0.029576651751995087, + 0.01304707396775484, + -0.0732540637254715, + 0.015658125281333923, + -0.09017372131347656, + -0.08548907935619354, + -0.017555225640535355, + -0.027347825467586517, + -0.006128217093646526, + 0.06830267608165741, + 0.012454835698008537, + 0.04593104496598244, + -0.023782506585121155, + -0.06570237874984741, + -0.09388864040374756, + 0.05440802127122879, + 0.04032035171985626, + -0.01430125255137682, + 0.04942398518323898, + 0.07252196967601776, + -0.07328368723392487, + 0.042637377977371216, + 0.058200906962156296, + 0.1299072802066803, + -0.04843887686729431, + 0.057595498859882355, + -0.05590197071433067, + 0.07234153151512146, + 0.0904366672039032, + -0.08401448279619217, + -0.07548040896654129, + -0.039046335965394974, + -0.05667746067047119, + 0.04639512300491333, + -0.04596441984176636, + -0.0032003677915781736, + 0.0073587168008089066, + 0.001806933432817459, + -0.0926545113325119, + -0.08737234771251678, + 0.07453086972236633, + -0.051295891404151917, + 0.006884843576699495, + -0.09308046847581863, + 0.043042056262493134, + 0.06748859584331512, + 0.05167599022388458, + -0.03423576429486275, + 0.014277677051723003, + 0.06291401386260986, + -0.015866756439208984, + 0.02137969434261322, + 0.08569542318582535, + 0.046959757804870605, + -0.0943174958229065, + -0.0365343876183033, + -0.0801193118095398, + 0.06505569815635681, + -0.03039010800421238, + 0.1565544605255127, + 0.006734907627105713, + -0.04568962752819061, + -0.06981738656759262, + 0.02863404154777527, + -0.0015778010711073875, + 0.04543830826878548, + 0.0291912741959095, + 0.07866893708705902, + 0.03238718956708908, + -0.026903148740530014, + 0.13715890049934387, + 0.04452521353960037, + -0.03350624442100525, + -0.044210076332092285, + -0.04607298970222473, + -0.05255250632762909, + 0.022222690284252167, + 0.008832775056362152, + -0.10808197408914566, + -0.015592294745147228, + 0.02139430120587349, + -5.829939618706703e-05, + 0.051591672003269196, + 0.1530590057373047, + 0.08657270669937134, + -0.10864903032779694 + ] + }, + "p245_185.wav": { + "name": "p245", + "embedding": [ + 0.061931438744068146, + 0.0943182036280632, + 0.017586873844265938, + -0.016560431569814682, + -0.01549588143825531, + 0.06860578060150146, + -0.1735783964395523, + 0.10738663375377655, + -0.06024941802024841, + 0.1527029573917389, + -0.10229989886283875, + 0.0820830762386322, + -0.024862563237547874, + -0.1922997534275055, + -0.06880733370780945, + 0.04849780350923538, + -0.06502246856689453, + -0.03457893803715706, + 0.0012382371351122856, + -0.03095114231109619, + 0.038484349846839905, + 0.05193109065294266, + 0.008144903928041458, + 0.02631678432226181, + 0.0451781302690506, + 0.05656164139509201, + 0.010965327732264996, + 0.049336764961481094, + -0.005590734537690878, + -0.03349357470870018, + -0.02043190225958824, + 0.13056224584579468, + -0.03088408149778843, + -0.005155405029654503, + 0.028637176379561424, + 0.023479096591472626, + 0.03669722378253937, + -0.0857032984495163, + -0.002330233808606863, + -0.003384561976417899, + -0.03503650426864624, + 0.06760133057832718, + 0.02083505317568779, + 0.018323713913559914, + 0.0068146237172186375, + 0.04039827734231949, + 0.0028054174035787582, + -0.07450364530086517, + -0.10297901928424835, + 0.16271817684173584, + 0.04333998262882233, + 0.018857136368751526, + -0.0736873671412468, + -0.08138163387775421, + 0.10239444673061371, + -0.011204741895198822, + -0.08961302042007446, + -0.018971525132656097, + 0.08370642364025116, + 0.1880270391702652, + -0.045557837933301926, + -0.06589552760124207, + 0.03892253339290619, + 0.10237638652324677, + 0.01838921755552292, + 0.08959254622459412, + 0.08224697411060333, + 0.0660763531923294, + 0.012882357463240623, + -0.01609390787780285, + 0.060892581939697266, + 0.04428984969854355, + 0.04501251131296158, + -0.04964422062039375, + 0.026755765080451965, + 0.01607527770102024, + -0.04234948381781578, + 0.04744495451450348, + -0.0172147024422884, + -0.007962924428284168, + 0.0005255321739241481, + -0.008809900842607021, + -0.014055125415325165, + 0.017560552805662155, + -0.035148583352565765, + 0.015296468511223793, + -0.00401654839515686, + -0.009734917432069778, + 0.10195815563201904, + 0.02065407671034336, + 0.020383402705192566, + 0.060295410454273224, + -0.06215808168053627, + -0.07610048353672028, + 0.05746382474899292, + 0.021879538893699646, + -0.0019333818927407265, + 0.06846021860837936, + 0.04975048080086708, + -0.05284110829234123, + 0.12015827000141144, + 0.029055429622530937, + 0.019173379987478256, + 0.02234555594623089, + -0.12423446029424667, + 0.10854637622833252, + 0.0924525335431099, + -0.04406654089689255, + 0.038346078246831894, + -0.03121175616979599, + 0.06448947638273239, + 0.08739827573299408, + -0.15698984265327454, + -0.089156374335289, + 0.05125739797949791, + 0.04494181647896767, + 0.0008481969125568867, + 0.10862427949905396, + -0.028039967641234398, + -0.006550223100930452, + 0.08231733739376068, + -0.07706663012504578, + -0.061941809952259064, + -0.020563066005706787, + 0.04454972594976425, + -0.09160491824150085, + 0.03808602690696716, + 0.060925837606191635, + 0.005269246641546488, + -0.015477458946406841, + 0.06979642808437347, + -0.011888453736901283, + -0.015624463558197021, + -0.02562510408461094, + -0.020971886813640594, + 0.03489968553185463, + -0.029899869114160538, + -0.008173709735274315, + 0.014536741189658642, + 0.056775838136672974, + 0.014111342839896679, + 0.03855336830019951, + -0.06912229210138321, + -0.11743748188018799, + -0.0033062375150620937, + 0.054164811968803406, + 0.057940319180488586, + -0.017601799219846725, + -0.031252745538949966, + -0.072161465883255, + -0.03870869800448418, + 0.023170702159404755, + 0.005680281203240156, + 0.08354271948337555, + 0.015904748812317848, + 0.0032762247137725353, + 0.10606884956359863, + 0.023646127432584763, + -0.0023334778379648924, + -0.05040481314063072, + -0.012844240292906761, + 0.03589194267988205, + 0.03635179251432419, + -0.06052795797586441, + -0.06869138777256012, + -0.0025041282642632723, + 0.04248450696468353, + -0.01490707602351904, + 0.03628591075539589, + 0.03992671146988869, + 0.015115615911781788, + 0.02881280519068241, + -0.08762317895889282, + 0.04189129173755646, + -0.11166097223758698, + -0.05664055794477463, + 0.0014595371903851628, + -0.009036744944751263, + -0.0038564163260161877, + 0.08789880573749542, + 0.005479919724166393, + 0.028801556676626205, + -0.0506991371512413, + -0.0854375958442688, + -0.05812521651387215, + 0.06582494080066681, + 0.11485972255468369, + 0.005417494103312492, + 0.036176636815071106, + 0.02856173738837242, + -0.003962871618568897, + 0.061177995055913925, + 0.06648282706737518, + 0.13206112384796143, + -0.020873498171567917, + 0.019060513004660606, + -0.03514261171221733, + 0.06428977847099304, + 0.034177958965301514, + -0.07694768905639648, + -0.08694911003112793, + -0.00605004234239459, + -0.05699876323342323, + 0.05943584442138672, + 0.014504838734865189, + 0.025877878069877625, + -0.009845886379480362, + -0.03490893542766571, + -0.0897604376077652, + -0.07291705906391144, + 0.05996953696012497, + -0.02755383774638176, + -0.03472472354769707, + -0.08967968821525574, + 0.07644389569759369, + 0.08695225417613983, + 0.043586790561676025, + 0.00286676362156868, + -0.016348622739315033, + 0.005012219306081533, + -0.06722348928451538, + -0.022148026153445244, + 0.023505806922912598, + 0.00038319453597068787, + -0.1097593754529953, + 0.03014691174030304, + -0.09828896820545197, + 0.09809508919715881, + -0.06587450206279755, + 0.15200844407081604, + -0.007465310860425234, + -0.06238946691155434, + -0.09271591901779175, + 0.019227854907512665, + -0.025916390120983124, + 0.044934600591659546, + 0.0454816073179245, + 0.03466986119747162, + 0.03788481652736664, + -0.056064315140247345, + 0.07617609202861786, + 0.035814326256513596, + -0.02204306423664093, + -0.06533538550138474, + -0.04845082759857178, + -0.023975593969225883, + 0.009637643583118916, + -0.031131941825151443, + -0.07051219046115875, + -0.01244270522147417, + 0.033741891384124756, + -0.0015441062860190868, + 0.0764072835445404, + 0.11345212906599045, + 0.04249701276421547, + -0.13651220500469208 + ] + }, + "p245_382.wav": { + "name": "p245", + "embedding": [ + 0.012547873891890049, + 0.05160238593816757, + 0.011362994089722633, + 0.010442528873682022, + -0.02396126464009285, + 0.013589495792984962, + -0.11730173975229263, + 0.036210618913173676, + -0.010385122150182724, + 0.11090656369924545, + -0.06143496558070183, + 0.06634905934333801, + -0.045379187911748886, + -0.10618384927511215, + 0.01740165799856186, + 0.03435014933347702, + -0.006350047420710325, + -0.00864393636584282, + -0.031849052757024765, + -0.09376578032970428, + 0.020534124225378036, + 0.036604393273591995, + 0.036742858588695526, + -0.06433065235614777, + -0.03600381687283516, + 0.08359530568122864, + 0.01833106204867363, + 0.00012774299830198288, + -0.01433572731912136, + -0.05799144506454468, + 0.012074185535311699, + 0.05872979015111923, + -0.022189244627952576, + -0.04682639613747597, + 0.03789011389017105, + 0.021736960858106613, + -0.011056792922317982, + 0.032406531274318695, + 0.03573356941342354, + 0.048331134021282196, + -0.10984036326408386, + 0.08040735870599747, + 0.035817697644233704, + -0.013468739576637745, + 0.05903147906064987, + -0.010543732903897762, + -0.0302356518805027, + 0.04786694049835205, + -0.05198640376329422, + 0.10123961418867111, + 0.09019836783409119, + -0.01387955155223608, + -0.0026811081916093826, + -0.0028360895812511444, + 0.06472156941890717, + 0.006172278895974159, + -0.09047840535640717, + -0.06961512565612793, + 0.01754872500896454, + 0.048186399042606354, + -0.0459323488175869, + -0.03905865177512169, + 0.021418139338493347, + 0.07180844992399216, + 0.02538359723985195, + 0.08152899891138077, + 0.04512246698141098, + 0.06418582797050476, + -0.015758180990815163, + -0.03462575748562813, + 0.04637700319290161, + 0.06378970295190811, + 0.05963975191116333, + -0.009656872600317001, + 0.04629376903176308, + -0.027568265795707703, + -0.0015075068222358823, + -0.015118101611733437, + -0.0021336134523153305, + -0.02977989986538887, + -0.016649462282657623, + -0.03093707747757435, + 0.0054865069687366486, + -0.011831393465399742, + -0.02760191448032856, + -0.013728601858019829, + 0.07599321007728577, + -0.011270669288933277, + 0.05656953155994415, + 0.017831265926361084, + 0.010215329006314278, + 0.04234057292342186, + -0.024735376238822937, + 0.013357169926166534, + -0.021729113534092903, + -0.023060370236635208, + 0.05408324673771858, + 0.04192613810300827, + -0.009943902492523193, + 0.03809733688831329, + 0.07158517092466354, + 0.012510206550359726, + -0.01156134344637394, + 0.02253643423318863, + -0.08828597515821457, + 0.09063994139432907, + 0.07299457490444183, + -0.04215797781944275, + 0.011265666224062443, + 0.005750037729740143, + 0.0337931364774704, + 0.004370613023638725, + -0.04674713686108589, + -0.026644859462976456, + -0.017069317400455475, + 0.05421210452914238, + -0.023538794368505478, + 0.11078331619501114, + -0.004369608126580715, + -0.001963440328836441, + 0.13071255385875702, + -0.011764176189899445, + -0.0530334934592247, + -0.0342542938888073, + 0.0011928481981158257, + -0.11772595345973969, + 0.04352394863963127, + 0.061838164925575256, + 0.010597269982099533, + 0.04860387742519379, + 0.12782812118530273, + -0.001282795681618154, + 0.007060809060931206, + -0.04113354533910751, + -0.02608216181397438, + 0.005709658842533827, + 0.005518050864338875, + 0.03675176203250885, + 0.06943594664335251, + 0.022506503388285637, + 0.10988815128803253, + 0.00980820506811142, + 0.017211895436048508, + -0.10632960498332977, + 0.02222321182489395, + 0.029957246035337448, + -0.008503291755914688, + -0.03047473356127739, + -0.02670774981379509, + -0.0339556559920311, + -0.06403562426567078, + 0.020782222971320152, + -0.06388944387435913, + 0.08039310574531555, + -0.035465702414512634, + -0.03365049511194229, + 0.12671050429344177, + 0.011926470324397087, + -0.018395351245999336, + -0.0451463907957077, + -0.04775174707174301, + -0.03024212270975113, + 0.02390103042125702, + -0.15910173952579498, + -0.03548077493906021, + -0.06562969833612442, + 0.06842155754566193, + 0.061021797358989716, + 0.01578560657799244, + 0.08299657702445984, + -0.026273656636476517, + 0.024967610836029053, + 0.005361704155802727, + 0.007530272472649813, + -0.025087492540478706, + -0.07498277723789215, + -0.028843076899647713, + -0.09150299429893494, + -0.03826965391635895, + 0.04488532990217209, + -0.05601165071129799, + 0.025278553366661072, + -0.01570734940469265, + -0.08624249696731567, + -0.09655316174030304, + 0.01300131343305111, + 0.032063499093055725, + -0.034426964819431305, + 0.036032259464263916, + 0.06893187016248703, + -0.05150822922587395, + 0.02387727051973343, + 0.01330776046961546, + 0.1009955108165741, + -0.06870239228010178, + 0.02597085013985634, + -0.04178846627473831, + 0.015592994168400764, + 0.07868680357933044, + -0.02680528722703457, + -0.03693900629878044, + -0.05068472772836685, + -0.03574802726507187, + 0.06267403811216354, + -0.04315007105469704, + -0.03363295644521713, + -0.017319170758128166, + 0.028717953711748123, + -0.043894216418266296, + -0.060050118714571, + 0.05433402955532074, + -0.03880521282553673, + 0.0020879385992884636, + -0.06176038086414337, + 0.0007769614458084106, + -0.05895606428384781, + 0.11176969110965729, + -0.0466681532561779, + 0.046651311218738556, + 0.03920469433069229, + -0.036042407155036926, + 0.05796392634510994, + 0.06418243795633316, + 0.06173306331038475, + 0.013650529086589813, + -0.06049313396215439, + -0.0877370685338974, + 0.026592738926410675, + -0.016280457377433777, + 0.0243687704205513, + 0.03331802785396576, + -0.012801187112927437, + -0.0022738445550203323, + 0.00848740991204977, + -0.035573720932006836, + 0.012242107652127743, + 0.09276110678911209, + 0.06797154247760773, + 0.016932833939790726, + -0.020362310111522675, + 0.09237921237945557, + 0.023318475112318993, + 0.028431814163923264, + -0.029714711010456085, + 0.03502645716071129, + -0.06460855901241302, + 0.014962121844291687, + 0.05536523461341858, + -0.10144593566656113, + 0.024608131498098373, + 0.01699121668934822, + 0.012575887143611908, + 0.018135521560907364, + 0.05983434617519379, + 0.055573634803295135, + -0.037474654614925385 + ] + }, + "p245_054.wav": { + "name": "p245", + "embedding": [ + 0.044531773775815964, + 0.08339071273803711, + -0.043592821806669235, + 0.032639503479003906, + -0.041242025792598724, + 0.03188537061214447, + -0.12195440381765366, + 0.12405737489461899, + -0.039067547768354416, + 0.11954139173030853, + -0.06776689738035202, + 0.10958655178546906, + -0.036398995667696, + -0.15811637043952942, + -0.0032070246525108814, + 0.060783497989177704, + -0.013422037474811077, + -0.024434328079223633, + -0.0128059983253479, + -0.006297648884356022, + 0.05196934938430786, + 0.030873890966176987, + 0.02055971696972847, + 0.004828694276511669, + -0.0059669530019164085, + 0.06463739275932312, + -0.01451481319963932, + 0.016734275966882706, + 0.0023957248777151108, + -0.009596682153642178, + -0.028207283467054367, + 0.0838286280632019, + -0.025441495701670647, + -0.001375867985188961, + 0.04361264035105705, + 0.013163789175450802, + -0.027481794357299805, + -0.06679468601942062, + -0.014668326824903488, + -0.021882986649870872, + -0.06359701603651047, + 0.049910545349121094, + 0.011246456764638424, + -0.04057619720697403, + 0.05698006972670555, + -0.032979294657707214, + -0.03630266711115837, + -0.02610834687948227, + -0.08936958014965057, + 0.1295086145401001, + 0.08682025969028473, + 0.030690256506204605, + -0.07012548297643661, + -0.03371772915124893, + 0.10229375213384628, + 0.013465752825140953, + -0.08645573258399963, + -0.044837117195129395, + 0.048386506736278534, + 0.15683308243751526, + -0.008068239316344261, + -0.014551311731338501, + 0.03809425234794617, + 0.09007300436496735, + 0.04222553223371506, + 0.08796178549528122, + 0.08538471162319183, + 0.08014971017837524, + 0.0014690251555293798, + 0.007828207686543465, + 0.0482005700469017, + 0.07763230055570602, + 0.04141215234994888, + -0.027177661657333374, + 0.011572152376174927, + 0.009257100522518158, + -0.04612048715353012, + 0.008623328059911728, + -0.007388022728264332, + -0.04041937366127968, + -0.03299110010266304, + -0.008901793509721756, + -0.0006154334987513721, + 0.016461152583360672, + -0.023357797414064407, + 0.028125744313001633, + 0.05248458683490753, + -0.0352524071931839, + 0.051901452243328094, + 0.027309920638799667, + -0.01561039499938488, + 0.03811197355389595, + -0.07006604224443436, + -0.08662566542625427, + 0.023440055549144745, + 0.0154373524710536, + 0.00595161272212863, + 0.08428120613098145, + 0.04134146124124527, + -0.0005706424708478153, + 0.09696288406848907, + 0.035293079912662506, + 0.005181587301194668, + 0.02159595489501953, + -0.07563850283622742, + 0.10091414302587509, + 0.09128039330244064, + -0.03950861096382141, + 0.04708978161215782, + -0.047100722789764404, + 0.04237062856554985, + 0.07073447108268738, + -0.11546891927719116, + -0.04164433479309082, + 0.037117987871170044, + 0.019331369549036026, + 0.018671944737434387, + 0.10687331855297089, + 0.025190195068717003, + 0.022847510874271393, + 0.09897732734680176, + -0.0918402224779129, + -0.09489685297012329, + -0.045933157205581665, + 0.06433014571666718, + -0.07319973409175873, + 0.07652459293603897, + 0.05230450630187988, + 0.010129591450095177, + -0.00817757286131382, + 0.05129304528236389, + -0.010708371177315712, + 0.003669125959277153, + -0.002487152349203825, + -0.03125491365790367, + 0.027580542489886284, + -0.05913276597857475, + -0.011526434682309628, + 0.048139046877622604, + 0.015221628360450268, + 0.042926251888275146, + 0.0016710280906409025, + 0.011386695317924023, + -0.10330268740653992, + 0.006572123151272535, + 0.07021503895521164, + 0.06470756977796555, + -0.014764896593987942, + -0.042874034494161606, + -0.03324338048696518, + -0.07297824323177338, + -0.007540812250226736, + -0.035766687244176865, + 0.08067728579044342, + -0.011344107799232006, + 0.035138264298439026, + 0.07291869074106216, + -0.001958150416612625, + 0.0014686796348541975, + -0.04221239313483238, + -0.017281625419855118, + 0.018143512308597565, + 0.04632008820772171, + -0.06905063986778259, + -0.09081631898880005, + -0.022073036059737206, + 0.02567869983613491, + -0.016295934095978737, + 0.029283598065376282, + 0.03530899062752724, + 0.01007854100316763, + 0.009313436225056648, + -0.08200067281723022, + 0.029111281037330627, + -0.1150745078921318, + -0.0669938176870346, + -0.02214871160686016, + -0.017387447878718376, + 0.017351120710372925, + 0.07316271960735321, + 0.024209685623645782, + 0.029132088646292686, + -0.014923411421477795, + -0.0653960257768631, + -0.09251268953084946, + 0.05088326334953308, + 0.06618297845125198, + -0.010669587180018425, + 0.03743422031402588, + 0.044326361268758774, + -0.044679902493953705, + 0.017755715176463127, + 0.04266372323036194, + 0.09544762223958969, + -0.02135905995965004, + -0.0040208748541772366, + -0.06608234345912933, + 0.06355912238359451, + 0.11735900491476059, + -0.09566470980644226, + -0.07402803003787994, + -0.04731234163045883, + -0.06647393107414246, + 0.023328756913542747, + -0.04298260062932968, + -0.0005063054850324988, + 0.02435779571533203, + -0.040551625192165375, + -0.11309491842985153, + -0.10754703730344772, + 0.07565949857234955, + -0.032360099256038666, + -0.014236598275601864, + -0.07610159367322922, + 0.03851526975631714, + 0.068403460085392, + 0.008493021130561829, + -0.04496745765209198, + -0.0027959574945271015, + 0.025532986968755722, + -0.02969980798661709, + -0.010796865448355675, + 0.04664656147360802, + 0.037412308156490326, + -0.10859899967908859, + -0.0028363890014588833, + -0.06875377893447876, + 0.0795290470123291, + -0.0637238547205925, + 0.13003848493099213, + -0.008818810805678368, + -0.04281790554523468, + -0.10158710181713104, + 0.03621697053313255, + 0.036350153386592865, + 0.04004887118935585, + 0.015556114725768566, + 0.055863939225673676, + 0.009571072645485401, + -0.0766301304101944, + 0.09556584805250168, + 0.04306706786155701, + -0.006984502077102661, + -0.07146522402763367, + -0.030883878469467163, + -0.03619595617055893, + 0.02568429335951805, + -0.015237387269735336, + -0.058929115533828735, + -0.005680184345692396, + 0.000603125779889524, + -0.0004595927894115448, + 0.05696096271276474, + 0.11993834376335144, + 0.04048936069011688, + -0.11684443056583405 + ] + }, + "p245_315.wav": { + "name": "p245", + "embedding": [ + 0.03413383662700653, + 0.11248143017292023, + -0.04909581318497658, + -0.01946149580180645, + -0.05494026094675064, + 0.05198469012975693, + -0.10419207811355591, + 0.06858484447002411, + -0.03169497847557068, + 0.15407967567443848, + -0.045282673090696335, + 0.11573299020528793, + -0.048958953469991684, + -0.11797276884317398, + 0.01691889949142933, + 0.046824801713228226, + -0.011813892051577568, + -0.008026326075196266, + -0.07579988241195679, + -0.0490071140229702, + 0.006307331379503012, + 0.006721321493387222, + 0.055475570261478424, + -0.08238747715950012, + 0.025415092706680298, + 0.06830001622438431, + -0.02267875149846077, + 0.009058261290192604, + -0.022792411968111992, + -0.05325685441493988, + -0.05768198519945145, + 0.0705752819776535, + -0.07316683232784271, + -0.005149628035724163, + 0.015670960769057274, + -0.000647758599370718, + -0.007105298340320587, + -0.04145439714193344, + 0.04939868673682213, + 0.008313881233334541, + -0.008967209607362747, + 0.07133138179779053, + -0.018732253462076187, + -0.03521409258246422, + 0.02477094531059265, + -0.003414227394387126, + -0.025668339803814888, + -0.009604323655366898, + -0.05513915419578552, + 0.12803515791893005, + 0.0672895759344101, + -0.028591400012373924, + -0.05910041928291321, + -0.04063919931650162, + 0.0807579904794693, + -0.0106466393917799, + -0.09221473336219788, + -0.08951853215694427, + 0.018430430442094803, + 0.07097722589969635, + -0.014687201008200645, + -0.03409990295767784, + 0.006377875339239836, + 0.06148528680205345, + 0.032162778079509735, + 0.08445896208286285, + 0.06989485025405884, + 0.10910843312740326, + -0.028483934700489044, + 0.023875702172517776, + 0.03908916562795639, + 0.03176497668027878, + 0.03761683776974678, + -0.0023465966805815697, + 0.039592765271663666, + -0.06574079394340515, + -0.007427575532346964, + 0.010662117972970009, + -0.022269485518336296, + -0.09172341972589493, + -0.033294033259153366, + -0.044124770909547806, + -0.02916226163506508, + -0.001995379338040948, + -0.0143654216080904, + 0.018939625471830368, + 0.10067899525165558, + -0.027329163625836372, + 0.09213057160377502, + 0.05443928390741348, + 0.0037899818271398544, + 0.04963983595371246, + -0.09650826454162598, + -0.03462880477309227, + 0.034820307046175, + -0.0007875389419496059, + 0.004731725435703993, + 0.04835128039121628, + 0.024307332932949066, + -0.020640313625335693, + 0.07182465493679047, + 0.07269822061061859, + 0.002478731330484152, + 0.013228606432676315, + -0.06202029436826706, + 0.1436268836259842, + 0.11806733906269073, + -0.035913363099098206, + 0.0031225793063640594, + -0.018875202164053917, + 0.03541206941008568, + 0.04431717097759247, + -0.0552237369120121, + -0.0839335173368454, + -0.030153775587677956, + -0.028216522186994553, + -0.021700209006667137, + 0.056338679045438766, + 0.012501124292612076, + 0.012556970119476318, + 0.10519523918628693, + -0.07827557623386383, + -0.0943988561630249, + -0.001382332295179367, + 0.028694912791252136, + -0.06438609212636948, + 0.023066814988851547, + 0.09650695323944092, + 0.02172049880027771, + 0.022864725440740585, + 0.09543150663375854, + 0.019513897597789764, + 0.034896932542324066, + 0.02922985702753067, + -0.021459218114614487, + 0.009129984304308891, + 0.014786722138524055, + -0.029674747958779335, + 0.06844797730445862, + 0.04813861474394798, + 0.07747222483158112, + -0.02400597371160984, + 0.04565712809562683, + -0.07895905524492264, + 0.03376833349466324, + 0.06263545900583267, + -0.0058061107993125916, + -0.04849748685956001, + 0.015252277255058289, + -0.010260669514536858, + -0.09156184643507004, + 0.006445238366723061, + -0.022827867418527603, + 0.08660911023616791, + -0.03378603607416153, + -0.015216754749417305, + 0.1553623527288437, + 0.03669090196490288, + -0.013548744842410088, + -0.059314094483852386, + -0.027013130486011505, + 0.0441359281539917, + 0.03447284549474716, + -0.10293310880661011, + -0.0661337822675705, + -0.02860097587108612, + 0.024177582934498787, + 0.003979003056883812, + 0.08148729056119919, + 0.11319103837013245, + -0.0069936830550432205, + 0.029588159173727036, + -0.05135303735733032, + 0.0418066643178463, + -0.015039725229144096, + -0.013632766902446747, + -0.018243515864014626, + -0.09486951678991318, + -0.026181941851973534, + 0.07402196526527405, + -0.004380423575639725, + 0.0331728495657444, + -0.06885910779237747, + -0.07564035058021545, + -0.08704549074172974, + 0.02460172027349472, + 0.054089777171611786, + -0.05204082652926445, + 0.03461485356092453, + 0.05356509983539581, + -0.02620266191661358, + 0.010335616767406464, + 0.07561412453651428, + 0.07537376135587692, + -0.051287420094013214, + -0.00031730160117149353, + -0.08707383275032043, + 0.060790468007326126, + 0.09890241920948029, + -0.09302216023206711, + -0.049903638660907745, + -0.08977462351322174, + -0.023200221359729767, + 0.0029694996774196625, + -0.05973154306411743, + -0.004922495689243078, + 0.05704745650291443, + -0.00866637472063303, + -0.05818870663642883, + -0.14534473419189453, + 0.10099364817142487, + -0.03192056342959404, + 0.011476516723632812, + -0.05229166895151138, + 0.03170435130596161, + -0.010224081575870514, + 0.04247201606631279, + -0.07210371643304825, + 0.035147733986377716, + 0.03281755745410919, + 0.012498822063207626, + 0.05496523529291153, + 0.04321397840976715, + 0.06977403163909912, + -0.04002279415726662, + -0.016014492139220238, + -0.08187700808048248, + 0.09048968553543091, + -0.03173889219760895, + 0.1459461748600006, + 0.01020322646945715, + -0.001790856011211872, + -0.09119556844234467, + 0.048776544630527496, + -0.04592974856495857, + 0.04166581481695175, + 0.06384682655334473, + 0.0476040281355381, + 0.005869491025805473, + -0.04697089642286301, + 0.0986829400062561, + 0.03343397378921509, + -0.02489675022661686, + -0.07331164926290512, + -0.014144917018711567, + -0.0687505304813385, + 0.050350695848464966, + 0.014541254378855228, + -0.08110079914331436, + 0.02182883396744728, + 0.023041747510433197, + -0.013296023942530155, + 0.07973086088895798, + 0.09263253957033157, + 0.09798845648765564, + -0.07878242433071136 + ] + }, + "p245_290.wav": { + "name": "p245", + "embedding": [ + 0.01912044547498226, + 0.0878903716802597, + -0.00811822060495615, + 0.040054745972156525, + -0.05176994204521179, + 0.026453204452991486, + -0.029326923191547394, + 0.06288449466228485, + 0.03335327282547951, + 0.06359043717384338, + -0.0520898662507534, + 0.04585761949419975, + -0.061563968658447266, + -0.10855460166931152, + -0.010652425698935986, + 0.023728996515274048, + -0.005488347262144089, + 0.020646758377552032, + -0.03890529274940491, + -0.01703776977956295, + -0.04177787899971008, + -0.022052664309740067, + -0.04700027406215668, + 0.025646071881055832, + -0.05263756960630417, + 0.04717602580785751, + -0.033035993576049805, + -0.0008956827223300934, + -0.026933956891298294, + -0.04906585067510605, + 0.02629845216870308, + 0.05654216557741165, + -0.02185446210205555, + -0.039292111992836, + 0.04170616716146469, + -0.04133742302656174, + 0.008103480562567711, + -0.023746736347675323, + -0.044792115688323975, + -0.0015041893348097801, + -0.063213050365448, + 0.00797811895608902, + 0.015389461070299149, + -0.07636027783155441, + 0.002584769856184721, + 0.03233061358332634, + -0.011692564934492111, + -0.01648004725575447, + -0.036780282855033875, + 0.09442220628261566, + 0.0322970375418663, + 0.029101412743330002, + -0.028388291597366333, + -0.029950594529509544, + 0.12743638455867767, + 0.015334445051848888, + 0.021385349333286285, + -0.029812147840857506, + 0.012949611991643906, + 0.06365389376878738, + 0.009745093062520027, + -0.01222170889377594, + 0.0481518991291523, + 0.052945736795663834, + -0.0042460206896066666, + 0.0463312566280365, + 0.057978421449661255, + 0.10464777052402496, + -0.020650649443268776, + 0.007968008518218994, + 0.05429162085056305, + 0.0014821551740169525, + 0.053401075303554535, + 0.022862186655402184, + -0.02775970846414566, + 0.011058037169277668, + 0.00011264253407716751, + 0.02712939865887165, + -0.028745047748088837, + -0.03999347239732742, + 0.01725243777036667, + -0.000758882611989975, + 0.01597965508699417, + -0.042269542813301086, + -0.032369546592235565, + -0.03964819386601448, + 0.0617033913731575, + -0.0014846604317426682, + 0.06334895640611649, + -0.014688508585095406, + 0.04743838310241699, + 0.05074680224061012, + -0.05440659075975418, + -0.05539717525243759, + 0.014292231760919094, + -0.019001878798007965, + 0.03565326705574989, + 0.037062324583530426, + 0.009589990600943565, + 0.014036282896995544, + 0.06806677579879761, + -0.024226054549217224, + 0.05962487682700157, + 0.01211432833224535, + -0.07123999297618866, + -0.02635989338159561, + 0.03756067156791687, + 0.005959119647741318, + 0.024486029520630836, + 0.044524870812892914, + 0.03301968052983284, + 0.08831869065761566, + -0.04037364944815636, + -0.05762895196676254, + 0.030030623078346252, + 0.07834096252918243, + -0.06656120717525482, + 0.10810627043247223, + -0.021274428814649582, + 0.028830530121922493, + 0.07025730609893799, + -0.006297927349805832, + -0.001488884910941124, + 0.013544036075472832, + -0.0005233306437730789, + -0.033376362174749374, + 0.0672052726149559, + 0.03341102972626686, + -0.030123023316264153, + -0.033759087324142456, + 0.04925951734185219, + -0.023741915822029114, + -0.033747073262929916, + -0.043573372066020966, + 0.03504834324121475, + 0.008837351575493813, + 0.039331164211034775, + -0.02504708059132099, + -0.0018461518920958042, + 0.0803990587592125, + -0.0009807944297790527, + -0.03415236994624138, + -0.010165511630475521, + -0.04275501146912575, + 0.019379690289497375, + 0.03222106397151947, + 0.03502677381038666, + 0.06861163675785065, + -0.03326110169291496, + -0.06489211320877075, + -0.006306573748588562, + 0.03422148898243904, + -0.05326361954212189, + 0.08789268136024475, + 0.058206744492053986, + 0.01831907406449318, + 0.07299650460481644, + -0.03483293205499649, + -0.0014111967757344246, + -0.030852051451802254, + -0.08148300647735596, + -0.01032851543277502, + 0.01567525416612625, + -0.02900564856827259, + -0.03451034426689148, + -0.028528772294521332, + -0.007494870573282242, + 0.007547067478299141, + 0.022373061627149582, + 0.021143479272723198, + -0.01800907962024212, + 0.04096347093582153, + -0.0828053206205368, + -0.006824616342782974, + -0.0184059739112854, + -0.038303181529045105, + 0.04072409123182297, + 0.012901604175567627, + 0.0010232338681817055, + 0.022037165239453316, + 0.009273068979382515, + -0.0196218378841877, + -0.053866732865571976, + -0.08367647975683212, + 0.016084197908639908, + 0.027223750948905945, + 0.025060266256332397, + -0.01541376393288374, + -0.005240677855908871, + 0.04960779473185539, + 0.05163364112377167, + 0.011579295620322227, + 0.03604981675744057, + 0.07421388477087021, + -0.033744823187589645, + -0.0032753143459558487, + 0.027166450396180153, + 0.10652270913124084, + 0.03926441818475723, + -0.053613074123859406, + -0.09483854472637177, + -0.0335165411233902, + -0.036572933197021484, + 0.05009347200393677, + -0.022581521421670914, + 0.03593762218952179, + -0.0089015644043684, + 0.005714827217161655, + 0.020998116582632065, + -0.10319957137107849, + 0.020687537267804146, + 0.007287014275789261, + -0.014180734753608704, + -0.018811218440532684, + 0.008932719938457012, + 0.021662309765815735, + 0.04693171754479408, + -0.022302716970443726, + -0.021310104057192802, + 0.020492244511842728, + -0.0006692931056022644, + -0.0024574417620897293, + 0.04556262865662575, + 0.0514710433781147, + -0.0010628588497638702, + -0.01849389635026455, + -0.025267377495765686, + 0.04617158696055412, + 0.015502825379371643, + 0.05003879964351654, + 0.009656425565481186, + -0.008890802040696144, + -0.09754496812820435, + 0.06594467163085938, + -0.021181201562285423, + 0.06645216047763824, + -0.007990904152393341, + 0.0376305915415287, + 0.06180844083428383, + -0.00667180772870779, + 0.08812643587589264, + 0.005475944839417934, + -0.0222301222383976, + -0.044031497091054916, + -0.0431826077401638, + -0.02952864021062851, + -0.001858039409853518, + 0.05068175867199898, + -0.01804637908935547, + -0.03750092163681984, + 0.04238550737500191, + 0.016636352986097336, + 0.07106532156467438, + 0.07458914071321487, + 0.0646275132894516, + 0.0074406638741493225 + ] + }, + "p245_341.wav": { + "name": "p245", + "embedding": [ + 0.05144480988383293, + 0.09490710496902466, + -0.021923646330833435, + 0.025897063314914703, + -0.060403577983379364, + 0.07773204892873764, + -0.1412520408630371, + 0.13891853392124176, + -0.04217970371246338, + 0.1378546953201294, + -0.035827118903398514, + 0.11010695993900299, + -0.022878920659422874, + -0.17258340120315552, + -0.029567096382379532, + 0.07048855721950531, + -0.05807400494813919, + -0.04977872222661972, + -0.052923671901226044, + -0.009816604666411877, + 0.008188669569790363, + 0.015158360823988914, + 0.03498988598585129, + -0.00605994276702404, + 0.03965850546956062, + 0.06300187110900879, + -0.006520512513816357, + 0.055122967809438705, + 0.007679138332605362, + -0.06641988456249237, + -0.014704719185829163, + 0.08735961467027664, + -0.06784327328205109, + 0.017183993011713028, + 0.04393257945775986, + -0.01377885602414608, + -0.0021048171911388636, + -0.06173987686634064, + -0.014424381777644157, + -0.006023450754582882, + -0.034361060708761215, + 0.10261380672454834, + 0.02472495660185814, + -0.007815316319465637, + 0.01871519535779953, + 0.013764625415205956, + -0.017168574035167694, + -0.047201819717884064, + -0.1079639196395874, + 0.15566271543502808, + 0.06997188925743103, + 0.0003933088155463338, + -0.08531288057565689, + -0.07673226296901703, + 0.08558286726474762, + -0.0208512581884861, + -0.12377744913101196, + -0.07109367847442627, + 0.06526520103216171, + 0.1547544300556183, + -0.03256845101714134, + -0.025883059948682785, + 0.010721691884100437, + 0.12660090625286102, + 0.08642827719449997, + 0.08840705454349518, + 0.07699798047542572, + 0.11311851441860199, + -0.019651539623737335, + 0.026744019240140915, + 0.06717963516712189, + 0.05525387451052666, + 0.04959084466099739, + 0.014187723398208618, + 0.0288851261138916, + -0.03147173672914505, + -0.0007630875916220248, + -0.028616424649953842, + -0.018456537276506424, + -0.02608596906065941, + -0.021630095317959785, + 0.020860102027654648, + 0.005859169643372297, + 0.05097389221191406, + -0.008726393803954124, + 0.04270967096090317, + 0.034227192401885986, + -0.0370824933052063, + 0.07148225605487823, + 0.049353644251823425, + 0.013594419695436954, + 0.06155559420585632, + -0.09407760947942734, + -0.07176750898361206, + 0.028547782450914383, + 0.0036114000249654055, + 0.028942083939909935, + 0.05231490731239319, + 0.023434635251760483, + -0.007127637974917889, + 0.10949581861495972, + 0.046734586358070374, + -0.0178220197558403, + 0.015526052564382553, + -0.08812092244625092, + 0.14471960067749023, + 0.05609337240457535, + -0.014147101901471615, + 0.04629359394311905, + -0.036612898111343384, + 0.04154061898589134, + 0.060822244733572006, + -0.12675780057907104, + -0.0879315584897995, + 0.02080797404050827, + -0.003991410601884127, + -0.03631272166967392, + 0.11920009553432465, + 0.01180082093924284, + 0.045656461268663406, + 0.09535133838653564, + -0.08752863854169846, + -0.050203315913677216, + 0.007991038262844086, + 0.05196003243327141, + -0.08059116452932358, + 0.04225955903530121, + 0.06067333742976189, + -0.017503179609775543, + 0.02666880004107952, + 0.09904748201370239, + 0.012025121599435806, + 0.009307839907705784, + 0.027502041310071945, + -0.04676958918571472, + 0.029968073591589928, + -0.011394794099032879, + -0.002331534866243601, + 0.039806317538022995, + 0.017847564071416855, + 0.06357142329216003, + -0.01853979378938675, + -0.020683813840150833, + -0.11147885024547577, + -0.0007262104190886021, + 0.03840206190943718, + 0.08944395929574966, + -0.029955651611089706, + -0.0004986696876585484, + -0.02589883655309677, + -0.05605993792414665, + 0.012824616394937038, + -0.004544756840914488, + 0.08468576520681381, + -0.011032759211957455, + -0.015628637745976448, + 0.13016214966773987, + 0.02594016119837761, + 0.009066566824913025, + -0.04820541664958, + -0.011101684533059597, + 0.01899886690080166, + 0.07315941154956818, + -0.0899038016796112, + -0.05063747987151146, + 0.01304718665778637, + 0.036304451525211334, + -0.009482748806476593, + 0.07670986652374268, + 0.06042204797267914, + 0.01884995773434639, + 0.012809822335839272, + -0.04806660860776901, + 0.016181349754333496, + -0.059673674404621124, + -0.06470909714698792, + 0.0014662076719105244, + -0.023437581956386566, + -0.051634907722473145, + 0.08094987273216248, + 0.0331161692738533, + 0.06778091937303543, + -0.025496773421764374, + -0.0826568678021431, + -0.08372054249048233, + 0.055319420993328094, + 0.05553797632455826, + -0.034959372133016586, + 0.027661526575684547, + 0.0661623403429985, + -0.0268266424536705, + 0.030382946133613586, + 0.06150016188621521, + 0.09969155490398407, + -0.05662955343723297, + 0.01419757679104805, + -0.08851909637451172, + 0.07444809377193451, + 0.08771632611751556, + -0.10171777009963989, + -0.06157103180885315, + -0.010723607614636421, + -0.055419087409973145, + 0.0169186070561409, + -0.04167061299085617, + 0.022828031331300735, + 0.056738466024398804, + -0.018225129693746567, + -0.10133303701877594, + -0.11747681349515915, + 0.09777864813804626, + -0.0977693498134613, + 0.01351673062890768, + -0.07692878693342209, + 0.03325483947992325, + 0.07665561139583588, + 0.055152133107185364, + -0.028388746082782745, + -0.005988146178424358, + 0.04631059616804123, + -0.020998038351535797, + 0.012032933533191681, + 0.0781719982624054, + 0.029342520982027054, + -0.10526087880134583, + -0.00933622196316719, + -0.0654182881116867, + 0.04446505755186081, + -0.030080342665314674, + 0.16331614553928375, + 0.011038949713110924, + -0.04740135371685028, + -0.09075221419334412, + 0.01164920348674059, + -0.04199260473251343, + 0.06427827477455139, + 0.028239388018846512, + 0.07292013615369797, + 0.06301284581422806, + -0.03558768332004547, + 0.12175273895263672, + 0.05364023149013519, + -0.03373897075653076, + -0.06901658326387405, + -0.05237111449241638, + -0.04455861821770668, + 0.05221952497959137, + 0.0010546408593654633, + -0.10342967510223389, + 0.004786589182913303, + 0.03170613944530487, + -0.02323976904153824, + 0.06615154445171356, + 0.1356145441532135, + 0.08601370453834534, + -0.10246265679597855 + ] + }, + "p245_296.wav": { + "name": "p245", + "embedding": [ + 0.041318681091070175, + 0.0945296585559845, + -0.026775799691677094, + 0.045866094529628754, + -0.055853065103292465, + 0.04816087707877159, + -0.10735886543989182, + 0.13000677525997162, + -0.04410688579082489, + 0.13508228957653046, + -0.06848134845495224, + 0.10222294181585312, + -0.006338165141642094, + -0.1870807558298111, + -0.03953560069203377, + 0.03323279321193695, + -0.07274294644594193, + -0.029713099822402, + -0.0779244601726532, + -0.0008681975305080414, + 0.05867717042565346, + 0.04237307235598564, + 0.014544080942869186, + -0.0234934464097023, + 0.006065462715923786, + 0.044528622180223465, + 0.019178733229637146, + 0.056521471589803696, + 0.058167532086372375, + -0.04547460377216339, + -0.0328659862279892, + 0.12109345197677612, + -0.029036706313490868, + 0.03205665200948715, + 0.05403066426515579, + -0.02390475943684578, + -0.007008626591414213, + -0.037837665528059006, + -0.04116789251565933, + 0.030151614919304848, + -0.054543085396289825, + 0.06686088442802429, + 0.0665142685174942, + 0.004767619073390961, + 0.056362103670835495, + 0.015434455126523972, + -0.047723133116960526, + -0.05780066177248955, + -0.07999444007873535, + 0.18002712726593018, + 0.08711431920528412, + -0.02807789295911789, + -0.05149059370160103, + -0.047855574637651443, + 0.10140743106603622, + -0.0037548760883510113, + -0.15592895448207855, + -0.04236697033047676, + 0.10501722246408463, + 0.15432967245578766, + -0.016631536185741425, + 0.0028191402088850737, + 0.00797203928232193, + 0.15575803816318512, + 0.05745095759630203, + 0.0968722477555275, + 0.059764306992292404, + 0.11765952408313751, + 0.011920973658561707, + 0.05072137713432312, + 0.06883751600980759, + 0.06562920659780502, + 0.005385405849665403, + -0.026856614276766777, + 0.03951319679617882, + -0.006331588141620159, + -0.0206725113093853, + -0.005500771105289459, + -0.030993448570370674, + 0.022903921082615852, + -0.0052184490486979485, + 0.014078463427722454, + 0.0032910448499023914, + 0.014566889964044094, + -0.0353395976126194, + 0.07072412967681885, + 0.014765985310077667, + 0.005105732940137386, + 0.043322768062353134, + 0.04887993633747101, + 0.025364618748426437, + 0.04704684019088745, + -0.04609707370400429, + -0.11718489974737167, + -0.014623098075389862, + 0.001542488345876336, + 0.02529967576265335, + 0.06292904913425446, + 0.03873699903488159, + -0.015730854123830795, + 0.11337673664093018, + 0.039424363523721695, + -0.041698943823575974, + 0.029235277324914932, + -0.09620600938796997, + 0.12352906912565231, + 0.0674699917435646, + 0.008962842635810375, + 0.03628653660416603, + -0.05478410795331001, + 0.0964847132563591, + 0.04554268717765808, + -0.13312795758247375, + -0.045462604612112045, + 0.06395375728607178, + -0.003645610297098756, + -0.02261500246822834, + 0.1143454983830452, + 0.00031702342675998807, + 0.010378554463386536, + 0.09764956682920456, + -0.06914980709552765, + -0.04608475789427757, + -0.03610144555568695, + 0.05797521770000458, + -0.08386005461215973, + 0.046092256903648376, + 0.009382068179547787, + -0.047608595341444016, + -0.0012762827100232244, + 0.08843357861042023, + -0.012790529057383537, + 0.013585151173174381, + 0.022525502368807793, + -0.04850340262055397, + 0.07277356088161469, + -0.04308157414197922, + 0.023064637556672096, + 0.03960254788398743, + 0.04245040938258171, + 0.0598858967423439, + -0.022455569356679916, + -0.044262465089559555, + -0.0901675894856453, + 0.023209083825349808, + 0.014932384714484215, + 0.07892078161239624, + 0.004284909460693598, + -0.0022143537644296885, + -0.04088211432099342, + -0.08096452057361603, + 0.01720733940601349, + -0.03373314440250397, + 0.07582180947065353, + -0.021895410493016243, + -0.030406001955270767, + 0.10198938101530075, + -0.007291710469871759, + 0.0030485086608678102, + -0.05230522155761719, + -0.024559469893574715, + 0.015485113486647606, + 0.04864849895238876, + -0.09028993546962738, + -0.04405295476317406, + 0.024547187611460686, + 0.007781818974763155, + -0.010542208328843117, + 0.005231906659901142, + 0.017798909917473793, + 0.0024374243803322315, + 0.0523248016834259, + -0.08068772405385971, + 0.010028494521975517, + -0.12339293211698532, + -0.05186411365866661, + -0.021564709022641182, + -0.0227389857172966, + -0.016183309257030487, + 0.07365275919437408, + 0.0012940015876665711, + 0.017588775604963303, + 0.03823458403348923, + -0.08692120015621185, + -0.06424491107463837, + 0.08963587880134583, + 0.06753387302160263, + 0.002155711641535163, + 0.06636876612901688, + 0.06379912048578262, + -0.043997108936309814, + 0.03490740805864334, + 0.049191415309906006, + 0.09566248953342438, + -0.008505954407155514, + -0.0019705158192664385, + -0.08357450366020203, + 0.08678137511014938, + 0.06673752516508102, + -0.11800973117351532, + -0.07379437237977982, + -0.020728258416056633, + -0.05262252315878868, + 0.007787683513015509, + -0.029094474390149117, + 0.0003525139472912997, + 0.03164540231227875, + 0.015931393951177597, + -0.10209763795137405, + -0.07028472423553467, + 0.08402393013238907, + -0.1088315024971962, + -0.01746816374361515, + -0.07123661041259766, + 0.026188498362898827, + 0.12433307617902756, + 0.04734567925333977, + -0.029640348628163338, + -0.0016770545626059175, + 0.0705217719078064, + -0.07041095197200775, + -0.017768193036317825, + 0.02826724946498871, + 0.020265942439436913, + -0.10742716491222382, + 0.006870593409985304, + -0.05989695340394974, + 0.037293531000614166, + -0.07067269831895828, + 0.13812874257564545, + 0.015748854726552963, + -0.0676906406879425, + -0.08093681931495667, + 0.06581062823534012, + -0.019399330019950867, + 0.044615477323532104, + 0.05384982377290726, + 0.05743812769651413, + 0.04006803035736084, + -0.07658716291189194, + 0.1392107456922531, + 0.021193357184529305, + -0.02970031090080738, + -0.06526640057563782, + -0.0215093232691288, + -0.03709458187222481, + 0.016958212479948997, + 0.0481191910803318, + -0.08683504909276962, + -0.02103733830153942, + 0.024913201108574867, + -0.06485319137573242, + 0.07178670167922974, + 0.13823001086711884, + 0.07610105723142624, + -0.10873140394687653 + ] + }, + "p245_281.wav": { + "name": "p245", + "embedding": [ + 0.04316239804029465, + 0.09389373660087585, + -0.004338981583714485, + 0.02047625370323658, + -0.050993047654628754, + 0.068476602435112, + -0.1208743304014206, + 0.12484188377857208, + -0.07613775134086609, + 0.1500626802444458, + -0.11026425659656525, + 0.1104574203491211, + -0.04054606705904007, + -0.18952953815460205, + -0.0257693063467741, + 0.05206223577260971, + -0.0442204549908638, + 0.0008913697674870491, + -0.04847009479999542, + -0.03451327979564667, + 0.04897636920213699, + 0.036467544734478, + 0.025049470365047455, + -0.004559813067317009, + 0.02676309645175934, + 0.06207616627216339, + -0.01977812498807907, + 0.016210488975048065, + 0.004305846989154816, + -0.07645659148693085, + -0.049201600253582, + 0.11599043011665344, + -0.02723785862326622, + 0.0043502310290932655, + 0.048825591802597046, + -0.0014877127250656486, + -0.008433063514530659, + -0.07079911231994629, + -0.024381348863244057, + -0.008154544979333878, + -0.053825974464416504, + 0.04391765967011452, + 0.01588037610054016, + -0.022000059485435486, + 0.04293741658329964, + 0.012471312656998634, + -0.020323943346738815, + -0.04164234548807144, + -0.08783012628555298, + 0.1584375947713852, + 0.06209580972790718, + 0.003575683571398258, + -0.06467777490615845, + -0.07489050924777985, + 0.12742935121059418, + 0.0025154389441013336, + -0.12956053018569946, + -0.01891259476542473, + 0.09117413312196732, + 0.17949531972408295, + -0.03186075761914253, + -0.023736614733934402, + 0.0336587093770504, + 0.10539084672927856, + 0.0021025659516453743, + 0.10217355936765671, + 0.06640615314245224, + 0.08427748084068298, + 0.01719059981405735, + 0.042019739747047424, + 0.05327766388654709, + 0.0626484751701355, + 0.046641625463962555, + -0.05263303965330124, + 0.006512587424367666, + 0.0006292110774666071, + -0.048804864287376404, + 0.008333852514624596, + -0.03805795684456825, + -0.026150163263082504, + -0.01371549442410469, + -0.01841064728796482, + 0.015263654291629791, + -0.032870713621377945, + -0.03372101113200188, + 0.03469639644026756, + 0.024499110877513885, + -0.015447386540472507, + 0.0741010457277298, + 0.02746744453907013, + 0.004795158747583628, + 0.04854855313897133, + -0.055203042924404144, + -0.09991756826639175, + 0.021872874349355698, + 0.021441973745822906, + -0.010287429206073284, + 0.07411578297615051, + 0.058819130063056946, + -0.028419315814971924, + 0.1258266568183899, + 0.044557999819517136, + 0.027902871370315552, + 0.020803408697247505, + -0.10969652235507965, + 0.11149384081363678, + 0.10121595114469528, + -0.017748437821865082, + 0.060041315853595734, + -0.04024200141429901, + 0.10059916973114014, + 0.09553758800029755, + -0.160922110080719, + -0.05883362144231796, + 0.0019642841070890427, + -0.00855749100446701, + -3.0842842534184456e-05, + 0.10438629984855652, + -0.014789480715990067, + 0.015048881061375141, + 0.10627907514572144, + -0.10361991077661514, + -0.06523903459310532, + -0.036818645894527435, + 0.04138176143169403, + -0.08383512496948242, + 0.06932668387889862, + 0.05693099647760391, + -0.021924462169408798, + 0.01642550528049469, + 0.07105615735054016, + -0.03741040453314781, + -0.0012498274445533752, + 0.005890397354960442, + -0.05652263015508652, + 0.010543439537286758, + -0.059381477534770966, + -0.0016308611957356334, + 0.05255758389830589, + 0.048733849078416824, + 0.041055403649806976, + 0.00028462009504437447, + -0.03760337084531784, + -0.0806020051240921, + 0.007694039959460497, + 0.03671346604824066, + 0.05928145349025726, + 0.008565877564251423, + -0.007897469215095043, + -0.03692619130015373, + -0.07190090417861938, + 0.03099704720079899, + -0.034588899463415146, + 0.09157770127058029, + -0.00566551648080349, + 0.017080388963222504, + 0.0929098129272461, + 0.04333870857954025, + -0.01783258095383644, + -0.08507756888866425, + -0.039767101407051086, + 0.020575709640979767, + 0.03145882859826088, + -0.08532088249921799, + -0.06350696086883545, + -0.007995542138814926, + 0.020544854924082756, + -0.025409091264009476, + 0.041259557008743286, + 0.03125467151403427, + 0.021289899945259094, + 0.03556213900446892, + -0.07972882688045502, + 0.028546597808599472, + -0.11305233836174011, + -0.06000962853431702, + 0.004138820804655552, + -0.0448276624083519, + -0.0060881758108735085, + 0.09007851779460907, + 0.005987387616187334, + -0.004957599099725485, + -0.025380559265613556, + -0.06755310297012329, + -0.06653745472431183, + 0.05965537950396538, + 0.05057786777615547, + 0.009551698341965675, + 0.04264432191848755, + 0.04539789259433746, + -0.03645608201622963, + 0.06734208762645721, + 0.05736595019698143, + 0.11864569783210754, + -0.009800620377063751, + 0.020939519628882408, + -0.061349056661129, + 0.08253012597560883, + 0.0883067324757576, + -0.07265673577785492, + -0.10535315424203873, + -0.05579511076211929, + -0.06478118151426315, + 0.07777097821235657, + -0.012174505740404129, + -0.02264985628426075, + 0.0001900692004710436, + -0.030676869675517082, + -0.08952242136001587, + -0.06041882559657097, + 0.09801868349313736, + -0.038460567593574524, + -0.0325746014714241, + -0.08659961819648743, + 0.05395590141415596, + 0.08195780217647552, + 0.025128480046987534, + -0.024774737656116486, + 0.008562793023884296, + 0.05355486273765564, + -0.07659287750720978, + -0.006160122808068991, + 0.04255946725606918, + 0.017358507961034775, + -0.08650492131710052, + 0.007121242582798004, + -0.09494180232286453, + 0.07364729791879654, + -0.058140769600868225, + 0.15665312111377716, + -0.011113450862467289, + -0.05189599096775055, + -0.08183331787586212, + 0.07581934332847595, + -0.010511255823075771, + 0.03715214133262634, + 0.05822507292032242, + 0.06378577649593353, + 0.04279954731464386, + -0.08393155038356781, + 0.09939467161893845, + 0.00495325680822134, + -0.0136440210044384, + -0.04334452748298645, + -0.04805696755647659, + -0.046550579369068146, + -0.015952609479427338, + -0.024811657145619392, + -0.10690297186374664, + -0.00766246672719717, + 0.00816418882459402, + 0.011764800176024437, + 0.07797898352146149, + 0.1134762093424797, + 0.051282189786434174, + -0.10418900102376938 + ] + }, + "p245_200.wav": { + "name": "p245", + "embedding": [ + 0.024939430877566338, + 0.07433727383613586, + -0.02525252290070057, + -0.02982010878622532, + -0.04866282641887665, + 0.03008236363530159, + -0.10671471804380417, + 0.08964802324771881, + -0.02626296691596508, + 0.13251730799674988, + -0.031405266374349594, + 0.12363055348396301, + -0.012178616598248482, + -0.08940556645393372, + 0.0018033534288406372, + 0.03925182297825813, + -0.02653134986758232, + -0.018556490540504456, + 0.026375677436590195, + -0.09278352558612823, + 0.01694541983306408, + 0.012202143669128418, + 0.010271896608173847, + -0.02886061742901802, + 0.03657793253660202, + 0.08312389999628067, + -0.010484747588634491, + -0.015864841639995575, + -0.0163906030356884, + -0.07271693646907806, + -0.023432716727256775, + 0.07284985482692719, + -0.0495089590549469, + -0.036293063312768936, + 0.03591129183769226, + -0.017441047355532646, + 0.012030897662043571, + -0.030306216329336166, + 0.011072250083088875, + 0.050925251096487045, + -0.05886799469590187, + 0.09645560383796692, + 0.015479094348847866, + -0.012519692070782185, + 0.03595249354839325, + -0.0164759811013937, + -0.03039535880088806, + 0.04172850400209427, + -0.04935479164123535, + 0.09674926102161407, + 0.048564258962869644, + -0.000288613693555817, + -0.0673631876707077, + -0.014889011159539223, + 0.0623813234269619, + 6.916932761669159e-05, + -0.08723580837249756, + 0.014711225405335426, + -0.008832443505525589, + 0.08853672444820404, + 0.0005101468414068222, + -0.05904746800661087, + 0.03553440421819687, + 0.07162363827228546, + 0.01699855551123619, + 0.019998032599687576, + 0.07644030451774597, + 0.07371202111244202, + -0.024670282378792763, + -0.013962291181087494, + 0.050953831523656845, + 0.09373202919960022, + 0.042279232293367386, + -0.028921708464622498, + 0.029026946052908897, + -0.012677819468080997, + -0.01491071842610836, + -0.053724255412817, + -0.02286776900291443, + -0.04822743311524391, + -0.07667197287082672, + -0.008525769226253033, + 0.00692553399130702, + 0.06857479363679886, + -0.0091291144490242, + 0.0035489723086357117, + 0.05871639400720596, + -0.03512198105454445, + 0.043976426124572754, + 0.040980033576488495, + -0.004412780050188303, + 0.01763414777815342, + -0.09585338830947876, + -0.020235881209373474, + 0.0206478089094162, + -0.020029375329613686, + 0.055878497660160065, + 0.06788526475429535, + 0.026739640161395073, + 0.018899738788604736, + 0.08721262216567993, + 0.0679880827665329, + 0.024675853550434113, + -0.04514288902282715, + -0.06802409142255783, + 0.11047828197479248, + 0.10541452467441559, + -0.06352011114358902, + 0.02776617370545864, + 0.029069572687149048, + 0.028467632830142975, + -0.019322458654642105, + -0.1172647774219513, + -0.04296399652957916, + -0.017716901376843452, + 0.05623961612582207, + 0.028697222471237183, + 0.09767939895391464, + 0.014171984046697617, + 0.0632934719324112, + 0.0728757306933403, + -0.015174215659499168, + -0.043012503534555435, + -0.05897904187440872, + 0.035041432827711105, + -0.0940159261226654, + 0.08481593430042267, + 0.06827917695045471, + 0.0398956835269928, + 0.027891317382454872, + 0.07555405795574188, + 0.020095162093639374, + -0.001981164328753948, + -0.03519681468605995, + -0.005365423858165741, + 0.004899994470179081, + 0.0011436042841523886, + 0.05051884427666664, + 0.0682157501578331, + 0.006879162043333054, + 0.10563625395298004, + 0.03429514169692993, + 0.02302711457014084, + -0.07805975526571274, + 0.03918889909982681, + 0.013640772551298141, + 0.02186778001487255, + -0.040986474603414536, + -0.05063813924789429, + 0.01307217963039875, + -0.05762668699026108, + -0.03132152184844017, + 0.012684009969234467, + 0.08698233962059021, + -0.0092921182513237, + -0.00035212747752666473, + 0.09546104073524475, + 0.048112861812114716, + -0.014029380865395069, + 0.026199499145150185, + -0.027232758700847626, + -0.02722012996673584, + 0.07394665479660034, + -0.1244584321975708, + -0.08965231478214264, + -0.017049642279744148, + 0.023505130782723427, + 0.024891991168260574, + 0.06786487996578217, + 0.09854506701231003, + -0.023347780108451843, + 0.03873459994792938, + 0.002268165349960327, + 0.007273775991052389, + -0.052528440952301025, + -0.05805787444114685, + -0.04761459678411484, + -0.07977532595396042, + -0.08394771814346313, + 0.06359367072582245, + -0.021463530138134956, + 0.07687333971261978, + -0.019330628216266632, + -0.030743122100830078, + -0.05443199723958969, + 0.022308409214019775, + 0.015683092176914215, + -0.039642155170440674, + 0.005122012458741665, + 0.09998506307601929, + 0.022308651357889175, + 0.001636601984500885, + 0.04902666062116623, + 0.06823647022247314, + -0.07573557645082474, + 0.019600939005613327, + -0.06206582486629486, + 0.08165790140628815, + 0.06261108070611954, + -0.033628933131694794, + -0.06303587555885315, + -0.08612208068370819, + -0.04926425963640213, + 0.06854651123285294, + -0.015825580805540085, + 0.001919277012348175, + 0.004753971006721258, + -0.02591554820537567, + -0.05505221709609032, + -0.06278872489929199, + 0.0532737672328949, + -0.042514581233263016, + -0.0005053229979239404, + -0.04744567722082138, + 0.008204679004848003, + 0.025649558752775192, + 0.06280621141195297, + -0.04345583915710449, + 0.05438661575317383, + 0.025178682059049606, + -0.018067140132188797, + 0.021471034735441208, + 0.058836158365011215, + 0.03464612364768982, + -0.03089158982038498, + -0.05643361061811447, + -0.06605249643325806, + 0.058067843317985535, + -0.046560630202293396, + 0.06214062124490738, + 0.026599962264299393, + -0.044281624257564545, + -0.043504875153303146, + 0.0005766376852989197, + -0.023025842383503914, + 0.022232720628380775, + 0.08538094162940979, + 0.07625876367092133, + 0.022420961409807205, + -0.014766862615942955, + 0.07176991552114487, + 0.03368942439556122, + 0.0020218826830387115, + -0.033641137182712555, + -0.009077683091163635, + -0.020941833034157753, + 0.03228991478681564, + 0.053042322397232056, + -0.09055463969707489, + 0.05898561328649521, + 0.00012491096276789904, + 0.022904491052031517, + 0.05739465355873108, + 0.04272972792387009, + 0.052329860627651215, + -0.07928024232387543 + ] + }, + "p245_099.wav": { + "name": "p245", + "embedding": [ + 0.04797389730811119, + 0.05731881782412529, + -0.01664837822318077, + 0.06621331721544266, + -0.037036310881376266, + 0.04248513653874397, + -0.09955631196498871, + 0.09833134710788727, + -0.028889445587992668, + 0.1185491755604744, + -0.08084610104560852, + 0.12563496828079224, + -0.04067962244153023, + -0.12601245939731598, + 0.020635247230529785, + 0.03957397863268852, + -0.0029155127704143524, + -0.018910743296146393, + -0.03386684134602547, + 0.003915635868906975, + 0.018154732882976532, + 0.024123037233948708, + 0.08103647828102112, + -0.04928715154528618, + 0.01759207621216774, + 0.06991182267665863, + 0.019663583487272263, + 0.07400402426719666, + 0.029341569170355797, + -0.07665659487247467, + -0.03882969543337822, + 0.06719779968261719, + -0.061870746314525604, + -0.006127007771283388, + 0.035242341458797455, + -0.0017320187762379646, + -0.01734486222267151, + -0.06741787493228912, + -0.014015083201229572, + 0.005804424174129963, + -0.06314443796873093, + 0.06655818223953247, + -0.011562912724912167, + -0.06722623109817505, + 0.029264191165566444, + 0.0032405396923422813, + -0.0038957998622208834, + -0.012525351718068123, + -0.12379302084445953, + 0.12770959734916687, + 0.034488823264837265, + 0.017717232927680016, + -0.05976395308971405, + -0.08137929439544678, + 0.08960846066474915, + 0.017543073743581772, + -0.07438570261001587, + -0.04093882441520691, + 0.0653700977563858, + 0.11880487203598022, + -0.033533886075019836, + -0.029918277636170387, + 0.04755759611725807, + 0.06378337740898132, + 0.1010880395770073, + 0.06463412195444107, + 0.07664380967617035, + 0.11635836958885193, + 0.0021344833076000214, + 0.024340124800801277, + 0.032780971378088, + 0.0974268764257431, + 0.009732979349792004, + 0.03125299885869026, + -0.013230005279183388, + 0.03494032844901085, + -0.036179449409246445, + 0.007988890632987022, + -0.005469565745443106, + -0.03135570511221886, + 0.026901038363575935, + -0.030528370290994644, + 0.03191215917468071, + 0.012297059409320354, + -0.03444536775350571, + 0.06359434872865677, + 0.03217943012714386, + -0.02028823085129261, + 0.05408889055252075, + -0.04371800273656845, + -0.020244712010025978, + 0.046688586473464966, + -0.08195452392101288, + -0.07157929986715317, + 0.0015675760805606842, + 0.011018885299563408, + 0.005806446075439453, + 0.08384741842746735, + 0.0452895313501358, + -0.02232355624437332, + 0.14760661125183105, + 0.04032951965928078, + -0.011120690032839775, + 0.01873120665550232, + -0.023098144680261612, + 0.10003713518381119, + 0.08632374554872513, + -0.014551489613950253, + 0.03517834469676018, + -0.0368342250585556, + 0.05442814156413078, + 0.05583671107888222, + -0.12702547013759613, + -0.0734264925122261, + 0.012456387281417847, + -0.006074516102671623, + -0.002131884451955557, + 0.10714790225028992, + -0.0018328316509723663, + 0.029803579673171043, + 0.12262587249279022, + -0.11412858963012695, + -0.05872868373990059, + 0.0019734473899006844, + 0.0458216667175293, + -0.04639827832579613, + 0.05771676450967789, + 0.05319635942578316, + -0.013182412832975388, + -0.0181103702634573, + 0.0763944685459137, + -0.024806607514619827, + -0.0013747243210673332, + 0.030301911756396294, + -0.0450468584895134, + 0.03634897619485855, + -0.05253252759575844, + -0.02253030613064766, + 0.09377595037221909, + 0.025862909853458405, + 0.0702534019947052, + -0.04127182438969612, + -0.024843038991093636, + -0.1249043419957161, + 0.03717726096510887, + 0.04913254454731941, + 0.06471754610538483, + -0.039670512080192566, + -0.05141894146800041, + -0.06116370111703873, + -0.07510469853878021, + 0.03804895281791687, + -0.008929936215281487, + 0.07653331756591797, + -0.03723600506782532, + 0.026008635759353638, + 0.0677201971411705, + -0.0020098406821489334, + -0.017148375511169434, + -0.05122039467096329, + -0.07550272345542908, + -0.008807705715298653, + 0.025530848652124405, + -0.05315689742565155, + -0.08590848743915558, + -0.04814942553639412, + 0.017998334020376205, + -0.03655826300382614, + 0.04605000466108322, + 0.018693581223487854, + 0.0278000608086586, + 0.011537164449691772, + -0.02198604680597782, + -0.010920695960521698, + -0.06340960413217545, + -0.03395809605717659, + -0.03288775309920311, + 0.009680969640612602, + -0.01693061739206314, + 0.08156916499137878, + 0.029080234467983246, + 0.06477776169776917, + -0.02653038315474987, + -0.04795694723725319, + -0.09764037281274796, + 0.053057290613651276, + 0.029055697843432426, + -0.0038898885250091553, + 0.046625442802906036, + 0.08647708594799042, + -0.02352616935968399, + 0.02273315191268921, + 0.03572075068950653, + 0.052214041352272034, + 0.0035590827465057373, + -0.008618451654911041, + -0.06136263906955719, + 0.11565394699573517, + 0.10002350807189941, + -0.06544682383537292, + -0.04990899935364723, + -0.03754248097538948, + -0.09936943650245667, + 0.06782529503107071, + -0.03666696697473526, + -0.010957189835608006, + 0.047450751066207886, + -0.04349039867520332, + -0.09827381372451782, + -0.08476640284061432, + 0.0804053246974945, + -0.03720587491989136, + -0.02907801792025566, + -0.07870368659496307, + 0.009352538734674454, + 0.058842990547418594, + 0.06708842515945435, + 0.011715766042470932, + 0.01123451255261898, + 0.03538103401660919, + -0.03175191953778267, + 0.019035685807466507, + 0.11148630082607269, + 0.010102298110723495, + -0.08917774260044098, + -0.02202148549258709, + -0.059331461787223816, + 0.05914332717657089, + -0.048362839967012405, + 0.10305222868919373, + 0.0019009602256119251, + -0.020299125462770462, + -0.07116810977458954, + 0.05938335880637169, + -0.031602777540683746, + 0.05474865436553955, + 0.03143714740872383, + 0.034149542450904846, + 0.03435913473367691, + -0.09433424472808838, + 0.1179744154214859, + 0.032009437680244446, + -0.02853197604417801, + -0.06957449018955231, + -0.050554729998111725, + -0.042635612189769745, + 0.02992558665573597, + 0.029597483575344086, + -0.07063183188438416, + -0.0011022929102182388, + 0.016902685165405273, + -0.02418183907866478, + 0.03027252107858658, + 0.1287989318370819, + 0.048080917447805405, + -0.07848779857158661 + ] + }, + "p245_050.wav": { + "name": "p245", + "embedding": [ + 0.05023301765322685, + 0.08407358825206757, + 0.012249777093529701, + -0.004582732915878296, + 0.00921735167503357, + 0.03914384916424751, + -0.1385028064250946, + 0.10706543177366257, + -0.038663528859615326, + 0.13633409142494202, + -0.10946248471736908, + 0.10321488231420517, + -0.06059561297297478, + -0.16560634970664978, + -0.03220677375793457, + 0.03134256973862648, + -0.012396692298352718, + 0.007105602882802486, + -0.009908203966915607, + -0.027424683794379234, + 0.04879109188914299, + 0.032814767211675644, + 0.0404229611158371, + -0.016135631129145622, + -0.02184418961405754, + 0.06487292796373367, + 0.001284771948121488, + 0.03454388305544853, + 0.024741049855947495, + -0.0221596360206604, + 0.007210791110992432, + 0.07492826879024506, + -0.014464574865996838, + 0.023417605087161064, + 0.047493986785411835, + 0.03747191280126572, + -0.028197024017572403, + -0.043357040733098984, + -0.00019876348960679024, + 0.0013277034740895033, + -0.05088428780436516, + 0.050801992416381836, + 0.006723180413246155, + -0.01704547181725502, + 0.07095968723297119, + -0.01579451374709606, + -0.01814933679997921, + -0.016627049073576927, + -0.08284677565097809, + 0.1097920835018158, + 0.0793813094496727, + 0.030496686697006226, + -0.06401565670967102, + -0.022432729601860046, + 0.09402446448802948, + -0.02061808668076992, + -0.10900342464447021, + -0.04879279062151909, + 0.07701753079891205, + 0.14399832487106323, + -0.04000835120677948, + -0.039612721651792526, + 0.0062844278290867805, + 0.06933045387268066, + -0.0021418731193989515, + 0.08384978026151657, + 0.11210405826568604, + 0.07143969088792801, + 0.0017284353962168097, + 0.01101828645914793, + 0.01896217092871666, + 0.056189291179180145, + 0.041943322867155075, + -0.03135531395673752, + 0.011549843475222588, + -0.01569194719195366, + -0.018923219293355942, + 0.023408878594636917, + -0.02063116803765297, + -0.04125453904271126, + -0.030472127720713615, + -0.021046843379735947, + -0.023883666843175888, + -0.008352704346179962, + -0.018687037751078606, + 0.019816428422927856, + 0.03232010453939438, + -0.01079557090997696, + 0.050949014723300934, + 0.0433989092707634, + -0.005060452502220869, + 0.024456534534692764, + -0.04327687621116638, + -0.061716478317976, + 0.0017756118904799223, + 0.007055922411382198, + -0.019221888855099678, + 0.07131462544202805, + 0.035756729543209076, + 0.01814980059862137, + 0.10414302349090576, + 0.023390082642436028, + -0.009977656416594982, + 0.002370603382587433, + -0.09756433218717575, + 0.09115295112133026, + 0.09864702075719833, + -0.04001914709806442, + 0.03529156744480133, + -0.05400681495666504, + 0.02995765022933483, + 0.07381685078144073, + -0.09159816801548004, + -0.026553085073828697, + 0.024876292794942856, + 0.03304285556077957, + 0.025642594322562218, + 0.09719684720039368, + 0.002858811989426613, + -0.0025673508644104004, + 0.11778514087200165, + -0.06069906800985336, + -0.08164152503013611, + -0.050629623234272, + 0.023459255695343018, + -0.06639887392520905, + 0.07500357180833817, + 0.0432649664580822, + 0.0249970443546772, + 0.007935889065265656, + 0.0689091831445694, + -0.003879968076944351, + -0.003371685743331909, + -0.03303280472755432, + -0.03112868033349514, + 0.005660293623805046, + -0.06665004789829254, + -0.0003721409884747118, + 0.03621627390384674, + 0.045871801674366, + 0.0525544099509716, + 0.03317507728934288, + -0.03997926786541939, + -0.08191762864589691, + -0.009530076757073402, + 0.05157766863703728, + 0.042967699468135834, + -0.02040005475282669, + -0.03236093372106552, + -0.04035399481654167, + -0.04318874701857567, + 0.01618031971156597, + -0.061329469084739685, + 0.08321692794561386, + -0.010404542088508606, + 0.01469092071056366, + 0.07953208684921265, + -0.020822763442993164, + -0.011731987819075584, + -0.07514123618602753, + -0.015800151973962784, + -0.002479126676917076, + 0.008888563141226768, + -0.09747322648763657, + -0.07021086663007736, + -0.03552898392081261, + 0.03687005490064621, + -0.011990826576948166, + 0.03773476183414459, + 0.048297666013240814, + -0.0001280568540096283, + 0.004878080449998379, + -0.059530820697546005, + 0.006472278386354446, + -0.11003661155700684, + -0.08119408041238785, + -0.007553338073194027, + -0.025208037346601486, + 0.029597129672765732, + 0.06932783126831055, + -0.007433533668518066, + 0.011366916820406914, + -0.017465949058532715, + -0.10035966336727142, + -0.10316044092178345, + 0.06292540580034256, + 0.06025577336549759, + 0.0047773150727152824, + 0.04025264084339142, + 0.03914668411016464, + -0.04787943884730339, + 0.07229110598564148, + 0.02674618922173977, + 0.09172123670578003, + -0.04650774225592613, + 0.02007182314991951, + -0.05496493726968765, + 0.026629026979207993, + 0.1155325397849083, + -0.06653355062007904, + -0.08573679625988007, + -0.05051653832197189, + -0.06250812858343124, + 0.039306141436100006, + -0.028587397187948227, + -0.03125658631324768, + 0.01702810451388359, + -0.04568246006965637, + -0.09682674705982208, + -0.08427475392818451, + 0.048536404967308044, + -0.02547849714756012, + -0.001573527930304408, + -0.07549740374088287, + 0.05138392373919487, + 0.037759825587272644, + 0.02291359379887581, + -0.019467901438474655, + 0.017523251473903656, + 0.009189575910568237, + -0.05531178042292595, + -0.01360197365283966, + 0.016984183341264725, + 0.03654772788286209, + -0.0690145492553711, + -0.0010855160653591156, + -0.08244650065898895, + 0.06669095903635025, + -0.061314743012189865, + 0.08719583600759506, + -0.003984938375651836, + -0.037146057933568954, + -0.048084571957588196, + 0.0083693265914917, + 0.003241797909140587, + 0.03946899622678757, + 0.02690153382718563, + 0.043775223195552826, + 0.0009269304573535919, + -0.08752890676259995, + 0.0961446464061737, + 0.037892162799835205, + 0.003973602317273617, + -0.05850657448172569, + -0.02105182409286499, + -0.059252798557281494, + -0.0024594441056251526, + -0.019940117374062538, + -0.08833538740873337, + -0.01831350475549698, + -0.008458632044494152, + 0.0074912733398377895, + 0.03735307604074478, + 0.11042550206184387, + 0.013948485255241394, + -0.09502600878477097 + ] + }, + "p245_403.wav": { + "name": "p245", + "embedding": [ + 0.0377490296959877, + 0.0732356607913971, + -0.019850432872772217, + 0.0333767831325531, + -0.07099741697311401, + 0.05619765818119049, + -0.1509312242269516, + 0.1263742446899414, + -0.027428142726421356, + 0.1251850426197052, + -0.04978351294994354, + 0.1028362438082695, + -0.002218975918367505, + -0.22137275338172913, + 0.006918236147612333, + 0.0729297548532486, + -0.014897100627422333, + -0.022236498072743416, + -0.031686216592788696, + -0.025594644248485565, + 0.018437325954437256, + 0.05417141318321228, + 0.020603956654667854, + -0.017678197473287582, + 0.06263827532529831, + 0.055562734603881836, + -0.02087223157286644, + 0.01868341863155365, + -0.01220864336937666, + -0.048225805163383484, + -0.05367189645767212, + 0.09862232953310013, + -0.06352758407592773, + -0.008043133653700352, + 0.05733560770750046, + -0.011390184983611107, + -0.012570415623486042, + -0.04948428273200989, + -0.02673189342021942, + 0.024310864508152008, + -0.059616900980472565, + 0.09221051633358002, + 0.06049450486898422, + -0.0023746411316096783, + 0.05961926281452179, + 0.015207107178866863, + -0.007485062815248966, + -0.05887911468744278, + -0.11336857080459595, + 0.15759360790252686, + 0.04255159944295883, + -0.01151873730123043, + -0.07437939941883087, + -0.0654408186674118, + 0.09553039073944092, + -0.0043128496035933495, + -0.10397833585739136, + -0.04489545151591301, + 0.08238612115383148, + 0.1481323093175888, + -0.004289031028747559, + -0.03150048106908798, + 0.026212798431515694, + 0.09638091921806335, + 0.039877258241176605, + 0.10572708398103714, + 0.04421164095401764, + 0.09841453284025192, + -0.0050971657037734985, + 0.012710859067738056, + 0.06164707988500595, + 0.05109027028083801, + 0.010820966213941574, + -0.04045774042606354, + 0.01703864522278309, + 0.009230081923305988, + -0.030867155641317368, + -0.001352402614429593, + 0.001722430344671011, + 0.009927773848176003, + -0.0018683752277866006, + 0.003392999991774559, + 0.015851695090532303, + 0.011007177643477917, + -0.0496663823723793, + 0.03806179761886597, + 0.049583856016397476, + 0.016059570014476776, + 0.07973407208919525, + 0.03753602132201195, + -0.011931311339139938, + 0.05727504938840866, + -0.0767231434583664, + -0.07214605063199997, + 0.03396015614271164, + 0.016391996294260025, + -0.0017494803760200739, + 0.06703546643257141, + 0.03006320632994175, + -0.01927153207361698, + 0.12514999508857727, + 0.055862873792648315, + 0.002293237717822194, + 0.0503060556948185, + -0.08753368258476257, + 0.1179405152797699, + 0.07085679471492767, + -0.0001921962248161435, + 0.08866031467914581, + -0.04881196469068527, + 0.07010506093502045, + 0.06854349374771118, + -0.14733177423477173, + -0.05160451680421829, + 0.0433259978890419, + 0.007557045668363571, + -0.021415123715996742, + 0.15008965134620667, + 0.006820023991167545, + 0.01624210737645626, + 0.0982942134141922, + -0.11900971829891205, + -0.07204529643058777, + -0.0007706643082201481, + 0.0513414591550827, + -0.10332310944795609, + 0.04690876230597496, + 0.06416155397891998, + -0.040872395038604736, + 0.019163815304636955, + 0.06826205551624298, + 0.0007301387377083302, + 0.041555047035217285, + 0.008249817416071892, + -0.01041487231850624, + 0.03226141631603241, + -0.022251099348068237, + 0.007512851618230343, + 0.06927990168333054, + 0.00921021867543459, + 0.05257350206375122, + -0.013672875240445137, + -0.017679965123534203, + -0.13836930692195892, + 0.008151741698384285, + 0.03629102557897568, + 0.08736777305603027, + -0.02026567980647087, + -0.009210661053657532, + -0.06033314764499664, + -0.11327636986970901, + 0.028572317212820053, + -0.008258670568466187, + 0.09571856260299683, + -0.003611412364989519, + -0.005928050726652145, + 0.10117276757955551, + 0.04710693657398224, + -0.006630953401327133, + -0.051499143242836, + -0.04675263911485672, + 0.0014382260851562023, + 0.05600534379482269, + -0.08773181587457657, + -0.06035488471388817, + -0.016414295881986618, + 0.022271832451224327, + -0.02416715770959854, + 0.039517588913440704, + 0.04905982315540314, + 0.03403179347515106, + 0.043375611305236816, + -0.09376996755599976, + 0.022426482290029526, + -0.09017930179834366, + -0.0545673742890358, + -0.028377365320920944, + -0.002430593129247427, + -0.03984657675027847, + 0.10902615636587143, + 0.022513747215270996, + 0.035332273691892624, + -0.030425477772951126, + -0.0381329171359539, + -0.06094350665807724, + 0.058856137096881866, + 0.04914209246635437, + -0.010538293980062008, + 0.048013120889663696, + 0.04214265197515488, + -0.06385670602321625, + 0.04088686406612396, + 0.07497887313365936, + 0.08795854449272156, + -0.01327254343777895, + 0.03594272583723068, + -0.044732414186000824, + 0.10898943990468979, + 0.08237890899181366, + -0.08857299387454987, + -0.08345945179462433, + -0.017827525734901428, + -0.06994134187698364, + 0.04780062288045883, + -0.02667645923793316, + 0.0025994793977588415, + 0.014067212119698524, + -0.00599027331918478, + -0.07769648730754852, + -0.09515123814344406, + 0.05552405118942261, + -0.043748997151851654, + -0.014083610847592354, + -0.07232087850570679, + 0.046409305185079575, + 0.0833406001329422, + 0.04265587031841278, + -0.03337465226650238, + -0.037892088294029236, + 0.052113085985183716, + -0.04029715806245804, + 0.00981439184397459, + 0.08255501091480255, + 0.03312237560749054, + -0.10218776762485504, + 0.00043972209095954895, + -0.06067749112844467, + 0.09044945240020752, + -0.047911547124385834, + 0.16199392080307007, + 0.015095770359039307, + -0.05655485391616821, + -0.06871742010116577, + 0.03671246021986008, + -0.003715657629072666, + 0.03331994637846947, + 0.025603413581848145, + 0.06348010897636414, + 0.06485005468130112, + -0.019126396626234055, + 0.09705483168363571, + 0.037519216537475586, + -0.028215497732162476, + -0.033869847655296326, + -0.02794579043984413, + -0.04226047545671463, + 0.048254698514938354, + 0.012315713800489902, + -0.11845612525939941, + -0.0005446719587780535, + 0.04830523207783699, + -0.0038991388864815235, + 0.046570613980293274, + 0.1376451700925827, + 0.0616631954908371, + -0.13084611296653748 + ] + }, + "p245_051.wav": { + "name": "p245", + "embedding": [ + 0.045718200504779816, + 0.07814808189868927, + -0.022502843290567398, + 0.0345439612865448, + -0.051323942840099335, + 0.071048803627491, + -0.12195656448602676, + 0.1288100779056549, + 0.006800434552133083, + 0.13863827288150787, + -0.056577168405056, + 0.11115185916423798, + -0.013747458346188068, + -0.14130006730556488, + -0.00955258123576641, + 0.030395613983273506, + -0.0014988072216510773, + 0.018854573369026184, + -0.07543803751468658, + -0.030781254172325134, + 0.03106451779603958, + 0.04985269159078598, + 0.06654403358697891, + -0.07023470103740692, + 0.03807223588228226, + 0.04907004535198212, + -0.004326869733631611, + 0.060035914182662964, + 0.008692435920238495, + -0.10099340230226517, + -0.016854148358106613, + 0.11121881008148193, + -0.0654132142663002, + 0.029565026983618736, + 0.02955807000398636, + -0.039671700447797775, + -0.02099781297147274, + -0.032290175557136536, + -0.005050659645348787, + 0.01921827904880047, + -0.002769326791167259, + 0.07135940343141556, + 0.020010901615023613, + -0.002847805619239807, + 0.04927193373441696, + 0.014986333437263966, + -0.03531285747885704, + -0.03632693737745285, + -0.09852772951126099, + 0.16049720346927643, + 0.026491917669773102, + -0.002244291827082634, + -0.09792020171880722, + -0.05734919384121895, + 0.080751933157444, + -0.035606399178504944, + -0.09206739813089371, + -0.054172586649656296, + 0.0593574121594429, + 0.1254468709230423, + -0.01763366535305977, + -0.05385550111532211, + 0.026340872049331665, + 0.08332055807113647, + 0.061912551522254944, + 0.06390613317489624, + 0.09732405841350555, + 0.11813553422689438, + -0.016838407143950462, + 0.040032822638750076, + -0.022121939808130264, + 0.08001182973384857, + 0.03151440620422363, + 0.026716018095612526, + 0.016527488827705383, + -0.0277165025472641, + 0.011138040572404861, + -0.01962466537952423, + -0.04782872274518013, + -0.02105182409286499, + 0.012222223915159702, + 0.013110589236021042, + 0.03360828384757042, + 0.010957952588796616, + -0.047239482402801514, + 0.0485336109995842, + 0.03982091695070267, + -0.024835579097270966, + 0.06507693231105804, + 0.014884350821375847, + 0.004096033982932568, + 0.04506729543209076, + -0.09053198993206024, + -0.08962118625640869, + 0.008276755921542645, + 0.007184777408838272, + 0.012478053569793701, + 0.03677140176296234, + 0.0197935588657856, + -0.014974843710660934, + 0.11253708600997925, + 0.028747625648975372, + -0.030179714784026146, + 0.027362504974007607, + -0.06210380047559738, + 0.1302015632390976, + 0.09526360034942627, + 0.0033987753558903933, + 0.05254428833723068, + -0.07106545567512512, + 0.04407435655593872, + 0.03023122251033783, + -0.10974492877721786, + -0.0793764740228653, + -0.01271610613912344, + -0.005240126047283411, + -0.024861207231879234, + 0.10951578617095947, + -0.0011123642325401306, + 0.04358101636171341, + 0.11311906576156616, + -0.09732146561145782, + -0.030524391680955887, + 0.012786861509084702, + 0.03871888667345047, + -0.0693420022726059, + 0.026883520185947418, + 0.024641642346978188, + -0.010376667603850365, + 0.02571887895464897, + 0.07903122156858444, + 0.0032168482430279255, + 0.03503262996673584, + 0.03094591572880745, + -0.05997152626514435, + 0.03157106041908264, + -0.030329175293445587, + -0.011543367058038712, + 0.05789976567029953, + 0.060659561306238174, + 0.10066156089305878, + -0.03530433773994446, + -0.03605501353740692, + -0.10295362770557404, + 0.01207150612026453, + 0.008135126903653145, + 0.053194694221019745, + -0.02623765729367733, + 0.0026844320818781853, + -0.04492941126227379, + -0.07102026045322418, + 0.05340743437409401, + 0.0024783103726804256, + 0.07553350925445557, + -0.011634002439677715, + 0.011383520439267159, + 0.1108168438076973, + 0.034075766801834106, + 0.00588107667863369, + -0.06093894690275192, + -0.036231156438589096, + -0.024960467591881752, + 0.03524819388985634, + -0.0733175054192543, + -0.0526459738612175, + 0.0024429571349173784, + 0.023876946419477463, + -0.04030609875917435, + 0.07071715593338013, + 0.06764596700668335, + 0.028779897838830948, + 0.03869398683309555, + -0.012509806081652641, + -0.03194332495331764, + -0.04880797863006592, + -0.05567163974046707, + 0.00893435813486576, + -0.00252919876947999, + -0.05981268733739853, + 0.08401110768318176, + 0.035109564661979675, + 0.05701560899615288, + -0.03525567427277565, + -0.04844788461923599, + -0.10192984342575073, + 0.051501646637916565, + 0.012331448495388031, + -0.02791045419871807, + 0.035872284322977066, + 0.03841182589530945, + -0.05187975615262985, + 0.06851222366094589, + 0.09011781960725784, + 0.05522051453590393, + -0.03169730678200722, + 0.008116046898066998, + -0.0959625095129013, + 0.1069781631231308, + 0.11132871359586716, + -0.0743902251124382, + -0.09637438505887985, + -0.03360144793987274, + -0.09452845901250839, + 0.029925107955932617, + -0.03429165109992027, + -0.02270779386162758, + 0.06702468544244766, + 0.001764132408425212, + -0.1091214120388031, + -0.07458578050136566, + 0.06920494139194489, + -0.07603760063648224, + -0.002438775496557355, + -0.0638931393623352, + 0.030917895957827568, + 0.07071851193904877, + 0.03271857649087906, + -0.013270213268697262, + -0.029767053201794624, + 0.06868032366037369, + -0.04773161560297012, + 0.032205693423748016, + 0.06881655752658844, + 0.03367075324058533, + -0.05578242987394333, + -0.012317117303609848, + -0.04807884618639946, + 0.00622282549738884, + -0.01894450932741165, + 0.13298092782497406, + 0.027140147984027863, + -0.038350049406290054, + -0.050428710877895355, + 0.06762756407260895, + -0.06128579378128052, + 0.05508648231625557, + 0.019695326685905457, + 0.03885522484779358, + 0.06511763483285904, + -0.07835085690021515, + 0.11472852528095245, + 0.03113851509988308, + -0.061922840774059296, + -0.08783504366874695, + -0.07309067249298096, + -0.04796215146780014, + 0.04110460728406906, + 0.03031926602125168, + -0.08058655261993408, + -0.012373680248856544, + 0.03283856064081192, + -0.009387717582285404, + 0.05421913415193558, + 0.11533720791339874, + 0.06810104846954346, + -0.08834759145975113 + ] + }, + "p245_346.wav": { + "name": "p245", + "embedding": [ + 0.07210871577262878, + 0.11166694760322571, + -0.026589415967464447, + 0.030031569302082062, + -0.05290517210960388, + 0.06579455733299255, + -0.12648563086986542, + 0.13862329721450806, + -0.025357862934470177, + 0.14204758405685425, + -0.06121651083230972, + 0.1268324851989746, + -0.01438700221478939, + -0.16671913862228394, + -0.031155217438936234, + 0.05034483224153519, + -0.057185109704732895, + -0.027700150385499, + -0.03843969106674194, + -0.029972784221172333, + 0.025088196620345116, + 0.04572126269340515, + 0.033618099987506866, + 0.010355454869568348, + 0.03802390769124031, + 0.08006399869918823, + -0.012983969412744045, + 0.030424833297729492, + 0.0018929843790829182, + -0.06949885189533234, + -0.05493546277284622, + 0.1018865630030632, + -0.05870597064495087, + 0.016578517854213715, + 0.04055076837539673, + -0.016119560226798058, + -0.0006655063480138779, + -0.06159809231758118, + -0.019451359286904335, + 0.015043022111058235, + -0.035419102758169174, + 0.07804234325885773, + 0.02223268151283264, + -0.030461439862847328, + 0.03514702618122101, + 0.012019072659313679, + -0.007501565385609865, + -0.04286115616559982, + -0.10102902352809906, + 0.1699438989162445, + 0.07436004281044006, + -0.00016392780526075512, + -0.0704466700553894, + -0.0563688799738884, + 0.09077860414981842, + -0.011636397801339626, + -0.11089707165956497, + -0.023114528506994247, + 0.05805956572294235, + 0.13712985813617706, + -0.02690938301384449, + -0.042380958795547485, + 0.03662398084998131, + 0.13466346263885498, + 0.067609503865242, + 0.08088449388742447, + 0.07952743768692017, + 0.11223019659519196, + -0.04120715335011482, + 0.023579660803079605, + 0.0641297996044159, + 0.0662492960691452, + 0.08014080673456192, + -0.013523911125957966, + 0.02260228991508484, + -0.015035864897072315, + -0.01987355761229992, + -0.015860063955187798, + -0.01458186749368906, + -0.027581356465816498, + -0.01184071321040392, + -0.0022914642468094826, + 0.0015340391546487808, + 0.03595581278204918, + -0.03148810192942619, + 0.05267483741044998, + 0.05145016312599182, + -0.028606746345758438, + 0.0662049800157547, + 0.050139352679252625, + 0.02193133346736431, + 0.06545385718345642, + -0.08312764763832092, + -0.08141277730464935, + 0.050871506333351135, + 0.0019451389089226723, + 0.040741316974163055, + 0.07857110351324081, + 0.05487683415412903, + -0.012801513075828552, + 0.10977913439273834, + 0.056246720254421234, + -0.0006764865247532725, + 0.009939451701939106, + -0.08667836338281631, + 0.13208161294460297, + 0.103082075715065, + -0.04022331163287163, + 0.05104866623878479, + -0.03539847582578659, + 0.07707816362380981, + 0.07098853588104248, + -0.1389017254114151, + -0.07217241823673248, + 0.025976743549108505, + 0.009854231961071491, + -0.008709657937288284, + 0.0991295576095581, + 0.003028789535164833, + 0.049470946192741394, + 0.09339207410812378, + -0.08505438268184662, + -0.04880012199282646, + -0.03519634157419205, + 0.04732624068856239, + -0.10224151611328125, + 0.06668078899383545, + 0.06605608761310577, + -0.010493254289031029, + 3.6819837987422943e-06, + 0.07942492514848709, + -0.009084750898182392, + -0.005228916648775339, + 0.009002912789583206, + -0.033270735293626785, + 0.008502000942826271, + -0.014110216870903969, + 0.01087709330022335, + 0.024162493646144867, + 0.014641442336142063, + 0.03536529839038849, + -0.010668939910829067, + -0.011433234438300133, + -0.11826251447200775, + 0.03521667793393135, + 0.04551813751459122, + 0.06312485039234161, + -0.01719171553850174, + -0.0330636128783226, + -0.01640160381793976, + -0.06579912453889847, + 0.024562742561101913, + -0.009991688653826714, + 0.051906682550907135, + -0.022704631090164185, + -0.0007774537662044168, + 0.11164286732673645, + 0.038637712597846985, + -1.3448763638734818e-05, + -0.04170120507478714, + -0.022312477231025696, + 0.025479204952716827, + 0.059130266308784485, + -0.09289409220218658, + -0.09222902357578278, + -0.01051497831940651, + 0.012984300032258034, + -0.014248975552618504, + 0.07088484615087509, + 0.05621228367090225, + 0.003572426037862897, + 0.024213973432779312, + -0.061184998601675034, + 0.006932617165148258, + -0.10452644526958466, + -0.07151442021131516, + -0.020617865025997162, + -0.03697817400097847, + -0.021631551906466484, + 0.0833590179681778, + 0.022454526275396347, + 0.055356234312057495, + -0.03631935268640518, + -0.05389655381441116, + -0.06547439098358154, + 0.05798552185297012, + 0.07042905688285828, + 0.0003022877499461174, + 0.03276430815458298, + 0.05818331614136696, + -0.013985903933644295, + 0.049035146832466125, + 0.060382381081581116, + 0.10376324504613876, + -0.03490917384624481, + 0.01874351128935814, + -0.0734420046210289, + 0.077022023499012, + 0.08631910383701324, + -0.09909568727016449, + -0.09585420787334442, + -0.04311494529247284, + -0.06203712522983551, + 0.026148581877350807, + -0.029802629724144936, + 0.016733741387724876, + 0.034567661583423615, + -0.008480810560286045, + -0.08948124945163727, + -0.11097423732280731, + 0.10051584243774414, + -0.0623873770236969, + -0.0011464687995612621, + -0.08466720581054688, + 0.0560152530670166, + 0.07863102853298187, + 0.036488354206085205, + -0.042816877365112305, + 0.00606294721364975, + 0.04221480339765549, + -0.01655549183487892, + 0.00408388115465641, + 0.05716034024953842, + 0.04579092562198639, + -0.11718948185443878, + -0.004729651380330324, + -0.06429540365934372, + 0.07563677430152893, + -0.05978791415691376, + 0.15995538234710693, + 0.010114320553839207, + -0.054568588733673096, + -0.08873523771762848, + 0.05909750610589981, + -0.019260264933109283, + 0.04408474639058113, + 0.03442694619297981, + 0.055299047380685806, + 0.030035164207220078, + -0.07887953519821167, + 0.10196585953235626, + 0.04201589152216911, + -0.03978707641363144, + -0.07471296191215515, + -0.04805316776037216, + -0.03540157899260521, + 0.04803115129470825, + 0.020751869305968285, + -0.08235003054141998, + -0.01914026215672493, + 0.017218807712197304, + -0.0037166166584938765, + 0.07060544192790985, + 0.151498943567276, + 0.061921000480651855, + -0.11944206804037094 + ] + }, + "p245_280.wav": { + "name": "p245", + "embedding": [ + 0.060478486120700836, + 0.07014969736337662, + -0.0003303766716271639, + 0.03782152011990547, + -0.03082103468477726, + 0.07061322778463364, + -0.1573628932237625, + 0.12538211047649384, + -0.03756590187549591, + 0.13343311846256256, + -0.061775628477334976, + 0.09434889256954193, + -0.012579934671521187, + -0.18807080388069153, + -0.0476452074944973, + 0.06009714677929878, + -0.04862841218709946, + -0.030980505049228668, + -0.030674036592245102, + -0.0053529394790530205, + 0.02953764982521534, + 0.047824740409851074, + 0.037942495197057724, + 0.005611931439489126, + 0.04103648662567139, + 0.045796703547239304, + 0.0025880367029458284, + 0.06205648556351662, + 0.017863420769572258, + -0.05217069387435913, + -0.008744262158870697, + 0.11043752729892731, + -0.04434295743703842, + 0.012487146072089672, + 0.04547634348273277, + 0.01933441311120987, + 0.003564878599718213, + -0.0836782157421112, + -0.03571081534028053, + -0.0026182434521615505, + -0.057573460042476654, + 0.07964299619197845, + 0.048467136919498444, + -0.005043788347393274, + 0.034075137227773666, + 0.010259522125124931, + -0.01572520099580288, + -0.06692887842655182, + -0.12203095853328705, + 0.16736356914043427, + 0.04114377498626709, + 0.03100799024105072, + -0.07878031581640244, + -0.08628706634044647, + 0.10114747285842896, + -0.009735843166708946, + -0.11582085490226746, + -0.03876187652349472, + 0.08211887627840042, + 0.19482824206352234, + -0.032070789486169815, + -0.03762795031070709, + 0.03315575793385506, + 0.11731021106243134, + 0.07215867936611176, + 0.08511636406183243, + 0.09045302867889404, + 0.11017961800098419, + 0.01949392817914486, + -0.0006871321238577366, + 0.05344098061323166, + 0.0596701018512249, + 0.03936806321144104, + -0.0022030463442206383, + 0.016414135694503784, + 0.02472023293375969, + -0.028909089043736458, + 0.0037146545946598053, + -0.013230424374341965, + 0.0028750647325068712, + 0.005122964736074209, + 0.013863536529242992, + 0.01978185586631298, + 0.05334577336907387, + -0.04296736791729927, + 0.045819856226444244, + 0.0030826441943645477, + -0.015915557742118835, + 0.06957364082336426, + 0.01776098646223545, + 0.010859650559723377, + 0.05378272384405136, + -0.057663775980472565, + -0.09368374943733215, + 0.004344256594777107, + 0.008660512045025826, + 0.011232402175664902, + 0.05625608190894127, + 0.03634929656982422, + -0.034326665103435516, + 0.12762080132961273, + 0.0305621474981308, + -0.015298018231987953, + 0.03482647240161896, + -0.09564433246850967, + 0.09422804415225983, + 0.07521044462919235, + -0.0016128204297274351, + 0.0644950419664383, + -0.05217842757701874, + 0.05746022239327431, + 0.077559694647789, + -0.15510886907577515, + -0.07660350203514099, + 0.07537676393985748, + 0.038983121514320374, + 0.003099447349086404, + 0.14587566256523132, + 0.0094251474365592, + 0.03234625980257988, + 0.0948590487241745, + -0.09525232762098312, + -0.04483780264854431, + -0.007484804838895798, + 0.0642944797873497, + -0.07523420453071594, + 0.041439399123191833, + 0.034983936697244644, + -0.028654197230935097, + -0.01614030823111534, + 0.07284779846668243, + -0.0013894164003431797, + -0.00017082225531339645, + -0.010916239582002163, + -0.039183609187603, + 0.04822877049446106, + -0.03047354519367218, + -0.0013511828146874905, + 0.0478319376707077, + 0.0468166247010231, + 0.030552595853805542, + 0.011445598676800728, + -0.07172305881977081, + -0.14100781083106995, + -0.009380286559462547, + 0.04078041762113571, + 0.09323626756668091, + -0.0193291325122118, + -0.021773088723421097, + -0.059698499739170074, + -0.05373607575893402, + 0.04152636229991913, + -0.010325471870601177, + 0.09380179643630981, + 0.0008813398890197277, + -0.011472019366919994, + 0.09109489619731903, + -0.006185851059854031, + 0.011839545331895351, + -0.026966169476509094, + -0.02594616636633873, + 0.0022142822854220867, + 0.042140789330005646, + -0.06941162049770355, + -0.05290977656841278, + 0.011227907612919807, + 0.038221877068281174, + -0.019123263657093048, + 0.03171005845069885, + 0.025507617741823196, + 0.02013111114501953, + 0.034457430243492126, + -0.055262792855501175, + -0.002053313422948122, + -0.11382970213890076, + -0.06424825638532639, + 0.018081890419125557, + 0.007068316452205181, + -0.011743100360035896, + 0.0919254720211029, + 0.03653419762849808, + 0.05397625267505646, + -0.014124181121587753, + -0.07891079783439636, + -0.06933921575546265, + 0.0627862885594368, + 0.06671788543462753, + 0.003754342906177044, + 0.03462069109082222, + 0.04744644835591316, + -0.01629844680428505, + 0.05497806519269943, + 0.06399870663881302, + 0.09277167916297913, + -0.008421486243605614, + 0.0008284798823297024, + -0.07660794258117676, + 0.10520949959754944, + 0.07809194177389145, + -0.07596531510353088, + -0.07989215850830078, + -0.00189402315299958, + -0.07995735108852386, + 0.03510107845067978, + -0.018750691786408424, + 0.022173797711730003, + 0.021866794675588608, + -0.02222725749015808, + -0.10737795382738113, + -0.09425497055053711, + 0.07138977944850922, + -0.07614212483167648, + -0.018508248031139374, + -0.07459993660449982, + 0.03939858078956604, + 0.10009239614009857, + 0.04365496709942818, + 0.009761950932443142, + -0.015313250944018364, + 0.03632032871246338, + -0.0698617547750473, + -0.023288385942578316, + 0.06016835197806358, + -0.0010722246952354908, + -0.12363427132368088, + 0.005966808646917343, + -0.07906326651573181, + 0.06645837426185608, + -0.04923289269208908, + 0.15301790833473206, + 0.0033569803927093744, + -0.06137098744511604, + -0.08379287272691727, + 0.012940006330609322, + -0.025993112474679947, + 0.058549702167510986, + 0.029668355360627174, + 0.07477380335330963, + 0.05629333108663559, + -0.05086246877908707, + 0.10138367116451263, + 0.04571443423628807, + -0.03205813467502594, + -0.06697387993335724, + -0.05641714483499527, + -0.028425320982933044, + 0.023195780813694, + -0.016321396455168724, + -0.07328684628009796, + -0.008601004257798195, + 0.03166140615940094, + -0.0185615886002779, + 0.03842851147055626, + 0.12477824836969376, + 0.05128330737352371, + -0.12961441278457642 + ] + }, + "p245_065.wav": { + "name": "p245", + "embedding": [ + 0.007054517976939678, + 0.08852758258581161, + -0.0030881152488291264, + 0.0636865422129631, + -0.02267257496714592, + -0.024485107511281967, + -0.11980750411748886, + 0.05317477136850357, + 0.028464192524552345, + 0.08153848350048065, + -0.03808337822556496, + 0.08043301105499268, + -0.049214012920856476, + -0.1045268103480339, + 0.011294144205749035, + 0.007210413925349712, + 0.04944579675793648, + 0.012070726603269577, + 0.05308769270777702, + -0.00642412668094039, + -0.012724775820970535, + 0.014442275278270245, + -0.05375155061483383, + 0.010946331545710564, + -0.017190538346767426, + 0.00409560464322567, + -0.03997906297445297, + 0.030390020459890366, + -0.02666877582669258, + -0.03509528934955597, + 0.023254292085766792, + 0.024275124073028564, + -0.03428839519619942, + -0.00648182537406683, + -0.006953302770853043, + 0.020122431218624115, + -0.01958870142698288, + -0.019027702510356903, + -0.033361345529556274, + -0.053111203014850616, + -0.06355586647987366, + 0.007037436589598656, + 0.024053290486335754, + -0.041075557470321655, + 0.01932276040315628, + 0.04714740812778473, + -0.02205568179488182, + -0.007933729328215122, + -0.03981979936361313, + 0.06050863116979599, + 0.007435048930346966, + 0.09415753185749054, + -0.04852147772908211, + -0.04339141398668289, + 0.08928994089365005, + 0.032963402569293976, + 0.022321002557873726, + -0.009264932945370674, + 0.008072290569543839, + 0.08619340509176254, + 0.02580038085579872, + 0.0016125477850437164, + 0.05168456584215164, + 0.03864423930644989, + 0.021270928904414177, + 0.018495289608836174, + 0.05618312954902649, + 0.04735862463712692, + -0.024951014667749405, + -0.015342317521572113, + 0.032533105462789536, + 0.02854267694056034, + -0.003760816529393196, + 0.024109598249197006, + -0.01245660986751318, + 0.05564098805189133, + 0.0069576771929860115, + 0.052089814096689224, + -0.039382994174957275, + -0.007599366828799248, + -0.005017128773033619, + 0.02545362338423729, + 0.012090643867850304, + -0.003604564815759659, + -0.04543128237128258, + -0.044524699449539185, + 0.07269853353500366, + 0.03109152987599373, + 0.02478325180709362, + -0.0010882458882406354, + 0.04931827634572983, + 0.011062037199735641, + -0.07306485623121262, + -0.006963550113141537, + 0.029459502547979355, + -0.014439661987125874, + 0.05608278140425682, + 0.006197329610586166, + 0.004131363704800606, + -0.0008229962550103664, + 0.06696853786706924, + -0.038628462702035904, + 0.04334733635187149, + -0.01070895604789257, + -0.04666449502110481, + -0.00774046778678894, + 0.009578716941177845, + 0.011090116575360298, + 0.062096551060676575, + -0.005763772875070572, + 0.025457151234149933, + 0.07299954444169998, + -0.05411238968372345, + -0.036584626883268356, + 0.040011610835790634, + 0.08659297227859497, + -0.026051782071590424, + 0.105359748005867, + 0.012498749420046806, + 0.03378230705857277, + 0.03779051452875137, + -0.008045244961977005, + -0.04387284070253372, + 0.001744009554386139, + 0.018662968650460243, + -0.01628388836979866, + 0.060004279017448425, + 0.01878431998193264, + -0.026796922087669373, + -0.05688052996993065, + 0.04540418088436127, + -0.013780368492007256, + -0.006090857088565826, + -0.020738810300827026, + 0.03176988288760185, + -0.040732331573963165, + 0.05360192060470581, + -0.05600165203213692, + -0.018467068672180176, + 0.04460231214761734, + -0.021325290203094482, + -0.002376510761678219, + -0.010872955434024334, + -0.08862053602933884, + 0.019667156040668488, + 0.017193248495459557, + 0.00880078598856926, + 0.07495932281017303, + -0.07368112355470657, + -0.09551052004098892, + -0.02687603235244751, + 0.01950133591890335, + -0.011110908351838589, + 0.06437593698501587, + 0.07642767578363419, + 0.03576076775789261, + 0.026395520195364952, + -0.00975878443568945, + 0.016826525330543518, + 0.030054941773414612, + -0.12074629962444305, + -0.004736792296171188, + 0.003714575432240963, + 0.035051919519901276, + -0.021945547312498093, + 0.008539482951164246, + 0.02285677008330822, + -0.016836900264024734, + 0.008142596110701561, + 0.03265974298119545, + 0.03339824825525284, + 0.03713845834136009, + -0.11179555952548981, + -0.006665410939604044, + -0.041757918894290924, + -0.08026179671287537, + 0.028926577419042587, + 0.020995359867811203, + 0.004242144525051117, + 0.024909673258662224, + 0.044699542224407196, + 0.010940499603748322, + -0.030128225684165955, + -0.02363281510770321, + -0.04188314825296402, + -0.005710013676434755, + 0.0007939375936985016, + -0.0037873294204473495, + -0.010398989543318748, + 0.0022998731583356857, + 0.02183486893773079, + 0.02785884588956833, + 0.01234511286020279, + 0.044538822025060654, + -0.021557513624429703, + 0.009014240466058254, + 0.043109044432640076, + 0.1039772778749466, + 0.050274889916181564, + -0.06282788515090942, + -0.07150369882583618, + 0.01840965822339058, + -0.07788141071796417, + 0.023911356925964355, + -0.005105285905301571, + 0.036022037267684937, + -0.008091493509709835, + 0.006417714059352875, + 0.031618375331163406, + -0.12832170724868774, + 0.0010662898421287537, + -0.021570947021245956, + -0.03863372653722763, + 0.0058544352650642395, + -0.00021003000438213348, + 0.038972217589616776, + 0.01815401017665863, + -0.01616358757019043, + -0.08109483867883682, + 0.015411155298352242, + 0.018661584705114365, + 0.021232973784208298, + 0.07534293830394745, + 0.030911121517419815, + -0.01609310507774353, + -8.790404535830021e-05, + -0.038275957107543945, + 0.013330904766917229, + 0.008816724643111229, + 0.020381882786750793, + 0.016050497069954872, + -0.019882112741470337, + -0.07982417941093445, + 0.016075707972049713, + 0.01653657853603363, + 0.04855777323246002, + -0.05607140064239502, + 0.003358134999871254, + 0.03295283764600754, + -0.020481236279010773, + 0.0936817079782486, + 0.05501065403223038, + -0.004118446726351976, + -0.024199025705456734, + -0.022350359708070755, + -0.030676506459712982, + 0.06899551302194595, + 0.027223506942391396, + -0.04199513420462608, + -0.023756854236125946, + 0.06762238591909409, + 0.061578549444675446, + 0.06401962041854858, + 0.06752371788024902, + 0.0323612280189991, + 0.008513741195201874 + ] + }, + "p245_401.wav": { + "name": "p245", + "embedding": [ + 0.04489310085773468, + 0.07182004302740097, + 0.0011177249252796173, + -0.004109829664230347, + -0.034445881843566895, + 0.07682614028453827, + -0.11882264912128448, + 0.10732126235961914, + -0.028650319203734398, + 0.10478071868419647, + -0.07900713384151459, + 0.09189572930335999, + -0.03820741921663284, + -0.15655018389225006, + -0.040688566863536835, + 0.039437856525182724, + -0.028592970222234726, + -0.002292851684615016, + -0.023234358057379723, + -0.011581746861338615, + 0.031602825969457626, + 0.028258662670850754, + 0.012293512932956219, + -0.007524948567152023, + 0.03390558063983917, + 0.051076389849185944, + 0.01826249063014984, + 0.03736492991447449, + 0.019276108592748642, + -0.02670341730117798, + -0.0020804828964173794, + 0.08596721291542053, + -0.022331437095999718, + 0.006396051496267319, + 0.04163404181599617, + -0.004347694106400013, + 0.011006522923707962, + -0.06619955599308014, + 0.00893741101026535, + 0.035417478531599045, + -0.032548002898693085, + 0.07003971189260483, + 0.07857532799243927, + 0.0029592267237603664, + 0.025644049048423767, + 0.01917346566915512, + 0.021810319274663925, + -0.05014675483107567, + -0.09140770137310028, + 0.17448531091213226, + 0.029064586386084557, + -0.003430331591516733, + -0.08150865137577057, + -0.030426636338233948, + 0.0925912857055664, + 0.013099310919642448, + -0.07282260060310364, + -0.0327586755156517, + 0.08186417073011398, + 0.13813602924346924, + 0.005199912004172802, + -0.04613731801509857, + 0.01917032152414322, + 0.11498075723648071, + 0.00905969925224781, + 0.06572088599205017, + 0.08403681963682175, + 0.08654722571372986, + -0.001270835637114942, + 0.020083539187908173, + 0.03906271234154701, + 0.04610569030046463, + -0.010907359421253204, + -0.02932312712073326, + 0.015360893681645393, + -0.02838645689189434, + -0.04259275645017624, + 0.014861616306006908, + 0.0005569010972976685, + -0.02950633130967617, + -0.00064772495534271, + 0.009545441716909409, + 0.016760990023612976, + 0.012044175527989864, + -0.012275079265236855, + 0.04524761438369751, + -0.015177300199866295, + 0.024818813428282738, + 0.07859313488006592, + 0.015163875184953213, + 0.007043452933430672, + 0.02522212825715542, + -0.04402400180697441, + -0.08786113560199738, + -0.0013720368733629584, + 0.005846457555890083, + -0.007249782793223858, + 0.04216877743601799, + 0.04215012118220329, + -0.02289453148841858, + 0.11355797946453094, + 0.03916066139936447, + -0.01779448799788952, + 0.015762940049171448, + -0.06729009747505188, + 0.0975072979927063, + 0.07447269558906555, + 0.0046886904165148735, + 0.07150852680206299, + -0.07578445225954056, + 0.04128572344779968, + 0.04009030759334564, + -0.12140516936779022, + -0.038901109248399734, + 0.04106326401233673, + 0.019915258511900902, + 0.017193442210555077, + 0.13464881479740143, + -0.01360523235052824, + -0.006719199474900961, + 0.06171268969774246, + -0.09263436496257782, + -0.05506977066397667, + -0.020614199340343475, + 0.049023985862731934, + -0.028678346425294876, + 0.013152997009456158, + 0.04140090569853783, + -0.005198844708502293, + -0.009676923975348473, + 0.05090288817882538, + -0.02106054499745369, + -0.010947386734187603, + 0.0070092095993459225, + -0.0031143552623689175, + 0.05345790088176727, + -0.021911390125751495, + 0.014261135831475258, + 0.015416580252349377, + 0.056310348212718964, + 0.03309084475040436, + 0.028845787048339844, + -0.0822661742568016, + -0.08312277495861053, + -0.016405954957008362, + 0.02270328812301159, + 0.0729580968618393, + -0.020277883857488632, + -0.03376463055610657, + -0.04484662413597107, + -0.0312936007976532, + -0.003465568646788597, + 0.002198886126279831, + 0.07714059948921204, + 0.019428126513957977, + -0.0009956683497875929, + 0.09624773263931274, + 0.03908269852399826, + 0.004569241777062416, + -0.044861942529678345, + -0.03633127734065056, + -0.007806172128766775, + 0.035614993423223495, + -0.04768701642751694, + -0.055022209882736206, + -0.012597106397151947, + 0.0009983207564800978, + -0.022495344281196594, + -0.00691523402929306, + 0.011133741587400436, + 0.023090727627277374, + 0.028663285076618195, + -0.09162688255310059, + 0.0077186645939946175, + -0.10169520229101181, + -0.013930174522101879, + 0.003624526783823967, + -0.006425138097256422, + -0.02408706210553646, + 0.07169730961322784, + 0.027275746688246727, + 0.042725272476673126, + -0.012898693792521954, + -0.017067894339561462, + -0.018911590799689293, + 0.04049438238143921, + 0.08427852392196655, + -0.0075738802552223206, + 0.024786634370684624, + 0.03650485724210739, + -0.014552943408489227, + 0.0440838560461998, + 0.05364827439188957, + 0.04882293567061424, + -0.025804173201322556, + -0.01869308203458786, + -0.024130692705512047, + 0.0934181660413742, + 0.05555276572704315, + -0.06930126249790192, + -0.0791609063744545, + -0.023157767951488495, + -0.05146999657154083, + 0.031920306384563446, + -0.029901180416345596, + 0.00803244486451149, + 0.008386016823351383, + -0.02284039556980133, + -0.07294479757547379, + -0.052257053554058075, + 0.03019798919558525, + -0.025340361520648003, + 0.0014590885257348418, + -0.08998271077871323, + 0.062331221997737885, + 0.12441585958003998, + 0.012446841225028038, + -0.00011241436004638672, + -0.009898337535560131, + 0.008208958432078362, + -0.04118141531944275, + -0.017398323863744736, + 0.007388897240161896, + 0.011968409642577171, + -0.10124349594116211, + 0.010999663732945919, + -0.038165345788002014, + 0.07665795087814331, + -0.05123162269592285, + 0.13270463049411774, + 0.022762609645724297, + -0.07037785649299622, + -0.07649403810501099, + 0.04354443401098251, + -0.022880151867866516, + 0.026879917830228806, + 0.026550687849521637, + 0.002287554321810603, + 0.045405417680740356, + -0.04320551082491875, + 0.07766204327344894, + 0.012355471029877663, + -0.03675200417637825, + -0.052819471806287766, + -0.026048731058835983, + -0.007226914167404175, + 0.034377098083496094, + -0.02456560730934143, + -0.047170452773571014, + -0.03708440065383911, + 0.03570055961608887, + -0.00039428070886060596, + 0.07206713408231735, + 0.08851854503154755, + 0.05097908899188042, + -0.10105577111244202 + ] + }, + "p245_028.wav": { + "name": "p245", + "embedding": [ + 0.04755127429962158, + 0.10183662176132202, + 0.0010523957898840308, + 0.02922067604959011, + -0.04274490475654602, + 0.038365814834833145, + -0.06552916765213013, + 0.08610039204359055, + 0.035453494638204575, + 0.06006334349513054, + -0.07028511166572571, + 0.08537688106298447, + -0.04050898179411888, + -0.1390821784734726, + 0.024735689163208008, + 0.042568638920784, + -0.014613419771194458, + 0.014225073158740997, + -0.029939576983451843, + -0.034473054111003876, + -0.010743875056505203, + 0.00788539182394743, + 0.03904461860656738, + -0.02794816344976425, + 0.011626980267465115, + 0.03243539482355118, + -0.03089280053973198, + 0.0042264265939593315, + -0.02236943319439888, + -0.049150656908750534, + -0.03482130542397499, + 0.06426028907299042, + -0.039804838597774506, + -0.01849549077451229, + 0.007050680927932262, + -0.03167414292693138, + -0.008302778005599976, + -0.05966934561729431, + -0.040282219648361206, + 0.02036818116903305, + -0.05221115052700043, + 0.04385153949260712, + 0.0334717333316803, + -0.05056173354387283, + 0.052905336022377014, + 0.0016782870516180992, + -0.037295300513505936, + -0.01027694158256054, + -0.09702881425619125, + 0.11669182032346725, + 0.021666383370757103, + 0.03943680226802826, + -0.07181055843830109, + -0.018096525222063065, + 0.08736743777990341, + 0.00660637766122818, + -0.04432570934295654, + -0.01977316103875637, + 0.04292946308851242, + 0.06551717966794968, + 0.025621537119150162, + -0.023061856627464294, + 0.029861142858862877, + 0.051065441220998764, + 0.03569559007883072, + 0.03514891117811203, + 0.07030251622200012, + 0.10977679491043091, + -0.025406427681446075, + 0.02344321832060814, + 0.040315043181180954, + 0.016602082177996635, + 0.030591100454330444, + -0.0058657038025557995, + -0.00417511910200119, + -0.0190811138600111, + 0.007784759160131216, + -0.018561270087957382, + -0.012272404506802559, + -0.03856922313570976, + 0.0358729213476181, + -0.011877069249749184, + 0.024296961724758148, + 0.003412483958527446, + -0.03995659202337265, + 0.0005717501044273376, + 0.07475002855062485, + 0.04483198747038841, + 0.07419504970312119, + 0.023583896458148956, + 0.0038302745670080185, + 0.06575292348861694, + -0.08080480992794037, + -0.0626729428768158, + 0.02762717567384243, + 0.0047406721860170364, + 0.0345180444419384, + 0.03522268682718277, + 0.03593577444553375, + -0.021924622356891632, + 0.09303209185600281, + 0.016171371564269066, + 0.02173789218068123, + 0.0038622687570750713, + -0.06000085920095444, + 0.04291970655322075, + 0.06911487877368927, + -0.0031252149492502213, + 0.06710980087518692, + 0.003924044780433178, + 0.0574735552072525, + 0.0593157634139061, + -0.06362977623939514, + -0.007711254060268402, + -0.013962488621473312, + 0.014901747927069664, + -0.0062421150505542755, + 0.11572062224149704, + 0.005575128830969334, + 0.047401800751686096, + 0.11153077334165573, + -0.08428153395652771, + -0.017851917073130608, + 0.03323207423090935, + -0.006795029155910015, + -0.03945271670818329, + 0.04119458794593811, + 0.05774679034948349, + -0.023836631327867508, + -0.003152022836729884, + 0.02888466790318489, + 0.007186677306890488, + 0.013508424162864685, + -0.031240282580256462, + -0.00527383154258132, + -0.01741006039083004, + 0.013710341416299343, + -0.026303980499505997, + 0.04059672728180885, + 0.0510963499546051, + 0.005595838185399771, + 0.0031259420793503523, + -0.023735901340842247, + -0.0815017819404602, + 0.024494286626577377, + 0.005684319883584976, + 0.015271495096385479, + 0.027004096657037735, + -0.02345387265086174, + -0.05020205304026604, + -0.04126422107219696, + 0.05323927849531174, + -0.01286892220377922, + 0.0534650981426239, + 0.04284551739692688, + -0.02408970147371292, + 0.0656687468290329, + 0.04228387027978897, + 0.018443554639816284, + -0.03604736924171448, + -0.10777660459280014, + 0.011916114948689938, + 0.027050882577896118, + -0.06734307110309601, + -0.041548795998096466, + -0.03302937000989914, + -0.026736650615930557, + -0.02513352781534195, + 0.018220387399196625, + 0.06891888380050659, + -0.001024129567667842, + 0.005385813768953085, + -0.06709214299917221, + 0.01778745837509632, + -0.025751546025276184, + -0.08605223894119263, + 0.04397451505064964, + 0.013558605685830116, + -0.005675298627465963, + 0.07290878146886826, + 0.011174386367201805, + 0.007607316132634878, + -0.06834818422794342, + -0.03054022789001465, + 0.0006859104032628238, + 0.028349969536066055, + 0.009199216030538082, + -0.0023368187248706818, + 0.038524508476257324, + 0.03716970235109329, + -0.02000138722360134, + 0.03221309557557106, + 0.027532130479812622, + 0.0699729472398758, + -0.041125424206256866, + 0.011979207396507263, + -0.003780066967010498, + 0.09037631005048752, + 0.06973788142204285, + -0.0585121214389801, + -0.09334539622068405, + -0.0418572723865509, + -0.05219274386763573, + 0.03597882390022278, + -0.013921931385993958, + 0.0046239858493208885, + 0.0304935984313488, + -0.005541916936635971, + -0.027760235592722893, + -0.12137407064437866, + 0.03088071197271347, + -0.00470554968342185, + -0.011253468692302704, + -0.04905698448419571, + 0.03508400917053223, + 0.04082183167338371, + 0.013387786224484444, + -0.029505278915166855, + 0.0028569649439305067, + 0.021662142127752304, + 0.005729150027036667, + 0.0009606803650967777, + 0.03738084062933922, + 0.05761587247252464, + -0.032028183341026306, + -0.025989770889282227, + -0.05615795776247978, + 0.05168236419558525, + 0.025567544624209404, + 0.10789619386196136, + 0.03592901676893234, + 0.0039420402608811855, + -0.07238127291202545, + 0.05853618308901787, + -0.007556072436273098, + 0.044537194073200226, + -0.000889735936652869, + 0.03255235031247139, + 0.05939881503582001, + -0.05622616410255432, + 0.07850207388401031, + 0.02056068181991577, + -0.03140944242477417, + -0.02984531596302986, + 0.0037734932266175747, + -0.055665504187345505, + 0.018798034638166428, + -0.006064708344638348, + -0.06632205098867416, + -0.009425180032849312, + 0.04087073355913162, + 0.061400409787893295, + 0.039582133293151855, + 0.0802602469921112, + 0.028447499498724937, + -0.012771984562277794 + ] + }, + "p245_375.wav": { + "name": "p245", + "embedding": [ + 0.059578537940979004, + 0.09280254691839218, + -0.0066365948878228664, + 0.024891652166843414, + -0.053558267652988434, + 0.06540051102638245, + -0.11934581398963928, + 0.12229330837726593, + -0.0509914830327034, + 0.15572336316108704, + -0.07859791815280914, + 0.11564308404922485, + -0.021675940603017807, + -0.18438056111335754, + -0.015552418306469917, + 0.06570121645927429, + -0.02968379110097885, + -0.010172601789236069, + -0.05178419500589371, + -0.009660843759775162, + 0.01647229492664337, + 0.04650793597102165, + 0.04146043211221695, + -0.027816975489258766, + 0.06240103021264076, + 0.06358069181442261, + -0.017046866938471794, + 0.03668953850865364, + -0.0048728445544838905, + -0.10522384196519852, + -0.05157117545604706, + 0.10016235709190369, + -0.062238238751888275, + 0.015529388561844826, + 0.05061105638742447, + 0.00023448059801012278, + -0.002044137567281723, + -0.06672107428312302, + -0.03165212646126747, + 0.0012310049496591091, + -0.040847357362508774, + 0.07420497387647629, + 0.004687570966780186, + -0.029070932418107986, + 0.04449932277202606, + 0.014169570058584213, + -0.008884252980351448, + -0.050716713070869446, + -0.09780256450176239, + 0.14669272303581238, + 0.03418397158384323, + 0.021093983203172684, + -0.0908086970448494, + -0.09299582988023758, + 0.09701521694660187, + -0.025175780057907104, + -0.11251315474510193, + -0.03461805358529091, + 0.06012021750211716, + 0.1627790480852127, + -0.02188902720808983, + -0.04220303148031235, + 0.019917529076337814, + 0.07649338990449905, + 0.0470145046710968, + 0.09943431615829468, + 0.06948114931583405, + 0.07604683935642242, + 0.005181148182600737, + 0.03605261445045471, + 0.0520034059882164, + 0.07600453495979309, + 0.06825710088014603, + -0.01941586285829544, + 0.016241174191236496, + 0.002721425611525774, + -0.04470668360590935, + -0.010297677479684353, + -0.020321939140558243, + -0.009839298203587532, + -0.014528479427099228, + 0.0029372014105319977, + 0.028109008446335793, + -0.005147801712155342, + -0.02741917409002781, + 0.038570158183574677, + 0.03876641392707825, + -0.0266829002648592, + 0.06695496290922165, + 0.038391269743442535, + -0.01220671646296978, + 0.04704676568508148, + -0.08746813237667084, + -0.09188591688871384, + 0.02267633005976677, + 0.015564397908747196, + -0.0035276205744594336, + 0.06636932492256165, + 0.04641081020236015, + -0.023868784308433533, + 0.11050665378570557, + 0.04873201996088028, + 0.026215987280011177, + 0.02176022343337536, + -0.09232854843139648, + 0.10331210494041443, + 0.0937546119093895, + -0.012360389344394207, + 0.06315313279628754, + -0.03728475421667099, + 0.07729382812976837, + 0.08975464105606079, + -0.15307822823524475, + -0.0802825316786766, + -0.007423429749906063, + -0.0359358973801136, + 0.0044212304055690765, + 0.09970168769359589, + -0.012956305406987667, + 0.02692350186407566, + 0.09899879992008209, + -0.12060088664293289, + -0.05770988017320633, + -0.004800276830792427, + 0.040592700242996216, + -0.09787033498287201, + 0.0659930408000946, + 0.040485505014657974, + -0.01716802455484867, + 0.00959782488644123, + 0.07381284236907959, + -0.00859649758785963, + 0.00956201646476984, + 0.00805002823472023, + -0.04012591764330864, + 0.0008313688449561596, + -0.042600467801094055, + -0.008403842337429523, + 0.07794525474309921, + 0.032944850623607635, + 0.061015062034130096, + -0.011487586423754692, + -0.02267439104616642, + -0.11197391152381897, + 0.009205866605043411, + 0.040095292031764984, + 0.06204332411289215, + -0.0201509241014719, + -0.006357738748192787, + -0.043703507632017136, + -0.0847778171300888, + 0.04851159453392029, + -0.010166676715016365, + 0.08910751342773438, + 0.009700733236968517, + 0.021795623004436493, + 0.11651267111301422, + 0.036139898002147675, + -0.012692245654761791, + -0.063199482858181, + -0.029565289616584778, + 0.0086702611297369, + 0.06336972117424011, + -0.08738499879837036, + -0.07571856677532196, + 0.0010187309235334396, + -0.003994225990027189, + -0.021148551255464554, + 0.06660972535610199, + 0.052289340645074844, + 0.029873261228203773, + 0.03169350326061249, + -0.0618247352540493, + 0.0031243953853845596, + -0.10155005753040314, + -0.07095028460025787, + -0.016942543908953667, + -0.0493391677737236, + -0.030458148568868637, + 0.10075749456882477, + 0.022182809188961983, + 0.028399672359228134, + -0.037996806204319, + -0.0672098770737648, + -0.08322595059871674, + 0.06166207790374756, + 0.0402684286236763, + 0.0059422701597213745, + 0.021377118304371834, + 0.04352794587612152, + -0.03173092007637024, + 0.06193907931447029, + 0.07415612041950226, + 0.09858869016170502, + -0.018818747252225876, + 0.03497813642024994, + -0.05843231454491615, + 0.10435932129621506, + 0.09960930049419403, + -0.08169743418693542, + -0.10250139236450195, + -0.041442614048719406, + -0.07611596584320068, + 0.06408633291721344, + -0.019564621150493622, + 0.00157434050925076, + 0.030543766915798187, + -0.026445912197232246, + -0.08242195844650269, + -0.0919657051563263, + 0.0996866375207901, + -0.03322572633624077, + -0.028335459530353546, + -0.06936761736869812, + 0.04020280763506889, + 0.05407722294330597, + 0.049542464315891266, + -0.011735916137695312, + 0.015297822654247284, + 0.060945961624383926, + -0.05752795934677124, + -0.004825894255191088, + 0.07949329912662506, + 0.0022117667831480503, + -0.06799446791410446, + 0.0049944594502449036, + -0.06599101424217224, + 0.0729508101940155, + -0.05294749513268471, + 0.1609140783548355, + -0.023618346080183983, + -0.06585977971553802, + -0.07187116146087646, + 0.04707232490181923, + -0.029453633353114128, + 0.038448482751846313, + 0.04046997055411339, + 0.071866974234581, + 0.05872473120689392, + -0.06087472662329674, + 0.09252091497182846, + 0.03984646499156952, + -0.0178317129611969, + -0.04091453552246094, + -0.08009994775056839, + -0.05055548995733261, + 0.016472145915031433, + -0.020330043509602547, + -0.09813778102397919, + 0.031845033168792725, + 0.015062674880027771, + 0.006186965387314558, + 0.04824165254831314, + 0.13069140911102295, + 0.05769135057926178, + -0.11621339619159698 + ] + }, + "p245_092.wav": { + "name": "p245", + "embedding": [ + 0.046102799475193024, + 0.1064535602927208, + 0.03882990777492523, + 0.007487049326300621, + 0.00428888201713562, + 0.021372683346271515, + -0.03719458356499672, + 0.07438396662473679, + 0.05713196471333504, + 0.03525877371430397, + -0.08500215411186218, + 0.0642709955573082, + -0.04784000292420387, + -0.11319784820079803, + 0.00696053309366107, + 0.02920011430978775, + -0.04282845929265022, + 0.008282708004117012, + -0.017733167856931686, + -0.013514751568436623, + -0.008095936849713326, + -0.01753217726945877, + 0.038109809160232544, + -0.012525534257292747, + -0.021155208349227905, + 0.015163109637796879, + -0.03453231230378151, + 0.006535589229315519, + -0.008898885920643806, + -0.016865571960806847, + 0.0025727860629558563, + 0.03577691316604614, + 0.0010335445404052734, + 0.006816348992288113, + 0.0066894181072711945, + -0.023162085562944412, + 0.002310875803232193, + -0.051988910883665085, + -0.0719069167971611, + 0.04178440198302269, + -0.045457273721694946, + 0.038020215928554535, + 0.03348635882139206, + -0.07091621309518814, + 0.07716374099254608, + 0.017605872824788094, + -0.06732846796512604, + 0.002190190367400646, + -0.10653941333293915, + 0.0980999767780304, + 0.01689918152987957, + 0.02511964738368988, + -0.06662436574697495, + 0.007720688357949257, + 0.07335393875837326, + -0.02371140569448471, + -0.0503150150179863, + -0.0016451980918645859, + 0.04434879869222641, + 0.0359160378575325, + 0.029808776453137398, + -0.01780438795685768, + -0.006639616563916206, + 0.024667447432875633, + 0.05476382374763489, + 0.012440737336874008, + 0.0739692896604538, + 0.09163016825914383, + -0.03765476122498512, + 0.031139355152845383, + 0.025126319378614426, + -0.0078003183007240295, + 0.041260406374931335, + -0.003057287074625492, + -0.009109203703701496, + -0.019441546872258186, + -0.0030809524469077587, + -0.029171768575906754, + -0.000464538112282753, + -0.019734226167201996, + 0.03652775660157204, + -0.011969586834311485, + 0.03430986404418945, + 0.02560114488005638, + -0.0371861606836319, + -0.015020813792943954, + 0.05930951237678528, + 0.06193121522665024, + 0.055845413357019424, + 0.04522349685430527, + -0.0033451991621404886, + 0.08283627033233643, + -0.05941439047455788, + -0.08488892018795013, + -0.012808052822947502, + -0.012809467501938343, + 0.023438578471541405, + 0.034978240728378296, + 0.029422586783766747, + -0.014472197741270065, + 0.08584047853946686, + -0.0011968445032835007, + 0.007447962649166584, + 0.00256266538053751, + -0.07293926924467087, + 0.008252881467342377, + 0.05080214515328407, + -0.016282476484775543, + 0.05042785406112671, + 0.022402819246053696, + 0.07470276951789856, + 0.05985689163208008, + -0.0324404314160347, + 0.021031370386481285, + 0.007160048000514507, + 0.038123033940792084, + 0.02340659126639366, + 0.10042808949947357, + 0.008154327049851418, + 0.04819753021001816, + 0.1180533617734909, + -0.06895293295383453, + 0.028081845492124557, + 0.041626282036304474, + -0.009441891685128212, + -0.007816918194293976, + 0.0510195828974247, + 0.0171507578343153, + -0.013345770537853241, + 0.004236073233187199, + 0.007495969533920288, + 0.024195585399866104, + 0.010949238203465939, + -0.060463737696409225, + -0.0007464159280061722, + 0.009811539202928543, + -0.024902820587158203, + -0.004825470969080925, + 0.022217990830540657, + 0.05351581051945686, + -0.0034582987427711487, + 0.03593512624502182, + -0.05492741987109184, + -0.03803575038909912, + 0.029162567108869553, + 0.0038121212273836136, + 0.011272409930825233, + 0.03133147582411766, + -0.032537639141082764, + -0.05462552234530449, + 0.00949428603053093, + 0.06676427274942398, + -0.03231997787952423, + 0.04331296309828758, + 0.05982999503612518, + -0.012316036969423294, + 0.04005206748843193, + 0.02436148002743721, + 0.004238395486027002, + -0.03714202344417572, + -0.10295673459768295, + -0.017503172159194946, + 0.035558219999074936, + -0.08419470489025116, + -0.022950150072574615, + -0.04408934712409973, + -0.03376606106758118, + -0.005433212500065565, + -0.007501991465687752, + 0.07606455683708191, + -0.01956539787352085, + -0.023461323231458664, + -0.05429337918758392, + 0.02085306867957115, + -0.022151967510581017, + -0.11239247024059296, + 0.055110231041908264, + 0.017243439331650734, + 0.031251806765794754, + 0.061051297932863235, + -0.013462391681969166, + 0.007184591144323349, + -0.05044195428490639, + -0.04503496736288071, + 0.021522115916013718, + 0.04583548754453659, + -0.005309795029461384, + 0.00023113004863262177, + 0.05684908106923103, + 0.04979639872908592, + -0.04319640249013901, + 0.05203596502542496, + -0.016613345593214035, + 0.054124653339385986, + -0.04773581773042679, + 0.010217105969786644, + 0.02970133349299431, + 0.04535802826285362, + 0.06896093487739563, + -0.028549883514642715, + -0.12263995409011841, + -0.04257612302899361, + -0.042543064802885056, + 0.008781581185758114, + 0.005966579541563988, + -0.009652921929955482, + 0.03065895289182663, + -0.011680271476507187, + -0.03733941167593002, + -0.1088545098900795, + 0.001846805214881897, + 0.010092360898852348, + -0.00575418071821332, + -0.04098682478070259, + 0.01856289431452751, + 0.007557962089776993, + 0.0033586565405130386, + -0.023028098046779633, + 0.028080232441425323, + 0.0025641191750764847, + -0.0024903863668441772, + -0.03747071325778961, + -0.0052144937217235565, + 0.05973551794886589, + 0.010085277259349823, + -0.03185553476214409, + -0.0480203703045845, + 0.03725714981555939, + 0.0360775850713253, + 0.08504394441843033, + 0.040999654680490494, + 0.007665744051337242, + -0.022576870396733284, + 0.03460155427455902, + -0.019515953958034515, + 0.026071704924106598, + -0.014560465700924397, + 0.02562776952981949, + 0.05236086994409561, + -0.030892319977283478, + 0.053186215460300446, + 0.03204383701086044, + -0.012995278462767601, + -0.01589767076075077, + 0.009988261386752129, + -0.07885195314884186, + -0.035886481404304504, + -0.01613621599972248, + -0.0346883088350296, + -0.010800416581332684, + 0.007152854464948177, + 0.07665567845106125, + 0.02376319281756878, + 0.07549691945314407, + 0.015777645632624626, + -0.024306349456310272 + ] + }, + "p245_155.wav": { + "name": "p245", + "embedding": [ + 0.038709141314029694, + 0.043836869299411774, + -0.06396207213401794, + 0.04326394200325012, + -0.013039220124483109, + 0.0816001296043396, + -0.12744568288326263, + 0.04817115515470505, + -0.008936937898397446, + 0.13784155249595642, + -0.021501243114471436, + 0.07812226563692093, + 0.010580182075500488, + -0.1325506865978241, + -0.025479409843683243, + 0.009881933219730854, + -0.05875460058450699, + -0.012978470884263515, + -0.09415224194526672, + -0.01109527051448822, + 0.03044036589562893, + 0.04656811058521271, + 0.029310565441846848, + -0.07565078884363174, + -0.017435453832149506, + 0.041611168533563614, + -0.03085864707827568, + 0.032696839421987534, + 0.03225797787308693, + -0.06318903714418411, + -0.0015083067119121552, + 0.08648298680782318, + -0.05842342972755432, + 0.030528143048286438, + 0.028480829671025276, + 0.024362945929169655, + -0.014088524505496025, + -0.05996789038181305, + 0.015227108262479305, + 0.030005622655153275, + -0.05273135006427765, + 0.06654505431652069, + 0.016269003972411156, + 0.0005897665396332741, + 0.037468940019607544, + -0.02293059416115284, + -0.028184011578559875, + -0.04152239114046097, + -0.07217125594615936, + 0.15526792407035828, + 0.06199213117361069, + -0.04013952612876892, + -0.04978558421134949, + -0.03067539632320404, + 0.06878992170095444, + -0.0108029805123806, + -0.10697904974222183, + -0.0534791573882103, + 0.0492333360016346, + 0.12223925441503525, + -0.024633046239614487, + -0.0035367757081985474, + 0.03653936833143234, + 0.10729417204856873, + 0.07732705771923065, + 0.08159413188695908, + 0.08719471096992493, + 0.13844552636146545, + -0.003963734954595566, + -0.014521709643304348, + 0.02702314406633377, + 0.07397551834583282, + 0.04139146953821182, + 0.017629068344831467, + 0.046669792383909225, + 0.00708424299955368, + -0.016581423580646515, + -0.02016923762857914, + -0.03360714390873909, + -0.006741231307387352, + 0.03577711060643196, + -0.01876078173518181, + 0.009083036333322525, + 0.05862201750278473, + -0.047700248658657074, + 0.017685096710920334, + 0.06044720858335495, + -0.0414934903383255, + 0.025639966130256653, + 0.058089740574359894, + 0.04993915557861328, + 0.03617924451828003, + -0.05439300835132599, + -0.07959708571434021, + 0.018747450783848763, + 0.023512057960033417, + -0.01631442829966545, + 0.03148621693253517, + 0.02198919653892517, + -0.013070760294795036, + 0.08281363546848297, + 0.00024617649614810944, + -0.07482937723398209, + 0.023715108633041382, + -0.055486973375082016, + 0.13352099061012268, + 0.09609562158584595, + -0.014771975576877594, + -0.018591301515698433, + -0.06443176418542862, + 0.051209624856710434, + 0.04648289456963539, + -0.11433684825897217, + -0.05108414590358734, + 0.0841970443725586, + 0.003375728614628315, + -0.008407028391957283, + 0.12312732636928558, + 0.03540223836898804, + 0.005191072355955839, + 0.08774043619632721, + -0.03753364086151123, + -0.021206999197602272, + -0.017795555293560028, + 0.0500633642077446, + -0.039844218641519547, + 0.0184720978140831, + 0.010412727482616901, + 0.023461967706680298, + -0.019044948741793633, + 0.10482227802276611, + -0.00271056592464447, + 0.005580555647611618, + 0.004776953253895044, + -0.015123852528631687, + 0.0774531364440918, + -0.011077302508056164, + 0.0016978110652416945, + 0.040417931973934174, + 0.03850406035780907, + 0.07998046278953552, + -0.04676659032702446, + -0.03834376856684685, + -0.106003537774086, + 0.0288406889885664, + 0.04193590208888054, + 0.0633968785405159, + -0.02126298099756241, + 0.015216912142932415, + -0.06166090816259384, + -0.0843062549829483, + 0.06419310718774796, + -0.07349217683076859, + 0.0806356891989708, + -0.006198268383741379, + -0.04442786052823067, + 0.10852636396884918, + -0.041549552232027054, + 0.0294739231467247, + 0.002143656834959984, + -0.011323148384690285, + -0.011787602677941322, + 0.028720956295728683, + -0.07168862968683243, + -0.05025062710046768, + 0.00545505341142416, + 0.019485659897327423, + -0.0074730138294398785, + 0.044146038591861725, + 0.052180252969264984, + 0.009438680484890938, + 0.013756041415035725, + -0.04974091798067093, + -0.041357506066560745, + -0.07107856124639511, + 0.0017826128751039505, + -0.017409687861800194, + -0.03978564217686653, + -0.0028044055216014385, + 0.08520350605249405, + 0.005610228516161442, + 0.007441772148013115, + -0.04621688276529312, + -0.08248014748096466, + -0.06893877685070038, + 0.05399763211607933, + 0.06844192743301392, + -0.042343560606241226, + 0.02398272417485714, + 0.07128758728504181, + 0.00042195338755846024, + 0.0003962703049182892, + 0.08211225271224976, + 0.06570414453744888, + -0.02653568610548973, + 0.005126255098730326, + -0.09310240298509598, + 0.1334727704524994, + 0.07533380389213562, + -0.06525146216154099, + -0.04615272581577301, + 0.010399042628705502, + -0.07800833135843277, + -0.0011621806770563126, + -0.07775026559829712, + -0.01909555308520794, + 0.0613197460770607, + -0.012403747998178005, + -0.11790768802165985, + -0.08019264042377472, + 0.04837048426270485, + -0.09151708334684372, + -0.01653306744992733, + -0.07922130823135376, + 0.027308156713843346, + 0.055980268865823746, + 0.07508037984371185, + -0.04733382165431976, + 0.019509542733430862, + 0.05709865316748619, + -0.036791153252124786, + 0.03562687709927559, + 0.06118527427315712, + 0.01394906360656023, + -0.12607155740261078, + -0.030854877084493637, + -0.05060849338769913, + 0.05079884082078934, + -0.0685778260231018, + 0.09104838967323303, + 0.0360553078353405, + -0.048803217709064484, + -0.05063339322805405, + 0.07499854266643524, + -0.025002621114253998, + 0.055632367730140686, + 0.043725281953811646, + 0.05133059248328209, + 0.04578588157892227, + -0.05071654170751572, + 0.11553595960140228, + 0.022255556657910347, + -0.014213662594556808, + -0.09727587550878525, + -0.03352759778499603, + -0.03071572631597519, + 0.05789727717638016, + 0.06460973620414734, + -0.07017071545124054, + 0.007500883191823959, + 0.03614375740289688, + -0.0549197793006897, + 0.03965677320957184, + 0.11726978421211243, + 0.09742529690265656, + -0.09380317479372025 + ] + }, + "p245_147.wav": { + "name": "p245", + "embedding": [ + 0.01687598042190075, + 0.06943561881780624, + -0.007168432231992483, + 0.05266550928354263, + -0.042319826781749725, + 0.01016500499099493, + -0.09822674840688705, + 0.08250243216753006, + -0.0007278798148036003, + 0.0965728759765625, + -0.0959683209657669, + 0.0973936915397644, + -0.05587733909487724, + -0.1327417939901352, + 0.02922956645488739, + 0.0429067388176918, + 0.022647663950920105, + 0.025980796664953232, + -0.016756445169448853, + -0.06472177803516388, + 0.03813295066356659, + 0.049331240355968475, + 0.06756006181240082, + -0.0461440235376358, + -0.021891430020332336, + 0.07544268667697906, + -0.008549144491553307, + 0.019413096830248833, + 0.012278901413083076, + -0.055473875254392624, + -0.01793714426457882, + 0.09056406468153, + -0.006831254810094833, + -0.016637753695249557, + 0.03704149276018143, + 0.029418956488370895, + -0.045027729123830795, + -0.01147896982729435, + 0.0032222128938883543, + 0.007434912025928497, + -0.08236000686883926, + 0.04922019690275192, + 0.017478952184319496, + -0.0376509390771389, + 0.07833422720432281, + -0.047492578625679016, + -0.06431808322668076, + 0.031461507081985474, + -0.07579408586025238, + 0.09862212836742401, + 0.08787371963262558, + 0.008924763649702072, + -0.0470295324921608, + -0.021108150482177734, + 0.0765337124466896, + -0.005508362781256437, + -0.09920899569988251, + -0.03975412994623184, + 0.04680348560214043, + 0.11293455958366394, + -0.004147372208535671, + -0.008561430498957634, + 0.029330581426620483, + 0.07162770628929138, + -0.006370825227349997, + 0.08896437287330627, + 0.0730324387550354, + 0.07857243716716766, + -0.011741924099624157, + 0.016542578116059303, + 0.013277491554617882, + 0.08568202704191208, + 0.0365888848900795, + -0.009046215564012527, + 0.00134345144033432, + -0.010595113039016724, + -0.03115909919142723, + 0.001813046634197235, + -0.016159240156412125, + -0.0438741073012352, + -0.03822213411331177, + -0.0296674445271492, + 0.009476404637098312, + -0.03547278791666031, + -0.030248742550611496, + 0.0015751596074551344, + 0.08084380626678467, + -0.013797730207443237, + 0.05011191964149475, + 0.028738608583807945, + -0.017701828852295876, + 0.028609108179807663, + -0.04165536165237427, + -0.04038427770137787, + -0.033882759511470795, + 0.003850731998682022, + 0.029894759878516197, + 0.06803813576698303, + 0.010777734220027924, + 0.02098166011273861, + 0.10072540491819382, + 0.037381548434495926, + 0.013857911340892315, + 0.014234564267098904, + -0.08099372684955597, + 0.08434265851974487, + 0.1128661036491394, + -0.019581366330385208, + 0.05152810737490654, + -0.014639541506767273, + 0.04346306622028351, + 0.028025131672620773, + -0.07644529640674591, + -0.0149867944419384, + -0.03752937540411949, + 0.03354319557547569, + 0.01883382722735405, + 0.10219782590866089, + 0.024212142452597618, + 0.023683704435825348, + 0.12026466429233551, + -0.07696861028671265, + -0.07811364531517029, + -0.04685017466545105, + 0.020663248375058174, + -0.08006954193115234, + 0.06868821382522583, + 0.049958180636167526, + 0.018483765423297882, + 0.027916600927710533, + 0.0651274248957634, + 0.001998619642108679, + 0.03573717549443245, + 0.0033614288549870253, + -0.07070489972829819, + -0.02143549732863903, + -0.06060607358813286, + 0.025016959756612778, + 0.08599035441875458, + 0.02988770604133606, + 0.10118745267391205, + 0.006766083650290966, + 0.025512486696243286, + -0.08451934158802032, + -0.003950513433665037, + 0.04807303473353386, + 0.02188900113105774, + -0.0190617386251688, + -0.029232874512672424, + -0.019365286454558372, + -0.09402510523796082, + 0.03969733417034149, + -0.05569050833582878, + 0.08042807877063751, + -0.033141449093818665, + -4.494811219046824e-05, + 0.0841088518500328, + 0.0019143037497997284, + -0.030746646225452423, + -0.07616119086742401, + -0.03583524376153946, + -0.0154340248554945, + 0.025227200239896774, + -0.12619835138320923, + -0.0742165595293045, + -0.036740221083164215, + 0.025796081870794296, + -0.005953145679086447, + 0.02056020125746727, + 0.07888464629650116, + -0.017125576734542847, + 0.021695397794246674, + -0.0013919075718149543, + 0.014222665689885616, + -0.06085383892059326, + -0.08637982606887817, + -0.008353529497981071, + -0.052160099148750305, + -0.012566241435706615, + 0.0632978230714798, + -0.0007249763002619147, + 0.021564027294516563, + 0.006890064105391502, + -0.053601957857608795, + -0.10291656851768494, + 0.03308693692088127, + 0.011536362580955029, + 0.0006774887442588806, + 0.0648837760090828, + 0.07050660997629166, + -0.06708021461963654, + 0.04630706459283829, + 0.04192341864109039, + 0.08083929121494293, + -0.06159328669309616, + 0.018643440678715706, + -0.09010124206542969, + 0.03023688867688179, + 0.13584372401237488, + -0.051041215658187866, + -0.08429925888776779, + -0.07979002594947815, + -0.0765543133020401, + 0.07438375800848007, + -0.03615685552358627, + -0.05224291980266571, + 0.015784140676259995, + -0.026803268119692802, + -0.08065406233072281, + -0.07475551962852478, + 0.08840927481651306, + -0.019861675798892975, + 0.000561397522687912, + -0.0594276487827301, + 0.005635014735162258, + -0.011994479224085808, + 0.05452972650527954, + -0.05477689951658249, + 0.03244395554065704, + 0.06490307301282883, + -0.06395669281482697, + 0.018686428666114807, + 0.05370347201824188, + 0.055524300783872604, + -0.01574614644050598, + -0.01902826502919197, + -0.07318990677595139, + 0.04314978048205376, + -0.0285206139087677, + 0.0673958957195282, + 0.02181817591190338, + -0.027508800849318504, + -0.047594424337148666, + 0.04699129983782768, + -0.010133549571037292, + 0.01799565553665161, + 0.06949862837791443, + 0.06538397073745728, + 0.007716785650700331, + -0.08463312685489655, + 0.10020949691534042, + 0.009254100732505322, + 0.009770847856998444, + -0.029096392914652824, + 0.0018080523004755378, + -0.058436810970306396, + 0.02323175221681595, + 1.7389655113220215e-05, + -0.08250914514064789, + -0.002193694468587637, + -0.019860494881868362, + 0.00676284683868289, + 0.03341388329863548, + 0.08732720464468002, + 0.04965898394584656, + -0.06717147678136826 + ] + }, + "p245_229.wav": { + "name": "p245", + "embedding": [ + 0.017833705991506577, + 0.10620729625225067, + -0.02716187760233879, + 0.06193678453564644, + -0.05028887465596199, + -0.01674700900912285, + -0.08416841179132462, + 0.0586332343518734, + 0.018962420523166656, + 0.09082196652889252, + -0.024159403517842293, + 0.10156888514757156, + -0.04226793348789215, + -0.10385236889123917, + -0.004946193657815456, + 0.003811277449131012, + 0.015462502837181091, + 0.018416576087474823, + 0.012632036581635475, + -0.026110099628567696, + -0.03203895688056946, + 0.004537452943623066, + -0.03025299310684204, + 0.000410422682762146, + -0.013634571805596352, + 0.018337521702051163, + -0.0398084819316864, + 0.03187377005815506, + -0.019862772896885872, + -0.060700614005327225, + -0.004677378572523594, + 0.022295722737908363, + -0.03438471257686615, + -0.0035824680235236883, + -0.007223563268780708, + -0.008648294024169445, + -0.004147071857005358, + -0.01863870583474636, + -0.031555965542793274, + -0.0344526432454586, + -0.04499049484729767, + 0.0218128003180027, + 0.02852516621351242, + -0.059561338275671005, + 0.020503636449575424, + 0.02322128415107727, + -0.027357393875718117, + -0.01871231012046337, + -0.038537222892045975, + 0.0892009288072586, + 0.029826998710632324, + 0.07851661741733551, + -0.04619782790541649, + -0.03014095313847065, + 0.10330498218536377, + 0.01882355473935604, + -0.009541727602481842, + -0.027155457064509392, + -0.011539775878190994, + 0.07540429383516312, + 0.02208646759390831, + 0.013419600203633308, + 0.042072951793670654, + 0.06542489677667618, + 0.026318825781345367, + 0.0207879189401865, + 0.05928638577461243, + 0.05388724058866501, + -0.03340350463986397, + 0.032644789665937424, + 0.04676036536693573, + 0.035159528255462646, + 0.0031194668263196945, + 0.03228311240673065, + -0.005200378596782684, + 0.018861297518014908, + 0.01503603346645832, + 0.03180718049407005, + -0.031021390110254288, + -0.01753920689225197, + -0.003928624093532562, + 0.027134915813803673, + 0.007655126042664051, + -0.027180857956409454, + -0.04441680386662483, + -0.027815070003271103, + 0.07109994441270828, + 0.008170605637133121, + 0.018829017877578735, + 0.019240474328398705, + 0.04515431448817253, + 0.007108947262167931, + -0.06692110002040863, + -0.03214964270591736, + 0.03002394735813141, + -0.017836879938840866, + 0.0601254403591156, + 0.000507846474647522, + 0.00819731131196022, + 0.0015452175866812468, + 0.05034971609711647, + -0.012081120163202286, + 0.03314417600631714, + -0.006373772397637367, + -0.04044809937477112, + 0.011094868183135986, + 0.03351490944623947, + 0.021656449884176254, + 0.059381045401096344, + 0.006152201443910599, + 0.040625881403684616, + 0.07226324081420898, + -0.05167388543486595, + -0.036990970373153687, + 0.01653316803276539, + 0.04657892510294914, + -0.032473526895046234, + 0.08378227055072784, + 0.003351696766912937, + 0.05009856075048447, + 0.0572018139064312, + 0.0042100027203559875, + -0.03722354769706726, + -0.016422713175415993, + 0.010823165997862816, + -0.028255663812160492, + 0.054991669952869415, + 0.03505391627550125, + -0.0277281291782856, + -0.0378371886909008, + 0.06286531686782837, + -0.009166107513010502, + -0.0195931326597929, + 0.009264307096600533, + 0.01508574839681387, + -0.05154145881533623, + 0.06666966527700424, + -0.05569108948111534, + 0.008931046351790428, + 0.04931595176458359, + -0.019608136266469955, + -0.010359052568674088, + 0.007967304438352585, + -0.060940101742744446, + 0.037310630083084106, + 0.004216235596686602, + -0.004898916929960251, + 0.07396860420703888, + -0.05401541292667389, + -0.07106470316648483, + -0.030234647914767265, + 0.01728491485118866, + -0.016407834365963936, + 0.06678484380245209, + 0.06425316631793976, + 0.02962702140212059, + 0.04817122220993042, + 0.0010351669043302536, + 0.01694277673959732, + 0.019808391109108925, + -0.1101369857788086, + 0.009859793819487095, + 0.01395457610487938, + 0.0019650347530841827, + -0.022062331438064575, + 0.009369672276079655, + 0.0010352330282330513, + -0.02205272763967514, + 0.012263722717761993, + 0.041676051914691925, + 0.016890935599803925, + 0.046777721494436264, + -0.11090710759162903, + 0.003162207081913948, + -0.033976003527641296, + -0.050292376428842545, + 0.030784860253334045, + -0.025186769664287567, + -0.02213302068412304, + 0.02199498936533928, + 0.034588564187288284, + -0.005461312830448151, + -0.04336395859718323, + -0.035829924046993256, + -0.02146868407726288, + 0.006920505315065384, + 0.0031632333993911743, + -0.0021576033905148506, + -0.02171609178185463, + 0.007879875600337982, + 0.04192621260881424, + 0.016796531155705452, + 0.011167256161570549, + 0.056430600583553314, + -0.034959372133016586, + -0.0005472246557474136, + 0.024400025606155396, + 0.09771516919136047, + 0.04066973179578781, + -0.08596210181713104, + -0.07395122945308685, + 0.00012766290456056595, + -0.0559719055891037, + 0.023752085864543915, + -0.01878785341978073, + 0.0335935540497303, + 0.015935957431793213, + 0.014390076510608196, + 0.039736147969961166, + -0.14267529547214508, + 0.03004344180226326, + -0.030806226655840874, + -0.03931436687707901, + 0.00065656378865242, + 0.000554962083697319, + 0.040239207446575165, + 0.016702713444828987, + -0.03528685122728348, + -0.05296364799141884, + 0.021238017827272415, + 0.028150256723165512, + 0.029138362035155296, + 0.0690004751086235, + 0.04669996723532677, + -0.008775357156991959, + -0.0012180993799120188, + -0.03143259137868881, + 0.007968328893184662, + 0.011450434103608131, + 0.04193948954343796, + 0.016909148544073105, + -0.015046491287648678, + -0.08710579574108124, + 0.05308601260185242, + -0.010983648709952831, + 0.05314164608716965, + -0.02919692173600197, + 0.01054445095360279, + 0.03424951061606407, + -0.03450099378824234, + 0.11250001192092896, + 0.04888845607638359, + -0.02481604367494583, + -0.030990026891231537, + -0.017108354717493057, + -0.036871287971735, + 0.07498010993003845, + 0.04275849089026451, + -0.04594205319881439, + -0.016575051471590996, + 0.06173774600028992, + 0.04882063716650009, + 0.08966310322284698, + 0.06832963973283768, + 0.05440453067421913, + 0.03674720972776413 + ] + }, + "p245_305.wav": { + "name": "p245", + "embedding": [ + 0.03680841997265816, + 0.11020034551620483, + -0.005404968746006489, + 0.042662445455789566, + -0.08041616529226303, + 0.08192805200815201, + -0.09941112995147705, + 0.11860743165016174, + -0.0606069341301918, + 0.12563851475715637, + -0.09892147034406662, + 0.1306304782629013, + -0.014961876906454563, + -0.18951694667339325, + -0.03994905576109886, + 0.05225594714283943, + -0.028645865619182587, + 0.008471691980957985, + -0.04621202498674393, + -0.01793196052312851, + 0.05020938441157341, + 0.019284356385469437, + 0.06857504695653915, + -0.013151300139725208, + 0.031644877046346664, + 0.046304889023303986, + 0.015884162858128548, + 0.0573231503367424, + 0.0376487597823143, + -0.05762620270252228, + -0.07605525851249695, + 0.12885041534900665, + -0.014173022471368313, + 0.005599393509328365, + 0.05730842053890228, + -0.023400746285915375, + 0.0107292914763093, + -0.061165884137153625, + -0.008159165270626545, + 0.010970084927976131, + -0.025679657235741615, + 0.06106745824217796, + 0.020902398973703384, + -0.0282975472509861, + 0.06579822301864624, + -0.00013658902025781572, + -0.04225555807352066, + -0.023120585829019547, + -0.09900441765785217, + 0.14053599536418915, + 0.07213610410690308, + -0.02566283755004406, + -0.075237937271595, + -0.06398482620716095, + 0.12165427207946777, + -0.002922208048403263, + -0.11024611443281174, + -0.03415912017226219, + 0.07996848970651627, + 0.16135293245315552, + 0.007831237278878689, + 0.0005735987797379494, + 0.020971955731511116, + 0.11034524440765381, + -0.009645863436162472, + 0.10238414257764816, + 0.04607567936182022, + 0.07685147970914841, + 0.0033366908319294453, + 0.08128233253955841, + 0.02057475410401821, + 0.06220689043402672, + -0.030061066150665283, + -0.04662223532795906, + 0.01886085979640484, + -0.037505168467760086, + -0.03627442196011543, + 0.028389321640133858, + -0.03163444623351097, + -0.02072555013000965, + -0.03730696067214012, + -0.008698281832039356, + 0.004216532222926617, + -0.05045827850699425, + -0.05701678246259689, + 0.06090954318642616, + -0.0005308945546858013, + 0.0026624053716659546, + 0.07018835097551346, + 0.058347903192043304, + -0.015369430184364319, + 0.030175304040312767, + -0.03861163556575775, + -0.12848998606204987, + 0.003807591274380684, + 0.019269131124019623, + -0.011519728228449821, + 0.07888594269752502, + 0.015645693987607956, + -0.026519672945141792, + 0.10311182588338852, + 0.08790585398674011, + -0.003693113336339593, + 0.05167796090245247, + -0.07798141241073608, + 0.12200459837913513, + 0.10174231976270676, + 0.007830099202692509, + 0.05984542891383171, + -0.031067993491888046, + 0.09622670710086823, + 0.07772275805473328, + -0.12174350768327713, + -0.06391138583421707, + -0.015521051362156868, + -0.018069177865982056, + -0.0008157648844644427, + 0.07142185419797897, + -0.015518763102591038, + 0.007603475823998451, + 0.08897192031145096, + -0.07205375283956528, + -0.07780874520540237, + -0.040904443711042404, + 0.04534268006682396, + -0.06015076860785484, + 0.059068720787763596, + 0.04122454300522804, + -0.01691916584968567, + -0.0098841218277812, + 0.055033717304468155, + -0.017712585628032684, + 0.01491404790431261, + 0.07901303470134735, + -0.07045823335647583, + 0.022614985704421997, + -0.05301900580525398, + 0.011059349402785301, + 0.07335592061281204, + 0.05476197227835655, + 0.0561140775680542, + -0.008677709847688675, + 0.004275009501725435, + -0.05714411288499832, + -0.0068344492465257645, + 0.046769410371780396, + 0.04538201913237572, + 0.01631047949194908, + -0.025193823501467705, + -0.055848535150289536, + -0.09241708368062973, + 0.03677891939878464, + -0.01886765845119953, + 0.10332703590393066, + -0.014842845499515533, + 0.024641763418912888, + 0.07389681041240692, + 0.023641254752874374, + -0.01999754272401333, + -0.08563105762004852, + -0.03083745203912258, + 0.035126619040966034, + 0.025894906371831894, + -0.07319611310958862, + -0.057273030281066895, + 0.0014720156323164701, + 2.184821460105013e-05, + -0.04095613956451416, + 0.02348559908568859, + 0.04756169766187668, + 0.00873467419296503, + 0.06310738623142242, + -0.08655968308448792, + 0.027806872501969337, + -0.09011808782815933, + -0.01761840656399727, + -0.0385696180164814, + -0.043738093227148056, + -0.030356185510754585, + 0.08681339025497437, + 0.0356714241206646, + 0.005997860804200172, + 0.03047958016395569, + -0.05473127216100693, + -0.06523144990205765, + 0.06382925808429718, + 0.059864506125450134, + 0.022563794627785683, + 0.08718200027942657, + 0.047233566641807556, + -0.0451233796775341, + 0.08615673333406448, + 0.07195208966732025, + 0.05867895483970642, + -0.002825414063408971, + -0.011505942791700363, + -0.07360249757766724, + 0.06834246963262558, + 0.10501454770565033, + -0.11997657269239426, + -0.11935344338417053, + -0.06379147619009018, + -0.06624368578195572, + 0.06997809559106827, + -0.02433452196419239, + -0.0262463241815567, + 0.04251294583082199, + -0.023216083645820618, + -0.0944429561495781, + -0.08610774576663971, + 0.11461147665977478, + -0.057830873876810074, + -0.02340402454137802, + -0.03950190544128418, + 0.023174431174993515, + 0.07389065623283386, + 0.005727465730160475, + -0.04888283461332321, + -0.00010191417095484212, + 0.0781739354133606, + -0.07571560889482498, + -0.007918321527540684, + 0.02574598230421543, + 0.005559690296649933, + -0.08457118272781372, + 0.047549787908792496, + -0.07322046905755997, + 0.07703110575675964, + -0.06899742037057877, + 0.18086005747318268, + 0.004408083390444517, + -0.043381791561841965, + -0.07191946357488632, + 0.08766552805900574, + -0.039148908108472824, + 0.013512498699128628, + 0.052040182054042816, + 0.05019459128379822, + -0.004328541923314333, + -0.10064201802015305, + 0.12004023790359497, + 0.009381997399032116, + -0.03776310011744499, + -0.07108494639396667, + -0.016123419627547264, + -0.048631854355335236, + 0.011479893699288368, + 0.027229811996221542, + -0.09176034480333328, + -0.023768458515405655, + 0.018228860571980476, + -0.01637456752359867, + 0.09974496811628342, + 0.14912520349025726, + 0.08032150566577911, + -0.08421117812395096 + ] + }, + "p245_321.wav": { + "name": "p245", + "embedding": [ + 0.019796855747699738, + 0.04795306921005249, + -0.019162900745868683, + -0.0013976339250802994, + -0.05059266462922096, + 0.024233508855104446, + -0.11165747791528702, + 0.08841949701309204, + -0.009336846880614758, + 0.12800636887550354, + -0.042159970849752426, + 0.11095093935728073, + 0.0015247608534991741, + -0.1398591846227646, + 0.014686169102787971, + 0.026818890124559402, + -0.01941770501434803, + -0.017896147444844246, + -0.00888101477175951, + -0.08759269118309021, + 0.04669930413365364, + 0.06280328333377838, + 0.023890424519777298, + -0.03796340525150299, + 0.00501624308526516, + 0.07881958037614822, + -0.00682907784357667, + 0.004837107844650745, + -0.011024710722267628, + -0.09525908529758453, + -0.04165209084749222, + 0.07646425068378448, + -0.04464235156774521, + -0.024425994604825974, + 0.01538074016571045, + -0.02293332666158676, + -0.008042561821639538, + -0.020627465099096298, + -0.004315420985221863, + 0.04895251989364624, + -0.06276361644268036, + 0.07247351109981537, + 0.026428688317537308, + -0.01012672483921051, + 0.05220962315797806, + -0.01447707787156105, + -0.03048100508749485, + -0.0012980960309505463, + -0.07267862558364868, + 0.13778889179229736, + 0.07741786539554596, + -0.02722783014178276, + -0.028835080564022064, + -0.039682306349277496, + 0.06727282702922821, + 0.00670588668435812, + -0.10694492608308792, + -0.012221192941069603, + 0.03368746489286423, + 0.08983111381530762, + -0.018398467451334, + -0.05516328290104866, + 0.05287482589483261, + 0.08594126999378204, + 0.01762217842042446, + 0.05788952857255936, + 0.08418719470500946, + 0.07011488825082779, + -0.03242700919508934, + -0.022819530218839645, + 0.02979768067598343, + 0.0952475368976593, + 0.0562124066054821, + -0.020052915439009666, + 0.0411151684820652, + 0.002737700939178467, + -0.009134945459663868, + -0.029955647885799408, + -0.015836356207728386, + -0.01971692405641079, + -0.018036289140582085, + -0.009873829782009125, + 0.020086398348212242, + 0.03005480021238327, + -0.0292836781591177, + 0.01388915441930294, + 0.05110170692205429, + 0.004012066870927811, + 0.04873056337237358, + 0.007368580903857946, + 0.02270909771323204, + 0.054285578429698944, + -0.07641416788101196, + -0.027434296905994415, + 0.025849001482129097, + -0.0042922478169202805, + 0.035942044109106064, + 0.08234238624572754, + 0.03569891303777695, + -0.013023817911744118, + 0.10679589211940765, + 0.042937107384204865, + -0.006507156416773796, + -0.008870118297636509, + -0.07570001482963562, + 0.08984769880771637, + 0.11224710941314697, + -0.038124315440654755, + 0.0507424920797348, + -0.03510075435042381, + 0.0725833848118782, + -0.0006898492574691772, + -0.12000507861375809, + -0.04006369039416313, + 0.006407805718481541, + 0.04356196150183678, + -0.0028378437273204327, + 0.13622228801250458, + 0.006731804460287094, + 0.04774729162454605, + 0.10489606112241745, + -0.06673643738031387, + -0.048521216958761215, + -0.046600136905908585, + 0.035671234130859375, + -0.11617111414670944, + 0.07023552805185318, + 0.05316717550158501, + 0.0024900510907173157, + 0.0377872996032238, + 0.07560620456933975, + -0.023201899603009224, + 0.01714150607585907, + -0.026662565767765045, + -0.029489167034626007, + -0.005715946201235056, + -0.01771145686507225, + 0.01756838895380497, + 0.04702644795179367, + 0.017122114077210426, + 0.0696008950471878, + -0.002864556387066841, + -0.019465235993266106, + -0.11771953850984573, + 0.04103127121925354, + 0.009452946484088898, + 0.037627145648002625, + -0.025642866268754005, + -0.0359167642891407, + -0.011247633025050163, + -0.08937516808509827, + -0.003203418105840683, + -0.02582256682217121, + 0.058227479457855225, + -0.031154057011008263, + -0.001993859652429819, + 0.08229762315750122, + 0.057472631335258484, + -0.01950656995177269, + -0.001266084611415863, + -0.05629737675189972, + -0.01752004586160183, + 0.04999757558107376, + -0.11136072874069214, + -0.07291733473539352, + -0.03777594491839409, + 0.03453898802399635, + 0.017137693241238594, + 0.04605704918503761, + 0.07797226309776306, + -0.0021591167896986008, + 0.03852430358529091, + -0.045857787132263184, + 0.0037035192362964153, + -0.07883689552545547, + -0.08240285515785217, + -0.024815313518047333, + -0.047267187386751175, + -0.035947155207395554, + 0.0677686557173729, + -0.026642654091119766, + 0.04849773645401001, + -0.045029167085886, + -0.02876419387757778, + -0.07279334962368011, + 0.022052543237805367, + 0.042411379516124725, + -0.014073062688112259, + 0.024032149463891983, + 0.08131226152181625, + -0.025271791964769363, + 0.031216438859701157, + 0.0436992421746254, + 0.09169494360685349, + -0.03659851849079132, + 0.04318968579173088, + -0.05520794168114662, + 0.0829092338681221, + 0.07640048116445541, + -0.020023712888360023, + -0.063369020819664, + -0.043132685124874115, + -0.0794314593076706, + 0.06705223023891449, + -0.020340420305728912, + -0.014383744448423386, + -0.0043847993947565556, + 0.022201169282197952, + -0.0691576898097992, + -0.04532690346240997, + 0.06268709152936935, + -0.02989770844578743, + -0.00779334269464016, + -0.08017323911190033, + 0.02725606970489025, + 0.06483534723520279, + 0.07840752601623535, + -0.04323766380548477, + 0.003998568281531334, + 0.04557940363883972, + -0.02123401314020157, + 0.04879053309559822, + 0.051013581454753876, + 0.06213816627860069, + -0.06196678429841995, + -0.035608939826488495, + -0.07556778937578201, + 0.02215547114610672, + -0.05067184194922447, + 0.06656070053577423, + 0.037851981818675995, + -0.0398666076362133, + -0.0593203566968441, + 0.053124748170375824, + -0.0021822997368872166, + 0.022914491593837738, + 0.058885447680950165, + 0.06444264948368073, + 0.05139835178852081, + -0.06555067747831345, + 0.0732717290520668, + 0.03350609540939331, + -0.006020057946443558, + -0.03344335779547691, + -0.00962885096669197, + -0.01858488656580448, + 0.029179146513342857, + 0.036740198731422424, + -0.07965373992919922, + 0.0013965889811515808, + 0.01820480264723301, + 0.018503092229366302, + 0.03805097937583923, + 0.09350802004337311, + 0.03438076749444008, + -0.11205171793699265 + ] + }, + "p245_068.wav": { + "name": "p245", + "embedding": [ + 0.021957755088806152, + 0.08661796152591705, + -0.045143336057662964, + 0.045182548463344574, + -0.047540441155433655, + 0.010512247681617737, + -0.11310746520757675, + 0.10278674960136414, + -0.036397069692611694, + 0.11621536314487457, + -0.08819311112165451, + 0.10504996031522751, + -0.07022294402122498, + -0.15615186095237732, + -0.023822052404284477, + 0.0656767338514328, + -0.0005303770303726196, + -0.038710445165634155, + -0.006298385560512543, + -0.029215510934591293, + 0.07068923115730286, + 0.05148620530962944, + 0.017076954245567322, + 0.007087378762662411, + -0.012709235772490501, + 0.07656851410865784, + -0.008050093427300453, + 0.011457858607172966, + -0.004715288989245892, + 0.010694569908082485, + -0.012077799066901207, + 0.09943683445453644, + -0.014580751769244671, + -0.021040506660938263, + 0.02109205350279808, + 0.03495434671640396, + -0.019907262176275253, + -0.03617654740810394, + -0.000608989386819303, + -0.006250749342143536, + -0.0753464549779892, + 0.039726804941892624, + -0.0034810006618499756, + -0.02756824716925621, + 0.07469600439071655, + -0.03918081149458885, + -0.050030939280986786, + -0.008366195484995842, + -0.10358190536499023, + 0.13226330280303955, + 0.09312580525875092, + 0.042326267808675766, + -0.06573665142059326, + -0.035372018814086914, + 0.10529046505689621, + 0.009614803828299046, + -0.07926337420940399, + -0.055499326437711716, + 0.05049272999167442, + 0.16806785762310028, + -0.0018078784924000502, + -0.02924937568604946, + 0.04494518041610718, + 0.08643177151679993, + 0.04230610281229019, + 0.06142454966902733, + 0.08683254569768906, + 0.07367929816246033, + 0.007889879867434502, + -0.02790161967277527, + 0.05355392396450043, + 0.07458736002445221, + 0.03828192874789238, + -0.03543815761804581, + 0.01036419440060854, + 0.006485484540462494, + -0.029976023361086845, + 0.018398797139525414, + -0.023383930325508118, + -0.051529936492443085, + -0.022684192284941673, + -0.004640957340598106, + -0.013122609816491604, + 0.001032407395541668, + -0.04056040570139885, + 0.02226077765226364, + 0.06955316662788391, + -0.0331730917096138, + 0.06142030283808708, + 0.030625488609075546, + -0.015783414244651794, + 0.03583595156669617, + -0.05616746470332146, + -0.06951442360877991, + 0.02198934182524681, + 0.02224070392549038, + 0.0034164737444370985, + 0.07401338964700699, + 0.02572927437722683, + 0.002608424751088023, + 0.10432995855808258, + 0.023159176111221313, + 0.02326396480202675, + 0.01384873129427433, + -0.09176649153232574, + 0.1016901433467865, + 0.10549823939800262, + -0.03362666070461273, + 0.0482378713786602, + -0.009836315177381039, + 0.017206335440278053, + 0.05310118943452835, + -0.09218424558639526, + -0.04348192363977432, + 0.01949073001742363, + 0.02991928532719612, + 0.01068449392914772, + 0.10253587365150452, + 0.02146149054169655, + 0.028457026928663254, + 0.1260330080986023, + -0.09592334926128387, + -0.10011017322540283, + -0.057887911796569824, + 0.040403492748737335, + -0.0695645660161972, + 0.06672489643096924, + 0.06927646696567535, + 0.023627087473869324, + 0.004220356233417988, + 0.05582958087325096, + -0.006523303687572479, + 0.029547661542892456, + -0.014327874407172203, + -0.055371325463056564, + 0.017639292404055595, + -0.05609823018312454, + -0.015749260783195496, + 0.07552137225866318, + 0.02237766608595848, + 0.06844121217727661, + 0.008556347340345383, + 0.020640438422560692, + -0.12003402411937714, + 0.0007948220591060817, + 0.0727209597826004, + 0.03607843816280365, + -0.020361270755529404, + -0.044254548847675323, + -0.04218670725822449, + -0.06681978702545166, + 0.006706803105771542, + -0.03010953590273857, + 0.09841638803482056, + -0.023907622322440147, + 0.012109657749533653, + 0.08864200115203857, + -0.004977382719516754, + -0.007578730117529631, + -0.04252775013446808, + -0.02234969660639763, + -0.007929573766887188, + 0.03151892125606537, + -0.09064247459173203, + -0.1010613963007927, + -0.042087361216545105, + 0.05107451602816582, + -0.004260665737092495, + 0.042364686727523804, + 0.052337389439344406, + -0.013811245560646057, + 0.007843616418540478, + -0.06644966453313828, + 0.04462031275033951, + -0.08869294822216034, + -0.056289754807949066, + -0.014875976368784904, + -0.03884541988372803, + 0.006139889359474182, + 0.08160577714443207, + 0.013248255476355553, + 0.024326007813215256, + -0.0032954688649624586, + -0.08268805593252182, + -0.1023300513625145, + 0.05481996759772301, + 0.061673473566770554, + 0.003450061660259962, + 0.0645458847284317, + 0.04077550023794174, + -0.044062625616788864, + 0.038811683654785156, + 0.03586976230144501, + 0.10323973000049591, + -0.04386085271835327, + 0.004681393504142761, + -0.060749601572752, + 0.036128636449575424, + 0.10026691854000092, + -0.08631306886672974, + -0.07773762196302414, + -0.06431446224451065, + -0.07211191207170486, + 0.05085686594247818, + -0.03988942131400108, + 0.01222461462020874, + 0.028577325865626335, + -0.0391903892159462, + -0.12443135678768158, + -0.09700140357017517, + 0.07328532636165619, + -0.015357635915279388, + -0.014184346422553062, + -0.061515968292951584, + 0.03144798055291176, + 0.05173064395785332, + 0.008370292373001575, + -0.048340167850255966, + -0.0010128326248377562, + 0.011528288945555687, + -0.04620502144098282, + -0.009316708892583847, + 0.05019637197256088, + 0.04620800167322159, + -0.07486826181411743, + -0.013767186552286148, + -0.088576540350914, + 0.08730854839086533, + -0.05167301744222641, + 0.11671514809131622, + -0.004235226195305586, + -0.03978075832128525, + -0.09189099073410034, + 0.05710427090525627, + 0.028938813135027885, + 0.049866896122694016, + 0.02716229483485222, + 0.06394459307193756, + 0.0003793786163441837, + -0.07575772702693939, + 0.09853824973106384, + 0.04341161996126175, + -0.015513102523982525, + -0.07642939686775208, + -0.016793806105852127, + -0.05546639487147331, + 0.018490217626094818, + -0.0011689866660162807, + -0.05994240194559097, + -0.000582697510253638, + -0.0060240477323532104, + 0.025851421058177948, + 0.06462063640356064, + 0.09856706857681274, + 0.035542722791433334, + -0.09254105389118195 + ] + }, + "p245_376.wav": { + "name": "p245", + "embedding": [ + 0.08005376160144806, + 0.05755379796028137, + -0.06888500601053238, + -0.012651419267058372, + -0.035178836435079575, + 0.05041232705116272, + -0.14282119274139404, + 0.05526858940720558, + -0.017436450347304344, + 0.15130344033241272, + -0.03355814889073372, + 0.11094611138105392, + 0.027208877727389336, + -0.10332140326499939, + -0.02636384405195713, + 0.006753427907824516, + -0.017748337239027023, + -0.004211030900478363, + -0.06095856428146362, + -0.04716094210743904, + 0.010429040528833866, + 0.05530063062906265, + 0.03440217301249504, + -0.06851283460855484, + 0.02622714266180992, + 0.04758075624704361, + -0.002288578078150749, + 0.01325017586350441, + -0.02644115313887596, + -0.04145092889666557, + 0.00013965927064418793, + 0.08812232315540314, + -0.05831935256719589, + -0.007134494371712208, + -0.00359090487472713, + 0.00300761591643095, + -0.0018879435956478119, + -0.07648806273937225, + -0.002619081176817417, + 0.05342339351773262, + -0.0006017116829752922, + 0.08844119310379028, + 0.04588779807090759, + 0.012877222150564194, + -0.013752523809671402, + -0.02985967881977558, + -0.025843659415841103, + -0.0272990670055151, + -0.06780489534139633, + 0.18060865998268127, + 0.06884300708770752, + 0.005504269618541002, + -0.08884146809577942, + -0.017812181264162064, + 0.06815776228904724, + -0.013821378350257874, + -0.06650679558515549, + -0.051671311259269714, + -0.0009009093046188354, + 0.10872600972652435, + -0.018352646380662918, + -0.05834049731492996, + 0.02400658279657364, + 0.10218660533428192, + 0.024838706478476524, + 0.01669878512620926, + 0.10635505616664886, + 0.10029220581054688, + -0.030666068196296692, + 0.012608409859240055, + 0.03512316942214966, + 0.04906298592686653, + 0.05049573630094528, + -0.030832210555672646, + 0.0599546879529953, + -0.032943420112133026, + 0.0007438166067004204, + -0.020310375839471817, + -0.03576834127306938, + -0.07504996657371521, + 0.0055182864889502525, + -0.005051222629845142, + 0.019051004201173782, + 0.1001109629869461, + -0.10099520534276962, + 0.0008055642247200012, + 0.054867908358573914, + -0.061348363757133484, + 0.05157175660133362, + 0.07086262106895447, + 0.038022495806217194, + 0.0048141684383153915, + -0.059027619659900665, + -0.06818430125713348, + 0.06334421038627625, + 0.005557971075177193, + 0.030040446668863297, + 0.04530750960111618, + 0.03309766203165054, + -0.015002413652837276, + 0.06790737062692642, + 0.03983112424612045, + -0.028200428932905197, + -0.031751230359077454, + -0.04700809717178345, + 0.11032786965370178, + 0.1379425972700119, + -0.03843233734369278, + 0.007988182827830315, + -0.022303558886051178, + 0.0240476131439209, + 0.023102665320038795, + -0.09188297390937805, + -0.07471267879009247, + 0.04373764246702194, + 0.05013854801654816, + 0.04415269196033478, + 0.09229746460914612, + 0.01910434290766716, + 0.044870488345623016, + 0.058838970959186554, + -0.022323831915855408, + -0.05037125200033188, + -0.031643085181713104, + 0.014776039868593216, + -0.06577251851558685, + 0.020165421068668365, + 0.061019591987133026, + 0.004524789750576019, + -0.03427709639072418, + 0.07929814606904984, + 0.01673387736082077, + 0.013604751788079739, + -0.024389877915382385, + 0.043047912418842316, + 0.07457157224416733, + 0.02622353844344616, + -0.0023830030113458633, + 0.02857119031250477, + 0.020267723128199577, + 0.057761844247579575, + 0.026318516582250595, + -0.010373399592936039, + -0.11678669601678848, + 0.04177180677652359, + 0.038499727845191956, + 0.03413465619087219, + -0.07446363568305969, + -0.028032515197992325, + -0.011551225557923317, + -0.03445816785097122, + 0.0166546031832695, + -0.03555645793676376, + 0.04926202446222305, + 0.02559366077184677, + -0.03673495352268219, + 0.1158822774887085, + -0.033373527228832245, + -0.014727499336004257, + 0.01235896721482277, + 0.045747436583042145, + 0.019564781337976456, + 0.04482809826731682, + -0.06912360340356827, + -0.05930550396442413, + 0.001979677937924862, + 0.01577814482152462, + 0.013632276095449924, + 0.038298387080430984, + 0.07666600495576859, + -0.048963628709316254, + 0.041163742542266846, + -0.06342019140720367, + -0.009470120072364807, + -0.07057616114616394, + 0.0076567791402339935, + 0.010691531002521515, + -0.09257781505584717, + -0.03947608545422554, + 0.08207451552152634, + 0.01605331525206566, + 0.03958521783351898, + -0.08270879089832306, + -0.07009458541870117, + -0.021396761760115623, + 0.042822498828172684, + 0.0718824714422226, + -0.055736735463142395, + -0.010422486811876297, + 0.058570556342601776, + 0.04986683279275894, + 0.015990938991308212, + 0.08449632674455643, + 0.04153852164745331, + -0.061078086495399475, + -0.03711984306573868, + -0.03062603622674942, + 0.09993880987167358, + 0.04734416678547859, + -0.05824292451143265, + -0.04347402602434158, + -0.05519230663776398, + -0.049645937979221344, + -0.0006622616201639175, + -0.014162433333694935, + 0.024793529883027077, + 0.06623566150665283, + -0.021464698016643524, + -0.08998558670282364, + -0.0979444831609726, + 0.06329875439405441, + -0.05878762528300285, + 0.013441061601042747, + -0.05012490227818489, + 0.027473634108901024, + 0.043029628694057465, + 0.05713218078017235, + -0.040637753903865814, + 0.007757308892905712, + -0.020825708284974098, + -0.060269929468631744, + 0.0030862241983413696, + 0.013228049501776695, + 0.04468826949596405, + -0.08472061902284622, + -0.011824308894574642, + -0.06840802729129791, + 0.07352784276008606, + -0.07417911291122437, + 0.07702597230672836, + 0.03445609286427498, + -0.028549835085868835, + -0.07389676570892334, + 0.004822645336389542, + -0.04218965023756027, + 0.057287391275167465, + 0.07284535467624664, + 0.03744577243924141, + 0.02262120321393013, + -0.08249017596244812, + 0.06453859806060791, + 0.08595191687345505, + -0.007596771232783794, + -0.09834901243448257, + 0.0011981930583715439, + -0.0032746782526373863, + 0.060035690665245056, + 0.05292436107993126, + -0.025849156081676483, + 0.040095530450344086, + 0.029390152543783188, + -0.03652733191847801, + 0.04038412123918533, + 0.07081020623445511, + 0.0669822245836258, + -0.10407344251871109 + ] + }, + "p245_070.wav": { + "name": "p245", + "embedding": [ + 0.02991032972931862, + 0.09713266789913177, + -0.027360284700989723, + 0.02170083485543728, + -0.047729186713695526, + 0.055943526327610016, + -0.13302892446517944, + 0.09923289716243744, + -0.0437522754073143, + 0.14577391743659973, + -0.07060668617486954, + 0.08505018055438995, + -0.029882129281759262, + -0.18598291277885437, + -0.029957802966237068, + 0.06529025733470917, + -0.059457626193761826, + -0.03936466574668884, + -0.04785887897014618, + -0.023037217557430267, + 0.0352051705121994, + 0.05845373868942261, + 0.02115449495613575, + -0.022364582866430283, + 0.023670166730880737, + 0.06351901590824127, + 0.00473762396723032, + 0.039859239012002945, + 0.0013181092217564583, + -0.05319696292281151, + -0.029683595523238182, + 0.11725907027721405, + -0.03794175386428833, + 0.018588010221719742, + 0.025406356900930405, + 0.014373437501490116, + 0.018563341349363327, + -0.06947159767150879, + -0.010458077304065228, + 0.014902902767062187, + -0.0382770337164402, + 0.06767833232879639, + 0.028078097850084305, + 0.00964970514178276, + 0.03624027594923973, + 0.008601536974310875, + -0.03129652887582779, + -0.06333072483539581, + -0.09231466054916382, + 0.1972379833459854, + 0.08844916522502899, + -0.006180133670568466, + -0.048308469355106354, + -0.09691385924816132, + 0.09024622291326523, + 0.016768306493759155, + -0.12709854543209076, + -0.06816892325878143, + 0.0870758593082428, + 0.16377541422843933, + -0.015808267518877983, + -0.0325927734375, + 0.013753147795796394, + 0.13827481865882874, + 0.01878228224813938, + 0.09819979965686798, + 0.0577523335814476, + 0.09746627509593964, + 0.004603349603712559, + 0.0063022105023264885, + 0.07522371411323547, + 0.05628213658928871, + 0.03123718872666359, + -0.016654256731271744, + 0.035716086626052856, + -0.014248053543269634, + -0.025026725605130196, + 0.012815079651772976, + -0.009755978360772133, + -0.02446960285305977, + -0.0052015832625329494, + 0.002701279241591692, + -0.01197902113199234, + 0.015339416451752186, + -0.013912796974182129, + 0.02174682915210724, + 0.029543699696660042, + -0.009072719141840935, + 0.08121216297149658, + 0.03776708245277405, + 0.015159412287175655, + 0.04681462049484253, + -0.05047263950109482, + -0.08258160948753357, + 0.029082901775836945, + 0.030308786779642105, + 0.012764479964971542, + 0.06561272591352463, + 0.02340395748615265, + -0.03610274940729141, + 0.10929451882839203, + 0.02647586166858673, + -0.016308387741446495, + 0.012034917250275612, + -0.10742451250553131, + 0.1267780065536499, + 0.07977531850337982, + -0.011146089062094688, + 0.03917150944471359, + -0.0402151495218277, + 0.06598741561174393, + 0.07048916816711426, + -0.142117440700531, + -0.07743804156780243, + 0.025727108120918274, + 0.010038471780717373, + -0.028583722189068794, + 0.10993412137031555, + 0.0159462783485651, + 0.010519732721149921, + 0.1172567829489708, + -0.10484252125024796, + -0.07501819729804993, + -0.025926880538463593, + 0.047169029712677, + -0.09261322766542435, + 0.018937285989522934, + 0.07269708812236786, + -0.029842954128980637, + 0.007695285603404045, + 0.07650066912174225, + -0.0011957152746617794, + 0.034363117069005966, + 0.006253550760447979, + -0.04821476340293884, + 0.03430265188217163, + -0.0352766327559948, + -0.0020013500470668077, + 0.045845627784729004, + 0.038289979100227356, + 0.049407415091991425, + -0.01659550704061985, + -0.05738826096057892, + -0.1140483021736145, + 0.01262338925153017, + 0.033136963844299316, + 0.06008845195174217, + -0.01889149844646454, + -0.00403453316539526, + -0.03142246976494789, + -0.08135172724723816, + 0.021794293075799942, + -0.02001180127263069, + 0.08747489005327225, + -0.0022539724595844746, + -0.027037477120757103, + 0.11984295397996902, + 0.01634308136999607, + -0.013876904733479023, + -0.05187677592039108, + -0.04038695991039276, + 0.03837493807077408, + 0.04228370636701584, + -0.09457358717918396, + -0.061183761805295944, + 0.017095627263188362, + 0.027456611394882202, + -0.00366988405585289, + 0.034399040043354034, + 0.04362881928682327, + 0.011307156644761562, + 0.023048173636198044, + -0.07092536985874176, + 0.006714926101267338, + -0.08838729560375214, + -0.0592900887131691, + -0.006112528499215841, + -0.028270918875932693, + -0.022105993703007698, + 0.09926992654800415, + -0.009517538361251354, + 0.0219819787889719, + -0.021933868527412415, + -0.07600809633731842, + -0.06995662301778793, + 0.07575470209121704, + 0.08184435963630676, + 8.164811879396439e-05, + 0.0515405610203743, + 0.04392187297344208, + -0.0358964279294014, + 0.027801673859357834, + 0.05057409405708313, + 0.11894149333238602, + -0.03312252461910248, + 0.010453984141349792, + -0.07434603571891785, + 0.0778932273387909, + 0.06405719369649887, + -0.10046273469924927, + -0.05399708077311516, + -0.03222255781292915, + -0.05673178285360336, + 0.03812501206994057, + -0.032521992921829224, + 0.007975148037075996, + 0.023129835724830627, + -0.01954576186835766, + -0.10331720858812332, + -0.09622026234865189, + 0.08285944163799286, + -0.04898538440465927, + -0.014663532376289368, + -0.06842975318431854, + 0.05165817216038704, + 0.08830922842025757, + 0.07179246097803116, + -0.028822287917137146, + -0.004184132441878319, + 0.048411935567855835, + -0.06446801126003265, + 0.0017306981608271599, + 0.04234875738620758, + 0.037913233041763306, + -0.09251242130994797, + 0.004728993866592646, + -0.08809943497180939, + 0.0548415444791317, + -0.06621024012565613, + 0.14646996557712555, + 0.01086841244250536, + -0.06429386138916016, + -0.09507139772176743, + 0.04500804841518402, + -0.03568064421415329, + 0.038801148533821106, + 0.02710224688053131, + 0.04702979698777199, + 0.05346471816301346, + -0.058262720704078674, + 0.11559824645519257, + 0.04072568565607071, + -0.005541316233575344, + -0.052699729800224304, + -0.026144415140151978, + -0.042245879769325256, + 0.047387562692165375, + -0.0011509372852742672, + -0.09449885785579681, + -0.007616832386702299, + 0.03220047429203987, + -0.014819370582699776, + 0.07149173319339752, + 0.13382050395011902, + 0.06893161684274673, + -0.1137724369764328 + ] + }, + "p245_260.wav": { + "name": "p245", + "embedding": [ + 0.052443671971559525, + 0.058890312910079956, + -0.030283790081739426, + 0.054286450147628784, + -0.05942036956548691, + 0.03844401612877846, + -0.13732722401618958, + 0.08087147772312164, + -0.026981018483638763, + 0.1198892891407013, + -0.060615673661231995, + 0.07791361212730408, + -0.019531795755028725, + -0.18594130873680115, + -0.01834254525601864, + 0.06921707838773727, + -0.06945834308862686, + -0.057750023901462555, + -0.07611195743083954, + -0.032044682651758194, + 0.020030103623867035, + 0.05806142836809158, + 0.03044389933347702, + -0.013777684420347214, + 0.033260051161050797, + 0.053187862038612366, + -0.005918641574680805, + 0.027794208377599716, + 0.009298181161284447, + -0.034195128828287125, + -0.010616540908813477, + 0.10243809968233109, + -0.01972627080976963, + -0.011815393343567848, + 0.005173263140022755, + 0.03616705164313316, + 0.002077273791655898, + -0.08505409955978394, + -0.03782462701201439, + 0.01574067585170269, + -0.06782083213329315, + 0.06345131993293762, + 0.03816036134958267, + -0.0339784175157547, + 0.039595648646354675, + -0.025284461677074432, + -0.050554897636175156, + -0.05418383330106735, + -0.12210095673799515, + 0.18167096376419067, + 0.07810959219932556, + 0.021752292290329933, + -0.068272665143013, + -0.07620363682508469, + 0.09472226351499557, + 0.0032911384478211403, + -0.12374389171600342, + -0.050256822258234024, + 0.07356399297714233, + 0.17306257784366608, + -0.023705286905169487, + -0.0021210014820098877, + 0.027197862043976784, + 0.13342586159706116, + 0.06263761967420578, + 0.07645954191684723, + 0.06787553429603577, + 0.11010432988405228, + 0.002539274049922824, + 0.016204629093408585, + 0.09764999151229858, + 0.059212684631347656, + 0.03640780970454216, + -0.0123871685937047, + 0.01393324974924326, + -0.0020597586408257484, + -0.03439733386039734, + -0.006506206467747688, + -0.017389077693223953, + -0.02587355673313141, + 0.0013553816825151443, + -0.019604841247200966, + 0.009471730329096317, + 0.018233075737953186, + -0.03592627868056297, + 0.02556605450809002, + 0.054522350430488586, + -0.03486078977584839, + 0.06509394943714142, + 0.050987839698791504, + 0.003218352561816573, + 0.0436897911131382, + -0.03764643147587776, + -0.0888967365026474, + 0.009503361769020557, + 0.023859849199652672, + 0.024276316165924072, + 0.048773396760225296, + 0.03251905366778374, + -0.030649341642856598, + 0.1110071912407875, + 0.02671528235077858, + -0.011274587363004684, + 0.01955975592136383, + -0.09594254940748215, + 0.11146451532840729, + 0.09117516875267029, + -0.011454186402261257, + 0.040852826088666916, + -0.021633144468069077, + 0.05776110664010048, + 0.0782390683889389, + -0.12134939432144165, + -0.04581364244222641, + 0.025709660723805428, + -0.006021748296916485, + -0.006508306600153446, + 0.11656110733747482, + 0.02181277610361576, + 0.022313140332698822, + 0.11436766386032104, + -0.09455771744251251, + -0.05395294725894928, + -0.013253034092485905, + 0.0563943050801754, + -0.08456818014383316, + 0.03143411874771118, + 0.06915058195590973, + -0.024777468293905258, + 0.005611828062683344, + 0.06044044345617294, + -0.0011769109405577183, + 0.01612609066069126, + -0.017426365986466408, + -0.03795291483402252, + 0.06245235726237297, + -0.027717262506484985, + -0.0146824661642313, + 0.08564204722642899, + 0.030956588685512543, + 0.04711495339870453, + -0.011472516693174839, + -0.03338033705949783, + -0.10827721655368805, + 0.02675252966582775, + 0.04157167673110962, + 0.08721060305833817, + -0.019418086856603622, + 0.009227249771356583, + -0.058872297406196594, + -0.08381900936365128, + 0.056617505848407745, + -0.030123643577098846, + 0.08945368230342865, + -0.005842579994350672, + -0.030310453847050667, + 0.11009860038757324, + -0.009250789880752563, + -0.0023176763206720352, + -0.029247581958770752, + -0.023278385400772095, + 0.04241662472486496, + 0.0491216778755188, + -0.08824587613344193, + -0.05917992815375328, + 0.012933153659105301, + 0.022040069103240967, + -0.028918232768774033, + 0.01963481307029724, + 0.017823772504925728, + -0.003989948891103268, + 0.006159224547445774, + -0.07605648040771484, + 0.025758519768714905, + -0.09067247807979584, + -0.04475948214530945, + 0.021828006953001022, + -0.04493986442685127, + -0.00769712682813406, + 0.09507131576538086, + 0.012354816310107708, + 0.007893905974924564, + -0.03547287732362747, + -0.11190629750490189, + -0.06183738261461258, + 0.06806796044111252, + 0.06126062572002411, + -0.005525221116840839, + 0.044351838529109955, + 0.05669216066598892, + -0.01432847324758768, + 0.01546574104577303, + 0.04030876234173775, + 0.11800795793533325, + -0.03175816312432289, + -0.00919390469789505, + -0.06634333729743958, + 0.08731898665428162, + 0.07194938510656357, + -0.08271962404251099, + -0.053904324769973755, + -0.040673449635505676, + -0.062066707760095596, + 0.0386207140982151, + -0.021277619525790215, + 0.005010928027331829, + 0.04068051651120186, + -0.03413543850183487, + -0.12400849163532257, + -0.1026727557182312, + 0.08904910832643509, + -0.050866737961769104, + -0.02218184620141983, + -0.07930473238229752, + 0.03549589961767197, + 0.07337690144777298, + 0.04734059423208237, + -0.01640145853161812, + 0.008923745714128017, + 0.02853236347436905, + -0.07541575282812119, + -0.01096288301050663, + 0.04997691139578819, + 0.00787083525210619, + -0.10931070894002914, + -0.02784734219312668, + -0.0821065753698349, + 0.07258278131484985, + -0.04227996617555618, + 0.1414038985967636, + 0.01636827364563942, + -0.0457879975438118, + -0.08554629236459732, + 0.04441457241773605, + -0.024595730006694794, + 0.07259853184223175, + 0.06704141199588776, + 0.056777939200401306, + 0.05424455553293228, + -0.060157254338264465, + 0.09853781759738922, + 0.048772942274808884, + -0.010409444570541382, + -0.04846806824207306, + -0.01409197598695755, + -0.03018895536661148, + 0.028375796973705292, + -0.022878238931298256, + -0.06497061252593994, + 0.014018911868333817, + 0.024653032422065735, + -0.03470531478524208, + 0.05763044208288193, + 0.11638481914997101, + 0.08661766350269318, + -0.08111521601676941 + ] + }, + "p245_192.wav": { + "name": "p245", + "embedding": [ + 0.03262646123766899, + 0.12379908561706543, + 0.016163086518645287, + -0.00663268007338047, + -0.05911390855908394, + 0.09224914014339447, + -0.10246001183986664, + 0.13159795105457306, + -0.08496902137994766, + 0.14029830694198608, + -0.06387554854154587, + 0.12614262104034424, + -0.02968781255185604, + -0.18280376493930817, + -0.08825138211250305, + 0.038232047110795975, + -0.08782477676868439, + -0.012869427911937237, + -0.05663047358393669, + -0.03225100040435791, + 0.045121416449546814, + 0.021371454000473022, + 0.038543567061424255, + 0.014830940403044224, + 0.03173444792628288, + 0.06083229184150696, + 0.03976612165570259, + 0.06885115057229996, + 0.058115214109420776, + -0.09211589395999908, + -0.0532311350107193, + 0.0960359275341034, + -0.039316657930612564, + 0.01907646283507347, + 0.05744375288486481, + -0.027037344872951508, + 0.05597357451915741, + -0.026630999520421028, + -0.014653770253062248, + 0.0547000952064991, + -0.005754037760198116, + 0.08610182255506516, + 0.022965729236602783, + 0.026887163519859314, + 0.02968793734908104, + 0.03296804800629616, + -0.006874381564557552, + -0.04925329610705376, + -0.08828482031822205, + 0.17789803445339203, + 0.07549478858709335, + -0.04517019912600517, + -0.04509381577372551, + -0.08592663705348969, + 0.11843317002058029, + -0.047517500817775726, + -0.13891443610191345, + -0.0443793386220932, + 0.07666254788637161, + 0.14082317054271698, + -0.02262004092335701, + -0.025023939087986946, + 0.01558383833616972, + 0.12578435242176056, + 0.0017377515323460102, + 0.09159385412931442, + 0.06470347940921783, + 0.0568973682820797, + -0.006759846117347479, + 0.04127608239650726, + 0.04138202592730522, + 0.05442634969949722, + -0.003463547211140394, + -0.028999852016568184, + 0.04508412629365921, + -0.04047863930463791, + 0.007330487947911024, + 0.025570763275027275, + -0.001731345895677805, + 0.011806417256593704, + -0.025929901748895645, + 0.03188137710094452, + -0.032630082219839096, + -0.020052870735526085, + -0.028647303581237793, + 0.08918803185224533, + -0.06625811010599136, + 0.020840546116232872, + 0.08517219871282578, + 0.056607574224472046, + 0.03346594423055649, + 0.05179920047521591, + -0.026437651365995407, + -0.08375440537929535, + 0.01749361678957939, + 0.010003789328038692, + 0.0013587971916422248, + 0.06163894012570381, + 0.030074529349803925, + -0.009656962938606739, + 0.11676964163780212, + 0.0974079817533493, + -0.015413512475788593, + 0.018763558939099312, + -0.1064629852771759, + 0.13343174755573273, + 0.06986691802740097, + -0.0060981521382927895, + 0.048893094062805176, + -0.012913327664136887, + 0.0947539359331131, + 0.06055876240134239, + -0.13951069116592407, + -0.09990041702985764, + 0.02111734077334404, + 0.018239859491586685, + -0.006232604384422302, + 0.06367859989404678, + -0.038519486784935, + 0.0013844977365806699, + 0.09338568150997162, + -0.037311892956495285, + -0.03465544059872627, + -0.04517214000225067, + 0.047214996069669724, + -0.08431456983089447, + 0.04411686584353447, + 0.0476948618888855, + -0.03336651623249054, + 0.010245944373309612, + 0.10439297556877136, + -0.027889762073755264, + -0.006752275861799717, + 0.05106702446937561, + -0.05176100134849548, + 0.020060457289218903, + -0.043331947177648544, + 0.0307435542345047, + 0.05499693751335144, + 0.06152747943997383, + 0.0451640710234642, + -0.0065767355263233185, + -0.047320377081632614, + -0.07724594324827194, + 0.01527004037052393, + 0.007835125550627708, + 0.029460886493325233, + 0.002716443035751581, + -0.01829267293214798, + -0.04220691695809364, + -0.0415181890130043, + 0.009277798235416412, + 0.011681064032018185, + 0.10670042783021927, + -0.0373481810092926, + 0.011390705592930317, + 0.09584599733352661, + 0.02628462389111519, + -0.012467705644667149, + -0.06510966271162033, + -0.01812545396387577, + 0.018218478187918663, + 0.021362971514463425, + -0.06408677995204926, + -0.04967020824551582, + 0.015409364365041256, + 0.03610571473836899, + 0.007837394252419472, + 0.05593043565750122, + 0.055983323603868484, + -0.007863645441830158, + 0.06584001332521439, + -0.06082644313573837, + 0.04337921366095543, + -0.07438793033361435, + -0.04220271110534668, + -0.04701162502169609, + -0.04382346570491791, + -0.053444165736436844, + 0.07747042179107666, + 0.013824761845171452, + 0.030396370217204094, + 0.023242823779582977, + -0.08791415393352509, + -0.04846861958503723, + 0.06330010294914246, + 0.08721206337213516, + 0.022446848452091217, + 0.05515456572175026, + 0.0662652924656868, + -0.02282850444316864, + 0.10573237389326096, + 0.07012295722961426, + 0.08537440747022629, + -0.02867060713469982, + 0.02211076021194458, + -0.0632515475153923, + 0.032728876918554306, + 0.03469701483845711, + -0.11599639058113098, + -0.09122373908758163, + -0.03641390800476074, + -0.05869691073894501, + 0.053902365267276764, + -0.008009104989469051, + 0.014753764495253563, + 0.0302495788782835, + 0.012730518355965614, + -0.06036784127354622, + -0.08083370327949524, + 0.10071447491645813, + -0.06936222314834595, + -0.02176787331700325, + -0.04625125601887703, + 0.04283015802502632, + 0.10944625735282898, + 0.051922429352998734, + -0.017396582290530205, + -0.002459428273141384, + 0.03914971277117729, + -0.039964254945516586, + -0.022487320005893707, + 0.02524956688284874, + 0.0014459765516221523, + -0.08683238923549652, + 0.037161603569984436, + -0.11110566556453705, + 0.06750425696372986, + -0.06399993598461151, + 0.15809762477874756, + -0.018155252560973167, + -0.05730913206934929, + -0.07170087844133377, + 0.06281932443380356, + -0.08599540591239929, + 0.04444502294063568, + 0.045324452221393585, + 0.05362018570303917, + 0.03590121120214462, + -0.04842270910739899, + 0.11408175528049469, + 0.02636745199561119, + -0.05775199085474014, + -0.0828903317451477, + -0.021566241979599, + -0.040971413254737854, + 0.025289272889494896, + 0.049910563975572586, + -0.1077699288725853, + -0.01977474056184292, + 0.02118963748216629, + -0.036079291254282, + 0.1123875305056572, + 0.12693852186203003, + 0.05807378143072128, + -0.10722947120666504 + ] + }, + "p245_283.wav": { + "name": "p245", + "embedding": [ + 0.039232030510902405, + 0.04001661390066147, + -0.0031923092901706696, + 0.01469759177416563, + -0.030734937638044357, + 0.03192451596260071, + -0.11696989834308624, + 0.0813559889793396, + -0.0394848957657814, + 0.10779696702957153, + -0.08436741679906845, + 0.033969469368457794, + -0.038807567209005356, + -0.14530779421329498, + -0.014879296533763409, + 0.03799489140510559, + -0.06091165542602539, + -0.032437942922115326, + -0.0676305890083313, + -0.026015490293502808, + 0.030592216178774834, + 0.03598465025424957, + 0.016055293381214142, + -0.020193390548229218, + 0.007442080415785313, + 0.05791006609797478, + 0.021558858454227448, + 0.03837969899177551, + 0.007267209701240063, + -0.02674448862671852, + 0.0013659819960594177, + 0.08930043876171112, + -0.020491085946559906, + -0.048027679324150085, + 0.023123454302549362, + 0.01599838212132454, + 0.001458665356040001, + -0.05919037386775017, + -0.02921389788389206, + 0.02535497024655342, + -0.06072108447551727, + 0.050209060311317444, + 0.02088596671819687, + 0.009203490801155567, + 0.021353889256715775, + 0.020389307290315628, + -0.029122738167643547, + -0.060888539999723434, + -0.09751646220684052, + 0.17787866294384003, + 0.07247117161750793, + -0.002008268842473626, + -0.0502011701464653, + -0.06404097378253937, + 0.10148391127586365, + 0.0032503509428352118, + -0.07468050718307495, + -0.047246359288692474, + 0.07784225046634674, + 0.1442847102880478, + -0.033880677074193954, + -0.01677069440484047, + 0.025779258459806442, + 0.08851069211959839, + 0.012007324025034904, + 0.05170857533812523, + 0.08094961941242218, + 0.0826890617609024, + 0.019261198118329048, + 0.01898733153939247, + 0.08610763400793076, + 0.04475600644946098, + 0.04295939952135086, + -0.02593531832098961, + 0.05717357248067856, + 0.03452795743942261, + -0.04352286085486412, + 0.016954660415649414, + -0.01345846988260746, + -0.01772265136241913, + 0.04204338788986206, + -0.016601774841547012, + 0.013175204396247864, + 0.014141897670924664, + -0.03879683464765549, + 0.037507250905036926, + 0.00757070817053318, + 0.003475553123280406, + 0.07302048802375793, + 0.009177839383482933, + 0.019743120297789574, + 0.05916476249694824, + -0.04525167867541313, + -0.08441450446844101, + 0.019859010353684425, + 0.012698805890977383, + 0.014833247289061546, + 0.037402380257844925, + 0.05333958566188812, + -0.045696139335632324, + 0.11021425575017929, + 0.02164195105433464, + 0.011721721850335598, + 0.024101829156279564, + -0.11210121214389801, + 0.10297517478466034, + 0.09022724628448486, + -0.012470535933971405, + 0.023200623691082, + -0.02056589350104332, + 0.06078717112541199, + 0.05715538188815117, + -0.14052119851112366, + -0.056609563529491425, + 0.03597521781921387, + 0.002670317655429244, + 0.017241600900888443, + 0.11350379884243011, + -0.00435231626033783, + -0.026707038283348083, + 0.11042928695678711, + -0.10169180482625961, + -0.05147615075111389, + -0.008788736537098885, + 0.04958194121718407, + -0.08600907772779465, + 0.0028126961551606655, + 0.06777589023113251, + -0.03514304757118225, + -0.025616973638534546, + 0.09346672147512436, + -0.0063130296766757965, + -0.0005574353854171932, + -0.050451964139938354, + 0.009761122986674309, + 0.07647810131311417, + -0.035720814019441605, + -0.021647488698363304, + 0.03993307054042816, + 0.05119851976633072, + 0.013027305714786053, + 0.007492732256650925, + -0.06469928473234177, + -0.11385206878185272, + 0.020658567547798157, + 0.03075352869927883, + 0.04238678514957428, + -0.020495446398854256, + 0.001584527431987226, + -0.04922589659690857, + -0.056288160383701324, + 0.0074312081560492516, + -0.00858324859291315, + 0.07519644498825073, + 0.019060436636209488, + -0.03340581804513931, + 0.12344402074813843, + -0.020817503333091736, + 0.013176415115594864, + -0.02140885405242443, + -0.019554313272237778, + 0.04474584758281708, + 0.033792316913604736, + -0.054356422275304794, + -0.06857017427682877, + 0.0013102320954203606, + 0.01623266562819481, + 0.028343770653009415, + -0.018343066796660423, + 0.01499768253415823, + -0.011074679903686047, + 0.001171500189229846, + -0.08690568059682846, + 0.05001261830329895, + -0.09137199819087982, + -0.043171025812625885, + 0.0218740776181221, + -0.023452039808034897, + 0.006724332459270954, + 0.08522772789001465, + -0.03320242092013359, + -0.0005520532722584903, + -0.04186738654971123, + -0.09571130573749542, + -0.02740243636071682, + 0.0722603052854538, + 0.08467152714729309, + -0.0056976331397891045, + 0.039137668907642365, + 0.044860970228910446, + -0.012593826279044151, + 0.02291056327521801, + 0.04710756987333298, + 0.1249910220503807, + -0.015299561433494091, + -0.013998322188854218, + -0.03501644730567932, + 0.09460246562957764, + 0.03299938142299652, + -0.06793376803398132, + -0.04781394451856613, + -0.017772313207387924, + -0.0501258485019207, + 0.05202708765864372, + -0.00376477325335145, + 0.017450060695409775, + 0.02385827898979187, + -0.025509625673294067, + -0.08307081460952759, + -0.06406915932893753, + 0.059717610478401184, + -0.020572561770677567, + -0.04520442336797714, + -0.06958864629268646, + 0.05237307399511337, + 0.09158962965011597, + 0.057359956204891205, + -0.009468848817050457, + -0.016166023910045624, + 0.014479326084256172, + -0.058091334998607635, + -0.04781114310026169, + 0.006234246306121349, + 0.0026140189729630947, + -0.0882546454668045, + -0.0040228660218417645, + -0.10071736574172974, + 0.05490674078464508, + -0.04665672034025192, + 0.0811089426279068, + -0.018870998173952103, + -0.03884682059288025, + -0.0983276516199112, + 0.030058693140745163, + 0.01853208616375923, + 0.06611476838588715, + 0.06005669757723808, + 0.026961153373122215, + 0.06335900723934174, + -0.05181583762168884, + 0.09810954332351685, + 0.009274730458855629, + -0.000679048418533057, + -0.048414409160614014, + -0.011094672605395317, + -0.023080993443727493, + 0.00956993643194437, + -0.03550200164318085, + -0.08103357255458832, + 0.013593828305602074, + 0.026865746825933456, + -0.02848776802420616, + 0.041616037487983704, + 0.057346295565366745, + 0.034800585359334946, + -0.09665316343307495 + ] + }, + "p245_236.wav": { + "name": "p245", + "embedding": [ + 0.04820508509874344, + 0.10878953337669373, + -0.00947614386677742, + -0.0003535933792591095, + -0.04852373152971268, + 0.08393901586532593, + -0.11278443783521652, + 0.14334747195243835, + -0.08266112208366394, + 0.14938929677009583, + -0.09045444428920746, + 0.12153787910938263, + -0.03380352258682251, + -0.1644965559244156, + -0.06996169686317444, + 0.04691207408905029, + -0.06985533237457275, + -0.03311828896403313, + -0.05637100338935852, + -0.022647444158792496, + 0.03965609520673752, + 0.012664943002164364, + 0.009896627627313137, + 0.01723404787480831, + 0.03526989370584488, + 0.06919237226247787, + 0.0037125730887055397, + 0.040071550756692886, + 0.008713934570550919, + -0.051345594227313995, + -0.030846770852804184, + 0.10160335898399353, + -0.0481330007314682, + 0.016990812495350838, + 0.06602165102958679, + 0.0025146990083158016, + 0.014945178292691708, + -0.06995779275894165, + -0.02499580569565296, + 0.004144517704844475, + -0.03736572712659836, + 0.07600238174200058, + 0.00015054602408781648, + -0.00893908366560936, + 0.01967032440006733, + 0.03309566155076027, + -0.0016683717258274555, + -0.0550842210650444, + -0.08720910549163818, + 0.14490476250648499, + 0.06668956577777863, + 0.013609993271529675, + -0.08508859574794769, + -0.07864023745059967, + 0.1228390485048294, + -0.028607016429305077, + -0.10472586005926132, + -0.029922716319561005, + 0.055135756731033325, + 0.1741729974746704, + -0.05482381582260132, + -0.03255802392959595, + 0.017149999737739563, + 0.10389762371778488, + 0.0510408915579319, + 0.09742671251296997, + 0.08957777917385101, + 0.07893287390470505, + -0.007838211953639984, + 0.03179732710123062, + 0.07636762410402298, + 0.07055525481700897, + 0.08114434778690338, + -0.02431241236627102, + 0.029850732535123825, + -0.0014123732689768076, + -0.027026109397411346, + 0.015605702064931393, + -0.034852564334869385, + -0.014863528311252594, + -0.03151274472475052, + 0.023755531758069992, + 0.009298218414187431, + 0.009798758663237095, + -0.01909622736275196, + 0.06469061225652695, + 0.00819188542664051, + -0.03863329440355301, + 0.06194514408707619, + 0.05268247425556183, + 0.0052335914224386215, + 0.059845663607120514, + -0.08664561063051224, + -0.10503512620925903, + 0.02540104277431965, + -0.01200943998992443, + 0.016580455005168915, + 0.07227786630392075, + 0.05260920897126198, + -0.0127695482224226, + 0.09336817264556885, + 0.06439413875341415, + 0.0066719455644488335, + 0.015260877087712288, + -0.11065904796123505, + 0.10796335339546204, + 0.10224591940641403, + -0.041906751692295074, + 0.018132474273443222, + -0.017762072384357452, + 0.08129678666591644, + 0.08055371046066284, + -0.14529111981391907, + -0.10058961808681488, + 0.01881277561187744, + 0.007373459171503782, + 0.008507193997502327, + 0.07839669287204742, + -0.034401699900627136, + 0.020863482728600502, + 0.08997596055269241, + -0.05576471611857414, + -0.036810919642448425, + -0.03261200711131096, + 0.0408412329852581, + -0.054378122091293335, + 0.05939074605703354, + 0.0389554537832737, + 0.018266424536705017, + -0.00621865876019001, + 0.08780462294816971, + -0.012491317465901375, + -0.0341871939599514, + 0.02302609011530876, + -0.037475988268852234, + 0.023640180006623268, + -0.020730774849653244, + -0.008431666530668736, + 0.048404715955257416, + 0.06805644184350967, + 0.03736625984311104, + 0.014366347342729568, + -0.025486215949058533, + -0.08414452522993088, + 0.013811491429805756, + 0.05308109149336815, + 0.059004999697208405, + -0.014732841402292252, + -0.011847937479615211, + -0.033606112003326416, + -0.05253882706165314, + 0.012648035772144794, + 0.0009992653504014015, + 0.0962996631860733, + -0.010550910606980324, + 0.024433404207229614, + 0.10697051882743835, + 0.011619520373642445, + -0.015601426362991333, + -0.04500630497932434, + -0.00020239880541339517, + 0.020814690738916397, + 0.06258518248796463, + -0.06208540499210358, + -0.08312119543552399, + 0.0038182176649570465, + 0.018675215542316437, + -0.022086210548877716, + 0.061458975076675415, + 0.03930175304412842, + 0.005808436311781406, + 0.03233630582690239, + -0.06515025347471237, + 0.023756559938192368, + -0.12939141690731049, + -0.04911305010318756, + -0.024706944823265076, + -0.05979182571172714, + -0.018310382962226868, + 0.05946996062994003, + 0.023050716146826744, + 0.040581114590168, + 0.001777112134732306, + -0.10548600554466248, + -0.06767678260803223, + 0.06569081544876099, + 0.08394081890583038, + 0.014556505717337132, + 0.0347890630364418, + 0.07125942409038544, + 0.008142087608575821, + 0.06304094195365906, + 0.0910014659166336, + 0.11787177622318268, + -0.018391568213701248, + 0.014040175825357437, + -0.061126336455345154, + 0.07746598869562149, + 0.05195401608943939, + -0.10281551629304886, + -0.09707718342542648, + -0.036570996046066284, + -0.04190056398510933, + 0.03774503618478775, + -0.011199538595974445, + 0.03354952484369278, + 0.02544495463371277, + -0.011408906430006027, + -0.08432602882385254, + -0.08067432790994644, + 0.10441898554563522, + -0.05864937603473663, + -0.008841561153531075, + -0.06917839497327805, + 0.03518252819776535, + 0.09449824690818787, + 0.022959351539611816, + -0.005297847557812929, + 0.025215094909071922, + 0.04239176958799362, + -0.038950107991695404, + -0.025728100910782814, + 0.021930865943431854, + -0.006618882063776255, + -0.09107661247253418, + 0.019343502819538116, + -0.07480685412883759, + 0.09088470041751862, + -0.04888838902115822, + 0.15754434466362, + -0.02769552543759346, + -0.04993031173944473, + -0.0872674435377121, + 0.034873005002737045, + -0.03391573205590248, + 0.0581282377243042, + 0.04402262717485428, + 0.0796821117401123, + 0.010697830468416214, + -0.06277894228696823, + 0.11729097366333008, + 0.032235559076070786, + -0.04771881550550461, + -0.0723021849989891, + -0.06284220516681671, + -0.03661695495247841, + 0.0004031551070511341, + -9.724032133817673e-05, + -0.062462352216243744, + 0.0009330874308943748, + -0.0061837732791900635, + -0.026214733719825745, + 0.06998561322689056, + 0.13696980476379395, + 0.08397702127695084, + -0.11739620566368103 + ] + }, + "p245_252.wav": { + "name": "p245", + "embedding": [ + 0.07716768980026245, + 0.04761534184217453, + 0.022936426103115082, + -0.01818549446761608, + -0.02361423335969448, + 0.09606628119945526, + -0.11084376275539398, + 0.09879275411367416, + -0.01856781542301178, + 0.08185043931007385, + -0.0704033151268959, + 0.07855867594480515, + -0.0007906816899776459, + -0.14765167236328125, + -0.028049219399690628, + 0.049288731068372726, + -0.04007682576775551, + -0.007258512079715729, + -0.05120792239904404, + -0.017174510285258293, + 0.0006373462965711951, + 0.0317862294614315, + 0.04892366752028465, + -0.012307718396186829, + 0.04618589207530022, + 0.047960370779037476, + -0.0022773458622395992, + 0.033281974494457245, + -0.004639841616153717, + -0.06337213516235352, + -0.008107287809252739, + 0.07646127790212631, + -0.05012640357017517, + -0.005116280168294907, + 0.04253533482551575, + 0.004233282059431076, + 0.03603450953960419, + -0.09249454736709595, + -0.028095990419387817, + 0.029318884015083313, + -0.03973676264286041, + 0.08701322972774506, + 0.04862217232584953, + 0.010080568492412567, + 0.009718114510178566, + 0.010890218429267406, + -0.007595764007419348, + -0.05470741540193558, + -0.10715685784816742, + 0.15896251797676086, + 0.023291587829589844, + 0.02394668012857437, + -0.09805776923894882, + -0.042856305837631226, + 0.0678141862154007, + -0.02080141380429268, + -0.06842844188213348, + -0.020687028765678406, + 0.0457315556704998, + 0.12150713056325912, + 0.00650379341095686, + -0.038537707179784775, + 0.020190967246890068, + 0.06558647751808167, + 0.01745457760989666, + 0.03496813401579857, + 0.10727386176586151, + 0.09574540704488754, + -0.0043279025703668594, + 0.027904434129595757, + 0.047822266817092896, + 0.03478327766060829, + 0.05985298007726669, + -0.004163273144513369, + 0.034400686621665955, + -0.025424672290682793, + -0.019376840442419052, + -0.004690757021307945, + -0.020117968320846558, + -0.015141252428293228, + 0.035345081239938736, + 0.013400128111243248, + 0.032083556056022644, + 0.05194786190986633, + -0.04222938418388367, + 0.036896854639053345, + -0.010872950777411461, + 0.04008467122912407, + 0.07687951624393463, + 0.03662335127592087, + 0.022966397926211357, + 0.03104298934340477, + -0.062205057591199875, + -0.0847967267036438, + 0.026772333309054375, + 0.021584510803222656, + 0.024301722645759583, + 0.024316977709531784, + 0.022458655759692192, + -0.030945148319005966, + 0.10055385529994965, + 0.016075003892183304, + -0.0005864178529009223, + -0.0004686601459980011, + -0.07390236109495163, + 0.08552559465169907, + 0.08547310531139374, + -0.005103106610476971, + 0.04666489362716675, + -0.04283273220062256, + 0.04751395434141159, + 0.06039704382419586, + -0.10840564221143723, + -0.0551137775182724, + 0.02095617912709713, + 0.011739959940314293, + 0.041054725646972656, + 0.11576496064662933, + -0.006472109816968441, + 0.031181734055280685, + 0.057312365621328354, + -0.08539610356092453, + -0.013761365786194801, + 0.03754434734582901, + 0.010123850777745247, + -0.03408979997038841, + 0.008371716365218163, + 0.02369045466184616, + 0.012939779087901115, + -0.035803236067295074, + 0.06357365101575851, + 0.005891553126275539, + 0.006101024337112904, + -0.03183082863688469, + 0.01424261461943388, + 0.037585943937301636, + -0.006662173196673393, + -0.029049456119537354, + 0.04843834042549133, + 0.0595395490527153, + 0.012075426988303661, + 0.030909210443496704, + -0.061696119606494904, + -0.11236244440078735, + -0.017913268879055977, + 0.010937197133898735, + 0.0498560331761837, + -0.031363457441329956, + -0.024469276890158653, + -0.06001213192939758, + -0.009219100698828697, + 0.02502514235675335, + 0.003918850794434547, + 0.054274022579193115, + 0.06396757811307907, + -0.028168698772788048, + 0.07540445029735565, + -0.0026130876503884792, + 0.011308208107948303, + -0.03668171912431717, + -0.02977321669459343, + 0.016988396644592285, + 0.04607531055808067, + -0.03489614650607109, + -0.050719693303108215, + 0.011316904798150063, + -0.01980675384402275, + -0.012938972562551498, + 0.021747849881649017, + 0.04534756764769554, + -0.0015244546812027693, + -0.00390112167224288, + -0.06848718225955963, + 0.018934527412056923, + -0.07049661874771118, + -0.053243763744831085, + 0.05872231349349022, + 0.0002640386519487947, + -0.02055390551686287, + 0.08759373426437378, + 0.03117450885474682, + 0.03949025273323059, + -0.057931311428546906, + -0.0559668242931366, + -0.016329504549503326, + 0.058916669338941574, + 0.04654241353273392, + -0.0031460896134376526, + 0.02492399513721466, + 0.017247971147298813, + 0.002409940119832754, + 0.06758801639080048, + 0.04950052499771118, + 0.06565926223993301, + -0.0504579171538353, + -0.006733857095241547, + -0.004204904194921255, + 0.10001038759946823, + 0.032257337123155594, + -0.0443548820912838, + -0.060041576623916626, + 0.010238075628876686, + -0.045519229024648666, + 0.032666780054569244, + -0.004553451202809811, + 0.009114152751863003, + 0.04385507106781006, + -0.023009493947029114, + -0.08292701840400696, + -0.061900608241558075, + 0.046312179416418076, + -0.0468490794301033, + -0.011925039812922478, + -0.0627334862947464, + 0.046067014336586, + 0.08596786111593246, + 0.01104133389890194, + -0.0009143439820036292, + -0.0007118040230125189, + -3.193567317794077e-05, + -0.04350648075342178, + -0.03599806874990463, + 0.016398241743445396, + 0.024121612310409546, + -0.07949941605329514, + -0.0010461978381499648, + -0.06150464341044426, + 0.04389932006597519, + -0.009544586762785912, + 0.10946111381053925, + 0.018009494990110397, + -0.03305317461490631, + -0.05472590774297714, + 0.010353559628129005, + -0.029074829071760178, + 0.04577895253896713, + 0.030117368325591087, + 0.020630067214369774, + 0.058496929705142975, + -0.04316342994570732, + 0.07929673790931702, + 0.03900561481714249, + -0.053236447274684906, + -0.05053195357322693, + -0.023328524082899094, + -0.017847547307610512, + 0.018769679591059685, + -0.029451027512550354, + -0.049021925777196884, + 0.024573471397161484, + 0.03654532879590988, + 0.018014010041952133, + 0.029905572533607483, + 0.08131217211484909, + 0.03999240696430206, + -0.07961864769458771 + ] + }, + "p245_060.wav": { + "name": "p245", + "embedding": [ + 0.010319357737898827, + 0.0850897878408432, + -0.03894076868891716, + 0.026983702555298805, + -0.08828854560852051, + 0.02914612926542759, + -0.12848438322544098, + 0.1303921341896057, + -0.033224545419216156, + 0.11203675717115402, + -0.055660296231508255, + 0.11407133936882019, + -0.04252006858587265, + -0.1845645159482956, + 0.008322346024215221, + 0.06202714145183563, + -0.00772900553420186, + -0.06893395632505417, + -0.010762635618448257, + -0.058170855045318604, + 0.019024470821022987, + 0.05188191682100296, + 0.009776233695447445, + 0.02144307643175125, + 0.0466361939907074, + 0.08826763182878494, + -0.01392319891601801, + 0.008796894922852516, + -0.013954735361039639, + -0.02961748279631138, + -0.04825478047132492, + 0.06644025444984436, + -0.07807009667158127, + -0.013634485192596912, + 0.025580374523997307, + -0.012992185540497303, + 0.002267067087814212, + -0.05052456259727478, + -0.02736019529402256, + 0.023870903998613358, + -0.07653500139713287, + 0.09130758047103882, + 0.04592723026871681, + -0.015383795835077763, + 0.02227753773331642, + 0.026673022657632828, + 0.0010515314061194658, + -0.039813652634620667, + -0.12150304019451141, + 0.15330061316490173, + 0.06767918169498444, + -0.019426468759775162, + -0.0538233257830143, + -0.058774277567863464, + 0.11442490667104721, + 0.005418546963483095, + -0.08697262406349182, + -0.05489328131079674, + 0.0808868482708931, + 0.1208563894033432, + -0.023710474371910095, + -0.039113108068704605, + 0.029464852064847946, + 0.11568918824195862, + 0.06337639689445496, + 0.06569229811429977, + 0.05648089200258255, + 0.11258888244628906, + -0.0427105575799942, + -0.020454401150345802, + 0.07935763895511627, + 0.065859355032444, + 0.005731577984988689, + -0.0349247120320797, + -0.009022481739521027, + 0.01164968777447939, + -0.013493604026734829, + 0.0012932498939335346, + 0.0013600762467831373, + -0.025590956211090088, + -0.02267385646700859, + -0.0027841173578053713, + -0.014395585283637047, + 0.009059876203536987, + -0.018825633451342583, + 0.055172353982925415, + 0.07010673731565475, + 0.005263277795165777, + 0.0985979288816452, + 0.01685400679707527, + -0.02920975536108017, + 0.07298513501882553, + -0.09121734648942947, + -0.025173617526888847, + 0.026747766882181168, + 0.002089724177494645, + 0.0161639004945755, + 0.10048042982816696, + 0.04460211098194122, + -0.006978645455092192, + 0.15180979669094086, + 0.04709753021597862, + 0.00613615196198225, + 0.018375253304839134, + -0.07542149722576141, + 0.13488836586475372, + 0.06756802648305893, + -0.03203896805644035, + 0.06115478277206421, + -0.028003297746181488, + 0.05214086174964905, + 0.043575968593358994, + -0.13225015997886658, + -0.059863172471523285, + 0.019882699474692345, + 0.031307581812143326, + -0.045711699873209, + 0.13543730974197388, + -0.008268368430435658, + 0.038935061544179916, + 0.11968955397605896, + -0.09310030192136765, + -0.07240497320890427, + -0.011716950684785843, + 0.05096723139286041, + -0.07887426018714905, + 0.05373120307922363, + 0.08968839049339294, + -0.023526102304458618, + 0.05787473917007446, + 0.06969986110925674, + -0.006690591108053923, + 0.02990853786468506, + 0.025639597326517105, + -0.03730863705277443, + 0.01607578434050083, + -0.002495318418368697, + 0.0059391530230641365, + 0.06705472618341446, + 0.018811028450727463, + 0.07272481173276901, + -0.016190147027373314, + -0.002926398301497102, + -0.1372460424900055, + 0.03927961736917496, + 0.027552923187613487, + 0.09074218571186066, + -0.012215186841785908, + -0.03261037543416023, + -0.04710067808628082, + -0.08708988130092621, + -0.012460575439035892, + 0.024923868477344513, + 0.1019999086856842, + -0.05604429915547371, + 0.009859636425971985, + 0.09739726781845093, + 0.07259497046470642, + -0.022275546565651894, + -0.05157797783613205, + -0.05215566232800484, + -0.021176153793931007, + 0.056844379752874374, + -0.0702158585190773, + -0.08331730961799622, + -0.026942776516079903, + 0.06617077440023422, + -0.013111292384564877, + 0.08779062330722809, + 0.04665382578969002, + 0.02885263040661812, + 0.018075959756970406, + -0.08566723763942719, + 0.03140733763575554, + -0.050884511321783066, + -0.04698203131556511, + -0.03114417754113674, + 0.005914061330258846, + -0.04932389408349991, + 0.08828851580619812, + 0.02260974980890751, + 0.0691206157207489, + -0.007027794606983662, + -0.05315271392464638, + -0.07366085797548294, + 0.03419667109847069, + 0.04459504038095474, + -0.03229214996099472, + 0.046945732086896896, + 0.0862363874912262, + -0.06363877654075623, + 0.03426161780953407, + 0.060030825436115265, + 0.08963975310325623, + -0.044932879507541656, + 0.04023361951112747, + -0.03113686293363571, + 0.07413095980882645, + 0.049196142703294754, + -0.1073906198143959, + -0.04382339119911194, + -0.05128374695777893, + -0.06565576791763306, + 0.044274844229221344, + -0.011771533638238907, + 0.02642114832997322, + -0.012519543059170246, + 0.006477381102740765, + -0.08157273381948471, + -0.08441781997680664, + 0.04868568107485771, + -0.047600157558918, + 0.0062561542727053165, + -0.0975136086344719, + 0.03167145699262619, + 0.10504133254289627, + 0.06389369815587997, + -0.010879270732402802, + -0.03164425864815712, + 0.04633409529924393, + 0.00375395268201828, + 0.030372655019164085, + 0.1151462122797966, + 0.06429405510425568, + -0.08760999888181686, + -0.030764011666178703, + -0.08119678497314453, + 0.08690568804740906, + -0.021799977868795395, + 0.14866431057453156, + 0.0437784343957901, + -0.03950846940279007, + -0.09059536457061768, + 0.03331327065825462, + -0.014637211337685585, + 0.05456538498401642, + 0.02798890508711338, + 0.05034765228629112, + 0.05131957307457924, + -0.005473603960126638, + 0.1309117078781128, + 0.058576859533786774, + -0.04967375099658966, + -0.04827294871211052, + -0.028375117108225822, + -0.0350322425365448, + 0.049600750207901, + 0.05065053328871727, + -0.10405796021223068, + -0.023053869605064392, + 0.028034038841724396, + -0.009889252483844757, + 0.08101300895214081, + 0.1456712782382965, + 0.10626771301031113, + -0.11374877393245697 + ] + }, + "p245_345.wav": { + "name": "p245", + "embedding": [ + 0.045877546072006226, + 0.11875580251216888, + -0.017863981425762177, + 0.025564592331647873, + -0.0524015799164772, + 0.05442719906568527, + -0.13574808835983276, + 0.16307680308818817, + -0.039542656391859055, + 0.11975181102752686, + -0.07524090260267258, + 0.12576846778392792, + -0.03437037765979767, + -0.16086065769195557, + -0.03810508921742439, + 0.0649118721485138, + -0.03300544247031212, + -0.04286783188581467, + -0.022135574370622635, + -0.011394473724067211, + 0.023545145988464355, + 0.010001571848988533, + 0.013483229093253613, + 0.042971931397914886, + 0.024895548820495605, + 0.0677359402179718, + -0.0016721499850973487, + 0.05110224336385727, + 0.01848067156970501, + -0.016396086663007736, + -0.028569933027029037, + 0.10196627676486969, + -0.05123291537165642, + 0.022947272285819054, + 0.07415245473384857, + -0.009256826713681221, + 0.0021574050188064575, + -0.05563361570239067, + -0.015556368045508862, + -0.015096426010131836, + -0.042186420410871506, + 0.09021161496639252, + 0.036202408373355865, + -0.005907810293138027, + 0.027726221829652786, + 0.056590788066387177, + -0.0009712614119052887, + -0.03755756467580795, + -0.10771737992763519, + 0.13905805349349976, + 0.059124529361724854, + -0.004364447668194771, + -0.08264568448066711, + -0.051852934062480927, + 0.1013861745595932, + -0.03576742112636566, + -0.09168543666601181, + -0.03592255711555481, + 0.07751351594924927, + 0.14390945434570312, + -0.03813654184341431, + -0.039009541273117065, + 0.012218079529702663, + 0.13961222767829895, + 0.08239584416151047, + 0.08826127648353577, + 0.06760676205158234, + 0.1323280781507492, + -0.04040486738085747, + 0.007209773641079664, + 0.07157877087593079, + 0.06490863859653473, + 0.05382317304611206, + -0.010858990252017975, + 0.018394378945231438, + 0.0025679762475192547, + -0.003073283936828375, + 0.009680027142167091, + -0.037728674709796906, + -0.027807047590613365, + -0.031216097995638847, + 0.024840623140335083, + -0.008932779543101788, + 0.03718067705631256, + -0.011907346546649933, + 0.07937295734882355, + 0.0574285164475441, + -0.02353842183947563, + 0.07348953187465668, + 0.058348722755908966, + 0.005962574388831854, + 0.0689300000667572, + -0.10440932214260101, + -0.06982174515724182, + 0.03642618656158447, + -0.015895333141088486, + 0.038859959691762924, + 0.0743815153837204, + 0.0405430793762207, + 0.004581686109304428, + 0.1142737865447998, + 0.06260409206151962, + -0.007013286463916302, + 0.028690434992313385, + -0.09515450894832611, + 0.14377647638320923, + 0.06991235911846161, + -0.039168957620859146, + 0.033977773040533066, + -0.03357969969511032, + 0.05543025955557823, + 0.06131080910563469, + -0.12389364838600159, + -0.08814802020788193, + 0.03295309096574783, + 0.02797437272965908, + -0.028329655528068542, + 0.10221065580844879, + -0.013809229247272015, + 0.0428425595164299, + 0.08823131024837494, + -0.06793893873691559, + -0.05846641585230827, + -0.011932412162423134, + 0.037948958575725555, + -0.0711013600230217, + 0.06252309679985046, + 0.056145377457141876, + 0.008678766898810863, + 0.004064670763909817, + 0.0944502055644989, + 0.014080911874771118, + -0.009564951993525028, + 0.02134818211197853, + -0.03823674097657204, + 0.029147882014513016, + -0.004485559184104204, + 0.004731260240077972, + 0.01844809763133526, + 0.04029298946261406, + 0.0517243817448616, + 0.0017030885210260749, + 0.00338127464056015, + -0.11428224295377731, + 0.007480166386812925, + 0.05130084604024887, + 0.08715660870075226, + -0.010842518880963326, + -0.03009987436234951, + -0.032463982701301575, + -0.042041465640068054, + -0.013163061812520027, + -0.00044929361320100725, + 0.06675392389297485, + -0.029656700789928436, + 0.005936486646533012, + 0.11347314715385437, + 0.014091256074607372, + 0.00526619516313076, + -0.05493510887026787, + -0.009215408936142921, + 0.012615012004971504, + 0.06002745032310486, + -0.06845264136791229, + -0.08309277147054672, + 0.0008251086692325771, + 0.036288537085056305, + -0.023976562544703484, + 0.07259766757488251, + 0.03733580559492111, + 0.016606401652097702, + 0.022160761058330536, + -0.055476006120443344, + 0.022810615599155426, + -0.09436427056789398, + -0.06395740807056427, + -0.023368408903479576, + -0.0029617114923894405, + -0.02930443361401558, + 0.0593186616897583, + 0.03916984423995018, + 0.07658252120018005, + 0.0026528197340667248, + -0.0781402736902237, + -0.08464892953634262, + 0.058636393398046494, + 0.07157339155673981, + -0.011574629694223404, + 0.04964999482035637, + 0.06817468255758286, + -0.02451152727007866, + 0.04405029118061066, + 0.0652138888835907, + 0.09252564609050751, + -0.04052755609154701, + 0.014083432033658028, + -0.06899388134479523, + 0.06478458642959595, + 0.07376208156347275, + -0.11341925710439682, + -0.0793699398636818, + -0.01703120581805706, + -0.03897799551486969, + 0.010684812441468239, + -0.026505019515752792, + 0.023590460419654846, + 0.03499063476920128, + -0.009903956204652786, + -0.10002534091472626, + -0.09431063383817673, + 0.07781700789928436, + -0.0976959764957428, + 0.018235698342323303, + -0.07326072454452515, + 0.04077434539794922, + 0.09585803002119064, + 0.025075923651456833, + -0.04243334382772446, + -0.019204750657081604, + 0.04406733810901642, + -0.01527250837534666, + -0.010890774428844452, + 0.05198314040899277, + 0.03822604566812515, + -0.10163716971874237, + 0.010504502803087234, + -0.0579083077609539, + 0.07480528950691223, + -0.037262991070747375, + 0.16336590051651, + 0.010644020512700081, + -0.05460762977600098, + -0.08188417553901672, + 0.005301930010318756, + -0.01990138739347458, + 0.05716840922832489, + 0.021901428699493408, + 0.062422942370176315, + 0.019573554396629333, + -0.04018236696720123, + 0.14014992117881775, + 0.04381345957517624, + -0.06128812953829765, + -0.07661556452512741, + -0.04957921802997589, + -0.045815713703632355, + 0.03981441259384155, + 0.03583936765789986, + -0.09163767099380493, + -0.027579031884670258, + 0.01335985865443945, + -0.035417258739471436, + 0.07811953872442245, + 0.1480201929807663, + 0.07594288885593414, + -0.11549913138151169 + ] + }, + "p245_122.wav": { + "name": "p245", + "embedding": [ + 0.03743371739983559, + 0.10720232874155045, + -0.018781617283821106, + 0.04856396093964577, + -0.07787799090147018, + 0.09338998794555664, + -0.08635412901639938, + 0.132926344871521, + -0.09560003876686096, + 0.11818298697471619, + -0.08316017687320709, + 0.11397704482078552, + -0.06699466705322266, + -0.13302141427993774, + -0.03900410234928131, + 0.07091595232486725, + -0.03225522115826607, + -0.011559952981770039, + -0.03053993359208107, + 0.0019339919090270996, + 0.024532150477170944, + 0.004498928319662809, + 0.03958319500088692, + 0.006275035906583071, + 0.04688907414674759, + 0.058034494519233704, + 0.001993780955672264, + 0.046386830508708954, + 0.02587943710386753, + -0.05183255672454834, + -0.04817590117454529, + 0.11246327310800552, + -0.0480869896709919, + 0.004008980467915535, + 0.060408905148506165, + 0.009594632312655449, + -0.008777286857366562, + -0.06991462409496307, + -0.005293631460517645, + -0.02828967571258545, + -0.04537370055913925, + 0.06305830925703049, + 0.027596797794103622, + -0.012072106823325157, + 0.02364671789109707, + -0.00946541503071785, + -0.028811603784561157, + -0.027421480044722557, + -0.11157301068305969, + 0.13974159955978394, + 0.02989085391163826, + 0.009215213358402252, + -0.08537621796131134, + -0.08293554186820984, + 0.12916776537895203, + -0.0034411009401082993, + -0.11670493334531784, + -0.04251917451620102, + 0.07298141717910767, + 0.17307496070861816, + -0.007816367782652378, + -0.0010156766511499882, + -0.0017665550112724304, + 0.10236340761184692, + 0.042613349854946136, + 0.1062050610780716, + 0.04865824058651924, + 0.0957416445016861, + 0.03394673764705658, + 0.052192337810993195, + 0.06361228972673416, + 0.050172463059425354, + 0.0018313052132725716, + -0.014574884437024593, + 0.012013012543320656, + -0.018153436481952667, + -0.02861083298921585, + 0.04035335034132004, + -0.020496390759944916, + -0.04161035269498825, + -0.03830898553133011, + 0.010159906931221485, + 0.013967495411634445, + -0.00866398774087429, + -0.023196931928396225, + 0.07164852321147919, + 0.0011555850505828857, + -0.003916345536708832, + 0.07917851209640503, + 0.031976956874132156, + -0.039139606058597565, + 0.05405601114034653, + -0.049285341054201126, + -0.09560078382492065, + -0.010390949435532093, + 0.006245959550142288, + 0.028321517631411552, + 0.08238692581653595, + 0.022060247138142586, + -0.012857005931437016, + 0.10433919727802277, + 0.062318310141563416, + 0.043363239616155624, + 0.02795252576470375, + -0.09443861246109009, + 0.11549369990825653, + 0.06495235860347748, + 0.004485428333282471, + 0.051787763833999634, + -0.013774391263723373, + 0.08958699554204941, + 0.0867702066898346, + -0.14117901027202606, + -0.0677584707736969, + 0.010466031730175018, + -0.006722311954945326, + -0.0036849668249487877, + 0.0950571745634079, + -0.008553601801395416, + 0.005356732755899429, + 0.10411150008440018, + -0.09842915832996368, + -0.06597709655761719, + -0.014846889302134514, + 0.04449513554573059, + -0.04619382321834564, + 0.03834206238389015, + 0.05252353847026825, + -0.03631815314292908, + 0.006494474597275257, + 0.06149832159280777, + -0.005749039351940155, + 0.0011753792641684413, + 0.07839253544807434, + -0.07852672040462494, + 0.033325277268886566, + -0.0436285100877285, + 0.006331406533718109, + 0.08405425399541855, + 0.06468705832958221, + 0.062078624963760376, + -0.022429736331105232, + -0.0006883870810270309, + -0.07655367255210876, + -0.0037659863010048866, + 0.06873098760843277, + 0.05087975040078163, + -0.016011929139494896, + -0.027592938393354416, + -0.0344330370426178, + -0.07718139886856079, + 0.03035605698823929, + 0.00870976597070694, + 0.12011028826236725, + -0.025040265172719955, + 0.005098174326121807, + 0.08854014426469803, + 0.02952500618994236, + -0.016712194308638573, + -0.08891536295413971, + -0.03628239780664444, + 0.031522754579782486, + 0.04699038714170456, + -0.07000486552715302, + -0.05858318507671356, + 0.01704219914972782, + 0.02237371914088726, + -0.04608524218201637, + 0.028855513781309128, + 0.03540954738855362, + 0.018313037231564522, + 0.047766849398612976, + -0.045039497315883636, + 0.03940672427415848, + -0.09270790219306946, + -0.03135111927986145, + -0.007384052034467459, + -0.0429653562605381, + -0.03355783969163895, + 0.07964133471250534, + 0.04177909716963768, + 0.028094423934817314, + 0.03671655058860779, + -0.07740931212902069, + -0.04950239881873131, + 0.07339277863502502, + 0.040769919753074646, + 0.01997051015496254, + 0.0645984336733818, + 0.05923932045698166, + -0.03651990741491318, + 0.049070119857788086, + 0.07296834886074066, + 0.08073194324970245, + -0.02513333410024643, + -0.022510387003421783, + -0.07116544246673584, + 0.05991154536604881, + 0.08492305874824524, + -0.12777595221996307, + -0.09180017560720444, + -0.054328687489032745, + -0.04336068034172058, + 0.0594538152217865, + -0.03820797801017761, + -0.002230334095656872, + 0.014107787981629372, + -0.039769500494003296, + -0.10806524753570557, + -0.10429500043392181, + 0.11634322255849838, + -0.0626748725771904, + -0.019094964489340782, + -0.05899760127067566, + 0.029658494517207146, + 0.06473022699356079, + 0.03282465413212776, + -0.016576441004872322, + 0.030899109318852425, + 0.05824644863605499, + -0.07691401988267899, + -0.012888756580650806, + 0.06102752685546875, + -0.012921885587275028, + -0.06557910144329071, + 0.026414114981889725, + -0.07013809680938721, + 0.09113122522830963, + -0.04826099053025246, + 0.2017737329006195, + -0.03359649330377579, + -0.04099184274673462, + -0.07443004846572876, + 0.05125390738248825, + -0.04524015635251999, + 0.030260004103183746, + 0.044194724410772324, + 0.07291244715452194, + 0.011812632903456688, + -0.04344344884157181, + 0.12826985120773315, + 0.003006895072758198, + -0.03864568844437599, + -0.03855869174003601, + -0.032189831137657166, + -0.06864183396100998, + 0.006718698423355818, + -0.007533951196819544, + -0.09214520454406738, + 0.0040212357416749, + 0.011203983798623085, + -0.00021398533135652542, + 0.0785241574048996, + 0.1321500688791275, + 0.07848693430423737, + -0.07616489380598068 + ] + }, + "p245_170.wav": { + "name": "p245", + "embedding": [ + 0.05748377740383148, + 0.0796695351600647, + -0.008959709666669369, + 0.017229732125997543, + -0.03572970628738403, + 0.042074054479599, + -0.14395171403884888, + 0.12015019357204437, + -0.023967813700437546, + 0.12188416719436646, + -0.0479796901345253, + 0.10505375266075134, + -0.008924026042222977, + -0.1674666851758957, + -0.06612429022789001, + 0.045074429363012314, + -0.0664149671792984, + -0.020073339343070984, + -0.0651918277144432, + -0.009307630360126495, + 0.0353832021355629, + 0.053181421011686325, + 0.05575935170054436, + -0.02728326991200447, + 0.03762940689921379, + 0.046655409038066864, + 0.024258267134428024, + 0.0758737251162529, + 0.04325859248638153, + -0.0859338566660881, + -0.010597070679068565, + 0.08684079349040985, + -0.03945229575037956, + 0.002797730965539813, + 0.04961937293410301, + -0.0023637539707124233, + 0.019432269036769867, + -0.04971079155802727, + -0.032629162073135376, + 0.038272857666015625, + -0.03687658533453941, + 0.08606031537055969, + 0.014470947906374931, + 0.00042985318577848375, + 0.05761588364839554, + 0.022943397983908653, + -0.02185143157839775, + -0.06937938928604126, + -0.10850593447685242, + 0.16270595788955688, + 0.048342641443014145, + 0.020467355847358704, + -0.08551698923110962, + -0.07008664309978485, + 0.08488969504833221, + -0.060921430587768555, + -0.10177715867757797, + -0.04281995818018913, + 0.04743306338787079, + 0.15300270915031433, + -0.034507136791944504, + -0.021585840731859207, + 0.04405404254794121, + 0.09956991672515869, + 0.06956490129232407, + 0.0496709868311882, + 0.09219267219305038, + 0.07645878195762634, + 0.007524482905864716, + 0.029480105265975, + 0.03507820516824722, + 0.07300250977277756, + 0.03396718576550484, + 0.016427617520093918, + 0.025354888290166855, + 0.007970473729074001, + -0.025605706498026848, + -0.01369947474449873, + -0.021254710853099823, + 0.017700668424367905, + 0.0009108397061936557, + 0.0339067243039608, + 0.0005838572978973389, + 0.02060249075293541, + -0.036197926849126816, + 0.07709024846553802, + -0.027796588838100433, + -0.008777523413300514, + 0.05383291095495224, + 0.02646770142018795, + 0.01451475452631712, + 0.04008987918496132, + -0.053662534803152084, + -0.10190849006175995, + -0.016087394207715988, + 0.003562054131180048, + 0.009038129821419716, + 0.015864994376897812, + 0.01680494286119938, + -0.03324166685342789, + 0.11492624878883362, + 0.05243725702166557, + -0.02014010027050972, + 0.03435374051332474, + -0.0850381851196289, + 0.0909820944070816, + 0.07062637805938721, + -0.006881219334900379, + 0.03946191817522049, + -0.04892871901392937, + 0.04284268617630005, + 0.06308159232139587, + -0.11988546699285507, + -0.08542710542678833, + 0.0697358250617981, + 0.014273954555392265, + 0.017158182337880135, + 0.10223032534122467, + 0.004407420754432678, + 0.02800765447318554, + 0.09694602340459824, + -0.06870314478874207, + -0.030770590528845787, + -0.004913199692964554, + 0.058905959129333496, + -0.05724268779158592, + 0.04725160822272301, + 0.03419005870819092, + -0.006721088197082281, + -0.015799738466739655, + 0.09465306997299194, + -0.004607826471328735, + 0.010878166183829308, + -0.00011261676991125569, + -0.03291517123579979, + 0.030339231714606285, + -0.04807319492101669, + -0.022467290982604027, + 0.08329416811466217, + 0.07380926609039307, + 0.04109102487564087, + 0.01992044597864151, + -0.07709814608097076, + -0.1221996396780014, + -0.004207264166325331, + 0.019444618374109268, + 0.07642588019371033, + -0.012831549160182476, + -0.014584934338927269, + -0.06304802000522614, + -0.03221304342150688, + 0.024402514100074768, + 0.00975395180284977, + 0.08332888782024384, + -0.014043513685464859, + -0.008711714297533035, + 0.0906527191400528, + -0.03770761936903, + 0.010202913545072079, + -0.009045541286468506, + -0.007258260622620583, + 0.007969088852405548, + 0.03107650950551033, + -0.03641550987958908, + -0.06938638538122177, + 0.012345305643975735, + 0.02711482346057892, + -0.006814546883106232, + 0.04785529524087906, + 0.04359513148665428, + 0.006706336513161659, + 0.03680199012160301, + -0.041372548788785934, + 0.0026394943706691265, + -0.09423838555812836, + -0.053378552198410034, + 0.0013387305662035942, + -0.014718569815158844, + -0.05621272325515747, + 0.07806216925382614, + 0.02076493762433529, + 0.04274290055036545, + -0.01845531538128853, + -0.09669941663742065, + -0.06985851377248764, + 0.0628296285867691, + 0.06807747483253479, + 0.02067222259938717, + 0.0357564240694046, + 0.04432541877031326, + -0.009395377710461617, + 0.07972109317779541, + 0.0748312771320343, + 0.06763284653425217, + -0.004407945554703474, + -0.022697430104017258, + -0.05931934714317322, + 0.086830735206604, + 0.04781627655029297, + -0.07891084253787994, + -0.06726589053869247, + -0.004925444256514311, + -0.08367767184972763, + 0.023849986493587494, + -0.010991059243679047, + 0.03048563562333584, + 0.06296008825302124, + -0.004094384144991636, + -0.10446479171514511, + -0.08738195896148682, + 0.07364118099212646, + -0.09402193874120712, + -0.027812443673610687, + -0.023291196674108505, + 0.015333132818341255, + 0.0980805978178978, + 0.021116070449352264, + 0.01902790740132332, + -0.016613459214568138, + 0.04200465604662895, + -0.07272464036941528, + -0.029187094420194626, + 0.04031291604042053, + 0.0022139656357467175, + -0.07990922778844833, + 0.03259692341089249, + -0.07306845486164093, + 0.04753194749355316, + -0.044937558472156525, + 0.12213563919067383, + -0.013774930499494076, + -0.0411345511674881, + -0.08523625135421753, + 0.02425447478890419, + -0.0713401734828949, + 0.07204298675060272, + 0.022641194984316826, + 0.05019098520278931, + 0.05937380716204643, + -0.06890332698822021, + 0.12420996278524399, + 0.052706968039274216, + -0.05510779470205307, + -0.09198163449764252, + -0.07292493432760239, + -0.03229665011167526, + 0.022051174193620682, + 0.013844112865626812, + -0.05184826999902725, + 0.00027040144777856767, + 0.009622372686862946, + -0.031015580520033836, + 0.04380853474140167, + 0.11941279470920563, + 0.033248137682676315, + -0.11495515704154968 + ] + }, + "p245_069.wav": { + "name": "p245", + "embedding": [ + 0.042389072477817535, + 0.060909055173397064, + -0.03267619386315346, + 0.002641531638801098, + -0.01857568323612213, + 0.01183414924889803, + -0.1024591401219368, + 0.11261001229286194, + -0.03575439378619194, + 0.09899791330099106, + -0.06624089181423187, + 0.12662726640701294, + -0.042341820895671844, + -0.16291534900665283, + -0.00860240776091814, + 0.029767565429210663, + 0.04389046132564545, + 0.03515121340751648, + 0.021808674558997154, + 0.0020727962255477905, + 0.08016923069953918, + 0.020399831235408783, + 0.02387755550444126, + -0.061178356409072876, + -0.0027651293203234673, + 0.05555344745516777, + 0.015508322976529598, + 0.04360657185316086, + -0.0023571676574647427, + -0.003749505616724491, + 0.021052023395895958, + 0.09535599499940872, + -0.008906003087759018, + 0.01894993893802166, + 0.05497564375400543, + 0.014511961489915848, + -0.03168598189949989, + -0.05401148647069931, + -0.0075623453594744205, + -0.010130887851119041, + -0.03362499549984932, + 0.04273761436343193, + -0.00011577457189559937, + -0.0386732742190361, + 0.08641842007637024, + -0.021072236821055412, + -0.025557029992341995, + -0.022640634328126907, + -0.0796433687210083, + 0.09799011796712875, + 0.03548601269721985, + 0.07013832777738571, + -0.10872337222099304, + -0.04984432831406593, + 0.08539055287837982, + 0.0159637201577425, + -0.04192604497075081, + -0.027110770344734192, + 0.03984592482447624, + 0.1743972897529602, + 0.018841281533241272, + -0.016089502722024918, + 0.023046329617500305, + 0.01481558382511139, + 0.007711809128522873, + 0.08097852766513824, + 0.11568149924278259, + 0.03625311329960823, + 0.04287005960941315, + 0.04006768763065338, + -0.013683229684829712, + 0.10724496841430664, + -0.021905681118369102, + -0.052615076303482056, + -0.0004883408546447754, + 0.024844884872436523, + -0.07848293334245682, + 0.010138795711100101, + 0.004058877006173134, + -0.01877998560667038, + -0.012701638042926788, + -0.0051839714869856834, + 0.036180153489112854, + -0.004358217585831881, + -0.04561818391084671, + 0.0024591945111751556, + 0.027727672830224037, + -0.033819593489170074, + 0.03178202360868454, + 0.013203229755163193, + -0.022299204021692276, + 0.014154805801808834, + -0.07717344164848328, + -0.14431096613407135, + -0.02045532502233982, + 0.01677081175148487, + -0.024711361154913902, + 0.07528313994407654, + 0.016613762825727463, + -0.008961262181401253, + 0.0721164345741272, + 0.037327345460653305, + -0.004819595254957676, + 0.02987496741116047, + -0.05986471474170685, + 0.04961073771119118, + 0.08666570484638214, + -0.014121350832283497, + 0.0759602040052414, + -0.06417098641395569, + 0.017668139189481735, + 0.04760894179344177, + -0.09103067219257355, + -0.044606439769268036, + 0.02660381607711315, + 0.005931918043643236, + 0.06229817494750023, + 0.1233488991856575, + 0.03419329226016998, + 0.0265579205006361, + 0.06784731149673462, + -0.1113286018371582, + -0.10652370750904083, + -0.06957471370697021, + 0.06035409867763519, + -0.011010304093360901, + 0.08161742240190506, + 0.04019465669989586, + 0.012358935549855232, + 0.0049023712053895, + 0.018766041845083237, + -0.000120493583381176, + 0.047260113060474396, + 0.008240207098424435, + -0.033083610236644745, + 0.024753378704190254, + -0.08594093471765518, + -0.010837981477379799, + 0.05789615586400032, + 0.035636741667985916, + 0.044445864856243134, + 0.0333406999707222, + -0.027318958193063736, + -0.07351724058389664, + -0.023325413465499878, + 0.09436725080013275, + 0.0356861837208271, + -0.035730328410863876, + -0.043299898505210876, + -0.048382289707660675, + -0.07916504889726639, + -0.0031764497980475426, + -0.023856284096837044, + 0.0894659161567688, + 0.01325690932571888, + 0.0575961172580719, + 0.08197653293609619, + -0.021808994933962822, + 0.002389457542449236, + -0.03929046168923378, + -0.01464114896953106, + -0.011560480110347271, + 0.02792140655219555, + -0.07199744135141373, + -0.07748468220233917, + -0.062362540513277054, + 0.003370748832821846, + -0.04592014104127884, + -0.003650350496172905, + 0.02482995018362999, + 0.015676122158765793, + 0.02550121396780014, + -0.08696705102920532, + 0.0027029630728065968, + -0.13820025324821472, + -0.039592500776052475, + -0.022139739245176315, + 0.021407321095466614, + -0.005270976573228836, + 0.07514826208353043, + 0.02643505483865738, + 0.02515743114054203, + 0.0066955555230379105, + -0.05152153596282005, + -0.07023081183433533, + 0.04150098189711571, + 0.05895484983921051, + 0.006566681433469057, + 0.05536797642707825, + -0.003086986020207405, + -0.04773534834384918, + 0.04597030580043793, + 0.0845419317483902, + 0.059260379523038864, + 0.006793409585952759, + 0.005690903402864933, + -0.06108565628528595, + 0.08743776381015778, + 0.13043445348739624, + -0.058101505041122437, + -0.10552392899990082, + -0.044606540352106094, + -0.08202724158763885, + 0.02622777409851551, + -0.011979629285633564, + 0.008905715309083462, + 0.029565244913101196, + -0.03393614664673805, + -0.11569207906723022, + -0.06938490271568298, + 0.031257372349500656, + 0.01972610130906105, + -0.018224963918328285, + -0.06464698165655136, + 0.02669561468064785, + 0.07991744577884674, + -0.015330341644585133, + -0.009182688780128956, + -0.016383636742830276, + 0.012035254389047623, + -0.0684083104133606, + -0.024530213326215744, + 0.013870317488908768, + 0.012000054121017456, + -0.06282660365104675, + 0.01696491241455078, + -0.019633010029792786, + 0.07732855528593063, + -0.056663841009140015, + 0.09623023122549057, + -0.022688264027237892, + -0.06618054956197739, + -0.07370336353778839, + 0.04491158202290535, + 0.06285522133111954, + 0.00042776018381118774, + -0.0054189544171094894, + 0.0467192716896534, + -0.011271262541413307, + -0.10400275886058807, + 0.06921228766441345, + -0.008432026021182537, + 0.015983790159225464, + -0.06062867119908333, + -0.043254513293504715, + -0.019985631108283997, + 0.031779009848833084, + -0.05549731105566025, + -0.025366276502609253, + 0.002890250412747264, + 0.006617321632802486, + 0.021016422659158707, + 0.013747095130383968, + 0.09621340036392212, + 0.0036958791315555573, + -0.10211804509162903 + ] + }, + "p245_347.wav": { + "name": "p245", + "embedding": [ + 0.0412711426615715, + 0.05669066682457924, + 0.0026466804556548595, + -0.013535615056753159, + -0.012290127575397491, + 0.05207832157611847, + -0.11556962877511978, + 0.04488130658864975, + -0.03145916759967804, + 0.13418292999267578, + -0.05039643496274948, + 0.09852319955825806, + -0.008905481547117233, + -0.08545409142971039, + -0.029720518738031387, + 0.015832580626010895, + -0.05277622863650322, + -0.01431513112038374, + -0.008151955902576447, + -0.07682820409536362, + 0.02734529599547386, + 0.018164165318012238, + 0.04664066433906555, + -0.030748898163437843, + -0.01775631681084633, + 0.0599295012652874, + 0.008151862770318985, + 0.018725769594311714, + 0.019111307337880135, + -0.05802386254072189, + 0.016101142391562462, + 0.07306662946939468, + -0.03258818760514259, + -0.008821018040180206, + 0.036667704582214355, + 0.02222164161503315, + -0.001985148061066866, + -0.01419311948120594, + 0.009656942449510098, + 0.045648518949747086, + -0.06915364414453506, + 0.09444315731525421, + 0.017069676890969276, + -0.007167252246290445, + 0.03239572048187256, + -0.03653346747159958, + -0.04547145962715149, + 0.06134096533060074, + -0.037075694650411606, + 0.09916102886199951, + 0.0790301263332367, + -0.0058848136104643345, + -0.04327109456062317, + -0.003551008179783821, + 0.07426905632019043, + -0.013668294996023178, + -0.11215940862894058, + -0.007052119821310043, + -0.007789473980665207, + 0.08425324410200119, + -0.02867584489285946, + -0.05079594999551773, + 0.011486916802823544, + 0.08159174770116806, + 0.03348308429121971, + 0.04700622335076332, + 0.0868123322725296, + 0.07694805413484573, + -0.013397812843322754, + -0.009495899081230164, + 0.05626486986875534, + 0.07804311811923981, + 0.05993897467851639, + -0.01853775605559349, + 0.05605451017618179, + -0.022127756848931313, + -0.0038471929728984833, + -0.022197816520929337, + -0.016036830842494965, + -0.03030901774764061, + -0.055075276643037796, + -0.030812369659543037, + 0.004299653694033623, + 0.06146626174449921, + -0.02501361258327961, + -0.01709631085395813, + 0.029184209182858467, + -0.03381877392530441, + 0.023456662893295288, + 0.06639024615287781, + 0.015539669431746006, + 0.023865021765232086, + -0.04032358527183533, + -0.03108346462249756, + -0.009654205292463303, + -0.026263751089572906, + 0.0561036542057991, + 0.05736720934510231, + 0.020820975303649902, + 0.030338812619447708, + 0.05575665086507797, + 0.05765734612941742, + -0.018747318536043167, + -0.009165119379758835, + -0.08851375430822372, + 0.08497588336467743, + 0.09434656798839569, + -0.0587095245718956, + 0.002375600393861532, + 0.02574363723397255, + 0.05182548239827156, + 0.010134536772966385, + -0.08147353678941727, + -0.03569801151752472, + 0.014600043185055256, + 0.07553279399871826, + 0.037950627505779266, + 0.09037680923938751, + 0.0008282165508717299, + 0.021755561232566833, + 0.0763978660106659, + 0.03208310902118683, + -0.033214911818504333, + -0.054609719663858414, + 0.01931104250252247, + -0.08515143394470215, + 0.06209424138069153, + 0.014453418552875519, + 0.05049937963485718, + -0.013458872213959694, + 0.10869995504617691, + 0.0037034200504422188, + -0.027995191514492035, + -0.036268141120672226, + 0.00253349170088768, + 0.04465457797050476, + 0.0075359102338552475, + 0.05478878319263458, + 0.06163358315825462, + 0.011904487386345863, + 0.09669404476881027, + 0.04883698746562004, + 0.008974113501608372, + -0.08142051100730896, + 0.03174172341823578, + 0.0340711884200573, + 0.016802538186311722, + -0.03692558780312538, + -0.04192771017551422, + 0.00202106311917305, + -0.043695177882909775, + 0.02224118635058403, + -0.04560896009206772, + 0.0677952691912651, + 0.0011676126159727573, + -0.032591842114925385, + 0.09846597909927368, + -0.019296349957585335, + -0.01346222497522831, + 0.0036270413547754288, + -0.0007555702468380332, + -0.025264816358685493, + 0.054064296185970306, + -0.14167112112045288, + -0.055227093398571014, + -0.006791448220610619, + 0.037377677857875824, + 0.04774264618754387, + 0.01624024286866188, + 0.10128265619277954, + -0.058761972934007645, + 0.05141361057758331, + -0.0005744025111198425, + -0.006706186104565859, + -0.07836834341287613, + -0.0615382045507431, + -0.0359075590968132, + -0.0996285155415535, + -0.017887085676193237, + 0.03606034442782402, + -0.03364332765340805, + 0.041625794023275375, + -0.007175257429480553, + -0.08883555233478546, + -0.07037220895290375, + 0.03378533199429512, + 0.04039790853857994, + -0.026106970384716988, + 0.022121211513876915, + 0.11218108236789703, + 0.007509727030992508, + 0.02783248946070671, + 0.021564345806837082, + 0.0824040099978447, + -0.08386042714118958, + 0.014419618993997574, + -0.05962219089269638, + 0.031088335439562798, + 0.07668279111385345, + -0.03974822163581848, + -0.065896175801754, + -0.0494840107858181, + -0.025581711903214455, + 0.04325051233172417, + -0.03431348875164986, + -0.020339643582701683, + 0.015450803562998772, + -0.023189883679151535, + -0.04450700059533119, + -0.0699068158864975, + 0.07984033972024918, + -0.061840031296014786, + -0.0043916888535022736, + -0.03970395028591156, + -0.005336089059710503, + -0.02459822967648506, + 0.06447196751832962, + -0.06031797453761101, + 0.09303230792284012, + 0.015215856023132801, + -0.04186929762363434, + 0.002140691503882408, + 0.02776448428630829, + 0.015336650423705578, + -0.03899999335408211, + -0.06077704578638077, + -0.07876808196306229, + 0.05405525118112564, + -0.05180056020617485, + 0.04063853621482849, + -0.006929229944944382, + -0.035339005291461945, + -0.008251747116446495, + -0.022141527384519577, + -0.03096598945558071, + 0.02070022001862526, + 0.10553033649921417, + 0.08118073642253876, + -0.021488819271326065, + -0.02310914359986782, + 0.07726868242025375, + 0.04008672013878822, + 0.01673300936818123, + -0.05181705206632614, + 0.03634129464626312, + -0.029078567400574684, + 0.014757100492715836, + 0.05690399929881096, + -0.07162076234817505, + 0.05197465792298317, + -0.0025249968748539686, + -0.020353052765130997, + 0.014066814444959164, + 0.04892072081565857, + 0.06346987187862396, + -0.06699855625629425 + ] + }, + "p245_157.wav": { + "name": "p245", + "embedding": [ + 0.06274768710136414, + 0.03825800120830536, + -0.0033065180759876966, + -0.006682202219963074, + -0.01771368458867073, + 0.055959559977054596, + -0.13801440596580505, + 0.12309806793928146, + -0.034329187124967575, + 0.08862051367759705, + -0.06109682843089104, + 0.08656501770019531, + 0.007827946916222572, + -0.15208062529563904, + -0.03614667430520058, + 0.03548501431941986, + -0.024202939122915268, + -0.008609562180936337, + -0.054639190435409546, + -0.012602399103343487, + 0.02119191363453865, + 0.04405825585126877, + 0.0028640534728765488, + -0.023142129182815552, + 0.017828378826379776, + 0.05189964175224304, + 0.004527223762124777, + 0.023284612223505974, + -0.0057751489803195, + -0.01309884712100029, + 0.007959551177918911, + 0.08831426501274109, + -0.03701397776603699, + -0.010631110519170761, + 0.05668676644563675, + -0.010418376885354519, + 0.001741559011861682, + -0.07652382552623749, + -0.02150186523795128, + 0.02483842894434929, + -0.058899007737636566, + 0.07595877349376678, + 0.07162299752235413, + 0.015666477382183075, + 0.028073750436306, + 0.025942470878362656, + 0.014092875644564629, + -0.06324666738510132, + -0.10040765255689621, + 0.16741704940795898, + 0.027573097497224808, + 0.01804249919950962, + -0.10138100385665894, + -0.02015196904540062, + 0.07756535708904266, + -0.005804148968309164, + -0.06629043072462082, + -0.050849221646785736, + 0.055925674736499786, + 0.13648945093154907, + -0.006125593092292547, + -0.03875351697206497, + 0.02991393767297268, + 0.0978822112083435, + 0.0293409526348114, + 0.04434789717197418, + 0.11220666766166687, + 0.10735618323087692, + -0.003646738361567259, + 0.02512589655816555, + 0.044776543974876404, + 0.03431624174118042, + 0.030787356197834015, + -0.02672792598605156, + 0.036868393421173096, + -0.015505118295550346, + -0.026290182024240494, + -0.010984379798173904, + -0.03000492975115776, + -0.022326432168483734, + 0.018413206562399864, + 0.026656724512577057, + 0.021801531314849854, + 0.06617453694343567, + -0.05302262306213379, + 0.04811028763651848, + 0.02560536563396454, + -0.004730940796434879, + 0.06375011801719666, + 0.052400581538677216, + 0.02656303346157074, + 0.017524149268865585, + -0.06161477789282799, + -0.08669359982013702, + 0.018443187698721886, + 0.0006426457548514009, + 0.013397922739386559, + 0.03400969132781029, + 0.03068729117512703, + -0.021045871078968048, + 0.10060818493366241, + 0.0020663875620812178, + -0.01124049723148346, + 0.00016079223132692277, + -0.07695870101451874, + 0.10415235161781311, + 0.08591245114803314, + -0.013983006589114666, + 0.03742546588182449, + -0.06544427573680878, + 0.01936090551316738, + 0.04765874147415161, + -0.10838233679533005, + -0.058138199150562286, + 0.06782806664705276, + 0.028023432940244675, + 0.028606921434402466, + 0.14478760957717896, + 0.01191443856805563, + 0.025621986016631126, + 0.06474218517541885, + -0.08207213878631592, + -0.0389985665678978, + 0.0018848404288291931, + 0.03159947693347931, + -0.03883250057697296, + 0.03337228298187256, + 0.038793690502643585, + 0.010944174602627754, + -0.022375576198101044, + 0.07655879855155945, + 0.0033097839914262295, + 0.009736997075378895, + -0.04954742640256882, + 0.032036442309617996, + 0.07004294544458389, + 0.0069518922828137875, + -0.018580995500087738, + 0.01105495821684599, + 0.05577467009425163, + 0.024866636842489243, + 0.025071561336517334, + -0.059047795832157135, + -0.11163818836212158, + -0.019772712141275406, + 0.031170329079031944, + 0.07466323673725128, + -0.03351680934429169, + -0.023961633443832397, + -0.060349948704242706, + -0.021305903792381287, + -0.022203072905540466, + -0.015400081872940063, + 0.06040715426206589, + 0.029994137585163116, + -0.017065487802028656, + 0.08778540790081024, + -0.01113156508654356, + 0.03423745185136795, + -0.01649390161037445, + -0.0018926325719803572, + 0.013770075514912605, + 0.034245144575834274, + -0.026725511997938156, + -0.06654241681098938, + -0.0058194417506456375, + 0.001194218872115016, + -0.010738056153059006, + 0.012048224918544292, + 0.015798911452293396, + 0.0018528278451412916, + 0.004602747969329357, + -0.10483839362859726, + 0.0255399402230978, + -0.1051347479224205, + -0.02282046340405941, + 0.03679654747247696, + -0.013239650055766106, + -0.027232229709625244, + 0.09114474058151245, + 0.020934097468852997, + 0.04278257116675377, + -0.02396356873214245, + -0.07292294502258301, + -0.02666199766099453, + 0.04258349537849426, + 0.07128126919269562, + -0.035406723618507385, + 0.005308506544679403, + 0.014439131133258343, + 0.011806134134531021, + 0.03380893915891647, + 0.06416885554790497, + 0.05430710315704346, + -0.03258613124489784, + -0.030579276382923126, + -0.023772327229380608, + 0.12372585386037827, + 0.02314685843884945, + -0.0544075183570385, + -0.05280038341879845, + 0.016436295583844185, + -0.0444490909576416, + -0.006520816590636969, + -0.008584277704358101, + 0.031740956008434296, + 0.04188862442970276, + -0.008750460110604763, + -0.10833059996366501, + -0.05442196875810623, + 0.03239291161298752, + -0.08703356981277466, + 0.0047711823135614395, + -0.06967581808567047, + 0.03747133910655975, + 0.11157047748565674, + 0.017352882772684097, + -0.006289730779826641, + -0.049069903790950775, + -0.005863155238330364, + -0.0528264194726944, + -0.024261508136987686, + -0.0033458347897976637, + 0.04210058972239494, + -0.08488588035106659, + 0.004092587158083916, + -0.053820788860321045, + 0.059624847024679184, + -0.0436747744679451, + 0.09754639863967896, + 0.03522047400474548, + -0.0663733035326004, + -0.08282151818275452, + -0.0007431879639625549, + -0.005893544759601355, + 0.049697570502758026, + 0.026152510195970535, + 0.03760453313589096, + 0.046701349318027496, + -0.0530659519135952, + 0.08974557369947433, + 0.05037372559309006, + -0.03692547231912613, + -0.0663122832775116, + -0.04270852357149124, + -0.006302577909082174, + 0.03392454981803894, + 0.00201242184266448, + -0.04211777448654175, + 0.008807561360299587, + 0.03336133062839508, + -0.007241835352033377, + 0.0544072687625885, + 0.09891193360090256, + 0.04132698476314545, + -0.11022458970546722 + ] + }, + "p245_086.wav": { + "name": "p245", + "embedding": [ + 0.04058758541941643, + 0.05707496404647827, + -0.03836807608604431, + 0.03512593358755112, + -0.07383444905281067, + 0.04957398772239685, + -0.13017742335796356, + 0.11729548871517181, + -0.039957642555236816, + 0.12198658287525177, + -0.04513384401798248, + 0.1239967793226242, + -0.010964492335915565, + -0.19818654656410217, + -0.013189973309636116, + 0.05734149366617203, + -0.05365602672100067, + -0.0625680461525917, + -0.04966297373175621, + -0.034478046000003815, + 0.036917801946401596, + 0.05233831703662872, + 0.019359372556209564, + 0.0030397744849324226, + 0.020032258704304695, + 0.07939080893993378, + -0.009967454709112644, + 0.024669989943504333, + 0.001333344727754593, + -0.05349157005548477, + -0.048599258065223694, + 0.07821957767009735, + -0.06079249829053879, + -0.01427432894706726, + 0.036619942635297775, + -0.01747128553688526, + 0.0007379520684480667, + -0.05678967759013176, + -0.03972814604640007, + 0.02851865254342556, + -0.06608286499977112, + 0.07830791175365448, + 0.0477905198931694, + -0.015870993956923485, + 0.04767383635044098, + 0.008565939962863922, + -0.020001649856567383, + -0.045987483114004135, + -0.11187990009784698, + 0.15980158746242523, + 0.07865479588508606, + -0.012689968571066856, + -0.05196975916624069, + -0.054953932762145996, + 0.10646001994609833, + -0.011847546324133873, + -0.12508486211299896, + -0.04689028486609459, + 0.07448107749223709, + 0.14265106618404388, + -0.04204976186156273, + -0.03148014098405838, + 0.038656722754240036, + 0.10301309823989868, + 0.07791075110435486, + 0.0800962746143341, + 0.07613751292228699, + 0.11102531850337982, + -0.01735655963420868, + -0.006543383933603764, + 0.07973690330982208, + 0.07934500277042389, + 0.05118989571928978, + -0.012880037538707256, + 0.03483256697654724, + 0.020528405904769897, + -0.015322490595281124, + -0.01661631092429161, + -0.01214521937072277, + 0.004847847856581211, + 0.005531628616154194, + 0.008465563878417015, + 0.023781727999448776, + 0.03004276752471924, + -0.03144514933228493, + 0.07102768123149872, + 0.0543365404009819, + -0.003726797876879573, + 0.056550078094005585, + 0.024787262082099915, + 0.0032945151906460524, + 0.07655567675828934, + -0.08138968050479889, + -0.06683298945426941, + 0.03440267965197563, + 0.019296666607260704, + 0.009587163105607033, + 0.063373863697052, + 0.04588541015982628, + -0.018813274800777435, + 0.12973400950431824, + 0.04215530306100845, + -0.011943644843995571, + 0.03597428277134895, + -0.08418693393468857, + 0.1198873445391655, + 0.08880268037319183, + -0.029398974031209946, + 0.04533214494585991, + -0.049159400165081024, + 0.08031581342220306, + 0.05285089462995529, + -0.13597974181175232, + -0.06376269459724426, + 0.05149390548467636, + 0.006144902668893337, + -0.025638848543167114, + 0.1461046189069748, + -0.008281498216092587, + 0.040571462363004684, + 0.12188776582479477, + -0.08619432896375656, + -0.044897690415382385, + -0.01341365184634924, + 0.052110083401203156, + -0.08784531056880951, + 0.05693289265036583, + 0.049084704369306564, + -0.012311004102230072, + 0.022327056154608727, + 0.08460091054439545, + -0.02457287907600403, + -0.007772268261760473, + 0.0021988588850945234, + -0.027888190001249313, + 0.03187965601682663, + -0.011864447966217995, + -0.013593818061053753, + 0.06836052983999252, + 0.02206624671816826, + 0.03742603212594986, + -0.024825064465403557, + -0.0301041416823864, + -0.1429411917924881, + 0.03209402784705162, + 0.016581948846578598, + 0.09144237637519836, + -0.00959692057222128, + -0.005573159083724022, + -0.058278173208236694, + -0.09083827584981918, + 0.015277802012860775, + -0.01225945632904768, + 0.08049440383911133, + -0.03330737352371216, + -0.006423125043511391, + 0.08229725062847137, + 0.03271114453673363, + 0.006481239106506109, + -0.03171835467219353, + -0.04404463991522789, + 0.008224808610975742, + 0.05602450668811798, + -0.07359646260738373, + -0.07248391956090927, + -0.02017083391547203, + 0.04001403599977493, + -0.011114749126136303, + 0.050568774342536926, + 0.04193432256579399, + 0.02349749766290188, + 0.020095184445381165, + -0.0834217518568039, + 0.024718699976801872, + -0.09383046627044678, + -0.06108575314283371, + -0.01371628325432539, + -0.019321896135807037, + -0.022519215941429138, + 0.07915105670690536, + 0.01181795448064804, + 0.04354029893875122, + -0.03930105268955231, + -0.07850587368011475, + -0.07777340710163116, + 0.05252227932214737, + 0.0632658526301384, + -0.015045162290334702, + 0.03825882077217102, + 0.06574724614620209, + -0.026200678199529648, + 0.0372898206114769, + 0.051983561366796494, + 0.10803788900375366, + -0.01902872882783413, + 0.020945537835359573, + -0.0446934811770916, + 0.11168535053730011, + 0.06274493038654327, + -0.07197760790586472, + -0.05890105292201042, + -0.017712388187646866, + -0.0668000727891922, + 0.045169398188591, + -0.026235414668917656, + 0.007637351751327515, + 0.022234197705984116, + 0.02016567438840866, + -0.10075777024030685, + -0.08245828002691269, + 0.07092501223087311, + -0.06577587872743607, + -0.011416262947022915, + -0.0934334397315979, + 0.037599124014377594, + 0.10930037498474121, + 0.0385400652885437, + -0.02920175902545452, + -0.010879136621952057, + 0.039247818291187286, + -0.01921367272734642, + 0.026680922135710716, + 0.0700419545173645, + 0.04611950367689133, + -0.11677803099155426, + -0.030073177069425583, + -0.07577842473983765, + 0.0585419163107872, + -0.04171869158744812, + 0.14076575636863708, + 0.013987628743052483, + -0.0328177772462368, + -0.07807652652263641, + 0.049609191715717316, + -0.004282123409211636, + 0.06763955950737, + 0.04454671964049339, + 0.07316531240940094, + 0.06067637726664543, + -0.04748491942882538, + 0.11469197273254395, + 0.054574400186538696, + -0.040320541709661484, + -0.05957065522670746, + -0.0322323739528656, + -0.036504730582237244, + 0.03230755031108856, + 0.036879416555166245, + -0.08869340270757675, + -0.0110970139503479, + 0.030039120465517044, + -0.01634569838643074, + 0.052931975573301315, + 0.1340961903333664, + 0.06646884977817535, + -0.11248211562633514 + ] + }, + "p245_134.wav": { + "name": "p245", + "embedding": [ + 0.0622018463909626, + 0.1327560842037201, + -0.026491519063711166, + 0.03965924680233002, + -0.05983572453260422, + 0.07172872126102448, + -0.09572288393974304, + 0.15615679323673248, + -0.047941505908966064, + 0.11980122327804565, + -0.10109180957078934, + 0.14807407557964325, + -0.04070136696100235, + -0.1288943886756897, + -0.06004098430275917, + 0.04093494638800621, + -0.010518948547542095, + -0.011621727608144283, + -0.014310152269899845, + -0.013755956664681435, + 0.02872421219944954, + 0.009694254957139492, + 0.036946024745702744, + 0.029177136719226837, + 0.040951453149318695, + 0.063828244805336, + 0.0034961490891873837, + 0.06040937453508377, + 0.030641386285424232, + -0.03643089532852173, + -0.05544741451740265, + 0.11300627887248993, + -0.055516891181468964, + 0.017353275790810585, + 0.05894283950328827, + -0.00020205974578857422, + 0.0033030719496309757, + -0.04933089762926102, + -0.00725951325148344, + -0.016243144869804382, + -0.020947769284248352, + 0.06707493960857391, + 0.010141802951693535, + -0.03671390563249588, + 0.029064463451504707, + 0.027157649397850037, + 0.003513710107654333, + -0.026831332594156265, + -0.10181010514497757, + 0.1282554566860199, + 0.032813552767038345, + 0.016223134472966194, + -0.10427436232566833, + -0.05072477459907532, + 0.10793045908212662, + -0.0376259908080101, + -0.07871465384960175, + -0.0028020869940519333, + 0.05185255408287048, + 0.15715593099594116, + -0.03203558176755905, + -0.04067929834127426, + 0.01443856954574585, + 0.10073094069957733, + 0.08034796267747879, + 0.07018522918224335, + 0.09205205738544464, + 0.1086721271276474, + -0.025567198172211647, + 0.033587805926799774, + 0.05205640196800232, + 0.07386362552642822, + 0.07442335039377213, + -0.019369393587112427, + 0.008443720638751984, + -0.013719220645725727, + -0.007741993293166161, + 0.01937638595700264, + -0.03527840971946716, + -0.045300163328647614, + -0.024530448019504547, + 0.022466804832220078, + 0.00741222919896245, + 0.016732580959796906, + -0.04707795009016991, + 0.0869964212179184, + 0.03724443539977074, + -0.04334992915391922, + 0.06521935760974884, + 0.0508296936750412, + -0.02222064509987831, + 0.05124201253056526, + -0.10589244961738586, + -0.09038302302360535, + 0.036771975457668304, + -0.02868126891553402, + 0.040719956159591675, + 0.08264879882335663, + 0.05071950703859329, + 0.006061921827495098, + 0.10374876856803894, + 0.07461705058813095, + 0.014417007565498352, + 0.030950188636779785, + -0.0826287567615509, + 0.13508948683738708, + 0.10684458166360855, + -0.03642892464995384, + 0.04120572656393051, + -0.008325044065713882, + 0.061466529965400696, + 0.06510888040065765, + -0.1193639487028122, + -0.08827556669712067, + 0.003733537159860134, + 0.018154004588723183, + 0.017135079950094223, + 0.05855339393019676, + -0.031154703348875046, + 0.03954688087105751, + 0.08034920692443848, + -0.06683668494224548, + -0.04941023141145706, + -0.03574524074792862, + 0.03460447117686272, + -0.06021100655198097, + 0.0708598643541336, + 0.044335439801216125, + 0.019089361652731895, + -0.021764487028121948, + 0.07222854346036911, + 0.00030676904134452343, + -0.02399158477783203, + 0.04847247898578644, + -0.040297456085681915, + 0.0020639775320887566, + 0.002081210957840085, + -0.009715343825519085, + 0.041291698813438416, + 0.051991626620292664, + 0.05807889997959137, + 0.011871043592691422, + 0.019927164539694786, + -0.09270739555358887, + 0.007123466581106186, + 0.07272288203239441, + 0.05771661549806595, + -0.01963166706264019, + -0.04582394286990166, + -0.03658342361450195, + -0.03922621160745621, + 0.029612090438604355, + 0.031892791390419006, + 0.07143702358007431, + -0.02476927638053894, + 0.030063264071941376, + 0.11151249706745148, + 0.018040018156170845, + -0.005392676685005426, + -0.05694349855184555, + 0.005480976775288582, + 0.01041684951633215, + 0.05482897162437439, + -0.06139064580202103, + -0.10707433521747589, + -0.007486686110496521, + 0.013832524418830872, + -0.04370430111885071, + 0.07752937078475952, + 0.05068504810333252, + 0.005762046203017235, + 0.03755341097712517, + -0.03167432174086571, + 0.0015448546037077904, + -0.10362815111875534, + -0.047716014087200165, + -0.028951041400432587, + -0.030049197375774384, + -0.032629672437906265, + 0.05871205776929855, + 0.05865924060344696, + 0.07069949805736542, + 0.01280115358531475, + -0.059996623545885086, + -0.07138459384441376, + 0.05062780901789665, + 0.048659540712833405, + 0.02274874784052372, + 0.04370371997356415, + 0.06451734900474548, + -0.004164085723459721, + 0.08456026017665863, + 0.09698827564716339, + 0.07018941640853882, + -0.023288819938898087, + -0.010122159495949745, + -0.05788757652044296, + 0.057798102498054504, + 0.0836566835641861, + -0.11314018815755844, + -0.12190453708171844, + -0.06107761710882187, + -0.05114412680268288, + 0.03179720789194107, + -0.025040172040462494, + 0.03414640575647354, + 0.0466463640332222, + -0.027013324201107025, + -0.08368606865406036, + -0.11304448544979095, + 0.10386017709970474, + -0.05776321887969971, + 0.0014743907377123833, + -0.06786850839853287, + 0.03872167319059372, + 0.07316740602254868, + -0.011720423586666584, + -0.029916729778051376, + 0.013210982084274292, + 0.03754677623510361, + -0.0407559759914875, + -0.025794383138418198, + 0.04394083842635155, + 0.01615135371685028, + -0.09156452119350433, + 0.025174185633659363, + -0.055095139890909195, + 0.08706554770469666, + -0.03749625012278557, + 0.1771300882101059, + -0.007881375961005688, + -0.040389735251665115, + -0.0687192901968956, + 0.04410019516944885, + -0.040084898471832275, + 0.03894632309675217, + 0.04144362360239029, + 0.06238207966089249, + -0.012978958897292614, + -0.0763697549700737, + 0.11493854224681854, + 0.04401835426688194, + -0.07852423191070557, + -0.09453123807907104, + -0.07565627247095108, + -0.04914827644824982, + 0.026203107088804245, + 0.030564583837985992, + -0.06608007848262787, + -0.018777944147586823, + -0.00116734579205513, + -0.006987260654568672, + 0.06478210538625717, + 0.14419645071029663, + 0.06578686833381653, + -0.08597676455974579 + ] + }, + "p245_133.wav": { + "name": "p245", + "embedding": [ + 0.041297547519207, + 0.11455926299095154, + -0.0017132259672507644, + 0.018165865913033485, + -0.051963645964860916, + 0.09041957557201385, + -0.08692163974046707, + 0.12645292282104492, + -0.09143020957708359, + 0.15465213358402252, + -0.11593572795391083, + 0.11773064732551575, + -0.044806286692619324, + -0.1490412950515747, + -0.06706982851028442, + 0.03986232727766037, + -0.04833361506462097, + 0.002107993932440877, + -0.060350093990564346, + 0.0069448016583919525, + 0.05833254009485245, + 0.000788657576777041, + 0.03213661536574364, + -0.01207007747143507, + 0.021789170801639557, + 0.04163859784603119, + 0.03385450690984726, + 0.06263872981071472, + 0.04133098945021629, + -0.05485771596431732, + -0.03725240379571915, + 0.13898667693138123, + -0.02946937270462513, + 0.03784608840942383, + 0.0781920775771141, + 0.012042203918099403, + -0.0014045416610315442, + -0.06810173392295837, + -0.01753845065832138, + -0.02219734899699688, + -0.02109723538160324, + 0.04637330397963524, + 0.004315180238336325, + -0.009702122770249844, + 0.033445652574300766, + 0.023403994739055634, + -0.03825129196047783, + -0.03742963448166847, + -0.07289575785398483, + 0.1262144297361374, + 0.04913631081581116, + 0.004767424892634153, + -0.08466526865959167, + -0.08497320860624313, + 0.12530331313610077, + -0.010960602201521397, + -0.1129029244184494, + -0.030695561319589615, + 0.08174505084753036, + 0.18919098377227783, + -0.022884823381900787, + -0.012764216400682926, + -0.0019257356179878116, + 0.10391833633184433, + 0.021053628996014595, + 0.11531467735767365, + 0.0751236230134964, + 0.0809326320886612, + 0.04574631154537201, + 0.0760323777794838, + 0.05403928458690643, + 0.06185106188058853, + 0.03970938175916672, + -0.02811742015182972, + 0.039041414856910706, + -0.015278642065823078, + -0.028954897075891495, + 0.03921008110046387, + -0.05481412634253502, + -0.02577005885541439, + -0.03172075003385544, + 0.01496118400245905, + 0.02791183441877365, + -0.021887533366680145, + -0.026877062395215034, + 0.061779119074344635, + -0.008785966783761978, + -0.022177185863256454, + 0.053655318915843964, + 0.05277888476848602, + -0.010125143453478813, + 0.03967394307255745, + -0.06804991513490677, + -0.14738930761814117, + -0.012449276633560658, + -0.016071254387497902, + 0.011165747418999672, + 0.07467452436685562, + 0.036343421787023544, + -0.019686389714479446, + 0.08277130872011185, + 0.0648355633020401, + 0.008782033808529377, + 0.0366487056016922, + -0.11050742864608765, + 0.1022585779428482, + 0.08801715075969696, + -0.003631700063124299, + 0.016802899539470673, + -0.03087206557393074, + 0.10668429732322693, + 0.09522587060928345, + -0.13953015208244324, + -0.08506143093109131, + -0.00264726672321558, + -0.025648826733231544, + -0.0010603005066514015, + 0.06754474341869354, + -0.027455255389213562, + -0.008131668902933598, + 0.09003298729658127, + -0.0673074796795845, + -0.06193699687719345, + -0.04229079186916351, + 0.03137551620602608, + -0.04543914645910263, + 0.05138185992836952, + -0.004624051973223686, + 0.007637045346200466, + -0.03060484677553177, + 0.07636098563671112, + -0.019327733665704727, + -0.012097650207579136, + 0.053983524441719055, + -0.07345453649759293, + 0.042408209294080734, + -0.049985166639089584, + 0.008950160816311836, + 0.05210144445300102, + 0.08750709891319275, + 0.05141513794660568, + 0.002851310884580016, + -0.018281059339642525, + -0.04121723771095276, + -0.01046680472791195, + 0.055975887924432755, + 0.043200232088565826, + 0.012413250282406807, + -0.016545619815587997, + -0.027319665998220444, + -0.06217388063669205, + 0.03314356505870819, + -0.013571945950388908, + 0.09823563694953918, + 0.0019467358943074942, + 0.021671226248145103, + 0.09472833573818207, + -0.0051863593980669975, + -0.01598552241921425, + -0.07899544388055801, + -0.0031464819330722094, + 0.04760095104575157, + 0.052674226462841034, + -0.07419611513614655, + -0.05610281974077225, + 0.024660281836986542, + -0.0022799137514084578, + -0.04687836766242981, + 0.014581711031496525, + 0.02412720024585724, + 0.010095291770994663, + 0.06529437750577927, + -0.05785476788878441, + 0.004069725051522255, + -0.135610431432724, + -0.033472005277872086, + -0.02212948352098465, + -0.06666119396686554, + -0.011357763782143593, + 0.04767968878149986, + 0.02581382915377617, + 0.007326185703277588, + 0.04437337443232536, + -0.08830290287733078, + -0.061657555401325226, + 0.08468224108219147, + 0.05942381173372269, + 0.03753438964486122, + 0.060077324509620667, + 0.050926726311445236, + -0.01278261374682188, + 0.06519371271133423, + 0.08476236462593079, + 0.08517537266016006, + -0.0007953721797093749, + -0.012795460410416126, + -0.07919950038194656, + 0.07496115565299988, + 0.09045148640871048, + -0.11373654752969742, + -0.11356612294912338, + -0.039007291197776794, + -0.0497543029487133, + 0.04672514647245407, + -0.0340145118534565, + -0.00975661538541317, + 0.030717633664608, + -0.025635145604610443, + -0.09907827526330948, + -0.07132606953382492, + 0.13276441395282745, + -0.0745672658085823, + -0.028220923617482185, + -0.05113302171230316, + 0.02091464214026928, + 0.08047666400671005, + 0.01702745445072651, + -0.028631914407014847, + 0.034702155739068985, + 0.07751099765300751, + -0.10417625308036804, + -0.03942802548408508, + -0.004535287618637085, + -0.028360813856124878, + -0.07269437611103058, + 0.03828089311718941, + -0.06709221750497818, + 0.060136713087558746, + -0.07069261372089386, + 0.17005649209022522, + -0.0424695685505867, + -0.05571698769927025, + -0.06540583819150925, + 0.052116844803094864, + -0.038852546364068985, + 0.027352681383490562, + 0.05796901136636734, + 0.08096598833799362, + -0.018361283466219902, + -0.09400112181901932, + 0.13685202598571777, + 0.005040790420025587, + -0.022602172568440437, + -0.06846167892217636, + -0.04854939877986908, + -0.061454616487026215, + -0.023517979308962822, + -0.009991307742893696, + -0.06929834932088852, + 0.006569344084709883, + 0.0038476220797747374, + -0.026457427069544792, + 0.06944996118545532, + 0.13379625976085663, + 0.07714101672172546, + -0.07563582807779312 + ] + }, + "p245_129.wav": { + "name": "p245", + "embedding": [ + 0.05392615497112274, + 0.07443667948246002, + -0.009994728490710258, + -0.009014388546347618, + -0.02173648029565811, + 0.03859037905931473, + -0.12552936375141144, + 0.1256403923034668, + -0.06035454571247101, + 0.09997209906578064, + -0.06202982738614082, + 0.10489467531442642, + -0.005122889764606953, + -0.1571434736251831, + -0.0880635678768158, + 0.03198288381099701, + -0.045143015682697296, + -0.006307042203843594, + -0.027759509161114693, + -0.024430638179183006, + 0.03673839196562767, + 0.03499136120080948, + 0.020181884989142418, + -0.012590021826326847, + 0.04001505672931671, + 0.03888263180851936, + 0.028153423219919205, + 0.04097350686788559, + 0.027295127511024475, + 0.003928378224372864, + 0.002996165305376053, + 0.09662798047065735, + -0.018309295177459717, + 0.013687074184417725, + 0.07015502452850342, + 0.033664800226688385, + 0.004545565228909254, + -0.0794612467288971, + -0.02087850496172905, + 0.009411952458322048, + -0.045582108199596405, + 0.07155988365411758, + 0.040919363498687744, + -0.019065722823143005, + 0.0299101322889328, + 0.016979368403553963, + 0.0036395557690411806, + -0.07593900710344315, + -0.10309791564941406, + 0.15288719534873962, + 0.01870296709239483, + 0.047613222151994705, + -0.11891864240169525, + -0.06445339322090149, + 0.11014333367347717, + -0.03317048400640488, + -0.07327345013618469, + -0.020378394052386284, + 0.02845267578959465, + 0.17581988871097565, + -0.02416062355041504, + -0.027550997212529182, + 0.01721351221203804, + 0.10199615359306335, + 0.02705969847738743, + 0.04991358146071434, + 0.1079227477312088, + 0.06764909625053406, + 0.020355235785245895, + 0.04830589145421982, + 0.04662405699491501, + 0.0597914382815361, + 0.005850202403962612, + -0.04733363911509514, + 0.007627889513969421, + -0.003365917131304741, + -0.05620148777961731, + 0.011901435442268848, + -0.02279374748468399, + -0.019748002290725708, + -0.028799837455153465, + 0.030615627765655518, + 0.002194210421293974, + 0.0270709041506052, + -0.050927430391311646, + 0.05480382591485977, + -0.015551891177892685, + -0.04787268489599228, + 0.05460184067487717, + 0.07094497978687286, + -0.011764146387577057, + 0.013380622491240501, + -0.055755071341991425, + -0.10712259262800217, + -0.020806077867746353, + -0.01791190728545189, + 0.006997612304985523, + 0.06865952908992767, + 0.037363409996032715, + -0.019053038209676743, + 0.08073477447032928, + 0.05926159396767616, + -0.004894784651696682, + 0.0075787147507071495, + -0.09441211819648743, + 0.0782688558101654, + 0.10550709813833237, + -0.01682424172759056, + 0.017590994015336037, + -0.0476725772023201, + 0.05361957848072052, + 0.08424115926027298, + -0.12738361954689026, + -0.07545700669288635, + 0.07856108248233795, + 0.03635145723819733, + 0.05592794343829155, + 0.09744493663311005, + -0.005688908509910107, + -0.0019249757751822472, + 0.06625314056873322, + -0.06221519783139229, + -0.05811835080385208, + -0.05217359960079193, + 0.054616786539554596, + -0.04010135307908058, + 0.05409979820251465, + 0.04592623561620712, + 0.008029206655919552, + -0.04225748032331467, + 0.05206568166613579, + 0.010796322487294674, + -0.0030347637366503477, + -0.016415055841207504, + 0.018820129334926605, + 0.06336290389299393, + -0.01777966320514679, + -0.024717368185520172, + 0.037478700280189514, + 0.0927240252494812, + 0.02607731707394123, + 0.05414276197552681, + -0.04490037262439728, + -0.07333119958639145, + -0.010936434380710125, + 0.09308279305696487, + 0.05582552030682564, + -0.040384046733379364, + -0.05247347429394722, + -0.05684541165828705, + -0.021842073649168015, + 0.0004816511645913124, + 0.012069856747984886, + 0.09166248887777328, + -0.0019981549121439457, + 0.03308132290840149, + 0.11047571897506714, + -0.038139186799526215, + -0.007936987094581127, + 0.0028473716229200363, + 0.03919798135757446, + 0.026521438732743263, + 0.023982921615242958, + -0.03588304668664932, + -0.08112575113773346, + -0.0022799649741500616, + -0.001674160361289978, + -0.0358114168047905, + 0.0005139485001564026, + 0.010183852165937424, + -0.0015047881752252579, + 0.0435851514339447, + -0.0954829528927803, + 0.022527482360601425, + -0.16106975078582764, + -0.00900324247777462, + -0.015356677584350109, + -0.04914845898747444, + -0.006328769493848085, + 0.07458657026290894, + 0.04068043455481529, + 0.02095233090221882, + 0.012564263306558132, + -0.11711712181568146, + -0.024375971406698227, + 0.06816166639328003, + 0.09943650662899017, + 0.013466029427945614, + 0.0071571338921785355, + 0.028654180467128754, + 0.023938678205013275, + 0.032016463577747345, + 0.07807129621505737, + 0.05729295313358307, + -0.018133021891117096, + -0.04137236252427101, + -0.0445544607937336, + 0.09838218986988068, + 0.02983623556792736, + -0.09720556437969208, + -0.0902697890996933, + -0.027857154607772827, + -0.0417763777077198, + -0.0021216869354248047, + 0.00452845823019743, + 0.044691868126392365, + 0.014556209556758404, + -0.04080378636717796, + -0.11652612686157227, + -0.08267544209957123, + 0.05755245313048363, + -0.05149652063846588, + -0.01796053722500801, + -0.044719576835632324, + 0.02303094044327736, + 0.09662321209907532, + -0.003799034282565117, + 0.023075276985764503, + -0.022207390516996384, + -0.016091376543045044, + -0.09067900478839874, + -0.06383467465639114, + -0.02560262195765972, + -0.007304156199097633, + -0.08523023128509521, + 0.041381530463695526, + -0.05000466853380203, + 0.11790335178375244, + -0.06316035985946655, + 0.13298948109149933, + -0.01973225176334381, + -0.07779376953840256, + -0.08542152494192123, + -0.01643693633377552, + -0.02898472547531128, + 0.055288925766944885, + 0.044188156723976135, + 0.05746244639158249, + -0.022932549938559532, + -0.06478139758110046, + 0.09215466678142548, + 0.06123930588364601, + -0.035009823739528656, + -0.06930521130561829, + -0.0554036945104599, + 0.0020948778837919235, + 0.008704611100256443, + -0.007246280089020729, + -0.013204630464315414, + 0.007811293005943298, + -0.002652811584994197, + -0.04926186054944992, + 0.0598335862159729, + 0.10606255382299423, + 0.054550208151340485, + -0.12116880714893341 + ] + }, + "p245_113.wav": { + "name": "p245", + "embedding": [ + 0.05266711488366127, + 0.08582263439893723, + -0.02592119202017784, + 0.019899480044841766, + -0.06496009230613708, + 0.048812996596097946, + -0.1588859111070633, + 0.13600994646549225, + -0.030165988951921463, + 0.13593433797359467, + -0.04642648249864578, + 0.12987945973873138, + -0.020480554550886154, + -0.18912239372730255, + -0.021262919530272484, + 0.06009237468242645, + -0.02741141803562641, + -0.05052557960152626, + -0.015856029465794563, + -0.027928199619054794, + 0.02803090214729309, + 0.042347684502601624, + 0.025782620534300804, + 0.0022609729785472155, + 0.041953157633543015, + 0.07605547457933426, + -0.007571537978947163, + 0.03295883908867836, + -0.0030406098812818527, + -0.05938256159424782, + -0.03306674212217331, + 0.08316744863986969, + -0.06765448302030563, + -0.004874638747423887, + 0.033529132604599, + -0.014325467869639397, + 0.0013069804990664124, + -0.06559905409812927, + -0.018419045954942703, + 0.010221763513982296, + -0.04732197895646095, + 0.08943614363670349, + 0.026139071211218834, + -0.02501012571156025, + 0.023983489722013474, + 0.022603865712881088, + 0.002640419639647007, + -0.04471921920776367, + -0.11350669711828232, + 0.15213394165039062, + 0.05256342515349388, + 0.008560108952224255, + -0.07780388742685318, + -0.06634317338466644, + 0.09941860288381577, + -0.010311364196240902, + -0.09696295112371445, + -0.052800457924604416, + 0.06888774782419205, + 0.14631260931491852, + -0.03388986364006996, + -0.05362073704600334, + 0.03783417493104935, + 0.11092883348464966, + 0.07482509315013885, + 0.06419740617275238, + 0.0879727154970169, + 0.11161946505308151, + -0.02705576829612255, + -0.004465590231120586, + 0.05596315488219261, + 0.07429435104131699, + 0.04771411418914795, + -0.014407447539269924, + 0.02334466576576233, + -0.007317695766687393, + -0.011422003619372845, + -0.019164983183145523, + -0.015534501522779465, + -0.027109500020742416, + -0.012050880119204521, + 0.0062237330712378025, + 0.002427445026114583, + 0.042277999222278595, + -0.030984140932559967, + 0.047915127128362656, + 0.059436503797769547, + -0.025418559089303017, + 0.08329557627439499, + 0.034678295254707336, + 0.012928245589137077, + 0.07167655229568481, + -0.10910872370004654, + -0.05550219118595123, + 0.049642592668533325, + 0.001558721880428493, + 0.020475173369050026, + 0.06777223199605942, + 0.0511762760579586, + -0.015133535489439964, + 0.13422654569149017, + 0.048582110553979874, + -0.00784805603325367, + 0.014216885901987553, + -0.08218632638454437, + 0.1341009885072708, + 0.08056965470314026, + -0.035237401723861694, + 0.05655606836080551, + -0.04740045219659805, + 0.04677413031458855, + 0.05319509282708168, + -0.13338381052017212, + -0.08521207422018051, + 0.033410973846912384, + 0.01281578466296196, + -0.024215031415224075, + 0.14557114243507385, + -0.00869741104543209, + 0.04875190928578377, + 0.10435070097446442, + -0.09193342179059982, + -0.06268054246902466, + -0.013657070696353912, + 0.049857206642627716, + -0.09539420157670975, + 0.07522916793823242, + 0.06951335072517395, + -0.012824811972677708, + 0.02431079000234604, + 0.07977151870727539, + -0.004391202703118324, + 0.007424943149089813, + -0.003942327573895454, + -0.030067792162299156, + 0.015791919082403183, + -0.002340142149478197, + -0.008628172799944878, + 0.0364588238298893, + 0.021641982719302177, + 0.05973050743341446, + -0.004062551073729992, + -0.021350668743252754, + -0.14606045186519623, + 0.019084783270955086, + 0.03022613190114498, + 0.08562620729207993, + -0.017911944538354874, + -0.03051462396979332, + -0.04280445724725723, + -0.06004221737384796, + 0.002937659854069352, + 0.0018669666023924947, + 0.08669067174196243, + -0.016913872212171555, + 0.006382003892213106, + 0.11146383732557297, + 0.046541500836610794, + 0.012049530632793903, + -0.02926841750741005, + -0.030022265389561653, + 0.004241586197167635, + 0.057848334312438965, + -0.08068471401929855, + -0.07798247039318085, + -0.0290053877979517, + 0.04081055894494057, + -0.008505836129188538, + 0.08182427287101746, + 0.06039590761065483, + 0.021579179912805557, + 0.014276997186243534, + -0.07375432550907135, + 0.020761828869581223, + -0.07047093659639359, + -0.06523757427930832, + -0.011761642061173916, + -0.015990277752280235, + -0.045896563678979874, + 0.08601028472185135, + 0.028392210602760315, + 0.06888741999864578, + -0.04887698218226433, + -0.05965172126889229, + -0.0852140411734581, + 0.03415220230817795, + 0.05710722133517265, + -0.025758277624845505, + 0.02026914246380329, + 0.056293901056051254, + -0.019123535603284836, + 0.04892539605498314, + 0.06510180234909058, + 0.09337292611598969, + -0.0375477597117424, + 0.02333034574985504, + -0.052902404218912125, + 0.10347604751586914, + 0.08357144892215729, + -0.07872869819402695, + -0.06853903084993362, + -0.03240904584527016, + -0.0754864513874054, + 0.032725293189287186, + -0.014659631997346878, + 0.029350321739912033, + 0.02840963937342167, + -0.004350689705461264, + -0.10283681005239487, + -0.1052875965833664, + 0.07420540601015091, + -0.07010527700185776, + 0.008501279167830944, + -0.09442303329706192, + 0.04686177894473076, + 0.09679373353719711, + 0.040300656110048294, + -0.024278780445456505, + -0.02721174620091915, + 0.033263299614191055, + -0.010030240751802921, + 0.02370413951575756, + 0.07773198187351227, + 0.05175931379199028, + -0.10856864601373672, + -0.016282837837934494, + -0.07674230635166168, + 0.06133342161774635, + -0.03762954846024513, + 0.15692093968391418, + 0.02711891569197178, + -0.048004016280174255, + -0.09299994260072708, + 0.027254121378064156, + -0.020146537572145462, + 0.06552023440599442, + 0.03268613666296005, + 0.07247371971607208, + 0.05437099561095238, + -0.055424656718969345, + 0.10389180481433868, + 0.06420666724443436, + -0.03823890537023544, + -0.07564503699541092, + -0.05463288351893425, + -0.03448047488927841, + 0.05037635564804077, + 0.015081064775586128, + -0.09624598175287247, + -0.016583899036049843, + 0.03790034353733063, + 0.007881008088588715, + 0.06808155030012131, + 0.13471582531929016, + 0.061022914946079254, + -0.11671235412359238 + ] + }, + "p245_125.wav": { + "name": "p245", + "embedding": [ + 0.04512891545891762, + 0.10432637482881546, + -0.026215000078082085, + 0.03385285288095474, + -0.08149534463882446, + 0.10970335453748703, + -0.11565253883600235, + 0.1056872308254242, + -0.06380829960107803, + 0.1443595141172409, + -0.042785510420799255, + 0.11578189581632614, + -0.016190458089113235, + -0.17944610118865967, + -0.03558603301644325, + 0.06630606949329376, + -0.034195397049188614, + -0.005926445126533508, + -0.047937747091054916, + -0.0010083622764796019, + 0.01739398017525673, + 0.021829038858413696, + 0.04105433076620102, + -0.04893742874264717, + 0.07487490028142929, + 0.052493225783109665, + 0.008113069459795952, + 0.04738616198301315, + 0.002095246920362115, + -0.09708696603775024, + -0.06657794117927551, + 0.11366607248783112, + -0.059582456946372986, + 0.0235900841653347, + 0.053876057267189026, + -0.007159947883337736, + 0.010989903472363949, + -0.0587448813021183, + 0.011473600752651691, + 0.021653857082128525, + -0.006518281996250153, + 0.09408535063266754, + 0.03983663022518158, + -0.002927956636995077, + 0.011783753521740437, + 0.016308235004544258, + -0.0052011096850037575, + -0.04499087110161781, + -0.09166138619184494, + 0.16865481436252594, + 0.023754121735692024, + -0.026250839233398438, + -0.07726902514696121, + -0.09046296030282974, + 0.10517049580812454, + -0.005890835542231798, + -0.10882264375686646, + -0.06222473084926605, + 0.06772004067897797, + 0.1498308628797531, + -0.0031964019872248173, + -0.03413783013820648, + -0.009236854501068592, + 0.10852149873971939, + 0.011532392352819443, + 0.10324481129646301, + 0.03358490765094757, + 0.09139684587717056, + 0.019114602357149124, + 0.05334613099694252, + 0.03903999924659729, + 0.059925973415374756, + 0.003664352698251605, + -0.019248846918344498, + 0.034947361797094345, + -0.05856955796480179, + -0.019251830875873566, + 0.015843171626329422, + -0.0069058844819664955, + -0.023239202797412872, + -0.018647603690624237, + 0.005984857678413391, + 0.02566693350672722, + -0.009859294630587101, + -0.03400120139122009, + 0.04397953674197197, + 0.014859405346214771, + -0.01965768076479435, + 0.07944491505622864, + 0.06610117852687836, + -0.010992285795509815, + 0.03727010264992714, + -0.06801246851682663, + -0.10969861596822739, + 0.03757087141275406, + 0.02315947599709034, + 0.01897449977695942, + 0.06112867221236229, + 0.020707352086901665, + -0.01669279672205448, + 0.08805934339761734, + 0.06901668757200241, + 0.013307984918355942, + 0.030067598447203636, + -0.07806509733200073, + 0.13966026902198792, + 0.07341732084751129, + 0.020065249875187874, + 0.06132183223962784, + -0.038206715136766434, + 0.08776731789112091, + 0.07752826064825058, + -0.14298465847969055, + -0.09741400927305222, + -0.0070975469425320625, + -0.024273836985230446, + -0.02258213609457016, + 0.09308410435914993, + -0.024363458156585693, + -0.0012514310656115413, + 0.08733444660902023, + -0.09904124587774277, + -0.05525195598602295, + -0.015873271971940994, + 0.030854692682623863, + -0.0808526873588562, + 0.03413348272442818, + 0.046862296760082245, + -0.04644785448908806, + 0.013428938575088978, + 0.07309228181838989, + 0.003995553124696016, + 0.029969770461320877, + 0.065598264336586, + -0.039192795753479004, + 0.026482343673706055, + -0.026106547564268112, + 0.025038346648216248, + 0.07799410820007324, + 0.03637745976448059, + 0.07396122813224792, + -0.024779651314020157, + -0.0132305808365345, + -0.09724399447441101, + 0.0023832041770219803, + 0.04702654108405113, + 0.047006089240312576, + -0.02175857312977314, + -0.011672073043882847, + -0.03722044825553894, + -0.10271601378917694, + 0.052550312131643295, + 0.00657836627215147, + 0.11014967411756516, + 0.01651615835726261, + 0.005980789661407471, + 0.10929179191589355, + 0.04564369469881058, + -0.014958723448216915, + -0.07665686309337616, + -0.02384403720498085, + 0.03758100047707558, + 0.038161713629961014, + -0.09398920834064484, + -0.04468710348010063, + 0.010997436009347439, + -0.0045196665450930595, + -0.0298407394438982, + 0.046191826462745667, + 0.0697917491197586, + 0.02932918816804886, + 0.06488846242427826, + -0.05145473778247833, + 0.010845218785107136, + -0.06489353626966476, + -0.022748468443751335, + -0.03324192017316818, + -0.06173117458820343, + -0.06745723634958267, + 0.1137159988284111, + 0.025899073109030724, + 0.024418696761131287, + -0.02072727493941784, + -0.03085111640393734, + -0.03956538811326027, + 0.06374966353178024, + 0.037675824016332626, + 0.006032956298440695, + 0.03632340580224991, + 0.028634967282414436, + -0.02249719761312008, + 0.06109248474240303, + 0.09133797883987427, + 0.07837530970573425, + -0.032901983708143234, + 0.012392661534249783, + -0.06136041507124901, + 0.11161164194345474, + 0.09009142965078354, + -0.1054024025797844, + -0.0950327143073082, + -0.04629550501704216, + -0.06075979396700859, + 0.04947635531425476, + -0.048837777227163315, + -0.004198533017188311, + 0.02499806322157383, + -0.01532420702278614, + -0.07993901520967484, + -0.10609419643878937, + 0.09526405483484268, + -0.05893123894929886, + -0.017346439883112907, + -0.05751090124249458, + 0.04680261015892029, + 0.06576312333345413, + 0.06334643810987473, + -0.041471004486083984, + 0.007180421147495508, + 0.07584094256162643, + -0.06248830631375313, + 0.013814223930239677, + 0.0633963942527771, + 0.006562592461705208, + -0.06464602053165436, + 0.02832934632897377, + -0.06338690221309662, + 0.0677010789513588, + -0.06531787663698196, + 0.20250418782234192, + -0.011792201548814774, + -0.05663381516933441, + -0.057102687656879425, + 0.059156037867069244, + -0.0693090632557869, + 0.016006743535399437, + 0.04589393734931946, + 0.060533832758665085, + 0.046223729848861694, + -0.04861221835017204, + 0.11730561405420303, + 0.03099760413169861, + -0.017490530386567116, + -0.05587955191731453, + -0.04201593995094299, + -0.04608694091439247, + 0.06122569739818573, + 0.00919948611408472, + -0.1138974204659462, + 0.018559828400611877, + 0.05176904797554016, + 0.011245728470385075, + 0.07479051500558853, + 0.1446010321378708, + 0.08672527223825455, + -0.07816220819950104 + ] + }, + "p245_142.wav": { + "name": "p245", + "embedding": [ + 0.044091422110795975, + 0.07743866741657257, + -0.008428291417658329, + 0.030143287032842636, + -0.020201601088047028, + 0.08146895468235016, + -0.16609877347946167, + 0.10837343335151672, + -0.054010625928640366, + 0.14748694002628326, + -0.05846453085541725, + 0.08908722549676895, + -0.00979151576757431, + -0.21999913454055786, + -0.022897057235240936, + 0.06719061732292175, + -0.04753673076629639, + -0.022768575698137283, + -0.024456845596432686, + 0.02589966543018818, + 0.031428031623363495, + 0.01232027355581522, + 0.012082988396286964, + -0.009386545047163963, + 0.027116162702441216, + 0.04895694553852081, + -0.0206296406686306, + 0.038302868604660034, + -0.00407725153490901, + -0.012179161421954632, + -0.016930075362324715, + 0.1352418214082718, + -0.06851913034915924, + 0.001655557076446712, + 0.07899977266788483, + 0.0037230250891298056, + -0.04877312481403351, + -0.05199562385678291, + 0.0016954276943579316, + -0.023792948573827744, + -0.07425396889448166, + 0.07345152646303177, + 0.030001258477568626, + 0.009505374357104301, + 0.04755253344774246, + 0.015463468618690968, + -0.012125799432396889, + -0.035624660551548004, + -0.08789891749620438, + 0.11724990606307983, + 0.058107439428567886, + 0.00503843929618597, + -0.06582161784172058, + -0.06505601853132248, + 0.08617187291383743, + 0.015430380590260029, + -0.11312363296747208, + -0.06555827707052231, + 0.09202402830123901, + 0.16443733870983124, + -0.02339477278292179, + -0.019992755725979805, + 0.01177819725126028, + 0.10955788940191269, + 0.05824762210249901, + 0.13660144805908203, + 0.04057910665869713, + 0.10317262262105942, + 0.026862991973757744, + 0.03629329428076744, + 0.08264689147472382, + 0.036499351263046265, + 0.04852892458438873, + -0.047179389744997025, + 0.02811608836054802, + -0.00022103595256339759, + -0.030083760619163513, + -0.0045753479935228825, + -0.014025572687387466, + -0.00016731731011532247, + -0.001117827370762825, + -0.024101480841636658, + 0.0016721455613151193, + 0.03795992210507393, + -0.014634850434958935, + 0.008282522670924664, + 0.06142982468008995, + -0.021815435960888863, + 0.06625853478908539, + 0.06827973574399948, + 0.012328526936471462, + 0.06346876919269562, + -0.0868157371878624, + -0.08818034082651138, + 0.031383052468299866, + 0.006197072099894285, + 0.0005468082381412387, + 0.057138171046972275, + 0.04718642681837082, + -0.0053126877173781395, + 0.08353392779827118, + 0.03018593229353428, + 0.005062393378466368, + 0.046734608709812164, + -0.10961950570344925, + 0.11949074268341064, + 0.045873645693063736, + -0.017947908490896225, + 0.03215749189257622, + -0.050151146948337555, + 0.06887584179639816, + 0.1098480075597763, + -0.13919194042682648, + -0.046134889125823975, + 0.05155736953020096, + -0.024865809828042984, + -0.03445601835846901, + 0.14712075889110565, + 0.0021482466254383326, + -0.015834737569093704, + 0.0877358615398407, + -0.09279146045446396, + -0.06910572201013565, + -0.025697927922010422, + 0.03996589407324791, + -0.1131061464548111, + 0.06024720519781113, + 0.021332452073693275, + -0.008160749450325966, + -0.020695582032203674, + 0.09601693600416183, + -0.015088719315826893, + -0.011547433212399483, + -0.006499287206679583, + -0.018710995092988014, + 0.06689240038394928, + -0.03599360212683678, + 0.03126445412635803, + 0.035963233560323715, + -0.0025377669371664524, + 0.054147783666849136, + -0.0023579730186611414, + -0.01101789902895689, + -0.09605683386325836, + -0.009743058122694492, + 0.05777978524565697, + 0.08672703057527542, + -0.01718573272228241, + -0.00951284822076559, + -0.044255468994379044, + -0.09024734795093536, + 0.05528480187058449, + -0.0391538143157959, + 0.08561825007200241, + 0.04492386803030968, + -0.020393267273902893, + 0.1072118803858757, + 0.006132496986538172, + 0.026425933465361595, + -0.061918579041957855, + -0.009826728142797947, + 0.03627658635377884, + 0.0687282383441925, + -0.11699320375919342, + -0.03933601453900337, + 0.0048781465739011765, + 0.00863227155059576, + -0.0027903656009584665, + 0.012056820094585419, + 0.05353269726037979, + 0.023276688531041145, + 0.018112661316990852, + -0.07971055805683136, + 0.013795309700071812, + -0.10655240714550018, + -0.07264188677072525, + -0.03917001187801361, + -0.048284098505973816, + -0.0007066698744893074, + 0.07883720099925995, + -0.012125194072723389, + 0.003237518249079585, + -0.035836875438690186, + -0.06985735893249512, + -0.08264351636171341, + 0.061692140996456146, + 0.07784304767847061, + -0.01511172205209732, + 0.03541022911667824, + 0.02296164073050022, + -0.050339046865701675, + 0.019817473366856575, + 0.04740717262029648, + 0.13291172683238983, + -0.047311920672655106, + 0.023881183937191963, + -0.07386672496795654, + 0.10570187866687775, + 0.1119840145111084, + -0.08409196883440018, + -0.07879561930894852, + 0.025941869243979454, + -0.044020798057317734, + 0.024145582690835, + -0.06075059622526169, + -0.021853962913155556, + 0.02493392489850521, + -0.03968885540962219, + -0.08674146980047226, + -0.10423794388771057, + 0.08893847465515137, + -0.08463059365749359, + -0.023387346416711807, + -0.08728238940238953, + 0.039996951818466187, + 0.042412009090185165, + 0.030743541195988655, + -0.06090109050273895, + 0.012743172235786915, + 0.054827190935611725, + -0.04240451008081436, + -0.01562053058296442, + 0.05694739520549774, + -0.005967938341200352, + -0.1200098916888237, + -0.02897501550614834, + -0.05907841771841049, + 0.08186513185501099, + -0.07347573339939117, + 0.15074819326400757, + -0.03388827666640282, + -0.06125997006893158, + -0.06807532906532288, + 0.01246599294245243, + 0.019586147740483284, + 0.03979422524571419, + 0.051129817962646484, + 0.08657147735357285, + 0.02677091769874096, + -0.03884980082511902, + 0.11124187707901001, + 0.014219792559742928, + 0.02706090174615383, + -0.053942833095788956, + -0.017855612561106682, + -0.04901871457695961, + 0.028953639790415764, + -0.007471634075045586, + -0.12662649154663086, + 0.017938710749149323, + 0.046976376324892044, + -0.01961124874651432, + 0.028681958094239235, + 0.11557317525148392, + 0.04550383612513542, + -0.10988728702068329 + ] + }, + "p245_071.wav": { + "name": "p245", + "embedding": [ + 0.05807351693511009, + 0.0887608751654625, + -0.018991809338331223, + 0.026218712329864502, + -0.06738467514514923, + 0.06312461942434311, + -0.11771702021360397, + 0.13595294952392578, + -0.044640056788921356, + 0.13572809100151062, + -0.07144707441329956, + 0.12897056341171265, + -0.021063080057501793, + -0.17505864799022675, + -0.035056471824645996, + 0.051293086260557175, + -0.055298082530498505, + -0.036122217774391174, + -0.04738318920135498, + -0.03124941885471344, + 0.036118894815444946, + 0.03986750915646553, + 0.030062025412917137, + 0.008247941732406616, + 0.030315328389406204, + 0.07848373055458069, + -0.0013130693696439266, + 0.040251947939395905, + 0.011462969705462456, + -0.07026667892932892, + -0.0469355434179306, + 0.09271174669265747, + -0.05489548295736313, + 0.00905666220933199, + 0.04792410135269165, + -0.011996923014521599, + 0.0028056292794644833, + -0.061709921807050705, + -0.02898849919438362, + 0.012501413002610207, + -0.044021159410476685, + 0.07473638653755188, + 0.03001815639436245, + -0.02070397138595581, + 0.030848098918795586, + 0.0298746507614851, + -0.008098583668470383, + -0.0543169341981411, + -0.10264801234006882, + 0.16388052701950073, + 0.06808345019817352, + -0.0044543808326125145, + -0.06020621582865715, + -0.06678085029125214, + 0.107156902551651, + -0.021159198135137558, + -0.11694003641605377, + -0.03393065929412842, + 0.07648836076259613, + 0.1490037739276886, + -0.04737032949924469, + -0.0404522530734539, + 0.027859574183821678, + 0.11551656574010849, + 0.05921501666307449, + 0.08507843315601349, + 0.08967580646276474, + 0.10563677549362183, + -0.02200581505894661, + 0.017706282436847687, + 0.06513924896717072, + 0.07775908708572388, + 0.07296648621559143, + -0.006723630242049694, + 0.03007356822490692, + -0.0008583361050114036, + -0.013761173002421856, + -0.004629965405911207, + -0.02577507123351097, + -0.012327159754931927, + -0.01200829353183508, + 0.009919436648488045, + 0.02142050862312317, + 0.015394649468362331, + -0.024856513366103172, + 0.07157839834690094, + 0.03046455793082714, + -0.012260248884558678, + 0.06340380758047104, + 0.025663509964942932, + 0.001453674165531993, + 0.06762465089559555, + -0.08565789461135864, + -0.08278287947177887, + 0.03236193209886551, + -0.0008894894272089005, + 0.02836447022855282, + 0.07022207230329514, + 0.048096250742673874, + -0.01548395212739706, + 0.12118487805128098, + 0.055480197072029114, + -0.00924451369792223, + 0.0221734456717968, + -0.09177523851394653, + 0.12997305393218994, + 0.0964130312204361, + -0.030925147235393524, + 0.04553816840052605, + -0.04472580552101135, + 0.08717553317546844, + 0.06115412712097168, + -0.14649495482444763, + -0.07435113191604614, + 0.020150555297732353, + 0.006237914320081472, + -0.015351386740803719, + 0.10890376567840576, + -0.025419116020202637, + 0.03974146023392677, + 0.11107337474822998, + -0.08194974064826965, + -0.04027193784713745, + -0.019799618050456047, + 0.04232291132211685, + -0.0882759541273117, + 0.056093111634254456, + 0.05033014714717865, + -0.00853983499109745, + 0.018487893044948578, + 0.08929496258497238, + -0.01683453470468521, + -0.018333125859498978, + 0.01930348202586174, + -0.04238429293036461, + 0.00946978572756052, + -0.015492500737309456, + -0.0059771365486085415, + 0.04728580266237259, + 0.04450833797454834, + 0.03942327946424484, + -0.007866519503295422, + -0.0298530962318182, + -0.11994849890470505, + 0.028765495866537094, + 0.027658436447381973, + 0.07270434498786926, + -0.00797295942902565, + -0.015379039570689201, + -0.03664929419755936, + -0.06578201055526733, + 0.015182415023446083, + -0.0008842225070111454, + 0.06897900998592377, + -0.030236070975661278, + 0.007262660190463066, + 0.09760522097349167, + 0.03429961949586868, + -0.004371834918856621, + -0.049546971917152405, + -0.03016752004623413, + 0.01798054948449135, + 0.056147199124097824, + -0.07348093390464783, + -0.07664106786251068, + -0.0060156118124723434, + 0.031485747545957565, + -0.02355564385652542, + 0.06153585761785507, + 0.0442175529897213, + 0.01591101847589016, + 0.027632173150777817, + -0.058986809104681015, + 0.008831396698951721, + -0.10336852073669434, + -0.06577182561159134, + -0.007753692101687193, + -0.02752024494111538, + -0.02377166412770748, + 0.07231250405311584, + 0.01875799521803856, + 0.05377378687262535, + -0.02304949425160885, + -0.07208409905433655, + -0.0737532526254654, + 0.05691802501678467, + 0.06316342949867249, + 0.0032272636890411377, + 0.03649712726473808, + 0.06256909668445587, + -0.01961454749107361, + 0.061703138053417206, + 0.06847445666790009, + 0.10836170613765717, + -0.021329190582036972, + 0.024009298533201218, + -0.06080351397395134, + 0.08838444948196411, + 0.06952297687530518, + -0.08604490756988525, + -0.08216174691915512, + -0.03451235219836235, + -0.06587493419647217, + 0.045420825481414795, + -0.019218463450670242, + 0.010467138141393661, + 0.028323298320174217, + 0.007349638268351555, + -0.09139257669448853, + -0.08464118093252182, + 0.0891350656747818, + -0.063229501247406, + -0.004910801537334919, + -0.08516650646924973, + 0.04788077995181084, + 0.10579688847064972, + 0.03687785565853119, + -0.01713266223669052, + -0.00036536407424136996, + 0.04605476185679436, + -0.03225358948111534, + 0.004635300952941179, + 0.04822668433189392, + 0.03494442254304886, + -0.10395854711532593, + -0.004747320432215929, + -0.07803529500961304, + 0.0534597747027874, + -0.04090527817606926, + 0.15619845688343048, + 0.005727827083319426, + -0.043876927345991135, + -0.07576988637447357, + 0.04942955821752548, + -0.026885464787483215, + 0.05324612185359001, + 0.046804629266262054, + 0.06528818607330322, + 0.041673608124256134, + -0.06905834376811981, + 0.11932535469532013, + 0.041629157960414886, + -0.04979165643453598, + -0.06603531539440155, + -0.05023183673620224, + -0.04068956524133682, + 0.019361453130841255, + 0.015713181346654892, + -0.0864185094833374, + -0.019584305584430695, + 0.020179200917482376, + -0.014209382236003876, + 0.06364451348781586, + 0.14248047769069672, + 0.06541594862937927, + -0.106376051902771 + ] + }, + "p245_063.wav": { + "name": "p245", + "embedding": [ + 0.03105643019080162, + 0.08554035425186157, + 0.02433938905596733, + 0.019092461094260216, + -0.0036414898931980133, + -0.01012413576245308, + -0.029033754020929337, + 0.04582410305738449, + 0.06644009798765182, + 0.02422577328979969, + -0.08776270598173141, + 0.0483083538711071, + -0.056201156228780746, + -0.11252660304307938, + 0.02410043217241764, + 0.021764587610960007, + -0.04266195371747017, + 0.002342715859413147, + -0.040058959275484085, + -0.022652525454759598, + -0.022885702550411224, + -0.020170196890830994, + 0.030278079211711884, + -0.021206647157669067, + -0.036231908947229385, + 0.027360834181308746, + -0.0344056710600853, + -0.011803285218775272, + -0.018552079796791077, + 0.009720159694552422, + -0.001115383580327034, + 0.023647086694836617, + -0.00857304222881794, + -0.013584845699369907, + 0.009184879250824451, + -0.02673809602856636, + -0.009676256217062473, + -0.04102008789777756, + -0.06477876752614975, + 0.04573163762688637, + -0.0870649516582489, + 0.03277049958705902, + 0.046226851642131805, + -0.08387885242700577, + 0.08200499415397644, + 0.015560347586870193, + -0.0662885382771492, + 0.0077109914273023605, + -0.10351966321468353, + 0.0825604498386383, + 0.02445063367486, + 0.012079034931957722, + -0.0478934645652771, + 0.032485127449035645, + 0.06814618408679962, + -0.009565731510519981, + -0.060235340148210526, + -0.03071798011660576, + 0.04650052636861801, + 0.012404244393110275, + 0.010495691560208797, + -0.0052714878693223, + -0.01747097261250019, + 0.010691734030842781, + 0.07982178032398224, + 0.030011223629117012, + 0.0594479963183403, + 0.10784439742565155, + -0.03956669941544533, + 0.02430770732462406, + 0.05397195741534233, + -0.01737232506275177, + 0.037402622401714325, + -0.014770830981433392, + -0.00738118588924408, + 0.000979708507657051, + -0.014488596469163895, + -0.029111109673976898, + 0.01994919404387474, + -0.013119641691446304, + 0.0511932335793972, + -0.02710065245628357, + 0.023998023942112923, + 0.010849249549210072, + -0.04423877224326134, + -0.009255893528461456, + 0.10118195414543152, + 0.06053862348198891, + 0.04538895934820175, + 0.04245872050523758, + -0.030890226364135742, + 0.08711840212345123, + -0.05158989876508713, + -0.07107601314783096, + -0.03224097192287445, + -0.022391056641936302, + -0.0006772801280021667, + 0.036936912685632706, + 0.03606313467025757, + -0.018891457468271255, + 0.08996282517910004, + -0.0126413032412529, + 0.004430259577929974, + 0.021129967644810677, + -0.05228395760059357, + 0.014107000082731247, + 0.049310408532619476, + -0.028827577829360962, + 0.02147824689745903, + 0.03756196051836014, + 0.07700464129447937, + 0.0568147674202919, + -0.011988703161478043, + 0.04279327020049095, + 0.012430463917553425, + 0.020698750391602516, + -0.0008149035274982452, + 0.10153654217720032, + 0.00040434766560792923, + 0.031080074608325958, + 0.14214791357517242, + -0.05370105803012848, + 0.02049648016691208, + 0.043775737285614014, + -0.031228037551045418, + -0.014731254428625107, + 0.040111713111400604, + 0.014631280675530434, + -0.0007974607869982719, + 0.013930161483585835, + 0.02547520026564598, + 0.019608493894338608, + 0.0004660021513700485, + -0.07362757623195648, + 0.008002600632607937, + 0.03063669241964817, + -0.006437936797738075, + -0.008299417793750763, + 0.04793029651045799, + 0.04554450511932373, + -0.0013055391609668732, + 0.027068475261330605, + -0.04203086346387863, + -0.0392727367579937, + 0.0451681949198246, + 0.004858033731579781, + 0.01825796253979206, + 0.037626806646585464, + -0.008093742653727531, + -0.0695081353187561, + -0.00869007408618927, + 0.07364516705274582, + -0.04527127742767334, + 0.05107257515192032, + 0.025569718331098557, + -0.03791782259941101, + 0.04115404188632965, + 0.024648400023579597, + 0.009502576664090157, + -0.03840293735265732, + -0.11246615648269653, + -0.017843477427959442, + 0.03647778928279877, + -0.09027460217475891, + -0.029078323394060135, + -0.06343092769384384, + -0.01789630390703678, + 0.01277280692011118, + -0.015472803264856339, + 0.06734797358512878, + -0.021008610725402832, + -0.03386368229985237, + -0.0638267919421196, + 0.015611624345183372, + -0.003619130700826645, + -0.09523309022188187, + 0.039222851395606995, + 0.009249047376215458, + 0.035757191479206085, + 0.054674141108989716, + -0.03741035610437393, + -0.008628038689494133, + -0.045913130044937134, + -0.06450282782316208, + 0.019198831170797348, + 0.037115760147571564, + -0.007926956750452518, + -0.012477781623601913, + 0.055236831307411194, + 0.06221051514148712, + -0.057778459042310715, + 0.018592093139886856, + -0.01754257269203663, + 0.06259797513484955, + -0.045437343418598175, + 0.010842733085155487, + 0.04513061046600342, + 0.04570592939853668, + 0.047213684767484665, + -0.030376357957720757, + -0.09519802778959274, + -0.04083241522312164, + -0.02832810766994953, + 0.014120924286544323, + 0.002846464514732361, + -0.012063547968864441, + 0.022236157208681107, + 0.0012738360092043877, + -0.018109116703271866, + -0.10475285351276398, + -0.015032557770609856, + 0.010158160701394081, + -0.011292430572211742, + -0.06401592493057251, + 0.00038685090839862823, + -0.02081780880689621, + 0.03182196617126465, + -0.021548328921198845, + 0.04672554135322571, + 0.015559805557131767, + 0.00895227026194334, + -0.02360260672867298, + 0.014144625514745712, + 0.05879434943199158, + 0.02050899714231491, + -0.060546405613422394, + -0.05004870146512985, + 0.058372870087623596, + 0.039183273911476135, + 0.0634753406047821, + 0.0581124909222126, + 0.024736538529396057, + -0.01376645639538765, + 0.03098839521408081, + -0.01460226345807314, + 0.027210760861635208, + 0.018743272870779037, + 0.03199074789881706, + 0.04323304444551468, + -0.008895537815988064, + 0.07203303277492523, + 0.03568592295050621, + -0.0032968265004456043, + -0.001707201823592186, + 0.018686160445213318, + -0.09120447933673859, + -0.04628748074173927, + 0.017872925847768784, + -0.045394644141197205, + 0.005250438116490841, + 0.015030574053525925, + 0.05049777776002884, + 0.003858765121549368, + 0.07143180072307587, + 0.04214390367269516, + -0.0038417577743530273 + ] + }, + "p245_013.wav": { + "name": "p245", + "embedding": [ + 0.04180122911930084, + 0.09214162826538086, + -0.023953890427947044, + 0.033022597432136536, + -0.05570778250694275, + 0.062306858599185944, + -0.12841181457042694, + 0.15746766328811646, + -0.02411716803908348, + 0.13524729013442993, + -0.06339174509048462, + 0.12076590955257416, + -0.041479554027318954, + -0.15628328919410706, + 0.0033186450600624084, + 0.05365518853068352, + -0.0064680688083171844, + -0.02130661904811859, + -0.024971408769488335, + -0.01502863597124815, + 0.027534110471606255, + 0.022711116820573807, + 0.011029191315174103, + -0.006697091739624739, + 0.03608196973800659, + 0.06516958773136139, + -0.018898561596870422, + 0.029230449348688126, + -0.005271849688142538, + -0.05269036814570427, + -0.027185529470443726, + 0.09689103066921234, + -0.07007506489753723, + 0.014870780520141125, + 0.05317511409521103, + -0.021288137882947922, + -0.031244633719325066, + -0.04405716806650162, + 0.0020173387601971626, + -0.02095952257514, + -0.049467217177152634, + 0.07526838034391403, + 0.01684637740254402, + -0.012001371011137962, + 0.03228865563869476, + 0.027417033910751343, + -0.010017581284046173, + -0.026068396866321564, + -0.10345882177352905, + 0.1320187747478485, + 0.054364752024412155, + 0.010060951113700867, + -0.09031840413808823, + -0.050685565918684006, + 0.088133804500103, + -0.005484725348651409, + -0.09754212200641632, + -0.04370247572660446, + 0.07120070606470108, + 0.13908639550209045, + -0.02591714821755886, + -0.037886153906583786, + 0.019719060510396957, + 0.09992881864309311, + 0.07219521701335907, + 0.08328386396169662, + 0.07846216857433319, + 0.12435492128133774, + -0.019095713272690773, + 0.016601845622062683, + 0.04097136855125427, + 0.060054175555706024, + 0.06731104850769043, + -0.0005042863776907325, + 0.009632173925638199, + -0.016460828483104706, + -0.007587812375277281, + -0.019918402656912804, + -0.03549594432115555, + -0.04073633253574371, + -0.010511688888072968, + 0.011776662431657314, + 0.02103639952838421, + 0.035723209381103516, + -0.014737311750650406, + 0.05293334648013115, + 0.07555471360683441, + -0.03248133510351181, + 0.07212894409894943, + 0.019678011536598206, + -0.0035595810040831566, + 0.06935756653547287, + -0.12128299474716187, + -0.06480127573013306, + 0.03666117787361145, + -0.004663382191210985, + 0.02658022567629814, + 0.07021257281303406, + 0.04215478524565697, + -0.0014582121511921287, + 0.1214357241988182, + 0.03208373486995697, + 0.007184488233178854, + 0.02348063886165619, + -0.08203645050525665, + 0.14015400409698486, + 0.07637452334165573, + -0.03448845446109772, + 0.052705369889736176, + -0.050920527428388596, + 0.052040498703718185, + 0.05532774329185486, + -0.1277979612350464, + -0.06570499390363693, + 0.007321244105696678, + 0.0015962962061166763, + -0.036100488156080246, + 0.1262112259864807, + 0.004486396908760071, + 0.04735985025763512, + 0.10633707046508789, + -0.10624785721302032, + -0.058018118143081665, + -0.005772040691226721, + 0.04285059869289398, + -0.07732734829187393, + 0.06460559368133545, + 0.05450254678726196, + -0.006709379609674215, + 0.03220319747924805, + 0.07729875296354294, + 0.002653898438438773, + 0.007862737402319908, + 0.017341790720820427, + -0.0407961905002594, + 0.009697271510958672, + -0.020843302831053734, + -0.0047683995217084885, + 0.021697912365198135, + 0.022755347192287445, + 0.07159145176410675, + -0.018902845680713654, + -0.0014484189450740814, + -0.11145545542240143, + 0.008788513019680977, + 0.044541746377944946, + 0.0721859261393547, + -0.0292716845870018, + -0.020181458443403244, + -0.02958027832210064, + -0.06776988506317139, + 0.008942861109972, + -0.0021678556222468615, + 0.06922096014022827, + -0.017078066244721413, + 0.006485714577138424, + 0.10922037065029144, + 0.047116126865148544, + 0.008538180962204933, + -0.07208286225795746, + -0.0340455062687397, + -0.0003438859130255878, + 0.058403000235557556, + -0.09053274244070053, + -0.07285749912261963, + -0.01625024899840355, + 0.028661159798502922, + -0.03577844426035881, + 0.07629077881574631, + 0.05391363427042961, + 0.036884114146232605, + 0.013693151995539665, + -0.04572390764951706, + 0.010387314483523369, + -0.07715493440628052, + -0.07679317891597748, + -0.0039046690799295902, + -0.016595548018813133, + -0.03808900713920593, + 0.07443471252918243, + 0.029606353491544724, + 0.06747093796730042, + -0.027109559625387192, + -0.049743857234716415, + -0.09094046801328659, + 0.043254464864730835, + 0.031138062477111816, + -0.03484842926263809, + 0.03799951449036598, + 0.057091549038887024, + -0.04655960202217102, + 0.03534773737192154, + 0.07292725145816803, + 0.0973801463842392, + -0.035579096525907516, + 0.020460793748497963, + -0.0753767341375351, + 0.08986330032348633, + 0.1107315644621849, + -0.07787105441093445, + -0.08640953153371811, + -0.039389558136463165, + -0.0650918260216713, + 0.027072690427303314, + -0.039555057883262634, + 0.004868770018219948, + 0.030602451413869858, + -0.00993249099701643, + -0.09708236902952194, + -0.09578721225261688, + 0.08067167550325394, + -0.07769184559583664, + 0.005996673833578825, + -0.0971374660730362, + 0.04981131851673126, + 0.06969193369150162, + 0.0295806135982275, + -0.034254394471645355, + -0.017549563199281693, + 0.05788266286253929, + -0.01689348928630352, + 0.02332819625735283, + 0.07809992879629135, + 0.0437905415892601, + -0.09219998121261597, + -0.013689766637980938, + -0.052776336669921875, + 0.0472794733941555, + -0.031283989548683167, + 0.15503309667110443, + 0.011733030900359154, + -0.04290162771940231, + -0.07679995894432068, + 0.03731664642691612, + -0.0027612466365098953, + 0.04682622104883194, + 0.02213919721543789, + 0.06984446942806244, + 0.04407970607280731, + -0.05545263737440109, + 0.12399067729711533, + 0.03447185084223747, + -0.03532817214727402, + -0.06159738823771477, + -0.07154671847820282, + -0.056981466710567474, + 0.02826017700135708, + -0.0011807818664237857, + -0.10187993943691254, + -0.015239959582686424, + 0.02550121769309044, + 0.008778824470937252, + 0.05148731917142868, + 0.1295362412929535, + 0.062025539577007294, + -0.10440461337566376 + ] + }, + "p245_422.wav": { + "name": "p245", + "embedding": [ + 0.04541833698749542, + 0.08458312600851059, + -0.023454783484339714, + 0.034486714750528336, + -0.06569331139326096, + 0.08166154474020004, + -0.10306773334741592, + 0.11541111022233963, + -0.06664577126502991, + 0.1469326764345169, + -0.0744980201125145, + 0.1275518238544464, + -0.02101374790072441, + -0.17484790086746216, + -0.03702579811215401, + 0.046783193945884705, + -0.04963590204715729, + -0.020609663799405098, + -0.05518731102347374, + -0.008572538383305073, + 0.05503934249281883, + 0.04530587047338486, + 0.03069922886788845, + -0.02644139900803566, + 0.029758132994174957, + 0.05602380633354187, + 0.01148210372775793, + 0.0443878248333931, + 0.021111946552991867, + -0.09415147453546524, + -0.05215606093406677, + 0.10799876600503922, + -0.042590439319610596, + 0.024378152564167976, + 0.04700938239693642, + 0.006542799063026905, + 0.007808975875377655, + -0.06589578837156296, + -0.02965022251009941, + 0.014180677011609077, + -0.044283993542194366, + 0.06340132653713226, + 0.018022162839770317, + -0.016951337456703186, + 0.03702714294195175, + 0.005523263942450285, + -0.026546133682131767, + -0.03932574391365051, + -0.09015718102455139, + 0.1703866869211197, + 0.05058049410581589, + -0.0029137905221432447, + -0.0669962540268898, + -0.09811115264892578, + 0.1144866794347763, + 0.0038611034397035837, + -0.13156317174434662, + -0.030452024191617966, + 0.06977283954620361, + 0.1672186404466629, + -0.019561922177672386, + -0.04077700898051262, + 0.020243890583515167, + 0.10603959113359451, + 0.033650953322649, + 0.091997429728508, + 0.07575692236423492, + 0.09621387720108032, + 0.0177758801728487, + 0.03607472777366638, + 0.060398396104574203, + 0.08784779906272888, + 0.05488348379731178, + -0.015069113112986088, + 0.03863956034183502, + 8.72766540851444e-05, + -0.02677016332745552, + 0.012962518259882927, + -0.028015250340104103, + -0.015588689595460892, + -0.005776535719633102, + 0.013448293320834637, + 0.030180932953953743, + 0.00013139439397491515, + -0.030962733551859856, + 0.056462615728378296, + 0.02322574146091938, + -0.012342063710093498, + 0.05526026338338852, + 0.046231746673583984, + 0.0170885156840086, + 0.059908606112003326, + -0.07249534130096436, + -0.12434734404087067, + 0.0189268309623003, + 0.012780689634382725, + 0.02083045430481434, + 0.06770552694797516, + 0.039627399295568466, + -0.01924307458102703, + 0.10678678005933762, + 0.04480630159378052, + 0.004858614411205053, + 0.026508526876568794, + -0.09574019908905029, + 0.10585805773735046, + 0.10635103285312653, + -0.00851711817085743, + 0.037962574511766434, + -0.05263345688581467, + 0.10930723696947098, + 0.07997693121433258, + -0.14693857729434967, + -0.09290163964033127, + 0.018383167684078217, + -0.00992563832551241, + -0.0005949775222688913, + 0.11755628883838654, + -0.018640587106347084, + 0.02285652421414852, + 0.10849317163228989, + -0.1019386574625969, + -0.04690127819776535, + -0.03197425231337547, + 0.038750652223825455, + -0.0705902948975563, + 0.06172307953238487, + 0.02591230720281601, + -0.012785526923835278, + -0.003375417785719037, + 0.07257199287414551, + -0.03204205259680748, + 0.016749585047364235, + 0.013025358319282532, + -0.05999693647027016, + 0.024329418316483498, + -0.04753658547997475, + -0.004451957996934652, + 0.07646813988685608, + 0.04985387995839119, + 0.05346887931227684, + -0.014890183694660664, + -0.03708735108375549, + -0.11680256575345993, + 0.02105340175330639, + 0.0380379743874073, + 0.04715924710035324, + -0.011000190861523151, + -0.01658296398818493, + -0.029534200206398964, + -0.08115171641111374, + 0.04553832486271858, + -0.016616538166999817, + 0.09122822433710098, + 0.0007307507330551744, + 0.0025862623006105423, + 0.09746529906988144, + 0.01971001923084259, + -0.011201451532542706, + -0.04757167771458626, + -0.05075792968273163, + 0.01659035123884678, + 0.04615657031536102, + -0.09459192305803299, + -0.06831562519073486, + -0.006062419153749943, + 0.005153947044163942, + -0.02177676372230053, + 0.03420368582010269, + 0.05226865038275719, + 0.01881447620689869, + 0.050769686698913574, + -0.06105195730924606, + 0.004163816571235657, + -0.12745454907417297, + -0.06377451866865158, + -0.01025293581187725, + -0.055922988802194595, + -0.008037387393414974, + 0.08714110404253006, + 0.010349174961447716, + 0.014007600955665112, + -0.019033897668123245, + -0.06697788834571838, + -0.06847860664129257, + 0.06912989914417267, + 0.054943978786468506, + 0.026518283411860466, + 0.050358060747385025, + 0.0540132150053978, + -0.01333160325884819, + 0.06103567034006119, + 0.06090788170695305, + 0.10781397670507431, + -0.008715350180864334, + 0.015866965055465698, + -0.07559799402952194, + 0.11775265634059906, + 0.08472425490617752, + -0.07624869793653488, + -0.10165652632713318, + -0.040690235793590546, + -0.07324263453483582, + 0.061560120433568954, + -0.0384230874478817, + -0.0031766362953931093, + 0.026019444689154625, + -0.0035079438239336014, + -0.10405293107032776, + -0.07224126160144806, + 0.09929147362709045, + -0.052750762552022934, + -0.030151432380080223, + -0.0856558158993721, + 0.0414586067199707, + 0.09855987131595612, + 0.043341271579265594, + -0.03213178738951683, + 0.01844930462539196, + 0.07316546142101288, + -0.06688538193702698, + 0.00011240405001444742, + 0.03938597813248634, + 0.006907101254910231, + -0.0756271556019783, + -0.001042670919559896, + -0.0773075670003891, + 0.05040000006556511, + -0.07534458488225937, + 0.15776090323925018, + -0.02002742886543274, + -0.06325960159301758, + -0.07376483827829361, + 0.07833678275346756, + -0.019484220072627068, + 0.03947871923446655, + 0.05043086037039757, + 0.0736052617430687, + 0.03817128762602806, + -0.08851241320371628, + 0.11513213813304901, + 0.03098997473716736, + -0.02461356669664383, + -0.0550229586660862, + -0.04713433235883713, + -0.039751727133989334, + 0.019792353734374046, + -0.003768391441553831, + -0.07755888998508453, + 0.004410837776958942, + 0.022804660722613335, + 0.0012865568278357387, + 0.052790626883506775, + 0.13204078376293182, + 0.055120617151260376, + -0.09807848185300827 + ] + }, + "p245_349.wav": { + "name": "p245", + "embedding": [ + 0.08540891110897064, + 0.058250218629837036, + -0.012711707502603531, + 0.010913546197116375, + -0.02710677497088909, + 0.047694385051727295, + -0.124262735247612, + 0.09863723814487457, + 0.014355293475091457, + 0.10110175609588623, + -0.09421265125274658, + 0.08098426461219788, + 0.0105329230427742, + -0.13205063343048096, + -0.01683698408305645, + 0.02207673154771328, + -0.029234804213047028, + -0.011948125436902046, + -0.04459882900118828, + -0.02646157145500183, + 0.026781944558024406, + 0.05505087971687317, + 0.02969173714518547, + -0.028447303920984268, + 0.011826466768980026, + 0.047629959881305695, + 0.017836060374975204, + 0.030722439289093018, + 0.014373427256941795, + -0.019731616601347923, + -0.010528886690735817, + 0.09963102638721466, + -0.04415366053581238, + -0.001232187612913549, + 0.039728373289108276, + 0.012414194643497467, + 0.009998729452490807, + -0.08705490082502365, + -0.01833634451031685, + 0.02830887958407402, + -0.028729084879159927, + 0.08252543210983276, + 0.05862324684858322, + -0.022307252511382103, + 0.016683407127857208, + 0.03279050439596176, + -0.002284369198605418, + -0.05492330715060234, + -0.09989649057388306, + 0.18919336795806885, + 0.04894007369875908, + 0.009525242261588573, + -0.08266939967870712, + -0.028124278411269188, + 0.06982710212469101, + -0.01275735255330801, + -0.0371808260679245, + -0.02138627879321575, + 0.041986849159002304, + 0.1095627099275589, + -0.01373211294412613, + -0.056958239525556564, + 0.021656101569533348, + 0.08172081410884857, + 0.017425764352083206, + 0.04288431629538536, + 0.09412529319524765, + 0.11123912781476974, + -0.02966512367129326, + 0.020743966102600098, + 0.058004822582006454, + 0.06339043378829956, + 0.06896809488534927, + -0.015414141118526459, + 0.052423786371946335, + -0.011913759633898735, + -0.03395117074251175, + 0.0209461972117424, + -0.025050632655620575, + -0.03093639388680458, + 0.039338916540145874, + -0.007561462931334972, + 0.029064171016216278, + 0.057590946555137634, + -0.08605705201625824, + 0.03638822212815285, + 0.017086384817957878, + 0.011760610155761242, + 0.06750627607107162, + 0.017311399802565575, + 0.02671937644481659, + 0.030181407928466797, + -0.06563965976238251, + -0.0993516594171524, + 0.04442785307765007, + -0.004955397453159094, + 0.04499300569295883, + 0.04858509823679924, + 0.042385734617710114, + -0.025584038347005844, + 0.10022928565740585, + 0.03266632556915283, + -0.02193629741668701, + 0.0061015053652226925, + -0.06473364681005478, + 0.11887188255786896, + 0.12711608409881592, + -0.0025452065747231245, + 0.021680917590856552, + -0.059343963861465454, + 0.05260802060365677, + 0.03638646379113197, + -0.11722113192081451, + -0.04973914474248886, + 0.03135228902101517, + 0.040642909705638885, + 0.03446685150265694, + 0.10699605196714401, + -0.015008322894573212, + 0.030230766162276268, + 0.06898210942745209, + -0.07640878856182098, + -0.030434798449277878, + 0.0009467800846323371, + 0.0144145917147398, + -0.06574729084968567, + 0.01355134230107069, + 0.02871314063668251, + -0.011575380340218544, + -0.03486074507236481, + 0.07009276002645493, + -0.007925139740109444, + 0.0034914433490484953, + -0.02545424923300743, + 0.022998027503490448, + 0.06354846805334091, + -0.004102764185518026, + -0.024549957364797592, + 0.024519838392734528, + 0.042749207466840744, + 0.03245797008275986, + 0.03332022204995155, + -0.0439610593020916, + -0.13172119855880737, + 0.0188288651406765, + 0.0338139608502388, + 0.05362704396247864, + -0.03647772967815399, + -0.04939907789230347, + -0.052901264280080795, + -0.049329664558172226, + 0.02882273867726326, + -0.00579820154234767, + 0.03838112950325012, + 0.032717250287532806, + -0.029096631333231926, + 0.09640783071517944, + -0.008007340133190155, + -0.0013703161384910345, + -0.02021518163383007, + -0.015804030001163483, + 0.03113214671611786, + 0.04158685728907585, + -0.047837287187576294, + -0.0662064403295517, + 0.001580905169248581, + -0.003128214506432414, + -0.022414717823266983, + -0.011353373527526855, + 0.03561578691005707, + -0.01849271170794964, + 0.028660621494054794, + -0.09624510258436203, + 0.00881007220596075, + -0.11597937345504761, + -0.04871399328112602, + 0.013783697038888931, + -0.0026244446635246277, + 0.009489571675658226, + 0.07479843497276306, + -0.0009749364107847214, + 0.04950837418437004, + -0.04377108812332153, + -0.06294356286525726, + -0.02207951806485653, + 0.06318537890911102, + 0.0710412859916687, + -0.007000393234193325, + 0.03631216287612915, + 0.04741024971008301, + 0.019181789830327034, + 0.038925912231206894, + 0.06555253267288208, + 0.08878957480192184, + -0.018117303028702736, + -0.016201388090848923, + -0.014072326943278313, + 0.11503031104803085, + 0.0418236069381237, + -0.05530969426035881, + -0.05751148983836174, + -0.015735020861029625, + -0.0547705814242363, + 0.02074793539941311, + -0.0044256290420889854, + 0.020954011008143425, + 0.02769204042851925, + 0.005833758972585201, + -0.08535482734441757, + -0.05664476007223129, + 0.03385096788406372, + -0.03923582285642624, + -0.009810577146708965, + -0.07013048976659775, + 0.04954316467046738, + 0.0873485654592514, + 0.04243951290845871, + -0.02536085806787014, + -0.027801496908068657, + -0.013402402400970459, + -0.06600793451070786, + -0.05737914890050888, + -0.01806335151195526, + 0.03436524048447609, + -0.10731378197669983, + 0.016827620565891266, + -0.053686272352933884, + 0.04782935231924057, + -0.04589269682765007, + 0.10324844717979431, + 0.017581896856427193, + -0.054719746112823486, + -0.06637399643659592, + 0.025925684720277786, + -0.0315590426325798, + 0.04078938066959381, + 0.05448117107152939, + -0.009613792411983013, + 0.02574933134019375, + -0.08420148491859436, + 0.09530393779277802, + 0.03864520788192749, + -0.03345613181591034, + -0.06460580229759216, + -0.028467323631048203, + -0.020778222009539604, + 0.03040323406457901, + 0.01706008054316044, + -0.04301028698682785, + -0.003909021615982056, + 0.02198522910475731, + -0.02423027902841568, + 0.0343119315803051, + 0.09058769047260284, + 0.04472474008798599, + -0.096591055393219 + ] + }, + "p245_298.wav": { + "name": "p245", + "embedding": [ + 0.0783153623342514, + 0.04486734792590141, + -0.03558306023478508, + 0.022604607045650482, + -0.009468507021665573, + 0.017579689621925354, + -0.1448608785867691, + 0.09454167634248734, + -0.010854416526854038, + 0.09866137057542801, + -0.08153223991394043, + 0.07843281328678131, + 0.005925238132476807, + -0.1220955103635788, + -0.022552667185664177, + 0.04597381874918938, + -0.003340328112244606, + -0.0003471421077847481, + -0.05397111549973488, + 0.002467063721269369, + 0.013333065435290337, + 0.05771683529019356, + 0.02660403586924076, + -0.044326797127723694, + 0.024812573567032814, + 0.034753669053316116, + -0.0035345316864550114, + 0.015890037640929222, + -0.004101975355297327, + 0.02681456133723259, + 0.03311733528971672, + 0.10977243632078171, + -0.02149936929345131, + -0.0034764958545565605, + 0.03331802785396576, + 0.03492150083184242, + -0.017748737707734108, + -0.10053358227014542, + -0.006926415022462606, + -0.01801607757806778, + -0.0489988848567009, + 0.0686577633023262, + 0.05895029753446579, + -0.02180906943976879, + 0.026191536337137222, + -0.006195317953824997, + -0.020656749606132507, + -0.06300091743469238, + -0.11293397098779678, + 0.1733628511428833, + 0.010862482711672783, + 0.061366863548755646, + -0.12394580990076065, + -0.013097794726490974, + 0.058895308524370193, + -0.003234550356864929, + -0.035752613097429276, + -0.07516436278820038, + 0.041185539215803146, + 0.15332958102226257, + -0.00027687568217515945, + -0.04494452476501465, + 0.030546151101589203, + 0.09159915149211884, + 0.0491509884595871, + 0.04296111315488815, + 0.10902520269155502, + 0.09630227833986282, + 0.009345638565719128, + 0.04124707728624344, + 0.0423772856593132, + 0.038456812500953674, + 0.02613762952387333, + -0.025760576128959656, + 0.02131805010139942, + -0.0170186348259449, + -0.04316383972764015, + 0.006306009367108345, + -0.020465513691306114, + -0.05683024600148201, + 0.010927809402346611, + -0.004765205085277557, + 0.02153712511062622, + 0.07214502990245819, + -0.0712527334690094, + 0.012937184423208237, + 0.06659115105867386, + -0.0567387230694294, + 0.06816545128822327, + 0.06045649200677872, + 0.0018454701639711857, + -0.011259032413363457, + -0.051385410130023956, + -0.10195751488208771, + 0.008097678422927856, + 0.0003301333636045456, + 0.024047812446951866, + 0.02176598086953163, + 0.03327599912881851, + -0.019416116178035736, + 0.08248540014028549, + -0.008758355863392353, + 0.0007432121783494949, + -0.013671837747097015, + -0.06470733880996704, + 0.1097816675901413, + 0.11527879536151886, + -0.014673611149191856, + 0.013993321917951107, + -0.04987140744924545, + -0.01517330389469862, + 0.07111507654190063, + -0.09263627976179123, + -0.050832316279411316, + 0.055070918053388596, + 0.009448597207665443, + 0.04152873903512955, + 0.11458305269479752, + 0.039318718016147614, + 0.013146838173270226, + 0.06974419206380844, + -0.10073088109493256, + -0.06746795773506165, + -0.005582009442150593, + 0.02534407004714012, + -0.060782793909311295, + 0.028066866099834442, + 0.06245073676109314, + 0.0065525611862540245, + -0.044309474527835846, + 0.05730561167001724, + 0.015031469985842705, + 0.018446076661348343, + -0.05952349305152893, + 0.02918555960059166, + 0.09582728147506714, + -0.012697113677859306, + -0.03522792458534241, + 0.03355211764574051, + 0.04821883514523506, + 0.03775961697101593, + 0.032743506133556366, + -0.02601339854300022, + -0.11340316385030746, + -0.005859032738953829, + 0.08502575010061264, + 0.054179828613996506, + -0.05415614694356918, + -0.027379555627703667, + -0.0590558797121048, + -0.03867267817258835, + 0.021324295550584793, + -0.013695325702428818, + 0.060611508786678314, + 0.03834274411201477, + -0.007643892429769039, + 0.11931717395782471, + -0.04876114800572395, + 0.03685218095779419, + -0.01933169923722744, + 0.03703108802437782, + 0.0433482751250267, + 0.037367917597293854, + -0.04029347747564316, + -0.07037602365016937, + 0.0024285546969622374, + 0.010377885773777962, + -0.022722166031599045, + -0.00872567854821682, + 0.029660653322935104, + -0.021610666066408157, + 0.0057167490012943745, + -0.08704697340726852, + 0.023718245327472687, + -0.11360763013362885, + -0.012324569746851921, + 0.034791380167007446, + -0.037861838936805725, + 0.0048785824328660965, + 0.0975361168384552, + 0.030398281291127205, + 0.02705276757478714, + -0.03759271651506424, + -0.10856139659881592, + -0.0357990600168705, + 0.059820253401994705, + 0.08740724623203278, + -0.049302391707897186, + -0.005269133485853672, + 0.0003327936865389347, + 0.026355082169175148, + -0.012095901183784008, + 0.055634740740060806, + 0.06892257183790207, + -0.040863633155822754, + -0.07823437452316284, + -0.0519237220287323, + 0.11780060827732086, + 0.06420783698558807, + -0.07833965122699738, + -0.053266607224941254, + -0.009619832038879395, + -0.045403797179460526, + -0.012149225920438766, + -0.01588856428861618, + 0.013819454237818718, + 0.062056638300418854, + -0.05083910748362541, + -0.14196781814098358, + -0.10112844407558441, + 0.03565697371959686, + -0.05574406683444977, + -0.0027304021641612053, + -0.07112748175859451, + 0.02799573540687561, + 0.046260084956884384, + 0.0164666585624218, + -0.014325562864542007, + -0.03065035678446293, + -0.039814673364162445, + -0.10131550580263138, + -0.04837861657142639, + -0.010866813361644745, + 0.015578078106045723, + -0.0769130066037178, + 5.078595131635666e-05, + -0.056136466562747955, + 0.08581120520830154, + -0.049361880868673325, + 0.11011503636837006, + 0.008481668308377266, + -0.06276503205299377, + -0.09720103442668915, + -0.01675868220627308, + -0.0160441305488348, + 0.06392525881528854, + 0.047983601689338684, + 0.021097492426633835, + 0.029247887432575226, + -0.0867052972316742, + 0.06496419757604599, + 0.07208430767059326, + -0.0005047102458775043, + -0.07958857715129852, + -0.0334341861307621, + -0.020782334730029106, + 0.040011532604694366, + -0.016867419704794884, + -0.007381606847047806, + 0.0317048579454422, + 0.025594156235456467, + -0.02639741078019142, + 0.053974978625774384, + 0.06923414766788483, + 0.0375593937933445, + -0.09193511307239532 + ] + }, + "p245_061.wav": { + "name": "p245", + "embedding": [ + 0.010503833182156086, + 0.07383543252944946, + -0.016542084515094757, + 0.012019818648695946, + -0.04151562973856926, + -0.020791402086615562, + -0.11385171115398407, + 0.06947172433137894, + -0.03628823161125183, + 0.09727707505226135, + -0.05810140073299408, + 0.09898405522108078, + -0.057805225253105164, + -0.10939942300319672, + -0.022850457578897476, + 0.036566466093063354, + -0.0534239336848259, + -0.026703137904405594, + -0.013698762282729149, + -0.06186290830373764, + 0.03921116888523102, + 0.020700370892882347, + 0.0695619136095047, + -0.05865180492401123, + -0.009902337566018105, + 0.08839148283004761, + 0.03088214434683323, + 0.023921171203255653, + 0.018199335783720016, + -0.06475703418254852, + 0.013161275535821915, + 0.03705478832125664, + 0.0007729083299636841, + -0.004861840978264809, + 0.01599164865911007, + 0.01235099509358406, + -0.009464501403272152, + 0.006483843550086021, + 0.01098025031387806, + 0.04673808813095093, + -0.05720778927206993, + 0.0529603511095047, + 0.002980251330882311, + -0.04305103421211243, + 0.06909830868244171, + -0.054810021072626114, + -0.02551485039293766, + 0.04205501079559326, + -0.06361868232488632, + 0.09851347655057907, + 0.06359386444091797, + 0.03271337226033211, + -0.05402759462594986, + -0.0011928901076316833, + 0.09332353621721268, + -0.02536720782518387, + -0.13511063158512115, + -0.033564016222953796, + 0.03294172137975693, + 0.10094667971134186, + -0.02611926943063736, + -0.023370955139398575, + 0.026872577145695686, + 0.047649916261434555, + 0.026842184364795685, + 0.0445898212492466, + 0.1110273227095604, + 0.04294699802994728, + 0.02638382837176323, + -0.016651874408125877, + 0.03973395377397537, + 0.08609452843666077, + 0.0077682435512542725, + 0.003985174931585789, + 0.022044053301215172, + -0.05459677800536156, + -0.0046559590846300125, + -0.031538791954517365, + -0.008538326248526573, + -0.05782307684421539, + -0.0910380557179451, + -0.01406343188136816, + 0.0035837190225720406, + -0.02373800054192543, + -0.003686077892780304, + 0.014293171465396881, + 0.04337034747004509, + -0.03884441405534744, + 0.05448584258556366, + 0.04829871654510498, + -0.024612754583358765, + -0.006182447075843811, + -0.017899438738822937, + -0.03282230347394943, + -0.05259358137845993, + 0.020701829344034195, + 0.06864460557699203, + 0.024832911789417267, + 0.025403568521142006, + 0.07236802577972412, + 0.06778188049793243, + 0.04925151541829109, + 0.0033265934325754642, + -0.025807548314332962, + -0.08680272102355957, + 0.05969361588358879, + 0.09965786337852478, + -0.02880961075425148, + 0.040903665125370026, + -0.016247164458036423, + 0.014681282453238964, + -0.011436587199568748, + -0.014758501201868057, + -0.04151485487818718, + -0.01939372718334198, + 0.013222092762589455, + 0.016262739896774292, + 0.07775906473398209, + 0.00627591647207737, + 0.02597089484333992, + 0.10190996527671814, + -0.04874615743756294, + -0.06950819492340088, + -0.0687536895275116, + 0.04424936696887016, + -0.05221402272582054, + 0.06808855384588242, + 0.0745353102684021, + 0.029006335884332657, + 0.03840961679816246, + 0.0714312195777893, + 0.0459996834397316, + 0.030135516077280045, + -0.023774681612849236, + -0.05253520980477333, + 0.007193325087428093, + -0.011947530321776867, + 0.0031251590698957443, + 0.12023049592971802, + 0.034215740859508514, + 0.11386828124523163, + 0.021032562479376793, + 0.019968319684267044, + -0.05792011693120003, + -0.008707597851753235, + 0.04271010681986809, + -0.004224861040711403, + -0.05100340023636818, + -0.05411183089017868, + -0.027316758409142494, + -0.05744759365916252, + -0.016456816345453262, + -0.04456716775894165, + 0.0972992479801178, + -0.011926674284040928, + -0.0006774088833481073, + 0.10733026266098022, + 0.012175491079688072, + -0.04454914107918739, + -0.05713679641485214, + -0.027568140998482704, + -0.019110843539237976, + 0.03704819083213806, + -0.13727952539920807, + -0.07754117250442505, + -0.057516977190971375, + 0.04801909625530243, + 0.009561143815517426, + 0.04344985634088516, + 0.06921812891960144, + -0.0227131936699152, + 0.01063104160130024, + 0.01005251519382, + 0.04331858456134796, + -0.03098268434405327, + -0.07494499534368515, + -0.016767974942922592, + -0.07594367861747742, + -0.045961350202560425, + 0.09026035666465759, + -0.01376914419233799, + 0.059039242565631866, + -0.010324150323867798, + -0.0952242985367775, + -0.07355916500091553, + 0.05698993057012558, + 0.007061205338686705, + -0.0304392259567976, + 0.030798139050602913, + 0.026353420689702034, + -0.05475950613617897, + 0.02391527034342289, + 0.022022049874067307, + 0.06968840956687927, + -0.0952993631362915, + 0.0018919302383437753, + -0.06795518100261688, + 0.025494331493973732, + 0.09529565274715424, + -0.06826399266719818, + -0.04033336043357849, + -0.08081422746181488, + -0.04762030020356178, + 0.04861374944448471, + -0.030655009672045708, + -0.01004729513078928, + 0.006124161183834076, + -0.031252987682819366, + -0.088677778840065, + -0.10544636845588684, + 0.07235821336507797, + -0.024289406836032867, + -0.0010815453715622425, + -0.040017180144786835, + 0.007286242675036192, + 0.009337343275547028, + 0.025132909417152405, + -0.02728910744190216, + 0.04744695872068405, + 0.0029693227261304855, + -0.03418800234794617, + 0.028190884739160538, + 0.05699702724814415, + 0.08039338886737823, + 0.03288767486810684, + -0.04579857736825943, + -0.08449687063694, + 0.033274490386247635, + -0.0187789648771286, + 0.0910448208451271, + 0.004878797102719545, + -0.035113222897052765, + -0.02455628290772438, + 0.012131564319133759, + -0.03887154906988144, + 0.04349634796380997, + 0.06392054259777069, + 0.06324782967567444, + 0.011202742345631123, + -0.061195697635412216, + 0.07890881597995758, + 0.049680642783641815, + -0.0033997371792793274, + -0.04919392615556717, + -0.008915805257856846, + -0.038483768701553345, + 0.011282350867986679, + -0.013656266033649445, + -0.06140866130590439, + 0.05136915296316147, + -0.04518759250640869, + 0.0378573015332222, + 0.07140222936868668, + 0.07738418877124786, + 0.056116946041584015, + -0.03015414997935295 + ] + }, + "p245_036.wav": { + "name": "p245", + "embedding": [ + 0.039696451276540756, + 0.07900166511535645, + -0.03502984344959259, + 0.001488078385591507, + -0.04796702787280083, + -0.007704870775341988, + -0.11515000462532043, + 0.11792300641536713, + -0.006122824735939503, + 0.12819629907608032, + -0.05480644106864929, + 0.126910999417305, + -0.03232337534427643, + -0.0947665125131607, + 0.014001257717609406, + 0.0387929305434227, + -0.026176713407039642, + -0.021547775715589523, + 0.02614351361989975, + -0.03343471884727478, + 0.04482840374112129, + 0.03203378617763519, + 0.04191741347312927, + -0.03329453244805336, + 0.014557702466845512, + 0.08128000795841217, + -0.006069991737604141, + -0.010209326632320881, + 0.0017964591970667243, + -0.04160566255450249, + 0.006297718733549118, + 0.05584024265408516, + -0.029551396146416664, + 0.0172466691583395, + 0.033043429255485535, + -0.006160011515021324, + -0.0294638741761446, + -0.03317053243517876, + 0.002704608254134655, + 0.011645063757896423, + -0.054771557450294495, + 0.07515023648738861, + 0.010668998584151268, + -0.06582660228013992, + 0.03622075170278549, + -0.019955553114414215, + -0.021793009713292122, + 0.01973731815814972, + -0.05598358064889908, + 0.13411536812782288, + 0.04202825948596001, + 0.05436961352825165, + -0.08185459673404694, + 0.009210711345076561, + 0.06650005280971527, + 0.0002536596730351448, + -0.086894690990448, + -0.029942207038402557, + 0.024715105071663857, + 0.09667101502418518, + -0.014627203345298767, + -0.054063230752944946, + 0.04994397982954979, + 0.06874984502792358, + 0.03454384580254555, + 0.03129365295171738, + 0.10296916961669922, + 0.08128376305103302, + -0.004657566547393799, + 0.014649923890829086, + 0.03687429428100586, + 0.09047475457191467, + 0.04890032485127449, + -0.0023312317207455635, + 0.007084229029715061, + -0.030093371868133545, + -0.026402411982417107, + -0.04439539834856987, + -0.0024288874119520187, + -0.059110499918460846, + -0.08051137626171112, + -0.01982063613831997, + 0.01331713330000639, + 0.03629866987466812, + 0.009104162454605103, + 0.00870920717716217, + 0.07833587378263474, + -0.05017024278640747, + 0.04939065873622894, + 0.033726178109645844, + -0.01456803735345602, + 0.009120665490627289, + -0.09196499735116959, + -0.050080977380275726, + -0.005661372095346451, + -0.014132464304566383, + 0.07505285739898682, + 0.06012466549873352, + 0.048706162720918655, + 0.04341353103518486, + 0.08402121067047119, + 0.03331269696354866, + 0.007629400584846735, + -0.040091097354888916, + -0.07908697426319122, + 0.12384488433599472, + 0.10022184252738953, + -0.06589409708976746, + 0.032079536467790604, + -0.032655153423547745, + 0.006819132715463638, + -0.004454446956515312, + -0.07505501806735992, + -0.04442037642002106, + -0.010505639016628265, + 0.020856546238064766, + 0.021828463301062584, + 0.10846095532178879, + 0.0320945680141449, + 0.05220886319875717, + 0.0971718430519104, + -0.08202537894248962, + -0.08927089720964432, + -0.04340739548206329, + 0.039753615856170654, + -0.097220778465271, + 0.09664259105920792, + 0.0757996141910553, + 0.03085213340818882, + 0.03681663051247597, + 0.07658296823501587, + 0.04002885892987251, + 0.03453121706843376, + -0.04865395277738571, + -0.00394897535443306, + 0.006425143219530582, + -0.028068479150533676, + 0.015059907920658588, + 0.07034169882535934, + 0.019843172281980515, + 0.10434575378894806, + 0.037197694182395935, + 0.009082874283194542, + -0.09497249126434326, + 0.020384294912219048, + 0.06136561930179596, + 0.01703318953514099, + -0.043061237782239914, + -0.06168171018362045, + -0.009724212810397148, + -0.056085407733917236, + -0.03192100673913956, + 0.006132389418780804, + 0.058645397424697876, + -0.008427866734564304, + 0.023568224161863327, + 0.11412405967712402, + 0.020760629326105118, + -0.005317517556250095, + -0.03144900128245354, + -0.019740229472517967, + -0.01343044824898243, + 0.05508983135223389, + -0.11658359318971634, + -0.10302060842514038, + -0.047438159584999084, + 0.028975151479244232, + 0.0046210698783397675, + 0.0543365553021431, + 0.08943154662847519, + -0.006475461646914482, + 0.005902215372771025, + -0.008919097483158112, + 0.025085752829909325, + -0.06045353785157204, + -0.08726175129413605, + -0.020090853795409203, + -0.04674510657787323, + -0.04142329469323158, + 0.0830049067735672, + -0.00825763214379549, + 0.07419272512197495, + -0.02403843402862549, + -0.06681835651397705, + -0.07453533262014389, + 0.03593842312693596, + 0.015746906399726868, + -0.06332405656576157, + 0.0056026391685009, + 0.055119022727012634, + -0.026377443224191666, + -0.0183092150837183, + 0.014950566925108433, + 0.10145875811576843, + -0.0856412798166275, + -0.014706939458847046, + -0.07549495995044708, + 0.07272934913635254, + 0.1018032357096672, + -0.07302296161651611, + -0.05466547980904579, + -0.08435799181461334, + -0.05623549595475197, + 0.00935031846165657, + -0.03244401514530182, + -0.0003330435138195753, + 0.014386954717338085, + -0.04248708486557007, + -0.08264987170696259, + -0.11466667056083679, + 0.03702050447463989, + -0.03772899881005287, + 0.002540057757869363, + -0.06888452917337418, + 0.022443683817982674, + 0.01781071349978447, + 0.02222575806081295, + -0.03691492974758148, + 0.024909881874918938, + -0.014810662716627121, + -0.021678956225514412, + 0.010898753069341183, + 0.053276997059583664, + 0.07110464572906494, + -0.015498161315917969, + -0.060730189085006714, + -0.0829211175441742, + 0.04473395645618439, + -0.046907782554626465, + 0.10802876949310303, + -0.01765967160463333, + -0.05644248425960541, + -0.0660654753446579, + -0.023356230929493904, + -0.006721619050949812, + 0.03198873996734619, + 0.06324706971645355, + 0.05243811756372452, + 0.02564788982272148, + -0.06232444941997528, + 0.08388499170541763, + 0.07024085521697998, + 0.013579219579696655, + -0.06624753028154373, + -0.049042217433452606, + -0.030707955360412598, + 0.023042382672429085, + -0.00033287331461906433, + -0.063911572098732, + 0.05250997096300125, + -0.01413326058536768, + 0.03689776360988617, + 0.0767374336719513, + 0.07504931092262268, + 0.04817044734954834, + -0.08827077597379684 + ] + }, + "p245_137.wav": { + "name": "p245", + "embedding": [ + 0.07323402166366577, + 0.04701566323637962, + -0.03407219424843788, + -0.012443309649825096, + -0.052713777869939804, + 0.05072305351495743, + -0.1369348168373108, + 0.083346888422966, + -0.029676249250769615, + 0.1251402050256729, + -0.030146399512887, + 0.10617455840110779, + 0.0004471093416213989, + -0.14881309866905212, + -0.05102582275867462, + 0.026798482984304428, + -0.06987975537776947, + -0.019881077110767365, + -0.08919119834899902, + -0.04895108938217163, + 0.028941020369529724, + 0.03658512607216835, + 0.06155029684305191, + -0.081780806183815, + 0.04772460460662842, + 0.054173119366168976, + 0.0011837980709969997, + 0.03629201650619507, + -0.005539597012102604, + -0.0769825354218483, + -0.007821701467037201, + 0.07083937525749207, + -0.07476836442947388, + -0.015395007096230984, + 0.032972149550914764, + -0.010023701936006546, + -0.01503636222332716, + -0.07573936134576797, + -0.012586395256221294, + 0.048920415341854095, + -0.022296112030744553, + 0.09835036098957062, + 0.033725909888744354, + -0.045888371765613556, + 0.01916206255555153, + 0.0004385198699310422, + 0.000893506221473217, + -0.04467454180121422, + -0.09139126539230347, + 0.1573576033115387, + 0.011268718168139458, + 0.027591580525040627, + -0.09971460700035095, + -0.055402517318725586, + 0.0914253517985344, + -0.0517367348074913, + -0.09656410664319992, + -0.04162157326936722, + 0.015442490577697754, + 0.12979888916015625, + -0.049116406589746475, + -0.04449981451034546, + 0.04587629809975624, + 0.053686946630477905, + 0.08161471784114838, + 0.0282039325684309, + 0.12598221004009247, + 0.09968308359384537, + -0.006171942222863436, + 0.0403103269636631, + 0.05260257422924042, + 0.06849610805511475, + 0.029213018715381622, + 0.006409008987247944, + 0.042101070284843445, + -0.022989381104707718, + -0.012170197442173958, + -0.04559522494673729, + -0.02409525215625763, + -0.024511262774467468, + 0.017215341329574585, + 0.016802771016955376, + 0.04515107348561287, + 0.05234968662261963, + -0.06451591849327087, + 0.03960376977920532, + 0.04394268989562988, + -0.04873551055788994, + 0.0624396950006485, + 0.06528867781162262, + 0.02384638786315918, + 0.041767656803131104, + -0.09128506481647491, + -0.09978775680065155, + 0.012783454731106758, + 0.010417213663458824, + 0.030834242701530457, + 0.01819121278822422, + 0.04190941900014877, + -0.02935558743774891, + 0.08560215681791306, + 0.07491399347782135, + -0.02291879989206791, + 0.01884651929140091, + -0.06593538820743561, + 0.11619137227535248, + 0.10952077805995941, + -0.02838185988366604, + 0.016298631206154823, + -0.04978831112384796, + 0.03408537805080414, + 0.054956674575805664, + -0.0895986557006836, + -0.0922883152961731, + 0.037310995161533356, + -0.014090909622609615, + 0.02099648304283619, + 0.12910661101341248, + -0.008333265781402588, + 0.024744190275669098, + 0.08971239626407623, + -0.06946422159671783, + -0.026211461052298546, + 0.0037510537076741457, + 0.03790688514709473, + -0.04257971793413162, + 0.03757815062999725, + 0.05519421398639679, + 0.005291100591421127, + 0.008724266663193703, + 0.08928349614143372, + 0.004024004563689232, + 0.00590260187163949, + -0.010149299167096615, + 0.00730150006711483, + 0.07397693395614624, + 0.015930086374282837, + -0.034333303570747375, + 0.09817247837781906, + 0.07742985337972641, + 0.04726383090019226, + 0.010349077172577381, + -0.038224589079618454, + -0.1082267239689827, + 0.018956340849399567, + 0.025141257792711258, + 0.05967985838651657, + -0.047370050102472305, + 0.005567436572164297, + -0.060044705867767334, + -0.06234858185052872, + 0.04380882903933525, + 0.007086709141731262, + 0.08184448629617691, + 0.007063056342303753, + -0.025985410436987877, + 0.12440069764852524, + -0.0010097082704305649, + 0.025082135573029518, + 0.004870504140853882, + 0.0020038411021232605, + 0.01643371768295765, + 0.059934407472610474, + -0.050406575202941895, + -0.0577012374997139, + -0.029048709198832512, + 0.01412963680922985, + -0.00985980499535799, + 0.06265769153833389, + 0.08610108494758606, + -0.00437965476885438, + 0.02930818684399128, + -0.06474530696868896, + 0.018012654036283493, + -0.06760760396718979, + -0.004771389067173004, + 0.011742699891328812, + -0.07271106541156769, + -0.05105860158801079, + 0.09905054420232773, + 0.008971092291176319, + 0.034508515149354935, + -0.07160092890262604, + -0.10660918056964874, + -0.04197307676076889, + 0.027732256799936295, + 0.056387901306152344, + -0.025404997169971466, + -0.00295102596282959, + 0.0391593798995018, + 0.026075223460793495, + 0.038801200687885284, + 0.08246750384569168, + 0.06608185172080994, + -0.045813582837581635, + -0.03664502501487732, + -0.04121950641274452, + 0.14050422608852386, + 0.0377991683781147, + -0.04623603820800781, + -0.0512462854385376, + -0.021551743149757385, + -0.05791545659303665, + 0.002480804920196533, + -0.0013288995251059532, + 0.03373163938522339, + 0.06470980495214462, + 0.0011280989274382591, + -0.09180772304534912, + -0.09985987842082977, + 0.06479770690202713, + -0.0658077672123909, + -0.0053179021924734116, + -0.06633488833904266, + 0.009957075119018555, + 0.07213683426380157, + 0.031549811363220215, + -0.007009602151811123, + 0.005476254969835281, + -0.012819638475775719, + -0.04475744068622589, + 0.014464026317000389, + 0.04359792545437813, + 0.01910415105521679, + -0.05417538434267044, + -0.030229883268475533, + -0.0734155997633934, + 0.06711634993553162, + -0.028289776295423508, + 0.11958017945289612, + -0.0030914433300495148, + -0.03456159681081772, + -0.06999552249908447, + 0.03639760613441467, + -0.06454180181026459, + 0.07271772623062134, + 0.09131985902786255, + 0.06695115566253662, + 0.045604173094034195, + -0.059106260538101196, + 0.09006214886903763, + 0.05803312361240387, + -0.042356938123703, + -0.08483725786209106, + -0.05335173010826111, + -0.024826427921652794, + 0.03546859323978424, + 0.026413235813379288, + -0.04585723206400871, + 0.057613927870988846, + 0.033775992691516876, + -0.013522894121706486, + 0.02359507791697979, + 0.0853094831109047, + 0.06051453948020935, + -0.07958009839057922 + ] + }, + "p245_064.wav": { + "name": "p245", + "embedding": [ + 0.008073003962635994, + 0.08285491913557053, + -0.028157172724604607, + 0.06573159992694855, + -0.0554533526301384, + -0.02481571026146412, + -0.08226963877677917, + 0.05811410769820213, + 0.01850319467484951, + 0.07986201345920563, + -0.0282637607306242, + 0.09572188556194305, + -0.032036565244197845, + -0.12506912648677826, + 0.006754709407687187, + 0.006025562062859535, + 0.02327914535999298, + 0.016029734164476395, + 0.016798008233308792, + -0.024326611310243607, + -0.02280670404434204, + 0.0013512670993804932, + -0.04506585747003555, + 0.009816441684961319, + -0.015753760933876038, + 0.009264109656214714, + -0.043210867792367935, + 0.020358748733997345, + -0.024531273171305656, + -0.022729191929101944, + -0.00346355140209198, + 0.028613679111003876, + -0.03164613991975784, + -0.015002998523414135, + 0.007012704387307167, + -0.008996935561299324, + -0.018092893064022064, + -0.021090079098939896, + -0.04626358300447464, + -0.04103551059961319, + -0.07599478960037231, + 0.009250197559595108, + 0.04560007527470589, + -0.058144696056842804, + 0.03333031386137009, + 0.021891143172979355, + -0.02973495051264763, + -0.024465270340442657, + -0.041638825088739395, + 0.07266988605260849, + 0.025158818811178207, + 0.07875867187976837, + -0.04601132124662399, + -0.022743722423911095, + 0.11506137996912003, + 0.021386640146374702, + 0.002506434917449951, + -0.020643513649702072, + -0.0041916705667972565, + 0.08226695656776428, + 0.02678918093442917, + 0.01671762950718403, + 0.041184768080711365, + 0.04360993206501007, + 0.02105596289038658, + 0.04237477481365204, + 0.054725222289562225, + 0.0538550466299057, + -0.015155108645558357, + 0.02800930291414261, + 0.06236835569143295, + 0.02802305854856968, + -0.009396242909133434, + 0.004089821130037308, + -0.012259213253855705, + 0.04935428872704506, + -0.0016519725322723389, + 0.040427833795547485, + -0.025010839104652405, + 0.0007421821355819702, + 0.0003476180136203766, + 0.02041826955974102, + 0.016220219433307648, + -0.040934011340141296, + -0.050862230360507965, + -0.028849074617028236, + 0.07131238281726837, + 0.025313757359981537, + 0.020388789474964142, + 0.012514823116362095, + 0.021862730383872986, + 0.011575905606150627, + -0.06464927643537521, + -0.037729039788246155, + 0.014027376659214497, + -0.012412749230861664, + 0.038013506680727005, + 0.009691670536994934, + 0.007364816963672638, + -0.0003252946771681309, + 0.04953968524932861, + -0.019130192697048187, + 0.03827701136469841, + 0.018272604793310165, + -0.04982520267367363, + -0.0194728784263134, + 0.022449076175689697, + 0.018033284693956375, + 0.05674382671713829, + 0.005432464182376862, + 0.05533427372574806, + 0.0824822336435318, + -0.050678398460149765, + -0.01896451786160469, + 0.038239363580942154, + 0.0547531358897686, + -0.030329927802085876, + 0.10726689547300339, + -0.004390609450638294, + 0.036274608224630356, + 0.05998578295111656, + 0.005488622933626175, + -0.035031065344810486, + -0.012115872465074062, + 0.014282059855759144, + -0.019235748797655106, + 0.06082679331302643, + 0.01668960601091385, + -0.01851656287908554, + -0.04215440899133682, + 0.047648318111896515, + -0.023941755294799805, + -0.02541382610797882, + -0.005890370812267065, + 0.03238661214709282, + -0.032256510108709335, + 0.05578060448169708, + -0.05678391084074974, + 0.01750776544213295, + 0.05285665765404701, + -0.023921141400933266, + 0.00218186411075294, + 0.007912974804639816, + -0.05279063805937767, + 0.031054846942424774, + 0.011985421180725098, + 0.016678936779499054, + 0.08475092053413391, + -0.056048065423965454, + -0.09518636763095856, + -0.04432906210422516, + 0.018017835915088654, + -0.02686208114027977, + 0.07699866592884064, + 0.07470855861902237, + 0.03309299424290657, + 0.026293829083442688, + -0.005313487723469734, + 0.014934655278921127, + 0.014928527176380157, + -0.11858431994915009, + 0.0025797300040721893, + 0.018775252625346184, + 0.012170355767011642, + -0.018563110381364822, + 0.008147730492055416, + 0.0044998470693826675, + -0.031025545671582222, + -0.01478531863540411, + 0.02612193301320076, + 0.029462894424796104, + 0.047810621559619904, + -0.13897770643234253, + 0.009146193973720074, + -0.05225842818617821, + -0.052055828273296356, + 0.022394906729459763, + 0.0005108844488859177, + -0.006495494395494461, + 0.015602083876729012, + 0.02254321239888668, + -0.01711433008313179, + -0.03826015070080757, + -0.04095692187547684, + -0.015238618478178978, + 0.004249135032296181, + 0.006023623049259186, + 0.002120460383594036, + -0.012878527864813805, + 0.0017192941159009933, + 0.022670254111289978, + 0.0069946590811014175, + 0.013229338452219963, + 0.06178675591945648, + -0.02049620822072029, + 0.008565949276089668, + 0.04393836110830307, + 0.1151999831199646, + 0.037574078887701035, + -0.07984953373670578, + -0.07641103863716125, + 0.013078344985842705, + -0.050771456211805344, + 0.03375804424285889, + -0.009442889131605625, + 0.029631327837705612, + -0.006700159981846809, + 0.009019304066896439, + 0.039935238659381866, + -0.11725741624832153, + 0.0012909658253192902, + -0.02296554110944271, + -0.05315922945737839, + -0.003896240144968033, + -0.004889799281954765, + 0.049395281821489334, + 0.006247611716389656, + -0.031720440834760666, + -0.06393852829933167, + 0.020570116117596626, + 0.018650364130735397, + 0.018874062225222588, + 0.06854256242513657, + 0.03835316002368927, + -0.009198036044836044, + -0.002077037002891302, + -0.022908898070454597, + 0.034073200076818466, + 0.006593231111764908, + 0.044001415371894836, + 0.011244134046137333, + -0.012179341167211533, + -0.07697649300098419, + 0.04772772639989853, + 0.021452302113175392, + 0.048440106213092804, + -0.029465805739164352, + 0.017431490123271942, + 0.03159251809120178, + -0.019094113260507584, + 0.11066094040870667, + 0.03656743839383125, + -0.01628035679459572, + -0.012127243913710117, + -0.009914837777614594, + -0.03556737303733826, + 0.047875288873910904, + 0.03907151520252228, + -0.04478989169001579, + -0.017625361680984497, + 0.06298432499170303, + 0.038594506680965424, + 0.07337473332881927, + 0.0686052069067955, + 0.05127863958477974, + 0.030096881091594696 + ] + }, + "p245_116.wav": { + "name": "p245", + "embedding": [ + 0.026206303387880325, + 0.0870557427406311, + -0.031800564378499985, + 0.03391792252659798, + -0.046698667109012604, + 0.08534678816795349, + -0.16658273339271545, + 0.13364169001579285, + -0.03994257003068924, + 0.13041645288467407, + -0.042279601097106934, + 0.0682499036192894, + -0.04535885527729988, + -0.1648472249507904, + -0.0011063702404499054, + 0.06920823454856873, + -0.029199155047535896, + -0.05062545835971832, + -0.041224405169487, + -0.006878157611936331, + 0.00823267363011837, + 0.03437193110585213, + -0.01196223869919777, + -0.01792658120393753, + 0.04224570095539093, + 0.052962690591812134, + -0.01605040766298771, + 0.026313968002796173, + -0.02262882888317108, + -0.04536876082420349, + -0.006420617923140526, + 0.09725066274404526, + -0.05911702662706375, + -0.0040521943010389805, + 0.03993048146367073, + 0.0038983169943094254, + -0.0029922418761998415, + -0.07162532210350037, + 0.0008092247880995274, + -0.00086886843200773, + -0.0504748560488224, + 0.09489797055721283, + 0.05033232271671295, + 0.014569630846381187, + 0.013880239799618721, + 0.02584090270102024, + -0.002059028949588537, + -0.060770247131586075, + -0.10385298728942871, + 0.17202679812908173, + 0.06102000176906586, + -0.0003504775813780725, + -0.05936667323112488, + -0.06881854683160782, + 0.08519840985536575, + 0.021892044693231583, + -0.09799736738204956, + -0.09496836364269257, + 0.08372001349925995, + 0.16316553950309753, + -0.02758689969778061, + -0.03166946396231651, + 0.0193328894674778, + 0.12465889751911163, + 0.05687375366687775, + 0.07553974539041519, + 0.05244285985827446, + 0.12438154220581055, + 0.012407002970576286, + -0.012851450592279434, + 0.05765034630894661, + 0.03135097399353981, + 0.0207177996635437, + 0.005379687529057264, + 0.03346143662929535, + -0.027114737778902054, + -0.013732386752963066, + -0.009842348285019398, + -0.01835620030760765, + -0.03842465952038765, + 0.008297521620988846, + 0.03200364112854004, + 0.016961023211479187, + 0.061113446950912476, + -0.01410306990146637, + 0.02622094377875328, + 0.0455208346247673, + -0.03591391071677208, + 0.09161274135112762, + 0.010056025348603725, + 0.0018795325886458158, + 0.049939267337322235, + -0.08770015835762024, + -0.05661017447710037, + 0.049550555646419525, + 0.01573294587433338, + 0.008452299050986767, + 0.0465301051735878, + 0.01902879774570465, + -0.01893848180770874, + 0.13692250847816467, + 0.0063081649132072926, + -0.005656961817294359, + 0.02673012763261795, + -0.08552642166614532, + 0.15257230401039124, + 0.028820201754570007, + -0.009973833337426186, + 0.0537065714597702, + -0.05198920518159866, + 0.014364134520292282, + 0.045994147658348083, + -0.14206749200820923, + -0.0830812156200409, + 0.05460478365421295, + 0.0251338891685009, + -0.05105239525437355, + 0.1529836803674698, + 0.03480285778641701, + 0.026686403900384903, + 0.11159271001815796, + -0.11851374804973602, + -0.07005777955055237, + 0.009028308093547821, + 0.06546522676944733, + -0.06755473464727402, + 0.028424758464097977, + 0.08120614290237427, + -0.03927188739180565, + 0.030569370836019516, + 0.07677066326141357, + 0.020035814493894577, + 0.025743741542100906, + 0.004887916147708893, + -0.026523731648921967, + 0.04686063155531883, + -0.015688950195908546, + -0.008490651845932007, + 0.015294539742171764, + 0.018724041059613228, + 0.06374606490135193, + -0.029174381867051125, + -0.03510284423828125, + -0.1314167082309723, + -0.01545157190412283, + 0.024854429066181183, + 0.09983950108289719, + -0.027889424934983253, + 0.004549515899270773, + -0.04875047132372856, + -0.07016092538833618, + -0.007065870799124241, + -0.0117063969373703, + 0.10565370321273804, + 4.535890184342861e-05, + -0.015448075719177723, + 0.10956123471260071, + 0.03712017089128494, + 0.016568314284086227, + -0.05109051614999771, + -0.021917346864938736, + 0.01675349846482277, + 0.04576878249645233, + -0.06387738138437271, + -0.05400563403964043, + 0.0003287973813712597, + 0.04667960852384567, + -0.008596284314990044, + 0.06346990168094635, + 0.03464750200510025, + 0.046771030873060226, + 0.005699501372873783, + -0.053875576704740524, + 0.022539041936397552, + -0.04357587918639183, + -0.03636154532432556, + 0.011438531801104546, + 0.004058046266436577, + -0.07187315821647644, + 0.10332147777080536, + 0.028414800763130188, + 0.06598779559135437, + -0.025210976600646973, + -0.04689367115497589, + -0.06525686383247375, + 0.04820077866315842, + 0.04841648414731026, + -0.052594710141420364, + 0.019348938018083572, + 0.04825716093182564, + -0.019123604521155357, + 0.008446082472801208, + 0.07624737918376923, + 0.09311379492282867, + -0.02453649416565895, + -0.004148264415562153, + -0.0666135847568512, + 0.10110478103160858, + 0.07015637308359146, + -0.0842842161655426, + -0.04048370569944382, + -0.005877007730305195, + -0.06628985702991486, + 0.010554682463407516, + -0.04181568697094917, + 0.02767411433160305, + 0.019909244030714035, + -0.019710995256900787, + -0.10630884766578674, + -0.10019253939390182, + 0.056776415556669235, + -0.09683962166309357, + 0.007209221366792917, + -0.07556276023387909, + 0.045698381960392, + 0.09420475363731384, + 0.07326105237007141, + -0.028026890009641647, + -0.04498768597841263, + 0.049674808979034424, + -0.03841136395931244, + 0.041742339730262756, + 0.09235819429159164, + 0.047276757657527924, + -0.10901515185832977, + 0.014002731069922447, + -0.06860703974962234, + 0.053145959973335266, + -0.038949355483055115, + 0.1533702313899994, + 0.03870934993028641, + -0.039243437349796295, + -0.09733320772647858, + 0.016834599897265434, + -0.033303290605545044, + 0.05384053662419319, + -0.004111143760383129, + 0.06296724081039429, + 0.08997665345668793, + -0.01389042753726244, + 0.1130770742893219, + 0.042675409466028214, + -0.016742032021284103, + -0.052376970648765564, + -0.06528536975383759, + -0.049585774540901184, + 0.05759061127901077, + 0.0047167628072202206, + -0.10972248017787933, + -0.014114035293459892, + 0.05395267903804779, + 0.014432688243687153, + 0.07244445383548737, + 0.1318526566028595, + 0.07724472880363464, + -0.11529317498207092 + ] + }, + "p245_216.wav": { + "name": "p245", + "embedding": [ + 0.005050513427704573, + 0.03837194666266441, + 0.005418553948402405, + 0.055746566504240036, + -0.050176482647657394, + -0.014155305922031403, + -0.07702336460351944, + 0.07438337802886963, + 0.008550649508833885, + 0.0816316157579422, + -0.05169358104467392, + 0.10954662412405014, + -0.03955812007188797, + -0.13056251406669617, + 0.004008145071566105, + 0.02883581444621086, + -0.014740677550435066, + 0.0015757757937535644, + 0.0018871304346248507, + -0.08889325708150864, + 0.03142702579498291, + 0.041287243366241455, + 0.10917645692825317, + -0.04542539641261101, + -0.010929431766271591, + 0.08688090741634369, + 0.019439389929175377, + 0.038496531546115875, + 0.006717031821608543, + -0.06696125864982605, + -0.017160862684249878, + 0.046849410980939865, + -0.033362679183483124, + -0.034051209688186646, + 0.017070777714252472, + -0.03092655912041664, + -0.017797861248254776, + 0.023451250046491623, + -0.005198194645345211, + 0.03770628944039345, + -0.06574392318725586, + 0.061571091413497925, + 0.004475114401429892, + -0.0355054996907711, + 0.06688785552978516, + -0.0336417555809021, + -0.04801703989505768, + 0.060571085661649704, + -0.09510727971792221, + 0.1043686494231224, + 0.08565127104520798, + -0.006477054208517075, + -0.05472811311483383, + -0.03031889721751213, + 0.06610922515392303, + -0.02342265658080578, + -0.10264177620410919, + -0.02378898113965988, + 0.03450561687350273, + 0.0723593682050705, + -0.019676538184285164, + -0.03702038154006004, + 0.02346557006239891, + 0.0585310272872448, + 0.03663717210292816, + 0.027803806588053703, + 0.08438434451818466, + 0.056078698486089706, + -0.03789341077208519, + 0.023495744913816452, + 0.013664104044437408, + 0.08113572746515274, + 0.047856103628873825, + 0.012783223763108253, + 0.007815196178853512, + -0.022541433572769165, + -0.0013378288131207228, + -0.024215053766965866, + -0.01741562969982624, + -0.033809274435043335, + -0.026879753917455673, + -0.04576704651117325, + 0.02017657272517681, + -0.023189907893538475, + -0.004947920795530081, + 0.02598796784877777, + 0.055610816925764084, + 0.0063562532886862755, + 0.038349419832229614, + 0.023640867322683334, + -0.025260746479034424, + 0.06014727056026459, + -0.053290169686079025, + -0.004640375263988972, + -0.028023306280374527, + -0.011708798818290234, + 0.048023246228694916, + 0.05608978867530823, + 0.03543567657470703, + -0.005607225000858307, + 0.08987357467412949, + 0.05642988905310631, + -0.002444575307890773, + 0.006879492662847042, + -0.08711465448141098, + 0.05988682433962822, + 0.12077635526657104, + -0.020973442122340202, + 0.05374884232878685, + -0.011692593805491924, + 0.05550151318311691, + 0.018598265945911407, + -0.056220751255750656, + -0.016013164073228836, + -0.056455619633197784, + 0.015841584652662277, + 0.014797080308198929, + 0.08970996737480164, + -0.011381561867892742, + 0.034239333122968674, + 0.12139938771724701, + -0.05488577485084534, + -0.05754374712705612, + -0.052062734961509705, + 0.027437981218099594, + -0.08927728980779648, + 0.03894751891493797, + 0.05005880817770958, + 0.0023588924668729305, + 0.033137399703264236, + 0.06590083986520767, + -0.0010675042867660522, + 0.015768742188811302, + 0.0010590851306915283, + -0.055256910622119904, + -0.010855491273105145, + -0.030183736234903336, + 0.007347285747528076, + 0.10568894445896149, + 0.02490714192390442, + 0.0780995711684227, + 0.012859819456934929, + 0.021017147228121758, + -0.08323003351688385, + 0.0134481992572546, + 0.02905542403459549, + -0.010488798841834068, + -0.0433945469558239, + -0.05058302730321884, + -0.024740807712078094, + -0.0648549348115921, + 0.04095859080553055, + -0.016681663691997528, + 0.04605083912611008, + -0.039368972182273865, + -0.017245754599571228, + 0.09159683436155319, + 0.018118780106306076, + -0.03911110758781433, + -0.03853283077478409, + -0.04979106783866882, + -0.013144823722541332, + 0.024024493992328644, + -0.14373517036437988, + -0.07408706098794937, + -0.07393872737884521, + 0.05194120854139328, + 0.03831130266189575, + 0.03749269247055054, + 0.08431114256381989, + -0.040897566825151443, + -0.015654532238841057, + -0.0046629635617136955, + 0.0029440242797136307, + -0.0365060493350029, + -0.07701775431632996, + -0.028207622468471527, + -0.07155455648899078, + -0.023582246154546738, + 0.05362280458211899, + -0.01084048580378294, + 0.05410457402467728, + -0.042400434613227844, + -0.06520429253578186, + -0.08439745754003525, + 0.017195893451571465, + 0.007366342004388571, + -0.011369919404387474, + 0.06681790947914124, + 0.07491111010313034, + -0.07899633049964905, + 0.08052435517311096, + 0.016803188249468803, + 0.08231620490550995, + -0.08814448118209839, + 0.016920704394578934, + -0.064263254404068, + 0.01689610630273819, + 0.13715393841266632, + -0.04987175390124321, + -0.07743959873914719, + -0.0721811056137085, + -0.07619887590408325, + 0.08832260221242905, + -0.019805550575256348, + -0.047732871025800705, + 0.033461734652519226, + 0.003329787403345108, + -0.051791250705718994, + -0.09765299409627914, + 0.09773095697164536, + -0.013897779397666454, + -0.013289999216794968, + -0.044936250895261765, + 0.015601358376443386, + -0.004568840377032757, + 0.03622458875179291, + -0.02787911705672741, + 0.034366000443696976, + 0.027753150090575218, + 0.0070157740265131, + 0.013481042347848415, + 0.06054134666919708, + 0.07139156758785248, + -0.01143829058855772, + -0.07067518681287766, + -0.06704524159431458, + 0.03562408685684204, + -0.00837002508342266, + 0.05289943143725395, + 0.0018538765143603086, + -0.015500355511903763, + -0.030728653073310852, + 0.05081811174750328, + -0.013012362644076347, + 0.04631124436855316, + 0.09559158980846405, + 0.060394078493118286, + -0.0059871673583984375, + -0.07505792379379272, + 0.100405752658844, + 0.02583060786128044, + -0.032470159232616425, + -0.047120265662670135, + 0.013522963039577007, + -0.04196019470691681, + -0.014827296137809753, + 0.02837984822690487, + -0.08888687938451767, + 0.024314193055033684, + -0.008817065507173538, + 0.005312844179570675, + 0.005563404411077499, + 0.0775805339217186, + 0.036363132297992706, + -0.04132216423749924 + ] + }, + "p245_326.wav": { + "name": "p245", + "embedding": [ + 0.05647645890712738, + 0.07903605699539185, + -0.004121718928217888, + 0.0019325204193592072, + -0.049081914126873016, + 0.038870666176080704, + -0.17135155200958252, + 0.15737147629261017, + -0.027951620519161224, + 0.13319209218025208, + -0.05079863220453262, + 0.11452760547399521, + 0.0022181151434779167, + -0.20568430423736572, + -0.011569373309612274, + 0.05091247707605362, + -0.03208211064338684, + -0.03403328359127045, + -0.02147858217358589, + -0.04425549507141113, + 0.04236111789941788, + 0.05011980980634689, + 0.02916918322443962, + 0.0011963311117142439, + 0.022949669510126114, + 0.06001188978552818, + 0.00044258800335228443, + 0.03015023097395897, + -0.0040679313242435455, + -0.0348568819463253, + -0.03410216420888901, + 0.09089004993438721, + -0.03857149928808212, + -0.013817212544381618, + 0.04207659885287285, + -0.03440301492810249, + -0.00778503343462944, + -0.0743178129196167, + -0.029665200039744377, + 0.013971026986837387, + -0.04077344760298729, + 0.0804327130317688, + 0.03363679349422455, + -0.004382612183690071, + 0.061580829322338104, + 0.006162175443023443, + -0.01832357794046402, + -0.04825931787490845, + -0.11529036611318588, + 0.151228129863739, + 0.08180355280637741, + 0.009078157134354115, + -0.07779133319854736, + -0.044410672038793564, + 0.10451439023017883, + -0.01526350062340498, + -0.09601058810949326, + -0.03452193737030029, + 0.06472700834274292, + 0.14778700470924377, + -0.031788721680641174, + -0.03927962854504585, + 0.054874569177627563, + 0.11718955636024475, + 0.0390625074505806, + 0.07301878184080124, + 0.09164915978908539, + 0.09407659620046616, + -0.039267901331186295, + 0.012233918532729149, + 0.03642059117555618, + 0.05842337757349014, + 0.0138986362144351, + -0.027262387797236443, + 0.02389431558549404, + 0.004721355624496937, + -0.020589269697666168, + -0.00980563648045063, + -0.014243396930396557, + -0.007784364279359579, + -0.00384308397769928, + 0.00722363218665123, + -0.003884421195834875, + 0.033975034952163696, + -0.04485015198588371, + 0.04347986727952957, + 0.031524911522865295, + 0.0033555100671947002, + 0.0774640440940857, + 0.024448400363326073, + 0.03461942449212074, + 0.06385176628828049, + -0.07538408041000366, + -0.07524696737527847, + 0.0495070219039917, + 0.009413221850991249, + 0.010432607494294643, + 0.07613398879766464, + 0.037244245409965515, + -0.031528618186712265, + 0.12774954736232758, + 0.0625736266374588, + -0.02060304768383503, + 0.0313524454832077, + -0.09481717646121979, + 0.1129370629787445, + 0.09118568897247314, + -0.031262971460819244, + 0.06947764754295349, + -0.05978141352534294, + 0.05725526809692383, + 0.047938309609889984, + -0.12872180342674255, + -0.0648694857954979, + 0.0469001941382885, + 0.0385744608938694, + -0.008684594184160233, + 0.14922146499156952, + 0.011114565655589104, + 0.04434294253587723, + 0.10491957515478134, + -0.07646625488996506, + -0.06805442273616791, + -0.019770199432969093, + 0.07203864306211472, + -0.08883814513683319, + 0.07083283364772797, + 0.07794561982154846, + -0.01631910912692547, + 0.016206717118620872, + 0.06730979681015015, + -0.011082170531153679, + 0.010066624730825424, + -0.014413034543395042, + -0.023694686591625214, + 0.02766743116080761, + -0.02585180476307869, + -0.005592920817434788, + 0.020905254408717155, + 0.031094839796423912, + 0.03175541013479233, + 0.001233138027600944, + -0.029830869287252426, + -0.12184932082891464, + 0.010508127510547638, + 0.01802799664437771, + 0.07637999951839447, + -0.015570408664643764, + -0.029947910457849503, + -0.04754545912146568, + -0.06413667649030685, + -0.016748948022723198, + -0.015571588650345802, + 0.06889452040195465, + -0.015651628375053406, + 0.011496755294501781, + 0.08591806143522263, + 0.04651890695095062, + 0.014679962769150734, + -0.01411455124616623, + -0.04216204211115837, + 0.01124353613704443, + 0.049257613718509674, + -0.07660109549760818, + -0.0668872818350792, + -0.03297725319862366, + 0.039453309029340744, + -0.0196552574634552, + 0.040541429072618484, + 0.041925571858882904, + 0.015136521309614182, + 0.020173950120806694, + -0.10130882263183594, + 0.04977213591337204, + -0.10537748038768768, + -0.06801893562078476, + -0.0028433194383978844, + 0.006322941742837429, + -0.023407211527228355, + 0.08147451281547546, + 0.016330068930983543, + 0.05409392714500427, + -0.030439695343375206, + -0.06312473863363266, + -0.0732867568731308, + 0.03937825188040733, + 0.08545289933681488, + -0.022739550098776817, + 0.04721982777118683, + 0.048184268176555634, + -0.029300507158041, + 0.046093251556158066, + 0.054711490869522095, + 0.0953032597899437, + -0.011328532360494137, + 0.02001500129699707, + -0.06193692237138748, + 0.08260598033666611, + 0.08038806170225143, + -0.0836341604590416, + -0.08670918643474579, + -0.024671923369169235, + -0.06764788180589676, + 0.03385632485151291, + -0.0028617912903428078, + 0.015496130101382732, + 0.029228515923023224, + 0.00102093699388206, + -0.10297652333974838, + -0.08681529015302658, + 0.06565834581851959, + -0.05890960618853569, + -7.892772555351257e-05, + -0.08781218528747559, + 0.052917592227458954, + 0.1129583939909935, + 0.020902689546346664, + -0.026498064398765564, + -0.05960073322057724, + 0.021304255351424217, + -0.008080968633294106, + 0.012233974412083626, + 0.04004616290330887, + 0.05252767726778984, + -0.11715561151504517, + 0.008802996948361397, + -0.081198550760746, + 0.0649220198392868, + -0.043660055845975876, + 0.1275567263364792, + 0.02994544804096222, + -0.04751164838671684, + -0.1005706787109375, + 0.037465181201696396, + 0.010169055312871933, + 0.04947688430547714, + 0.01565558835864067, + 0.0547947995364666, + 0.04639807343482971, + -0.07283086329698563, + 0.08394279330968857, + 0.04525873064994812, + -0.04548519104719162, + -0.07351969927549362, + -0.017760049551725388, + -0.023599453270435333, + 0.039142947643995285, + 0.0019877138547599316, + -0.08344948291778564, + -0.036214396357536316, + 0.02449866198003292, + -0.008161312900483608, + 0.0730876475572586, + 0.12449346482753754, + 0.04325075075030327, + -0.14535921812057495 + ] + }, + "p245_419.wav": { + "name": "p245", + "embedding": [ + 0.06083516404032707, + 0.11662372946739197, + -0.010951412841677666, + 0.0263645201921463, + -0.0674663782119751, + 0.07690811157226562, + -0.13070333003997803, + 0.13485047221183777, + -0.03932299092411995, + 0.1097576692700386, + -0.04920841380953789, + 0.13261674344539642, + -0.01585199125111103, + -0.17799976468086243, + -0.037467412650585175, + 0.07317551970481873, + -0.04008955508470535, + -0.0023596957325935364, + -0.030376046895980835, + -0.007567227352410555, + 0.010918810963630676, + 0.007402253802865744, + 0.06254812330007553, + -0.012820769101381302, + 0.05959368497133255, + 0.05872346833348274, + 0.02781469002366066, + 0.07284603267908096, + 0.03543016314506531, + -0.03931150212883949, + -0.04573261737823486, + 0.09794783592224121, + -0.043906599283218384, + 0.01869359239935875, + 0.07258836925029755, + -0.002346000401303172, + 0.006400824524462223, + -0.07021138072013855, + -0.008998343721032143, + 0.006079293321818113, + -0.011671755462884903, + 0.08647403120994568, + 0.053747326135635376, + -0.02551126480102539, + 0.02642642892897129, + 0.03566354513168335, + -0.00420792680233717, + -0.047181226313114166, + -0.11689212918281555, + 0.15690991282463074, + 0.03090955875813961, + 0.005013628862798214, + -0.0859299749135971, + -0.08353278785943985, + 0.10580959916114807, + -0.016131579875946045, + -0.10650736093521118, + -0.0424816831946373, + 0.07766459882259369, + 0.15099643170833588, + -0.02301827259361744, + -0.0205608569085598, + 0.0033584285993129015, + 0.13728797435760498, + 0.04627763107419014, + 0.10518422722816467, + 0.05480710417032242, + 0.1170174852013588, + -0.010952591896057129, + 0.04857170954346657, + 0.05849912017583847, + 0.07163064926862717, + 0.009242474101483822, + 0.013024954125285149, + 0.014280444011092186, + -0.026946572586894035, + -0.01150105893611908, + 0.022526027634739876, + -0.012215487658977509, + -0.025782596319913864, + -0.031099211424589157, + 0.015242155641317368, + 0.010931520722806454, + 0.012196353636682034, + -0.026906870305538177, + 0.07545508444309235, + 0.010470365174114704, + -0.0011720983311533928, + 0.06510636955499649, + 0.04995344579219818, + -0.009989118203520775, + 0.05351223051548004, + -0.053027283400297165, + -0.1062372475862503, + 0.009820534847676754, + -0.0058873724192380905, + 0.04402993246912956, + 0.0660303458571434, + 0.02297598123550415, + -0.00495131453499198, + 0.09830664098262787, + 0.09491933882236481, + -0.008639329113066196, + 0.03967539966106415, + -0.06774254143238068, + 0.1321856677532196, + 0.06997360289096832, + 0.0021841833367943764, + 0.06331697851419449, + -0.04716039076447487, + 0.07264742255210876, + 0.08234654366970062, + -0.13311713933944702, + -0.08550317585468292, + 0.019442839547991753, + 0.019908394664525986, + -0.019610024988651276, + 0.10110601782798767, + -0.01835044100880623, + 0.028228241950273514, + 0.09351484477519989, + -0.07935181260108948, + -0.06512089818716049, + -0.012635830789804459, + 0.037400390952825546, + -0.06374944746494293, + 0.027713490650057793, + 0.0608680322766304, + -0.03684769198298454, + -0.00977357104420662, + 0.08218265324831009, + 0.016834445297718048, + 0.015206827782094479, + 0.06292486190795898, + -0.046363115310668945, + 0.024377569556236267, + -0.015522792935371399, + 0.020801743492484093, + 0.06598635017871857, + 0.057184718549251556, + 0.04022335261106491, + 0.0031346192117780447, + -0.029957424849271774, + -0.11696556955575943, + 0.0007094676839187741, + 0.058494724333286285, + 0.08337339758872986, + -0.02051680162549019, + -0.03961547464132309, + -0.026886215433478355, + -0.0662282332777977, + 0.023662175983190536, + 0.020926430821418762, + 0.08748117089271545, + -0.026798447594046593, + -0.01203005202114582, + 0.09355267137289047, + 0.017791345715522766, + -0.004080181010067463, + -0.05586542934179306, + -0.02533883973956108, + 0.04271090030670166, + 0.03122773766517639, + -0.09068462252616882, + -0.06610505282878876, + 0.008217401802539825, + 0.01269354298710823, + -0.04585854336619377, + 0.033451635390520096, + 0.03700171411037445, + 0.0045049479231238365, + 0.05514219403266907, + -0.03782859444618225, + 0.0029868311248719692, + -0.10349141061306, + -0.050935838371515274, + -0.013891038484871387, + -0.007841261103749275, + -0.038354843854904175, + 0.08054852485656738, + 0.03754604607820511, + 0.07043623924255371, + 0.009298709221184254, + -0.04432382062077522, + -0.05677574872970581, + 0.06236385926604271, + 0.0651523619890213, + 0.01677655056118965, + 0.060372285544872284, + 0.04500025138258934, + -0.021298842504620552, + 0.06054048612713814, + 0.07007988542318344, + 0.06017880141735077, + -0.031840041279792786, + -0.009376992471516132, + -0.08214021474123001, + 0.07381021231412888, + 0.09016189724206924, + -0.12650716304779053, + -0.07929831743240356, + -0.03434703126549721, + -0.04745608940720558, + 0.020430151373147964, + -0.03529493510723114, + 0.007513072807341814, + 0.033408813178539276, + -0.010800879448652267, + -0.08751987665891647, + -0.1251140981912613, + 0.08608241379261017, + -0.08125439286231995, + 0.006926291156560183, + -0.0435793474316597, + 0.04188838601112366, + 0.08625149726867676, + 0.02780303545296192, + -0.018457993865013123, + -0.006067521870136261, + 0.052661895751953125, + -0.057967767119407654, + -0.017828509211540222, + 0.04688819870352745, + 0.02235068380832672, + -0.09449154883623123, + 0.03194766864180565, + -0.05927123874425888, + 0.05683661997318268, + -0.04885485768318176, + 0.1955493539571762, + 0.006093400530517101, + -0.05609149485826492, + -0.07668501883745193, + 0.018956057727336884, + -0.06362532824277878, + 0.03209010884165764, + 0.03578523173928261, + 0.06080184131860733, + 0.008849730715155602, + -0.06689353287220001, + 0.13770708441734314, + 0.02647826075553894, + -0.05171520262956619, + -0.07367865741252899, + -0.03191560506820679, + -0.03901107236742973, + 0.05744992196559906, + 0.012534620240330696, + -0.08805913478136063, + -0.02861597016453743, + 0.030343791469931602, + -0.02510196343064308, + 0.06250257790088654, + 0.1583583652973175, + 0.07638853788375854, + -0.08378622680902481 + ] + }, + "p245_340.wav": { + "name": "p245", + "embedding": [ + 0.06639134883880615, + 0.08019162714481354, + -0.0027581891044974327, + 0.004180664662271738, + -0.030272439122200012, + 0.048977553844451904, + -0.1245986744761467, + 0.1365082561969757, + 0.009521890431642532, + 0.10858672857284546, + -0.09621915221214294, + 0.09146901220083237, + -0.03681021183729172, + -0.13924184441566467, + -0.007102347910404205, + 0.042863357812166214, + -0.03392926603555679, + -0.022205114364624023, + -0.038932789117097855, + -0.008115699514746666, + 0.015234426595270634, + 0.007234741002321243, + 0.01680072769522667, + 0.008193664252758026, + 0.020926427096128464, + 0.04164732247591019, + -0.015389865264296532, + 0.0136415995657444, + 0.008672126568853855, + -0.005748657509684563, + 0.014228813350200653, + 0.0760236456990242, + -0.04467058554291725, + 0.03631991893053055, + 0.07519757002592087, + 0.015932073816657066, + -0.023643437772989273, + -0.060222700238227844, + -0.013411266729235649, + -0.0013590147718787193, + -0.040331389755010605, + 0.07436111569404602, + 0.030003592371940613, + -0.02226611040532589, + 0.03718755394220352, + 0.043628811836242676, + -0.010191012173891068, + -0.03746765851974487, + -0.09806478023529053, + 0.13987596333026886, + 0.039679620414972305, + 0.010337457992136478, + -0.10140713304281235, + -0.029269620776176453, + 0.06586898863315582, + -0.02568648010492325, + -0.08333948999643326, + -0.0408974215388298, + 0.07074789702892303, + 0.10099364072084427, + -0.020467672497034073, + -0.04077022895216942, + -0.004249453544616699, + 0.08768243342638016, + 0.039876539260149, + 0.05888636037707329, + 0.07596106827259064, + 0.12785689532756805, + -0.03381903097033501, + 0.0382893830537796, + 0.06609951704740524, + 0.03227633982896805, + 0.08410327136516571, + 0.004174867644906044, + 0.01832503266632557, + -0.019428031519055367, + -0.015371739864349365, + 0.007760817185044289, + -0.02981926128268242, + -0.022213822230696678, + -0.015078537166118622, + -0.009039074182510376, + 0.006208865903317928, + 0.04495428502559662, + -0.014489944092929363, + 0.0324760302901268, + 0.04820657894015312, + -0.005023290403187275, + 0.07005922496318817, + 0.04904730245471001, + -0.008960306644439697, + 0.04829821735620499, + -0.08658397197723389, + -0.09277187287807465, + 0.013114173896610737, + -0.0337505042552948, + 0.04326009750366211, + 0.04207330942153931, + 0.039886631071567535, + 0.007571110036224127, + 0.10040537267923355, + 0.03025638870894909, + -0.006090020295232534, + 0.011271117255091667, + -0.09047084301710129, + 0.12773479521274567, + 0.07634005695581436, + -0.03252033144235611, + 0.014107977971434593, + -0.04958254098892212, + 0.03959175571799278, + 0.06129565089941025, + -0.09590176492929459, + -0.03559233248233795, + 0.028872815892100334, + 0.016722846776247025, + 0.00038526952266693115, + 0.10121827572584152, + 0.004214008338749409, + 0.02676658146083355, + 0.09626264870166779, + -0.08186472207307816, + -0.03469136729836464, + 0.007905438542366028, + 0.017963996157050133, + -0.05624501407146454, + 0.04268525540828705, + 0.04294935241341591, + 0.019407492130994797, + 0.008044121786952019, + 0.08362578600645065, + 0.01402804534882307, + -0.0015495724510401487, + -0.02666974812746048, + 0.00781327486038208, + 0.04793216660618782, + -0.01652440056204796, + 0.00012958655133843422, + 0.03809443861246109, + 0.05035661906003952, + 0.041099101305007935, + 0.0405113659799099, + -0.02772117219865322, + -0.09168410301208496, + 0.00730043975636363, + 0.052525199949741364, + 0.06806518137454987, + -0.03680209070444107, + -0.023750513792037964, + -0.022470341995358467, + -0.04228659346699715, + 0.024037525057792664, + 0.0025971680879592896, + 0.04648330435156822, + 0.010084804147481918, + -0.012208247557282448, + 0.10476034134626389, + 0.012795300222933292, + 0.0004179964307695627, + -0.06421824544668198, + -0.024929407984018326, + 0.0037254979833960533, + 0.05674167722463608, + -0.10214373469352722, + -0.061027493327856064, + -0.008299363777041435, + 0.012122754007577896, + -0.019059723243117332, + 0.03881477564573288, + 0.05121390521526337, + -0.007847309112548828, + 0.014536220580339432, + -0.054082807153463364, + 0.008495871908962727, + -0.09904608130455017, + -0.08127027004957199, + 0.013614809140563011, + -0.015359293669462204, + 0.00932619720697403, + 0.06560306251049042, + -0.00076671177521348, + 0.051303550601005554, + -0.02514202520251274, + -0.0811050534248352, + -0.05205173045396805, + 0.0779341459274292, + 0.04712040349841118, + -0.03177156671881676, + 0.040250204503536224, + 0.05301342159509659, + -0.030997931957244873, + 0.02893413044512272, + 0.05376358702778816, + 0.10341478139162064, + -0.0588308721780777, + 0.01917843706905842, + -0.055761415511369705, + 0.08098762482404709, + 0.07878062129020691, + -0.07567794620990753, + -0.08167435228824615, + -0.036413874477148056, + -0.020301852375268936, + 0.005011129193007946, + -0.03511064499616623, + -0.007393251173198223, + 0.02708134427666664, + -0.027660030871629715, + -0.06989926844835281, + -0.08587639778852463, + 0.04238252341747284, + -0.05383865535259247, + 0.020441412925720215, + -0.07664134353399277, + 0.0404881127178669, + 0.0507473461329937, + 0.012512242421507835, + -0.03588709980249405, + 0.014069817960262299, + 0.013960480690002441, + -0.035563401877880096, + -0.04448779299855232, + 0.01059906929731369, + 0.026837708428502083, + -0.07180899381637573, + -0.025497715920209885, + -0.045538775622844696, + 0.060949455946683884, + -0.032372038811445236, + 0.13015858829021454, + -0.005669048521667719, + -0.04213802143931389, + -0.04043497517704964, + -0.02032424882054329, + -0.02200600691139698, + 0.0392804890871048, + 0.03568727523088455, + 0.040386863052845, + 0.02337987907230854, + -0.03212041035294533, + 0.11466336995363235, + 0.03853045403957367, + -0.027079515159130096, + -0.0475112609565258, + -0.04738258570432663, + -0.04195820912718773, + 0.0007492341101169586, + -0.0158979631960392, + -0.07680543512105942, + 0.014782892540097237, + 0.004984106868505478, + -0.01322584692388773, + 0.033086612820625305, + 0.11723743379116058, + 0.07080477476119995, + -0.0995333269238472 + ] + }, + "p245_239.wav": { + "name": "p245", + "embedding": [ + 0.07127400487661362, + 0.019093776121735573, + 0.01414394099265337, + -0.011523932218551636, + -0.013843409717082977, + 0.0429999902844429, + -0.11181488633155823, + 0.09210527688264847, + -0.051988907158374786, + 0.06096595153212547, + -0.08969350904226303, + 0.08204600214958191, + 0.019030727446079254, + -0.12784619629383087, + -0.06960482895374298, + 0.026802966371178627, + -0.022742750123143196, + -0.0012724511325359344, + -0.05044564977288246, + -0.024079613387584686, + 0.022867467254400253, + 0.059336770325899124, + 0.03110773302614689, + -0.01116505078971386, + 0.008191319182515144, + 0.05949847400188446, + 0.027810193598270416, + 0.043228629976511, + 0.0029876260086894035, + -0.005984343588352203, + 0.0005563944578170776, + 0.09297096729278564, + -0.024394700303673744, + -0.02786426432430744, + 0.03871412202715874, + -0.0035634443629533052, + 0.027407187968492508, + -0.09005075693130493, + -0.02802146226167679, + 0.024221867322921753, + -0.058861080557107925, + 0.06764927506446838, + 0.06804198026657104, + 0.017803382128477097, + 0.015552683733403683, + 0.012702573090791702, + 0.004298015497624874, + -0.06711240112781525, + -0.10869817435741425, + 0.16304926574230194, + 0.0069725047796964645, + 0.03469327092170715, + -0.10918616503477097, + -0.004171609878540039, + 0.0829123854637146, + -0.007965498603880405, + -0.03523474186658859, + -0.031712256371974945, + 0.03830372542142868, + 0.14346832036972046, + 0.01051875576376915, + -0.0437149703502655, + 0.04311894625425339, + 0.08204641193151474, + 0.014975320547819138, + 0.020011013373732567, + 0.1371983289718628, + 0.08168377727270126, + 5.484931170940399e-05, + 0.03883256018161774, + 0.03779157996177673, + 0.04149949178099632, + 0.016846805810928345, + -0.036675140261650085, + 0.03393048048019409, + -0.007770964875817299, + -0.036692384630441666, + 0.011459278874099255, + -0.03477047011256218, + -0.03154977783560753, + 0.015536344610154629, + 0.016264664009213448, + 0.021259237080812454, + 0.044192470610141754, + -0.07296409457921982, + 0.05625876039266586, + -0.004139753058552742, + 0.0060454062186181545, + 0.0600721500813961, + 0.05596785992383957, + 0.01783670112490654, + -0.0015761107206344604, + -0.030506260693073273, + -0.09027876704931259, + -0.004364637657999992, + 0.007507472764700651, + 0.027169086039066315, + 0.03355260565876961, + 0.02715018205344677, + -0.03729039430618286, + 0.08606458455324173, + -0.007123356685042381, + 0.004398429300636053, + -0.01685267686843872, + -0.06783889979124069, + 0.07272452861070633, + 0.11239971965551376, + -0.004071911796927452, + 0.022723225876688957, + -0.047756996005773544, + 0.012102460488677025, + 0.0588613897562027, + -0.0905846357345581, + -0.05410899221897125, + 0.045872077345848083, + 0.03321833163499832, + 0.06676512211561203, + 0.11658039689064026, + -0.008802798576653004, + 0.02088093012571335, + 0.04114298149943352, + -0.06236909329891205, + -0.026366010308265686, + 0.0023633111268281937, + 0.008877340704202652, + -0.012683948501944542, + 0.02095046080648899, + 0.02316000498831272, + 0.034441880881786346, + -0.05924255773425102, + 0.06334992498159409, + -0.004052160307765007, + 0.002737640403211117, + -0.04595591500401497, + 0.027514228597283363, + 0.07666558772325516, + 0.00889552477747202, + -0.025774721056222916, + 0.038250602781772614, + 0.07810305058956146, + 0.007095523178577423, + 0.04939836636185646, + -0.06631563603878021, + -0.10145246982574463, + -0.029270604252815247, + 0.03936555236577988, + 0.04891711845993996, + -0.027486711740493774, + -0.053716253489255905, + -0.07629136741161346, + 0.005359183996915817, + -0.01069799717515707, + 0.007228119298815727, + 0.05622076243162155, + 0.044690702110528946, + -0.012043043971061707, + 0.07024528086185455, + -0.03508200868964195, + 0.027698000892996788, + -0.011489249765872955, + 0.010456315241754055, + 0.01987171545624733, + 0.025585021823644638, + 0.016467289999127388, + -0.07188097387552261, + 0.008071591146290302, + -0.001341152936220169, + -0.01675121672451496, + -0.005555272102355957, + 0.01658037304878235, + -0.018899204209446907, + -0.0030862707644701004, + -0.11138496547937393, + 0.033861398696899414, + -0.10947717726230621, + -0.002798810601234436, + 0.056818753480911255, + -0.021806513890624046, + -0.013877428136765957, + 0.08745700120925903, + 0.03198591619729996, + 0.033464930951595306, + -0.015329709276556969, + -0.08588293939828873, + -0.005722682923078537, + 0.03773140162229538, + 0.06973476707935333, + -0.007243748754262924, + 0.010962575674057007, + -0.0011178664863109589, + 0.022056449204683304, + 0.058426182717084885, + 0.056818168610334396, + 0.032578226178884506, + -0.042369045317173004, + -0.06312602758407593, + 0.010349487885832787, + 0.10465070605278015, + -0.012116104364395142, + -0.06008843332529068, + -0.05170039087533951, + 0.019996510818600655, + -0.042729154229164124, + 0.014916767366230488, + 0.014680233784019947, + 0.03672060742974281, + 0.05459703505039215, + -0.013234852813184261, + -0.11752871423959732, + -0.03486056253314018, + 0.03271418809890747, + -0.07190996408462524, + -0.008984608575701714, + -0.0554688386619091, + 0.02521122246980667, + 0.11016703397035599, + -0.001111089251935482, + 0.02533961459994316, + -0.035138338804244995, + -0.029855214059352875, + -0.08012183010578156, + -0.057451412081718445, + -0.030463306233286858, + 0.028177790343761444, + -0.04955669492483139, + 0.005125638097524643, + -0.07297259569168091, + 0.058610301464796066, + -0.03174437955021858, + 0.07638567686080933, + 0.02632550150156021, + -0.06413320451974869, + -0.08980400860309601, + 0.0011020172387361526, + -0.016635259613394737, + 0.05730810388922691, + 0.0527595616877079, + 0.012529173865914345, + 0.017594855278730392, + -0.07702326774597168, + 0.08198077231645584, + 0.06108960509300232, + -0.06026972830295563, + -0.07305431365966797, + -0.01985214650630951, + 0.012401393614709377, + 0.028201133012771606, + -0.0014108233153820038, + 0.0041879042983055115, + 0.0209663063287735, + 0.026940345764160156, + -0.011645923368632793, + 0.06098298728466034, + 0.07873081415891647, + 0.036621641367673874, + -0.07907790690660477 + ] + }, + "p245_227.wav": { + "name": "p245", + "embedding": [ + 0.06037134677171707, + 0.08570896089076996, + -0.019702520221471786, + 0.022366613149642944, + -0.07531517744064331, + 0.07544559985399246, + -0.12379723787307739, + 0.14445246756076813, + -0.04340231418609619, + 0.14070409536361694, + -0.07161542028188705, + 0.1391201764345169, + -0.0004176038783043623, + -0.18650177121162415, + -0.0181155763566494, + 0.03891553357243538, + -0.03167455270886421, + -0.005392352119088173, + -0.053561482578516006, + -0.029414039105176926, + 0.04016154631972313, + 0.029714740812778473, + 0.035814691334962845, + -0.023127835243940353, + 0.02899923175573349, + 0.06704011559486389, + -0.010245775803923607, + 0.034223780035972595, + 0.012145204469561577, + -0.07225147634744644, + -0.061436425894498825, + 0.10887479782104492, + -0.06607499718666077, + 0.005742373876273632, + 0.0644531399011612, + -0.03770455718040466, + -0.02444148249924183, + -0.06412821263074875, + -0.02814031019806862, + 0.0045563047751784325, + -0.0350966602563858, + 0.06708647310733795, + 0.034414179623126984, + -0.023326324298977852, + 0.05697493627667427, + 0.015522249042987823, + -0.011106668971478939, + -0.04738255962729454, + -0.08933813869953156, + 0.1410139501094818, + 0.06501325964927673, + -0.015082523226737976, + -0.07161733508110046, + -0.0435834676027298, + 0.1068471223115921, + -0.017745455726981163, + -0.12056022882461548, + -0.030402742326259613, + 0.07582388818264008, + 0.14390461146831512, + -0.039118990302085876, + -0.028490055352449417, + 0.029065797105431557, + 0.08872385323047638, + 0.04287610575556755, + 0.10764962434768677, + 0.08694794028997421, + 0.10373049974441528, + -0.011214769445359707, + 0.056350044906139374, + 0.03859269618988037, + 0.06862278282642365, + 0.04696699604392052, + -0.031149927526712418, + 0.0350484699010849, + -0.008445067331194878, + -0.025201544165611267, + -0.015529055148363113, + -0.028943222016096115, + -0.0017155238892883062, + -0.003591958899050951, + 0.006237707566469908, + 0.040478311479091644, + 0.0066591971553862095, + -0.04383482038974762, + 0.07017461955547333, + 0.028217725455760956, + -0.005691654048860073, + 0.05217348039150238, + 0.03057531639933586, + -0.007049663458019495, + 0.055375583469867706, + -0.09654393792152405, + -0.10485202074050903, + 0.031433381140232086, + 0.0061244722455739975, + -0.0027027763426303864, + 0.0787169486284256, + 0.04314332455396652, + -0.012910754419863224, + 0.1122114434838295, + 0.06743180751800537, + -0.010364268906414509, + 0.044879235327243805, + -0.0835464745759964, + 0.1287938952445984, + 0.09315474331378937, + -0.019612416625022888, + 0.0631938949227333, + -0.07716260105371475, + 0.10375265777111053, + 0.057239778339862823, + -0.14380934834480286, + -0.060594379901885986, + 0.01816524751484394, + -0.013938801363110542, + -0.02389213815331459, + 0.1250602751970291, + -0.022790445014834404, + 0.038707759231328964, + 0.10168983042240143, + -0.08606225252151489, + -0.053587380796670914, + -0.019488949328660965, + 0.048445168882608414, + -0.085906982421875, + 0.0631561428308487, + 0.03454866260290146, + -0.018750105053186417, + 0.022732049226760864, + 0.08373497426509857, + -0.019818153232336044, + -0.012598307803273201, + 0.03540262207388878, + -0.039321206510066986, + 0.0159012321382761, + -0.02145484834909439, + 0.0023860055953264236, + 0.039884619414806366, + 0.03538494557142258, + 0.04765427112579346, + -0.020397935062646866, + -0.01177804172039032, + -0.08741892129182816, + 0.01649581827223301, + 0.02263766899704933, + 0.07652141153812408, + -0.002356482669711113, + -0.006948956288397312, + -0.042637523263692856, + -0.0931013897061348, + 0.013425029814243317, + -0.020280778408050537, + 0.0697951465845108, + -0.018908970057964325, + 0.024380605667829514, + 0.08535847067832947, + 0.05487808585166931, + 0.004974113777279854, + -0.0680510550737381, + -0.029298128560185432, + 0.017211752012372017, + 0.06064422428607941, + -0.0817132443189621, + -0.06587617844343185, + -0.01283592451363802, + 0.008852152153849602, + -0.03935614973306656, + 0.04913647100329399, + 0.04603557661175728, + 0.030678432434797287, + 0.04446561634540558, + -0.09261421114206314, + 0.010217836126685143, + -0.11238285899162292, + -0.05385879427194595, + -0.018265459686517715, + -0.0251108817756176, + -0.03299194574356079, + 0.07536908239126205, + 0.01846587099134922, + 0.04141339287161827, + -0.019112002104520798, + -0.05137632042169571, + -0.07393202185630798, + 0.05355052277445793, + 0.055620186030864716, + -0.01335783489048481, + 0.04116807132959366, + 0.0487552247941494, + -0.036438003182411194, + 0.058290984481573105, + 0.07508772611618042, + 0.08659902215003967, + -0.015032120048999786, + 0.022882547229528427, + -0.06408246606588364, + 0.10252620279788971, + 0.09582817554473877, + -0.08702091872692108, + -0.10179796069860458, + -0.02871435508131981, + -0.07349397987127304, + 0.03968850523233414, + -0.02762385830283165, + -0.019550630822777748, + 0.027073998004198074, + 0.009995599277317524, + -0.09180231392383575, + -0.08091013878583908, + 0.09065079689025879, + -0.07136523723602295, + -0.01066931989043951, + -0.08579641580581665, + 0.04663429409265518, + 0.10176980495452881, + 0.01736580766737461, + -0.04070871323347092, + -0.01898895390331745, + 0.055287159979343414, + -0.034810587763786316, + 0.01455785147845745, + 0.04177185893058777, + 0.04016496241092682, + -0.10704472661018372, + 0.01202833466231823, + -0.048827074468135834, + 0.04372423142194748, + -0.048256728798151016, + 0.161650151014328, + 0.0031913002021610737, + -0.04870273917913437, + -0.06659187376499176, + 0.07048682123422623, + -0.010164874605834484, + 0.03241579234600067, + 0.04637807607650757, + 0.07134668529033661, + 0.035752009600400925, + -0.08948419243097305, + 0.11096765100955963, + 0.016276035457849503, + -0.03500794246792793, + -0.06615947186946869, + -0.050319962203502655, + -0.047357331961393356, + 0.013476955704391003, + 0.022592905908823013, + -0.10324914753437042, + -0.020539050921797752, + 0.026094775646924973, + -0.013407817110419273, + 0.06635773181915283, + 0.13746339082717896, + 0.06524045765399933, + -0.10997216403484344 + ] + }, + "p245_160.wav": { + "name": "p245", + "embedding": [ + 0.026559598743915558, + 0.1116848886013031, + -0.016116315498948097, + 0.051389217376708984, + -0.05837224796414375, + 0.017432451248168945, + -0.022781696170568466, + 0.04519841820001602, + 0.0255142729729414, + 0.07495652139186859, + -0.04130738973617554, + 0.07807604968547821, + -0.0513303279876709, + -0.09406927973031998, + -0.007932877168059349, + 0.020030591636896133, + -0.006581081077456474, + 0.02560054138302803, + -0.023602964356541634, + -0.010282590985298157, + -0.050811320543289185, + -0.00525493361055851, + 0.002204073593020439, + -0.008879566565155983, + -0.040683846920728683, + 0.03986447677016258, + -0.031193401664495468, + 0.012891063466668129, + -0.019032025709748268, + -0.1048523336648941, + -0.010010089725255966, + 0.05138653144240379, + -0.028826337307691574, + -0.026896072551608086, + 0.007702079601585865, + -0.03902773559093475, + 0.014631949365139008, + -0.028339151293039322, + -0.054345883429050446, + -0.015875523909926414, + -0.0364132821559906, + 0.00630771741271019, + -0.01191217266023159, + -0.07795916497707367, + 0.016351427882909775, + -0.0012911586090922356, + -0.04717263951897621, + -0.006497536785900593, + -0.04528365656733513, + 0.10074131935834885, + 0.025250926613807678, + 0.05538181960582733, + -0.04879321902990341, + -0.04657234624028206, + 0.12063401937484741, + 0.014146438799798489, + 0.005084522068500519, + -0.01622661016881466, + -0.01819690130650997, + 0.05265335366129875, + 0.04058893769979477, + -0.0028991326689720154, + 0.05349726974964142, + 0.05099568888545036, + 0.008044037967920303, + 0.037750180810689926, + 0.058458127081394196, + 0.06295692175626755, + -0.022748533636331558, + 0.036461763083934784, + 0.04959450662136078, + 0.026321707293391228, + 0.04101115092635155, + 0.041950855404138565, + -0.022483622655272484, + 0.005180465057492256, + 0.003750205971300602, + 0.025160280987620354, + -0.01991969719529152, + -0.042616672813892365, + 0.0027666196692734957, + -0.004818296059966087, + 0.01092077512294054, + -0.04666807875037193, + -0.02696220576763153, + -0.04495837166905403, + 0.06898374855518341, + 0.005142414942383766, + 0.047648072242736816, + 0.004516623914241791, + 0.053117770701646805, + 0.0462389811873436, + -0.040140800178050995, + -0.05522499606013298, + 0.02683410979807377, + 0.003386897034943104, + 0.050053078681230545, + 0.029816962778568268, + 0.005843058228492737, + 0.004132304340600967, + 0.04547717049717903, + -0.01720576174557209, + 0.06789544224739075, + -0.01553838700056076, + -0.05814449489116669, + -0.031201064586639404, + 0.04844619706273079, + 0.018837835639715195, + 0.033266641199588776, + 0.0484301894903183, + 0.0575186088681221, + 0.09253117442131042, + -0.03851114958524704, + -0.057117901742458344, + -0.00688267033547163, + 0.03141169622540474, + -0.039591070264577866, + 0.08456496894359589, + -0.005943231750279665, + 0.03955782949924469, + 0.05599345266819, + -0.029588595032691956, + -0.01905791088938713, + 0.016566919162869453, + -0.008770550601184368, + -0.05794387310743332, + 0.058530230075120926, + 0.031134668737649918, + -0.03416421636939049, + -0.04878013953566551, + 0.052470795810222626, + -0.021651186048984528, + -0.018802674487233162, + -0.014108812436461449, + -0.003923185169696808, + -0.02743849717080593, + 0.037589505314826965, + -0.04890361428260803, + 0.025228170678019524, + 0.0692390725016594, + -0.0014297310262918472, + -0.05619741976261139, + 0.001806040178053081, + -0.0505979098379612, + 0.03501978516578674, + 0.03337126970291138, + -0.010297193191945553, + 0.05970190465450287, + -0.04140562564134598, + -0.04531535506248474, + -0.02139427326619625, + 0.051135823130607605, + -0.0441482849419117, + 0.0745561495423317, + 0.05846432223916054, + 0.02120148204267025, + 0.07236268371343613, + -0.02390219457447529, + -0.006168705876916647, + -0.01925705373287201, + -0.10689781606197357, + 0.016164032742381096, + 0.025825107470154762, + -0.020861327648162842, + -0.03136304020881653, + -0.02024385705590248, + -0.024434704333543777, + -0.0028209052979946136, + 0.022269051522016525, + 0.04599447548389435, + -0.008368403650820255, + 0.049845099449157715, + -0.0799744501709938, + -0.005105664953589439, + -0.012980857864022255, + -0.05203929543495178, + 0.03248864412307739, + -0.020502634346485138, + -0.008597271516919136, + 0.033127136528491974, + 0.02249806933104992, + -0.037907686084508896, + -0.06620056182146072, + -0.07399959862232208, + 0.007195569574832916, + 0.029491569846868515, + 0.016986342146992683, + 0.007693079765886068, + -0.013965637423098087, + 0.03907273709774017, + 0.051342613995075226, + 0.01718650758266449, + 0.007847528904676437, + 0.07077126950025558, + -0.04855210334062576, + -0.006412457674741745, + 0.030008159577846527, + 0.09268131852149963, + 0.048097409307956696, + -0.07212166488170624, + -0.10743173211812973, + -0.03378477692604065, + -0.05552264675498009, + 0.0688861832022667, + -0.030944589525461197, + 0.020307613536715508, + 0.020808249711990356, + -0.007350586354732513, + 0.0056816451251506805, + -0.1304166167974472, + 0.061731744557619095, + 0.03215894103050232, + -0.03690272569656372, + -0.007082510739564896, + 0.006484119221568108, + -0.0048206280916929245, + 0.05094684660434723, + -0.03103126958012581, + -0.0005900515243411064, + 0.016392599791288376, + -0.003268212080001831, + 0.007919812574982643, + 0.055651649832725525, + 0.0423818975687027, + 0.018856879323720932, + -0.013363394886255264, + -0.023763928562402725, + 0.03382803127169609, + 0.006204478442668915, + 0.0458715595304966, + -0.003102308139204979, + -0.013315879739820957, + -0.106963150203228, + 0.08787776529788971, + -0.03548796474933624, + 0.057874154299497604, + -0.010665055364370346, + 0.017566632479429245, + 0.05890590697526932, + -0.03642525151371956, + 0.07835541665554047, + 0.021359838545322418, + -0.0193508081138134, + -0.03404254838824272, + -0.013302493840456009, + -0.035955529659986496, + 0.035202693194150925, + 0.042525772005319595, + -0.01032334566116333, + -0.006047356873750687, + 0.03645598888397217, + 0.042794372886419296, + 0.08431451767683029, + 0.07425171136856079, + 0.055540118366479874, + 0.027588654309511185 + ] + }, + "p245_056.wav": { + "name": "p245", + "embedding": [ + 0.038328371942043304, + 0.06367671489715576, + -0.027478108182549477, + 0.053355857729911804, + -0.05999847501516342, + 0.08225319534540176, + -0.14614485204219818, + 0.1154351755976677, + -0.02209380455315113, + 0.12605777382850647, + -0.03030681237578392, + 0.09915250539779663, + -0.02087361179292202, + -0.18541213870048523, + -0.0023089428432285786, + 0.08155229687690735, + -0.007917769253253937, + -0.01564657874405384, + -0.05361519753932953, + -0.005513269454240799, + 0.005140484776347876, + 0.030321989208459854, + 0.03555504232645035, + -0.027472959831357002, + 0.04679049551486969, + 0.03893141448497772, + -0.01573146879673004, + 0.053847476840019226, + 0.004548178054392338, + -0.06983290612697601, + -0.025777123868465424, + 0.08817800879478455, + -0.05765452980995178, + 0.027357857674360275, + 0.05434811860322952, + 0.005703633651137352, + -0.004371881019324064, + -0.04762175679206848, + -0.004995710216462612, + 0.0020579956471920013, + -0.04185333102941513, + 0.09500788152217865, + 0.0452316515147686, + -0.01057750266045332, + 0.042994141578674316, + 0.014600496739149094, + -0.01879080757498741, + -0.04451435059309006, + -0.11859199404716492, + 0.14696958661079407, + 0.029264669865369797, + -0.01479214709252119, + -0.08258024603128433, + -0.07070136070251465, + 0.09047552943229675, + -0.02678380161523819, + -0.10557340085506439, + -0.08048279583454132, + 0.0840415358543396, + 0.15198521316051483, + -0.010024361312389374, + -0.01821364276111126, + 0.002189514460042119, + 0.11044515669345856, + 0.06453007459640503, + 0.0904700979590416, + 0.0374385267496109, + 0.1305156946182251, + 0.0015142466872930527, + 0.007919435389339924, + 0.020688869059085846, + 0.06220712512731552, + 0.015139110386371613, + 0.01849103532731533, + 0.011681335046887398, + -0.014993296936154366, + -0.007299354765564203, + -0.004437160678207874, + -0.027512013912200928, + -0.011841649189591408, + -0.01434422843158245, + 0.0023328829556703568, + 0.027927620336413383, + 0.014589717611670494, + -0.036527119576931, + 0.04561164975166321, + 0.047775376588106155, + -0.028939470648765564, + 0.05588280409574509, + 0.040653008967638016, + -0.027852699160575867, + 0.040589358657598495, + -0.0725463405251503, + -0.07555719465017319, + 0.006225344259291887, + 0.01126736681908369, + -0.004792221821844578, + 0.03662295639514923, + 0.0037884991616010666, + -0.007372761145234108, + 0.11891268193721771, + 0.03254926949739456, + -0.01723564602434635, + 0.04737314209342003, + -0.0680658295750618, + 0.13920092582702637, + 0.05126619338989258, + 0.026127591729164124, + 0.06337494403123856, + -0.056040287017822266, + 0.03214118629693985, + 0.06679442524909973, + -0.12897734344005585, + -0.06014731898903847, + 0.01990739442408085, + -0.0070129260420799255, + -0.0365622341632843, + 0.12884365022182465, + 0.012689088471233845, + 0.021939659491181374, + 0.1049538105726242, + -0.10255618393421173, + -0.05850471928715706, + 0.020309578627347946, + 0.04694744199514389, + -0.07767294347286224, + 0.0318603441119194, + 0.030406324192881584, + -0.025112081319093704, + 0.021169589832425117, + 0.08431406319141388, + 0.022275879979133606, + 0.034444332122802734, + 0.04291002079844475, + -0.03720298409461975, + 0.03455735370516777, + -0.02514510229229927, + 0.007068756967782974, + 0.07924430072307587, + 0.029403533786535263, + 0.09271825850009918, + -0.03362305089831352, + -0.031318217515945435, + -0.13683345913887024, + -0.011278930120170116, + 0.03819924220442772, + 0.10330018401145935, + -0.018379729241132736, + 0.00244515435770154, + -0.058840662240982056, + -0.10101937502622604, + 0.05231962352991104, + -0.014565413817763329, + 0.1185389906167984, + -0.009202133864164352, + -0.004613430239260197, + 0.10359296202659607, + 0.015815144404768944, + 0.0018608442042022943, + -0.06523013859987259, + -0.02134281024336815, + -0.01475444994866848, + 0.03678862005472183, + -0.07916846871376038, + -0.03944757580757141, + 0.016942711547017097, + 0.032575272023677826, + -0.03222767263650894, + 0.05971198529005051, + 0.04335341602563858, + 0.038127753883600235, + 0.034792717546224594, + -0.044339898973703384, + -0.021466948091983795, + -0.04879412055015564, + -0.04230405390262604, + -0.0034981335047632456, + -0.008795037865638733, + -0.0518103651702404, + 0.0975133627653122, + 0.04820462316274643, + 0.05235876888036728, + -0.018672702834010124, + -0.051297612488269806, + -0.10104307532310486, + 0.054405152797698975, + 0.005037857685238123, + -0.027715278789401054, + 0.03686122968792915, + 0.044303834438323975, + -0.05497080832719803, + 0.050464704632759094, + 0.08660118281841278, + 0.059202197939157486, + -0.026598041877150536, + 0.02196887880563736, + -0.07423491775989532, + 0.12015064060688019, + 0.12374447286128998, + -0.08341850340366364, + -0.07052579522132874, + -0.019805671647191048, + -0.07627588510513306, + 0.027864931151270866, + -0.05387416481971741, + -0.004778549540787935, + 0.04778347909450531, + -0.019103879109025, + -0.10759029537439346, + -0.1048310399055481, + 0.06568128615617752, + -0.0942007452249527, + 0.0012340828543528914, + -0.0469803661108017, + 0.029530808329582214, + 0.06226624175906181, + 0.05579405277967453, + -0.015114019624888897, + -0.017105918377637863, + 0.08538550138473511, + -0.0633305162191391, + 0.020461436361074448, + 0.09949508309364319, + 0.01492242980748415, + -0.09198328852653503, + -0.007643409073352814, + -0.05490371584892273, + 0.039846695959568024, + -0.022794198244810104, + 0.16857904195785522, + 0.022090043872594833, + -0.04276996850967407, + -0.05042840540409088, + 0.014080922119319439, + -0.0516873337328434, + 0.053385525941848755, + 0.01847190037369728, + 0.06780648976564407, + 0.06270890682935715, + -0.01408656220883131, + 0.13060125708580017, + 0.0571218840777874, + -0.03772319480776787, + -0.05590088292956352, + -0.06338523328304291, + -0.05283889174461365, + 0.05294118821620941, + 0.01910148561000824, + -0.12151288986206055, + -0.0011200555600225925, + 0.04946079105138779, + -0.020088355988264084, + 0.04812328517436981, + 0.14391952753067017, + 0.09139038622379303, + -0.08823636174201965 + ] + }, + "p245_078.wav": { + "name": "p245", + "embedding": [ + 0.055630218237638474, + 0.1067352369427681, + 0.002760309260338545, + 0.020574919879436493, + -0.038188669830560684, + 0.0941101610660553, + -0.09879721701145172, + 0.106082983314991, + -0.08724622428417206, + 0.16249629855155945, + -0.09837605059146881, + 0.12139571458101273, + -0.018660595640540123, + -0.15788023173809052, + -0.06801563501358032, + 0.04094967246055603, + -0.07233306765556335, + -0.012670725584030151, + -0.030045168474316597, + -0.008351616561412811, + 0.05629514530301094, + 0.0474000982940197, + 0.05469570681452751, + -0.006902947090566158, + 0.0279505904763937, + 0.05331993103027344, + 0.006443081423640251, + 0.05493545904755592, + 0.02974170260131359, + -0.11172091215848923, + -0.06248054280877113, + 0.12382711470127106, + -0.023882700130343437, + 0.016918832436203957, + 0.027727941051125526, + 0.0012149892281740904, + 0.03127792105078697, + -0.08427728712558746, + -0.02286512218415737, + -0.004720490891486406, + -0.016724610701203346, + 0.05678213760256767, + -0.008819813840091228, + -0.020762315019965172, + 0.016446148976683617, + -0.020085155963897705, + -0.03122781589627266, + -0.042162854224443436, + -0.08499240130186081, + 0.15938058495521545, + 0.0632585734128952, + 0.016745148226618767, + -0.06889068335294724, + -0.08602249622344971, + 0.11774913221597672, + -0.0037802455481141806, + -0.11549004167318344, + -0.0056350515224039555, + 0.05256785452365875, + 0.19134508073329926, + -0.01288327481597662, + -0.028405997902154922, + 0.041795507073402405, + 0.09828393906354904, + 0.012277642264962196, + 0.09504145383834839, + 0.08769989758729935, + 0.04927289858460426, + 0.031748756766319275, + 0.04910534247756004, + 0.034943435341119766, + 0.07930120080709457, + 0.038688480854034424, + -0.037833523005247116, + 0.025218788534402847, + -0.019915523007512093, + -0.05998706817626953, + 0.021445412188768387, + -0.020591862499713898, + -0.02663932926952839, + -0.0153141338378191, + -0.008027773350477219, + 0.0070179784670472145, + -0.004541077185422182, + -0.03750359266996384, + 0.036534544080495834, + -0.027762984856963158, + -0.024407943710684776, + 0.07256761938333511, + 0.029750952497124672, + 0.02671189419925213, + 0.04122646898031235, + -0.0477452278137207, + -0.11737048625946045, + 0.020861215889453888, + 0.031394343823194504, + 0.0016068917466327548, + 0.08763805776834488, + 0.05224749073386192, + -0.04364006966352463, + 0.10341253876686096, + 0.04862023517489433, + 0.019776152446866035, + 0.0049330126494169235, + -0.11249294877052307, + 0.09830232709646225, + 0.11616941541433334, + -0.014970390126109123, + 0.04488604515790939, + -0.026193594560027122, + 0.10363094508647919, + 0.09409166127443314, + -0.16502316296100616, + -0.08759430050849915, + 0.008928144350647926, + -0.011504007503390312, + 0.0340847410261631, + 0.07251366227865219, + -0.01425595860928297, + 0.01328407134860754, + 0.08133666962385178, + -0.0839223712682724, + -0.058623820543289185, + -0.048220425844192505, + 0.05373107269406319, + -0.07759253680706024, + 0.06660626828670502, + 0.027627989649772644, + -0.011569928377866745, + -0.02027498558163643, + 0.05959482118487358, + -0.04370884597301483, + -0.00953164603561163, + 0.03459625318646431, + -0.06948640942573547, + 0.016997747123241425, + -0.07292965054512024, + 0.001577579416334629, + 0.0519273616373539, + 0.04581351578235626, + 0.040306150913238525, + -0.005860194563865662, + -0.04170579835772514, + -0.07742556929588318, + 0.007583111058920622, + 0.042086441069841385, + 0.028847387060523033, + -0.0007596837822347879, + -0.036219775676727295, + -0.03948000818490982, + -0.046713266521692276, + 0.04621388390660286, + -0.015276334248483181, + 0.0842442438006401, + 0.014856208115816116, + 0.028215540573000908, + 0.08941014111042023, + 0.01986808329820633, + -0.019871439784765244, + -0.05743054300546646, + -0.02193480357527733, + 0.040594082325696945, + 0.04170772805809975, + -0.06216242536902428, + -0.06606973707675934, + 0.015140027739107609, + 0.003207495668902993, + -0.026440391317009926, + 0.029404249042272568, + 0.05135619267821312, + 0.017684534192085266, + 0.045513201504945755, + -0.06714869290590286, + 0.024346038699150085, + -0.11197793483734131, + -0.04892519861459732, + -0.016080524772405624, + -0.05219294875860214, + -0.009945571422576904, + 0.08835085481405258, + 0.027112849056720734, + -0.0024880480486899614, + -0.013584609143435955, + -0.07527217268943787, + -0.05660012736916542, + 0.06697279959917068, + 0.07509242743253708, + 0.037866540253162384, + 0.038694173097610474, + 0.046378105878829956, + 0.0064362529665231705, + 0.07628372311592102, + 0.05895989015698433, + 0.10219667106866837, + -0.009982917457818985, + -0.01127435453236103, + -0.07062623649835587, + 0.06987965106964111, + 0.08156045526266098, + -0.0872301384806633, + -0.11450573056936264, + -0.04452529549598694, + -0.0767161026597023, + 0.08281093835830688, + -0.015804573893547058, + -0.0020173536613583565, + 0.021954553201794624, + -0.03985925018787384, + -0.10587214678525925, + -0.0773933157324791, + 0.13195228576660156, + -0.03250063955783844, + -0.05269068107008934, + -0.07849941402673721, + 0.051247190684080124, + 0.07176458835601807, + 0.03178824111819267, + -0.020844925194978714, + 0.03256065398454666, + 0.04053771495819092, + -0.0851791724562645, + -0.020112428814172745, + 0.03442341834306717, + -0.010670512914657593, + -0.09209192544221878, + 0.03319999575614929, + -0.0941704660654068, + 0.07270291447639465, + -0.08972466737031937, + 0.16377297043800354, + -0.0324772484600544, + -0.06603601574897766, + -0.08975996822118759, + 0.08654289692640305, + -0.03915800899267197, + 0.03179012984037399, + 0.06263607740402222, + 0.049225758761167526, + 0.02835780568420887, + -0.1102827712893486, + 0.07609602808952332, + 0.023705288767814636, + -0.016242744401097298, + -0.07431349158287048, + -0.045934394001960754, + -0.03657393902540207, + 0.007536218035966158, + -0.01845720410346985, + -0.0711108073592186, + 0.010064364410936832, + 0.0036284979432821274, + 0.007677001412957907, + 0.08542200177907944, + 0.12095218151807785, + 0.04364725574851036, + -0.10538380593061447 + ] + }, + "p245_062.wav": { + "name": "p245", + "embedding": [ + 0.021794212982058525, + 0.07907729595899582, + -0.02841346152126789, + -0.015859708189964294, + -0.06424835324287415, + 0.06387975811958313, + -0.11144575476646423, + 0.12209363281726837, + -0.06114812195301056, + 0.13196012377738953, + -0.07439765334129333, + 0.09188421815633774, + -0.05453932285308838, + -0.14907890558242798, + -0.0390595979988575, + 0.026605786755681038, + -0.04232645779848099, + -0.021957313641905785, + -0.087961845099926, + -0.04156852141022682, + 0.03828243538737297, + 0.007931772619485855, + -0.02519194968044758, + -0.008817838504910469, + 0.017104677855968475, + 0.05094083026051521, + 0.0004894123412668705, + 0.031202970072627068, + 0.002435644157230854, + -0.011450054123997688, + -0.015073923394083977, + 0.09006287902593613, + -0.05852273106575012, + 0.02499542385339737, + 0.06425312906503677, + 0.012921303510665894, + -0.025711527094244957, + -0.042459890246391296, + 0.0018460024148225784, + 0.026552977040410042, + -0.0718337818980217, + 0.06952087581157684, + 0.02226673811674118, + -0.0020950566977262497, + 0.0315837636590004, + 0.0329069122672081, + 0.0022115297615528107, + -0.06436945497989655, + -0.08765766024589539, + 0.1378021538257599, + 0.06539446115493774, + -0.028171617537736893, + -0.06404684484004974, + -0.06096411123871803, + 0.12313007563352585, + -0.04145287349820137, + -0.1264445036649704, + -0.04790085554122925, + 0.06480594724416733, + 0.13758891820907593, + -0.06513374298810959, + -0.02956644631922245, + -0.0007622246630489826, + 0.10006635636091232, + 0.05754372850060463, + 0.0836755633354187, + 0.09292846918106079, + 0.11577112227678299, + -0.026309117674827576, + 0.0005640224553644657, + 0.07485707104206085, + 0.04527078941464424, + 0.0684117004275322, + -0.0035286853089928627, + 0.034221578389406204, + 0.010326101444661617, + 0.0006285249255597591, + 0.024298526346683502, + -0.0360148586332798, + -0.010448945686221123, + -0.02834143489599228, + 0.0246539618819952, + -0.009179140441119671, + 0.0022719306871294975, + -0.02260502427816391, + 0.06468090415000916, + 0.04094701632857323, + -0.015857215970754623, + 0.06263691931962967, + 0.06454430520534515, + -0.028945326805114746, + 0.0730544775724411, + -0.07714489102363586, + -0.081499382853508, + -0.004363709129393101, + -0.027288399636745453, + 0.02606525830924511, + 0.0558144748210907, + 0.025309979915618896, + 0.005748945754021406, + 0.09176786243915558, + 0.04580090567469597, + -0.001802746206521988, + 0.04070059210062027, + -0.0878300666809082, + 0.11983676254749298, + 0.07847346365451813, + -0.035752587020397186, + 0.014184404164552689, + -0.04365314543247223, + 0.07216737419366837, + 0.0494089275598526, + -0.09954509139060974, + -0.07211105525493622, + 0.046957388520240784, + 0.029278963804244995, + -0.02720465511083603, + 0.09144176542758942, + -0.024550890550017357, + -0.015109876170754433, + 0.12353020161390305, + -0.06131336838006973, + -0.03163054585456848, + -0.00985715538263321, + 0.03938358277082443, + -0.03256215155124664, + 0.02536025643348694, + 0.04210666939616203, + 0.013145418837666512, + 0.019744323566555977, + 0.11745338141918182, + 0.002565953880548477, + -0.0046151974238455296, + 0.004640447441488504, + -0.01160176657140255, + 0.03936464712023735, + 0.006603270769119263, + -0.020428884774446487, + 0.07607868313789368, + 0.08538609743118286, + 0.041804492473602295, + 0.014903525821864605, + -0.039826810359954834, + -0.08922447264194489, + 0.013417287729680538, + 0.05620255321264267, + 0.07754065096378326, + -0.03470059856772423, + 0.017016157507896423, + -0.0518205426633358, + -0.08239337801933289, + 0.0068237208761274815, + -0.009328922256827354, + 0.09967579692602158, + -0.049350544810295105, + -0.014919477514922619, + 0.11594163626432419, + 0.0040334854274988174, + -0.008862588554620743, + -0.05128038302063942, + -0.01910565420985222, + -0.006497434340417385, + 0.057690273970365524, + -0.06555988639593124, + -0.0783952847123146, + -0.002121283207088709, + 0.03951757401227951, + 0.0036794249899685383, + 0.05851081758737564, + 0.04518513381481171, + -0.0038719484582543373, + 0.036255642771720886, + -0.08122381567955017, + 0.01836446113884449, + -0.12228478491306305, + -0.028511982411146164, + -0.011650661937892437, + -0.05292245000600815, + 0.0061986492946743965, + 0.07129751890897751, + -0.017159277573227882, + 0.025866545736789703, + 0.01357787661254406, + -0.13572727143764496, + -0.06041032820940018, + 0.06825228780508041, + 0.07815296202898026, + -0.016630569472908974, + 0.04512578248977661, + 0.0904008150100708, + -0.03705696761608124, + 0.029913946986198425, + 0.0918593555688858, + 0.11844207346439362, + -0.031447071582078934, + 0.024922136217355728, + -0.056631527841091156, + 0.08434765040874481, + 0.03192727267742157, + -0.09711845219135284, + -0.0736217349767685, + -0.0392693355679512, + -0.01587245613336563, + 0.0004422329366207123, + -0.03323450684547424, + 0.022801723331212997, + 0.021854812279343605, + -0.002091458300128579, + -0.07529273629188538, + -0.0779525488615036, + 0.05402090400457382, + -0.07683536410331726, + 0.016498014330863953, + -0.06550651788711548, + 0.02364080771803856, + 0.09570302069187164, + 0.05481031537055969, + -0.009080225601792336, + 0.01197740901261568, + 0.05472739040851593, + -0.03618208318948746, + -0.010378731414675713, + 0.019115785136818886, + 0.007613572292029858, + -0.06855800747871399, + 0.0037479265592992306, + -0.07659077644348145, + 0.07853808999061584, + -0.03008956089615822, + 0.1388910412788391, + -0.008087326772511005, + -0.04959932342171669, + -0.07068032026290894, + 0.008142957463860512, + -0.03131917491555214, + 0.053351350128650665, + 0.04390658438205719, + 0.0793236494064331, + 0.027297910302877426, + -0.02160029113292694, + 0.15010517835617065, + 0.04446285963058472, + -0.04441145062446594, + -0.048087507486343384, + -0.05718188360333443, + -0.04617037624120712, + -0.010363179259002209, + 0.020320087671279907, + -0.06806303560733795, + 0.014382373541593552, + -0.003251938149333, + -0.051646891981363297, + 0.040618300437927246, + 0.1404690146446228, + 0.11432871222496033, + -0.12149269878864288 + ] + }, + "p245_254.wav": { + "name": "p245", + "embedding": [ + 0.02267284132540226, + 0.08950132131576538, + 0.001772264949977398, + -0.007002172060310841, + -0.043781403452157974, + 0.07006856054067612, + -0.12842966616153717, + 0.1217845007777214, + -0.06789173930883408, + 0.15788127481937408, + -0.07104265689849854, + 0.08979351818561554, + -0.024333367124199867, + -0.20156364142894745, + -0.03780628368258476, + 0.05626312643289566, + -0.06781038641929626, + -0.011971860192716122, + -0.0709281712770462, + -0.016078006476163864, + 0.054661765694618225, + 0.03927809000015259, + 0.014632712118327618, + -0.026649275794625282, + 0.01823336072266102, + 0.05039310082793236, + 0.019736649468541145, + 0.055123135447502136, + 0.025863392278552055, + -0.08084969967603683, + -0.03343670070171356, + 0.10604381561279297, + -0.031401269137859344, + 0.03500845283269882, + 0.06250065565109253, + -0.006048311945050955, + 0.017024002969264984, + -0.041905052959918976, + -0.01837330125272274, + 0.030735468491911888, + -0.039884667843580246, + 0.06538999080657959, + 0.030266832560300827, + 0.0221833698451519, + 0.057657185941934586, + 0.029406949877738953, + -0.02092100866138935, + -0.06744278967380524, + -0.07698270678520203, + 0.18445947766304016, + 0.08587168902158737, + -0.034685175865888596, + -0.03320767357945442, + -0.10137896984815598, + 0.10593029111623764, + -0.02107778750360012, + -0.15286000072956085, + -0.06655935198068619, + 0.10060349851846695, + 0.15369179844856262, + -0.020365405827760696, + -0.02726658619940281, + 0.013924109749495983, + 0.12650908529758453, + -0.012485582381486893, + 0.1056627556681633, + 0.043741028755903244, + 0.0696001797914505, + 0.013850214891135693, + 0.02924380451440811, + 0.03949317708611488, + 0.06465169042348862, + 0.010466444306075573, + -0.019939659163355827, + 0.048722002655267715, + 0.0037677884101867676, + -0.027086449787020683, + 0.024974798783659935, + -0.02324608340859413, + 0.01931760273873806, + -0.0223697442561388, + 0.02485673315823078, + -0.011648105457425117, + -0.01984689012169838, + -0.014308599755167961, + 0.04988565295934677, + -0.02361106500029564, + 0.014154995791614056, + 0.06518375873565674, + 0.036780040711164474, + 0.019127173349261284, + 0.04675702378153801, + -0.03646767511963844, + -0.10256878286600113, + -0.0009558231104165316, + 0.016554323956370354, + -0.016134019941091537, + 0.04751855880022049, + 0.01622507907450199, + -0.03139703348278999, + 0.11870048195123672, + 0.038625456392765045, + -0.017814885824918747, + 0.03130226954817772, + -0.11381719261407852, + 0.11681395024061203, + 0.07140105217695236, + 0.008671518415212631, + 0.04424026608467102, + -0.06266017258167267, + 0.09019289165735245, + 0.0737273171544075, + -0.14745956659317017, + -0.0777050107717514, + 0.03056967817246914, + 0.0023697202559560537, + -0.024548741057515144, + 0.11161129921674728, + -0.008922174572944641, + -0.010600641369819641, + 0.1171237975358963, + -0.0916517972946167, + -0.05656455084681511, + -0.024845119565725327, + 0.04811275377869606, + -0.08362922072410583, + 0.03778211399912834, + 0.038325369358062744, + -0.03550461307168007, + 0.021209044381976128, + 0.09921400249004364, + -0.02430238574743271, + 0.0280729029327631, + 0.014888405799865723, + -0.05205099657177925, + 0.023402482271194458, + -0.06809167563915253, + 0.014149989001452923, + 0.05656815320253372, + 0.06378643214702606, + 0.04633314907550812, + -0.004467300605028868, + -0.0804833471775055, + -0.10245928168296814, + -0.002957882359623909, + 0.013201483525335789, + 0.05815167352557182, + -0.00012937959400005639, + 0.0006998542230576277, + -0.039799969643354416, + -0.08054407685995102, + 0.010311481542885303, + -0.03324545919895172, + 0.10333181172609329, + -0.009456876665353775, + -0.002893076278269291, + 0.10194623470306396, + 0.015406377613544464, + -0.020343879237771034, + -0.07443255931138992, + -0.04750433564186096, + 0.008626674301922321, + 0.03097820095717907, + -0.08455244451761246, + -0.03965308889746666, + 0.023441532626748085, + 0.027392562478780746, + 0.014931093901395798, + 0.03306759521365166, + 0.04002920165657997, + 0.013606026768684387, + 0.05221894755959511, + -0.08975961804389954, + 0.01714259944856167, + -0.11647796630859375, + -0.06259243935346603, + -0.01730668731033802, + -0.037339240312576294, + -0.00779766496270895, + 0.09336385875940323, + -0.025324106216430664, + 0.012019439600408077, + 0.00288563990034163, + -0.08692871779203415, + -0.08279089629650116, + 0.0888817235827446, + 0.08361510932445526, + 0.006263306830078363, + 0.06132703647017479, + 0.0456986203789711, + -0.047159235924482346, + 0.06329408288002014, + 0.05485544353723526, + 0.10920080542564392, + -0.008428208529949188, + 0.033179763704538345, + -0.0736638531088829, + 0.07989007234573364, + 0.06301747262477875, + -0.09383939951658249, + -0.07224112749099731, + -0.017554650083184242, + -0.05685288831591606, + 0.050482284277677536, + -0.022692793980240822, + -0.009400018490850925, + 0.016151705756783485, + 0.005223544780164957, + -0.08291236311197281, + -0.05807602405548096, + 0.06960805505514145, + -0.06974229216575623, + -0.019771402701735497, + -0.04360705614089966, + 0.0423688106238842, + 0.10989385843276978, + 0.07894083857536316, + -0.01238461583852768, + -0.006537243723869324, + 0.07101429253816605, + -0.06634881347417831, + -0.01016603410243988, + 0.016114355996251106, + 0.005355095025151968, + -0.07101620733737946, + 0.02863890677690506, + -0.09414098411798477, + 0.03883692994713783, + -0.07073958963155746, + 0.14297594130039215, + -0.014428096823394299, + -0.07590172439813614, + -0.08147718757390976, + 0.04531485214829445, + -0.04757470265030861, + 0.023833908140659332, + 0.029940733686089516, + 0.05362982675433159, + 0.06394033133983612, + -0.05830772966146469, + 0.12204479426145554, + 0.027873637154698372, + -0.013711145147681236, + -0.04286234453320503, + -0.04472770169377327, + -0.041315849870443344, + 0.009365711361169815, + 0.011626794934272766, + -0.10894149541854858, + -0.009801985695958138, + 0.022848108783364296, + -0.027861744165420532, + 0.07467971742153168, + 0.1273859292268753, + 0.05719268321990967, + -0.1358308345079422 + ] + }, + "p245_271.wav": { + "name": "p245", + "embedding": [ + 0.057645201683044434, + 0.0522216260433197, + -0.016730522736907005, + 0.04023532569408417, + -0.04599135369062424, + 0.01421796903014183, + -0.14918893575668335, + 0.13732680678367615, + -0.006119074299931526, + 0.12446120381355286, + -0.06242717057466507, + 0.12070503830909729, + -0.008513492532074451, + -0.1773672103881836, + -0.0035244268365204334, + 0.05956079065799713, + -0.023398486897349358, + -0.04099506139755249, + -0.022574730217456818, + -0.04124479740858078, + 0.039195407181978226, + 0.06727701425552368, + 0.042618099600076675, + 0.00013865064829587936, + 0.03249586373567581, + 0.06079108268022537, + -0.011989271268248558, + 0.03230298310518265, + -0.0014632532838732004, + -0.0675337165594101, + -0.013594978488981724, + 0.07291044294834137, + -0.035699307918548584, + -0.00637893658131361, + 0.026181882247328758, + -0.009651538915932178, + 0.0035682141315191984, + -0.08618289977312088, + -0.05564896762371063, + 0.0007229861803352833, + -0.05842367559671402, + 0.0689009502530098, + 0.028169099241495132, + -0.046671390533447266, + 0.051316551864147186, + 0.010972786694765091, + -0.02745550125837326, + -0.0518372617661953, + -0.13427606225013733, + 0.16263169050216675, + 0.06281419843435287, + 0.0428144708275795, + -0.07910054922103882, + -0.07005368173122406, + 0.10406118631362915, + -0.01458258368074894, + -0.08127206563949585, + -0.02513802796602249, + 0.05648406594991684, + 0.17644548416137695, + -0.03262477368116379, + -0.047475408762693405, + 0.06382229924201965, + 0.09621010720729828, + 0.0806242972612381, + 0.045787516981363297, + 0.10362613201141357, + 0.10905762016773224, + -0.01700802892446518, + -0.005089037586003542, + 0.0375291146337986, + 0.10394600033760071, + 0.056084200739860535, + -0.0007612472400069237, + 0.0024307407438755035, + 0.03590548038482666, + -0.038377776741981506, + -0.039751481264829636, + -0.033238984644412994, + -0.016377098858356476, + 0.005728748627007008, + 0.008211709558963776, + 0.038420505821704865, + 0.041770704090595245, + -0.0430108867585659, + 0.05411100015044212, + 0.04587821662425995, + -0.032544154673814774, + 0.06098322942852974, + -0.008483397774398327, + -0.0010454041184857488, + 0.061437271535396576, + -0.09184131026268005, + -0.07204633951187134, + 0.020317886024713516, + 0.02035820670425892, + 0.009742151945829391, + 0.06786319613456726, + 0.05574149638414383, + -0.04042826592922211, + 0.14737583696842194, + 0.034708138555288315, + -0.009336868301033974, + 0.014033161103725433, + -0.07744282484054565, + 0.09101902693510056, + 0.103970468044281, + -0.027645952999591827, + 0.07163559645414352, + -0.05604071915149689, + 0.049251753836870193, + 0.05181020870804787, + -0.147222638130188, + -0.07301433384418488, + 0.034258291125297546, + 0.01853165216743946, + 0.004912801552563906, + 0.1522858738899231, + 0.012938303872942924, + 0.08543366193771362, + 0.11822488903999329, + -0.10506215691566467, + -0.05713406205177307, + -0.012322880327701569, + 0.07293687760829926, + -0.0871485024690628, + 0.0767558366060257, + 0.05422208458185196, + -0.020910784602165222, + 0.021453406661748886, + 0.04741090536117554, + -0.018971379846334457, + 0.001412482582964003, + -0.025089384987950325, + -0.04493342712521553, + 0.020168103277683258, + -0.03967045992612839, + -0.035306405276060104, + 0.045289862900972366, + 0.03356914967298508, + 0.04138214513659477, + -0.004025834612548351, + -0.04669450595974922, + -0.1451512575149536, + 0.018440131098031998, + 0.016490837559103966, + 0.0952434241771698, + -0.006791363470256329, + -0.029295364394783974, + -0.05709148943424225, + -0.061325572431087494, + 0.005849067587405443, + -0.01900847628712654, + 0.07369867712259293, + -0.015769490972161293, + 0.02874220535159111, + 0.08293113112449646, + 0.024048801511526108, + 0.005152805242687464, + -0.011926950886845589, + -0.03857610374689102, + -0.0041598966345191, + 0.04460723325610161, + -0.05170983448624611, + -0.08146385103464127, + -0.023161929100751877, + 0.0389215350151062, + -0.030733171850442886, + 0.05901958793401718, + 0.008873896673321724, + 0.029586229473352432, + 0.0038467594422399998, + -0.0661846473813057, + 0.003719617612659931, + -0.09510025382041931, + -0.07293621450662613, + 0.01977679505944252, + 0.008334549143910408, + -0.031437139958143234, + 0.0715172216296196, + 0.041669655591249466, + 0.07302892208099365, + -0.0416928306221962, + -0.0628652423620224, + -0.09711092710494995, + 0.02791094407439232, + 0.035985175520181656, + -0.014699403196573257, + 0.021091777831315994, + 0.05986753851175308, + -0.012188548222184181, + 0.05124721676111221, + 0.05844375491142273, + 0.07975989580154419, + 0.0036592292599380016, + 0.008387072943150997, + -0.054620251059532166, + 0.12821269035339355, + 0.1001145988702774, + -0.04460150748491287, + -0.07461026310920715, + -0.03888298571109772, + -0.10516244918107986, + 0.04814879223704338, + 0.012637008912861347, + 0.0189889557659626, + 0.0300883986055851, + -0.00805343221873045, + -0.12038549035787582, + -0.06939695030450821, + 0.06515085697174072, + -0.053924404084682465, + -0.01570354960858822, + -0.08085495978593826, + 0.03609049320220947, + 0.11877266317605972, + 0.03245849162340164, + 0.017538949847221375, + -0.04086510092020035, + 0.028179019689559937, + -0.04456644877791405, + 0.01193064171820879, + 0.08079929649829865, + 0.0485471673309803, + -0.1125328317284584, + -0.009575989097356796, + -0.06625263392925262, + 0.04212479665875435, + -0.023885540664196014, + 0.12376153469085693, + 0.029859911650419235, + -0.04269330948591232, + -0.10050852596759796, + 0.03531353920698166, + -0.0015867208130657673, + 0.07996632903814316, + 0.0156500656157732, + 0.06358222663402557, + 0.06748707592487335, + -0.08029983937740326, + 0.09023921191692352, + 0.05495235696434975, + -0.04432224482297897, + -0.06448254734277725, + -0.07485339045524597, + -0.02856951765716076, + 0.010917482897639275, + -0.012713112868368626, + -0.05862396955490112, + -0.022699255496263504, + 0.015809088945388794, + 0.0043995073065161705, + 0.05281329154968262, + 0.11953572928905487, + 0.04049871116876602, + -0.12376582622528076 + ] + }, + "p245_203.wav": { + "name": "p245", + "embedding": [ + 0.05320492386817932, + 0.047799136489629745, + 0.011436599306762218, + -0.008054366335272789, + -0.023845171555876732, + 0.06632715463638306, + -0.09804938733577728, + 0.09147490561008453, + 0.0045898850075900555, + 0.06327089667320251, + -0.06883655488491058, + 0.07314512133598328, + 0.0008444140548817813, + -0.14797191321849823, + 0.006608190946280956, + 0.04039071500301361, + -0.024048037827014923, + -0.004019101615995169, + -0.027416495606303215, + -0.0368630588054657, + 0.011207511648535728, + 0.04311623424291611, + 0.049417950212955475, + -0.024218495935201645, + 0.03420667350292206, + 0.06108112633228302, + -0.0023637874983251095, + 0.01371063943952322, + -0.022748593240976334, + -0.049748972058296204, + -0.030147580429911613, + 0.06466563045978546, + -0.04744365066289902, + -0.022828012704849243, + 0.03418948873877525, + -0.012585325166583061, + 0.028086630627512932, + -0.07548638433218002, + -0.02437128871679306, + 0.038551606237888336, + -0.059517960995435715, + 0.07637225836515427, + 0.04218212887644768, + -0.0038494295440614223, + 0.026847651228308678, + 0.009754986502230167, + -0.006152359768748283, + -0.03972157835960388, + -0.09933986514806747, + 0.15292508900165558, + 0.04567469656467438, + 0.01721138320863247, + -0.07361916452646255, + -0.027512740343809128, + 0.05169306695461273, + 0.00804288499057293, + -0.05235716700553894, + -0.010487522929906845, + 0.047256242483854294, + 0.08451905101537704, + 0.01697452738881111, + -0.02971804141998291, + 0.05106857419013977, + 0.07204754650592804, + 0.012445634230971336, + 0.025537747889757156, + 0.09421484917402267, + 0.09218649566173553, + -0.015106268227100372, + 0.005118653178215027, + 0.039460767060518265, + 0.04211316257715225, + 0.057070206850767136, + -0.014465108513832092, + 0.02861526608467102, + -0.016212793067097664, + -0.023425936698913574, + -0.0255250483751297, + -0.019385553896427155, + -0.02792409062385559, + 0.04901750013232231, + 0.008402163162827492, + 0.026795990765094757, + 0.04951261729001999, + -0.04182060807943344, + 0.03410498797893524, + 0.02267496846616268, + 0.05738399177789688, + 0.06915000081062317, + 0.0239560604095459, + 0.02781721204519272, + 0.03333546966314316, + -0.06266138702630997, + -0.05615337938070297, + 0.03887941688299179, + 0.03169476240873337, + 0.015654591843485832, + 0.04569553956389427, + 0.03876877576112747, + -0.0370047427713871, + 0.1081358790397644, + 0.008898444473743439, + -0.0037924880161881447, + -0.004547609481960535, + -0.059149276465177536, + 0.07554659247398376, + 0.09009566158056259, + -0.01851879060268402, + 0.05776584893465042, + -0.04132988676428795, + 0.04004490748047829, + 0.048314645886421204, + -0.09926323592662811, + -0.03564335033297539, + 0.011855682358145714, + 0.007635089568793774, + 0.03141538053750992, + 0.12859253585338593, + 0.009843738749623299, + 0.045731477439403534, + 0.06879091262817383, + -0.09167176485061646, + -0.037506163120269775, + 0.02302504889667034, + 0.017064429819583893, + -0.03809773176908493, + 0.01874214969575405, + 0.04098629206418991, + 0.010148350149393082, + -0.028210317716002464, + 0.036555882543325424, + 0.0032372898422181606, + 0.0311819426715374, + -0.04642470180988312, + 0.01508938055485487, + 0.018128652125597, + -0.013283981010317802, + -0.03218214213848114, + 0.027341201901435852, + 0.036524105817079544, + 0.010732549242675304, + 0.01738336682319641, + -0.04456997662782669, + -0.12605251371860504, + -0.008674852550029755, + 0.0010722950100898743, + 0.03957218676805496, + -0.02159672975540161, + -0.041124794632196426, + -0.05869763344526291, + -0.01643262431025505, + 0.0005537364631891251, + -0.01112966425716877, + 0.024158060550689697, + 0.05013992637395859, + -0.03911668807268143, + 0.0631740391254425, + 0.013196773827075958, + 0.005221178289502859, + -0.020275859162211418, + -0.05122780054807663, + 0.013813035562634468, + 0.030995093286037445, + -0.03232130408287048, + -0.07681521028280258, + -0.022009892389178276, + -0.027872085571289062, + -0.00691666966304183, + 0.030607599765062332, + 0.043206244707107544, + 0.0057489401660859585, + -0.03163832426071167, + -0.08502250164747238, + 0.015029589645564556, + -0.05445132777094841, + -0.06380262225866318, + 0.047905921936035156, + 0.014210125431418419, + -0.02075188420712948, + 0.09374929964542389, + 0.027967195957899094, + 0.04231597110629082, + -0.06153659150004387, + -0.022731691598892212, + -0.012186696752905846, + 0.03814654424786568, + 0.03575189411640167, + -0.00915575958788395, + 0.033084526658058167, + 0.020828580483794212, + -0.016791023313999176, + 0.0513828806579113, + 0.03743875026702881, + 0.052771344780921936, + -0.03646264970302582, + -0.0021127290092408657, + 0.0041466159746050835, + 0.09631451964378357, + 0.033778030425310135, + -0.03219907730817795, + -0.04204895719885826, + 0.0024648234248161316, + -0.054525911808013916, + 0.02790418267250061, + 0.00226418930105865, + 0.016059136018157005, + 0.02665839157998562, + -0.009727763012051582, + -0.07046971470117569, + -0.06503443419933319, + 0.03668923303484917, + -0.03864191100001335, + -0.019197283312678337, + -0.06485207378864288, + 0.05504381284117699, + 0.0919666439294815, + 0.013247310183942318, + -0.011289517395198345, + -0.012406980618834496, + -0.0014653801918029785, + -0.008494708687067032, + -0.009265957400202751, + 0.025266608223319054, + 0.05778200924396515, + -0.08423022925853729, + -0.005291566252708435, + -0.06840603053569794, + 0.041275035589933395, + -0.01362069882452488, + 0.07468315958976746, + 0.05122219771146774, + -0.02949412912130356, + -0.07358384877443314, + 0.02857038378715515, + 0.01028354186564684, + 0.03694801777601242, + 0.007761284708976746, + 0.016958113759756088, + 0.047975361347198486, + -0.0629507526755333, + 0.07172977924346924, + 0.034149229526519775, + -0.04743167385458946, + -0.05342298373579979, + -0.015073215588927269, + -0.012188675813376904, + 0.02875084988772869, + -0.013990381732583046, + -0.05342768132686615, + 0.009889054112136364, + 0.035517312586307526, + 0.04193177819252014, + 0.017920322716236115, + 0.08575962483882904, + 0.022102240473031998, + -0.07489384710788727 + ] + }, + "p245_152.wav": { + "name": "p245", + "embedding": [ + 0.06568039953708649, + 0.07050301134586334, + 0.015121426433324814, + 0.03542715683579445, + -0.007639400660991669, + 0.000384732149541378, + -0.11704064905643463, + 0.06026551127433777, + 0.06049394607543945, + 0.0890810489654541, + -0.11136486381292343, + 0.06300534307956696, + -0.03144402056932449, + -0.11153105646371841, + 0.011645074933767319, + 0.004853077232837677, + -0.021283747628331184, + -0.019176630303263664, + -0.014977691695094109, + -0.03683779016137123, + 0.031739816069602966, + 0.028890985995531082, + 0.051894064992666245, + -0.051564548164606094, + -0.01084556058049202, + 0.03681202605366707, + -0.009445001371204853, + -0.02565644681453705, + 0.006432653404772282, + -0.007784731686115265, + 0.05918963626027107, + 0.011419139802455902, + -0.00481805857270956, + 0.04123397544026375, + 0.0390835665166378, + 0.037033021450042725, + -0.023634470999240875, + -0.0033903345465660095, + -0.015534022822976112, + 0.05760395526885986, + -0.049196623265743256, + 0.07449229061603546, + 0.05927181988954544, + -0.06591930985450745, + 0.054184507578611374, + -0.0069709280505776405, + -0.02410479262471199, + 0.012685774825513363, + -0.0924324095249176, + 0.1296849548816681, + 0.032415907829999924, + 0.049245622009038925, + -0.06852807104587555, + 0.011016981676220894, + 0.06610535085201263, + -0.0039020217955112457, + -0.0638691857457161, + -0.03165901079773903, + 0.02272486872971058, + 0.0452842190861702, + -0.02567441388964653, + -0.05181419476866722, + -0.006496144458651543, + 0.03539993241429329, + 0.024695932865142822, + 0.03415378928184509, + 0.07912105321884155, + 0.10679687559604645, + -0.033390022814273834, + 0.01811676099896431, + 0.07058060169219971, + 0.046678733080625534, + 0.05361613631248474, + -0.010610930621623993, + 0.008627021685242653, + -0.033300288021564484, + -0.028978338465094566, + -0.008193012326955795, + 0.034127965569496155, + -0.022994857281446457, + -0.005106198135763407, + -0.054289668798446655, + 0.00948486290872097, + 0.03841902315616608, + -0.0521470308303833, + -0.02019362896680832, + 0.08034151792526245, + -0.01214711181819439, + 0.05394124984741211, + 0.06095908582210541, + 0.0067995465360581875, + 0.015406320802867413, + -0.045767344534397125, + -0.06889083981513977, + -0.017969008535146713, + -0.0266830213367939, + 0.06068703159689903, + 0.03987390547990799, + 0.0448191873729229, + 0.02920946106314659, + 0.06690320372581482, + 0.01593732088804245, + -0.02332831360399723, + -0.027879005298018456, + -0.07674582302570343, + 0.09171070903539658, + 0.09511812776327133, + -0.03631272912025452, + 0.00815240852534771, + -0.01907288283109665, + 0.011825218796730042, + 0.03335467353463173, + -0.03220153972506523, + -0.024864561855793, + 0.015264173969626427, + 0.06606915593147278, + 0.050294890999794006, + 0.10389401018619537, + 0.030422233045101166, + 0.014141361229121685, + 0.11506776511669159, + -0.05551592633128166, + -0.037076231092214584, + -0.019839921966195107, + 0.0027153100818395615, + -0.07247728109359741, + 0.06413573026657104, + 0.046325549483299255, + 0.012318139895796776, + 0.002652701223269105, + 0.04738154262304306, + 0.0047084493562579155, + 0.021685883402824402, + -0.0804065614938736, + 0.02493578940629959, + 0.06412941962480545, + -0.004564137198030949, + 0.020893307402729988, + 0.07060474157333374, + 0.004942305386066437, + 0.08554500341415405, + 0.07560121268033981, + -0.017686428502202034, + -0.09360737353563309, + 0.03937064856290817, + 0.04402584582567215, + 0.011577093973755836, + -0.049636200070381165, + -0.04219415411353111, + -0.03464174270629883, + -0.050765715539455414, + 0.07800976932048798, + -0.03237457573413849, + 0.05607454851269722, + 0.03024885803461075, + -0.025695523247122765, + 0.11722832918167114, + -0.015280376188457012, + 0.0021266797557473183, + -0.03746919333934784, + -0.06223081052303314, + -0.02988281100988388, + 0.028580032289028168, + -0.1587752401828766, + -0.05835855007171631, + -0.06271016597747803, + 0.018332980573177338, + 0.02145416848361492, + -0.009620556607842445, + 0.07113045454025269, + -0.030116654932498932, + 0.01783253811299801, + -0.0028718672692775726, + 0.005618592724204063, + -0.04031171277165413, + -0.10369075834751129, + -0.008024596609175205, + -0.03695688396692276, + 0.012727197259664536, + 0.07196111977100372, + -0.0263172946870327, + 0.023576980456709862, + -0.025948306545615196, + -0.07018887996673584, + -0.05338285118341446, + 0.040716271847486496, + 0.008761843666434288, + -0.03361821919679642, + 0.0235324427485466, + 0.053621962666511536, + -0.030684035271406174, + 0.02026905119419098, + -0.0004247799515724182, + 0.08760958909988403, + -0.07562284916639328, + 0.007745894603431225, + -0.027319807559251785, + 0.05717445909976959, + 0.0958368331193924, + -0.031041249632835388, + -0.056582316756248474, + -0.08980703353881836, + -0.01526031643152237, + -0.0061603933572769165, + -0.03898739069700241, + -0.02920238859951496, + -0.012367170304059982, + -0.017699792981147766, + -0.02984776720404625, + -0.09936054050922394, + -0.017922768369317055, + 0.003220178186893463, + 0.016064416617155075, + -0.08474445343017578, + 0.016015449538826942, + -0.03626994043588638, + 0.016837196424603462, + -0.0303809717297554, + 0.0441390797495842, + -0.02560199610888958, + -0.03497883677482605, + -0.03319574519991875, + 0.02868572250008583, + 0.05245283991098404, + 0.002589680254459381, + -0.06905016303062439, + -0.060260094702243805, + 0.05613602697849274, + -0.017674973234534264, + 0.05546843633055687, + 0.007831376045942307, + -0.024376019835472107, + 0.011616818606853485, + -0.0378858782351017, + -0.025648297742009163, + 0.017465008422732353, + 0.05622566118836403, + 0.01388239860534668, + 0.010057474486529827, + -0.02033090963959694, + 0.06108627840876579, + 0.054762739688158035, + 0.02007434144616127, + -0.04783332347869873, + -0.011268765665590763, + -0.04247445985674858, + 0.000974167138338089, + -0.003802998922765255, + -0.052601687610149384, + 0.04212568327784538, + -0.012764737010002136, + 0.035188090056180954, + 0.008754042908549309, + 0.07769253104925156, + 0.03181547671556473, + -0.05080236494541168 + ] + }, + "p245_168.wav": { + "name": "p245", + "embedding": [ + 0.056565508246421814, + 0.10569661855697632, + 0.01976991631090641, + 0.016167454421520233, + -0.01686066761612892, + 0.05318206548690796, + -0.09300638735294342, + 0.1022619903087616, + -0.0028305761516094208, + 0.11097203195095062, + -0.07566644251346588, + 0.07825879007577896, + -0.04601753130555153, + -0.13325703144073486, + -0.03003876470029354, + 0.037246305495500565, + -0.06474657356739044, + -0.014575082808732986, + -0.0264684297144413, + -0.021955300122499466, + 0.009934083558619022, + 0.018253004178404808, + 0.043765172362327576, + -0.01032787561416626, + 0.004264790564775467, + 0.0464717335999012, + -0.0137382997199893, + 0.01764575019478798, + 0.003650949103757739, + -0.05782259255647659, + -0.010250275954604149, + 0.06251734495162964, + -0.02665332891047001, + 0.02203410305082798, + 0.0396132618188858, + 0.0016502225771546364, + -0.0013912394642829895, + -0.0550323985517025, + -0.03445427119731903, + 0.02622019499540329, + -0.0410459041595459, + 0.06113039329648018, + 0.028976740315556526, + -0.04266804829239845, + 0.04016966372728348, + 0.009342637844383717, + -0.03406491130590439, + -0.02069433033466339, + -0.10190615803003311, + 0.1413787454366684, + 0.04822705313563347, + 0.012435030192136765, + -0.06034659966826439, + -0.04195810854434967, + 0.09271474927663803, + -0.012511786073446274, + -0.10435543954372406, + -0.01934734545648098, + 0.05127720907330513, + 0.1035361960530281, + -0.015034444630146027, + -0.034601837396621704, + -0.0006921999156475067, + 0.0784897431731224, + 0.04153509438037872, + 0.06304416060447693, + 0.07200072705745697, + 0.09118663519620895, + -0.022404808551073074, + 0.028127577155828476, + 0.05848971754312515, + 0.03265898674726486, + 0.05510114133358002, + -0.006718305870890617, + 0.021895799785852432, + -0.017620040103793144, + -0.0296504907310009, + -0.0004278969136066735, + -0.004838461987674236, + -0.03186143562197685, + 0.008121516555547714, + -0.011741980910301208, + 0.014575828798115253, + 0.017020730301737785, + -0.026703685522079468, + 0.022150270640850067, + 0.026279255747795105, + 0.02104608342051506, + 0.06673584133386612, + 0.04156454652547836, + 0.02037002332508564, + 0.07593825459480286, + -0.056258246302604675, + -0.08281802386045456, + 0.0035218074917793274, + -0.011316908523440361, + 0.03560544550418854, + 0.05660180002450943, + 0.03805754333734512, + -0.015298187732696533, + 0.09920457005500793, + 0.03190723434090614, + 0.006925049237906933, + -0.002623538486659527, + -0.09016817808151245, + 0.08034653961658478, + 0.07268591970205307, + -0.01996028982102871, + 0.02928842231631279, + -0.01607932150363922, + 0.08490611612796783, + 0.08069181442260742, + -0.10030349344015121, + -0.03755411505699158, + 0.01686638779938221, + 0.023562200367450714, + 0.011748241260647774, + 0.10431400686502457, + 0.0036321133375167847, + 0.025132248178124428, + 0.11550642549991608, + -0.0804922953248024, + -0.019314246252179146, + -0.00261731818318367, + 0.01315247267484665, + -0.06227680668234825, + 0.0479128398001194, + 0.029852773994207382, + -0.016977770254015923, + 0.003962523303925991, + 0.056579262018203735, + -0.003590494394302368, + -0.0027589770033955574, + -0.014792868867516518, + -0.029546651989221573, + 0.025381311774253845, + -0.029416430741548538, + 0.011119483038783073, + 0.04061873257160187, + 0.04402565211057663, + 0.02762262523174286, + 0.020840629935264587, + -0.04530724883079529, + -0.07301972806453705, + 0.022980893030762672, + 0.0374937430024147, + 0.03745894134044647, + -0.0025378642603754997, + -0.042062897235155106, + -0.02515600249171257, + -0.02632288634777069, + 0.053740113973617554, + -0.02566761150956154, + 0.061681587249040604, + 0.009704223833978176, + -0.011917075142264366, + 0.08598228543996811, + 0.024193791672587395, + -0.012578501366078854, + -0.05083724856376648, + -0.06380100548267365, + 0.004806314595043659, + 0.044742271304130554, + -0.11028078198432922, + -0.054466620087623596, + -0.019980769604444504, + 0.00043937284499406815, + -0.004930587485432625, + 0.023000026121735573, + 0.056260038167238235, + -0.007063616067171097, + 0.012684051878750324, + -0.042122963815927505, + 0.015917006880044937, + -0.07711641490459442, + -0.09213312715291977, + 0.005742879584431648, + -0.02615552581846714, + 0.009976689703762531, + 0.07130679488182068, + -0.013923478312790394, + 0.02293221279978752, + -0.03153935819864273, + -0.06742885708808899, + -0.031680211424827576, + 0.0642232894897461, + 0.031702347099781036, + 0.008542610332369804, + 0.03702723607420921, + 0.06184356287121773, + -0.026360029354691505, + 0.0495012141764164, + 0.01424497738480568, + 0.09329962730407715, + -0.05293044447898865, + 0.01893806643784046, + -0.03423337638378143, + 0.05290659889578819, + 0.07764897495508194, + -0.06535385549068451, + -0.09471289813518524, + -0.040083594620227814, + -0.047701042145490646, + 0.03219965100288391, + -0.026276051998138428, + -0.010520808398723602, + 0.01824675314128399, + -0.01838953047990799, + -0.07038309425115585, + -0.09503281116485596, + 0.061373695731163025, + -0.027713842689990997, + -0.007684936746954918, + -0.07138590514659882, + 0.037943996489048004, + 0.030346957966685295, + 0.04433427378535271, + -0.021969594061374664, + 0.03747117146849632, + 0.027651622891426086, + -0.02950470894575119, + -0.021597977727651596, + 0.031217336654663086, + 0.032784946262836456, + -0.049545299261808395, + -0.018668031319975853, + -0.06159907206892967, + 0.05239469185471535, + -0.03028920479118824, + 0.12433380633592606, + 0.007899793796241283, + -0.03463663160800934, + -0.043083272874355316, + 0.030646683648228645, + -0.031581319868564606, + 0.03180946037173271, + 0.03660577908158302, + 0.03586579114198685, + 0.02999577485024929, + -0.043787047266960144, + 0.0906069427728653, + 0.03280480206012726, + -0.015752756968140602, + -0.0313909612596035, + -0.01949360966682434, + -0.06354457139968872, + -0.01424131914973259, + -0.008922316133975983, + -0.07690262049436569, + 0.003482172265648842, + 0.007449437864124775, + 0.02683500200510025, + 0.03875287249684334, + 0.11064650118350983, + 0.03921329975128174, + -0.08053995668888092 + ] + }, + "p245_412.wav": { + "name": "p245", + "embedding": [ + 0.059551071375608444, + 0.09396977722644806, + -0.007790356408804655, + 0.03827323019504547, + -0.031122148036956787, + 0.08021914213895798, + -0.13160111010074615, + 0.1297227442264557, + -0.03387943655252457, + 0.13853919506072998, + -0.08293893188238144, + 0.11878636479377747, + -0.006550307851284742, + -0.1708064079284668, + -0.041420020163059235, + 0.04908297583460808, + -0.01511390134692192, + 0.010826004669070244, + -0.00890287570655346, + 0.010085998103022575, + 0.050186432898044586, + 0.0425027534365654, + 0.04095324128866196, + -0.025668812915682793, + 0.0361940935254097, + 0.036053795367479324, + 0.01619900017976761, + 0.06936417520046234, + 0.02931908331811428, + -0.06283420324325562, + -0.03523242473602295, + 0.13757073879241943, + -0.03425612673163414, + 0.03379429876804352, + 0.07027476280927658, + 0.014631631784141064, + -0.012448492459952831, + -0.07274185866117477, + -0.0018677401822060347, + -0.02096092514693737, + -0.025742243975400925, + 0.05728081986308098, + 0.02749268338084221, + -0.006675062235444784, + 0.04198485240340233, + 0.01832471787929535, + -0.017652049660682678, + -0.051068760454654694, + -0.09912580251693726, + 0.15159271657466888, + 0.03060276061296463, + 0.024431198835372925, + -0.08318814635276794, + -0.0815662294626236, + 0.09044089913368225, + -0.00455247750505805, + -0.09931713342666626, + -0.018587984144687653, + 0.07565685361623764, + 0.18303295969963074, + -0.010835006833076477, + -0.041080743074417114, + 0.021704111248254776, + 0.10754959285259247, + 0.03294294327497482, + 0.10348986834287643, + 0.08616535365581512, + 0.09886334836483002, + 0.029273122549057007, + 0.03710238263010979, + 0.020716063678264618, + 0.07193975150585175, + 0.0438961498439312, + -0.014550592750310898, + 0.016445836052298546, + 0.00466400571167469, + -0.03322482854127884, + 0.024070069193840027, + -0.03337256237864494, + -0.015817489475011826, + -0.005727203097194433, + 0.006391867529600859, + 0.029035791754722595, + 0.025645751506090164, + -0.04106895625591278, + 0.04555663466453552, + 0.0073151011019945145, + -0.016664739698171616, + 0.058821287006139755, + 0.02043408527970314, + 0.00013909365225117654, + 0.04111506789922714, + -0.07460179179906845, + -0.12922067940235138, + 0.019843820482492447, + 0.002329119248315692, + 0.014328515157103539, + 0.07003022730350494, + 0.03540678322315216, + -0.03142236918210983, + 0.10023465007543564, + 0.036998823285102844, + -0.0054785399697721004, + 0.03650575131177902, + -0.09243693202733994, + 0.10729318112134933, + 0.09154709428548813, + 0.00496859522536397, + 0.058631282299757004, + -0.07062047719955444, + 0.08093982934951782, + 0.07895738631486893, + -0.1539396047592163, + -0.07585584372282028, + 0.03915075212717056, + 0.02207566797733307, + 0.012164573185145855, + 0.11254385113716125, + 0.0005174963735044003, + 0.024131037294864655, + 0.09192382544279099, + -0.10582148283720016, + -0.06048337742686272, + -0.035661470144987106, + 0.03839374706149101, + -0.0737416073679924, + 0.054281871765851974, + 0.02367679588496685, + -0.01686018332839012, + -0.022690005600452423, + 0.06175989657640457, + -0.00546395406126976, + 0.01441828440874815, + 0.017339123412966728, + -0.05324285849928856, + 0.02747204154729843, + -0.052139945328235626, + 0.00864584930241108, + 0.03275572136044502, + 0.04912107437849045, + 0.043823085725307465, + 0.012414149008691311, + -0.05398445576429367, + -0.11230254173278809, + -0.016785483807325363, + 0.05911783128976822, + 0.061964720487594604, + -0.020540151745080948, + -0.04015234857797623, + -0.03434581682085991, + -0.05891314148902893, + 0.05093757063150406, + -0.01295282319188118, + 0.06875548511743546, + 0.013460883870720863, + 0.00600619800388813, + 0.08526816964149475, + -0.0013410001993179321, + -0.000845342583488673, + -0.057320207357406616, + -0.03240108862519264, + 0.02450636401772499, + 0.03732983022928238, + -0.08661596477031708, + -0.05807797238230705, + 0.006895546801388264, + 0.0024755909107625484, + -0.047786809504032135, + 0.01871403679251671, + 0.03775128722190857, + 0.022860705852508545, + 0.05361276865005493, + -0.03679286688566208, + -0.026529472321271896, + -0.13456949591636658, + -0.06961002200841904, + -0.0020515008363872766, + -0.0010099774226546288, + -0.008797619491815567, + 0.08168214559555054, + 0.03459955006837845, + 0.043608199805021286, + -0.008597624488174915, + -0.04494110494852066, + -0.06701546907424927, + 0.06338801234960556, + 0.06272050738334656, + 0.030632514506578445, + 0.0563620924949646, + 0.019242025911808014, + -0.017249440774321556, + 0.06670928746461868, + 0.0789564922451973, + 0.08576953411102295, + -0.0011255552526563406, + -0.00410756841301918, + -0.09396969527006149, + 0.1029408797621727, + 0.11418573558330536, + -0.07202354073524475, + -0.11462907493114471, + -0.02302691899240017, + -0.07886506617069244, + 0.045495133846998215, + -0.033001236617565155, + -0.004796125926077366, + 0.02436123788356781, + -0.03048814833164215, + -0.10970458388328552, + -0.08865918964147568, + 0.08036887645721436, + -0.060385968536138535, + -0.021434027701616287, + -0.07117162644863129, + 0.054617077112197876, + 0.08526913821697235, + 0.012556545436382294, + -0.019951485097408295, + -0.012037888169288635, + 0.05951451510190964, + -0.09091498702764511, + -0.025194905698299408, + 0.020978357642889023, + 0.004785995930433273, + -0.10062437504529953, + 0.033920541405677795, + -0.05357489734888077, + 0.05097579583525658, + -0.07629111409187317, + 0.15890458226203918, + -0.015446837991476059, + -0.06800419092178345, + -0.0695822462439537, + 0.044950924813747406, + -0.017370080575346947, + 0.02149895951151848, + 0.03292621672153473, + 0.05680186673998833, + 0.01768268272280693, + -0.1016058549284935, + 0.10827549546957016, + 0.020568612962961197, + -0.02066868543624878, + -0.07249072939157486, + -0.06639677286148071, + -0.04306124895811081, + 0.021274492144584656, + -0.01809285394847393, + -0.07401397079229355, + -0.016246456652879715, + 0.02581849694252014, + 0.0021219714544713497, + 0.0340658500790596, + 0.13973397016525269, + 0.030186116695404053, + -0.1141631230711937 + ] + }, + "p245_120.wav": { + "name": "p245", + "embedding": [ + 0.0345221683382988, + 0.11285677552223206, + -0.006185987964272499, + 0.00444819126278162, + -0.04851618409156799, + 0.04443643242120743, + -0.14280781149864197, + 0.16455696523189545, + -0.054629914462566376, + 0.11926575005054474, + -0.08495447039604187, + 0.09751155972480774, + -0.0506727397441864, + -0.1767335832118988, + -0.04004449024796486, + 0.069318987429142, + -0.0488586388528347, + -0.04349035769701004, + -0.040879592299461365, + -0.02426302433013916, + 0.01655694469809532, + 0.004437287803739309, + -0.009126175194978714, + 0.057895857840776443, + 0.021293045952916145, + 0.0665641576051712, + -0.0037109688855707645, + 0.045338451862335205, + 0.017536109313368797, + 0.007746345363557339, + -0.009824639186263084, + 0.09418481588363647, + -0.029059838503599167, + 0.013081266544759274, + 0.07159115374088287, + -0.00026314088609069586, + 0.011893361806869507, + -0.043273866176605225, + -0.02280638925731182, + 0.005177565850317478, + -0.058620356023311615, + 0.07651512324810028, + 0.043367937207221985, + 0.00030603446066379547, + 0.03683783486485481, + 0.05965195223689079, + -0.0029484110418707132, + -0.05564282089471817, + -0.10472553968429565, + 0.14723926782608032, + 0.0845227986574173, + -0.02044135332107544, + -0.07024499028921127, + -0.055844470858573914, + 0.10607326030731201, + -0.03724218159914017, + -0.11428283900022507, + -0.05419738590717316, + 0.0979962944984436, + 0.15035147964954376, + -0.04854988306760788, + -0.01990264095366001, + 0.010210538282990456, + 0.16217073798179626, + 0.06145327538251877, + 0.09531673789024353, + 0.04559844732284546, + 0.11191905289888382, + -0.04619233310222626, + 0.004203858319669962, + 0.08833819627761841, + 0.041186489164829254, + 0.046529099345207214, + -0.014624322764575481, + 0.01584678143262863, + 0.005087331403046846, + 0.0007320850272662938, + 0.0194782093167305, + -0.02834141254425049, + -0.013659695163369179, + -0.04466176778078079, + 0.030789121985435486, + -0.03721405193209648, + 0.008746621198952198, + -0.006488821469247341, + 0.07020560652017593, + 0.04476916044950485, + -0.009815419092774391, + 0.07588279992341995, + 0.07513284683227539, + 0.010681292973458767, + 0.06956884264945984, + -0.06521964818239212, + -0.06147092580795288, + 0.011778132058680058, + -0.02267150580883026, + 0.02839742973446846, + 0.06304428726434708, + 0.031682223081588745, + 0.007486862130463123, + 0.11619949340820312, + 0.05684630572795868, + -0.0018135188147425652, + 0.03489911928772926, + -0.10900737345218658, + 0.14764909446239471, + 0.05465555936098099, + -0.04299356788396835, + 0.029297037050127983, + -0.014288803562521935, + 0.0414859876036644, + 0.07062771916389465, + -0.11803363263607025, + -0.06383292376995087, + 0.03299330174922943, + 0.037048954516649246, + -0.03904881328344345, + 0.0872720330953598, + -0.008770468644797802, + 0.01533513143658638, + 0.10238590091466904, + -0.05033291131258011, + -0.06311125308275223, + -0.01857956126332283, + 0.043770015239715576, + -0.07190638780593872, + 0.04814283549785614, + 0.06744087487459183, + 0.005141375586390495, + 0.0175476111471653, + 0.10697303712368011, + 0.014797304756939411, + -0.008125048130750656, + 0.017246047034859657, + -0.03243488073348999, + 0.03565003722906113, + -0.011775722727179527, + 0.014176595956087112, + 0.02908923104405403, + 0.04835540056228638, + 0.041539084166288376, + 0.015653640031814575, + -0.017810266464948654, + -0.09884323179721832, + 0.006732898764312267, + 0.04855845123529434, + 0.10380532592535019, + -0.003862161422148347, + -0.0040578898042440414, + -0.03480366989970207, + -0.04818146675825119, + -0.0247996523976326, + -0.003616938367486, + 0.08203420042991638, + -0.044428907334804535, + -0.009084219112992287, + 0.11731656640768051, + 0.003149626310914755, + 0.007940972223877907, + -0.060447268187999725, + 0.005992789752781391, + 0.004215777385979891, + 0.0528411865234375, + -0.0694071501493454, + -0.0820966362953186, + 0.015340112149715424, + 0.05275840312242508, + -0.003037865739315748, + 0.07079257071018219, + 0.023328151553869247, + -0.002711064647883177, + 0.015954559668898582, + -0.07223737239837646, + 0.04205968230962753, + -0.09430976212024689, + -0.059846825897693634, + -0.0208941288292408, + -0.018279600888490677, + -0.01656361296772957, + 0.052218444645404816, + 0.018482070416212082, + 0.05238855257630348, + 0.025909263640642166, + -0.11537493020296097, + -0.08688834309577942, + 0.06682883948087692, + 0.08272383362054825, + -0.02036820910871029, + 0.059195246547460556, + 0.07914192974567413, + -0.05107014626264572, + 0.04094104841351509, + 0.052519600838422775, + 0.10583151131868362, + -0.03903021663427353, + 0.016622763127088547, + -0.06429634243249893, + 0.035176992416381836, + 0.052942998707294464, + -0.13259881734848022, + -0.06305655837059021, + -0.03044966608285904, + -0.021380890160799026, + 0.006965217180550098, + -0.011119682341814041, + 0.03047073259949684, + 0.02747570537030697, + -0.014237066730856895, + -0.07584354281425476, + -0.0850161537528038, + 0.0657251700758934, + -0.1002492755651474, + 0.019911937415599823, + -0.06504003703594208, + 0.031941067427396774, + 0.0934300571680069, + 0.0373072549700737, + -0.02253125235438347, + -0.014421112835407257, + 0.03891584649682045, + -0.027869481593370438, + -0.01874903216958046, + 0.04147224500775337, + 0.026441780850291252, + -0.10136489570140839, + 0.009756246581673622, + -0.08010652661323547, + 0.0838051438331604, + -0.031622424721717834, + 0.1586567610502243, + 0.015823224559426308, + -0.053576741367578506, + -0.09206540882587433, + -0.016890795901417732, + -0.034552544355392456, + 0.057748619467020035, + 0.022549351677298546, + 0.061687394976615906, + 0.0239492766559124, + -0.005867598112672567, + 0.14386054873466492, + 0.0446644052863121, + -0.05506458878517151, + -0.05955399572849274, + -0.042109981179237366, + -0.054780587553977966, + 0.019849447533488274, + 0.030567895621061325, + -0.09644058346748352, + -0.03136271610856056, + 0.005498300772160292, + -0.05479053407907486, + 0.09022976458072662, + 0.14143067598342896, + 0.09358908236026764, + -0.12136007845401764 + ] + }, + "p245_067.wav": { + "name": "p245", + "embedding": [ + 0.020868409425020218, + 0.0868513286113739, + -0.012039963155984879, + 0.019087977707386017, + -0.0729515552520752, + 0.07583948224782944, + -0.10541653633117676, + 0.11873645335435867, + -0.07380959391593933, + 0.14194393157958984, + -0.08430862426757812, + 0.11622262746095657, + -0.0546979159116745, + -0.17934924364089966, + -0.017293427139520645, + 0.06783819198608398, + -0.04402795806527138, + -0.04271041601896286, + -0.04180052503943443, + -0.028469868004322052, + 0.03680458664894104, + 0.01561243087053299, + 0.01897319406270981, + 0.028721995651721954, + 0.006416977383196354, + 0.08553045243024826, + -0.012912136502563953, + 0.030799776315689087, + 0.01150369644165039, + -0.050855159759521484, + -0.05115745961666107, + 0.10553304851055145, + -0.056656867265701294, + 0.01121559552848339, + 0.04766120761632919, + -0.00876043550670147, + -0.008931387215852737, + -0.050337910652160645, + -0.011606164276599884, + -0.017599213868379593, + -0.06905359029769897, + 0.07020455598831177, + 0.00306877912953496, + 0.0001026339887175709, + 0.0311671681702137, + 0.00494158361107111, + -0.029914572834968567, + -0.026356277987360954, + -0.09261718392372131, + 0.12716248631477356, + 0.08353427797555923, + -0.031998563557863235, + -0.05076141282916069, + -0.06290306150913239, + 0.11054226756095886, + -0.014636765234172344, + -0.13588395714759827, + -0.06840340793132782, + 0.09216269105672836, + 0.13853719830513, + -0.032242052257061005, + -0.020886607468128204, + 0.005845916457474232, + 0.11510229110717773, + 0.040641821920871735, + 0.12292227149009705, + 0.049254514276981354, + 0.1059156283736229, + -0.023208286613225937, + 0.02244659513235092, + 0.06283772736787796, + 0.06280370056629181, + 0.05181184411048889, + -0.015416629612445831, + 0.025779955089092255, + -0.0022751784417778254, + -0.006654226686805487, + 0.03142628073692322, + -0.02260248363018036, + -0.01621728017926216, + -0.03134561702609062, + -0.014710749499499798, + -0.021795710548758507, + -0.021698681637644768, + 0.003551172325387597, + 0.054710499942302704, + 0.05024096369743347, + 0.000979394419118762, + 0.07397016882896423, + 0.04378657042980194, + -0.01866992563009262, + 0.08207811415195465, + -0.07188402116298676, + -0.05842689424753189, + 0.01084179151803255, + 0.004157151561230421, + 0.011689719744026661, + 0.08458214998245239, + 0.033798880875110626, + -0.003460160456597805, + 0.11204814910888672, + 0.04379774630069733, + 0.006874361541122198, + 0.03510897234082222, + -0.09786175191402435, + 0.14100712537765503, + 0.07588119804859161, + -0.035735756158828735, + 0.03177005052566528, + -0.02765769511461258, + 0.09233300387859344, + 0.07977771759033203, + -0.12316806614398956, + -0.05609642341732979, + -0.011355175636708736, + -0.015557361766695976, + -0.04847920686006546, + 0.09977260231971741, + -0.029047349467873573, + 0.005727539304643869, + 0.11568583548069, + -0.07327874004840851, + -0.05858144909143448, + -0.009706265293061733, + 0.018438544124364853, + -0.09241557121276855, + 0.050521910190582275, + 0.03653712198138237, + 0.007419217377901077, + 0.038794904947280884, + 0.10721154510974884, + -0.027727147564291954, + -0.01003716979175806, + 0.04247761145234108, + -0.06914205849170685, + 0.007558742538094521, + -0.032879382371902466, + 0.015886986628174782, + 0.07359768450260162, + 0.04000311717391014, + 0.061109937727451324, + -0.023807067424058914, + 0.0012497404823079705, + -0.09182318300008774, + 0.01841042935848236, + 0.037720777094364166, + 0.06340830028057098, + 0.0013550283620133996, + 0.0004873467842116952, + -0.034900542348623276, + -0.08777841925621033, + 0.016995344310998917, + -0.018115662038326263, + 0.08811838924884796, + -0.03945860639214516, + 0.001946773030795157, + 0.09453526139259338, + 0.045616745948791504, + -0.013560041785240173, + -0.10332232713699341, + -0.04099069535732269, + 0.003214046359062195, + 0.05721449851989746, + -0.0923265665769577, + -0.060605041682720184, + 0.007285548839718103, + 0.051176127046346664, + -0.01324876956641674, + 0.05760982632637024, + 0.06655386090278625, + 0.024315889924764633, + 0.025252368301153183, + -0.0742875188589096, + 0.03546706587076187, + -0.08509795367717743, + -0.06393812596797943, + -0.018804963678121567, + -0.040829822421073914, + -0.0029831058345735073, + 0.06176944822072983, + -0.008249293081462383, + 0.023371916264295578, + -0.000571876298636198, + -0.09278358519077301, + -0.09932700544595718, + 0.06875362992286682, + 0.05416400730609894, + -0.003684660652652383, + 0.06501224637031555, + 0.06914102286100388, + -0.07024751603603363, + 0.04835633188486099, + 0.042042143642902374, + 0.13709813356399536, + -0.049365803599357605, + 0.04294247180223465, + -0.07167274504899979, + 0.04976804181933403, + 0.08467129617929459, + -0.10611759126186371, + -0.07544932514429092, + -0.035962000489234924, + -0.04060329496860504, + 0.06351238489151001, + -0.043235473334789276, + -0.03657742962241173, + 0.024615004658699036, + -0.016037333756685257, + -0.08906956017017365, + -0.07769998908042908, + 0.10148769617080688, + -0.0646141767501831, + -0.0024357701186090708, + -0.09675583988428116, + 0.043204087764024734, + 0.052898846566677094, + 0.05180158466100693, + -0.046868979930877686, + 0.03207521140575409, + 0.0725894346833229, + -0.025808483362197876, + 0.01369834691286087, + 0.06474174559116364, + 0.022981004789471626, + -0.07859141379594803, + -0.03240450844168663, + -0.09464406967163086, + 0.06016550213098526, + -0.03589615598320961, + 0.160593181848526, + -0.016197221353650093, + -0.043579649180173874, + -0.06344643235206604, + 0.04137660935521126, + -0.012816869653761387, + 0.03843008354306221, + 0.06086871027946472, + 0.0787402018904686, + 0.030957505106925964, + -0.04526152461767197, + 0.14024889469146729, + 0.028170615434646606, + -0.02721204236149788, + -0.053903162479400635, + -0.020322106778621674, + -0.059405043721199036, + 0.0197504460811615, + 0.014078475534915924, + -0.1281036138534546, + -0.00748630054295063, + 0.019126102328300476, + -0.02727348729968071, + 0.07681892067193985, + 0.13779094815254211, + 0.0967927947640419, + -0.09268027544021606 + ] + }, + "p245_348.wav": { + "name": "p245", + "embedding": [ + 0.06416963785886765, + 0.0763169527053833, + -0.03299425542354584, + 0.04098282381892204, + -0.06967906653881073, + 0.047166064381599426, + -0.11756372451782227, + 0.11179213225841522, + -0.019342811778187752, + 0.14263132214546204, + -0.05705989897251129, + 0.13704779744148254, + -0.0022996054030954838, + -0.1816350519657135, + -0.030605586245656013, + 0.043044961988925934, + -0.04927428066730499, + -0.04703671112656593, + -0.0530998557806015, + -0.04178537428379059, + 0.03982323408126831, + 0.06660129129886627, + 0.0455942340195179, + 0.006632889620959759, + 0.024298429489135742, + 0.07572554796934128, + -0.010593682527542114, + 0.03301914781332016, + 0.011640319600701332, + -0.10006465017795563, + -0.05677707493305206, + 0.08164320886135101, + -0.05086119472980499, + 0.010672129690647125, + 0.014715148136019707, + -0.018537038937211037, + 0.014582466334104538, + -0.058439094573259354, + -0.036608338356018066, + 0.030830949544906616, + -0.04347511753439903, + 0.07392939925193787, + 0.018461402505636215, + -0.03597142547369003, + 0.05048117786645889, + -0.0034174006432294846, + -0.025858085602521896, + -0.04569001495838165, + -0.10903674364089966, + 0.17590458691120148, + 0.08129538595676422, + -0.008880347944796085, + -0.05846276879310608, + -0.06529244780540466, + 0.09038583934307098, + -0.025317519903182983, + -0.12211281061172485, + -0.03669178485870361, + 0.0553026981651783, + 0.13649219274520874, + -0.02917296066880226, + -0.04795972630381584, + 0.045753784477710724, + 0.12120044231414795, + 0.08033176511526108, + 0.05919057875871658, + 0.09365145862102509, + 0.10905051231384277, + -0.03795982152223587, + 0.0016961735673248768, + 0.05388873815536499, + 0.08848769217729568, + 0.08406290411949158, + -0.0003825872263405472, + 0.030380364507436752, + 0.005348149221390486, + -0.009688726626336575, + -0.031847935169935226, + -0.018902946263551712, + -0.005971909966319799, + -0.0016954416641965508, + -0.0025203523691743612, + 0.010228863917291164, + 0.02720189467072487, + -0.04551564157009125, + 0.06288662552833557, + 0.04906798154115677, + -0.022211231291294098, + 0.051218800246715546, + 0.03666144609451294, + 0.018922779709100723, + 0.06296109408140182, + -0.07955645024776459, + -0.0784418061375618, + 0.03906489908695221, + 0.01877228543162346, + 0.012471899390220642, + 0.06295335292816162, + 0.051156848669052124, + -0.024583876132965088, + 0.12628428637981415, + 0.04476037994027138, + -0.020415350794792175, + 0.012895047664642334, + -0.07944655418395996, + 0.12012055516242981, + 0.11362238228321075, + -0.026701495051383972, + 0.05360058695077896, + -0.04528056085109711, + 0.08192526549100876, + 0.056361161172389984, + -0.13404487073421478, + -0.07066284120082855, + 0.023433204740285873, + -0.008017717860639095, + -0.006984381470829248, + 0.1085088849067688, + -0.006292938254773617, + 0.06264964491128922, + 0.1077122688293457, + -0.08239695429801941, + -0.0391920767724514, + -0.03114943765103817, + 0.05154057592153549, + -0.10968014597892761, + 0.061816513538360596, + 0.04747128486633301, + -0.006041971500962973, + 0.006270749494433403, + 0.08324433118104935, + -0.024418562650680542, + -0.003103762399405241, + -0.0017465186538174748, + -0.04680066555738449, + 0.006634939461946487, + -0.013291368260979652, + -0.01601908728480339, + 0.06028125062584877, + 0.01936379447579384, + 0.040837325155735016, + -0.023072805255651474, + -0.024967461824417114, + -0.13793975114822388, + 0.042109642177820206, + 0.015544407069683075, + 0.06919063627719879, + -0.006869792938232422, + -0.01729438826441765, + -0.0438687726855278, + -0.07317142188549042, + 0.03169111907482147, + -0.014413293451070786, + 0.05965622514486313, + -0.030996613204479218, + 0.006164215505123138, + 0.09972159564495087, + 0.02927928976714611, + -0.0006327853770926595, + -0.019514229148626328, + -0.029328860342502594, + 0.005025753751397133, + 0.05842050909996033, + -0.07635505497455597, + -0.08322034776210785, + -0.012893766164779663, + 0.02761763334274292, + -0.00658753514289856, + 0.07751573622226715, + 0.057326652109622955, + 0.004889404866844416, + 0.024311507120728493, + -0.07353408634662628, + -0.005548990797251463, + -0.08532489836215973, + -0.06867697834968567, + -0.011845898814499378, + -0.03660754859447479, + -0.02051054872572422, + 0.0806734636425972, + 0.025295086205005646, + 0.05031318590044975, + -0.04750332981348038, + -0.06907308101654053, + -0.08586178719997406, + 0.04537511616945267, + 0.05123066529631615, + 0.0036835186183452606, + 0.02592979371547699, + 0.06370057910680771, + -0.019487395882606506, + 0.06826324760913849, + 0.057477302849292755, + 0.0885062888264656, + -0.022730223834514618, + 0.03245188668370247, + -0.060124047100543976, + 0.10704690217971802, + 0.08858537673950195, + -0.06782245635986328, + -0.08526552468538284, + -0.045309655368328094, + -0.08879561722278595, + 0.046389006078243256, + -0.026801470667123795, + 0.010144572705030441, + 0.04984457045793533, + 0.005001446232199669, + -0.10068418085575104, + -0.09918620437383652, + 0.10351140797138214, + -0.05554025247693062, + -0.01126169040799141, + -0.08422324061393738, + 0.03590209037065506, + 0.09755320101976395, + 0.045386701822280884, + -0.029424484819173813, + -0.0033509526401758194, + 0.04767423868179321, + -0.022274363785982132, + 0.014419065788388252, + 0.06711696088314056, + 0.04518205672502518, + -0.12307103723287582, + -0.022879544645547867, + -0.07614308595657349, + 0.05048812925815582, + -0.05015058442950249, + 0.1369452029466629, + 0.025236688554286957, + -0.042625993490219116, + -0.08200784027576447, + 0.06793235242366791, + -0.024855712428689003, + 0.0686807930469513, + 0.039610885083675385, + 0.0635165274143219, + 0.05367117375135422, + -0.08354263007640839, + 0.09824296832084656, + 0.0734625905752182, + -0.04576064646244049, + -0.0790901780128479, + -0.0505632683634758, + -0.03072902001440525, + 0.038853466510772705, + 0.02813848853111267, + -0.07984182983636856, + -0.004669418558478355, + 0.023210391402244568, + -0.012019085697829723, + 0.06310807913541794, + 0.14355075359344482, + 0.06386779248714447, + -0.11344774067401886 + ] + }, + "p245_044.wav": { + "name": "p245", + "embedding": [ + 0.05540139600634575, + 0.0351874977350235, + -0.0029585787560790777, + -0.0036408863961696625, + -0.009717918932437897, + 0.026989303529262543, + -0.13735339045524597, + 0.10246618837118149, + -0.02932894229888916, + 0.1057426854968071, + -0.08385153114795685, + 0.0787532776594162, + -0.005749681498855352, + -0.14476078748703003, + -0.03264135122299194, + 0.04958081245422363, + -0.02901853248476982, + -0.013268353417515755, + -0.04734598845243454, + -0.013348409906029701, + 0.03271309658885002, + 0.05585765093564987, + 0.017678800970315933, + -0.018751535564661026, + -2.394833973085042e-05, + 0.05371611565351486, + 0.008370274677872658, + 0.03865957260131836, + 0.009304262697696686, + -0.017450083047151566, + 0.015023577027022839, + 0.09004774689674377, + -0.026044484227895737, + 0.0009122826159000397, + 0.04927607998251915, + 0.02071547694504261, + -0.003611566498875618, + -0.0842553973197937, + -0.021370701491832733, + 0.013384552672505379, + -0.06065421551465988, + 0.060138292610645294, + 0.038274116814136505, + 0.0030879653058946133, + 0.024408888071775436, + 0.02827766351401806, + -0.0088332649320364, + -0.06442015618085861, + -0.10005885362625122, + 0.16790227591991425, + 0.04864255338907242, + 0.014047691598534584, + -0.08935472369194031, + -0.03855591267347336, + 0.08309578895568848, + -0.0077942973002791405, + -0.062055446207523346, + -0.04749360680580139, + 0.057343170046806335, + 0.1353236436843872, + -0.01041158102452755, + -0.044429339468479156, + 0.03171449154615402, + 0.09943391382694244, + 0.013505324721336365, + 0.06197275221347809, + 0.10125812143087387, + 0.09637221693992615, + -0.01094371359795332, + 0.020567288622260094, + 0.04689057916402817, + 0.05445460230112076, + 0.04057963192462921, + -0.014234514907002449, + 0.03683260828256607, + 0.0012604668736457825, + -0.0359886959195137, + 0.014987404458224773, + -0.03495274484157562, + -0.03806743025779724, + 0.020563479512929916, + 0.0005404595285654068, + 0.011878499761223793, + 0.04789520427584648, + -0.04487988352775574, + 0.03433726355433464, + 0.02138691209256649, + 0.0005418236833065748, + 0.06738737225532532, + 0.0329102948307991, + 0.030989371240139008, + 0.025151332840323448, + -0.0516933873295784, + -0.09323399513959885, + 0.008121470920741558, + -0.0024637330789119005, + 0.023736722767353058, + 0.043473612517118454, + 0.02698652073740959, + -0.028227433562278748, + 0.10058945417404175, + -0.002524597104638815, + -0.014985373243689537, + -0.0031128115952014923, + -0.07942080497741699, + 0.09619386494159698, + 0.099323570728302, + -0.015833454206585884, + 0.014053039252758026, + -0.06924107670783997, + 0.03721923753619194, + 0.05781635269522667, + -0.11579690873622894, + -0.0548018142580986, + 0.052189093083143234, + 0.03476516529917717, + 0.026683229953050613, + 0.13142159581184387, + 0.010898714885115623, + 0.020617790520191193, + 0.08051857352256775, + -0.07659701257944107, + -0.04957641288638115, + 0.0006005354225635529, + 0.02204623818397522, + -0.03960549086332321, + 0.03626979514956474, + 0.032854702323675156, + 0.010973429307341576, + -0.02172589860856533, + 0.08298837393522263, + -0.010839487425982952, + 0.020128600299358368, + -0.043658968061208725, + 0.0002710595726966858, + 0.060335662215948105, + -0.021085208281874657, + -0.009002873674035072, + 0.02431986853480339, + 0.0639747604727745, + 0.029162375256419182, + 0.025574831292033195, + -0.07356759160757065, + -0.11855047941207886, + -0.007786398287862539, + 0.03783252835273743, + 0.06678080558776855, + -0.02601083740592003, + -0.03537067398428917, + -0.05401691049337387, + -0.025844207033514977, + -0.0037404238246381283, + -0.029338188469409943, + 0.05766249820590019, + 0.021084189414978027, + -0.017874745652079582, + 0.09360738843679428, + -0.025284549221396446, + 0.013361017219722271, + -0.02724376693367958, + -0.022132039070129395, + 0.017302291467785835, + 0.03225565329194069, + -0.041591793298721313, + -0.05928799510002136, + 0.01305367611348629, + 0.015114177018404007, + -0.014453674666583538, + -0.001210155664011836, + 0.018828436732292175, + 0.004517893306910992, + 0.013616982847452164, + -0.10014872997999191, + 0.01490868628025055, + -0.1160678118467331, + -0.04340996965765953, + 0.030036643147468567, + -0.000349000736605376, + 0.006367855705320835, + 0.07502906769514084, + -0.0036811628378927708, + 0.03091811202466488, + -0.03298807889223099, + -0.08331942558288574, + -0.03943921998143196, + 0.05338000878691673, + 0.0753025934100151, + -0.009122584015130997, + 0.02758536860346794, + 0.029099121689796448, + -0.0034411102533340454, + 0.02397848293185234, + 0.05102162063121796, + 0.08103230595588684, + -0.030999958515167236, + -0.01997513882815838, + -0.03418756648898125, + 0.10940631479024887, + 0.03795918822288513, + -0.06236086040735245, + -0.04988820478320122, + 0.0030434816144406796, + -0.05253837630152702, + 0.020179901272058487, + -0.0199077520519495, + 0.01477649062871933, + 0.0338677354156971, + -0.014915850013494492, + -0.12014935910701752, + -0.03963743522763252, + 0.03166377171874046, + -0.06261864304542542, + -0.002676093950867653, + -0.07130350917577744, + 0.03663774952292442, + 0.1020917147397995, + 0.037786319851875305, + -0.014607070945203304, + -0.031856633722782135, + 0.002835892140865326, + -0.06941057741641998, + -0.03648950159549713, + -0.008691705763339996, + 0.037000514566898346, + -0.07694466412067413, + -0.002713435096666217, + -0.06846268475055695, + 0.049588948488235474, + -0.04926304146647453, + 0.09001024812459946, + 0.021845895797014236, + -0.06423349678516388, + -0.08003246039152145, + -0.0019804886542260647, + -0.003215455450117588, + 0.05571264028549194, + 0.03837262839078903, + 0.018403928726911545, + 0.044507842510938644, + -0.07045572996139526, + 0.10923983156681061, + 0.04475123807787895, + -0.02649056911468506, + -0.05786821246147156, + -0.027255138382315636, + -0.01597152277827263, + 0.03250078856945038, + -0.005201913416385651, + -0.03966651111841202, + -0.0032188917975872755, + 0.02061603218317032, + -0.021886512637138367, + 0.04958562180399895, + 0.09706853330135345, + 0.037583090364933014, + -0.10383137315511703 + ] + }, + "p245_057.wav": { + "name": "p245", + "embedding": [ + 0.042658597230911255, + 0.07373440265655518, + -0.042017921805381775, + 0.04971172660589218, + -0.08102007210254669, + 0.06125273555517197, + -0.11694268882274628, + 0.13449028134346008, + -0.03624627739191055, + 0.12037333846092224, + -0.04670920968055725, + 0.14087115228176117, + 0.00011318037286400795, + -0.17798201739788055, + -0.02754015475511551, + 0.040677260607481, + -0.04235752671957016, + -0.016533244401216507, + -0.0717368796467781, + -0.024673495441675186, + 0.05648712068796158, + 0.024630118161439896, + 0.05028512701392174, + -0.04432780295610428, + 0.006298882886767387, + 0.052003875374794006, + 0.008977169170975685, + 0.04707060009241104, + 0.02072804793715477, + -0.05827939510345459, + -0.04008573293685913, + 0.11003127694129944, + -0.05210462212562561, + 0.00895748008042574, + 0.05134767293930054, + -0.04342135041952133, + -0.029322419315576553, + -0.047930993139743805, + -0.018395300954580307, + 0.009645577520132065, + -0.03082261234521866, + 0.06193145364522934, + 0.025976713746786118, + -0.025547288358211517, + 0.07112058997154236, + -0.014389791525900364, + -0.05688486248254776, + -0.013784706592559814, + -0.1082160472869873, + 0.13892841339111328, + 0.08027221262454987, + -0.0033687162213027477, + -0.08491973578929901, + -0.047700412571430206, + 0.11100733280181885, + -0.014018434099853039, + -0.12360776215791702, + -0.04192376136779785, + 0.05141473934054375, + 0.15656176209449768, + -0.021107863634824753, + -0.011425882577896118, + 0.03725047409534454, + 0.1016295775771141, + 0.056882549077272415, + 0.08021517097949982, + 0.09563928842544556, + 0.10773084312677383, + -0.013878921046853065, + 0.0630386471748352, + 0.027519889175891876, + 0.0867965966463089, + 0.018995199352502823, + -0.00758158415555954, + 0.03319406509399414, + -0.020736895501613617, + -0.009845266118645668, + -0.03240451216697693, + -0.04514143243432045, + -0.019291093572974205, + -0.01708867773413658, + 0.017963888123631477, + 0.035908762365579605, + 0.012050234712660313, + -0.049016982316970825, + 0.07073120772838593, + 0.03209540247917175, + -0.024402478709816933, + 0.037249986082315445, + 0.04311056435108185, + -0.00636585708707571, + 0.050601810216903687, + -0.08048838376998901, + -0.11849690973758698, + 0.003383701667189598, + 0.011985288932919502, + 0.01919235847890377, + 0.0612993985414505, + 0.021035224199295044, + -0.0037703639827668667, + 0.09749886393547058, + 0.07026691734790802, + -0.02102075144648552, + 0.030336380004882812, + -0.06137215346097946, + 0.11697441339492798, + 0.10063496977090836, + -0.004330971743911505, + 0.04971890151500702, + -0.05922890827059746, + 0.08101237565279007, + 0.04440369829535484, + -0.10373479872941971, + -0.07120360434055328, + 0.006141620688140392, + -0.005235287360846996, + -0.023264802992343903, + 0.134757399559021, + -0.006947047542780638, + 0.055613260716199875, + 0.10629017651081085, + -0.07855509221553802, + -0.04463636502623558, + -0.021638011559844017, + 0.055245526134967804, + -0.04844392091035843, + 0.06252002716064453, + 0.032610103487968445, + -0.013118140399456024, + 0.01573919877409935, + 0.07210180163383484, + -0.02472047321498394, + 0.016713324934244156, + 0.049177348613739014, + -0.07215912640094757, + 0.041919007897377014, + -0.03672518953680992, + -0.007667713798582554, + 0.07663096487522125, + 0.04351896792650223, + 0.07501128315925598, + -0.028448665514588356, + -0.008285744115710258, + -0.08659380674362183, + 0.005693176295608282, + 0.024349119514226913, + 0.06949149817228317, + -0.009844282642006874, + -0.01269880123436451, + -0.029022859409451485, + -0.08014222979545593, + 0.025880802422761917, + -0.027504265308380127, + 0.08404827862977982, + -0.026718009263277054, + 0.010596396401524544, + 0.07617653906345367, + 0.02967570535838604, + -0.006403231993317604, + -0.04598081111907959, + -0.028654057532548904, + 0.008319772779941559, + 0.053879186511039734, + -0.0867946594953537, + -0.05442504584789276, + -0.021900422871112823, + 0.02703044004738331, + -0.028688717633485794, + 0.04261992126703262, + 0.0548551008105278, + 0.015629053115844727, + 0.034706294536590576, + -0.07209552824497223, + 0.014745630323886871, + -0.09644142538309097, + -0.04417610540986061, + -0.018349912017583847, + -0.04618903622031212, + -0.040281087160110474, + 0.07412734627723694, + 0.03254743665456772, + 0.0423596128821373, + -0.003541739657521248, + -0.05816451832652092, + -0.08474371582269669, + 0.05352664738893509, + 0.03902830183506012, + -0.007147971540689468, + 0.05684029310941696, + 0.058591827750205994, + -0.03242700546979904, + 0.056032270193099976, + 0.07266870141029358, + 0.07109204679727554, + -0.03621084615588188, + -0.003321175929158926, + -0.09544070065021515, + 0.09888750314712524, + 0.11192983388900757, + -0.08583962917327881, + -0.0921175628900528, + -0.037021514028310776, + -0.07837015390396118, + 0.03923950344324112, + -0.04536805674433708, + -0.014613630250096321, + 0.06497185677289963, + 0.0039850943721830845, + -0.1330309361219406, + -0.07600510865449905, + 0.10415568202733994, + -0.09434092044830322, + 0.0005877655930817127, + -0.061691198498010635, + 0.017683925107121468, + 0.10313122719526291, + 0.000999506562948227, + -0.03477863967418671, + -0.011027686297893524, + 0.062136210501194, + -0.03392190486192703, + 0.022306038066744804, + 0.03726818412542343, + 0.03559507429599762, + -0.08566252142190933, + -0.0013286432949826121, + -0.049543119966983795, + 0.02244129590690136, + -0.03894244134426117, + 0.13845036923885345, + 0.006760017946362495, + -0.038349516689777374, + -0.08156262338161469, + 0.08797506988048553, + -0.02791464887559414, + 0.053304776549339294, + 0.04674801975488663, + 0.07543385028839111, + 0.022843074053525925, + -0.10655760765075684, + 0.13490071892738342, + 0.02066524140536785, + -0.0457330048084259, + -0.09066809713840485, + -0.027774915099143982, + -0.04519465193152428, + 0.021998699754476547, + 0.029997579753398895, + -0.07456813752651215, + -0.018419792875647545, + 0.011191231198608875, + -0.01641165465116501, + 0.06939584016799927, + 0.12185235321521759, + 0.07355348765850067, + -0.08811970055103302 + ] + }, + "p245_033.wav": { + "name": "p245", + "embedding": [ + 0.05503704398870468, + 0.04126527160406113, + 0.028578555211424828, + -0.021874483674764633, + -0.009847121313214302, + 0.0940089076757431, + -0.06819070130586624, + 0.07790213078260422, + 0.012370242737233639, + 0.02222418040037155, + -0.0717296376824379, + 0.05137820169329643, + -0.0009726779535412788, + -0.13882096111774445, + -0.00807705894112587, + 0.0543212816119194, + -0.03527560085058212, + 0.014220127835869789, + -0.06138240173459053, + -0.019632671028375626, + -0.014992786571383476, + 0.01048943679779768, + 0.06166643649339676, + -0.0200663935393095, + 0.04159843176603317, + 0.03275735676288605, + 0.004174490459263325, + 0.025599969550967216, + 0.0024124151095747948, + -0.016274787485599518, + -0.009249405935406685, + 0.058753468096256256, + -0.03836642578244209, + -0.021624622866511345, + 0.049998216331005096, + -0.006679716520011425, + 0.04524123668670654, + -0.09250281751155853, + -0.032838352024555206, + 0.0467701256275177, + -0.06930014491081238, + 0.07942825555801392, + 0.07616984844207764, + 0.013530037365853786, + 0.03430735692381859, + 0.010687392204999924, + -0.013379319570958614, + -0.044989049434661865, + -0.09564291685819626, + 0.13972485065460205, + 0.02319157123565674, + 0.02359095774590969, + -0.0843544751405716, + -0.006598832085728645, + 0.05079162120819092, + -0.006757604889571667, + -0.04895760491490364, + -0.02604241855442524, + 0.05102890729904175, + 0.06556835025548935, + 0.047526516020298004, + -0.004110292065888643, + 0.01991882175207138, + 0.06621947139501572, + 0.009147971868515015, + 0.017581192776560783, + 0.09697175025939941, + 0.09611494839191437, + 0.011887033469974995, + 0.027554944157600403, + 0.0553416982293129, + 0.006610002368688583, + 0.014754112809896469, + -0.003383040428161621, + 0.025151968002319336, + -0.030998259782791138, + -0.012653917074203491, + -0.025196246802806854, + -0.0029356912709772587, + -0.008422995917499065, + 0.061520420014858246, + 0.03234238922595978, + 0.01717015542089939, + 0.050243716686964035, + -0.04374992847442627, + 0.033682480454444885, + -0.013783849775791168, + 0.10162042081356049, + 0.0746852234005928, + 0.0407617911696434, + 0.010323528200387955, + 0.0009243618696928024, + -0.028158560395240784, + -0.08587627112865448, + -0.008755132555961609, + 0.02521700970828533, + -0.003991944715380669, + -0.006430109962821007, + 0.006756959483027458, + -0.03189900517463684, + 0.10079100728034973, + 0.008428608067333698, + -0.02478889934718609, + 0.01860320009291172, + -0.05652153119444847, + 0.057058185338974, + 0.04892893135547638, + 0.01361973024904728, + 0.05956698954105377, + -0.025912873446941376, + 0.03085711970925331, + 0.0531538724899292, + -0.06980676203966141, + -0.00903877429664135, + 0.022771088406443596, + 0.004799459595233202, + 0.04482216387987137, + 0.11981566250324249, + 0.003450536634773016, + 0.03170914947986603, + 0.04556145519018173, + -0.06718897074460983, + -0.013340558856725693, + 0.062368884682655334, + 0.0018227379769086838, + 0.024645287543535233, + -0.027156272903084755, + 0.022594686597585678, + 0.02368982322514057, + -0.0520721971988678, + 0.0425841361284256, + 0.027727916836738586, + 0.025195419788360596, + -0.05521911010146141, + 0.035098329186439514, + 0.03956956788897514, + 0.000834080739878118, + -0.04249418526887894, + 0.050750792026519775, + 0.06984292715787888, + -0.0005850158631801605, + 0.043573640286922455, + -0.06163248047232628, + -0.09233947098255157, + -0.0383978933095932, + -0.02143182046711445, + 0.04378749802708626, + -0.006941661238670349, + -0.018346618860960007, + -0.0790707990527153, + 0.023840874433517456, + 1.263245940208435e-05, + -0.009724571369588375, + 0.038023218512535095, + 0.07959675043821335, + -0.05844411998987198, + 0.050648804754018784, + -0.025519538670778275, + 0.028987377882003784, + -0.022427359595894814, + -0.05055466294288635, + 0.007468527182936668, + 0.031119007617235184, + -0.00751885399222374, + -0.04164040833711624, + 0.011285919696092606, + -0.050722166895866394, + -0.004625143948942423, + 0.001974336802959442, + 0.039731934666633606, + -0.00563558004796505, + -0.03561624884605408, + -0.07944482564926147, + 0.013095082715153694, + -0.03421042114496231, + -0.03314093127846718, + 0.07991906255483627, + 0.04608798772096634, + -0.019420582801103592, + 0.08691956102848053, + 0.04034686088562012, + 0.02982557751238346, + -0.03717201203107834, + -0.04152484983205795, + 0.02425471693277359, + 0.05419965833425522, + 0.03612910583615303, + -0.005846992135047913, + 0.042186662554740906, + 0.005433021113276482, + -0.01671779900789261, + 0.04475399851799011, + 0.023597944527864456, + 0.02329040691256523, + -0.04797558858990669, + -0.027197031304240227, + 0.022699818015098572, + 0.08339535444974899, + 0.0032104365527629852, + -0.04503514617681503, + -0.021230213344097137, + 0.03628489375114441, + -0.023001430556178093, + 0.005420295055955648, + -0.0006123166531324387, + 0.011518686078488827, + 0.0485251322388649, + -0.027095016092061996, + -0.05361117050051689, + -0.0662553533911705, + 0.013231858611106873, + -0.058311667293310165, + -0.007921005599200726, + -0.0318119153380394, + 0.034134261310100555, + 0.09536511451005936, + -0.020250875502824783, + 0.0023607080802321434, + 0.0007106075063347816, + -0.014448193833231926, + -0.01130728516727686, + -0.039694465696811676, + -0.0023696087300777435, + 0.041263043880462646, + -0.07747235149145126, + -0.00010490883141756058, + -0.0497434064745903, + 0.050729431211948395, + 0.025525305420160294, + 0.06620647758245468, + 0.06714387983083725, + -0.008791105821728706, + -0.054592691361904144, + 0.003910398110747337, + -0.007692305371165276, + 0.035516027361154556, + -0.0005606263875961304, + 0.006531648337841034, + 0.06001660227775574, + -0.01902925781905651, + 0.07483260333538055, + 0.03050580620765686, + -0.0711502805352211, + -0.03632104769349098, + 0.02073141559958458, + -0.014771663583815098, + 0.018105216324329376, + -0.021234482526779175, + -0.040807321667671204, + 0.026090865954756737, + 0.04086343199014664, + 0.01827331632375717, + 0.006655510514974594, + 0.048183273524045944, + 0.028873968869447708, + -0.027636181563138962 + ] + }, + "p245_273.wav": { + "name": "p245", + "embedding": [ + 0.0026476019993424416, + 0.05040179193019867, + -0.02965957298874855, + -0.034782592207193375, + -0.022863516584038734, + 0.03144398704171181, + -0.14000385999679565, + 0.051099713891744614, + -0.04079238325357437, + 0.13728491961956024, + -0.007415551692247391, + 0.08959319442510605, + -0.013946100138127804, + -0.09861291199922562, + -0.0044763414189219475, + 0.05538463220000267, + -0.048577889800071716, + -0.032904960215091705, + 0.01900862343609333, + -0.08309365063905716, + 0.02128327637910843, + -0.003264501690864563, + -0.01786132901906967, + -0.033455558121204376, + 0.02312278002500534, + 0.07343585789203644, + -0.0038511897437274456, + -0.01767529733479023, + -0.028988216072320938, + -0.05128886178135872, + -0.004760146141052246, + 0.07865680009126663, + -0.031286630779504776, + -0.027404900640249252, + 0.0321369543671608, + -0.005473798606544733, + 0.006576112005859613, + -0.016731375828385353, + 0.028515463694930077, + 0.05061473324894905, + -0.08200086653232574, + 0.08887961506843567, + 0.02601844072341919, + 0.011357372626662254, + 0.03733556717634201, + -0.016124669462442398, + -0.02678702399134636, + 0.036197301000356674, + -0.029411114752292633, + 0.09708891808986664, + 0.05593682825565338, + -0.02425423264503479, + -0.0386524498462677, + -0.007788142189383507, + 0.0639965683221817, + 0.029921142384409904, + -0.10787051171064377, + 0.0056901611387729645, + 0.015934761613607407, + 0.09393545985221863, + -0.014263492077589035, + -0.05579478293657303, + 0.03485441952943802, + 0.0968020036816597, + 0.02439579740166664, + 0.04180368036031723, + 0.05488671362400055, + 0.07529357075691223, + 0.0026147146709263325, + -0.055362768471241, + 0.06008877977728844, + 0.07915298640727997, + 0.0430389828979969, + -0.01995036005973816, + 0.04954618960618973, + -0.011623811908066273, + -0.006167737767100334, + -0.05614133179187775, + -0.03622627258300781, + -0.048705801367759705, + -0.07243897020816803, + -0.014460626058280468, + 0.018311824649572372, + 0.07117718458175659, + 0.010565374977886677, + -0.025768399238586426, + 0.06887920200824738, + -0.042999908328056335, + 0.03278893977403641, + 0.04510287940502167, + 0.011646484956145287, + 0.018368449062108994, + -0.07040495425462723, + -0.01980988308787346, + 0.01990605518221855, + -0.006179517600685358, + 0.06271880865097046, + 0.03327307105064392, + 0.02138558402657509, + 0.03103802353143692, + 0.06835385411977768, + 0.03468228876590729, + 0.01039789617061615, + -0.02561241202056408, + -0.07081673294305801, + 0.09570132195949554, + 0.07046829909086227, + -0.06066931411623955, + 0.027953507378697395, + 0.011127099394798279, + 0.025985557585954666, + -0.014827873557806015, + -0.10529714822769165, + -0.03224654868245125, + 0.010995421558618546, + 0.05927664786577225, + -0.014649520628154278, + 0.12406080216169357, + 0.020794177427887917, + 0.03692144528031349, + 0.06189810112118721, + -0.009922102093696594, + -0.04693252220749855, + -0.06247655674815178, + 0.04660366475582123, + -0.0950712263584137, + 0.07217497378587723, + 0.05943816155195236, + 0.03775598853826523, + 0.02648629993200302, + 0.0937858447432518, + 0.031699247658252716, + 0.00045697903260588646, + -0.05652068182826042, + 0.005226939916610718, + 0.029063716530799866, + 0.011619489639997482, + 0.0555356927216053, + 0.056166961789131165, + -0.004735746420919895, + 0.09648586809635162, + 0.028552792966365814, + 0.008195789530873299, + -0.08477400988340378, + 0.018421396613121033, + 0.018365738913416862, + 0.0406486876308918, + -0.034434232860803604, + -0.03627825155854225, + 0.006090272217988968, + -0.06791737675666809, + -0.049891479313373566, + -0.03130611777305603, + 0.08802126348018646, + 0.011686543002724648, + -0.028816476464271545, + 0.09757503867149353, + 0.04058592766523361, + -0.009651847183704376, + 0.024637019261717796, + -0.025973135605454445, + -0.024761321023106575, + 0.06587699055671692, + -0.14869078993797302, + -0.0584012009203434, + -0.014292672276496887, + 0.03659965470433235, + 0.046618424355983734, + 0.04329434037208557, + 0.07247595489025116, + -0.006700476631522179, + 0.03669091314077377, + -0.006628260016441345, + 0.0065744612365961075, + -0.059426456689834595, + -0.05883348733186722, + -0.037214841693639755, + -0.07949355244636536, + -0.07062729448080063, + 0.06170422583818436, + -0.0452277846634388, + 0.055910624563694, + -0.031131815165281296, + -0.040166616439819336, + -0.044766124337911606, + 0.038244858384132385, + 0.020098481327295303, + -0.049127593636512756, + 0.004920534789562225, + 0.07999622821807861, + 0.007382713258266449, + -0.03009817749261856, + 0.03157437965273857, + 0.08087754249572754, + -0.06818441301584244, + 0.020835569128394127, + -0.058606937527656555, + 0.0851200595498085, + 0.055453091859817505, + -0.02522546611726284, + -0.031772222369909286, + -0.03446222096681595, + -0.042361222207546234, + 0.053891852498054504, + -0.048653945326805115, + -0.0010657142847776413, + -0.014853335916996002, + -0.021661918610334396, + -0.0667293444275856, + -0.05397786945104599, + 0.05126090347766876, + -0.07112500816583633, + -0.0023414152674376965, + -0.03467349335551262, + 0.01196509599685669, + 0.024627475067973137, + 0.06790965050458908, + -0.058424755930900574, + 0.05146559700369835, + 0.03203999623656273, + -0.03010169044137001, + 0.04194901883602142, + 0.04581429064273834, + 0.039138708263635635, + -0.048563115298748016, + -0.06794974207878113, + -0.0779951810836792, + 0.03790833055973053, + -0.04594273865222931, + 0.059765059500932693, + 0.0409092903137207, + -0.04962727427482605, + -0.02866518124938011, + -0.02079601213335991, + -0.014579536393284798, + 0.023257005959749222, + 0.07405896484851837, + 0.08979281038045883, + 0.03659071773290634, + 0.011373279616236687, + 0.08352388441562653, + 0.03708831965923309, + 0.028296543285250664, + -0.020455490797758102, + 0.005406586453318596, + -0.020148176699876785, + 0.022320300340652466, + 0.04028785973787308, + -0.09396903216838837, + 0.048410166054964066, + 0.021559784188866615, + 0.029390135779976845, + 0.04379183053970337, + 0.036473553627729416, + 0.05472201108932495, + -0.06304406374692917 + ] + }, + "p245_114.wav": { + "name": "p245", + "embedding": [ + 0.06669951975345612, + 0.10124754905700684, + -0.0022013874258846045, + 0.03649517148733139, + -0.021619021892547607, + 0.053168296813964844, + -0.16219760477542877, + 0.11655928194522858, + -0.01387164555490017, + 0.1186247318983078, + -0.06351030617952347, + 0.10898423194885254, + -0.01726130209863186, + -0.16677242517471313, + -0.024964701384305954, + 0.06468411535024643, + -0.026851870119571686, + -0.032134346663951874, + -0.0033342628739774227, + -0.008759641088545322, + 0.0032952409237623215, + 0.03859074413776398, + 0.049083881080150604, + -0.02073134109377861, + 0.06332868337631226, + 0.05428619682788849, + 0.014313665218651295, + 0.066304512321949, + -0.010303741320967674, + -0.051963094621896744, + -0.013814348727464676, + 0.0884525328874588, + -0.054471034556627274, + 0.006114103831350803, + 0.04680199548602104, + 0.026793599128723145, + 0.020099684596061707, + -0.08509883284568787, + -0.01705184578895569, + -0.005261139944195747, + -0.02789417654275894, + 0.09863394498825073, + 0.03861689195036888, + -0.0397944338619709, + 0.007458297535777092, + 0.04691072925925255, + 0.01988939195871353, + -0.0555143803358078, + -0.13748982548713684, + 0.15095984935760498, + 0.013565191067755222, + 0.05258611589670181, + -0.08982804417610168, + -0.09698932617902756, + 0.08381138741970062, + -0.004245487041771412, + -0.062168098986148834, + -0.03301975503563881, + 0.06551120430231094, + 0.16978979110717773, + -0.02783021330833435, + -0.0541827455163002, + 0.031541407108306885, + 0.09513824433088303, + 0.0769338458776474, + 0.07380522787570953, + 0.083738312125206, + 0.11341849714517593, + -0.0014829318970441818, + -0.016546843573451042, + 0.05440804362297058, + 0.07229621708393097, + 0.04665745794773102, + 0.014899211004376411, + -0.004094243980944157, + 0.008550656959414482, + -0.03569471091032028, + -0.002781311981379986, + -0.018585097044706345, + -0.035936299711465836, + -0.011547836475074291, + 0.016961177811026573, + 0.025844469666481018, + 0.05370710790157318, + -0.024885138496756554, + 0.05165655538439751, + 0.045758239924907684, + -0.03461221233010292, + 0.07788741588592529, + 0.016297314316034317, + -0.007213803008198738, + 0.03925038501620293, + -0.09498238563537598, + -0.07026637345552444, + 0.028194207698106766, + 0.007803819607943296, + 0.01729004830121994, + 0.0715162456035614, + 0.04602537304162979, + -0.02796456590294838, + 0.12523646652698517, + 0.03793541342020035, + 0.006545787677168846, + 0.011256947182118893, + -0.06981537491083145, + 0.11090090125799179, + 0.07812876999378204, + -0.01100641954690218, + 0.054404400289058685, + -0.04454074800014496, + 0.017416132614016533, + 0.08018931746482849, + -0.14238345623016357, + -0.1061008870601654, + 0.04114401340484619, + 0.030631156638264656, + 0.0026168236508965492, + 0.11518049240112305, + 0.0005010650493204594, + 0.04926629364490509, + 0.09329401701688766, + -0.11661004275083542, + -0.06290889531373978, + 0.0024043903686106205, + 0.06123144179582596, + -0.06810425221920013, + 0.04396265745162964, + 0.0688818171620369, + -0.02121102623641491, + -0.017339549958705902, + 0.05694655701518059, + 0.026569832116365433, + 0.008694757707417011, + -0.007300286553800106, + -0.02416439726948738, + 0.022513214498758316, + -0.019183343276381493, + -0.02127186954021454, + 0.04039110988378525, + 0.040891021490097046, + 0.032756298780441284, + 0.0137447165325284, + -0.04398074746131897, + -0.15867531299591064, + -0.004860861226916313, + 0.06436794251203537, + 0.08836264908313751, + -0.03412599861621857, + -0.047433964908123016, + -0.061883583664894104, + -0.046971842646598816, + 0.025024034082889557, + 0.014585485681891441, + 0.07874025404453278, + -0.004638315178453922, + 0.002713327994570136, + 0.11288897693157196, + 0.006145218852907419, + 0.0037173195742070675, + -0.017560182139277458, + -0.01592506282031536, + 0.009115886874496937, + 0.029176663607358932, + -0.056749127805233, + -0.09481942653656006, + -0.014187329448759556, + 0.019675396382808685, + -0.023463424295186996, + 0.08248897641897202, + 0.03267376869916916, + 0.02932296320796013, + 0.017345400527119637, + -0.03329450264573097, + -0.019061576575040817, + -0.08452650904655457, + -0.06144671142101288, + 0.0008327392861247063, + 0.005450002383440733, + -0.035220760852098465, + 0.0977049171924591, + 0.055239804089069366, + 0.09511526674032211, + -0.031255364418029785, + -0.04565175622701645, + -0.07411039620637894, + 0.0403832271695137, + 0.059165194630622864, + -0.005458163097500801, + 0.01866809092462063, + 0.043018363416194916, + 0.011813637800514698, + 0.056993789970874786, + 0.07636085152626038, + 0.06494415551424026, + -0.01523410715162754, + -0.0013035740703344345, + -0.06747864186763763, + 0.10821281373500824, + 0.09415844082832336, + -0.08186593651771545, + -0.06548730283975601, + -0.02638210356235504, + -0.08318708091974258, + 0.022101102396845818, + -0.0077890669927001, + 0.04065181314945221, + 0.0186697356402874, + -0.02592366747558117, + -0.0911296159029007, + -0.121262326836586, + 0.053475432097911835, + -0.056022629141807556, + -0.010926328599452972, + -0.059962570667266846, + 0.032457493245601654, + 0.07609052211046219, + 0.055883247405290604, + 0.020474789664149284, + -0.024406442418694496, + 0.03677567094564438, + -0.04756082966923714, + -0.0005149353528395295, + 0.09520062804222107, + 0.023777177557349205, + -0.1029689684510231, + 0.026280013844370842, + -0.06712538003921509, + 0.07708365470170975, + -0.04668726399540901, + 0.15436357259750366, + 0.021601703017950058, + -0.06359592825174332, + -0.09732343256473541, + -0.00601994851604104, + -0.04985116422176361, + 0.06155013293027878, + 0.011149303987622261, + 0.05528872460126877, + 0.046844758093357086, + -0.05233580619096756, + 0.09394358843564987, + 0.04739709198474884, + -0.03704778105020523, + -0.07554302364587784, + -0.09069973975419998, + -0.0346965566277504, + 0.04656268283724785, + -0.01053727325052023, + -0.06500908732414246, + -0.002842111513018608, + 0.033416878432035446, + 0.006041018292307854, + 0.0415038987994194, + 0.1435728669166565, + 0.050778940320014954, + -0.11512802541255951 + ] + }, + "p245_098.wav": { + "name": "p245", + "embedding": [ + 0.04837983846664429, + 0.07397189736366272, + -0.015257400460541248, + 0.004226955119520426, + -0.0217236690223217, + 0.04345892369747162, + -0.16690826416015625, + 0.10852667689323425, + -0.017744475975632668, + 0.12906280159950256, + -0.0865454226732254, + 0.09669071435928345, + -0.028869260102510452, + -0.1700381636619568, + 0.008216941729187965, + 0.04893476143479347, + 0.0021732402965426445, + -0.003368159756064415, + -0.02969559282064438, + -0.019953763112425804, + 0.04410291090607643, + 0.03686554357409477, + 0.03652225807309151, + -0.07071204483509064, + 0.018293865025043488, + 0.07157804071903229, + 0.0033935662358999252, + 0.053154293447732925, + -0.005582939367741346, + -0.03573019802570343, + -0.012815169990062714, + 0.09875959903001785, + -0.040312353521585464, + -0.02933599427342415, + 0.02862393856048584, + -0.0016386136412620544, + -0.0300297848880291, + -0.08071736991405487, + 0.021702971309423447, + -0.005472929682582617, + -0.04542834311723709, + 0.07055270671844482, + 0.020278697833418846, + -0.03449685871601105, + 0.031579796224832535, + 0.016280796378850937, + 0.004470291547477245, + -0.04703650623559952, + -0.10625828057527542, + 0.15504711866378784, + 0.05663695186376572, + 0.024519825354218483, + -0.08005991578102112, + -0.025812696665525436, + 0.08329600840806961, + 0.02192092500627041, + -0.06178736314177513, + -0.06989549100399017, + 0.08307104557752609, + 0.1362994909286499, + -0.0526692196726799, + -0.03864138573408127, + 0.058870889246463776, + 0.06797685474157333, + 0.028171837329864502, + 0.07244863361120224, + 0.09931854903697968, + 0.10579518973827362, + 0.011454739607870579, + 0.010721366852521896, + 0.005931943655014038, + 0.06777166575193405, + 0.0060185398906469345, + -0.0027391379699110985, + 0.020594749599695206, + -0.02383052371442318, + -0.037465650588274, + 0.005291081499308348, + -0.028236083686351776, + -0.051930129528045654, + 0.036599185317754745, + -0.0039236522279679775, + 0.01938287355005741, + 0.03994649648666382, + -0.0483199879527092, + 0.029257463291287422, + 0.046966832131147385, + -0.034857410937547684, + 0.09018257260322571, + -0.020626991987228394, + 0.011873006820678711, + 0.033042412251234055, + -0.10080374777317047, + -0.0901232659816742, + 0.0473480150103569, + 0.014334257692098618, + -0.002812618389725685, + 0.06270328909158707, + 0.047439202666282654, + -0.029730264097452164, + 0.14102405309677124, + 0.02559536322951317, + -0.027706529945135117, + 0.034407421946525574, + -0.06206132099032402, + 0.13693787157535553, + 0.10564863681793213, + -0.019914600998163223, + 0.043340325355529785, + -0.07963314652442932, + 0.004914093762636185, + 0.04742511361837387, + -0.12345616519451141, + -0.06824080646038055, + 0.03785701096057892, + 0.021179266273975372, + -0.012078160420060158, + 0.1373988687992096, + 0.00678655132651329, + 0.019382013007998466, + 0.119720458984375, + -0.11037038266658783, + -0.089786596596241, + -0.00984465517103672, + 0.05732637271285057, + -0.07139059156179428, + 0.05901322513818741, + 0.08729320019483566, + -0.01768692582845688, + 0.018650315701961517, + 0.06390143930912018, + -0.005462422035634518, + 0.021591048687696457, + -0.019534112885594368, + -0.017429277300834656, + 0.03725701570510864, + -0.046739932149648666, + -0.03273056447505951, + 0.015863344073295593, + 0.04314257949590683, + 0.05571836978197098, + -0.0027665982488542795, + -0.03711618110537529, + -0.1370280236005783, + -0.003486255183815956, + 0.031079839915037155, + 0.07326079159975052, + -0.03008180484175682, + -0.01804978959262371, + -0.0631231740117073, + -0.05878232419490814, + -0.011977490037679672, + -0.03093951940536499, + 0.07846591621637344, + 0.0038145771250128746, + 0.017129892483353615, + 0.09291879832744598, + 0.019267885014414787, + 0.032569874078035355, + -0.04674635827541351, + -0.04252927005290985, + 0.028227098286151886, + 0.015208818018436432, + -0.06798401474952698, + -0.06236961483955383, + -0.04348182678222656, + 0.024289807304739952, + -0.028147011995315552, + 0.04094310104846954, + 0.04463409632444382, + 0.04146460443735123, + 0.006917104125022888, + -0.07282091677188873, + 0.037571981549263, + -0.06347844749689102, + -0.03339000418782234, + 0.023619018495082855, + 0.011770635843276978, + -0.03156188502907753, + 0.09836532175540924, + 0.010770116932690144, + 0.0384446419775486, + -0.0594913549721241, + -0.043212853372097015, + -0.08475650101900101, + 0.032853178679943085, + 0.07375316321849823, + -0.041910912841558456, + 0.03750850260257721, + 0.024050042033195496, + -0.016666170209646225, + 0.019358089193701744, + 0.06663091480731964, + 0.08477072417736053, + 0.0016039833426475525, + -0.03596211224794388, + -0.04994069039821625, + 0.10153074562549591, + 0.09700529277324677, + -0.052259691059589386, + -0.04572824016213417, + -0.03073439933359623, + -0.08259276300668716, + 0.021225402131676674, + -0.019002296030521393, + -0.010798409581184387, + 0.029618043452501297, + -0.02029169350862503, + -0.10508082062005997, + -0.08839097619056702, + 0.031039409339427948, + -0.06059584766626358, + -0.005972542800009251, + -0.10417849570512772, + 0.0615026131272316, + 0.09850043058395386, + 0.02322964183986187, + -0.03207894787192345, + -0.05575793981552124, + 0.010520120151340961, + -0.044707559049129486, + 0.03450167179107666, + 0.043019164353609085, + 0.05543632060289383, + -0.10299453884363174, + 0.02348225936293602, + -0.07682305574417114, + 0.040648236870765686, + -0.03621683642268181, + 0.10659989714622498, + 0.04252257198095322, + -0.012846319004893303, + -0.09913890808820724, + 0.048100292682647705, + -0.001361750066280365, + 0.049081750214099884, + 0.026375235989689827, + 0.030131394043564796, + 0.07254589349031448, + -0.10557491332292557, + 0.09367348998785019, + 0.038298726081848145, + -0.020881816744804382, + -0.09438943862915039, + -0.050282105803489685, + -0.038230083882808685, + 0.04092351347208023, + -0.0033249109983444214, + -0.07708792388439178, + -0.03910594806075096, + 0.04860986769199371, + 0.009706912562251091, + 0.04692884534597397, + 0.09414441883563995, + 0.02205154299736023, + -0.08977436274290085 + ] + }, + "p245_286.wav": { + "name": "p245", + "embedding": [ + 0.03965359181165695, + 0.08334919065237045, + -0.03466814383864403, + 0.04762045666575432, + -0.05989878624677658, + 0.0547928623855114, + -0.11458101123571396, + 0.09626089781522751, + -0.04710391163825989, + 0.13282105326652527, + -0.0829072892665863, + 0.10916483402252197, + -0.0280429869890213, + -0.18205790221691132, + -0.05485405772924423, + 0.058250319212675095, + -0.071883425116539, + -0.0554778128862381, + -0.060775768011808395, + -0.023007620126008987, + 0.04706360399723053, + 0.053651344031095505, + 0.030458535999059677, + 0.014448348432779312, + 0.012662037275731564, + 0.06297767162322998, + 0.006117767654359341, + 0.04464814066886902, + 0.026059694588184357, + -0.05101980268955231, + -0.0373312383890152, + 0.11033035814762115, + -0.019709400832653046, + 0.017575323581695557, + 0.025407766923308372, + 0.014861850999295712, + 0.027334976941347122, + -0.06484168767929077, + -0.02902950346469879, + 0.012129507958889008, + -0.05121062695980072, + 0.06807412207126617, + 0.035225760191679, + -0.011037054471671581, + 0.03571804612874985, + 0.006440630182623863, + -0.04688020050525665, + -0.055549006909132004, + -0.10779765248298645, + 0.18085426092147827, + 0.08498485386371613, + 0.0013532856246456504, + -0.049499206244945526, + -0.07108765840530396, + 0.1134115681052208, + -0.010858546942472458, + -0.1234833225607872, + -0.05628567934036255, + 0.08164706081151962, + 0.17708179354667664, + -0.024145109578967094, + -0.01859411783516407, + 0.026249539107084274, + 0.1542750895023346, + 0.0541277639567852, + 0.07544867694377899, + 0.06862325966358185, + 0.1094503402709961, + 0.002875420032069087, + 0.00574179133400321, + 0.07665570080280304, + 0.07955022901296616, + 0.05018950626254082, + -0.012543427757918835, + 0.028607051819562912, + 0.000623376457951963, + -0.02043360285460949, + 0.005165505222976208, + -0.03938993066549301, + -0.01378672756254673, + -0.017424678429961205, + 0.0035220100544393063, + 0.0038184314034879208, + 0.005550440400838852, + -0.03064497373998165, + 0.05782994255423546, + 0.035546645522117615, + -0.02710813097655773, + 0.05448796600103378, + 0.046151816844940186, + 0.009554852731525898, + 0.049803655594587326, + -0.0439445897936821, + -0.09304702281951904, + 0.01230230089277029, + 0.01750217378139496, + 0.01815630868077278, + 0.057669252157211304, + 0.039531491696834564, + -0.030741414055228233, + 0.11637061834335327, + 0.028872525319457054, + -0.014081710949540138, + 0.01844765990972519, + -0.09600609540939331, + 0.12252411246299744, + 0.09930967539548874, + -0.01117746438831091, + 0.028271004557609558, + -0.023595262318849564, + 0.0728687047958374, + 0.07677887380123138, + -0.13526326417922974, + -0.06867365539073944, + 0.02532915771007538, + -0.002198990900069475, + -0.0194699726998806, + 0.0965455025434494, + -0.0052479831501841545, + 0.030898435041308403, + 0.10627418011426926, + -0.07768365740776062, + -0.050768714398145676, + -0.033573444932699203, + 0.03934682160615921, + -0.08280032128095627, + 0.037756457924842834, + 0.04382206127047539, + -0.007731298916041851, + -0.005797511897981167, + 0.08098673820495605, + -0.016620200127363205, + -0.004476112779229879, + 0.012059062719345093, + -0.06691382080316544, + 0.041057877242565155, + -0.03441961854696274, + -0.009010056033730507, + 0.06690674275159836, + 0.04378747195005417, + 0.04359416291117668, + -0.011721762828528881, + -0.03514957055449486, + -0.11276938766241074, + 0.016450412571430206, + 0.03223695605993271, + 0.07436487078666687, + 0.00576063571497798, + -0.005503570195287466, + -0.04481299966573715, + -0.0670711025595665, + 0.04269587993621826, + -0.025289416313171387, + 0.0870809555053711, + -0.02201303094625473, + -0.019382236525416374, + 0.10005062073469162, + -0.008835656568408012, + -0.013770369812846184, + -0.040185824036598206, + -0.014881419949233532, + 0.021023428067564964, + 0.039408572018146515, + -0.07216029614210129, + -0.06286806613206863, + 0.0189787857234478, + 0.034160830080509186, + -0.01696130447089672, + 0.03892875835299492, + 0.029355008155107498, + 0.00521048903465271, + 0.027820482850074768, + -0.06123510003089905, + 0.008841984905302525, + -0.09887248277664185, + -0.04599880427122116, + -0.0002470402978360653, + -0.04383402317762375, + -0.015362843871116638, + 0.07556407153606415, + 0.02148246578872204, + 0.0204310342669487, + -0.003336530877277255, + -0.09509699046611786, + -0.07216265797615051, + 0.07253819704055786, + 0.059912629425525665, + 0.021152537316083908, + 0.05105268582701683, + 0.05847620964050293, + -0.014046954922378063, + 0.0504198893904686, + 0.04916255176067352, + 0.10716527700424194, + -0.015229424461722374, + 1.4662742614746094e-05, + -0.06413403153419495, + 0.08112047612667084, + 0.06648196280002594, + -0.09531855583190918, + -0.06758002936840057, + -0.03555349260568619, + -0.06101922690868378, + 0.04711758717894554, + -0.02551228553056717, + 0.0076766228303313255, + 0.0366310216486454, + -0.007850791327655315, + -0.11808868497610092, + -0.08245821297168732, + 0.09915246069431305, + -0.07534398883581161, + -0.0184329766780138, + -0.0680866613984108, + 0.029651332646608353, + 0.09529390186071396, + 0.04011979699134827, + -0.02150655910372734, + 0.016918279230594635, + 0.05355050414800644, + -0.0731503963470459, + -0.00512725068256259, + 0.04470835253596306, + 0.01859690062701702, + -0.10760574042797089, + -0.008668920956552029, + -0.09228496998548508, + 0.055723294615745544, + -0.05420416593551636, + 0.14775095880031586, + 0.00951094925403595, + -0.043959733098745346, + -0.08135919272899628, + 0.05623441934585571, + -0.03840135782957077, + 0.06650450825691223, + 0.05323943495750427, + 0.06078232824802399, + 0.03487376868724823, + -0.07409492135047913, + 0.12832532823085785, + 0.054068438708782196, + -0.04190947860479355, + -0.07186160236597061, + -0.03206105902791023, + -0.03780420124530792, + 0.022655298933386803, + 0.020889680832624435, + -0.07102075219154358, + -0.008038150146603584, + 0.021124642342329025, + -0.029339898377656937, + 0.07949034869670868, + 0.13116487860679626, + 0.08380748331546783, + -0.08898495137691498 + ] + }, + "p245_145.wav": { + "name": "p245", + "embedding": [ + 0.000866294838488102, + 0.0798451155424118, + -0.013673443347215652, + 0.020723972469568253, + -0.06435421854257584, + 0.013350107707083225, + -0.12047069519758224, + 0.10891728103160858, + 0.016164865344762802, + 0.1136094480752945, + -0.06224357336759567, + 0.06195935606956482, + -0.058374445885419846, + -0.15152528882026672, + 0.055977534502744675, + 0.04750707745552063, + 0.021167410537600517, + -0.031977105885744095, + -0.04057375714182854, + -0.06225855275988579, + 0.004077243618667126, + 0.03531269729137421, + 0.030513400211930275, + -0.038371842354536057, + 0.023270083591341972, + 0.07396102696657181, + -0.02587416023015976, + -0.010700749233365059, + -0.04742564633488655, + -0.009029113687574863, + -0.05130244418978691, + 0.09797510504722595, + -0.06502918899059296, + -0.04335843399167061, + 0.04531361535191536, + -0.01698923669755459, + -0.02718903310596943, + -0.014191309921443462, + 0.005399320274591446, + 0.002884971909224987, + -0.0742228627204895, + 0.0817498117685318, + 0.03162350505590439, + 0.005313806235790253, + 0.03373723477125168, + 0.022291768342256546, + -0.00377840967848897, + -0.0063735488802194595, + -0.08136189728975296, + 0.11646412312984467, + 0.061205849051475525, + -0.010834423825144768, + -0.04973047599196434, + -0.02657543309032917, + 0.07113885879516602, + 0.005776381120085716, + -0.07698143273591995, + -0.0701075941324234, + 0.08882682025432587, + 0.06968583911657333, + -0.04100600630044937, + -0.020746076479554176, + 0.024267567321658134, + 0.07723593711853027, + 0.043395187705755234, + 0.08277633041143417, + 0.03791458159685135, + 0.11603325605392456, + -0.04079378396272659, + -0.008615761063992977, + 0.06929008662700653, + 0.01784130558371544, + 0.04518788680434227, + -0.03668772056698799, + -0.0043637314811348915, + -0.03244310989975929, + -0.007317100651562214, + -0.013275925070047379, + -0.0024896259419620037, + -0.041739773005247116, + 0.002316845115274191, + -0.05241987481713295, + -0.0029617012478411198, + -0.004984825849533081, + -0.00041303783655166626, + 0.01132383942604065, + 0.13004425168037415, + 0.002126149833202362, + 0.11696454882621765, + 0.014218205586075783, + -0.019793100655078888, + 0.07654641568660736, + -0.10456772148609161, + 0.024764958769083023, + 0.01925661787390709, + -0.026303928345441818, + 0.02189370058476925, + 0.07398516684770584, + 0.04710300266742706, + -0.013466921634972095, + 0.12686243653297424, + 0.020702531561255455, + 0.013879034668207169, + 0.04477982968091965, + -0.10073322802782059, + 0.13517625629901886, + 0.06391899287700653, + -0.060432784259319305, + 0.026656776666641235, + -0.016443196684122086, + 0.02790289930999279, + 0.026460178196430206, + -0.0722956657409668, + -0.03719186782836914, + -0.019390523433685303, + -0.0018782955594360828, + -0.05677981674671173, + 0.10295814275741577, + 0.006859760731458664, + -0.008002869784832, + 0.13616155087947845, + -0.10636334121227264, + -0.09849551320075989, + 0.006072650663554668, + 0.021749399602413177, + -0.12145094573497772, + 0.02007569745182991, + 0.07979589700698853, + 3.603869117796421e-05, + 0.05640546232461929, + 0.09385153651237488, + 0.010712558403611183, + 0.026797764003276825, + -0.016875602304935455, + -0.021045895293354988, + 0.012506329454481602, + 0.011942090466618538, + 0.0034771799109876156, + 0.053242526948451996, + 0.022998377680778503, + 0.08401992917060852, + -0.025539761409163475, + 0.028318075463175774, + -0.09664975851774216, + 0.027834001928567886, + 0.02957802824676037, + 0.04041682183742523, + -0.028063789010047913, + 0.018232114613056183, + -0.0432368703186512, + -0.10172879695892334, + 0.030729077756404877, + 0.01185903511941433, + 0.056991416960954666, + -0.04150890186429024, + -0.013196945190429688, + 0.14347302913665771, + 0.0668364018201828, + 0.0015882495790719986, + -0.07713723927736282, + -0.046904057264328, + 0.011026029475033283, + 0.05249374359846115, + -0.12046463787555695, + -0.07032088935375214, + -0.05698117986321449, + 0.041615184396505356, + 0.009288751520216465, + 0.0559646338224411, + 0.057193122804164886, + 0.03295191749930382, + 0.0011447503929957747, + -0.03908756002783775, + 0.03927215561270714, + -0.001677151769399643, + -0.039620012044906616, + -0.04620375484228134, + -0.026760349050164223, + -0.04354633390903473, + 0.08639715611934662, + -0.013604691252112389, + 0.02473180741071701, + -0.040581025183200836, + -0.05611288547515869, + -0.09409336745738983, + 0.004870757460594177, + 0.03614380210638046, + -0.06562957167625427, + 0.038515910506248474, + 0.06316792964935303, + -0.0866309329867363, + 0.0017547979950904846, + 0.05832800269126892, + 0.12391996383666992, + -0.05042435601353645, + 0.03219211846590042, + -0.05329654738306999, + 0.06256245821714401, + 0.07453096657991409, + -0.057908717542886734, + -0.05597337335348129, + -0.058611754328012466, + -0.036907948553562164, + 0.02614029310643673, + -0.02483871951699257, + -0.01442926935851574, + 0.005469983443617821, + 0.0015806432347744703, + -0.02993520349264145, + -0.10144856572151184, + 0.07258644700050354, + -0.020328521728515625, + -0.009655105881392956, + -0.10214070230722427, + 0.04523385316133499, + -0.001953795552253723, + 0.0534239187836647, + -0.04590844362974167, + -0.004398705437779427, + 0.043311767280101776, + 0.009254002943634987, + 0.06503857672214508, + 0.10150010883808136, + 0.0621287077665329, + -0.04731246083974838, + -0.05667645111680031, + -0.08424383401870728, + 0.08999298512935638, + -0.0075050294399261475, + 0.10175660997629166, + 0.03155006468296051, + -0.008158411830663681, + -0.046788379549980164, + 0.01786966808140278, + 0.004166973754763603, + 0.04085596650838852, + 0.06444135308265686, + 0.04867866262793541, + 0.04261824116110802, + 0.0021858741529285908, + 0.0928221046924591, + 0.03612302988767624, + -0.02014216221868992, + -0.04622621089220047, + -0.0173117034137249, + -0.06618103384971619, + 0.02471117675304413, + 0.03890076279640198, + -0.1259387731552124, + 0.016684317961335182, + 0.031813181936740875, + -0.008885195478796959, + 0.05564308911561966, + 0.09895449131727219, + 0.08597353100776672, + -0.08025602996349335 + ] + }, + "p245_352.wav": { + "name": "p245", + "embedding": [ + 0.027903886511921883, + 0.11415190249681473, + -0.04790414497256279, + 0.026707950979471207, + -0.018786540254950523, + 0.06470722705125809, + -0.1429920345544815, + 0.10831661522388458, + -0.034385357052087784, + 0.14468461275100708, + -0.057334356009960175, + 0.09034624695777893, + -0.05191733315587044, + -0.15536558628082275, + -0.00742834759876132, + 0.06274017691612244, + -0.02650057151913643, + -0.019660096615552902, + -0.03253774717450142, + 0.01039358600974083, + 0.022948743775486946, + 0.03404460847377777, + 0.01648814231157303, + -0.04296881705522537, + 0.01888411119580269, + 0.07106846570968628, + -0.002423522062599659, + 0.04482313245534897, + -0.014000087045133114, + -0.02699931338429451, + -0.028906112536787987, + 0.09947431087493896, + -0.05262455344200134, + 0.011102014221251011, + 0.0380474217236042, + 0.021925456821918488, + -0.022539017722010612, + -0.055622175335884094, + 0.03062969446182251, + -0.015329653397202492, + -0.05330852046608925, + 0.06953661143779755, + 0.02011418156325817, + -0.022405199706554413, + 0.03537743538618088, + 0.0013935146853327751, + 0.0005968024488538504, + -0.036983244121074677, + -0.0984746664762497, + 0.16575849056243896, + 0.09433721005916595, + 0.0035479580983519554, + -0.0513468012213707, + -0.05323337763547897, + 0.07536119222640991, + 0.02783386968076229, + -0.0995003879070282, + -0.07364583760499954, + 0.08300929516553879, + 0.15202495455741882, + -0.013569614849984646, + -0.021898936480283737, + 0.03672587871551514, + 0.11170487105846405, + 0.030833197757601738, + 0.0919969230890274, + 0.06481793522834778, + 0.09096160531044006, + 0.020300161093473434, + -0.002672998933121562, + 0.04485250264406204, + 0.04836146533489227, + 0.036209188401699066, + 0.00044649187475442886, + 0.02045116201043129, + -0.034408390522003174, + -0.03879784047603607, + 0.00043190945871174335, + -0.01596132293343544, + -0.06398924440145493, + -0.021290134638547897, + 3.605196252465248e-05, + 0.00096085574477911, + 0.03985308110713959, + 0.003571564331650734, + 0.022082265466451645, + 0.047020189464092255, + -0.0471661351621151, + 0.07490761578083038, + 0.020649980753660202, + -0.001139187254011631, + 0.03662538155913353, + -0.07390881329774857, + -0.06005021929740906, + 0.027182593941688538, + 0.015231535769999027, + -0.0006300150416791439, + 0.05722701549530029, + 0.03306960314512253, + -0.006450926885008812, + 0.11368940770626068, + 0.004762811586260796, + -0.004556384868919849, + 0.0221753790974617, + -0.07366780191659927, + 0.1262688785791397, + 0.06650125235319138, + -0.015598105266690254, + 0.03341161087155342, + -0.05215980112552643, + 0.0076317209750413895, + 0.06491941958665848, + -0.12095680832862854, + -0.07196345180273056, + 0.0449582040309906, + 0.017957298085093498, + -0.028348425403237343, + 0.11951908469200134, + 0.03818431496620178, + 0.014776283875107765, + 0.11245018988847733, + -0.11389647424221039, + -0.09117236733436584, + -0.030420556664466858, + 0.07737965881824493, + -0.06443020701408386, + 0.04842883348464966, + 0.08554523438215256, + -0.015290562994778156, + 0.005104021169245243, + 0.0626864954829216, + 0.006563291884958744, + 0.0270241592079401, + 0.010510570369660854, + -0.03985866159200668, + 0.014187393710017204, + -0.05674777925014496, + -0.0056015849113464355, + 0.018129663541913033, + 0.01700945943593979, + 0.055413588881492615, + -0.013049107044935226, + -0.03319576382637024, + -0.11505954712629318, + -0.016973815858364105, + 0.06654006242752075, + 0.07067476212978363, + -0.023813635110855103, + -0.03125523403286934, + -0.03188708424568176, + -0.06084626168012619, + -0.004812777973711491, + -0.03345659747719765, + 0.08851666748523712, + -0.014804107137024403, + -0.010163087397813797, + 0.11573286354541779, + 0.0019109472632408142, + -0.0005967402830719948, + -0.06391730904579163, + -0.01619056984782219, + 0.02532208524644375, + 0.032463036477565765, + -0.08146776258945465, + -0.07911534607410431, + -0.008213222026824951, + 0.024202415719628334, + 0.004798787645995617, + 0.06354346871376038, + 0.052032820880413055, + 0.0353596955537796, + -0.0008856877684593201, + -0.051867205649614334, + 0.006956511177122593, + -0.0706096887588501, + -0.04703080654144287, + -0.015954166650772095, + -0.030352376401424408, + -0.025803562253713608, + 0.0980248749256134, + 0.02150784246623516, + 0.04114314913749695, + -0.02575737237930298, + -0.04563649743795395, + -0.07864087074995041, + 0.055667150765657425, + 0.0779569000005722, + -0.03978807479143143, + 0.036223724484443665, + 0.05191851779818535, + -0.03555375337600708, + 0.007482793182134628, + 0.06534615904092789, + 0.09108556807041168, + -0.01974594220519066, + -0.025349974632263184, + -0.0822688415646553, + 0.06946583837270737, + 0.10867691040039062, + -0.09719139337539673, + -0.03970339894294739, + -0.03347230330109596, + -0.06146158277988434, + 0.007929987274110317, + -0.0631377249956131, + 0.01729501783847809, + 0.021671714261174202, + -0.02958552911877632, + -0.09739544987678528, + -0.1294325888156891, + 0.06472821533679962, + -0.06674446165561676, + -0.001584033714607358, + -0.05773462355136871, + 0.0472959503531456, + 0.06292291730642319, + 0.0546550378203392, + -0.043937746435403824, + 0.006834802217781544, + 0.04036595672369003, + -0.03309433162212372, + 0.039026204496622086, + 0.06429195404052734, + 0.03936392813920975, + -0.11006450653076172, + 0.024218343198299408, + -0.06988352537155151, + 0.07901452481746674, + -0.06447377800941467, + 0.15054550766944885, + 0.013008290901780128, + -0.03672163188457489, + -0.1127423346042633, + 0.03657326474785805, + -0.02566785365343094, + 0.03327825292944908, + 0.00048699136823415756, + 0.050732336938381195, + 0.04640598222613335, + -0.060877859592437744, + 0.11389008909463882, + 0.03285582736134529, + 0.007169988006353378, + -0.07271468639373779, + -0.061879776418209076, + -0.05909551680088043, + 0.03964494913816452, + 0.004095983691513538, + -0.07776191830635071, + -0.019568875432014465, + 0.02665437012910843, + 0.013542751781642437, + 0.07008476555347443, + 0.12661629915237427, + 0.056342367082834244, + -0.1183590292930603 + ] + }, + "p245_008.wav": { + "name": "p245", + "embedding": [ + 0.039513878524303436, + 0.07909629493951797, + -0.038770534098148346, + 0.0327041856944561, + -0.05641026049852371, + 0.014332274906337261, + -0.12009327858686447, + 0.10119545459747314, + -0.018728960305452347, + 0.10527503490447998, + -0.06064216420054436, + 0.12288598716259003, + -0.03122006729245186, + -0.13796360790729523, + -0.01639382541179657, + 0.0637514516711235, + -0.038995955139398575, + -0.046994589269161224, + -0.009234906174242496, + -0.03133096173405647, + 0.03958454728126526, + 0.04382617771625519, + 0.03852836415171623, + 0.007387572433799505, + 0.018128884956240654, + 0.0705672949552536, + 0.005204600282013416, + 0.028237273916602135, + -0.0016749268397688866, + -0.04088608920574188, + -0.012447429820895195, + 0.06859572976827621, + -0.01795373111963272, + 0.01633540913462639, + 0.029273319989442825, + 0.0016611374448984861, + 0.013443110510706902, + -0.049109604209661484, + -0.01720798760652542, + 0.006688239052891731, + -0.040972210466861725, + 0.07344033569097519, + 0.028256084769964218, + -0.03818638250231743, + 0.020737024024128914, + 0.007735445164144039, + -0.03072717785835266, + -0.02640649303793907, + -0.10358743369579315, + 0.15726891160011292, + 0.05397598445415497, + 0.023792622610926628, + -0.06669197976589203, + -0.04396532103419304, + 0.09702610224485397, + -0.010626784525811672, + -0.08489739149808884, + -0.03304330259561539, + 0.04935958981513977, + 0.1380203664302826, + -0.02528848499059677, + -0.040924470871686935, + 0.04238341003656387, + 0.11290633678436279, + 0.059677790850400925, + 0.0510471872985363, + 0.07893804460763931, + 0.10233412683010101, + -0.015668055042624474, + -0.010304788127541542, + 0.056144773960113525, + 0.09653525054454803, + 0.05569203943014145, + 0.01034574955701828, + 0.00625847652554512, + 0.00014209530490916222, + -0.031023502349853516, + -0.011181945912539959, + -0.021251436322927475, + -0.044935740530490875, + -0.041518982499837875, + -0.00843728706240654, + 0.022131910547614098, + 0.019020933657884598, + -0.006263173185288906, + 0.0436544269323349, + 0.06281575560569763, + -0.042734041810035706, + 0.05449814349412918, + 0.026043463498353958, + -0.01034363079816103, + 0.04628857597708702, + -0.07016055285930634, + -0.06909722834825516, + 0.012961129657924175, + 0.018828894942998886, + 0.04907117411494255, + 0.05535848066210747, + 0.04460000991821289, + -0.0017285272479057312, + 0.10297612845897675, + 0.026457324624061584, + 0.008337809704244137, + -0.006018521264195442, + -0.07360824942588806, + 0.11333294212818146, + 0.09616672247648239, + -0.03373955935239792, + 0.04212629050016403, + -0.04265093803405762, + 0.03882293030619621, + 0.04288604483008385, + -0.10755352675914764, + -0.07527566701173782, + 0.006028910167515278, + 0.01955416239798069, + -5.770226562162861e-05, + 0.09991393983364105, + 0.007132283877581358, + 0.05472737178206444, + 0.09964706748723984, + -0.08907028287649155, + -0.06829674541950226, + -0.028726322576403618, + 0.05415859818458557, + -0.06862740218639374, + 0.05374690890312195, + 0.07115484774112701, + 0.007600478362292051, + 0.013574568554759026, + 0.06500902771949768, + 0.00834614597260952, + 0.018878545612096786, + -0.009039871394634247, + -0.04007747396826744, + 0.02418578416109085, + -0.030702337622642517, + -0.00492717232555151, + 0.06748516857624054, + 0.028090212494134903, + 0.057854555547237396, + 0.0038598976098001003, + -0.012338299304246902, + -0.1263551414012909, + 0.016844825819134712, + 0.05090313404798508, + 0.05546088144183159, + -0.021372433751821518, + -0.04049351438879967, + -0.033505067229270935, + -0.05648123845458031, + -0.0021226233802735806, + -0.005176561418920755, + 0.06427891552448273, + -0.022564534097909927, + 0.014879985712468624, + 0.10262786597013474, + 0.013848081231117249, + -0.015709880739450455, + -0.035439178347587585, + -0.020820967853069305, + 0.006157045718282461, + 0.04766130447387695, + -0.0785871297121048, + -0.09080027043819427, + -0.018941668793559074, + 0.04475794732570648, + -0.011631695553660393, + 0.05054289102554321, + 0.037730228155851364, + 0.010627719573676586, + 0.007027782499790192, + -0.03486822545528412, + 0.013682324439287186, + -0.07636146247386932, + -0.0688614696264267, + -0.0037491396069526672, + -0.016645360738039017, + -0.030306901782751083, + 0.07677282392978668, + 0.033976390957832336, + 0.07495146244764328, + -0.024683427065610886, + -0.06513631343841553, + -0.0777592808008194, + 0.04816911742091179, + 0.03779111057519913, + -0.021404629573225975, + 0.033410802483558655, + 0.045552462339401245, + -0.02002175897359848, + 0.028809700161218643, + 0.04019254446029663, + 0.08596429228782654, + -0.04565665125846863, + -0.005720173008739948, + -0.06268956512212753, + 0.07553169131278992, + 0.09040579199790955, + -0.08701770752668381, + -0.05009842664003372, + -0.060127004981040955, + -0.05938676744699478, + 0.02922808937728405, + -0.025477472692728043, + 0.009625066071748734, + 0.01655624806880951, + -0.015479977242648602, + -0.11396532505750656, + -0.09799760580062866, + 0.061736732721328735, + -0.04954129084944725, + -0.0004789404047187418, + -0.06177568435668945, + 0.03774429112672806, + 0.07778225839138031, + 0.024979565292596817, + -0.014359983615577221, + 0.003015118418261409, + 0.022015955299139023, + -0.031146174296736717, + 0.010306322947144508, + 0.06568862497806549, + 0.05681601166725159, + -0.06998932361602783, + -0.023770418018102646, + -0.0756036639213562, + 0.05078805610537529, + -0.03409186005592346, + 0.13871105015277863, + 0.00909865740686655, + -0.053936123847961426, + -0.08164601027965546, + 0.014933167956769466, + -0.022704225033521652, + 0.0662720799446106, + 0.031069371849298477, + 0.039036720991134644, + 0.03828074783086777, + -0.06260357797145844, + 0.10861402750015259, + 0.06348785758018494, + -0.03521537780761719, + -0.07163076102733612, + -0.05024534463882446, + -0.033390264958143234, + 0.03413733094930649, + -0.0021868175826966763, + -0.052751123905181885, + 0.0025727166794240475, + 0.00847792997956276, + 0.0023390576243400574, + 0.07736755907535553, + 0.11673449724912643, + 0.06847669929265976, + -0.08555512875318527 + ] + }, + "p245_204.wav": { + "name": "p245", + "embedding": [ + 0.021620549261569977, + 0.07910554111003876, + -0.029602771624922752, + 0.005245045758783817, + -0.07521495968103409, + 0.02685179002583027, + -0.12578876316547394, + 0.15610788762569427, + -0.022922364994883537, + 0.14713451266288757, + -0.08117420971393585, + 0.1377536952495575, + -0.03466911241412163, + -0.18588680028915405, + 0.02607247792184353, + 0.03931224346160889, + 0.02169107086956501, + -0.016864748671650887, + -0.044106971472501755, + -0.045448750257492065, + 0.03236180171370506, + 0.03707735612988472, + 0.0025132019072771072, + -0.020725637674331665, + 0.03817856311798096, + 0.08177869021892548, + -0.024342479184269905, + -0.0037554181180894375, + -0.016854457557201385, + -0.04801994189620018, + -0.04592582955956459, + 0.08890283852815628, + -0.0953814685344696, + -0.011339335702359676, + 0.05178200826048851, + -0.049624595791101456, + -0.04213443771004677, + -0.03400759398937225, + -0.018996406346559525, + 0.015408488921821117, + -0.06682349741458893, + 0.07053438574075699, + 0.004916166886687279, + 0.005188826471567154, + 0.06428449600934982, + 0.04866940528154373, + 0.005172084551304579, + -0.03555886447429657, + -0.0917367935180664, + 0.12154380232095718, + 0.05958052724599838, + -0.013892536982893944, + -0.07621726393699646, + -0.03925538808107376, + 0.09524309635162354, + -0.006158028729259968, + -0.07950548082590103, + -0.06647326052188873, + 0.06954745948314667, + 0.09595178812742233, + -0.030090106651186943, + -0.0493813194334507, + 0.02632339671254158, + 0.07273902744054794, + 0.06166967377066612, + 0.08624575287103653, + 0.07580458372831345, + 0.10825874656438828, + -0.040398336946964264, + 0.02396935410797596, + 0.04443128779530525, + 0.03894231095910072, + 0.047293126583099365, + -0.054341211915016174, + 0.013147315010428429, + 0.01396704651415348, + -0.0033481356222182512, + -0.028694532811641693, + -0.02588217332959175, + -0.010961364023387432, + -0.010297078639268875, + 0.0047026327811181545, + -0.0010811975225806236, + 0.0031684867572039366, + -0.03889324143528938, + 0.05109832063317299, + 0.08500693738460541, + -0.0009861905127763748, + 0.09225407242774963, + 0.010104137472808361, + -0.022546740248799324, + 0.07191568613052368, + -0.14134357869625092, + -0.04597463831305504, + 0.03677152097225189, + -0.022138582542538643, + -0.02792692743241787, + 0.0762842670083046, + 0.05191322788596153, + -0.000995749607682228, + 0.14354124665260315, + 0.04801831394433975, + -0.00037388806231319904, + 0.03427601605653763, + -0.08139047026634216, + 0.13231946527957916, + 0.08073902130126953, + -0.05076228082180023, + 0.0578991174697876, + -0.04984896630048752, + 0.05862916260957718, + 0.025643032044172287, + -0.11973633617162704, + -0.0525621697306633, + 0.0032067110296338797, + -0.02235792577266693, + -0.057501956820487976, + 0.1392737627029419, + -0.027735510841012, + 0.048089221119880676, + 0.11955547332763672, + -0.0974925085902214, + -0.06753597408533096, + -0.0023316359147429466, + 0.037860386073589325, + -0.09910393506288528, + 0.07272092252969742, + 0.05784321203827858, + 0.002411584137007594, + 0.07156773656606674, + 0.10577785968780518, + -0.006294758524745703, + 0.015425491146743298, + -0.0051282658241689205, + -0.019897883757948875, + 0.01092411670833826, + 0.0016404323978349566, + -0.013521437533199787, + 0.0346493162214756, + 0.033270370215177536, + 0.0848134309053421, + -0.023158662021160126, + 0.016552351415157318, + -0.09683579206466675, + 0.039614275097846985, + 0.025033194571733475, + 0.06819972395896912, + -0.016517875716090202, + -0.0012368502793833613, + -0.05667738616466522, + -0.0866817981004715, + -0.020541131496429443, + 0.0038866258691996336, + 0.08593631535768509, + -0.045914459973573685, + 0.0413024015724659, + 0.12665170431137085, + 0.07821060717105865, + 0.00013071556168142706, + -0.05476207286119461, + -0.05856912583112717, + -0.031504206359386444, + 0.07027675211429596, + -0.0809619277715683, + -0.07815688103437424, + -0.04652511700987816, + 0.037681177258491516, + -0.007138380780816078, + 0.10270943492650986, + 0.058885350823402405, + 0.027535097673535347, + 0.027343537658452988, + -0.103610098361969, + 0.019108954817056656, + -0.06506158411502838, + -0.04881369695067406, + -0.044671546667814255, + -0.021028753370046616, + -0.054578594863414764, + 0.08287395536899567, + -0.005928212311118841, + 0.0646088719367981, + -0.03127380833029747, + -0.0658736526966095, + -0.09443346410989761, + 0.039175309240818024, + 0.05237019434571266, + -0.058106910437345505, + 0.03092692419886589, + 0.06382396817207336, + -0.05578877404332161, + 0.036983609199523926, + 0.08623147755861282, + 0.09601902961730957, + -0.02972327545285225, + 0.06982023268938065, + -0.049849867820739746, + 0.1053542047739029, + 0.07236816734075546, + -0.07546801120042801, + -0.08463121950626373, + -0.03607209399342537, + -0.07658535242080688, + 0.045290689915418625, + -0.013076988980174065, + 0.0059357136487960815, + 0.029451463371515274, + 0.015801111236214638, + -0.06129278242588043, + -0.06774111837148666, + 0.06390300393104553, + -0.0494936965405941, + 0.005540984217077494, + -0.10533817112445831, + 0.03350371867418289, + 0.08554068207740784, + 0.043537333607673645, + -0.035782717168331146, + -0.04976189136505127, + 0.047483887523412704, + 0.022914495319128036, + 0.037533048540353775, + 0.07122839987277985, + 0.05834416672587395, + -0.07703907787799835, + -0.027631178498268127, + -0.057438384741544724, + 0.08356929570436478, + -0.036973875015974045, + 0.1234494298696518, + 0.022361617535352707, + -0.030692601576447487, + -0.07844868302345276, + 0.04921601340174675, + 0.016829973086714745, + 0.0415031723678112, + 0.031282126903533936, + 0.06980385631322861, + 0.054031457751989365, + -0.044957246631383896, + 0.1195613369345665, + 0.033129509538412094, + -0.03471432998776436, + -0.04458899423480034, + -0.060265179723501205, + -0.04377664253115654, + 0.014578146860003471, + 0.049820538610219955, + -0.12224040925502777, + 0.002240369562059641, + 0.019118357449769974, + -0.009389598853886127, + 0.06701179593801498, + 0.12330880016088486, + 0.08151233941316605, + -0.134560689330101 + ] + }, + "p245_081.wav": { + "name": "p245", + "embedding": [ + 0.03213370591402054, + 0.0979895368218422, + -0.012609624303877354, + 0.048052191734313965, + -0.0562005490064621, + 0.07871226966381073, + -0.12662386894226074, + 0.12949472665786743, + -0.04685886204242706, + 0.12473385781049728, + -0.07641522586345673, + 0.10852976143360138, + -0.025535428896546364, + -0.19434329867362976, + -0.04311336949467659, + 0.05754229426383972, + -0.032044123858213425, + -0.0032568282913416624, + -0.03204956278204918, + 0.002665461041033268, + 0.043540313839912415, + 0.026270674541592598, + 0.03089885041117668, + -0.010260563343763351, + 0.022191310301423073, + 0.04829544946551323, + 0.004813422914594412, + 0.06099959462881088, + 0.03897271677851677, + -0.018686043098568916, + -0.0417955107986927, + 0.1457860767841339, + -0.05086737126111984, + 0.02043311670422554, + 0.06907306611537933, + 0.0006892679375596344, + -0.02304399572312832, + -0.03535531461238861, + 0.0022397604770958424, + -0.0036825707647949457, + -0.04613088443875313, + 0.06442543119192123, + 0.05690540745854378, + 0.019137680530548096, + 0.05947133153676987, + 0.021372394636273384, + -0.03565455973148346, + -0.03948509320616722, + -0.1022753119468689, + 0.15575294196605682, + 0.04468391463160515, + -0.021333055570721626, + -0.0652478039264679, + -0.060193486511707306, + 0.10389100015163422, + 0.0026625385507941246, + -0.13639198243618011, + -0.044928062707185745, + 0.11714807152748108, + 0.1639849692583084, + -0.009660583920776844, + -0.025412529706954956, + -0.002576845698058605, + 0.12975521385669708, + 0.037616174668073654, + 0.11934775114059448, + 0.0599881149828434, + 0.11855623871088028, + 0.015588351525366306, + 0.03530234098434448, + 0.06565146148204803, + 0.04178553447127342, + 0.007349045947194099, + -0.028251519426703453, + 0.029389014467597008, + -0.012512795627117157, + 0.005195807199925184, + 0.03841552138328552, + -0.017168011516332626, + -0.008922298438847065, + -0.006632693111896515, + 0.005583820398896933, + -0.0034381363075226545, + 0.005803799722343683, + -0.03664793819189072, + 0.0656885877251625, + 0.024731013923883438, + 0.02787303738296032, + 0.07271914184093475, + 0.06153174489736557, + -0.002128938678652048, + 0.05529940873384476, + -0.05544855073094368, + -0.09829540550708771, + 0.013611490838229656, + -0.002596162725239992, + 0.03281403332948685, + 0.06703225523233414, + 0.022330395877361298, + -0.007098186761140823, + 0.10069988667964935, + 0.06033281981945038, + -0.010919515043497086, + 0.05001094564795494, + -0.09959090501070023, + 0.13427840173244476, + 0.06541270017623901, + 0.01142967026680708, + 0.05221201851963997, + -0.04324822872877121, + 0.08778797835111618, + 0.07631527632474899, + -0.1288968026638031, + -0.050719600170850754, + 0.04300855100154877, + 0.0260040033608675, + -0.025349507108330727, + 0.12612482905387878, + -0.007611442357301712, + -0.0021340330131351948, + 0.10850021988153458, + -0.09003597497940063, + -0.06333781778812408, + -0.027979085221886635, + 0.031626224517822266, + -0.08314096927642822, + 0.03670233115553856, + 0.030735015869140625, + -0.03317011892795563, + -0.009088266640901566, + 0.08486603200435638, + -0.008403741754591465, + 0.020784305408596992, + 0.03625890985131264, + -0.04986405000090599, + 0.049977947026491165, + -0.02965582348406315, + 0.02761470340192318, + 0.055096790194511414, + 0.044264595955610275, + 0.05940474569797516, + -0.003939729183912277, + -0.032343845814466476, + -0.10818034410476685, + 0.0023454930633306503, + 0.05126441270112991, + 0.06651972234249115, + -0.011429212056100368, + -0.019640181213617325, + -0.036482539027929306, + -0.08061010390520096, + 0.0513400174677372, + -0.009244145825505257, + 0.09090688079595566, + -0.0151980584487319, + -0.03436033055186272, + 0.08398816734552383, + 0.013349571265280247, + 0.007005738560110331, + -0.0803329199552536, + -0.05062820017337799, + 0.02000533975660801, + 0.033226415514945984, + -0.11413382738828659, + -0.0446985587477684, + 0.01275942474603653, + 0.028429506346583366, + -0.031280722469091415, + 0.011581659317016602, + 0.055851973593235016, + 0.008818534202873707, + 0.05434439703822136, + -0.05087029188871384, + 0.01276406180113554, + -0.10937576740980148, + -0.0671301856637001, + -0.01922297477722168, + -0.008153161965310574, + -0.010482192039489746, + 0.08286858350038528, + 0.009223862551152706, + 0.021133888512849808, + 0.01188607607036829, + -0.064598947763443, + -0.06657154113054276, + 0.07595282047986984, + 0.06222962588071823, + 0.01599958725273609, + 0.08065498620271683, + 0.03951767086982727, + -0.06793556362390518, + 0.06399747729301453, + 0.05769545957446098, + 0.10521434992551804, + -0.03498142957687378, + 0.0023059917148202658, + -0.08800952136516571, + 0.06736696511507034, + 0.09266314655542374, + -0.11013470590114594, + -0.09424010664224625, + -0.01322482991963625, + -0.04873482510447502, + 0.039785467088222504, + -0.050593774765729904, + -0.0182709489017725, + 0.03194830194115639, + -0.009394100867211819, + -0.09513884782791138, + -0.096921905875206, + 0.07279365509748459, + -0.08087120205163956, + -0.013512670062482357, + -0.07499399781227112, + 0.05270504951477051, + 0.08768204599618912, + 0.01209377869963646, + -0.05245205760002136, + -0.0009882780723273754, + 0.057265426963567734, + -0.07470221072435379, + -0.019615644589066505, + 0.030566250905394554, + 0.0185557771474123, + -0.09472685307264328, + 0.0028135227039456367, + -0.07665684074163437, + 0.05617022514343262, + -0.0562426820397377, + 0.1731330007314682, + -0.010448402725160122, + -0.05660713091492653, + -0.052503615617752075, + 0.05048142001032829, + -0.023679519072175026, + 0.029432743787765503, + 0.052778951823711395, + 0.07074064016342163, + 0.015421571210026741, + -0.0555206723511219, + 0.13676826655864716, + 0.006412816699594259, + -0.035486191511154175, + -0.06173129752278328, + -0.001885883859358728, + -0.06570940464735031, + 0.02868037112057209, + 0.024407723918557167, + -0.11543022096157074, + -0.029168330132961273, + 0.04029463231563568, + -0.021747678518295288, + 0.05247454717755318, + 0.13362474739551544, + 0.0449431836605072, + -0.09310270100831985 + ] + }, + "p245_385.wav": { + "name": "p245", + "embedding": [ + 0.045871417969465256, + 0.11186913400888443, + 0.00438494049012661, + -0.011742634698748589, + -0.04474398121237755, + 0.09747549146413803, + -0.1404711753129959, + 0.1555105298757553, + -0.06613657623529434, + 0.16012690961360931, + -0.0687192901968956, + 0.1107354387640953, + -0.018052924424409866, + -0.18716958165168762, + -0.05368705466389656, + 0.03638600558042526, + -0.06502287089824677, + -0.016972960904240608, + -0.04884461686015129, + -0.008174742572009563, + 0.04831221327185631, + 0.007531135343015194, + -0.0047982861287891865, + -0.0019827138166874647, + 0.017027605324983597, + 0.054750051349401474, + 0.01732824370265007, + 0.05932663008570671, + 0.021189065650105476, + -0.062108445912599564, + -0.02803128771483898, + 0.11786743253469467, + -0.049675535410642624, + 0.03487037494778633, + 0.08826304227113724, + -0.031047485768795013, + 0.0022557186894118786, + -0.04956532642245293, + -0.0028623149264603853, + 0.00996128749102354, + -0.016439735889434814, + 0.0840008407831192, + 0.031104199588298798, + 0.028288541361689568, + 0.02927723526954651, + 0.0585792176425457, + 0.011306039057672024, + -0.06859191507101059, + -0.06719674915075302, + 0.15906275808811188, + 0.07665354758501053, + -0.030672527849674225, + -0.04710652306675911, + -0.07172360271215439, + 0.10005084425210953, + -0.03228176757693291, + -0.1188296303153038, + -0.055814746767282486, + 0.08605849742889404, + 0.15157842636108398, + -0.04420950263738632, + -0.03782351315021515, + 0.011202430352568626, + 0.12784533202648163, + 0.017743747681379318, + 0.11453984677791595, + 0.07027567923069, + 0.0843321830034256, + -0.003724726615473628, + 0.03982752189040184, + 0.03881325572729111, + 0.04802235960960388, + 0.043487437069416046, + -0.019419943913817406, + 0.05808219313621521, + -0.016763733699917793, + -0.005238555371761322, + 0.014152929186820984, + -0.024627618491649628, + 0.006610215175896883, + -0.01443529687821865, + 0.03908499702811241, + 0.008336817845702171, + 0.01766454242169857, + -0.010166262276470661, + 0.059298932552337646, + -0.01987832598388195, + -0.007360312156379223, + 0.06711704283952713, + 0.04001389071345329, + 0.035235047340393066, + 0.05773480609059334, + -0.08370012044906616, + -0.10547614842653275, + 0.042522888630628586, + -0.005578859709203243, + 0.007751731667667627, + 0.06490164250135422, + 0.024526158347725868, + -0.00856785848736763, + 0.1030300185084343, + 0.05986305698752403, + -0.02195248194038868, + 0.038277577608823776, + -0.1145762950181961, + 0.14229969680309296, + 0.053986333310604095, + -0.023819994181394577, + 0.041623108088970184, + -0.0687195286154747, + 0.09064706414937973, + 0.056877076625823975, + -0.15005357563495636, + -0.09600003063678741, + 0.03820410370826721, + 0.019480934366583824, + -0.04020973667502403, + 0.10717343538999557, + -0.029797552153468132, + 0.009655368514358997, + 0.09000623226165771, + -0.0618533231317997, + -0.04383796826004982, + -0.02796785533428192, + 0.04741745442152023, + -0.08143442124128342, + 0.05012882873415947, + 0.03258078545331955, + -0.010219903662800789, + 0.01636679284274578, + 0.11275582760572433, + -0.010713944211602211, + -0.01651557721197605, + 0.02912227250635624, + -0.0266458448022604, + 0.03346564993262291, + -0.036162324249744415, + 0.02600618451833725, + -0.0030781321693211794, + 0.0527995340526104, + 0.04263389855623245, + 0.003189775859937072, + -0.043684836477041245, + -0.07907427847385406, + 0.0006774531793780625, + 0.019977513700723648, + 0.06711924076080322, + -0.0071228258311748505, + -0.012071134522557259, + -0.03611143305897713, + -0.0524408333003521, + -0.013392012566328049, + -0.01527265552431345, + 0.07425066828727722, + -0.0012095257407054305, + 0.020006101578474045, + 0.10346958786249161, + 0.029455851763486862, + 0.0007626976585015655, + -0.07459330558776855, + -0.016935721039772034, + 0.020794715732336044, + 0.05543822795152664, + -0.07505100965499878, + -0.044984616339206696, + 0.012338891625404358, + 0.02657809853553772, + -0.010118257254362106, + 0.04897993803024292, + 0.04975210875272751, + 0.025209985673427582, + 0.04663657024502754, + -0.07825689017772675, + 0.02224918268620968, + -0.11303100734949112, + -0.06090568006038666, + -0.02896808460354805, + -0.018171295523643494, + -0.0316518098115921, + 0.06599346548318863, + -0.0007092852029018104, + 0.04945264011621475, + -0.00348032102920115, + -0.07399351894855499, + -0.06731084734201431, + 0.07268933951854706, + 0.09860076010227203, + -0.013203510083258152, + 0.042342592030763626, + 0.04282982274889946, + -0.02149653621017933, + 0.0605279877781868, + 0.07342345267534256, + 0.11338246613740921, + -0.023849500343203545, + 0.02937689609825611, + -0.07826597988605499, + 0.07550396025180817, + 0.06194820627570152, + -0.09974642097949982, + -0.08785484731197357, + 0.005303366109728813, + -0.049881331622600555, + 0.019132710993289948, + -0.0242499690502882, + 0.006114527117460966, + 0.0212209802120924, + 0.00938879419118166, + -0.07497288286685944, + -0.06556227803230286, + 0.07407844811677933, + -0.09435851126909256, + -0.0073996190913021564, + -0.07422924786806107, + 0.05978701636195183, + 0.11779443919658661, + 0.055191319435834885, + -0.03697899356484413, + -0.0272142942994833, + 0.05121101438999176, + -0.03528626263141632, + -0.0016348283970728517, + 0.01197389978915453, + 0.020866582170128822, + -0.1000773087143898, + 0.04218969866633415, + -0.0723632350564003, + 0.04216983914375305, + -0.06630398333072662, + 0.15699294209480286, + -0.016808493062853813, + -0.07099200785160065, + -0.07270801812410355, + 0.03401869535446167, + -0.03845476359128952, + 0.03282615542411804, + 0.02502809837460518, + 0.06195691227912903, + 0.04220603033900261, + -0.05840633809566498, + 0.12266574054956436, + 0.017571592703461647, + -0.029280629009008408, + -0.07419605553150177, + -0.055782463401556015, + -0.041236817836761475, + 0.024900421500205994, + 0.024229034781455994, + -0.11052656918764114, + -0.027387814596295357, + 0.031266603618860245, + -0.03102274239063263, + 0.08931320160627365, + 0.1403033435344696, + 0.05686182156205177, + -0.13733287155628204 + ] + }, + "p245_284.wav": { + "name": "p245", + "embedding": [ + 0.04141642898321152, + 0.06979545950889587, + -0.019032523036003113, + 0.0390816256403923, + -0.043868135660886765, + 0.06532397866249084, + -0.11736100912094116, + 0.09019085019826889, + -0.06744042038917542, + 0.12230528891086578, + -0.06797505915164948, + 0.09747536480426788, + -0.01648901030421257, + -0.17341503500938416, + -0.054784566164016724, + 0.0424853190779686, + -0.06551390886306763, + -0.032326653599739075, + -0.07067592442035675, + -0.0049887532368302345, + 0.04271107539534569, + 0.04007439315319061, + 0.03347145393490791, + -0.019418317824602127, + 0.033270448446273804, + 0.04106369614601135, + 0.005285894498229027, + 0.042339012026786804, + 0.03307656571269035, + -0.04388793557882309, + -0.024313900619745255, + 0.11311817169189453, + -0.021848518401384354, + -0.007152605801820755, + 0.03852579742670059, + 0.01580837368965149, + -0.003727669594809413, + -0.07809041440486908, + -0.03819633647799492, + 0.00834386795759201, + -0.056444283574819565, + 0.06837356090545654, + 0.03744346648454666, + -0.017337609082460403, + 0.04702596366405487, + -0.025707252323627472, + -0.037150632590055466, + -0.05421062931418419, + -0.1029304713010788, + 0.1610407531261444, + 0.05368327349424362, + 0.018700847402215004, + -0.08519278466701508, + -0.0660209059715271, + 0.11482568830251694, + -0.013651309534907341, + -0.11893503367900848, + -0.044651664793491364, + 0.06012747436761856, + 0.1813526749610901, + -0.020620031282305717, + 0.0038448225241154432, + 0.026122961193323135, + 0.10145090520381927, + 0.048468392342329025, + 0.08712530136108398, + 0.08492505550384521, + 0.08808408677577972, + 0.027660097926855087, + 0.033076416701078415, + 0.06910654157400131, + 0.05137063190340996, + 0.022279199212789536, + -0.03102794848382473, + 0.029225781559944153, + 0.0017949480097740889, + -0.04483289644122124, + 0.003275876631960273, + -0.022943561896681786, + -0.002547027077525854, + -0.004529222846031189, + 0.006550888530910015, + 0.021823525428771973, + 0.024601589888334274, + -0.05423561856150627, + 0.04232274740934372, + 0.006816928740590811, + -0.0280821081250906, + 0.05533795803785324, + 0.042043350636959076, + 0.0007511208532378078, + 0.027507033199071884, + -0.038378119468688965, + -0.10773613303899765, + -0.010008382610976696, + 0.014144865795969963, + -0.01612825319170952, + 0.0561729297041893, + 0.04122903198003769, + -0.030249420553445816, + 0.10074333846569061, + 0.0488659143447876, + -0.015792477875947952, + 0.03387673944234848, + -0.10013174265623093, + 0.09112514555454254, + 0.0901968702673912, + 0.0022102929651737213, + 0.042065154761075974, + -0.02508392557501793, + 0.0649300217628479, + 0.07821866869926453, + -0.1372946947813034, + -0.05955647677183151, + 0.06794905662536621, + -0.0034256819635629654, + 0.02056579664349556, + 0.1159113198518753, + 0.00536385178565979, + 0.005847449414432049, + 0.08433307707309723, + -0.07659203559160233, + -0.04995877668261528, + -0.02838127873837948, + 0.062301672995090485, + -0.06246389448642731, + 0.043179526925086975, + 0.031634822487831116, + -0.01866913214325905, + -0.024759050458669662, + 0.07096080482006073, + -0.011106367222964764, + -0.0032295244745910168, + 0.008477922528982162, + -0.031070424243807793, + 0.06400710344314575, + -0.041499435901641846, + -0.014915753155946732, + 0.07021591067314148, + 0.05228372663259506, + 0.0431116484105587, + -0.010864054784178734, + -0.03191244229674339, + -0.09366914629936218, + 0.0002226183860329911, + 0.039261579513549805, + 0.07691851258277893, + -0.009308917447924614, + 0.01134653389453888, + -0.06734026968479156, + -0.06866125762462616, + 0.03303215652704239, + -0.033099010586738586, + 0.10547616332769394, + 0.006046065595000982, + -0.006494411267340183, + 0.09562556445598602, + -0.022267041727900505, + 0.0013959072530269623, + -0.01959322951734066, + -0.002048219321295619, + 0.02998843416571617, + 0.049768831580877304, + -0.05107250437140465, + -0.050383299589157104, + 0.015026159584522247, + 0.00774481613188982, + -0.02084973081946373, + 0.002089640125632286, + 0.025806095451116562, + 0.008929691277444363, + 0.04049064591526985, + -0.08050184696912766, + 0.027125172317028046, + -0.11228012293577194, + -0.020122552290558815, + 0.002663110150024295, + -0.04198998957872391, + -0.0131063936278224, + 0.08673688024282455, + 0.03347950428724289, + -0.0008789798012003303, + 0.004454189911484718, + -0.10653974860906601, + -0.042314063757658005, + 0.06982344388961792, + 0.06771819293498993, + 0.01876017637550831, + 0.035832278430461884, + 0.057350873947143555, + 0.005859625991433859, + 0.03373382240533829, + 0.07599811255931854, + 0.07678279280662537, + 0.0023659071885049343, + -0.028074581176042557, + -0.05995447561144829, + 0.1001565009355545, + 0.05846802517771721, + -0.08766864985227585, + -0.07658152282238007, + -0.016321495175361633, + -0.061697762459516525, + 0.035262107849121094, + -0.020403580740094185, + 0.02010262943804264, + 0.034007780253887177, + -0.03171507641673088, + -0.10942661017179489, + -0.10004278272390366, + 0.10807790607213974, + -0.06583673506975174, + -0.03333992883563042, + -0.05982062965631485, + 0.01562969945371151, + 0.08392059057950974, + 0.021171271800994873, + -0.011283649131655693, + 0.010521436110138893, + 0.030436046421527863, + -0.0862221047282219, + -0.025896865874528885, + 0.03126629441976547, + -0.012270445935428143, + -0.11129117012023926, + 0.017236925661563873, + -0.076917365193367, + 0.09629207849502563, + -0.06398941576480865, + 0.14145654439926147, + -0.008674035780131817, + -0.04693850874900818, + -0.08016742765903473, + 0.04609028249979019, + -0.029501326382160187, + 0.05558779835700989, + 0.04978852719068527, + 0.08113552629947662, + 0.0382465198636055, + -0.06253757327795029, + 0.09452789276838303, + 0.03421499580144882, + -0.021824760362505913, + -0.06579199433326721, + -0.031653475016355515, + -0.03478645533323288, + 0.01003987342119217, + -0.009544308297336102, + -0.05965317413210869, + 0.015635376796126366, + 0.02291708067059517, + -0.03659220039844513, + 0.0568128377199173, + 0.11286088079214096, + 0.07105669379234314, + -0.09920184314250946 + ] + }, + "p245_082.wav": { + "name": "p245", + "embedding": [ + 0.009411174803972244, + 0.08323510736227036, + -0.04857800900936127, + 0.029742909595370293, + -0.057362064719200134, + 0.04094798117876053, + -0.1382228434085846, + 0.08897451311349869, + -0.04493768885731697, + 0.10658545792102814, + -0.07055925577878952, + 0.10487526655197144, + -0.030202943831682205, + -0.20856811106204987, + -0.06325679272413254, + 0.06275913864374161, + -0.05976363271474838, + -0.07527010142803192, + -0.04118075221776962, + -0.018783489242196083, + 0.05728233978152275, + 0.042633481323719025, + -0.009143693372607231, + 0.011600812897086143, + 0.0013446449302136898, + 0.0663529708981514, + 0.015016966499388218, + 0.03444671258330345, + 0.01594073511660099, + 0.007594255730509758, + -0.02965313382446766, + 0.11619430035352707, + -0.02377568744122982, + 0.007002450991421938, + 0.047205667942762375, + 0.03281540423631668, + 0.030444353818893433, + -0.04127202183008194, + -0.011317635886371136, + 0.035685937851667404, + -0.07206816971302032, + 0.07363279163837433, + 0.034547243267297745, + 0.010727166198194027, + 0.05058418959379196, + 0.02445879578590393, + -0.03089790791273117, + -0.049073249101638794, + -0.10659847408533096, + 0.1731153428554535, + 0.08125479519367218, + -0.015048407018184662, + -0.0494743287563324, + -0.07082439959049225, + 0.1080903559923172, + -0.008389386348426342, + -0.11675167828798294, + -0.06075400859117508, + 0.09706941992044449, + 0.15158149600028992, + -0.018457647413015366, + -0.026260415092110634, + 0.016313740983605385, + 0.1482800394296646, + 0.04631701856851578, + 0.07797910273075104, + 0.04749668389558792, + 0.12294045090675354, + -0.00970434956252575, + -0.02651379629969597, + 0.12090296298265457, + 0.0732836127281189, + 0.023590464144945145, + -0.04570477828383446, + 0.0390847809612751, + 0.0214807391166687, + -0.011423197574913502, + 0.030962955206632614, + -0.02656143717467785, + -0.006641690153628588, + -0.008897986263036728, + 0.01583193615078926, + -0.03470209985971451, + 0.016625670716166496, + -0.02421959862112999, + 0.0678267702460289, + 0.07286550104618073, + -0.01156865805387497, + 0.05863085016608238, + 0.09633757919073105, + 0.020386775955557823, + 0.05461570620536804, + -0.06643228232860565, + -0.08959316462278366, + 0.03463796153664589, + 0.00827353447675705, + 0.018163369968533516, + 0.06372036039829254, + 0.03379521146416664, + -0.017196208238601685, + 0.10332553088665009, + 0.03757525980472565, + -0.01448835339397192, + 0.026851868256926537, + -0.10643801093101501, + 0.12773369252681732, + 0.09552449733018875, + -0.02199445478618145, + -0.008014488965272903, + -0.020254118368029594, + 0.06972513347864151, + 0.07754160463809967, + -0.10743217170238495, + -0.07968710362911224, + 0.055382125079631805, + 0.023620393127202988, + -0.021427322179079056, + 0.12267042696475983, + -0.008210848085582256, + 0.0027259818743914366, + 0.11488700658082962, + -0.06672704964876175, + -0.06719198077917099, + -0.043614983558654785, + 0.020578186959028244, + -0.07784849405288696, + 0.048601940274238586, + 0.0639006495475769, + 0.017551138997077942, + -0.019592275843024254, + 0.08678491413593292, + -0.00807617511600256, + 0.004243718925863504, + -0.025327831506729126, + -0.019358357414603233, + 0.06537950783967972, + -0.010837739333510399, + -0.012346676550805569, + 0.07549881935119629, + 0.03967012092471123, + 0.045830607414245605, + 0.0013602623948827386, + -0.03151504695415497, + -0.1291232407093048, + 0.024233289062976837, + 0.04815968498587608, + 0.07571224123239517, + -0.015101255849003792, + -0.01381041668355465, + -0.05592862889170647, + -0.07876960188150406, + 0.03084312379360199, + -0.02304004691541195, + 0.10026149451732635, + -0.005592876113951206, + -0.04701017960906029, + 0.1049978956580162, + -0.018784694373607635, + -0.0066004260443151, + -0.025569746270775795, + -0.036011822521686554, + 0.013088454492390156, + 0.036392226815223694, + -0.09904009103775024, + -0.0846695527434349, + -0.004475453868508339, + 0.022818515077233315, + 0.0068465229123830795, + 0.026776809245347977, + 0.04669120907783508, + 0.001870704465545714, + 0.027750639244914055, + -0.08918944001197815, + 0.03525206074118614, + -0.11673890799283981, + -0.05327051132917404, + -0.029964253306388855, + -0.04133564233779907, + -0.0030565818306058645, + 0.08169017732143402, + -0.008359239436686039, + 0.004224564414471388, + -0.011324957013130188, + -0.10791286826133728, + -0.07242006808519363, + 0.08339009433984756, + 0.09452908486127853, + 0.02411576732993126, + 0.07288530468940735, + 0.0544586218893528, + -0.006983669940382242, + 0.041727472096681595, + 0.042256295680999756, + 0.13072146475315094, + -0.02864881046116352, + 0.010814046487212181, + -0.047910600900650024, + 0.08523382991552353, + 0.033189740031957626, + -0.10427984595298767, + -0.056293684989213943, + -0.013072704896330833, + -0.03354141116142273, + 0.032415322959423065, + -0.03511476144194603, + 0.026913179084658623, + 0.026824524626135826, + 0.0010047397809103131, + -0.11934097111225128, + -0.08471548557281494, + 0.051463719457387924, + -0.06151154637336731, + -0.009184977039694786, + -0.07765986770391464, + 0.03273706138134003, + 0.10582055151462555, + 0.03917999938130379, + -0.056362319737672806, + 0.009582164697349072, + 0.03869963809847832, + -0.051336877048015594, + -0.012613809667527676, + 0.007583669852465391, + 0.027266785502433777, + -0.0950557067990303, + -0.018024984747171402, + -0.09256584942340851, + 0.08323374390602112, + -0.06041473150253296, + 0.12585674226284027, + 0.0070867701433598995, + -0.05049802362918854, + -0.07285327464342117, + 0.035981278866529465, + -0.023722613230347633, + 0.06461898237466812, + 0.04261399060487747, + 0.06368102133274078, + 0.009700990281999111, + -0.048192787915468216, + 0.13488326966762543, + 0.05653298273682594, + -0.03816651925444603, + -0.0662367194890976, + -0.0075411563739180565, + -0.025510886684060097, + 0.05108931288123131, + 0.05768226459622383, + -0.07609832286834717, + -0.014019026421010494, + 0.028443632647395134, + -0.03756922110915184, + 0.05862042307853699, + 0.12917949259281158, + 0.06986866146326065, + -0.09145446121692657 + ] + }, + "p245_218.wav": { + "name": "p245", + "embedding": [ + 0.06673995405435562, + 0.09241461753845215, + -0.04671558737754822, + 0.005720822140574455, + -0.04166216030716896, + 0.021131504327058792, + -0.13404692709445953, + 0.09596005827188492, + 0.009214630350470543, + 0.12595249712467194, + -0.06881837546825409, + 0.08258086442947388, + -0.04355539381504059, + -0.10822881758213043, + 0.009794319979846478, + 0.03366012126207352, + 0.00036196294240653515, + -0.01178551372140646, + -0.05208093672990799, + -0.04542585089802742, + 0.015606909990310669, + 0.05928616225719452, + 0.03245805948972702, + -0.08387447148561478, + 0.02475116401910782, + 0.08091872930526733, + -0.011844740249216557, + 0.004846625030040741, + -0.013500849716365337, + -0.036631010472774506, + -0.011087826453149319, + 0.07231725752353668, + -0.07530510425567627, + -0.016270868480205536, + 0.026694197207689285, + 0.01794445887207985, + -0.02220413088798523, + -0.06130357086658478, + 0.009617235511541367, + 0.026830632239580154, + -0.04883992671966553, + 0.08181708306074142, + 0.03895075246691704, + -0.0401669442653656, + 0.025874869897961617, + 0.027915049344301224, + 0.010074172168970108, + -0.04031967371702194, + -0.08327020704746246, + 0.18530426919460297, + 0.050702378153800964, + -0.00048330845311284065, + -0.07360462844371796, + -0.02074882946908474, + 0.07327612489461899, + -0.008302642963826656, + -0.05100390687584877, + -0.07220813632011414, + 0.05020608752965927, + 0.08551609516143799, + -0.04471487179398537, + -0.05941503494977951, + 0.03845163807272911, + 0.08454490453004837, + 0.04414811730384827, + 0.042242731899023056, + 0.09319295734167099, + 0.1278742551803589, + -0.031150344759225845, + -0.0013818519655615091, + 0.03789704293012619, + 0.06335889548063278, + 0.0383380763232708, + -0.002171811182051897, + 0.025673845782876015, + -0.028235426172614098, + -0.01745263859629631, + -0.004064389504492283, + -0.018047470599412918, + -0.06305825710296631, + 0.02313840761780739, + -0.00674998015165329, + 0.004048997536301613, + 0.048994652926921844, + -0.03848019987344742, + 0.023486563935875893, + 0.09877488017082214, + -0.04409158602356911, + 0.08935674279928207, + 0.02204792946577072, + 0.012775031849741936, + 0.030318424105644226, + -0.09796352684497833, + -0.055483508855104446, + 0.03484194353222847, + -0.00657587731257081, + 0.024930257350206375, + 0.06521096080541611, + 0.04179495573043823, + -0.022350311279296875, + 0.12113296985626221, + 0.017137957736849785, + -0.015005506575107574, + -0.002767186611890793, + -0.06037360429763794, + 0.15837937593460083, + 0.1218695268034935, + -0.03505280613899231, + 0.014612356200814247, + -0.04748029261827469, + 0.01335287094116211, + 0.03550170361995697, + -0.11038891226053238, + -0.07553435862064362, + 0.017396938055753708, + 0.03284015506505966, + -0.0008369721472263336, + 0.10557593405246735, + 0.013690419495105743, + 0.012181827798485756, + 0.13112908601760864, + -0.0927133858203888, + -0.07104067504405975, + -0.0042142667807638645, + 0.037650760263204575, + -0.0820700079202652, + 0.032728411257267, + 0.10643388330936432, + -0.013440646231174469, + 0.02328268624842167, + 0.07236253470182419, + 0.021005120128393173, + 0.032534319907426834, + -0.032793428748846054, + 0.003447011113166809, + 0.036398567259311676, + 0.0006801164126954973, + -0.01696469448506832, + 0.03490343689918518, + 0.05360676720738411, + 0.08189666271209717, + -0.006878489162772894, + -0.02048259973526001, + -0.1363704949617386, + 0.039053499698638916, + 0.03193531185388565, + 0.037786729633808136, + -0.04440353065729141, + -0.007418894208967686, + -0.029864240437746048, + -0.07562088221311569, + 0.001393111888319254, + -0.011884447187185287, + 0.05794353783130646, + -0.022241737693548203, + -0.01787719316780567, + 0.1491033434867859, + 0.027059899643063545, + 0.021256128326058388, + -0.021346963942050934, + -0.016197465360164642, + 0.014491203241050243, + 0.026206161826848984, + -0.09537866711616516, + -0.09075523912906647, + -0.046413715928792953, + 0.018450338393449783, + 0.00672380905598402, + 0.05369650572538376, + 0.0625077337026596, + 0.006286041811108589, + 0.018740981817245483, + -0.0527520515024662, + 0.019446130841970444, + -0.047873418778181076, + -0.023290500044822693, + -0.005407287739217281, + -0.037413738667964935, + -0.027827031910419464, + 0.09225767850875854, + -0.004187794402241707, + 0.041743017733097076, + -0.046815741807222366, + -0.06845550239086151, + -0.05745353549718857, + 0.028204983100295067, + 0.062291186302900314, + -0.0586608462035656, + 0.010917039588093758, + 0.06356892734766006, + -0.014507530257105827, + -0.0026156194508075714, + 0.070974200963974, + 0.07693815976381302, + -0.035423390567302704, + -0.01701207086443901, + -0.05271977186203003, + 0.10168087482452393, + 0.06159539520740509, + -0.08040063083171844, + -0.03370402753353119, + -0.07339389622211456, + -0.05034111440181732, + -0.012771296314895153, + -0.025148048996925354, + 0.01490765530616045, + 0.019698305055499077, + -0.00143462885171175, + -0.07982230186462402, + -0.10257213562726974, + 0.0267894696444273, + -0.03584497794508934, + 0.007640083320438862, + -0.09003444761037827, + 0.041306376457214355, + 0.055980607867240906, + 0.07535381615161896, + -0.027003316208720207, + -0.020421011373400688, + -0.005871819332242012, + -0.030469907447695732, + 0.024197686463594437, + 0.04127150774002075, + 0.05883333459496498, + -0.06733577698469162, + -0.012668863870203495, + -0.06967277079820633, + 0.08528416603803635, + -0.04000786691904068, + 0.09443873912096024, + 0.027870740741491318, + -0.033193059265613556, + -0.0991239994764328, + 0.03142354637384415, + -0.03074929304420948, + 0.03852801024913788, + 0.04193933680653572, + 0.0056736283004283905, + 0.05675719678401947, + -0.047608088701963425, + 0.10432156175374985, + 0.04758857190608978, + -0.014785085804760456, + -0.06801826506853104, + -0.050628721714019775, + -0.052018903195858, + 0.049489185214042664, + 0.03528051823377609, + -0.067943274974823, + 0.004121929407119751, + 0.029231710359454155, + -0.0023907579015940428, + 0.05455969274044037, + 0.08119166642427444, + 0.06660211086273193, + -0.10265371948480606 + ] + }, + "p245_258.wav": { + "name": "p245", + "embedding": [ + 0.07679141312837601, + 0.03285347297787666, + -0.005191308446228504, + 0.017157545313239098, + -0.01648176833987236, + 0.04638223722577095, + -0.088742196559906, + 0.057948336005210876, + -0.022573599591851234, + 0.07319176197052002, + -0.11689199507236481, + 0.021522829309105873, + -0.003921594470739365, + -0.0912213921546936, + 0.002323621418327093, + 0.014264101162552834, + 0.002201654016971588, + 0.012111756019294262, + -0.09432931244373322, + -0.01385512389242649, + 0.0003177318722009659, + 0.034604333341121674, + 0.01753060147166252, + -0.059732384979724884, + -0.0020971104968339205, + 0.042796872556209564, + 0.010780866257846355, + 0.005441932938992977, + 0.004265574738383293, + -0.002715539187192917, + -0.009840097278356552, + 0.11150279641151428, + -0.04598115012049675, + -0.01988230086863041, + 0.03898988664150238, + 0.04225374758243561, + 0.007714281789958477, + -0.10172348469495773, + -0.019400203600525856, + 0.0038004154339432716, + -0.07217127084732056, + 0.06552952527999878, + 0.055657122284173965, + -0.015563245862722397, + 0.007612681016325951, + 0.012087170034646988, + 0.007316205650568008, + -0.013617804273962975, + -0.06583358347415924, + 0.15554118156433105, + 0.031136982142925262, + 0.0055865030735731125, + -0.07283760607242584, + -0.021615318953990936, + 0.10212336480617523, + -0.0070214164443314075, + -0.036226727068424225, + -0.030113667249679565, + 0.026174569502472878, + 0.10048529505729675, + 0.008407581597566605, + -0.03803853318095207, + -0.01644132472574711, + 0.017940891906619072, + -0.014630669727921486, + 0.055051594972610474, + 0.09959582984447479, + 0.11093810200691223, + 0.0049186935648322105, + 0.025319887325167656, + 0.06981988251209259, + 0.0289970301091671, + 0.04492059350013733, + -0.05474399775266647, + 0.06897800415754318, + 0.005950739607214928, + -0.06861895322799683, + 0.05169109255075455, + -0.04048681631684303, + -0.03773059695959091, + 0.0584164597094059, + -0.015366610139608383, + 0.034149251878261566, + 0.006377383600920439, + -0.11505354195833206, + 0.0046930452808737755, + 0.005290476605296135, + 0.038996078073978424, + 0.10869783163070679, + 0.018349923193454742, + 0.009688381105661392, + 0.01598978228867054, + -0.036223456263542175, + -0.08092721551656723, + 0.01347358338534832, + 0.00746909761801362, + 0.013366539031267166, + 0.029650598764419556, + 0.0247380118817091, + -0.018677975982427597, + 0.07955006510019302, + -0.025160063058137894, + 0.00850014016032219, + -0.009872529655694962, + -0.03528575599193573, + 0.0710277408361435, + 0.11302268505096436, + 0.02511666528880596, + 0.01139133796095848, + -0.041211847215890884, + 0.04427892342209816, + 0.05170672759413719, + -0.07742707431316376, + -0.05129126459360123, + 0.028028609231114388, + 0.037942662835121155, + 0.06499990075826645, + 0.09817469865083694, + -0.040436845272779465, + -0.02128174901008606, + 0.05847795307636261, + -0.06975678354501724, + -0.004629859700798988, + 0.04635251313447952, + -0.007115555927157402, + -0.007278773933649063, + -0.007724538445472717, + -0.0016099689528346062, + -0.029732869938015938, + -0.058376964181661606, + 0.055915676057338715, + -0.027520939707756042, + 0.0052959127351641655, + -0.0474945567548275, + 0.02992713451385498, + 0.08013647794723511, + 0.006267134100198746, + -0.06800227612257004, + 0.04786580801010132, + 0.05581164360046387, + 0.03627294301986694, + 0.01124153845012188, + -0.04230596125125885, + -0.08089552074670792, + 0.0007849982939660549, + 0.0416392907500267, + 0.042494021356105804, + -0.021547436714172363, + -0.026843221858143806, + -0.10129571706056595, + -0.043941665440797806, + 0.027755694463849068, + -0.0478389635682106, + 0.0665149912238121, + 0.0659036710858345, + -0.043209102004766464, + 0.08743710815906525, + -0.03005043976008892, + -0.006855689454823732, + -0.07787776738405228, + -0.043079689145088196, + 0.03751013055443764, + 0.03974080830812454, + 0.0006978809833526611, + -0.04671081155538559, + 0.021193694323301315, + 0.0026710564270615578, + -0.010079368948936462, + -0.04505263641476631, + 0.034987062215805054, + -0.010533876717090607, + 0.01829933375120163, + -0.1373869776725769, + 0.019953547045588493, + -0.12611842155456543, + -0.029317855834960938, + 0.034984566271305084, + 0.01392775122076273, + 0.04856440797448158, + 0.07969792187213898, + -0.013384771533310413, + 0.0044553703628480434, + -0.044323064386844635, + -0.12362749874591827, + 0.006815183907747269, + 0.0634303092956543, + 0.06017370522022247, + -0.005435607396066189, + 0.037726692855358124, + 0.05026915669441223, + 0.00932311825454235, + 0.027295488864183426, + 0.07428344339132309, + 0.07999062538146973, + -0.01062973402440548, + -0.019960129633545876, + 0.005895745009183884, + 0.11012575030326843, + 0.02762814797461033, + -0.05788486450910568, + -0.04115934297442436, + 0.01942356303334236, + -0.032451555132865906, + 0.03567459434270859, + 0.00912648718804121, + 0.013185901567339897, + 0.026380911469459534, + -0.015013724565505981, + -0.08134867250919342, + -0.016082588583230972, + 0.03090437687933445, + -0.011898979544639587, + -0.019635427743196487, + -0.06859276443719864, + 0.01730221137404442, + 0.050356995314359665, + 0.04189112037420273, + -0.024182943627238274, + -0.02373354136943817, + 0.006139649078249931, + -0.08314862102270126, + -0.07653996348381042, + -0.024275556206703186, + 0.008871578611433506, + -0.066228486597538, + 0.042074281722307205, + -0.0472719706594944, + 0.07996881753206253, + -0.02567720040678978, + 0.07942695915699005, + 0.0016464916989207268, + -0.05625027418136597, + -0.04452471807599068, + 0.05419591814279556, + -0.011272326111793518, + 0.04632297530770302, + 0.07949044555425644, + -0.029907487332820892, + 0.01672234944999218, + -0.08599400520324707, + 0.08126738667488098, + 0.006985564716160297, + -0.0048313080333173275, + -0.03543149679899216, + -0.0006830152124166489, + -0.04757782071828842, + -0.009476684965193272, + -0.011244406923651695, + -0.058826301246881485, + 0.0307366494089365, + 0.015632303431630135, + -0.03818799927830696, + 0.01670285500586033, + 0.041338443756103516, + 0.051368676126003265, + -0.06183270364999771 + ] + }, + "p245_091.wav": { + "name": "p245", + "embedding": [ + 0.04309367388486862, + 0.0720987468957901, + -0.0132478391751647, + 0.017731424421072006, + -0.06165162846446037, + 0.06395068019628525, + -0.13169601559638977, + 0.14464542269706726, + -0.046683065593242645, + 0.1385502815246582, + -0.04386259242892265, + 0.12500441074371338, + -0.01278278511017561, + -0.19199281930923462, + -0.02863188646733761, + 0.05434998869895935, + -0.057081859558820724, + -0.04133368283510208, + -0.053575754165649414, + -0.024377061054110527, + 0.04223744198679924, + 0.0311942920088768, + 0.0261395126581192, + -0.0014756987802684307, + 0.021796882152557373, + 0.0695478767156601, + -0.0006583810318261385, + 0.047250326722860336, + 0.012663107365369797, + -0.07275444269180298, + -0.025742821395397186, + 0.08432137966156006, + -0.058854520320892334, + 0.010051047429442406, + 0.04828295856714249, + -0.028486598283052444, + -0.009382815100252628, + -0.04764934629201889, + -0.03271391987800598, + 0.013127505779266357, + -0.047004178166389465, + 0.08635374158620834, + 0.0333406999707222, + -0.00034673017216846347, + 0.042563408613204956, + 0.013922426849603653, + -0.02209658920764923, + -0.04705999791622162, + -0.10563153028488159, + 0.1506836712360382, + 0.075776606798172, + -0.006607173942029476, + -0.0648643970489502, + -0.06669889390468597, + 0.10503864288330078, + -0.025230523198843002, + -0.13188141584396362, + -0.047879062592983246, + 0.07593496143817902, + 0.15364305675029755, + -0.041862230747938156, + -0.031919319182634354, + 0.02820572629570961, + 0.1098124235868454, + 0.06707937270402908, + 0.0889878123998642, + 0.09234442561864853, + 0.10160738229751587, + -0.01282145269215107, + 0.019284797832369804, + 0.05580781027674675, + 0.0751730427145958, + 0.04807524383068085, + -0.0008225438068620861, + 0.037131816148757935, + 0.0014572007348760962, + -0.0006831804057583213, + -0.021310074254870415, + -0.023456593975424767, + -0.003276883391663432, + -0.0038925036787986755, + 0.02375621162354946, + 0.017930250614881516, + 0.028639446943998337, + -0.02274405211210251, + 0.06532417982816696, + 0.02309400588274002, + -0.010117791593074799, + 0.05741807818412781, + 0.03127700090408325, + 0.018069909885525703, + 0.07340972870588303, + -0.09006212651729584, + -0.07940064370632172, + 0.0225283931940794, + 0.0030012200586497784, + 0.024960016831755638, + 0.06134403869509697, + 0.031337201595306396, + -0.00855853222310543, + 0.11929445713758469, + 0.052166104316711426, + -0.01905599795281887, + 0.028067348524928093, + -0.09640559554100037, + 0.12266942858695984, + 0.08031803369522095, + -0.022284023463726044, + 0.04782688617706299, + -0.051695507019758224, + 0.0787573754787445, + 0.05408960208296776, + -0.1350681036710739, + -0.0754668191075325, + 0.0330924391746521, + 0.009739085100591183, + -0.02826535701751709, + 0.13806474208831787, + -0.010384946130216122, + 0.04305350407958031, + 0.11038455367088318, + -0.08230754733085632, + -0.03646830469369888, + -0.0055635301396250725, + 0.054766371846199036, + -0.08317561447620392, + 0.05998267978429794, + 0.03684881329536438, + -0.013172414153814316, + 0.02731870859861374, + 0.09247037768363953, + -0.018216188997030258, + -0.004504123702645302, + 0.016312040388584137, + -0.04332476109266281, + 0.022890862077474594, + -0.025876715779304504, + -0.002924907486885786, + 0.049809135496616364, + 0.036981649696826935, + 0.05224273353815079, + -0.017538845539093018, + -0.037159230560064316, + -0.119931161403656, + 0.016010232269763947, + 0.01986614614725113, + 0.08030147850513458, + -0.014970451593399048, + -0.006482881959527731, + -0.0401659831404686, + -0.06644508987665176, + 0.007841970771551132, + -0.008373289369046688, + 0.07976173609495163, + -0.021678447723388672, + 0.0011113336076959968, + 0.10172917693853378, + 0.03010474517941475, + 0.008834779262542725, + -0.04021097347140312, + -0.035399019718170166, + 0.003066539764404297, + 0.05836181342601776, + -0.0846424549818039, + -0.05683001130819321, + -0.004309183917939663, + 0.043701838701963425, + -0.010717585682868958, + 0.05616123974323273, + 0.05136401578783989, + 0.022349296137690544, + 0.028967753052711487, + -0.06828059256076813, + 0.02481108531355858, + -0.0951242744922638, + -0.0741296261548996, + -0.003367321565747261, + -0.0185336172580719, + -0.02813224494457245, + 0.07075908035039902, + 0.011294732801616192, + 0.051759183406829834, + -0.023240529000759125, + -0.08101250976324081, + -0.08983057737350464, + 0.05698192119598389, + 0.06296256184577942, + -0.016562119126319885, + 0.03837001323699951, + 0.0679793655872345, + -0.03630131110548973, + 0.050037138164043427, + 0.06037301942706108, + 0.11213769018650055, + -0.031672198325395584, + 0.02792520448565483, + -0.07070574164390564, + 0.09044340252876282, + 0.0789322555065155, + -0.08119912445545197, + -0.07228894531726837, + -0.008563557639718056, + -0.06970565021038055, + 0.04068715497851372, + -0.02785094641149044, + 0.0017837516497820616, + 0.0431668758392334, + 0.012809227220714092, + -0.0992497056722641, + -0.07491475343704224, + 0.08240143954753876, + -0.08449393510818481, + -0.00450856564566493, + -0.08662715554237366, + 0.04068160802125931, + 0.11025522649288177, + 0.0415530726313591, + -0.023766905069351196, + -0.017375074326992035, + 0.050013281404972076, + -0.02350243180990219, + 0.012389621697366238, + 0.0574544295668602, + 0.03179460018873215, + -0.10195067524909973, + -0.01964683085680008, + -0.07553237676620483, + 0.03137651085853577, + -0.033169474452733994, + 0.1412326544523239, + 0.0024874797090888023, + -0.04609978199005127, + -0.07931625097990036, + 0.03564610704779625, + -0.01348478626459837, + 0.060373455286026, + 0.03673099726438522, + 0.07927213609218597, + 0.0639696940779686, + -0.055534981191158295, + 0.12298642098903656, + 0.04358307272195816, + -0.04595636948943138, + -0.06615161895751953, + -0.04008050262928009, + -0.03524373471736908, + 0.023251861333847046, + 0.014349992386996746, + -0.09259232878684998, + -0.01610407419502735, + 0.024809114634990692, + -0.020766835659742355, + 0.05673844739794731, + 0.12615686655044556, + 0.05869127810001373, + -0.11874385923147202 + ] + }, + "p245_149.wav": { + "name": "p245", + "embedding": [ + 0.03768186271190643, + 0.08385203778743744, + 0.003771065967157483, + 0.016704736277461052, + -0.02278084307909012, + 0.04204532504081726, + -0.16192631423473358, + 0.16337457299232483, + -0.028415264561772346, + 0.13345271348953247, + -0.07519504427909851, + 0.10003703832626343, + -0.02614821307361126, + -0.18881404399871826, + -0.024122655391693115, + 0.05158974230289459, + -0.0221388041973114, + -0.018566664308309555, + -0.016828352585434914, + 0.005564190912991762, + 0.05611561983823776, + 0.049695853143930435, + 0.004307721275836229, + -0.001803562045097351, + 0.012524161487817764, + 0.04730432853102684, + 0.00986695196479559, + 0.06021067500114441, + 0.02476823329925537, + -0.03380019590258598, + -0.00223548524081707, + 0.11448952555656433, + -0.04335777088999748, + 0.030037984251976013, + 0.07191549241542816, + -0.00968906655907631, + -0.024295175448060036, + -0.04914316534996033, + -0.018657123669981956, + -0.0071354638785123825, + -0.054571714252233505, + 0.06066074222326279, + 0.043791115283966064, + 0.02487028017640114, + 0.052724555134773254, + 0.0570414774119854, + -0.007172238547354937, + -0.05884827673435211, + -0.0950125902891159, + 0.16391783952713013, + 0.06042741984128952, + 0.0028025214560329914, + -0.06446389108896255, + -0.07849854975938797, + 0.09417851269245148, + -0.010156840085983276, + -0.11376545578241348, + -0.04148290306329727, + 0.10617800801992416, + 0.16100741922855377, + -0.0250163022428751, + -0.04480304569005966, + 0.0320194736123085, + 0.1292324811220169, + 0.04362428933382034, + 0.09016602486371994, + 0.08338652551174164, + 0.10966627299785614, + -0.002137948991730809, + 0.006961085833609104, + 0.035613901913166046, + 0.053405776619911194, + 0.033508457243442535, + -0.011102542281150818, + 0.024848341941833496, + 0.027205847203731537, + -0.010422540828585625, + 0.007268413435667753, + -0.03176813945174217, + 0.001368687953799963, + -0.005691193044185638, + 0.034977711737155914, + 0.002772694919258356, + 0.037705063819885254, + -0.014800334349274635, + 0.058759916573762894, + 0.013955675065517426, + 0.010913911275565624, + 0.07828021049499512, + 0.01347639411687851, + 0.02955559641122818, + 0.06418874859809875, + -0.0798056498169899, + -0.08031607419252396, + 0.017876846715807915, + -0.004576188512146473, + 0.014666064642369747, + 0.07051225751638412, + 0.028934121131896973, + -0.01445766631513834, + 0.13701120018959045, + 0.02543218433856964, + -0.01817462593317032, + 0.03026607260107994, + -0.11601606756448746, + 0.11854873597621918, + 0.04868794232606888, + -0.0228131003677845, + 0.05795200914144516, + -0.077306367456913, + 0.06261872500181198, + 0.055262207984924316, + -0.15220719575881958, + -0.06971816718578339, + 0.06351606547832489, + 0.04874006286263466, + -0.03217070549726486, + 0.1579434871673584, + -0.002579244552180171, + 0.028287317603826523, + 0.10888787358999252, + -0.09761328995227814, + -0.06145886331796646, + -0.011445235460996628, + 0.060192376375198364, + -0.08660709112882614, + 0.05724826455116272, + 0.03938935697078705, + -0.027138710021972656, + 0.005414584651589394, + 0.09243336319923401, + -0.00719593046233058, + 0.02358940802514553, + -0.015410438179969788, + -0.03600359335541725, + 0.03849741071462631, + -0.05553814396262169, + 0.00407925620675087, + -0.007076476700603962, + 0.04599997401237488, + 0.04391339793801308, + 0.007961018942296505, + -0.07285860925912857, + -0.12969304621219635, + -0.009119763039052486, + 0.022251714020967484, + 0.08857829123735428, + -0.00926095899194479, + -0.027449872344732285, + -0.03495349735021591, + -0.04527740180492401, + -0.010584015399217606, + -0.01791813038289547, + 0.06671866774559021, + -0.00796806626021862, + -0.005068654660135508, + 0.09341266751289368, + 0.015182343311607838, + 0.009166423231363297, + -0.054214511066675186, + -0.04482874274253845, + -0.006100847385823727, + 0.041935257613658905, + -0.07273270189762115, + -0.05464041605591774, + 0.0032572061754763126, + 0.04191582649946213, + -0.007699319627135992, + 0.03734232112765312, + 0.029372671619057655, + 0.029092110693454742, + 0.02629699930548668, + -0.06226622313261032, + 0.006399726029485464, + -0.12177871912717819, + -0.09955225884914398, + 0.0018630328122526407, + 0.028377551585435867, + -0.00882348045706749, + 0.07371123135089874, + 0.01345228124409914, + 0.056676216423511505, + 0.0026063756085932255, + -0.07180155813694, + -0.09480110555887222, + 0.05946919322013855, + 0.07905697077512741, + -0.016860011965036392, + 0.0557427853345871, + 0.04409220069646835, + -0.058635152876377106, + 0.05230488255620003, + 0.04737548902630806, + 0.097597636282444, + -0.016359668225049973, + 0.018242985010147095, + -0.07807204127311707, + 0.08407483994960785, + 0.08453156054019928, + -0.08569619059562683, + -0.07536394894123077, + 0.00361895770765841, + -0.07456056773662567, + 0.019792921841144562, + -0.011527043767273426, + 0.017840590327978134, + 0.017282098531723022, + -0.003985610790550709, + -0.10447810590267181, + -0.0651320070028305, + 0.05125219374895096, + -0.08799359202384949, + -0.00356765603646636, + -0.07514673471450806, + 0.053844936192035675, + 0.12126345932483673, + 0.038374364376068115, + -0.011949478648602962, + -0.0579039603471756, + 0.042095355689525604, + -0.048414088785648346, + -0.00973714143037796, + 0.03740885481238365, + 0.03555256500840187, + -0.09930659830570221, + 0.016074690967798233, + -0.07543778419494629, + 0.03346505016088486, + -0.06566616892814636, + 0.1308433711528778, + 0.002985036000609398, + -0.07399366796016693, + -0.08267852663993835, + 0.013626091182231903, + -0.0031136367470026016, + 0.04493806138634682, + 0.003336617723107338, + 0.05804196745157242, + 0.05074665695428848, + -0.054444264620542526, + 0.12769778072834015, + 0.03700132668018341, + -0.0334160141646862, + -0.05462217703461647, + -0.05680021643638611, + -0.04155223071575165, + 0.014036959037184715, + 0.008526414632797241, + -0.09706000983715057, + -0.040051259100437164, + 0.027229513972997665, + -0.016197683289647102, + 0.0530916228890419, + 0.1305728554725647, + 0.028189923614263535, + -0.1510210782289505 + ] + }, + "p245_282.wav": { + "name": "p245", + "embedding": [ + 0.04918473958969116, + 0.08637490123510361, + -0.007416686043143272, + 0.011736655607819557, + -0.034126728773117065, + 0.09576372057199478, + -0.16671088337898254, + 0.11537657678127289, + -0.07332129776477814, + 0.15138636529445648, + -0.06084202975034714, + 0.08286546170711517, + -0.016679655760526657, + -0.19939547777175903, + -0.04118802025914192, + 0.060039639472961426, + -0.0485377162694931, + -0.03061012551188469, + -0.061128370463848114, + -0.021811429411172867, + 0.02710186503827572, + 0.03617182374000549, + 0.003836966585367918, + -0.015880730003118515, + 0.06001034751534462, + 0.04411380738019943, + -0.009789112024009228, + 0.02384761907160282, + -0.023135032504796982, + -0.07027004659175873, + -0.017313463613390923, + 0.11355763673782349, + -0.04108476638793945, + 0.0054458873346447945, + 0.049676381051540375, + 0.010946200229227543, + 0.022713428363204002, + -0.0690869390964508, + -0.025180278345942497, + 0.022344209253787994, + -0.03395051136612892, + 0.08637428283691406, + 0.04206613823771477, + 0.02410716935992241, + 0.018926391378045082, + 0.022452645003795624, + -0.0033003794960677624, + -0.0629497617483139, + -0.09105990827083588, + 0.1637907326221466, + 0.03488153591752052, + 0.02003924548625946, + -0.07264581322669983, + -0.09036867320537567, + 0.11691020429134369, + -0.01661752536892891, + -0.11093058437108994, + -0.041040897369384766, + 0.07760954648256302, + 0.1973458081483841, + -0.03649074211716652, + -0.04468505457043648, + 0.024507921189069748, + 0.10280981659889221, + 0.033941738307476044, + 0.0926000103354454, + 0.07198548316955566, + 0.09376473724842072, + 0.02536942809820175, + -0.006938672624528408, + 0.06506480276584625, + 0.05119505152106285, + 0.04949592798948288, + -0.04402872920036316, + 0.038263265043497086, + 0.0034496309235692024, + -0.033596690744161606, + -0.004746205173432827, + -0.026907946914434433, + -0.005863695405423641, + 0.005246943794190884, + 0.013683231547474861, + 0.02701464667916298, + 0.022461578249931335, + -0.04446312412619591, + 0.01840929128229618, + 0.03137648478150368, + -0.030592940747737885, + 0.08245187997817993, + 0.04999903216958046, + 0.029997780919075012, + 0.05336563289165497, + -0.07607252895832062, + -0.08314183354377747, + 0.04955289512872696, + 0.030490122735500336, + -0.0097513347864151, + 0.04004715383052826, + 0.04669622331857681, + -0.029973922297358513, + 0.11153507232666016, + 0.03164280578494072, + 0.011941333301365376, + 0.028219493106007576, + -0.11870015412569046, + 0.11242745816707611, + 0.07347170263528824, + -0.019780682399868965, + 0.05719504505395889, + -0.03001154586672783, + 0.058226972818374634, + 0.08163052797317505, + -0.15437033772468567, + -0.10382787883281708, + 0.0460633710026741, + 0.011677831411361694, + -0.002385564148426056, + 0.12334049493074417, + -0.005099774803966284, + 0.00373261421918869, + 0.08679091930389404, + -0.09700756520032883, + -0.04592788964509964, + -0.008215099573135376, + 0.051422297954559326, + -0.07695111632347107, + 0.04211403429508209, + 0.05514785274863243, + -0.01441549975425005, + -0.002632137155160308, + 0.0784575343132019, + 0.0010088167618960142, + 0.003617632668465376, + -0.020375492051243782, + -0.00885198824107647, + 0.04245833307504654, + -0.019077708944678307, + -0.0023816616740077734, + 0.040753982961177826, + 0.041563913226127625, + 0.04827522486448288, + -0.0011446280404925346, + -0.048880934715270996, + -0.11934922635555267, + -0.005425691604614258, + 0.031441982835531235, + 0.0708688497543335, + -0.019094662740826607, + 0.015499190427362919, + -0.05891560763120651, + -0.06943809986114502, + 0.03880215436220169, + -0.022658992558717728, + 0.11601532995700836, + 0.03702371567487717, + 0.0017082486301660538, + 0.12184203416109085, + 0.01326817087829113, + 0.003069052705541253, + -0.04492931067943573, + -0.007773939054459333, + 0.01448272354900837, + 0.0442669615149498, + -0.06655454635620117, + -0.0586044043302536, + 0.002862915163859725, + 0.02099073864519596, + -0.006853929720818996, + 0.052816517651081085, + 0.03505631536245346, + 0.02370835654437542, + 0.02798202447593212, + -0.06569341570138931, + 0.021529115736484528, + -0.09267281740903854, + -0.041293468326330185, + 0.0020594631787389517, + -0.03777649253606796, + -0.04203295335173607, + 0.11180447787046432, + 0.031770844012498856, + 0.022221706807613373, + -0.04405190050601959, + -0.07476504147052765, + -0.05941647291183472, + 0.05638466775417328, + 0.059406913816928864, + -0.01249806396663189, + 0.008707843720912933, + 0.036489181220531464, + 0.008604108355939388, + 0.05506923794746399, + 0.09578022360801697, + 0.10153677314519882, + -0.013855861499905586, + 0.023530006408691406, + -0.045515142381191254, + 0.11799225211143494, + 0.054027266800403595, + -0.06644414365291595, + -0.0875316858291626, + -0.015532460063695908, + -0.06729471683502197, + 0.04164282605051994, + -0.015173353254795074, + 0.0241103433072567, + 0.01613209769129753, + -0.024961547926068306, + -0.08904419094324112, + -0.08301189541816711, + 0.08476808667182922, + -0.06067796051502228, + -0.021545374765992165, + -0.07147687673568726, + 0.051183976233005524, + 0.08135366439819336, + 0.0504799410700798, + -0.012078030034899712, + -0.012088810093700886, + 0.04369615390896797, + -0.06308901309967041, + 0.002464691177010536, + 0.05622190982103348, + 0.0018578750314190984, + -0.09580859541893005, + 0.013557873666286469, + -0.08640974760055542, + 0.0827709287405014, + -0.049802280962467194, + 0.15335458517074585, + -0.002155531430616975, + -0.06400637328624725, + -0.072476327419281, + 0.02539350464940071, + -0.031643129885196686, + 0.05469140410423279, + 0.030460383743047714, + 0.08160100877285004, + 0.07404012233018875, + -0.026813236996531487, + 0.07912090420722961, + 0.03971291333436966, + -0.018852807581424713, + -0.06498745828866959, + -0.05719950795173645, + -0.033781807869672775, + 0.027375701814889908, + -0.025486808270215988, + -0.09414863586425781, + 0.019231317564845085, + 0.04031920060515404, + 0.014105978421866894, + 0.06413815915584564, + 0.11309399455785751, + 0.058938100934028625, + -0.12928643822669983 + ] + }, + "p245_144.wav": { + "name": "p245", + "embedding": [ + 0.06451576948165894, + 0.07863955944776535, + -0.054214559495449066, + -0.0013287020847201347, + -0.04699229821562767, + 0.05234336107969284, + -0.11202690005302429, + 0.1264936923980713, + -0.04261700063943863, + 0.1227116659283638, + -0.05619831755757332, + 0.1020348072052002, + -0.0021212296560406685, + -0.0959632620215416, + -0.031342703849077225, + 0.031068187206983566, + -0.016820518299937248, + -0.012836553156375885, + -0.0575728565454483, + -0.007126937620341778, + 0.01864396035671234, + 0.042010921984910965, + -0.0033465642482042313, + -0.04457543045282364, + 0.03951434791088104, + 0.04612615704536438, + -0.003626084653660655, + -0.0012710131704807281, + -9.020802099257708e-05, + -0.014274194836616516, + 0.002750260755419731, + 0.09270736575126648, + -0.0549585297703743, + 0.02991463616490364, + 0.04406115040183067, + 0.013795966282486916, + -0.0028166677802801132, + -0.0755537897348404, + -0.004171857610344887, + 0.0017133401706814766, + -0.020847436040639877, + 0.09847398102283478, + 0.04870182275772095, + -0.01996915228664875, + 0.0008741049095988274, + 0.023187611252069473, + 0.0064304484985768795, + -0.06064082682132721, + -0.0796089768409729, + 0.18075178563594818, + 0.021234050393104553, + 0.007563202176243067, + -0.10967054218053818, + -0.030316786840558052, + 0.07097498327493668, + -0.011462385766208172, + -0.04815720021724701, + -0.06891772150993347, + 0.022153671830892563, + 0.12933334708213806, + -0.008986820466816425, + -0.06296688318252563, + 0.00954245962202549, + 0.10089502483606339, + 0.04547721892595291, + 0.03384922072291374, + 0.08851581066846848, + 0.1031089574098587, + -0.014161994680762291, + 0.0418732725083828, + 0.05211334675550461, + 0.06060950458049774, + 0.04798581451177597, + -0.013754267245531082, + 0.041533492505550385, + -0.04157410189509392, + -0.021936986595392227, + 0.00012329593300819397, + -0.026196949183940887, + -0.06331545859575272, + -0.0151357501745224, + 0.012079700827598572, + 0.018896345049142838, + 0.07096876204013824, + -0.05173385143280029, + 0.03253144398331642, + 0.05863405019044876, + -0.057456113398075104, + 0.07040925323963165, + 0.07698200643062592, + 0.019345292821526527, + 0.010062191635370255, + -0.07948547601699829, + -0.0973343774676323, + 0.04828553646802902, + -0.017899371683597565, + 0.05202047899365425, + 0.042936474084854126, + 0.03044051304459572, + 0.017331190407276154, + 0.07494838535785675, + 0.017454246059060097, + 0.0014740910846740007, + -0.021523334085941315, + -0.06535103172063828, + 0.15509024262428284, + 0.11784021556377411, + -0.01838667131960392, + 0.008557137101888657, + -0.03870384395122528, + 0.015690870583057404, + 0.04523897171020508, + -0.11500421166419983, + -0.09417371451854706, + 0.02455427311360836, + 0.010425731539726257, + 0.011744928546249866, + 0.09375882148742676, + 0.026946041733026505, + 0.016524648293852806, + 0.05758378282189369, + -0.09494365751743317, + -0.06495655328035355, + -0.006743422709405422, + 0.010163147002458572, + -0.08007995039224625, + 0.041595760732889175, + 0.07645824551582336, + -0.010622847825288773, + -0.00458108726888895, + 0.07820293307304382, + 0.02537374198436737, + 0.02983633056282997, + -0.020779289305210114, + 0.03136895224452019, + 0.05646835267543793, + 0.009946179576218128, + -0.006923624314367771, + 0.02413981407880783, + 0.03297823667526245, + 0.07414369285106659, + 0.007161813322454691, + -0.00267966091632843, + -0.10024695098400116, + 0.022871360182762146, + 0.07752461731433868, + 0.03979470208287239, + -0.05954083800315857, + -0.0264838095754385, + -0.007483895402401686, + -0.05975719541311264, + -0.004031844437122345, + 0.006820830050855875, + 0.07728968560695648, + 0.019074691459536552, + 0.002906989539042115, + 0.1524740308523178, + -0.007221294566988945, + 0.011522188782691956, + -0.028411056846380234, + 0.04153662919998169, + 0.034812286496162415, + 0.05945446342229843, + -0.04929729923605919, + -0.09740880131721497, + 0.0042921812273561954, + 0.01036841794848442, + -0.014612752012908459, + 0.03148571774363518, + 0.05867883190512657, + -0.027848713099956512, + 0.04501333832740784, + -0.07449093461036682, + 0.01893012970685959, + -0.11056061834096909, + -0.013285566121339798, + -0.006873646751046181, + -0.061138808727264404, + -0.030024878680706024, + 0.0877450704574585, + 0.016684407368302345, + 0.05443602427840233, + -0.028466980904340744, + -0.09104223549365997, + -0.03484445437788963, + 0.05966056138277054, + 0.07343141734600067, + -0.054386381059885025, + -0.004553365521132946, + 0.05119304358959198, + 0.036805443465709686, + -0.01783037930727005, + 0.0653134137392044, + 0.0833202451467514, + -0.048128098249435425, + -0.03658363223075867, + -0.06021568924188614, + 0.12124153971672058, + 0.04905258119106293, + -0.10331075638532639, + -0.05194811522960663, + -0.0427817665040493, + -0.031648486852645874, + -0.020182698965072632, + -0.026452865451574326, + 0.030227527022361755, + 0.05226399004459381, + -0.027822185307741165, + -0.1087491512298584, + -0.1005541980266571, + 0.05035927891731262, + -0.07216939330101013, + 0.0235403161495924, + -0.06493920087814331, + 0.03590066730976105, + 0.05739014595746994, + 0.04634343832731247, + -0.044089142233133316, + -0.01857799105346203, + -0.023557066917419434, + -0.061096809804439545, + -0.03005470335483551, + -0.008483832702040672, + 0.03132792189717293, + -0.06305155158042908, + 0.00618013646453619, + -0.05518964305520058, + 0.05967462807893753, + -0.05417861044406891, + 0.13946104049682617, + -0.011814150959253311, + -0.08001607656478882, + -0.09965641796588898, + -0.015382720157504082, + -0.038887836039066315, + 0.05071520432829857, + 0.04677646607160568, + 0.025949567556381226, + 0.020992448553442955, + -0.06595253944396973, + 0.09091810882091522, + 0.08341232687234879, + -0.007141642272472382, + -0.07471198588609695, + -0.051463689655065536, + -0.026010246947407722, + 0.05512811616063118, + 0.016546163707971573, + -0.03272877633571625, + 0.029712345451116562, + 0.016880350187420845, + -0.023146355524659157, + 0.08148369193077087, + 0.07711365818977356, + 0.0578840896487236, + -0.10065698623657227 + ] + }, + "p245_318.wav": { + "name": "p245", + "embedding": [ + 0.04507553204894066, + 0.10920147597789764, + -0.022158142179250717, + 0.011556160636246204, + -0.06520803272724152, + 0.05223945528268814, + -0.13449203968048096, + 0.13945050537586212, + -0.03241237252950668, + 0.13587743043899536, + -0.06733669340610504, + 0.11064039915800095, + -0.04449087381362915, + -0.14924824237823486, + -0.014828489162027836, + 0.059912145137786865, + -0.051316335797309875, + -0.04313979297876358, + -0.06568493694067001, + -0.04600934311747551, + 0.018532564863562584, + 0.023898029699921608, + 0.02709241770207882, + 0.014347524382174015, + 0.035172414034605026, + 0.07545115798711777, + 6.184587255120277e-05, + 0.03931276127696037, + 0.002304574241861701, + -0.043067969381809235, + -0.03390832245349884, + 0.08618511259555817, + -0.05207951366901398, + 0.00672593479976058, + 0.03976500779390335, + -0.022910870611667633, + 0.009279772639274597, + -0.04141080379486084, + -0.008341005071997643, + 0.018926098942756653, + -0.027027040719985962, + 0.09029260277748108, + 0.009867168962955475, + -0.005765540990978479, + 0.025646712630987167, + 0.03594989329576492, + -0.006896687671542168, + -0.044028256088495255, + -0.10330000519752502, + 0.16128036379814148, + 0.08075575530529022, + -0.01955389976501465, + -0.06548656523227692, + -0.05060984194278717, + 0.09168876707553864, + -0.0356663353741169, + -0.1006714403629303, + -0.06021656095981598, + 0.07082536816596985, + 0.11834166198968887, + -0.047988057136535645, + -0.04068361595273018, + 0.02116357535123825, + 0.13058772683143616, + 0.07561755925416946, + 0.07317395508289337, + 0.0645039975643158, + 0.11565060913562775, + -0.06145942956209183, + 0.002869861666113138, + 0.06504159420728683, + 0.052801087498664856, + 0.06237401068210602, + 0.009972390718758106, + 0.022321166470646858, + -0.01706426590681076, + 0.009798907674849033, + -0.003948776051402092, + -0.022489584982395172, + -0.0320168063044548, + -0.01852479949593544, + 0.013525784946978092, + -0.015719957649707794, + 0.019091691821813583, + -0.012450532987713814, + 0.059192802757024765, + 0.06244989112019539, + -0.02332986518740654, + 0.08280375599861145, + 0.03874257206916809, + 0.015305336564779282, + 0.07569806277751923, + -0.0913001000881195, + -0.05676039680838585, + 0.04459819197654724, + -0.003976620268076658, + 0.03136901929974556, + 0.046301960945129395, + 0.03205833584070206, + -0.004987073130905628, + 0.12204782664775848, + 0.058196671307086945, + -0.008118255995213985, + 0.029100563377141953, + -0.0868886336684227, + 0.15975579619407654, + 0.08245521783828735, + -0.04829215258359909, + 0.04312577843666077, + -0.017702851444482803, + 0.03541550412774086, + 0.040521711111068726, + -0.10498850047588348, + -0.08655978739261627, + 0.0007403949275612831, + 0.006318551953881979, + -0.049518685787916183, + 0.08220335841178894, + -0.0022732438519597054, + 0.040700219571590424, + 0.11848847568035126, + -0.07807755470275879, + -0.05293574556708336, + 0.007153650745749474, + 0.045477889478206635, + -0.08164584636688232, + 0.0372631810605526, + 0.08606104552745819, + 0.002052789553999901, + 0.042651813477277756, + 0.11153598874807358, + 0.010337131097912788, + 0.0033313168678432703, + 0.013698937371373177, + -0.03761139512062073, + 0.009935274720191956, + 0.0017573998775333166, + -0.009830291382968426, + 0.03997397422790527, + 0.03306715190410614, + 0.05466125160455704, + -0.01318013109266758, + -0.0031720383558422327, + -0.12026414275169373, + 0.02907611057162285, + 0.038955021649599075, + 0.06646828353404999, + -0.02589097060263157, + 0.0007897550240159035, + -0.03274973854422569, + -0.06406117975711823, + -0.005779765546321869, + 0.004290500655770302, + 0.06758448481559753, + -0.049288880079984665, + -0.007854145020246506, + 0.1344522088766098, + 0.036866143345832825, + 0.009831075556576252, + -0.06030388921499252, + -0.018817909061908722, + 0.011213169433176517, + 0.052855901420116425, + -0.07131435722112656, + -0.08908241987228394, + -0.011078552342951298, + 0.05069715529680252, + -0.0054439883679151535, + 0.10068371146917343, + 0.058539845049381256, + -0.0010237207170575857, + 0.015886269509792328, + -0.04767495393753052, + 0.03443163260817528, + -0.054864950478076935, + -0.055831171572208405, + -0.007442827802151442, + -0.022288542240858078, + -0.045784592628479004, + 0.07440043985843658, + 0.010203235782682896, + 0.06714300066232681, + -0.025977984070777893, + -0.08768455684185028, + -0.08800902962684631, + 0.05272018164396286, + 0.06623592972755432, + -0.03501349315047264, + 0.049074240028858185, + 0.08077995479106903, + -0.02768271416425705, + 0.03973587974905968, + 0.06374876946210861, + 0.11115764826536179, + -0.03982605040073395, + 0.022942883893847466, + -0.07662893831729889, + 0.049810923635959625, + 0.05544648319482803, + -0.10768159478902817, + -0.07013879716396332, + -0.038094114512205124, + -0.04538816958665848, + 0.0239694956690073, + -0.022712329402565956, + 0.02705361135303974, + 0.05473530292510986, + 0.0023576742969453335, + -0.07717382162809372, + -0.11067014932632446, + 0.087740957736969, + -0.0760345607995987, + 0.019093003123998642, + -0.07037229835987091, + 0.045412786304950714, + 0.0776141807436943, + 0.05505777895450592, + -0.029280412942171097, + -0.015065735206007957, + 0.03831012174487114, + 0.0002976396935991943, + 0.02039031870663166, + 0.05480428412556648, + 0.05185496434569359, + -0.09379037469625473, + -0.0010709408670663834, + -0.09537047892808914, + 0.0642523318529129, + -0.014521993696689606, + 0.1528104990720749, + 0.027624811977148056, + -0.03512641787528992, + -0.09572188556194305, + 0.021997952833771706, + -0.04331353306770325, + 0.058442965149879456, + 0.021160349249839783, + 0.05122164264321327, + 0.05405889451503754, + -0.039488621056079865, + 0.11723458766937256, + 0.04998578876256943, + -0.05880585312843323, + -0.07599344104528427, + -0.04550326615571976, + -0.04497572034597397, + 0.047326985746622086, + 0.021340832114219666, + -0.08772169798612595, + -0.023435043171048164, + 0.011185297742486, + -0.02631141059100628, + 0.08280722796916962, + 0.13119782507419586, + 0.08854357898235321, + -0.10515636205673218 + ] + }, + "p245_007.wav": { + "name": "p245", + "embedding": [ + 0.045149561017751694, + 0.09462827444076538, + -0.004983566235750914, + 0.01441553607583046, + -0.040921974927186966, + 0.0460314117372036, + -0.1374877691268921, + 0.14266598224639893, + -0.02844548225402832, + 0.14590361714363098, + -0.10295730829238892, + 0.10899394005537033, + -0.03622077777981758, + -0.1817992627620697, + -0.010942138731479645, + 0.049713678658008575, + -0.018514594063162804, + -0.01720358617603779, + -0.01836828701198101, + -0.02213156782090664, + 0.05242509767413139, + 0.03886376693844795, + 0.011565125547349453, + 0.0005401832750067115, + 0.008142187260091305, + 0.060174088925123215, + -0.002350371330976486, + 0.036150168627500534, + 0.009359965100884438, + -0.028012793511152267, + -0.02911045402288437, + 0.11387284845113754, + -0.042926009744405746, + 0.01754629611968994, + 0.05512300133705139, + -0.0023006401024758816, + -0.015515687875449657, + -0.059416264295578, + -0.0034726187586784363, + -0.01844344660639763, + -0.052459970116615295, + 0.051387228071689606, + 0.018303057178854942, + -0.006816095672547817, + 0.048413462936878204, + 0.04628662019968033, + -0.016710927709937096, + -0.04815246909856796, + -0.0959140956401825, + 0.14691177010536194, + 0.07315322756767273, + 0.0010720882564783096, + -0.060489654541015625, + -0.05905752629041672, + 0.09213852137327194, + -0.004349768161773682, + -0.09773315489292145, + -0.03875022754073143, + 0.09545882046222687, + 0.15052419900894165, + -0.03678842633962631, + -0.04767787456512451, + 0.029551643878221512, + 0.11777134984731674, + 0.03265444561839104, + 0.09840225428342819, + 0.07757331430912018, + 0.10743063688278198, + -0.01601983606815338, + 0.0037266486324369907, + 0.0393899604678154, + 0.06142648309469223, + 0.05681558698415756, + -0.024123316630721092, + 0.019066978245973587, + 0.005068219266831875, + -0.021948404610157013, + 0.018842605873942375, + -0.03453856706619263, + -0.024402549490332603, + -0.01040874794125557, + -0.0016926064854487777, + -0.0013946382096037269, + 0.014890472404658794, + -0.02607232891023159, + 0.04491014406085014, + 0.04575467109680176, + -0.0022593028843402863, + 0.07943510264158249, + 0.00871972180902958, + 0.0077266693115234375, + 0.06365819275379181, + -0.08963986486196518, + -0.07812100648880005, + 0.03682796657085419, + 0.0006405137246474624, + 0.006351283751428127, + 0.0839984342455864, + 0.04083499312400818, + -0.02534095197916031, + 0.1304074376821518, + 0.027666514739394188, + -0.001957169035449624, + 0.028884446248412132, + -0.10244368016719818, + 0.13300222158432007, + 0.0867403969168663, + -0.040909938514232635, + 0.040179602801799774, + -0.06159123778343201, + 0.06630713492631912, + 0.06784448772668839, + -0.14018531143665314, + -0.05995617434382439, + 0.027340415865182877, + 0.02889484167098999, + -0.032858945429325104, + 0.11932780593633652, + -0.007023673038929701, + 0.029417915269732475, + 0.11900245398283005, + -0.0956362634897232, + -0.07041047513484955, + -0.024063672870397568, + 0.04008038341999054, + -0.08925782144069672, + 0.059200387448072433, + 0.05558852478861809, + -0.00468786945566535, + 0.023262869566679, + 0.0776807963848114, + -0.019946567714214325, + 0.006450870539993048, + -0.002378875855356455, + -0.05001462623476982, + 0.01711973547935486, + -0.045849110931158066, + -0.0012377402745187283, + 0.01026424765586853, + 0.041825130581855774, + 0.052442729473114014, + 0.005560107529163361, + -0.03959401324391365, + -0.11477609723806381, + 0.011388657614588737, + 0.0426616445183754, + 0.06983286142349243, + -0.006180457770824432, + -0.030488889664411545, + -0.03860398381948471, + -0.056340109556913376, + 0.005566542502492666, + -0.01672866940498352, + 0.05992467328906059, + -0.02122928760945797, + 0.009386766701936722, + 0.09203469753265381, + 0.03568700700998306, + -0.001121892943046987, + -0.06701791286468506, + -0.05225416272878647, + 0.006604105234146118, + 0.03601774573326111, + -0.08915388584136963, + -0.0722610354423523, + -0.01153799332678318, + 0.041301801800727844, + -0.02586875855922699, + 0.052861955016851425, + 0.04162454232573509, + 0.023200949653983116, + 0.02434510551393032, + -0.07235388457775116, + 0.015180274844169617, + -0.10750853270292282, + -0.08713891357183456, + -0.004747116472572088, + 0.003373709972947836, + -6.0791149735450745e-05, + 0.06760033965110779, + -0.0034182898234575987, + 0.045295488089323044, + -0.0170745886862278, + -0.06334178149700165, + -0.0921957939863205, + 0.059231236577034, + 0.07021010667085648, + -0.01315352227538824, + 0.0540599450469017, + 0.04610733315348625, + -0.057014286518096924, + 0.04529346153140068, + 0.05259294435381889, + 0.11683603376150131, + -0.017661986872553825, + 0.031231671571731567, + -0.06803632527589798, + 0.07313703000545502, + 0.09136772155761719, + -0.07618334889411926, + -0.08612386882305145, + -0.036052532494068146, + -0.06151314824819565, + 0.039730288088321686, + -0.019058262929320335, + -0.006168651860207319, + 0.0071921637281775475, + -0.010274677537381649, + -0.09668649733066559, + -0.0691647082567215, + 0.05889381095767021, + -0.06229701638221741, + -0.010126300156116486, + -0.09735549986362457, + 0.06448353826999664, + 0.09117724001407623, + 0.03756062686443329, + -0.029363583773374557, + -0.03031315468251705, + 0.040525857359170914, + -0.04621623083949089, + 0.0024459604173898697, + 0.03496124967932701, + 0.04540511965751648, + -0.09806956350803375, + 0.008444282226264477, + -0.07950171828269958, + 0.04574510455131531, + -0.05788262188434601, + 0.1417692005634308, + 0.009513124823570251, + -0.054678451269865036, + -0.08371474593877792, + 0.03866763785481453, + 0.003159400075674057, + 0.030905848369002342, + 0.020846746861934662, + 0.04654347896575928, + 0.03371462970972061, + -0.08124206960201263, + 0.11730848252773285, + 0.024292364716529846, + -0.023562973365187645, + -0.061257652938365936, + -0.05499252676963806, + -0.050434406846761703, + 0.009189965203404427, + -0.002579478081315756, + -0.09833388030529022, + -0.037157781422138214, + 0.018929090350866318, + 9.888783097267151e-05, + 0.0609932541847229, + 0.13144658505916595, + 0.046483367681503296, + -0.12329264730215073 + ] + }, + "p245_161.wav": { + "name": "p245", + "embedding": [ + 0.06870262324810028, + 0.10832621902227402, + 0.018237516283988953, + 0.0003815444651991129, + -0.018562277778983116, + 0.07336337864398956, + -0.15925759077072144, + 0.13991522789001465, + -0.060507576912641525, + 0.15200191736221313, + -0.08756881207227707, + 0.10665490478277206, + -0.03218308091163635, + -0.1784062385559082, + -0.051562707871198654, + 0.06383423507213593, + -0.051114290952682495, + -0.021441539749503136, + -0.010848100297152996, + -0.00442859809845686, + 0.03806187957525253, + 0.026988688856363297, + 0.028587399050593376, + 0.029623044654726982, + 0.022562410682439804, + 0.06481856107711792, + 0.006737282034009695, + 0.05229507014155388, + 0.0069920942187309265, + -0.05479402840137482, + -0.018677551299333572, + 0.11925399303436279, + -0.029504429548978806, + 0.025281410664319992, + 0.06654888391494751, + 0.013784918002784252, + 0.007076592650264502, + -0.08078533411026001, + -0.010977746918797493, + -0.02224605530500412, + -0.035707853734493256, + 0.06702031940221786, + 0.013324787840247154, + -0.002375748474150896, + 0.020236758515238762, + 0.04379139095544815, + 0.0005133097874931991, + -0.04975833743810654, + -0.09307645261287689, + 0.1431887149810791, + 0.05501990765333176, + 0.012574536725878716, + -0.0724792629480362, + -0.0848955512046814, + 0.10336392372846603, + -0.027185775339603424, + -0.11092164367437363, + -0.025609731674194336, + 0.08587907254695892, + 0.17760726809501648, + -0.046085044741630554, + -0.050447843968868256, + 0.029222603887319565, + 0.12457051873207092, + 0.03412794694304466, + 0.10647805780172348, + 0.07635490596294403, + 0.09448458254337311, + -0.010382408276200294, + 0.008122078143060207, + 0.048811670392751694, + 0.05862194299697876, + 0.06506988406181335, + -0.020888125523924828, + 0.02912452444434166, + 0.006172207184135914, + -0.027292665094137192, + 0.025266330689191818, + -0.023525765165686607, + -0.024357467889785767, + -0.02253073826432228, + -0.00208936701528728, + -0.011701757088303566, + 0.01969437301158905, + -0.015462040901184082, + 0.039249107241630554, + 0.01680240035057068, + -0.018924657255411148, + 0.08197642862796783, + 0.040215566754341125, + 0.037328775972127914, + 0.06807029247283936, + -0.065538689494133, + -0.0797659158706665, + 0.04386014863848686, + 0.0059586199931800365, + 0.0171256922185421, + 0.07328593730926514, + 0.044418882578611374, + -0.022651297971606255, + 0.11246055364608765, + 0.04188261553645134, + 0.009091696701943874, + 0.015819981694221497, + -0.1156444177031517, + 0.12238971889019012, + 0.07270428538322449, + -0.04746101424098015, + 0.03256046026945114, + -0.0442255400121212, + 0.07173807919025421, + 0.09776537120342255, + -0.15303656458854675, + -0.09183570742607117, + 0.04038841277360916, + 0.02522859536111355, + -0.0050983852706849575, + 0.10459312796592712, + -0.014848722144961357, + 0.011565989814698696, + 0.09376179426908493, + -0.07401733100414276, + -0.05897212028503418, + -0.022061064839363098, + 0.039304040372371674, + -0.09357898682355881, + 0.06608165055513382, + 0.0492662712931633, + 0.0027238510083407164, + -0.017883144319057465, + 0.09324191510677338, + -0.01609242893755436, + -0.01770544983446598, + -0.008201437070965767, + -0.04062352329492569, + 0.017123602330684662, + -0.04358793422579765, + 0.011792747303843498, + 0.002367309993132949, + 0.04382942244410515, + 0.025523971766233444, + 0.015377247706055641, + -0.05584787577390671, + -0.11316414922475815, + -0.0018854388035833836, + 0.0531994067132473, + 0.06586024910211563, + -0.0036472126375883818, + -0.039595119655132294, + -0.03285756707191467, + -0.02714969962835312, + 0.022000622004270554, + -0.0215320885181427, + 0.07059452682733536, + 0.005336389876902103, + 0.006951726507395506, + 0.1057104766368866, + 0.014294530265033245, + 0.011490853503346443, + -0.06466006487607956, + -0.019668901339173317, + 0.03289859741926193, + 0.04279383271932602, + -0.07607969641685486, + -0.07183100283145905, + 0.0034481151960790157, + 0.03494783490896225, + -0.014473985880613327, + 0.0458655022084713, + 0.03803864121437073, + 0.014231516048312187, + 0.025620516389608383, + -0.0582166388630867, + 0.014855700545012951, + -0.11558549106121063, + -0.08754715323448181, + -0.008582242764532566, + -0.011124735698103905, + 0.003764317836612463, + 0.06719385087490082, + 0.01484648883342743, + 0.03679465875029564, + -0.03116190806031227, + -0.0819769948720932, + -0.08818960189819336, + 0.06477537751197815, + 0.09183748066425323, + 0.006224717013537884, + 0.03845309466123581, + 0.0348658561706543, + -0.020722847431898117, + 0.06271000951528549, + 0.05161736533045769, + 0.11731331795454025, + -0.027741428464651108, + 0.02158561907708645, + -0.06975573301315308, + 0.07015620172023773, + 0.08249412477016449, + -0.08361397683620453, + -0.09463249891996384, + -0.019229568541049957, + -0.05283684656023979, + 0.04383622109889984, + -0.008865853771567345, + 0.005712880752980709, + 0.015254969708621502, + -0.032408811151981354, + -0.09880499541759491, + -0.08109933882951736, + 0.09112220257520676, + -0.06285277009010315, + -0.009766589850187302, + -0.08192508667707443, + 0.07207295298576355, + 0.07351924479007721, + 0.04085075855255127, + -0.024230893701314926, + -0.004076804965734482, + 0.03783038258552551, + -0.05463511496782303, + -0.019450504332780838, + 0.03397679701447487, + 0.016385337337851524, + -0.10431455075740814, + 0.01707218773663044, + -0.09213979542255402, + 0.07221890985965729, + -0.07339034974575043, + 0.16168177127838135, + -0.02109682373702526, + -0.07328248023986816, + -0.08050103485584259, + 0.009347349405288696, + -0.01990067958831787, + 0.045343443751335144, + 0.029147714376449585, + 0.0550139918923378, + 0.02574208192527294, + -0.06777419149875641, + 0.10246551036834717, + 0.03721686452627182, + -0.017056453973054886, + -0.07194140553474426, + -0.05997295305132866, + -0.04421697184443474, + 0.022755298763513565, + -0.020484410226345062, + -0.09410213679075241, + -0.023953229188919067, + 0.018044713884592056, + -0.0023260421585291624, + 0.07099057734012604, + 0.13451765477657318, + 0.03564916178584099, + -0.12935785949230194 + ] + }, + "p245_322.wav": { + "name": "p245", + "embedding": [ + 0.05867404490709305, + 0.08776416629552841, + -0.009117075242102146, + 0.006275969557464123, + -0.05828960984945297, + 0.05608009174466133, + -0.15756559371948242, + 0.15339866280555725, + -0.043311361223459244, + 0.12987080216407776, + -0.04376037046313286, + 0.13991306722164154, + -4.772613010572968e-06, + -0.19379335641860962, + -0.037924982607364655, + 0.0577777698636055, + -0.056644003838300705, + -0.04867164045572281, + -0.009366032667458057, + -0.03086036816239357, + 0.04147467762231827, + 0.04401761293411255, + 0.03154900297522545, + 0.021233724430203438, + 0.025893524289131165, + 0.08144257962703705, + 0.015503056347370148, + 0.05473456159234047, + 0.020258257165551186, + -0.06304898113012314, + -0.04084392264485359, + 0.07913471013307571, + -0.05371316149830818, + -0.007965032942593098, + 0.04409767687320709, + -0.03573685139417648, + 0.007143785711377859, + -0.06800752133131027, + -0.02970271185040474, + 0.017500991001725197, + -0.03473828732967377, + 0.09454252570867538, + 0.03404957056045532, + -0.01597454585134983, + 0.023009149357676506, + 0.03175893798470497, + -0.0014671747339889407, + -0.05008109658956528, + -0.1111796572804451, + 0.14726674556732178, + 0.08040410280227661, + -0.002775174332782626, + -0.06350021809339523, + -0.05659450590610504, + 0.10560932010412216, + -0.016208071261644363, + -0.1032608300447464, + -0.03512602671980858, + 0.07019481062889099, + 0.1424742490053177, + -0.04023712873458862, + -0.04222244396805763, + 0.04894430190324783, + 0.1261807233095169, + 0.05756570026278496, + 0.07596937566995621, + 0.09350641071796417, + 0.09585306793451309, + -0.03165556862950325, + 0.018457213416695595, + 0.049356598407030106, + 0.08357895910739899, + 0.025122439488768578, + -0.008470152504742146, + 0.025872208178043365, + -0.00923940259963274, + -0.014261228032410145, + -0.011694937944412231, + -0.007796307094395161, + -0.010588720440864563, + -0.008430177345871925, + 0.014417783357203007, + -0.0044074226170778275, + 0.03972719609737396, + -0.02282765321433544, + 0.07116247713565826, + 0.010834299959242344, + -0.006394419819116592, + 0.07449810951948166, + 0.021347124129533768, + 0.03531501069664955, + 0.07125614583492279, + -0.086465023458004, + -0.07489131391048431, + 0.04830196872353554, + -0.0001503361272625625, + 0.037160806357860565, + 0.07645300030708313, + 0.04441075026988983, + -0.015106570906937122, + 0.13763055205345154, + 0.06629740446805954, + -0.02261001244187355, + 0.023913847282528877, + -0.08670985698699951, + 0.1360081434249878, + 0.07539215683937073, + -0.03781836852431297, + 0.05808195844292641, + -0.057647716253995895, + 0.07614754140377045, + 0.049175336956977844, + -0.14671207964420319, + -0.08810988813638687, + 0.04085970297455788, + 0.039393968880176544, + -0.022739311680197716, + 0.14198949933052063, + -0.01827811822295189, + 0.05077064409852028, + 0.09974881261587143, + -0.06040159985423088, + -0.0496547557413578, + -0.018630361184477806, + 0.06358248740434647, + -0.09324121475219727, + 0.08466548472642899, + 0.06435555219650269, + -0.01880018040537834, + 0.01887170970439911, + 0.09250757098197937, + -0.019450407475233078, + -0.008574271574616432, + 0.013556569814682007, + -0.03143060952425003, + 0.0165313258767128, + -0.021760541945695877, + 0.007706217002123594, + 0.020902518182992935, + 0.0266584400087595, + 0.03983909636735916, + -0.0017553266370669007, + -0.04117373377084732, + -0.1326344758272171, + 0.01696479506790638, + 0.009681995026767254, + 0.0847819596529007, + -0.0011977946851402521, + -0.04532928764820099, + -0.041529830545186996, + -0.0410635843873024, + -0.020994078367948532, + 0.007407172117382288, + 0.06456858664751053, + -0.028331449255347252, + 0.013436204753816128, + 0.08333013206720352, + 0.04634971171617508, + 0.015180795453488827, + -0.030198749154806137, + -0.03350245580077171, + 0.020259691402316093, + 0.05327599495649338, + -0.07026441395282745, + -0.06719457358121872, + -0.011357349343597889, + 0.04443669319152832, + -0.02031329646706581, + 0.05439165607094765, + 0.0497092641890049, + 0.028534119948744774, + 0.02472635731101036, + -0.07578153163194656, + 0.04309258237481117, + -0.08571420609951019, + -0.07007020711898804, + -0.015253056772053242, + 0.011146986857056618, + -0.047452718019485474, + 0.06553606688976288, + 0.01987873949110508, + 0.07775586098432541, + -0.026488518342375755, + -0.05859935283660889, + -0.07976828515529633, + 0.03688163310289383, + 0.08365271240472794, + -0.011485207825899124, + 0.041748978197574615, + 0.0557313933968544, + -0.012076572515070438, + 0.0557733029127121, + 0.04484863951802254, + 0.10123520344495773, + -0.025056693702936172, + 0.00805388018488884, + -0.05475130304694176, + 0.07183671742677689, + 0.06349208950996399, + -0.09084787964820862, + -0.06388452649116516, + -0.01715942658483982, + -0.06846684217453003, + 0.039339762181043625, + -0.0042763021774590015, + 0.017304273322224617, + 0.0237430389970541, + 0.008652533404529095, + -0.1057690903544426, + -0.08377397805452347, + 0.07391486316919327, + -0.08307552337646484, + 0.0057650376111269, + -0.08851455897092819, + 0.05180005356669426, + 0.12259875237941742, + 0.028729919344186783, + -0.025784656405448914, + -0.04210766777396202, + 0.027388472110033035, + -0.008438419550657272, + 0.02171332761645317, + 0.057243864983320236, + 0.05695510655641556, + -0.11887624114751816, + 0.0033189682289958, + -0.08494004607200623, + 0.03907385095953941, + -0.04326308146119118, + 0.1467370092868805, + 0.023233477026224136, + -0.0502345971763134, + -0.0973343551158905, + 0.03095272183418274, + -0.023961668834090233, + 0.06033830717206001, + 0.03715446963906288, + 0.05577002838253975, + 0.05007936432957649, + -0.07353881001472473, + 0.10891478508710861, + 0.05222782492637634, + -0.048930149525403976, + -0.08264405280351639, + -0.02988201566040516, + -0.02504650317132473, + 0.049169961363077164, + 0.03359472379088402, + -0.08841452747583389, + -0.048421625047922134, + 0.02786114625632763, + -0.011260537430644035, + 0.08766349405050278, + 0.13737866282463074, + 0.047570183873176575, + -0.1182001456618309 + ] + }, + "p245_029.wav": { + "name": "p245", + "embedding": [ + 0.02780189737677574, + 0.06881777197122574, + -0.02166341058909893, + 0.035300370305776596, + -0.08039987087249756, + 0.03737490996718407, + -0.13218814134597778, + 0.10533221811056137, + -0.025261640548706055, + 0.13056746125221252, + -0.06294182687997818, + 0.11150313168764114, + -0.04067876562476158, + -0.19179928302764893, + 0.01603834703564644, + 0.07331312447786331, + -0.009981782175600529, + -0.05697910487651825, + -0.030502507463097572, + -0.03456566482782364, + 0.018658112734556198, + 0.04433068633079529, + 0.030695535242557526, + 0.009590781293809414, + 0.030597832053899765, + 0.08441580086946487, + -0.01755676046013832, + 0.020735016092658043, + -0.011478307656943798, + -0.03744737058877945, + -0.05290212854743004, + 0.08481673896312714, + -0.06441842019557953, + -0.016748838126659393, + 0.022417467087507248, + -0.007377291098237038, + -0.008932935073971748, + -0.04833114892244339, + -0.009816067293286324, + 0.0020654138643294573, + -0.06729279458522797, + 0.0770978033542633, + 0.012322187423706055, + -0.013452468439936638, + 0.03841298446059227, + 0.011561397463083267, + -0.024539481848478317, + -0.02239598147571087, + -0.1207062155008316, + 0.13176241517066956, + 0.06389179825782776, + -0.01150287501513958, + -0.06859362870454788, + -0.05717504769563675, + 0.09275449812412262, + -0.008093236945569515, + -0.09542311728000641, + -0.07539010047912598, + 0.08015977591276169, + 0.11930983513593674, + -0.026469871401786804, + -0.03782252222299576, + 0.023962363600730896, + 0.09392349421977997, + 0.06957662850618362, + 0.08792545646429062, + 0.05430028215050697, + 0.11039911210536957, + -0.03676654398441315, + -0.007545675151050091, + 0.0666150227189064, + 0.05513319373130798, + 0.03976689279079437, + -0.019877765327692032, + 0.010215479880571365, + 0.007984207943081856, + -0.0031649149022996426, + 0.008714050054550171, + -0.00264170253649354, + -0.021914878860116005, + -0.012283986434340477, + -0.026817915961146355, + -0.011580743826925755, + -0.002369352150708437, + -0.021885622292757034, + 0.04338505491614342, + 0.08456631004810333, + -0.0020076162181794643, + 0.08473724871873856, + 0.02747882902622223, + -0.02704799361526966, + 0.0778418481349945, + -0.08801056444644928, + -0.028749868273735046, + 0.03529080003499985, + 0.006499058101326227, + 0.003503114450722933, + 0.0772712379693985, + 0.03805812448263168, + -0.017157312482595444, + 0.12923437356948853, + 0.04269561544060707, + 0.006646237336099148, + 0.03647709637880325, + -0.08015980571508408, + 0.13249893486499786, + 0.07367956638336182, + -0.037179671227931976, + 0.04943344369530678, + -0.02214723825454712, + 0.051948897540569305, + 0.05367725342512131, + -0.10972532629966736, + -0.05366886779665947, + -0.00395756121724844, + -0.01649671234190464, + -0.05136849731206894, + 0.12127330899238586, + -0.013668501749634743, + 0.02866087108850479, + 0.12481474876403809, + -0.09382082521915436, + -0.07580876350402832, + 0.008934416808187962, + 0.027468513697385788, + -0.10574019700288773, + 0.049265168607234955, + 0.06492609530687332, + 0.001026851125061512, + 0.036990828812122345, + 0.08854550123214722, + -0.01331368274986744, + 0.019535653293132782, + 0.006677671801298857, + -0.04297717660665512, + 0.014578481204807758, + -0.010654295794665813, + -0.009864230640232563, + 0.08132299035787582, + 0.011906872503459454, + 0.06819181144237518, + -0.025784719735383987, + 0.006931353360414505, + -0.1369224637746811, + 0.028833262622356415, + 0.04176367074251175, + 0.0686354860663414, + -0.012330367229878902, + -0.008494798094034195, + -0.057070568203926086, + -0.09885986149311066, + 0.02841872163116932, + -0.0012829565675929189, + 0.08452381193637848, + -0.0442269928753376, + 0.005829977802932262, + 0.09953711926937103, + 0.05012792348861694, + -0.005873378366231918, + -0.0641418918967247, + -0.049663521349430084, + 0.00015880540013313293, + 0.05739030987024307, + -0.0848923772573471, + -0.06908732652664185, + -0.026412172242999077, + 0.05897587910294533, + -0.01342968363314867, + 0.07305772602558136, + 0.06559213995933533, + 0.026138633489608765, + 0.004874559119343758, + -0.07479707151651382, + 0.03167376294732094, + -0.041544221341609955, + -0.05901027098298073, + -0.023487603291869164, + -0.020500417798757553, + -0.03167291730642319, + 0.08064433932304382, + 0.013003415428102016, + 0.04186970368027687, + -0.03767181560397148, + -0.07162640243768692, + -0.10102683305740356, + 0.03790765255689621, + 0.046678703278303146, + -0.029464757069945335, + 0.04837606102228165, + 0.06666761636734009, + -0.06644361466169357, + 0.04189606010913849, + 0.046696633100509644, + 0.10919620096683502, + -0.04652491956949234, + 0.0415828600525856, + -0.044446270912885666, + 0.07271315157413483, + 0.08629599958658218, + -0.0788758173584938, + -0.06641732156276703, + -0.04304632544517517, + -0.0710979551076889, + 0.06476205587387085, + -0.027910947799682617, + -0.0032920720987021923, + 0.03390655666589737, + -0.007626053877174854, + -0.09001055359840393, + -0.10095858573913574, + 0.07489994913339615, + -0.038231879472732544, + -0.006134871859103441, + -0.09589746594429016, + 0.038394395262002945, + 0.04740843176841736, + 0.054574836045503616, + -0.03585117310285568, + -0.007327437400817871, + 0.046828169375658035, + -0.012232083827257156, + 0.027652762830257416, + 0.09809942543506622, + 0.04111935943365097, + -0.08717308938503265, + -0.04641895741224289, + -0.09534372389316559, + 0.08270589262247086, + -0.027644727379083633, + 0.1443927139043808, + 0.017893584445118904, + -0.023883726447820663, + -0.063459612429142, + 0.02851518988609314, + -0.010903319343924522, + 0.05522590130567551, + 0.045986589044332504, + 0.06351014971733093, + 0.045878518372774124, + -0.02977527305483818, + 0.11506573855876923, + 0.05919646471738815, + -0.031413257122039795, + -0.05762070417404175, + -0.0213331189006567, + -0.05005037412047386, + 0.04196877032518387, + 0.022439155727624893, + -0.1201159879565239, + 0.0053299106657505035, + 0.03308534622192383, + -0.013428907841444016, + 0.06381815671920776, + 0.1387225091457367, + 0.08890995383262634, + -0.09253202378749847 + ] + }, + "p245_407.wav": { + "name": "p245", + "embedding": [ + -0.003104584291577339, + 0.04657316207885742, + -0.032337043434381485, + 0.006645446643233299, + -0.05889582633972168, + 0.023109564557671547, + -0.0836152508854866, + 0.05858964845538139, + -0.03308698907494545, + 0.1238940954208374, + -0.03413597121834755, + 0.1005193442106247, + -0.01499311812222004, + -0.08105746656656265, + 0.023426655679941177, + 0.05755702406167984, + -0.011530330404639244, + -0.040308378636837006, + -0.0003295931965112686, + -0.08617779612541199, + 0.026843346655368805, + 0.013807281851768494, + -0.005035571753978729, + -0.01111688930541277, + 0.0010062993969768286, + 0.08500957489013672, + -0.016075022518634796, + -0.013842049986124039, + -0.019869215786457062, + -0.0630098357796669, + -0.04138507694005966, + 0.09601067006587982, + -0.037356168031692505, + -0.05952814221382141, + 0.02426801063120365, + -0.012836904264986515, + -0.005598604213446379, + -0.011211697943508625, + 0.02020454593002796, + 0.008303358219563961, + -0.10945820808410645, + 0.0837821438908577, + -0.018392261117696762, + -0.011588041670620441, + 0.05007948726415634, + -0.034542445093393326, + -0.05800371617078781, + 0.05362749844789505, + -0.042021967470645905, + 0.07242666929960251, + 0.08492620289325714, + -0.02868054062128067, + -0.04110778868198395, + -0.02114693820476532, + 0.05137369781732559, + 0.019055377691984177, + -0.1011195182800293, + -0.024596519768238068, + -0.0002370290458202362, + 0.07408127188682556, + -0.0005028368905186653, + -0.033601824194192886, + 0.03478960692882538, + 0.09339827299118042, + 0.06205793470144272, + 0.04223657771945, + 0.05290503799915314, + 0.06885270029306412, + -0.022216254845261574, + -0.029701411724090576, + 0.06996627151966095, + 0.0864732414484024, + 0.08215707540512085, + -0.0019089310662820935, + 0.02766697108745575, + -0.006614426150918007, + 0.0011562397703528404, + -0.05672324076294899, + -0.03587431460618973, + -0.028931934386491776, + -0.05705353617668152, + -0.021391846239566803, + -0.0013540992513298988, + 0.03384846821427345, + 0.0011343229562044144, + -0.006994025781750679, + 0.08271786570549011, + -0.02858877182006836, + 0.04757063835859299, + 0.031527962535619736, + -0.014183513820171356, + 0.04894658550620079, + -0.08426105231046677, + 0.008590849116444588, + 0.016310518607497215, + -0.019878674298524857, + 0.05104648321866989, + 0.07355128228664398, + 0.007673108018934727, + 0.017706256359815598, + 0.08254500478506088, + 0.029020095244050026, + 0.020456653088331223, + -0.0029742568731307983, + -0.07228829711675644, + 0.1103634387254715, + 0.07806919515132904, + -0.0640028715133667, + 0.006874486804008484, + 0.03914283961057663, + 0.040454551577568054, + -0.004827793687582016, + -0.09616594016551971, + -0.023870384320616722, + -0.024942860007286072, + 0.012525135651230812, + -0.012076758779585361, + 0.09087841212749481, + 0.01347122248262167, + 0.03773888200521469, + 0.09482701122760773, + -0.02195243164896965, + -0.0607881098985672, + -0.05246800556778908, + 0.02600812539458275, + -0.12688294053077698, + 0.0887662023305893, + 0.05488528311252594, + 0.045933984220027924, + 0.05349424108862877, + 0.10580737888813019, + 0.005932166241109371, + -0.008115613833069801, + -0.03361114114522934, + -0.03186650201678276, + -0.003121431451290846, + -0.00012975651770830154, + 0.04425520822405815, + 0.07043840736150742, + -0.006851738318800926, + 0.10119348019361496, + -0.007384748198091984, + 0.060464370995759964, + -0.07564433664083481, + 0.03929874673485756, + 0.0343942791223526, + 0.02475239336490631, + -0.03344819322228432, + -0.02465083636343479, + 0.0072366707026958466, + -0.06678535044193268, + -0.02442559227347374, + -0.023924626410007477, + 0.06874669343233109, + -0.029876066371798515, + -0.009793409146368504, + 0.09930677711963654, + 0.031654663383960724, + -0.0060859257355332375, + -0.002396952360868454, + -0.03451858088374138, + -0.013528370298445225, + 0.0750058963894844, + -0.13117572665214539, + -0.07055386900901794, + -0.020009178668260574, + 0.032913632690906525, + 0.045135047286748886, + 0.053581275045871735, + 0.08896920830011368, + -0.018656853586435318, + 0.026856394484639168, + -0.020285427570343018, + 0.024043720215559006, + -0.053148895502090454, + -0.05038430914282799, + -0.046974774450063705, + -0.08690065145492554, + -0.057863496243953705, + 0.04483678936958313, + -0.04021107405424118, + 0.045361801981925964, + -0.028334293514490128, + -0.07365195453166962, + -0.08450794219970703, + 0.017343856394290924, + 0.03447098284959793, + -0.026992756873369217, + 0.03211980685591698, + 0.10205669701099396, + -0.02623457834124565, + -0.01944817788898945, + 0.015529869124293327, + 0.10556671023368835, + -0.0641951709985733, + 0.02835429087281227, + -0.06852920353412628, + 0.05496248975396156, + 0.0796789675951004, + -0.024761170148849487, + -0.061186533421278, + -0.0679822713136673, + -0.03255509212613106, + 0.08795242756605148, + -0.04374832659959793, + -0.016944946721196175, + 0.026646820828318596, + -0.027378231287002563, + -0.061976246535778046, + -0.05818817391991615, + 0.0926298126578331, + -0.05986655876040459, + -0.012708021327853203, + -0.06789904087781906, + 0.008965477347373962, + -0.015787430107593536, + 0.07708202302455902, + -0.07744063436985016, + 0.05499912053346634, + 0.05589529499411583, + -0.016781218349933624, + 0.05208747088909149, + 0.08026955276727676, + 0.03256071358919144, + -0.04298686236143112, + -0.07182008028030396, + -0.06363420188426971, + 0.0448843352496624, + -0.026755396276712418, + 0.0501389242708683, + 0.026474572718143463, + -0.026602022349834442, + -0.046603161841630936, + 0.02742432802915573, + 0.01171579398214817, + 0.010041594505310059, + 0.1002071425318718, + 0.1084214597940445, + 0.01527472585439682, + -0.016209213063120842, + 0.07432680577039719, + 0.028180165216326714, + 0.0075395843014121056, + -0.022618385031819344, + 0.007898639887571335, + -0.04450123757123947, + 0.016117246821522713, + 0.049493271857500076, + -0.11122187972068787, + 0.06742001324892044, + 0.015724629163742065, + 0.01118016429245472, + 0.04433777183294296, + 0.05172194540500641, + 0.0658288300037384, + -0.06423455476760864 + ] + }, + "p245_235.wav": { + "name": "p245", + "embedding": [ + 0.08414724469184875, + 0.031948335468769073, + 0.008943088352680206, + -0.02238096296787262, + -0.02330591529607773, + 0.047428738325834274, + -0.10531490296125412, + 0.09980402886867523, + -0.04704798012971878, + 0.0699850395321846, + -0.08023872971534729, + 0.08879193663597107, + 0.017676588147878647, + -0.12182343006134033, + -0.0659368485212326, + 0.02796243131160736, + -0.03592311963438988, + 0.005282433703541756, + -0.06951486319303513, + -0.029010048136115074, + 0.011277561075985432, + 0.05407358705997467, + 0.033470313996076584, + -0.02317504957318306, + 0.029628541320562363, + 0.058356016874313354, + 0.03048108145594597, + 0.03721782565116882, + -0.00400970783084631, + -0.021969571709632874, + -0.0018918104469776154, + 0.08224688470363617, + -0.019491994753479958, + -0.022157397121191025, + 0.0456538200378418, + -0.0007916120812296867, + 0.03099163994193077, + -0.09128797054290771, + -0.03188329190015793, + 0.03247610852122307, + -0.04240315407514572, + 0.07372508943080902, + 0.06276065111160278, + -0.0047044456005096436, + 0.009728895500302315, + 0.015967829152941704, + 0.009108318015933037, + -0.08033211529254913, + -0.11000896990299225, + 0.17768913507461548, + 0.005370305851101875, + 0.04462099075317383, + -0.11519655585289001, + -0.01280895620584488, + 0.08057249337434769, + -0.022846464067697525, + -0.03344767168164253, + -0.03641297668218613, + 0.024675730615854263, + 0.14093877375125885, + -0.002063194289803505, + -0.03948536887764931, + 0.03993751108646393, + 0.07905098795890808, + 0.01084806490689516, + 0.021227842196822166, + 0.1313486546278, + 0.0696532279253006, + -0.0011959066614508629, + 0.0597175657749176, + 0.04390156269073486, + 0.0480753555893898, + 0.030905958265066147, + -0.021440064534544945, + 0.03045884147286415, + -0.02206547185778618, + -0.045527294278144836, + 0.0067911092191934586, + -0.028769362717866898, + -0.032696593552827835, + 0.010667145252227783, + 0.024968117475509644, + 0.037860311567783356, + 0.032501377165317535, + -0.0674109160900116, + 0.060953445732593536, + -0.010538906790316105, + -0.012828954495489597, + 0.055500272661447525, + 0.05890392139554024, + 0.008883259259164333, + -0.010890992358326912, + -0.027336928993463516, + -0.11041491478681564, + -0.003958722576498985, + 0.002464384539052844, + 0.03246554732322693, + 0.027331676334142685, + 0.026970436796545982, + -0.02828892692923546, + 0.07926802337169647, + 0.011447388678789139, + 0.013722170144319534, + -0.01360907033085823, + -0.06630753725767136, + 0.0808674767613411, + 0.11701808869838715, + -0.006666000932455063, + 0.025465281680226326, + -0.04413112998008728, + 0.021561142057180405, + 0.06509619951248169, + -0.09490412473678589, + -0.06714627891778946, + 0.03217704966664314, + 0.01808125711977482, + 0.07384863495826721, + 0.09053315222263336, + -0.00805019773542881, + 0.019038518890738487, + 0.04889168590307236, + -0.07183147966861725, + -0.026759475469589233, + -8.155964314937592e-05, + 0.012430368922650814, + -0.02079918049275875, + 0.02140168286859989, + 0.036056291311979294, + 0.02562927082180977, + -0.0455782487988472, + 0.06624790281057358, + 0.0035619856789708138, + -0.004401146434247494, + -0.039004165679216385, + 0.038433872163295746, + 0.0660308301448822, + 0.0013722097501158714, + -0.03185052424669266, + 0.049162380397319794, + 0.09024513512849808, + 0.004282768815755844, + 0.053114861249923706, + -0.062113165855407715, + -0.0957697331905365, + -0.019128186628222466, + 0.04619210585951805, + 0.047117047011852264, + -0.035239361226558685, + -0.0407211072742939, + -0.06313902139663696, + -0.004834108054637909, + -0.008600874803960323, + 0.014729546383023262, + 0.05742064118385315, + 0.03767884150147438, + 0.0048480164259672165, + 0.07689369469881058, + -0.03033529780805111, + 0.018571069464087486, + -0.017184583470225334, + 0.026356305927038193, + 0.034995414316654205, + 0.027773484587669373, + 0.009876169264316559, + -0.08222924172878265, + 0.004199131391942501, + -0.015613555908203125, + -0.026801731437444687, + -0.0025995224714279175, + 0.010991642251610756, + -0.024151857942342758, + 0.007024191319942474, + -0.10378921031951904, + 0.03716892749071121, + -0.11630301922559738, + 0.0037630535662174225, + 0.050034526735544205, + -0.04498978704214096, + -0.02551146224141121, + 0.09027744829654694, + 0.0293334499001503, + 0.03520354628562927, + -0.02103339321911335, + -0.0888897180557251, + 0.00338873453438282, + 0.04604913294315338, + 0.06833773851394653, + -0.005775232799351215, + 0.00189307052642107, + -0.004502268508076668, + 0.04314936324954033, + 0.05591220408678055, + 0.06444937735795975, + 0.0380018949508667, + -0.03494517505168915, + -0.06984288990497589, + 0.008918458595871925, + 0.10586248338222504, + -0.007336929440498352, + -0.06716549396514893, + -0.056028276681900024, + -0.002254173159599304, + -0.03827476128935814, + 0.006087338551878929, + 0.01722545549273491, + 0.037802811712026596, + 0.053151801228523254, + -0.013767322525382042, + -0.10574370622634888, + -0.046843286603689194, + 0.04101041331887245, + -0.06096049025654793, + -0.009861629456281662, + -0.041982538998126984, + 0.026280207559466362, + 0.10085171461105347, + 0.005654484033584595, + 0.03152710199356079, + -0.02600701153278351, + -0.03461811691522598, + -0.0877743661403656, + -0.0573757141828537, + -0.032806240022182465, + 0.019656050950288773, + -0.040631845593452454, + 0.024713240563869476, + -0.06452464312314987, + 0.06095213443040848, + -0.031063474714756012, + 0.09285181760787964, + 0.013319146819412708, + -0.06253103911876678, + -0.08947643637657166, + -0.0007865540683269501, + -0.04162108525633812, + 0.05814853683114052, + 0.05279542878270149, + 0.010547339916229248, + 0.021966557949781418, + -0.08115498721599579, + 0.07450666278600693, + 0.062321167439222336, + -0.05725353956222534, + -0.06883177161216736, + -0.037378374487161636, + 0.006283266469836235, + 0.026729024946689606, + -0.01295035146176815, + 0.014990851283073425, + 0.026568707078695297, + 0.016074951738119125, + -0.013926400803029537, + 0.06668197363615036, + 0.08498382568359375, + 0.04286962375044823, + -0.07782401889562607 + ] + }, + "p245_162.wav": { + "name": "p245", + "embedding": [ + 0.04829081892967224, + 0.07129817456007004, + 0.051060669124126434, + 0.01499593909829855, + 0.006851959973573685, + -0.03260171040892601, + -0.08099651336669922, + 0.0637405589222908, + 0.042777325958013535, + 0.07052373886108398, + -0.1430099606513977, + 0.07106330990791321, + -0.08491027355194092, + -0.10734517872333527, + -0.0011229310184717178, + 0.0048606786876916885, + -0.0260935015976429, + 0.004033581353724003, + 0.0005641123279929161, + -0.030605744570493698, + 0.024690553545951843, + 0.002459196373820305, + 0.063155397772789, + -0.03677212446928024, + -0.020689982920885086, + 0.061141762882471085, + 0.01590825244784355, + 0.01885281503200531, + 0.01796097308397293, + -0.014633886516094208, + 0.0576229952275753, + -0.004206769168376923, + -0.004706941545009613, + 0.03355146571993828, + 0.044683653861284256, + 0.04711952432990074, + -0.031321462243795395, + 0.01808738335967064, + -0.011247927322983742, + 0.03334259241819382, + -0.05550412833690643, + 0.02937045320868492, + 0.01106729544699192, + -0.06507216393947601, + 0.05344980210065842, + 0.03527987003326416, + -0.01651758700609207, + -0.010242031887173653, + -0.1056196391582489, + 0.07300670444965363, + -0.00381536316126585, + 0.05724401772022247, + -0.07236778736114502, + 0.008820079267024994, + 0.06905412673950195, + -0.027067359536886215, + -0.06065972149372101, + -0.002367055043578148, + 0.0663047507405281, + 0.05490785464644432, + -0.057445064187049866, + -0.04136288911104202, + -0.015054792165756226, + -0.009747395291924477, + 0.019799938425421715, + 0.05514756962656975, + 0.09970948100090027, + 0.07663170993328094, + -0.001820526085793972, + 0.012564287520945072, + 0.04491446539759636, + 0.030097443610429764, + 0.07451489567756653, + 0.003090151585638523, + -0.025342805311083794, + -0.01995203085243702, + -0.018643762916326523, + 0.021785348653793335, + 0.029633793979883194, + -0.03783007711172104, + -0.005959200672805309, + -0.05608599632978439, + 0.030384628102183342, + -0.020527375862002373, + -0.024479135870933533, + 0.0070673758164048195, + 0.04662042483687401, + 0.0055808331817388535, + 0.05391581356525421, + 0.006396042183041573, + -0.05223555862903595, + 0.016951095312833786, + -0.04365228861570358, + -0.06470535695552826, + -0.06035321578383446, + -0.04102332144975662, + 0.05799346789717674, + 0.04061641916632652, + 0.05916895717382431, + 0.03652959316968918, + 0.08606840670108795, + 0.01245332695543766, + 0.01622013933956623, + -0.007563130930066109, + -0.07510185986757278, + 0.04551553726196289, + 0.07953262329101562, + -0.03560539335012436, + 0.01461092010140419, + -0.02374665066599846, + 0.017668411135673523, + 0.04932129383087158, + -0.03196987882256508, + 0.0005330704152584076, + -0.0102433105930686, + 0.0466730110347271, + 0.03221350535750389, + 0.06516797095537186, + -0.013123176991939545, + 0.014387490227818489, + 0.14503583312034607, + -0.07748457789421082, + -0.021284718066453934, + -0.016460951417684555, + -0.00297079561278224, + -0.045399948954582214, + 0.07853630185127258, + 0.022576481103897095, + 0.03634403645992279, + 0.02891157940030098, + 0.04597816243767738, + -6.0051679611206055e-06, + 0.007174585945904255, + -0.07001560181379318, + -0.0062933992594480515, + 0.033886175602674484, + -0.049763910472393036, + -0.0002592746168375015, + 0.08288367092609406, + 0.044630762189626694, + 0.07149235904216766, + 0.08638546615839005, + -0.03478264436125755, + -0.058708563446998596, + 0.022461488842964172, + 0.052463121712207794, + 0.013278926722705364, + -0.030438873916864395, + -0.06200844794511795, + -0.050558045506477356, + -0.009217949584126472, + 0.07866780459880829, + -0.005517421755939722, + 0.05016082525253296, + 0.006720272824168205, + 0.013659686781466007, + 0.08834490180015564, + 0.015174908563494682, + -0.03221818804740906, + -0.07967913150787354, + -0.08492235839366913, + -0.042138565331697464, + 0.011063575744628906, + -0.16297471523284912, + -0.059360262006521225, + -0.0707269161939621, + 0.04095064103603363, + -0.019250744953751564, + 0.007106492295861244, + 0.03798842430114746, + 0.0003156587481498718, + -0.0002084793522953987, + 0.03658463805913925, + 0.012920170091092587, + -0.015694666653871536, + -0.12953589856624603, + 0.031466078013181686, + -0.015922950580716133, + 0.01862953044474125, + 0.03950270265340805, + -0.03379764035344124, + 0.0347873829305172, + -0.026543226093053818, + -0.0705251470208168, + -0.04750291630625725, + 0.06966233253479004, + -0.03216658532619476, + -0.007991489954292774, + 0.028201598674058914, + 0.016452794894576073, + -0.0805661603808403, + 0.05922037363052368, + -0.001249874010682106, + 0.09122666716575623, + -0.0651148334145546, + 0.022558391094207764, + -0.008464845828711987, + 0.0015021003782749176, + 0.085782989859581, + -0.0171499066054821, + -0.07387082278728485, + -0.08045917749404907, + -0.024955278262495995, + 0.04449775815010071, + -0.016574623063206673, + -0.03539040684700012, + -0.03342164307832718, + -0.02457502856850624, + -0.01841406151652336, + -0.06822459399700165, + -0.031038597226142883, + 0.028844032436609268, + -0.012666555121541023, + -0.08779608458280563, + 0.030437305569648743, + -0.03140716254711151, + -0.009308185428380966, + 0.016618382185697556, + 0.04579534754157066, + -0.021695084869861603, + -0.05439550429582596, + -0.04313071072101593, + 0.03656603395938873, + 0.061044517904520035, + 0.048750195652246475, + -0.07004205137491226, + -0.08202021569013596, + 0.030084650963544846, + 0.010904965922236443, + 0.0544193834066391, + -0.007780302315950394, + -0.01956063136458397, + 0.038042858242988586, + -0.05090366303920746, + -0.021977724507451057, + 0.026563208550214767, + 0.046450383961200714, + -0.003090105950832367, + 0.01573701575398445, + -0.02198765240609646, + 0.08512962609529495, + 0.027058618143200874, + -7.81303970143199e-06, + -0.022902492433786392, + -0.06274542212486267, + -0.061719294637441635, + -0.059388771653175354, + -0.05725156143307686, + -0.05289582535624504, + 0.031797170639038086, + -0.05301262065768242, + 0.05503222346305847, + 0.0015455090906471014, + 0.09750083088874817, + 0.010077114216983318, + -0.01228514313697815 + ] + }, + "p245_179.wav": { + "name": "p245", + "embedding": [ + 0.030571645125746727, + 0.08619459718465805, + -0.016192864626646042, + 0.031087905168533325, + -0.057278215885162354, + 0.07416775077581406, + -0.09019750356674194, + 0.10113927721977234, + -0.060720138251781464, + 0.1361154019832611, + -0.09812057018280029, + 0.12131239473819733, + -0.04670654982328415, + -0.17017166316509247, + -0.02837412618100643, + 0.058825891464948654, + -0.034396205097436905, + 0.0024779802188277245, + -0.05535587668418884, + -0.024263184517621994, + 0.04062965139746666, + 0.02393612638115883, + 0.04757293313741684, + -0.020466435700654984, + 0.01712745800614357, + 0.07184048742055893, + -0.0002682122285477817, + 0.04832533001899719, + 0.007551028858870268, + -0.07667022198438644, + -0.058858178555965424, + 0.10712940990924835, + -0.04223278909921646, + 0.019811954349279404, + 0.05423697084188461, + 0.011132519692182541, + -0.003056335262954235, + -0.0478329062461853, + -0.0034378503914922476, + -0.011444422416388988, + -0.044155582785606384, + 0.05112019181251526, + -0.006352514028549194, + -0.023807942867279053, + 0.05234072729945183, + 0.01447363942861557, + -0.028755847364664078, + -0.027758397161960602, + -0.09399205446243286, + 0.13870251178741455, + 0.0579192154109478, + -0.013906346634030342, + -0.06775277853012085, + -0.0807543396949768, + 0.10503064841032028, + -0.01718464121222496, + -0.12325428426265717, + -0.0415889248251915, + 0.07923341542482376, + 0.1536082923412323, + -0.02759230136871338, + -0.034631647169589996, + 0.013573359698057175, + 0.09162097424268723, + 0.018155556172132492, + 0.10615106672048569, + 0.06383427232503891, + 0.09351585805416107, + -0.004068485461175442, + 0.032757192850112915, + 0.04195607453584671, + 0.08625063300132751, + 0.07285959273576736, + -0.007157584186643362, + 0.03145573288202286, + -0.0011888457229360938, + -0.02785051427781582, + 0.025799527764320374, + -0.04441903159022331, + -0.031139878556132317, + -0.01888282783329487, + -0.010782881639897823, + 0.020020633935928345, + -0.04007243737578392, + -0.018312649801373482, + 0.05557441711425781, + 0.04506079480051994, + -0.015550896525382996, + 0.052601590752601624, + 0.03852296993136406, + -0.02566887065768242, + 0.055641066282987595, + -0.07030117511749268, + -0.0899798721075058, + 0.014209027402102947, + 0.01588517427444458, + -0.0013428847305476665, + 0.061403971165418625, + 0.031709328293800354, + -0.016449660062789917, + 0.0992315411567688, + 0.04493049904704094, + 0.0154700493440032, + 0.03664861619472504, + -0.0863228440284729, + 0.11838136613368988, + 0.11464715003967285, + -0.015835151076316833, + 0.030355069786310196, + -0.037218958139419556, + 0.08494094014167786, + 0.09600099176168442, + -0.13206098973751068, + -0.07194055616855621, + -0.027682622894644737, + -0.03497975692152977, + -0.01695835217833519, + 0.08218910545110703, + -0.022721877321600914, + 0.010010723024606705, + 0.11872994154691696, + -0.1014866828918457, + -0.06436829268932343, + -0.021778110414743423, + 0.018398024141788483, + -0.07755455374717712, + 0.04881449043750763, + 0.036511510610580444, + 0.017951201647520065, + 0.004995942115783691, + 0.08541607856750488, + -0.029691128060221672, + 0.0033705513924360275, + 0.036358386278152466, + -0.07027767598628998, + -0.008424963802099228, + -0.05272942781448364, + -0.012739395722746849, + 0.08978040516376495, + 0.05215379595756531, + 0.05632282793521881, + -0.018879681825637817, + -0.016407718881964684, + -0.10121433436870575, + -0.0013988418504595757, + 0.053860437124967575, + 0.044518791139125824, + -0.006905117072165012, + -0.005888267885893583, + -0.030689379200339317, + -0.08670379966497421, + 0.051256321370601654, + -0.025720639154314995, + 0.0827542170882225, + -0.0174130667001009, + 0.0017660766607150435, + 0.10364135354757309, + 0.02007053606212139, + -0.023596424609422684, + -0.08628662675619125, + -0.03753092885017395, + 0.015446661040186882, + 0.03851909190416336, + -0.09172306954860687, + -0.08230212330818176, + -0.006774085573852062, + 0.02032453566789627, + -0.021618491038680077, + 0.04923762381076813, + 0.054791249334812164, + 0.018143504858016968, + 0.027777664363384247, + -0.05341195687651634, + -0.003582623554393649, + -0.10147850960493088, + -0.058054789900779724, + -0.0103674391284585, + -0.06462931632995605, + -0.0018470166251063347, + 0.0738021582365036, + 0.0049993619322776794, + 0.012638866901397705, + -0.01818142831325531, + -0.06478318572044373, + -0.09603165090084076, + 0.06740697473287582, + 0.04037811607122421, + 0.02259417250752449, + 0.05606265366077423, + 0.04504580423235893, + -0.048457350581884384, + 0.07444643974304199, + 0.06457282602787018, + 0.10059687495231628, + -0.024822916835546494, + 0.02699822001159191, + -0.07105910778045654, + 0.07941639423370361, + 0.10358962416648865, + -0.0788687989115715, + -0.10156002640724182, + -0.04550536721944809, + -0.059704940766096115, + 0.07852086424827576, + -0.04858074709773064, + -0.034332044422626495, + 0.040348827838897705, + -0.022306490689516068, + -0.09576012194156647, + -0.08172659575939178, + 0.10498189181089401, + -0.044428423047065735, + -0.023250237107276917, + -0.06271548569202423, + 0.04286088049411774, + 0.05300229415297508, + 0.030528580769896507, + -0.03509475290775299, + 0.037150751799345016, + 0.0760376825928688, + -0.06404687464237213, + -0.0011810499709099531, + 0.04259870573878288, + 0.013071316294372082, + -0.061304450035095215, + -0.005143480841070414, + -0.08300714194774628, + 0.046151161193847656, + -0.05058329552412033, + 0.15314170718193054, + -0.02044074609875679, + -0.04971642792224884, + -0.05920543521642685, + 0.06445460766553879, + -0.026811551302671432, + 0.029481317847967148, + 0.05114942789077759, + 0.06528611481189728, + 0.018429845571517944, + -0.08800383657217026, + 0.12919296324253082, + 0.016551926732063293, + -0.02735801599919796, + -0.05854961276054382, + -0.0559699647128582, + -0.05918307229876518, + 0.0008963110740296543, + -0.009198951534926891, + -0.09892384707927704, + 0.004933548625558615, + 0.009357663802802563, + 0.0010615966748446226, + 0.04635327309370041, + 0.13274195790290833, + 0.0661928653717041, + -0.07634106278419495 + ] + }, + "p245_151.wav": { + "name": "p245", + "embedding": [ + 0.05338154733181, + 0.07692953944206238, + -0.014915263280272484, + 0.017773957923054695, + -0.06250782310962677, + 0.07432658970355988, + -0.1349685788154602, + 0.126249760389328, + -0.04604538530111313, + 0.15463483333587646, + -0.053544916212558746, + 0.10725729167461395, + -0.030185209587216377, + -0.18928208947181702, + -0.010301225818693638, + 0.06485643982887268, + -0.057404763996601105, + -0.03540218621492386, + -0.07023858278989792, + -0.027816802263259888, + 0.025902029126882553, + 0.047697313129901886, + 0.0183144211769104, + -0.00888589583337307, + 0.032714106142520905, + 0.07206510752439499, + -0.019219059497117996, + 0.02560625970363617, + -0.021043477579951286, + -0.0932825356721878, + -0.03926796466112137, + 0.0931343212723732, + -0.055780746042728424, + 0.009114207699894905, + 0.03935887664556503, + -0.010610794648528099, + -0.002836352214217186, + -0.04435507953166962, + -0.02503439411520958, + 0.019594432786107063, + -0.040795788168907166, + 0.07587078213691711, + 0.016821514815092087, + -0.0006884306785650551, + 0.0466751754283905, + 0.014027215540409088, + -0.02387208491563797, + -0.05771256238222122, + -0.10067372769117355, + 0.17035824060440063, + 0.06818369030952454, + -0.0034879762679338455, + -0.060495488345623016, + -0.07923023402690887, + 0.09581132233142853, + -0.03183387219905853, + -0.134304940700531, + -0.05645330250263214, + 0.07098782062530518, + 0.1509125530719757, + -0.04128161072731018, + -0.04748644679784775, + 0.027616092935204506, + 0.09805630147457123, + 0.049848735332489014, + 0.09751050174236298, + 0.06945262849330902, + 0.0908101499080658, + -0.01977325975894928, + 0.006688814610242844, + 0.061421941965818405, + 0.05686631053686142, + 0.08493521809577942, + 0.0004338165745139122, + 0.042795952409505844, + -0.0010274001397192478, + -0.011535627767443657, + -0.01253002043813467, + -0.015385286882519722, + -0.0053469715639948845, + 0.0023587404284626245, + 0.015199463814496994, + 0.021320056170225143, + 0.008909085765480995, + -0.022398579865694046, + 0.04738030955195427, + 0.04108746349811554, + -0.012559186667203903, + 0.06764794886112213, + 0.030138878151774406, + 0.016081376001238823, + 0.07339587062597275, + -0.0819292888045311, + -0.06931192427873611, + 0.04381158575415611, + 0.017003946006298065, + 0.011945467442274094, + 0.04491691291332245, + 0.025100961327552795, + -0.01912400871515274, + 0.11456035822629929, + 0.038164470344781876, + 0.005056596361100674, + 0.03075678087770939, + -0.10413150489330292, + 0.12567977607250214, + 0.08012968301773071, + -0.030693447217345238, + 0.050216399133205414, + -0.03954636678099632, + 0.07639139890670776, + 0.06447548419237137, + -0.13578617572784424, + -0.07799884676933289, + 0.020948413759469986, + -0.004169312305748463, + -0.020297545939683914, + 0.12309718877077103, + -0.0006718793883919716, + 0.029021989554166794, + 0.12414532899856567, + -0.11150306463241577, + -0.03991929814219475, + 0.006012200377881527, + 0.04379991441965103, + -0.10680531710386276, + 0.050182685256004333, + 0.05441530421376228, + -0.01033379603177309, + 0.03289240226149559, + 0.09933243691921234, + -0.016157232224941254, + 0.007249072194099426, + -0.004718083888292313, + -0.03527181223034859, + 0.0015940385637804866, + -0.02847292274236679, + -0.01587466150522232, + 0.058956194669008255, + 0.02762434259057045, + 0.04672842472791672, + -0.020860277116298676, + -0.04069723188877106, + -0.13734041154384613, + 0.02481251023709774, + 0.02375340461730957, + 0.0650215893983841, + -0.01844874769449234, + 0.012373916804790497, + -0.03875350207090378, + -0.07846923172473907, + 0.02957528829574585, + -0.015639083459973335, + 0.07587534934282303, + -0.018191874027252197, + -0.0012868910562247038, + 0.10822582244873047, + 0.041814275085926056, + 0.004464832134544849, + -0.05965173989534378, + -0.04472074657678604, + 0.006731791887432337, + 0.05795472860336304, + -0.0859435573220253, + -0.0651235356926918, + -0.00693739578127861, + 0.039246946573257446, + -0.0027100276201963425, + 0.06693608313798904, + 0.06515911221504211, + 0.02362545020878315, + 0.022761203348636627, + -0.05538514256477356, + 0.0250663124024868, + -0.08307922631502151, + -0.08149533718824387, + -0.0006556776352226734, + -0.039784662425518036, + -0.02876432053744793, + 0.08780990540981293, + 0.002508232370018959, + 0.030806537717580795, + -0.0612480491399765, + -0.07779560983181, + -0.08647386729717255, + 0.0672992467880249, + 0.06014605611562729, + -0.01298338733613491, + 0.029198117554187775, + 0.049173541367053986, + -0.03662455826997757, + 0.059224989265203476, + 0.06037263572216034, + 0.13589826226234436, + -0.023976674303412437, + 0.04590022563934326, + -0.062300749123096466, + 0.09153693914413452, + 0.07727071642875671, + -0.06391610205173492, + -0.08505367487668991, + -0.020878100767731667, + -0.0698758065700531, + 0.053322214633226395, + -0.032328225672245026, + 0.0019058722537010908, + 0.042897243052721024, + 0.0021038458216935396, + -0.09081218391656876, + -0.08085671067237854, + 0.08750441670417786, + -0.04706183448433876, + -0.01079383585602045, + -0.07860804349184036, + 0.05731835216283798, + 0.07274751365184784, + 0.05638352781534195, + -0.034406356513500214, + -0.003083118936046958, + 0.047633200883865356, + -0.03546527400612831, + 0.025678370147943497, + 0.06251882761716843, + 0.030412035062909126, + -0.08691278100013733, + -0.013631895184516907, + -0.08894501626491547, + 0.05345285311341286, + -0.03952764719724655, + 0.1526717245578766, + -0.010541461408138275, + -0.03926369547843933, + -0.06898391991853714, + 0.04631609842181206, + -0.026039013639092445, + 0.05616597831249237, + 0.03304118663072586, + 0.070219486951828, + 0.08123277127742767, + -0.03954586759209633, + 0.09585540741682053, + 0.045004505664110184, + -0.03133155405521393, + -0.04682401195168495, + -0.05581985414028168, + -0.05603248253464699, + 0.024348953738808632, + -0.006897169630974531, + -0.1039557158946991, + 0.0009472938254475594, + 0.026775918900966644, + 0.0035683715250343084, + 0.05396405979990959, + 0.13006016612052917, + 0.04612473398447037, + -0.12077564001083374 + ] + }, + "p245_047.wav": { + "name": "p245", + "embedding": [ + 0.06592823565006256, + 0.08634445816278458, + -0.05203823000192642, + 0.022983569651842117, + -0.00553181953728199, + 0.04818369075655937, + -0.1382196545600891, + 0.100897878408432, + -0.02517542988061905, + 0.12603816390037537, + -0.07611290365457535, + 0.11310906708240509, + 0.002127218060195446, + -0.12196719646453857, + -0.04750456660985947, + 0.0340161994099617, + -0.022115785628557205, + -0.005590872839093208, + -0.021228544414043427, + -0.005754104815423489, + 0.04956686869263649, + 0.031655631959438324, + 0.01635877788066864, + -0.02284124679863453, + 0.012919880449771881, + 0.05458870902657509, + 0.030053364112973213, + 0.035363420844078064, + 0.010314006358385086, + 0.004139812663197517, + 0.018835382536053658, + 0.10752004384994507, + -0.024731086567044258, + 0.021443117409944534, + 0.0341707319021225, + 0.011841820552945137, + -0.025024110451340675, + -0.06894447654485703, + 0.007605442777276039, + 0.006737133488059044, + -0.02988891862332821, + 0.07450156658887863, + 0.04596211761236191, + -0.012590151280164719, + 0.01613054983317852, + -0.0033343154937028885, + -0.01497122272849083, + -0.05013280361890793, + -0.09199265390634537, + 0.16674596071243286, + 0.05915763974189758, + 0.030991625040769577, + -0.09406575560569763, + -0.009818894788622856, + 0.09341020882129669, + 0.020607685670256615, + -0.041559766978025436, + -0.05375760793685913, + 0.049641311168670654, + 0.15271402895450592, + -0.017432039603590965, + -0.043175965547561646, + 0.03913137689232826, + 0.12286661565303802, + 0.03423837572336197, + 0.05694129690527916, + 0.10740529000759125, + 0.09109769761562347, + 0.0035390518605709076, + 0.038384366780519485, + 0.033550769090652466, + 0.07336247712373734, + 0.03583502024412155, + -0.030067026615142822, + 0.029840033501386642, + -0.024235369637608528, + -0.019593534991145134, + -0.0034263969864696264, + -0.02303505316376686, + -0.06312770396471024, + -0.020670877769589424, + 0.002357965800911188, + 0.01862325705587864, + 0.06174740195274353, + -0.041777193546295166, + 0.028745215386152267, + 0.04310256987810135, + -0.07678806781768799, + 0.03418527916073799, + 0.050089623779058456, + 0.01349277887493372, + 0.002735711634159088, + -0.05580076947808266, + -0.11501264572143555, + 0.033295489847660065, + -0.006879905238747597, + 0.02203415147960186, + 0.06237472593784332, + 0.05400538444519043, + 0.011446223594248295, + 0.07700318843126297, + 0.021614382043480873, + -0.022246181964874268, + -0.024690061807632446, + -0.050893597304821014, + 0.116461381316185, + 0.11012955009937286, + -0.02678968757390976, + 0.025255849584937096, + -0.059779297560453415, + 0.01227518729865551, + 0.06082569435238838, + -0.11335492134094238, + -0.06902417540550232, + 0.03451678156852722, + 0.02915201708674431, + 0.01753680780529976, + 0.10128960013389587, + 0.006060037761926651, + 0.01746409572660923, + 0.065096415579319, + -0.056160781532526016, + -0.0627235397696495, + -0.07041087746620178, + 0.04766854643821716, + -0.06201068311929703, + 0.05851907283067703, + 0.045629046857357025, + 0.011815855279564857, + -0.05049819126725197, + 0.07386770844459534, + -0.0033091730438172817, + -0.00961120706051588, + -0.019955364987254143, + 0.028728440403938293, + 0.06521470099687576, + -0.03563466668128967, + 0.007318600080907345, + -0.003750898875296116, + 0.026417143642902374, + 0.03748757019639015, + 0.026447271928191185, + -0.01050395518541336, + -0.08193591237068176, + 0.009270614013075829, + 0.06918269395828247, + 0.056311193853616714, + -0.03413223475217819, + -0.05644124746322632, + -0.02421751618385315, + -0.04152216762304306, + -0.0011794923339039087, + -0.02481546625494957, + 0.06741110980510712, + 0.024912703782320023, + 0.023557016626000404, + 0.10761044919490814, + -0.0313621424138546, + 0.014151579700410366, + -0.01747249811887741, + 0.03744783252477646, + 0.03733870014548302, + 0.027481097728013992, + -0.06134762614965439, + -0.07908773422241211, + -0.010789117775857449, + 0.009928219020366669, + -0.019895588979125023, + 0.012810485437512398, + 0.017583327367901802, + -0.006856146268546581, + 0.024190029129385948, + -0.07462447881698608, + -0.010698225349187851, + -0.1276930570602417, + -0.028874143958091736, + -0.01974429003894329, + -0.04464239254593849, + -0.00983351655304432, + 0.06675009429454803, + 0.037056177854537964, + 0.04110782593488693, + -0.013327017426490784, + -0.0669906735420227, + -0.04840049147605896, + 0.06413404643535614, + 0.09464256465435028, + -0.01924043893814087, + 0.0026499461382627487, + 0.027335720136761665, + 0.03339831903576851, + 0.012847086414694786, + 0.062497250735759735, + 0.06524231284856796, + -0.03510156273841858, + -0.05481558293104172, + -0.060433171689510345, + 0.0923689529299736, + 0.08497798442840576, + -0.10058562457561493, + -0.06161234527826309, + -0.03219972923398018, + -0.06334944814443588, + -0.0018226122483611107, + -0.03567150980234146, + 0.01452193409204483, + 0.044877488166093826, + -0.038239486515522, + -0.12325076758861542, + -0.10446220636367798, + 0.0528663769364357, + -0.06480579078197479, + 0.005558964796364307, + -0.0653512179851532, + 0.044351108372211456, + 0.08800370991230011, + 0.015784073621034622, + -0.025861406698822975, + -0.00241960515268147, + -0.010029720142483711, + -0.06049330532550812, + -0.01963091269135475, + -0.012720050290226936, + 0.026492467150092125, + -0.1071920320391655, + 0.0017960708355531096, + -0.05885661393404007, + 0.07329477369785309, + -0.07474247366189957, + 0.11086786538362503, + -0.0019602221436798573, + -0.06511756032705307, + -0.09652253985404968, + 0.018370740115642548, + -0.01414383202791214, + 0.05176272243261337, + 0.0293699000030756, + 0.032051242887973785, + 0.0016629381570965052, + -0.10479559749364853, + 0.09490065276622772, + 0.06754730641841888, + -0.00018845684826374054, + -0.10491541028022766, + -0.031102946028113365, + -0.009768453426659107, + 0.0564497634768486, + 0.016670752316713333, + -0.014845199882984161, + -0.015359252691268921, + 0.031931206583976746, + -0.019525855779647827, + 0.07610532641410828, + 0.09976024925708771, + 0.04823916405439377, + -0.09098787605762482 + ] + }, + "p245_387.wav": { + "name": "p245", + "embedding": [ + 0.05354906618595123, + 0.09765110909938812, + -0.05324000120162964, + 0.01336327288299799, + 0.0005212724208831787, + 0.04374198615550995, + -0.17443504929542542, + 0.11053217947483063, + -0.03025122359395027, + 0.14385399222373962, + -0.03728903830051422, + 0.09514616429805756, + -0.04378384351730347, + -0.13015100359916687, + -0.020348254591226578, + 0.0590820387005806, + -0.020964570343494415, + -0.008310393430292606, + -0.013095324859023094, + -0.005703997798264027, + 0.0466109998524189, + 0.02175387553870678, + 0.01760837994515896, + -0.018259473145008087, + -0.02049732580780983, + 0.06909360736608505, + -0.016545677557587624, + 0.01709672249853611, + -0.009089938364923, + 0.0025545363314449787, + 0.004110085777938366, + 0.0888431966304779, + 0.0026269257068634033, + 0.006760727148503065, + 0.030522389337420464, + 0.03299310430884361, + -0.03321494162082672, + -0.05414698272943497, + 0.024370180442929268, + -0.0019585900008678436, + -0.037366438657045364, + 0.04417842999100685, + 0.0027837734669446945, + -0.025961261242628098, + 0.05526050552725792, + -0.06428706645965576, + -0.02854008600115776, + -0.013471122831106186, + -0.06524255126714706, + 0.13522595167160034, + 0.10719707608222961, + 0.027081046253442764, + -0.06699232757091522, + 0.0013939402997493744, + 0.09225818514823914, + 0.013461964204907417, + -0.08650701493024826, + -0.052536047995090485, + 0.038395099341869354, + 0.15935875475406647, + -0.023923469707369804, + -0.02494906261563301, + 0.03567003458738327, + 0.11294953525066376, + 0.020205214619636536, + 0.07185454666614532, + 0.09708480536937714, + 0.07319282740354538, + 0.00600969884544611, + -0.021706517785787582, + 0.009677791967988014, + 0.05809071660041809, + 0.06017580255866051, + -0.007883155718445778, + 0.03415533900260925, + -0.03268399089574814, + -0.02937799133360386, + 2.344651147723198e-05, + -0.02055910788476467, + -0.08310361951589584, + -0.03602138161659241, + -0.009546364657580853, + -0.019303947687149048, + 0.055985722690820694, + -0.016760921105742455, + -0.008992908522486687, + 0.0577261745929718, + -0.0758432000875473, + 0.03576980531215668, + 0.04526446759700775, + 0.021973520517349243, + 0.026411227881908417, + -0.05568648874759674, + -0.09455728530883789, + 0.050509948283433914, + 0.002184647135436535, + 0.013582345098257065, + 0.04680690914392471, + 0.0325813964009285, + 0.016247186809778214, + 0.07681549340486526, + 0.013082959689199924, + -0.009824356995522976, + -0.0007351897656917572, + -0.06217750906944275, + 0.10632684826850891, + 0.10209167748689651, + -0.04193472862243652, + 0.040388159453868866, + -0.04647144675254822, + -0.0163577813655138, + 0.04564157873392105, + -0.08820956200361252, + -0.04130534455180168, + 0.056680403649806976, + 0.053834687918424606, + 0.02340078353881836, + 0.10123381018638611, + 0.05094054341316223, + 0.02665385603904724, + 0.0934397503733635, + -0.06041048839688301, + -0.08739293366670609, + -0.0709250420331955, + 0.07208696007728577, + -0.05781517177820206, + 0.07073374092578888, + 0.0641392394900322, + 0.02788388356566429, + -0.011555745266377926, + 0.05087069422006607, + 0.01812530681490898, + 0.006914706900715828, + -0.03490523621439934, + -0.024205069988965988, + 0.01688438653945923, + -0.05153709277510643, + 0.017614539712667465, + 0.005037687718868256, + 0.004737320356070995, + 0.04738428071141243, + 0.0252805408090353, + 0.009697499684989452, + -0.09615115076303482, + -0.02097797393798828, + 0.07822176069021225, + 0.045730650424957275, + -0.029787501320242882, + -0.04409850388765335, + -0.011932299472391605, + -0.043656785041093826, + -0.01956712268292904, + -0.07777930051088333, + 0.08318998664617538, + -0.004047340247780085, + 0.021316220983862877, + 0.08009546250104904, + -0.03045850247144699, + 0.019091876223683357, + -0.02928493730723858, + 0.021585237234830856, + 0.012359283864498138, + 0.01861005462706089, + -0.09552836418151855, + -0.08658338338136673, + -0.023134730756282806, + 0.032868642359972, + 0.004126129671931267, + 0.042933389544487, + 0.04229239374399185, + -0.00515346135944128, + 0.006446721963584423, + -0.03709350526332855, + 0.013891741633415222, + -0.09959129989147186, + -0.05918333679437637, + -0.0018269403371959925, + -0.035192832350730896, + 0.0006221001967787743, + 0.07590551674365997, + 0.026714149862527847, + 0.03314167261123657, + -0.04623878002166748, + -0.04831302911043167, + -0.07755360007286072, + 0.05093060061335564, + 0.07633493840694427, + -0.02667674794793129, + 0.018942879512906075, + 0.03513457626104355, + 0.004706918261945248, + 0.01301814615726471, + 0.057114146649837494, + 0.09225666522979736, + -0.02478555589914322, + -0.01479764562100172, + -0.10062605142593384, + 0.03879788890480995, + 0.13930216431617737, + -0.08616366982460022, + -0.08117936551570892, + -0.04904048517346382, + -0.07912970334291458, + -0.0022717141546308994, + -0.07979755103588104, + 0.010628344491124153, + 0.040879394859075546, + -0.04890758544206619, + -0.11566022038459778, + -0.125263050198555, + 0.06886452436447144, + -0.045262426137924194, + 0.010862018913030624, + -0.057173795998096466, + 0.0657719150185585, + 0.0443018302321434, + 0.012802252545952797, + -0.07093697786331177, + 0.00039125699549913406, + 0.021834442391991615, + -0.027714937925338745, + 0.012332821264863014, + 0.008706901222467422, + 0.050707317888736725, + -0.12938737869262695, + 0.013751399703323841, + -0.06924933940172195, + 0.07748182117938995, + -0.0754193365573883, + 0.11137852072715759, + 0.022869590669870377, + -0.028854383155703545, + -0.09795855730772018, + 0.03347766026854515, + 0.016184503212571144, + 0.041924718767404556, + -0.004175333306193352, + 0.053666599094867706, + 0.017667608335614204, + -0.08689325302839279, + 0.07405539602041245, + 0.04489438980817795, + 0.01188390702009201, + -0.099245086312294, + -0.02994922548532486, + -0.036934610456228256, + 0.05011643469333649, + -0.020317981019616127, + -0.036633025854825974, + -0.03258639946579933, + -0.0011051604524254799, + 0.02551230788230896, + 0.05911894142627716, + 0.08626800775527954, + 0.0274351816624403, + -0.10613103955984116 + ] + }, + "p245_370.wav": { + "name": "p245", + "embedding": [ + 0.06358363479375839, + 0.052086930721998215, + -0.033375632017850876, + 0.024352174252271652, + -0.029548410326242447, + 0.04322075471282005, + -0.12358683347702026, + 0.0980907678604126, + -0.028239868581295013, + 0.09883289039134979, + -0.06776271760463715, + 0.10071702301502228, + -0.003912396728992462, + -0.13626070320606232, + -0.036885831505060196, + 0.049305807799100876, + -0.029518790543079376, + -0.02014755643904209, + -0.04283095523715019, + -0.0034735207445919514, + 0.034562982618808746, + 0.04898704215884209, + 0.02501325123012066, + -0.016140256077051163, + 0.003224332584068179, + 0.050173815339803696, + 0.004041686188429594, + 0.025037167593836784, + 0.010121937841176987, + -0.0007708693738095462, + -0.00936773233115673, + 0.10003810375928879, + -0.020182596519589424, + 0.008550230413675308, + 0.04188136011362076, + 0.02348760887980461, + -0.005613319575786591, + -0.0899352952837944, + -0.009353580884635448, + -0.0033507130574434996, + -0.05088331922888756, + 0.06189851090312004, + 0.0455242395401001, + -0.03018762730062008, + 0.026718024164438248, + -0.005332240369170904, + -0.022811628878116608, + -0.04764222726225853, + -0.10759177058935165, + 0.17088580131530762, + 0.043301060795784, + 0.030866894870996475, + -0.08962439745664597, + -0.02926292084157467, + 0.07840068638324738, + 0.007265242747962475, + -0.06605461984872818, + -0.05507994815707207, + 0.04273151978850365, + 0.1474609375, + 0.0053265998139977455, + -0.0353923998773098, + 0.03343440592288971, + 0.11094405502080917, + 0.038835376501083374, + 0.051008909940719604, + 0.10195668786764145, + 0.10674421489238739, + -0.0032077631913125515, + 0.03315971419215202, + 0.05357072502374649, + 0.06047172471880913, + 0.03474898263812065, + -0.012428490445017815, + 0.026341404765844345, + -0.014956079423427582, + -0.037227459251880646, + 0.015154647640883923, + -0.030725430697202682, + -0.05124049633741379, + -0.004478194285184145, + -0.0011889568995684385, + 0.01397707499563694, + 0.05128103122115135, + -0.04815045744180679, + 0.03926636651158333, + 0.046017538756132126, + -0.035012852400541306, + 0.057239383459091187, + 0.05723331496119499, + 0.011852627620100975, + 0.020283186808228493, + -0.05228623002767563, + -0.10401515662670135, + 0.011727344244718552, + 0.00226261536590755, + 0.0369267612695694, + 0.04888961836695671, + 0.03214789554476738, + -0.017729442566633224, + 0.08660130947828293, + 0.010889412835240364, + -0.0039831423200666904, + 0.0024034357629716396, + -0.07095792889595032, + 0.11455190181732178, + 0.10765324532985687, + -0.01739230751991272, + 0.011458965949714184, + -0.05707177519798279, + 0.03527267277240753, + 0.07158884406089783, + -0.09827883541584015, + -0.05695202574133873, + 0.05055902525782585, + 0.01594480313360691, + 0.025098759680986404, + 0.11537399142980576, + 0.024101069197058678, + 0.027589883655309677, + 0.08033628761768341, + -0.09245534241199493, + -0.05840960144996643, + -0.01812942698597908, + 0.02659742906689644, + -0.04826899990439415, + 0.04274073988199234, + 0.047342848032712936, + 0.009312302805483341, + -0.03238561376929283, + 0.06430177390575409, + -0.004671956412494183, + 0.013287797570228577, + -0.025483980774879456, + -0.003528903005644679, + 0.06853683292865753, + -0.018641289323568344, + -0.020502910017967224, + 0.04244101047515869, + 0.05076661705970764, + 0.028665540739893913, + 0.01829468458890915, + -0.03106623888015747, + -0.11081772297620773, + -0.0005156360566616058, + 0.07608922570943832, + 0.06021679937839508, + -0.030876431614160538, + -0.045001864433288574, + -0.046545885503292084, + -0.03892975673079491, + 0.014904765412211418, + -0.0188447292894125, + 0.05615964159369469, + 0.0101771280169487, + -0.0049799103289842606, + 0.09185302257537842, + -0.028422880917787552, + 0.016626134514808655, + -0.026544060558080673, + -0.0035445517860352993, + 0.03769306093454361, + 0.03424353152513504, + -0.049838386476039886, + -0.07820651680231094, + -0.0031218070071190596, + 0.00999393966048956, + -0.02342018485069275, + 0.007535461336374283, + 0.037368044257164, + -0.00901389867067337, + 0.01478247344493866, + -0.08844810724258423, + 0.018496345728635788, + -0.12130551040172577, + -0.028652943670749664, + 0.01603725180029869, + -0.0366351418197155, + 0.010690420866012573, + 0.08611470460891724, + 0.018213268369436264, + 0.032499413937330246, + -0.02826966904103756, + -0.08564408868551254, + -0.04284198582172394, + 0.06024631857872009, + 0.07628051936626434, + -0.011440441012382507, + 0.02643408440053463, + 0.01984279789030552, + 0.01848333515226841, + 0.013331098482012749, + 0.039503421634435654, + 0.08019526302814484, + -0.04073656350374222, + -0.04949706420302391, + -0.05718610808253288, + 0.10537546873092651, + 0.0680176317691803, + -0.07953892648220062, + -0.06308607757091522, + -0.016499940305948257, + -0.04990826174616814, + 0.0013425549259409308, + -0.033544380217790604, + 0.006573493592441082, + 0.04878033325076103, + -0.027558881789445877, + -0.1395055055618286, + -0.08631736040115356, + 0.054967280477285385, + -0.06340521574020386, + -0.00035998784005641937, + -0.07162298262119293, + 0.030102554708719254, + 0.07785527408123016, + 0.014623328112065792, + -0.03358393907546997, + -0.008013874292373657, + -0.0011572515359148383, + -0.072145015001297, + -0.026260074228048325, + -0.005862375255674124, + 0.03931247442960739, + -0.08920542895793915, + -0.0023228744976222515, + -0.061324357986450195, + 0.06155848503112793, + -0.06112359091639519, + 0.12354496121406555, + 0.007984168827533722, + -0.05936148017644882, + -0.08903499692678452, + 0.018638623878359795, + -0.01284672599285841, + 0.05320116877555847, + 0.04392097517848015, + 0.035797856748104095, + 0.010480914264917374, + -0.09665390104055405, + 0.09956544637680054, + 0.06119024008512497, + -0.021366572007536888, + -0.07915973663330078, + -0.02441607415676117, + -0.017493724822998047, + 0.04341648146510124, + -0.0002006373106269166, + -0.023859083652496338, + 0.009792476892471313, + 0.02212761901319027, + -0.015774572268128395, + 0.058409400284290314, + 0.10812409967184067, + 0.05167866498231888, + -0.09207665175199509 + ] + }, + "p245_094.wav": { + "name": "p245", + "embedding": [ + 0.036822110414505005, + 0.07242009043693542, + -0.03309670090675354, + -0.003048468381166458, + -0.04386954382061958, + -0.0069147199392318726, + -0.12519848346710205, + 0.09353595972061157, + 0.0010776873677968979, + 0.1182837188243866, + -0.04163239896297455, + 0.1122724711894989, + -0.042727746069431305, + -0.10052508860826492, + 0.0033552562817931175, + 0.03179413080215454, + -0.04065268486738205, + -0.018443435430526733, + 0.013175498694181442, + -0.0526496022939682, + 0.028364267200231552, + 0.025354256853461266, + 0.048551734536886215, + -0.048213206231594086, + 0.015067324042320251, + 0.08254222571849823, + 0.007271159440279007, + -0.009745016694068909, + -0.006072564981877804, + -0.05856800079345703, + 0.025633469223976135, + 0.03369980677962303, + -0.020547989755868912, + 0.028014807030558586, + 0.021404704079031944, + 0.007647130638360977, + -0.018102232366800308, + -0.02085983008146286, + 0.020786212757229805, + 0.03888123482465744, + -0.041176121681928635, + 0.07970619201660156, + 0.025005556643009186, + -0.043162617832422256, + 0.04116996377706528, + -0.052835602313280106, + -0.02516220323741436, + 0.02510622888803482, + -0.06655316054821014, + 0.13633355498313904, + 0.04500214383006096, + 0.047181203961372375, + -0.077740877866745, + 0.004249364137649536, + 0.06375887989997864, + 0.006304305978119373, + -0.12372950464487076, + -0.02603471837937832, + 0.035960450768470764, + 0.09387969970703125, + -0.008010385558009148, + -0.04498652368783951, + 0.02632390335202217, + 0.07419561594724655, + 0.010307151824235916, + 0.02524694614112377, + 0.11624124646186829, + 0.09580099582672119, + 0.004578115418553352, + 0.0006483753677457571, + 0.026631953194737434, + 0.08535744249820709, + 0.02605813927948475, + 0.011120393872261047, + 0.009190461598336697, + -0.06851828843355179, + -0.003289947286248207, + -0.045305199921131134, + 0.003732684999704361, + -0.07966253161430359, + -0.08729877322912216, + -0.017239820212125778, + 0.011701574549078941, + 0.03995276987552643, + 0.016065631061792374, + 0.0032900068908929825, + 0.0605255551636219, + -0.05310510843992233, + 0.04639972001314163, + 0.04993167147040367, + -0.02462589181959629, + -0.006307780742645264, + -0.057300861924886703, + -0.04256671667098999, + -0.01977190002799034, + -0.002005410846322775, + 0.08204307407140732, + 0.05164267122745514, + 0.043841101229190826, + 0.06345724314451218, + 0.07971853762865067, + 0.03579944744706154, + -0.0014951155753806233, + -0.06037520244717598, + -0.06967750936746597, + 0.09940171241760254, + 0.10683947801589966, + -0.054134123027324677, + 0.044979795813560486, + -0.03446132689714432, + -0.004506383091211319, + -0.014328483492136002, + -0.05021153390407562, + -0.03431627154350281, + -0.007207631133496761, + 0.03747543692588806, + 0.030941026285290718, + 0.10742281377315521, + 0.03565647080540657, + 0.046510279178619385, + 0.09481403231620789, + -0.0695134848356247, + -0.06875143945217133, + -0.06445220857858658, + 0.05341656506061554, + -0.06355087459087372, + 0.08065932244062424, + 0.07191523164510727, + 0.022466683760285378, + 0.03860599920153618, + 0.043286219239234924, + 0.04631999135017395, + 0.04550920054316521, + -0.04700487107038498, + -0.009830931201577187, + 0.01268603652715683, + -0.00519970990717411, + 0.017201753333210945, + 0.08121289312839508, + 0.0255601704120636, + 0.09990699589252472, + 0.037457071244716644, + -0.004490953870117664, + -0.08814029395580292, + 0.014860142022371292, + 0.04880005866289139, + 0.015370822511613369, + -0.0703241229057312, + -0.05383877083659172, + 0.00047181732952594757, + -0.0644407570362091, + -0.02265036478638649, + -0.007319060154259205, + 0.07243052124977112, + -0.001426486298441887, + -0.00921764224767685, + 0.10356497764587402, + 0.02925504744052887, + -0.022865386679768562, + -0.03902352601289749, + -0.030284838750958443, + -0.011967724189162254, + 0.03957284241914749, + -0.15744337439537048, + -0.07778098434209824, + -0.0451216958463192, + 0.02714158594608307, + -0.0036962516605854034, + 0.0470903106033802, + 0.08343033492565155, + -0.00291498564183712, + 0.007713680155575275, + 0.009778233245015144, + 0.017260070890188217, + -0.0405857115983963, + -0.08749169111251831, + -0.0031842044554650784, + -0.05087461695075035, + -0.03871949762105942, + 0.10236622393131256, + -0.0058644115924835205, + 0.07155845314264297, + -0.03593955561518669, + -0.05258514732122421, + -0.051043830811977386, + 0.05202056095004082, + 0.00041935592889785767, + -0.06088961660861969, + 0.006526827812194824, + 0.0462937131524086, + -0.030801162123680115, + -0.004340748302638531, + 0.029814936220645905, + 0.08274928480386734, + -0.10477759689092636, + -0.005980929359793663, + -0.0748855471611023, + 0.05844786390662193, + 0.10525840520858765, + -0.05913669615983963, + -0.04547093063592911, + -0.09805968403816223, + -0.05136168375611305, + 0.011522175744175911, + -0.04839431867003441, + -0.012120232917368412, + 0.0010702842846512794, + -0.04265597090125084, + -0.08253851532936096, + -0.11632935702800751, + 0.037482257932424545, + -0.02459690347313881, + 0.016678372398018837, + -0.06416452676057816, + 0.04302721098065376, + 0.031156009063124657, + 0.02446451038122177, + -0.03664455562829971, + 0.048583198338747025, + -0.007140323519706726, + -0.02506367489695549, + 0.029407629743218422, + 0.04427163675427437, + 0.0771368145942688, + -0.008016351610422134, + -0.06885376572608948, + -0.07182422280311584, + 0.029722614213824272, + -0.0405505932867527, + 0.09799253940582275, + 0.011097833514213562, + -0.048780474811792374, + -0.03552151098847389, + -0.025461331009864807, + -0.02536981739103794, + 0.03774099051952362, + 0.05317344516515732, + 0.054422132670879364, + 0.027769843116402626, + -0.047993600368499756, + 0.07540889084339142, + 0.06735294312238693, + 0.005908850580453873, + -0.05712722986936569, + -0.02110944874584675, + -0.0179589856415987, + 0.03770499303936958, + -0.015163765288889408, + -0.06058238819241524, + 0.04539172723889351, + -0.013005126267671585, + 0.05264304578304291, + 0.06468474864959717, + 0.08613322675228119, + 0.04964660480618477, + -0.05588657408952713 + ] + }, + "p245_377.wav": { + "name": "p245", + "embedding": [ + 0.04733222723007202, + 0.09046431630849838, + -0.007729042321443558, + 0.023351922631263733, + -0.045406218618154526, + 0.0695141851902008, + -0.14895758032798767, + 0.13072697818279266, + -0.03740275651216507, + 0.13736365735530853, + -0.061719201505184174, + 0.11193593591451645, + -0.012872840277850628, + -0.19223563373088837, + -0.04125719517469406, + 0.05775046348571777, + -0.05566421151161194, + -0.04179064556956291, + -0.01767709106206894, + -0.016842788085341454, + 0.04336528107523918, + 0.039042405784130096, + 0.024615731090307236, + 0.019655853509902954, + 0.018564637750387192, + 0.06023978441953659, + 0.006099242717027664, + 0.04876285791397095, + 0.011892968788743019, + -0.04463401436805725, + -0.03324940428137779, + 0.10493414103984833, + -0.033655568957328796, + 0.016802456229925156, + 0.04893812537193298, + -0.005977705121040344, + 0.010311475023627281, + -0.07104698568582535, + -0.01493571326136589, + 0.005471229087561369, + -0.04094529524445534, + 0.08284159004688263, + 0.0349363274872303, + -0.0021036460530012846, + 0.02977772057056427, + 0.020967869088053703, + -0.01297469437122345, + -0.05224353075027466, + -0.10763004422187805, + 0.16375944018363953, + 0.07977543026208878, + -0.004425516352057457, + -0.057821862399578094, + -0.07021655887365341, + 0.09861578792333603, + -0.005678652785718441, + -0.1081778034567833, + -0.045505356043577194, + 0.07989533990621567, + 0.16195233166217804, + -0.02595449611544609, + -0.0380433015525341, + 0.03098231554031372, + 0.14104890823364258, + 0.040164824575185776, + 0.09193927049636841, + 0.07257379591464996, + 0.10661174356937408, + -0.02201034501194954, + 0.005454308819025755, + 0.051565513014793396, + 0.06457283347845078, + 0.03750522434711456, + -0.01008233055472374, + 0.026899609714746475, + -0.004043132066726685, + -0.015529944561421871, + 0.011348563246428967, + -0.01910034939646721, + -0.011130217462778091, + -0.017013324424624443, + 0.004208702128380537, + -0.0074163442477583885, + 0.03168845921754837, + -0.022276248782873154, + 0.05006998032331467, + 0.021145593374967575, + -0.010872529819607735, + 0.06869891285896301, + 0.03454512357711792, + 0.02676863595843315, + 0.06201603263616562, + -0.06676843017339706, + -0.08428718894720078, + 0.03883475065231323, + 0.011023982428014278, + 0.020811481401324272, + 0.07552500814199448, + 0.03640558943152428, + -0.02461135946214199, + 0.11043436825275421, + 0.044609084725379944, + -0.022144397720694542, + 0.02399427816271782, + -0.10074125230312347, + 0.12465481460094452, + 0.07897934317588806, + -0.02425292693078518, + 0.0445183627307415, + -0.054526086896657944, + 0.07095321267843246, + 0.0692463219165802, + -0.13837578892707825, + -0.07763507217168808, + 0.04583822935819626, + 0.03376290202140808, + -0.01840008795261383, + 0.12454652786254883, + -0.0008544350857846439, + 0.030636047944426537, + 0.09778328984975815, + -0.07056055217981339, + -0.05649099871516228, + -0.031130269169807434, + 0.05065948888659477, + -0.08655708283185959, + 0.05324557423591614, + 0.05073268339037895, + -0.012185122817754745, + -0.0032959484960883856, + 0.07827114313840866, + -0.009260710328817368, + -0.0033345255069434643, + 0.011785428039729595, + -0.039946116507053375, + 0.03251684457063675, + -0.029809778556227684, + 0.012041283771395683, + 0.02555250935256481, + 0.03331790864467621, + 0.031097471714019775, + 0.0016900639748200774, + -0.04283086583018303, + -0.11885258555412292, + 0.007231834810227156, + 0.036401525139808655, + 0.07811887562274933, + -0.010405996814370155, + -0.034443892538547516, + -0.042231760919094086, + -0.058891575783491135, + 0.013215364888310432, + -0.015550191514194012, + 0.07276944816112518, + -0.01287914626300335, + -0.003698386251926422, + 0.08664282411336899, + 0.015264466404914856, + 0.0011708190431818366, + -0.04073679447174072, + -0.031158100813627243, + 0.019602570682764053, + 0.038766101002693176, + -0.07748782634735107, + -0.06124364584684372, + -0.00022036582231521606, + 0.03349297121167183, + -0.01661285199224949, + 0.03932264819741249, + 0.04105234518647194, + 0.015920568257570267, + 0.027934208512306213, + -0.0695836991071701, + 0.013799848966300488, + -0.10334327071905136, + -0.06709205359220505, + -0.014693690463900566, + -0.0046608950942754745, + -0.015061387792229652, + 0.07610457390546799, + 0.017258161678910255, + 0.051063209772109985, + -0.016528960317373276, + -0.06407789885997772, + -0.0741993859410286, + 0.056603118777275085, + 0.08332005143165588, + 0.004241840448230505, + 0.04837234318256378, + 0.04887954518198967, + -0.023131929337978363, + 0.05168752372264862, + 0.05290812999010086, + 0.10788771510124207, + -0.023714736104011536, + 0.015375932678580284, + -0.07529333233833313, + 0.08378778398036957, + 0.08201092481613159, + -0.0899907574057579, + -0.07696673274040222, + -0.02056359499692917, + -0.06307683885097504, + 0.03234029561281204, + -0.02875496819615364, + 0.008930492214858532, + 0.022837094962596893, + -0.00964735820889473, + -0.10226570814847946, + -0.09338478744029999, + 0.0775962695479393, + -0.07447759807109833, + -0.0003247287531848997, + -0.07987533509731293, + 0.05032431334257126, + 0.10073523223400116, + 0.0409855842590332, + -0.027450840920209885, + -0.018690699711441994, + 0.04257289692759514, + -0.034710608422756195, + 3.053806722164154e-05, + 0.039272792637348175, + 0.031003182753920555, + -0.12332575023174286, + 0.00576448580250144, + -0.0801028460264206, + 0.05784715712070465, + -0.06268148869276047, + 0.15345041453838348, + 0.01110049244016409, + -0.05558255314826965, + -0.08508320152759552, + 0.029661260545253754, + -0.02098817378282547, + 0.04710116982460022, + 0.02508586458861828, + 0.0568326860666275, + 0.028572171926498413, + -0.06707557290792465, + 0.11390320956707001, + 0.04429692029953003, + -0.033711306750774384, + -0.07568075507879257, + -0.03493708744645119, + -0.027595657855272293, + 0.040212761610746384, + 0.012148179113864899, + -0.08643628656864166, + -0.03368380293250084, + 0.03219104930758476, + -0.01587980054318905, + 0.07350198924541473, + 0.1479368358850479, + 0.06011173129081726, + -0.1269829273223877 + ] + }, + "p245_277.wav": { + "name": "p245", + "embedding": [ + 0.04264187067747116, + 0.06311096251010895, + -0.023551030084490776, + 0.0025000344030559063, + -0.057646460831165314, + 0.00225723534822464, + -0.11004720628261566, + 0.07569189369678497, + -0.03535941243171692, + 0.13863961398601532, + -0.05673816427588463, + 0.09984621405601501, + -0.02892191894352436, + -0.12817013263702393, + 0.010409042239189148, + 0.04462805762887001, + -0.034322742372751236, + -0.0507219135761261, + -0.0610097199678421, + -0.057701073586940765, + 0.026611264795064926, + 0.060849081724882126, + 0.028283659368753433, + -0.02435755357146263, + 0.02505907416343689, + 0.07433561980724335, + -0.014201589860022068, + -0.0020288852974772453, + -0.024021558463573456, + -0.07985426485538483, + -0.0157223641872406, + 0.03277362138032913, + -0.0407225526869297, + -0.016750629991292953, + 0.012855478562414646, + 0.0014595035463571548, + 0.0031131920404732227, + -0.0452728196978569, + -0.034499913454055786, + 0.02210972085595131, + -0.07554882019758224, + 0.06354205310344696, + 0.0002334974706172943, + -0.07364454865455627, + 0.022563796490430832, + -0.00024508778005838394, + -0.0025662570260465145, + -0.013982882723212242, + -0.07237289100885391, + 0.14286483824253082, + 0.07294850051403046, + 0.024620216339826584, + -0.044067081063985825, + -0.03783527389168739, + 0.087599977850914, + -0.024627361446619034, + -0.08886294811964035, + -0.06635920703411102, + 0.01920413412153721, + 0.09394382685422897, + -0.05642993748188019, + -0.04926179349422455, + 0.059584908187389374, + 0.046132609248161316, + 0.0660858228802681, + 0.03160572052001953, + 0.07284341007471085, + 0.06849180907011032, + -0.02200448140501976, + -0.002484874567016959, + 0.059769004583358765, + 0.08756299316883087, + 0.0719323381781578, + -0.0010794373229146004, + 0.021357227116823196, + 0.028888575732707977, + -0.042473286390304565, + -0.026766955852508545, + -0.021503642201423645, + -0.016207046806812286, + -0.0060727521777153015, + -0.0017984514124691486, + 0.028757430613040924, + -0.018070241436362267, + -0.018856022506952286, + 0.04063067585229874, + 0.05448971688747406, + -0.03964638337492943, + 0.060966476798057556, + 0.004664110951125622, + -0.011398667469620705, + 0.04361611604690552, + -0.08058154582977295, + -0.03437003120779991, + 0.01716829091310501, + 0.01690690591931343, + -0.012456999160349369, + 0.05685466527938843, + 0.03253331780433655, + -0.003275204449892044, + 0.099212646484375, + 0.017133908346295357, + 0.00788399949669838, + -0.004772128537297249, + -0.07832632213830948, + 0.12250611931085587, + 0.08846046775579453, + -0.04815295338630676, + 0.014907857403159142, + -0.03462682291865349, + 0.03354254737496376, + 0.04674684256315231, + -0.09301337599754333, + -0.087657630443573, + -0.006601814646273851, + -0.018905671313405037, + 0.0013481024652719498, + 0.09413935244083405, + 0.0020515201613307, + 0.04556795582175255, + 0.1325456202030182, + -0.08294179290533066, + -0.07228812575340271, + -0.0012694617034867406, + 0.02431389130651951, + -0.09716517478227615, + 0.07305336743593216, + 0.0702163353562355, + 0.004958189092576504, + 0.04787379875779152, + 0.0946945995092392, + -0.015924906358122826, + -0.0011008083820343018, + -0.02557320147752762, + -0.025193018838763237, + -0.018104009330272675, + -0.029397133737802505, + -0.02496369741857052, + 0.08315920829772949, + 0.03424597904086113, + 0.053083233535289764, + -0.005343281663954258, + -0.015508508309721947, + -0.12803561985492706, + 0.03876134380698204, + 0.03950865566730499, + 0.04070867970585823, + -0.019142312929034233, + 0.009575407952070236, + -0.04028969258069992, + -0.07258483022451401, + -0.008832355029881, + -0.038102902472019196, + 0.07548213005065918, + -0.03485502302646637, + 0.04116066172719002, + 0.10541260987520218, + 0.01915627345442772, + -0.00029413867741823196, + -0.05262730270624161, + -0.021592440083622932, + -0.008701791986823082, + 0.04718241095542908, + -0.04831003397703171, + -0.09325270354747772, + -0.04639029875397682, + 0.03858348727226257, + 0.018506933003664017, + 0.07129750400781631, + 0.0396333746612072, + 0.0033629750832915306, + 0.00828552059829235, + -0.07426701486110687, + 0.03370433300733566, + -0.05994594097137451, + -0.05434270575642586, + -0.008889112621545792, + -0.05110438913106918, + -0.02826916053891182, + 0.06683064252138138, + -0.008082222193479538, + 0.04435339570045471, + -0.04691636562347412, + -0.09931562095880508, + -0.11064563691616058, + 0.004934659227728844, + 0.036238037049770355, + -0.029476074501872063, + 0.008395855315029621, + 0.05499150976538658, + -0.012559883296489716, + 0.02311696857213974, + 0.020174259319901466, + 0.09117074310779572, + -0.03786388784646988, + 0.012111879885196686, + -0.023081757128238678, + 0.0757397934794426, + 0.06704360246658325, + -0.055841103196144104, + -0.037043072283267975, + -0.07037146389484406, + -0.07031042873859406, + 0.03177401423454285, + -0.0011859583901241422, + 0.008750032633543015, + 0.018187981098890305, + -0.0074934326112270355, + -0.0681600496172905, + -0.07481291890144348, + 0.057219941169023514, + -0.041216135025024414, + -0.017641713842749596, + -0.06915230304002762, + 0.0043623484671115875, + 0.03144053742289543, + 0.058244090527296066, + 0.0012780011165887117, + -0.0020744120702147484, + 0.012411200441420078, + -0.0251882616430521, + 0.037169575691223145, + 0.09109952300786972, + 0.036118537187576294, + -0.03495539352297783, + -0.01692371442914009, + -0.08257092535495758, + 0.05267810821533203, + -0.015549730509519577, + 0.09850166738033295, + -0.013627718202769756, + -0.02539307251572609, + -0.08449490368366241, + 0.015916192904114723, + -0.0176605936139822, + 0.063267782330513, + 0.04489488899707794, + 0.06108396500349045, + 0.04919436573982239, + -0.06144469976425171, + 0.0855003073811531, + 0.07372401654720306, + -0.011811371892690659, + -0.05288457125425339, + -0.0619916133582592, + -0.049867428839206696, + -0.011114935390651226, + 0.006419411860406399, + -0.06830126792192459, + 0.02813584730029106, + 0.003600649768486619, + 0.0007874211296439171, + 0.07652373611927032, + 0.09360671043395996, + 0.06632298231124878, + -0.10903823375701904 + ] + }, + "p245_010.wav": { + "name": "p245", + "embedding": [ + 0.028725378215312958, + 0.10670597106218338, + -0.013663104735314846, + 0.049690186977386475, + -0.06104345619678497, + 0.06506575644016266, + -0.12935765087604523, + 0.1428772509098053, + -0.03178021311759949, + 0.0916590467095375, + -0.09041033685207367, + 0.14234593510627747, + -0.028014011681079865, + -0.17712175846099854, + -0.026547489687800407, + 0.0555666945874691, + 0.003901268355548382, + -0.005483678076416254, + 0.023041341453790665, + -0.011615506373345852, + 0.05064955726265907, + 0.01587148942053318, + 0.05886288732290268, + 0.013373097404837608, + 0.03190702944993973, + 0.056823499500751495, + 0.018164364621043205, + 0.06301610171794891, + 0.029072750359773636, + -0.016369102522730827, + -0.05543539673089981, + 0.10893231630325317, + -0.0157815869897604, + 0.002462020143866539, + 0.06886240839958191, + -0.007040664553642273, + -0.0037082922644913197, + -0.06262369453907013, + -0.0014248085208237171, + -0.02177208662033081, + -0.02147660031914711, + 0.06623233109712601, + 0.040154967457056046, + -0.0349268913269043, + 0.03514464199542999, + 0.0244491808116436, + -0.009560373611748219, + -0.015133281238377094, + -0.12620337307453156, + 0.128758504986763, + 0.043029993772506714, + 0.013383596204221249, + -0.08306790143251419, + -0.05327610298991203, + 0.11673308908939362, + 0.0037154806777834892, + -0.0717497318983078, + -0.012218031100928783, + 0.08629606664180756, + 0.18141299486160278, + -0.005386904813349247, + -0.02255343273282051, + 0.03178722783923149, + 0.10652004927396774, + 0.028859883546829224, + 0.0872742235660553, + 0.07398101687431335, + 0.11215727776288986, + -0.0018404878210276365, + 0.02770141139626503, + 0.017030417919158936, + 0.08586126565933228, + -0.0024256715551018715, + -0.020028676837682724, + -0.010820229537785053, + -0.005327487830072641, + -0.02738869935274124, + 0.03361598029732704, + -0.0383361354470253, + -0.0462166853249073, + -0.022930003702640533, + -0.009437731467187405, + 0.01947222836315632, + 6.002793088555336e-05, + -0.04381745308637619, + 0.06869108974933624, + 0.026850320398807526, + -0.012992391362786293, + 0.0617077462375164, + 0.010400219820439816, + -0.024428587406873703, + 0.0535995289683342, + -0.07261838018894196, + -0.10296855866909027, + 0.02543533593416214, + -0.0024873341899365187, + 0.025066573172807693, + 0.0891386941075325, + 0.04712182655930519, + -0.020786520093679428, + 0.11509157717227936, + 0.06848638504743576, + -0.0008477892260998487, + 0.04748477041721344, + -0.07441697269678116, + 0.12000942975282669, + 0.09091515839099884, + -0.004055557306855917, + 0.07382682710886002, + -0.04909979924559593, + 0.0602409765124321, + 0.06179901957511902, + -0.12094734609127045, + -0.07089880108833313, + 0.014706685207784176, + 0.041342414915561676, + 0.002742488868534565, + 0.10451318323612213, + -0.00913223810493946, + 0.04099633917212486, + 0.0883367657661438, + -0.0933537483215332, + -0.07883404195308685, + -0.0391116663813591, + 0.04052465781569481, + -0.04352322965860367, + 0.05479617416858673, + 0.05855022370815277, + -0.008855506777763367, + -0.01494442019611597, + 0.045939669013023376, + -0.0074395835399627686, + 0.014088914729654789, + 0.06511983275413513, + -0.06878434866666794, + 0.008816284127533436, + -0.03868421912193298, + 0.00898418202996254, + 0.05127020180225372, + 0.04162725433707237, + 0.040688395500183105, + 0.018520019948482513, + -0.015696054324507713, + -0.1123669371008873, + -0.025542566552758217, + 0.07176807522773743, + 0.07686452567577362, + -0.0035655226092785597, + -0.06837192177772522, + -0.04631870985031128, + -0.05864271521568298, + 0.02417045831680298, + 0.009200849570333958, + 0.07643677294254303, + -0.027439165860414505, + 0.01286247093230486, + 0.051882702857255936, + 0.024856867268681526, + -0.008481026627123356, + -0.07212729752063751, + -0.03712907433509827, + 0.019971342757344246, + 0.011348159983754158, + -0.06558899581432343, + -0.07371678948402405, + -0.021353378891944885, + 0.03119572065770626, + -0.06447643041610718, + 0.03798682242631912, + 0.038434408605098724, + 0.02241576462984085, + 0.03698313236236572, + -0.037804167717695236, + -0.002959656063467264, + -0.09651385247707367, + -0.05180474743247032, + -0.009964662604033947, + 0.031705763190984726, + -0.0287723857909441, + 0.06844978779554367, + 0.06184413656592369, + 0.06942988187074661, + 0.008909285999834538, + -0.006876582279801369, + -0.07053043693304062, + 0.030965980142354965, + 0.04503471404314041, + 0.028909485787153244, + 0.08840499818325043, + 0.04474673792719841, + -0.036640655249357224, + 0.08059094846248627, + 0.08203427493572235, + 0.06344818323850632, + -0.01037412229925394, + -0.020454753190279007, + -0.07374860346317291, + 0.06970997154712677, + 0.11968529224395752, + -0.09022782742977142, + -0.1003156453371048, + -0.04872199892997742, + -0.07762288302183151, + 0.04848495498299599, + -0.028974764049053192, + -0.002572589088231325, + 0.01237446814775467, + -0.017692934721708298, + -0.1055043637752533, + -0.099042609333992, + 0.07173991203308105, + -0.0579565092921257, + -0.0008106371387839317, + -0.05996666103601456, + 0.04513000696897507, + 0.0959613025188446, + -0.016461580991744995, + -0.02952190488576889, + -0.02839544788002968, + 0.054464954882860184, + -0.05942635238170624, + -0.008524757809937, + 0.04394569620490074, + 0.03610827773809433, + -0.10853509604930878, + 0.03327574580907822, + -0.0647948831319809, + 0.05671197175979614, + -0.047558050602674484, + 0.17820847034454346, + 0.01884525641798973, + -0.03572610765695572, + -0.08030148595571518, + 0.05138568580150604, + -0.016077954322099686, + 0.03466182202100754, + 0.03344974294304848, + 0.05271591618657112, + -0.013466671109199524, + -0.10121957957744598, + 0.12472590804100037, + 0.010765277780592442, + -0.05773167312145233, + -0.09374077618122101, + -0.04166870564222336, + -0.03574949502944946, + 0.028676796704530716, + 0.0072265565395355225, + -0.07576675713062286, + -0.06061454489827156, + 0.022106267511844635, + 0.010483967140316963, + 0.0645110011100769, + 0.14586959779262543, + 0.051320455968379974, + -0.08237648010253906 + ] + }, + "p245_303.wav": { + "name": "p245", + "embedding": [ + 0.05086994171142578, + 0.08072485029697418, + 0.040910255163908005, + 0.0013891905546188354, + -0.014478957280516624, + 0.03669634088873863, + -0.09335188567638397, + 0.07901257276535034, + 0.014464322477579117, + 0.08860625326633453, + -0.12932388484477997, + 0.0366247333586216, + -0.05844385549426079, + -0.12876854836940765, + -0.03077705204486847, + 0.021804828196763992, + -0.04318710044026375, + 0.007399998605251312, + -0.04967281594872475, + -0.04463738575577736, + 0.019266493618488312, + 0.01893220655620098, + 0.05309247225522995, + -0.0314900204539299, + -0.027108270674943924, + 0.02366781048476696, + 0.0024859225377440453, + 0.010353431105613708, + 0.018924426287412643, + 0.0027833953499794006, + 0.027088072150945663, + 0.04175854101777077, + -0.000131973996758461, + 0.008983499370515347, + 0.04687155783176422, + 0.04443495720624924, + -0.010417547076940536, + -0.0334966778755188, + -0.026688016951084137, + 0.06783045828342438, + -0.04978682100772858, + 0.0629938393831253, + 0.048324186354875565, + -0.01743905618786812, + 0.05304032564163208, + -0.002429172396659851, + -0.0651036947965622, + -0.005244677886366844, + -0.10726199299097061, + 0.14259158074855804, + 0.054975174367427826, + 0.018864206969738007, + -0.07321242988109589, + -0.01979796402156353, + 0.11842131614685059, + -0.02936933934688568, + -0.08809123188257217, + -0.04840527102351189, + 0.036557577550411224, + 0.07616955786943436, + -0.006615160498768091, + -0.03273646533489227, + -0.040768593549728394, + 0.043823353946208954, + -0.019574299454689026, + 0.06636378914117813, + 0.08028679341077805, + 0.07933355867862701, + -0.01782982051372528, + 0.035356756299734116, + 0.08476553857326508, + 0.00943467952311039, + 0.01453235000371933, + -0.033368516713380814, + 0.027517026290297508, + -0.024607796221971512, + -0.027229975908994675, + 0.04379443824291229, + 0.010878156870603561, + -0.022651487961411476, + 0.019058922305703163, + -0.020240318030118942, + -0.00400744192302227, + -0.007379990536719561, + -0.06787237524986267, + -0.001393275335431099, + -0.006609325297176838, + 0.05506915599107742, + 0.07482090592384338, + 0.06983830779790878, + 0.0030721938237547874, + 0.03625817596912384, + -0.014485575258731842, + -0.09609570354223251, + -0.03183092921972275, + -0.02788097783923149, + 0.022880004718899727, + 0.0371972993016243, + 0.015818441286683083, + -0.004957647994160652, + 0.07519248872995377, + 0.04007837176322937, + 0.003095117397606373, + 0.0005476865917444229, + -0.11065604537725449, + 0.045733485370874405, + 0.09538108110427856, + -0.0049351295456290245, + 0.005513550713658333, + -0.010928180068731308, + 0.09307888895273209, + 0.07535122334957123, + -0.0694999024271965, + -0.022451302036643028, + 0.02165895700454712, + 0.06930910795927048, + 0.0748559907078743, + 0.08120141178369522, + -0.009417391382157803, + -0.03359581530094147, + 0.13591331243515015, + -0.05253691226243973, + -0.0068921782076358795, + -0.0020351381972432137, + -0.0020439699292182922, + -0.010730847716331482, + 0.019805535674095154, + 0.020882681012153625, + 0.0009033810347318649, + -0.02671380713582039, + 0.042021244764328, + -0.00638983678072691, + 0.002193121239542961, + -0.047575682401657104, + 0.006564216688275337, + 0.06948788464069366, + -0.025066815316677094, + 0.0034740683622658253, + 0.08385401964187622, + 0.07601861655712128, + 0.04497477784752846, + 0.07866920530796051, + -0.05052900314331055, + -0.045000601559877396, + 0.020842349156737328, + 0.03276495635509491, + 0.008508268743753433, + -0.015079807490110397, + -0.04481314867734909, + -0.050781890749931335, + -0.029487382620573044, + 0.08121202886104584, + -0.027118362486362457, + 0.0812443345785141, + 0.015863755717873573, + -0.034007616341114044, + 0.07388241589069366, + -0.031191222369670868, + -0.022215748205780983, + -0.04986584186553955, + -0.07730323821306229, + -0.0037364806048572063, + 0.017251040786504745, + -0.12774981558322906, + -0.03113045170903206, + -0.02424062043428421, + 0.005722923204302788, + 0.0077817002311348915, + -0.050905559211969376, + 0.06880206614732742, + -0.04607398435473442, + 0.0271031241863966, + -0.06728782504796982, + 0.04851977527141571, + -0.08129298686981201, + -0.06558481603860855, + 0.006172357127070427, + -0.03902430087327957, + 0.035720452666282654, + 0.07345400750637054, + -0.03674108535051346, + -0.02113676443696022, + -0.018549378961324692, + -0.11090287566184998, + -0.013332740403711796, + 0.07086677849292755, + 0.04954908415675163, + 0.011247997172176838, + 0.06500115990638733, + 0.0801166296005249, + -0.039803557097911835, + 0.0606718473136425, + 0.01620657369494438, + 0.0858481153845787, + -0.07190751284360886, + 0.012757385149598122, + -0.005361108109354973, + 0.03920765221118927, + 0.04750397056341171, + -0.05647473409771919, + -0.0880991667509079, + -0.06131656840443611, + -0.02567828819155693, + 0.02819378301501274, + -0.029608365148305893, + -0.03244323283433914, + 0.005862005054950714, + -0.017094694077968597, + -0.051371246576309204, + -0.07057394087314606, + 0.019255897030234337, + 0.010236331261694431, + -0.0066207945346832275, + -0.04347224533557892, + 0.020936865359544754, + 0.002386130392551422, + 0.02471340447664261, + -0.020868349820375443, + 0.03521343320608139, + -0.008208176121115685, + -0.057333897799253464, + -0.07976987957954407, + -0.027563974261283875, + 0.006840787827968597, + -0.0043005309998989105, + -0.006566083058714867, + -0.06918224692344666, + 0.08459626883268356, + -0.012925414368510246, + 0.06600619852542877, + -0.007634011562913656, + -0.009500415995717049, + -0.0029632877558469772, + -0.0020032599568367004, + -0.04413478076457977, + 0.03092007152736187, + 0.0714048370718956, + 0.006414875388145447, + -0.0025811661034822464, + -0.02007622830569744, + 0.08884145319461823, + 0.02687453106045723, + -0.012341579422354698, + -0.02021118625998497, + 0.05025880038738251, + -0.06245449185371399, + -0.04651808738708496, + -0.010262799449265003, + -0.05070169270038605, + 0.03186872974038124, + -0.02141043171286583, + -0.009322119876742363, + 0.0147930346429348, + 0.06873107701539993, + 0.02929753065109253, + -0.06964659690856934 + ] + }, + "p245_232.wav": { + "name": "p245", + "embedding": [ + 0.030955003574490547, + 0.08225686848163605, + -0.026167739182710648, + 0.034364327788352966, + -0.055399082601070404, + 0.05940912663936615, + -0.1497858315706253, + 0.1509069800376892, + -0.03663818538188934, + 0.1248239278793335, + -0.0603150948882103, + 0.1123816967010498, + -0.026475079357624054, + -0.1824588179588318, + -0.02223712019622326, + 0.06200999766588211, + -0.03276641666889191, + -0.05313640087842941, + -0.028874503448605537, + -0.008750061504542828, + 0.026636511087417603, + 0.022036101669073105, + -0.0004767272621393204, + 0.035958029329776764, + 0.018418053165078163, + 0.057225774973630905, + -0.00893328245729208, + 0.04563155770301819, + 0.019728491082787514, + -0.013275843113660812, + -0.028433043509721756, + 0.100715771317482, + -0.05943729728460312, + 0.008357983082532883, + 0.06376755982637405, + -0.013840243220329285, + -0.014781555160880089, + -0.05871795117855072, + -0.019421186298131943, + -0.007225473411381245, + -0.06464377045631409, + 0.08721588551998138, + 0.04328744113445282, + 0.0009219245985150337, + 0.04154667630791664, + 0.03276629000902176, + -0.009504780173301697, + -0.04713617265224457, + -0.1121065691113472, + 0.1356859803199768, + 0.07888346910476685, + -0.013625338673591614, + -0.06818297505378723, + -0.04119180887937546, + 0.10064180195331573, + -0.016587089747190475, + -0.10427527129650116, + -0.05555611848831177, + 0.0860384851694107, + 0.14325544238090515, + -0.03649243712425232, + -0.025906547904014587, + 0.017998311668634415, + 0.13315555453300476, + 0.08517007529735565, + 0.08853767812252045, + 0.06979244202375412, + 0.1303124874830246, + -0.028727956116199493, + -0.0018185931257903576, + 0.06994375586509705, + 0.05707184225320816, + 0.04032492637634277, + -0.0053398082964122295, + 0.019982216879725456, + 0.011023357510566711, + -0.00556158646941185, + 0.005987999495118856, + -0.02921021357178688, + -0.004633207805454731, + -0.01667523756623268, + 0.02470996230840683, + -0.004161872435361147, + 0.04750695824623108, + -0.017112310975790024, + 0.06861309707164764, + 0.05199010670185089, + -0.01693868823349476, + 0.07043921947479248, + 0.03453134372830391, + -0.0027603227645158768, + 0.06514585763216019, + -0.09954482316970825, + -0.07337656617164612, + 0.028049040585756302, + -0.010628284886479378, + 0.018603162840008736, + 0.07038712501525879, + 0.03109721466898918, + -0.0019274418009445071, + 0.13062971830368042, + 0.04392148554325104, + -0.01758021116256714, + 0.045508481562137604, + -0.0909043699502945, + 0.13980942964553833, + 0.058309681713581085, + -0.026628196239471436, + 0.042237989604473114, + -0.049634356051683426, + 0.05781242251396179, + 0.0522179901599884, + -0.1284443885087967, + -0.059402432292699814, + 0.06277811527252197, + 0.035799045115709305, + -0.04045063629746437, + 0.13847792148590088, + -0.0049690427258610725, + 0.038601987063884735, + 0.10101017355918884, + -0.0708998590707779, + -0.05300513654947281, + -0.009106209501624107, + 0.05786249786615372, + -0.06362000852823257, + 0.05602806806564331, + 0.04469164088368416, + -0.00024171569384634495, + 0.013101227581501007, + 0.09494341909885406, + 0.004752127919346094, + -0.013464430347084999, + 0.01538572832942009, + -0.03090580180287361, + 0.04443518444895744, + -0.010465172119438648, + 0.0006785569712519646, + 0.033403921872377396, + 0.028841624036431313, + 0.05300929397344589, + -0.007053093984723091, + -0.012311217375099659, + -0.12023797631263733, + 0.0045458474196493626, + 0.03103308193385601, + 0.11261628568172455, + -0.013627579435706139, + -0.01721094362437725, + -0.05851977318525314, + -0.060338519513607025, + -0.016285033896565437, + -0.008334862068295479, + 0.08106769621372223, + -0.028965385630726814, + 0.0035702052991837263, + 0.087030328810215, + 0.020359423011541367, + 0.01530112512409687, + -0.04681496322154999, + -0.024376949295401573, + -0.005033688619732857, + 0.06387915462255478, + -0.07089253515005112, + -0.06645822525024414, + 0.002432561945170164, + 0.042131394147872925, + -0.020987922325730324, + 0.05834024399518967, + 0.03505070134997368, + 0.03231378644704819, + 0.023026399314403534, + -0.07291001826524734, + 0.02770531177520752, + -0.09786864370107651, + -0.05986499786376953, + -0.01803792268037796, + 0.016358211636543274, + -0.024587152525782585, + 0.06809000670909882, + 0.025577712804079056, + 0.06966913491487503, + 0.004402273800224066, + -0.07678177952766418, + -0.08311372995376587, + 0.060352958738803864, + 0.0684356614947319, + -0.025736043229699135, + 0.052126433700323105, + 0.0699366107583046, + -0.0360199511051178, + 0.027775436639785767, + 0.064737468957901, + 0.09838823974132538, + -0.02781607210636139, + 0.020914599299430847, + -0.06858585774898529, + 0.08611253648996353, + 0.07740860432386398, + -0.10443754494190216, + -0.06946203112602234, + 0.0011498844251036644, + -0.0512927770614624, + 0.012925932183861732, + -0.039728835225105286, + 0.013339024968445301, + 0.028628556057810783, + -0.0028679983224719763, + -0.09937349706888199, + -0.09012958407402039, + 0.06622787564992905, + -0.10237047076225281, + 0.012176545336842537, + -0.08945709466934204, + 0.031761594116687775, + 0.11416492611169815, + 0.027827873826026917, + -0.03773145377635956, + -0.03059513121843338, + 0.055243417620658875, + -0.012641758657991886, + 0.00845520943403244, + 0.0636475682258606, + 0.0392475463449955, + -0.12736910581588745, + -0.0009595244191586971, + -0.059611327946186066, + 0.06867016851902008, + -0.03509185463190079, + 0.1494835764169693, + 0.021333612501621246, + -0.03771695867180824, + -0.07975314557552338, + 0.017768308520317078, + -0.004101933911442757, + 0.05537090077996254, + 0.014293333515524864, + 0.07221437990665436, + 0.04722786694765091, + -0.03195471316576004, + 0.14044740796089172, + 0.050141796469688416, + -0.0511203296482563, + -0.06355500966310501, + -0.041622135788202286, + -0.04044727236032486, + 0.03785739466547966, + 0.0339277908205986, + -0.09896513819694519, + -0.03048505261540413, + 0.026035085320472717, + -0.039641860872507095, + 0.06470636278390884, + 0.14841541647911072, + 0.08750447630882263, + -0.12302286922931671 + ] + }, + "p245_386.wav": { + "name": "p245", + "embedding": [ + 0.031649477779865265, + 0.07646173983812332, + -0.03148992359638214, + 0.052173126488924026, + -0.009548192843794823, + 0.05671019107103348, + -0.11025732755661011, + 0.04974089190363884, + -0.032562751322984695, + 0.13640549778938293, + -0.07717396318912506, + 0.07606972008943558, + -0.03287271782755852, + -0.16226907074451447, + -0.03962043672800064, + 0.06625166535377502, + -0.06991659104824066, + -0.03414027392864227, + -0.07099336385726929, + 0.004159691743552685, + 0.021393030881881714, + 0.045025646686553955, + 0.04835662245750427, + -0.02847697213292122, + 0.015876639634370804, + 0.07108022272586823, + 0.005270687863230705, + 0.053520023822784424, + 0.019035978242754936, + -0.014788918197154999, + -0.017116323113441467, + 0.11924406886100769, + -0.025705359876155853, + 0.011664564721286297, + 0.012256763875484467, + 0.05011039972305298, + 0.0011061616241931915, + -0.0535585917532444, + 0.006119484081864357, + 0.0008402115199714899, + -0.0679161548614502, + 0.05726798623800278, + 0.01713777333498001, + 0.00038415100425481796, + 0.04642557352781296, + -0.026818644255399704, + -0.057028114795684814, + -0.041265588253736496, + -0.10324981808662415, + 0.18313279747962952, + 0.09561291337013245, + 0.002732375171035528, + -0.06283178925514221, + -0.06810610741376877, + 0.08464275300502777, + 0.0027346834540367126, + -0.11771519482135773, + -0.05812404304742813, + 0.07848899066448212, + 0.1573343276977539, + 0.0008205575868487358, + -0.012080795131623745, + 0.013525392860174179, + 0.13324788212776184, + 0.044215209782123566, + 0.09904691576957703, + 0.06427250802516937, + 0.09096527099609375, + 0.024918677285313606, + 0.012453887611627579, + 0.09327840059995651, + 0.051750071346759796, + 0.05452318862080574, + -0.025828810408711433, + 0.02530427649617195, + 0.008843940682709217, + -0.03821789473295212, + 0.007995064370334148, + -0.00885915569961071, + -0.027870621532201767, + -0.01016781385987997, + -0.038475148379802704, + -0.020360104739665985, + 0.022097362205386162, + -0.012947442941367626, + 0.019672485068440437, + 0.04778805375099182, + -0.03624803200364113, + 0.05572628229856491, + 0.06616448611021042, + 0.004147545900195837, + 0.0384577177464962, + -0.022854197770357132, + -0.0798768550157547, + -0.005360814742743969, + 0.021205708384513855, + 0.0058741495013237, + 0.04019877314567566, + 0.04669239744544029, + -0.02885352075099945, + 0.07884927839040756, + 0.013295728713274002, + -0.011601023375988007, + 0.015225466340780258, + -0.0960804671049118, + 0.09479682147502899, + 0.10039801895618439, + -0.011088932864367962, + -0.002814692445099354, + -0.0030156525317579508, + 0.05556480959057808, + 0.09981440752744675, + -0.11694090068340302, + -0.04579015076160431, + 0.035769350826740265, + -0.020206402987241745, + 0.004826541990041733, + 0.0826086699962616, + 0.020274579524993896, + -0.010239641182124615, + 0.10876694321632385, + -0.07385456562042236, + -0.057519882917404175, + -0.04038620367646217, + 0.04464328661561012, + -0.08643260598182678, + 0.012069916352629662, + 0.05321726202964783, + 0.01035312470048666, + -0.048268113285303116, + 0.07908546179533005, + -0.008166933432221413, + 0.0024181418120861053, + -0.01672356389462948, + -0.032482050359249115, + 0.06223515793681145, + -0.054473478347063065, + -0.004516275599598885, + 0.06853006780147552, + 0.01806415431201458, + 0.04293894022703171, + -0.0002868594601750374, + -0.027835572138428688, + -0.0888238251209259, + 0.016806710511446, + 0.06457258015871048, + 0.036462608724832535, + -0.018106846138834953, + -0.012780562043190002, + -0.04917676001787186, + -0.06469360738992691, + 0.08024219423532486, + -0.037855107337236404, + 0.080410435795784, + 0.0010232441127300262, + -0.05984511598944664, + 0.1319093406200409, + -0.05424684286117554, + -0.005210271570831537, + -0.03288478031754494, + -0.01364852860569954, + 0.03927774727344513, + 0.031974393874406815, + -0.09523142874240875, + -0.06245991215109825, + 0.023493686690926552, + 0.007143914699554443, + 0.011369949206709862, + 0.004833690822124481, + 0.04307461157441139, + -0.006663513835519552, + -0.004109029192477465, + -0.04627680778503418, + -0.009475663304328918, + -0.09625554084777832, + -0.04432388022542, + -0.012137578800320625, + -0.06808105111122131, + 0.020495522767305374, + 0.08719237148761749, + 0.011581341736018658, + -0.02281828224658966, + -0.020354295149445534, + -0.11550386250019073, + -0.06183753162622452, + 0.09062296897172928, + 0.10387173295021057, + 0.006936357822269201, + 0.053012944757938385, + 0.053312644362449646, + -0.027003593742847443, + 0.017472604289650917, + 0.0384615883231163, + 0.11574673652648926, + -0.03329072892665863, + -0.013949348591268063, + -0.08618734776973724, + 0.07743092626333237, + 0.07602544873952866, + -0.09142109751701355, + -0.06249772757291794, + -0.021195027977228165, + -0.04711662232875824, + 0.05338535085320473, + -0.04962320253252983, + -0.000934468349441886, + 0.05762859433889389, + -0.04432222247123718, + -0.10845957696437836, + -0.12000110745429993, + 0.09313343465328217, + -0.03256407752633095, + -0.03908460959792137, + -0.0546737015247345, + 0.038468413054943085, + 0.024689989164471626, + 0.038590602576732635, + -0.0395713709294796, + 0.07005934417247772, + 0.03545287996530533, + -0.07135067135095596, + -0.037966590374708176, + 0.01848294399678707, + -0.013839974999427795, + -0.10702270269393921, + -0.0300307497382164, + -0.07974396646022797, + 0.11046966910362244, + -0.06991369277238846, + 0.1135016530752182, + -0.02276787720620632, + -0.04138772934675217, + -0.06875388324260712, + 0.049664974212646484, + -0.03177066892385483, + 0.05610818788409233, + 0.060398831963539124, + 0.046858787536621094, + 0.011969218030571938, + -0.06032554805278778, + 0.10747948288917542, + 0.03370114415884018, + 0.012704925611615181, + -0.071434885263443, + -0.0022916351445019245, + -0.04706091061234474, + 0.04040273278951645, + 0.0057310545817017555, + -0.05830095708370209, + 0.029064958915114403, + 0.021631691604852676, + -0.0445687472820282, + 0.04271232336759567, + 0.09893974661827087, + 0.07274339348077774, + -0.08253943175077438 + ] + }, + "p245_301.wav": { + "name": "p245", + "embedding": [ + 0.057568274438381195, + 0.09223821014165878, + 0.007904359139502048, + 0.009360878728330135, + -0.05180535838007927, + 0.048424966633319855, + -0.13868360221385956, + 0.12880083918571472, + -0.05091404169797897, + 0.14076541364192963, + -0.0888776183128357, + 0.11056727170944214, + -0.028841275721788406, + -0.19478873908519745, + -0.031966038048267365, + 0.06778732687234879, + -0.05272502452135086, + -0.017331931740045547, + -0.030604835599660873, + -0.03833030164241791, + 0.030700307339429855, + 0.04406757280230522, + 0.04959128051996231, + 0.0025467961095273495, + 0.036366261541843414, + 0.06365272402763367, + -0.0035961742978543043, + 0.038380078971385956, + -0.0005476729711517692, + -0.06377257406711578, + -0.040321171283721924, + 0.10129543393850327, + -0.027603134512901306, + 0.0005738348118029535, + 0.04033486917614937, + -0.0038666005712002516, + 0.01028286200016737, + -0.07850514352321625, + -0.028521744534373283, + -0.005902342032641172, + -0.030111927539110184, + 0.062242597341537476, + 0.018771197646856308, + -0.023722808808088303, + 0.04266452044248581, + 0.016253197565674782, + -0.02212587371468544, + -0.051569223403930664, + -0.11230802536010742, + 0.15956172347068787, + 0.058610379695892334, + 0.01764579676091671, + -0.08062902092933655, + -0.08030031621456146, + 0.11157318204641342, + -0.020428361371159554, + -0.11070533841848373, + -0.029925629496574402, + 0.07958759367465973, + 0.1769854724407196, + -0.03261929750442505, + -0.03844251483678818, + 0.03673999011516571, + 0.10619242489337921, + 0.021103203296661377, + 0.09065048396587372, + 0.07233696430921555, + 0.07809402793645859, + -0.007173887919634581, + 0.02198970690369606, + 0.043946199119091034, + 0.06531546264886856, + 0.03806215897202492, + -0.02396574430167675, + 0.008523855358362198, + -0.0003651070292107761, + -0.039425112307071686, + 0.007121828384697437, + -0.02786560356616974, + -0.02154955267906189, + -0.02398958057165146, + -0.013112209737300873, + 0.00716791208833456, + -0.00997895561158657, + -0.029585793614387512, + 0.037681058049201965, + 0.018233096227049828, + -0.011726005002856255, + 0.08116354048252106, + 0.020696040242910385, + 0.0010887833777815104, + 0.05523429065942764, + -0.05894294008612633, + -0.08556370437145233, + 0.019801979884505272, + 0.018817182630300522, + 0.0012730273883789778, + 0.06652579456567764, + 0.04354375600814819, + -0.04097859561443329, + 0.12280085682868958, + 0.0563124418258667, + 0.011998578906059265, + 0.016338754445314407, + -0.10847403109073639, + 0.10571916401386261, + 0.10303105413913727, + -0.018500104546546936, + 0.057639554142951965, + -0.03330636024475098, + 0.07022090256214142, + 0.09000542014837265, + -0.14976483583450317, + -0.06731857359409332, + 0.005179397761821747, + 0.004760426934808493, + 0.004492407664656639, + 0.10216490924358368, + -0.008764456026256084, + 0.03062225878238678, + 0.10736056417226791, + -0.09608791768550873, + -0.06707940995693207, + -0.01942978985607624, + 0.047624245285987854, + -0.09213035553693771, + 0.05182105302810669, + 0.06826537847518921, + -0.016363760456442833, + 0.014646435156464577, + 0.06341733783483505, + -0.013831235468387604, + 0.0006679337238892913, + 0.014714477583765984, + -0.057459622621536255, + 0.004620720632374287, + -0.040540874004364014, + -0.013093220070004463, + 0.05659019201993942, + 0.056231118738651276, + 0.03017984889447689, + 0.008781541138887405, + -0.04713290184736252, + -0.10730623453855515, + 0.0018080560257658362, + 0.039404671639204025, + 0.0640001893043518, + -0.004524265415966511, + -0.01980147510766983, + -0.040244586765766144, + -0.06377777457237244, + 0.019537638872861862, + -0.006887010298669338, + 0.08165401220321655, + -0.015925323590636253, + 0.011493921279907227, + 0.09520278871059418, + 0.0398494154214859, + -0.015489242970943451, + -0.059635013341903687, + -0.03367886692285538, + 0.024076364934444427, + 0.031787239015102386, + -0.07955163717269897, + -0.064188152551651, + -0.004629002884030342, + 0.033348675817251205, + -0.030268795788288116, + 0.048232655972242355, + 0.0365501344203949, + 0.017679031938314438, + 0.031582847237586975, + -0.06808843463659286, + 0.03319443389773369, + -0.09929189085960388, + -0.0706048309803009, + 0.010325675830245018, + -0.021829819306731224, + -0.01639660820364952, + 0.07677091658115387, + 0.019103065133094788, + 0.030340274795889854, + -0.03465960547327995, + -0.07381446659564972, + -0.07497461140155792, + 0.059479884803295135, + 0.05848969146609306, + 0.007035806775093079, + 0.04001577943563461, + 0.04349610209465027, + -0.036494385451078415, + 0.06861573457717896, + 0.06017628312110901, + 0.10490620136260986, + -0.018062766641378403, + 0.019025573506951332, + -0.06426830589771271, + 0.07456734776496887, + 0.08552327752113342, + -0.08499103784561157, + -0.09438055008649826, + -0.0479549877345562, + -0.06438026577234268, + 0.06781607121229172, + 0.0005342429503798485, + 0.000799510336946696, + 0.017691489309072495, + -0.024699386209249496, + -0.09493192285299301, + -0.0831979364156723, + 0.09308241307735443, + -0.03512897342443466, + -0.020412854850292206, + -0.06987360864877701, + 0.051389843225479126, + 0.07810716331005096, + 0.028827784582972527, + -9.47900116443634e-05, + -0.007626057602465153, + 0.03066258132457733, + -0.06585600972175598, + -0.008351843804121017, + 0.040980204939842224, + 0.024061432108283043, + -0.09204276651144028, + 0.010062674060463905, + -0.09098725020885468, + 0.07235553860664368, + -0.04125840216875076, + 0.16192816197872162, + -0.00015349453315138817, + -0.046393897384405136, + -0.09159310907125473, + 0.034498684108257294, + -0.029201602563261986, + 0.046501275151968, + 0.040973108261823654, + 0.05589176341891289, + 0.037237588316202164, + -0.06892435997724533, + 0.09393317997455597, + 0.02951010689139366, + -0.036253638565540314, + -0.05330682545900345, + -0.04663770645856857, + -0.04110775142908096, + 0.001878537004813552, + -0.03317738324403763, + -0.08862005174160004, + -0.0120218051597476, + 0.013715273700654507, + 0.0009218305349349976, + 0.07436086982488632, + 0.12232868373394012, + 0.05545676499605179, + -0.11029675602912903 + ] + }, + "p245_270.wav": { + "name": "p245", + "embedding": [ + 0.06799270212650299, + 0.06986050307750702, + -0.030308954417705536, + 0.009406200610101223, + -0.0280753206461668, + 0.04757925122976303, + -0.15357211232185364, + 0.07828021049499512, + -0.025264710187911987, + 0.14144983887672424, + -0.08151759207248688, + 0.08363526314496994, + -0.038718331605196, + -0.1377076953649521, + -0.035343438386917114, + 0.03952331840991974, + -0.038099486380815506, + -0.026263367384672165, + -0.03320247679948807, + -0.04013172537088394, + 0.035255067050457, + 0.04455157741904259, + 0.03481442481279373, + -0.02171032503247261, + 0.013106733560562134, + 0.05328827351331711, + -0.006691508926451206, + 0.004149415530264378, + -0.0027372678741812706, + -0.015064834617078304, + 0.015518597327172756, + 0.0787128284573555, + -0.025712989270687103, + 0.008137466385960579, + 0.027371030300855637, + 0.04111115634441376, + -0.00980415754020214, + -0.07554060220718384, + -0.002641502767801285, + 0.027434928342700005, + -0.04423069208860397, + 0.07521319389343262, + 0.05543341860175133, + -0.029544582590460777, + 0.013403094373643398, + -0.02985316514968872, + -0.022139674052596092, + -0.028378035873174667, + -0.08750086277723312, + 0.17022018134593964, + 0.049229517579078674, + 0.04327505826950073, + -0.08021430671215057, + -0.02661857381463051, + 0.10918998718261719, + 0.002991946181282401, + -0.08516161143779755, + -0.05540993809700012, + 0.04097442328929901, + 0.14431564509868622, + -0.03581167757511139, + -0.05663484334945679, + 0.014659020118415356, + 0.09168395400047302, + 0.02321115881204605, + 0.05371744930744171, + 0.10288208723068237, + 0.10380702465772629, + -0.004797391593456268, + 0.00024840733385644853, + 0.07075881958007812, + 0.06166936084628105, + 0.04630058631300926, + -0.030442573130130768, + 0.02644006535410881, + -0.02474067732691765, + -0.027147820219397545, + 0.013351775705814362, + -0.00498542096465826, + -0.05953351780772209, + -0.018255535513162613, + -0.022663993760943413, + 0.009124348871409893, + 0.04385858029127121, + -0.048377107828855515, + -0.00128183513879776, + 0.055021341890096664, + -0.04844118282198906, + 0.06293805688619614, + 0.05118151754140854, + 0.004495254717767239, + 0.017500076442956924, + -0.05158805102109909, + -0.08397918939590454, + 0.0215607937425375, + -1.3715277418668848e-05, + 0.029940873384475708, + 0.04640599340200424, + 0.04902661591768265, + -0.001838482916355133, + 0.09337493032217026, + 0.036085344851017, + 0.0014516152441501617, + -0.008137430064380169, + -0.08914171904325485, + 0.10762730240821838, + 0.11927849054336548, + -0.03658577427268028, + 0.030142251402139664, + -0.0354972742497921, + 0.031178509816527367, + 0.056456953287124634, + -0.10893867909908295, + -0.05645158514380455, + 0.04027913138270378, + 0.048129916191101074, + 0.03372490406036377, + 0.11904533207416534, + 0.0066388314589858055, + 0.006417814642190933, + 0.09890909492969513, + -0.06482607126235962, + -0.05654880031943321, + -0.03464934229850769, + 0.029620913788676262, + -0.06323816627264023, + 0.040416471660137177, + 0.05517037957906723, + 0.0026294346898794174, + -0.012145090848207474, + 0.06144228205084801, + 0.004542961250990629, + 0.001486417604610324, + -0.04767225310206413, + 0.0011693686246871948, + 0.058297790586948395, + -0.0051822843961417675, + 0.001652231439948082, + 0.06307755410671234, + 0.04204031452536583, + 0.060373857617378235, + 0.04696718603372574, + -0.02939853072166443, + -0.1203867718577385, + 0.017689043655991554, + 0.05398954078555107, + 0.045486174523830414, + -0.039891310036182404, + -0.02353554219007492, + -0.029192402958869934, + -0.06690873205661774, + 0.04063386097550392, + -0.023980434983968735, + 0.09611372649669647, + 0.019894331693649292, + -0.008288721553981304, + 0.11201837658882141, + -0.011443797498941422, + -0.0014377329498529434, + -0.029375141486525536, + 0.0017132697394117713, + 0.012996098026633263, + 0.037378232926130295, + -0.1013718992471695, + -0.06755703687667847, + -0.02031397819519043, + 0.03224779665470123, + 0.0060243732295930386, + 0.016036614775657654, + 0.061923276633024216, + -0.017473440617322922, + 0.03167106211185455, + -0.05162401497364044, + 0.014683408662676811, + -0.09121719002723694, + -0.040306106209754944, + 0.010868720710277557, + -0.061787452548742294, + 0.0035548019222915173, + 0.09469505399465561, + 0.0020755156874656677, + 0.021223535761237144, + -0.04330555722117424, + -0.08449256420135498, + -0.05020967125892639, + 0.05761520192027092, + 0.05676736682653427, + -0.023077700287103653, + 0.004592872224748135, + 0.06153615564107895, + 0.017525020986795425, + 0.019843533635139465, + 0.04900500923395157, + 0.10481980443000793, + -0.055756598711013794, + -0.015864495187997818, + -0.04481380432844162, + 0.08426442742347717, + 0.0744682177901268, + -0.07107919454574585, + -0.06658408045768738, + -0.06271475553512573, + -0.0548674538731575, + 0.015327002853155136, + -0.03906814754009247, + 0.007808073423802853, + 0.007038188632577658, + -0.03538782522082329, + -0.09278490394353867, + -0.10324453562498093, + 0.05112820118665695, + -0.02323496900498867, + 0.010151720605790615, + -0.07668624818325043, + 0.0360274463891983, + 0.044782306998968124, + 0.04083431512117386, + -0.021566664800047874, + 0.03244791179895401, + -0.00563589483499527, + -0.059588849544525146, + -0.0204447191208601, + 0.019399069249629974, + 0.027902822941541672, + -0.0801028311252594, + -0.027346324175596237, + -0.08761890977621078, + 0.08654701709747314, + -0.05193805322051048, + 0.10969868302345276, + 0.004548600409179926, + -0.03667440637946129, + -0.06438678503036499, + -0.005068215541541576, + -0.029014956206083298, + 0.05610468611121178, + 0.06325861811637878, + 0.04696780443191528, + 0.027549726888537407, + -0.05382007360458374, + 0.08028334379196167, + 0.06447622179985046, + -0.0007913423469290137, + -0.06454464048147202, + -0.00570499524474144, + -0.02104426920413971, + 0.026596155017614365, + -0.011489320546388626, + -0.04393615573644638, + 0.025307562202215195, + 0.011626522056758404, + 0.0023843436501920223, + 0.04302237555384636, + 0.07981114834547043, + 0.06109225004911423, + -0.08637422323226929 + ] + }, + "p245_173.wav": { + "name": "p245", + "embedding": [ + 0.07176820933818817, + 0.09407888352870941, + -0.011364780366420746, + 0.010159902274608612, + -0.016106361523270607, + 0.05601426213979721, + -0.15782994031906128, + 0.10752272605895996, + -0.01731758937239647, + 0.16062405705451965, + -0.0568208247423172, + 0.10075299441814423, + -0.006862226873636246, + -0.1627231240272522, + -0.005759446881711483, + 0.04793665558099747, + -0.022647885605692863, + -0.01614522375166416, + -0.012670285999774933, + -0.011533843353390694, + 0.0270843468606472, + 0.06354396045207977, + 0.02789982780814171, + -0.04641401022672653, + 0.04943964257836342, + 0.07072983682155609, + -0.026536909863352776, + 0.020545681938529015, + -0.03066398948431015, + -0.09755146503448486, + -0.028680959716439247, + 0.09456484019756317, + -0.0629541426897049, + 0.004870763048529625, + 0.010024232789874077, + 0.0037586414255201817, + -0.009080039337277412, + -0.07031209766864777, + 0.003934313543140888, + 0.006634276360273361, + -0.026572339236736298, + 0.07697838544845581, + 0.008321565575897694, + -0.028096474707126617, + 0.018405137583613396, + 0.008620363660156727, + 0.015106569975614548, + -0.046957701444625854, + -0.09293113648891449, + 0.1733725517988205, + 0.040017981082201004, + 0.018934788182377815, + -0.0762978121638298, + -0.06529507786035538, + 0.05791374295949936, + 0.011339535936713219, + -0.07870632410049438, + -0.026602882891893387, + 0.06393817067146301, + 0.12505125999450684, + -0.01607131026685238, + -0.06907400488853455, + 0.05594916269183159, + 0.09082278609275818, + 0.031827427446842194, + 0.06660838425159454, + 0.08085164427757263, + 0.08245068043470383, + -0.014189053326845169, + -0.0047857495956122875, + 0.023275600746273994, + 0.06424253433942795, + 0.06848644465208054, + -0.019990667700767517, + 0.022112617269158363, + -0.02770320326089859, + -0.03607051074504852, + -0.02559647522866726, + -0.015543723478913307, + -0.043046653270721436, + 0.010368452407419682, + -0.023759517818689346, + 0.0066072107292711735, + 0.047005683183670044, + -0.03279145061969757, + -0.00031907856464385986, + 0.06352050602436066, + -0.03349427133798599, + 0.0873803198337555, + 0.03147701919078827, + 0.047228965908288956, + 0.04499738663434982, + -0.0993172824382782, + -0.05194021761417389, + 0.0814802423119545, + 0.02768086828291416, + 0.021833667531609535, + 0.06721874326467514, + 0.06602063030004501, + -0.026171432808041573, + 0.11556895077228546, + 0.01782584935426712, + 0.006803395226597786, + -0.01679006777703762, + -0.0866253674030304, + 0.1195625513792038, + 0.10142633318901062, + -0.03202471882104874, + 0.05930221080780029, + -0.05675867572426796, + 0.03749794512987137, + 0.061748430132865906, + -0.1386668086051941, + -0.07783924788236618, + 0.01595931686460972, + -0.004411232192069292, + -0.0006495704874396324, + 0.12575292587280273, + 0.01999078318476677, + 0.029421869665384293, + 0.07984790951013565, + -0.12089603394269943, + -0.07428208738565445, + -0.014167513698339462, + 0.04148555174469948, + -0.13301032781600952, + 0.07904093712568283, + 0.07656114548444748, + -0.027148105204105377, + 0.017414215952157974, + 0.05377041548490524, + -0.007800941821187735, + 0.03367157652974129, + -0.041114598512649536, + -0.004928048234432936, + 0.0014044824056327343, + -0.03247660771012306, + -0.011709107086062431, + -0.007882753387093544, + 0.0020699799060821533, + 0.04860632121562958, + -0.009369758889079094, + -0.031571898609399796, + -0.1366378366947174, + 0.02385927364230156, + 0.04236344248056412, + 0.04399466887116432, + -0.026446310803294182, + -0.03849812597036362, + -0.029361609369516373, + -0.06658098101615906, + 0.01916542835533619, + -0.027384649962186813, + 0.049863725900650024, + 0.026535917073488235, + 0.0006802743300795555, + 0.1292160153388977, + 0.04050588980317116, + 0.008325567469000816, + -0.034439072012901306, + -0.0182051844894886, + 0.035081617534160614, + 0.03761845454573631, + -0.08179673552513123, + -0.07960256934165955, + -0.035053886473178864, + 0.0015208013355731964, + 0.00039042532444000244, + 0.07526734471321106, + 0.06694494932889938, + 0.02038998156785965, + 0.00393206812441349, + -0.07140673696994781, + 0.015561315231025219, + -0.07188624143600464, + -0.07797953486442566, + -0.0011919899843633175, + -0.038577593863010406, + -0.023005720227956772, + 0.11078164726495743, + 0.011829000897705555, + 0.030275991186499596, + -0.09112456440925598, + -0.03231711685657501, + -0.0775674432516098, + 0.03312600031495094, + 0.06938186287879944, + -0.027957189828157425, + -0.005439095199108124, + 0.03145615756511688, + -0.01234870683401823, + 0.04460148513317108, + 0.06083906441926956, + 0.10649219155311584, + -0.031135428696870804, + 0.01706313155591488, + -0.04707447439432144, + 0.10066907107830048, + 0.09728628396987915, + -0.0434102863073349, + -0.06789210438728333, + -0.027286015450954437, + -0.09110747277736664, + 0.024142339825630188, + -0.01407662034034729, + 0.010439066216349602, + 0.027954814955592155, + -0.0264646764844656, + -0.09735719859600067, + -0.10639109462499619, + 0.06820908188819885, + -0.03417264297604561, + -0.01120026409626007, + -0.09239445626735687, + 0.07127836346626282, + 0.05764802545309067, + 0.062376610934734344, + -0.02964300662279129, + -0.021027889102697372, + 0.01798599399626255, + -0.023972038179636, + 0.019715020433068275, + 0.055095501244068146, + 0.04365352541208267, + -0.10191469639539719, + 0.0012429035268723965, + -0.0725974589586258, + 0.06259524077177048, + -0.05908035486936569, + 0.12826167047023773, + 0.019626274704933167, + -0.055374495685100555, + -0.09822532534599304, + 0.0451180674135685, + -0.012566395103931427, + 0.038176268339157104, + 0.025728680193424225, + 0.03536828234791756, + 0.07543665915727615, + -0.08609627932310104, + 0.05570127069950104, + 0.056159213185310364, + 0.008486177772283554, + -0.07039356976747513, + -0.06544645130634308, + -0.027505137026309967, + 0.05889352411031723, + -0.014390192925930023, + -0.08508481085300446, + -0.002448371611535549, + 0.04183949902653694, + 0.04390355199575424, + 0.05432435870170593, + 0.11898042261600494, + 0.014156199991703033, + -0.1298334300518036 + ] + }, + "p245_212.wav": { + "name": "p245", + "embedding": [ + 0.04926248639822006, + 0.09347432851791382, + -0.02989881858229637, + 0.04287482425570488, + -0.07121097296476364, + 0.06113899499177933, + -0.12194943428039551, + 0.1443902850151062, + -0.026454035192728043, + 0.12350095808506012, + -0.06389691680669785, + 0.13769842684268951, + -0.010839363560080528, + -0.1748703420162201, + -0.009052792564034462, + 0.051553875207901, + -0.03032657504081726, + -0.027276592329144478, + -0.01762459985911846, + -0.02490421012043953, + 0.04523976519703865, + 0.026174617931246758, + 0.042886923998594284, + -0.0011535920202732086, + 0.02268734574317932, + 0.06813979893922806, + -0.008159923367202282, + 0.03383906930685043, + 0.012882075272500515, + -0.04250115901231766, + -0.05369354039430618, + 0.09711077809333801, + -0.04795306175947189, + 0.005942797288298607, + 0.04737791419029236, + -0.029083454981446266, + -0.016851384192705154, + -0.06789243221282959, + -0.015624778345227242, + -0.004724005237221718, + -0.03770575299859047, + 0.07108642160892487, + 0.03683258593082428, + -0.04691920056939125, + 0.040689773857593536, + 0.0017856033518910408, + -0.025633830577135086, + -0.022076554596424103, + -0.1124044805765152, + 0.1485075056552887, + 0.08334562182426453, + 0.004351007752120495, + -0.06874970346689224, + -0.04564416781067848, + 0.10296206921339035, + 0.011801138520240784, + -0.10092521458864212, + -0.02880946546792984, + 0.06590692698955536, + 0.14732694625854492, + -0.017298776656389236, + -0.01934986189007759, + 0.03992252051830292, + 0.12292594462633133, + 0.05581901967525482, + 0.08670341968536377, + 0.08431488275527954, + 0.12420819699764252, + -0.02458467148244381, + 0.036521416157484055, + 0.04772704094648361, + 0.08484551310539246, + 0.03571600466966629, + -0.013911524787545204, + 0.016172481700778008, + -0.01837928779423237, + -0.022812267765402794, + -0.011723371222615242, + -0.03292742371559143, + -0.041716281324625015, + -0.014236153103411198, + -0.0020793424919247627, + 0.022282516583800316, + 0.028689857572317123, + -0.03425309807062149, + 0.06377941370010376, + 0.05432802066206932, + -0.014670338481664658, + 0.05781891196966171, + 0.02322547324001789, + 0.0008584093884564936, + 0.06046289950609207, + -0.0935458093881607, + -0.09158241748809814, + 0.03851895034313202, + 0.009966236539185047, + 0.03802908957004547, + 0.09636756032705307, + 0.04850156977772713, + -0.015959028154611588, + 0.11254779249429703, + 0.06478337943553925, + -0.009102988056838512, + 0.024678101763129234, + -0.07216702401638031, + 0.13344532251358032, + 0.09953349828720093, + -0.028674017637968063, + 0.05954040586948395, + -0.05857591703534126, + 0.08252397179603577, + 0.0627819150686264, + -0.12963241338729858, + -0.059737276285886765, + 0.015851616859436035, + 0.010762259364128113, + -0.021799711510539055, + 0.12426159530878067, + 0.009573590941727161, + 0.05866051837801933, + 0.10245257616043091, + -0.09398536384105682, + -0.06916390359401703, + -0.03563554212450981, + 0.053915515542030334, + -0.0720360055565834, + 0.06783805042505264, + 0.05705127865076065, + -0.016505202278494835, + 0.008189246989786625, + 0.05618195980787277, + -0.018990276381373405, + 0.005063587799668312, + 0.04427889734506607, + -0.055357616394758224, + 0.021597588434815407, + -0.029596343636512756, + 0.007059850730001926, + 0.038379229605197906, + 0.018356427550315857, + 0.04641779139637947, + -0.017772115767002106, + 0.005433990154415369, + -0.10581168532371521, + 0.018909212201833725, + 0.041864145547151566, + 0.08023247122764587, + -0.00948785524815321, + -0.04590172320604324, + -0.027374034747481346, + -0.07832708954811096, + 0.009802371263504028, + -0.015804335474967957, + 0.05598200112581253, + -0.02208850346505642, + 0.006917305290699005, + 0.07315942645072937, + 0.038381580263376236, + -0.002510452875867486, + -0.053397759795188904, + -0.03993199020624161, + 0.026768989861011505, + 0.04826163500547409, + -0.0876753032207489, + -0.07765023410320282, + -0.01559979934245348, + 0.017758280038833618, + -0.043765634298324585, + 0.0477977991104126, + 0.044568829238414764, + 0.023309417068958282, + 0.022982459515333176, + -0.07431454956531525, + 0.014876702800393105, + -0.09874092042446136, + -0.06252795457839966, + -0.013873577117919922, + -0.010914936661720276, + -0.023025624454021454, + 0.07346211373806, + 0.028459902852773666, + 0.06103762984275818, + -0.012941684573888779, + -0.03182506188750267, + -0.0742461234331131, + 0.04373345524072647, + 0.04771711304783821, + -0.0023526393342763186, + 0.055207058787345886, + 0.06242801249027252, + -0.032313913106918335, + 0.03726121038198471, + 0.05519833415746689, + 0.08633619546890259, + -0.02889649197459221, + -0.0041061509400606155, + -0.08075399696826935, + 0.08854243159294128, + 0.11216777563095093, + -0.09398438781499863, + -0.08515109121799469, + -0.046981871128082275, + -0.07143368571996689, + 0.02817981131374836, + -0.04188070446252823, + -0.008412213064730167, + 0.024546276777982712, + -0.006018579937517643, + -0.11036016047000885, + -0.09961618483066559, + 0.09249331057071686, + -0.07802318036556244, + -0.0007111175800673664, + -0.088178351521492, + 0.04190279543399811, + 0.10098787397146225, + 0.012273182161152363, + -0.05088677257299423, + -0.013336263597011566, + 0.049407146871089935, + -0.022840479388833046, + 0.01786416582763195, + 0.05521143227815628, + 0.058342739939689636, + -0.11871907860040665, + -0.0011970819905400276, + -0.05556679144501686, + 0.037498194724321365, + -0.05119210481643677, + 0.15708871185779572, + 0.021797113120555878, + -0.042812660336494446, + -0.08902624249458313, + 0.06639361381530762, + 2.842256799340248e-05, + 0.038995031267404556, + 0.03430986404418945, + 0.057846926152706146, + 0.015145277604460716, + -0.10340934246778488, + 0.1268310844898224, + 0.02518150396645069, + -0.03879963606595993, + -0.08295939862728119, + -0.02969885803759098, + -0.03879639133810997, + 0.03559086471796036, + 0.018966900184750557, + -0.08289770036935806, + -0.036304399371147156, + 0.02229735255241394, + -0.0009657228365540504, + 0.06664615869522095, + 0.14926570653915405, + 0.06402461975812912, + -0.10259199142456055 + ] + }, + "p245_297.wav": { + "name": "p245", + "embedding": [ + 0.07629692554473877, + 0.019971350207924843, + -0.03802793100476265, + -0.006920741870999336, + -0.012514205649495125, + 0.008400335907936096, + -0.1661592721939087, + 0.05450918525457382, + -0.005334441550076008, + 0.1383333057165146, + -0.04782237857580185, + 0.09122902154922485, + 0.05695922300219536, + -0.11926629394292831, + -0.026478007435798645, + -0.0032569197937846184, + -0.0037452802062034607, + -0.01487928256392479, + -0.03494531288743019, + -0.03976662829518318, + 0.018306411802768707, + 0.0729287788271904, + 0.018423713743686676, + -0.02867380529642105, + 0.022599918767809868, + 0.03466223552823067, + 0.016785111278295517, + 0.03369872644543648, + -0.012988896109163761, + -0.0051640113815665245, + 0.03835226222872734, + 0.09454752504825592, + -0.03953073173761368, + -0.015669522807002068, + 0.0002562357112765312, + -0.0037231799215078354, + 0.010481055825948715, + -0.06576351821422577, + -0.031258899718523026, + 0.060968827456235886, + -0.026809804141521454, + 0.08423973619937897, + 0.07316368818283081, + 0.03806396946310997, + -0.015905175358057022, + 0.007131893187761307, + -0.015634985640645027, + -0.04342108592391014, + -0.07481781393289566, + 0.17867104709148407, + 0.059898246079683304, + 0.01981240138411522, + -0.08707676827907562, + -0.014873607084155083, + 0.05679138004779816, + -0.020422862842679024, + -0.042762722820043564, + -0.03297768533229828, + 0.023651596158742905, + 0.11516857147216797, + -0.011122106574475765, + -0.061041586101055145, + 0.03531097620725632, + 0.0985541045665741, + 0.026169762015342712, + -0.0008743098005652428, + 0.10756926238536835, + 0.09035806357860565, + -0.022079408168792725, + 0.0003854893147945404, + 0.027243316173553467, + 0.04686136543750763, + 0.03756828233599663, + -0.057963777333498, + 0.0463244803249836, + 0.017470043152570724, + -0.002822326496243477, + -0.009697090834379196, + -0.0333847813308239, + -0.030203914269804955, + 0.029083535075187683, + -0.007038524374365807, + 0.014345266856253147, + 0.10834480077028275, + -0.12180013209581375, + 0.0009901653975248337, + 0.02897222340106964, + -0.039978988468647, + 0.06123960018157959, + 0.04182210564613342, + 0.05178956314921379, + 0.0012031756341457367, + -0.04275290668010712, + -0.041629284620285034, + 0.04267159476876259, + 0.001502116210758686, + 0.026989420875906944, + 0.03683321550488472, + 0.03040151484310627, + -0.02361932024359703, + 0.0913555696606636, + 0.0122599545866251, + -0.04111108183860779, + -0.03137291222810745, + -0.05846916139125824, + 0.09025005996227264, + 0.10722416639328003, + -0.04756893217563629, + 0.010950114578008652, + -0.00423665065318346, + -0.0002347724512219429, + 0.003550526686012745, + -0.10134103894233704, + -0.062464095652103424, + 0.07700498402118683, + 0.08343572914600372, + 0.04594942554831505, + 0.12246283888816833, + 0.021112067624926567, + 0.045787788927555084, + 0.05157501623034477, + -0.00040265917778015137, + -0.03345586359500885, + -0.01539759524166584, + 0.028891535475850105, + -0.07772502303123474, + 0.029788680374622345, + 0.0491885244846344, + -0.0067960843443870544, + -0.049767691642045975, + 0.08093934506177902, + 0.007673865184187889, + 0.01841999962925911, + -0.0654219314455986, + 0.06309318542480469, + 0.09555287659168243, + 0.01710500940680504, + 0.01704421639442444, + 0.003249748144298792, + 0.008811423555016518, + 0.055022697895765305, + 0.054727066308259964, + -0.054593898355960846, + -0.14069455862045288, + 0.03490566834807396, + 0.030424585565924644, + 0.04977791756391525, + -0.06496742367744446, + -0.047632452100515366, + -0.05405411124229431, + -0.002910137176513672, + 0.005666239187121391, + -0.01811882108449936, + 0.04784992337226868, + 0.03455706685781479, + -0.039973221719264984, + 0.1071385070681572, + -0.06219460070133209, + -0.004876335151493549, + 0.02228272147476673, + 0.0539839044213295, + -0.008913730271160603, + 0.03449740260839462, + -0.036798641085624695, + -0.04819076135754585, + 0.01632244884967804, + 0.039813846349716187, + 0.030323179438710213, + 0.01755298301577568, + 0.04531760513782501, + -0.04706723988056183, + 0.03339900076389313, + -0.07254259288311005, + -0.01250685378909111, + -0.06893104314804077, + -0.0036847665905952454, + 0.025534726679325104, + -0.03282387554645538, + -0.04400666430592537, + 0.06764364242553711, + 0.02060113474726677, + 0.05287296324968338, + -0.05018552392721176, + -0.07889688014984131, + -0.02753717079758644, + 0.025382716208696365, + 0.08142886310815811, + -0.06796963512897491, + -0.005324011668562889, + 0.0546257346868515, + 0.034353598952293396, + 0.02660982683300972, + 0.07399705797433853, + 0.03870521858334541, + -0.04743567481637001, + -0.025365836918354034, + -0.012146467342972755, + 0.11036759614944458, + 0.01119477953761816, + -0.0339694581925869, + -0.03719257563352585, + -0.03000205010175705, + -0.06114179641008377, + 0.010866746306419373, + 0.04313436895608902, + 0.04434502124786377, + 0.062102459371089935, + -0.016348928213119507, + -0.08330464363098145, + -0.052538808435201645, + 0.011660106480121613, + -0.0668366402387619, + 2.127978950738907e-05, + -0.04786863550543785, + 0.01919173076748848, + 0.05848894268274307, + 0.06234728917479515, + -0.0020749401301145554, + -0.0330393947660923, + -0.032533567398786545, + -0.07975277304649353, + -0.027455519884824753, + 0.019928976893424988, + 0.03278620168566704, + -0.08646176755428314, + -0.016873378306627274, + -0.09054318070411682, + 0.06774342060089111, + -0.06268683075904846, + 0.033310286700725555, + 0.048422921448946, + -0.04793819412589073, + -0.06293939054012299, + -0.034452885389328, + -0.030322391539812088, + 0.060948535799980164, + 0.057113468647003174, + 0.02951253205537796, + 0.04063909128308296, + -0.06381344050168991, + 0.053798358887434006, + 0.09327006340026855, + -0.011326191015541553, + -0.0931345596909523, + 8.282624185085297e-05, + 0.024634400382637978, + 0.03995777666568756, + 0.062418267130851746, + -0.023690296337008476, + 0.017248474061489105, + 0.03683752566576004, + -0.05682305991649628, + 0.03897673264145851, + 0.05409426987171173, + 0.05446132645010948, + -0.12581440806388855 + ] + }, + "p245_208.wav": { + "name": "p245", + "embedding": [ + 0.05125076323747635, + 0.11419150233268738, + -0.025501761585474014, + 0.026101000607013702, + -0.008544359356164932, + 0.06391303241252899, + -0.11612982302904129, + 0.08943429589271545, + -0.051306888461112976, + 0.12412339448928833, + -0.0921008288860321, + 0.09335722029209137, + -0.0444030836224556, + -0.11974431574344635, + -0.03559380769729614, + 0.03892037272453308, + -0.024653399363160133, + -0.009654968976974487, + -0.027000732719898224, + 0.013440657407045364, + 0.01123119704425335, + 0.0397481694817543, + 0.027141539379954338, + -0.03496481478214264, + 0.057529255747795105, + 0.051261916756629944, + 0.014046593569219112, + 0.05508347228169441, + 0.009758812375366688, + -0.03700024634599686, + -0.016322080045938492, + 0.0984763503074646, + -0.058843642473220825, + 0.012739856727421284, + 0.03934529796242714, + 0.04367176815867424, + 0.0019126555416733027, + -0.06717853993177414, + -0.00011252891272306442, + -0.0013750223442912102, + -0.04891732707619667, + 0.0629829615354538, + 0.01425075065344572, + -0.04114707559347153, + 0.004804631229490042, + 0.02511514350771904, + 0.024984922260046005, + -0.05233056843280792, + -0.09256522357463837, + 0.13978534936904907, + 0.007139792665839195, + 0.029415536671876907, + -0.07998111099004745, + -0.08232612907886505, + 0.08668428659439087, + 0.009077733382582664, + -0.06827464699745178, + -0.03016751818358898, + 0.0566578209400177, + 0.1562870293855667, + -0.021291103214025497, + -0.03526361286640167, + 0.021431736648082733, + 0.07608122378587723, + 0.06751179695129395, + 0.08654499053955078, + 0.07225680351257324, + 0.08797501027584076, + 0.03173702582716942, + 0.012589674443006516, + 0.06281158328056335, + 0.05196135491132736, + 0.04360462725162506, + -0.0199274979531765, + -0.00046735070645809174, + -0.0003736445214599371, + -0.04351101815700531, + 0.02821057289838791, + -0.0018056074623018503, + -0.05079984664916992, + -0.002817056141793728, + 0.004377659875899553, + 0.001524798572063446, + 0.028849530965089798, + -0.027030812576413155, + 0.037783533334732056, + 0.04753422737121582, + -0.0519958958029747, + 0.07566116005182266, + 0.0326567068696022, + -0.010243198834359646, + 0.03281642124056816, + -0.07016395032405853, + -0.08529186993837357, + 0.009472963400185108, + -0.0013765832409262657, + 0.001708323135972023, + 0.07339968532323837, + 0.05608911067247391, + -0.006538934540003538, + 0.09834583103656769, + 0.016034189611673355, + 0.03622647747397423, + 0.01470652874559164, + -0.0769614726305008, + 0.10847531259059906, + 0.07698879390954971, + -0.028939982876181602, + 0.032963041216135025, + -0.02088911645114422, + 0.027025917544960976, + 0.09028632938861847, + -0.13116732239723206, + -0.08939984440803528, + 0.039894949644804, + 0.004922441206872463, + 0.005088046193122864, + 0.08056143671274185, + -0.0014945559669286013, + -0.0068378872238099575, + 0.09679040312767029, + -0.1027953177690506, + -0.07012687623500824, + -0.021615853533148766, + 0.05138783901929855, + -0.054190538823604584, + 0.039423245936632156, + 0.06339075416326523, + -0.013208101503551006, + -0.04085865616798401, + 0.06894146651029587, + 0.008153419941663742, + 0.020064057782292366, + 9.135343134403229e-05, + -0.014587385579943657, + 0.03393830358982086, + -0.03440434858202934, + -0.009682769887149334, + 0.04648035764694214, + 0.03619641438126564, + 0.051738858222961426, + 0.004564904607832432, + -0.034195683896541595, + -0.11797688156366348, + 0.010923285037279129, + 0.08597961813211441, + 0.05481487140059471, + -0.03411075472831726, + -0.03295685723423958, + -0.03991026058793068, + -0.05341802537441254, + 0.03717910498380661, + 0.014164534397423267, + 0.09592233598232269, + 0.005031134933233261, + -0.004775440786033869, + 0.13432247936725616, + -0.005793027579784393, + 0.00704911258071661, + -0.03959937393665314, + 0.0026470068842172623, + 0.02113662101328373, + 0.03298279270529747, + -0.058486148715019226, + -0.10803937166929245, + -0.007899343967437744, + 0.00174621120095253, + -0.011188600212335587, + 0.05900624021887779, + 0.03674301132559776, + 0.01179041713476181, + 0.028104089200496674, + -0.0358993224799633, + -0.010864193551242352, + -0.09579557180404663, + -0.04460500553250313, + -0.020270323380827904, + -0.032305702567100525, + -0.011009836569428444, + 0.09381204843521118, + 0.03437057510018349, + 0.032235510647296906, + -0.0011680247262120247, + -0.07181525230407715, + -0.05891504883766174, + 0.05968004837632179, + 0.06921112537384033, + 9.620329365134239e-05, + 0.01788141205906868, + 0.04756581783294678, + -0.002611130475997925, + 0.02369558997452259, + 0.07196229696273804, + 0.07695899158716202, + -0.01221809908747673, + -0.03209751099348068, + -0.058739446103572845, + 0.08297953754663467, + 0.05804389715194702, + -0.11153349280357361, + -0.06065557897090912, + -0.0368708074092865, + -0.05111505836248398, + 0.016518335789442062, + -0.02241358533501625, + 0.05150509998202324, + 0.003765938337892294, + -0.04792702943086624, + -0.07965269684791565, + -0.12038996815681458, + 0.06834189593791962, + -0.037262238562107086, + -0.028588397428393364, + -0.06584685295820236, + 0.028936758637428284, + 0.031042225658893585, + 0.05225653946399689, + 0.0010111918672919273, + 0.024980131536722183, + 0.03724896162748337, + -0.06834117323160172, + -0.020135698840022087, + 0.07245460152626038, + -0.001701096072793007, + -0.07039386034011841, + 0.020550265908241272, + -0.07188960909843445, + 0.10665726661682129, + -0.06960248947143555, + 0.15118984878063202, + -0.01805129647254944, + -0.07085611671209335, + -0.10296998918056488, + 0.017364734783768654, + -0.034966666251420975, + 0.034675318747758865, + 0.021118618547916412, + 0.046076975762844086, + 0.021706534549593925, + -0.04627785086631775, + 0.09942415356636047, + 0.03874754533171654, + -0.004360751248896122, + -0.06609224528074265, + -0.089366115629673, + -0.04460126906633377, + 0.033301226794719696, + -0.0055572260171175, + -0.05169789493083954, + 0.013971950858831406, + 0.016396237537264824, + 0.00987611897289753, + 0.04228082299232483, + 0.1234031617641449, + 0.060734257102012634, + -0.09420932829380035 + ] + }, + "p245_126.wav": { + "name": "p245", + "embedding": [ + 0.060276102274656296, + 0.10743342339992523, + 0.022987917065620422, + -0.021033264696598053, + -0.021439027041196823, + 0.07483284175395966, + -0.06769314408302307, + 0.09959492087364197, + -0.003704679664224386, + 0.06015157699584961, + -0.10082963109016418, + 0.08416327834129333, + -0.0033188601955771446, + -0.13983041048049927, + -0.02683335356414318, + 0.03296198695898056, + -0.039197247475385666, + 0.011853891424834728, + -0.028025781735777855, + -0.03097955510020256, + 0.0131643395870924, + 0.017187735065817833, + 0.055144302546978, + -0.004673599265515804, + 0.03625783324241638, + 0.04145725816488266, + 0.01909453794360161, + 0.0378464050590992, + 0.01077343337237835, + -0.036670975387096405, + -0.044595759361982346, + 0.07184606790542603, + -0.037301287055015564, + -0.006060857325792313, + 0.05372486636042595, + -0.021383030340075493, + 0.04996330291032791, + -0.08223645389080048, + -0.04609699174761772, + 0.033471666276454926, + -0.04277456924319267, + 0.06639231741428375, + 0.0306229367852211, + -0.006403905339539051, + 0.03139862045645714, + 0.04951004683971405, + -0.0010821273317560554, + -0.04407871887087822, + -0.07879745960235596, + 0.13030210137367249, + 0.03422272205352783, + 0.016165826469659805, + -0.0627593994140625, + -0.031019166111946106, + 0.08138328790664673, + -0.028556479141116142, + -0.04194782301783562, + 0.008330968208611012, + 0.051011376082897186, + 0.07240282744169235, + 0.010012256912887096, + -0.03621017187833786, + 0.03859952837228775, + 0.07630112022161484, + 0.012344986200332642, + 0.038448430597782135, + 0.09056162089109421, + 0.07001557946205139, + -0.009482350200414658, + 0.013522451743483543, + 0.04224702715873718, + 0.046314649283885956, + 0.03834046423435211, + -0.02975088357925415, + 0.03224742412567139, + -0.0036381403915584087, + -0.021601876243948936, + -0.006208098493516445, + -0.019239753484725952, + -0.006544872187077999, + 0.03382453694939613, + 0.02823467180132866, + 0.006495587527751923, + 0.010953640565276146, + -0.04835706949234009, + 0.04895298182964325, + -0.016508445143699646, + 0.07658147811889648, + 0.07289744913578033, + 0.027002310380339622, + 0.01608724519610405, + 0.029596593230962753, + -0.05557520315051079, + -0.08576392382383347, + 0.03198881819844246, + 0.016156647354364395, + -0.010536057874560356, + 0.035520993173122406, + 0.04566342383623123, + -0.031579237431287766, + 0.1086253970861435, + 0.03952968120574951, + -0.01291958149522543, + 0.01971152424812317, + -0.07607865333557129, + 0.06416411697864532, + 0.07246428728103638, + -0.01685943268239498, + 0.050458960235118866, + -0.01639564149081707, + 0.06503182649612427, + 0.06319156289100647, + -0.10356451570987701, + -0.052363067865371704, + 0.005080516450107098, + 0.01879105716943741, + 0.03251377493143082, + 0.08255527913570404, + -0.03586138039827347, + 0.03309435397386551, + 0.06900020688772202, + -0.049934666603803635, + -0.02494620904326439, + 0.015644891187548637, + 0.007722519338130951, + -0.02038024365901947, + 0.02241111546754837, + 0.03562706708908081, + 0.017094654962420464, + -0.04560891538858414, + 0.043694984167814255, + 0.0060726492665708065, + 0.005004418548196554, + -0.035136040300130844, + 0.007139201276004314, + -0.005530822090804577, + -0.020593177527189255, + -0.028182528913021088, + 0.01247173361480236, + 0.05715559050440788, + 0.006377595476806164, + 0.037852250039577484, + -0.043610453605651855, + -0.09432698786258698, + -0.0010650096228346229, + -0.009283925406634808, + 0.024017006158828735, + 0.02309003286063671, + -0.041179824620485306, + -0.052725329995155334, + 0.01539422757923603, + -0.0031656306236982346, + -0.004998265765607357, + 0.02614317461848259, + 0.04530863091349602, + -0.01980159431695938, + 0.06348380446434021, + 0.002737609203904867, + 0.007668794598430395, + -0.02342359535396099, + -0.04502991959452629, + 0.018195219337940216, + 0.03136162459850311, + -0.010419152677059174, + -0.07989799976348877, + -0.006481997203081846, + -0.03328252583742142, + -0.013683601282536983, + 0.03470136970281601, + 0.05236878618597984, + -0.0052366117015480995, + -0.00716061657294631, + -0.07312414050102234, + 0.0032258755527436733, + -0.07030171900987625, + -0.06507742404937744, + 0.025859151035547256, + 0.040030330419540405, + -0.017705120146274567, + 0.07526713609695435, + 0.032592982053756714, + 0.04028020054101944, + -0.03211855888366699, + -0.043448612093925476, + -0.0046804845333099365, + 0.048828691244125366, + 0.05837429687380791, + 0.01816587708890438, + 0.04255989193916321, + 0.031063003465533257, + -0.009992222301661968, + 0.06856922805309296, + 0.050552479922771454, + 0.04652805253863335, + -0.009125716984272003, + 0.009852642193436623, + 0.012126500718295574, + 0.06528227031230927, + 0.01505771093070507, + -0.0673830509185791, + -0.05860796198248863, + -0.0058288476429879665, + -0.04162576422095299, + 0.031100472435355186, + 0.03190494328737259, + 0.02960197627544403, + 0.026081394404172897, + -0.0081310560926795, + -0.04280052334070206, + -0.07205747812986374, + 0.028458010405302048, + -0.04414428770542145, + -0.026520688086748123, + -0.03470790013670921, + 0.051165830343961716, + 0.09821806848049164, + -0.006167824380099773, + -0.0010318731656298041, + -0.006127180065959692, + 0.0061864531598985195, + -0.012101506814360619, + -0.04184962809085846, + -0.0015382766723632812, + 0.03160073608160019, + -0.06789115071296692, + 0.03475356101989746, + -0.07483793795108795, + 0.05938262864947319, + -0.003016571281477809, + 0.0904371440410614, + 0.03648079186677933, + -0.02464001625776291, + -0.07144004106521606, + 0.025891322642564774, + -0.009742679074406624, + 0.03344042971730232, + 0.000156499445438385, + 0.014185163192451, + 0.02812061831355095, + -0.06517656147480011, + 0.06944935023784637, + 0.03066737949848175, + -0.07193551957607269, + -0.06680554151535034, + -0.009874850511550903, + -0.030184758827090263, + 0.0028842329047620296, + 0.0014550735941156745, + -0.053957514464855194, + -0.008624620735645294, + 0.023186035454273224, + 0.01699202135205269, + 0.0342695377767086, + 0.0812079906463623, + 0.014652922749519348, + -0.05705541372299194 + ] + }, + "p245_343.wav": { + "name": "p245", + "embedding": [ + 0.04048285260796547, + 0.050855204463005066, + -0.04111466184258461, + -0.01708024926483631, + -0.045686352998018265, + 0.041656494140625, + -0.1261962652206421, + 0.07455097138881683, + -0.005745976231992245, + 0.15562069416046143, + -0.02061404287815094, + 0.11013163626194, + 0.007303598336875439, + -0.10282115638256073, + 0.018437756225466728, + 0.024569332599639893, + -0.02578464150428772, + -0.004576869308948517, + -0.01225886307656765, + -0.07069813460111618, + 0.028024721890687943, + 0.030405886471271515, + 0.02746352180838585, + -0.06279630959033966, + 0.01839635893702507, + 0.06060687080025673, + -0.013895709998905659, + -0.004747550003230572, + -0.010169142857193947, + -0.07565844058990479, + -0.01652393490076065, + 0.08838427066802979, + -0.04680223390460014, + -0.016897987574338913, + 0.01990644633769989, + -0.017104018479585648, + -0.026446189731359482, + -0.03877663612365723, + 0.01733200065791607, + 0.04610736668109894, + -0.043801404535770416, + 0.08983806520700455, + 0.020851127803325653, + -0.013959072530269623, + 0.029988856986165047, + -0.05556454882025719, + -0.058505598455667496, + 0.0375538133084774, + -0.04095020890235901, + 0.11656245589256287, + 0.08041796088218689, + 0.0031306305900216103, + -0.06218336150050163, + -0.004902448505163193, + 0.057975783944129944, + 0.00917382724583149, + -0.10093078762292862, + -0.019349712878465652, + -0.009282464161515236, + 0.09114935994148254, + -0.001632831059396267, + -0.05908629298210144, + 0.031125348061323166, + 0.08755418658256531, + 0.02008543536067009, + 0.02993987500667572, + 0.09234490990638733, + 0.08019337058067322, + -0.014564476907253265, + 0.008977140299975872, + 0.03931872546672821, + 0.08820055425167084, + 0.05184897407889366, + -0.02005847916007042, + 0.04542212188243866, + -0.030288120731711388, + -0.012041673064231873, + -0.058913350105285645, + -0.010794056579470634, + -0.05675097927451134, + -0.053684256970882416, + -0.026349803432822227, + 0.010762011632323265, + 0.089112788438797, + -0.02302808128297329, + -0.027715425938367844, + 0.06155753880739212, + -0.05336911231279373, + 0.03030720353126526, + 0.047166936099529266, + 0.010137850418686867, + 0.011287245899438858, + -0.08667226880788803, + -0.05202798545360565, + 0.02901623025536537, + -0.010442557744681835, + 0.05318186804652214, + 0.05278075486421585, + 0.03072032891213894, + 0.007445366121828556, + 0.07861006259918213, + 0.06375391036272049, + 0.0005516544915735722, + -0.026715759187936783, + -0.06337056308984756, + 0.09740497171878815, + 0.10956341028213501, + -0.04964444041252136, + 0.0407428964972496, + -0.0003967657685279846, + 0.039645757526159286, + -0.01401291973888874, + -0.10797692835330963, + -0.03048950433731079, + 0.0006152484565973282, + 0.050987523049116135, + 0.030641769990324974, + 0.10672831535339355, + 0.029062816873192787, + 0.0520622543990612, + 0.07446759194135666, + -0.028189940378069878, + -0.05075071007013321, + -0.05501377955079079, + 0.03480115532875061, + -0.09697028249502182, + 0.06871119141578674, + 0.03955377638339996, + 0.027193769812583923, + 0.005783365108072758, + 0.07503387331962585, + 0.01007310301065445, + 0.009224120527505875, + -0.04262863099575043, + 0.006299678236246109, + 0.025967424735426903, + -0.006247186101973057, + 0.043900266289711, + 0.05639313906431198, + -0.008831813000142574, + 0.10313312709331512, + 0.033233642578125, + 0.010255120694637299, + -0.09374222904443741, + 0.04032016545534134, + 0.008093034848570824, + 0.04000284895300865, + -0.0517435185611248, + -0.032055214047431946, + 0.02673550881445408, + -0.0746106207370758, + -0.0048705581575632095, + -0.018290644511580467, + 0.061789728701114655, + 0.013421861454844475, + -0.016090987250208855, + 0.08622059971094131, + 0.015592485666275024, + -0.007235540077090263, + 0.018917901441454887, + -0.005323478952050209, + -0.0019005760550498962, + 0.07276856899261475, + -0.13172996044158936, + -0.06415256857872009, + -0.002425233833491802, + 0.01210082694888115, + 0.027545087039470673, + 0.02959677204489708, + 0.10955505073070526, + -0.03130568936467171, + 0.04264047369360924, + -0.011558061465620995, + -0.0036917943507432938, + -0.05989084765315056, + -0.05101752281188965, + -0.021976713091135025, + -0.08806974440813065, + -0.058260489255189896, + 0.0745333731174469, + -0.025795953348279, + 0.049068886786699295, + -0.052847445011138916, + -0.03229995444417, + -0.05956869199872017, + 0.022989457473158836, + 0.026988033205270767, + -0.04920592159032822, + -0.01300679799169302, + 0.10437968373298645, + 0.023749232292175293, + -0.02082212083041668, + 0.04441311955451965, + 0.07953150570392609, + -0.07751595228910446, + 0.0014803651720285416, + -0.0711224228143692, + 0.08944322168827057, + 0.09335390478372574, + -0.025321798399090767, + -0.06632337719202042, + -0.07104109972715378, + -0.06386034190654755, + 0.04492798447608948, + -0.04763428866863251, + -0.01699564978480339, + 0.032989297062158585, + -0.038258809596300125, + -0.05784458667039871, + -0.0793478935956955, + 0.08160287886857986, + -0.05243944376707077, + 0.0033914465457201004, + -0.052534617483615875, + 0.015824686735868454, + 0.02074095606803894, + 0.06124778836965561, + -0.0765281394124031, + 0.051489442586898804, + 0.033592574298381805, + -0.031927138566970825, + 0.021895835176110268, + 0.0362342894077301, + 0.03668513149023056, + -0.0640970841050148, + -0.05757332593202591, + -0.055847086012363434, + 0.037555575370788574, + -0.060103073716163635, + 0.05226214975118637, + 0.022088661789894104, + -0.036174941807985306, + -0.051780179142951965, + -0.00021217763423919678, + -0.016391150653362274, + 0.025964174419641495, + 0.09227732568979263, + 0.08194012194871902, + 0.03681248053908348, + -0.05572652444243431, + 0.05870746076107025, + 0.053479552268981934, + 0.031480200588703156, + -0.052254222333431244, + 0.017325764521956444, + -0.013203416019678116, + 0.04549732059240341, + 0.03555392101407051, + -0.06641463190317154, + 0.062012121081352234, + 0.003890520893037319, + 0.003987109288573265, + 0.028409229591488838, + 0.036373719573020935, + 0.04860718920826912, + -0.08962382376194 + ] + }, + "p245_072.wav": { + "name": "p245", + "embedding": [ + 0.05091477558016777, + 0.11082984507083893, + 0.051068346947431564, + -6.896443665027618e-05, + 0.004510428756475449, + 0.02594395913183689, + -0.04000703990459442, + 0.08396007865667343, + 0.05519246309995651, + 0.03307126834988594, + -0.09776068478822708, + 0.0557841882109642, + -0.061339594423770905, + -0.10850565135478973, + -0.00012551993131637573, + 0.030610868707299232, + -0.0343116819858551, + 0.0137474425137043, + -0.04527265951037407, + -0.0024438651744276285, + -0.024632621556520462, + -0.026822201907634735, + 0.02566588670015335, + 0.01287630945444107, + -0.020881423726677895, + 0.012098722159862518, + -0.032319575548172, + 0.012072020210325718, + -0.00538181746378541, + -0.008382931351661682, + 0.013652271591126919, + 0.04279010370373726, + -0.012426517903804779, + 0.010377652943134308, + 0.020282883197069168, + -0.02840505540370941, + 0.003805076703429222, + -0.03410978615283966, + -0.06279856711626053, + 0.04059663787484169, + -0.050617292523384094, + 0.04934890940785408, + 0.040801938623189926, + -0.04486571252346039, + 0.07830934226512909, + 0.04147917032241821, + -0.05824130028486252, + -0.005142692476511002, + -0.10169768333435059, + 0.09046393632888794, + 0.01140446774661541, + 0.012037391774356365, + -0.06532743573188782, + 0.013636242598295212, + 0.06930286437273026, + -0.040415309369564056, + -0.044998809695243835, + -0.028575116768479347, + 0.04460948333144188, + 0.024814743548631668, + 0.01968178153038025, + -0.020989829674363136, + -0.023300884291529655, + 0.02660304680466652, + 0.06825980544090271, + 0.02043815143406391, + 0.06954092532396317, + 0.0983593612909317, + -0.05290396884083748, + 0.028369782492518425, + 0.032488152384757996, + -0.0331563875079155, + 0.052240923047065735, + 0.002033014316111803, + -0.00991674792021513, + -0.015759840607643127, + 0.021839089691638947, + -0.021720899268984795, + 0.011581401340663433, + -0.0016735438257455826, + 0.0380132682621479, + 0.0005111955106258392, + 0.014836706221103668, + 0.026892144232988358, + -0.03513069450855255, + -0.009438976645469666, + 0.055736325681209564, + 0.060582391917705536, + 0.06524187326431274, + 0.05387242138385773, + -0.002449044259265065, + 0.07538674771785736, + -0.058331429958343506, + -0.07883276045322418, + -0.013998386450111866, + -0.024245578795671463, + 0.010735786519944668, + 0.012819748371839523, + 0.0171203650534153, + -0.0027646017260849476, + 0.08516664803028107, + 0.0024237781763076782, + 0.0030618617311120033, + 0.01611291989684105, + -0.07569067180156708, + 0.014593832194805145, + 0.03155166283249855, + -0.021580228582024574, + 0.04565523564815521, + 0.038734547793865204, + 0.05454707145690918, + 0.05893401801586151, + -0.026516977697610855, + 0.01660340465605259, + 0.010513239540159702, + 0.041991882026195526, + 0.020761560648679733, + 0.09022515267133713, + 0.00021610985277220607, + 0.03162631392478943, + 0.11191713809967041, + -0.05030633881688118, + 0.03419942408800125, + 0.0578744001686573, + -0.014067539945244789, + -0.007369965314865112, + 0.04264577478170395, + 0.007035624235868454, + 0.003830372355878353, + -0.009351001121103764, + 0.043671220541000366, + 0.029724854975938797, + -0.001637422014027834, + -0.06448015570640564, + 0.013684873469173908, + 0.016040632501244545, + 0.0004542004317045212, + -0.0029164364095777273, + 0.017174653708934784, + 0.05282069742679596, + -0.009367251768708229, + 0.048460058867931366, + -0.04815210774540901, + -0.03313309699296951, + 0.027842078357934952, + -0.005812202580273151, + 0.02107108384370804, + 0.04077579826116562, + -0.016027728095650673, + -0.059943415224552155, + 0.02154986746609211, + 0.05715598538517952, + -0.020085208117961884, + 0.051889996975660324, + 0.05069435387849808, + -0.014212406240403652, + 0.05441562086343765, + 0.014320979826152325, + 0.03053002804517746, + -0.054683975875377655, + -0.08944999426603317, + -0.023147616535425186, + 0.040887556970119476, + -0.06970347464084625, + -0.014076425693929195, + -0.02496548369526863, + -0.022463548928499222, + 0.018935494124889374, + 0.0006937161087989807, + 0.0747917890548706, + -0.030357692390680313, + -0.010939407162368298, + -0.050109103322029114, + 0.024446573108434677, + -0.005866717547178268, + -0.11105966567993164, + 0.051256075501441956, + 0.02396795153617859, + 0.028293127194046974, + 0.04782991111278534, + -0.0033507151529192924, + 0.013028092682361603, + -0.03827323392033577, + -0.06591889262199402, + 0.010163530707359314, + 0.04859050735831261, + 0.015476723201572895, + -0.010164043866097927, + 0.056660957634449005, + 0.04535314440727234, + -0.049201227724552155, + 0.05555194988846779, + -0.00920093059539795, + 0.05638732761144638, + -0.056285761296749115, + 0.01770615205168724, + 0.027490660548210144, + 0.029073908925056458, + 0.052364032715559006, + -0.04126725718379021, + -0.11722627282142639, + -0.021119151264429092, + -0.02100757136940956, + 0.0005582878366112709, + -0.0005367044359445572, + 0.0036107914056628942, + 0.048533424735069275, + -0.004896373022347689, + -0.007967781275510788, + -0.1081191897392273, + -0.003447897732257843, + 0.0002133697271347046, + 0.009057855233550072, + -0.034529320895671844, + 0.013528825715184212, + -0.00154181569814682, + 0.0035048341378569603, + -0.02506220154464245, + 0.02238447777926922, + 0.001650981605052948, + 0.013996691443026066, + -0.05007544159889221, + -0.005328020080924034, + 0.04637805372476578, + 0.007008839398622513, + -0.029255885630846024, + -0.05403870344161987, + 0.054928045719861984, + 0.045772429555654526, + 0.08533405512571335, + 0.031425803899765015, + 0.014947559684515, + -0.02466295287013054, + 0.012441747821867466, + -0.032198794186115265, + 0.029913613572716713, + -0.02174210734665394, + 0.028558528050780296, + 0.05295272916555405, + 0.007579335011541843, + 0.060258980840444565, + 0.03201170638203621, + -0.017680102959275246, + -0.01360813993960619, + -0.0015189871191978455, + -0.08491042256355286, + -0.028589241206645966, + -0.00767325796186924, + -0.03906512260437012, + -0.007060392759740353, + 0.012488571926951408, + 0.054467055946588516, + 0.03447853773832321, + 0.07207818329334259, + 0.020658820867538452, + -0.030700940638780594 + ] + }, + "p245_371.wav": { + "name": "p245", + "embedding": [ + 0.03227641433477402, + 0.07893455028533936, + -0.003008049912750721, + -0.02006196603178978, + -0.012401927262544632, + 0.020664788782596588, + -0.13638852536678314, + 0.07639500498771667, + -0.022286780178546906, + 0.1394807994365692, + -0.05815175175666809, + 0.09103092551231384, + -0.017967024818062782, + -0.13092158734798431, + -0.026399848982691765, + 0.03507838025689125, + -0.07203131169080734, + -0.009481187909841537, + -0.010336998850107193, + -0.06760882586240768, + 0.03291138634085655, + 0.006558132357895374, + 0.04447223246097565, + -0.06333409249782562, + -0.005651502870023251, + 0.06446963548660278, + 0.025199880823493004, + 0.015213461592793465, + 0.021492887288331985, + -0.025948047637939453, + 0.017750808969140053, + 0.06744347512722015, + -0.010210562497377396, + 0.007555130869150162, + 0.051741406321525574, + 0.0046320101246237755, + -0.013758942484855652, + -0.015026512555778027, + 0.022221513092517853, + 0.0648978129029274, + -0.03392181172966957, + 0.08260823786258698, + 0.04356994479894638, + 0.004897799808532, + 0.06078849732875824, + -0.0277726911008358, + -0.0462493970990181, + 0.01788242533802986, + -0.05303872004151344, + 0.1206045150756836, + 0.06604209542274475, + -0.004654387012124062, + -0.06057612597942352, + 0.010613691061735153, + 0.09292103350162506, + -0.0040059383027255535, + -0.1242314949631691, + -0.00563264824450016, + 0.03555014356970787, + 0.10576723515987396, + -0.03464776650071144, + -0.04644881188869476, + 0.0024156481958925724, + 0.10119637846946716, + -0.0018182694911956787, + 0.06835620105266571, + 0.09282024204730988, + 0.07859265804290771, + 0.004812122788280249, + 0.007401864975690842, + 0.054654866456985474, + 0.06204240769147873, + 0.017942586913704872, + -0.03141889348626137, + 0.05323202908039093, + -0.04748234152793884, + -0.007433713413774967, + -0.024028928950428963, + -0.003700780216604471, + -0.05373591184616089, + -0.05975489690899849, + -0.021994510665535927, + 0.005917379632592201, + 0.04507405683398247, + -0.009225860238075256, + 0.0019493326544761658, + 0.02532758191227913, + -0.020517483353614807, + 0.0316905602812767, + 0.0638870894908905, + 0.004317956045269966, + 0.0017329230904579163, + -0.04223298281431198, + -0.06712155044078827, + -0.007157105952501297, + -0.021823067218065262, + 0.06653784215450287, + 0.03614731505513191, + 0.03914476931095123, + 0.030541783198714256, + 0.0668286606669426, + 0.07110290229320526, + -0.023772098124027252, + -0.010852713137865067, + -0.07836492359638214, + 0.0844816267490387, + 0.10738882422447205, + -0.03860627859830856, + 0.02868693321943283, + -0.021105684340000153, + 0.04606686905026436, + -0.00011913105845451355, + -0.08615939319133759, + -0.025819644331932068, + 0.018519770354032516, + 0.07057251036167145, + 0.018239911645650864, + 0.10097189247608185, + 0.008362851105630398, + 0.016340095549821854, + 0.08805924654006958, + -0.0026069916784763336, + -0.042908355593681335, + -0.07718533277511597, + 0.042381614446640015, + -0.07085731625556946, + 0.05826074630022049, + 0.03642083704471588, + 0.029401075094938278, + -0.005581636913120747, + 0.07468406856060028, + 0.0231492817401886, + 0.0003915046399924904, + -0.05088362470269203, + 0.005963008850812912, + 0.06247413903474808, + -0.006602025590837002, + 0.050059158354997635, + 0.058450911194086075, + 0.020052675157785416, + 0.09255939722061157, + 0.053725678473711014, + -0.008070921525359154, + -0.060385435819625854, + 0.022250596433877945, + 0.01926630735397339, + 0.020541919395327568, + -0.035011403262615204, + -0.04660602658987045, + -0.009186917915940285, + -0.06800634413957596, + -0.0007893447764217854, + -0.03717979043722153, + 0.07326235622167587, + 0.011153215542435646, + -0.022582361474633217, + 0.1033172607421875, + 0.0005239443853497505, + -0.015004586428403854, + 0.0018104743212461472, + -0.021707868203520775, + -0.0069784484803676605, + 0.05017644912004471, + -0.16441015899181366, + -0.053960446268320084, + -0.013316246680915356, + 0.03525568172335625, + 0.01271000038832426, + -0.0021763681434094906, + 0.07563194632530212, + -0.020028769969940186, + 0.039418213069438934, + -0.0026795826852321625, + 0.008740264922380447, + -0.0803966149687767, + -0.06385741382837296, + -0.035338547080755234, + -0.07374973595142365, + -0.03639139235019684, + 0.05982355400919914, + -0.03856709972023964, + 0.04521141201257706, + -0.011947247199714184, + -0.06854445487260818, + -0.03994475677609444, + 0.06963108479976654, + 0.0475093349814415, + -0.03724616765975952, + 0.020763475447893143, + 0.0793621614575386, + -0.0019649025052785873, + 0.009077351540327072, + 0.024843920022249222, + 0.08805812895298004, + -0.0656127855181694, + -0.0009819060796871781, + -0.07022621482610703, + 0.046319104731082916, + 0.0814773365855217, + -0.06484180688858032, + -0.06355142593383789, + -0.05763907730579376, + -0.039179425686597824, + 0.036811403930187225, + -0.049308329820632935, + -0.02700643055140972, + 0.0033810893073678017, + -0.022560294717550278, + -0.06166971102356911, + -0.08655437082052231, + 0.04492838680744171, + -0.04982927441596985, + -0.0020562559366226196, + -0.040295813232660294, + 0.029725197702646255, + 0.03380037844181061, + 0.030435828492045403, + -0.05710452422499657, + 0.05291185900568962, + 0.005867356434464455, + -0.04476577416062355, + -0.0017581810243427753, + -0.0075097717344760895, + 0.04464172571897507, + -0.04374231398105621, + -0.04347284883260727, + -0.07547937333583832, + 0.053342245519161224, + -0.053910695016384125, + 0.06947334855794907, + 0.009540295228362083, + -0.04560142010450363, + -0.016805680468678474, + -0.023156872019171715, + -0.038032419979572296, + 0.037289898842573166, + 0.07728054374456406, + 0.05242393910884857, + 0.007996432483196259, + -0.03643183782696724, + 0.09355387836694717, + 0.03745007514953613, + 0.01697434112429619, + -0.04983559250831604, + 0.03119225986301899, + -0.03829854726791382, + 0.012120218947529793, + 0.03494340926408768, + -0.07356956601142883, + 0.029912598431110382, + -0.015489637851715088, + -0.00717683881521225, + 0.040845803916454315, + 0.06143088638782501, + 0.03821150213479996, + -0.05639513581991196 + ] + }, + "p245_237.wav": { + "name": "p245", + "embedding": [ + 0.062478117644786835, + 0.08805671334266663, + -0.02701466903090477, + 0.03598133474588394, + -0.07690879702568054, + 0.06420727074146271, + -0.12137028574943542, + 0.15541139245033264, + -0.03752361610531807, + 0.12034769356250763, + -0.05400796979665756, + 0.15097662806510925, + -0.011816158890724182, + -0.16544224321842194, + -0.009200764819979668, + 0.05478277802467346, + -0.03287597373127937, + -0.02415657415986061, + -0.03408486023545265, + -0.025752220302820206, + 0.03161536902189255, + 0.016185950487852097, + 0.048119641840457916, + -0.004026359878480434, + 0.027900943532586098, + 0.07276415824890137, + -0.005021668039262295, + 0.037588223814964294, + 0.013086924329400063, + -0.06067211925983429, + -0.053979743272066116, + 0.08161202073097229, + -0.061278510838747025, + 0.0006353624630719423, + 0.05743684619665146, + -0.03418692946434021, + -0.016989169642329216, + -0.07235880941152573, + -0.024300675839185715, + -0.005221587140113115, + -0.028233444318175316, + 0.07381439208984375, + 0.025142934173345566, + -0.046350352466106415, + 0.043835945427417755, + 0.010748608969151974, + -0.012153811752796173, + -0.021170055493712425, + -0.11025504767894745, + 0.13349317014217377, + 0.069571852684021, + 0.002749471925199032, + -0.08233949542045593, + -0.048098716884851456, + 0.104718878865242, + -0.013645684346556664, + -0.10558249056339264, + -0.03026825562119484, + 0.057154491543769836, + 0.14035625755786896, + -0.036229223012924194, + -0.027161872014403343, + 0.03229169920086861, + 0.09954825043678284, + 0.0756656602025032, + 0.08606154471635818, + 0.08958965539932251, + 0.12150564789772034, + -0.03269243612885475, + 0.04268181324005127, + 0.04451560229063034, + 0.08201420307159424, + 0.04899541288614273, + -0.00022266758605837822, + 0.02575509063899517, + -0.013191865757107735, + -0.01470563467592001, + -0.019229203462600708, + -0.029503345489501953, + -0.03195473551750183, + -0.011629972606897354, + 0.009657690301537514, + 0.0330524742603302, + 0.029375743120908737, + -0.031165163964033127, + 0.08170977234840393, + 0.04960762336850166, + -0.01955675147473812, + 0.053336236625909805, + 0.021318037062883377, + -0.0055083041079342365, + 0.07204363495111465, + -0.10473954677581787, + -0.09303762763738632, + 0.042858708649873734, + 0.0008611101657152176, + 0.031141679733991623, + 0.07449442148208618, + 0.04478573799133301, + -0.008067564107477665, + 0.11609692871570587, + 0.07905703037977219, + -0.009608324617147446, + 0.033123329281806946, + -0.06986745446920395, + 0.1358831226825714, + 0.09568972885608673, + -0.033319856971502304, + 0.05726880580186844, + -0.05880068242549896, + 0.08086007833480835, + 0.05691419541835785, + -0.1282206028699875, + -0.07169242203235626, + 0.013588154688477516, + -0.00384822441264987, + -0.017541950568556786, + 0.1223708838224411, + -0.0063660042360424995, + 0.06443572044372559, + 0.10724899917840958, + -0.08622677624225616, + -0.057326652109622955, + -0.01775958761572838, + 0.051261596381664276, + -0.0701296254992485, + 0.06919596344232559, + 0.05582398921251297, + -0.009145856834948063, + 0.02050151117146015, + 0.0777398869395256, + -0.01273889560252428, + -0.009545340202748775, + 0.046829573810100555, + -0.04941624402999878, + 0.011287465691566467, + -0.01271025463938713, + -0.006767892278730869, + 0.045659709721803665, + 0.02967599779367447, + 0.041732121258974075, + -0.0246922355145216, + 0.005342630669474602, + -0.10961102694272995, + 0.01791636273264885, + 0.035969555377960205, + 0.07793932408094406, + -0.014361567795276642, + -0.030218031257390976, + -0.029936406761407852, + -0.0731051042675972, + 0.0035858757328242064, + -0.005743669345974922, + 0.059719935059547424, + -0.03382924944162369, + 0.01874733529984951, + 0.07892933487892151, + 0.04624543339014053, + 0.008689455687999725, + -0.05614771693944931, + -0.03463371470570564, + 0.028909631073474884, + 0.059867795556783676, + -0.07605750113725662, + -0.0788099616765976, + -0.02278270199894905, + 0.02078505977988243, + -0.04565538465976715, + 0.0618792399764061, + 0.04627395421266556, + 0.02144698053598404, + 0.024966023862361908, + -0.06481112539768219, + 0.018386628478765488, + -0.09612500667572021, + -0.059061888605356216, + -0.009723568335175514, + -0.01764582097530365, + -0.03347139433026314, + 0.06480272859334946, + 0.03506843000650406, + 0.0765841156244278, + -0.02614673599600792, + -0.049033064395189285, + -0.08097899705171585, + 0.04008316993713379, + 0.04488355293869972, + -0.012902098707854748, + 0.045022401958703995, + 0.06370033323764801, + -0.01737222447991371, + 0.04609743505716324, + 0.06887859851121902, + 0.07918258756399155, + -0.026797780767083168, + 0.002684700768440962, + -0.0785614401102066, + 0.09555377066135406, + 0.10551431775093079, + -0.08648798614740372, + -0.09077871590852737, + -0.04114428535103798, + -0.06787050515413284, + 0.03233399987220764, + -0.036318860948085785, + -0.0015345574356615543, + 0.04481567442417145, + 0.003793739713728428, + -0.10578152537345886, + -0.10483092069625854, + 0.10364645719528198, + -0.0776587724685669, + 0.008925843052566051, + -0.0856873095035553, + 0.04074029624462128, + 0.09557828307151794, + 0.008781029842793941, + -0.04159076511859894, + -0.014469398185610771, + 0.04487713426351547, + -0.00967913307249546, + 0.021334808319807053, + 0.05455067753791809, + 0.05536310374736786, + -0.1128218024969101, + -0.0036477381363511086, + -0.04945822060108185, + 0.041252292692661285, + -0.03801654651761055, + 0.16559556126594543, + 0.012511742301285267, + -0.03287249058485031, + -0.0847829058766365, + 0.0574336051940918, + -0.010976465418934822, + 0.04984276741743088, + 0.041278913617134094, + 0.07160691171884537, + 0.02191673219203949, + -0.09028167277574539, + 0.1194876953959465, + 0.03112691268324852, + -0.05098661035299301, + -0.08122666925191879, + -0.044997625052928925, + -0.04622385650873184, + 0.03200463950634003, + 0.01595987007021904, + -0.09011881053447723, + -0.025714095681905746, + 0.018508657813072205, + -0.007140908390283585, + 0.061176598072052, + 0.14482010900974274, + 0.06545878201723099, + -0.09433522820472717 + ] + }, + "p245_150.wav": { + "name": "p245", + "embedding": [ + 0.05445127934217453, + 0.09504492580890656, + -0.017335087060928345, + 0.0005590729415416718, + -0.006677444092929363, + 0.04324043542146683, + -0.1598438173532486, + 0.1521265208721161, + 0.015800952911376953, + 0.1326429843902588, + -0.048835158348083496, + 0.0989331379532814, + -0.005136210471391678, + -0.14589878916740417, + -0.04850536957383156, + 0.011442350223660469, + -0.030728237703442574, + 0.014277603477239609, + -0.05103939399123192, + -0.01851794309914112, + 0.045180030167102814, + 0.03869707137346268, + 0.033563558012247086, + -0.06366416066884995, + 0.025235624983906746, + 0.029222752898931503, + 0.017475837841629982, + 0.06741766631603241, + 0.02338658645749092, + -0.06970561295747757, + 0.024240758270025253, + 0.09504877775907516, + -0.05197633430361748, + 0.033248111605644226, + 0.07017750293016434, + -0.013887058012187481, + -0.024386439472436905, + -0.048670120537281036, + -0.01240481436252594, + 0.029740747064352036, + -0.024747541174292564, + 0.07934467494487762, + 0.01621522381901741, + -0.005670198705047369, + 0.053112003952264786, + 0.03493073582649231, + 0.009446266107261181, + -0.056866712868213654, + -0.08870917558670044, + 0.17104384303092957, + 0.042898599058389664, + 0.01768159680068493, + -0.10744079947471619, + -0.05929476022720337, + 0.06378844380378723, + -0.047138895839452744, + -0.07429944723844528, + -0.03783268854022026, + 0.04104207083582878, + 0.11972683668136597, + -0.02845608815550804, + -0.05077710002660751, + 0.03715653344988823, + 0.10548093914985657, + 0.05520070344209671, + 0.043782852590084076, + 0.09991559386253357, + 0.10533083975315094, + -0.01836565136909485, + 0.04458494111895561, + -0.00521993450820446, + 0.06749764829874039, + 0.03679005801677704, + 0.01765529438853264, + 0.02865200862288475, + -0.008177322335541248, + -0.007171163335442543, + -0.03467854857444763, + -0.04015803709626198, + -0.0035336739383637905, + 0.018306873738765717, + 0.04459645599126816, + 0.002496963134035468, + 0.061544694006443024, + -0.03148921951651573, + 0.050127506256103516, + 0.0038662105798721313, + -0.03732423856854439, + 0.05701339617371559, + 0.03474909067153931, + 0.04054331034421921, + 0.027622219175100327, + -0.08793716132640839, + -0.11432887613773346, + 0.0007522208616137505, + -0.01896682381629944, + 0.003803498111665249, + 0.038041431456804276, + 0.02822987735271454, + -0.012858950532972813, + 0.10713546723127365, + 0.03951896354556084, + -0.05070802941918373, + 0.01302795298397541, + -0.07655227929353714, + 0.10519850254058838, + 0.07445921003818512, + -0.012636429630219936, + 0.033837221562862396, + -0.09579169750213623, + 0.03084684908390045, + 0.0460226908326149, + -0.11251669377088547, + -0.08904886990785599, + 0.05482660233974457, + 0.026281513273715973, + 0.014545917510986328, + 0.12108919024467468, + 0.01869647018611431, + 0.03808961808681488, + 0.09633824229240417, + -0.06543208658695221, + -0.042110469192266464, + -0.03323754668235779, + 0.0576302707195282, + -0.05046115070581436, + 0.052969273179769516, + 0.030514420941472054, + 0.0023071318864822388, + -0.007951482199132442, + 0.08881241083145142, + 0.0023535944055765867, + 0.020196449011564255, + -0.021460825577378273, + -0.010890054516494274, + 0.04041213542222977, + -0.038867317140102386, + -0.013536549173295498, + 0.009058648720383644, + 0.07553917914628983, + 0.05397619679570198, + 0.023913858458399773, + -0.06078393757343292, + -0.08743506669998169, + -0.0055031250230968, + 0.02007358893752098, + 0.07694711536169052, + -0.040580905973911285, + -0.026430224999785423, + -0.04195965453982353, + -0.02747427113354206, + 0.0014347780961543322, + -0.00816923938691616, + 0.05164854973554611, + 0.004903111141175032, + -0.001956344349309802, + 0.1120600700378418, + -0.01691797375679016, + 0.02195458672940731, + -0.00655318982899189, + 0.0007120408117771149, + -0.018527142703533173, + 0.03203348070383072, + -0.05274778604507446, + -0.07529155910015106, + -0.009422887116670609, + 0.0026912791654467583, + -0.01571531407535076, + 0.054356373846530914, + 0.036526329815387726, + 0.019234666600823402, + 0.0369151309132576, + -0.053116705268621445, + -0.03291326388716698, + -0.10476283729076385, + -0.057671964168548584, + -0.008893082849681377, + -0.0005948860198259354, + -0.04530104622244835, + 0.07100029289722443, + 0.018888205289840698, + 0.05772804468870163, + -0.01787591353058815, + -0.06595436483621597, + -0.07405616343021393, + 0.04277785122394562, + 0.06701213121414185, + -0.01245732419192791, + 0.018164178356528282, + 0.03243707865476608, + -0.009980788454413414, + 0.06199754774570465, + 0.0889868512749672, + 0.04605251923203468, + -0.022417619824409485, + -0.007732506841421127, + -0.09337057173252106, + 0.1175006777048111, + 0.07790759950876236, + -0.06739962846040726, + -0.08892644941806793, + -0.00017318621394224465, + -0.08638440817594528, + -0.031016670167446136, + -0.026220280677080154, + 0.025334432721138, + 0.051826294511556625, + -0.015674695372581482, + -0.0880260020494461, + -0.07810349017381668, + 0.050383590161800385, + -0.09572884440422058, + -0.008797546848654747, + -0.045625604689121246, + 0.020948154851794243, + 0.10767039656639099, + 0.03592601791024208, + -0.0036805658601224422, + -0.05265194922685623, + 0.03810866177082062, + -0.038443513214588165, + -0.01184895634651184, + 0.023958120495080948, + 0.019777752459049225, + -0.08414611220359802, + 0.03260072320699692, + -0.03366226702928543, + 0.03722888231277466, + -0.061745695769786835, + 0.09403915703296661, + 0.018213409930467606, + -0.0672248899936676, + -0.07968960702419281, + 0.023506173864006996, + -0.05182614177465439, + 0.053563233464956284, + -0.010357051156461239, + 0.03555510565638542, + 0.04073306918144226, + -0.07910112291574478, + 0.11850571632385254, + 0.03808992728590965, + -0.037928007543087006, + -0.09998872876167297, + -0.10208195447921753, + -0.02480815351009369, + 0.04088554158806801, + 0.023231646046042442, + -0.05354025959968567, + -0.00515914848074317, + 0.012200551107525826, + -0.033005621284246445, + 0.035563550889492035, + 0.12522609531879425, + 0.032806456089019775, + -0.12793779373168945 + ] + }, + "p245_123.wav": { + "name": "p245", + "embedding": [ + 0.047935813665390015, + 0.09868910163640976, + -0.02358902618288994, + 0.039254672825336456, + -0.08080698549747467, + 0.01979684643447399, + -0.1290421485900879, + 0.14838680624961853, + -0.01925787329673767, + 0.09545451402664185, + -0.0655849352478981, + 0.15221551060676575, + -0.026543449610471725, + -0.1803678274154663, + -0.031248360872268677, + 0.07790245115756989, + -0.022635377943515778, + -0.042884618043899536, + -0.011101074516773224, + -0.024351127445697784, + 0.018490398302674294, + 0.02723417431116104, + 0.06314945220947266, + 0.03816467151045799, + 0.026572411879897118, + 0.08199214190244675, + 0.016079099848866463, + 0.06612670421600342, + 0.03773189336061478, + -0.026156505569815636, + -0.049615275114774704, + 0.07632870972156525, + -0.04222646355628967, + -0.007784062065184116, + 0.05659156292676926, + -0.020539313554763794, + 0.010034045204520226, + -0.0572444312274456, + -0.02125987783074379, + -0.006358354352414608, + -0.03878733515739441, + 0.08554770797491074, + 0.02923593483865261, + -0.041204482316970825, + 0.04980042204260826, + 0.034969545900821686, + -0.012981700710952282, + -0.031637709587812424, + -0.136001318693161, + 0.12609539926052094, + 0.06247280538082123, + 0.0049299378879368305, + -0.0876971036195755, + -0.04676724597811699, + 0.0985020250082016, + -0.050785817205905914, + -0.08533252775669098, + -0.04530923813581467, + 0.07116612046957016, + 0.13595515489578247, + -0.027138888835906982, + -0.028523694723844528, + 0.02811417728662491, + 0.12468639016151428, + 0.08511309325695038, + 0.07142630219459534, + 0.07455113530158997, + 0.11343652009963989, + -0.04902837797999382, + 0.016779478639364243, + 0.05108056589961052, + 0.08679787814617157, + 0.02159731835126877, + 0.00569456210359931, + 0.0042259581387043, + 0.0007285761530511081, + -0.009510291740298271, + 0.006272531114518642, + -0.02393496036529541, + -0.018868491053581238, + -0.04187668487429619, + 0.012432875111699104, + -0.008963399566709995, + 0.011986427009105682, + -0.022273089736700058, + 0.1004435271024704, + 0.042855530977249146, + -0.00926428847014904, + 0.06705661863088608, + 0.03570529818534851, + -0.02310272864997387, + 0.06416408717632294, + -0.08750297874212265, + -0.0670657679438591, + 0.011473655700683594, + -0.015031831339001656, + 0.024471379816532135, + 0.0659395381808281, + 0.037837572395801544, + -0.0075630322098731995, + 0.1322927474975586, + 0.08378434181213379, + -0.010745341889560223, + 0.040007565170526505, + -0.06994685530662537, + 0.1312371790409088, + 0.08377501368522644, + -0.02062736451625824, + 0.05747717618942261, + -0.034366365522146225, + 0.04676353931427002, + 0.05633261054754257, + -0.11159484088420868, + -0.06889460235834122, + 0.015194023959338665, + 0.012482589110732079, + -0.017916742712259293, + 0.10312461107969284, + -0.02651827782392502, + 0.059082500636577606, + 0.10515463352203369, + -0.06520505249500275, + -0.06996916234493256, + -0.012537147849798203, + 0.04434474557638168, + -0.0749981477856636, + 0.060916464775800705, + 0.0659603402018547, + 0.00183815136551857, + 0.00949239544570446, + 0.08374138176441193, + 0.004408447537571192, + -0.008399765007197857, + 0.04493667930364609, + -0.06115281209349632, + 0.00882935244590044, + -0.009041817858815193, + -0.011205955408513546, + 0.06833150237798691, + 0.04499555379152298, + 0.044427044689655304, + 0.005526232998818159, + -0.0013271027710288763, + -0.13187739253044128, + 0.0029732505790889263, + 0.03732961416244507, + 0.09435002505779266, + 0.0006489133229479194, + -0.04298786818981171, + -0.051117103546857834, + -0.04414571449160576, + -0.007264079060405493, + 0.020839324221014977, + 0.06787355244159698, + -0.0624614879488945, + 0.008336108177900314, + 0.08739246428012848, + 0.01971442624926567, + 0.008241701871156693, + -0.04189733415842056, + -0.020518694072961807, + 0.006500543095171452, + 0.0513586699962616, + -0.0604424886405468, + -0.08609747886657715, + -0.012232346460223198, + 0.046607114374637604, + -0.0355626605451107, + 0.06916355341672897, + 0.04407934471964836, + 0.012806417420506477, + 0.020992964506149292, + -0.05804038792848587, + 0.023951802402734756, + -0.07645511627197266, + -0.05613651126623154, + -0.02277601882815361, + 0.012747762724757195, + -0.039644304662942886, + 0.055075209587812424, + 0.05049785226583481, + 0.08725063502788544, + 0.0011182089801877737, + -0.07058509439229965, + -0.09501567482948303, + 0.04005023092031479, + 0.06036540865898132, + 0.004332630895078182, + 0.06460879743099213, + 0.05896572768688202, + -0.036681003868579865, + 0.06764934957027435, + 0.055881284177303314, + 0.06115977466106415, + -0.028115984052419662, + -0.00039863772690296173, + -0.06316331028938293, + 0.057546548545360565, + 0.09326006472110748, + -0.11558821052312851, + -0.07488150149583817, + -0.03998482972383499, + -0.056760214269161224, + 0.04024461284279823, + -0.01527421921491623, + 0.017751840874552727, + 0.047286100685596466, + 0.001247235108166933, + -0.1040644496679306, + -0.11439242213964462, + 0.08464350551366806, + -0.07662586867809296, + 0.017329208552837372, + -0.0555596649646759, + 0.0290832556784153, + 0.09408316016197205, + 0.00019073513976763934, + -0.02277049422264099, + -0.029403764754533768, + 0.03492112457752228, + -0.015735380351543427, + -0.0010919775813817978, + 0.06162617728114128, + 0.04125378653407097, + -0.10668320953845978, + 0.00865055900067091, + -0.06471343338489532, + 0.06943607330322266, + -0.023811817169189453, + 0.16725806891918182, + 0.021339697763323784, + -0.032372549176216125, + -0.09002547711133957, + 0.016651824116706848, + -0.0340128093957901, + 0.06592398881912231, + 0.03635784238576889, + 0.054862987250089645, + 0.011859702877700329, + -0.06403880566358566, + 0.13180667161941528, + 0.05661667138338089, + -0.07817618548870087, + -0.08639197051525116, + -0.03598418086767197, + -0.04523245990276337, + 0.04229831323027611, + 0.04203055053949356, + -0.090467169880867, + -0.03499970957636833, + 0.00952528603374958, + -0.03472364693880081, + 0.07906821370124817, + 0.14434456825256348, + 0.07129251956939697, + -0.086697518825531 + ] + }, + "p245_279.wav": { + "name": "p245", + "embedding": [ + 0.0520191453397274, + 0.06683322042226791, + -0.05218029022216797, + 0.009071988984942436, + -0.00949503667652607, + 0.018779944628477097, + -0.1245230883359909, + 0.07804550975561142, + -0.056330606341362, + 0.13133792579174042, + -0.07470617443323135, + 0.08096323162317276, + -0.020086199045181274, + -0.13068002462387085, + -0.054525647312402725, + 0.032097481191158295, + -0.04229017347097397, + -0.019590429961681366, + -0.07944805175065994, + -0.025222357362508774, + 0.035048045217990875, + 0.05781761556863785, + 0.025801002979278564, + -0.05447918176651001, + 0.012016301974654198, + 0.0608753003180027, + 0.012441380880773067, + 0.017905104905366898, + 0.007546348962932825, + -0.007106134667992592, + 0.01191239058971405, + 0.0835629403591156, + -0.03399771451950073, + -0.010156111791729927, + 0.012086132541298866, + 0.03906512260437012, + -0.00043959449976682663, + -0.06790551543235779, + 0.010043170303106308, + 0.016791533678770065, + -0.042105402797460556, + 0.054084762930870056, + 0.03865585848689079, + -0.022079667076468468, + 0.0368582159280777, + -0.0146127725020051, + -0.03163152188062668, + -0.07022309303283691, + -0.08575502783060074, + 0.17867203056812286, + 0.07932297885417938, + 0.04412449896335602, + -0.07738173007965088, + -0.03472016006708145, + 0.10072579979896545, + 0.004298762418329716, + -0.06597690284252167, + -0.07603298127651215, + 0.016661036759614944, + 0.1536272019147873, + -0.024027584120631218, + -0.03949277848005295, + 0.020423799753189087, + 0.09840992093086243, + 0.005495581775903702, + 0.03965126350522041, + 0.10977207124233246, + 0.05614548176527023, + 0.019403541460633278, + 0.024645822122693062, + 0.0408913716673851, + 0.050808850675821304, + 0.030882734805345535, + -0.05330682173371315, + 0.05576683208346367, + -0.02075422741472721, + -0.04296060651540756, + 0.0017399471253156662, + -0.026645533740520477, + -0.07209558039903641, + -0.0076570333912968636, + 0.015097926370799541, + 0.006781320553272963, + 0.02138354815542698, + -0.06528018414974213, + 0.029388809576630592, + 0.027205435559153557, + -0.058518312871456146, + 0.06716534495353699, + 0.038299545645713806, + -0.00743325287476182, + -0.024749377742409706, + -0.04626326262950897, + -0.08060380816459656, + 0.022845624014735222, + 0.006770520471036434, + -0.016435548663139343, + 0.030038874596357346, + 0.03380761295557022, + -0.026185167953372, + 0.07946860045194626, + 0.02947250008583069, + -0.019602373242378235, + -0.027460381388664246, + -0.06599431484937668, + 0.11118429154157639, + 0.1396806687116623, + -0.006802147254347801, + 0.0026200972497463226, + -0.032686181366443634, + 0.01057338248938322, + 0.06713508814573288, + -0.11419455707073212, + -0.07052184641361237, + 0.0548800453543663, + 0.030668586492538452, + 0.030700329691171646, + 0.07999694347381592, + 0.019764676690101624, + -0.009286267682909966, + 0.08549840748310089, + -0.08144000172615051, + -0.07725387811660767, + -0.060516178607940674, + 0.04315546527504921, + -0.07481749355792999, + 0.03985782712697983, + 0.07825423777103424, + -0.006186093669384718, + -0.037569183856248856, + 0.06172458082437515, + 0.012102059088647366, + -0.006403912790119648, + -0.04141402989625931, + 0.043237313628196716, + 0.054311491549015045, + -0.026584520936012268, + -0.04333289712667465, + 0.01529704686254263, + 0.0445157065987587, + 0.04538054019212723, + 0.021498408168554306, + -0.012310020625591278, + -0.0844266340136528, + 0.024476516991853714, + 0.06225130707025528, + 0.025506403297185898, + -0.03862001374363899, + -0.023227086290717125, + -0.030311886221170425, + -0.03701767325401306, + -0.015341464430093765, + -0.04773303493857384, + 0.09846585988998413, + 0.00785382091999054, + 0.029214119538664818, + 0.11849590390920639, + -0.05175226554274559, + -0.0027003567665815353, + -0.005204865708947182, + 0.04099271073937416, + 0.04894743859767914, + 0.013694122433662415, + -0.036463987082242966, + -0.07727885246276855, + 0.0074785854667425156, + 0.007762848865240812, + 0.006016571074724197, + 0.011575054377317429, + 0.022281501442193985, + -0.019407734274864197, + 0.006433653645217419, + -0.07725550979375839, + 0.01835590973496437, + -0.12018996477127075, + 0.003141818568110466, + -0.007673362269997597, + -0.07878651469945908, + 0.00708797387778759, + 0.08978602290153503, + 0.01866057701408863, + 0.013536175712943077, + -0.045769430696964264, + -0.11441882699728012, + -0.042273275554180145, + 0.08821281790733337, + 0.10511176288127899, + -0.015396878123283386, + -0.01159561425447464, + 0.024827174842357635, + 0.037263356149196625, + -0.008314723148941994, + 0.06436347216367722, + 0.06946414709091187, + -0.008239863440394402, + -0.07226821780204773, + -0.0398029088973999, + 0.08776760846376419, + 0.04970499873161316, + -0.09706464409828186, + -0.03450682386755943, + -0.05589821934700012, + -0.05155661329627037, + 0.01245830673724413, + -0.022623302415013313, + 0.02387787215411663, + 0.03990945219993591, + -0.039009034633636475, + -0.12075541913509369, + -0.09642039239406586, + 0.06341516971588135, + -0.040683284401893616, + -0.008881762623786926, + -0.04353077709674835, + 0.034678421914577484, + 0.06704499572515488, + 0.008364738896489143, + -0.009846445173025131, + -0.014528504572808743, + -0.02198714017868042, + -0.06812019646167755, + -0.0252497848123312, + -0.0285518616437912, + 0.0410170704126358, + -0.08738823235034943, + 0.031555213034152985, + -0.0722704827785492, + 0.0873974859714508, + -0.06831436604261398, + 0.08111992478370667, + 0.0020491108298301697, + -0.02732449769973755, + -0.11388514935970306, + 0.029330717399716377, + -0.018018225207924843, + 0.07232734560966492, + 0.049911100417375565, + 0.033157579600811005, + 0.02780042588710785, + -0.09500128030776978, + 0.08650533854961395, + 0.08225865662097931, + -0.005279342643916607, + -0.07847237586975098, + -0.02644912153482437, + -0.03823351860046387, + 0.022987350821495056, + 0.001889458973892033, + -0.010943258181214333, + -0.0028536678291857243, + 0.006852135527879, + -0.03145923465490341, + 0.0767761617898941, + 0.07135774195194244, + 0.022094519808888435, + -0.10847096145153046 + ] + }, + "p245_186.wav": { + "name": "p245", + "embedding": [ + 0.049780651926994324, + 0.09498939663171768, + -0.011941144242882729, + 0.025888066738843918, + -0.037194035947322845, + 0.05615521967411041, + -0.1325494647026062, + 0.13605374097824097, + -0.02295851707458496, + 0.13731497526168823, + -0.06083249673247337, + 0.09459879249334335, + -0.016566215083003044, + -0.15367192029953003, + -0.03788261115550995, + 0.04270133376121521, + -0.0591256245970726, + -0.023712610825896263, + -0.03981366753578186, + -0.0033279280178248882, + 0.039632685482501984, + 0.0440482571721077, + 0.020980030298233032, + -0.03662561997771263, + 0.044919371604919434, + 0.048804059624671936, + 0.020211923867464066, + 0.057196978479623795, + 0.03199577331542969, + -0.05255095660686493, + -0.015256383456289768, + 0.11538469046354294, + -0.04307785630226135, + 0.019466117024421692, + 0.03486809879541397, + -0.00032154936343431473, + -0.009850124828517437, + -0.07209324836730957, + -0.019919173792004585, + 0.017468048259615898, + -0.03899131715297699, + 0.08111665397882462, + 0.03616027906537056, + -0.008590081706643105, + 0.025768987834453583, + 0.014063315466046333, + -0.006635394878685474, + -0.06832893192768097, + -0.10622978955507278, + 0.1869138926267624, + 0.056873105466365814, + 0.007400006987154484, + -0.08579879999160767, + -0.07059236615896225, + 0.08114106953144073, + -0.0040430836379528046, + -0.10034534335136414, + -0.033646032214164734, + 0.06214534491300583, + 0.15712344646453857, + -0.023823387920856476, + -0.03319559618830681, + 0.018809616565704346, + 0.12001721560955048, + 0.057272713631391525, + 0.07024353742599487, + 0.08927302062511444, + 0.10318976640701294, + 0.0013709496706724167, + 0.04490320011973381, + 0.03413322567939758, + 0.05794113874435425, + 0.023188617080450058, + -0.00040143157821148634, + 0.02711189165711403, + -0.020066890865564346, + -0.03524855896830559, + 0.0030172038823366165, + -0.01195192988961935, + -0.02428671531379223, + 0.005008189473301172, + 0.02575261890888214, + 0.011594429612159729, + 0.056109216064214706, + -0.024052705615758896, + 0.05364781618118286, + 0.0024599097669124603, + -0.025418920442461967, + 0.07601740956306458, + 0.020341258496046066, + 0.013301611877977848, + 0.050985176116228104, + -0.07911110669374466, + -0.11158083379268646, + 0.009729173965752125, + -0.0071069360710680485, + 0.046111881732940674, + 0.06801579892635345, + 0.03950390964746475, + -0.026529837399721146, + 0.11196405440568924, + 0.04042007774114609, + -0.022448640316724777, + 0.014554007910192013, + -0.0860765278339386, + 0.11390452086925507, + 0.08796030282974243, + -0.016473572701215744, + 0.048987872898578644, + -0.060133930295705795, + 0.06924648582935333, + 0.04526021331548691, + -0.13611623644828796, + -0.07596048712730408, + 0.04822613671422005, + 0.022315096110105515, + -0.004644811153411865, + 0.12823879718780518, + 0.005842046346515417, + 0.031274229288101196, + 0.08919675648212433, + -0.09538307785987854, + -0.0461282804608345, + -0.021206222474575043, + 0.06171686202287674, + -0.07238461077213287, + 0.039248351007699966, + 0.05201123654842377, + -0.03691919893026352, + 0.0013806335628032684, + 0.06983670592308044, + -0.0011842255480587482, + 0.020656948909163475, + 0.00756952166557312, + -0.0357440784573555, + 0.05000495910644531, + -0.03807573765516281, + 0.0036224927753210068, + 0.031258419156074524, + 0.0527312308549881, + 0.0484200045466423, + 0.004734721500426531, + -0.047661200165748596, + -0.10588062554597855, + 0.0045497845858335495, + 0.04596410319209099, + 0.06315878033638, + -0.03719942271709442, + -0.030062830075621605, + -0.04634224250912666, + -0.051202692091464996, + 0.015086007304489613, + 0.004031861200928688, + 0.06949175894260406, + -0.003637679386883974, + -0.012160002253949642, + 0.1269933432340622, + 0.011015105992555618, + -0.0008069919422268867, + -0.032828234136104584, + -0.025377415120601654, + 0.015222224406898022, + 0.0528106614947319, + -0.07549412548542023, + -0.06384138017892838, + 0.006625814363360405, + 0.008787952363491058, + -0.021066462621092796, + 0.027520207688212395, + 0.036008816212415695, + 0.025656141340732574, + 0.03806747496128082, + -0.060057297348976135, + 0.010157227516174316, + -0.11259924620389938, + -0.05163257569074631, + 0.001529137371107936, + -0.00845365971326828, + -0.031535740941762924, + 0.0914374589920044, + 0.012499975971877575, + 0.05353322625160217, + -0.001693258062005043, + -0.06909862160682678, + -0.0455293282866478, + 0.06612171232700348, + 0.08565175533294678, + 0.002202434465289116, + 0.046733416616916656, + 0.049875035881996155, + -0.0014274637214839458, + 0.030810199677944183, + 0.06460615992546082, + 0.10363326966762543, + -0.022446565330028534, + -0.01786843314766884, + -0.09056596457958221, + 0.09339028596878052, + 0.060664091259241104, + -0.09198956191539764, + -0.08776917308568954, + -0.017218543216586113, + -0.07294963300228119, + 0.01954902522265911, + -0.025054577738046646, + 0.026129813864827156, + 0.026914816349744797, + -0.01855437271296978, + -0.11046057939529419, + -0.08695186674594879, + 0.06816712021827698, + -0.0699438750743866, + -0.012322836555540562, + -0.08002462983131409, + 0.04649566859006882, + 0.10242058336734772, + 0.04990389943122864, + -0.013408978469669819, + -0.020994018763303757, + 0.035579584538936615, + -0.057652220129966736, + -0.009350299835205078, + 0.02777467481791973, + 0.010307356715202332, + -0.09487438201904297, + 0.027934473007917404, + -0.05723356083035469, + 0.06135866045951843, + -0.06065633147954941, + 0.15114903450012207, + 0.007244945503771305, + -0.0714966356754303, + -0.09494678676128387, + 0.04025014862418175, + -0.03390611708164215, + 0.04048825800418854, + 0.034435372799634933, + 0.04029976204037666, + 0.049797311425209045, + -0.08118963241577148, + 0.11395411938428879, + 0.027208494022488594, + -0.02166212722659111, + -0.06798888742923737, + -0.05895119160413742, + -0.018733887001872063, + 0.036244772374629974, + 0.006609201431274414, + -0.058978307992219925, + -0.016218818724155426, + 0.019838619977235794, + -0.022571798413991928, + 0.061886150389909744, + 0.12519052624702454, + 0.05719219893217087, + -0.12144674360752106 + ] + }, + "p245_389.wav": { + "name": "p245", + "embedding": [ + 0.04964253306388855, + 0.07147164642810822, + -0.023855488747358322, + 0.009601152502000332, + -0.03650026023387909, + 0.0252509918063879, + -0.14053422212600708, + 0.13478609919548035, + -0.017778024077415466, + 0.1325148046016693, + -0.06748643517494202, + 0.12535309791564941, + -0.005407724529504776, + -0.18714392185211182, + -0.0038822144269943237, + 0.029013734310865402, + -0.02789529412984848, + -0.013960222713649273, + -0.029330529272556305, + -0.032227523624897, + 0.06844169646501541, + 0.05408642813563347, + 0.011623265221714973, + -0.02318566106259823, + -0.015936443582177162, + 0.06676285713911057, + 0.0077512613497674465, + 0.035172995179891586, + 0.009118190966546535, + -0.048626817762851715, + -0.03151613101363182, + 0.08784034103155136, + -0.03133663162589073, + 0.013059570454061031, + 0.05865493416786194, + -0.01998130790889263, + -0.02221369557082653, + -0.05281658098101616, + -0.0278736874461174, + 0.01690276525914669, + -0.05741718411445618, + 0.051280390471220016, + 0.021318530663847923, + -0.03186129033565521, + 0.07071669399738312, + 0.018691975623369217, + -0.011189226061105728, + -0.0458110049366951, + -0.09346655011177063, + 0.15409106016159058, + 0.08942298591136932, + 0.00563018349930644, + -0.055634163320064545, + -0.04712982475757599, + 0.08556137979030609, + -0.011394977569580078, + -0.09742304682731628, + -0.02711251750588417, + 0.0626111775636673, + 0.1299046277999878, + -0.03835728019475937, + -0.035862356424331665, + 0.05873362347483635, + 0.09533900022506714, + 0.03565296158194542, + 0.08913514018058777, + 0.0988224670290947, + 0.09537652134895325, + -0.024873949587345123, + 0.009020083583891392, + 0.03127939999103546, + 0.08881151676177979, + 0.0618852898478508, + -0.01940850540995598, + 0.04258141666650772, + 0.03239329159259796, + -0.035421356558799744, + -0.003220668062567711, + -0.024362778291106224, + -0.0025995809119194746, + 0.006880385335534811, + 0.018820548430085182, + 0.023136839270591736, + 0.030249077826738358, + -0.04412847384810448, + 0.05700276419520378, + 0.03787606582045555, + -0.0025889745447784662, + 0.04101213812828064, + 0.01078611146658659, + 0.025310678407549858, + 0.06093835085630417, + -0.09138470888137817, + -0.09233307838439941, + 0.026226183399558067, + -0.000831136479973793, + -0.0036285407841205597, + 0.08612217754125595, + 0.048663657158613205, + -0.018391352146863937, + 0.11880064010620117, + 0.041312217712402344, + -0.024444010108709335, + 0.03639297932386398, + -0.08512981235980988, + 0.10115258395671844, + 0.10371828079223633, + -0.038159266114234924, + 0.049265604466199875, + -0.0879659578204155, + 0.07459738105535507, + 0.047489386051893234, + -0.12783177196979523, + -0.06034495681524277, + 0.05674789473414421, + 0.024518083781003952, + -0.00571811106055975, + 0.148992657661438, + 0.004579258617013693, + 0.04639511555433273, + 0.11653193831443787, + -0.09323574602603912, + -0.06669460237026215, + -0.037002742290496826, + 0.05766318365931511, + -0.08456750214099884, + 0.0829339325428009, + 0.03849758580327034, + -0.00476697226986289, + 0.007714379578828812, + 0.07273873686790466, + -0.03140334412455559, + 0.013713590800762177, + -0.025193532928824425, + -0.02423720806837082, + 0.017991913482546806, + -0.04869674891233444, + -0.009695064276456833, + 0.015489794313907623, + 0.033399488776922226, + 0.02593194507062435, + 0.0020804922096431255, + -0.04575156420469284, + -0.1324165165424347, + 0.017629174515604973, + 0.034133076667785645, + 0.07721230387687683, + -0.011460991576313972, + -0.030183393508195877, + -0.04280737042427063, + -0.06815729290246964, + -0.011978501453995705, + -0.046983253210783005, + 0.04523259401321411, + -0.02150619775056839, + 0.018531300127506256, + 0.08077391982078552, + 0.016388606280088425, + 0.004657186102122068, + -0.024618666619062424, + -0.04792141169309616, + 0.0007916279137134552, + 0.04553179070353508, + -0.0725981742143631, + -0.08912689983844757, + -0.033685874193906784, + 0.020242737606167793, + -0.012520924210548401, + 0.03694436699151993, + 0.03833423927426338, + 0.02411615662276745, + 0.02653633803129196, + -0.10931293666362762, + 0.012123778462409973, + -0.13374003767967224, + -0.08708872646093369, + -0.01953904889523983, + 0.0017591805662959814, + 0.009442574344575405, + 0.06969283521175385, + -0.001415996695868671, + 0.0444008968770504, + -0.03092077001929283, + -0.05863282084465027, + -0.0863884910941124, + 0.048835813999176025, + 0.08602620661258698, + -0.004547545686364174, + 0.04455546289682388, + 0.04448841139674187, + -0.02577764168381691, + 0.04145362228155136, + 0.05063789710402489, + 0.1003967672586441, + 0.006545286625623703, + 0.023936178535223007, + -0.0645827054977417, + 0.10333234071731567, + 0.09196887910366058, + -0.054392870515584946, + -0.08496984094381332, + -0.017037218436598778, + -0.07981628179550171, + 0.020779818296432495, + -0.013802110217511654, + 0.006919558625668287, + 0.01613161526620388, + 0.013877051882445812, + -0.09816001355648041, + -0.06542323529720306, + 0.05088915675878525, + -0.05183778703212738, + -0.012386116199195385, + -0.0886194109916687, + 0.05039968341588974, + 0.11728017032146454, + 0.03749311715364456, + -0.03848762437701225, + -0.04207203537225723, + 0.034046150743961334, + -0.025762498378753662, + 0.01390274427831173, + 0.02045624516904354, + 0.05512845516204834, + -0.1097072884440422, + 0.01596188172698021, + -0.06605931371450424, + 0.04116734117269516, + -0.07096131891012192, + 0.10229065269231796, + 0.011715034954249859, + -0.05940639227628708, + -0.09298370778560638, + 0.05071388930082321, + 0.02423255145549774, + 0.03490743041038513, + 0.009444080293178558, + 0.05541565269231796, + 0.036875348538160324, + -0.10995044559240341, + 0.09450041502714157, + 0.031227100640535355, + -0.02044413797557354, + -0.06892361491918564, + -0.05475762486457825, + -0.02239786647260189, + 0.022677583619952202, + 0.016151851043105125, + -0.0708613321185112, + -0.032538071274757385, + 0.011150333099067211, + -0.012001276016235352, + 0.04270801693201065, + 0.13865134119987488, + 0.02483021467924118, + -0.14446961879730225 + ] + }, + "p245_025.wav": { + "name": "p245", + "embedding": [ + 0.04728066176176071, + 0.09132519364356995, + -0.0266993660479784, + 0.014039554633200169, + -0.06971262395381927, + 0.0015893001109361649, + -0.06117280572652817, + 0.1088259220123291, + -0.017518499866127968, + 0.10607945173978806, + -0.09705836325883865, + 0.1183314323425293, + -0.060748979449272156, + -0.07807207852602005, + -0.015277368016541004, + 0.01768813468515873, + 0.00882519967854023, + -0.015771502628922462, + -0.03676807880401611, + -0.013335805386304855, + 0.04646868258714676, + 0.03957943618297577, + 0.032906629145145416, + -0.021989382803440094, + 0.0050403159111738205, + 0.07141248136758804, + 0.006551366299390793, + -0.0022186916321516037, + 0.01907799020409584, + -0.01741943508386612, + 0.00974871963262558, + 0.044684696942567825, + -0.031482212245464325, + 0.03326811641454697, + 0.04526546597480774, + 0.03129633888602257, + -0.037986814975738525, + -0.017496518790721893, + -0.012590011581778526, + 0.000543401634786278, + -0.06637702137231827, + 0.045201633125543594, + 0.009126069024205208, + -0.08740653842687607, + 0.03196221590042114, + 0.0008265916258096695, + -0.0031872917897999287, + -0.0008214432746171951, + -0.07785055041313171, + 0.13492977619171143, + 0.022686874493956566, + 0.049052923917770386, + -0.08332902193069458, + -0.018849007785320282, + 0.09554073214530945, + -0.02876932919025421, + -0.06366067379713058, + -0.07523071765899658, + 0.02019379287958145, + 0.0781453400850296, + -0.032315660268068314, + -0.04980345442891121, + 0.01791449822485447, + 0.039823293685913086, + 0.032374948263168335, + 0.04197629913687706, + 0.08284154534339905, + 0.08710107207298279, + -0.022611506283283234, + 0.042292509227991104, + 0.06746797263622284, + 0.08345398306846619, + 0.04449405521154404, + -0.00808747485280037, + 0.006780174560844898, + -0.01332017034292221, + -0.02537577971816063, + 0.02388228476047516, + -3.645848482847214e-05, + -0.03148433566093445, + -0.03693670779466629, + -0.000999006791971624, + 0.009746003895998001, + -0.04150763154029846, + -0.03425607830286026, + 0.06543602049350739, + 0.055986642837524414, + -0.03789931535720825, + 0.05830211192369461, + 0.054321613162755966, + -0.037993114441633224, + 0.021350963041186333, + -0.062318190932273865, + -0.07305333018302917, + -0.030844910070300102, + -0.03561857342720032, + 0.045457303524017334, + 0.08888489007949829, + 0.02863730490207672, + 0.05255160480737686, + 0.06512414664030075, + 0.02646852843463421, + 0.03002905286848545, + -0.009629910811781883, + -0.08390727639198303, + 0.1374681293964386, + 0.0997086614370346, + -0.039803870022296906, + -0.01094500720500946, + -0.031186792999505997, + 0.030149733647704124, + 0.04288199171423912, + -0.055234357714653015, + -0.07929259538650513, + -0.02113642729818821, + -0.0023737112060189247, + 0.025490527972579002, + 0.07405589520931244, + -0.003513803705573082, + -0.0003266558051109314, + 0.1349898725748062, + -0.09396745264530182, + -0.08919544517993927, + -0.02063814364373684, + -0.02076747640967369, + -0.07658687233924866, + 0.070269376039505, + 0.060781680047512054, + 0.011432209983468056, + 0.029541268944740295, + 0.09501159191131592, + -0.001910191960632801, + 0.02806958183646202, + -0.011061329394578934, + -0.02147325873374939, + -0.004888467490673065, + -0.025288943201303482, + 0.005936942063271999, + 0.10234484076499939, + 0.06296571344137192, + 0.1000697985291481, + 0.026982193812727928, + 0.01060149073600769, + -0.0879545658826828, + 0.022408539429306984, + 0.10782898217439651, + -0.007051026448607445, + -0.03832744434475899, + -0.03476756811141968, + -0.014071768149733543, + -0.06264172494411469, + 0.02122318744659424, + 0.007265170104801655, + 0.07849688827991486, + -0.033829424530267715, + 0.027128618210554123, + 0.12101788818836212, + -0.003733959048986435, + -0.0019902344793081284, + -0.08114194869995117, + -0.017888862639665604, + -0.02297256328165531, + 0.0381234809756279, + -0.09798060357570648, + -0.11297637969255447, + -0.06335989385843277, + 0.025235041975975037, + -0.011736004613339901, + 0.026038821786642075, + 0.057422883808612823, + -0.017501628026366234, + 0.04528648033738136, + -0.04488951712846756, + 0.05101536214351654, + -0.0784270241856575, + -0.049702972173690796, + -0.048079974949359894, + -0.06671763956546783, + 0.0022890325635671616, + 0.06637407839298248, + -0.018089480698108673, + 0.02861608937382698, + 0.025617124512791634, + -0.10746562480926514, + -0.09760837256908417, + 0.02613038569688797, + 0.03304443135857582, + -0.01710517145693302, + 0.043048322200775146, + 0.05472904443740845, + -0.045455992221832275, + 0.022019008174538612, + 0.010858343914151192, + 0.09878860414028168, + -0.07357415556907654, + -0.0042722392827272415, + -0.038643043488264084, + 0.05250518023967743, + 0.07596319913864136, + -0.10704830288887024, + -0.060466423630714417, + -0.12184098362922668, + -0.029531046748161316, + -0.004727337509393692, + -0.027492262423038483, + 0.0058106123469769955, + 0.012840759940445423, + -0.02136811800301075, + -0.06257054954767227, + -0.0891914963722229, + 0.02585662342607975, + -0.014219660311937332, + 0.0016826819628477097, + -0.06680537015199661, + 0.010963051579892635, + -0.0003173463046550751, + 0.03191859647631645, + -0.011891636997461319, + 0.018400467932224274, + -0.011010151356458664, + -0.056199342012405396, + -0.022005779668688774, + 0.05189729481935501, + 0.026533037424087524, + 0.032330870628356934, + -0.02206023968756199, + -0.06971227377653122, + 0.06681889295578003, + -0.042676106095314026, + 0.13253949582576752, + -0.06805618852376938, + -0.05376983806490898, + -0.044418513774871826, + 0.0011334531009197235, + -0.02395021542906761, + 0.01614169403910637, + 0.06772264093160629, + 0.03880290314555168, + -0.02249978482723236, + -0.07261064648628235, + 0.11414507031440735, + 0.06347735226154327, + -0.009585547260940075, + -0.06244874373078346, + -0.053595464676618576, + -0.06424856930971146, + -0.004242710769176483, + 0.0030150925740599632, + -0.053490862250328064, + 0.04673640429973602, + -0.023656141012907028, + 0.0003688698634505272, + 0.0835297629237175, + 0.1028333380818367, + 0.07413534820079803, + -0.07562227547168732 + ] + }, + "p245_329.wav": { + "name": "p245", + "embedding": [ + -0.005544627085328102, + 0.06198248267173767, + 0.004634879529476166, + 0.021113816648721695, + -0.044267334043979645, + -0.031414665281772614, + -0.09524384140968323, + 0.07862409204244614, + -0.029118720442056656, + 0.09866597503423691, + -0.07544707506895065, + 0.09305178374052048, + -0.05698026344180107, + -0.12308865785598755, + 0.0180025827139616, + 0.033627789467573166, + 0.009352291002869606, + -0.02268972061574459, + -0.01778477057814598, + -0.04896176978945732, + 0.03435751050710678, + 0.06365825980901718, + 0.02586447075009346, + -0.021655237302184105, + -0.008241991512477398, + 0.07650616019964218, + -0.012857471592724323, + -0.003986007999628782, + -0.022557053714990616, + -0.06080430746078491, + -0.00031503589707426727, + 0.03554786369204521, + -0.022862931713461876, + -0.0228655394166708, + 0.018445748835802078, + 0.021002281457185745, + -0.023799780756235123, + 0.01135361846536398, + -0.02672605589032173, + 0.012114268727600574, + -0.12098908424377441, + 0.030034363269805908, + -0.0048117609694600105, + -0.048177570104599, + 0.06104302033782005, + 0.016689537093043327, + -0.006458019372075796, + 0.016416212543845177, + -0.06254874169826508, + 0.08453187346458435, + 0.061173390597105026, + 0.01850994862616062, + -0.03041110932826996, + -0.01941123604774475, + 0.06710182875394821, + -0.01897074654698372, + -0.07495981454849243, + -0.06148586794734001, + 0.04911886900663376, + 0.062065910547971725, + -0.05005854368209839, + -0.03270219638943672, + 0.04875677451491356, + 0.039867546409368515, + 0.02703641913831234, + 0.055593665689229965, + 0.05901962146162987, + 0.03524057939648628, + -0.011570108123123646, + -0.03959264978766441, + 0.057695675641298294, + 0.07419515401124954, + 0.06387314945459366, + -0.01761275716125965, + 0.013430282473564148, + 0.03664001449942589, + -0.03950544074177742, + -0.008957642130553722, + -0.010413320735096931, + -0.01036157738417387, + -0.03097372129559517, + -0.013436786830425262, + -0.00023613292432855815, + -0.05614519864320755, + -0.0077747986651957035, + 0.03682340309023857, + 0.07967673242092133, + 0.0007643811404705048, + 0.059014905244112015, + 0.026371365413069725, + -0.014461099170148373, + 0.04225132241845131, + -0.05795370414853096, + 0.008060790598392487, + -0.030709654092788696, + -0.01028340682387352, + 0.020751409232616425, + 0.07499875873327255, + 0.017875991761684418, + 0.030727699398994446, + 0.07834219187498093, + -0.007102827075868845, + 0.026036430150270462, + 0.004032354801893234, + -0.10909755527973175, + 0.09570895880460739, + 0.0696415975689888, + -0.04072205349802971, + 0.0034895152784883976, + -0.02699539065361023, + 0.027414733543992043, + 0.04818747192621231, + -0.05155643820762634, + -0.049935758113861084, + -0.01530660130083561, + -0.0020182596053928137, + -0.00699925422668457, + 0.0961560532450676, + 0.015446463599801064, + 0.005732082761824131, + 0.13439252972602844, + -0.09265976399183273, + -0.10652390867471695, + -0.018225042149424553, + -0.006649364717304707, + -0.10694273561239243, + 0.07759647816419601, + 0.07681707292795181, + 0.012503315694630146, + 0.057671286165714264, + 0.11152992397546768, + 0.006875825580209494, + 0.02438422292470932, + -0.03399043157696724, + -0.04218409210443497, + -0.033269450068473816, + -0.03208575397729874, + 5.464367495733313e-05, + 0.07965957373380661, + 0.03992646560072899, + 0.07209324091672897, + 0.006200456526130438, + -0.0037965283263474703, + -0.09806735813617706, + 0.01492305751889944, + 0.076610267162323, + 0.004444792866706848, + -0.024339355528354645, + -0.024795832112431526, + -0.037871815264225006, + -0.053092874586582184, + 0.005128528457134962, + -0.041391272097826004, + 0.06062359735369682, + -0.04469582438468933, + 0.018589405342936516, + 0.11447858065366745, + -0.0017805651295930147, + -0.027430733665823936, + -0.0734269767999649, + -0.031009305268526077, + -0.016635244712233543, + 0.031740203499794006, + -0.09768009185791016, + -0.09541608393192291, + -0.07081269472837448, + 0.06204848363995552, + 0.03061353601515293, + 0.052115004509687424, + 0.044423289597034454, + 0.0016121268272399902, + 0.005247681401669979, + -0.04739367589354515, + 0.043722111731767654, + -0.03980259224772453, + -0.08861198276281357, + -0.03918468579649925, + -0.053784485906362534, + -0.009916325099766254, + 0.06018403172492981, + -0.035982247442007065, + 0.024668967351317406, + -0.0211794376373291, + -0.10341373831033707, + -0.11254493147134781, + 0.0018819079268723726, + 0.02707829140126705, + -0.011820084415376186, + 0.03811441734433174, + 0.02679506316781044, + -0.08152776211500168, + 0.0311566349118948, + 0.013653472065925598, + 0.08790870755910873, + -0.05919070169329643, + 0.0336502380669117, + -0.015940843150019646, + 0.01199861615896225, + 0.07962381839752197, + -0.05437647923827171, + -0.037804629653692245, + -0.06536708027124405, + -0.045384764671325684, + 0.05194753408432007, + -0.005883814301341772, + -0.014137446880340576, + -0.00609972421079874, + 0.003839246230199933, + -0.05598258972167969, + -0.06314468383789062, + 0.04020438715815544, + -0.024574175477027893, + -0.015057406388223171, + -0.08187941461801529, + -0.004326094873249531, + -0.014390842989087105, + 0.07337900251150131, + 0.0031799187418073416, + -0.0037213906180113554, + 0.030000625178217888, + -0.039977043867111206, + 0.028816191479563713, + 0.10328862816095352, + 0.06476470828056335, + 0.0350937619805336, + -0.02926509641110897, + -0.08768477290868759, + 0.04801398143172264, + -0.024401629343628883, + 0.0722629725933075, + -0.006581056397408247, + -0.04384986683726311, + -0.04814082011580467, + 0.0001794517011148855, + -0.002577307168394327, + 0.022349826991558075, + 0.05108978971838951, + 0.060505837202072144, + 0.015153774991631508, + -0.053677525371313095, + 0.0886063203215599, + 0.05088115856051445, + 0.01599227450788021, + -0.034507203847169876, + -0.037383854389190674, + -0.06879597902297974, + -0.02244390733540058, + -0.0009749099845066667, + -0.08880208432674408, + 0.029364068061113358, + -0.015180820599198341, + 0.019148169085383415, + 0.05424491688609123, + 0.09361078590154648, + 0.040511246770620346, + -0.0897696241736412 + ] + }, + "p245_357.wav": { + "name": "p245", + "embedding": [ + 0.06972910463809967, + 0.06739023327827454, + -0.06170198693871498, + 0.018775634467601776, + -0.03588758781552315, + 0.0649954304099083, + -0.13766621053218842, + 0.10362699627876282, + -0.03624305874109268, + 0.10524637997150421, + -0.046022526919841766, + 0.09719941020011902, + -0.002834675367921591, + -0.10584241151809692, + -0.0377446785569191, + 0.03572224825620651, + -0.0021057967096567154, + 0.0013607954606413841, + -0.041360754519701004, + 0.009375831112265587, + 0.03295276686549187, + 0.03323345631361008, + 0.012944510206580162, + -0.041706379503011703, + 0.025914648547768593, + 0.030174151062965393, + 0.014126356691122055, + 0.02248372882604599, + 0.0036759087815880775, + 0.0009140335023403168, + -0.0012793485075235367, + 0.0893627256155014, + -0.0299682654440403, + 0.02160615473985672, + 0.04417218267917633, + 0.011334434151649475, + -0.01733045093715191, + -0.08580219745635986, + 0.0105465492233634, + -0.0010910485871136189, + -0.01050049439072609, + 0.08448060601949692, + 0.07084998488426208, + -0.00499091949313879, + 0.0025040628388524055, + -0.006714037619531155, + -0.005206972360610962, + -0.05556436628103256, + -0.0966198742389679, + 0.1689758151769638, + 0.0143450191244483, + 0.03579188883304596, + -0.10329142212867737, + -0.015243053436279297, + 0.09332321584224701, + 0.008697101846337318, + -0.04352220520377159, + -0.08054336905479431, + 0.026705633848905563, + 0.14721164107322693, + -0.002385042142122984, + -0.05746109038591385, + 0.018784577026963234, + 0.10421192646026611, + 0.039660222828388214, + 0.0409710593521595, + 0.10622353851795197, + 0.09024246037006378, + 0.002522810362279415, + 0.024903880432248116, + 0.02735091745853424, + 0.060085512697696686, + -0.0017608420457690954, + 0.003584047546610236, + 0.02670731022953987, + -0.03584801405668259, + -0.02187918871641159, + 0.021168118342757225, + -0.00762348435819149, + -0.05962866172194481, + -0.013089446350932121, + 0.02323010191321373, + 0.027965519577264786, + 0.06914739310741425, + -0.05049928277730942, + 0.02922941744327545, + 0.028659392148256302, + -0.05947839841246605, + 0.05637276545166969, + 0.05255650728940964, + -0.010411053895950317, + -0.008278166875243187, + -0.04766537994146347, + -0.12366069108247757, + 0.030465014278888702, + 0.00013085361570119858, + 0.032128140330314636, + 0.04259221628308296, + 0.021499060094356537, + 0.00375279039144516, + 0.0713067501783371, + 0.02708558738231659, + -0.008532686159014702, + -0.006281804293394089, + -0.04381237551569939, + 0.12141285836696625, + 0.10051020979881287, + 0.0014802692458033562, + 0.03445610776543617, + -0.06818720698356628, + 0.017130697146058083, + 0.049766018986701965, + -0.101842001080513, + -0.08296908438205719, + 0.06256444752216339, + 0.03921586647629738, + 0.03046710044145584, + 0.10825768113136292, + 0.011512940749526024, + 0.005230730399489403, + 0.05423043668270111, + -0.08202383667230606, + -0.0667533352971077, + -0.02116292156279087, + 0.03881089389324188, + -0.03389594331383705, + 0.024548720568418503, + 0.05810442566871643, + -0.016244828701019287, + -0.029061466455459595, + 0.05179385095834732, + 0.010683749802410603, + 0.00983046367764473, + -0.006054816767573357, + 0.02387930080294609, + 0.08193044364452362, + -0.005693188868463039, + -0.013211306184530258, + 0.027593664824962616, + 0.051229268312454224, + 0.04209590330719948, + 0.01836562156677246, + -0.018793325871229172, + -0.11360463500022888, + -0.008760695345699787, + 0.0781717598438263, + 0.05345386266708374, + -0.056430596858263016, + -0.03362216427922249, + -0.028318308293819427, + -0.049307338893413544, + -0.009060056880116463, + -0.011526191607117653, + 0.07274100929498672, + 0.017242776229977608, + 0.032199710607528687, + 0.08604419976472855, + -0.016052665188908577, + 0.018490906804800034, + -0.024630920961499214, + 0.023259969428181648, + 0.04637088626623154, + 0.033066749572753906, + -0.0375385507941246, + -0.07127895951271057, + -0.009788970462977886, + 0.016655512154102325, + -0.028947461396455765, + -0.004227755591273308, + 0.03065069019794464, + -0.009251004084944725, + 0.0477210097014904, + -0.0722513496875763, + 0.012178759090602398, + -0.1234005019068718, + 0.01049613207578659, + -0.00025842548348009586, + -0.035158053040504456, + -0.01364965084940195, + 0.09684853255748749, + 0.04605598747730255, + 0.056741323322057724, + -0.01744954288005829, + -0.05632244795560837, + -0.021669741719961166, + 0.05704730749130249, + 0.08692049980163574, + -0.030953887850046158, + 0.0007817652076482773, + 0.01813158392906189, + 0.045482292771339417, + 0.004471767693758011, + 0.07399888336658478, + 0.040188610553741455, + -0.028395257890224457, + -0.06494726985692978, + -0.045659083873033524, + 0.10116519033908844, + 0.0771910771727562, + -0.09601793438196182, + -0.05631272494792938, + -0.027462515980005264, + -0.05516643449664116, + -0.02065207064151764, + -0.0525970533490181, + 0.012513198889791965, + 0.04407810419797897, + -0.02918807417154312, + -0.13304215669631958, + -0.10536287724971771, + 0.03618479520082474, + -0.05555425584316254, + 0.021637538447976112, + -0.06295222043991089, + 0.037156254053115845, + 0.09378945827484131, + 0.020421963185071945, + -0.022969432175159454, + -0.03247111290693283, + -0.01447397843003273, + -0.07073706388473511, + -0.016013137996196747, + 0.0003811251372098923, + 0.023362331092357635, + -0.09457676112651825, + 0.03389350324869156, + -0.048120371997356415, + 0.07254493236541748, + -0.05955251678824425, + 0.1370476484298706, + 0.009384021162986755, + -0.05852793529629707, + -0.09808972477912903, + 0.0009142011404037476, + -0.03109685331583023, + 0.04899543523788452, + 0.022091086953878403, + 0.021921755746006966, + 0.02702271193265915, + -0.07844947278499603, + 0.0810246467590332, + 0.07411861419677734, + -0.027226194739341736, + -0.09629100561141968, + -0.023695094510912895, + -0.013731062412261963, + 0.0657021701335907, + 0.0005412332247942686, + -0.0006784871220588684, + 0.0008903555572032928, + 0.03201688826084137, + -0.020708387717604637, + 0.06397310644388199, + 0.0922405943274498, + 0.048202451318502426, + -0.09531234204769135 + ] + }, + "p245_016.wav": { + "name": "p245", + "embedding": [ + 0.04051810875535011, + 0.06690486520528793, + -0.033708859235048294, + 0.03671709820628166, + -0.03845207020640373, + 0.032780032604932785, + -0.14912444353103638, + 0.13018101453781128, + -0.0010805726051330566, + 0.12852822244167328, + -0.04286907985806465, + 0.10912932455539703, + -0.00573818851262331, + -0.177122101187706, + 0.0028319985140115023, + 0.051830168813467026, + -0.030473405495285988, + -0.05070249363780022, + -0.010931533761322498, + -0.016053451225161552, + 0.0456344299018383, + 0.06058346852660179, + 0.01461214479058981, + -0.004392530303448439, + 0.014387959614396095, + 0.06585042923688889, + -0.009662941098213196, + 0.0324079766869545, + 0.007896742783486843, + -0.050136029720306396, + -0.026401950046420097, + 0.08292513340711594, + -0.04552718997001648, + 0.008650950156152248, + 0.03522353619337082, + -0.013688315637409687, + -0.015335598960518837, + -0.06033455207943916, + -0.02980225160717964, + 0.009661932475864887, + -0.05967609956860542, + 0.08095196634531021, + 0.03956491872668266, + -0.034930385649204254, + 0.035889722406864166, + 0.011980006471276283, + -0.01231046486645937, + -0.04335959628224373, + -0.10692300647497177, + 0.1572565734386444, + 0.08295287936925888, + 0.0073030912317335606, + -0.0570632703602314, + -0.04932660609483719, + 0.08073550462722778, + 0.008689356036484241, + -0.0966644138097763, + -0.0378798246383667, + 0.07101687043905258, + 0.1358330249786377, + -0.019165491685271263, + -0.02883703075349331, + 0.05291098356246948, + 0.11967045068740845, + 0.06932578235864639, + 0.06779652088880539, + 0.08289850503206253, + 0.11162374168634415, + -0.019288862124085426, + -0.0031644494738429785, + 0.04786653816699982, + 0.08686845749616623, + 0.04189016669988632, + -0.0001112177997129038, + 0.01635715179145336, + 0.008836068212985992, + -0.028658390045166016, + -0.01963823474943638, + -0.015792587772011757, + -0.01580667681992054, + 0.0040189181454479694, + 0.008919058367609978, + 0.014408099465072155, + 0.05892181396484375, + -0.025555426254868507, + 0.04514877125620842, + 0.05674052983522415, + -0.022173216566443443, + 0.05973997339606285, + 0.011843579821288586, + 0.024693438783288002, + 0.0603720061480999, + -0.09063177555799484, + -0.06547486037015915, + 0.03342488408088684, + 0.005790857598185539, + 0.029917040839791298, + 0.0837230235338211, + 0.05385090783238411, + -0.01909828558564186, + 0.12960182130336761, + 0.023425666615366936, + -0.021913761273026466, + 0.019606955349445343, + -0.0787922590970993, + 0.11407951265573502, + 0.07720455527305603, + -0.027124259620904922, + 0.05694260820746422, + -0.07036172598600388, + 0.06096518784761429, + 0.04461970180273056, + -0.13190896809101105, + -0.058255910873413086, + 0.055646199733018875, + 0.028786802664399147, + -0.016899121925234795, + 0.1520422101020813, + 0.02525480091571808, + 0.05128249153494835, + 0.10620071738958359, + -0.09688061475753784, + -0.06232024356722832, + -0.02122008055448532, + 0.06690078973770142, + -0.0887972041964531, + 0.0786643847823143, + 0.048729509115219116, + -0.028080791234970093, + 0.013619333505630493, + 0.0625675618648529, + -0.0130501389503479, + 0.017447112128138542, + -0.014992785640060902, + -0.024081243202090263, + 0.028229236602783203, + -0.0367024801671505, + 0.003026180434972048, + 0.016970409080386162, + 0.008277904242277145, + 0.044564470648765564, + -0.01177924033254385, + -0.0393252819776535, + -0.14389453828334808, + 0.018038541078567505, + 0.027318662032485008, + 0.09478374570608139, + -0.013233949430286884, + -0.03757332265377045, + -0.0450616255402565, + -0.06943442672491074, + -0.0020399573259055614, + -0.02811126410961151, + 0.05477302893996239, + -0.014403223991394043, + -0.0010520702926442027, + 0.08142606914043427, + 0.020454496145248413, + 0.011113223619759083, + -0.025445638224482536, + -0.038584448397159576, + 0.007810632232576609, + 0.04612548276782036, + -0.07453037053346634, + -0.07559381425380707, + -0.014829359948635101, + 0.02373846247792244, + -0.018207039684057236, + 0.0480978861451149, + 0.037044707685709, + 0.03864092379808426, + 0.01082706544548273, + -0.08361036330461502, + 0.00647435337305069, + -0.09939318150281906, + -0.08051186054944992, + -0.00996298249810934, + 0.013587194494903088, + -0.019608015194535255, + 0.08560257405042648, + 0.01767372153699398, + 0.05805790051817894, + -0.027385732159018517, + -0.04634594917297363, + -0.08442296087741852, + 0.036416199058294296, + 0.06011306121945381, + -0.018580064177513123, + 0.03815450146794319, + 0.0541682243347168, + -0.026287520304322243, + 0.02207903191447258, + 0.04216459393501282, + 0.09922679513692856, + -0.011121436953544617, + 0.004603381734341383, + -0.06368358433246613, + 0.1052146926522255, + 0.09675245732069016, + -0.06895194947719574, + -0.05487356707453728, + -0.020620230585336685, + -0.08344074338674545, + 0.01203469093888998, + -0.019137948751449585, + 0.013086751103401184, + 0.012765067629516125, + 0.003509512171149254, + -0.11139048635959625, + -0.085530124604702, + 0.053799260407686234, + -0.07429026067256927, + -0.0024241183418780565, + -0.09297332912683487, + 0.04146304354071617, + 0.10614720731973648, + 0.045611411333084106, + -0.028677864000201225, + -0.03646695613861084, + 0.04328562691807747, + -0.022161992266774178, + 0.026895800605416298, + 0.07181604951620102, + 0.05712796375155449, + -0.1235656887292862, + -0.007126865442842245, + -0.06264682859182358, + 0.038573626428842545, + -0.05264133960008621, + 0.12364890426397324, + 0.03203369304537773, + -0.05668767914175987, + -0.0939750075340271, + 0.039070554077625275, + 0.009730945341289043, + 0.05214281752705574, + 0.012974734418094158, + 0.05390125513076782, + 0.06048962101340294, + -0.07861433178186417, + 0.10344332456588745, + 0.05393049865961075, + -0.019272439181804657, + -0.06681125611066818, + -0.04907776042819023, + -0.02446931041777134, + 0.04851621761918068, + 0.021766094490885735, + -0.07594799250364304, + -0.033533915877342224, + 0.02563137374818325, + -0.0046650259755551815, + 0.048620808869600296, + 0.14016841351985931, + 0.04956796392798424, + -0.13117723166942596 + ] + }, + "p245_337.wav": { + "name": "p245", + "embedding": [ + 0.06357072293758392, + 0.12591025233268738, + 0.07006644457578659, + -0.015215903520584106, + 0.02714518830180168, + 0.03264628350734711, + -0.06606484949588776, + 0.06581936031579971, + 0.05310523509979248, + 0.09040797501802444, + -0.09511347115039825, + 0.035431869328022, + -0.04092997685074806, + -0.11102703213691711, + -0.01735813170671463, + 0.017631951719522476, + -0.07755692303180695, + 0.011045120656490326, + -0.03363728150725365, + -0.03453698009252548, + -0.014923900365829468, + -0.0030812565237283707, + 0.07160196453332901, + -0.04828950762748718, + 0.002502996474504471, + 0.03974238783121109, + -0.01536097563803196, + -0.0005635404959321022, + -0.009577825665473938, + -0.06541632115840912, + 0.02475626766681671, + 0.022668685764074326, + 0.005876651033759117, + 0.03617662936449051, + 0.030242349952459335, + 0.007141558453440666, + 0.003515218384563923, + -0.029527120292186737, + -0.0292219165712595, + 0.07796933501958847, + -0.009438793174922466, + 0.0568702295422554, + 0.023875031620264053, + -0.05550827458500862, + 0.0599316842854023, + 0.011658438481390476, + -0.0370093509554863, + -0.010489502921700478, + -0.09112150967121124, + 0.12110947072505951, + 0.021221477538347244, + 0.020916149020195007, + -0.06362378597259521, + -0.001623939722776413, + 0.05629764497280121, + -0.02382519282400608, + -0.08513681590557098, + 0.0033728405833244324, + 0.035544488579034805, + 0.02385822683572769, + -0.01722223497927189, + -0.03426945582032204, + -0.024537622928619385, + 0.025006119161844254, + 0.0008355386089533567, + 0.03662567958235741, + 0.06661416590213776, + 0.054919660091400146, + -0.027265775948762894, + 0.04690919816493988, + 0.034029848873615265, + -0.008298519998788834, + 0.06274469941854477, + 9.690411388874054e-05, + 0.016773881390690804, + -0.0643966943025589, + -0.01949666626751423, + -0.020516373217105865, + 0.024980969727039337, + -0.036277443170547485, + 0.03005598857998848, + -0.03174200654029846, + 0.027659287676215172, + 0.018558474257588387, + -0.032030120491981506, + -0.023672999814152718, + 0.020671119913458824, + 0.03555385023355484, + 0.062437884509563446, + 0.05043475329875946, + 0.03648427873849869, + 0.056479066610336304, + -0.03731931373476982, + -0.09246250241994858, + -0.013015715405344963, + -0.03496254235506058, + 0.04955560714006424, + 0.017191331833600998, + 0.043338462710380554, + -0.0008696811273694038, + 0.07697781920433044, + 0.030423954129219055, + -0.01410999707877636, + -0.025233402848243713, + -0.0676155835390091, + 0.03485284000635147, + 0.08324001729488373, + -0.011431500315666199, + 0.02322409860789776, + -0.0007219631224870682, + 0.0694468766450882, + 0.060692198574543, + -0.04339031130075455, + -0.00032777339220046997, + -0.020498031750321388, + 0.02604079432785511, + 0.04291475564241409, + 0.06246257573366165, + 0.006132986396551132, + 0.02121514081954956, + 0.11166727542877197, + -0.06699950993061066, + 0.030972689390182495, + 0.003795386292040348, + -0.012878019362688065, + -0.0490633100271225, + 0.04782489687204361, + 0.020377017557621002, + -0.003418991342186928, + 0.0001584421843290329, + 0.02110578492283821, + 0.02077466994524002, + 0.003818400204181671, + -0.054585035890340805, + 0.0018689632415771484, + 0.02700348012149334, + -0.02421363815665245, + 0.022694306448101997, + 0.03226364403963089, + 0.04870469868183136, + 0.016613781452178955, + 0.06239878386259079, + -0.0503784716129303, + -0.015207886695861816, + 0.03068344108760357, + 0.012323945760726929, + -0.009966287761926651, + -0.012963440269231796, + -0.04543355852365494, + -0.02260706201195717, + -0.002241317182779312, + 0.09423957020044327, + -0.025701560080051422, + 0.03858235850930214, + 0.04459567740559578, + -0.001337686786428094, + 0.1019161120057106, + 0.034563373774290085, + -0.021709445863962173, + -0.04325784742832184, + -0.07394756376743317, + -0.010701078921556473, + 0.03200690075755119, + -0.1614108383655548, + -0.021555878221988678, + -0.03734583780169487, + -0.03584977611899376, + 0.006048415321856737, + 0.013734642416238785, + 0.07061280310153961, + -0.027480563148856163, + 0.007907764054834843, + 0.0013669952750205994, + 0.011461102403700352, + -0.02868250384926796, + -0.11659567058086395, + 0.020381135866045952, + -0.047726765275001526, + 0.01552228257060051, + 0.07287449389696121, + -0.04410259798169136, + 0.004859298933297396, + -0.04880005866289139, + -0.04692478105425835, + 0.015201244503259659, + 0.07477204501628876, + 0.017476705834269524, + -2.1323212422430515e-05, + 0.020455945283174515, + 0.034225694835186005, + -0.026310931891202927, + 0.05604342371225357, + -0.009844496846199036, + 0.0813305675983429, + -0.06089827045798302, + 0.027818668633699417, + -0.005416626110672951, + 0.014772187918424606, + 0.06832297146320343, + -0.021546149626374245, + -0.11031489074230194, + -0.06080133467912674, + -0.02116691693663597, + 0.027910171076655388, + -0.016317958012223244, + -0.03824947774410248, + 0.007023532874882221, + -0.011336670257151127, + -0.013859203085303307, + -0.09113756567239761, + 0.02342355065047741, + 0.02837616205215454, + 0.004606687463819981, + -0.06532706320285797, + 0.027152802795171738, + -0.03189672529697418, + 0.02507844939827919, + -0.032639749348163605, + 0.07138194888830185, + 0.0022166483104228973, + -0.014683031477034092, + -0.0430789440870285, + -0.01697285659611225, + 0.031949955970048904, + 0.011931685730814934, + -0.03563685342669487, + -0.0554065927863121, + 0.047775380313396454, + 0.007679596543312073, + 0.07990893721580505, + 0.03215881809592247, + -0.011561330407857895, + 0.015731219202280045, + 0.0026624388992786407, + -0.06192142516374588, + 0.003511176211759448, + 0.033074114471673965, + 0.005636034533381462, + 0.03974713757634163, + -0.024308715015649796, + 0.03552728891372681, + 0.027024682611227036, + 0.01616571843624115, + -0.007707834243774414, + -0.014502554200589657, + -0.06470315903425217, + -0.043164581060409546, + -0.023556098341941833, + -0.04584721848368645, + 0.021824803203344345, + -0.022979341447353363, + 0.06951957941055298, + 0.01898857206106186, + 0.08085615932941437, + 0.011693358421325684, + -0.047889843583106995 + ] + }, + "p245_396.wav": { + "name": "p245", + "embedding": [ + 0.06517630815505981, + 0.10721991956233978, + -0.026210322976112366, + 0.02655503898859024, + -0.03522571548819542, + 0.06942230463027954, + -0.11102457344532013, + 0.12470437586307526, + -0.028148166835308075, + 0.16116848587989807, + -0.05939150229096413, + 0.12537911534309387, + 0.002466081641614437, + -0.16047430038452148, + -0.025566497817635536, + 0.039198294281959534, + -0.044055912643671036, + -0.003115265630185604, + -0.04788688197731972, + 0.003106349613517523, + 0.04585167393088341, + 0.04467109218239784, + 0.04544520378112793, + -0.04946667701005936, + 0.02919802814722061, + 0.05480317771434784, + -0.0013365903869271278, + 0.04785804823040962, + 0.011247104965150356, + -0.10752403736114502, + -0.04367070645093918, + 0.10983128845691681, + -0.042708106338977814, + 0.04068087786436081, + 0.05139332264661789, + -0.01772719994187355, + -0.012709896080195904, + -0.06883697211742401, + -0.013414707034826279, + 0.005680189933627844, + -0.022992700338363647, + 0.06731124222278595, + 0.008581933565437794, + -0.03604145720601082, + 0.0368812121450901, + 0.004855903796851635, + -0.019964639097452164, + -0.04552185535430908, + -0.07436802983283997, + 0.1696459949016571, + 0.06883874535560608, + 0.011203248053789139, + -0.06979367136955261, + -0.07916714251041412, + 0.07860253751277924, + -0.0017830193974077702, + -0.11333741247653961, + -0.027933157980442047, + 0.04430707171559334, + 0.14919014275074005, + -0.010751070454716682, + -0.028372839093208313, + 0.03801906853914261, + 0.11634698510169983, + 0.040157102048397064, + 0.088083915412426, + 0.0870276689529419, + 0.08878590166568756, + 0.006489753723144531, + 0.05652322992682457, + 0.028659621253609657, + 0.08469879627227783, + 0.06456289440393448, + -0.010897435247898102, + 0.03275791183114052, + -0.024754337966442108, + -0.04490974545478821, + -0.02952863834798336, + -0.025987200438976288, + -0.026346305385231972, + -0.007786503527313471, + 0.006081285420805216, + 0.027438336983323097, + 0.03851122781634331, + -0.030722923576831818, + 0.03364578261971474, + 0.024736011400818825, + -0.04859985038638115, + 0.048089176416397095, + 0.038405902683734894, + 0.03868989273905754, + 0.04249880835413933, + -0.08509248495101929, + -0.11658293008804321, + 0.029262281954288483, + 0.014601492322981358, + 0.017014412209391594, + 0.08175350725650787, + 0.049749284982681274, + -0.027871903032064438, + 0.09385992586612701, + 0.03826487809419632, + -0.013534833677113056, + 0.0005872240290045738, + -0.07795710116624832, + 0.11196853220462799, + 0.10102922469377518, + -0.016416946426033974, + 0.046119365841150284, + -0.06792338192462921, + 0.08339055627584457, + 0.06787735223770142, + -0.14817942678928375, + -0.08350761979818344, + 0.019396947696805, + -0.024958504363894463, + 0.0075767082162201405, + 0.09991246461868286, + 0.02037220448255539, + 0.04211430996656418, + 0.08934465050697327, + -0.10430359840393066, + -0.06072365492582321, + -0.04291628673672676, + 0.055879466235637665, + -0.09226059913635254, + 0.0775848776102066, + 0.03358490392565727, + -0.0186989214271307, + -0.011364801786839962, + 0.06770117580890656, + -0.015590742230415344, + 0.01835024170577526, + 0.008083555847406387, + -0.04789236560463905, + 0.022914139553904533, + -0.058133624494075775, + 0.013061843812465668, + 0.012555889785289764, + 0.02218298800289631, + 0.05212775990366936, + -0.01836366392672062, + -0.0316888652741909, + -0.09081701934337616, + 0.0176241472363472, + 0.04111219942569733, + 0.04795978218317032, + -0.01748806983232498, + -0.03008992224931717, + -0.014394992962479591, + -0.05571184307336807, + 0.03071283921599388, + -0.03396749123930931, + 0.05361219868063927, + 0.01325300894677639, + 0.015651697292923927, + 0.11935000866651535, + 0.008567150682210922, + -0.001899931812658906, + -0.03708351030945778, + -0.019476210698485374, + 0.031346894800662994, + 0.058785729110240936, + -0.08987122774124146, + -0.06835330277681351, + -0.0011888910084962845, + -0.016794703900814056, + -0.0119209298864007, + 0.04924074932932854, + 0.0498056560754776, + 0.018354468047618866, + 0.03197338059544563, + -0.059796907007694244, + -0.02137620747089386, + -0.11094969511032104, + -0.06660529971122742, + -0.026609044522047043, + -0.053207144141197205, + -0.022704333066940308, + 0.09328952431678772, + 0.02344149351119995, + 0.03072524629533291, + -0.0297149159014225, + -0.04843574017286301, + -0.07187207788228989, + 0.05697520077228546, + 0.06802003085613251, + 0.0008193914545699954, + 0.022981014102697372, + 0.03956327214837074, + -0.0033469372428953648, + 0.033217623829841614, + 0.05818531662225723, + 0.08356843888759613, + -0.017114058136940002, + 0.001056239940226078, + -0.09554487466812134, + 0.10885017365217209, + 0.11455187201499939, + -0.07943351566791534, + -0.09818488359451294, + -0.03901026397943497, + -0.08240342885255814, + 0.02317032217979431, + -0.035247549414634705, + 0.0040632588788867, + 0.03994818031787872, + -0.01680007204413414, + -0.1005466878414154, + -0.09014047682285309, + 0.10579557716846466, + -0.06792503595352173, + -0.021382413804531097, + -0.0751475915312767, + 0.0429789237678051, + 0.0774446502327919, + 0.04907786846160889, + -0.041583120822906494, + 0.006374651566147804, + 0.06434763967990875, + -0.049181804060935974, + 0.0031090732663869858, + 0.04416338726878166, + 0.023342810571193695, + -0.09791085124015808, + 0.01773425191640854, + -0.04863790050148964, + 0.04365210235118866, + -0.09506496787071228, + 0.14368534088134766, + -0.005144298542290926, + -0.07950660586357117, + -0.09214206039905548, + 0.07147965580224991, + -0.01729930005967617, + 0.02507266029715538, + 0.029670685529708862, + 0.051528457552194595, + 0.03800062835216522, + -0.11955156922340393, + 0.09893016517162323, + 0.03362716734409332, + 0.00511011341586709, + -0.0811774730682373, + -0.07450739294290543, + -0.0336877778172493, + 0.03602423518896103, + 0.0038190397899597883, + -0.07339638471603394, + 0.01095831673592329, + 0.015445513650774956, + 0.0006300406530499458, + 0.05763588100671768, + 0.13967403769493103, + 0.04407641664147377, + -0.12899541854858398 + ] + }, + "p245_266.wav": { + "name": "p245", + "embedding": [ + 0.06275972723960876, + 0.10458409786224365, + -0.016859009861946106, + 0.041719552129507065, + -0.05976272374391556, + 0.08425871282815933, + -0.1139720231294632, + 0.11842691898345947, + -0.06820785999298096, + 0.1367681324481964, + -0.059513628482818604, + 0.11924424767494202, + -0.029219742864370346, + -0.15291652083396912, + -0.055678531527519226, + 0.056495338678359985, + -0.05656929314136505, + -0.03382333368062973, + -0.053548652678728104, + -0.012108069844543934, + 0.019336778670549393, + 0.026876257732510567, + 0.06881733238697052, + 0.010827560909092426, + 0.03989651799201965, + 0.05641339346766472, + -0.0027742963284254074, + 0.055488113313913345, + 0.030304603278636932, + -0.08616435527801514, + -0.050449904054403305, + 0.09712797403335571, + -0.04303281009197235, + 0.01880800724029541, + 0.034522153437137604, + -0.0034501992631703615, + 0.018394574522972107, + -0.07735978066921234, + -0.03030386194586754, + -0.003677834989503026, + -0.027858294546604156, + 0.08223546296358109, + 0.020708100870251656, + -0.034314870834350586, + 0.022450122982263565, + -0.03282851725816727, + -0.024700362235307693, + -0.028004543855786324, + -0.10558931529521942, + 0.15091395378112793, + 0.06254488974809647, + 0.008824310265481472, + -0.0832078605890274, + -0.07657890021800995, + 0.11659140139818192, + -0.027609556913375854, + -0.13063302636146545, + -0.03658204525709152, + 0.05352015420794487, + 0.17844796180725098, + -0.015451924875378609, + -0.00901712104678154, + 0.024675089865922928, + 0.12304750084877014, + 0.0773555338382721, + 0.07592643797397614, + 0.0871802270412445, + 0.09822160005569458, + -0.003057264257222414, + 0.035391438752412796, + 0.052185989916324615, + 0.0679408460855484, + 0.03263004869222641, + -0.005798683501780033, + 0.01762537658214569, + -0.021588413044810295, + -0.03007441759109497, + -0.006682452280074358, + -0.020017992705106735, + -0.03128517419099808, + -0.040192827582359314, + 0.0009146551601588726, + 0.003359758760780096, + 0.02354622073471546, + -0.03548082709312439, + 0.0556405633687973, + 0.008179174736142159, + -0.03888179361820221, + 0.062490176409482956, + 0.05662870407104492, + 0.006768522784113884, + 0.047149911522865295, + -0.0548359751701355, + -0.08042454719543457, + 0.0018875326495617628, + 0.010982846841216087, + 0.012556401081383228, + 0.0741402804851532, + 0.042389899492263794, + -0.019322898238897324, + 0.11022689938545227, + 0.06383726000785828, + 0.005732770077884197, + 0.01422690600156784, + -0.08839423209428787, + 0.11207915842533112, + 0.08923239260911942, + -0.011756308376789093, + 0.05343710258603096, + -0.013429244048893452, + 0.06370701640844345, + 0.08137749135494232, + -0.1313275843858719, + -0.08043543994426727, + 0.024216052144765854, + -0.012891063466668129, + 0.01359106320887804, + 0.08228619396686554, + 0.0016628594603389502, + 0.032983340322971344, + 0.07362677901983261, + -0.07221278548240662, + -0.050070129334926605, + -0.01869276538491249, + 0.06632186472415924, + -0.06181447207927704, + 0.0451107956469059, + 0.04258367419242859, + -0.01631988026201725, + -0.019103124737739563, + 0.0688035786151886, + -0.005099877715110779, + -0.00914565846323967, + 0.05334053188562393, + -0.06745366752147675, + 0.030854910612106323, + -0.021866487339138985, + 0.00345616415143013, + 0.06318770349025726, + 0.034494396299123764, + 0.051546044647693634, + -0.020824428647756577, + -0.008118115365505219, + -0.08988383412361145, + 0.0050772977992892265, + 0.05215409770607948, + 0.06953738629817963, + -0.010564915835857391, + -0.01703966036438942, + -0.040006499737501144, + -0.05445738881826401, + 0.04455437883734703, + -0.011390249244868755, + 0.09923287481069565, + -0.019289400428533554, + 0.01112386118620634, + 0.11131057143211365, + 0.007414557505398989, + -0.009932797402143478, + -0.04962749779224396, + 0.004140329547226429, + 0.020935652777552605, + 0.05963125824928284, + -0.05633137747645378, + -0.07001110911369324, + 0.021303271874785423, + 0.018475018441677094, + -0.01819244772195816, + 0.06341169029474258, + 0.04877929389476776, + 0.00554093811661005, + 0.03536195680499077, + -0.05592143535614014, + 0.015182938426733017, + -0.08435918390750885, + -0.03751921281218529, + -0.01346663199365139, + -0.04503343254327774, + -0.026056470349431038, + 0.08853857219219208, + 0.06391701102256775, + 0.04124690219759941, + 0.005767180118709803, + -0.08943105489015579, + -0.07201839983463287, + 0.06090395152568817, + 0.046102941036224365, + 0.006043666508048773, + 0.032095517963171005, + 0.07614442706108093, + -0.01004391722381115, + 0.05742378905415535, + 0.07475529611110687, + 0.05713532119989395, + -0.029169835150241852, + -0.013026731088757515, + -0.08042380958795547, + 0.06478587538003922, + 0.09427034854888916, + -0.1158149242401123, + -0.092522531747818, + -0.044841885566711426, + -0.06462964415550232, + 0.03804730623960495, + -0.024530325084924698, + 0.018008101731538773, + 0.0534059964120388, + -0.03458288311958313, + -0.10203512758016586, + -0.1257103830575943, + 0.14744949340820312, + -0.0744117796421051, + -0.008387519046664238, + -0.061107221990823746, + 0.022889189422130585, + 0.06047376990318298, + 0.03595353662967682, + -0.01875624805688858, + 0.030477866530418396, + 0.05256212502717972, + -0.05230649560689926, + -0.004871675278991461, + 0.07330705225467682, + -0.0023340322077274323, + -0.1180487796664238, + 0.01086245384067297, + -0.07277999073266983, + 0.08402067422866821, + -0.050315700471401215, + 0.175079345703125, + -0.009606784209609032, + -0.04910197854042053, + -0.08703337609767914, + 0.04491184651851654, + -0.05352848768234253, + 0.05318020284175873, + 0.0428909957408905, + 0.0743495300412178, + 0.021179206669330597, + -0.06641532480716705, + 0.10372385382652283, + 0.0538320317864418, + -0.04913196340203285, + -0.08250683546066284, + -0.04653572291135788, + -0.0360957607626915, + 0.03450682386755943, + 0.004789314232766628, + -0.07222826778888702, + 0.01192548405379057, + 0.011586499400436878, + -0.024299541488289833, + 0.08379250019788742, + 0.13765215873718262, + 0.09894561767578125, + -0.10718527436256409 + ] + }, + "p245_088.wav": { + "name": "p245", + "embedding": [ + 0.04236525297164917, + 0.0754239484667778, + -0.045186206698417664, + 0.017724841833114624, + -0.05314382165670395, + 0.039793021976947784, + -0.10560227930545807, + 0.08876095712184906, + -0.024642176926136017, + 0.13936582207679749, + -0.056469183415174484, + 0.11251355707645416, + -0.025432568043470383, + -0.131851464509964, + 0.016572829335927963, + 0.05110277235507965, + 0.00490798382088542, + 0.002525883726775646, + -0.022889379411935806, + -0.011963474564254284, + 0.03135685250163078, + 0.02465794049203396, + 0.027101527899503708, + -0.0571042001247406, + 0.030960900709033012, + 0.06672944873571396, + -0.020442238077521324, + -0.0123983733355999, + -0.0274873785674572, + -0.04356111213564873, + -0.014801619574427605, + 0.0810440331697464, + -0.049000270664691925, + 0.021360039710998535, + 0.047575559467077255, + 0.014525718986988068, + -0.05328334867954254, + -0.04646814987063408, + 0.018019547685980797, + -0.005874117370694876, + -0.06566236168146133, + 0.07170110940933228, + 0.021989118307828903, + -0.05264194309711456, + 0.03709504008293152, + -0.02321106567978859, + -0.01464831456542015, + 0.0007167396834120154, + -0.06337251514196396, + 0.1360478699207306, + 0.03794759511947632, + 0.024134796112775803, + -0.08403553068637848, + -0.035290926694869995, + 0.06470327079296112, + 0.019074328243732452, + -0.10654830187559128, + -0.058657824993133545, + 0.04420551657676697, + 0.11027829349040985, + -0.004422395955771208, + -0.03993586450815201, + 0.021196871995925903, + 0.07929973304271698, + 0.022144824266433716, + 0.0743233785033226, + 0.06557686626911163, + 0.11367546021938324, + 0.004306766204535961, + 0.033876389265060425, + 0.04230637475848198, + 0.07662834227085114, + 0.05118350312113762, + -0.013198355212807655, + 0.01101980172097683, + -0.029172873124480247, + -0.03249881789088249, + -0.01671185903251171, + -0.015918301418423653, + -0.05581733211874962, + -0.04373576492071152, + -0.03005111590027809, + 0.017875809222459793, + 0.012417186051607132, + -0.012060903012752533, + 0.0020107373129576445, + 0.10785671323537827, + -0.047186147421598434, + 0.04970058426260948, + 0.06769898533821106, + -0.01986728049814701, + 0.022695254534482956, + -0.08581473678350449, + -0.06847154349088669, + 0.011790100485086441, + 0.0014627976343035698, + 0.02513846568763256, + 0.0700957402586937, + 0.03988618776202202, + 0.02200813964009285, + 0.0703100636601448, + 0.023964952677488327, + 0.014909503981471062, + -0.010527588427066803, + -0.060880087316036224, + 0.1303771585226059, + 0.10453125834465027, + -0.0334869921207428, + 0.029558852314949036, + -0.04625929892063141, + 0.028897378593683243, + 0.05807436630129814, + -0.09177964180707932, + -0.057013027369976044, + -0.010535283014178276, + -0.019309118390083313, + -0.0007236426463350654, + 0.11596311628818512, + 0.02552586793899536, + 0.0073189823888242245, + 0.10318364948034286, + -0.11327483505010605, + -0.09830202162265778, + -0.02680278941988945, + 0.010000979527831078, + -0.0974183902144432, + 0.06776617467403412, + 0.0634193941950798, + 0.009705807082355022, + 0.009710841812193394, + 0.07640868425369263, + 0.015296265482902527, + 0.04788470268249512, + -0.02279328927397728, + -0.004113178700208664, + 0.019310237839818, + -0.02490140311419964, + 0.022229334339499474, + 0.07778877764940262, + 0.018070844933390617, + 0.08573661744594574, + 0.001061081886291504, + 0.015682900324463844, + -0.10538306087255478, + 0.011464020237326622, + 0.08083142340183258, + 0.026681188493967056, + -0.047883540391922, + -0.02291342429816723, + -0.009277289733290672, + -0.0929560661315918, + 0.025853481143712997, + -0.02502596192061901, + 0.07388801872730255, + 0.007943443953990936, + -0.009611682966351509, + 0.13422970473766327, + 0.012996269389986992, + 0.0029671199154108763, + -0.06125715374946594, + -0.01954694092273712, + 0.004312800709158182, + 0.05019153282046318, + -0.1347048580646515, + -0.08504339307546616, + -0.03595571592450142, + -0.003675208194181323, + 0.004475640133023262, + 0.03553519770503044, + 0.08206185698509216, + 0.002802877454087138, + 0.027015861123800278, + -0.04695117101073265, + 0.006720840930938721, + -0.07637880742549896, + -0.05834929645061493, + -0.022947674617171288, + -0.07970127463340759, + -0.004842136055231094, + 0.09929104894399643, + -0.007080617360770702, + 0.018930353224277496, + -0.034353189170360565, + -0.054217901080846786, + -0.07930701225996017, + 0.045394912362098694, + 0.029179122298955917, + -0.04350883886218071, + 0.015973228961229324, + 0.04174887388944626, + -0.044578202068805695, + -0.017151078209280968, + 0.03466076776385307, + 0.09698228538036346, + -0.0734417662024498, + 0.004493778105825186, + -0.07623273134231567, + 0.10808276385068893, + 0.11594148725271225, + -0.07232116907835007, + -0.07124092429876328, + -0.07698666304349899, + -0.03539056330919266, + 0.01261798944324255, + -0.06289085745811462, + -0.02799104154109955, + 0.023715287446975708, + -0.05077308043837547, + -0.0756128579378128, + -0.1193140372633934, + 0.062068209052085876, + -0.03669997677206993, + 0.007340624928474426, + -0.07714134454727173, + 0.032271284610033035, + -0.0031958750914782286, + 0.04009813070297241, + -0.0646197497844696, + 0.044082652777433395, + 0.03337187319993973, + -0.03719500079751015, + 0.012969679199159145, + 0.058170340955257416, + 0.02635194920003414, + -0.0319247841835022, + -0.05222412943840027, + -0.06367869675159454, + 0.06894227862358093, + -0.05995966121554375, + 0.12644216418266296, + -0.02645149454474449, + -0.06243101879954338, + -0.06587567180395126, + -0.002566605806350708, + 0.009437533095479012, + 0.013487285003066063, + 0.06623219698667526, + 0.06982529908418655, + 0.017574332654476166, + -0.06234272941946983, + 0.10064071416854858, + 0.05192526429891586, + 0.0380561426281929, + -0.056160181760787964, + -0.04067622125148773, + -0.04052918031811714, + 0.03014150820672512, + -0.004749623127281666, + -0.09433123469352722, + 0.06469447910785675, + 0.02332175150513649, + 0.024281909689307213, + 0.04411012679338455, + 0.09125831723213196, + 0.06726011633872986, + -0.08644570410251617 + ] + }, + "p245_251.wav": { + "name": "p245", + "embedding": [ + 0.049328289926052094, + 0.059953488409519196, + -0.01054478157311678, + 0.020352214574813843, + -0.0199117548763752, + 0.05276632308959961, + -0.11319814622402191, + 0.06005311757326126, + -0.03570986166596413, + 0.16524741053581238, + -0.10067404061555862, + 0.09237560629844666, + -0.010569012723863125, + -0.17408621311187744, + -0.021804997697472572, + 0.04224531352519989, + -0.04727105796337128, + 0.00436815619468689, + -0.04831356555223465, + -0.03102274239063263, + 0.06311007589101791, + 0.09043288230895996, + 0.04414050281047821, + -0.05400954931974411, + 0.0042407820001244545, + 0.06681108474731445, + -0.025087375193834305, + 0.03582890331745148, + -0.028526578098535538, + -0.14018011093139648, + -0.07212929427623749, + 0.11119742691516876, + -0.027697492390871048, + 0.025717835873365402, + -0.0017318916507065296, + 0.018676547333598137, + 0.00516867870464921, + -0.03892746567726135, + -0.005725560709834099, + 0.00348449544981122, + -0.017069881781935692, + 0.0355876162648201, + -0.015043491497635841, + -0.008019731380045414, + 0.06229155510663986, + 0.0017029240261763334, + -0.03863031417131424, + -0.04859350621700287, + -0.08093905448913574, + 0.1773947775363922, + 0.06079889088869095, + -0.005341731011867523, + -0.0387200228869915, + -0.07986727356910706, + 0.07623015344142914, + -0.026826025918126106, + -0.13215351104736328, + -0.026669472455978394, + 0.07634372264146805, + 0.14381921291351318, + -0.022608619183301926, + -0.07395382225513458, + 0.05345578119158745, + 0.06411219388246536, + -0.025302492082118988, + 0.07952225208282471, + 0.07111746072769165, + 0.03671516478061676, + 0.0023251762613654137, + -0.015842296183109283, + 0.009580474346876144, + 0.0881299078464508, + 0.10273173451423645, + -0.02085926942527294, + 0.04295113682746887, + 0.013505339622497559, + -0.046422675251960754, + 0.01220475509762764, + -0.04360032081604004, + -0.005511448718607426, + 0.011075293645262718, + -0.032045405358076096, + 0.014161832630634308, + -0.034202009439468384, + -0.03750857710838318, + 0.009857445023953915, + 0.03544248268008232, + -0.014740318059921265, + 0.05080818012356758, + 0.0199776329100132, + 0.03391994535923004, + 0.035608358681201935, + -0.05160940811038017, + -0.0641646683216095, + 0.058570489287376404, + 0.05968838930130005, + -0.0176845695823431, + 0.04797288775444031, + 0.046034883707761765, + -0.07386460900306702, + 0.102744922041893, + -0.005570786073803902, + 0.014623268507421017, + -0.005881818942725658, + -0.10371869057416916, + 0.08173513412475586, + 0.14124202728271484, + -0.002029349096119404, + 0.03605691343545914, + -0.05607824772596359, + 0.08291968703269958, + 0.07880977541208267, + -0.14043837785720825, + -0.06603536754846573, + -0.006447142921388149, + -0.018748588860034943, + 0.02126128599047661, + 0.09051737189292908, + 0.00649992935359478, + 0.009501633234322071, + 0.11749141663312912, + -0.1311604231595993, + -0.05950690060853958, + -0.012895062565803528, + 0.019873417913913727, + -0.1369878649711609, + 0.05963912606239319, + 0.04787156730890274, + 0.002567657735198736, + 0.009192496538162231, + 0.0749645084142685, + -0.045056115835905075, + 0.023208580911159515, + -0.040937650948762894, + -0.050383709371089935, + -0.03924104943871498, + -0.07999251782894135, + -0.04218427836894989, + 0.05701034143567085, + 0.029537491500377655, + 0.03700511157512665, + -0.017973028123378754, + -0.0868062824010849, + -0.140301913022995, + 0.014460212551057339, + 0.0260839331895113, + 0.01212030928581953, + -0.0024296967312693596, + -0.00913532916456461, + -0.03982291370630264, + -0.08167420327663422, + 0.0697038471698761, + -0.058382548391819, + 0.03966904431581497, + 0.0042314352467656136, + 0.0007226946763694286, + 0.08827710151672363, + 0.020843632519245148, + -0.027329083532094955, + -0.056936465203762054, + -0.05073275417089462, + 0.022085975855588913, + 0.019711047410964966, + -0.08167755603790283, + -0.06705820560455322, + -0.017035579308867455, + 0.019519371911883354, + 0.011421735398471355, + 0.05200369656085968, + 0.07803940773010254, + 0.019217800348997116, + 0.006655774544924498, + -0.0657368004322052, + 0.00040613164310343564, + -0.10277131199836731, + -0.09155014157295227, + 0.008352401666343212, + -0.06651359796524048, + 0.023270629346370697, + 0.11062470078468323, + -0.02021205425262451, + -0.02643536776304245, + -0.10284361243247986, + -0.061432551592588425, + -0.0966632068157196, + 0.06050602346658707, + 0.06663714349269867, + 0.02348233386874199, + 0.020204821601510048, + 0.02230023592710495, + -0.03305267542600632, + 0.08827963471412659, + 0.04610329121351242, + 0.13187098503112793, + -0.007613573223352432, + 0.04823947325348854, + -0.039790716022253036, + 0.09473560750484467, + 0.08938881754875183, + -0.005552427843213081, + -0.08788211643695831, + -0.02698804996907711, + -0.08806759119033813, + 0.09903028607368469, + -0.02297016605734825, + -0.04481854289770126, + 0.03193691745400429, + -0.008596988394856453, + -0.10733656585216522, + -0.05774542689323425, + 0.0790112167596817, + 0.009053654037415981, + -0.04344800114631653, + -0.06411679834127426, + 0.0662645697593689, + 0.052377767860889435, + 0.0593242421746254, + -0.018326755613088608, + 0.024680186063051224, + 0.04674012213945389, + -0.07952851802110672, + 0.012883469462394714, + 0.02382596954703331, + 0.024478016421198845, + -0.06606549024581909, + 0.005899862386286259, + -0.10745332390069962, + 0.023255206644535065, + -0.07051318883895874, + 0.1077079176902771, + -0.014976700767874718, + -0.05343962460756302, + -0.06335050612688065, + 0.08788689970970154, + -0.03633427247405052, + 0.027967587113380432, + 0.050388187170028687, + 0.03291618078947067, + 0.08403430879116058, + -0.11826460808515549, + 0.0543389655649662, + 0.052195750176906586, + 0.008650942705571651, + -0.04869018495082855, + -0.06905244290828705, + -0.0529961958527565, + -0.005277123302221298, + -0.028453629463911057, + -0.08558467030525208, + 0.020153438672423363, + 0.01427987590432167, + 0.04202116280794144, + 0.03267994523048401, + 0.10085238516330719, + -0.009471339173614979, + -0.1218496710062027 + ] + }, + "p245_406.wav": { + "name": "p245", + "embedding": [ + 0.022433273494243622, + 0.11010242998600006, + -0.00825293455272913, + 0.0286464411765337, + -0.07395180314779282, + 0.05012383684515953, + -0.12714862823486328, + 0.14757871627807617, + -0.04032038152217865, + 0.10994261503219604, + -0.07795362919569016, + 0.12456173449754715, + -0.06213505193591118, + -0.18791791796684265, + -0.023377323523163795, + 0.08217857033014297, + 0.008465186692774296, + -0.004512334708124399, + -0.004613865632563829, + -0.011728457175195217, + 0.014283307828009129, + -0.004827337339520454, + 0.03108474239706993, + 0.008688081987202168, + 0.046692222356796265, + 0.0611715242266655, + 0.01224487740546465, + 0.0638929083943367, + 0.004131973255425692, + 0.0055716331116855145, + -0.027185827493667603, + 0.10582759976387024, + -0.05903424695134163, + 0.021410971879959106, + 0.08168889582157135, + 0.011746183037757874, + -0.015315328724682331, + -0.03388787806034088, + 0.009365646168589592, + -0.024647563695907593, + -0.046410251408815384, + 0.07175841182470322, + 0.024881821125745773, + 0.008763165213167667, + 0.04082033410668373, + 0.0612298883497715, + -0.004612419288605452, + -0.0269665215164423, + -0.12224484980106354, + 0.12598580121994019, + 0.01978444680571556, + 0.002172099193558097, + -0.10446738451719284, + -0.0774807408452034, + 0.10754960775375366, + -0.021365001797676086, + -0.09653037041425705, + -0.05904841050505638, + 0.10277979075908661, + 0.1550615131855011, + -0.02624199166893959, + -0.043827105313539505, + -0.02491120621562004, + 0.11231652647256851, + 0.04204030707478523, + 0.10449327528476715, + 0.0451502650976181, + 0.13080008327960968, + -0.01876417174935341, + 0.02138260006904602, + 0.05753375217318535, + 0.04959304258227348, + 0.02698889933526516, + -0.01137266494333744, + -0.0019854996353387833, + -0.008908815681934357, + 0.01426773052662611, + 0.041263844817876816, + -0.02699982188642025, + -0.03687213733792305, + -0.043809905648231506, + 0.012480275705456734, + -0.0067670284770429134, + -0.015618935227394104, + -0.005444853100925684, + 0.06822241842746735, + 0.056879524141550064, + -0.005852878093719482, + 0.08322931081056595, + 0.05207604542374611, + -0.05484650284051895, + 0.06743285059928894, + -0.09576766192913055, + -0.06958533078432083, + 0.009045041166245937, + -0.019883116707205772, + 0.03549882769584656, + 0.07247328758239746, + 0.012957296334207058, + 0.013708283193409443, + 0.10199087858200073, + 0.061259057372808456, + 0.01730342209339142, + 0.04120148718357086, + -0.08406860381364822, + 0.13011270761489868, + 0.06231855973601341, + -0.012005441822111607, + 0.04700308293104172, + -0.03417704626917839, + 0.04836944490671158, + 0.07589543610811234, + -0.1075824648141861, + -0.07824350148439407, + -0.01381006371229887, + 0.016014596447348595, + -0.04581049457192421, + 0.1094963327050209, + -0.036450717598199844, + 0.028939707204699516, + 0.11604727059602737, + -0.0929003581404686, + -0.07065986841917038, + -0.006767651066184044, + 0.018073400482535362, + -0.06184563785791397, + 0.035943079739809036, + 0.060829613357782364, + 0.0009416225366294384, + 0.025887329131364822, + 0.08263947069644928, + 0.02154458314180374, + 0.023379093036055565, + 0.03917766362428665, + -0.06726950407028198, + 0.007558941841125488, + -0.013419078662991524, + 0.0044156648218631744, + 0.08153006434440613, + 0.055984947830438614, + 0.07435870170593262, + 0.012628359720110893, + -0.007919891737401485, + -0.10971485078334808, + -0.015739768743515015, + 0.07960822433233261, + 0.06753089278936386, + -0.03338081017136574, + -0.030068732798099518, + -0.029494402930140495, + -0.07300763577222824, + 0.02699226699769497, + 0.03174315392971039, + 0.10782495141029358, + -0.030381515622138977, + -0.006868352647870779, + 0.11232158541679382, + 0.0364680290222168, + -0.016050897538661957, + -0.08812564611434937, + -0.04741069674491882, + -0.010606169700622559, + 0.03333564102649689, + -0.12429565191268921, + -0.06682263314723969, + -0.017341116443276405, + 0.04887819662690163, + -0.03813241794705391, + 0.05993665009737015, + 0.04879587143659592, + 0.022781575098633766, + 0.033962611109018326, + -0.029881419613957405, + 0.006083779968321323, + -0.0786898210644722, + -0.07324090600013733, + -0.007931698113679886, + -0.011931668035686016, + -0.03465215489268303, + 0.06462141126394272, + 0.02420193701982498, + 0.06448564678430557, + 0.011100980453193188, + -0.06012969836592674, + -0.09225257486104965, + 0.057550642639398575, + 0.03213885799050331, + -0.0028893230482935905, + 0.0760091170668602, + 0.04881973937153816, + -0.0874478742480278, + 0.07650589942932129, + 0.07824760675430298, + 0.09871044754981995, + -0.06014077737927437, + 0.04279525205492973, + -0.07939570397138596, + 0.06016266718506813, + 0.09840571880340576, + -0.11393151432275772, + -0.10124827176332474, + -0.044690296053886414, + -0.04529865086078644, + 0.0433080717921257, + -0.04151226207613945, + 0.007362959906458855, + 0.026500094681978226, + -0.016556164249777794, + -0.0832802802324295, + -0.10136456787586212, + 0.05681251361966133, + -0.06221964955329895, + 0.008924389258027077, + -0.06465260684490204, + 0.04324430227279663, + 0.06933638453483582, + 0.018118569627404213, + -0.018436025828123093, + -0.008176364004611969, + 0.06551843136548996, + -0.04315779358148575, + -0.02036682888865471, + 0.05997240170836449, + 0.025921640917658806, + -0.04682108759880066, + -0.008312494494020939, + -0.06844659149646759, + 0.07077407091856003, + -0.018362656235694885, + 0.18124262988567352, + -0.005586482584476471, + -0.049223992973566055, + -0.055040910840034485, + -0.0043085478246212006, + -0.03021119348704815, + 0.040172625333070755, + 0.026781173422932625, + 0.07101870328187943, + 0.0014859841903671622, + -0.018747827038168907, + 0.16909834742546082, + 0.025779128074645996, + -0.058207977563142776, + -0.05218813568353653, + -0.04835975915193558, + -0.058003440499305725, + 0.021850500255823135, + -0.0049940901808440685, + -0.11896137148141861, + -0.019330821931362152, + 0.019596410915255547, + -0.012157253921031952, + 0.04467516019940376, + 0.14526787400245667, + 0.08396502584218979, + -0.07826828956604004 + ] + }, + "p245_018.wav": { + "name": "p245", + "embedding": [ + 0.03764362633228302, + 0.09154234081506729, + -0.01500939205288887, + 0.028700580820441246, + -0.04713848978281021, + 0.04220254719257355, + -0.14503705501556396, + 0.14676356315612793, + -0.026814399287104607, + 0.1316307634115219, + -0.07282541692256927, + 0.10995055735111237, + -0.030329391360282898, + -0.18260616064071655, + -0.024929527193307877, + 0.060952335596084595, + -0.057107873260974884, + -0.05216919258236885, + -0.029472116380929947, + -0.03406848385930061, + 0.03186372295022011, + 0.043869826942682266, + 0.02480209805071354, + 0.042479485273361206, + 0.009154178202152252, + 0.07734604179859161, + -0.012624327093362808, + 0.03543419390916824, + 0.014923883602023125, + -0.029815804213285446, + -0.026638299226760864, + 0.09449411928653717, + -0.044534169137477875, + 0.0047486284747719765, + 0.03883387893438339, + -0.015306773595511913, + -0.006794194225221872, + -0.05252738669514656, + -0.02585734613239765, + -0.0024617682211101055, + -0.06378418207168579, + 0.07526711374521255, + 0.026857584714889526, + -0.013827614486217499, + 0.04137516766786575, + 0.017740922048687935, + -0.02246253192424774, + -0.03978245332837105, + -0.10990358889102936, + 0.1443898230791092, + 0.10094386339187622, + -0.011521545238792896, + -0.0602971687912941, + -0.04417018964886665, + 0.09648551791906357, + -0.01685475744307041, + -0.12209080159664154, + -0.03975705802440643, + 0.09193167835474014, + 0.14617785811424255, + -0.03656116873025894, + -0.024837318807840347, + 0.041759323328733444, + 0.14488957822322845, + 0.07192541658878326, + 0.0860205739736557, + 0.0774093046784401, + 0.11114364862442017, + -0.04562363773584366, + -0.004283388610929251, + 0.06778092682361603, + 0.06189418584108353, + 0.052877843379974365, + -0.007849927060306072, + 0.009774241596460342, + -0.0023856530897319317, + -0.009205885231494904, + -0.005678159184753895, + -0.02607208862900734, + -0.018539177253842354, + -0.02201419323682785, + -0.0015125880017876625, + -0.0222533717751503, + 0.032405536621809006, + -0.01320338062942028, + 0.055061180144548416, + 0.05358836054801941, + -0.011499579064548016, + 0.07383372634649277, + 0.039092641323804855, + 0.022722944617271423, + 0.07295548915863037, + -0.07043106108903885, + -0.052647124975919724, + 0.022289332002401352, + -0.005592279136180878, + 0.02574138157069683, + 0.07316920161247253, + 0.05053160339593887, + -0.012173017486929893, + 0.13138136267662048, + 0.039022963494062424, + -0.015197357162833214, + 0.022221194580197334, + -0.10390225797891617, + 0.1305568367242813, + 0.07771643251180649, + -0.041435956954956055, + 0.043465472757816315, + -0.03624916821718216, + 0.056415800005197525, + 0.06254167854785919, + -0.12350660562515259, + -0.050076842308044434, + 0.03929123282432556, + 0.03178086876869202, + -0.02937980927526951, + 0.12179442495107651, + 0.006015018559992313, + 0.04337229207158089, + 0.1066557839512825, + -0.06533510237932205, + -0.05633750930428505, + -0.02094077132642269, + 0.05509558320045471, + -0.08800698071718216, + 0.060511376708745956, + 0.058736544102430344, + -0.004252209793776274, + 0.017218418419361115, + 0.08921100199222565, + -0.011730597354471684, + -0.009119277819991112, + 0.003968897275626659, + -0.0507071390748024, + 0.019811999052762985, + -0.018805263563990593, + 0.008205834776163101, + 0.026582758873701096, + 0.02569599449634552, + 0.03908529132604599, + -0.005167054478079081, + -0.029924875125288963, + -0.11901851743459702, + 0.01826886460185051, + 0.027276957407593727, + 0.09127062559127808, + 0.0017137329559773207, + -0.02138015814125538, + -0.037254586815834045, + -0.04874496906995773, + -0.0005164108006283641, + -0.017661932855844498, + 0.05890849605202675, + -0.04590122401714325, + -0.018569065257906914, + 0.09410692751407623, + 0.027656808495521545, + 0.010529249906539917, + -0.050668325275182724, + -0.027563506737351418, + 0.0026391465216875076, + 0.05307858809828758, + -0.08083528280258179, + -0.07554952800273895, + -0.0001614801585674286, + 0.052309438586235046, + -0.010271302424371243, + 0.06478386372327805, + 0.042986806482076645, + 0.013125678524374962, + 0.00799109973013401, + -0.07204458117485046, + 0.022329751402139664, + -0.09145520627498627, + -0.08002033084630966, + -0.007434266619384289, + 0.0012075421400368214, + -0.008884293027222157, + 0.0639994814991951, + 0.016127046197652817, + 0.05375587195158005, + -0.011737806722521782, + -0.08225305378437042, + -0.0935329869389534, + 0.05271512642502785, + 0.07052402198314667, + -0.01769179478287697, + 0.05305507034063339, + 0.07153312861919403, + -0.04968443140387535, + 0.04087692126631737, + 0.04003684222698212, + 0.11682800203561783, + -0.03704041242599487, + 0.017538178712129593, + -0.07418105006217957, + 0.04964343458414078, + 0.08312442898750305, + -0.10155589133501053, + -0.06480942666530609, + -0.025586828589439392, + -0.05473422259092331, + 0.03188405930995941, + -0.024246953427791595, + 0.006356997415423393, + 0.025086306035518646, + -0.0049482667818665504, + -0.1010873094201088, + -0.09280122071504593, + 0.08394641429185867, + -0.08323238790035248, + 0.011020710691809654, + -0.08684509247541428, + 0.04471810907125473, + 0.08881159871816635, + 0.029325654730200768, + -0.032305918633937836, + -0.012388265691697598, + 0.041262850165367126, + -0.010964948683977127, + 0.011134950444102287, + 0.06203185394406319, + 0.04745800048112869, + -0.12669628858566284, + -0.022570312023162842, + -0.08204594254493713, + 0.062097832560539246, + -0.03753640875220299, + 0.14323924481868744, + 0.025786053389310837, + -0.045844126492738724, + -0.0949782133102417, + 0.030293602496385574, + -0.004052481148391962, + 0.06212465465068817, + 0.03314443677663803, + 0.06611765921115875, + 0.03992925211787224, + -0.057246748358011246, + 0.11820288002490997, + 0.04609298333525658, + -0.04439686983823776, + -0.07164696604013443, + -0.03039267472922802, + -0.040580786764621735, + 0.02873329073190689, + 0.025070957839488983, + -0.09447844326496124, + -0.038386739790439606, + 0.014619055204093456, + -0.02579638361930847, + 0.07778245955705643, + 0.13773494958877563, + 0.07198118418455124, + -0.11946538090705872 + ] + }, + "p245_171.wav": { + "name": "p245", + "embedding": [ + 0.048756081610918045, + 0.10788099467754364, + -0.015114023350179195, + 0.011512534692883492, + -0.04713154211640358, + 0.06162680685520172, + -0.1253783404827118, + 0.13322007656097412, + -0.03776686638593674, + 0.13973170518875122, + -0.07304860651493073, + 0.13877861201763153, + -0.01722518913447857, + -0.178676575422287, + -0.0655965805053711, + 0.041443996131420135, + -0.0508502796292305, + -0.02661816030740738, + -0.03518000245094299, + -0.010728603228926659, + 0.06004888564348221, + 0.031563468277454376, + 0.025766754522919655, + 0.008738480508327484, + 0.004412919748574495, + 0.06819488108158112, + 0.027018524706363678, + 0.07064399123191833, + 0.047100163996219635, + -0.05526864156126976, + -0.0397224985063076, + 0.11563403904438019, + -0.030901232734322548, + 0.0389702282845974, + 0.05596928298473358, + -0.005339030176401138, + 0.016688555479049683, + -0.04657135531306267, + 0.005024332087486982, + 0.011187591589987278, + -0.02432718500494957, + 0.07588692009449005, + 0.018434898927807808, + -0.003303242614492774, + 0.03780677169561386, + 0.040311750024557114, + -0.013515792787075043, + -0.05391480028629303, + -0.08915295451879501, + 0.16478806734085083, + 0.07315248996019363, + -0.018548952415585518, + -0.0543912872672081, + -0.0677674412727356, + 0.0878400057554245, + -0.02745378017425537, + -0.1169440895318985, + -0.0463714599609375, + 0.08114601671695709, + 0.14538335800170898, + -0.026894118636846542, + -0.04318784922361374, + 0.022913847118616104, + 0.15118637681007385, + 0.04801703244447708, + 0.08850812911987305, + 0.08872583508491516, + 0.11048711091279984, + -0.02008085697889328, + 0.016718624159693718, + 0.051669590175151825, + 0.07550366222858429, + 0.04862320423126221, + -0.001224815845489502, + 0.04683710262179375, + -0.01575394719839096, + 0.014198355376720428, + 0.016827991232275963, + -0.02759290486574173, + -0.01795351132750511, + -0.016925204545259476, + 0.02255924418568611, + -0.02233215980231762, + 0.026395462453365326, + -0.029256489127874374, + 0.07548694312572479, + 0.019365482032299042, + -0.010187491774559021, + 0.05716826766729355, + 0.05902569741010666, + 0.041420385241508484, + 0.060123853385448456, + -0.07182320952415466, + -0.10445757955312729, + 0.0424509271979332, + -0.012181096710264683, + 0.037834297865629196, + 0.06358584761619568, + 0.03178483247756958, + -0.0027521606534719467, + 0.10499188303947449, + 0.05855675786733627, + -0.037732724100351334, + 0.032149188220500946, + -0.09303632378578186, + 0.14386561512947083, + 0.09384411573410034, + -0.02661513350903988, + 0.027049528434872627, + -0.04984838515520096, + 0.07522110641002655, + 0.060198865830898285, + -0.12207189202308655, + -0.09108433872461319, + 0.029622238129377365, + 0.02106487937271595, + -0.027309224009513855, + 0.09333403408527374, + -0.01536241453140974, + 0.031974077224731445, + 0.09518208354711533, + -0.060793448239564896, + -0.05631709843873978, + -0.03943692892789841, + 0.028135620057582855, + -0.08980363607406616, + 0.0626974105834961, + 0.04496128857135773, + 0.002481867093592882, + -0.007878376170992851, + 0.10467808693647385, + -0.00851157121360302, + 0.008898183703422546, + 0.011487308889627457, + -0.04572311043739319, + 0.023658456280827522, + -0.02107226848602295, + 0.011845976114273071, + 0.021882344037294388, + 0.04806576669216156, + 0.041651174426078796, + 0.0021060099825263023, + -0.036074213683605194, + -0.11784979701042175, + 0.014952259138226509, + 0.037581268697977066, + 0.05971430242061615, + -0.007005677092820406, + -0.035375431180000305, + -0.024502793326973915, + -0.04102998226881027, + 0.009020538069307804, + -0.01272731926292181, + 0.06389932334423065, + -0.024287838488817215, + -0.014425510540604591, + 0.10816574096679688, + -0.00445717154070735, + 0.004040740430355072, + -0.04767029359936714, + -0.02507316693663597, + 0.027433931827545166, + 0.04105466604232788, + -0.08448050916194916, + -0.06702357530593872, + 0.002646862296387553, + 0.033555034548044205, + -0.017439104616642, + 0.05496995896100998, + 0.06342251598834991, + 0.0007091599400155246, + 0.04484397545456886, + -0.061908598989248276, + 0.005099175963550806, + -0.10752078890800476, + -0.06950725615024567, + -0.020398156717419624, + -0.01927923783659935, + -0.01337464153766632, + 0.06500561535358429, + 0.008506903424859047, + 0.04837486147880554, + -0.008027157746255398, + -0.07648869603872299, + -0.08697380125522614, + 0.06110098212957382, + 0.08827006816864014, + 0.023793108761310577, + 0.06287623941898346, + 0.04477966949343681, + -0.013410470448434353, + 0.06897540390491486, + 0.05162268131971359, + 0.10352706909179688, + -0.022335799410939217, + 0.008817421272397041, + -0.08764206618070602, + 0.06651510298252106, + 0.07290469110012054, + -0.09856373071670532, + -0.08053789287805557, + -0.021058687940239906, + -0.05695857107639313, + 0.021678728982806206, + -0.032520830631256104, + 0.018302321434020996, + 0.05524074658751488, + 0.0036722910590469837, + -0.10566379129886627, + -0.09024463593959808, + 0.08234959840774536, + -0.09206800162792206, + 0.003938575275242329, + -0.07406823337078094, + 0.05583396926522255, + 0.11015675961971283, + 0.03372165188193321, + -0.05074060708284378, + -0.013541603460907936, + 0.044080086052417755, + -0.044000640511512756, + -0.008936327882111073, + 0.005447791889309883, + 0.03692197799682617, + -0.10317489504814148, + 0.01576639898121357, + -0.08872266113758087, + 0.03166333585977554, + -0.06905488669872284, + 0.1497354656457901, + 0.01104644499719143, + -0.06141091138124466, + -0.08196337521076202, + 0.04192446544766426, + -0.03701178729534149, + 0.04831523448228836, + 0.039102789014577866, + 0.055049218237400055, + 0.01417083851993084, + -0.09580568224191666, + 0.12973815202713013, + 0.05164837837219238, + -0.04808277636766434, + -0.09841989725828171, + -0.03322279453277588, + -0.034084200859069824, + 0.052762411534786224, + 0.040813714265823364, + -0.082816943526268, + -0.04035034775733948, + 0.026957236230373383, + -0.03289157897233963, + 0.07755455374717712, + 0.14474698901176453, + 0.04329165071249008, + -0.10240413248538971 + ] + }, + "p245_045.wav": { + "name": "p245", + "embedding": [ + 0.036409180611371994, + 0.06373345851898193, + -0.04850875213742256, + 0.0012590696569532156, + -0.0655830129981041, + 0.043895818293094635, + -0.12458140403032303, + 0.10167236626148224, + -0.01149693038314581, + 0.13705159723758698, + -0.03965980187058449, + 0.10947172343730927, + -0.007635345682501793, + -0.16530273854732513, + -0.010866695083677769, + 0.021307123824954033, + -0.02756701223552227, + -0.006040188483893871, + -0.07994157075881958, + -0.0484396256506443, + 0.03522863984107971, + 0.043894726783037186, + 0.03130299597978592, + -0.09033254534006119, + 0.04276881739497185, + 0.049529194831848145, + 0.009891757741570473, + 0.036779966205358505, + -0.00973771046847105, + -0.07737540453672409, + -0.02124992571771145, + 0.09549771249294281, + -0.07894158363342285, + 0.015054848045110703, + 0.04750899225473404, + -0.02162482589483261, + -0.023351959884166718, + -0.038765259087085724, + -0.0073468806222081184, + 0.04152461886405945, + -0.036400359123945236, + 0.07820509374141693, + 0.03232400119304657, + -0.028038693591952324, + 0.05439256131649017, + 0.019738323986530304, + -0.011991242878139019, + -0.05228567123413086, + -0.08575982600450516, + 0.15669089555740356, + 0.03329421579837799, + -0.003134464845061302, + -0.08130383491516113, + -0.0701078474521637, + 0.08273150771856308, + -0.03147679939866066, + -0.10889844596385956, + -0.05446823686361313, + 0.04780600219964981, + 0.11897586286067963, + -0.03460344299674034, + -0.04509624466300011, + 0.032144591212272644, + 0.07155874371528625, + 0.05732978135347366, + 0.06744895875453949, + 0.0877368301153183, + 0.10208085179328918, + -0.010492564179003239, + 0.03598418086767197, + 0.03696993365883827, + 0.0879252701997757, + 0.03163312003016472, + -0.005844987463206053, + 0.03779713064432144, + -0.011790177784860134, + -0.015229344367980957, + -0.03421752154827118, + -0.030828654766082764, + -0.006605314090847969, + 0.006194352172315121, + 0.023673221468925476, + 0.04953373968601227, + 0.014020876958966255, + -0.05010061711072922, + 0.05289199575781822, + 0.054383210837841034, + -0.028982415795326233, + 0.054083094000816345, + 0.04069673269987106, + -0.006503037177026272, + 0.045567888766527176, + -0.09922129660844803, + -0.0970517247915268, + -0.004961349070072174, + -0.0029878681525588036, + 0.005250225774943829, + 0.04367164522409439, + 0.022428929805755615, + -0.016702774912118912, + 0.10158343613147736, + 0.04256047308444977, + -0.014677779749035835, + 0.03042411431670189, + -0.06267350167036057, + 0.11361376196146011, + 0.09337268769741058, + -0.016695033758878708, + 0.033519189804792404, + -0.07685229182243347, + 0.05857387185096741, + 0.04186607152223587, + -0.10366949439048767, + -0.08254759013652802, + 0.02052883617579937, + -0.012891009449958801, + -0.028348566964268684, + 0.13967370986938477, + -0.006839882582426071, + 0.021905580535531044, + 0.12210458517074585, + -0.09927570074796677, + -0.04383537918329239, + -0.009029564447700977, + 0.04083845391869545, + -0.06358872354030609, + 0.04009952396154404, + 0.038503486663103104, + -0.014631219208240509, + 0.0349312424659729, + 0.0866166204214096, + -0.001095527783036232, + 0.03843126818537712, + 0.0076775867491960526, + -0.021519560366868973, + 0.03769470378756523, + -0.015402357093989849, + -0.015597800724208355, + 0.07944595813751221, + 0.06551666557788849, + 0.0781731903553009, + -0.014774523675441742, + -0.04573675990104675, + -0.10937036573886871, + 0.024098757654428482, + 0.02056432142853737, + 0.07296841591596603, + -0.030045025050640106, + 0.0053977956995368, + -0.04413025826215744, + -0.09769289195537567, + 0.031458646059036255, + 0.0046644010581076145, + 0.08497168123722076, + -0.009289938025176525, + -0.0042288536205887794, + 0.11800014972686768, + 0.037131939083337784, + -0.0033342335373163223, + -0.038018785417079926, + -0.03281279280781746, + -0.014849001541733742, + 0.056446775794029236, + -0.0863642692565918, + -0.06582127511501312, + -0.02366805635392666, + 0.014046663418412209, + -0.014413945376873016, + 0.06533527374267578, + 0.0694565549492836, + 0.024139652028679848, + 0.04405529797077179, + -0.07130910456180573, + -0.014843943528831005, + -0.08857505023479462, + -0.0410175621509552, + -0.0230402834713459, + -0.04828879237174988, + -0.05237221345305443, + 0.09565780311822891, + -0.005147187039256096, + 0.04034685716032982, + -0.031523481011390686, + -0.07084348797798157, + -0.07660600543022156, + 0.05688017979264259, + 0.03928137570619583, + -0.023704711347818375, + 0.020886853337287903, + 0.04073280468583107, + -0.03065858967602253, + 0.03230053558945656, + 0.08439664542675018, + 0.06984895467758179, + -0.02489544451236725, + 0.007882220670580864, + -0.0605912059545517, + 0.13794445991516113, + 0.06979639083147049, + -0.07512485235929489, + -0.06894218176603317, + -0.03242199122905731, + -0.06852367520332336, + 0.010146543383598328, + -0.02471516840159893, + 0.011098667047917843, + 0.02745484560728073, + 0.01733534224331379, + -0.09166112542152405, + -0.07267217338085175, + 0.05370981618762016, + -0.06865569949150085, + -0.00790631864219904, + -0.06420284509658813, + 0.014538805931806564, + 0.08597350865602493, + 0.05690353736281395, + -0.00878701452165842, + -0.008382181636989117, + 0.057446569204330444, + -0.04996214807033539, + 0.03720337152481079, + 0.056372448801994324, + 0.033424291759729385, + -0.04152454063296318, + -0.01176535151898861, + -0.048215679824352264, + 0.027980845421552658, + -0.039744336158037186, + 0.13341759145259857, + 0.014345242641866207, + -0.058308348059654236, + -0.05801123380661011, + 0.051401592791080475, + -0.0452803373336792, + 0.043751880526542664, + 0.04491008073091507, + 0.06822976469993591, + 0.05634336918592453, + -0.07143687456846237, + 0.11643654853105545, + 0.04153633117675781, + -0.025006501004099846, + -0.06321591138839722, + -0.07403762638568878, + -0.04065658897161484, + 0.030912788584828377, + 0.038822632282972336, + -0.0725584551692009, + 0.023880701512098312, + 0.03400370478630066, + -0.007432215381413698, + 0.03394685685634613, + 0.12482020258903503, + 0.08397350460290909, + -0.09825662523508072 + ] + }, + "p245_011.wav": { + "name": "p245", + "embedding": [ + 0.04693511500954628, + 0.09151306003332138, + -0.015350173227488995, + 0.01501099206507206, + -0.05352330207824707, + 0.024777594953775406, + -0.11958026885986328, + 0.13174134492874146, + -0.03121187724173069, + 0.11712955683469772, + -0.07886708527803421, + 0.12884557247161865, + -0.03458358719944954, + -0.1426384150981903, + -0.037757065147161484, + 0.044479768723249435, + -0.041767336428165436, + -0.043814342468976974, + -0.005046903621405363, + -0.03032349981367588, + 0.03716897591948509, + 0.03688639774918556, + 0.03818846866488457, + 0.0272796880453825, + 0.016458002850413322, + 0.07186990231275558, + 0.0034022170584648848, + 0.035620372742414474, + 0.02769152633845806, + -0.026159582659602165, + -0.0077646332792937756, + 0.06918182224035263, + -0.04000372067093849, + 0.022949062287807465, + 0.03956812992691994, + 0.0021731534507125616, + 0.0021572664845734835, + -0.05360705778002739, + -0.02615455724298954, + 0.006823182106018066, + -0.050907909870147705, + 0.07867929339408875, + 0.021527081727981567, + -0.034393176436424255, + 0.02676575817167759, + 0.00946024339646101, + -0.01362234354019165, + -0.016480371356010437, + -0.09921713173389435, + 0.14778493344783783, + 0.05703011155128479, + 0.022879837080836296, + -0.08257072418928146, + -0.03717171773314476, + 0.10028153657913208, + -0.02581956796348095, + -0.1014406681060791, + -0.030647045001387596, + 0.059790290892124176, + 0.13068018853664398, + -0.028375966474413872, + -0.04566575959324837, + 0.02301890030503273, + 0.10864495486021042, + 0.056900300085544586, + 0.0498492605984211, + 0.09485321491956711, + 0.10639964789152145, + -0.03414921835064888, + 0.011846917681396008, + 0.061606764793395996, + 0.08003950119018555, + 0.041194938123226166, + -0.010102824307978153, + 0.004090904723852873, + -0.007145411800593138, + -0.013436323963105679, + 0.004326218273490667, + -0.016671283170580864, + -0.028611352667212486, + -0.05065273866057396, + -0.002835388295352459, + -0.015028364956378937, + 0.02607208490371704, + -0.010497629642486572, + 0.05200168490409851, + 0.03615011274814606, + -0.02207058109343052, + 0.06440500915050507, + 0.05203700065612793, + -0.005159619729965925, + 0.04691538214683533, + -0.0748772844672203, + -0.05882537364959717, + -0.001121237874031067, + -0.01175533514469862, + 0.044174011796712875, + 0.08308183401823044, + 0.04617855325341225, + 0.01403222419321537, + 0.11239280551671982, + 0.049323976039886475, + -0.006587873678654432, + -0.013005129992961884, + -0.09525784850120544, + 0.12376048415899277, + 0.09235859662294388, + -0.042835406959056854, + 0.030474955216050148, + -0.02863466553390026, + 0.042455077171325684, + 0.04740241914987564, + -0.10655175894498825, + -0.06431827694177628, + 0.020908359438180923, + 0.03831387683749199, + 0.010186552070081234, + 0.10208350419998169, + -0.007704551797360182, + 0.041669271886348724, + 0.09961819648742676, + -0.05906952545046806, + -0.06040550395846367, + -0.027082595974206924, + 0.03710734471678734, + -0.06680440157651901, + 0.07056431472301483, + 0.05684357509016991, + 0.012937569990754128, + 0.013492563739418983, + 0.07756072282791138, + 0.004854758270084858, + 0.0016230002511292696, + -0.004766053054481745, + -0.031538475304841995, + 0.023391051217913628, + -0.017501024529337883, + 0.00579298147931695, + 0.056401170790195465, + 0.043436940759420395, + 0.06694584339857101, + 0.02649066410958767, + -0.02080940082669258, + -0.10680897533893585, + 0.021535338833928108, + 0.05269007757306099, + 0.06138451769948006, + -0.02455325424671173, + -0.04900142550468445, + -0.027948278933763504, + -0.03953804820775986, + -0.003613616107031703, + 0.010626162402331829, + 0.07250669598579407, + -0.029650498181581497, + 0.00503036892041564, + 0.1020331159234047, + 0.01196464616805315, + -0.00870331097394228, + -0.04239264130592346, + -0.019085511565208435, + -0.011673356406390667, + 0.04814722761511803, + -0.08738696575164795, + -0.08782561123371124, + -0.016146989539265633, + 0.040562499314546585, + -0.00870204996317625, + 0.05808655172586441, + 0.05818870663642883, + -0.008133861236274242, + 0.017620747908949852, + -0.05324352905154228, + 0.026560891419649124, + -0.09001462906599045, + -0.07081657648086548, + -0.013763591647148132, + -0.020148402079939842, + -0.011310645379126072, + 0.06907995045185089, + 0.01780843548476696, + 0.06420137733221054, + 0.001113583566620946, + -0.09472236782312393, + -0.08345158398151398, + 0.05078394338488579, + 0.05246732756495476, + -0.02011728286743164, + 0.04108734801411629, + 0.07679054141044617, + -0.029277771711349487, + 0.043227437883615494, + 0.033382292836904526, + 0.09315013885498047, + -0.07060300558805466, + 0.007743968162685633, + -0.05747741460800171, + 0.052234042435884476, + 0.07412166148424149, + -0.10356845706701279, + -0.06901421397924423, + -0.058231987059116364, + -0.04774828255176544, + 0.02056937851011753, + -0.014962839893996716, + 0.013775983825325966, + 0.024671588093042374, + -0.02619941532611847, + -0.09307463467121124, + -0.09923496097326279, + 0.06260036677122116, + -0.060408320277929306, + 0.008377525955438614, + -0.07549357414245605, + 0.03015982173383236, + 0.07258807122707367, + 0.02156328223645687, + -0.013451685197651386, + 0.00790953729301691, + 0.005418199580162764, + -0.02525339089334011, + -0.018708324059844017, + 0.05127616599202156, + 0.038760047405958176, + -0.06665867567062378, + -0.026355160400271416, + -0.07957812398672104, + 0.06650206446647644, + -0.03824251517653465, + 0.1345810741186142, + -0.008153272792696953, + -0.05615853890776634, + -0.07514964044094086, + -0.0017292529810220003, + -0.022700471803545952, + 0.053166139870882034, + 0.04759633541107178, + 0.05596443638205528, + 0.010722211562097073, + -0.0535164549946785, + 0.1146818995475769, + 0.0649646446108818, + -0.043889325112104416, + -0.07289095222949982, + -0.033148143440485, + -0.028311440721154213, + 0.022350577637553215, + 0.019162673503160477, + -0.06904880702495575, + -0.0017095506191253662, + -0.005666177719831467, + -0.015931710600852966, + 0.07856272906064987, + 0.11935938894748688, + 0.0751008614897728, + -0.10518162697553635 + ] + }, + "p245_138.wav": { + "name": "p245", + "embedding": [ + 0.0700933188199997, + 0.0377182811498642, + -0.006153803318738937, + -0.008792988955974579, + -0.01029633916914463, + 0.06081300973892212, + -0.10449773818254471, + 0.05837077274918556, + -0.016417216509580612, + 0.08198314905166626, + -0.08462048321962357, + 0.07559515535831451, + 0.010649865493178368, + -0.1105349063873291, + -0.049864549189805984, + 0.028284763917326927, + -0.0215237308293581, + 0.0077948011457920074, + -0.05577688664197922, + 0.004510017111897469, + 0.015806157141923904, + 0.029210276901721954, + 0.0397406741976738, + -0.046633027493953705, + 0.016121678054332733, + 0.02957761660218239, + 0.02926536090672016, + 0.047166623175144196, + 0.04204349219799042, + 0.011825904250144958, + 0.007843952625989914, + 0.08851593732833862, + -0.013868517242372036, + -0.01586082950234413, + 0.04913341626524925, + 0.029168786481022835, + 0.013422926887869835, + -0.08862494677305222, + -0.0008264980278909206, + 0.0478745736181736, + -0.022770477458834648, + 0.0700978934764862, + 0.05314859747886658, + 0.011500800028443336, + -0.01110411062836647, + 0.012603465467691422, + -0.020398985594511032, + -0.049812182784080505, + -0.09821194410324097, + 0.16786211729049683, + 0.03350654989480972, + -0.001977858366444707, + -0.10501866787672043, + -0.017769109457731247, + 0.08057454228401184, + -0.008657335303723812, + -0.029612254351377487, + -0.045323342084884644, + 0.020617350935935974, + 0.11189388483762741, + 0.014370227232575417, + -0.036810312420129776, + 0.0023287988733500242, + 0.08959723263978958, + -0.0040346551686525345, + 0.048174213618040085, + 0.10340115427970886, + 0.10218804329633713, + -0.0018373546190559864, + 0.03814993053674698, + 0.07398408651351929, + 0.04268969967961311, + 0.019909044727683067, + -0.02334015816450119, + 0.04232386499643326, + -0.01496145874261856, + -0.03174427151679993, + 0.03793960064649582, + -0.01772383600473404, + -0.055531736463308334, + 0.025936629623174667, + -0.012942067347466946, + 0.008283143863081932, + 0.08056256920099258, + -0.07879214733839035, + 0.04175274074077606, + -2.6310328394174576e-05, + 0.016693077981472015, + 0.06180515140295029, + 0.06533603370189667, + 0.028443939983844757, + 0.004371471703052521, + -0.02654329314827919, + -0.11455459892749786, + 0.007954401895403862, + -0.004122806712985039, + 0.025998856872320175, + 0.029509756714105606, + 0.030390221625566483, + -0.008637006394565105, + 0.06519265472888947, + 0.04027631878852844, + -0.017089582979679108, + 0.01539282500743866, + -0.05229375511407852, + 0.09466859698295593, + 0.12216692417860031, + 0.008287385106086731, + 0.0025515519082546234, + -0.048837412148714066, + 0.04525119438767433, + 0.03641248121857643, + -0.098570317029953, + -0.05471383035182953, + 0.060472600162029266, + 0.04027802497148514, + 0.06161133944988251, + 0.0813916027545929, + -0.0029232604429125786, + -0.0002641519531607628, + 0.04492009058594704, + -0.05212651938199997, + -0.045050930231809616, + 0.005184590816497803, + 0.003385903313755989, + 0.0001318417489528656, + -0.005962742492556572, + 0.011397925205528736, + 0.005217838101089001, + -0.08035160601139069, + 0.083350270986557, + 0.005274652503430843, + 0.010940833017230034, + -0.041902244091033936, + 0.03870531916618347, + 0.113883376121521, + -0.0008794106543064117, + -0.009889818727970123, + 0.05096101015806198, + 0.06472828984260559, + 0.03843250498175621, + 0.04841066896915436, + -0.03987744078040123, + -0.10456392168998718, + 0.0015691224252805114, + 0.04382818192243576, + 0.046617865562438965, + -0.056362759321928024, + -0.04848276078701019, + -0.05004505068063736, + -0.009818851947784424, + 0.02410774677991867, + -0.015900276601314545, + 0.0555308535695076, + 0.04682601988315582, + -0.04986138641834259, + 0.09564351290464401, + -0.0859374925494194, + 0.003384761279448867, + -0.006825659424066544, + -0.0012053176760673523, + 0.03988638147711754, + 0.025213807821273804, + -0.030601859092712402, + -0.06182052195072174, + 0.031095515936613083, + -0.018277062103152275, + -0.015841705724596977, + -0.048798274248838425, + 0.03619398921728134, + -0.0316365584731102, + 0.03343591094017029, + -0.0954868346452713, + 0.011421136558055878, + -0.09681153297424316, + 0.00432366319000721, + 0.016019439324736595, + -0.026051219552755356, + -0.003913429100066423, + 0.07487329095602036, + 0.012472547590732574, + 0.012945892289280891, + -0.024861523881554604, + -0.08066530525684357, + 0.003796197474002838, + 0.07142336666584015, + 0.08017975836992264, + 0.0042107198387384415, + 0.035059794783592224, + 0.04922247678041458, + 0.040788229554891586, + 0.0242929644882679, + 0.06684544682502747, + 0.03171093016862869, + -0.038825489580631256, + -0.06607095152139664, + -0.01302734762430191, + 0.11494527012109756, + 0.01928497664630413, + -0.07260964810848236, + -0.046309322118759155, + -0.016786161810159683, + -0.05228213220834732, + 0.022402217611670494, + -0.03037768043577671, + 0.018248820677399635, + 0.05267509073019028, + -0.03130359202623367, + -0.09463240206241608, + -0.06523000448942184, + 0.03587363287806511, + -0.04817706346511841, + -0.007058877032250166, + -0.04091645032167435, + 0.023375002667307854, + 0.07097339630126953, + 0.02264590561389923, + -0.025574853643774986, + 0.002775501925498247, + -0.03003949113190174, + -0.08194026350975037, + -0.09228100627660751, + -0.043983664363622665, + 0.014984121546149254, + -0.08094244450330734, + 0.012860621325671673, + -0.04829484969377518, + 0.07830144464969635, + -0.05900753289461136, + 0.08163068443536758, + 0.022269975394010544, + -0.0518019013106823, + -0.05760157108306885, + -0.018490605056285858, + -0.046950988471508026, + 0.061665259301662445, + 0.06822863221168518, + -0.01342926174402237, + 0.00778565090149641, + -0.06658805906772614, + 0.10745098441839218, + 0.042737770825624466, + -0.02777242660522461, + -0.09870735555887222, + 0.014597277157008648, + -0.010621944442391396, + 0.05519593879580498, + 0.017933133989572525, + -0.0048694908618927, + 0.029852233827114105, + 0.010921476408839226, + -0.0545937642455101, + 0.023371294140815735, + 0.07272682338953018, + 0.05420816317200661, + -0.06974054872989655 + ] + }, + "p245_121.wav": { + "name": "p245", + "embedding": [ + 0.05420980975031853, + 0.10433891415596008, + -0.002371707931160927, + 0.020668279379606247, + -0.062030401080846786, + 0.04665670171380043, + -0.14484882354736328, + 0.16389036178588867, + -0.03254805877804756, + 0.1299302577972412, + -0.04473206400871277, + 0.13779394328594208, + -0.023932889103889465, + -0.16968263685703278, + -0.03426493704319, + 0.06643204391002655, + -0.037543244659900665, + -0.03569311648607254, + -0.018265314400196075, + -0.020131167024374008, + 0.023475490510463715, + 0.04014807194471359, + 0.0508076474070549, + 0.018009144812822342, + 0.038952454924583435, + 0.07226864248514175, + 0.00013127876445651054, + 0.05769720673561096, + 0.015796735882759094, + -0.08617471158504486, + -0.028159286826848984, + 0.07532615959644318, + -0.0640748143196106, + 0.023477481678128242, + 0.050398264080286026, + -0.027185093611478806, + 0.0007421582704409957, + -0.052032992243766785, + -0.03202911466360092, + 5.494197830557823e-05, + -0.026282360777258873, + 0.08942057192325592, + 0.0127931609749794, + -0.013073738664388657, + 0.03898070007562637, + 0.029325444251298904, + -0.007269487716257572, + -0.039107270538806915, + -0.11962693929672241, + 0.14749082922935486, + 0.05608372390270233, + 0.003949814476072788, + -0.09281918406486511, + -0.07841530442237854, + 0.0938212126493454, + -0.052570588886737823, + -0.10997049510478973, + -0.03562942147254944, + 0.06064043939113617, + 0.14383962750434875, + -0.02476629428565502, + -0.05246924236416817, + 0.03413013368844986, + 0.11553512513637543, + 0.07347337901592255, + 0.06802143156528473, + 0.08190984278917313, + 0.09528174251317978, + -0.04751479625701904, + 0.013920800760388374, + 0.033005841076374054, + 0.07544243335723877, + 0.04563790559768677, + 0.011751430109143257, + 0.015539208427071571, + -1.2705335393548012e-05, + -0.0038763682823628187, + -0.019443053752183914, + -0.017570193856954575, + -0.014361182227730751, + -0.033393293619155884, + 0.02703552320599556, + -0.0016232822090387344, + 0.03060579113662243, + -0.01138681173324585, + 0.07251236587762833, + 0.017457157373428345, + -0.010640464723110199, + 0.06827431917190552, + 0.03848595172166824, + 0.01570388302206993, + 0.06788620352745056, + -0.09191546589136124, + -0.05857941880822182, + 0.02314208820462227, + -0.0037599471397697926, + 0.03216229006648064, + 0.06510032713413239, + 0.026834748685359955, + -0.007788940332829952, + 0.12890613079071045, + 0.06693337112665176, + -0.006075536832213402, + 0.0040418291464447975, + -0.09198859333992004, + 0.12205406278371811, + 0.06841802597045898, + -0.018052613362669945, + 0.06684797257184982, + -0.04273418337106705, + 0.05855492874979973, + 0.05181191861629486, + -0.13271838426589966, + -0.09420039504766464, + 0.0129048777744174, + 0.016212984919548035, + -0.0145639106631279, + 0.12382704764604568, + -0.0074400519952178, + 0.06595636904239655, + 0.09348036348819733, + -0.08727648109197617, + -0.048237577080726624, + 0.0034920484758913517, + 0.055652230978012085, + -0.09223422408103943, + 0.07151056826114655, + 0.06163690611720085, + -0.017924435436725616, + 0.027824589982628822, + 0.08913451433181763, + 0.0011070951586589217, + 0.013404087163507938, + 0.022202227264642715, + -0.05987752974033356, + -0.010100746527314186, + -0.022031325846910477, + -0.0036397739313542843, + 0.03698786720633507, + 0.032855454832315445, + 0.05669660121202469, + -0.00853847898542881, + -0.03218870237469673, + -0.13003608584403992, + 0.002222585491836071, + 0.03106776811182499, + 0.07201901078224182, + -0.011891582980751991, + -0.03763050585985184, + -0.026040777564048767, + -0.04013928025960922, + -0.003471312578767538, + 0.00908602960407734, + 0.06965924799442291, + -0.03596119582653046, + 0.015903249382972717, + 0.10955451428890228, + 0.047489821910858154, + -0.0040491316467523575, + -0.04420807957649231, + -0.027716761454939842, + -0.008892526850104332, + 0.06171005219221115, + -0.0735800638794899, + -0.07369723170995712, + -0.005328902043402195, + 0.04626666009426117, + -0.006353202275931835, + 0.08953050523996353, + 0.059936851263046265, + 0.01968693919479847, + 0.024121977388858795, + -0.05000599846243858, + 0.01973305456340313, + -0.07669686526060104, + -0.08990556001663208, + -0.009098267182707787, + -0.002223168732598424, + -0.04789714515209198, + 0.07107093930244446, + 0.04477805644273758, + 0.08857405930757523, + -0.020753053948283195, + -0.06478407233953476, + -0.09558364003896713, + 0.044731177389621735, + 0.051224276423454285, + -0.011965077370405197, + 0.03919252008199692, + 0.066912442445755, + -0.03924969956278801, + 0.0796569287776947, + 0.0604277066886425, + 0.07815545797348022, + -0.04826827347278595, + 0.03236033022403717, + -0.07221107184886932, + 0.060588933527469635, + 0.09354443848133087, + -0.09701211750507355, + -0.08625448495149612, + -0.026837002485990524, + -0.07930216193199158, + 0.042531609535217285, + -0.011242630891501904, + 0.023232558742165565, + 0.05087307095527649, + -0.0017697298899292946, + -0.10703520476818085, + -0.09764380753040314, + 0.09167136996984482, + -0.07334596663713455, + 0.01491341833025217, + -0.058493319898843765, + 0.040147699415683746, + 0.09295397251844406, + 0.03933216631412506, + -0.01162954792380333, + -0.03260267525911331, + 0.04031674563884735, + -0.009134911000728607, + 0.0050201937556266785, + 0.07226568460464478, + 0.04269695281982422, + -0.09170492738485336, + 0.005055755842477083, + -0.07237952202558517, + 0.04862818494439125, + -0.029337037354707718, + 0.15892544388771057, + 0.004040901083499193, + -0.06510515511035919, + -0.08938401937484741, + 0.01596609130501747, + -0.0412583127617836, + 0.061232030391693115, + 0.01430846843868494, + 0.0633939728140831, + 0.054595205932855606, + -0.048005711287260056, + 0.11012687534093857, + 0.05717059224843979, + -0.063078373670578, + -0.06797784566879272, + -0.06504462659358978, + -0.03918616101145744, + 0.04230204224586487, + 0.01452500931918621, + -0.09345594048500061, + -0.024548668414354324, + 0.01076485589146614, + -0.006039399653673172, + 0.08096581697463989, + 0.13920244574546814, + 0.055372096598148346, + -0.13247406482696533 + ] + }, + "p245_331.wav": { + "name": "p245", + "embedding": [ + 0.03541579097509384, + 0.0816521942615509, + -0.012221673503518105, + 0.012426997534930706, + -0.040238942950963974, + 0.08783203363418579, + -0.14746879041194916, + 0.09265685081481934, + -0.08654499053955078, + 0.1622808426618576, + -0.09461624175310135, + 0.09993752092123032, + -0.038974132388830185, + -0.17777110636234283, + -0.057347845286130905, + 0.04853283241391182, + -0.05085389316082001, + -0.05372815206646919, + -0.04684190824627876, + -0.0032470766454935074, + 0.061999496072530746, + 0.03692714124917984, + 0.0014325641095638275, + 0.010339765809476376, + 0.015984781086444855, + 0.051798634231090546, + -0.003846462583169341, + 0.04651078209280968, + 0.0055691152811050415, + -0.05945006012916565, + -0.017140604555606842, + 0.1259884536266327, + -0.04461679607629776, + 0.012495743110775948, + 0.019269734621047974, + 0.02090282551944256, + 0.02442237362265587, + -0.06516962498426437, + -0.008429610170423985, + -0.001907103811390698, + -0.03992881253361702, + 0.05954951047897339, + -0.005811501760035753, + 0.028921978548169136, + 0.011498075909912586, + 0.007941762916743755, + -0.03373553603887558, + -0.04980475455522537, + -0.09024978429079056, + 0.14310427010059357, + 0.051989879459142685, + 0.009912103414535522, + -0.06032196804881096, + -0.09596925228834152, + 0.11927606165409088, + 0.0018951395759359002, + -0.11591041088104248, + -0.05492280051112175, + 0.07581627368927002, + 0.19796814024448395, + -0.03416939824819565, + -0.04985221475362778, + 0.03073951043188572, + 0.0916435718536377, + 0.048828016966581345, + 0.09417574107646942, + 0.09466355293989182, + 0.08180411159992218, + 0.021081503480672836, + -0.024011464789509773, + 0.07200424373149872, + 0.06034855544567108, + 0.06768033653497696, + -0.02673531509935856, + 0.047355808317661285, + 0.019006023183465004, + -0.00662753963842988, + 0.03522117808461189, + -0.03266746923327446, + -0.014477008953690529, + -0.008514937944710255, + 0.010027474723756313, + -0.011535647325217724, + 0.012374328449368477, + -0.03871690854430199, + 0.03026578016579151, + 0.028054356575012207, + -0.018768228590488434, + 0.08365121483802795, + 0.04314650222659111, + 0.03223786875605583, + 0.06849844008684158, + -0.0776033103466034, + -0.07629218697547913, + 0.05171087384223938, + 0.02957124449312687, + 0.002694519469514489, + 0.05777736008167267, + 0.030600065365433693, + -0.03157910332083702, + 0.10725909471511841, + 0.022535985335707664, + 0.012225919403135777, + 0.016766047105193138, + -0.12019062042236328, + 0.1189369186758995, + 0.08406544476747513, + -0.04210780933499336, + 0.02105756849050522, + -0.014496641233563423, + 0.05981947109103203, + 0.07588721811771393, + -0.13372643291950226, + -0.10916389524936676, + 0.0372701920568943, + 0.02367197722196579, + -0.022109616547822952, + 0.11264190077781677, + -0.020507248118519783, + 0.00626147398725152, + 0.09513746947050095, + -0.08201045542955399, + -0.050255924463272095, + -0.0029273105319589376, + 0.034200429916381836, + -0.07355986535549164, + 0.04518639296293259, + 0.03625653684139252, + 0.02164197340607643, + -0.01521256286650896, + 0.09786180406808853, + -0.02204759605228901, + 0.006522484589368105, + -0.013778411783277988, + -0.043217483907938004, + 0.04097282886505127, + -0.032853610813617706, + -0.02832372859120369, + 0.05739249661564827, + 0.04623105004429817, + 0.06224474683403969, + -0.0027581541799008846, + -0.04563479870557785, + -0.13216279447078705, + 0.008978284895420074, + 0.050044041126966476, + 0.05378037318587303, + -0.010215730406343937, + -0.002609184244647622, + -0.05991087481379509, + -0.058252375572919846, + 0.034909091889858246, + -0.014852546155452728, + 0.11469104140996933, + 0.016988882794976234, + 0.0025289137847721577, + 0.10041376203298569, + -0.00028351403307169676, + -0.0020893134642392397, + -0.04796756058931351, + -0.021590260788798332, + 0.013540289364755154, + 0.053607601672410965, + -0.058453384786844254, + -0.06942971050739288, + 0.005301427561789751, + 0.06184694916009903, + 0.010216601192951202, + 0.07055143266916275, + 0.07513122260570526, + 0.0007667512982152402, + 0.020512782037258148, + -0.05919606611132622, + 0.034454457461833954, + -0.08991119265556335, + -0.06496554613113403, + 0.004474753513932228, + -0.04367688670754433, + -0.0024121080059558153, + 0.08297397196292877, + 0.013606883585453033, + 0.01881113089621067, + -0.03440484032034874, + -0.1082039400935173, + -0.09895014762878418, + 0.06505335867404938, + 0.08122184127569199, + -0.0016685303999111056, + 0.03677600994706154, + 0.059178099036216736, + -0.009844358079135418, + 0.06286277621984482, + 0.07264810055494308, + 0.1308685690164566, + -0.03740754351019859, + 0.018966030329465866, + -0.05577864497900009, + 0.07950403541326523, + 0.055514488369226456, + -0.07599318772554398, + -0.06791509687900543, + -0.010446444153785706, + -0.07375945150852203, + 0.06095854192972183, + -0.021290533244609833, + 0.019405076280236244, + 0.048066675662994385, + -0.03073003515601158, + -0.11433113366365433, + -0.07640784978866577, + 0.09234999865293503, + -0.059330545365810394, + -0.019570494070649147, + -0.0894651785492897, + 0.04015011340379715, + 0.07895421981811523, + 0.04484124109148979, + -0.015935782343149185, + 0.01086941733956337, + 0.04565582796931267, + -0.06120605394244194, + -0.004541727248579264, + 0.05140858143568039, + 0.00817751232534647, + -0.09109561145305634, + -0.006130436901003122, + -0.1253180205821991, + 0.05774698778986931, + -0.06462391465902328, + 0.1439346969127655, + -0.016630418598651886, + -0.05334024503827095, + -0.08961011469364166, + 0.04076334089040756, + -0.02999519370496273, + 0.0687546655535698, + 0.042265649884939194, + 0.07961881905794144, + 0.05788794159889221, + -0.05281192064285278, + 0.10735557228326797, + 0.05628572776913643, + -0.030042653903365135, + -0.07711321860551834, + -0.04306810349225998, + -0.04259932413697243, + 0.016305210068821907, + -0.019216010347008705, + -0.07786834239959717, + 0.009043860249221325, + 0.02674337476491928, + 0.0008316270541399717, + 0.06443923711776733, + 0.11581195145845413, + 0.05936264619231224, + -0.11903617531061172 + ] + }, + "p245_009.wav": { + "name": "p245", + "embedding": [ + 0.03290610387921333, + 0.08333328366279602, + -0.014391103759407997, + 0.03857538476586342, + -0.057077277451753616, + 0.0047579314559698105, + -0.10529172420501709, + 0.12756314873695374, + -0.004455195739865303, + 0.104286789894104, + -0.07982030510902405, + 0.12462792545557022, + -0.05842305347323418, + -0.14488382637500763, + -0.014104433357715607, + 0.0633617490530014, + -0.01144502405077219, + -0.01146823912858963, + 0.006739433854818344, + -0.03120742179453373, + 0.03622310236096382, + 0.046508997678756714, + 0.06616988778114319, + -0.0016240356490015984, + 0.008199850097298622, + 0.08053796738386154, + -0.0022529433481395245, + 0.030590787529945374, + 0.011158742010593414, + -0.03716909885406494, + -0.007432682439684868, + 0.061043620109558105, + -0.013746824115514755, + 0.01777333952486515, + 0.025905504822731018, + 0.014887186698615551, + -0.00883655808866024, + -0.03131641447544098, + -0.006488006561994553, + -0.010581636801362038, + -0.05273634195327759, + 0.05792669579386711, + 0.0069999173283576965, + -0.04620152711868286, + 0.05337395891547203, + -0.003029255196452141, + -0.03159916028380394, + -0.011096817441284657, + -0.10760626196861267, + 0.14992429316043854, + 0.04811668395996094, + 0.02662993222475052, + -0.08908692002296448, + -0.0403478778898716, + 0.08363235741853714, + -0.025169089436531067, + -0.0932357981801033, + -0.04197346419095993, + 0.0749293714761734, + 0.1356501281261444, + -0.01578334905207157, + -0.042207829654216766, + 0.031088298186659813, + 0.09933555871248245, + 0.03422577306628227, + 0.05418774113059044, + 0.08088222146034241, + 0.09444867074489594, + -0.02446182817220688, + 0.003708901349455118, + 0.02211766317486763, + 0.08883614093065262, + 0.047666702419519424, + 0.015000523068010807, + -0.014961561188101768, + -0.021019399166107178, + -0.013484487310051918, + 0.0034485410433262587, + -0.020270880311727524, + -0.04885249212384224, + -0.048257194459438324, + -0.027113303542137146, + -0.0027742625679820776, + -0.01651928760111332, + -0.005384180229157209, + 0.043192241340875626, + 0.05892901122570038, + -0.018471181392669678, + 0.06013456732034683, + 0.035338740795850754, + -0.022221896797418594, + 0.044151850044727325, + -0.05702565610408783, + -0.04898470640182495, + -0.013930716551840305, + -0.0022831978276371956, + 0.04580358415842056, + 0.06563348323106766, + 0.03550197184085846, + 0.007841670885682106, + 0.10671895742416382, + 0.02599121630191803, + 0.0043195998296141624, + -0.0025952039286494255, + -0.0934603214263916, + 0.10964865237474442, + 0.10816070437431335, + -0.024411596357822418, + 0.046036675572395325, + -0.034352269023656845, + 0.01966046541929245, + 0.04859580844640732, + -0.08874480426311493, + -0.04727163910865784, + -0.02022959478199482, + 0.0157342329621315, + 0.016454599797725677, + 0.09834884107112885, + 0.01735919900238514, + 0.03737746551632881, + 0.12326224148273468, + -0.10016807913780212, + -0.09266705811023712, + -0.03160642459988594, + 0.03176315873861313, + -0.09092157334089279, + 0.06275834143161774, + 0.07296454906463623, + 0.008957098238170147, + 0.029911672696471214, + 0.059294555336236954, + 0.011397802270948887, + 0.03669579699635506, + -0.004788540303707123, + -0.061024945229291916, + -0.018016789108514786, + -0.04988691210746765, + -0.007763370871543884, + 0.08740144968032837, + 0.04229965806007385, + 0.07493235915899277, + 0.01616298407316208, + -0.020788973197340965, + -0.11774794012308121, + 0.0003076753346249461, + 0.06607553362846375, + 0.03273431584239006, + -0.023462504148483276, + -0.0511879101395607, + -0.023802796378731728, + -0.057312972843647, + 0.023569168522953987, + 0.0038475836627185345, + 0.06572814285755157, + -0.038017284125089645, + -0.0033452454954385757, + 0.10601448267698288, + 0.014992693439126015, + -0.014330792240798473, + -0.056976012885570526, + -0.038848187774419785, + -0.011372795328497887, + 0.020188990980386734, + -0.11092783510684967, + -0.0934695452451706, + -0.04296105355024338, + 0.055108942091464996, + -0.01912037841975689, + 0.04681546241044998, + 0.05948136746883392, + -0.0024230442941188812, + -0.0009722725953906775, + -0.02059830352663994, + 0.011703070253133774, + -0.06589550524950027, + -0.09323522448539734, + -0.001835276372730732, + -0.021795958280563354, + -0.007641312200576067, + 0.06791874766349792, + 0.020152149721980095, + 0.05164969339966774, + -0.022221006453037262, + -0.0693928673863411, + -0.10133972764015198, + 0.038995932787656784, + 0.02053011581301689, + -0.00844467245042324, + 0.05497853830456734, + 0.04694122448563576, + -0.07966507971286774, + 0.06087392568588257, + 0.02980203740298748, + 0.10071810334920883, + -0.06234333664178848, + 0.007728932425379753, + -0.07707223296165466, + 0.04718461632728577, + 0.12590500712394714, + -0.08345238119363785, + -0.07745872437953949, + -0.08545085787773132, + -0.06679253280162811, + 0.04591762647032738, + -0.029235392808914185, + -0.010717829689383507, + 0.03232759237289429, + -0.025126105174422264, + -0.10085204243659973, + -0.10697224736213684, + 0.056809864938259125, + -0.03047030046582222, + -0.004984191618859768, + -0.06127926707267761, + 0.04727930948138237, + 0.039400458335876465, + 0.013793750666081905, + -0.015099452808499336, + 0.007690818980336189, + 0.015575211495161057, + -0.045287180691957474, + -0.0115211121737957, + 0.05708640068769455, + 0.05113761126995087, + -0.042249903082847595, + -0.038948528468608856, + -0.09032081067562103, + 0.05272318795323372, + -0.03209463506937027, + 0.13962438702583313, + -0.004263963550329208, + -0.048091232776641846, + -0.06869148463010788, + 0.010186580941081047, + -0.016271507367491722, + 0.05376783758401871, + 0.043973468244075775, + 0.04174920916557312, + 0.012833533808588982, + -0.06805049628019333, + 0.10944811999797821, + 0.0558023527264595, + -0.032690275460481644, + -0.066848024725914, + -0.047987475991249084, + -0.04779447615146637, + 0.013941776007413864, + -0.020745795220136642, + -0.08239023387432098, + -0.0035557392984628677, + -0.0050284368917346, + 0.01777922734618187, + 0.06079863756895065, + 0.114070825278759, + 0.04020806774497032, + -0.07465103268623352 + ] + }, + "p245_127.wav": { + "name": "p245", + "embedding": [ + 0.04658830910921097, + 0.06260549277067184, + -0.006287736352533102, + 0.024215614423155785, + -0.019602863118052483, + 0.06372515857219696, + -0.13202497363090515, + 0.11467951536178589, + -0.011525056324899197, + 0.13998782634735107, + -0.08808180689811707, + 0.11441274732351303, + -0.0037071583792567253, + -0.1515623927116394, + -0.019572248682379723, + 0.031747639179229736, + -0.00026290927780792117, + 0.014862647280097008, + -0.007206363137811422, + -0.01091399323195219, + 0.06945531070232391, + 0.07098910212516785, + 0.040798820555210114, + -0.04977024346590042, + 0.034653451293706894, + 0.05427345260977745, + 0.005055768880993128, + 0.06353043019771576, + 0.0022681551054120064, + -0.09526313841342926, + -0.023277804255485535, + 0.11598458141088486, + -0.017313525080680847, + 0.014803117141127586, + 0.014584030024707317, + -0.007661606650799513, + -0.014505650848150253, + -0.0625762939453125, + 0.011438107118010521, + 0.01185659971088171, + -0.01616045832633972, + 0.049701690673828125, + 0.023318318650126457, + -0.015806090086698532, + 0.034538254141807556, + -0.0009171826532110572, + -0.011900722980499268, + -0.05578138679265976, + -0.10989811271429062, + 0.17207221686840057, + 0.024038737639784813, + 0.02493540570139885, + -0.07878866046667099, + -0.06328605860471725, + 0.08350934088230133, + 0.0077207498252391815, + -0.06403134018182755, + -0.016696106642484665, + 0.06292547285556793, + 0.16110067069530487, + -0.010943852365016937, + -0.058716218918561935, + 0.06317492574453354, + 0.06314487755298615, + -0.005325620528310537, + 0.0704900324344635, + 0.10005318373441696, + 0.07264034450054169, + 0.02517593279480934, + 0.0148459542542696, + -0.021879859268665314, + 0.08725609630346298, + 0.016613127663731575, + -0.0073416875675320625, + 0.02053922228515148, + -0.0033455914817750454, + -0.035645242780447006, + 0.01729992777109146, + -0.03468381613492966, + -0.03027549386024475, + 0.023294072598218918, + 0.0029266304336488247, + 0.03214956820011139, + 0.023959046229720116, + -0.055630505084991455, + 0.0348842591047287, + 0.0011369313579052687, + -0.014479635283350945, + 0.06491304188966751, + -0.0171013455837965, + 0.020700231194496155, + 0.03855355829000473, + -0.06517244130373001, + -0.11348254978656769, + 0.03670442849397659, + 0.021799206733703613, + 0.011915899813175201, + 0.06533152610063553, + 0.05046561360359192, + -0.04921099543571472, + 0.11094015836715698, + 0.01865033246576786, + -0.01207005139440298, + 0.003989707678556442, + -0.06642302870750427, + 0.0855250284075737, + 0.12379711866378784, + 0.004956814460456371, + 0.08126046508550644, + -0.0907628983259201, + 0.05807500332593918, + 0.03417370468378067, + -0.13315434753894806, + -0.08021371066570282, + 0.01635052263736725, + 0.029660116881132126, + 0.022714344784617424, + 0.1263212263584137, + 0.0037559240590780973, + 0.03628788888454437, + 0.08916031569242477, + -0.1201762780547142, + -0.05086067318916321, + -0.02359720878303051, + 0.039999544620513916, + -0.07151632010936737, + 0.059445809572935104, + 0.04963528364896774, + -0.02567708119750023, + 0.0016434730496257544, + 0.03686103969812393, + -0.032526928931474686, + 0.03571029379963875, + -0.010871256701648235, + -0.04564623534679413, + 0.021675823256373405, + -0.06487111747264862, + -0.022027797996997833, + 0.024676360189914703, + 0.052233144640922546, + 0.044405072927474976, + 0.0022868788801133633, + -0.07289264351129532, + -0.1260998249053955, + -0.004170695319771767, + 0.03340679407119751, + 0.037976693361997604, + -0.028692152351140976, + -0.039732035249471664, + -0.056720905005931854, + -0.06840913742780685, + 0.03389532119035721, + -0.028629226610064507, + 0.06423278152942657, + 0.01169472187757492, + 0.01982017420232296, + 0.07205839455127716, + 0.019033191725611687, + -0.00809904932975769, + -0.04061006382107735, + -0.048766326159238815, + 0.008097197860479355, + 0.010801266878843307, + -0.04781961441040039, + -0.05832257866859436, + -0.02562042325735092, + 0.01620791107416153, + -0.041379477828741074, + 0.028882190585136414, + 0.041352707892656326, + 0.03783556818962097, + 0.03214290365576744, + -0.05074073374271393, + -0.011035635136067867, + -0.10127341747283936, + -0.06457854807376862, + 0.016947541385889053, + 0.008741732686758041, + -0.019055141136050224, + 0.09269105643033981, + 0.02707105502486229, + 0.033004049211740494, + -0.05711086839437485, + -0.017399966716766357, + -0.06857027113437653, + 0.04161455109715462, + 0.05821641534566879, + 0.015034226700663567, + 0.04238680750131607, + 0.013804599642753601, + -0.012920196168124676, + 0.07800231873989105, + 0.07381346821784973, + 0.07853017002344131, + 0.01876921020448208, + -0.01598728448152542, + -0.06785853952169418, + 0.1082458347082138, + 0.10947208106517792, + -0.02701704204082489, + -0.08586087077856064, + -0.025790922343730927, + -0.11441995948553085, + 0.06302960216999054, + -0.013127107173204422, + -0.009299460798501968, + 0.01957782171666622, + -0.015136376023292542, + -0.1261642873287201, + -0.05232756584882736, + 0.03815246373414993, + -0.021039143204689026, + -0.014643959701061249, + -0.07588966190814972, + 0.05869888886809349, + 0.10201459378004074, + 0.025809211656451225, + -0.003931641578674316, + -0.038445066660642624, + 0.03567447513341904, + -0.06961512565612793, + 0.0071885958313941956, + 0.018263740465044975, + 0.025493260473012924, + -0.0879364013671875, + 0.03344513103365898, + -0.06425642967224121, + 0.022746529430150986, + -0.0661846324801445, + 0.12518291175365448, + 0.018635880202054977, + -0.04994634538888931, + -0.07431639730930328, + 0.08005322515964508, + -0.012550096027553082, + 0.02522459253668785, + 0.020094329491257668, + 0.01730910688638687, + 0.06951040029525757, + -0.13160404562950134, + 0.0784558355808258, + 0.027975033968687057, + -0.027666527777910233, + -0.07800722122192383, + -0.07368484139442444, + -0.020990831777453423, + 0.028741326183080673, + -0.017479144036769867, + -0.04319344088435173, + -0.03360884636640549, + 0.03481416776776314, + 0.038555216044187546, + 0.049933891743421555, + 0.11130048334598541, + -0.0071829236112535, + -0.11586718261241913 + ] + }, + "p245_131.wav": { + "name": "p245", + "embedding": [ + 0.051773663610219955, + 0.11920531839132309, + -0.017388202250003815, + 0.00801470223814249, + -0.053291283547878265, + 0.08008962869644165, + -0.14152702689170837, + 0.13869786262512207, + -0.06063380464911461, + 0.13399645686149597, + -0.08124585449695587, + 0.1243433803319931, + -0.02791563980281353, + -0.16790561378002167, + -0.03832479566335678, + 0.056006934493780136, + -0.02642492949962616, + -0.021153349429368973, + -0.029843613505363464, + -0.01801777444779873, + 0.02627597376704216, + 0.0016101183136925101, + 0.014214443042874336, + 0.0020707491785287857, + 0.04575660079717636, + 0.05909210443496704, + 0.0027672320138663054, + 0.03775542601943016, + -0.0012633068254217505, + -0.0262643750756979, + -0.04282417148351669, + 0.10847103595733643, + -0.05040731281042099, + 0.005238312296569347, + 0.0695110410451889, + 0.004018851555883884, + 0.0013476479798555374, + -0.08221562951803207, + -0.006653761025518179, + -0.012197775766253471, + -0.027806490659713745, + 0.07341498136520386, + 0.0196712426841259, + -0.024899905547499657, + 0.02405600994825363, + 0.038215458393096924, + 0.009255281649529934, + -0.046461135149002075, + -0.09786874055862427, + 0.13107037544250488, + 0.04400842636823654, + 0.011600933969020844, + -0.09161623567342758, + -0.06429623812437057, + 0.11179177463054657, + -0.014369804412126541, + -0.08008041232824326, + -0.02826160565018654, + 0.06530298292636871, + 0.15863749384880066, + -0.03980468586087227, + -0.042695533484220505, + 0.014585405588150024, + 0.10486936569213867, + 0.04771605134010315, + 0.09672224521636963, + 0.07401271909475327, + 0.10617061704397202, + -0.014771237038075924, + 0.02012082003057003, + 0.06321466714143753, + 0.06497268378734589, + 0.05378652736544609, + -0.031599752604961395, + 0.030269965529441833, + -0.00839713029563427, + -0.027909105643630028, + 0.01970379427075386, + -0.04190796613693237, + -0.040651991963386536, + -0.02526729367673397, + 0.011208882555365562, + 0.011837984435260296, + 0.017618713900446892, + -0.030671343207359314, + 0.054828397929668427, + 0.04742934927344322, + -0.030792851001024246, + 0.0753750279545784, + 0.05128327012062073, + -0.007923362776637077, + 0.057089969515800476, + -0.10551302134990692, + -0.0930054634809494, + 0.05335550010204315, + -0.004006318747997284, + 0.011687538586556911, + 0.07276883721351624, + 0.0472969114780426, + -0.008699174039065838, + 0.10147623717784882, + 0.07395502924919128, + 0.010805686935782433, + 0.03500901162624359, + -0.08613039553165436, + 0.13689228892326355, + 0.08635851740837097, + -0.03649013116955757, + 0.03314037621021271, + -0.038866739720106125, + 0.06129535287618637, + 0.0781913697719574, + -0.13437868654727936, + -0.09328192472457886, + 0.02348935417830944, + 0.007293185219168663, + -0.013193312101066113, + 0.0976811870932579, + -0.02401071786880493, + 0.019212350249290466, + 0.08764948695898056, + -0.0785221979022026, + -0.07158657908439636, + -0.022475769743323326, + 0.03214990720152855, + -0.06492529809474945, + 0.06085385009646416, + 0.057107701897621155, + 0.013710787519812584, + -0.0067566074430942535, + 0.07545354962348938, + 0.004002261906862259, + -0.015050138346850872, + 0.025699054822325706, + -0.02662610076367855, + 0.026017412543296814, + -0.006892682518810034, + -0.009361796081066132, + 0.027427449822425842, + 0.05025481432676315, + 0.044319652020931244, + 0.009692894294857979, + 0.004204666707664728, + -0.10147213190793991, + 0.0006517904694192111, + 0.06280013918876648, + 0.07969294488430023, + -0.014023507945239544, + -0.026885345578193665, + -0.03972513601183891, + -0.06018434092402458, + 0.0011818509083241224, + -0.004179387353360653, + 0.08737614005804062, + -0.0017851374577730894, + 0.02197900041937828, + 0.10882064700126648, + 0.027451803907752037, + -0.0006058961153030396, + -0.0544869601726532, + -0.003399872686713934, + 0.037098612636327744, + 0.055405810475349426, + -0.06441332399845123, + -0.0911090224981308, + -0.012462671846151352, + 0.012206878513097763, + -0.03538180887699127, + 0.05990897864103317, + 0.03708581626415253, + 0.01570219174027443, + 0.03672369197010994, + -0.06958041340112686, + 0.021782031282782555, + -0.1099281907081604, + -0.03805774822831154, + -0.02388021908700466, + -0.03261515498161316, + -0.026013564318418503, + 0.06997651606798172, + 0.03265005722641945, + 0.053749483078718185, + -0.015251873061060905, + -0.06236136704683304, + -0.07106058299541473, + 0.05539129301905632, + 0.07320192456245422, + 0.00047182230628095567, + 0.03349994122982025, + 0.04923785850405693, + 0.0042983125895261765, + 0.04841270670294762, + 0.09075738489627838, + 0.08412593603134155, + -0.020233657211065292, + 0.011173320934176445, + -0.05772450566291809, + 0.0908752977848053, + 0.07853017747402191, + -0.0999670922756195, + -0.09733794629573822, + -0.0314897857606411, + -0.044976554811000824, + 0.023222923278808594, + -0.023158585652709007, + 0.018883084878325462, + 0.026271507143974304, + -0.026486029848456383, + -0.0903608426451683, + -0.0990128144621849, + 0.08923383802175522, + -0.06793790310621262, + 0.0019103498198091984, + -0.0708601325750351, + 0.043945472687482834, + 0.08585767447948456, + 0.015695583075284958, + -0.03577731177210808, + -0.007984409108757973, + 0.04524214193224907, + -0.040539972484111786, + -0.006983797065913677, + 0.03293531760573387, + 0.023067450150847435, + -0.10118408501148224, + 0.03308899700641632, + -0.059888310730457306, + 0.08571215718984604, + -0.05049239099025726, + 0.1737249344587326, + 0.0047993953339755535, + -0.04805077239871025, + -0.08287292718887329, + 0.023064663633704185, + -0.023640461266040802, + 0.04154631122946739, + 0.03071696124970913, + 0.06575850397348404, + 0.004734584596008062, + -0.06670975685119629, + 0.1147979125380516, + 0.029987230896949768, + -0.038460299372673035, + -0.07809272408485413, + -0.05830715224146843, + -0.04498923569917679, + 0.027115676552057266, + 0.0030816548969596624, + -0.08249428868293762, + -0.014225131832063198, + 0.019196022301912308, + -0.006374415010213852, + 0.07042526453733444, + 0.14711768925189972, + 0.07646961510181427, + -0.1051764190196991 + ] + }, + "p245_220.wav": { + "name": "p245", + "embedding": [ + 0.03879730403423309, + 0.09055493772029877, + -0.013449713587760925, + 0.02201610803604126, + -0.05717796832323074, + 0.0815148651599884, + -0.12207820266485214, + 0.11224985122680664, + -0.060486312955617905, + 0.1440199613571167, + -0.07286649197340012, + 0.11312384903430939, + -0.019619306549429893, + -0.19507959485054016, + -0.04555293545126915, + 0.052274953573942184, + -0.05741092190146446, + -0.026642274111509323, + -0.03728384152054787, + -0.025818457826972008, + 0.0455283522605896, + 0.05022699758410454, + 0.028865983709692955, + 0.0031799792777746916, + 0.03064601682126522, + 0.05860237404704094, + -0.00041064945980906487, + 0.04074525833129883, + 0.011033182963728905, + -0.06751112639904022, + -0.05683927983045578, + 0.11227892339229584, + -0.045693494379520416, + 0.023093216121196747, + 0.04455939680337906, + 0.005104595795273781, + 0.012291442602872849, + -0.06127537041902542, + -0.02649378776550293, + 0.015792740508913994, + -0.04402081295847893, + 0.06688160449266434, + 0.03025428019464016, + -0.0003331135958433151, + 0.039093393832445145, + 0.0072454228065907955, + -0.019478455185890198, + -0.0503864660859108, + -0.09392698854207993, + 0.1703638881444931, + 0.062744140625, + -0.0065002660267055035, + -0.05478322133421898, + -0.09012486040592194, + 0.11785050481557846, + -0.0051047103479504585, + -0.13170382380485535, + -0.027212215587496758, + 0.0818513035774231, + 0.16934679448604584, + -0.020376477390527725, + -0.040059130638837814, + 0.01990499161183834, + 0.11665328592061996, + 0.019441386684775352, + 0.1002735048532486, + 0.06772534549236298, + 0.08665567636489868, + 0.0014297913294285536, + 0.007924351841211319, + 0.06708859652280807, + 0.07308071851730347, + 0.04511871561408043, + -0.026148442178964615, + 0.02646047994494438, + 0.005571114830672741, + -0.02838445082306862, + 0.025852523744106293, + -0.019251462072134018, + -0.002665368840098381, + -0.020315591245889664, + 0.0013356282142922282, + 0.005613367073237896, + -0.0006534084677696228, + -0.026520565152168274, + 0.04145396500825882, + 0.012017980217933655, + 0.004497114103287458, + 0.06751247495412827, + 0.04404584318399429, + 0.00844128429889679, + 0.06120280548930168, + -0.05212843045592308, + -0.0926857441663742, + 0.022167038172483444, + 0.01979418843984604, + 0.011135349981486797, + 0.07833263278007507, + 0.03854385018348694, + -0.02573969028890133, + 0.11011773347854614, + 0.05281824991106987, + 0.0032901037484407425, + 0.024407315999269485, + -0.10709923505783081, + 0.10679684579372406, + 0.09270425140857697, + -0.009921396151185036, + 0.05202547833323479, + -0.045261450111866, + 0.10293298959732056, + 0.08683113753795624, + -0.15195858478546143, + -0.07544927299022675, + 0.03328393027186394, + 0.021967818960547447, + -0.0022797503042966127, + 0.1113390251994133, + -0.013943596743047237, + 0.01276822667568922, + 0.10044863820075989, + -0.09282051771879196, + -0.054333608597517014, + -0.033119358122348785, + 0.042725201696157455, + -0.08001001924276352, + 0.0430799201130867, + 0.039619144052267075, + -0.01773996464908123, + 0.00014796573668718338, + 0.07431536167860031, + -0.024226512759923935, + 0.004928186535835266, + 0.02313924953341484, + -0.050774913281202316, + 0.019231736660003662, + -0.037040047347545624, + 0.008389119058847427, + 0.06587131321430206, + 0.04547805339097977, + 0.03970226272940636, + -8.527810859959573e-05, + -0.04865244776010513, + -0.11709722131490707, + 0.01301967166364193, + 0.04203265905380249, + 0.06552766263484955, + -0.008239119313657284, + -0.02330688200891018, + -0.03644777834415436, + -0.08237116038799286, + 0.04103248938918114, + -0.012745723128318787, + 0.09000204503536224, + -0.01131061464548111, + -0.00408023688942194, + 0.08427457511425018, + 0.03021332249045372, + -0.025550007820129395, + -0.05551968142390251, + -0.04676496610045433, + 0.01076146587729454, + 0.042087048292160034, + -0.08938419073820114, + -0.06806981563568115, + 0.0052156224846839905, + 0.023495769128203392, + -0.016163988038897514, + 0.03915276378393173, + 0.049200914800167084, + 0.01324817817658186, + 0.05049874633550644, + -0.07602536678314209, + 0.009448867291212082, + -0.12491156905889511, + -0.0672941654920578, + -0.018088815733790398, + -0.03395524621009827, + -0.001566180377267301, + 0.09039953351020813, + 0.008829125203192234, + 0.021368809044361115, + -0.01361086405813694, + -0.06383176892995834, + -0.06541204452514648, + 0.07006420195102692, + 0.06460034847259521, + 0.025414317846298218, + 0.053112201392650604, + 0.05500742793083191, + -0.03475232422351837, + 0.06942816823720932, + 0.06279851496219635, + 0.11005311459302902, + -0.022728553041815758, + 0.03446103632450104, + -0.061128031462430954, + 0.08493976294994354, + 0.0739341750741005, + -0.09063868224620819, + -0.09390824288129807, + -0.032900579273700714, + -0.06158585473895073, + 0.057387083768844604, + -0.02975746989250183, + -0.0012641990324482322, + 0.008109633810818195, + -0.008847979828715324, + -0.08933817595243454, + -0.08393734693527222, + 0.09103529155254364, + -0.0433959886431694, + -0.022728756070137024, + -0.0708194375038147, + 0.048191651701927185, + 0.09499004483222961, + 0.04553939402103424, + -0.02243354730308056, + 0.014007735066115856, + 0.05793747305870056, + -0.058781158179044724, + -0.006644446402788162, + 0.047453057020902634, + 0.015412582084536552, + -0.09625618159770966, + 0.008070964366197586, + -0.08590416610240936, + 0.0674610584974289, + -0.06626740097999573, + 0.16323433816432953, + -0.012062348425388336, + -0.06744888424873352, + -0.0719728171825409, + 0.058629315346479416, + -0.027350004762411118, + 0.032272979617118835, + 0.039434365928173065, + 0.06757237762212753, + 0.031247874721884727, + -0.06235533207654953, + 0.1072753369808197, + 0.032561205327510834, + -0.0334937646985054, + -0.05052363872528076, + -0.03174809366464615, + -0.0367119163274765, + 0.02287173829972744, + -0.0005507778259925544, + -0.08926013112068176, + -0.008259646594524384, + 0.023013412952423096, + -0.006786442827433348, + 0.05982303246855736, + 0.14092090725898743, + 0.06602182984352112, + -0.12202151119709015 + ] + }, + "p245_374.wav": { + "name": "p245", + "embedding": [ + 0.023449799045920372, + 0.09643372893333435, + -0.032250478863716125, + 0.005322292447090149, + -0.016022540628910065, + 0.0508054755628109, + -0.13578638434410095, + 0.09502934664487839, + -0.056720755994319916, + 0.1447373479604721, + -0.03489553555846214, + 0.09041651338338852, + -0.03130771964788437, + -0.1395520269870758, + -0.027699880301952362, + 0.05204661935567856, + -0.051412902772426605, + -0.02630513161420822, + -0.0019895657896995544, + -0.04401072859764099, + 0.046441029757261276, + 0.03166159242391586, + 0.011625888757407665, + -0.029704419896006584, + 0.004238383378833532, + 0.08030026406049728, + 0.005667436867952347, + 0.014578722417354584, + -0.0003715492784976959, + -0.06751219928264618, + -0.03447506204247475, + 0.09523941576480865, + -0.022197291254997253, + -0.008337460458278656, + 0.027852412313222885, + 0.009596243500709534, + 0.0008364307577721775, + -0.050223857164382935, + 0.000549623160623014, + 0.02582681179046631, + -0.0528397411108017, + 0.0737689957022667, + 0.023051604628562927, + -0.005195187404751778, + 0.05737006664276123, + -0.05281570181250572, + -0.02818243019282818, + -0.017421789467334747, + -0.06383350491523743, + 0.1298730969429016, + 0.10277587175369263, + -0.007928198203444481, + -0.0379345640540123, + -0.037560053169727325, + 0.08777811378240585, + 0.022373056039214134, + -0.1208801120519638, + -0.0252310112118721, + 0.04938438534736633, + 0.14853988587856293, + -0.011800747364759445, + -0.026561260223388672, + 0.03328322991728783, + 0.11597199738025665, + 0.012417681515216827, + 0.07975783944129944, + 0.08920113742351532, + 0.05056234821677208, + 0.02026141993701458, + -0.016240660101175308, + 0.03821743652224541, + 0.08321662247180939, + 0.03376757353544235, + -0.0201406367123127, + 0.03548591211438179, + -0.03312789648771286, + -0.033397823572158813, + -0.024128664284944534, + -0.011269854381680489, + -0.04666639864444733, + -0.050403352826833725, + -0.00040141059434972703, + 0.002832874422892928, + 0.03926333785057068, + 0.0014116069069132209, + 0.013494587503373623, + 0.028113186359405518, + -0.038565732538700104, + 0.038569074124097824, + 0.03380490094423294, + 0.028290167450904846, + 0.028291037306189537, + -0.050817154347896576, + -0.06457144021987915, + 0.02594846300780773, + 0.009456822648644447, + 0.030960887670516968, + 0.06504091620445251, + 0.03901662677526474, + 0.0018195733428001404, + 0.09513044357299805, + 0.04242563992738724, + 0.0013941613724455237, + -0.00964332651346922, + -0.08384327590465546, + 0.08617278188467026, + 0.09848646819591522, + -0.030436735600233078, + 0.04858040809631348, + -0.026909753680229187, + 0.037407875061035156, + 0.030659686774015427, + -0.12841413915157318, + -0.044140756130218506, + 0.029600482434034348, + 0.03816960006952286, + 0.0023257534485310316, + 0.10797127336263657, + 0.03385370224714279, + 0.02210618183016777, + 0.08123153448104858, + -0.06448104977607727, + -0.06887614727020264, + -0.09283602237701416, + 0.06871804594993591, + -0.09410824626684189, + 0.07797706127166748, + 0.05561335012316704, + 0.007313728332519531, + 0.008195910602807999, + 0.055985815823078156, + 0.008309325203299522, + -0.003935560584068298, + -0.01303067710250616, + -0.04327896237373352, + 0.004225160926580429, + -0.04742027074098587, + 0.03935592621564865, + 0.027425501495599747, + 0.008239563554525375, + 0.05436950549483299, + 0.002620019717141986, + -0.0037700410466641188, + -0.07606267184019089, + 0.004679839126765728, + 0.025717658922076225, + 0.03588217869400978, + -0.021849848330020905, + -0.041657865047454834, + 0.001358928857371211, + -0.07490625232458115, + -0.020749058574438095, + -0.045521121472120285, + 0.08894895762205124, + -0.0032843926455825567, + 0.0088884886354208, + 0.0840899869799614, + 0.01933881640434265, + -0.0074418894946575165, + -0.016723372042179108, + -0.009743014350533485, + 0.02282208763062954, + 0.04553689807653427, + -0.10854979604482651, + -0.07491825520992279, + -0.006919624283909798, + 0.01743520423769951, + 0.012150495313107967, + 0.03819242864847183, + 0.056162089109420776, + 0.00873025692999363, + 0.038402944803237915, + -0.022650912404060364, + 0.017682809382677078, + -0.09988783299922943, + -0.06519915908575058, + -0.031922828406095505, + -0.06194712966680527, + -0.03511340543627739, + 0.07849004864692688, + -0.007298754062503576, + 0.03678799793124199, + -0.01956704631447792, + -0.048037197440862656, + -0.053779806941747665, + 0.06473030894994736, + 0.07054997980594635, + 0.00425155321136117, + 0.017644930630922318, + 0.05806760489940643, + 0.006640546955168247, + 0.009750778786838055, + 0.041887760162353516, + 0.104054294526577, + -0.022354010492563248, + 0.0025161877274513245, + -0.08518111705780029, + 0.05406004935503006, + 0.09197567403316498, + -0.06775777041912079, + -0.06599339097738266, + -0.03665510565042496, + -0.07428398728370667, + 0.04573630914092064, + -0.0492304265499115, + 0.000265246257185936, + -0.008219039998948574, + -0.013596093282103539, + -0.10187450051307678, + -0.08742545545101166, + 0.0933118388056755, + -0.045064859092235565, + -0.01372772827744484, + -0.0618569515645504, + 0.04460422322154045, + 0.0685817301273346, + 0.05725841969251633, + -0.057626865804195404, + 0.027187949046492577, + 0.047102004289627075, + -0.04292602464556694, + 0.03270243853330612, + 0.025353293865919113, + 0.04611819237470627, + -0.09895791113376617, + -0.0016420434694737196, + -0.06781023740768433, + 0.05189454182982445, + -0.07250219583511353, + 0.09858774393796921, + 0.017517752945423126, + -0.050958409905433655, + -0.08054932951927185, + 0.05003558099269867, + -0.008419888094067574, + 0.029420314356684685, + 0.03812549635767937, + 0.07518221437931061, + 0.030836796388030052, + -0.06830979883670807, + 0.0732167661190033, + 0.02889445424079895, + 0.016833506524562836, + -0.048200011253356934, + -0.009828130714595318, + -0.03241066634654999, + 0.041101641952991486, + 0.006099475082010031, + -0.06915758550167084, + -0.006090696435421705, + 0.00019398207950871438, + 0.020913206040859222, + 0.06758694350719452, + 0.08900843560695648, + 0.02920929156243801, + -0.09521955251693726 + ] + }, + "p245_384.wav": { + "name": "p245", + "embedding": [ + 0.05566015467047691, + 0.11395697295665741, + 0.016208510845899582, + 0.01644066348671913, + -0.024002349004149437, + 0.054477911442518234, + -0.06622035056352615, + 0.08821912854909897, + 0.020203595981001854, + 0.07493787258863449, + -0.08233807235956192, + 0.07063636928796768, + -0.040873635560274124, + -0.1317119002342224, + -0.002980649471282959, + 0.0365707166492939, + -0.03391682356595993, + 0.007290172390639782, + -0.03264535591006279, + -0.028852222487330437, + -0.013985025696456432, + 0.010282794013619423, + 0.03223650902509689, + 0.0045434534549713135, + -0.0029877275228500366, + 0.027245599776506424, + -0.030182931572198868, + 0.013489204458892345, + -0.006926137953996658, + -0.0492633581161499, + -0.023077093064785004, + 0.07702772319316864, + -0.02443801425397396, + 0.0008054872741922736, + 0.014587613753974438, + -0.030850771814584732, + 0.010230448096990585, + -0.0658850222826004, + -0.04567558690905571, + 0.02418021485209465, + -0.043879434466362, + 0.051380373537540436, + 0.025394242256879807, + -0.042888231575489044, + 0.039149150252342224, + 0.0022595818154513836, + -0.04928196594119072, + -0.00761794438585639, + -0.09855502843856812, + 0.10403876006603241, + 0.033704712986946106, + 0.022440306842327118, + -0.06818641722202301, + -0.020435117185115814, + 0.1011800765991211, + -0.0034335616510361433, + -0.05934975668787956, + -0.009920991957187653, + 0.042349811643362045, + 0.08056049793958664, + 0.01637434959411621, + -0.020987948402762413, + 0.023552950471639633, + 0.07456541061401367, + 0.04375208169221878, + 0.04541177302598953, + 0.07541152834892273, + 0.10399436950683594, + -0.033417265862226486, + 0.027119828388094902, + 0.03373056650161743, + 0.011724199168384075, + 0.04241838678717613, + -0.012726284563541412, + -0.004522574134171009, + -0.017244575545191765, + -0.002019263803958893, + -0.009453907608985901, + -0.01497898530215025, + -0.04106542095541954, + 0.02151159942150116, + -0.022283729165792465, + 0.003852484282106161, + 0.011755655519664288, + -0.040615763515233994, + -0.009845077991485596, + 0.057101499289274216, + 0.03894852101802826, + 0.07229340076446533, + 0.03508644551038742, + 0.026812713593244553, + 0.07455843687057495, + -0.06594584882259369, + -0.06658811867237091, + 0.014251867309212685, + -0.004513641819357872, + 0.034751296043395996, + 0.04799506068229675, + 0.03846416622400284, + -0.016666464507579803, + 0.10123103857040405, + 0.00968961976468563, + 0.026942379772663116, + 0.0037530555855482817, + -0.06388043612241745, + 0.042672865092754364, + 0.06472232192754745, + -0.012896097265183926, + 0.06440748274326324, + 0.01062367670238018, + 0.06981091946363449, + 0.06846883147954941, + -0.07536599785089493, + -0.014261203818023205, + -0.003836844116449356, + 0.031877219676971436, + 0.0012222162913531065, + 0.10023045539855957, + -0.003363877534866333, + 0.036561690270900726, + 0.08934098482131958, + -0.059772785753011703, + 0.0007901564240455627, + 0.030527103692293167, + 0.0047083026729524136, + -0.03602129593491554, + 0.045893482863903046, + 0.02402573451399803, + -0.018750881776213646, + -0.01842883974313736, + 0.04225537180900574, + 0.009178774431347847, + -0.002205016789957881, + -0.023625221103429794, + -0.014965901151299477, + 0.0016625039279460907, + 0.0035599893890321255, + 7.717932749073952e-05, + 0.027427583932876587, + 0.04772336408495903, + 0.012440296821296215, + 0.006515865679830313, + -0.04017090052366257, + -0.06528477370738983, + 0.024902252480387688, + 0.0067955926060676575, + 0.025829432532191277, + 0.03323550522327423, + -0.02986619435250759, + -0.04087820276618004, + -0.027270019054412842, + 0.062224578112363815, + -0.025220494717359543, + 0.06402501463890076, + 0.04003491252660751, + -0.010010424070060253, + 0.07204889506101608, + 0.03619522601366043, + 0.013378968462347984, + -0.04099726676940918, + -0.07827086746692657, + -0.004374640993773937, + 0.042702071368694305, + -0.07098110020160675, + -0.034417614340782166, + -0.012448584660887718, + -0.024141617119312286, + -0.01612934097647667, + 0.01713244616985321, + 0.06172192841768265, + -0.01600707694888115, + 0.012988138012588024, + -0.07074102759361267, + 0.015045110136270523, + -0.044114768505096436, + -0.08719181269407272, + 0.035293471068143845, + 0.0063250502571463585, + 0.009485555812716484, + 0.07353170216083527, + 0.015584670007228851, + 0.00660300999879837, + -0.036142997443675995, + -0.051705487072467804, + -0.00463007902726531, + 0.04233451187610626, + 0.026176786050200462, + -0.0022782832384109497, + 0.03917685151100159, + 0.05707709491252899, + -0.016167620196938515, + 0.0413212776184082, + 0.02133442834019661, + 0.0711769312620163, + -0.043713055551052094, + 0.01626548171043396, + -0.005085880868136883, + 0.06328696012496948, + 0.06897328048944473, + -0.0725037008523941, + -0.10481145977973938, + -0.04440099745988846, + -0.044441476464271545, + 0.031490959227085114, + -0.009176194667816162, + 0.0003801745770033449, + 0.03060680627822876, + -0.018050074577331543, + -0.03994433581829071, + -0.11339092254638672, + 0.05120830237865448, + -0.017044490203261375, + -0.007945175282657146, + -0.053484879434108734, + 0.03012763522565365, + 0.028895672410726547, + 0.031500112265348434, + -0.027842644602060318, + 0.022633550688624382, + 0.03358602151274681, + -0.005996193736791611, + -0.020609170198440552, + 0.03077751025557518, + 0.035197652876377106, + -0.04148676618933678, + -0.026999717578291893, + -0.05664321780204773, + 0.059217438101768494, + 0.01310439221560955, + 0.10835233330726624, + 0.03155405446887016, + -0.01899263821542263, + -0.07134135067462921, + 0.05220211669802666, + -0.025549456477165222, + 0.04190117120742798, + 0.008280213922262192, + 0.03209483623504639, + 0.047817789018154144, + -0.0439918115735054, + 0.07255464047193527, + 0.025607986375689507, + -0.028876788914203644, + -0.03586782515048981, + 0.0011342864017933607, + -0.05578766390681267, + 0.0039499131962656975, + 0.000495461979880929, + -0.05514378473162651, + -0.01818789914250374, + 0.024498112499713898, + 0.042953379452228546, + 0.05583646148443222, + 0.08736936748027802, + 0.05355657637119293, + -0.04766364023089409 + ] + }, + "p245_311.wav": { + "name": "p245", + "embedding": [ + 0.051357634365558624, + 0.08640292286872864, + -0.023266131058335304, + 0.02229953557252884, + -0.06447425484657288, + 0.07222622632980347, + -0.13573625683784485, + 0.1333259791135788, + -0.04352742061018944, + 0.14977094531059265, + -0.05300269275903702, + 0.11877299845218658, + -0.01130568515509367, + -0.17859090864658356, + -0.04289994761347771, + 0.0334707610309124, + -0.03931748867034912, + -0.039801016449928284, + -0.04093143343925476, + -0.03651154786348343, + 0.036497943103313446, + 0.05618300288915634, + 0.015927409753203392, + 0.009223002940416336, + 0.04482416808605194, + 0.05732090026140213, + -0.009629062376916409, + 0.03104410693049431, + 0.005513321608304977, + -0.07702966779470444, + -0.038203924894332886, + 0.0964803695678711, + -0.06254828721284866, + 0.029088163748383522, + 0.028710223734378815, + -0.010501404292881489, + 0.010291682556271553, + -0.06586772203445435, + -0.03337614983320236, + 0.027852701023221016, + -0.03957948088645935, + 0.08354207873344421, + 0.03790400177240372, + -0.0027799096424132586, + 0.029529694467782974, + 0.006164429243654013, + -0.0006938234437257051, + -0.05417706072330475, + -0.09687276184558868, + 0.1767762005329132, + 0.05619187653064728, + -0.007181104738265276, + -0.06980688869953156, + -0.0776086151599884, + 0.11143673956394196, + -0.016323860734701157, + -0.1179150640964508, + -0.02359612286090851, + 0.06593306362628937, + 0.15822909772396088, + -0.029200537130236626, + -0.056219637393951416, + 0.025904085487127304, + 0.12358596920967102, + 0.055603161454200745, + 0.06216292828321457, + 0.09565773606300354, + 0.10930820554494858, + -0.02649831771850586, + -0.0010681552812457085, + 0.05225870758295059, + 0.07488647103309631, + 0.052707020193338394, + -0.021133607253432274, + 0.023522090166807175, + 0.003000113647431135, + -0.014402510598301888, + -0.0042637246660888195, + -0.023517247289419174, + -0.006714884657412767, + -0.016419006511569023, + 0.016467660665512085, + 0.010034924373030663, + 0.03235607594251633, + -0.038288574665784836, + 0.046929627656936646, + 0.028022320941090584, + -0.018424823880195618, + 0.06956097483634949, + 0.047474659979343414, + 0.0226121935993433, + 0.06090710312128067, + -0.08389033377170563, + -0.0798303559422493, + 0.035781875252723694, + 0.007912063039839268, + 0.02175053581595421, + 0.07769251614809036, + 0.04378724843263626, + -0.01348889246582985, + 0.12146754562854767, + 0.044603876769542694, + -0.012466082349419594, + 0.007494073361158371, + -0.09475603699684143, + 0.11331655085086823, + 0.09762737154960632, + -0.019908040761947632, + 0.06147930026054382, + -0.056610412895679474, + 0.08070899546146393, + 0.05401461198925972, + -0.14500020444393158, + -0.08816921710968018, + 0.040170855820178986, + 0.030931632965803146, + -0.005460510030388832, + 0.131168395280838, + -0.011465403251349926, + 0.044736944139003754, + 0.08541398495435715, + -0.08328656852245331, + -0.03487028554081917, + -0.027626361697912216, + 0.06220778077840805, + -0.07433606684207916, + 0.053497716784477234, + 0.0505019947886467, + -0.019700603559613228, + 0.013632059097290039, + 0.06955055147409439, + -0.008388577029109001, + 0.005705136340111494, + 0.004309090785682201, + -0.037476446479558945, + 0.02089506760239601, + -0.004578168969601393, + 0.001466446090489626, + 0.043698713183403015, + 0.03842398524284363, + 0.054924771189689636, + -0.006294566672295332, + -0.037312932312488556, + -0.11995771527290344, + 0.026603087782859802, + 0.027026604861021042, + 0.07196778059005737, + -0.022917944937944412, + -0.02381109818816185, + -0.04027148336172104, + -0.07303570210933685, + 0.02255737967789173, + -0.003647993318736553, + 0.09252651035785675, + -0.011052945628762245, + 0.010942134074866772, + 0.10676807165145874, + 0.04383505508303642, + -0.01471814326941967, + -0.02746441960334778, + -0.029986966401338577, + -0.017777137458324432, + 0.06124287098646164, + -0.07759775966405869, + -0.07165796309709549, + -0.007651845924556255, + 0.025621674954891205, + -0.01494077779352665, + 0.07042072713375092, + 0.04821113869547844, + 0.01670840196311474, + 0.04153861105442047, + -0.07673287391662598, + 0.0016940627247095108, + -0.10998199135065079, + -0.06242836266756058, + -0.008893463760614395, + -0.022390324622392654, + -0.023218736052513123, + 0.09397567808628082, + 0.03106657788157463, + 0.05410348251461983, + -0.02080501988530159, + -0.060123544186353683, + -0.06440001726150513, + 0.05380197614431381, + 0.053523868322372437, + -0.0066789621487259865, + 0.027786459773778915, + 0.06938782334327698, + -0.0177437923848629, + 0.06584183126688004, + 0.08010941743850708, + 0.08836636692285538, + -0.03083617426455021, + 0.04386240243911743, + -0.06199156492948532, + 0.10994042456150055, + 0.06841009855270386, + -0.0839373916387558, + -0.09480857849121094, + -0.035347942262887955, + -0.07720832526683807, + 0.030661912634968758, + -0.02123548835515976, + 0.026769477874040604, + 0.018754659220576286, + 0.0011099257972091436, + -0.09803085029125214, + -0.08783013373613358, + 0.08327104151248932, + -0.057306498289108276, + -0.00015311618335545063, + -0.09112933278083801, + 0.04500465840101242, + 0.11834831535816193, + 0.05302465707063675, + -0.012607109732925892, + -0.013908649794757366, + 0.05101641267538071, + -0.023482875898480415, + 0.0057307276874780655, + 0.060634415596723557, + 0.02579566463828087, + -0.10661022365093231, + -0.0024223041255027056, + -0.06767679005861282, + 0.06707805395126343, + -0.04907575249671936, + 0.15105122327804565, + 0.01744437776505947, + -0.06619874387979507, + -0.07671445608139038, + 0.0547390878200531, + -0.023104017600417137, + 0.050892770290374756, + 0.02182084694504738, + 0.06905778497457504, + 0.05052930861711502, + -0.05335437133908272, + 0.10176366567611694, + 0.05871710553765297, + -0.050939638167619705, + -0.06275615096092224, + -0.05191664397716522, + -0.011560317128896713, + 0.03879278153181076, + 0.011536180973052979, + -0.07817871868610382, + -0.011468037962913513, + 0.026277780532836914, + -0.009750363416969776, + 0.06902795284986496, + 0.1414240151643753, + 0.0844682902097702, + -0.13844546675682068 + ] + }, + "p245_276.wav": { + "name": "p245", + "embedding": [ + 0.07513131946325302, + 0.02545362338423729, + -0.0007975666667334735, + 0.0007347576320171356, + -0.014446436427533627, + -0.0018529929220676422, + -0.1630624234676361, + 0.12214868515729904, + -0.001670363126322627, + 0.07535199820995331, + -0.051437895745038986, + 0.09921683371067047, + 0.013241864740848541, + -0.15327613055706024, + -0.021063577383756638, + 0.04479089006781578, + -0.005546256899833679, + -0.015442103147506714, + -0.022954702377319336, + -0.03150840848684311, + 0.020176153630018234, + 0.06058849021792412, + 0.031246734783053398, + -0.019195646047592163, + 0.025389356538653374, + 0.05622461438179016, + 0.015163104049861431, + 0.03469700366258621, + -0.01221897266805172, + -0.009008258581161499, + 0.01926465332508087, + 0.061990123242139816, + -0.028483707457780838, + -0.032817672938108444, + 0.03926622122526169, + -0.0018425974994897842, + -0.0015973140252754092, + -0.08711747825145721, + -0.03546024113893509, + 0.015213991515338421, + -0.06350058317184448, + 0.08013074845075607, + 0.05164342746138573, + -0.03413361310958862, + 0.03368685394525528, + 0.025439295917749405, + 0.011682569049298763, + -0.064358189702034, + -0.1342936009168625, + 0.151157945394516, + 0.014985228888690472, + 0.06193343922495842, + -0.11136561632156372, + -0.018629081547260284, + 0.07343872636556625, + -0.02206953428685665, + -0.02288104221224785, + -0.04405027627944946, + 0.04169435799121857, + 0.13684767484664917, + -0.019486747682094574, + -0.0519028902053833, + 0.06259241700172424, + 0.07143506407737732, + 0.06255485862493515, + 0.016289565712213516, + 0.12722131609916687, + 0.0883333832025528, + -0.02125145122408867, + 0.006384031381458044, + 0.02852659486234188, + 0.06598511338233948, + 0.02192794531583786, + -0.007386332377791405, + 0.013409084640443325, + 0.018812738358974457, + -0.03646520525217056, + -0.022810813039541245, + -0.021267544478178024, + -0.024511411786079407, + 0.01405554823577404, + 0.02284611389040947, + 0.02818315289914608, + 0.06552787125110626, + -0.06397907435894012, + 0.05365968868136406, + 0.0382208451628685, + -0.025596462190151215, + 0.06153101846575737, + 0.027358587831258774, + 0.007291970308870077, + 0.01601489633321762, + -0.07241231948137283, + -0.07202789932489395, + 0.011328734457492828, + -0.0033673529978841543, + 0.015303499065339565, + 0.040278173983097076, + 0.03942414000630379, + -0.0285886712372303, + 0.11708387732505798, + 0.025230389088392258, + -0.01589309796690941, + 0.0013176712673157454, + -0.05587373673915863, + 0.08489914983510971, + 0.09609320014715195, + -0.023247260600328445, + 0.04496036469936371, + -0.05696377158164978, + -0.011959615163505077, + 0.04828553646802902, + -0.10010834783315659, + -0.06327567249536514, + 0.05855641886591911, + 0.03563724085688591, + 0.045757003128528595, + 0.1486397087574005, + 0.012655029073357582, + 0.0502140074968338, + 0.08141949772834778, + -0.08284391462802887, + -0.05485440418124199, + 0.004507214762270451, + 0.04715452343225479, + -0.05526868253946304, + 0.06577930599451065, + 0.05322889983654022, + 0.006675058510154486, + -0.016785262152552605, + 0.056993406265974045, + 0.011212694458663464, + -0.00012188901746412739, + -0.06596982479095459, + 0.036848943680524826, + 0.05157247930765152, + -0.005241219885647297, + -0.043959300965070724, + 0.025657981634140015, + 0.059320058673620224, + 0.014650347642600536, + 0.04271932691335678, + -0.05382728576660156, + -0.1463930308818817, + -0.008406261913478374, + 0.041148796677589417, + 0.08537115156650543, + -0.032415278255939484, + -0.04834642633795738, + -0.07863584160804749, + -0.023011289536952972, + -0.029490754008293152, + -0.001999839209020138, + 0.057922668755054474, + 0.008890870027244091, + 0.017409829422831535, + 0.07651060819625854, + -0.017208917066454887, + 0.04339132830500603, + 0.01516370102763176, + 0.002494536340236664, + 0.008127131499350071, + 0.028701579198241234, + -0.0042880079708993435, + -0.08832081407308578, + -0.03724939376115799, + 0.023126747459173203, + -0.01982273906469345, + 0.027472496032714844, + 0.007182744797319174, + -0.002531040459871292, + -0.008446760475635529, + -0.10211595147848129, + 0.029691239818930626, + -0.09596455097198486, + -0.029073771089315414, + 0.03172459453344345, + 0.0033631238620728254, + -0.026961371302604675, + 0.07979995012283325, + 0.04175744205713272, + 0.07449490576982498, + -0.042166538536548615, + -0.07729753851890564, + -0.053343381732702255, + 0.012318165972828865, + 0.06639628112316132, + -0.03494974225759506, + -0.002078404650092125, + 0.009801940992474556, + 0.02757570892572403, + 0.04453955590724945, + 0.058736201375722885, + 0.04062897711992264, + -0.01466267928481102, + -0.039879556745290756, + -0.008759453892707825, + 0.12539933621883392, + 0.048204414546489716, + -0.0434136837720871, + -0.04680304974317551, + 0.0005535235395655036, + -0.07774858176708221, + -0.000574390112888068, + 0.03343776613473892, + 0.04662688076496124, + 0.05060954391956329, + -0.01016424410045147, + -0.11285319179296494, + -0.06839986145496368, + 0.015341583639383316, + -0.060285188257694244, + -0.0014953764621168375, + -0.05849572271108627, + 0.029280435293912888, + 0.10980862379074097, + 0.015062114223837852, + 0.027394801378250122, + -0.0706247091293335, + -0.036756765097379684, + -0.046370141208171844, + -0.019908517599105835, + 0.02065538987517357, + 0.045064907521009445, + -0.08134107291698456, + 0.006947098299860954, + -0.06597991287708282, + 0.06346414983272552, + -0.01968800649046898, + 0.08218702673912048, + 0.040747594088315964, + -0.05304236710071564, + -0.10162591189146042, + -0.020573318004608154, + -0.011410156264901161, + 0.07832687348127365, + 0.02096492424607277, + 0.039235204458236694, + 0.04070473089814186, + -0.07032576948404312, + 0.06468284130096436, + 0.07685994356870651, + -0.046594396233558655, + -0.07684477418661118, + -0.054644010961055756, + -0.0035267286002635956, + 0.03640913590788841, + -0.004815790336579084, + -0.011477336287498474, + -0.004399165511131287, + 0.02710307203233242, + -0.008676138706505299, + 0.0436553955078125, + 0.09508110582828522, + 0.01512140966951847, + -0.11000603437423706 + ] + }, + "p245_119.wav": { + "name": "p245", + "embedding": [ + 0.041035328060388565, + 0.1171216368675232, + -0.01179348025470972, + 0.03046359308063984, + -0.04702170193195343, + 0.09453181177377701, + -0.10668397694826126, + 0.12248910963535309, + -0.08323294669389725, + 0.14492663741111755, + -0.09888210147619247, + 0.10447487235069275, + -0.05675545334815979, + -0.1498221755027771, + -0.05997239425778389, + 0.05494444817304611, + -0.06274647265672684, + -0.023233912885189056, + -0.04553444683551788, + -0.005147829651832581, + 0.03341696783900261, + 0.012462028302252293, + 0.025516755878925323, + 0.022354155778884888, + 0.027508899569511414, + 0.06286543607711792, + 0.001179900486022234, + 0.048382315784692764, + 0.022447364404797554, + -0.050107475370168686, + -0.040904365479946136, + 0.12279647588729858, + -0.04318425804376602, + 0.014436806552112103, + 0.05204117298126221, + 0.019102005288004875, + 0.006252304185181856, + -0.06737777590751648, + -0.0053457641042768955, + -0.021111296489834785, + -0.04827390983700752, + 0.06416188925504684, + 0.00558291282504797, + -0.004469968844205141, + 0.028955701738595963, + 0.006233080290257931, + -0.019877638667821884, + -0.04545636475086212, + -0.09355872869491577, + 0.15283310413360596, + 0.07247988134622574, + -0.002529071643948555, + -0.07150186598300934, + -0.07887449860572815, + 0.10880424082279205, + -0.007559535093605518, + -0.12024316191673279, + -0.04662764444947243, + 0.07981253415346146, + 0.17828938364982605, + -0.02430693805217743, + -0.01474565640091896, + 0.010893961414694786, + 0.12074629962444305, + 0.044923555105924606, + 0.10954049229621887, + 0.06623528152704239, + 0.08859512209892273, + 0.017126547172665596, + 0.031472571194171906, + 0.07967846095561981, + 0.0410277396440506, + 0.05896005779504776, + -0.021644819527864456, + 0.03180265426635742, + -0.01761065609753132, + -0.01831923797726631, + 0.032657016068696976, + -0.02466539293527603, + -0.03449594974517822, + -0.030181854963302612, + 0.00802590325474739, + -0.004851335193961859, + 0.005722460336983204, + -0.021320605650544167, + 0.05398112162947655, + 0.009338266216218472, + -0.0218175258487463, + 0.07274986803531647, + 0.051705602556467056, + -0.002791539765894413, + 0.05145624279975891, + -0.05410643666982651, + -0.0874621570110321, + 0.01553080789744854, + 0.0018303999677300453, + 0.010888876393437386, + 0.07250514626502991, + 0.03416242077946663, + -0.015027493238449097, + 0.0963885635137558, + 0.052156828343868256, + 0.018163956701755524, + 0.02427164651453495, + -0.1131306141614914, + 0.12617751955986023, + 0.0781724825501442, + -0.02230972982943058, + 0.028605753555893898, + -0.0042348201386630535, + 0.07369662076234818, + 0.09680469334125519, + -0.1422722339630127, + -0.07125332206487656, + 0.022511953487992287, + -0.007162821479141712, + -0.008128483779728413, + 0.07181699573993683, + -0.0035393889993429184, + 0.0033530760556459427, + 0.09313615411520004, + -0.07921084761619568, + -0.06184364855289459, + -0.03161986917257309, + 0.045311339199543, + -0.07356663048267365, + 0.043095991015434265, + 0.04346722364425659, + 0.001474400283768773, + -0.01761433854699135, + 0.08378525078296661, + -0.010551784187555313, + -0.015932224690914154, + 0.042461566627025604, + -0.05689840763807297, + 0.02786139026284218, + -0.037262171506881714, + 0.0036523835733532906, + 0.04492847993969917, + 0.05050475895404816, + 0.04371700435876846, + -0.007069278042763472, + -0.009565704502165318, + -0.0784645527601242, + -0.0012035290710628033, + 0.06865569949150085, + 0.05565640330314636, + -0.008396778255701065, + -0.013615313917398453, + -0.03218509256839752, + -0.056504637002944946, + 0.02951989322900772, + -0.011214896105229855, + 0.09775665402412415, + -0.01146942563354969, + -0.005394458770751953, + 0.10931695997714996, + 0.005259362049400806, + -0.009987985715270042, + -0.07161106169223785, + -0.006231918931007385, + 0.03999503329396248, + 0.05255555734038353, + -0.06762631237506866, + -0.07490804046392441, + 0.02168220467865467, + 0.023013144731521606, + -0.019276540726423264, + 0.04656728357076645, + 0.042168669402599335, + 0.004543937277048826, + 0.031079240143299103, + -0.05665223300457001, + 0.02340463176369667, + -0.0977492481470108, + -0.04623570665717125, + -0.01847703568637371, + -0.05729732662439346, + -0.01188218966126442, + 0.0690579041838646, + 0.02865620329976082, + 0.02114933356642723, + 0.013684026896953583, + -0.0934654101729393, + -0.06491606682538986, + 0.07864168286323547, + 0.0688200294971466, + 0.018624501302838326, + 0.05195033177733421, + 0.06353733688592911, + -0.024179628118872643, + 0.050453878939151764, + 0.07028040289878845, + 0.1048823893070221, + -0.022610560059547424, + -0.0059287287294864655, + -0.07370325177907944, + 0.05497792363166809, + 0.07311097532510757, + -0.11497239768505096, + -0.08855105191469193, + -0.035394515842199326, + -0.04312887787818909, + 0.04550495371222496, + -0.0346343070268631, + 0.013257147744297981, + 0.03421206399798393, + -0.04018382728099823, + -0.08878929913043976, + -0.1068856343626976, + 0.1229618713259697, + -0.06971406936645508, + -0.022279294207692146, + -0.06242777034640312, + 0.04196704179048538, + 0.06394918262958527, + 0.03370310366153717, + -0.0312601774930954, + 0.03787950053811073, + 0.04882405698299408, + -0.06794276833534241, + -0.02030945010483265, + 0.03759439289569855, + -0.00434664823114872, + -0.10304947197437286, + 0.022803107276558876, + -0.08713734149932861, + 0.09344163537025452, + -0.06279364228248596, + 0.17406919598579407, + -0.029436789453029633, + -0.048017099499702454, + -0.08457805216312408, + 0.04212973266839981, + -0.036227550357580185, + 0.03667278587818146, + 0.039252158254384995, + 0.07407870888710022, + 0.00952131673693657, + -0.05543564260005951, + 0.11899800598621368, + 0.021641097962856293, + -0.0313698872923851, + -0.06194864958524704, + -0.0465119443833828, + -0.058486443012952805, + 0.010606616735458374, + -0.008879156783223152, + -0.09011583030223846, + 0.003236854914575815, + 0.012624252587556839, + -0.015175329521298409, + 0.0782565027475357, + 0.1355554461479187, + 0.07503320276737213, + -0.0978284627199173 + ] + }, + "p245_183.wav": { + "name": "p245", + "embedding": [ + 0.04004361480474472, + 0.1142340749502182, + 0.01573406346142292, + 0.008702335879206657, + -0.026102041825652122, + 0.01421207096427679, + -0.05444011092185974, + 0.09331192076206207, + 0.030600570142269135, + 0.06351393461227417, + -0.08533996343612671, + 0.07840592414140701, + -0.06860426068305969, + -0.10734489560127258, + 0.008671983145177364, + 0.035235267132520676, + -0.037064485251903534, + -0.006941264029592276, + -0.020846206694841385, + -0.04411144182085991, + -0.019091255962848663, + 0.01464475691318512, + 0.023537633940577507, + 0.02783234789967537, + -0.0023410916328430176, + 0.05802048742771149, + -0.022554244846105576, + 0.002357428427785635, + -0.009786895476281643, + -0.0505397766828537, + -0.01694747619330883, + 0.03900054097175598, + -0.03462659940123558, + -0.012639855965971947, + -4.806742072105408e-05, + -0.032658763229846954, + 0.014093822799623013, + -0.0402003675699234, + -0.046144478023052216, + 0.03959941864013672, + -0.0663345605134964, + 0.051373012363910675, + 0.0051093799993395805, + -0.06451612710952759, + 0.031120896339416504, + 0.02127220295369625, + -0.02785540372133255, + -0.009320992045104504, + -0.11060484498739243, + 0.10683252662420273, + 0.042785607278347015, + 0.01784227229654789, + -0.05954263359308243, + -0.02501940354704857, + 0.08733145892620087, + -0.0021991929970681667, + -0.03732706606388092, + -0.0202924907207489, + 0.02913406305015087, + 0.04478723928332329, + 0.002322676358744502, + -0.03601595014333725, + 0.029787488281726837, + 0.06767427176237106, + 0.06451044231653214, + 0.028775891289114952, + 0.06827805936336517, + 0.08838818967342377, + -0.0701795443892479, + 0.001795570133253932, + 0.05021118372678757, + 0.020627638325095177, + 0.06979973614215851, + 0.005090269260108471, + -0.02057863026857376, + 0.0007662351126782596, + 0.009133713319897652, + -0.009617729112505913, + 0.009377913549542427, + -0.043493762612342834, + 0.017148837447166443, + -0.02034933678805828, + -0.01801767572760582, + 0.00206182524561882, + -0.020618274807929993, + 0.006135655101388693, + 0.07763402909040451, + 0.0382198840379715, + 0.08375623822212219, + 0.02762819454073906, + 0.012393539771437645, + 0.09375175088644028, + -0.07711796462535858, + -0.040032483637332916, + 0.006372353993356228, + -0.024415001273155212, + 0.04663130268454552, + 0.058602865785360336, + 0.054348163306713104, + -0.007863905280828476, + 0.10615401715040207, + 0.01535364892333746, + 0.032873425632715225, + -0.006063016131520271, + -0.06522908806800842, + 0.05220669507980347, + 0.0654420554637909, + -0.04212576150894165, + 0.04679134488105774, + 0.04497436434030533, + 0.04629715532064438, + 0.06347309052944183, + -0.06397742033004761, + -0.013589812442660332, + -0.019445527344942093, + 0.035097844898700714, + -0.005463359411805868, + 0.08890075981616974, + -0.015350909903645515, + 0.03926539421081543, + 0.1120821163058281, + -0.059573426842689514, + -0.00844486616551876, + 0.025637462735176086, + -0.006960737518966198, + -0.057128291577100754, + 0.05967188999056816, + 0.036719538271427155, + -0.0010291710495948792, + 0.011213904246687889, + 0.05888380855321884, + 0.0024499837309122086, + -0.0001847290841396898, + -0.037351541221141815, + -0.006991258822381496, + -0.026712220162153244, + 0.008545072749257088, + -0.008541903458535671, + 0.03254855424165726, + 0.05428321287035942, + 0.010814297012984753, + 0.02313941717147827, + -0.026378391310572624, + -0.08601202815771103, + 0.047178126871585846, + 0.015321163460612297, + 0.021147971972823143, + 0.03083699196577072, + -0.04194445535540581, + -0.03578154370188713, + -0.01372518204152584, + 0.029537610709667206, + -0.0041631124913692474, + 0.05572943389415741, + -0.0008132308721542358, + -0.0012410444905981421, + 0.07629962265491486, + 0.04363131523132324, + 0.014784732833504677, + -0.030621131882071495, + -0.08758185803890228, + -0.009393461048603058, + 0.036248113960027695, + -0.06479854881763458, + -0.07270146161317825, + -0.035207197070121765, + -0.009832712821662426, + 0.01271092426031828, + 0.045438237488269806, + 0.06104039400815964, + -0.02665194869041443, + -0.002569361124187708, + -0.06129225343465805, + 0.0247060414403677, + -0.01936211995780468, + -0.09773583710193634, + 0.018274758011102676, + 0.0011608017375692725, + 0.003764840541407466, + 0.052485670894384384, + -0.0030179969035089016, + 0.02800317108631134, + -0.04018954560160637, + -0.057796746492385864, + -0.014679154381155968, + 0.02069707028567791, + 0.02277674898505211, + -0.001057436689734459, + 0.031517356634140015, + 0.07840427756309509, + -0.01953011006116867, + 0.04013515263795853, + 0.011267222464084625, + 0.08430679887533188, + -0.05262231081724167, + 0.023029936477541924, + 0.01687745377421379, + 0.03873715549707413, + 0.048860371112823486, + -0.07173056900501251, + -0.07870382815599442, + -0.062005363404750824, + -0.05009894073009491, + 0.03723980486392975, + 0.0012853461084887385, + 0.02723969891667366, + 0.025289051234722137, + -0.005822490435093641, + -0.00565047562122345, + -0.10714810341596603, + 0.03927227854728699, + -0.0018325697164982557, + -0.005222877021878958, + -0.05847787857055664, + 0.02401411533355713, + 0.02280975691974163, + 0.052191611379384995, + -0.00558630283921957, + 0.01785661280155182, + 0.01825030893087387, + 0.032320376485586166, + -0.016544198617339134, + 0.05133195221424103, + 0.0547487698495388, + -0.0240594781935215, + -0.04512994736433029, + -0.0745638757944107, + 0.07238838076591492, + 0.023735735565423965, + 0.08931230753660202, + 0.03413977846503258, + -0.008464518934488297, + -0.08797469735145569, + 0.03390021622180939, + -0.02840748056769371, + 0.04909130930900574, + 0.005772958509624004, + 0.026611965149641037, + 0.053455837070941925, + -0.018304210156202316, + 0.08503516763448715, + 0.04462161287665367, + -0.03644011169672012, + -0.02813814952969551, + -0.02026468515396118, + -0.05901561304926872, + 0.000768480240367353, + 0.014603976160287857, + -0.04559175670146942, + -0.01959086023271084, + 0.013073625974357128, + 0.050295960158109665, + 0.057487405836582184, + 0.09151953458786011, + 0.04710816591978073, + -0.0457567498087883 + ] + }, + "p245_225.wav": { + "name": "p245", + "embedding": [ + 0.051310356706380844, + 0.0834568589925766, + -0.007183582987636328, + 0.024922311305999756, + -0.05904063582420349, + 0.05854015052318573, + -0.12535451352596283, + 0.13923655450344086, + -0.048962414264678955, + 0.13454389572143555, + -0.08436745405197144, + 0.12003946304321289, + -0.018191056326031685, + -0.18622538447380066, + -0.04205184429883957, + 0.05584371089935303, + -0.05870799347758293, + -0.03711184859275818, + -0.04091525822877884, + -0.024240415543317795, + 0.04846750944852829, + 0.046098366379737854, + 0.02297571860253811, + 0.023305930197238922, + 0.0161106176674366, + 0.0672079548239708, + 0.006895146332681179, + 0.05087154358625412, + 0.025754354894161224, + -0.05391912907361984, + -0.04346948117017746, + 0.10569560527801514, + -0.029959870502352715, + 0.012836702167987823, + 0.05633143335580826, + -0.008604303002357483, + 0.007666845805943012, + -0.0707116574048996, + -0.03749518841505051, + 0.002286672592163086, + -0.046102285385131836, + 0.0695449560880661, + 0.03421386331319809, + -0.0005849180743098259, + 0.04492742940783501, + 0.026415377855300903, + -0.02220986597239971, + -0.06214544177055359, + -0.10468965023756027, + 0.1593395471572876, + 0.08075140416622162, + 0.0007237071986310184, + -0.056593798100948334, + -0.06586285680532455, + 0.11136949062347412, + -0.023772722110152245, + -0.12023966014385223, + -0.032618336379528046, + 0.08353757858276367, + 0.1662822961807251, + -0.03776085376739502, + -0.03253000229597092, + 0.02880828082561493, + 0.12897907197475433, + 0.04153900220990181, + 0.09347943961620331, + 0.0847809910774231, + 0.09913381934165955, + -0.013993805274367332, + 0.02056264504790306, + 0.06070602685213089, + 0.075182244181633, + 0.050415150821208954, + -0.011057760566473007, + 0.028329208493232727, + 0.019188813865184784, + -0.024003982543945312, + 0.013095136731863022, + -0.03203959763050079, + 0.0020693736150860786, + -0.016150690615177155, + 0.015914611518383026, + 0.00934388767927885, + 0.004301947541534901, + -0.021690620109438896, + 0.07170313596725464, + 0.012773110531270504, + 0.0011356908362358809, + 0.062143921852111816, + 0.024439770728349686, + 0.009733228944242, + 0.06504429131746292, + -0.0682581290602684, + -0.09829120337963104, + 0.02016337215900421, + 0.004274268634617329, + 0.021691270172595978, + 0.07123589515686035, + 0.0369928702712059, + -0.02347165159881115, + 0.12361294031143188, + 0.048631519079208374, + -0.010325217619538307, + 0.03487465903162956, + -0.1055663675069809, + 0.11801376193761826, + 0.08848124742507935, + -0.024073978886008263, + 0.044693246483802795, + -0.05175858736038208, + 0.09415145218372345, + 0.06779108941555023, + -0.14691698551177979, + -0.07015042752027512, + 0.03770233690738678, + 0.021970687434077263, + -0.01646597310900688, + 0.11501292884349823, + -0.022866234183311462, + 0.03493736684322357, + 0.10662199556827545, + -0.07663226872682571, + -0.04691013693809509, + -0.02115100994706154, + 0.04523073136806488, + -0.08182382583618164, + 0.05350396782159805, + 0.042129211127758026, + -0.008851347491145134, + 0.010719409212470055, + 0.08423992991447449, + -0.018655668944120407, + -0.017582222819328308, + 0.016056731343269348, + -0.053253501653671265, + 0.022326787933707237, + -0.03952012211084366, + -0.0036005841102451086, + 0.04588611051440239, + 0.05219850689172745, + 0.0284300334751606, + 0.0018955932464450598, + -0.04513990506529808, + -0.11290672421455383, + 0.013492641970515251, + 0.021745748817920685, + 0.07653792947530746, + 0.0019345910986885428, + -0.016105739399790764, + -0.04283713549375534, + -0.06032940745353699, + 0.010123149491846561, + -0.014821472577750683, + 0.06825020164251328, + -0.025392016395926476, + 0.009346231818199158, + 0.08582484722137451, + 0.018835386261343956, + -0.002730567706748843, + -0.05414818227291107, + -0.03663495182991028, + 0.014556418173015118, + 0.050860535353422165, + -0.07009952515363693, + -0.06716781109571457, + 0.009577251970767975, + 0.029556702822446823, + -0.028313755989074707, + 0.03512787073850632, + 0.031155100092291832, + 0.019702419638633728, + 0.0357375293970108, + -0.06907254457473755, + 0.022252175956964493, + -0.12954393029212952, + -0.06845229119062424, + -0.0014752396382391453, + -0.0039057238027453423, + -0.007702663540840149, + 0.06386175751686096, + 0.01073797419667244, + 0.042002737522125244, + -0.004782171919941902, + -0.08473232388496399, + -0.0756043940782547, + 0.06864666938781738, + 0.08150909841060638, + 0.016689594835042953, + 0.05930107459425926, + 0.05765974149107933, + -0.02660529874265194, + 0.059486594051122665, + 0.052595850080251694, + 0.1166267842054367, + -0.009347288869321346, + 0.01946708932518959, + -0.06721298396587372, + 0.07768040895462036, + 0.06711600720882416, + -0.09189391136169434, + -0.08728042244911194, + -0.022854052484035492, + -0.059434063732624054, + 0.05167289078235626, + -0.01226080022752285, + -0.0005905249854549766, + 0.02559918724000454, + 0.001991212833672762, + -0.10102181881666183, + -0.06682616472244263, + 0.08294108510017395, + -0.06717744469642639, + -0.010215646587312222, + -0.08186393231153488, + 0.04807831346988678, + 0.11755266040563583, + 0.02768605202436447, + -0.017336614429950714, + -0.012437839061021805, + 0.049414195120334625, + -0.05128028243780136, + -0.007469031028449535, + 0.03093288466334343, + 0.024964459240436554, + -0.10463273525238037, + 0.010376625694334507, + -0.079476498067379, + 0.05149449035525322, + -0.04900449141860008, + 0.14601962268352509, + -0.004348237533122301, + -0.04973670840263367, + -0.08056377619504929, + 0.04329552501440048, + -0.015312936156988144, + 0.05326518043875694, + 0.04006648436188698, + 0.059056758880615234, + 0.038145314902067184, + -0.0742846131324768, + 0.1193387508392334, + 0.033959515392780304, + -0.051414769142866135, + -0.05939514562487602, + -0.036965176463127136, + -0.03650502488017082, + 0.008558135479688644, + 0.009751654230058193, + -0.08333491533994675, + -0.033416714519262314, + 0.015308569185435772, + -0.031427640467882156, + 0.07233746349811554, + 0.13444292545318604, + 0.05726928636431694, + -0.11903858184814453 + ] + }, + "p245_181.wav": { + "name": "p245", + "embedding": [ + 0.04853549972176552, + 0.07374346256256104, + -0.001116683823056519, + -0.004097479395568371, + -0.05194046348333359, + 0.032380111515522, + -0.15319423377513885, + 0.1677865833044052, + -0.03134298697113991, + 0.14076322317123413, + -0.05758073553442955, + 0.13522285223007202, + -0.0045502083376049995, + -0.2062889188528061, + -0.01282620057463646, + 0.05268338695168495, + -0.023829998448491096, + -0.017512261867523193, + -0.029962552711367607, + -0.01580413244664669, + 0.056428417563438416, + 0.03410758450627327, + 0.01014520600438118, + -0.012165883556008339, + 0.01225997693836689, + 0.05962875112891197, + 0.025165636092424393, + 0.061515845358371735, + 0.011232085525989532, + -0.05249512940645218, + -0.017271436750888824, + 0.08193641901016235, + -0.04830748960375786, + 0.015094342641532421, + 0.07996463775634766, + -0.03762584179639816, + -0.01477043516933918, + -0.0492141991853714, + -0.040189262479543686, + 0.012100317515432835, + -0.05262179672718048, + 0.07870141416788101, + 0.04001838341355324, + -0.0012544456403702497, + 0.06015627086162567, + 0.06565815955400467, + -0.006570492871105671, + -0.06202240660786629, + -0.10482068359851837, + 0.1445426493883133, + 0.07270271331071854, + 0.0028371138032525778, + -0.06960224360227585, + -0.0651412233710289, + 0.10882683098316193, + -0.027654144912958145, + -0.09092991054058075, + -0.04937249794602394, + 0.08291393518447876, + 0.14302006363868713, + -0.039390768855810165, + -0.041358478367328644, + 0.03378795087337494, + 0.10844965279102325, + 0.04374459385871887, + 0.0949270948767662, + 0.08207087218761444, + 0.09717680513858795, + -0.011792026460170746, + 0.0363716296851635, + 0.032117169350385666, + 0.08845886588096619, + 0.03672913461923599, + -0.007556884549558163, + 0.03091672994196415, + 0.02143774926662445, + -0.01366843469440937, + -0.013842469081282616, + -0.02877255156636238, + 0.008468045853078365, + -0.008475390262901783, + 0.040177036076784134, + 0.029854124411940575, + 0.014830820262432098, + -0.018003882840275764, + 0.07784435153007507, + 0.0208574328571558, + -0.0002615501289255917, + 0.052651312202215195, + 0.013198098167777061, + 0.013720996677875519, + 0.06634802371263504, + -0.1027640625834465, + -0.10428232699632645, + 0.014153995551168919, + -0.015950949862599373, + 0.010771851055324078, + 0.0733986347913742, + 0.0238480381667614, + -0.005900437943637371, + 0.1312226802110672, + 0.0532442107796669, + -0.02058122307062149, + 0.04952317848801613, + -0.10026396065950394, + 0.1128343939781189, + 0.06282803416252136, + -0.030719399452209473, + 0.052864156663417816, + -0.08830054104328156, + 0.08695419132709503, + 0.051488880068063736, + -0.14639277756214142, + -0.07902682572603226, + 0.03511642664670944, + 0.022750703617930412, + -0.03486593812704086, + 0.1531457006931305, + -0.025465352460741997, + 0.046481434255838394, + 0.11906690150499344, + -0.07846203446388245, + -0.055537011474370956, + -0.016915205866098404, + 0.0648004338145256, + -0.08302264660596848, + 0.08443479239940643, + 0.026740243658423424, + -0.009410153143107891, + 0.027778157964348793, + 0.09605671465396881, + -0.017449194565415382, + 0.0035791348200291395, + 0.0011096944799646735, + -0.026050278916954994, + 0.018737956881523132, + -0.05604676529765129, + 0.0008088279282674193, + 0.022545162588357925, + 0.05101313441991806, + 0.05300116911530495, + 0.009291495196521282, + -0.046177081763744354, + -0.11584735661745071, + 0.008204870857298374, + 0.007565791253000498, + 0.09485208988189697, + 0.00445913802832365, + -0.02815094403922558, + -0.045742250978946686, + -0.06417097896337509, + -0.029459692537784576, + -0.007919691503047943, + 0.07071837037801743, + -0.015393108129501343, + 0.040643878281116486, + 0.08823003619909286, + 0.02858070842921734, + 0.011487992480397224, + -0.040893036872148514, + -0.04137302190065384, + -0.0060546607710421085, + 0.05033597722649574, + -0.07571807503700256, + -0.06315838545560837, + -0.01347871869802475, + 0.03451967239379883, + -0.022088471800088882, + 0.04240419343113899, + 0.024976396933197975, + 0.041568558663129807, + 0.03842240199446678, + -0.09280429035425186, + 0.020226500928401947, + -0.11809604614973068, + -0.08533738553524017, + -0.022438112646341324, + 0.003981985151767731, + -0.03767376393079758, + 0.05087290331721306, + 0.005034510046243668, + 0.06469130516052246, + -0.002973736496642232, + -0.06831032782793045, + -0.09751009196043015, + 0.048866864293813705, + 0.07535960525274277, + -0.019422877579927444, + 0.046537987887859344, + 0.04640880599617958, + -0.04698324576020241, + 0.05519653111696243, + 0.06034466251730919, + 0.0976715013384819, + 8.228563092416152e-05, + 0.03282411769032478, + -0.05300220474600792, + 0.1086861789226532, + 0.08543731272220612, + -0.07902968674898148, + -0.08156649023294449, + -0.008789177052676678, + -0.08046814799308777, + 0.026485934853553772, + -0.002566782757639885, + 0.0038669253699481487, + 0.02527458965778351, + 0.026181191205978394, + -0.09029557555913925, + -0.04500250890851021, + 0.04789915680885315, + -0.09012192487716675, + -0.009148224256932735, + -0.0724482461810112, + 0.03745226189494133, + 0.132490336894989, + 0.03726755455136299, + -0.01586213894188404, + -0.06267713755369186, + 0.05438413843512535, + -0.03506023809313774, + 0.013881347142159939, + 0.042518507689237595, + 0.043448496609926224, + -0.08421245217323303, + 0.015443815849721432, + -0.06268421560525894, + 0.020667875185608864, + -0.04616343230009079, + 0.12721915543079376, + 0.0010249214246869087, + -0.06269851326942444, + -0.0810132846236229, + 0.01638193242251873, + -0.005842297337949276, + 0.049309249967336655, + 0.010862704366445541, + 0.06154543161392212, + 0.05593006685376167, + -0.06132841482758522, + 0.13494554162025452, + 0.03964308649301529, + -0.04365214705467224, + -0.05405324697494507, + -0.059244342148303986, + -0.03747475892305374, + 0.01179627887904644, + 0.022646265104413033, + -0.08147099614143372, + -0.04162844642996788, + 0.0229788850992918, + -0.024886325001716614, + 0.06388237327337265, + 0.13688220083713531, + 0.044621385633945465, + -0.13598714768886566 + ] + }, + "p245_107.wav": { + "name": "p245", + "embedding": [ + 0.018986329436302185, + 0.07078036665916443, + 0.006265767849981785, + 0.02359943464398384, + -0.021356943994760513, + 0.08659772574901581, + -0.13949386775493622, + 0.07979732751846313, + -0.06393814086914062, + 0.1497763693332672, + -0.06465169787406921, + 0.07656559348106384, + -0.024128064513206482, + -0.18016406893730164, + -0.08015492558479309, + 0.03792214393615723, + -0.08288389444351196, + -0.05135296285152435, + -0.012154608964920044, + -0.01092481892555952, + 0.07797106355428696, + 0.06504654139280319, + 0.010650359094142914, + 0.013227639719843864, + -0.00042673488496802747, + 0.04103270173072815, + 0.01009832601994276, + 0.050835248082876205, + 0.01654806360602379, + -0.0785716325044632, + -0.029552340507507324, + 0.11881434917449951, + -0.04304300993680954, + 0.047803036868572235, + 0.011636339128017426, + 0.03811034560203552, + 0.030043434351682663, + -0.040382977575063705, + -0.030305400490760803, + 0.019964013248682022, + -0.036857783794403076, + 0.06805232167243958, + 0.006876373663544655, + 0.044883519411087036, + 0.017787471413612366, + -0.016511091962456703, + -0.024941591545939445, + -0.03105109930038452, + -0.08011465519666672, + 0.17052917182445526, + 0.06246097385883331, + -0.014357741922140121, + -0.04994981735944748, + -0.11703971028327942, + 0.1090301126241684, + -0.0014445552369579673, + -0.1395440548658371, + -0.008596444502472878, + 0.08908972144126892, + 0.17083905637264252, + 0.006106068380177021, + -0.052606768906116486, + 0.022033292800188065, + 0.09799718856811523, + 0.0003657626803033054, + 0.0765744149684906, + 0.06276323646306992, + 0.05974283441901207, + 0.007905557751655579, + -0.036622487008571625, + 0.052865348756313324, + 0.06904914975166321, + 0.03529331088066101, + -0.04167652130126953, + 0.045096442103385925, + 0.01656993106007576, + -0.014775793068110943, + 0.052089761942625046, + -0.01925453543663025, + 0.003051417414098978, + -0.015225245617330074, + -0.015594327822327614, + -0.015718944370746613, + 0.011332297697663307, + -0.022591035813093185, + 0.010972678661346436, + -0.012020682916045189, + 0.002858270425349474, + 0.07237361371517181, + 0.07124389708042145, + 0.05658094212412834, + 0.06093538552522659, + -0.03981662169098854, + -0.06070934236049652, + 0.03469102829694748, + 0.03705674037337303, + 0.016070283949375153, + 0.08140319585800171, + 0.0365169420838356, + -0.02945508062839508, + 0.09506413340568542, + 0.01847119815647602, + -0.004679569974541664, + -0.012284490279853344, + -0.15561553835868835, + 0.0781673789024353, + 0.08458705991506577, + -0.014894695952534676, + 0.014846181496977806, + -0.039537906646728516, + 0.1071552187204361, + 0.09049631655216217, + -0.13942833244800568, + -0.08672802895307541, + 0.04133039712905884, + 0.0416400283575058, + 0.020161911845207214, + 0.11683528870344162, + -0.014187408611178398, + -0.015081814490258694, + 0.07005643844604492, + -0.0705585703253746, + -0.03392527997493744, + -0.03995451703667641, + 0.04487442597746849, + -0.08848090469837189, + 0.03944464772939682, + 0.007544742431491613, + -0.004261431284248829, + -0.02394506335258484, + 0.060046106576919556, + -0.03800112009048462, + 0.012030383571982384, + -0.002693778369575739, + -0.042180873453617096, + 0.024834778159856796, + -0.048504095524549484, + 0.014299875125288963, + 0.06087065488100052, + 0.04069444164633751, + 0.0522843673825264, + -0.0036741429939866066, + -0.07643705606460571, + -0.11633668839931488, + 0.0056757754646241665, + 0.0534629225730896, + 0.028400704264640808, + -0.01787242852151394, + -0.039167050272226334, + -0.04316931217908859, + -0.07920325547456741, + 0.07119631767272949, + -0.01749090477824211, + 0.0982508659362793, + 0.029152927920222282, + -0.02141754887998104, + 0.0911213755607605, + 0.011613093316555023, + -0.03806714713573456, + -0.037456244230270386, + -0.047122322022914886, + -0.0009285841952078044, + 0.02391948364675045, + -0.08757875859737396, + -0.05143696069717407, + 0.015609733760356903, + 0.028181953355669975, + 0.0180954709649086, + 0.03240957856178284, + 0.06839299201965332, + 0.00494399294257164, + 0.0423361174762249, + -0.08937080204486847, + 0.011890641413629055, + -0.12494389712810516, + -0.09722138941287994, + -0.0166076198220253, + -0.04433054476976395, + 0.03799745440483093, + 0.09615711867809296, + -0.0030421435367316008, + -0.018143337219953537, + -0.01988799311220646, + -0.08525364100933075, + -0.07768607139587402, + 0.07390022277832031, + 0.0739513635635376, + 0.03481234610080719, + 0.055766306817531586, + 0.06132469326257706, + -0.03944970294833183, + 0.08940285444259644, + 0.053724393248558044, + 0.1362406462430954, + -0.05846592038869858, + 0.05685748904943466, + -0.05243150144815445, + 0.0797581672668457, + 0.05632391571998596, + -0.06626347452402115, + -0.08350029587745667, + -0.00929337926208973, + -0.0768534392118454, + 0.06385917961597443, + -0.033822763711214066, + 0.006117173936218023, + 0.008199060335755348, + -0.017200030386447906, + -0.11949693411588669, + -0.06962133944034576, + 0.09143565595149994, + -0.027929916977882385, + -0.03770570456981659, + -0.07410022616386414, + 0.052244603633880615, + 0.08327490091323853, + 0.06563417613506317, + -0.010562488809227943, + 0.028810199350118637, + 0.04854373261332512, + -0.056534282863140106, + -0.0273711197078228, + 0.022549763321876526, + -0.019329529255628586, + -0.09160171449184418, + -0.016648469492793083, + -0.10516708344221115, + 0.05289390683174133, + -0.08231537789106369, + 0.12841537594795227, + -0.0357721745967865, + -0.09255094826221466, + -0.05272103101015091, + 0.047350283712148666, + -0.021463148295879364, + 0.03665878623723984, + 0.039248254150152206, + 0.06672525405883789, + 0.02034568041563034, + -0.04230334609746933, + 0.07991709560155869, + 0.05416296049952507, + -0.023108704015612602, + -0.045002829283475876, + -0.010626382194459438, + 0.003869683248922229, + 0.027586787939071655, + -0.0053460909985005856, + -0.08179886639118195, + 0.013816035352647305, + 0.02730204164981842, + -0.002952365204691887, + 0.042515143752098083, + 0.11149786412715912, + 0.05035954713821411, + -0.1337471604347229 + ] + }, + "p245_224.wav": { + "name": "p245", + "embedding": [ + 0.04962719604372978, + 0.09732125699520111, + -0.0143382977694273, + 0.02728196047246456, + -0.06896641850471497, + 0.0552939847111702, + -0.10239609330892563, + 0.14319078624248505, + -0.052431076765060425, + 0.1283714473247528, + -0.08825169503688812, + 0.1425744891166687, + -0.034931644797325134, + -0.16779926419258118, + -0.031961627304553986, + 0.059813402593135834, + -0.04328319430351257, + -0.03515210375189781, + -0.030132224783301353, + -0.038394536823034286, + 0.035689376294612885, + 0.027956193313002586, + 0.039848215878009796, + 0.0350717194378376, + 0.012987012974917889, + 0.08265584707260132, + 0.0008173746755346656, + 0.04667996987700462, + 0.02069834992289543, + -0.05261540412902832, + -0.05512323975563049, + 0.08663111180067062, + -0.045588575303554535, + 0.011046282947063446, + 0.04991162568330765, + -0.010892706923186779, + 0.009458189830183983, + -0.06487947702407837, + -0.0286991186439991, + -0.009078212082386017, + -0.051371634006500244, + 0.06625634431838989, + 0.016617964953184128, + -0.03296768665313721, + 0.03816141188144684, + 0.025730393826961517, + -0.021823478862643242, + -0.035476066172122955, + -0.11402949690818787, + 0.14825060963630676, + 0.0843455046415329, + -0.004118979908525944, + -0.06286304444074631, + -0.06260013580322266, + 0.11318610608577728, + -0.023049727082252502, + -0.10841351002454758, + -0.025535790249705315, + 0.07253169268369675, + 0.15246140956878662, + -0.03746199607849121, + -0.03258427605032921, + 0.028609059751033783, + 0.12159141898155212, + 0.05789707228541374, + 0.0897446870803833, + 0.08512584865093231, + 0.10896792262792587, + -0.03643473982810974, + 0.01998995989561081, + 0.061563991010189056, + 0.08648942410945892, + 0.06491782516241074, + -0.004056436475366354, + 0.011502666398882866, + 0.005630706436932087, + -0.02097097411751747, + 0.00923735648393631, + -0.03812224417924881, + -0.029163045808672905, + -0.03368283808231354, + 0.0007098371861502528, + 0.00538286566734314, + 0.0009792795171961188, + -0.015939347445964813, + 0.08044539391994476, + 0.030145376920700073, + -0.0072248405776917934, + 0.06023592874407768, + 0.020126961171627045, + -0.012134900316596031, + 0.0692741721868515, + -0.08108511567115784, + -0.0763382539153099, + 0.017370417714118958, + 0.002023442182689905, + 0.022333841770887375, + 0.0892980545759201, + 0.04410454258322716, + -0.013034462928771973, + 0.12683239579200745, + 0.060135047882795334, + 0.0009284485131502151, + 0.02179778181016445, + -0.09034089744091034, + 0.12779009342193604, + 0.09989762306213379, + -0.03615942224860191, + 0.041501980274915695, + -0.03599080070853233, + 0.08386196196079254, + 0.0731990858912468, + -0.1398015022277832, + -0.06821295619010925, + 0.006960911210626364, + 0.012176195159554482, + -0.013337856158614159, + 0.08957992494106293, + -0.018812956288456917, + 0.05378841608762741, + 0.10989981889724731, + -0.07602980732917786, + -0.05461965128779411, + -0.02553100883960724, + 0.04327293485403061, + -0.07406872510910034, + 0.06069129332900047, + 0.053797103464603424, + 0.0065932548604905605, + 0.016853980720043182, + 0.08326350152492523, + -0.02526889741420746, + -0.019924145191907883, + 0.04177658259868622, + -0.06791895627975464, + -0.000978151336312294, + -0.03056339919567108, + -0.007666699588298798, + 0.05261984467506409, + 0.04701119288802147, + 0.04026451334357262, + -0.005929887294769287, + -0.013597341254353523, + -0.10850181430578232, + 0.02067003771662712, + 0.04102496802806854, + 0.07485508173704147, + 0.0013909948756918311, + -0.0361965149641037, + -0.03173280507326126, + -0.05560848116874695, + 0.004811486229300499, + -0.0008209968218579888, + 0.06774955242872238, + -0.054226890206336975, + 0.014018885791301727, + 0.08759158849716187, + 0.03004780039191246, + -0.01708192378282547, + -0.059488922357559204, + -0.03584703058004379, + 0.008219394832849503, + 0.04993153735995293, + -0.06751155108213425, + -0.0873916894197464, + -0.0032585635781288147, + 0.040782149881124496, + -0.03189239278435707, + 0.0657217726111412, + 0.03473864495754242, + 0.012142978608608246, + 0.02388724684715271, + -0.06332354992628098, + 0.01221928559243679, + -0.10184069722890854, + -0.06907028704881668, + -0.012476525269448757, + -0.01689266972243786, + -0.01256043091416359, + 0.05241880938410759, + 0.025876570492982864, + 0.06134306639432907, + -0.0024604620411992073, + -0.07519222795963287, + -0.08729800581932068, + 0.05448159575462341, + 0.057663559913635254, + 0.010470318607985973, + 0.05588189885020256, + 0.07581347227096558, + -0.03498871251940727, + 0.06422655284404755, + 0.05413016304373741, + 0.09791615605354309, + -0.026707544922828674, + 0.02322123572230339, + -0.06447356939315796, + 0.06213940680027008, + 0.08329996466636658, + -0.09603621810674667, + -0.08694516122341156, + -0.04871954023838043, + -0.061167120933532715, + 0.054186563938856125, + -0.024595504626631737, + 0.00024648121325299144, + 0.02719011716544628, + -0.00308419531211257, + -0.09797334671020508, + -0.08452215045690536, + 0.09873801469802856, + -0.06415601074695587, + -0.0030830642208456993, + -0.07649759948253632, + 0.040085867047309875, + 0.09742473065853119, + 0.02509359084069729, + -0.021539052948355675, + 0.004630350973457098, + 0.04759451746940613, + -0.030850231647491455, + -0.0027519073337316513, + 0.054138630628585815, + 0.03846846520900726, + -0.1047482118010521, + -0.0027216044254601, + -0.07578456401824951, + 0.05717060714960098, + -0.0362926721572876, + 0.1545051634311676, + 0.004095475655049086, + -0.03923984244465828, + -0.08584123104810715, + 0.0467841736972332, + -0.01851397007703781, + 0.05204775929450989, + 0.04069438576698303, + 0.05585354566574097, + 0.013542990200221539, + -0.07543648034334183, + 0.13558673858642578, + 0.03662727028131485, + -0.06127173826098442, + -0.06918633729219437, + -0.04369966685771942, + -0.04464063048362732, + 0.010191565379500389, + 0.020701343193650246, + -0.08413331210613251, + -0.0305267833173275, + 0.001832252717576921, + -0.022537413984537125, + 0.07631073892116547, + 0.1475430577993393, + 0.07468569278717041, + -0.10101490467786789 + ] + }, + "p245_141.wav": { + "name": "p245", + "embedding": [ + 0.068923220038414, + 0.0924782082438469, + 0.02698499709367752, + -0.01698596216738224, + -0.022123616188764572, + 0.07684674113988876, + -0.08014806360006332, + 0.11866427958011627, + 0.013518492691218853, + 0.06179654598236084, + -0.09089430421590805, + 0.09500541538000107, + -0.0075258477590978146, + -0.14115139842033386, + -0.019810549914836884, + 0.039922088384628296, + -0.03582993149757385, + 0.015733567997813225, + -0.04923884570598602, + -0.024042293429374695, + 0.004346251487731934, + 0.009345974773168564, + 0.05112504959106445, + 0.004298120737075806, + 0.029690828174352646, + 0.037295252084732056, + -0.0033339790534228086, + 0.028432216495275497, + 0.01325818058103323, + -0.03045157715678215, + -0.02788727544248104, + 0.07552196830511093, + -0.03660047799348831, + 0.0074586328119039536, + 0.061181288212537766, + -0.0200702715665102, + 0.023195739835500717, + -0.07623811811208725, + -0.036821089684963226, + 0.02984483540058136, + -0.040129657834768295, + 0.07058500498533249, + 0.05127548426389694, + -0.015639178454875946, + 0.05347995460033417, + 0.03377233445644379, + -0.008445807732641697, + -0.034044049680233, + -0.09286578744649887, + 0.1335347592830658, + 0.03304428979754448, + 0.009045018814504147, + -0.08136817067861557, + -0.010237561538815498, + 0.06691109389066696, + -0.03663356602191925, + -0.06309717893600464, + -0.007281227968633175, + 0.05802008509635925, + 0.07650483399629593, + 0.021154876798391342, + -0.022795071825385094, + 0.02272713929414749, + 0.07861630618572235, + 0.02577219158411026, + 0.03663335740566254, + 0.0939372181892395, + 0.10263802856206894, + -0.025683850049972534, + 0.03480205684900284, + 0.04027433693408966, + 0.026075702160596848, + 0.04253336042165756, + -0.009162602946162224, + 0.01882908120751381, + -0.022082194685935974, + -0.006963628809899092, + -0.018189910799264908, + -0.023454774171113968, + -0.006281568668782711, + 0.024233005940914154, + 0.024674441665410995, + 0.01229693740606308, + 0.03318728134036064, + -0.04538854956626892, + 0.04809953272342682, + 0.005983038805425167, + 0.06514596939086914, + 0.06771441549062729, + 0.05024484544992447, + 0.015811212360858917, + 0.03091355413198471, + -0.055564917623996735, + -0.0970439463853836, + 0.01133184414356947, + 0.0005957087269052863, + 0.004527910612523556, + 0.028108973056077957, + 0.026921523734927177, + -0.015116693452000618, + 0.1057809516787529, + 0.042175233364105225, + -0.017813026905059814, + 0.02040094882249832, + -0.07687985152006149, + 0.0824103131890297, + 0.06754721701145172, + -0.010242084972560406, + 0.057601384818553925, + -0.029330871999263763, + 0.05856937915086746, + 0.061335694044828415, + -0.08648469299077988, + -0.025834694504737854, + 0.012828582897782326, + 0.01590515673160553, + 0.03241315111517906, + 0.09338172525167465, + -0.00867719016969204, + 0.045204129070043564, + 0.0653485581278801, + -0.06094851344823837, + -0.015735197812318802, + 0.026987185701727867, + 0.011037036776542664, + -0.015367105603218079, + 0.021218154579401016, + 0.030355684459209442, + 0.01667485013604164, + -0.03186711296439171, + 0.06219978258013725, + 0.01475514005869627, + 0.00443243607878685, + -0.028041090816259384, + 0.009053267538547516, + 0.009680083952844143, + -0.00848004687577486, + -0.019272593781352043, + 0.025945579633116722, + 0.06428781151771545, + 0.003554773982614279, + 0.03786199167370796, + -0.04213632270693779, + -0.08019794523715973, + -0.009167403914034367, + -0.0004635453224182129, + 0.04594936966896057, + 0.012174731120467186, + -0.030211467295885086, + -0.05239854380488396, + 0.002455689013004303, + 0.004877150058746338, + -0.0075872777961194515, + 0.031820811331272125, + 0.03895227238535881, + -0.02012220397591591, + 0.06151208281517029, + 0.007341994903981686, + 0.018575768917798996, + -0.0442054346203804, + -0.0441681444644928, + 0.005569660570472479, + 0.041040368378162384, + -0.034946098923683167, + -0.05877748131752014, + -0.0004004749353043735, + -0.032616838812828064, + -0.014384198933839798, + 0.032256826758384705, + 0.05332021042704582, + -0.011078780516982079, + 0.001790625392459333, + -0.08127550780773163, + 0.00835905410349369, + -0.07179434597492218, + -0.06660371273756027, + 0.038152486085891724, + 0.027067236602306366, + -0.004106359090656042, + 0.06933911144733429, + 0.036187149584293365, + 0.043000128120183945, + -0.027768274769186974, + -0.04768511280417442, + -0.010287761688232422, + 0.053026072680950165, + 0.043087996542453766, + 0.0040331194177269936, + 0.05106344819068909, + 0.028503969311714172, + -0.023405587300658226, + 0.06892295181751251, + 0.03908409923315048, + 0.041366592049598694, + -0.04180203005671501, + 0.0004790624079760164, + -0.0073122731409966946, + 0.06569291651248932, + 0.044690437614917755, + -0.0682908445596695, + -0.07503515481948853, + 0.0014045065036043525, + -0.032103247940540314, + 0.007540534250438213, + -7.934620225569233e-05, + 0.006172175519168377, + 0.047262903302907944, + -0.01286875270307064, + -0.05351176857948303, + -0.08234937489032745, + 0.03974941745400429, + -0.05515018850564957, + 0.0029463693499565125, + -0.03557360917329788, + 0.040601350367069244, + 0.08469371497631073, + -0.01683524250984192, + -0.023156389594078064, + -0.001939891604706645, + 0.002462851582095027, + -0.0087631456553936, + -0.03998411074280739, + -0.006535450927913189, + 0.044557806104421616, + -0.08075080811977386, + 0.01455008890479803, + -0.050404518842697144, + 0.05211418867111206, + 0.0033184513449668884, + 0.10874741524457932, + 0.04036594182252884, + -0.028343355283141136, + -0.05510684847831726, + 0.025554046034812927, + -0.02090444043278694, + 0.032358042895793915, + 0.004022589884698391, + 0.02583552896976471, + 0.03393810614943504, + -0.05043305456638336, + 0.07956372201442719, + 0.027327917516231537, + -0.06777572631835938, + -0.051680758595466614, + -0.011212892830371857, + -0.036767132580280304, + 0.007731962949037552, + -0.00023343414068222046, + -0.05771992728114128, + -0.003808550536632538, + 0.02401779592037201, + 0.012112687341868877, + 0.042980797588825226, + 0.08600609004497528, + 0.033650681376457214, + -0.0658734142780304 + ] + }, + "p245_180.wav": { + "name": "p245", + "embedding": [ + 0.04287217929959297, + 0.08562701940536499, + -0.015287653543055058, + 0.036764249205589294, + -0.04638880491256714, + 0.04878851771354675, + -0.1254628598690033, + 0.13322418928146362, + -0.04258638620376587, + 0.13999226689338684, + -0.09335038810968399, + 0.10710559785366058, + -0.03508500009775162, + -0.1945321261882782, + -0.03503262996673584, + 0.06371995806694031, + -0.06115536019206047, + -0.03210833668708801, + -0.05164248123764992, + -0.014452077448368073, + 0.04337220638990402, + 0.04441754147410393, + 0.02052772045135498, + 0.012482683174312115, + 0.012612485326826572, + 0.0665159672498703, + -0.009948942810297012, + 0.0402454249560833, + 0.00976457167416811, + -0.03758953511714935, + -0.022761408239603043, + 0.1160731166601181, + -0.037258755415678024, + 0.023569952696561813, + 0.05849108844995499, + 0.0050984835252165794, + -0.005451524164527655, + -0.055714357644319534, + -0.03563567250967026, + -0.007449758239090443, + -0.06463293731212616, + 0.06334054470062256, + 0.025538090616464615, + -0.004314308986067772, + 0.051937881857156754, + 0.026081426069140434, + -0.0381358340382576, + -0.04920509457588196, + -0.10323816537857056, + 0.159244567155838, + 0.08181116729974747, + 0.019467290490865707, + -0.07092482596635818, + -0.07579121738672256, + 0.11322926729917526, + -0.012180223129689693, + -0.1223359927535057, + -0.039783768355846405, + 0.08074229955673218, + 0.1788947880268097, + -0.033803459256887436, + -0.031111378222703934, + 0.0253484845161438, + 0.12656015157699585, + 0.05155251920223236, + 0.1021069884300232, + 0.07734425365924835, + 0.10235083103179932, + -0.0037702443078160286, + 0.02231024019420147, + 0.07893197238445282, + 0.07348102331161499, + 0.07408797740936279, + -0.02287248894572258, + 0.020641451701521873, + 0.021848231554031372, + -0.032741837203502655, + -0.0005036769434809685, + -0.03305608034133911, + -0.006087020039558411, + -0.015949970111250877, + 0.011261356994509697, + 0.010060756467282772, + 0.009770382195711136, + -0.019627364352345467, + 0.048058610409498215, + 0.04291192442178726, + -0.022824563086032867, + 0.062159132212400436, + 0.039522890001535416, + 0.004643607884645462, + 0.06180132180452347, + -0.07286012172698975, + -0.09708299487829208, + 0.008771114982664585, + 0.0035176516976207495, + 0.021517109125852585, + 0.06355897337198257, + 0.044992536306381226, + -0.021221591159701347, + 0.11107702553272247, + 0.03340764343738556, + -0.0004985607229173183, + 0.02741919830441475, + -0.11414609849452972, + 0.10387134552001953, + 0.09328484535217285, + -0.028874654322862625, + 0.03562599793076515, + -0.0332423634827137, + 0.0846838504076004, + 0.0898602306842804, + -0.14424557983875275, + -0.06692004948854446, + 0.02809644117951393, + 0.009229492396116257, + -0.010721873492002487, + 0.119399294257164, + -0.010611619800329208, + 0.031077859923243523, + 0.10898005962371826, + -0.09330882877111435, + -0.04938614368438721, + -0.023604173213243484, + 0.04384623467922211, + -0.08141624927520752, + 0.05874110385775566, + 0.03711886331439018, + -0.0003137262538075447, + -0.0015751449391245842, + 0.08045978844165802, + -0.018024854362010956, + -0.006810707040131092, + -0.0032768247183412313, + -0.05479854717850685, + 0.031644560396671295, + -0.04633217304944992, + -0.010116659104824066, + 0.05587824434041977, + 0.03809250891208649, + 0.04481849446892738, + 0.005171018186956644, + -0.03733333200216293, + -0.11193248629570007, + 0.011853637173771858, + 0.03896187245845795, + 0.07517776638269424, + -0.003814305877313018, + -0.009121467359364033, + -0.03450698405504227, + -0.0647905170917511, + 0.033882513642311096, + -0.025436406955122948, + 0.07367978990077972, + -0.009349098429083824, + -0.004832168109714985, + 0.104781873524189, + 0.006044739857316017, + -0.009774036705493927, + -0.05064236372709274, + -0.03197922557592392, + 0.004540130961686373, + 0.0560140535235405, + -0.0912093073129654, + -0.06879136711359024, + 0.008184043690562248, + 0.028505831956863403, + -0.011029754765331745, + 0.03687044605612755, + 0.035428911447525024, + 0.018672361969947815, + 0.019027046859264374, + -0.06336243450641632, + 0.00952989887446165, + -0.1304386854171753, + -0.08182943612337112, + -0.004146466497331858, + -0.03175421059131622, + -0.0003050958039239049, + 0.07162944972515106, + 0.01157375518232584, + 0.02589418739080429, + -0.009354421868920326, + -0.08987092971801758, + -0.08629173785448074, + 0.07768312096595764, + 0.07189644128084183, + 0.00918702781200409, + 0.05069814994931221, + 0.05711710825562477, + -0.043779946863651276, + 0.05178084224462509, + 0.05450008064508438, + 0.13465994596481323, + -0.020610075443983078, + 0.024871082976460457, + -0.07336477935314178, + 0.08318401873111725, + 0.08415284752845764, + -0.08872678875923157, + -0.09011656045913696, + -0.02447526715695858, + -0.05621317774057388, + 0.0489952452480793, + -0.021398957818746567, + 0.003726938273757696, + 0.029173649847507477, + -0.01271715760231018, + -0.10573464632034302, + -0.0675889179110527, + 0.08780509233474731, + -0.06232892721891403, + -0.015668850392103195, + -0.0789867490530014, + 0.03913281857967377, + 0.08829204738140106, + 0.024565041065216064, + -0.024829076603055, + 0.011869668029248714, + 0.055623821914196014, + -0.054621972143650055, + -0.020805392414331436, + 0.041097190231084824, + 0.016251320019364357, + -0.09385091066360474, + -0.013513226062059402, + -0.07502492517232895, + 0.06739393621683121, + -0.04968585819005966, + 0.13732515275478363, + -0.016053739935159683, + -0.056435588747262955, + -0.08078397810459137, + 0.04247337579727173, + -0.0038466856349259615, + 0.05834244564175606, + 0.041751060634851456, + 0.07223579287528992, + 0.03435615450143814, + -0.06490053981542587, + 0.12374728918075562, + 0.02952367626130581, + -0.03260251507163048, + -0.054583314806222916, + -0.04587647318840027, + -0.04500049725174904, + 0.003952471073716879, + -0.005704508163034916, + -0.08034328371286392, + -0.007313928566873074, + 0.006328531075268984, + -0.024210944771766663, + 0.047043636441230774, + 0.12548011541366577, + 0.05870911478996277, + -0.11604777723550797 + ] + }, + "p245_167.wav": { + "name": "p245", + "embedding": [ + 0.04707973822951317, + 0.08512790501117706, + 0.017433252185583115, + -0.010049238801002502, + -0.027678970247507095, + 0.09129085391759872, + -0.07708367705345154, + 0.10728625953197479, + -0.023322490975260735, + 0.06904000043869019, + -0.0714399516582489, + 0.08210638165473938, + -0.011329654604196548, + -0.12147276848554611, + -0.0015023425221443176, + 0.05498618632555008, + -0.029536675661802292, + 0.0027658964972943068, + -0.04268315061926842, + -0.014539126306772232, + -0.009536261670291424, + 0.00696258619427681, + 0.058693867176771164, + -0.020710289478302002, + 0.03857957199215889, + 0.05058648809790611, + -0.000273537531029433, + 0.027161478996276855, + 0.0004217643290758133, + -0.0439465194940567, + -0.03740622475743294, + 0.07502558082342148, + -0.056660816073417664, + -0.008298594504594803, + 0.05187267065048218, + -0.013564445078372955, + 0.024587390944361687, + -0.09216286987066269, + -0.03276935964822769, + 0.009169310331344604, + -0.056369051337242126, + 0.07358594238758087, + 0.02663174830377102, + 0.007156963460147381, + 0.024815743789076805, + 0.0062155211344361305, + -0.0034827683120965958, + -0.023563673719763756, + -0.08253515511751175, + 0.12691868841648102, + 0.03767480328679085, + 0.019493775442242622, + -0.07521302253007889, + -0.0295400470495224, + 0.07755976170301437, + -0.018448349088430405, + -0.06302373856306076, + -0.012354684993624687, + 0.04073628783226013, + 0.0865408405661583, + 0.025180846452713013, + -0.023361138999462128, + 0.021092116832733154, + 0.06708208471536636, + 0.023151254281401634, + 0.053722649812698364, + 0.08739151805639267, + 0.08955836296081543, + -0.0065083070658147335, + 0.027378231287002563, + 0.048375409096479416, + 0.036388516426086426, + 0.02471884712576866, + -0.010595530271530151, + 0.028296595439314842, + -0.01590379700064659, + -0.03191643953323364, + -0.008536002598702908, + -0.017039146274328232, + -0.01747817173600197, + 0.022909987717866898, + 0.022554030641913414, + 0.009545434266328812, + 0.027733517810702324, + -0.028594069182872772, + 0.04081657528877258, + -0.0029537356458604336, + 0.06451727449893951, + 0.08688073605298996, + 0.02574579045176506, + 0.014948733150959015, + 0.03415994346141815, + -0.060237299650907516, + -0.06995562463998795, + 0.020499086007475853, + 0.031554386019706726, + 0.0036485109012573957, + 0.03065515123307705, + 0.025369582697749138, + -0.027931563556194305, + 0.10070967674255371, + 0.023287784308195114, + -0.0009688375284895301, + 0.001203195541165769, + -0.06778344511985779, + 0.07224768400192261, + 0.05726079270243645, + -0.0040361955761909485, + 0.048369914293289185, + -0.025990938767790794, + 0.0551203116774559, + 0.05932316184043884, + -0.09196369349956512, + -0.04974181577563286, + 0.007547107990831137, + 0.0041877878829836845, + 0.035280995070934296, + 0.10521729290485382, + -0.009196754544973373, + 0.0372876301407814, + 0.058194637298583984, + -0.08105669170618057, + -0.02356204390525818, + 0.039087925106287, + 0.010740846395492554, + -0.007051540073007345, + 0.007526857312768698, + 0.0390218049287796, + 0.005931292660534382, + -0.02777162566781044, + 0.05320620536804199, + 0.008385999128222466, + 0.009738633409142494, + -0.01149764470756054, + -0.009483715519309044, + 0.0010052463039755821, + -0.015930140390992165, + -0.038347966969013214, + 0.03739845007658005, + 0.051481373608112335, + 0.029979199171066284, + 0.003185371635481715, + -0.025677524507045746, + -0.0847093015909195, + -0.019944485276937485, + 0.010563371703028679, + 0.031666189432144165, + -0.00785780604928732, + -0.0317373163998127, + -0.05702310800552368, + -0.00612629484385252, + -0.009472507983446121, + -0.009091544896364212, + 0.0502474308013916, + 0.04683661460876465, + -0.026863310486078262, + 0.06821515411138535, + 0.007443234324455261, + 0.004543836694210768, + -0.040841296315193176, + -0.062287937849760056, + 0.011087912134826183, + 0.04299960657954216, + -0.01109161227941513, + -0.07103273272514343, + 0.0023626885376870632, + -0.027720585465431213, + -0.01672457903623581, + 0.02954830974340439, + 0.04956777021288872, + 0.009142892435193062, + -0.0127300675958395, + -0.06628468632698059, + 0.014434169046580791, + -0.07022538781166077, + -0.05645657703280449, + 0.03632683306932449, + 0.031128432601690292, + -0.024220317602157593, + 0.07866879552602768, + 0.03261057287454605, + 0.04827475547790527, + -0.0349263995885849, + -0.05173870921134949, + -0.015932749956846237, + 0.05100814625620842, + 0.03704618662595749, + 0.002308618277311325, + 0.038799941539764404, + 0.0432167574763298, + -0.020732365548610687, + 0.037445541471242905, + 0.051251985132694244, + 0.0512886568903923, + -0.03503634035587311, + 0.008252796716988087, + -0.014522379264235497, + 0.07860466837882996, + 0.03661031275987625, + -0.07371249049901962, + -0.05090833455324173, + 0.01257159560918808, + -0.04109746217727661, + 0.0277106873691082, + -0.006819318979978561, + 0.011071180924773216, + 0.04564926028251648, + -0.02753159962594509, + -0.06565520167350769, + -0.07913267612457275, + 0.06392000615596771, + -0.05291129648685455, + -0.009865141473710537, + -0.044501226395368576, + 0.04317125305533409, + 0.079008549451828, + 0.0036972227972000837, + -0.01048391591757536, + 0.005263200029730797, + 0.02147604152560234, + 0.004751445725560188, + -0.02239108644425869, + 0.024752311408519745, + 0.037187036126852036, + -0.07118416577577591, + 0.015515079721808434, + -0.046753764152526855, + 0.0659591406583786, + 0.008004775270819664, + 0.10493459552526474, + 0.027253877371549606, + -0.03027404099702835, + -0.07307233661413193, + 0.03192661702632904, + 0.0001670519559411332, + 0.03432702645659447, + 0.004586372058838606, + 0.023750942200422287, + 0.04797280579805374, + -0.05145956203341484, + 0.08629883825778961, + 0.025798249989748, + -0.05911736935377121, + -0.044936250895261765, + -0.008365584537386894, + -0.03264952823519707, + 0.02177836373448372, + -0.02301935665309429, + -0.06799818575382233, + 0.01904139295220375, + 0.021186351776123047, + 0.011413270607590675, + 0.029889201745390892, + 0.07833109050989151, + 0.036050260066986084, + -0.06394705176353455 + ] + }, + "p245_080.wav": { + "name": "p245", + "embedding": [ + 0.022935442626476288, + 0.09640032052993774, + -0.00262433011084795, + 0.00919140875339508, + -0.022395236417651176, + -0.0027653351426124573, + -0.10289772599935532, + 0.0792112648487091, + -0.025138236582279205, + 0.11822348088026047, + -0.10249543190002441, + 0.08955548703670502, + -0.07592034339904785, + -0.10798313468694687, + -0.02383330650627613, + 0.03619668260216713, + -0.006831965409219265, + 0.006147237494587898, + -0.026636846363544464, + -0.06548704206943512, + 0.04381079971790314, + 0.023009691387414932, + 0.05674208700656891, + -0.05197969824075699, + -0.02874726429581642, + 0.10414999723434448, + 0.0033289343118667603, + 0.014779753983020782, + -0.005131295416504145, + -0.035717450082302094, + 0.0016329586505889893, + 0.03423984721302986, + -0.018916528671979904, + 0.014781697653234005, + 0.03858477249741554, + 0.04465959221124649, + -0.041259974241256714, + 0.018253441900014877, + 0.013986133970320225, + 0.02905401401221752, + -0.06952391564846039, + 0.052167169749736786, + -0.004307717550545931, + -0.035446494817733765, + 0.08575202524662018, + -0.025628745555877686, + -0.01232240255922079, + 0.009164616465568542, + -0.06502345204353333, + 0.0973408967256546, + 0.06095746159553528, + 0.015500586479902267, + -0.05821622908115387, + -0.011755358427762985, + 0.1052543893456459, + -0.027858003973960876, + -0.10372836887836456, + -0.028162376955151558, + 0.047136325389146805, + 0.09003078937530518, + -0.06292364001274109, + -0.05182661861181259, + 0.009000720456242561, + 0.049195241183042526, + 0.03263609856367111, + 0.08903387188911438, + 0.11052943021059036, + 0.06148676201701164, + -0.008279198780655861, + -0.04386623203754425, + 0.0374402292072773, + 0.08248496055603027, + 0.06774741411209106, + -0.010443861596286297, + 0.025451309978961945, + -0.03772726282477379, + 0.007184172514826059, + 0.0012357961386442184, + -0.010979774408042431, + -0.06406047195196152, + -0.03685372695326805, + -0.028270073235034943, + 0.0037496155127882957, + -0.03674938529729843, + -0.03346597030758858, + 0.022938372567296028, + 0.0737951248884201, + -0.026175372302532196, + 0.04679589718580246, + 0.04721876233816147, + -0.020461056381464005, + 0.01643197052180767, + -0.03926379233598709, + -0.025848062708973885, + -0.0250605009496212, + -0.012646771036088467, + 0.058042388409376144, + 0.06492941826581955, + 0.037546515464782715, + 0.06273335963487625, + 0.06380569189786911, + 0.039636969566345215, + 0.0002344781532883644, + -0.0022067087702453136, + -0.08454318344593048, + 0.057148903608322144, + 0.12178117781877518, + -0.042248956859111786, + 0.026501305401325226, + -0.034538887441158295, + 0.03554641455411911, + 0.02890169620513916, + -0.04485159367322922, + -0.04294715076684952, + -0.023335903882980347, + 0.026320401579141617, + 0.02236473560333252, + 0.06880465894937515, + -0.005760335363447666, + -0.014488864690065384, + 0.12077110260725021, + -0.06384418904781342, + -0.07678333669900894, + -0.07603100687265396, + 0.022697359323501587, + -0.0791313648223877, + 0.07144536823034286, + 0.04848698899149895, + 0.03562559187412262, + 0.019893446937203407, + 0.06547132879495621, + 0.010206692852079868, + 0.020238369703292847, + -0.034656405448913574, + -0.03764572739601135, + -0.010647440329194069, + -0.019053788855671883, + 0.014916029758751392, + 0.09002663940191269, + 0.03564060479402542, + 0.09896186739206314, + 0.01198516320437193, + 0.03503521531820297, + -0.07820829749107361, + 0.010020527057349682, + 0.06754842400550842, + -0.019115395843982697, + -0.042204827070236206, + -0.05533764511346817, + -0.02979818731546402, + -0.06848762929439545, + 0.01644035428762436, + -0.05761922150850296, + 0.07225719094276428, + -0.026507336646318436, + 0.014494970440864563, + 0.1318766474723816, + 0.019118081778287888, + -0.04242726042866707, + -0.05576483905315399, + -0.040118467062711716, + -0.03527712821960449, + 0.023533428087830544, + -0.16723714768886566, + -0.08374740183353424, + -0.07266789674758911, + 0.04033157601952553, + 0.005697854794561863, + 0.03307320177555084, + 0.05674409866333008, + -0.00736004114151001, + 0.025302359834313393, + -0.008941157720983028, + 0.024136634543538094, + -0.06608708202838898, + -0.08500169217586517, + -0.03722498565912247, + -0.0820484310388565, + 0.0030963472090661526, + 0.06611262261867523, + -0.027501927688717842, + 0.02997785061597824, + -0.014206597581505775, + -0.0897846519947052, + -0.09211274981498718, + 0.06178612634539604, + 0.025527819991111755, + -0.004660853184759617, + 0.029044259339571, + 0.04766248166561127, + -0.08930860459804535, + 0.041857700794935226, + 0.021609416231513023, + 0.09293758869171143, + -0.06496190279722214, + 0.04089675098657608, + -0.04615473374724388, + 0.008139315992593765, + 0.10298070311546326, + -0.07245919108390808, + -0.06786300241947174, + -0.08537886291742325, + -0.04386327043175697, + 0.03143146634101868, + -0.06382175534963608, + -0.022953975945711136, + -0.014260202646255493, + -0.00770226726308465, + -0.0735427588224411, + -0.08604089915752411, + 0.054536253213882446, + -0.002473333850502968, + -0.007351551204919815, + -0.05520911514759064, + 0.04073307663202286, + -0.005512945353984833, + 0.04282146319746971, + -0.034995317459106445, + 0.038817062973976135, + 0.01078060083091259, + -0.03456932306289673, + 0.014562118798494339, + 0.04662066698074341, + 0.06337518990039825, + 0.015382414683699608, + -0.03802090138196945, + -0.08534346520900726, + 0.05308078974485397, + -0.025435537099838257, + 0.0836106389760971, + -0.008187885396182537, + -0.04709063470363617, + -0.006285067647695541, + 0.012433654628694057, + -0.005599376279860735, + 0.02429061010479927, + 0.04455827176570892, + 0.05604148656129837, + -0.008471336215734482, + -0.06035800278186798, + 0.0891936868429184, + 0.03530941158533096, + 0.0009362921118736267, + -0.04584295675158501, + -0.02124122902750969, + -0.06280230730772018, + -0.007850621826946735, + -0.006578205153346062, + -0.07067693769931793, + 0.022704359143972397, + -0.03307250887155533, + 0.025164103135466576, + 0.029459595680236816, + 0.09369748830795288, + 0.028062455356121063, + -0.050122179090976715 + ] + }, + "p245_310.wav": { + "name": "p245", + "embedding": [ + 0.062333762645721436, + 0.11135416477918625, + -0.010516969487071037, + -0.006485992576926947, + -0.05130276083946228, + 0.06126203387975693, + -0.14945679903030396, + 0.1642509400844574, + -0.053004682064056396, + 0.13242875039577484, + -0.0558055154979229, + 0.1253504604101181, + -0.013647131621837616, + -0.1708347499370575, + -0.048024486750364304, + 0.04792303591966629, + -0.06457256525754929, + -0.04175776243209839, + -0.04514404758810997, + -0.042643945664167404, + 0.023041173815727234, + 0.02632591687142849, + 0.009444857016205788, + 0.019633198156952858, + 0.0445408932864666, + 0.06953977048397064, + 0.0009119375608861446, + 0.02979297563433647, + 0.0033158750738948584, + -0.056146290153265, + -0.022432927042245865, + 0.07109639048576355, + -0.05427337437868118, + 0.006242684554308653, + 0.056439489126205444, + -0.023334486410021782, + 0.019439522176980972, + -0.07142479717731476, + -0.03865321725606918, + 0.02475246600806713, + -0.023804016411304474, + 0.09528770297765732, + 0.03319437801837921, + -0.015879716724157333, + 0.020103946328163147, + 0.04602956399321556, + 0.018373748287558556, + -0.05385857820510864, + -0.09695323556661606, + 0.1576339304447174, + 0.060154348611831665, + 0.003256745170801878, + -0.08038675785064697, + -0.06254622340202332, + 0.10964995622634888, + -0.033896103501319885, + -0.09776374697685242, + -0.02907993644475937, + 0.056550975888967514, + 0.14644931256771088, + -0.050270020961761475, + -0.044469814747571945, + 0.03467117249965668, + 0.12549498677253723, + 0.06777068227529526, + 0.06362436711788177, + 0.08401626348495483, + 0.10009558498859406, + -0.04259272664785385, + 0.014622258953750134, + 0.06307181715965271, + 0.06722456216812134, + 0.05293458327651024, + -0.01901255175471306, + 0.0256817527115345, + -0.004500877112150192, + -0.014562606811523438, + -0.016639545559883118, + -0.022020038217306137, + -0.018084583804011345, + -0.02398824319243431, + 0.02738938480615616, + 0.00420380337163806, + 0.03587711974978447, + -0.021967288106679916, + 0.06440689414739609, + 0.030048459768295288, + -0.030402695760130882, + 0.07170552015304565, + 0.05547770857810974, + 0.03398648649454117, + 0.06849531829357147, + -0.09338508546352386, + -0.07385315746068954, + 0.04826626926660538, + -0.00901690311729908, + 0.020674970000982285, + 0.06259172409772873, + 0.0551062673330307, + -0.005868728272616863, + 0.12045145034790039, + 0.0753273293375969, + -0.00876203179359436, + 0.00862166564911604, + -0.09939444065093994, + 0.13078439235687256, + 0.08275123685598373, + -0.046129416674375534, + 0.047482818365097046, + -0.03654826059937477, + 0.053228553384542465, + 0.05904535949230194, + -0.13952064514160156, + -0.10209541022777557, + 0.03199651837348938, + 0.02433048002421856, + -0.009237615391612053, + 0.11519865691661835, + -0.009365643374621868, + 0.04630453884601593, + 0.08908770978450775, + -0.05981840938329697, + -0.05235005542635918, + -0.020699501037597656, + 0.05867981165647507, + -0.07363149523735046, + 0.0775236189365387, + 0.07276376336812973, + -0.0017665711930021644, + 0.020374348387122154, + 0.09087875485420227, + 0.0007007376989349723, + -0.014258968643844128, + 0.002553727477788925, + -0.013424744829535484, + 0.01827506348490715, + 0.0010108643909916282, + 0.000856323167681694, + 0.012265734374523163, + 0.04437711089849472, + 0.036183103919029236, + 0.007288246415555477, + -0.02180321328341961, + -0.10839347541332245, + 0.021832622587680817, + 0.030520638450980186, + 0.08195261657238007, + -0.009910766035318375, + -0.020321935415267944, + -0.024892106652259827, + -0.04641749709844589, + -0.022338520735502243, + -0.0005006389692425728, + 0.0804557204246521, + -0.027200235053896904, + 0.02207481861114502, + 0.1158241257071495, + 0.03636608272790909, + 0.010507237166166306, + -0.026340406388044357, + 0.002669725101441145, + 0.01554177887737751, + 0.059437137097120285, + -0.05581275373697281, + -0.08813385665416718, + -0.01614191010594368, + 0.028714101761579514, + -0.010185315273702145, + 0.0893682986497879, + 0.03561735153198242, + 0.003323871176689863, + 0.021243175491690636, + -0.07853252440690994, + 0.0366552472114563, + -0.09887391328811646, + -0.05439227446913719, + -0.017395587638020515, + -0.03081517666578293, + -0.048097848892211914, + 0.06837590038776398, + 0.03603004664182663, + 0.075649693608284, + -0.020068824291229248, + -0.08150546252727509, + -0.07169344276189804, + 0.03834502771496773, + 0.0763382837176323, + -0.025374209508299828, + 0.018010210245847702, + 0.0705205574631691, + 0.014005008153617382, + 0.05430516600608826, + 0.07449464499950409, + 0.08702366054058075, + -0.031685881316661835, + 0.016271088272333145, + -0.05655751749873161, + 0.07943019270896912, + 0.04702039062976837, + -0.09766217321157455, + -0.07521934807300568, + -0.03131193667650223, + -0.052844297140836716, + 0.010865757241845131, + 0.007213325705379248, + 0.04729142040014267, + 0.02575257048010826, + 0.003015512600541115, + -0.0818973034620285, + -0.09146809577941895, + 0.08307889103889465, + -0.08757950365543365, + 0.013212001882493496, + -0.0730065256357193, + 0.0410885252058506, + 0.11009232699871063, + 0.03561345115303993, + -0.0081672677770257, + -0.0246304702013731, + 0.019638020545244217, + -0.0005461095715872943, + 0.0066030896268785, + 0.04522112011909485, + 0.03942589461803436, + -0.1044793352484703, + 0.015239045023918152, + -0.07528360933065414, + 0.07470488548278809, + -0.03606195002794266, + 0.15367625653743744, + 0.01645088382065296, + -0.059046514332294464, + -0.10648392885923386, + 0.014447370544075966, + -0.03611423447728157, + 0.06656364351511002, + 0.02394464984536171, + 0.06695408374071121, + 0.03547429293394089, + -0.042541008442640305, + 0.10056301951408386, + 0.047229327261447906, + -0.05342699587345123, + -0.07886892557144165, + -0.06227856129407883, + -0.023887883871793747, + 0.03216726332902908, + 0.018341396003961563, + -0.0730758085846901, + -0.02213200554251671, + 0.01135922595858574, + -0.015492855571210384, + 0.094337098300457, + 0.13425292074680328, + 0.07430572807788849, + -0.13209103047847748 + ] + }, + "p245_390.wav": { + "name": "p245", + "embedding": [ + 0.05390515550971031, + 0.08928265422582626, + -0.009095130488276482, + 0.0331672802567482, + -0.03521709889173508, + 0.07289695739746094, + -0.134585902094841, + 0.12634585797786713, + -0.04289443790912628, + 0.15653173625469208, + -0.058817293494939804, + 0.10553275793790817, + -0.0011788542615249753, + -0.1952839344739914, + -0.04377306252717972, + 0.04105088487267494, + -0.07260677218437195, + -0.02957030013203621, + -0.06161730736494064, + 0.0018908885540440679, + 0.04718029499053955, + 0.04348362237215042, + 0.031137706711888313, + -7.213740173028782e-05, + 0.007394982967525721, + 0.05135253071784973, + 7.532518066000193e-05, + 0.05643025413155556, + 0.03473090007901192, + -0.06871864944696426, + -0.036472972482442856, + 0.12149496376514435, + -0.04107067734003067, + 0.026809513568878174, + 0.055561088025569916, + -0.02963853068649769, + -0.007271257229149342, + -0.04845721274614334, + -0.029888229444622993, + 0.016986336559057236, + -0.045228127390146255, + 0.07154866307973862, + 0.03585415706038475, + 0.013049333356320858, + 0.05837123468518257, + 0.005929145030677319, + -0.03145897388458252, + -0.05738860368728638, + -0.08443523198366165, + 0.1713896542787552, + 0.09075279533863068, + -0.014891610480844975, + -0.049283236265182495, + -0.05789681524038315, + 0.09286869317293167, + -0.015881182625889778, + -0.1446750909090042, + -0.054379530251026154, + 0.0792398601770401, + 0.15658412873744965, + -0.016973700374364853, + -0.018962474539875984, + 0.025595594197511673, + 0.1400173306465149, + 0.05862336978316307, + 0.10565488040447235, + 0.07664918154478073, + 0.09592867642641068, + 0.0021817826200276613, + 0.03837255761027336, + 0.05230647325515747, + 0.0448959618806839, + 0.037463411688804626, + -0.020335907116532326, + 0.050175171345472336, + 0.003201348939910531, + -0.019272953271865845, + -0.010164099745452404, + -0.006473494693636894, + 0.02481451816856861, + -0.001570268883369863, + 0.01204477995634079, + -0.0032795509323477745, + 0.034901563078165054, + -0.03703448921442032, + 0.049503225833177567, + -0.002315206453204155, + -0.0015280717052519321, + 0.05702874809503555, + 0.039399269968271255, + 0.04136405140161514, + 0.061849117279052734, + -0.05117488279938698, + -0.09778434038162231, + 0.015687324106693268, + 0.010577641427516937, + -6.401844439096749e-05, + 0.05919798091053963, + 0.038666751235723495, + -0.023059936240315437, + 0.1095709279179573, + 0.046080607920885086, + -0.03148084506392479, + 0.036561522632837296, + -0.10593611747026443, + 0.11764362454414368, + 0.06253674626350403, + -0.010973717086017132, + 0.053999822586774826, + -0.04982920363545418, + 0.08696375042200089, + 0.06308745592832565, + -0.14470164477825165, + -0.05770739167928696, + 0.06784173846244812, + -0.00554050225764513, + -0.01823246106505394, + 0.12491173297166824, + 0.006918720435351133, + 0.016837649047374725, + 0.09361709654331207, + -0.0745864138007164, + -0.04860581085085869, + -0.02651151642203331, + 0.06534599512815475, + -0.10346052050590515, + 0.04956859350204468, + 0.02006286382675171, + -0.026648448780179024, + -0.012086551636457443, + 0.10539241135120392, + -0.018278049305081367, + -0.002573288744315505, + 0.009611809626221657, + -0.03760271146893501, + 0.05780063197016716, + -0.04063032940030098, + 0.022076835855841637, + 0.020960509777069092, + 0.018808521330356598, + 0.03726546838879585, + -0.01462057139724493, + -0.045741137117147446, + -0.1042439416050911, + 0.012642532587051392, + 0.02781568467617035, + 0.07075914740562439, + -0.001994219608604908, + -0.005888078361749649, + -0.043102920055389404, + -0.06279237568378448, + 0.02562461420893669, + -0.038862429559230804, + 0.06611211597919464, + -0.0100297462195158, + -0.010633885860443115, + 0.10490754246711731, + -0.0032152431085705757, + 0.013908391818404198, + -0.050229016691446304, + -0.01925613358616829, + 0.017270535230636597, + 0.06111428141593933, + -0.08161693066358566, + -0.04565566033124924, + 0.019952932372689247, + 0.021331798285245895, + 0.0056177591904997826, + 0.03059665858745575, + 0.05080237612128258, + 0.010925977490842342, + 0.04018120467662811, + -0.08479554206132889, + 0.011016296222805977, + -0.11183982342481613, + -0.06443434953689575, + -0.025700028985738754, + -0.019076114520430565, + -0.00666585611179471, + 0.08366718888282776, + 0.00783555954694748, + 0.028873024508357048, + -0.004083580337464809, + -0.08913102000951767, + -0.07488339394330978, + 0.07882171869277954, + 0.09218160063028336, + -0.005183601286262274, + 0.04809688776731491, + 0.049967970699071884, + -0.03552994504570961, + 0.04761362075805664, + 0.04599515721201897, + 0.10308775305747986, + -0.01695864088833332, + 0.014222340658307076, + -0.09289102256298065, + 0.07657654583454132, + 0.08020355552434921, + -0.09848613291978836, + -0.08836112916469574, + 0.0039378684014081955, + -0.06599529832601547, + 0.025393830612301826, + -0.02892601117491722, + 0.0049562654457986355, + 0.04748081415891647, + 6.835884414613247e-05, + -0.09207058697938919, + -0.08813222497701645, + 0.10073535144329071, + -0.09169846773147583, + -0.019248684868216515, + -0.0721120685338974, + 0.04407724365592003, + 0.09232749789953232, + 0.04549960047006607, + -0.03842763602733612, + -0.008677591569721699, + 0.05421547591686249, + -0.04442988708615303, + -0.007950632832944393, + 0.039528023451566696, + 0.01881370320916176, + -0.1321561634540558, + 0.00788298062980175, + -0.0783316120505333, + 0.06109057739377022, + -0.08186092972755432, + 0.140180766582489, + -0.007290482986718416, + -0.06880410015583038, + -0.08298700302839279, + 0.05013761669397354, + -0.01638776622712612, + 0.04276889190077782, + 0.03441886231303215, + 0.06435059010982513, + 0.0453796423971653, + -0.06823495030403137, + 0.10489839315414429, + 0.031164808198809624, + -0.018003329634666443, + -0.07761579006910324, + -0.02650955319404602, + -0.040319573134183884, + 0.03270123898983002, + 0.026091286912560463, + -0.10452570021152496, + -0.009347882121801376, + 0.02893173322081566, + -0.04637656360864639, + 0.06974027305841446, + 0.1362844705581665, + 0.05342552065849304, + -0.1435653567314148 + ] + }, + "p245_272.wav": { + "name": "p245", + "embedding": [ + 0.07805004715919495, + 0.031246481463313103, + 0.0403924360871315, + -0.05527679994702339, + 0.024828551337122917, + 0.07462207973003387, + -0.12186755239963531, + 0.07680010050535202, + -0.014242593199014664, + 0.057926736772060394, + -0.08840712904930115, + 0.04659002274274826, + 0.025284886360168457, + -0.1520388126373291, + -0.03570377081632614, + 0.030892131850123405, + -0.04072274640202522, + 0.024306446313858032, + -0.05477508157491684, + -0.03034302592277527, + -0.0067830272018909454, + 0.04069060832262039, + 0.036249976605176926, + -0.04064023867249489, + 0.040984589606523514, + 0.047366317361593246, + 0.013311544433236122, + 0.02635137364268303, + -0.02134903520345688, + -0.036444611847400665, + 0.0006156200543045998, + 0.07961243391036987, + -0.03660359978675842, + -0.04000692814588547, + 0.05057183653116226, + 0.005644030403345823, + 0.05831284448504448, + -0.09285643696784973, + -0.022177865728735924, + 0.051782768219709396, + -0.05667605251073837, + 0.07458725571632385, + 0.05092700198292732, + 0.030888816341757774, + 0.014505833387374878, + 0.030910607427358627, + 0.02317505143582821, + -0.07474349439144135, + -0.08601969480514526, + 0.1618729531764984, + 0.014286966994404793, + 0.041374675929546356, + -0.10537150502204895, + -0.013100223615765572, + 0.04306437075138092, + -0.011819606646895409, + -0.027152301743626595, + -0.007410903926938772, + 0.038424551486968994, + 0.09972322732210159, + 0.022540202364325523, + -0.03822816163301468, + 0.04328371584415436, + 0.055118706077337265, + -0.026188569143414497, + 0.014896324835717678, + 0.11809432506561279, + 0.06560206413269043, + 0.008971446193754673, + 0.026067521423101425, + 0.039699532091617584, + 0.01513068750500679, + 0.06188390403985977, + -0.04368027299642563, + 0.04448987543582916, + -0.027908308431506157, + -0.04238244146108627, + -0.01628924533724785, + -0.02337472140789032, + -0.01637083664536476, + 0.06354888528585434, + 0.018838247284293175, + 0.017638787627220154, + 0.06269198656082153, + -0.05855787545442581, + 0.018404502421617508, + -0.018946334719657898, + 0.0524844229221344, + 0.0754566490650177, + 0.04872932657599449, + 0.04560946673154831, + -0.005865195766091347, + -0.04433590918779373, + -0.0777931660413742, + 0.03516163304448128, + 0.027359621599316597, + -0.012207778170704842, + 0.007468577474355698, + 0.03845154866576195, + -0.049091488122940063, + 0.09061408787965775, + -0.010038855485618114, + 0.002318674698472023, + -0.01295918133109808, + -0.07040002197027206, + 0.060140158981084824, + 0.09907764196395874, + -0.015951979905366898, + 0.04184911027550697, + -0.03884124010801315, + 0.008190998807549477, + 0.06033554673194885, + -0.09694486856460571, + -0.041078198701143265, + 0.03351639211177826, + 0.012129362672567368, + 0.07398790866136551, + 0.11422621458768845, + -0.0016760625876486301, + 0.018616054207086563, + 0.029490642249584198, + -0.06932834535837173, + -0.02365504764020443, + 0.02712034061551094, + -0.0032923854887485504, + -0.022457998245954514, + 0.0092119500041008, + 0.023451542481780052, + 0.040889251977205276, + -0.06427560746669769, + 0.0527741014957428, + 0.010937150567770004, + 0.009991750121116638, + -0.10067594796419144, + 0.07235223054885864, + 0.04502633959054947, + -0.0011446168646216393, + -0.04225616529583931, + 0.007886041887104511, + 0.06918466091156006, + -0.014319105073809624, + 0.06925106048583984, + -0.08320833742618561, + -0.10994590073823929, + -0.038774192333221436, + 0.0011140275746583939, + 0.03918425738811493, + -0.035329923033714294, + -0.02905648574233055, + -0.07947008311748505, + 0.032268088310956955, + -0.01167863979935646, + -0.01231518667191267, + 0.030090592801570892, + 0.09888110309839249, + -0.04613158106803894, + 0.07447901368141174, + -0.03751831501722336, + 0.022598695009946823, + -0.009025701321661472, + -0.007163614500313997, + 0.02782125025987625, + 0.017612474039196968, + 0.005257181823253632, + -0.06694945693016052, + -0.0005585253238677979, + -0.059513263404369354, + 0.005501090548932552, + 0.00797060877084732, + 0.020931215956807137, + -0.012566907331347466, + -0.03347695246338844, + -0.11056963354349136, + 0.021343054249882698, + -0.07710330188274384, + -0.033407628536224365, + 0.07335171103477478, + 0.0013008173555135727, + -0.02465185523033142, + 0.10292619466781616, + 0.018680822104215622, + 0.017956409603357315, + -0.07259131222963333, + -0.05193762108683586, + 0.017226621508598328, + 0.04458422213792801, + 0.06698817759752274, + -0.005020072218030691, + -0.0042329225689172745, + -0.025899047031998634, + 0.03187107667326927, + 0.0690484419465065, + 0.05349622666835785, + 0.03670891746878624, + -0.03689820319414139, + -0.02484549582004547, + 0.035276077687740326, + 0.10420235991477966, + -0.02229044958949089, + -0.011279079131782055, + -0.03782124072313309, + 0.04193677753210068, + -0.0345267578959465, + 0.014670413918793201, + 0.029176101088523865, + 0.03896758332848549, + 0.03579922765493393, + -0.032069213688373566, + -0.060753900557756424, + -0.03974713385105133, + 0.017953645437955856, + -0.05051875859498978, + -0.030922263860702515, + -0.04569966718554497, + 0.055334389209747314, + 0.09403257071971893, + -0.006817622110247612, + 0.016337305307388306, + -0.022613225504755974, + -0.039114195853471756, + -0.04312022030353546, + -0.05394390597939491, + -0.036319658160209656, + 0.026847518980503082, + -0.07230760902166367, + 0.02256101928651333, + -0.06537202000617981, + 0.06207843869924545, + -0.016198329627513885, + 0.04776257649064064, + 0.04713447019457817, + -0.04444450885057449, + -0.07119201868772507, + -0.006379054859280586, + -0.008983755484223366, + 0.03671051934361458, + 0.022441480308771133, + -0.0002881418913602829, + 0.05042334645986557, + -0.056568440049886703, + 0.04519500955939293, + 0.032964859157800674, + -0.04395901784300804, + -0.05827764794230461, + -0.02664433792233467, + 0.010392685420811176, + 0.021448174491524696, + -0.030511366203427315, + -0.022718951106071472, + 0.03794592246413231, + 0.037708837538957596, + 0.030361898243427277, + 0.02101735584437847, + 0.05144747719168663, + 0.001114354468882084, + -0.07820219546556473 + ] + }, + "p245_210.wav": { + "name": "p245", + "embedding": [ + 0.030596919357776642, + 0.0841556191444397, + 0.012820704840123653, + 0.010635925456881523, + 0.008473701775074005, + 0.028797658160328865, + -0.1492796540260315, + 0.14613549411296844, + -0.003934000618755817, + 0.12034957110881805, + -0.07674948126077652, + 0.05096691846847534, + -0.03624391183257103, + -0.1290227472782135, + -0.03811531886458397, + 0.02606789767742157, + -0.034172289073467255, + -0.02522493712604046, + -0.006144885439425707, + -0.006501024588942528, + 0.03783539682626724, + 0.019031988456845284, + -0.0009674839675426483, + 0.01439635083079338, + 0.037747837603092194, + 0.012713033705949783, + 0.016097357496619225, + 0.061483800411224365, + 0.025261247530579567, + -0.013186433352530003, + 0.03253801539540291, + 0.11990076303482056, + -0.0628390684723854, + -0.009552542120218277, + 0.048650167882442474, + 0.007677403278648853, + -0.027684640139341354, + -0.03144530951976776, + -0.058763280510902405, + 0.026295050978660583, + -0.044312141835689545, + 0.05063920468091965, + 0.01699085719883442, + 0.0011239736340939999, + 0.03825441375374794, + 0.022916747257113457, + -0.0019340435974299908, + -0.034722182899713516, + -0.08818639814853668, + 0.13072866201400757, + 0.06585775315761566, + 0.012756201438605785, + -0.08909894526004791, + -0.090900719165802, + 0.06726817786693573, + 0.007602536119520664, + -0.07183565199375153, + 0.002192273736000061, + 0.06536427140235901, + 0.14639964699745178, + -0.007427135482430458, + -0.01235495787113905, + 0.018868179991841316, + 0.07820919156074524, + 0.07840124517679214, + 0.045271143317222595, + 0.04875032603740692, + 0.0846790075302124, + 0.029304085299372673, + 0.029179414734244347, + 0.059164032340049744, + 0.021112974733114243, + 0.009686710312962532, + -0.042836036533117294, + 0.030365262180566788, + 0.03601401299238205, + -0.02768142893910408, + 0.004443887621164322, + 0.01381439995020628, + 0.0046913400292396545, + 0.03584422916173935, + -1.531653106212616e-05, + -0.013592083938419819, + 0.06888803839683533, + -0.039438508450984955, + 0.042061954736709595, + -0.004070714116096497, + -0.01485615223646164, + 0.08001046627759933, + 0.03558462858200073, + 0.023850612342357635, + 0.07595677673816681, + -0.07829700410366058, + -0.08305729925632477, + -0.006581442430615425, + -0.003209050977602601, + 0.024796640500426292, + 0.05243242159485817, + 0.037644971162080765, + -0.02066842094063759, + 0.12771877646446228, + 0.034893687814474106, + 0.013780414126813412, + -0.0042670974507927895, + -0.1260133981704712, + 0.07696455717086792, + 0.04633644223213196, + -0.02695537358522415, + 0.0515616312623024, + -0.012208234518766403, + 0.04175709933042526, + 0.04974275454878807, + -0.13143886625766754, + -0.03920525684952736, + 0.05118044093251228, + 0.0059749591164290905, + 0.01594759337604046, + 0.1069403663277626, + 0.03104320913553238, + -0.01620885170996189, + 0.07889629900455475, + -0.08621074259281158, + -0.055649906396865845, + -0.033559974282979965, + 0.1016840785741806, + -0.08952215313911438, + 0.027700264006853104, + 0.024675438180565834, + -0.014423297718167305, + -0.04531712830066681, + 0.07375186681747437, + 0.000415031798183918, + -0.00015851296484470367, + -0.028294507414102554, + 0.01749030500650406, + 0.08891933411359787, + -0.021659063175320625, + 0.03105173259973526, + 0.01992894522845745, + 0.04125868156552315, + 0.025921441614627838, + 0.01935938559472561, + -0.049375589936971664, + -0.07961546629667282, + -0.009436559863388538, + 0.0684974193572998, + 0.06708923727273941, + -0.0491051971912384, + -0.030637552961707115, + -0.0654284656047821, + -0.05686984211206436, + 0.02030065283179283, + 0.04222528636455536, + 0.08421556651592255, + 0.046449583023786545, + -0.029040930792689323, + 0.13530217111110687, + -0.03105255588889122, + 0.007283971644937992, + -0.020225167274475098, + 0.025831453502178192, + 0.009825004264712334, + 0.04207317531108856, + -0.06330402940511703, + -0.07473613321781158, + 0.02230144292116165, + 0.0007133600302040577, + 0.022106168791651726, + 0.029444189742207527, + -0.0011781472712755203, + -0.0005464546848088503, + 0.019190713763237, + -0.06677652150392532, + 0.013764157891273499, + -0.0881725549697876, + -0.07823389768600464, + -0.007210577372461557, + 0.013173889368772507, + -0.019713273271918297, + 0.07604013383388519, + -0.00691785104572773, + 0.047817979007959366, + 0.027661941945552826, + -0.09357676655054092, + -0.07103085517883301, + 0.06767357885837555, + 0.05215778946876526, + -0.012474924325942993, + 0.04100147634744644, + 0.06916986405849457, + -0.0339847169816494, + 0.023280568420886993, + 0.06203930824995041, + 0.07159791886806488, + -0.05701250582933426, + -0.012226616963744164, + -0.08411754667758942, + 0.09320881962776184, + 0.047804687172174454, + -0.09929536283016205, + -0.08394557982683182, + -0.011899353936314583, + -0.05481933802366257, + 0.012348607182502747, + -0.004481784068048, + 0.06157462298870087, + 0.007839015685021877, + -0.0472693033516407, + -0.06354792416095734, + -0.08071665465831757, + 0.07271368056535721, + -0.06602893024682999, + -0.04005580395460129, + -0.04836101830005646, + 0.03449997678399086, + 0.08083398640155792, + 0.05337708070874214, + 0.03816365450620651, + -0.039333928376436234, + 0.034648336470127106, + -0.05005088075995445, + -0.07325781136751175, + 0.04599399119615555, + -0.026650480926036835, + -0.10073283314704895, + -0.017291313037276268, + -0.050028689205646515, + 0.09322719275951385, + -0.06154647096991539, + 0.10789820551872253, + -0.013691608794033527, + -0.07906541228294373, + -0.07174591720104218, + -0.025496678426861763, + 0.0209258534014225, + 0.03191053494811058, + 0.027914701029658318, + 0.04535887390375137, + 0.031264886260032654, + -0.011600816622376442, + 0.08953496813774109, + 0.01850002072751522, + 0.009259818121790886, + -0.048829250037670135, + -0.0622490718960762, + 0.0012840889394283295, + 0.01808755099773407, + -0.0008657914586365223, + -0.09528379887342453, + 0.04542069509625435, + 0.0033216187730431557, + -0.0407499261200428, + 0.015438757836818695, + 0.0888296440243721, + 0.051443349570035934, + -0.14641030132770538 + ] + }, + "p245_201.wav": { + "name": "p245", + "embedding": [ + 0.05511818081140518, + 0.11212310194969177, + -0.011525323614478111, + 0.016972655430436134, + -0.04211655631661415, + 0.0638246089220047, + -0.16440251469612122, + 0.1507434844970703, + -0.026916876435279846, + 0.13388268649578094, + -0.037310678511857986, + 0.12266439944505692, + -0.020745359361171722, + -0.17097729444503784, + -0.03719726949930191, + 0.059551902115345, + -0.04489855840802193, + -0.036431364715099335, + -0.014066828414797783, + -0.01691630855202675, + 0.009256268851459026, + 0.02300920896232128, + 0.040245041251182556, + 0.02279983088374138, + 0.03718739002943039, + 0.06513645499944687, + 0.0007651466876268387, + 0.05713482201099396, + 0.00963128823786974, + -0.03747817873954773, + -0.029261961579322815, + 0.08851687610149384, + -0.06712214648723602, + 0.023853596299886703, + 0.05486403405666351, + -0.013791164383292198, + 0.003468405921012163, + -0.05426535755395889, + -0.011016378179192543, + 0.003150020493194461, + -0.025247231125831604, + 0.10075338929891586, + 0.03476456552743912, + -0.008219363167881966, + 0.01719394326210022, + 0.03493858128786087, + 0.008156637661159039, + -0.0324087031185627, + -0.11855581402778625, + 0.1498035192489624, + 0.06533762067556381, + -0.0043103876523673534, + -0.0772293359041214, + -0.05846061557531357, + 0.08848056942224503, + -0.027996767312288284, + -0.10237906873226166, + -0.03466286510229111, + 0.07236357033252716, + 0.14088992774486542, + -0.031598836183547974, + -0.0486932098865509, + 0.023812200874090195, + 0.13915732502937317, + 0.08070148527622223, + 0.07763877511024475, + 0.07992343604564667, + 0.12148387730121613, + -0.050063468515872955, + -0.0021491101942956448, + 0.050942204892635345, + 0.0586591511964798, + 0.04539824277162552, + 0.009091577492654324, + 0.012125764042139053, + -0.017939668148756027, + -0.004847826436161995, + -0.005730635020881891, + -0.014895502477884293, + -0.029740257188677788, + -0.029120707884430885, + 0.013473547995090485, + -0.011863608844578266, + 0.06011473387479782, + -0.012197759002447128, + 0.0584108941257, + 0.034900542348623276, + -0.018841322511434555, + 0.0773913562297821, + 0.05043083429336548, + 0.0210711732506752, + 0.06707257777452469, + -0.0912616178393364, + -0.05538351833820343, + 0.0398763008415699, + -0.008284758776426315, + 0.038146667182445526, + 0.07084225118160248, + 0.041463833302259445, + -0.0010061735520139337, + 0.12212863564491272, + 0.06449627876281738, + -0.014100637286901474, + 0.016240563243627548, + -0.08583803474903107, + 0.13689729571342468, + 0.06536121666431427, + -0.03450407832860947, + 0.055621471256017685, + -0.04011617228388786, + 0.04346810281276703, + 0.060454487800598145, + -0.12322668731212616, + -0.0895187184214592, + 0.04595860093832016, + 0.04117373004555702, + -0.0230595450848341, + 0.12120827287435532, + -0.001005854457616806, + 0.0545198880136013, + 0.08080488443374634, + -0.07027877867221832, + -0.04748065769672394, + -0.009639699943363667, + 0.06234338507056236, + -0.06941592693328857, + 0.05164248123764992, + 0.06436388194561005, + -0.013249555602669716, + 0.010334555990993977, + 0.08919903635978699, + 0.011683602817356586, + 0.000299295992590487, + 0.02489382028579712, + -0.036725860089063644, + 0.014538826420903206, + -0.0019320540595799685, + 0.012876464053988457, + 0.015764329582452774, + 0.021520916372537613, + 0.04543602466583252, + 0.005655610002577305, + -0.024667367339134216, + -0.1309337466955185, + 0.003189387731254101, + 0.0531509593129158, + 0.08745987713336945, + -0.024010051041841507, + -0.040880054235458374, + -0.030893104150891304, + -0.03797308728098869, + 0.0009898971766233444, + 0.006269948557019234, + 0.0656789243221283, + -0.03542296215891838, + -0.009637041948735714, + 0.10649190843105316, + 0.030321605503559113, + 0.0031170290894806385, + -0.04022235423326492, + -0.016823559999465942, + 0.0015661268262192607, + 0.047295406460762024, + -0.08259402215480804, + -0.07387891411781311, + -0.004735726863145828, + 0.04221796989440918, + -0.01233053021132946, + 0.08891333639621735, + 0.05673213303089142, + 0.016745546832680702, + 0.0222429558634758, + -0.048097945749759674, + 0.011405489407479763, + -0.07478676736354828, + -0.07258903235197067, + -0.018395038321614265, + 0.009205790236592293, + -0.03617504984140396, + 0.07776371389627457, + 0.04206109046936035, + 0.09293448179960251, + -0.023142961785197258, + -0.05291867256164551, + -0.07306499779224396, + 0.04751640930771828, + 0.06554031372070312, + -0.025272902101278305, + 0.03950625658035278, + 0.07353940606117249, + -0.024351969361305237, + 0.05548709258437157, + 0.07088024914264679, + 0.08119156956672668, + -0.05111321806907654, + 0.024134550243616104, + -0.07701750099658966, + 0.060233116149902344, + 0.0856102705001831, + -0.10147425532341003, + -0.07619839906692505, + -0.013500827364623547, + -0.061241574585437775, + 0.006847718730568886, + -0.0328960083425045, + 0.029118482023477554, + 0.03181857243180275, + -0.005155395716428757, + -0.08790645003318787, + -0.12165117263793945, + 0.08395262062549591, + -0.08868646621704102, + 0.019166551530361176, + -0.06920987367630005, + 0.05198763310909271, + 0.08661377429962158, + 0.03899727016687393, + -0.029150929301977158, + -0.018633730709552765, + 0.034087590873241425, + 0.0008559771813452244, + 0.008367626927793026, + 0.07127957046031952, + 0.04484396427869797, + -0.12551236152648926, + 0.008474432863295078, + -0.06450192630290985, + 0.06808453798294067, + -0.035618893802165985, + 0.16381029784679413, + 0.021532177925109863, + -0.054629646241664886, + -0.08315492421388626, + 0.003878412302583456, + -0.04005561023950577, + 0.05593789368867874, + 0.015326911583542824, + 0.06255761533975601, + 0.03487628698348999, + -0.041331011801958084, + 0.11909664422273636, + 0.049699876457452774, + -0.05620461702346802, + -0.08857350051403046, + -0.045126304030418396, + -0.030415156856179237, + 0.06337439268827438, + 0.0274224691092968, + -0.08693434298038483, + -0.03429974988102913, + 0.021948659792542458, + -0.018025502562522888, + 0.0702352374792099, + 0.14869332313537598, + 0.07642989605665207, + -0.12858504056930542 + ] + }, + "p245_136.wav": { + "name": "p245", + "embedding": [ + 0.05141834914684296, + 0.09384244680404663, + 0.0027724015526473522, + 0.048024777323007584, + -0.03925531357526779, + 0.06964029371738434, + -0.07960496842861176, + 0.08917447924613953, + -0.05906029790639877, + 0.14789757132530212, + -0.11277738213539124, + 0.11306633800268173, + -0.021489301696419716, + -0.16951832175254822, + -0.03842146694660187, + 0.06441636383533478, + -0.027990078553557396, + 0.030925128608942032, + -0.030577704310417175, + 0.0270548015832901, + 0.04513400420546532, + 0.0441758967936039, + 0.07102750241756439, + -0.051528967916965485, + 0.062090471386909485, + 0.049823418259620667, + 0.029422150924801826, + 0.08429831266403198, + 0.04295084625482559, + -0.10208781063556671, + -0.052613869309425354, + 0.13765741884708405, + -0.036743395030498505, + 0.026554159820079803, + 0.04950394481420517, + 0.011309279128909111, + 0.0005480997497215867, + -0.061575815081596375, + 0.000676786876283586, + -0.0182732492685318, + -0.01846231147646904, + 0.056750133633613586, + 0.006017546635121107, + -0.010398592799901962, + 0.0258325282484293, + 0.021399367600679398, + -0.04424873739480972, + -0.0469798780977726, + -0.09055374562740326, + 0.14626476168632507, + 0.02010076679289341, + 0.022107237949967384, + -0.07736627757549286, + -0.09531641006469727, + 0.09994763135910034, + 0.01042456366121769, + -0.10447446256875992, + -0.026107992976903915, + 0.07764921337366104, + 0.17855390906333923, + 0.0013499065535143018, + -0.03455064073204994, + 0.004637734033167362, + 0.08558331429958344, + 0.012575481086969376, + 0.11652513593435287, + 0.050336919724941254, + 0.05314097926020622, + 0.06140861660242081, + 0.08126457035541534, + 0.02980859950184822, + 0.07705634832382202, + 0.01710939221084118, + -0.026365702971816063, + 0.013730703853070736, + -0.013302801176905632, + -0.0603434219956398, + 0.03303295373916626, + -0.010137918405234814, + -0.011267154477536678, + -0.004585144575685263, + -0.014200631529092789, + 0.03355584293603897, + -0.039536818861961365, + -0.033892177045345306, + 0.032373566180467606, + -0.010474840179085732, + -0.009296310134232044, + 0.06975413113832474, + 0.01981363445520401, + -0.022136781364679337, + 0.02798370271921158, + -0.05673570930957794, + -0.1416313648223877, + -0.006681807804852724, + 0.02671816758811474, + 0.013314202427864075, + 0.06863708794116974, + 0.03743428364396095, + -0.045212581753730774, + 0.08942880481481552, + 0.04641281068325043, + 0.02805173024535179, + 0.03454264998435974, + -0.08436690270900726, + 0.09035779535770416, + 0.09968797862529755, + 0.025750044733285904, + 0.05775569751858711, + -0.03618744760751724, + 0.11050941050052643, + 0.1042468398809433, + -0.16119490563869476, + -0.07683303207159042, + -0.024384746327996254, + -0.034818004816770554, + 0.007066630758345127, + 0.06654946506023407, + -0.027014728635549545, + -0.01130053773522377, + 0.09593239426612854, + -0.11562374979257584, + -0.0719260573387146, + -0.032707080245018005, + 0.02501877211034298, + -0.08276085555553436, + 0.049125753343105316, + 0.013773162849247456, + -0.03938998281955719, + -0.018643083050847054, + 0.06344294548034668, + -0.024832408875226974, + 0.01686427742242813, + 0.04303388670086861, + -0.07249826937913895, + 0.025042152032256126, + -0.09079482406377792, + 0.016426056623458862, + 0.09090790152549744, + 0.04403422027826309, + 0.06044825538992882, + -0.0033124065957963467, + -0.04384984076023102, + -0.08292171359062195, + -0.0028851458337157965, + 0.0525209978222847, + 0.020323116332292557, + -0.010496784932911396, + -0.028149064630270004, + -0.04103463143110275, + -0.07869160175323486, + 0.07913064956665039, + -0.0011206634808331728, + 0.08580173552036285, + 0.030030835419893265, + 0.018346428871154785, + 0.0923272967338562, + 0.006899341009557247, + -0.01107434555888176, + -0.0821005254983902, + -0.04700682684779167, + 0.05453604459762573, + 0.03173323720693588, + -0.10375726222991943, + -0.038108717650175095, + 0.020120572298765182, + -0.01418862584978342, + -0.04396382346749306, + 0.002357538789510727, + 0.04429242014884949, + 0.02557266503572464, + 0.052937597036361694, + -0.03040521964430809, + 0.00023684941697865725, + -0.1077771782875061, + -0.050389159470796585, + -0.022212030366063118, + -0.04610762372612953, + -0.018408508971333504, + 0.09210646152496338, + 0.00935431569814682, + -0.005422515328973532, + -0.0002923562133219093, + -0.05018161982297897, + -0.061742525547742844, + 0.07599705457687378, + 0.05665174126625061, + 0.04734191298484802, + 0.06706345081329346, + 0.014234588481485844, + -0.04093615710735321, + 0.06819590926170349, + 0.05485409498214722, + 0.09729917347431183, + -0.0037351511418819427, + -0.012426167726516724, + -0.07035854458808899, + 0.08780263364315033, + 0.10930603742599487, + -0.09341315180063248, + -0.1024673730134964, + -0.0436556302011013, + -0.07118580490350723, + 0.09446816146373749, + -0.02589349076151848, + -0.03805803135037422, + 0.02255435660481453, + -0.04031994566321373, + -0.08825281262397766, + -0.07669749855995178, + 0.09607619047164917, + -0.03330562263727188, + -0.06764556467533112, + -0.06447035074234009, + 0.03951749578118324, + 0.0531640350818634, + 0.03523951768875122, + -0.00457668537274003, + 0.02532750740647316, + 0.06489630043506622, + -0.11835372447967529, + -0.03565382584929466, + 0.04792428016662598, + -0.028515227138996124, + -0.0448799729347229, + 0.03351759910583496, + -0.07020387053489685, + 0.061290137469768524, + -0.08577300608158112, + 0.1748303323984146, + -0.05219673365354538, + -0.06337454915046692, + -0.06802007555961609, + 0.0746140107512474, + -0.037712790071964264, + 0.009680218994617462, + 0.07229800522327423, + 0.03549128398299217, + 0.036690570414066315, + -0.1087617352604866, + 0.10996214300394058, + -0.0017096211668103933, + 0.008962016552686691, + -0.04340721666812897, + -0.0443255677819252, + -0.06405270099639893, + 0.0012607452226802707, + -0.03241158276796341, + -0.08377400040626526, + 0.02377261407673359, + 0.020100770518183708, + 0.002682886552065611, + 0.04253046214580536, + 0.11782117187976837, + 0.03330816701054573, + -0.0671708881855011 + ] + }, + "p245_238.wav": { + "name": "p245", + "embedding": [ + 0.048192255198955536, + 0.0856732502579689, + -0.024784784764051437, + 0.034956980496644974, + -0.06625073403120041, + 0.05187675356864929, + -0.1189003437757492, + 0.1366071105003357, + -0.02329511195421219, + 0.13937202095985413, + -0.06657830625772476, + 0.13776913285255432, + -0.015011260285973549, + -0.17779940366744995, + -0.020704206079244614, + 0.04880214482545853, + -0.041755590587854385, + -0.039138369262218475, + -0.024401327595114708, + -0.02936430647969246, + 0.0556807667016983, + 0.055693209171295166, + 0.03320441395044327, + 0.00034835212863981724, + 0.017719268798828125, + 0.07283156365156174, + -0.003327935701236129, + 0.03543262183666229, + 0.00414060615003109, + -0.07725800573825836, + -0.05338648706674576, + 0.09614154696464539, + -0.050617948174476624, + 0.018481513485312462, + 0.03167777135968208, + -0.02287757396697998, + 0.0005867118015885353, + -0.0536423958837986, + -0.020605625584721565, + 0.011464349925518036, + -0.030290240421891212, + 0.0711221992969513, + 0.020660096779465675, + -0.015318632125854492, + 0.04880041256546974, + 0.01688324846327305, + -0.028967643156647682, + -0.03955049067735672, + -0.11184601485729218, + 0.17146752774715424, + 0.08238431811332703, + -0.002738955896347761, + -0.058955587446689606, + -0.06897035241127014, + 0.09003840386867523, + -0.009812616743147373, + -0.10784505307674408, + -0.027097230777144432, + 0.06440021097660065, + 0.14617036283016205, + -0.01969076506793499, + -0.055733270943164825, + 0.038849085569381714, + 0.11995720863342285, + 0.049979887902736664, + 0.07123299688100815, + 0.08621516823768616, + 0.10666322708129883, + -0.032921262085437775, + 0.006459346506744623, + 0.041732095181941986, + 0.0870308130979538, + 0.07335962355136871, + -0.0020383328665047884, + 0.033529508858919144, + 0.0009053430985659361, + -0.015052133239805698, + -0.014228877611458302, + -0.0341176837682724, + -0.022708691656589508, + -0.0058417534455657005, + 0.008260474540293217, + 0.020324915647506714, + 0.027046389877796173, + -0.02797975018620491, + 0.0632672905921936, + 0.041860174387693405, + -0.00863546784967184, + 0.05933716893196106, + 0.01817016303539276, + 0.01571546122431755, + 0.07002922892570496, + -0.09937640279531479, + -0.08078598976135254, + 0.04861612617969513, + 0.017239488661289215, + 0.03527238965034485, + 0.07749965786933899, + 0.040935199707746506, + -0.02634143829345703, + 0.11926497519016266, + 0.04318404942750931, + -0.010764160193502903, + 0.013201180845499039, + -0.09105083346366882, + 0.12342653423547745, + 0.11026807874441147, + -0.027273029088974, + 0.051274314522743225, + -0.05674508959054947, + 0.08958464115858078, + 0.051044873893260956, + -0.13859692215919495, + -0.07745301723480225, + 0.015450185164809227, + 0.015069538727402687, + -0.017095256596803665, + 0.12328608334064484, + -0.0021681305952370167, + 0.06407656520605087, + 0.10999579727649689, + -0.10157221555709839, + -0.05042215436697006, + -0.025978311896324158, + 0.048142313957214355, + -0.09797748923301697, + 0.059781208634376526, + 0.05708244442939758, + -0.011131984181702137, + 0.020146246999502182, + 0.06837328523397446, + -0.021472342312335968, + 0.009674872271716595, + 0.01459462009370327, + -0.05541980266571045, + 0.0023015919141471386, + -0.031046949326992035, + -0.011620761826634407, + 0.03468741849064827, + 0.027203360572457314, + 0.046746961772441864, + -0.0187997967004776, + -0.029246270656585693, + -0.13109919428825378, + 0.025988835841417313, + 0.03092006966471672, + 0.056365422904491425, + -0.012007994577288628, + -0.039373014122247696, + -0.034047313034534454, + -0.07035766541957855, + 0.013507400639355183, + -0.007875584997236729, + 0.05060463398694992, + -0.02387099526822567, + 0.007717732340097427, + 0.09041944891214371, + 0.041866544634103775, + -0.01242828369140625, + -0.03630158677697182, + -0.05333526059985161, + 0.010161603800952435, + 0.05040629208087921, + -0.08434578776359558, + -0.08028256148099899, + -0.016978222876787186, + 0.029886778444051743, + -0.019844239577651024, + 0.061177946627140045, + 0.05779300630092621, + 0.02064438909292221, + 0.022764405235648155, + -0.06299805641174316, + 0.006624080240726471, + -0.1037154346704483, + -0.08396510779857635, + -0.011568926274776459, + -0.016440793871879578, + -0.020698431879281998, + 0.07582233846187592, + 0.013021954335272312, + 0.06354506313800812, + -0.038435399532318115, + -0.04189471900463104, + -0.08367975056171417, + 0.053421203047037125, + 0.05864348262548447, + 0.006749191787093878, + 0.05156416445970535, + 0.05735238268971443, + -0.02956988848745823, + 0.06539896130561829, + 0.05777057260274887, + 0.10557493567466736, + -0.023623373359441757, + 0.028875652700662613, + -0.06988620012998581, + 0.09637941420078278, + 0.09502626955509186, + -0.06928315758705139, + -0.08859211206436157, + -0.036927372217178345, + -0.08109502494335175, + 0.048474378883838654, + -0.0327536016702652, + -0.001456666854210198, + 0.03568661957979202, + 0.00914892740547657, + -0.11304029822349548, + -0.08176206052303314, + 0.08448360860347748, + -0.05312156304717064, + -0.006756352260708809, + -0.08260433375835419, + 0.05436480790376663, + 0.109525166451931, + 0.037000566720962524, + -0.0370929092168808, + -0.0195329487323761, + 0.0471968874335289, + -0.025126691907644272, + 0.016944408416748047, + 0.0459243580698967, + 0.05811868607997894, + -0.10650826245546341, + -0.001933423918671906, + -0.07025714218616486, + 0.031967777758836746, + -0.05384049564599991, + 0.1429595649242401, + 0.01064557395875454, + -0.0460495725274086, + -0.08517690747976303, + 0.068721242249012, + -0.008044741116464138, + 0.04722782224416733, + 0.024256261065602303, + 0.05122235417366028, + 0.043867725878953934, + -0.09508968889713287, + 0.1171967089176178, + 0.042246345430612564, + -0.046473052352666855, + -0.06898881494998932, + -0.04760158807039261, + -0.03766796737909317, + 0.03268912807106972, + 0.016161737963557243, + -0.08264794945716858, + -0.02973749116063118, + 0.02060704305768013, + 0.009672337211668491, + 0.06370183825492859, + 0.14448684453964233, + 0.041367240250110626, + -0.12331701815128326 + ] + }, + "p245_196.wav": { + "name": "p245", + "embedding": [ + 0.021600846201181412, + 0.004570044577121735, + -0.07494718581438065, + 0.11656808853149414, + -0.08416303992271423, + -0.0036705578677356243, + -0.0676426962018013, + 0.028364302590489388, + 0.004655107855796814, + 0.0421636700630188, + -0.020549116656184196, + 0.10482598096132278, + -0.007486165966838598, + -0.15837056934833527, + 0.017453154549002647, + 0.05888497084379196, + -0.018500788137316704, + -0.04646013304591179, + -0.0852256640791893, + 0.0017188191413879395, + 0.0239394661039114, + 0.058483004570007324, + 0.09829157590866089, + -0.11539868265390396, + 0.05027247592806816, + 0.06059977039694786, + 0.03152298182249069, + 0.0605325847864151, + 0.006205031182616949, + -0.08786999434232712, + -0.02531738579273224, + 0.07218952476978302, + -0.04300328716635704, + -0.04287872835993767, + -0.006608361378312111, + -0.017997456714510918, + 0.006549905054271221, + -0.05062362551689148, + -0.00022188297589309514, + 0.060666222125291824, + -0.03764817863702774, + 0.08683430403470993, + 0.0381389781832695, + -0.06500234454870224, + 0.044205278158187866, + -0.014747124165296555, + -0.07458034157752991, + -0.011999599635601044, + -0.14061351120471954, + 0.1476481556892395, + 0.0013768341159448028, + 0.03952260687947273, + -0.07445188611745834, + -0.10498807579278946, + 0.08857572078704834, + 0.03125270456075668, + -0.07170958071947098, + -0.07785048335790634, + 0.019192785024642944, + 0.14542174339294434, + 0.01966034434735775, + 0.031899575144052505, + 0.060237716883420944, + 0.04126972332596779, + 0.10605190694332123, + 0.022118283435702324, + 0.04622618108987808, + 0.09566080570220947, + 0.03816326707601547, + 0.04114250838756561, + 0.05145137757062912, + 0.10741766542196274, + -0.03579790145158768, + 0.03237021714448929, + -0.0016727469628676772, + 0.0007892122375778854, + -0.04242180287837982, + -0.05049879848957062, + -0.00753529230132699, + -0.021233510226011276, + 0.029774416238069534, + -0.01037671323865652, + 0.08324018120765686, + 0.008410842157900333, + -0.07947350293397903, + 0.05544404685497284, + 0.07956980913877487, + -0.051099494099617004, + 0.03790952265262604, + 0.015305854380130768, + -0.028178324922919273, + 0.04381226375699043, + -0.05355055630207062, + -0.09496687352657318, + -0.038160040974617004, + 0.0489855632185936, + 0.03625588119029999, + 0.025230666622519493, + 0.011667909100651741, + -0.04750958830118179, + 0.09341155737638474, + 0.028735613450407982, + -0.002344172215089202, + 0.014013756066560745, + 0.011318717151880264, + 0.06484272330999374, + 0.1116248294711113, + 0.02786775305867195, + 0.03783769533038139, + -0.005671270191669464, + 0.02077414095401764, + 0.028183581307530403, + -0.07662416249513626, + -0.08070453256368637, + 0.002776081906631589, + -0.04332665726542473, + 0.0015102250035852194, + 0.12315301597118378, + 0.012537411414086819, + 0.04657234251499176, + 0.11499587446451187, + -0.12760981917381287, + -0.0385301373898983, + 0.013204270973801613, + 0.05735161900520325, + -0.014100005850195885, + 0.016016315668821335, + 0.057698749005794525, + -0.0548892468214035, + -0.011758845299482346, + 0.03290052339434624, + -0.0022033657878637314, + 0.07848820835351944, + 0.041470713913440704, + -0.05197889357805252, + 0.11259084939956665, + -0.049750421196222305, + -0.04358360916376114, + 0.1818459928035736, + 0.02459142357110977, + 0.085120290517807, + -0.0760008692741394, + -0.025670839473605156, + -0.12971827387809753, + 0.05193028599023819, + 0.027295392006635666, + 0.05988822504878044, + -0.036803022027015686, + -0.01406625285744667, + -0.0860980674624443, + -0.1182086393237114, + 0.09125997126102448, + 0.026377592235803604, + 0.12329612672328949, + -0.01577657461166382, + -0.004697935190051794, + 0.07087470591068268, + -0.01746348850429058, + -0.02045099250972271, + 0.00040763261495158076, + -0.05951942503452301, + 0.02545331045985222, + 0.03147123381495476, + -0.04082140326499939, + -0.04136192798614502, + -0.03162946552038193, + 0.02418454922735691, + -0.02802218496799469, + 0.04737013578414917, + 0.04965860769152641, + 0.004983807448297739, + -0.007092426065355539, + -0.0015535918064415455, + -0.0005961758433841169, + -0.012993017211556435, + 0.01917100138962269, + -0.023778550326824188, + -0.062470052391290665, + -0.0899285301566124, + 0.11358119547367096, + 0.060554951429367065, + 0.050150010734796524, + -0.03811769187450409, + -0.046608246862888336, + -0.06418602913618088, + 0.04399752989411354, + -0.0017196411499753594, + -0.016996687278151512, + 0.06712747365236282, + 0.05948321148753166, + -0.006635765545070171, + 0.02376386895775795, + 0.056312933564186096, + 0.018657678738236427, + -0.013202209025621414, + -0.07997986674308777, + -0.05439700558781624, + 0.16799308359622955, + 0.09062279015779495, + -0.06793129444122314, + 0.003616803791373968, + -0.06300493329763412, + -0.10651971399784088, + 0.0637146532535553, + -0.01129967998713255, + 0.014622806571424007, + 0.07740678638219833, + -0.0005111450445838273, + -0.14024436473846436, + -0.08714594691991806, + 0.0643690973520279, + -0.049423135817050934, + -0.026361502707004547, + -0.042946238070726395, + -0.045069437474012375, + 0.07249227166175842, + 0.06336527317762375, + 0.02762836031615734, + 0.01384671963751316, + 0.05033210292458534, + -0.05946294963359833, + 0.053952306509017944, + 0.1397915631532669, + 0.023047752678394318, + -0.0274214930832386, + -0.044140443205833435, + -0.043370265513658524, + 0.04463500529527664, + -0.059287115931510925, + 0.11878107488155365, + 0.026769720017910004, + -0.001993618905544281, + -0.07708421349525452, + 0.12255621701478958, + -0.06935304403305054, + 0.09766803681850433, + 0.07733367383480072, + 0.047418490052223206, + 0.058376822620630264, + -0.0943300724029541, + 0.12575404345989227, + 0.04397275671362877, + -0.03334272652864456, + -0.07298876345157623, + -0.04376649111509323, + -0.03700684756040573, + 0.06267010420560837, + 0.05292423442006111, + -0.029407741501927376, + 0.05177991837263107, + 0.0552787110209465, + -0.009431647136807442, + 0.025952467694878578, + 0.12382227927446365, + 0.0839836448431015, + -0.017081599682569504 + ] + }, + "p245_257.wav": { + "name": "p245", + "embedding": [ + 0.054217152297496796, + 0.06817907840013504, + 0.03713423013687134, + -0.010684062726795673, + 0.01508484035730362, + 0.02617986500263214, + -0.1607087105512619, + 0.0865040272474289, + -0.027016805484890938, + 0.13708442449569702, + -0.10475902259349823, + 0.05688543990254402, + -0.010460307821631432, + -0.18352359533309937, + -0.03182586282491684, + 0.046695150434970856, + -0.04403897002339363, + -0.00015656184405088425, + -0.03932412341237068, + -0.007941464893519878, + 0.01766897365450859, + 0.05982992425560951, + 0.010327210649847984, + -0.03081132099032402, + 0.06301897764205933, + 0.03556942567229271, + 0.026293715462088585, + 0.06525366008281708, + 0.015808887779712677, + -0.007385138422250748, + 0.03630516678094864, + 0.1110234260559082, + -0.015532521530985832, + -0.021643897518515587, + 0.024781692773103714, + 0.03119952790439129, + 0.02551283687353134, + -0.06725099682807922, + -0.0099920853972435, + 0.03957259654998779, + -0.03227991983294487, + 0.059548743069171906, + 0.04365657642483711, + 0.013627806678414345, + 0.022105857729911804, + 0.03285133093595505, + 0.007680032402276993, + -0.07825607061386108, + -0.10873427987098694, + 0.15644240379333496, + 0.031608760356903076, + 0.014791199006140232, + -0.09001362323760986, + -0.06924799084663391, + 0.053502969443798065, + -0.002283245325088501, + -0.05754539743065834, + -0.03387531638145447, + 0.08830463886260986, + 0.15600371360778809, + -0.006379101425409317, + -0.04725562408566475, + 0.031896013766527176, + 0.08861653506755829, + 0.014177089557051659, + 0.08891838043928146, + 0.07531522214412689, + 0.054293036460876465, + 0.02357693575322628, + 0.011974422261118889, + 0.04840375855565071, + 0.02700851298868656, + -0.003739798441529274, + -0.034415025264024734, + 0.023159505799412727, + 0.021604256704449654, + -0.06547054648399353, + 0.023687567561864853, + 0.007296266499906778, + 0.010971713811159134, + 0.019776316359639168, + 0.0020363214425742626, + -0.014962133951485157, + 0.032938964664936066, + -0.0303499773144722, + 0.022993918508291245, + -0.00038847560063004494, + 0.01102515496313572, + 0.0934532880783081, + 0.03400835394859314, + 0.03465603291988373, + 0.026850994676351547, + -0.03414849564433098, + -0.09130959957838058, + 0.010474520735442638, + 0.021718217059969902, + -0.014649230986833572, + 0.030711600556969643, + 0.042217232286930084, + -0.03350149840116501, + 0.11534915864467621, + 0.010818365961313248, + 0.004705140367150307, + 0.005516288802027702, + -0.09385565668344498, + 0.08167917281389236, + 0.09037114679813385, + -0.025205662474036217, + 0.05022481828927994, + -0.0373944453895092, + 0.010105933994054794, + 0.07151336222887039, + -0.13596861064434052, + -0.0687650740146637, + 0.04273831471800804, + 0.015815328806638718, + 0.01326176431030035, + 0.11737816035747528, + -0.003587041050195694, + -0.01472906768321991, + 0.06475979089736938, + -0.06688492745161057, + -0.0668620839715004, + -0.006667150184512138, + 0.060433533042669296, + -0.0788603350520134, + 0.011358421295881271, + 0.06165245175361633, + -0.014212185516953468, + -0.031060297042131424, + 0.06001724302768707, + -0.005857196636497974, + 0.016740523278713226, + -0.05987732112407684, + 0.017589537426829338, + 0.0864129289984703, + -0.04939686134457588, + -0.002140121068805456, + 0.016073305159807205, + 0.0471375435590744, + 0.009931059554219246, + 0.047132834792137146, + -0.07978732883930206, + -0.10603523999452591, + -0.011530506424605846, + 0.03299398720264435, + 0.05002181977033615, + -0.03655140474438667, + -0.015670813620090485, + -0.08277647197246552, + -0.056168489158153534, + 0.02863014116883278, + -0.0033410582691431046, + 0.07885763794183731, + 0.03353947773575783, + -0.043872468173503876, + 0.1273277848958969, + -0.030313070863485336, + 0.021686825901269913, + -0.026045599952340126, + 0.013170342892408371, + 0.015548569150269032, + 0.025662554427981377, + -0.03252416104078293, + -0.06663279980421066, + 0.0026471256278455257, + 0.004096983931958675, + 0.0015172576531767845, + -0.003519449383020401, + 0.01300845481455326, + 0.0012318952940404415, + 0.01108726765960455, + -0.08890679478645325, + 0.024663930758833885, + -0.10311698913574219, + -0.044249389320611954, + 0.010110977105796337, + 0.007091917097568512, + 0.0025250613689422607, + 0.09350241720676422, + 0.014535675756633282, + 0.026898739859461784, + -0.012900945730507374, + -0.09027010202407837, + -0.042928844690322876, + 0.06134141981601715, + 0.1257837563753128, + -0.017717817798256874, + 0.027924351394176483, + 0.018012765794992447, + -0.0049772243946790695, + 0.03948676586151123, + 0.055222801864147186, + 0.07461942732334137, + -0.011198907159268856, + -0.029866714030504227, + -0.050751943141222, + 0.08282352238893509, + 0.035378821194171906, + -0.07516846060752869, + -0.061053477227687836, + 0.012696491554379463, + -0.05744007229804993, + 0.036156993359327316, + 0.007852068170905113, + 0.03852957487106323, + 0.01347978413105011, + -0.0425565168261528, + -0.07943952828645706, + -0.08678993582725525, + 0.016128182411193848, + -0.016244612634181976, + -0.034425437450408936, + -0.06773430109024048, + 0.06063462048768997, + 0.05729877948760986, + 0.05248463153839111, + 0.026279035955667496, + -0.0323423333466053, + -0.015695445239543915, + -0.07194054871797562, + -0.054092179983854294, + 0.0022027073428034782, + -0.03613854572176933, + -0.09956088662147522, + 0.024854637682437897, + -0.06626009941101074, + 0.10389111936092377, + -0.056514859199523926, + 0.10046537220478058, + 0.018408868461847305, + -0.07223938405513763, + -0.099718376994133, + -0.0012365737929940224, + -0.019542958587408066, + 0.05479367822408676, + 0.037622544914484024, + 0.013263262808322906, + 0.05212530121207237, + -0.048746272921562195, + 0.05929608270525932, + 0.020935308188199997, + 0.010361323133111, + -0.06887972354888916, + -0.034353163093328476, + -0.011098933406174183, + 0.03636820986866951, + -0.01962437480688095, + -0.049291301518678665, + 0.014690026640892029, + 0.02708308771252632, + -0.03550346940755844, + 0.05014926195144653, + 0.07363013178110123, + 0.03114086017012596, + -0.1266014575958252 + ] + }, + "p245_243.wav": { + "name": "p245", + "embedding": [ + 0.0496537983417511, + 0.07148614525794983, + 0.021776840090751648, + -0.04420365393161774, + -0.01760343834757805, + 0.10234972089529037, + -0.057350486516952515, + 0.055450133979320526, + -0.026158912107348442, + 0.04957691580057144, + -0.09098969399929047, + 0.018589302897453308, + 0.013466292060911655, + -0.13033759593963623, + -0.006506165489554405, + 0.017749708145856857, + -0.04192372038960457, + 0.022413771599531174, + -0.03578998148441315, + -0.03640943393111229, + 0.0020634308457374573, + 0.009275656193494797, + 0.05191638693213463, + -0.03734276816248894, + 0.046207915991544724, + 0.05116480216383934, + 0.03750753402709961, + 0.03076435811817646, + -0.008631564676761627, + -0.0362841933965683, + -0.04665122553706169, + 0.07105650007724762, + -0.048958275467157364, + -0.02607041411101818, + 0.06438344717025757, + -0.03418348729610443, + 0.053798459470272064, + -0.08436086773872375, + -0.035632822662591934, + 0.04042034223675728, + -0.06375569105148315, + 0.0798109918832779, + 0.028169002383947372, + 0.03995240479707718, + -0.0016235699877142906, + 0.02437409944832325, + 0.013301012106239796, + -0.04227359965443611, + -0.0427711196243763, + 0.125056654214859, + 0.04826640710234642, + 0.0048364270478487015, + -0.04363624006509781, + -0.022009389474987984, + 0.07150287926197052, + -0.011498454958200455, + -0.03685254231095314, + -0.0005462775006890297, + 0.03539516404271126, + 0.04325321316719055, + 0.00407005287706852, + -0.029902592301368713, + 0.04099159687757492, + 0.0728224515914917, + -0.01900591515004635, + 0.05258384346961975, + 0.07483074814081192, + 0.06308706849813461, + 0.012157123535871506, + 0.01546664908528328, + 0.05176263302564621, + 0.031836096197366714, + 0.03280312940478325, + -0.05306887626647949, + 0.0751296803355217, + 0.007853830233216286, + -0.03479786962270737, + -0.0008172448724508286, + -0.019581403583288193, + 0.0011207624338567257, + 0.058312512934207916, + 0.02676708996295929, + 0.00859091803431511, + 0.0021422291174530983, + -0.044636260718107224, + 0.03409015014767647, + -0.032026100903749466, + 0.11473701894283295, + 0.06617042422294617, + 0.015520346350967884, + 0.04059837386012077, + 0.005340930074453354, + -0.035301968455314636, + -0.0752391442656517, + 0.05727509781718254, + 0.043912678956985474, + -0.026067981496453285, + 0.019499771296977997, + 0.060590069741010666, + -0.046020012348890305, + 0.08839106559753418, + 0.013256851583719254, + -0.01371961459517479, + 0.026423536241054535, + -0.04773329570889473, + 0.04620172828435898, + 0.06265450268983841, + -0.015434358268976212, + 0.05078808590769768, + -0.030986063182353973, + 0.0565127395093441, + 0.061163291335105896, + -0.09150287508964539, + -0.04668935388326645, + -0.008939883671700954, + -0.02446798048913479, + 0.025457177311182022, + 0.09199629724025726, + -0.0632307156920433, + -0.003209749236702919, + 0.03623364865779877, + -0.04287661612033844, + -0.024834370240569115, + 0.028979206457734108, + -0.015589846298098564, + -0.016861289739608765, + -0.024578209966421127, + 0.011902537196874619, + 0.02433544024825096, + -0.06909365952014923, + 0.036940060555934906, + 0.008511897176504135, + 0.021490387618541718, + -0.03275580704212189, + 0.015811150893568993, + 0.006363799795508385, + -0.013089841231703758, + -0.05089762806892395, + 0.012664316222071648, + 0.040065620094537735, + 0.0045433808118104935, + 0.018461642786860466, + -0.011409259401261806, + -0.08628358691930771, + -0.028506871312856674, + -0.043545424938201904, + 0.014133861288428307, + 0.014757659286260605, + -0.007810079492628574, + -0.05664723739027977, + 0.005982495844364166, + -0.031260378658771515, + -0.03412795811891556, + 0.005835369229316711, + 0.08807926625013351, + -0.07623422890901566, + 0.06397680193185806, + -0.008761722594499588, + -0.0024147694930434227, + -0.02402361109852791, + -0.039437536150217056, + 0.038130760192871094, + 0.03420870006084442, + 0.01828708127140999, + -0.08088166266679764, + 0.008070899173617363, + -0.058747030794620514, + -0.016414711251854897, + 0.007791649550199509, + 0.03728866949677467, + 0.011414555832743645, + -0.03592882305383682, + -0.10362247377634048, + 0.008158802054822445, + -0.059648364782333374, + -0.03001588210463524, + 0.05846205726265907, + 0.03796972706913948, + -0.029759153723716736, + 0.08839068561792374, + 0.015214415267109871, + 0.01153050921857357, + -0.044976428151130676, + -0.04810979217290878, + 0.02229764312505722, + 0.049450017511844635, + 0.05249151960015297, + 0.010856163688004017, + 0.02078171819448471, + 0.019478069618344307, + -0.013212203048169613, + 0.019681233912706375, + 0.05850540101528168, + 0.040312185883522034, + 0.012158304452896118, + 0.018736816942691803, + 0.033820632845163345, + 0.0789564847946167, + -0.03840504586696625, + -0.05302596464753151, + -0.011583568528294563, + 0.03829023614525795, + -0.030618302524089813, + 0.03171209990978241, + 0.03412092849612236, + 0.029437704011797905, + 0.01697186566889286, + -0.0162479430437088, + -0.019336581230163574, + -0.04806980863213539, + 0.04005665332078934, + -0.05400575324892998, + -0.053565315902233124, + -0.04512491077184677, + 0.06284303963184357, + 0.09372460842132568, + 0.003204282373189926, + -0.010787910781800747, + 0.007113994099199772, + 0.024702662602066994, + 0.002831178717315197, + -0.04153360798954964, + -0.005381220951676369, + 0.0162077397108078, + -0.06178746744990349, + 0.03063601441681385, + -0.07237537205219269, + 0.0566478967666626, + 0.0004073847085237503, + 0.04033561423420906, + 0.034208349883556366, + -0.03643691539764404, + -0.06485859304666519, + 0.00234314426779747, + 0.023937370628118515, + 0.01727699488401413, + 0.015712106600403786, + 0.0025768503546714783, + 0.02442970499396324, + -0.05173017829656601, + 0.06560733914375305, + 0.018253043293952942, + -0.062135741114616394, + -0.06955192238092422, + 0.019178681075572968, + -0.009437156841158867, + -0.0030983006581664085, + -0.017779942601919174, + -0.06672994792461395, + 0.031055737286806107, + 0.044334687292575836, + 0.007163724862039089, + -0.003793437033891678, + 0.04955937713384628, + 0.016003098338842392, + -0.03738771751523018 + ] + }, + "p245_314.wav": { + "name": "p245", + "embedding": [ + 0.058189090341329575, + 0.08328896015882492, + -0.019870830699801445, + 0.04033106565475464, + -0.05518024414777756, + 0.05683111771941185, + -0.14662623405456543, + 0.15226973593235016, + -0.017862394452095032, + 0.12585902214050293, + -0.04486176371574402, + 0.11680450290441513, + -0.0017784859519451857, + -0.18154475092887878, + -0.014797395095229149, + 0.05158832296729088, + -0.03777815029025078, + -0.03121890127658844, + -0.036893799901008606, + -0.019995711743831635, + 0.027361994609236717, + 0.04641467332839966, + 0.03780312463641167, + -0.011549239978194237, + 0.033320337533950806, + 0.06110489368438721, + -0.006291741039603949, + 0.04302414506673813, + 0.00817878358066082, + -0.05899279564619064, + -0.032528720796108246, + 0.09335144609212875, + -0.06489218771457672, + 0.0038668960332870483, + 0.04622727259993553, + -0.03809979557991028, + -0.020089540630578995, + -0.06341849267482758, + -0.026350483298301697, + 0.008132942020893097, + -0.03756358474493027, + 0.08730803430080414, + 0.04473651200532913, + -0.009048603475093842, + 0.04271477460861206, + 0.01764708012342453, + -0.014358106069266796, + -0.0492914542555809, + -0.11002098023891449, + 0.15273647010326385, + 0.07353895902633667, + 0.0044957115314900875, + -0.07629137486219406, + -0.04969843477010727, + 0.09433846175670624, + -0.012889936566352844, + -0.10728929936885834, + -0.04489409178495407, + 0.07027588039636612, + 0.14630010724067688, + -0.02927815169095993, + -0.028377022594213486, + 0.03878505155444145, + 0.11661815643310547, + 0.0734134167432785, + 0.0770699605345726, + 0.08848022669553757, + 0.1081513911485672, + -0.02446851134300232, + 0.027669355273246765, + 0.03946433216333389, + 0.06152413412928581, + 0.027478236705064774, + -0.006568976677954197, + 0.017857316881418228, + -0.013308866880834103, + -0.022153761237859726, + -0.035098083317279816, + -0.016449620947241783, + -0.007675682660192251, + -0.009231727570295334, + 0.013680900447070599, + 0.01681022346019745, + 0.05187910050153732, + -0.033181335777044296, + 0.058382004499435425, + 0.031433332711458206, + -0.020052604377269745, + 0.07001323252916336, + 0.017471078783273697, + 0.015135802328586578, + 0.05827289819717407, + -0.09021304547786713, + -0.07201912254095078, + 0.027981897816061974, + 0.008285891264677048, + 0.019174732267856598, + 0.0709538534283638, + 0.0399681031703949, + -0.019897790625691414, + 0.12926897406578064, + 0.049333423376083374, + -0.02260538749396801, + 0.021187951788306236, + -0.07937096059322357, + 0.12588301301002502, + 0.06677859276533127, + -0.018462661653757095, + 0.06658520549535751, + -0.0637638121843338, + 0.059569936245679855, + 0.04461345076560974, + -0.1420869529247284, + -0.06438659131526947, + 0.04538906738162041, + 0.024091191589832306, + -0.020170483738183975, + 0.14517489075660706, + 0.008319725282490253, + 0.05785977467894554, + 0.09981721639633179, + -0.08425429463386536, + -0.05074786767363548, + -0.0065811555832624435, + 0.0756840705871582, + -0.08425749838352203, + 0.057109665125608444, + 0.05769902467727661, + -0.03566598519682884, + 0.019076049327850342, + 0.07852409034967422, + -0.0024287491105496883, + 0.001566002145409584, + 0.020290274173021317, + -0.03629479557275772, + 0.03554604947566986, + -0.02274053357541561, + 0.00030595375574193895, + 0.020214663818478584, + 0.019848506897687912, + 0.05514785274863243, + -0.01920432038605213, + -0.033546604216098785, + -0.11244093626737595, + 0.012729580514132977, + 0.014519269578158855, + 0.09060710668563843, + -0.016394881531596184, + -0.025541752576828003, + -0.04367658495903015, + -0.06002841517329216, + 0.005690529011189938, + -0.005733620375394821, + 0.06822238862514496, + -0.02594325691461563, + 0.009213937446475029, + 0.09218312799930573, + 0.04258815944194794, + 0.012296490371227264, + -0.038743309676647186, + -0.028646690770983696, + 0.008165912702679634, + 0.06090899556875229, + -0.07143577933311462, + -0.05946118384599686, + -0.004967029672116041, + 0.028952833265066147, + -0.023998720571398735, + 0.05868818610906601, + 0.044262226670980453, + 0.029638690873980522, + 0.017709076404571533, + -0.0644371509552002, + 0.01606839708983898, + -0.08243139088153839, + -0.06460702419281006, + -0.011517878621816635, + 0.003940228838473558, + -0.05052667111158371, + 0.08392050862312317, + 0.03881645202636719, + 0.0732821524143219, + -0.014804787933826447, + -0.054264187812805176, + -0.07968159019947052, + 0.04153744876384735, + 0.060080237686634064, + -0.03577987104654312, + 0.02996356412768364, + 0.05711451917886734, + -0.030609674751758575, + 0.03967222571372986, + 0.06678580492734909, + 0.07600799947977066, + -0.026193827390670776, + 0.006314205937087536, + -0.07750841230154037, + 0.08896313607692719, + 0.09156018495559692, + -0.09196722507476807, + -0.07050235569477081, + -0.01968182437121868, + -0.07564805448055267, + 0.02069227211177349, + -0.017966702580451965, + 0.01135404221713543, + 0.03758442401885986, + 0.0012297378852963448, + -0.10626548528671265, + -0.09850363433361053, + 0.08135496824979782, + -0.08703020215034485, + 0.008375107310712337, + -0.08168002218008041, + 0.03508300334215164, + 0.10222812741994858, + 0.03336772322654724, + -0.016128789633512497, + -0.039159901440143585, + 0.04077637940645218, + -0.01705327443778515, + 0.023092731833457947, + 0.07385499775409698, + 0.04902614280581474, + -0.12242518365383148, + 0.003336608875542879, + -0.054648544639348984, + 0.04984314367175102, + -0.04390290379524231, + 0.14673185348510742, + 0.027665581554174423, + -0.04729912430047989, + -0.09152021259069443, + 0.040928665548563004, + -0.024485599249601364, + 0.05533696338534355, + 0.018295910209417343, + 0.060188330709934235, + 0.05471951887011528, + -0.06382420659065247, + 0.10541071742773056, + 0.0420050248503685, + -0.040507327765226364, + -0.07317264378070831, + -0.05019377917051315, + -0.033423732966184616, + 0.03914516419172287, + 0.02516632340848446, + -0.09057886898517609, + -0.02471725456416607, + 0.026833143085241318, + -0.015160108916461468, + 0.06940527260303497, + 0.13769495487213135, + 0.06705563515424728, + -0.1282826066017151 + ] + }, + "p245_084.wav": { + "name": "p245", + "embedding": [ + 0.051604341715574265, + 0.09811769425868988, + -0.014263994991779327, + 0.0610053651034832, + -0.0416816845536232, + 0.08750665187835693, + -0.12090042233467102, + 0.12208235263824463, + -0.03654148057103157, + 0.14760874211788177, + -0.07977951318025589, + 0.11291170120239258, + -0.02385380119085312, + -0.1708386391401291, + -0.02671956829726696, + 0.05178339406847954, + -0.026934895664453506, + 0.00409318134188652, + -0.02340730093419552, + 0.0346224382519722, + 0.03688936308026314, + 0.018883828073740005, + 0.0432685948908329, + -0.025522038340568542, + 0.017313934862613678, + 0.04718276485800743, + 0.010341386310756207, + 0.07456313073635101, + 0.039054397493600845, + -0.05054716020822525, + -0.04417014122009277, + 0.14093933999538422, + -0.0545610673725605, + 0.032919444143772125, + 0.0736430212855339, + 0.001354882726445794, + -0.0376882366836071, + -0.04634205996990204, + 0.019827060401439667, + -0.026523705571889877, + -0.04861428216099739, + 0.06439264863729477, + 0.02031162567436695, + -0.008433395996689796, + 0.05738072469830513, + 0.014285392127931118, + -0.03192329779267311, + -0.03650354593992233, + -0.0944942757487297, + 0.1373983472585678, + 0.06005046144127846, + -0.010155048221349716, + -0.059394270181655884, + -0.06725683808326721, + 0.07570242136716843, + 0.011265772394835949, + -0.11842174082994461, + -0.06226905807852745, + 0.08579135686159134, + 0.14969249069690704, + 0.002429233631119132, + -0.020549530163407326, + 0.0024186880327761173, + 0.11962328106164932, + 0.0493924543261528, + 0.13044627010822296, + 0.056852683424949646, + 0.10640191286802292, + 0.022912979125976562, + 0.07021445035934448, + 0.05065598338842392, + 0.04676847159862518, + 0.03733495622873306, + -0.012725704349577427, + 0.03820490837097168, + -0.019375376403331757, + -0.013355287723243237, + 0.02856229618191719, + -0.00545619847252965, + -0.02089039795100689, + -0.006917298771440983, + -0.0023123316932469606, + 0.006824534386396408, + 0.015750303864479065, + -0.02445332705974579, + 0.05177246406674385, + 0.024833135306835175, + -0.0024375231005251408, + 0.05845513567328453, + 0.04720700904726982, + -0.004579523578286171, + 0.048411156982183456, + -0.07170287519693375, + -0.10785875469446182, + 0.02008138969540596, + -0.0035158831160515547, + 0.022593645378947258, + 0.07504834234714508, + 0.020558828487992287, + -0.0062482766807079315, + 0.08665294200181961, + 0.046918921172618866, + 0.002952472073957324, + 0.05231308937072754, + -0.09236903488636017, + 0.13568313419818878, + 0.05673353374004364, + -0.002633399562910199, + 0.05058702081441879, + -0.05336853116750717, + 0.09097936749458313, + 0.08665481209754944, + -0.13190144300460815, + -0.05041259527206421, + 0.02217324823141098, + -0.02286217175424099, + -0.029726730659604073, + 0.11200840026140213, + 0.004216296132653952, + 0.00020546141604427248, + 0.10521154850721359, + -0.10657675564289093, + -0.07603424042463303, + -0.028257951140403748, + 0.04241570830345154, + -0.1027575209736824, + 0.056877363473176956, + 0.01674332097172737, + -0.020381741225719452, + -0.02296331711113453, + 0.09616480767726898, + -0.015201859176158905, + 0.017796436324715614, + 0.039782628417015076, + -0.05108533799648285, + 0.037633053958415985, + -0.055824849754571915, + 0.02805270068347454, + 0.04100172221660614, + 0.013236277736723423, + 0.06155730411410332, + -0.009169825352728367, + -0.009187893010675907, + -0.09479092806577682, + -0.0055715106427669525, + 0.07103476673364639, + 0.05320173129439354, + -0.012456915341317654, + -0.03242434561252594, + -0.028705483302474022, + -0.07609817385673523, + 0.05597716569900513, + -0.02447592467069626, + 0.06675741076469421, + 0.006179492454975843, + -0.017926599830389023, + 0.09886594116687775, + 0.000275897269602865, + 0.013314693234860897, + -0.08470045775175095, + -0.038066793233156204, + 0.03989410772919655, + 0.05198024585843086, + -0.1146978810429573, + -0.054715439677238464, + 0.011165555566549301, + -0.0004064561799168587, + -0.02484569512307644, + 0.016470544040203094, + 0.06268839538097382, + 0.023333106189966202, + 0.03522251173853874, + -0.057563938200473785, + -0.007925435900688171, + -0.10611504316329956, + -0.07634145766496658, + -0.03927495330572128, + -0.031650058925151825, + -0.008765924721956253, + 0.07862423360347748, + 0.00533115491271019, + 0.023257698863744736, + 0.0031812211964279413, + -0.049759391695261, + -0.08077029883861542, + 0.07584704458713531, + 0.06460115313529968, + 0.013984402641654015, + 0.07015544921159744, + 0.024263303726911545, + -0.059308186173439026, + 0.04224339872598648, + 0.03889017552137375, + 0.1080479845404625, + -0.02980426885187626, + -0.0014536608941853046, + -0.10237404704093933, + 0.07834376394748688, + 0.12810739874839783, + -0.10312961786985397, + -0.09728986769914627, + -0.008417700417339802, + -0.06349428743124008, + 0.03650590032339096, + -0.06534174829721451, + -0.022363172844052315, + 0.048402391374111176, + -0.03054070472717285, + -0.0976184755563736, + -0.11152041703462601, + 0.09158995002508163, + -0.08530271798372269, + -0.028057396411895752, + -0.07118166983127594, + 0.05288759246468544, + 0.05012667179107666, + 0.03095475398004055, + -0.06199873983860016, + 0.013133074156939983, + 0.07272883504629135, + -0.061854228377342224, + -0.009538339450955391, + 0.042992960661649704, + 0.01094140112400055, + -0.09632518142461777, + 0.014837837778031826, + -0.059064172208309174, + 0.049364279955625534, + -0.09104690700769424, + 0.16856735944747925, + -0.036067042499780655, + -0.06645169109106064, + -0.06130995973944664, + 0.05301263928413391, + -0.008653507567942142, + 0.00774807995185256, + 0.04118992015719414, + 0.05217945948243141, + 0.010038829408586025, + -0.0882728099822998, + 0.1309017390012741, + 0.0032823383808135986, + 0.004697061609476805, + -0.06261685490608215, + -0.03354364633560181, + -0.07051791995763779, + 0.039884086698293686, + 0.0049809785559773445, + -0.11908350884914398, + -0.0051313587464392185, + 0.04084852710366249, + -0.010133069939911366, + 0.04241776093840599, + 0.14744196832180023, + 0.03705946356058121, + -0.09257277101278305 + ] + }, + "p245_381.wav": { + "name": "p245", + "embedding": [ + 0.04341677948832512, + 0.1073475107550621, + -0.008771320804953575, + 0.025793597102165222, + -0.06034603342413902, + 0.05284808203577995, + -0.12969771027565002, + 0.15179681777954102, + -0.03252333030104637, + 0.13070034980773926, + -0.07093685865402222, + 0.12346307933330536, + -0.02149377390742302, + -0.1783321499824524, + -0.029719378799200058, + 0.05239094793796539, + -0.042203910648822784, + -0.023475302383303642, + -0.03338625654578209, + -0.02097449079155922, + 0.04296841844916344, + 0.04079088196158409, + 0.03570307791233063, + 0.006935593672096729, + 0.019928239285945892, + 0.06358444690704346, + 0.012185068801045418, + 0.05421772599220276, + 0.024306144565343857, + -0.05819404125213623, + -0.044390082359313965, + 0.10158322751522064, + -0.03824760019779205, + 0.016141919419169426, + 0.05444764718413353, + -0.028317561373114586, + 0.0009654347086325288, + -0.05414428561925888, + -0.018788300454616547, + 0.010425617918372154, + -0.03227647393941879, + 0.07732071727514267, + 0.033353567123413086, + -0.006563347764313221, + 0.04413064569234848, + 0.03297431766986847, + -0.01601649448275566, + -0.04956702142953873, + -0.10220091789960861, + 0.16640128195285797, + 0.08102753013372421, + -0.01479036919772625, + -0.061633482575416565, + -0.06500162929296494, + 0.09764530509710312, + -0.019478721544146538, + -0.11207052320241928, + -0.03911671042442322, + 0.08399231731891632, + 0.14033445715904236, + -0.020377619192004204, + -0.03329949826002121, + 0.032989464700222015, + 0.1351226419210434, + 0.03600941225886345, + 0.08121860027313232, + 0.07209289073944092, + 0.09634991735219955, + -0.03067067079246044, + 0.02809285745024681, + 0.036013782024383545, + 0.06857641786336899, + 0.024744777008891106, + -0.0057105920277535915, + 0.023424573242664337, + -0.013522958382964134, + -0.013475018553435802, + 0.0030408918391913176, + -0.02372049167752266, + -0.017203763127326965, + -0.023289095610380173, + 0.020534060895442963, + -0.004774767439812422, + 0.014394199475646019, + -0.021375581622123718, + 0.07199624180793762, + 0.01304722111672163, + 0.0014974919613450766, + 0.07224538922309875, + 0.030003635212779045, + 0.021132756024599075, + 0.05846944451332092, + -0.06949639320373535, + -0.08348613232374191, + 0.025071745738387108, + 0.002429547719657421, + 0.025900837033987045, + 0.07609982788562775, + 0.028654366731643677, + -0.018264619633555412, + 0.1265159696340561, + 0.06027061864733696, + -0.017972778528928757, + 0.025379231199622154, + -0.0926315188407898, + 0.13038262724876404, + 0.07949034869670868, + -0.01922530308365822, + 0.05550000071525574, + -0.05309709161520004, + 0.07634508609771729, + 0.048877447843551636, + -0.13367250561714172, + -0.07862475514411926, + 0.02520143985748291, + 0.02739669941365719, + -0.021427828818559647, + 0.11429973691701889, + -0.006505858153104782, + 0.04265352711081505, + 0.10180032253265381, + -0.07890903949737549, + -0.056678272783756256, + -0.021216150373220444, + 0.05551435053348541, + -0.08390554040670395, + 0.057996638119220734, + 0.06116005405783653, + -0.02618424966931343, + 0.014149047434329987, + 0.07943625003099442, + -0.00888913869857788, + 0.009824625216424465, + 0.024802178144454956, + -0.05356365442276001, + 0.013201368972659111, + -0.03795601427555084, + 0.003438686951994896, + 0.023607995361089706, + 0.04340258240699768, + 0.04475387558341026, + -0.005942606832832098, + -0.03690020367503166, + -0.11095878481864929, + 0.01246271189302206, + 0.023430785164237022, + 0.06750155240297318, + -0.0032700037118047476, + -0.03140381723642349, + -0.03426390513777733, + -0.05181468650698662, + -0.004592780023813248, + -0.004905383102595806, + 0.06533487141132355, + -0.03434694558382034, + 0.00934026949107647, + 0.0926489531993866, + 0.03468146175146103, + -0.006690116599202156, + -0.05517193675041199, + -0.03978569060564041, + 0.015130773186683655, + 0.04002753272652626, + -0.07221086323261261, + -0.0672585517168045, + -0.006059734150767326, + 0.034211110323667526, + -0.016887914389371872, + 0.05225538834929466, + 0.046110399067401886, + 0.01715187355875969, + 0.03540686517953873, + -0.06373138725757599, + 0.021797746419906616, + -0.09525369107723236, + -0.07104472070932388, + -0.016137883067131042, + -0.00022903134231455624, + -0.028076112270355225, + 0.07450765371322632, + 0.02187679521739483, + 0.05859164148569107, + 0.0001997953950194642, + -0.05988259240984917, + -0.07644517719745636, + 0.05538828298449516, + 0.07648622989654541, + -0.0015153571730479598, + 0.060034848749637604, + 0.05793853849172592, + -0.03835876286029816, + 0.06262432038784027, + 0.05504261702299118, + 0.09003640711307526, + -0.022267840802669525, + 0.01021746639162302, + -0.07668166607618332, + 0.06484633684158325, + 0.08177302032709122, + -0.10056883096694946, + -0.08299553394317627, + -0.03199594467878342, + -0.0659000426530838, + 0.037376366555690765, + -0.015332475304603577, + 0.004760111216455698, + 0.034978121519088745, + 0.0030747801065444946, + -0.09585627168416977, + -0.0832873210310936, + 0.08112706243991852, + -0.07522360235452652, + 0.0017717391019687057, + -0.06651327013969421, + 0.04485924169421196, + 0.11069697141647339, + 0.03757959231734276, + -0.030086612328886986, + -0.03303404897451401, + 0.05046907067298889, + -0.03137282282114029, + 0.00520274369046092, + 0.039818476885557175, + 0.04454108700156212, + -0.10190726816654205, + 0.024199089035391808, + -0.07636377215385437, + 0.04972470551729202, + -0.05510641634464264, + 0.1527385711669922, + 0.016285350546240807, + -0.05682217329740524, + -0.08974766731262207, + 0.04562423378229141, + -0.03084569051861763, + 0.04445897042751312, + 0.019047817215323448, + 0.047827742993831635, + 0.03978996351361275, + -0.07643681764602661, + 0.12102888524532318, + 0.0374063216149807, + -0.0512007437646389, + -0.06802412867546082, + -0.039206959307193756, + -0.0369035080075264, + 0.032420527189970016, + 0.030841780826449394, + -0.08794756978750229, + -0.04251791536808014, + 0.016675978899002075, + -0.016585037112236023, + 0.08672520518302917, + 0.14482924342155457, + 0.05615047737956047, + -0.12799817323684692 + ] + }, + "p245_213.wav": { + "name": "p245", + "embedding": [ + 0.06063387542963028, + 0.09088286012411118, + -0.02059152163565159, + 0.032020073384046555, + -0.05988572537899017, + 0.0723220556974411, + -0.12940607964992523, + 0.12636318802833557, + -0.045298121869564056, + 0.14331963658332825, + -0.07684795558452606, + 0.12841464579105377, + -0.012536706402897835, + -0.1828201413154602, + -0.044974327087402344, + 0.051794108003377914, + -0.04740993306040764, + -0.041843660175800323, + -0.02893747203052044, + -0.02371636964380741, + 0.045474354177713394, + 0.03983817994594574, + 0.021494602784514427, + 0.026943404227495193, + 0.019927185028791428, + 0.07009950280189514, + -0.016969742253422737, + 0.030348345637321472, + 0.007913130335509777, + -0.05619708448648453, + -0.04856492951512337, + 0.11403857171535492, + -0.04882218688726425, + 0.02130783721804619, + 0.04543076828122139, + -0.002714884001761675, + 0.0006889792857691646, + -0.07370182126760483, + -0.024890892207622528, + -0.005919487681239843, + -0.04606601595878601, + 0.07007649540901184, + 0.030724164098501205, + -0.018031666055321693, + 0.03520209714770317, + 0.012746227905154228, + -0.016881104558706284, + -0.049773335456848145, + -0.0956871286034584, + 0.15483318269252777, + 0.06869284808635712, + -0.0011774423765018582, + -0.0601097047328949, + -0.05916410684585571, + 0.10911138355731964, + -0.015386508777737617, + -0.11659061163663864, + -0.027826296165585518, + 0.08022873848676682, + 0.165179044008255, + -0.036213479936122894, + -0.03594476357102394, + 0.02946079894900322, + 0.1263713389635086, + 0.05523587018251419, + 0.09272502362728119, + 0.08768778294324875, + 0.11858895421028137, + -0.020024627447128296, + 0.008001770824193954, + 0.06450255215167999, + 0.07732878625392914, + 0.07727347314357758, + -0.024613752961158752, + 0.025937147438526154, + 0.000599780585616827, + -0.020001614466309547, + -0.001691059791482985, + -0.03903985023498535, + -0.013570407405495644, + -0.020673740655183792, + -0.006278165150433779, + 0.008135601878166199, + 0.0234671700745821, + -0.0320683978497982, + 0.05334707722067833, + 0.048380665481090546, + -0.022934040054678917, + 0.059396419674158096, + 0.04593002051115036, + 0.013499906286597252, + 0.06337950378656387, + -0.08464644849300385, + -0.08219234645366669, + 0.04468477889895439, + 0.011790798977017403, + 0.022599758580327034, + 0.08553504943847656, + 0.048905011266469955, + -0.019148368388414383, + 0.1093948557972908, + 0.044121526181697845, + -0.0097575131803751, + 0.015011338517069817, + -0.09894067049026489, + 0.13299092650413513, + 0.09569236636161804, + -0.032668206840753555, + 0.03816305845975876, + -0.050188012421131134, + 0.08525186777114868, + 0.0781351774930954, + -0.14882831275463104, + -0.06755466014146805, + 0.03740571439266205, + 0.014290702529251575, + -0.0098529988899827, + 0.10992084443569183, + -0.007624533027410507, + 0.036408040672540665, + 0.09409704059362411, + -0.07637786865234375, + -0.052537258714437485, + -0.034368086606264114, + 0.04037864878773689, + -0.09293404221534729, + 0.06529705226421356, + 0.04387310892343521, + 7.978349458426237e-06, + 0.0015003073494881392, + 0.0818190947175026, + -0.015662573277950287, + -0.02210635133087635, + 0.014920007437467575, + -0.04609011486172676, + 0.01984061487019062, + -0.018978284671902657, + 0.006479289848357439, + 0.03024590015411377, + 0.02935195341706276, + 0.03965607285499573, + -0.01035943441092968, + -0.021309878677129745, + -0.11072330176830292, + 0.02414010278880596, + 0.033938195556402206, + 0.08211563527584076, + -0.0038225895259529352, + -0.026569539681077003, + -0.03467546030879021, + -0.06863697618246078, + 0.02942180633544922, + -0.0234998669475317, + 0.06906381249427795, + -0.009515669196844101, + 0.009773293510079384, + 0.09443320333957672, + 0.028624791651964188, + -0.005111118778586388, + -0.051091037690639496, + -0.021682217717170715, + 0.019416645169258118, + 0.06139908358454704, + -0.08284991979598999, + -0.07208112627267838, + -0.0005695982254110277, + 0.025722220540046692, + -0.02664319798350334, + 0.05433739349246025, + 0.04429156333208084, + 0.015179401263594627, + 0.02893536165356636, + -0.0710892453789711, + 0.006091423332691193, + -0.11605669558048248, + -0.06645922362804413, + -0.016112936660647392, + -0.02972782775759697, + -0.005067059304565191, + 0.0714607834815979, + 0.023215025663375854, + 0.03936361148953438, + -0.02654155343770981, + -0.07252992689609528, + -0.07677987217903137, + 0.06006006896495819, + 0.06129022315144539, + 0.007644683122634888, + 0.035955075174570084, + 0.05441352725028992, + -0.022394627332687378, + 0.05596000701189041, + 0.06422705948352814, + 0.10887253284454346, + -0.029055092483758926, + 0.02862909436225891, + -0.06333247572183609, + 0.09343652427196503, + 0.08779172599315643, + -0.08787742257118225, + -0.0927564799785614, + -0.031325407326221466, + -0.05740939825773239, + 0.03480291739106178, + -0.03157632425427437, + -0.0014722924679517746, + 0.024180792272090912, + -0.008458137512207031, + -0.10711413621902466, + -0.08941973745822906, + 0.09954413771629333, + -0.07037326693534851, + -0.00012685442925430834, + -0.09443262219429016, + 0.050966449081897736, + 0.09769462049007416, + 0.029412291944026947, + -0.0374615453183651, + 0.007662616670131683, + 0.04703688994050026, + -0.041162941604852676, + 0.0004979684017598629, + 0.04832858592271805, + 0.03411160409450531, + -0.12340855598449707, + -0.008817218244075775, + -0.0711788758635521, + 0.05617929995059967, + -0.057425230741500854, + 0.16144156455993652, + 0.003938300535082817, + -0.05674717202782631, + -0.0717567503452301, + 0.05079909786581993, + -0.010037404485046864, + 0.05019071698188782, + 0.04167948290705681, + 0.07027153670787811, + 0.023701779544353485, + -0.07378491014242172, + 0.11376636475324631, + 0.047560617327690125, + -0.0373103991150856, + -0.07237299531698227, + -0.04365935176610947, + -0.041462577879428864, + 0.024233229458332062, + 0.009656170383095741, + -0.09177235513925552, + -0.01771819218993187, + 0.026168525218963623, + -0.013938544318079948, + 0.07142147421836853, + 0.14851415157318115, + 0.0678894966840744, + -0.11533859372138977 + ] + }, + "p245_199.wav": { + "name": "p245", + "embedding": [ + 0.0515253059566021, + 0.0781516581773758, + 0.015591202303767204, + -0.005454557947814465, + -0.03741706162691116, + 0.09951154887676239, + -0.07629392296075821, + 0.08876053988933563, + -0.013808196410536766, + 0.055125392973423004, + -0.06339573860168457, + 0.07058443129062653, + -0.002876791637390852, + -0.15375757217407227, + -0.02818797528743744, + 0.054943330585956573, + -0.052403684705495834, + -0.007417659275233746, + -0.037122081965208054, + -0.022135278210043907, + -0.0006558820605278015, + 0.017426174134016037, + 0.05053384602069855, + 0.00025323405861854553, + 0.04605891928076744, + 0.03659071773290634, + 0.005085747689008713, + 0.03032520040869713, + 0.0009314244380220771, + -0.029023315757513046, + -0.037253063172101974, + 0.0771118551492691, + -0.04358398914337158, + -0.001609722850844264, + 0.051771130412817, + -0.0059588197618722916, + 0.04467284679412842, + -0.09088999032974243, + -0.040643706917762756, + 0.030002977699041367, + -0.057238172739744186, + 0.08236318826675415, + 0.06345027685165405, + 0.013683294877409935, + 0.03155011683702469, + 0.013654729351401329, + -0.013940221630036831, + -0.047814320772886276, + -0.09062564373016357, + 0.14417046308517456, + 0.030901728197932243, + 0.016144953668117523, + -0.0670660138130188, + -0.037469156086444855, + 0.08255068957805634, + -0.01054874062538147, + -0.06896492838859558, + -0.016996651887893677, + 0.060067903250455856, + 0.09527142345905304, + 0.025904245674610138, + -0.013279530219733715, + 0.017953775823116302, + 0.08883076906204224, + 0.014384515583515167, + 0.04394923895597458, + 0.07358303666114807, + 0.0882086306810379, + 0.010242545045912266, + 0.016005199402570724, + 0.06312528252601624, + 0.030802391469478607, + 0.017024725675582886, + -0.018670205026865005, + 0.02225683629512787, + -0.012782796286046505, + -0.01938924752175808, + -0.004006456583738327, + -0.01123197190463543, + 0.00039204536005854607, + 0.025888491421937943, + 0.02536902390420437, + 0.014358571730554104, + 0.028790762647986412, + -0.032772935926914215, + 0.0362735390663147, + -0.01699935644865036, + 0.07525705546140671, + 0.07198284566402435, + 0.0420040488243103, + 0.0051080710254609585, + 0.02759743109345436, + -0.03666677698493004, + -0.0857694074511528, + 0.006321651395410299, + 0.029647931456565857, + 0.0049115633592009544, + 0.02932656928896904, + 0.015420947223901749, + -0.03279978036880493, + 0.09893001616001129, + 0.027584057301282883, + -0.009622467681765556, + 0.016130313277244568, + -0.07808174192905426, + 0.06371686607599258, + 0.05084025859832764, + 0.014175447635352612, + 0.05897212028503418, + -0.025428589433431625, + 0.06895413994789124, + 0.07201745361089706, + -0.10541494190692902, + -0.03378060460090637, + 0.022057391703128815, + 0.019664252176880836, + 0.028965357691049576, + 0.11104699224233627, + -0.01027052104473114, + 0.030104324221611023, + 0.05868934094905853, + -0.06381748616695404, + -0.019420616328716278, + 0.029764844104647636, + 0.01786114275455475, + -0.006150787230581045, + -0.007064702920615673, + 0.029903193935751915, + -0.0004061249492224306, + -0.03964140638709068, + 0.0388387069106102, + 0.016306452453136444, + 0.007765031419694424, + -0.01647040620446205, + -0.000404862075811252, + 0.02117948979139328, + -0.011917376890778542, + -0.016646403819322586, + 0.05356692522764206, + 0.05714408680796623, + 0.007617838680744171, + 0.029117939993739128, + -0.05081919953227043, + -0.09269057959318161, + -0.01836255006492138, + -0.004589974880218506, + 0.045294612646102905, + 0.004566108342260122, + -0.030165761709213257, + -0.05856022983789444, + -0.01573970727622509, + 0.01829385571181774, + -0.0027406129520386457, + 0.05774373933672905, + 0.05793432518839836, + -0.03559926897287369, + 0.05678500235080719, + 0.004939840640872717, + 0.001797561882995069, + -0.026711363345384598, + -0.052105896174907684, + 0.010459581390023232, + 0.04185253009200096, + -0.03387986123561859, + -0.045205067843198776, + 0.014369356445968151, + -0.03208669275045395, + -0.01850346103310585, + 0.008973083458840847, + 0.039684563875198364, + 0.00264127179980278, + -0.0026501468382775784, + -0.07483922690153122, + 0.012152040377259254, + -0.06846988201141357, + -0.05148279294371605, + 0.041076380759477615, + 0.028126057237386703, + -0.015078878030180931, + 0.0859799012541771, + 0.0395595021545887, + 0.03200735151767731, + -0.02169964089989662, + -0.046125270426273346, + 0.0105536337941885, + 0.059758510440588, + 0.04317406937479973, + 0.011927935294806957, + 0.046162813901901245, + 0.02862430177628994, + -0.021896351128816605, + 0.0499800369143486, + 0.040697354823350906, + 0.052120983600616455, + -0.0375836044549942, + 0.00671741645783186, + 0.003652925370261073, + 0.0829562097787857, + 0.02082514390349388, + -0.07640743255615234, + -0.05182170122861862, + 0.01458804216235876, + -0.027261679992079735, + 0.022989584133028984, + -0.005417493637651205, + 0.012950967065989971, + 0.021657045930624008, + -0.01648538000881672, + -0.06083444878458977, + -0.08671491593122482, + 0.03897317871451378, + -0.05076318979263306, + -0.016939355060458183, + -0.03590865433216095, + 0.04006796330213547, + 0.10057501494884491, + 0.006605468690395355, + 0.004110180772840977, + 0.0146378418430686, + 0.01325188484042883, + -0.021154653280973434, + -0.03682897612452507, + 0.017494268715381622, + 0.020619060844182968, + -0.08293524384498596, + 0.010754333809018135, + -0.05873020738363266, + 0.0646713599562645, + 0.005118402652442455, + 0.11330229043960571, + 0.034359484910964966, + -0.028638577088713646, + -0.060726698487997055, + 0.0177301112562418, + -0.015682987868785858, + 0.033456556499004364, + 2.7138739824295044e-05, + 0.02812274917960167, + 0.04326074570417404, + -0.021995989605784416, + 0.08204948157072067, + 0.03323245048522949, + -0.06520384550094604, + -0.035167545080184937, + 0.009964263066649437, + -0.019823363050818443, + 0.015459887683391571, + -0.018587229773402214, + -0.059443216770887375, + 0.01209951937198639, + 0.0385206863284111, + 0.010227099061012268, + 0.029104044660925865, + 0.08205370604991913, + 0.0484386645257473, + -0.052750274538993835 + ] + }, + "p245_411.wav": { + "name": "p245", + "embedding": [ + 0.059642016887664795, + 0.07965384423732758, + -0.017480334267020226, + 0.032382380217313766, + -0.07022543251514435, + 0.06445472687482834, + -0.10327498614788055, + 0.13157373666763306, + -0.036996614187955856, + 0.1204289123415947, + -0.07153010368347168, + 0.155553936958313, + 0.010817132890224457, + -0.16849181056022644, + -0.04421375319361687, + 0.021253231912851334, + -0.028402701020240784, + -0.012568382546305656, + -0.030665863305330276, + -0.03868956118822098, + 0.06314156204462051, + 0.046973612159490585, + 0.06632973253726959, + -0.01128307543694973, + 0.02419472299516201, + 0.06172002851963043, + 0.015814218670129776, + 0.06072750687599182, + 0.035288579761981964, + -0.08502109348773956, + -0.062420718371868134, + 0.08902939409017563, + -0.038452401757240295, + 0.008308952674269676, + 0.043627720326185226, + -0.027807191014289856, + 0.009850320406258106, + -0.06962423026561737, + -0.04141726344823837, + 0.022096317261457443, + -0.02695256471633911, + 0.06750936806201935, + 0.018040001392364502, + -0.05057733878493309, + 0.05104286968708038, + -0.006933089345693588, + -0.017996080219745636, + -0.03484554588794708, + -0.1068103164434433, + 0.14827364683151245, + 0.06700162589550018, + 0.006629972718656063, + -0.07882218807935715, + -0.06683379411697388, + 0.11319448798894882, + -0.01637943647801876, + -0.09796091169118881, + -0.0016170380404219031, + 0.04051607847213745, + 0.1608947515487671, + -0.026370510458946228, + -0.03198838233947754, + 0.057372357696294785, + 0.08653994649648666, + 0.0500403568148613, + 0.06373332440853119, + 0.11838296055793762, + 0.08643607795238495, + -0.020476695150136948, + 0.043690260499715805, + 0.0178915336728096, + 0.11327745765447617, + 0.04557464271783829, + -0.013138031587004662, + 0.025271516293287277, + 0.0052980175241827965, + -0.028383862227201462, + -0.010867412202060223, + -0.034048523753881454, + -0.011182970367372036, + -0.009061112999916077, + 0.008970201015472412, + 0.04037800058722496, + 0.012237053364515305, + -0.06042659282684326, + 0.07673083990812302, + 0.003307380247861147, + -0.013342324644327164, + 0.03753608465194702, + 0.01959865540266037, + 0.002677563112229109, + 0.05220995843410492, + -0.07945673167705536, + -0.11511530727148056, + 0.01810387335717678, + 0.006329129450023174, + 0.009757252410054207, + 0.08746608346700668, + 0.05137185379862785, + -0.023995978757739067, + 0.1150900349020958, + 0.07158038765192032, + -0.02294269949197769, + 0.031177883967757225, + -0.06514222919940948, + 0.09730362147092819, + 0.1279926598072052, + -0.017209332436323166, + 0.0668187066912651, + -0.06833834946155548, + 0.09236054122447968, + 0.05210068076848984, + -0.13655820488929749, + -0.08375281095504761, + 0.01709597557783127, + 0.007149823009967804, + 0.02225184068083763, + 0.10935956239700317, + -0.02106388472020626, + 0.06052929908037186, + 0.09163307398557663, + -0.07616027444601059, + -0.047462575137615204, + -0.043469011783599854, + 0.05833851546049118, + -0.059093162417411804, + 0.07242715358734131, + 0.027418464422225952, + -0.000650362460874021, + -0.013235678896307945, + 0.056720178574323654, + -0.03717149794101715, + -0.001577108516357839, + 0.037457406520843506, + -0.05954141914844513, + 0.008438026532530785, + -0.03850235044956207, + -0.013227644376456738, + 0.06570252031087875, + 0.04044290632009506, + 0.04002637788653374, + -0.0018446396570652723, + -0.022247005254030228, + -0.10768553614616394, + 0.017005234956741333, + 0.028609465807676315, + 0.06350462883710861, + -0.004099434241652489, + -0.046471428126096725, + -0.040874313563108444, + -0.06923195719718933, + 0.02761455439031124, + -0.005744852125644684, + 0.06792791187763214, + -0.02293807826936245, + 0.03558617830276489, + 0.0674629658460617, + 0.024610860273241997, + -0.011549009941518307, + -0.026513127610087395, + -0.02507929317653179, + 0.002460843650624156, + 0.04694586619734764, + -0.05512771010398865, + -0.08525311946868896, + -0.02097456157207489, + 0.009609050117433071, + -0.039024487137794495, + 0.049171432852745056, + 0.04547758400440216, + 0.013903401792049408, + 0.044464945793151855, + -0.07740233838558197, + -0.011149285361170769, + -0.12093240022659302, + -0.05409657210111618, + -0.015307456254959106, + -0.019875865429639816, + -0.021997680887579918, + 0.0676405131816864, + 0.049756284803152084, + 0.05250708758831024, + -0.0076362574473023415, + -0.044720955193042755, + -0.07624244689941406, + 0.034617550671100616, + 0.05160931497812271, + 0.027246862649917603, + 0.050259172916412354, + 0.07049086689949036, + -0.011070910841226578, + 0.08765627443790436, + 0.07695408165454865, + 0.054932139813899994, + -0.0009012601221911609, + 0.000523355498444289, + -0.06777406483888626, + 0.10285179316997528, + 0.09677831828594208, + -0.0737035721540451, + -0.10990612208843231, + -0.04993361234664917, + -0.10232850164175034, + 0.052597083151340485, + -0.013450665399432182, + 0.0073304190300405025, + 0.04062133654952049, + 0.004405973479151726, + -0.1042993888258934, + -0.08016376197338104, + 0.10289587825536728, + -0.0550079345703125, + -0.01939805969595909, + -0.0683455765247345, + 0.026967894285917282, + 0.11921452730894089, + 0.003333637025207281, + -0.012289858423173428, + -0.013178294524550438, + 0.05088487267494202, + -0.041406817734241486, + -0.003390500321984291, + 0.037062354385852814, + 0.027096610516309738, + -0.11242251098155975, + 0.016056720167398453, + -0.06145979464054108, + 0.036496102809906006, + -0.057857006788253784, + 0.1338413655757904, + 0.0107206329703331, + -0.053046815097332, + -0.08198243379592896, + 0.08529528975486755, + -0.017694635316729546, + 0.04824059456586838, + 0.04041486233472824, + 0.05968394875526428, + 0.010600298643112183, + -0.12796449661254883, + 0.10162600874900818, + 0.041107047349214554, + -0.06083913892507553, + -0.09762345999479294, + -0.05575675889849663, + -0.017922712489962578, + 0.018007460981607437, + 0.021308384835720062, + -0.049284156411886215, + -0.025588875636458397, + 0.011685170233249664, + -0.010148978792130947, + 0.0561300590634346, + 0.1417427659034729, + 0.05263352394104004, + -0.11148035526275635 + ] + }, + "p245_388.wav": { + "name": "p245", + "embedding": [ + 0.04279913753271103, + 0.07683821767568588, + -0.026776723563671112, + 0.07242654263973236, + -0.041509196162223816, + 0.08325468748807907, + -0.11956910789012909, + 0.0950818732380867, + -0.06007285416126251, + 0.13210678100585938, + -0.05847552418708801, + 0.08813778311014175, + -0.026149384677410126, + -0.166579008102417, + -0.03903099149465561, + 0.06916274130344391, + -0.06989790499210358, + -0.03631317615509033, + -0.06221272796392441, + 0.021014785394072533, + 0.02736428566277027, + 0.026379816234111786, + 0.05020748823881149, + -0.01987309381365776, + 0.02562793344259262, + 0.04216475039720535, + 0.004907548427581787, + 0.06414937973022461, + 0.034772150218486786, + -0.05441029369831085, + -0.02326892502605915, + 0.11783410608768463, + -0.03291363641619682, + 0.00463519711047411, + 0.037077855318784714, + 0.017232390120625496, + -0.006739448290318251, + -0.07905983924865723, + -0.017322368919849396, + -0.014660489745438099, + -0.057602040469646454, + 0.07148434221744537, + 0.03681974112987518, + -0.012246139347553253, + 0.03827977180480957, + -0.025573786348104477, + -0.05503149330615997, + -0.05449046194553375, + -0.11662720143795013, + 0.15778791904449463, + 0.07166272401809692, + 0.02231377176940441, + -0.06547696888446808, + -0.07713396847248077, + 0.10203243792057037, + 0.010455077514052391, + -0.11760962009429932, + -0.07778866589069366, + 0.06702810525894165, + 0.19254183769226074, + -0.0036716212052851915, + 0.015085672028362751, + 0.017253438010811806, + 0.13102467358112335, + 0.07079978287220001, + 0.10580535233020782, + 0.06114555895328522, + 0.08859376609325409, + 0.049201663583517075, + 0.04329535365104675, + 0.06624916940927505, + 0.05105634033679962, + 0.008615442551672459, + -0.0015586973167955875, + 0.02643129602074623, + -0.017454002052545547, + -0.03980826586484909, + 0.0027183685451745987, + -0.013855315744876862, + -0.01874593272805214, + -0.007366466335952282, + 0.0052628587000072, + 0.017303651198744774, + 0.03559975326061249, + -0.03322942554950714, + 0.04605250805616379, + -0.002605109941214323, + -0.03245530650019646, + 0.05909179896116257, + 0.023929957300424576, + -0.004493983928114176, + 0.03573611378669739, + -0.03361702337861061, + -0.10492219030857086, + -0.020809030160307884, + 0.016633985564112663, + 0.006826149765402079, + 0.057173892855644226, + 0.021113403141498566, + -0.036426786333322525, + 0.10008427500724792, + 0.03455492854118347, + -0.0063270339742302895, + 0.03484489023685455, + -0.08495824038982391, + 0.10796129703521729, + 0.057817794382572174, + 0.01556601282209158, + 0.03847911208868027, + -0.02231740392744541, + 0.06039247289299965, + 0.0912465751171112, + -0.14322376251220703, + -0.046759672462940216, + 0.05461625009775162, + -0.015554108656942844, + -0.008884796872735023, + 0.11654456704854965, + 0.0292135551571846, + 0.012401707470417023, + 0.09945473819971085, + -0.09154458343982697, + -0.05989929288625717, + -0.015061425045132637, + 0.07276488840579987, + -0.0658910721540451, + 0.03373792767524719, + 0.027579613029956818, + -0.04053768515586853, + -0.01888340525329113, + 0.07095083594322205, + -0.009811142459511757, + -0.0018079401925206184, + 0.04503504931926727, + -0.06619847565889359, + 0.07701301574707031, + -0.06334106624126434, + 0.006077686324715614, + 0.06886855512857437, + 0.03303665667772293, + 0.0552871897816658, + -0.02377418428659439, + -0.029360270127654076, + -0.09309427440166473, + -0.001175562385469675, + 0.055718690156936646, + 0.08294275403022766, + -0.010206620208919048, + -0.009148720651865005, + -0.05876978114247322, + -0.05823804438114166, + 0.05029996484518051, + -0.024256860837340355, + 0.10300520807504654, + -0.002360205166041851, + -0.007017430849373341, + 0.0888165757060051, + -0.029025930911302567, + 0.0034471487160772085, + -0.04323210194706917, + -0.014927180483937263, + 0.04266569763422012, + 0.04807581007480621, + -0.06337089836597443, + -0.036115776747465134, + 0.03981133550405502, + 0.024569189175963402, + -0.023068321868777275, + 0.007855734787881374, + 0.0272002425044775, + 0.021283529698848724, + 0.02660639025270939, + -0.05040641129016876, + 0.015161116607487202, + -0.0889514833688736, + -0.027425331994891167, + -0.010627709329128265, + -0.0389995276927948, + -0.022576503455638885, + 0.08996008336544037, + 0.039212338626384735, + 0.021808478981256485, + 0.01612863689661026, + -0.09127653390169144, + -0.06314870715141296, + 0.07969259470701218, + 0.061603933572769165, + 0.01238252967596054, + 0.04394424706697464, + 0.04798119142651558, + -0.014167435467243195, + 0.02011752687394619, + 0.055331334471702576, + 0.08263795077800751, + -0.007037494797259569, + -0.039183031767606735, + -0.09339691698551178, + 0.08077463507652283, + 0.1007310152053833, + -0.10723181068897247, + -0.060186564922332764, + -0.009054746478796005, + -0.06860488653182983, + 0.04117028787732124, + -0.04818103462457657, + -0.0016779854195192456, + 0.05251266807317734, + -0.037330422550439835, + -0.1221676766872406, + -0.10664443671703339, + 0.11448432505130768, + -0.09559007734060287, + -0.03472454100847244, + -0.056931011378765106, + 0.012130238115787506, + 0.06436227262020111, + 0.04443691298365593, + -0.014441188424825668, + 0.023071687668561935, + 0.055191535502672195, + -0.09020151942968369, + -0.009086200036108494, + 0.06647901237010956, + -0.017854567617177963, + -0.12300018966197968, + 0.013689089566469193, + -0.07876016199588776, + 0.07024633884429932, + -0.06827641278505325, + 0.1647666096687317, + -0.01431102305650711, + -0.03801912069320679, + -0.08726654946804047, + 0.04681612551212311, + -0.042981911450624466, + 0.04898793250322342, + 0.04049469530582428, + 0.06898501515388489, + 0.04306660592556, + -0.06444372236728668, + 0.11984724551439285, + 0.02570509910583496, + -0.009208137169480324, + -0.06738410890102386, + -0.028124570846557617, + -0.053668469190597534, + 0.026429519057273865, + -0.003367878030985594, + -0.07821069657802582, + 0.014155484735965729, + 0.03093869984149933, + -0.03153420239686966, + 0.06198987364768982, + 0.12716275453567505, + 0.07299923896789551, + -0.08960578590631485 + ] + }, + "p245_223.wav": { + "name": "p245", + "embedding": [ + 0.06746435165405273, + 0.03453626111149788, + 0.018802262842655182, + -0.007825586944818497, + -0.009814387187361717, + 0.05579018592834473, + -0.09531286358833313, + 0.08952674269676208, + 0.0019092746078968048, + 0.05800749734044075, + -0.11425498127937317, + 0.04001835361123085, + -0.015883518382906914, + -0.13597381114959717, + -0.015742767602205276, + 0.026558123528957367, + -0.014288059435784817, + 0.012245727702975273, + -0.07787568122148514, + -0.017433255910873413, + 0.0023683421313762665, + 0.019502606242895126, + 0.050130944699048996, + -0.026344383135437965, + 0.006037736311554909, + 0.03134957328438759, + 0.002301743719726801, + 0.0222611166536808, + 0.020945867523550987, + -0.0011597732082009315, + -0.00016056932508945465, + 0.06718454509973526, + -0.04193013533949852, + -0.02041812427341938, + 0.05378752201795578, + 0.016655851155519485, + 0.00016847462393343449, + -0.10018790513277054, + -0.03738325089216232, + 0.01944802887737751, + -0.07587802410125732, + 0.07158413529396057, + 0.06043025106191635, + -0.01085681188851595, + 0.0450977198779583, + 0.028120337054133415, + -0.00813515204936266, + -0.036066360771656036, + -0.09710974991321564, + 0.15066704154014587, + 0.038202062249183655, + 0.027333775535225868, + -0.09030097723007202, + -0.001152288168668747, + 0.09088161587715149, + -0.04268059879541397, + -0.049777813255786896, + -0.046671949326992035, + 0.04771159216761589, + 0.08742760866880417, + 0.00888905394822359, + -0.03385370224714279, + 0.0025641024112701416, + 0.034780971705913544, + -0.0037024933844804764, + 0.024121368303894997, + 0.11470529437065125, + 0.09740065038204193, + -0.01528053916990757, + 0.03571304678916931, + 0.06648300588130951, + 0.022431544959545135, + 0.018335528671741486, + -0.020860392600297928, + 0.051991596817970276, + -0.006882551126182079, + -0.03494260832667351, + 0.027872798964381218, + -0.029020942747592926, + 0.004292902071028948, + 0.04804347828030586, + 0.014665561728179455, + 0.021233877167105675, + -0.0003202699590474367, + -0.083039790391922, + 0.03834843263030052, + -0.016299637034535408, + 0.07488923519849777, + 0.09508562088012695, + 0.028424490243196487, + -0.006975365336984396, + 0.018224479630589485, + -0.0227232426404953, + -0.08809474855661392, + 0.0008995940443128347, + 0.006419919431209564, + -0.006341836880892515, + 0.012546876445412636, + 0.022339818999171257, + -0.027169516310095787, + 0.09633686393499374, + 0.008606428280472755, + -0.008391025476157665, + 0.011947759427130222, + -0.07165030390024185, + 0.07237375527620316, + 0.08989352732896805, + 0.022913016378879547, + 0.023092111572623253, + -0.045838937163352966, + 0.04516831040382385, + 0.06434302777051926, + -0.06889235228300095, + -0.02109365724027157, + 0.03842272609472275, + 0.025691688060760498, + 0.05670637637376785, + 0.11166322231292725, + -0.0345115028321743, + -0.011355207301676273, + 0.09559209644794464, + -0.07128887623548508, + -0.01865301840007305, + 0.04849075898528099, + -0.00918085128068924, + -0.0009427517652511597, + -0.009787343442440033, + 0.016089409589767456, + -0.008708180859684944, + -0.04379244148731232, + 0.06666576862335205, + -0.003015415742993355, + -0.003960400819778442, + -0.04926044121384621, + 0.03294874355196953, + 0.06298403441905975, + -0.02058054506778717, + -0.06400218605995178, + 0.061980441212654114, + 0.09161941707134247, + 0.014620400033891201, + 0.05029816925525665, + -0.06642168015241623, + -0.0890839472413063, + -0.024814171716570854, + 0.018034877255558968, + 0.05135874077677727, + -0.014013483189046383, + -0.022425733506679535, + -0.08444146811962128, + -0.0036991946399211884, + 0.019659902900457382, + -0.02198571339249611, + 0.05597304925322533, + 0.051497142761945724, + -0.0462024100124836, + 0.04202788323163986, + -0.0357813760638237, + 0.015549814328551292, + -0.06311838328838348, + -0.046413298696279526, + 0.024547286331653595, + 0.02782253921031952, + -0.006012763828039169, + -0.04778391867876053, + 3.1763920560479164e-06, + -0.0034371763467788696, + -0.007133588194847107, + -0.030627738684415817, + 0.04526460915803909, + -0.01648622751235962, + -0.013359026052057743, + -0.12920153141021729, + 0.044889360666275024, + -0.10495211184024811, + -0.0398227833211422, + 0.04703351482748985, + 0.021594205871224403, + 0.03445103019475937, + 0.0868418887257576, + -0.00621281610801816, + 0.005866593681275845, + -0.03537328913807869, + -0.11428296566009521, + -0.008001536130905151, + 0.05816343426704407, + 0.054338183254003525, + -0.000516034197062254, + 0.05152300000190735, + 0.033930640667676926, + -0.029608864337205887, + 0.05167367309331894, + 0.04011283814907074, + 0.06017167493700981, + -0.04184175655245781, + -0.020825427025556564, + 0.023401325568556786, + 0.0852283462882042, + 0.030077341943979263, + -0.06352971494197845, + -0.044702935963869095, + 0.005877570249140263, + -0.03520646318793297, + 0.018040383234620094, + 0.009867937304079533, + 0.006362102925777435, + 0.0412251241505146, + -0.012140120379626751, + -0.06588228046894073, + -0.04345769062638283, + 0.0077348146587610245, + -0.04040368273854256, + -0.015698954463005066, + -0.049078017473220825, + 0.022461842745542526, + 0.08226238936185837, + -0.004554638639092445, + 0.0009399037808179855, + -0.029615182429552078, + -0.015239452943205833, + -0.052473507821559906, + -0.08298250287771225, + -0.02115788124501705, + 0.016536949202418327, + -0.06285444647073746, + 0.026906626299023628, + -0.059773217886686325, + 0.06849846988916397, + 0.002102002501487732, + 0.07467304170131683, + 0.008652590215206146, + -0.014532679691910744, + -0.04937524348497391, + 0.02046164870262146, + -0.015169277787208557, + 0.053184084594249725, + 0.0541355162858963, + -0.014002952724695206, + 0.03024912253022194, + -0.06051519513130188, + 0.09172870218753815, + 0.03860616311430931, + -0.05396216735243797, + -0.03711579740047455, + 0.021270081400871277, + -0.046472761780023575, + -0.038003433495759964, + -0.015979822725057602, + -0.07203540205955505, + 0.031466804444789886, + 0.013499826192855835, + -0.03028171882033348, + 0.010555773973464966, + 0.047102928161621094, + 0.038047753274440765, + -0.06640853732824326 + ] + }, + "p245_105.wav": { + "name": "p245", + "embedding": [ + 0.04199103266000748, + 0.11617829650640488, + -0.03822670131921768, + 0.009970361366868019, + -0.06180695816874504, + 0.06572401523590088, + -0.08995041251182556, + 0.11087144911289215, + -0.040161289274692535, + 0.13533596694469452, + -0.06050288677215576, + 0.14237496256828308, + -0.021519970148801804, + -0.11296205967664719, + -0.051377072930336, + 0.041018079966306686, + -0.022327013313770294, + -0.010821400210261345, + -0.022188197821378708, + -0.026308249682188034, + 0.04904230684041977, + 0.013542171567678452, + 0.03373991698026657, + -0.0049488781951367855, + 0.023509174585342407, + 0.07685306668281555, + 0.015896936878561974, + 0.026470517739653587, + 0.015008306130766869, + -0.06461623311042786, + -0.053206026554107666, + 0.08346156775951385, + -0.04098587483167648, + 0.03245013207197189, + 0.05041162669658661, + -0.01328854076564312, + 0.013459051959216595, + -0.03604253754019737, + 0.02108015865087509, + 0.009602932259440422, + -0.022856276482343674, + 0.09376966953277588, + 0.01483251340687275, + -0.012880812399089336, + 0.03298836201429367, + 0.002260367153212428, + -0.012784450314939022, + -0.008848486468195915, + -0.06271973252296448, + 0.14742425084114075, + 0.05345187708735466, + -0.012334037572145462, + -0.07585030794143677, + -0.035776086151599884, + 0.0950363501906395, + -0.011479789391160011, + -0.0965292900800705, + -0.029636627063155174, + 0.03452540189027786, + 0.10701115429401398, + -0.0075934394262731075, + -0.0507061704993248, + 0.018968705087900162, + 0.10936087369918823, + 0.04047444462776184, + 0.05904686450958252, + 0.08163207024335861, + 0.10283955186605453, + -0.01567039266228676, + 0.012343108654022217, + 0.0296616293489933, + 0.08516241610050201, + 0.041909486055374146, + -0.006416182965040207, + 0.03499855101108551, + -0.038104794919490814, + 0.002573432633653283, + -0.006903701927512884, + -0.022830557078123093, + -0.03757607936859131, + -0.04911191761493683, + -0.0002809514699038118, + 0.0036431001499295235, + 0.01604396104812622, + -0.02919423207640648, + 0.05229528993368149, + 0.033879198133945465, + -0.04292520508170128, + 0.04799105226993561, + 0.057570502161979675, + 0.0033685490489006042, + 0.02855800651013851, + -0.0737912654876709, + -0.08116500079631805, + 0.04370058700442314, + 0.00637834845110774, + 0.026995999738574028, + 0.06688733398914337, + 0.04066891968250275, + 0.016165295615792274, + 0.08344607800245285, + 0.06817913055419922, + -0.015432355925440788, + -0.00027492642402648926, + -0.06354711949825287, + 0.1339571177959442, + 0.10456337779760361, + -0.033188626170158386, + 0.035492658615112305, + -0.027127256616950035, + 0.04902885481715202, + 0.03730037435889244, + -0.11478836834430695, + -0.09133437275886536, + 0.0011801639338955283, + 0.007715168409049511, + 0.005701042246073484, + 0.06321602314710617, + -0.0112722497433424, + 0.01958681084215641, + 0.07128651440143585, + -0.04924658685922623, + -0.07035790383815765, + -0.06190721318125725, + 0.029390333220362663, + -0.08773978799581528, + 0.06134861707687378, + 0.05012189596891403, + 0.02364715188741684, + -0.011407758109271526, + 0.08381160348653793, + 0.008381902240216732, + 0.01218886487185955, + 0.028661102056503296, + -0.024244703352451324, + 0.013345081359148026, + -0.007471784017980099, + 0.027959231287240982, + 0.04590198025107384, + 0.029659461230039597, + 0.06869475543498993, + -0.003996455110609531, + 0.02499471977353096, + -0.09376915544271469, + 0.0142821054905653, + 0.05111538618803024, + 0.014123952016234398, + -0.029080867767333984, + -0.045803528279066086, + -0.004303361289203167, + -0.06708916276693344, + -0.008562937378883362, + 0.0004720357828773558, + 0.07649107277393341, + -0.016655217856168747, + 0.017006948590278625, + 0.11920279264450073, + 0.018184518441557884, + -0.004393253941088915, + -0.04132121056318283, + -0.0013265833258628845, + 0.012190218083560467, + 0.04753274470567703, + -0.09258278459310532, + -0.07506147772073746, + -0.012659948319196701, + 0.011759753338992596, + -0.0015334058552980423, + 0.060365330427885056, + 0.07053540647029877, + -0.009500524029135704, + 0.05847875401377678, + -0.03705691546201706, + 0.005697905085980892, + -0.08066649734973907, + -0.03547865152359009, + -0.04819463938474655, + -0.06096942350268364, + -0.03281617909669876, + 0.07650876045227051, + 0.028784727677702904, + 0.056127794086933136, + 0.00027082115411758423, + -0.052896372973918915, + -0.06711860001087189, + 0.04537341743707657, + 0.06605416536331177, + -0.009477265179157257, + 0.03768934682011604, + 0.06395058333873749, + -0.01625695638358593, + 0.035413436591625214, + 0.05967690050601959, + 0.06340722739696503, + -0.04060867428779602, + 0.005485305096954107, + -0.06729786843061447, + 0.06758986413478851, + 0.0797397568821907, + -0.09445779025554657, + -0.08244279026985168, + -0.07224215567111969, + -0.042787104845047, + 0.01698298007249832, + -0.0538453571498394, + 0.007955098524689674, + 0.03596549481153488, + -0.01485449355095625, + -0.07828149944543839, + -0.11134330928325653, + 0.09029387682676315, + -0.05784526467323303, + 0.006046132650226355, + -0.051734842360019684, + 0.04293915256857872, + 0.06485158205032349, + 0.023911166936159134, + -0.05744285508990288, + 0.02017601951956749, + 0.03542225807905197, + -0.02280627191066742, + -0.0026409588754177094, + 0.03412122651934624, + 0.024010812863707542, + -0.07832947373390198, + -0.004358840640634298, + -0.06650857627391815, + 0.06273084878921509, + -0.0652836412191391, + 0.14062075316905975, + -0.005476667545735836, + -0.05514318495988846, + -0.06831812858581543, + 0.03729721158742905, + -0.02953445166349411, + 0.024901991710066795, + 0.0492917075753212, + 0.05519666522741318, + -0.009218895807862282, + -0.06570367515087128, + 0.1017032191157341, + 0.05959945172071457, + -0.033283643424510956, + -0.09524615854024887, + -0.03677475452423096, + -0.03181833028793335, + 0.04096755385398865, + 0.041259877383708954, + -0.0825209766626358, + 0.01629863865673542, + 0.023485228419303894, + -0.007235379423946142, + 0.08249468356370926, + 0.10868488997220993, + 0.06357407569885254, + -0.07810883224010468 + ] + }, + "p245_104.wav": { + "name": "p245", + "embedding": [ + 0.041993312537670135, + 0.0927915871143341, + -0.023635217919945717, + 0.03401413932442665, + -0.049704767763614655, + 0.09235957264900208, + -0.14399084448814392, + 0.12129074335098267, + -0.035267945379018784, + 0.1398114264011383, + -0.0600535050034523, + 0.11325986683368683, + -0.01964443549513817, + -0.18756522238254547, + -0.03948917239904404, + 0.05671172961592674, + -0.04484950006008148, + -0.035275910049676895, + -0.028493095189332962, + -0.00710280891507864, + 0.03766641765832901, + 0.02786479890346527, + 0.01050695963203907, + -0.005582625046372414, + 0.036100637167692184, + 0.06363923847675323, + -0.0031729359179735184, + 0.0393981859087944, + -0.00662595359608531, + -0.04091174155473709, + -0.03039582073688507, + 0.12437931448221207, + -0.06014012545347214, + 0.02942153438925743, + 0.05367758497595787, + 0.012539195828139782, + -0.00719422334805131, + -0.0525921992957592, + 0.0013659711694344878, + -0.001498503959737718, + -0.04412698373198509, + 0.08894520252943039, + 0.044096942991018295, + 0.010714509524405003, + 0.015667196363210678, + 0.031097274273633957, + -0.010116101242601871, + -0.04669087007641792, + -0.10243485867977142, + 0.1666468381881714, + 0.052448805421590805, + -0.0005351711879484355, + -0.06775981932878494, + -0.07216373085975647, + 0.0963415578007698, + 0.010191711597144604, + -0.11463125795125961, + -0.04616400599479675, + 0.09615646302700043, + 0.16290272772312164, + -0.029554234817624092, + -0.0435260534286499, + 0.006799326743930578, + 0.1317562609910965, + 0.04758976772427559, + 0.10423439741134644, + 0.0695679560303688, + 0.1393681913614273, + -0.0003243259561713785, + 0.006876935251057148, + 0.07549900561571121, + 0.060671474784612656, + 0.07056000828742981, + -0.01331544853746891, + 0.030147327110171318, + -0.024076879024505615, + 0.002624780172482133, + 0.0034128520637750626, + -0.034796204417943954, + -0.029568351805210114, + -0.0034408981446176767, + 0.003702497808262706, + 0.017516933381557465, + 0.04001220315694809, + -0.02220405824482441, + 0.04312530905008316, + 0.059406884014606476, + -0.027831654995679855, + 0.06485036015510559, + 0.062060121446847916, + 0.01610192470252514, + 0.058809198439121246, + -0.09474047273397446, + -0.08720813691616058, + 0.052215974777936935, + 0.006189660634845495, + 0.04568372666835785, + 0.07502438873052597, + 0.04258298873901367, + -0.004303544294089079, + 0.09306040406227112, + 0.028608692809939384, + -0.009236309677362442, + 0.022480159997940063, + -0.09946560859680176, + 0.14175835251808167, + 0.07973980903625488, + -0.018995195627212524, + 0.03168212249875069, + -0.055136825889348984, + 0.07474605739116669, + 0.07685787975788116, + -0.13622409105300903, + -0.0823507308959961, + 0.031062833964824677, + 0.019721344113349915, + -0.0368209145963192, + 0.1260622888803482, + -0.008385525085031986, + 0.0227363184094429, + 0.09151863306760788, + -0.09415683150291443, + -0.04459966719150543, + -0.0226836409419775, + 0.027638548985123634, + -0.08480838686227798, + 0.04222169145941734, + 0.040965426713228226, + -0.008196350187063217, + -0.0003213175805285573, + 0.08301109075546265, + 0.0029568444006145, + 0.004396231845021248, + 0.009786475449800491, + -0.03255288675427437, + 0.03162181377410889, + -0.010582532733678818, + 0.01605938747525215, + 0.031386442482471466, + 0.0246969535946846, + 0.05496756732463837, + -0.008291056379675865, + -0.026500826701521873, + -0.1195041611790657, + 0.009853058494627476, + 0.050079572945833206, + 0.07675682008266449, + -0.025990569964051247, + -0.0202273391187191, + -0.030775107443332672, + -0.08036734163761139, + 0.05014772340655327, + -0.01097302045673132, + 0.08064179122447968, + 0.013332556001842022, + -0.028773589059710503, + 0.11192211508750916, + 0.02456790953874588, + -0.0011019870871677995, + -0.05334194004535675, + -0.03009355068206787, + 0.02187325805425644, + 0.044389836490154266, + -0.11591000109910965, + -0.05547906830906868, + 0.0003466318594291806, + 0.015130819752812386, + -0.027434542775154114, + 0.04612204432487488, + 0.05507882311940193, + 0.025138316676020622, + 0.02772468514740467, + -0.045911893248558044, + -0.01048254780471325, + -0.10145393759012222, + -0.07158402353525162, + -0.008819213137030602, + -0.028672033920884132, + -0.02248135395348072, + 0.08878090232610703, + 0.012591863982379436, + 0.038297638297080994, + -0.0318383052945137, + -0.04675601050257683, + -0.06739017367362976, + 0.0647347941994667, + 0.05494198203086853, + 0.0007818698068149388, + 0.044629428535699844, + 0.04337198659777641, + -0.026525886729359627, + 0.04575919732451439, + 0.07308197766542435, + 0.12743665277957916, + -0.046412572264671326, + 0.02811635658144951, + -0.07216516882181168, + 0.1074354276061058, + 0.0878455713391304, + -0.08247501403093338, + -0.07868802547454834, + -0.012309428304433823, + -0.056923747062683105, + 0.018798766657710075, + -0.05857264995574951, + -0.0014582837466150522, + 0.020307812839746475, + -0.005348965059965849, + -0.10183601826429367, + -0.09745538979768753, + 0.0751880407333374, + -0.08353032916784286, + -0.000499181856866926, + -0.09331083297729492, + 0.0567728728055954, + 0.0895451009273529, + 0.04269560053944588, + -0.04776900261640549, + 0.006110005080699921, + 0.06342826038599014, + -0.04685213416814804, + 0.00283640343695879, + 0.050748687237501144, + 0.026887770742177963, + -0.10592646151781082, + -0.016883304342627525, + -0.06643162667751312, + 0.039897117763757706, + -0.05434108525514603, + 0.16183307766914368, + 0.0026806907262653112, + -0.054454121738672256, + -0.052208393812179565, + 0.03219299390912056, + -0.01592209003865719, + 0.04684852808713913, + 0.040493886917829514, + 0.07390118390321732, + 0.031165460124611855, + -0.0572657473385334, + 0.13536448776721954, + 0.03932786360383034, + -0.02746889367699623, + -0.06881848722696304, + -0.0402451790869236, + -0.035189367830753326, + 0.05021411180496216, + 0.009485137648880482, + -0.0997840166091919, + -0.012666463851928711, + 0.051296088844537735, + 0.000514302751980722, + 0.04523845762014389, + 0.14479690790176392, + 0.0645727589726448, + -0.09413698315620422 + ] + }, + "p245_228.wav": { + "name": "p245", + "embedding": [ + 0.036547183990478516, + 0.05494793504476547, + -0.03381495177745819, + -0.010115750133991241, + -0.04059382155537605, + 0.02810145542025566, + -0.13210858404636383, + 0.09303756058216095, + 0.005028697662055492, + 0.16204020380973816, + -0.05217421054840088, + 0.09659303724765778, + -0.0012686308473348618, + -0.11723019182682037, + 0.023297203704714775, + 0.03521076962351799, + -0.006184345111250877, + -0.0019950508140027523, + -0.004529932513833046, + -0.05533728748559952, + 0.03424292802810669, + 0.049391716718673706, + 0.007852649316191673, + -0.04434743896126747, + 0.02525271102786064, + 0.06144176423549652, + -0.024894338101148605, + -0.006331412121653557, + -0.01832963526248932, + -0.0581718273460865, + 0.011025835759937763, + 0.11011952906847, + -0.04667455703020096, + -0.004206397570669651, + 0.010972622781991959, + -0.013248814269900322, + -0.028623323887586594, + -0.04633243381977081, + 0.020680660381913185, + 0.033447153866291046, + -0.04960118979215622, + 0.0838746726512909, + 0.01760770007967949, + 0.010426776483654976, + 0.026980679482221603, + -0.030386094003915787, + -0.06536616384983063, + 0.004335332661867142, + -0.048969727009534836, + 0.14194506406784058, + 0.07445313036441803, + 0.007051954045891762, + -0.07249372452497482, + -0.01101214811205864, + 0.04477895796298981, + 0.02705524116754532, + -0.08595451712608337, + -0.034307949244976044, + 0.030470481142401695, + 0.10671170055866241, + 0.009791238233447075, + -0.06108497828245163, + 0.03524329140782356, + 0.10987058281898499, + 0.009562487713992596, + 0.03315334767103195, + 0.08764147758483887, + 0.10279177874326706, + -0.010249885730445385, + 0.006959708407521248, + 0.020144307985901833, + 0.07273457199335098, + 0.051266320049762726, + -0.025711428374052048, + 0.03318297117948532, + -0.018727295100688934, + -0.016509534791111946, + -0.04951774328947067, + -0.022715087980031967, + -0.05312328413128853, + -0.0448157861828804, + -0.022821705788373947, + -0.003900387790054083, + 0.09170660376548767, + -0.022880928590893745, + -0.029494643211364746, + 0.07554402202367783, + -0.04855826869606972, + 0.04615463316440582, + 0.03903011232614517, + 0.017772603780031204, + 0.006154010072350502, + -0.10188841074705124, + -0.05236378312110901, + 0.038186024874448776, + -0.002766687422990799, + 0.047838497906923294, + 0.06418476998806, + 0.027539290487766266, + 0.0002491651102900505, + 0.09445770829916, + 0.02097795158624649, + -0.005377943627536297, + -0.04734991118311882, + -0.07401047646999359, + 0.11700354516506195, + 0.11375206708908081, + -0.04591304063796997, + 0.03777534142136574, + -0.014602947980165482, + 0.014844397082924843, + -0.0070088207721710205, + -0.12812571227550507, + -0.029767531901597977, + -0.004303273744881153, + 0.0478520393371582, + 0.019742488861083984, + 0.11558857560157776, + 0.04125234857201576, + 0.05158422887325287, + 0.0784287303686142, + -0.05399606004357338, + -0.06061099097132683, + -0.05072500556707382, + 0.038478169590234756, + -0.10721170902252197, + 0.060248248279094696, + 0.055300697684288025, + 0.022702792659401894, + 0.003910653293132782, + 0.06804215162992477, + 0.024405136704444885, + 0.03485392779111862, + -0.05654182285070419, + 0.005347827449440956, + 0.036358222365379333, + -0.020238889381289482, + 0.041469231247901917, + 0.031049851328134537, + -0.006746730767190456, + 0.09990570694208145, + 0.029759474098682404, + -0.007160266861319542, + -0.09072452783584595, + 0.037418484687805176, + 0.007801290135830641, + 0.03955089673399925, + -0.052426502108573914, + -0.03093225508928299, + 0.01665990985929966, + -0.0764579176902771, + -0.0004300791770219803, + -0.009757639840245247, + 0.06864982843399048, + 0.030672062188386917, + -0.0229633841663599, + 0.10047703981399536, + 0.015504911541938782, + -0.00018723157700151205, + 0.010967081412672997, + -0.010971481911838055, + -0.005989436060190201, + 0.06344471871852875, + -0.12709718942642212, + -0.05961715802550316, + 0.011622114107012749, + 0.0128859244287014, + 0.011815086007118225, + 0.03485803306102753, + 0.09618727117776871, + -0.02078128233551979, + 0.024947889149188995, + -0.01679592952132225, + -0.003832906950265169, + -0.05250580608844757, + -0.06677301228046417, + 0.0032298071309924126, + -0.05456282198429108, + -0.0497753843665123, + 0.08213728666305542, + -0.02136092260479927, + 0.04913489520549774, + -0.04758963733911514, + -0.03340229019522667, + -0.0676318109035492, + 0.03568369895219803, + 0.03104977309703827, + -0.06299667060375214, + -0.0007210280746221542, + 0.08407070487737656, + -0.00670292042195797, + -0.02887452393770218, + 0.055874817073345184, + 0.09213539212942123, + -0.08104171603918076, + 0.005033660680055618, + -0.08486886322498322, + 0.1096893697977066, + 0.08756161481142044, + -0.0345761701464653, + -0.062121979892253876, + -0.06690338999032974, + -0.06330153346061707, + 0.0373421311378479, + -0.03550054132938385, + -0.017497580498456955, + 0.040321316570043564, + -0.05281955376267433, + -0.07797092199325562, + -0.07407867908477783, + 0.05309075862169266, + -0.05857566371560097, + 0.007959308102726936, + -0.07371783256530762, + 0.036032311618328094, + 0.04185828939080238, + 0.06944239884614944, + -0.06200557202100754, + 0.015215501189231873, + 0.02768900617957115, + -0.04563862830400467, + 0.006325381342321634, + 0.03160887211561203, + 0.034379299730062485, + -0.06544091552495956, + -0.06208460405468941, + -0.06095083802938461, + 0.03927738964557648, + -0.06617523729801178, + 0.055638596415519714, + 0.03216254338622093, + -0.05052667111158371, + -0.0727718323469162, + -0.004142915830016136, + 0.004101710394024849, + 0.03420416638255119, + 0.07264456152915955, + 0.06035304069519043, + 0.0509200245141983, + -0.053581397980451584, + 0.06901642680168152, + 0.05423349514603615, + 0.03478659316897392, + -0.05042131245136261, + -0.00014366023242473602, + -0.0034629814326763153, + 0.05168410390615463, + 0.018149469047784805, + -0.0771474614739418, + 0.04962316155433655, + 0.01681504398584366, + 0.004121999256312847, + 0.044393714517354965, + 0.04761321097612381, + 0.04781375825405121, + -0.10872853547334671 + ] + }, + "p245_188.wav": { + "name": "p245", + "embedding": [ + 0.017317287623882294, + 0.04498537629842758, + -0.049431826919317245, + 0.026250295341014862, + -0.07159970700740814, + 0.041431911289691925, + -0.14220894873142242, + 0.09918121993541718, + -0.02404780313372612, + 0.11870583891868591, + -0.033757831901311874, + 0.10897046327590942, + -0.01274899858981371, + -0.2121933251619339, + 0.01909901574254036, + 0.06232907623052597, + -0.03920887038111687, + -0.04471857100725174, + -0.06435555219650269, + -0.03345201909542084, + 0.03468197584152222, + 0.0357145331799984, + 0.025104904547333717, + -0.05580104887485504, + 0.01387088280171156, + 0.07723259925842285, + -0.008191756904125214, + 0.013709424063563347, + -0.023945387452840805, + -0.03753571957349777, + -0.049597322940826416, + 0.0883735865354538, + -0.06499285250902176, + -0.028659116476774216, + 0.0505051389336586, + -0.023918859660625458, + -0.028258681297302246, + -0.04561741650104523, + -0.009612597525119781, + 0.03508784621953964, + -0.06720846891403198, + 0.07514676451683044, + 0.051419928669929504, + -0.013838039711117744, + 0.05048087611794472, + 0.006804631091654301, + -0.022727705538272858, + -0.030414143577218056, + -0.10152660310268402, + 0.14894217252731323, + 0.06898372620344162, + -0.025127515196800232, + -0.05135069042444229, + -0.0408470593392849, + 0.08696570992469788, + 0.008966525085270405, + -0.13095322251319885, + -0.07086822390556335, + 0.0888456180691719, + 0.1253010779619217, + -0.035244591534137726, + -0.021543893963098526, + 0.03895064443349838, + 0.07749058306217194, + 0.06122463941574097, + 0.10049092024564743, + 0.06332235038280487, + 0.12807497382164001, + -0.0027650382835417986, + 0.0040116989985108376, + 0.0695246160030365, + 0.06422119587659836, + 0.030354848131537437, + -0.017443187534809113, + 0.04658213257789612, + 0.0029388070106506348, + -0.010607457719743252, + -0.022464144974946976, + -0.018317895010113716, + -0.012762738391757011, + 0.03116878867149353, + -0.007134473882615566, + 0.0351099967956543, + 0.02266528084874153, + -0.03112887218594551, + 0.04863879829645157, + 0.08685256540775299, + -0.0017822063528001308, + 0.06073993071913719, + 0.02116236463189125, + -0.0073343669064342976, + 0.07774338126182556, + -0.09492166340351105, + -0.06570316851139069, + 0.031402237713336945, + 0.0057772016152739525, + -0.0017051721224561334, + 0.05516954883933067, + 0.047507453709840775, + -0.020640410482883453, + 0.1228819489479065, + 0.03544235974550247, + -0.016452038660645485, + 0.04918748140335083, + -0.07279971987009048, + 0.12608854472637177, + 0.08431540429592133, + -0.030415885150432587, + 0.030399909242987633, + -0.06336770951747894, + 0.07243360579013824, + 0.043131835758686066, + -0.10869661718606949, + -0.049188461154699326, + 0.044710587710142136, + -0.023325065150856972, + -0.050837837159633636, + 0.16665911674499512, + -0.003387659788131714, + 0.01691051758825779, + 0.14217683672904968, + -0.1043357402086258, + -0.057786524295806885, + -0.0008437793585471809, + 0.030060134828090668, + -0.08626771718263626, + 0.04105145484209061, + 0.05152350664138794, + -0.00994603056460619, + 0.03077283501625061, + 0.09150253981351852, + -0.017743868753314018, + 0.015175789594650269, + -0.005155642982572317, + -0.015340684913098812, + 0.049425624310970306, + -0.010346350260078907, + -0.01423791516572237, + 0.07959248125553131, + 0.029327072203159332, + 0.04215708002448082, + -0.035785987973213196, + -0.027502745389938354, + -0.131309375166893, + 0.02814522758126259, + 0.01983937993645668, + 0.0819053202867508, + -0.014491342008113861, + 0.01907731592655182, + -0.06289822608232498, + -0.11390458047389984, + 0.02779809758067131, + -0.025660209357738495, + 0.07574279606342316, + -0.027025040239095688, + -0.03143087029457092, + 0.09052151441574097, + 0.04678970202803612, + 0.01202697865664959, + -0.05012039095163345, + -0.06305918097496033, + 0.016918502748012543, + 0.045033156871795654, + -0.10097062587738037, + -0.058853622525930405, + -0.046271972358226776, + 0.037637338042259216, + -0.009079734794795513, + 0.038432247936725616, + 0.06502270698547363, + 0.04015757888555527, + 0.015586724504828453, + -0.08537141978740692, + 0.017619166523218155, + -0.0705195963382721, + -0.04243101924657822, + -0.01802583411335945, + -0.02883341535925865, + -0.03243012726306915, + 0.08826066553592682, + -0.013770588673651218, + 0.023792801424860954, + -0.07443833351135254, + -0.06121410056948662, + -0.07203206419944763, + 0.05678550899028778, + 0.055465664714574814, + -0.03217874839901924, + 0.046823397278785706, + 0.04638488590717316, + -0.04013500362634659, + 0.0026283422484993935, + 0.06033400818705559, + 0.11864417791366577, + -0.026256369426846504, + 0.011101892217993736, + -0.055907152593135834, + 0.12708517909049988, + 0.07068803906440735, + -0.055651649832725525, + -0.0484439879655838, + -0.005763031542301178, + -0.06660846620798111, + 0.04331723600625992, + -0.04608432203531265, + -0.021472645923495293, + 0.020690463483333588, + 0.023847879841923714, + -0.0916101336479187, + -0.07911588251590729, + 0.05280515179038048, + -0.059972479939460754, + -0.01347692497074604, + -0.09861786663532257, + 0.04117956385016441, + 0.07657027244567871, + 0.044892556965351105, + -0.06180015206336975, + -0.007300299592316151, + 0.052679285407066345, + -0.020200956612825394, + 0.05991438776254654, + 0.0642707422375679, + 0.05839382857084274, + -0.09800872951745987, + -0.04367532953619957, + -0.07133033871650696, + 0.04467225819826126, + -0.046147119253873825, + 0.12688976526260376, + 0.02022826112806797, + -0.02163371443748474, + -0.060631610453128815, + 0.05313608795404434, + -0.00031630881130695343, + 0.06005815416574478, + 0.0646965503692627, + 0.08532170951366425, + 0.06233343482017517, + -0.056034162640571594, + 0.1290823519229889, + 0.030907586216926575, + -0.01748138852417469, + -0.06116333603858948, + -0.01653577759861946, + -0.04848343878984451, + 0.0357728973031044, + 0.045651160180568695, + -0.10712676495313644, + 0.001083730487152934, + 0.05164897441864014, + -0.002481299452483654, + 0.030789662152528763, + 0.12179458141326904, + 0.06833023577928543, + -0.08677087724208832 + ] + }, + "p245_176.wav": { + "name": "p245", + "embedding": [ + 0.06590309739112854, + 0.08273713290691376, + -0.022031202912330627, + 0.027331626042723656, + -0.05132855474948883, + 0.04373977705836296, + -0.15334570407867432, + 0.1566563993692398, + -0.009727679193019867, + 0.13052597641944885, + -0.03915196657180786, + 0.12613728642463684, + -0.00921361893415451, + -0.17011556029319763, + -0.0031224607955664396, + 0.05452784150838852, + -0.03364328294992447, + -0.0348631925880909, + -0.02278713509440422, + -0.029857030138373375, + 0.029342498630285263, + 0.04183362051844597, + 0.031725432723760605, + -0.0046009584330022335, + 0.028559327125549316, + 0.06831564009189606, + -0.017405208200216293, + 0.027609815821051598, + -0.0089272391051054, + -0.0710478276014328, + -0.02805780991911888, + 0.07103975862264633, + -0.0609106719493866, + 0.005562937818467617, + 0.03896316513419151, + -0.026390373706817627, + -0.013575540855526924, + -0.06560267508029938, + -0.029591700062155724, + 0.007092623971402645, + -0.037789665162563324, + 0.08400766551494598, + 0.02115662395954132, + -0.03572472184896469, + 0.03886793181300163, + 0.014422359876334667, + -0.004600794520229101, + -0.03717661648988724, + -0.11260801553726196, + 0.15533767640590668, + 0.07325652241706848, + 0.014653614722192287, + -0.08307540416717529, + -0.05747218057513237, + 0.08501579612493515, + -0.015743855386972427, + -0.09778197854757309, + -0.027945932000875473, + 0.05563493072986603, + 0.1365983933210373, + -0.032644666731357574, + -0.04546068608760834, + 0.04818868637084961, + 0.10732771456241608, + 0.07704716920852661, + 0.06185056269168854, + 0.09420525282621384, + 0.11288021504878998, + -0.04673559218645096, + 0.009247522801160812, + 0.036061182618141174, + 0.0793636366724968, + 0.0696311891078949, + 0.007205704227089882, + 0.018164895474910736, + -0.007456387858837843, + -0.015886083245277405, + -0.040691327303647995, + -0.023670226335525513, + -0.02646796964108944, + -0.003542952938005328, + 0.013792181387543678, + 0.020862823352217674, + 0.05419101566076279, + -0.026225855574011803, + 0.05407482013106346, + 0.057271093130111694, + -0.02712639793753624, + 0.0665774717926979, + 0.018475593999028206, + 0.020073935389518738, + 0.07006167620420456, + -0.1084972470998764, + -0.06667543947696686, + 0.05201352387666702, + 0.003527058055624366, + 0.03386840224266052, + 0.07018347829580307, + 0.048327378928661346, + -0.013828898780047894, + 0.12828075885772705, + 0.052020035684108734, + -0.01700139231979847, + 0.009118321351706982, + -0.07842226326465607, + 0.125259667634964, + 0.08640637993812561, + -0.03948485851287842, + 0.06417527794837952, + -0.06240531802177429, + 0.056600913405418396, + 0.048333585262298584, + -0.13238009810447693, + -0.07555337995290756, + 0.03135322779417038, + 0.01871408149600029, + -0.006715088617056608, + 0.14097750186920166, + 0.014059068635106087, + 0.07226261496543884, + 0.10537798702716827, + -0.09489516913890839, + -0.053132764995098114, + -0.013518152758479118, + 0.06651130318641663, + -0.09357684850692749, + 0.08118122071027756, + 0.06574410200119019, + -0.019548101350665092, + 0.030379649251699448, + 0.07033946365118027, + -0.004461872857064009, + 0.003948649857193232, + -0.0030166504438966513, + -0.025986608117818832, + 0.0010310538345947862, + -0.020243503153324127, + -0.015815503895282745, + 0.017549216747283936, + 0.016868874430656433, + 0.04138512164354324, + -0.011960888281464577, + -0.022519264370203018, + -0.13396292924880981, + 0.0199708491563797, + 0.025134574621915817, + 0.0808676928281784, + -0.021772390231490135, + -0.03277274966239929, + -0.030811121687293053, + -0.05993056297302246, + -0.006899719592183828, + -0.014716587960720062, + 0.05033014714717865, + -0.01804148405790329, + 0.015124909579753876, + 0.09540446847677231, + 0.049196772277355194, + 0.009166347794234753, + -0.032705970108509064, + -0.03616961091756821, + 0.006587449461221695, + 0.05745156854391098, + -0.07765307277441025, + -0.08155323565006256, + -0.029043225571513176, + 0.024371540173888206, + -0.020367398858070374, + 0.0753738135099411, + 0.04553629457950592, + 0.024564266204833984, + 0.007722645998001099, + -0.06545669585466385, + 0.01615370437502861, + -0.08819540590047836, + -0.08529090881347656, + -0.0008315509185194969, + -0.007010858040302992, + -0.03731034696102142, + 0.07583478093147278, + 0.03277184069156647, + 0.07850177586078644, + -0.05062877759337425, + -0.04603683948516846, + -0.08216080069541931, + 0.032328709959983826, + 0.04931224137544632, + -0.027668422088027, + 0.02368195913732052, + 0.059348881244659424, + -0.018062911927700043, + 0.051102038472890854, + 0.0644771158695221, + 0.09227493405342102, + -0.026067791506648064, + 0.022217441350221634, + -0.07000530511140823, + 0.10057233273983002, + 0.10241001844406128, + -0.0660070925951004, + -0.0833776593208313, + -0.034672241657972336, + -0.08395908772945404, + 0.018026867881417274, + -0.01758812554180622, + 0.020316768437623978, + 0.03906296193599701, + -0.0018471296643838286, + -0.1044909656047821, + -0.0998966246843338, + 0.08310158550739288, + -0.0647507905960083, + 0.00958292931318283, + -0.087298184633255, + 0.04991710186004639, + 0.09902515262365341, + 0.031223490834236145, + -0.026738043874502182, + -0.033829011023044586, + 0.03121050074696541, + -0.0005048485472798347, + 0.027047235518693924, + 0.06736314296722412, + 0.0641685351729393, + -0.11556115746498108, + -0.0037295869551599026, + -0.0594022274017334, + 0.04243311285972595, + -0.03628578037023544, + 0.13820697367191315, + 0.028575977310538292, + -0.04545023664832115, + -0.09418241679668427, + 0.04028555005788803, + -0.009200192987918854, + 0.06230112910270691, + 0.014625227078795433, + 0.06447426974773407, + 0.05719239264726639, + -0.07228986918926239, + 0.09338214993476868, + 0.050442688167095184, + -0.042689792811870575, + -0.07106788456439972, + -0.063497394323349, + -0.0327129140496254, + 0.04167948290705681, + 0.002049120608717203, + -0.0810183435678482, + -0.02905045449733734, + 0.021104484796524048, + 0.007179769687354565, + 0.05495418235659599, + 0.1424550712108612, + 0.04495810717344284, + -0.12958046793937683 + ] + }, + "p245_275.wav": { + "name": "p245", + "embedding": [ + 0.0372111052274704, + 0.050547100603580475, + -0.039791930466890335, + 0.06428533792495728, + -0.06765749305486679, + 0.040432676672935486, + -0.14868861436843872, + 0.10640327632427216, + -0.021880440413951874, + 0.10772843658924103, + -0.05929896980524063, + 0.08378919959068298, + -0.017492609098553658, + -0.19753682613372803, + -0.006421403028070927, + 0.06478886306285858, + -0.04720301553606987, + -0.03194117918610573, + -0.0735669732093811, + -0.028677726164460182, + 0.03851275146007538, + 0.0534440279006958, + 0.047147490084171295, + -0.0267333947122097, + 0.016785763204097748, + 0.05823175981640816, + -0.011137187480926514, + 0.028506604954600334, + 0.0070802937261760235, + -0.03567471727728844, + -0.029264654964208603, + 0.11077967286109924, + -0.006142396479845047, + -0.027134299278259277, + 0.033171698451042175, + -0.005992839112877846, + -0.01941157504916191, + -0.07562747597694397, + -0.027822960168123245, + 0.01068776287138462, + -0.06396210193634033, + 0.06659205257892609, + 0.0473058745265007, + -0.04108644276857376, + 0.06850926578044891, + -0.037930749356746674, + -0.05754496157169342, + -0.047843314707279205, + -0.13164585828781128, + 0.16440364718437195, + 0.09240882843732834, + 0.02109512872993946, + -0.07503265142440796, + -0.03818577900528908, + 0.11606360226869583, + -0.004305548965930939, + -0.11100426316261292, + -0.07306322455406189, + 0.07542389631271362, + 0.18429842591285706, + -0.016988929361104965, + 0.019483918324112892, + 0.05982273817062378, + 0.11252015829086304, + 0.04116428643465042, + 0.07991175353527069, + 0.07670343667268753, + 0.0956476479768753, + 0.014019510708749294, + 0.036897871643304825, + 0.04997949302196503, + 0.0666642040014267, + -0.0033631548285484314, + -0.018157746642827988, + 0.020306186750531197, + -0.01118550170212984, + -0.0523250550031662, + -0.02172210067510605, + -0.028238940984010696, + -0.01570945419371128, + 0.0034297779202461243, + -0.003977117128670216, + 0.028729159384965897, + 0.012515516951680183, + -0.06733973324298859, + 0.04054859280586243, + 0.04000149667263031, + -0.04084627702832222, + 0.05878767371177673, + 0.02424379624426365, + -0.010608808137476444, + 0.028196848928928375, + -0.030981626361608505, + -0.1025228425860405, + -0.005650188773870468, + 0.018151061609387398, + -0.009235326200723648, + 0.0494488850235939, + 0.03304683044552803, + -0.04707948863506317, + 0.12458515167236328, + 0.03188218176364899, + -0.015951815992593765, + 0.04687663912773132, + -0.07101300358772278, + 0.10087639838457108, + 0.09593609720468521, + 0.004735417664051056, + 0.0658436268568039, + -0.04067708179354668, + 0.04357825219631195, + 0.06105254963040352, + -0.11678953468799591, + -0.039993468672037125, + 0.046250149607658386, + -0.002066663233563304, + 0.0014543826691806316, + 0.13816797733306885, + 0.03370920568704605, + 0.035824354737997055, + 0.12066216766834259, + -0.09924739599227905, + -0.06310063600540161, + -0.01783032715320587, + 0.07728970795869827, + -0.06144742667675018, + 0.051109518855810165, + 0.06654154509305954, + -0.03428902104496956, + 0.013600043021142483, + 0.05042201653122902, + -0.01720242388546467, + 0.015457747504115105, + 0.00633569061756134, + -0.05480961129069328, + 0.05744437128305435, + -0.05916483327746391, + -0.02087836153805256, + 0.08025971055030823, + 0.032897986471652985, + 0.04981597512960434, + -0.0178227461874485, + -0.029598254710435867, + -0.10776936262845993, + -0.005454982630908489, + 0.02400267869234085, + 0.1018771380186081, + 0.0014026444405317307, + 0.006253059022128582, + -0.07616347074508667, + -0.0826883316040039, + 0.03763645514845848, + -0.053547292947769165, + 0.09755547344684601, + -0.02633102610707283, + -0.004980175755918026, + 0.06643056124448776, + 0.0013255062513053417, + 0.006942296400666237, + -0.043009497225284576, + -0.025869157165288925, + 0.0230241846293211, + 0.03868516907095909, + -0.061113178730010986, + -0.04628463089466095, + -0.006677571684122086, + 0.032870154827833176, + -0.03237747773528099, + 0.017305508255958557, + 0.021627631038427353, + 0.028258226811885834, + 0.0037730673793703318, + -0.09021933376789093, + 0.036487333476543427, + -0.07960869371891022, + -0.016955388709902763, + 0.013353020884096622, + -0.016371123492717743, + -0.04316435009241104, + 0.10222162306308746, + 0.04196551814675331, + 0.007445049472153187, + -0.02195524424314499, + -0.08111335337162018, + -0.06170753389596939, + 0.050415799021720886, + 0.04873126745223999, + -0.013593791052699089, + 0.0507008358836174, + 0.04373297095298767, + -0.022381126880645752, + 0.0268389955163002, + 0.06883329898118973, + 0.08232976496219635, + 0.0065101878717541695, + -0.039970606565475464, + -0.07118874788284302, + 0.10195834189653397, + 0.09972754120826721, + -0.07307245582342148, + -0.06400041282176971, + -0.03322445973753929, + -0.08305425196886063, + 0.045970916748046875, + -0.02062268927693367, + -0.010524102486670017, + 0.04042370617389679, + -0.018243473023176193, + -0.13788217306137085, + -0.09079774469137192, + 0.08598054200410843, + -0.07443965971469879, + -0.013190265744924545, + -0.06539787352085114, + 0.02527713030576706, + 0.09252861887216568, + 0.015022635459899902, + -0.028417464345693588, + -0.018887314945459366, + 0.04335290938615799, + -0.07408102601766586, + 0.022785726934671402, + 0.05588337033987045, + 0.02137768268585205, + -0.12280511856079102, + 0.010940550826489925, + -0.07326871156692505, + 0.06430086493492126, + -0.03907422348856926, + 0.13647128641605377, + 0.032093070447444916, + -0.023616179823875427, + -0.08593961596488953, + 0.07636019587516785, + -0.02165522798895836, + 0.0666738748550415, + 0.04711022973060608, + 0.06940796971321106, + 0.06648463010787964, + -0.09064563363790512, + 0.09680681675672531, + 0.034255027770996094, + -0.028422709554433823, + -0.07090790569782257, + -0.031739503145217896, + -0.04116027057170868, + 0.020132046192884445, + 0.001373582985252142, + -0.06732317805290222, + -0.009879304096102715, + 0.02314138039946556, + -0.01892411895096302, + 0.07125674933195114, + 0.11903060972690582, + 0.067520871758461, + -0.08741383999586105 + ] + }, + "p245_222.wav": { + "name": "p245", + "embedding": [ + 0.06108405068516731, + 0.10647977888584137, + -0.000617398414760828, + 0.02306094579398632, + -0.03677089512348175, + 0.06461239606142044, + -0.14455847442150116, + 0.1188560351729393, + -0.037819743156433105, + 0.1366496980190277, + -0.0777558982372284, + 0.1260986626148224, + -0.013707634061574936, + -0.20751075446605682, + -0.057540133595466614, + 0.06460794806480408, + -0.05266393721103668, + -0.015345701947808266, + -0.031993567943573, + -0.0010810154490172863, + 0.027816448360681534, + 0.026042643934488297, + 0.057558976113796234, + -0.013864386826753616, + 0.04250806197524071, + 0.06557751446962357, + 0.02284429594874382, + 0.07405853271484375, + 0.026938017457723618, + -0.04421895742416382, + -0.04515006020665169, + 0.12181121110916138, + -0.03756125271320343, + 0.004845899064093828, + 0.07181832939386368, + -0.001529536210000515, + 0.017629370093345642, + -0.06470608711242676, + -0.002787746489048004, + 0.009170708246529102, + -0.028057973831892014, + 0.08416552096605301, + 0.032940350472927094, + -0.014416085556149483, + 0.04113847017288208, + 0.04639853164553642, + -0.0049102287739515305, + -0.053554147481918335, + -0.11086501181125641, + 0.15409603714942932, + 0.045271433889865875, + 0.01465653907507658, + -0.07471352070569992, + -0.07080671191215515, + 0.09942316263914108, + -0.023636285215616226, + -0.09994032233953476, + -0.055198147892951965, + 0.08141282200813293, + 0.16549062728881836, + -0.028426170349121094, + -0.038404498249292374, + 0.02772606536746025, + 0.12711147964000702, + 0.04499347135424614, + 0.09814967215061188, + 0.0759621188044548, + 0.10287846624851227, + 0.007442581932991743, + 0.03093777596950531, + 0.05855100601911545, + 0.06003308296203613, + 0.0315227210521698, + -0.020807866007089615, + 0.028356939554214478, + -0.011214344762265682, + -0.026853125542402267, + -0.0011568637564778328, + -0.023175891488790512, + -0.008345823734998703, + -0.01349436305463314, + 0.0054573859088122845, + 0.003318965435028076, + 0.020443931221961975, + -0.034833770245313644, + 0.062183864414691925, + 0.019940689206123352, + -0.01843925006687641, + 0.07633303105831146, + 0.04648476094007492, + 0.006451481021940708, + 0.04481981694698334, + -0.07290449738502502, + -0.0989399403333664, + 0.024432167410850525, + -0.0006473178509622812, + -0.0009979411261156201, + 0.05842795968055725, + 0.0470779687166214, + -0.023900527507066727, + 0.11235892027616501, + 0.0650775134563446, + -0.009484140202403069, + 0.041433170437812805, + -0.08686938881874084, + 0.13090765476226807, + 0.08511263132095337, + -0.0171419158577919, + 0.035695623606443405, + -0.03681721165776253, + 0.05405735969543457, + 0.08810330927371979, + -0.14205609261989594, + -0.08561797440052032, + 0.0380837544798851, + -0.0025956700555980206, + -0.013711372390389442, + 0.10192014276981354, + -0.026365328580141068, + 0.01982794515788555, + 0.09954655170440674, + -0.07655389606952667, + -0.06609588861465454, + -0.02775553986430168, + 0.03888038173317909, + -0.09195458889007568, + 0.05020830035209656, + 0.045806337147951126, + -0.007562024053186178, + -0.025427894666790962, + 0.0920066088438034, + -0.002037553582340479, + -0.014566872268915176, + 0.01678907871246338, + -0.03626510500907898, + 0.04148344695568085, + -0.032590076327323914, + 0.006460740230977535, + 0.044672563672065735, + 0.04504762962460518, + 0.03837810829281807, + 0.01426954660564661, + -0.03653022274374962, + -0.11600615084171295, + -0.00519973412156105, + 0.0408778190612793, + 0.07300679385662079, + -0.007406510412693024, + -0.027017386630177498, + -0.05593958497047424, + -0.047655969858169556, + 0.038142282515764236, + -0.001864137127995491, + 0.08079181611537933, + -0.008619028143584728, + -0.009942388162016869, + 0.10925580561161041, + -0.0028608774300664663, + 0.015234522521495819, + -0.04282653331756592, + -0.011723631992936134, + 0.03105689026415348, + 0.03336199000477791, + -0.07925215363502502, + -0.06928686052560806, + 0.0021465288009494543, + 0.011984403245151043, + -0.018805846571922302, + 0.04306516796350479, + 0.050752654671669006, + 0.015741048380732536, + 0.036435529589653015, + -0.054405488073825836, + 0.002457967959344387, + -0.09544603526592255, + -0.04390803351998329, + -0.03200002387166023, + -0.025547679513692856, + -0.03497427701950073, + 0.08301126956939697, + 0.02629021927714348, + 0.043635718524456024, + -0.01585550606250763, + -0.06971190869808197, + -0.07166323810815811, + 0.06328172236680984, + 0.08925635367631912, + 0.009984223172068596, + 0.0418478325009346, + 0.028708338737487793, + -0.010551339015364647, + 0.06710711121559143, + 0.06426020711660385, + 0.08199739456176758, + -0.012986479327082634, + -0.0061281174421310425, + -0.07090484350919724, + 0.09049259126186371, + 0.08384969830513, + -0.10082690417766571, + -0.08927126228809357, + -0.015235744416713715, + -0.06333670020103455, + 0.035051699727773666, + -0.021348778158426285, + 0.015651199966669083, + 0.038222990930080414, + -0.015520840883255005, + -0.086278036236763, + -0.1118512749671936, + 0.08274443447589874, + -0.07864677906036377, + -0.01918899267911911, + -0.05852116644382477, + 0.04227006435394287, + 0.07503014802932739, + 0.02317352220416069, + -0.024019388481974602, + -0.0008100592531263828, + 0.034582674503326416, + -0.0597623735666275, + -0.01632051169872284, + 0.03955225646495819, + 0.012612666934728622, + -0.1105913370847702, + 0.02210206352174282, + -0.07639829069375992, + 0.0775880217552185, + -0.07166879624128342, + 0.16558100283145905, + -0.0013572783209383488, + -0.04954211413860321, + -0.07835662364959717, + 0.028120549395680428, + -0.05300430953502655, + 0.051034968346357346, + 0.05053573101758957, + 0.060512661933898926, + 0.012358414940536022, + -0.08027291297912598, + 0.12044014781713486, + 0.03400711715221405, + -0.033008355647325516, + -0.09692864120006561, + -0.05187544226646423, + -0.051885444670915604, + 0.03630934655666351, + 0.02796216681599617, + -0.09565617144107819, + -0.00820917822420597, + 0.03872651606798172, + -0.0242586862295866, + 0.06536050885915756, + 0.13753463327884674, + 0.049971528351306915, + -0.0948898121714592 + ] + }, + "p245_405.wav": { + "name": "p245", + "embedding": [ + 0.006150184199213982, + 0.07486303895711899, + -0.02663586288690567, + 0.0396827831864357, + -0.07888508588075638, + 0.010312719270586967, + -0.12243877351284027, + 0.13704636693000793, + -0.028949812054634094, + 0.09931938350200653, + -0.055680595338344574, + 0.10770174860954285, + -0.04940880835056305, + -0.16307318210601807, + 0.013370392844080925, + 0.0590081624686718, + 0.01580122858285904, + -0.0392984114587307, + 0.004905190784484148, + -0.04926897957921028, + 0.03190212696790695, + 0.029246345162391663, + 0.023797329515218735, + 0.012916888110339642, + 0.018231522291898727, + 0.08257376402616501, + -0.004941157530993223, + 0.016237521544098854, + -0.02850126102566719, + -0.029211970046162605, + -0.040705520659685135, + 0.08973772823810577, + -0.05868818610906601, + -0.019737152382731438, + 0.027195440605282784, + -0.022931616753339767, + -0.011572642251849174, + -0.027735145762562752, + -0.012257655151188374, + -0.003778803627938032, + -0.07221400737762451, + 0.0690208375453949, + 0.007677680812776089, + 0.0059084706008434296, + 0.04964328184723854, + 0.0069380514323711395, + -0.014495120383799076, + 0.00042348168790340424, + -0.1041998416185379, + 0.10878968238830566, + 0.07086145877838135, + -0.014892393723130226, + -0.07496088743209839, + -0.04954609274864197, + 0.10084711015224457, + -0.0036116731353104115, + -0.07893861830234528, + -0.03851358965039253, + 0.08017651736736298, + 0.11820194125175476, + -0.021269669756293297, + -0.025731150060892105, + 0.028402242809534073, + 0.09672196209430695, + 0.05306058004498482, + 0.06293874233961105, + 0.06270907819271088, + 0.10115713626146317, + -0.03169447183609009, + -0.017554961144924164, + 0.04578503593802452, + 0.0643862634897232, + 0.03271199390292168, + -0.03324565291404724, + -0.0011138077825307846, + -0.007808767259120941, + -0.010554883629083633, + -0.007996179163455963, + -0.02066575363278389, + -0.040589839220047, + -0.03887881711125374, + -0.023241635411977768, + 0.0036468892358243465, + -0.002424311824142933, + -0.016072357073426247, + 0.04164430499076843, + 0.0916631892323494, + -0.012127167545258999, + 0.09183749556541443, + 0.032345131039619446, + -0.027274835854768753, + 0.08409694582223892, + -0.09570327401161194, + -0.010594004765152931, + 0.028875943273305893, + 0.004311061929911375, + 0.03434719890356064, + 0.09402434527873993, + 0.04503396153450012, + -0.010267440229654312, + 0.11724266409873962, + 0.03866402804851532, + 0.02592509798705578, + 0.020174629986286163, + -0.08992619812488556, + 0.09675423055887222, + 0.08227004110813141, + -0.047772254794836044, + 0.06291826069355011, + -0.029017098248004913, + 0.046312734484672546, + 0.038410574197769165, + -0.10050421953201294, + -0.052188120782375336, + -0.010445058345794678, + 0.0026838649064302444, + -0.022569473832845688, + 0.11409549415111542, + 0.0013011815026402473, + 0.030930712819099426, + 0.1021089106798172, + -0.09437777101993561, + -0.08424870669841766, + -0.03104417771100998, + 0.06071043014526367, + -0.07492244243621826, + 0.05981636419892311, + 0.07829509675502777, + -0.0015183121431618929, + 0.04802033305168152, + 0.052258338779211044, + 0.003569698426872492, + 0.027483439072966576, + 0.02442401647567749, + -0.05770420283079147, + 0.007335989736020565, + -0.008484814316034317, + 0.010443726554512978, + 0.055802639573812485, + 0.018053952604532242, + 0.07853730767965317, + -0.01988217793405056, + 0.02538875676691532, + -0.10057611763477325, + 0.012353873811662197, + 0.050762537866830826, + 0.04853710159659386, + -0.02888815477490425, + -0.042304977774620056, + -0.03410155326128006, + -0.08970526605844498, + 0.006184403318911791, + 0.008147899992763996, + 0.08079163730144501, + -0.02827638015151024, + 0.009538035839796066, + 0.10582235455513, + 0.06337680667638779, + -0.02251357212662697, + -0.0641975998878479, + -0.0424477644264698, + 3.231666050851345e-05, + 0.06074313074350357, + -0.09988382458686829, + -0.0822218731045723, + -0.048506107181310654, + 0.05525355041027069, + -0.011318358592689037, + 0.06881704926490784, + 0.04739636555314064, + 0.013998052105307579, + -0.0018474189564585686, + -0.08094143122434616, + 0.04934513196349144, + -0.04532060772180557, + -0.06087994948029518, + -0.03767145797610283, + -0.02540403977036476, + -0.037186309695243835, + 0.07746666669845581, + 0.03033493459224701, + 0.05804086849093437, + -0.02209402807056904, + -0.06133315712213516, + -0.08052507042884827, + 0.018595688045024872, + 0.040038686245679855, + -0.0474863238632679, + 0.06294899433851242, + 0.06302913278341293, + -0.08780153840780258, + 0.04541824758052826, + 0.08086102455854416, + 0.09481661021709442, + -0.05498076602816582, + 0.040893882513046265, + -0.04828319698572159, + 0.06915664672851562, + 0.09316052496433258, + -0.08082294464111328, + -0.07157042622566223, + -0.06226029992103577, + -0.05875064432621002, + 0.05325916409492493, + -0.006705602630972862, + 0.007173493038862944, + 0.008922797627747059, + 0.0010051140561699867, + -0.08783672749996185, + -0.08716591447591782, + 0.09316055476665497, + -0.03933382406830788, + 0.001842681085690856, + -0.08648964017629623, + 0.05154842883348465, + 0.0715637058019638, + 0.03526312857866287, + -0.031575605273246765, + -0.018471233546733856, + 0.049379266798496246, + 0.0066135115921497345, + 0.024725373834371567, + 0.08367547392845154, + 0.05745554342865944, + -0.0649101734161377, + -0.03061269223690033, + -0.06204616278409958, + 0.07283425331115723, + -0.020063556730747223, + 0.1344831883907318, + 0.012971446849405766, + -0.04990969970822334, + -0.08142311871051788, + 0.04272284358739853, + 0.01761619932949543, + 0.04632534831762314, + 0.03681449592113495, + 0.06272977590560913, + 0.01905830018222332, + -0.03894062712788582, + 0.10986852645874023, + 0.03639582172036171, + -0.03918122500181198, + -0.05495746433734894, + -0.02624659799039364, + -0.03168144449591637, + 0.031790416687726974, + 0.0030091446824371815, + -0.10187118500471115, + -0.001163753680884838, + 0.01260887086391449, + 0.008416254073381424, + 0.06408717483282089, + 0.12489663064479828, + 0.07984329760074615, + -0.0996938943862915 + ] + }, + "p245_209.wav": { + "name": "p245", + "embedding": [ + 0.04554061219096184, + 0.11203058063983917, + -0.022690575569868088, + 0.012570882216095924, + -0.0615958496928215, + 0.07376416027545929, + -0.14235931634902954, + 0.15235722064971924, + -0.046706777065992355, + 0.12507732212543488, + -0.046855293214321136, + 0.129477858543396, + -0.024960055947303772, + -0.17176952958106995, + -0.021041613072156906, + 0.06449992954730988, + -0.045246973633766174, + -0.024001698940992355, + -0.03731225058436394, + -0.023389948531985283, + 0.012416157871484756, + 0.00969479326158762, + 0.02865147590637207, + -0.005654540844261646, + 0.04920028895139694, + 0.07328611612319946, + -0.004259578417986631, + 0.03601548820734024, + 0.008022502064704895, + -0.041606515645980835, + -0.045118484646081924, + 0.08548715710639954, + -0.0744706243276596, + 0.00891790259629488, + 0.06726544350385666, + -0.027431055903434753, + -0.009889774955809116, + -0.05986803025007248, + -0.01781226322054863, + 0.0095668388530612, + -0.03194738179445267, + 0.09477731585502625, + 0.03949063643813133, + -0.013258501887321472, + 0.027089383453130722, + 0.03415452316403389, + 0.013282028026878834, + -0.029356781393289566, + -0.10565045475959778, + 0.14943604171276093, + 0.050647784024477005, + -0.012686577625572681, + -0.08229793608188629, + -0.05077778548002243, + 0.10782690346240997, + -0.013646011240780354, + -0.10708905011415482, + -0.04757320135831833, + 0.07076491415500641, + 0.13209493458271027, + -0.032981354743242264, + -0.02989504486322403, + 0.014626540243625641, + 0.11616101861000061, + 0.07205488532781601, + 0.0941612720489502, + 0.06344182044267654, + 0.12834662199020386, + -0.02709992229938507, + 0.02772194892168045, + 0.05921303480863571, + 0.05661766231060028, + 0.03217185288667679, + -0.010190636850893497, + 0.020447812974452972, + -0.015202559530735016, + -0.009804517030715942, + -0.007958756759762764, + -0.020177006721496582, + -0.026570476591587067, + -0.020499303936958313, + 0.01465735025703907, + 0.006320127286016941, + 0.0368126705288887, + -0.019491689279675484, + 0.06378576904535294, + 0.049740225076675415, + -0.01400289498269558, + 0.07588404417037964, + 0.0477759912610054, + -0.004408291541039944, + 0.07181099057197571, + -0.0982455164194107, + -0.07705365866422653, + 0.030861997976899147, + -0.011823715642094612, + 0.02100476250052452, + 0.06868617236614227, + 0.052775196731090546, + 0.005227831192314625, + 0.12321065366268158, + 0.08036582916975021, + -0.0026582195423543453, + 0.03345930576324463, + -0.08013419061899185, + 0.1489182710647583, + 0.06777560710906982, + -0.032821498811244965, + 0.0617402046918869, + -0.0419139489531517, + 0.060627661645412445, + 0.06578347086906433, + -0.13268868625164032, + -0.08071302622556686, + 0.03206353634595871, + 0.007593153510242701, + -0.03766091167926788, + 0.12570424377918243, + -0.012996343895792961, + 0.040022894740104675, + 0.09272041916847229, + -0.08462142944335938, + -0.060799576342105865, + -0.005340151954442263, + 0.046294644474983215, + -0.06936579197645187, + 0.05176942050457001, + 0.059186920523643494, + -0.014587939716875553, + 0.026085246354341507, + 0.10344952344894409, + 0.006480107083916664, + 0.0066401599906384945, + 0.039710916578769684, + -0.026408351957798004, + 0.02463318407535553, + -0.0038742409087717533, + 0.013036051765084267, + 0.039368100464344025, + 0.0274701826274395, + 0.05387243628501892, + -0.010584131814539433, + 0.0007623103447258472, + -0.11440053582191467, + 0.007891575805842876, + 0.044833824038505554, + 0.09002957493066788, + -0.015656176954507828, + -0.019652806222438812, + -0.02561333030462265, + -0.07534916698932648, + -0.007397412322461605, + 0.0013407572405412793, + 0.08129993081092834, + -0.03605617210268974, + -0.002478420501574874, + 0.11295334994792938, + 0.052500493824481964, + 0.008838511072099209, + -0.05739651247859001, + -0.021529018878936768, + 0.009963859803974628, + 0.052483148872852325, + -0.08580954372882843, + -0.07665330171585083, + -0.013039784505963326, + 0.023344095796346664, + -0.0171915665268898, + 0.08285190910100937, + 0.05510025471448898, + 0.01969613879919052, + 0.03363834321498871, + -0.06921479105949402, + 0.023840559646487236, + -0.0830773338675499, + -0.04601935297250748, + -0.025027308613061905, + -0.017561502754688263, + -0.05032380670309067, + 0.08441346138715744, + 0.02640497125685215, + 0.07303734123706818, + -0.013393362984061241, + -0.05665639787912369, + -0.06498357653617859, + 0.05435187369585037, + 0.056136228144168854, + -0.029903363436460495, + 0.03915030509233475, + 0.07154837995767593, + -0.02146207168698311, + 0.03729398921132088, + 0.07908403873443604, + 0.08505338430404663, + -0.042784012854099274, + 0.018649999052286148, + -0.06908175349235535, + 0.08047108352184296, + 0.07198572903871536, + -0.11198446154594421, + -0.07691173255443573, + -0.014908134937286377, + -0.05353359878063202, + 0.011819988489151001, + -0.034393392503261566, + 0.01607479900121689, + 0.026513660326600075, + -0.0025348826311528683, + -0.07555601745843887, + -0.11043053865432739, + 0.08997412025928497, + -0.09585773944854736, + 0.011909783817827702, + -0.07016541063785553, + 0.03988944739103317, + 0.08187173306941986, + 0.0337202213704586, + -0.040319688618183136, + -0.009234657511115074, + 0.04479823634028435, + -0.0054154894314706326, + 0.017220513895154, + 0.07073770463466644, + 0.04830370098352432, + -0.1012454479932785, + 0.005688146688044071, + -0.06045256182551384, + 0.06970404088497162, + -0.03492727130651474, + 0.17103973031044006, + 0.009815742261707783, + -0.04843275994062424, + -0.08546597510576248, + 0.02463780902326107, + -0.033158447593450546, + 0.04538648948073387, + 0.03275530785322189, + 0.07747878134250641, + 0.03365189582109451, + -0.037520162761211395, + 0.13304531574249268, + 0.029347743839025497, + -0.046014294028282166, + -0.07504291832447052, + -0.047618694603443146, + -0.04382602125406265, + 0.04885208606719971, + 0.034145064651966095, + -0.10433944314718246, + -0.017432769760489464, + 0.02739243023097515, + -0.011629210785031319, + 0.07152494043111801, + 0.14030449092388153, + 0.0901455283164978, + -0.1088985800743103 + ] + }, + "p245_262.wav": { + "name": "p245", + "embedding": [ + 0.05120299756526947, + 0.10064674913883209, + -0.009198248386383057, + 0.03181561827659607, + -0.027464676648378372, + 0.059713803231716156, + -0.12019693851470947, + 0.10171031951904297, + -0.0549749955534935, + 0.14529161155223846, + -0.10167531669139862, + 0.08058565109968185, + -0.04520229250192642, + -0.1540006399154663, + -0.030811607837677002, + 0.05386172980070114, + -0.053299810737371445, + -0.01922711730003357, + -0.0534542016685009, + -0.014393138699233532, + 0.01883978210389614, + 0.0478510782122612, + 0.04279084503650665, + 0.000983256846666336, + 0.025578733533620834, + 0.048070650547742844, + -0.008330855518579483, + 0.046740561723709106, + 0.018217366188764572, + -0.04601719602942467, + -0.03640662133693695, + 0.10691242665052414, + -0.03787381947040558, + 0.013880571350455284, + 0.03360014408826828, + 0.02640683576464653, + 0.005446490831673145, + -0.07871174812316895, + -0.022228408604860306, + -0.01679687201976776, + -0.051559366285800934, + 0.05953097343444824, + 0.014877522364258766, + -0.02390565536916256, + 0.047724224627017975, + -0.001975785940885544, + -0.02440449222922325, + -0.04622616991400719, + -0.10330905765295029, + 0.14947204291820526, + 0.07587133347988129, + 0.011020049452781677, + -0.06762873381376266, + -0.07256826758384705, + 0.0993395671248436, + -0.017549198120832443, + -0.11445820331573486, + -0.03620462864637375, + 0.07281570881605148, + 0.16579386591911316, + -0.03506751358509064, + -0.020623572170734406, + 0.025090089067816734, + 0.09251000732183456, + 0.043006882071495056, + 0.09177093207836151, + 0.07299482077360153, + 0.08901026099920273, + 0.009673969820141792, + 0.019041597843170166, + 0.054912857711315155, + 0.05111443251371384, + 0.04096747934818268, + -0.02290019765496254, + 0.015500959008932114, + 0.010975207202136517, + -0.05548204109072685, + 0.029323814436793327, + -0.021801603958010674, + -0.0268276147544384, + -0.01562955603003502, + -0.01665002852678299, + 0.004028484225273132, + 0.0057489871978759766, + -0.02529078722000122, + 0.03868642449378967, + 0.017912309616804123, + -0.025504259392619133, + 0.081025630235672, + 0.01614363305270672, + -0.021524760872125626, + 0.039032407104969025, + -0.05297297239303589, + -0.0774117112159729, + 0.0019693090580403805, + 0.02007894031703472, + -0.020108114928007126, + 0.06561096757650375, + 0.032936111092567444, + -0.03397076576948166, + 0.11859112977981567, + 0.02914871647953987, + 0.012230394408106804, + 0.026038264855742455, + -0.10060828924179077, + 0.10992293059825897, + 0.09210561215877533, + -0.025584470480680466, + 0.04101255163550377, + -0.026945700868964195, + 0.05010461062192917, + 0.094532310962677, + -0.1409962922334671, + -0.06595657020807266, + 0.03477557376027107, + 0.005723160691559315, + 0.003163047833368182, + 0.08979048579931259, + 0.011873684823513031, + 0.009905392304062843, + 0.10700945556163788, + -0.09858332574367523, + -0.07193516194820404, + -0.010667238384485245, + 0.06605319678783417, + -0.07471666485071182, + 0.03627766668796539, + 0.05868104100227356, + -0.007499083876609802, + -0.012288684025406837, + 0.07106181234121323, + -0.011516093276441097, + -0.002640204969793558, + 0.01817549578845501, + -0.05530492216348648, + 0.016140220686793327, + -0.05048815533518791, + -0.021855786442756653, + 0.06002534180879593, + 0.042694251984357834, + 0.040740713477134705, + -0.007539510261267424, + -0.03849566727876663, + -0.09793002903461456, + -0.00781581737101078, + 0.05755595490336418, + 0.06336479634046555, + -0.015316218137741089, + -0.006803087890148163, + -0.04839935153722763, + -0.06794807314872742, + 0.03540760278701782, + -0.026256216689944267, + 0.08967643976211548, + -0.01670888438820839, + 0.0030486376490443945, + 0.10669426620006561, + 0.005334311630576849, + -0.012910946272313595, + -0.0673343613743782, + -0.017182420939207077, + 0.022405754774808884, + 0.0445699505507946, + -0.06255318224430084, + -0.07514600455760956, + 0.01455737091600895, + 0.02201361209154129, + -0.015958227217197418, + 0.04392615705728531, + 0.02607680857181549, + 0.024369925260543823, + 0.02490142360329628, + -0.0620080940425396, + 0.017749782651662827, + -0.09628967940807343, + -0.05716310441493988, + 0.0007887704996392131, + -0.016899889335036278, + 0.00347130442969501, + 0.0864909216761589, + 0.023680610582232475, + 0.019430886954069138, + -0.004094429314136505, + -0.09232793748378754, + -0.0800931453704834, + 0.0773281455039978, + 0.07245152443647385, + -0.002572190947830677, + 0.04278305172920227, + 0.05977634713053703, + -0.03460359200835228, + 0.04080736264586449, + 0.05990650877356529, + 0.09472056478261948, + -0.010851381346583366, + 0.0008565721800550818, + -0.0702894851565361, + 0.060493744909763336, + 0.07853777706623077, + -0.09640085697174072, + -0.08468067646026611, + -0.034121692180633545, + -0.05222040042281151, + 0.05006510019302368, + -0.02324375882744789, + 0.00355984247289598, + 0.02056746557354927, + -0.04795808717608452, + -0.10008635371923447, + -0.10249678790569305, + 0.0991460531949997, + -0.040329381823539734, + -0.03207778185606003, + -0.062081363052129745, + 0.038931041955947876, + 0.05032260715961456, + 0.04021667689085007, + -0.012123688124120235, + 0.023056063801050186, + 0.03829475864768028, + -0.07204142212867737, + -0.01737365499138832, + 0.05538780987262726, + 0.006631760857999325, + -0.09748014807701111, + 0.02391437254846096, + -0.07799693197011948, + 0.09640856832265854, + -0.0530552864074707, + 0.14040398597717285, + -0.012564594857394695, + -0.04234730452299118, + -0.08746644109487534, + 0.03843048959970474, + -0.01989157125353813, + 0.0356820747256279, + 0.027692623436450958, + 0.04851682111620903, + 0.03417710214853287, + -0.05843823403120041, + 0.09970708191394806, + 0.03376253694295883, + -0.019092349335551262, + -0.05432802438735962, + -0.05789197236299515, + -0.04716051369905472, + -0.0011810425203293562, + -0.020108606666326523, + -0.08368172496557236, + 0.0032345810905098915, + -0.0013456593733280897, + -0.014470599591732025, + 0.055579543113708496, + 0.12378937005996704, + 0.06954917311668396, + -0.11114807426929474 + ] + }, + "p245_307.wav": { + "name": "p245", + "embedding": [ + 0.07949461787939072, + 0.060568638145923615, + 0.011187783442437649, + -0.012897009961307049, + -0.021683555096387863, + 0.038954585790634155, + -0.11727048456668854, + 0.12728755176067352, + -0.01069733314216137, + 0.0712699443101883, + -0.10045093297958374, + 0.08795025944709778, + -0.009208133444190025, + -0.1474396288394928, + -0.05166105553507805, + 0.03411835432052612, + -0.04587198421359062, + 0.0029495980124920607, + -0.07381324470043182, + -0.0390251986682415, + 0.006124039646238089, + 0.03995516896247864, + 0.04736756533384323, + 0.0026155165396630764, + 0.02561923861503601, + 0.04640624672174454, + 0.00765447411686182, + 0.03446386754512787, + 0.022265907377004623, + -0.030223004519939423, + -0.001370082376524806, + 0.06214786693453789, + -0.024774428457021713, + -0.013426894322037697, + 0.06032898277044296, + 0.004201333969831467, + 0.025060102343559265, + -0.08458250761032104, + -0.053098034113645554, + 0.03669635206460953, + -0.04677743837237358, + 0.0747847780585289, + 0.04658300802111626, + -0.0320415161550045, + 0.04678977280855179, + 0.025038182735443115, + -0.007283718325197697, + -0.065359927713871, + -0.11309584230184555, + 0.16030576825141907, + 0.03372855484485626, + 0.038035694509744644, + -0.11493288725614548, + -0.020032528787851334, + 0.08441051840782166, + -0.051686905324459076, + -0.06517340987920761, + -0.021187935024499893, + 0.041899263858795166, + 0.1304379403591156, + -0.010436488315463066, + -0.02348453179001808, + 0.035457950085401535, + 0.07750619947910309, + 0.03274114429950714, + 0.02156207524240017, + 0.12371983379125595, + 0.08539639413356781, + -0.022217383608222008, + 0.046658843755722046, + 0.050084859132766724, + 0.049062035977840424, + 0.06012868136167526, + -0.007840721867978573, + 0.019550366327166557, + -0.013254883699119091, + -0.03472450375556946, + -0.007717333734035492, + -0.03391638025641441, + -0.013201042078435421, + 0.018303032964468002, + 0.029951438307762146, + 0.026134736835956573, + 0.03313012048602104, + -0.06049787625670433, + 0.06319088488817215, + -0.007476852275431156, + 0.012833978049457073, + 0.05554402992129326, + 0.0520857572555542, + 0.0007505137473344803, + 0.01314343698322773, + -0.04405715689063072, + -0.101631760597229, + -0.00985995028167963, + -0.012346148490905762, + 0.00989186018705368, + 0.021427204832434654, + 0.04406476020812988, + -0.020252034068107605, + 0.11778900027275085, + 0.04004111886024475, + -0.0057243406772613525, + 0.0118165984749794, + -0.07032965868711472, + 0.07441701740026474, + 0.1132490485906601, + -0.01473800279200077, + 0.04842686653137207, + -0.03676936775445938, + 0.03227347880601883, + 0.06824705004692078, + -0.10059110820293427, + -0.050666436553001404, + 0.034025922417640686, + 0.01992403343319893, + 0.06628663092851639, + 0.09773280471563339, + -0.00686648627743125, + 0.03480812534689903, + 0.07369277626276016, + -0.06246021017432213, + -0.02311760187149048, + 0.004844106733798981, + 0.025671040639281273, + -0.023734595626592636, + 0.035982199013233185, + 0.03417159616947174, + 0.02171308360993862, + -0.03762689232826233, + 0.06432121247053146, + 0.00026883557438850403, + -0.010563733987510204, + -0.04531251639127731, + 0.01793282851576805, + 0.04393079876899719, + -0.01043899916112423, + -0.03221121057868004, + 0.05454322695732117, + 0.08619183301925659, + -7.935737812658772e-05, + 0.057754889130592346, + -0.06459271907806396, + -0.0988495945930481, + -0.014938399195671082, + 0.013154792599380016, + 0.07626243680715561, + -0.011631235480308533, + -0.023521875962615013, + -0.0593317411839962, + 0.0027350708842277527, + 0.008922724053263664, + -0.0015894817188382149, + 0.05241117998957634, + 0.019609250128269196, + -0.0074869743548333645, + 0.07494091987609863, + -0.02073526754975319, + 0.005760747008025646, + -0.027702657505869865, + 0.0036679785698652267, + 0.013160894624888897, + 0.03709305822849274, + -0.01999766007065773, + -0.07556463778018951, + 0.003888395382091403, + -0.012878922745585442, + -0.021384499967098236, + 0.021495744585990906, + 0.018334360793232918, + -0.01882268860936165, + 0.007084686309099197, + -0.0957961231470108, + 0.024479221552610397, + -0.11162912845611572, + -0.044010233134031296, + 0.04427838325500488, + -0.010144739411771297, + -0.01014002040028572, + 0.07332593947649002, + 0.035177893936634064, + 0.04477391391992569, + -0.02435200661420822, + -0.0928417444229126, + -0.01848919317126274, + 0.05670997500419617, + 0.05213698372244835, + 0.006668459624052048, + 0.024060701951384544, + 0.03254369646310806, + 0.015387165360152721, + 0.07812749594449997, + 0.059329282492399216, + 0.043402787297964096, + -0.026623714715242386, + -0.0352184996008873, + -0.009905691258609295, + 0.08500052988529205, + 0.026410698890686035, + -0.06237661466002464, + -0.07447698712348938, + -0.013357012532651424, + -0.038861218839883804, + 0.014166364446282387, + 0.01808328554034233, + 0.03062797151505947, + 0.045820802450180054, + -0.017765365540981293, + -0.08114000409841537, + -0.06574037671089172, + 0.04714152216911316, + -0.05616933852434158, + -0.008574734441936016, + -0.04053812474012375, + 0.025975925847887993, + 0.09962654113769531, + -0.012783469632267952, + 0.012731073424220085, + -0.014211846515536308, + -0.0182407908141613, + -0.05733984708786011, + -0.058074288070201874, + -0.012579414062201977, + 0.016277872025966644, + -0.07515512406826019, + 0.02345399372279644, + -0.061218541115522385, + 0.06251329183578491, + -0.011283209547400475, + 0.09383877366781235, + 0.019841421395540237, + -0.04171907156705856, + -0.07871886342763901, + 0.006532335188239813, + -0.037885598838329315, + 0.06602694094181061, + 0.03854357451200485, + 0.026059377938508987, + 0.027344686910510063, + -0.07157064974308014, + 0.08329394459724426, + 0.04517119750380516, + -0.06972470879554749, + -0.062236689031124115, + -0.0462288074195385, + -0.020593494176864624, + -0.0034223159309476614, + -0.008592184633016586, + -0.024082964286208153, + 0.010761437937617302, + -0.0004382531042210758, + -0.015213320031762123, + 0.04773759841918945, + 0.08949684351682663, + 0.04265237972140312, + -0.09109517931938171 + ] + }, + "p245_317.wav": { + "name": "p245", + "embedding": [ + 0.07287262380123138, + 0.09812655299901962, + -0.021208832040429115, + 0.03850402310490608, + -0.07162696123123169, + 0.0648140236735344, + -0.12628519535064697, + 0.13974134624004364, + -0.02610226720571518, + 0.129885733127594, + -0.06640173494815826, + 0.14288440346717834, + -0.010287001729011536, + -0.1601899266242981, + -0.021731993183493614, + 0.04952923208475113, + -0.021700704470276833, + -0.02625288814306259, + -0.023985104635357857, + -0.028499871492385864, + 0.03118227608501911, + 0.04160599410533905, + 0.05332249402999878, + -0.002992046996951103, + 0.054745152592659, + 0.06966624408960342, + -0.0009395353263244033, + 0.04502046853303909, + 0.008063578978180885, + -0.08579669147729874, + -0.057160384953022, + 0.0945606380701065, + -0.061264101415872574, + 0.0032800287008285522, + 0.029076963663101196, + -0.022528348490595818, + 0.00380022544413805, + -0.06907157599925995, + -0.023876851424574852, + 0.007949399761855602, + -0.01676177605986595, + 0.08136487007141113, + 0.023283667862415314, + -0.036747563630342484, + 0.02962793968617916, + 0.012359404936432838, + -0.008387601934373379, + -0.03573586046695709, + -0.11570741981267929, + 0.1545926034450531, + 0.044398095458745956, + 0.014608017168939114, + -0.09082023799419403, + -0.06231624633073807, + 0.09607076644897461, + -0.018600165843963623, + -0.08647225052118301, + -0.01390514150261879, + 0.05296076089143753, + 0.14547762274742126, + -0.02452581189572811, + -0.054665327072143555, + 0.03569508343935013, + 0.09698200225830078, + 0.07168664038181305, + 0.061679258942604065, + 0.09329447150230408, + 0.10733305662870407, + -0.030396249145269394, + 0.026943553239107132, + 0.03952915221452713, + 0.08464960753917694, + 0.0612327866256237, + -0.005286802537739277, + 0.01881735771894455, + -0.011168573051691055, + -0.016965147107839584, + -0.015385551378130913, + -0.024055443704128265, + -0.031704798340797424, + -0.00820000097155571, + 0.0071626221761107445, + 0.02996157482266426, + 0.022731129080057144, + -0.0473756417632103, + 0.06988761574029922, + 0.03998790681362152, + -0.021025387570261955, + 0.0691564679145813, + 0.02385052666068077, + 0.0004879394546151161, + 0.06089800223708153, + -0.10552428662776947, + -0.08132579922676086, + 0.05395034700632095, + 0.010697264224290848, + 0.041333168745040894, + 0.07342034578323364, + 0.05016401782631874, + -0.01877385377883911, + 0.12157661467790604, + 0.06947772204875946, + 0.004803154617547989, + 0.02142377942800522, + -0.07109080255031586, + 0.13085311651229858, + 0.10612626373767853, + -0.027801712974905968, + 0.06976963579654694, + -0.043461378663778305, + 0.07607149332761765, + 0.050334494560956955, + -0.1334487795829773, + -0.0855933129787445, + 0.0005198372527956963, + 0.0016730213537812233, + -0.00435918103903532, + 0.10285373032093048, + -0.017508653923869133, + 0.0595431849360466, + 0.0861605703830719, + -0.09845541417598724, + -0.04790602624416351, + -0.011123725213110447, + 0.05006946250796318, + -0.09202638268470764, + 0.06582152098417282, + 0.060340359807014465, + -0.013127563521265984, + 0.010660240426659584, + 0.06433922052383423, + -0.008391168899834156, + -8.185161277651787e-05, + 0.026775870472192764, + -0.03909194469451904, + 0.003920567687600851, + -0.014250450767576694, + -0.013476291671395302, + 0.044944800436496735, + 0.024158291518688202, + 0.053910691291093826, + -0.011822624132037163, + 0.0022026468068361282, + -0.12252455204725266, + 0.023967724293470383, + 0.040107645094394684, + 0.06133612245321274, + -0.01878652721643448, + -0.039683207869529724, + -0.0421222485601902, + -0.0647391751408577, + 0.026795582845807076, + 0.014656484127044678, + 0.06179057061672211, + -0.013332745991647243, + 0.0279209166765213, + 0.10027885437011719, + 0.04867444187402725, + -0.0032559907995164394, + -0.04472486302256584, + -0.027477780357003212, + 0.0199548602104187, + 0.058781616389751434, + -0.06735870242118835, + -0.0880742073059082, + -0.01830691657960415, + 0.015597738325595856, + -0.03948426619172096, + 0.07772333920001984, + 0.056880123913288116, + 0.018179992213845253, + 0.025067970156669617, + -0.050757184624671936, + 0.0135984281077981, + -0.08538985252380371, + -0.06018362566828728, + -0.010940629988908768, + -0.018102725967764854, + -0.045388177037239075, + 0.08171119540929794, + 0.046842060983181, + 0.07542505860328674, + -0.03924477845430374, + -0.03681180253624916, + -0.07686837017536163, + 0.040634848177433014, + 0.04490532726049423, + 0.0009370064362883568, + 0.038233280181884766, + 0.054543301463127136, + -0.011375145986676216, + 0.07440096884965897, + 0.07758422195911407, + 0.07506166398525238, + -0.024680450558662415, + 0.009687655605375767, + -0.05667247623205185, + 0.09242541342973709, + 0.09380477666854858, + -0.08070839196443558, + -0.10032813251018524, + -0.0528007373213768, + -0.08782586455345154, + 0.047522641718387604, + -0.012635288760066032, + 0.009085020050406456, + 0.04629762843251228, + -0.00791641604155302, + -0.09959010779857635, + -0.10159891843795776, + 0.09411372244358063, + -0.05321040377020836, + -0.005753286182880402, + -0.08195038139820099, + 0.04734867811203003, + 0.0924757719039917, + 0.021127838641405106, + -0.02258911356329918, + -0.018679888918995857, + 0.04119525104761124, + -0.028386883437633514, + 0.011035250499844551, + 0.06891360878944397, + 0.043381884694099426, + -0.10275459289550781, + 0.010195378214120865, + -0.06297419965267181, + 0.05426783859729767, + -0.03645864129066467, + 0.16502799093723297, + 0.01321455743163824, + -0.04021880403161049, + -0.07766009122133255, + 0.06149517372250557, + -0.03305260092020035, + 0.049475111067295074, + 0.038428179919719696, + 0.04784597083926201, + 0.04143907129764557, + -0.08937501907348633, + 0.09718994051218033, + 0.0493609681725502, + -0.06215425580739975, + -0.0791134238243103, + -0.06024787575006485, + -0.03535911440849304, + 0.0430782288312912, + 0.01140533946454525, + -0.07397814095020294, + -0.01946890540421009, + 0.02563999593257904, + 0.008153471164405346, + 0.06780000776052475, + 0.14000800251960754, + 0.054974816739559174, + -0.10458836704492569 + ] + }, + "p245_415.wav": { + "name": "p245", + "embedding": [ + 0.058067284524440765, + 0.0893227607011795, + -0.030312389135360718, + 0.04646793380379677, + -0.07127591222524643, + 0.04332885518670082, + -0.12645582854747772, + 0.1532977819442749, + -0.025171171873807907, + 0.11037133634090424, + -0.04186585918068886, + 0.14367029070854187, + -0.02286054939031601, + -0.1568336933851242, + -0.00952941458672285, + 0.06290179491043091, + -0.02803073823451996, + -0.03793657571077347, + -0.027420761063694954, + -0.02836836315691471, + 0.025234702974557877, + 0.03681153804063797, + 0.048528462648391724, + 0.004666874185204506, + 0.033877380192279816, + 0.07434079051017761, + 0.000545359100215137, + 0.04132701829075813, + 0.005177669692784548, + -0.0808003693819046, + -0.03775056451559067, + 0.05911478400230408, + -0.045480161905288696, + 0.0018779075471684337, + 0.043788984417915344, + -0.02096332050859928, + 0.009326329454779625, + -0.06752228736877441, + -0.03043370321393013, + 0.009451724588871002, + -0.028687600046396255, + 0.08782792836427689, + 0.023714181035757065, + -0.05109623819589615, + 0.03368489816784859, + 0.016965797170996666, + -0.012417862191796303, + -0.034621674567461014, + -0.1304643750190735, + 0.15918204188346863, + 0.06985440850257874, + 0.02254994958639145, + -0.07797078788280487, + -0.0716136246919632, + 0.10306482017040253, + -0.01833372190594673, + -0.0862683653831482, + -0.03610682860016823, + 0.04159664362668991, + 0.14838957786560059, + -0.03147515654563904, + -0.0333709716796875, + 0.04611481726169586, + 0.11668632924556732, + 0.08487186580896378, + 0.05578969419002533, + 0.0848270058631897, + 0.1147758811712265, + -0.0378837063908577, + 0.014784060418605804, + 0.04396802932024002, + 0.09811017662286758, + 0.05499691516160965, + 0.02712377905845642, + 0.012732685543596745, + -0.0035715075209736824, + -0.017779627814888954, + -0.030222231522202492, + -0.01923312246799469, + -0.03810152783989906, + -0.011781765148043633, + 0.028557024896144867, + 0.031861163675785065, + 0.035915203392505646, + -0.02787952683866024, + 0.08333998918533325, + 0.04314670339226723, + -0.036074694246053696, + 0.05345572531223297, + 0.010091962292790413, + -0.0012261332012712955, + 0.06143466383218765, + -0.09292957186698914, + -0.07938869297504425, + 0.0391998291015625, + 0.007879040203988552, + 0.04109611734747887, + 0.06540139019489288, + 0.03824850171804428, + -0.011523354798555374, + 0.12833857536315918, + 0.06414703279733658, + -0.008417329750955105, + 0.015326978638768196, + -0.06074152886867523, + 0.12265419960021973, + 0.09261180460453033, + -0.02315191552042961, + 0.0666816234588623, + -0.04495909810066223, + 0.05614197999238968, + 0.051403872668743134, + -0.13539981842041016, + -0.09437233954668045, + 0.013843344524502754, + 0.016391493380069733, + -0.0013717780821025372, + 0.1151512861251831, + 0.004831231199204922, + 0.08363498747348785, + 0.11100906878709793, + -0.09734444320201874, + -0.05176212638616562, + -0.017288226634263992, + 0.06478697806596756, + -0.07065464556217194, + 0.07043248414993286, + 0.07251787185668945, + -0.02083948627114296, + 0.013036048971116543, + 0.06383423507213593, + -0.005000622943043709, + 0.005346992984414101, + 0.029670171439647675, + -0.04830852150917053, + 0.0018671108409762383, + -0.023306110873818398, + -0.020518699660897255, + 0.05410680174827576, + 0.029584288597106934, + 0.042308881878852844, + -0.021279219537973404, + -0.012007934972643852, + -0.1413489580154419, + 0.020468702539801598, + 0.025663383305072784, + 0.08102765679359436, + -0.01640687882900238, + -0.04258911311626434, + -0.03528730571269989, + -0.05767165124416351, + -0.0024513958487659693, + 0.002797134220600128, + 0.06926766037940979, + -0.03796062618494034, + 0.026113150641322136, + 0.08327862620353699, + 0.03159724548459053, + 0.0011524453293532133, + -0.026547076180577278, + -0.030328424647450447, + 0.011921278201043606, + 0.0483260303735733, + -0.054908387362957, + -0.09149367362260818, + -0.02303958497941494, + 0.03207702189683914, + -0.03456190228462219, + 0.07238362729549408, + 0.03153205290436745, + 0.02135132998228073, + 0.014784670434892178, + -0.03967716544866562, + 0.009070847183465958, + -0.07512524724006653, + -0.06463807076215744, + -0.0033189565874636173, + -0.007927434518933296, + -0.05632192641496658, + 0.06921432912349701, + 0.05591483414173126, + 0.09423528611660004, + -0.02666090801358223, + -0.039530448615550995, + -0.08316946029663086, + 0.029457014054059982, + 0.03649041801691055, + -0.003669874044135213, + 0.0331098698079586, + 0.06503357738256454, + -0.0008020875975489616, + 0.060752056539058685, + 0.06747779995203018, + 0.06465288996696472, + -0.011219233274459839, + -0.004629882052540779, + -0.06862035393714905, + 0.10259202867746353, + 0.10305620729923248, + -0.07967409491539001, + -0.07247686386108398, + -0.05361294746398926, + -0.08480080962181091, + 0.031255416572093964, + -0.019485395401716232, + 0.026248019188642502, + 0.04815208166837692, + 0.0016986991977319121, + -0.11271826922893524, + -0.10436701774597168, + 0.08799659460783005, + -0.06697031855583191, + 0.008180145174264908, + -0.06587572395801544, + 0.03425324708223343, + 0.10831750929355621, + 0.028170038014650345, + -0.013335422612726688, + -0.03229941800236702, + 0.04446359723806381, + -0.017090871930122375, + 0.022185014560818672, + 0.08182848989963531, + 0.05815521627664566, + -0.10734014213085175, + 0.006630954798310995, + -0.05975199118256569, + 0.046057406812906265, + -0.030730079859495163, + 0.1507444679737091, + 0.025428546592593193, + -0.0332195870578289, + -0.100026436150074, + 0.0454246923327446, + -0.032541461288928986, + 0.07304184883832932, + 0.01367249060422182, + 0.057981640100479126, + 0.04804261028766632, + -0.07732157409191132, + 0.11484897881746292, + 0.05566709488630295, + -0.06280164420604706, + -0.07976042479276657, + -0.06635139137506485, + -0.03813374415040016, + 0.050071291625499725, + 0.017020627856254578, + -0.06796260178089142, + -0.029163800179958344, + 0.011476422660052776, + 0.002468606922775507, + 0.0651286318898201, + 0.15095466375350952, + 0.0551203116774559, + -0.1047293096780777 + ] + }, + "p245_015.wav": { + "name": "p245", + "embedding": [ + 0.04768791422247887, + 0.1038023978471756, + -0.008375261910259724, + 0.02361338585615158, + -0.04966993257403374, + 0.04966174438595772, + -0.13655820488929749, + 0.1499980390071869, + -0.03699888288974762, + 0.12817606329917908, + -0.07830827683210373, + 0.11906859278678894, + -0.03640062361955643, + -0.1703571379184723, + -0.038617633283138275, + 0.0552348867058754, + -0.040082044899463654, + -0.028848471119999886, + -0.02262851595878601, + -0.022506285458803177, + 0.03725938871502876, + 0.03424092382192612, + 0.02840529754757881, + 0.030595460906624794, + 0.011483050882816315, + 0.06076318025588989, + 0.003220993559807539, + 0.05165772885084152, + 0.02488390915095806, + -0.034632109105587006, + -0.02764706313610077, + 0.10113180428743362, + -0.031724605709314346, + 0.026377566158771515, + 0.05848006531596184, + 0.004901512060314417, + -0.00010101590305566788, + -0.060751866549253464, + -0.025395167991518974, + -0.009939974173903465, + -0.04935191199183464, + 0.0657394751906395, + 0.03179045766592026, + -0.025397110730409622, + 0.04179215058684349, + 0.030536971986293793, + -0.01239502802491188, + -0.04455961659550667, + -0.11052795499563217, + 0.15598750114440918, + 0.07115281373262405, + 0.00021465029567480087, + -0.0696483626961708, + -0.0649842619895935, + 0.10455935448408127, + -0.029638420790433884, + -0.11381565034389496, + -0.027551673352718353, + 0.08945506066083908, + 0.16281172633171082, + -0.03651569411158562, + -0.03665367141366005, + 0.028626572340726852, + 0.14046983420848846, + 0.05646975710988045, + 0.08372870087623596, + 0.08327992260456085, + 0.11525706946849823, + -0.03297501429915428, + 0.005391135346144438, + 0.05052007734775543, + 0.07390698790550232, + 0.056996751576662064, + 0.002330843359231949, + 0.010515816509723663, + 0.0046604713425040245, + -0.011606510728597641, + 0.016207868233323097, + -0.03990662842988968, + -0.025540757924318314, + -0.033042244613170624, + 0.012594479136168957, + -0.005486670881509781, + 0.017588326707482338, + -0.01607774943113327, + 0.06642503291368484, + 0.033493414521217346, + -0.0109384311363101, + 0.06355946511030197, + 0.03995100408792496, + 0.009713450446724892, + 0.06375499814748764, + -0.06752899289131165, + -0.07547534257173538, + 0.009767625480890274, + -0.011508455500006676, + 0.029611457139253616, + 0.07538942992687225, + 0.03697431460022926, + -0.009724915027618408, + 0.12485173344612122, + 0.047102976590394974, + -0.008874129503965378, + 0.025667879730463028, + -0.10017427802085876, + 0.12589143216609955, + 0.0819205492734909, + -0.0282256081700325, + 0.045261189341545105, + -0.04803197830915451, + 0.06286067515611649, + 0.07022027671337128, + -0.12824732065200806, + -0.07029028236865997, + 0.034385766834020615, + 0.037629384547472, + -0.012226099148392677, + 0.11054117977619171, + -0.002343215746805072, + 0.04066471382975578, + 0.10653765499591827, + -0.07831638306379318, + -0.05854064226150513, + -0.026472916826605797, + 0.047836773097515106, + -0.06946991384029388, + 0.05861261487007141, + 0.05053884908556938, + -0.003966029733419418, + 0.007339124102145433, + 0.08144031465053558, + -0.008454571478068829, + -0.0008470308966934681, + 0.015244506299495697, + -0.06007556989789009, + 0.006225106306374073, + -0.03031955100595951, + 0.000731293112039566, + 0.030719637870788574, + 0.05225618928670883, + 0.037865765392780304, + 0.010966302827000618, + -0.04077623784542084, + -0.11998993903398514, + 0.0026885599363595247, + 0.04770486801862717, + 0.09139063954353333, + -0.0013836813159286976, + -0.0351170152425766, + -0.032790206372737885, + -0.041779905557632446, + 0.0065431976690888405, + -0.011324722319841385, + 0.06559690833091736, + -0.04281152784824371, + -0.0033611564431339502, + 0.09369189292192459, + 0.014679024927318096, + -0.005216902121901512, + -0.055509135127067566, + -0.02560071274638176, + 0.002007425297051668, + 0.04050833359360695, + -0.07383427023887634, + -0.08304480463266373, + -0.0002447531442157924, + 0.041305284947156906, + -0.02455410361289978, + 0.058123134076595306, + 0.032818008214235306, + 0.00947754830121994, + 0.03128841519355774, + -0.0596349872648716, + 0.004870274104177952, + -0.11454420536756516, + -0.08269444108009338, + -0.000829013530164957, + 0.00200573168694973, + -0.0019308160990476608, + 0.06140463799238205, + 0.02870461903512478, + 0.05767691880464554, + 0.0036675629671663046, + -0.07797309756278992, + -0.08698533475399017, + 0.0574752539396286, + 0.0593416765332222, + 0.006689848378300667, + 0.05444847047328949, + 0.06600314378738403, + -0.03726369887590408, + 0.06448431313037872, + 0.05622803419828415, + 0.09721706062555313, + -0.028397785499691963, + 0.014910204336047173, + -0.07911734282970428, + 0.06420159339904785, + 0.08964196592569351, + -0.09473291039466858, + -0.08922693878412247, + -0.03390422463417053, + -0.058025240898132324, + 0.025755729526281357, + -0.022725708782672882, + 0.013013463467359543, + 0.02353849448263645, + -0.00919348280876875, + -0.10230857878923416, + -0.09148150682449341, + 0.08303786814212799, + -0.07841156423091888, + 0.005270365159958601, + -0.06845597922801971, + 0.04583996906876564, + 0.1019999161362648, + 0.030643977224826813, + -0.024208730086684227, + -0.011073879897594452, + 0.044817790389060974, + -0.04460766911506653, + -0.0075659602880477905, + 0.04045931622385979, + 0.03475702553987503, + -0.10747605562210083, + 0.01045961119234562, + -0.07758840918540955, + 0.05325476452708244, + -0.04263392463326454, + 0.15609893202781677, + 0.0094844875857234, + -0.06034635007381439, + -0.08462570607662201, + 0.021879073232412338, + -0.02535025030374527, + 0.050990503281354904, + 0.023496998474001884, + 0.0638401210308075, + 0.022477077320218086, + -0.06755144894123077, + 0.12847772240638733, + 0.043955229222774506, + -0.05313151329755783, + -0.0669863373041153, + -0.05408445745706558, + -0.042849231511354446, + 0.019862400367856026, + 0.008999675512313843, + -0.08073919266462326, + -0.041148602962493896, + 0.007624457590281963, + -0.022051235660910606, + 0.07023415714502335, + 0.1460942178964615, + 0.06400677561759949, + -0.11963648349046707 + ] + }, + "p245_032.wav": { + "name": "p245", + "embedding": [ + -0.01188711915165186, + 0.06625522673130035, + -0.00831049308180809, + -0.004781907424330711, + -0.052668534219264984, + -0.0048242006450891495, + -0.11836540699005127, + 0.08616682142019272, + -0.04351551830768585, + 0.1175503134727478, + -0.05088035762310028, + 0.09620077908039093, + -0.061810627579689026, + -0.10452895611524582, + 0.01632961817085743, + 0.042015574872493744, + 0.005897304974496365, + -0.03409339860081673, + 0.027958499267697334, + -0.0645514577627182, + 0.03647718206048012, + 0.030470484867691994, + 0.030655601993203163, + -0.01934850588440895, + 0.003906670957803726, + 0.10976450890302658, + -0.00640774006024003, + -0.0059716845862567425, + -0.02210822142660618, + -0.06405752152204514, + -0.019168052822351456, + 0.058570604771375656, + -0.04099530354142189, + -0.03509947657585144, + 0.017616426572203636, + 0.005466646980494261, + -0.01976843550801277, + 0.00806850753724575, + 0.013202630914747715, + 0.020887523889541626, + -0.10191480070352554, + 0.07419765740633011, + 0.014681350439786911, + -0.028000010177493095, + 0.04671332985162735, + -0.027274053543806076, + -0.009805994108319283, + 0.05115870013833046, + -0.05446751415729523, + 0.07528532296419144, + 0.056024834513664246, + 0.02607259340584278, + -0.0389796607196331, + -0.005889305844902992, + 0.0819193422794342, + -0.0019398597069084644, + -0.10414610803127289, + -0.0556391105055809, + 0.03510364517569542, + 0.08774062991142273, + -0.020911961793899536, + -0.03733760491013527, + 0.03289172425866127, + 0.043754030019044876, + 0.02807454764842987, + 0.053819455206394196, + 0.079327292740345, + 0.04505787044763565, + 0.01673889346420765, + -0.043045904487371445, + 0.04236074909567833, + 0.08083927631378174, + 0.017340268939733505, + -0.01643211580812931, + 0.005147438496351242, + -0.01772492378950119, + -0.0033138245344161987, + -0.023161349818110466, + 0.0021698414348065853, + -0.04750949889421463, + -0.07763303816318512, + -0.010324839502573013, + -0.01793944649398327, + -0.017057523131370544, + 0.0038300591986626387, + 0.011483555659651756, + 0.0899091362953186, + -0.015438033267855644, + 0.07464599609375, + 0.021847082301974297, + -0.03105020895600319, + 0.024164939299225807, + -0.0552210807800293, + 0.02267400547862053, + -0.032534364610910416, + 0.0014012441970407963, + 0.07328041642904282, + 0.07513455301523209, + 0.018158914521336555, + 0.05976384878158569, + 0.07564116269350052, + 0.04120542109012604, + 0.03481660783290863, + -0.01308203674852848, + -0.10204945504665375, + 0.09059125185012817, + 0.08239862322807312, + -0.052623942494392395, + 0.02987281233072281, + 0.009111860767006874, + 0.019559646025300026, + -0.007728610187768936, + -0.04271340370178223, + -0.038701750338077545, + -0.028318999335169792, + 0.01738334447145462, + -0.009474573656916618, + 0.10328489542007446, + 0.008171099238097668, + 0.013271029107272625, + 0.10169035941362381, + -0.06226537749171257, + -0.09379822760820389, + -0.04555366188287735, + 0.006536991335451603, + -0.09034588932991028, + 0.0816916897892952, + 0.08206852525472641, + 0.025976384058594704, + 0.05753330886363983, + 0.10056596994400024, + 0.04490719735622406, + 0.028951425105333328, + -0.012007491663098335, + -0.0375346876680851, + -0.02729448676109314, + -0.0016618762165307999, + 0.03772684186697006, + 0.09772370010614395, + 0.022057216614484787, + 0.11797572672367096, + 0.017297696322202682, + 0.03930283337831497, + -0.08895692229270935, + -0.0028343163430690765, + 0.052743859589099884, + -0.005000583827495575, + -0.04438042640686035, + -0.057568684220314026, + -0.02071535773575306, + -0.0772814080119133, + -0.02856944128870964, + -0.015664374455809593, + 0.10269123315811157, + -0.02886970527470112, + 0.002438697963953018, + 0.10477792471647263, + 0.03162193298339844, + -0.035482730716466904, + -0.0743105486035347, + -0.027705896645784378, + -0.030887611210346222, + 0.03420909866690636, + -0.12244793772697449, + -0.08316662907600403, + -0.06264621019363403, + 0.056584492325782776, + 0.024196021258831024, + 0.0590653121471405, + 0.08234939724206924, + -0.0035608764737844467, + 0.024543220177292824, + -0.0035933051258325577, + 0.041111912578344345, + -0.0173359178006649, + -0.07775815576314926, + -0.03748437762260437, + -0.0736989974975586, + -0.055103011429309845, + 0.09780008345842361, + -0.02854042686522007, + 0.05790594220161438, + -0.005274574272334576, + -0.07474908232688904, + -0.09095799922943115, + 0.01939188688993454, + 0.009807697497308254, + -0.03281751275062561, + 0.034140028059482574, + 0.045652925968170166, + -0.07827167212963104, + 0.00867852196097374, + 0.027385763823986053, + 0.10019810497760773, + -0.08702340722084045, + 0.020692003890872, + -0.0337986946105957, + 0.037198178470134735, + 0.07832574844360352, + -0.056864477694034576, + -0.03808499872684479, + -0.0748356282711029, + -0.0433616116642952, + 0.0624387264251709, + -0.02401670813560486, + -0.003761251224204898, + -0.028872497379779816, + -0.010717782191932201, + -0.06464382261037827, + -0.08557192981243134, + 0.05694718658924103, + -0.0225386805832386, + -0.0021352171897888184, + -0.07006906718015671, + 0.00639671366661787, + -0.028113337233662605, + 0.07894715666770935, + -0.03238864988088608, + 0.04183259978890419, + 0.03258354961872101, + -0.027144934982061386, + 0.043469663709402084, + 0.10967309772968292, + 0.07313565909862518, + 0.04370087385177612, + -0.06198803335428238, + -0.09775716066360474, + 0.04039975255727768, + -0.013393670320510864, + 0.08587761968374252, + 0.003024713834747672, + -0.0345228835940361, + -0.03793001174926758, + -0.007078884169459343, + -0.009705470874905586, + 0.011357232928276062, + 0.08665861189365387, + 0.08444835245609283, + 0.017336489632725716, + -0.025160761550068855, + 0.09940199553966522, + 0.05023011937737465, + 0.019195787608623505, + -0.03249872103333473, + -0.007951718755066395, + -0.052655283361673355, + 0.02440662682056427, + 0.017055300995707512, + -0.09439820796251297, + 0.052865300327539444, + -0.014228131622076035, + 0.045272815972566605, + 0.06708119809627533, + 0.07031679153442383, + 0.06069574132561684, + -0.077654629945755 + ] + }, + "p245_269.wav": { + "name": "p245", + "embedding": [ + 0.043188270181417465, + 0.06754006445407867, + -0.0046090250834822655, + 0.03543921187520027, + -0.00901294406503439, + 0.016896938905119896, + -0.17503750324249268, + 0.1317102611064911, + -0.016218213364481926, + 0.11818666756153107, + -0.07899683713912964, + 0.0836830735206604, + -0.03136177733540535, + -0.18524695932865143, + -0.023374861106276512, + 0.0700950101017952, + -0.0433889776468277, + -0.04634470120072365, + -0.014967952854931355, + -0.019687380641698837, + 0.025393595919013023, + 0.05063102766871452, + 0.017916766926646233, + 0.04127265140414238, + 0.012588636949658394, + 0.05260131508111954, + -0.008248372934758663, + 0.04324382171034813, + 0.011535861529409885, + -0.011157146655023098, + 0.00830159243196249, + 0.09009288251399994, + -0.008959900587797165, + -0.012100247666239738, + 0.04191485419869423, + 0.02804763987660408, + 0.015345752239227295, + -0.08738559484481812, + -0.04963134601712227, + -0.013319544494152069, + -0.08665508776903152, + 0.06355902552604675, + 0.0249958299100399, + -0.044417623430490494, + 0.049563728272914886, + 0.014120201580226421, + -0.02172059938311577, + -0.05984076112508774, + -0.13904255628585815, + 0.15283802151679993, + 0.07860483974218369, + 0.05056928098201752, + -0.07592335343360901, + -0.06460545212030411, + 0.10170937329530716, + -0.015339731238782406, + -0.07761327922344208, + -0.033291544765233994, + 0.0715920701622963, + 0.19502979516983032, + -0.03760373592376709, + -0.020331304520368576, + 0.0625385195016861, + 0.11397353559732437, + 0.07562453299760818, + 0.0665394514799118, + 0.08445276319980621, + 0.09562565386295319, + -0.004549246747046709, + -0.018947312608361244, + 0.058560777455568314, + 0.07362554967403412, + 0.05120028555393219, + -0.009791478514671326, + -0.006725577637553215, + 0.0453454926609993, + -0.0548599474132061, + -0.0026478907093405724, + -0.019585244357585907, + -0.013843489810824394, + 0.00030223093926906586, + 0.011205877177417278, + -0.003757013939321041, + 0.04755447804927826, + -0.03764592483639717, + 0.044770389795303345, + 0.028700197115540504, + -0.04432448744773865, + 0.07111864537000656, + 0.003461036831140518, + -0.003499911166727543, + 0.04571731016039848, + -0.060762062668800354, + -0.06865407526493073, + 0.00071398273576051, + 0.004833770915865898, + -0.01154659129679203, + 0.06705448031425476, + 0.05232331156730652, + -0.037748683243989944, + 0.14481626451015472, + 0.026373064145445824, + -0.0021234648302197456, + 0.03736547753214836, + -0.09914448857307434, + 0.08727934956550598, + 0.07670259475708008, + -0.04015442356467247, + 0.054956886917352676, + -0.025876769796013832, + 0.02189938724040985, + 0.08436337113380432, + -0.13968423008918762, + -0.05992065370082855, + 0.07738327234983444, + 0.05129336938261986, + 0.020247388631105423, + 0.13317638635635376, + 0.03032919391989708, + 0.046734005212783813, + 0.10777594149112701, + -0.0812952071428299, + -0.07100014388561249, + -0.023438122123479843, + 0.08249648660421371, + -0.0684526115655899, + 0.07754072546958923, + 0.051120027899742126, + -0.003098198212683201, + -0.013298695906996727, + 0.0563349686563015, + -0.010315867140889168, + -0.014417883940041065, + -0.043545931577682495, + -0.02614917978644371, + 0.03231782093644142, + -0.0559900626540184, + -0.025218794122338295, + 0.029969472438097, + 0.038159675896167755, + 0.01856156624853611, + 0.031086310744285583, + -0.05751354992389679, + -0.14432883262634277, + -0.00914852600544691, + 0.047526322305202484, + 0.12105955183506012, + 0.001871981774456799, + -0.03011206164956093, + -0.07796687632799149, + -0.028393574059009552, + -0.006057681515812874, + -0.03213135153055191, + 0.0854203850030899, + -0.019392486661672592, + 0.01712975651025772, + 0.0738794356584549, + -0.028170831501483917, + 0.017100265249609947, + -0.013195020146667957, + -0.006544120144098997, + 0.00022461963817477226, + 0.02575882524251938, + -0.03552587702870369, + -0.08761981129646301, + -0.006609617732465267, + 0.04760165512561798, + -0.012265356257557869, + 0.04584185406565666, + -0.008293370716273785, + 0.02469658851623535, + -0.006775896996259689, + -0.0814058929681778, + 0.01850796677172184, + -0.10996183753013611, + -0.06694521754980087, + 0.010238923132419586, + 0.02293381839990616, + -0.005405546631664038, + 0.07504110783338547, + 0.04271293431520462, + 0.05312616750597954, + -0.012783853337168694, + -0.09331725537776947, + -0.08945153653621674, + 0.04453081637620926, + 0.07193391025066376, + -0.006654529832303524, + 0.028781499713659286, + 0.053874991834163666, + -0.0065183802507817745, + 0.043916866183280945, + 0.05222728103399277, + 0.0969514325261116, + 0.012298735789954662, + -0.012213082984089851, + -0.05426079407334328, + 0.08864711225032806, + 0.08832566440105438, + -0.06675060093402863, + -0.06448246538639069, + -0.01771804317831993, + -0.0857917070388794, + 0.02745750918984413, + 0.005977815482765436, + 0.03675169497728348, + 0.014475969597697258, + -0.03921148180961609, + -0.1100311353802681, + -0.08065205812454224, + 0.05797690898180008, + -0.07158307731151581, + -0.025568712502717972, + -0.06325100362300873, + 0.03438715264201164, + 0.09574148058891296, + 0.02740497514605522, + 0.012809514999389648, + -0.03570249304175377, + 0.014045970514416695, + -0.059785354882478714, + -0.019405698403716087, + 0.0686202123761177, + 0.0145002081990242, + -0.1368439942598343, + 0.019005727022886276, + -0.08088831603527069, + 0.08610788732767105, + -0.039045244455337524, + 0.11963413655757904, + 0.0189470537006855, + -0.04442707449197769, + -0.11223796010017395, + 0.00230557844042778, + 0.0001906536053866148, + 0.0760858952999115, + 0.004620065912604332, + 0.06601983308792114, + 0.05221652239561081, + -0.05759742483496666, + 0.09414134919643402, + 0.055526018142700195, + -0.027415843680500984, + -0.07023858278989792, + -0.0772908478975296, + -0.03206964209675789, + 0.00921714399009943, + -0.017963599413633347, + -0.053240980952978134, + -0.031061403453350067, + 0.0010671745985746384, + -0.020833026617765427, + 0.051593609154224396, + 0.12104552984237671, + 0.04042566195130348, + -0.13464613258838654 + ] + }, + "p245_037.wav": { + "name": "p245", + "embedding": [ + 0.04609669744968414, + 0.09222640097141266, + -0.021580945700407028, + -0.007860828191041946, + -0.061783574521541595, + 0.06006797030568123, + -0.13974528014659882, + 0.1572941690683365, + -0.01893703080713749, + 0.15708225965499878, + -0.04577142745256424, + 0.11284228414297104, + -0.018952466547489166, + -0.16305415332317352, + 0.016773587092757225, + 0.03552253544330597, + -0.025087224319577217, + -0.009207624942064285, + -0.04919926077127457, + -0.0416649729013443, + 0.03713240846991539, + 0.05016947537660599, + 0.0034473116975277662, + -0.04233551770448685, + 0.04089212790131569, + 0.06757853925228119, + -0.01526365801692009, + 0.014758951961994171, + -0.020787740126252174, + -0.09067264199256897, + -0.029084565117955208, + 0.0824318379163742, + -0.07493158429861069, + 0.02193271741271019, + 0.04490305483341217, + -0.033598922193050385, + -0.02999694272875786, + -0.048222094774246216, + -0.016400400549173355, + 0.026411881670355797, + -0.030350323766469955, + 0.07466590404510498, + 0.031496476382017136, + -0.013369981199502945, + 0.034805312752723694, + 0.02624635025858879, + 0.010254791006445885, + -0.05790404975414276, + -0.08454491198062897, + 0.17806588113307953, + 0.06169036775827408, + -0.010130185633897781, + -0.07536923140287399, + -0.06999798119068146, + 0.07886391878128052, + -0.010923977941274643, + -0.10704685747623444, + -0.035509947687387466, + 0.06493796408176422, + 0.1167929470539093, + -0.03196975216269493, + -0.05899728834629059, + 0.036019884049892426, + 0.09695275872945786, + 0.033059410750865936, + 0.08582562953233719, + 0.08032701909542084, + 0.10065419971942902, + -0.0390830934047699, + 0.018514294177293777, + 0.02781863324344158, + 0.06818731129169464, + 0.06486813724040985, + -0.0036366276908665895, + 0.035354167222976685, + -0.01616598106920719, + -0.006658309139311314, + -0.02056843973696232, + -0.02860332280397415, + -0.02609509788453579, + 0.005031350534409285, + 0.03522000461816788, + 0.034547239542007446, + 0.02819076180458069, + -0.01877441443502903, + 0.04965593293309212, + 0.045803338289260864, + -0.005627406761050224, + 0.06998837739229202, + 0.02237764373421669, + 0.0272560752928257, + 0.06686674803495407, + -0.10932575166225433, + -0.07156263291835785, + 0.047745078802108765, + -0.0029689257498830557, + 0.023999961093068123, + 0.07677839696407318, + 0.037881746888160706, + -0.005913769826292992, + 0.12067724019289017, + 0.04483922943472862, + -0.004491080529987812, + 0.014486407861113548, + -0.08959780633449554, + 0.13031843304634094, + 0.08334760367870331, + -0.03728418052196503, + 0.06964993476867676, + -0.09102222323417664, + 0.08135947585105896, + 0.033127930015325546, + -0.13510015606880188, + -0.08155511319637299, + 0.009679942391812801, + 0.013115852139890194, + -0.03724256902933121, + 0.1454598307609558, + -0.0009383014403283596, + 0.046949610114097595, + 0.11815674602985382, + -0.11829824000597, + -0.05062666907906532, + -0.0031384832691401243, + 0.05140610784292221, + -0.09652836620807648, + 0.05646078288555145, + 0.057847727090120316, + -0.033176254481077194, + 0.05630228668451309, + 0.08088172227144241, + -0.00880347564816475, + 0.03843264654278755, + -0.0032733329571783543, + -0.019882170483469963, + -0.00621398352086544, + -0.02687975764274597, + -0.009145697578787804, + 0.009932249784469604, + 0.04096008837223053, + 0.060400865972042084, + -0.01653945818543434, + -0.036286938935518265, + -0.12436745315790176, + 0.028956200927495956, + 0.023186005651950836, + 0.0665820837020874, + -0.026146600022912025, + -0.01369603630155325, + -0.02332121506333351, + -0.08666503429412842, + -0.014629652723670006, + -0.008633685298264027, + 0.052349481731653214, + -0.017126744613051414, + 0.013444039970636368, + 0.10813011229038239, + 0.08143388479948044, + -0.001739000785164535, + -0.055203285068273544, + -0.04999531805515289, + -0.003291212022304535, + 0.05781901627779007, + -0.08451740443706512, + -0.08357247710227966, + -0.026935193687677383, + 0.017547722905874252, + -0.015352196991443634, + 0.07713228464126587, + 0.0567568838596344, + 0.031177904456853867, + 0.03036363795399666, + -0.0856899619102478, + 0.0108160600066185, + -0.09755423665046692, + -0.0910363644361496, + -0.0035922054667025805, + -0.02248934842646122, + -0.034227244555950165, + 0.09109952300786972, + -0.0031366595067083836, + 0.058473341166973114, + -0.04336543381214142, + -0.03557639569044113, + -0.07899877429008484, + 0.044662900269031525, + 0.053626999258995056, + -0.03456380218267441, + 0.027364976704120636, + 0.052126195281744, + -0.03719847649335861, + 0.04360978305339813, + 0.07095316797494888, + 0.10449156165122986, + -0.028690554201602936, + 0.040072932839393616, + -0.06536900997161865, + 0.10065025091171265, + 0.08322034031152725, + -0.06778895854949951, + -0.08254542946815491, + -0.029918517917394638, + -0.08285269141197205, + 0.013713628053665161, + -0.020251410081982613, + 0.008273718878626823, + 0.014594011008739471, + 0.018047023564577103, + -0.08213038742542267, + -0.06951283663511276, + 0.06144186854362488, + -0.05227737873792648, + 0.003920239396393299, + -0.08412112295627594, + 0.058473143726587296, + 0.10167743265628815, + 0.06815382093191147, + -0.03507998585700989, + -0.043486788868904114, + 0.04966083914041519, + -0.010655608028173447, + 0.037047214806079865, + 0.05253640562295914, + 0.062124013900756836, + -0.0771397203207016, + 0.014247935265302658, + -0.06520361453294754, + 0.02729090303182602, + -0.044595688581466675, + 0.14254812896251678, + 0.02001035213470459, + -0.06780388951301575, + -0.08250142633914948, + 0.049276575446128845, + -0.015911217778921127, + 0.03274648264050484, + 0.005543240811675787, + 0.056914784014225006, + 0.08050018548965454, + -0.06584154069423676, + 0.10323192179203033, + 0.037204086780548096, + -0.0305505208671093, + -0.04460560530424118, + -0.0715683251619339, + -0.033582091331481934, + 0.03321485593914986, + 0.01046678051352501, + -0.09335173666477203, + -0.021143507212400436, + 0.022524219006299973, + 0.015885308384895325, + 0.05675407499074936, + 0.13817960023880005, + 0.05248038470745087, + -0.143670916557312 + ] + }, + "p245_393.wav": { + "name": "p245", + "embedding": [ + 0.05530662089586258, + 0.1088857501745224, + 0.008988786488771439, + 0.01784309186041355, + -0.030639272183179855, + 0.07027558982372284, + -0.10097402334213257, + 0.1023658961057663, + -0.0766238421201706, + 0.16351431608200073, + -0.10559310019016266, + 0.10644276440143585, + -0.02578745223581791, + -0.1821451485157013, + -0.03532141447067261, + 0.059792470186948776, + -0.0461631715297699, + 0.01539262942969799, + -0.046933915466070175, + 0.01586638204753399, + 0.04203175753355026, + 0.01844155415892601, + 0.046235255897045135, + -0.022742722183465958, + 0.02208073064684868, + 0.05181122571229935, + 0.01358347199857235, + 0.06403128057718277, + 0.03775842860341072, + -0.06724154949188232, + -0.0505983792245388, + 0.1335136890411377, + -0.030034013092517853, + 0.037271201610565186, + 0.07619142532348633, + 0.0005601946031674743, + -0.00622314028441906, + -0.06347787380218506, + -0.0028285153675824404, + -0.02228790894150734, + -0.03871477395296097, + 0.05279888957738876, + 0.007102621719241142, + -0.0027087335474789143, + 0.050753604620695114, + 0.026941947638988495, + -0.03679877519607544, + -0.04683280736207962, + -0.06946438550949097, + 0.13554079830646515, + 0.06651115417480469, + -0.0076645174995064735, + -0.055342089384794235, + -0.0814715325832367, + 0.09769266843795776, + -0.006122160237282515, + -0.1286291927099228, + -0.03884165734052658, + 0.08187872171401978, + 0.15789306163787842, + -0.01255965419113636, + -0.01965622790157795, + 0.000936754746362567, + 0.11203307658433914, + 0.013742724433541298, + 0.13842903077602386, + 0.047786012291908264, + 0.07087390124797821, + 0.030398428440093994, + 0.07165579497814178, + 0.053150005638599396, + 0.05984397977590561, + 0.029337119311094284, + -0.03959588706493378, + 0.03824008256196976, + -0.0011095469817519188, + -0.055469684302806854, + 0.03651096299290657, + -0.016719479113817215, + -0.002931940369307995, + -0.02610219642519951, + -0.010150215588510036, + 0.000319132290314883, + -0.029345188289880753, + -0.01799951121211052, + 0.03866168111562729, + -0.00132135977037251, + 0.002645906526595354, + 0.06611339002847672, + 0.0475812666118145, + -0.0018685436807572842, + 0.04292016848921776, + -0.05228336900472641, + -0.11982500553131104, + 0.005134557839483023, + 0.024468548595905304, + -0.013861969113349915, + 0.07783159613609314, + 0.03244499862194061, + -0.027328571304678917, + 0.08965101838111877, + 0.05981936305761337, + 0.013851205818355083, + 0.03916709125041962, + -0.10425898432731628, + 0.11276708543300629, + 0.07240784913301468, + -0.007321341894567013, + 0.03561032935976982, + -0.04126888886094093, + 0.1098979264497757, + 0.11309238523244858, + -0.1570119857788086, + -0.0599294975399971, + 0.009163441136479378, + -0.044725172221660614, + -0.011734546162188053, + 0.07368879020214081, + -0.02177392691373825, + -0.01804506964981556, + 0.09623777866363525, + -0.08770816028118134, + -0.08303876966238022, + -0.036671463400125504, + 0.03571299463510513, + -0.09542216360569, + 0.05138307809829712, + 0.013270329684019089, + -0.016620106995105743, + -0.021379929035902023, + 0.09141936898231506, + -0.0257705245167017, + 0.0022647941950708628, + 0.03724340721964836, + -0.05840606242418289, + 0.03802359104156494, + -0.07776792347431183, + 0.024501170963048935, + 0.048821136355400085, + 0.039485346525907516, + 0.04355578124523163, + -0.003665660973638296, + -0.02845750004053116, + -0.07236877083778381, + 0.0011151626240462065, + 0.05966826528310776, + 0.038260750472545624, + 0.002763192867860198, + -0.015233759768307209, + -0.03216845542192459, + -0.0736001506447792, + 0.03771291673183441, + -0.037575677037239075, + 0.0781431645154953, + 0.019384153187274933, + 0.012083210051059723, + 0.10935518145561218, + -0.000770034734159708, + -0.004057230893522501, + -0.0916900783777237, + -0.03057168610394001, + 0.052336398512125015, + 0.051838260143995285, + -0.09908740222454071, + -0.04938942939043045, + 0.03215978294610977, + -0.009341701865196228, + -0.01763584464788437, + 0.004455825313925743, + 0.0385122187435627, + 0.012533154338598251, + 0.051012393087148666, + -0.08356431126594543, + 0.018377896398305893, + -0.12244333326816559, + -0.06145000457763672, + -0.040509212762117386, + -0.049166321754455566, + 0.014641071669757366, + 0.07391637563705444, + -0.011827418580651283, + -0.01098037138581276, + 0.010094106197357178, + -0.08562122285366058, + -0.07483024895191193, + 0.09132589399814606, + 0.09051018208265305, + 0.019135357812047005, + 0.06368987262248993, + 0.025856012478470802, + -0.052498724311590195, + 0.04427434504032135, + 0.03813819959759712, + 0.101869598031044, + -0.01590631902217865, + 0.01648394949734211, + -0.07157225906848907, + 0.06433074176311493, + 0.09952537715435028, + -0.1102757602930069, + -0.10353618115186691, + -0.0224351417273283, + -0.042653314769268036, + 0.061965398490428925, + -0.029270488768815994, + -0.03451372683048248, + 0.027202606201171875, + -0.03634292632341385, + -0.08256484568119049, + -0.07669669389724731, + 0.1102551817893982, + -0.05407509207725525, + -0.04677741229534149, + -0.0627153068780899, + 0.048075832426548004, + 0.05095774307847023, + 0.04005669802427292, + -0.041475966572761536, + 0.026560351252555847, + 0.06449370086193085, + -0.0905550867319107, + -0.03770618885755539, + 0.024762704968452454, + -0.01287880726158619, + -0.07591540366411209, + 0.036659061908721924, + -0.06936539709568024, + 0.0742499977350235, + -0.09778933227062225, + 0.16195210814476013, + -0.04923267662525177, + -0.07773558050394058, + -0.07250361144542694, + 0.04834870994091034, + -0.014704234898090363, + 0.005917171016335487, + 0.05249428376555443, + 0.0451120063662529, + 0.010318396613001823, + -0.09057088196277618, + 0.11524202674627304, + -0.0012188596883788705, + 0.016066759824752808, + -0.0481545627117157, + -0.026720672845840454, + -0.06104463338851929, + 0.004469484090805054, + -0.009005793370306492, + -0.11097265779972076, + 0.01585230976343155, + 0.013256056234240532, + -0.030193552374839783, + 0.05704198032617569, + 0.13108649849891663, + 0.05106084793806076, + -0.10437096655368805 + ] + }, + "p245_195.wav": { + "name": "p245", + "embedding": [ + 0.04827830195426941, + 0.1026773452758789, + -0.01689162105321884, + 0.008859441615641117, + -0.053340598940849304, + 0.09638083726167679, + -0.0787772461771965, + 0.06287100166082382, + -0.08969427645206451, + 0.14988696575164795, + -0.10372394323348999, + 0.10696819424629211, + -0.026919838041067123, + -0.1417953073978424, + -0.07515859603881836, + 0.023175358772277832, + -0.052820585668087006, + 0.004614276811480522, + -0.0941750705242157, + -0.022364124655723572, + 0.04345572367310524, + 0.028496183454990387, + 0.06338748335838318, + -0.06624269485473633, + 0.05804012715816498, + 0.0455804280936718, + 0.014261881820857525, + 0.03877191245555878, + 0.021478688344359398, + -0.08018092811107635, + -0.05144444853067398, + 0.12878336012363434, + -0.041159532964229584, + 5.4697273299098015e-05, + 0.026911098510026932, + 0.011828627437353134, + 0.020086782053112984, + -0.06743556261062622, + -0.01238650269806385, + 0.026590799912810326, + -0.006153291091322899, + 0.055473826825618744, + -0.0046122707426548, + -0.024382077157497406, + 0.03174358606338501, + -0.010593142360448837, + -0.0375235341489315, + -0.03798094019293785, + -0.07185395807027817, + 0.1392531394958496, + 0.013006547465920448, + 0.0051694344729185104, + -0.09977493435144424, + -0.08611531555652618, + 0.12495452165603638, + -0.013304970227181911, + -0.10877165198326111, + -0.02003926783800125, + 0.04133256524801254, + 0.16522929072380066, + -0.02026687189936638, + -0.023397861048579216, + 0.020558368414640427, + 0.05235397070646286, + 0.02622240036725998, + 0.08548520505428314, + 0.09239251911640167, + 0.05220084264874458, + 0.034933604300022125, + 0.06399345397949219, + 0.05254298821091652, + 0.05128464102745056, + 0.03251422941684723, + -0.05417541787028313, + 0.04583678022027016, + -0.022759929299354553, + -0.03942933678627014, + 0.021520845592021942, + -0.03069712594151497, + -0.023581866174936295, + -0.006994626484811306, + -0.009042274206876755, + 0.03154977783560753, + -0.0341607928276062, + -0.08512470126152039, + 0.03482208028435707, + 0.0014998046681284904, + -0.019316941499710083, + 0.06912466883659363, + 0.06364008039236069, + -0.013631962239742279, + 0.02291388250887394, + -0.04950866475701332, + -0.12543661892414093, + 0.007727420423179865, + 0.020109748467803, + -0.02706182189285755, + 0.04560813307762146, + 0.04506213963031769, + -0.031866759061813354, + 0.07338059693574905, + 0.07352188974618912, + 0.020141100510954857, + 0.03188269957900047, + -0.09585852921009064, + 0.09127768874168396, + 0.11855800449848175, + -0.004327746573835611, + 0.02535541169345379, + 0.003577028401196003, + 0.08735962212085724, + 0.0874512791633606, + -0.12125638872385025, + -0.08865316957235336, + -0.0029713171534240246, + -0.05501050874590874, + 0.026011072099208832, + 0.052746064960956573, + -0.041187748312950134, + -0.026186328381299973, + 0.07902298867702484, + -0.06251072138547897, + -0.04418815299868584, + -0.030518215149641037, + 0.026305746287107468, + -0.04918249323964119, + 0.023371178656816483, + 0.02602410316467285, + -0.0003217114135622978, + -0.04035555198788643, + 0.06755928695201874, + -0.012393257580697536, + 0.013387958519160748, + 0.03462494909763336, + -0.03782178461551666, + 0.049526944756507874, + -0.025624113157391548, + -0.01968296989798546, + 0.10213899612426758, + 0.07237976789474487, + 0.05314534902572632, + -0.014990391209721565, + -0.00989020150154829, + -0.057128746062517166, + 0.017620353028178215, + 0.050104714930057526, + 0.01121944934129715, + -0.004682846367359161, + 0.019977612420916557, + -0.053008489310741425, + -0.08430016040802002, + 0.07264824956655502, + -0.0054061030969023705, + 0.12139920890331268, + 0.030680332332849503, + 0.014131243340671062, + 0.12432843446731567, + 0.002406906569376588, + -0.021691888570785522, + -0.044126734137535095, + 0.0058551691472530365, + 0.050916217267513275, + 0.045913346111774445, + -0.05325181037187576, + -0.06442204862833023, + 0.006222454831004143, + -0.013687129132449627, + -0.029885344207286835, + 0.03246060013771057, + 0.06582270562648773, + -0.013692069798707962, + 0.056936606764793396, + -0.06321452558040619, + 0.01233991701155901, + -0.09779045730829239, + 0.0073458291590213776, + -0.01484096609055996, + -0.10484959930181503, + -0.027622409164905548, + 0.09994994103908539, + 0.027432512491941452, + -0.0310318935662508, + -0.002121277153491974, + -0.10270730406045914, + -0.035300299525260925, + 0.07726682722568512, + 0.06102374941110611, + 0.03319225460290909, + 0.031189538538455963, + 0.050749506801366806, + 0.009378794580698013, + 0.0708124116063118, + 0.10507477819919586, + 0.05962938815355301, + 0.002073658164590597, + -0.026424942538142204, + -0.03950697183609009, + 0.0863160789012909, + 0.04411986097693443, + -0.10357911884784698, + -0.11163439601659775, + -0.05810891091823578, + -0.05505013093352318, + 0.0678786188364029, + -0.012645282782614231, + 0.014367069117724895, + 0.04535038396716118, + -0.03366231173276901, + -0.09086362272500992, + -0.10210288316011429, + 0.13081035017967224, + -0.024153484031558037, + -0.04369209334254265, + -0.042092785239219666, + 0.00964060053229332, + 0.03819739818572998, + 0.013664958998560905, + -0.005954277701675892, + 0.05341121181845665, + 0.04564730077981949, + -0.10502029210329056, + -0.029897810891270638, + 0.01573743298649788, + -0.034548185765743256, + -0.04748248681426048, + 0.021264715120196342, + -0.08316272497177124, + 0.10343590378761292, + -0.0662560984492302, + 0.15785500407218933, + -0.026739593595266342, + -0.04268960654735565, + -0.05823993682861328, + 0.08184152841567993, + -0.06470668315887451, + 0.03490499034523964, + 0.0829772800207138, + 0.07067333906888962, + 0.005528803914785385, + -0.08498436212539673, + 0.07747524976730347, + 0.017556020990014076, + -0.026148110628128052, + -0.07471171766519547, + -0.02921218052506447, + -0.05034668743610382, + -0.008241147734224796, + -0.004831814207136631, + -0.050959695130586624, + 0.05425529181957245, + 0.01966894418001175, + -0.004743877798318863, + 0.059194616973400116, + 0.10701952874660492, + 0.08642970025539398, + -0.06446842104196548 + ] + }, + "p245_066.wav": { + "name": "p245", + "embedding": [ + -0.0077630914747715, + 0.06212679296731949, + -0.029095031321048737, + 0.04807800427079201, + -0.09979154914617538, + -0.011325799860060215, + -0.09859539568424225, + 0.15455757081508636, + -0.0015637085307389498, + 0.09077074378728867, + -0.03634503856301308, + 0.11789576709270477, + -0.07192665338516235, + -0.1492106169462204, + 0.04691343754529953, + 0.07298552244901657, + 0.009551596827805042, + -0.060885265469551086, + -0.02599423937499523, + -0.05117535591125488, + 0.0178248081356287, + 0.03961044177412987, + 0.030315300449728966, + 0.0029597708489745855, + 0.01364608108997345, + 0.09334566444158554, + -0.004621140193194151, + 0.0198704581707716, + -0.009454210288822651, + -0.039348237216472626, + -0.0231894813477993, + 0.03402078524231911, + -0.07006881386041641, + -0.009674010798335075, + 0.024007730185985565, + -0.030278092250227928, + -0.02311311848461628, + -0.009588251821696758, + -0.028285054489970207, + 0.004965323954820633, + -0.08157123625278473, + 0.07757959514856339, + 0.023187167942523956, + -0.008365483023226261, + 0.05268028378486633, + 0.022256221622228622, + -0.038879770785570145, + -0.009175663813948631, + -0.1420152634382248, + 0.13813042640686035, + 0.07626407593488693, + -0.007778852712363005, + -0.07167428731918335, + -0.05480652302503586, + 0.09999435395002365, + -0.020814230665564537, + -0.08670436590909958, + -0.08495119959115982, + 0.07406032085418701, + 0.08715644478797913, + -0.022856593132019043, + -0.02539408765733242, + 0.018550610169768333, + 0.10273498296737671, + 0.07932594418525696, + 0.05336213484406471, + 0.03845370560884476, + 0.12385544180870056, + -0.05201958864927292, + -0.018596675246953964, + 0.05020606517791748, + 0.07094452530145645, + 0.01430055033415556, + 0.021955527365207672, + -0.017246752977371216, + 0.01157557312399149, + 0.021831808611750603, + -0.020078126341104507, + -0.011346502229571342, + -0.03046273998916149, + -0.023327527567744255, + 0.012779390439391136, + 0.006772393360733986, + -0.0042129154317080975, + 0.010185056366026402, + 0.08764004707336426, + 0.08824951946735382, + 0.008867944590747356, + 0.08223341405391693, + -0.00814065057784319, + -0.05953953042626381, + 0.08589067310094833, + -0.08400532603263855, + 0.0028118337504565716, + -0.016205905005335808, + -0.0018033592496067286, + 0.02545177936553955, + 0.08047227561473846, + 0.016994329169392586, + 7.825583452358842e-05, + 0.14811724424362183, + 0.027818048372864723, + 0.0010605386923998594, + 0.02271421067416668, + -0.06731268018484116, + 0.11856039613485336, + 0.061971329152584076, + -0.024232719093561172, + 0.048001643270254135, + -0.030434083193540573, + 0.037176962941884995, + 0.020549774169921875, + -0.09958325326442719, + -0.04676205664873123, + -0.02926865965127945, + 0.0057694269344210625, + -0.06073998287320137, + 0.13464143872261047, + 0.0002716788148973137, + 0.07382065802812576, + 0.17005881667137146, + -0.10015648603439331, + -0.0661592185497284, + 0.016334420070052147, + 0.05094142630696297, + -0.06953908503055573, + 0.043612148612737656, + 0.07132256776094437, + -0.01812724769115448, + 0.09500343352556229, + 0.06924550980329514, + -0.005538359750062227, + 0.045102961361408234, + 0.03517475724220276, + -0.07806044816970825, + -0.007951498031616211, + -0.027830777689814568, + -0.010484833270311356, + 0.09616238623857498, + 0.040282197296619415, + 0.10220807790756226, + -0.04751453548669815, + 0.00697948457673192, + -0.12977319955825806, + 0.023978019133210182, + 0.018472399562597275, + 0.07261732220649719, + -0.018571898341178894, + -0.02471042424440384, + -0.04819144681096077, + -0.08690645545721054, + -0.014551068656146526, + 0.02832389622926712, + 0.08143433928489685, + -0.0949617326259613, + 0.002755220979452133, + 0.08852490037679672, + 0.06482809782028198, + -0.022307103499770164, + -0.06576360762119293, + -0.08091609925031662, + -0.04684533178806305, + 0.04214273765683174, + -0.08497485518455505, + -0.08144988119602203, + -0.03612879663705826, + 0.09052322804927826, + -0.02720281481742859, + 0.08269672095775604, + 0.03126678615808487, + 0.04002169519662857, + -0.005330238025635481, + -0.05054665356874466, + 0.0319494791328907, + -0.007297709118574858, + -0.06955704838037491, + -0.010123031213879585, + 0.003082114504650235, + -0.05732957273721695, + 0.06033637747168541, + 0.02445564977824688, + 0.08980266004800797, + 0.008264157921075821, + -0.07539556920528412, + -0.11840244382619858, + 0.015741858631372452, + 0.0013391778338700533, + -0.06326083093881607, + 0.0636846199631691, + 0.09257593005895615, + -0.10514184087514877, + 0.04345356300473213, + 0.042700331658124924, + 0.08348044008016586, + -0.050993554294109344, + 0.03936244174838066, + -0.05943295359611511, + 0.07016190141439438, + 0.08867181092500687, + -0.08903425186872482, + -0.0440947525203228, + -0.07404907047748566, + -0.07128720730543137, + 0.05602087825536728, + -0.022398825734853745, + 0.0049375249072909355, + 0.024634554982185364, + 0.027141854166984558, + -0.09741058200597763, + -0.07526490837335587, + 0.04396592453122139, + -0.04957457259297371, + 0.00836198776960373, + -0.07985610514879227, + 0.024887222796678543, + 0.08291107416152954, + 0.06635834276676178, + 0.009280542843043804, + -0.03171687200665474, + 0.05296330526471138, + 0.015414518304169178, + 0.0478878878057003, + 0.13087497651576996, + 0.07354786247015, + -0.04201474413275719, + -0.0597412995994091, + -0.07587701082229614, + 0.043904103338718414, + 0.007860701531171799, + 0.12986992299556732, + 0.03976213559508324, + -0.027728118002414703, + -0.07746711373329163, + 0.01437259279191494, + -0.017655204981565475, + 0.06583189219236374, + 0.015605567023158073, + 0.04948633164167404, + 0.06586628407239914, + 0.005641864147037268, + 0.15866614878177643, + 0.05696696415543556, + -0.06103023141622543, + -0.03497155383229256, + -0.04244257137179375, + -0.06665113568305969, + 0.02710285410284996, + 0.041648995131254196, + -0.10715588927268982, + -0.0061855376698076725, + -0.00026045882259495556, + -0.017139311879873276, + 0.06754108518362045, + 0.1394340991973877, + 0.09705255925655365, + -0.08978267014026642 + ] + }, + "p245_012.wav": { + "name": "p245", + "embedding": [ + 0.040413081645965576, + 0.0830603837966919, + -0.022774528712034225, + -0.0005341863725334406, + -0.03794672340154648, + 0.05234938859939575, + -0.13388767838478088, + 0.13372640311717987, + -0.054108500480651855, + 0.12199720740318298, + -0.06777148693799973, + 0.09525827318429947, + -0.019477128982543945, + -0.15096716582775116, + -0.046066202223300934, + 0.043353330343961716, + -0.04619592800736427, + -0.03893730044364929, + -0.03926585242152214, + -0.02710663340985775, + 0.02975194714963436, + 0.030209191143512726, + -0.001423071837052703, + 0.01767009124159813, + 0.014533063396811485, + 0.061789803206920624, + 0.0020770556293427944, + 0.02855536714196205, + 0.0038799364119768143, + -0.007374171167612076, + -0.002614937722682953, + 0.08625348657369614, + -0.039034005254507065, + 0.01809553988277912, + 0.04712323471903801, + 0.00043094437569379807, + 0.0002795322798192501, + -0.07171767950057983, + -0.017839526757597923, + 0.0036740691866725683, + -0.04642723873257637, + 0.08478469401597977, + 0.043637968599796295, + 0.010240818373858929, + 0.01705770753324032, + 0.014662904664874077, + -0.004455404356122017, + -0.057040736079216, + -0.09834709763526917, + 0.16067162156105042, + 0.07033324241638184, + -0.0013096407055854797, + -0.08616489171981812, + -0.04449496790766716, + 0.10010585933923721, + -0.01945388689637184, + -0.09247705340385437, + -0.058926187455654144, + 0.06421282142400742, + 0.1438712179660797, + -0.02765613980591297, + -0.03928995877504349, + 0.015414133667945862, + 0.13032019138336182, + 0.03821246325969696, + 0.07300262898206711, + 0.08500176668167114, + 0.09541250020265579, + -0.03380883112549782, + 0.01018277183175087, + 0.060074418783187866, + 0.05779407545924187, + 0.032267194241285324, + -0.019839877262711525, + 0.023644432425498962, + -0.006142120808362961, + -0.01140713132917881, + 0.018052203580737114, + -0.025781875476241112, + -0.03170400857925415, + -0.027480022981762886, + 0.014921372756361961, + -0.00871280673891306, + 0.039258237928152084, + -0.023124337196350098, + 0.044205326586961746, + 0.03527587652206421, + -0.025986485183238983, + 0.06543485075235367, + 0.0649804174900055, + 0.017514225095510483, + 0.039923880249261856, + -0.060173433274030685, + -0.07515958696603775, + 0.021156642585992813, + -0.008265395648777485, + 0.02679346315562725, + 0.06942324340343475, + 0.03512595593929291, + -0.0003028702922165394, + 0.09636136144399643, + 0.035126201808452606, + -0.012339252978563309, + -0.005447839852422476, + -0.09485568106174469, + 0.12439955770969391, + 0.09117837995290756, + -0.029637495055794716, + 0.021180735900998116, + -0.04134117066860199, + 0.0428343266248703, + 0.0649833232164383, + -0.12068703770637512, + -0.06943859159946442, + 0.04117913544178009, + 0.03987664356827736, + -0.0014027506113052368, + 0.1096196174621582, + -0.0018225936219096184, + 0.014029955491423607, + 0.07854866981506348, + -0.06031420826911926, + -0.05430252104997635, + -0.02439490146934986, + 0.034904103726148605, + -0.06098751351237297, + 0.041726984083652496, + 0.05456957221031189, + 0.007434066850692034, + 0.0013277474790811539, + 0.0830441266298294, + 0.0019958200864493847, + -0.005506281740963459, + 0.0014513880014419556, + -0.010258546099066734, + 0.04812612384557724, + -0.012265488505363464, + 0.0007846709340810776, + 0.026168784126639366, + 0.047913338989019394, + 0.04084065929055214, + 0.015754010528326035, + -0.025927996262907982, + -0.09728501737117767, + 0.008215617388486862, + 0.0512690395116806, + 0.07119515538215637, + -0.028330130502581596, + -0.02829846739768982, + -0.025761589407920837, + -0.050660714507102966, + -0.018066642805933952, + -0.008528130128979683, + 0.07430551946163177, + -0.010310914367437363, + -0.0003291988978162408, + 0.1055549830198288, + 0.006170269101858139, + 0.0007037622854113579, + -0.041791822761297226, + 0.008994637057185173, + 0.008524062111973763, + 0.05217408388853073, + -0.0591299943625927, + -0.0724165141582489, + 0.008244737982749939, + 0.03672463446855545, + -0.009449097327888012, + 0.038269344717264175, + 0.03830341994762421, + -0.0043996647000312805, + 0.023331737145781517, + -0.08940884470939636, + 0.0342443510890007, + -0.1152038723230362, + -0.04307142645120621, + -0.0029060086235404015, + -0.031247032806277275, + -0.0012998562306165695, + 0.06992219388484955, + 0.01841125637292862, + 0.04389849305152893, + -0.0015250639989972115, + -0.10019814223051071, + -0.06024879589676857, + 0.0624699592590332, + 0.0886591300368309, + -0.02521747723221779, + 0.030167827382683754, + 0.06203741580247879, + -0.015615621581673622, + 0.025053836405277252, + 0.057888247072696686, + 0.09942366927862167, + -0.04888495057821274, + 0.0014969538897275925, + -0.052007272839546204, + 0.06846464425325394, + 0.04695957154035568, + -0.11025058478116989, + -0.05957163870334625, + -0.018552543595433235, + -0.03677377104759216, + 0.006400046870112419, + -0.020499147474765778, + 0.020892156288027763, + 0.027435507625341415, + -0.01587257906794548, + -0.10476444661617279, + -0.08054275810718536, + 0.06192772835493088, + -0.07315119355916977, + 0.01484622061252594, + -0.0769607424736023, + 0.03674861043691635, + 0.09326650947332382, + 0.04202606901526451, + -0.018240241333842278, + -0.013393988832831383, + 0.014037182554602623, + -0.03273104503750801, + -0.020009201020002365, + 0.016858907416462898, + 0.02530338615179062, + -0.09205272793769836, + -0.0017449520528316498, + -0.07689408212900162, + 0.075095534324646, + -0.042808711528778076, + 0.1277589350938797, + 0.009178093634545803, + -0.0628858283162117, + -0.09408976137638092, + -0.0038892626762390137, + -0.0174001082777977, + 0.056130461394786835, + 0.034797925502061844, + 0.04990113154053688, + 0.022978410124778748, + -0.0423492006957531, + 0.1094752624630928, + 0.06085175648331642, + -0.03767654299736023, + -0.06893106549978256, + -0.02513839676976204, + -0.017312169075012207, + 0.033020514994859695, + 0.014636870473623276, + -0.05768581107258797, + -0.008866620250046253, + 0.012733858078718185, + -0.03952283039689064, + 0.07950504869222641, + 0.11891117691993713, + 0.07795403897762299, + -0.1198640912771225 + ] + }, + "p245_166.wav": { + "name": "p245", + "embedding": [ + 0.053655095398426056, + 0.08844296634197235, + -0.04649278149008751, + 0.013936445116996765, + -0.03935004398226738, + 0.05479462072253227, + -0.13360700011253357, + 0.09471850097179413, + -0.033660002052783966, + 0.14835643768310547, + -0.0453655831515789, + 0.10396459698677063, + -0.005942014046013355, + -0.1326616257429123, + -0.019591329619288445, + 0.05505815148353577, + -0.03377779573202133, + -0.03852098807692528, + -0.018543312326073647, + -0.008368187583982944, + 0.03672625869512558, + 0.04902494698762894, + 0.02710963599383831, + -0.02074635587632656, + 0.032913096249103546, + 0.06197277829051018, + 0.0014466014690697193, + 0.021820535883307457, + -0.004275509621948004, + -0.04222218692302704, + -0.01896977797150612, + 0.09863245487213135, + -0.047002747654914856, + 0.004972544964402914, + 0.012576624751091003, + 0.007321698125451803, + 0.002351941540837288, + -0.07046922296285629, + 0.0007005079532973468, + 0.011394213885068893, + -0.03256703168153763, + 0.08399521559476852, + 0.014998058788478374, + -0.009147625416517258, + 0.0016161799430847168, + -0.018606062978506088, + -0.027188047766685486, + -0.026936573907732964, + -0.08517339080572128, + 0.17683064937591553, + 0.06996860355138779, + 0.0134064219892025, + -0.0780750960111618, + -0.04408973455429077, + 0.07826656103134155, + 0.026923730969429016, + -0.08075837790966034, + -0.05972130224108696, + 0.042407527565956116, + 0.13886141777038574, + -0.006989161483943462, + -0.05610661953687668, + 0.037248872220516205, + 0.12740808725357056, + 0.04869261384010315, + 0.053280092775821686, + 0.08517199009656906, + 0.09312839806079865, + -0.008113425225019455, + 0.007785463239997625, + 0.05904529243707657, + 0.07313312590122223, + 0.05591530725359917, + -0.010565748438239098, + 0.03037749044597149, + -0.028928544372320175, + -0.021889498457312584, + -0.012656692415475845, + -0.010193328373134136, + -0.05816423147916794, + -0.03159976750612259, + -0.014443970285356045, + -0.0038853748701512814, + 0.06717607378959656, + -0.01202497910708189, + 0.007008690387010574, + 0.058460675179958344, + -0.05275978893041611, + 0.06169342249631882, + 0.05394720286130905, + 0.02610999345779419, + 0.03156259283423424, + -0.07510482519865036, + -0.07358689606189728, + 0.06123858690261841, + 0.016693050041794777, + 0.03272085636854172, + 0.07263780385255814, + 0.045775532722473145, + -0.0033907294273376465, + 0.09135275334119797, + 0.019397348165512085, + 0.0024353615008294582, + -0.025197505950927734, + -0.07514859735965729, + 0.1269388198852539, + 0.10129731148481369, + -0.03968110680580139, + 0.030582956969738007, + -0.027220046147704124, + 0.023323342204093933, + 0.053116559982299805, + -0.12632519006729126, + -0.08291628956794739, + 0.018998507410287857, + 0.012775188311934471, + 0.0009156353771686554, + 0.09909415245056152, + 0.020280232653021812, + 0.030194073915481567, + 0.08315100520849228, + -0.08419731259346008, + -0.07775819301605225, + -0.03509482368826866, + 0.042510997503995895, + -0.0927007645368576, + 0.05401131138205528, + 0.06861019134521484, + 0.0017825644463300705, + -0.019021783024072647, + 0.07022847980260849, + 0.006236842833459377, + 0.0200313962996006, + -0.028062177821993828, + -0.0035452123265713453, + 0.04423457384109497, + -0.032316889613866806, + 0.006350439041852951, + 0.02390877716243267, + 0.0013469619443640113, + 0.06261691451072693, + 0.0019134643953293562, + -0.005199687089771032, + -0.11554916203022003, + 0.025548560544848442, + 0.05696594715118408, + 0.04851735755801201, + -0.04421606287360191, + -0.0370418019592762, + -0.004539420362561941, + -0.060816265642642975, + 0.010482232086360455, + -0.01083883922547102, + 0.07470370084047318, + 0.01877404749393463, + -0.001411761506460607, + 0.11913126707077026, + -0.004110011272132397, + 0.004352550953626633, + -0.014912760816514492, + 0.003801812883466482, + 0.04109359532594681, + 0.047184623777866364, + -0.08498860895633698, + -0.09137731045484543, + -0.0035503755789250135, + 0.014921177178621292, + 0.009820891544222832, + 0.04925699159502983, + 0.06569939851760864, + -0.015355650335550308, + 0.014127960428595543, + -0.0537368580698967, + 0.00809969287365675, + -0.07779267430305481, + -0.05698656663298607, + -0.014641610905528069, + -0.05571281537413597, + -0.024360492825508118, + 0.09402160346508026, + 0.018509771674871445, + 0.04330350086092949, + -0.050333172082901, + -0.0650399774312973, + -0.06768766045570374, + 0.051043443381786346, + 0.07187633216381073, + -0.03471110016107559, + 0.008212946355342865, + 0.06329125165939331, + 0.009072072803974152, + -0.0045273578725755215, + 0.04547902196645737, + 0.09381411969661713, + -0.056555137038230896, + -0.01935093104839325, + -0.06621578335762024, + 0.08163195848464966, + 0.08475353568792343, + -0.09308450669050217, + -0.05736543983221054, + -0.04593092203140259, + -0.06394603103399277, + 0.016700323671102524, + -0.04219955950975418, + 0.015847934409976006, + 0.0418318510055542, + -0.04094365984201431, + -0.10128842294216156, + -0.12677882611751556, + 0.08536802232265472, + -0.05766047164797783, + -0.0029032262973487377, + -0.07675062865018845, + 0.05029436945915222, + 0.057624541223049164, + 0.04686463996767998, + -0.04399394989013672, + 0.011516179889440536, + 0.010614532046020031, + -0.030909806489944458, + -0.00030715082539245486, + 0.04352226108312607, + 0.035192977637052536, + -0.10074742138385773, + -0.022891204804182053, + -0.08016446232795715, + 0.06337811052799225, + -0.07264944165945053, + 0.12457223981618881, + -0.006055818870663643, + -0.0585329607129097, + -0.10827597230672836, + 0.013784579001367092, + -0.014256780967116356, + 0.05224742740392685, + 0.03585461899638176, + 0.0427403599023819, + 0.038721948862075806, + -0.07541250437498093, + 0.0892203152179718, + 0.07800555229187012, + 0.005114484112709761, + -0.0927131399512291, + -0.025002729147672653, + -0.01710965856909752, + 0.06794629991054535, + 0.002855605911463499, + -0.04696786403656006, + 0.019650055095553398, + 0.023444827646017075, + 0.0013756786938756704, + 0.07318668812513351, + 0.10128151625394821, + 0.06210120767354965, + -0.10976234078407288 + ] + }, + "p245_075.wav": { + "name": "p245", + "embedding": [ + 0.03428453952074051, + 0.11064719408750534, + 0.0017526668962091208, + 0.0246326494961977, + -0.052845899015665054, + 0.06611949950456619, + -0.10521318018436432, + 0.13429750502109528, + -0.05651460960507393, + 0.1235857903957367, + -0.10048773884773254, + 0.10598120838403702, + -0.05684275180101395, + -0.1783761978149414, + -0.04228542745113373, + 0.06294967234134674, + -0.03110467828810215, + -0.00095291284378618, + -0.035121794790029526, + -0.013944773003458977, + 0.03131048008799553, + 0.010594845749437809, + 0.02496732771396637, + 0.014946140348911285, + 0.017528658732771873, + 0.06434151530265808, + 0.0018713257741183043, + 0.05689927935600281, + 0.017997276037931442, + -0.018579233437776566, + -0.03409453481435776, + 0.12057538330554962, + -0.03753228113055229, + 0.034450069069862366, + 0.08555713295936584, + 0.017218297347426414, + -0.012218305841088295, + -0.030455391854047775, + -0.008164172992110252, + -0.0141185587272048, + -0.0620722770690918, + 0.060246072709560394, + 0.024739062413573265, + 0.003376284148544073, + 0.04835595563054085, + 0.04146186634898186, + -0.01341229397803545, + -0.030139166861772537, + -0.09043428301811218, + 0.13250896334648132, + 0.055999018251895905, + -0.017828024923801422, + -0.07457873970270157, + -0.0697483941912651, + 0.11246555298566818, + -0.026754135265946388, + -0.12838967144489288, + -0.039564717561006546, + 0.10323658585548401, + 0.1580001413822174, + -0.027325229719281197, + -0.026766734197735786, + -0.01096925139427185, + 0.12341856956481934, + 0.023739060387015343, + 0.11721930652856827, + 0.051521383225917816, + 0.11331139504909515, + -0.0067277573980391026, + 0.03533324971795082, + 0.07012540847063065, + 0.053036224097013474, + 0.0504441000521183, + -0.02651439979672432, + 0.014645046554505825, + -0.004943884443491697, + -0.010933781042695045, + 0.034601617604494095, + -0.036210693418979645, + -0.016005119308829308, + -0.04069426655769348, + 0.0009622778743505478, + -0.016917364671826363, + -0.029449395835399628, + -0.005007491912692785, + 0.0615730881690979, + 0.03990306705236435, + -0.0031221776735037565, + 0.06841331720352173, + 0.07175624370574951, + -0.024039003998041153, + 0.061780400574207306, + -0.06226837635040283, + -0.07848657667636871, + -0.0046257274225354195, + -0.012960809282958508, + 0.022535288706421852, + 0.07917551696300507, + 0.03100755624473095, + 0.008274837397038937, + 0.09721153974533081, + 0.050989262759685516, + 0.012677839025855064, + 0.041036203503608704, + -0.10639114677906036, + 0.12764522433280945, + 0.07278670370578766, + -0.022095121443271637, + 0.03098338097333908, + -0.02898004837334156, + 0.0809275209903717, + 0.09534987807273865, + -0.1227051168680191, + -0.05885526165366173, + 0.0005997233092784882, + -0.0035510878078639507, + -0.021237578243017197, + 0.08182498067617416, + -0.024508893489837646, + -0.005949174519628286, + 0.11049088835716248, + -0.07752488553524017, + -0.06652219593524933, + -0.02911338210105896, + 0.0212554968893528, + -0.07800594717264175, + 0.047917529940605164, + 0.0359664224088192, + 0.008974568918347359, + 0.00486976932734251, + 0.09449593722820282, + -0.0018899358110502362, + -0.0003257538191974163, + 0.032444246113300323, + -0.055867474526166916, + 0.017791595309972763, + -0.0351385772228241, + 0.01986345462501049, + 0.057327769696712494, + 0.05041804909706116, + 0.059155598282814026, + 0.008122799918055534, + -0.01083378866314888, + -0.07895449548959732, + -0.00627483893185854, + 0.06800520420074463, + 0.05703945457935333, + -0.008550484664738178, + -0.015090275555849075, + -0.02927681803703308, + -0.07012715935707092, + 0.041542742401361465, + -0.012928883545100689, + 0.08516597747802734, + -0.024356510490179062, + -0.014819096773862839, + 0.12005850672721863, + 0.010945495218038559, + -0.017246559262275696, + -0.09791474044322968, + -0.024770662188529968, + 0.0011850083246827126, + 0.04086858779191971, + -0.11034372448921204, + -0.07452259212732315, + 0.006218722090125084, + 0.02181953378021717, + -0.016521282494068146, + 0.03904792293906212, + 0.03824132680892944, + 0.007279010955244303, + 0.037137240171432495, + -0.0573769137263298, + 0.007877781987190247, + -0.11130785197019577, + -0.06729962676763535, + -0.028296589851379395, + -0.04508214816451073, + -0.001398736611008644, + 0.061989620327949524, + 0.009105633944272995, + 0.016468387097120285, + 0.027100328356027603, + -0.08886811137199402, + -0.08833437412977219, + 0.07652020454406738, + 0.05635393410921097, + 0.010490206070244312, + 0.070200115442276, + 0.054011017084121704, + -0.08097734302282333, + 0.07192501425743103, + 0.0603579543530941, + 0.11222146451473236, + -0.04411302134394646, + 0.03944786638021469, + -0.07513889670372009, + 0.04705259948968887, + 0.08648710697889328, + -0.11583252251148224, + -0.10839773714542389, + -0.041446663439273834, + -0.0290602408349514, + 0.0446256548166275, + -0.031314633786678314, + -0.01224291231483221, + 0.024069389328360558, + -0.024504881352186203, + -0.07408291101455688, + -0.08164675533771515, + 0.08596008270978928, + -0.0648287758231163, + -0.00760210957378149, + -0.06233181804418564, + 0.04306813329458237, + 0.05370538681745529, + 0.025317681953310966, + -0.04027901962399483, + 0.03136410936713219, + 0.07048152387142181, + -0.06131252273917198, + -0.03257821127772331, + 0.039197325706481934, + 0.007110740523785353, + -0.06356337666511536, + -0.0007188073359429836, + -0.07171986997127533, + 0.07497894018888474, + -0.048499248921871185, + 0.1626286804676056, + -0.026472043246030807, + -0.07052823156118393, + -0.04782993346452713, + 0.02265041135251522, + -0.026331990957260132, + 0.02763562649488449, + 0.05033141374588013, + 0.06911881268024445, + -0.0130761181935668, + -0.03996057063341141, + 0.14837083220481873, + 0.008677903562784195, + -0.03402414172887802, + -0.050040263682603836, + -0.045453377068042755, + -0.06450536847114563, + 0.0004788478836417198, + 0.008729243651032448, + -0.11051183938980103, + -0.008394391275942326, + 0.007968345656991005, + -0.030474970117211342, + 0.054275304079055786, + 0.13971665501594543, + 0.0805155485868454, + -0.09118019044399261 + ] + }, + "p245_074.wav": { + "name": "p245", + "embedding": [ + 0.06014510244131088, + 0.09971879422664642, + 0.015584892593324184, + 0.021699270233511925, + -0.024226326495409012, + 0.11392833292484283, + -0.12430501729249954, + 0.1162688136100769, + -0.06320066750049591, + 0.16092291474342346, + -0.08765741437673569, + 0.09969928860664368, + -0.01792548969388008, + -0.15745452046394348, + -0.06303291022777557, + 0.041449688374996185, + -0.057555653154850006, + 0.0035726502537727356, + -0.0486614927649498, + -0.004805471282452345, + 0.0411190502345562, + 0.024463845416903496, + 0.058623261749744415, + -0.02493543177843094, + 0.031117452308535576, + 0.03865686058998108, + 0.015451236627995968, + 0.07207752764225006, + 0.02641092613339424, + -0.09324994683265686, + -0.027758805081248283, + 0.13227424025535583, + -0.03424966707825661, + 0.03947920352220535, + 0.04767537862062454, + 0.013357278890907764, + 0.006342347711324692, + -0.07750484347343445, + -0.014071457087993622, + -0.010173224844038486, + -0.014226230792701244, + 0.06542043387889862, + 0.014675341546535492, + -0.012166031636297703, + 0.01956893689930439, + 0.0038894633762538433, + -0.024501653388142586, + -0.049184542149305344, + -0.09260393679141998, + 0.15617680549621582, + 0.0518491193652153, + 0.004771186038851738, + -0.07177138328552246, + -0.08619700372219086, + 0.1051219254732132, + -0.015336241573095322, + -0.1134636402130127, + -0.02775711566209793, + 0.07479526102542877, + 0.1931106001138687, + -0.03001069277524948, + -0.03331910818815231, + 0.02120731770992279, + 0.11004520952701569, + 0.025130605325102806, + 0.10477791726589203, + 0.09282625466585159, + 0.08586355298757553, + 0.028017833828926086, + 0.05219336599111557, + 0.017089825123548508, + 0.06498713791370392, + 0.04176153987646103, + -0.011089975014328957, + 0.032536521553993225, + -0.03093256987631321, + -0.02084430307149887, + 0.015571310184895992, + -0.026068685576319695, + -0.02726149931550026, + -0.0037109642289578915, + -0.005104261916130781, + 0.02641938626766205, + 0.010872980579733849, + -0.03922935575246811, + 0.041547566652297974, + -0.020551878958940506, + -0.03216097131371498, + 0.06253150850534439, + 0.03755345195531845, + 0.0200633741915226, + 0.035502105951309204, + -0.05118311941623688, + -0.12056100368499756, + 0.013987716287374496, + 0.011165215633809566, + 0.008817262947559357, + 0.06909926235675812, + 0.039913907647132874, + -0.033625729382038116, + 0.0953153669834137, + 0.042153771966695786, + -0.007515524048358202, + 0.028902916237711906, + -0.10698682069778442, + 0.11187740415334702, + 0.08660847693681717, + -0.002844938775524497, + 0.042121924459934235, + -0.05157402530312538, + 0.08466915041208267, + 0.09120398759841919, + -0.1502046287059784, + -0.08364871889352798, + 0.0071958694607019424, + -0.008172833360731602, + 0.005273364018648863, + 0.08534418046474457, + -0.0036859335377812386, + -0.0008797831833362579, + 0.08766975998878479, + -0.08068522810935974, + -0.04992228001356125, + -0.03241259977221489, + 0.04746837168931961, + -0.0714477151632309, + 0.04672529175877571, + 0.012449185363948345, + -0.010422405786812305, + -0.0232987180352211, + 0.07312832027673721, + -0.01991652324795723, + -0.004882699344307184, + 0.03331601247191429, + -0.05931270122528076, + 0.02828357368707657, + -0.05358045548200607, + 0.019374718889594078, + 0.03794638067483902, + 0.05631332844495773, + 0.044307444244623184, + -0.0029720335733145475, + -0.05184668302536011, + -0.07062087208032608, + -0.009222757071256638, + 0.046010393649339676, + 0.051999520510435104, + -0.005567926447838545, + -0.02045314572751522, + -0.042064715176820755, + -0.05380910634994507, + 0.06741416454315186, + -0.01949601247906685, + 0.08342263102531433, + 0.02181383967399597, + 0.011088564991950989, + 0.10065892338752747, + -0.0020942343398928642, + -0.0040198094211518764, + -0.06658720225095749, + -0.0055602192878723145, + 0.035565100610256195, + 0.032847922295331955, + -0.07245933264493942, + -0.04627860337495804, + 0.027647484093904495, + 0.008904751390218735, + -0.03301059827208519, + 0.033254869282245636, + 0.04260602965950966, + 0.02298501878976822, + 0.043577805161476135, + -0.047388236969709396, + -0.01514421310275793, + -0.1021120473742485, + -0.046782445162534714, + -0.002416311064735055, + -0.03638681024312973, + -0.018268844112753868, + 0.08079420030117035, + 0.02545928955078125, + 0.018413040786981583, + -0.005437190178781748, + -0.07254447042942047, + -0.06903161108493805, + 0.06818627566099167, + 0.057744596153497696, + 0.022661438211798668, + 0.032348740845918655, + 0.0380667969584465, + -0.012004202231764793, + 0.07510870695114136, + 0.07461467385292053, + 0.09118086099624634, + -0.018249865621328354, + -0.007719416171312332, + -0.08865920454263687, + 0.08385604619979858, + 0.09812474250793457, + -0.0825810432434082, + -0.1069522574543953, + -0.028723765164613724, + -0.0832420140504837, + 0.0513782799243927, + -0.032212719321250916, + -0.014716488309204578, + 0.033219143748283386, + -0.032289646565914154, + -0.09897318482398987, + -0.07787275314331055, + 0.11439277976751328, + -0.07389659434556961, + -0.0342634841799736, + -0.06562066823244095, + 0.04722801595926285, + 0.0693758949637413, + 0.04545104503631592, + -0.016056319698691368, + 0.015001444146037102, + 0.05746561288833618, + -0.09436094015836716, + -0.0166219100356102, + 0.029135093092918396, + -0.01431970577687025, + -0.09565816819667816, + 0.022905312478542328, + -0.08642274141311646, + 0.039538733661174774, + -0.06991507858037949, + 0.16500133275985718, + -0.02460383251309395, + -0.07045608758926392, + -0.05873553454875946, + 0.04520758241415024, + -0.054409317672252655, + 0.028254954144358635, + 0.05157051980495453, + 0.06067713350057602, + 0.02536693960428238, + -0.09536367654800415, + 0.10134699940681458, + 0.024042507633566856, + -0.010347208008170128, + -0.08685632795095444, + -0.06046932190656662, + -0.042557694017887115, + 0.015346228145062923, + -0.018939699977636337, + -0.07674851268529892, + 0.0009209541603922844, + 0.02602284401655197, + -0.003074691630899906, + 0.0657355859875679, + 0.13165289163589478, + 0.05196277052164078, + -0.09723721444606781 + ] + }, + "p245_128.wav": { + "name": "p245", + "embedding": [ + 0.04285028576850891, + 0.10291832685470581, + -0.008294271305203438, + 0.0031440667808055878, + -0.05854008346796036, + 0.0744505375623703, + -0.11892271786928177, + 0.13265547156333923, + -0.0472327321767807, + 0.13479766249656677, + -0.0745711624622345, + 0.10561913251876831, + -0.02285316213965416, + -0.17996175587177277, + -0.05359140783548355, + 0.0317937433719635, + -0.05796866863965988, + -0.028445810079574585, + -0.057495832443237305, + -0.03565075248479843, + 0.035307884216308594, + 0.04116383194923401, + 0.0032741716131567955, + -0.014355423860251904, + 0.054791174829006195, + 0.06258786469697952, + 0.014593180269002914, + 0.04019845277070999, + 0.009189827367663383, + -0.0422927550971508, + -0.030498847365379333, + 0.10371505469083786, + -0.061426594853401184, + 0.023316510021686554, + 0.05623096972703934, + -0.004318609833717346, + 0.020198138430714607, + -0.050899848341941833, + -0.02848580852150917, + 0.04583275318145752, + -0.03608536720275879, + 0.08068013936281204, + 0.046967070549726486, + 0.010805629193782806, + 0.021731525659561157, + 0.05317696928977966, + 0.01321185939013958, + -0.06421341001987457, + -0.09013538062572479, + 0.18424123525619507, + 0.04776057228446007, + -0.0028770838398486376, + -0.07243786007165909, + -0.08860738575458527, + 0.10992558300495148, + -0.0163470096886158, + -0.1031622439622879, + -0.027590710669755936, + 0.0751342847943306, + 0.14967505633831024, + -0.04495275020599365, + -0.052671369165182114, + 0.00747661991044879, + 0.11520727723836899, + 0.03702854737639427, + 0.07464918494224548, + 0.08499055355787277, + 0.09904549270868301, + -0.00922226719558239, + 0.01108636986464262, + 0.0748717337846756, + 0.06487390398979187, + 0.05631181225180626, + -0.0338699109852314, + 0.031233523041009903, + 0.0019018733873963356, + -0.01824387162923813, + 0.008348758332431316, + -0.02586912177503109, + -0.0011229927185922861, + -0.009843980893492699, + 0.028770998120307922, + 0.018397890031337738, + 0.019719939678907394, + -0.02686728537082672, + 0.059890665113925934, + 0.017812829464673996, + -0.009032066911458969, + 0.07787267118692398, + 0.050689518451690674, + 0.004880410619080067, + 0.06256155669689178, + -0.08774784952402115, + -0.0894698053598404, + 0.03025517612695694, + -0.0019432483240962029, + 0.024727607145905495, + 0.07191336154937744, + 0.05225212499499321, + -0.015936629846692085, + 0.11002478748559952, + 0.05299503728747368, + -0.008342195302248001, + 0.021948836743831635, + -0.10554119944572449, + 0.11696275323629379, + 0.09277379512786865, + -0.03175366297364235, + 0.037857118993997574, + -0.04454944282770157, + 0.08099643886089325, + 0.058050110936164856, + -0.14657199382781982, + -0.09842027723789215, + 0.03615438938140869, + 0.023691225796937943, + -0.013943508267402649, + 0.10753928124904633, + -0.031842827796936035, + 0.015001642517745495, + 0.10138988494873047, + -0.08231890201568604, + -0.037937577813863754, + -0.028225857764482498, + 0.04748796671628952, + -0.06992723047733307, + 0.03258610889315605, + 0.05220450460910797, + -0.015021104365587234, + 0.00970245711505413, + 0.07571221888065338, + 0.0008274917490780354, + 0.0009434851817786694, + 0.0037812944501638412, + -0.016594819724559784, + 0.036868512630462646, + -0.006621015723794699, + -0.003088216530159116, + 0.04144478589296341, + 0.0634017288684845, + 0.05363544076681137, + 0.012106486596167088, + -0.04248375445604324, + -0.10744935274124146, + 0.02323581650853157, + 0.03876125067472458, + 0.06020769476890564, + -0.02511535957455635, + -0.013027509674429893, + -0.042832955718040466, + -0.07413189858198166, + 0.020877759903669357, + 0.015493260696530342, + 0.08876348286867142, + -0.01178110670298338, + 0.0026183626614511013, + 0.11945134401321411, + 0.024575982242822647, + -0.016531767323613167, + -0.03488043695688248, + -0.022817201912403107, + 0.0055765812285244465, + 0.050697289407253265, + -0.07481823861598969, + -0.0817171037197113, + -0.0049058618023991585, + 0.011322863399982452, + -0.009867454878985882, + 0.06068001687526703, + 0.03517413139343262, + 0.006912395358085632, + 0.039578747004270554, + -0.06977661699056625, + 0.003621757263317704, + -0.1171189397573471, + -0.04958612844347954, + -0.02333132177591324, + -0.037408117204904556, + -0.03562555089592934, + 0.09097154438495636, + 0.012545136734843254, + 0.04913122206926346, + -0.0006547458469867706, + -0.07709072530269623, + -0.048051562160253525, + 0.06257225573062897, + 0.08023197203874588, + -0.0017389459535479546, + 0.03188994526863098, + 0.06737224757671356, + -0.011643451638519764, + 0.05946042388677597, + 0.09167708456516266, + 0.10151728987693787, + -0.029805200174450874, + 0.031096410006284714, + -0.04898339882493019, + 0.10016895830631256, + 0.028483262285590172, + -0.09008339047431946, + -0.08827924728393555, + -0.03344443812966347, + -0.055373258888721466, + 0.02298158034682274, + -0.004768986254930496, + 0.03892204165458679, + 0.004340828862041235, + 0.009070918895304203, + -0.07332377135753632, + -0.07707536220550537, + 0.06340166926383972, + -0.056554581969976425, + -0.014352606609463692, + -0.07638509571552277, + 0.045238036662340164, + 0.11974451690912247, + 0.0533909797668457, + -0.004737730138003826, + -0.006433691363781691, + 0.04213054105639458, + -0.037932198494672775, + -0.020381726324558258, + 0.03291946277022362, + 0.013733863830566406, + -0.08372844755649567, + 0.013640576042234898, + -0.0693979412317276, + 0.07794291526079178, + -0.051908183842897415, + 0.14760559797286987, + 0.0021405257284641266, + -0.06954716891050339, + -0.07093621045351028, + 0.0385231152176857, + -0.03931885212659836, + 0.04432768374681473, + 0.03189799189567566, + 0.060877010226249695, + 0.033880751579999924, + -0.041171252727508545, + 0.11780042946338654, + 0.032729074358940125, + -0.04795774817466736, + -0.06289391964673996, + -0.06086689978837967, + -0.017920324578881264, + 0.01632593385875225, + 0.02147575467824936, + -0.07005555927753448, + -0.002590891905128956, + 0.022513344883918762, + -0.021650727838277817, + 0.059205275028944016, + 0.13990139961242676, + 0.08244998008012772, + -0.12977442145347595 + ] + }, + "p245_363.wav": { + "name": "p245", + "embedding": [ + 0.06403273344039917, + 0.06051492691040039, + -0.02012384496629238, + -0.017881762236356735, + -0.027586935088038445, + 0.04949760064482689, + -0.14439056813716888, + 0.09276485443115234, + -0.003955709747970104, + 0.15863388776779175, + -0.04848731309175491, + 0.11708610504865646, + 0.008923175744712353, + -0.1183699294924736, + -0.0009529429371468723, + 0.02462594211101532, + -0.026231907308101654, + -0.0009149847319349647, + -0.03142998367547989, + -0.04107664152979851, + 0.024890966713428497, + 0.027374088764190674, + 0.022732285782694817, + -0.02660374343395233, + 0.027254194021224976, + 0.06170704960823059, + -0.0024491813965141773, + 0.027911990880966187, + 0.0008403199608437717, + -0.05736023187637329, + 0.007845464162528515, + 0.10094092786312103, + -0.06058371067047119, + 0.014089441858232021, + 0.038132261484861374, + -0.011506977491080761, + -0.016614658758044243, + -0.06505867093801498, + -0.0033435611985623837, + 0.03163169324398041, + -0.042566388845443726, + 0.08961649239063263, + 0.02474232017993927, + 0.004860918037593365, + 0.020051240921020508, + 0.005838615354150534, + -0.0267366673797369, + -0.016912490129470825, + -0.06767590343952179, + 0.137917160987854, + 0.06183375418186188, + 0.002839596476405859, + -0.0751606747508049, + -0.019900521263480186, + 0.05900411307811737, + 0.0002964561281260103, + -0.0757521390914917, + -0.023973045870661736, + 0.02944762632250786, + 0.11183631420135498, + -0.033953357487916946, + -0.06368960440158844, + 0.027156000956892967, + 0.09929130971431732, + 0.04181322082877159, + 0.052422426640987396, + 0.099247507750988, + 0.10775365680456161, + -0.03121456503868103, + 0.013795128092169762, + 0.03532084822654724, + 0.06895013898611069, + 0.08076289296150208, + -0.004452466033399105, + 0.05283006280660629, + 0.0028274524956941605, + -0.003868196625262499, + -0.03429003059864044, + -0.022063929587602615, + -0.03299005329608917, + -0.02209332585334778, + -0.008881988003849983, + 0.023418426513671875, + 0.09854018688201904, + -0.02846275269985199, + 0.011028441600501537, + 0.049822621047496796, + -0.0425729975104332, + 0.02990562468767166, + 0.037396471947431564, + 0.014230488799512386, + 0.030722465366125107, + -0.09800295531749725, + -0.0838424414396286, + 0.03957703709602356, + -0.020706502720713615, + 0.0446818582713604, + 0.055889274924993515, + 0.04385174810886383, + -0.004087240435183048, + 0.08500337600708008, + 0.04163333773612976, + -0.022932028397917747, + -0.007839178666472435, + -0.05945534259080887, + 0.11431651562452316, + 0.10057404637336731, + -0.05528843402862549, + 0.030194278806447983, + -0.033868640661239624, + 0.043563853949308395, + 0.018794789910316467, + -0.12945233285427094, + -0.055467233061790466, + 0.024301959201693535, + 0.036756157875061035, + 0.008293507620692253, + 0.10468360036611557, + 0.008604477159678936, + 0.05039508268237114, + 0.07051946222782135, + -0.026770269498229027, + -0.03179869055747986, + -0.03430252894759178, + 0.036310695111751556, + -0.07879462838172913, + 0.04594317823648453, + 0.02598048560321331, + 0.024373015388846397, + -0.024430004879832268, + 0.09700754284858704, + 0.0073061189614236355, + -0.012344546616077423, + -0.03343578428030014, + 0.02182130143046379, + 0.055880945175886154, + -0.0009930426022037864, + 0.03629352152347565, + 0.02050788328051567, + 0.01343727670609951, + 0.05896482616662979, + 0.029373139142990112, + -0.019857658073306084, + -0.1102408915758133, + 0.03269043564796448, + 0.024887867271900177, + 0.06146380305290222, + -0.041399724781513214, + -0.02417270466685295, + -0.00849065463989973, + -0.06280441582202911, + 0.0016684045549482107, + -0.01296325959265232, + 0.05026625841856003, + 0.01690084859728813, + -0.006596662104129791, + 0.09954860806465149, + -0.0010454729199409485, + 0.012931148521602154, + 0.0148419588804245, + 0.004123309161514044, + 0.013352934271097183, + 0.07219018042087555, + -0.0987880676984787, + -0.06607095897197723, + 0.011087624356150627, + 0.015368583612143993, + 0.0029961182735860348, + 0.039021141827106476, + 0.05914757773280144, + -0.022443201392889023, + 0.0360303670167923, + -0.04600170999765396, + -0.02771448716521263, + -0.0938287079334259, + -0.04784083366394043, + -0.0161521527916193, + -0.046595387160778046, + -0.03091784566640854, + 0.061463065445423126, + -0.010084379464387894, + 0.07136915624141693, + -0.02919497899711132, + -0.047360315918922424, + -0.05189887806773186, + 0.03612043708562851, + 0.05802188441157341, + -0.04861808940768242, + 0.00468931719660759, + 0.07599315047264099, + 0.019815105944871902, + 0.008400033228099346, + 0.07461564242839813, + 0.07611342519521713, + -0.046885859221220016, + 0.001462546526454389, + -0.06221631169319153, + 0.11272623389959335, + 0.0724392980337143, + -0.05227070301771164, + -0.06521911919116974, + -0.03691735491156578, + -0.05702916905283928, + 0.017825230956077576, + -0.03583719953894615, + -0.0038431144785135984, + 0.04523668810725212, + -0.019796017557382584, + -0.0704396590590477, + -0.07848221808671951, + 0.05864795669913292, + -0.0761282667517662, + 0.0054170056246221066, + -0.0638924315571785, + 0.029236098751425743, + 0.06813766807317734, + 0.06036188453435898, + -0.03969743102788925, + 0.019263770431280136, + 0.029042627662420273, + -0.04254719242453575, + -0.0076590306125581264, + 0.030446184799075127, + 0.01466970331966877, + -0.09990754723548889, + -0.03380292281508446, + -0.06023750826716423, + 0.042855702340602875, + -0.0609348826110363, + 0.08603771775960922, + 0.014863325282931328, + -0.05509550869464874, + -0.05701571702957153, + -0.013307898305356503, + -0.012660689651966095, + 0.043151408433914185, + 0.054835908114910126, + 0.06222027167677879, + 0.03838126361370087, + -0.06193374842405319, + 0.0959349125623703, + 0.05506696552038193, + 0.0024874459486454725, + -0.0725620910525322, + -0.02287134900689125, + -0.009760105982422829, + 0.04641138017177582, + 0.03347271308302879, + -0.05269720405340195, + 0.017612092196941376, + 0.028211530297994614, + -0.03257675841450691, + 0.037428416311740875, + 0.08168216049671173, + 0.06732090562582016, + -0.11743035167455673 + ] + }, + "p245_295.wav": { + "name": "p245", + "embedding": [ + 0.05290251970291138, + 0.08866578340530396, + -0.014172036200761795, + 0.03047887608408928, + -0.0520898699760437, + 0.09630829095840454, + -0.13036440312862396, + 0.09883075952529907, + -0.05007344111800194, + 0.15091755986213684, + -0.04731025546789169, + 0.11103080213069916, + 0.011929815635085106, + -0.2080869972705841, + -0.029904644936323166, + 0.05783097445964813, + -0.08765420317649841, + -0.013555746525526047, + -0.08613084256649017, + -0.020421000197529793, + 0.03315795958042145, + 0.031439635902643204, + 0.04728688299655914, + -0.040597423911094666, + 0.02959975227713585, + 0.05423350632190704, + -0.017078906297683716, + 0.02361954376101494, + -0.004263904877007008, + -0.08039578795433044, + -0.06475915014743805, + 0.12110821902751923, + -0.028802108019590378, + 0.012491578236222267, + 0.05075102299451828, + -0.016131596639752388, + -0.007037237752228975, + -0.06531859934329987, + -0.028068624436855316, + 0.024828573688864708, + -0.02811659500002861, + 0.06960184872150421, + 0.03310901299118996, + -0.01496448926627636, + 0.056352488696575165, + -0.017263544723391533, + -0.039818596094846725, + -0.03839851915836334, + -0.08592745661735535, + 0.16973444819450378, + 0.08115704357624054, + -0.00883428193628788, + -0.06046222895383835, + -0.062448158860206604, + 0.09827961027622223, + -0.007846922613680363, + -0.14564767479896545, + -0.0326983705163002, + 0.07282871007919312, + 0.15935982763767242, + -0.015399754047393799, + -0.012290704995393753, + 0.024149175733327866, + 0.12355045229196548, + 0.01387656107544899, + 0.11754472553730011, + 0.05576509237289429, + 0.09296070039272308, + 0.0019340356811881065, + 0.051164157688617706, + 0.063483826816082, + 0.05950479209423065, + 0.043938253074884415, + -0.03550262749195099, + 0.041027605533599854, + -0.0240523349493742, + -0.037449248135089874, + -0.01831389218568802, + -0.025988414883613586, + 0.0010719280689954758, + -0.003004832658916712, + -0.021211858838796616, + 0.026496581733226776, + 0.0051918174140155315, + -0.03328615054488182, + 0.027924194931983948, + 0.030187323689460754, + -0.012468209490180016, + 0.051449112594127655, + 0.07266655564308167, + 0.03139781579375267, + 0.04979772865772247, + -0.04544838145375252, + -0.11425669491291046, + 0.03663652762770653, + 0.03352591395378113, + -0.0007319997530430555, + 0.052891675382852554, + 0.04801598936319351, + -0.031236916780471802, + 0.08309122920036316, + 0.06788374483585358, + -0.013497358188033104, + 0.0316450297832489, + -0.10186915844678879, + 0.11284466087818146, + 0.09876660257577896, + -0.002314150333404541, + 0.04355976730585098, + -0.039824169129133224, + 0.10397098958492279, + 0.08934269845485687, + -0.13914325833320618, + -0.05876270309090614, + 0.027994800359010696, + -0.03508389741182327, + 0.002701176330447197, + 0.10860823094844818, + 0.01188700832426548, + 0.011183975264430046, + 0.09440584480762482, + -0.08775536715984344, + -0.05217909440398216, + -0.03048260696232319, + 0.04033491015434265, + -0.10106860101222992, + 0.04850113391876221, + 0.037350866943597794, + -0.01968272402882576, + -0.007441813126206398, + 0.07533790171146393, + -0.021646160632371902, + -0.0017310635885223746, + 0.013509604148566723, + -0.037927478551864624, + 0.03929981589317322, + -0.036784231662750244, + 0.01562993973493576, + 0.055752623826265335, + 0.02243494987487793, + 0.03153522312641144, + -0.022017188370227814, + -0.02360452711582184, + -0.09017859399318695, + 0.012063869275152683, + 0.032551586627960205, + 0.058903768658638, + -0.005659362301230431, + 0.01366327702999115, + -0.03107360377907753, + -0.09516414254903793, + 0.06370949745178223, + -0.0582180917263031, + 0.06526194512844086, + 0.011835404671728611, + -0.02400565706193447, + 0.0968305915594101, + 0.015253373421728611, + -0.0012897446285933256, + -0.05431203544139862, + -0.025147121399641037, + 0.05116645246744156, + 0.044625066220760345, + -0.10463736206293106, + -0.04806501418352127, + 0.0033200837206095457, + -0.009190395474433899, + -0.014074652455747128, + 0.014267812483012676, + 0.053471509367227554, + 0.011426469311118126, + 0.039148926734924316, + -0.07803167402744293, + 0.016493376344442368, + -0.10991061478853226, + -0.04326704144477844, + -0.021416686475276947, + -0.0697161927819252, + -0.0099858483299613, + 0.10108533501625061, + 0.00226034433580935, + -0.011492466554045677, + -0.04758329689502716, + -0.06428387016057968, + -0.05141941457986832, + 0.06912635266780853, + 0.071955606341362, + 0.008642706088721752, + 0.036815255880355835, + 0.03473331779241562, + -0.008092626929283142, + 0.04696999490261078, + 0.054040051996707916, + 0.11258342862129211, + -0.01833399012684822, + 0.01800486631691456, + -0.08299419283866882, + 0.09973357617855072, + 0.09477218985557556, + -0.0731373280286789, + -0.10853767395019531, + -0.021285444498062134, + -0.05653847008943558, + 0.04914431646466255, + -0.04716038703918457, + -0.033013030886650085, + 0.04293026030063629, + -0.010498236864805222, + -0.08922325074672699, + -0.0917540043592453, + 0.11912663280963898, + -0.055475734174251556, + -0.02718234434723854, + -0.06428301334381104, + 0.04882869869470596, + 0.059380047023296356, + 0.026572778820991516, + -0.06824323534965515, + 0.03023555502295494, + 0.062191300094127655, + -0.05923333764076233, + 0.003709199372678995, + 0.02580970898270607, + 0.012109932489693165, + -0.11526891589164734, + -0.001838963944464922, + -0.07267390191555023, + 0.06847310811281204, + -0.07226385176181793, + 0.15533387660980225, + -0.004655337426811457, + -0.057828888297080994, + -0.062104471027851105, + 0.07144276797771454, + -0.02231518179178238, + 0.030752034857869148, + 0.059447064995765686, + 0.0737541913986206, + 0.035599373281002045, + -0.08204565942287445, + 0.08413322269916534, + 0.007639879826456308, + -0.0029468019492924213, + -0.06997314095497131, + -0.006133362650871277, + -0.041792504489421844, + 0.029643665999174118, + 0.00013725587632507086, + -0.10018723458051682, + 0.016295988112688065, + 0.027648676186800003, + -0.008695149794220924, + 0.06170041859149933, + 0.12852692604064941, + 0.058018703013658524, + -0.10498124361038208 + ] + }, + "p245_265.wav": { + "name": "p245", + "embedding": [ + 0.06141588091850281, + 0.0863850861787796, + -0.00772889144718647, + 0.006429128814488649, + -0.04527030885219574, + 0.05000637099146843, + -0.14279066026210785, + 0.1320023536682129, + -0.056966036558151245, + 0.14200010895729065, + -0.0780944675207138, + 0.12522992491722107, + -0.019226575270295143, + -0.17627684772014618, + -0.04489091783761978, + 0.05379902198910713, + -0.06346271932125092, + -0.04697665572166443, + -0.03622979298233986, + -0.04041717201471329, + 0.04363404959440231, + 0.053445830941200256, + 0.02921658754348755, + 0.01965351402759552, + 0.024492040276527405, + 0.07114890217781067, + 0.0007303707534447312, + 0.03748464584350586, + 0.008124567568302155, + -0.07660400867462158, + -0.03315816819667816, + 0.08190691471099854, + -0.028733596205711365, + 0.00120810407679528, + 0.03400120139122009, + -0.0018271005246788263, + 0.030979255214333534, + -0.08918013423681259, + -0.045051414519548416, + 0.007627800107002258, + -0.0354047492146492, + 0.06582905352115631, + 0.013605700805783272, + -0.030955586582422256, + 0.02764042653143406, + 0.021312881261110306, + -0.010659478604793549, + -0.06219052895903587, + -0.10788904130458832, + 0.16770416498184204, + 0.07065357267856598, + 0.022713806480169296, + -0.05951463431119919, + -0.08140042424201965, + 0.11799120903015137, + -0.02215052768588066, + -0.10574284195899963, + -0.02035026252269745, + 0.05858565866947174, + 0.18034133315086365, + -0.050429366528987885, + -0.048468366265296936, + 0.057583488523960114, + 0.11438995599746704, + 0.05638664960861206, + 0.064597487449646, + 0.10252750664949417, + 0.08532530069351196, + -0.016957592219114304, + -0.003322306089103222, + 0.056352391839027405, + 0.094028539955616, + 0.0768650472164154, + -0.007835718803107738, + 0.027863772585988045, + 0.022023748606443405, + -0.03772643208503723, + -0.005641659256070852, + -0.031409166753292084, + -0.02106664888560772, + -0.010805588215589523, + 0.013345547951757908, + 0.013816862367093563, + 0.02314738556742668, + -0.028986215591430664, + 0.06092710793018341, + 0.012848379090428352, + -0.02544492483139038, + 0.06588050723075867, + 0.01309226918965578, + 0.02681158483028412, + 0.0668388232588768, + -0.07371874153614044, + -0.0790446400642395, + 0.040636513382196426, + 0.015440435148775578, + 0.009443160146474838, + 0.06674832850694656, + 0.05638415366411209, + -0.035714857280254364, + 0.13445249199867249, + 0.051664482802152634, + 0.0027419414836913347, + 0.01137523166835308, + -0.09602459520101547, + 0.10689400136470795, + 0.10667445510625839, + -0.04308803379535675, + 0.051937036216259, + -0.041244879364967346, + 0.06648872047662735, + 0.06827705353498459, + -0.15634435415267944, + -0.10099723935127258, + 0.03558790683746338, + 0.022423533722758293, + 0.0029250963125377893, + 0.11810757219791412, + -0.009108901023864746, + 0.05770644173026085, + 0.10427931696176529, + -0.08280959725379944, + -0.05646088346838951, + -0.020561296492815018, + 0.057388439774513245, + -0.0824371948838234, + 0.07191649079322815, + 0.06053715944290161, + -0.004701548255980015, + 0.0077123260125517845, + 0.07615099847316742, + -0.02628055214881897, + -0.016148649156093597, + -0.010600737296044827, + -0.047366973012685776, + 0.004877621307969093, + -0.03101721592247486, + -0.026803234592080116, + 0.031856268644332886, + 0.048052143305540085, + 0.021104853600263596, + 0.005830016452819109, + -0.05748726427555084, + -0.13851776719093323, + 0.0194392092525959, + 0.027735350653529167, + 0.07751675695180893, + 0.0011948405299335718, + -0.025190945714712143, + -0.03790529817342758, + -0.04290200024843216, + -0.002937731798738241, + -0.017169035971164703, + 0.07741132378578186, + -0.02447914332151413, + 0.025848161429166794, + 0.09395711123943329, + 0.022960063070058823, + -0.004125075880438089, + -0.02629566192626953, + -0.018751507624983788, + 0.018105752766132355, + 0.04463201016187668, + -0.046960942447185516, + -0.09143471717834473, + -0.013318241573870182, + 0.04128715395927429, + -0.013524128124117851, + 0.06687702238559723, + 0.02442941442131996, + 0.01055664848536253, + 0.019471533596515656, + -0.0704900473356247, + 0.02539224922657013, + -0.11442510038614273, + -0.0675152838230133, + 0.009721603244543076, + -0.02033161371946335, + -0.01928350329399109, + 0.0666721984744072, + 0.027444487437605858, + 0.05788690596818924, + -0.038635265082120895, + -0.0817505270242691, + -0.08335334062576294, + 0.04522058367729187, + 0.07481241971254349, + 0.004759491421282291, + 0.023886388167738914, + 0.06340890377759933, + 0.015949996188282967, + 0.06555631756782532, + 0.057088494300842285, + 0.10183705389499664, + -0.004194200038909912, + 0.010300399735569954, + -0.051059022545814514, + 0.08699583262205124, + 0.06291025131940842, + -0.06870310008525848, + -0.07695413380861282, + -0.03393455967307091, + -0.07696463167667389, + 0.05199280008673668, + 0.011047711595892906, + 0.029042871668934822, + 0.023142365738749504, + -0.0053185345605015755, + -0.10475137084722519, + -0.07338863611221313, + 0.0940384715795517, + -0.05864279717206955, + -0.012832490727305412, + -0.07504788786172867, + 0.0514068566262722, + 0.11660397052764893, + 0.032704733312129974, + 0.004244822543114424, + -0.014622854068875313, + 0.022180471569299698, + -0.04421330988407135, + 0.0025789428036659956, + 0.04622779041528702, + 0.039170339703559875, + -0.11233170330524445, + 0.016567479819059372, + -0.09519881010055542, + 0.05243542045354843, + -0.046724990010261536, + 0.14224502444267273, + 0.006798848044127226, + -0.05118474364280701, + -0.11130020767450333, + 0.03792344033718109, + -0.026183992624282837, + 0.07226990908384323, + 0.02974279224872589, + 0.06457917392253876, + 0.04768770933151245, + -0.08781243860721588, + 0.0921948179602623, + 0.051670871675014496, + -0.04571196436882019, + -0.07563783973455429, + -0.06704097986221313, + -0.0293809175491333, + 0.011358235031366348, + -0.009815889410674572, + -0.05694393813610077, + -0.028338033705949783, + 0.005018941126763821, + 0.000653441995382309, + 0.07874833047389984, + 0.12727107107639313, + 0.04640696197748184, + -0.12975960969924927 + ] + }, + "p245_038.wav": { + "name": "p245", + "embedding": [ + 0.06439477205276489, + 0.11627796292304993, + -0.018857136368751526, + -0.011145049706101418, + -0.025873221457004547, + 0.049101777374744415, + -0.1650121510028839, + 0.13044854998588562, + -0.027952594682574272, + 0.15885549783706665, + -0.08671392500400543, + 0.11310912668704987, + -0.016927197575569153, + -0.14900633692741394, + -0.033550798892974854, + 0.018714770674705505, + -0.036722928285598755, + -0.014324760064482689, + -0.022692708298563957, + -0.02819386124610901, + 0.054330985993146896, + 0.05505513772368431, + 0.009814209304749966, + -0.018059393391013145, + 0.008099757134914398, + 0.05739843472838402, + 0.0039299605414271355, + 0.0375874787569046, + 0.014269409701228142, + -0.05008117854595184, + -0.025907929986715317, + 0.10695318877696991, + -0.03858288377523422, + 0.01771639473736286, + 0.03339051455259323, + -0.005038121249526739, + -0.0033116545528173447, + -0.07335206121206284, + 0.0052226148545742035, + 0.008138231001794338, + -0.018129779025912285, + 0.06418715417385101, + 0.017314670607447624, + -0.023593097925186157, + 0.026232846081256866, + 0.02572501264512539, + 0.011489740572869778, + -0.06279759854078293, + -0.07686542719602585, + 0.168763667345047, + 0.06735078990459442, + -0.00111345702316612, + -0.05967877432703972, + -0.03979071229696274, + 0.08087699115276337, + -0.018116841092705727, + -0.074142687022686, + -0.032986100763082504, + 0.054672449827194214, + 0.13474556803703308, + -0.03676103800535202, + -0.06252637505531311, + 0.05071040615439415, + 0.11635462939739227, + 0.026544924825429916, + 0.06582682579755783, + 0.10050135850906372, + 0.09124962985515594, + -0.026495974510908127, + -0.0028315093368291855, + 0.013345044106245041, + 0.06011321395635605, + 0.05108907073736191, + -0.025840725749731064, + 0.04631713032722473, + -0.020554862916469574, + -0.024403532966971397, + 0.014409735798835754, + -0.02092524617910385, + -0.045812174677848816, + -0.0015328023582696915, + 0.011809545569121838, + -0.012846815399825573, + 0.04751688241958618, + -0.04888773709535599, + 0.031168799847364426, + 0.024889757856726646, + -0.03402239829301834, + 0.07779605686664581, + 0.028156638145446777, + 0.04669620841741562, + 0.04032839462161064, + -0.08856549859046936, + -0.07841338217258453, + 0.06819409877061844, + -0.0027875984087586403, + 0.013581261038780212, + 0.08013671636581421, + 0.04817834496498108, + -0.02230714075267315, + 0.11979600042104721, + 0.04247979074716568, + -0.019626734778285027, + 0.0074136629700660706, + -0.09032045304775238, + 0.14209407567977905, + 0.1045672819018364, + -0.05363459512591362, + 0.036355264484882355, + -0.06699031591415405, + 0.047368377447128296, + 0.04370930418372154, + -0.12915927171707153, + -0.08462279289960861, + 0.05312618613243103, + 0.04017074406147003, + -0.00770151149481535, + 0.10889987647533417, + 0.0024326108396053314, + 0.02700762078166008, + 0.08302212506532669, + -0.0719294399023056, + -0.06971342861652374, + -0.037190478295087814, + 0.05197039246559143, + -0.09291410446166992, + 0.06969888508319855, + 0.07189285755157471, + -0.0032593084033578634, + 0.0007802906329743564, + 0.0739070475101471, + -0.010575811378657818, + 0.008843726478517056, + -0.017711874097585678, + -0.01732797920703888, + 0.020265422761440277, + -0.0185215063393116, + -0.007625448517501354, + -0.03312220424413681, + 0.040559276938438416, + 0.04554632306098938, + 0.008804453536868095, + -0.03333550691604614, + -0.11797411739826202, + 0.018385019153356552, + 0.046660587191581726, + 0.05299576371908188, + -0.011743198148906231, + -0.03923667594790459, + -0.04114318639039993, + -0.03889688849449158, + -0.021580945700407028, + -0.024570494890213013, + 0.05154753848910332, + -0.010507899336516857, + 0.018989600241184235, + 0.1126655861735344, + 0.027028437703847885, + 0.006295781582593918, + -0.027226507663726807, + -0.004959492944180965, + 0.026845797896385193, + 0.03674827516078949, + -0.051401712000370026, + -0.08731059730052948, + -0.02251921407878399, + 0.030141083523631096, + -0.006006236188113689, + 0.06439631432294846, + 0.05828789621591568, + 0.013215817511081696, + 0.03246751427650452, + -0.09111323207616806, + 0.023509180173277855, + -0.10091763734817505, + -0.050731733441352844, + -0.012368658557534218, + -0.01097035314887762, + -0.012854345142841339, + 0.079320028424263, + 0.0087592713534832, + 0.05264304205775261, + -0.03827190026640892, + -0.055144526064395905, + -0.07200711965560913, + 0.04566948115825653, + 0.09830781817436218, + -0.01894742250442505, + 0.022245291620492935, + 0.04311996325850487, + 0.0045318896882236, + 0.04133991897106171, + 0.06632495671510696, + 0.09142457693815231, + -0.010978798381984234, + -0.0015562947373837233, + -0.05638126656413078, + 0.07100266218185425, + 0.06787656992673874, + -0.0793527215719223, + -0.0751798003911972, + -0.029535826295614243, + -0.06890953332185745, + 0.004041846841573715, + -0.007809102535247803, + 0.02664385735988617, + 0.01961926743388176, + -0.01260912325233221, + -0.1013621985912323, + -0.08399906754493713, + 0.0572051964700222, + -0.06348063051700592, + 0.0034241406247019768, + -0.085358165204525, + 0.06912264227867126, + 0.09726061671972275, + 0.04884674400091171, + -0.0440090075135231, + -0.045738112181425095, + 0.011684160679578781, + -0.03165445476770401, + 0.01865381747484207, + 0.012331570498645306, + 0.06041670963168144, + -0.11584147810935974, + 0.0500732883810997, + -0.07793223857879639, + 0.05905335396528244, + -0.07582663744688034, + 0.13418897986412048, + 0.029116196557879448, + -0.06510952115058899, + -0.10680127143859863, + 0.04201100394129753, + -0.021726496517658234, + 0.0337463840842247, + 0.01406768523156643, + 0.027783513069152832, + 0.03574041277170181, + -0.10570641607046127, + 0.08106917887926102, + 0.04952608793973923, + -0.023613858968019485, + -0.09165468066930771, + -0.061425477266311646, + -0.02786344848573208, + 0.04794113337993622, + 0.02549189329147339, + -0.062400832772254944, + -0.04226354509592056, + 0.024085480719804764, + 0.004088684916496277, + 0.09167845547199249, + 0.1242532879114151, + 0.034429892897605896, + -0.14338025450706482 + ] + }, + "p245_217.wav": { + "name": "p245", + "embedding": [ + 0.05695503577589989, + 0.07583010196685791, + -0.016389742493629456, + 0.018431421369314194, + -0.040894389152526855, + 0.04120801016688347, + -0.1546989530324936, + 0.14659383893013, + -0.015423774719238281, + 0.13480515778064728, + -0.06425818055868149, + 0.12210576236248016, + 0.0032971855252981186, + -0.20861417055130005, + -0.013658901676535606, + 0.051295384764671326, + -0.028287667781114578, + -0.022000018507242203, + -0.03859560191631317, + -0.009296084754168987, + 0.0401318296790123, + 0.03239862620830536, + 0.001549319364130497, + -0.009849275462329388, + 0.020781300961971283, + 0.054708003997802734, + 0.0013669790932908654, + 0.046801090240478516, + 0.002334756776690483, + -0.029335247352719307, + -0.030995184555649757, + 0.10988393425941467, + -0.05703957751393318, + 0.017359916120767593, + 0.08969232439994812, + -0.016148347407579422, + -0.03298070654273033, + -0.0500020869076252, + -0.029819557443261147, + 0.003663610899820924, + -0.05784587189555168, + 0.07706837356090546, + 0.04449599236249924, + -0.008327395655214787, + 0.06315970420837402, + 0.055972568690776825, + 0.0015063886530697346, + -0.054875247180461884, + -0.09596193581819534, + 0.138583242893219, + 0.0606389194726944, + 0.00836460292339325, + -0.07635632157325745, + -0.04892273247241974, + 0.09018982946872711, + -0.027881067246198654, + -0.10177905112504959, + -0.03320343419909477, + 0.08164609968662262, + 0.14266330003738403, + -0.04466687887907028, + -0.04286735877394676, + 0.017054174095392227, + 0.10297219455242157, + 0.06363245099782944, + 0.10223960876464844, + 0.08230701088905334, + 0.12241026759147644, + -0.014631897211074829, + 0.025025956332683563, + 0.059896860271692276, + 0.0698169618844986, + 0.07432568073272705, + -0.023188291117548943, + 0.03386310115456581, + 0.02448231168091297, + -0.023037364706397057, + -0.012589871883392334, + -0.033811695873737335, + 0.01158376969397068, + 0.001882069744169712, + 0.02314615249633789, + 0.03053019940853119, + 0.03674817085266113, + -0.029230520129203796, + 0.05880194902420044, + 0.06158149614930153, + -0.01925525814294815, + 0.04934092238545418, + 0.03643257915973663, + -0.004568001255393028, + 0.062270596623420715, + -0.12189958244562149, + -0.1047031581401825, + 0.031784188002347946, + -0.015407895669341087, + 0.012638932093977928, + 0.06763593852519989, + 0.04626145958900452, + -0.005873025394976139, + 0.11342759430408478, + 0.05139974504709244, + -0.020759545266628265, + 0.05428338423371315, + -0.09721888601779938, + 0.1181439608335495, + 0.0793595165014267, + -0.031073730438947678, + 0.0436832532286644, + -0.07522480189800262, + 0.08172430098056793, + 0.06279304623603821, + -0.13817885518074036, + -0.06196904182434082, + 0.05790138989686966, + 0.010804906487464905, + -0.02299630269408226, + 0.1456695795059204, + -0.019599225372076035, + 0.03169623762369156, + 0.10761342942714691, + -0.08864068984985352, + -0.049610260874032974, + -0.017023073509335518, + 0.04631923884153366, + -0.08943146467208862, + 0.07312345504760742, + 0.024890314787626266, + 0.002169303596019745, + 0.0080955158919096, + 0.09349853545427322, + -0.0017502279952168465, + -0.01249099150300026, + -0.018021676689386368, + -0.0033812960609793663, + 0.03437964990735054, + -0.022166170179843903, + -0.002121887868270278, + 0.02192838490009308, + 0.029682371765375137, + 0.04028315842151642, + 0.010425377637147903, + -0.028041765093803406, + -0.1250048577785492, + 0.008147882297635078, + 0.034634895622730255, + 0.10226175934076309, + -0.01784675195813179, + -0.010427807457745075, + -0.05093197152018547, + -0.07607053220272064, + 0.003930846229195595, + -0.020810648798942566, + 0.055109620094299316, + 0.0025551526341587305, + 0.013672232627868652, + 0.10381767153739929, + 0.014201506972312927, + 0.01283918134868145, + -0.04554907977581024, + -0.027497630566358566, + 0.005998424254357815, + 0.06512703746557236, + -0.09334829449653625, + -0.06682019680738449, + -0.010354258120059967, + 0.004766783677041531, + -0.025279425084590912, + 0.037344325333833694, + 0.03449561819434166, + 0.036036308854818344, + 0.036823682487010956, + -0.08531507104635239, + 0.0018016083631664515, + -0.1394508183002472, + -0.0815252959728241, + -0.02151612378656864, + -0.0015938917640596628, + -0.012259655632078648, + 0.0693151131272316, + 0.0033840928226709366, + 0.052119988948106766, + -0.026590734720230103, + -0.06745981425046921, + -0.07988043129444122, + 0.06508442759513855, + 0.07555993646383286, + -0.010908445343375206, + 0.038952335715293884, + 0.04205147176980972, + -0.03055877983570099, + 0.03896339610219002, + 0.07675856351852417, + 0.11281244456768036, + -0.008918274194002151, + 0.03658916801214218, + -0.06202957034111023, + 0.12142127752304077, + 0.0861264169216156, + -0.06951456516981125, + -0.09837830066680908, + 0.005457638297230005, + -0.06019698828458786, + 0.01422215811908245, + -0.02416147291660309, + 0.005793252028524876, + 0.023187510669231415, + 0.0074515496380627155, + -0.08348351716995239, + -0.07295876741409302, + 0.05929452180862427, + -0.07700511068105698, + -0.003775406628847122, + -0.0873730480670929, + 0.047739215195178986, + 0.10900114476680756, + 0.024313991889357567, + -0.04424477368593216, + -0.03279256820678711, + 0.05699847638607025, + -0.03447532653808594, + -0.0061314767226576805, + 0.03095804899930954, + 0.035259686410427094, + -0.10586991906166077, + 0.004525955766439438, + -0.04176730290055275, + 0.05354766547679901, + -0.04886385798454285, + 0.13047727942466736, + -0.0014129416085779667, + -0.05769328773021698, + -0.061096373945474625, + 0.017582561820745468, + 0.010860014706850052, + 0.042609430849552155, + 0.027057643979787827, + 0.07789435982704163, + 0.04094276577234268, + -0.06281334161758423, + 0.12140953540802002, + 0.03557422012090683, + -0.03031773492693901, + -0.057436373084783554, + -0.06296677887439728, + -0.03395545110106468, + 0.021839486435055733, + 0.01674625836312771, + -0.09285302460193634, + -0.019008222967386246, + 0.026923567056655884, + -0.03376341238617897, + 0.02698184736073017, + 0.14462527632713318, + 0.05075627937912941, + -0.13280043005943298 + ] + }, + "p245_175.wav": { + "name": "p245", + "embedding": [ + 0.06346789002418518, + 0.07751361280679703, + -0.061345186084508896, + 0.0059855300933122635, + -0.06816507875919342, + 0.050359081476926804, + -0.1395430713891983, + 0.12861904501914978, + -0.0015069455839693546, + 0.13703063130378723, + -0.02308640256524086, + 0.12194506824016571, + 0.00845268089324236, + -0.14056716859340668, + -0.010019214823842049, + 0.016649287194013596, + -0.01854596473276615, + -0.010776717215776443, + -0.07068033516407013, + -0.052345190197229385, + 0.03140375390648842, + 0.02599193900823593, + 0.027596620842814445, + -0.06848743557929993, + 0.04689355939626694, + 0.047257475554943085, + -0.015023407526314259, + 0.013693500310182571, + -0.011562461964786053, + -0.07093634456396103, + -0.019092991948127747, + 0.08376101404428482, + -0.09498448669910431, + 0.008083469234406948, + 0.03845779597759247, + -0.04263698309659958, + -0.051721327006816864, + -0.037724271416664124, + 0.007709467317909002, + 0.023672278970479965, + -0.020013734698295593, + 0.08998864889144897, + 0.03202503174543381, + -0.030420318245887756, + 0.03258658945560455, + 0.001791088841855526, + -0.006609803065657616, + -0.03055848926305771, + -0.07270245999097824, + 0.13985535502433777, + 0.04490544646978378, + 0.010950845666229725, + -0.09802262485027313, + -0.03327689319849014, + 0.07671360671520233, + -0.03424697741866112, + -0.10362584888935089, + -0.035309724509716034, + 0.020134149119257927, + 0.10259351879358292, + -0.034387215971946716, + -0.04813402146100998, + 0.03244548290967941, + 0.08628875762224197, + 0.0844549611210823, + 0.0418822281062603, + 0.11302679032087326, + 0.12304940819740295, + -0.03118106722831726, + 0.042952124029397964, + 0.03557780757546425, + 0.0666932687163353, + 0.04517190530896187, + -0.014657807536423206, + 0.03452032059431076, + -0.046633247286081314, + 0.011902025900781155, + -0.06789163500070572, + -0.024341249838471413, + -0.037758272141218185, + -0.006508654914796352, + 0.018251894041895866, + 0.02663244679570198, + 0.05192834883928299, + -0.062040265649557114, + 0.02899051085114479, + 0.0837457999587059, + -0.0628102719783783, + 0.0670715719461441, + 0.06139007955789566, + 0.010444831103086472, + 0.042947880923748016, + -0.12700915336608887, + -0.07083833962678909, + 0.04285401478409767, + -0.0016075544990599155, + 0.04289363697171211, + 0.04432043060660362, + 0.037159513682127, + 0.003587345825508237, + 0.0998082309961319, + 0.0711551383137703, + -0.020768309012055397, + 0.003666960634291172, + -0.05657308176159859, + 0.1488042175769806, + 0.08466958999633789, + -0.04089108854532242, + 0.046057868748903275, + -0.05397312343120575, + 0.04399727284908295, + 0.03330078348517418, + -0.08752667903900146, + -0.07684275507926941, + 0.01432211697101593, + 0.006382961757481098, + -0.01619766280055046, + 0.13093313574790955, + 0.0027348671574145555, + 0.04161256179213524, + 0.08714604377746582, + -0.08063099533319473, + -0.04750104993581772, + -0.008746836334466934, + 0.04431828111410141, + -0.0802057683467865, + 0.05823252350091934, + 0.06678904592990875, + -0.006550130434334278, + 0.03733261674642563, + 0.09099490195512772, + 0.009603897109627724, + 0.02753298729658127, + 0.0021466300822794437, + 0.010971230454742908, + 0.04248962178826332, + 0.02431904710829258, + -0.01051582582294941, + 0.04359505698084831, + 0.028018495067954063, + 0.08911307901144028, + -0.007681314367800951, + 0.006342812441289425, + -0.09554597735404968, + 0.025849614292383194, + 0.03165729343891144, + 0.0675920695066452, + -0.057238973677158356, + -0.008086977526545525, + -0.026148777455091476, + -0.06742510199546814, + 0.017159990966320038, + 0.00811290554702282, + 0.06082607060670853, + 0.002425331389531493, + -0.011956543661653996, + 0.1416836380958557, + 0.04129130765795708, + 0.014940298162400723, + -0.03290032222867012, + 0.010639454238116741, + 0.00022791652008891106, + 0.07365251332521439, + -0.09108705073595047, + -0.05736298859119415, + -0.02716674469411373, + 0.013833167031407356, + -0.012481394223868847, + 0.08955036848783493, + 0.09413868188858032, + 0.0075254542753100395, + 0.03182124346494675, + -0.05812346190214157, + 0.013353829272091389, + -0.04923943802714348, + -0.03914391249418259, + -0.004920173902064562, + -0.055269740521907806, + -0.06653085350990295, + 0.09049324691295624, + 0.017146818339824677, + 0.053514279425144196, + -0.05546388775110245, + -0.06544967740774155, + -0.06264512985944748, + 0.023702749982476234, + 0.02649877779185772, + -0.060478150844573975, + -0.004596519283950329, + 0.05585126578807831, + -0.027569957077503204, + 0.019031893461942673, + 0.09241661429405212, + 0.06888863444328308, + -0.06637530773878098, + -0.00018554739654064178, + -0.05951085686683655, + 0.11070995032787323, + 0.07835686951875687, + -0.07178416848182678, + -0.07632406800985336, + -0.046406686305999756, + -0.051771312952041626, + -0.018572799861431122, + -0.02746032178401947, + 0.02444702759385109, + 0.056583959609270096, + -0.009931129403412342, + -0.08003847301006317, + -0.11080262809991837, + 0.08064588904380798, + -0.08228999376296997, + 0.024792760610580444, + -0.08462819457054138, + 0.028489451855421066, + 0.06298046559095383, + 0.026346109807491302, + -0.03569354489445686, + -0.023774772882461548, + 0.017565038055181503, + -0.005380216985940933, + 0.039895229041576385, + 0.060947537422180176, + 0.05775279179215431, + -0.06291563808917999, + -0.028329215943813324, + -0.04761023074388504, + 0.044990167021751404, + -0.023175090551376343, + 0.12658056616783142, + 0.026585116982460022, + -0.03660263866186142, + -0.07988627254962921, + 0.039842698723077774, + -0.037337832152843475, + 0.04629252478480339, + 0.06123068183660507, + 0.07132358849048615, + 0.04912687465548515, + -0.062370799481868744, + 0.08713943511247635, + 0.0624421201646328, + -0.027981458231806755, + -0.08425964415073395, + -0.060185227543115616, + -0.02597776986658573, + 0.04996762052178383, + 0.032887209206819534, + -0.0841042548418045, + 0.034382712095975876, + 0.028365720063447952, + -0.004861542489379644, + 0.03693706914782524, + 0.09719918668270111, + 0.0782008022069931, + -0.09507626295089722 + ] + }, + "p245_207.wav": { + "name": "p245", + "embedding": [ + 0.005714900325983763, + 0.06457733362913132, + 0.004187434911727905, + -0.021525951102375984, + -0.0065626781433820724, + 0.02792624942958355, + -0.14002498984336853, + 0.06731373071670532, + -0.01818159781396389, + 0.1356664001941681, + -0.05324416235089302, + 0.06830120831727982, + -0.034483082592487335, + -0.10734449326992035, + -0.007863657549023628, + 0.022485030815005302, + -0.05902174860239029, + -0.026858985424041748, + -0.0009185560047626495, + -0.08321932703256607, + 0.02623319998383522, + 0.005208658054471016, + 0.013213034719228745, + -0.04361630231142044, + -0.02752767875790596, + 0.07028138637542725, + 0.002143390476703644, + -0.0146803492680192, + -0.009182943031191826, + -0.04172234237194061, + 0.01835324987769127, + 0.06217292696237564, + -0.0318247489631176, + 0.004048257600516081, + 0.04170429706573486, + 0.007519562728703022, + -0.01493147574365139, + 0.01532783918082714, + 0.0287703275680542, + 0.06161107122898102, + -0.06338603794574738, + 0.07941804826259613, + 0.036901164799928665, + 0.014048144221305847, + 0.06236494705080986, + -0.01656649261713028, + -0.028536368161439896, + 0.034821610897779465, + -0.03549067676067352, + 0.10615966469049454, + 0.06451530009508133, + -0.017689723521471024, + -0.027370542287826538, + 0.012758234515786171, + 0.07373268902301788, + 0.0021164226345717907, + -0.11973743140697479, + -0.004540946334600449, + 0.03217212110757828, + 0.08122918009757996, + -0.040893152356147766, + -0.06576414406299591, + 0.014500039629638195, + 0.07964563369750977, + -0.0014269910752773285, + 0.062040407210588455, + 0.07595833390951157, + 0.07689637690782547, + -0.026510760188102722, + -0.040906645357608795, + 0.04899820685386658, + 0.05743949115276337, + 0.05673843249678612, + -0.024928472936153412, + 0.06329768896102905, + -0.034276604652404785, + 0.012909727171063423, + -0.02175063267350197, + -0.010366223752498627, + -0.04512477666139603, + -0.05208081007003784, + -0.02282804436981678, + 0.003028125036507845, + 0.045927394181489944, + -0.0029825950041413307, + -0.014140933752059937, + 0.06439346075057983, + -0.02593814767897129, + 0.03771301358938217, + 0.050027865916490555, + 0.014379791915416718, + 0.0230235792696476, + -0.05738743022084236, + -0.013791057281196117, + 0.003596492111682892, + -0.03006008267402649, + 0.07999237626791, + 0.036222681403160095, + 0.036017417907714844, + 0.03391757607460022, + 0.06323987990617752, + 0.04017386585474014, + -0.017293326556682587, + -0.019558804109692574, + -0.09338685870170593, + 0.09457619488239288, + 0.09398174285888672, + -0.06248994916677475, + 0.014357410371303558, + -5.624443292617798e-05, + 0.03288285806775093, + -0.015759091824293137, + -0.06893797963857651, + -0.023726005107164383, + 0.009546736255288124, + 0.08211015909910202, + 0.0017561540007591248, + 0.1265469193458557, + 0.016067221760749817, + 0.009599420242011547, + 0.09014800190925598, + -0.007023267447948456, + -0.026835009455680847, + -0.06230008974671364, + 0.018501663580536842, + -0.09613300859928131, + 0.06004936248064041, + 0.04435037449002266, + 0.03709470108151436, + 0.017522094771265984, + 0.09381219744682312, + 0.015421802178025246, + -0.004207766614854336, + -0.06147175654768944, + 0.00561306020244956, + 0.03227153420448303, + 0.020716127008199692, + 0.04621957987546921, + 0.054952818900346756, + 0.008233473636209965, + 0.1018039733171463, + 0.04387457296252251, + -0.013423305004835129, + -0.08311109244823456, + 0.021318968385457993, + 0.019052643328905106, + 0.01211455836892128, + -0.03850438445806503, + -0.03483520820736885, + -0.008608279749751091, + -0.07386927306652069, + -0.005466017872095108, + -0.03254125639796257, + 0.07076390087604523, + 0.0018328777514398098, + -0.034657251089811325, + 0.10914607346057892, + 0.03254685923457146, + -0.020932482555508614, + -0.007662458345293999, + -0.03775492310523987, + -0.036882780492305756, + 0.05189044028520584, + -0.16695855557918549, + -0.05213463306427002, + -0.03214156627655029, + 0.05830372869968414, + 0.04806680604815483, + 0.02171982452273369, + 0.09682385623455048, + -0.01593824289739132, + 0.034122928977012634, + 0.019758760929107666, + 0.0075564393773674965, + -0.05600166320800781, + -0.09161937236785889, + -0.0397486612200737, + -0.08457554876804352, + -0.03153682500123978, + 0.049176983535289764, + -0.05968166142702103, + 0.043516017496585846, + -0.016835235059261322, + -0.06165733188390732, + -0.052258171141147614, + 0.04853470250964165, + 0.022019289433956146, + -0.0495682992041111, + 0.008231607265770435, + 0.09220928698778152, + -0.01490121241658926, + 0.010350488126277924, + 0.02598405070602894, + 0.11678995937108994, + -0.07933177053928375, + 0.034209318459033966, + -0.05690230056643486, + 0.04964562505483627, + 0.06604070961475372, + -0.024854913353919983, + -0.04516545683145523, + -0.04230199381709099, + -0.033467452973127365, + 0.04247598350048065, + -0.05804087966680527, + -0.023922963067889214, + -0.02045528031885624, + 0.001905662938952446, + -0.043074484914541245, + -0.06196685880422592, + 0.04031866788864136, + -0.042273685336112976, + 0.01316012255847454, + -0.048686493188142776, + 0.014568752609193325, + -0.0010052993893623352, + 0.06246006488800049, + -0.06711981445550919, + 0.06435006111860275, + 0.013680890202522278, + -0.02490854635834694, + 0.025920730084180832, + 0.01244838535785675, + 0.048085447400808334, + -0.02043239399790764, + -0.07742955535650253, + -0.09716372936964035, + 0.026665080338716507, + -0.04094772785902023, + 0.04497615993022919, + 0.010428737848997116, + -0.038724079728126526, + 0.001246955245733261, + -0.029422644525766373, + -0.03412716090679169, + 0.021321220323443413, + 0.07773859053850174, + 0.07390090823173523, + 0.02460348978638649, + -0.0009994925931096077, + 0.09132890403270721, + 0.039713699370622635, + 0.02696148492395878, + -0.02657892368733883, + 0.013455790467560291, + -0.03710121288895607, + 0.006606810260564089, + 0.042904119938611984, + -0.09355448186397552, + 0.03492759168148041, + -0.006384681910276413, + 0.022673599421977997, + 0.025408102199435234, + 0.05549946799874306, + 0.03747066855430603, + -0.06575259566307068 + ] + }, + "p245_410.wav": { + "name": "p245", + "embedding": [ + 0.06138628348708153, + 0.11542730033397675, + 0.013618210330605507, + 0.0043386900797486305, + -0.02632880210876465, + 0.07874049246311188, + -0.12588030099868774, + 0.1312543749809265, + -0.06868959963321686, + 0.15047144889831543, + -0.07057936489582062, + 0.11297422647476196, + -0.024098871275782585, + -0.1708507537841797, + -0.04770872741937637, + 0.06264124810695648, + -0.04859438166022301, + 0.002145136473700404, + -0.02605314552783966, + 0.02059422805905342, + 0.03261344134807587, + 0.010087705217301846, + 0.050151657313108444, + -0.019247662276029587, + 0.036634813994169235, + 0.049692511558532715, + 0.022401003167033195, + 0.0738116055727005, + 0.031047113239765167, + -0.059921614825725555, + -0.029059529304504395, + 0.11814715713262558, + -0.03588221222162247, + 0.03566500544548035, + 0.08219851553440094, + 0.003195669502019882, + -0.0030348829459398985, + -0.07293616235256195, + -0.008689919486641884, + -0.01337275467813015, + -0.027580013498663902, + 0.06656365841627121, + 0.013780351728200912, + -0.007230506278574467, + 0.03034483641386032, + 0.02612973004579544, + -0.005744854919612408, + -0.04188116639852524, + -0.08389604091644287, + 0.13862720131874084, + 0.047218628227710724, + 0.00871156807988882, + -0.0780838280916214, + -0.09332337975502014, + 0.09848659485578537, + -0.018711350858211517, + -0.1180376410484314, + -0.03769146651029587, + 0.07095952332019806, + 0.1657940149307251, + -0.01791992597281933, + -0.026444222778081894, + 0.009156377986073494, + 0.11890661716461182, + 0.028830749914050102, + 0.12218604981899261, + 0.06318780034780502, + 0.08197610825300217, + 0.01749119721353054, + 0.05555614084005356, + 0.04741935059428215, + 0.05871226638555527, + 0.020235486328601837, + -0.01295311190187931, + 0.02967890165746212, + -0.010496165603399277, + -0.03945232182741165, + 0.02183038368821144, + -0.010659299790859222, + -0.016780901700258255, + -0.034632548689842224, + 0.007578754797577858, + -0.0019083371153101325, + 0.01640445366501808, + -0.008604365400969982, + 0.045778315514326096, + -0.009708210825920105, + -0.008862346410751343, + 0.07167281210422516, + 0.050735436379909515, + 0.020126227289438248, + 0.053325824439525604, + -0.05838897079229355, + -0.10883063077926636, + 0.003109367098659277, + 0.0016980597283691168, + 0.0108483312651515, + 0.07835330814123154, + 0.03138541430234909, + -0.014842085540294647, + 0.08973574638366699, + 0.06415779888629913, + 0.007397042587399483, + 0.026149261742830276, + -0.10174152255058289, + 0.10870009660720825, + 0.06329715251922607, + -0.019336581230163574, + 0.04037659615278244, + -0.04727781563997269, + 0.08257965743541718, + 0.09861951321363449, + -0.14841406047344208, + -0.08689580857753754, + 0.03101716935634613, + -0.00731317326426506, + -5.131463331053965e-05, + 0.09431871771812439, + -0.012281810864806175, + 0.001758349477313459, + 0.08549165725708008, + -0.08166474103927612, + -0.06902052462100983, + -0.026373399421572685, + 0.049318306148052216, + -0.06889750063419342, + 0.05453240126371384, + 0.031536247581243515, + -0.017920486629009247, + -0.02202051505446434, + 0.08621321618556976, + -0.006947343237698078, + 0.004568722099065781, + 0.034689128398895264, + -0.047042228281497955, + 0.0336570180952549, + -0.05507899448275566, + 0.029752647504210472, + 0.02880193293094635, + 0.0472036674618721, + 0.042597874999046326, + 0.007979786954820156, + -0.04230373352766037, + -0.08210102468729019, + -0.010056205093860626, + 0.06830783188343048, + 0.054157599806785583, + -0.015459793619811535, + -0.03502073884010315, + -0.025027073919773102, + -0.04586402326822281, + 0.024098828434944153, + -0.013705159537494183, + 0.08127333968877792, + 0.009081423282623291, + 0.0028022523038089275, + 0.11192270368337631, + -0.0038240584544837475, + 0.003933777566999197, + -0.06656401604413986, + -0.020861174911260605, + 0.03896436467766762, + 0.04738524183630943, + -0.08721837401390076, + -0.0633912906050682, + 0.02096131443977356, + -0.00287054106593132, + -0.015570729970932007, + 0.02618386410176754, + 0.04338506981730461, + 0.011953679844737053, + 0.05130385980010033, + -0.06290173530578613, + 0.009931986220180988, + -0.12084567546844482, + -0.06573657691478729, + -0.03267340362071991, + -0.02831471711397171, + -0.00558051560074091, + 0.07871821522712708, + 0.014146724715828896, + 0.03070511668920517, + 0.009243200533092022, + -0.07759562134742737, + -0.0696643590927124, + 0.07821585237979889, + 0.09075450897216797, + 0.007773653604090214, + 0.05091632157564163, + 0.037621937692165375, + -0.02680756151676178, + 0.0488693043589592, + 0.05618232488632202, + 0.08351285755634308, + -0.027692638337612152, + 0.005666225682944059, + -0.0912637710571289, + 0.0723094791173935, + 0.09403886646032333, + -0.11352118104696274, + -0.09781872481107712, + -0.018661251291632652, + -0.05001499876379967, + 0.03118080273270607, + -0.025698017328977585, + 0.006016460247337818, + 0.030104126781225204, + -0.036268360912799835, + -0.08565820753574371, + -0.09698472917079926, + 0.10658232867717743, + -0.07032830268144608, + -0.020525306463241577, + -0.05380408093333244, + 0.04795943200588226, + 0.06001579016447067, + 0.041961412876844406, + -0.027583729475736618, + 0.013682641088962555, + 0.046150289475917816, + -0.06453683227300644, + -0.03261297568678856, + 0.02873014286160469, + -0.006042590364813805, + -0.08512724936008453, + 0.03716982528567314, + -0.06654595583677292, + 0.07547879219055176, + -0.08775123953819275, + 0.1703391969203949, + -0.04174051806330681, + -0.08346080780029297, + -0.08242104947566986, + 0.016172874718904495, + -0.031128808856010437, + 0.016164379194378853, + 0.031993091106414795, + 0.05852271243929863, + 0.008681602776050568, + -0.07399953901767731, + 0.11765526235103607, + 0.012885339558124542, + -0.0033774811308830976, + -0.06865650415420532, + -0.04924626275897026, + -0.04310857504606247, + 0.0314045250415802, + -0.012140999548137188, + -0.08920430392026901, + 0.002188728656619787, + 0.014187728986144066, + -0.020532403141260147, + 0.061600007116794586, + 0.1364554464817047, + 0.05143813416361809, + -0.12346476316452026 + ] + }, + "p245_268.wav": { + "name": "p245", + "embedding": [ + 0.06310431659221649, + 0.08891062438488007, + 0.057315338402986526, + -0.008858971297740936, + 0.031672459095716476, + 0.02658783830702305, + -0.07486759126186371, + 0.07301227748394012, + 0.050209399312734604, + 0.0840902104973793, + -0.11808949708938599, + 0.04236871376633644, + -0.052433691918849945, + -0.12814535200595856, + -0.051364652812480927, + 0.020134927704930305, + -0.0855218842625618, + -0.00544728385284543, + -0.04091191291809082, + -0.025319723412394524, + 0.009479985572397709, + 0.01872437074780464, + 0.05280330032110214, + -0.022985313087701797, + 0.00765775702893734, + 0.026311120018363, + -0.01164957880973816, + 0.0036260634660720825, + 0.0226412583142519, + -0.02220800518989563, + 0.055221930146217346, + 0.031026408076286316, + 0.009599806740880013, + 0.03356578201055527, + 0.04034927859902382, + 0.0368569940328598, + 0.003639408852905035, + -0.03918633610010147, + -0.03377586230635643, + 0.06772951036691666, + -0.0343666709959507, + 0.04551781713962555, + 0.04054827243089676, + -0.037262845784425735, + 0.06552249193191528, + 0.017257429659366608, + -0.04550604522228241, + -0.017996232956647873, + -0.10338733345270157, + 0.1516112983226776, + 0.028339693322777748, + 0.040444083511829376, + -0.08263899385929108, + -0.009530819952487946, + 0.06374624371528625, + -0.021870657801628113, + -0.0972333624958992, + -0.0007095485925674438, + 0.06050730496644974, + 0.06377357989549637, + 0.0028351168148219585, + -0.027675624936819077, + -0.017260735854506493, + 0.042442962527275085, + 0.0008119605481624603, + 0.012130390852689743, + 0.08333855122327805, + 0.08334726095199585, + 0.00598897784948349, + 0.03944366052746773, + 0.06778285652399063, + -0.009524425491690636, + 0.04882204160094261, + -0.013460765592753887, + 0.007070770487189293, + -0.030017070472240448, + -0.02819071151316166, + -0.002772220876067877, + -0.0037603285163640976, + -0.020120825618505478, + 0.02786005474627018, + -0.02203180640935898, + 0.013314452953636646, + 0.028675565496087074, + -0.03209492936730385, + -0.01110602542757988, + -0.007717551663517952, + 0.04579617455601692, + 0.06896176934242249, + 0.05184534192085266, + 0.017284339293837547, + 0.033198677003383636, + -0.02694527618587017, + -0.10608524084091187, + -0.04547639191150665, + -0.029947763308882713, + 0.02002204954624176, + 0.005893515422940254, + 0.04120960831642151, + -0.0018764566630125046, + 0.09274991601705551, + 0.015705928206443787, + -0.017828630283474922, + -0.016607899218797684, + -0.10144427418708801, + 0.038542818278074265, + 0.08532913029193878, + -0.00023947053705342114, + 0.011417156085371971, + -0.012561132200062275, + 0.05507110059261322, + 0.07522506266832352, + -0.06105435639619827, + 0.006394127383828163, + 0.032938163727521896, + 0.04430108889937401, + 0.051403701305389404, + 0.08237497508525848, + 0.011897895485162735, + 0.01515619270503521, + 0.1135254055261612, + -0.06646746397018433, + 0.00946538895368576, + -0.0026697758585214615, + -0.000601351261138916, + -0.01414368487894535, + 0.026824194937944412, + 0.015875209122896194, + 0.008434277027845383, + -0.023086605593562126, + 0.02801133133471012, + 0.01820078119635582, + 0.007520037703216076, + -0.08520317077636719, + 0.021558113396167755, + 0.06758968532085419, + -0.028813021257519722, + 0.01090240478515625, + 0.06225084140896797, + 0.07790062576532364, + 0.009946642443537712, + 0.08515550941228867, + -0.07937370240688324, + -0.03198190778493881, + 0.016087235882878304, + 0.025300810113549232, + 0.016921505331993103, + -0.01847926713526249, + -0.041926927864551544, + -0.04404903203248978, + 0.010373488068580627, + 0.07995498180389404, + -0.022619884461164474, + 0.04849045351147652, + 0.051200851798057556, + -0.02890632301568985, + 0.09097415208816528, + -0.029832040891051292, + -0.014637788757681847, + -0.03373027592897415, + -0.06292355060577393, + -0.017978297546505928, + 0.025941012427210808, + -0.14169664680957794, + -0.028501026332378387, + -0.012339752167463303, + -0.02788308635354042, + 0.002613095100969076, + -0.0028673741035163403, + 0.05240756645798683, + -0.03357310593128204, + 0.005628190003335476, + -0.03130502998828888, + 0.00947977788746357, + -0.06364037096500397, + -0.08878746628761292, + 0.03150235116481781, + -0.018351947888731956, + 0.039620839059352875, + 0.08282946050167084, + -0.03261521831154823, + -0.0008367574773728848, + -0.03674977272748947, + -0.0852208212018013, + 0.008686866611242294, + 0.101239874958992, + 0.031720276921987534, + 0.005959689617156982, + 0.0405784547328949, + 0.0440894216299057, + -0.024530742317438126, + 0.05612146109342575, + -0.007912315428256989, + 0.07587370276451111, + -0.07104907929897308, + 0.008375139907002449, + -0.012511083856225014, + 0.04508136957883835, + 0.04878731817007065, + -0.03532436862587929, + -0.09116031229496002, + -0.04800465330481529, + -0.017353862524032593, + 0.021244684234261513, + -0.016801459714770317, + -0.025423120707273483, + 0.008604750968515873, + -0.04332951456308365, + -0.037103623151779175, + -0.0843779593706131, + 0.004076346755027771, + 0.012920545414090157, + -0.007513933815062046, + -0.050823867321014404, + 0.02897595427930355, + 0.017536111176013947, + -0.0022208113223314285, + -0.01085618231445551, + 0.06907113641500473, + -0.035663239657878876, + -0.04684930294752121, + -0.07966738194227219, + -0.028518524020910263, + 0.011889120563864708, + -0.022107306867837906, + -0.04321623593568802, + -0.048167552798986435, + 0.07959474623203278, + -0.015826363116502762, + 0.07123249769210815, + 0.009701437316834927, + -0.00923224724829197, + 0.0072501786053180695, + -0.011874960735440254, + -0.04539987072348595, + 0.028477970510721207, + 0.03939606994390488, + 0.0022410042583942413, + 0.03137281537055969, + -0.0145358145236969, + 0.06984752416610718, + 0.025273308157920837, + -0.004561700392514467, + -0.016134023666381836, + -0.0041047632694244385, + -0.05413687601685524, + -0.059700362384319305, + -0.028672901913523674, + -0.0455009862780571, + 0.044798754155635834, + -0.011599814519286156, + 0.03188484162092209, + 0.011966836638748646, + 0.0701262354850769, + 0.017792966216802597, + -0.0608154833316803 + ] + }, + "p245_020.wav": { + "name": "p245", + "embedding": [ + 0.020111050456762314, + 0.09247728437185287, + 0.025166435167193413, + 0.010333132930099964, + -0.056210409849882126, + 0.01853836700320244, + -0.09827360510826111, + 0.07573895156383514, + -0.04189908131957054, + 0.07756853103637695, + -0.05870659276843071, + 0.08700592815876007, + -0.06342567503452301, + -0.14062091708183289, + -0.031100889667868614, + 0.021081268787384033, + -0.03437665104866028, + -0.02160629630088806, + -0.04198909550905228, + -0.012814931571483612, + 0.01871916651725769, + -0.020449180155992508, + 0.035803817212581635, + 0.008470350876450539, + -0.03875792771577835, + 0.05794673413038254, + 0.0016769858775660396, + 0.019986871629953384, + 0.005749349948018789, + -0.02471870183944702, + 0.02758297324180603, + 0.06641179323196411, + -0.010039208456873894, + -0.005528332199901342, + 0.03912268579006195, + -0.005993373226374388, + -0.005713280290365219, + -0.05293441563844681, + -0.04953199625015259, + 0.014004185795783997, + -0.07651299983263016, + 0.030638379976153374, + 0.023359425365924835, + -0.0324578583240509, + 0.05405449867248535, + 0.0034008524380624294, + -0.03579028695821762, + -0.015064412727952003, + -0.08754132688045502, + 0.09980251640081406, + 0.06604974716901779, + -0.0009139559115283191, + -0.02642335742712021, + -0.038833267986774445, + 0.11125248670578003, + -0.03282087296247482, + -0.07986927032470703, + -0.04186466336250305, + 0.07153049111366272, + 0.1067778468132019, + -0.03292055428028107, + -0.035826176404953, + -0.011656848713755608, + 0.07207497954368591, + 0.053108539432287216, + 0.06990865617990494, + 0.07931245863437653, + 0.08371011912822723, + -0.03666648268699646, + -0.007143992930650711, + 0.06109270453453064, + 0.051477786153554916, + 0.022509783506393433, + -0.015039490535855293, + 0.021543193608522415, + 0.016744941473007202, + -0.026245316490530968, + 0.024499056860804558, + -0.007970703765749931, + 0.0026396973989903927, + -0.018890388309955597, + -0.009461496025323868, + -0.005383766256272793, + -0.013061519712209702, + -0.021321987733244896, + 0.04273631423711777, + 0.03139588236808777, + 0.011878791265189648, + 0.06219147890806198, + 0.05063939839601517, + 0.0008488788153044879, + 0.08594416081905365, + -0.04098690301179886, + -0.07568081468343735, + -0.017578821629285812, + -0.003560521174222231, + 0.016415735706686974, + 0.05457286164164543, + 0.0023028801660984755, + -0.010014718398451805, + 0.07237141579389572, + 0.02977786771953106, + -0.0027614531572908163, + 0.024141548201441765, + -0.11407139897346497, + 0.054244957864284515, + 0.04059650003910065, + -0.015274407342076302, + 0.006759863346815109, + -0.025715915486216545, + 0.09273432195186615, + 0.07683676481246948, + -0.03982778638601303, + -0.06374648213386536, + 0.03759436309337616, + 0.04261960834264755, + -0.00803883746266365, + 0.10744534432888031, + -0.017380472272634506, + 0.006272796541452408, + 0.11523531377315521, + -0.06526540219783783, + -0.03705465421080589, + -0.012595325708389282, + 0.010098084807395935, + -0.04520164430141449, + 0.0245953481644392, + 0.042069196701049805, + -0.022006560117006302, + 0.01372842863202095, + 0.08870820701122284, + -0.006402289029210806, + -0.013793490827083588, + -0.006970482878386974, + -0.059971489012241364, + 0.03013474866747856, + -0.0041718631982803345, + -0.015474086627364159, + 0.022079743444919586, + 0.08087258040904999, + 0.028789296746253967, + -0.0023215345572680235, + -0.02867100201547146, + -0.05714616924524307, + 0.023201212286949158, + 0.0642385333776474, + 0.040239740163087845, + 0.011647403240203857, + -0.02849597856402397, + -0.07064931839704514, + -0.013435274362564087, + 0.022055521607398987, + -0.04722315073013306, + 0.0829038918018341, + -0.023268667981028557, + 0.0057359253987669945, + 0.06697870790958405, + -0.003052075859159231, + -0.017235036939382553, + -0.05294032394886017, + -0.05445124953985214, + 0.01674816571176052, + 0.04757261276245117, + -0.07878684252500534, + -0.05606096237897873, + -0.05666513741016388, + 0.052628397941589355, + 0.026166167110204697, + 0.0031677584629505873, + 0.037842586636543274, + -0.01681971177458763, + 0.008235390298068523, + -0.053279027342796326, + 0.03407876938581467, + -0.04982725530862808, + -0.04811428114771843, + 0.00028219912201166153, + -0.007377403788268566, + 0.01042214222252369, + 0.03375440090894699, + -0.029170675203204155, + 0.02626769058406353, + -0.018943093717098236, + -0.1053246557712555, + -0.05474048852920532, + 0.04039070010185242, + 0.03152260184288025, + 0.0017168143531307578, + 0.04159450903534889, + 0.067286416888237, + -0.035605937242507935, + 0.045907825231552124, + 0.04507463425397873, + 0.08741877973079681, + -0.060339268296957016, + 0.022528639063239098, + -0.004920828156173229, + 0.042768143117427826, + 0.059048693627119064, + -0.07067345827817917, + -0.09288397431373596, + -0.023263832554221153, + -0.062192898243665695, + 0.025707727298140526, + -0.01939145103096962, + -0.021507736295461655, + 0.029672157019376755, + -0.005507215857505798, + -0.08770778030157089, + -0.0758291482925415, + 0.07726240158081055, + -0.03542296588420868, + 0.014739079400897026, + -0.06024390086531639, + 0.008896338753402233, + 0.047745928168296814, + 0.07181842625141144, + -0.005642815493047237, + 0.007414764724671841, + 0.039597287774086, + -0.0265686996281147, + -0.009603145532310009, + 0.025013327598571777, + 0.05142961069941521, + -0.026072543114423752, + 0.017455385997891426, + -0.04093378409743309, + 0.04691533371806145, + -0.007908816449344158, + 0.09570178389549255, + 0.01324513927102089, + -0.03373609855771065, + -0.04519186541438103, + 0.011305350810289383, + -0.017221562564373016, + 0.04737751930952072, + 0.009630376473069191, + 0.05060143396258354, + 0.027384359389543533, + -0.05469958111643791, + 0.11512438952922821, + 0.03068365715444088, + -0.007685971911996603, + -0.04486910253763199, + 0.015228860080242157, + -0.06025262176990509, + -0.01608678698539734, + -0.010557505302131176, + -0.057354506105184555, + -0.0034065209329128265, + -0.0003556075389496982, + -0.0018839886179193854, + 0.051765598356723785, + 0.12646539509296417, + 0.06309166550636292, + -0.05137067288160324 + ] + }, + "p245_163.wav": { + "name": "p245", + "embedding": [ + 0.05841439217329025, + 0.09662588685750961, + -0.0061739301308989525, + -0.002237170934677124, + -0.0277771707624197, + 0.10140382498502731, + -0.04726060479879379, + 0.07432474195957184, + -0.00906817615032196, + 0.08759608864784241, + -0.08986325562000275, + 0.05857470631599426, + -0.031229551881551743, + -0.11394838988780975, + -0.02688022330403328, + 0.04017500579357147, + -0.04897162318229675, + -0.00450885808095336, + -0.038108449429273605, + -0.023775113746523857, + 0.0035048499703407288, + 0.006729887332767248, + 0.018333856016397476, + -0.0008832204039208591, + 0.0207950659096241, + 0.0375790111720562, + -0.0007985268603079021, + 0.01566438376903534, + -0.001614327309653163, + -0.03306248039007187, + -0.03332936018705368, + 0.07491204142570496, + -0.030627798289060593, + 0.0007486430695280433, + 0.04377755522727966, + -0.002278407569974661, + 0.02718573808670044, + -0.09462835639715195, + -0.0294888224452734, + 0.033161405473947525, + -0.04029253125190735, + 0.06710030138492584, + 0.019457699730992317, + -0.00834108330309391, + -0.002293851226568222, + 0.020104432478547096, + -0.029140889644622803, + -0.028434645384550095, + -0.06606759130954742, + 0.1440230906009674, + 0.053341470658779144, + 0.005462430417537689, + -0.05329783260822296, + -0.036008354276418686, + 0.08846418559551239, + -0.0031364555470645428, + -0.06557545810937881, + -0.020512767136096954, + 0.048026930540800095, + 0.07501393556594849, + 0.01893289014697075, + -0.029027706012129784, + 0.009401940740644932, + 0.10228752344846725, + 0.015846794471144676, + 0.0614558681845665, + 0.06616979837417603, + 0.10708193480968475, + -0.005989402532577515, + 0.020386233925819397, + 0.07188090682029724, + 0.026576941832900047, + 0.04715946316719055, + -0.023954156786203384, + 0.044818129390478134, + -0.021003147587180138, + -0.019935499876737595, + 0.01245113741606474, + -0.0332430861890316, + -0.0432429164648056, + 0.03391849994659424, + 0.004320711828768253, + 0.009877056814730167, + 0.004860926419496536, + -0.04436563700437546, + 0.024806179106235504, + 0.013585629872977734, + 0.06439605355262756, + 0.0663529634475708, + 0.036417096853256226, + 0.03045489452779293, + 0.047612227499485016, + -0.05296152085065842, + -0.08916735649108887, + 0.03690622001886368, + 0.02019021287560463, + 0.00821962021291256, + 0.039982110261917114, + 0.0407865010201931, + -0.02024291828274727, + 0.08885294198989868, + 0.019455110654234886, + -0.0012448076158761978, + 0.011308285407721996, + -0.06887713074684143, + 0.07067835330963135, + 0.06961586326360703, + -0.008308272808790207, + 0.036000657826662064, + -0.015452384017407894, + 0.09051434695720673, + 0.07199264317750931, + -0.09637239575386047, + -0.04512724280357361, + 0.0006475374102592468, + -0.005851843860000372, + -0.006102154962718487, + 0.09125592559576035, + -0.030349669978022575, + 0.017558574676513672, + 0.0658513754606247, + -0.05648725479841232, + -0.006466813385486603, + 0.02142878621816635, + -0.011057816445827484, + -0.008932436816394329, + 0.007018874399363995, + 0.020267408341169357, + -0.0030883229337632656, + -0.036680594086647034, + 0.04770880192518234, + 0.010833981446921825, + 0.0029827263206243515, + -0.020794425159692764, + -0.004892662167549133, + 0.02534985914826393, + -0.0098141860216856, + -0.02050180360674858, + 0.023007284849882126, + 0.04670095443725586, + 0.01775568164885044, + -0.0026280980091542006, + -0.03649647533893585, + -0.07093364000320435, + 0.00864366628229618, + 0.007204011082649231, + 0.01648777350783348, + 0.014602276496589184, + -0.012358425185084343, + -0.03325846046209335, + -0.01984560303390026, + 0.021259360015392303, + -0.04084467515349388, + 0.04148033261299133, + 0.059877678751945496, + -0.05124928802251816, + 0.08260767161846161, + -0.0012720997910946608, + -0.0076899281702935696, + -0.03545330837368965, + -0.045284971594810486, + 0.034459054470062256, + 0.042196448892354965, + -0.053837403655052185, + -0.05046524852514267, + 0.0033853824716061354, + -0.039978958666324615, + -0.029626306146383286, + 0.006336470600217581, + 0.05984225124120712, + -0.011045667342841625, + -0.012948170304298401, + -0.08348678797483444, + 0.00969365332275629, + -0.07289309054613113, + -0.04234948754310608, + 0.040735792368650436, + -0.003280259668827057, + 0.00513502536341548, + 0.07622112333774567, + 0.0023975037038326263, + 0.006626129150390625, + -0.04571637511253357, + -0.06639240682125092, + 0.018399417400360107, + 0.06874015182256699, + 0.03879721835255623, + 0.014644498936831951, + 0.0469251349568367, + 0.06297238171100616, + 0.0021610483527183533, + 0.027958616614341736, + 0.039892397820949554, + 0.0855751782655716, + -0.023211505264043808, + 0.012845052406191826, + 0.0016873478889465332, + 0.082424595952034, + 0.021720226854085922, + -0.0700012668967247, + -0.05708795040845871, + -0.015773000195622444, + -0.038030482828617096, + 0.031374819576740265, + -0.004319166298955679, + 0.011662925593554974, + 0.023937970399856567, + -0.022233333438634872, + -0.07208476960659027, + -0.08108754456043243, + 0.05409551411867142, + -0.05163487046957016, + -0.02346532605588436, + -0.05439407378435135, + 0.04438807815313339, + 0.0686459168791771, + 0.032846350222826004, + -0.03742487356066704, + 0.03992089629173279, + 0.02078905701637268, + -0.028435055166482925, + -0.05065528303384781, + -0.006213558372110128, + 0.025874238461256027, + -0.06516356021165848, + 0.0005761708016507328, + -0.0627983808517456, + 0.06496476382017136, + -0.01604381576180458, + 0.09772796928882599, + 0.02124573104083538, + -0.011922435835003853, + -0.05777374655008316, + 0.034009236842393875, + -0.011686310172080994, + 0.03818716108798981, + 0.036626510322093964, + 0.01663830690085888, + 0.026756130158901215, + -0.06055809557437897, + 0.09657292068004608, + 0.022792678326368332, + -0.04041813313961029, + -0.05038847774267197, + 0.020560598000884056, + -0.04055638983845711, + -0.002742315409705043, + -0.0030675954185426235, + -0.07888146489858627, + 0.002169286832213402, + 0.037083711475133896, + 0.009535001590847969, + 0.01609252393245697, + 0.08241428434848785, + 0.05649503320455551, + -0.04198306053876877 + ] + }, + "p245_174.wav": { + "name": "p245", + "embedding": [ + 0.06053908169269562, + 0.08558464050292969, + -0.018965184688568115, + 0.0060822078958153725, + -0.058025211095809937, + 0.04829690605401993, + -0.15755316615104675, + 0.15240031480789185, + -0.044602636247873306, + 0.137856587767601, + -0.07941167801618576, + 0.12801824510097504, + -0.031585097312927246, + -0.18661773204803467, + -0.03130514174699783, + 0.05720669776201248, + -0.02270910143852234, + -0.035225965082645416, + -0.016919728368520737, + -0.03193862363696098, + 0.040963124483823776, + 0.019222203642129898, + 0.016967246308922768, + 0.02326958440244198, + 0.010996158234775066, + 0.07366849482059479, + -0.00920411478728056, + 0.028062259778380394, + -0.015596326440572739, + -0.014677177183330059, + -0.03142034634947777, + 0.10493294894695282, + -0.043143488466739655, + -0.01729748398065567, + 0.039214786142110825, + -0.015097531490027905, + -0.008306695148348808, + -0.06746401637792587, + 0.004913870710879564, + -0.02021232433617115, + -0.04165096580982208, + 0.06204339116811752, + -0.006956617813557386, + -0.012596439570188522, + 0.0532010979950428, + 0.011642388999462128, + -0.020254941657185555, + -0.036211512982845306, + -0.1110805869102478, + 0.12352153658866882, + 0.0714971274137497, + 0.02566937543451786, + -0.09412231296300888, + -0.03582538664340973, + 0.10712945461273193, + -0.023610206320881844, + -0.08403027802705765, + -0.05404921621084213, + 0.06401799619197845, + 0.16266614198684692, + -0.044669680297374725, + -0.046707071363925934, + 0.03989778459072113, + 0.10140331089496613, + 0.053454235196113586, + 0.07785943895578384, + 0.09924812614917755, + 0.09417085349559784, + -0.034340281039476395, + 0.015459941700100899, + 0.04340926557779312, + 0.05862921476364136, + 0.06078168377280235, + -0.03103979304432869, + 0.027251489460468292, + -0.014847335405647755, + -0.011730505153536797, + 0.0032020213548094034, + -0.031521931290626526, + -0.03952204808592796, + -0.021138817071914673, + 0.001015878631733358, + -0.00703272083774209, + 0.017776522785425186, + -0.046797264367341995, + 0.04575476422905922, + 0.054252494126558304, + -0.03515557944774628, + 0.07513362914323807, + 0.037983037531375885, + 0.004451265092939138, + 0.06522634625434875, + -0.09930534660816193, + -0.07327760756015778, + 0.0673816129565239, + -0.002339091617614031, + 0.012199750170111656, + 0.06315010786056519, + 0.036556266248226166, + -0.02129976451396942, + 0.1067400574684143, + 0.050953444093465805, + 0.0050945100374519825, + 0.02508370392024517, + -0.09362341463565826, + 0.1274382472038269, + 0.10374052822589874, + -0.05730605870485306, + 0.04155851528048515, + -0.03230087459087372, + 0.03375503048300743, + 0.06299611926078796, + -0.11127364635467529, + -0.07434968650341034, + 0.021692616865038872, + 0.017203565686941147, + -0.007193603552877903, + 0.11787600815296173, + -0.0026278397999703884, + 0.03939511626958847, + 0.10966388881206512, + -0.07608084380626678, + -0.07123257219791412, + -0.024885917082428932, + 0.045376308262348175, + -0.08241355419158936, + 0.08154720067977905, + 0.08450458198785782, + 0.025532372295856476, + 0.015833169221878052, + 0.07506553083658218, + -0.008143452927470207, + -0.013271811418235302, + -0.007883160375058651, + -0.040905918926000595, + 0.013033452443778515, + -0.014070827513933182, + -0.022556472569704056, + 0.030848516151309013, + 0.03128411993384361, + 0.048257872462272644, + 0.010475965216755867, + -0.005857937037944794, + -0.11833178997039795, + 0.005440273322165012, + 0.057075582444667816, + 0.06255810707807541, + -0.02172510325908661, + -0.032551079988479614, + -0.036506086587905884, + -0.047954998910427094, + -0.0022448524832725525, + -0.0046116653829813, + 0.07790759205818176, + -0.012245937250554562, + 0.01959780603647232, + 0.0952703207731247, + 0.037075772881507874, + 0.017934000119566917, + -0.0387270450592041, + -0.0182648878544569, + 0.020462749525904655, + 0.05743202939629555, + -0.081120565533638, + -0.07685534656047821, + -0.043960489332675934, + 0.05843103304505348, + -0.022667063400149345, + 0.06382974982261658, + 0.06521397829055786, + 0.0032231160439550877, + -0.0037277741357684135, + -0.08563626557588577, + 0.05547960847616196, + -0.09182780236005783, + -0.05968383699655533, + -0.005924026481807232, + -0.033981502056121826, + -0.023522641509771347, + 0.06392447650432587, + 0.019974686205387115, + 0.051858775317668915, + -0.052253663539886475, + -0.08003184199333191, + -0.08746812492609024, + 0.039200589060783386, + 0.08401018381118774, + -0.021278902888298035, + 0.043560490012168884, + 0.03696700558066368, + -0.02436467446386814, + 0.06060680001974106, + 0.06839732825756073, + 0.1203126609325409, + -0.029048707336187363, + 0.01523737981915474, + -0.05702322721481323, + 0.07002775371074677, + 0.08962385356426239, + -0.07633150368928909, + -0.09829647839069366, + -0.04284178465604782, + -0.05069104582071304, + 0.044792987406253815, + -0.01423504576086998, + 0.02151448279619217, + 0.049060989171266556, + -0.016450626775622368, + -0.12159506976604462, + -0.09810302406549454, + 0.08257488906383514, + -0.05797458440065384, + 0.0109921395778656, + -0.0930691733956337, + 0.06734311580657959, + 0.08471283316612244, + -0.008471265435218811, + -0.04161234200000763, + -0.02609671652317047, + 0.012457402423024178, + -0.013217940926551819, + 0.0031602447852492332, + 0.024377934634685516, + 0.04004962369799614, + -0.10128220915794373, + -0.0013495211023837328, + -0.08456601947546005, + 0.07523411512374878, + -0.03479805216193199, + 0.15023118257522583, + 0.008240321651101112, + -0.025441840291023254, + -0.10053075850009918, + 0.041153669357299805, + 0.00902634859085083, + 0.057733193039894104, + 0.03792540729045868, + 0.06747318059206009, + 0.015904121100902557, + -0.08649022877216339, + 0.08776737749576569, + 0.04737918823957443, + -0.049008697271347046, + -0.0898362547159195, + -0.03831641003489494, + -0.04605083167552948, + 0.024221740663051605, + -0.01501629687845707, + -0.0882963240146637, + -0.02549821138381958, + 0.01554032787680626, + 0.009332826361060143, + 0.07228730618953705, + 0.12009193003177643, + 0.03756209462881088, + -0.10823303461074829 + ] + }, + "p245_264.wav": { + "name": "p245", + "embedding": [ + 0.061170563101768494, + 0.0708121731877327, + -0.021257635205984116, + 0.01069109607487917, + -0.040154241025447845, + 0.07165251672267914, + -0.1463283896446228, + 0.1330227255821228, + -0.02723396196961403, + 0.15805542469024658, + -0.022783884778618813, + 0.11406855285167694, + 0.0049973949790000916, + -0.16913628578186035, + -0.01917419582605362, + 0.043057698756456375, + -0.05838467925786972, + -0.0277927964925766, + -0.05301709100604057, + -0.032037436962127686, + 0.04029052332043648, + 0.0528525710105896, + 0.032823655754327774, + -0.0474269762635231, + 0.03485497087240219, + 0.06042475998401642, + -0.018764130771160126, + 0.026501458138227463, + -0.024335134774446487, + -0.10746573656797409, + -0.033123914152383804, + 0.08541350066661835, + -0.056892432272434235, + 0.014906872063875198, + 0.024899205192923546, + -0.027130426838994026, + -0.0026952363550662994, + -0.06057935953140259, + -0.026362087577581406, + 0.024887191131711006, + -0.01079667080193758, + 0.07780696451663971, + 0.019829317927360535, + -0.0123857157304883, + 0.029647447168827057, + -0.0032248913776129484, + -0.015579422004520893, + -0.049463145434856415, + -0.09595844149589539, + 0.18051806092262268, + 0.07073637843132019, + 0.014501250348985195, + -0.06670577079057693, + -0.07222127914428711, + 0.08422359824180603, + -0.016195133328437805, + -0.117047518491745, + -0.02392880618572235, + 0.05013751983642578, + 0.15348616242408752, + -0.03439287096261978, + -0.056075289845466614, + 0.0506671741604805, + 0.09622706472873688, + 0.04493853449821472, + 0.054402466863393784, + 0.1061578094959259, + 0.08969119191169739, + -0.020474471151828766, + 0.011118492111563683, + 0.021666109561920166, + 0.08146689832210541, + 0.07790334522724152, + 0.00850432924926281, + 0.041391126811504364, + -0.019355138763785362, + -0.021714605391025543, + -0.0469542071223259, + -0.03980112448334694, + -0.02237231843173504, + 0.012850751169025898, + 0.017891250550746918, + 0.04626927524805069, + 0.0576079860329628, + -0.026667367666959763, + 0.03776039183139801, + 0.027250248938798904, + -0.03271190822124481, + 0.06143586337566376, + 0.017719008028507233, + 0.043225184082984924, + 0.06251790374517441, + -0.10524812340736389, + -0.0806269496679306, + 0.060623615980148315, + 0.019871611148118973, + 0.02424066886305809, + 0.05451924726366997, + 0.04766447842121124, + -0.03062250278890133, + 0.11262212693691254, + 0.03681463003158569, + -0.01660098508000374, + -0.002976907417178154, + -0.0903116762638092, + 0.11418511718511581, + 0.10884575545787811, + -0.024835417047142982, + 0.05217685550451279, + -0.0696776956319809, + 0.06651949882507324, + 0.04097208380699158, + -0.14030703902244568, + -0.09351084381341934, + 0.0297505222260952, + 0.006893041543662548, + 0.0013177674263715744, + 0.14301751554012299, + 0.020266547799110413, + 0.06687614321708679, + 0.10617867112159729, + -0.10518555343151093, + -0.036028746515512466, + -0.01152839045971632, + 0.062018394470214844, + -0.09279567748308182, + 0.06243874132633209, + 0.05241338163614273, + -0.02619791403412819, + 0.03498176485300064, + 0.06206202507019043, + -0.014992700889706612, + 0.005642796400934458, + -0.008870108984410763, + -0.03202883526682854, + 0.002469003200531006, + -0.028763562440872192, + -0.021907683461904526, + 0.014602002687752247, + 0.029262810945510864, + 0.04242852330207825, + -0.01813708245754242, + -0.05406168848276138, + -0.12713457643985748, + 0.020240655168890953, + 0.012656119652092457, + 0.05605028197169304, + -0.028521768748760223, + -0.007609011605381966, + -0.02470196783542633, + -0.0640157163143158, + 0.015513423830270767, + -0.02379671484231949, + 0.057583123445510864, + 0.0030892388895154, + 0.007311254274100065, + 0.100212462246418, + 0.042428627610206604, + 0.0025723862927407026, + -0.024301942437887192, + -0.03729318082332611, + 0.00872349739074707, + 0.0480252206325531, + -0.07708413898944855, + -0.06433989107608795, + -0.019324276596307755, + 0.014511507004499435, + -0.012205028906464577, + 0.0673813745379448, + 0.0568520613014698, + 0.030706971883773804, + 0.019773781299591064, + -0.04987790435552597, + 0.008274450898170471, + -0.09333652257919312, + -0.07631611824035645, + 0.01272669155150652, + -0.03200675547122955, + -0.040890756994485855, + 0.09280463308095932, + 0.015433721244335175, + 0.051651064306497574, + -0.07728773355484009, + -0.043639373034238815, + -0.06989146769046783, + 0.044980552047491074, + 0.05253284052014351, + -0.02048523537814617, + 0.005327143706381321, + 0.0474584624171257, + 0.012078986503183842, + 0.05485370010137558, + 0.07238372415304184, + 0.10454734414815903, + -0.016847819089889526, + 0.02153768762946129, + -0.07578417658805847, + 0.11806175112724304, + 0.09070637077093124, + -0.038415685296058655, + -0.08808137476444244, + -0.01870245486497879, + -0.09472069144248962, + 0.030040353536605835, + -0.0241569671779871, + 0.008800324983894825, + 0.04111138731241226, + 0.008878892287611961, + -0.1063944399356842, + -0.08212573826313019, + 0.08964437246322632, + -0.05568983778357506, + -0.007774032652378082, + -0.08109153807163239, + 0.05996863916516304, + 0.10082027316093445, + 0.03871668875217438, + -0.02253272570669651, + -0.019287575036287308, + 0.03597132861614227, + -0.024417150765657425, + 0.039355453103780746, + 0.04196571186184883, + 0.04748799651861191, + -0.10886409878730774, + 0.002635924145579338, + -0.0655687153339386, + 0.015472646802663803, + -0.04091915115714073, + 0.129876047372818, + 0.015315208584070206, + -0.041399046778678894, + -0.08035553246736526, + 0.061411887407302856, + -0.022989546880126, + 0.05643794685602188, + 0.018910111859440804, + 0.06725603342056274, + 0.07677512615919113, + -0.0904262587428093, + 0.07782033830881119, + 0.04176116734743118, + -0.03365887328982353, + -0.07620540261268616, + -0.06524284183979034, + -0.02479676902294159, + 0.03360970318317413, + -0.005805825814604759, + -0.06837321072816849, + -0.015479182824492455, + 0.023814361542463303, + 0.02572166547179222, + 0.05136411637067795, + 0.1195039451122284, + 0.028964992612600327, + -0.1339917778968811 + ] + }, + "p245_240.wav": { + "name": "p245", + "embedding": [ + 0.07945258915424347, + 0.037747014313936234, + -0.012152545154094696, + 0.007275744341313839, + -0.014487722888588905, + 0.03468915820121765, + -0.12849202752113342, + 0.11345958709716797, + 0.013497058302164078, + 0.08077574521303177, + -0.0872984230518341, + 0.0822061076760292, + 0.0016370187513530254, + -0.11219489574432373, + -0.030771251767873764, + 0.023793870583176613, + -0.014414789155125618, + 0.0005447063595056534, + -0.03974929824471474, + -0.011801485903561115, + 0.0245984997600317, + 0.059601105749607086, + 0.03990330919623375, + -0.031564414501190186, + 0.018286608159542084, + 0.03809820115566254, + 0.002444220706820488, + 0.023952443152666092, + 0.017742546275258064, + -0.0024557597935199738, + 0.023994049057364464, + 0.08010049164295197, + -0.042573895305395126, + 0.006394711323082447, + 0.03645411878824234, + 0.014577844180166721, + -0.010644922964274883, + -0.0915645956993103, + -0.007276620715856552, + 0.020632022991776466, + -0.030547045171260834, + 0.07944682240486145, + 0.05260749161243439, + -0.023790664970874786, + 0.02275526523590088, + 0.004906552378088236, + -0.008267361670732498, + -0.050835464149713516, + -0.11496752500534058, + 0.17796942591667175, + 0.01652267947793007, + 0.038168445229530334, + -0.12758690118789673, + -0.015560433268547058, + 0.05775945633649826, + -0.00300811231136322, + -0.03468114137649536, + -0.04003487899899483, + 0.02979302406311035, + 0.12023387849330902, + 0.020758872851729393, + -0.05356209725141525, + 0.03158777952194214, + 0.06444811820983887, + 0.023464851081371307, + 0.0087087731808424, + 0.13327732682228088, + 0.09698787331581116, + -0.0204075425863266, + 0.044966477900743484, + 0.03150532767176628, + 0.036849506199359894, + 0.03115699253976345, + -0.007958273403346539, + 0.026652969419956207, + -0.03630942106246948, + -0.031139474362134933, + 0.01702917367219925, + -0.017358968034386635, + -0.04958589747548103, + 0.02184557355940342, + -0.001390503835864365, + 0.01721680350601673, + 0.08281633257865906, + -0.07614994049072266, + 0.027157723903656006, + 0.0061440966092050076, + -0.0018952672835439444, + 0.07651069760322571, + 0.045599356293678284, + 0.007365130819380283, + 0.002516951411962509, + -0.05274444818496704, + -0.0972677543759346, + 0.008244259282946587, + -0.011233488097786903, + 0.056871604174375534, + 0.03745889291167259, + 0.035175494849681854, + -0.018397707492113113, + 0.09340852499008179, + 0.012594624422490597, + -0.010898916982114315, + -0.022984102368354797, + -0.060990530997514725, + 0.0979171022772789, + 0.12481649219989777, + 0.0024895616807043552, + 0.03210488706827164, + -0.06360240280628204, + 0.014394976198673248, + 0.041251152753829956, + -0.0887005627155304, + -0.043185044080019, + 0.05143744498491287, + 0.0423990860581398, + 0.06395760178565979, + 0.11878544092178345, + 0.026364324614405632, + 0.026161154732108116, + 0.06311032921075821, + -0.08785594999790192, + -0.03784794360399246, + 0.008842014707624912, + 0.024887248873710632, + -0.029665281996130943, + 0.023432079702615738, + 0.04108967259526253, + -0.0015136916190385818, + -0.0415712408721447, + 0.04753076285123825, + 0.0020745694637298584, + 0.031828783452510834, + -0.04287783056497574, + 0.03687690570950508, + 0.09085529297590256, + -0.005477588623762131, + -0.02045380137860775, + 0.03153949975967407, + 0.06132512167096138, + 0.032796140760183334, + 0.04804295673966408, + -0.06140383332967758, + -0.11391064524650574, + -0.008075371384620667, + 0.05906808376312256, + 0.043983783572912216, + -0.05965961515903473, + -0.06208455190062523, + -0.04980771616101265, + -0.02059316262602806, + 0.02420753613114357, + 0.009649348445236683, + 0.045536912977695465, + 0.038392938673496246, + -0.019172009080648422, + 0.08760308474302292, + -0.013360435143113136, + 0.011101778596639633, + -0.015698373317718506, + -0.00834093801677227, + 0.0266251377761364, + 0.03771558031439781, + -0.038136813789606094, + -0.06483782082796097, + -0.004165465943515301, + 0.0039901044219732285, + -0.020854417234659195, + -0.007284097373485565, + 0.04928981140255928, + -0.028580283746123314, + 0.006293036043643951, + -0.09898647665977478, + 0.020142365247011185, + -0.10804945975542068, + -0.0278143510222435, + 0.03615271672606468, + -0.01160081010311842, + 0.0078703872859478, + 0.1000448614358902, + 0.021497631445527077, + 0.05574941262602806, + -0.03412169963121414, + -0.07285572588443756, + -0.011138292029500008, + 0.05459606274962425, + 0.07091782987117767, + -0.03213128447532654, + 0.025681670755147934, + 0.02844378724694252, + 0.01579461060464382, + 0.02972789853811264, + 0.05796937644481659, + 0.053558215498924255, + -0.058030787855386734, + -0.06176538020372391, + -0.028024667873978615, + 0.10882784426212311, + 0.052942514419555664, + -0.06703929603099823, + -0.05992818623781204, + -0.023831607773900032, + -0.0470818430185318, + 0.0012477822601795197, + -0.011533379554748535, + 0.019788701087236404, + 0.05094805732369423, + -0.03088667429983616, + -0.11719512939453125, + -0.0796465203166008, + 0.016997097060084343, + -0.04180814325809479, + 0.010835467837750912, + -0.06469458341598511, + 0.03327431157231331, + 0.08082059025764465, + 0.013061001896858215, + -0.005433460231870413, + -0.03264967352151871, + -0.045302554965019226, + -0.07096290588378906, + -0.0670178011059761, + -0.021672651171684265, + 0.03161638230085373, + -0.0751357227563858, + 0.0054919826798141, + -0.04638237506151199, + 0.06188648194074631, + -0.04609490931034088, + 0.09754610061645508, + 0.013642609119415283, + -0.063230499625206, + -0.0821678638458252, + 0.0019817333668470383, + -0.02547764964401722, + 0.049427520483732224, + 0.04247651621699333, + -0.004833294078707695, + 0.018832392990589142, + -0.08992515504360199, + 0.0752616748213768, + 0.057467587292194366, + -0.034379757940769196, + -0.07014762610197067, + -0.022873571142554283, + -0.0086132250726223, + 0.034332435578107834, + -0.007526383735239506, + -0.013657476752996445, + 0.022340625524520874, + 0.012931828387081623, + -0.00490580964833498, + 0.03775404021143913, + 0.08461810648441315, + 0.038802288472652435, + -0.10554558038711548 + ] + }, + "p245_124.wav": { + "name": "p245", + "embedding": [ + 0.03170587867498398, + 0.08337774127721786, + 0.005988603457808495, + 0.022015362977981567, + -0.03809655085206032, + 0.04862849786877632, + -0.17864833772182465, + 0.11590668559074402, + -0.004251439590007067, + 0.11418318748474121, + -0.06332193315029144, + 0.12706343829631805, + 0.007978797890245914, + -0.21318550407886505, + -0.025420328602194786, + 0.052706990391016006, + -0.004550730809569359, + -0.032258786261081696, + 0.05641491338610649, + -0.0051533617079257965, + 0.05624686926603317, + 0.05355072021484375, + 0.030250616371631622, + -0.00528571056202054, + 0.04349508509039879, + 0.050252728164196014, + 0.02283732406795025, + 0.07225767523050308, + 0.026461178436875343, + -0.022242756560444832, + -0.04346585273742676, + 0.10946331173181534, + -0.04760754853487015, + 0.007036465220153332, + 0.04530885070562363, + 0.006022229790687561, + 0.0027556954883038998, + -0.03855211287736893, + 0.015568596310913563, + 0.007916059345006943, + -0.039558637887239456, + 0.0829901397228241, + 0.04689755290746689, + -0.006185658276081085, + 0.02769695781171322, + 0.06560301780700684, + 0.014573135413229465, + -0.04673599451780319, + -0.12139610946178436, + 0.14271366596221924, + 0.02954898774623871, + -0.010554103180766106, + -0.06857357174158096, + -0.06143921613693237, + 0.08245620131492615, + 0.004737256094813347, + -0.058175064623355865, + -0.01705184020102024, + 0.10011923313140869, + 0.13233692944049835, + -0.00607535894960165, + -0.06560482084751129, + 0.029593029990792274, + 0.11501942574977875, + 0.02782154642045498, + 0.08473536372184753, + 0.06236148253083229, + 0.10173208266496658, + -0.01613222248852253, + -0.024523122236132622, + 0.026860609650611877, + 0.07221655547618866, + 0.007049261592328548, + -0.03168938681483269, + 0.011986669152975082, + 0.0017140938434749842, + -0.014257064089179039, + 0.039836686104536057, + -0.0046739340759813786, + -0.007756643928587437, + -0.011570341885089874, + -0.016560228541493416, + -0.015016797930002213, + 0.027744995430111885, + -0.03683807700872421, + 0.038525283336639404, + 0.02958448976278305, + 0.024273499846458435, + 0.07799981534481049, + 0.01855200156569481, + 0.00717667443677783, + 0.05616503208875656, + -0.08753527700901031, + -0.06484109163284302, + 0.06581572443246841, + 0.0005181650631129742, + 0.028639022260904312, + 0.09741240739822388, + 0.035708338022232056, + -0.02880062162876129, + 0.12707358598709106, + 0.04755779355764389, + -0.016986733302474022, + 0.03022596426308155, + -0.08656430244445801, + 0.1457136869430542, + 0.06571777909994125, + -0.01340070553123951, + 0.057336896657943726, + -0.06582877784967422, + 0.05227863788604736, + 0.05573532357811928, + -0.14566341042518616, + -0.058580536395311356, + 0.05270298570394516, + 0.05646684765815735, + -0.028481710702180862, + 0.13403955101966858, + -0.011803973466157913, + 0.008416474796831608, + 0.08787916600704193, + -0.09145224094390869, + -0.08116000890731812, + -0.026079412549734116, + 0.036661870777606964, + -0.10347755253314972, + 0.06219000369310379, + 0.05738727003335953, + -0.015513967722654343, + -0.0009644592646509409, + 0.07257674634456635, + -0.012942686676979065, + 0.03661982715129852, + 0.005432886071503162, + -0.014694012701511383, + 0.021071139723062515, + -0.041059546172618866, + 0.027589980512857437, + 0.013847963884472847, + 0.0013940695207566023, + 0.053623657673597336, + 0.02588818408548832, + -0.041975319385528564, + -0.16352543234825134, + -0.0020953137427568436, + 0.06650181114673615, + 0.08624054491519928, + -0.016762496903538704, + -0.08626042306423187, + -0.06894153356552124, + -0.06362982094287872, + 0.02273893728852272, + 0.019530976191163063, + 0.06194871664047241, + -0.009592647664248943, + -0.010934796184301376, + 0.07108527421951294, + 0.027290258556604385, + -0.0021267954725772142, + -0.029089268296957016, + -0.05554259568452835, + 0.01095462217926979, + 0.015999842435121536, + -0.08508267998695374, + -0.063910573720932, + -0.02453514188528061, + 0.04000595211982727, + -0.02731701359152794, + 0.04292478784918785, + 0.06084790825843811, + 0.03235755115747452, + 0.04052947461605072, + -0.07176034152507782, + -0.003871637163683772, + -0.08743201196193695, + -0.080325186252594, + -0.03779982775449753, + 0.05357345938682556, + -0.02694448083639145, + 0.0908622145652771, + 0.02377660758793354, + 0.06642621755599976, + -0.02637840062379837, + -0.009373457171022892, + -0.08071614801883698, + 0.0342387780547142, + 0.07000908255577087, + 0.015808602795004845, + 0.07223792374134064, + 0.032930366694927216, + -0.05480942130088806, + 0.07242150604724884, + 0.05716224014759064, + 0.08938159048557281, + -0.025073565542697906, + 0.03268623724579811, + -0.03881744295358658, + 0.08041863143444061, + 0.09149853885173798, + -0.07416573166847229, + -0.07900340855121613, + -0.008463677950203419, + -0.08851130306720734, + 0.04195529967546463, + -0.021565068513154984, + 0.016400709748268127, + -0.007465182337909937, + -0.0030099733266979456, + -0.09339006245136261, + -0.09322210401296616, + 0.009683771058917046, + -0.05928615480661392, + -0.016967447474598885, + -0.0799696147441864, + 0.07500840723514557, + 0.10562212020158768, + 0.031572375446558, + -0.02784167230129242, + -0.06569699943065643, + 0.03901921212673187, + -0.039085812866687775, + 0.00012580468319356441, + 0.05484466999769211, + 0.04465609788894653, + -0.1222488060593605, + 0.02164340950548649, + -0.07860557734966278, + 0.045376431196928024, + -0.07000018656253815, + 0.15229500830173492, + 0.026605168357491493, + -0.06785998493432999, + -0.06001497805118561, + 0.02592596411705017, + -0.014781899750232697, + 0.02684714086353779, + 0.021956829354166985, + 0.02227221243083477, + 0.02568269520998001, + -0.06728293746709824, + 0.11107145249843597, + 0.05057144910097122, + -0.034160859882831573, + -0.07631144672632217, + -0.033525384962558746, + -0.030538246035575867, + 0.07135964184999466, + 0.03325861692428589, + -0.10000577569007874, + -0.054031096398830414, + 0.06677914410829544, + 0.007879644632339478, + 0.04934922605752945, + 0.1542784869670868, + 0.028544317930936813, + -0.1159692108631134 + ] + }, + "p245_140.wav": { + "name": "p245", + "embedding": [ + 0.032106462866067886, + 0.10258646309375763, + -0.03863545134663582, + 0.033056873828172684, + -0.047408685088157654, + 0.06788535416126251, + -0.10650399327278137, + 0.08408309519290924, + -0.051745232194662094, + 0.1439906358718872, + -0.08300479501485825, + 0.09365612268447876, + -0.03637726232409477, + -0.18144014477729797, + -0.023146042600274086, + 0.05650520324707031, + -0.06916254758834839, + -0.007570366840809584, + -0.10011936724185944, + -0.025479473173618317, + 0.033929843455553055, + 0.031131725758314133, + 0.036277081817388535, + -0.05022752285003662, + 0.00512390211224556, + 0.06359908729791641, + -0.013848669826984406, + 0.01940905675292015, + -0.002903031650930643, + -0.052057087421417236, + -0.054398469626903534, + 0.12623244524002075, + -0.02393820695579052, + 0.010701628401875496, + 0.041291724890470505, + 0.006800917908549309, + -0.023599712178111076, + -0.05122655630111694, + 0.0024571120738983154, + 0.01036273967474699, + -0.05014950782060623, + 0.04443689063191414, + 0.012572221457958221, + -0.027460843324661255, + 0.06866328418254852, + -0.024788357317447662, + -0.04691766947507858, + -0.02474340982735157, + -0.07061152160167694, + 0.16436609625816345, + 0.0976928323507309, + -0.019638914614915848, + -0.061314284801483154, + -0.061559274792671204, + 0.08832861483097076, + -0.0034463140182197094, + -0.15653139352798462, + -0.05037454515695572, + 0.07711216062307358, + 0.14175602793693542, + -0.007941044867038727, + -0.008940596133470535, + 0.019500672817230225, + 0.10958696901798248, + 0.010021863505244255, + 0.11309292912483215, + 0.051235757768154144, + 0.08879242092370987, + -0.0009065513731911778, + 0.04219233617186546, + 0.07376864552497864, + 0.046731702983379364, + 0.05028190091252327, + -0.035868722945451736, + 0.045829400420188904, + -0.023557033389806747, + -0.04582108557224274, + 0.004530781880021095, + -0.03949066251516342, + -0.03243137151002884, + -0.016561349853873253, + -0.02351978048682213, + -0.0009434190578758717, + -0.018667828291654587, + -0.02451932057738304, + 0.026422306895256042, + 0.06407799571752548, + -0.016930431127548218, + 0.05635236203670502, + 0.0839669480919838, + 0.013598821125924587, + 0.04602637141942978, + -0.04804681986570358, + -0.09976606070995331, + 0.010982569307088852, + 0.01683744788169861, + -0.009247435256838799, + 0.03935539722442627, + 0.04463207721710205, + -0.025607701390981674, + 0.08564548194408417, + 0.05055559426546097, + -0.004110095556825399, + 0.028953861445188522, + -0.09502167999744415, + 0.11557327210903168, + 0.11670465767383575, + -0.009867667220532894, + 0.016392692923545837, + -0.02477916143834591, + 0.08448526263237, + 0.08767551183700562, + -0.10353397578001022, + -0.04955824464559555, + 0.009557865560054779, + -0.04511438310146332, + -0.0010399797465652227, + 0.08924844861030579, + 0.011568907648324966, + -0.008110846392810345, + 0.11209669709205627, + -0.09427085518836975, + -0.06674505025148392, + -0.03728098422288895, + 0.02603866159915924, + -0.08407330513000488, + 0.036358293145895004, + 0.05977318435907364, + 0.004564437083899975, + -0.008266814984381199, + 0.08175940811634064, + -0.01644720509648323, + 0.012890792451798916, + 0.012213528156280518, + -0.04958978295326233, + 0.03690819814801216, + -0.03605053573846817, + -0.010096623562276363, + 0.06823625415563583, + 0.03848765790462494, + 0.04159748926758766, + -0.021061619743704796, + -0.005195945501327515, + -0.07666628062725067, + 0.012601872906088829, + 0.051536425948143005, + 0.03423471376299858, + -0.006671909708529711, + 0.024622339755296707, + -0.03014795482158661, + -0.08822052925825119, + 0.05422282591462135, + -0.06322105973958969, + 0.06704350560903549, + -0.013142933137714863, + -0.038733117282390594, + 0.12557129561901093, + 0.006835254840552807, + -0.01664559915661812, + -0.07807378470897675, + -0.028825603425502777, + 0.04406910389661789, + 0.04852832481265068, + -0.10376385599374771, + -0.06857436895370483, + 0.0002958932891488075, + -0.0040213665924966335, + 0.003764195367693901, + 0.028094250708818436, + 0.06835572421550751, + -0.004557745531201363, + 0.025327123701572418, + -0.07800909876823425, + 0.02716459333896637, + -0.10865183174610138, + -0.03786635398864746, + -0.018588313832879066, + -0.09402740001678467, + 0.014487672597169876, + 0.09529520571231842, + -0.008645059540867805, + -0.024473730474710464, + -0.03339703008532524, + -0.09031054377555847, + -0.06751986593008041, + 0.08582481741905212, + 0.0816536620259285, + 0.00204279413446784, + 0.058895424008369446, + 0.04315165430307388, + -0.025246107950806618, + 0.032529447227716446, + 0.05211769789457321, + 0.11295288801193237, + -0.027575239539146423, + 0.006363452412188053, + -0.0968601256608963, + 0.07241726666688919, + 0.09214647859334946, + -0.08937746286392212, + -0.09590311348438263, + -0.044798385351896286, + -0.03440181165933609, + 0.053835880011320114, + -0.051275983452796936, + -0.027386613190174103, + 0.05266179144382477, + -0.026864871382713318, + -0.09085887670516968, + -0.10242354869842529, + 0.12072047591209412, + -0.03682032600045204, + -0.012964700348675251, + -0.059800196439027786, + 0.03209955245256424, + 0.031012140214443207, + 0.031149979680776596, + -0.08320239186286926, + 0.0573907308280468, + 0.06590268015861511, + -0.05510091036558151, + 0.008635872043669224, + 0.008013262413442135, + 0.011779405176639557, + -0.08518533408641815, + -0.0024354278575628996, + -0.07600978761911392, + 0.0963110625743866, + -0.07082103937864304, + 0.1437510848045349, + -0.004958377219736576, + -0.044762689620256424, + -0.07384620606899261, + 0.08307861536741257, + -0.02379506081342697, + 0.03228211775422096, + 0.07300714403390884, + 0.07005840539932251, + 0.011233575642108917, + -0.08835166692733765, + 0.0944766253232956, + 0.0034095614682883024, + 0.0017764036310836673, + -0.05539702624082565, + -0.012404147535562515, + -0.06053109094500542, + 0.010805798694491386, + 0.011267581954598427, + -0.09127777814865112, + 0.02628166973590851, + 0.015385827049612999, + -0.01762445829808712, + 0.0643961951136589, + 0.1152602881193161, + 0.07447779923677444, + -0.08879270404577255 + ] + }, + "p245_004.wav": { + "name": "p245", + "embedding": [ + 0.057244203984737396, + 0.051239121705293655, + -0.006493191234767437, + 0.0046587856486439705, + -0.014370900578796864, + 0.04889317974448204, + -0.1505855768918991, + 0.11744870990514755, + -0.02296508103609085, + 0.10681253671646118, + -0.0728701651096344, + 0.08201058208942413, + -0.00767209567129612, + -0.16516365110874176, + -0.041001345962285995, + 0.04549176245927811, + -0.03501646965742111, + -0.027579933404922485, + -0.0311755258589983, + -0.008836065419018269, + 0.03076852858066559, + 0.0471736416220665, + -0.0001659514382481575, + 0.009035672061145306, + 0.012241963297128677, + 0.04364144057035446, + -0.0051876576617360115, + 0.026616103947162628, + -0.004384532570838928, + 0.00222670566290617, + 0.0057466886937618256, + 0.10275017470121384, + -0.03850072622299194, + 0.009041273966431618, + 0.05855696648359299, + 0.013160438276827335, + -0.006170983891934156, + -0.06826630234718323, + -0.020206864923238754, + 0.01614033244550228, + -0.05412178859114647, + 0.06679560244083405, + 0.051490284502506256, + 0.012002089992165565, + 0.027559733018279076, + 0.028028646484017372, + -0.00822331104427576, + -0.05394599959254265, + -0.09966468065977097, + 0.15860942006111145, + 0.04013802856206894, + 0.017943119630217552, + -0.0922805443406105, + -0.03724759444594383, + 0.0840732753276825, + -0.004480568692088127, + -0.07635274529457092, + -0.028386738151311874, + 0.06654711067676544, + 0.15144842863082886, + -0.006654726341366768, + -0.044933855533599854, + 0.027211084961891174, + 0.10585152357816696, + 0.034167565405368805, + 0.05825532227754593, + 0.09924449026584625, + 0.10678430646657944, + -0.01214150246232748, + 0.007117943838238716, + 0.06554816663265228, + 0.0388072170317173, + 0.05638907104730606, + -0.031034370884299278, + 0.025171399116516113, + 0.0017415564507246017, + -0.028098978102207184, + 0.009883041493594646, + -0.031081851571798325, + -0.024425338953733444, + 0.008048723451793194, + 0.008548153564333916, + 0.008548242971301079, + 0.062324102967977524, + -0.04049144312739372, + 0.03220600262284279, + 0.03287477791309357, + -0.006772756110876799, + 0.06856678426265717, + 0.059678614139556885, + 0.020501142367720604, + 0.03826247155666351, + -0.06959246844053268, + -0.08232609927654266, + 0.019670691341161728, + -0.0022162762470543385, + 0.03304598107933998, + 0.04985179752111435, + 0.03948202356696129, + -0.01198204979300499, + 0.09804360568523407, + 0.008098515681922436, + -0.0002941172569990158, + 0.00815909169614315, + -0.09762193262577057, + 0.09791037440299988, + 0.08280383795499802, + -0.02812999300658703, + 0.028420105576515198, + -0.058993589133024216, + 0.04419970139861107, + 0.0630403384566307, + -0.11383549869060516, + -0.052459198981523514, + 0.06827473640441895, + 0.04491904005408287, + 0.02058722823858261, + 0.13593994081020355, + 0.011091722175478935, + 0.021835027262568474, + 0.0744437426328659, + -0.07690946757793427, + -0.03526616841554642, + -0.006011516787111759, + 0.035444751381874084, + -0.04602028429508209, + 0.04425273463129997, + 0.03155776113271713, + 0.009502381086349487, + -0.024248994886875153, + 0.06927596032619476, + 0.00029218941926956177, + 0.00799286738038063, + -0.05023977532982826, + 0.01537276804447174, + 0.0709199532866478, + -0.009143814444541931, + 0.0015159700997173786, + 0.017510656267404556, + 0.04747721925377846, + 0.02624204196035862, + 0.03590153902769089, + -0.06248483061790466, + -0.11470767855644226, + -0.004738791845738888, + 0.04673238843679428, + 0.07807391881942749, + -0.02831854298710823, + -0.03755154460668564, + -0.0521104596555233, + -0.02906210348010063, + 0.010854961350560188, + -0.012914886698126793, + 0.06041932851076126, + 0.0300108902156353, + -0.012922441586852074, + 0.08949941396713257, + -0.00761021114885807, + 0.008169690147042274, + -0.02969200164079666, + -0.015670523047447205, + 0.009761703200638294, + 0.0460873618721962, + -0.05769249051809311, + -0.06362049281597137, + 0.0023356154561042786, + 0.013007670640945435, + -0.012593654915690422, + 0.01909327134490013, + 0.031186336651444435, + 0.0023230817168951035, + 0.007525439839810133, + -0.08917870372533798, + 0.014167784713208675, + -0.1180512011051178, + -0.059466756880283356, + 0.0179979857057333, + -0.012941773980855942, + 0.0009621425997465849, + 0.0856703668832779, + 0.015797816216945648, + 0.03727533668279648, + -0.03235930949449539, + -0.07736298441886902, + -0.04276653006672859, + 0.06202222406864166, + 0.07064232230186462, + -0.01980535127222538, + 0.025075972080230713, + 0.029654894024133682, + -0.005805652588605881, + 0.04072924703359604, + 0.05624306946992874, + 0.08792721480131149, + -0.05024013668298721, + -0.004494858905673027, + -0.03317595273256302, + 0.10440943390130997, + 0.04974979907274246, + -0.06304767727851868, + -0.07033741474151611, + 0.005304677411913872, + -0.047600824385881424, + 0.005815478973090649, + -0.019581694155931473, + 0.02000458724796772, + 0.02556712180376053, + -0.0237729549407959, + -0.11421756446361542, + -0.06738296151161194, + 0.03838469460606575, + -0.06318210810422897, + 0.00331917149014771, + -0.07444030046463013, + 0.04339484125375748, + 0.09425723552703857, + 0.02007249742746353, + -0.017583642154932022, + -0.021532295271754265, + 0.00424446165561676, + -0.05374759063124657, + -0.03725024685263634, + 0.004368685185909271, + 0.030680663883686066, + -0.08983869850635529, + -0.009140770882368088, + -0.058546602725982666, + 0.06307493895292282, + -0.049770474433898926, + 0.11064916849136353, + 0.011756817810237408, + -0.06703746318817139, + -0.0680784210562706, + -0.003931783139705658, + -0.0014525093138217926, + 0.05368048697710037, + 0.02675137296319008, + 0.04655763506889343, + 0.03197465464472771, + -0.04880567640066147, + 0.1013551652431488, + 0.05008199065923691, + -0.030540935695171356, + -0.05939823016524315, + -0.02996395155787468, + -0.014429381117224693, + 0.0277912225574255, + -0.006201401352882385, + -0.04977040737867355, + 0.004798954352736473, + 0.02141060307621956, + -0.009165780618786812, + 0.04160452261567116, + 0.11496564745903015, + 0.049962591379880905, + -0.12135732918977737 + ] + }, + "p245_169.wav": { + "name": "p245", + "embedding": [ + 0.057029567658901215, + 0.08338451385498047, + -0.01734072156250477, + 0.038463957607746124, + -0.05738261714577675, + 0.08633057028055191, + -0.13482148945331573, + 0.11841713637113571, + -0.0672321617603302, + 0.13830581307411194, + -0.04638269916176796, + 0.10157979279756546, + -0.02636878751218319, + -0.1886727213859558, + -0.02977590076625347, + 0.07470418512821198, + -0.07409191876649857, + -0.04069636017084122, + -0.07145829498767853, + -0.003243983956053853, + 0.01020850706845522, + 0.019279690459370613, + 0.037069663405418396, + 0.0052407956682145596, + 0.0376032255589962, + 0.0675714835524559, + -0.01886574551463127, + 0.043965794146060944, + 0.01845916360616684, + -0.06929130852222443, + -0.03393295407295227, + 0.09713002294301987, + -0.05504804104566574, + -0.008165374398231506, + 0.04820776730775833, + -0.007374047301709652, + -0.009997377172112465, + -0.06639043241739273, + -0.025024890899658203, + -0.00019767200865317136, + -0.05997892841696739, + 0.08781640231609344, + 0.0316188745200634, + -0.016193915158510208, + 0.04006927087903023, + -0.010623528622090816, + -0.02601289562880993, + -0.055488407611846924, + -0.10404876619577408, + 0.1514267474412918, + 0.07180014997720718, + 0.0007413647253997624, + -0.0652066171169281, + -0.06657960265874863, + 0.10237142443656921, + -0.016412867233157158, + -0.14202113449573517, + -0.07418593764305115, + 0.07471315562725067, + 0.16235481202602386, + -0.03485307842493057, + 0.0017970151966437697, + 0.02049916237592697, + 0.12295348942279816, + 0.0891043022274971, + 0.11592104285955429, + 0.06453748047351837, + 0.09670441597700119, + 0.006898547988384962, + 0.03541051968932152, + 0.08895045518875122, + 0.04363706707954407, + 0.04513071849942207, + -0.0030966391786932945, + 0.03634212166070938, + -0.009360048919916153, + -0.01824885979294777, + -0.015100239776074886, + 0.001968139549717307, + 0.0007456461898982525, + -0.0065033650025725365, + 0.00976000726222992, + 0.0030725549440830946, + 0.027006959542632103, + -0.027332181110978127, + 0.051742322742938995, + 0.02186988666653633, + -0.016360126435756683, + 0.06705182045698166, + 0.04799802601337433, + 0.012044823728501797, + 0.05976928398013115, + -0.051586706191301346, + -0.07648489624261856, + 0.015033205971121788, + 0.012112302705645561, + 0.007237287238240242, + 0.04883294925093651, + 0.029767388477921486, + -0.011775006540119648, + 0.11153513938188553, + 0.05835574492812157, + -0.004567086696624756, + 0.042401619255542755, + -0.09106332808732986, + 0.13329333066940308, + 0.04985566809773445, + -0.011587032116949558, + 0.05712316930294037, + -0.015900438651442528, + 0.06157167628407478, + 0.08525945246219635, + -0.14287279546260834, + -0.058312006294727325, + 0.047777220606803894, + -0.019714927300810814, + -0.022126100957393646, + 0.11741900444030762, + 0.010651095770299435, + 0.014133838005363941, + 0.10121676325798035, + -0.08445888012647629, + -0.05385727062821388, + -0.0005828676512464881, + 0.06015734001994133, + -0.0936628058552742, + 0.05022328346967697, + 0.04663466662168503, + -0.02767125703394413, + 0.004958232864737511, + 0.10852095484733582, + -0.009199898689985275, + -0.012001347728073597, + 0.02455342933535576, + -0.0366758368909359, + 0.0424298495054245, + -0.029558448120951653, + 0.006994884926825762, + 0.06476634740829468, + 0.013324043713510036, + 0.04511486366391182, + -0.025048796087503433, + -0.017671888694167137, + -0.1164848804473877, + 0.009979200549423695, + 0.03409599885344505, + 0.0973581075668335, + -0.011334016919136047, + 0.01386767067015171, + -0.04685838520526886, + -0.071267269551754, + 0.0312788300216198, + -0.027630312368273735, + 0.09542803466320038, + -0.015073378570377827, + -0.016483070328831673, + 0.10623481124639511, + 0.010985083878040314, + 0.02556760236620903, + -0.052403368055820465, + -0.01147842314094305, + 0.03319564089179039, + 0.069051593542099, + -0.07736990600824356, + -0.05358013138175011, + 0.017084144055843353, + 0.03136401250958443, + -0.0032287281937897205, + 0.04497158154845238, + 0.049444250762462616, + 0.007242798339575529, + 0.019563665613532066, + -0.06911169737577438, + 0.037850528955459595, + -0.07883647829294205, + -0.04935717582702637, + -0.013661636970937252, + -0.03714895620942116, + -0.02986377477645874, + 0.08735671639442444, + 0.022886047139763832, + 0.027004661038517952, + -0.017222218215465546, + -0.10290086269378662, + -0.07346212863922119, + 0.06715315580368042, + 0.06836634129285812, + -0.01346024964004755, + 0.031949419528245926, + 0.05771039426326752, + -0.027490884065628052, + 0.030200574547052383, + 0.049648597836494446, + 0.1049681082367897, + -0.03021169826388359, + 0.000637968594674021, + -0.07491497695446014, + 0.07274871319532394, + 0.08364419639110565, + -0.1093386709690094, + -0.061665698885917664, + -0.0003366165328770876, + -0.052009209990501404, + 0.035503089427948, + -0.0368952751159668, + 0.008412673138082027, + 0.055118121206760406, + -0.023035917431116104, + -0.0857432633638382, + -0.11854654550552368, + 0.11555308848619461, + -0.09432242810726166, + -0.014157623052597046, + -0.07081761956214905, + 0.03196137398481369, + 0.06329343467950821, + 0.044685300439596176, + -0.034853242337703705, + 0.015262763015925884, + 0.040013570338487625, + -0.04142971709370613, + 0.0026692869141697884, + 0.08138493448495865, + 0.005325319245457649, + -0.12417425960302353, + -0.006527154240757227, + -0.0869840532541275, + 0.07885152846574783, + -0.04930106922984123, + 0.16691666841506958, + -0.00925438292324543, + -0.040394578129053116, + -0.08786991238594055, + 0.0327502004802227, + -0.03264082968235016, + 0.06058737635612488, + 0.046394918113946915, + 0.08468504995107651, + 0.06254935264587402, + -0.03359273448586464, + 0.10600753873586655, + 0.03855243697762489, + -0.019256064668297768, + -0.05811845138669014, + -0.027169078588485718, + -0.060603175312280655, + 0.03630848228931427, + 0.004633820150047541, + -0.11385249346494675, + 0.01475260965526104, + 0.030828822404146194, + -0.033128850162029266, + 0.06024675443768501, + 0.1311168521642685, + 0.06941784173250198, + -0.10493093729019165 + ] + }, + "p245_313.wav": { + "name": "p245", + "embedding": [ + 0.02142168954014778, + 0.049886684864759445, + -0.04737619683146477, + 0.03312927111983299, + -0.0724833682179451, + 0.025982335209846497, + -0.10125404596328735, + 0.11237995326519012, + -0.016938187181949615, + 0.1240723729133606, + -0.057187702506780624, + 0.112162284553051, + -0.03423161059617996, + -0.17403459548950195, + 0.01640089601278305, + 0.04892852157354355, + -0.026485878974199295, + -0.036173831671476364, + -0.07597172260284424, + -0.05111394077539444, + 0.03252503648400307, + 0.04747713729739189, + 0.020761726424098015, + -0.030358506366610527, + 0.007589813321828842, + 0.08350235223770142, + -0.01819518767297268, + 0.008206741884350777, + -0.01724264770746231, + -0.06443729251623154, + -0.047212135046720505, + 0.07249844074249268, + -0.0695524588227272, + 0.0015347761800512671, + 0.036939892917871475, + -0.02219861000776291, + -0.0233923252671957, + -0.028293907642364502, + -0.02022527903318405, + 0.013947761617600918, + -0.07670603692531586, + 0.0656580775976181, + 0.029969459399580956, + -0.008617842569947243, + 0.05774608999490738, + 0.01041030790656805, + -0.02956559881567955, + -0.03704890236258507, + -0.09309722483158112, + 0.15833771228790283, + 0.07991187274456024, + -0.0236746184527874, + -0.04585540294647217, + -0.04510103911161423, + 0.08938821405172348, + -0.009732533246278763, + -0.12872089445590973, + -0.06405602395534515, + 0.07925166189670563, + 0.11178164929151535, + -0.0383923202753067, + -0.02909669280052185, + 0.028173549100756645, + 0.0861702412366867, + 0.0682726725935936, + 0.07643285393714905, + 0.07359316945075989, + 0.12612062692642212, + -0.02053428627550602, + 0.0034753684885799885, + 0.06644515693187714, + 0.072492316365242, + 0.0769229531288147, + -0.0005894061177968979, + 0.021558700129389763, + 0.0148240951821208, + -0.004262634553015232, + -0.0337153784930706, + -0.03341085463762283, + -0.01247863657772541, + 0.008604643866419792, + -0.0028425739146769047, + 0.02461695298552513, + 0.004409964196383953, + -0.012768270447850227, + 0.0563889816403389, + 0.09075548499822617, + -0.012507534585893154, + 0.05127323791384697, + 0.017769459635019302, + -0.019381878897547722, + 0.07396526634693146, + -0.09262778609991074, + -0.04413747042417526, + 0.01436161994934082, + 0.009535644203424454, + -0.00625405041500926, + 0.061799537390470505, + 0.04148771986365318, + -0.01660812273621559, + 0.12313693761825562, + 0.01719614677131176, + -0.00957178883254528, + 0.02671133726835251, + -0.07920872420072556, + 0.12369725108146667, + 0.09580912441015244, + -0.030843552201986313, + 0.029534852132201195, + -0.050272103399038315, + 0.0692659318447113, + 0.040993209928274155, + -0.11497996747493744, + -0.05024636536836624, + 0.008883442729711533, + -0.02624170482158661, + -0.04495804011821747, + 0.1271926760673523, + 0.004026795271784067, + 0.03888726234436035, + 0.14366203546524048, + -0.10506200790405273, + -0.05239793658256531, + -0.0012600127374753356, + 0.03464144468307495, + -0.08841224759817123, + 0.04136303812265396, + 0.05112754553556442, + 0.0011233033146709204, + 0.0516161248087883, + 0.09388379752635956, + -0.017144110053777695, + 0.008297096937894821, + -0.004844239912927151, + -0.03991668298840523, + 0.013256723992526531, + -0.015149693936109543, + -0.023126162588596344, + 0.07030081003904343, + 0.036917105317115784, + 0.05841983109712601, + -0.04302629083395004, + -0.021770363673567772, + -0.11899854242801666, + 0.03372488543391228, + 0.024367112666368484, + 0.06567483395338058, + -0.02054380625486374, + 0.02614741027355194, + -0.047301650047302246, + -0.10456521809101105, + 0.024221524596214294, + -0.02210712991654873, + 0.06742219626903534, + -0.054348863661289215, + -0.013684777542948723, + 0.11857466399669647, + 0.04056893661618233, + -0.007575647439807653, + -0.05717083811759949, + -0.052838217467069626, + -0.006848352961242199, + 0.04980176314711571, + -0.09226065129041672, + -0.07509312778711319, + -0.030813217163085938, + 0.04452245682477951, + -0.00011402818927308545, + 0.06774844229221344, + 0.04638856649398804, + 0.02343478798866272, + 0.006943050771951675, + -0.07064477354288101, + -0.0006331975455395877, + -0.06736897677183151, + -0.057541511952877045, + -0.011784079484641552, + -0.040383338928222656, + -0.021517081186175346, + 0.072021484375, + -0.006972750183194876, + 0.034830741584300995, + -0.04687376320362091, + -0.08340221643447876, + -0.08604519814252853, + 0.048979684710502625, + 0.035802148282527924, + -0.04106026515364647, + 0.03976672887802124, + 0.06865504384040833, + -0.0578019917011261, + 0.020123563706874847, + 0.05720202252268791, + 0.11239179223775864, + -0.03434876352548599, + 0.038983166217803955, + -0.05767671763896942, + 0.1055237203836441, + 0.07481840997934341, + -0.06025584787130356, + -0.06102852150797844, + -0.03594226390123367, + -0.06284841895103455, + 0.049261629581451416, + -0.04006171226501465, + -0.016076108440756798, + 0.029867185279726982, + 0.025098517537117004, + -0.07913494110107422, + -0.0733911395072937, + 0.0698438286781311, + -0.05169570446014404, + -0.005870752036571503, + -0.09513655304908752, + 0.032577306032180786, + 0.07396671921014786, + 0.05974563956260681, + -0.031271547079086304, + 0.00485944002866745, + 0.05167495459318161, + -0.014154445379972458, + 0.04268321394920349, + 0.07700317353010178, + 0.05174528807401657, + -0.08144669234752655, + -0.04967574402689934, + -0.06901288032531738, + 0.03783658891916275, + -0.03139082342386246, + 0.11470809578895569, + 0.014636139385402203, + -0.02812395617365837, + -0.06898641586303711, + 0.051667165011167526, + -0.005063525401055813, + 0.06066303700208664, + 0.04841357469558716, + 0.07028861343860626, + 0.059153005480766296, + -0.04929915815591812, + 0.13303810358047485, + 0.0391136072576046, + -0.031435348093509674, + -0.04060107469558716, + -0.05390309542417526, + -0.052223604172468185, + 0.012352163903415203, + 0.034251339733600616, + -0.09305623173713684, + 0.007786917500197887, + 0.02105364017188549, + -0.018030185252428055, + 0.04245876520872116, + 0.11875030398368835, + 0.08289225399494171, + -0.09679828584194183 + ] + }, + "p245_189.wav": { + "name": "p245", + "embedding": [ + 0.054061584174633026, + 0.11470216512680054, + 0.016316469758749008, + -0.020602762699127197, + -0.02756618522107601, + 0.06860370934009552, + -0.15209344029426575, + 0.12005740404129028, + -0.060834091156721115, + 0.14446377754211426, + -0.09283483028411865, + 0.10139843076467514, + -0.014834349974989891, + -0.16928303241729736, + -0.05371050536632538, + 0.050717901438474655, + -0.04537893086671829, + -0.010936446487903595, + -0.01692710630595684, + -0.027092676609754562, + 0.03606000542640686, + 0.04401242733001709, + 0.04083456099033356, + -0.011781331151723862, + 0.051066093146800995, + 0.0534324124455452, + 0.03273087739944458, + 0.07584463804960251, + 0.02319362759590149, + -0.05936663597822189, + -0.03450694680213928, + 0.10983429849147797, + -0.02830195426940918, + 0.011660071089863777, + 0.0442812405526638, + 0.002715721260756254, + 0.034936338663101196, + -0.08276695758104324, + -0.007814133539795876, + 0.009511386975646019, + -0.006412091664969921, + 0.07810306549072266, + 0.027308408170938492, + -0.0023602754808962345, + 0.016765834763646126, + 0.03881479799747467, + 0.011776605620980263, + -0.07582377642393112, + -0.09905959665775299, + 0.1619507074356079, + 0.04109371826052666, + 0.011514004319906235, + -0.06973206996917725, + -0.08052308857440948, + 0.10235860198736191, + -0.023670658469200134, + -0.08146195113658905, + -0.033827897161245346, + 0.07704507559537888, + 0.15914320945739746, + -0.040653541684150696, + -0.05438581109046936, + 0.034578584134578705, + 0.10603852570056915, + 0.00698121590539813, + 0.08897261321544647, + 0.07400938123464584, + 0.060290850698947906, + 0.009071099571883678, + 0.014636531472206116, + 0.02936544641852379, + 0.06479693949222565, + -0.0038491198793053627, + -0.017406105995178223, + 0.021649464964866638, + -0.004924245178699493, + -0.03714916855096817, + 0.0400061160326004, + -0.010739690624177456, + -0.014694343321025372, + -0.012363161891698837, + 0.01900310069322586, + -0.010543467476963997, + 0.008182458579540253, + -0.02884434163570404, + 0.045528560876846313, + -0.023044809699058533, + -0.002590528456494212, + 0.09047289937734604, + 0.012260100804269314, + 0.016220485791563988, + 0.034721896052360535, + -0.05224500596523285, + -0.09895993769168854, + 0.03114529699087143, + 0.016769982874393463, + -0.001952069578692317, + 0.06945250928401947, + 0.031156614422798157, + -0.039112742990255356, + 0.12584392726421356, + 0.05463337153196335, + 0.0014311475679278374, + 0.024224836379289627, + -0.09696173667907715, + 0.12023141235113144, + 0.08631692826747894, + -0.0130640072748065, + 0.05441105365753174, + -0.053509727120399475, + 0.05512527748942375, + 0.07659163326025009, + -0.1541886329650879, + -0.09999258816242218, + 0.031785473227500916, + 0.032652467489242554, + -0.003077820874750614, + 0.08291192352771759, + -0.020125795155763626, + 0.0013200268149375916, + 0.08556358516216278, + -0.08341815322637558, + -0.0733201652765274, + -0.0185023732483387, + 0.052630871534347534, + -0.07558268308639526, + 0.039250582456588745, + 0.07296265661716461, + -0.023450978100299835, + -0.003632880514487624, + 0.0705694928765297, + -0.0021453395020216703, + 0.0062775034457445145, + 0.016538191586732864, + -0.033143579959869385, + 0.018510211259126663, + -0.04315420985221863, + -0.0027942857705056667, + 0.021535461768507957, + 0.06784075498580933, + 0.02893092855811119, + 0.021419523283839226, + -0.06008894369006157, + -0.11445252597332001, + -0.009073866531252861, + 0.034023817628622055, + 0.05537131428718567, + -0.012290950864553452, + -0.035908497869968414, + -0.05667175352573395, + -0.04714053124189377, + -0.00381668983027339, + 0.005961798131465912, + 0.08780786395072937, + -0.0020860484801232815, + 0.022010212764143944, + 0.09874808043241501, + 0.024450024589896202, + -0.004167753271758556, + -0.054217346012592316, + -0.013665186241269112, + 0.03161023557186127, + 0.02077224850654602, + -0.046125851571559906, + -0.07084117829799652, + 0.008410995826125145, + 0.024053949862718582, + -0.02418225072324276, + 0.041069842875003815, + 0.031204944476485252, + 0.022411314770579338, + 0.05253579840064049, + -0.07542093843221664, + 0.03250299021601677, + -0.10383333265781403, + -0.04506240412592888, + -0.004484906792640686, + 0.007167072035372257, + -0.028640177100896835, + 0.09136617183685303, + 0.017007891088724136, + 0.04663955792784691, + -0.008205385878682137, + -0.0667840987443924, + -0.0615413598716259, + 0.061117734760046005, + 0.0996965765953064, + 0.0084078935906291, + 0.04220139607787132, + 0.032252345234155655, + -0.0048997774720191956, + 0.06294463574886322, + 0.06534877419471741, + 0.07824238389730453, + -0.0006872769445180893, + -0.01005035825073719, + -0.047618985176086426, + 0.06074374541640282, + 0.04725376516580582, + -0.10643108189105988, + -0.07524313032627106, + -0.0251776035875082, + -0.06120811402797699, + 0.042097002267837524, + 0.008933242410421371, + 0.018248479813337326, + 0.0032928939908742905, + -0.019674506038427353, + -0.08447685837745667, + -0.0873546451330185, + 0.061360131949186325, + -0.05344153568148613, + -0.023623239248991013, + -0.054395854473114014, + 0.05509696528315544, + 0.09705829620361328, + 0.05161996930837631, + 0.0072556789964437485, + -0.03857619687914848, + 0.022206325083971024, + -0.07385842502117157, + -0.016611680388450623, + 0.02502818964421749, + 0.013440942391753197, + -0.08975663036108017, + 0.0679871141910553, + -0.0937887653708458, + 0.06893813610076904, + -0.055279821157455444, + 0.1566605567932129, + 0.004919194150716066, + -0.06815310567617416, + -0.10012626647949219, + 0.015767451375722885, + -0.0593147873878479, + 0.028425073251128197, + 0.02212471514940262, + 0.022095924243330956, + 0.05156773328781128, + -0.0739322081208229, + 0.08749933540821075, + 0.04144130274653435, + -0.03708742931485176, + -0.07542967051267624, + -0.05963771790266037, + -0.028486791998147964, + 0.03200472891330719, + -0.00276842899620533, + -0.0686369389295578, + -0.032860077917575836, + 0.025503020733594894, + -0.011452632956206799, + 0.09059660136699677, + 0.12143524736166, + 0.04256148263812065, + -0.1243513822555542 + ] + }, + "p245_014.wav": { + "name": "p245", + "embedding": [ + 0.0456618033349514, + 0.09947610646486282, + -0.0351579487323761, + 0.01769324578344822, + -0.03846055269241333, + 0.03294319659471512, + -0.1384236067533493, + 0.1454164683818817, + -0.03573080152273178, + 0.11553234606981277, + -0.0607529878616333, + 0.1252995729446411, + -0.039623670279979706, + -0.1287994235754013, + -0.025616401806473732, + 0.059261664748191833, + 0.0065677352249622345, + -0.024798106402158737, + 0.012047134339809418, + -0.011180071160197258, + 0.045637913048267365, + 0.02454722300171852, + 0.013781548477709293, + 0.02438787743449211, + 0.025713670998811722, + 0.062442049384117126, + 0.008027640171349049, + 0.023942165076732635, + -0.004922201856970787, + -0.02145509049296379, + 0.0020491499453783035, + 0.08045138418674469, + -0.028491167351603508, + 0.029588503763079643, + 0.047634731978178024, + 0.006369514856487513, + -0.016286443918943405, + -0.07070358097553253, + -0.010438184253871441, + -0.024547982960939407, + -0.038875553756952286, + 0.07682274281978607, + 0.017487555742263794, + -0.029269102960824966, + 0.027799539268016815, + 0.006001647561788559, + -0.0035741108004003763, + -0.03324389457702637, + -0.1038001999258995, + 0.12629824876785278, + 0.042398691177368164, + 0.04587283730506897, + -0.09751556068658829, + -0.04450879245996475, + 0.10620276629924774, + -0.007475041784346104, + -0.05505678430199623, + -0.0349879153072834, + 0.05194047465920448, + 0.1577078402042389, + -0.012517052702605724, + -0.040527522563934326, + 0.03556269407272339, + 0.10202843695878983, + 0.04841536283493042, + 0.0538499541580677, + 0.0951853096485138, + 0.0903569832444191, + -0.02120477706193924, + 0.00038562389090657234, + 0.023219358175992966, + 0.08689197152853012, + 0.025803115218877792, + -0.012411314994096756, + -0.007968703284859657, + -0.002945534884929657, + -0.027890753000974655, + -0.0026419139467179775, + -0.019570011645555496, + -0.05071458965539932, + -0.05330786854028702, + 0.012360257096588612, + 0.0007026037201285362, + 0.02548249252140522, + -0.015036750584840775, + 0.0378415510058403, + 0.04665284976363182, + -0.058008939027786255, + 0.0587211437523365, + 0.02665218524634838, + -0.01011449471116066, + 0.03193049877882004, + -0.076620914041996, + -0.07339684665203094, + 0.025463296100497246, + 0.0021541332826018333, + 0.022215019911527634, + 0.08271461725234985, + 0.03895801305770874, + 0.004185925237834454, + 0.10523208975791931, + 0.03697848320007324, + 0.005295770242810249, + -0.019892394542694092, + -0.06409311294555664, + 0.11022298038005829, + 0.07042629271745682, + -0.03810158371925354, + 0.05560486763715744, + -0.0493827685713768, + 0.015588978305459023, + 0.053994275629520416, + -0.11514697968959808, + -0.07873079180717468, + 0.027407001703977585, + 0.035015251487493515, + 0.01579325459897518, + 0.10628814995288849, + 0.01557882595807314, + 0.04157496988773346, + 0.07264241576194763, + -0.07872103899717331, + -0.07472427934408188, + -0.04022175073623657, + 0.05695508047938347, + -0.05361801013350487, + 0.08196534216403961, + 0.07280725240707397, + 0.007446852512657642, + 0.0009589539840817451, + 0.054964397102594376, + 0.00770481675863266, + 0.006735594943165779, + 0.0017329519614577293, + -0.023623213171958923, + 0.006417369470000267, + -0.03334959223866463, + -0.0058499048464000225, + 0.013856390491127968, + 0.036187827587127686, + 0.05148895084857941, + 0.012061990797519684, + -0.01096294168382883, + -0.10962604731321335, + -0.005911238957196474, + 0.07075758278369904, + 0.0666264072060585, + -0.0211165938526392, + -0.060836538672447205, + -0.02669548988342285, + -0.03672284632921219, + -0.030006997287273407, + -0.00560013996437192, + 0.08636757731437683, + -0.012779127806425095, + 0.04771970212459564, + 0.09276529401540756, + 0.020862631499767303, + 0.0015486115589737892, + -0.03773873299360275, + 0.0011763554066419601, + 0.0017245570197701454, + 0.04134422913193703, + -0.05242372304201126, + -0.0871952474117279, + -0.02570885792374611, + 0.037271082401275635, + -0.02657049521803856, + 0.05901411175727844, + 0.01927550882101059, + 0.016223667189478874, + 0.016166068613529205, + -0.05623400956392288, + 0.01310694683343172, + -0.10516701638698578, + -0.05479121580719948, + -0.015248250216245651, + 0.0053838989697396755, + -0.02046903781592846, + 0.07061156630516052, + 0.057423245161771774, + 0.07197509706020355, + 0.006083223968744278, + -0.05638034641742706, + -0.07956670224666595, + 0.03524193912744522, + 0.05869004875421524, + -0.01918291673064232, + 0.019595062360167503, + 0.04000133275985718, + -0.013602444902062416, + 0.034899353981018066, + 0.06724784523248672, + 0.06343290209770203, + -0.03596850484609604, + 0.0012189392000436783, + -0.053810086101293564, + 0.07253456115722656, + 0.09896670281887054, + -0.09662356227636337, + -0.07373400777578354, + -0.05366010218858719, + -0.06369131058454514, + 0.009729236364364624, + -0.023127544671297073, + 0.027799593284726143, + 0.021347586065530777, + -0.0376795269548893, + -0.12406335771083832, + -0.09899730980396271, + 0.06215960904955864, + -0.048071980476379395, + 0.024179209023714066, + -0.0599585585296154, + 0.036651648581027985, + 0.09318123012781143, + 0.01891211047768593, + -0.00443354994058609, + -0.02552139014005661, + 0.02204076573252678, + -0.03201678395271301, + -0.00341423531062901, + 0.05311751738190651, + 0.032578807324171066, + -0.09171418845653534, + 0.010781090706586838, + -0.058642059564590454, + 0.07592502236366272, + -0.043430980294942856, + 0.14329004287719727, + 0.006454888731241226, + -0.06720374524593353, + -0.09921152144670486, + 0.002791309729218483, + 0.0005907490849494934, + 0.046496711671352386, + -0.010645516216754913, + 0.05001773312687874, + 0.01717197336256504, + -0.06269966810941696, + 0.0962488055229187, + 0.06484914571046829, + -0.03050391748547554, + -0.07122256606817245, + -0.061058107763528824, + -0.02213059365749359, + 0.03828231245279312, + -0.012656682170927525, + -0.047123540192842484, + -0.024648265913128853, + 0.010331484489142895, + 0.012792368419468403, + 0.08453378081321716, + 0.12315244227647781, + 0.05332903936505318, + -0.11324436217546463 + ] + }, + "p245_093.wav": { + "name": "p245", + "embedding": [ + 0.05074314773082733, + 0.090809166431427, + -0.013290628790855408, + 0.015098122879862785, + -0.03353681415319443, + 0.07280128449201584, + -0.16247853636741638, + 0.12200742959976196, + -0.038645461201667786, + 0.140935480594635, + -0.06970199942588806, + 0.10677939653396606, + -0.015908164903521538, + -0.19865746796131134, + -0.0289695393294096, + 0.057447899132966995, + -0.04007676616311073, + -0.0360996276140213, + 0.009147069416940212, + -0.003172045573592186, + 0.04778694361448288, + 0.03840216249227524, + -0.0015303976833820343, + -0.0033095041289925575, + 0.03224800154566765, + 0.05935615301132202, + 0.00954018160700798, + 0.04134117066860199, + -0.005329861771315336, + -0.02657070755958557, + -0.03769402205944061, + 0.11924472451210022, + -0.05533643439412117, + 0.006156974472105503, + 0.05714326351881027, + 0.010049121454358101, + -4.3819774873554707e-05, + -0.06700471043586731, + -0.0012456621043384075, + -0.0037426804192364216, + -0.0500551238656044, + 0.0754559114575386, + 0.04676090180873871, + 0.00682303961366415, + 0.016727151349186897, + 0.05280639976263046, + 0.007143775001168251, + -0.05887789651751518, + -0.0993725061416626, + 0.16611286997795105, + 0.04758661240339279, + 0.006035572849214077, + -0.05677713453769684, + -0.07110647857189178, + 0.09511614590883255, + 0.019881442189216614, + -0.08745481818914413, + -0.03761862590909004, + 0.09009537845849991, + 0.15992924571037292, + -0.028263116255402565, + -0.05992526561021805, + 0.02318868786096573, + 0.11784019321203232, + 0.03675505518913269, + 0.10231959819793701, + 0.06000570207834244, + 0.11065860092639923, + 0.009880606085062027, + -0.0056321825832128525, + 0.06433378159999847, + 0.06186582148075104, + 0.0557703897356987, + -0.03159122169017792, + 0.03314778581261635, + 0.0030629471875727177, + -0.027840513736009598, + 0.024595201015472412, + -0.01803481951355934, + -0.017497047781944275, + 0.005985913798213005, + -0.0021278513595461845, + 0.0140004251152277, + 0.03877772390842438, + -0.02312973514199257, + 0.03503366932272911, + 0.0379556380212307, + -0.005760233383625746, + 0.08118031919002533, + 0.02081253193318844, + 0.018608156591653824, + 0.06975807994604111, + -0.09668467938899994, + -0.08453261852264404, + 0.06258927285671234, + 0.01369533222168684, + 0.025164879858493805, + 0.08311672508716583, + 0.051353029906749725, + -0.026406943798065186, + 0.11544302850961685, + 0.02830936759710312, + 0.004805782809853554, + 0.035251013934612274, + -0.10384169220924377, + 0.13374894857406616, + 0.0701487809419632, + -0.03527000546455383, + 0.0386669896543026, + -0.06636445224285126, + 0.07947658002376556, + 0.08027878403663635, + -0.16000542044639587, + -0.07755297422409058, + 0.055938445031642914, + 0.03538131341338158, + -0.03299558162689209, + 0.14470471441745758, + -0.01536556240171194, + 0.011838282458484173, + 0.09792724251747131, + -0.09889156371355057, + -0.06377687305212021, + -0.028526391834020615, + 0.03751164674758911, + -0.09809593111276627, + 0.0531526580452919, + 0.04835750162601471, + -0.014352550730109215, + 0.0021915100514888763, + 0.07922118902206421, + -0.014146468602120876, + 0.00040054344572126865, + -0.006033643148839474, + -0.01888749934732914, + 0.038111671805381775, + -0.0358765684068203, + 0.016435174271464348, + 0.010315737687051296, + 0.020565688610076904, + 0.03732144832611084, + 0.011628430336713791, + -0.04108860343694687, + -0.13757212460041046, + 0.010281476192176342, + 0.05475397780537605, + 0.07942627370357513, + -0.018292147666215897, + -0.04738131910562515, + -0.047075577080249786, + -0.06998344510793686, + 0.018743351101875305, + -0.0010394174605607986, + 0.06967242062091827, + 0.016308948397636414, + -0.004125738050788641, + 0.09388042986392975, + 0.030768249183893204, + 0.002254853490740061, + -0.047350138425827026, + -0.04300922155380249, + 0.0307645034044981, + 0.03491809219121933, + -0.09616328775882721, + -0.06445501744747162, + -0.015645071864128113, + 0.02320963703095913, + -0.023742932826280594, + 0.03132423013448715, + 0.04512029141187668, + 0.03353787958621979, + 0.030718671157956123, + -0.07515047490596771, + 0.014204693958163261, + -0.11770935356616974, + -0.07615149021148682, + -0.019917674362659454, + -0.0024251937866210938, + -0.012518848292529583, + 0.0842566192150116, + -0.004955656360834837, + 0.04481224715709686, + -0.0415770560503006, + -0.04331125319004059, + -0.06461913883686066, + 0.0594070665538311, + 0.08434751629829407, + 0.0023477990180253983, + 0.04480049014091492, + 0.02785741537809372, + -0.026571273803710938, + 0.03960242494940758, + 0.05644042044878006, + 0.12907400727272034, + -0.022564353421330452, + 0.0271480493247509, + -0.049875058233737946, + 0.10417333245277405, + 0.07374027371406555, + -0.07385571300983429, + -0.07694696635007858, + -0.0014689902309328318, + -0.0646185502409935, + 0.0317489355802536, + -0.029963523149490356, + 0.007138731423765421, + -0.011343549937009811, + -0.008046459406614304, + -0.0948844850063324, + -0.08245319128036499, + 0.048624053597450256, + -0.06483778357505798, + -0.02410692349076271, + -0.10119737684726715, + 0.06962455809116364, + 0.09975449740886688, + 0.047382839024066925, + -0.03321690857410431, + -0.025760939344763756, + 0.03593400865793228, + -0.046623896807432175, + 0.0031484849750995636, + 0.04533783346414566, + 0.03373042866587639, + -0.11636415123939514, + 0.010867936536669731, + -0.07314219325780869, + 0.055471889674663544, + -0.07504880428314209, + 0.1612653136253357, + -0.004218073096126318, + -0.06314291059970856, + -0.07583891600370407, + 0.029648810625076294, + -0.0033663371577858925, + 0.03395656496286392, + 0.030652225017547607, + 0.050599485635757446, + 0.031894005835056305, + -0.06051668897271156, + 0.11911025643348694, + 0.03137093037366867, + -0.012358525767922401, + -0.05907273665070534, + -0.04374746233224869, + -0.03692643344402313, + 0.03913130238652229, + 0.002792461309581995, + -0.09477012604475021, + -0.02743423357605934, + 0.05291053652763367, + 0.011326944455504417, + 0.05075114592909813, + 0.137893944978714, + 0.03861163556575775, + -0.12447661906480789 + ] + }, + "p245_333.wav": { + "name": "p245", + "embedding": [ + 0.014325177296996117, + 0.11449761688709259, + 0.012907424010336399, + 0.02295769192278385, + -0.02159927971661091, + 0.08031825721263885, + -0.08673080801963806, + 0.089596226811409, + -0.08615908026695251, + 0.1452193558216095, + -0.12105554342269897, + 0.06368371844291687, + -0.061172179877758026, + -0.17030206322669983, + -0.059386245906353, + 0.05200222134590149, + -0.061178386211395264, + -0.0033570416271686554, + -0.04070690646767616, + -0.020595546811819077, + 0.036457717418670654, + 0.04992419108748436, + 0.030987495556473732, + 0.0071773407980799675, + 0.026273498311638832, + 0.046439576894044876, + -0.01594150811433792, + 0.042374029755592346, + 0.022514771670103073, + -0.043104641139507294, + -0.03561869263648987, + 0.14091166853904724, + -0.027828924357891083, + 0.0056991600431501865, + 0.02491716854274273, + 0.02859354019165039, + 0.026210512965917587, + -0.05052930861711502, + -0.013044025748968124, + 0.009513557888567448, + -0.06214935705065727, + 0.042675912380218506, + -0.002387512242421508, + 0.03468039259314537, + 0.055267397314310074, + -0.017738917842507362, + -0.03823193535208702, + -0.035165783017873764, + -0.07704415917396545, + 0.17336824536323547, + 0.085908904671669, + -0.014627894386649132, + -0.06946154683828354, + -0.09298597276210785, + 0.10219079256057739, + 0.0032926856074482203, + -0.14382252097129822, + -0.02091677486896515, + 0.08752000331878662, + 0.17398592829704285, + 0.007514073979109526, + -0.017070455476641655, + 0.006985836662352085, + 0.11117805540561676, + -0.005598222836852074, + 0.10442517697811127, + 0.045129984617233276, + 0.06134156882762909, + 0.027165057137608528, + 0.012549011036753654, + 0.06926406919956207, + 0.019101139158010483, + 0.015344534069299698, + -0.06840186566114426, + 0.018872717395424843, + 0.006669655907899141, + -0.05188501626253128, + 0.04140395671129227, + -0.004680470563471317, + -0.009352735243737698, + -0.012629471719264984, + -0.018779274076223373, + -0.04645264893770218, + -0.02054588496685028, + -0.027635712176561356, + 0.012356160208582878, + -0.009202951565384865, + 0.01766585186123848, + 0.10236281156539917, + 0.05875537171959877, + 0.006056458689272404, + 0.04346970096230507, + -0.021999120712280273, + -0.06923200190067291, + -0.006203395314514637, + 0.04469767212867737, + -0.03433457389473915, + 0.07388408482074738, + 0.021825894713401794, + -0.03577183932065964, + 0.10948977619409561, + 0.033876899629831314, + 0.022338975220918655, + 0.013979647308588028, + -0.14595705270767212, + 0.10110965371131897, + 0.08872570097446442, + -0.017452171072363853, + 0.03066416271030903, + 0.014129428192973137, + 0.08227038383483887, + 0.10475742816925049, + -0.15073342621326447, + -0.05055554583668709, + 0.03314922749996185, + 2.4902168661355972e-05, + 0.02677762880921364, + 0.06092622131109238, + 0.001700022374279797, + -0.029652591794729233, + 0.09441964328289032, + -0.08368164300918579, + -0.07247618585824966, + -0.04964471235871315, + 0.05269414186477661, + -0.07956992834806442, + 0.006856137420982122, + 0.05506017059087753, + -0.005718818865716457, + -0.025411920621991158, + 0.06056251376867294, + -0.010853514075279236, + 0.013400735333561897, + 0.025045031681656837, + -0.05244510993361473, + 0.038665324449539185, + -0.05577777326107025, + -0.0031976664904505014, + 0.05971081927418709, + 0.04759639501571655, + 0.046779509633779526, + -0.002805879805237055, + -0.04341663047671318, + -0.06454512476921082, + 0.001617221161723137, + 0.06299180537462234, + 0.014177510514855385, + -0.019614066928625107, + 0.00024880608543753624, + -0.05706607550382614, + -0.07140447199344635, + 0.0518784299492836, + -0.011081857606768608, + 0.10744550079107285, + 0.010400813072919846, + -0.02988320402801037, + 0.13033558428287506, + -0.0014120237901806831, + -0.020904697477817535, + -0.0692158043384552, + -0.0308064054697752, + 0.015778839588165283, + 0.024709677323698997, + -0.08348163962364197, + -0.07419822365045547, + 0.02880706638097763, + 0.007583524566143751, + 0.011873099021613598, + 0.01575925573706627, + 0.04312850162386894, + -0.010429495945572853, + 0.037689998745918274, + -0.07981939613819122, + 0.03625351935625076, + -0.09346616268157959, + -0.04569482058286667, + -0.014393470250070095, + -0.050761498510837555, + 0.02313956245779991, + 0.10098429024219513, + -0.0046724844723939896, + -0.03694465756416321, + 0.02082902565598488, + -0.11700962483882904, + -0.05665389448404312, + 0.09227119386196136, + 0.09701196849346161, + 0.016451703384518623, + 0.0752602219581604, + 0.06502072513103485, + -0.06645902246236801, + 0.05917561799287796, + 0.06014357879757881, + 0.1082269549369812, + -0.03990686684846878, + 0.02011851780116558, + -0.06517590582370758, + 0.039902880787849426, + 0.044074639678001404, + -0.1100197583436966, + -0.11120107769966125, + -0.04242481663823128, + -0.03375177085399628, + 0.07429786026477814, + -0.01551996823400259, + 0.004195597488433123, + 0.023307176306843758, + -0.06684321165084839, + -0.07075336575508118, + -0.09011738747358322, + 0.11423295736312866, + -0.008603518828749657, + -0.06628627330064774, + -0.059577569365501404, + 0.05242491513490677, + 0.04369697719812393, + 0.03867795690894127, + -0.02787746489048004, + 0.040127720683813095, + 0.03824784606695175, + -0.08688057214021683, + -0.05431417375802994, + 0.03451377898454666, + -0.01647210493683815, + -0.08394553512334824, + 0.01727335713803768, + -0.09145916998386383, + 0.14186407625675201, + -0.07816192507743835, + 0.13590964674949646, + -0.034235186874866486, + -0.0706147849559784, + -0.08537694811820984, + 0.06276419758796692, + -0.015496889129281044, + 0.019552160054445267, + 0.04243379831314087, + 0.04914851114153862, + 0.012894198298454285, + -0.026504509150981903, + 0.08944068849086761, + 0.000611976720392704, + -0.011331465095281601, + -0.0376971960067749, + -0.009449148550629616, + -0.04812125861644745, + -0.002982812002301216, + -0.010595280677080154, + -0.10758279263973236, + 0.025325309485197067, + -0.0011015544878318906, + -0.023155320435762405, + 0.06819279491901398, + 0.10175779461860657, + 0.06305922567844391, + -0.12680867314338684 + ] + }, + "p245_362.wav": { + "name": "p245", + "embedding": [ + 0.03714986890554428, + 0.11861540377140045, + -0.02694416418671608, + 0.018069982528686523, + -0.06029801815748215, + 0.06273024529218674, + -0.09477032721042633, + 0.13931161165237427, + -0.03693581372499466, + 0.13718795776367188, + -0.08105975389480591, + 0.11021724343299866, + -0.062452685087919235, + -0.1252080649137497, + -0.012359030544757843, + 0.03384510055184364, + -0.0191726703196764, + -0.0022099781781435013, + -0.061176497489213943, + -0.05286918208003044, + 0.020209483802318573, + 0.016866516321897507, + 0.006714319810271263, + -0.005302141886204481, + 0.016877098008990288, + 0.06890036165714264, + -0.016572443768382072, + 0.02256537787616253, + -0.005866106599569321, + -0.03498264029622078, + -0.04177607595920563, + 0.09079831838607788, + -0.043500836938619614, + 0.014600591734051704, + 0.044675786048173904, + -0.0011057229712605476, + -0.014213219285011292, + -0.029972242191433907, + -0.005092155653983355, + 0.0165712907910347, + -0.06285179406404495, + 0.05990879610180855, + 0.013404877856373787, + -0.02127569355070591, + 0.03938429802656174, + 0.017529966309666634, + 0.0025645866990089417, + -0.0315263532102108, + -0.0941479504108429, + 0.14149542152881622, + 0.07550904899835587, + -0.02064705826342106, + -0.06563283503055573, + -0.04693109542131424, + 0.10806945711374283, + -0.014377479441463947, + -0.10845473408699036, + -0.028144216164946556, + 0.06368552148342133, + 0.12150625884532928, + -0.04792851209640503, + -0.03814571350812912, + 0.01005981769412756, + 0.1209573745727539, + 0.045149363577365875, + 0.08341637253761292, + 0.073396697640419, + 0.1257757693529129, + -0.05149020254611969, + 0.0047470335848629475, + 0.06224173307418823, + 0.05636017024517059, + 0.08150970935821533, + -0.004099342506378889, + 0.009345509111881256, + -0.02637176774442196, + 0.0007333536632359028, + 0.0012962855398654938, + -0.0281669944524765, + -0.049601804465055466, + -0.019783865660429, + -0.006203534081578255, + -0.01857660338282585, + -0.002953978255391121, + -0.016848746687173843, + 0.06084948778152466, + 0.08057194203138351, + -0.02419147826731205, + 0.07164037227630615, + 0.053120002150535583, + -0.0002075880765914917, + 0.06655681878328323, + -0.0820050835609436, + -0.060152534395456314, + 0.014284870587289333, + -0.02120385505259037, + 0.04449407011270523, + 0.0728786438703537, + 0.03976330906152725, + 0.017309065908193588, + 0.11342354118824005, + 0.039738647639751434, + 0.012049498036503792, + 0.025491636246442795, + -0.07365502417087555, + 0.14513546228408813, + 0.0999944806098938, + -0.05388166755437851, + 0.02957596816122532, + -0.015162109397351742, + 0.054915815591812134, + 0.04895123094320297, + -0.10357514023780823, + -0.06921754032373428, + -0.0004478837363421917, + 0.024426940828561783, + -0.02955877222120762, + 0.08053833246231079, + -0.008099090307950974, + 0.017462952062487602, + 0.1267172396183014, + -0.07129847258329391, + -0.047261983156204224, + -0.03093167021870613, + 0.030397800728678703, + -0.0729895532131195, + 0.047438330948352814, + 0.07170914858579636, + 0.010131323710083961, + 0.02670990489423275, + 0.09648784250020981, + -0.00031225383281707764, + -0.004033057484775782, + 0.015619473531842232, + -0.043840061873197556, + 0.00024279503850266337, + -0.004729769192636013, + -0.0022626626305282116, + 0.047340791672468185, + 0.044742316007614136, + 0.07039082795381546, + -0.010655401274561882, + 0.0035246331244707108, + -0.09063299000263214, + 0.035034943372011185, + 0.05182880908250809, + 0.0462273508310318, + -0.022194791585206985, + -0.004890982992947102, + -0.03134872764348984, + -0.07135814428329468, + 0.015117624774575233, + -0.0014271652325987816, + 0.07455414533615112, + -0.05122922360897064, + -0.004802582785487175, + 0.14125652611255646, + 0.03219471871852875, + -0.0038775685243308544, + -0.06265702843666077, + -0.03045324981212616, + -0.0151737742125988, + 0.04008708521723747, + -0.11106640100479126, + -0.1059940829873085, + -0.022385109215974808, + 0.030467946082353592, + -0.00916038267314434, + 0.07014982402324677, + 0.03957320749759674, + -0.001113635953515768, + 0.03728679567575455, + -0.03269844502210617, + 0.023429932072758675, + -0.07356943935155869, + -0.045245274901390076, + -0.023619238287210464, + -0.05043447017669678, + -0.015969255939126015, + 0.0663817822933197, + -0.002460706979036331, + 0.03434757515788078, + 0.0013443343341350555, + -0.08223195374011993, + -0.07770854234695435, + 0.046657003462314606, + 0.047073714435100555, + -0.017923103645443916, + 0.03930729255080223, + 0.08944554626941681, + -0.0469549298286438, + 0.03953076899051666, + 0.07125431299209595, + 0.1110820472240448, + -0.03320571780204773, + 0.03872177377343178, + -0.07537054270505905, + 0.06179335340857506, + 0.07532834261655807, + -0.09486472606658936, + -0.10171042382717133, + -0.07866500318050385, + -0.028609924018383026, + 0.02569190412759781, + -0.046558927744627, + 0.003873845562338829, + 0.02945076674222946, + -0.013101544231176376, + -0.05669301375746727, + -0.09358786791563034, + 0.08399897813796997, + -0.04926712065935135, + 0.00591583177447319, + -0.08540445566177368, + 0.04149056226015091, + 0.05383109673857689, + 0.04541078209877014, + -0.04073396325111389, + 0.016913186758756638, + 0.06351201981306076, + -0.0194476917386055, + 0.024849308654665947, + 0.06731212139129639, + 0.03595453500747681, + -0.07395228743553162, + -0.018031014129519463, + -0.07708698511123657, + 0.07212372124195099, + -0.026801716536283493, + 0.1407599151134491, + 0.021320484578609467, + -0.045722898095846176, + -0.06706468015909195, + 0.04540078341960907, + -0.025644458830356598, + 0.04586338996887207, + 0.03935934603214264, + 0.05735268443822861, + 0.022805247455835342, + -0.04245341941714287, + 0.12603536248207092, + 0.023159151896834373, + -0.0430176705121994, + -0.05810045450925827, + -0.050544872879981995, + -0.06093861907720566, + 0.010261114686727524, + 0.033409520983695984, + -0.08241680264472961, + -0.022583546116948128, + -0.006148810498416424, + -0.008769982494413853, + 0.07730481028556824, + 0.12032492458820343, + 0.09402702748775482, + -0.09408625960350037 + ] + }, + "p245_402.wav": { + "name": "p245", + "embedding": [ + 0.0508735328912735, + 0.07379981130361557, + -0.0406593456864357, + 0.037621837109327316, + -0.036522991955280304, + 0.05845237895846367, + -0.1042163074016571, + 0.09248632192611694, + -0.0330301970243454, + 0.1548629105091095, + -0.06278659403324127, + 0.12126767635345459, + 0.00612430227920413, + -0.16300934553146362, + -0.025052737444639206, + 0.0379757396876812, + -0.03638918325304985, + -0.012205805629491806, + -0.048974018543958664, + -0.022220304235816002, + 0.05700377747416496, + 0.0723387822508812, + 0.032509442418813705, + -0.04959699138998985, + 0.02640809491276741, + 0.055027998983860016, + -0.02195710502564907, + 0.01272258348762989, + -0.008890101686120033, + -0.12577980756759644, + -0.06351986527442932, + 0.09425278753042221, + -0.03645401448011398, + 0.03239458054304123, + 0.01819569244980812, + 0.008899547159671783, + 0.010858158580958843, + -0.05905009061098099, + -0.0254974327981472, + 0.02161114476621151, + -0.03308264911174774, + 0.05033128708600998, + -0.0018922369927167892, + -0.04131113737821579, + 0.05364016443490982, + -0.016715360805392265, + -0.017162229865789413, + -0.02491765096783638, + -0.08130045980215073, + 0.1714319884777069, + 0.05640130490064621, + 0.013079941272735596, + -0.06929761916399002, + -0.08488892018795013, + 0.08526989072561264, + -0.009844035841524601, + -0.12087604403495789, + -3.451605880400166e-05, + 0.043561987578868866, + 0.14840668439865112, + -0.006341175641864538, + -0.051768358796834946, + 0.045168694108724594, + 0.08870804309844971, + 0.02943137288093567, + 0.06059722602367401, + 0.08375724405050278, + 0.07937578856945038, + 0.0016159487422555685, + 0.004422195255756378, + 0.031079735606908798, + 0.11223737895488739, + 0.10097592324018478, + -0.028863202780485153, + 0.029681768268346786, + 0.0026491829194128513, + -0.05049065500497818, + -0.025705374777317047, + -0.04260547086596489, + -0.025787746533751488, + 0.000731926120352, + -0.012470347806811333, + 0.03584346920251846, + 0.013764582574367523, + -0.04847987741231918, + 0.02870183251798153, + 0.0612388513982296, + -0.04680672287940979, + 0.03681580722332001, + 0.052709661424160004, + 0.04116778075695038, + 0.036362018436193466, + -0.08563335984945297, + -0.09518816322088242, + 0.04457642138004303, + 0.03660421073436737, + 0.00043100863695144653, + 0.06126052886247635, + 0.06995650380849838, + -0.03779887780547142, + 0.09688234329223633, + 0.017242174595594406, + 0.008235731162130833, + -0.010043280199170113, + -0.08334952592849731, + 0.08413618803024292, + 0.14761894941329956, + -0.014356866478919983, + 0.045407623052597046, + -0.056622978299856186, + 0.08711928129196167, + 0.07282703369855881, + -0.14034190773963928, + -0.07816387712955475, + 0.006479734554886818, + -0.026812221854925156, + 0.02828856185078621, + 0.1035076230764389, + 0.014560109935700893, + 0.04915304109454155, + 0.09340524673461914, + -0.11248641461133957, + -0.049020834267139435, + -0.045334458351135254, + 0.03757977485656738, + -0.09982053935527802, + 0.08366958796977997, + 0.03844127804040909, + -0.0037756150122731924, + -0.0020173736847937107, + 0.047444261610507965, + -0.03268556669354439, + 0.02319594845175743, + -0.032461978495121, + -0.045328907668590546, + -0.013971710577607155, + -0.044613298028707504, + -0.01694551669061184, + 0.05389242619276047, + 0.0199870802462101, + 0.051351398229599, + -0.022664040327072144, + -0.04059381037950516, + -0.12111130356788635, + 0.02624417096376419, + 0.03731387481093407, + 0.03083357959985733, + -0.016961323097348213, + -0.025061853229999542, + -0.029168304055929184, + -0.08020936697721481, + 0.06208762526512146, + -0.046974681317806244, + 0.0634661316871643, + 0.022950230166316032, + 0.007771766744554043, + 0.1115635484457016, + 0.010986441746354103, + -0.02087082341313362, + -0.022358935326337814, + -0.037896811962127686, + 0.008442696183919907, + 0.04136109724640846, + -0.0935450941324234, + -0.08827902376651764, + -0.018671076744794846, + -0.019474998116493225, + -0.011375385336577892, + 0.06158566474914551, + 0.05662206932902336, + 0.017474018037319183, + 0.024866504594683647, + -0.06552673876285553, + -0.021970730274915695, + -0.12603862583637238, + -0.07713282108306885, + -0.012118677608668804, + -0.07413344085216522, + -0.000942267186474055, + 0.10987742245197296, + 0.01569310389459133, + 0.0030647581443190575, + -0.07118270546197891, + -0.051316093653440475, + -0.07931159436702728, + 0.04717697948217392, + 0.03994818776845932, + 0.021829068660736084, + 0.008511672727763653, + 0.04116184636950493, + 0.011327322572469711, + 0.06375991553068161, + 0.06705322116613388, + 0.09342639893293381, + -0.0019416648428887129, + 0.03156933933496475, + -0.06465055793523788, + 0.1387975662946701, + 0.10464684665203094, + -0.023013398051261902, + -0.11047522723674774, + -0.04860864579677582, + -0.09196440875530243, + 0.05945059657096863, + -0.033380985260009766, + -0.006021165754646063, + 0.03114924393594265, + -0.006030192598700523, + -0.11608670651912689, + -0.08018843829631805, + 0.1011839359998703, + -0.019012505188584328, + -0.03212039917707443, + -0.08153139799833298, + 0.04545474797487259, + 0.07152257859706879, + 0.03886404260993004, + -0.03274347633123398, + 0.023190123960375786, + 0.06713353097438812, + -0.05542673170566559, + 0.011438285931944847, + 0.04052858054637909, + 0.019948141649365425, + -0.08865487575531006, + -0.00962294451892376, + -0.06575658917427063, + 0.043593283742666245, + -0.07244224846363068, + 0.12439824640750885, + 0.0002766617981251329, + -0.07151350378990173, + -0.07043205201625824, + 0.09591775387525558, + -0.0038696867413818836, + 0.03135880455374718, + 0.039293088018894196, + 0.06671574711799622, + 0.052934497594833374, + -0.12110096216201782, + 0.06568339467048645, + 0.05482257530093193, + -0.004840767942368984, + -0.06641611456871033, + -0.07954990863800049, + -0.020583869889378548, + 0.022653883323073387, + -0.007633887231349945, + -0.06359496712684631, + 0.0257723368704319, + 0.004820989444851875, + 0.037046290934085846, + 0.03749874234199524, + 0.11962032318115234, + 0.026607941836118698, + -0.11625548452138901 + ] + }, + "p245_361.wav": { + "name": "p245", + "embedding": [ + 0.011926394887268543, + 0.06210249662399292, + -0.017835557460784912, + -0.01735677197575569, + -0.020619401708245277, + 0.028118301182985306, + -0.13155071437358856, + 0.0676778256893158, + -0.03457015007734299, + 0.13890595734119415, + -0.011586526408791542, + 0.08402418345212936, + -0.02614414319396019, + -0.1015537828207016, + -0.00249448511749506, + 0.050869256258010864, + -0.07413353025913239, + -0.029104825109243393, + 0.011877566576004028, + -0.07702042907476425, + 0.014003106392920017, + 0.004240121692419052, + 0.030682045966386795, + -0.05778014659881592, + 0.010506515391170979, + 0.07814309000968933, + 0.005116107873618603, + -0.010419691912829876, + -0.008949613198637962, + -0.07176841795444489, + 0.006712498143315315, + 0.061862438917160034, + -0.02689170278608799, + -0.008617695420980453, + 0.020216556265950203, + -0.0031817900016903877, + -0.00239486969076097, + -0.024698350578546524, + 0.025762923061847687, + 0.05596732720732689, + -0.04905436187982559, + 0.08756843209266663, + 0.03150226175785065, + -0.001595320412889123, + 0.04404531791806221, + -0.054801687598228455, + -0.04728090018033981, + 0.037360504269599915, + -0.0491497702896595, + 0.1084604412317276, + 0.06694461405277252, + -0.012261574156582355, + -0.04498547315597534, + -0.006163235753774643, + 0.07266216725111008, + 0.026168860495090485, + -0.12393708527088165, + 0.000909857451915741, + 0.017232131212949753, + 0.10199634730815887, + -0.014873003587126732, + -0.052437350153923035, + 0.022934047505259514, + 0.09842145442962646, + 0.007212614640593529, + 0.0503145270049572, + 0.07597789168357849, + 0.06822536885738373, + 0.0014334091683849692, + -0.02090320736169815, + 0.05105771869421005, + 0.08020811527967453, + 0.02390703186392784, + -0.00915088877081871, + 0.048017989844083786, + -0.04172316938638687, + -0.012648390606045723, + -0.05305678769946098, + -0.0018478273414075375, + -0.07383989542722702, + -0.07785394042730331, + -0.025790760293602943, + 0.01661345735192299, + 0.06963403522968292, + 0.023828279227018356, + -0.014390707015991211, + 0.05120624229311943, + -0.043101049959659576, + 0.032904960215091705, + 0.0441870354115963, + 0.015095490962266922, + 0.012522710487246513, + -0.05493451654911041, + -0.03461775556206703, + 0.0038149338215589523, + -0.009417260996997356, + 0.08902069181203842, + 0.028932757675647736, + 0.03136727213859558, + 0.02723829448223114, + 0.0671997219324112, + 0.05518867075443268, + 0.0028429776430130005, + -0.037112124264240265, + -0.06971690058708191, + 0.08399337530136108, + 0.09831470251083374, + -0.04336649179458618, + 0.03436507657170296, + 0.003378668799996376, + 0.03170507028698921, + -0.015983428806066513, + -0.09478430449962616, + -0.026415903121232986, + -0.00772077776491642, + 0.06072218716144562, + 0.005304585210978985, + 0.12128622829914093, + 0.04068703576922417, + 0.044860366731882095, + 0.07096271216869354, + -0.024594897404313087, + -0.037789031863212585, + -0.07295336574316025, + 0.05428667366504669, + -0.08637398481369019, + 0.0680186003446579, + 0.05840304493904114, + 0.024261580780148506, + 0.0199790820479393, + 0.06717151403427124, + 0.028107551857829094, + 0.005176726263016462, + -0.04185377061367035, + -0.019797256216406822, + 0.028216931968927383, + 0.0006682863458991051, + 0.05167779326438904, + 0.07252205908298492, + -0.0023833205923438072, + 0.09705781936645508, + 0.02792045846581459, + 0.0002648690715432167, + -0.06792549043893814, + 0.017863335087895393, + 0.013883218169212341, + 0.020725630223751068, + -0.03879057615995407, + -0.04778476431965828, + 0.015979815274477005, + -0.0791681557893753, + -0.01946365088224411, + -0.02372746355831623, + 0.08049359917640686, + 0.008949203416705132, + -0.027766037732362747, + 0.09724756330251694, + 0.03667234256863594, + -0.01743493601679802, + 0.01892685703933239, + -0.033436112105846405, + -0.004656711593270302, + 0.06611120700836182, + -0.16065530478954315, + -0.06247282773256302, + -0.009763971902430058, + 0.04171407222747803, + 0.027861274778842926, + 0.02400818094611168, + 0.08764767646789551, + -0.00726656336337328, + 0.029627498239278793, + 0.02908611111342907, + 0.011773352511227131, + -0.0522930733859539, + -0.07493104040622711, + -0.03004358522593975, + -0.08556779474020004, + -0.06650198251008987, + 0.06261762231588364, + -0.03993543982505798, + 0.06129869818687439, + -0.026727210730314255, + -0.03586728498339653, + -0.03839658200740814, + 0.05009118467569351, + 0.012728995643556118, + -0.042257070541381836, + -0.0008904095739126205, + 0.08502168208360672, + 0.015666598454117775, + -0.020299626514315605, + 0.025418436154723167, + 0.09600627422332764, + -0.07311512529850006, + 0.004467342980206013, + -0.08632595837116241, + 0.06632199883460999, + 0.083644337952137, + -0.03791866451501846, + -0.03993052989244461, + -0.053744133561849594, + -0.051202625036239624, + 0.060480110347270966, + -0.06026186794042587, + -0.01937800645828247, + -0.00283963605761528, + -0.02168123982846737, + -0.07485203444957733, + -0.0799861028790474, + 0.06528396904468536, + -0.04957328736782074, + 0.0045782532542943954, + -0.041151441633701324, + 0.014797884039580822, + 0.02262934483587742, + 0.05956597626209259, + -0.06028364598751068, + 0.071349136531353, + 0.024354899302124977, + -0.02623426541686058, + 0.04037865996360779, + 0.026476269587874413, + 0.0479184091091156, + -0.040939413011074066, + -0.07319542020559311, + -0.08010071516036987, + 0.03327075392007828, + -0.04423072561621666, + 0.07101716846227646, + 0.023721270263195038, + -0.04136078432202339, + -0.03521153703331947, + -0.017769034951925278, + -0.03665494918823242, + 0.035116832703351974, + 0.07723022997379303, + 0.06804180145263672, + 0.03684590384364128, + -0.014876087196171284, + 0.0800434947013855, + 0.03677428141236305, + 0.033866897225379944, + -0.022375160828232765, + 0.02145783230662346, + -0.02475687302649021, + 0.035890039056539536, + 0.018056144937872887, + -0.07325161248445511, + 0.04230191931128502, + -0.009376225993037224, + 0.03160526230931282, + 0.04663422703742981, + 0.04431857913732529, + 0.04164893552660942, + -0.049721576273441315 + ] + }, + "p245_291.wav": { + "name": "p245", + "embedding": [ + 0.05653196573257446, + 0.05744553357362747, + -0.010101023130118847, + 0.03477645665407181, + 0.009010691195726395, + 0.03316812589764595, + -0.16285166144371033, + 0.08147744089365005, + -0.009365832433104515, + 0.13844230771064758, + -0.07716867327690125, + 0.07004237174987793, + -0.00985901802778244, + -0.17918479442596436, + -0.022741595283150673, + 0.06453901529312134, + -0.04945105314254761, + -0.029401374980807304, + -0.06174631416797638, + -0.00577281229197979, + 0.026523195207118988, + 0.06619623303413391, + 0.04189817234873772, + -0.02920486405491829, + 0.001042497344315052, + 0.05541340261697769, + -0.02161526493728161, + 0.044304490089416504, + -0.009373464621603489, + -0.04095196723937988, + -0.0032643554732203484, + 0.10909703373908997, + -0.009142058901488781, + -0.007068801671266556, + 0.019824158400297165, + 0.033456288278102875, + 0.01448397058993578, + -0.07869595289230347, + -0.01614023558795452, + -0.007305679377168417, + -0.04907343536615372, + 0.06283993273973465, + 0.011824797838926315, + -0.003527384717017412, + 0.06333991885185242, + -0.011748899705708027, + -0.042461931705474854, + -0.059883859008550644, + -0.12348918616771698, + 0.16513605415821075, + 0.07370646297931671, + 0.028700843453407288, + -0.0699508860707283, + -0.04859967529773712, + 0.07200693339109421, + -0.024003902450203896, + -0.08906427025794983, + -0.06390678137540817, + 0.07664825767278671, + 0.16959789395332336, + -0.01744137518107891, + -0.027310781180858612, + 0.06106606125831604, + 0.10061557590961456, + 0.04850436747074127, + 0.07381200790405273, + 0.07796597480773926, + 0.08826704323291779, + 0.009567253291606903, + -0.024113329127430916, + 0.031289830803871155, + 0.04872254282236099, + 0.04984084516763687, + -0.004073705989867449, + 0.02214059792459011, + 0.03283502534031868, + -0.054000403732061386, + -0.01370060071349144, + -0.03259289637207985, + -0.004622192122042179, + 0.01529073528945446, + -0.016702119261026382, + -0.005910279229283333, + 0.05146987736225128, + -0.04720882326364517, + 0.01871165633201599, + 0.04463500529527664, + -0.03925901651382446, + 0.06355088204145432, + 0.03098701313138008, + 0.029529860243201256, + 0.025433247908949852, + -0.043836772441864014, + -0.06708760559558868, + 0.018870966508984566, + 0.04181307926774025, + -0.040593285113573074, + 0.032822348177433014, + 0.031903281807899475, + -0.05954078957438469, + 0.11365513503551483, + -0.013360017910599709, + -0.02449231594800949, + 0.019175786525011063, + -0.08929558843374252, + 0.0828859731554985, + 0.10547081381082535, + -0.014093929901719093, + 0.023713380098342896, + -0.03266219049692154, + -0.0021490007638931274, + 0.07845509052276611, + -0.1201271265745163, + -0.06347402930259705, + 0.0733075886964798, + 0.011677144095301628, + 0.02490481361746788, + 0.11678928136825562, + 0.04689744859933853, + 0.031108636409044266, + 0.09833311289548874, + -0.08828514814376831, + -0.0675790011882782, + 0.0002295470330864191, + 0.06222303956747055, + -0.08815935254096985, + 0.044006749987602234, + 0.0561574324965477, + 0.009411957114934921, + -0.022000424563884735, + 0.06423250585794449, + -0.0007938900380395353, + 0.0011680489405989647, + -0.058905091136693954, + -0.025374790653586388, + 0.04440532624721527, + -0.05525900423526764, + -0.04058346897363663, + 0.027781018987298012, + 0.03461107611656189, + 0.025873281061649323, + -0.006481332238763571, + -0.06672745943069458, + -0.14000210165977478, + -0.003837387077510357, + 0.04243334382772446, + 0.06932566314935684, + -0.011297444812953472, + 0.0016276300884783268, + -0.0831928551197052, + -0.054975565522909164, + 0.03477539122104645, + -0.07214365154504776, + 0.07728385180234909, + -0.003395428415387869, + -0.02345716580748558, + 0.09611286967992783, + -0.055531494319438934, + 0.024228377267718315, + -0.015129270032048225, + -0.00016601057723164558, + 0.006085158325731754, + 0.01693904772400856, + -0.03595491126179695, + -0.06455264985561371, + 0.0006522396579384804, + 0.03174114599823952, + 0.00576036749407649, + 0.042818546295166016, + 0.03130481392145157, + 0.01311424095183611, + -0.010274097323417664, + -0.07109777629375458, + 0.0022865617647767067, + -0.08382311463356018, + -0.04510429874062538, + 0.02398776076734066, + -0.008675994351506233, + 0.004675428383052349, + 0.09344565868377686, + 0.034400805830955505, + 0.014322618022561073, + -0.0612013153731823, + -0.10590728372335434, + -0.09243351966142654, + 0.06331376731395721, + 0.09841512888669968, + -0.02659648284316063, + 0.027998030185699463, + 0.03496672213077545, + -0.003518480807542801, + 0.043661653995513916, + 0.0556676983833313, + 0.08575332164764404, + 0.007445987313985825, + -0.014939786866307259, + -0.07363130897283554, + 0.1023159995675087, + 0.09045994281768799, + -0.046829983592033386, + -0.05536901578307152, + 0.0099516985937953, + -0.08499684929847717, + 0.03546002507209778, + -0.011773918755352497, + 0.007577155716717243, + 0.06328392028808594, + -0.03762400150299072, + -0.12730145454406738, + -0.09601770341396332, + 0.05835698917508125, + -0.05064333230257034, + -0.025512665510177612, + -0.04877271503210068, + 0.043280553072690964, + 0.04968026280403137, + 0.04338892549276352, + -0.006041164975613356, + -0.010160963051021099, + 0.009188663214445114, + -0.06626776605844498, + -0.006650590803474188, + 0.03760852664709091, + 0.01120177935808897, + -0.12998977303504944, + 0.01460969913750887, + -0.07528911530971527, + 0.09206510335206985, + -0.05481262505054474, + 0.09221293032169342, + 0.022736545652151108, + -0.03006705641746521, + -0.09784440696239471, + 0.03020942211151123, + -0.021444763988256454, + 0.07392783463001251, + 0.017632948234677315, + 0.04561767354607582, + 0.062301427125930786, + -0.07722395658493042, + 0.06893503665924072, + 0.047920286655426025, + -0.005739230662584305, + -0.08970271050930023, + -0.060988862067461014, + -0.04112662374973297, + 0.028439588844776154, + -0.006277387961745262, + -0.057027190923690796, + 0.0037156955804675817, + 0.01790113002061844, + -0.024796364828944206, + 0.045733410865068436, + 0.10559581220149994, + 0.02144555002450943, + -0.13053618371486664 + ] + }, + "p245_017.wav": { + "name": "p245", + "embedding": [ + 0.04551132768392563, + 0.06415122002363205, + -0.017733527347445488, + 0.03264474496245384, + -0.07500273734331131, + 0.020579088479280472, + -0.1253458857536316, + 0.14299044013023376, + -0.00961694959551096, + 0.13035373389720917, + -0.07003148645162582, + 0.13815540075302124, + -0.02762509696185589, + -0.19022342562675476, + 0.004209984093904495, + 0.053910475224256516, + -0.017790915444493294, + -0.03436313569545746, + -0.021709471940994263, + -0.04708186909556389, + 0.0494837760925293, + 0.058601364493370056, + 0.04033002257347107, + -0.0033888574689626694, + 0.01651679538190365, + 0.08687520027160645, + -0.006717074662446976, + 0.03210324048995972, + -0.006902260240167379, + -0.0688478872179985, + -0.03937457501888275, + 0.08154523372650146, + -0.047710441052913666, + -0.0034445729106664658, + 0.022727204486727715, + -0.028142675757408142, + -0.01970871165394783, + -0.04205350577831268, + -0.024377483874559402, + 0.0020326629746705294, + -0.05211620032787323, + 0.06269744038581848, + 0.01649254932999611, + -0.02494468353688717, + 0.05550023913383484, + 0.01424156129360199, + -0.033675581216812134, + -0.039072006940841675, + -0.12252863496541977, + 0.15420544147491455, + 0.07669760286808014, + 0.009820655919611454, + -0.0753401592373848, + -0.05156977102160454, + 0.09463080018758774, + -0.019091788679361343, + -0.10122635215520859, + -0.03978918120265007, + 0.07927292585372925, + 0.1420087218284607, + -0.033467408269643784, + -0.04978711158037186, + 0.045224979519844055, + 0.09982176870107651, + 0.047859981656074524, + 0.07166547328233719, + 0.08884882926940918, + 0.10237070173025131, + -0.03612620383501053, + 0.01046236976981163, + 0.03317948430776596, + 0.08862706273794174, + 0.062111109495162964, + -0.003372638951987028, + 0.01489005982875824, + 0.0020809494890272617, + -0.010987769812345505, + -0.022202875465154648, + -0.03120948001742363, + -0.026399977505207062, + -0.0015130944084376097, + -8.469614840578288e-05, + 0.025568857789039612, + 0.0031969361007213593, + -0.025830646976828575, + 0.06517083197832108, + 0.061920296400785446, + -0.008120927959680557, + 0.06156442314386368, + 0.004203286953270435, + -0.0047052945010364056, + 0.07692272961139679, + -0.09793667495250702, + -0.0626755803823471, + 0.03350024297833443, + 0.007563699968159199, + 0.030076518654823303, + 0.07627351582050323, + 0.04246315360069275, + -0.021636895835399628, + 0.13168179988861084, + 0.037125565111637115, + -0.004069649614393711, + 0.0195348858833313, + -0.08348248898983002, + 0.1167168915271759, + 0.11068558692932129, + -0.030621081590652466, + 0.0626697838306427, + -0.0600992813706398, + 0.07373440265655518, + 0.044265203177928925, + -0.12565574049949646, + -0.05848854035139084, + -0.00881976168602705, + 0.0045157852582633495, + -0.023772848770022392, + 0.13803784549236298, + -0.009123890660703182, + 0.06756705045700073, + 0.13475897908210754, + -0.10733338445425034, + -0.058913104236125946, + -0.01531960442662239, + 0.04756344109773636, + -0.1066696047782898, + 0.07106006890535355, + 0.06615190207958221, + -0.01328849047422409, + 0.05136212706565857, + 0.06530500948429108, + -0.0272357240319252, + 0.010920132510364056, + 0.0036190941464155912, + -0.05993682146072388, + -0.01378500834107399, + -0.037842459976673126, + -0.0210232213139534, + 0.05585433542728424, + 0.03165086358785629, + 0.056189026683568954, + -0.012611661106348038, + -0.02951662801206112, + -0.13414493203163147, + 0.0244239941239357, + 0.024080296978354454, + 0.06328719109296799, + -0.009367435239255428, + -0.027340954169631004, + -0.03853777050971985, + -0.0716903805732727, + 0.012366360984742641, + -0.003340009367093444, + 0.052719950675964355, + -0.04044071584939957, + 0.010161965154111385, + 0.08515878766775131, + 0.05905775725841522, + -0.004965747706592083, + -0.055269382894039154, + -0.06255163997411728, + -0.005615612026304007, + 0.04623153805732727, + -0.09525196999311447, + -0.0752137154340744, + -0.03790876269340515, + 0.05037284642457962, + -0.036295101046562195, + 0.059920281171798706, + 0.052922483533620834, + 0.031520258635282516, + 0.009990028105676174, + -0.0676911398768425, + 0.022685334086418152, + -0.08050095289945602, + -0.09212951362133026, + 0.007913382723927498, + -0.008901170454919338, + -0.02691173180937767, + 0.06328042596578598, + 0.011979928240180016, + 0.05409592390060425, + -0.05048719048500061, + -0.04822889715433121, + -0.09685957431793213, + 0.034914687275886536, + 0.036640822887420654, + -0.009118038229644299, + 0.05351642891764641, + 0.0505867563188076, + -0.06257537007331848, + 0.0674782544374466, + 0.05028088018298149, + 0.11296842992305756, + -0.027889098972082138, + 0.03151630982756615, + -0.06035736948251724, + 0.08891995251178741, + 0.1049027144908905, + -0.05697165057063103, + -0.08397306501865387, + -0.05400363355875015, + -0.08573877811431885, + 0.06583724170923233, + -0.016489189118146896, + -0.011132235638797283, + 0.032532453536987305, + 0.01319345086812973, + -0.11198969930410385, + -0.07107928395271301, + 0.06660787761211395, + -0.040029145777225494, + -0.006766983773559332, + -0.09840899705886841, + 0.061110369861125946, + 0.09982843697071075, + 0.026168126612901688, + -0.02273973450064659, + -0.030583884567022324, + 0.03935161605477333, + -0.025035209953784943, + 0.02752809040248394, + 0.06146261841058731, + 0.06354182213544846, + -0.08621850609779358, + -0.02619505487382412, + -0.08017340302467346, + 0.02744808793067932, + -0.025768090039491653, + 0.13682353496551514, + 0.020675629377365112, + -0.03231636807322502, + -0.07989175617694855, + 0.05841931328177452, + 0.002659314312040806, + 0.06054389476776123, + 0.03865800052881241, + 0.054399751126766205, + 0.05783791095018387, + -0.08701840043067932, + 0.10963024944067001, + 0.04223506152629852, + -0.04994489252567291, + -0.059356510639190674, + -0.04454854130744934, + -0.043831657618284225, + 0.020010121166706085, + -0.0014113312354311347, + -0.09292681515216827, + -0.03428909555077553, + 0.021666087210178375, + 0.009830035269260406, + 0.05867670476436615, + 0.12548168003559113, + 0.03800232708454132, + -0.10345952957868576 + ] + }, + "p245_424.wav": { + "name": "p245", + "embedding": [ + 0.001892124768346548, + 0.0772138237953186, + -0.05105011910200119, + 0.08649444580078125, + -0.06884513050317764, + -0.0190134197473526, + -0.07367052882909775, + 0.017979174852371216, + 0.022998588159680367, + 0.08416342735290527, + -0.022213542833924294, + 0.07985962927341461, + -0.04986017569899559, + -0.11662525683641434, + -0.006861692760139704, + 0.010529093444347382, + 0.00916682742536068, + -0.004596509039402008, + -0.011971337720751762, + -0.03673101216554642, + -0.03320680186152458, + 0.009705863893032074, + -0.04170793294906616, + 0.005271383561193943, + -0.02524394355714321, + 0.02333664894104004, + -0.04947361722588539, + 0.011702897027134895, + -0.03431544452905655, + -0.041045695543289185, + -0.011258951388299465, + 0.030208313837647438, + -0.025297805666923523, + -0.014371076598763466, + -0.021888524293899536, + 0.0097556347027421, + 0.005079334601759911, + -0.018675310537219048, + -0.02694312483072281, + -0.025036359205842018, + -0.06483050435781479, + 0.011079924181103706, + 0.038781020790338516, + -0.05759361386299133, + 0.023310624063014984, + -0.001765955239534378, + -0.04806482791900635, + -0.017630165442824364, + -0.03928813710808754, + 0.10365454852581024, + 0.04273460432887077, + 0.06820251792669296, + -0.025177232921123505, + -0.02783232182264328, + 0.10823054611682892, + 0.03038344904780388, + -0.01864982396364212, + -0.04602112993597984, + -0.0005400218069553375, + 0.08031546324491501, + 0.02614920772612095, + 0.021776292473077774, + 0.03543626517057419, + 0.06318740546703339, + 0.01108668465167284, + 0.019740842282772064, + 0.041690222918987274, + 0.06949252635240555, + -0.017195500433444977, + 0.017991041764616966, + 0.07301604002714157, + 0.021120239049196243, + -0.006679270416498184, + 0.025009671226143837, + -0.004963694140315056, + 0.020498983561992645, + 0.013965277932584286, + 0.04474381357431412, + -0.034953176975250244, + -0.017981886863708496, + 0.00047330581583082676, + 0.013516085222363472, + 0.004257809836417437, + -0.047235190868377686, + -0.0456538125872612, + -0.03226173296570778, + 0.08474662899971008, + 0.007308783009648323, + 0.018003705888986588, + 0.02876271866261959, + 0.027806201949715614, + 0.004568150267004967, + -0.04330280050635338, + -0.02593892067670822, + 0.026001999154686928, + 0.003323769196867943, + 0.045396678149700165, + -0.0034433137625455856, + -0.001234445720911026, + -0.005669116508215666, + 0.046726785600185394, + -0.028828799724578857, + 0.037842635065317154, + -0.00912972167134285, + -0.04166071116924286, + -0.0012883618474006653, + 0.04236513748764992, + 0.0365850105881691, + 0.04079907387495041, + 0.02312416583299637, + 0.045103807002305984, + 0.07970334589481354, + -0.03381809592247009, + -0.027355695143342018, + 0.01703854650259018, + 0.03694966062903404, + -0.04440494626760483, + 0.08193200826644897, + 0.004134703427553177, + 0.03884819522500038, + 0.07160670310258865, + 0.00787758082151413, + -0.02921435236930847, + -0.018526839092373848, + -0.0002670101821422577, + -0.020455019548535347, + 0.03478541970252991, + 0.044058382511138916, + -0.02747879922389984, + -0.03507460653781891, + 0.042751893401145935, + -0.014009594917297363, + -0.019881609827280045, + 0.005095541477203369, + 0.012303829193115234, + -0.025181781500577927, + 0.07532091438770294, + -0.06336486339569092, + 0.043386999517679214, + 0.055714838206768036, + -0.01950147934257984, + -0.022999467328190804, + 0.012332761660218239, + -0.059406716376543045, + 0.03855019807815552, + 0.008160186000168324, + -0.0043372660875320435, + 0.07506471872329712, + -0.028780676424503326, + -0.09152845293283463, + -0.05286616086959839, + 0.046648021787405014, + -0.03389543294906616, + 0.08285452425479889, + 0.06334945559501648, + 0.006106425076723099, + 0.040543332695961, + -0.015038829296827316, + -0.004678965546190739, + 0.012173406779766083, + -0.10825236886739731, + 0.01270017959177494, + 0.003984680399298668, + -0.005302663892507553, + -0.011670955456793308, + 0.008671769872307777, + 0.010861430317163467, + -0.021331295371055603, + 0.0015154052525758743, + 0.03517214208841324, + 0.007879979908466339, + 0.03798873722553253, + -0.11924606561660767, + 0.006683839485049248, + -0.01857401430606842, + -0.027625910937786102, + 0.03697021305561066, + -0.04582538083195686, + -0.004122628830373287, + 0.029169471934437752, + 0.026857441291213036, + -0.036605942994356155, + -0.05907382816076279, + -0.05671650916337967, + 0.00041788816452026367, + 0.017625387758016586, + -0.005624011158943176, + -0.0006361128762364388, + -0.009943610057234764, + 0.00891917385160923, + 0.045022912323474884, + 0.007917322218418121, + 0.010795578360557556, + 0.06558217108249664, + -0.03762105107307434, + 0.003218233585357666, + 0.027659520506858826, + 0.1093207448720932, + 0.030215095728635788, + -0.0753413587808609, + -0.06082756817340851, + -0.009038607589900494, + -0.04680025205016136, + 0.03892268240451813, + -0.031270358711481094, + 0.028085455298423767, + 0.008766830898821354, + 0.013674145564436913, + 0.02871040254831314, + -0.1364755779504776, + 0.028236977756023407, + -0.012823724187910557, + -0.04241030663251877, + -0.002849690616130829, + -0.006056215614080429, + 0.030734006315469742, + 0.024353256449103355, + -0.04100526124238968, + -0.031241128221154213, + 0.025435829535126686, + 0.012575473636388779, + 0.034635163843631744, + 0.06672202050685883, + 0.034462615847587585, + -0.009500522166490555, + -0.01987200789153576, + -0.03887777402997017, + 0.023832570761442184, + 0.011506957933306694, + 0.03953535854816437, + 0.021431051194667816, + 0.003945156931877136, + -0.07682430744171143, + 0.06606461107730865, + -0.011586638167500496, + 0.06724752485752106, + -0.009915713220834732, + 0.010711012408137321, + 0.02962656319141388, + -0.021923230960965157, + 0.11724457144737244, + 0.049839720129966736, + -0.02063119038939476, + -0.02429637312889099, + 0.005326147191226482, + -0.031162194907665253, + 0.06698041409254074, + 0.05022807419300079, + -0.04585089161992073, + -0.0038546943105757236, + 0.06947977840900421, + 0.03226684778928757, + 0.08526334166526794, + 0.05644106864929199, + 0.08154194802045822, + 0.06088612973690033 + ] + }, + "p245_132.wav": { + "name": "p245", + "embedding": [ + 0.03260638937354088, + 0.09399698674678802, + -0.035386864095926285, + 0.05806262791156769, + -0.08149316161870956, + 0.043726928532123566, + -0.0940699651837349, + 0.134440615773201, + -0.05114878714084625, + 0.10476505756378174, + -0.08709513396024704, + 0.1573345810174942, + -0.051515739411115646, + -0.16643977165222168, + -0.04075360298156738, + 0.07093706727027893, + -0.01389460451900959, + -0.041025321930646896, + -0.0026325047947466373, + -0.025880133733153343, + 0.030740557238459587, + 0.03304968401789665, + 0.053043920546770096, + 0.04788118973374367, + 0.026182854548096657, + 0.09770189970731735, + -0.002955665113404393, + 0.04950987920165062, + 0.02381107024848461, + -0.04350738972425461, + -0.07612182945013046, + 0.08906009048223495, + -0.06307755410671234, + -0.013278120197355747, + 0.03531384468078613, + -0.007287627086043358, + 0.011101476848125458, + -0.03917499631643295, + -0.017185188829898834, + -0.011529114097356796, + -0.06620696932077408, + 0.06883741170167923, + -0.006378654856234789, + -0.03500991314649582, + 0.04777050018310547, + 0.007460827007889748, + -0.012459388934075832, + -0.013197670690715313, + -0.12156148999929428, + 0.12092535197734833, + 0.060598257929086685, + 0.0007129204459488392, + -0.0844765305519104, + -0.051393844187259674, + 0.11440671235322952, + -0.026712127029895782, + -0.09053613990545273, + -0.03214731067419052, + 0.06702802330255508, + 0.14992451667785645, + -0.019853565841913223, + -0.032586097717285156, + 0.02203180082142353, + 0.09293755143880844, + 0.08520234376192093, + 0.07199826836585999, + 0.07808248698711395, + 0.09867506474256516, + -0.032448358833789825, + 0.008202950470149517, + 0.06359554827213287, + 0.08268047869205475, + 0.061312563717365265, + -0.0198469590395689, + 0.004455184563994408, + 0.008482166565954685, + -0.018621699884533882, + 0.01714889518916607, + -0.0220473725348711, + -0.030542364344000816, + -0.03594156354665756, + -0.008346921764314175, + -0.011205275543034077, + -0.0067113363184034824, + -0.030816983431577682, + 0.08600862324237823, + 0.05690658092498779, + -0.018294651061296463, + 0.07089287787675858, + 0.0367298386991024, + -0.04338241368532181, + 0.07423049956560135, + -0.09959115087985992, + -0.05026960000395775, + 0.02022615820169449, + -0.005251947324723005, + 0.020974071696400642, + 0.08046488463878632, + 0.051035162061452866, + -0.00633549178019166, + 0.12704136967658997, + 0.06459269672632217, + 0.02370535209774971, + 0.03212760388851166, + -0.07726636528968811, + 0.1268271803855896, + 0.10775546729564667, + -0.03617163002490997, + 0.051975004374980927, + 5.0303096941206604e-05, + 0.058961864560842514, + 0.0694785863161087, + -0.11963710188865662, + -0.064275823533535, + 0.003734781639650464, + -0.0014558644033968449, + -0.00025247837766073644, + 0.0831163078546524, + -0.026175325736403465, + 0.04558470845222473, + 0.10177630931138992, + -0.08110617101192474, + -0.06506282836198807, + -0.028316976502537727, + 0.03614886477589607, + -0.07896237820386887, + 0.07235944271087646, + 0.058452311903238297, + 0.019652705639600754, + 0.005900269839912653, + 0.08191858232021332, + -0.016376137733459473, + -0.02049291506409645, + 0.04943307489156723, + -0.0644930750131607, + -0.012972029857337475, + -0.010747896507382393, + -0.014048404060304165, + 0.08476679027080536, + 0.027141321450471878, + 0.06009293720126152, + -0.004161167424172163, + 0.023482363671064377, + -0.12726831436157227, + 0.009498685598373413, + 0.06570904701948166, + 0.06216664984822273, + -0.006843872833997011, + -0.04708636552095413, + -0.05319267511367798, + -0.061546746641397476, + 0.02431337721645832, + 0.024048957973718643, + 0.0908319428563118, + -0.05391200631856918, + 0.013125956989824772, + 0.0983332172036171, + 0.028251992538571358, + -0.010638647712767124, + -0.057336390018463135, + -0.03091302141547203, + -0.004886920098215342, + 0.0541202686727047, + -0.06740494817495346, + -0.1109127402305603, + -0.02370842732489109, + 0.0466248020529747, + -0.015590556897222996, + 0.08520086854696274, + 0.06365678459405899, + 0.0039962646551430225, + 0.013784377835690975, + -0.05601000040769577, + 0.02084384858608246, + -0.08098699897527695, + -0.053172845393419266, + -0.03875025734305382, + -0.028264416381716728, + -0.030976612120866776, + 0.06523030251264572, + 0.044615738093853, + 0.06615976244211197, + -0.0029882071539759636, + -0.06888537108898163, + -0.09621395915746689, + 0.04152441769838333, + 0.04183657839894295, + 0.019423827528953552, + 0.06345868110656738, + 0.07092377543449402, + -0.042487408965826035, + 0.08566654473543167, + 0.07208713889122009, + 0.08675440400838852, + -0.0327550545334816, + 0.01740824058651924, + -0.050104349851608276, + 0.05790972709655762, + 0.09300605207681656, + -0.10995476692914963, + -0.09736377000808716, + -0.056880753487348557, + -0.06394055485725403, + 0.07422906160354614, + -0.029384411871433258, + 0.017187846824526787, + 0.04619833454489708, + -0.013021755963563919, + -0.09317721426486969, + -0.12109997868537903, + 0.10906024277210236, + -0.04892798140645027, + -0.005154452286660671, + -0.07026378810405731, + 0.030873756855726242, + 0.06785143911838531, + -0.0014085366856306791, + -0.02773134969174862, + 0.014761348254978657, + 0.046958766877651215, + -0.013604813255369663, + -0.0045954086817801, + 0.08245713263750076, + 0.03253864496946335, + -0.09620503336191177, + -0.015460392460227013, + -0.07779322564601898, + 0.09320205450057983, + -0.028716111555695534, + 0.1694604903459549, + -0.00520617701113224, + -0.025842033326625824, + -0.08260329067707062, + 0.06074840575456619, + -0.013271425850689411, + 0.053757015615701675, + 0.05105070397257805, + 0.06906425207853317, + 0.0011770090786740184, + -0.06531141698360443, + 0.1297733187675476, + 0.05122879892587662, + -0.07624483853578568, + -0.07589210569858551, + -0.05109146237373352, + -0.05203467234969139, + 0.02747061476111412, + 0.03636185824871063, + -0.0942639708518982, + -0.01957610249519348, + 0.0039090346544981, + -0.004059700295329094, + 0.06686082482337952, + 0.1402718722820282, + 0.0708284005522728, + -0.08142716437578201 + ] + }, + "p245_101.wav": { + "name": "p245", + "embedding": [ + 0.04393080621957779, + 0.07435603439807892, + -0.05854286253452301, + 0.032097429037094116, + -0.057750627398490906, + 0.05548716336488724, + -0.12118790298700333, + 0.12042001634836197, + -0.0008363872766494751, + 0.14400643110275269, + -0.023708384484052658, + 0.12623317539691925, + 0.0017389392014592886, + -0.14117203652858734, + -0.005656491965055466, + 0.025246016681194305, + -0.03841045871376991, + -0.03833971917629242, + -0.05910252407193184, + -0.0404319241642952, + 0.03692815825343132, + 0.05090132728219032, + 0.029159987345337868, + -0.03643464669585228, + 0.022817090153694153, + 0.07085692882537842, + -0.0162968747317791, + 0.025756381452083588, + 0.009590355679392815, + -0.12203177809715271, + -0.03894274681806564, + 0.06515449285507202, + -0.0720425397157669, + 0.024638934060931206, + 0.019399764016270638, + -0.048048362135887146, + 0.002327980473637581, + -0.048224203288555145, + -0.020821284502744675, + 0.0350300669670105, + -0.03278016671538353, + 0.09893735498189926, + 0.014127345755696297, + -0.012538513168692589, + 0.023425765335559845, + 0.005040713120251894, + -0.013049292378127575, + -0.03376048803329468, + -0.09110219776630402, + 0.1761135756969452, + 0.07616430521011353, + -0.027057670056819916, + -0.06762366741895676, + -0.04664966091513634, + 0.06678256392478943, + -0.014770272187888622, + -0.11345554888248444, + -0.04930358752608299, + 0.04347904771566391, + 0.10480742156505585, + -0.030313408002257347, + -0.04478244483470917, + 0.037645209580659866, + 0.11807277798652649, + 0.103485606610775, + 0.040309756994247437, + 0.09568393230438232, + 0.1371174156665802, + -0.03508085012435913, + 0.013373331166803837, + 0.022291868925094604, + 0.09891407191753387, + 0.07263055443763733, + 0.028245192021131516, + 0.023090720176696777, + -0.01891189068555832, + 0.007848791778087616, + -0.06283363699913025, + -0.037548258900642395, + -0.019962536171078682, + 0.026574475690722466, + 0.006854726932942867, + 0.029698016121983528, + 0.06273766607046127, + -0.025400731712579727, + 0.04461083933711052, + 0.0685114860534668, + -0.04776136204600334, + 0.044669076800346375, + 0.021701261401176453, + 0.03225504606962204, + 0.06272798776626587, + -0.12017607688903809, + -0.06843782216310501, + 0.048636823892593384, + 0.017193008214235306, + 0.020065564662218094, + 0.056193627417087555, + 0.049998946487903595, + -0.00976267084479332, + 0.1330414116382599, + 0.01617378182709217, + -0.04352360963821411, + -0.0023975172080099583, + -0.06166123226284981, + 0.14340612292289734, + 0.09357452392578125, + -0.0378553681075573, + 0.036752935498952866, + -0.06734546273946762, + 0.07444983720779419, + 0.019914958626031876, + -0.12749674916267395, + -0.08508291840553284, + 0.023080896586179733, + -0.008569952100515366, + -0.029328078031539917, + 0.1212901622056961, + 0.011001866310834885, + 0.07051713764667511, + 0.10095645487308502, + -0.07959383726119995, + -0.02739454060792923, + -0.015415861271321774, + 0.051321402192115784, + -0.09417974948883057, + 0.05687381699681282, + 0.03739936649799347, + -0.0036201062612235546, + 0.027840476483106613, + 0.09118669480085373, + -0.0037724217399954796, + 0.0061034816317260265, + 0.00661796610802412, + -0.027808792889118195, + 0.017984122037887573, + -0.00478682154789567, + -0.008896744810044765, + 0.02155323326587677, + 0.020121334120631218, + 0.08162852376699448, + -0.050899870693683624, + -0.022332090884447098, + -0.12257926166057587, + 0.041842021048069, + -0.0020697112195193768, + 0.06557897478342056, + -0.024463139474391937, + -0.0031010392121970654, + -0.03318736329674721, + -0.0735674500465393, + 0.008096644654870033, + -0.016462737694382668, + 0.05191255733370781, + -0.019359173253178596, + 0.0039686416275799274, + 0.11881740391254425, + 0.040744598954916, + 0.01764502003788948, + -0.027964893728494644, + -0.028498679399490356, + -0.003936432767659426, + 0.05654461681842804, + -0.0764678567647934, + -0.07045317441225052, + -0.01335081271827221, + 0.013610102236270905, + -0.013680093921720982, + 0.08456757664680481, + 0.05939373001456261, + 0.030316825956106186, + 0.020607996731996536, + -0.052867621183395386, + -0.025318045169115067, + -0.04939018189907074, + -0.05645453929901123, + -0.013354497030377388, + -0.018715478479862213, + -0.0613485649228096, + 0.08285346627235413, + 0.022038612514734268, + 0.07016417384147644, + -0.06262849271297455, + -0.04494304955005646, + -0.08057421445846558, + 0.03565920889377594, + 0.0308663509786129, + -0.038832079619169235, + 0.009409904479980469, + 0.06978203356266022, + -0.007524227257817984, + 0.015855573117733, + 0.06958257406949997, + 0.07760700583457947, + -0.03471839800477028, + 0.018965618684887886, + -0.06736879795789719, + 0.13152381777763367, + 0.08391255140304565, + -0.053618501871824265, + -0.06412506103515625, + -0.025526680052280426, + -0.09217415004968643, + 0.0057884398847818375, + -0.0467953160405159, + -0.007205738686025143, + 0.051461488008499146, + 0.006017627194523811, + -0.10712246596813202, + -0.08681885898113251, + 0.0851973295211792, + -0.08631724119186401, + -0.004221698734909296, + -0.10155054181814194, + 0.03763340413570404, + 0.09219184517860413, + 0.05993299186229706, + -0.042895130813121796, + -0.021885735914111137, + 0.06038403883576393, + 9.364041034132242e-06, + 0.06076393648982048, + 0.08356288820505142, + 0.06483960151672363, + -0.11414799839258194, + -0.02804030105471611, + -0.03811675310134888, + 0.00848240964114666, + -0.028482656925916672, + 0.10550107061862946, + 0.04504585638642311, + -0.035646818578243256, + -0.08085301518440247, + 0.06802998483181, + -0.025425676256418228, + 0.07374214380979538, + 0.019013788551092148, + 0.055566709488630295, + 0.08171863853931427, + -0.07945773005485535, + 0.1155330240726471, + 0.0620589442551136, + -0.04441720247268677, + -0.08999545872211456, + -0.0701604038476944, + -0.014728373847901821, + 0.06278650462627411, + 0.05661192163825035, + -0.08293735980987549, + -0.01895913854241371, + 0.02844253182411194, + -0.009349027648568153, + 0.06700235605239868, + 0.12397964298725128, + 0.08363264799118042, + -0.10710255801677704 + ] + }, + "p245_058.wav": { + "name": "p245", + "embedding": [ + 0.040095459669828415, + 0.08464542031288147, + -0.04939677566289902, + 0.014512901194393635, + -0.07138354331254959, + 0.04491971433162689, + -0.10891199856996536, + 0.1074625551700592, + -0.018529588356614113, + 0.14358967542648315, + -0.04172215983271599, + 0.10718019306659698, + -0.029614493250846863, + -0.1654200255870819, + -0.02470208704471588, + 0.033946696668863297, + -0.061574261635541916, + -0.039167966693639755, + -0.1046236976981163, + -0.057243213057518005, + 0.028788022696971893, + 0.041503019630908966, + 0.023259451612830162, + -0.05123131722211838, + 0.04018116742372513, + 0.07723955810070038, + -0.0037555000744760036, + 0.02745998650789261, + -0.009026124142110348, + -0.08279910683631897, + -0.02577996999025345, + 0.0779109001159668, + -0.07188583165407181, + 0.013400848954916, + 0.02771996334195137, + -0.021952811628580093, + 0.002271291334182024, + -0.02076265588402748, + 0.0015286747366189957, + 0.04080076515674591, + -0.02674764022231102, + 0.09794457256793976, + 0.026061145588755608, + -0.005648459307849407, + 0.024599438533186913, + 0.03318100795149803, + -0.012113397940993309, + -0.05698513612151146, + -0.06834378093481064, + 0.18212305009365082, + 0.06183427572250366, + -0.01667407713830471, + -0.06017722934484482, + -0.0626637190580368, + 0.0802101194858551, + -0.036388546228408813, + -0.12866735458374023, + -0.06929294764995575, + 0.06191838160157204, + 0.11942581832408905, + -0.04503461718559265, + -0.041215017437934875, + 0.01962238922715187, + 0.09320805966854095, + 0.07015824317932129, + 0.05225303769111633, + 0.08624694496393204, + 0.11506983637809753, + -0.020544448867440224, + 0.00987608078867197, + 0.06508006155490875, + 0.0620880052447319, + 0.07603543996810913, + 0.007600646466016769, + 0.034637436270713806, + -0.030395209789276123, + 0.013141512870788574, + -0.046201255172491074, + -0.03336643800139427, + -0.017351767048239708, + 0.0030971807427704334, + 0.01595836877822876, + 0.01205148734152317, + 0.013282045722007751, + -0.017725473269820213, + 0.04133062809705734, + 0.06863003224134445, + -0.03953195735812187, + 0.06554718315601349, + 0.048890337347984314, + 0.024386338889598846, + 0.06082901358604431, + -0.10012871026992798, + -0.047424085438251495, + 0.029217731207609177, + 0.008305085822939873, + 0.021794088184833527, + 0.025527501478791237, + 0.03165813535451889, + -0.013124652206897736, + 0.1059289425611496, + 0.041483789682388306, + -0.03520410507917404, + 0.008428756147623062, + -0.07794594019651413, + 0.15078213810920715, + 0.08974793553352356, + -0.024279996752738953, + 0.027033494785428047, + -0.03267820179462433, + 0.04069007560610771, + 0.03302048146724701, + -0.09919734299182892, + -0.10005587339401245, + 0.004104494582861662, + -0.013532605953514576, + -0.043864574283361435, + 0.09833259880542755, + 0.0065202871337533, + 0.03401154652237892, + 0.12143230438232422, + -0.08350333571434021, + -0.03641325235366821, + 0.0043602604418993, + 0.036070115864276886, + -0.09031931310892105, + 0.029859870672225952, + 0.0739813968539238, + -0.008123692125082016, + 0.0523805245757103, + 0.1155560165643692, + 0.007525917142629623, + 0.018350474536418915, + -0.010702775791287422, + -0.01918228156864643, + 0.022715440019965172, + 0.004538293462246656, + -0.02426518127322197, + 0.06786809116601944, + 0.042829547077417374, + 0.07436146587133408, + -0.02296571619808674, + -0.038298338651657104, + -0.11370620876550674, + 0.04181668907403946, + 0.018801283091306686, + 0.051418814808130264, + -0.03838001936674118, + 0.029144568368792534, + -0.033389121294021606, + -0.07871393859386444, + 0.03047719970345497, + -5.7707540690898895e-05, + 0.07840865850448608, + -0.028981033712625504, + -0.02751855179667473, + 0.16068927943706512, + 0.02838863432407379, + -0.00025691185146570206, + -0.04189702868461609, + -0.016339469701051712, + 0.005008699372410774, + 0.05224251747131348, + -0.08856847137212753, + -0.05894537270069122, + -0.01632559485733509, + 0.04332207143306732, + 0.006242827512323856, + 0.09948636591434479, + 0.08242589235305786, + -0.0016651973128318787, + 0.010041027329862118, + -0.035589877516031265, + 0.0014838525094091892, + -0.03982983157038689, + -0.04284268990159035, + 0.0014124466106295586, + -0.06503404676914215, + -0.05635921657085419, + 0.08021029084920883, + -0.0012482330203056335, + 0.0435648038983345, + -0.05897326022386551, + -0.0940689966082573, + -0.07942241430282593, + 0.04363465681672096, + 0.04206574335694313, + -0.043560825288295746, + 0.022975264117121696, + 0.06940773874521255, + -0.025889672338962555, + 0.037286754697561264, + 0.07076471298933029, + 0.11400671303272247, + -0.05141589790582657, + 0.020602580159902573, + -0.0713539570569992, + 0.09544692933559418, + 0.04542768746614456, + -0.06997442990541458, + -0.04869373142719269, + -0.04131823778152466, + -0.050733186304569244, + 0.016862383112311363, + -0.027418747544288635, + 0.02805482968688011, + 0.057703107595443726, + 0.018549412488937378, + -0.07145245373249054, + -0.10544666647911072, + 0.0726003348827362, + -0.07308027148246765, + 0.007214994169771671, + -0.07264198362827301, + 0.02439333312213421, + 0.06990259885787964, + 0.07494648545980453, + -0.017653556540608406, + 0.008677108213305473, + 0.028631966561079025, + -0.014501434750854969, + 0.033806782215833664, + 0.06531447917222977, + 0.04266134649515152, + -0.06118036061525345, + -0.030454672873020172, + -0.09307092428207397, + 0.03885189816355705, + -0.021546320989727974, + 0.13097772002220154, + 0.020692095160484314, + -0.03433218225836754, + -0.0835191160440445, + 0.04706661030650139, + -0.06663493812084198, + 0.08518781512975693, + 0.05078582465648651, + 0.06582995504140854, + 0.06733830273151398, + -0.04006108641624451, + 0.11541539430618286, + 0.05684829503297806, + -0.03704323619604111, + -0.07099970430135727, + -0.07046829909086227, + -0.04796279966831207, + 0.032388441264629364, + 0.031165868043899536, + -0.0913955569267273, + 0.01884661801159382, + 0.030615055933594704, + -0.02289772219955921, + 0.05372690409421921, + 0.1057821586728096, + 0.08194398880004883, + -0.0843496173620224 + ] + }, + "p245_024.wav": { + "name": "p245", + "embedding": [ + 0.04860005900263786, + 0.13365040719509125, + 0.005188239272683859, + -0.007631541229784489, + -0.06357205659151077, + 0.055444296449422836, + -0.11113158613443375, + 0.14507606625556946, + -0.06605346500873566, + 0.12376834452152252, + -0.09833568334579468, + 0.12805351614952087, + -0.046480391174554825, + -0.13841275870800018, + -0.06650926917791367, + 0.044916536659002304, + -0.04643157869577408, + -0.015450340695679188, + -0.03431691601872444, + -0.03474448248744011, + 0.032083820551633835, + 0.023633794859051704, + 0.04697386175394058, + 0.023828618228435516, + 0.03568379953503609, + 0.0631122812628746, + 0.026003241539001465, + 0.06289685517549515, + 0.04021076858043671, + -0.04751605540513992, + -0.03811714053153992, + 0.09202314168214798, + -0.034220077097415924, + 0.02479376830160618, + 0.05797666311264038, + -0.004366706591099501, + 0.027224576100707054, + -0.06366776674985886, + -0.02344970405101776, + 0.0027259918861091137, + -0.015660934150218964, + 0.07009530067443848, + 0.019623158499598503, + -0.021674981340765953, + 0.025135308504104614, + 0.041232265532016754, + 0.0028540731873363256, + -0.04730714112520218, + -0.10117337852716446, + 0.1489221751689911, + 0.04751132056117058, + -0.007243161555379629, + -0.07903963327407837, + -0.07444322109222412, + 0.1213841661810875, + -0.05554497241973877, + -0.09977951645851135, + -0.024243319407105446, + 0.06540544331073761, + 0.14674149453639984, + -0.03724440559744835, + -0.04374585300683975, + 0.01693914085626602, + 0.11825428158044815, + 0.03569081053137779, + 0.0753612145781517, + 0.08030637353658676, + 0.08412176370620728, + -0.0316772535443306, + 0.027474910020828247, + 0.04578263685107231, + 0.07438791543245316, + 0.018667394295334816, + -0.01057466585189104, + 0.015312567353248596, + -0.004980470519512892, + -0.017349613830447197, + 0.039941322058439255, + -0.030104318633675575, + -0.02378353476524353, + -0.05073578283190727, + 0.020296549424529076, + -0.021932750940322876, + -0.01929684914648533, + -0.02258743718266487, + 0.08814115822315216, + -0.012019251473248005, + -0.003507012501358986, + 0.07939010858535767, + 0.047040652483701706, + -0.003144817193970084, + 0.05297129973769188, + -0.05507722496986389, + -0.0809173434972763, + 0.00025035813450813293, + -0.011652662418782711, + 0.021493054926395416, + 0.07551927119493484, + 0.03094794787466526, + -0.014037019573152065, + 0.11400190740823746, + 0.07999470084905624, + 0.005635857582092285, + 0.015396341681480408, + -0.10169004648923874, + 0.12436876446008682, + 0.08504507690668106, + -0.026727071031928062, + 0.03709007427096367, + -0.027228647843003273, + 0.06766551733016968, + 0.06970846652984619, + -0.12298206239938736, + -0.0971146747469902, + 0.004526240285485983, + 0.02746000699698925, + 0.0027486197650432587, + 0.062490131705999374, + -0.03380702808499336, + 0.019239531829953194, + 0.09373849630355835, + -0.05814457684755325, + -0.05950869992375374, + -0.02160336822271347, + 0.03824774548411369, + -0.05608155205845833, + 0.04353508725762367, + 0.06766485422849655, + -0.003041743068024516, + 0.004225033801048994, + 0.08421509712934494, + 0.00017703957564663142, + -0.0010390699608251452, + 0.04705546796321869, + -0.06358326226472855, + 0.00034183525713160634, + -0.015891849994659424, + -0.002021754626184702, + 0.05134209617972374, + 0.08724097162485123, + 0.04011628031730652, + 0.019229834899306297, + -0.03025737963616848, + -0.08454438298940659, + 0.005993340630084276, + 0.04916848614811897, + 0.05402490124106407, + 0.00048129374044947326, + -0.03917890414595604, + -0.03408196195960045, + -0.03487294539809227, + -0.008320807479321957, + 0.021197954192757607, + 0.08605959266424179, + -0.04811973497271538, + 0.016008159145712852, + 0.10645530372858047, + 0.025218332186341286, + -0.017298437654972076, + -0.06314175575971603, + -0.008154580369591713, + 0.015691498294472694, + 0.03530903533101082, + -0.04360399395227432, + -0.09208467602729797, + 0.010146601125597954, + 0.03526558727025986, + -0.020250951871275902, + 0.06626804172992706, + 0.03982805833220482, + -0.006070274394005537, + 0.04938044771552086, + -0.05812805891036987, + 0.029701484367251396, + -0.10431033372879028, + -0.048345278948545456, + -0.016431819647550583, + -0.014630720019340515, + -0.02587161399424076, + 0.05953620746731758, + 0.030425986275076866, + 0.059347450733184814, + 0.03141079470515251, + -0.0968332439661026, + -0.07510203123092651, + 0.05774034187197685, + 0.07826472818851471, + 0.018633490428328514, + 0.05628128722310066, + 0.06899655610322952, + -0.02497268281877041, + 0.08149556070566177, + 0.07042711228132248, + 0.06955641508102417, + -0.028492186218500137, + 0.0019789652433246374, + -0.060929059982299805, + 0.03403991833329201, + 0.04915456846356392, + -0.13164399564266205, + -0.08483780920505524, + -0.05679689720273018, + -0.040560707449913025, + 0.03440957888960838, + 0.008089478127658367, + 0.02630826272070408, + 0.02569650113582611, + -0.010009543038904667, + -0.08766819536685944, + -0.08839675784111023, + 0.08809170871973038, + -0.062497496604919434, + 0.006235625594854355, + -0.038621556013822556, + 0.032127439975738525, + 0.09276729077100754, + 0.026825709268450737, + 0.0031276263762265444, + -0.006966277491301298, + 0.032421525567770004, + -0.05033433437347412, + -0.026408985257148743, + 0.02409588173031807, + 0.017501119524240494, + -0.06563516706228256, + 0.04499836638569832, + -0.08486517518758774, + 0.07676851749420166, + -0.037436340004205704, + 0.17410025000572205, + -0.008606033399701118, + -0.06391268223524094, + -0.09141229093074799, + 0.018358217552304268, + -0.0684792771935463, + 0.04056498035788536, + 0.03488364443182945, + 0.04328327998518944, + 0.0009061801247298717, + -0.0624275878071785, + 0.12078380584716797, + 0.037144459784030914, + -0.07165496051311493, + -0.07345613092184067, + -0.053707756102085114, + -0.04189889505505562, + 0.007667348720133305, + 0.01936129480600357, + -0.06773543357849121, + -0.029206300154328346, + -0.006783606018871069, + -0.030652347952127457, + 0.10359456390142441, + 0.13664346933364868, + 0.07869520038366318, + -0.10931243747472763 + ] + }, + "p245_365.wav": { + "name": "p245", + "embedding": [ + 0.04112584516406059, + 0.08726230263710022, + 0.00127321295440197, + 0.010671555995941162, + 0.0015711896121501923, + 0.0467485636472702, + -0.12623216211795807, + 0.10142230242490768, + -0.04352802783250809, + 0.13175086677074432, + -0.10391835868358612, + 0.076558917760849, + -0.04221866652369499, + -0.15657715499401093, + -0.05823620781302452, + 0.05103347450494766, + -0.062332674860954285, + -0.04096382483839989, + -0.01970863528549671, + -0.0045085689052939415, + 0.039077937602996826, + 0.03307407349348068, + 0.016010694205760956, + 0.011748049408197403, + 0.0069719599559903145, + 0.050648033618927, + 0.012161587364971638, + 0.04174281284213066, + 0.034639906138181686, + -0.005568390712141991, + 0.0030991919338703156, + 0.09042387455701828, + -0.021874770522117615, + -0.003955637104809284, + 0.039373524487018585, + 0.02128692716360092, + 0.010052254423499107, + -0.06381519883871078, + -0.004180500283837318, + 0.011333816684782505, + -0.0465678907930851, + 0.054415784776210785, + 0.026203203946352005, + -0.0018796678632497787, + 0.024655090644955635, + 0.01858300156891346, + -0.023569587618112564, + -0.04451902583241463, + -0.10099248588085175, + 0.15526244044303894, + 0.08120197057723999, + 0.028176836669445038, + -0.06371336430311203, + -0.04195840656757355, + 0.10417163372039795, + 0.01197050604969263, + -0.08476345986127853, + -0.04097287356853485, + 0.06222613528370857, + 0.16537320613861084, + -0.02098729833960533, + -0.032440803945064545, + 0.025616241618990898, + 0.11778637766838074, + 0.025889577344059944, + 0.07177326828241348, + 0.09140962362289429, + 0.08379519730806351, + 0.011768057942390442, + 0.01607573963701725, + 0.06931505352258682, + 0.04476068168878555, + 0.03727860748767853, + -0.03985612094402313, + 0.016967138275504112, + 0.0008534220978617668, + -0.030293578281998634, + 0.018324896693229675, + -0.023679357022047043, + -0.046116020530462265, + -0.009451212361454964, + 0.005411647260189056, + -0.012021057307720184, + 0.030059784650802612, + -0.014583633281290531, + 0.037205930799245834, + 0.009698644280433655, + -0.01826796494424343, + 0.07759881764650345, + 0.0224064439535141, + 0.002851322293281555, + 0.02503081224858761, + -0.05489741638302803, + -0.08285070955753326, + 0.014180326834321022, + 0.008382025174796581, + -0.002772320993244648, + 0.061474066227674484, + 0.05221863090991974, + -0.01393075566738844, + 0.10943654924631119, + 0.02581770345568657, + -0.00017723068594932556, + 0.007316095754504204, + -0.10933838039636612, + 0.10973824560642242, + 0.0835016518831253, + -0.03164515644311905, + 0.020785687491297722, + -0.02924453467130661, + 0.04409591853618622, + 0.0824899896979332, + -0.13250473141670227, + -0.05412771552801132, + 0.04982062429189682, + 0.031956009566783905, + 6.668455898761749e-05, + 0.09407924860715866, + -0.00658376095816493, + 0.0060056885704398155, + 0.10368411988019943, + -0.07001943141222, + -0.06153719499707222, + -0.04400152340531349, + 0.04230962693691254, + -0.05268959701061249, + 0.050423964858055115, + 0.04410075768828392, + 0.0024622040800750256, + -0.025723040103912354, + 0.06466230750083923, + -0.005422959104180336, + -0.009957254864275455, + -0.027571795508265495, + -0.012881789356470108, + 0.06236990541219711, + -0.0556793287396431, + -0.0014831596054136753, + 0.012708916328847408, + 0.04171910881996155, + 0.03606502339243889, + 0.030228327959775925, + -0.03435101360082626, + -0.07704522460699081, + 0.005444097798317671, + 0.039757706224918365, + 0.06681306660175323, + -0.006908778101205826, + -0.043528519570827484, + -0.04595840349793434, + -0.012746384367346764, + -0.0036422049161046743, + -0.02871209941804409, + 0.08052375167608261, + 0.015930969268083572, + 0.010621496476233006, + 0.09187150746583939, + -0.027965731918811798, + -6.091967225074768e-05, + -0.040724802762269974, + -0.017955511808395386, + 0.031000010669231415, + 0.022714396938681602, + -0.06409069150686264, + -0.07308612763881683, + 0.016763221472501755, + 0.010439878329634666, + -0.009144148789346218, + 0.022250358015298843, + 0.018423013389110565, + 0.007613107096403837, + 0.0018019573763012886, + -0.062012240290641785, + 0.01793850213289261, + -0.09877065569162369, + -0.051235560327768326, + -0.0012287469580769539, + -0.024206828325986862, + -0.003313561202958226, + 0.07147953659296036, + 0.008255045861005783, + 0.025920119136571884, + -0.009584838524460793, + -0.09076570719480515, + -0.060340553522109985, + 0.08660906553268433, + 0.08346366137266159, + 0.004642804153263569, + 0.03309104964137077, + 0.050737038254737854, + -0.005033697001636028, + 0.03554762527346611, + 0.030979547649621964, + 0.09034738689661026, + -0.031212197616696358, + -0.03361131250858307, + -0.043710581958293915, + 0.05813612416386604, + 0.06395599246025085, + -0.09340469539165497, + -0.060637347400188446, + -0.03221616521477699, + -0.06122324615716934, + 0.031303949654102325, + -0.021684149280190468, + 0.010560864582657814, + 0.018786268308758736, + -0.050503358244895935, + -0.10379624366760254, + -0.08728988468647003, + 0.057631514966487885, + -0.05874260142445564, + -0.02306721732020378, + -0.07183223962783813, + 0.04564748331904411, + 0.08136852085590363, + 0.012906410731375217, + -0.01273279171437025, + 0.005995762534439564, + 0.005747789517045021, + -0.05391283705830574, + -0.03464343398809433, + 0.012833112850785255, + 0.028973987326025963, + -0.09113708138465881, + 0.005296451970934868, + -0.07694781571626663, + 0.06952116638422012, + -0.0602588877081871, + 0.10060738027095795, + -0.008128389716148376, + -0.0403563529253006, + -0.09242768585681915, + 0.01637028530240059, + -0.00890114065259695, + 0.06383129954338074, + 0.031996216624975204, + 0.03165358304977417, + 0.02813158743083477, + -0.06673400849103928, + 0.12569426000118256, + 0.0421484038233757, + -0.018706554546952248, + -0.07676831632852554, + -0.028314810246229172, + -0.0475817546248436, + 0.005302261561155319, + -0.00678743002936244, + -0.05808396637439728, + -0.011384803801774979, + 0.004848166834563017, + -0.016317343339323997, + 0.06753429025411606, + 0.11009517312049866, + 0.03625589236617088, + -0.1056508868932724 + ] + }, + "p245_031.wav": { + "name": "p245", + "embedding": [ + -0.0031721927225589752, + 0.08524402976036072, + -0.03624449670314789, + 0.007653478533029556, + -0.07755075395107269, + 0.013027937151491642, + -0.07759065181016922, + 0.10879097133874893, + -0.06021568924188614, + 0.13402292132377625, + -0.03959908336400986, + 0.11754312366247177, + -0.05208691954612732, + -0.09908919781446457, + 0.006137712858617306, + 0.05045641213655472, + -0.013862957246601582, + -0.030133042484521866, + -0.021975351497530937, + -0.06501494348049164, + 0.03146013617515564, + 0.036248765885829926, + 0.03857751190662384, + -0.030518101528286934, + 0.015737639740109444, + 0.09964320063591003, + -0.014124457724392414, + -0.004658829420804977, + -0.03618874400854111, + -0.09830702841281891, + -0.0565132275223732, + 0.04885271191596985, + -0.04080817103385925, + -0.021246083080768585, + 0.011830486357212067, + -0.023814676329493523, + -0.008890162222087383, + -0.024142621085047722, + 0.0032822154462337494, + 0.0011559776030480862, + -0.06783229112625122, + 0.07031477987766266, + 0.008366720750927925, + -0.04857456684112549, + 0.037570614367723465, + -0.02686663344502449, + -0.022127103060483932, + 0.004770314320921898, + -0.05465042591094971, + 0.12126389145851135, + 0.07148054242134094, + 0.0013978746719658375, + -0.052000582218170166, + -0.038945917040109634, + 0.0877581313252449, + -0.0012853490188717842, + -0.1108427494764328, + -0.0606062151491642, + 0.018383409827947617, + 0.09237228333950043, + -0.01754496805369854, + -0.022982580587267876, + 0.04116424173116684, + 0.08166461437940598, + 0.021070770919322968, + 0.05902737379074097, + 0.06914369761943817, + 0.06157761067152023, + 0.0006750235334038734, + -0.005168559029698372, + 0.0316203273832798, + 0.08342833817005157, + 0.03138510510325432, + 0.0012933446560055017, + 0.01936165615916252, + -0.037838663905858994, + -0.024873023852705956, + -0.03308756649494171, + -0.021764367818832397, + -0.06759238988161087, + -0.05789382755756378, + 0.0017544161528348923, + 0.014489218592643738, + -0.027200797572731972, + -0.005004999227821827, + 0.040076881647109985, + 0.08280247449874878, + -0.03549404442310333, + 0.07287822663784027, + 0.028236713260412216, + 0.005485543981194496, + 0.037038326263427734, + -0.06721062958240509, + -0.01733156479895115, + -0.008239630609750748, + 0.013282595202326775, + 0.060987960547208786, + 0.07531580328941345, + 0.028587471693754196, + 0.01072730217128992, + 0.07777917385101318, + 0.04216352105140686, + 0.029492966830730438, + -0.013710791245102882, + -0.08731023967266083, + 0.09865622222423553, + 0.11385050415992737, + -0.028927259147167206, + 0.02764062210917473, + -0.017414452508091927, + 0.0449213832616806, + 0.01242845319211483, + -0.07170018553733826, + -0.07027943432331085, + -0.04182536154985428, + -0.015742875635623932, + -0.003213199321180582, + 0.09362383186817169, + 0.019830595701932907, + 0.023868106305599213, + 0.09431757032871246, + -0.09610351920127869, + -0.10151641815900803, + -0.04136377573013306, + 0.03665371984243393, + -0.08635959774255753, + 0.0752180740237236, + 0.09716824442148209, + -0.0036956556141376495, + 0.05878785252571106, + 0.06644292175769806, + 0.03405730798840523, + 0.04098832607269287, + 0.029591821134090424, + -0.06001533195376396, + -0.02920944057404995, + -0.008939823135733604, + 0.014368940144777298, + 0.08213324844837189, + 0.05014430731534958, + 0.08771958202123642, + -0.021660495549440384, + 0.034290019422769547, + -0.07653642445802689, + 0.01075804140418768, + 0.035639986395835876, + -0.006889358162879944, + -0.03735308349132538, + -0.034836456179618835, + 0.0062777139246463776, + -0.0801110491156578, + -0.03233237937092781, + -0.013735095970332623, + 0.0917508453130722, + -0.0327858105301857, + 0.01868968829512596, + 0.1274670660495758, + 0.05708180367946625, + -0.03218041732907295, + -0.04901830852031708, + -0.024625025689601898, + 0.0012115312274545431, + 0.04969457909464836, + -0.10093742609024048, + -0.08161555975675583, + -0.043133363127708435, + 0.033579617738723755, + 0.019424431025981903, + 0.06229546666145325, + 0.07398265600204468, + 0.015393667854368687, + 0.025826681405305862, + -0.03185419365763664, + 0.05849052220582962, + -0.03296176344156265, + -0.04562387615442276, + -0.0325213260948658, + -0.09356756508350372, + -0.04916716739535332, + 0.0909791886806488, + -0.001040048897266388, + 0.05649947375059128, + -0.0184773076325655, + -0.06064695864915848, + -0.08358320593833923, + 0.011102572083473206, + 0.02335767261683941, + -0.025431666523218155, + 0.030378557741642, + 0.04727745056152344, + -0.06678543984889984, + -0.004855260252952576, + 0.042953010648489, + 0.09259198606014252, + -0.04301677271723747, + -0.0035032983869314194, + -0.05748031288385391, + 0.06704645603895187, + 0.09279294312000275, + -0.08104707300662994, + -0.03734207525849342, + -0.10613393038511276, + -0.026010671630501747, + 0.03861268609762192, + -0.023124318569898605, + 0.005864271894097328, + -0.007030686363577843, + 0.011617453768849373, + -0.06166680157184601, + -0.0882810652256012, + 0.09725643694400787, + -0.03475767746567726, + 0.011090045794844627, + -0.06370721757411957, + 0.019157353788614273, + 0.019455373287200928, + 0.06488795578479767, + -0.039806053042411804, + 0.023175522685050964, + 0.04877842217683792, + -6.431154906749725e-05, + 0.06412075459957123, + 0.08830168098211288, + 0.0709967091679573, + 0.01203211024403572, + -0.035194747149944305, + -0.08956709504127502, + 0.04621568322181702, + -0.027156643569469452, + 0.12659144401550293, + 0.008517014794051647, + -0.03722283989191055, + -0.09492410719394684, + 0.03638170287013054, + -0.008441217243671417, + 0.0255669504404068, + 0.07092460989952087, + 0.06971216946840286, + 0.02679571323096752, + -0.053276143968105316, + 0.09300364553928375, + 0.05749564245343208, + -0.0035181809216737747, + -0.03821427375078201, + -0.03906550258398056, + -0.05522899329662323, + 0.017660778015851974, + 0.007254130207002163, + -0.0853128731250763, + 0.039259783923625946, + -0.005107475910335779, + 0.037499185651540756, + 0.09226663410663605, + 0.0829063355922699, + 0.06584793329238892, + -0.09056061506271362 + ] + }, + "p245_245.wav": { + "name": "p245", + "embedding": [ + 0.040469616651535034, + 0.06697149574756622, + -0.028536299243569374, + 0.03860078006982803, + -0.03649842366576195, + 0.08415406197309494, + -0.13170062005519867, + 0.1127922534942627, + -0.03434142842888832, + 0.13944363594055176, + -0.048680078238248825, + 0.10478870570659637, + 0.002407509833574295, + -0.1726829707622528, + -0.03935525566339493, + 0.0237045306712389, + -0.0475279837846756, + -0.009100881405174732, + -0.0736503005027771, + -0.02344600111246109, + 0.060068707913160324, + 0.03575403243303299, + 0.02900128997862339, + -0.04906942695379257, + -0.0032114554196596146, + 0.04482799023389816, + -0.012749578803777695, + 0.03877810016274452, + 0.01054377667605877, + -0.07627420872449875, + -0.02277340739965439, + 0.11499439179897308, + -0.048417653888463974, + 0.026249002665281296, + 0.040331415832042694, + -0.006751219276338816, + -0.017194421961903572, + -0.04119975119829178, + -0.014180649071931839, + 0.01706862263381481, + -0.02906564436852932, + 0.05582103133201599, + 0.020991722121834755, + -0.0034312624484300613, + 0.06332585960626602, + -0.015573405660688877, + -0.039775263518095016, + -0.024358276277780533, + -0.08939310908317566, + 0.157721146941185, + 0.06292953342199326, + -0.010863220319151878, + -0.07574648410081863, + -0.06337282061576843, + 0.09160132706165314, + -0.012078986503183842, + -0.13812774419784546, + -0.026275936514139175, + 0.07188798487186432, + 0.1630236804485321, + -0.023256924003362656, + -0.03001389466226101, + 0.03802190348505974, + 0.09937144815921783, + 0.05001205578446388, + 0.08253724873065948, + 0.09962158650159836, + 0.1048799455165863, + -0.007802274543792009, + 0.02256222814321518, + 0.027724727988243103, + 0.0760016068816185, + 0.06456547975540161, + -0.007335794623941183, + 0.04875495657324791, + -0.005384575575590134, + 0.004458636976778507, + -0.021884478628635406, + -0.04839785024523735, + -0.01384691521525383, + 0.01243191584944725, + 0.005546243861317635, + 0.032536011189222336, + 0.02778775244951248, + -0.05343516543507576, + 0.040348172187805176, + 0.03786475956439972, + -0.01819605566561222, + 0.04128112643957138, + 0.060705363750457764, + 0.035927243530750275, + 0.04794657230377197, + -0.07246753573417664, + -0.0977635383605957, + 0.021170837804675102, + 0.01245868019759655, + 0.01223048660904169, + 0.045533470809459686, + 0.028808288276195526, + -0.0068528070114552975, + 0.09040618687868118, + 0.037028685212135315, + -0.03731880709528923, + 0.024439087137579918, + -0.08863583207130432, + 0.11545675992965698, + 0.10208885371685028, + -0.011238603852689266, + 0.03215021640062332, + -0.06371717154979706, + 0.071348175406456, + 0.057960424572229385, + -0.1159331202507019, + -0.07033968716859818, + 0.0311172716319561, + 0.008666956797242165, + -0.00534119363874197, + 0.1311578005552292, + 0.013315784744918346, + 0.02748023346066475, + 0.09390349686145782, + -0.07587197422981262, + -0.033088281750679016, + -0.023208852857351303, + 0.04134207218885422, + -0.06593947857618332, + 0.04860245808959007, + 0.014203306287527084, + -0.00037322891876101494, + -0.003943283576518297, + 0.07663953304290771, + -0.020262496545910835, + 0.021513596177101135, + 0.007742593064904213, + -0.047884151339530945, + 0.033850912004709244, + -0.02896062284708023, + -2.3963861167430878e-05, + 0.042762577533721924, + 0.03897835686802864, + 0.063753642141819, + -0.02734399400651455, + -0.0418197363615036, + -0.10401983559131622, + 0.01063578762114048, + 0.02953163906931877, + 0.06402745097875595, + -0.014130592346191406, + 0.0007553929463028908, + -0.03305567055940628, + -0.07836858928203583, + 0.05484578758478165, + -0.04186864569783211, + 0.07789556682109833, + 0.0054706912487745285, + -0.011557930149137974, + 0.09604483097791672, + 0.0058167120441794395, + 0.0031894436106085777, + -0.039714790880680084, + -0.023130377754569054, + 0.00124570750631392, + 0.041653916239738464, + -0.08527734875679016, + -0.054195620119571686, + -0.006153625901788473, + 0.023451585322618484, + -0.016231298446655273, + 0.04577047750353813, + 0.0631980374455452, + 0.010974802076816559, + 0.02405364438891411, + -0.06229448318481445, + -0.0193592868745327, + -0.1025584489107132, + -0.06289488077163696, + -0.006051839794963598, + -0.047883838415145874, + -0.009523879736661911, + 0.08666342496871948, + 0.024977881461381912, + 0.01414379384368658, + -0.03422355651855469, + -0.06939958781003952, + -0.08586375415325165, + 0.05577857419848442, + 0.04572942480444908, + -0.006547700613737106, + 0.0334157794713974, + 0.05490213632583618, + -0.02856912463903427, + 0.06284814327955246, + 0.07645009458065033, + 0.08860714733600616, + -0.031002987176179886, + 0.009740835055708885, + -0.08953236043453217, + 0.1090899184346199, + 0.10271036624908447, + -0.05937965214252472, + -0.0976703017950058, + -0.009388644248247147, + -0.08970456570386887, + 0.027566464617848396, + -0.054483138024806976, + -0.015807637944817543, + 0.06063133478164673, + -0.006865249015390873, + -0.1236935406923294, + -0.08057098090648651, + 0.09565722942352295, + -0.07615500688552856, + -0.013083500787615776, + -0.07414872199296951, + 0.0373181477189064, + 0.08579879254102707, + 0.01893925666809082, + -0.04318736121058464, + 0.0015953457914292812, + 0.06155230849981308, + -0.05155723914504051, + 0.009965279139578342, + 0.03288400173187256, + 0.023278342559933662, + -0.10208860784769058, + -0.01829860359430313, + -0.06304147094488144, + 0.008918233215808868, + -0.05091467499732971, + 0.1172068864107132, + 0.010979154147207737, + -0.056741323322057724, + -0.05618629604578018, + 0.07545953243970871, + -0.022234296426177025, + 0.05180518701672554, + 0.04076996445655823, + 0.08367861807346344, + 0.04136915132403374, + -0.09157460927963257, + 0.10898593068122864, + 0.030023545026779175, + -0.030543768778443336, + -0.09345605224370956, + -0.03846116364002228, + -0.043233878910541534, + 0.02639087289571762, + 0.017378129065036774, + -0.0801430344581604, + -0.003115958534181118, + 0.0249668937176466, + -0.006593803409487009, + 0.04361836239695549, + 0.12243619561195374, + 0.046990104019641876, + -0.10784579813480377 + ] + }, + "p245_219.wav": { + "name": "p245", + "embedding": [ + 0.07222731411457062, + 0.020960157737135887, + -0.012612464837729931, + -0.010866774246096611, + -0.024798311293125153, + 0.041596509516239166, + -0.12056693434715271, + 0.1051354855298996, + -0.014153889380395412, + 0.07093960791826248, + -0.0833030492067337, + 0.09026588499546051, + -0.0006825346499681473, + -0.11566475033760071, + -0.04158276319503784, + 0.027302339673042297, + -0.015957005321979523, + -0.016128556802868843, + -0.06023886427283287, + -0.022953743115067482, + 0.013349421322345734, + 0.0479513481259346, + 0.01142415963113308, + -0.0032521607354283333, + 0.026839502155780792, + 0.0386260524392128, + -0.009299049153923988, + 0.010715622454881668, + 0.002526539145037532, + 0.016378700733184814, + 0.024460837244987488, + 0.07257473468780518, + -0.03677280619740486, + -0.0036418421659618616, + 0.041019268333911896, + 0.01662302576005459, + 0.009967396035790443, + -0.09088870882987976, + -0.026297269389033318, + 0.029302295297384262, + -0.05176599323749542, + 0.07723300158977509, + 0.06828534603118896, + -0.012409724295139313, + 0.010292649269104004, + 0.011088041588664055, + 0.0020930839236825705, + -0.05703490227460861, + -0.11804747581481934, + 0.16962739825248718, + -0.0030464492738246918, + 0.036971334367990494, + -0.12387686967849731, + -0.005087150260806084, + 0.0691189244389534, + -0.01608886942267418, + -0.04239609092473984, + -0.04493209347128868, + 0.03722387179732323, + 0.12413974851369858, + 0.00318712554872036, + -0.04723324626684189, + 0.018990851938724518, + 0.06539860367774963, + 0.04080486670136452, + 0.0038003958761692047, + 0.13416001200675964, + 0.10878852009773254, + -0.01956210285425186, + 0.028149627149105072, + 0.0668376013636589, + 0.03167200833559036, + 0.036696452647447586, + -0.014818298630416393, + 0.013944604434072971, + -0.02147645317018032, + -0.02467886172235012, + 0.011683049611747265, + -0.027359914034605026, + -0.03582581877708435, + 0.009972562082111835, + 0.011266171932220459, + 0.016464529559016228, + 0.07649891078472137, + -0.06265327334403992, + 0.05017147213220596, + 0.030588701367378235, + -0.0023483335971832275, + 0.06914664804935455, + 0.07247161120176315, + -0.005590131971985102, + 0.0004338361322879791, + -0.05602840334177017, + -0.08998550474643707, + -0.005046145990490913, + -0.00946731586009264, + 0.04419659078121185, + 0.02627626061439514, + 0.03161316365003586, + -0.0028024488128721714, + 0.09361158311367035, + 0.007027469575405121, + 0.004248812794685364, + -0.014038534834980965, + -0.06931654363870621, + 0.09949930012226105, + 0.1126985251903534, + -0.01706080138683319, + 0.015995021909475327, + -0.04667337238788605, + 0.007100168615579605, + 0.04082728177309036, + -0.07544156163930893, + -0.042587485164403915, + 0.05652504414319992, + 0.031760238111019135, + 0.06085653230547905, + 0.11034698784351349, + 0.01021426822990179, + 0.023538703098893166, + 0.05772740766406059, + -0.07498112320899963, + -0.025298113003373146, + 0.01985420659184456, + 0.014938198029994965, + -0.01102566346526146, + 0.01983753964304924, + 0.0340501107275486, + 0.030473582446575165, + -0.02773580327630043, + 0.06282347440719604, + 0.011202976107597351, + 0.0073677608743309975, + -0.05712639167904854, + 0.04998690262436867, + 0.09543541073799133, + 0.026846786960959435, + -0.02943497709929943, + 0.05854041129350662, + 0.08381514251232147, + 0.02618376538157463, + 0.055659547448158264, + -0.05341917276382446, + -0.10958400368690491, + -0.005204768851399422, + 0.049045201390981674, + 0.06588643789291382, + -0.05262218043208122, + -0.024723384529352188, + -0.06857429444789886, + -0.01420474611222744, + 0.005946789868175983, + 0.018610086292028427, + 0.06461013853549957, + 0.03411216288805008, + -0.013558970764279366, + 0.0823804959654808, + -0.02489832043647766, + 0.022905703634023666, + -0.017179548740386963, + 0.01042818184942007, + 0.009969260543584824, + 0.04411905258893967, + -0.011171195656061172, + -0.07573098689317703, + 0.0016736872494220734, + 0.0069807711988687515, + -0.01731184870004654, + 0.01400594413280487, + 0.032033585011959076, + -0.03228658437728882, + 0.003496539546176791, + -0.10312718152999878, + 0.031407810747623444, + -0.09921270608901978, + -0.004203546792268753, + 0.04617861658334732, + -0.030386850237846375, + -0.0023897187784314156, + 0.09489292651414871, + 0.022600259631872177, + 0.0468139722943306, + -0.025521378964185715, + -0.09814317524433136, + -0.01159774698317051, + 0.049467772245407104, + 0.061336699873209, + -0.04028693586587906, + 0.010425148531794548, + 0.024396009743213654, + 0.03187078982591629, + 0.03316335380077362, + 0.05949288606643677, + 0.050487831234931946, + -0.06617512553930283, + -0.05275246128439903, + -0.005630879662930965, + 0.11891871690750122, + 0.014252698980271816, + -0.062019020318984985, + -0.04791417717933655, + -0.009605512954294682, + -0.030403906479477882, + -0.012217089533805847, + -0.0018911436200141907, + 0.02707720547914505, + 0.05189976468682289, + -0.03051159903407097, + -0.1098608449101448, + -0.06041586399078369, + 0.00713726133108139, + -0.055069535970687866, + 0.014702294021844864, + -0.0674569383263588, + 0.017536701634526253, + 0.09175148606300354, + 0.007593287155032158, + 0.015194819308817387, + -0.022600969299674034, + -0.04721808433532715, + -0.06713007390499115, + -0.060297027230262756, + -0.011572282761335373, + 0.02616897039115429, + -0.0563252717256546, + -0.015114138834178448, + -0.052414096891880035, + 0.07349498569965363, + -0.023053035140037537, + 0.09905221313238144, + 0.026766197755932808, + -0.0525803379714489, + -0.06694452464580536, + -0.02237970568239689, + -0.030701957643032074, + 0.06547613441944122, + 0.05125664174556732, + 0.014116205275058746, + 0.0268840454518795, + -0.04486292600631714, + 0.08183442056179047, + 0.0683550089597702, + -0.054693207144737244, + -0.06583307683467865, + -0.02677665464580059, + 0.002136124297976494, + 0.025869105011224747, + 0.0006372611969709396, + -0.0019800327718257904, + 0.03802599385380745, + 0.015055319294333458, + -0.021273203194141388, + 0.04764735698699951, + 0.0814167708158493, + 0.06924223154783249, + -0.09193402528762817 + ] + }, + "p245_046.wav": { + "name": "p245", + "embedding": [ + 0.04791818931698799, + 0.08609864115715027, + -0.02030625194311142, + 0.019749164581298828, + -0.04697047173976898, + 0.06421241909265518, + -0.1733590066432953, + 0.14996123313903809, + -0.036069706082344055, + 0.14066368341445923, + -0.06150658428668976, + 0.0978202074766159, + -0.026696739718317986, + -0.18999455869197845, + 0.00092223787214607, + 0.058914393186569214, + -0.005148790776729584, + -0.037921808660030365, + -0.006316957529634237, + -0.015434525907039642, + 0.023458244279026985, + 0.021961109712719917, + -0.008580186404287815, + 0.013651471585035324, + 0.03340781107544899, + 0.05684586986899376, + -0.029509807005524635, + 0.003958610817790031, + -0.01880345493555069, + -0.00290899770334363, + -0.026967283338308334, + 0.1127498671412468, + -0.06037798523902893, + -0.00849539041519165, + 0.06841224431991577, + -0.007149490527808666, + -0.03532452508807182, + -0.06844106316566467, + -0.0024724407121539116, + -0.021227112039923668, + -0.07278308272361755, + 0.0775364339351654, + 0.041226793080568314, + -0.013608792796730995, + 0.039751432836055756, + 0.024538526311516762, + 0.008911735378205776, + -0.03718043863773346, + -0.0983007401227951, + 0.1237051710486412, + 0.06161168962717056, + -0.005780732724815607, + -0.07843081653118134, + -0.03526226058602333, + 0.09053707867860794, + 0.005079975351691246, + -0.09155043959617615, + -0.05482185259461403, + 0.09161026030778885, + 0.1439078152179718, + -0.03793584555387497, + -0.03414825350046158, + 0.023337747901678085, + 0.12157924473285675, + 0.05672366917133331, + 0.09753498435020447, + 0.05818276107311249, + 0.1317387819290161, + -0.021914232522249222, + 0.007747824303805828, + 0.05691039562225342, + 0.036855340003967285, + 0.04286675155162811, + -0.044416047632694244, + 0.014036049135029316, + -0.011720127426087856, + -0.022281821817159653, + -0.0031427089124917984, + -0.02866743877530098, + -0.02997453510761261, + -0.007567734457552433, + -0.01350860670208931, + -0.002449492923915386, + 0.04129207879304886, + -0.02476903423666954, + 0.02982398308813572, + 0.09159794449806213, + -0.0196663960814476, + 0.08686796575784683, + 0.04026409238576889, + 0.00786940474063158, + 0.06666909158229828, + -0.11174146831035614, + -0.05790012702345848, + 0.05675750970840454, + -0.007265503518283367, + 0.002614246681332588, + 0.07997490465641022, + 0.04901735484600067, + -0.009443875402212143, + 0.12860631942749023, + 0.022172836586833, + 0.006866768002510071, + 0.036836639046669006, + -0.09122829139232635, + 0.14913401007652283, + 0.05719463527202606, + -0.04908089339733124, + 0.04208863526582718, + -0.06420233845710754, + 0.04331347718834877, + 0.07234324514865875, + -0.13189789652824402, + -0.04517822712659836, + 0.054003894329071045, + 0.012185444124042988, + -0.04223601892590523, + 0.15393370389938354, + 0.008404126390814781, + 0.014087095856666565, + 0.10197106748819351, + -0.08806939423084259, + -0.07262252271175385, + -0.019862279295921326, + 0.04963568598031998, + -0.09022919833660126, + 0.0740722194314003, + 0.06498444825410843, + -0.004559494089335203, + 0.021265864372253418, + 0.07214614748954773, + -0.0029693455435335636, + -0.001893337583169341, + -0.009868279099464417, + -0.020660530775785446, + 0.03809455782175064, + -0.015640880912542343, + 0.01762366108596325, + 0.005972175393253565, + 0.005791465751826763, + 0.05788028985261917, + -0.004773234482854605, + 0.006649308372288942, + -0.10859546065330505, + 0.006629674695432186, + 0.04130848869681358, + 0.10004925727844238, + -0.01395219936966896, + -0.02369247004389763, + -0.04772362858057022, + -0.07501162588596344, + 0.0024065510369837284, + -0.02374560758471489, + 0.07877032458782196, + 0.005498568993061781, + 0.0076546743512153625, + 0.10204358398914337, + 0.04980762302875519, + 0.027168525382876396, + -0.06702670454978943, + -0.022298963740468025, + 0.008537614718079567, + 0.062157463282346725, + -0.09259136021137238, + -0.06668514013290405, + -0.021348848938941956, + 0.028708118945360184, + -0.027795374393463135, + 0.0534653477370739, + 0.04086209088563919, + 0.04209458455443382, + 0.012112114578485489, + -0.08924613893032074, + 0.02957664057612419, + -0.0890149474143982, + -0.06426816433668137, + -0.01918785274028778, + -0.0034944163635373116, + -0.02150624617934227, + 0.0808963030576706, + 0.014248626306653023, + 0.03842344135046005, + -0.03283168375492096, + -0.05696577578783035, + -0.07742127776145935, + 0.045184046030044556, + 0.059112273156642914, + -0.04070518910884857, + 0.02882145345211029, + 0.04365237057209015, + -0.04898493364453316, + 0.01126204151660204, + 0.06374762952327728, + 0.10832351446151733, + -0.029205352067947388, + 0.028193579986691475, + -0.05941461771726608, + 0.10252612829208374, + 0.0975145474076271, + -0.08362990617752075, + -0.08715152740478516, + -0.020395338535308838, + -0.04796089231967926, + 0.013318775221705437, + -0.03955643251538277, + -0.0023355367593467236, + 0.0001646681921556592, + -0.023714236915111542, + -0.09558136016130447, + -0.09607821702957153, + 0.06602247059345245, + -0.07804249227046967, + 0.004021617118269205, + -0.11487875133752823, + 0.05909181013703346, + 0.07432693243026733, + 0.03395532816648483, + -0.05898323655128479, + -0.03330725058913231, + 0.04996313899755478, + -0.017530035227537155, + 0.025102373212575912, + 0.06493964791297913, + 0.04012791067361832, + -0.1265983283519745, + -0.016959384083747864, + -0.05619068816304207, + 0.08316856622695923, + -0.04807935655117035, + 0.15506158769130707, + 0.024122335016727448, + -0.04619833081960678, + -0.07194448262453079, + 0.017747873440384865, + 0.024276399984955788, + 0.04009713977575302, + 0.019906984642148018, + 0.06824712455272675, + 0.04056765139102936, + -0.036776453256607056, + 0.10655753314495087, + 0.036514878273010254, + -0.009652627632021904, + -0.05594159662723541, + -0.04375306889414787, + -0.04857981204986572, + 0.030800441280007362, + 0.00521886209025979, + -0.12298768013715744, + -0.022811580449342728, + 0.046436429023742676, + 0.0037898181471973658, + 0.06626251339912415, + 0.13355503976345062, + 0.06465938687324524, + -0.12205636501312256 + ] + }, + "p245_300.wav": { + "name": "p245", + "embedding": [ + 0.049968041479587555, + 0.09801331162452698, + 0.01460002176463604, + -0.005377164110541344, + -0.0104905404150486, + 0.07790542393922806, + -0.1693437546491623, + 0.1378060132265091, + -0.05347730219364166, + 0.1628655195236206, + -0.0824340283870697, + 0.08920694887638092, + -0.012255407869815826, + -0.2125743329524994, + -0.04178578406572342, + 0.03335980325937271, + -0.04350697249174118, + 0.005362793803215027, + -0.042598895728588104, + -0.02142670378088951, + 0.03858514130115509, + 0.03654477000236511, + 0.0021675927564501762, + -0.00543582160025835, + 0.02252454124391079, + 0.04389685019850731, + -0.011978646740317345, + 0.029601523652672768, + -0.009745283983647823, + -0.042751483619213104, + -0.024842703714966774, + 0.13371127843856812, + -0.04272344708442688, + 0.02748459205031395, + 0.07552188634872437, + -0.002824552357196808, + -0.01807442493736744, + -0.043116770684719086, + -0.013014223426580429, + 0.014325144700706005, + -0.04472476989030838, + 0.05777670443058014, + 0.024044761434197426, + 0.017070749774575233, + 0.057123128324747086, + 0.039233241230249405, + 0.011941354721784592, + -0.04855477064847946, + -0.07187508046627045, + 0.14665763080120087, + 0.06575113534927368, + -0.007841753773391247, + -0.06874606758356094, + -0.0667777806520462, + 0.10466133803129196, + -0.021709300577640533, + -0.11968672275543213, + -0.015139508992433548, + 0.09630942344665527, + 0.1690642237663269, + -0.03314473479986191, + -0.04365881532430649, + 0.02511690929532051, + 0.11127861589193344, + 0.0002902494743466377, + 0.11083859205245972, + 0.07260331511497498, + 0.08234839141368866, + -0.005470833275467157, + 0.017871864140033722, + 0.03815460950136185, + 0.03642918914556503, + 0.06226321682333946, + -0.061770565807819366, + 0.027827410027384758, + 0.0015827817842364311, + -0.031456634402275085, + 0.010313575156033039, + -0.02652036026120186, + 2.4028937332332134e-05, + -0.01255882903933525, + -0.0021326979622244835, + -0.006473037879914045, + 0.006419507786631584, + -0.03508232906460762, + 0.015024224296212196, + 0.026230130344629288, + -0.012025833129882812, + 0.07365226745605469, + 0.06338165700435638, + 0.03642941638827324, + 0.053670480847358704, + -0.06668940931558609, + -0.08650785684585571, + 0.03812621161341667, + -0.002086791442707181, + -0.0179511196911335, + 0.0647687315940857, + 0.05084738880395889, + -0.010798136703670025, + 0.10493838787078857, + 0.04226839542388916, + 0.0013655535876750946, + 0.03332860767841339, + -0.12789404392242432, + 0.10738347470760345, + 0.07821457087993622, + -0.033362314105033875, + 0.054702404886484146, + -0.05284057557582855, + 0.07704795897006989, + 0.09062460064888, + -0.14442186057567596, + -0.06370437145233154, + 0.046465251594781876, + 0.024929773062467575, + -0.0005151897203177214, + 0.11791570484638214, + -0.00872720219194889, + -0.005677691660821438, + 0.0838419571518898, + -0.07578405737876892, + -0.05144283547997475, + -0.04001475125551224, + 0.05565605312585831, + -0.09013524651527405, + 0.06665147095918655, + 0.03782406076788902, + -0.0024431077763438225, + -0.004615898244082928, + 0.08816733956336975, + -0.016630027443170547, + -0.0006712350295856595, + -0.024540826678276062, + -0.005647690035402775, + 0.020359162241220474, + -0.03564242273569107, + 0.02166319079697132, + 0.0017500901594758034, + 0.037341468036174774, + 0.03697217255830765, + 0.024965092539787292, + -0.053579505532979965, + -0.0859847366809845, + -0.005547437816858292, + 0.04842324182391167, + 0.07005086541175842, + -0.009699261747300625, + -0.012924430891871452, + -0.04207606986165047, + -0.06437771022319794, + 0.033018600195646286, + -0.04126707464456558, + 0.08047182857990265, + 0.01330801472067833, + 0.007306352723389864, + 0.10757339000701904, + 0.02102476917207241, + -0.006282346323132515, + -0.0706862136721611, + -0.014108334667980671, + -0.003657124238088727, + 0.039428357034921646, + -0.09215399622917175, + -0.06160061061382294, + -0.006053785793483257, + 0.009721261449158192, + -0.007377368398010731, + 0.0491500049829483, + 0.04245437681674957, + 0.01808256283402443, + 0.0395950973033905, + -0.08897961676120758, + 0.005591139663010836, + -0.13117045164108276, + -0.07865756750106812, + -0.023884737864136696, + -0.03147459775209427, + 0.001926939468830824, + 0.09207874536514282, + 0.002940988866612315, + 0.00806216336786747, + -0.02848585695028305, + -0.07214745134115219, + -0.07034303992986679, + 0.0618055984377861, + 0.07659806311130524, + -0.01004987582564354, + 0.03028515726327896, + 0.03506414592266083, + -0.038056470453739166, + 0.07746073603630066, + 0.08469566702842712, + 0.11450894176959991, + -0.019682489335536957, + 0.052997857332229614, + -0.0664597749710083, + 0.08537492156028748, + 0.07700799405574799, + -0.06556370854377747, + -0.11971497535705566, + -0.014681736938655376, + -0.057039935141801834, + 0.02835647016763687, + -0.015776991844177246, + 0.005518275313079357, + 0.007290154695510864, + -0.019666224718093872, + -0.06684578210115433, + -0.0738009661436081, + 0.08203267306089401, + -0.054844025522470474, + -0.01612848788499832, + -0.07367096096277237, + 0.06959375739097595, + 0.07275247573852539, + 0.034886546432971954, + -0.037770915776491165, + -0.010585675947368145, + 0.04974190145730972, + -0.05061698704957962, + -0.010638154111802578, + 0.014809029176831245, + 0.008751391433179379, + -0.10545440763235092, + 0.019290614873170853, + -0.07960225641727448, + 0.08578118681907654, + -0.07007355988025665, + 0.13631197810173035, + -0.013089260086417198, + -0.08219916373491287, + -0.06222696602344513, + 0.031383223831653595, + -0.005087338387966156, + 0.024380620568990707, + 0.024639854207634926, + 0.07244230806827545, + 0.029566925019025803, + -0.051001351326704025, + 0.08489914238452911, + 0.01831376738846302, + -0.008295181207358837, + -0.05863580107688904, + -0.05338042974472046, + -0.031499359756708145, + 0.01197637990117073, + -0.011564143002033234, + -0.1041250228881836, + -0.011529695242643356, + 0.01753697171807289, + -0.002906979527324438, + 0.05715493857860565, + 0.1306975781917572, + 0.04335624724626541, + -0.1530175358057022 + ] + }, + "p245_359.wav": { + "name": "p245", + "embedding": [ + 0.030348509550094604, + 0.07768439501523972, + 0.008555657230317593, + 0.026563158258795738, + -0.003425696399062872, + 0.03968236595392227, + -0.14213767647743225, + 0.09931924939155579, + -0.03579817712306976, + 0.11898067593574524, + -0.1088065654039383, + 0.03258625045418739, + -0.05459073558449745, + -0.1744261384010315, + -0.03414885699748993, + 0.047865115106105804, + -0.059553518891334534, + -0.027496717870235443, + -0.018090086057782173, + 0.0011552581563591957, + 0.039432890713214874, + 0.02287905663251877, + -0.021516846492886543, + 0.022532237693667412, + 0.019280992448329926, + 0.036701351404190063, + 0.02423138916492462, + 0.0501369908452034, + 0.014246553182601929, + 0.024666864424943924, + 0.009850061498582363, + 0.1277129352092743, + -0.013467584736645222, + 0.008990117348730564, + 0.0611703135073185, + 0.04214859753847122, + -0.02114127390086651, + -0.043290071189403534, + -0.015811145305633545, + 0.0068585313856601715, + -0.0882788747549057, + 0.04824105650186539, + 0.053009338676929474, + 0.01199687086045742, + 0.029852204024791718, + 0.04430702328681946, + 0.007568409666419029, + -0.05850266292691231, + -0.09625974297523499, + 0.15484432876110077, + 0.07401220500469208, + -0.017841212451457977, + -0.050559982657432556, + -0.0809403508901596, + 0.08972951024770737, + 0.00837460346519947, + -0.09471327066421509, + -0.02482648566365242, + 0.11383843421936035, + 0.16216732561588287, + -0.03047655150294304, + -0.01958788000047207, + 0.003326050005853176, + 0.12937864661216736, + 0.03136890381574631, + 0.10415197163820267, + 0.03820474445819855, + 0.0994965136051178, + 0.014583373442292213, + 0.018332550302147865, + 0.09276241809129715, + 0.0392945222556591, + 0.03993486240506172, + -0.044743433594703674, + 0.016079897060990334, + 0.04637405276298523, + -0.044201891869306564, + 0.05792469531297684, + 0.003222801722586155, + -5.4017058573663235e-05, + 0.002703331410884857, + -0.018949167802929878, + -0.01241887267678976, + 0.00048419320955872536, + -0.010416262783110142, + 0.029480237513780594, + 0.023609528318047523, + -0.004579249769449234, + 0.0852782130241394, + 0.04276464879512787, + -0.0032359501346945763, + 0.06789330393075943, + -0.038316838443279266, + -0.09003821015357971, + -0.004708915017545223, + -0.019900182262063026, + 0.027956852689385414, + 0.06483131647109985, + 0.046050697565078735, + -0.010565008036792278, + 0.09901370108127594, + 0.011695018038153648, + 0.015961287543177605, + 0.037968698889017105, + -0.13788272440433502, + 0.10301129519939423, + 0.05034896731376648, + -0.034958381205797195, + 0.01763630285859108, + -0.023578613996505737, + 0.0717649757862091, + 0.10025953501462936, + -0.14547041058540344, + -0.0309885423630476, + 0.06549885123968124, + 0.028332870453596115, + -0.007599616423249245, + 0.11848878860473633, + -0.010113263502717018, + -0.056973766535520554, + 0.11067688465118408, + -0.08056318759918213, + -0.0626942366361618, + -0.04061775654554367, + 0.05491669476032257, + -0.08855116367340088, + 0.01893702708184719, + 0.04150834679603577, + -0.008965986780822277, + -0.03933119773864746, + 0.08321428298950195, + -0.018402911722660065, + -0.004150300286710262, + -0.02816198393702507, + -0.001608746126294136, + 0.08218800276517868, + -0.0534159317612648, + 0.03766867518424988, + 0.03371047601103783, + 0.0400828942656517, + 0.015166142955422401, + 0.04485899955034256, + -0.06117885187268257, + -0.09417816996574402, + 0.002391309477388859, + 0.07609342038631439, + 0.07274405658245087, + -0.019503481686115265, + -0.03525914251804352, + -0.05850470811128616, + -0.06206020712852478, + 0.05045386776328087, + -0.001446128822863102, + 0.07098669558763504, + 0.023719200864434242, + -0.04152993857860565, + 0.12781396508216858, + -0.024683237075805664, + 0.006563086993992329, + -0.07417108863592148, + -0.011478226631879807, + 0.01909732073545456, + 0.043920695781707764, + -0.08255484700202942, + -0.07366518676280975, + 0.012730870395898819, + 0.020668990910053253, + 0.012241153046488762, + -0.0249724630266428, + 0.00860169529914856, + 0.010125966742634773, + 0.021382739767432213, + -0.07976174354553223, + 0.012401029467582703, + -0.13077697157859802, + -0.06890575587749481, + -0.023223867639899254, + -0.005381791386753321, + 0.030310755595564842, + 0.0655221939086914, + -0.019187504425644875, + -0.010231351479887962, + 0.014959679916501045, + -0.09263556450605392, + -0.04564449563622475, + 0.09276473522186279, + 0.10907714068889618, + 0.012481685727834702, + 0.0659794807434082, + 0.04486147314310074, + -0.06362027674913406, + 0.019148707389831543, + 0.04368545487523079, + 0.14140041172504425, + -0.03712480515241623, + 0.007988227531313896, + -0.05061483383178711, + 0.08063691854476929, + 0.04381818324327469, + -0.09705153107643127, + -0.086191326379776, + -0.005536822602152824, + -0.03728656470775604, + 0.0372922383248806, + -0.02223260886967182, + 0.012410702183842659, + -0.020342914387583733, + -0.04747268930077553, + -0.06914907693862915, + -0.07041965425014496, + 0.045562516897916794, + -0.031698767095804214, + -0.029494337737560272, + -0.07949737459421158, + 0.06260428577661514, + 0.0687737762928009, + 0.05155980587005615, + -0.013788032345473766, + 0.006924600340425968, + 0.037457339465618134, + -0.08222178369760513, + -0.06086341291666031, + 0.007522867992520332, + -0.03559621796011925, + -0.10168305039405823, + -0.003255570773035288, + -0.07277602702379227, + 0.10974694788455963, + -0.07327708601951599, + 0.12061531841754913, + -0.03703213110566139, + -0.07921376824378967, + -0.06840967386960983, + -0.004409912042319775, + 0.00881499145179987, + 0.03542075678706169, + 0.04922432824969292, + 0.03733903169631958, + 0.007337949704378843, + -0.01376580074429512, + 0.1118457168340683, + 0.004669263958930969, + 0.0177265927195549, + -0.032833073288202286, + -0.02352018468081951, + -0.022904200479388237, + 0.00863576028496027, + -0.019273050129413605, + -0.09106748551130295, + -0.0032625719904899597, + 0.01978735812008381, + -0.04562909156084061, + 0.030306469649076462, + 0.11061010509729385, + 0.055528730154037476, + -0.11465846002101898 + ] + }, + "p245_102.wav": { + "name": "p245", + "embedding": [ + 0.0430225133895874, + 0.0539373978972435, + -0.03737715631723404, + 0.03839384764432907, + -0.07569047063589096, + 0.0445113405585289, + -0.13211029767990112, + 0.11113637685775757, + -0.041927166283130646, + 0.1266823709011078, + -0.05347640812397003, + 0.11221153289079666, + -0.01134815625846386, + -0.21096853911876678, + -0.01795266941189766, + 0.061899203807115555, + -0.06458897888660431, + -0.06837959587574005, + -0.053076136857271194, + -0.04615628719329834, + 0.03242522478103638, + 0.060048721730709076, + 0.018194379284977913, + 0.023188291117548943, + 0.019636016339063644, + 0.07649858295917511, + -0.020031925290822983, + 0.018023021519184113, + -0.002662018174305558, + -0.048287149518728256, + -0.059319376945495605, + 0.08876129984855652, + -0.05029842257499695, + -0.01397632248699665, + 0.03139262646436691, + -0.009115978144109249, + 0.004804037511348724, + -0.0705767571926117, + -0.05654650554060936, + 0.023940205574035645, + -0.07582558691501617, + 0.07638464868068695, + 0.049024228006601334, + -0.019833985716104507, + 0.05372598394751549, + -0.010075511410832405, + -0.03245002403855324, + -0.05059707164764404, + -0.11141987144947052, + 0.16354015469551086, + 0.09242982417345047, + -0.004909676034003496, + -0.04896428436040878, + -0.05694033205509186, + 0.11498412489891052, + -0.011041943915188313, + -0.13472098112106323, + -0.03895661234855652, + 0.07875931262969971, + 0.15260660648345947, + -0.03568674623966217, + -0.023113053292036057, + 0.036222200840711594, + 0.11538784205913544, + 0.06419387459754944, + 0.08427874743938446, + 0.07476839423179626, + 0.10366985201835632, + -0.021568220108747482, + -0.002773015294224024, + 0.10140321403741837, + 0.07675415277481079, + 0.04877643659710884, + -0.0250396691262722, + 0.024526633322238922, + 0.028665583580732346, + -0.031440041959285736, + -0.009204463101923466, + -0.009552412666380405, + 0.0131557397544384, + -0.004523593001067638, + -0.004756622016429901, + 0.016074756160378456, + 0.017824772745370865, + -0.027924057096242905, + 0.0570589043200016, + 0.05087224394083023, + -0.0014556339010596275, + 0.05766984075307846, + 0.03507053107023239, + -0.0019134795293211937, + 0.06863532215356827, + -0.06402253359556198, + -0.07259349524974823, + 0.02617669850587845, + 0.02047777734696865, + 0.008621025830507278, + 0.07255026698112488, + 0.045982763171195984, + -0.02597293257713318, + 0.12951169908046722, + 0.04235372692346573, + -0.008816368877887726, + 0.03464014083147049, + -0.09544213116168976, + 0.1047326922416687, + 0.09472894668579102, + -0.02723640203475952, + 0.04840164631605148, + -0.0429169200360775, + 0.09450362622737885, + 0.06854903697967529, + -0.14027078449726105, + -0.04946266859769821, + 0.04936899244785309, + 0.009163052774965763, + -0.010623672045767307, + 0.13939180970191956, + -0.004662188235670328, + 0.038035519421100616, + 0.11626236885786057, + -0.08133769035339355, + -0.044369108974933624, + -0.022429462522268295, + 0.05786089971661568, + -0.0917532816529274, + 0.0550692155957222, + 0.051606930792331696, + -0.014153923839330673, + 0.017764169722795486, + 0.07237815856933594, + -0.027876053005456924, + -0.01682601310312748, + -0.003176904283463955, + -0.03572098910808563, + 0.0347004309296608, + -0.014770491980016232, + -0.009532537311315536, + 0.08457052707672119, + 0.02287433296442032, + 0.02701174095273018, + -0.016597239300608635, + -0.030893463641405106, + -0.13113197684288025, + 0.035148635506629944, + 0.010990448296070099, + 0.09693142026662827, + -0.006166107952594757, + 0.0016965181566774845, + -0.05810495465993881, + -0.09464967250823975, + 0.023657631129026413, + -0.019306715577840805, + 0.08095501363277435, + -0.02825925499200821, + -0.009544768370687962, + 0.07593156397342682, + 0.03461727872490883, + -0.00948033481836319, + -0.035972680896520615, + -0.0491919219493866, + 0.01014435850083828, + 0.06618952006101608, + -0.08035778999328613, + -0.06676628440618515, + -0.005774345248937607, + 0.03371158987283707, + -0.01720990613102913, + 0.03451649844646454, + 0.03245050460100174, + 0.024616623297333717, + 0.02158227376639843, + -0.09568929672241211, + 0.03199521079659462, + -0.11019712686538696, + -0.06290261447429657, + -0.01081261970102787, + -0.018080558627843857, + -0.007430730387568474, + 0.08192767202854156, + 0.005604485981166363, + 0.02585793286561966, + -0.03650568053126335, + -0.08845193684101105, + -0.06960691511631012, + 0.06260506808757782, + 0.06530150771141052, + 0.0011411313898861408, + 0.04428445175290108, + 0.06581991910934448, + -0.03202700614929199, + 0.03726353496313095, + 0.04070156067609787, + 0.12071744352579117, + -0.01693282276391983, + 0.031210407614707947, + -0.04292115569114685, + 0.10087241977453232, + 0.060816869139671326, + -0.07864196598529816, + -0.06585988402366638, + -0.020686758682131767, + -0.05931799113750458, + 0.05354519188404083, + -0.022308506071567535, + 0.002782419789582491, + 0.011945844627916813, + 0.006805784069001675, + -0.10159777104854584, + -0.08181186020374298, + 0.08036187291145325, + -0.04692530632019043, + -0.01781248301267624, + -0.09689954668283463, + 0.0362117625772953, + 0.10981318354606628, + 0.03773040324449539, + -0.026323864236474037, + 0.00456186942756176, + 0.043397460132837296, + -0.028127577155828476, + 0.016535427421331406, + 0.06927508860826492, + 0.03388071805238724, + -0.12066423147916794, + -0.034208547323942184, + -0.07544130831956863, + 0.07587596774101257, + -0.04062763974070549, + 0.14039717614650726, + 0.015053401701152325, + -0.03591234236955643, + -0.07308107614517212, + 0.05595755949616432, + 0.0017035757191479206, + 0.06483720242977142, + 0.05129917711019516, + 0.0727454125881195, + 0.052974216639995575, + -0.04354061931371689, + 0.10226841270923615, + 0.04978279024362564, + -0.041273295879364014, + -0.043258845806121826, + -0.013074418529868126, + -0.030807897448539734, + 0.02389458194375038, + 0.022466275840997696, + -0.08973407000303268, + -0.0030692466534674168, + 0.02394942194223404, + -0.030545353889465332, + 0.05711883306503296, + 0.1369554102420807, + 0.07677972316741943, + -0.11180759966373444 + ] + }, + "p245_073.wav": { + "name": "p245", + "embedding": [ + 0.050025369971990585, + 0.09468891471624374, + -0.006306699477136135, + 0.025102226063609123, + -0.04868593439459801, + 0.07750745117664337, + -0.13614723086357117, + 0.1285698562860489, + -0.03822711482644081, + 0.14091086387634277, + -0.06929503381252289, + 0.12306427955627441, + -0.010437111370265484, + -0.18395625054836273, + -0.04701977223157883, + 0.04812866076827049, + -0.051997050642967224, + -0.02401163801550865, + -0.035993412137031555, + -0.020998410880565643, + 0.042366739362478256, + 0.035661038011312485, + 0.04340088367462158, + 0.008436123840510845, + 0.02057529240846634, + 0.061848919838666916, + 0.014651848934590816, + 0.06731360405683517, + 0.02986729145050049, + -0.05034512281417847, + -0.039283379912376404, + 0.115561842918396, + -0.04078389331698418, + 0.024425527080893517, + 0.04877111315727234, + -0.009167520329356194, + 0.007816383615136147, + -0.06248391419649124, + -0.012126735411584377, + 0.009464703500270844, + -0.030846383422613144, + 0.07554687559604645, + 0.03140247240662575, + 0.00025807012571021914, + 0.03240381181240082, + 0.023040732368826866, + -0.018590042367577553, + -0.045769866555929184, + -0.1027064248919487, + 0.16036877036094666, + 0.07553015649318695, + -0.003921149764209986, + -0.06191285699605942, + -0.06800320744514465, + 0.10461169481277466, + -0.014925338327884674, + -0.11423198878765106, + -0.02995961904525757, + 0.0834035575389862, + 0.16206830739974976, + -0.034719228744506836, + -0.036888182163238525, + 0.024924151599407196, + 0.1350749135017395, + 0.043276816606521606, + 0.09140702337026596, + 0.08970780670642853, + 0.11004974693059921, + -0.013502801768481731, + 0.02018960565328598, + 0.04397713392972946, + 0.07516889274120331, + 0.04350581392645836, + -0.0042374818585813046, + 0.028446203097701073, + -0.009860394522547722, + -0.007762949448078871, + 0.014648607932031155, + -0.034249454736709595, + -0.017816556617617607, + -0.014192802831530571, + 0.007740188390016556, + 0.0055510373786091805, + 0.020933568477630615, + -0.024694232270121574, + 0.058536797761917114, + 0.011033186689019203, + -0.007938012480735779, + 0.06242240592837334, + 0.03340506553649902, + 0.013554271310567856, + 0.061150263994932175, + -0.06900466978549957, + -0.09568478167057037, + 0.02689513936638832, + 0.004911785013973713, + 0.027743559330701828, + 0.07634192705154419, + 0.04007009416818619, + -0.013964062556624413, + 0.11124905198812485, + 0.055918898433446884, + -0.023619771003723145, + 0.03462102264165878, + -0.09409746527671814, + 0.1252983808517456, + 0.08816325664520264, + -0.018559778109192848, + 0.04702261835336685, + -0.060387998819351196, + 0.08684112876653671, + 0.06394079327583313, + -0.13587582111358643, + -0.07668689638376236, + 0.0288423802703619, + 0.024168789386749268, + -0.021931758150458336, + 0.10796979069709778, + -0.0223039910197258, + 0.032515764236450195, + 0.09685595333576202, + -0.06980850547552109, + -0.04726937413215637, + -0.027023321017622948, + 0.04679577052593231, + -0.07220196723937988, + 0.040553875267505646, + 0.03369423374533653, + -0.007609399035573006, + -0.00770993297919631, + 0.08336915820837021, + -0.010960239917039871, + -0.007674570195376873, + 0.029892727732658386, + -0.05243418738245964, + 0.02836260199546814, + -0.030233047902584076, + 0.011005209758877754, + 0.03724243491888046, + 0.04648425430059433, + 0.04421566054224968, + 0.0024422656279057264, + -0.038187094032764435, + -0.10685497522354126, + 0.00795949250459671, + 0.034948933869600296, + 0.07179580628871918, + -0.009818065911531448, + -0.03200843930244446, + -0.041476961225271225, + -0.05986769497394562, + 0.030073752626776695, + -0.012694183737039566, + 0.07140501588582993, + -0.0210605226457119, + -0.0019267270108684897, + 0.08836772292852402, + 0.014559405855834484, + -0.004175232257694006, + -0.05113280564546585, + -0.0276580061763525, + 0.01576733961701393, + 0.04091668874025345, + -0.08266079425811768, + -0.0626341849565506, + 0.0060415118932724, + 0.02659047767519951, + -0.03424331173300743, + 0.04230711981654167, + 0.04197145253419876, + 0.015760626643896103, + 0.03797220438718796, + -0.06182323396205902, + -0.0037741544656455517, + -0.11045217514038086, + -0.06344986706972122, + -0.012600040063261986, + -0.009686823934316635, + -0.014872429892420769, + 0.0753248929977417, + 0.021330304443836212, + 0.049755584448575974, + -0.009720422327518463, + -0.06223946809768677, + -0.07657334208488464, + 0.061113081872463226, + 0.07651621103286743, + 0.009165244176983833, + 0.059780895709991455, + 0.056060634553432465, + -0.024654731154441833, + 0.06656038016080856, + 0.06306269019842148, + 0.09853903949260712, + -0.027438243851065636, + 0.01570606417953968, + -0.07912309467792511, + 0.07436473667621613, + 0.08575873076915741, + -0.0932183489203453, + -0.09049467742443085, + -0.02201438508927822, + -0.07154171168804169, + 0.03490672633051872, + -0.029067521914839745, + -0.004530402831733227, + 0.03233179450035095, + -0.004893789999186993, + -0.10126271098852158, + -0.08511736243963242, + 0.08919872343540192, + -0.07849450409412384, + -0.010427067056298256, + -0.07118475437164307, + 0.05186426267027855, + 0.10312867164611816, + 0.030673181638121605, + -0.029781712219119072, + -0.008348381146788597, + 0.056848566979169846, + -0.04707678407430649, + -0.0067833526991307735, + 0.03531728312373161, + 0.024210384115576744, + -0.11635036766529083, + 0.013965512625873089, + -0.07389486581087112, + 0.04277389869093895, + -0.05636947974562645, + 0.15073639154434204, + 0.0035770591348409653, + -0.057158462703228, + -0.07108616083860397, + 0.04859982430934906, + -0.03221463784575462, + 0.04725079983472824, + 0.036441951990127563, + 0.05647174268960953, + 0.02352149784564972, + -0.0855683833360672, + 0.13024096190929413, + 0.03629671782255173, + -0.04844909906387329, + -0.08672253787517548, + -0.030435342341661453, + -0.029809799045324326, + 0.03421724960207939, + 0.019117143005132675, + -0.08216220140457153, + -0.03539983183145523, + 0.025588396936655045, + -0.0269588902592659, + 0.06715121865272522, + 0.1439489722251892, + 0.06829582154750824, + -0.11346214264631271 + ] + }, + "p245_380.wav": { + "name": "p245", + "embedding": [ + 0.013977156952023506, + 0.06790954619646072, + -0.04052652418613434, + 0.031308140605688095, + -0.06747622042894363, + 0.04213244467973709, + -0.11638307571411133, + 0.08593550324440002, + -0.05164726823568344, + 0.11586429178714752, + -0.057797424495220184, + 0.08693459630012512, + -0.05798383429646492, + -0.16135907173156738, + -0.004745818674564362, + 0.08203017711639404, + -0.029021086171269417, + -0.045582547783851624, + -0.045329272747039795, + -0.027362871915102005, + 0.021520139649510384, + 0.01095966063439846, + 0.036966145038604736, + -0.024295005947351456, + 0.029374420642852783, + 0.06388232111930847, + -0.015622885897755623, + 0.00853461492806673, + -0.020870843902230263, + 0.006142172962427139, + -0.02938772365450859, + 0.08799991011619568, + -0.0328793004155159, + -0.04465601593255997, + 0.03385099396109581, + 0.007239095866680145, + -0.010864785872399807, + -0.07567732036113739, + 0.020904667675495148, + -0.02299526333808899, + -0.05988239124417305, + 0.07587135583162308, + 0.019331030547618866, + -0.038673289120197296, + 0.03174209967255592, + -0.030125092715024948, + -0.037907037883996964, + -0.007095793262124062, + -0.11728226393461227, + 0.13979537785053253, + 0.05963439494371414, + 0.008984653279185295, + -0.084353506565094, + -0.052475836127996445, + 0.10475218296051025, + 0.018175670877099037, + -0.09120997786521912, + -0.08472849428653717, + 0.06579320132732391, + 0.14563682675361633, + -0.011699935421347618, + -0.013315165415406227, + 0.02523159421980381, + 0.08954809606075287, + 0.04779740795493126, + 0.07663659751415253, + 0.05395541340112686, + 0.09860788285732269, + 0.00479824049398303, + 0.020014436915516853, + 0.07727955281734467, + 0.03503269702196121, + 0.010948042385280132, + -0.02449103444814682, + 0.016600431874394417, + -0.030751654878258705, + -0.03424938768148422, + -0.0009031300432980061, + -0.023626547306776047, + -0.06795116513967514, + -0.02011554315686226, + -0.037875354290008545, + 0.014735216274857521, + 0.009382423013448715, + -0.021297704428434372, + 0.018951866775751114, + 0.07411405444145203, + -0.038430437445640564, + 0.08233015239238739, + 0.03920704126358032, + -0.028404532000422478, + 0.04277238994836807, + -0.07377149164676666, + -0.061056748032569885, + 0.025939863175153732, + 0.003056139685213566, + -0.005695072002708912, + 0.054062873125076294, + 0.037920013070106506, + -0.03033341094851494, + 0.10569413751363754, + 0.04000004008412361, + 0.02254459448158741, + 0.029939282685518265, + -0.08991887420415878, + 0.11167331039905548, + 0.0881820023059845, + -0.021342061460018158, + 0.020952347666025162, + -0.007511255331337452, + 0.0290372371673584, + 0.08119228482246399, + -0.1016245111823082, + -0.05910422280430794, + 0.005798760801553726, + -0.025263924151659012, + -0.01820685714483261, + 0.1013495922088623, + 0.020612603053450584, + 0.0031752996146678925, + 0.11809593439102173, + -0.1006234809756279, + -0.09614263474941254, + -0.022758638486266136, + 0.04308545961976051, + -0.06667616218328476, + 0.03673451021313667, + 0.09041289240121841, + 0.004973910748958588, + 0.0020864875987172127, + 0.05238916724920273, + 0.002670613117516041, + 0.013621492311358452, + 0.013434219174087048, + -0.0373506061732769, + 0.05703084543347359, + -0.031240394338965416, + -0.02986977808177471, + 0.07929966598749161, + 0.03415234014391899, + 0.05755551904439926, + -0.021560262888669968, + 0.03445431590080261, + -0.09477758407592773, + 0.007923225872218609, + 0.059557944536209106, + 0.047068119049072266, + -0.01991090178489685, + 0.006372484378516674, + -0.04884664714336395, + -0.09643448889255524, + 0.02145705185830593, + -0.016571827232837677, + 0.10778673738241196, + -0.012352574616670609, + -0.008642743341624737, + 0.11329932510852814, + 0.018727000802755356, + 0.0071049961261451244, + -0.03396013379096985, + -0.023094134405255318, + 0.048170171678066254, + 0.043377846479415894, + -0.08602429926395416, + -0.05497325584292412, + -0.0309092216193676, + 0.04159211367368698, + -0.005331383552402258, + 0.028301598504185677, + 0.05750802159309387, + 0.01612606830894947, + -0.0077966381795704365, + -0.07166031002998352, + 0.06478056311607361, + -0.04721618443727493, + -0.0059195272624492645, + -0.009956683032214642, + -0.06868822127580643, + -0.022694185376167297, + 0.08215251564979553, + 0.021549042314291, + 0.0036403872072696686, + -0.04225257411599159, + -0.0926898941397667, + -0.06481640785932541, + 0.03595063090324402, + 0.0550440177321434, + -0.03400982916355133, + 0.04179961606860161, + 0.05777309834957123, + -0.027368739247322083, + -0.010111319832503796, + 0.055434584617614746, + 0.09657125174999237, + -0.027499718591570854, + -0.03702538460493088, + -0.06309280544519424, + 0.08289249241352081, + 0.0918731838464737, + -0.09060847759246826, + -0.05475857853889465, + -0.056424424052238464, + -0.03783833608031273, + 0.03533169627189636, + -0.040616475045681, + 0.0018740375526249409, + 0.03135288879275322, + -0.0343964584171772, + -0.10193973779678345, + -0.13044196367263794, + 0.10127010196447372, + -0.04929221421480179, + -0.021886035799980164, + -0.06672253459692001, + 0.027334121987223625, + 0.030293557792901993, + 0.00800785981118679, + -0.04374115914106369, + 0.014034748077392578, + 0.0197441466152668, + -0.04227215796709061, + 0.0261215977370739, + 0.05880095809698105, + 0.015579446218907833, + -0.08835114538669586, + -0.02471441961824894, + -0.08328090608119965, + 0.11049963533878326, + -0.030021781101822853, + 0.14694847166538239, + -0.006484383717179298, + -0.0024389512836933136, + -0.08935835212469101, + 0.03483014926314354, + -0.006636002566665411, + 0.07277784496545792, + 0.06277797371149063, + 0.06766960769891739, + 0.017642345279455185, + -0.04242781922221184, + 0.1022244542837143, + 0.03702020272612572, + -0.02042987011373043, + -0.06337658315896988, + -0.0010861065238714218, + -0.06406739354133606, + 0.007201822474598885, + -0.006285202689468861, + -0.07866798341274261, + 0.021153774112462997, + 0.032188691198825836, + -0.007751215249300003, + 0.07644884288311005, + 0.0912589281797409, + 0.07644154131412506, + -0.06099837273359299 + ] + }, + "p245_366.wav": { + "name": "p245", + "embedding": [ + 0.05085409805178642, + 0.0670686736702919, + -0.017226673662662506, + 0.0293086227029562, + -0.044026538729667664, + -0.0011953134089708328, + -0.14928144216537476, + 0.13163118064403534, + 0.011134255677461624, + 0.13107284903526306, + -0.07640716433525085, + 0.11196180433034897, + -0.01359421294182539, + -0.20764228701591492, + -0.005072839558124542, + 0.052787747234106064, + -0.028041161596775055, + -0.04100683331489563, + -0.028515605255961418, + -0.03610483929514885, + 0.042826395481824875, + 0.06877894699573517, + 0.019374005496501923, + 0.012615036219358444, + 0.007909136824309826, + 0.0772084891796112, + -0.007314398419111967, + 0.029493529349565506, + 0.0008794280583970249, + -0.027700548991560936, + -0.017559165135025978, + 0.09173493832349777, + -0.0403544120490551, + -0.004228388424962759, + 0.0382133387029171, + -0.016267284750938416, + -0.01226496696472168, + -0.044029563665390015, + -0.025033926591277122, + 0.019150715321302414, + -0.0724925547838211, + 0.068132184445858, + 0.02039487473666668, + -0.019460193812847137, + 0.07364826649427414, + 0.028724944218993187, + -0.023469015955924988, + -0.05228933319449425, + -0.11072307825088501, + 0.15626144409179688, + 0.09449710696935654, + -0.000653789087664336, + -0.06498056650161743, + -0.046945542097091675, + 0.06887988746166229, + -0.017642518505454063, + -0.09521948546171188, + -0.048091333359479904, + 0.08075737953186035, + 0.12235631048679352, + -0.026006614789366722, + -0.04016610234975815, + 0.05044165998697281, + 0.12413829565048218, + 0.06748602539300919, + 0.06921380013227463, + 0.07931749522686005, + 0.10358836501836777, + -0.04982781410217285, + -0.0075846146792173386, + 0.056043967604637146, + 0.06321180611848831, + 0.06375768780708313, + -0.015242952853441238, + 0.01914917677640915, + 0.01893724501132965, + -0.01899206079542637, + -0.020946774631738663, + -0.015297727659344673, + 0.004510984756052494, + -0.004505652468651533, + 0.005002297926694155, + -0.020885147154331207, + 0.03709785267710686, + -0.032443128526210785, + 0.047464869916439056, + 0.07302549481391907, + -0.007000552024692297, + 0.06750082224607468, + 0.037738338112831116, + 0.020419891923666, + 0.0640973448753357, + -0.09228697419166565, + -0.0656832680106163, + 0.02940038964152336, + -0.004019502084702253, + 0.006502562668174505, + 0.07582731544971466, + 0.049078747630119324, + -0.025137916207313538, + 0.13060736656188965, + 0.031714390963315964, + -0.0243767611682415, + 0.025476818904280663, + -0.09873418509960175, + 0.11460059136152267, + 0.09725730121135712, + -0.04103093594312668, + 0.03775591775774956, + -0.04929732531309128, + 0.050757259130477905, + 0.05530647560954094, + -0.1175805851817131, + -0.04079030081629753, + 0.04339802265167236, + 0.013811683282256126, + -0.01518404483795166, + 0.13868063688278198, + 0.00020996108651161194, + 0.04843778535723686, + 0.11880333721637726, + -0.07298990339040756, + -0.06130088120698929, + -0.033031392842531204, + 0.057804226875305176, + -0.11218637228012085, + 0.06844715774059296, + 0.05549861118197441, + 0.0032898352947086096, + 0.01518731564283371, + 0.07789964973926544, + -0.011777608655393124, + 0.002540184184908867, + -0.04070531576871872, + -0.019211189821362495, + 0.029824092984199524, + -0.025816660374403, + -0.009925898164510727, + 0.02613704651594162, + 0.020925652235746384, + 0.03841459006071091, + 0.00516651663929224, + -0.030071567744016647, + -0.13356314599514008, + 0.03662843257188797, + 0.02257009968161583, + 0.08171272277832031, + -0.013699542731046677, + -0.02153829112648964, + -0.0628013163805008, + -0.06399285793304443, + 0.005680585280060768, + -0.018062133342027664, + 0.04864518344402313, + -0.029082879424095154, + -0.005540390498936176, + 0.10222171247005463, + 0.01824648678302765, + 0.02005079947412014, + -0.01191074587404728, + -0.04252376779913902, + -0.0077728345058858395, + 0.05392754077911377, + -0.08858421444892883, + -0.08242686092853546, + -0.024000003933906555, + 0.027447447180747986, + 0.0007757818093523383, + 0.0593448132276535, + 0.04908888041973114, + 0.007528652902692556, + 0.004842091351747513, + -0.10006989538669586, + 0.01182630192488432, + -0.09884762018918991, + -0.08765855431556702, + -0.01826735958456993, + -0.003998443018645048, + 0.0015570521354675293, + 0.07226147502660751, + -0.0009670673753134906, + 0.044813916087150574, + -0.037501826882362366, + -0.08301500976085663, + -0.0931137204170227, + 0.046649396419525146, + 0.08539436757564545, + -0.02161845564842224, + 0.04968719184398651, + 0.048751816153526306, + -0.05311344563961029, + 0.04359713941812515, + 0.04705842584371567, + 0.10929615795612335, + -0.024895353242754936, + 0.038282353430986404, + -0.060064613819122314, + 0.09248365461826324, + 0.08937928080558777, + -0.07307444512844086, + -0.07582604885101318, + -0.02635362558066845, + -0.07325046509504318, + 0.03173784911632538, + -0.009884057566523552, + 0.01593635231256485, + 0.036145277321338654, + 0.00439275149255991, + -0.08528005331754684, + -0.08604592084884644, + 0.05700783431529999, + -0.05143602937459946, + -0.0041984873823821545, + -0.09667955338954926, + 0.04341677948832512, + 0.09445275366306305, + 0.04271339997649193, + -0.03443188592791557, + -0.04000169038772583, + 0.027259886264801025, + -0.008615976199507713, + 0.004325446672737598, + 0.044155314564704895, + 0.04436783120036125, + -0.12072961032390594, + -0.021931877359747887, + -0.06812672317028046, + 0.07399549335241318, + -0.0575198195874691, + 0.10598163306713104, + 0.03043750487267971, + -0.04580631107091904, + -0.09369494765996933, + 0.03592119365930557, + 0.012223056517541409, + 0.06361805647611618, + 0.02238444611430168, + 0.05402231961488724, + 0.042594872415065765, + -0.06385616958141327, + 0.10012947767972946, + 0.0571836493909359, + -0.0303624477237463, + -0.05940689891576767, + -0.038931287825107574, + -0.025729596614837646, + 0.03405177593231201, + 0.03150327131152153, + -0.08148278295993805, + -0.02010997384786606, + 0.023361992090940475, + -0.0273139588534832, + 0.04828052222728729, + 0.13030493259429932, + 0.04777144640684128, + -0.13580790162086487 + ] + }, + "p245_372.wav": { + "name": "p245", + "embedding": [ + 0.05733104795217514, + 0.09035584330558777, + -0.0674799457192421, + 0.01678674854338169, + -0.02285352163016796, + 0.051871947944164276, + -0.14151254296302795, + 0.10145170241594315, + -0.04185459762811661, + 0.13366682827472687, + -0.03486177325248718, + 0.10930806398391724, + -0.0007387548685073853, + -0.12698563933372498, + -0.02672582119703293, + 0.043290864676237106, + 0.013508656993508339, + -0.00466608302667737, + -0.03365962207317352, + 0.000635968055576086, + 0.03677349537611008, + 0.017415087670087814, + 0.016871776431798935, + -0.052286166697740555, + 0.021442992612719536, + 0.04421444237232208, + 0.0150107741355896, + 0.010867506265640259, + 0.0008865110576152802, + 0.0034209704026579857, + 0.0069201430305838585, + 0.08041664958000183, + -0.04085970297455788, + -0.00730693805962801, + 0.05829421803355217, + 0.017184995114803314, + -0.03687230497598648, + -0.06707696616649628, + 0.00912418495863676, + 0.02171766757965088, + -0.04473855346441269, + 0.0750008076429367, + 0.03293878957629204, + -0.03214138746261597, + 0.05211421102285385, + -0.030220355838537216, + -0.0071022603660821915, + -0.013494142331182957, + -0.06668394058942795, + 0.13318251073360443, + 0.06431329250335693, + 0.017523903399705887, + -0.0957476869225502, + -0.009879414923489094, + 0.09297850728034973, + 0.011899620294570923, + -0.058020077645778656, + -0.07234961539506912, + 0.02504071407020092, + 0.129949152469635, + -0.007936263456940651, + -0.03676142916083336, + 0.030724268406629562, + 0.09560272842645645, + 0.04965270310640335, + 0.05461284890770912, + 0.08459322154521942, + 0.09206856787204742, + 0.004799109883606434, + 0.024314353242516518, + 0.036570191383361816, + 0.06704433262348175, + 0.009090223349630833, + -0.025997400283813477, + 0.029857806861400604, + -0.026604363694787025, + -0.031231887638568878, + -0.017487429082393646, + -0.020572379231452942, + -0.05050205439329147, + -0.025242380797863007, + 0.0005858428776264191, + 0.014840181916952133, + 0.0555109977722168, + -0.05065262317657471, + 0.021962732076644897, + 0.0536637008190155, + -0.061104051768779755, + 0.03855361044406891, + 0.0710848867893219, + 0.001259309588931501, + -0.0029928572475910187, + -0.061065398156642914, + -0.1031339019536972, + 0.033726662397384644, + -0.0077224550768733025, + -0.02910834550857544, + 0.06257793307304382, + 0.024022288620471954, + 0.02959100529551506, + 0.07827945053577423, + 0.04612663760781288, + -0.014843754470348358, + 0.00977691076695919, + -0.0459158793091774, + 0.12566959857940674, + 0.09223836660385132, + -0.018394213169813156, + 0.033365506678819656, + -0.04731784015893936, + -0.004409823566675186, + 0.041355542838573456, + -0.09878554940223694, + -0.07866127789020538, + 0.052483223378658295, + 0.030176879838109016, + 0.02491014637053013, + 0.11451079696416855, + 0.022274555638432503, + 0.008571521379053593, + 0.0778849720954895, + -0.04630091041326523, + -0.10109050571918488, + -0.05816987156867981, + 0.04357404261827469, + -0.0649087131023407, + 0.06832358241081238, + 0.04452177882194519, + 0.01403038576245308, + -0.024561025202274323, + 0.08152192831039429, + 0.01438787393271923, + 0.012281514704227448, + -0.011794395744800568, + 0.027140209451317787, + 0.05973951518535614, + -0.028061334043741226, + 0.02277158945798874, + 0.03398044779896736, + 0.021174680441617966, + 0.07734952121973038, + 0.013620274141430855, + 0.014688989147543907, + -0.09958376735448837, + -0.003773623611778021, + 0.0702660009264946, + 0.06208153814077377, + -0.042771726846694946, + -0.03063330054283142, + -0.013423687778413296, + -0.06739537417888641, + -0.017742808908224106, + -0.04598553851246834, + 0.09883978962898254, + 0.012268861755728722, + 0.025962816551327705, + 0.10167396068572998, + -0.03406553715467453, + 0.028727801516652107, + -0.018112368881702423, + 0.038294363766908646, + 0.015364090912044048, + 0.04440914839506149, + -0.07276734709739685, + -0.09709705412387848, + -0.033611685037612915, + 0.0015493594110012054, + 0.00544988177716732, + 0.02899564430117607, + 0.04482974112033844, + -0.027257267385721207, + 0.05124206840991974, + -0.08262453973293304, + 0.004344735760241747, + -0.10727809369564056, + -0.011226003058254719, + -0.05117690935730934, + -0.059016767889261246, + -0.01636984385550022, + 0.07590500265359879, + 0.025758033618330956, + 0.0504256896674633, + -0.013828850351274014, + -0.06937123090028763, + -0.06957569718360901, + 0.0428764633834362, + 0.07960563898086548, + -0.04210585728287697, + 0.012439573183655739, + 0.054749779403209686, + 0.026797067373991013, + 0.0030076801776885986, + 0.057123132050037384, + 0.03404882550239563, + -0.04285070300102234, + -0.03743429109454155, + -0.06306368112564087, + 0.08651576936244965, + 0.10523722320795059, + -0.09650164842605591, + -0.05970654636621475, + -0.05139657109975815, + -0.05676249414682388, + -0.02443491667509079, + -0.06439773738384247, + 0.02167343534529209, + 0.04126442223787308, + -0.04472264274954796, + -0.09704603254795074, + -0.12901823222637177, + 0.06351842731237411, + -0.07181698083877563, + 0.009529278613626957, + -0.03975483775138855, + 0.018235305324196815, + 0.05253224074840546, + 0.024941300973296165, + -0.0569583959877491, + -0.008068302646279335, + 0.00033845938742160797, + -0.03012045845389366, + -0.009283711202442646, + 0.019301997497677803, + 0.024861197918653488, + -0.10825774818658829, + 0.014226483181118965, + -0.03699026256799698, + 0.09965601563453674, + -0.07935299724340439, + 0.10811513662338257, + -0.005107831209897995, + -0.046056970953941345, + -0.09999237209558487, + 0.0037021860480308533, + 0.0023497771471738815, + 0.03718119487166405, + 0.027923423796892166, + 0.06295756995677948, + -0.010731782764196396, + -0.06636888533830643, + 0.09514481574296951, + 0.06648585200309753, + 0.007089182734489441, + -0.09984470158815384, + -0.02658105455338955, + -0.030848020687699318, + 0.0550755150616169, + 0.03441673889756203, + -0.05427945777773857, + 0.019471045583486557, + 0.024769499897956848, + -0.016197985038161278, + 0.05553022772073746, + 0.0916881263256073, + 0.05958426743745804, + -0.10344059765338898 + ] + }, + "p245_409.wav": { + "name": "p245", + "embedding": [ + 0.04685479402542114, + 0.08793620765209198, + -0.04375693202018738, + 0.02922828122973442, + -0.04073556512594223, + 0.048139847815036774, + -0.12432301044464111, + 0.10058197379112244, + -0.043299127370119095, + 0.14477354288101196, + -0.07895662635564804, + 0.10296115279197693, + -0.02315559796988964, + -0.13970181345939636, + -0.03226865455508232, + 0.04191824048757553, + -0.017668165266513824, + -0.026027221232652664, + -0.050915420055389404, + -0.026309136301279068, + 0.04001901298761368, + 0.04038793593645096, + 0.03480706736445427, + -0.01849052496254444, + -0.0022871121764183044, + 0.07005549967288971, + 0.004157315474003553, + 0.0292053185403347, + 0.006603945046663284, + -0.005187880247831345, + 0.0023290254175662994, + 0.09867174923419952, + -0.0269942507147789, + -0.01603705622255802, + 0.010927428491413593, + 0.011978043243288994, + -0.016052542254328728, + -0.05749648064374924, + 0.01834302395582199, + 0.010225404985249043, + -0.03608110174536705, + 0.06224112585186958, + 0.025711048394441605, + 0.004586122930049896, + 0.037158068269491196, + -0.0499148815870285, + -0.05249282717704773, + -0.027453351765871048, + -0.09517663717269897, + 0.16614505648612976, + 0.10721215605735779, + 0.007173639256507158, + -0.08721701800823212, + -0.020116083323955536, + 0.09986774623394012, + 0.00765939150005579, + -0.07520962506532669, + -0.07176291942596436, + 0.042786870151758194, + 0.14679358899593353, + -0.01359262503683567, + -0.04063251242041588, + 0.02059154585003853, + 0.127417653799057, + 0.01747730001807213, + 0.06593339890241623, + 0.09820875525474548, + 0.08636270463466644, + -0.017594821751117706, + 0.01667419821023941, + 0.03657269850373268, + 0.04605276510119438, + 0.03849438577890396, + -0.038436055183410645, + 0.03968048095703125, + -0.03194167837500572, + -0.0075933621264994144, + 0.0039037386886775494, + -0.028130915015935898, + -0.07411304116249084, + -0.02016177773475647, + -0.005383030045777559, + -0.00918504036962986, + 0.03807658702135086, + -0.05168043076992035, + 0.020047640427947044, + 0.04268265888094902, + -0.04129219800233841, + 0.058822210878133774, + 0.04602697864174843, + 0.016203677281737328, + 0.0070342086255550385, + -0.05871604382991791, + -0.07247129827737808, + 0.05148777365684509, + 0.005216647870838642, + 0.0015004808083176613, + 0.06330367177724838, + 0.028280191123485565, + -0.0035252743400633335, + 0.10147664695978165, + 0.03806959092617035, + -0.017253413796424866, + -0.012614872306585312, + -0.07122364640235901, + 0.11995884776115417, + 0.1300797164440155, + -0.021409673616290092, + 0.025097183883190155, + -0.023122824728488922, + 0.01762845367193222, + 0.04973446577787399, + -0.11322826147079468, + -0.05679073929786682, + 0.022512219846248627, + 0.03559865057468414, + 0.013029510155320168, + 0.0857982337474823, + 0.01186261884868145, + 0.010817972011864185, + 0.08849571645259857, + -0.05632779747247696, + -0.07177706807851791, + -0.06310583651065826, + 0.04269396513700485, + -0.08041463792324066, + 0.039707157760858536, + 0.06490860879421234, + 0.01983034797012806, + -0.031055090948939323, + 0.0718628317117691, + -0.00395666528493166, + -0.0010917802574113011, + -0.007577957585453987, + -0.006820116192102432, + 0.04068881645798683, + -0.03394937887787819, + -0.011689173057675362, + 0.010379351675510406, + 0.004798884503543377, + 0.06318500638008118, + 0.006048180628567934, + 0.03342343121767044, + -0.07824191451072693, + 0.02239268459379673, + 0.048955388367176056, + 0.03480323776602745, + -0.027532635256648064, + -0.03347981348633766, + -0.018102135509252548, + -0.05839384347200394, + 0.006764193996787071, + -0.042738210409879684, + 0.08275645971298218, + 0.004514245316386223, + 0.011263545602560043, + 0.10799264907836914, + -0.020866746082901955, + 0.0016718126134946942, + -0.02056361921131611, + 0.016043413430452347, + 0.023401670157909393, + 0.0368221290409565, + -0.07489927113056183, + -0.07478682696819305, + 0.0030160630121827126, + 0.030737020075321198, + 3.1249597668647766e-05, + 0.029846955090761185, + 0.05880098044872284, + -0.01874908246099949, + 0.017438052222132683, + -0.06023382395505905, + 0.0256100594997406, + -0.07969028502702713, + -0.025224952027201653, + -0.007644301746040583, + -0.06536135822534561, + 0.0027620792388916016, + 0.06685669720172882, + 0.02920559048652649, + 0.023602580651640892, + -0.035304196178913116, + -0.07948566973209381, + -0.07861854881048203, + 0.07067568600177765, + 0.09690631926059723, + -0.02623526006937027, + 0.028365906327962875, + 0.06704262644052505, + -0.00489993579685688, + 0.01765313744544983, + 0.056844357401132584, + 0.08495189994573593, + -0.03747512400150299, + -0.024069178849458694, + -0.07115550339221954, + 0.0529637336730957, + 0.09276048839092255, + -0.09650485217571259, + -0.0758967250585556, + -0.06013265252113342, + -0.06398917734622955, + 0.037336770445108414, + -0.04513486474752426, + 0.0010640843538567424, + 0.06461844593286514, + -0.038739580661058426, + -0.1080198734998703, + -0.10775075852870941, + 0.08864559233188629, + -0.044962890446186066, + -0.0010441341437399387, + -0.06791872531175613, + 0.04533177614212036, + 0.057183071970939636, + 0.02732718363404274, + -0.06489136815071106, + -0.006031383760273457, + 0.011503057554364204, + -0.03434861823916435, + -0.00504462793469429, + 0.005573205649852753, + 0.043108440935611725, + -0.11503780633211136, + 0.00022062845528125763, + -0.07902361452579498, + 0.09089290350675583, + -0.06943564116954803, + 0.09067340940237045, + 0.016049236059188843, + -0.021370848640799522, + -0.09845273196697235, + 0.04548756778240204, + -0.003312797285616398, + 0.0626494288444519, + 0.03883887827396393, + 0.037379782646894455, + 0.020783545449376106, + -0.08334361016750336, + 0.09147583693265915, + 0.06296940892934799, + -0.01402687281370163, + -0.09347584843635559, + 0.008111551403999329, + -0.04015237092971802, + 0.04742976650595665, + 0.020302262157201767, + -0.04552299156785011, + -0.009486149996519089, + 0.012873087078332901, + -0.027863290160894394, + 0.08127377927303314, + 0.08999764919281006, + 0.04994462803006172, + -0.09845499694347382 + ] + }, + "p245_383.wav": { + "name": "p245", + "embedding": [ + 0.051961928606033325, + 0.1003323644399643, + -0.017048493027687073, + 0.018067607656121254, + -0.07055257260799408, + 0.08750578761100769, + -0.12543126940727234, + 0.13217034935951233, + -0.07462392747402191, + 0.13187451660633087, + -0.056843094527721405, + 0.12461845576763153, + -0.023163778707385063, + -0.18079997599124908, + -0.0441136509180069, + 0.06553854793310165, + -0.06358849257230759, + -0.0434214249253273, + -0.044098399579524994, + -0.021019574254751205, + 0.029718656092882156, + 0.017701543867588043, + 0.029648669064044952, + 0.012301245704293251, + 0.040944695472717285, + 0.07280528545379639, + 0.00027831620536744595, + 0.04027874767780304, + 0.016047129407525063, + -0.05634850636124611, + -0.0489109642803669, + 0.09499888122081757, + -0.048477064818143845, + 0.008584467694163322, + 0.057903241366147995, + -0.01419786922633648, + 0.01219463162124157, + -0.07800684869289398, + -0.028425432741642, + 0.00809280201792717, + -0.03446090221405029, + 0.09030009061098099, + 0.04687321186065674, + -0.010356348939239979, + 0.016451876610517502, + 0.01680051162838936, + -0.008619408123195171, + -0.04263073578476906, + -0.10421565175056458, + 0.15752077102661133, + 0.056104473769664764, + -0.009202159941196442, + -0.06626339256763458, + -0.06975889205932617, + 0.12783098220825195, + -0.01600278913974762, + -0.12269507348537445, + -0.043098825961351395, + 0.07372093200683594, + 0.15820667147636414, + -0.033350471407175064, + -0.023331576958298683, + 0.013287276029586792, + 0.12921252846717834, + 0.05306554585695267, + 0.0991314947605133, + 0.06547370553016663, + 0.1119549348950386, + -0.0055655972100794315, + 0.03039177507162094, + 0.07324860990047455, + 0.06838526576757431, + 0.023079385980963707, + -0.021022500470280647, + 0.03220806270837784, + -0.0046750339679419994, + -0.025149229913949966, + 0.011302920058369637, + -0.023519933223724365, + -0.015441217459738255, + -0.023698799312114716, + 0.0074646794237196445, + 0.010292783379554749, + 0.014224608428776264, + -0.02153194695711136, + 0.06688288599252701, + 0.022209059447050095, + -0.006022770889103413, + 0.07282760739326477, + 0.044977832585573196, + 0.005059376358985901, + 0.06954288482666016, + -0.07200536131858826, + -0.09265932440757751, + 0.027055755257606506, + 0.008123675361275673, + 0.024042509496212006, + 0.07340489327907562, + 0.04390253126621246, + -0.012373756617307663, + 0.11459733545780182, + 0.0699889063835144, + 0.0016110099386423826, + 0.027886558324098587, + -0.09250708669424057, + 0.1322990208864212, + 0.07789024710655212, + -0.01871161162853241, + 0.045396819710731506, + -0.03997617959976196, + 0.09187410771846771, + 0.07895757257938385, + -0.14746510982513428, + -0.08441343903541565, + 0.03229851275682449, + 0.0033712172880768776, + -0.020488983020186424, + 0.11600017547607422, + -0.02533874660730362, + 0.023185715079307556, + 0.0937386229634285, + -0.07268008589744568, + -0.05123534053564072, + -0.01627180352807045, + 0.04241780936717987, + -0.07002796232700348, + 0.047854818403720856, + 0.05044017359614372, + -0.016877397894859314, + 0.009910564869642258, + 0.08756381273269653, + -0.011729761958122253, + -0.01523641124367714, + 0.04429970309138298, + -0.04510272666811943, + 0.037817202508449554, + -0.018301397562026978, + 0.014023780822753906, + 0.054726339876651764, + 0.04314921796321869, + 0.03982646018266678, + -0.012394670397043228, + -0.010857694782316685, + -0.10159504413604736, + 0.015221023932099342, + 0.03230646252632141, + 0.07798334956169128, + -0.0017948232125490904, + -0.019101493060588837, + -0.03811134397983551, + -0.07298411428928375, + 0.011663136072456837, + -0.009585989639163017, + 0.09579212963581085, + -0.01879912242293358, + 0.006130516063421965, + 0.09789858758449554, + 0.0342482291162014, + -0.0011248192749917507, + -0.05996484309434891, + -0.023943185806274414, + 0.02453167736530304, + 0.05605415627360344, + -0.07065753638744354, + -0.06291016936302185, + 0.009846445173025131, + 0.023003805428743362, + -0.027681700885295868, + 0.04410000145435333, + 0.03913647308945656, + 0.01910785399377346, + 0.04239189624786377, + -0.07289816439151764, + 0.034440405666828156, + -0.10424042493104935, + -0.04052029550075531, + -0.015168413519859314, + -0.028848329558968544, + -0.03157287836074829, + 0.0802823007106781, + 0.026244379580020905, + 0.04280152916908264, + -0.006335328333079815, + -0.0749741643667221, + -0.05914945900440216, + 0.06858363002538681, + 0.07021918892860413, + 0.000763176241889596, + 0.04322409629821777, + 0.06144925579428673, + -0.010214393958449364, + 0.04603702202439308, + 0.06312006711959839, + 0.0953521579504013, + -0.028142109513282776, + 0.010612444020807743, + -0.06260417401790619, + 0.08707071840763092, + 0.06325779110193253, + -0.11406780779361725, + -0.07898841798305511, + -0.021939242258667946, + -0.04755283147096634, + 0.037323251366615295, + -0.027789587154984474, + 0.0020862098317593336, + 0.015445382334291935, + -0.005642781034111977, + -0.0980280339717865, + -0.09309989213943481, + 0.09758290648460388, + -0.08088277280330658, + -0.005045594647526741, + -0.08008280396461487, + 0.041569650173187256, + 0.09665770828723907, + 0.040046967566013336, + -0.031826864928007126, + 0.006445502862334251, + 0.05165369063615799, + -0.034595124423503876, + 0.0036665690131485462, + 0.055092327296733856, + 0.02016792632639408, + -0.10122118890285492, + 0.005300299264490604, + -0.07198093086481094, + 0.0713411420583725, + -0.04767174273729324, + 0.17677190899848938, + -0.0032451448496431112, + -0.04714808613061905, + -0.07698563486337662, + 0.04146338999271393, + -0.03307162970304489, + 0.04928438365459442, + 0.0498884841799736, + 0.06690670549869537, + 0.031358830630779266, + -0.04890427365899086, + 0.1271275132894516, + 0.02913709171116352, + -0.04459039866924286, + -0.06731998920440674, + -0.027370931580662727, + -0.038073860108852386, + 0.03338006138801575, + 0.020839311182498932, + -0.09409113973379135, + -0.012980536557734013, + 0.02861589938402176, + -0.02328113466501236, + 0.08477555215358734, + 0.14055627584457397, + 0.08853550255298615, + -0.10171560943126678 + ] + }, + "p245_378.wav": { + "name": "p245", + "embedding": [ + 0.07356055825948715, + 0.05589265376329422, + -0.05945421755313873, + 0.03800595924258232, + -0.03501341491937637, + 0.02806919999420643, + -0.1278119683265686, + 0.09322462975978851, + 0.021685456857085228, + 0.1050618439912796, + -0.08123091608285904, + 0.0777692124247551, + -0.01877608150243759, + -0.09897693991661072, + 0.007780164014548063, + 0.0407402403652668, + -0.01226705964654684, + -0.019103296101093292, + -0.04354848712682724, + -0.007672389969229698, + 0.018578730523586273, + 0.03378306329250336, + 0.02888748236000538, + -0.040145620703697205, + 0.0014858078211545944, + 0.029446661472320557, + -0.013040252029895782, + -0.010183245874941349, + 0.01235133595764637, + 0.03054446540772915, + 0.022034214809536934, + 0.08431374281644821, + -0.03189873322844505, + 0.01479547843337059, + 0.04258693754673004, + 0.03870873153209686, + -0.034444473683834076, + -0.08442743122577667, + 0.006506294943392277, + -0.0027760425582528114, + -0.04542090743780136, + 0.07608649134635925, + 0.06165623292326927, + -0.06301800906658173, + 0.026480767875909805, + -0.00973721593618393, + -0.03223550692200661, + -0.02224026806652546, + -0.09143906831741333, + 0.16835880279541016, + 0.039792563766241074, + 0.020243171602487564, + -0.10544183850288391, + 0.0020604245364665985, + 0.06060638278722763, + 0.009718148969113827, + -0.04116726666688919, + -0.06553290784358978, + 0.025907723233103752, + 0.10810049623250961, + 0.004344447515904903, + -0.05155990272760391, + 0.016360482200980186, + 0.08970555663108826, + 0.04541507735848427, + 0.03530251979827881, + 0.07450313866138458, + 0.11716167628765106, + -0.024232065305113792, + 0.03948289155960083, + 0.07270722836256027, + 0.06019134819507599, + 0.04584244266152382, + 0.00047132931649684906, + 0.030714111402630806, + -0.026641711592674255, + -0.038248371332883835, + 0.01883004605770111, + -0.008875141851603985, + -0.06477877497673035, + -0.004779006354510784, + -0.0374729186296463, + 0.021545862779021263, + 0.06831329315900803, + -0.05458468198776245, + 0.00617500115185976, + 0.0787617638707161, + -0.0373375341296196, + 0.05991886556148529, + 0.0575408935546875, + 0.0020321765914559364, + 0.015993759036064148, + -0.0632714182138443, + -0.11278493702411652, + 0.009301645681262016, + -0.0337182953953743, + 0.06480618566274643, + 0.027052270248532295, + 0.039097510278224945, + 0.004699346609413624, + 0.07877302914857864, + 0.020960720255970955, + -0.006511107087135315, + 0.006062701344490051, + -0.060463957488536835, + 0.1382732391357422, + 0.12174190580844879, + -0.011481370776891708, + -0.0029270295053720474, + -0.043971166014671326, + 0.012903242371976376, + 0.045638203620910645, + -0.08375333249568939, + -0.03309832140803337, + 0.027462894096970558, + 0.03223282843828201, + 0.031752005219459534, + 0.12050914764404297, + 0.03856905922293663, + 0.022082416340708733, + 0.08624481409788132, + -0.08006644248962402, + -0.0688156932592392, + -0.00579611724242568, + 0.010021553374826908, + -0.058083657175302505, + 0.028511494398117065, + 0.057241059839725494, + 0.0008386839181184769, + -0.019197754561901093, + 0.06484843790531158, + 0.014739526435732841, + 0.024629533290863037, + -0.0394451878964901, + 0.02764122374355793, + 0.09091601520776749, + -0.005300463642925024, + 0.002080010250210762, + 0.07260888814926147, + 0.034074895083904266, + 0.06224292516708374, + 0.04912911355495453, + -0.0018699094653129578, + -0.11282136291265488, + 0.017588814720511436, + 0.08783174306154251, + 0.0471578873693943, + -0.05129261687397957, + -0.04582088440656662, + -0.02439703419804573, + -0.07250069826841354, + 0.04735745117068291, + -0.007515303790569305, + 0.05026981979608536, + 0.018632452934980392, + -0.02232292667031288, + 0.11856301128864288, + -0.03178063780069351, + 0.01418782863765955, + -0.02839784510433674, + 0.0079102274030447, + 0.025792010128498077, + 0.055774617940187454, + -0.08857817947864532, + -0.08377858996391296, + -0.0154368095099926, + 0.014051815494894981, + -0.015000306069850922, + -0.015888558700680733, + 0.06890768557786942, + -0.042123377323150635, + 0.032062508165836334, + -0.06658543646335602, + 0.014344142749905586, + -0.1122901663184166, + -0.037244632840156555, + -0.007160098757594824, + -0.039838001132011414, + 0.021749725565314293, + 0.08088943362236023, + -0.00023683346807956696, + 0.04669029638171196, + -0.030722428113222122, + -0.08501829206943512, + -0.0318550169467926, + 0.06577138602733612, + 0.05816980451345444, + -0.052318256348371506, + 0.02558310329914093, + 0.06252837926149368, + 0.02095206454396248, + -0.022422535344958305, + 0.0358896404504776, + 0.09545740485191345, + -0.0512487068772316, + -0.05405928194522858, + -0.06993772834539413, + 0.1120176613330841, + 0.09925265610218048, + -0.08723784238100052, + -0.05390038341283798, + -0.06408318132162094, + -0.028612671419978142, + -0.006222091615200043, + -0.05771072953939438, + -0.002332533011212945, + 0.04149501025676727, + -0.03364880383014679, + -0.10011672973632812, + -0.11556599289178848, + 0.028742685914039612, + -0.034020379185676575, + 0.019509855657815933, + -0.0727621465921402, + 0.01974644511938095, + 0.0215227622538805, + 0.027389343827962875, + -0.06032874435186386, + 0.019723227247595787, + -0.028119247406721115, + -0.061273664236068726, + -0.0449526384472847, + -0.01403660699725151, + 0.021733634173870087, + -0.08589866012334824, + -0.03290513530373573, + -0.05381286144256592, + 0.08086198568344116, + -0.04885432869195938, + 0.12307758629322052, + -0.007276137359440327, + -0.04249221086502075, + -0.07332247495651245, + -0.014989707618951797, + -0.026630859822034836, + 0.042871274054050446, + 0.07317540049552917, + 0.02236509695649147, + 0.0022440142929553986, + -0.06589357554912567, + 0.09296076744794846, + 0.062490496784448624, + 0.006272461730986834, + -0.06615958362817764, + -0.0058995019644498825, + -0.03407098352909088, + 0.039558045566082, + 0.00854878406971693, + -0.03187225013971329, + 0.047718171030282974, + 0.009061017073690891, + -0.02550385892391205, + 0.03765734285116196, + 0.06623832136392593, + 0.07305961102247238, + -0.08090965449810028 + ] + }, + "p245_316.wav": { + "name": "p245", + "embedding": [ + 0.052700091153383255, + 0.0929516851902008, + -0.023888561874628067, + 0.0279436893761158, + -0.06362634897232056, + 0.06653910875320435, + -0.1519125998020172, + 0.15338334441184998, + -0.03791432827711105, + 0.1356513798236847, + -0.05498111620545387, + 0.11340752243995667, + -0.02968265861272812, + -0.18666476011276245, + -0.009932130575180054, + 0.06142764165997505, + -0.02104286104440689, + -0.029441412538290024, + -0.027081826701760292, + -0.026479169726371765, + 0.023233771324157715, + 0.03504034876823425, + 0.012360403314232826, + 0.00651122909039259, + 0.041588641703128815, + 0.06240413337945938, + -0.022528182715177536, + 0.02042488567531109, + -0.011082634329795837, + -0.04184785485267639, + -0.04227110743522644, + 0.10580919682979584, + -0.06375288963317871, + 0.0057821571826934814, + 0.05385284870862961, + -0.012872878462076187, + -0.017697293311357498, + -0.06033528596162796, + -0.019461628049612045, + -0.001991869416087866, + -0.048481088131666183, + 0.07852614670991898, + 0.04392426088452339, + -0.007684227079153061, + 0.04456692934036255, + 0.017552457749843597, + -0.004163527395576239, + -0.043853141367435455, + -0.10957206040620804, + 0.15362334251403809, + 0.05158037692308426, + 0.0018751485040411353, + -0.08021630346775055, + -0.05423900485038757, + 0.10426251590251923, + -0.014155292883515358, + -0.10936152935028076, + -0.03749626874923706, + 0.08116064965724945, + 0.15562471747398376, + -0.030938956886529922, + -0.04333607852458954, + 0.023340702056884766, + 0.11511082202196121, + 0.059885162860155106, + 0.08908820152282715, + 0.07134212553501129, + 0.12082219123840332, + -0.022596009075641632, + 0.004966703709214926, + 0.058523282408714294, + 0.05392798036336899, + 0.05120730400085449, + -0.020771343261003494, + 0.017915882170200348, + -0.0011706710793077946, + -0.017064567655324936, + -0.0023517608642578125, + -0.024368327111005783, + -0.022327203303575516, + -0.01021807361394167, + 0.007941008545458317, + 0.010619237087666988, + 0.031403254717588425, + -0.0317842923104763, + 0.05075250566005707, + 0.0616997629404068, + -0.009904734790325165, + 0.08016122877597809, + 0.035082437098026276, + 0.0042455620132386684, + 0.0721815824508667, + -0.09732714295387268, + -0.06773847341537476, + 0.04387860745191574, + 9.427615441381931e-05, + 0.02445049025118351, + 0.06994818150997162, + 0.03845995292067528, + -0.012764198705554008, + 0.12626715004444122, + 0.04812723770737648, + 0.006713204551488161, + 0.03481718525290489, + -0.0925331637263298, + 0.13354972004890442, + 0.0752970352768898, + -0.026998694986104965, + 0.06647384911775589, + -0.05032973736524582, + 0.0625457763671875, + 0.06192457303404808, + -0.13637584447860718, + -0.06534100323915482, + 0.04106352850794792, + 0.02742895483970642, + -0.02337820641696453, + 0.1424683779478073, + 0.005762106738984585, + 0.04011613875627518, + 0.10318666696548462, + -0.10421924293041229, + -0.05735648050904274, + -0.007292265072464943, + 0.05085386335849762, + -0.08383700251579285, + 0.05903032049536705, + 0.07045300304889679, + -0.019930727779865265, + 0.02935514971613884, + 0.07605119794607162, + 0.001593107241205871, + 0.009753161109983921, + 0.009368106722831726, + -0.03470921516418457, + 0.016810979694128036, + -0.009193592704832554, + 0.0027433810755610466, + 0.0350138358771801, + 0.02556873857975006, + 0.05376753956079483, + -0.007857490330934525, + -0.01575278863310814, + -0.127521812915802, + 0.009785253554582596, + 0.04219074547290802, + 0.08773767203092575, + -0.01986626349389553, + -0.019652361050248146, + -0.040934719145298004, + -0.07552634179592133, + 0.012308219447731972, + -0.005414648912847042, + 0.08072786033153534, + -0.019961705431342125, + 0.0008645387133583426, + 0.1032775342464447, + 0.053825534880161285, + 0.002344182226806879, + -0.05937627702951431, + -0.03791382536292076, + 0.0008208039798773825, + 0.057626109570264816, + -0.09082728624343872, + -0.07520343363285065, + -0.01682969741523266, + 0.035550136119127274, + -0.027083538472652435, + 0.06699420511722565, + 0.04934248328208923, + 0.027304351329803467, + 0.02773827686905861, + -0.06642135977745056, + 0.02544267475605011, + -0.09791061282157898, + -0.06968384981155396, + -0.004751099739223719, + -0.005411320365965366, + -0.03227407857775688, + 0.08906125277280807, + 0.02509111911058426, + 0.05626029521226883, + -0.03150084614753723, + -0.05263696610927582, + -0.07094071060419083, + 0.054428473114967346, + 0.05072002485394478, + -0.02138522081077099, + 0.038732171058654785, + 0.05407753214240074, + -0.03880320116877556, + 0.04613623768091202, + 0.07538020610809326, + 0.10260307043790817, + -0.030366992577910423, + 0.03377996012568474, + -0.06664805114269257, + 0.09236228466033936, + 0.08922755718231201, + -0.08803154528141022, + -0.0937456339597702, + -0.02727394551038742, + -0.061081238090991974, + 0.02961682714521885, + -0.03202976658940315, + 0.009151730686426163, + 0.02037006802856922, + -0.007407433353364468, + -0.09795951843261719, + -0.09833365678787231, + 0.07409115135669708, + -0.06667649000883102, + 0.0068628969602286816, + -0.09085752069950104, + 0.053731128573417664, + 0.09055349230766296, + 0.034323737025260925, + -0.03714621812105179, + -0.023434627801179886, + 0.04656856507062912, + -0.02731327898800373, + 0.017679894343018532, + 0.06925743073225021, + 0.04674549773335457, + -0.10776910185813904, + -0.0018035814864560962, + -0.0635765790939331, + 0.07072868943214417, + -0.03822845220565796, + 0.16871008276939392, + 0.017064228653907776, + -0.04961357265710831, + -0.07662384957075119, + 0.036921948194503784, + -0.00830315425992012, + 0.04372786730527878, + 0.021670814603567123, + 0.07118090242147446, + 0.05179349333047867, + -0.042572442442178726, + 0.11008737981319427, + 0.03477926552295685, + -0.043584711849689484, + -0.054557688534259796, + -0.047779954969882965, + -0.04735986888408661, + 0.03721203655004501, + 0.0026129158213734627, + -0.10442133247852325, + -0.022919142618775368, + 0.03027445822954178, + 0.005656575318425894, + 0.06177434325218201, + 0.13987630605697632, + 0.06399593502283096, + -0.12579426169395447 + ] + }, + "p245_221.wav": { + "name": "p245", + "embedding": [ + 0.07544361799955368, + 0.04451741650700569, + -0.027681507170200348, + -0.004374104086309671, + -0.03241364285349846, + 0.03483644127845764, + -0.1356535702943802, + 0.12629100680351257, + -0.02857455611228943, + 0.08419238775968552, + -0.060268834233284, + 0.09003345668315887, + 0.008131748996675014, + -0.11563482880592346, + -0.033083476126194, + 0.025542940944433212, + 0.0027588587254285812, + -0.0035776710137724876, + -0.05997627601027489, + -0.022124825045466423, + 0.016603093594312668, + 0.0442960150539875, + 0.0009426684118807316, + -0.03988586738705635, + 0.03324153274297714, + 0.04289409518241882, + 0.010043145157396793, + 0.007975700311362743, + -0.005881816148757935, + 0.026675695553421974, + 0.009460016153752804, + 0.08440985530614853, + -0.05186442658305168, + -0.006030024960637093, + 0.059637054800987244, + 0.0069310637190938, + -0.015985246747732162, + -0.09521479904651642, + -0.016185719519853592, + 0.0013244310393929482, + -0.04903902858495712, + 0.08735046535730362, + 0.07502584159374237, + -0.02874191664159298, + 0.022333383560180664, + 0.026043782010674477, + 0.02701025828719139, + -0.06272056698799133, + -0.11332813650369644, + 0.16552746295928955, + -0.0015889890491962433, + 0.03540879487991333, + -0.12433241307735443, + -0.0137989092618227, + 0.08850128948688507, + -0.023125357925891876, + -0.0268558356910944, + -0.059244394302368164, + 0.02296876162290573, + 0.12654384970664978, + -0.01724345237016678, + -0.06185368075966835, + 0.02098693512380123, + 0.06467089056968689, + 0.05114338546991348, + 0.0362543947994709, + 0.11736927926540375, + 0.10611967742443085, + -0.026200182735919952, + 0.03454611822962761, + 0.04848644509911537, + 0.044430576264858246, + 0.013795167207717896, + -0.0289194006472826, + 0.027604494243860245, + -0.016849443316459656, + -0.03174396604299545, + 0.014437769539654255, + -0.02487555332481861, + -0.046981073915958405, + 0.010058768093585968, + 0.029266290366649628, + 0.03528539091348648, + 0.058564089238643646, + -0.08809112757444382, + 0.0531306117773056, + 0.046964868903160095, + -0.03604850545525551, + 0.07159565389156342, + 0.05380944535136223, + -0.0048292772844433784, + 0.0006522573530673981, + -0.07115405052900314, + -0.09153519570827484, + 0.019619170576334, + -0.014065293595194817, + 0.02214129827916622, + 0.04206022620201111, + 0.029126591980457306, + -0.00046254461631178856, + 0.09456859529018402, + 0.03324053809046745, + -0.0020092418417334557, + 0.00805889442563057, + -0.05740227550268173, + 0.11870633065700531, + 0.10924728214740753, + -0.010181987658143044, + 0.023776385933160782, + -0.0701700747013092, + 0.015464826487004757, + 0.049053654074668884, + -0.0961197093129158, + -0.07427269220352173, + 0.06160321831703186, + 0.032257817685604095, + 0.029683345928788185, + 0.1301005333662033, + -0.00784414354711771, + 0.013699506409466267, + 0.062298692762851715, + -0.08916642516851425, + -0.049913786351680756, + 0.008299124427139759, + 0.024506159126758575, + -0.03554802015423775, + 0.03293517231941223, + 0.05522609502077103, + -0.0003453441895544529, + -0.015393728390336037, + 0.06837913393974304, + 0.012430734932422638, + 0.010460647754371166, + -0.03049779310822487, + 0.04884966090321541, + 0.07646574079990387, + 0.02368527092039585, + -0.041405435651540756, + 0.028268422931432724, + 0.06265530735254288, + 0.046602096408605576, + 0.025626882910728455, + -0.013589153066277504, + -0.10694529116153717, + 0.002043513348326087, + 0.07029065489768982, + 0.06960459798574448, + -0.04823829233646393, + -0.037672240287065506, + -0.06410814076662064, + -0.04821501672267914, + -0.016810446977615356, + 0.0041579026728868484, + 0.0732460767030716, + 0.01337234303355217, + 0.01848025992512703, + 0.11203384399414062, + -0.00029760412871837616, + 0.028643043711781502, + -0.02242138981819153, + 0.021852931007742882, + 0.01564384438097477, + 0.0515604168176651, + -0.013542469590902328, + -0.08595363795757294, + -0.014480408281087875, + 0.012784597463905811, + -0.02818400040268898, + 0.00942278653383255, + 0.02582516148686409, + -0.00949062779545784, + 0.034442827105522156, + -0.12301231920719147, + 0.04304298385977745, + -0.12715674936771393, + 0.009744586423039436, + 0.006621603854000568, + -0.027041062712669373, + -0.008574966341257095, + 0.0894930437207222, + 0.025788266211748123, + 0.05943181738257408, + -0.01720021292567253, + -0.09868359565734863, + -0.028377655893564224, + 0.04999697208404541, + 0.08452276885509491, + -0.04848510026931763, + 0.004371732473373413, + 0.029633231461048126, + 0.03038657084107399, + 0.006165863946080208, + 0.07798436284065247, + 0.05496424436569214, + -0.030187522992491722, + -0.04236677289009094, + -0.020290227606892586, + 0.13149237632751465, + 0.03132545202970505, + -0.0879700630903244, + -0.05835426598787308, + -0.010684439912438393, + -0.04421423748135567, + -0.02981261909008026, + 0.002373363357037306, + 0.041454046964645386, + 0.03771060332655907, + -0.007370452396571636, + -0.11240511387586594, + -0.07204774022102356, + 0.019258588552474976, + -0.06044713780283928, + 0.014948980882763863, + -0.06785193085670471, + 0.023733096197247505, + 0.09173132479190826, + 0.026040010154247284, + -0.0038448739796876907, + -0.061807870864868164, + -0.03989121690392494, + -0.058476440608501434, + -0.03318732976913452, + -0.008631851524114609, + 0.034299299120903015, + -0.07333514094352722, + 0.025858450680971146, + -0.041163887828588486, + 0.08868387341499329, + -0.033839523792266846, + 0.12196126580238342, + 0.010845334269106388, + -0.07047492265701294, + -0.0878961831331253, + -0.010384556837379932, + -0.023336024954915047, + 0.0555521659553051, + 0.04085809737443924, + 0.018407411873340607, + 0.014211077243089676, + -0.06210947781801224, + 0.07970467209815979, + 0.0685562789440155, + -0.040377214550971985, + -0.06374724209308624, + -0.04796559363603592, + -0.015626423060894012, + 0.029782220721244812, + 0.015717513859272003, + -0.013266988098621368, + 0.014829211868345737, + 0.021852387115359306, + -0.03533736616373062, + 0.06431969255208969, + 0.0846015214920044, + 0.0581100769340992, + -0.10572266578674316 + ] + }, + "p245_187.wav": { + "name": "p245", + "embedding": [ + 0.012596029788255692, + 0.061141159385442734, + -0.05705878883600235, + 0.05083771422505379, + -0.07559505850076675, + 0.06834843754768372, + -0.12949217855930328, + 0.10235853493213654, + -0.04765508323907852, + 0.1339765042066574, + -0.03977084532380104, + 0.09403165429830551, + -0.04301803931593895, + -0.1925627440214157, + -0.010889668017625809, + 0.068511001765728, + -0.055938709527254105, + -0.07704132050275803, + -0.05660233274102211, + -0.022700419649481773, + 0.029209647327661514, + 0.04498206824064255, + -0.012401353567838669, + 0.010396387428045273, + 0.002286086091771722, + 0.08178050071001053, + -0.04011232405900955, + -0.006387907080352306, + -0.025729957967996597, + -0.031707413494586945, + -0.048216212540864944, + 0.10317922383546829, + -0.06678211688995361, + -0.010074969381093979, + 0.01823790743947029, + 0.00016468582907691598, + -0.0065436577424407005, + -0.0403321273624897, + 0.0036215484142303467, + 0.007762003690004349, + -0.07703083008527756, + 0.0746045932173729, + 0.029316946864128113, + 0.015015416778624058, + 0.05132196843624115, + -0.018086260184645653, + -0.04280591756105423, + -0.03409750387072563, + -0.10172679275274277, + 0.15774837136268616, + 0.09488138556480408, + -0.025287648662924767, + -0.042640987783670425, + -0.04880565032362938, + 0.09212595224380493, + 0.01593508943915367, + -0.14055019617080688, + -0.0841282308101654, + 0.08707362413406372, + 0.1419597566127777, + -0.017066320404410362, + -0.02310837060213089, + 0.018172737210989, + 0.11889756470918655, + 0.06390821188688278, + 0.08446422219276428, + 0.052047405391931534, + 0.11497338861227036, + -0.014206906780600548, + -0.025666479021310806, + 0.09210590273141861, + 0.04044613987207413, + 0.06135544553399086, + -0.01846320927143097, + 0.03767913207411766, + -0.012173598632216454, + -0.0037247275467962027, + -0.0049050841480493546, + -0.020324071869254112, + -0.02007388137280941, + -2.7015663363272324e-05, + -0.0033866402227431536, + -0.007547921501100063, + 0.035591065883636475, + -0.0162662323564291, + 0.03591470420360565, + 0.08923507481813431, + -0.020721787586808205, + 0.06747323274612427, + 0.05030103027820587, + -0.00071132299490273, + 0.07596778124570847, + -0.08439666032791138, + -0.044020406901836395, + 0.05147150158882141, + 0.015285339206457138, + 0.010167823173105717, + 0.05438341200351715, + 0.024745512753725052, + -0.01831781305372715, + 0.10467488318681717, + 0.004066504072397947, + -0.0061568450182676315, + 0.02328832820057869, + -0.10010657459497452, + 0.13986125588417053, + 0.08326171338558197, + -0.022993624210357666, + 0.01926986686885357, + -0.021677298471331596, + 0.05835209786891937, + 0.05689062923192978, + -0.11279657483100891, + -0.0498005636036396, + 0.045727308839559555, + 0.0048836832866072655, + -0.044865477830171585, + 0.14888601005077362, + 0.026633255183696747, + 0.027824513614177704, + 0.12680459022521973, + -0.10056325048208237, + -0.04986267909407616, + -0.013736365363001823, + 0.036769237369298935, + -0.08810079097747803, + 0.041473980993032455, + 0.07428628206253052, + -0.008025162853300571, + 0.03350050374865532, + 0.0784645527601242, + -0.00801876187324524, + 0.007479770574718714, + -4.6828266931697726e-05, + -0.04600667208433151, + 0.032336801290512085, + 0.0022146268747746944, + -0.007334074471145868, + 0.06355356425046921, + 0.0016760729486122727, + 0.058715928345918655, + -0.04301973432302475, + -0.00919408816844225, + -0.1290985494852066, + 0.028733201324939728, + 0.039158087223768234, + 0.06416044384241104, + -0.02491261437535286, + 0.012849229387938976, + -0.045506205409765244, + -0.0949413850903511, + 0.027799611911177635, + -0.027233976870775223, + 0.09099190682172775, + -0.033994294703006744, + -0.035373471677303314, + 0.09827195852994919, + 0.03844418004155159, + 9.681371011538431e-05, + -0.05182254686951637, + -0.049993935972452164, + 0.008803656324744225, + 0.061391640454530716, + -0.10460279881954193, + -0.055654119700193405, + -0.017895681783556938, + 0.05463574081659317, + 0.002846270566806197, + 0.05532701313495636, + 0.07213053852319717, + 0.02373330108821392, + 0.0012804149882867932, + -0.06415741890668869, + 0.0357990637421608, + -0.06807565689086914, + -0.05571776628494263, + -0.0122703080996871, + -0.04815077409148216, + -0.019920460879802704, + 0.09116028249263763, + 0.0012234277091920376, + 0.020913096144795418, + -0.055766765028238297, + -0.07920531183481216, + -0.06939610093832016, + 0.06947250664234161, + 0.06028511002659798, + -0.029401525855064392, + 0.04803619533777237, + 0.06251256167888641, + -0.04168091341853142, + 0.017523834481835365, + 0.052871666848659515, + 0.14806526899337769, + -0.04210107773542404, + 0.033903852105140686, + -0.06969629973173141, + 0.09020831435918808, + 0.07265383005142212, + -0.0707852691411972, + -0.05689510703086853, + -0.017131086438894272, + -0.04732293635606766, + 0.048709820955991745, + -0.06991229951381683, + 0.0026000456418842077, + 0.03500436618924141, + 0.005721741355955601, + -0.1188526526093483, + -0.10222496092319489, + 0.07778771966695786, + -0.06075313314795494, + 0.003890916472300887, + -0.10510808229446411, + 0.04672253131866455, + 0.065401092171669, + 0.047018345445394516, + -0.06819487363100052, + 0.018421677872538567, + 0.05455322191119194, + -0.012032059021294117, + 0.04431229457259178, + 0.0657096654176712, + 0.043636422604322433, + -0.11881764233112335, + -0.0529114231467247, + -0.08091261237859726, + 0.07293780148029327, + -0.03999851271510124, + 0.14216472208499908, + 0.01532393041998148, + -0.01431943941861391, + -0.07718434184789658, + 0.06583579629659653, + 0.006376232951879501, + 0.058955155313014984, + 0.038301605731248856, + 0.08492980152368546, + 0.057431332767009735, + -0.022452017292380333, + 0.11928348988294601, + 0.04299422726035118, + -0.024492546916007996, + -0.04528416320681572, + -0.012552957981824875, + -0.05504211038351059, + 0.04242349788546562, + 0.020605294033885002, + -0.1146371066570282, + -0.001904359902255237, + 0.04225528985261917, + 0.0016734092496335506, + 0.05993179231882095, + 0.12889130413532257, + 0.07609815895557404, + -0.09642072767019272 + ] + }, + "p245_244.wav": { + "name": "p245", + "embedding": [ + 0.015157620422542095, + 0.1280662566423416, + 0.012902977876365185, + 0.008541541174054146, + -0.023153753951191902, + 0.07905904203653336, + -0.10465726256370544, + 0.13588006794452667, + -0.09854014217853546, + 0.15237274765968323, + -0.11579623818397522, + 0.08611460775136948, + -0.05950622260570526, + -0.16523081064224243, + -0.061877913773059845, + 0.04828590527176857, + -0.05972617492079735, + 0.02642555721104145, + -0.05299194157123566, + 0.012029719538986683, + 0.056963786482810974, + 0.01583811081945896, + 0.01436976995319128, + -0.023658983409404755, + 0.023346658796072006, + 0.02925366349518299, + 0.034538548439741135, + 0.06582436710596085, + 0.05200430005788803, + -0.0500522181391716, + -0.019896874204277992, + 0.14044435322284698, + -0.015244483016431332, + 0.027770008891820908, + 0.08281218260526657, + 0.014411162585020065, + 0.009064699523150921, + -0.045264992862939835, + -0.001370408572256565, + 0.0006966405780985951, + -0.027426065877079964, + 0.03869946300983429, + 0.007182638626545668, + 0.02760354056954384, + 0.04760516434907913, + 0.04462026432156563, + -0.032199230045080185, + -0.0444796048104763, + -0.06649202108383179, + 0.16035136580467224, + 0.057884152978658676, + -0.016115663573145866, + -0.06668198108673096, + -0.10085226595401764, + 0.11680220067501068, + 0.003864242462441325, + -0.1287318915128708, + -0.03475351259112358, + 0.10727717727422714, + 0.18859662115573883, + -0.009541080333292484, + -0.008865938521921635, + -0.0021360195241868496, + 0.11548824608325958, + -0.02306295558810234, + 0.115117147564888, + 0.04356386139988899, + 0.05877058953046799, + 0.06309426575899124, + 0.06548969447612762, + 0.0502641424536705, + 0.03158501535654068, + -0.007655811496078968, + -0.04324665293097496, + 0.03878512233495712, + -0.021659985184669495, + -0.03017851710319519, + 0.05297819897532463, + -0.02193160355091095, + -0.024461058899760246, + -0.014537391252815723, + 0.02656308002769947, + -0.010496634989976883, + -0.02818768285214901, + -0.02320687659084797, + 0.05188872665166855, + -0.03935471922159195, + 0.006939942017197609, + 0.08570580929517746, + 0.04858342185616493, + 0.015884390100836754, + 0.030341383069753647, + -0.026812471449375153, + -0.13850785791873932, + -0.015858955681324005, + -0.003745785215869546, + -0.008354886434972286, + 0.05596143379807472, + 0.01924893818795681, + -0.021216878667473793, + 0.10027248412370682, + 0.061965975910425186, + 0.014054552651941776, + 0.03820875659584999, + -0.13620363175868988, + 0.10815736651420593, + 0.06344486773014069, + 0.005911736749112606, + 0.03330852836370468, + -0.02108769491314888, + 0.09143178910017014, + 0.09591739624738693, + -0.1506294161081314, + -0.08359047025442123, + 0.018436571583151817, + 0.002948738867416978, + 0.0035635745152831078, + 0.07334635406732559, + -0.010056732222437859, + -0.033189211040735245, + 0.09899751842021942, + -0.07976589351892471, + -0.07831475883722305, + -0.05339564010500908, + 0.049559157341718674, + -0.04860967397689819, + 0.04483095929026604, + 0.021273093298077583, + -0.02921343222260475, + -0.02183394506573677, + 0.07835209369659424, + -0.016324905678629875, + 0.025435157120227814, + 0.0355246365070343, + -0.051567915827035904, + 0.03772864490747452, + -0.07808506488800049, + 0.019515827298164368, + 0.03784070536494255, + 0.09629470109939575, + 0.04965567961335182, + 0.01230591256171465, + -0.06264735013246536, + -0.05170727148652077, + -0.019810933619737625, + 0.052450526505708694, + 0.026648562401533127, + 0.0005201101885177195, + -0.0082823121920228, + -0.028736691921949387, + -0.0499672070145607, + 0.014001957140862942, + -0.012483155354857445, + 0.11741535365581512, + 0.005480760242789984, + -0.0007769843796268106, + 0.10091301053762436, + -0.009140508249402046, + -0.011305494233965874, + -0.08737270534038544, + -0.02917810156941414, + 0.04699983447790146, + 0.00973961316049099, + -0.08278350532054901, + -0.04763023182749748, + 0.03154463320970535, + 0.0026425619143992662, + -0.018831267952919006, + 0.0025461509358137846, + 0.02188570238649845, + 0.007187790237367153, + 0.06341048330068588, + -0.055779047310352325, + 0.02527732029557228, + -0.11441327631473541, + -0.04378209263086319, + -0.0200076662003994, + -0.04527204856276512, + -0.018684620037674904, + 0.07624778151512146, + -0.0027864093426615, + -0.00929536484181881, + 0.04374432563781738, + -0.08929353207349777, + -0.048692017793655396, + 0.09048879891633987, + 0.0808616653084755, + 0.026113083586096764, + 0.07289928942918777, + 0.03635279834270477, + -0.03004615381360054, + 0.0690738782286644, + 0.07146404683589935, + 0.09707856178283691, + -0.0014301573392003775, + -0.02368122525513172, + -0.08191797137260437, + 0.05331761762499809, + 0.06625315546989441, + -0.11483199894428253, + -0.0994897335767746, + -0.0410405695438385, + -0.04697568342089653, + 0.052460819482803345, + -0.024758759886026382, + 0.007315436843782663, + 0.013924474827945232, + -0.03480202332139015, + -0.07345923036336899, + -0.06326351314783096, + 0.10047326982021332, + -0.06961528211832047, + -0.04817875847220421, + -0.03589896112680435, + 0.049925725907087326, + 0.08763585239648819, + 0.03277474641799927, + -0.02049325220286846, + 0.005890677683055401, + 0.059558264911174774, + -0.11488718539476395, + -0.04705577343702316, + -0.007321113720536232, + -0.017281435430049896, + -0.05174028128385544, + 0.06147269532084465, + -0.09238504618406296, + 0.07521699368953705, + -0.08781251311302185, + 0.16216593980789185, + -0.04535123333334923, + -0.07118268311023712, + -0.0862535834312439, + 0.04955045133829117, + -0.04490290582180023, + 0.013406594283878803, + 0.03827185928821564, + 0.06513432413339615, + 0.01425163447856903, + -0.06357578933238983, + 0.12632222473621368, + -0.014399769715964794, + -0.005276745185256004, + -0.04854385182261467, + -0.04046763479709625, + -0.06491805613040924, + -0.015935152769088745, + -0.015658725053071976, + -0.09553497284650803, + -0.009389840066432953, + 0.004181795287877321, + -0.013229004107415676, + 0.07735807448625565, + 0.11161790043115616, + 0.03208980709314346, + -0.09762602299451828 + ] + }, + "p245_158.wav": { + "name": "p245", + "embedding": [ + 0.03636794909834862, + 0.07408522069454193, + -0.029218478128314018, + 0.08177635073661804, + -0.06782162934541702, + 0.0618540421128273, + -0.09660547971725464, + 0.11868441104888916, + -0.03968634083867073, + 0.12036117911338806, + -0.06789775937795639, + 0.10166685283184052, + -0.053389035165309906, + -0.15586525201797485, + -0.010718374513089657, + 0.07490645349025726, + -0.04263267293572426, + -0.038016337901353836, + -0.07048040628433228, + -0.0015694987960159779, + 0.024698931723833084, + 0.028321029618382454, + 0.05222189426422119, + 0.005631127394735813, + -0.003852994879707694, + 0.05570049211382866, + -0.005814242176711559, + 0.0503392294049263, + 0.03300800174474716, + -0.059968627989292145, + -0.036748550832271576, + 0.10470617562532425, + -0.027219461277127266, + 0.013587514869868755, + 0.037255171686410904, + 0.011195352301001549, + -0.00705090444535017, + -0.057694315910339355, + -0.0158570297062397, + -0.029805712401866913, + -0.061803851276636124, + 0.06483978033065796, + 0.006504404824227095, + -0.02211831510066986, + 0.06239274889230728, + -0.023987803608179092, + -0.06901973485946655, + -0.0169401615858078, + -0.1138477474451065, + 0.14198577404022217, + 0.08901195973157883, + -0.005303285550326109, + -0.07042433321475983, + -0.0670144259929657, + 0.09023643285036087, + -0.018352758139371872, + -0.13455168902873993, + -0.06878501176834106, + 0.07643783092498779, + 0.16312626004219055, + 0.0027912412770092487, + 0.006091908551752567, + 0.01098263543099165, + 0.13018983602523804, + 0.08016090095043182, + 0.0921977311372757, + 0.06344588845968246, + 0.12187433242797852, + 0.0032693627290427685, + 0.03604263812303543, + 0.05848647654056549, + 0.05705815181136131, + 0.04459799826145172, + 0.024683550000190735, + 0.016520438715815544, + -0.011246333830058575, + -0.011799464002251625, + 0.0022719241678714752, + -0.03526310622692108, + -0.034555867314338684, + -0.0224318765103817, + -0.00931625533849001, + 0.00201701489277184, + 0.0015893243253231049, + -0.017011523246765137, + 0.05614441633224487, + 0.04730871319770813, + -0.028897108510136604, + 0.057838715612888336, + 0.03517724946141243, + -0.012876738794147968, + 0.054476045072078705, + -0.04793250933289528, + -0.07878871262073517, + -0.01127027627080679, + 0.012375024147331715, + 0.023755429312586784, + 0.044638101011514664, + 0.010993423871695995, + -0.014322813600301743, + 0.11365317553281784, + 0.027714502066373825, + -0.006206504534929991, + 0.04823929816484451, + -0.08984355628490448, + 0.12267597019672394, + 0.07083822786808014, + -0.0011475087376311421, + 0.036867767572402954, + -0.01526604499667883, + 0.06316839903593063, + 0.07226600497961044, + -0.10068142414093018, + -0.048931967467069626, + 0.007679302245378494, + -0.02346210926771164, + -0.02364109456539154, + 0.09442295134067535, + 0.031209997832775116, + 0.03442900627851486, + 0.11493868380784988, + -0.09506888687610626, + -0.05987504497170448, + 0.002745419042184949, + 0.053859613835811615, + -0.0700913816690445, + 0.046697113662958145, + 0.04093196988105774, + 0.0009490498341619968, + 0.00941290333867073, + 0.08174094557762146, + -0.006261578761041164, + 0.014371974393725395, + 0.03929998725652695, + -0.08935508131980896, + 0.03423840180039406, + -0.054238349199295044, + -0.014292575418949127, + 0.07969090342521667, + 0.030051421374082565, + 0.07168838381767273, + -0.042200855910778046, + 0.003494914388284087, + -0.0920737087726593, + -0.002001882530748844, + 0.046577922999858856, + 0.07320979237556458, + -0.0016381286550313234, + 0.002057683654129505, + -0.04588992893695831, + -0.06321508437395096, + 0.04935348033905029, + -0.03699737787246704, + 0.07722482085227966, + -0.042431462556123734, + -0.016282720491290092, + 0.10615359246730804, + -0.01031394861638546, + -0.009273335337638855, + -0.07583662867546082, + -0.03662590682506561, + 0.023021847009658813, + 0.05599135532975197, + -0.08044606447219849, + -0.05300554633140564, + 0.016175316646695137, + 0.0391780324280262, + -0.029483648017048836, + 0.040394652634859085, + 0.041059065610170364, + 0.013634743168950081, + 0.007760524749755859, + -0.0399499386548996, + 0.012870780192315578, + -0.07050175964832306, + -0.0517011433839798, + 0.004763354081660509, + -0.030512569472193718, + -0.014255639165639877, + 0.06707319617271423, + 0.03871876746416092, + 0.029323376715183258, + -0.0002216622233390808, + -0.09811811149120331, + -0.10160472244024277, + 0.07107927650213242, + 0.026411235332489014, + 0.0017819879576563835, + 0.07137942314147949, + 0.06284067779779434, + -0.05381152778863907, + 0.03594835847616196, + 0.04912285506725311, + 0.09870834648609161, + -0.026932405307888985, + -0.004567543510347605, + -0.11137527227401733, + 0.06321048736572266, + 0.122107595205307, + -0.09028545767068863, + -0.08155925571918488, + -0.03774857893586159, + -0.059436630457639694, + 0.056765250861644745, + -0.057279862463474274, + -0.021987317129969597, + 0.07938526570796967, + -0.03716309368610382, + -0.12952059507369995, + -0.10323606431484222, + 0.1277615875005722, + -0.08645600080490112, + -0.01288935262709856, + -0.06378473341464996, + 0.020325936377048492, + 0.048718489706516266, + 0.03205057233572006, + -0.05221455171704292, + 0.024769719690084457, + 0.07441788911819458, + -0.05886536091566086, + 0.010278910398483276, + 0.06928111612796783, + 0.013816374354064465, + -0.09825587272644043, + -0.016557861119508743, + -0.07341115921735764, + 0.049111366271972656, + -0.037480395287275314, + 0.1439986526966095, + -0.004929577466100454, + -0.02724667266011238, + -0.07297278940677643, + 0.0574522390961647, + -0.02209884487092495, + 0.06392282992601395, + 0.04267135262489319, + 0.06446905434131622, + 0.034349579364061356, + -0.06657631695270538, + 0.13590319454669952, + 0.034329745918512344, + -0.03836118057370186, + -0.05765734985470772, + -0.03171355649828911, + -0.0681348592042923, + 0.024496179074048996, + -0.003957423381507397, + -0.09631752967834473, + 0.0013710327912122011, + 0.009104754775762558, + -0.03447079658508301, + 0.06533177196979523, + 0.13263574242591858, + 0.08009309321641922, + -0.07407161593437195 + ] + }, + "p245_278.wav": { + "name": "p245", + "embedding": [ + 0.05478248745203018, + 0.0654914528131485, + -0.030155498534440994, + 0.05006328225135803, + -0.06119343638420105, + 0.035684555768966675, + -0.10848580300807953, + 0.1078013926744461, + -0.021831056103110313, + 0.13676849007606506, + -0.05876852571964264, + 0.11819253861904144, + -0.012822561897337437, + -0.16776534914970398, + -0.008926431648433208, + 0.05648058280348778, + -0.05177285149693489, + -0.035407066345214844, + -0.06169877201318741, + -0.02790026180446148, + 0.03653136268258095, + 0.06757098436355591, + 0.07132668793201447, + -0.023736946284770966, + 0.022700008004903793, + 0.06713889539241791, + -0.007135279942303896, + 0.04096405580639839, + 0.021322842687368393, + -0.10620146989822388, + -0.05070004612207413, + 0.08898956328630447, + -0.04560593143105507, + 0.016671057790517807, + 0.014638209715485573, + -0.01341228187084198, + 0.0010660383850336075, + -0.0646844357252121, + -0.056926026940345764, + 0.019003257155418396, + -0.053564853966236115, + 0.06721173226833344, + 0.01438442338258028, + -0.048880890011787415, + 0.053169410675764084, + -0.024588685482740402, + -0.048022232949733734, + -0.030644766986370087, + -0.10996608436107635, + 0.17169854044914246, + 0.07533164322376251, + 0.004216858185827732, + -0.06320375204086304, + -0.08148860186338425, + 0.09647262096405029, + -0.013156525790691376, + -0.13923096656799316, + -0.03373803198337555, + 0.06174682453274727, + 0.14544759690761566, + -0.016228679567575455, + -0.026643428951501846, + 0.05127153545618057, + 0.10532969236373901, + 0.0773783028125763, + 0.06499829143285751, + 0.08367543667554855, + 0.10377830266952515, + -0.015506149269640446, + 0.0350506454706192, + 0.04926124960184097, + 0.10120592266321182, + 0.05283767729997635, + 0.007985003292560577, + 0.01713675446808338, + 0.015566572546958923, + -0.032079484313726425, + -0.024455683305859566, + -0.015665283426642418, + -0.008391076698899269, + -0.006056316662579775, + -0.017124952748417854, + 0.017281435430049896, + 0.009548640809953213, + -0.033266644924879074, + 0.04581880569458008, + 0.04136952757835388, + -0.013271613977849483, + 0.056870944797992706, + 0.02831896021962166, + 0.011884119361639023, + 0.06806081533432007, + -0.059026796370744705, + -0.07520255446434021, + -0.007246255408972502, + 0.019319647923111916, + 0.021197669208049774, + 0.06681819260120392, + 0.04678625240921974, + -0.033802807331085205, + 0.1316288262605667, + 0.037030622363090515, + -0.005198957864195108, + 0.008820366114377975, + -0.07641861587762833, + 0.09652912616729736, + 0.10601826012134552, + -0.01883583888411522, + 0.05614205449819565, + -0.03866414725780487, + 0.08375433087348938, + 0.061983682215213776, + -0.12790998816490173, + -0.06512638181447983, + 0.012298696674406528, + -0.02458438277244568, + -0.001408421783708036, + 0.12263201177120209, + 0.013288180343806744, + 0.04702261835336685, + 0.11125840991735458, + -0.10991761088371277, + -0.05253775790333748, + -0.004227515310049057, + 0.05360811948776245, + -0.09626469761133194, + 0.06017468497157097, + 0.03829836845397949, + -0.02324896678328514, + 0.009931113570928574, + 0.07641367614269257, + -0.0294354110956192, + 0.02223369851708412, + 0.004720824770629406, + -0.06985270977020264, + 0.01434963196516037, + -0.0460321307182312, + -0.012183459475636482, + 0.08463872969150543, + 0.024527626112103462, + 0.05627722293138504, + -0.03708511218428612, + -0.04226204752922058, + -0.13128814101219177, + 0.03298772871494293, + 0.026217985898256302, + 0.06580395251512527, + -0.00681707076728344, + -0.009905772283673286, + -0.03391108289361, + -0.08708173036575317, + 0.05146803334355354, + -0.028685929253697395, + 0.07056191563606262, + -0.025998076424002647, + -0.007207034155726433, + 0.10676755011081696, + 0.02210184931755066, + -0.012761189602315426, + -0.0402388796210289, + -0.049234528094530106, + 0.005367421545088291, + 0.055032193660736084, + -0.08735334128141403, + -0.07822079956531525, + -0.008211322128772736, + 0.017171088606119156, + -0.006194661371409893, + 0.05070827156305313, + 0.0503276027739048, + 0.012079538777470589, + 0.019724011421203613, + -0.06969340890645981, + 0.0020727338269352913, + -0.0971924364566803, + -0.07336390763521194, + -0.007661875803023577, + -0.032338328659534454, + -0.010613098740577698, + 0.0916496217250824, + 0.012261785566806793, + 0.02863418683409691, + -0.03354836255311966, + -0.08079648017883301, + -0.09543775767087936, + 0.0639791339635849, + 0.037300340831279755, + 0.002587447641417384, + 0.043982330709695816, + 0.07693731784820557, + -0.03697185218334198, + 0.04250878095626831, + 0.03332526981830597, + 0.0956505760550499, + -0.025455493479967117, + 0.011223061010241508, + -0.07478432357311249, + 0.10043232142925262, + 0.0954500138759613, + -0.07794070243835449, + -0.07680858671665192, + -0.045787833631038666, + -0.08818846195936203, + 0.05907116085290909, + -0.016416313126683235, + -0.009622457437217236, + 0.04702538996934891, + -0.007945523597300053, + -0.11236733198165894, + -0.08484476059675217, + 0.11448071897029877, + -0.05408007279038429, + -0.023011289536952972, + -0.07300858944654465, + 0.026208505034446716, + 0.07481840252876282, + 0.057982541620731354, + -0.01708587259054184, + 0.02267123945057392, + 0.058120012283325195, + -0.046625152230262756, + 0.017153888940811157, + 0.08223636448383331, + 0.032293591648340225, + -0.08871110528707504, + -0.029793445020914078, + -0.07229975610971451, + 0.03841162472963333, + -0.051842860877513885, + 0.13208141922950745, + 0.0022065092343837023, + -0.057998765259981155, + -0.08510474860668182, + 0.06994156539440155, + -0.02224171906709671, + 0.05679536983370781, + 0.049887172877788544, + 0.06279656291007996, + 0.059543073177337646, + -0.098089300096035, + 0.1073068231344223, + 0.05193856731057167, + -0.03036480024456978, + -0.05680491030216217, + -0.044343676418066025, + -0.038341205567121506, + 0.029765717685222626, + 0.010471574030816555, + -0.07372936606407166, + 0.004315624013543129, + 0.009176323190331459, + -0.013452151790261269, + 0.053752653300762177, + 0.12671160697937012, + 0.06682229042053223, + -0.1108715832233429 + ] + }, + "p245_334.wav": { + "name": "p245", + "embedding": [ + 0.04873369261622429, + 0.10693557560443878, + -0.0036122030578553677, + 0.027499958872795105, + -0.03217095881700516, + 0.03909189999103546, + -0.07382022589445114, + 0.09170767664909363, + 0.03452327474951744, + 0.06702721118927002, + -0.07194428890943527, + 0.08427950739860535, + -0.02937258780002594, + -0.1347297728061676, + 0.016911733895540237, + 0.0387294664978981, + -0.020503666251897812, + 0.0031855504494160414, + -0.025329967960715294, + -0.021834973245859146, + -0.005436833016574383, + 0.015500199049711227, + 0.025590229779481888, + -0.017003227025270462, + 0.012133880518376827, + 0.024779539555311203, + -0.02642269991338253, + 0.016506386920809746, + -0.013045243918895721, + -0.044783830642700195, + -0.030460629612207413, + 0.06558965146541595, + -0.03640653192996979, + -0.0047957925125956535, + 0.009877799078822136, + -0.03595206141471863, + 0.0030451274942606688, + -0.06579308956861496, + -0.04624996334314346, + 0.02209617756307125, + -0.052699975669384, + 0.05233551189303398, + 0.03917326778173447, + -0.04705752432346344, + 0.04233626276254654, + 0.01647038199007511, + -0.0319753997027874, + -0.018268324434757233, + -0.09570550918579102, + 0.12502112984657288, + 0.032487884163856506, + 0.03818941116333008, + -0.06252004951238632, + -0.02137906849384308, + 0.08839713782072067, + 0.011459152214229107, + -0.0364052951335907, + -0.020795777440071106, + 0.033172428607940674, + 0.07304715365171432, + 0.030338570475578308, + -0.025331459939479828, + 0.033425796777009964, + 0.07909417152404785, + 0.044216569513082504, + 0.030128872022032738, + 0.07211612910032272, + 0.11590670794248581, + -0.024705886840820312, + 0.02309587225317955, + 0.03916897624731064, + 0.024899309501051903, + 0.02518191561102867, + -0.004878608509898186, + -0.0018378261011093855, + -0.0080089271068573, + -0.00011170034849783406, + -0.015379799529910088, + -0.017086666077375412, + -0.03629455342888832, + 0.03411717340350151, + 0.00014239922165870667, + 0.008746813982725143, + 0.018694989383220673, + -0.03848152980208397, + -0.004877845756709576, + 0.06771387904882431, + 0.038313619792461395, + 0.07434645295143127, + 0.023253921419382095, + 0.02067210152745247, + 0.05656753107905388, + -0.07962983101606369, + -0.07256370782852173, + 0.02649257332086563, + 0.0085770757868886, + 0.034118637442588806, + 0.04059663414955139, + 0.03565572202205658, + -0.022544417530298233, + 0.09793820977210999, + 0.006642095744609833, + 0.012323970906436443, + 0.0027670941781252623, + -0.05990158021450043, + 0.0496484600007534, + 0.05955754965543747, + -0.00415319949388504, + 0.06258679926395416, + 0.0010111108422279358, + 0.05643618851900101, + 0.058291252702474594, + -0.07653731107711792, + -0.014202798716723919, + -0.0010597892105579376, + 0.030780520290136337, + -0.005337671376764774, + 0.11156058311462402, + 0.010762704536318779, + 0.053148671984672546, + 0.09943026304244995, + -0.06494399905204773, + -0.018177129328250885, + 0.02894250676035881, + 0.006910689175128937, + -0.025696545839309692, + 0.04709519073367119, + 0.04810675233602524, + -0.019044259563088417, + -0.016387324780225754, + 0.0316070131957531, + 0.008910607546567917, + 0.016313519328832626, + -0.031074119731783867, + -0.003475576639175415, + -0.005818442907184362, + 0.006374956574290991, + -0.021304359659552574, + 0.018476711586117744, + 0.04271669685840607, + 0.009739421308040619, + 0.012309007346630096, + -0.030352434143424034, + -0.08430805057287216, + 0.023059625178575516, + -0.008350951597094536, + 0.0301833376288414, + 0.038034502416849136, + -0.0340069904923439, + -0.05100385472178459, + -0.028611307963728905, + 0.03031962178647518, + -0.020830025896430016, + 0.05372178182005882, + 0.052251748740673065, + -0.021049227565526962, + 0.061715610325336456, + 0.02695293352007866, + 0.026425324380397797, + -0.02373645454645157, + -0.09614600986242294, + 0.007587619125843048, + 0.02758411131799221, + -0.04478609561920166, + -0.048353008925914764, + -0.010006466880440712, + -0.030420511960983276, + -0.018697096034884453, + 0.015556196682155132, + 0.0558282844722271, + 0.0019114328315481544, + 0.0035986441653221846, + -0.0758344829082489, + 0.007346875965595245, + -0.03445557504892349, + -0.08681651204824448, + 0.04090768098831177, + 0.02839125506579876, + -0.0070141032338142395, + 0.07862793654203415, + 0.02051617205142975, + 0.018865486606955528, + -0.049923479557037354, + -0.028671864420175552, + -0.004431804176419973, + 0.028754226863384247, + 0.020658444613218307, + -0.004458627663552761, + 0.035873278975486755, + 0.03657901659607887, + -0.008428744040429592, + 0.023152269423007965, + 0.026673417538404465, + 0.061416976153850555, + -0.029842248186469078, + 0.004579775966703892, + -0.0046555399894714355, + 0.08981090039014816, + 0.0633201077580452, + -0.07316349446773529, + -0.07605834305286407, + -0.028967570513486862, + -0.048072449862957, + 0.015740511938929558, + -0.007654663175344467, + 0.019183872267603874, + 0.028416959568858147, + -0.009511109441518784, + -0.03297748044133186, + -0.11363355815410614, + 0.02397424541413784, + -0.029421448707580566, + -0.010374137200415134, + -0.046779390424489975, + 0.029495395720005035, + 0.058524906635284424, + 0.02355324476957321, + -0.031237466260790825, + -0.011365748941898346, + 0.02737213671207428, + 0.008947036229074001, + -0.0042488775216042995, + 0.038352008908987045, + 0.05719178542494774, + -0.04179975017905235, + -0.009760278277099133, + -0.05449621379375458, + 0.04594341665506363, + 0.014411951415240765, + 0.10113872587680817, + 0.04233062267303467, + -0.009858286008238792, + -0.08939790725708008, + 0.05329596623778343, + -0.008047381415963173, + 0.04138759523630142, + -0.02176138013601303, + 0.023307902738451958, + 0.058196406811475754, + -0.055288344621658325, + 0.08841335028409958, + 0.027476457878947258, + -0.03257935121655464, + -0.03810466080904007, + -0.007382941897958517, + -0.04656383395195007, + 0.030206400901079178, + 0.004072529263794422, + -0.05502880737185478, + -0.021597426384687424, + 0.038785599172115326, + 0.05064279958605766, + 0.051770783960819244, + 0.0858384221792221, + 0.03550642728805542, + -0.031274985522031784 + ] + }, + "p245_373.wav": { + "name": "p245", + "embedding": [ + 0.025988437235355377, + 0.09820541739463806, + -0.07655295729637146, + 0.019693441689014435, + 0.0015632472932338715, + 0.002512953244149685, + -0.13236570358276367, + 0.0769578069448471, + -0.019709181040525436, + 0.12228292971849442, + -0.04034237936139107, + 0.10550229251384735, + -0.06892996281385422, + -0.10437479615211487, + 0.011496221646666527, + 0.061133645474910736, + 0.003962080925703049, + -0.00980973057448864, + 0.00441686250269413, + -0.029012421146035194, + 0.057221878319978714, + 0.037220560014247894, + 0.024961143732070923, + -0.06629408895969391, + -0.021362772211432457, + 0.10583087056875229, + -0.016717858612537384, + -0.01013021357357502, + -0.03688303381204605, + -0.040557119995355606, + -0.015322180464863777, + 0.05310952663421631, + -0.0063266269862651825, + -0.006088280584663153, + 0.019386611878871918, + 0.026945384219288826, + -0.032562606036663055, + -0.02129427343606949, + 0.02387141063809395, + 0.014932794496417046, + -0.049344636499881744, + 0.04137878492474556, + 0.011501285247504711, + -0.04507818445563316, + 0.07293133437633514, + -0.05540666729211807, + -0.021381376311182976, + -0.009606706909835339, + -0.05594944953918457, + 0.11514291167259216, + 0.09847469627857208, + 0.01235372107475996, + -0.041726164519786835, + 0.006693335250020027, + 0.0688067227602005, + 0.033672209829092026, + -0.08874674141407013, + -0.045205000787973404, + 0.04132102057337761, + 0.11455559730529785, + -0.011413728818297386, + -0.02181203104555607, + 0.05688142031431198, + 0.07123453915119171, + 0.0074554383754730225, + 0.07296687364578247, + 0.0906069278717041, + 0.05650331825017929, + 0.012263098731637001, + -0.05245373770594597, + 0.005300190299749374, + 0.10092728585004807, + 0.04076027870178223, + -0.0005190724041312933, + 0.016314871609210968, + -0.029129959642887115, + -0.05042188987135887, + -0.025791462510824203, + -0.012380285188555717, + -0.09108548611402512, + -0.042661506682634354, + -0.01534661091864109, + 0.00789736956357956, + 0.02617065981030464, + 0.006602557376027107, + 0.018134452402591705, + 0.09590338170528412, + -0.0702386125922203, + 0.02530999667942524, + 0.004429425112903118, + 0.023549677804112434, + 0.008688906207680702, + -0.05143841728568077, + -0.06301959604024887, + 0.03597753122448921, + 0.039433401077985764, + 0.022894442081451416, + 0.0422198548913002, + 0.04887760058045387, + 0.030597684904932976, + 0.08671444654464722, + -0.0022908179089426994, + 0.009263802319765091, + -0.0226020235568285, + -0.03954731300473213, + 0.0862768143415451, + 0.11853201687335968, + -0.038837067782878876, + 0.04914525896310806, + -0.06082789599895477, + -0.023989427834749222, + 0.0034458301961421967, + -0.07507243007421494, + -0.03266632929444313, + 0.01374002918601036, + 0.02326524630188942, + 0.006310518831014633, + 0.10992632806301117, + 0.06194300949573517, + 0.036353904753923416, + 0.09295313060283661, + -0.0928887128829956, + -0.09954400360584259, + -0.08038656413555145, + 0.07480818778276443, + -0.06612022966146469, + 0.08799386024475098, + 0.09594659507274628, + 0.013327401131391525, + 0.029001597315073013, + 0.036311887204647064, + 0.027989590540528297, + 0.03874170035123825, + -0.03448348119854927, + -0.03784364089369774, + -0.01644155941903591, + -0.057676397264003754, + 0.011099273338913918, + 0.029926974326372147, + -0.002386469393968582, + 0.0668230950832367, + -0.01530742272734642, + 0.013561587780714035, + -0.10623090714216232, + -0.007145174778997898, + 0.0587586984038353, + 0.009654166176915169, + -0.03397119417786598, + -0.05040347948670387, + -0.0074806222692132, + -0.07279738038778305, + -0.05282333120703697, + -0.0766778513789177, + 0.08115430176258087, + -0.017442453652620316, + 0.025579238310456276, + 0.09499223530292511, + 0.011951069347560406, + -0.00854148156940937, + -0.034677669405937195, + -0.015701044350862503, + 0.004493666812777519, + 0.016761906445026398, + -0.10517837107181549, + -0.10933873057365417, + -0.05259307101368904, + 0.02531185746192932, + 0.016538385301828384, + 0.06609632074832916, + 0.04936101287603378, + 0.019311608746647835, + -0.0027266854885965586, + -0.011622831225395203, + 0.010196343064308167, + -0.07101771235466003, + -0.08215239644050598, + -0.01632404886186123, + -0.036348022520542145, + -0.02212928794324398, + 0.10357800871133804, + 0.00830297265201807, + 0.05375465750694275, + -0.0353054478764534, + -0.01025029644370079, + -0.08879391849040985, + 0.045894771814346313, + 0.047377828508615494, + -0.030138906091451645, + 0.015525770373642445, + 0.010622154921293259, + -0.02707100100815296, + -0.003325197845697403, + 0.04586614668369293, + 0.07359784096479416, + -0.016822580248117447, + -0.006815088912844658, + -0.08205129206180573, + 0.039483003318309784, + 0.13273406028747559, + -0.07597324997186661, + -0.03539995849132538, + -0.07370650768280029, + -0.08235020935535431, + 0.018575873225927353, + -0.07696881890296936, + 0.0021603491622954607, + -0.009484760463237762, + -0.0041832514107227325, + -0.12185937911272049, + -0.11209568381309509, + 0.04404143989086151, + -0.0019835233688354492, + 0.015067500062286854, + -0.05630561709403992, + 0.046252425760030746, + 0.04974498227238655, + 0.025762362405657768, + -0.05616918206214905, + 0.02369961515069008, + 0.03976144641637802, + -0.005783764645457268, + 0.05185233801603317, + 0.043437644839286804, + 0.10268016159534454, + -0.07472864538431168, + -0.014422083273530006, + -0.07585626095533371, + 0.04222417622804642, + -0.06329778581857681, + 0.09328177571296692, + 0.05219300091266632, + -0.02957436442375183, + -0.09310401976108551, + 0.05537908151745796, + 0.02255186066031456, + 0.03306068480014801, + -0.013540109619498253, + 0.0282684788107872, + 0.045438721776008606, + -0.09567025303840637, + 0.0685226321220398, + 0.03649486228823662, + 0.02875138819217682, + -0.07151172310113907, + -0.04839157685637474, + -0.04036583751440048, + 0.06036647409200668, + -0.00438026525080204, + -0.03908253088593483, + -0.02415274828672409, + -0.00627659447491169, + 0.07473570108413696, + 0.05670511722564697, + 0.07765699177980423, + 0.013433671556413174, + -0.078646719455719 + ] + }, + "p245_304.wav": { + "name": "p245", + "embedding": [ + 0.022711295634508133, + 0.07748173177242279, + 0.025834525004029274, + 0.008184421807527542, + -0.023033270612359047, + 0.08437056839466095, + -0.13064096868038177, + 0.08926959335803986, + -0.0762484073638916, + 0.14807948470115662, + -0.08903578668832779, + 0.051704198122024536, + -0.05598234012722969, + -0.19571346044540405, + -0.017107469961047173, + 0.06931046396493912, + -0.05810039862990379, + 0.0059250290505588055, + -0.08474580943584442, + -0.010211730375885963, + 0.014573503285646439, + 0.0010009087854996324, + 0.01747260056436062, + 0.020306620746850967, + 0.007357908878475428, + 0.055135417729616165, + -0.030081573873758316, + 0.027837570756673813, + -0.020328463986516, + -0.03754015266895294, + -0.01681126281619072, + 0.12032558768987656, + -0.03685387969017029, + 0.01620105281472206, + 0.08825662732124329, + 0.01890682615339756, + -0.03712807968258858, + -0.02135617844760418, + -0.005642293952405453, + -0.008479191921651363, + -0.07152386009693146, + 0.054391048848629, + -0.0012594076106324792, + 0.03424086794257164, + 0.07749515771865845, + 0.024106694385409355, + -0.016839729622006416, + -0.03357970342040062, + -0.07907180488109589, + 0.11650526523590088, + 0.08169906586408615, + -0.028337819501757622, + -0.026532793417572975, + -0.07965946942567825, + 0.08826316148042679, + -0.0355621762573719, + -0.15203070640563965, + -0.08715762197971344, + 0.10039637982845306, + 0.14046311378479004, + -0.046632762998342514, + -0.00476363068446517, + -0.006527372635900974, + 0.10522933304309845, + 0.011653348803520203, + 0.15772445499897003, + 0.006807137280702591, + 0.08539994060993195, + -0.000572943827137351, + 0.0258883535861969, + 0.07486965507268906, + 0.013907882384955883, + 0.06873930990695953, + -0.03511760011315346, + 0.039504941552877426, + 0.022473732009530067, + -0.0008677373407408595, + 0.026532527059316635, + 0.01022608857601881, + 0.014962945133447647, + -0.0024661002680659294, + -0.03310469165444374, + -0.03692680597305298, + -0.0394938588142395, + -0.0026312265545129776, + 0.019223330542445183, + 0.04809681326150894, + 0.0001370495738228783, + 0.06026380881667137, + 0.06940500438213348, + -0.016827460378408432, + 0.06810729950666428, + -0.021628154441714287, + -0.05956669896841049, + 0.010129084810614586, + 0.011063181795179844, + -0.028331128880381584, + 0.022709282115101814, + 0.010611528530716896, + 0.006038271356374025, + 0.07363495975732803, + 0.04817867651581764, + 0.00877306703478098, + 0.05714738741517067, + -0.12362018972635269, + 0.12945257127285004, + 0.038387883454561234, + -0.016903875395655632, + 0.04234904795885086, + -0.0001951254380401224, + 0.06232089176774025, + 0.110261470079422, + -0.11998284608125687, + -0.0339704193174839, + 0.0010467983083799481, + -0.053432803601026535, + -0.041706573218107224, + 0.0825280174612999, + 0.006255296058952808, + -0.05825299769639969, + 0.1329822689294815, + -0.08691225945949554, + -0.06604604423046112, + -0.008038188330829144, + 0.00900148507207632, + -0.13898621499538422, + 0.0192754827439785, + 0.04680553451180458, + 0.0102784913033247, + 0.00036384587292559445, + 0.15025316178798676, + -0.012897887267172337, + -0.0046776640228927135, + -0.008564743213355541, + -0.027394231408834457, + 0.02482428029179573, + -0.03371784836053848, + 0.03647928684949875, + 0.08281941711902618, + 0.015171117149293423, + 0.030740104615688324, + -0.017334870994091034, + -0.026558881625533104, + -0.08479554206132889, + -0.010086203925311565, + 0.05589460954070091, + 0.04483935981988907, + -0.008999710902571678, + 0.05178820714354515, + -0.03989846259355545, + -0.10083739459514618, + 0.06717672199010849, + -0.056261930614709854, + 0.09425389766693115, + 0.0036978188436478376, + -0.027439208701252937, + 0.12801530957221985, + -0.006857945583760738, + 0.006916288286447525, + -0.12446922063827515, + -0.00043053089757449925, + 0.03536829724907875, + 0.046749476343393326, + -0.10868663340806961, + -0.031571030616760254, + 0.02713542990386486, + 0.04419597610831261, + 0.02856263518333435, + 0.025127867236733437, + 0.04229838401079178, + 0.0008241615723818541, + 0.02129506878554821, + -0.04658876359462738, + 0.019512450322508812, + -0.06809564679861069, + -0.06443101912736893, + -0.023213515058159828, + -0.06891179084777832, + 0.007952879182994366, + 0.06904541701078415, + -0.04823429509997368, + -0.029340645298361778, + -0.014090826734900475, + -0.11455170810222626, + -0.09613367170095444, + 0.08904501795768738, + 0.07175253331661224, + -0.007502212654799223, + 0.04700871556997299, + 0.03642822057008743, + -0.08982168883085251, + 0.0499243326485157, + 0.042581163346767426, + 0.15260908007621765, + -0.052219536155462265, + 0.06762342154979706, + -0.08329164236783981, + 0.04724467918276787, + 0.0754045620560646, + -0.0763833075761795, + -0.08398013561964035, + 0.00939631462097168, + -0.012717029079794884, + 0.06586272269487381, + -0.055741336196660995, + -0.04147971048951149, + 0.04621530696749687, + -0.044215064495801926, + -0.04343722388148308, + -0.08591325581073761, + 0.10127062350511551, + -0.05069053918123245, + -0.01004981342703104, + -0.04669785127043724, + 0.046343009918928146, + -0.010672826319932938, + 0.07424084097146988, + -0.040462784469127655, + 0.041603416204452515, + 0.06315108388662338, + -0.05816970393061638, + -0.03648746758699417, + 0.04510973393917084, + -0.024843839928507805, + -0.06066644564270973, + -0.04027685523033142, + -0.11766115576028824, + 0.10020244121551514, + -0.049527671188116074, + 0.12818704545497894, + -0.05834294110536575, + -0.04999767988920212, + -0.031744468957185745, + -0.015066524967551231, + -0.010042618028819561, + 0.026611095294356346, + 0.06379668414592743, + 0.08535535633563995, + 0.03816480562090874, + 0.00819784589111805, + 0.10248463600873947, + -0.005560922436416149, + 0.038531430065631866, + -0.028577744960784912, + -0.017214465886354446, + -0.07231894880533218, + 0.0017309447284787893, + -0.016719846054911613, + -0.17118534445762634, + 0.043390046805143356, + 0.014364867471158504, + -0.04175948724150658, + 0.030008237808942795, + 0.11371616274118423, + 0.05733555927872658, + -0.10070354491472244 + ] + }, + "p245_115.wav": { + "name": "p245", + "embedding": [ + 0.043387725949287415, + 0.11231091618537903, + -0.003916000481694937, + 0.009882601909339428, + -0.054747194051742554, + 0.07636934518814087, + -0.12208505719900131, + 0.14207975566387177, + -0.05527171492576599, + 0.1381472498178482, + -0.06776908040046692, + 0.11894410848617554, + -0.03930240124464035, + -0.16356351971626282, + -0.05396844074130058, + 0.05102023482322693, + -0.0496596023440361, + -0.029463768005371094, + -0.04164385423064232, + -0.019953353330492973, + 0.022780798375606537, + 0.004782961681485176, + 0.02691066637635231, + 0.026409871876239777, + 0.03607138618826866, + 0.06601843982934952, + 0.008632799610495567, + 0.06571470201015472, + 0.028668176382780075, + -0.03407922387123108, + -0.03384008631110191, + 0.10132303088903427, + -0.054539501667022705, + 0.036883652210235596, + 0.07302998006343842, + -0.00542761106044054, + 0.0032011528965085745, + -0.047096531838178635, + -0.004907770082354546, + -0.0015979751478880644, + -0.039088062942028046, + 0.08952777832746506, + 0.02241676114499569, + 0.00442493474110961, + 0.02193446457386017, + 0.03968430683016777, + 0.0028938695322722197, + -0.04308926686644554, + -0.09924664348363876, + 0.14455197751522064, + 0.06625208258628845, + -0.01932726614177227, + -0.06858550012111664, + -0.07320526242256165, + 0.1061343252658844, + -0.037628136575222015, + -0.11545932292938232, + -0.04847247153520584, + 0.07793942838907242, + 0.1472417414188385, + -0.039471399039030075, + -0.03440989553928375, + -0.002847484080120921, + 0.1367272436618805, + 0.06090783327817917, + 0.09846580028533936, + 0.07505609095096588, + 0.1156468391418457, + -0.023791294544935226, + 0.0214972123503685, + 0.07073168456554413, + 0.05553985387086868, + 0.0449344739317894, + -0.005026431754231453, + 0.021073712036013603, + -0.0075178625993430614, + 0.003391070058569312, + 0.019270282238721848, + -0.025024106726050377, + -0.01593026891350746, + -0.0399935357272625, + 0.016689486801624298, + -0.01982315070927143, + 0.017254436388611794, + -0.0063963234424591064, + 0.06769010424613953, + 0.021447142586112022, + -0.01378849521279335, + 0.06907767802476883, + 0.06431375443935394, + -0.003343365853652358, + 0.06677393615245819, + -0.07856949418783188, + -0.07840704172849655, + 0.017980866134166718, + -0.013636510819196701, + 0.03128594905138016, + 0.07158458232879639, + 0.03643043339252472, + 0.004429791122674942, + 0.10795672982931137, + 0.06717909872531891, + -0.008991558104753494, + 0.028005464002490044, + -0.09401147067546844, + 0.1403331458568573, + 0.06828339397907257, + -0.03059801459312439, + 0.03733018785715103, + -0.025316689163446426, + 0.06774851679801941, + 0.07324408739805222, + -0.12855027616024017, + -0.08557166159152985, + 0.021088851615786552, + 0.00902944803237915, + -0.03106229566037655, + 0.08071941882371902, + -0.026057027280330658, + 0.019811101257801056, + 0.09252659976482391, + -0.0596553236246109, + -0.044678620994091034, + -0.019683992490172386, + 0.04097326844930649, + -0.06778547167778015, + 0.03849031776189804, + 0.04769861698150635, + 0.0038790679536759853, + 0.008564174175262451, + 0.10526256263256073, + 0.005555190145969391, + -0.013000641018152237, + 0.040261100977659225, + -0.045331161469221115, + 0.027491208165884018, + -0.010354146361351013, + 0.014817701652646065, + 0.044352225959300995, + 0.04833199828863144, + 0.053873978555202484, + 0.005366505589336157, + -0.0115616200491786, + -0.09530405700206757, + 0.0033737346529960632, + 0.055167488753795624, + 0.07145251333713531, + -0.02232576161623001, + -0.020091822370886803, + -0.028691880404949188, + -0.05672793090343475, + 0.010987645015120506, + 0.0018404526636004448, + 0.08758819103240967, + -0.03067968599498272, + -0.0027938554994761944, + 0.11813554167747498, + 0.014427493326365948, + -0.010303257033228874, + -0.06665486842393875, + -0.014806526713073254, + 0.004433467518538237, + 0.05507759377360344, + -0.08299261331558228, + -0.06513661891222, + 0.01767323911190033, + 0.03315040096640587, + -0.01806546561419964, + 0.07016691565513611, + 0.0455411896109581, + 0.006543578114360571, + 0.037425436079502106, + -0.0536341667175293, + 0.014983810484409332, + -0.08933089673519135, + -0.05407053232192993, + -0.028554178774356842, + -0.021868420764803886, + -0.02078847587108612, + 0.06556010246276855, + 0.02104736864566803, + 0.05847422406077385, + 0.013757916167378426, + -0.09379404038190842, + -0.07511549443006516, + 0.06460367143154144, + 0.06682710349559784, + -0.004587736912071705, + 0.04965873062610626, + 0.07594504207372665, + -0.039351027458906174, + 0.05320898815989494, + 0.07116397470235825, + 0.09496461600065231, + -0.04457472264766693, + 0.03189108520746231, + -0.07518292963504791, + 0.05866130813956261, + 0.06410959362983704, + -0.11716088652610779, + -0.0836414247751236, + -0.021253909915685654, + -0.03601228445768356, + 0.023579150438308716, + -0.030452851206064224, + 0.01744082383811474, + 0.03475135564804077, + -0.017504658550024033, + -0.07475198805332184, + -0.10161813348531723, + 0.09390457719564438, + -0.08480685204267502, + 0.004718102049082518, + -0.0679241269826889, + 0.04134657233953476, + 0.08306419849395752, + 0.04661604017019272, + -0.02856295369565487, + 0.01010741014033556, + 0.05332493036985397, + -0.026185041293501854, + -0.020032932981848717, + 0.04892241582274437, + 0.011737219989299774, + -0.09750422090291977, + 0.0054626609198749065, + -0.07203347980976105, + 0.07435194402933121, + -0.038043662905693054, + 0.16533881425857544, + -0.005695355590432882, + -0.05823620781302452, + -0.06599204242229462, + 0.009580838494002819, + -0.04067467898130417, + 0.04476385563611984, + 0.032868191599845886, + 0.06642282754182816, + 0.01357905101031065, + -0.032919712364673615, + 0.14244388043880463, + 0.03732621669769287, + -0.055055998265743256, + -0.07384319603443146, + -0.04408877342939377, + -0.04036155715584755, + 0.028797946870326996, + 0.02469916269183159, + -0.09745009243488312, + -0.010940195992588997, + 0.01534411683678627, + -0.04468837380409241, + 0.07173287123441696, + 0.14669269323349, + 0.09920390695333481, + -0.10882420837879181 + ] + }, + "p245_392.wav": { + "name": "p245", + "embedding": [ + 0.03167426958680153, + 0.10426194965839386, + -0.009920000098645687, + 0.05975175276398659, + -0.051560111343860626, + 0.002617916092276573, + -0.041866034269332886, + 0.044262245297431946, + 0.023521175608038902, + 0.07011357694864273, + -0.04536845535039902, + 0.0609307698905468, + -0.05406789854168892, + -0.09309213608503342, + -0.02389051765203476, + 0.007743997499346733, + -0.017074065282940865, + 0.02355622686445713, + -0.04101406782865524, + -0.014707939699292183, + -0.04180413484573364, + -0.0053919292986392975, + -0.014366772025823593, + 0.009368307888507843, + -0.05638735741376877, + 0.03238476812839508, + -0.018987352028489113, + 0.028417643159627914, + 0.00207655131816864, + -0.0936736986041069, + 0.009874638170003891, + 0.046511806547641754, + -0.010442698374390602, + -0.024606214836239815, + 0.011192393489181995, + -0.03466886281967163, + 0.0229241531342268, + -0.02251732163131237, + -0.052576255053281784, + -0.0013754535466432571, + -0.0446104034781456, + 0.011387551203370094, + 0.010763168334960938, + -0.07146912813186646, + 0.011566242203116417, + 0.01195025909692049, + -0.042745307087898254, + -0.02464255318045616, + -0.044301148504018784, + 0.11016646027565002, + 0.03779337555170059, + 0.0480181910097599, + -0.03398082032799721, + -0.04161173850297928, + 0.12668584287166595, + 0.013045506551861763, + -0.008224982768297195, + -0.0280438382178545, + -0.00505722314119339, + 0.07046718150377274, + 0.024526391178369522, + 0.019032027572393417, + 0.05669151246547699, + 0.07353459298610687, + 0.015029383823275566, + 0.03478962928056717, + 0.06489060819149017, + 0.07210944592952728, + -0.025110721588134766, + 0.033205196261405945, + 0.05080725997686386, + 0.01700931042432785, + 0.030414501205086708, + 0.04642302170395851, + -0.016246598213911057, + 0.01746777445077896, + 0.015920985490083694, + 0.032687414437532425, + -0.015234909020364285, + -0.029043670743703842, + 0.0059959497302770615, + 0.0030358266085386276, + -0.0024327002465724945, + -0.04927331954240799, + -0.051496781408786774, + -0.03316938132047653, + 0.04965706169605255, + 0.01234703604131937, + 0.041611090302467346, + -0.005302524194121361, + 0.07120639085769653, + 0.034922804683446884, + -0.01566764898598194, + -0.062077272683382034, + 0.015825804322957993, + -0.016143178567290306, + 0.051017627120018005, + 0.014940548688173294, + 0.002984323538839817, + 0.007143537979573011, + 0.05848165228962898, + -0.013863109052181244, + 0.03863525390625, + -0.00472786370664835, + -0.048347145318984985, + -0.012241236865520477, + 0.03483852371573448, + 0.02262440323829651, + 0.03246890380978584, + 0.05019484460353851, + 0.04098641127347946, + 0.08366838842630386, + -0.04658963531255722, + -0.04764125123620033, + 0.017100946977734566, + 0.052166521549224854, + -0.04593181982636452, + 0.07495757192373276, + -0.004719093907624483, + 0.0313219279050827, + 0.05603533983230591, + 0.006932998076081276, + -0.014059900306165218, + 0.00938648171722889, + 0.0014455020427703857, + -0.05241686478257179, + 0.050783656537532806, + 0.021564047783613205, + -0.044760480523109436, + -0.0585191547870636, + 0.07667779177427292, + -0.015426401048898697, + -0.024842334911227226, + -0.005533996503800154, + 0.007311370223760605, + -0.00817357562482357, + 0.04728040099143982, + -0.03528156131505966, + 0.019626516848802567, + 0.07099315524101257, + -0.015459954738616943, + -0.04206259176135063, + -0.012673921883106232, + -0.05273896083235741, + 0.03760179132223129, + 0.014722894877195358, + 0.0070520732551813126, + 0.07482288032770157, + -0.03879670798778534, + -0.05430058017373085, + -0.011570228263735771, + 0.04430118575692177, + -0.04889555647969246, + 0.08682427555322647, + 0.04381496459245682, + 0.020590102300047874, + 0.07151583582162857, + -0.04233044013381004, + 0.005601249635219574, + -0.011790143325924873, + -0.09783865511417389, + 0.010344371199607849, + 0.017214806750416756, + -0.001142384484410286, + -0.022605106234550476, + 0.00040830671787261963, + -0.006040768697857857, + -0.00026063359109684825, + 0.014820680022239685, + 0.025661464780569077, + -0.02437320537865162, + 0.05740160495042801, + -0.08502158522605896, + -0.004859911277890205, + -0.01352146826684475, + -0.03860706463456154, + 0.035165444016456604, + -0.012399137951433659, + -0.004625169560313225, + 0.023134753108024597, + 0.030916044488549232, + -0.030799563974142075, + -0.036819979548454285, + -0.08939138054847717, + 0.00655374675989151, + 0.028716757893562317, + 0.028335902839899063, + 0.003733353689312935, + -0.013399647548794746, + 0.042861200869083405, + 0.055462975054979324, + 0.020656302571296692, + 0.009753655642271042, + 0.06613370776176453, + -0.025952599942684174, + -0.022081241011619568, + 0.025753017514944077, + 0.08026733249425888, + 0.02579480968415737, + -0.08054385334253311, + -0.08532196283340454, + -0.03218194842338562, + -0.04993097484111786, + 0.049469754099845886, + -0.017412006855010986, + 0.03988263010978699, + 0.025414496660232544, + 0.005081942770630121, + 0.017681274563074112, + -0.13362669944763184, + 0.05527804419398308, + 0.00039356574416160583, + -0.031461045145988464, + -0.006021600216627121, + 0.0017837323248386383, + 0.019522959366440773, + 0.05130888521671295, + -0.020038940012454987, + -0.015512117184698582, + 0.021845843642950058, + -0.0066452473402023315, + 0.0017231928650289774, + 0.04843810573220253, + 0.034658752381801605, + -0.007764648646116257, + -0.006077399477362633, + -0.042845241725444794, + 0.016369037330150604, + 0.005373429507017136, + 0.034566015005111694, + 0.012757807038724422, + -0.016425279900431633, + -0.11399167776107788, + 0.07710530608892441, + -0.05213498696684837, + 0.07460986077785492, + -0.006902020424604416, + 0.017613302916288376, + 0.0500674769282341, + -0.02228529006242752, + 0.08610643446445465, + 0.029319485649466515, + -0.035165365785360336, + -0.04674747213721275, + -0.013413554057478905, + -0.0360177643597126, + 0.0384388342499733, + 0.0586557574570179, + -0.007834583520889282, + -0.02187827229499817, + 0.04739297926425934, + 0.009366696700453758, + 0.09909434616565704, + 0.06780128926038742, + 0.06554730981588364, + 0.026013102382421494 + ] + }, + "p245_172.wav": { + "name": "p245", + "embedding": [ + 0.05328046530485153, + 0.10069956630468369, + -0.015530981123447418, + 0.015568692237138748, + -0.03409476578235626, + 0.05483525991439819, + -0.13426366448402405, + 0.12839853763580322, + -0.05357379838824272, + 0.14794568717479706, + -0.0880264863371849, + 0.11787037551403046, + -0.021268021315336227, + -0.1846957802772522, + -0.039139121770858765, + 0.047906529158353806, + -0.05005773529410362, + -0.015305576846003532, + -0.05758603662252426, + -0.003040645271539688, + 0.04655206948518753, + 0.029886111617088318, + 0.017577793449163437, + -0.015141883864998817, + 0.016078172251582146, + 0.06496861577033997, + 0.006860947236418724, + 0.050126463174819946, + 0.01896042190492153, + -0.05026520416140556, + -0.03194788843393326, + 0.12021004408597946, + -0.04205349087715149, + 0.006707796361297369, + 0.06351794302463531, + -0.010104700922966003, + -0.008936571888625622, + -0.054179079830646515, + -0.009878999553620815, + 0.0009941949974745512, + -0.03997116535902023, + 0.06543129682540894, + 0.0131410276517272, + -0.0035837600007653236, + 0.05563399940729141, + 0.036036573350429535, + -0.014707996509969234, + -0.06272609531879425, + -0.09007234871387482, + 0.14857691526412964, + 0.06974101066589355, + 0.006612904369831085, + -0.06900987029075623, + -0.05858932435512543, + 0.0926736444234848, + -0.023383229970932007, + -0.10982576012611389, + -0.05123686045408249, + 0.07350354641675949, + 0.15843841433525085, + -0.03553340211510658, + -0.028127815574407578, + 0.03344814479351044, + 0.10828813910484314, + 0.05147753283381462, + 0.1048969253897667, + 0.07873382419347763, + 0.0800885334610939, + 0.0014799063792452216, + 0.03434686362743378, + 0.055983975529670715, + 0.05410975217819214, + 0.059437450021505356, + -0.0249684676527977, + 0.046496957540512085, + -0.00011265433568041772, + -0.02718399092555046, + -0.0018388144671916962, + -0.022165369242429733, + -0.0060430532321333885, + -0.004844858311116695, + 0.020409464836120605, + 0.005303974263370037, + 0.02365877293050289, + -0.04108075052499771, + 0.060492824763059616, + 0.02005637437105179, + -0.020773939788341522, + 0.0633162260055542, + 0.035031870007514954, + 0.02114015631377697, + 0.04657658189535141, + -0.07545431703329086, + -0.09998656809329987, + 0.031956739723682404, + 0.0006938837468624115, + -0.0056634037755429745, + 0.0512889139354229, + 0.03894150257110596, + -0.01717195473611355, + 0.1073397845029831, + 0.05296548828482628, + -0.009820147417485714, + 0.03681395947933197, + -0.09293647110462189, + 0.12162409722805023, + 0.08498598635196686, + -0.029003962874412537, + 0.04302334412932396, + -0.0393243134021759, + 0.0640905424952507, + 0.07003886252641678, + -0.13617388904094696, + -0.07703156024217606, + 0.04188472777605057, + -0.0027434974908828735, + -0.01546061784029007, + 0.1062188670039177, + -0.0072964271530508995, + 0.025952285155653954, + 0.09513642638921738, + -0.07974665611982346, + -0.05862666293978691, + -0.023430872708559036, + 0.04660612344741821, + -0.09293046593666077, + 0.0656660944223404, + 0.04869203269481659, + -0.009260022081434727, + -0.00439292099326849, + 0.10360374301671982, + -0.014487972483038902, + -0.0055283112451434135, + -0.0013810943346470594, + -0.03009209781885147, + 0.03186986222863197, + -0.03980226442217827, + -0.0073716845363378525, + 0.02353905700147152, + 0.03632710501551628, + 0.040201179683208466, + -0.0023763279896229506, + -0.03501234948635101, + -0.11208435148000717, + 0.009459732100367546, + 0.041710641235113144, + 0.06681032478809357, + -0.0059346770867705345, + -0.005967825651168823, + -0.04604911059141159, + -0.05021928995847702, + 0.004382844548672438, + -0.026179373264312744, + 0.07537036389112473, + -0.010914250276982784, + 0.006028651259839535, + 0.11042088270187378, + 0.000616279779933393, + 0.011490372940897942, + -0.050919823348522186, + -0.01174293365329504, + 0.030776500701904297, + 0.05170102417469025, + -0.06650855392217636, + -0.06819067150354385, + 0.00012394911027513444, + 0.026248008012771606, + -0.008239896968007088, + 0.04866882413625717, + 0.04761533439159393, + 0.010837987065315247, + 0.0285421684384346, + -0.07714320719242096, + 0.024356942623853683, + -0.11078554391860962, + -0.05829313024878502, + -0.02049107477068901, + -0.03182903304696083, + -0.023296533152461052, + 0.07409697026014328, + 0.012120941653847694, + 0.030805163085460663, + -0.018653515726327896, + -0.0897546038031578, + -0.08098743855953217, + 0.06678366661071777, + 0.0935417041182518, + -0.0020603658631443977, + 0.03990597277879715, + 0.03770091384649277, + -0.01316265668720007, + 0.05057818442583084, + 0.06646673381328583, + 0.10557480156421661, + -0.002194773405790329, + -0.0006860420107841492, + -0.06764396280050278, + 0.07547280192375183, + 0.07125060260295868, + -0.08722849935293198, + -0.07954218238592148, + -0.008046845905482769, + -0.0590706467628479, + 0.03370240703225136, + -0.017962973564863205, + 0.016899481415748596, + 0.04597979411482811, + -0.008341102860867977, + -0.09900788962841034, + -0.09048245847225189, + 0.0896284207701683, + -0.07918136566877365, + -0.0111524797976017, + -0.06500230729579926, + 0.04423707351088524, + 0.08531510829925537, + 0.02041160687804222, + -0.03175988793373108, + -0.013171052560210228, + 0.0306834913790226, + -0.05320463702082634, + -0.009222344495356083, + 0.023275045678019524, + 0.02134796231985092, + -0.10521458089351654, + 0.030978351831436157, + -0.08062485605478287, + 0.06755636632442474, + -0.06620991230010986, + 0.143857941031456, + -0.008605197072029114, + -0.05112457275390625, + -0.09345197677612305, + 0.04196741431951523, + -0.021997880190610886, + 0.04844974726438522, + 0.03618605434894562, + 0.06631191819906235, + 0.04038413614034653, + -0.08559726923704147, + 0.10513557493686676, + 0.02961728349328041, + -0.021717406809329987, + -0.07660029828548431, + -0.05497099086642265, + -0.053230129182338715, + 0.02041519619524479, + 0.018541604280471802, + -0.08590307086706161, + -0.011757295578718185, + 0.01535176020115614, + -0.021901747211813927, + 0.06670995056629181, + 0.1253884881734848, + 0.03364139422774315, + -0.12070481479167938 + ] + }, + "p245_143.wav": { + "name": "p245", + "embedding": [ + 0.04184994101524353, + 0.09428860992193222, + 0.010645839385688305, + 0.010888501070439816, + -0.029055725783109665, + 0.06402722001075745, + -0.15584418177604675, + 0.1271580457687378, + -0.06619051098823547, + 0.11769188940525055, + -0.08112804591655731, + 0.08851327747106552, + -0.02373885177075863, + -0.1908387839794159, + -0.06657776981592178, + 0.059456080198287964, + -0.04148675501346588, + -0.026541031897068024, + -0.008902423083782196, + -0.006662983447313309, + 0.036217715591192245, + 0.011808092705905437, + 0.021532896906137466, + 0.0334765799343586, + 0.022541530430316925, + 0.04832759499549866, + 0.013400953263044357, + 0.059601813554763794, + 0.014490913599729538, + -0.00476585328578949, + -0.011603492312133312, + 0.12306865304708481, + -0.03193487226963043, + -0.008044440299272537, + 0.07113578170537949, + 0.00410066545009613, + 0.00383190019056201, + -0.0649915337562561, + -0.004404890816658735, + -0.013429416343569756, + -0.05097422003746033, + 0.07641692459583282, + 0.02889288030564785, + 0.019557824358344078, + 0.04021153971552849, + 0.02833852916955948, + -0.00547438021749258, + -0.047851454466581345, + -0.10886617749929428, + 0.1315833032131195, + 0.05208972096443176, + 0.008821885101497173, + -0.08736114948987961, + -0.059351228177547455, + 0.11320991814136505, + -0.025807496160268784, + -0.09121562540531158, + -0.04701714962720871, + 0.08738429844379425, + 0.17206811904907227, + -0.03326084464788437, + -0.024036094546318054, + 0.024509388953447342, + 0.11141562461853027, + 0.0381050705909729, + 0.09966093301773071, + 0.06681782007217407, + 0.08818402141332626, + 0.001934309839271009, + 0.0152193708345294, + 0.06099681556224823, + 0.036837417632341385, + 0.016656646504998207, + -0.04221617430448532, + 0.026002466678619385, + 0.016049271449446678, + -0.02466241829097271, + 0.02905607782304287, + -0.018843408674001694, + -0.0032626772299408913, + -0.02033657394349575, + 0.006928074639290571, + -0.016060620546340942, + 0.015299877151846886, + -0.03568081185221672, + 0.04823293536901474, + 0.007566848304122686, + -0.004285029135644436, + 0.07963285595178604, + 0.05325556918978691, + 0.003978057764470577, + 0.04841625317931175, + -0.059608228504657745, + -0.08044113963842392, + 0.02077154442667961, + 0.0003820030833594501, + -0.016218222677707672, + 0.06474467366933823, + 0.02580983005464077, + -0.022742342203855515, + 0.09970265626907349, + 0.05864737555384636, + -0.0007104115793481469, + 0.03276856243610382, + -0.11037733405828476, + 0.11361926794052124, + 0.06760273873806, + -0.016312066465616226, + 0.04291301220655441, + -0.028618205338716507, + 0.04881608113646507, + 0.08824889361858368, + -0.13560786843299866, + -0.07566869258880615, + 0.05233592912554741, + 0.02483828365802765, + 0.002956368727609515, + 0.10989207029342651, + -0.015415707603096962, + -0.007515076547861099, + 0.08407189697027206, + -0.060011789202690125, + -0.07183945178985596, + -0.025250663980841637, + 0.04685008153319359, + -0.07184488326311111, + 0.04701438546180725, + 0.04618222266435623, + 0.01143421046435833, + -0.030484478920698166, + 0.0887065976858139, + -3.5829223634209484e-05, + -0.017796283587813377, + 0.005997110158205032, + -0.01966599002480507, + 0.05021780729293823, + -0.0293545201420784, + 0.0037592952139675617, + 0.031366609036922455, + 0.047960132360458374, + 0.031941745430231094, + 0.023489337414503098, + -0.028179382905364037, + -0.09630221128463745, + -0.023424675688147545, + 0.056784313172101974, + 0.07821419835090637, + -0.013793924823403358, + -0.025265701115131378, + -0.06158892437815666, + -0.045521851629018784, + 0.009584767743945122, + -0.008200234733521938, + 0.09907764196395874, + 0.008400815539062023, + 0.006592373829334974, + 0.09405991435050964, + -0.004040364176034927, + 0.013872742652893066, + -0.04959714412689209, + 0.0009657462942413986, + 0.02421344444155693, + 0.04896105080842972, + -0.057883404195308685, + -0.06314706057310104, + 0.003681553527712822, + 0.03518075495958328, + -0.012151641771197319, + 0.022868311032652855, + 0.03299618512392044, + 0.009383068419992924, + 0.025491898879408836, + -0.08730727434158325, + 0.04629608243703842, + -0.10041502118110657, + -0.04661624878644943, + -0.020765312016010284, + -0.010293352417647839, + -0.013416923582553864, + 0.07175701856613159, + 0.03053620271384716, + 0.028793223202228546, + 0.0034427910577505827, + -0.09598682820796967, + -0.06499901413917542, + 0.06358711421489716, + 0.09655596315860748, + 0.0029036931227892637, + 0.05007064342498779, + 0.039479102939367294, + -0.025728216394782066, + 0.060825273394584656, + 0.07051520049571991, + 0.08499304950237274, + -0.03300131857395172, + 0.0010429683607071638, + -0.04955942928791046, + 0.06396093964576721, + 0.05872654542326927, + -0.10223034024238586, + -0.08746303617954254, + 0.002991980640217662, + -0.041445694863796234, + 0.035602591931819916, + -0.014818340539932251, + 0.019820790737867355, + 0.025072623044252396, + -0.037108395248651505, + -0.09280560910701752, + -0.09614585340023041, + 0.0807623416185379, + -0.07481952011585236, + -0.015103710815310478, + -0.05831623822450638, + 0.041433896869421005, + 0.08630160987377167, + 0.015765566378831863, + -0.018387479707598686, + -0.020461130887269974, + 0.020097073167562485, + -0.05137387663125992, + -0.039864230901002884, + 0.024097442626953125, + -0.006324879825115204, + -0.10931193828582764, + 0.030139263719320297, + -0.0839049369096756, + 0.10349252074956894, + -0.054028645157814026, + 0.14437945187091827, + -0.016675271093845367, + -0.05906803905963898, + -0.08442769944667816, + -0.0025296476669609547, + -0.01479028444737196, + 0.04959484934806824, + 0.029672494158148766, + 0.06280151009559631, + 0.013846802525222301, + -0.03165620192885399, + 0.10608835518360138, + 0.03363058343529701, + -0.036029115319252014, + -0.07054778933525085, + -0.027592726051807404, + -0.04054246097803116, + 0.018527820706367493, + -0.0056319586001336575, + -0.09324796497821808, + -0.006910949945449829, + 0.02273549698293209, + -0.03458410128951073, + 0.0704135149717331, + 0.12127451598644257, + 0.04999300092458725, + -0.12125937640666962 + ] + } +} diff --git a/TTS/tests/data/ljspeech/f0_cache/pitch_stats.npy b/TTS/tests/data/ljspeech/f0_cache/pitch_stats.npy new file mode 100644 index 0000000000000000000000000000000000000000..6203bda43d1728040b40b0726066fcaf2d834e90 --- /dev/null +++ b/TTS/tests/data/ljspeech/f0_cache/pitch_stats.npy @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b81d6735e13d1401a8228aa04c4de1762edb82e0ad50fc0b0066e0710b7dddaf +size 424 diff --git a/TTS/tests/data/ljspeech/metadata.csv b/TTS/tests/data/ljspeech/metadata.csv new file mode 100644 index 0000000000000000000000000000000000000000..6c65ca0d80fb2133b57ed16fe2708953ce6595d6 --- /dev/null +++ b/TTS/tests/data/ljspeech/metadata.csv @@ -0,0 +1,8 @@ +LJ001-0001|Printing, in the only sense with which we are at present concerned, differs from most if not from all the arts and crafts represented in the Exhibition|Printing, in the only sense with which we are at present concerned, differs from most if not from all the arts and crafts represented in the Exhibition +LJ001-0002|in being comparatively modern.|in being comparatively modern. +LJ001-0003|For although the Chinese took impressions from wood blocks engraved in relief for centuries before the woodcutters of the Netherlands, by a similar process|For although the Chinese took impressions from wood blocks engraved in relief for centuries before the woodcutters of the Netherlands, by a similar process +LJ001-0004|produced the block books, which were the immediate predecessors of the true printed book,|produced the block books, which were the immediate predecessors of the true printed book, +LJ001-0005|the invention of movable metal letters in the middle of the fifteenth century may justly be considered as the invention of the art of printing.|the invention of movable metal letters in the middle of the fifteenth century may justly be considered as the invention of the art of printing. +LJ001-0006|And it is worth mention in passing that, as an example of fine typography,|And it is worth mention in passing that, as an example of fine typography, +LJ001-0007|the earliest book printed with movable types, the Gutenberg, or "forty-two line Bible" of about 1455,|the earliest book printed with movable types, the Gutenberg, or "forty-two line Bible" of about fourteen fifty-five, +LJ001-0008|has never been surpassed.|has never been surpassed. diff --git a/TTS/tests/data/ljspeech/metadata_attn_mask.txt b/TTS/tests/data/ljspeech/metadata_attn_mask.txt new file mode 100644 index 0000000000000000000000000000000000000000..eef9a5f19e14b1cd67454f830121d292e21a7f51 --- /dev/null +++ b/TTS/tests/data/ljspeech/metadata_attn_mask.txt @@ -0,0 +1,13100 @@ +tests/data/ljspeech/wavs/LJ022-0002.wav|tests/data/ljspeech/wavs/LJ022-0002.npy +tests/data/ljspeech/wavs/LJ001-0045.wav|tests/data/ljspeech/wavs/LJ001-0045.npy +tests/data/ljspeech/wavs/LJ039-0156.wav|tests/data/ljspeech/wavs/LJ039-0156.npy +tests/data/ljspeech/wavs/LJ047-0148.wav|tests/data/ljspeech/wavs/LJ047-0148.npy +tests/data/ljspeech/wavs/LJ035-0209.wav|tests/data/ljspeech/wavs/LJ035-0209.npy +tests/data/ljspeech/wavs/LJ019-0225.wav|tests/data/ljspeech/wavs/LJ019-0225.npy +tests/data/ljspeech/wavs/LJ049-0154.wav|tests/data/ljspeech/wavs/LJ049-0154.npy +tests/data/ljspeech/wavs/LJ013-0082.wav|tests/data/ljspeech/wavs/LJ013-0082.npy +tests/data/ljspeech/wavs/LJ018-0092.wav|tests/data/ljspeech/wavs/LJ018-0092.npy +tests/data/ljspeech/wavs/LJ045-0058.wav|tests/data/ljspeech/wavs/LJ045-0058.npy +tests/data/ljspeech/wavs/LJ028-0060.wav|tests/data/ljspeech/wavs/LJ028-0060.npy +tests/data/ljspeech/wavs/LJ018-0218.wav|tests/data/ljspeech/wavs/LJ018-0218.npy +tests/data/ljspeech/wavs/LJ029-0107.wav|tests/data/ljspeech/wavs/LJ029-0107.npy +tests/data/ljspeech/wavs/LJ009-0160.wav|tests/data/ljspeech/wavs/LJ009-0160.npy +tests/data/ljspeech/wavs/LJ002-0020.wav|tests/data/ljspeech/wavs/LJ002-0020.npy +tests/data/ljspeech/wavs/LJ032-0155.wav|tests/data/ljspeech/wavs/LJ032-0155.npy +tests/data/ljspeech/wavs/LJ033-0135.wav|tests/data/ljspeech/wavs/LJ033-0135.npy +tests/data/ljspeech/wavs/LJ031-0024.wav|tests/data/ljspeech/wavs/LJ031-0024.npy +tests/data/ljspeech/wavs/LJ032-0100.wav|tests/data/ljspeech/wavs/LJ032-0100.npy +tests/data/ljspeech/wavs/LJ037-0219.wav|tests/data/ljspeech/wavs/LJ037-0219.npy +tests/data/ljspeech/wavs/LJ009-0126.wav|tests/data/ljspeech/wavs/LJ009-0126.npy +tests/data/ljspeech/wavs/LJ009-0074.wav|tests/data/ljspeech/wavs/LJ009-0074.npy +tests/data/ljspeech/wavs/LJ028-0208.wav|tests/data/ljspeech/wavs/LJ028-0208.npy +tests/data/ljspeech/wavs/LJ038-0003.wav|tests/data/ljspeech/wavs/LJ038-0003.npy +tests/data/ljspeech/wavs/LJ009-0294.wav|tests/data/ljspeech/wavs/LJ009-0294.npy +tests/data/ljspeech/wavs/LJ012-0199.wav|tests/data/ljspeech/wavs/LJ012-0199.npy +tests/data/ljspeech/wavs/LJ011-0028.wav|tests/data/ljspeech/wavs/LJ011-0028.npy +tests/data/ljspeech/wavs/LJ006-0281.wav|tests/data/ljspeech/wavs/LJ006-0281.npy +tests/data/ljspeech/wavs/LJ010-0019.wav|tests/data/ljspeech/wavs/LJ010-0019.npy +tests/data/ljspeech/wavs/LJ040-0062.wav|tests/data/ljspeech/wavs/LJ040-0062.npy +tests/data/ljspeech/wavs/LJ037-0003.wav|tests/data/ljspeech/wavs/LJ037-0003.npy +tests/data/ljspeech/wavs/LJ043-0159.wav|tests/data/ljspeech/wavs/LJ043-0159.npy +tests/data/ljspeech/wavs/LJ039-0036.wav|tests/data/ljspeech/wavs/LJ039-0036.npy +tests/data/ljspeech/wavs/LJ028-0255.wav|tests/data/ljspeech/wavs/LJ028-0255.npy +tests/data/ljspeech/wavs/LJ032-0058.wav|tests/data/ljspeech/wavs/LJ032-0058.npy +tests/data/ljspeech/wavs/LJ038-0304.wav|tests/data/ljspeech/wavs/LJ038-0304.npy +tests/data/ljspeech/wavs/LJ032-0239.wav|tests/data/ljspeech/wavs/LJ032-0239.npy +tests/data/ljspeech/wavs/LJ032-0250.wav|tests/data/ljspeech/wavs/LJ032-0250.npy +tests/data/ljspeech/wavs/LJ047-0056.wav|tests/data/ljspeech/wavs/LJ047-0056.npy +tests/data/ljspeech/wavs/LJ038-0079.wav|tests/data/ljspeech/wavs/LJ038-0079.npy +tests/data/ljspeech/wavs/LJ050-0101.wav|tests/data/ljspeech/wavs/LJ050-0101.npy +tests/data/ljspeech/wavs/LJ008-0033.wav|tests/data/ljspeech/wavs/LJ008-0033.npy +tests/data/ljspeech/wavs/LJ037-0157.wav|tests/data/ljspeech/wavs/LJ037-0157.npy +tests/data/ljspeech/wavs/LJ038-0273.wav|tests/data/ljspeech/wavs/LJ038-0273.npy +tests/data/ljspeech/wavs/LJ043-0004.wav|tests/data/ljspeech/wavs/LJ043-0004.npy +tests/data/ljspeech/wavs/LJ002-0035.wav|tests/data/ljspeech/wavs/LJ002-0035.npy +tests/data/ljspeech/wavs/LJ007-0217.wav|tests/data/ljspeech/wavs/LJ007-0217.npy +tests/data/ljspeech/wavs/LJ039-0151.wav|tests/data/ljspeech/wavs/LJ039-0151.npy +tests/data/ljspeech/wavs/LJ039-0027.wav|tests/data/ljspeech/wavs/LJ039-0027.npy +tests/data/ljspeech/wavs/LJ016-0398.wav|tests/data/ljspeech/wavs/LJ016-0398.npy +tests/data/ljspeech/wavs/LJ028-0389.wav|tests/data/ljspeech/wavs/LJ028-0389.npy +tests/data/ljspeech/wavs/LJ034-0003.wav|tests/data/ljspeech/wavs/LJ034-0003.npy +tests/data/ljspeech/wavs/LJ044-0144.wav|tests/data/ljspeech/wavs/LJ044-0144.npy +tests/data/ljspeech/wavs/LJ036-0097.wav|tests/data/ljspeech/wavs/LJ036-0097.npy +tests/data/ljspeech/wavs/LJ020-0064.wav|tests/data/ljspeech/wavs/LJ020-0064.npy +tests/data/ljspeech/wavs/LJ045-0177.wav|tests/data/ljspeech/wavs/LJ045-0177.npy +tests/data/ljspeech/wavs/LJ017-0277.wav|tests/data/ljspeech/wavs/LJ017-0277.npy +tests/data/ljspeech/wavs/LJ021-0165.wav|tests/data/ljspeech/wavs/LJ021-0165.npy +tests/data/ljspeech/wavs/LJ030-0137.wav|tests/data/ljspeech/wavs/LJ030-0137.npy +tests/data/ljspeech/wavs/LJ045-0149.wav|tests/data/ljspeech/wavs/LJ045-0149.npy +tests/data/ljspeech/wavs/LJ049-0075.wav|tests/data/ljspeech/wavs/LJ049-0075.npy +tests/data/ljspeech/wavs/LJ040-0096.wav|tests/data/ljspeech/wavs/LJ040-0096.npy +tests/data/ljspeech/wavs/LJ036-0105.wav|tests/data/ljspeech/wavs/LJ036-0105.npy +tests/data/ljspeech/wavs/LJ037-0076.wav|tests/data/ljspeech/wavs/LJ037-0076.npy +tests/data/ljspeech/wavs/LJ047-0092.wav|tests/data/ljspeech/wavs/LJ047-0092.npy +tests/data/ljspeech/wavs/LJ021-0002.wav|tests/data/ljspeech/wavs/LJ021-0002.npy +tests/data/ljspeech/wavs/LJ040-0058.wav|tests/data/ljspeech/wavs/LJ040-0058.npy +tests/data/ljspeech/wavs/LJ033-0200.wav|tests/data/ljspeech/wavs/LJ033-0200.npy +tests/data/ljspeech/wavs/LJ041-0147.wav|tests/data/ljspeech/wavs/LJ041-0147.npy +tests/data/ljspeech/wavs/LJ033-0164.wav|tests/data/ljspeech/wavs/LJ033-0164.npy +tests/data/ljspeech/wavs/LJ034-0204.wav|tests/data/ljspeech/wavs/LJ034-0204.npy +tests/data/ljspeech/wavs/LJ045-0047.wav|tests/data/ljspeech/wavs/LJ045-0047.npy +tests/data/ljspeech/wavs/LJ024-0003.wav|tests/data/ljspeech/wavs/LJ024-0003.npy +tests/data/ljspeech/wavs/LJ013-0148.wav|tests/data/ljspeech/wavs/LJ013-0148.npy +tests/data/ljspeech/wavs/LJ012-0033.wav|tests/data/ljspeech/wavs/LJ012-0033.npy +tests/data/ljspeech/wavs/LJ044-0004.wav|tests/data/ljspeech/wavs/LJ044-0004.npy +tests/data/ljspeech/wavs/LJ005-0121.wav|tests/data/ljspeech/wavs/LJ005-0121.npy +tests/data/ljspeech/wavs/LJ014-0259.wav|tests/data/ljspeech/wavs/LJ014-0259.npy +tests/data/ljspeech/wavs/LJ041-0050.wav|tests/data/ljspeech/wavs/LJ041-0050.npy +tests/data/ljspeech/wavs/LJ041-0112.wav|tests/data/ljspeech/wavs/LJ041-0112.npy +tests/data/ljspeech/wavs/LJ034-0144.wav|tests/data/ljspeech/wavs/LJ034-0144.npy +tests/data/ljspeech/wavs/LJ010-0107.wav|tests/data/ljspeech/wavs/LJ010-0107.npy +tests/data/ljspeech/wavs/LJ019-0143.wav|tests/data/ljspeech/wavs/LJ019-0143.npy +tests/data/ljspeech/wavs/LJ034-0165.wav|tests/data/ljspeech/wavs/LJ034-0165.npy +tests/data/ljspeech/wavs/LJ016-0426.wav|tests/data/ljspeech/wavs/LJ016-0426.npy +tests/data/ljspeech/wavs/LJ010-0182.wav|tests/data/ljspeech/wavs/LJ010-0182.npy +tests/data/ljspeech/wavs/LJ015-0265.wav|tests/data/ljspeech/wavs/LJ015-0265.npy +tests/data/ljspeech/wavs/LJ029-0091.wav|tests/data/ljspeech/wavs/LJ029-0091.npy +tests/data/ljspeech/wavs/LJ017-0278.wav|tests/data/ljspeech/wavs/LJ017-0278.npy +tests/data/ljspeech/wavs/LJ009-0256.wav|tests/data/ljspeech/wavs/LJ009-0256.npy +tests/data/ljspeech/wavs/LJ014-0186.wav|tests/data/ljspeech/wavs/LJ014-0186.npy +tests/data/ljspeech/wavs/LJ023-0112.wav|tests/data/ljspeech/wavs/LJ023-0112.npy +tests/data/ljspeech/wavs/LJ016-0144.wav|tests/data/ljspeech/wavs/LJ016-0144.npy +tests/data/ljspeech/wavs/LJ016-0378.wav|tests/data/ljspeech/wavs/LJ016-0378.npy +tests/data/ljspeech/wavs/LJ007-0008.wav|tests/data/ljspeech/wavs/LJ007-0008.npy +tests/data/ljspeech/wavs/LJ011-0152.wav|tests/data/ljspeech/wavs/LJ011-0152.npy +tests/data/ljspeech/wavs/LJ032-0158.wav|tests/data/ljspeech/wavs/LJ032-0158.npy +tests/data/ljspeech/wavs/LJ039-0205.wav|tests/data/ljspeech/wavs/LJ039-0205.npy +tests/data/ljspeech/wavs/LJ029-0048.wav|tests/data/ljspeech/wavs/LJ029-0048.npy +tests/data/ljspeech/wavs/LJ009-0170.wav|tests/data/ljspeech/wavs/LJ009-0170.npy +tests/data/ljspeech/wavs/LJ033-0112.wav|tests/data/ljspeech/wavs/LJ033-0112.npy +tests/data/ljspeech/wavs/LJ010-0255.wav|tests/data/ljspeech/wavs/LJ010-0255.npy +tests/data/ljspeech/wavs/LJ036-0116.wav|tests/data/ljspeech/wavs/LJ036-0116.npy +tests/data/ljspeech/wavs/LJ048-0058.wav|tests/data/ljspeech/wavs/LJ048-0058.npy +tests/data/ljspeech/wavs/LJ037-0227.wav|tests/data/ljspeech/wavs/LJ037-0227.npy +tests/data/ljspeech/wavs/LJ004-0127.wav|tests/data/ljspeech/wavs/LJ004-0127.npy +tests/data/ljspeech/wavs/LJ041-0201.wav|tests/data/ljspeech/wavs/LJ041-0201.npy +tests/data/ljspeech/wavs/LJ048-0272.wav|tests/data/ljspeech/wavs/LJ048-0272.npy +tests/data/ljspeech/wavs/LJ050-0023.wav|tests/data/ljspeech/wavs/LJ050-0023.npy +tests/data/ljspeech/wavs/LJ031-0026.wav|tests/data/ljspeech/wavs/LJ031-0026.npy +tests/data/ljspeech/wavs/LJ033-0012.wav|tests/data/ljspeech/wavs/LJ033-0012.npy +tests/data/ljspeech/wavs/LJ038-0135.wav|tests/data/ljspeech/wavs/LJ038-0135.npy +tests/data/ljspeech/wavs/LJ024-0068.wav|tests/data/ljspeech/wavs/LJ024-0068.npy +tests/data/ljspeech/wavs/LJ047-0105.wav|tests/data/ljspeech/wavs/LJ047-0105.npy +tests/data/ljspeech/wavs/LJ030-0023.wav|tests/data/ljspeech/wavs/LJ030-0023.npy +tests/data/ljspeech/wavs/LJ021-0039.wav|tests/data/ljspeech/wavs/LJ021-0039.npy +tests/data/ljspeech/wavs/LJ022-0019.wav|tests/data/ljspeech/wavs/LJ022-0019.npy +tests/data/ljspeech/wavs/LJ018-0363.wav|tests/data/ljspeech/wavs/LJ018-0363.npy +tests/data/ljspeech/wavs/LJ011-0047.wav|tests/data/ljspeech/wavs/LJ011-0047.npy +tests/data/ljspeech/wavs/LJ048-0091.wav|tests/data/ljspeech/wavs/LJ048-0091.npy +tests/data/ljspeech/wavs/LJ010-0072.wav|tests/data/ljspeech/wavs/LJ010-0072.npy +tests/data/ljspeech/wavs/LJ040-0017.wav|tests/data/ljspeech/wavs/LJ040-0017.npy +tests/data/ljspeech/wavs/LJ037-0182.wav|tests/data/ljspeech/wavs/LJ037-0182.npy +tests/data/ljspeech/wavs/LJ007-0228.wav|tests/data/ljspeech/wavs/LJ007-0228.npy +tests/data/ljspeech/wavs/LJ035-0059.wav|tests/data/ljspeech/wavs/LJ035-0059.npy +tests/data/ljspeech/wavs/LJ009-0027.wav|tests/data/ljspeech/wavs/LJ009-0027.npy +tests/data/ljspeech/wavs/LJ016-0233.wav|tests/data/ljspeech/wavs/LJ016-0233.npy +tests/data/ljspeech/wavs/LJ036-0104.wav|tests/data/ljspeech/wavs/LJ036-0104.npy +tests/data/ljspeech/wavs/LJ037-0142.wav|tests/data/ljspeech/wavs/LJ037-0142.npy +tests/data/ljspeech/wavs/LJ012-0250.wav|tests/data/ljspeech/wavs/LJ012-0250.npy +tests/data/ljspeech/wavs/LJ047-0131.wav|tests/data/ljspeech/wavs/LJ047-0131.npy +tests/data/ljspeech/wavs/LJ043-0110.wav|tests/data/ljspeech/wavs/LJ043-0110.npy +tests/data/ljspeech/wavs/LJ036-0120.wav|tests/data/ljspeech/wavs/LJ036-0120.npy +tests/data/ljspeech/wavs/LJ040-0082.wav|tests/data/ljspeech/wavs/LJ040-0082.npy +tests/data/ljspeech/wavs/LJ011-0097.wav|tests/data/ljspeech/wavs/LJ011-0097.npy +tests/data/ljspeech/wavs/LJ023-0031.wav|tests/data/ljspeech/wavs/LJ023-0031.npy +tests/data/ljspeech/wavs/LJ027-0144.wav|tests/data/ljspeech/wavs/LJ027-0144.npy +tests/data/ljspeech/wavs/LJ048-0015.wav|tests/data/ljspeech/wavs/LJ048-0015.npy +tests/data/ljspeech/wavs/LJ030-0097.wav|tests/data/ljspeech/wavs/LJ030-0097.npy +tests/data/ljspeech/wavs/LJ028-0322.wav|tests/data/ljspeech/wavs/LJ028-0322.npy +tests/data/ljspeech/wavs/LJ029-0010.wav|tests/data/ljspeech/wavs/LJ029-0010.npy +tests/data/ljspeech/wavs/LJ029-0170.wav|tests/data/ljspeech/wavs/LJ029-0170.npy +tests/data/ljspeech/wavs/LJ039-0060.wav|tests/data/ljspeech/wavs/LJ039-0060.npy +tests/data/ljspeech/wavs/LJ030-0086.wav|tests/data/ljspeech/wavs/LJ030-0086.npy +tests/data/ljspeech/wavs/LJ050-0037.wav|tests/data/ljspeech/wavs/LJ050-0037.npy +tests/data/ljspeech/wavs/LJ031-0020.wav|tests/data/ljspeech/wavs/LJ031-0020.npy +tests/data/ljspeech/wavs/LJ028-0109.wav|tests/data/ljspeech/wavs/LJ028-0109.npy +tests/data/ljspeech/wavs/LJ039-0231.wav|tests/data/ljspeech/wavs/LJ039-0231.npy +tests/data/ljspeech/wavs/LJ009-0076.wav|tests/data/ljspeech/wavs/LJ009-0076.npy +tests/data/ljspeech/wavs/LJ036-0193.wav|tests/data/ljspeech/wavs/LJ036-0193.npy +tests/data/ljspeech/wavs/LJ050-0195.wav|tests/data/ljspeech/wavs/LJ050-0195.npy +tests/data/ljspeech/wavs/LJ011-0030.wav|tests/data/ljspeech/wavs/LJ011-0030.npy +tests/data/ljspeech/wavs/LJ038-0163.wav|tests/data/ljspeech/wavs/LJ038-0163.npy +tests/data/ljspeech/wavs/LJ021-0172.wav|tests/data/ljspeech/wavs/LJ021-0172.npy +tests/data/ljspeech/wavs/LJ045-0025.wav|tests/data/ljspeech/wavs/LJ045-0025.npy +tests/data/ljspeech/wavs/LJ003-0339.wav|tests/data/ljspeech/wavs/LJ003-0339.npy +tests/data/ljspeech/wavs/LJ005-0172.wav|tests/data/ljspeech/wavs/LJ005-0172.npy +tests/data/ljspeech/wavs/LJ030-0152.wav|tests/data/ljspeech/wavs/LJ030-0152.npy +tests/data/ljspeech/wavs/LJ030-0111.wav|tests/data/ljspeech/wavs/LJ030-0111.npy +tests/data/ljspeech/wavs/LJ048-0147.wav|tests/data/ljspeech/wavs/LJ048-0147.npy +tests/data/ljspeech/wavs/LJ028-0048.wav|tests/data/ljspeech/wavs/LJ028-0048.npy +tests/data/ljspeech/wavs/LJ015-0052.wav|tests/data/ljspeech/wavs/LJ015-0052.npy +tests/data/ljspeech/wavs/LJ023-0002.wav|tests/data/ljspeech/wavs/LJ023-0002.npy +tests/data/ljspeech/wavs/LJ047-0141.wav|tests/data/ljspeech/wavs/LJ047-0141.npy +tests/data/ljspeech/wavs/LJ018-0223.wav|tests/data/ljspeech/wavs/LJ018-0223.npy +tests/data/ljspeech/wavs/LJ038-0255.wav|tests/data/ljspeech/wavs/LJ038-0255.npy +tests/data/ljspeech/wavs/LJ026-0002.wav|tests/data/ljspeech/wavs/LJ026-0002.npy +tests/data/ljspeech/wavs/LJ038-0098.wav|tests/data/ljspeech/wavs/LJ038-0098.npy +tests/data/ljspeech/wavs/LJ050-0146.wav|tests/data/ljspeech/wavs/LJ050-0146.npy +tests/data/ljspeech/wavs/LJ032-0104.wav|tests/data/ljspeech/wavs/LJ032-0104.npy +tests/data/ljspeech/wavs/LJ017-0273.wav|tests/data/ljspeech/wavs/LJ017-0273.npy +tests/data/ljspeech/wavs/LJ030-0109.wav|tests/data/ljspeech/wavs/LJ030-0109.npy +tests/data/ljspeech/wavs/LJ046-0179.wav|tests/data/ljspeech/wavs/LJ046-0179.npy +tests/data/ljspeech/wavs/LJ043-0133.wav|tests/data/ljspeech/wavs/LJ043-0133.npy +tests/data/ljspeech/wavs/LJ007-0009.wav|tests/data/ljspeech/wavs/LJ007-0009.npy +tests/data/ljspeech/wavs/LJ047-0101.wav|tests/data/ljspeech/wavs/LJ047-0101.npy +tests/data/ljspeech/wavs/LJ003-0050.wav|tests/data/ljspeech/wavs/LJ003-0050.npy +tests/data/ljspeech/wavs/LJ045-0147.wav|tests/data/ljspeech/wavs/LJ045-0147.npy +tests/data/ljspeech/wavs/LJ039-0098.wav|tests/data/ljspeech/wavs/LJ039-0098.npy +tests/data/ljspeech/wavs/LJ028-0062.wav|tests/data/ljspeech/wavs/LJ028-0062.npy +tests/data/ljspeech/wavs/LJ037-0229.wav|tests/data/ljspeech/wavs/LJ037-0229.npy +tests/data/ljspeech/wavs/LJ038-0058.wav|tests/data/ljspeech/wavs/LJ038-0058.npy +tests/data/ljspeech/wavs/LJ036-0156.wav|tests/data/ljspeech/wavs/LJ036-0156.npy +tests/data/ljspeech/wavs/LJ009-0057.wav|tests/data/ljspeech/wavs/LJ009-0057.npy +tests/data/ljspeech/wavs/LJ045-0171.wav|tests/data/ljspeech/wavs/LJ045-0171.npy +tests/data/ljspeech/wavs/LJ008-0148.wav|tests/data/ljspeech/wavs/LJ008-0148.npy +tests/data/ljspeech/wavs/LJ045-0024.wav|tests/data/ljspeech/wavs/LJ045-0024.npy +tests/data/ljspeech/wavs/LJ017-0105.wav|tests/data/ljspeech/wavs/LJ017-0105.npy +tests/data/ljspeech/wavs/LJ039-0025.wav|tests/data/ljspeech/wavs/LJ039-0025.npy +tests/data/ljspeech/wavs/LJ049-0004.wav|tests/data/ljspeech/wavs/LJ049-0004.npy +tests/data/ljspeech/wavs/LJ016-0091.wav|tests/data/ljspeech/wavs/LJ016-0091.npy +tests/data/ljspeech/wavs/LJ001-0008.wav|tests/data/ljspeech/wavs/LJ001-0008.npy +tests/data/ljspeech/wavs/LJ032-0240.wav|tests/data/ljspeech/wavs/LJ032-0240.npy +tests/data/ljspeech/wavs/LJ048-0033.wav|tests/data/ljspeech/wavs/LJ048-0033.npy +tests/data/ljspeech/wavs/LJ032-0247.wav|tests/data/ljspeech/wavs/LJ032-0247.npy +tests/data/ljspeech/wavs/LJ025-0050.wav|tests/data/ljspeech/wavs/LJ025-0050.npy +tests/data/ljspeech/wavs/LJ029-0201.wav|tests/data/ljspeech/wavs/LJ029-0201.npy +tests/data/ljspeech/wavs/LJ047-0161.wav|tests/data/ljspeech/wavs/LJ047-0161.npy +tests/data/ljspeech/wavs/LJ031-0192.wav|tests/data/ljspeech/wavs/LJ031-0192.npy +tests/data/ljspeech/wavs/LJ018-0106.wav|tests/data/ljspeech/wavs/LJ018-0106.npy +tests/data/ljspeech/wavs/LJ041-0186.wav|tests/data/ljspeech/wavs/LJ041-0186.npy +tests/data/ljspeech/wavs/LJ021-0077.wav|tests/data/ljspeech/wavs/LJ021-0077.npy +tests/data/ljspeech/wavs/LJ039-0054.wav|tests/data/ljspeech/wavs/LJ039-0054.npy +tests/data/ljspeech/wavs/LJ045-0056.wav|tests/data/ljspeech/wavs/LJ045-0056.npy +tests/data/ljspeech/wavs/LJ015-0138.wav|tests/data/ljspeech/wavs/LJ015-0138.npy +tests/data/ljspeech/wavs/LJ039-0129.wav|tests/data/ljspeech/wavs/LJ039-0129.npy +tests/data/ljspeech/wavs/LJ025-0110.wav|tests/data/ljspeech/wavs/LJ025-0110.npy +tests/data/ljspeech/wavs/LJ048-0154.wav|tests/data/ljspeech/wavs/LJ048-0154.npy +tests/data/ljspeech/wavs/LJ021-0186.wav|tests/data/ljspeech/wavs/LJ021-0186.npy +tests/data/ljspeech/wavs/LJ039-0005.wav|tests/data/ljspeech/wavs/LJ039-0005.npy +tests/data/ljspeech/wavs/LJ011-0208.wav|tests/data/ljspeech/wavs/LJ011-0208.npy +tests/data/ljspeech/wavs/LJ028-0413.wav|tests/data/ljspeech/wavs/LJ028-0413.npy +tests/data/ljspeech/wavs/LJ029-0070.wav|tests/data/ljspeech/wavs/LJ029-0070.npy +tests/data/ljspeech/wavs/LJ042-0014.wav|tests/data/ljspeech/wavs/LJ042-0014.npy +tests/data/ljspeech/wavs/LJ045-0195.wav|tests/data/ljspeech/wavs/LJ045-0195.npy +tests/data/ljspeech/wavs/LJ028-0462.wav|tests/data/ljspeech/wavs/LJ028-0462.npy +tests/data/ljspeech/wavs/LJ033-0075.wav|tests/data/ljspeech/wavs/LJ033-0075.npy +tests/data/ljspeech/wavs/LJ046-0050.wav|tests/data/ljspeech/wavs/LJ046-0050.npy +tests/data/ljspeech/wavs/LJ046-0124.wav|tests/data/ljspeech/wavs/LJ046-0124.npy +tests/data/ljspeech/wavs/LJ016-0051.wav|tests/data/ljspeech/wavs/LJ016-0051.npy +tests/data/ljspeech/wavs/LJ014-0231.wav|tests/data/ljspeech/wavs/LJ014-0231.npy +tests/data/ljspeech/wavs/LJ022-0048.wav|tests/data/ljspeech/wavs/LJ022-0048.npy +tests/data/ljspeech/wavs/LJ033-0003.wav|tests/data/ljspeech/wavs/LJ033-0003.npy +tests/data/ljspeech/wavs/LJ018-0069.wav|tests/data/ljspeech/wavs/LJ018-0069.npy +tests/data/ljspeech/wavs/LJ046-0003.wav|tests/data/ljspeech/wavs/LJ046-0003.npy +tests/data/ljspeech/wavs/LJ008-0022.wav|tests/data/ljspeech/wavs/LJ008-0022.npy +tests/data/ljspeech/wavs/LJ029-0182.wav|tests/data/ljspeech/wavs/LJ029-0182.npy +tests/data/ljspeech/wavs/LJ032-0018.wav|tests/data/ljspeech/wavs/LJ032-0018.npy +tests/data/ljspeech/wavs/LJ024-0143.wav|tests/data/ljspeech/wavs/LJ024-0143.npy +tests/data/ljspeech/wavs/LJ044-0042.wav|tests/data/ljspeech/wavs/LJ044-0042.npy +tests/data/ljspeech/wavs/LJ033-0160.wav|tests/data/ljspeech/wavs/LJ033-0160.npy +tests/data/ljspeech/wavs/LJ004-0008.wav|tests/data/ljspeech/wavs/LJ004-0008.npy +tests/data/ljspeech/wavs/LJ009-0054.wav|tests/data/ljspeech/wavs/LJ009-0054.npy +tests/data/ljspeech/wavs/LJ024-0019.wav|tests/data/ljspeech/wavs/LJ024-0019.npy +tests/data/ljspeech/wavs/LJ034-0039.wav|tests/data/ljspeech/wavs/LJ034-0039.npy +tests/data/ljspeech/wavs/LJ015-0010.wav|tests/data/ljspeech/wavs/LJ015-0010.npy +tests/data/ljspeech/wavs/LJ039-0095.wav|tests/data/ljspeech/wavs/LJ039-0095.npy +tests/data/ljspeech/wavs/LJ047-0205.wav|tests/data/ljspeech/wavs/LJ047-0205.npy +tests/data/ljspeech/wavs/LJ030-0073.wav|tests/data/ljspeech/wavs/LJ030-0073.npy +tests/data/ljspeech/wavs/LJ025-0012.wav|tests/data/ljspeech/wavs/LJ025-0012.npy +tests/data/ljspeech/wavs/LJ007-0149.wav|tests/data/ljspeech/wavs/LJ007-0149.npy +tests/data/ljspeech/wavs/LJ047-0017.wav|tests/data/ljspeech/wavs/LJ047-0017.npy +tests/data/ljspeech/wavs/LJ009-0073.wav|tests/data/ljspeech/wavs/LJ009-0073.npy +tests/data/ljspeech/wavs/LJ017-0212.wav|tests/data/ljspeech/wavs/LJ017-0212.npy +tests/data/ljspeech/wavs/LJ018-0312.wav|tests/data/ljspeech/wavs/LJ018-0312.npy +tests/data/ljspeech/wavs/LJ044-0161.wav|tests/data/ljspeech/wavs/LJ044-0161.npy +tests/data/ljspeech/wavs/LJ016-0197.wav|tests/data/ljspeech/wavs/LJ016-0197.npy +tests/data/ljspeech/wavs/LJ023-0077.wav|tests/data/ljspeech/wavs/LJ023-0077.npy +tests/data/ljspeech/wavs/LJ030-0067.wav|tests/data/ljspeech/wavs/LJ030-0067.npy +tests/data/ljspeech/wavs/LJ034-0202.wav|tests/data/ljspeech/wavs/LJ034-0202.npy +tests/data/ljspeech/wavs/LJ030-0050.wav|tests/data/ljspeech/wavs/LJ030-0050.npy +tests/data/ljspeech/wavs/LJ049-0016.wav|tests/data/ljspeech/wavs/LJ049-0016.npy +tests/data/ljspeech/wavs/LJ035-0029.wav|tests/data/ljspeech/wavs/LJ035-0029.npy +tests/data/ljspeech/wavs/LJ048-0060.wav|tests/data/ljspeech/wavs/LJ048-0060.npy +tests/data/ljspeech/wavs/LJ037-0113.wav|tests/data/ljspeech/wavs/LJ037-0113.npy +tests/data/ljspeech/wavs/LJ016-0022.wav|tests/data/ljspeech/wavs/LJ016-0022.npy +tests/data/ljspeech/wavs/LJ032-0122.wav|tests/data/ljspeech/wavs/LJ032-0122.npy +tests/data/ljspeech/wavs/LJ032-0056.wav|tests/data/ljspeech/wavs/LJ032-0056.npy +tests/data/ljspeech/wavs/LJ025-0038.wav|tests/data/ljspeech/wavs/LJ025-0038.npy +tests/data/ljspeech/wavs/LJ046-0153.wav|tests/data/ljspeech/wavs/LJ046-0153.npy +tests/data/ljspeech/wavs/LJ035-0073.wav|tests/data/ljspeech/wavs/LJ035-0073.npy +tests/data/ljspeech/wavs/LJ021-0153.wav|tests/data/ljspeech/wavs/LJ021-0153.npy +tests/data/ljspeech/wavs/LJ050-0137.wav|tests/data/ljspeech/wavs/LJ050-0137.npy +tests/data/ljspeech/wavs/LJ042-0189.wav|tests/data/ljspeech/wavs/LJ042-0189.npy +tests/data/ljspeech/wavs/LJ022-0116.wav|tests/data/ljspeech/wavs/LJ022-0116.npy +tests/data/ljspeech/wavs/LJ018-0196.wav|tests/data/ljspeech/wavs/LJ018-0196.npy +tests/data/ljspeech/wavs/LJ037-0006.wav|tests/data/ljspeech/wavs/LJ037-0006.npy +tests/data/ljspeech/wavs/LJ030-0103.wav|tests/data/ljspeech/wavs/LJ030-0103.npy +tests/data/ljspeech/wavs/LJ047-0022.wav|tests/data/ljspeech/wavs/LJ047-0022.npy +tests/data/ljspeech/wavs/LJ022-0169.wav|tests/data/ljspeech/wavs/LJ022-0169.npy +tests/data/ljspeech/wavs/LJ013-0031.wav|tests/data/ljspeech/wavs/LJ013-0031.npy +tests/data/ljspeech/wavs/LJ021-0199.wav|tests/data/ljspeech/wavs/LJ021-0199.npy +tests/data/ljspeech/wavs/LJ009-0243.wav|tests/data/ljspeech/wavs/LJ009-0243.npy +tests/data/ljspeech/wavs/LJ033-0068.wav|tests/data/ljspeech/wavs/LJ033-0068.npy +tests/data/ljspeech/wavs/LJ011-0107.wav|tests/data/ljspeech/wavs/LJ011-0107.npy +tests/data/ljspeech/wavs/LJ008-0110.wav|tests/data/ljspeech/wavs/LJ008-0110.npy +tests/data/ljspeech/wavs/LJ043-0041.wav|tests/data/ljspeech/wavs/LJ043-0041.npy +tests/data/ljspeech/wavs/LJ020-0008.wav|tests/data/ljspeech/wavs/LJ020-0008.npy +tests/data/ljspeech/wavs/LJ030-0003.wav|tests/data/ljspeech/wavs/LJ030-0003.npy +tests/data/ljspeech/wavs/LJ043-0007.wav|tests/data/ljspeech/wavs/LJ043-0007.npy +tests/data/ljspeech/wavs/LJ009-0260.wav|tests/data/ljspeech/wavs/LJ009-0260.npy +tests/data/ljspeech/wavs/LJ030-0162.wav|tests/data/ljspeech/wavs/LJ030-0162.npy +tests/data/ljspeech/wavs/LJ027-0051.wav|tests/data/ljspeech/wavs/LJ027-0051.npy +tests/data/ljspeech/wavs/LJ024-0089.wav|tests/data/ljspeech/wavs/LJ024-0089.npy +tests/data/ljspeech/wavs/LJ024-0120.wav|tests/data/ljspeech/wavs/LJ024-0120.npy +tests/data/ljspeech/wavs/LJ008-0294.wav|tests/data/ljspeech/wavs/LJ008-0294.npy +tests/data/ljspeech/wavs/LJ038-0174.wav|tests/data/ljspeech/wavs/LJ038-0174.npy +tests/data/ljspeech/wavs/LJ008-0197.wav|tests/data/ljspeech/wavs/LJ008-0197.npy +tests/data/ljspeech/wavs/LJ045-0109.wav|tests/data/ljspeech/wavs/LJ045-0109.npy +tests/data/ljspeech/wavs/LJ018-0222.wav|tests/data/ljspeech/wavs/LJ018-0222.npy +tests/data/ljspeech/wavs/LJ043-0097.wav|tests/data/ljspeech/wavs/LJ043-0097.npy +tests/data/ljspeech/wavs/LJ002-0125.wav|tests/data/ljspeech/wavs/LJ002-0125.npy +tests/data/ljspeech/wavs/LJ049-0055.wav|tests/data/ljspeech/wavs/LJ049-0055.npy +tests/data/ljspeech/wavs/LJ012-0154.wav|tests/data/ljspeech/wavs/LJ012-0154.npy +tests/data/ljspeech/wavs/LJ042-0004.wav|tests/data/ljspeech/wavs/LJ042-0004.npy +tests/data/ljspeech/wavs/LJ043-0142.wav|tests/data/ljspeech/wavs/LJ043-0142.npy +tests/data/ljspeech/wavs/LJ020-0069.wav|tests/data/ljspeech/wavs/LJ020-0069.npy +tests/data/ljspeech/wavs/LJ030-0035.wav|tests/data/ljspeech/wavs/LJ030-0035.npy +tests/data/ljspeech/wavs/LJ009-0168.wav|tests/data/ljspeech/wavs/LJ009-0168.npy +tests/data/ljspeech/wavs/LJ020-0067.wav|tests/data/ljspeech/wavs/LJ020-0067.npy +tests/data/ljspeech/wavs/LJ015-0135.wav|tests/data/ljspeech/wavs/LJ015-0135.npy +tests/data/ljspeech/wavs/LJ028-0361.wav|tests/data/ljspeech/wavs/LJ028-0361.npy +tests/data/ljspeech/wavs/LJ001-0002.wav|tests/data/ljspeech/wavs/LJ001-0002.npy +tests/data/ljspeech/wavs/LJ002-0234.wav|tests/data/ljspeech/wavs/LJ002-0234.npy +tests/data/ljspeech/wavs/LJ019-0274.wav|tests/data/ljspeech/wavs/LJ019-0274.npy +tests/data/ljspeech/wavs/LJ049-0080.wav|tests/data/ljspeech/wavs/LJ049-0080.npy +tests/data/ljspeech/wavs/LJ015-0293.wav|tests/data/ljspeech/wavs/LJ015-0293.npy +tests/data/ljspeech/wavs/LJ030-0083.wav|tests/data/ljspeech/wavs/LJ030-0083.npy +tests/data/ljspeech/wavs/LJ049-0068.wav|tests/data/ljspeech/wavs/LJ049-0068.npy +tests/data/ljspeech/wavs/LJ032-0013.wav|tests/data/ljspeech/wavs/LJ032-0013.npy +tests/data/ljspeech/wavs/LJ015-0032.wav|tests/data/ljspeech/wavs/LJ015-0032.npy +tests/data/ljspeech/wavs/LJ035-0164.wav|tests/data/ljspeech/wavs/LJ035-0164.npy +tests/data/ljspeech/wavs/LJ014-0314.wav|tests/data/ljspeech/wavs/LJ014-0314.npy +tests/data/ljspeech/wavs/LJ050-0002.wav|tests/data/ljspeech/wavs/LJ050-0002.npy +tests/data/ljspeech/wavs/LJ033-0105.wav|tests/data/ljspeech/wavs/LJ033-0105.npy +tests/data/ljspeech/wavs/LJ020-0072.wav|tests/data/ljspeech/wavs/LJ020-0072.npy +tests/data/ljspeech/wavs/LJ016-0138.wav|tests/data/ljspeech/wavs/LJ016-0138.npy +tests/data/ljspeech/wavs/LJ023-0063.wav|tests/data/ljspeech/wavs/LJ023-0063.npy +tests/data/ljspeech/wavs/LJ005-0210.wav|tests/data/ljspeech/wavs/LJ005-0210.npy +tests/data/ljspeech/wavs/LJ010-0262.wav|tests/data/ljspeech/wavs/LJ010-0262.npy +tests/data/ljspeech/wavs/LJ039-0032.wav|tests/data/ljspeech/wavs/LJ039-0032.npy +tests/data/ljspeech/wavs/LJ019-0020.wav|tests/data/ljspeech/wavs/LJ019-0020.npy +tests/data/ljspeech/wavs/LJ039-0170.wav|tests/data/ljspeech/wavs/LJ039-0170.npy +tests/data/ljspeech/wavs/LJ016-0183.wav|tests/data/ljspeech/wavs/LJ016-0183.npy +tests/data/ljspeech/wavs/LJ038-0271.wav|tests/data/ljspeech/wavs/LJ038-0271.npy +tests/data/ljspeech/wavs/LJ037-0082.wav|tests/data/ljspeech/wavs/LJ037-0082.npy +tests/data/ljspeech/wavs/LJ047-0066.wav|tests/data/ljspeech/wavs/LJ047-0066.npy +tests/data/ljspeech/wavs/LJ044-0194.wav|tests/data/ljspeech/wavs/LJ044-0194.npy +tests/data/ljspeech/wavs/LJ032-0197.wav|tests/data/ljspeech/wavs/LJ032-0197.npy +tests/data/ljspeech/wavs/LJ028-0333.wav|tests/data/ljspeech/wavs/LJ028-0333.npy +tests/data/ljspeech/wavs/LJ015-0036.wav|tests/data/ljspeech/wavs/LJ015-0036.npy +tests/data/ljspeech/wavs/LJ044-0069.wav|tests/data/ljspeech/wavs/LJ044-0069.npy +tests/data/ljspeech/wavs/LJ001-0104.wav|tests/data/ljspeech/wavs/LJ001-0104.npy +tests/data/ljspeech/wavs/LJ016-0286.wav|tests/data/ljspeech/wavs/LJ016-0286.npy +tests/data/ljspeech/wavs/LJ031-0037.wav|tests/data/ljspeech/wavs/LJ031-0037.npy +tests/data/ljspeech/wavs/LJ014-0035.wav|tests/data/ljspeech/wavs/LJ014-0035.npy +tests/data/ljspeech/wavs/LJ001-0078.wav|tests/data/ljspeech/wavs/LJ001-0078.npy +tests/data/ljspeech/wavs/LJ014-0088.wav|tests/data/ljspeech/wavs/LJ014-0088.npy +tests/data/ljspeech/wavs/LJ002-0208.wav|tests/data/ljspeech/wavs/LJ002-0208.npy +tests/data/ljspeech/wavs/LJ028-0515.wav|tests/data/ljspeech/wavs/LJ028-0515.npy +tests/data/ljspeech/wavs/LJ035-0007.wav|tests/data/ljspeech/wavs/LJ035-0007.npy +tests/data/ljspeech/wavs/LJ048-0107.wav|tests/data/ljspeech/wavs/LJ048-0107.npy +tests/data/ljspeech/wavs/LJ022-0121.wav|tests/data/ljspeech/wavs/LJ022-0121.npy +tests/data/ljspeech/wavs/LJ014-0330.wav|tests/data/ljspeech/wavs/LJ014-0330.npy +tests/data/ljspeech/wavs/LJ013-0177.wav|tests/data/ljspeech/wavs/LJ013-0177.npy +tests/data/ljspeech/wavs/LJ050-0030.wav|tests/data/ljspeech/wavs/LJ050-0030.npy +tests/data/ljspeech/wavs/LJ024-0116.wav|tests/data/ljspeech/wavs/LJ024-0116.npy +tests/data/ljspeech/wavs/LJ031-0100.wav|tests/data/ljspeech/wavs/LJ031-0100.npy +tests/data/ljspeech/wavs/LJ001-0170.wav|tests/data/ljspeech/wavs/LJ001-0170.npy +tests/data/ljspeech/wavs/LJ050-0197.wav|tests/data/ljspeech/wavs/LJ050-0197.npy +tests/data/ljspeech/wavs/LJ050-0135.wav|tests/data/ljspeech/wavs/LJ050-0135.npy +tests/data/ljspeech/wavs/LJ011-0213.wav|tests/data/ljspeech/wavs/LJ011-0213.npy +tests/data/ljspeech/wavs/LJ037-0191.wav|tests/data/ljspeech/wavs/LJ037-0191.npy +tests/data/ljspeech/wavs/LJ047-0133.wav|tests/data/ljspeech/wavs/LJ047-0133.npy +tests/data/ljspeech/wavs/LJ034-0151.wav|tests/data/ljspeech/wavs/LJ034-0151.npy +tests/data/ljspeech/wavs/LJ036-0115.wav|tests/data/ljspeech/wavs/LJ036-0115.npy +tests/data/ljspeech/wavs/LJ036-0113.wav|tests/data/ljspeech/wavs/LJ036-0113.npy +tests/data/ljspeech/wavs/LJ037-0002.wav|tests/data/ljspeech/wavs/LJ037-0002.npy +tests/data/ljspeech/wavs/LJ023-0070.wav|tests/data/ljspeech/wavs/LJ023-0070.npy +tests/data/ljspeech/wavs/LJ032-0002.wav|tests/data/ljspeech/wavs/LJ032-0002.npy +tests/data/ljspeech/wavs/LJ023-0089.wav|tests/data/ljspeech/wavs/LJ023-0089.npy +tests/data/ljspeech/wavs/LJ032-0079.wav|tests/data/ljspeech/wavs/LJ032-0079.npy +tests/data/ljspeech/wavs/LJ039-0229.wav|tests/data/ljspeech/wavs/LJ039-0229.npy +tests/data/ljspeech/wavs/LJ003-0004.wav|tests/data/ljspeech/wavs/LJ003-0004.npy +tests/data/ljspeech/wavs/LJ037-0010.wav|tests/data/ljspeech/wavs/LJ037-0010.npy +tests/data/ljspeech/wavs/LJ048-0134.wav|tests/data/ljspeech/wavs/LJ048-0134.npy +tests/data/ljspeech/wavs/LJ003-0129.wav|tests/data/ljspeech/wavs/LJ003-0129.npy +tests/data/ljspeech/wavs/LJ037-0068.wav|tests/data/ljspeech/wavs/LJ037-0068.npy +tests/data/ljspeech/wavs/LJ017-0133.wav|tests/data/ljspeech/wavs/LJ017-0133.npy +tests/data/ljspeech/wavs/LJ028-0479.wav|tests/data/ljspeech/wavs/LJ028-0479.npy +tests/data/ljspeech/wavs/LJ021-0164.wav|tests/data/ljspeech/wavs/LJ021-0164.npy +tests/data/ljspeech/wavs/LJ031-0171.wav|tests/data/ljspeech/wavs/LJ031-0171.npy +tests/data/ljspeech/wavs/LJ048-0029.wav|tests/data/ljspeech/wavs/LJ048-0029.npy +tests/data/ljspeech/wavs/LJ050-0077.wav|tests/data/ljspeech/wavs/LJ050-0077.npy +tests/data/ljspeech/wavs/LJ047-0087.wav|tests/data/ljspeech/wavs/LJ047-0087.npy +tests/data/ljspeech/wavs/LJ009-0062.wav|tests/data/ljspeech/wavs/LJ009-0062.npy +tests/data/ljspeech/wavs/LJ004-0151.wav|tests/data/ljspeech/wavs/LJ004-0151.npy +tests/data/ljspeech/wavs/LJ030-0188.wav|tests/data/ljspeech/wavs/LJ030-0188.npy +tests/data/ljspeech/wavs/LJ028-0275.wav|tests/data/ljspeech/wavs/LJ028-0275.npy +tests/data/ljspeech/wavs/LJ010-0250.wav|tests/data/ljspeech/wavs/LJ010-0250.npy +tests/data/ljspeech/wavs/LJ012-0141.wav|tests/data/ljspeech/wavs/LJ012-0141.npy +tests/data/ljspeech/wavs/LJ028-0364.wav|tests/data/ljspeech/wavs/LJ028-0364.npy +tests/data/ljspeech/wavs/LJ019-0253.wav|tests/data/ljspeech/wavs/LJ019-0253.npy +tests/data/ljspeech/wavs/LJ037-0257.wav|tests/data/ljspeech/wavs/LJ037-0257.npy +tests/data/ljspeech/wavs/LJ005-0142.wav|tests/data/ljspeech/wavs/LJ005-0142.npy +tests/data/ljspeech/wavs/LJ042-0116.wav|tests/data/ljspeech/wavs/LJ042-0116.npy +tests/data/ljspeech/wavs/LJ003-0289.wav|tests/data/ljspeech/wavs/LJ003-0289.npy +tests/data/ljspeech/wavs/LJ038-0245.wav|tests/data/ljspeech/wavs/LJ038-0245.npy +tests/data/ljspeech/wavs/LJ036-0002.wav|tests/data/ljspeech/wavs/LJ036-0002.npy +tests/data/ljspeech/wavs/LJ033-0002.wav|tests/data/ljspeech/wavs/LJ033-0002.npy +tests/data/ljspeech/wavs/LJ039-0004.wav|tests/data/ljspeech/wavs/LJ039-0004.npy +tests/data/ljspeech/wavs/LJ047-0240.wav|tests/data/ljspeech/wavs/LJ047-0240.npy +tests/data/ljspeech/wavs/LJ044-0067.wav|tests/data/ljspeech/wavs/LJ044-0067.npy +tests/data/ljspeech/wavs/LJ034-0109.wav|tests/data/ljspeech/wavs/LJ034-0109.npy +tests/data/ljspeech/wavs/LJ003-0287.wav|tests/data/ljspeech/wavs/LJ003-0287.npy +tests/data/ljspeech/wavs/LJ030-0093.wav|tests/data/ljspeech/wavs/LJ030-0093.npy +tests/data/ljspeech/wavs/LJ038-0130.wav|tests/data/ljspeech/wavs/LJ038-0130.npy +tests/data/ljspeech/wavs/LJ020-0010.wav|tests/data/ljspeech/wavs/LJ020-0010.npy +tests/data/ljspeech/wavs/LJ019-0280.wav|tests/data/ljspeech/wavs/LJ019-0280.npy +tests/data/ljspeech/wavs/LJ019-0392.wav|tests/data/ljspeech/wavs/LJ019-0392.npy +tests/data/ljspeech/wavs/LJ037-0194.wav|tests/data/ljspeech/wavs/LJ037-0194.npy +tests/data/ljspeech/wavs/LJ025-0077.wav|tests/data/ljspeech/wavs/LJ025-0077.npy +tests/data/ljspeech/wavs/LJ030-0105.wav|tests/data/ljspeech/wavs/LJ030-0105.npy +tests/data/ljspeech/wavs/LJ018-0357.wav|tests/data/ljspeech/wavs/LJ018-0357.npy +tests/data/ljspeech/wavs/LJ038-0113.wav|tests/data/ljspeech/wavs/LJ038-0113.npy +tests/data/ljspeech/wavs/LJ032-0243.wav|tests/data/ljspeech/wavs/LJ032-0243.npy +tests/data/ljspeech/wavs/LJ031-0184.wav|tests/data/ljspeech/wavs/LJ031-0184.npy +tests/data/ljspeech/wavs/LJ022-0053.wav|tests/data/ljspeech/wavs/LJ022-0053.npy +tests/data/ljspeech/wavs/LJ008-0167.wav|tests/data/ljspeech/wavs/LJ008-0167.npy +tests/data/ljspeech/wavs/LJ020-0034.wav|tests/data/ljspeech/wavs/LJ020-0034.npy +tests/data/ljspeech/wavs/LJ026-0029.wav|tests/data/ljspeech/wavs/LJ026-0029.npy +tests/data/ljspeech/wavs/LJ045-0132.wav|tests/data/ljspeech/wavs/LJ045-0132.npy +tests/data/ljspeech/wavs/LJ011-0059.wav|tests/data/ljspeech/wavs/LJ011-0059.npy +tests/data/ljspeech/wavs/LJ048-0038.wav|tests/data/ljspeech/wavs/LJ048-0038.npy +tests/data/ljspeech/wavs/LJ048-0113.wav|tests/data/ljspeech/wavs/LJ048-0113.npy +tests/data/ljspeech/wavs/LJ013-0059.wav|tests/data/ljspeech/wavs/LJ013-0059.npy +tests/data/ljspeech/wavs/LJ005-0074.wav|tests/data/ljspeech/wavs/LJ005-0074.npy +tests/data/ljspeech/wavs/LJ037-0052.wav|tests/data/ljspeech/wavs/LJ037-0052.npy +tests/data/ljspeech/wavs/LJ033-0110.wav|tests/data/ljspeech/wavs/LJ033-0110.npy +tests/data/ljspeech/wavs/LJ022-0078.wav|tests/data/ljspeech/wavs/LJ022-0078.npy +tests/data/ljspeech/wavs/LJ043-0131.wav|tests/data/ljspeech/wavs/LJ043-0131.npy +tests/data/ljspeech/wavs/LJ021-0050.wav|tests/data/ljspeech/wavs/LJ021-0050.npy +tests/data/ljspeech/wavs/LJ008-0073.wav|tests/data/ljspeech/wavs/LJ008-0073.npy +tests/data/ljspeech/wavs/LJ016-0049.wav|tests/data/ljspeech/wavs/LJ016-0049.npy +tests/data/ljspeech/wavs/LJ049-0202.wav|tests/data/ljspeech/wavs/LJ049-0202.npy +tests/data/ljspeech/wavs/LJ012-0159.wav|tests/data/ljspeech/wavs/LJ012-0159.npy +tests/data/ljspeech/wavs/LJ014-0102.wav|tests/data/ljspeech/wavs/LJ014-0102.npy +tests/data/ljspeech/wavs/LJ033-0057.wav|tests/data/ljspeech/wavs/LJ033-0057.npy +tests/data/ljspeech/wavs/LJ024-0008.wav|tests/data/ljspeech/wavs/LJ024-0008.npy +tests/data/ljspeech/wavs/LJ049-0194.wav|tests/data/ljspeech/wavs/LJ049-0194.npy +tests/data/ljspeech/wavs/LJ024-0109.wav|tests/data/ljspeech/wavs/LJ024-0109.npy +tests/data/ljspeech/wavs/LJ043-0104.wav|tests/data/ljspeech/wavs/LJ043-0104.npy +tests/data/ljspeech/wavs/LJ024-0024.wav|tests/data/ljspeech/wavs/LJ024-0024.npy +tests/data/ljspeech/wavs/LJ003-0225.wav|tests/data/ljspeech/wavs/LJ003-0225.npy +tests/data/ljspeech/wavs/LJ012-0120.wav|tests/data/ljspeech/wavs/LJ012-0120.npy +tests/data/ljspeech/wavs/LJ016-0048.wav|tests/data/ljspeech/wavs/LJ016-0048.npy +tests/data/ljspeech/wavs/LJ014-0009.wav|tests/data/ljspeech/wavs/LJ014-0009.npy +tests/data/ljspeech/wavs/LJ021-0201.wav|tests/data/ljspeech/wavs/LJ021-0201.npy +tests/data/ljspeech/wavs/LJ008-0298.wav|tests/data/ljspeech/wavs/LJ008-0298.npy +tests/data/ljspeech/wavs/LJ016-0230.wav|tests/data/ljspeech/wavs/LJ016-0230.npy +tests/data/ljspeech/wavs/LJ017-0072.wav|tests/data/ljspeech/wavs/LJ017-0072.npy +tests/data/ljspeech/wavs/LJ037-0232.wav|tests/data/ljspeech/wavs/LJ037-0232.npy +tests/data/ljspeech/wavs/LJ017-0225.wav|tests/data/ljspeech/wavs/LJ017-0225.npy +tests/data/ljspeech/wavs/LJ016-0174.wav|tests/data/ljspeech/wavs/LJ016-0174.npy +tests/data/ljspeech/wavs/LJ038-0148.wav|tests/data/ljspeech/wavs/LJ038-0148.npy +tests/data/ljspeech/wavs/LJ009-0034.wav|tests/data/ljspeech/wavs/LJ009-0034.npy +tests/data/ljspeech/wavs/LJ032-0231.wav|tests/data/ljspeech/wavs/LJ032-0231.npy +tests/data/ljspeech/wavs/LJ002-0012.wav|tests/data/ljspeech/wavs/LJ002-0012.npy +tests/data/ljspeech/wavs/LJ004-0104.wav|tests/data/ljspeech/wavs/LJ004-0104.npy +tests/data/ljspeech/wavs/LJ024-0002.wav|tests/data/ljspeech/wavs/LJ024-0002.npy +tests/data/ljspeech/wavs/LJ037-0186.wav|tests/data/ljspeech/wavs/LJ037-0186.npy +tests/data/ljspeech/wavs/LJ032-0088.wav|tests/data/ljspeech/wavs/LJ032-0088.npy +tests/data/ljspeech/wavs/LJ018-0282.wav|tests/data/ljspeech/wavs/LJ018-0282.npy +tests/data/ljspeech/wavs/LJ034-0119.wav|tests/data/ljspeech/wavs/LJ034-0119.npy +tests/data/ljspeech/wavs/LJ017-0236.wav|tests/data/ljspeech/wavs/LJ017-0236.npy +tests/data/ljspeech/wavs/LJ042-0126.wav|tests/data/ljspeech/wavs/LJ042-0126.npy +tests/data/ljspeech/wavs/LJ011-0280.wav|tests/data/ljspeech/wavs/LJ011-0280.npy +tests/data/ljspeech/wavs/LJ031-0125.wav|tests/data/ljspeech/wavs/LJ031-0125.npy +tests/data/ljspeech/wavs/LJ032-0112.wav|tests/data/ljspeech/wavs/LJ032-0112.npy +tests/data/ljspeech/wavs/LJ033-0017.wav|tests/data/ljspeech/wavs/LJ033-0017.npy +tests/data/ljspeech/wavs/LJ030-0202.wav|tests/data/ljspeech/wavs/LJ030-0202.npy +tests/data/ljspeech/wavs/LJ040-0022.wav|tests/data/ljspeech/wavs/LJ040-0022.npy +tests/data/ljspeech/wavs/LJ027-0132.wav|tests/data/ljspeech/wavs/LJ027-0132.npy +tests/data/ljspeech/wavs/LJ041-0057.wav|tests/data/ljspeech/wavs/LJ041-0057.npy +tests/data/ljspeech/wavs/LJ033-0129.wav|tests/data/ljspeech/wavs/LJ033-0129.npy +tests/data/ljspeech/wavs/LJ028-0123.wav|tests/data/ljspeech/wavs/LJ028-0123.npy +tests/data/ljspeech/wavs/LJ011-0217.wav|tests/data/ljspeech/wavs/LJ011-0217.npy +tests/data/ljspeech/wavs/LJ008-0062.wav|tests/data/ljspeech/wavs/LJ008-0062.npy +tests/data/ljspeech/wavs/LJ002-0044.wav|tests/data/ljspeech/wavs/LJ002-0044.npy +tests/data/ljspeech/wavs/LJ007-0081.wav|tests/data/ljspeech/wavs/LJ007-0081.npy +tests/data/ljspeech/wavs/LJ016-0027.wav|tests/data/ljspeech/wavs/LJ016-0027.npy +tests/data/ljspeech/wavs/LJ048-0026.wav|tests/data/ljspeech/wavs/LJ048-0026.npy +tests/data/ljspeech/wavs/LJ014-0050.wav|tests/data/ljspeech/wavs/LJ014-0050.npy +tests/data/ljspeech/wavs/LJ035-0144.wav|tests/data/ljspeech/wavs/LJ035-0144.npy +tests/data/ljspeech/wavs/LJ009-0086.wav|tests/data/ljspeech/wavs/LJ009-0086.npy +tests/data/ljspeech/wavs/LJ009-0303.wav|tests/data/ljspeech/wavs/LJ009-0303.npy +tests/data/ljspeech/wavs/LJ016-0007.wav|tests/data/ljspeech/wavs/LJ016-0007.npy +tests/data/ljspeech/wavs/LJ049-0180.wav|tests/data/ljspeech/wavs/LJ049-0180.npy +tests/data/ljspeech/wavs/LJ022-0179.wav|tests/data/ljspeech/wavs/LJ022-0179.npy +tests/data/ljspeech/wavs/LJ013-0231.wav|tests/data/ljspeech/wavs/LJ013-0231.npy +tests/data/ljspeech/wavs/LJ046-0135.wav|tests/data/ljspeech/wavs/LJ046-0135.npy +tests/data/ljspeech/wavs/LJ036-0199.wav|tests/data/ljspeech/wavs/LJ036-0199.npy +tests/data/ljspeech/wavs/LJ008-0198.wav|tests/data/ljspeech/wavs/LJ008-0198.npy +tests/data/ljspeech/wavs/LJ031-0194.wav|tests/data/ljspeech/wavs/LJ031-0194.npy +tests/data/ljspeech/wavs/LJ036-0065.wav|tests/data/ljspeech/wavs/LJ036-0065.npy +tests/data/ljspeech/wavs/LJ050-0053.wav|tests/data/ljspeech/wavs/LJ050-0053.npy +tests/data/ljspeech/wavs/LJ019-0030.wav|tests/data/ljspeech/wavs/LJ019-0030.npy +tests/data/ljspeech/wavs/LJ014-0254.wav|tests/data/ljspeech/wavs/LJ014-0254.npy +tests/data/ljspeech/wavs/LJ018-0140.wav|tests/data/ljspeech/wavs/LJ018-0140.npy +tests/data/ljspeech/wavs/LJ045-0066.wav|tests/data/ljspeech/wavs/LJ045-0066.npy +tests/data/ljspeech/wavs/LJ027-0039.wav|tests/data/ljspeech/wavs/LJ027-0039.npy +tests/data/ljspeech/wavs/LJ011-0186.wav|tests/data/ljspeech/wavs/LJ011-0186.npy +tests/data/ljspeech/wavs/LJ048-0267.wav|tests/data/ljspeech/wavs/LJ048-0267.npy +tests/data/ljspeech/wavs/LJ022-0017.wav|tests/data/ljspeech/wavs/LJ022-0017.npy +tests/data/ljspeech/wavs/LJ034-0079.wav|tests/data/ljspeech/wavs/LJ034-0079.npy +tests/data/ljspeech/wavs/LJ003-0297.wav|tests/data/ljspeech/wavs/LJ003-0297.npy +tests/data/ljspeech/wavs/LJ019-0292.wav|tests/data/ljspeech/wavs/LJ019-0292.npy +tests/data/ljspeech/wavs/LJ018-0227.wav|tests/data/ljspeech/wavs/LJ018-0227.npy +tests/data/ljspeech/wavs/LJ041-0060.wav|tests/data/ljspeech/wavs/LJ041-0060.npy +tests/data/ljspeech/wavs/LJ045-0167.wav|tests/data/ljspeech/wavs/LJ045-0167.npy +tests/data/ljspeech/wavs/LJ022-0131.wav|tests/data/ljspeech/wavs/LJ022-0131.npy +tests/data/ljspeech/wavs/LJ033-0091.wav|tests/data/ljspeech/wavs/LJ033-0091.npy +tests/data/ljspeech/wavs/LJ008-0127.wav|tests/data/ljspeech/wavs/LJ008-0127.npy +tests/data/ljspeech/wavs/LJ021-0195.wav|tests/data/ljspeech/wavs/LJ021-0195.npy +tests/data/ljspeech/wavs/LJ019-0239.wav|tests/data/ljspeech/wavs/LJ019-0239.npy +tests/data/ljspeech/wavs/LJ028-0474.wav|tests/data/ljspeech/wavs/LJ028-0474.npy +tests/data/ljspeech/wavs/LJ018-0114.wav|tests/data/ljspeech/wavs/LJ018-0114.npy +tests/data/ljspeech/wavs/LJ006-0220.wav|tests/data/ljspeech/wavs/LJ006-0220.npy +tests/data/ljspeech/wavs/LJ039-0239.wav|tests/data/ljspeech/wavs/LJ039-0239.npy +tests/data/ljspeech/wavs/LJ018-0273.wav|tests/data/ljspeech/wavs/LJ018-0273.npy +tests/data/ljspeech/wavs/LJ038-0287.wav|tests/data/ljspeech/wavs/LJ038-0287.npy +tests/data/ljspeech/wavs/LJ050-0075.wav|tests/data/ljspeech/wavs/LJ050-0075.npy +tests/data/ljspeech/wavs/LJ033-0076.wav|tests/data/ljspeech/wavs/LJ033-0076.npy +tests/data/ljspeech/wavs/LJ036-0027.wav|tests/data/ljspeech/wavs/LJ036-0027.npy +tests/data/ljspeech/wavs/LJ044-0063.wav|tests/data/ljspeech/wavs/LJ044-0063.npy +tests/data/ljspeech/wavs/LJ046-0175.wav|tests/data/ljspeech/wavs/LJ046-0175.npy +tests/data/ljspeech/wavs/LJ007-0103.wav|tests/data/ljspeech/wavs/LJ007-0103.npy +tests/data/ljspeech/wavs/LJ037-0115.wav|tests/data/ljspeech/wavs/LJ037-0115.npy +tests/data/ljspeech/wavs/LJ015-0117.wav|tests/data/ljspeech/wavs/LJ015-0117.npy +tests/data/ljspeech/wavs/LJ021-0119.wav|tests/data/ljspeech/wavs/LJ021-0119.npy +tests/data/ljspeech/wavs/LJ020-0066.wav|tests/data/ljspeech/wavs/LJ020-0066.npy +tests/data/ljspeech/wavs/LJ031-0027.wav|tests/data/ljspeech/wavs/LJ031-0027.npy +tests/data/ljspeech/wavs/LJ046-0145.wav|tests/data/ljspeech/wavs/LJ046-0145.npy +tests/data/ljspeech/wavs/LJ038-0124.wav|tests/data/ljspeech/wavs/LJ038-0124.npy +tests/data/ljspeech/wavs/LJ048-0006.wav|tests/data/ljspeech/wavs/LJ048-0006.npy +tests/data/ljspeech/wavs/LJ038-0118.wav|tests/data/ljspeech/wavs/LJ038-0118.npy +tests/data/ljspeech/wavs/LJ009-0044.wav|tests/data/ljspeech/wavs/LJ009-0044.npy +tests/data/ljspeech/wavs/LJ028-0191.wav|tests/data/ljspeech/wavs/LJ028-0191.npy +tests/data/ljspeech/wavs/LJ008-0131.wav|tests/data/ljspeech/wavs/LJ008-0131.npy +tests/data/ljspeech/wavs/LJ018-0070.wav|tests/data/ljspeech/wavs/LJ018-0070.npy +tests/data/ljspeech/wavs/LJ028-0384.wav|tests/data/ljspeech/wavs/LJ028-0384.npy +tests/data/ljspeech/wavs/LJ043-0016.wav|tests/data/ljspeech/wavs/LJ043-0016.npy +tests/data/ljspeech/wavs/LJ032-0248.wav|tests/data/ljspeech/wavs/LJ032-0248.npy +tests/data/ljspeech/wavs/LJ040-0231.wav|tests/data/ljspeech/wavs/LJ040-0231.npy +tests/data/ljspeech/wavs/LJ027-0012.wav|tests/data/ljspeech/wavs/LJ027-0012.npy +tests/data/ljspeech/wavs/LJ032-0039.wav|tests/data/ljspeech/wavs/LJ032-0039.npy +tests/data/ljspeech/wavs/LJ014-0325.wav|tests/data/ljspeech/wavs/LJ014-0325.npy +tests/data/ljspeech/wavs/LJ047-0198.wav|tests/data/ljspeech/wavs/LJ047-0198.npy +tests/data/ljspeech/wavs/LJ023-0046.wav|tests/data/ljspeech/wavs/LJ023-0046.npy +tests/data/ljspeech/wavs/LJ018-0182.wav|tests/data/ljspeech/wavs/LJ018-0182.npy +tests/data/ljspeech/wavs/LJ049-0175.wav|tests/data/ljspeech/wavs/LJ049-0175.npy +tests/data/ljspeech/wavs/LJ025-0068.wav|tests/data/ljspeech/wavs/LJ025-0068.npy +tests/data/ljspeech/wavs/LJ016-0062.wav|tests/data/ljspeech/wavs/LJ016-0062.npy +tests/data/ljspeech/wavs/LJ014-0053.wav|tests/data/ljspeech/wavs/LJ014-0053.npy +tests/data/ljspeech/wavs/LJ044-0154.wav|tests/data/ljspeech/wavs/LJ044-0154.npy +tests/data/ljspeech/wavs/LJ033-0013.wav|tests/data/ljspeech/wavs/LJ033-0013.npy +tests/data/ljspeech/wavs/LJ029-0134.wav|tests/data/ljspeech/wavs/LJ029-0134.npy +tests/data/ljspeech/wavs/LJ039-0013.wav|tests/data/ljspeech/wavs/LJ039-0013.npy +tests/data/ljspeech/wavs/LJ038-0199.wav|tests/data/ljspeech/wavs/LJ038-0199.npy +tests/data/ljspeech/wavs/LJ034-0033.wav|tests/data/ljspeech/wavs/LJ034-0033.npy +tests/data/ljspeech/wavs/LJ040-0111.wav|tests/data/ljspeech/wavs/LJ040-0111.npy +tests/data/ljspeech/wavs/LJ024-0077.wav|tests/data/ljspeech/wavs/LJ024-0077.npy +tests/data/ljspeech/wavs/LJ015-0086.wav|tests/data/ljspeech/wavs/LJ015-0086.npy +tests/data/ljspeech/wavs/LJ018-0291.wav|tests/data/ljspeech/wavs/LJ018-0291.npy +tests/data/ljspeech/wavs/LJ026-0016.wav|tests/data/ljspeech/wavs/LJ026-0016.npy +tests/data/ljspeech/wavs/LJ046-0223.wav|tests/data/ljspeech/wavs/LJ046-0223.npy +tests/data/ljspeech/wavs/LJ040-0201.wav|tests/data/ljspeech/wavs/LJ040-0201.npy +tests/data/ljspeech/wavs/LJ018-0119.wav|tests/data/ljspeech/wavs/LJ018-0119.npy +tests/data/ljspeech/wavs/LJ049-0051.wav|tests/data/ljspeech/wavs/LJ049-0051.npy +tests/data/ljspeech/wavs/LJ016-0308.wav|tests/data/ljspeech/wavs/LJ016-0308.npy +tests/data/ljspeech/wavs/LJ040-0118.wav|tests/data/ljspeech/wavs/LJ040-0118.npy +tests/data/ljspeech/wavs/LJ028-0290.wav|tests/data/ljspeech/wavs/LJ028-0290.npy +tests/data/ljspeech/wavs/LJ034-0090.wav|tests/data/ljspeech/wavs/LJ034-0090.npy +tests/data/ljspeech/wavs/LJ014-0005.wav|tests/data/ljspeech/wavs/LJ014-0005.npy +tests/data/ljspeech/wavs/LJ039-0168.wav|tests/data/ljspeech/wavs/LJ039-0168.npy +tests/data/ljspeech/wavs/LJ048-0196.wav|tests/data/ljspeech/wavs/LJ048-0196.npy +tests/data/ljspeech/wavs/LJ040-0027.wav|tests/data/ljspeech/wavs/LJ040-0027.npy +tests/data/ljspeech/wavs/LJ028-0475.wav|tests/data/ljspeech/wavs/LJ028-0475.npy +tests/data/ljspeech/wavs/LJ049-0204.wav|tests/data/ljspeech/wavs/LJ049-0204.npy +tests/data/ljspeech/wavs/LJ035-0070.wav|tests/data/ljspeech/wavs/LJ035-0070.npy +tests/data/ljspeech/wavs/LJ028-0175.wav|tests/data/ljspeech/wavs/LJ028-0175.npy +tests/data/ljspeech/wavs/LJ003-0104.wav|tests/data/ljspeech/wavs/LJ003-0104.npy +tests/data/ljspeech/wavs/LJ014-0194.wav|tests/data/ljspeech/wavs/LJ014-0194.npy +tests/data/ljspeech/wavs/LJ014-0137.wav|tests/data/ljspeech/wavs/LJ014-0137.npy +tests/data/ljspeech/wavs/LJ050-0144.wav|tests/data/ljspeech/wavs/LJ050-0144.npy +tests/data/ljspeech/wavs/LJ016-0310.wav|tests/data/ljspeech/wavs/LJ016-0310.npy +tests/data/ljspeech/wavs/LJ036-0117.wav|tests/data/ljspeech/wavs/LJ036-0117.npy +tests/data/ljspeech/wavs/LJ044-0105.wav|tests/data/ljspeech/wavs/LJ044-0105.npy +tests/data/ljspeech/wavs/LJ035-0116.wav|tests/data/ljspeech/wavs/LJ035-0116.npy +tests/data/ljspeech/wavs/LJ043-0050.wav|tests/data/ljspeech/wavs/LJ043-0050.npy +tests/data/ljspeech/wavs/LJ048-0230.wav|tests/data/ljspeech/wavs/LJ048-0230.npy +tests/data/ljspeech/wavs/LJ022-0147.wav|tests/data/ljspeech/wavs/LJ022-0147.npy +tests/data/ljspeech/wavs/LJ036-0003.wav|tests/data/ljspeech/wavs/LJ036-0003.npy +tests/data/ljspeech/wavs/LJ044-0131.wav|tests/data/ljspeech/wavs/LJ044-0131.npy +tests/data/ljspeech/wavs/LJ029-0002.wav|tests/data/ljspeech/wavs/LJ029-0002.npy +tests/data/ljspeech/wavs/LJ030-0002.wav|tests/data/ljspeech/wavs/LJ030-0002.npy +tests/data/ljspeech/wavs/LJ047-0199.wav|tests/data/ljspeech/wavs/LJ047-0199.npy +tests/data/ljspeech/wavs/LJ024-0017.wav|tests/data/ljspeech/wavs/LJ024-0017.npy +tests/data/ljspeech/wavs/LJ033-0178.wav|tests/data/ljspeech/wavs/LJ033-0178.npy +tests/data/ljspeech/wavs/LJ043-0064.wav|tests/data/ljspeech/wavs/LJ043-0064.npy +tests/data/ljspeech/wavs/LJ006-0278.wav|tests/data/ljspeech/wavs/LJ006-0278.npy +tests/data/ljspeech/wavs/LJ002-0136.wav|tests/data/ljspeech/wavs/LJ002-0136.npy +tests/data/ljspeech/wavs/LJ038-0089.wav|tests/data/ljspeech/wavs/LJ038-0089.npy +tests/data/ljspeech/wavs/LJ048-0260.wav|tests/data/ljspeech/wavs/LJ048-0260.npy +tests/data/ljspeech/wavs/LJ034-0047.wav|tests/data/ljspeech/wavs/LJ034-0047.npy +tests/data/ljspeech/wavs/LJ019-0022.wav|tests/data/ljspeech/wavs/LJ019-0022.npy +tests/data/ljspeech/wavs/LJ018-0191.wav|tests/data/ljspeech/wavs/LJ018-0191.npy +tests/data/ljspeech/wavs/LJ006-0066.wav|tests/data/ljspeech/wavs/LJ006-0066.npy +tests/data/ljspeech/wavs/LJ030-0165.wav|tests/data/ljspeech/wavs/LJ030-0165.npy +tests/data/ljspeech/wavs/LJ023-0103.wav|tests/data/ljspeech/wavs/LJ023-0103.npy +tests/data/ljspeech/wavs/LJ033-0021.wav|tests/data/ljspeech/wavs/LJ033-0021.npy +tests/data/ljspeech/wavs/LJ003-0022.wav|tests/data/ljspeech/wavs/LJ003-0022.npy +tests/data/ljspeech/wavs/LJ019-0247.wav|tests/data/ljspeech/wavs/LJ019-0247.npy +tests/data/ljspeech/wavs/LJ031-0164.wav|tests/data/ljspeech/wavs/LJ031-0164.npy +tests/data/ljspeech/wavs/LJ043-0046.wav|tests/data/ljspeech/wavs/LJ043-0046.npy +tests/data/ljspeech/wavs/LJ041-0026.wav|tests/data/ljspeech/wavs/LJ041-0026.npy +tests/data/ljspeech/wavs/LJ008-0224.wav|tests/data/ljspeech/wavs/LJ008-0224.npy +tests/data/ljspeech/wavs/LJ016-0363.wav|tests/data/ljspeech/wavs/LJ016-0363.npy +tests/data/ljspeech/wavs/LJ038-0223.wav|tests/data/ljspeech/wavs/LJ038-0223.npy +tests/data/ljspeech/wavs/LJ034-0117.wav|tests/data/ljspeech/wavs/LJ034-0117.npy +tests/data/ljspeech/wavs/LJ013-0008.wav|tests/data/ljspeech/wavs/LJ013-0008.npy +tests/data/ljspeech/wavs/LJ045-0184.wav|tests/data/ljspeech/wavs/LJ045-0184.npy +tests/data/ljspeech/wavs/LJ026-0113.wav|tests/data/ljspeech/wavs/LJ026-0113.npy +tests/data/ljspeech/wavs/LJ032-0094.wav|tests/data/ljspeech/wavs/LJ032-0094.npy +tests/data/ljspeech/wavs/LJ017-0260.wav|tests/data/ljspeech/wavs/LJ017-0260.npy +tests/data/ljspeech/wavs/LJ042-0104.wav|tests/data/ljspeech/wavs/LJ042-0104.npy +tests/data/ljspeech/wavs/LJ036-0207.wav|tests/data/ljspeech/wavs/LJ036-0207.npy +tests/data/ljspeech/wavs/LJ029-0063.wav|tests/data/ljspeech/wavs/LJ029-0063.npy +tests/data/ljspeech/wavs/LJ020-0068.wav|tests/data/ljspeech/wavs/LJ020-0068.npy +tests/data/ljspeech/wavs/LJ010-0051.wav|tests/data/ljspeech/wavs/LJ010-0051.npy +tests/data/ljspeech/wavs/LJ003-0228.wav|tests/data/ljspeech/wavs/LJ003-0228.npy +tests/data/ljspeech/wavs/LJ009-0090.wav|tests/data/ljspeech/wavs/LJ009-0090.npy +tests/data/ljspeech/wavs/LJ037-0195.wav|tests/data/ljspeech/wavs/LJ037-0195.npy +tests/data/ljspeech/wavs/LJ030-0245.wav|tests/data/ljspeech/wavs/LJ030-0245.npy +tests/data/ljspeech/wavs/LJ015-0148.wav|tests/data/ljspeech/wavs/LJ015-0148.npy +tests/data/ljspeech/wavs/LJ038-0077.wav|tests/data/ljspeech/wavs/LJ038-0077.npy +tests/data/ljspeech/wavs/LJ039-0194.wav|tests/data/ljspeech/wavs/LJ039-0194.npy +tests/data/ljspeech/wavs/LJ031-0203.wav|tests/data/ljspeech/wavs/LJ031-0203.npy +tests/data/ljspeech/wavs/LJ048-0206.wav|tests/data/ljspeech/wavs/LJ048-0206.npy +tests/data/ljspeech/wavs/LJ014-0302.wav|tests/data/ljspeech/wavs/LJ014-0302.npy +tests/data/ljspeech/wavs/LJ043-0158.wav|tests/data/ljspeech/wavs/LJ043-0158.npy +tests/data/ljspeech/wavs/LJ050-0232.wav|tests/data/ljspeech/wavs/LJ050-0232.npy +tests/data/ljspeech/wavs/LJ037-0267.wav|tests/data/ljspeech/wavs/LJ037-0267.npy +tests/data/ljspeech/wavs/LJ009-0096.wav|tests/data/ljspeech/wavs/LJ009-0096.npy +tests/data/ljspeech/wavs/LJ018-0319.wav|tests/data/ljspeech/wavs/LJ018-0319.npy +tests/data/ljspeech/wavs/LJ002-0032.wav|tests/data/ljspeech/wavs/LJ002-0032.npy +tests/data/ljspeech/wavs/LJ003-0067.wav|tests/data/ljspeech/wavs/LJ003-0067.npy +tests/data/ljspeech/wavs/LJ016-0328.wav|tests/data/ljspeech/wavs/LJ016-0328.npy +tests/data/ljspeech/wavs/LJ050-0092.wav|tests/data/ljspeech/wavs/LJ050-0092.npy +tests/data/ljspeech/wavs/LJ011-0171.wav|tests/data/ljspeech/wavs/LJ011-0171.npy +tests/data/ljspeech/wavs/LJ017-0074.wav|tests/data/ljspeech/wavs/LJ017-0074.npy +tests/data/ljspeech/wavs/LJ002-0119.wav|tests/data/ljspeech/wavs/LJ002-0119.npy +tests/data/ljspeech/wavs/LJ010-0298.wav|tests/data/ljspeech/wavs/LJ010-0298.npy +tests/data/ljspeech/wavs/LJ048-0238.wav|tests/data/ljspeech/wavs/LJ048-0238.npy +tests/data/ljspeech/wavs/LJ031-0132.wav|tests/data/ljspeech/wavs/LJ031-0132.npy +tests/data/ljspeech/wavs/LJ021-0014.wav|tests/data/ljspeech/wavs/LJ021-0014.npy +tests/data/ljspeech/wavs/LJ021-0052.wav|tests/data/ljspeech/wavs/LJ021-0052.npy +tests/data/ljspeech/wavs/LJ014-0003.wav|tests/data/ljspeech/wavs/LJ014-0003.npy +tests/data/ljspeech/wavs/LJ045-0105.wav|tests/data/ljspeech/wavs/LJ045-0105.npy +tests/data/ljspeech/wavs/LJ048-0263.wav|tests/data/ljspeech/wavs/LJ048-0263.npy +tests/data/ljspeech/wavs/LJ004-0012.wav|tests/data/ljspeech/wavs/LJ004-0012.npy +tests/data/ljspeech/wavs/LJ047-0015.wav|tests/data/ljspeech/wavs/LJ047-0015.npy +tests/data/ljspeech/wavs/LJ014-0240.wav|tests/data/ljspeech/wavs/LJ014-0240.npy +tests/data/ljspeech/wavs/LJ050-0204.wav|tests/data/ljspeech/wavs/LJ050-0204.npy +tests/data/ljspeech/wavs/LJ001-0165.wav|tests/data/ljspeech/wavs/LJ001-0165.npy +tests/data/ljspeech/wavs/LJ018-0159.wav|tests/data/ljspeech/wavs/LJ018-0159.npy +tests/data/ljspeech/wavs/LJ002-0153.wav|tests/data/ljspeech/wavs/LJ002-0153.npy +tests/data/ljspeech/wavs/LJ020-0065.wav|tests/data/ljspeech/wavs/LJ020-0065.npy +tests/data/ljspeech/wavs/LJ014-0183.wav|tests/data/ljspeech/wavs/LJ014-0183.npy +tests/data/ljspeech/wavs/LJ013-0213.wav|tests/data/ljspeech/wavs/LJ013-0213.npy +tests/data/ljspeech/wavs/LJ021-0076.wav|tests/data/ljspeech/wavs/LJ021-0076.npy +tests/data/ljspeech/wavs/LJ021-0208.wav|tests/data/ljspeech/wavs/LJ021-0208.npy +tests/data/ljspeech/wavs/LJ016-0154.wav|tests/data/ljspeech/wavs/LJ016-0154.npy +tests/data/ljspeech/wavs/LJ043-0029.wav|tests/data/ljspeech/wavs/LJ043-0029.npy +tests/data/ljspeech/wavs/LJ050-0255.wav|tests/data/ljspeech/wavs/LJ050-0255.npy +tests/data/ljspeech/wavs/LJ018-0309.wav|tests/data/ljspeech/wavs/LJ018-0309.npy +tests/data/ljspeech/wavs/LJ037-0020.wav|tests/data/ljspeech/wavs/LJ037-0020.npy +tests/data/ljspeech/wavs/LJ032-0109.wav|tests/data/ljspeech/wavs/LJ032-0109.npy +tests/data/ljspeech/wavs/LJ032-0219.wav|tests/data/ljspeech/wavs/LJ032-0219.npy +tests/data/ljspeech/wavs/LJ014-0250.wav|tests/data/ljspeech/wavs/LJ014-0250.npy +tests/data/ljspeech/wavs/LJ018-0205.wav|tests/data/ljspeech/wavs/LJ018-0205.npy +tests/data/ljspeech/wavs/LJ021-0054.wav|tests/data/ljspeech/wavs/LJ021-0054.npy +tests/data/ljspeech/wavs/LJ050-0239.wav|tests/data/ljspeech/wavs/LJ050-0239.npy +tests/data/ljspeech/wavs/LJ039-0104.wav|tests/data/ljspeech/wavs/LJ039-0104.npy +tests/data/ljspeech/wavs/LJ036-0152.wav|tests/data/ljspeech/wavs/LJ036-0152.npy +tests/data/ljspeech/wavs/LJ043-0003.wav|tests/data/ljspeech/wavs/LJ043-0003.npy +tests/data/ljspeech/wavs/LJ034-0183.wav|tests/data/ljspeech/wavs/LJ034-0183.npy +tests/data/ljspeech/wavs/LJ038-0155.wav|tests/data/ljspeech/wavs/LJ038-0155.npy +tests/data/ljspeech/wavs/LJ005-0261.wav|tests/data/ljspeech/wavs/LJ005-0261.npy +tests/data/ljspeech/wavs/LJ045-0037.wav|tests/data/ljspeech/wavs/LJ045-0037.npy +tests/data/ljspeech/wavs/LJ027-0111.wav|tests/data/ljspeech/wavs/LJ027-0111.npy +tests/data/ljspeech/wavs/LJ025-0008.wav|tests/data/ljspeech/wavs/LJ025-0008.npy +tests/data/ljspeech/wavs/LJ024-0040.wav|tests/data/ljspeech/wavs/LJ024-0040.npy +tests/data/ljspeech/wavs/LJ019-0371.wav|tests/data/ljspeech/wavs/LJ019-0371.npy +tests/data/ljspeech/wavs/LJ023-0140.wav|tests/data/ljspeech/wavs/LJ023-0140.npy +tests/data/ljspeech/wavs/LJ025-0004.wav|tests/data/ljspeech/wavs/LJ025-0004.npy +tests/data/ljspeech/wavs/LJ006-0202.wav|tests/data/ljspeech/wavs/LJ006-0202.npy +tests/data/ljspeech/wavs/LJ032-0107.wav|tests/data/ljspeech/wavs/LJ032-0107.npy +tests/data/ljspeech/wavs/LJ006-0016.wav|tests/data/ljspeech/wavs/LJ006-0016.npy +tests/data/ljspeech/wavs/LJ027-0126.wav|tests/data/ljspeech/wavs/LJ027-0126.npy +tests/data/ljspeech/wavs/LJ041-0097.wav|tests/data/ljspeech/wavs/LJ041-0097.npy +tests/data/ljspeech/wavs/LJ036-0175.wav|tests/data/ljspeech/wavs/LJ036-0175.npy +tests/data/ljspeech/wavs/LJ017-0012.wav|tests/data/ljspeech/wavs/LJ017-0012.npy +tests/data/ljspeech/wavs/LJ047-0157.wav|tests/data/ljspeech/wavs/LJ047-0157.npy +tests/data/ljspeech/wavs/LJ023-0104.wav|tests/data/ljspeech/wavs/LJ023-0104.npy +tests/data/ljspeech/wavs/LJ023-0098.wav|tests/data/ljspeech/wavs/LJ023-0098.npy +tests/data/ljspeech/wavs/LJ004-0109.wav|tests/data/ljspeech/wavs/LJ004-0109.npy +tests/data/ljspeech/wavs/LJ027-0112.wav|tests/data/ljspeech/wavs/LJ027-0112.npy +tests/data/ljspeech/wavs/LJ031-0174.wav|tests/data/ljspeech/wavs/LJ031-0174.npy +tests/data/ljspeech/wavs/LJ013-0060.wav|tests/data/ljspeech/wavs/LJ013-0060.npy +tests/data/ljspeech/wavs/LJ029-0036.wav|tests/data/ljspeech/wavs/LJ029-0036.npy +tests/data/ljspeech/wavs/LJ002-0216.wav|tests/data/ljspeech/wavs/LJ002-0216.npy +tests/data/ljspeech/wavs/LJ024-0042.wav|tests/data/ljspeech/wavs/LJ024-0042.npy +tests/data/ljspeech/wavs/LJ004-0040.wav|tests/data/ljspeech/wavs/LJ004-0040.npy +tests/data/ljspeech/wavs/LJ046-0132.wav|tests/data/ljspeech/wavs/LJ046-0132.npy +tests/data/ljspeech/wavs/LJ034-0081.wav|tests/data/ljspeech/wavs/LJ034-0081.npy +tests/data/ljspeech/wavs/LJ023-0137.wav|tests/data/ljspeech/wavs/LJ023-0137.npy +tests/data/ljspeech/wavs/LJ042-0003.wav|tests/data/ljspeech/wavs/LJ042-0003.npy +tests/data/ljspeech/wavs/LJ017-0209.wav|tests/data/ljspeech/wavs/LJ017-0209.npy +tests/data/ljspeech/wavs/LJ025-0094.wav|tests/data/ljspeech/wavs/LJ025-0094.npy +tests/data/ljspeech/wavs/LJ024-0111.wav|tests/data/ljspeech/wavs/LJ024-0111.npy +tests/data/ljspeech/wavs/LJ006-0225.wav|tests/data/ljspeech/wavs/LJ006-0225.npy +tests/data/ljspeech/wavs/LJ015-0098.wav|tests/data/ljspeech/wavs/LJ015-0098.npy +tests/data/ljspeech/wavs/LJ036-0088.wav|tests/data/ljspeech/wavs/LJ036-0088.npy +tests/data/ljspeech/wavs/LJ038-0197.wav|tests/data/ljspeech/wavs/LJ038-0197.npy +tests/data/ljspeech/wavs/LJ045-0170.wav|tests/data/ljspeech/wavs/LJ045-0170.npy +tests/data/ljspeech/wavs/LJ022-0202.wav|tests/data/ljspeech/wavs/LJ022-0202.npy +tests/data/ljspeech/wavs/LJ044-0169.wav|tests/data/ljspeech/wavs/LJ044-0169.npy +tests/data/ljspeech/wavs/LJ032-0082.wav|tests/data/ljspeech/wavs/LJ032-0082.npy +tests/data/ljspeech/wavs/LJ023-0037.wav|tests/data/ljspeech/wavs/LJ023-0037.npy +tests/data/ljspeech/wavs/LJ049-0036.wav|tests/data/ljspeech/wavs/LJ049-0036.npy +tests/data/ljspeech/wavs/LJ018-0281.wav|tests/data/ljspeech/wavs/LJ018-0281.npy +tests/data/ljspeech/wavs/LJ018-0062.wav|tests/data/ljspeech/wavs/LJ018-0062.npy +tests/data/ljspeech/wavs/LJ010-0074.wav|tests/data/ljspeech/wavs/LJ010-0074.npy +tests/data/ljspeech/wavs/LJ020-0063.wav|tests/data/ljspeech/wavs/LJ020-0063.npy +tests/data/ljspeech/wavs/LJ038-0297.wav|tests/data/ljspeech/wavs/LJ038-0297.npy +tests/data/ljspeech/wavs/LJ009-0219.wav|tests/data/ljspeech/wavs/LJ009-0219.npy +tests/data/ljspeech/wavs/LJ008-0291.wav|tests/data/ljspeech/wavs/LJ008-0291.npy +tests/data/ljspeech/wavs/LJ006-0103.wav|tests/data/ljspeech/wavs/LJ006-0103.npy +tests/data/ljspeech/wavs/LJ026-0101.wav|tests/data/ljspeech/wavs/LJ026-0101.npy +tests/data/ljspeech/wavs/LJ023-0005.wav|tests/data/ljspeech/wavs/LJ023-0005.npy +tests/data/ljspeech/wavs/LJ046-0037.wav|tests/data/ljspeech/wavs/LJ046-0037.npy +tests/data/ljspeech/wavs/LJ012-0282.wav|tests/data/ljspeech/wavs/LJ012-0282.npy +tests/data/ljspeech/wavs/LJ010-0161.wav|tests/data/ljspeech/wavs/LJ010-0161.npy +tests/data/ljspeech/wavs/LJ040-0196.wav|tests/data/ljspeech/wavs/LJ040-0196.npy +tests/data/ljspeech/wavs/LJ013-0255.wav|tests/data/ljspeech/wavs/LJ013-0255.npy +tests/data/ljspeech/wavs/LJ002-0026.wav|tests/data/ljspeech/wavs/LJ002-0026.npy +tests/data/ljspeech/wavs/LJ008-0013.wav|tests/data/ljspeech/wavs/LJ008-0013.npy +tests/data/ljspeech/wavs/LJ047-0160.wav|tests/data/ljspeech/wavs/LJ047-0160.npy +tests/data/ljspeech/wavs/LJ031-0113.wav|tests/data/ljspeech/wavs/LJ031-0113.npy +tests/data/ljspeech/wavs/LJ035-0178.wav|tests/data/ljspeech/wavs/LJ035-0178.npy +tests/data/ljspeech/wavs/LJ002-0009.wav|tests/data/ljspeech/wavs/LJ002-0009.npy +tests/data/ljspeech/wavs/LJ049-0107.wav|tests/data/ljspeech/wavs/LJ049-0107.npy +tests/data/ljspeech/wavs/LJ028-0187.wav|tests/data/ljspeech/wavs/LJ028-0187.npy +tests/data/ljspeech/wavs/LJ031-0231.wav|tests/data/ljspeech/wavs/LJ031-0231.npy +tests/data/ljspeech/wavs/LJ010-0144.wav|tests/data/ljspeech/wavs/LJ010-0144.npy +tests/data/ljspeech/wavs/LJ003-0028.wav|tests/data/ljspeech/wavs/LJ003-0028.npy +tests/data/ljspeech/wavs/LJ013-0203.wav|tests/data/ljspeech/wavs/LJ013-0203.npy +tests/data/ljspeech/wavs/LJ018-0284.wav|tests/data/ljspeech/wavs/LJ018-0284.npy +tests/data/ljspeech/wavs/LJ050-0157.wav|tests/data/ljspeech/wavs/LJ050-0157.npy +tests/data/ljspeech/wavs/LJ028-0211.wav|tests/data/ljspeech/wavs/LJ028-0211.npy +tests/data/ljspeech/wavs/LJ004-0126.wav|tests/data/ljspeech/wavs/LJ004-0126.npy +tests/data/ljspeech/wavs/LJ039-0011.wav|tests/data/ljspeech/wavs/LJ039-0011.npy +tests/data/ljspeech/wavs/LJ040-0080.wav|tests/data/ljspeech/wavs/LJ040-0080.npy +tests/data/ljspeech/wavs/LJ013-0120.wav|tests/data/ljspeech/wavs/LJ013-0120.npy +tests/data/ljspeech/wavs/LJ002-0131.wav|tests/data/ljspeech/wavs/LJ002-0131.npy +tests/data/ljspeech/wavs/LJ039-0113.wav|tests/data/ljspeech/wavs/LJ039-0113.npy +tests/data/ljspeech/wavs/LJ024-0140.wav|tests/data/ljspeech/wavs/LJ024-0140.npy +tests/data/ljspeech/wavs/LJ021-0085.wav|tests/data/ljspeech/wavs/LJ021-0085.npy +tests/data/ljspeech/wavs/LJ034-0036.wav|tests/data/ljspeech/wavs/LJ034-0036.npy +tests/data/ljspeech/wavs/LJ040-0007.wav|tests/data/ljspeech/wavs/LJ040-0007.npy +tests/data/ljspeech/wavs/LJ011-0266.wav|tests/data/ljspeech/wavs/LJ011-0266.npy +tests/data/ljspeech/wavs/LJ023-0095.wav|tests/data/ljspeech/wavs/LJ023-0095.npy +tests/data/ljspeech/wavs/LJ010-0169.wav|tests/data/ljspeech/wavs/LJ010-0169.npy +tests/data/ljspeech/wavs/LJ013-0124.wav|tests/data/ljspeech/wavs/LJ013-0124.npy +tests/data/ljspeech/wavs/LJ030-0122.wav|tests/data/ljspeech/wavs/LJ030-0122.npy +tests/data/ljspeech/wavs/LJ023-0035.wav|tests/data/ljspeech/wavs/LJ023-0035.npy +tests/data/ljspeech/wavs/LJ018-0361.wav|tests/data/ljspeech/wavs/LJ018-0361.npy +tests/data/ljspeech/wavs/LJ037-0193.wav|tests/data/ljspeech/wavs/LJ037-0193.npy +tests/data/ljspeech/wavs/LJ039-0227.wav|tests/data/ljspeech/wavs/LJ039-0227.npy +tests/data/ljspeech/wavs/LJ035-0088.wav|tests/data/ljspeech/wavs/LJ035-0088.npy +tests/data/ljspeech/wavs/LJ029-0054.wav|tests/data/ljspeech/wavs/LJ029-0054.npy +tests/data/ljspeech/wavs/LJ002-0065.wav|tests/data/ljspeech/wavs/LJ002-0065.npy +tests/data/ljspeech/wavs/LJ022-0062.wav|tests/data/ljspeech/wavs/LJ022-0062.npy +tests/data/ljspeech/wavs/LJ009-0296.wav|tests/data/ljspeech/wavs/LJ009-0296.npy +tests/data/ljspeech/wavs/LJ021-0008.wav|tests/data/ljspeech/wavs/LJ021-0008.npy +tests/data/ljspeech/wavs/LJ032-0266.wav|tests/data/ljspeech/wavs/LJ032-0266.npy +tests/data/ljspeech/wavs/LJ006-0176.wav|tests/data/ljspeech/wavs/LJ006-0176.npy +tests/data/ljspeech/wavs/LJ042-0203.wav|tests/data/ljspeech/wavs/LJ042-0203.npy +tests/data/ljspeech/wavs/LJ014-0151.wav|tests/data/ljspeech/wavs/LJ014-0151.npy +tests/data/ljspeech/wavs/LJ032-0016.wav|tests/data/ljspeech/wavs/LJ032-0016.npy +tests/data/ljspeech/wavs/LJ015-0159.wav|tests/data/ljspeech/wavs/LJ015-0159.npy +tests/data/ljspeech/wavs/LJ010-0141.wav|tests/data/ljspeech/wavs/LJ010-0141.npy +tests/data/ljspeech/wavs/LJ025-0053.wav|tests/data/ljspeech/wavs/LJ025-0053.npy +tests/data/ljspeech/wavs/LJ043-0106.wav|tests/data/ljspeech/wavs/LJ043-0106.npy +tests/data/ljspeech/wavs/LJ009-0273.wav|tests/data/ljspeech/wavs/LJ009-0273.npy +tests/data/ljspeech/wavs/LJ027-0137.wav|tests/data/ljspeech/wavs/LJ027-0137.npy +tests/data/ljspeech/wavs/LJ050-0004.wav|tests/data/ljspeech/wavs/LJ050-0004.npy +tests/data/ljspeech/wavs/LJ045-0212.wav|tests/data/ljspeech/wavs/LJ045-0212.npy +tests/data/ljspeech/wavs/LJ014-0017.wav|tests/data/ljspeech/wavs/LJ014-0017.npy +tests/data/ljspeech/wavs/LJ033-0055.wav|tests/data/ljspeech/wavs/LJ033-0055.npy +tests/data/ljspeech/wavs/LJ037-0164.wav|tests/data/ljspeech/wavs/LJ037-0164.npy +tests/data/ljspeech/wavs/LJ035-0093.wav|tests/data/ljspeech/wavs/LJ035-0093.npy +tests/data/ljspeech/wavs/LJ020-0086.wav|tests/data/ljspeech/wavs/LJ020-0086.npy +tests/data/ljspeech/wavs/LJ046-0142.wav|tests/data/ljspeech/wavs/LJ046-0142.npy +tests/data/ljspeech/wavs/LJ026-0011.wav|tests/data/ljspeech/wavs/LJ026-0011.npy +tests/data/ljspeech/wavs/LJ002-0198.wav|tests/data/ljspeech/wavs/LJ002-0198.npy +tests/data/ljspeech/wavs/LJ010-0081.wav|tests/data/ljspeech/wavs/LJ010-0081.npy +tests/data/ljspeech/wavs/LJ016-0355.wav|tests/data/ljspeech/wavs/LJ016-0355.npy +tests/data/ljspeech/wavs/LJ009-0049.wav|tests/data/ljspeech/wavs/LJ009-0049.npy +tests/data/ljspeech/wavs/LJ009-0267.wav|tests/data/ljspeech/wavs/LJ009-0267.npy +tests/data/ljspeech/wavs/LJ044-0213.wav|tests/data/ljspeech/wavs/LJ044-0213.npy +tests/data/ljspeech/wavs/LJ039-0109.wav|tests/data/ljspeech/wavs/LJ039-0109.npy +tests/data/ljspeech/wavs/LJ002-0298.wav|tests/data/ljspeech/wavs/LJ002-0298.npy +tests/data/ljspeech/wavs/LJ010-0301.wav|tests/data/ljspeech/wavs/LJ010-0301.npy +tests/data/ljspeech/wavs/LJ049-0130.wav|tests/data/ljspeech/wavs/LJ049-0130.npy +tests/data/ljspeech/wavs/LJ024-0142.wav|tests/data/ljspeech/wavs/LJ024-0142.npy +tests/data/ljspeech/wavs/LJ028-0484.wav|tests/data/ljspeech/wavs/LJ028-0484.npy +tests/data/ljspeech/wavs/LJ046-0109.wav|tests/data/ljspeech/wavs/LJ046-0109.npy +tests/data/ljspeech/wavs/LJ016-0191.wav|tests/data/ljspeech/wavs/LJ016-0191.npy +tests/data/ljspeech/wavs/LJ027-0037.wav|tests/data/ljspeech/wavs/LJ027-0037.npy +tests/data/ljspeech/wavs/LJ004-0194.wav|tests/data/ljspeech/wavs/LJ004-0194.npy +tests/data/ljspeech/wavs/LJ005-0284.wav|tests/data/ljspeech/wavs/LJ005-0284.npy +tests/data/ljspeech/wavs/LJ016-0296.wav|tests/data/ljspeech/wavs/LJ016-0296.npy +tests/data/ljspeech/wavs/LJ044-0142.wav|tests/data/ljspeech/wavs/LJ044-0142.npy +tests/data/ljspeech/wavs/LJ013-0097.wav|tests/data/ljspeech/wavs/LJ013-0097.npy +tests/data/ljspeech/wavs/LJ021-0015.wav|tests/data/ljspeech/wavs/LJ021-0015.npy +tests/data/ljspeech/wavs/LJ045-0096.wav|tests/data/ljspeech/wavs/LJ045-0096.npy +tests/data/ljspeech/wavs/LJ038-0051.wav|tests/data/ljspeech/wavs/LJ038-0051.npy +tests/data/ljspeech/wavs/LJ026-0013.wav|tests/data/ljspeech/wavs/LJ026-0013.npy +tests/data/ljspeech/wavs/LJ012-0011.wav|tests/data/ljspeech/wavs/LJ012-0011.npy +tests/data/ljspeech/wavs/LJ019-0384.wav|tests/data/ljspeech/wavs/LJ019-0384.npy +tests/data/ljspeech/wavs/LJ013-0064.wav|tests/data/ljspeech/wavs/LJ013-0064.npy +tests/data/ljspeech/wavs/LJ017-0126.wav|tests/data/ljspeech/wavs/LJ017-0126.npy +tests/data/ljspeech/wavs/LJ046-0212.wav|tests/data/ljspeech/wavs/LJ046-0212.npy +tests/data/ljspeech/wavs/LJ029-0176.wav|tests/data/ljspeech/wavs/LJ029-0176.npy +tests/data/ljspeech/wavs/LJ012-0138.wav|tests/data/ljspeech/wavs/LJ012-0138.npy +tests/data/ljspeech/wavs/LJ029-0167.wav|tests/data/ljspeech/wavs/LJ029-0167.npy +tests/data/ljspeech/wavs/LJ028-0403.wav|tests/data/ljspeech/wavs/LJ028-0403.npy +tests/data/ljspeech/wavs/LJ023-0032.wav|tests/data/ljspeech/wavs/LJ023-0032.npy +tests/data/ljspeech/wavs/LJ028-0381.wav|tests/data/ljspeech/wavs/LJ028-0381.npy +tests/data/ljspeech/wavs/LJ013-0249.wav|tests/data/ljspeech/wavs/LJ013-0249.npy +tests/data/ljspeech/wavs/LJ028-0071.wav|tests/data/ljspeech/wavs/LJ028-0071.npy +tests/data/ljspeech/wavs/LJ036-0123.wav|tests/data/ljspeech/wavs/LJ036-0123.npy +tests/data/ljspeech/wavs/LJ037-0206.wav|tests/data/ljspeech/wavs/LJ037-0206.npy +tests/data/ljspeech/wavs/LJ030-0151.wav|tests/data/ljspeech/wavs/LJ030-0151.npy +tests/data/ljspeech/wavs/LJ029-0024.wav|tests/data/ljspeech/wavs/LJ029-0024.npy +tests/data/ljspeech/wavs/LJ050-0182.wav|tests/data/ljspeech/wavs/LJ050-0182.npy +tests/data/ljspeech/wavs/LJ034-0115.wav|tests/data/ljspeech/wavs/LJ034-0115.npy +tests/data/ljspeech/wavs/LJ026-0054.wav|tests/data/ljspeech/wavs/LJ026-0054.npy +tests/data/ljspeech/wavs/LJ039-0200.wav|tests/data/ljspeech/wavs/LJ039-0200.npy +tests/data/ljspeech/wavs/LJ015-0240.wav|tests/data/ljspeech/wavs/LJ015-0240.npy +tests/data/ljspeech/wavs/LJ020-0073.wav|tests/data/ljspeech/wavs/LJ020-0073.npy +tests/data/ljspeech/wavs/LJ039-0133.wav|tests/data/ljspeech/wavs/LJ039-0133.npy +tests/data/ljspeech/wavs/LJ035-0150.wav|tests/data/ljspeech/wavs/LJ035-0150.npy +tests/data/ljspeech/wavs/LJ038-0213.wav|tests/data/ljspeech/wavs/LJ038-0213.npy +tests/data/ljspeech/wavs/LJ016-0407.wav|tests/data/ljspeech/wavs/LJ016-0407.npy +tests/data/ljspeech/wavs/LJ038-0257.wav|tests/data/ljspeech/wavs/LJ038-0257.npy +tests/data/ljspeech/wavs/LJ029-0090.wav|tests/data/ljspeech/wavs/LJ029-0090.npy +tests/data/ljspeech/wavs/LJ035-0012.wav|tests/data/ljspeech/wavs/LJ035-0012.npy +tests/data/ljspeech/wavs/LJ041-0164.wav|tests/data/ljspeech/wavs/LJ041-0164.npy +tests/data/ljspeech/wavs/LJ005-0119.wav|tests/data/ljspeech/wavs/LJ005-0119.npy +tests/data/ljspeech/wavs/LJ024-0090.wav|tests/data/ljspeech/wavs/LJ024-0090.npy +tests/data/ljspeech/wavs/LJ002-0250.wav|tests/data/ljspeech/wavs/LJ002-0250.npy +tests/data/ljspeech/wavs/LJ013-0106.wav|tests/data/ljspeech/wavs/LJ013-0106.npy +tests/data/ljspeech/wavs/LJ033-0122.wav|tests/data/ljspeech/wavs/LJ033-0122.npy +tests/data/ljspeech/wavs/LJ050-0162.wav|tests/data/ljspeech/wavs/LJ050-0162.npy +tests/data/ljspeech/wavs/LJ007-0086.wav|tests/data/ljspeech/wavs/LJ007-0086.npy +tests/data/ljspeech/wavs/LJ013-0154.wav|tests/data/ljspeech/wavs/LJ013-0154.npy +tests/data/ljspeech/wavs/LJ045-0173.wav|tests/data/ljspeech/wavs/LJ045-0173.npy +tests/data/ljspeech/wavs/LJ014-0178.wav|tests/data/ljspeech/wavs/LJ014-0178.npy +tests/data/ljspeech/wavs/LJ005-0154.wav|tests/data/ljspeech/wavs/LJ005-0154.npy +tests/data/ljspeech/wavs/LJ021-0193.wav|tests/data/ljspeech/wavs/LJ021-0193.npy +tests/data/ljspeech/wavs/LJ033-0126.wav|tests/data/ljspeech/wavs/LJ033-0126.npy +tests/data/ljspeech/wavs/LJ043-0119.wav|tests/data/ljspeech/wavs/LJ043-0119.npy +tests/data/ljspeech/wavs/LJ034-0097.wav|tests/data/ljspeech/wavs/LJ034-0097.npy +tests/data/ljspeech/wavs/LJ037-0146.wav|tests/data/ljspeech/wavs/LJ037-0146.npy +tests/data/ljspeech/wavs/LJ011-0055.wav|tests/data/ljspeech/wavs/LJ011-0055.npy +tests/data/ljspeech/wavs/LJ042-0059.wav|tests/data/ljspeech/wavs/LJ042-0059.npy +tests/data/ljspeech/wavs/LJ010-0188.wav|tests/data/ljspeech/wavs/LJ010-0188.npy +tests/data/ljspeech/wavs/LJ044-0164.wav|tests/data/ljspeech/wavs/LJ044-0164.npy +tests/data/ljspeech/wavs/LJ013-0050.wav|tests/data/ljspeech/wavs/LJ013-0050.npy +tests/data/ljspeech/wavs/LJ006-0083.wav|tests/data/ljspeech/wavs/LJ006-0083.npy +tests/data/ljspeech/wavs/LJ040-0167.wav|tests/data/ljspeech/wavs/LJ040-0167.npy +tests/data/ljspeech/wavs/LJ021-0176.wav|tests/data/ljspeech/wavs/LJ021-0176.npy +tests/data/ljspeech/wavs/LJ026-0151.wav|tests/data/ljspeech/wavs/LJ026-0151.npy +tests/data/ljspeech/wavs/LJ046-0227.wav|tests/data/ljspeech/wavs/LJ046-0227.npy +tests/data/ljspeech/wavs/LJ008-0026.wav|tests/data/ljspeech/wavs/LJ008-0026.npy +tests/data/ljspeech/wavs/LJ013-0062.wav|tests/data/ljspeech/wavs/LJ013-0062.npy +tests/data/ljspeech/wavs/LJ026-0068.wav|tests/data/ljspeech/wavs/LJ026-0068.npy +tests/data/ljspeech/wavs/LJ031-0120.wav|tests/data/ljspeech/wavs/LJ031-0120.npy +tests/data/ljspeech/wavs/LJ009-0265.wav|tests/data/ljspeech/wavs/LJ009-0265.npy +tests/data/ljspeech/wavs/LJ018-0080.wav|tests/data/ljspeech/wavs/LJ018-0080.npy +tests/data/ljspeech/wavs/LJ002-0139.wav|tests/data/ljspeech/wavs/LJ002-0139.npy +tests/data/ljspeech/wavs/LJ011-0202.wav|tests/data/ljspeech/wavs/LJ011-0202.npy +tests/data/ljspeech/wavs/LJ024-0118.wav|tests/data/ljspeech/wavs/LJ024-0118.npy +tests/data/ljspeech/wavs/LJ009-0210.wav|tests/data/ljspeech/wavs/LJ009-0210.npy +tests/data/ljspeech/wavs/LJ001-0013.wav|tests/data/ljspeech/wavs/LJ001-0013.npy +tests/data/ljspeech/wavs/LJ039-0176.wav|tests/data/ljspeech/wavs/LJ039-0176.npy +tests/data/ljspeech/wavs/LJ045-0155.wav|tests/data/ljspeech/wavs/LJ045-0155.npy +tests/data/ljspeech/wavs/LJ028-0342.wav|tests/data/ljspeech/wavs/LJ028-0342.npy +tests/data/ljspeech/wavs/LJ006-0145.wav|tests/data/ljspeech/wavs/LJ006-0145.npy +tests/data/ljspeech/wavs/LJ014-0242.wav|tests/data/ljspeech/wavs/LJ014-0242.npy +tests/data/ljspeech/wavs/LJ002-0023.wav|tests/data/ljspeech/wavs/LJ002-0023.npy +tests/data/ljspeech/wavs/LJ031-0122.wav|tests/data/ljspeech/wavs/LJ031-0122.npy +tests/data/ljspeech/wavs/LJ028-0121.wav|tests/data/ljspeech/wavs/LJ028-0121.npy +tests/data/ljspeech/wavs/LJ036-0206.wav|tests/data/ljspeech/wavs/LJ036-0206.npy +tests/data/ljspeech/wavs/LJ050-0068.wav|tests/data/ljspeech/wavs/LJ050-0068.npy +tests/data/ljspeech/wavs/LJ043-0091.wav|tests/data/ljspeech/wavs/LJ043-0091.npy +tests/data/ljspeech/wavs/LJ011-0269.wav|tests/data/ljspeech/wavs/LJ011-0269.npy +tests/data/ljspeech/wavs/LJ016-0050.wav|tests/data/ljspeech/wavs/LJ016-0050.npy +tests/data/ljspeech/wavs/LJ029-0174.wav|tests/data/ljspeech/wavs/LJ029-0174.npy +tests/data/ljspeech/wavs/LJ008-0009.wav|tests/data/ljspeech/wavs/LJ008-0009.npy +tests/data/ljspeech/wavs/LJ048-0152.wav|tests/data/ljspeech/wavs/LJ048-0152.npy +tests/data/ljspeech/wavs/LJ047-0195.wav|tests/data/ljspeech/wavs/LJ047-0195.npy +tests/data/ljspeech/wavs/LJ010-0131.wav|tests/data/ljspeech/wavs/LJ010-0131.npy +tests/data/ljspeech/wavs/LJ005-0137.wav|tests/data/ljspeech/wavs/LJ005-0137.npy +tests/data/ljspeech/wavs/LJ049-0151.wav|tests/data/ljspeech/wavs/LJ049-0151.npy +tests/data/ljspeech/wavs/LJ048-0013.wav|tests/data/ljspeech/wavs/LJ048-0013.npy +tests/data/ljspeech/wavs/LJ016-0388.wav|tests/data/ljspeech/wavs/LJ016-0388.npy +tests/data/ljspeech/wavs/LJ006-0182.wav|tests/data/ljspeech/wavs/LJ006-0182.npy +tests/data/ljspeech/wavs/LJ018-0255.wav|tests/data/ljspeech/wavs/LJ018-0255.npy +tests/data/ljspeech/wavs/LJ047-0188.wav|tests/data/ljspeech/wavs/LJ047-0188.npy +tests/data/ljspeech/wavs/LJ028-0014.wav|tests/data/ljspeech/wavs/LJ028-0014.npy +tests/data/ljspeech/wavs/LJ037-0211.wav|tests/data/ljspeech/wavs/LJ037-0211.npy +tests/data/ljspeech/wavs/LJ038-0162.wav|tests/data/ljspeech/wavs/LJ038-0162.npy +tests/data/ljspeech/wavs/LJ018-0019.wav|tests/data/ljspeech/wavs/LJ018-0019.npy +tests/data/ljspeech/wavs/LJ035-0053.wav|tests/data/ljspeech/wavs/LJ035-0053.npy +tests/data/ljspeech/wavs/LJ008-0159.wav|tests/data/ljspeech/wavs/LJ008-0159.npy +tests/data/ljspeech/wavs/LJ037-0032.wav|tests/data/ljspeech/wavs/LJ037-0032.npy +tests/data/ljspeech/wavs/LJ028-0508.wav|tests/data/ljspeech/wavs/LJ028-0508.npy +tests/data/ljspeech/wavs/LJ015-0286.wav|tests/data/ljspeech/wavs/LJ015-0286.npy +tests/data/ljspeech/wavs/LJ048-0158.wav|tests/data/ljspeech/wavs/LJ048-0158.npy +tests/data/ljspeech/wavs/LJ002-0213.wav|tests/data/ljspeech/wavs/LJ002-0213.npy +tests/data/ljspeech/wavs/LJ028-0252.wav|tests/data/ljspeech/wavs/LJ028-0252.npy +tests/data/ljspeech/wavs/LJ011-0129.wav|tests/data/ljspeech/wavs/LJ011-0129.npy +tests/data/ljspeech/wavs/LJ018-0337.wav|tests/data/ljspeech/wavs/LJ018-0337.npy +tests/data/ljspeech/wavs/LJ046-0188.wav|tests/data/ljspeech/wavs/LJ046-0188.npy +tests/data/ljspeech/wavs/LJ043-0107.wav|tests/data/ljspeech/wavs/LJ043-0107.npy +tests/data/ljspeech/wavs/LJ032-0046.wav|tests/data/ljspeech/wavs/LJ032-0046.npy +tests/data/ljspeech/wavs/LJ046-0230.wav|tests/data/ljspeech/wavs/LJ046-0230.npy +tests/data/ljspeech/wavs/LJ040-0153.wav|tests/data/ljspeech/wavs/LJ040-0153.npy +tests/data/ljspeech/wavs/LJ002-0029.wav|tests/data/ljspeech/wavs/LJ002-0029.npy +tests/data/ljspeech/wavs/LJ002-0151.wav|tests/data/ljspeech/wavs/LJ002-0151.npy +tests/data/ljspeech/wavs/LJ050-0150.wav|tests/data/ljspeech/wavs/LJ050-0150.npy +tests/data/ljspeech/wavs/LJ038-0183.wav|tests/data/ljspeech/wavs/LJ038-0183.npy +tests/data/ljspeech/wavs/LJ033-0191.wav|tests/data/ljspeech/wavs/LJ033-0191.npy +tests/data/ljspeech/wavs/LJ020-0004.wav|tests/data/ljspeech/wavs/LJ020-0004.npy +tests/data/ljspeech/wavs/LJ023-0130.wav|tests/data/ljspeech/wavs/LJ023-0130.npy +tests/data/ljspeech/wavs/LJ022-0005.wav|tests/data/ljspeech/wavs/LJ022-0005.npy +tests/data/ljspeech/wavs/LJ015-0274.wav|tests/data/ljspeech/wavs/LJ015-0274.npy +tests/data/ljspeech/wavs/LJ046-0168.wav|tests/data/ljspeech/wavs/LJ046-0168.npy +tests/data/ljspeech/wavs/LJ028-0137.wav|tests/data/ljspeech/wavs/LJ028-0137.npy +tests/data/ljspeech/wavs/LJ016-0058.wav|tests/data/ljspeech/wavs/LJ016-0058.npy +tests/data/ljspeech/wavs/LJ004-0175.wav|tests/data/ljspeech/wavs/LJ004-0175.npy +tests/data/ljspeech/wavs/LJ024-0069.wav|tests/data/ljspeech/wavs/LJ024-0069.npy +tests/data/ljspeech/wavs/LJ037-0130.wav|tests/data/ljspeech/wavs/LJ037-0130.npy +tests/data/ljspeech/wavs/LJ023-0074.wav|tests/data/ljspeech/wavs/LJ023-0074.npy +tests/data/ljspeech/wavs/LJ022-0152.wav|tests/data/ljspeech/wavs/LJ022-0152.npy +tests/data/ljspeech/wavs/LJ001-0179.wav|tests/data/ljspeech/wavs/LJ001-0179.npy +tests/data/ljspeech/wavs/LJ023-0067.wav|tests/data/ljspeech/wavs/LJ023-0067.npy +tests/data/ljspeech/wavs/LJ024-0132.wav|tests/data/ljspeech/wavs/LJ024-0132.npy +tests/data/ljspeech/wavs/LJ015-0091.wav|tests/data/ljspeech/wavs/LJ015-0091.npy +tests/data/ljspeech/wavs/LJ009-0071.wav|tests/data/ljspeech/wavs/LJ009-0071.npy +tests/data/ljspeech/wavs/LJ024-0083.wav|tests/data/ljspeech/wavs/LJ024-0083.npy +tests/data/ljspeech/wavs/LJ002-0069.wav|tests/data/ljspeech/wavs/LJ002-0069.npy +tests/data/ljspeech/wavs/LJ028-0107.wav|tests/data/ljspeech/wavs/LJ028-0107.npy +tests/data/ljspeech/wavs/LJ006-0143.wav|tests/data/ljspeech/wavs/LJ006-0143.npy +tests/data/ljspeech/wavs/LJ038-0072.wav|tests/data/ljspeech/wavs/LJ038-0072.npy +tests/data/ljspeech/wavs/LJ001-0125.wav|tests/data/ljspeech/wavs/LJ001-0125.npy +tests/data/ljspeech/wavs/LJ031-0104.wav|tests/data/ljspeech/wavs/LJ031-0104.npy +tests/data/ljspeech/wavs/LJ007-0208.wav|tests/data/ljspeech/wavs/LJ007-0208.npy +tests/data/ljspeech/wavs/LJ027-0005.wav|tests/data/ljspeech/wavs/LJ027-0005.npy +tests/data/ljspeech/wavs/LJ042-0039.wav|tests/data/ljspeech/wavs/LJ042-0039.npy +tests/data/ljspeech/wavs/LJ048-0056.wav|tests/data/ljspeech/wavs/LJ048-0056.npy +tests/data/ljspeech/wavs/LJ014-0125.wav|tests/data/ljspeech/wavs/LJ014-0125.npy +tests/data/ljspeech/wavs/LJ011-0004.wav|tests/data/ljspeech/wavs/LJ011-0004.npy +tests/data/ljspeech/wavs/LJ007-0088.wav|tests/data/ljspeech/wavs/LJ007-0088.npy +tests/data/ljspeech/wavs/LJ018-0105.wav|tests/data/ljspeech/wavs/LJ018-0105.npy +tests/data/ljspeech/wavs/LJ036-0064.wav|tests/data/ljspeech/wavs/LJ036-0064.npy +tests/data/ljspeech/wavs/LJ002-0083.wav|tests/data/ljspeech/wavs/LJ002-0083.npy +tests/data/ljspeech/wavs/LJ013-0081.wav|tests/data/ljspeech/wavs/LJ013-0081.npy +tests/data/ljspeech/wavs/LJ048-0223.wav|tests/data/ljspeech/wavs/LJ048-0223.npy +tests/data/ljspeech/wavs/LJ041-0156.wav|tests/data/ljspeech/wavs/LJ041-0156.npy +tests/data/ljspeech/wavs/LJ039-0130.wav|tests/data/ljspeech/wavs/LJ039-0130.npy +tests/data/ljspeech/wavs/LJ006-0150.wav|tests/data/ljspeech/wavs/LJ006-0150.npy +tests/data/ljspeech/wavs/LJ013-0072.wav|tests/data/ljspeech/wavs/LJ013-0072.npy +tests/data/ljspeech/wavs/LJ017-0179.wav|tests/data/ljspeech/wavs/LJ017-0179.npy +tests/data/ljspeech/wavs/LJ002-0287.wav|tests/data/ljspeech/wavs/LJ002-0287.npy +tests/data/ljspeech/wavs/LJ007-0169.wav|tests/data/ljspeech/wavs/LJ007-0169.npy +tests/data/ljspeech/wavs/LJ006-0240.wav|tests/data/ljspeech/wavs/LJ006-0240.npy +tests/data/ljspeech/wavs/LJ005-0156.wav|tests/data/ljspeech/wavs/LJ005-0156.npy +tests/data/ljspeech/wavs/LJ020-0104.wav|tests/data/ljspeech/wavs/LJ020-0104.npy +tests/data/ljspeech/wavs/LJ036-0145.wav|tests/data/ljspeech/wavs/LJ036-0145.npy +tests/data/ljspeech/wavs/LJ031-0068.wav|tests/data/ljspeech/wavs/LJ031-0068.npy +tests/data/ljspeech/wavs/LJ017-0229.wav|tests/data/ljspeech/wavs/LJ017-0229.npy +tests/data/ljspeech/wavs/LJ035-0133.wav|tests/data/ljspeech/wavs/LJ035-0133.npy +tests/data/ljspeech/wavs/LJ017-0132.wav|tests/data/ljspeech/wavs/LJ017-0132.npy +tests/data/ljspeech/wavs/LJ037-0172.wav|tests/data/ljspeech/wavs/LJ037-0172.npy +tests/data/ljspeech/wavs/LJ034-0161.wav|tests/data/ljspeech/wavs/LJ034-0161.npy +tests/data/ljspeech/wavs/LJ002-0236.wav|tests/data/ljspeech/wavs/LJ002-0236.npy +tests/data/ljspeech/wavs/LJ034-0155.wav|tests/data/ljspeech/wavs/LJ034-0155.npy +tests/data/ljspeech/wavs/LJ050-0266.wav|tests/data/ljspeech/wavs/LJ050-0266.npy +tests/data/ljspeech/wavs/LJ044-0234.wav|tests/data/ljspeech/wavs/LJ044-0234.npy +tests/data/ljspeech/wavs/LJ039-0154.wav|tests/data/ljspeech/wavs/LJ039-0154.npy +tests/data/ljspeech/wavs/LJ015-0058.wav|tests/data/ljspeech/wavs/LJ015-0058.npy +tests/data/ljspeech/wavs/LJ002-0005.wav|tests/data/ljspeech/wavs/LJ002-0005.npy +tests/data/ljspeech/wavs/LJ021-0174.wav|tests/data/ljspeech/wavs/LJ021-0174.npy +tests/data/ljspeech/wavs/LJ034-0093.wav|tests/data/ljspeech/wavs/LJ034-0093.npy +tests/data/ljspeech/wavs/LJ049-0085.wav|tests/data/ljspeech/wavs/LJ049-0085.npy +tests/data/ljspeech/wavs/LJ011-0036.wav|tests/data/ljspeech/wavs/LJ011-0036.npy +tests/data/ljspeech/wavs/LJ017-0263.wav|tests/data/ljspeech/wavs/LJ017-0263.npy +tests/data/ljspeech/wavs/LJ030-0107.wav|tests/data/ljspeech/wavs/LJ030-0107.npy +tests/data/ljspeech/wavs/LJ028-0139.wav|tests/data/ljspeech/wavs/LJ028-0139.npy +tests/data/ljspeech/wavs/LJ042-0040.wav|tests/data/ljspeech/wavs/LJ042-0040.npy +tests/data/ljspeech/wavs/LJ016-0102.wav|tests/data/ljspeech/wavs/LJ016-0102.npy +tests/data/ljspeech/wavs/LJ025-0091.wav|tests/data/ljspeech/wavs/LJ025-0091.npy +tests/data/ljspeech/wavs/LJ011-0109.wav|tests/data/ljspeech/wavs/LJ011-0109.npy +tests/data/ljspeech/wavs/LJ006-0169.wav|tests/data/ljspeech/wavs/LJ006-0169.npy +tests/data/ljspeech/wavs/LJ008-0104.wav|tests/data/ljspeech/wavs/LJ008-0104.npy +tests/data/ljspeech/wavs/LJ034-0089.wav|tests/data/ljspeech/wavs/LJ034-0089.npy +tests/data/ljspeech/wavs/LJ013-0267.wav|tests/data/ljspeech/wavs/LJ013-0267.npy +tests/data/ljspeech/wavs/LJ050-0126.wav|tests/data/ljspeech/wavs/LJ050-0126.npy +tests/data/ljspeech/wavs/LJ014-0115.wav|tests/data/ljspeech/wavs/LJ014-0115.npy +tests/data/ljspeech/wavs/LJ046-0136.wav|tests/data/ljspeech/wavs/LJ046-0136.npy +tests/data/ljspeech/wavs/LJ041-0188.wav|tests/data/ljspeech/wavs/LJ041-0188.npy +tests/data/ljspeech/wavs/LJ036-0118.wav|tests/data/ljspeech/wavs/LJ036-0118.npy +tests/data/ljspeech/wavs/LJ009-0058.wav|tests/data/ljspeech/wavs/LJ009-0058.npy +tests/data/ljspeech/wavs/LJ013-0211.wav|tests/data/ljspeech/wavs/LJ013-0211.npy +tests/data/ljspeech/wavs/LJ028-0231.wav|tests/data/ljspeech/wavs/LJ028-0231.npy +tests/data/ljspeech/wavs/LJ017-0210.wav|tests/data/ljspeech/wavs/LJ017-0210.npy +tests/data/ljspeech/wavs/LJ013-0258.wav|tests/data/ljspeech/wavs/LJ013-0258.npy +tests/data/ljspeech/wavs/LJ017-0051.wav|tests/data/ljspeech/wavs/LJ017-0051.npy +tests/data/ljspeech/wavs/LJ006-0061.wav|tests/data/ljspeech/wavs/LJ006-0061.npy +tests/data/ljspeech/wavs/LJ018-0252.wav|tests/data/ljspeech/wavs/LJ018-0252.npy +tests/data/ljspeech/wavs/LJ045-0213.wav|tests/data/ljspeech/wavs/LJ045-0213.npy +tests/data/ljspeech/wavs/LJ043-0144.wav|tests/data/ljspeech/wavs/LJ043-0144.npy +tests/data/ljspeech/wavs/LJ040-0088.wav|tests/data/ljspeech/wavs/LJ040-0088.npy +tests/data/ljspeech/wavs/LJ025-0107.wav|tests/data/ljspeech/wavs/LJ025-0107.npy +tests/data/ljspeech/wavs/LJ032-0014.wav|tests/data/ljspeech/wavs/LJ032-0014.npy +tests/data/ljspeech/wavs/LJ031-0147.wav|tests/data/ljspeech/wavs/LJ031-0147.npy +tests/data/ljspeech/wavs/LJ038-0159.wav|tests/data/ljspeech/wavs/LJ038-0159.npy +tests/data/ljspeech/wavs/LJ026-0033.wav|tests/data/ljspeech/wavs/LJ026-0033.npy +tests/data/ljspeech/wavs/LJ011-0090.wav|tests/data/ljspeech/wavs/LJ011-0090.npy +tests/data/ljspeech/wavs/LJ035-0068.wav|tests/data/ljspeech/wavs/LJ035-0068.npy +tests/data/ljspeech/wavs/LJ022-0089.wav|tests/data/ljspeech/wavs/LJ022-0089.npy +tests/data/ljspeech/wavs/LJ004-0123.wav|tests/data/ljspeech/wavs/LJ004-0123.npy +tests/data/ljspeech/wavs/LJ028-0222.wav|tests/data/ljspeech/wavs/LJ028-0222.npy +tests/data/ljspeech/wavs/LJ028-0115.wav|tests/data/ljspeech/wavs/LJ028-0115.npy +tests/data/ljspeech/wavs/LJ004-0114.wav|tests/data/ljspeech/wavs/LJ004-0114.npy +tests/data/ljspeech/wavs/LJ019-0194.wav|tests/data/ljspeech/wavs/LJ019-0194.npy +tests/data/ljspeech/wavs/LJ028-0277.wav|tests/data/ljspeech/wavs/LJ028-0277.npy +tests/data/ljspeech/wavs/LJ011-0155.wav|tests/data/ljspeech/wavs/LJ011-0155.npy +tests/data/ljspeech/wavs/LJ038-0099.wav|tests/data/ljspeech/wavs/LJ038-0099.npy +tests/data/ljspeech/wavs/LJ019-0269.wav|tests/data/ljspeech/wavs/LJ019-0269.npy +tests/data/ljspeech/wavs/LJ002-0155.wav|tests/data/ljspeech/wavs/LJ002-0155.npy +tests/data/ljspeech/wavs/LJ044-0174.wav|tests/data/ljspeech/wavs/LJ044-0174.npy +tests/data/ljspeech/wavs/LJ041-0117.wav|tests/data/ljspeech/wavs/LJ041-0117.npy +tests/data/ljspeech/wavs/LJ018-0231.wav|tests/data/ljspeech/wavs/LJ018-0231.npy +tests/data/ljspeech/wavs/LJ003-0197.wav|tests/data/ljspeech/wavs/LJ003-0197.npy +tests/data/ljspeech/wavs/LJ010-0288.wav|tests/data/ljspeech/wavs/LJ010-0288.npy +tests/data/ljspeech/wavs/LJ030-0061.wav|tests/data/ljspeech/wavs/LJ030-0061.npy +tests/data/ljspeech/wavs/LJ039-0225.wav|tests/data/ljspeech/wavs/LJ039-0225.npy +tests/data/ljspeech/wavs/LJ014-0081.wav|tests/data/ljspeech/wavs/LJ014-0081.npy +tests/data/ljspeech/wavs/LJ042-0144.wav|tests/data/ljspeech/wavs/LJ042-0144.npy +tests/data/ljspeech/wavs/LJ028-0432.wav|tests/data/ljspeech/wavs/LJ028-0432.npy +tests/data/ljspeech/wavs/LJ018-0016.wav|tests/data/ljspeech/wavs/LJ018-0016.npy +tests/data/ljspeech/wavs/LJ030-0161.wav|tests/data/ljspeech/wavs/LJ030-0161.npy +tests/data/ljspeech/wavs/LJ025-0041.wav|tests/data/ljspeech/wavs/LJ025-0041.npy +tests/data/ljspeech/wavs/LJ005-0053.wav|tests/data/ljspeech/wavs/LJ005-0053.npy +tests/data/ljspeech/wavs/LJ007-0105.wav|tests/data/ljspeech/wavs/LJ007-0105.npy +tests/data/ljspeech/wavs/LJ017-0046.wav|tests/data/ljspeech/wavs/LJ017-0046.npy +tests/data/ljspeech/wavs/LJ050-0184.wav|tests/data/ljspeech/wavs/LJ050-0184.npy +tests/data/ljspeech/wavs/LJ023-0022.wav|tests/data/ljspeech/wavs/LJ023-0022.npy +tests/data/ljspeech/wavs/LJ013-0189.wav|tests/data/ljspeech/wavs/LJ013-0189.npy +tests/data/ljspeech/wavs/LJ048-0135.wav|tests/data/ljspeech/wavs/LJ048-0135.npy +tests/data/ljspeech/wavs/LJ019-0355.wav|tests/data/ljspeech/wavs/LJ019-0355.npy +tests/data/ljspeech/wavs/LJ036-0035.wav|tests/data/ljspeech/wavs/LJ036-0035.npy +tests/data/ljspeech/wavs/LJ017-0156.wav|tests/data/ljspeech/wavs/LJ017-0156.npy +tests/data/ljspeech/wavs/LJ017-0095.wav|tests/data/ljspeech/wavs/LJ017-0095.npy +tests/data/ljspeech/wavs/LJ023-0122.wav|tests/data/ljspeech/wavs/LJ023-0122.npy +tests/data/ljspeech/wavs/LJ028-0500.wav|tests/data/ljspeech/wavs/LJ028-0500.npy +tests/data/ljspeech/wavs/LJ042-0094.wav|tests/data/ljspeech/wavs/LJ042-0094.npy +tests/data/ljspeech/wavs/LJ013-0138.wav|tests/data/ljspeech/wavs/LJ013-0138.npy +tests/data/ljspeech/wavs/LJ002-0311.wav|tests/data/ljspeech/wavs/LJ002-0311.npy +tests/data/ljspeech/wavs/LJ028-0454.wav|tests/data/ljspeech/wavs/LJ028-0454.npy +tests/data/ljspeech/wavs/LJ035-0136.wav|tests/data/ljspeech/wavs/LJ035-0136.npy +tests/data/ljspeech/wavs/LJ007-0191.wav|tests/data/ljspeech/wavs/LJ007-0191.npy +tests/data/ljspeech/wavs/LJ018-0166.wav|tests/data/ljspeech/wavs/LJ018-0166.npy +tests/data/ljspeech/wavs/LJ017-0040.wav|tests/data/ljspeech/wavs/LJ017-0040.npy +tests/data/ljspeech/wavs/LJ018-0067.wav|tests/data/ljspeech/wavs/LJ018-0067.npy +tests/data/ljspeech/wavs/LJ007-0015.wav|tests/data/ljspeech/wavs/LJ007-0015.npy +tests/data/ljspeech/wavs/LJ017-0027.wav|tests/data/ljspeech/wavs/LJ017-0027.npy +tests/data/ljspeech/wavs/LJ047-0109.wav|tests/data/ljspeech/wavs/LJ047-0109.npy +tests/data/ljspeech/wavs/LJ034-0163.wav|tests/data/ljspeech/wavs/LJ034-0163.npy +tests/data/ljspeech/wavs/LJ028-0164.wav|tests/data/ljspeech/wavs/LJ028-0164.npy +tests/data/ljspeech/wavs/LJ023-0009.wav|tests/data/ljspeech/wavs/LJ023-0009.npy +tests/data/ljspeech/wavs/LJ034-0215.wav|tests/data/ljspeech/wavs/LJ034-0215.npy +tests/data/ljspeech/wavs/LJ015-0008.wav|tests/data/ljspeech/wavs/LJ015-0008.npy +tests/data/ljspeech/wavs/LJ044-0146.wav|tests/data/ljspeech/wavs/LJ044-0146.npy +tests/data/ljspeech/wavs/LJ032-0050.wav|tests/data/ljspeech/wavs/LJ032-0050.npy +tests/data/ljspeech/wavs/LJ045-0125.wav|tests/data/ljspeech/wavs/LJ045-0125.npy +tests/data/ljspeech/wavs/LJ037-0240.wav|tests/data/ljspeech/wavs/LJ037-0240.npy +tests/data/ljspeech/wavs/LJ016-0181.wav|tests/data/ljspeech/wavs/LJ016-0181.npy +tests/data/ljspeech/wavs/LJ021-0183.wav|tests/data/ljspeech/wavs/LJ021-0183.npy +tests/data/ljspeech/wavs/LJ025-0001.wav|tests/data/ljspeech/wavs/LJ025-0001.npy +tests/data/ljspeech/wavs/LJ032-0255.wav|tests/data/ljspeech/wavs/LJ032-0255.npy +tests/data/ljspeech/wavs/LJ031-0098.wav|tests/data/ljspeech/wavs/LJ031-0098.npy +tests/data/ljspeech/wavs/LJ029-0113.wav|tests/data/ljspeech/wavs/LJ029-0113.npy +tests/data/ljspeech/wavs/LJ005-0247.wav|tests/data/ljspeech/wavs/LJ005-0247.npy +tests/data/ljspeech/wavs/LJ014-0165.wav|tests/data/ljspeech/wavs/LJ014-0165.npy +tests/data/ljspeech/wavs/LJ024-0134.wav|tests/data/ljspeech/wavs/LJ024-0134.npy +tests/data/ljspeech/wavs/LJ038-0121.wav|tests/data/ljspeech/wavs/LJ038-0121.npy +tests/data/ljspeech/wavs/LJ006-0147.wav|tests/data/ljspeech/wavs/LJ006-0147.npy +tests/data/ljspeech/wavs/LJ031-0094.wav|tests/data/ljspeech/wavs/LJ031-0094.npy +tests/data/ljspeech/wavs/LJ015-0252.wav|tests/data/ljspeech/wavs/LJ015-0252.npy +tests/data/ljspeech/wavs/LJ021-0147.wav|tests/data/ljspeech/wavs/LJ021-0147.npy +tests/data/ljspeech/wavs/LJ010-0044.wav|tests/data/ljspeech/wavs/LJ010-0044.npy +tests/data/ljspeech/wavs/LJ045-0098.wav|tests/data/ljspeech/wavs/LJ045-0098.npy +tests/data/ljspeech/wavs/LJ016-0100.wav|tests/data/ljspeech/wavs/LJ016-0100.npy +tests/data/ljspeech/wavs/LJ015-0225.wav|tests/data/ljspeech/wavs/LJ015-0225.npy +tests/data/ljspeech/wavs/LJ004-0054.wav|tests/data/ljspeech/wavs/LJ004-0054.npy +tests/data/ljspeech/wavs/LJ004-0160.wav|tests/data/ljspeech/wavs/LJ004-0160.npy +tests/data/ljspeech/wavs/LJ018-0157.wav|tests/data/ljspeech/wavs/LJ018-0157.npy +tests/data/ljspeech/wavs/LJ010-0266.wav|tests/data/ljspeech/wavs/LJ010-0266.npy +tests/data/ljspeech/wavs/LJ027-0159.wav|tests/data/ljspeech/wavs/LJ027-0159.npy +tests/data/ljspeech/wavs/LJ034-0134.wav|tests/data/ljspeech/wavs/LJ034-0134.npy +tests/data/ljspeech/wavs/LJ010-0035.wav|tests/data/ljspeech/wavs/LJ010-0035.npy +tests/data/ljspeech/wavs/LJ014-0037.wav|tests/data/ljspeech/wavs/LJ014-0037.npy +tests/data/ljspeech/wavs/LJ024-0091.wav|tests/data/ljspeech/wavs/LJ024-0091.npy +tests/data/ljspeech/wavs/LJ002-0129.wav|tests/data/ljspeech/wavs/LJ002-0129.npy +tests/data/ljspeech/wavs/LJ040-0121.wav|tests/data/ljspeech/wavs/LJ040-0121.npy +tests/data/ljspeech/wavs/LJ048-0221.wav|tests/data/ljspeech/wavs/LJ048-0221.npy +tests/data/ljspeech/wavs/LJ005-0057.wav|tests/data/ljspeech/wavs/LJ005-0057.npy +tests/data/ljspeech/wavs/LJ029-0180.wav|tests/data/ljspeech/wavs/LJ029-0180.npy +tests/data/ljspeech/wavs/LJ048-0232.wav|tests/data/ljspeech/wavs/LJ048-0232.npy +tests/data/ljspeech/wavs/LJ030-0242.wav|tests/data/ljspeech/wavs/LJ030-0242.npy +tests/data/ljspeech/wavs/LJ021-0089.wav|tests/data/ljspeech/wavs/LJ021-0089.npy +tests/data/ljspeech/wavs/LJ039-0140.wav|tests/data/ljspeech/wavs/LJ039-0140.npy +tests/data/ljspeech/wavs/LJ038-0006.wav|tests/data/ljspeech/wavs/LJ038-0006.npy +tests/data/ljspeech/wavs/LJ003-0164.wav|tests/data/ljspeech/wavs/LJ003-0164.npy +tests/data/ljspeech/wavs/LJ009-0207.wav|tests/data/ljspeech/wavs/LJ009-0207.npy +tests/data/ljspeech/wavs/LJ006-0257.wav|tests/data/ljspeech/wavs/LJ006-0257.npy +tests/data/ljspeech/wavs/LJ028-0193.wav|tests/data/ljspeech/wavs/LJ028-0193.npy +tests/data/ljspeech/wavs/LJ033-0147.wav|tests/data/ljspeech/wavs/LJ033-0147.npy +tests/data/ljspeech/wavs/LJ028-0119.wav|tests/data/ljspeech/wavs/LJ028-0119.npy +tests/data/ljspeech/wavs/LJ045-0160.wav|tests/data/ljspeech/wavs/LJ045-0160.npy +tests/data/ljspeech/wavs/LJ008-0230.wav|tests/data/ljspeech/wavs/LJ008-0230.npy +tests/data/ljspeech/wavs/LJ007-0196.wav|tests/data/ljspeech/wavs/LJ007-0196.npy +tests/data/ljspeech/wavs/LJ015-0220.wav|tests/data/ljspeech/wavs/LJ015-0220.npy +tests/data/ljspeech/wavs/LJ036-0112.wav|tests/data/ljspeech/wavs/LJ036-0112.npy +tests/data/ljspeech/wavs/LJ016-0420.wav|tests/data/ljspeech/wavs/LJ016-0420.npy +tests/data/ljspeech/wavs/LJ027-0073.wav|tests/data/ljspeech/wavs/LJ027-0073.npy +tests/data/ljspeech/wavs/LJ043-0086.wav|tests/data/ljspeech/wavs/LJ043-0086.npy +tests/data/ljspeech/wavs/LJ050-0025.wav|tests/data/ljspeech/wavs/LJ050-0025.npy +tests/data/ljspeech/wavs/LJ010-0149.wav|tests/data/ljspeech/wavs/LJ010-0149.npy +tests/data/ljspeech/wavs/LJ020-0028.wav|tests/data/ljspeech/wavs/LJ020-0028.npy +tests/data/ljspeech/wavs/LJ018-0332.wav|tests/data/ljspeech/wavs/LJ018-0332.npy +tests/data/ljspeech/wavs/LJ011-0150.wav|tests/data/ljspeech/wavs/LJ011-0150.npy +tests/data/ljspeech/wavs/LJ028-0380.wav|tests/data/ljspeech/wavs/LJ028-0380.npy +tests/data/ljspeech/wavs/LJ033-0006.wav|tests/data/ljspeech/wavs/LJ033-0006.npy +tests/data/ljspeech/wavs/LJ030-0140.wav|tests/data/ljspeech/wavs/LJ030-0140.npy +tests/data/ljspeech/wavs/LJ036-0139.wav|tests/data/ljspeech/wavs/LJ036-0139.npy +tests/data/ljspeech/wavs/LJ046-0125.wav|tests/data/ljspeech/wavs/LJ046-0125.npy +tests/data/ljspeech/wavs/LJ009-0154.wav|tests/data/ljspeech/wavs/LJ009-0154.npy +tests/data/ljspeech/wavs/LJ005-0132.wav|tests/data/ljspeech/wavs/LJ005-0132.npy +tests/data/ljspeech/wavs/LJ039-0144.wav|tests/data/ljspeech/wavs/LJ039-0144.npy +tests/data/ljspeech/wavs/LJ014-0011.wav|tests/data/ljspeech/wavs/LJ014-0011.npy +tests/data/ljspeech/wavs/LJ012-0161.wav|tests/data/ljspeech/wavs/LJ012-0161.npy +tests/data/ljspeech/wavs/LJ041-0071.wav|tests/data/ljspeech/wavs/LJ041-0071.npy +tests/data/ljspeech/wavs/LJ003-0061.wav|tests/data/ljspeech/wavs/LJ003-0061.npy +tests/data/ljspeech/wavs/LJ010-0297.wav|tests/data/ljspeech/wavs/LJ010-0297.npy +tests/data/ljspeech/wavs/LJ033-0082.wav|tests/data/ljspeech/wavs/LJ033-0082.npy +tests/data/ljspeech/wavs/LJ015-0030.wav|tests/data/ljspeech/wavs/LJ015-0030.npy +tests/data/ljspeech/wavs/LJ024-0123.wav|tests/data/ljspeech/wavs/LJ024-0123.npy +tests/data/ljspeech/wavs/LJ039-0222.wav|tests/data/ljspeech/wavs/LJ039-0222.npy +tests/data/ljspeech/wavs/LJ025-0160.wav|tests/data/ljspeech/wavs/LJ025-0160.npy +tests/data/ljspeech/wavs/LJ020-0015.wav|tests/data/ljspeech/wavs/LJ020-0015.npy +tests/data/ljspeech/wavs/LJ011-0056.wav|tests/data/ljspeech/wavs/LJ011-0056.npy +tests/data/ljspeech/wavs/LJ013-0023.wav|tests/data/ljspeech/wavs/LJ013-0023.npy +tests/data/ljspeech/wavs/LJ050-0203.wav|tests/data/ljspeech/wavs/LJ050-0203.npy +tests/data/ljspeech/wavs/LJ022-0108.wav|tests/data/ljspeech/wavs/LJ022-0108.npy +tests/data/ljspeech/wavs/LJ029-0072.wav|tests/data/ljspeech/wavs/LJ029-0072.npy +tests/data/ljspeech/wavs/LJ002-0076.wav|tests/data/ljspeech/wavs/LJ002-0076.npy +tests/data/ljspeech/wavs/LJ004-0143.wav|tests/data/ljspeech/wavs/LJ004-0143.npy +tests/data/ljspeech/wavs/LJ005-0207.wav|tests/data/ljspeech/wavs/LJ005-0207.npy +tests/data/ljspeech/wavs/LJ019-0200.wav|tests/data/ljspeech/wavs/LJ019-0200.npy +tests/data/ljspeech/wavs/LJ017-0087.wav|tests/data/ljspeech/wavs/LJ017-0087.npy +tests/data/ljspeech/wavs/LJ010-0007.wav|tests/data/ljspeech/wavs/LJ010-0007.npy +tests/data/ljspeech/wavs/LJ037-0030.wav|tests/data/ljspeech/wavs/LJ037-0030.npy +tests/data/ljspeech/wavs/LJ022-0139.wav|tests/data/ljspeech/wavs/LJ022-0139.npy +tests/data/ljspeech/wavs/LJ017-0123.wav|tests/data/ljspeech/wavs/LJ017-0123.npy +tests/data/ljspeech/wavs/LJ003-0017.wav|tests/data/ljspeech/wavs/LJ003-0017.npy +tests/data/ljspeech/wavs/LJ032-0017.wav|tests/data/ljspeech/wavs/LJ032-0017.npy +tests/data/ljspeech/wavs/LJ010-0306.wav|tests/data/ljspeech/wavs/LJ010-0306.npy +tests/data/ljspeech/wavs/LJ046-0163.wav|tests/data/ljspeech/wavs/LJ046-0163.npy +tests/data/ljspeech/wavs/LJ023-0021.wav|tests/data/ljspeech/wavs/LJ023-0021.npy +tests/data/ljspeech/wavs/LJ036-0171.wav|tests/data/ljspeech/wavs/LJ036-0171.npy +tests/data/ljspeech/wavs/LJ004-0061.wav|tests/data/ljspeech/wavs/LJ004-0061.npy +tests/data/ljspeech/wavs/LJ031-0117.wav|tests/data/ljspeech/wavs/LJ031-0117.npy +tests/data/ljspeech/wavs/LJ047-0039.wav|tests/data/ljspeech/wavs/LJ047-0039.npy +tests/data/ljspeech/wavs/LJ019-0298.wav|tests/data/ljspeech/wavs/LJ019-0298.npy +tests/data/ljspeech/wavs/LJ013-0101.wav|tests/data/ljspeech/wavs/LJ013-0101.npy +tests/data/ljspeech/wavs/LJ021-0092.wav|tests/data/ljspeech/wavs/LJ021-0092.npy +tests/data/ljspeech/wavs/LJ026-0111.wav|tests/data/ljspeech/wavs/LJ026-0111.npy +tests/data/ljspeech/wavs/LJ019-0204.wav|tests/data/ljspeech/wavs/LJ019-0204.npy +tests/data/ljspeech/wavs/LJ027-0017.wav|tests/data/ljspeech/wavs/LJ027-0017.npy +tests/data/ljspeech/wavs/LJ017-0138.wav|tests/data/ljspeech/wavs/LJ017-0138.npy +tests/data/ljspeech/wavs/LJ031-0177.wav|tests/data/ljspeech/wavs/LJ031-0177.npy +tests/data/ljspeech/wavs/LJ047-0121.wav|tests/data/ljspeech/wavs/LJ047-0121.npy +tests/data/ljspeech/wavs/LJ043-0155.wav|tests/data/ljspeech/wavs/LJ043-0155.npy +tests/data/ljspeech/wavs/LJ019-0059.wav|tests/data/ljspeech/wavs/LJ019-0059.npy +tests/data/ljspeech/wavs/LJ014-0191.wav|tests/data/ljspeech/wavs/LJ014-0191.npy +tests/data/ljspeech/wavs/LJ016-0287.wav|tests/data/ljspeech/wavs/LJ016-0287.npy +tests/data/ljspeech/wavs/LJ016-0341.wav|tests/data/ljspeech/wavs/LJ016-0341.npy +tests/data/ljspeech/wavs/LJ037-0200.wav|tests/data/ljspeech/wavs/LJ037-0200.npy +tests/data/ljspeech/wavs/LJ021-0178.wav|tests/data/ljspeech/wavs/LJ021-0178.npy +tests/data/ljspeech/wavs/LJ036-0214.wav|tests/data/ljspeech/wavs/LJ036-0214.npy +tests/data/ljspeech/wavs/LJ018-0339.wav|tests/data/ljspeech/wavs/LJ018-0339.npy +tests/data/ljspeech/wavs/LJ037-0097.wav|tests/data/ljspeech/wavs/LJ037-0097.npy +tests/data/ljspeech/wavs/LJ036-0218.wav|tests/data/ljspeech/wavs/LJ036-0218.npy +tests/data/ljspeech/wavs/LJ023-0085.wav|tests/data/ljspeech/wavs/LJ023-0085.npy +tests/data/ljspeech/wavs/LJ049-0124.wav|tests/data/ljspeech/wavs/LJ049-0124.npy +tests/data/ljspeech/wavs/LJ035-0135.wav|tests/data/ljspeech/wavs/LJ035-0135.npy +tests/data/ljspeech/wavs/LJ029-0155.wav|tests/data/ljspeech/wavs/LJ029-0155.npy +tests/data/ljspeech/wavs/LJ001-0174.wav|tests/data/ljspeech/wavs/LJ001-0174.npy +tests/data/ljspeech/wavs/LJ028-0363.wav|tests/data/ljspeech/wavs/LJ028-0363.npy +tests/data/ljspeech/wavs/LJ046-0134.wav|tests/data/ljspeech/wavs/LJ046-0134.npy +tests/data/ljspeech/wavs/LJ015-0129.wav|tests/data/ljspeech/wavs/LJ015-0129.npy +tests/data/ljspeech/wavs/LJ046-0161.wav|tests/data/ljspeech/wavs/LJ046-0161.npy +tests/data/ljspeech/wavs/LJ042-0043.wav|tests/data/ljspeech/wavs/LJ042-0043.npy +tests/data/ljspeech/wavs/LJ020-0071.wav|tests/data/ljspeech/wavs/LJ020-0071.npy +tests/data/ljspeech/wavs/LJ020-0025.wav|tests/data/ljspeech/wavs/LJ020-0025.npy +tests/data/ljspeech/wavs/LJ043-0071.wav|tests/data/ljspeech/wavs/LJ043-0071.npy +tests/data/ljspeech/wavs/LJ021-0189.wav|tests/data/ljspeech/wavs/LJ021-0189.npy +tests/data/ljspeech/wavs/LJ022-0065.wav|tests/data/ljspeech/wavs/LJ022-0065.npy +tests/data/ljspeech/wavs/LJ015-0102.wav|tests/data/ljspeech/wavs/LJ015-0102.npy +tests/data/ljspeech/wavs/LJ048-0050.wav|tests/data/ljspeech/wavs/LJ048-0050.npy +tests/data/ljspeech/wavs/LJ012-0274.wav|tests/data/ljspeech/wavs/LJ012-0274.npy +tests/data/ljspeech/wavs/LJ013-0002.wav|tests/data/ljspeech/wavs/LJ013-0002.npy +tests/data/ljspeech/wavs/LJ006-0227.wav|tests/data/ljspeech/wavs/LJ006-0227.npy +tests/data/ljspeech/wavs/LJ039-0072.wav|tests/data/ljspeech/wavs/LJ039-0072.npy +tests/data/ljspeech/wavs/LJ008-0226.wav|tests/data/ljspeech/wavs/LJ008-0226.npy +tests/data/ljspeech/wavs/LJ039-0080.wav|tests/data/ljspeech/wavs/LJ039-0080.npy +tests/data/ljspeech/wavs/LJ003-0134.wav|tests/data/ljspeech/wavs/LJ003-0134.npy +tests/data/ljspeech/wavs/LJ048-0150.wav|tests/data/ljspeech/wavs/LJ048-0150.npy +tests/data/ljspeech/wavs/LJ002-0191.wav|tests/data/ljspeech/wavs/LJ002-0191.npy +tests/data/ljspeech/wavs/LJ045-0030.wav|tests/data/ljspeech/wavs/LJ045-0030.npy +tests/data/ljspeech/wavs/LJ021-0032.wav|tests/data/ljspeech/wavs/LJ021-0032.npy +tests/data/ljspeech/wavs/LJ010-0118.wav|tests/data/ljspeech/wavs/LJ010-0118.npy +tests/data/ljspeech/wavs/LJ024-0033.wav|tests/data/ljspeech/wavs/LJ024-0033.npy +tests/data/ljspeech/wavs/LJ012-0002.wav|tests/data/ljspeech/wavs/LJ012-0002.npy +tests/data/ljspeech/wavs/LJ046-0014.wav|tests/data/ljspeech/wavs/LJ046-0014.npy +tests/data/ljspeech/wavs/LJ028-0265.wav|tests/data/ljspeech/wavs/LJ028-0265.npy +tests/data/ljspeech/wavs/LJ007-0006.wav|tests/data/ljspeech/wavs/LJ007-0006.npy +tests/data/ljspeech/wavs/LJ006-0291.wav|tests/data/ljspeech/wavs/LJ006-0291.npy +tests/data/ljspeech/wavs/LJ008-0218.wav|tests/data/ljspeech/wavs/LJ008-0218.npy +tests/data/ljspeech/wavs/LJ008-0180.wav|tests/data/ljspeech/wavs/LJ008-0180.npy +tests/data/ljspeech/wavs/LJ016-0204.wav|tests/data/ljspeech/wavs/LJ016-0204.npy +tests/data/ljspeech/wavs/LJ018-0130.wav|tests/data/ljspeech/wavs/LJ018-0130.npy +tests/data/ljspeech/wavs/LJ036-0077.wav|tests/data/ljspeech/wavs/LJ036-0077.npy +tests/data/ljspeech/wavs/LJ028-0134.wav|tests/data/ljspeech/wavs/LJ028-0134.npy +tests/data/ljspeech/wavs/LJ046-0057.wav|tests/data/ljspeech/wavs/LJ046-0057.npy +tests/data/ljspeech/wavs/LJ045-0141.wav|tests/data/ljspeech/wavs/LJ045-0141.npy +tests/data/ljspeech/wavs/LJ041-0003.wav|tests/data/ljspeech/wavs/LJ041-0003.npy +tests/data/ljspeech/wavs/LJ029-0154.wav|tests/data/ljspeech/wavs/LJ029-0154.npy +tests/data/ljspeech/wavs/LJ046-0170.wav|tests/data/ljspeech/wavs/LJ046-0170.npy +tests/data/ljspeech/wavs/LJ023-0025.wav|tests/data/ljspeech/wavs/LJ023-0025.npy +tests/data/ljspeech/wavs/LJ038-0035.wav|tests/data/ljspeech/wavs/LJ038-0035.npy +tests/data/ljspeech/wavs/LJ037-0239.wav|tests/data/ljspeech/wavs/LJ037-0239.npy +tests/data/ljspeech/wavs/LJ004-0101.wav|tests/data/ljspeech/wavs/LJ004-0101.npy +tests/data/ljspeech/wavs/LJ015-0110.wav|tests/data/ljspeech/wavs/LJ015-0110.npy +tests/data/ljspeech/wavs/LJ036-0127.wav|tests/data/ljspeech/wavs/LJ036-0127.npy +tests/data/ljspeech/wavs/LJ044-0143.wav|tests/data/ljspeech/wavs/LJ044-0143.npy +tests/data/ljspeech/wavs/LJ024-0020.wav|tests/data/ljspeech/wavs/LJ024-0020.npy +tests/data/ljspeech/wavs/LJ014-0288.wav|tests/data/ljspeech/wavs/LJ014-0288.npy +tests/data/ljspeech/wavs/LJ028-0336.wav|tests/data/ljspeech/wavs/LJ028-0336.npy +tests/data/ljspeech/wavs/LJ041-0005.wav|tests/data/ljspeech/wavs/LJ041-0005.npy +tests/data/ljspeech/wavs/LJ003-0058.wav|tests/data/ljspeech/wavs/LJ003-0058.npy +tests/data/ljspeech/wavs/LJ014-0227.wav|tests/data/ljspeech/wavs/LJ014-0227.npy +tests/data/ljspeech/wavs/LJ015-0209.wav|tests/data/ljspeech/wavs/LJ015-0209.npy +tests/data/ljspeech/wavs/LJ045-0172.wav|tests/data/ljspeech/wavs/LJ045-0172.npy +tests/data/ljspeech/wavs/LJ038-0083.wav|tests/data/ljspeech/wavs/LJ038-0083.npy +tests/data/ljspeech/wavs/LJ016-0126.wav|tests/data/ljspeech/wavs/LJ016-0126.npy +tests/data/ljspeech/wavs/LJ004-0099.wav|tests/data/ljspeech/wavs/LJ004-0099.npy +tests/data/ljspeech/wavs/LJ050-0205.wav|tests/data/ljspeech/wavs/LJ050-0205.npy +tests/data/ljspeech/wavs/LJ050-0236.wav|tests/data/ljspeech/wavs/LJ050-0236.npy +tests/data/ljspeech/wavs/LJ038-0279.wav|tests/data/ljspeech/wavs/LJ038-0279.npy +tests/data/ljspeech/wavs/LJ019-0389.wav|tests/data/ljspeech/wavs/LJ019-0389.npy +tests/data/ljspeech/wavs/LJ032-0147.wav|tests/data/ljspeech/wavs/LJ032-0147.npy +tests/data/ljspeech/wavs/LJ004-0092.wav|tests/data/ljspeech/wavs/LJ004-0092.npy +tests/data/ljspeech/wavs/LJ047-0070.wav|tests/data/ljspeech/wavs/LJ047-0070.npy +tests/data/ljspeech/wavs/LJ013-0013.wav|tests/data/ljspeech/wavs/LJ013-0013.npy +tests/data/ljspeech/wavs/LJ047-0176.wav|tests/data/ljspeech/wavs/LJ047-0176.npy +tests/data/ljspeech/wavs/LJ048-0002.wav|tests/data/ljspeech/wavs/LJ048-0002.npy +tests/data/ljspeech/wavs/LJ049-0213.wav|tests/data/ljspeech/wavs/LJ049-0213.npy +tests/data/ljspeech/wavs/LJ039-0082.wav|tests/data/ljspeech/wavs/LJ039-0082.npy +tests/data/ljspeech/wavs/LJ031-0146.wav|tests/data/ljspeech/wavs/LJ031-0146.npy +tests/data/ljspeech/wavs/LJ016-0312.wav|tests/data/ljspeech/wavs/LJ016-0312.npy +tests/data/ljspeech/wavs/LJ008-0114.wav|tests/data/ljspeech/wavs/LJ008-0114.npy +tests/data/ljspeech/wavs/LJ023-0062.wav|tests/data/ljspeech/wavs/LJ023-0062.npy +tests/data/ljspeech/wavs/LJ011-0020.wav|tests/data/ljspeech/wavs/LJ011-0020.npy +tests/data/ljspeech/wavs/LJ024-0064.wav|tests/data/ljspeech/wavs/LJ024-0064.npy +tests/data/ljspeech/wavs/LJ005-0037.wav|tests/data/ljspeech/wavs/LJ005-0037.npy +tests/data/ljspeech/wavs/LJ043-0112.wav|tests/data/ljspeech/wavs/LJ043-0112.npy +tests/data/ljspeech/wavs/LJ024-0038.wav|tests/data/ljspeech/wavs/LJ024-0038.npy +tests/data/ljspeech/wavs/LJ023-0011.wav|tests/data/ljspeech/wavs/LJ023-0011.npy +tests/data/ljspeech/wavs/LJ006-0208.wav|tests/data/ljspeech/wavs/LJ006-0208.npy +tests/data/ljspeech/wavs/LJ025-0051.wav|tests/data/ljspeech/wavs/LJ025-0051.npy +tests/data/ljspeech/wavs/LJ035-0187.wav|tests/data/ljspeech/wavs/LJ035-0187.npy +tests/data/ljspeech/wavs/LJ028-0160.wav|tests/data/ljspeech/wavs/LJ028-0160.npy +tests/data/ljspeech/wavs/LJ041-0091.wav|tests/data/ljspeech/wavs/LJ041-0091.npy +tests/data/ljspeech/wavs/LJ008-0161.wav|tests/data/ljspeech/wavs/LJ008-0161.npy +tests/data/ljspeech/wavs/LJ017-0042.wav|tests/data/ljspeech/wavs/LJ017-0042.npy +tests/data/ljspeech/wavs/LJ036-0151.wav|tests/data/ljspeech/wavs/LJ036-0151.npy +tests/data/ljspeech/wavs/LJ032-0229.wav|tests/data/ljspeech/wavs/LJ032-0229.npy +tests/data/ljspeech/wavs/LJ008-0271.wav|tests/data/ljspeech/wavs/LJ008-0271.npy +tests/data/ljspeech/wavs/LJ047-0210.wav|tests/data/ljspeech/wavs/LJ047-0210.npy +tests/data/ljspeech/wavs/LJ028-0224.wav|tests/data/ljspeech/wavs/LJ028-0224.npy +tests/data/ljspeech/wavs/LJ024-0034.wav|tests/data/ljspeech/wavs/LJ024-0034.npy +tests/data/ljspeech/wavs/LJ009-0088.wav|tests/data/ljspeech/wavs/LJ009-0088.npy +tests/data/ljspeech/wavs/LJ031-0062.wav|tests/data/ljspeech/wavs/LJ031-0062.npy +tests/data/ljspeech/wavs/LJ037-0237.wav|tests/data/ljspeech/wavs/LJ037-0237.npy +tests/data/ljspeech/wavs/LJ040-0128.wav|tests/data/ljspeech/wavs/LJ040-0128.npy +tests/data/ljspeech/wavs/LJ032-0061.wav|tests/data/ljspeech/wavs/LJ032-0061.npy +tests/data/ljspeech/wavs/LJ050-0107.wav|tests/data/ljspeech/wavs/LJ050-0107.npy +tests/data/ljspeech/wavs/LJ007-0033.wav|tests/data/ljspeech/wavs/LJ007-0033.npy +tests/data/ljspeech/wavs/LJ037-0222.wav|tests/data/ljspeech/wavs/LJ037-0222.npy +tests/data/ljspeech/wavs/LJ016-0409.wav|tests/data/ljspeech/wavs/LJ016-0409.npy +tests/data/ljspeech/wavs/LJ015-0179.wav|tests/data/ljspeech/wavs/LJ015-0179.npy +tests/data/ljspeech/wavs/LJ016-0187.wav|tests/data/ljspeech/wavs/LJ016-0187.npy +tests/data/ljspeech/wavs/LJ007-0071.wav|tests/data/ljspeech/wavs/LJ007-0071.npy +tests/data/ljspeech/wavs/LJ022-0060.wav|tests/data/ljspeech/wavs/LJ022-0060.npy +tests/data/ljspeech/wavs/LJ047-0135.wav|tests/data/ljspeech/wavs/LJ047-0135.npy +tests/data/ljspeech/wavs/LJ040-0090.wav|tests/data/ljspeech/wavs/LJ040-0090.npy +tests/data/ljspeech/wavs/LJ011-0044.wav|tests/data/ljspeech/wavs/LJ011-0044.npy +tests/data/ljspeech/wavs/LJ015-0279.wav|tests/data/ljspeech/wavs/LJ015-0279.npy +tests/data/ljspeech/wavs/LJ014-0237.wav|tests/data/ljspeech/wavs/LJ014-0237.npy +tests/data/ljspeech/wavs/LJ014-0202.wav|tests/data/ljspeech/wavs/LJ014-0202.npy +tests/data/ljspeech/wavs/LJ028-0112.wav|tests/data/ljspeech/wavs/LJ028-0112.npy +tests/data/ljspeech/wavs/LJ010-0094.wav|tests/data/ljspeech/wavs/LJ010-0094.npy +tests/data/ljspeech/wavs/LJ015-0224.wav|tests/data/ljspeech/wavs/LJ015-0224.npy +tests/data/ljspeech/wavs/LJ009-0301.wav|tests/data/ljspeech/wavs/LJ009-0301.npy +tests/data/ljspeech/wavs/LJ012-0228.wav|tests/data/ljspeech/wavs/LJ012-0228.npy +tests/data/ljspeech/wavs/LJ047-0219.wav|tests/data/ljspeech/wavs/LJ047-0219.npy +tests/data/ljspeech/wavs/LJ025-0130.wav|tests/data/ljspeech/wavs/LJ025-0130.npy +tests/data/ljspeech/wavs/LJ038-0033.wav|tests/data/ljspeech/wavs/LJ038-0033.npy +tests/data/ljspeech/wavs/LJ037-0061.wav|tests/data/ljspeech/wavs/LJ037-0061.npy +tests/data/ljspeech/wavs/LJ025-0105.wav|tests/data/ljspeech/wavs/LJ025-0105.npy +tests/data/ljspeech/wavs/LJ027-0064.wav|tests/data/ljspeech/wavs/LJ027-0064.npy +tests/data/ljspeech/wavs/LJ021-0059.wav|tests/data/ljspeech/wavs/LJ021-0059.npy +tests/data/ljspeech/wavs/LJ011-0234.wav|tests/data/ljspeech/wavs/LJ011-0234.npy +tests/data/ljspeech/wavs/LJ009-0010.wav|tests/data/ljspeech/wavs/LJ009-0010.npy +tests/data/ljspeech/wavs/LJ015-0161.wav|tests/data/ljspeech/wavs/LJ015-0161.npy +tests/data/ljspeech/wavs/LJ012-0025.wav|tests/data/ljspeech/wavs/LJ012-0025.npy +tests/data/ljspeech/wavs/LJ032-0075.wav|tests/data/ljspeech/wavs/LJ032-0075.npy +tests/data/ljspeech/wavs/LJ029-0185.wav|tests/data/ljspeech/wavs/LJ029-0185.npy +tests/data/ljspeech/wavs/LJ046-0151.wav|tests/data/ljspeech/wavs/LJ046-0151.npy +tests/data/ljspeech/wavs/LJ044-0205.wav|tests/data/ljspeech/wavs/LJ044-0205.npy +tests/data/ljspeech/wavs/LJ023-0096.wav|tests/data/ljspeech/wavs/LJ023-0096.npy +tests/data/ljspeech/wavs/LJ043-0052.wav|tests/data/ljspeech/wavs/LJ043-0052.npy +tests/data/ljspeech/wavs/LJ049-0003.wav|tests/data/ljspeech/wavs/LJ049-0003.npy +tests/data/ljspeech/wavs/LJ048-0156.wav|tests/data/ljspeech/wavs/LJ048-0156.npy +tests/data/ljspeech/wavs/LJ019-0180.wav|tests/data/ljspeech/wavs/LJ019-0180.npy +tests/data/ljspeech/wavs/LJ047-0002.wav|tests/data/ljspeech/wavs/LJ047-0002.npy +tests/data/ljspeech/wavs/LJ042-0118.wav|tests/data/ljspeech/wavs/LJ042-0118.npy +tests/data/ljspeech/wavs/LJ034-0105.wav|tests/data/ljspeech/wavs/LJ034-0105.npy +tests/data/ljspeech/wavs/LJ005-0178.wav|tests/data/ljspeech/wavs/LJ005-0178.npy +tests/data/ljspeech/wavs/LJ004-0052.wav|tests/data/ljspeech/wavs/LJ004-0052.npy +tests/data/ljspeech/wavs/LJ003-0123.wav|tests/data/ljspeech/wavs/LJ003-0123.npy +tests/data/ljspeech/wavs/LJ026-0105.wav|tests/data/ljspeech/wavs/LJ026-0105.npy +tests/data/ljspeech/wavs/LJ019-0126.wav|tests/data/ljspeech/wavs/LJ019-0126.npy +tests/data/ljspeech/wavs/LJ030-0075.wav|tests/data/ljspeech/wavs/LJ030-0075.npy +tests/data/ljspeech/wavs/LJ017-0258.wav|tests/data/ljspeech/wavs/LJ017-0258.npy +tests/data/ljspeech/wavs/LJ035-0103.wav|tests/data/ljspeech/wavs/LJ035-0103.npy +tests/data/ljspeech/wavs/LJ045-0221.wav|tests/data/ljspeech/wavs/LJ045-0221.npy +tests/data/ljspeech/wavs/LJ018-0008.wav|tests/data/ljspeech/wavs/LJ018-0008.npy +tests/data/ljspeech/wavs/LJ011-0132.wav|tests/data/ljspeech/wavs/LJ011-0132.npy +tests/data/ljspeech/wavs/LJ049-0018.wav|tests/data/ljspeech/wavs/LJ049-0018.npy +tests/data/ljspeech/wavs/LJ003-0279.wav|tests/data/ljspeech/wavs/LJ003-0279.npy +tests/data/ljspeech/wavs/LJ049-0010.wav|tests/data/ljspeech/wavs/LJ049-0010.npy +tests/data/ljspeech/wavs/LJ036-0061.wav|tests/data/ljspeech/wavs/LJ036-0061.npy +tests/data/ljspeech/wavs/LJ045-0084.wav|tests/data/ljspeech/wavs/LJ045-0084.npy +tests/data/ljspeech/wavs/LJ027-0040.wav|tests/data/ljspeech/wavs/LJ027-0040.npy +tests/data/ljspeech/wavs/LJ008-0069.wav|tests/data/ljspeech/wavs/LJ008-0069.npy +tests/data/ljspeech/wavs/LJ030-0240.wav|tests/data/ljspeech/wavs/LJ030-0240.npy +tests/data/ljspeech/wavs/LJ042-0011.wav|tests/data/ljspeech/wavs/LJ042-0011.npy +tests/data/ljspeech/wavs/LJ043-0134.wav|tests/data/ljspeech/wavs/LJ043-0134.npy +tests/data/ljspeech/wavs/LJ032-0024.wav|tests/data/ljspeech/wavs/LJ032-0024.npy +tests/data/ljspeech/wavs/LJ033-0113.wav|tests/data/ljspeech/wavs/LJ033-0113.npy +tests/data/ljspeech/wavs/LJ031-0070.wav|tests/data/ljspeech/wavs/LJ031-0070.npy +tests/data/ljspeech/wavs/LJ036-0177.wav|tests/data/ljspeech/wavs/LJ036-0177.npy +tests/data/ljspeech/wavs/LJ034-0020.wav|tests/data/ljspeech/wavs/LJ034-0020.npy +tests/data/ljspeech/wavs/LJ026-0126.wav|tests/data/ljspeech/wavs/LJ026-0126.npy +tests/data/ljspeech/wavs/LJ032-0023.wav|tests/data/ljspeech/wavs/LJ032-0023.npy +tests/data/ljspeech/wavs/LJ050-0019.wav|tests/data/ljspeech/wavs/LJ050-0019.npy +tests/data/ljspeech/wavs/LJ043-0167.wav|tests/data/ljspeech/wavs/LJ043-0167.npy +tests/data/ljspeech/wavs/LJ004-0150.wav|tests/data/ljspeech/wavs/LJ004-0150.npy +tests/data/ljspeech/wavs/LJ036-0014.wav|tests/data/ljspeech/wavs/LJ036-0014.npy +tests/data/ljspeech/wavs/LJ005-0231.wav|tests/data/ljspeech/wavs/LJ005-0231.npy +tests/data/ljspeech/wavs/LJ049-0025.wav|tests/data/ljspeech/wavs/LJ049-0025.npy +tests/data/ljspeech/wavs/LJ035-0051.wav|tests/data/ljspeech/wavs/LJ035-0051.npy +tests/data/ljspeech/wavs/LJ049-0090.wav|tests/data/ljspeech/wavs/LJ049-0090.npy +tests/data/ljspeech/wavs/LJ022-0192.wav|tests/data/ljspeech/wavs/LJ022-0192.npy +tests/data/ljspeech/wavs/LJ038-0063.wav|tests/data/ljspeech/wavs/LJ038-0063.npy +tests/data/ljspeech/wavs/LJ016-0055.wav|tests/data/ljspeech/wavs/LJ016-0055.npy +tests/data/ljspeech/wavs/LJ035-0014.wav|tests/data/ljspeech/wavs/LJ035-0014.npy +tests/data/ljspeech/wavs/LJ011-0008.wav|tests/data/ljspeech/wavs/LJ011-0008.npy +tests/data/ljspeech/wavs/LJ028-0018.wav|tests/data/ljspeech/wavs/LJ028-0018.npy +tests/data/ljspeech/wavs/LJ041-0094.wav|tests/data/ljspeech/wavs/LJ041-0094.npy +tests/data/ljspeech/wavs/LJ001-0090.wav|tests/data/ljspeech/wavs/LJ001-0090.npy +tests/data/ljspeech/wavs/LJ010-0283.wav|tests/data/ljspeech/wavs/LJ010-0283.npy +tests/data/ljspeech/wavs/LJ036-0136.wav|tests/data/ljspeech/wavs/LJ036-0136.npy +tests/data/ljspeech/wavs/LJ010-0286.wav|tests/data/ljspeech/wavs/LJ010-0286.npy +tests/data/ljspeech/wavs/LJ002-0007.wav|tests/data/ljspeech/wavs/LJ002-0007.npy +tests/data/ljspeech/wavs/LJ004-0137.wav|tests/data/ljspeech/wavs/LJ004-0137.npy +tests/data/ljspeech/wavs/LJ035-0196.wav|tests/data/ljspeech/wavs/LJ035-0196.npy +tests/data/ljspeech/wavs/LJ030-0029.wav|tests/data/ljspeech/wavs/LJ030-0029.npy +tests/data/ljspeech/wavs/LJ034-0146.wav|tests/data/ljspeech/wavs/LJ034-0146.npy +tests/data/ljspeech/wavs/LJ036-0074.wav|tests/data/ljspeech/wavs/LJ036-0074.npy +tests/data/ljspeech/wavs/LJ038-0164.wav|tests/data/ljspeech/wavs/LJ038-0164.npy +tests/data/ljspeech/wavs/LJ034-0009.wav|tests/data/ljspeech/wavs/LJ034-0009.npy +tests/data/ljspeech/wavs/LJ031-0003.wav|tests/data/ljspeech/wavs/LJ031-0003.npy +tests/data/ljspeech/wavs/LJ003-0220.wav|tests/data/ljspeech/wavs/LJ003-0220.npy +tests/data/ljspeech/wavs/LJ017-0271.wav|tests/data/ljspeech/wavs/LJ017-0271.npy +tests/data/ljspeech/wavs/LJ046-0116.wav|tests/data/ljspeech/wavs/LJ046-0116.npy +tests/data/ljspeech/wavs/LJ041-0162.wav|tests/data/ljspeech/wavs/LJ041-0162.npy +tests/data/ljspeech/wavs/LJ039-0030.wav|tests/data/ljspeech/wavs/LJ039-0030.npy +tests/data/ljspeech/wavs/LJ002-0142.wav|tests/data/ljspeech/wavs/LJ002-0142.npy +tests/data/ljspeech/wavs/LJ024-0051.wav|tests/data/ljspeech/wavs/LJ024-0051.npy +tests/data/ljspeech/wavs/LJ009-0025.wav|tests/data/ljspeech/wavs/LJ009-0025.npy +tests/data/ljspeech/wavs/LJ028-0461.wav|tests/data/ljspeech/wavs/LJ028-0461.npy +tests/data/ljspeech/wavs/LJ005-0034.wav|tests/data/ljspeech/wavs/LJ005-0034.npy +tests/data/ljspeech/wavs/LJ002-0239.wav|tests/data/ljspeech/wavs/LJ002-0239.npy +tests/data/ljspeech/wavs/LJ046-0024.wav|tests/data/ljspeech/wavs/LJ046-0024.npy +tests/data/ljspeech/wavs/LJ016-0193.wav|tests/data/ljspeech/wavs/LJ016-0193.npy +tests/data/ljspeech/wavs/LJ039-0152.wav|tests/data/ljspeech/wavs/LJ039-0152.npy +tests/data/ljspeech/wavs/LJ010-0192.wav|tests/data/ljspeech/wavs/LJ010-0192.npy +tests/data/ljspeech/wavs/LJ040-0099.wav|tests/data/ljspeech/wavs/LJ040-0099.npy +tests/data/ljspeech/wavs/LJ010-0042.wav|tests/data/ljspeech/wavs/LJ010-0042.npy +tests/data/ljspeech/wavs/LJ013-0216.wav|tests/data/ljspeech/wavs/LJ013-0216.npy +tests/data/ljspeech/wavs/LJ008-0233.wav|tests/data/ljspeech/wavs/LJ008-0233.npy +tests/data/ljspeech/wavs/LJ014-0104.wav|tests/data/ljspeech/wavs/LJ014-0104.npy +tests/data/ljspeech/wavs/LJ014-0311.wav|tests/data/ljspeech/wavs/LJ014-0311.npy +tests/data/ljspeech/wavs/LJ001-0185.wav|tests/data/ljspeech/wavs/LJ001-0185.npy +tests/data/ljspeech/wavs/LJ031-0160.wav|tests/data/ljspeech/wavs/LJ031-0160.npy +tests/data/ljspeech/wavs/LJ023-0055.wav|tests/data/ljspeech/wavs/LJ023-0055.npy +tests/data/ljspeech/wavs/LJ017-0025.wav|tests/data/ljspeech/wavs/LJ017-0025.npy +tests/data/ljspeech/wavs/LJ029-0136.wav|tests/data/ljspeech/wavs/LJ029-0136.npy +tests/data/ljspeech/wavs/LJ012-0136.wav|tests/data/ljspeech/wavs/LJ012-0136.npy +tests/data/ljspeech/wavs/LJ042-0127.wav|tests/data/ljspeech/wavs/LJ042-0127.npy +tests/data/ljspeech/wavs/LJ034-0110.wav|tests/data/ljspeech/wavs/LJ034-0110.npy +tests/data/ljspeech/wavs/LJ032-0066.wav|tests/data/ljspeech/wavs/LJ032-0066.npy +tests/data/ljspeech/wavs/LJ006-0007.wav|tests/data/ljspeech/wavs/LJ006-0007.npy +tests/data/ljspeech/wavs/LJ035-0074.wav|tests/data/ljspeech/wavs/LJ035-0074.npy +tests/data/ljspeech/wavs/LJ047-0045.wav|tests/data/ljspeech/wavs/LJ047-0045.npy +tests/data/ljspeech/wavs/LJ007-0073.wav|tests/data/ljspeech/wavs/LJ007-0073.npy +tests/data/ljspeech/wavs/LJ022-0148.wav|tests/data/ljspeech/wavs/LJ022-0148.npy +tests/data/ljspeech/wavs/LJ017-0150.wav|tests/data/ljspeech/wavs/LJ017-0150.npy +tests/data/ljspeech/wavs/LJ019-0380.wav|tests/data/ljspeech/wavs/LJ019-0380.npy +tests/data/ljspeech/wavs/LJ028-0260.wav|tests/data/ljspeech/wavs/LJ028-0260.npy +tests/data/ljspeech/wavs/LJ030-0094.wav|tests/data/ljspeech/wavs/LJ030-0094.npy +tests/data/ljspeech/wavs/LJ029-0128.wav|tests/data/ljspeech/wavs/LJ029-0128.npy +tests/data/ljspeech/wavs/LJ015-0053.wav|tests/data/ljspeech/wavs/LJ015-0053.npy +tests/data/ljspeech/wavs/LJ027-0043.wav|tests/data/ljspeech/wavs/LJ027-0043.npy +tests/data/ljspeech/wavs/LJ050-0238.wav|tests/data/ljspeech/wavs/LJ050-0238.npy +tests/data/ljspeech/wavs/LJ013-0099.wav|tests/data/ljspeech/wavs/LJ013-0099.npy +tests/data/ljspeech/wavs/LJ020-0006.wav|tests/data/ljspeech/wavs/LJ020-0006.npy +tests/data/ljspeech/wavs/LJ024-0021.wav|tests/data/ljspeech/wavs/LJ024-0021.npy +tests/data/ljspeech/wavs/LJ019-0305.wav|tests/data/ljspeech/wavs/LJ019-0305.npy +tests/data/ljspeech/wavs/LJ033-0158.wav|tests/data/ljspeech/wavs/LJ033-0158.npy +tests/data/ljspeech/wavs/LJ016-0088.wav|tests/data/ljspeech/wavs/LJ016-0088.npy +tests/data/ljspeech/wavs/LJ014-0338.wav|tests/data/ljspeech/wavs/LJ014-0338.npy +tests/data/ljspeech/wavs/LJ019-0249.wav|tests/data/ljspeech/wavs/LJ019-0249.npy +tests/data/ljspeech/wavs/LJ003-0259.wav|tests/data/ljspeech/wavs/LJ003-0259.npy +tests/data/ljspeech/wavs/LJ035-0151.wav|tests/data/ljspeech/wavs/LJ035-0151.npy +tests/data/ljspeech/wavs/LJ004-0221.wav|tests/data/ljspeech/wavs/LJ004-0221.npy +tests/data/ljspeech/wavs/LJ035-0081.wav|tests/data/ljspeech/wavs/LJ035-0081.npy +tests/data/ljspeech/wavs/LJ038-0301.wav|tests/data/ljspeech/wavs/LJ038-0301.npy +tests/data/ljspeech/wavs/LJ012-0194.wav|tests/data/ljspeech/wavs/LJ012-0194.npy +tests/data/ljspeech/wavs/LJ003-0200.wav|tests/data/ljspeech/wavs/LJ003-0200.npy +tests/data/ljspeech/wavs/LJ018-0316.wav|tests/data/ljspeech/wavs/LJ018-0316.npy +tests/data/ljspeech/wavs/LJ048-0041.wav|tests/data/ljspeech/wavs/LJ048-0041.npy +tests/data/ljspeech/wavs/LJ046-0131.wav|tests/data/ljspeech/wavs/LJ046-0131.npy +tests/data/ljspeech/wavs/LJ014-0230.wav|tests/data/ljspeech/wavs/LJ014-0230.npy +tests/data/ljspeech/wavs/LJ016-0350.wav|tests/data/ljspeech/wavs/LJ016-0350.npy +tests/data/ljspeech/wavs/LJ042-0251.wav|tests/data/ljspeech/wavs/LJ042-0251.npy +tests/data/ljspeech/wavs/LJ014-0304.wav|tests/data/ljspeech/wavs/LJ014-0304.npy +tests/data/ljspeech/wavs/LJ009-0246.wav|tests/data/ljspeech/wavs/LJ009-0246.npy +tests/data/ljspeech/wavs/LJ024-0050.wav|tests/data/ljspeech/wavs/LJ024-0050.npy +tests/data/ljspeech/wavs/LJ036-0188.wav|tests/data/ljspeech/wavs/LJ036-0188.npy +tests/data/ljspeech/wavs/LJ001-0081.wav|tests/data/ljspeech/wavs/LJ001-0081.npy +tests/data/ljspeech/wavs/LJ045-0223.wav|tests/data/ljspeech/wavs/LJ045-0223.npy +tests/data/ljspeech/wavs/LJ022-0182.wav|tests/data/ljspeech/wavs/LJ022-0182.npy +tests/data/ljspeech/wavs/LJ027-0151.wav|tests/data/ljspeech/wavs/LJ027-0151.npy +tests/data/ljspeech/wavs/LJ014-0290.wav|tests/data/ljspeech/wavs/LJ014-0290.npy +tests/data/ljspeech/wavs/LJ008-0137.wav|tests/data/ljspeech/wavs/LJ008-0137.npy +tests/data/ljspeech/wavs/LJ037-0126.wav|tests/data/ljspeech/wavs/LJ037-0126.npy +tests/data/ljspeech/wavs/LJ050-0230.wav|tests/data/ljspeech/wavs/LJ050-0230.npy +tests/data/ljspeech/wavs/LJ027-0148.wav|tests/data/ljspeech/wavs/LJ027-0148.npy +tests/data/ljspeech/wavs/LJ028-0369.wav|tests/data/ljspeech/wavs/LJ028-0369.npy +tests/data/ljspeech/wavs/LJ015-0270.wav|tests/data/ljspeech/wavs/LJ015-0270.npy +tests/data/ljspeech/wavs/LJ040-0226.wav|tests/data/ljspeech/wavs/LJ040-0226.npy +tests/data/ljspeech/wavs/LJ012-0222.wav|tests/data/ljspeech/wavs/LJ012-0222.npy +tests/data/ljspeech/wavs/LJ003-0044.wav|tests/data/ljspeech/wavs/LJ003-0044.npy +tests/data/ljspeech/wavs/LJ017-0005.wav|tests/data/ljspeech/wavs/LJ017-0005.npy +tests/data/ljspeech/wavs/LJ016-0289.wav|tests/data/ljspeech/wavs/LJ016-0289.npy +tests/data/ljspeech/wavs/LJ027-0080.wav|tests/data/ljspeech/wavs/LJ027-0080.npy +tests/data/ljspeech/wavs/LJ043-0056.wav|tests/data/ljspeech/wavs/LJ043-0056.npy +tests/data/ljspeech/wavs/LJ008-0290.wav|tests/data/ljspeech/wavs/LJ008-0290.npy +tests/data/ljspeech/wavs/LJ021-0136.wav|tests/data/ljspeech/wavs/LJ021-0136.npy +tests/data/ljspeech/wavs/LJ005-0288.wav|tests/data/ljspeech/wavs/LJ005-0288.npy +tests/data/ljspeech/wavs/LJ023-0034.wav|tests/data/ljspeech/wavs/LJ023-0034.npy +tests/data/ljspeech/wavs/LJ027-0150.wav|tests/data/ljspeech/wavs/LJ027-0150.npy +tests/data/ljspeech/wavs/LJ018-0294.wav|tests/data/ljspeech/wavs/LJ018-0294.npy +tests/data/ljspeech/wavs/LJ031-0115.wav|tests/data/ljspeech/wavs/LJ031-0115.npy +tests/data/ljspeech/wavs/LJ038-0103.wav|tests/data/ljspeech/wavs/LJ038-0103.npy +tests/data/ljspeech/wavs/LJ046-0193.wav|tests/data/ljspeech/wavs/LJ046-0193.npy +tests/data/ljspeech/wavs/LJ030-0101.wav|tests/data/ljspeech/wavs/LJ030-0101.npy +tests/data/ljspeech/wavs/LJ019-0084.wav|tests/data/ljspeech/wavs/LJ019-0084.npy +tests/data/ljspeech/wavs/LJ014-0293.wav|tests/data/ljspeech/wavs/LJ014-0293.npy +tests/data/ljspeech/wavs/LJ005-0076.wav|tests/data/ljspeech/wavs/LJ005-0076.npy +tests/data/ljspeech/wavs/LJ036-0083.wav|tests/data/ljspeech/wavs/LJ036-0083.npy +tests/data/ljspeech/wavs/LJ036-0025.wav|tests/data/ljspeech/wavs/LJ036-0025.npy +tests/data/ljspeech/wavs/LJ038-0187.wav|tests/data/ljspeech/wavs/LJ038-0187.npy +tests/data/ljspeech/wavs/LJ018-0163.wav|tests/data/ljspeech/wavs/LJ018-0163.npy +tests/data/ljspeech/wavs/LJ036-0130.wav|tests/data/ljspeech/wavs/LJ036-0130.npy +tests/data/ljspeech/wavs/LJ028-0367.wav|tests/data/ljspeech/wavs/LJ028-0367.npy +tests/data/ljspeech/wavs/LJ028-0168.wav|tests/data/ljspeech/wavs/LJ028-0168.npy +tests/data/ljspeech/wavs/LJ014-0095.wav|tests/data/ljspeech/wavs/LJ014-0095.npy +tests/data/ljspeech/wavs/LJ018-0082.wav|tests/data/ljspeech/wavs/LJ018-0082.npy +tests/data/ljspeech/wavs/LJ030-0174.wav|tests/data/ljspeech/wavs/LJ030-0174.npy +tests/data/ljspeech/wavs/LJ038-0141.wav|tests/data/ljspeech/wavs/LJ038-0141.npy +tests/data/ljspeech/wavs/LJ017-0045.wav|tests/data/ljspeech/wavs/LJ017-0045.npy +tests/data/ljspeech/wavs/LJ039-0041.wav|tests/data/ljspeech/wavs/LJ039-0041.npy +tests/data/ljspeech/wavs/LJ012-0280.wav|tests/data/ljspeech/wavs/LJ012-0280.npy +tests/data/ljspeech/wavs/LJ006-0168.wav|tests/data/ljspeech/wavs/LJ006-0168.npy +tests/data/ljspeech/wavs/LJ018-0304.wav|tests/data/ljspeech/wavs/LJ018-0304.npy +tests/data/ljspeech/wavs/LJ015-0184.wav|tests/data/ljspeech/wavs/LJ015-0184.npy +tests/data/ljspeech/wavs/LJ046-0018.wav|tests/data/ljspeech/wavs/LJ046-0018.npy +tests/data/ljspeech/wavs/LJ015-0050.wav|tests/data/ljspeech/wavs/LJ015-0050.npy +tests/data/ljspeech/wavs/LJ017-0152.wav|tests/data/ljspeech/wavs/LJ017-0152.npy +tests/data/ljspeech/wavs/LJ028-0199.wav|tests/data/ljspeech/wavs/LJ028-0199.npy +tests/data/ljspeech/wavs/LJ017-0192.wav|tests/data/ljspeech/wavs/LJ017-0192.npy +tests/data/ljspeech/wavs/LJ038-0228.wav|tests/data/ljspeech/wavs/LJ038-0228.npy +tests/data/ljspeech/wavs/LJ012-0259.wav|tests/data/ljspeech/wavs/LJ012-0259.npy +tests/data/ljspeech/wavs/LJ034-0121.wav|tests/data/ljspeech/wavs/LJ034-0121.npy +tests/data/ljspeech/wavs/LJ046-0235.wav|tests/data/ljspeech/wavs/LJ046-0235.npy +tests/data/ljspeech/wavs/LJ047-0077.wav|tests/data/ljspeech/wavs/LJ047-0077.npy +tests/data/ljspeech/wavs/LJ006-0023.wav|tests/data/ljspeech/wavs/LJ006-0023.npy +tests/data/ljspeech/wavs/LJ011-0112.wav|tests/data/ljspeech/wavs/LJ011-0112.npy +tests/data/ljspeech/wavs/LJ020-0070.wav|tests/data/ljspeech/wavs/LJ020-0070.npy +tests/data/ljspeech/wavs/LJ042-0148.wav|tests/data/ljspeech/wavs/LJ042-0148.npy +tests/data/ljspeech/wavs/LJ007-0230.wav|tests/data/ljspeech/wavs/LJ007-0230.npy +tests/data/ljspeech/wavs/LJ025-0100.wav|tests/data/ljspeech/wavs/LJ025-0100.npy +tests/data/ljspeech/wavs/LJ048-0016.wav|tests/data/ljspeech/wavs/LJ048-0016.npy +tests/data/ljspeech/wavs/LJ010-0193.wav|tests/data/ljspeech/wavs/LJ010-0193.npy +tests/data/ljspeech/wavs/LJ042-0072.wav|tests/data/ljspeech/wavs/LJ042-0072.npy +tests/data/ljspeech/wavs/LJ021-0028.wav|tests/data/ljspeech/wavs/LJ021-0028.npy +tests/data/ljspeech/wavs/LJ042-0080.wav|tests/data/ljspeech/wavs/LJ042-0080.npy +tests/data/ljspeech/wavs/LJ050-0017.wav|tests/data/ljspeech/wavs/LJ050-0017.npy +tests/data/ljspeech/wavs/LJ049-0224.wav|tests/data/ljspeech/wavs/LJ049-0224.npy +tests/data/ljspeech/wavs/LJ004-0068.wav|tests/data/ljspeech/wavs/LJ004-0068.npy +tests/data/ljspeech/wavs/LJ010-0135.wav|tests/data/ljspeech/wavs/LJ010-0135.npy +tests/data/ljspeech/wavs/LJ021-0105.wav|tests/data/ljspeech/wavs/LJ021-0105.npy +tests/data/ljspeech/wavs/LJ021-0063.wav|tests/data/ljspeech/wavs/LJ021-0063.npy +tests/data/ljspeech/wavs/LJ012-0220.wav|tests/data/ljspeech/wavs/LJ012-0220.npy +tests/data/ljspeech/wavs/LJ042-0111.wav|tests/data/ljspeech/wavs/LJ042-0111.npy +tests/data/ljspeech/wavs/LJ047-0084.wav|tests/data/ljspeech/wavs/LJ047-0084.npy +tests/data/ljspeech/wavs/LJ001-0126.wav|tests/data/ljspeech/wavs/LJ001-0126.npy +tests/data/ljspeech/wavs/LJ022-0018.wav|tests/data/ljspeech/wavs/LJ022-0018.npy +tests/data/ljspeech/wavs/LJ023-0008.wav|tests/data/ljspeech/wavs/LJ023-0008.npy +tests/data/ljspeech/wavs/LJ005-0280.wav|tests/data/ljspeech/wavs/LJ005-0280.npy +tests/data/ljspeech/wavs/LJ004-0243.wav|tests/data/ljspeech/wavs/LJ004-0243.npy +tests/data/ljspeech/wavs/LJ008-0112.wav|tests/data/ljspeech/wavs/LJ008-0112.npy +tests/data/ljspeech/wavs/LJ009-0279.wav|tests/data/ljspeech/wavs/LJ009-0279.npy +tests/data/ljspeech/wavs/LJ046-0084.wav|tests/data/ljspeech/wavs/LJ046-0084.npy +tests/data/ljspeech/wavs/LJ008-0123.wav|tests/data/ljspeech/wavs/LJ008-0123.npy +tests/data/ljspeech/wavs/LJ032-0026.wav|tests/data/ljspeech/wavs/LJ032-0026.npy +tests/data/ljspeech/wavs/LJ044-0065.wav|tests/data/ljspeech/wavs/LJ044-0065.npy +tests/data/ljspeech/wavs/LJ032-0220.wav|tests/data/ljspeech/wavs/LJ032-0220.npy +tests/data/ljspeech/wavs/LJ042-0031.wav|tests/data/ljspeech/wavs/LJ042-0031.npy +tests/data/ljspeech/wavs/LJ025-0079.wav|tests/data/ljspeech/wavs/LJ025-0079.npy +tests/data/ljspeech/wavs/LJ028-0420.wav|tests/data/ljspeech/wavs/LJ028-0420.npy +tests/data/ljspeech/wavs/LJ045-0003.wav|tests/data/ljspeech/wavs/LJ045-0003.npy +tests/data/ljspeech/wavs/LJ009-0047.wav|tests/data/ljspeech/wavs/LJ009-0047.npy +tests/data/ljspeech/wavs/LJ001-0141.wav|tests/data/ljspeech/wavs/LJ001-0141.npy +tests/data/ljspeech/wavs/LJ008-0317.wav|tests/data/ljspeech/wavs/LJ008-0317.npy +tests/data/ljspeech/wavs/LJ005-0166.wav|tests/data/ljspeech/wavs/LJ005-0166.npy +tests/data/ljspeech/wavs/LJ005-0276.wav|tests/data/ljspeech/wavs/LJ005-0276.npy +tests/data/ljspeech/wavs/LJ002-0281.wav|tests/data/ljspeech/wavs/LJ002-0281.npy +tests/data/ljspeech/wavs/LJ015-0310.wav|tests/data/ljspeech/wavs/LJ015-0310.npy +tests/data/ljspeech/wavs/LJ021-0159.wav|tests/data/ljspeech/wavs/LJ021-0159.npy +tests/data/ljspeech/wavs/LJ008-0288.wav|tests/data/ljspeech/wavs/LJ008-0288.npy +tests/data/ljspeech/wavs/LJ017-0008.wav|tests/data/ljspeech/wavs/LJ017-0008.npy +tests/data/ljspeech/wavs/LJ009-0248.wav|tests/data/ljspeech/wavs/LJ009-0248.npy +tests/data/ljspeech/wavs/LJ025-0010.wav|tests/data/ljspeech/wavs/LJ025-0010.npy +tests/data/ljspeech/wavs/LJ034-0031.wav|tests/data/ljspeech/wavs/LJ034-0031.npy +tests/data/ljspeech/wavs/LJ024-0086.wav|tests/data/ljspeech/wavs/LJ024-0086.npy +tests/data/ljspeech/wavs/LJ045-0161.wav|tests/data/ljspeech/wavs/LJ045-0161.npy +tests/data/ljspeech/wavs/LJ016-0158.wav|tests/data/ljspeech/wavs/LJ016-0158.npy +tests/data/ljspeech/wavs/LJ048-0074.wav|tests/data/ljspeech/wavs/LJ048-0074.npy +tests/data/ljspeech/wavs/LJ048-0271.wav|tests/data/ljspeech/wavs/LJ048-0271.npy +tests/data/ljspeech/wavs/LJ032-0191.wav|tests/data/ljspeech/wavs/LJ032-0191.npy +tests/data/ljspeech/wavs/LJ021-0182.wav|tests/data/ljspeech/wavs/LJ021-0182.npy +tests/data/ljspeech/wavs/LJ044-0008.wav|tests/data/ljspeech/wavs/LJ044-0008.npy +tests/data/ljspeech/wavs/LJ009-0231.wav|tests/data/ljspeech/wavs/LJ009-0231.npy +tests/data/ljspeech/wavs/LJ027-0059.wav|tests/data/ljspeech/wavs/LJ027-0059.npy +tests/data/ljspeech/wavs/LJ021-0135.wav|tests/data/ljspeech/wavs/LJ021-0135.npy +tests/data/ljspeech/wavs/LJ008-0024.wav|tests/data/ljspeech/wavs/LJ008-0024.npy +tests/data/ljspeech/wavs/LJ002-0127.wav|tests/data/ljspeech/wavs/LJ002-0127.npy +tests/data/ljspeech/wavs/LJ033-0025.wav|tests/data/ljspeech/wavs/LJ033-0025.npy +tests/data/ljspeech/wavs/LJ003-0281.wav|tests/data/ljspeech/wavs/LJ003-0281.npy +tests/data/ljspeech/wavs/LJ022-0146.wav|tests/data/ljspeech/wavs/LJ022-0146.npy +tests/data/ljspeech/wavs/LJ006-0141.wav|tests/data/ljspeech/wavs/LJ006-0141.npy +tests/data/ljspeech/wavs/LJ031-0058.wav|tests/data/ljspeech/wavs/LJ031-0058.npy +tests/data/ljspeech/wavs/LJ014-0069.wav|tests/data/ljspeech/wavs/LJ014-0069.npy +tests/data/ljspeech/wavs/LJ014-0155.wav|tests/data/ljspeech/wavs/LJ014-0155.npy +tests/data/ljspeech/wavs/LJ006-0132.wav|tests/data/ljspeech/wavs/LJ006-0132.npy +tests/data/ljspeech/wavs/LJ013-0193.wav|tests/data/ljspeech/wavs/LJ013-0193.npy +tests/data/ljspeech/wavs/LJ050-0209.wav|tests/data/ljspeech/wavs/LJ050-0209.npy +tests/data/ljspeech/wavs/LJ028-0144.wav|tests/data/ljspeech/wavs/LJ028-0144.npy +tests/data/ljspeech/wavs/LJ045-0143.wav|tests/data/ljspeech/wavs/LJ045-0143.npy +tests/data/ljspeech/wavs/LJ017-0100.wav|tests/data/ljspeech/wavs/LJ017-0100.npy +tests/data/ljspeech/wavs/LJ020-0027.wav|tests/data/ljspeech/wavs/LJ020-0027.npy +tests/data/ljspeech/wavs/LJ026-0007.wav|tests/data/ljspeech/wavs/LJ026-0007.npy +tests/data/ljspeech/wavs/LJ034-0138.wav|tests/data/ljspeech/wavs/LJ034-0138.npy +tests/data/ljspeech/wavs/LJ002-0045.wav|tests/data/ljspeech/wavs/LJ002-0045.npy +tests/data/ljspeech/wavs/LJ018-0310.wav|tests/data/ljspeech/wavs/LJ018-0310.npy +tests/data/ljspeech/wavs/LJ001-0061.wav|tests/data/ljspeech/wavs/LJ001-0061.npy +tests/data/ljspeech/wavs/LJ009-0127.wav|tests/data/ljspeech/wavs/LJ009-0127.npy +tests/data/ljspeech/wavs/LJ012-0261.wav|tests/data/ljspeech/wavs/LJ012-0261.npy +tests/data/ljspeech/wavs/LJ019-0171.wav|tests/data/ljspeech/wavs/LJ019-0171.npy +tests/data/ljspeech/wavs/LJ028-0181.wav|tests/data/ljspeech/wavs/LJ028-0181.npy +tests/data/ljspeech/wavs/LJ027-0180.wav|tests/data/ljspeech/wavs/LJ027-0180.npy +tests/data/ljspeech/wavs/LJ004-0167.wav|tests/data/ljspeech/wavs/LJ004-0167.npy +tests/data/ljspeech/wavs/LJ005-0204.wav|tests/data/ljspeech/wavs/LJ005-0204.npy +tests/data/ljspeech/wavs/LJ013-0172.wav|tests/data/ljspeech/wavs/LJ013-0172.npy +tests/data/ljspeech/wavs/LJ028-0058.wav|tests/data/ljspeech/wavs/LJ028-0058.npy +tests/data/ljspeech/wavs/LJ035-0106.wav|tests/data/ljspeech/wavs/LJ035-0106.npy +tests/data/ljspeech/wavs/LJ018-0385.wav|tests/data/ljspeech/wavs/LJ018-0385.npy +tests/data/ljspeech/wavs/LJ050-0264.wav|tests/data/ljspeech/wavs/LJ050-0264.npy +tests/data/ljspeech/wavs/LJ040-0086.wav|tests/data/ljspeech/wavs/LJ040-0086.npy +tests/data/ljspeech/wavs/LJ010-0228.wav|tests/data/ljspeech/wavs/LJ010-0228.npy +tests/data/ljspeech/wavs/LJ038-0194.wav|tests/data/ljspeech/wavs/LJ038-0194.npy +tests/data/ljspeech/wavs/LJ015-0014.wav|tests/data/ljspeech/wavs/LJ015-0014.npy +tests/data/ljspeech/wavs/LJ008-0015.wav|tests/data/ljspeech/wavs/LJ008-0015.npy +tests/data/ljspeech/wavs/LJ010-0113.wav|tests/data/ljspeech/wavs/LJ010-0113.npy +tests/data/ljspeech/wavs/LJ009-0144.wav|tests/data/ljspeech/wavs/LJ009-0144.npy +tests/data/ljspeech/wavs/LJ011-0263.wav|tests/data/ljspeech/wavs/LJ011-0263.npy +tests/data/ljspeech/wavs/LJ012-0045.wav|tests/data/ljspeech/wavs/LJ012-0045.npy +tests/data/ljspeech/wavs/LJ039-0046.wav|tests/data/ljspeech/wavs/LJ039-0046.npy +tests/data/ljspeech/wavs/LJ005-0136.wav|tests/data/ljspeech/wavs/LJ005-0136.npy +tests/data/ljspeech/wavs/LJ028-0348.wav|tests/data/ljspeech/wavs/LJ028-0348.npy +tests/data/ljspeech/wavs/LJ018-0212.wav|tests/data/ljspeech/wavs/LJ018-0212.npy +tests/data/ljspeech/wavs/LJ039-0020.wav|tests/data/ljspeech/wavs/LJ039-0020.npy +tests/data/ljspeech/wavs/LJ013-0095.wav|tests/data/ljspeech/wavs/LJ013-0095.npy +tests/data/ljspeech/wavs/LJ005-0014.wav|tests/data/ljspeech/wavs/LJ005-0014.npy +tests/data/ljspeech/wavs/LJ012-0128.wav|tests/data/ljspeech/wavs/LJ012-0128.npy +tests/data/ljspeech/wavs/LJ028-0331.wav|tests/data/ljspeech/wavs/LJ028-0331.npy +tests/data/ljspeech/wavs/LJ010-0269.wav|tests/data/ljspeech/wavs/LJ010-0269.npy +tests/data/ljspeech/wavs/LJ011-0024.wav|tests/data/ljspeech/wavs/LJ011-0024.npy +tests/data/ljspeech/wavs/LJ045-0072.wav|tests/data/ljspeech/wavs/LJ045-0072.npy +tests/data/ljspeech/wavs/LJ028-0207.wav|tests/data/ljspeech/wavs/LJ028-0207.npy +tests/data/ljspeech/wavs/LJ008-0220.wav|tests/data/ljspeech/wavs/LJ008-0220.npy +tests/data/ljspeech/wavs/LJ042-0179.wav|tests/data/ljspeech/wavs/LJ042-0179.npy +tests/data/ljspeech/wavs/LJ012-0055.wav|tests/data/ljspeech/wavs/LJ012-0055.npy +tests/data/ljspeech/wavs/LJ015-0035.wav|tests/data/ljspeech/wavs/LJ015-0035.npy +tests/data/ljspeech/wavs/LJ007-0203.wav|tests/data/ljspeech/wavs/LJ007-0203.npy +tests/data/ljspeech/wavs/LJ008-0168.wav|tests/data/ljspeech/wavs/LJ008-0168.npy +tests/data/ljspeech/wavs/LJ012-0114.wav|tests/data/ljspeech/wavs/LJ012-0114.npy +tests/data/ljspeech/wavs/LJ012-0243.wav|tests/data/ljspeech/wavs/LJ012-0243.npy +tests/data/ljspeech/wavs/LJ012-0216.wav|tests/data/ljspeech/wavs/LJ012-0216.npy +tests/data/ljspeech/wavs/LJ018-0354.wav|tests/data/ljspeech/wavs/LJ018-0354.npy +tests/data/ljspeech/wavs/LJ032-0198.wav|tests/data/ljspeech/wavs/LJ032-0198.npy +tests/data/ljspeech/wavs/LJ034-0148.wav|tests/data/ljspeech/wavs/LJ034-0148.npy +tests/data/ljspeech/wavs/LJ047-0062.wav|tests/data/ljspeech/wavs/LJ047-0062.npy +tests/data/ljspeech/wavs/LJ038-0231.wav|tests/data/ljspeech/wavs/LJ038-0231.npy +tests/data/ljspeech/wavs/LJ036-0122.wav|tests/data/ljspeech/wavs/LJ036-0122.npy +tests/data/ljspeech/wavs/LJ002-0272.wav|tests/data/ljspeech/wavs/LJ002-0272.npy +tests/data/ljspeech/wavs/LJ017-0245.wav|tests/data/ljspeech/wavs/LJ017-0245.npy +tests/data/ljspeech/wavs/LJ030-0169.wav|tests/data/ljspeech/wavs/LJ030-0169.npy +tests/data/ljspeech/wavs/LJ048-0009.wav|tests/data/ljspeech/wavs/LJ048-0009.npy +tests/data/ljspeech/wavs/LJ022-0113.wav|tests/data/ljspeech/wavs/LJ022-0113.npy +tests/data/ljspeech/wavs/LJ003-0135.wav|tests/data/ljspeech/wavs/LJ003-0135.npy +tests/data/ljspeech/wavs/LJ029-0122.wav|tests/data/ljspeech/wavs/LJ029-0122.npy +tests/data/ljspeech/wavs/LJ018-0150.wav|tests/data/ljspeech/wavs/LJ018-0150.npy +tests/data/ljspeech/wavs/LJ004-0129.wav|tests/data/ljspeech/wavs/LJ004-0129.npy +tests/data/ljspeech/wavs/LJ002-0019.wav|tests/data/ljspeech/wavs/LJ002-0019.npy +tests/data/ljspeech/wavs/LJ021-0065.wav|tests/data/ljspeech/wavs/LJ021-0065.npy +tests/data/ljspeech/wavs/LJ028-0098.wav|tests/data/ljspeech/wavs/LJ028-0098.npy +tests/data/ljspeech/wavs/LJ036-0161.wav|tests/data/ljspeech/wavs/LJ036-0161.npy +tests/data/ljspeech/wavs/LJ022-0085.wav|tests/data/ljspeech/wavs/LJ022-0085.npy +tests/data/ljspeech/wavs/LJ030-0212.wav|tests/data/ljspeech/wavs/LJ030-0212.npy +tests/data/ljspeech/wavs/LJ020-0042.wav|tests/data/ljspeech/wavs/LJ020-0042.npy +tests/data/ljspeech/wavs/LJ022-0154.wav|tests/data/ljspeech/wavs/LJ022-0154.npy +tests/data/ljspeech/wavs/LJ017-0250.wav|tests/data/ljspeech/wavs/LJ017-0250.npy +tests/data/ljspeech/wavs/LJ015-0076.wav|tests/data/ljspeech/wavs/LJ015-0076.npy +tests/data/ljspeech/wavs/LJ021-0161.wav|tests/data/ljspeech/wavs/LJ021-0161.npy +tests/data/ljspeech/wavs/LJ029-0162.wav|tests/data/ljspeech/wavs/LJ029-0162.npy +tests/data/ljspeech/wavs/LJ011-0134.wav|tests/data/ljspeech/wavs/LJ011-0134.npy +tests/data/ljspeech/wavs/LJ044-0224.wav|tests/data/ljspeech/wavs/LJ044-0224.npy +tests/data/ljspeech/wavs/LJ016-0120.wav|tests/data/ljspeech/wavs/LJ016-0120.npy +tests/data/ljspeech/wavs/LJ045-0238.wav|tests/data/ljspeech/wavs/LJ045-0238.npy +tests/data/ljspeech/wavs/LJ034-0129.wav|tests/data/ljspeech/wavs/LJ034-0129.npy +tests/data/ljspeech/wavs/LJ011-0254.wav|tests/data/ljspeech/wavs/LJ011-0254.npy +tests/data/ljspeech/wavs/LJ046-0059.wav|tests/data/ljspeech/wavs/LJ046-0059.npy +tests/data/ljspeech/wavs/LJ027-0002.wav|tests/data/ljspeech/wavs/LJ027-0002.npy +tests/data/ljspeech/wavs/LJ033-0050.wav|tests/data/ljspeech/wavs/LJ033-0050.npy +tests/data/ljspeech/wavs/LJ048-0194.wav|tests/data/ljspeech/wavs/LJ048-0194.npy +tests/data/ljspeech/wavs/LJ046-0079.wav|tests/data/ljspeech/wavs/LJ046-0079.npy +tests/data/ljspeech/wavs/LJ023-0136.wav|tests/data/ljspeech/wavs/LJ023-0136.npy +tests/data/ljspeech/wavs/LJ012-0203.wav|tests/data/ljspeech/wavs/LJ012-0203.npy +tests/data/ljspeech/wavs/LJ027-0010.wav|tests/data/ljspeech/wavs/LJ027-0010.npy +tests/data/ljspeech/wavs/LJ010-0186.wav|tests/data/ljspeech/wavs/LJ010-0186.npy +tests/data/ljspeech/wavs/LJ040-0132.wav|tests/data/ljspeech/wavs/LJ040-0132.npy +tests/data/ljspeech/wavs/LJ019-0197.wav|tests/data/ljspeech/wavs/LJ019-0197.npy +tests/data/ljspeech/wavs/LJ021-0133.wav|tests/data/ljspeech/wavs/LJ021-0133.npy +tests/data/ljspeech/wavs/LJ039-0115.wav|tests/data/ljspeech/wavs/LJ039-0115.npy +tests/data/ljspeech/wavs/LJ045-0092.wav|tests/data/ljspeech/wavs/LJ045-0092.npy +tests/data/ljspeech/wavs/LJ019-0055.wav|tests/data/ljspeech/wavs/LJ019-0055.npy +tests/data/ljspeech/wavs/LJ039-0147.wav|tests/data/ljspeech/wavs/LJ039-0147.npy +tests/data/ljspeech/wavs/LJ006-0081.wav|tests/data/ljspeech/wavs/LJ006-0081.npy +tests/data/ljspeech/wavs/LJ001-0160.wav|tests/data/ljspeech/wavs/LJ001-0160.npy +tests/data/ljspeech/wavs/LJ026-0006.wav|tests/data/ljspeech/wavs/LJ026-0006.npy +tests/data/ljspeech/wavs/LJ037-0048.wav|tests/data/ljspeech/wavs/LJ037-0048.npy +tests/data/ljspeech/wavs/LJ014-0140.wav|tests/data/ljspeech/wavs/LJ014-0140.npy +tests/data/ljspeech/wavs/LJ018-0178.wav|tests/data/ljspeech/wavs/LJ018-0178.npy +tests/data/ljspeech/wavs/LJ019-0328.wav|tests/data/ljspeech/wavs/LJ019-0328.npy +tests/data/ljspeech/wavs/LJ010-0171.wav|tests/data/ljspeech/wavs/LJ010-0171.npy +tests/data/ljspeech/wavs/LJ005-0218.wav|tests/data/ljspeech/wavs/LJ005-0218.npy +tests/data/ljspeech/wavs/LJ021-0109.wav|tests/data/ljspeech/wavs/LJ021-0109.npy +tests/data/ljspeech/wavs/LJ035-0054.wav|tests/data/ljspeech/wavs/LJ035-0054.npy +tests/data/ljspeech/wavs/LJ002-0109.wav|tests/data/ljspeech/wavs/LJ002-0109.npy +tests/data/ljspeech/wavs/LJ003-0284.wav|tests/data/ljspeech/wavs/LJ003-0284.npy +tests/data/ljspeech/wavs/LJ021-0142.wav|tests/data/ljspeech/wavs/LJ021-0142.npy +tests/data/ljspeech/wavs/LJ028-0201.wav|tests/data/ljspeech/wavs/LJ028-0201.npy +tests/data/ljspeech/wavs/LJ007-0120.wav|tests/data/ljspeech/wavs/LJ007-0120.npy +tests/data/ljspeech/wavs/LJ021-0067.wav|tests/data/ljspeech/wavs/LJ021-0067.npy +tests/data/ljspeech/wavs/LJ031-0211.wav|tests/data/ljspeech/wavs/LJ031-0211.npy +tests/data/ljspeech/wavs/LJ038-0268.wav|tests/data/ljspeech/wavs/LJ038-0268.npy +tests/data/ljspeech/wavs/LJ006-0166.wav|tests/data/ljspeech/wavs/LJ006-0166.npy +tests/data/ljspeech/wavs/LJ024-0027.wav|tests/data/ljspeech/wavs/LJ024-0027.npy +tests/data/ljspeech/wavs/LJ031-0052.wav|tests/data/ljspeech/wavs/LJ031-0052.npy +tests/data/ljspeech/wavs/LJ049-0229.wav|tests/data/ljspeech/wavs/LJ049-0229.npy +tests/data/ljspeech/wavs/LJ044-0186.wav|tests/data/ljspeech/wavs/LJ044-0186.npy +tests/data/ljspeech/wavs/LJ028-0251.wav|tests/data/ljspeech/wavs/LJ028-0251.npy +tests/data/ljspeech/wavs/LJ021-0017.wav|tests/data/ljspeech/wavs/LJ021-0017.npy +tests/data/ljspeech/wavs/LJ012-0223.wav|tests/data/ljspeech/wavs/LJ012-0223.npy +tests/data/ljspeech/wavs/LJ005-0045.wav|tests/data/ljspeech/wavs/LJ005-0045.npy +tests/data/ljspeech/wavs/LJ040-0047.wav|tests/data/ljspeech/wavs/LJ040-0047.npy +tests/data/ljspeech/wavs/LJ005-0104.wav|tests/data/ljspeech/wavs/LJ005-0104.npy +tests/data/ljspeech/wavs/LJ028-0267.wav|tests/data/ljspeech/wavs/LJ028-0267.npy +tests/data/ljspeech/wavs/LJ023-0024.wav|tests/data/ljspeech/wavs/LJ023-0024.npy +tests/data/ljspeech/wavs/LJ023-0028.wav|tests/data/ljspeech/wavs/LJ023-0028.npy +tests/data/ljspeech/wavs/LJ040-0108.wav|tests/data/ljspeech/wavs/LJ040-0108.npy +tests/data/ljspeech/wavs/LJ031-0067.wav|tests/data/ljspeech/wavs/LJ031-0067.npy +tests/data/ljspeech/wavs/LJ035-0011.wav|tests/data/ljspeech/wavs/LJ035-0011.npy +tests/data/ljspeech/wavs/LJ003-0241.wav|tests/data/ljspeech/wavs/LJ003-0241.npy +tests/data/ljspeech/wavs/LJ013-0109.wav|tests/data/ljspeech/wavs/LJ013-0109.npy +tests/data/ljspeech/wavs/LJ033-0104.wav|tests/data/ljspeech/wavs/LJ033-0104.npy +tests/data/ljspeech/wavs/LJ028-0220.wav|tests/data/ljspeech/wavs/LJ028-0220.npy +tests/data/ljspeech/wavs/LJ015-0106.wav|tests/data/ljspeech/wavs/LJ015-0106.npy +tests/data/ljspeech/wavs/LJ043-0130.wav|tests/data/ljspeech/wavs/LJ043-0130.npy +tests/data/ljspeech/wavs/LJ048-0052.wav|tests/data/ljspeech/wavs/LJ048-0052.npy +tests/data/ljspeech/wavs/LJ012-0009.wav|tests/data/ljspeech/wavs/LJ012-0009.npy +tests/data/ljspeech/wavs/LJ042-0220.wav|tests/data/ljspeech/wavs/LJ042-0220.npy +tests/data/ljspeech/wavs/LJ033-0101.wav|tests/data/ljspeech/wavs/LJ033-0101.npy +tests/data/ljspeech/wavs/LJ002-0002.wav|tests/data/ljspeech/wavs/LJ002-0002.npy +tests/data/ljspeech/wavs/LJ002-0150.wav|tests/data/ljspeech/wavs/LJ002-0150.npy +tests/data/ljspeech/wavs/LJ017-0158.wav|tests/data/ljspeech/wavs/LJ017-0158.npy +tests/data/ljspeech/wavs/LJ045-0190.wav|tests/data/ljspeech/wavs/LJ045-0190.npy +tests/data/ljspeech/wavs/LJ045-0136.wav|tests/data/ljspeech/wavs/LJ045-0136.npy +tests/data/ljspeech/wavs/LJ041-0178.wav|tests/data/ljspeech/wavs/LJ041-0178.npy +tests/data/ljspeech/wavs/LJ005-0116.wav|tests/data/ljspeech/wavs/LJ005-0116.npy +tests/data/ljspeech/wavs/LJ017-0163.wav|tests/data/ljspeech/wavs/LJ017-0163.npy +tests/data/ljspeech/wavs/LJ033-0146.wav|tests/data/ljspeech/wavs/LJ033-0146.npy +tests/data/ljspeech/wavs/LJ010-0023.wav|tests/data/ljspeech/wavs/LJ010-0023.npy +tests/data/ljspeech/wavs/LJ006-0031.wav|tests/data/ljspeech/wavs/LJ006-0031.npy +tests/data/ljspeech/wavs/LJ027-0014.wav|tests/data/ljspeech/wavs/LJ027-0014.npy +tests/data/ljspeech/wavs/LJ046-0251.wav|tests/data/ljspeech/wavs/LJ046-0251.npy +tests/data/ljspeech/wavs/LJ028-0063.wav|tests/data/ljspeech/wavs/LJ028-0063.npy +tests/data/ljspeech/wavs/LJ042-0068.wav|tests/data/ljspeech/wavs/LJ042-0068.npy +tests/data/ljspeech/wavs/LJ022-0118.wav|tests/data/ljspeech/wavs/LJ022-0118.npy +tests/data/ljspeech/wavs/LJ046-0177.wav|tests/data/ljspeech/wavs/LJ046-0177.npy +tests/data/ljspeech/wavs/LJ015-0306.wav|tests/data/ljspeech/wavs/LJ015-0306.npy +tests/data/ljspeech/wavs/LJ037-0034.wav|tests/data/ljspeech/wavs/LJ037-0034.npy +tests/data/ljspeech/wavs/LJ024-0015.wav|tests/data/ljspeech/wavs/LJ024-0015.npy +tests/data/ljspeech/wavs/LJ023-0110.wav|tests/data/ljspeech/wavs/LJ023-0110.npy +tests/data/ljspeech/wavs/LJ044-0012.wav|tests/data/ljspeech/wavs/LJ044-0012.npy +tests/data/ljspeech/wavs/LJ047-0174.wav|tests/data/ljspeech/wavs/LJ047-0174.npy +tests/data/ljspeech/wavs/LJ030-0136.wav|tests/data/ljspeech/wavs/LJ030-0136.npy +tests/data/ljspeech/wavs/LJ009-0242.wav|tests/data/ljspeech/wavs/LJ009-0242.npy +tests/data/ljspeech/wavs/LJ022-0144.wav|tests/data/ljspeech/wavs/LJ022-0144.npy +tests/data/ljspeech/wavs/LJ028-0492.wav|tests/data/ljspeech/wavs/LJ028-0492.npy +tests/data/ljspeech/wavs/LJ017-0203.wav|tests/data/ljspeech/wavs/LJ017-0203.npy +tests/data/ljspeech/wavs/LJ017-0081.wav|tests/data/ljspeech/wavs/LJ017-0081.npy +tests/data/ljspeech/wavs/LJ015-0288.wav|tests/data/ljspeech/wavs/LJ015-0288.npy +tests/data/ljspeech/wavs/LJ001-0129.wav|tests/data/ljspeech/wavs/LJ001-0129.npy +tests/data/ljspeech/wavs/LJ022-0185.wav|tests/data/ljspeech/wavs/LJ022-0185.npy +tests/data/ljspeech/wavs/LJ016-0012.wav|tests/data/ljspeech/wavs/LJ016-0012.npy +tests/data/ljspeech/wavs/LJ008-0150.wav|tests/data/ljspeech/wavs/LJ008-0150.npy +tests/data/ljspeech/wavs/LJ044-0203.wav|tests/data/ljspeech/wavs/LJ044-0203.npy +tests/data/ljspeech/wavs/LJ030-0255.wav|tests/data/ljspeech/wavs/LJ030-0255.npy +tests/data/ljspeech/wavs/LJ005-0241.wav|tests/data/ljspeech/wavs/LJ005-0241.npy +tests/data/ljspeech/wavs/LJ033-0145.wav|tests/data/ljspeech/wavs/LJ033-0145.npy +tests/data/ljspeech/wavs/LJ044-0096.wav|tests/data/ljspeech/wavs/LJ044-0096.npy +tests/data/ljspeech/wavs/LJ046-0182.wav|tests/data/ljspeech/wavs/LJ046-0182.npy +tests/data/ljspeech/wavs/LJ041-0195.wav|tests/data/ljspeech/wavs/LJ041-0195.npy +tests/data/ljspeech/wavs/LJ040-0070.wav|tests/data/ljspeech/wavs/LJ040-0070.npy +tests/data/ljspeech/wavs/LJ010-0123.wav|tests/data/ljspeech/wavs/LJ010-0123.npy +tests/data/ljspeech/wavs/LJ023-0080.wav|tests/data/ljspeech/wavs/LJ023-0080.npy +tests/data/ljspeech/wavs/LJ008-0210.wav|tests/data/ljspeech/wavs/LJ008-0210.npy +tests/data/ljspeech/wavs/LJ033-0148.wav|tests/data/ljspeech/wavs/LJ033-0148.npy +tests/data/ljspeech/wavs/LJ021-0122.wav|tests/data/ljspeech/wavs/LJ021-0122.npy +tests/data/ljspeech/wavs/LJ016-0179.wav|tests/data/ljspeech/wavs/LJ016-0179.npy +tests/data/ljspeech/wavs/LJ006-0041.wav|tests/data/ljspeech/wavs/LJ006-0041.npy +tests/data/ljspeech/wavs/LJ023-0121.wav|tests/data/ljspeech/wavs/LJ023-0121.npy +tests/data/ljspeech/wavs/LJ019-0304.wav|tests/data/ljspeech/wavs/LJ019-0304.npy +tests/data/ljspeech/wavs/LJ025-0174.wav|tests/data/ljspeech/wavs/LJ025-0174.npy +tests/data/ljspeech/wavs/LJ009-0102.wav|tests/data/ljspeech/wavs/LJ009-0102.npy +tests/data/ljspeech/wavs/LJ022-0022.wav|tests/data/ljspeech/wavs/LJ022-0022.npy +tests/data/ljspeech/wavs/LJ011-0250.wav|tests/data/ljspeech/wavs/LJ011-0250.npy +tests/data/ljspeech/wavs/LJ022-0199.wav|tests/data/ljspeech/wavs/LJ022-0199.npy +tests/data/ljspeech/wavs/LJ001-0079.wav|tests/data/ljspeech/wavs/LJ001-0079.npy +tests/data/ljspeech/wavs/LJ004-0191.wav|tests/data/ljspeech/wavs/LJ004-0191.npy +tests/data/ljspeech/wavs/LJ020-0080.wav|tests/data/ljspeech/wavs/LJ020-0080.npy +tests/data/ljspeech/wavs/LJ028-0504.wav|tests/data/ljspeech/wavs/LJ028-0504.npy +tests/data/ljspeech/wavs/LJ009-0164.wav|tests/data/ljspeech/wavs/LJ009-0164.npy +tests/data/ljspeech/wavs/LJ028-0422.wav|tests/data/ljspeech/wavs/LJ028-0422.npy +tests/data/ljspeech/wavs/LJ019-0368.wav|tests/data/ljspeech/wavs/LJ019-0368.npy +tests/data/ljspeech/wavs/LJ008-0108.wav|tests/data/ljspeech/wavs/LJ008-0108.npy +tests/data/ljspeech/wavs/LJ010-0088.wav|tests/data/ljspeech/wavs/LJ010-0088.npy +tests/data/ljspeech/wavs/LJ005-0224.wav|tests/data/ljspeech/wavs/LJ005-0224.npy +tests/data/ljspeech/wavs/LJ042-0143.wav|tests/data/ljspeech/wavs/LJ042-0143.npy +tests/data/ljspeech/wavs/LJ045-0151.wav|tests/data/ljspeech/wavs/LJ045-0151.npy +tests/data/ljspeech/wavs/LJ036-0209.wav|tests/data/ljspeech/wavs/LJ036-0209.npy +tests/data/ljspeech/wavs/LJ049-0049.wav|tests/data/ljspeech/wavs/LJ049-0049.npy +tests/data/ljspeech/wavs/LJ014-0238.wav|tests/data/ljspeech/wavs/LJ014-0238.npy +tests/data/ljspeech/wavs/LJ023-0116.wav|tests/data/ljspeech/wavs/LJ023-0116.npy +tests/data/ljspeech/wavs/LJ008-0287.wav|tests/data/ljspeech/wavs/LJ008-0287.npy +tests/data/ljspeech/wavs/LJ028-0099.wav|tests/data/ljspeech/wavs/LJ028-0099.npy +tests/data/ljspeech/wavs/LJ026-0106.wav|tests/data/ljspeech/wavs/LJ026-0106.npy +tests/data/ljspeech/wavs/LJ005-0139.wav|tests/data/ljspeech/wavs/LJ005-0139.npy +tests/data/ljspeech/wavs/LJ027-0028.wav|tests/data/ljspeech/wavs/LJ027-0028.npy +tests/data/ljspeech/wavs/LJ003-0113.wav|tests/data/ljspeech/wavs/LJ003-0113.npy +tests/data/ljspeech/wavs/LJ014-0189.wav|tests/data/ljspeech/wavs/LJ014-0189.npy +tests/data/ljspeech/wavs/LJ045-0133.wav|tests/data/ljspeech/wavs/LJ045-0133.npy +tests/data/ljspeech/wavs/LJ050-0174.wav|tests/data/ljspeech/wavs/LJ050-0174.npy +tests/data/ljspeech/wavs/LJ038-0092.wav|tests/data/ljspeech/wavs/LJ038-0092.npy +tests/data/ljspeech/wavs/LJ046-0046.wav|tests/data/ljspeech/wavs/LJ046-0046.npy +tests/data/ljspeech/wavs/LJ038-0138.wav|tests/data/ljspeech/wavs/LJ038-0138.npy +tests/data/ljspeech/wavs/LJ039-0068.wav|tests/data/ljspeech/wavs/LJ039-0068.npy +tests/data/ljspeech/wavs/LJ015-0027.wav|tests/data/ljspeech/wavs/LJ015-0027.npy +tests/data/ljspeech/wavs/LJ030-0113.wav|tests/data/ljspeech/wavs/LJ030-0113.npy +tests/data/ljspeech/wavs/LJ011-0192.wav|tests/data/ljspeech/wavs/LJ011-0192.npy +tests/data/ljspeech/wavs/LJ036-0102.wav|tests/data/ljspeech/wavs/LJ036-0102.npy +tests/data/ljspeech/wavs/LJ045-0117.wav|tests/data/ljspeech/wavs/LJ045-0117.npy +tests/data/ljspeech/wavs/LJ017-0088.wav|tests/data/ljspeech/wavs/LJ017-0088.npy +tests/data/ljspeech/wavs/LJ038-0247.wav|tests/data/ljspeech/wavs/LJ038-0247.npy +tests/data/ljspeech/wavs/LJ042-0170.wav|tests/data/ljspeech/wavs/LJ042-0170.npy +tests/data/ljspeech/wavs/LJ028-0286.wav|tests/data/ljspeech/wavs/LJ028-0286.npy +tests/data/ljspeech/wavs/LJ018-0322.wav|tests/data/ljspeech/wavs/LJ018-0322.npy +tests/data/ljspeech/wavs/LJ038-0097.wav|tests/data/ljspeech/wavs/LJ038-0097.npy +tests/data/ljspeech/wavs/LJ036-0012.wav|tests/data/ljspeech/wavs/LJ036-0012.npy +tests/data/ljspeech/wavs/LJ017-0003.wav|tests/data/ljspeech/wavs/LJ017-0003.npy +tests/data/ljspeech/wavs/LJ003-0043.wav|tests/data/ljspeech/wavs/LJ003-0043.npy +tests/data/ljspeech/wavs/LJ033-0049.wav|tests/data/ljspeech/wavs/LJ033-0049.npy +tests/data/ljspeech/wavs/LJ045-0176.wav|tests/data/ljspeech/wavs/LJ045-0176.npy +tests/data/ljspeech/wavs/LJ017-0199.wav|tests/data/ljspeech/wavs/LJ017-0199.npy +tests/data/ljspeech/wavs/LJ004-0192.wav|tests/data/ljspeech/wavs/LJ004-0192.npy +tests/data/ljspeech/wavs/LJ007-0202.wav|tests/data/ljspeech/wavs/LJ007-0202.npy +tests/data/ljspeech/wavs/LJ018-0018.wav|tests/data/ljspeech/wavs/LJ018-0018.npy +tests/data/ljspeech/wavs/LJ043-0113.wav|tests/data/ljspeech/wavs/LJ043-0113.npy +tests/data/ljspeech/wavs/LJ050-0081.wav|tests/data/ljspeech/wavs/LJ050-0081.npy +tests/data/ljspeech/wavs/LJ013-0128.wav|tests/data/ljspeech/wavs/LJ013-0128.npy +tests/data/ljspeech/wavs/LJ002-0332.wav|tests/data/ljspeech/wavs/LJ002-0332.npy +tests/data/ljspeech/wavs/LJ035-0124.wav|tests/data/ljspeech/wavs/LJ035-0124.npy +tests/data/ljspeech/wavs/LJ002-0114.wav|tests/data/ljspeech/wavs/LJ002-0114.npy +tests/data/ljspeech/wavs/LJ017-0282.wav|tests/data/ljspeech/wavs/LJ017-0282.npy +tests/data/ljspeech/wavs/LJ019-0325.wav|tests/data/ljspeech/wavs/LJ019-0325.npy +tests/data/ljspeech/wavs/LJ014-0127.wav|tests/data/ljspeech/wavs/LJ014-0127.npy +tests/data/ljspeech/wavs/LJ018-0061.wav|tests/data/ljspeech/wavs/LJ018-0061.npy +tests/data/ljspeech/wavs/LJ004-0156.wav|tests/data/ljspeech/wavs/LJ004-0156.npy +tests/data/ljspeech/wavs/LJ010-0069.wav|tests/data/ljspeech/wavs/LJ010-0069.npy +tests/data/ljspeech/wavs/LJ005-0195.wav|tests/data/ljspeech/wavs/LJ005-0195.npy +tests/data/ljspeech/wavs/LJ017-0048.wav|tests/data/ljspeech/wavs/LJ017-0048.npy +tests/data/ljspeech/wavs/LJ004-0179.wav|tests/data/ljspeech/wavs/LJ004-0179.npy +tests/data/ljspeech/wavs/LJ026-0048.wav|tests/data/ljspeech/wavs/LJ026-0048.npy +tests/data/ljspeech/wavs/LJ019-0057.wav|tests/data/ljspeech/wavs/LJ019-0057.npy +tests/data/ljspeech/wavs/LJ019-0048.wav|tests/data/ljspeech/wavs/LJ019-0048.npy +tests/data/ljspeech/wavs/LJ012-0294.wav|tests/data/ljspeech/wavs/LJ012-0294.npy +tests/data/ljspeech/wavs/LJ045-0210.wav|tests/data/ljspeech/wavs/LJ045-0210.npy +tests/data/ljspeech/wavs/LJ029-0078.wav|tests/data/ljspeech/wavs/LJ029-0078.npy +tests/data/ljspeech/wavs/LJ015-0296.wav|tests/data/ljspeech/wavs/LJ015-0296.npy +tests/data/ljspeech/wavs/LJ003-0172.wav|tests/data/ljspeech/wavs/LJ003-0172.npy +tests/data/ljspeech/wavs/LJ014-0184.wav|tests/data/ljspeech/wavs/LJ014-0184.npy +tests/data/ljspeech/wavs/LJ007-0066.wav|tests/data/ljspeech/wavs/LJ007-0066.npy +tests/data/ljspeech/wavs/LJ041-0053.wav|tests/data/ljspeech/wavs/LJ041-0053.npy +tests/data/ljspeech/wavs/LJ047-0069.wav|tests/data/ljspeech/wavs/LJ047-0069.npy +tests/data/ljspeech/wavs/LJ042-0196.wav|tests/data/ljspeech/wavs/LJ042-0196.npy +tests/data/ljspeech/wavs/LJ022-0021.wav|tests/data/ljspeech/wavs/LJ022-0021.npy +tests/data/ljspeech/wavs/LJ044-0003.wav|tests/data/ljspeech/wavs/LJ044-0003.npy +tests/data/ljspeech/wavs/LJ038-0011.wav|tests/data/ljspeech/wavs/LJ038-0011.npy +tests/data/ljspeech/wavs/LJ015-0189.wav|tests/data/ljspeech/wavs/LJ015-0189.npy +tests/data/ljspeech/wavs/LJ030-0119.wav|tests/data/ljspeech/wavs/LJ030-0119.npy +tests/data/ljspeech/wavs/LJ022-0165.wav|tests/data/ljspeech/wavs/LJ022-0165.npy +tests/data/ljspeech/wavs/LJ022-0028.wav|tests/data/ljspeech/wavs/LJ022-0028.npy +tests/data/ljspeech/wavs/LJ046-0004.wav|tests/data/ljspeech/wavs/LJ046-0004.npy +tests/data/ljspeech/wavs/LJ004-0217.wav|tests/data/ljspeech/wavs/LJ004-0217.npy +tests/data/ljspeech/wavs/LJ025-0007.wav|tests/data/ljspeech/wavs/LJ025-0007.npy +tests/data/ljspeech/wavs/LJ039-0117.wav|tests/data/ljspeech/wavs/LJ039-0117.npy +tests/data/ljspeech/wavs/LJ027-0096.wav|tests/data/ljspeech/wavs/LJ027-0096.npy +tests/data/ljspeech/wavs/LJ033-0047.wav|tests/data/ljspeech/wavs/LJ033-0047.npy +tests/data/ljspeech/wavs/LJ035-0083.wav|tests/data/ljspeech/wavs/LJ035-0083.npy +tests/data/ljspeech/wavs/LJ028-0151.wav|tests/data/ljspeech/wavs/LJ028-0151.npy +tests/data/ljspeech/wavs/LJ022-0034.wav|tests/data/ljspeech/wavs/LJ022-0034.npy +tests/data/ljspeech/wavs/LJ005-0174.wav|tests/data/ljspeech/wavs/LJ005-0174.npy +tests/data/ljspeech/wavs/LJ022-0114.wav|tests/data/ljspeech/wavs/LJ022-0114.npy +tests/data/ljspeech/wavs/LJ023-0030.wav|tests/data/ljspeech/wavs/LJ023-0030.npy +tests/data/ljspeech/wavs/LJ030-0191.wav|tests/data/ljspeech/wavs/LJ030-0191.npy +tests/data/ljspeech/wavs/LJ006-0009.wav|tests/data/ljspeech/wavs/LJ006-0009.npy +tests/data/ljspeech/wavs/LJ050-0244.wav|tests/data/ljspeech/wavs/LJ050-0244.npy +tests/data/ljspeech/wavs/LJ007-0236.wav|tests/data/ljspeech/wavs/LJ007-0236.npy +tests/data/ljspeech/wavs/LJ002-0275.wav|tests/data/ljspeech/wavs/LJ002-0275.npy +tests/data/ljspeech/wavs/LJ037-0254.wav|tests/data/ljspeech/wavs/LJ037-0254.npy +tests/data/ljspeech/wavs/LJ031-0092.wav|tests/data/ljspeech/wavs/LJ031-0092.npy +tests/data/ljspeech/wavs/LJ028-0325.wav|tests/data/ljspeech/wavs/LJ028-0325.npy +tests/data/ljspeech/wavs/LJ038-0049.wav|tests/data/ljspeech/wavs/LJ038-0049.npy +tests/data/ljspeech/wavs/LJ008-0134.wav|tests/data/ljspeech/wavs/LJ008-0134.npy +tests/data/ljspeech/wavs/LJ039-0188.wav|tests/data/ljspeech/wavs/LJ039-0188.npy +tests/data/ljspeech/wavs/LJ004-0145.wav|tests/data/ljspeech/wavs/LJ004-0145.npy +tests/data/ljspeech/wavs/LJ029-0077.wav|tests/data/ljspeech/wavs/LJ029-0077.npy +tests/data/ljspeech/wavs/LJ028-0517.wav|tests/data/ljspeech/wavs/LJ028-0517.npy +tests/data/ljspeech/wavs/LJ019-0166.wav|tests/data/ljspeech/wavs/LJ019-0166.npy +tests/data/ljspeech/wavs/LJ029-0151.wav|tests/data/ljspeech/wavs/LJ029-0151.npy +tests/data/ljspeech/wavs/LJ029-0125.wav|tests/data/ljspeech/wavs/LJ029-0125.npy +tests/data/ljspeech/wavs/LJ005-0105.wav|tests/data/ljspeech/wavs/LJ005-0105.npy +tests/data/ljspeech/wavs/LJ046-0254.wav|tests/data/ljspeech/wavs/LJ046-0254.npy +tests/data/ljspeech/wavs/LJ002-0159.wav|tests/data/ljspeech/wavs/LJ002-0159.npy +tests/data/ljspeech/wavs/LJ020-0029.wav|tests/data/ljspeech/wavs/LJ020-0029.npy +tests/data/ljspeech/wavs/LJ021-0096.wav|tests/data/ljspeech/wavs/LJ021-0096.npy +tests/data/ljspeech/wavs/LJ044-0208.wav|tests/data/ljspeech/wavs/LJ044-0208.npy +tests/data/ljspeech/wavs/LJ047-0130.wav|tests/data/ljspeech/wavs/LJ047-0130.npy +tests/data/ljspeech/wavs/LJ031-0089.wav|tests/data/ljspeech/wavs/LJ031-0089.npy +tests/data/ljspeech/wavs/LJ038-0216.wav|tests/data/ljspeech/wavs/LJ038-0216.npy +tests/data/ljspeech/wavs/LJ006-0175.wav|tests/data/ljspeech/wavs/LJ006-0175.npy +tests/data/ljspeech/wavs/LJ027-0103.wav|tests/data/ljspeech/wavs/LJ027-0103.npy +tests/data/ljspeech/wavs/LJ005-0078.wav|tests/data/ljspeech/wavs/LJ005-0078.npy +tests/data/ljspeech/wavs/LJ044-0014.wav|tests/data/ljspeech/wavs/LJ044-0014.npy +tests/data/ljspeech/wavs/LJ043-0093.wav|tests/data/ljspeech/wavs/LJ043-0093.npy +tests/data/ljspeech/wavs/LJ021-0022.wav|tests/data/ljspeech/wavs/LJ021-0022.npy +tests/data/ljspeech/wavs/LJ018-0383.wav|tests/data/ljspeech/wavs/LJ018-0383.npy +tests/data/ljspeech/wavs/LJ010-0275.wav|tests/data/ljspeech/wavs/LJ010-0275.npy +tests/data/ljspeech/wavs/LJ007-0048.wav|tests/data/ljspeech/wavs/LJ007-0048.npy +tests/data/ljspeech/wavs/LJ005-0190.wav|tests/data/ljspeech/wavs/LJ005-0190.npy +tests/data/ljspeech/wavs/LJ001-0037.wav|tests/data/ljspeech/wavs/LJ001-0037.npy +tests/data/ljspeech/wavs/LJ012-0255.wav|tests/data/ljspeech/wavs/LJ012-0255.npy +tests/data/ljspeech/wavs/LJ033-0026.wav|tests/data/ljspeech/wavs/LJ033-0026.npy +tests/data/ljspeech/wavs/LJ029-0102.wav|tests/data/ljspeech/wavs/LJ029-0102.npy +tests/data/ljspeech/wavs/LJ049-0219.wav|tests/data/ljspeech/wavs/LJ049-0219.npy +tests/data/ljspeech/wavs/LJ016-0066.wav|tests/data/ljspeech/wavs/LJ016-0066.npy +tests/data/ljspeech/wavs/LJ042-0029.wav|tests/data/ljspeech/wavs/LJ042-0029.npy +tests/data/ljspeech/wavs/LJ035-0188.wav|tests/data/ljspeech/wavs/LJ035-0188.npy +tests/data/ljspeech/wavs/LJ018-0180.wav|tests/data/ljspeech/wavs/LJ018-0180.npy +tests/data/ljspeech/wavs/LJ044-0113.wav|tests/data/ljspeech/wavs/LJ044-0113.npy +tests/data/ljspeech/wavs/LJ034-0143.wav|tests/data/ljspeech/wavs/LJ034-0143.npy +tests/data/ljspeech/wavs/LJ035-0080.wav|tests/data/ljspeech/wavs/LJ035-0080.npy +tests/data/ljspeech/wavs/LJ047-0203.wav|tests/data/ljspeech/wavs/LJ047-0203.npy +tests/data/ljspeech/wavs/LJ010-0201.wav|tests/data/ljspeech/wavs/LJ010-0201.npy +tests/data/ljspeech/wavs/LJ035-0061.wav|tests/data/ljspeech/wavs/LJ035-0061.npy +tests/data/ljspeech/wavs/LJ002-0037.wav|tests/data/ljspeech/wavs/LJ002-0037.npy +tests/data/ljspeech/wavs/LJ037-0049.wav|tests/data/ljspeech/wavs/LJ037-0049.npy +tests/data/ljspeech/wavs/LJ030-0129.wav|tests/data/ljspeech/wavs/LJ030-0129.npy +tests/data/ljspeech/wavs/LJ033-0095.wav|tests/data/ljspeech/wavs/LJ033-0095.npy +tests/data/ljspeech/wavs/LJ028-0155.wav|tests/data/ljspeech/wavs/LJ028-0155.npy +tests/data/ljspeech/wavs/LJ050-0193.wav|tests/data/ljspeech/wavs/LJ050-0193.npy +tests/data/ljspeech/wavs/LJ016-0109.wav|tests/data/ljspeech/wavs/LJ016-0109.npy +tests/data/ljspeech/wavs/LJ011-0286.wav|tests/data/ljspeech/wavs/LJ011-0286.npy +tests/data/ljspeech/wavs/LJ035-0031.wav|tests/data/ljspeech/wavs/LJ035-0031.npy +tests/data/ljspeech/wavs/LJ014-0033.wav|tests/data/ljspeech/wavs/LJ014-0033.npy +tests/data/ljspeech/wavs/LJ004-0089.wav|tests/data/ljspeech/wavs/LJ004-0089.npy +tests/data/ljspeech/wavs/LJ011-0011.wav|tests/data/ljspeech/wavs/LJ011-0011.npy +tests/data/ljspeech/wavs/LJ002-0202.wav|tests/data/ljspeech/wavs/LJ002-0202.npy +tests/data/ljspeech/wavs/LJ046-0106.wav|tests/data/ljspeech/wavs/LJ046-0106.npy +tests/data/ljspeech/wavs/LJ015-0182.wav|tests/data/ljspeech/wavs/LJ015-0182.npy +tests/data/ljspeech/wavs/LJ030-0019.wav|tests/data/ljspeech/wavs/LJ030-0019.npy +tests/data/ljspeech/wavs/LJ016-0268.wav|tests/data/ljspeech/wavs/LJ016-0268.npy +tests/data/ljspeech/wavs/LJ028-0305.wav|tests/data/ljspeech/wavs/LJ028-0305.npy +tests/data/ljspeech/wavs/LJ037-0248.wav|tests/data/ljspeech/wavs/LJ037-0248.npy +tests/data/ljspeech/wavs/LJ016-0104.wav|tests/data/ljspeech/wavs/LJ016-0104.npy +tests/data/ljspeech/wavs/LJ028-0026.wav|tests/data/ljspeech/wavs/LJ028-0026.npy +tests/data/ljspeech/wavs/LJ049-0064.wav|tests/data/ljspeech/wavs/LJ049-0064.npy +tests/data/ljspeech/wavs/LJ035-0175.wav|tests/data/ljspeech/wavs/LJ035-0175.npy +tests/data/ljspeech/wavs/LJ047-0146.wav|tests/data/ljspeech/wavs/LJ047-0146.npy +tests/data/ljspeech/wavs/LJ048-0139.wav|tests/data/ljspeech/wavs/LJ048-0139.npy +tests/data/ljspeech/wavs/LJ003-0307.wav|tests/data/ljspeech/wavs/LJ003-0307.npy +tests/data/ljspeech/wavs/LJ050-0115.wav|tests/data/ljspeech/wavs/LJ050-0115.npy +tests/data/ljspeech/wavs/LJ022-0093.wav|tests/data/ljspeech/wavs/LJ022-0093.npy +tests/data/ljspeech/wavs/LJ015-0124.wav|tests/data/ljspeech/wavs/LJ015-0124.npy +tests/data/ljspeech/wavs/LJ016-0167.wav|tests/data/ljspeech/wavs/LJ016-0167.npy +tests/data/ljspeech/wavs/LJ007-0012.wav|tests/data/ljspeech/wavs/LJ007-0012.npy +tests/data/ljspeech/wavs/LJ033-0034.wav|tests/data/ljspeech/wavs/LJ033-0034.npy +tests/data/ljspeech/wavs/LJ002-0212.wav|tests/data/ljspeech/wavs/LJ002-0212.npy +tests/data/ljspeech/wavs/LJ017-0198.wav|tests/data/ljspeech/wavs/LJ017-0198.npy +tests/data/ljspeech/wavs/LJ019-0123.wav|tests/data/ljspeech/wavs/LJ019-0123.npy +tests/data/ljspeech/wavs/LJ019-0283.wav|tests/data/ljspeech/wavs/LJ019-0283.npy +tests/data/ljspeech/wavs/LJ014-0119.wav|tests/data/ljspeech/wavs/LJ014-0119.npy +tests/data/ljspeech/wavs/LJ002-0078.wav|tests/data/ljspeech/wavs/LJ002-0078.npy +tests/data/ljspeech/wavs/LJ001-0175.wav|tests/data/ljspeech/wavs/LJ001-0175.npy +tests/data/ljspeech/wavs/LJ018-0073.wav|tests/data/ljspeech/wavs/LJ018-0073.npy +tests/data/ljspeech/wavs/LJ032-0047.wav|tests/data/ljspeech/wavs/LJ032-0047.npy +tests/data/ljspeech/wavs/LJ025-0134.wav|tests/data/ljspeech/wavs/LJ025-0134.npy +tests/data/ljspeech/wavs/LJ012-0014.wav|tests/data/ljspeech/wavs/LJ012-0014.npy +tests/data/ljspeech/wavs/LJ013-0045.wav|tests/data/ljspeech/wavs/LJ013-0045.npy +tests/data/ljspeech/wavs/LJ034-0073.wav|tests/data/ljspeech/wavs/LJ034-0073.npy +tests/data/ljspeech/wavs/LJ009-0067.wav|tests/data/ljspeech/wavs/LJ009-0067.npy +tests/data/ljspeech/wavs/LJ004-0178.wav|tests/data/ljspeech/wavs/LJ004-0178.npy +tests/data/ljspeech/wavs/LJ001-0095.wav|tests/data/ljspeech/wavs/LJ001-0095.npy +tests/data/ljspeech/wavs/LJ009-0070.wav|tests/data/ljspeech/wavs/LJ009-0070.npy +tests/data/ljspeech/wavs/LJ043-0031.wav|tests/data/ljspeech/wavs/LJ043-0031.npy +tests/data/ljspeech/wavs/LJ026-0049.wav|tests/data/ljspeech/wavs/LJ026-0049.npy +tests/data/ljspeech/wavs/LJ042-0155.wav|tests/data/ljspeech/wavs/LJ042-0155.npy +tests/data/ljspeech/wavs/LJ007-0213.wav|tests/data/ljspeech/wavs/LJ007-0213.npy +tests/data/ljspeech/wavs/LJ043-0178.wav|tests/data/ljspeech/wavs/LJ043-0178.npy +tests/data/ljspeech/wavs/LJ014-0285.wav|tests/data/ljspeech/wavs/LJ014-0285.npy +tests/data/ljspeech/wavs/LJ032-0054.wav|tests/data/ljspeech/wavs/LJ032-0054.npy +tests/data/ljspeech/wavs/LJ050-0095.wav|tests/data/ljspeech/wavs/LJ050-0095.npy +tests/data/ljspeech/wavs/LJ040-0151.wav|tests/data/ljspeech/wavs/LJ040-0151.npy +tests/data/ljspeech/wavs/LJ035-0065.wav|tests/data/ljspeech/wavs/LJ035-0065.npy +tests/data/ljspeech/wavs/LJ011-0282.wav|tests/data/ljspeech/wavs/LJ011-0282.npy +tests/data/ljspeech/wavs/LJ006-0097.wav|tests/data/ljspeech/wavs/LJ006-0097.npy +tests/data/ljspeech/wavs/LJ005-0228.wav|tests/data/ljspeech/wavs/LJ005-0228.npy +tests/data/ljspeech/wavs/LJ028-0319.wav|tests/data/ljspeech/wavs/LJ028-0319.npy +tests/data/ljspeech/wavs/LJ043-0121.wav|tests/data/ljspeech/wavs/LJ043-0121.npy +tests/data/ljspeech/wavs/LJ042-0249.wav|tests/data/ljspeech/wavs/LJ042-0249.npy +tests/data/ljspeech/wavs/LJ044-0179.wav|tests/data/ljspeech/wavs/LJ044-0179.npy +tests/data/ljspeech/wavs/LJ016-0152.wav|tests/data/ljspeech/wavs/LJ016-0152.npy +tests/data/ljspeech/wavs/LJ013-0197.wav|tests/data/ljspeech/wavs/LJ013-0197.npy +tests/data/ljspeech/wavs/LJ011-0033.wav|tests/data/ljspeech/wavs/LJ011-0033.npy +tests/data/ljspeech/wavs/LJ012-0148.wav|tests/data/ljspeech/wavs/LJ012-0148.npy +tests/data/ljspeech/wavs/LJ008-0152.wav|tests/data/ljspeech/wavs/LJ008-0152.npy +tests/data/ljspeech/wavs/LJ013-0201.wav|tests/data/ljspeech/wavs/LJ013-0201.npy +tests/data/ljspeech/wavs/LJ037-0175.wav|tests/data/ljspeech/wavs/LJ037-0175.npy +tests/data/ljspeech/wavs/LJ006-0105.wav|tests/data/ljspeech/wavs/LJ006-0105.npy +tests/data/ljspeech/wavs/LJ015-0038.wav|tests/data/ljspeech/wavs/LJ015-0038.npy +tests/data/ljspeech/wavs/LJ029-0138.wav|tests/data/ljspeech/wavs/LJ029-0138.npy +tests/data/ljspeech/wavs/LJ044-0027.wav|tests/data/ljspeech/wavs/LJ044-0027.npy +tests/data/ljspeech/wavs/LJ029-0117.wav|tests/data/ljspeech/wavs/LJ029-0117.npy +tests/data/ljspeech/wavs/LJ014-0158.wav|tests/data/ljspeech/wavs/LJ014-0158.npy +tests/data/ljspeech/wavs/LJ037-0148.wav|tests/data/ljspeech/wavs/LJ037-0148.npy +tests/data/ljspeech/wavs/LJ006-0100.wav|tests/data/ljspeech/wavs/LJ006-0100.npy +tests/data/ljspeech/wavs/LJ007-0188.wav|tests/data/ljspeech/wavs/LJ007-0188.npy +tests/data/ljspeech/wavs/LJ011-0021.wav|tests/data/ljspeech/wavs/LJ011-0021.npy +tests/data/ljspeech/wavs/LJ032-0264.wav|tests/data/ljspeech/wavs/LJ032-0264.npy +tests/data/ljspeech/wavs/LJ013-0159.wav|tests/data/ljspeech/wavs/LJ013-0159.npy +tests/data/ljspeech/wavs/LJ016-0148.wav|tests/data/ljspeech/wavs/LJ016-0148.npy +tests/data/ljspeech/wavs/LJ002-0101.wav|tests/data/ljspeech/wavs/LJ002-0101.npy +tests/data/ljspeech/wavs/LJ039-0171.wav|tests/data/ljspeech/wavs/LJ039-0171.npy +tests/data/ljspeech/wavs/LJ008-0191.wav|tests/data/ljspeech/wavs/LJ008-0191.npy +tests/data/ljspeech/wavs/LJ008-0002.wav|tests/data/ljspeech/wavs/LJ008-0002.npy +tests/data/ljspeech/wavs/LJ026-0115.wav|tests/data/ljspeech/wavs/LJ026-0115.npy +tests/data/ljspeech/wavs/LJ001-0107.wav|tests/data/ljspeech/wavs/LJ001-0107.npy +tests/data/ljspeech/wavs/LJ026-0130.wav|tests/data/ljspeech/wavs/LJ026-0130.npy +tests/data/ljspeech/wavs/LJ022-0014.wav|tests/data/ljspeech/wavs/LJ022-0014.npy +tests/data/ljspeech/wavs/LJ014-0041.wav|tests/data/ljspeech/wavs/LJ014-0041.npy +tests/data/ljspeech/wavs/LJ021-0129.wav|tests/data/ljspeech/wavs/LJ021-0129.npy +tests/data/ljspeech/wavs/LJ047-0091.wav|tests/data/ljspeech/wavs/LJ047-0091.npy +tests/data/ljspeech/wavs/LJ028-0393.wav|tests/data/ljspeech/wavs/LJ028-0393.npy +tests/data/ljspeech/wavs/LJ036-0092.wav|tests/data/ljspeech/wavs/LJ036-0092.npy +tests/data/ljspeech/wavs/LJ033-0138.wav|tests/data/ljspeech/wavs/LJ033-0138.npy +tests/data/ljspeech/wavs/LJ015-0113.wav|tests/data/ljspeech/wavs/LJ015-0113.npy +tests/data/ljspeech/wavs/LJ026-0118.wav|tests/data/ljspeech/wavs/LJ026-0118.npy +tests/data/ljspeech/wavs/LJ008-0186.wav|tests/data/ljspeech/wavs/LJ008-0186.npy +tests/data/ljspeech/wavs/LJ030-0040.wav|tests/data/ljspeech/wavs/LJ030-0040.npy +tests/data/ljspeech/wavs/LJ004-0196.wav|tests/data/ljspeech/wavs/LJ004-0196.npy +tests/data/ljspeech/wavs/LJ006-0298.wav|tests/data/ljspeech/wavs/LJ006-0298.npy +tests/data/ljspeech/wavs/LJ002-0193.wav|tests/data/ljspeech/wavs/LJ002-0193.npy +tests/data/ljspeech/wavs/LJ037-0179.wav|tests/data/ljspeech/wavs/LJ037-0179.npy +tests/data/ljspeech/wavs/LJ018-0201.wav|tests/data/ljspeech/wavs/LJ018-0201.npy +tests/data/ljspeech/wavs/LJ003-0106.wav|tests/data/ljspeech/wavs/LJ003-0106.npy +tests/data/ljspeech/wavs/LJ009-0135.wav|tests/data/ljspeech/wavs/LJ009-0135.npy +tests/data/ljspeech/wavs/LJ030-0177.wav|tests/data/ljspeech/wavs/LJ030-0177.npy +tests/data/ljspeech/wavs/LJ015-0213.wav|tests/data/ljspeech/wavs/LJ015-0213.npy +tests/data/ljspeech/wavs/LJ001-0114.wav|tests/data/ljspeech/wavs/LJ001-0114.npy +tests/data/ljspeech/wavs/LJ040-0177.wav|tests/data/ljspeech/wavs/LJ040-0177.npy +tests/data/ljspeech/wavs/LJ004-0201.wav|tests/data/ljspeech/wavs/LJ004-0201.npy +tests/data/ljspeech/wavs/LJ036-0011.wav|tests/data/ljspeech/wavs/LJ036-0011.npy +tests/data/ljspeech/wavs/LJ002-0223.wav|tests/data/ljspeech/wavs/LJ002-0223.npy +tests/data/ljspeech/wavs/LJ003-0137.wav|tests/data/ljspeech/wavs/LJ003-0137.npy +tests/data/ljspeech/wavs/LJ032-0006.wav|tests/data/ljspeech/wavs/LJ032-0006.npy +tests/data/ljspeech/wavs/LJ048-0220.wav|tests/data/ljspeech/wavs/LJ048-0220.npy +tests/data/ljspeech/wavs/LJ036-0191.wav|tests/data/ljspeech/wavs/LJ036-0191.npy +tests/data/ljspeech/wavs/LJ033-0174.wav|tests/data/ljspeech/wavs/LJ033-0174.npy +tests/data/ljspeech/wavs/LJ002-0052.wav|tests/data/ljspeech/wavs/LJ002-0052.npy +tests/data/ljspeech/wavs/LJ024-0073.wav|tests/data/ljspeech/wavs/LJ024-0073.npy +tests/data/ljspeech/wavs/LJ036-0179.wav|tests/data/ljspeech/wavs/LJ036-0179.npy +tests/data/ljspeech/wavs/LJ027-0098.wav|tests/data/ljspeech/wavs/LJ027-0098.npy +tests/data/ljspeech/wavs/LJ042-0244.wav|tests/data/ljspeech/wavs/LJ042-0244.npy +tests/data/ljspeech/wavs/LJ042-0158.wav|tests/data/ljspeech/wavs/LJ042-0158.npy +tests/data/ljspeech/wavs/LJ016-0173.wav|tests/data/ljspeech/wavs/LJ016-0173.npy +tests/data/ljspeech/wavs/LJ004-0077.wav|tests/data/ljspeech/wavs/LJ004-0077.npy +tests/data/ljspeech/wavs/LJ044-0084.wav|tests/data/ljspeech/wavs/LJ044-0084.npy +tests/data/ljspeech/wavs/LJ009-0103.wav|tests/data/ljspeech/wavs/LJ009-0103.npy +tests/data/ljspeech/wavs/LJ024-0048.wav|tests/data/ljspeech/wavs/LJ024-0048.npy +tests/data/ljspeech/wavs/LJ031-0224.wav|tests/data/ljspeech/wavs/LJ031-0224.npy +tests/data/ljspeech/wavs/LJ008-0100.wav|tests/data/ljspeech/wavs/LJ008-0100.npy +tests/data/ljspeech/wavs/LJ003-0019.wav|tests/data/ljspeech/wavs/LJ003-0019.npy +tests/data/ljspeech/wavs/LJ001-0039.wav|tests/data/ljspeech/wavs/LJ001-0039.npy +tests/data/ljspeech/wavs/LJ034-0169.wav|tests/data/ljspeech/wavs/LJ034-0169.npy +tests/data/ljspeech/wavs/LJ019-0327.wav|tests/data/ljspeech/wavs/LJ019-0327.npy +tests/data/ljspeech/wavs/LJ008-0172.wav|tests/data/ljspeech/wavs/LJ008-0172.npy +tests/data/ljspeech/wavs/LJ016-0395.wav|tests/data/ljspeech/wavs/LJ016-0395.npy +tests/data/ljspeech/wavs/LJ017-0036.wav|tests/data/ljspeech/wavs/LJ017-0036.npy +tests/data/ljspeech/wavs/LJ007-0027.wav|tests/data/ljspeech/wavs/LJ007-0027.npy +tests/data/ljspeech/wavs/LJ020-0095.wav|tests/data/ljspeech/wavs/LJ020-0095.npy +tests/data/ljspeech/wavs/LJ034-0179.wav|tests/data/ljspeech/wavs/LJ034-0179.npy +tests/data/ljspeech/wavs/LJ007-0146.wav|tests/data/ljspeech/wavs/LJ007-0146.npy +tests/data/ljspeech/wavs/LJ016-0446.wav|tests/data/ljspeech/wavs/LJ016-0446.npy +tests/data/ljspeech/wavs/LJ024-0082.wav|tests/data/ljspeech/wavs/LJ024-0082.npy +tests/data/ljspeech/wavs/LJ008-0088.wav|tests/data/ljspeech/wavs/LJ008-0088.npy +tests/data/ljspeech/wavs/LJ020-0032.wav|tests/data/ljspeech/wavs/LJ020-0032.npy +tests/data/ljspeech/wavs/LJ008-0266.wav|tests/data/ljspeech/wavs/LJ008-0266.npy +tests/data/ljspeech/wavs/LJ046-0130.wav|tests/data/ljspeech/wavs/LJ046-0130.npy +tests/data/ljspeech/wavs/LJ038-0243.wav|tests/data/ljspeech/wavs/LJ038-0243.npy +tests/data/ljspeech/wavs/LJ043-0088.wav|tests/data/ljspeech/wavs/LJ043-0088.npy +tests/data/ljspeech/wavs/LJ050-0051.wav|tests/data/ljspeech/wavs/LJ050-0051.npy +tests/data/ljspeech/wavs/LJ029-0192.wav|tests/data/ljspeech/wavs/LJ029-0192.npy +tests/data/ljspeech/wavs/LJ011-0118.wav|tests/data/ljspeech/wavs/LJ011-0118.npy +tests/data/ljspeech/wavs/LJ042-0185.wav|tests/data/ljspeech/wavs/LJ042-0185.npy +tests/data/ljspeech/wavs/LJ022-0128.wav|tests/data/ljspeech/wavs/LJ022-0128.npy +tests/data/ljspeech/wavs/LJ045-0163.wav|tests/data/ljspeech/wavs/LJ045-0163.npy +tests/data/ljspeech/wavs/LJ018-0254.wav|tests/data/ljspeech/wavs/LJ018-0254.npy +tests/data/ljspeech/wavs/LJ035-0203.wav|tests/data/ljspeech/wavs/LJ035-0203.npy +tests/data/ljspeech/wavs/LJ036-0216.wav|tests/data/ljspeech/wavs/LJ036-0216.npy +tests/data/ljspeech/wavs/LJ010-0011.wav|tests/data/ljspeech/wavs/LJ010-0011.npy +tests/data/ljspeech/wavs/LJ043-0173.wav|tests/data/ljspeech/wavs/LJ043-0173.npy +tests/data/ljspeech/wavs/LJ032-0041.wav|tests/data/ljspeech/wavs/LJ032-0041.npy +tests/data/ljspeech/wavs/LJ043-0161.wav|tests/data/ljspeech/wavs/LJ043-0161.npy +tests/data/ljspeech/wavs/LJ037-0007.wav|tests/data/ljspeech/wavs/LJ037-0007.npy +tests/data/ljspeech/wavs/LJ038-0111.wav|tests/data/ljspeech/wavs/LJ038-0111.npy +tests/data/ljspeech/wavs/LJ015-0217.wav|tests/data/ljspeech/wavs/LJ015-0217.npy +tests/data/ljspeech/wavs/LJ010-0101.wav|tests/data/ljspeech/wavs/LJ010-0101.npy +tests/data/ljspeech/wavs/LJ012-0026.wav|tests/data/ljspeech/wavs/LJ012-0026.npy +tests/data/ljspeech/wavs/LJ008-0314.wav|tests/data/ljspeech/wavs/LJ008-0314.npy +tests/data/ljspeech/wavs/LJ008-0308.wav|tests/data/ljspeech/wavs/LJ008-0308.npy +tests/data/ljspeech/wavs/LJ012-0285.wav|tests/data/ljspeech/wavs/LJ012-0285.npy +tests/data/ljspeech/wavs/LJ010-0128.wav|tests/data/ljspeech/wavs/LJ010-0128.npy +tests/data/ljspeech/wavs/LJ013-0259.wav|tests/data/ljspeech/wavs/LJ013-0259.npy +tests/data/ljspeech/wavs/LJ019-0066.wav|tests/data/ljspeech/wavs/LJ019-0066.npy +tests/data/ljspeech/wavs/LJ008-0222.wav|tests/data/ljspeech/wavs/LJ008-0222.npy +tests/data/ljspeech/wavs/LJ018-0083.wav|tests/data/ljspeech/wavs/LJ018-0083.npy +tests/data/ljspeech/wavs/LJ045-0006.wav|tests/data/ljspeech/wavs/LJ045-0006.npy +tests/data/ljspeech/wavs/LJ018-0262.wav|tests/data/ljspeech/wavs/LJ018-0262.npy +tests/data/ljspeech/wavs/LJ038-0261.wav|tests/data/ljspeech/wavs/LJ038-0261.npy +tests/data/ljspeech/wavs/LJ002-0148.wav|tests/data/ljspeech/wavs/LJ002-0148.npy +tests/data/ljspeech/wavs/LJ038-0175.wav|tests/data/ljspeech/wavs/LJ038-0175.npy +tests/data/ljspeech/wavs/LJ002-0179.wav|tests/data/ljspeech/wavs/LJ002-0179.npy +tests/data/ljspeech/wavs/LJ028-0184.wav|tests/data/ljspeech/wavs/LJ028-0184.npy +tests/data/ljspeech/wavs/LJ039-0202.wav|tests/data/ljspeech/wavs/LJ039-0202.npy +tests/data/ljspeech/wavs/LJ029-0110.wav|tests/data/ljspeech/wavs/LJ029-0110.npy +tests/data/ljspeech/wavs/LJ028-0300.wav|tests/data/ljspeech/wavs/LJ028-0300.npy +tests/data/ljspeech/wavs/LJ018-0207.wav|tests/data/ljspeech/wavs/LJ018-0207.npy +tests/data/ljspeech/wavs/LJ010-0264.wav|tests/data/ljspeech/wavs/LJ010-0264.npy +tests/data/ljspeech/wavs/LJ016-0444.wav|tests/data/ljspeech/wavs/LJ016-0444.npy +tests/data/ljspeech/wavs/LJ033-0051.wav|tests/data/ljspeech/wavs/LJ033-0051.npy +tests/data/ljspeech/wavs/LJ042-0237.wav|tests/data/ljspeech/wavs/LJ042-0237.npy +tests/data/ljspeech/wavs/LJ022-0077.wav|tests/data/ljspeech/wavs/LJ022-0077.npy +tests/data/ljspeech/wavs/LJ034-0086.wav|tests/data/ljspeech/wavs/LJ034-0086.npy +tests/data/ljspeech/wavs/LJ042-0052.wav|tests/data/ljspeech/wavs/LJ042-0052.npy +tests/data/ljspeech/wavs/LJ011-0182.wav|tests/data/ljspeech/wavs/LJ011-0182.npy +tests/data/ljspeech/wavs/LJ039-0150.wav|tests/data/ljspeech/wavs/LJ039-0150.npy +tests/data/ljspeech/wavs/LJ039-0198.wav|tests/data/ljspeech/wavs/LJ039-0198.npy +tests/data/ljspeech/wavs/LJ040-0209.wav|tests/data/ljspeech/wavs/LJ040-0209.npy +tests/data/ljspeech/wavs/LJ018-0378.wav|tests/data/ljspeech/wavs/LJ018-0378.npy +tests/data/ljspeech/wavs/LJ017-0234.wav|tests/data/ljspeech/wavs/LJ017-0234.npy +tests/data/ljspeech/wavs/LJ039-0056.wav|tests/data/ljspeech/wavs/LJ039-0056.npy +tests/data/ljspeech/wavs/LJ019-0191.wav|tests/data/ljspeech/wavs/LJ019-0191.npy +tests/data/ljspeech/wavs/LJ005-0212.wav|tests/data/ljspeech/wavs/LJ005-0212.npy +tests/data/ljspeech/wavs/LJ007-0193.wav|tests/data/ljspeech/wavs/LJ007-0193.npy +tests/data/ljspeech/wavs/LJ024-0097.wav|tests/data/ljspeech/wavs/LJ024-0097.npy +tests/data/ljspeech/wavs/LJ018-0344.wav|tests/data/ljspeech/wavs/LJ018-0344.npy +tests/data/ljspeech/wavs/LJ003-0182.wav|tests/data/ljspeech/wavs/LJ003-0182.npy +tests/data/ljspeech/wavs/LJ042-0175.wav|tests/data/ljspeech/wavs/LJ042-0175.npy +tests/data/ljspeech/wavs/LJ032-0138.wav|tests/data/ljspeech/wavs/LJ032-0138.npy +tests/data/ljspeech/wavs/LJ009-0113.wav|tests/data/ljspeech/wavs/LJ009-0113.npy +tests/data/ljspeech/wavs/LJ041-0116.wav|tests/data/ljspeech/wavs/LJ041-0116.npy +tests/data/ljspeech/wavs/LJ022-0159.wav|tests/data/ljspeech/wavs/LJ022-0159.npy +tests/data/ljspeech/wavs/LJ004-0146.wav|tests/data/ljspeech/wavs/LJ004-0146.npy +tests/data/ljspeech/wavs/LJ023-0039.wav|tests/data/ljspeech/wavs/LJ023-0039.npy +tests/data/ljspeech/wavs/LJ019-0347.wav|tests/data/ljspeech/wavs/LJ019-0347.npy +tests/data/ljspeech/wavs/LJ044-0148.wav|tests/data/ljspeech/wavs/LJ044-0148.npy +tests/data/ljspeech/wavs/LJ022-0171.wav|tests/data/ljspeech/wavs/LJ022-0171.npy +tests/data/ljspeech/wavs/LJ035-0017.wav|tests/data/ljspeech/wavs/LJ035-0017.npy +tests/data/ljspeech/wavs/LJ011-0016.wav|tests/data/ljspeech/wavs/LJ011-0016.npy +tests/data/ljspeech/wavs/LJ005-0017.wav|tests/data/ljspeech/wavs/LJ005-0017.npy +tests/data/ljspeech/wavs/LJ050-0143.wav|tests/data/ljspeech/wavs/LJ050-0143.npy +tests/data/ljspeech/wavs/LJ045-0241.wav|tests/data/ljspeech/wavs/LJ045-0241.npy +tests/data/ljspeech/wavs/LJ004-0241.wav|tests/data/ljspeech/wavs/LJ004-0241.npy +tests/data/ljspeech/wavs/LJ002-0254.wav|tests/data/ljspeech/wavs/LJ002-0254.npy +tests/data/ljspeech/wavs/LJ011-0079.wav|tests/data/ljspeech/wavs/LJ011-0079.npy +tests/data/ljspeech/wavs/LJ040-0233.wav|tests/data/ljspeech/wavs/LJ040-0233.npy +tests/data/ljspeech/wavs/LJ028-0498.wav|tests/data/ljspeech/wavs/LJ028-0498.npy +tests/data/ljspeech/wavs/LJ028-0407.wav|tests/data/ljspeech/wavs/LJ028-0407.npy +tests/data/ljspeech/wavs/LJ009-0205.wav|tests/data/ljspeech/wavs/LJ009-0205.npy +tests/data/ljspeech/wavs/LJ028-0113.wav|tests/data/ljspeech/wavs/LJ028-0113.npy +tests/data/ljspeech/wavs/LJ017-0114.wav|tests/data/ljspeech/wavs/LJ017-0114.npy +tests/data/ljspeech/wavs/LJ015-0015.wav|tests/data/ljspeech/wavs/LJ015-0015.npy +tests/data/ljspeech/wavs/LJ013-0020.wav|tests/data/ljspeech/wavs/LJ013-0020.npy +tests/data/ljspeech/wavs/LJ021-0131.wav|tests/data/ljspeech/wavs/LJ021-0131.npy +tests/data/ljspeech/wavs/LJ048-0021.wav|tests/data/ljspeech/wavs/LJ048-0021.npy +tests/data/ljspeech/wavs/LJ043-0156.wav|tests/data/ljspeech/wavs/LJ043-0156.npy +tests/data/ljspeech/wavs/LJ013-0024.wav|tests/data/ljspeech/wavs/LJ013-0024.npy +tests/data/ljspeech/wavs/LJ042-0160.wav|tests/data/ljspeech/wavs/LJ042-0160.npy +tests/data/ljspeech/wavs/LJ009-0262.wav|tests/data/ljspeech/wavs/LJ009-0262.npy +tests/data/ljspeech/wavs/LJ044-0117.wav|tests/data/ljspeech/wavs/LJ044-0117.npy +tests/data/ljspeech/wavs/LJ040-0084.wav|tests/data/ljspeech/wavs/LJ040-0084.npy +tests/data/ljspeech/wavs/LJ003-0142.wav|tests/data/ljspeech/wavs/LJ003-0142.npy +tests/data/ljspeech/wavs/LJ034-0113.wav|tests/data/ljspeech/wavs/LJ034-0113.npy +tests/data/ljspeech/wavs/LJ043-0135.wav|tests/data/ljspeech/wavs/LJ043-0135.npy +tests/data/ljspeech/wavs/LJ035-0006.wav|tests/data/ljspeech/wavs/LJ035-0006.npy +tests/data/ljspeech/wavs/LJ046-0118.wav|tests/data/ljspeech/wavs/LJ046-0118.npy +tests/data/ljspeech/wavs/LJ045-0145.wav|tests/data/ljspeech/wavs/LJ045-0145.npy +tests/data/ljspeech/wavs/LJ015-0077.wav|tests/data/ljspeech/wavs/LJ015-0077.npy +tests/data/ljspeech/wavs/LJ020-0007.wav|tests/data/ljspeech/wavs/LJ020-0007.npy +tests/data/ljspeech/wavs/LJ038-0128.wav|tests/data/ljspeech/wavs/LJ038-0128.npy +tests/data/ljspeech/wavs/LJ033-0028.wav|tests/data/ljspeech/wavs/LJ033-0028.npy +tests/data/ljspeech/wavs/LJ007-0221.wav|tests/data/ljspeech/wavs/LJ007-0221.npy +tests/data/ljspeech/wavs/LJ004-0027.wav|tests/data/ljspeech/wavs/LJ004-0027.npy +tests/data/ljspeech/wavs/LJ005-0094.wav|tests/data/ljspeech/wavs/LJ005-0094.npy +tests/data/ljspeech/wavs/LJ003-0232.wav|tests/data/ljspeech/wavs/LJ003-0232.npy +tests/data/ljspeech/wavs/LJ038-0068.wav|tests/data/ljspeech/wavs/LJ038-0068.npy +tests/data/ljspeech/wavs/LJ009-0121.wav|tests/data/ljspeech/wavs/LJ009-0121.npy +tests/data/ljspeech/wavs/LJ004-0010.wav|tests/data/ljspeech/wavs/LJ004-0010.npy +tests/data/ljspeech/wavs/LJ021-0033.wav|tests/data/ljspeech/wavs/LJ021-0033.npy +tests/data/ljspeech/wavs/LJ006-0089.wav|tests/data/ljspeech/wavs/LJ006-0089.npy +tests/data/ljspeech/wavs/LJ028-0436.wav|tests/data/ljspeech/wavs/LJ028-0436.npy +tests/data/ljspeech/wavs/LJ019-0316.wav|tests/data/ljspeech/wavs/LJ019-0316.npy +tests/data/ljspeech/wavs/LJ021-0048.wav|tests/data/ljspeech/wavs/LJ021-0048.npy +tests/data/ljspeech/wavs/LJ008-0285.wav|tests/data/ljspeech/wavs/LJ008-0285.npy +tests/data/ljspeech/wavs/LJ019-0338.wav|tests/data/ljspeech/wavs/LJ019-0338.npy +tests/data/ljspeech/wavs/LJ014-0147.wav|tests/data/ljspeech/wavs/LJ014-0147.npy +tests/data/ljspeech/wavs/LJ003-0149.wav|tests/data/ljspeech/wavs/LJ003-0149.npy +tests/data/ljspeech/wavs/LJ004-0206.wav|tests/data/ljspeech/wavs/LJ004-0206.npy +tests/data/ljspeech/wavs/LJ015-0172.wav|tests/data/ljspeech/wavs/LJ015-0172.npy +tests/data/ljspeech/wavs/LJ009-0236.wav|tests/data/ljspeech/wavs/LJ009-0236.npy +tests/data/ljspeech/wavs/LJ038-0144.wav|tests/data/ljspeech/wavs/LJ038-0144.npy +tests/data/ljspeech/wavs/LJ021-0102.wav|tests/data/ljspeech/wavs/LJ021-0102.npy +tests/data/ljspeech/wavs/LJ028-0433.wav|tests/data/ljspeech/wavs/LJ028-0433.npy +tests/data/ljspeech/wavs/LJ028-0087.wav|tests/data/ljspeech/wavs/LJ028-0087.npy +tests/data/ljspeech/wavs/LJ037-0197.wav|tests/data/ljspeech/wavs/LJ037-0197.npy +tests/data/ljspeech/wavs/LJ030-0159.wav|tests/data/ljspeech/wavs/LJ030-0159.npy +tests/data/ljspeech/wavs/LJ025-0013.wav|tests/data/ljspeech/wavs/LJ025-0013.npy +tests/data/ljspeech/wavs/LJ016-0276.wav|tests/data/ljspeech/wavs/LJ016-0276.npy +tests/data/ljspeech/wavs/LJ019-0206.wav|tests/data/ljspeech/wavs/LJ019-0206.npy +tests/data/ljspeech/wavs/LJ005-0158.wav|tests/data/ljspeech/wavs/LJ005-0158.npy +tests/data/ljspeech/wavs/LJ027-0162.wav|tests/data/ljspeech/wavs/LJ027-0162.npy +tests/data/ljspeech/wavs/LJ043-0183.wav|tests/data/ljspeech/wavs/LJ043-0183.npy +tests/data/ljspeech/wavs/LJ024-0104.wav|tests/data/ljspeech/wavs/LJ024-0104.npy +tests/data/ljspeech/wavs/LJ050-0164.wav|tests/data/ljspeech/wavs/LJ050-0164.npy +tests/data/ljspeech/wavs/LJ011-0233.wav|tests/data/ljspeech/wavs/LJ011-0233.npy +tests/data/ljspeech/wavs/LJ023-0065.wav|tests/data/ljspeech/wavs/LJ023-0065.npy +tests/data/ljspeech/wavs/LJ046-0032.wav|tests/data/ljspeech/wavs/LJ046-0032.npy +tests/data/ljspeech/wavs/LJ016-0347.wav|tests/data/ljspeech/wavs/LJ016-0347.npy +tests/data/ljspeech/wavs/LJ005-0182.wav|tests/data/ljspeech/wavs/LJ005-0182.npy +tests/data/ljspeech/wavs/LJ011-0237.wav|tests/data/ljspeech/wavs/LJ011-0237.npy +tests/data/ljspeech/wavs/LJ027-0168.wav|tests/data/ljspeech/wavs/LJ027-0168.npy +tests/data/ljspeech/wavs/LJ017-0167.wav|tests/data/ljspeech/wavs/LJ017-0167.npy +tests/data/ljspeech/wavs/LJ037-0086.wav|tests/data/ljspeech/wavs/LJ037-0086.npy +tests/data/ljspeech/wavs/LJ045-0250.wav|tests/data/ljspeech/wavs/LJ045-0250.npy +tests/data/ljspeech/wavs/LJ010-0251.wav|tests/data/ljspeech/wavs/LJ010-0251.npy +tests/data/ljspeech/wavs/LJ036-0068.wav|tests/data/ljspeech/wavs/LJ036-0068.npy +tests/data/ljspeech/wavs/LJ019-0282.wav|tests/data/ljspeech/wavs/LJ019-0282.npy +tests/data/ljspeech/wavs/LJ028-0141.wav|tests/data/ljspeech/wavs/LJ028-0141.npy +tests/data/ljspeech/wavs/LJ016-0281.wav|tests/data/ljspeech/wavs/LJ016-0281.npy +tests/data/ljspeech/wavs/LJ023-0102.wav|tests/data/ljspeech/wavs/LJ023-0102.npy +tests/data/ljspeech/wavs/LJ018-0056.wav|tests/data/ljspeech/wavs/LJ018-0056.npy +tests/data/ljspeech/wavs/LJ007-0171.wav|tests/data/ljspeech/wavs/LJ007-0171.npy +tests/data/ljspeech/wavs/LJ016-0393.wav|tests/data/ljspeech/wavs/LJ016-0393.npy +tests/data/ljspeech/wavs/LJ010-0213.wav|tests/data/ljspeech/wavs/LJ010-0213.npy +tests/data/ljspeech/wavs/LJ005-0297.wav|tests/data/ljspeech/wavs/LJ005-0297.npy +tests/data/ljspeech/wavs/LJ008-0122.wav|tests/data/ljspeech/wavs/LJ008-0122.npy +tests/data/ljspeech/wavs/LJ011-0074.wav|tests/data/ljspeech/wavs/LJ011-0074.npy +tests/data/ljspeech/wavs/LJ036-0185.wav|tests/data/ljspeech/wavs/LJ036-0185.npy +tests/data/ljspeech/wavs/LJ037-0095.wav|tests/data/ljspeech/wavs/LJ037-0095.npy +tests/data/ljspeech/wavs/LJ033-0124.wav|tests/data/ljspeech/wavs/LJ033-0124.npy +tests/data/ljspeech/wavs/LJ033-0069.wav|tests/data/ljspeech/wavs/LJ033-0069.npy +tests/data/ljspeech/wavs/LJ027-0125.wav|tests/data/ljspeech/wavs/LJ027-0125.npy +tests/data/ljspeech/wavs/LJ038-0290.wav|tests/data/ljspeech/wavs/LJ038-0290.npy +tests/data/ljspeech/wavs/LJ016-0232.wav|tests/data/ljspeech/wavs/LJ016-0232.npy +tests/data/ljspeech/wavs/LJ040-0179.wav|tests/data/ljspeech/wavs/LJ040-0179.npy +tests/data/ljspeech/wavs/LJ042-0137.wav|tests/data/ljspeech/wavs/LJ042-0137.npy +tests/data/ljspeech/wavs/LJ023-0048.wav|tests/data/ljspeech/wavs/LJ023-0048.npy +tests/data/ljspeech/wavs/LJ042-0070.wav|tests/data/ljspeech/wavs/LJ042-0070.npy +tests/data/ljspeech/wavs/LJ004-0117.wav|tests/data/ljspeech/wavs/LJ004-0117.npy +tests/data/ljspeech/wavs/LJ008-0237.wav|tests/data/ljspeech/wavs/LJ008-0237.npy +tests/data/ljspeech/wavs/LJ019-0336.wav|tests/data/ljspeech/wavs/LJ019-0336.npy +tests/data/ljspeech/wavs/LJ019-0334.wav|tests/data/ljspeech/wavs/LJ019-0334.npy +tests/data/ljspeech/wavs/LJ016-0177.wav|tests/data/ljspeech/wavs/LJ016-0177.npy +tests/data/ljspeech/wavs/LJ050-0251.wav|tests/data/ljspeech/wavs/LJ050-0251.npy +tests/data/ljspeech/wavs/LJ023-0052.wav|tests/data/ljspeech/wavs/LJ023-0052.npy +tests/data/ljspeech/wavs/LJ005-0279.wav|tests/data/ljspeech/wavs/LJ005-0279.npy +tests/data/ljspeech/wavs/LJ037-0063.wav|tests/data/ljspeech/wavs/LJ037-0063.npy +tests/data/ljspeech/wavs/LJ024-0028.wav|tests/data/ljspeech/wavs/LJ024-0028.npy +tests/data/ljspeech/wavs/LJ011-0231.wav|tests/data/ljspeech/wavs/LJ011-0231.npy +tests/data/ljspeech/wavs/LJ037-0129.wav|tests/data/ljspeech/wavs/LJ037-0129.npy +tests/data/ljspeech/wavs/LJ002-0309.wav|tests/data/ljspeech/wavs/LJ002-0309.npy +tests/data/ljspeech/wavs/LJ016-0176.wav|tests/data/ljspeech/wavs/LJ016-0176.npy +tests/data/ljspeech/wavs/LJ002-0096.wav|tests/data/ljspeech/wavs/LJ002-0096.npy +tests/data/ljspeech/wavs/LJ002-0252.wav|tests/data/ljspeech/wavs/LJ002-0252.npy +tests/data/ljspeech/wavs/LJ040-0158.wav|tests/data/ljspeech/wavs/LJ040-0158.npy +tests/data/ljspeech/wavs/LJ001-0043.wav|tests/data/ljspeech/wavs/LJ001-0043.npy +tests/data/ljspeech/wavs/LJ030-0197.wav|tests/data/ljspeech/wavs/LJ030-0197.npy +tests/data/ljspeech/wavs/LJ014-0130.wav|tests/data/ljspeech/wavs/LJ014-0130.npy +tests/data/ljspeech/wavs/LJ014-0272.wav|tests/data/ljspeech/wavs/LJ014-0272.npy +tests/data/ljspeech/wavs/LJ039-0169.wav|tests/data/ljspeech/wavs/LJ039-0169.npy +tests/data/ljspeech/wavs/LJ039-0093.wav|tests/data/ljspeech/wavs/LJ039-0093.npy +tests/data/ljspeech/wavs/LJ045-0134.wav|tests/data/ljspeech/wavs/LJ045-0134.npy +tests/data/ljspeech/wavs/LJ032-0092.wav|tests/data/ljspeech/wavs/LJ032-0092.npy +tests/data/ljspeech/wavs/LJ032-0040.wav|tests/data/ljspeech/wavs/LJ032-0040.npy +tests/data/ljspeech/wavs/LJ040-0048.wav|tests/data/ljspeech/wavs/LJ040-0048.npy +tests/data/ljspeech/wavs/LJ022-0109.wav|tests/data/ljspeech/wavs/LJ022-0109.npy +tests/data/ljspeech/wavs/LJ033-0197.wav|tests/data/ljspeech/wavs/LJ033-0197.npy +tests/data/ljspeech/wavs/LJ022-0051.wav|tests/data/ljspeech/wavs/LJ022-0051.npy +tests/data/ljspeech/wavs/LJ045-0079.wav|tests/data/ljspeech/wavs/LJ045-0079.npy +tests/data/ljspeech/wavs/LJ012-0268.wav|tests/data/ljspeech/wavs/LJ012-0268.npy +tests/data/ljspeech/wavs/LJ031-0106.wav|tests/data/ljspeech/wavs/LJ031-0106.npy +tests/data/ljspeech/wavs/LJ045-0119.wav|tests/data/ljspeech/wavs/LJ045-0119.npy +tests/data/ljspeech/wavs/LJ042-0231.wav|tests/data/ljspeech/wavs/LJ042-0231.npy +tests/data/ljspeech/wavs/LJ024-0062.wav|tests/data/ljspeech/wavs/LJ024-0062.npy +tests/data/ljspeech/wavs/LJ040-0203.wav|tests/data/ljspeech/wavs/LJ040-0203.npy +tests/data/ljspeech/wavs/LJ002-0070.wav|tests/data/ljspeech/wavs/LJ002-0070.npy +tests/data/ljspeech/wavs/LJ020-0091.wav|tests/data/ljspeech/wavs/LJ020-0091.npy +tests/data/ljspeech/wavs/LJ015-0005.wav|tests/data/ljspeech/wavs/LJ015-0005.npy +tests/data/ljspeech/wavs/LJ027-0084.wav|tests/data/ljspeech/wavs/LJ027-0084.npy +tests/data/ljspeech/wavs/LJ018-0206.wav|tests/data/ljspeech/wavs/LJ018-0206.npy +tests/data/ljspeech/wavs/LJ023-0094.wav|tests/data/ljspeech/wavs/LJ023-0094.npy +tests/data/ljspeech/wavs/LJ011-0162.wav|tests/data/ljspeech/wavs/LJ011-0162.npy +tests/data/ljspeech/wavs/LJ024-0006.wav|tests/data/ljspeech/wavs/LJ024-0006.npy +tests/data/ljspeech/wavs/LJ028-0043.wav|tests/data/ljspeech/wavs/LJ028-0043.npy +tests/data/ljspeech/wavs/LJ038-0205.wav|tests/data/ljspeech/wavs/LJ038-0205.npy +tests/data/ljspeech/wavs/LJ028-0080.wav|tests/data/ljspeech/wavs/LJ028-0080.npy +tests/data/ljspeech/wavs/LJ015-0222.wav|tests/data/ljspeech/wavs/LJ015-0222.npy +tests/data/ljspeech/wavs/LJ039-0166.wav|tests/data/ljspeech/wavs/LJ039-0166.npy +tests/data/ljspeech/wavs/LJ004-0239.wav|tests/data/ljspeech/wavs/LJ004-0239.npy +tests/data/ljspeech/wavs/LJ001-0123.wav|tests/data/ljspeech/wavs/LJ001-0123.npy +tests/data/ljspeech/wavs/LJ028-0065.wav|tests/data/ljspeech/wavs/LJ028-0065.npy +tests/data/ljspeech/wavs/LJ026-0045.wav|tests/data/ljspeech/wavs/LJ026-0045.npy +tests/data/ljspeech/wavs/LJ036-0005.wav|tests/data/ljspeech/wavs/LJ036-0005.npy +tests/data/ljspeech/wavs/LJ043-0080.wav|tests/data/ljspeech/wavs/LJ043-0080.npy +tests/data/ljspeech/wavs/LJ048-0247.wav|tests/data/ljspeech/wavs/LJ048-0247.npy +tests/data/ljspeech/wavs/LJ022-0203.wav|tests/data/ljspeech/wavs/LJ022-0203.npy +tests/data/ljspeech/wavs/LJ042-0016.wav|tests/data/ljspeech/wavs/LJ042-0016.npy +tests/data/ljspeech/wavs/LJ028-0443.wav|tests/data/ljspeech/wavs/LJ028-0443.npy +tests/data/ljspeech/wavs/LJ040-0227.wav|tests/data/ljspeech/wavs/LJ040-0227.npy +tests/data/ljspeech/wavs/LJ002-0118.wav|tests/data/ljspeech/wavs/LJ002-0118.npy +tests/data/ljspeech/wavs/LJ004-0042.wav|tests/data/ljspeech/wavs/LJ004-0042.npy +tests/data/ljspeech/wavs/LJ010-0230.wav|tests/data/ljspeech/wavs/LJ010-0230.npy +tests/data/ljspeech/wavs/LJ018-0285.wav|tests/data/ljspeech/wavs/LJ018-0285.npy +tests/data/ljspeech/wavs/LJ013-0243.wav|tests/data/ljspeech/wavs/LJ013-0243.npy +tests/data/ljspeech/wavs/LJ014-0030.wav|tests/data/ljspeech/wavs/LJ014-0030.npy +tests/data/ljspeech/wavs/LJ008-0251.wav|tests/data/ljspeech/wavs/LJ008-0251.npy +tests/data/ljspeech/wavs/LJ016-0315.wav|tests/data/ljspeech/wavs/LJ016-0315.npy +tests/data/ljspeech/wavs/LJ019-0119.wav|tests/data/ljspeech/wavs/LJ019-0119.npy +tests/data/ljspeech/wavs/LJ016-0333.wav|tests/data/ljspeech/wavs/LJ016-0333.npy +tests/data/ljspeech/wavs/LJ014-0072.wav|tests/data/ljspeech/wavs/LJ014-0072.npy +tests/data/ljspeech/wavs/LJ016-0321.wav|tests/data/ljspeech/wavs/LJ016-0321.npy +tests/data/ljspeech/wavs/LJ042-0234.wav|tests/data/ljspeech/wavs/LJ042-0234.npy +tests/data/ljspeech/wavs/LJ043-0074.wav|tests/data/ljspeech/wavs/LJ043-0074.npy +tests/data/ljspeech/wavs/LJ001-0094.wav|tests/data/ljspeech/wavs/LJ001-0094.npy +tests/data/ljspeech/wavs/LJ019-0105.wav|tests/data/ljspeech/wavs/LJ019-0105.npy +tests/data/ljspeech/wavs/LJ036-0081.wav|tests/data/ljspeech/wavs/LJ036-0081.npy +tests/data/ljspeech/wavs/LJ016-0279.wav|tests/data/ljspeech/wavs/LJ016-0279.npy +tests/data/ljspeech/wavs/LJ006-0178.wav|tests/data/ljspeech/wavs/LJ006-0178.npy +tests/data/ljspeech/wavs/LJ019-0073.wav|tests/data/ljspeech/wavs/LJ019-0073.npy +tests/data/ljspeech/wavs/LJ038-0026.wav|tests/data/ljspeech/wavs/LJ038-0026.npy +tests/data/ljspeech/wavs/LJ003-0140.wav|tests/data/ljspeech/wavs/LJ003-0140.npy +tests/data/ljspeech/wavs/LJ046-0012.wav|tests/data/ljspeech/wavs/LJ046-0012.npy +tests/data/ljspeech/wavs/LJ016-0275.wav|tests/data/ljspeech/wavs/LJ016-0275.npy +tests/data/ljspeech/wavs/LJ046-0192.wav|tests/data/ljspeech/wavs/LJ046-0192.npy +tests/data/ljspeech/wavs/LJ030-0147.wav|tests/data/ljspeech/wavs/LJ030-0147.npy +tests/data/ljspeech/wavs/LJ004-0024.wav|tests/data/ljspeech/wavs/LJ004-0024.npy +tests/data/ljspeech/wavs/LJ016-0169.wav|tests/data/ljspeech/wavs/LJ016-0169.npy +tests/data/ljspeech/wavs/LJ030-0058.wav|tests/data/ljspeech/wavs/LJ030-0058.npy +tests/data/ljspeech/wavs/LJ027-0120.wav|tests/data/ljspeech/wavs/LJ027-0120.npy +tests/data/ljspeech/wavs/LJ012-0153.wav|tests/data/ljspeech/wavs/LJ012-0153.npy +tests/data/ljspeech/wavs/LJ043-0040.wav|tests/data/ljspeech/wavs/LJ043-0040.npy +tests/data/ljspeech/wavs/LJ018-0142.wav|tests/data/ljspeech/wavs/LJ018-0142.npy +tests/data/ljspeech/wavs/LJ030-0185.wav|tests/data/ljspeech/wavs/LJ030-0185.npy +tests/data/ljspeech/wavs/LJ030-0041.wav|tests/data/ljspeech/wavs/LJ030-0041.npy +tests/data/ljspeech/wavs/LJ034-0217.wav|tests/data/ljspeech/wavs/LJ034-0217.npy +tests/data/ljspeech/wavs/LJ018-0220.wav|tests/data/ljspeech/wavs/LJ018-0220.npy +tests/data/ljspeech/wavs/LJ040-0224.wav|tests/data/ljspeech/wavs/LJ040-0224.npy +tests/data/ljspeech/wavs/LJ018-0287.wav|tests/data/ljspeech/wavs/LJ018-0287.npy +tests/data/ljspeech/wavs/LJ015-0056.wav|tests/data/ljspeech/wavs/LJ015-0056.npy +tests/data/ljspeech/wavs/LJ018-0393.wav|tests/data/ljspeech/wavs/LJ018-0393.npy +tests/data/ljspeech/wavs/LJ010-0115.wav|tests/data/ljspeech/wavs/LJ010-0115.npy +tests/data/ljspeech/wavs/LJ015-0108.wav|tests/data/ljspeech/wavs/LJ015-0108.npy +tests/data/ljspeech/wavs/LJ002-0182.wav|tests/data/ljspeech/wavs/LJ002-0182.npy +tests/data/ljspeech/wavs/LJ019-0079.wav|tests/data/ljspeech/wavs/LJ019-0079.npy +tests/data/ljspeech/wavs/LJ015-0165.wav|tests/data/ljspeech/wavs/LJ015-0165.npy +tests/data/ljspeech/wavs/LJ037-0118.wav|tests/data/ljspeech/wavs/LJ037-0118.npy +tests/data/ljspeech/wavs/LJ028-0313.wav|tests/data/ljspeech/wavs/LJ028-0313.npy +tests/data/ljspeech/wavs/LJ018-0049.wav|tests/data/ljspeech/wavs/LJ018-0049.npy +tests/data/ljspeech/wavs/LJ012-0186.wav|tests/data/ljspeech/wavs/LJ012-0186.npy +tests/data/ljspeech/wavs/LJ009-0148.wav|tests/data/ljspeech/wavs/LJ009-0148.npy +tests/data/ljspeech/wavs/LJ003-0120.wav|tests/data/ljspeech/wavs/LJ003-0120.npy +tests/data/ljspeech/wavs/LJ009-0156.wav|tests/data/ljspeech/wavs/LJ009-0156.npy +tests/data/ljspeech/wavs/LJ040-0115.wav|tests/data/ljspeech/wavs/LJ040-0115.npy +tests/data/ljspeech/wavs/LJ010-0065.wav|tests/data/ljspeech/wavs/LJ010-0065.npy +tests/data/ljspeech/wavs/LJ050-0216.wav|tests/data/ljspeech/wavs/LJ050-0216.npy +tests/data/ljspeech/wavs/LJ032-0118.wav|tests/data/ljspeech/wavs/LJ032-0118.npy +tests/data/ljspeech/wavs/LJ036-0169.wav|tests/data/ljspeech/wavs/LJ036-0169.npy +tests/data/ljspeech/wavs/LJ003-0071.wav|tests/data/ljspeech/wavs/LJ003-0071.npy +tests/data/ljspeech/wavs/LJ040-0029.wav|tests/data/ljspeech/wavs/LJ040-0029.npy +tests/data/ljspeech/wavs/LJ048-0045.wav|tests/data/ljspeech/wavs/LJ048-0045.npy +tests/data/ljspeech/wavs/LJ025-0120.wav|tests/data/ljspeech/wavs/LJ025-0120.npy +tests/data/ljspeech/wavs/LJ032-0223.wav|tests/data/ljspeech/wavs/LJ032-0223.npy +tests/data/ljspeech/wavs/LJ012-0208.wav|tests/data/ljspeech/wavs/LJ012-0208.npy +tests/data/ljspeech/wavs/LJ001-0054.wav|tests/data/ljspeech/wavs/LJ001-0054.npy +tests/data/ljspeech/wavs/LJ038-0226.wav|tests/data/ljspeech/wavs/LJ038-0226.npy +tests/data/ljspeech/wavs/LJ008-0086.wav|tests/data/ljspeech/wavs/LJ008-0086.npy +tests/data/ljspeech/wavs/LJ002-0111.wav|tests/data/ljspeech/wavs/LJ002-0111.npy +tests/data/ljspeech/wavs/LJ025-0063.wav|tests/data/ljspeech/wavs/LJ025-0063.npy +tests/data/ljspeech/wavs/LJ021-0011.wav|tests/data/ljspeech/wavs/LJ021-0011.npy +tests/data/ljspeech/wavs/LJ006-0210.wav|tests/data/ljspeech/wavs/LJ006-0210.npy +tests/data/ljspeech/wavs/LJ035-0056.wav|tests/data/ljspeech/wavs/LJ035-0056.npy +tests/data/ljspeech/wavs/LJ042-0053.wav|tests/data/ljspeech/wavs/LJ042-0053.npy +tests/data/ljspeech/wavs/LJ013-0141.wav|tests/data/ljspeech/wavs/LJ013-0141.npy +tests/data/ljspeech/wavs/LJ011-0257.wav|tests/data/ljspeech/wavs/LJ011-0257.npy +tests/data/ljspeech/wavs/LJ005-0244.wav|tests/data/ljspeech/wavs/LJ005-0244.npy +tests/data/ljspeech/wavs/LJ030-0052.wav|tests/data/ljspeech/wavs/LJ030-0052.npy +tests/data/ljspeech/wavs/LJ038-0061.wav|tests/data/ljspeech/wavs/LJ038-0061.npy +tests/data/ljspeech/wavs/LJ050-0089.wav|tests/data/ljspeech/wavs/LJ050-0089.npy +tests/data/ljspeech/wavs/LJ009-0132.wav|tests/data/ljspeech/wavs/LJ009-0132.npy +tests/data/ljspeech/wavs/LJ019-0130.wav|tests/data/ljspeech/wavs/LJ019-0130.npy +tests/data/ljspeech/wavs/LJ008-0310.wav|tests/data/ljspeech/wavs/LJ008-0310.npy +tests/data/ljspeech/wavs/LJ022-0201.wav|tests/data/ljspeech/wavs/LJ022-0201.npy +tests/data/ljspeech/wavs/LJ021-0042.wav|tests/data/ljspeech/wavs/LJ021-0042.npy +tests/data/ljspeech/wavs/LJ011-0167.wav|tests/data/ljspeech/wavs/LJ011-0167.npy +tests/data/ljspeech/wavs/LJ033-0117.wav|tests/data/ljspeech/wavs/LJ033-0117.npy +tests/data/ljspeech/wavs/LJ028-0410.wav|tests/data/ljspeech/wavs/LJ028-0410.npy +tests/data/ljspeech/wavs/LJ005-0135.wav|tests/data/ljspeech/wavs/LJ005-0135.npy +tests/data/ljspeech/wavs/LJ044-0156.wav|tests/data/ljspeech/wavs/LJ044-0156.npy +tests/data/ljspeech/wavs/LJ019-0076.wav|tests/data/ljspeech/wavs/LJ019-0076.npy +tests/data/ljspeech/wavs/LJ025-0028.wav|tests/data/ljspeech/wavs/LJ025-0028.npy +tests/data/ljspeech/wavs/LJ048-0200.wav|tests/data/ljspeech/wavs/LJ048-0200.npy +tests/data/ljspeech/wavs/LJ041-0039.wav|tests/data/ljspeech/wavs/LJ041-0039.npy +tests/data/ljspeech/wavs/LJ017-0090.wav|tests/data/ljspeech/wavs/LJ017-0090.npy +tests/data/ljspeech/wavs/LJ027-0146.wav|tests/data/ljspeech/wavs/LJ027-0146.npy +tests/data/ljspeech/wavs/LJ023-0040.wav|tests/data/ljspeech/wavs/LJ023-0040.npy +tests/data/ljspeech/wavs/LJ009-0015.wav|tests/data/ljspeech/wavs/LJ009-0015.npy +tests/data/ljspeech/wavs/LJ047-0113.wav|tests/data/ljspeech/wavs/LJ047-0113.npy +tests/data/ljspeech/wavs/LJ049-0031.wav|tests/data/ljspeech/wavs/LJ049-0031.npy +tests/data/ljspeech/wavs/LJ043-0150.wav|tests/data/ljspeech/wavs/LJ043-0150.npy +tests/data/ljspeech/wavs/LJ016-0059.wav|tests/data/ljspeech/wavs/LJ016-0059.npy +tests/data/ljspeech/wavs/LJ030-0228.wav|tests/data/ljspeech/wavs/LJ030-0228.npy +tests/data/ljspeech/wavs/LJ019-0265.wav|tests/data/ljspeech/wavs/LJ019-0265.npy +tests/data/ljspeech/wavs/LJ028-0206.wav|tests/data/ljspeech/wavs/LJ028-0206.npy +tests/data/ljspeech/wavs/LJ021-0117.wav|tests/data/ljspeech/wavs/LJ021-0117.npy +tests/data/ljspeech/wavs/LJ008-0215.wav|tests/data/ljspeech/wavs/LJ008-0215.npy +tests/data/ljspeech/wavs/LJ010-0234.wav|tests/data/ljspeech/wavs/LJ010-0234.npy +tests/data/ljspeech/wavs/LJ023-0051.wav|tests/data/ljspeech/wavs/LJ023-0051.npy +tests/data/ljspeech/wavs/LJ012-0249.wav|tests/data/ljspeech/wavs/LJ012-0249.npy +tests/data/ljspeech/wavs/LJ050-0274.wav|tests/data/ljspeech/wavs/LJ050-0274.npy +tests/data/ljspeech/wavs/LJ034-0195.wav|tests/data/ljspeech/wavs/LJ034-0195.npy +tests/data/ljspeech/wavs/LJ005-0282.wav|tests/data/ljspeech/wavs/LJ005-0282.npy +tests/data/ljspeech/wavs/LJ001-0020.wav|tests/data/ljspeech/wavs/LJ001-0020.npy +tests/data/ljspeech/wavs/LJ028-0398.wav|tests/data/ljspeech/wavs/LJ028-0398.npy +tests/data/ljspeech/wavs/LJ030-0047.wav|tests/data/ljspeech/wavs/LJ030-0047.npy +tests/data/ljspeech/wavs/LJ013-0215.wav|tests/data/ljspeech/wavs/LJ013-0215.npy +tests/data/ljspeech/wavs/LJ028-0428.wav|tests/data/ljspeech/wavs/LJ028-0428.npy +tests/data/ljspeech/wavs/LJ012-0240.wav|tests/data/ljspeech/wavs/LJ012-0240.npy +tests/data/ljspeech/wavs/LJ005-0269.wav|tests/data/ljspeech/wavs/LJ005-0269.npy +tests/data/ljspeech/wavs/LJ032-0142.wav|tests/data/ljspeech/wavs/LJ032-0142.npy +tests/data/ljspeech/wavs/LJ018-0117.wav|tests/data/ljspeech/wavs/LJ018-0117.npy +tests/data/ljspeech/wavs/LJ040-0077.wav|tests/data/ljspeech/wavs/LJ040-0077.npy +tests/data/ljspeech/wavs/LJ046-0011.wav|tests/data/ljspeech/wavs/LJ046-0011.npy +tests/data/ljspeech/wavs/LJ037-0153.wav|tests/data/ljspeech/wavs/LJ037-0153.npy +tests/data/ljspeech/wavs/LJ040-0074.wav|tests/data/ljspeech/wavs/LJ040-0074.npy +tests/data/ljspeech/wavs/LJ019-0109.wav|tests/data/ljspeech/wavs/LJ019-0109.npy +tests/data/ljspeech/wavs/LJ003-0153.wav|tests/data/ljspeech/wavs/LJ003-0153.npy +tests/data/ljspeech/wavs/LJ021-0149.wav|tests/data/ljspeech/wavs/LJ021-0149.npy +tests/data/ljspeech/wavs/LJ016-0441.wav|tests/data/ljspeech/wavs/LJ016-0441.npy +tests/data/ljspeech/wavs/LJ034-0021.wav|tests/data/ljspeech/wavs/LJ034-0021.npy +tests/data/ljspeech/wavs/LJ005-0103.wav|tests/data/ljspeech/wavs/LJ005-0103.npy +tests/data/ljspeech/wavs/LJ002-0049.wav|tests/data/ljspeech/wavs/LJ002-0049.npy +tests/data/ljspeech/wavs/LJ028-0166.wav|tests/data/ljspeech/wavs/LJ028-0166.npy +tests/data/ljspeech/wavs/LJ015-0046.wav|tests/data/ljspeech/wavs/LJ015-0046.npy +tests/data/ljspeech/wavs/LJ003-0273.wav|tests/data/ljspeech/wavs/LJ003-0273.npy +tests/data/ljspeech/wavs/LJ032-0143.wav|tests/data/ljspeech/wavs/LJ032-0143.npy +tests/data/ljspeech/wavs/LJ016-0069.wav|tests/data/ljspeech/wavs/LJ016-0069.npy +tests/data/ljspeech/wavs/LJ050-0088.wav|tests/data/ljspeech/wavs/LJ050-0088.npy +tests/data/ljspeech/wavs/LJ026-0076.wav|tests/data/ljspeech/wavs/LJ026-0076.npy +tests/data/ljspeech/wavs/LJ010-0240.wav|tests/data/ljspeech/wavs/LJ010-0240.npy +tests/data/ljspeech/wavs/LJ022-0029.wav|tests/data/ljspeech/wavs/LJ022-0029.npy +tests/data/ljspeech/wavs/LJ002-0261.wav|tests/data/ljspeech/wavs/LJ002-0261.npy +tests/data/ljspeech/wavs/LJ043-0146.wav|tests/data/ljspeech/wavs/LJ043-0146.npy +tests/data/ljspeech/wavs/LJ032-0188.wav|tests/data/ljspeech/wavs/LJ032-0188.npy +tests/data/ljspeech/wavs/LJ017-0220.wav|tests/data/ljspeech/wavs/LJ017-0220.npy +tests/data/ljspeech/wavs/LJ028-0229.wav|tests/data/ljspeech/wavs/LJ028-0229.npy +tests/data/ljspeech/wavs/LJ007-0069.wav|tests/data/ljspeech/wavs/LJ007-0069.npy +tests/data/ljspeech/wavs/LJ017-0173.wav|tests/data/ljspeech/wavs/LJ017-0173.npy +tests/data/ljspeech/wavs/LJ049-0117.wav|tests/data/ljspeech/wavs/LJ049-0117.npy +tests/data/ljspeech/wavs/LJ046-0113.wav|tests/data/ljspeech/wavs/LJ046-0113.npy +tests/data/ljspeech/wavs/LJ041-0136.wav|tests/data/ljspeech/wavs/LJ041-0136.npy +tests/data/ljspeech/wavs/LJ038-0221.wav|tests/data/ljspeech/wavs/LJ038-0221.npy +tests/data/ljspeech/wavs/LJ044-0190.wav|tests/data/ljspeech/wavs/LJ044-0190.npy +tests/data/ljspeech/wavs/LJ050-0035.wav|tests/data/ljspeech/wavs/LJ050-0035.npy +tests/data/ljspeech/wavs/LJ028-0032.wav|tests/data/ljspeech/wavs/LJ028-0032.npy +tests/data/ljspeech/wavs/LJ028-0294.wav|tests/data/ljspeech/wavs/LJ028-0294.npy +tests/data/ljspeech/wavs/LJ042-0065.wav|tests/data/ljspeech/wavs/LJ042-0065.npy +tests/data/ljspeech/wavs/LJ008-0006.wav|tests/data/ljspeech/wavs/LJ008-0006.npy +tests/data/ljspeech/wavs/LJ040-0025.wav|tests/data/ljspeech/wavs/LJ040-0025.npy +tests/data/ljspeech/wavs/LJ026-0127.wav|tests/data/ljspeech/wavs/LJ026-0127.npy +tests/data/ljspeech/wavs/LJ005-0110.wav|tests/data/ljspeech/wavs/LJ005-0110.npy +tests/data/ljspeech/wavs/LJ022-0084.wav|tests/data/ljspeech/wavs/LJ022-0084.npy +tests/data/ljspeech/wavs/LJ020-0090.wav|tests/data/ljspeech/wavs/LJ020-0090.npy +tests/data/ljspeech/wavs/LJ012-0049.wav|tests/data/ljspeech/wavs/LJ012-0049.npy +tests/data/ljspeech/wavs/LJ011-0103.wav|tests/data/ljspeech/wavs/LJ011-0103.npy +tests/data/ljspeech/wavs/LJ004-0248.wav|tests/data/ljspeech/wavs/LJ004-0248.npy +tests/data/ljspeech/wavs/LJ016-0200.wav|tests/data/ljspeech/wavs/LJ016-0200.npy +tests/data/ljspeech/wavs/LJ021-0192.wav|tests/data/ljspeech/wavs/LJ021-0192.npy +tests/data/ljspeech/wavs/LJ018-0280.wav|tests/data/ljspeech/wavs/LJ018-0280.npy +tests/data/ljspeech/wavs/LJ024-0071.wav|tests/data/ljspeech/wavs/LJ024-0071.npy +tests/data/ljspeech/wavs/LJ027-0058.wav|tests/data/ljspeech/wavs/LJ027-0058.npy +tests/data/ljspeech/wavs/LJ016-0273.wav|tests/data/ljspeech/wavs/LJ016-0273.npy +tests/data/ljspeech/wavs/LJ010-0179.wav|tests/data/ljspeech/wavs/LJ010-0179.npy +tests/data/ljspeech/wavs/LJ008-0262.wav|tests/data/ljspeech/wavs/LJ008-0262.npy +tests/data/ljspeech/wavs/LJ003-0188.wav|tests/data/ljspeech/wavs/LJ003-0188.npy +tests/data/ljspeech/wavs/LJ028-0250.wav|tests/data/ljspeech/wavs/LJ028-0250.npy +tests/data/ljspeech/wavs/LJ028-0506.wav|tests/data/ljspeech/wavs/LJ028-0506.npy +tests/data/ljspeech/wavs/LJ022-0008.wav|tests/data/ljspeech/wavs/LJ022-0008.npy +tests/data/ljspeech/wavs/LJ018-0245.wav|tests/data/ljspeech/wavs/LJ018-0245.npy +tests/data/ljspeech/wavs/LJ020-0050.wav|tests/data/ljspeech/wavs/LJ020-0050.npy +tests/data/ljspeech/wavs/LJ008-0077.wav|tests/data/ljspeech/wavs/LJ008-0077.npy +tests/data/ljspeech/wavs/LJ024-0072.wav|tests/data/ljspeech/wavs/LJ024-0072.npy +tests/data/ljspeech/wavs/LJ037-0259.wav|tests/data/ljspeech/wavs/LJ037-0259.npy +tests/data/ljspeech/wavs/LJ038-0220.wav|tests/data/ljspeech/wavs/LJ038-0220.npy +tests/data/ljspeech/wavs/LJ046-0129.wav|tests/data/ljspeech/wavs/LJ046-0129.npy +tests/data/ljspeech/wavs/LJ048-0032.wav|tests/data/ljspeech/wavs/LJ048-0032.npy +tests/data/ljspeech/wavs/LJ044-0111.wav|tests/data/ljspeech/wavs/LJ044-0111.npy +tests/data/ljspeech/wavs/LJ002-0164.wav|tests/data/ljspeech/wavs/LJ002-0164.npy +tests/data/ljspeech/wavs/LJ036-0059.wav|tests/data/ljspeech/wavs/LJ036-0059.npy +tests/data/ljspeech/wavs/LJ028-0385.wav|tests/data/ljspeech/wavs/LJ028-0385.npy +tests/data/ljspeech/wavs/LJ024-0102.wav|tests/data/ljspeech/wavs/LJ024-0102.npy +tests/data/ljspeech/wavs/LJ026-0065.wav|tests/data/ljspeech/wavs/LJ026-0065.npy +tests/data/ljspeech/wavs/LJ018-0156.wav|tests/data/ljspeech/wavs/LJ018-0156.npy +tests/data/ljspeech/wavs/LJ029-0127.wav|tests/data/ljspeech/wavs/LJ029-0127.npy +tests/data/ljspeech/wavs/LJ019-0113.wav|tests/data/ljspeech/wavs/LJ019-0113.npy +tests/data/ljspeech/wavs/LJ028-0038.wav|tests/data/ljspeech/wavs/LJ028-0038.npy +tests/data/ljspeech/wavs/LJ031-0173.wav|tests/data/ljspeech/wavs/LJ031-0173.npy +tests/data/ljspeech/wavs/LJ040-0159.wav|tests/data/ljspeech/wavs/LJ040-0159.npy +tests/data/ljspeech/wavs/LJ003-0252.wav|tests/data/ljspeech/wavs/LJ003-0252.npy +tests/data/ljspeech/wavs/LJ002-0166.wav|tests/data/ljspeech/wavs/LJ002-0166.npy +tests/data/ljspeech/wavs/LJ004-0172.wav|tests/data/ljspeech/wavs/LJ004-0172.npy +tests/data/ljspeech/wavs/LJ038-0207.wav|tests/data/ljspeech/wavs/LJ038-0207.npy +tests/data/ljspeech/wavs/LJ030-0184.wav|tests/data/ljspeech/wavs/LJ030-0184.npy +tests/data/ljspeech/wavs/LJ028-0339.wav|tests/data/ljspeech/wavs/LJ028-0339.npy +tests/data/ljspeech/wavs/LJ020-0039.wav|tests/data/ljspeech/wavs/LJ020-0039.npy +tests/data/ljspeech/wavs/LJ018-0145.wav|tests/data/ljspeech/wavs/LJ018-0145.npy +tests/data/ljspeech/wavs/LJ002-0204.wav|tests/data/ljspeech/wavs/LJ002-0204.npy +tests/data/ljspeech/wavs/LJ016-0298.wav|tests/data/ljspeech/wavs/LJ016-0298.npy +tests/data/ljspeech/wavs/LJ012-0062.wav|tests/data/ljspeech/wavs/LJ012-0062.npy +tests/data/ljspeech/wavs/LJ018-0202.wav|tests/data/ljspeech/wavs/LJ018-0202.npy +tests/data/ljspeech/wavs/LJ006-0123.wav|tests/data/ljspeech/wavs/LJ006-0123.npy +tests/data/ljspeech/wavs/LJ010-0138.wav|tests/data/ljspeech/wavs/LJ010-0138.npy +tests/data/ljspeech/wavs/LJ013-0090.wav|tests/data/ljspeech/wavs/LJ013-0090.npy +tests/data/ljspeech/wavs/LJ017-0272.wav|tests/data/ljspeech/wavs/LJ017-0272.npy +tests/data/ljspeech/wavs/LJ049-0024.wav|tests/data/ljspeech/wavs/LJ049-0024.npy +tests/data/ljspeech/wavs/LJ032-0036.wav|tests/data/ljspeech/wavs/LJ032-0036.npy +tests/data/ljspeech/wavs/LJ014-0280.wav|tests/data/ljspeech/wavs/LJ014-0280.npy +tests/data/ljspeech/wavs/LJ046-0138.wav|tests/data/ljspeech/wavs/LJ046-0138.npy +tests/data/ljspeech/wavs/LJ015-0143.wav|tests/data/ljspeech/wavs/LJ015-0143.npy +tests/data/ljspeech/wavs/LJ013-0003.wav|tests/data/ljspeech/wavs/LJ013-0003.npy +tests/data/ljspeech/wavs/LJ022-0180.wav|tests/data/ljspeech/wavs/LJ022-0180.npy +tests/data/ljspeech/wavs/LJ048-0046.wav|tests/data/ljspeech/wavs/LJ048-0046.npy +tests/data/ljspeech/wavs/LJ049-0212.wav|tests/data/ljspeech/wavs/LJ049-0212.npy +tests/data/ljspeech/wavs/LJ010-0021.wav|tests/data/ljspeech/wavs/LJ010-0021.npy +tests/data/ljspeech/wavs/LJ037-0090.wav|tests/data/ljspeech/wavs/LJ037-0090.npy +tests/data/ljspeech/wavs/LJ005-0024.wav|tests/data/ljspeech/wavs/LJ005-0024.npy +tests/data/ljspeech/wavs/LJ015-0152.wav|tests/data/ljspeech/wavs/LJ015-0152.npy +tests/data/ljspeech/wavs/LJ009-0092.wav|tests/data/ljspeech/wavs/LJ009-0092.npy +tests/data/ljspeech/wavs/LJ038-0028.wav|tests/data/ljspeech/wavs/LJ038-0028.npy +tests/data/ljspeech/wavs/LJ002-0302.wav|tests/data/ljspeech/wavs/LJ002-0302.npy +tests/data/ljspeech/wavs/LJ003-0108.wav|tests/data/ljspeech/wavs/LJ003-0108.npy +tests/data/ljspeech/wavs/LJ040-0106.wav|tests/data/ljspeech/wavs/LJ040-0106.npy +tests/data/ljspeech/wavs/LJ008-0315.wav|tests/data/ljspeech/wavs/LJ008-0315.npy +tests/data/ljspeech/wavs/LJ018-0237.wav|tests/data/ljspeech/wavs/LJ018-0237.npy +tests/data/ljspeech/wavs/LJ008-0244.wav|tests/data/ljspeech/wavs/LJ008-0244.npy +tests/data/ljspeech/wavs/LJ002-0039.wav|tests/data/ljspeech/wavs/LJ002-0039.npy +tests/data/ljspeech/wavs/LJ009-0271.wav|tests/data/ljspeech/wavs/LJ009-0271.npy +tests/data/ljspeech/wavs/LJ016-0006.wav|tests/data/ljspeech/wavs/LJ016-0006.npy +tests/data/ljspeech/wavs/LJ018-0064.wav|tests/data/ljspeech/wavs/LJ018-0064.npy +tests/data/ljspeech/wavs/LJ040-0229.wav|tests/data/ljspeech/wavs/LJ040-0229.npy +tests/data/ljspeech/wavs/LJ013-0250.wav|tests/data/ljspeech/wavs/LJ013-0250.npy +tests/data/ljspeech/wavs/LJ011-0073.wav|tests/data/ljspeech/wavs/LJ011-0073.npy +tests/data/ljspeech/wavs/LJ010-0037.wav|tests/data/ljspeech/wavs/LJ010-0037.npy +tests/data/ljspeech/wavs/LJ012-0112.wav|tests/data/ljspeech/wavs/LJ012-0112.npy +tests/data/ljspeech/wavs/LJ050-0170.wav|tests/data/ljspeech/wavs/LJ050-0170.npy +tests/data/ljspeech/wavs/LJ016-0438.wav|tests/data/ljspeech/wavs/LJ016-0438.npy +tests/data/ljspeech/wavs/LJ006-0229.wav|tests/data/ljspeech/wavs/LJ006-0229.npy +tests/data/ljspeech/wavs/LJ002-0010.wav|tests/data/ljspeech/wavs/LJ002-0010.npy +tests/data/ljspeech/wavs/LJ045-0216.wav|tests/data/ljspeech/wavs/LJ045-0216.npy +tests/data/ljspeech/wavs/LJ032-0074.wav|tests/data/ljspeech/wavs/LJ032-0074.npy +tests/data/ljspeech/wavs/LJ047-0177.wav|tests/data/ljspeech/wavs/LJ047-0177.npy +tests/data/ljspeech/wavs/LJ037-0054.wav|tests/data/ljspeech/wavs/LJ037-0054.npy +tests/data/ljspeech/wavs/LJ014-0226.wav|tests/data/ljspeech/wavs/LJ014-0226.npy +tests/data/ljspeech/wavs/LJ024-0004.wav|tests/data/ljspeech/wavs/LJ024-0004.npy +tests/data/ljspeech/wavs/LJ011-0116.wav|tests/data/ljspeech/wavs/LJ011-0116.npy +tests/data/ljspeech/wavs/LJ009-0108.wav|tests/data/ljspeech/wavs/LJ009-0108.npy +tests/data/ljspeech/wavs/LJ039-0018.wav|tests/data/ljspeech/wavs/LJ039-0018.npy +tests/data/ljspeech/wavs/LJ002-0080.wav|tests/data/ljspeech/wavs/LJ002-0080.npy +tests/data/ljspeech/wavs/LJ042-0241.wav|tests/data/ljspeech/wavs/LJ042-0241.npy +tests/data/ljspeech/wavs/LJ020-0038.wav|tests/data/ljspeech/wavs/LJ020-0038.npy +tests/data/ljspeech/wavs/LJ038-0131.wav|tests/data/ljspeech/wavs/LJ038-0131.npy +tests/data/ljspeech/wavs/LJ012-0152.wav|tests/data/ljspeech/wavs/LJ012-0152.npy +tests/data/ljspeech/wavs/LJ033-0107.wav|tests/data/ljspeech/wavs/LJ033-0107.npy +tests/data/ljspeech/wavs/LJ019-0360.wav|tests/data/ljspeech/wavs/LJ019-0360.npy +tests/data/ljspeech/wavs/LJ046-0244.wav|tests/data/ljspeech/wavs/LJ046-0244.npy +tests/data/ljspeech/wavs/LJ047-0060.wav|tests/data/ljspeech/wavs/LJ047-0060.npy +tests/data/ljspeech/wavs/LJ033-0171.wav|tests/data/ljspeech/wavs/LJ033-0171.npy +tests/data/ljspeech/wavs/LJ009-0138.wav|tests/data/ljspeech/wavs/LJ009-0138.npy +tests/data/ljspeech/wavs/LJ006-0018.wav|tests/data/ljspeech/wavs/LJ006-0018.npy +tests/data/ljspeech/wavs/LJ004-0081.wav|tests/data/ljspeech/wavs/LJ004-0081.npy +tests/data/ljspeech/wavs/LJ028-0097.wav|tests/data/ljspeech/wavs/LJ028-0097.npy +tests/data/ljspeech/wavs/LJ048-0274.wav|tests/data/ljspeech/wavs/LJ048-0274.npy +tests/data/ljspeech/wavs/LJ030-0203.wav|tests/data/ljspeech/wavs/LJ030-0203.npy +tests/data/ljspeech/wavs/LJ048-0086.wav|tests/data/ljspeech/wavs/LJ048-0086.npy +tests/data/ljspeech/wavs/LJ028-0455.wav|tests/data/ljspeech/wavs/LJ028-0455.npy +tests/data/ljspeech/wavs/LJ011-0015.wav|tests/data/ljspeech/wavs/LJ011-0015.npy +tests/data/ljspeech/wavs/LJ003-0271.wav|tests/data/ljspeech/wavs/LJ003-0271.npy +tests/data/ljspeech/wavs/LJ037-0124.wav|tests/data/ljspeech/wavs/LJ037-0124.npy +tests/data/ljspeech/wavs/LJ013-0173.wav|tests/data/ljspeech/wavs/LJ013-0173.npy +tests/data/ljspeech/wavs/LJ039-0201.wav|tests/data/ljspeech/wavs/LJ039-0201.npy +tests/data/ljspeech/wavs/LJ044-0017.wav|tests/data/ljspeech/wavs/LJ044-0017.npy +tests/data/ljspeech/wavs/LJ039-0014.wav|tests/data/ljspeech/wavs/LJ039-0014.npy +tests/data/ljspeech/wavs/LJ016-0252.wav|tests/data/ljspeech/wavs/LJ016-0252.npy +tests/data/ljspeech/wavs/LJ029-0096.wav|tests/data/ljspeech/wavs/LJ029-0096.npy +tests/data/ljspeech/wavs/LJ013-0052.wav|tests/data/ljspeech/wavs/LJ013-0052.npy +tests/data/ljspeech/wavs/LJ039-0116.wav|tests/data/ljspeech/wavs/LJ039-0116.npy +tests/data/ljspeech/wavs/LJ044-0078.wav|tests/data/ljspeech/wavs/LJ044-0078.npy +tests/data/ljspeech/wavs/LJ016-0348.wav|tests/data/ljspeech/wavs/LJ016-0348.npy +tests/data/ljspeech/wavs/LJ033-0060.wav|tests/data/ljspeech/wavs/LJ033-0060.npy +tests/data/ljspeech/wavs/LJ030-0179.wav|tests/data/ljspeech/wavs/LJ030-0179.npy +tests/data/ljspeech/wavs/LJ050-0148.wav|tests/data/ljspeech/wavs/LJ050-0148.npy +tests/data/ljspeech/wavs/LJ008-0143.wav|tests/data/ljspeech/wavs/LJ008-0143.npy +tests/data/ljspeech/wavs/LJ027-0031.wav|tests/data/ljspeech/wavs/LJ027-0031.npy +tests/data/ljspeech/wavs/LJ028-0261.wav|tests/data/ljspeech/wavs/LJ028-0261.npy +tests/data/ljspeech/wavs/LJ040-0012.wav|tests/data/ljspeech/wavs/LJ040-0012.npy +tests/data/ljspeech/wavs/LJ008-0068.wav|tests/data/ljspeech/wavs/LJ008-0068.npy +tests/data/ljspeech/wavs/LJ009-0264.wav|tests/data/ljspeech/wavs/LJ009-0264.npy +tests/data/ljspeech/wavs/LJ017-0224.wav|tests/data/ljspeech/wavs/LJ017-0224.npy +tests/data/ljspeech/wavs/LJ002-0116.wav|tests/data/ljspeech/wavs/LJ002-0116.npy +tests/data/ljspeech/wavs/LJ027-0038.wav|tests/data/ljspeech/wavs/LJ027-0038.npy +tests/data/ljspeech/wavs/LJ016-0081.wav|tests/data/ljspeech/wavs/LJ016-0081.npy +tests/data/ljspeech/wavs/LJ022-0031.wav|tests/data/ljspeech/wavs/LJ022-0031.npy +tests/data/ljspeech/wavs/LJ017-0195.wav|tests/data/ljspeech/wavs/LJ017-0195.npy +tests/data/ljspeech/wavs/LJ002-0237.wav|tests/data/ljspeech/wavs/LJ002-0237.npy +tests/data/ljspeech/wavs/LJ016-0082.wav|tests/data/ljspeech/wavs/LJ016-0082.npy +tests/data/ljspeech/wavs/LJ013-0093.wav|tests/data/ljspeech/wavs/LJ013-0093.npy +tests/data/ljspeech/wavs/LJ002-0245.wav|tests/data/ljspeech/wavs/LJ002-0245.npy +tests/data/ljspeech/wavs/LJ028-0496.wav|tests/data/ljspeech/wavs/LJ028-0496.npy +tests/data/ljspeech/wavs/LJ004-0125.wav|tests/data/ljspeech/wavs/LJ004-0125.npy +tests/data/ljspeech/wavs/LJ005-0176.wav|tests/data/ljspeech/wavs/LJ005-0176.npy +tests/data/ljspeech/wavs/LJ007-0035.wav|tests/data/ljspeech/wavs/LJ007-0035.npy +tests/data/ljspeech/wavs/LJ037-0203.wav|tests/data/ljspeech/wavs/LJ037-0203.npy +tests/data/ljspeech/wavs/LJ029-0013.wav|tests/data/ljspeech/wavs/LJ029-0013.npy +tests/data/ljspeech/wavs/LJ022-0155.wav|tests/data/ljspeech/wavs/LJ022-0155.npy +tests/data/ljspeech/wavs/LJ042-0056.wav|tests/data/ljspeech/wavs/LJ042-0056.npy +tests/data/ljspeech/wavs/LJ047-0025.wav|tests/data/ljspeech/wavs/LJ047-0025.npy +tests/data/ljspeech/wavs/LJ048-0080.wav|tests/data/ljspeech/wavs/LJ048-0080.npy +tests/data/ljspeech/wavs/LJ040-0068.wav|tests/data/ljspeech/wavs/LJ040-0068.npy +tests/data/ljspeech/wavs/LJ038-0280.wav|tests/data/ljspeech/wavs/LJ038-0280.npy +tests/data/ljspeech/wavs/LJ011-0247.wav|tests/data/ljspeech/wavs/LJ011-0247.npy +tests/data/ljspeech/wavs/LJ033-0192.wav|tests/data/ljspeech/wavs/LJ033-0192.npy +tests/data/ljspeech/wavs/LJ012-0039.wav|tests/data/ljspeech/wavs/LJ012-0039.npy +tests/data/ljspeech/wavs/LJ003-0086.wav|tests/data/ljspeech/wavs/LJ003-0086.npy +tests/data/ljspeech/wavs/LJ017-0170.wav|tests/data/ljspeech/wavs/LJ017-0170.npy +tests/data/ljspeech/wavs/LJ044-0215.wav|tests/data/ljspeech/wavs/LJ044-0215.npy +tests/data/ljspeech/wavs/LJ037-0008.wav|tests/data/ljspeech/wavs/LJ037-0008.npy +tests/data/ljspeech/wavs/LJ028-0258.wav|tests/data/ljspeech/wavs/LJ028-0258.npy +tests/data/ljspeech/wavs/LJ028-0350.wav|tests/data/ljspeech/wavs/LJ028-0350.npy +tests/data/ljspeech/wavs/LJ045-0204.wav|tests/data/ljspeech/wavs/LJ045-0204.npy +tests/data/ljspeech/wavs/LJ002-0180.wav|tests/data/ljspeech/wavs/LJ002-0180.npy +tests/data/ljspeech/wavs/LJ008-0213.wav|tests/data/ljspeech/wavs/LJ008-0213.npy +tests/data/ljspeech/wavs/LJ023-0131.wav|tests/data/ljspeech/wavs/LJ023-0131.npy +tests/data/ljspeech/wavs/LJ017-0102.wav|tests/data/ljspeech/wavs/LJ017-0102.npy +tests/data/ljspeech/wavs/LJ010-0226.wav|tests/data/ljspeech/wavs/LJ010-0226.npy +tests/data/ljspeech/wavs/LJ047-0183.wav|tests/data/ljspeech/wavs/LJ047-0183.npy +tests/data/ljspeech/wavs/LJ032-0259.wav|tests/data/ljspeech/wavs/LJ032-0259.npy +tests/data/ljspeech/wavs/LJ008-0256.wav|tests/data/ljspeech/wavs/LJ008-0256.npy +tests/data/ljspeech/wavs/LJ010-0258.wav|tests/data/ljspeech/wavs/LJ010-0258.npy +tests/data/ljspeech/wavs/LJ013-0183.wav|tests/data/ljspeech/wavs/LJ013-0183.npy +tests/data/ljspeech/wavs/LJ036-0149.wav|tests/data/ljspeech/wavs/LJ036-0149.npy +tests/data/ljspeech/wavs/LJ039-0224.wav|tests/data/ljspeech/wavs/LJ039-0224.npy +tests/data/ljspeech/wavs/LJ015-0281.wav|tests/data/ljspeech/wavs/LJ015-0281.npy +tests/data/ljspeech/wavs/LJ018-0278.wav|tests/data/ljspeech/wavs/LJ018-0278.npy +tests/data/ljspeech/wavs/LJ044-0075.wav|tests/data/ljspeech/wavs/LJ044-0075.npy +tests/data/ljspeech/wavs/LJ002-0033.wav|tests/data/ljspeech/wavs/LJ002-0033.npy +tests/data/ljspeech/wavs/LJ044-0052.wav|tests/data/ljspeech/wavs/LJ044-0052.npy +tests/data/ljspeech/wavs/LJ025-0117.wav|tests/data/ljspeech/wavs/LJ025-0117.npy +tests/data/ljspeech/wavs/LJ033-0084.wav|tests/data/ljspeech/wavs/LJ033-0084.npy +tests/data/ljspeech/wavs/LJ032-0091.wav|tests/data/ljspeech/wavs/LJ032-0091.npy +tests/data/ljspeech/wavs/LJ003-0115.wav|tests/data/ljspeech/wavs/LJ003-0115.npy +tests/data/ljspeech/wavs/LJ005-0215.wav|tests/data/ljspeech/wavs/LJ005-0215.npy +tests/data/ljspeech/wavs/LJ017-0060.wav|tests/data/ljspeech/wavs/LJ017-0060.npy +tests/data/ljspeech/wavs/LJ049-0142.wav|tests/data/ljspeech/wavs/LJ049-0142.npy +tests/data/ljspeech/wavs/LJ019-0321.wav|tests/data/ljspeech/wavs/LJ019-0321.npy +tests/data/ljspeech/wavs/LJ020-0092.wav|tests/data/ljspeech/wavs/LJ020-0092.npy +tests/data/ljspeech/wavs/LJ048-0095.wav|tests/data/ljspeech/wavs/LJ048-0095.npy +tests/data/ljspeech/wavs/LJ019-0276.wav|tests/data/ljspeech/wavs/LJ019-0276.npy +tests/data/ljspeech/wavs/LJ005-0260.wav|tests/data/ljspeech/wavs/LJ005-0260.npy +tests/data/ljspeech/wavs/LJ041-0069.wav|tests/data/ljspeech/wavs/LJ041-0069.npy +tests/data/ljspeech/wavs/LJ005-0185.wav|tests/data/ljspeech/wavs/LJ005-0185.npy +tests/data/ljspeech/wavs/LJ031-0012.wav|tests/data/ljspeech/wavs/LJ031-0012.npy +tests/data/ljspeech/wavs/LJ003-0034.wav|tests/data/ljspeech/wavs/LJ003-0034.npy +tests/data/ljspeech/wavs/LJ046-0093.wav|tests/data/ljspeech/wavs/LJ046-0093.npy +tests/data/ljspeech/wavs/LJ024-0022.wav|tests/data/ljspeech/wavs/LJ024-0022.npy +tests/data/ljspeech/wavs/LJ003-0320.wav|tests/data/ljspeech/wavs/LJ003-0320.npy +tests/data/ljspeech/wavs/LJ015-0155.wav|tests/data/ljspeech/wavs/LJ015-0155.npy +tests/data/ljspeech/wavs/LJ036-0142.wav|tests/data/ljspeech/wavs/LJ036-0142.npy +tests/data/ljspeech/wavs/LJ050-0005.wav|tests/data/ljspeech/wavs/LJ050-0005.npy +tests/data/ljspeech/wavs/LJ047-0193.wav|tests/data/ljspeech/wavs/LJ047-0193.npy +tests/data/ljspeech/wavs/LJ010-0017.wav|tests/data/ljspeech/wavs/LJ010-0017.npy +tests/data/ljspeech/wavs/LJ001-0112.wav|tests/data/ljspeech/wavs/LJ001-0112.npy +tests/data/ljspeech/wavs/LJ038-0236.wav|tests/data/ljspeech/wavs/LJ038-0236.npy +tests/data/ljspeech/wavs/LJ039-0215.wav|tests/data/ljspeech/wavs/LJ039-0215.npy +tests/data/ljspeech/wavs/LJ009-0234.wav|tests/data/ljspeech/wavs/LJ009-0234.npy +tests/data/ljspeech/wavs/LJ028-0212.wav|tests/data/ljspeech/wavs/LJ028-0212.npy +tests/data/ljspeech/wavs/LJ002-0130.wav|tests/data/ljspeech/wavs/LJ002-0130.npy +tests/data/ljspeech/wavs/LJ032-0053.wav|tests/data/ljspeech/wavs/LJ032-0053.npy +tests/data/ljspeech/wavs/LJ040-0060.wav|tests/data/ljspeech/wavs/LJ040-0060.npy +tests/data/ljspeech/wavs/LJ039-0110.wav|tests/data/ljspeech/wavs/LJ039-0110.npy +tests/data/ljspeech/wavs/LJ007-0224.wav|tests/data/ljspeech/wavs/LJ007-0224.npy +tests/data/ljspeech/wavs/LJ047-0020.wav|tests/data/ljspeech/wavs/LJ047-0020.npy +tests/data/ljspeech/wavs/LJ020-0030.wav|tests/data/ljspeech/wavs/LJ020-0030.npy +tests/data/ljspeech/wavs/LJ047-0223.wav|tests/data/ljspeech/wavs/LJ047-0223.npy +tests/data/ljspeech/wavs/LJ004-0205.wav|tests/data/ljspeech/wavs/LJ004-0205.npy +tests/data/ljspeech/wavs/LJ012-0254.wav|tests/data/ljspeech/wavs/LJ012-0254.npy +tests/data/ljspeech/wavs/LJ042-0008.wav|tests/data/ljspeech/wavs/LJ042-0008.npy +tests/data/ljspeech/wavs/LJ038-0013.wav|tests/data/ljspeech/wavs/LJ038-0013.npy +tests/data/ljspeech/wavs/LJ018-0335.wav|tests/data/ljspeech/wavs/LJ018-0335.npy +tests/data/ljspeech/wavs/LJ038-0209.wav|tests/data/ljspeech/wavs/LJ038-0209.npy +tests/data/ljspeech/wavs/LJ009-0194.wav|tests/data/ljspeech/wavs/LJ009-0194.npy +tests/data/ljspeech/wavs/LJ009-0099.wav|tests/data/ljspeech/wavs/LJ009-0099.npy +tests/data/ljspeech/wavs/LJ019-0312.wav|tests/data/ljspeech/wavs/LJ019-0312.npy +tests/data/ljspeech/wavs/LJ048-0104.wav|tests/data/ljspeech/wavs/LJ048-0104.npy +tests/data/ljspeech/wavs/LJ010-0238.wav|tests/data/ljspeech/wavs/LJ010-0238.npy +tests/data/ljspeech/wavs/LJ014-0298.wav|tests/data/ljspeech/wavs/LJ014-0298.npy +tests/data/ljspeech/wavs/LJ019-0326.wav|tests/data/ljspeech/wavs/LJ019-0326.npy +tests/data/ljspeech/wavs/LJ031-0214.wav|tests/data/ljspeech/wavs/LJ031-0214.npy +tests/data/ljspeech/wavs/LJ009-0216.wav|tests/data/ljspeech/wavs/LJ009-0216.npy +tests/data/ljspeech/wavs/LJ003-0138.wav|tests/data/ljspeech/wavs/LJ003-0138.npy +tests/data/ljspeech/wavs/LJ001-0181.wav|tests/data/ljspeech/wavs/LJ001-0181.npy +tests/data/ljspeech/wavs/LJ028-0372.wav|tests/data/ljspeech/wavs/LJ028-0372.npy +tests/data/ljspeech/wavs/LJ014-0256.wav|tests/data/ljspeech/wavs/LJ014-0256.npy +tests/data/ljspeech/wavs/LJ005-0129.wav|tests/data/ljspeech/wavs/LJ005-0129.npy +tests/data/ljspeech/wavs/LJ035-0165.wav|tests/data/ljspeech/wavs/LJ035-0165.npy +tests/data/ljspeech/wavs/LJ034-0141.wav|tests/data/ljspeech/wavs/LJ034-0141.npy +tests/data/ljspeech/wavs/LJ028-0386.wav|tests/data/ljspeech/wavs/LJ028-0386.npy +tests/data/ljspeech/wavs/LJ005-0004.wav|tests/data/ljspeech/wavs/LJ005-0004.npy +tests/data/ljspeech/wavs/LJ044-0072.wav|tests/data/ljspeech/wavs/LJ044-0072.npy +tests/data/ljspeech/wavs/LJ031-0064.wav|tests/data/ljspeech/wavs/LJ031-0064.npy +tests/data/ljspeech/wavs/LJ028-0069.wav|tests/data/ljspeech/wavs/LJ028-0069.npy +tests/data/ljspeech/wavs/LJ010-0285.wav|tests/data/ljspeech/wavs/LJ010-0285.npy +tests/data/ljspeech/wavs/LJ012-0144.wav|tests/data/ljspeech/wavs/LJ012-0144.npy +tests/data/ljspeech/wavs/LJ031-0005.wav|tests/data/ljspeech/wavs/LJ031-0005.npy +tests/data/ljspeech/wavs/LJ019-0209.wav|tests/data/ljspeech/wavs/LJ019-0209.npy +tests/data/ljspeech/wavs/LJ032-0257.wav|tests/data/ljspeech/wavs/LJ032-0257.npy +tests/data/ljspeech/wavs/LJ009-0281.wav|tests/data/ljspeech/wavs/LJ009-0281.npy +tests/data/ljspeech/wavs/LJ028-0418.wav|tests/data/ljspeech/wavs/LJ028-0418.npy +tests/data/ljspeech/wavs/LJ036-0095.wav|tests/data/ljspeech/wavs/LJ036-0095.npy +tests/data/ljspeech/wavs/LJ046-0115.wav|tests/data/ljspeech/wavs/LJ046-0115.npy +tests/data/ljspeech/wavs/LJ042-0119.wav|tests/data/ljspeech/wavs/LJ042-0119.npy +tests/data/ljspeech/wavs/LJ027-0131.wav|tests/data/ljspeech/wavs/LJ027-0131.npy +tests/data/ljspeech/wavs/LJ038-0188.wav|tests/data/ljspeech/wavs/LJ038-0188.npy +tests/data/ljspeech/wavs/LJ017-0160.wav|tests/data/ljspeech/wavs/LJ017-0160.npy +tests/data/ljspeech/wavs/LJ007-0040.wav|tests/data/ljspeech/wavs/LJ007-0040.npy +tests/data/ljspeech/wavs/LJ047-0003.wav|tests/data/ljspeech/wavs/LJ047-0003.npy +tests/data/ljspeech/wavs/LJ038-0177.wav|tests/data/ljspeech/wavs/LJ038-0177.npy +tests/data/ljspeech/wavs/LJ035-0097.wav|tests/data/ljspeech/wavs/LJ035-0097.npy +tests/data/ljspeech/wavs/LJ019-0146.wav|tests/data/ljspeech/wavs/LJ019-0146.npy +tests/data/ljspeech/wavs/LJ032-0156.wav|tests/data/ljspeech/wavs/LJ032-0156.npy +tests/data/ljspeech/wavs/LJ013-0055.wav|tests/data/ljspeech/wavs/LJ013-0055.npy +tests/data/ljspeech/wavs/LJ009-0028.wav|tests/data/ljspeech/wavs/LJ009-0028.npy +tests/data/ljspeech/wavs/LJ012-0235.wav|tests/data/ljspeech/wavs/LJ012-0235.npy +tests/data/ljspeech/wavs/LJ015-0004.wav|tests/data/ljspeech/wavs/LJ015-0004.npy +tests/data/ljspeech/wavs/LJ005-0277.wav|tests/data/ljspeech/wavs/LJ005-0277.npy +tests/data/ljspeech/wavs/LJ015-0060.wav|tests/data/ljspeech/wavs/LJ015-0060.npy +tests/data/ljspeech/wavs/LJ009-0282.wav|tests/data/ljspeech/wavs/LJ009-0282.npy +tests/data/ljspeech/wavs/LJ019-0213.wav|tests/data/ljspeech/wavs/LJ019-0213.npy +tests/data/ljspeech/wavs/LJ010-0110.wav|tests/data/ljspeech/wavs/LJ010-0110.npy +tests/data/ljspeech/wavs/LJ047-0196.wav|tests/data/ljspeech/wavs/LJ047-0196.npy +tests/data/ljspeech/wavs/LJ050-0219.wav|tests/data/ljspeech/wavs/LJ050-0219.npy +tests/data/ljspeech/wavs/LJ039-0165.wav|tests/data/ljspeech/wavs/LJ039-0165.npy +tests/data/ljspeech/wavs/LJ033-0183.wav|tests/data/ljspeech/wavs/LJ033-0183.npy +tests/data/ljspeech/wavs/LJ039-0001.wav|tests/data/ljspeech/wavs/LJ039-0001.npy +tests/data/ljspeech/wavs/LJ018-0369.wav|tests/data/ljspeech/wavs/LJ018-0369.npy +tests/data/ljspeech/wavs/LJ020-0018.wav|tests/data/ljspeech/wavs/LJ020-0018.npy +tests/data/ljspeech/wavs/LJ021-0005.wav|tests/data/ljspeech/wavs/LJ021-0005.npy +tests/data/ljspeech/wavs/LJ045-0124.wav|tests/data/ljspeech/wavs/LJ045-0124.npy +tests/data/ljspeech/wavs/LJ010-0157.wav|tests/data/ljspeech/wavs/LJ010-0157.npy +tests/data/ljspeech/wavs/LJ003-0010.wav|tests/data/ljspeech/wavs/LJ003-0010.npy +tests/data/ljspeech/wavs/LJ022-0064.wav|tests/data/ljspeech/wavs/LJ022-0064.npy +tests/data/ljspeech/wavs/LJ024-0075.wav|tests/data/ljspeech/wavs/LJ024-0075.npy +tests/data/ljspeech/wavs/LJ028-0446.wav|tests/data/ljspeech/wavs/LJ028-0446.npy +tests/data/ljspeech/wavs/LJ048-0240.wav|tests/data/ljspeech/wavs/LJ048-0240.npy +tests/data/ljspeech/wavs/LJ014-0207.wav|tests/data/ljspeech/wavs/LJ014-0207.npy +tests/data/ljspeech/wavs/LJ038-0132.wav|tests/data/ljspeech/wavs/LJ038-0132.npy +tests/data/ljspeech/wavs/LJ005-0096.wav|tests/data/ljspeech/wavs/LJ005-0096.npy +tests/data/ljspeech/wavs/LJ042-0102.wav|tests/data/ljspeech/wavs/LJ042-0102.npy +tests/data/ljspeech/wavs/LJ004-0034.wav|tests/data/ljspeech/wavs/LJ004-0034.npy +tests/data/ljspeech/wavs/LJ001-0028.wav|tests/data/ljspeech/wavs/LJ001-0028.npy +tests/data/ljspeech/wavs/LJ014-0235.wav|tests/data/ljspeech/wavs/LJ014-0235.npy +tests/data/ljspeech/wavs/LJ018-0209.wav|tests/data/ljspeech/wavs/LJ018-0209.npy +tests/data/ljspeech/wavs/LJ008-0058.wav|tests/data/ljspeech/wavs/LJ008-0058.npy +tests/data/ljspeech/wavs/LJ029-0158.wav|tests/data/ljspeech/wavs/LJ029-0158.npy +tests/data/ljspeech/wavs/LJ040-0208.wav|tests/data/ljspeech/wavs/LJ040-0208.npy +tests/data/ljspeech/wavs/LJ012-0129.wav|tests/data/ljspeech/wavs/LJ012-0129.npy +tests/data/ljspeech/wavs/LJ028-0013.wav|tests/data/ljspeech/wavs/LJ028-0013.npy +tests/data/ljspeech/wavs/LJ034-0101.wav|tests/data/ljspeech/wavs/LJ034-0101.npy +tests/data/ljspeech/wavs/LJ007-0136.wav|tests/data/ljspeech/wavs/LJ007-0136.npy +tests/data/ljspeech/wavs/LJ027-0091.wav|tests/data/ljspeech/wavs/LJ027-0091.npy +tests/data/ljspeech/wavs/LJ002-0141.wav|tests/data/ljspeech/wavs/LJ002-0141.npy +tests/data/ljspeech/wavs/LJ001-0157.wav|tests/data/ljspeech/wavs/LJ001-0157.npy +tests/data/ljspeech/wavs/LJ039-0007.wav|tests/data/ljspeech/wavs/LJ039-0007.npy +tests/data/ljspeech/wavs/LJ013-0142.wav|tests/data/ljspeech/wavs/LJ013-0142.npy +tests/data/ljspeech/wavs/LJ028-0052.wav|tests/data/ljspeech/wavs/LJ028-0052.npy +tests/data/ljspeech/wavs/LJ047-0172.wav|tests/data/ljspeech/wavs/LJ047-0172.npy +tests/data/ljspeech/wavs/LJ044-0038.wav|tests/data/ljspeech/wavs/LJ044-0038.npy +tests/data/ljspeech/wavs/LJ031-0072.wav|tests/data/ljspeech/wavs/LJ031-0072.npy +tests/data/ljspeech/wavs/LJ050-0027.wav|tests/data/ljspeech/wavs/LJ050-0027.npy +tests/data/ljspeech/wavs/LJ049-0097.wav|tests/data/ljspeech/wavs/LJ049-0097.npy +tests/data/ljspeech/wavs/LJ008-0052.wav|tests/data/ljspeech/wavs/LJ008-0052.npy +tests/data/ljspeech/wavs/LJ050-0029.wav|tests/data/ljspeech/wavs/LJ050-0029.npy +tests/data/ljspeech/wavs/LJ048-0100.wav|tests/data/ljspeech/wavs/LJ048-0100.npy +tests/data/ljspeech/wavs/LJ022-0102.wav|tests/data/ljspeech/wavs/LJ022-0102.npy +tests/data/ljspeech/wavs/LJ029-0169.wav|tests/data/ljspeech/wavs/LJ029-0169.npy +tests/data/ljspeech/wavs/LJ016-0292.wav|tests/data/ljspeech/wavs/LJ016-0292.npy +tests/data/ljspeech/wavs/LJ038-0046.wav|tests/data/ljspeech/wavs/LJ038-0046.npy +tests/data/ljspeech/wavs/LJ015-0173.wav|tests/data/ljspeech/wavs/LJ015-0173.npy +tests/data/ljspeech/wavs/LJ012-0207.wav|tests/data/ljspeech/wavs/LJ012-0207.npy +tests/data/ljspeech/wavs/LJ024-0100.wav|tests/data/ljspeech/wavs/LJ024-0100.npy +tests/data/ljspeech/wavs/LJ011-0146.wav|tests/data/ljspeech/wavs/LJ011-0146.npy +tests/data/ljspeech/wavs/LJ043-0068.wav|tests/data/ljspeech/wavs/LJ043-0068.npy +tests/data/ljspeech/wavs/LJ037-0103.wav|tests/data/ljspeech/wavs/LJ037-0103.npy +tests/data/ljspeech/wavs/LJ002-0163.wav|tests/data/ljspeech/wavs/LJ002-0163.npy +tests/data/ljspeech/wavs/LJ018-0261.wav|tests/data/ljspeech/wavs/LJ018-0261.npy +tests/data/ljspeech/wavs/LJ008-0259.wav|tests/data/ljspeech/wavs/LJ008-0259.npy +tests/data/ljspeech/wavs/LJ034-0048.wav|tests/data/ljspeech/wavs/LJ034-0048.npy +tests/data/ljspeech/wavs/LJ001-0144.wav|tests/data/ljspeech/wavs/LJ001-0144.npy +tests/data/ljspeech/wavs/LJ016-0362.wav|tests/data/ljspeech/wavs/LJ016-0362.npy +tests/data/ljspeech/wavs/LJ018-0375.wav|tests/data/ljspeech/wavs/LJ018-0375.npy +tests/data/ljspeech/wavs/LJ004-0208.wav|tests/data/ljspeech/wavs/LJ004-0208.npy +tests/data/ljspeech/wavs/LJ017-0171.wav|tests/data/ljspeech/wavs/LJ017-0171.npy +tests/data/ljspeech/wavs/LJ050-0011.wav|tests/data/ljspeech/wavs/LJ050-0011.npy +tests/data/ljspeech/wavs/LJ006-0079.wav|tests/data/ljspeech/wavs/LJ006-0079.npy +tests/data/ljspeech/wavs/LJ044-0011.wav|tests/data/ljspeech/wavs/LJ044-0011.npy +tests/data/ljspeech/wavs/LJ023-0139.wav|tests/data/ljspeech/wavs/LJ023-0139.npy +tests/data/ljspeech/wavs/LJ040-0002.wav|tests/data/ljspeech/wavs/LJ040-0002.npy +tests/data/ljspeech/wavs/LJ032-0204.wav|tests/data/ljspeech/wavs/LJ032-0204.npy +tests/data/ljspeech/wavs/LJ046-0200.wav|tests/data/ljspeech/wavs/LJ046-0200.npy +tests/data/ljspeech/wavs/LJ039-0022.wav|tests/data/ljspeech/wavs/LJ039-0022.npy +tests/data/ljspeech/wavs/LJ031-0034.wav|tests/data/ljspeech/wavs/LJ031-0034.npy +tests/data/ljspeech/wavs/LJ048-0068.wav|tests/data/ljspeech/wavs/LJ048-0068.npy +tests/data/ljspeech/wavs/LJ045-0061.wav|tests/data/ljspeech/wavs/LJ045-0061.npy +tests/data/ljspeech/wavs/LJ044-0122.wav|tests/data/ljspeech/wavs/LJ044-0122.npy +tests/data/ljspeech/wavs/LJ019-0290.wav|tests/data/ljspeech/wavs/LJ019-0290.npy +tests/data/ljspeech/wavs/LJ016-0366.wav|tests/data/ljspeech/wavs/LJ016-0366.npy +tests/data/ljspeech/wavs/LJ014-0160.wav|tests/data/ljspeech/wavs/LJ014-0160.npy +tests/data/ljspeech/wavs/LJ003-0288.wav|tests/data/ljspeech/wavs/LJ003-0288.npy +tests/data/ljspeech/wavs/LJ044-0074.wav|tests/data/ljspeech/wavs/LJ044-0074.npy +tests/data/ljspeech/wavs/LJ014-0253.wav|tests/data/ljspeech/wavs/LJ014-0253.npy +tests/data/ljspeech/wavs/LJ021-0074.wav|tests/data/ljspeech/wavs/LJ021-0074.npy +tests/data/ljspeech/wavs/LJ048-0119.wav|tests/data/ljspeech/wavs/LJ048-0119.npy +tests/data/ljspeech/wavs/LJ019-0243.wav|tests/data/ljspeech/wavs/LJ019-0243.npy +tests/data/ljspeech/wavs/LJ037-0078.wav|tests/data/ljspeech/wavs/LJ037-0078.npy +tests/data/ljspeech/wavs/LJ023-0134.wav|tests/data/ljspeech/wavs/LJ023-0134.npy +tests/data/ljspeech/wavs/LJ047-0168.wav|tests/data/ljspeech/wavs/LJ047-0168.npy +tests/data/ljspeech/wavs/LJ006-0092.wav|tests/data/ljspeech/wavs/LJ006-0092.npy +tests/data/ljspeech/wavs/LJ005-0213.wav|tests/data/ljspeech/wavs/LJ005-0213.npy +tests/data/ljspeech/wavs/LJ016-0127.wav|tests/data/ljspeech/wavs/LJ016-0127.npy +tests/data/ljspeech/wavs/LJ034-0171.wav|tests/data/ljspeech/wavs/LJ034-0171.npy +tests/data/ljspeech/wavs/LJ009-0098.wav|tests/data/ljspeech/wavs/LJ009-0098.npy +tests/data/ljspeech/wavs/LJ028-0085.wav|tests/data/ljspeech/wavs/LJ028-0085.npy +tests/data/ljspeech/wavs/LJ048-0069.wav|tests/data/ljspeech/wavs/LJ048-0069.npy +tests/data/ljspeech/wavs/LJ038-0286.wav|tests/data/ljspeech/wavs/LJ038-0286.npy +tests/data/ljspeech/wavs/LJ029-0099.wav|tests/data/ljspeech/wavs/LJ029-0099.npy +tests/data/ljspeech/wavs/LJ031-0074.wav|tests/data/ljspeech/wavs/LJ031-0074.npy +tests/data/ljspeech/wavs/LJ044-0237.wav|tests/data/ljspeech/wavs/LJ044-0237.npy +tests/data/ljspeech/wavs/LJ047-0194.wav|tests/data/ljspeech/wavs/LJ047-0194.npy +tests/data/ljspeech/wavs/LJ034-0084.wav|tests/data/ljspeech/wavs/LJ034-0084.npy +tests/data/ljspeech/wavs/LJ014-0051.wav|tests/data/ljspeech/wavs/LJ014-0051.npy +tests/data/ljspeech/wavs/LJ041-0167.wav|tests/data/ljspeech/wavs/LJ041-0167.npy +tests/data/ljspeech/wavs/LJ033-0121.wav|tests/data/ljspeech/wavs/LJ033-0121.npy +tests/data/ljspeech/wavs/LJ026-0047.wav|tests/data/ljspeech/wavs/LJ026-0047.npy +tests/data/ljspeech/wavs/LJ003-0321.wav|tests/data/ljspeech/wavs/LJ003-0321.npy +tests/data/ljspeech/wavs/LJ022-0142.wav|tests/data/ljspeech/wavs/LJ022-0142.npy +tests/data/ljspeech/wavs/LJ042-0218.wav|tests/data/ljspeech/wavs/LJ042-0218.npy +tests/data/ljspeech/wavs/LJ043-0023.wav|tests/data/ljspeech/wavs/LJ043-0023.npy +tests/data/ljspeech/wavs/LJ042-0209.wav|tests/data/ljspeech/wavs/LJ042-0209.npy +tests/data/ljspeech/wavs/LJ005-0300.wav|tests/data/ljspeech/wavs/LJ005-0300.npy +tests/data/ljspeech/wavs/LJ046-0127.wav|tests/data/ljspeech/wavs/LJ046-0127.npy +tests/data/ljspeech/wavs/LJ042-0010.wav|tests/data/ljspeech/wavs/LJ042-0010.npy +tests/data/ljspeech/wavs/LJ002-0178.wav|tests/data/ljspeech/wavs/LJ002-0178.npy +tests/data/ljspeech/wavs/LJ018-0256.wav|tests/data/ljspeech/wavs/LJ018-0256.npy +tests/data/ljspeech/wavs/LJ028-0024.wav|tests/data/ljspeech/wavs/LJ028-0024.npy +tests/data/ljspeech/wavs/LJ004-0132.wav|tests/data/ljspeech/wavs/LJ004-0132.npy +tests/data/ljspeech/wavs/LJ022-0191.wav|tests/data/ljspeech/wavs/LJ022-0191.npy +tests/data/ljspeech/wavs/LJ025-0070.wav|tests/data/ljspeech/wavs/LJ025-0070.npy +tests/data/ljspeech/wavs/LJ028-0344.wav|tests/data/ljspeech/wavs/LJ028-0344.npy +tests/data/ljspeech/wavs/LJ032-0037.wav|tests/data/ljspeech/wavs/LJ032-0037.npy +tests/data/ljspeech/wavs/LJ022-0039.wav|tests/data/ljspeech/wavs/LJ022-0039.npy +tests/data/ljspeech/wavs/LJ008-0318.wav|tests/data/ljspeech/wavs/LJ008-0318.npy +tests/data/ljspeech/wavs/LJ028-0158.wav|tests/data/ljspeech/wavs/LJ028-0158.npy +tests/data/ljspeech/wavs/LJ010-0041.wav|tests/data/ljspeech/wavs/LJ010-0041.npy +tests/data/ljspeech/wavs/LJ015-0257.wav|tests/data/ljspeech/wavs/LJ015-0257.npy +tests/data/ljspeech/wavs/LJ005-0099.wav|tests/data/ljspeech/wavs/LJ005-0099.npy +tests/data/ljspeech/wavs/LJ049-0185.wav|tests/data/ljspeech/wavs/LJ049-0185.npy +tests/data/ljspeech/wavs/LJ003-0110.wav|tests/data/ljspeech/wavs/LJ003-0110.npy +tests/data/ljspeech/wavs/LJ044-0099.wav|tests/data/ljspeech/wavs/LJ044-0099.npy +tests/data/ljspeech/wavs/LJ018-0392.wav|tests/data/ljspeech/wavs/LJ018-0392.npy +tests/data/ljspeech/wavs/LJ045-0008.wav|tests/data/ljspeech/wavs/LJ045-0008.npy +tests/data/ljspeech/wavs/LJ002-0246.wav|tests/data/ljspeech/wavs/LJ002-0246.npy +tests/data/ljspeech/wavs/LJ045-0002.wav|tests/data/ljspeech/wavs/LJ045-0002.npy +tests/data/ljspeech/wavs/LJ041-0002.wav|tests/data/ljspeech/wavs/LJ041-0002.npy +tests/data/ljspeech/wavs/LJ042-0210.wav|tests/data/ljspeech/wavs/LJ042-0210.npy +tests/data/ljspeech/wavs/LJ025-0072.wav|tests/data/ljspeech/wavs/LJ025-0072.npy +tests/data/ljspeech/wavs/LJ025-0074.wav|tests/data/ljspeech/wavs/LJ025-0074.npy +tests/data/ljspeech/wavs/LJ048-0089.wav|tests/data/ljspeech/wavs/LJ048-0089.npy +tests/data/ljspeech/wavs/LJ016-0412.wav|tests/data/ljspeech/wavs/LJ016-0412.npy +tests/data/ljspeech/wavs/LJ044-0048.wav|tests/data/ljspeech/wavs/LJ044-0048.npy +tests/data/ljspeech/wavs/LJ038-0292.wav|tests/data/ljspeech/wavs/LJ038-0292.npy +tests/data/ljspeech/wavs/LJ010-0202.wav|tests/data/ljspeech/wavs/LJ010-0202.npy +tests/data/ljspeech/wavs/LJ008-0004.wav|tests/data/ljspeech/wavs/LJ008-0004.npy +tests/data/ljspeech/wavs/LJ007-0042.wav|tests/data/ljspeech/wavs/LJ007-0042.npy +tests/data/ljspeech/wavs/LJ023-0014.wav|tests/data/ljspeech/wavs/LJ023-0014.npy +tests/data/ljspeech/wavs/LJ030-0222.wav|tests/data/ljspeech/wavs/LJ030-0222.npy +tests/data/ljspeech/wavs/LJ010-0256.wav|tests/data/ljspeech/wavs/LJ010-0256.npy +tests/data/ljspeech/wavs/LJ008-0296.wav|tests/data/ljspeech/wavs/LJ008-0296.npy +tests/data/ljspeech/wavs/LJ035-0114.wav|tests/data/ljspeech/wavs/LJ035-0114.npy +tests/data/ljspeech/wavs/LJ023-0017.wav|tests/data/ljspeech/wavs/LJ023-0017.npy +tests/data/ljspeech/wavs/LJ014-0028.wav|tests/data/ljspeech/wavs/LJ014-0028.npy +tests/data/ljspeech/wavs/LJ020-0093.wav|tests/data/ljspeech/wavs/LJ020-0093.npy +tests/data/ljspeech/wavs/LJ018-0373.wav|tests/data/ljspeech/wavs/LJ018-0373.npy +tests/data/ljspeech/wavs/LJ006-0186.wav|tests/data/ljspeech/wavs/LJ006-0186.npy +tests/data/ljspeech/wavs/LJ045-0081.wav|tests/data/ljspeech/wavs/LJ045-0081.npy +tests/data/ljspeech/wavs/LJ032-0005.wav|tests/data/ljspeech/wavs/LJ032-0005.npy +tests/data/ljspeech/wavs/LJ026-0037.wav|tests/data/ljspeech/wavs/LJ026-0037.npy +tests/data/ljspeech/wavs/LJ014-0056.wav|tests/data/ljspeech/wavs/LJ014-0056.npy +tests/data/ljspeech/wavs/LJ022-0072.wav|tests/data/ljspeech/wavs/LJ022-0072.npy +tests/data/ljspeech/wavs/LJ049-0040.wav|tests/data/ljspeech/wavs/LJ049-0040.npy +tests/data/ljspeech/wavs/LJ008-0253.wav|tests/data/ljspeech/wavs/LJ008-0253.npy +tests/data/ljspeech/wavs/LJ013-0074.wav|tests/data/ljspeech/wavs/LJ013-0074.npy +tests/data/ljspeech/wavs/LJ044-0021.wav|tests/data/ljspeech/wavs/LJ044-0021.npy +tests/data/ljspeech/wavs/LJ048-0040.wav|tests/data/ljspeech/wavs/LJ048-0040.npy +tests/data/ljspeech/wavs/LJ022-0042.wav|tests/data/ljspeech/wavs/LJ022-0042.npy +tests/data/ljspeech/wavs/LJ030-0011.wav|tests/data/ljspeech/wavs/LJ030-0011.npy +tests/data/ljspeech/wavs/LJ039-0035.wav|tests/data/ljspeech/wavs/LJ039-0035.npy +tests/data/ljspeech/wavs/LJ024-0076.wav|tests/data/ljspeech/wavs/LJ024-0076.npy +tests/data/ljspeech/wavs/LJ043-0014.wav|tests/data/ljspeech/wavs/LJ043-0014.npy +tests/data/ljspeech/wavs/LJ041-0190.wav|tests/data/ljspeech/wavs/LJ041-0190.npy +tests/data/ljspeech/wavs/LJ030-0099.wav|tests/data/ljspeech/wavs/LJ030-0099.npy +tests/data/ljspeech/wavs/LJ048-0280.wav|tests/data/ljspeech/wavs/LJ048-0280.npy +tests/data/ljspeech/wavs/LJ007-0241.wav|tests/data/ljspeech/wavs/LJ007-0241.npy +tests/data/ljspeech/wavs/LJ045-0153.wav|tests/data/ljspeech/wavs/LJ045-0153.npy +tests/data/ljspeech/wavs/LJ049-0062.wav|tests/data/ljspeech/wavs/LJ049-0062.npy +tests/data/ljspeech/wavs/LJ039-0048.wav|tests/data/ljspeech/wavs/LJ039-0048.npy +tests/data/ljspeech/wavs/LJ021-0045.wav|tests/data/ljspeech/wavs/LJ021-0045.npy +tests/data/ljspeech/wavs/LJ011-0275.wav|tests/data/ljspeech/wavs/LJ011-0275.npy +tests/data/ljspeech/wavs/LJ008-0059.wav|tests/data/ljspeech/wavs/LJ008-0059.npy +tests/data/ljspeech/wavs/LJ015-0242.wav|tests/data/ljspeech/wavs/LJ015-0242.npy +tests/data/ljspeech/wavs/LJ017-0183.wav|tests/data/ljspeech/wavs/LJ017-0183.npy +tests/data/ljspeech/wavs/LJ010-0277.wav|tests/data/ljspeech/wavs/LJ010-0277.npy +tests/data/ljspeech/wavs/LJ020-0089.wav|tests/data/ljspeech/wavs/LJ020-0089.npy +tests/data/ljspeech/wavs/LJ018-0242.wav|tests/data/ljspeech/wavs/LJ018-0242.npy +tests/data/ljspeech/wavs/LJ046-0030.wav|tests/data/ljspeech/wavs/LJ046-0030.npy +tests/data/ljspeech/wavs/LJ048-0241.wav|tests/data/ljspeech/wavs/LJ048-0241.npy +tests/data/ljspeech/wavs/LJ015-0097.wav|tests/data/ljspeech/wavs/LJ015-0097.npy +tests/data/ljspeech/wavs/LJ024-0045.wav|tests/data/ljspeech/wavs/LJ024-0045.npy +tests/data/ljspeech/wavs/LJ009-0036.wav|tests/data/ljspeech/wavs/LJ009-0036.npy +tests/data/ljspeech/wavs/LJ013-0076.wav|tests/data/ljspeech/wavs/LJ013-0076.npy +tests/data/ljspeech/wavs/LJ006-0069.wav|tests/data/ljspeech/wavs/LJ006-0069.npy +tests/data/ljspeech/wavs/LJ027-0079.wav|tests/data/ljspeech/wavs/LJ027-0079.npy +tests/data/ljspeech/wavs/LJ005-0252.wav|tests/data/ljspeech/wavs/LJ005-0252.npy +tests/data/ljspeech/wavs/LJ043-0115.wav|tests/data/ljspeech/wavs/LJ043-0115.npy +tests/data/ljspeech/wavs/LJ043-0032.wav|tests/data/ljspeech/wavs/LJ043-0032.npy +tests/data/ljspeech/wavs/LJ019-0062.wav|tests/data/ljspeech/wavs/LJ019-0062.npy +tests/data/ljspeech/wavs/LJ021-0023.wav|tests/data/ljspeech/wavs/LJ021-0023.npy +tests/data/ljspeech/wavs/LJ050-0186.wav|tests/data/ljspeech/wavs/LJ050-0186.npy +tests/data/ljspeech/wavs/LJ011-0136.wav|tests/data/ljspeech/wavs/LJ011-0136.npy +tests/data/ljspeech/wavs/LJ003-0318.wav|tests/data/ljspeech/wavs/LJ003-0318.npy +tests/data/ljspeech/wavs/LJ019-0216.wav|tests/data/ljspeech/wavs/LJ019-0216.npy +tests/data/ljspeech/wavs/LJ006-0267.wav|tests/data/ljspeech/wavs/LJ006-0267.npy +tests/data/ljspeech/wavs/LJ029-0116.wav|tests/data/ljspeech/wavs/LJ029-0116.npy +tests/data/ljspeech/wavs/LJ021-0026.wav|tests/data/ljspeech/wavs/LJ021-0026.npy +tests/data/ljspeech/wavs/LJ013-0202.wav|tests/data/ljspeech/wavs/LJ013-0202.npy +tests/data/ljspeech/wavs/LJ023-0123.wav|tests/data/ljspeech/wavs/LJ023-0123.npy +tests/data/ljspeech/wavs/LJ004-0119.wav|tests/data/ljspeech/wavs/LJ004-0119.npy +tests/data/ljspeech/wavs/LJ040-0015.wav|tests/data/ljspeech/wavs/LJ040-0015.npy +tests/data/ljspeech/wavs/LJ008-0312.wav|tests/data/ljspeech/wavs/LJ008-0312.npy +tests/data/ljspeech/wavs/LJ034-0018.wav|tests/data/ljspeech/wavs/LJ034-0018.npy +tests/data/ljspeech/wavs/LJ012-0263.wav|tests/data/ljspeech/wavs/LJ012-0263.npy +tests/data/ljspeech/wavs/LJ023-0133.wav|tests/data/ljspeech/wavs/LJ023-0133.npy +tests/data/ljspeech/wavs/LJ028-0047.wav|tests/data/ljspeech/wavs/LJ028-0047.npy +tests/data/ljspeech/wavs/LJ028-0501.wav|tests/data/ljspeech/wavs/LJ028-0501.npy +tests/data/ljspeech/wavs/LJ008-0231.wav|tests/data/ljspeech/wavs/LJ008-0231.npy +tests/data/ljspeech/wavs/LJ048-0212.wav|tests/data/ljspeech/wavs/LJ048-0212.npy +tests/data/ljspeech/wavs/LJ013-0187.wav|tests/data/ljspeech/wavs/LJ013-0187.npy +tests/data/ljspeech/wavs/LJ030-0065.wav|tests/data/ljspeech/wavs/LJ030-0065.npy +tests/data/ljspeech/wavs/LJ037-0177.wav|tests/data/ljspeech/wavs/LJ037-0177.npy +tests/data/ljspeech/wavs/LJ008-0092.wav|tests/data/ljspeech/wavs/LJ008-0092.npy +tests/data/ljspeech/wavs/LJ006-0253.wav|tests/data/ljspeech/wavs/LJ006-0253.npy +tests/data/ljspeech/wavs/LJ003-0003.wav|tests/data/ljspeech/wavs/LJ003-0003.npy +tests/data/ljspeech/wavs/LJ015-0232.wav|tests/data/ljspeech/wavs/LJ015-0232.npy +tests/data/ljspeech/wavs/LJ015-0070.wav|tests/data/ljspeech/wavs/LJ015-0070.npy +tests/data/ljspeech/wavs/LJ015-0234.wav|tests/data/ljspeech/wavs/LJ015-0234.npy +tests/data/ljspeech/wavs/LJ038-0122.wav|tests/data/ljspeech/wavs/LJ038-0122.npy +tests/data/ljspeech/wavs/LJ041-0173.wav|tests/data/ljspeech/wavs/LJ041-0173.npy +tests/data/ljspeech/wavs/LJ040-0044.wav|tests/data/ljspeech/wavs/LJ040-0044.npy +tests/data/ljspeech/wavs/LJ037-0241.wav|tests/data/ljspeech/wavs/LJ037-0241.npy +tests/data/ljspeech/wavs/LJ050-0048.wav|tests/data/ljspeech/wavs/LJ050-0048.npy +tests/data/ljspeech/wavs/LJ050-0208.wav|tests/data/ljspeech/wavs/LJ050-0208.npy +tests/data/ljspeech/wavs/LJ012-0047.wav|tests/data/ljspeech/wavs/LJ012-0047.npy +tests/data/ljspeech/wavs/LJ030-0168.wav|tests/data/ljspeech/wavs/LJ030-0168.npy +tests/data/ljspeech/wavs/LJ019-0045.wav|tests/data/ljspeech/wavs/LJ019-0045.npy +tests/data/ljspeech/wavs/LJ045-0234.wav|tests/data/ljspeech/wavs/LJ045-0234.npy +tests/data/ljspeech/wavs/LJ019-0110.wav|tests/data/ljspeech/wavs/LJ019-0110.npy +tests/data/ljspeech/wavs/LJ049-0115.wav|tests/data/ljspeech/wavs/LJ049-0115.npy +tests/data/ljspeech/wavs/LJ019-0315.wav|tests/data/ljspeech/wavs/LJ019-0315.npy +tests/data/ljspeech/wavs/LJ028-0315.wav|tests/data/ljspeech/wavs/LJ028-0315.npy +tests/data/ljspeech/wavs/LJ028-0010.wav|tests/data/ljspeech/wavs/LJ028-0010.npy +tests/data/ljspeech/wavs/LJ007-0108.wav|tests/data/ljspeech/wavs/LJ007-0108.npy +tests/data/ljspeech/wavs/LJ012-0019.wav|tests/data/ljspeech/wavs/LJ012-0019.npy +tests/data/ljspeech/wavs/LJ048-0117.wav|tests/data/ljspeech/wavs/LJ048-0117.npy +tests/data/ljspeech/wavs/LJ010-0260.wav|tests/data/ljspeech/wavs/LJ010-0260.npy +tests/data/ljspeech/wavs/LJ039-0138.wav|tests/data/ljspeech/wavs/LJ039-0138.npy +tests/data/ljspeech/wavs/LJ014-0101.wav|tests/data/ljspeech/wavs/LJ014-0101.npy +tests/data/ljspeech/wavs/LJ047-0103.wav|tests/data/ljspeech/wavs/LJ047-0103.npy +tests/data/ljspeech/wavs/LJ026-0155.wav|tests/data/ljspeech/wavs/LJ026-0155.npy +tests/data/ljspeech/wavs/LJ023-0088.wav|tests/data/ljspeech/wavs/LJ023-0088.npy +tests/data/ljspeech/wavs/LJ012-0093.wav|tests/data/ljspeech/wavs/LJ012-0093.npy +tests/data/ljspeech/wavs/LJ026-0092.wav|tests/data/ljspeech/wavs/LJ026-0092.npy +tests/data/ljspeech/wavs/LJ005-0169.wav|tests/data/ljspeech/wavs/LJ005-0169.npy +tests/data/ljspeech/wavs/LJ028-0270.wav|tests/data/ljspeech/wavs/LJ028-0270.npy +tests/data/ljspeech/wavs/LJ005-0020.wav|tests/data/ljspeech/wavs/LJ005-0020.npy +tests/data/ljspeech/wavs/LJ028-0477.wav|tests/data/ljspeech/wavs/LJ028-0477.npy +tests/data/ljspeech/wavs/LJ040-0130.wav|tests/data/ljspeech/wavs/LJ040-0130.npy +tests/data/ljspeech/wavs/LJ002-0088.wav|tests/data/ljspeech/wavs/LJ002-0088.npy +tests/data/ljspeech/wavs/LJ049-0128.wav|tests/data/ljspeech/wavs/LJ049-0128.npy +tests/data/ljspeech/wavs/LJ016-0211.wav|tests/data/ljspeech/wavs/LJ016-0211.npy +tests/data/ljspeech/wavs/LJ014-0117.wav|tests/data/ljspeech/wavs/LJ014-0117.npy +tests/data/ljspeech/wavs/LJ038-0024.wav|tests/data/ljspeech/wavs/LJ038-0024.npy +tests/data/ljspeech/wavs/LJ049-0190.wav|tests/data/ljspeech/wavs/LJ049-0190.npy +tests/data/ljspeech/wavs/LJ016-0085.wav|tests/data/ljspeech/wavs/LJ016-0085.npy +tests/data/ljspeech/wavs/LJ038-0179.wav|tests/data/ljspeech/wavs/LJ038-0179.npy +tests/data/ljspeech/wavs/LJ003-0203.wav|tests/data/ljspeech/wavs/LJ003-0203.npy +tests/data/ljspeech/wavs/LJ031-0176.wav|tests/data/ljspeech/wavs/LJ031-0176.npy +tests/data/ljspeech/wavs/LJ037-0055.wav|tests/data/ljspeech/wavs/LJ037-0055.npy +tests/data/ljspeech/wavs/LJ014-0265.wav|tests/data/ljspeech/wavs/LJ014-0265.npy +tests/data/ljspeech/wavs/LJ049-0198.wav|tests/data/ljspeech/wavs/LJ049-0198.npy +tests/data/ljspeech/wavs/LJ037-0236.wav|tests/data/ljspeech/wavs/LJ037-0236.npy +tests/data/ljspeech/wavs/LJ045-0027.wav|tests/data/ljspeech/wavs/LJ045-0027.npy +tests/data/ljspeech/wavs/LJ013-0108.wav|tests/data/ljspeech/wavs/LJ013-0108.npy +tests/data/ljspeech/wavs/LJ028-0076.wav|tests/data/ljspeech/wavs/LJ028-0076.npy +tests/data/ljspeech/wavs/LJ014-0277.wav|tests/data/ljspeech/wavs/LJ014-0277.npy +tests/data/ljspeech/wavs/LJ027-0157.wav|tests/data/ljspeech/wavs/LJ027-0157.npy +tests/data/ljspeech/wavs/LJ015-0290.wav|tests/data/ljspeech/wavs/LJ015-0290.npy +tests/data/ljspeech/wavs/LJ007-0130.wav|tests/data/ljspeech/wavs/LJ007-0130.npy +tests/data/ljspeech/wavs/LJ013-0026.wav|tests/data/ljspeech/wavs/LJ013-0026.npy +tests/data/ljspeech/wavs/LJ045-0192.wav|tests/data/ljspeech/wavs/LJ045-0192.npy +tests/data/ljspeech/wavs/LJ038-0284.wav|tests/data/ljspeech/wavs/LJ038-0284.npy +tests/data/ljspeech/wavs/LJ047-0027.wav|tests/data/ljspeech/wavs/LJ047-0027.npy +tests/data/ljspeech/wavs/LJ003-0348.wav|tests/data/ljspeech/wavs/LJ003-0348.npy +tests/data/ljspeech/wavs/LJ003-0178.wav|tests/data/ljspeech/wavs/LJ003-0178.npy +tests/data/ljspeech/wavs/LJ028-0023.wav|tests/data/ljspeech/wavs/LJ028-0023.npy +tests/data/ljspeech/wavs/LJ013-0226.wav|tests/data/ljspeech/wavs/LJ013-0226.npy +tests/data/ljspeech/wavs/LJ012-0174.wav|tests/data/ljspeech/wavs/LJ012-0174.npy +tests/data/ljspeech/wavs/LJ032-0154.wav|tests/data/ljspeech/wavs/LJ032-0154.npy +tests/data/ljspeech/wavs/LJ028-0200.wav|tests/data/ljspeech/wavs/LJ028-0200.npy +tests/data/ljspeech/wavs/LJ039-0228.wav|tests/data/ljspeech/wavs/LJ039-0228.npy +tests/data/ljspeech/wavs/LJ036-0121.wav|tests/data/ljspeech/wavs/LJ036-0121.npy +tests/data/ljspeech/wavs/LJ040-0186.wav|tests/data/ljspeech/wavs/LJ040-0186.npy +tests/data/ljspeech/wavs/LJ041-0118.wav|tests/data/ljspeech/wavs/LJ041-0118.npy +tests/data/ljspeech/wavs/LJ002-0267.wav|tests/data/ljspeech/wavs/LJ002-0267.npy +tests/data/ljspeech/wavs/LJ002-0124.wav|tests/data/ljspeech/wavs/LJ002-0124.npy +tests/data/ljspeech/wavs/LJ033-0150.wav|tests/data/ljspeech/wavs/LJ033-0150.npy +tests/data/ljspeech/wavs/LJ036-0147.wav|tests/data/ljspeech/wavs/LJ036-0147.npy +tests/data/ljspeech/wavs/LJ044-0033.wav|tests/data/ljspeech/wavs/LJ044-0033.npy +tests/data/ljspeech/wavs/LJ040-0197.wav|tests/data/ljspeech/wavs/LJ040-0197.npy +tests/data/ljspeech/wavs/LJ018-0079.wav|tests/data/ljspeech/wavs/LJ018-0079.npy +tests/data/ljspeech/wavs/LJ017-0266.wav|tests/data/ljspeech/wavs/LJ017-0266.npy +tests/data/ljspeech/wavs/LJ029-0129.wav|tests/data/ljspeech/wavs/LJ029-0129.npy +tests/data/ljspeech/wavs/LJ044-0158.wav|tests/data/ljspeech/wavs/LJ044-0158.npy +tests/data/ljspeech/wavs/LJ002-0004.wav|tests/data/ljspeech/wavs/LJ002-0004.npy +tests/data/ljspeech/wavs/LJ008-0261.wav|tests/data/ljspeech/wavs/LJ008-0261.npy +tests/data/ljspeech/wavs/LJ019-0176.wav|tests/data/ljspeech/wavs/LJ019-0176.npy +tests/data/ljspeech/wavs/LJ018-0226.wav|tests/data/ljspeech/wavs/LJ018-0226.npy +tests/data/ljspeech/wavs/LJ011-0012.wav|tests/data/ljspeech/wavs/LJ011-0012.npy +tests/data/ljspeech/wavs/LJ005-0193.wav|tests/data/ljspeech/wavs/LJ005-0193.npy +tests/data/ljspeech/wavs/LJ018-0003.wav|tests/data/ljspeech/wavs/LJ018-0003.npy +tests/data/ljspeech/wavs/LJ027-0047.wav|tests/data/ljspeech/wavs/LJ027-0047.npy +tests/data/ljspeech/wavs/LJ023-0118.wav|tests/data/ljspeech/wavs/LJ023-0118.npy +tests/data/ljspeech/wavs/LJ009-0051.wav|tests/data/ljspeech/wavs/LJ009-0051.npy +tests/data/ljspeech/wavs/LJ046-0053.wav|tests/data/ljspeech/wavs/LJ046-0053.npy +tests/data/ljspeech/wavs/LJ009-0033.wav|tests/data/ljspeech/wavs/LJ009-0033.npy +tests/data/ljspeech/wavs/LJ028-0375.wav|tests/data/ljspeech/wavs/LJ028-0375.npy +tests/data/ljspeech/wavs/LJ032-0136.wav|tests/data/ljspeech/wavs/LJ032-0136.npy +tests/data/ljspeech/wavs/LJ010-0015.wav|tests/data/ljspeech/wavs/LJ010-0015.npy +tests/data/ljspeech/wavs/LJ005-0089.wav|tests/data/ljspeech/wavs/LJ005-0089.npy +tests/data/ljspeech/wavs/LJ010-0206.wav|tests/data/ljspeech/wavs/LJ010-0206.npy +tests/data/ljspeech/wavs/LJ032-0261.wav|tests/data/ljspeech/wavs/LJ032-0261.npy +tests/data/ljspeech/wavs/LJ001-0084.wav|tests/data/ljspeech/wavs/LJ001-0084.npy +tests/data/ljspeech/wavs/LJ047-0023.wav|tests/data/ljspeech/wavs/LJ047-0023.npy +tests/data/ljspeech/wavs/LJ004-0120.wav|tests/data/ljspeech/wavs/LJ004-0120.npy +tests/data/ljspeech/wavs/LJ050-0062.wav|tests/data/ljspeech/wavs/LJ050-0062.npy +tests/data/ljspeech/wavs/LJ019-0101.wav|tests/data/ljspeech/wavs/LJ019-0101.npy +tests/data/ljspeech/wavs/LJ041-0080.wav|tests/data/ljspeech/wavs/LJ041-0080.npy +tests/data/ljspeech/wavs/LJ011-0098.wav|tests/data/ljspeech/wavs/LJ011-0098.npy +tests/data/ljspeech/wavs/LJ021-0158.wav|tests/data/ljspeech/wavs/LJ021-0158.npy +tests/data/ljspeech/wavs/LJ035-0024.wav|tests/data/ljspeech/wavs/LJ035-0024.npy +tests/data/ljspeech/wavs/LJ030-0149.wav|tests/data/ljspeech/wavs/LJ030-0149.npy +tests/data/ljspeech/wavs/LJ048-0012.wav|tests/data/ljspeech/wavs/LJ048-0012.npy +tests/data/ljspeech/wavs/LJ028-0510.wav|tests/data/ljspeech/wavs/LJ028-0510.npy +tests/data/ljspeech/wavs/LJ019-0009.wav|tests/data/ljspeech/wavs/LJ019-0009.npy +tests/data/ljspeech/wavs/LJ037-0038.wav|tests/data/ljspeech/wavs/LJ037-0038.npy +tests/data/ljspeech/wavs/LJ031-0128.wav|tests/data/ljspeech/wavs/LJ031-0128.npy +tests/data/ljspeech/wavs/LJ041-0066.wav|tests/data/ljspeech/wavs/LJ041-0066.npy +tests/data/ljspeech/wavs/LJ049-0069.wav|tests/data/ljspeech/wavs/LJ049-0069.npy +tests/data/ljspeech/wavs/LJ033-0008.wav|tests/data/ljspeech/wavs/LJ033-0008.npy +tests/data/ljspeech/wavs/LJ044-0184.wav|tests/data/ljspeech/wavs/LJ044-0184.npy +tests/data/ljspeech/wavs/LJ004-0157.wav|tests/data/ljspeech/wavs/LJ004-0157.npy +tests/data/ljspeech/wavs/LJ018-0184.wav|tests/data/ljspeech/wavs/LJ018-0184.npy +tests/data/ljspeech/wavs/LJ022-0070.wav|tests/data/ljspeech/wavs/LJ022-0070.npy +tests/data/ljspeech/wavs/LJ001-0053.wav|tests/data/ljspeech/wavs/LJ001-0053.npy +tests/data/ljspeech/wavs/LJ009-0223.wav|tests/data/ljspeech/wavs/LJ009-0223.npy +tests/data/ljspeech/wavs/LJ036-0086.wav|tests/data/ljspeech/wavs/LJ036-0086.npy +tests/data/ljspeech/wavs/LJ018-0225.wav|tests/data/ljspeech/wavs/LJ018-0225.npy +tests/data/ljspeech/wavs/LJ018-0124.wav|tests/data/ljspeech/wavs/LJ018-0124.npy +tests/data/ljspeech/wavs/LJ021-0177.wav|tests/data/ljspeech/wavs/LJ021-0177.npy +tests/data/ljspeech/wavs/LJ048-0136.wav|tests/data/ljspeech/wavs/LJ048-0136.npy +tests/data/ljspeech/wavs/LJ030-0192.wav|tests/data/ljspeech/wavs/LJ030-0192.npy +tests/data/ljspeech/wavs/LJ017-0146.wav|tests/data/ljspeech/wavs/LJ017-0146.npy +tests/data/ljspeech/wavs/LJ016-0352.wav|tests/data/ljspeech/wavs/LJ016-0352.npy +tests/data/ljspeech/wavs/LJ017-0222.wav|tests/data/ljspeech/wavs/LJ017-0222.npy +tests/data/ljspeech/wavs/LJ039-0247.wav|tests/data/ljspeech/wavs/LJ039-0247.npy +tests/data/ljspeech/wavs/LJ036-0194.wav|tests/data/ljspeech/wavs/LJ036-0194.npy +tests/data/ljspeech/wavs/LJ037-0231.wav|tests/data/ljspeech/wavs/LJ037-0231.npy +tests/data/ljspeech/wavs/LJ006-0122.wav|tests/data/ljspeech/wavs/LJ006-0122.npy +tests/data/ljspeech/wavs/LJ009-0175.wav|tests/data/ljspeech/wavs/LJ009-0175.npy +tests/data/ljspeech/wavs/LJ036-0192.wav|tests/data/ljspeech/wavs/LJ036-0192.npy +tests/data/ljspeech/wavs/LJ008-0030.wav|tests/data/ljspeech/wavs/LJ008-0030.npy +tests/data/ljspeech/wavs/LJ045-0129.wav|tests/data/ljspeech/wavs/LJ045-0129.npy +tests/data/ljspeech/wavs/LJ036-0072.wav|tests/data/ljspeech/wavs/LJ036-0072.npy +tests/data/ljspeech/wavs/LJ024-0001.wav|tests/data/ljspeech/wavs/LJ024-0001.npy +tests/data/ljspeech/wavs/LJ028-0090.wav|tests/data/ljspeech/wavs/LJ028-0090.npy +tests/data/ljspeech/wavs/LJ048-0215.wav|tests/data/ljspeech/wavs/LJ048-0215.npy +tests/data/ljspeech/wavs/LJ008-0276.wav|tests/data/ljspeech/wavs/LJ008-0276.npy +tests/data/ljspeech/wavs/LJ018-0077.wav|tests/data/ljspeech/wavs/LJ018-0077.npy +tests/data/ljspeech/wavs/LJ044-0030.wav|tests/data/ljspeech/wavs/LJ044-0030.npy +tests/data/ljspeech/wavs/LJ046-0076.wav|tests/data/ljspeech/wavs/LJ046-0076.npy +tests/data/ljspeech/wavs/LJ001-0151.wav|tests/data/ljspeech/wavs/LJ001-0151.npy +tests/data/ljspeech/wavs/LJ021-0170.wav|tests/data/ljspeech/wavs/LJ021-0170.npy +tests/data/ljspeech/wavs/LJ019-0342.wav|tests/data/ljspeech/wavs/LJ019-0342.npy +tests/data/ljspeech/wavs/LJ025-0171.wav|tests/data/ljspeech/wavs/LJ025-0171.npy +tests/data/ljspeech/wavs/LJ008-0281.wav|tests/data/ljspeech/wavs/LJ008-0281.npy +tests/data/ljspeech/wavs/LJ049-0126.wav|tests/data/ljspeech/wavs/LJ049-0126.npy +tests/data/ljspeech/wavs/LJ008-0070.wav|tests/data/ljspeech/wavs/LJ008-0070.npy +tests/data/ljspeech/wavs/LJ002-0092.wav|tests/data/ljspeech/wavs/LJ002-0092.npy +tests/data/ljspeech/wavs/LJ048-0243.wav|tests/data/ljspeech/wavs/LJ048-0243.npy +tests/data/ljspeech/wavs/LJ019-0319.wav|tests/data/ljspeech/wavs/LJ019-0319.npy +tests/data/ljspeech/wavs/LJ028-0005.wav|tests/data/ljspeech/wavs/LJ028-0005.npy +tests/data/ljspeech/wavs/LJ019-0232.wav|tests/data/ljspeech/wavs/LJ019-0232.npy +tests/data/ljspeech/wavs/LJ030-0220.wav|tests/data/ljspeech/wavs/LJ030-0220.npy +tests/data/ljspeech/wavs/LJ024-0057.wav|tests/data/ljspeech/wavs/LJ024-0057.npy +tests/data/ljspeech/wavs/LJ019-0132.wav|tests/data/ljspeech/wavs/LJ019-0132.npy +tests/data/ljspeech/wavs/LJ006-0232.wav|tests/data/ljspeech/wavs/LJ006-0232.npy +tests/data/ljspeech/wavs/LJ029-0187.wav|tests/data/ljspeech/wavs/LJ029-0187.npy +tests/data/ljspeech/wavs/LJ010-0152.wav|tests/data/ljspeech/wavs/LJ010-0152.npy +tests/data/ljspeech/wavs/LJ050-0079.wav|tests/data/ljspeech/wavs/LJ050-0079.npy +tests/data/ljspeech/wavs/LJ005-0019.wav|tests/data/ljspeech/wavs/LJ005-0019.npy +tests/data/ljspeech/wavs/LJ028-0447.wav|tests/data/ljspeech/wavs/LJ028-0447.npy +tests/data/ljspeech/wavs/LJ012-0231.wav|tests/data/ljspeech/wavs/LJ012-0231.npy +tests/data/ljspeech/wavs/LJ041-0142.wav|tests/data/ljspeech/wavs/LJ041-0142.npy +tests/data/ljspeech/wavs/LJ004-0207.wav|tests/data/ljspeech/wavs/LJ004-0207.npy +tests/data/ljspeech/wavs/LJ001-0167.wav|tests/data/ljspeech/wavs/LJ001-0167.npy +tests/data/ljspeech/wavs/LJ044-0107.wav|tests/data/ljspeech/wavs/LJ044-0107.npy +tests/data/ljspeech/wavs/LJ015-0157.wav|tests/data/ljspeech/wavs/LJ015-0157.npy +tests/data/ljspeech/wavs/LJ040-0237.wav|tests/data/ljspeech/wavs/LJ040-0237.npy +tests/data/ljspeech/wavs/LJ006-0107.wav|tests/data/ljspeech/wavs/LJ006-0107.npy +tests/data/ljspeech/wavs/LJ010-0031.wav|tests/data/ljspeech/wavs/LJ010-0031.npy +tests/data/ljspeech/wavs/LJ028-0050.wav|tests/data/ljspeech/wavs/LJ028-0050.npy +tests/data/ljspeech/wavs/LJ019-0214.wav|tests/data/ljspeech/wavs/LJ019-0214.npy +tests/data/ljspeech/wavs/LJ001-0161.wav|tests/data/ljspeech/wavs/LJ001-0161.npy +tests/data/ljspeech/wavs/LJ030-0211.wav|tests/data/ljspeech/wavs/LJ030-0211.npy +tests/data/ljspeech/wavs/LJ033-0079.wav|tests/data/ljspeech/wavs/LJ033-0079.npy +tests/data/ljspeech/wavs/LJ009-0269.wav|tests/data/ljspeech/wavs/LJ009-0269.npy +tests/data/ljspeech/wavs/LJ043-0084.wav|tests/data/ljspeech/wavs/LJ043-0084.npy +tests/data/ljspeech/wavs/LJ004-0017.wav|tests/data/ljspeech/wavs/LJ004-0017.npy +tests/data/ljspeech/wavs/LJ046-0247.wav|tests/data/ljspeech/wavs/LJ046-0247.npy +tests/data/ljspeech/wavs/LJ005-0114.wav|tests/data/ljspeech/wavs/LJ005-0114.npy +tests/data/ljspeech/wavs/LJ015-0066.wav|tests/data/ljspeech/wavs/LJ015-0066.npy +tests/data/ljspeech/wavs/LJ009-0299.wav|tests/data/ljspeech/wavs/LJ009-0299.npy +tests/data/ljspeech/wavs/LJ007-0004.wav|tests/data/ljspeech/wavs/LJ007-0004.npy +tests/data/ljspeech/wavs/LJ006-0045.wav|tests/data/ljspeech/wavs/LJ006-0045.npy +tests/data/ljspeech/wavs/LJ019-0395.wav|tests/data/ljspeech/wavs/LJ019-0395.npy +tests/data/ljspeech/wavs/LJ031-0162.wav|tests/data/ljspeech/wavs/LJ031-0162.npy +tests/data/ljspeech/wavs/LJ046-0249.wav|tests/data/ljspeech/wavs/LJ046-0249.npy +tests/data/ljspeech/wavs/LJ034-0132.wav|tests/data/ljspeech/wavs/LJ034-0132.npy +tests/data/ljspeech/wavs/LJ013-0073.wav|tests/data/ljspeech/wavs/LJ013-0073.npy +tests/data/ljspeech/wavs/LJ011-0279.wav|tests/data/ljspeech/wavs/LJ011-0279.npy +tests/data/ljspeech/wavs/LJ030-0158.wav|tests/data/ljspeech/wavs/LJ030-0158.npy +tests/data/ljspeech/wavs/LJ048-0127.wav|tests/data/ljspeech/wavs/LJ048-0127.npy +tests/data/ljspeech/wavs/LJ036-0210.wav|tests/data/ljspeech/wavs/LJ036-0210.npy +tests/data/ljspeech/wavs/LJ029-0193.wav|tests/data/ljspeech/wavs/LJ029-0193.npy +tests/data/ljspeech/wavs/LJ016-0151.wav|tests/data/ljspeech/wavs/LJ016-0151.npy +tests/data/ljspeech/wavs/LJ033-0153.wav|tests/data/ljspeech/wavs/LJ033-0153.npy +tests/data/ljspeech/wavs/LJ042-0009.wav|tests/data/ljspeech/wavs/LJ042-0009.npy +tests/data/ljspeech/wavs/LJ050-0085.wav|tests/data/ljspeech/wavs/LJ050-0085.npy +tests/data/ljspeech/wavs/LJ025-0034.wav|tests/data/ljspeech/wavs/LJ025-0034.npy +tests/data/ljspeech/wavs/LJ048-0235.wav|tests/data/ljspeech/wavs/LJ048-0235.npy +tests/data/ljspeech/wavs/LJ001-0041.wav|tests/data/ljspeech/wavs/LJ001-0041.npy +tests/data/ljspeech/wavs/LJ002-0288.wav|tests/data/ljspeech/wavs/LJ002-0288.npy +tests/data/ljspeech/wavs/LJ022-0074.wav|tests/data/ljspeech/wavs/LJ022-0074.npy +tests/data/ljspeech/wavs/LJ017-0217.wav|tests/data/ljspeech/wavs/LJ017-0217.npy +tests/data/ljspeech/wavs/LJ011-0100.wav|tests/data/ljspeech/wavs/LJ011-0100.npy +tests/data/ljspeech/wavs/LJ017-0280.wav|tests/data/ljspeech/wavs/LJ017-0280.npy +tests/data/ljspeech/wavs/LJ028-0298.wav|tests/data/ljspeech/wavs/LJ028-0298.npy +tests/data/ljspeech/wavs/LJ023-0069.wav|tests/data/ljspeech/wavs/LJ023-0069.npy +tests/data/ljspeech/wavs/LJ031-0119.wav|tests/data/ljspeech/wavs/LJ031-0119.npy +tests/data/ljspeech/wavs/LJ011-0091.wav|tests/data/ljspeech/wavs/LJ011-0091.npy +tests/data/ljspeech/wavs/LJ003-0266.wav|tests/data/ljspeech/wavs/LJ003-0266.npy +tests/data/ljspeech/wavs/LJ016-0141.wav|tests/data/ljspeech/wavs/LJ016-0141.npy +tests/data/ljspeech/wavs/LJ011-0194.wav|tests/data/ljspeech/wavs/LJ011-0194.npy +tests/data/ljspeech/wavs/LJ029-0194.wav|tests/data/ljspeech/wavs/LJ029-0194.npy +tests/data/ljspeech/wavs/LJ045-0198.wav|tests/data/ljspeech/wavs/LJ045-0198.npy +tests/data/ljspeech/wavs/LJ011-0138.wav|tests/data/ljspeech/wavs/LJ011-0138.npy +tests/data/ljspeech/wavs/LJ042-0027.wav|tests/data/ljspeech/wavs/LJ042-0027.npy +tests/data/ljspeech/wavs/LJ037-0135.wav|tests/data/ljspeech/wavs/LJ037-0135.npy +tests/data/ljspeech/wavs/LJ033-0142.wav|tests/data/ljspeech/wavs/LJ033-0142.npy +tests/data/ljspeech/wavs/LJ038-0088.wav|tests/data/ljspeech/wavs/LJ038-0088.npy +tests/data/ljspeech/wavs/LJ002-0225.wav|tests/data/ljspeech/wavs/LJ002-0225.npy +tests/data/ljspeech/wavs/LJ030-0160.wav|tests/data/ljspeech/wavs/LJ030-0160.npy +tests/data/ljspeech/wavs/LJ036-0176.wav|tests/data/ljspeech/wavs/LJ036-0176.npy +tests/data/ljspeech/wavs/LJ002-0034.wav|tests/data/ljspeech/wavs/LJ002-0034.npy +tests/data/ljspeech/wavs/LJ004-0028.wav|tests/data/ljspeech/wavs/LJ004-0028.npy +tests/data/ljspeech/wavs/LJ010-0018.wav|tests/data/ljspeech/wavs/LJ010-0018.npy +tests/data/ljspeech/wavs/LJ038-0074.wav|tests/data/ljspeech/wavs/LJ038-0074.npy +tests/data/ljspeech/wavs/LJ038-0015.wav|tests/data/ljspeech/wavs/LJ038-0015.npy +tests/data/ljspeech/wavs/LJ044-0040.wav|tests/data/ljspeech/wavs/LJ044-0040.npy +tests/data/ljspeech/wavs/LJ050-0045.wav|tests/data/ljspeech/wavs/LJ050-0045.npy +tests/data/ljspeech/wavs/LJ035-0137.wav|tests/data/ljspeech/wavs/LJ035-0137.npy +tests/data/ljspeech/wavs/LJ003-0309.wav|tests/data/ljspeech/wavs/LJ003-0309.npy +tests/data/ljspeech/wavs/LJ027-0056.wav|tests/data/ljspeech/wavs/LJ027-0056.npy +tests/data/ljspeech/wavs/LJ001-0006.wav|tests/data/ljspeech/wavs/LJ001-0006.npy +tests/data/ljspeech/wavs/LJ028-0132.wav|tests/data/ljspeech/wavs/LJ028-0132.npy +tests/data/ljspeech/wavs/LJ003-0161.wav|tests/data/ljspeech/wavs/LJ003-0161.npy +tests/data/ljspeech/wavs/LJ035-0154.wav|tests/data/ljspeech/wavs/LJ035-0154.npy +tests/data/ljspeech/wavs/LJ024-0126.wav|tests/data/ljspeech/wavs/LJ024-0126.npy +tests/data/ljspeech/wavs/LJ038-0127.wav|tests/data/ljspeech/wavs/LJ038-0127.npy +tests/data/ljspeech/wavs/LJ014-0047.wav|tests/data/ljspeech/wavs/LJ014-0047.npy +tests/data/ljspeech/wavs/LJ008-0170.wav|tests/data/ljspeech/wavs/LJ008-0170.npy +tests/data/ljspeech/wavs/LJ008-0146.wav|tests/data/ljspeech/wavs/LJ008-0146.npy +tests/data/ljspeech/wavs/LJ041-0055.wav|tests/data/ljspeech/wavs/LJ041-0055.npy +tests/data/ljspeech/wavs/LJ006-0307.wav|tests/data/ljspeech/wavs/LJ006-0307.npy +tests/data/ljspeech/wavs/LJ029-0156.wav|tests/data/ljspeech/wavs/LJ029-0156.npy +tests/data/ljspeech/wavs/LJ033-0214.wav|tests/data/ljspeech/wavs/LJ033-0214.npy +tests/data/ljspeech/wavs/LJ016-0304.wav|tests/data/ljspeech/wavs/LJ016-0304.npy +tests/data/ljspeech/wavs/LJ013-0186.wav|tests/data/ljspeech/wavs/LJ013-0186.npy +tests/data/ljspeech/wavs/LJ038-0151.wav|tests/data/ljspeech/wavs/LJ038-0151.npy +tests/data/ljspeech/wavs/LJ013-0208.wav|tests/data/ljspeech/wavs/LJ013-0208.npy +tests/data/ljspeech/wavs/LJ001-0011.wav|tests/data/ljspeech/wavs/LJ001-0011.npy +tests/data/ljspeech/wavs/LJ050-0102.wav|tests/data/ljspeech/wavs/LJ050-0102.npy +tests/data/ljspeech/wavs/LJ046-0061.wav|tests/data/ljspeech/wavs/LJ046-0061.npy +tests/data/ljspeech/wavs/LJ030-0051.wav|tests/data/ljspeech/wavs/LJ030-0051.npy +tests/data/ljspeech/wavs/LJ007-0100.wav|tests/data/ljspeech/wavs/LJ007-0100.npy +tests/data/ljspeech/wavs/LJ007-0099.wav|tests/data/ljspeech/wavs/LJ007-0099.npy +tests/data/ljspeech/wavs/LJ033-0186.wav|tests/data/ljspeech/wavs/LJ033-0186.npy +tests/data/ljspeech/wavs/LJ024-0023.wav|tests/data/ljspeech/wavs/LJ024-0023.npy +tests/data/ljspeech/wavs/LJ035-0079.wav|tests/data/ljspeech/wavs/LJ035-0079.npy +tests/data/ljspeech/wavs/LJ046-0005.wav|tests/data/ljspeech/wavs/LJ046-0005.npy +tests/data/ljspeech/wavs/LJ038-0235.wav|tests/data/ljspeech/wavs/LJ038-0235.npy +tests/data/ljspeech/wavs/LJ046-0208.wav|tests/data/ljspeech/wavs/LJ046-0208.npy +tests/data/ljspeech/wavs/LJ006-0109.wav|tests/data/ljspeech/wavs/LJ006-0109.npy +tests/data/ljspeech/wavs/LJ034-0062.wav|tests/data/ljspeech/wavs/LJ034-0062.npy +tests/data/ljspeech/wavs/LJ020-0044.wav|tests/data/ljspeech/wavs/LJ020-0044.npy +tests/data/ljspeech/wavs/LJ019-0117.wav|tests/data/ljspeech/wavs/LJ019-0117.npy +tests/data/ljspeech/wavs/LJ007-0142.wav|tests/data/ljspeech/wavs/LJ007-0142.npy +tests/data/ljspeech/wavs/LJ005-0036.wav|tests/data/ljspeech/wavs/LJ005-0036.npy +tests/data/ljspeech/wavs/LJ028-0066.wav|tests/data/ljspeech/wavs/LJ028-0066.npy +tests/data/ljspeech/wavs/LJ040-0037.wav|tests/data/ljspeech/wavs/LJ040-0037.npy +tests/data/ljspeech/wavs/LJ021-0180.wav|tests/data/ljspeech/wavs/LJ021-0180.npy +tests/data/ljspeech/wavs/LJ028-0301.wav|tests/data/ljspeech/wavs/LJ028-0301.npy +tests/data/ljspeech/wavs/LJ004-0188.wav|tests/data/ljspeech/wavs/LJ004-0188.npy +tests/data/ljspeech/wavs/LJ035-0125.wav|tests/data/ljspeech/wavs/LJ035-0125.npy +tests/data/ljspeech/wavs/LJ047-0111.wav|tests/data/ljspeech/wavs/LJ047-0111.npy +tests/data/ljspeech/wavs/LJ014-0188.wav|tests/data/ljspeech/wavs/LJ014-0188.npy +tests/data/ljspeech/wavs/LJ025-0137.wav|tests/data/ljspeech/wavs/LJ025-0137.npy +tests/data/ljspeech/wavs/LJ020-0001.wav|tests/data/ljspeech/wavs/LJ020-0001.npy +tests/data/ljspeech/wavs/LJ028-0209.wav|tests/data/ljspeech/wavs/LJ028-0209.npy +tests/data/ljspeech/wavs/LJ008-0236.wav|tests/data/ljspeech/wavs/LJ008-0236.npy +tests/data/ljspeech/wavs/LJ002-0093.wav|tests/data/ljspeech/wavs/LJ002-0093.npy +tests/data/ljspeech/wavs/LJ019-0148.wav|tests/data/ljspeech/wavs/LJ019-0148.npy +tests/data/ljspeech/wavs/LJ025-0124.wav|tests/data/ljspeech/wavs/LJ025-0124.npy +tests/data/ljspeech/wavs/LJ035-0108.wav|tests/data/ljspeech/wavs/LJ035-0108.npy +tests/data/ljspeech/wavs/LJ039-0063.wav|tests/data/ljspeech/wavs/LJ039-0063.npy +tests/data/ljspeech/wavs/LJ005-0134.wav|tests/data/ljspeech/wavs/LJ005-0134.npy +tests/data/ljspeech/wavs/LJ021-0029.wav|tests/data/ljspeech/wavs/LJ021-0029.npy +tests/data/ljspeech/wavs/LJ018-0121.wav|tests/data/ljspeech/wavs/LJ018-0121.npy +tests/data/ljspeech/wavs/LJ046-0139.wav|tests/data/ljspeech/wavs/LJ046-0139.npy +tests/data/ljspeech/wavs/LJ046-0112.wav|tests/data/ljspeech/wavs/LJ046-0112.npy +tests/data/ljspeech/wavs/LJ021-0091.wav|tests/data/ljspeech/wavs/LJ021-0091.npy +tests/data/ljspeech/wavs/LJ018-0390.wav|tests/data/ljspeech/wavs/LJ018-0390.npy +tests/data/ljspeech/wavs/LJ040-0194.wav|tests/data/ljspeech/wavs/LJ040-0194.npy +tests/data/ljspeech/wavs/LJ001-0135.wav|tests/data/ljspeech/wavs/LJ001-0135.npy +tests/data/ljspeech/wavs/LJ013-0225.wav|tests/data/ljspeech/wavs/LJ013-0225.npy +tests/data/ljspeech/wavs/LJ009-0107.wav|tests/data/ljspeech/wavs/LJ009-0107.npy +tests/data/ljspeech/wavs/LJ017-0097.wav|tests/data/ljspeech/wavs/LJ017-0097.npy +tests/data/ljspeech/wavs/LJ037-0158.wav|tests/data/ljspeech/wavs/LJ037-0158.npy +tests/data/ljspeech/wavs/LJ012-0291.wav|tests/data/ljspeech/wavs/LJ012-0291.npy +tests/data/ljspeech/wavs/LJ036-0173.wav|tests/data/ljspeech/wavs/LJ036-0173.npy +tests/data/ljspeech/wavs/LJ039-0052.wav|tests/data/ljspeech/wavs/LJ039-0052.npy +tests/data/ljspeech/wavs/LJ022-0044.wav|tests/data/ljspeech/wavs/LJ022-0044.npy +tests/data/ljspeech/wavs/LJ022-0132.wav|tests/data/ljspeech/wavs/LJ022-0132.npy +tests/data/ljspeech/wavs/LJ002-0226.wav|tests/data/ljspeech/wavs/LJ002-0226.npy +tests/data/ljspeech/wavs/LJ021-0145.wav|tests/data/ljspeech/wavs/LJ021-0145.npy +tests/data/ljspeech/wavs/LJ018-0379.wav|tests/data/ljspeech/wavs/LJ018-0379.npy +tests/data/ljspeech/wavs/LJ047-0239.wav|tests/data/ljspeech/wavs/LJ047-0239.npy +tests/data/ljspeech/wavs/LJ002-0057.wav|tests/data/ljspeech/wavs/LJ002-0057.npy +tests/data/ljspeech/wavs/LJ001-0083.wav|tests/data/ljspeech/wavs/LJ001-0083.npy +tests/data/ljspeech/wavs/LJ018-0072.wav|tests/data/ljspeech/wavs/LJ018-0072.npy +tests/data/ljspeech/wavs/LJ032-0169.wav|tests/data/ljspeech/wavs/LJ032-0169.npy +tests/data/ljspeech/wavs/LJ002-0282.wav|tests/data/ljspeech/wavs/LJ002-0282.npy +tests/data/ljspeech/wavs/LJ018-0388.wav|tests/data/ljspeech/wavs/LJ018-0388.npy +tests/data/ljspeech/wavs/LJ005-0101.wav|tests/data/ljspeech/wavs/LJ005-0101.npy +tests/data/ljspeech/wavs/LJ012-0021.wav|tests/data/ljspeech/wavs/LJ012-0021.npy +tests/data/ljspeech/wavs/LJ048-0249.wav|tests/data/ljspeech/wavs/LJ048-0249.npy +tests/data/ljspeech/wavs/LJ005-0075.wav|tests/data/ljspeech/wavs/LJ005-0075.npy +tests/data/ljspeech/wavs/LJ003-0295.wav|tests/data/ljspeech/wavs/LJ003-0295.npy +tests/data/ljspeech/wavs/LJ031-0191.wav|tests/data/ljspeech/wavs/LJ031-0191.npy +tests/data/ljspeech/wavs/LJ008-0313.wav|tests/data/ljspeech/wavs/LJ008-0313.npy +tests/data/ljspeech/wavs/LJ047-0041.wav|tests/data/ljspeech/wavs/LJ047-0041.npy +tests/data/ljspeech/wavs/LJ024-0066.wav|tests/data/ljspeech/wavs/LJ024-0066.npy +tests/data/ljspeech/wavs/LJ009-0060.wav|tests/data/ljspeech/wavs/LJ009-0060.npy +tests/data/ljspeech/wavs/LJ024-0055.wav|tests/data/ljspeech/wavs/LJ024-0055.npy +tests/data/ljspeech/wavs/LJ007-0233.wav|tests/data/ljspeech/wavs/LJ007-0233.npy +tests/data/ljspeech/wavs/LJ007-0055.wav|tests/data/ljspeech/wavs/LJ007-0055.npy +tests/data/ljspeech/wavs/LJ025-0085.wav|tests/data/ljspeech/wavs/LJ025-0085.npy +tests/data/ljspeech/wavs/LJ024-0029.wav|tests/data/ljspeech/wavs/LJ024-0029.npy +tests/data/ljspeech/wavs/LJ021-0046.wav|tests/data/ljspeech/wavs/LJ021-0046.npy +tests/data/ljspeech/wavs/LJ043-0169.wav|tests/data/ljspeech/wavs/LJ043-0169.npy +tests/data/ljspeech/wavs/LJ013-0175.wav|tests/data/ljspeech/wavs/LJ013-0175.npy +tests/data/ljspeech/wavs/LJ039-0064.wav|tests/data/ljspeech/wavs/LJ039-0064.npy +tests/data/ljspeech/wavs/LJ003-0213.wav|tests/data/ljspeech/wavs/LJ003-0213.npy +tests/data/ljspeech/wavs/LJ002-0053.wav|tests/data/ljspeech/wavs/LJ002-0053.npy +tests/data/ljspeech/wavs/LJ014-0248.wav|tests/data/ljspeech/wavs/LJ014-0248.npy +tests/data/ljspeech/wavs/LJ033-0088.wav|tests/data/ljspeech/wavs/LJ033-0088.npy +tests/data/ljspeech/wavs/LJ001-0137.wav|tests/data/ljspeech/wavs/LJ001-0137.npy +tests/data/ljspeech/wavs/LJ001-0029.wav|tests/data/ljspeech/wavs/LJ001-0029.npy +tests/data/ljspeech/wavs/LJ042-0091.wav|tests/data/ljspeech/wavs/LJ042-0091.npy +tests/data/ljspeech/wavs/LJ032-0009.wav|tests/data/ljspeech/wavs/LJ032-0009.npy +tests/data/ljspeech/wavs/LJ001-0155.wav|tests/data/ljspeech/wavs/LJ001-0155.npy +tests/data/ljspeech/wavs/LJ014-0197.wav|tests/data/ljspeech/wavs/LJ014-0197.npy +tests/data/ljspeech/wavs/LJ028-0147.wav|tests/data/ljspeech/wavs/LJ028-0147.npy +tests/data/ljspeech/wavs/LJ019-0396.wav|tests/data/ljspeech/wavs/LJ019-0396.npy +tests/data/ljspeech/wavs/LJ008-0141.wav|tests/data/ljspeech/wavs/LJ008-0141.npy +tests/data/ljspeech/wavs/LJ020-0105.wav|tests/data/ljspeech/wavs/LJ020-0105.npy +tests/data/ljspeech/wavs/LJ003-0323.wav|tests/data/ljspeech/wavs/LJ003-0323.npy +tests/data/ljspeech/wavs/LJ022-0123.wav|tests/data/ljspeech/wavs/LJ022-0123.npy +tests/data/ljspeech/wavs/LJ032-0093.wav|tests/data/ljspeech/wavs/LJ032-0093.npy +tests/data/ljspeech/wavs/LJ028-0126.wav|tests/data/ljspeech/wavs/LJ028-0126.npy +tests/data/ljspeech/wavs/LJ002-0248.wav|tests/data/ljspeech/wavs/LJ002-0248.npy +tests/data/ljspeech/wavs/LJ045-0215.wav|tests/data/ljspeech/wavs/LJ045-0215.npy +tests/data/ljspeech/wavs/LJ040-0211.wav|tests/data/ljspeech/wavs/LJ040-0211.npy +tests/data/ljspeech/wavs/LJ018-0066.wav|tests/data/ljspeech/wavs/LJ018-0066.npy +tests/data/ljspeech/wavs/LJ037-0168.wav|tests/data/ljspeech/wavs/LJ037-0168.npy +tests/data/ljspeech/wavs/LJ018-0328.wav|tests/data/ljspeech/wavs/LJ018-0328.npy +tests/data/ljspeech/wavs/LJ031-0045.wav|tests/data/ljspeech/wavs/LJ031-0045.npy +tests/data/ljspeech/wavs/LJ030-0183.wav|tests/data/ljspeech/wavs/LJ030-0183.npy +tests/data/ljspeech/wavs/LJ044-0071.wav|tests/data/ljspeech/wavs/LJ044-0071.npy +tests/data/ljspeech/wavs/LJ015-0186.wav|tests/data/ljspeech/wavs/LJ015-0186.npy +tests/data/ljspeech/wavs/LJ039-0244.wav|tests/data/ljspeech/wavs/LJ039-0244.npy +tests/data/ljspeech/wavs/LJ032-0166.wav|tests/data/ljspeech/wavs/LJ032-0166.npy +tests/data/ljspeech/wavs/LJ040-0138.wav|tests/data/ljspeech/wavs/LJ040-0138.npy +tests/data/ljspeech/wavs/LJ004-0078.wav|tests/data/ljspeech/wavs/LJ004-0078.npy +tests/data/ljspeech/wavs/LJ027-0022.wav|tests/data/ljspeech/wavs/LJ027-0022.npy +tests/data/ljspeech/wavs/LJ039-0237.wav|tests/data/ljspeech/wavs/LJ039-0237.npy +tests/data/ljspeech/wavs/LJ012-0006.wav|tests/data/ljspeech/wavs/LJ012-0006.npy +tests/data/ljspeech/wavs/LJ010-0129.wav|tests/data/ljspeech/wavs/LJ010-0129.npy +tests/data/ljspeech/wavs/LJ014-0039.wav|tests/data/ljspeech/wavs/LJ014-0039.npy +tests/data/ljspeech/wavs/LJ040-0155.wav|tests/data/ljspeech/wavs/LJ040-0155.npy +tests/data/ljspeech/wavs/LJ012-0077.wav|tests/data/ljspeech/wavs/LJ012-0077.npy +tests/data/ljspeech/wavs/LJ018-0133.wav|tests/data/ljspeech/wavs/LJ018-0133.npy +tests/data/ljspeech/wavs/LJ018-0300.wav|tests/data/ljspeech/wavs/LJ018-0300.npy +tests/data/ljspeech/wavs/LJ028-0055.wav|tests/data/ljspeech/wavs/LJ028-0055.npy +tests/data/ljspeech/wavs/LJ037-0250.wav|tests/data/ljspeech/wavs/LJ037-0250.npy +tests/data/ljspeech/wavs/LJ011-0160.wav|tests/data/ljspeech/wavs/LJ011-0160.npy +tests/data/ljspeech/wavs/LJ006-0159.wav|tests/data/ljspeech/wavs/LJ006-0159.npy +tests/data/ljspeech/wavs/LJ010-0080.wav|tests/data/ljspeech/wavs/LJ010-0080.npy +tests/data/ljspeech/wavs/LJ004-0169.wav|tests/data/ljspeech/wavs/LJ004-0169.npy +tests/data/ljspeech/wavs/LJ012-0227.wav|tests/data/ljspeech/wavs/LJ012-0227.npy +tests/data/ljspeech/wavs/LJ030-0091.wav|tests/data/ljspeech/wavs/LJ030-0091.npy +tests/data/ljspeech/wavs/LJ011-0018.wav|tests/data/ljspeech/wavs/LJ011-0018.npy +tests/data/ljspeech/wavs/LJ046-0237.wav|tests/data/ljspeech/wavs/LJ046-0237.npy +tests/data/ljspeech/wavs/LJ031-0033.wav|tests/data/ljspeech/wavs/LJ031-0033.npy +tests/data/ljspeech/wavs/LJ046-0242.wav|tests/data/ljspeech/wavs/LJ046-0242.npy +tests/data/ljspeech/wavs/LJ003-0047.wav|tests/data/ljspeech/wavs/LJ003-0047.npy +tests/data/ljspeech/wavs/LJ039-0111.wav|tests/data/ljspeech/wavs/LJ039-0111.npy +tests/data/ljspeech/wavs/LJ036-0168.wav|tests/data/ljspeech/wavs/LJ036-0168.npy +tests/data/ljspeech/wavs/LJ037-0152.wav|tests/data/ljspeech/wavs/LJ037-0152.npy +tests/data/ljspeech/wavs/LJ027-0081.wav|tests/data/ljspeech/wavs/LJ027-0081.npy +tests/data/ljspeech/wavs/LJ027-0020.wav|tests/data/ljspeech/wavs/LJ027-0020.npy +tests/data/ljspeech/wavs/LJ019-0028.wav|tests/data/ljspeech/wavs/LJ019-0028.npy +tests/data/ljspeech/wavs/LJ035-0033.wav|tests/data/ljspeech/wavs/LJ035-0033.npy +tests/data/ljspeech/wavs/LJ047-0201.wav|tests/data/ljspeech/wavs/LJ047-0201.npy +tests/data/ljspeech/wavs/LJ017-0168.wav|tests/data/ljspeech/wavs/LJ017-0168.npy +tests/data/ljspeech/wavs/LJ022-0176.wav|tests/data/ljspeech/wavs/LJ022-0176.npy +tests/data/ljspeech/wavs/LJ034-0014.wav|tests/data/ljspeech/wavs/LJ034-0014.npy +tests/data/ljspeech/wavs/LJ011-0082.wav|tests/data/ljspeech/wavs/LJ011-0082.npy +tests/data/ljspeech/wavs/LJ037-0127.wav|tests/data/ljspeech/wavs/LJ037-0127.npy +tests/data/ljspeech/wavs/LJ015-0085.wav|tests/data/ljspeech/wavs/LJ015-0085.npy +tests/data/ljspeech/wavs/LJ009-0199.wav|tests/data/ljspeech/wavs/LJ009-0199.npy +tests/data/ljspeech/wavs/LJ031-0187.wav|tests/data/ljspeech/wavs/LJ031-0187.npy +tests/data/ljspeech/wavs/LJ002-0317.wav|tests/data/ljspeech/wavs/LJ002-0317.npy +tests/data/ljspeech/wavs/LJ016-0160.wav|tests/data/ljspeech/wavs/LJ016-0160.npy +tests/data/ljspeech/wavs/LJ040-0236.wav|tests/data/ljspeech/wavs/LJ040-0236.npy +tests/data/ljspeech/wavs/LJ014-0335.wav|tests/data/ljspeech/wavs/LJ014-0335.npy +tests/data/ljspeech/wavs/LJ025-0046.wav|tests/data/ljspeech/wavs/LJ025-0046.npy +tests/data/ljspeech/wavs/LJ016-0115.wav|tests/data/ljspeech/wavs/LJ016-0115.npy +tests/data/ljspeech/wavs/LJ002-0260.wav|tests/data/ljspeech/wavs/LJ002-0260.npy +tests/data/ljspeech/wavs/LJ009-0293.wav|tests/data/ljspeech/wavs/LJ009-0293.npy +tests/data/ljspeech/wavs/LJ016-0291.wav|tests/data/ljspeech/wavs/LJ016-0291.npy +tests/data/ljspeech/wavs/LJ046-0231.wav|tests/data/ljspeech/wavs/LJ046-0231.npy +tests/data/ljspeech/wavs/LJ028-0188.wav|tests/data/ljspeech/wavs/LJ028-0188.npy +tests/data/ljspeech/wavs/LJ050-0249.wav|tests/data/ljspeech/wavs/LJ050-0249.npy +tests/data/ljspeech/wavs/LJ042-0017.wav|tests/data/ljspeech/wavs/LJ042-0017.npy +tests/data/ljspeech/wavs/LJ025-0045.wav|tests/data/ljspeech/wavs/LJ025-0045.npy +tests/data/ljspeech/wavs/LJ004-0002.wav|tests/data/ljspeech/wavs/LJ004-0002.npy +tests/data/ljspeech/wavs/LJ036-0172.wav|tests/data/ljspeech/wavs/LJ036-0172.npy +tests/data/ljspeech/wavs/LJ013-0011.wav|tests/data/ljspeech/wavs/LJ013-0011.npy +tests/data/ljspeech/wavs/LJ031-0102.wav|tests/data/ljspeech/wavs/LJ031-0102.npy +tests/data/ljspeech/wavs/LJ049-0135.wav|tests/data/ljspeech/wavs/LJ049-0135.npy +tests/data/ljspeech/wavs/LJ049-0218.wav|tests/data/ljspeech/wavs/LJ049-0218.npy +tests/data/ljspeech/wavs/LJ023-0041.wav|tests/data/ljspeech/wavs/LJ023-0041.npy +tests/data/ljspeech/wavs/LJ001-0103.wav|tests/data/ljspeech/wavs/LJ001-0103.npy +tests/data/ljspeech/wavs/LJ001-0110.wav|tests/data/ljspeech/wavs/LJ001-0110.npy +tests/data/ljspeech/wavs/LJ031-0175.wav|tests/data/ljspeech/wavs/LJ031-0175.npy +tests/data/ljspeech/wavs/LJ035-0025.wav|tests/data/ljspeech/wavs/LJ035-0025.npy +tests/data/ljspeech/wavs/LJ046-0233.wav|tests/data/ljspeech/wavs/LJ046-0233.npy +tests/data/ljspeech/wavs/LJ004-0229.wav|tests/data/ljspeech/wavs/LJ004-0229.npy +tests/data/ljspeech/wavs/LJ047-0047.wav|tests/data/ljspeech/wavs/LJ047-0047.npy +tests/data/ljspeech/wavs/LJ050-0054.wav|tests/data/ljspeech/wavs/LJ050-0054.npy +tests/data/ljspeech/wavs/LJ019-0050.wav|tests/data/ljspeech/wavs/LJ019-0050.npy +tests/data/ljspeech/wavs/LJ013-0122.wav|tests/data/ljspeech/wavs/LJ013-0122.npy +tests/data/ljspeech/wavs/LJ027-0006.wav|tests/data/ljspeech/wavs/LJ027-0006.npy +tests/data/ljspeech/wavs/LJ030-0133.wav|tests/data/ljspeech/wavs/LJ030-0133.npy +tests/data/ljspeech/wavs/LJ019-0155.wav|tests/data/ljspeech/wavs/LJ019-0155.npy +tests/data/ljspeech/wavs/LJ009-0151.wav|tests/data/ljspeech/wavs/LJ009-0151.npy +tests/data/ljspeech/wavs/LJ016-0301.wav|tests/data/ljspeech/wavs/LJ016-0301.npy +tests/data/ljspeech/wavs/LJ012-0167.wav|tests/data/ljspeech/wavs/LJ012-0167.npy +tests/data/ljspeech/wavs/LJ017-0101.wav|tests/data/ljspeech/wavs/LJ017-0101.npy +tests/data/ljspeech/wavs/LJ011-0039.wav|tests/data/ljspeech/wavs/LJ011-0039.npy +tests/data/ljspeech/wavs/LJ002-0293.wav|tests/data/ljspeech/wavs/LJ002-0293.npy +tests/data/ljspeech/wavs/LJ003-0322.wav|tests/data/ljspeech/wavs/LJ003-0322.npy +tests/data/ljspeech/wavs/LJ007-0002.wav|tests/data/ljspeech/wavs/LJ007-0002.npy +tests/data/ljspeech/wavs/LJ036-0181.wav|tests/data/ljspeech/wavs/LJ036-0181.npy +tests/data/ljspeech/wavs/LJ039-0031.wav|tests/data/ljspeech/wavs/LJ039-0031.npy +tests/data/ljspeech/wavs/LJ029-0084.wav|tests/data/ljspeech/wavs/LJ029-0084.npy +tests/data/ljspeech/wavs/LJ038-0296.wav|tests/data/ljspeech/wavs/LJ038-0296.npy +tests/data/ljspeech/wavs/LJ024-0044.wav|tests/data/ljspeech/wavs/LJ024-0044.npy +tests/data/ljspeech/wavs/LJ040-0039.wav|tests/data/ljspeech/wavs/LJ040-0039.npy +tests/data/ljspeech/wavs/LJ012-0020.wav|tests/data/ljspeech/wavs/LJ012-0020.npy +tests/data/ljspeech/wavs/LJ008-0120.wav|tests/data/ljspeech/wavs/LJ008-0120.npy +tests/data/ljspeech/wavs/LJ006-0106.wav|tests/data/ljspeech/wavs/LJ006-0106.npy +tests/data/ljspeech/wavs/LJ050-0178.wav|tests/data/ljspeech/wavs/LJ050-0178.npy +tests/data/ljspeech/wavs/LJ036-0053.wav|tests/data/ljspeech/wavs/LJ036-0053.npy +tests/data/ljspeech/wavs/LJ025-0164.wav|tests/data/ljspeech/wavs/LJ025-0164.npy +tests/data/ljspeech/wavs/LJ023-0066.wav|tests/data/ljspeech/wavs/LJ023-0066.npy +tests/data/ljspeech/wavs/LJ002-0183.wav|tests/data/ljspeech/wavs/LJ002-0183.npy +tests/data/ljspeech/wavs/LJ027-0061.wav|tests/data/ljspeech/wavs/LJ027-0061.npy +tests/data/ljspeech/wavs/LJ011-0188.wav|tests/data/ljspeech/wavs/LJ011-0188.npy +tests/data/ljspeech/wavs/LJ048-0257.wav|tests/data/ljspeech/wavs/LJ048-0257.npy +tests/data/ljspeech/wavs/LJ046-0238.wav|tests/data/ljspeech/wavs/LJ046-0238.npy +tests/data/ljspeech/wavs/LJ036-0031.wav|tests/data/ljspeech/wavs/LJ036-0031.npy +tests/data/ljspeech/wavs/LJ006-0236.wav|tests/data/ljspeech/wavs/LJ006-0236.npy +tests/data/ljspeech/wavs/LJ030-0230.wav|tests/data/ljspeech/wavs/LJ030-0230.npy +tests/data/ljspeech/wavs/LJ025-0030.wav|tests/data/ljspeech/wavs/LJ025-0030.npy +tests/data/ljspeech/wavs/LJ040-0038.wav|tests/data/ljspeech/wavs/LJ040-0038.npy +tests/data/ljspeech/wavs/LJ016-0389.wav|tests/data/ljspeech/wavs/LJ016-0389.npy +tests/data/ljspeech/wavs/LJ010-0237.wav|tests/data/ljspeech/wavs/LJ010-0237.npy +tests/data/ljspeech/wavs/LJ008-0111.wav|tests/data/ljspeech/wavs/LJ008-0111.npy +tests/data/ljspeech/wavs/LJ036-0182.wav|tests/data/ljspeech/wavs/LJ036-0182.npy +tests/data/ljspeech/wavs/LJ013-0043.wav|tests/data/ljspeech/wavs/LJ013-0043.npy +tests/data/ljspeech/wavs/LJ011-0126.wav|tests/data/ljspeech/wavs/LJ011-0126.npy +tests/data/ljspeech/wavs/LJ006-0251.wav|tests/data/ljspeech/wavs/LJ006-0251.npy +tests/data/ljspeech/wavs/LJ003-0192.wav|tests/data/ljspeech/wavs/LJ003-0192.npy +tests/data/ljspeech/wavs/LJ008-0118.wav|tests/data/ljspeech/wavs/LJ008-0118.npy +tests/data/ljspeech/wavs/LJ002-0008.wav|tests/data/ljspeech/wavs/LJ002-0008.npy +tests/data/ljspeech/wavs/LJ032-0051.wav|tests/data/ljspeech/wavs/LJ032-0051.npy +tests/data/ljspeech/wavs/LJ039-0009.wav|tests/data/ljspeech/wavs/LJ039-0009.npy +tests/data/ljspeech/wavs/LJ046-0191.wav|tests/data/ljspeech/wavs/LJ046-0191.npy +tests/data/ljspeech/wavs/LJ044-0125.wav|tests/data/ljspeech/wavs/LJ044-0125.npy +tests/data/ljspeech/wavs/LJ009-0020.wav|tests/data/ljspeech/wavs/LJ009-0020.npy +tests/data/ljspeech/wavs/LJ010-0165.wav|tests/data/ljspeech/wavs/LJ010-0165.npy +tests/data/ljspeech/wavs/LJ012-0214.wav|tests/data/ljspeech/wavs/LJ012-0214.npy +tests/data/ljspeech/wavs/LJ039-0081.wav|tests/data/ljspeech/wavs/LJ039-0081.npy +tests/data/ljspeech/wavs/LJ050-0124.wav|tests/data/ljspeech/wavs/LJ050-0124.npy +tests/data/ljspeech/wavs/LJ002-0036.wav|tests/data/ljspeech/wavs/LJ002-0036.npy +tests/data/ljspeech/wavs/LJ018-0217.wav|tests/data/ljspeech/wavs/LJ018-0217.npy +tests/data/ljspeech/wavs/LJ034-0147.wav|tests/data/ljspeech/wavs/LJ034-0147.npy +tests/data/ljspeech/wavs/LJ036-0021.wav|tests/data/ljspeech/wavs/LJ036-0021.npy +tests/data/ljspeech/wavs/LJ016-0003.wav|tests/data/ljspeech/wavs/LJ016-0003.npy +tests/data/ljspeech/wavs/LJ028-0002.wav|tests/data/ljspeech/wavs/LJ028-0002.npy +tests/data/ljspeech/wavs/LJ040-0149.wav|tests/data/ljspeech/wavs/LJ040-0149.npy +tests/data/ljspeech/wavs/LJ018-0250.wav|tests/data/ljspeech/wavs/LJ018-0250.npy +tests/data/ljspeech/wavs/LJ012-0098.wav|tests/data/ljspeech/wavs/LJ012-0098.npy +tests/data/ljspeech/wavs/LJ006-0129.wav|tests/data/ljspeech/wavs/LJ006-0129.npy +tests/data/ljspeech/wavs/LJ040-0213.wav|tests/data/ljspeech/wavs/LJ040-0213.npy +tests/data/ljspeech/wavs/LJ006-0302.wav|tests/data/ljspeech/wavs/LJ006-0302.npy +tests/data/ljspeech/wavs/LJ009-0110.wav|tests/data/ljspeech/wavs/LJ009-0110.npy +tests/data/ljspeech/wavs/LJ047-0051.wav|tests/data/ljspeech/wavs/LJ047-0051.npy +tests/data/ljspeech/wavs/LJ025-0138.wav|tests/data/ljspeech/wavs/LJ025-0138.npy +tests/data/ljspeech/wavs/LJ028-0103.wav|tests/data/ljspeech/wavs/LJ028-0103.npy +tests/data/ljspeech/wavs/LJ012-0201.wav|tests/data/ljspeech/wavs/LJ012-0201.npy +tests/data/ljspeech/wavs/LJ010-0091.wav|tests/data/ljspeech/wavs/LJ010-0091.npy +tests/data/ljspeech/wavs/LJ036-0029.wav|tests/data/ljspeech/wavs/LJ036-0029.npy +tests/data/ljspeech/wavs/LJ041-0122.wav|tests/data/ljspeech/wavs/LJ041-0122.npy +tests/data/ljspeech/wavs/LJ015-0214.wav|tests/data/ljspeech/wavs/LJ015-0214.npy +tests/data/ljspeech/wavs/LJ018-0353.wav|tests/data/ljspeech/wavs/LJ018-0353.npy +tests/data/ljspeech/wavs/LJ002-0015.wav|tests/data/ljspeech/wavs/LJ002-0015.npy +tests/data/ljspeech/wavs/LJ019-0010.wav|tests/data/ljspeech/wavs/LJ019-0010.npy +tests/data/ljspeech/wavs/LJ013-0125.wav|tests/data/ljspeech/wavs/LJ013-0125.npy +tests/data/ljspeech/wavs/LJ019-0352.wav|tests/data/ljspeech/wavs/LJ019-0352.npy +tests/data/ljspeech/wavs/LJ043-0111.wav|tests/data/ljspeech/wavs/LJ043-0111.npy +tests/data/ljspeech/wavs/LJ044-0013.wav|tests/data/ljspeech/wavs/LJ044-0013.npy +tests/data/ljspeech/wavs/LJ018-0055.wav|tests/data/ljspeech/wavs/LJ018-0055.npy +tests/data/ljspeech/wavs/LJ023-0127.wav|tests/data/ljspeech/wavs/LJ023-0127.npy +tests/data/ljspeech/wavs/LJ048-0067.wav|tests/data/ljspeech/wavs/LJ048-0067.npy +tests/data/ljspeech/wavs/LJ038-0154.wav|tests/data/ljspeech/wavs/LJ038-0154.npy +tests/data/ljspeech/wavs/LJ006-0152.wav|tests/data/ljspeech/wavs/LJ006-0152.npy +tests/data/ljspeech/wavs/LJ038-0076.wav|tests/data/ljspeech/wavs/LJ038-0076.npy +tests/data/ljspeech/wavs/LJ037-0014.wav|tests/data/ljspeech/wavs/LJ037-0014.npy +tests/data/ljspeech/wavs/LJ016-0424.wav|tests/data/ljspeech/wavs/LJ016-0424.npy +tests/data/ljspeech/wavs/LJ035-0200.wav|tests/data/ljspeech/wavs/LJ035-0200.npy +tests/data/ljspeech/wavs/LJ037-0264.wav|tests/data/ljspeech/wavs/LJ037-0264.npy +tests/data/ljspeech/wavs/LJ045-0225.wav|tests/data/ljspeech/wavs/LJ045-0225.npy +tests/data/ljspeech/wavs/LJ035-0171.wav|tests/data/ljspeech/wavs/LJ035-0171.npy +tests/data/ljspeech/wavs/LJ025-0083.wav|tests/data/ljspeech/wavs/LJ025-0083.npy +tests/data/ljspeech/wavs/LJ016-0323.wav|tests/data/ljspeech/wavs/LJ016-0323.npy +tests/data/ljspeech/wavs/LJ020-0075.wav|tests/data/ljspeech/wavs/LJ020-0075.npy +tests/data/ljspeech/wavs/LJ021-0047.wav|tests/data/ljspeech/wavs/LJ021-0047.npy +tests/data/ljspeech/wavs/LJ001-0051.wav|tests/data/ljspeech/wavs/LJ001-0051.npy +tests/data/ljspeech/wavs/LJ030-0218.wav|tests/data/ljspeech/wavs/LJ030-0218.npy +tests/data/ljspeech/wavs/LJ037-0027.wav|tests/data/ljspeech/wavs/LJ037-0027.npy +tests/data/ljspeech/wavs/LJ015-0101.wav|tests/data/ljspeech/wavs/LJ015-0101.npy +tests/data/ljspeech/wavs/LJ016-0376.wav|tests/data/ljspeech/wavs/LJ016-0376.npy +tests/data/ljspeech/wavs/LJ002-0090.wav|tests/data/ljspeech/wavs/LJ002-0090.npy +tests/data/ljspeech/wavs/LJ037-0210.wav|tests/data/ljspeech/wavs/LJ037-0210.npy +tests/data/ljspeech/wavs/LJ021-0037.wav|tests/data/ljspeech/wavs/LJ021-0037.npy +tests/data/ljspeech/wavs/LJ015-0271.wav|tests/data/ljspeech/wavs/LJ015-0271.npy +tests/data/ljspeech/wavs/LJ016-0280.wav|tests/data/ljspeech/wavs/LJ016-0280.npy +tests/data/ljspeech/wavs/LJ015-0029.wav|tests/data/ljspeech/wavs/LJ015-0029.npy +tests/data/ljspeech/wavs/LJ034-0061.wav|tests/data/ljspeech/wavs/LJ034-0061.npy +tests/data/ljspeech/wavs/LJ006-0108.wav|tests/data/ljspeech/wavs/LJ006-0108.npy +tests/data/ljspeech/wavs/LJ017-0256.wav|tests/data/ljspeech/wavs/LJ017-0256.npy +tests/data/ljspeech/wavs/LJ050-0225.wav|tests/data/ljspeech/wavs/LJ050-0225.npy +tests/data/ljspeech/wavs/LJ002-0094.wav|tests/data/ljspeech/wavs/LJ002-0094.npy +tests/data/ljspeech/wavs/LJ003-0030.wav|tests/data/ljspeech/wavs/LJ003-0030.npy +tests/data/ljspeech/wavs/LJ048-0284.wav|tests/data/ljspeech/wavs/LJ048-0284.npy +tests/data/ljspeech/wavs/LJ018-0048.wav|tests/data/ljspeech/wavs/LJ018-0048.npy +tests/data/ljspeech/wavs/LJ016-0032.wav|tests/data/ljspeech/wavs/LJ016-0032.npy +tests/data/ljspeech/wavs/LJ032-0201.wav|tests/data/ljspeech/wavs/LJ032-0201.npy +tests/data/ljspeech/wavs/LJ027-0068.wav|tests/data/ljspeech/wavs/LJ027-0068.npy +tests/data/ljspeech/wavs/LJ016-0195.wav|tests/data/ljspeech/wavs/LJ016-0195.npy +tests/data/ljspeech/wavs/LJ017-0034.wav|tests/data/ljspeech/wavs/LJ017-0034.npy +tests/data/ljspeech/wavs/LJ046-0221.wav|tests/data/ljspeech/wavs/LJ046-0221.npy +tests/data/ljspeech/wavs/LJ002-0203.wav|tests/data/ljspeech/wavs/LJ002-0203.npy +tests/data/ljspeech/wavs/LJ022-0087.wav|tests/data/ljspeech/wavs/LJ022-0087.npy +tests/data/ljspeech/wavs/LJ006-0164.wav|tests/data/ljspeech/wavs/LJ006-0164.npy +tests/data/ljspeech/wavs/LJ015-0062.wav|tests/data/ljspeech/wavs/LJ015-0062.npy +tests/data/ljspeech/wavs/LJ003-0139.wav|tests/data/ljspeech/wavs/LJ003-0139.npy +tests/data/ljspeech/wavs/LJ046-0007.wav|tests/data/ljspeech/wavs/LJ046-0007.npy +tests/data/ljspeech/wavs/LJ018-0101.wav|tests/data/ljspeech/wavs/LJ018-0101.npy +tests/data/ljspeech/wavs/LJ021-0083.wav|tests/data/ljspeech/wavs/LJ021-0083.npy +tests/data/ljspeech/wavs/LJ017-0142.wav|tests/data/ljspeech/wavs/LJ017-0142.npy +tests/data/ljspeech/wavs/LJ038-0110.wav|tests/data/ljspeech/wavs/LJ038-0110.npy +tests/data/ljspeech/wavs/LJ022-0151.wav|tests/data/ljspeech/wavs/LJ022-0151.npy +tests/data/ljspeech/wavs/LJ003-0264.wav|tests/data/ljspeech/wavs/LJ003-0264.npy +tests/data/ljspeech/wavs/LJ035-0118.wav|tests/data/ljspeech/wavs/LJ035-0118.npy +tests/data/ljspeech/wavs/LJ030-0141.wav|tests/data/ljspeech/wavs/LJ030-0141.npy +tests/data/ljspeech/wavs/LJ022-0033.wav|tests/data/ljspeech/wavs/LJ022-0033.npy +tests/data/ljspeech/wavs/LJ034-0102.wav|tests/data/ljspeech/wavs/LJ034-0102.npy +tests/data/ljspeech/wavs/LJ036-0103.wav|tests/data/ljspeech/wavs/LJ036-0103.npy +tests/data/ljspeech/wavs/LJ012-0139.wav|tests/data/ljspeech/wavs/LJ012-0139.npy +tests/data/ljspeech/wavs/LJ009-0249.wav|tests/data/ljspeech/wavs/LJ009-0249.npy +tests/data/ljspeech/wavs/LJ012-0097.wav|tests/data/ljspeech/wavs/LJ012-0097.npy +tests/data/ljspeech/wavs/LJ040-0173.wav|tests/data/ljspeech/wavs/LJ040-0173.npy +tests/data/ljspeech/wavs/LJ029-0031.wav|tests/data/ljspeech/wavs/LJ029-0031.npy +tests/data/ljspeech/wavs/LJ031-0155.wav|tests/data/ljspeech/wavs/LJ031-0155.npy +tests/data/ljspeech/wavs/LJ044-0239.wav|tests/data/ljspeech/wavs/LJ044-0239.npy +tests/data/ljspeech/wavs/LJ029-0196.wav|tests/data/ljspeech/wavs/LJ029-0196.npy +tests/data/ljspeech/wavs/LJ050-0049.wav|tests/data/ljspeech/wavs/LJ050-0049.npy +tests/data/ljspeech/wavs/LJ004-0199.wav|tests/data/ljspeech/wavs/LJ004-0199.npy +tests/data/ljspeech/wavs/LJ009-0003.wav|tests/data/ljspeech/wavs/LJ009-0003.npy +tests/data/ljspeech/wavs/LJ028-0272.wav|tests/data/ljspeech/wavs/LJ028-0272.npy +tests/data/ljspeech/wavs/LJ034-0025.wav|tests/data/ljspeech/wavs/LJ034-0025.npy +tests/data/ljspeech/wavs/LJ042-0168.wav|tests/data/ljspeech/wavs/LJ042-0168.npy +tests/data/ljspeech/wavs/LJ014-0093.wav|tests/data/ljspeech/wavs/LJ014-0093.npy +tests/data/ljspeech/wavs/LJ028-0373.wav|tests/data/ljspeech/wavs/LJ028-0373.npy +tests/data/ljspeech/wavs/LJ005-0087.wav|tests/data/ljspeech/wavs/LJ005-0087.npy +tests/data/ljspeech/wavs/LJ012-0015.wav|tests/data/ljspeech/wavs/LJ012-0015.npy +tests/data/ljspeech/wavs/LJ001-0069.wav|tests/data/ljspeech/wavs/LJ001-0069.npy +tests/data/ljspeech/wavs/LJ048-0064.wav|tests/data/ljspeech/wavs/LJ048-0064.npy +tests/data/ljspeech/wavs/LJ012-0171.wav|tests/data/ljspeech/wavs/LJ012-0171.npy +tests/data/ljspeech/wavs/LJ009-0250.wav|tests/data/ljspeech/wavs/LJ009-0250.npy +tests/data/ljspeech/wavs/LJ013-0212.wav|tests/data/ljspeech/wavs/LJ013-0212.npy +tests/data/ljspeech/wavs/LJ011-0052.wav|tests/data/ljspeech/wavs/LJ011-0052.npy +tests/data/ljspeech/wavs/LJ042-0191.wav|tests/data/ljspeech/wavs/LJ042-0191.npy +tests/data/ljspeech/wavs/LJ004-0211.wav|tests/data/ljspeech/wavs/LJ004-0211.npy +tests/data/ljspeech/wavs/LJ028-0439.wav|tests/data/ljspeech/wavs/LJ028-0439.npy +tests/data/ljspeech/wavs/LJ002-0290.wav|tests/data/ljspeech/wavs/LJ002-0290.npy +tests/data/ljspeech/wavs/LJ006-0285.wav|tests/data/ljspeech/wavs/LJ006-0285.npy +tests/data/ljspeech/wavs/LJ011-0225.wav|tests/data/ljspeech/wavs/LJ011-0225.npy +tests/data/ljspeech/wavs/LJ008-0035.wav|tests/data/ljspeech/wavs/LJ008-0035.npy +tests/data/ljspeech/wavs/LJ038-0259.wav|tests/data/ljspeech/wavs/LJ038-0259.npy +tests/data/ljspeech/wavs/LJ039-0192.wav|tests/data/ljspeech/wavs/LJ039-0192.npy +tests/data/ljspeech/wavs/LJ009-0284.wav|tests/data/ljspeech/wavs/LJ009-0284.npy +tests/data/ljspeech/wavs/LJ004-0249.wav|tests/data/ljspeech/wavs/LJ004-0249.npy +tests/data/ljspeech/wavs/LJ025-0113.wav|tests/data/ljspeech/wavs/LJ025-0113.npy +tests/data/ljspeech/wavs/LJ044-0061.wav|tests/data/ljspeech/wavs/LJ044-0061.npy +tests/data/ljspeech/wavs/LJ046-0085.wav|tests/data/ljspeech/wavs/LJ046-0085.npy +tests/data/ljspeech/wavs/LJ023-0083.wav|tests/data/ljspeech/wavs/LJ023-0083.npy +tests/data/ljspeech/wavs/LJ038-0041.wav|tests/data/ljspeech/wavs/LJ038-0041.npy +tests/data/ljspeech/wavs/LJ009-0077.wav|tests/data/ljspeech/wavs/LJ009-0077.npy +tests/data/ljspeech/wavs/LJ003-0127.wav|tests/data/ljspeech/wavs/LJ003-0127.npy +tests/data/ljspeech/wavs/LJ042-0145.wav|tests/data/ljspeech/wavs/LJ042-0145.npy +tests/data/ljspeech/wavs/LJ046-0091.wav|tests/data/ljspeech/wavs/LJ046-0091.npy +tests/data/ljspeech/wavs/LJ009-0288.wav|tests/data/ljspeech/wavs/LJ009-0288.npy +tests/data/ljspeech/wavs/LJ040-0098.wav|tests/data/ljspeech/wavs/LJ040-0098.npy +tests/data/ljspeech/wavs/LJ026-0041.wav|tests/data/ljspeech/wavs/LJ026-0041.npy +tests/data/ljspeech/wavs/LJ048-0180.wav|tests/data/ljspeech/wavs/LJ048-0180.npy +tests/data/ljspeech/wavs/LJ030-0232.wav|tests/data/ljspeech/wavs/LJ030-0232.npy +tests/data/ljspeech/wavs/LJ038-0044.wav|tests/data/ljspeech/wavs/LJ038-0044.npy +tests/data/ljspeech/wavs/LJ026-0031.wav|tests/data/ljspeech/wavs/LJ026-0031.npy +tests/data/ljspeech/wavs/LJ028-0074.wav|tests/data/ljspeech/wavs/LJ028-0074.npy +tests/data/ljspeech/wavs/LJ041-0104.wav|tests/data/ljspeech/wavs/LJ041-0104.npy +tests/data/ljspeech/wavs/LJ028-0246.wav|tests/data/ljspeech/wavs/LJ028-0246.npy +tests/data/ljspeech/wavs/LJ004-0219.wav|tests/data/ljspeech/wavs/LJ004-0219.npy +tests/data/ljspeech/wavs/LJ015-0174.wav|tests/data/ljspeech/wavs/LJ015-0174.npy +tests/data/ljspeech/wavs/LJ002-0117.wav|tests/data/ljspeech/wavs/LJ002-0117.npy +tests/data/ljspeech/wavs/LJ008-0246.wav|tests/data/ljspeech/wavs/LJ008-0246.npy +tests/data/ljspeech/wavs/LJ025-0033.wav|tests/data/ljspeech/wavs/LJ025-0033.npy +tests/data/ljspeech/wavs/LJ003-0327.wav|tests/data/ljspeech/wavs/LJ003-0327.npy +tests/data/ljspeech/wavs/LJ015-0099.wav|tests/data/ljspeech/wavs/LJ015-0099.npy +tests/data/ljspeech/wavs/LJ029-0041.wav|tests/data/ljspeech/wavs/LJ029-0041.npy +tests/data/ljspeech/wavs/LJ028-0031.wav|tests/data/ljspeech/wavs/LJ028-0031.npy +tests/data/ljspeech/wavs/LJ015-0175.wav|tests/data/ljspeech/wavs/LJ015-0175.npy +tests/data/ljspeech/wavs/LJ042-0071.wav|tests/data/ljspeech/wavs/LJ042-0071.npy +tests/data/ljspeech/wavs/LJ044-0036.wav|tests/data/ljspeech/wavs/LJ044-0036.npy +tests/data/ljspeech/wavs/LJ024-0058.wav|tests/data/ljspeech/wavs/LJ024-0058.npy +tests/data/ljspeech/wavs/LJ038-0192.wav|tests/data/ljspeech/wavs/LJ038-0192.npy +tests/data/ljspeech/wavs/LJ014-0244.wav|tests/data/ljspeech/wavs/LJ014-0244.npy +tests/data/ljspeech/wavs/LJ038-0055.wav|tests/data/ljspeech/wavs/LJ038-0055.npy +tests/data/ljspeech/wavs/LJ030-0022.wav|tests/data/ljspeech/wavs/LJ030-0022.npy +tests/data/ljspeech/wavs/LJ028-0215.wav|tests/data/ljspeech/wavs/LJ028-0215.npy +tests/data/ljspeech/wavs/LJ028-0077.wav|tests/data/ljspeech/wavs/LJ028-0077.npy +tests/data/ljspeech/wavs/LJ028-0460.wav|tests/data/ljspeech/wavs/LJ028-0460.npy +tests/data/ljspeech/wavs/LJ012-0042.wav|tests/data/ljspeech/wavs/LJ012-0042.npy +tests/data/ljspeech/wavs/LJ001-0035.wav|tests/data/ljspeech/wavs/LJ001-0035.npy +tests/data/ljspeech/wavs/LJ021-0040.wav|tests/data/ljspeech/wavs/LJ021-0040.npy +tests/data/ljspeech/wavs/LJ034-0083.wav|tests/data/ljspeech/wavs/LJ034-0083.npy +tests/data/ljspeech/wavs/LJ037-0215.wav|tests/data/ljspeech/wavs/LJ037-0215.npy +tests/data/ljspeech/wavs/LJ014-0216.wav|tests/data/ljspeech/wavs/LJ014-0216.npy +tests/data/ljspeech/wavs/LJ014-0116.wav|tests/data/ljspeech/wavs/LJ014-0116.npy +tests/data/ljspeech/wavs/LJ038-0145.wav|tests/data/ljspeech/wavs/LJ038-0145.npy +tests/data/ljspeech/wavs/LJ028-0125.wav|tests/data/ljspeech/wavs/LJ028-0125.npy +tests/data/ljspeech/wavs/LJ008-0107.wav|tests/data/ljspeech/wavs/LJ008-0107.npy +tests/data/ljspeech/wavs/LJ003-0191.wav|tests/data/ljspeech/wavs/LJ003-0191.npy +tests/data/ljspeech/wavs/LJ012-0177.wav|tests/data/ljspeech/wavs/LJ012-0177.npy +tests/data/ljspeech/wavs/LJ033-0189.wav|tests/data/ljspeech/wavs/LJ033-0189.npy +tests/data/ljspeech/wavs/LJ012-0210.wav|tests/data/ljspeech/wavs/LJ012-0210.npy +tests/data/ljspeech/wavs/LJ022-0106.wav|tests/data/ljspeech/wavs/LJ022-0106.npy +tests/data/ljspeech/wavs/LJ021-0058.wav|tests/data/ljspeech/wavs/LJ021-0058.npy +tests/data/ljspeech/wavs/LJ006-0102.wav|tests/data/ljspeech/wavs/LJ006-0102.npy +tests/data/ljspeech/wavs/LJ033-0032.wav|tests/data/ljspeech/wavs/LJ033-0032.npy +tests/data/ljspeech/wavs/LJ002-0200.wav|tests/data/ljspeech/wavs/LJ002-0200.npy +tests/data/ljspeech/wavs/LJ033-0185.wav|tests/data/ljspeech/wavs/LJ033-0185.npy +tests/data/ljspeech/wavs/LJ036-0057.wav|tests/data/ljspeech/wavs/LJ036-0057.npy +tests/data/ljspeech/wavs/LJ035-0066.wav|tests/data/ljspeech/wavs/LJ035-0066.npy +tests/data/ljspeech/wavs/LJ028-0257.wav|tests/data/ljspeech/wavs/LJ028-0257.npy +tests/data/ljspeech/wavs/LJ040-0064.wav|tests/data/ljspeech/wavs/LJ040-0064.npy +tests/data/ljspeech/wavs/LJ032-0052.wav|tests/data/ljspeech/wavs/LJ032-0052.npy +tests/data/ljspeech/wavs/LJ047-0036.wav|tests/data/ljspeech/wavs/LJ047-0036.npy +tests/data/ljspeech/wavs/LJ032-0059.wav|tests/data/ljspeech/wavs/LJ032-0059.npy +tests/data/ljspeech/wavs/LJ006-0179.wav|tests/data/ljspeech/wavs/LJ006-0179.npy +tests/data/ljspeech/wavs/LJ034-0063.wav|tests/data/ljspeech/wavs/LJ034-0063.npy +tests/data/ljspeech/wavs/LJ010-0252.wav|tests/data/ljspeech/wavs/LJ010-0252.npy +tests/data/ljspeech/wavs/LJ040-0076.wav|tests/data/ljspeech/wavs/LJ040-0076.npy +tests/data/ljspeech/wavs/LJ004-0039.wav|tests/data/ljspeech/wavs/LJ004-0039.npy +tests/data/ljspeech/wavs/LJ047-0049.wav|tests/data/ljspeech/wavs/LJ047-0049.npy +tests/data/ljspeech/wavs/LJ018-0132.wav|tests/data/ljspeech/wavs/LJ018-0132.npy +tests/data/ljspeech/wavs/LJ017-0182.wav|tests/data/ljspeech/wavs/LJ017-0182.npy +tests/data/ljspeech/wavs/LJ016-0368.wav|tests/data/ljspeech/wavs/LJ016-0368.npy +tests/data/ljspeech/wavs/LJ017-0185.wav|tests/data/ljspeech/wavs/LJ017-0185.npy +tests/data/ljspeech/wavs/LJ017-0227.wav|tests/data/ljspeech/wavs/LJ017-0227.npy +tests/data/ljspeech/wavs/LJ030-0170.wav|tests/data/ljspeech/wavs/LJ030-0170.npy +tests/data/ljspeech/wavs/LJ001-0177.wav|tests/data/ljspeech/wavs/LJ001-0177.npy +tests/data/ljspeech/wavs/LJ040-0105.wav|tests/data/ljspeech/wavs/LJ040-0105.npy +tests/data/ljspeech/wavs/LJ002-0286.wav|tests/data/ljspeech/wavs/LJ002-0286.npy +tests/data/ljspeech/wavs/LJ008-0241.wav|tests/data/ljspeech/wavs/LJ008-0241.npy +tests/data/ljspeech/wavs/LJ017-0086.wav|tests/data/ljspeech/wavs/LJ017-0086.npy +tests/data/ljspeech/wavs/LJ031-0097.wav|tests/data/ljspeech/wavs/LJ031-0097.npy +tests/data/ljspeech/wavs/LJ028-0346.wav|tests/data/ljspeech/wavs/LJ028-0346.npy +tests/data/ljspeech/wavs/LJ017-0255.wav|tests/data/ljspeech/wavs/LJ017-0255.npy +tests/data/ljspeech/wavs/LJ002-0273.wav|tests/data/ljspeech/wavs/LJ002-0273.npy +tests/data/ljspeech/wavs/LJ019-0017.wav|tests/data/ljspeech/wavs/LJ019-0017.npy +tests/data/ljspeech/wavs/LJ032-0232.wav|tests/data/ljspeech/wavs/LJ032-0232.npy +tests/data/ljspeech/wavs/LJ022-0076.wav|tests/data/ljspeech/wavs/LJ022-0076.npy +tests/data/ljspeech/wavs/LJ018-0053.wav|tests/data/ljspeech/wavs/LJ018-0053.npy +tests/data/ljspeech/wavs/LJ029-0006.wav|tests/data/ljspeech/wavs/LJ029-0006.npy +tests/data/ljspeech/wavs/LJ018-0010.wav|tests/data/ljspeech/wavs/LJ018-0010.npy +tests/data/ljspeech/wavs/LJ016-0182.wav|tests/data/ljspeech/wavs/LJ016-0182.npy +tests/data/ljspeech/wavs/LJ016-0095.wav|tests/data/ljspeech/wavs/LJ016-0095.npy +tests/data/ljspeech/wavs/LJ042-0201.wav|tests/data/ljspeech/wavs/LJ042-0201.npy +tests/data/ljspeech/wavs/LJ002-0232.wav|tests/data/ljspeech/wavs/LJ002-0232.npy +tests/data/ljspeech/wavs/LJ048-0217.wav|tests/data/ljspeech/wavs/LJ048-0217.npy +tests/data/ljspeech/wavs/LJ016-0140.wav|tests/data/ljspeech/wavs/LJ016-0140.npy +tests/data/ljspeech/wavs/LJ011-0229.wav|tests/data/ljspeech/wavs/LJ011-0229.npy +tests/data/ljspeech/wavs/LJ002-0172.wav|tests/data/ljspeech/wavs/LJ002-0172.npy +tests/data/ljspeech/wavs/LJ025-0097.wav|tests/data/ljspeech/wavs/LJ025-0097.npy +tests/data/ljspeech/wavs/LJ020-0056.wav|tests/data/ljspeech/wavs/LJ020-0056.npy +tests/data/ljspeech/wavs/LJ029-0032.wav|tests/data/ljspeech/wavs/LJ029-0032.npy +tests/data/ljspeech/wavs/LJ027-0100.wav|tests/data/ljspeech/wavs/LJ027-0100.npy +tests/data/ljspeech/wavs/LJ018-0321.wav|tests/data/ljspeech/wavs/LJ018-0321.npy +tests/data/ljspeech/wavs/LJ022-0196.wav|tests/data/ljspeech/wavs/LJ022-0196.npy +tests/data/ljspeech/wavs/LJ016-0098.wav|tests/data/ljspeech/wavs/LJ016-0098.npy +tests/data/ljspeech/wavs/LJ010-0108.wav|tests/data/ljspeech/wavs/LJ010-0108.npy +tests/data/ljspeech/wavs/LJ044-0039.wav|tests/data/ljspeech/wavs/LJ044-0039.npy +tests/data/ljspeech/wavs/LJ013-0129.wav|tests/data/ljspeech/wavs/LJ013-0129.npy +tests/data/ljspeech/wavs/LJ016-0317.wav|tests/data/ljspeech/wavs/LJ016-0317.npy +tests/data/ljspeech/wavs/LJ002-0050.wav|tests/data/ljspeech/wavs/LJ002-0050.npy +tests/data/ljspeech/wavs/LJ008-0190.wav|tests/data/ljspeech/wavs/LJ008-0190.npy +tests/data/ljspeech/wavs/LJ002-0173.wav|tests/data/ljspeech/wavs/LJ002-0173.npy +tests/data/ljspeech/wavs/LJ050-0201.wav|tests/data/ljspeech/wavs/LJ050-0201.npy +tests/data/ljspeech/wavs/LJ002-0038.wav|tests/data/ljspeech/wavs/LJ002-0038.npy +tests/data/ljspeech/wavs/LJ020-0012.wav|tests/data/ljspeech/wavs/LJ020-0012.npy +tests/data/ljspeech/wavs/LJ013-0079.wav|tests/data/ljspeech/wavs/LJ013-0079.npy +tests/data/ljspeech/wavs/LJ002-0336.wav|tests/data/ljspeech/wavs/LJ002-0336.npy +tests/data/ljspeech/wavs/LJ018-0193.wav|tests/data/ljspeech/wavs/LJ018-0193.npy +tests/data/ljspeech/wavs/LJ049-0077.wav|tests/data/ljspeech/wavs/LJ049-0077.npy +tests/data/ljspeech/wavs/LJ028-0374.wav|tests/data/ljspeech/wavs/LJ028-0374.npy +tests/data/ljspeech/wavs/LJ002-0143.wav|tests/data/ljspeech/wavs/LJ002-0143.npy +tests/data/ljspeech/wavs/LJ028-0378.wav|tests/data/ljspeech/wavs/LJ028-0378.npy +tests/data/ljspeech/wavs/LJ044-0016.wav|tests/data/ljspeech/wavs/LJ044-0016.npy +tests/data/ljspeech/wavs/LJ038-0260.wav|tests/data/ljspeech/wavs/LJ038-0260.npy +tests/data/ljspeech/wavs/LJ028-0180.wav|tests/data/ljspeech/wavs/LJ028-0180.npy +tests/data/ljspeech/wavs/LJ029-0021.wav|tests/data/ljspeech/wavs/LJ029-0021.npy +tests/data/ljspeech/wavs/LJ011-0228.wav|tests/data/ljspeech/wavs/LJ011-0228.npy +tests/data/ljspeech/wavs/LJ026-0096.wav|tests/data/ljspeech/wavs/LJ026-0096.npy +tests/data/ljspeech/wavs/LJ003-0039.wav|tests/data/ljspeech/wavs/LJ003-0039.npy +tests/data/ljspeech/wavs/LJ014-0317.wav|tests/data/ljspeech/wavs/LJ014-0317.npy +tests/data/ljspeech/wavs/LJ010-0217.wav|tests/data/ljspeech/wavs/LJ010-0217.npy +tests/data/ljspeech/wavs/LJ023-0128.wav|tests/data/ljspeech/wavs/LJ023-0128.npy +tests/data/ljspeech/wavs/LJ026-0136.wav|tests/data/ljspeech/wavs/LJ026-0136.npy +tests/data/ljspeech/wavs/LJ049-0167.wav|tests/data/ljspeech/wavs/LJ049-0167.npy +tests/data/ljspeech/wavs/LJ027-0141.wav|tests/data/ljspeech/wavs/LJ027-0141.npy +tests/data/ljspeech/wavs/LJ002-0187.wav|tests/data/ljspeech/wavs/LJ002-0187.npy +tests/data/ljspeech/wavs/LJ012-0191.wav|tests/data/ljspeech/wavs/LJ012-0191.npy +tests/data/ljspeech/wavs/LJ013-0158.wav|tests/data/ljspeech/wavs/LJ013-0158.npy +tests/data/ljspeech/wavs/LJ032-0128.wav|tests/data/ljspeech/wavs/LJ032-0128.npy +tests/data/ljspeech/wavs/LJ001-0052.wav|tests/data/ljspeech/wavs/LJ001-0052.npy +tests/data/ljspeech/wavs/LJ012-0253.wav|tests/data/ljspeech/wavs/LJ012-0253.npy +tests/data/ljspeech/wavs/LJ026-0137.wav|tests/data/ljspeech/wavs/LJ026-0137.npy +tests/data/ljspeech/wavs/LJ013-0033.wav|tests/data/ljspeech/wavs/LJ013-0033.npy +tests/data/ljspeech/wavs/LJ036-0106.wav|tests/data/ljspeech/wavs/LJ036-0106.npy +tests/data/ljspeech/wavs/LJ026-0097.wav|tests/data/ljspeech/wavs/LJ026-0097.npy +tests/data/ljspeech/wavs/LJ034-0185.wav|tests/data/ljspeech/wavs/LJ034-0185.npy +tests/data/ljspeech/wavs/LJ013-0191.wav|tests/data/ljspeech/wavs/LJ013-0191.npy +tests/data/ljspeech/wavs/LJ028-0441.wav|tests/data/ljspeech/wavs/LJ028-0441.npy +tests/data/ljspeech/wavs/LJ033-0199.wav|tests/data/ljspeech/wavs/LJ033-0199.npy +tests/data/ljspeech/wavs/LJ044-0001.wav|tests/data/ljspeech/wavs/LJ044-0001.npy +tests/data/ljspeech/wavs/LJ043-0001.wav|tests/data/ljspeech/wavs/LJ043-0001.npy +tests/data/ljspeech/wavs/LJ042-0001.wav|tests/data/ljspeech/wavs/LJ042-0001.npy +tests/data/ljspeech/wavs/LJ034-0001.wav|tests/data/ljspeech/wavs/LJ034-0001.npy +tests/data/ljspeech/wavs/LJ013-0163.wav|tests/data/ljspeech/wavs/LJ013-0163.npy +tests/data/ljspeech/wavs/LJ016-0330.wav|tests/data/ljspeech/wavs/LJ016-0330.npy +tests/data/ljspeech/wavs/LJ036-0178.wav|tests/data/ljspeech/wavs/LJ036-0178.npy +tests/data/ljspeech/wavs/LJ039-0102.wav|tests/data/ljspeech/wavs/LJ039-0102.npy +tests/data/ljspeech/wavs/LJ036-0180.wav|tests/data/ljspeech/wavs/LJ036-0180.npy +tests/data/ljspeech/wavs/LJ001-0122.wav|tests/data/ljspeech/wavs/LJ001-0122.npy +tests/data/ljspeech/wavs/LJ003-0177.wav|tests/data/ljspeech/wavs/LJ003-0177.npy +tests/data/ljspeech/wavs/LJ002-0100.wav|tests/data/ljspeech/wavs/LJ002-0100.npy +tests/data/ljspeech/wavs/LJ003-0122.wav|tests/data/ljspeech/wavs/LJ003-0122.npy +tests/data/ljspeech/wavs/LJ040-0217.wav|tests/data/ljspeech/wavs/LJ040-0217.npy +tests/data/ljspeech/wavs/LJ024-0129.wav|tests/data/ljspeech/wavs/LJ024-0129.npy +tests/data/ljspeech/wavs/LJ011-0207.wav|tests/data/ljspeech/wavs/LJ011-0207.npy +tests/data/ljspeech/wavs/LJ011-0165.wav|tests/data/ljspeech/wavs/LJ011-0165.npy +tests/data/ljspeech/wavs/LJ015-0176.wav|tests/data/ljspeech/wavs/LJ015-0176.npy +tests/data/ljspeech/wavs/LJ008-0018.wav|tests/data/ljspeech/wavs/LJ008-0018.npy +tests/data/ljspeech/wavs/LJ044-0166.wav|tests/data/ljspeech/wavs/LJ044-0166.npy +tests/data/ljspeech/wavs/LJ007-0141.wav|tests/data/ljspeech/wavs/LJ007-0141.npy +tests/data/ljspeech/wavs/LJ006-0005.wav|tests/data/ljspeech/wavs/LJ006-0005.npy +tests/data/ljspeech/wavs/LJ011-0086.wav|tests/data/ljspeech/wavs/LJ011-0086.npy +tests/data/ljspeech/wavs/LJ037-0043.wav|tests/data/ljspeech/wavs/LJ037-0043.npy +tests/data/ljspeech/wavs/LJ014-0148.wav|tests/data/ljspeech/wavs/LJ014-0148.npy +tests/data/ljspeech/wavs/LJ017-0261.wav|tests/data/ljspeech/wavs/LJ017-0261.npy +tests/data/ljspeech/wavs/LJ009-0115.wav|tests/data/ljspeech/wavs/LJ009-0115.npy +tests/data/ljspeech/wavs/LJ038-0105.wav|tests/data/ljspeech/wavs/LJ038-0105.npy +tests/data/ljspeech/wavs/LJ009-0162.wav|tests/data/ljspeech/wavs/LJ009-0162.npy +tests/data/ljspeech/wavs/LJ008-0096.wav|tests/data/ljspeech/wavs/LJ008-0096.npy +tests/data/ljspeech/wavs/LJ030-0172.wav|tests/data/ljspeech/wavs/LJ030-0172.npy +tests/data/ljspeech/wavs/LJ013-0018.wav|tests/data/ljspeech/wavs/LJ013-0018.npy +tests/data/ljspeech/wavs/LJ012-0245.wav|tests/data/ljspeech/wavs/LJ012-0245.npy +tests/data/ljspeech/wavs/LJ001-0016.wav|tests/data/ljspeech/wavs/LJ001-0016.npy +tests/data/ljspeech/wavs/LJ008-0099.wav|tests/data/ljspeech/wavs/LJ008-0099.npy +tests/data/ljspeech/wavs/LJ031-0001.wav|tests/data/ljspeech/wavs/LJ031-0001.npy +tests/data/ljspeech/wavs/LJ016-0284.wav|tests/data/ljspeech/wavs/LJ016-0284.npy +tests/data/ljspeech/wavs/LJ016-0242.wav|tests/data/ljspeech/wavs/LJ016-0242.npy +tests/data/ljspeech/wavs/LJ033-0176.wav|tests/data/ljspeech/wavs/LJ033-0176.npy +tests/data/ljspeech/wavs/LJ018-0165.wav|tests/data/ljspeech/wavs/LJ018-0165.npy +tests/data/ljspeech/wavs/LJ029-0183.wav|tests/data/ljspeech/wavs/LJ029-0183.npy +tests/data/ljspeech/wavs/LJ046-0185.wav|tests/data/ljspeech/wavs/LJ046-0185.npy +tests/data/ljspeech/wavs/LJ027-0165.wav|tests/data/ljspeech/wavs/LJ027-0165.npy +tests/data/ljspeech/wavs/LJ027-0001.wav|tests/data/ljspeech/wavs/LJ027-0001.npy +tests/data/ljspeech/wavs/LJ022-0101.wav|tests/data/ljspeech/wavs/LJ022-0101.npy +tests/data/ljspeech/wavs/LJ048-0191.wav|tests/data/ljspeech/wavs/LJ048-0191.npy +tests/data/ljspeech/wavs/LJ029-0092.wav|tests/data/ljspeech/wavs/LJ029-0092.npy +tests/data/ljspeech/wavs/LJ013-0169.wav|tests/data/ljspeech/wavs/LJ013-0169.npy +tests/data/ljspeech/wavs/LJ018-0088.wav|tests/data/ljspeech/wavs/LJ018-0088.npy +tests/data/ljspeech/wavs/LJ022-0117.wav|tests/data/ljspeech/wavs/LJ022-0117.npy +tests/data/ljspeech/wavs/LJ036-0204.wav|tests/data/ljspeech/wavs/LJ036-0204.npy +tests/data/ljspeech/wavs/LJ017-0065.wav|tests/data/ljspeech/wavs/LJ017-0065.npy +tests/data/ljspeech/wavs/LJ045-0076.wav|tests/data/ljspeech/wavs/LJ045-0076.npy +tests/data/ljspeech/wavs/LJ019-0295.wav|tests/data/ljspeech/wavs/LJ019-0295.npy +tests/data/ljspeech/wavs/LJ044-0089.wav|tests/data/ljspeech/wavs/LJ044-0089.npy +tests/data/ljspeech/wavs/LJ016-0060.wav|tests/data/ljspeech/wavs/LJ016-0060.npy +tests/data/ljspeech/wavs/LJ019-0257.wav|tests/data/ljspeech/wavs/LJ019-0257.npy +tests/data/ljspeech/wavs/LJ035-0180.wav|tests/data/ljspeech/wavs/LJ035-0180.npy +tests/data/ljspeech/wavs/LJ043-0037.wav|tests/data/ljspeech/wavs/LJ043-0037.npy +tests/data/ljspeech/wavs/LJ019-0261.wav|tests/data/ljspeech/wavs/LJ019-0261.npy +tests/data/ljspeech/wavs/LJ004-0095.wav|tests/data/ljspeech/wavs/LJ004-0095.npy +tests/data/ljspeech/wavs/LJ036-0070.wav|tests/data/ljspeech/wavs/LJ036-0070.npy +tests/data/ljspeech/wavs/LJ010-0210.wav|tests/data/ljspeech/wavs/LJ010-0210.npy +tests/data/ljspeech/wavs/LJ028-0280.wav|tests/data/ljspeech/wavs/LJ028-0280.npy +tests/data/ljspeech/wavs/LJ003-0065.wav|tests/data/ljspeech/wavs/LJ003-0065.npy +tests/data/ljspeech/wavs/LJ028-0202.wav|tests/data/ljspeech/wavs/LJ028-0202.npy +tests/data/ljspeech/wavs/LJ049-0001.wav|tests/data/ljspeech/wavs/LJ049-0001.npy +tests/data/ljspeech/wavs/LJ027-0172.wav|tests/data/ljspeech/wavs/LJ027-0172.npy +tests/data/ljspeech/wavs/LJ024-0133.wav|tests/data/ljspeech/wavs/LJ024-0133.npy +tests/data/ljspeech/wavs/LJ039-0193.wav|tests/data/ljspeech/wavs/LJ039-0193.npy +tests/data/ljspeech/wavs/LJ040-0239.wav|tests/data/ljspeech/wavs/LJ040-0239.npy +tests/data/ljspeech/wavs/LJ036-0047.wav|tests/data/ljspeech/wavs/LJ036-0047.npy +tests/data/ljspeech/wavs/LJ039-0044.wav|tests/data/ljspeech/wavs/LJ039-0044.npy +tests/data/ljspeech/wavs/LJ021-0068.wav|tests/data/ljspeech/wavs/LJ021-0068.npy +tests/data/ljspeech/wavs/LJ033-0203.wav|tests/data/ljspeech/wavs/LJ033-0203.npy +tests/data/ljspeech/wavs/LJ022-0195.wav|tests/data/ljspeech/wavs/LJ022-0195.npy +tests/data/ljspeech/wavs/LJ041-0024.wav|tests/data/ljspeech/wavs/LJ041-0024.npy +tests/data/ljspeech/wavs/LJ032-0130.wav|tests/data/ljspeech/wavs/LJ032-0130.npy +tests/data/ljspeech/wavs/LJ005-0112.wav|tests/data/ljspeech/wavs/LJ005-0112.npy +tests/data/ljspeech/wavs/LJ039-0120.wav|tests/data/ljspeech/wavs/LJ039-0120.npy +tests/data/ljspeech/wavs/LJ008-0157.wav|tests/data/ljspeech/wavs/LJ008-0157.npy +tests/data/ljspeech/wavs/LJ047-0185.wav|tests/data/ljspeech/wavs/LJ047-0185.npy +tests/data/ljspeech/wavs/LJ028-0029.wav|tests/data/ljspeech/wavs/LJ028-0029.npy +tests/data/ljspeech/wavs/LJ003-0131.wav|tests/data/ljspeech/wavs/LJ003-0131.npy +tests/data/ljspeech/wavs/LJ018-0021.wav|tests/data/ljspeech/wavs/LJ018-0021.npy +tests/data/ljspeech/wavs/LJ016-0431.wav|tests/data/ljspeech/wavs/LJ016-0431.npy +tests/data/ljspeech/wavs/LJ042-0228.wav|tests/data/ljspeech/wavs/LJ042-0228.npy +tests/data/ljspeech/wavs/LJ040-0135.wav|tests/data/ljspeech/wavs/LJ040-0135.npy +tests/data/ljspeech/wavs/LJ027-0007.wav|tests/data/ljspeech/wavs/LJ027-0007.npy +tests/data/ljspeech/wavs/LJ013-0220.wav|tests/data/ljspeech/wavs/LJ013-0220.npy +tests/data/ljspeech/wavs/LJ048-0190.wav|tests/data/ljspeech/wavs/LJ048-0190.npy +tests/data/ljspeech/wavs/LJ042-0193.wav|tests/data/ljspeech/wavs/LJ042-0193.npy +tests/data/ljspeech/wavs/LJ002-0244.wav|tests/data/ljspeech/wavs/LJ002-0244.npy +tests/data/ljspeech/wavs/LJ013-0014.wav|tests/data/ljspeech/wavs/LJ013-0014.npy +tests/data/ljspeech/wavs/LJ003-0240.wav|tests/data/ljspeech/wavs/LJ003-0240.npy +tests/data/ljspeech/wavs/LJ013-0235.wav|tests/data/ljspeech/wavs/LJ013-0235.npy +tests/data/ljspeech/wavs/LJ014-0025.wav|tests/data/ljspeech/wavs/LJ014-0025.npy +tests/data/ljspeech/wavs/LJ039-0002.wav|tests/data/ljspeech/wavs/LJ039-0002.npy +tests/data/ljspeech/wavs/LJ038-0001.wav|tests/data/ljspeech/wavs/LJ038-0001.npy +tests/data/ljspeech/wavs/LJ013-0162.wav|tests/data/ljspeech/wavs/LJ013-0162.npy +tests/data/ljspeech/wavs/LJ016-0434.wav|tests/data/ljspeech/wavs/LJ016-0434.npy +tests/data/ljspeech/wavs/LJ044-0070.wav|tests/data/ljspeech/wavs/LJ044-0070.npy +tests/data/ljspeech/wavs/LJ042-0163.wav|tests/data/ljspeech/wavs/LJ042-0163.npy +tests/data/ljspeech/wavs/LJ036-0045.wav|tests/data/ljspeech/wavs/LJ036-0045.npy +tests/data/ljspeech/wavs/LJ035-0063.wav|tests/data/ljspeech/wavs/LJ035-0063.npy +tests/data/ljspeech/wavs/LJ015-0194.wav|tests/data/ljspeech/wavs/LJ015-0194.npy +tests/data/ljspeech/wavs/LJ015-0071.wav|tests/data/ljspeech/wavs/LJ015-0071.npy +tests/data/ljspeech/wavs/LJ023-0108.wav|tests/data/ljspeech/wavs/LJ023-0108.npy +tests/data/ljspeech/wavs/LJ018-0330.wav|tests/data/ljspeech/wavs/LJ018-0330.npy +tests/data/ljspeech/wavs/LJ021-0162.wav|tests/data/ljspeech/wavs/LJ021-0162.npy +tests/data/ljspeech/wavs/LJ005-0267.wav|tests/data/ljspeech/wavs/LJ005-0267.npy +tests/data/ljspeech/wavs/LJ018-0232.wav|tests/data/ljspeech/wavs/LJ018-0232.npy +tests/data/ljspeech/wavs/LJ012-0213.wav|tests/data/ljspeech/wavs/LJ012-0213.npy +tests/data/ljspeech/wavs/LJ042-0107.wav|tests/data/ljspeech/wavs/LJ042-0107.npy +tests/data/ljspeech/wavs/LJ025-0018.wav|tests/data/ljspeech/wavs/LJ025-0018.npy +tests/data/ljspeech/wavs/LJ028-0499.wav|tests/data/ljspeech/wavs/LJ028-0499.npy +tests/data/ljspeech/wavs/LJ018-0160.wav|tests/data/ljspeech/wavs/LJ018-0160.npy +tests/data/ljspeech/wavs/LJ028-0040.wav|tests/data/ljspeech/wavs/LJ028-0040.npy +tests/data/ljspeech/wavs/LJ028-0486.wav|tests/data/ljspeech/wavs/LJ028-0486.npy +tests/data/ljspeech/wavs/LJ013-0190.wav|tests/data/ljspeech/wavs/LJ013-0190.npy +tests/data/ljspeech/wavs/LJ019-0083.wav|tests/data/ljspeech/wavs/LJ019-0083.npy +tests/data/ljspeech/wavs/LJ040-0190.wav|tests/data/ljspeech/wavs/LJ040-0190.npy +tests/data/ljspeech/wavs/LJ013-0161.wav|tests/data/ljspeech/wavs/LJ013-0161.npy +tests/data/ljspeech/wavs/LJ016-0387.wav|tests/data/ljspeech/wavs/LJ016-0387.npy +tests/data/ljspeech/wavs/LJ035-0085.wav|tests/data/ljspeech/wavs/LJ035-0085.npy +tests/data/ljspeech/wavs/LJ012-0292.wav|tests/data/ljspeech/wavs/LJ012-0292.npy +tests/data/ljspeech/wavs/LJ042-0066.wav|tests/data/ljspeech/wavs/LJ042-0066.npy +tests/data/ljspeech/wavs/LJ025-0093.wav|tests/data/ljspeech/wavs/LJ025-0093.npy +tests/data/ljspeech/wavs/LJ018-0168.wav|tests/data/ljspeech/wavs/LJ018-0168.npy +tests/data/ljspeech/wavs/LJ036-0034.wav|tests/data/ljspeech/wavs/LJ036-0034.npy +tests/data/ljspeech/wavs/LJ016-0092.wav|tests/data/ljspeech/wavs/LJ016-0092.npy +tests/data/ljspeech/wavs/LJ037-0018.wav|tests/data/ljspeech/wavs/LJ037-0018.npy +tests/data/ljspeech/wavs/LJ016-0034.wav|tests/data/ljspeech/wavs/LJ016-0034.npy +tests/data/ljspeech/wavs/LJ047-0147.wav|tests/data/ljspeech/wavs/LJ047-0147.npy +tests/data/ljspeech/wavs/LJ040-0156.wav|tests/data/ljspeech/wavs/LJ040-0156.npy +tests/data/ljspeech/wavs/LJ044-0032.wav|tests/data/ljspeech/wavs/LJ044-0032.npy +tests/data/ljspeech/wavs/LJ016-0004.wav|tests/data/ljspeech/wavs/LJ016-0004.npy +tests/data/ljspeech/wavs/LJ037-0138.wav|tests/data/ljspeech/wavs/LJ037-0138.npy +tests/data/ljspeech/wavs/LJ033-0063.wav|tests/data/ljspeech/wavs/LJ033-0063.npy +tests/data/ljspeech/wavs/LJ048-0279.wav|tests/data/ljspeech/wavs/LJ048-0279.npy +tests/data/ljspeech/wavs/LJ037-0133.wav|tests/data/ljspeech/wavs/LJ037-0133.npy +tests/data/ljspeech/wavs/LJ023-0141.wav|tests/data/ljspeech/wavs/LJ023-0141.npy +tests/data/ljspeech/wavs/LJ034-0016.wav|tests/data/ljspeech/wavs/LJ034-0016.npy +tests/data/ljspeech/wavs/LJ028-0008.wav|tests/data/ljspeech/wavs/LJ028-0008.npy +tests/data/ljspeech/wavs/LJ034-0010.wav|tests/data/ljspeech/wavs/LJ034-0010.npy +tests/data/ljspeech/wavs/LJ028-0406.wav|tests/data/ljspeech/wavs/LJ028-0406.npy +tests/data/ljspeech/wavs/LJ016-0192.wav|tests/data/ljspeech/wavs/LJ016-0192.npy +tests/data/ljspeech/wavs/LJ006-0051.wav|tests/data/ljspeech/wavs/LJ006-0051.npy +tests/data/ljspeech/wavs/LJ019-0035.wav|tests/data/ljspeech/wavs/LJ019-0035.npy +tests/data/ljspeech/wavs/LJ015-0146.wav|tests/data/ljspeech/wavs/LJ015-0146.npy +tests/data/ljspeech/wavs/LJ009-0258.wav|tests/data/ljspeech/wavs/LJ009-0258.npy +tests/data/ljspeech/wavs/LJ002-0174.wav|tests/data/ljspeech/wavs/LJ002-0174.npy +tests/data/ljspeech/wavs/LJ047-0086.wav|tests/data/ljspeech/wavs/LJ047-0086.npy +tests/data/ljspeech/wavs/LJ024-0119.wav|tests/data/ljspeech/wavs/LJ024-0119.npy +tests/data/ljspeech/wavs/LJ007-0198.wav|tests/data/ljspeech/wavs/LJ007-0198.npy +tests/data/ljspeech/wavs/LJ033-0064.wav|tests/data/ljspeech/wavs/LJ033-0064.npy +tests/data/ljspeech/wavs/LJ005-0008.wav|tests/data/ljspeech/wavs/LJ005-0008.npy +tests/data/ljspeech/wavs/LJ013-0168.wav|tests/data/ljspeech/wavs/LJ013-0168.npy +tests/data/ljspeech/wavs/LJ021-0100.wav|tests/data/ljspeech/wavs/LJ021-0100.npy +tests/data/ljspeech/wavs/LJ034-0015.wav|tests/data/ljspeech/wavs/LJ034-0015.npy +tests/data/ljspeech/wavs/LJ028-0497.wav|tests/data/ljspeech/wavs/LJ028-0497.npy +tests/data/ljspeech/wavs/LJ021-0079.wav|tests/data/ljspeech/wavs/LJ021-0079.npy +tests/data/ljspeech/wavs/LJ049-0100.wav|tests/data/ljspeech/wavs/LJ049-0100.npy +tests/data/ljspeech/wavs/LJ011-0252.wav|tests/data/ljspeech/wavs/LJ011-0252.npy +tests/data/ljspeech/wavs/LJ001-0098.wav|tests/data/ljspeech/wavs/LJ001-0098.npy +tests/data/ljspeech/wavs/LJ046-0189.wav|tests/data/ljspeech/wavs/LJ046-0189.npy +tests/data/ljspeech/wavs/LJ028-0182.wav|tests/data/ljspeech/wavs/LJ028-0182.npy +tests/data/ljspeech/wavs/LJ042-0199.wav|tests/data/ljspeech/wavs/LJ042-0199.npy +tests/data/ljspeech/wavs/LJ025-0002.wav|tests/data/ljspeech/wavs/LJ025-0002.npy +tests/data/ljspeech/wavs/LJ027-0062.wav|tests/data/ljspeech/wavs/LJ027-0062.npy +tests/data/ljspeech/wavs/LJ026-0152.wav|tests/data/ljspeech/wavs/LJ026-0152.npy +tests/data/ljspeech/wavs/LJ036-0190.wav|tests/data/ljspeech/wavs/LJ036-0190.npy +tests/data/ljspeech/wavs/LJ034-0050.wav|tests/data/ljspeech/wavs/LJ034-0050.npy +tests/data/ljspeech/wavs/LJ050-0248.wav|tests/data/ljspeech/wavs/LJ050-0248.npy +tests/data/ljspeech/wavs/LJ049-0014.wav|tests/data/ljspeech/wavs/LJ049-0014.npy +tests/data/ljspeech/wavs/LJ006-0198.wav|tests/data/ljspeech/wavs/LJ006-0198.npy +tests/data/ljspeech/wavs/LJ038-0056.wav|tests/data/ljspeech/wavs/LJ038-0056.npy +tests/data/ljspeech/wavs/LJ010-0233.wav|tests/data/ljspeech/wavs/LJ010-0233.npy +tests/data/ljspeech/wavs/LJ015-0012.wav|tests/data/ljspeech/wavs/LJ015-0012.npy +tests/data/ljspeech/wavs/LJ013-0040.wav|tests/data/ljspeech/wavs/LJ013-0040.npy +tests/data/ljspeech/wavs/LJ012-0288.wav|tests/data/ljspeech/wavs/LJ012-0288.npy +tests/data/ljspeech/wavs/LJ028-0128.wav|tests/data/ljspeech/wavs/LJ028-0128.npy +tests/data/ljspeech/wavs/LJ022-0137.wav|tests/data/ljspeech/wavs/LJ022-0137.npy +tests/data/ljspeech/wavs/LJ024-0074.wav|tests/data/ljspeech/wavs/LJ024-0074.npy +tests/data/ljspeech/wavs/LJ014-0112.wav|tests/data/ljspeech/wavs/LJ014-0112.npy +tests/data/ljspeech/wavs/LJ017-0194.wav|tests/data/ljspeech/wavs/LJ017-0194.npy +tests/data/ljspeech/wavs/LJ042-0069.wav|tests/data/ljspeech/wavs/LJ042-0069.npy +tests/data/ljspeech/wavs/LJ022-0103.wav|tests/data/ljspeech/wavs/LJ022-0103.npy +tests/data/ljspeech/wavs/LJ028-0072.wav|tests/data/ljspeech/wavs/LJ028-0072.npy +tests/data/ljspeech/wavs/LJ006-0265.wav|tests/data/ljspeech/wavs/LJ006-0265.npy +tests/data/ljspeech/wavs/LJ022-0091.wav|tests/data/ljspeech/wavs/LJ022-0091.npy +tests/data/ljspeech/wavs/LJ014-0032.wav|tests/data/ljspeech/wavs/LJ014-0032.npy +tests/data/ljspeech/wavs/LJ008-0221.wav|tests/data/ljspeech/wavs/LJ008-0221.npy +tests/data/ljspeech/wavs/LJ039-0207.wav|tests/data/ljspeech/wavs/LJ039-0207.npy +tests/data/ljspeech/wavs/LJ018-0012.wav|tests/data/ljspeech/wavs/LJ018-0012.npy +tests/data/ljspeech/wavs/LJ028-0084.wav|tests/data/ljspeech/wavs/LJ028-0084.npy +tests/data/ljspeech/wavs/LJ014-0022.wav|tests/data/ljspeech/wavs/LJ014-0022.npy +tests/data/ljspeech/wavs/LJ039-0164.wav|tests/data/ljspeech/wavs/LJ039-0164.npy +tests/data/ljspeech/wavs/LJ003-0036.wav|tests/data/ljspeech/wavs/LJ003-0036.npy +tests/data/ljspeech/wavs/LJ019-0387.wav|tests/data/ljspeech/wavs/LJ019-0387.npy +tests/data/ljspeech/wavs/LJ037-0096.wav|tests/data/ljspeech/wavs/LJ037-0096.npy +tests/data/ljspeech/wavs/LJ005-0031.wav|tests/data/ljspeech/wavs/LJ005-0031.npy +tests/data/ljspeech/wavs/LJ038-0193.wav|tests/data/ljspeech/wavs/LJ038-0193.npy +tests/data/ljspeech/wavs/LJ031-0198.wav|tests/data/ljspeech/wavs/LJ031-0198.npy +tests/data/ljspeech/wavs/LJ047-0097.wav|tests/data/ljspeech/wavs/LJ047-0097.npy +tests/data/ljspeech/wavs/LJ028-0274.wav|tests/data/ljspeech/wavs/LJ028-0274.npy +tests/data/ljspeech/wavs/LJ045-0045.wav|tests/data/ljspeech/wavs/LJ045-0045.npy +tests/data/ljspeech/wavs/LJ045-0071.wav|tests/data/ljspeech/wavs/LJ045-0071.npy +tests/data/ljspeech/wavs/LJ004-0154.wav|tests/data/ljspeech/wavs/LJ004-0154.npy +tests/data/ljspeech/wavs/LJ022-0181.wav|tests/data/ljspeech/wavs/LJ022-0181.npy +tests/data/ljspeech/wavs/LJ016-0146.wav|tests/data/ljspeech/wavs/LJ016-0146.npy +tests/data/ljspeech/wavs/LJ026-0161.wav|tests/data/ljspeech/wavs/LJ026-0161.npy +tests/data/ljspeech/wavs/LJ010-0315.wav|tests/data/ljspeech/wavs/LJ010-0315.npy +tests/data/ljspeech/wavs/LJ005-0059.wav|tests/data/ljspeech/wavs/LJ005-0059.npy +tests/data/ljspeech/wavs/LJ013-0222.wav|tests/data/ljspeech/wavs/LJ013-0222.npy +tests/data/ljspeech/wavs/LJ024-0078.wav|tests/data/ljspeech/wavs/LJ024-0078.npy +tests/data/ljspeech/wavs/LJ031-0086.wav|tests/data/ljspeech/wavs/LJ031-0086.npy +tests/data/ljspeech/wavs/LJ017-0094.wav|tests/data/ljspeech/wavs/LJ017-0094.npy +tests/data/ljspeech/wavs/LJ030-0143.wav|tests/data/ljspeech/wavs/LJ030-0143.npy +tests/data/ljspeech/wavs/LJ038-0146.wav|tests/data/ljspeech/wavs/LJ038-0146.npy +tests/data/ljspeech/wavs/LJ017-0252.wav|tests/data/ljspeech/wavs/LJ017-0252.npy +tests/data/ljspeech/wavs/LJ010-0263.wav|tests/data/ljspeech/wavs/LJ010-0263.npy +tests/data/ljspeech/wavs/LJ042-0090.wav|tests/data/ljspeech/wavs/LJ042-0090.npy +tests/data/ljspeech/wavs/LJ040-0065.wav|tests/data/ljspeech/wavs/LJ040-0065.npy +tests/data/ljspeech/wavs/LJ028-0249.wav|tests/data/ljspeech/wavs/LJ028-0249.npy +tests/data/ljspeech/wavs/LJ015-0204.wav|tests/data/ljspeech/wavs/LJ015-0204.npy +tests/data/ljspeech/wavs/LJ009-0005.wav|tests/data/ljspeech/wavs/LJ009-0005.npy +tests/data/ljspeech/wavs/LJ008-0274.wav|tests/data/ljspeech/wavs/LJ008-0274.npy +tests/data/ljspeech/wavs/LJ009-0013.wav|tests/data/ljspeech/wavs/LJ009-0013.npy +tests/data/ljspeech/wavs/LJ050-0210.wav|tests/data/ljspeech/wavs/LJ050-0210.npy +tests/data/ljspeech/wavs/LJ035-0199.wav|tests/data/ljspeech/wavs/LJ035-0199.npy +tests/data/ljspeech/wavs/LJ046-0156.wav|tests/data/ljspeech/wavs/LJ046-0156.npy +tests/data/ljspeech/wavs/LJ026-0103.wav|tests/data/ljspeech/wavs/LJ026-0103.npy +tests/data/ljspeech/wavs/LJ049-0048.wav|tests/data/ljspeech/wavs/LJ049-0048.npy +tests/data/ljspeech/wavs/LJ026-0159.wav|tests/data/ljspeech/wavs/LJ026-0159.npy +tests/data/ljspeech/wavs/LJ005-0145.wav|tests/data/ljspeech/wavs/LJ005-0145.npy +tests/data/ljspeech/wavs/LJ028-0045.wav|tests/data/ljspeech/wavs/LJ028-0045.npy +tests/data/ljspeech/wavs/LJ023-0090.wav|tests/data/ljspeech/wavs/LJ023-0090.npy +tests/data/ljspeech/wavs/LJ047-0118.wav|tests/data/ljspeech/wavs/LJ047-0118.npy +tests/data/ljspeech/wavs/LJ013-0087.wav|tests/data/ljspeech/wavs/LJ013-0087.npy +tests/data/ljspeech/wavs/LJ037-0112.wav|tests/data/ljspeech/wavs/LJ037-0112.npy +tests/data/ljspeech/wavs/LJ016-0033.wav|tests/data/ljspeech/wavs/LJ016-0033.npy +tests/data/ljspeech/wavs/LJ022-0075.wav|tests/data/ljspeech/wavs/LJ022-0075.npy +tests/data/ljspeech/wavs/LJ005-0153.wav|tests/data/ljspeech/wavs/LJ005-0153.npy +tests/data/ljspeech/wavs/LJ001-0134.wav|tests/data/ljspeech/wavs/LJ001-0134.npy +tests/data/ljspeech/wavs/LJ046-0205.wav|tests/data/ljspeech/wavs/LJ046-0205.npy +tests/data/ljspeech/wavs/LJ043-0021.wav|tests/data/ljspeech/wavs/LJ043-0021.npy +tests/data/ljspeech/wavs/LJ035-0018.wav|tests/data/ljspeech/wavs/LJ035-0018.npy +tests/data/ljspeech/wavs/LJ003-0066.wav|tests/data/ljspeech/wavs/LJ003-0066.npy +tests/data/ljspeech/wavs/LJ029-0178.wav|tests/data/ljspeech/wavs/LJ029-0178.npy +tests/data/ljspeech/wavs/LJ045-0180.wav|tests/data/ljspeech/wavs/LJ045-0180.npy +tests/data/ljspeech/wavs/LJ043-0125.wav|tests/data/ljspeech/wavs/LJ043-0125.npy +tests/data/ljspeech/wavs/LJ034-0030.wav|tests/data/ljspeech/wavs/LJ034-0030.npy +tests/data/ljspeech/wavs/LJ043-0164.wav|tests/data/ljspeech/wavs/LJ043-0164.npy +tests/data/ljspeech/wavs/LJ029-0065.wav|tests/data/ljspeech/wavs/LJ029-0065.npy +tests/data/ljspeech/wavs/LJ017-0107.wav|tests/data/ljspeech/wavs/LJ017-0107.npy +tests/data/ljspeech/wavs/LJ028-0465.wav|tests/data/ljspeech/wavs/LJ028-0465.npy +tests/data/ljspeech/wavs/LJ004-0203.wav|tests/data/ljspeech/wavs/LJ004-0203.npy +tests/data/ljspeech/wavs/LJ016-0162.wav|tests/data/ljspeech/wavs/LJ016-0162.npy +tests/data/ljspeech/wavs/LJ030-0208.wav|tests/data/ljspeech/wavs/LJ030-0208.npy +tests/data/ljspeech/wavs/LJ015-0122.wav|tests/data/ljspeech/wavs/LJ015-0122.npy +tests/data/ljspeech/wavs/LJ002-0126.wav|tests/data/ljspeech/wavs/LJ002-0126.npy +tests/data/ljspeech/wavs/LJ031-0208.wav|tests/data/ljspeech/wavs/LJ031-0208.npy +tests/data/ljspeech/wavs/LJ026-0134.wav|tests/data/ljspeech/wavs/LJ026-0134.npy +tests/data/ljspeech/wavs/LJ048-0228.wav|tests/data/ljspeech/wavs/LJ048-0228.npy +tests/data/ljspeech/wavs/LJ022-0100.wav|tests/data/ljspeech/wavs/LJ022-0100.npy +tests/data/ljspeech/wavs/LJ020-0033.wav|tests/data/ljspeech/wavs/LJ020-0033.npy +tests/data/ljspeech/wavs/LJ018-0358.wav|tests/data/ljspeech/wavs/LJ018-0358.npy +tests/data/ljspeech/wavs/LJ019-0061.wav|tests/data/ljspeech/wavs/LJ019-0061.npy +tests/data/ljspeech/wavs/LJ019-0090.wav|tests/data/ljspeech/wavs/LJ019-0090.npy +tests/data/ljspeech/wavs/LJ018-0350.wav|tests/data/ljspeech/wavs/LJ018-0350.npy +tests/data/ljspeech/wavs/LJ017-0193.wav|tests/data/ljspeech/wavs/LJ017-0193.npy +tests/data/ljspeech/wavs/LJ048-0226.wav|tests/data/ljspeech/wavs/LJ048-0226.npy +tests/data/ljspeech/wavs/LJ022-0050.wav|tests/data/ljspeech/wavs/LJ022-0050.npy +tests/data/ljspeech/wavs/LJ003-0296.wav|tests/data/ljspeech/wavs/LJ003-0296.npy +tests/data/ljspeech/wavs/LJ014-0043.wav|tests/data/ljspeech/wavs/LJ014-0043.npy +tests/data/ljspeech/wavs/LJ041-0153.wav|tests/data/ljspeech/wavs/LJ041-0153.npy +tests/data/ljspeech/wavs/LJ028-0171.wav|tests/data/ljspeech/wavs/LJ028-0171.npy +tests/data/ljspeech/wavs/LJ040-0078.wav|tests/data/ljspeech/wavs/LJ040-0078.npy +tests/data/ljspeech/wavs/LJ048-0044.wav|tests/data/ljspeech/wavs/LJ048-0044.npy +tests/data/ljspeech/wavs/LJ048-0145.wav|tests/data/ljspeech/wavs/LJ048-0145.npy +tests/data/ljspeech/wavs/LJ001-0063.wav|tests/data/ljspeech/wavs/LJ001-0063.npy +tests/data/ljspeech/wavs/LJ012-0184.wav|tests/data/ljspeech/wavs/LJ012-0184.npy +tests/data/ljspeech/wavs/LJ003-0249.wav|tests/data/ljspeech/wavs/LJ003-0249.npy +tests/data/ljspeech/wavs/LJ012-0185.wav|tests/data/ljspeech/wavs/LJ012-0185.npy +tests/data/ljspeech/wavs/LJ039-0134.wav|tests/data/ljspeech/wavs/LJ039-0134.npy +tests/data/ljspeech/wavs/LJ033-0213.wav|tests/data/ljspeech/wavs/LJ033-0213.npy +tests/data/ljspeech/wavs/LJ039-0175.wav|tests/data/ljspeech/wavs/LJ039-0175.npy +tests/data/ljspeech/wavs/LJ045-0018.wav|tests/data/ljspeech/wavs/LJ045-0018.npy +tests/data/ljspeech/wavs/LJ006-0201.wav|tests/data/ljspeech/wavs/LJ006-0201.npy +tests/data/ljspeech/wavs/LJ028-0016.wav|tests/data/ljspeech/wavs/LJ028-0016.npy +tests/data/ljspeech/wavs/LJ040-0220.wav|tests/data/ljspeech/wavs/LJ040-0220.npy +tests/data/ljspeech/wavs/LJ017-0021.wav|tests/data/ljspeech/wavs/LJ017-0021.npy +tests/data/ljspeech/wavs/LJ002-0194.wav|tests/data/ljspeech/wavs/LJ002-0194.npy +tests/data/ljspeech/wavs/LJ043-0141.wav|tests/data/ljspeech/wavs/LJ043-0141.npy +tests/data/ljspeech/wavs/LJ038-0157.wav|tests/data/ljspeech/wavs/LJ038-0157.npy +tests/data/ljspeech/wavs/LJ002-0048.wav|tests/data/ljspeech/wavs/LJ002-0048.npy +tests/data/ljspeech/wavs/LJ047-0137.wav|tests/data/ljspeech/wavs/LJ047-0137.npy +tests/data/ljspeech/wavs/LJ048-0261.wav|tests/data/ljspeech/wavs/LJ048-0261.npy +tests/data/ljspeech/wavs/LJ044-0045.wav|tests/data/ljspeech/wavs/LJ044-0045.npy +tests/data/ljspeech/wavs/LJ037-0057.wav|tests/data/ljspeech/wavs/LJ037-0057.npy +tests/data/ljspeech/wavs/LJ006-0288.wav|tests/data/ljspeech/wavs/LJ006-0288.npy +tests/data/ljspeech/wavs/LJ011-0120.wav|tests/data/ljspeech/wavs/LJ011-0120.npy +tests/data/ljspeech/wavs/LJ014-0143.wav|tests/data/ljspeech/wavs/LJ014-0143.npy +tests/data/ljspeech/wavs/LJ040-0147.wav|tests/data/ljspeech/wavs/LJ040-0147.npy +tests/data/ljspeech/wavs/LJ001-0156.wav|tests/data/ljspeech/wavs/LJ001-0156.npy +tests/data/ljspeech/wavs/LJ028-0089.wav|tests/data/ljspeech/wavs/LJ028-0089.npy +tests/data/ljspeech/wavs/LJ030-0194.wav|tests/data/ljspeech/wavs/LJ030-0194.npy +tests/data/ljspeech/wavs/LJ017-0054.wav|tests/data/ljspeech/wavs/LJ017-0054.npy +tests/data/ljspeech/wavs/LJ050-0246.wav|tests/data/ljspeech/wavs/LJ050-0246.npy +tests/data/ljspeech/wavs/LJ023-0073.wav|tests/data/ljspeech/wavs/LJ023-0073.npy +tests/data/ljspeech/wavs/LJ023-0071.wav|tests/data/ljspeech/wavs/LJ023-0071.npy +tests/data/ljspeech/wavs/LJ007-0111.wav|tests/data/ljspeech/wavs/LJ007-0111.npy +tests/data/ljspeech/wavs/LJ010-0132.wav|tests/data/ljspeech/wavs/LJ010-0132.npy +tests/data/ljspeech/wavs/LJ005-0106.wav|tests/data/ljspeech/wavs/LJ005-0106.npy +tests/data/ljspeech/wavs/LJ029-0208.wav|tests/data/ljspeech/wavs/LJ029-0208.npy +tests/data/ljspeech/wavs/LJ030-0127.wav|tests/data/ljspeech/wavs/LJ030-0127.npy +tests/data/ljspeech/wavs/LJ039-0246.wav|tests/data/ljspeech/wavs/LJ039-0246.npy +tests/data/ljspeech/wavs/LJ035-0048.wav|tests/data/ljspeech/wavs/LJ035-0048.npy +tests/data/ljspeech/wavs/LJ007-0179.wav|tests/data/ljspeech/wavs/LJ007-0179.npy +tests/data/ljspeech/wavs/LJ018-0198.wav|tests/data/ljspeech/wavs/LJ018-0198.npy +tests/data/ljspeech/wavs/LJ007-0186.wav|tests/data/ljspeech/wavs/LJ007-0186.npy +tests/data/ljspeech/wavs/LJ014-0163.wav|tests/data/ljspeech/wavs/LJ014-0163.npy +tests/data/ljspeech/wavs/LJ001-0139.wav|tests/data/ljspeech/wavs/LJ001-0139.npy +tests/data/ljspeech/wavs/LJ009-0139.wav|tests/data/ljspeech/wavs/LJ009-0139.npy +tests/data/ljspeech/wavs/LJ044-0020.wav|tests/data/ljspeech/wavs/LJ044-0020.npy +tests/data/ljspeech/wavs/LJ044-0055.wav|tests/data/ljspeech/wavs/LJ044-0055.npy +tests/data/ljspeech/wavs/LJ009-0174.wav|tests/data/ljspeech/wavs/LJ009-0174.npy +tests/data/ljspeech/wavs/LJ003-0070.wav|tests/data/ljspeech/wavs/LJ003-0070.npy +tests/data/ljspeech/wavs/LJ049-0095.wav|tests/data/ljspeech/wavs/LJ049-0095.npy +tests/data/ljspeech/wavs/LJ040-0129.wav|tests/data/ljspeech/wavs/LJ040-0129.npy +tests/data/ljspeech/wavs/LJ042-0110.wav|tests/data/ljspeech/wavs/LJ042-0110.npy +tests/data/ljspeech/wavs/LJ008-0199.wav|tests/data/ljspeech/wavs/LJ008-0199.npy +tests/data/ljspeech/wavs/LJ042-0051.wav|tests/data/ljspeech/wavs/LJ042-0051.npy +tests/data/ljspeech/wavs/LJ003-0190.wav|tests/data/ljspeech/wavs/LJ003-0190.npy +tests/data/ljspeech/wavs/LJ014-0087.wav|tests/data/ljspeech/wavs/LJ014-0087.npy +tests/data/ljspeech/wavs/LJ021-0049.wav|tests/data/ljspeech/wavs/LJ021-0049.npy +tests/data/ljspeech/wavs/LJ026-0022.wav|tests/data/ljspeech/wavs/LJ026-0022.npy +tests/data/ljspeech/wavs/LJ017-0058.wav|tests/data/ljspeech/wavs/LJ017-0058.npy +tests/data/ljspeech/wavs/LJ036-0170.wav|tests/data/ljspeech/wavs/LJ036-0170.npy +tests/data/ljspeech/wavs/LJ017-0226.wav|tests/data/ljspeech/wavs/LJ017-0226.npy +tests/data/ljspeech/wavs/LJ032-0146.wav|tests/data/ljspeech/wavs/LJ032-0146.npy +tests/data/ljspeech/wavs/LJ016-0429.wav|tests/data/ljspeech/wavs/LJ016-0429.npy +tests/data/ljspeech/wavs/LJ019-0267.wav|tests/data/ljspeech/wavs/LJ019-0267.npy +tests/data/ljspeech/wavs/LJ010-0276.wav|tests/data/ljspeech/wavs/LJ010-0276.npy +tests/data/ljspeech/wavs/LJ007-0170.wav|tests/data/ljspeech/wavs/LJ007-0170.npy +tests/data/ljspeech/wavs/LJ008-0085.wav|tests/data/ljspeech/wavs/LJ008-0085.npy +tests/data/ljspeech/wavs/LJ002-0040.wav|tests/data/ljspeech/wavs/LJ002-0040.npy +tests/data/ljspeech/wavs/LJ026-0109.wav|tests/data/ljspeech/wavs/LJ026-0109.npy +tests/data/ljspeech/wavs/LJ010-0203.wav|tests/data/ljspeech/wavs/LJ010-0203.npy +tests/data/ljspeech/wavs/LJ034-0068.wav|tests/data/ljspeech/wavs/LJ034-0068.npy +tests/data/ljspeech/wavs/LJ030-0244.wav|tests/data/ljspeech/wavs/LJ030-0244.npy +tests/data/ljspeech/wavs/LJ050-0073.wav|tests/data/ljspeech/wavs/LJ050-0073.npy +tests/data/ljspeech/wavs/LJ001-0056.wav|tests/data/ljspeech/wavs/LJ001-0056.npy +tests/data/ljspeech/wavs/LJ028-0086.wav|tests/data/ljspeech/wavs/LJ028-0086.npy +tests/data/ljspeech/wavs/LJ047-0208.wav|tests/data/ljspeech/wavs/LJ047-0208.npy +tests/data/ljspeech/wavs/LJ050-0041.wav|tests/data/ljspeech/wavs/LJ050-0041.npy +tests/data/ljspeech/wavs/LJ037-0208.wav|tests/data/ljspeech/wavs/LJ037-0208.npy +tests/data/ljspeech/wavs/LJ043-0073.wav|tests/data/ljspeech/wavs/LJ043-0073.npy +tests/data/ljspeech/wavs/LJ019-0302.wav|tests/data/ljspeech/wavs/LJ019-0302.npy +tests/data/ljspeech/wavs/LJ049-0209.wav|tests/data/ljspeech/wavs/LJ049-0209.npy +tests/data/ljspeech/wavs/LJ041-0074.wav|tests/data/ljspeech/wavs/LJ041-0074.npy +tests/data/ljspeech/wavs/LJ001-0062.wav|tests/data/ljspeech/wavs/LJ001-0062.npy +tests/data/ljspeech/wavs/LJ044-0091.wav|tests/data/ljspeech/wavs/LJ044-0091.npy +tests/data/ljspeech/wavs/LJ013-0240.wav|tests/data/ljspeech/wavs/LJ013-0240.npy +tests/data/ljspeech/wavs/LJ035-0002.wav|tests/data/ljspeech/wavs/LJ035-0002.npy +tests/data/ljspeech/wavs/LJ009-0141.wav|tests/data/ljspeech/wavs/LJ009-0141.npy +tests/data/ljspeech/wavs/LJ003-0231.wav|tests/data/ljspeech/wavs/LJ003-0231.npy +tests/data/ljspeech/wavs/LJ020-0096.wav|tests/data/ljspeech/wavs/LJ020-0096.npy +tests/data/ljspeech/wavs/LJ003-0080.wav|tests/data/ljspeech/wavs/LJ003-0080.npy +tests/data/ljspeech/wavs/LJ008-0136.wav|tests/data/ljspeech/wavs/LJ008-0136.npy +tests/data/ljspeech/wavs/LJ003-0126.wav|tests/data/ljspeech/wavs/LJ003-0126.npy +tests/data/ljspeech/wavs/LJ039-0040.wav|tests/data/ljspeech/wavs/LJ039-0040.npy +tests/data/ljspeech/wavs/LJ050-0166.wav|tests/data/ljspeech/wavs/LJ050-0166.npy +tests/data/ljspeech/wavs/LJ009-0041.wav|tests/data/ljspeech/wavs/LJ009-0041.npy +tests/data/ljspeech/wavs/LJ049-0206.wav|tests/data/ljspeech/wavs/LJ049-0206.npy +tests/data/ljspeech/wavs/LJ044-0115.wav|tests/data/ljspeech/wavs/LJ044-0115.npy +tests/data/ljspeech/wavs/LJ035-0005.wav|tests/data/ljspeech/wavs/LJ035-0005.npy +tests/data/ljspeech/wavs/LJ009-0221.wav|tests/data/ljspeech/wavs/LJ009-0221.npy +tests/data/ljspeech/wavs/LJ032-0081.wav|tests/data/ljspeech/wavs/LJ032-0081.npy +tests/data/ljspeech/wavs/LJ030-0057.wav|tests/data/ljspeech/wavs/LJ030-0057.npy +tests/data/ljspeech/wavs/LJ008-0071.wav|tests/data/ljspeech/wavs/LJ008-0071.npy +tests/data/ljspeech/wavs/LJ005-0133.wav|tests/data/ljspeech/wavs/LJ005-0133.npy +tests/data/ljspeech/wavs/LJ016-0416.wav|tests/data/ljspeech/wavs/LJ016-0416.npy +tests/data/ljspeech/wavs/LJ021-0041.wav|tests/data/ljspeech/wavs/LJ021-0041.npy +tests/data/ljspeech/wavs/LJ046-0006.wav|tests/data/ljspeech/wavs/LJ046-0006.npy +tests/data/ljspeech/wavs/LJ005-0025.wav|tests/data/ljspeech/wavs/LJ005-0025.npy +tests/data/ljspeech/wavs/LJ030-0171.wav|tests/data/ljspeech/wavs/LJ030-0171.npy +tests/data/ljspeech/wavs/LJ016-0381.wav|tests/data/ljspeech/wavs/LJ016-0381.npy +tests/data/ljspeech/wavs/LJ045-0137.wav|tests/data/ljspeech/wavs/LJ045-0137.npy +tests/data/ljspeech/wavs/LJ034-0067.wav|tests/data/ljspeech/wavs/LJ034-0067.npy +tests/data/ljspeech/wavs/LJ033-0188.wav|tests/data/ljspeech/wavs/LJ033-0188.npy +tests/data/ljspeech/wavs/LJ047-0085.wav|tests/data/ljspeech/wavs/LJ047-0085.npy +tests/data/ljspeech/wavs/LJ038-0043.wav|tests/data/ljspeech/wavs/LJ038-0043.npy +tests/data/ljspeech/wavs/LJ002-0162.wav|tests/data/ljspeech/wavs/LJ002-0162.npy +tests/data/ljspeech/wavs/LJ022-0164.wav|tests/data/ljspeech/wavs/LJ022-0164.npy +tests/data/ljspeech/wavs/LJ040-0109.wav|tests/data/ljspeech/wavs/LJ040-0109.npy +tests/data/ljspeech/wavs/LJ034-0057.wav|tests/data/ljspeech/wavs/LJ034-0057.npy +tests/data/ljspeech/wavs/LJ018-0043.wav|tests/data/ljspeech/wavs/LJ018-0043.npy +tests/data/ljspeech/wavs/LJ002-0274.wav|tests/data/ljspeech/wavs/LJ002-0274.npy +tests/data/ljspeech/wavs/LJ030-0231.wav|tests/data/ljspeech/wavs/LJ030-0231.npy +tests/data/ljspeech/wavs/LJ018-0301.wav|tests/data/ljspeech/wavs/LJ018-0301.npy +tests/data/ljspeech/wavs/LJ013-0113.wav|tests/data/ljspeech/wavs/LJ013-0113.npy +tests/data/ljspeech/wavs/LJ033-0011.wav|tests/data/ljspeech/wavs/LJ033-0011.npy +tests/data/ljspeech/wavs/LJ019-0036.wav|tests/data/ljspeech/wavs/LJ019-0036.npy +tests/data/ljspeech/wavs/LJ009-0095.wav|tests/data/ljspeech/wavs/LJ009-0095.npy +tests/data/ljspeech/wavs/LJ034-0042.wav|tests/data/ljspeech/wavs/LJ034-0042.npy +tests/data/ljspeech/wavs/LJ002-0123.wav|tests/data/ljspeech/wavs/LJ002-0123.npy +tests/data/ljspeech/wavs/LJ044-0082.wav|tests/data/ljspeech/wavs/LJ044-0082.npy +tests/data/ljspeech/wavs/LJ006-0261.wav|tests/data/ljspeech/wavs/LJ006-0261.npy +tests/data/ljspeech/wavs/LJ041-0111.wav|tests/data/ljspeech/wavs/LJ041-0111.npy +tests/data/ljspeech/wavs/LJ011-0236.wav|tests/data/ljspeech/wavs/LJ011-0236.npy +tests/data/ljspeech/wavs/LJ026-0124.wav|tests/data/ljspeech/wavs/LJ026-0124.npy +tests/data/ljspeech/wavs/LJ021-0057.wav|tests/data/ljspeech/wavs/LJ021-0057.npy +tests/data/ljspeech/wavs/LJ010-0121.wav|tests/data/ljspeech/wavs/LJ010-0121.npy +tests/data/ljspeech/wavs/LJ049-0007.wav|tests/data/ljspeech/wavs/LJ049-0007.npy +tests/data/ljspeech/wavs/LJ003-0041.wav|tests/data/ljspeech/wavs/LJ003-0041.npy +tests/data/ljspeech/wavs/LJ043-0018.wav|tests/data/ljspeech/wavs/LJ043-0018.npy +tests/data/ljspeech/wavs/LJ031-0181.wav|tests/data/ljspeech/wavs/LJ031-0181.npy +tests/data/ljspeech/wavs/LJ017-0283.wav|tests/data/ljspeech/wavs/LJ017-0283.npy +tests/data/ljspeech/wavs/LJ030-0056.wav|tests/data/ljspeech/wavs/LJ030-0056.npy +tests/data/ljspeech/wavs/LJ046-0023.wav|tests/data/ljspeech/wavs/LJ046-0023.npy +tests/data/ljspeech/wavs/LJ041-0137.wav|tests/data/ljspeech/wavs/LJ041-0137.npy +tests/data/ljspeech/wavs/LJ032-0031.wav|tests/data/ljspeech/wavs/LJ032-0031.npy +tests/data/ljspeech/wavs/LJ033-0149.wav|tests/data/ljspeech/wavs/LJ033-0149.npy +tests/data/ljspeech/wavs/LJ008-0195.wav|tests/data/ljspeech/wavs/LJ008-0195.npy +tests/data/ljspeech/wavs/LJ032-0210.wav|tests/data/ljspeech/wavs/LJ032-0210.npy +tests/data/ljspeech/wavs/LJ002-0091.wav|tests/data/ljspeech/wavs/LJ002-0091.npy +tests/data/ljspeech/wavs/LJ018-0346.wav|tests/data/ljspeech/wavs/LJ018-0346.npy +tests/data/ljspeech/wavs/LJ050-0046.wav|tests/data/ljspeech/wavs/LJ050-0046.npy +tests/data/ljspeech/wavs/LJ010-0216.wav|tests/data/ljspeech/wavs/LJ010-0216.npy +tests/data/ljspeech/wavs/LJ028-0400.wav|tests/data/ljspeech/wavs/LJ028-0400.npy +tests/data/ljspeech/wavs/LJ030-0182.wav|tests/data/ljspeech/wavs/LJ030-0182.npy +tests/data/ljspeech/wavs/LJ036-0129.wav|tests/data/ljspeech/wavs/LJ036-0129.npy +tests/data/ljspeech/wavs/LJ011-0173.wav|tests/data/ljspeech/wavs/LJ011-0173.npy +tests/data/ljspeech/wavs/LJ041-0099.wav|tests/data/ljspeech/wavs/LJ041-0099.npy +tests/data/ljspeech/wavs/LJ049-0006.wav|tests/data/ljspeech/wavs/LJ049-0006.npy +tests/data/ljspeech/wavs/LJ006-0024.wav|tests/data/ljspeech/wavs/LJ006-0024.npy +tests/data/ljspeech/wavs/LJ019-0078.wav|tests/data/ljspeech/wavs/LJ019-0078.npy +tests/data/ljspeech/wavs/LJ028-0481.wav|tests/data/ljspeech/wavs/LJ028-0481.npy +tests/data/ljspeech/wavs/LJ002-0051.wav|tests/data/ljspeech/wavs/LJ002-0051.npy +tests/data/ljspeech/wavs/LJ016-0125.wav|tests/data/ljspeech/wavs/LJ016-0125.npy +tests/data/ljspeech/wavs/LJ015-0061.wav|tests/data/ljspeech/wavs/LJ015-0061.npy +tests/data/ljspeech/wavs/LJ024-0012.wav|tests/data/ljspeech/wavs/LJ024-0012.npy +tests/data/ljspeech/wavs/LJ036-0008.wav|tests/data/ljspeech/wavs/LJ036-0008.npy +tests/data/ljspeech/wavs/LJ004-0079.wav|tests/data/ljspeech/wavs/LJ004-0079.npy +tests/data/ljspeech/wavs/LJ009-0035.wav|tests/data/ljspeech/wavs/LJ009-0035.npy +tests/data/ljspeech/wavs/LJ018-0094.wav|tests/data/ljspeech/wavs/LJ018-0094.npy +tests/data/ljspeech/wavs/LJ047-0206.wav|tests/data/ljspeech/wavs/LJ047-0206.npy +tests/data/ljspeech/wavs/LJ003-0038.wav|tests/data/ljspeech/wavs/LJ003-0038.npy +tests/data/ljspeech/wavs/LJ016-0337.wav|tests/data/ljspeech/wavs/LJ016-0337.npy +tests/data/ljspeech/wavs/LJ015-0278.wav|tests/data/ljspeech/wavs/LJ015-0278.npy +tests/data/ljspeech/wavs/LJ035-0148.wav|tests/data/ljspeech/wavs/LJ035-0148.npy +tests/data/ljspeech/wavs/LJ015-0254.wav|tests/data/ljspeech/wavs/LJ015-0254.npy +tests/data/ljspeech/wavs/LJ017-0015.wav|tests/data/ljspeech/wavs/LJ017-0015.npy +tests/data/ljspeech/wavs/LJ037-0238.wav|tests/data/ljspeech/wavs/LJ037-0238.npy +tests/data/ljspeech/wavs/LJ046-0159.wav|tests/data/ljspeech/wavs/LJ046-0159.npy +tests/data/ljspeech/wavs/LJ019-0054.wav|tests/data/ljspeech/wavs/LJ019-0054.npy +tests/data/ljspeech/wavs/LJ017-0092.wav|tests/data/ljspeech/wavs/LJ017-0092.npy +tests/data/ljspeech/wavs/LJ026-0150.wav|tests/data/ljspeech/wavs/LJ026-0150.npy +tests/data/ljspeech/wavs/LJ026-0119.wav|tests/data/ljspeech/wavs/LJ026-0119.npy +tests/data/ljspeech/wavs/LJ036-0038.wav|tests/data/ljspeech/wavs/LJ036-0038.npy +tests/data/ljspeech/wavs/LJ006-0074.wav|tests/data/ljspeech/wavs/LJ006-0074.npy +tests/data/ljspeech/wavs/LJ012-0038.wav|tests/data/ljspeech/wavs/LJ012-0038.npy +tests/data/ljspeech/wavs/LJ002-0128.wav|tests/data/ljspeech/wavs/LJ002-0128.npy +tests/data/ljspeech/wavs/LJ017-0104.wav|tests/data/ljspeech/wavs/LJ017-0104.npy +tests/data/ljspeech/wavs/LJ009-0100.wav|tests/data/ljspeech/wavs/LJ009-0100.npy +tests/data/ljspeech/wavs/LJ037-0023.wav|tests/data/ljspeech/wavs/LJ037-0023.npy +tests/data/ljspeech/wavs/LJ044-0101.wav|tests/data/ljspeech/wavs/LJ044-0101.npy +tests/data/ljspeech/wavs/LJ050-0269.wav|tests/data/ljspeech/wavs/LJ050-0269.npy +tests/data/ljspeech/wavs/LJ047-0246.wav|tests/data/ljspeech/wavs/LJ047-0246.npy +tests/data/ljspeech/wavs/LJ017-0175.wav|tests/data/ljspeech/wavs/LJ017-0175.npy +tests/data/ljspeech/wavs/LJ042-0151.wav|tests/data/ljspeech/wavs/LJ042-0151.npy +tests/data/ljspeech/wavs/LJ016-0354.wav|tests/data/ljspeech/wavs/LJ016-0354.npy +tests/data/ljspeech/wavs/LJ017-0022.wav|tests/data/ljspeech/wavs/LJ017-0022.npy +tests/data/ljspeech/wavs/LJ003-0310.wav|tests/data/ljspeech/wavs/LJ003-0310.npy +tests/data/ljspeech/wavs/LJ018-0210.wav|tests/data/ljspeech/wavs/LJ018-0210.npy +tests/data/ljspeech/wavs/LJ015-0300.wav|tests/data/ljspeech/wavs/LJ015-0300.npy +tests/data/ljspeech/wavs/LJ018-0097.wav|tests/data/ljspeech/wavs/LJ018-0097.npy +tests/data/ljspeech/wavs/LJ012-0037.wav|tests/data/ljspeech/wavs/LJ012-0037.npy +tests/data/ljspeech/wavs/LJ008-0208.wav|tests/data/ljspeech/wavs/LJ008-0208.npy +tests/data/ljspeech/wavs/LJ017-0178.wav|tests/data/ljspeech/wavs/LJ017-0178.npy +tests/data/ljspeech/wavs/LJ045-0236.wav|tests/data/ljspeech/wavs/LJ045-0236.npy +tests/data/ljspeech/wavs/LJ032-0038.wav|tests/data/ljspeech/wavs/LJ032-0038.npy +tests/data/ljspeech/wavs/LJ010-0034.wav|tests/data/ljspeech/wavs/LJ010-0034.npy +tests/data/ljspeech/wavs/LJ048-0237.wav|tests/data/ljspeech/wavs/LJ048-0237.npy +tests/data/ljspeech/wavs/LJ016-0205.wav|tests/data/ljspeech/wavs/LJ016-0205.npy +tests/data/ljspeech/wavs/LJ047-0035.wav|tests/data/ljspeech/wavs/LJ047-0035.npy +tests/data/ljspeech/wavs/LJ018-0238.wav|tests/data/ljspeech/wavs/LJ018-0238.npy +tests/data/ljspeech/wavs/LJ016-0001.wav|tests/data/ljspeech/wavs/LJ016-0001.npy +tests/data/ljspeech/wavs/LJ016-0135.wav|tests/data/ljspeech/wavs/LJ016-0135.npy +tests/data/ljspeech/wavs/LJ042-0096.wav|tests/data/ljspeech/wavs/LJ042-0096.npy +tests/data/ljspeech/wavs/LJ013-0146.wav|tests/data/ljspeech/wavs/LJ013-0146.npy +tests/data/ljspeech/wavs/LJ002-0205.wav|tests/data/ljspeech/wavs/LJ002-0205.npy +tests/data/ljspeech/wavs/LJ010-0071.wav|tests/data/ljspeech/wavs/LJ010-0071.npy +tests/data/ljspeech/wavs/LJ006-0194.wav|tests/data/ljspeech/wavs/LJ006-0194.npy +tests/data/ljspeech/wavs/LJ046-0041.wav|tests/data/ljspeech/wavs/LJ046-0041.npy +tests/data/ljspeech/wavs/LJ015-0312.wav|tests/data/ljspeech/wavs/LJ015-0312.npy +tests/data/ljspeech/wavs/LJ006-0156.wav|tests/data/ljspeech/wavs/LJ006-0156.npy +tests/data/ljspeech/wavs/LJ009-0004.wav|tests/data/ljspeech/wavs/LJ009-0004.npy +tests/data/ljspeech/wavs/LJ028-0183.wav|tests/data/ljspeech/wavs/LJ028-0183.npy +tests/data/ljspeech/wavs/LJ010-0295.wav|tests/data/ljspeech/wavs/LJ010-0295.npy +tests/data/ljspeech/wavs/LJ037-0100.wav|tests/data/ljspeech/wavs/LJ037-0100.npy +tests/data/ljspeech/wavs/LJ019-0008.wav|tests/data/ljspeech/wavs/LJ019-0008.npy +tests/data/ljspeech/wavs/LJ011-0174.wav|tests/data/ljspeech/wavs/LJ011-0174.npy +tests/data/ljspeech/wavs/LJ006-0266.wav|tests/data/ljspeech/wavs/LJ006-0266.npy +tests/data/ljspeech/wavs/LJ015-0313.wav|tests/data/ljspeech/wavs/LJ015-0313.npy +tests/data/ljspeech/wavs/LJ026-0110.wav|tests/data/ljspeech/wavs/LJ026-0110.npy +tests/data/ljspeech/wavs/LJ008-0252.wav|tests/data/ljspeech/wavs/LJ008-0252.npy +tests/data/ljspeech/wavs/LJ037-0093.wav|tests/data/ljspeech/wavs/LJ037-0093.npy +tests/data/ljspeech/wavs/LJ016-0122.wav|tests/data/ljspeech/wavs/LJ016-0122.npy +tests/data/ljspeech/wavs/LJ037-0181.wav|tests/data/ljspeech/wavs/LJ037-0181.npy +tests/data/ljspeech/wavs/LJ017-0228.wav|tests/data/ljspeech/wavs/LJ017-0228.npy +tests/data/ljspeech/wavs/LJ030-0017.wav|tests/data/ljspeech/wavs/LJ030-0017.npy +tests/data/ljspeech/wavs/LJ016-0030.wav|tests/data/ljspeech/wavs/LJ016-0030.npy +tests/data/ljspeech/wavs/LJ027-0161.wav|tests/data/ljspeech/wavs/LJ027-0161.npy +tests/data/ljspeech/wavs/LJ011-0246.wav|tests/data/ljspeech/wavs/LJ011-0246.npy +tests/data/ljspeech/wavs/LJ044-0083.wav|tests/data/ljspeech/wavs/LJ044-0083.npy +tests/data/ljspeech/wavs/LJ050-0240.wav|tests/data/ljspeech/wavs/LJ050-0240.npy +tests/data/ljspeech/wavs/LJ032-0116.wav|tests/data/ljspeech/wavs/LJ032-0116.npy +tests/data/ljspeech/wavs/LJ014-0209.wav|tests/data/ljspeech/wavs/LJ014-0209.npy +tests/data/ljspeech/wavs/LJ030-0025.wav|tests/data/ljspeech/wavs/LJ030-0025.npy +tests/data/ljspeech/wavs/LJ012-0149.wav|tests/data/ljspeech/wavs/LJ012-0149.npy +tests/data/ljspeech/wavs/LJ011-0242.wav|tests/data/ljspeech/wavs/LJ011-0242.npy +tests/data/ljspeech/wavs/LJ028-0051.wav|tests/data/ljspeech/wavs/LJ028-0051.npy +tests/data/ljspeech/wavs/LJ024-0106.wav|tests/data/ljspeech/wavs/LJ024-0106.npy +tests/data/ljspeech/wavs/LJ014-0172.wav|tests/data/ljspeech/wavs/LJ014-0172.npy +tests/data/ljspeech/wavs/LJ023-0092.wav|tests/data/ljspeech/wavs/LJ023-0092.npy +tests/data/ljspeech/wavs/LJ015-0083.wav|tests/data/ljspeech/wavs/LJ015-0083.npy +tests/data/ljspeech/wavs/LJ030-0253.wav|tests/data/ljspeech/wavs/LJ030-0253.npy +tests/data/ljspeech/wavs/LJ014-0236.wav|tests/data/ljspeech/wavs/LJ014-0236.npy +tests/data/ljspeech/wavs/LJ016-0245.wav|tests/data/ljspeech/wavs/LJ016-0245.npy +tests/data/ljspeech/wavs/LJ009-0222.wav|tests/data/ljspeech/wavs/LJ009-0222.npy +tests/data/ljspeech/wavs/LJ015-0024.wav|tests/data/ljspeech/wavs/LJ015-0024.npy +tests/data/ljspeech/wavs/LJ002-0075.wav|tests/data/ljspeech/wavs/LJ002-0075.npy +tests/data/ljspeech/wavs/LJ046-0224.wav|tests/data/ljspeech/wavs/LJ046-0224.npy +tests/data/ljspeech/wavs/LJ032-0030.wav|tests/data/ljspeech/wavs/LJ032-0030.npy +tests/data/ljspeech/wavs/LJ015-0075.wav|tests/data/ljspeech/wavs/LJ015-0075.npy +tests/data/ljspeech/wavs/LJ014-0221.wav|tests/data/ljspeech/wavs/LJ014-0221.npy +tests/data/ljspeech/wavs/LJ035-0036.wav|tests/data/ljspeech/wavs/LJ035-0036.npy +tests/data/ljspeech/wavs/LJ015-0256.wav|tests/data/ljspeech/wavs/LJ015-0256.npy +tests/data/ljspeech/wavs/LJ044-0081.wav|tests/data/ljspeech/wavs/LJ044-0081.npy +tests/data/ljspeech/wavs/LJ045-0011.wav|tests/data/ljspeech/wavs/LJ045-0011.npy +tests/data/ljspeech/wavs/LJ048-0128.wav|tests/data/ljspeech/wavs/LJ048-0128.npy +tests/data/ljspeech/wavs/LJ009-0198.wav|tests/data/ljspeech/wavs/LJ009-0198.npy +tests/data/ljspeech/wavs/LJ038-0147.wav|tests/data/ljspeech/wavs/LJ038-0147.npy +tests/data/ljspeech/wavs/LJ018-0249.wav|tests/data/ljspeech/wavs/LJ018-0249.npy +tests/data/ljspeech/wavs/LJ033-0072.wav|tests/data/ljspeech/wavs/LJ033-0072.npy +tests/data/ljspeech/wavs/LJ006-0304.wav|tests/data/ljspeech/wavs/LJ006-0304.npy +tests/data/ljspeech/wavs/LJ050-0056.wav|tests/data/ljspeech/wavs/LJ050-0056.npy +tests/data/ljspeech/wavs/LJ002-0022.wav|tests/data/ljspeech/wavs/LJ002-0022.npy +tests/data/ljspeech/wavs/LJ032-0028.wav|tests/data/ljspeech/wavs/LJ032-0028.npy +tests/data/ljspeech/wavs/LJ041-0081.wav|tests/data/ljspeech/wavs/LJ041-0081.npy +tests/data/ljspeech/wavs/LJ039-0071.wav|tests/data/ljspeech/wavs/LJ039-0071.npy +tests/data/ljspeech/wavs/LJ009-0189.wav|tests/data/ljspeech/wavs/LJ009-0189.npy +tests/data/ljspeech/wavs/LJ039-0050.wav|tests/data/ljspeech/wavs/LJ039-0050.npy +tests/data/ljspeech/wavs/LJ005-0072.wav|tests/data/ljspeech/wavs/LJ005-0072.npy +tests/data/ljspeech/wavs/LJ029-0143.wav|tests/data/ljspeech/wavs/LJ029-0143.npy +tests/data/ljspeech/wavs/LJ019-0173.wav|tests/data/ljspeech/wavs/LJ019-0173.npy +tests/data/ljspeech/wavs/LJ006-0262.wav|tests/data/ljspeech/wavs/LJ006-0262.npy +tests/data/ljspeech/wavs/LJ030-0207.wav|tests/data/ljspeech/wavs/LJ030-0207.npy +tests/data/ljspeech/wavs/LJ042-0093.wav|tests/data/ljspeech/wavs/LJ042-0093.npy +tests/data/ljspeech/wavs/LJ019-0182.wav|tests/data/ljspeech/wavs/LJ019-0182.npy +tests/data/ljspeech/wavs/LJ005-0196.wav|tests/data/ljspeech/wavs/LJ005-0196.npy +tests/data/ljspeech/wavs/LJ014-0225.wav|tests/data/ljspeech/wavs/LJ014-0225.npy +tests/data/ljspeech/wavs/LJ049-0112.wav|tests/data/ljspeech/wavs/LJ049-0112.npy +tests/data/ljspeech/wavs/LJ042-0215.wav|tests/data/ljspeech/wavs/LJ042-0215.npy +tests/data/ljspeech/wavs/LJ038-0185.wav|tests/data/ljspeech/wavs/LJ038-0185.npy +tests/data/ljspeech/wavs/LJ042-0229.wav|tests/data/ljspeech/wavs/LJ042-0229.npy +tests/data/ljspeech/wavs/LJ015-0128.wav|tests/data/ljspeech/wavs/LJ015-0128.npy +tests/data/ljspeech/wavs/LJ026-0042.wav|tests/data/ljspeech/wavs/LJ026-0042.npy +tests/data/ljspeech/wavs/LJ014-0310.wav|tests/data/ljspeech/wavs/LJ014-0310.npy +tests/data/ljspeech/wavs/LJ009-0200.wav|tests/data/ljspeech/wavs/LJ009-0200.npy +tests/data/ljspeech/wavs/LJ025-0021.wav|tests/data/ljspeech/wavs/LJ025-0021.npy +tests/data/ljspeech/wavs/LJ028-0456.wav|tests/data/ljspeech/wavs/LJ028-0456.npy +tests/data/ljspeech/wavs/LJ028-0117.wav|tests/data/ljspeech/wavs/LJ028-0117.npy +tests/data/ljspeech/wavs/LJ028-0163.wav|tests/data/ljspeech/wavs/LJ028-0163.npy +tests/data/ljspeech/wavs/LJ004-0213.wav|tests/data/ljspeech/wavs/LJ004-0213.npy +tests/data/ljspeech/wavs/LJ012-0126.wav|tests/data/ljspeech/wavs/LJ012-0126.npy +tests/data/ljspeech/wavs/LJ024-0095.wav|tests/data/ljspeech/wavs/LJ024-0095.npy +tests/data/ljspeech/wavs/LJ015-0048.wav|tests/data/ljspeech/wavs/LJ015-0048.npy +tests/data/ljspeech/wavs/LJ010-0153.wav|tests/data/ljspeech/wavs/LJ010-0153.npy +tests/data/ljspeech/wavs/LJ001-0031.wav|tests/data/ljspeech/wavs/LJ001-0031.npy +tests/data/ljspeech/wavs/LJ005-0191.wav|tests/data/ljspeech/wavs/LJ005-0191.npy +tests/data/ljspeech/wavs/LJ038-0042.wav|tests/data/ljspeech/wavs/LJ038-0042.npy +tests/data/ljspeech/wavs/LJ041-0176.wav|tests/data/ljspeech/wavs/LJ041-0176.npy +tests/data/ljspeech/wavs/LJ007-0164.wav|tests/data/ljspeech/wavs/LJ007-0164.npy +tests/data/ljspeech/wavs/LJ027-0030.wav|tests/data/ljspeech/wavs/LJ027-0030.npy +tests/data/ljspeech/wavs/LJ027-0164.wav|tests/data/ljspeech/wavs/LJ027-0164.npy +tests/data/ljspeech/wavs/LJ016-0346.wav|tests/data/ljspeech/wavs/LJ016-0346.npy +tests/data/ljspeech/wavs/LJ021-0157.wav|tests/data/ljspeech/wavs/LJ021-0157.npy +tests/data/ljspeech/wavs/LJ007-0159.wav|tests/data/ljspeech/wavs/LJ007-0159.npy +tests/data/ljspeech/wavs/LJ019-0296.wav|tests/data/ljspeech/wavs/LJ019-0296.npy +tests/data/ljspeech/wavs/LJ019-0220.wav|tests/data/ljspeech/wavs/LJ019-0220.npy +tests/data/ljspeech/wavs/LJ002-0324.wav|tests/data/ljspeech/wavs/LJ002-0324.npy +tests/data/ljspeech/wavs/LJ026-0156.wav|tests/data/ljspeech/wavs/LJ026-0156.npy +tests/data/ljspeech/wavs/LJ050-0130.wav|tests/data/ljspeech/wavs/LJ050-0130.npy +tests/data/ljspeech/wavs/LJ037-0047.wav|tests/data/ljspeech/wavs/LJ037-0047.npy +tests/data/ljspeech/wavs/LJ031-0138.wav|tests/data/ljspeech/wavs/LJ031-0138.npy +tests/data/ljspeech/wavs/LJ019-0252.wav|tests/data/ljspeech/wavs/LJ019-0252.npy +tests/data/ljspeech/wavs/LJ050-0117.wav|tests/data/ljspeech/wavs/LJ050-0117.npy +tests/data/ljspeech/wavs/LJ028-0172.wav|tests/data/ljspeech/wavs/LJ028-0172.npy +tests/data/ljspeech/wavs/LJ033-0211.wav|tests/data/ljspeech/wavs/LJ033-0211.npy +tests/data/ljspeech/wavs/LJ013-0200.wav|tests/data/ljspeech/wavs/LJ013-0200.npy +tests/data/ljspeech/wavs/LJ010-0092.wav|tests/data/ljspeech/wavs/LJ010-0092.npy +tests/data/ljspeech/wavs/LJ010-0105.wav|tests/data/ljspeech/wavs/LJ010-0105.npy +tests/data/ljspeech/wavs/LJ014-0223.wav|tests/data/ljspeech/wavs/LJ014-0223.npy +tests/data/ljspeech/wavs/LJ015-0016.wav|tests/data/ljspeech/wavs/LJ015-0016.npy +tests/data/ljspeech/wavs/LJ034-0130.wav|tests/data/ljspeech/wavs/LJ034-0130.npy +tests/data/ljspeech/wavs/LJ012-0176.wav|tests/data/ljspeech/wavs/LJ012-0176.npy +tests/data/ljspeech/wavs/LJ006-0059.wav|tests/data/ljspeech/wavs/LJ006-0059.npy +tests/data/ljspeech/wavs/LJ035-0142.wav|tests/data/ljspeech/wavs/LJ035-0142.npy +tests/data/ljspeech/wavs/LJ014-0264.wav|tests/data/ljspeech/wavs/LJ014-0264.npy +tests/data/ljspeech/wavs/LJ043-0036.wav|tests/data/ljspeech/wavs/LJ043-0036.npy +tests/data/ljspeech/wavs/LJ044-0120.wav|tests/data/ljspeech/wavs/LJ044-0120.npy +tests/data/ljspeech/wavs/LJ014-0301.wav|tests/data/ljspeech/wavs/LJ014-0301.npy +tests/data/ljspeech/wavs/LJ021-0001.wav|tests/data/ljspeech/wavs/LJ021-0001.npy +tests/data/ljspeech/wavs/LJ023-0001.wav|tests/data/ljspeech/wavs/LJ023-0001.npy +tests/data/ljspeech/wavs/LJ022-0145.wav|tests/data/ljspeech/wavs/LJ022-0145.npy +tests/data/ljspeech/wavs/LJ023-0115.wav|tests/data/ljspeech/wavs/LJ023-0115.npy +tests/data/ljspeech/wavs/LJ025-0048.wav|tests/data/ljspeech/wavs/LJ025-0048.npy +tests/data/ljspeech/wavs/LJ023-0042.wav|tests/data/ljspeech/wavs/LJ023-0042.npy +tests/data/ljspeech/wavs/LJ049-0046.wav|tests/data/ljspeech/wavs/LJ049-0046.npy +tests/data/ljspeech/wavs/LJ050-0112.wav|tests/data/ljspeech/wavs/LJ050-0112.npy +tests/data/ljspeech/wavs/LJ036-0016.wav|tests/data/ljspeech/wavs/LJ036-0016.npy +tests/data/ljspeech/wavs/LJ033-0209.wav|tests/data/ljspeech/wavs/LJ033-0209.npy +tests/data/ljspeech/wavs/LJ010-0155.wav|tests/data/ljspeech/wavs/LJ010-0155.npy +tests/data/ljspeech/wavs/LJ007-0218.wav|tests/data/ljspeech/wavs/LJ007-0218.npy +tests/data/ljspeech/wavs/LJ035-0197.wav|tests/data/ljspeech/wavs/LJ035-0197.npy +tests/data/ljspeech/wavs/LJ011-0175.wav|tests/data/ljspeech/wavs/LJ011-0175.npy +tests/data/ljspeech/wavs/LJ038-0123.wav|tests/data/ljspeech/wavs/LJ038-0123.npy +tests/data/ljspeech/wavs/LJ040-0079.wav|tests/data/ljspeech/wavs/LJ040-0079.npy +tests/data/ljspeech/wavs/LJ014-0322.wav|tests/data/ljspeech/wavs/LJ014-0322.npy +tests/data/ljspeech/wavs/LJ035-0027.wav|tests/data/ljspeech/wavs/LJ035-0027.npy +tests/data/ljspeech/wavs/LJ013-0132.wav|tests/data/ljspeech/wavs/LJ013-0132.npy +tests/data/ljspeech/wavs/LJ035-0181.wav|tests/data/ljspeech/wavs/LJ035-0181.npy +tests/data/ljspeech/wavs/LJ010-0221.wav|tests/data/ljspeech/wavs/LJ010-0221.npy +tests/data/ljspeech/wavs/LJ050-0133.wav|tests/data/ljspeech/wavs/LJ050-0133.npy +tests/data/ljspeech/wavs/LJ012-0105.wav|tests/data/ljspeech/wavs/LJ012-0105.npy +tests/data/ljspeech/wavs/LJ028-0204.wav|tests/data/ljspeech/wavs/LJ028-0204.npy +tests/data/ljspeech/wavs/LJ003-0147.wav|tests/data/ljspeech/wavs/LJ003-0147.npy +tests/data/ljspeech/wavs/LJ031-0081.wav|tests/data/ljspeech/wavs/LJ031-0081.npy +tests/data/ljspeech/wavs/LJ008-0147.wav|tests/data/ljspeech/wavs/LJ008-0147.npy +tests/data/ljspeech/wavs/LJ011-0273.wav|tests/data/ljspeech/wavs/LJ011-0273.npy +tests/data/ljspeech/wavs/LJ015-0163.wav|tests/data/ljspeech/wavs/LJ015-0163.npy +tests/data/ljspeech/wavs/LJ042-0073.wav|tests/data/ljspeech/wavs/LJ042-0073.npy +tests/data/ljspeech/wavs/LJ026-0145.wav|tests/data/ljspeech/wavs/LJ026-0145.npy +tests/data/ljspeech/wavs/LJ040-0030.wav|tests/data/ljspeech/wavs/LJ040-0030.npy +tests/data/ljspeech/wavs/LJ023-0043.wav|tests/data/ljspeech/wavs/LJ023-0043.npy +tests/data/ljspeech/wavs/LJ022-0069.wav|tests/data/ljspeech/wavs/LJ022-0069.npy +tests/data/ljspeech/wavs/LJ025-0040.wav|tests/data/ljspeech/wavs/LJ025-0040.npy +tests/data/ljspeech/wavs/LJ035-0050.wav|tests/data/ljspeech/wavs/LJ035-0050.npy +tests/data/ljspeech/wavs/LJ039-0161.wav|tests/data/ljspeech/wavs/LJ039-0161.npy +tests/data/ljspeech/wavs/LJ047-0119.wav|tests/data/ljspeech/wavs/LJ047-0119.npy +tests/data/ljspeech/wavs/LJ042-0167.wav|tests/data/ljspeech/wavs/LJ042-0167.npy +tests/data/ljspeech/wavs/LJ013-0089.wav|tests/data/ljspeech/wavs/LJ013-0089.npy +tests/data/ljspeech/wavs/LJ005-0151.wav|tests/data/ljspeech/wavs/LJ005-0151.npy +tests/data/ljspeech/wavs/LJ023-0056.wav|tests/data/ljspeech/wavs/LJ023-0056.npy +tests/data/ljspeech/wavs/LJ035-0095.wav|tests/data/ljspeech/wavs/LJ035-0095.npy +tests/data/ljspeech/wavs/LJ015-0144.wav|tests/data/ljspeech/wavs/LJ015-0144.npy +tests/data/ljspeech/wavs/LJ049-0157.wav|tests/data/ljspeech/wavs/LJ049-0157.npy +tests/data/ljspeech/wavs/LJ019-0032.wav|tests/data/ljspeech/wavs/LJ019-0032.npy +tests/data/ljspeech/wavs/LJ025-0141.wav|tests/data/ljspeech/wavs/LJ025-0141.npy +tests/data/ljspeech/wavs/LJ047-0033.wav|tests/data/ljspeech/wavs/LJ047-0033.npy +tests/data/ljspeech/wavs/LJ016-0236.wav|tests/data/ljspeech/wavs/LJ016-0236.npy +tests/data/ljspeech/wavs/LJ050-0080.wav|tests/data/ljspeech/wavs/LJ050-0080.npy +tests/data/ljspeech/wavs/LJ015-0169.wav|tests/data/ljspeech/wavs/LJ015-0169.npy +tests/data/ljspeech/wavs/LJ016-0219.wav|tests/data/ljspeech/wavs/LJ016-0219.npy +tests/data/ljspeech/wavs/LJ028-0429.wav|tests/data/ljspeech/wavs/LJ028-0429.npy +tests/data/ljspeech/wavs/LJ048-0203.wav|tests/data/ljspeech/wavs/LJ048-0203.npy +tests/data/ljspeech/wavs/LJ024-0124.wav|tests/data/ljspeech/wavs/LJ024-0124.npy +tests/data/ljspeech/wavs/LJ016-0166.wav|tests/data/ljspeech/wavs/LJ016-0166.npy +tests/data/ljspeech/wavs/LJ019-0175.wav|tests/data/ljspeech/wavs/LJ019-0175.npy +tests/data/ljspeech/wavs/LJ009-0146.wav|tests/data/ljspeech/wavs/LJ009-0146.npy +tests/data/ljspeech/wavs/LJ008-0007.wav|tests/data/ljspeech/wavs/LJ008-0007.npy +tests/data/ljspeech/wavs/LJ017-0020.wav|tests/data/ljspeech/wavs/LJ017-0020.npy +tests/data/ljspeech/wavs/LJ028-0241.wav|tests/data/ljspeech/wavs/LJ028-0241.npy +tests/data/ljspeech/wavs/LJ037-0204.wav|tests/data/ljspeech/wavs/LJ037-0204.npy +tests/data/ljspeech/wavs/LJ018-0315.wav|tests/data/ljspeech/wavs/LJ018-0315.npy +tests/data/ljspeech/wavs/LJ038-0305.wav|tests/data/ljspeech/wavs/LJ038-0305.npy +tests/data/ljspeech/wavs/LJ036-0098.wav|tests/data/ljspeech/wavs/LJ036-0098.npy +tests/data/ljspeech/wavs/LJ022-0001.wav|tests/data/ljspeech/wavs/LJ022-0001.npy +tests/data/ljspeech/wavs/LJ017-0083.wav|tests/data/ljspeech/wavs/LJ017-0083.npy +tests/data/ljspeech/wavs/LJ016-0254.wav|tests/data/ljspeech/wavs/LJ016-0254.npy +tests/data/ljspeech/wavs/LJ006-0213.wav|tests/data/ljspeech/wavs/LJ006-0213.npy +tests/data/ljspeech/wavs/LJ025-0086.wav|tests/data/ljspeech/wavs/LJ025-0086.npy +tests/data/ljspeech/wavs/LJ031-0087.wav|tests/data/ljspeech/wavs/LJ031-0087.npy +tests/data/ljspeech/wavs/LJ044-0178.wav|tests/data/ljspeech/wavs/LJ044-0178.npy +tests/data/ljspeech/wavs/LJ043-0083.wav|tests/data/ljspeech/wavs/LJ043-0083.npy +tests/data/ljspeech/wavs/LJ048-0024.wav|tests/data/ljspeech/wavs/LJ048-0024.npy +tests/data/ljspeech/wavs/LJ043-0148.wav|tests/data/ljspeech/wavs/LJ043-0148.npy +tests/data/ljspeech/wavs/LJ019-0161.wav|tests/data/ljspeech/wavs/LJ019-0161.npy +tests/data/ljspeech/wavs/LJ029-0131.wav|tests/data/ljspeech/wavs/LJ029-0131.npy +tests/data/ljspeech/wavs/LJ045-0152.wav|tests/data/ljspeech/wavs/LJ045-0152.npy +tests/data/ljspeech/wavs/LJ028-0007.wav|tests/data/ljspeech/wavs/LJ028-0007.npy +tests/data/ljspeech/wavs/LJ018-0006.wav|tests/data/ljspeech/wavs/LJ018-0006.npy +tests/data/ljspeech/wavs/LJ008-0065.wav|tests/data/ljspeech/wavs/LJ008-0065.npy +tests/data/ljspeech/wavs/LJ018-0136.wav|tests/data/ljspeech/wavs/LJ018-0136.npy +tests/data/ljspeech/wavs/LJ033-0133.wav|tests/data/ljspeech/wavs/LJ033-0133.npy +tests/data/ljspeech/wavs/LJ037-0117.wav|tests/data/ljspeech/wavs/LJ037-0117.npy +tests/data/ljspeech/wavs/LJ040-0214.wav|tests/data/ljspeech/wavs/LJ040-0214.npy +tests/data/ljspeech/wavs/LJ022-0067.wav|tests/data/ljspeech/wavs/LJ022-0067.npy +tests/data/ljspeech/wavs/LJ023-0124.wav|tests/data/ljspeech/wavs/LJ023-0124.npy +tests/data/ljspeech/wavs/LJ011-0196.wav|tests/data/ljspeech/wavs/LJ011-0196.npy +tests/data/ljspeech/wavs/LJ017-0136.wav|tests/data/ljspeech/wavs/LJ017-0136.npy +tests/data/ljspeech/wavs/LJ022-0010.wav|tests/data/ljspeech/wavs/LJ022-0010.npy +tests/data/ljspeech/wavs/LJ004-0210.wav|tests/data/ljspeech/wavs/LJ004-0210.npy +tests/data/ljspeech/wavs/LJ021-0027.wav|tests/data/ljspeech/wavs/LJ021-0027.npy +tests/data/ljspeech/wavs/LJ035-0166.wav|tests/data/ljspeech/wavs/LJ035-0166.npy +tests/data/ljspeech/wavs/LJ032-0089.wav|tests/data/ljspeech/wavs/LJ032-0089.npy +tests/data/ljspeech/wavs/LJ031-0023.wav|tests/data/ljspeech/wavs/LJ031-0023.npy +tests/data/ljspeech/wavs/LJ019-0307.wav|tests/data/ljspeech/wavs/LJ019-0307.npy +tests/data/ljspeech/wavs/LJ032-0086.wav|tests/data/ljspeech/wavs/LJ032-0086.npy +tests/data/ljspeech/wavs/LJ036-0160.wav|tests/data/ljspeech/wavs/LJ036-0160.npy +tests/data/ljspeech/wavs/LJ032-0087.wav|tests/data/ljspeech/wavs/LJ032-0087.npy +tests/data/ljspeech/wavs/LJ030-0063.wav|tests/data/ljspeech/wavs/LJ030-0063.npy +tests/data/ljspeech/wavs/LJ028-0273.wav|tests/data/ljspeech/wavs/LJ028-0273.npy +tests/data/ljspeech/wavs/LJ022-0061.wav|tests/data/ljspeech/wavs/LJ022-0061.npy +tests/data/ljspeech/wavs/LJ036-0075.wav|tests/data/ljspeech/wavs/LJ036-0075.npy +tests/data/ljspeech/wavs/LJ028-0034.wav|tests/data/ljspeech/wavs/LJ028-0034.npy +tests/data/ljspeech/wavs/LJ042-0082.wav|tests/data/ljspeech/wavs/LJ042-0082.npy +tests/data/ljspeech/wavs/LJ018-0295.wav|tests/data/ljspeech/wavs/LJ018-0295.npy +tests/data/ljspeech/wavs/LJ028-0371.wav|tests/data/ljspeech/wavs/LJ028-0371.npy +tests/data/ljspeech/wavs/LJ004-0176.wav|tests/data/ljspeech/wavs/LJ004-0176.npy +tests/data/ljspeech/wavs/LJ048-0282.wav|tests/data/ljspeech/wavs/LJ048-0282.npy +tests/data/ljspeech/wavs/LJ014-0262.wav|tests/data/ljspeech/wavs/LJ014-0262.npy +tests/data/ljspeech/wavs/LJ031-0083.wav|tests/data/ljspeech/wavs/LJ031-0083.npy +tests/data/ljspeech/wavs/LJ050-0014.wav|tests/data/ljspeech/wavs/LJ050-0014.npy +tests/data/ljspeech/wavs/LJ035-0112.wav|tests/data/ljspeech/wavs/LJ035-0112.npy +tests/data/ljspeech/wavs/LJ020-0014.wav|tests/data/ljspeech/wavs/LJ020-0014.npy +tests/data/ljspeech/wavs/LJ019-0330.wav|tests/data/ljspeech/wavs/LJ019-0330.npy +tests/data/ljspeech/wavs/LJ011-0179.wav|tests/data/ljspeech/wavs/LJ011-0179.npy +tests/data/ljspeech/wavs/LJ028-0468.wav|tests/data/ljspeech/wavs/LJ028-0468.npy +tests/data/ljspeech/wavs/LJ050-0007.wav|tests/data/ljspeech/wavs/LJ050-0007.npy +tests/data/ljspeech/wavs/LJ005-0183.wav|tests/data/ljspeech/wavs/LJ005-0183.npy +tests/data/ljspeech/wavs/LJ020-0051.wav|tests/data/ljspeech/wavs/LJ020-0051.npy +tests/data/ljspeech/wavs/LJ025-0116.wav|tests/data/ljspeech/wavs/LJ025-0116.npy +tests/data/ljspeech/wavs/LJ010-0163.wav|tests/data/ljspeech/wavs/LJ010-0163.npy +tests/data/ljspeech/wavs/LJ010-0309.wav|tests/data/ljspeech/wavs/LJ010-0309.npy +tests/data/ljspeech/wavs/LJ016-0201.wav|tests/data/ljspeech/wavs/LJ016-0201.npy +tests/data/ljspeech/wavs/LJ030-0181.wav|tests/data/ljspeech/wavs/LJ030-0181.npy +tests/data/ljspeech/wavs/LJ031-0009.wav|tests/data/ljspeech/wavs/LJ031-0009.npy +tests/data/ljspeech/wavs/LJ046-0183.wav|tests/data/ljspeech/wavs/LJ046-0183.npy +tests/data/ljspeech/wavs/LJ010-0047.wav|tests/data/ljspeech/wavs/LJ010-0047.npy +tests/data/ljspeech/wavs/LJ027-0071.wav|tests/data/ljspeech/wavs/LJ027-0071.npy +tests/data/ljspeech/wavs/LJ018-0051.wav|tests/data/ljspeech/wavs/LJ018-0051.npy +tests/data/ljspeech/wavs/LJ036-0050.wav|tests/data/ljspeech/wavs/LJ036-0050.npy +tests/data/ljspeech/wavs/LJ040-0207.wav|tests/data/ljspeech/wavs/LJ040-0207.npy +tests/data/ljspeech/wavs/LJ019-0006.wav|tests/data/ljspeech/wavs/LJ019-0006.npy +tests/data/ljspeech/wavs/LJ014-0176.wav|tests/data/ljspeech/wavs/LJ014-0176.npy +tests/data/ljspeech/wavs/LJ047-0235.wav|tests/data/ljspeech/wavs/LJ047-0235.npy +tests/data/ljspeech/wavs/LJ006-0187.wav|tests/data/ljspeech/wavs/LJ006-0187.npy +tests/data/ljspeech/wavs/LJ035-0009.wav|tests/data/ljspeech/wavs/LJ035-0009.npy +tests/data/ljspeech/wavs/LJ036-0213.wav|tests/data/ljspeech/wavs/LJ036-0213.npy +tests/data/ljspeech/wavs/LJ043-0114.wav|tests/data/ljspeech/wavs/LJ043-0114.npy +tests/data/ljspeech/wavs/LJ008-0080.wav|tests/data/ljspeech/wavs/LJ008-0080.npy +tests/data/ljspeech/wavs/LJ016-0383.wav|tests/data/ljspeech/wavs/LJ016-0383.npy +tests/data/ljspeech/wavs/LJ017-0214.wav|tests/data/ljspeech/wavs/LJ017-0214.npy +tests/data/ljspeech/wavs/LJ028-0317.wav|tests/data/ljspeech/wavs/LJ028-0317.npy +tests/data/ljspeech/wavs/LJ028-0297.wav|tests/data/ljspeech/wavs/LJ028-0297.npy +tests/data/ljspeech/wavs/LJ014-0107.wav|tests/data/ljspeech/wavs/LJ014-0107.npy +tests/data/ljspeech/wavs/LJ032-0010.wav|tests/data/ljspeech/wavs/LJ032-0010.npy +tests/data/ljspeech/wavs/LJ022-0125.wav|tests/data/ljspeech/wavs/LJ022-0125.npy +tests/data/ljspeech/wavs/LJ006-0078.wav|tests/data/ljspeech/wavs/LJ006-0078.npy +tests/data/ljspeech/wavs/LJ003-0216.wav|tests/data/ljspeech/wavs/LJ003-0216.npy +tests/data/ljspeech/wavs/LJ007-0127.wav|tests/data/ljspeech/wavs/LJ007-0127.npy +tests/data/ljspeech/wavs/LJ030-0224.wav|tests/data/ljspeech/wavs/LJ030-0224.npy +tests/data/ljspeech/wavs/LJ028-0142.wav|tests/data/ljspeech/wavs/LJ028-0142.npy +tests/data/ljspeech/wavs/LJ033-0048.wav|tests/data/ljspeech/wavs/LJ033-0048.npy +tests/data/ljspeech/wavs/LJ003-0345.wav|tests/data/ljspeech/wavs/LJ003-0345.npy +tests/data/ljspeech/wavs/LJ019-0100.wav|tests/data/ljspeech/wavs/LJ019-0100.npy +tests/data/ljspeech/wavs/LJ016-0400.wav|tests/data/ljspeech/wavs/LJ016-0400.npy +tests/data/ljspeech/wavs/LJ028-0004.wav|tests/data/ljspeech/wavs/LJ028-0004.npy +tests/data/ljspeech/wavs/LJ044-0175.wav|tests/data/ljspeech/wavs/LJ044-0175.npy +tests/data/ljspeech/wavs/LJ046-0021.wav|tests/data/ljspeech/wavs/LJ046-0021.npy +tests/data/ljspeech/wavs/LJ037-0185.wav|tests/data/ljspeech/wavs/LJ037-0185.npy +tests/data/ljspeech/wavs/LJ034-0055.wav|tests/data/ljspeech/wavs/LJ034-0055.npy +tests/data/ljspeech/wavs/LJ044-0073.wav|tests/data/ljspeech/wavs/LJ044-0073.npy +tests/data/ljspeech/wavs/LJ027-0075.wav|tests/data/ljspeech/wavs/LJ027-0075.npy +tests/data/ljspeech/wavs/LJ019-0071.wav|tests/data/ljspeech/wavs/LJ019-0071.npy +tests/data/ljspeech/wavs/LJ025-0173.wav|tests/data/ljspeech/wavs/LJ025-0173.npy +tests/data/ljspeech/wavs/LJ035-0156.wav|tests/data/ljspeech/wavs/LJ035-0156.npy +tests/data/ljspeech/wavs/LJ019-0115.wav|tests/data/ljspeech/wavs/LJ019-0115.npy +tests/data/ljspeech/wavs/LJ032-0237.wav|tests/data/ljspeech/wavs/LJ032-0237.npy +tests/data/ljspeech/wavs/LJ021-0084.wav|tests/data/ljspeech/wavs/LJ021-0084.npy +tests/data/ljspeech/wavs/LJ032-0020.wav|tests/data/ljspeech/wavs/LJ032-0020.npy +tests/data/ljspeech/wavs/LJ043-0129.wav|tests/data/ljspeech/wavs/LJ043-0129.npy +tests/data/ljspeech/wavs/LJ010-0014.wav|tests/data/ljspeech/wavs/LJ010-0014.npy +tests/data/ljspeech/wavs/LJ015-0137.wav|tests/data/ljspeech/wavs/LJ015-0137.npy +tests/data/ljspeech/wavs/LJ019-0286.wav|tests/data/ljspeech/wavs/LJ019-0286.npy +tests/data/ljspeech/wavs/LJ003-0324.wav|tests/data/ljspeech/wavs/LJ003-0324.npy +tests/data/ljspeech/wavs/LJ030-0237.wav|tests/data/ljspeech/wavs/LJ030-0237.npy +tests/data/ljspeech/wavs/LJ046-0010.wav|tests/data/ljspeech/wavs/LJ046-0010.npy +tests/data/ljspeech/wavs/LJ002-0300.wav|tests/data/ljspeech/wavs/LJ002-0300.npy +tests/data/ljspeech/wavs/LJ013-0182.wav|tests/data/ljspeech/wavs/LJ013-0182.npy +tests/data/ljspeech/wavs/LJ006-0055.wav|tests/data/ljspeech/wavs/LJ006-0055.npy +tests/data/ljspeech/wavs/LJ015-0188.wav|tests/data/ljspeech/wavs/LJ015-0188.npy +tests/data/ljspeech/wavs/LJ049-0161.wav|tests/data/ljspeech/wavs/LJ049-0161.npy +tests/data/ljspeech/wavs/LJ017-0276.wav|tests/data/ljspeech/wavs/LJ017-0276.npy +tests/data/ljspeech/wavs/LJ001-0113.wav|tests/data/ljspeech/wavs/LJ001-0113.npy +tests/data/ljspeech/wavs/LJ044-0150.wav|tests/data/ljspeech/wavs/LJ044-0150.npy +tests/data/ljspeech/wavs/LJ014-0099.wav|tests/data/ljspeech/wavs/LJ014-0099.npy +tests/data/ljspeech/wavs/LJ028-0514.wav|tests/data/ljspeech/wavs/LJ028-0514.npy +tests/data/ljspeech/wavs/LJ028-0104.wav|tests/data/ljspeech/wavs/LJ028-0104.npy +tests/data/ljspeech/wavs/LJ003-0064.wav|tests/data/ljspeech/wavs/LJ003-0064.npy +tests/data/ljspeech/wavs/LJ002-0013.wav|tests/data/ljspeech/wavs/LJ002-0013.npy +tests/data/ljspeech/wavs/LJ040-0235.wav|tests/data/ljspeech/wavs/LJ040-0235.npy +tests/data/ljspeech/wavs/LJ039-0135.wav|tests/data/ljspeech/wavs/LJ039-0135.npy +tests/data/ljspeech/wavs/LJ014-0233.wav|tests/data/ljspeech/wavs/LJ014-0233.npy +tests/data/ljspeech/wavs/LJ048-0073.wav|tests/data/ljspeech/wavs/LJ048-0073.npy +tests/data/ljspeech/wavs/LJ036-0196.wav|tests/data/ljspeech/wavs/LJ036-0196.npy +tests/data/ljspeech/wavs/LJ047-0028.wav|tests/data/ljspeech/wavs/LJ047-0028.npy +tests/data/ljspeech/wavs/LJ031-0035.wav|tests/data/ljspeech/wavs/LJ031-0035.npy +tests/data/ljspeech/wavs/LJ046-0126.wav|tests/data/ljspeech/wavs/LJ046-0126.npy +tests/data/ljspeech/wavs/LJ018-0125.wav|tests/data/ljspeech/wavs/LJ018-0125.npy +tests/data/ljspeech/wavs/LJ026-0083.wav|tests/data/ljspeech/wavs/LJ026-0083.npy +tests/data/ljspeech/wavs/LJ018-0349.wav|tests/data/ljspeech/wavs/LJ018-0349.npy +tests/data/ljspeech/wavs/LJ042-0240.wav|tests/data/ljspeech/wavs/LJ042-0240.npy +tests/data/ljspeech/wavs/LJ022-0120.wav|tests/data/ljspeech/wavs/LJ022-0120.npy +tests/data/ljspeech/wavs/LJ030-0088.wav|tests/data/ljspeech/wavs/LJ030-0088.npy +tests/data/ljspeech/wavs/LJ047-0042.wav|tests/data/ljspeech/wavs/LJ047-0042.npy +tests/data/ljspeech/wavs/LJ039-0039.wav|tests/data/ljspeech/wavs/LJ039-0039.npy +tests/data/ljspeech/wavs/LJ042-0121.wav|tests/data/ljspeech/wavs/LJ042-0121.npy +tests/data/ljspeech/wavs/LJ011-0168.wav|tests/data/ljspeech/wavs/LJ011-0168.npy +tests/data/ljspeech/wavs/LJ028-0356.wav|tests/data/ljspeech/wavs/LJ028-0356.npy +tests/data/ljspeech/wavs/LJ028-0178.wav|tests/data/ljspeech/wavs/LJ028-0178.npy +tests/data/ljspeech/wavs/LJ018-0200.wav|tests/data/ljspeech/wavs/LJ018-0200.npy +tests/data/ljspeech/wavs/LJ016-0331.wav|tests/data/ljspeech/wavs/LJ016-0331.npy +tests/data/ljspeech/wavs/LJ019-0227.wav|tests/data/ljspeech/wavs/LJ019-0227.npy +tests/data/ljspeech/wavs/LJ007-0181.wav|tests/data/ljspeech/wavs/LJ007-0181.npy +tests/data/ljspeech/wavs/LJ034-0193.wav|tests/data/ljspeech/wavs/LJ034-0193.npy +tests/data/ljspeech/wavs/LJ026-0030.wav|tests/data/ljspeech/wavs/LJ026-0030.npy +tests/data/ljspeech/wavs/LJ018-0187.wav|tests/data/ljspeech/wavs/LJ018-0187.npy +tests/data/ljspeech/wavs/LJ041-0172.wav|tests/data/ljspeech/wavs/LJ041-0172.npy +tests/data/ljspeech/wavs/LJ003-0343.wav|tests/data/ljspeech/wavs/LJ003-0343.npy +tests/data/ljspeech/wavs/LJ009-0228.wav|tests/data/ljspeech/wavs/LJ009-0228.npy +tests/data/ljspeech/wavs/LJ001-0046.wav|tests/data/ljspeech/wavs/LJ001-0046.npy +tests/data/ljspeech/wavs/LJ030-0196.wav|tests/data/ljspeech/wavs/LJ030-0196.npy +tests/data/ljspeech/wavs/LJ036-0017.wav|tests/data/ljspeech/wavs/LJ036-0017.npy +tests/data/ljspeech/wavs/LJ034-0196.wav|tests/data/ljspeech/wavs/LJ034-0196.npy +tests/data/ljspeech/wavs/LJ026-0120.wav|tests/data/ljspeech/wavs/LJ026-0120.npy +tests/data/ljspeech/wavs/LJ002-0081.wav|tests/data/ljspeech/wavs/LJ002-0081.npy +tests/data/ljspeech/wavs/LJ037-0009.wav|tests/data/ljspeech/wavs/LJ037-0009.npy +tests/data/ljspeech/wavs/LJ014-0078.wav|tests/data/ljspeech/wavs/LJ014-0078.npy +tests/data/ljspeech/wavs/LJ026-0020.wav|tests/data/ljspeech/wavs/LJ026-0020.npy +tests/data/ljspeech/wavs/LJ033-0154.wav|tests/data/ljspeech/wavs/LJ033-0154.npy +tests/data/ljspeech/wavs/LJ016-0403.wav|tests/data/ljspeech/wavs/LJ016-0403.npy +tests/data/ljspeech/wavs/LJ011-0141.wav|tests/data/ljspeech/wavs/LJ011-0141.npy +tests/data/ljspeech/wavs/LJ010-0184.wav|tests/data/ljspeech/wavs/LJ010-0184.npy +tests/data/ljspeech/wavs/LJ011-0104.wav|tests/data/ljspeech/wavs/LJ011-0104.npy +tests/data/ljspeech/wavs/LJ001-0146.wav|tests/data/ljspeech/wavs/LJ001-0146.npy +tests/data/ljspeech/wavs/LJ010-0204.wav|tests/data/ljspeech/wavs/LJ010-0204.npy +tests/data/ljspeech/wavs/LJ036-0073.wav|tests/data/ljspeech/wavs/LJ036-0073.npy +tests/data/ljspeech/wavs/LJ018-0162.wav|tests/data/ljspeech/wavs/LJ018-0162.npy +tests/data/ljspeech/wavs/LJ034-0107.wav|tests/data/ljspeech/wavs/LJ034-0107.npy +tests/data/ljspeech/wavs/LJ045-0217.wav|tests/data/ljspeech/wavs/LJ045-0217.npy +tests/data/ljspeech/wavs/LJ008-0311.wav|tests/data/ljspeech/wavs/LJ008-0311.npy +tests/data/ljspeech/wavs/LJ032-0085.wav|tests/data/ljspeech/wavs/LJ032-0085.npy +tests/data/ljspeech/wavs/LJ012-0192.wav|tests/data/ljspeech/wavs/LJ012-0192.npy +tests/data/ljspeech/wavs/LJ035-0052.wav|tests/data/ljspeech/wavs/LJ035-0052.npy +tests/data/ljspeech/wavs/LJ014-0074.wav|tests/data/ljspeech/wavs/LJ014-0074.npy +tests/data/ljspeech/wavs/LJ041-0028.wav|tests/data/ljspeech/wavs/LJ041-0028.npy +tests/data/ljspeech/wavs/LJ005-0069.wav|tests/data/ljspeech/wavs/LJ005-0069.npy +tests/data/ljspeech/wavs/LJ007-0068.wav|tests/data/ljspeech/wavs/LJ007-0068.npy +tests/data/ljspeech/wavs/LJ016-0385.wav|tests/data/ljspeech/wavs/LJ016-0385.npy +tests/data/ljspeech/wavs/LJ028-0285.wav|tests/data/ljspeech/wavs/LJ028-0285.npy +tests/data/ljspeech/wavs/LJ013-0025.wav|tests/data/ljspeech/wavs/LJ013-0025.npy +tests/data/ljspeech/wavs/LJ018-0075.wav|tests/data/ljspeech/wavs/LJ018-0075.npy +tests/data/ljspeech/wavs/LJ003-0009.wav|tests/data/ljspeech/wavs/LJ003-0009.npy +tests/data/ljspeech/wavs/LJ010-0307.wav|tests/data/ljspeech/wavs/LJ010-0307.npy +tests/data/ljspeech/wavs/LJ039-0204.wav|tests/data/ljspeech/wavs/LJ039-0204.npy +tests/data/ljspeech/wavs/LJ041-0150.wav|tests/data/ljspeech/wavs/LJ041-0150.npy +tests/data/ljspeech/wavs/LJ039-0206.wav|tests/data/ljspeech/wavs/LJ039-0206.npy +tests/data/ljspeech/wavs/LJ043-0186.wav|tests/data/ljspeech/wavs/LJ043-0186.npy +tests/data/ljspeech/wavs/LJ050-0038.wav|tests/data/ljspeech/wavs/LJ050-0038.npy +tests/data/ljspeech/wavs/LJ047-0221.wav|tests/data/ljspeech/wavs/LJ047-0221.npy +tests/data/ljspeech/wavs/LJ023-0099.wav|tests/data/ljspeech/wavs/LJ023-0099.npy +tests/data/ljspeech/wavs/LJ030-0252.wav|tests/data/ljspeech/wavs/LJ030-0252.npy +tests/data/ljspeech/wavs/LJ025-0122.wav|tests/data/ljspeech/wavs/LJ025-0122.npy +tests/data/ljspeech/wavs/LJ048-0285.wav|tests/data/ljspeech/wavs/LJ048-0285.npy +tests/data/ljspeech/wavs/LJ035-0189.wav|tests/data/ljspeech/wavs/LJ035-0189.npy +tests/data/ljspeech/wavs/LJ045-0032.wav|tests/data/ljspeech/wavs/LJ045-0032.npy +tests/data/ljspeech/wavs/LJ024-0013.wav|tests/data/ljspeech/wavs/LJ024-0013.npy +tests/data/ljspeech/wavs/LJ005-0188.wav|tests/data/ljspeech/wavs/LJ005-0188.npy +tests/data/ljspeech/wavs/LJ009-0283.wav|tests/data/ljspeech/wavs/LJ009-0283.npy +tests/data/ljspeech/wavs/LJ046-0133.wav|tests/data/ljspeech/wavs/LJ046-0133.npy +tests/data/ljspeech/wavs/LJ042-0028.wav|tests/data/ljspeech/wavs/LJ042-0028.npy +tests/data/ljspeech/wavs/LJ015-0040.wav|tests/data/ljspeech/wavs/LJ015-0040.npy +tests/data/ljspeech/wavs/LJ043-0013.wav|tests/data/ljspeech/wavs/LJ043-0013.npy +tests/data/ljspeech/wavs/LJ003-0098.wav|tests/data/ljspeech/wavs/LJ003-0098.npy +tests/data/ljspeech/wavs/LJ028-0518.wav|tests/data/ljspeech/wavs/LJ028-0518.npy +tests/data/ljspeech/wavs/LJ016-0020.wav|tests/data/ljspeech/wavs/LJ016-0020.npy +tests/data/ljspeech/wavs/LJ025-0144.wav|tests/data/ljspeech/wavs/LJ025-0144.npy +tests/data/ljspeech/wavs/LJ017-0115.wav|tests/data/ljspeech/wavs/LJ017-0115.npy +tests/data/ljspeech/wavs/LJ022-0036.wav|tests/data/ljspeech/wavs/LJ022-0036.npy +tests/data/ljspeech/wavs/LJ006-0056.wav|tests/data/ljspeech/wavs/LJ006-0056.npy +tests/data/ljspeech/wavs/LJ039-0173.wav|tests/data/ljspeech/wavs/LJ039-0173.npy +tests/data/ljspeech/wavs/LJ008-0028.wav|tests/data/ljspeech/wavs/LJ008-0028.npy +tests/data/ljspeech/wavs/LJ049-0008.wav|tests/data/ljspeech/wavs/LJ049-0008.npy +tests/data/ljspeech/wavs/LJ003-0118.wav|tests/data/ljspeech/wavs/LJ003-0118.npy +tests/data/ljspeech/wavs/LJ013-0053.wav|tests/data/ljspeech/wavs/LJ013-0053.npy +tests/data/ljspeech/wavs/LJ037-0196.wav|tests/data/ljspeech/wavs/LJ037-0196.npy +tests/data/ljspeech/wavs/LJ033-0037.wav|tests/data/ljspeech/wavs/LJ033-0037.npy +tests/data/ljspeech/wavs/LJ010-0302.wav|tests/data/ljspeech/wavs/LJ010-0302.npy +tests/data/ljspeech/wavs/LJ041-0149.wav|tests/data/ljspeech/wavs/LJ041-0149.npy +tests/data/ljspeech/wavs/LJ004-0045.wav|tests/data/ljspeech/wavs/LJ004-0045.npy +tests/data/ljspeech/wavs/LJ004-0021.wav|tests/data/ljspeech/wavs/LJ004-0021.npy +tests/data/ljspeech/wavs/LJ039-0148.wav|tests/data/ljspeech/wavs/LJ039-0148.npy +tests/data/ljspeech/wavs/LJ023-0019.wav|tests/data/ljspeech/wavs/LJ023-0019.npy +tests/data/ljspeech/wavs/LJ003-0247.wav|tests/data/ljspeech/wavs/LJ003-0247.npy +tests/data/ljspeech/wavs/LJ019-0164.wav|tests/data/ljspeech/wavs/LJ019-0164.npy +tests/data/ljspeech/wavs/LJ029-0204.wav|tests/data/ljspeech/wavs/LJ029-0204.npy +tests/data/ljspeech/wavs/LJ013-0171.wav|tests/data/ljspeech/wavs/LJ013-0171.npy +tests/data/ljspeech/wavs/LJ010-0259.wav|tests/data/ljspeech/wavs/LJ010-0259.npy +tests/data/ljspeech/wavs/LJ034-0149.wav|tests/data/ljspeech/wavs/LJ034-0149.npy +tests/data/ljspeech/wavs/LJ024-0114.wav|tests/data/ljspeech/wavs/LJ024-0114.npy +tests/data/ljspeech/wavs/LJ027-0067.wav|tests/data/ljspeech/wavs/LJ027-0067.npy +tests/data/ljspeech/wavs/LJ015-0203.wav|tests/data/ljspeech/wavs/LJ015-0203.npy +tests/data/ljspeech/wavs/LJ028-0156.wav|tests/data/ljspeech/wavs/LJ028-0156.npy +tests/data/ljspeech/wavs/LJ035-0104.wav|tests/data/ljspeech/wavs/LJ035-0104.npy +tests/data/ljspeech/wavs/LJ030-0241.wav|tests/data/ljspeech/wavs/LJ030-0241.npy +tests/data/ljspeech/wavs/LJ050-0134.wav|tests/data/ljspeech/wavs/LJ050-0134.npy +tests/data/ljspeech/wavs/LJ028-0228.wav|tests/data/ljspeech/wavs/LJ028-0228.npy +tests/data/ljspeech/wavs/LJ019-0111.wav|tests/data/ljspeech/wavs/LJ019-0111.npy +tests/data/ljspeech/wavs/LJ004-0057.wav|tests/data/ljspeech/wavs/LJ004-0057.npy +tests/data/ljspeech/wavs/LJ017-0148.wav|tests/data/ljspeech/wavs/LJ017-0148.npy +tests/data/ljspeech/wavs/LJ050-0033.wav|tests/data/ljspeech/wavs/LJ050-0033.npy +tests/data/ljspeech/wavs/LJ019-0063.wav|tests/data/ljspeech/wavs/LJ019-0063.npy +tests/data/ljspeech/wavs/LJ020-0017.wav|tests/data/ljspeech/wavs/LJ020-0017.npy +tests/data/ljspeech/wavs/LJ035-0182.wav|tests/data/ljspeech/wavs/LJ035-0182.npy +tests/data/ljspeech/wavs/LJ006-0121.wav|tests/data/ljspeech/wavs/LJ006-0121.npy +tests/data/ljspeech/wavs/LJ028-0154.wav|tests/data/ljspeech/wavs/LJ028-0154.npy +tests/data/ljspeech/wavs/LJ015-0291.wav|tests/data/ljspeech/wavs/LJ015-0291.npy +tests/data/ljspeech/wavs/LJ002-0160.wav|tests/data/ljspeech/wavs/LJ002-0160.npy +tests/data/ljspeech/wavs/LJ008-0025.wav|tests/data/ljspeech/wavs/LJ008-0025.npy +tests/data/ljspeech/wavs/LJ016-0202.wav|tests/data/ljspeech/wavs/LJ016-0202.npy +tests/data/ljspeech/wavs/LJ004-0134.wav|tests/data/ljspeech/wavs/LJ004-0134.npy +tests/data/ljspeech/wavs/LJ018-0391.wav|tests/data/ljspeech/wavs/LJ018-0391.npy +tests/data/ljspeech/wavs/LJ042-0173.wav|tests/data/ljspeech/wavs/LJ042-0173.npy +tests/data/ljspeech/wavs/LJ016-0002.wav|tests/data/ljspeech/wavs/LJ016-0002.npy +tests/data/ljspeech/wavs/LJ019-0174.wav|tests/data/ljspeech/wavs/LJ019-0174.npy +tests/data/ljspeech/wavs/LJ050-0207.wav|tests/data/ljspeech/wavs/LJ050-0207.npy +tests/data/ljspeech/wavs/LJ038-0067.wav|tests/data/ljspeech/wavs/LJ038-0067.npy +tests/data/ljspeech/wavs/LJ048-0007.wav|tests/data/ljspeech/wavs/LJ048-0007.npy +tests/data/ljspeech/wavs/LJ005-0060.wav|tests/data/ljspeech/wavs/LJ005-0060.npy +tests/data/ljspeech/wavs/LJ001-0140.wav|tests/data/ljspeech/wavs/LJ001-0140.npy +tests/data/ljspeech/wavs/LJ012-0059.wav|tests/data/ljspeech/wavs/LJ012-0059.npy +tests/data/ljspeech/wavs/LJ015-0191.wav|tests/data/ljspeech/wavs/LJ015-0191.npy +tests/data/ljspeech/wavs/LJ017-0030.wav|tests/data/ljspeech/wavs/LJ017-0030.npy +tests/data/ljspeech/wavs/LJ021-0103.wav|tests/data/ljspeech/wavs/LJ021-0103.npy +tests/data/ljspeech/wavs/LJ017-0141.wav|tests/data/ljspeech/wavs/LJ017-0141.npy +tests/data/ljspeech/wavs/LJ007-0124.wav|tests/data/ljspeech/wavs/LJ007-0124.npy +tests/data/ljspeech/wavs/LJ017-0119.wav|tests/data/ljspeech/wavs/LJ017-0119.npy +tests/data/ljspeech/wavs/LJ038-0252.wav|tests/data/ljspeech/wavs/LJ038-0252.npy +tests/data/ljspeech/wavs/LJ012-0134.wav|tests/data/ljspeech/wavs/LJ012-0134.npy +tests/data/ljspeech/wavs/LJ001-0026.wav|tests/data/ljspeech/wavs/LJ001-0026.npy +tests/data/ljspeech/wavs/LJ016-0213.wav|tests/data/ljspeech/wavs/LJ016-0213.npy +tests/data/ljspeech/wavs/LJ004-0094.wav|tests/data/ljspeech/wavs/LJ004-0094.npy +tests/data/ljspeech/wavs/LJ028-0039.wav|tests/data/ljspeech/wavs/LJ028-0039.npy +tests/data/ljspeech/wavs/LJ028-0042.wav|tests/data/ljspeech/wavs/LJ028-0042.npy +tests/data/ljspeech/wavs/LJ050-0058.wav|tests/data/ljspeech/wavs/LJ050-0058.npy +tests/data/ljspeech/wavs/LJ014-0108.wav|tests/data/ljspeech/wavs/LJ014-0108.npy +tests/data/ljspeech/wavs/LJ015-0164.wav|tests/data/ljspeech/wavs/LJ015-0164.npy +tests/data/ljspeech/wavs/LJ040-0101.wav|tests/data/ljspeech/wavs/LJ040-0101.npy +tests/data/ljspeech/wavs/LJ009-0080.wav|tests/data/ljspeech/wavs/LJ009-0080.npy +tests/data/ljspeech/wavs/LJ039-0158.wav|tests/data/ljspeech/wavs/LJ039-0158.npy +tests/data/ljspeech/wavs/LJ035-0162.wav|tests/data/ljspeech/wavs/LJ035-0162.npy +tests/data/ljspeech/wavs/LJ019-0001.wav|tests/data/ljspeech/wavs/LJ019-0001.npy +tests/data/ljspeech/wavs/LJ030-0205.wav|tests/data/ljspeech/wavs/LJ030-0205.npy +tests/data/ljspeech/wavs/LJ039-0069.wav|tests/data/ljspeech/wavs/LJ039-0069.npy +tests/data/ljspeech/wavs/LJ037-0190.wav|tests/data/ljspeech/wavs/LJ037-0190.npy +tests/data/ljspeech/wavs/LJ002-0206.wav|tests/data/ljspeech/wavs/LJ002-0206.npy +tests/data/ljspeech/wavs/LJ042-0041.wav|tests/data/ljspeech/wavs/LJ042-0041.npy +tests/data/ljspeech/wavs/LJ032-0161.wav|tests/data/ljspeech/wavs/LJ032-0161.npy +tests/data/ljspeech/wavs/LJ024-0052.wav|tests/data/ljspeech/wavs/LJ024-0052.npy +tests/data/ljspeech/wavs/LJ027-0077.wav|tests/data/ljspeech/wavs/LJ027-0077.npy +tests/data/ljspeech/wavs/LJ010-0013.wav|tests/data/ljspeech/wavs/LJ010-0013.npy +tests/data/ljspeech/wavs/LJ013-0219.wav|tests/data/ljspeech/wavs/LJ013-0219.npy +tests/data/ljspeech/wavs/LJ047-0229.wav|tests/data/ljspeech/wavs/LJ047-0229.npy +tests/data/ljspeech/wavs/LJ015-0158.wav|tests/data/ljspeech/wavs/LJ015-0158.npy +tests/data/ljspeech/wavs/LJ022-0096.wav|tests/data/ljspeech/wavs/LJ022-0096.npy +tests/data/ljspeech/wavs/LJ006-0188.wav|tests/data/ljspeech/wavs/LJ006-0188.npy +tests/data/ljspeech/wavs/LJ014-0139.wav|tests/data/ljspeech/wavs/LJ014-0139.npy +tests/data/ljspeech/wavs/LJ015-0140.wav|tests/data/ljspeech/wavs/LJ015-0140.npy +tests/data/ljspeech/wavs/LJ003-0077.wav|tests/data/ljspeech/wavs/LJ003-0077.npy +tests/data/ljspeech/wavs/LJ020-0036.wav|tests/data/ljspeech/wavs/LJ020-0036.npy +tests/data/ljspeech/wavs/LJ042-0182.wav|tests/data/ljspeech/wavs/LJ042-0182.npy +tests/data/ljspeech/wavs/LJ013-0178.wav|tests/data/ljspeech/wavs/LJ013-0178.npy +tests/data/ljspeech/wavs/LJ009-0109.wav|tests/data/ljspeech/wavs/LJ009-0109.npy +tests/data/ljspeech/wavs/LJ019-0390.wav|tests/data/ljspeech/wavs/LJ019-0390.npy +tests/data/ljspeech/wavs/LJ046-0034.wav|tests/data/ljspeech/wavs/LJ046-0034.npy +tests/data/ljspeech/wavs/LJ029-0213.wav|tests/data/ljspeech/wavs/LJ029-0213.npy +tests/data/ljspeech/wavs/LJ040-0020.wav|tests/data/ljspeech/wavs/LJ040-0020.npy +tests/data/ljspeech/wavs/LJ002-0247.wav|tests/data/ljspeech/wavs/LJ002-0247.npy +tests/data/ljspeech/wavs/LJ008-0255.wav|tests/data/ljspeech/wavs/LJ008-0255.npy +tests/data/ljspeech/wavs/LJ028-0316.wav|tests/data/ljspeech/wavs/LJ028-0316.npy +tests/data/ljspeech/wavs/LJ010-0270.wav|tests/data/ljspeech/wavs/LJ010-0270.npy +tests/data/ljspeech/wavs/LJ037-0188.wav|tests/data/ljspeech/wavs/LJ037-0188.npy +tests/data/ljspeech/wavs/LJ038-0300.wav|tests/data/ljspeech/wavs/LJ038-0300.npy +tests/data/ljspeech/wavs/LJ049-0216.wav|tests/data/ljspeech/wavs/LJ049-0216.npy +tests/data/ljspeech/wavs/LJ031-0127.wav|tests/data/ljspeech/wavs/LJ031-0127.npy +tests/data/ljspeech/wavs/LJ041-0029.wav|tests/data/ljspeech/wavs/LJ041-0029.npy +tests/data/ljspeech/wavs/LJ005-0049.wav|tests/data/ljspeech/wavs/LJ005-0049.npy +tests/data/ljspeech/wavs/LJ036-0084.wav|tests/data/ljspeech/wavs/LJ036-0084.npy +tests/data/ljspeech/wavs/LJ041-0067.wav|tests/data/ljspeech/wavs/LJ041-0067.npy +tests/data/ljspeech/wavs/LJ023-0114.wav|tests/data/ljspeech/wavs/LJ023-0114.npy +tests/data/ljspeech/wavs/LJ010-0095.wav|tests/data/ljspeech/wavs/LJ010-0095.npy +tests/data/ljspeech/wavs/LJ011-0027.wav|tests/data/ljspeech/wavs/LJ011-0027.npy +tests/data/ljspeech/wavs/LJ028-0328.wav|tests/data/ljspeech/wavs/LJ028-0328.npy +tests/data/ljspeech/wavs/LJ004-0158.wav|tests/data/ljspeech/wavs/LJ004-0158.npy +tests/data/ljspeech/wavs/LJ045-0108.wav|tests/data/ljspeech/wavs/LJ045-0108.npy +tests/data/ljspeech/wavs/LJ047-0112.wav|tests/data/ljspeech/wavs/LJ047-0112.npy +tests/data/ljspeech/wavs/LJ022-0187.wav|tests/data/ljspeech/wavs/LJ022-0187.npy +tests/data/ljspeech/wavs/LJ003-0087.wav|tests/data/ljspeech/wavs/LJ003-0087.npy +tests/data/ljspeech/wavs/LJ047-0099.wav|tests/data/ljspeech/wavs/LJ047-0099.npy +tests/data/ljspeech/wavs/LJ024-0010.wav|tests/data/ljspeech/wavs/LJ024-0010.npy +tests/data/ljspeech/wavs/LJ049-0081.wav|tests/data/ljspeech/wavs/LJ049-0081.npy +tests/data/ljspeech/wavs/LJ014-0082.wav|tests/data/ljspeech/wavs/LJ014-0082.npy +tests/data/ljspeech/wavs/LJ017-0165.wav|tests/data/ljspeech/wavs/LJ017-0165.npy +tests/data/ljspeech/wavs/LJ028-0469.wav|tests/data/ljspeech/wavs/LJ028-0469.npy +tests/data/ljspeech/wavs/LJ010-0079.wav|tests/data/ljspeech/wavs/LJ010-0079.npy +tests/data/ljspeech/wavs/LJ012-0202.wav|tests/data/ljspeech/wavs/LJ012-0202.npy +tests/data/ljspeech/wavs/LJ040-0085.wav|tests/data/ljspeech/wavs/LJ040-0085.npy +tests/data/ljspeech/wavs/LJ008-0223.wav|tests/data/ljspeech/wavs/LJ008-0223.npy +tests/data/ljspeech/wavs/LJ014-0083.wav|tests/data/ljspeech/wavs/LJ014-0083.npy +tests/data/ljspeech/wavs/LJ023-0058.wav|tests/data/ljspeech/wavs/LJ023-0058.npy +tests/data/ljspeech/wavs/LJ032-0171.wav|tests/data/ljspeech/wavs/LJ032-0171.npy +tests/data/ljspeech/wavs/LJ031-0142.wav|tests/data/ljspeech/wavs/LJ031-0142.npy +tests/data/ljspeech/wavs/LJ048-0170.wav|tests/data/ljspeech/wavs/LJ048-0170.npy +tests/data/ljspeech/wavs/LJ049-0047.wav|tests/data/ljspeech/wavs/LJ049-0047.npy +tests/data/ljspeech/wavs/LJ037-0050.wav|tests/data/ljspeech/wavs/LJ037-0050.npy +tests/data/ljspeech/wavs/LJ004-0011.wav|tests/data/ljspeech/wavs/LJ004-0011.npy +tests/data/ljspeech/wavs/LJ050-0034.wav|tests/data/ljspeech/wavs/LJ050-0034.npy +tests/data/ljspeech/wavs/LJ017-0200.wav|tests/data/ljspeech/wavs/LJ017-0200.npy +tests/data/ljspeech/wavs/LJ011-0243.wav|tests/data/ljspeech/wavs/LJ011-0243.npy +tests/data/ljspeech/wavs/LJ038-0084.wav|tests/data/ljspeech/wavs/LJ038-0084.npy +tests/data/ljspeech/wavs/LJ035-0140.wav|tests/data/ljspeech/wavs/LJ035-0140.npy +tests/data/ljspeech/wavs/LJ002-0215.wav|tests/data/ljspeech/wavs/LJ002-0215.npy +tests/data/ljspeech/wavs/LJ039-0061.wav|tests/data/ljspeech/wavs/LJ039-0061.npy +tests/data/ljspeech/wavs/LJ050-0241.wav|tests/data/ljspeech/wavs/LJ050-0241.npy +tests/data/ljspeech/wavs/LJ039-0047.wav|tests/data/ljspeech/wavs/LJ039-0047.npy +tests/data/ljspeech/wavs/LJ021-0127.wav|tests/data/ljspeech/wavs/LJ021-0127.npy +tests/data/ljspeech/wavs/LJ050-0114.wav|tests/data/ljspeech/wavs/LJ050-0114.npy +tests/data/ljspeech/wavs/LJ010-0158.wav|tests/data/ljspeech/wavs/LJ010-0158.npy +tests/data/ljspeech/wavs/LJ040-0181.wav|tests/data/ljspeech/wavs/LJ040-0181.npy +tests/data/ljspeech/wavs/LJ017-0109.wav|tests/data/ljspeech/wavs/LJ017-0109.npy +tests/data/ljspeech/wavs/LJ010-0222.wav|tests/data/ljspeech/wavs/LJ010-0222.npy +tests/data/ljspeech/wavs/LJ024-0007.wav|tests/data/ljspeech/wavs/LJ024-0007.npy +tests/data/ljspeech/wavs/LJ003-0334.wav|tests/data/ljspeech/wavs/LJ003-0334.npy +tests/data/ljspeech/wavs/LJ005-0160.wav|tests/data/ljspeech/wavs/LJ005-0160.npy +tests/data/ljspeech/wavs/LJ050-0116.wav|tests/data/ljspeech/wavs/LJ050-0116.npy +tests/data/ljspeech/wavs/LJ017-0197.wav|tests/data/ljspeech/wavs/LJ017-0197.npy +tests/data/ljspeech/wavs/LJ016-0046.wav|tests/data/ljspeech/wavs/LJ016-0046.npy +tests/data/ljspeech/wavs/LJ006-0036.wav|tests/data/ljspeech/wavs/LJ006-0036.npy +tests/data/ljspeech/wavs/LJ016-0159.wav|tests/data/ljspeech/wavs/LJ016-0159.npy +tests/data/ljspeech/wavs/LJ011-0191.wav|tests/data/ljspeech/wavs/LJ011-0191.npy +tests/data/ljspeech/wavs/LJ024-0065.wav|tests/data/ljspeech/wavs/LJ024-0065.npy +tests/data/ljspeech/wavs/LJ019-0196.wav|tests/data/ljspeech/wavs/LJ019-0196.npy +tests/data/ljspeech/wavs/LJ014-0061.wav|tests/data/ljspeech/wavs/LJ014-0061.npy +tests/data/ljspeech/wavs/LJ034-0017.wav|tests/data/ljspeech/wavs/LJ034-0017.npy +tests/data/ljspeech/wavs/LJ008-0125.wav|tests/data/ljspeech/wavs/LJ008-0125.npy +tests/data/ljspeech/wavs/LJ005-0085.wav|tests/data/ljspeech/wavs/LJ005-0085.npy +tests/data/ljspeech/wavs/LJ046-0195.wav|tests/data/ljspeech/wavs/LJ046-0195.npy +tests/data/ljspeech/wavs/LJ036-0134.wav|tests/data/ljspeech/wavs/LJ036-0134.npy +tests/data/ljspeech/wavs/LJ033-0015.wav|tests/data/ljspeech/wavs/LJ033-0015.npy +tests/data/ljspeech/wavs/LJ010-0294.wav|tests/data/ljspeech/wavs/LJ010-0294.npy +tests/data/ljspeech/wavs/LJ041-0103.wav|tests/data/ljspeech/wavs/LJ041-0103.npy +tests/data/ljspeech/wavs/LJ004-0177.wav|tests/data/ljspeech/wavs/LJ004-0177.npy +tests/data/ljspeech/wavs/LJ018-0024.wav|tests/data/ljspeech/wavs/LJ018-0024.npy +tests/data/ljspeech/wavs/LJ043-0077.wav|tests/data/ljspeech/wavs/LJ043-0077.npy +tests/data/ljspeech/wavs/LJ022-0095.wav|tests/data/ljspeech/wavs/LJ022-0095.npy +tests/data/ljspeech/wavs/LJ010-0231.wav|tests/data/ljspeech/wavs/LJ010-0231.npy +tests/data/ljspeech/wavs/LJ021-0121.wav|tests/data/ljspeech/wavs/LJ021-0121.npy +tests/data/ljspeech/wavs/LJ018-0086.wav|tests/data/ljspeech/wavs/LJ018-0086.npy +tests/data/ljspeech/wavs/LJ017-0186.wav|tests/data/ljspeech/wavs/LJ017-0186.npy +tests/data/ljspeech/wavs/LJ003-0184.wav|tests/data/ljspeech/wavs/LJ003-0184.npy +tests/data/ljspeech/wavs/LJ006-0012.wav|tests/data/ljspeech/wavs/LJ006-0012.npy +tests/data/ljspeech/wavs/LJ016-0086.wav|tests/data/ljspeech/wavs/LJ016-0086.npy +tests/data/ljspeech/wavs/LJ026-0085.wav|tests/data/ljspeech/wavs/LJ026-0085.npy +tests/data/ljspeech/wavs/LJ032-0157.wav|tests/data/ljspeech/wavs/LJ032-0157.npy +tests/data/ljspeech/wavs/LJ045-0021.wav|tests/data/ljspeech/wavs/LJ045-0021.npy +tests/data/ljspeech/wavs/LJ050-0152.wav|tests/data/ljspeech/wavs/LJ050-0152.npy +tests/data/ljspeech/wavs/LJ001-0130.wav|tests/data/ljspeech/wavs/LJ001-0130.npy +tests/data/ljspeech/wavs/LJ041-0102.wav|tests/data/ljspeech/wavs/LJ041-0102.npy +tests/data/ljspeech/wavs/LJ003-0326.wav|tests/data/ljspeech/wavs/LJ003-0326.npy +tests/data/ljspeech/wavs/LJ030-0223.wav|tests/data/ljspeech/wavs/LJ030-0223.npy +tests/data/ljspeech/wavs/LJ012-0248.wav|tests/data/ljspeech/wavs/LJ012-0248.npy +tests/data/ljspeech/wavs/LJ030-0009.wav|tests/data/ljspeech/wavs/LJ030-0009.npy +tests/data/ljspeech/wavs/LJ006-0211.wav|tests/data/ljspeech/wavs/LJ006-0211.npy +tests/data/ljspeech/wavs/LJ039-0191.wav|tests/data/ljspeech/wavs/LJ039-0191.npy +tests/data/ljspeech/wavs/LJ036-0090.wav|tests/data/ljspeech/wavs/LJ036-0090.npy +tests/data/ljspeech/wavs/LJ028-0502.wav|tests/data/ljspeech/wavs/LJ028-0502.npy +tests/data/ljspeech/wavs/LJ028-0081.wav|tests/data/ljspeech/wavs/LJ028-0081.npy +tests/data/ljspeech/wavs/LJ044-0060.wav|tests/data/ljspeech/wavs/LJ044-0060.npy +tests/data/ljspeech/wavs/LJ050-0067.wav|tests/data/ljspeech/wavs/LJ050-0067.npy +tests/data/ljspeech/wavs/LJ008-0151.wav|tests/data/ljspeech/wavs/LJ008-0151.npy +tests/data/ljspeech/wavs/LJ033-0182.wav|tests/data/ljspeech/wavs/LJ033-0182.npy +tests/data/ljspeech/wavs/LJ019-0131.wav|tests/data/ljspeech/wavs/LJ019-0131.npy +tests/data/ljspeech/wavs/LJ004-0112.wav|tests/data/ljspeech/wavs/LJ004-0112.npy +tests/data/ljspeech/wavs/LJ030-0248.wav|tests/data/ljspeech/wavs/LJ030-0248.npy +tests/data/ljspeech/wavs/LJ048-0141.wav|tests/data/ljspeech/wavs/LJ048-0141.npy +tests/data/ljspeech/wavs/LJ031-0183.wav|tests/data/ljspeech/wavs/LJ031-0183.npy +tests/data/ljspeech/wavs/LJ019-0314.wav|tests/data/ljspeech/wavs/LJ019-0314.npy +tests/data/ljspeech/wavs/LJ022-0097.wav|tests/data/ljspeech/wavs/LJ022-0097.npy +tests/data/ljspeech/wavs/LJ046-0103.wav|tests/data/ljspeech/wavs/LJ046-0103.npy +tests/data/ljspeech/wavs/LJ012-0246.wav|tests/data/ljspeech/wavs/LJ012-0246.npy +tests/data/ljspeech/wavs/LJ013-0156.wav|tests/data/ljspeech/wavs/LJ013-0156.npy +tests/data/ljspeech/wavs/LJ028-0440.wav|tests/data/ljspeech/wavs/LJ028-0440.npy +tests/data/ljspeech/wavs/LJ003-0037.wav|tests/data/ljspeech/wavs/LJ003-0037.npy +tests/data/ljspeech/wavs/LJ002-0241.wav|tests/data/ljspeech/wavs/LJ002-0241.npy +tests/data/ljspeech/wavs/LJ040-0040.wav|tests/data/ljspeech/wavs/LJ040-0040.npy +tests/data/ljspeech/wavs/LJ018-0268.wav|tests/data/ljspeech/wavs/LJ018-0268.npy +tests/data/ljspeech/wavs/LJ019-0344.wav|tests/data/ljspeech/wavs/LJ019-0344.npy +tests/data/ljspeech/wavs/LJ013-0042.wav|tests/data/ljspeech/wavs/LJ013-0042.npy +tests/data/ljspeech/wavs/LJ026-0095.wav|tests/data/ljspeech/wavs/LJ026-0095.npy +tests/data/ljspeech/wavs/LJ010-0303.wav|tests/data/ljspeech/wavs/LJ010-0303.npy +tests/data/ljspeech/wavs/LJ019-0160.wav|tests/data/ljspeech/wavs/LJ019-0160.npy +tests/data/ljspeech/wavs/LJ017-0089.wav|tests/data/ljspeech/wavs/LJ017-0089.npy +tests/data/ljspeech/wavs/LJ046-0060.wav|tests/data/ljspeech/wavs/LJ046-0060.npy +tests/data/ljspeech/wavs/LJ005-0184.wav|tests/data/ljspeech/wavs/LJ005-0184.npy +tests/data/ljspeech/wavs/LJ042-0114.wav|tests/data/ljspeech/wavs/LJ042-0114.npy +tests/data/ljspeech/wavs/LJ034-0173.wav|tests/data/ljspeech/wavs/LJ034-0173.npy +tests/data/ljspeech/wavs/LJ018-0004.wav|tests/data/ljspeech/wavs/LJ018-0004.npy +tests/data/ljspeech/wavs/LJ012-0281.wav|tests/data/ljspeech/wavs/LJ012-0281.npy +tests/data/ljspeech/wavs/LJ040-0175.wav|tests/data/ljspeech/wavs/LJ040-0175.npy +tests/data/ljspeech/wavs/LJ002-0122.wav|tests/data/ljspeech/wavs/LJ002-0122.npy +tests/data/ljspeech/wavs/LJ044-0152.wav|tests/data/ljspeech/wavs/LJ044-0152.npy +tests/data/ljspeech/wavs/LJ037-0251.wav|tests/data/ljspeech/wavs/LJ037-0251.npy +tests/data/ljspeech/wavs/LJ031-0222.wav|tests/data/ljspeech/wavs/LJ031-0222.npy +tests/data/ljspeech/wavs/LJ030-0227.wav|tests/data/ljspeech/wavs/LJ030-0227.npy +tests/data/ljspeech/wavs/LJ032-0186.wav|tests/data/ljspeech/wavs/LJ032-0186.npy +tests/data/ljspeech/wavs/LJ033-0210.wav|tests/data/ljspeech/wavs/LJ033-0210.npy +tests/data/ljspeech/wavs/LJ035-0167.wav|tests/data/ljspeech/wavs/LJ035-0167.npy +tests/data/ljspeech/wavs/LJ047-0142.wav|tests/data/ljspeech/wavs/LJ047-0142.npy +tests/data/ljspeech/wavs/LJ009-0124.wav|tests/data/ljspeech/wavs/LJ009-0124.npy +tests/data/ljspeech/wavs/LJ038-0266.wav|tests/data/ljspeech/wavs/LJ038-0266.npy +tests/data/ljspeech/wavs/LJ046-0063.wav|tests/data/ljspeech/wavs/LJ046-0063.npy +tests/data/ljspeech/wavs/LJ034-0131.wav|tests/data/ljspeech/wavs/LJ034-0131.npy +tests/data/ljspeech/wavs/LJ008-0139.wav|tests/data/ljspeech/wavs/LJ008-0139.npy +tests/data/ljspeech/wavs/LJ010-0016.wav|tests/data/ljspeech/wavs/LJ010-0016.npy +tests/data/ljspeech/wavs/LJ045-0209.wav|tests/data/ljspeech/wavs/LJ045-0209.npy +tests/data/ljspeech/wavs/LJ047-0236.wav|tests/data/ljspeech/wavs/LJ047-0236.npy +tests/data/ljspeech/wavs/LJ001-0074.wav|tests/data/ljspeech/wavs/LJ001-0074.npy +tests/data/ljspeech/wavs/LJ015-0200.wav|tests/data/ljspeech/wavs/LJ015-0200.npy +tests/data/ljspeech/wavs/LJ050-0200.wav|tests/data/ljspeech/wavs/LJ050-0200.npy +tests/data/ljspeech/wavs/LJ011-0289.wav|tests/data/ljspeech/wavs/LJ011-0289.npy +tests/data/ljspeech/wavs/LJ033-0031.wav|tests/data/ljspeech/wavs/LJ033-0031.npy +tests/data/ljspeech/wavs/LJ015-0258.wav|tests/data/ljspeech/wavs/LJ015-0258.npy +tests/data/ljspeech/wavs/LJ019-0091.wav|tests/data/ljspeech/wavs/LJ019-0091.npy +tests/data/ljspeech/wavs/LJ027-0113.wav|tests/data/ljspeech/wavs/LJ027-0113.npy +tests/data/ljspeech/wavs/LJ022-0160.wav|tests/data/ljspeech/wavs/LJ022-0160.npy +tests/data/ljspeech/wavs/LJ029-0190.wav|tests/data/ljspeech/wavs/LJ029-0190.npy +tests/data/ljspeech/wavs/LJ015-0133.wav|tests/data/ljspeech/wavs/LJ015-0133.npy +tests/data/ljspeech/wavs/LJ034-0206.wav|tests/data/ljspeech/wavs/LJ034-0206.npy +tests/data/ljspeech/wavs/LJ016-0257.wav|tests/data/ljspeech/wavs/LJ016-0257.npy +tests/data/ljspeech/wavs/LJ003-0012.wav|tests/data/ljspeech/wavs/LJ003-0012.npy +tests/data/ljspeech/wavs/LJ008-0162.wav|tests/data/ljspeech/wavs/LJ008-0162.npy +tests/data/ljspeech/wavs/LJ002-0199.wav|tests/data/ljspeech/wavs/LJ002-0199.npy +tests/data/ljspeech/wavs/LJ038-0165.wav|tests/data/ljspeech/wavs/LJ038-0165.npy +tests/data/ljspeech/wavs/LJ032-0029.wav|tests/data/ljspeech/wavs/LJ032-0029.npy +tests/data/ljspeech/wavs/LJ009-0217.wav|tests/data/ljspeech/wavs/LJ009-0217.npy +tests/data/ljspeech/wavs/LJ007-0182.wav|tests/data/ljspeech/wavs/LJ007-0182.npy +tests/data/ljspeech/wavs/LJ022-0134.wav|tests/data/ljspeech/wavs/LJ022-0134.npy +tests/data/ljspeech/wavs/LJ044-0202.wav|tests/data/ljspeech/wavs/LJ044-0202.npy +tests/data/ljspeech/wavs/LJ039-0118.wav|tests/data/ljspeech/wavs/LJ039-0118.npy +tests/data/ljspeech/wavs/LJ048-0048.wav|tests/data/ljspeech/wavs/LJ048-0048.npy +tests/data/ljspeech/wavs/LJ031-0200.wav|tests/data/ljspeech/wavs/LJ031-0200.npy +tests/data/ljspeech/wavs/LJ017-0009.wav|tests/data/ljspeech/wavs/LJ017-0009.npy +tests/data/ljspeech/wavs/LJ034-0052.wav|tests/data/ljspeech/wavs/LJ034-0052.npy +tests/data/ljspeech/wavs/LJ005-0232.wav|tests/data/ljspeech/wavs/LJ005-0232.npy +tests/data/ljspeech/wavs/LJ012-0295.wav|tests/data/ljspeech/wavs/LJ012-0295.npy +tests/data/ljspeech/wavs/LJ018-0374.wav|tests/data/ljspeech/wavs/LJ018-0374.npy +tests/data/ljspeech/wavs/LJ013-0027.wav|tests/data/ljspeech/wavs/LJ013-0027.npy +tests/data/ljspeech/wavs/LJ005-0115.wav|tests/data/ljspeech/wavs/LJ005-0115.npy +tests/data/ljspeech/wavs/LJ042-0186.wav|tests/data/ljspeech/wavs/LJ042-0186.npy +tests/data/ljspeech/wavs/LJ025-0064.wav|tests/data/ljspeech/wavs/LJ025-0064.npy +tests/data/ljspeech/wavs/LJ032-0179.wav|tests/data/ljspeech/wavs/LJ032-0179.npy +tests/data/ljspeech/wavs/LJ049-0178.wav|tests/data/ljspeech/wavs/LJ049-0178.npy +tests/data/ljspeech/wavs/LJ027-0087.wav|tests/data/ljspeech/wavs/LJ027-0087.npy +tests/data/ljspeech/wavs/LJ031-0232.wav|tests/data/ljspeech/wavs/LJ031-0232.npy +tests/data/ljspeech/wavs/LJ035-0021.wav|tests/data/ljspeech/wavs/LJ035-0021.npy +tests/data/ljspeech/wavs/LJ029-0026.wav|tests/data/ljspeech/wavs/LJ029-0026.npy +tests/data/ljspeech/wavs/LJ029-0004.wav|tests/data/ljspeech/wavs/LJ029-0004.npy +tests/data/ljspeech/wavs/LJ008-0206.wav|tests/data/ljspeech/wavs/LJ008-0206.npy +tests/data/ljspeech/wavs/LJ039-0242.wav|tests/data/ljspeech/wavs/LJ039-0242.npy +tests/data/ljspeech/wavs/LJ013-0137.wav|tests/data/ljspeech/wavs/LJ013-0137.npy +tests/data/ljspeech/wavs/LJ016-0318.wav|tests/data/ljspeech/wavs/LJ016-0318.npy +tests/data/ljspeech/wavs/LJ014-0134.wav|tests/data/ljspeech/wavs/LJ014-0134.npy +tests/data/ljspeech/wavs/LJ003-0194.wav|tests/data/ljspeech/wavs/LJ003-0194.npy +tests/data/ljspeech/wavs/LJ011-0267.wav|tests/data/ljspeech/wavs/LJ011-0267.npy +tests/data/ljspeech/wavs/LJ002-0156.wav|tests/data/ljspeech/wavs/LJ002-0156.npy +tests/data/ljspeech/wavs/LJ050-0155.wav|tests/data/ljspeech/wavs/LJ050-0155.npy +tests/data/ljspeech/wavs/LJ046-0164.wav|tests/data/ljspeech/wavs/LJ046-0164.npy +tests/data/ljspeech/wavs/LJ015-0111.wav|tests/data/ljspeech/wavs/LJ015-0111.npy +tests/data/ljspeech/wavs/LJ037-0213.wav|tests/data/ljspeech/wavs/LJ037-0213.npy +tests/data/ljspeech/wavs/LJ049-0172.wav|tests/data/ljspeech/wavs/LJ049-0172.npy +tests/data/ljspeech/wavs/LJ013-0044.wav|tests/data/ljspeech/wavs/LJ013-0044.npy +tests/data/ljspeech/wavs/LJ042-0074.wav|tests/data/ljspeech/wavs/LJ042-0074.npy +tests/data/ljspeech/wavs/LJ018-0110.wav|tests/data/ljspeech/wavs/LJ018-0110.npy +tests/data/ljspeech/wavs/LJ027-0032.wav|tests/data/ljspeech/wavs/LJ027-0032.npy +tests/data/ljspeech/wavs/LJ027-0158.wav|tests/data/ljspeech/wavs/LJ027-0158.npy +tests/data/ljspeech/wavs/LJ019-0258.wav|tests/data/ljspeech/wavs/LJ019-0258.npy +tests/data/ljspeech/wavs/LJ034-0019.wav|tests/data/ljspeech/wavs/LJ034-0019.npy +tests/data/ljspeech/wavs/LJ040-0215.wav|tests/data/ljspeech/wavs/LJ040-0215.npy +tests/data/ljspeech/wavs/LJ014-0038.wav|tests/data/ljspeech/wavs/LJ014-0038.npy +tests/data/ljspeech/wavs/LJ016-0063.wav|tests/data/ljspeech/wavs/LJ016-0063.npy +tests/data/ljspeech/wavs/LJ046-0108.wav|tests/data/ljspeech/wavs/LJ046-0108.npy +tests/data/ljspeech/wavs/LJ010-0039.wav|tests/data/ljspeech/wavs/LJ010-0039.npy +tests/data/ljspeech/wavs/LJ028-0021.wav|tests/data/ljspeech/wavs/LJ028-0021.npy +tests/data/ljspeech/wavs/LJ008-0135.wav|tests/data/ljspeech/wavs/LJ008-0135.npy +tests/data/ljspeech/wavs/LJ021-0062.wav|tests/data/ljspeech/wavs/LJ021-0062.npy +tests/data/ljspeech/wavs/LJ017-0053.wav|tests/data/ljspeech/wavs/LJ017-0053.npy +tests/data/ljspeech/wavs/LJ015-0068.wav|tests/data/ljspeech/wavs/LJ015-0068.npy +tests/data/ljspeech/wavs/LJ016-0064.wav|tests/data/ljspeech/wavs/LJ016-0064.npy +tests/data/ljspeech/wavs/LJ015-0243.wav|tests/data/ljspeech/wavs/LJ015-0243.npy +tests/data/ljspeech/wavs/LJ048-0146.wav|tests/data/ljspeech/wavs/LJ048-0146.npy +tests/data/ljspeech/wavs/LJ002-0043.wav|tests/data/ljspeech/wavs/LJ002-0043.npy +tests/data/ljspeech/wavs/LJ039-0241.wav|tests/data/ljspeech/wavs/LJ039-0241.npy +tests/data/ljspeech/wavs/LJ022-0037.wav|tests/data/ljspeech/wavs/LJ022-0037.npy +tests/data/ljspeech/wavs/LJ001-0004.wav|tests/data/ljspeech/wavs/LJ001-0004.npy +tests/data/ljspeech/wavs/LJ019-0039.wav|tests/data/ljspeech/wavs/LJ019-0039.npy +tests/data/ljspeech/wavs/LJ039-0029.wav|tests/data/ljspeech/wavs/LJ039-0029.npy +tests/data/ljspeech/wavs/LJ028-0053.wav|tests/data/ljspeech/wavs/LJ028-0053.npy +tests/data/ljspeech/wavs/LJ013-0006.wav|tests/data/ljspeech/wavs/LJ013-0006.npy +tests/data/ljspeech/wavs/LJ026-0021.wav|tests/data/ljspeech/wavs/LJ026-0021.npy +tests/data/ljspeech/wavs/LJ047-0052.wav|tests/data/ljspeech/wavs/LJ047-0052.npy +tests/data/ljspeech/wavs/LJ044-0031.wav|tests/data/ljspeech/wavs/LJ044-0031.npy +tests/data/ljspeech/wavs/LJ044-0051.wav|tests/data/ljspeech/wavs/LJ044-0051.npy +tests/data/ljspeech/wavs/LJ030-0210.wav|tests/data/ljspeech/wavs/LJ030-0210.npy +tests/data/ljspeech/wavs/LJ040-0083.wav|tests/data/ljspeech/wavs/LJ040-0083.npy +tests/data/ljspeech/wavs/LJ010-0027.wav|tests/data/ljspeech/wavs/LJ010-0027.npy +tests/data/ljspeech/wavs/LJ010-0278.wav|tests/data/ljspeech/wavs/LJ010-0278.npy +tests/data/ljspeech/wavs/LJ015-0307.wav|tests/data/ljspeech/wavs/LJ015-0307.npy +tests/data/ljspeech/wavs/LJ013-0005.wav|tests/data/ljspeech/wavs/LJ013-0005.npy +tests/data/ljspeech/wavs/LJ018-0108.wav|tests/data/ljspeech/wavs/LJ018-0108.npy +tests/data/ljspeech/wavs/LJ032-0172.wav|tests/data/ljspeech/wavs/LJ032-0172.npy +tests/data/ljspeech/wavs/LJ003-0305.wav|tests/data/ljspeech/wavs/LJ003-0305.npy +tests/data/ljspeech/wavs/LJ015-0190.wav|tests/data/ljspeech/wavs/LJ015-0190.npy +tests/data/ljspeech/wavs/LJ009-0128.wav|tests/data/ljspeech/wavs/LJ009-0128.npy +tests/data/ljspeech/wavs/LJ011-0227.wav|tests/data/ljspeech/wavs/LJ011-0227.npy +tests/data/ljspeech/wavs/LJ005-0028.wav|tests/data/ljspeech/wavs/LJ005-0028.npy +tests/data/ljspeech/wavs/LJ010-0268.wav|tests/data/ljspeech/wavs/LJ010-0268.npy +tests/data/ljspeech/wavs/LJ008-0260.wav|tests/data/ljspeech/wavs/LJ008-0260.npy +tests/data/ljspeech/wavs/LJ013-0134.wav|tests/data/ljspeech/wavs/LJ013-0134.npy +tests/data/ljspeech/wavs/LJ015-0294.wav|tests/data/ljspeech/wavs/LJ015-0294.npy +tests/data/ljspeech/wavs/LJ022-0110.wav|tests/data/ljspeech/wavs/LJ022-0110.npy +tests/data/ljspeech/wavs/LJ001-0102.wav|tests/data/ljspeech/wavs/LJ001-0102.npy +tests/data/ljspeech/wavs/LJ005-0148.wav|tests/data/ljspeech/wavs/LJ005-0148.npy +tests/data/ljspeech/wavs/LJ026-0148.wav|tests/data/ljspeech/wavs/LJ026-0148.npy +tests/data/ljspeech/wavs/LJ012-0178.wav|tests/data/ljspeech/wavs/LJ012-0178.npy +tests/data/ljspeech/wavs/LJ050-0214.wav|tests/data/ljspeech/wavs/LJ050-0214.npy +tests/data/ljspeech/wavs/LJ003-0205.wav|tests/data/ljspeech/wavs/LJ003-0205.npy +tests/data/ljspeech/wavs/LJ018-0386.wav|tests/data/ljspeech/wavs/LJ018-0386.npy +tests/data/ljspeech/wavs/LJ018-0290.wav|tests/data/ljspeech/wavs/LJ018-0290.npy +tests/data/ljspeech/wavs/LJ042-0020.wav|tests/data/ljspeech/wavs/LJ042-0020.npy +tests/data/ljspeech/wavs/LJ045-0196.wav|tests/data/ljspeech/wavs/LJ045-0196.npy +tests/data/ljspeech/wavs/LJ046-0166.wav|tests/data/ljspeech/wavs/LJ046-0166.npy +tests/data/ljspeech/wavs/LJ010-0167.wav|tests/data/ljspeech/wavs/LJ010-0167.npy +tests/data/ljspeech/wavs/LJ037-0065.wav|tests/data/ljspeech/wavs/LJ037-0065.npy +tests/data/ljspeech/wavs/LJ046-0190.wav|tests/data/ljspeech/wavs/LJ046-0190.npy +tests/data/ljspeech/wavs/LJ011-0205.wav|tests/data/ljspeech/wavs/LJ011-0205.npy +tests/data/ljspeech/wavs/LJ041-0044.wav|tests/data/ljspeech/wavs/LJ041-0044.npy +tests/data/ljspeech/wavs/LJ016-0334.wav|tests/data/ljspeech/wavs/LJ016-0334.npy +tests/data/ljspeech/wavs/LJ043-0082.wav|tests/data/ljspeech/wavs/LJ043-0082.npy +tests/data/ljspeech/wavs/LJ040-0142.wav|tests/data/ljspeech/wavs/LJ040-0142.npy +tests/data/ljspeech/wavs/LJ028-0503.wav|tests/data/ljspeech/wavs/LJ028-0503.npy +tests/data/ljspeech/wavs/LJ049-0028.wav|tests/data/ljspeech/wavs/LJ049-0028.npy +tests/data/ljspeech/wavs/LJ035-0098.wav|tests/data/ljspeech/wavs/LJ035-0098.npy +tests/data/ljspeech/wavs/LJ006-0163.wav|tests/data/ljspeech/wavs/LJ006-0163.npy +tests/data/ljspeech/wavs/LJ035-0102.wav|tests/data/ljspeech/wavs/LJ035-0102.npy +tests/data/ljspeech/wavs/LJ014-0297.wav|tests/data/ljspeech/wavs/LJ014-0297.npy +tests/data/ljspeech/wavs/LJ003-0268.wav|tests/data/ljspeech/wavs/LJ003-0268.npy +tests/data/ljspeech/wavs/LJ011-0014.wav|tests/data/ljspeech/wavs/LJ011-0014.npy +tests/data/ljspeech/wavs/LJ001-0119.wav|tests/data/ljspeech/wavs/LJ001-0119.npy +tests/data/ljspeech/wavs/LJ006-0111.wav|tests/data/ljspeech/wavs/LJ006-0111.npy +tests/data/ljspeech/wavs/LJ019-0231.wav|tests/data/ljspeech/wavs/LJ019-0231.npy +tests/data/ljspeech/wavs/LJ014-0332.wav|tests/data/ljspeech/wavs/LJ014-0332.npy +tests/data/ljspeech/wavs/LJ002-0161.wav|tests/data/ljspeech/wavs/LJ002-0161.npy +tests/data/ljspeech/wavs/LJ014-0299.wav|tests/data/ljspeech/wavs/LJ014-0299.npy +tests/data/ljspeech/wavs/LJ031-0213.wav|tests/data/ljspeech/wavs/LJ031-0213.npy +tests/data/ljspeech/wavs/LJ019-0317.wav|tests/data/ljspeech/wavs/LJ019-0317.npy +tests/data/ljspeech/wavs/LJ050-0215.wav|tests/data/ljspeech/wavs/LJ050-0215.npy +tests/data/ljspeech/wavs/LJ034-0200.wav|tests/data/ljspeech/wavs/LJ034-0200.npy +tests/data/ljspeech/wavs/LJ016-0293.wav|tests/data/ljspeech/wavs/LJ016-0293.npy +tests/data/ljspeech/wavs/LJ006-0034.wav|tests/data/ljspeech/wavs/LJ006-0034.npy +tests/data/ljspeech/wavs/LJ035-0087.wav|tests/data/ljspeech/wavs/LJ035-0087.npy +tests/data/ljspeech/wavs/LJ036-0167.wav|tests/data/ljspeech/wavs/LJ036-0167.npy +tests/data/ljspeech/wavs/LJ017-0159.wav|tests/data/ljspeech/wavs/LJ017-0159.npy +tests/data/ljspeech/wavs/LJ035-0010.wav|tests/data/ljspeech/wavs/LJ035-0010.npy +tests/data/ljspeech/wavs/LJ025-0140.wav|tests/data/ljspeech/wavs/LJ025-0140.npy +tests/data/ljspeech/wavs/LJ018-0228.wav|tests/data/ljspeech/wavs/LJ018-0228.npy +tests/data/ljspeech/wavs/LJ017-0145.wav|tests/data/ljspeech/wavs/LJ017-0145.npy +tests/data/ljspeech/wavs/LJ017-0284.wav|tests/data/ljspeech/wavs/LJ017-0284.npy +tests/data/ljspeech/wavs/LJ002-0184.wav|tests/data/ljspeech/wavs/LJ002-0184.npy +tests/data/ljspeech/wavs/LJ019-0064.wav|tests/data/ljspeech/wavs/LJ019-0064.npy +tests/data/ljspeech/wavs/LJ025-0132.wav|tests/data/ljspeech/wavs/LJ025-0132.npy +tests/data/ljspeech/wavs/LJ041-0064.wav|tests/data/ljspeech/wavs/LJ041-0064.npy +tests/data/ljspeech/wavs/LJ042-0226.wav|tests/data/ljspeech/wavs/LJ042-0226.npy +tests/data/ljspeech/wavs/LJ003-0222.wav|tests/data/ljspeech/wavs/LJ003-0222.npy +tests/data/ljspeech/wavs/LJ004-0189.wav|tests/data/ljspeech/wavs/LJ004-0189.npy +tests/data/ljspeech/wavs/LJ022-0186.wav|tests/data/ljspeech/wavs/LJ022-0186.npy +tests/data/ljspeech/wavs/LJ009-0278.wav|tests/data/ljspeech/wavs/LJ009-0278.npy +tests/data/ljspeech/wavs/LJ002-0087.wav|tests/data/ljspeech/wavs/LJ002-0087.npy +tests/data/ljspeech/wavs/LJ016-0153.wav|tests/data/ljspeech/wavs/LJ016-0153.npy +tests/data/ljspeech/wavs/LJ028-0415.wav|tests/data/ljspeech/wavs/LJ028-0415.npy +tests/data/ljspeech/wavs/LJ018-0213.wav|tests/data/ljspeech/wavs/LJ018-0213.npy +tests/data/ljspeech/wavs/LJ009-0235.wav|tests/data/ljspeech/wavs/LJ009-0235.npy +tests/data/ljspeech/wavs/LJ001-0136.wav|tests/data/ljspeech/wavs/LJ001-0136.npy +tests/data/ljspeech/wavs/LJ009-0204.wav|tests/data/ljspeech/wavs/LJ009-0204.npy +tests/data/ljspeech/wavs/LJ040-0148.wav|tests/data/ljspeech/wavs/LJ040-0148.npy +tests/data/ljspeech/wavs/LJ043-0157.wav|tests/data/ljspeech/wavs/LJ043-0157.npy +tests/data/ljspeech/wavs/LJ025-0145.wav|tests/data/ljspeech/wavs/LJ025-0145.npy +tests/data/ljspeech/wavs/LJ010-0196.wav|tests/data/ljspeech/wavs/LJ010-0196.npy +tests/data/ljspeech/wavs/LJ019-0308.wav|tests/data/ljspeech/wavs/LJ019-0308.npy +tests/data/ljspeech/wavs/LJ018-0153.wav|tests/data/ljspeech/wavs/LJ018-0153.npy +tests/data/ljspeech/wavs/LJ026-0072.wav|tests/data/ljspeech/wavs/LJ026-0072.npy +tests/data/ljspeech/wavs/LJ035-0121.wav|tests/data/ljspeech/wavs/LJ035-0121.npy +tests/data/ljspeech/wavs/LJ002-0001.wav|tests/data/ljspeech/wavs/LJ002-0001.npy +tests/data/ljspeech/wavs/LJ018-0173.wav|tests/data/ljspeech/wavs/LJ018-0173.npy +tests/data/ljspeech/wavs/LJ047-0038.wav|tests/data/ljspeech/wavs/LJ047-0038.npy +tests/data/ljspeech/wavs/LJ002-0113.wav|tests/data/ljspeech/wavs/LJ002-0113.npy +tests/data/ljspeech/wavs/LJ005-0202.wav|tests/data/ljspeech/wavs/LJ005-0202.npy +tests/data/ljspeech/wavs/LJ020-0013.wav|tests/data/ljspeech/wavs/LJ020-0013.npy +tests/data/ljspeech/wavs/LJ026-0140.wav|tests/data/ljspeech/wavs/LJ026-0140.npy +tests/data/ljspeech/wavs/LJ019-0145.wav|tests/data/ljspeech/wavs/LJ019-0145.npy +tests/data/ljspeech/wavs/LJ047-0082.wav|tests/data/ljspeech/wavs/LJ047-0082.npy +tests/data/ljspeech/wavs/LJ019-0135.wav|tests/data/ljspeech/wavs/LJ019-0135.npy +tests/data/ljspeech/wavs/LJ046-0122.wav|tests/data/ljspeech/wavs/LJ046-0122.npy +tests/data/ljspeech/wavs/LJ034-0153.wav|tests/data/ljspeech/wavs/LJ034-0153.npy +tests/data/ljspeech/wavs/LJ036-0082.wav|tests/data/ljspeech/wavs/LJ036-0082.npy +tests/data/ljspeech/wavs/LJ049-0021.wav|tests/data/ljspeech/wavs/LJ049-0021.npy +tests/data/ljspeech/wavs/LJ035-0058.wav|tests/data/ljspeech/wavs/LJ035-0058.npy +tests/data/ljspeech/wavs/LJ010-0089.wav|tests/data/ljspeech/wavs/LJ010-0089.npy +tests/data/ljspeech/wavs/LJ025-0148.wav|tests/data/ljspeech/wavs/LJ025-0148.npy +tests/data/ljspeech/wavs/LJ047-0216.wav|tests/data/ljspeech/wavs/LJ047-0216.npy +tests/data/ljspeech/wavs/LJ010-0130.wav|tests/data/ljspeech/wavs/LJ010-0130.npy +tests/data/ljspeech/wavs/LJ019-0331.wav|tests/data/ljspeech/wavs/LJ019-0331.npy +tests/data/ljspeech/wavs/LJ008-0278.wav|tests/data/ljspeech/wavs/LJ008-0278.npy +tests/data/ljspeech/wavs/LJ048-0096.wav|tests/data/ljspeech/wavs/LJ048-0096.npy +tests/data/ljspeech/wavs/LJ008-0307.wav|tests/data/ljspeech/wavs/LJ008-0307.npy +tests/data/ljspeech/wavs/LJ021-0097.wav|tests/data/ljspeech/wavs/LJ021-0097.npy +tests/data/ljspeech/wavs/LJ043-0096.wav|tests/data/ljspeech/wavs/LJ043-0096.npy +tests/data/ljspeech/wavs/LJ028-0343.wav|tests/data/ljspeech/wavs/LJ028-0343.npy +tests/data/ljspeech/wavs/LJ046-0099.wav|tests/data/ljspeech/wavs/LJ046-0099.npy +tests/data/ljspeech/wavs/LJ009-0017.wav|tests/data/ljspeech/wavs/LJ009-0017.npy +tests/data/ljspeech/wavs/LJ002-0061.wav|tests/data/ljspeech/wavs/LJ002-0061.npy +tests/data/ljspeech/wavs/LJ028-0476.wav|tests/data/ljspeech/wavs/LJ028-0476.npy +tests/data/ljspeech/wavs/LJ008-0283.wav|tests/data/ljspeech/wavs/LJ008-0283.npy +tests/data/ljspeech/wavs/LJ034-0080.wav|tests/data/ljspeech/wavs/LJ034-0080.npy +tests/data/ljspeech/wavs/LJ012-0089.wav|tests/data/ljspeech/wavs/LJ012-0089.npy +tests/data/ljspeech/wavs/LJ042-0250.wav|tests/data/ljspeech/wavs/LJ042-0250.npy +tests/data/ljspeech/wavs/LJ036-0166.wav|tests/data/ljspeech/wavs/LJ036-0166.npy +tests/data/ljspeech/wavs/LJ043-0010.wav|tests/data/ljspeech/wavs/LJ043-0010.npy +tests/data/ljspeech/wavs/LJ015-0065.wav|tests/data/ljspeech/wavs/LJ015-0065.npy +tests/data/ljspeech/wavs/LJ037-0026.wav|tests/data/ljspeech/wavs/LJ037-0026.npy +tests/data/ljspeech/wavs/LJ003-0176.wav|tests/data/ljspeech/wavs/LJ003-0176.npy +tests/data/ljspeech/wavs/LJ015-0167.wav|tests/data/ljspeech/wavs/LJ015-0167.npy +tests/data/ljspeech/wavs/LJ014-0281.wav|tests/data/ljspeech/wavs/LJ014-0281.npy +tests/data/ljspeech/wavs/LJ003-0109.wav|tests/data/ljspeech/wavs/LJ003-0109.npy +tests/data/ljspeech/wavs/LJ014-0279.wav|tests/data/ljspeech/wavs/LJ014-0279.npy +tests/data/ljspeech/wavs/LJ049-0171.wav|tests/data/ljspeech/wavs/LJ049-0171.npy +tests/data/ljspeech/wavs/LJ015-0131.wav|tests/data/ljspeech/wavs/LJ015-0131.npy +tests/data/ljspeech/wavs/LJ040-0013.wav|tests/data/ljspeech/wavs/LJ040-0013.npy +tests/data/ljspeech/wavs/LJ028-0091.wav|tests/data/ljspeech/wavs/LJ028-0091.npy +tests/data/ljspeech/wavs/LJ015-0211.wav|tests/data/ljspeech/wavs/LJ015-0211.npy +tests/data/ljspeech/wavs/LJ045-0245.wav|tests/data/ljspeech/wavs/LJ045-0245.npy +tests/data/ljspeech/wavs/LJ050-0213.wav|tests/data/ljspeech/wavs/LJ050-0213.npy +tests/data/ljspeech/wavs/LJ043-0012.wav|tests/data/ljspeech/wavs/LJ043-0012.npy +tests/data/ljspeech/wavs/LJ005-0275.wav|tests/data/ljspeech/wavs/LJ005-0275.npy +tests/data/ljspeech/wavs/LJ015-0202.wav|tests/data/ljspeech/wavs/LJ015-0202.npy +tests/data/ljspeech/wavs/LJ044-0026.wav|tests/data/ljspeech/wavs/LJ044-0026.npy +tests/data/ljspeech/wavs/LJ012-0131.wav|tests/data/ljspeech/wavs/LJ012-0131.npy +tests/data/ljspeech/wavs/LJ036-0165.wav|tests/data/ljspeech/wavs/LJ036-0165.npy +tests/data/ljspeech/wavs/LJ044-0006.wav|tests/data/ljspeech/wavs/LJ044-0006.npy +tests/data/ljspeech/wavs/LJ015-0026.wav|tests/data/ljspeech/wavs/LJ015-0026.npy +tests/data/ljspeech/wavs/LJ005-0149.wav|tests/data/ljspeech/wavs/LJ005-0149.npy +tests/data/ljspeech/wavs/LJ039-0149.wav|tests/data/ljspeech/wavs/LJ039-0149.npy +tests/data/ljspeech/wavs/LJ030-0012.wav|tests/data/ljspeech/wavs/LJ030-0012.npy +tests/data/ljspeech/wavs/LJ034-0054.wav|tests/data/ljspeech/wavs/LJ034-0054.npy +tests/data/ljspeech/wavs/LJ030-0069.wav|tests/data/ljspeech/wavs/LJ030-0069.npy +tests/data/ljspeech/wavs/LJ015-0044.wav|tests/data/ljspeech/wavs/LJ015-0044.npy +tests/data/ljspeech/wavs/LJ038-0129.wav|tests/data/ljspeech/wavs/LJ038-0129.npy +tests/data/ljspeech/wavs/LJ044-0050.wav|tests/data/ljspeech/wavs/LJ044-0050.npy +tests/data/ljspeech/wavs/LJ016-0024.wav|tests/data/ljspeech/wavs/LJ016-0024.npy +tests/data/ljspeech/wavs/LJ044-0094.wav|tests/data/ljspeech/wavs/LJ044-0094.npy +tests/data/ljspeech/wavs/LJ037-0149.wav|tests/data/ljspeech/wavs/LJ037-0149.npy +tests/data/ljspeech/wavs/LJ011-0137.wav|tests/data/ljspeech/wavs/LJ011-0137.npy +tests/data/ljspeech/wavs/LJ027-0093.wav|tests/data/ljspeech/wavs/LJ027-0093.npy +tests/data/ljspeech/wavs/LJ049-0210.wav|tests/data/ljspeech/wavs/LJ049-0210.npy +tests/data/ljspeech/wavs/LJ015-0261.wav|tests/data/ljspeech/wavs/LJ015-0261.npy +tests/data/ljspeech/wavs/LJ047-0250.wav|tests/data/ljspeech/wavs/LJ047-0250.npy +tests/data/ljspeech/wavs/LJ008-0067.wav|tests/data/ljspeech/wavs/LJ008-0067.npy +tests/data/ljspeech/wavs/LJ032-0199.wav|tests/data/ljspeech/wavs/LJ032-0199.npy +tests/data/ljspeech/wavs/LJ039-0174.wav|tests/data/ljspeech/wavs/LJ039-0174.npy +tests/data/ljspeech/wavs/LJ027-0179.wav|tests/data/ljspeech/wavs/LJ027-0179.npy +tests/data/ljspeech/wavs/LJ048-0094.wav|tests/data/ljspeech/wavs/LJ048-0094.npy +tests/data/ljspeech/wavs/LJ032-0207.wav|tests/data/ljspeech/wavs/LJ032-0207.npy +tests/data/ljspeech/wavs/LJ017-0068.wav|tests/data/ljspeech/wavs/LJ017-0068.npy +tests/data/ljspeech/wavs/LJ039-0187.wav|tests/data/ljspeech/wavs/LJ039-0187.npy +tests/data/ljspeech/wavs/LJ003-0075.wav|tests/data/ljspeech/wavs/LJ003-0075.npy +tests/data/ljspeech/wavs/LJ032-0115.wav|tests/data/ljspeech/wavs/LJ032-0115.npy +tests/data/ljspeech/wavs/LJ048-0054.wav|tests/data/ljspeech/wavs/LJ048-0054.npy +tests/data/ljspeech/wavs/LJ016-0297.wav|tests/data/ljspeech/wavs/LJ016-0297.npy +tests/data/ljspeech/wavs/LJ003-0002.wav|tests/data/ljspeech/wavs/LJ003-0002.npy +tests/data/ljspeech/wavs/LJ008-0188.wav|tests/data/ljspeech/wavs/LJ008-0188.npy +tests/data/ljspeech/wavs/LJ011-0113.wav|tests/data/ljspeech/wavs/LJ011-0113.npy +tests/data/ljspeech/wavs/LJ016-0229.wav|tests/data/ljspeech/wavs/LJ016-0229.npy +tests/data/ljspeech/wavs/LJ028-0493.wav|tests/data/ljspeech/wavs/LJ028-0493.npy +tests/data/ljspeech/wavs/LJ015-0297.wav|tests/data/ljspeech/wavs/LJ015-0297.npy +tests/data/ljspeech/wavs/LJ031-0229.wav|tests/data/ljspeech/wavs/LJ031-0229.npy +tests/data/ljspeech/wavs/LJ034-0043.wav|tests/data/ljspeech/wavs/LJ034-0043.npy +tests/data/ljspeech/wavs/LJ028-0291.wav|tests/data/ljspeech/wavs/LJ028-0291.npy +tests/data/ljspeech/wavs/LJ028-0127.wav|tests/data/ljspeech/wavs/LJ028-0127.npy +tests/data/ljspeech/wavs/LJ009-0001.wav|tests/data/ljspeech/wavs/LJ009-0001.npy +tests/data/ljspeech/wavs/LJ026-0116.wav|tests/data/ljspeech/wavs/LJ026-0116.npy +tests/data/ljspeech/wavs/LJ014-0181.wav|tests/data/ljspeech/wavs/LJ014-0181.npy +tests/data/ljspeech/wavs/LJ013-0112.wav|tests/data/ljspeech/wavs/LJ013-0112.npy +tests/data/ljspeech/wavs/LJ013-0007.wav|tests/data/ljspeech/wavs/LJ013-0007.npy +tests/data/ljspeech/wavs/LJ038-0269.wav|tests/data/ljspeech/wavs/LJ038-0269.npy +tests/data/ljspeech/wavs/LJ049-0078.wav|tests/data/ljspeech/wavs/LJ049-0078.npy +tests/data/ljspeech/wavs/LJ027-0026.wav|tests/data/ljspeech/wavs/LJ027-0026.npy +tests/data/ljspeech/wavs/LJ010-0316.wav|tests/data/ljspeech/wavs/LJ010-0316.npy +tests/data/ljspeech/wavs/LJ002-0249.wav|tests/data/ljspeech/wavs/LJ002-0249.npy +tests/data/ljspeech/wavs/LJ025-0006.wav|tests/data/ljspeech/wavs/LJ025-0006.npy +tests/data/ljspeech/wavs/LJ045-0035.wav|tests/data/ljspeech/wavs/LJ045-0035.npy +tests/data/ljspeech/wavs/LJ016-0133.wav|tests/data/ljspeech/wavs/LJ016-0133.npy +tests/data/ljspeech/wavs/LJ014-0159.wav|tests/data/ljspeech/wavs/LJ014-0159.npy +tests/data/ljspeech/wavs/LJ028-0190.wav|tests/data/ljspeech/wavs/LJ028-0190.npy +tests/data/ljspeech/wavs/LJ037-0028.wav|tests/data/ljspeech/wavs/LJ037-0028.npy +tests/data/ljspeech/wavs/LJ005-0292.wav|tests/data/ljspeech/wavs/LJ005-0292.npy +tests/data/ljspeech/wavs/LJ013-0198.wav|tests/data/ljspeech/wavs/LJ013-0198.npy +tests/data/ljspeech/wavs/LJ003-0254.wav|tests/data/ljspeech/wavs/LJ003-0254.npy +tests/data/ljspeech/wavs/LJ008-0046.wav|tests/data/ljspeech/wavs/LJ008-0046.npy +tests/data/ljspeech/wavs/LJ039-0088.wav|tests/data/ljspeech/wavs/LJ039-0088.npy +tests/data/ljspeech/wavs/LJ013-0224.wav|tests/data/ljspeech/wavs/LJ013-0224.npy +tests/data/ljspeech/wavs/LJ024-0121.wav|tests/data/ljspeech/wavs/LJ024-0121.npy +tests/data/ljspeech/wavs/LJ049-0139.wav|tests/data/ljspeech/wavs/LJ049-0139.npy +tests/data/ljspeech/wavs/LJ013-0241.wav|tests/data/ljspeech/wavs/LJ013-0241.npy +tests/data/ljspeech/wavs/LJ028-0162.wav|tests/data/ljspeech/wavs/LJ028-0162.npy +tests/data/ljspeech/wavs/LJ003-0242.wav|tests/data/ljspeech/wavs/LJ003-0242.npy +tests/data/ljspeech/wavs/LJ003-0198.wav|tests/data/ljspeech/wavs/LJ003-0198.npy +tests/data/ljspeech/wavs/LJ032-0145.wav|tests/data/ljspeech/wavs/LJ032-0145.npy +tests/data/ljspeech/wavs/LJ007-0095.wav|tests/data/ljspeech/wavs/LJ007-0095.npy +tests/data/ljspeech/wavs/LJ012-0289.wav|tests/data/ljspeech/wavs/LJ012-0289.npy +tests/data/ljspeech/wavs/LJ028-0167.wav|tests/data/ljspeech/wavs/LJ028-0167.npy +tests/data/ljspeech/wavs/LJ032-0045.wav|tests/data/ljspeech/wavs/LJ032-0045.npy +tests/data/ljspeech/wavs/LJ034-0112.wav|tests/data/ljspeech/wavs/LJ034-0112.npy +tests/data/ljspeech/wavs/LJ047-0127.wav|tests/data/ljspeech/wavs/LJ047-0127.npy +tests/data/ljspeech/wavs/LJ033-0030.wav|tests/data/ljspeech/wavs/LJ033-0030.npy +tests/data/ljspeech/wavs/LJ008-0001.wav|tests/data/ljspeech/wavs/LJ008-0001.npy +tests/data/ljspeech/wavs/LJ037-0051.wav|tests/data/ljspeech/wavs/LJ037-0051.npy +tests/data/ljspeech/wavs/LJ001-0153.wav|tests/data/ljspeech/wavs/LJ001-0153.npy +tests/data/ljspeech/wavs/LJ036-0030.wav|tests/data/ljspeech/wavs/LJ036-0030.npy +tests/data/ljspeech/wavs/LJ031-0082.wav|tests/data/ljspeech/wavs/LJ031-0082.npy +tests/data/ljspeech/wavs/LJ022-0140.wav|tests/data/ljspeech/wavs/LJ022-0140.npy +tests/data/ljspeech/wavs/LJ007-0064.wav|tests/data/ljspeech/wavs/LJ007-0064.npy +tests/data/ljspeech/wavs/LJ021-0140.wav|tests/data/ljspeech/wavs/LJ021-0140.npy +tests/data/ljspeech/wavs/LJ050-0072.wav|tests/data/ljspeech/wavs/LJ050-0072.npy +tests/data/ljspeech/wavs/LJ025-0096.wav|tests/data/ljspeech/wavs/LJ025-0096.npy +tests/data/ljspeech/wavs/LJ048-0159.wav|tests/data/ljspeech/wavs/LJ048-0159.npy +tests/data/ljspeech/wavs/LJ025-0056.wav|tests/data/ljspeech/wavs/LJ025-0056.npy +tests/data/ljspeech/wavs/LJ006-0161.wav|tests/data/ljspeech/wavs/LJ006-0161.npy +tests/data/ljspeech/wavs/LJ013-0046.wav|tests/data/ljspeech/wavs/LJ013-0046.npy +tests/data/ljspeech/wavs/LJ004-0067.wav|tests/data/ljspeech/wavs/LJ004-0067.npy +tests/data/ljspeech/wavs/LJ050-0159.wav|tests/data/ljspeech/wavs/LJ050-0159.npy +tests/data/ljspeech/wavs/LJ027-0129.wav|tests/data/ljspeech/wavs/LJ027-0129.npy +tests/data/ljspeech/wavs/LJ013-0245.wav|tests/data/ljspeech/wavs/LJ013-0245.npy +tests/data/ljspeech/wavs/LJ010-0134.wav|tests/data/ljspeech/wavs/LJ010-0134.npy +tests/data/ljspeech/wavs/LJ046-0097.wav|tests/data/ljspeech/wavs/LJ046-0097.npy +tests/data/ljspeech/wavs/LJ008-0003.wav|tests/data/ljspeech/wavs/LJ008-0003.npy +tests/data/ljspeech/wavs/LJ048-0053.wav|tests/data/ljspeech/wavs/LJ048-0053.npy +tests/data/ljspeech/wavs/LJ016-0071.wav|tests/data/ljspeech/wavs/LJ016-0071.npy +tests/data/ljspeech/wavs/LJ049-0133.wav|tests/data/ljspeech/wavs/LJ049-0133.npy +tests/data/ljspeech/wavs/LJ004-0075.wav|tests/data/ljspeech/wavs/LJ004-0075.npy +tests/data/ljspeech/wavs/LJ047-0226.wav|tests/data/ljspeech/wavs/LJ047-0226.npy +tests/data/ljspeech/wavs/LJ016-0044.wav|tests/data/ljspeech/wavs/LJ016-0044.npy +tests/data/ljspeech/wavs/LJ027-0117.wav|tests/data/ljspeech/wavs/LJ027-0117.npy +tests/data/ljspeech/wavs/LJ047-0040.wav|tests/data/ljspeech/wavs/LJ047-0040.npy +tests/data/ljspeech/wavs/LJ032-0149.wav|tests/data/ljspeech/wavs/LJ032-0149.npy +tests/data/ljspeech/wavs/LJ003-0035.wav|tests/data/ljspeech/wavs/LJ003-0035.npy +tests/data/ljspeech/wavs/LJ008-0192.wav|tests/data/ljspeech/wavs/LJ008-0192.npy +tests/data/ljspeech/wavs/LJ007-0242.wav|tests/data/ljspeech/wavs/LJ007-0242.npy +tests/data/ljspeech/wavs/LJ040-0172.wav|tests/data/ljspeech/wavs/LJ040-0172.npy +tests/data/ljspeech/wavs/LJ028-0001.wav|tests/data/ljspeech/wavs/LJ028-0001.npy +tests/data/ljspeech/wavs/LJ049-0120.wav|tests/data/ljspeech/wavs/LJ049-0120.npy +tests/data/ljspeech/wavs/LJ042-0239.wav|tests/data/ljspeech/wavs/LJ042-0239.npy +tests/data/ljspeech/wavs/LJ014-0174.wav|tests/data/ljspeech/wavs/LJ014-0174.npy +tests/data/ljspeech/wavs/LJ025-0031.wav|tests/data/ljspeech/wavs/LJ025-0031.npy +tests/data/ljspeech/wavs/LJ009-0287.wav|tests/data/ljspeech/wavs/LJ009-0287.npy +tests/data/ljspeech/wavs/LJ027-0136.wav|tests/data/ljspeech/wavs/LJ027-0136.npy +tests/data/ljspeech/wavs/LJ021-0025.wav|tests/data/ljspeech/wavs/LJ021-0025.npy +tests/data/ljspeech/wavs/LJ030-0118.wav|tests/data/ljspeech/wavs/LJ030-0118.npy +tests/data/ljspeech/wavs/LJ009-0302.wav|tests/data/ljspeech/wavs/LJ009-0302.npy +tests/data/ljspeech/wavs/LJ019-0310.wav|tests/data/ljspeech/wavs/LJ019-0310.npy +tests/data/ljspeech/wavs/LJ041-0138.wav|tests/data/ljspeech/wavs/LJ041-0138.npy +tests/data/ljspeech/wavs/LJ048-0281.wav|tests/data/ljspeech/wavs/LJ048-0281.npy +tests/data/ljspeech/wavs/LJ008-0115.wav|tests/data/ljspeech/wavs/LJ008-0115.npy +tests/data/ljspeech/wavs/LJ030-0235.wav|tests/data/ljspeech/wavs/LJ030-0235.npy +tests/data/ljspeech/wavs/LJ046-0216.wav|tests/data/ljspeech/wavs/LJ046-0216.npy +tests/data/ljspeech/wavs/LJ014-0295.wav|tests/data/ljspeech/wavs/LJ014-0295.npy +tests/data/ljspeech/wavs/LJ034-0029.wav|tests/data/ljspeech/wavs/LJ034-0029.npy +tests/data/ljspeech/wavs/LJ015-0034.wav|tests/data/ljspeech/wavs/LJ015-0034.npy +tests/data/ljspeech/wavs/LJ035-0044.wav|tests/data/ljspeech/wavs/LJ035-0044.npy +tests/data/ljspeech/wavs/LJ011-0221.wav|tests/data/ljspeech/wavs/LJ011-0221.npy +tests/data/ljspeech/wavs/LJ009-0268.wav|tests/data/ljspeech/wavs/LJ009-0268.npy +tests/data/ljspeech/wavs/LJ046-0186.wav|tests/data/ljspeech/wavs/LJ046-0186.npy +tests/data/ljspeech/wavs/LJ019-0294.wav|tests/data/ljspeech/wavs/LJ019-0294.npy +tests/data/ljspeech/wavs/LJ036-0007.wav|tests/data/ljspeech/wavs/LJ036-0007.npy +tests/data/ljspeech/wavs/LJ003-0141.wav|tests/data/ljspeech/wavs/LJ003-0141.npy +tests/data/ljspeech/wavs/LJ019-0038.wav|tests/data/ljspeech/wavs/LJ019-0038.npy +tests/data/ljspeech/wavs/LJ033-0184.wav|tests/data/ljspeech/wavs/LJ033-0184.npy +tests/data/ljspeech/wavs/LJ032-0132.wav|tests/data/ljspeech/wavs/LJ032-0132.npy +tests/data/ljspeech/wavs/LJ037-0209.wav|tests/data/ljspeech/wavs/LJ037-0209.npy +tests/data/ljspeech/wavs/LJ010-0057.wav|tests/data/ljspeech/wavs/LJ010-0057.npy +tests/data/ljspeech/wavs/LJ003-0083.wav|tests/data/ljspeech/wavs/LJ003-0083.npy +tests/data/ljspeech/wavs/LJ003-0183.wav|tests/data/ljspeech/wavs/LJ003-0183.npy +tests/data/ljspeech/wavs/LJ023-0054.wav|tests/data/ljspeech/wavs/LJ023-0054.npy +tests/data/ljspeech/wavs/LJ003-0114.wav|tests/data/ljspeech/wavs/LJ003-0114.npy +tests/data/ljspeech/wavs/LJ001-0080.wav|tests/data/ljspeech/wavs/LJ001-0080.npy +tests/data/ljspeech/wavs/LJ028-0030.wav|tests/data/ljspeech/wavs/LJ028-0030.npy +tests/data/ljspeech/wavs/LJ006-0303.wav|tests/data/ljspeech/wavs/LJ006-0303.npy +tests/data/ljspeech/wavs/LJ035-0071.wav|tests/data/ljspeech/wavs/LJ035-0071.npy +tests/data/ljspeech/wavs/LJ025-0163.wav|tests/data/ljspeech/wavs/LJ025-0163.npy +tests/data/ljspeech/wavs/LJ037-0214.wav|tests/data/ljspeech/wavs/LJ037-0214.npy +tests/data/ljspeech/wavs/LJ048-0225.wav|tests/data/ljspeech/wavs/LJ048-0225.npy +tests/data/ljspeech/wavs/LJ014-0247.wav|tests/data/ljspeech/wavs/LJ014-0247.npy +tests/data/ljspeech/wavs/LJ009-0032.wav|tests/data/ljspeech/wavs/LJ009-0032.npy +tests/data/ljspeech/wavs/LJ019-0245.wav|tests/data/ljspeech/wavs/LJ019-0245.npy +tests/data/ljspeech/wavs/LJ009-0182.wav|tests/data/ljspeech/wavs/LJ009-0182.npy +tests/data/ljspeech/wavs/LJ009-0085.wav|tests/data/ljspeech/wavs/LJ009-0085.npy +tests/data/ljspeech/wavs/LJ019-0067.wav|tests/data/ljspeech/wavs/LJ019-0067.npy +tests/data/ljspeech/wavs/LJ033-0039.wav|tests/data/ljspeech/wavs/LJ033-0039.npy +tests/data/ljspeech/wavs/LJ015-0215.wav|tests/data/ljspeech/wavs/LJ015-0215.npy +tests/data/ljspeech/wavs/LJ008-0061.wav|tests/data/ljspeech/wavs/LJ008-0061.npy +tests/data/ljspeech/wavs/LJ015-0151.wav|tests/data/ljspeech/wavs/LJ015-0151.npy +tests/data/ljspeech/wavs/LJ015-0231.wav|tests/data/ljspeech/wavs/LJ015-0231.npy +tests/data/ljspeech/wavs/LJ009-0191.wav|tests/data/ljspeech/wavs/LJ009-0191.npy +tests/data/ljspeech/wavs/LJ021-0034.wav|tests/data/ljspeech/wavs/LJ021-0034.npy +tests/data/ljspeech/wavs/LJ003-0092.wav|tests/data/ljspeech/wavs/LJ003-0092.npy +tests/data/ljspeech/wavs/LJ014-0063.wav|tests/data/ljspeech/wavs/LJ014-0063.npy +tests/data/ljspeech/wavs/LJ015-0183.wav|tests/data/ljspeech/wavs/LJ015-0183.npy +tests/data/ljspeech/wavs/LJ011-0022.wav|tests/data/ljspeech/wavs/LJ011-0022.npy +tests/data/ljspeech/wavs/LJ043-0070.wav|tests/data/ljspeech/wavs/LJ043-0070.npy +tests/data/ljspeech/wavs/LJ046-0056.wav|tests/data/ljspeech/wavs/LJ046-0056.npy +tests/data/ljspeech/wavs/LJ044-0188.wav|tests/data/ljspeech/wavs/LJ044-0188.npy +tests/data/ljspeech/wavs/LJ042-0005.wav|tests/data/ljspeech/wavs/LJ042-0005.npy +tests/data/ljspeech/wavs/LJ050-0059.wav|tests/data/ljspeech/wavs/LJ050-0059.npy +tests/data/ljspeech/wavs/LJ047-0104.wav|tests/data/ljspeech/wavs/LJ047-0104.npy +tests/data/ljspeech/wavs/LJ027-0063.wav|tests/data/ljspeech/wavs/LJ027-0063.npy +tests/data/ljspeech/wavs/LJ010-0292.wav|tests/data/ljspeech/wavs/LJ010-0292.npy +tests/data/ljspeech/wavs/LJ033-0018.wav|tests/data/ljspeech/wavs/LJ033-0018.npy +tests/data/ljspeech/wavs/LJ031-0060.wav|tests/data/ljspeech/wavs/LJ031-0060.npy +tests/data/ljspeech/wavs/LJ006-0214.wav|tests/data/ljspeech/wavs/LJ006-0214.npy +tests/data/ljspeech/wavs/LJ027-0085.wav|tests/data/ljspeech/wavs/LJ027-0085.npy +tests/data/ljspeech/wavs/LJ036-0052.wav|tests/data/ljspeech/wavs/LJ036-0052.npy +tests/data/ljspeech/wavs/LJ008-0234.wav|tests/data/ljspeech/wavs/LJ008-0234.npy +tests/data/ljspeech/wavs/LJ032-0263.wav|tests/data/ljspeech/wavs/LJ032-0263.npy +tests/data/ljspeech/wavs/LJ046-0157.wav|tests/data/ljspeech/wavs/LJ046-0157.npy +tests/data/ljspeech/wavs/LJ006-0241.wav|tests/data/ljspeech/wavs/LJ006-0241.npy +tests/data/ljspeech/wavs/LJ049-0050.wav|tests/data/ljspeech/wavs/LJ049-0050.npy +tests/data/ljspeech/wavs/LJ009-0039.wav|tests/data/ljspeech/wavs/LJ009-0039.npy +tests/data/ljspeech/wavs/LJ040-0136.wav|tests/data/ljspeech/wavs/LJ040-0136.npy +tests/data/ljspeech/wavs/LJ040-0045.wav|tests/data/ljspeech/wavs/LJ040-0045.npy +tests/data/ljspeech/wavs/LJ016-0369.wav|tests/data/ljspeech/wavs/LJ016-0369.npy +tests/data/ljspeech/wavs/LJ035-0039.wav|tests/data/ljspeech/wavs/LJ035-0039.npy +tests/data/ljspeech/wavs/LJ017-0061.wav|tests/data/ljspeech/wavs/LJ017-0061.npy +tests/data/ljspeech/wavs/LJ049-0039.wav|tests/data/ljspeech/wavs/LJ049-0039.npy +tests/data/ljspeech/wavs/LJ027-0044.wav|tests/data/ljspeech/wavs/LJ027-0044.npy +tests/data/ljspeech/wavs/LJ019-0349.wav|tests/data/ljspeech/wavs/LJ019-0349.npy +tests/data/ljspeech/wavs/LJ028-0338.wav|tests/data/ljspeech/wavs/LJ028-0338.npy +tests/data/ljspeech/wavs/LJ028-0430.wav|tests/data/ljspeech/wavs/LJ028-0430.npy +tests/data/ljspeech/wavs/LJ011-0220.wav|tests/data/ljspeech/wavs/LJ011-0220.npy +tests/data/ljspeech/wavs/LJ018-0167.wav|tests/data/ljspeech/wavs/LJ018-0167.npy +tests/data/ljspeech/wavs/LJ013-0012.wav|tests/data/ljspeech/wavs/LJ013-0012.npy +tests/data/ljspeech/wavs/LJ001-0091.wav|tests/data/ljspeech/wavs/LJ001-0091.npy +tests/data/ljspeech/wavs/LJ026-0019.wav|tests/data/ljspeech/wavs/LJ026-0019.npy +tests/data/ljspeech/wavs/LJ022-0184.wav|tests/data/ljspeech/wavs/LJ022-0184.npy +tests/data/ljspeech/wavs/LJ017-0153.wav|tests/data/ljspeech/wavs/LJ017-0153.npy +tests/data/ljspeech/wavs/LJ016-0068.wav|tests/data/ljspeech/wavs/LJ016-0068.npy +tests/data/ljspeech/wavs/LJ015-0295.wav|tests/data/ljspeech/wavs/LJ015-0295.npy +tests/data/ljspeech/wavs/LJ050-0154.wav|tests/data/ljspeech/wavs/LJ050-0154.npy +tests/data/ljspeech/wavs/LJ006-0112.wav|tests/data/ljspeech/wavs/LJ006-0112.npy +tests/data/ljspeech/wavs/LJ041-0022.wav|tests/data/ljspeech/wavs/LJ041-0022.npy +tests/data/ljspeech/wavs/LJ046-0082.wav|tests/data/ljspeech/wavs/LJ046-0082.npy +tests/data/ljspeech/wavs/LJ006-0259.wav|tests/data/ljspeech/wavs/LJ006-0259.npy +tests/data/ljspeech/wavs/LJ034-0076.wav|tests/data/ljspeech/wavs/LJ034-0076.npy +tests/data/ljspeech/wavs/LJ039-0214.wav|tests/data/ljspeech/wavs/LJ039-0214.npy +tests/data/ljspeech/wavs/LJ007-0091.wav|tests/data/ljspeech/wavs/LJ007-0091.npy +tests/data/ljspeech/wavs/LJ030-0066.wav|tests/data/ljspeech/wavs/LJ030-0066.npy +tests/data/ljspeech/wavs/LJ041-0056.wav|tests/data/ljspeech/wavs/LJ041-0056.npy +tests/data/ljspeech/wavs/LJ003-0042.wav|tests/data/ljspeech/wavs/LJ003-0042.npy +tests/data/ljspeech/wavs/LJ001-0138.wav|tests/data/ljspeech/wavs/LJ001-0138.npy +tests/data/ljspeech/wavs/LJ020-0097.wav|tests/data/ljspeech/wavs/LJ020-0097.npy +tests/data/ljspeech/wavs/LJ039-0217.wav|tests/data/ljspeech/wavs/LJ039-0217.npy +tests/data/ljspeech/wavs/LJ017-0218.wav|tests/data/ljspeech/wavs/LJ017-0218.npy +tests/data/ljspeech/wavs/LJ032-0042.wav|tests/data/ljspeech/wavs/LJ032-0042.npy +tests/data/ljspeech/wavs/LJ011-0284.wav|tests/data/ljspeech/wavs/LJ011-0284.npy +tests/data/ljspeech/wavs/LJ002-0315.wav|tests/data/ljspeech/wavs/LJ002-0315.npy +tests/data/ljspeech/wavs/LJ049-0132.wav|tests/data/ljspeech/wavs/LJ049-0132.npy +tests/data/ljspeech/wavs/LJ009-0038.wav|tests/data/ljspeech/wavs/LJ009-0038.npy +tests/data/ljspeech/wavs/LJ003-0049.wav|tests/data/ljspeech/wavs/LJ003-0049.npy +tests/data/ljspeech/wavs/LJ028-0146.wav|tests/data/ljspeech/wavs/LJ028-0146.npy +tests/data/ljspeech/wavs/LJ005-0044.wav|tests/data/ljspeech/wavs/LJ005-0044.npy +tests/data/ljspeech/wavs/LJ007-0025.wav|tests/data/ljspeech/wavs/LJ007-0025.npy +tests/data/ljspeech/wavs/LJ043-0180.wav|tests/data/ljspeech/wavs/LJ043-0180.npy +tests/data/ljspeech/wavs/LJ037-0144.wav|tests/data/ljspeech/wavs/LJ037-0144.npy +tests/data/ljspeech/wavs/LJ041-0203.wav|tests/data/ljspeech/wavs/LJ041-0203.npy +tests/data/ljspeech/wavs/LJ019-0270.wav|tests/data/ljspeech/wavs/LJ019-0270.npy +tests/data/ljspeech/wavs/LJ026-0165.wav|tests/data/ljspeech/wavs/LJ026-0165.npy +tests/data/ljspeech/wavs/LJ044-0023.wav|tests/data/ljspeech/wavs/LJ044-0023.npy +tests/data/ljspeech/wavs/LJ048-0075.wav|tests/data/ljspeech/wavs/LJ048-0075.npy +tests/data/ljspeech/wavs/LJ025-0026.wav|tests/data/ljspeech/wavs/LJ025-0026.npy +tests/data/ljspeech/wavs/LJ028-0483.wav|tests/data/ljspeech/wavs/LJ028-0483.npy +tests/data/ljspeech/wavs/LJ001-0047.wav|tests/data/ljspeech/wavs/LJ001-0047.npy +tests/data/ljspeech/wavs/LJ025-0025.wav|tests/data/ljspeech/wavs/LJ025-0025.npy +tests/data/ljspeech/wavs/LJ026-0057.wav|tests/data/ljspeech/wavs/LJ026-0057.npy +tests/data/ljspeech/wavs/LJ021-0098.wav|tests/data/ljspeech/wavs/LJ021-0098.npy +tests/data/ljspeech/wavs/LJ019-0343.wav|tests/data/ljspeech/wavs/LJ019-0343.npy +tests/data/ljspeech/wavs/LJ004-0097.wav|tests/data/ljspeech/wavs/LJ004-0097.npy +tests/data/ljspeech/wavs/LJ006-0263.wav|tests/data/ljspeech/wavs/LJ006-0263.npy +tests/data/ljspeech/wavs/LJ006-0039.wav|tests/data/ljspeech/wavs/LJ006-0039.npy +tests/data/ljspeech/wavs/LJ014-0229.wav|tests/data/ljspeech/wavs/LJ014-0229.npy +tests/data/ljspeech/wavs/LJ015-0259.wav|tests/data/ljspeech/wavs/LJ015-0259.npy +tests/data/ljspeech/wavs/LJ042-0152.wav|tests/data/ljspeech/wavs/LJ042-0152.npy +tests/data/ljspeech/wavs/LJ031-0043.wav|tests/data/ljspeech/wavs/LJ031-0043.npy +tests/data/ljspeech/wavs/LJ041-0154.wav|tests/data/ljspeech/wavs/LJ041-0154.npy +tests/data/ljspeech/wavs/LJ029-0051.wav|tests/data/ljspeech/wavs/LJ029-0051.npy +tests/data/ljspeech/wavs/LJ018-0126.wav|tests/data/ljspeech/wavs/LJ018-0126.npy +tests/data/ljspeech/wavs/LJ004-0148.wav|tests/data/ljspeech/wavs/LJ004-0148.npy +tests/data/ljspeech/wavs/LJ005-0084.wav|tests/data/ljspeech/wavs/LJ005-0084.npy +tests/data/ljspeech/wavs/LJ021-0128.wav|tests/data/ljspeech/wavs/LJ021-0128.npy +tests/data/ljspeech/wavs/LJ047-0075.wav|tests/data/ljspeech/wavs/LJ047-0075.npy +tests/data/ljspeech/wavs/LJ035-0078.wav|tests/data/ljspeech/wavs/LJ035-0078.npy +tests/data/ljspeech/wavs/LJ018-0334.wav|tests/data/ljspeech/wavs/LJ018-0334.npy +tests/data/ljspeech/wavs/LJ012-0212.wav|tests/data/ljspeech/wavs/LJ012-0212.npy +tests/data/ljspeech/wavs/LJ011-0256.wav|tests/data/ljspeech/wavs/LJ011-0256.npy +tests/data/ljspeech/wavs/LJ016-0212.wav|tests/data/ljspeech/wavs/LJ016-0212.npy +tests/data/ljspeech/wavs/LJ044-0222.wav|tests/data/ljspeech/wavs/LJ044-0222.npy +tests/data/ljspeech/wavs/LJ032-0027.wav|tests/data/ljspeech/wavs/LJ032-0027.npy +tests/data/ljspeech/wavs/LJ050-0177.wav|tests/data/ljspeech/wavs/LJ050-0177.npy +tests/data/ljspeech/wavs/LJ039-0137.wav|tests/data/ljspeech/wavs/LJ039-0137.npy +tests/data/ljspeech/wavs/LJ012-0092.wav|tests/data/ljspeech/wavs/LJ012-0092.npy +tests/data/ljspeech/wavs/LJ037-0012.wav|tests/data/ljspeech/wavs/LJ037-0012.npy +tests/data/ljspeech/wavs/LJ034-0188.wav|tests/data/ljspeech/wavs/LJ034-0188.npy +tests/data/ljspeech/wavs/LJ004-0111.wav|tests/data/ljspeech/wavs/LJ004-0111.npy +tests/data/ljspeech/wavs/LJ002-0331.wav|tests/data/ljspeech/wavs/LJ002-0331.npy +tests/data/ljspeech/wavs/LJ049-0052.wav|tests/data/ljspeech/wavs/LJ049-0052.npy +tests/data/ljspeech/wavs/LJ013-0126.wav|tests/data/ljspeech/wavs/LJ013-0126.npy +tests/data/ljspeech/wavs/LJ001-0118.wav|tests/data/ljspeech/wavs/LJ001-0118.npy +tests/data/ljspeech/wavs/LJ033-0168.wav|tests/data/ljspeech/wavs/LJ033-0168.npy +tests/data/ljspeech/wavs/LJ008-0273.wav|tests/data/ljspeech/wavs/LJ008-0273.npy +tests/data/ljspeech/wavs/LJ008-0138.wav|tests/data/ljspeech/wavs/LJ008-0138.npy +tests/data/ljspeech/wavs/LJ031-0130.wav|tests/data/ljspeech/wavs/LJ031-0130.npy +tests/data/ljspeech/wavs/LJ008-0017.wav|tests/data/ljspeech/wavs/LJ008-0017.npy +tests/data/ljspeech/wavs/LJ015-0107.wav|tests/data/ljspeech/wavs/LJ015-0107.npy +tests/data/ljspeech/wavs/LJ048-0082.wav|tests/data/ljspeech/wavs/LJ048-0082.npy +tests/data/ljspeech/wavs/LJ039-0019.wav|tests/data/ljspeech/wavs/LJ039-0019.npy +tests/data/ljspeech/wavs/LJ029-0100.wav|tests/data/ljspeech/wavs/LJ029-0100.npy +tests/data/ljspeech/wavs/LJ028-0359.wav|tests/data/ljspeech/wavs/LJ028-0359.npy +tests/data/ljspeech/wavs/LJ015-0021.wav|tests/data/ljspeech/wavs/LJ015-0021.npy +tests/data/ljspeech/wavs/LJ028-0067.wav|tests/data/ljspeech/wavs/LJ028-0067.npy +tests/data/ljspeech/wavs/LJ047-0054.wav|tests/data/ljspeech/wavs/LJ047-0054.npy +tests/data/ljspeech/wavs/LJ006-0029.wav|tests/data/ljspeech/wavs/LJ006-0029.npy +tests/data/ljspeech/wavs/LJ010-0178.wav|tests/data/ljspeech/wavs/LJ010-0178.npy +tests/data/ljspeech/wavs/LJ016-0290.wav|tests/data/ljspeech/wavs/LJ016-0290.npy +tests/data/ljspeech/wavs/LJ019-0108.wav|tests/data/ljspeech/wavs/LJ019-0108.npy +tests/data/ljspeech/wavs/LJ001-0108.wav|tests/data/ljspeech/wavs/LJ001-0108.npy +tests/data/ljspeech/wavs/LJ003-0311.wav|tests/data/ljspeech/wavs/LJ003-0311.npy +tests/data/ljspeech/wavs/LJ028-0478.wav|tests/data/ljspeech/wavs/LJ028-0478.npy +tests/data/ljspeech/wavs/LJ032-0035.wav|tests/data/ljspeech/wavs/LJ032-0035.npy +tests/data/ljspeech/wavs/LJ044-0010.wav|tests/data/ljspeech/wavs/LJ044-0010.npy +tests/data/ljspeech/wavs/LJ039-0105.wav|tests/data/ljspeech/wavs/LJ039-0105.npy +tests/data/ljspeech/wavs/LJ028-0425.wav|tests/data/ljspeech/wavs/LJ028-0425.npy +tests/data/ljspeech/wavs/LJ034-0041.wav|tests/data/ljspeech/wavs/LJ034-0041.npy +tests/data/ljspeech/wavs/LJ012-0069.wav|tests/data/ljspeech/wavs/LJ012-0069.npy +tests/data/ljspeech/wavs/LJ045-0242.wav|tests/data/ljspeech/wavs/LJ045-0242.npy +tests/data/ljspeech/wavs/LJ030-0039.wav|tests/data/ljspeech/wavs/LJ030-0039.npy +tests/data/ljspeech/wavs/LJ021-0204.wav|tests/data/ljspeech/wavs/LJ021-0204.npy +tests/data/ljspeech/wavs/LJ050-0123.wav|tests/data/ljspeech/wavs/LJ050-0123.npy +tests/data/ljspeech/wavs/LJ025-0087.wav|tests/data/ljspeech/wavs/LJ025-0087.npy +tests/data/ljspeech/wavs/LJ044-0134.wav|tests/data/ljspeech/wavs/LJ044-0134.npy +tests/data/ljspeech/wavs/LJ046-0016.wav|tests/data/ljspeech/wavs/LJ046-0016.npy +tests/data/ljspeech/wavs/LJ015-0301.wav|tests/data/ljspeech/wavs/LJ015-0301.npy +tests/data/ljspeech/wavs/LJ041-0018.wav|tests/data/ljspeech/wavs/LJ041-0018.npy +tests/data/ljspeech/wavs/LJ030-0070.wav|tests/data/ljspeech/wavs/LJ030-0070.npy +tests/data/ljspeech/wavs/LJ010-0267.wav|tests/data/ljspeech/wavs/LJ010-0267.npy +tests/data/ljspeech/wavs/LJ008-0227.wav|tests/data/ljspeech/wavs/LJ008-0227.npy +tests/data/ljspeech/wavs/LJ042-0032.wav|tests/data/ljspeech/wavs/LJ042-0032.npy +tests/data/ljspeech/wavs/LJ036-0015.wav|tests/data/ljspeech/wavs/LJ036-0015.npy +tests/data/ljspeech/wavs/LJ034-0082.wav|tests/data/ljspeech/wavs/LJ034-0082.npy +tests/data/ljspeech/wavs/LJ024-0113.wav|tests/data/ljspeech/wavs/LJ024-0113.npy +tests/data/ljspeech/wavs/LJ004-0063.wav|tests/data/ljspeech/wavs/LJ004-0063.npy +tests/data/ljspeech/wavs/LJ036-0100.wav|tests/data/ljspeech/wavs/LJ036-0100.npy +tests/data/ljspeech/wavs/LJ022-0035.wav|tests/data/ljspeech/wavs/LJ022-0035.npy +tests/data/ljspeech/wavs/LJ003-0014.wav|tests/data/ljspeech/wavs/LJ003-0014.npy +tests/data/ljspeech/wavs/LJ013-0232.wav|tests/data/ljspeech/wavs/LJ013-0232.npy +tests/data/ljspeech/wavs/LJ013-0195.wav|tests/data/ljspeech/wavs/LJ013-0195.npy +tests/data/ljspeech/wavs/LJ045-0206.wav|tests/data/ljspeech/wavs/LJ045-0206.npy +tests/data/ljspeech/wavs/LJ008-0102.wav|tests/data/ljspeech/wavs/LJ008-0102.npy +tests/data/ljspeech/wavs/LJ007-0123.wav|tests/data/ljspeech/wavs/LJ007-0123.npy +tests/data/ljspeech/wavs/LJ003-0165.wav|tests/data/ljspeech/wavs/LJ003-0165.npy +tests/data/ljspeech/wavs/LJ023-0023.wav|tests/data/ljspeech/wavs/LJ023-0023.npy +tests/data/ljspeech/wavs/LJ040-0066.wav|tests/data/ljspeech/wavs/LJ040-0066.npy +tests/data/ljspeech/wavs/LJ035-0161.wav|tests/data/ljspeech/wavs/LJ035-0161.npy +tests/data/ljspeech/wavs/LJ038-0010.wav|tests/data/ljspeech/wavs/LJ038-0010.npy +tests/data/ljspeech/wavs/LJ015-0311.wav|tests/data/ljspeech/wavs/LJ015-0311.npy +tests/data/ljspeech/wavs/LJ003-0093.wav|tests/data/ljspeech/wavs/LJ003-0093.npy +tests/data/ljspeech/wavs/LJ001-0048.wav|tests/data/ljspeech/wavs/LJ001-0048.npy +tests/data/ljspeech/wavs/LJ021-0051.wav|tests/data/ljspeech/wavs/LJ021-0051.npy +tests/data/ljspeech/wavs/LJ014-0261.wav|tests/data/ljspeech/wavs/LJ014-0261.npy +tests/data/ljspeech/wavs/LJ027-0069.wav|tests/data/ljspeech/wavs/LJ027-0069.npy +tests/data/ljspeech/wavs/LJ031-0048.wav|tests/data/ljspeech/wavs/LJ031-0048.npy +tests/data/ljspeech/wavs/LJ023-0049.wav|tests/data/ljspeech/wavs/LJ023-0049.npy +tests/data/ljspeech/wavs/LJ038-0009.wav|tests/data/ljspeech/wavs/LJ038-0009.npy +tests/data/ljspeech/wavs/LJ028-0240.wav|tests/data/ljspeech/wavs/LJ028-0240.npy +tests/data/ljspeech/wavs/LJ015-0305.wav|tests/data/ljspeech/wavs/LJ015-0305.npy +tests/data/ljspeech/wavs/LJ049-0169.wav|tests/data/ljspeech/wavs/LJ049-0169.npy +tests/data/ljspeech/wavs/LJ004-0214.wav|tests/data/ljspeech/wavs/LJ004-0214.npy +tests/data/ljspeech/wavs/LJ036-0189.wav|tests/data/ljspeech/wavs/LJ036-0189.npy +tests/data/ljspeech/wavs/LJ050-0110.wav|tests/data/ljspeech/wavs/LJ050-0110.npy +tests/data/ljspeech/wavs/LJ001-0064.wav|tests/data/ljspeech/wavs/LJ001-0064.npy +tests/data/ljspeech/wavs/LJ045-0158.wav|tests/data/ljspeech/wavs/LJ045-0158.npy +tests/data/ljspeech/wavs/LJ044-0159.wav|tests/data/ljspeech/wavs/LJ044-0159.npy +tests/data/ljspeech/wavs/LJ015-0003.wav|tests/data/ljspeech/wavs/LJ015-0003.npy +tests/data/ljspeech/wavs/LJ021-0106.wav|tests/data/ljspeech/wavs/LJ021-0106.npy +tests/data/ljspeech/wavs/LJ040-0069.wav|tests/data/ljspeech/wavs/LJ040-0069.npy +tests/data/ljspeech/wavs/LJ005-0198.wav|tests/data/ljspeech/wavs/LJ005-0198.npy +tests/data/ljspeech/wavs/LJ014-0286.wav|tests/data/ljspeech/wavs/LJ014-0286.npy +tests/data/ljspeech/wavs/LJ039-0178.wav|tests/data/ljspeech/wavs/LJ039-0178.npy +tests/data/ljspeech/wavs/LJ004-0212.wav|tests/data/ljspeech/wavs/LJ004-0212.npy +tests/data/ljspeech/wavs/LJ003-0157.wav|tests/data/ljspeech/wavs/LJ003-0157.npy +tests/data/ljspeech/wavs/LJ022-0011.wav|tests/data/ljspeech/wavs/LJ022-0011.npy +tests/data/ljspeech/wavs/LJ009-0069.wav|tests/data/ljspeech/wavs/LJ009-0069.npy +tests/data/ljspeech/wavs/LJ011-0040.wav|tests/data/ljspeech/wavs/LJ011-0040.npy +tests/data/ljspeech/wavs/LJ034-0022.wav|tests/data/ljspeech/wavs/LJ034-0022.npy +tests/data/ljspeech/wavs/LJ011-0063.wav|tests/data/ljspeech/wavs/LJ011-0063.npy +tests/data/ljspeech/wavs/LJ046-0067.wav|tests/data/ljspeech/wavs/LJ046-0067.npy +tests/data/ljspeech/wavs/LJ002-0177.wav|tests/data/ljspeech/wavs/LJ002-0177.npy +tests/data/ljspeech/wavs/LJ046-0198.wav|tests/data/ljspeech/wavs/LJ046-0198.npy +tests/data/ljspeech/wavs/LJ022-0082.wav|tests/data/ljspeech/wavs/LJ022-0082.npy +tests/data/ljspeech/wavs/LJ009-0184.wav|tests/data/ljspeech/wavs/LJ009-0184.npy +tests/data/ljspeech/wavs/LJ050-0147.wav|tests/data/ljspeech/wavs/LJ050-0147.npy +tests/data/ljspeech/wavs/LJ005-0144.wav|tests/data/ljspeech/wavs/LJ005-0144.npy +tests/data/ljspeech/wavs/LJ003-0166.wav|tests/data/ljspeech/wavs/LJ003-0166.npy +tests/data/ljspeech/wavs/LJ011-0102.wav|tests/data/ljspeech/wavs/LJ011-0102.npy +tests/data/ljspeech/wavs/LJ010-0046.wav|tests/data/ljspeech/wavs/LJ010-0046.npy +tests/data/ljspeech/wavs/LJ025-0023.wav|tests/data/ljspeech/wavs/LJ025-0023.npy +tests/data/ljspeech/wavs/LJ025-0044.wav|tests/data/ljspeech/wavs/LJ025-0044.npy +tests/data/ljspeech/wavs/LJ010-0257.wav|tests/data/ljspeech/wavs/LJ010-0257.npy +tests/data/ljspeech/wavs/LJ027-0054.wav|tests/data/ljspeech/wavs/LJ027-0054.npy +tests/data/ljspeech/wavs/LJ041-0052.wav|tests/data/ljspeech/wavs/LJ041-0052.npy +tests/data/ljspeech/wavs/LJ006-0250.wav|tests/data/ljspeech/wavs/LJ006-0250.npy +tests/data/ljspeech/wavs/LJ028-0488.wav|tests/data/ljspeech/wavs/LJ028-0488.npy +tests/data/ljspeech/wavs/LJ030-0064.wav|tests/data/ljspeech/wavs/LJ030-0064.npy +tests/data/ljspeech/wavs/LJ015-0141.wav|tests/data/ljspeech/wavs/LJ015-0141.npy +tests/data/ljspeech/wavs/LJ029-0118.wav|tests/data/ljspeech/wavs/LJ029-0118.npy +tests/data/ljspeech/wavs/LJ039-0051.wav|tests/data/ljspeech/wavs/LJ039-0051.npy +tests/data/ljspeech/wavs/LJ016-0116.wav|tests/data/ljspeech/wavs/LJ016-0116.npy +tests/data/ljspeech/wavs/LJ015-0079.wav|tests/data/ljspeech/wavs/LJ015-0079.npy +tests/data/ljspeech/wavs/LJ003-0089.wav|tests/data/ljspeech/wavs/LJ003-0089.npy +tests/data/ljspeech/wavs/LJ016-0413.wav|tests/data/ljspeech/wavs/LJ016-0413.npy +tests/data/ljspeech/wavs/LJ036-0096.wav|tests/data/ljspeech/wavs/LJ036-0096.npy +tests/data/ljspeech/wavs/LJ012-0172.wav|tests/data/ljspeech/wavs/LJ012-0172.npy +tests/data/ljspeech/wavs/LJ016-0078.wav|tests/data/ljspeech/wavs/LJ016-0078.npy +tests/data/ljspeech/wavs/LJ014-0040.wav|tests/data/ljspeech/wavs/LJ014-0040.npy +tests/data/ljspeech/wavs/LJ033-0139.wav|tests/data/ljspeech/wavs/LJ033-0139.npy +tests/data/ljspeech/wavs/LJ047-0009.wav|tests/data/ljspeech/wavs/LJ047-0009.npy +tests/data/ljspeech/wavs/LJ047-0116.wav|tests/data/ljspeech/wavs/LJ047-0116.npy +tests/data/ljspeech/wavs/LJ032-0217.wav|tests/data/ljspeech/wavs/LJ032-0217.npy +tests/data/ljspeech/wavs/LJ001-0093.wav|tests/data/ljspeech/wavs/LJ001-0093.npy +tests/data/ljspeech/wavs/LJ027-0155.wav|tests/data/ljspeech/wavs/LJ027-0155.npy +tests/data/ljspeech/wavs/LJ025-0143.wav|tests/data/ljspeech/wavs/LJ025-0143.npy +tests/data/ljspeech/wavs/LJ018-0258.wav|tests/data/ljspeech/wavs/LJ018-0258.npy +tests/data/ljspeech/wavs/LJ045-0193.wav|tests/data/ljspeech/wavs/LJ045-0193.npy +tests/data/ljspeech/wavs/LJ013-0032.wav|tests/data/ljspeech/wavs/LJ013-0032.npy +tests/data/ljspeech/wavs/LJ018-0248.wav|tests/data/ljspeech/wavs/LJ018-0248.npy +tests/data/ljspeech/wavs/LJ017-0172.wav|tests/data/ljspeech/wavs/LJ017-0172.npy +tests/data/ljspeech/wavs/LJ016-0209.wav|tests/data/ljspeech/wavs/LJ016-0209.npy +tests/data/ljspeech/wavs/LJ013-0034.wav|tests/data/ljspeech/wavs/LJ013-0034.npy +tests/data/ljspeech/wavs/LJ047-0244.wav|tests/data/ljspeech/wavs/LJ047-0244.npy +tests/data/ljspeech/wavs/LJ017-0243.wav|tests/data/ljspeech/wavs/LJ017-0243.npy +tests/data/ljspeech/wavs/LJ043-0035.wav|tests/data/ljspeech/wavs/LJ043-0035.npy +tests/data/ljspeech/wavs/LJ030-0004.wav|tests/data/ljspeech/wavs/LJ030-0004.npy +tests/data/ljspeech/wavs/LJ047-0098.wav|tests/data/ljspeech/wavs/LJ047-0098.npy +tests/data/ljspeech/wavs/LJ028-0197.wav|tests/data/ljspeech/wavs/LJ028-0197.npy +tests/data/ljspeech/wavs/LJ044-0226.wav|tests/data/ljspeech/wavs/LJ044-0226.npy +tests/data/ljspeech/wavs/LJ005-0123.wav|tests/data/ljspeech/wavs/LJ005-0123.npy +tests/data/ljspeech/wavs/LJ013-0015.wav|tests/data/ljspeech/wavs/LJ013-0015.npy +tests/data/ljspeech/wavs/LJ018-0293.wav|tests/data/ljspeech/wavs/LJ018-0293.npy +tests/data/ljspeech/wavs/LJ039-0233.wav|tests/data/ljspeech/wavs/LJ039-0233.npy +tests/data/ljspeech/wavs/LJ018-0368.wav|tests/data/ljspeech/wavs/LJ018-0368.npy +tests/data/ljspeech/wavs/LJ036-0217.wav|tests/data/ljspeech/wavs/LJ036-0217.npy +tests/data/ljspeech/wavs/LJ009-0165.wav|tests/data/ljspeech/wavs/LJ009-0165.npy +tests/data/ljspeech/wavs/LJ013-0237.wav|tests/data/ljspeech/wavs/LJ013-0237.npy +tests/data/ljspeech/wavs/LJ005-0209.wav|tests/data/ljspeech/wavs/LJ005-0209.npy +tests/data/ljspeech/wavs/LJ019-0363.wav|tests/data/ljspeech/wavs/LJ019-0363.npy +tests/data/ljspeech/wavs/LJ018-0216.wav|tests/data/ljspeech/wavs/LJ018-0216.npy +tests/data/ljspeech/wavs/LJ045-0179.wav|tests/data/ljspeech/wavs/LJ045-0179.npy +tests/data/ljspeech/wavs/LJ017-0211.wav|tests/data/ljspeech/wavs/LJ017-0211.npy +tests/data/ljspeech/wavs/LJ013-0078.wav|tests/data/ljspeech/wavs/LJ013-0078.npy +tests/data/ljspeech/wavs/LJ016-0326.wav|tests/data/ljspeech/wavs/LJ016-0326.npy +tests/data/ljspeech/wavs/LJ042-0095.wav|tests/data/ljspeech/wavs/LJ042-0095.npy +tests/data/ljspeech/wavs/LJ038-0302.wav|tests/data/ljspeech/wavs/LJ038-0302.npy +tests/data/ljspeech/wavs/LJ026-0004.wav|tests/data/ljspeech/wavs/LJ026-0004.npy +tests/data/ljspeech/wavs/LJ031-0044.wav|tests/data/ljspeech/wavs/LJ031-0044.npy +tests/data/ljspeech/wavs/LJ046-0202.wav|tests/data/ljspeech/wavs/LJ046-0202.npy +tests/data/ljspeech/wavs/LJ044-0102.wav|tests/data/ljspeech/wavs/LJ044-0102.npy +tests/data/ljspeech/wavs/LJ027-0023.wav|tests/data/ljspeech/wavs/LJ027-0023.npy +tests/data/ljspeech/wavs/LJ039-0062.wav|tests/data/ljspeech/wavs/LJ039-0062.npy +tests/data/ljspeech/wavs/LJ013-0160.wav|tests/data/ljspeech/wavs/LJ013-0160.npy +tests/data/ljspeech/wavs/LJ024-0135.wav|tests/data/ljspeech/wavs/LJ024-0135.npy +tests/data/ljspeech/wavs/LJ003-0154.wav|tests/data/ljspeech/wavs/LJ003-0154.npy +tests/data/ljspeech/wavs/LJ047-0155.wav|tests/data/ljspeech/wavs/LJ047-0155.npy +tests/data/ljspeech/wavs/LJ011-0264.wav|tests/data/ljspeech/wavs/LJ011-0264.npy +tests/data/ljspeech/wavs/LJ006-0234.wav|tests/data/ljspeech/wavs/LJ006-0234.npy +tests/data/ljspeech/wavs/LJ012-0271.wav|tests/data/ljspeech/wavs/LJ012-0271.npy +tests/data/ljspeech/wavs/LJ014-0065.wav|tests/data/ljspeech/wavs/LJ014-0065.npy +tests/data/ljspeech/wavs/LJ028-0082.wav|tests/data/ljspeech/wavs/LJ028-0082.npy +tests/data/ljspeech/wavs/LJ013-0180.wav|tests/data/ljspeech/wavs/LJ013-0180.npy +tests/data/ljspeech/wavs/LJ038-0039.wav|tests/data/ljspeech/wavs/LJ038-0039.npy +tests/data/ljspeech/wavs/LJ049-0037.wav|tests/data/ljspeech/wavs/LJ049-0037.npy +tests/data/ljspeech/wavs/LJ048-0061.wav|tests/data/ljspeech/wavs/LJ048-0061.npy +tests/data/ljspeech/wavs/LJ016-0367.wav|tests/data/ljspeech/wavs/LJ016-0367.npy +tests/data/ljspeech/wavs/LJ047-0064.wav|tests/data/ljspeech/wavs/LJ047-0064.npy +tests/data/ljspeech/wavs/LJ028-0263.wav|tests/data/ljspeech/wavs/LJ028-0263.npy +tests/data/ljspeech/wavs/LJ003-0208.wav|tests/data/ljspeech/wavs/LJ003-0208.npy +tests/data/ljspeech/wavs/LJ015-0049.wav|tests/data/ljspeech/wavs/LJ015-0049.npy +tests/data/ljspeech/wavs/LJ029-0007.wav|tests/data/ljspeech/wavs/LJ029-0007.npy +tests/data/ljspeech/wavs/LJ002-0073.wav|tests/data/ljspeech/wavs/LJ002-0073.npy +tests/data/ljspeech/wavs/LJ039-0028.wav|tests/data/ljspeech/wavs/LJ039-0028.npy +tests/data/ljspeech/wavs/LJ013-0051.wav|tests/data/ljspeech/wavs/LJ013-0051.npy +tests/data/ljspeech/wavs/LJ046-0197.wav|tests/data/ljspeech/wavs/LJ046-0197.npy +tests/data/ljspeech/wavs/LJ012-0264.wav|tests/data/ljspeech/wavs/LJ012-0264.npy +tests/data/ljspeech/wavs/LJ041-0045.wav|tests/data/ljspeech/wavs/LJ041-0045.npy +tests/data/ljspeech/wavs/LJ021-0056.wav|tests/data/ljspeech/wavs/LJ021-0056.npy +tests/data/ljspeech/wavs/LJ008-0132.wav|tests/data/ljspeech/wavs/LJ008-0132.npy +tests/data/ljspeech/wavs/LJ028-0225.wav|tests/data/ljspeech/wavs/LJ028-0225.npy +tests/data/ljspeech/wavs/LJ028-0094.wav|tests/data/ljspeech/wavs/LJ028-0094.npy +tests/data/ljspeech/wavs/LJ009-0245.wav|tests/data/ljspeech/wavs/LJ009-0245.npy +tests/data/ljspeech/wavs/LJ044-0126.wav|tests/data/ljspeech/wavs/LJ044-0126.npy +tests/data/ljspeech/wavs/LJ028-0337.wav|tests/data/ljspeech/wavs/LJ028-0337.npy +tests/data/ljspeech/wavs/LJ009-0134.wav|tests/data/ljspeech/wavs/LJ009-0134.npy +tests/data/ljspeech/wavs/LJ032-0119.wav|tests/data/ljspeech/wavs/LJ032-0119.npy +tests/data/ljspeech/wavs/LJ004-0116.wav|tests/data/ljspeech/wavs/LJ004-0116.npy +tests/data/ljspeech/wavs/LJ007-0112.wav|tests/data/ljspeech/wavs/LJ007-0112.npy +tests/data/ljspeech/wavs/LJ003-0152.wav|tests/data/ljspeech/wavs/LJ003-0152.npy +tests/data/ljspeech/wavs/LJ035-0100.wav|tests/data/ljspeech/wavs/LJ035-0100.npy +tests/data/ljspeech/wavs/LJ010-0223.wav|tests/data/ljspeech/wavs/LJ010-0223.npy +tests/data/ljspeech/wavs/LJ014-0135.wav|tests/data/ljspeech/wavs/LJ014-0135.npy +tests/data/ljspeech/wavs/LJ019-0157.wav|tests/data/ljspeech/wavs/LJ019-0157.npy +tests/data/ljspeech/wavs/LJ020-0055.wav|tests/data/ljspeech/wavs/LJ020-0055.npy +tests/data/ljspeech/wavs/LJ030-0199.wav|tests/data/ljspeech/wavs/LJ030-0199.npy +tests/data/ljspeech/wavs/LJ028-0327.wav|tests/data/ljspeech/wavs/LJ028-0327.npy +tests/data/ljspeech/wavs/LJ033-0067.wav|tests/data/ljspeech/wavs/LJ033-0067.npy +tests/data/ljspeech/wavs/LJ013-0185.wav|tests/data/ljspeech/wavs/LJ013-0185.npy +tests/data/ljspeech/wavs/LJ019-0318.wav|tests/data/ljspeech/wavs/LJ019-0318.npy +tests/data/ljspeech/wavs/LJ012-0130.wav|tests/data/ljspeech/wavs/LJ012-0130.npy +tests/data/ljspeech/wavs/LJ012-0219.wav|tests/data/ljspeech/wavs/LJ012-0219.npy +tests/data/ljspeech/wavs/LJ012-0236.wav|tests/data/ljspeech/wavs/LJ012-0236.npy +tests/data/ljspeech/wavs/LJ038-0178.wav|tests/data/ljspeech/wavs/LJ038-0178.npy +tests/data/ljspeech/wavs/LJ048-0242.wav|tests/data/ljspeech/wavs/LJ048-0242.npy +tests/data/ljspeech/wavs/LJ041-0133.wav|tests/data/ljspeech/wavs/LJ041-0133.npy +tests/data/ljspeech/wavs/LJ017-0125.wav|tests/data/ljspeech/wavs/LJ017-0125.npy +tests/data/ljspeech/wavs/LJ033-0080.wav|tests/data/ljspeech/wavs/LJ033-0080.npy +tests/data/ljspeech/wavs/LJ044-0062.wav|tests/data/ljspeech/wavs/LJ044-0062.npy +tests/data/ljspeech/wavs/LJ028-0088.wav|tests/data/ljspeech/wavs/LJ028-0088.npy +tests/data/ljspeech/wavs/LJ022-0041.wav|tests/data/ljspeech/wavs/LJ022-0041.npy +tests/data/ljspeech/wavs/LJ038-0218.wav|tests/data/ljspeech/wavs/LJ038-0218.npy +tests/data/ljspeech/wavs/LJ033-0162.wav|tests/data/ljspeech/wavs/LJ033-0162.npy +tests/data/ljspeech/wavs/LJ048-0097.wav|tests/data/ljspeech/wavs/LJ048-0097.npy +tests/data/ljspeech/wavs/LJ029-0207.wav|tests/data/ljspeech/wavs/LJ029-0207.npy +tests/data/ljspeech/wavs/LJ025-0123.wav|tests/data/ljspeech/wavs/LJ025-0123.npy +tests/data/ljspeech/wavs/LJ012-0221.wav|tests/data/ljspeech/wavs/LJ012-0221.npy +tests/data/ljspeech/wavs/LJ028-0340.wav|tests/data/ljspeech/wavs/LJ028-0340.npy +tests/data/ljspeech/wavs/LJ013-0017.wav|tests/data/ljspeech/wavs/LJ013-0017.npy +tests/data/ljspeech/wavs/LJ005-0102.wav|tests/data/ljspeech/wavs/LJ005-0102.npy +tests/data/ljspeech/wavs/LJ012-0218.wav|tests/data/ljspeech/wavs/LJ012-0218.npy +tests/data/ljspeech/wavs/LJ013-0266.wav|tests/data/ljspeech/wavs/LJ013-0266.npy +tests/data/ljspeech/wavs/LJ046-0068.wav|tests/data/ljspeech/wavs/LJ046-0068.npy +tests/data/ljspeech/wavs/LJ020-0102.wav|tests/data/ljspeech/wavs/LJ020-0102.npy +tests/data/ljspeech/wavs/LJ038-0241.wav|tests/data/ljspeech/wavs/LJ038-0241.npy +tests/data/ljspeech/wavs/LJ003-0209.wav|tests/data/ljspeech/wavs/LJ003-0209.npy +tests/data/ljspeech/wavs/LJ043-0139.wav|tests/data/ljspeech/wavs/LJ043-0139.npy +tests/data/ljspeech/wavs/LJ014-0031.wav|tests/data/ljspeech/wavs/LJ014-0031.npy +tests/data/ljspeech/wavs/LJ032-0111.wav|tests/data/ljspeech/wavs/LJ032-0111.npy +tests/data/ljspeech/wavs/LJ019-0288.wav|tests/data/ljspeech/wavs/LJ019-0288.npy +tests/data/ljspeech/wavs/LJ020-0108.wav|tests/data/ljspeech/wavs/LJ020-0108.npy +tests/data/ljspeech/wavs/LJ018-0037.wav|tests/data/ljspeech/wavs/LJ018-0037.npy +tests/data/ljspeech/wavs/LJ003-0248.wav|tests/data/ljspeech/wavs/LJ003-0248.npy +tests/data/ljspeech/wavs/LJ035-0089.wav|tests/data/ljspeech/wavs/LJ035-0089.npy +tests/data/ljspeech/wavs/LJ001-0131.wav|tests/data/ljspeech/wavs/LJ001-0131.npy +tests/data/ljspeech/wavs/LJ005-0068.wav|tests/data/ljspeech/wavs/LJ005-0068.npy +tests/data/ljspeech/wavs/LJ038-0212.wav|tests/data/ljspeech/wavs/LJ038-0212.npy +tests/data/ljspeech/wavs/LJ032-0043.wav|tests/data/ljspeech/wavs/LJ032-0043.npy +tests/data/ljspeech/wavs/LJ044-0172.wav|tests/data/ljspeech/wavs/LJ044-0172.npy +tests/data/ljspeech/wavs/LJ016-0097.wav|tests/data/ljspeech/wavs/LJ016-0097.npy +tests/data/ljspeech/wavs/LJ050-0118.wav|tests/data/ljspeech/wavs/LJ050-0118.npy +tests/data/ljspeech/wavs/LJ022-0098.wav|tests/data/ljspeech/wavs/LJ022-0098.npy +tests/data/ljspeech/wavs/LJ029-0005.wav|tests/data/ljspeech/wavs/LJ029-0005.npy +tests/data/ljspeech/wavs/LJ049-0065.wav|tests/data/ljspeech/wavs/LJ049-0065.npy +tests/data/ljspeech/wavs/LJ022-0099.wav|tests/data/ljspeech/wavs/LJ022-0099.npy +tests/data/ljspeech/wavs/LJ018-0366.wav|tests/data/ljspeech/wavs/LJ018-0366.npy +tests/data/ljspeech/wavs/LJ038-0032.wav|tests/data/ljspeech/wavs/LJ038-0032.npy +tests/data/ljspeech/wavs/LJ018-0365.wav|tests/data/ljspeech/wavs/LJ018-0365.npy +tests/data/ljspeech/wavs/LJ015-0210.wav|tests/data/ljspeech/wavs/LJ015-0210.npy +tests/data/ljspeech/wavs/LJ047-0010.wav|tests/data/ljspeech/wavs/LJ047-0010.npy +tests/data/ljspeech/wavs/LJ032-0097.wav|tests/data/ljspeech/wavs/LJ032-0097.npy +tests/data/ljspeech/wavs/LJ006-0053.wav|tests/data/ljspeech/wavs/LJ006-0053.npy +tests/data/ljspeech/wavs/LJ022-0149.wav|tests/data/ljspeech/wavs/LJ022-0149.npy +tests/data/ljspeech/wavs/LJ045-0010.wav|tests/data/ljspeech/wavs/LJ045-0010.npy +tests/data/ljspeech/wavs/LJ007-0205.wav|tests/data/ljspeech/wavs/LJ007-0205.npy +tests/data/ljspeech/wavs/LJ008-0228.wav|tests/data/ljspeech/wavs/LJ008-0228.npy +tests/data/ljspeech/wavs/LJ008-0306.wav|tests/data/ljspeech/wavs/LJ008-0306.npy +tests/data/ljspeech/wavs/LJ022-0168.wav|tests/data/ljspeech/wavs/LJ022-0168.npy +tests/data/ljspeech/wavs/LJ008-0304.wav|tests/data/ljspeech/wavs/LJ008-0304.npy +tests/data/ljspeech/wavs/LJ003-0073.wav|tests/data/ljspeech/wavs/LJ003-0073.npy +tests/data/ljspeech/wavs/LJ005-0107.wav|tests/data/ljspeech/wavs/LJ005-0107.npy +tests/data/ljspeech/wavs/LJ028-0494.wav|tests/data/ljspeech/wavs/LJ028-0494.npy +tests/data/ljspeech/wavs/LJ004-0165.wav|tests/data/ljspeech/wavs/LJ004-0165.npy +tests/data/ljspeech/wavs/LJ049-0088.wav|tests/data/ljspeech/wavs/LJ049-0088.npy +tests/data/ljspeech/wavs/LJ030-0071.wav|tests/data/ljspeech/wavs/LJ030-0071.npy +tests/data/ljspeech/wavs/LJ015-0275.wav|tests/data/ljspeech/wavs/LJ015-0275.npy +tests/data/ljspeech/wavs/LJ008-0203.wav|tests/data/ljspeech/wavs/LJ008-0203.npy +tests/data/ljspeech/wavs/LJ034-0127.wav|tests/data/ljspeech/wavs/LJ034-0127.npy +tests/data/ljspeech/wavs/LJ005-0221.wav|tests/data/ljspeech/wavs/LJ005-0221.npy +tests/data/ljspeech/wavs/LJ003-0195.wav|tests/data/ljspeech/wavs/LJ003-0195.npy +tests/data/ljspeech/wavs/LJ035-0198.wav|tests/data/ljspeech/wavs/LJ035-0198.npy +tests/data/ljspeech/wavs/LJ026-0125.wav|tests/data/ljspeech/wavs/LJ026-0125.npy +tests/data/ljspeech/wavs/LJ033-0151.wav|tests/data/ljspeech/wavs/LJ033-0151.npy +tests/data/ljspeech/wavs/LJ016-0155.wav|tests/data/ljspeech/wavs/LJ016-0155.npy +tests/data/ljspeech/wavs/LJ019-0273.wav|tests/data/ljspeech/wavs/LJ019-0273.npy +tests/data/ljspeech/wavs/LJ022-0112.wav|tests/data/ljspeech/wavs/LJ022-0112.npy +tests/data/ljspeech/wavs/LJ006-0153.wav|tests/data/ljspeech/wavs/LJ006-0153.npy +tests/data/ljspeech/wavs/LJ005-0200.wav|tests/data/ljspeech/wavs/LJ005-0200.npy +tests/data/ljspeech/wavs/LJ010-0120.wav|tests/data/ljspeech/wavs/LJ010-0120.npy +tests/data/ljspeech/wavs/LJ004-0023.wav|tests/data/ljspeech/wavs/LJ004-0023.npy +tests/data/ljspeech/wavs/LJ025-0067.wav|tests/data/ljspeech/wavs/LJ025-0067.npy +tests/data/ljspeech/wavs/LJ016-0327.wav|tests/data/ljspeech/wavs/LJ016-0327.npy +tests/data/ljspeech/wavs/LJ011-0197.wav|tests/data/ljspeech/wavs/LJ011-0197.npy +tests/data/ljspeech/wavs/LJ010-0064.wav|tests/data/ljspeech/wavs/LJ010-0064.npy +tests/data/ljspeech/wavs/LJ016-0336.wav|tests/data/ljspeech/wavs/LJ016-0336.npy +tests/data/ljspeech/wavs/LJ033-0023.wav|tests/data/ljspeech/wavs/LJ033-0023.npy +tests/data/ljspeech/wavs/LJ036-0049.wav|tests/data/ljspeech/wavs/LJ036-0049.npy +tests/data/ljspeech/wavs/LJ031-0170.wav|tests/data/ljspeech/wavs/LJ031-0170.npy +tests/data/ljspeech/wavs/LJ037-0108.wav|tests/data/ljspeech/wavs/LJ037-0108.npy +tests/data/ljspeech/wavs/LJ016-0161.wav|tests/data/ljspeech/wavs/LJ016-0161.npy +tests/data/ljspeech/wavs/LJ048-0288.wav|tests/data/ljspeech/wavs/LJ048-0288.npy +tests/data/ljspeech/wavs/LJ043-0149.wav|tests/data/ljspeech/wavs/LJ043-0149.npy +tests/data/ljspeech/wavs/LJ004-0113.wav|tests/data/ljspeech/wavs/LJ004-0113.npy +tests/data/ljspeech/wavs/LJ004-0044.wav|tests/data/ljspeech/wavs/LJ004-0044.npy +tests/data/ljspeech/wavs/LJ005-0071.wav|tests/data/ljspeech/wavs/LJ005-0071.npy +tests/data/ljspeech/wavs/LJ039-0182.wav|tests/data/ljspeech/wavs/LJ039-0182.npy +tests/data/ljspeech/wavs/LJ039-0075.wav|tests/data/ljspeech/wavs/LJ039-0075.npy +tests/data/ljspeech/wavs/LJ010-0116.wav|tests/data/ljspeech/wavs/LJ010-0116.npy +tests/data/ljspeech/wavs/LJ018-0116.wav|tests/data/ljspeech/wavs/LJ018-0116.npy +tests/data/ljspeech/wavs/LJ016-0005.wav|tests/data/ljspeech/wavs/LJ016-0005.npy +tests/data/ljspeech/wavs/LJ006-0133.wav|tests/data/ljspeech/wavs/LJ006-0133.npy +tests/data/ljspeech/wavs/LJ002-0025.wav|tests/data/ljspeech/wavs/LJ002-0025.npy +tests/data/ljspeech/wavs/LJ040-0103.wav|tests/data/ljspeech/wavs/LJ040-0103.npy +tests/data/ljspeech/wavs/LJ026-0104.wav|tests/data/ljspeech/wavs/LJ026-0104.npy +tests/data/ljspeech/wavs/LJ047-0078.wav|tests/data/ljspeech/wavs/LJ047-0078.npy +tests/data/ljspeech/wavs/LJ021-0187.wav|tests/data/ljspeech/wavs/LJ021-0187.npy +tests/data/ljspeech/wavs/LJ050-0202.wav|tests/data/ljspeech/wavs/LJ050-0202.npy +tests/data/ljspeech/wavs/LJ019-0271.wav|tests/data/ljspeech/wavs/LJ019-0271.npy +tests/data/ljspeech/wavs/LJ011-0123.wav|tests/data/ljspeech/wavs/LJ011-0123.npy +tests/data/ljspeech/wavs/LJ004-0091.wav|tests/data/ljspeech/wavs/LJ004-0091.npy +tests/data/ljspeech/wavs/LJ029-0080.wav|tests/data/ljspeech/wavs/LJ029-0080.npy +tests/data/ljspeech/wavs/LJ047-0089.wav|tests/data/ljspeech/wavs/LJ047-0089.npy +tests/data/ljspeech/wavs/LJ016-0039.wav|tests/data/ljspeech/wavs/LJ016-0039.npy +tests/data/ljspeech/wavs/LJ032-0267.wav|tests/data/ljspeech/wavs/LJ032-0267.npy +tests/data/ljspeech/wavs/LJ014-0166.wav|tests/data/ljspeech/wavs/LJ014-0166.npy +tests/data/ljspeech/wavs/LJ037-0094.wav|tests/data/ljspeech/wavs/LJ037-0094.npy +tests/data/ljspeech/wavs/LJ042-0086.wav|tests/data/ljspeech/wavs/LJ042-0086.npy +tests/data/ljspeech/wavs/LJ021-0010.wav|tests/data/ljspeech/wavs/LJ021-0010.npy +tests/data/ljspeech/wavs/LJ018-0144.wav|tests/data/ljspeech/wavs/LJ018-0144.npy +tests/data/ljspeech/wavs/LJ035-0177.wav|tests/data/ljspeech/wavs/LJ035-0177.npy +tests/data/ljspeech/wavs/LJ003-0246.wav|tests/data/ljspeech/wavs/LJ003-0246.npy +tests/data/ljspeech/wavs/LJ020-0106.wav|tests/data/ljspeech/wavs/LJ020-0106.npy +tests/data/ljspeech/wavs/LJ018-0015.wav|tests/data/ljspeech/wavs/LJ018-0015.npy +tests/data/ljspeech/wavs/LJ026-0102.wav|tests/data/ljspeech/wavs/LJ026-0102.npy +tests/data/ljspeech/wavs/LJ006-0260.wav|tests/data/ljspeech/wavs/LJ006-0260.npy +tests/data/ljspeech/wavs/LJ046-0040.wav|tests/data/ljspeech/wavs/LJ046-0040.npy +tests/data/ljspeech/wavs/LJ031-0006.wav|tests/data/ljspeech/wavs/LJ031-0006.npy +tests/data/ljspeech/wavs/LJ039-0184.wav|tests/data/ljspeech/wavs/LJ039-0184.npy +tests/data/ljspeech/wavs/LJ025-0049.wav|tests/data/ljspeech/wavs/LJ025-0049.npy +tests/data/ljspeech/wavs/LJ030-0180.wav|tests/data/ljspeech/wavs/LJ030-0180.npy +tests/data/ljspeech/wavs/LJ016-0186.wav|tests/data/ljspeech/wavs/LJ016-0186.npy +tests/data/ljspeech/wavs/LJ010-0084.wav|tests/data/ljspeech/wavs/LJ010-0084.npy +tests/data/ljspeech/wavs/LJ033-0161.wav|tests/data/ljspeech/wavs/LJ033-0161.npy +tests/data/ljspeech/wavs/LJ047-0058.wav|tests/data/ljspeech/wavs/LJ047-0058.npy +tests/data/ljspeech/wavs/LJ044-0217.wav|tests/data/ljspeech/wavs/LJ044-0217.npy +tests/data/ljspeech/wavs/LJ011-0265.wav|tests/data/ljspeech/wavs/LJ011-0265.npy +tests/data/ljspeech/wavs/LJ038-0181.wav|tests/data/ljspeech/wavs/LJ038-0181.npy +tests/data/ljspeech/wavs/LJ030-0077.wav|tests/data/ljspeech/wavs/LJ030-0077.npy +tests/data/ljspeech/wavs/LJ011-0271.wav|tests/data/ljspeech/wavs/LJ011-0271.npy +tests/data/ljspeech/wavs/LJ040-0067.wav|tests/data/ljspeech/wavs/LJ040-0067.npy +tests/data/ljspeech/wavs/LJ032-0011.wav|tests/data/ljspeech/wavs/LJ032-0011.npy +tests/data/ljspeech/wavs/LJ016-0087.wav|tests/data/ljspeech/wavs/LJ016-0087.npy +tests/data/ljspeech/wavs/LJ013-0263.wav|tests/data/ljspeech/wavs/LJ013-0263.npy +tests/data/ljspeech/wavs/LJ017-0187.wav|tests/data/ljspeech/wavs/LJ017-0187.npy +tests/data/ljspeech/wavs/LJ013-0170.wav|tests/data/ljspeech/wavs/LJ013-0170.npy +tests/data/ljspeech/wavs/LJ001-0030.wav|tests/data/ljspeech/wavs/LJ001-0030.npy +tests/data/ljspeech/wavs/LJ018-0269.wav|tests/data/ljspeech/wavs/LJ018-0269.npy +tests/data/ljspeech/wavs/LJ008-0005.wav|tests/data/ljspeech/wavs/LJ008-0005.npy +tests/data/ljspeech/wavs/LJ039-0084.wav|tests/data/ljspeech/wavs/LJ039-0084.npy +tests/data/ljspeech/wavs/LJ023-0079.wav|tests/data/ljspeech/wavs/LJ023-0079.npy +tests/data/ljspeech/wavs/LJ018-0128.wav|tests/data/ljspeech/wavs/LJ018-0128.npy +tests/data/ljspeech/wavs/LJ014-0110.wav|tests/data/ljspeech/wavs/LJ014-0110.npy +tests/data/ljspeech/wavs/LJ013-0206.wav|tests/data/ljspeech/wavs/LJ013-0206.npy +tests/data/ljspeech/wavs/LJ028-0046.wav|tests/data/ljspeech/wavs/LJ028-0046.npy +tests/data/ljspeech/wavs/LJ029-0141.wav|tests/data/ljspeech/wavs/LJ029-0141.npy +tests/data/ljspeech/wavs/LJ032-0099.wav|tests/data/ljspeech/wavs/LJ032-0099.npy +tests/data/ljspeech/wavs/LJ012-0057.wav|tests/data/ljspeech/wavs/LJ012-0057.npy +tests/data/ljspeech/wavs/LJ018-0151.wav|tests/data/ljspeech/wavs/LJ018-0151.npy +tests/data/ljspeech/wavs/LJ030-0080.wav|tests/data/ljspeech/wavs/LJ030-0080.npy +tests/data/ljspeech/wavs/LJ009-0081.wav|tests/data/ljspeech/wavs/LJ009-0081.npy +tests/data/ljspeech/wavs/LJ015-0142.wav|tests/data/ljspeech/wavs/LJ015-0142.npy +tests/data/ljspeech/wavs/LJ050-0199.wav|tests/data/ljspeech/wavs/LJ050-0199.npy +tests/data/ljspeech/wavs/LJ002-0323.wav|tests/data/ljspeech/wavs/LJ002-0323.npy +tests/data/ljspeech/wavs/LJ021-0003.wav|tests/data/ljspeech/wavs/LJ021-0003.npy +tests/data/ljspeech/wavs/LJ009-0201.wav|tests/data/ljspeech/wavs/LJ009-0201.npy +tests/data/ljspeech/wavs/LJ046-0009.wav|tests/data/ljspeech/wavs/LJ046-0009.npy +tests/data/ljspeech/wavs/LJ043-0143.wav|tests/data/ljspeech/wavs/LJ043-0143.npy +tests/data/ljspeech/wavs/LJ012-0162.wav|tests/data/ljspeech/wavs/LJ012-0162.npy +tests/data/ljspeech/wavs/LJ043-0054.wav|tests/data/ljspeech/wavs/LJ043-0054.npy +tests/data/ljspeech/wavs/LJ031-0121.wav|tests/data/ljspeech/wavs/LJ031-0121.npy +tests/data/ljspeech/wavs/LJ033-0054.wav|tests/data/ljspeech/wavs/LJ033-0054.npy +tests/data/ljspeech/wavs/LJ008-0144.wav|tests/data/ljspeech/wavs/LJ008-0144.npy +tests/data/ljspeech/wavs/LJ021-0064.wav|tests/data/ljspeech/wavs/LJ021-0064.npy +tests/data/ljspeech/wavs/LJ015-0198.wav|tests/data/ljspeech/wavs/LJ015-0198.npy +tests/data/ljspeech/wavs/LJ032-0273.wav|tests/data/ljspeech/wavs/LJ032-0273.npy +tests/data/ljspeech/wavs/LJ032-0224.wav|tests/data/ljspeech/wavs/LJ032-0224.npy +tests/data/ljspeech/wavs/LJ039-0145.wav|tests/data/ljspeech/wavs/LJ039-0145.npy +tests/data/ljspeech/wavs/LJ034-0108.wav|tests/data/ljspeech/wavs/LJ034-0108.npy +tests/data/ljspeech/wavs/LJ018-0011.wav|tests/data/ljspeech/wavs/LJ018-0011.npy +tests/data/ljspeech/wavs/LJ030-0116.wav|tests/data/ljspeech/wavs/LJ030-0116.npy +tests/data/ljspeech/wavs/LJ031-0186.wav|tests/data/ljspeech/wavs/LJ031-0186.npy +tests/data/ljspeech/wavs/LJ004-0237.wav|tests/data/ljspeech/wavs/LJ004-0237.npy +tests/data/ljspeech/wavs/LJ042-0174.wav|tests/data/ljspeech/wavs/LJ042-0174.npy +tests/data/ljspeech/wavs/LJ023-0086.wav|tests/data/ljspeech/wavs/LJ023-0086.npy +tests/data/ljspeech/wavs/LJ015-0273.wav|tests/data/ljspeech/wavs/LJ015-0273.npy +tests/data/ljspeech/wavs/LJ022-0026.wav|tests/data/ljspeech/wavs/LJ022-0026.npy +tests/data/ljspeech/wavs/LJ049-0099.wav|tests/data/ljspeech/wavs/LJ049-0099.npy +tests/data/ljspeech/wavs/LJ025-0089.wav|tests/data/ljspeech/wavs/LJ025-0089.npy +tests/data/ljspeech/wavs/LJ022-0071.wav|tests/data/ljspeech/wavs/LJ022-0071.npy +tests/data/ljspeech/wavs/LJ016-0339.wav|tests/data/ljspeech/wavs/LJ016-0339.npy +tests/data/ljspeech/wavs/LJ015-0212.wav|tests/data/ljspeech/wavs/LJ015-0212.npy +tests/data/ljspeech/wavs/LJ025-0133.wav|tests/data/ljspeech/wavs/LJ025-0133.npy +tests/data/ljspeech/wavs/LJ020-0087.wav|tests/data/ljspeech/wavs/LJ020-0087.npy +tests/data/ljspeech/wavs/LJ039-0248.wav|tests/data/ljspeech/wavs/LJ039-0248.npy +tests/data/ljspeech/wavs/LJ034-0159.wav|tests/data/ljspeech/wavs/LJ034-0159.npy +tests/data/ljspeech/wavs/LJ002-0231.wav|tests/data/ljspeech/wavs/LJ002-0231.npy +tests/data/ljspeech/wavs/LJ032-0226.wav|tests/data/ljspeech/wavs/LJ032-0226.npy +tests/data/ljspeech/wavs/LJ033-0007.wav|tests/data/ljspeech/wavs/LJ033-0007.npy +tests/data/ljspeech/wavs/LJ002-0264.wav|tests/data/ljspeech/wavs/LJ002-0264.npy +tests/data/ljspeech/wavs/LJ008-0019.wav|tests/data/ljspeech/wavs/LJ008-0019.npy +tests/data/ljspeech/wavs/LJ036-0114.wav|tests/data/ljspeech/wavs/LJ036-0114.npy +tests/data/ljspeech/wavs/LJ007-0057.wav|tests/data/ljspeech/wavs/LJ007-0057.npy +tests/data/ljspeech/wavs/LJ014-0241.wav|tests/data/ljspeech/wavs/LJ014-0241.npy +tests/data/ljspeech/wavs/LJ003-0084.wav|tests/data/ljspeech/wavs/LJ003-0084.npy +tests/data/ljspeech/wavs/LJ016-0342.wav|tests/data/ljspeech/wavs/LJ016-0342.npy +tests/data/ljspeech/wavs/LJ011-0226.wav|tests/data/ljspeech/wavs/LJ011-0226.npy +tests/data/ljspeech/wavs/LJ027-0102.wav|tests/data/ljspeech/wavs/LJ027-0102.npy +tests/data/ljspeech/wavs/LJ042-0006.wav|tests/data/ljspeech/wavs/LJ042-0006.npy +tests/data/ljspeech/wavs/LJ037-0114.wav|tests/data/ljspeech/wavs/LJ037-0114.npy +tests/data/ljspeech/wavs/LJ018-0174.wav|tests/data/ljspeech/wavs/LJ018-0174.npy +tests/data/ljspeech/wavs/LJ044-0076.wav|tests/data/ljspeech/wavs/LJ044-0076.npy +tests/data/ljspeech/wavs/LJ015-0298.wav|tests/data/ljspeech/wavs/LJ015-0298.npy +tests/data/ljspeech/wavs/LJ015-0262.wav|tests/data/ljspeech/wavs/LJ015-0262.npy +tests/data/ljspeech/wavs/LJ027-0109.wav|tests/data/ljspeech/wavs/LJ027-0109.npy +tests/data/ljspeech/wavs/LJ045-0120.wav|tests/data/ljspeech/wavs/LJ045-0120.npy +tests/data/ljspeech/wavs/LJ008-0201.wav|tests/data/ljspeech/wavs/LJ008-0201.npy +tests/data/ljspeech/wavs/LJ003-0090.wav|tests/data/ljspeech/wavs/LJ003-0090.npy +tests/data/ljspeech/wavs/LJ041-0007.wav|tests/data/ljspeech/wavs/LJ041-0007.npy +tests/data/ljspeech/wavs/LJ029-0046.wav|tests/data/ljspeech/wavs/LJ029-0046.npy +tests/data/ljspeech/wavs/LJ039-0243.wav|tests/data/ljspeech/wavs/LJ039-0243.npy +tests/data/ljspeech/wavs/LJ010-0281.wav|tests/data/ljspeech/wavs/LJ010-0281.npy +tests/data/ljspeech/wavs/LJ038-0277.wav|tests/data/ljspeech/wavs/LJ038-0277.npy +tests/data/ljspeech/wavs/LJ028-0019.wav|tests/data/ljspeech/wavs/LJ028-0019.npy +tests/data/ljspeech/wavs/LJ020-0009.wav|tests/data/ljspeech/wavs/LJ020-0009.npy +tests/data/ljspeech/wavs/LJ012-0175.wav|tests/data/ljspeech/wavs/LJ012-0175.npy +tests/data/ljspeech/wavs/LJ006-0238.wav|tests/data/ljspeech/wavs/LJ006-0238.npy +tests/data/ljspeech/wavs/LJ043-0176.wav|tests/data/ljspeech/wavs/LJ043-0176.npy +tests/data/ljspeech/wavs/LJ002-0047.wav|tests/data/ljspeech/wavs/LJ002-0047.npy +tests/data/ljspeech/wavs/LJ018-0240.wav|tests/data/ljspeech/wavs/LJ018-0240.npy +tests/data/ljspeech/wavs/LJ039-0236.wav|tests/data/ljspeech/wavs/LJ039-0236.npy +tests/data/ljspeech/wavs/LJ034-0071.wav|tests/data/ljspeech/wavs/LJ034-0071.npy +tests/data/ljspeech/wavs/LJ044-0058.wav|tests/data/ljspeech/wavs/LJ044-0058.npy +tests/data/ljspeech/wavs/LJ033-0086.wav|tests/data/ljspeech/wavs/LJ033-0086.npy +tests/data/ljspeech/wavs/LJ034-0205.wav|tests/data/ljspeech/wavs/LJ034-0205.npy +tests/data/ljspeech/wavs/LJ013-0268.wav|tests/data/ljspeech/wavs/LJ013-0268.npy +tests/data/ljspeech/wavs/LJ031-0215.wav|tests/data/ljspeech/wavs/LJ031-0215.npy +tests/data/ljspeech/wavs/LJ047-0117.wav|tests/data/ljspeech/wavs/LJ047-0117.npy +tests/data/ljspeech/wavs/LJ013-0069.wav|tests/data/ljspeech/wavs/LJ013-0069.npy +tests/data/ljspeech/wavs/LJ018-0233.wav|tests/data/ljspeech/wavs/LJ018-0233.npy +tests/data/ljspeech/wavs/LJ021-0179.wav|tests/data/ljspeech/wavs/LJ021-0179.npy +tests/data/ljspeech/wavs/LJ046-0092.wav|tests/data/ljspeech/wavs/LJ046-0092.npy +tests/data/ljspeech/wavs/LJ028-0138.wav|tests/data/ljspeech/wavs/LJ028-0138.npy +tests/data/ljspeech/wavs/LJ036-0010.wav|tests/data/ljspeech/wavs/LJ036-0010.npy +tests/data/ljspeech/wavs/LJ006-0189.wav|tests/data/ljspeech/wavs/LJ006-0189.npy +tests/data/ljspeech/wavs/LJ050-0262.wav|tests/data/ljspeech/wavs/LJ050-0262.npy +tests/data/ljspeech/wavs/LJ024-0130.wav|tests/data/ljspeech/wavs/LJ024-0130.npy +tests/data/ljspeech/wavs/LJ029-0066.wav|tests/data/ljspeech/wavs/LJ029-0066.npy +tests/data/ljspeech/wavs/LJ041-0085.wav|tests/data/ljspeech/wavs/LJ041-0085.npy +tests/data/ljspeech/wavs/LJ028-0152.wav|tests/data/ljspeech/wavs/LJ028-0152.npy +tests/data/ljspeech/wavs/LJ032-0120.wav|tests/data/ljspeech/wavs/LJ032-0120.npy +tests/data/ljspeech/wavs/LJ003-0261.wav|tests/data/ljspeech/wavs/LJ003-0261.npy +tests/data/ljspeech/wavs/LJ002-0319.wav|tests/data/ljspeech/wavs/LJ002-0319.npy +tests/data/ljspeech/wavs/LJ030-0226.wav|tests/data/ljspeech/wavs/LJ030-0226.npy +tests/data/ljspeech/wavs/LJ008-0038.wav|tests/data/ljspeech/wavs/LJ008-0038.npy +tests/data/ljspeech/wavs/LJ010-0140.wav|tests/data/ljspeech/wavs/LJ010-0140.npy +tests/data/ljspeech/wavs/LJ050-0220.wav|tests/data/ljspeech/wavs/LJ050-0220.npy +tests/data/ljspeech/wavs/LJ009-0106.wav|tests/data/ljspeech/wavs/LJ009-0106.npy +tests/data/ljspeech/wavs/LJ005-0086.wav|tests/data/ljspeech/wavs/LJ005-0086.npy +tests/data/ljspeech/wavs/LJ010-0124.wav|tests/data/ljspeech/wavs/LJ010-0124.npy +tests/data/ljspeech/wavs/LJ038-0289.wav|tests/data/ljspeech/wavs/LJ038-0289.npy +tests/data/ljspeech/wavs/LJ013-0181.wav|tests/data/ljspeech/wavs/LJ013-0181.npy +tests/data/ljspeech/wavs/LJ011-0005.wav|tests/data/ljspeech/wavs/LJ011-0005.npy +tests/data/ljspeech/wavs/LJ017-0111.wav|tests/data/ljspeech/wavs/LJ017-0111.npy +tests/data/ljspeech/wavs/LJ040-0049.wav|tests/data/ljspeech/wavs/LJ040-0049.npy +tests/data/ljspeech/wavs/LJ047-0094.wav|tests/data/ljspeech/wavs/LJ047-0094.npy +tests/data/ljspeech/wavs/LJ039-0097.wav|tests/data/ljspeech/wavs/LJ039-0097.npy +tests/data/ljspeech/wavs/LJ010-0038.wav|tests/data/ljspeech/wavs/LJ010-0038.npy +tests/data/ljspeech/wavs/LJ007-0176.wav|tests/data/ljspeech/wavs/LJ007-0176.npy +tests/data/ljspeech/wavs/LJ018-0103.wav|tests/data/ljspeech/wavs/LJ018-0103.npy +tests/data/ljspeech/wavs/LJ042-0062.wav|tests/data/ljspeech/wavs/LJ042-0062.npy +tests/data/ljspeech/wavs/LJ026-0058.wav|tests/data/ljspeech/wavs/LJ026-0058.npy +tests/data/ljspeech/wavs/LJ003-0174.wav|tests/data/ljspeech/wavs/LJ003-0174.npy +tests/data/ljspeech/wavs/LJ023-0060.wav|tests/data/ljspeech/wavs/LJ023-0060.npy +tests/data/ljspeech/wavs/LJ048-0078.wav|tests/data/ljspeech/wavs/LJ048-0078.npy +tests/data/ljspeech/wavs/LJ047-0166.wav|tests/data/ljspeech/wavs/LJ047-0166.npy +tests/data/ljspeech/wavs/LJ024-0026.wav|tests/data/ljspeech/wavs/LJ024-0026.npy +tests/data/ljspeech/wavs/LJ042-0120.wav|tests/data/ljspeech/wavs/LJ042-0120.npy +tests/data/ljspeech/wavs/LJ006-0174.wav|tests/data/ljspeech/wavs/LJ006-0174.npy +tests/data/ljspeech/wavs/LJ027-0066.wav|tests/data/ljspeech/wavs/LJ027-0066.npy +tests/data/ljspeech/wavs/LJ012-0036.wav|tests/data/ljspeech/wavs/LJ012-0036.npy +tests/data/ljspeech/wavs/LJ019-0233.wav|tests/data/ljspeech/wavs/LJ019-0233.npy +tests/data/ljspeech/wavs/LJ017-0113.wav|tests/data/ljspeech/wavs/LJ017-0113.npy +tests/data/ljspeech/wavs/LJ026-0046.wav|tests/data/ljspeech/wavs/LJ026-0046.npy +tests/data/ljspeech/wavs/LJ040-0033.wav|tests/data/ljspeech/wavs/LJ040-0033.npy +tests/data/ljspeech/wavs/LJ036-0186.wav|tests/data/ljspeech/wavs/LJ036-0186.npy +tests/data/ljspeech/wavs/LJ011-0157.wav|tests/data/ljspeech/wavs/LJ011-0157.npy +tests/data/ljspeech/wavs/LJ003-0282.wav|tests/data/ljspeech/wavs/LJ003-0282.npy +tests/data/ljspeech/wavs/LJ045-0249.wav|tests/data/ljspeech/wavs/LJ045-0249.npy +tests/data/ljspeech/wavs/LJ035-0173.wav|tests/data/ljspeech/wavs/LJ035-0173.npy +tests/data/ljspeech/wavs/LJ017-0006.wav|tests/data/ljspeech/wavs/LJ017-0006.npy +tests/data/ljspeech/wavs/LJ048-0093.wav|tests/data/ljspeech/wavs/LJ048-0093.npy +tests/data/ljspeech/wavs/LJ045-0073.wav|tests/data/ljspeech/wavs/LJ045-0073.npy +tests/data/ljspeech/wavs/LJ012-0166.wav|tests/data/ljspeech/wavs/LJ012-0166.npy +tests/data/ljspeech/wavs/LJ047-0139.wav|tests/data/ljspeech/wavs/LJ047-0139.npy +tests/data/ljspeech/wavs/LJ003-0121.wav|tests/data/ljspeech/wavs/LJ003-0121.npy +tests/data/ljspeech/wavs/LJ026-0034.wav|tests/data/ljspeech/wavs/LJ026-0034.npy +tests/data/ljspeech/wavs/LJ039-0142.wav|tests/data/ljspeech/wavs/LJ039-0142.npy +tests/data/ljspeech/wavs/LJ026-0153.wav|tests/data/ljspeech/wavs/LJ026-0153.npy +tests/data/ljspeech/wavs/LJ006-0295.wav|tests/data/ljspeech/wavs/LJ006-0295.npy +tests/data/ljspeech/wavs/LJ014-0193.wav|tests/data/ljspeech/wavs/LJ014-0193.npy +tests/data/ljspeech/wavs/LJ003-0162.wav|tests/data/ljspeech/wavs/LJ003-0162.npy +tests/data/ljspeech/wavs/LJ015-0022.wav|tests/data/ljspeech/wavs/LJ015-0022.npy +tests/data/ljspeech/wavs/LJ050-0106.wav|tests/data/ljspeech/wavs/LJ050-0106.npy +tests/data/ljspeech/wavs/LJ034-0077.wav|tests/data/ljspeech/wavs/LJ034-0077.npy +tests/data/ljspeech/wavs/LJ015-0150.wav|tests/data/ljspeech/wavs/LJ015-0150.npy +tests/data/ljspeech/wavs/LJ017-0062.wav|tests/data/ljspeech/wavs/LJ017-0062.npy +tests/data/ljspeech/wavs/LJ044-0086.wav|tests/data/ljspeech/wavs/LJ044-0086.npy +tests/data/ljspeech/wavs/LJ005-0150.wav|tests/data/ljspeech/wavs/LJ005-0150.npy +tests/data/ljspeech/wavs/LJ004-0025.wav|tests/data/ljspeech/wavs/LJ004-0025.npy +tests/data/ljspeech/wavs/LJ015-0069.wav|tests/data/ljspeech/wavs/LJ015-0069.npy +tests/data/ljspeech/wavs/LJ021-0060.wav|tests/data/ljspeech/wavs/LJ021-0060.npy +tests/data/ljspeech/wavs/LJ010-0008.wav|tests/data/ljspeech/wavs/LJ010-0008.npy +tests/data/ljspeech/wavs/LJ021-0070.wav|tests/data/ljspeech/wavs/LJ021-0070.npy +tests/data/ljspeech/wavs/LJ016-0072.wav|tests/data/ljspeech/wavs/LJ016-0072.npy +tests/data/ljspeech/wavs/LJ017-0190.wav|tests/data/ljspeech/wavs/LJ017-0190.npy +tests/data/ljspeech/wavs/LJ022-0135.wav|tests/data/ljspeech/wavs/LJ022-0135.npy +tests/data/ljspeech/wavs/LJ028-0059.wav|tests/data/ljspeech/wavs/LJ028-0059.npy +tests/data/ljspeech/wavs/LJ035-0129.wav|tests/data/ljspeech/wavs/LJ035-0129.npy +tests/data/ljspeech/wavs/LJ002-0105.wav|tests/data/ljspeech/wavs/LJ002-0105.npy +tests/data/ljspeech/wavs/LJ021-0210.wav|tests/data/ljspeech/wavs/LJ021-0210.npy +tests/data/ljspeech/wavs/LJ019-0303.wav|tests/data/ljspeech/wavs/LJ019-0303.npy +tests/data/ljspeech/wavs/LJ048-0098.wav|tests/data/ljspeech/wavs/LJ048-0098.npy +tests/data/ljspeech/wavs/LJ025-0108.wav|tests/data/ljspeech/wavs/LJ025-0108.npy +tests/data/ljspeech/wavs/LJ009-0285.wav|tests/data/ljspeech/wavs/LJ009-0285.npy +tests/data/ljspeech/wavs/LJ033-0201.wav|tests/data/ljspeech/wavs/LJ033-0201.npy +tests/data/ljspeech/wavs/LJ050-0224.wav|tests/data/ljspeech/wavs/LJ050-0224.npy +tests/data/ljspeech/wavs/LJ039-0199.wav|tests/data/ljspeech/wavs/LJ039-0199.npy +tests/data/ljspeech/wavs/LJ003-0079.wav|tests/data/ljspeech/wavs/LJ003-0079.npy +tests/data/ljspeech/wavs/LJ037-0141.wav|tests/data/ljspeech/wavs/LJ037-0141.npy +tests/data/ljspeech/wavs/LJ036-0197.wav|tests/data/ljspeech/wavs/LJ036-0197.npy +tests/data/ljspeech/wavs/LJ045-0115.wav|tests/data/ljspeech/wavs/LJ045-0115.npy +tests/data/ljspeech/wavs/LJ031-0218.wav|tests/data/ljspeech/wavs/LJ031-0218.npy +tests/data/ljspeech/wavs/LJ019-0309.wav|tests/data/ljspeech/wavs/LJ019-0309.npy +tests/data/ljspeech/wavs/LJ014-0122.wav|tests/data/ljspeech/wavs/LJ014-0122.npy +tests/data/ljspeech/wavs/LJ036-0132.wav|tests/data/ljspeech/wavs/LJ036-0132.npy +tests/data/ljspeech/wavs/LJ036-0203.wav|tests/data/ljspeech/wavs/LJ036-0203.npy +tests/data/ljspeech/wavs/LJ048-0076.wav|tests/data/ljspeech/wavs/LJ048-0076.npy +tests/data/ljspeech/wavs/LJ021-0111.wav|tests/data/ljspeech/wavs/LJ021-0111.npy +tests/data/ljspeech/wavs/LJ046-0028.wav|tests/data/ljspeech/wavs/LJ046-0028.npy +tests/data/ljspeech/wavs/LJ006-0268.wav|tests/data/ljspeech/wavs/LJ006-0268.npy +tests/data/ljspeech/wavs/LJ002-0306.wav|tests/data/ljspeech/wavs/LJ002-0306.npy +tests/data/ljspeech/wavs/LJ006-0206.wav|tests/data/ljspeech/wavs/LJ006-0206.npy +tests/data/ljspeech/wavs/LJ035-0028.wav|tests/data/ljspeech/wavs/LJ035-0028.npy +tests/data/ljspeech/wavs/LJ028-0131.wav|tests/data/ljspeech/wavs/LJ028-0131.npy +tests/data/ljspeech/wavs/LJ018-0323.wav|tests/data/ljspeech/wavs/LJ018-0323.npy +tests/data/ljspeech/wavs/LJ019-0320.wav|tests/data/ljspeech/wavs/LJ019-0320.npy +tests/data/ljspeech/wavs/LJ041-0043.wav|tests/data/ljspeech/wavs/LJ041-0043.npy +tests/data/ljspeech/wavs/LJ025-0121.wav|tests/data/ljspeech/wavs/LJ025-0121.npy +tests/data/ljspeech/wavs/LJ014-0071.wav|tests/data/ljspeech/wavs/LJ014-0071.npy +tests/data/ljspeech/wavs/LJ050-0257.wav|tests/data/ljspeech/wavs/LJ050-0257.npy +tests/data/ljspeech/wavs/LJ005-0249.wav|tests/data/ljspeech/wavs/LJ005-0249.npy +tests/data/ljspeech/wavs/LJ048-0258.wav|tests/data/ljspeech/wavs/LJ048-0258.npy +tests/data/ljspeech/wavs/LJ037-0132.wav|tests/data/ljspeech/wavs/LJ037-0132.npy +tests/data/ljspeech/wavs/LJ010-0063.wav|tests/data/ljspeech/wavs/LJ010-0063.npy +tests/data/ljspeech/wavs/LJ002-0263.wav|tests/data/ljspeech/wavs/LJ002-0263.npy +tests/data/ljspeech/wavs/LJ035-0205.wav|tests/data/ljspeech/wavs/LJ035-0205.npy +tests/data/ljspeech/wavs/LJ019-0277.wav|tests/data/ljspeech/wavs/LJ019-0277.npy +tests/data/ljspeech/wavs/LJ039-0186.wav|tests/data/ljspeech/wavs/LJ039-0186.npy +tests/data/ljspeech/wavs/LJ005-0250.wav|tests/data/ljspeech/wavs/LJ005-0250.npy +tests/data/ljspeech/wavs/LJ045-0014.wav|tests/data/ljspeech/wavs/LJ045-0014.npy +tests/data/ljspeech/wavs/LJ023-0007.wav|tests/data/ljspeech/wavs/LJ023-0007.npy +tests/data/ljspeech/wavs/LJ031-0055.wav|tests/data/ljspeech/wavs/LJ031-0055.npy +tests/data/ljspeech/wavs/LJ003-0302.wav|tests/data/ljspeech/wavs/LJ003-0302.npy +tests/data/ljspeech/wavs/LJ029-0019.wav|tests/data/ljspeech/wavs/LJ029-0019.npy +tests/data/ljspeech/wavs/LJ024-0084.wav|tests/data/ljspeech/wavs/LJ024-0084.npy +tests/data/ljspeech/wavs/LJ005-0226.wav|tests/data/ljspeech/wavs/LJ005-0226.npy +tests/data/ljspeech/wavs/LJ041-0132.wav|tests/data/ljspeech/wavs/LJ041-0132.npy +tests/data/ljspeech/wavs/LJ001-0036.wav|tests/data/ljspeech/wavs/LJ001-0036.npy +tests/data/ljspeech/wavs/LJ029-0148.wav|tests/data/ljspeech/wavs/LJ029-0148.npy +tests/data/ljspeech/wavs/LJ025-0014.wav|tests/data/ljspeech/wavs/LJ025-0014.npy +tests/data/ljspeech/wavs/LJ005-0258.wav|tests/data/ljspeech/wavs/LJ005-0258.npy +tests/data/ljspeech/wavs/LJ014-0142.wav|tests/data/ljspeech/wavs/LJ014-0142.npy +tests/data/ljspeech/wavs/LJ001-0163.wav|tests/data/ljspeech/wavs/LJ001-0163.npy +tests/data/ljspeech/wavs/LJ041-0184.wav|tests/data/ljspeech/wavs/LJ041-0184.npy +tests/data/ljspeech/wavs/LJ010-0052.wav|tests/data/ljspeech/wavs/LJ010-0052.npy +tests/data/ljspeech/wavs/LJ012-0122.wav|tests/data/ljspeech/wavs/LJ012-0122.npy +tests/data/ljspeech/wavs/LJ037-0111.wav|tests/data/ljspeech/wavs/LJ037-0111.npy +tests/data/ljspeech/wavs/LJ006-0075.wav|tests/data/ljspeech/wavs/LJ006-0075.npy +tests/data/ljspeech/wavs/LJ016-0025.wav|tests/data/ljspeech/wavs/LJ016-0025.npy +tests/data/ljspeech/wavs/LJ011-0288.wav|tests/data/ljspeech/wavs/LJ011-0288.npy +tests/data/ljspeech/wavs/LJ021-0139.wav|tests/data/ljspeech/wavs/LJ021-0139.npy +tests/data/ljspeech/wavs/LJ006-0014.wav|tests/data/ljspeech/wavs/LJ006-0014.npy +tests/data/ljspeech/wavs/LJ030-0036.wav|tests/data/ljspeech/wavs/LJ030-0036.npy +tests/data/ljspeech/wavs/LJ008-0254.wav|tests/data/ljspeech/wavs/LJ008-0254.npy +tests/data/ljspeech/wavs/LJ014-0136.wav|tests/data/ljspeech/wavs/LJ014-0136.npy +tests/data/ljspeech/wavs/LJ021-0071.wav|tests/data/ljspeech/wavs/LJ021-0071.npy +tests/data/ljspeech/wavs/LJ050-0026.wav|tests/data/ljspeech/wavs/LJ050-0026.npy +tests/data/ljspeech/wavs/LJ031-0126.wav|tests/data/ljspeech/wavs/LJ031-0126.npy +tests/data/ljspeech/wavs/LJ031-0046.wav|tests/data/ljspeech/wavs/LJ031-0046.npy +tests/data/ljspeech/wavs/LJ036-0076.wav|tests/data/ljspeech/wavs/LJ036-0076.npy +tests/data/ljspeech/wavs/LJ045-0131.wav|tests/data/ljspeech/wavs/LJ045-0131.npy +tests/data/ljspeech/wavs/LJ031-0210.wav|tests/data/ljspeech/wavs/LJ031-0210.npy +tests/data/ljspeech/wavs/LJ045-0181.wav|tests/data/ljspeech/wavs/LJ045-0181.npy +tests/data/ljspeech/wavs/LJ012-0001.wav|tests/data/ljspeech/wavs/LJ012-0001.npy +tests/data/ljspeech/wavs/LJ047-0154.wav|tests/data/ljspeech/wavs/LJ047-0154.npy +tests/data/ljspeech/wavs/LJ016-0207.wav|tests/data/ljspeech/wavs/LJ016-0207.npy +tests/data/ljspeech/wavs/LJ003-0201.wav|tests/data/ljspeech/wavs/LJ003-0201.npy +tests/data/ljspeech/wavs/LJ006-0162.wav|tests/data/ljspeech/wavs/LJ006-0162.npy +tests/data/ljspeech/wavs/LJ039-0067.wav|tests/data/ljspeech/wavs/LJ039-0067.npy +tests/data/ljspeech/wavs/LJ031-0059.wav|tests/data/ljspeech/wavs/LJ031-0059.npy +tests/data/ljspeech/wavs/LJ014-0215.wav|tests/data/ljspeech/wavs/LJ014-0215.npy +tests/data/ljspeech/wavs/LJ004-0032.wav|tests/data/ljspeech/wavs/LJ004-0032.npy +tests/data/ljspeech/wavs/LJ011-0049.wav|tests/data/ljspeech/wavs/LJ011-0049.npy +tests/data/ljspeech/wavs/LJ003-0196.wav|tests/data/ljspeech/wavs/LJ003-0196.npy +tests/data/ljspeech/wavs/LJ004-0195.wav|tests/data/ljspeech/wavs/LJ004-0195.npy +tests/data/ljspeech/wavs/LJ005-0162.wav|tests/data/ljspeech/wavs/LJ005-0162.npy +tests/data/ljspeech/wavs/LJ003-0024.wav|tests/data/ljspeech/wavs/LJ003-0024.npy +tests/data/ljspeech/wavs/LJ038-0094.wav|tests/data/ljspeech/wavs/LJ038-0094.npy +tests/data/ljspeech/wavs/LJ048-0047.wav|tests/data/ljspeech/wavs/LJ048-0047.npy +tests/data/ljspeech/wavs/LJ040-0164.wav|tests/data/ljspeech/wavs/LJ040-0164.npy +tests/data/ljspeech/wavs/LJ046-0017.wav|tests/data/ljspeech/wavs/LJ046-0017.npy +tests/data/ljspeech/wavs/LJ050-0108.wav|tests/data/ljspeech/wavs/LJ050-0108.npy +tests/data/ljspeech/wavs/LJ037-0154.wav|tests/data/ljspeech/wavs/LJ037-0154.npy +tests/data/ljspeech/wavs/LJ012-0118.wav|tests/data/ljspeech/wavs/LJ012-0118.npy +tests/data/ljspeech/wavs/LJ003-0344.wav|tests/data/ljspeech/wavs/LJ003-0344.npy +tests/data/ljspeech/wavs/LJ018-0149.wav|tests/data/ljspeech/wavs/LJ018-0149.npy +tests/data/ljspeech/wavs/LJ030-0037.wav|tests/data/ljspeech/wavs/LJ030-0037.npy +tests/data/ljspeech/wavs/LJ014-0274.wav|tests/data/ljspeech/wavs/LJ014-0274.npy +tests/data/ljspeech/wavs/LJ035-0115.wav|tests/data/ljspeech/wavs/LJ035-0115.npy +tests/data/ljspeech/wavs/LJ037-0143.wav|tests/data/ljspeech/wavs/LJ037-0143.npy +tests/data/ljspeech/wavs/LJ007-0021.wav|tests/data/ljspeech/wavs/LJ007-0021.npy +tests/data/ljspeech/wavs/LJ037-0255.wav|tests/data/ljspeech/wavs/LJ037-0255.npy +tests/data/ljspeech/wavs/LJ002-0147.wav|tests/data/ljspeech/wavs/LJ002-0147.npy +tests/data/ljspeech/wavs/LJ036-0020.wav|tests/data/ljspeech/wavs/LJ036-0020.npy +tests/data/ljspeech/wavs/LJ036-0036.wav|tests/data/ljspeech/wavs/LJ036-0036.npy +tests/data/ljspeech/wavs/LJ032-0098.wav|tests/data/ljspeech/wavs/LJ032-0098.npy +tests/data/ljspeech/wavs/LJ029-0039.wav|tests/data/ljspeech/wavs/LJ029-0039.npy +tests/data/ljspeech/wavs/LJ033-0024.wav|tests/data/ljspeech/wavs/LJ033-0024.npy +tests/data/ljspeech/wavs/LJ019-0188.wav|tests/data/ljspeech/wavs/LJ019-0188.npy +tests/data/ljspeech/wavs/LJ012-0024.wav|tests/data/ljspeech/wavs/LJ012-0024.npy +tests/data/ljspeech/wavs/LJ010-0170.wav|tests/data/ljspeech/wavs/LJ010-0170.npy +tests/data/ljspeech/wavs/LJ040-0206.wav|tests/data/ljspeech/wavs/LJ040-0206.npy +tests/data/ljspeech/wavs/LJ044-0170.wav|tests/data/ljspeech/wavs/LJ044-0170.npy +tests/data/ljspeech/wavs/LJ015-0105.wav|tests/data/ljspeech/wavs/LJ015-0105.npy +tests/data/ljspeech/wavs/LJ012-0252.wav|tests/data/ljspeech/wavs/LJ012-0252.npy +tests/data/ljspeech/wavs/LJ037-0220.wav|tests/data/ljspeech/wavs/LJ037-0220.npy +tests/data/ljspeech/wavs/LJ012-0053.wav|tests/data/ljspeech/wavs/LJ012-0053.npy +tests/data/ljspeech/wavs/LJ012-0075.wav|tests/data/ljspeech/wavs/LJ012-0075.npy +tests/data/ljspeech/wavs/LJ015-0119.wav|tests/data/ljspeech/wavs/LJ015-0119.npy +tests/data/ljspeech/wavs/LJ050-0181.wav|tests/data/ljspeech/wavs/LJ050-0181.npy +tests/data/ljspeech/wavs/LJ015-0100.wav|tests/data/ljspeech/wavs/LJ015-0100.npy +tests/data/ljspeech/wavs/LJ044-0236.wav|tests/data/ljspeech/wavs/LJ044-0236.npy +tests/data/ljspeech/wavs/LJ036-0042.wav|tests/data/ljspeech/wavs/LJ036-0042.npy +tests/data/ljspeech/wavs/LJ049-0184.wav|tests/data/ljspeech/wavs/LJ049-0184.npy +tests/data/ljspeech/wavs/LJ015-0114.wav|tests/data/ljspeech/wavs/LJ015-0114.npy +tests/data/ljspeech/wavs/LJ010-0164.wav|tests/data/ljspeech/wavs/LJ010-0164.npy +tests/data/ljspeech/wavs/LJ002-0327.wav|tests/data/ljspeech/wavs/LJ002-0327.npy +tests/data/ljspeech/wavs/LJ032-0214.wav|tests/data/ljspeech/wavs/LJ032-0214.npy +tests/data/ljspeech/wavs/LJ028-0025.wav|tests/data/ljspeech/wavs/LJ028-0025.npy +tests/data/ljspeech/wavs/LJ045-0175.wav|tests/data/ljspeech/wavs/LJ045-0175.npy +tests/data/ljspeech/wavs/LJ006-0305.wav|tests/data/ljspeech/wavs/LJ006-0305.npy +tests/data/ljspeech/wavs/LJ036-0033.wav|tests/data/ljspeech/wavs/LJ036-0033.npy +tests/data/ljspeech/wavs/LJ035-0030.wav|tests/data/ljspeech/wavs/LJ035-0030.npy +tests/data/ljspeech/wavs/LJ032-0213.wav|tests/data/ljspeech/wavs/LJ032-0213.npy +tests/data/ljspeech/wavs/LJ011-0001.wav|tests/data/ljspeech/wavs/LJ011-0001.npy +tests/data/ljspeech/wavs/LJ036-0202.wav|tests/data/ljspeech/wavs/LJ036-0202.npy +tests/data/ljspeech/wavs/LJ046-0088.wav|tests/data/ljspeech/wavs/LJ046-0088.npy +tests/data/ljspeech/wavs/LJ004-0115.wav|tests/data/ljspeech/wavs/LJ004-0115.npy +tests/data/ljspeech/wavs/LJ041-0047.wav|tests/data/ljspeech/wavs/LJ041-0047.npy +tests/data/ljspeech/wavs/LJ044-0176.wav|tests/data/ljspeech/wavs/LJ044-0176.npy +tests/data/ljspeech/wavs/LJ047-0217.wav|tests/data/ljspeech/wavs/LJ047-0217.npy +tests/data/ljspeech/wavs/LJ044-0187.wav|tests/data/ljspeech/wavs/LJ044-0187.npy +tests/data/ljspeech/wavs/LJ034-0201.wav|tests/data/ljspeech/wavs/LJ034-0201.npy +tests/data/ljspeech/wavs/LJ003-0306.wav|tests/data/ljspeech/wavs/LJ003-0306.npy +tests/data/ljspeech/wavs/LJ013-0253.wav|tests/data/ljspeech/wavs/LJ013-0253.npy +tests/data/ljspeech/wavs/LJ002-0279.wav|tests/data/ljspeech/wavs/LJ002-0279.npy +tests/data/ljspeech/wavs/LJ011-0110.wav|tests/data/ljspeech/wavs/LJ011-0110.npy +tests/data/ljspeech/wavs/LJ041-0063.wav|tests/data/ljspeech/wavs/LJ041-0063.npy +tests/data/ljspeech/wavs/LJ028-0310.wav|tests/data/ljspeech/wavs/LJ028-0310.npy +tests/data/ljspeech/wavs/LJ009-0185.wav|tests/data/ljspeech/wavs/LJ009-0185.npy +tests/data/ljspeech/wavs/LJ050-0122.wav|tests/data/ljspeech/wavs/LJ050-0122.npy +tests/data/ljspeech/wavs/LJ032-0260.wav|tests/data/ljspeech/wavs/LJ032-0260.npy +tests/data/ljspeech/wavs/LJ014-0062.wav|tests/data/ljspeech/wavs/LJ014-0062.npy +tests/data/ljspeech/wavs/LJ006-0230.wav|tests/data/ljspeech/wavs/LJ006-0230.npy +tests/data/ljspeech/wavs/LJ029-0115.wav|tests/data/ljspeech/wavs/LJ029-0115.npy +tests/data/ljspeech/wavs/LJ031-0185.wav|tests/data/ljspeech/wavs/LJ031-0185.npy +tests/data/ljspeech/wavs/LJ037-0066.wav|tests/data/ljspeech/wavs/LJ037-0066.npy +tests/data/ljspeech/wavs/LJ019-0366.wav|tests/data/ljspeech/wavs/LJ019-0366.npy +tests/data/ljspeech/wavs/LJ032-0069.wav|tests/data/ljspeech/wavs/LJ032-0069.npy +tests/data/ljspeech/wavs/LJ016-0428.wav|tests/data/ljspeech/wavs/LJ016-0428.npy +tests/data/ljspeech/wavs/LJ031-0065.wav|tests/data/ljspeech/wavs/LJ031-0065.npy +tests/data/ljspeech/wavs/LJ005-0175.wav|tests/data/ljspeech/wavs/LJ005-0175.npy +tests/data/ljspeech/wavs/LJ030-0032.wav|tests/data/ljspeech/wavs/LJ030-0032.npy +tests/data/ljspeech/wavs/LJ039-0034.wav|tests/data/ljspeech/wavs/LJ039-0034.npy +tests/data/ljspeech/wavs/LJ002-0238.wav|tests/data/ljspeech/wavs/LJ002-0238.npy +tests/data/ljspeech/wavs/LJ032-0044.wav|tests/data/ljspeech/wavs/LJ032-0044.npy +tests/data/ljspeech/wavs/LJ036-0024.wav|tests/data/ljspeech/wavs/LJ036-0024.npy +tests/data/ljspeech/wavs/LJ023-0026.wav|tests/data/ljspeech/wavs/LJ023-0026.npy +tests/data/ljspeech/wavs/LJ017-0001.wav|tests/data/ljspeech/wavs/LJ017-0001.npy +tests/data/ljspeech/wavs/LJ050-0069.wav|tests/data/ljspeech/wavs/LJ050-0069.npy +tests/data/ljspeech/wavs/LJ010-0148.wav|tests/data/ljspeech/wavs/LJ010-0148.npy +tests/data/ljspeech/wavs/LJ049-0187.wav|tests/data/ljspeech/wavs/LJ049-0187.npy +tests/data/ljspeech/wavs/LJ018-0063.wav|tests/data/ljspeech/wavs/LJ018-0063.npy +tests/data/ljspeech/wavs/LJ003-0223.wav|tests/data/ljspeech/wavs/LJ003-0223.npy +tests/data/ljspeech/wavs/LJ047-0095.wav|tests/data/ljspeech/wavs/LJ047-0095.npy +tests/data/ljspeech/wavs/LJ036-0146.wav|tests/data/ljspeech/wavs/LJ036-0146.npy +tests/data/ljspeech/wavs/LJ027-0052.wav|tests/data/ljspeech/wavs/LJ027-0052.npy +tests/data/ljspeech/wavs/LJ045-0159.wav|tests/data/ljspeech/wavs/LJ045-0159.npy +tests/data/ljspeech/wavs/LJ011-0075.wav|tests/data/ljspeech/wavs/LJ011-0075.npy +tests/data/ljspeech/wavs/LJ017-0124.wav|tests/data/ljspeech/wavs/LJ017-0124.npy +tests/data/ljspeech/wavs/LJ016-0392.wav|tests/data/ljspeech/wavs/LJ016-0392.npy +tests/data/ljspeech/wavs/LJ027-0048.wav|tests/data/ljspeech/wavs/LJ027-0048.npy +tests/data/ljspeech/wavs/LJ037-0202.wav|tests/data/ljspeech/wavs/LJ037-0202.npy +tests/data/ljspeech/wavs/LJ030-0126.wav|tests/data/ljspeech/wavs/LJ030-0126.npy +tests/data/ljspeech/wavs/LJ012-0027.wav|tests/data/ljspeech/wavs/LJ012-0027.npy +tests/data/ljspeech/wavs/LJ006-0280.wav|tests/data/ljspeech/wavs/LJ006-0280.npy +tests/data/ljspeech/wavs/LJ017-0130.wav|tests/data/ljspeech/wavs/LJ017-0130.npy +tests/data/ljspeech/wavs/LJ011-0038.wav|tests/data/ljspeech/wavs/LJ011-0038.npy +tests/data/ljspeech/wavs/LJ044-0225.wav|tests/data/ljspeech/wavs/LJ044-0225.npy +tests/data/ljspeech/wavs/LJ034-0051.wav|tests/data/ljspeech/wavs/LJ034-0051.npy +tests/data/ljspeech/wavs/LJ034-0008.wav|tests/data/ljspeech/wavs/LJ034-0008.npy +tests/data/ljspeech/wavs/LJ001-0111.wav|tests/data/ljspeech/wavs/LJ001-0111.npy +tests/data/ljspeech/wavs/LJ036-0155.wav|tests/data/ljspeech/wavs/LJ036-0155.npy +tests/data/ljspeech/wavs/LJ016-0256.wav|tests/data/ljspeech/wavs/LJ016-0256.npy +tests/data/ljspeech/wavs/LJ002-0171.wav|tests/data/ljspeech/wavs/LJ002-0171.npy +tests/data/ljspeech/wavs/LJ010-0219.wav|tests/data/ljspeech/wavs/LJ010-0219.npy +tests/data/ljspeech/wavs/LJ046-0035.wav|tests/data/ljspeech/wavs/LJ046-0035.npy +tests/data/ljspeech/wavs/LJ031-0025.wav|tests/data/ljspeech/wavs/LJ031-0025.npy +tests/data/ljspeech/wavs/LJ003-0001.wav|tests/data/ljspeech/wavs/LJ003-0001.npy +tests/data/ljspeech/wavs/LJ018-0001.wav|tests/data/ljspeech/wavs/LJ018-0001.npy +tests/data/ljspeech/wavs/LJ018-0138.wav|tests/data/ljspeech/wavs/LJ018-0138.npy +tests/data/ljspeech/wavs/LJ026-0133.wav|tests/data/ljspeech/wavs/LJ026-0133.npy +tests/data/ljspeech/wavs/LJ006-0021.wav|tests/data/ljspeech/wavs/LJ006-0021.npy +tests/data/ljspeech/wavs/LJ028-0480.wav|tests/data/ljspeech/wavs/LJ028-0480.npy +tests/data/ljspeech/wavs/LJ006-0173.wav|tests/data/ljspeech/wavs/LJ006-0173.npy +tests/data/ljspeech/wavs/LJ018-0023.wav|tests/data/ljspeech/wavs/LJ018-0023.npy +tests/data/ljspeech/wavs/LJ011-0176.wav|tests/data/ljspeech/wavs/LJ011-0176.npy +tests/data/ljspeech/wavs/LJ016-0150.wav|tests/data/ljspeech/wavs/LJ016-0150.npy +tests/data/ljspeech/wavs/LJ018-0113.wav|tests/data/ljspeech/wavs/LJ018-0113.npy +tests/data/ljspeech/wavs/LJ017-0253.wav|tests/data/ljspeech/wavs/LJ017-0253.npy +tests/data/ljspeech/wavs/LJ011-0261.wav|tests/data/ljspeech/wavs/LJ011-0261.npy +tests/data/ljspeech/wavs/LJ039-0230.wav|tests/data/ljspeech/wavs/LJ039-0230.npy +tests/data/ljspeech/wavs/LJ041-0110.wav|tests/data/ljspeech/wavs/LJ041-0110.npy +tests/data/ljspeech/wavs/LJ008-0193.wav|tests/data/ljspeech/wavs/LJ008-0193.npy +tests/data/ljspeech/wavs/LJ022-0030.wav|tests/data/ljspeech/wavs/LJ022-0030.npy +tests/data/ljspeech/wavs/LJ044-0229.wav|tests/data/ljspeech/wavs/LJ044-0229.npy +tests/data/ljspeech/wavs/LJ046-0148.wav|tests/data/ljspeech/wavs/LJ046-0148.npy +tests/data/ljspeech/wavs/LJ008-0247.wav|tests/data/ljspeech/wavs/LJ008-0247.npy +tests/data/ljspeech/wavs/LJ018-0109.wav|tests/data/ljspeech/wavs/LJ018-0109.npy +tests/data/ljspeech/wavs/LJ016-0274.wav|tests/data/ljspeech/wavs/LJ016-0274.npy +tests/data/ljspeech/wavs/LJ037-0071.wav|tests/data/ljspeech/wavs/LJ037-0071.npy +tests/data/ljspeech/wavs/LJ037-0106.wav|tests/data/ljspeech/wavs/LJ037-0106.npy +tests/data/ljspeech/wavs/LJ016-0267.wav|tests/data/ljspeech/wavs/LJ016-0267.npy +tests/data/ljspeech/wavs/LJ028-0259.wav|tests/data/ljspeech/wavs/LJ028-0259.npy +tests/data/ljspeech/wavs/LJ036-0079.wav|tests/data/ljspeech/wavs/LJ036-0079.npy +tests/data/ljspeech/wavs/LJ008-0189.wav|tests/data/ljspeech/wavs/LJ008-0189.npy +tests/data/ljspeech/wavs/LJ018-0042.wav|tests/data/ljspeech/wavs/LJ018-0042.npy +tests/data/ljspeech/wavs/LJ002-0253.wav|tests/data/ljspeech/wavs/LJ002-0253.npy +tests/data/ljspeech/wavs/LJ042-0134.wav|tests/data/ljspeech/wavs/LJ042-0134.npy +tests/data/ljspeech/wavs/LJ038-0198.wav|tests/data/ljspeech/wavs/LJ038-0198.npy +tests/data/ljspeech/wavs/LJ010-0001.wav|tests/data/ljspeech/wavs/LJ010-0001.npy +tests/data/ljspeech/wavs/LJ046-0155.wav|tests/data/ljspeech/wavs/LJ046-0155.npy +tests/data/ljspeech/wavs/LJ019-0118.wav|tests/data/ljspeech/wavs/LJ019-0118.npy +tests/data/ljspeech/wavs/LJ048-0166.wav|tests/data/ljspeech/wavs/LJ048-0166.npy +tests/data/ljspeech/wavs/LJ002-0089.wav|tests/data/ljspeech/wavs/LJ002-0089.npy +tests/data/ljspeech/wavs/LJ001-0044.wav|tests/data/ljspeech/wavs/LJ001-0044.npy +tests/data/ljspeech/wavs/LJ019-0198.wav|tests/data/ljspeech/wavs/LJ019-0198.npy +tests/data/ljspeech/wavs/LJ010-0199.wav|tests/data/ljspeech/wavs/LJ010-0199.npy +tests/data/ljspeech/wavs/LJ021-0141.wav|tests/data/ljspeech/wavs/LJ021-0141.npy +tests/data/ljspeech/wavs/LJ039-0099.wav|tests/data/ljspeech/wavs/LJ039-0099.npy +tests/data/ljspeech/wavs/LJ030-0102.wav|tests/data/ljspeech/wavs/LJ030-0102.npy +tests/data/ljspeech/wavs/LJ024-0056.wav|tests/data/ljspeech/wavs/LJ024-0056.npy +tests/data/ljspeech/wavs/LJ019-0103.wav|tests/data/ljspeech/wavs/LJ019-0103.npy +tests/data/ljspeech/wavs/LJ009-0040.wav|tests/data/ljspeech/wavs/LJ009-0040.npy +tests/data/ljspeech/wavs/LJ001-0182.wav|tests/data/ljspeech/wavs/LJ001-0182.npy +tests/data/ljspeech/wavs/LJ035-0119.wav|tests/data/ljspeech/wavs/LJ035-0119.npy +tests/data/ljspeech/wavs/LJ001-0033.wav|tests/data/ljspeech/wavs/LJ001-0033.npy +tests/data/ljspeech/wavs/LJ031-0136.wav|tests/data/ljspeech/wavs/LJ031-0136.npy +tests/data/ljspeech/wavs/LJ010-0207.wav|tests/data/ljspeech/wavs/LJ010-0207.npy +tests/data/ljspeech/wavs/LJ014-0251.wav|tests/data/ljspeech/wavs/LJ014-0251.npy +tests/data/ljspeech/wavs/LJ012-0168.wav|tests/data/ljspeech/wavs/LJ012-0168.npy +tests/data/ljspeech/wavs/LJ003-0207.wav|tests/data/ljspeech/wavs/LJ003-0207.npy +tests/data/ljspeech/wavs/LJ025-0082.wav|tests/data/ljspeech/wavs/LJ025-0082.npy +tests/data/ljspeech/wavs/LJ046-0104.wav|tests/data/ljspeech/wavs/LJ046-0104.npy +tests/data/ljspeech/wavs/LJ010-0205.wav|tests/data/ljspeech/wavs/LJ010-0205.npy +tests/data/ljspeech/wavs/LJ012-0190.wav|tests/data/ljspeech/wavs/LJ012-0190.npy +tests/data/ljspeech/wavs/LJ014-0214.wav|tests/data/ljspeech/wavs/LJ014-0214.npy +tests/data/ljspeech/wavs/LJ008-0008.wav|tests/data/ljspeech/wavs/LJ008-0008.npy +tests/data/ljspeech/wavs/LJ009-0254.wav|tests/data/ljspeech/wavs/LJ009-0254.npy +tests/data/ljspeech/wavs/LJ030-0148.wav|tests/data/ljspeech/wavs/LJ030-0148.npy +tests/data/ljspeech/wavs/LJ002-0102.wav|tests/data/ljspeech/wavs/LJ002-0102.npy +tests/data/ljspeech/wavs/LJ002-0011.wav|tests/data/ljspeech/wavs/LJ002-0011.npy +tests/data/ljspeech/wavs/LJ004-0223.wav|tests/data/ljspeech/wavs/LJ004-0223.npy +tests/data/ljspeech/wavs/LJ004-0228.wav|tests/data/ljspeech/wavs/LJ004-0228.npy +tests/data/ljspeech/wavs/LJ046-0073.wav|tests/data/ljspeech/wavs/LJ046-0073.npy +tests/data/ljspeech/wavs/LJ010-0078.wav|tests/data/ljspeech/wavs/LJ010-0078.npy +tests/data/ljspeech/wavs/LJ031-0051.wav|tests/data/ljspeech/wavs/LJ031-0051.npy +tests/data/ljspeech/wavs/LJ009-0224.wav|tests/data/ljspeech/wavs/LJ009-0224.npy +tests/data/ljspeech/wavs/LJ033-0097.wav|tests/data/ljspeech/wavs/LJ033-0097.npy +tests/data/ljspeech/wavs/LJ038-0283.wav|tests/data/ljspeech/wavs/LJ038-0283.npy +tests/data/ljspeech/wavs/LJ025-0175.wav|tests/data/ljspeech/wavs/LJ025-0175.npy +tests/data/ljspeech/wavs/LJ035-0149.wav|tests/data/ljspeech/wavs/LJ035-0149.npy +tests/data/ljspeech/wavs/LJ042-0115.wav|tests/data/ljspeech/wavs/LJ042-0115.npy +tests/data/ljspeech/wavs/LJ050-0047.wav|tests/data/ljspeech/wavs/LJ050-0047.npy +tests/data/ljspeech/wavs/LJ047-0222.wav|tests/data/ljspeech/wavs/LJ047-0222.npy +tests/data/ljspeech/wavs/LJ026-0009.wav|tests/data/ljspeech/wavs/LJ026-0009.npy +tests/data/ljspeech/wavs/LJ044-0129.wav|tests/data/ljspeech/wavs/LJ044-0129.npy +tests/data/ljspeech/wavs/LJ040-0200.wav|tests/data/ljspeech/wavs/LJ040-0200.npy +tests/data/ljspeech/wavs/LJ003-0342.wav|tests/data/ljspeech/wavs/LJ003-0342.npy +tests/data/ljspeech/wavs/LJ047-0115.wav|tests/data/ljspeech/wavs/LJ047-0115.npy +tests/data/ljspeech/wavs/LJ041-0065.wav|tests/data/ljspeech/wavs/LJ041-0065.npy +tests/data/ljspeech/wavs/LJ007-0053.wav|tests/data/ljspeech/wavs/LJ007-0053.npy +tests/data/ljspeech/wavs/LJ048-0161.wav|tests/data/ljspeech/wavs/LJ048-0161.npy +tests/data/ljspeech/wavs/LJ024-0099.wav|tests/data/ljspeech/wavs/LJ024-0099.npy +tests/data/ljspeech/wavs/LJ024-0085.wav|tests/data/ljspeech/wavs/LJ024-0085.npy +tests/data/ljspeech/wavs/LJ029-0025.wav|tests/data/ljspeech/wavs/LJ029-0025.npy +tests/data/ljspeech/wavs/LJ035-0003.wav|tests/data/ljspeech/wavs/LJ035-0003.npy +tests/data/ljspeech/wavs/LJ024-0108.wav|tests/data/ljspeech/wavs/LJ024-0108.npy +tests/data/ljspeech/wavs/LJ028-0170.wav|tests/data/ljspeech/wavs/LJ028-0170.npy +tests/data/ljspeech/wavs/LJ048-0049.wav|tests/data/ljspeech/wavs/LJ048-0049.npy +tests/data/ljspeech/wavs/LJ006-0042.wav|tests/data/ljspeech/wavs/LJ006-0042.npy +tests/data/ljspeech/wavs/LJ005-0208.wav|tests/data/ljspeech/wavs/LJ005-0208.npy +tests/data/ljspeech/wavs/LJ015-0154.wav|tests/data/ljspeech/wavs/LJ015-0154.npy +tests/data/ljspeech/wavs/LJ033-0020.wav|tests/data/ljspeech/wavs/LJ033-0020.npy +tests/data/ljspeech/wavs/LJ036-0208.wav|tests/data/ljspeech/wavs/LJ036-0208.npy +tests/data/ljspeech/wavs/LJ033-0177.wav|tests/data/ljspeech/wavs/LJ033-0177.npy +tests/data/ljspeech/wavs/LJ046-0137.wav|tests/data/ljspeech/wavs/LJ046-0137.npy +tests/data/ljspeech/wavs/LJ039-0141.wav|tests/data/ljspeech/wavs/LJ039-0141.npy +tests/data/ljspeech/wavs/LJ026-0070.wav|tests/data/ljspeech/wavs/LJ026-0070.npy +tests/data/ljspeech/wavs/LJ002-0157.wav|tests/data/ljspeech/wavs/LJ002-0157.npy +tests/data/ljspeech/wavs/LJ008-0216.wav|tests/data/ljspeech/wavs/LJ008-0216.npy +tests/data/ljspeech/wavs/LJ015-0233.wav|tests/data/ljspeech/wavs/LJ015-0233.npy +tests/data/ljspeech/wavs/LJ037-0015.wav|tests/data/ljspeech/wavs/LJ037-0015.npy +tests/data/ljspeech/wavs/LJ021-0118.wav|tests/data/ljspeech/wavs/LJ021-0118.npy +tests/data/ljspeech/wavs/LJ037-0265.wav|tests/data/ljspeech/wavs/LJ037-0265.npy +tests/data/ljspeech/wavs/LJ030-0216.wav|tests/data/ljspeech/wavs/LJ030-0216.npy +tests/data/ljspeech/wavs/LJ031-0156.wav|tests/data/ljspeech/wavs/LJ031-0156.npy +tests/data/ljspeech/wavs/LJ031-0190.wav|tests/data/ljspeech/wavs/LJ031-0190.npy +tests/data/ljspeech/wavs/LJ026-0050.wav|tests/data/ljspeech/wavs/LJ026-0050.npy +tests/data/ljspeech/wavs/LJ015-0136.wav|tests/data/ljspeech/wavs/LJ015-0136.npy +tests/data/ljspeech/wavs/LJ047-0126.wav|tests/data/ljspeech/wavs/LJ047-0126.npy +tests/data/ljspeech/wavs/LJ005-0016.wav|tests/data/ljspeech/wavs/LJ005-0016.npy +tests/data/ljspeech/wavs/LJ012-0090.wav|tests/data/ljspeech/wavs/LJ012-0090.npy +tests/data/ljspeech/wavs/LJ035-0174.wav|tests/data/ljspeech/wavs/LJ035-0174.npy +tests/data/ljspeech/wavs/LJ031-0193.wav|tests/data/ljspeech/wavs/LJ031-0193.npy +tests/data/ljspeech/wavs/LJ004-0080.wav|tests/data/ljspeech/wavs/LJ004-0080.npy +tests/data/ljspeech/wavs/LJ021-0088.wav|tests/data/ljspeech/wavs/LJ021-0088.npy +tests/data/ljspeech/wavs/LJ004-0186.wav|tests/data/ljspeech/wavs/LJ004-0186.npy +tests/data/ljspeech/wavs/LJ011-0158.wav|tests/data/ljspeech/wavs/LJ011-0158.npy +tests/data/ljspeech/wavs/LJ004-0033.wav|tests/data/ljspeech/wavs/LJ004-0033.npy +tests/data/ljspeech/wavs/LJ012-0096.wav|tests/data/ljspeech/wavs/LJ012-0096.npy +tests/data/ljspeech/wavs/LJ004-0031.wav|tests/data/ljspeech/wavs/LJ004-0031.npy +tests/data/ljspeech/wavs/LJ007-0115.wav|tests/data/ljspeech/wavs/LJ007-0115.npy +tests/data/ljspeech/wavs/LJ030-0229.wav|tests/data/ljspeech/wavs/LJ030-0229.npy +tests/data/ljspeech/wavs/LJ026-0066.wav|tests/data/ljspeech/wavs/LJ026-0066.npy +tests/data/ljspeech/wavs/LJ039-0092.wav|tests/data/ljspeech/wavs/LJ039-0092.npy +tests/data/ljspeech/wavs/LJ039-0086.wav|tests/data/ljspeech/wavs/LJ039-0086.npy +tests/data/ljspeech/wavs/LJ004-0103.wav|tests/data/ljspeech/wavs/LJ004-0103.npy +tests/data/ljspeech/wavs/LJ037-0226.wav|tests/data/ljspeech/wavs/LJ037-0226.npy +tests/data/ljspeech/wavs/LJ002-0338.wav|tests/data/ljspeech/wavs/LJ002-0338.npy +tests/data/ljspeech/wavs/LJ036-0184.wav|tests/data/ljspeech/wavs/LJ036-0184.npy +tests/data/ljspeech/wavs/LJ036-0195.wav|tests/data/ljspeech/wavs/LJ036-0195.npy +tests/data/ljspeech/wavs/LJ024-0098.wav|tests/data/ljspeech/wavs/LJ024-0098.npy +tests/data/ljspeech/wavs/LJ022-0115.wav|tests/data/ljspeech/wavs/LJ022-0115.npy +tests/data/ljspeech/wavs/LJ013-0140.wav|tests/data/ljspeech/wavs/LJ013-0140.npy +tests/data/ljspeech/wavs/LJ028-0185.wav|tests/data/ljspeech/wavs/LJ028-0185.npy +tests/data/ljspeech/wavs/LJ025-0022.wav|tests/data/ljspeech/wavs/LJ025-0022.npy +tests/data/ljspeech/wavs/LJ013-0205.wav|tests/data/ljspeech/wavs/LJ013-0205.npy +tests/data/ljspeech/wavs/LJ038-0085.wav|tests/data/ljspeech/wavs/LJ038-0085.npy +tests/data/ljspeech/wavs/LJ024-0141.wav|tests/data/ljspeech/wavs/LJ024-0141.npy +tests/data/ljspeech/wavs/LJ027-0076.wav|tests/data/ljspeech/wavs/LJ027-0076.npy +tests/data/ljspeech/wavs/LJ024-0122.wav|tests/data/ljspeech/wavs/LJ024-0122.npy +tests/data/ljspeech/wavs/LJ049-0057.wav|tests/data/ljspeech/wavs/LJ049-0057.npy +tests/data/ljspeech/wavs/LJ003-0107.wav|tests/data/ljspeech/wavs/LJ003-0107.npy +tests/data/ljspeech/wavs/LJ013-0035.wav|tests/data/ljspeech/wavs/LJ013-0035.npy +tests/data/ljspeech/wavs/LJ017-0033.wav|tests/data/ljspeech/wavs/LJ017-0033.npy +tests/data/ljspeech/wavs/LJ028-0177.wav|tests/data/ljspeech/wavs/LJ028-0177.npy +tests/data/ljspeech/wavs/LJ023-0084.wav|tests/data/ljspeech/wavs/LJ023-0084.npy +tests/data/ljspeech/wavs/LJ004-0035.wav|tests/data/ljspeech/wavs/LJ004-0035.npy +tests/data/ljspeech/wavs/LJ012-0111.wav|tests/data/ljspeech/wavs/LJ012-0111.npy +tests/data/ljspeech/wavs/LJ013-0102.wav|tests/data/ljspeech/wavs/LJ013-0102.npy +tests/data/ljspeech/wavs/LJ003-0280.wav|tests/data/ljspeech/wavs/LJ003-0280.npy +tests/data/ljspeech/wavs/LJ013-0130.wav|tests/data/ljspeech/wavs/LJ013-0130.npy +tests/data/ljspeech/wavs/LJ017-0018.wav|tests/data/ljspeech/wavs/LJ017-0018.npy +tests/data/ljspeech/wavs/LJ003-0032.wav|tests/data/ljspeech/wavs/LJ003-0032.npy +tests/data/ljspeech/wavs/LJ050-0273.wav|tests/data/ljspeech/wavs/LJ050-0273.npy +tests/data/ljspeech/wavs/LJ011-0223.wav|tests/data/ljspeech/wavs/LJ011-0223.npy +tests/data/ljspeech/wavs/LJ050-0211.wav|tests/data/ljspeech/wavs/LJ050-0211.npy +tests/data/ljspeech/wavs/LJ023-0016.wav|tests/data/ljspeech/wavs/LJ023-0016.npy +tests/data/ljspeech/wavs/LJ022-0194.wav|tests/data/ljspeech/wavs/LJ022-0194.npy +tests/data/ljspeech/wavs/LJ046-0158.wav|tests/data/ljspeech/wavs/LJ046-0158.npy +tests/data/ljspeech/wavs/LJ047-0129.wav|tests/data/ljspeech/wavs/LJ047-0129.npy +tests/data/ljspeech/wavs/LJ004-0020.wav|tests/data/ljspeech/wavs/LJ004-0020.npy +tests/data/ljspeech/wavs/LJ023-0125.wav|tests/data/ljspeech/wavs/LJ023-0125.npy +tests/data/ljspeech/wavs/LJ014-0228.wav|tests/data/ljspeech/wavs/LJ014-0228.npy +tests/data/ljspeech/wavs/LJ012-0251.wav|tests/data/ljspeech/wavs/LJ012-0251.npy +tests/data/ljspeech/wavs/LJ023-0101.wav|tests/data/ljspeech/wavs/LJ023-0101.npy +tests/data/ljspeech/wavs/LJ025-0047.wav|tests/data/ljspeech/wavs/LJ025-0047.npy +tests/data/ljspeech/wavs/LJ042-0208.wav|tests/data/ljspeech/wavs/LJ042-0208.npy +tests/data/ljspeech/wavs/LJ039-0058.wav|tests/data/ljspeech/wavs/LJ039-0058.npy +tests/data/ljspeech/wavs/LJ042-0037.wav|tests/data/ljspeech/wavs/LJ042-0037.npy +tests/data/ljspeech/wavs/LJ008-0060.wav|tests/data/ljspeech/wavs/LJ008-0060.npy +tests/data/ljspeech/wavs/LJ001-0082.wav|tests/data/ljspeech/wavs/LJ001-0082.npy +tests/data/ljspeech/wavs/LJ028-0075.wav|tests/data/ljspeech/wavs/LJ028-0075.npy +tests/data/ljspeech/wavs/LJ001-0073.wav|tests/data/ljspeech/wavs/LJ001-0073.npy +tests/data/ljspeech/wavs/LJ016-0110.wav|tests/data/ljspeech/wavs/LJ016-0110.npy +tests/data/ljspeech/wavs/LJ028-0509.wav|tests/data/ljspeech/wavs/LJ028-0509.npy +tests/data/ljspeech/wavs/LJ003-0256.wav|tests/data/ljspeech/wavs/LJ003-0256.npy +tests/data/ljspeech/wavs/LJ015-0192.wav|tests/data/ljspeech/wavs/LJ015-0192.npy +tests/data/ljspeech/wavs/LJ011-0183.wav|tests/data/ljspeech/wavs/LJ011-0183.npy +tests/data/ljspeech/wavs/LJ007-0139.wav|tests/data/ljspeech/wavs/LJ007-0139.npy +tests/data/ljspeech/wavs/LJ028-0213.wav|tests/data/ljspeech/wavs/LJ028-0213.npy +tests/data/ljspeech/wavs/LJ045-0189.wav|tests/data/ljspeech/wavs/LJ045-0189.npy +tests/data/ljspeech/wavs/LJ029-0074.wav|tests/data/ljspeech/wavs/LJ029-0074.npy +tests/data/ljspeech/wavs/LJ049-0162.wav|tests/data/ljspeech/wavs/LJ049-0162.npy +tests/data/ljspeech/wavs/LJ038-0203.wav|tests/data/ljspeech/wavs/LJ038-0203.npy +tests/data/ljspeech/wavs/LJ028-0256.wav|tests/data/ljspeech/wavs/LJ028-0256.npy +tests/data/ljspeech/wavs/LJ033-0205.wav|tests/data/ljspeech/wavs/LJ033-0205.npy +tests/data/ljspeech/wavs/LJ023-0106.wav|tests/data/ljspeech/wavs/LJ023-0106.npy +tests/data/ljspeech/wavs/LJ018-0115.wav|tests/data/ljspeech/wavs/LJ018-0115.npy +tests/data/ljspeech/wavs/LJ015-0084.wav|tests/data/ljspeech/wavs/LJ015-0084.npy +tests/data/ljspeech/wavs/LJ047-0046.wav|tests/data/ljspeech/wavs/LJ047-0046.npy +tests/data/ljspeech/wavs/LJ019-0098.wav|tests/data/ljspeech/wavs/LJ019-0098.npy +tests/data/ljspeech/wavs/LJ025-0059.wav|tests/data/ljspeech/wavs/LJ025-0059.npy +tests/data/ljspeech/wavs/LJ047-0081.wav|tests/data/ljspeech/wavs/LJ047-0081.npy +tests/data/ljspeech/wavs/LJ002-0240.wav|tests/data/ljspeech/wavs/LJ002-0240.npy +tests/data/ljspeech/wavs/LJ042-0117.wav|tests/data/ljspeech/wavs/LJ042-0117.npy +tests/data/ljspeech/wavs/LJ047-0061.wav|tests/data/ljspeech/wavs/LJ047-0061.npy +tests/data/ljspeech/wavs/LJ030-0046.wav|tests/data/ljspeech/wavs/LJ030-0046.npy +tests/data/ljspeech/wavs/LJ041-0198.wav|tests/data/ljspeech/wavs/LJ041-0198.npy +tests/data/ljspeech/wavs/LJ017-0259.wav|tests/data/ljspeech/wavs/LJ017-0259.npy +tests/data/ljspeech/wavs/LJ004-0096.wav|tests/data/ljspeech/wavs/LJ004-0096.npy +tests/data/ljspeech/wavs/LJ004-0202.wav|tests/data/ljspeech/wavs/LJ004-0202.npy +tests/data/ljspeech/wavs/LJ040-0094.wav|tests/data/ljspeech/wavs/LJ040-0094.npy +tests/data/ljspeech/wavs/LJ042-0141.wav|tests/data/ljspeech/wavs/LJ042-0141.npy +tests/data/ljspeech/wavs/LJ022-0090.wav|tests/data/ljspeech/wavs/LJ022-0090.npy +tests/data/ljspeech/wavs/LJ048-0173.wav|tests/data/ljspeech/wavs/LJ048-0173.npy +tests/data/ljspeech/wavs/LJ009-0289.wav|tests/data/ljspeech/wavs/LJ009-0289.npy +tests/data/ljspeech/wavs/LJ049-0156.wav|tests/data/ljspeech/wavs/LJ049-0156.npy +tests/data/ljspeech/wavs/LJ014-0098.wav|tests/data/ljspeech/wavs/LJ014-0098.npy +tests/data/ljspeech/wavs/LJ018-0040.wav|tests/data/ljspeech/wavs/LJ018-0040.npy +tests/data/ljspeech/wavs/LJ010-0208.wav|tests/data/ljspeech/wavs/LJ010-0208.npy +tests/data/ljspeech/wavs/LJ027-0124.wav|tests/data/ljspeech/wavs/LJ027-0124.npy +tests/data/ljspeech/wavs/LJ022-0016.wav|tests/data/ljspeech/wavs/LJ022-0016.npy +tests/data/ljspeech/wavs/LJ019-0081.wav|tests/data/ljspeech/wavs/LJ019-0081.npy +tests/data/ljspeech/wavs/LJ009-0065.wav|tests/data/ljspeech/wavs/LJ009-0065.npy +tests/data/ljspeech/wavs/LJ009-0261.wav|tests/data/ljspeech/wavs/LJ009-0261.npy +tests/data/ljspeech/wavs/LJ029-0135.wav|tests/data/ljspeech/wavs/LJ029-0135.npy +tests/data/ljspeech/wavs/LJ039-0153.wav|tests/data/ljspeech/wavs/LJ039-0153.npy +tests/data/ljspeech/wavs/LJ003-0340.wav|tests/data/ljspeech/wavs/LJ003-0340.npy +tests/data/ljspeech/wavs/LJ028-0401.wav|tests/data/ljspeech/wavs/LJ028-0401.npy +tests/data/ljspeech/wavs/LJ047-0190.wav|tests/data/ljspeech/wavs/LJ047-0190.npy +tests/data/ljspeech/wavs/LJ019-0015.wav|tests/data/ljspeech/wavs/LJ019-0015.npy +tests/data/ljspeech/wavs/LJ043-0085.wav|tests/data/ljspeech/wavs/LJ043-0085.npy +tests/data/ljspeech/wavs/LJ043-0100.wav|tests/data/ljspeech/wavs/LJ043-0100.npy +tests/data/ljspeech/wavs/LJ031-0166.wav|tests/data/ljspeech/wavs/LJ031-0166.npy +tests/data/ljspeech/wavs/LJ033-0040.wav|tests/data/ljspeech/wavs/LJ033-0040.npy +tests/data/ljspeech/wavs/LJ036-0144.wav|tests/data/ljspeech/wavs/LJ036-0144.npy +tests/data/ljspeech/wavs/LJ044-0163.wav|tests/data/ljspeech/wavs/LJ044-0163.npy +tests/data/ljspeech/wavs/LJ018-0384.wav|tests/data/ljspeech/wavs/LJ018-0384.npy +tests/data/ljspeech/wavs/LJ018-0271.wav|tests/data/ljspeech/wavs/LJ018-0271.npy +tests/data/ljspeech/wavs/LJ018-0263.wav|tests/data/ljspeech/wavs/LJ018-0263.npy +tests/data/ljspeech/wavs/LJ050-0258.wav|tests/data/ljspeech/wavs/LJ050-0258.npy +tests/data/ljspeech/wavs/LJ018-0359.wav|tests/data/ljspeech/wavs/LJ018-0359.npy +tests/data/ljspeech/wavs/LJ034-0219.wav|tests/data/ljspeech/wavs/LJ034-0219.npy +tests/data/ljspeech/wavs/LJ047-0247.wav|tests/data/ljspeech/wavs/LJ047-0247.npy +tests/data/ljspeech/wavs/LJ018-0195.wav|tests/data/ljspeech/wavs/LJ018-0195.npy +tests/data/ljspeech/wavs/LJ048-0253.wav|tests/data/ljspeech/wavs/LJ048-0253.npy +tests/data/ljspeech/wavs/LJ019-0012.wav|tests/data/ljspeech/wavs/LJ019-0012.npy +tests/data/ljspeech/wavs/LJ011-0057.wav|tests/data/ljspeech/wavs/LJ011-0057.npy +tests/data/ljspeech/wavs/LJ010-0162.wav|tests/data/ljspeech/wavs/LJ010-0162.npy +tests/data/ljspeech/wavs/LJ030-0053.wav|tests/data/ljspeech/wavs/LJ030-0053.npy +tests/data/ljspeech/wavs/LJ010-0191.wav|tests/data/ljspeech/wavs/LJ010-0191.npy +tests/data/ljspeech/wavs/LJ021-0181.wav|tests/data/ljspeech/wavs/LJ021-0181.npy +tests/data/ljspeech/wavs/LJ018-0351.wav|tests/data/ljspeech/wavs/LJ018-0351.npy +tests/data/ljspeech/wavs/LJ018-0189.wav|tests/data/ljspeech/wavs/LJ018-0189.npy +tests/data/ljspeech/wavs/LJ017-0066.wav|tests/data/ljspeech/wavs/LJ017-0066.npy +tests/data/ljspeech/wavs/LJ033-0099.wav|tests/data/ljspeech/wavs/LJ033-0099.npy +tests/data/ljspeech/wavs/LJ018-0314.wav|tests/data/ljspeech/wavs/LJ018-0314.npy +tests/data/ljspeech/wavs/LJ028-0467.wav|tests/data/ljspeech/wavs/LJ028-0467.npy +tests/data/ljspeech/wavs/LJ031-0124.wav|tests/data/ljspeech/wavs/LJ031-0124.npy +tests/data/ljspeech/wavs/LJ009-0105.wav|tests/data/ljspeech/wavs/LJ009-0105.npy +tests/data/ljspeech/wavs/LJ030-0187.wav|tests/data/ljspeech/wavs/LJ030-0187.npy +tests/data/ljspeech/wavs/LJ011-0003.wav|tests/data/ljspeech/wavs/LJ011-0003.npy +tests/data/ljspeech/wavs/LJ048-0248.wav|tests/data/ljspeech/wavs/LJ048-0248.npy +tests/data/ljspeech/wavs/LJ026-0001.wav|tests/data/ljspeech/wavs/LJ026-0001.npy +tests/data/ljspeech/wavs/LJ019-0014.wav|tests/data/ljspeech/wavs/LJ019-0014.npy +tests/data/ljspeech/wavs/LJ024-0112.wav|tests/data/ljspeech/wavs/LJ024-0112.npy +tests/data/ljspeech/wavs/LJ002-0266.wav|tests/data/ljspeech/wavs/LJ002-0266.npy +tests/data/ljspeech/wavs/LJ050-0142.wav|tests/data/ljspeech/wavs/LJ050-0142.npy +tests/data/ljspeech/wavs/LJ031-0010.wav|tests/data/ljspeech/wavs/LJ031-0010.npy +tests/data/ljspeech/wavs/LJ027-0049.wav|tests/data/ljspeech/wavs/LJ027-0049.npy +tests/data/ljspeech/wavs/LJ006-0047.wav|tests/data/ljspeech/wavs/LJ006-0047.npy +tests/data/ljspeech/wavs/LJ041-0119.wav|tests/data/ljspeech/wavs/LJ041-0119.npy +tests/data/ljspeech/wavs/LJ030-0166.wav|tests/data/ljspeech/wavs/LJ030-0166.npy +tests/data/ljspeech/wavs/LJ009-0177.wav|tests/data/ljspeech/wavs/LJ009-0177.npy +tests/data/ljspeech/wavs/LJ018-0395.wav|tests/data/ljspeech/wavs/LJ018-0395.npy +tests/data/ljspeech/wavs/LJ049-0101.wav|tests/data/ljspeech/wavs/LJ049-0101.npy +tests/data/ljspeech/wavs/LJ019-0002.wav|tests/data/ljspeech/wavs/LJ019-0002.npy +tests/data/ljspeech/wavs/LJ032-0106.wav|tests/data/ljspeech/wavs/LJ032-0106.npy +tests/data/ljspeech/wavs/LJ010-0172.wav|tests/data/ljspeech/wavs/LJ010-0172.npy +tests/data/ljspeech/wavs/LJ048-0218.wav|tests/data/ljspeech/wavs/LJ048-0218.npy +tests/data/ljspeech/wavs/LJ003-0300.wav|tests/data/ljspeech/wavs/LJ003-0300.npy +tests/data/ljspeech/wavs/LJ002-0165.wav|tests/data/ljspeech/wavs/LJ002-0165.npy +tests/data/ljspeech/wavs/LJ046-0101.wav|tests/data/ljspeech/wavs/LJ046-0101.npy +tests/data/ljspeech/wavs/LJ042-0147.wav|tests/data/ljspeech/wavs/LJ042-0147.npy +tests/data/ljspeech/wavs/LJ019-0394.wav|tests/data/ljspeech/wavs/LJ019-0394.npy +tests/data/ljspeech/wavs/LJ028-0449.wav|tests/data/ljspeech/wavs/LJ028-0449.npy +tests/data/ljspeech/wavs/LJ017-0116.wav|tests/data/ljspeech/wavs/LJ017-0116.npy +tests/data/ljspeech/wavs/LJ038-0065.wav|tests/data/ljspeech/wavs/LJ038-0065.npy +tests/data/ljspeech/wavs/LJ006-0207.wav|tests/data/ljspeech/wavs/LJ006-0207.npy +tests/data/ljspeech/wavs/LJ009-0123.wav|tests/data/ljspeech/wavs/LJ009-0123.npy +tests/data/ljspeech/wavs/LJ018-0203.wav|tests/data/ljspeech/wavs/LJ018-0203.npy +tests/data/ljspeech/wavs/LJ039-0125.wav|tests/data/ljspeech/wavs/LJ039-0125.npy +tests/data/ljspeech/wavs/LJ034-0133.wav|tests/data/ljspeech/wavs/LJ034-0133.npy +tests/data/ljspeech/wavs/LJ008-0074.wav|tests/data/ljspeech/wavs/LJ008-0074.npy +tests/data/ljspeech/wavs/LJ030-0246.wav|tests/data/ljspeech/wavs/LJ030-0246.npy +tests/data/ljspeech/wavs/LJ045-0019.wav|tests/data/ljspeech/wavs/LJ045-0019.npy +tests/data/ljspeech/wavs/LJ039-0016.wav|tests/data/ljspeech/wavs/LJ039-0016.npy +tests/data/ljspeech/wavs/LJ019-0341.wav|tests/data/ljspeech/wavs/LJ019-0341.npy +tests/data/ljspeech/wavs/LJ033-0102.wav|tests/data/ljspeech/wavs/LJ033-0102.npy +tests/data/ljspeech/wavs/LJ033-0090.wav|tests/data/ljspeech/wavs/LJ033-0090.npy +tests/data/ljspeech/wavs/LJ008-0142.wav|tests/data/ljspeech/wavs/LJ008-0142.npy +tests/data/ljspeech/wavs/LJ038-0184.wav|tests/data/ljspeech/wavs/LJ038-0184.npy +tests/data/ljspeech/wavs/LJ006-0080.wav|tests/data/ljspeech/wavs/LJ006-0080.npy +tests/data/ljspeech/wavs/LJ013-0239.wav|tests/data/ljspeech/wavs/LJ013-0239.npy +tests/data/ljspeech/wavs/LJ015-0149.wav|tests/data/ljspeech/wavs/LJ015-0149.npy +tests/data/ljspeech/wavs/LJ007-0047.wav|tests/data/ljspeech/wavs/LJ007-0047.npy +tests/data/ljspeech/wavs/LJ028-0457.wav|tests/data/ljspeech/wavs/LJ028-0457.npy +tests/data/ljspeech/wavs/LJ012-0079.wav|tests/data/ljspeech/wavs/LJ012-0079.npy +tests/data/ljspeech/wavs/LJ050-0052.wav|tests/data/ljspeech/wavs/LJ050-0052.npy +tests/data/ljspeech/wavs/LJ018-0360.wav|tests/data/ljspeech/wavs/LJ018-0360.npy +tests/data/ljspeech/wavs/LJ014-0111.wav|tests/data/ljspeech/wavs/LJ014-0111.npy +tests/data/ljspeech/wavs/LJ019-0210.wav|tests/data/ljspeech/wavs/LJ019-0210.npy +tests/data/ljspeech/wavs/LJ012-0081.wav|tests/data/ljspeech/wavs/LJ012-0081.npy +tests/data/ljspeech/wavs/LJ035-0159.wav|tests/data/ljspeech/wavs/LJ035-0159.npy +tests/data/ljspeech/wavs/LJ050-0109.wav|tests/data/ljspeech/wavs/LJ050-0109.npy +tests/data/ljspeech/wavs/LJ004-0182.wav|tests/data/ljspeech/wavs/LJ004-0182.npy +tests/data/ljspeech/wavs/LJ010-0085.wav|tests/data/ljspeech/wavs/LJ010-0085.npy +tests/data/ljspeech/wavs/LJ003-0276.wav|tests/data/ljspeech/wavs/LJ003-0276.npy +tests/data/ljspeech/wavs/LJ021-0086.wav|tests/data/ljspeech/wavs/LJ021-0086.npy +tests/data/ljspeech/wavs/LJ020-0083.wav|tests/data/ljspeech/wavs/LJ020-0083.npy +tests/data/ljspeech/wavs/LJ003-0332.wav|tests/data/ljspeech/wavs/LJ003-0332.npy +tests/data/ljspeech/wavs/LJ018-0340.wav|tests/data/ljspeech/wavs/LJ018-0340.npy +tests/data/ljspeech/wavs/LJ001-0067.wav|tests/data/ljspeech/wavs/LJ001-0067.npy +tests/data/ljspeech/wavs/LJ004-0181.wav|tests/data/ljspeech/wavs/LJ004-0181.npy +tests/data/ljspeech/wavs/LJ013-0247.wav|tests/data/ljspeech/wavs/LJ013-0247.npy +tests/data/ljspeech/wavs/LJ039-0073.wav|tests/data/ljspeech/wavs/LJ039-0073.npy +tests/data/ljspeech/wavs/LJ045-0029.wav|tests/data/ljspeech/wavs/LJ045-0029.npy +tests/data/ljspeech/wavs/LJ038-0136.wav|tests/data/ljspeech/wavs/LJ038-0136.npy +tests/data/ljspeech/wavs/LJ009-0197.wav|tests/data/ljspeech/wavs/LJ009-0197.npy +tests/data/ljspeech/wavs/LJ039-0103.wav|tests/data/ljspeech/wavs/LJ039-0103.npy +tests/data/ljspeech/wavs/LJ038-0201.wav|tests/data/ljspeech/wavs/LJ038-0201.npy +tests/data/ljspeech/wavs/LJ009-0272.wav|tests/data/ljspeech/wavs/LJ009-0272.npy +tests/data/ljspeech/wavs/LJ038-0134.wav|tests/data/ljspeech/wavs/LJ038-0134.npy +tests/data/ljspeech/wavs/LJ014-0234.wav|tests/data/ljspeech/wavs/LJ014-0234.npy +tests/data/ljspeech/wavs/LJ047-0074.wav|tests/data/ljspeech/wavs/LJ047-0074.npy +tests/data/ljspeech/wavs/LJ024-0005.wav|tests/data/ljspeech/wavs/LJ024-0005.npy +tests/data/ljspeech/wavs/LJ042-0242.wav|tests/data/ljspeech/wavs/LJ042-0242.npy +tests/data/ljspeech/wavs/LJ045-0034.wav|tests/data/ljspeech/wavs/LJ045-0034.npy +tests/data/ljspeech/wavs/LJ012-0193.wav|tests/data/ljspeech/wavs/LJ012-0193.npy +tests/data/ljspeech/wavs/LJ033-0156.wav|tests/data/ljspeech/wavs/LJ033-0156.npy +tests/data/ljspeech/wavs/LJ019-0141.wav|tests/data/ljspeech/wavs/LJ019-0141.npy +tests/data/ljspeech/wavs/LJ007-0024.wav|tests/data/ljspeech/wavs/LJ007-0024.npy +tests/data/ljspeech/wavs/LJ009-0192.wav|tests/data/ljspeech/wavs/LJ009-0192.npy +tests/data/ljspeech/wavs/LJ013-0210.wav|tests/data/ljspeech/wavs/LJ013-0210.npy +tests/data/ljspeech/wavs/LJ012-0163.wav|tests/data/ljspeech/wavs/LJ012-0163.npy +tests/data/ljspeech/wavs/LJ042-0075.wav|tests/data/ljspeech/wavs/LJ042-0075.npy +tests/data/ljspeech/wavs/LJ031-0096.wav|tests/data/ljspeech/wavs/LJ031-0096.npy +tests/data/ljspeech/wavs/LJ014-0068.wav|tests/data/ljspeech/wavs/LJ014-0068.npy +tests/data/ljspeech/wavs/LJ014-0263.wav|tests/data/ljspeech/wavs/LJ014-0263.npy +tests/data/ljspeech/wavs/LJ014-0144.wav|tests/data/ljspeech/wavs/LJ014-0144.npy +tests/data/ljspeech/wavs/LJ004-0218.wav|tests/data/ljspeech/wavs/LJ004-0218.npy +tests/data/ljspeech/wavs/LJ028-0095.wav|tests/data/ljspeech/wavs/LJ028-0095.npy +tests/data/ljspeech/wavs/LJ045-0015.wav|tests/data/ljspeech/wavs/LJ045-0015.npy +tests/data/ljspeech/wavs/LJ031-0153.wav|tests/data/ljspeech/wavs/LJ031-0153.npy +tests/data/ljspeech/wavs/LJ014-0177.wav|tests/data/ljspeech/wavs/LJ014-0177.npy +tests/data/ljspeech/wavs/LJ012-0269.wav|tests/data/ljspeech/wavs/LJ012-0269.npy +tests/data/ljspeech/wavs/LJ001-0050.wav|tests/data/ljspeech/wavs/LJ001-0050.npy +tests/data/ljspeech/wavs/LJ042-0033.wav|tests/data/ljspeech/wavs/LJ042-0033.npy +tests/data/ljspeech/wavs/LJ037-0022.wav|tests/data/ljspeech/wavs/LJ037-0022.npy +tests/data/ljspeech/wavs/LJ016-0325.wav|tests/data/ljspeech/wavs/LJ016-0325.npy +tests/data/ljspeech/wavs/LJ031-0206.wav|tests/data/ljspeech/wavs/LJ031-0206.npy +tests/data/ljspeech/wavs/LJ036-0067.wav|tests/data/ljspeech/wavs/LJ036-0067.npy +tests/data/ljspeech/wavs/LJ042-0132.wav|tests/data/ljspeech/wavs/LJ042-0132.npy +tests/data/ljspeech/wavs/LJ042-0101.wav|tests/data/ljspeech/wavs/LJ042-0101.npy +tests/data/ljspeech/wavs/LJ011-0253.wav|tests/data/ljspeech/wavs/LJ011-0253.npy +tests/data/ljspeech/wavs/LJ042-0036.wav|tests/data/ljspeech/wavs/LJ042-0036.npy +tests/data/ljspeech/wavs/LJ032-0144.wav|tests/data/ljspeech/wavs/LJ032-0144.npy +tests/data/ljspeech/wavs/LJ018-0134.wav|tests/data/ljspeech/wavs/LJ018-0134.npy +tests/data/ljspeech/wavs/LJ026-0144.wav|tests/data/ljspeech/wavs/LJ026-0144.npy +tests/data/ljspeech/wavs/LJ005-0035.wav|tests/data/ljspeech/wavs/LJ005-0035.npy +tests/data/ljspeech/wavs/LJ043-0081.wav|tests/data/ljspeech/wavs/LJ043-0081.npy +tests/data/ljspeech/wavs/LJ023-0050.wav|tests/data/ljspeech/wavs/LJ023-0050.npy +tests/data/ljspeech/wavs/LJ005-0179.wav|tests/data/ljspeech/wavs/LJ005-0179.npy +tests/data/ljspeech/wavs/LJ008-0084.wav|tests/data/ljspeech/wavs/LJ008-0084.npy +tests/data/ljspeech/wavs/LJ018-0355.wav|tests/data/ljspeech/wavs/LJ018-0355.npy +tests/data/ljspeech/wavs/LJ040-0131.wav|tests/data/ljspeech/wavs/LJ040-0131.npy +tests/data/ljspeech/wavs/LJ008-0175.wav|tests/data/ljspeech/wavs/LJ008-0175.npy +tests/data/ljspeech/wavs/LJ017-0215.wav|tests/data/ljspeech/wavs/LJ017-0215.npy +tests/data/ljspeech/wavs/LJ039-0179.wav|tests/data/ljspeech/wavs/LJ039-0179.npy +tests/data/ljspeech/wavs/LJ011-0148.wav|tests/data/ljspeech/wavs/LJ011-0148.npy +tests/data/ljspeech/wavs/LJ017-0177.wav|tests/data/ljspeech/wavs/LJ017-0177.npy +tests/data/ljspeech/wavs/LJ027-0090.wav|tests/data/ljspeech/wavs/LJ027-0090.npy +tests/data/ljspeech/wavs/LJ012-0237.wav|tests/data/ljspeech/wavs/LJ012-0237.npy +tests/data/ljspeech/wavs/LJ027-0036.wav|tests/data/ljspeech/wavs/LJ027-0036.npy +tests/data/ljspeech/wavs/LJ049-0226.wav|tests/data/ljspeech/wavs/LJ049-0226.npy +tests/data/ljspeech/wavs/LJ046-0062.wav|tests/data/ljspeech/wavs/LJ046-0062.npy +tests/data/ljspeech/wavs/LJ016-0358.wav|tests/data/ljspeech/wavs/LJ016-0358.npy +tests/data/ljspeech/wavs/LJ002-0228.wav|tests/data/ljspeech/wavs/LJ002-0228.npy +tests/data/ljspeech/wavs/LJ028-0299.wav|tests/data/ljspeech/wavs/LJ028-0299.npy +tests/data/ljspeech/wavs/LJ004-0107.wav|tests/data/ljspeech/wavs/LJ004-0107.npy +tests/data/ljspeech/wavs/LJ017-0073.wav|tests/data/ljspeech/wavs/LJ017-0073.npy +tests/data/ljspeech/wavs/LJ011-0140.wav|tests/data/ljspeech/wavs/LJ011-0140.npy +tests/data/ljspeech/wavs/LJ046-0128.wav|tests/data/ljspeech/wavs/LJ046-0128.npy +tests/data/ljspeech/wavs/LJ021-0168.wav|tests/data/ljspeech/wavs/LJ021-0168.npy +tests/data/ljspeech/wavs/LJ022-0086.wav|tests/data/ljspeech/wavs/LJ022-0086.npy +tests/data/ljspeech/wavs/LJ016-0129.wav|tests/data/ljspeech/wavs/LJ016-0129.npy +tests/data/ljspeech/wavs/LJ022-0073.wav|tests/data/ljspeech/wavs/LJ022-0073.npy +tests/data/ljspeech/wavs/LJ011-0190.wav|tests/data/ljspeech/wavs/LJ011-0190.npy +tests/data/ljspeech/wavs/LJ003-0063.wav|tests/data/ljspeech/wavs/LJ003-0063.npy +tests/data/ljspeech/wavs/LJ021-0167.wav|tests/data/ljspeech/wavs/LJ021-0167.npy +tests/data/ljspeech/wavs/LJ018-0188.wav|tests/data/ljspeech/wavs/LJ018-0188.npy +tests/data/ljspeech/wavs/LJ001-0143.wav|tests/data/ljspeech/wavs/LJ001-0143.npy +tests/data/ljspeech/wavs/LJ042-0133.wav|tests/data/ljspeech/wavs/LJ042-0133.npy +tests/data/ljspeech/wavs/LJ037-0089.wav|tests/data/ljspeech/wavs/LJ037-0089.npy +tests/data/ljspeech/wavs/LJ018-0175.wav|tests/data/ljspeech/wavs/LJ018-0175.npy +tests/data/ljspeech/wavs/LJ017-0239.wav|tests/data/ljspeech/wavs/LJ017-0239.npy +tests/data/ljspeech/wavs/LJ011-0259.wav|tests/data/ljspeech/wavs/LJ011-0259.npy +tests/data/ljspeech/wavs/LJ017-0017.wav|tests/data/ljspeech/wavs/LJ017-0017.npy +tests/data/ljspeech/wavs/LJ016-0222.wav|tests/data/ljspeech/wavs/LJ016-0222.npy +tests/data/ljspeech/wavs/LJ001-0072.wav|tests/data/ljspeech/wavs/LJ001-0072.npy +tests/data/ljspeech/wavs/LJ010-0224.wav|tests/data/ljspeech/wavs/LJ010-0224.npy +tests/data/ljspeech/wavs/LJ011-0214.wav|tests/data/ljspeech/wavs/LJ011-0214.npy +tests/data/ljspeech/wavs/LJ006-0272.wav|tests/data/ljspeech/wavs/LJ006-0272.npy +tests/data/ljspeech/wavs/LJ032-0167.wav|tests/data/ljspeech/wavs/LJ032-0167.npy +tests/data/ljspeech/wavs/LJ017-0281.wav|tests/data/ljspeech/wavs/LJ017-0281.npy +tests/data/ljspeech/wavs/LJ032-0233.wav|tests/data/ljspeech/wavs/LJ032-0233.npy +tests/data/ljspeech/wavs/LJ006-0222.wav|tests/data/ljspeech/wavs/LJ006-0222.npy +tests/data/ljspeech/wavs/LJ017-0254.wav|tests/data/ljspeech/wavs/LJ017-0254.npy +tests/data/ljspeech/wavs/LJ030-0173.wav|tests/data/ljspeech/wavs/LJ030-0173.npy +tests/data/ljspeech/wavs/LJ015-0285.wav|tests/data/ljspeech/wavs/LJ015-0285.npy +tests/data/ljspeech/wavs/LJ017-0251.wav|tests/data/ljspeech/wavs/LJ017-0251.npy +tests/data/ljspeech/wavs/LJ019-0184.wav|tests/data/ljspeech/wavs/LJ019-0184.npy +tests/data/ljspeech/wavs/LJ013-0048.wav|tests/data/ljspeech/wavs/LJ013-0048.npy +tests/data/ljspeech/wavs/LJ001-0007.wav|tests/data/ljspeech/wavs/LJ001-0007.npy +tests/data/ljspeech/wavs/LJ008-0036.wav|tests/data/ljspeech/wavs/LJ008-0036.npy +tests/data/ljspeech/wavs/LJ026-0023.wav|tests/data/ljspeech/wavs/LJ026-0023.npy +tests/data/ljspeech/wavs/LJ030-0020.wav|tests/data/ljspeech/wavs/LJ030-0020.npy +tests/data/ljspeech/wavs/LJ016-0203.wav|tests/data/ljspeech/wavs/LJ016-0203.npy +tests/data/ljspeech/wavs/LJ034-0160.wav|tests/data/ljspeech/wavs/LJ034-0160.npy +tests/data/ljspeech/wavs/LJ005-0001.wav|tests/data/ljspeech/wavs/LJ005-0001.npy +tests/data/ljspeech/wavs/LJ031-0042.wav|tests/data/ljspeech/wavs/LJ031-0042.npy +tests/data/ljspeech/wavs/LJ008-0014.wav|tests/data/ljspeech/wavs/LJ008-0014.npy +tests/data/ljspeech/wavs/LJ042-0012.wav|tests/data/ljspeech/wavs/LJ042-0012.npy +tests/data/ljspeech/wavs/LJ022-0156.wav|tests/data/ljspeech/wavs/LJ022-0156.npy +tests/data/ljspeech/wavs/LJ024-0063.wav|tests/data/ljspeech/wavs/LJ024-0063.npy +tests/data/ljspeech/wavs/LJ026-0166.wav|tests/data/ljspeech/wavs/LJ026-0166.npy +tests/data/ljspeech/wavs/LJ037-0221.wav|tests/data/ljspeech/wavs/LJ037-0221.npy +tests/data/ljspeech/wavs/LJ036-0080.wav|tests/data/ljspeech/wavs/LJ036-0080.npy +tests/data/ljspeech/wavs/LJ022-0006.wav|tests/data/ljspeech/wavs/LJ022-0006.npy +tests/data/ljspeech/wavs/LJ045-0111.wav|tests/data/ljspeech/wavs/LJ045-0111.npy +tests/data/ljspeech/wavs/LJ044-0227.wav|tests/data/ljspeech/wavs/LJ044-0227.npy +tests/data/ljspeech/wavs/LJ038-0170.wav|tests/data/ljspeech/wavs/LJ038-0170.npy +tests/data/ljspeech/wavs/LJ014-0153.wav|tests/data/ljspeech/wavs/LJ014-0153.npy +tests/data/ljspeech/wavs/LJ021-0044.wav|tests/data/ljspeech/wavs/LJ021-0044.npy +tests/data/ljspeech/wavs/LJ039-0078.wav|tests/data/ljspeech/wavs/LJ039-0078.npy +tests/data/ljspeech/wavs/LJ048-0193.wav|tests/data/ljspeech/wavs/LJ048-0193.npy +tests/data/ljspeech/wavs/LJ039-0245.wav|tests/data/ljspeech/wavs/LJ039-0245.npy +tests/data/ljspeech/wavs/LJ039-0085.wav|tests/data/ljspeech/wavs/LJ039-0085.npy +tests/data/ljspeech/wavs/LJ014-0131.wav|tests/data/ljspeech/wavs/LJ014-0131.npy +tests/data/ljspeech/wavs/LJ025-0019.wav|tests/data/ljspeech/wavs/LJ025-0019.npy +tests/data/ljspeech/wavs/LJ009-0275.wav|tests/data/ljspeech/wavs/LJ009-0275.npy +tests/data/ljspeech/wavs/LJ045-0060.wav|tests/data/ljspeech/wavs/LJ045-0060.npy +tests/data/ljspeech/wavs/LJ002-0289.wav|tests/data/ljspeech/wavs/LJ002-0289.npy +tests/data/ljspeech/wavs/LJ042-0064.wav|tests/data/ljspeech/wavs/LJ042-0064.npy +tests/data/ljspeech/wavs/LJ019-0218.wav|tests/data/ljspeech/wavs/LJ019-0218.npy +tests/data/ljspeech/wavs/LJ041-0041.wav|tests/data/ljspeech/wavs/LJ041-0041.npy +tests/data/ljspeech/wavs/LJ031-0216.wav|tests/data/ljspeech/wavs/LJ031-0216.npy +tests/data/ljspeech/wavs/LJ047-0096.wav|tests/data/ljspeech/wavs/LJ047-0096.npy +tests/data/ljspeech/wavs/LJ019-0149.wav|tests/data/ljspeech/wavs/LJ019-0149.npy +tests/data/ljspeech/wavs/LJ030-0225.wav|tests/data/ljspeech/wavs/LJ030-0225.npy +tests/data/ljspeech/wavs/LJ022-0054.wav|tests/data/ljspeech/wavs/LJ022-0054.npy +tests/data/ljspeech/wavs/LJ007-0215.wav|tests/data/ljspeech/wavs/LJ007-0215.npy +tests/data/ljspeech/wavs/LJ010-0293.wav|tests/data/ljspeech/wavs/LJ010-0293.npy +tests/data/ljspeech/wavs/LJ005-0120.wav|tests/data/ljspeech/wavs/LJ005-0120.npy +tests/data/ljspeech/wavs/LJ027-0121.wav|tests/data/ljspeech/wavs/LJ027-0121.npy +tests/data/ljspeech/wavs/LJ003-0236.wav|tests/data/ljspeech/wavs/LJ003-0236.npy +tests/data/ljspeech/wavs/LJ029-0103.wav|tests/data/ljspeech/wavs/LJ029-0103.npy +tests/data/ljspeech/wavs/LJ024-0128.wav|tests/data/ljspeech/wavs/LJ024-0128.npy +tests/data/ljspeech/wavs/LJ008-0055.wav|tests/data/ljspeech/wavs/LJ008-0055.npy +tests/data/ljspeech/wavs/LJ011-0069.wav|tests/data/ljspeech/wavs/LJ011-0069.npy +tests/data/ljspeech/wavs/LJ003-0299.wav|tests/data/ljspeech/wavs/LJ003-0299.npy +tests/data/ljspeech/wavs/LJ043-0128.wav|tests/data/ljspeech/wavs/LJ043-0128.npy +tests/data/ljspeech/wavs/LJ011-0068.wav|tests/data/ljspeech/wavs/LJ011-0068.npy +tests/data/ljspeech/wavs/LJ037-0120.wav|tests/data/ljspeech/wavs/LJ037-0120.npy +tests/data/ljspeech/wavs/LJ028-0434.wav|tests/data/ljspeech/wavs/LJ028-0434.npy +tests/data/ljspeech/wavs/LJ019-0311.wav|tests/data/ljspeech/wavs/LJ019-0311.npy +tests/data/ljspeech/wavs/LJ040-0061.wav|tests/data/ljspeech/wavs/LJ040-0061.npy +tests/data/ljspeech/wavs/LJ004-0131.wav|tests/data/ljspeech/wavs/LJ004-0131.npy +tests/data/ljspeech/wavs/LJ002-0303.wav|tests/data/ljspeech/wavs/LJ002-0303.npy +tests/data/ljspeech/wavs/LJ044-0138.wav|tests/data/ljspeech/wavs/LJ044-0138.npy +tests/data/ljspeech/wavs/LJ049-0071.wav|tests/data/ljspeech/wavs/LJ049-0071.npy +tests/data/ljspeech/wavs/LJ008-0207.wav|tests/data/ljspeech/wavs/LJ008-0207.npy +tests/data/ljspeech/wavs/LJ025-0161.wav|tests/data/ljspeech/wavs/LJ025-0161.npy +tests/data/ljspeech/wavs/LJ045-0232.wav|tests/data/ljspeech/wavs/LJ045-0232.npy +tests/data/ljspeech/wavs/LJ009-0211.wav|tests/data/ljspeech/wavs/LJ009-0211.npy +tests/data/ljspeech/wavs/LJ039-0091.wav|tests/data/ljspeech/wavs/LJ039-0091.npy +tests/data/ljspeech/wavs/LJ018-0253.wav|tests/data/ljspeech/wavs/LJ018-0253.npy +tests/data/ljspeech/wavs/LJ015-0253.wav|tests/data/ljspeech/wavs/LJ015-0253.npy +tests/data/ljspeech/wavs/LJ005-0220.wav|tests/data/ljspeech/wavs/LJ005-0220.npy +tests/data/ljspeech/wavs/LJ010-0147.wav|tests/data/ljspeech/wavs/LJ010-0147.npy +tests/data/ljspeech/wavs/LJ018-0122.wav|tests/data/ljspeech/wavs/LJ018-0122.npy +tests/data/ljspeech/wavs/LJ019-0005.wav|tests/data/ljspeech/wavs/LJ019-0005.npy +tests/data/ljspeech/wavs/LJ018-0154.wav|tests/data/ljspeech/wavs/LJ018-0154.npy +tests/data/ljspeech/wavs/LJ028-0234.wav|tests/data/ljspeech/wavs/LJ028-0234.npy +tests/data/ljspeech/wavs/LJ031-0131.wav|tests/data/ljspeech/wavs/LJ031-0131.npy +tests/data/ljspeech/wavs/LJ010-0166.wav|tests/data/ljspeech/wavs/LJ010-0166.npy +tests/data/ljspeech/wavs/LJ021-0095.wav|tests/data/ljspeech/wavs/LJ021-0095.npy +tests/data/ljspeech/wavs/LJ016-0009.wav|tests/data/ljspeech/wavs/LJ016-0009.npy +tests/data/ljspeech/wavs/LJ014-0205.wav|tests/data/ljspeech/wavs/LJ014-0205.npy +tests/data/ljspeech/wavs/LJ028-0020.wav|tests/data/ljspeech/wavs/LJ028-0020.npy +tests/data/ljspeech/wavs/LJ012-0073.wav|tests/data/ljspeech/wavs/LJ012-0073.npy +tests/data/ljspeech/wavs/LJ015-0228.wav|tests/data/ljspeech/wavs/LJ015-0228.npy +tests/data/ljspeech/wavs/LJ023-0029.wav|tests/data/ljspeech/wavs/LJ023-0029.npy +tests/data/ljspeech/wavs/LJ015-0303.wav|tests/data/ljspeech/wavs/LJ015-0303.npy +tests/data/ljspeech/wavs/LJ027-0176.wav|tests/data/ljspeech/wavs/LJ027-0176.npy +tests/data/ljspeech/wavs/LJ037-0178.wav|tests/data/ljspeech/wavs/LJ037-0178.npy +tests/data/ljspeech/wavs/LJ049-0183.wav|tests/data/ljspeech/wavs/LJ049-0183.npy +tests/data/ljspeech/wavs/LJ023-0053.wav|tests/data/ljspeech/wavs/LJ023-0053.npy +tests/data/ljspeech/wavs/LJ023-0097.wav|tests/data/ljspeech/wavs/LJ023-0097.npy +tests/data/ljspeech/wavs/LJ005-0155.wav|tests/data/ljspeech/wavs/LJ005-0155.npy +tests/data/ljspeech/wavs/LJ018-0327.wav|tests/data/ljspeech/wavs/LJ018-0327.npy +tests/data/ljspeech/wavs/LJ006-0286.wav|tests/data/ljspeech/wavs/LJ006-0286.npy +tests/data/ljspeech/wavs/LJ018-0329.wav|tests/data/ljspeech/wavs/LJ018-0329.npy +tests/data/ljspeech/wavs/LJ028-0464.wav|tests/data/ljspeech/wavs/LJ028-0464.npy +tests/data/ljspeech/wavs/LJ021-0108.wav|tests/data/ljspeech/wavs/LJ021-0108.npy +tests/data/ljspeech/wavs/LJ026-0075.wav|tests/data/ljspeech/wavs/LJ026-0075.npy +tests/data/ljspeech/wavs/LJ018-0129.wav|tests/data/ljspeech/wavs/LJ018-0129.npy +tests/data/ljspeech/wavs/LJ030-0005.wav|tests/data/ljspeech/wavs/LJ030-0005.npy +tests/data/ljspeech/wavs/LJ034-0011.wav|tests/data/ljspeech/wavs/LJ034-0011.npy +tests/data/ljspeech/wavs/LJ004-0001.wav|tests/data/ljspeech/wavs/LJ004-0001.npy +tests/data/ljspeech/wavs/LJ034-0116.wav|tests/data/ljspeech/wavs/LJ034-0116.npy +tests/data/ljspeech/wavs/LJ003-0170.wav|tests/data/ljspeech/wavs/LJ003-0170.npy +tests/data/ljspeech/wavs/LJ044-0112.wav|tests/data/ljspeech/wavs/LJ044-0112.npy +tests/data/ljspeech/wavs/LJ046-0038.wav|tests/data/ljspeech/wavs/LJ046-0038.npy +tests/data/ljspeech/wavs/LJ035-0157.wav|tests/data/ljspeech/wavs/LJ035-0157.npy +tests/data/ljspeech/wavs/LJ003-0091.wav|tests/data/ljspeech/wavs/LJ003-0091.npy +tests/data/ljspeech/wavs/LJ021-0134.wav|tests/data/ljspeech/wavs/LJ021-0134.npy +tests/data/ljspeech/wavs/LJ035-0143.wav|tests/data/ljspeech/wavs/LJ035-0143.npy +tests/data/ljspeech/wavs/LJ038-0031.wav|tests/data/ljspeech/wavs/LJ038-0031.npy +tests/data/ljspeech/wavs/LJ029-0008.wav|tests/data/ljspeech/wavs/LJ029-0008.npy +tests/data/ljspeech/wavs/LJ014-0224.wav|tests/data/ljspeech/wavs/LJ014-0224.npy +tests/data/ljspeech/wavs/LJ046-0114.wav|tests/data/ljspeech/wavs/LJ046-0114.npy +tests/data/ljspeech/wavs/LJ019-0095.wav|tests/data/ljspeech/wavs/LJ019-0095.npy +tests/data/ljspeech/wavs/LJ022-0197.wav|tests/data/ljspeech/wavs/LJ022-0197.npy +tests/data/ljspeech/wavs/LJ038-0045.wav|tests/data/ljspeech/wavs/LJ038-0045.npy +tests/data/ljspeech/wavs/LJ031-0105.wav|tests/data/ljspeech/wavs/LJ031-0105.npy +tests/data/ljspeech/wavs/LJ043-0187.wav|tests/data/ljspeech/wavs/LJ043-0187.npy +tests/data/ljspeech/wavs/LJ006-0127.wav|tests/data/ljspeech/wavs/LJ006-0127.npy +tests/data/ljspeech/wavs/LJ018-0318.wav|tests/data/ljspeech/wavs/LJ018-0318.npy +tests/data/ljspeech/wavs/LJ028-0044.wav|tests/data/ljspeech/wavs/LJ028-0044.npy +tests/data/ljspeech/wavs/LJ011-0251.wav|tests/data/ljspeech/wavs/LJ011-0251.npy +tests/data/ljspeech/wavs/LJ046-0152.wav|tests/data/ljspeech/wavs/LJ046-0152.npy +tests/data/ljspeech/wavs/LJ010-0004.wav|tests/data/ljspeech/wavs/LJ010-0004.npy +tests/data/ljspeech/wavs/LJ040-0234.wav|tests/data/ljspeech/wavs/LJ040-0234.npy +tests/data/ljspeech/wavs/LJ019-0080.wav|tests/data/ljspeech/wavs/LJ019-0080.npy +tests/data/ljspeech/wavs/LJ015-0177.wav|tests/data/ljspeech/wavs/LJ015-0177.npy +tests/data/ljspeech/wavs/LJ019-0124.wav|tests/data/ljspeech/wavs/LJ019-0124.npy +tests/data/ljspeech/wavs/LJ033-0196.wav|tests/data/ljspeech/wavs/LJ033-0196.npy +tests/data/ljspeech/wavs/LJ021-0171.wav|tests/data/ljspeech/wavs/LJ021-0171.npy +tests/data/ljspeech/wavs/LJ038-0069.wav|tests/data/ljspeech/wavs/LJ038-0069.npy +tests/data/ljspeech/wavs/LJ025-0101.wav|tests/data/ljspeech/wavs/LJ025-0101.npy +tests/data/ljspeech/wavs/LJ031-0209.wav|tests/data/ljspeech/wavs/LJ031-0209.npy +tests/data/ljspeech/wavs/LJ030-0074.wav|tests/data/ljspeech/wavs/LJ030-0074.npy +tests/data/ljspeech/wavs/LJ016-0149.wav|tests/data/ljspeech/wavs/LJ016-0149.npy +tests/data/ljspeech/wavs/LJ027-0029.wav|tests/data/ljspeech/wavs/LJ027-0029.npy +tests/data/ljspeech/wavs/LJ031-0196.wav|tests/data/ljspeech/wavs/LJ031-0196.npy +tests/data/ljspeech/wavs/LJ032-0090.wav|tests/data/ljspeech/wavs/LJ032-0090.npy +tests/data/ljspeech/wavs/LJ029-0163.wav|tests/data/ljspeech/wavs/LJ029-0163.npy +tests/data/ljspeech/wavs/LJ007-0209.wav|tests/data/ljspeech/wavs/LJ007-0209.npy +tests/data/ljspeech/wavs/LJ032-0268.wav|tests/data/ljspeech/wavs/LJ032-0268.npy +tests/data/ljspeech/wavs/LJ032-0269.wav|tests/data/ljspeech/wavs/LJ032-0269.npy +tests/data/ljspeech/wavs/LJ028-0118.wav|tests/data/ljspeech/wavs/LJ028-0118.npy +tests/data/ljspeech/wavs/LJ032-0195.wav|tests/data/ljspeech/wavs/LJ032-0195.npy +tests/data/ljspeech/wavs/LJ033-0065.wav|tests/data/ljspeech/wavs/LJ033-0065.npy +tests/data/ljspeech/wavs/LJ027-0166.wav|tests/data/ljspeech/wavs/LJ027-0166.npy +tests/data/ljspeech/wavs/LJ028-0438.wav|tests/data/ljspeech/wavs/LJ028-0438.npy +tests/data/ljspeech/wavs/LJ014-0316.wav|tests/data/ljspeech/wavs/LJ014-0316.npy +tests/data/ljspeech/wavs/LJ004-0149.wav|tests/data/ljspeech/wavs/LJ004-0149.npy +tests/data/ljspeech/wavs/LJ029-0132.wav|tests/data/ljspeech/wavs/LJ029-0132.npy +tests/data/ljspeech/wavs/LJ029-0053.wav|tests/data/ljspeech/wavs/LJ029-0053.npy +tests/data/ljspeech/wavs/LJ032-0270.wav|tests/data/ljspeech/wavs/LJ032-0270.npy +tests/data/ljspeech/wavs/LJ032-0194.wav|tests/data/ljspeech/wavs/LJ032-0194.npy +tests/data/ljspeech/wavs/LJ032-0096.wav|tests/data/ljspeech/wavs/LJ032-0096.npy +tests/data/ljspeech/wavs/LJ028-0078.wav|tests/data/ljspeech/wavs/LJ028-0078.npy +tests/data/ljspeech/wavs/LJ047-0234.wav|tests/data/ljspeech/wavs/LJ047-0234.npy +tests/data/ljspeech/wavs/LJ028-0176.wav|tests/data/ljspeech/wavs/LJ028-0176.npy +tests/data/ljspeech/wavs/LJ028-0205.wav|tests/data/ljspeech/wavs/LJ028-0205.npy +tests/data/ljspeech/wavs/LJ037-0151.wav|tests/data/ljspeech/wavs/LJ037-0151.npy +tests/data/ljspeech/wavs/LJ028-0512.wav|tests/data/ljspeech/wavs/LJ028-0512.npy +tests/data/ljspeech/wavs/LJ042-0100.wav|tests/data/ljspeech/wavs/LJ042-0100.npy +tests/data/ljspeech/wavs/LJ049-0111.wav|tests/data/ljspeech/wavs/LJ049-0111.npy +tests/data/ljspeech/wavs/LJ015-0019.wav|tests/data/ljspeech/wavs/LJ015-0019.npy +tests/data/ljspeech/wavs/LJ032-0057.wav|tests/data/ljspeech/wavs/LJ032-0057.npy +tests/data/ljspeech/wavs/LJ050-0078.wav|tests/data/ljspeech/wavs/LJ050-0078.npy +tests/data/ljspeech/wavs/LJ026-0122.wav|tests/data/ljspeech/wavs/LJ026-0122.npy +tests/data/ljspeech/wavs/LJ026-0164.wav|tests/data/ljspeech/wavs/LJ026-0164.npy +tests/data/ljspeech/wavs/LJ028-0054.wav|tests/data/ljspeech/wavs/LJ028-0054.npy +tests/data/ljspeech/wavs/LJ043-0020.wav|tests/data/ljspeech/wavs/LJ043-0020.npy +tests/data/ljspeech/wavs/LJ036-0212.wav|tests/data/ljspeech/wavs/LJ036-0212.npy +tests/data/ljspeech/wavs/LJ028-0221.wav|tests/data/ljspeech/wavs/LJ028-0221.npy +tests/data/ljspeech/wavs/LJ021-0036.wav|tests/data/ljspeech/wavs/LJ021-0036.npy +tests/data/ljspeech/wavs/LJ019-0378.wav|tests/data/ljspeech/wavs/LJ019-0378.npy +tests/data/ljspeech/wavs/LJ042-0198.wav|tests/data/ljspeech/wavs/LJ042-0198.npy +tests/data/ljspeech/wavs/LJ021-0016.wav|tests/data/ljspeech/wavs/LJ021-0016.npy +tests/data/ljspeech/wavs/LJ007-0122.wav|tests/data/ljspeech/wavs/LJ007-0122.npy +tests/data/ljspeech/wavs/LJ027-0003.wav|tests/data/ljspeech/wavs/LJ027-0003.npy +tests/data/ljspeech/wavs/LJ028-0472.wav|tests/data/ljspeech/wavs/LJ028-0472.npy +tests/data/ljspeech/wavs/LJ030-0150.wav|tests/data/ljspeech/wavs/LJ030-0150.npy +tests/data/ljspeech/wavs/LJ043-0043.wav|tests/data/ljspeech/wavs/LJ043-0043.npy +tests/data/ljspeech/wavs/LJ033-0166.wav|tests/data/ljspeech/wavs/LJ033-0166.npy +tests/data/ljspeech/wavs/LJ007-0156.wav|tests/data/ljspeech/wavs/LJ007-0156.npy +tests/data/ljspeech/wavs/LJ021-0019.wav|tests/data/ljspeech/wavs/LJ021-0019.npy +tests/data/ljspeech/wavs/LJ050-0097.wav|tests/data/ljspeech/wavs/LJ050-0097.npy +tests/data/ljspeech/wavs/LJ021-0030.wav|tests/data/ljspeech/wavs/LJ021-0030.npy +tests/data/ljspeech/wavs/LJ018-0171.wav|tests/data/ljspeech/wavs/LJ018-0171.npy +tests/data/ljspeech/wavs/LJ042-0165.wav|tests/data/ljspeech/wavs/LJ042-0165.npy +tests/data/ljspeech/wavs/LJ050-0131.wav|tests/data/ljspeech/wavs/LJ050-0131.npy +tests/data/ljspeech/wavs/LJ018-0058.wav|tests/data/ljspeech/wavs/LJ018-0058.npy +tests/data/ljspeech/wavs/LJ005-0290.wav|tests/data/ljspeech/wavs/LJ005-0290.npy +tests/data/ljspeech/wavs/LJ042-0124.wav|tests/data/ljspeech/wavs/LJ042-0124.npy +tests/data/ljspeech/wavs/LJ032-0190.wav|tests/data/ljspeech/wavs/LJ032-0190.npy +tests/data/ljspeech/wavs/LJ028-0495.wav|tests/data/ljspeech/wavs/LJ028-0495.npy +tests/data/ljspeech/wavs/LJ033-0036.wav|tests/data/ljspeech/wavs/LJ033-0036.npy +tests/data/ljspeech/wavs/LJ049-0059.wav|tests/data/ljspeech/wavs/LJ049-0059.npy +tests/data/ljspeech/wavs/LJ014-0324.wav|tests/data/ljspeech/wavs/LJ014-0324.npy +tests/data/ljspeech/wavs/LJ044-0015.wav|tests/data/ljspeech/wavs/LJ044-0015.npy +tests/data/ljspeech/wavs/LJ005-0217.wav|tests/data/ljspeech/wavs/LJ005-0217.npy +tests/data/ljspeech/wavs/LJ039-0159.wav|tests/data/ljspeech/wavs/LJ039-0159.npy +tests/data/ljspeech/wavs/LJ021-0114.wav|tests/data/ljspeech/wavs/LJ021-0114.npy +tests/data/ljspeech/wavs/LJ036-0048.wav|tests/data/ljspeech/wavs/LJ036-0048.npy +tests/data/ljspeech/wavs/LJ044-0053.wav|tests/data/ljspeech/wavs/LJ044-0053.npy +tests/data/ljspeech/wavs/LJ021-0184.wav|tests/data/ljspeech/wavs/LJ021-0184.npy +tests/data/ljspeech/wavs/LJ021-0154.wav|tests/data/ljspeech/wavs/LJ021-0154.npy +tests/data/ljspeech/wavs/LJ049-0012.wav|tests/data/ljspeech/wavs/LJ049-0012.npy +tests/data/ljspeech/wavs/LJ034-0104.wav|tests/data/ljspeech/wavs/LJ034-0104.npy +tests/data/ljspeech/wavs/LJ017-0038.wav|tests/data/ljspeech/wavs/LJ017-0038.npy +tests/data/ljspeech/wavs/LJ012-0266.wav|tests/data/ljspeech/wavs/LJ012-0266.npy +tests/data/ljspeech/wavs/LJ016-0262.wav|tests/data/ljspeech/wavs/LJ016-0262.npy +tests/data/ljspeech/wavs/LJ012-0068.wav|tests/data/ljspeech/wavs/LJ012-0068.npy +tests/data/ljspeech/wavs/LJ038-0250.wav|tests/data/ljspeech/wavs/LJ038-0250.npy +tests/data/ljspeech/wavs/LJ005-0077.wav|tests/data/ljspeech/wavs/LJ005-0077.npy +tests/data/ljspeech/wavs/LJ018-0148.wav|tests/data/ljspeech/wavs/LJ018-0148.npy +tests/data/ljspeech/wavs/LJ013-0164.wav|tests/data/ljspeech/wavs/LJ013-0164.npy +tests/data/ljspeech/wavs/LJ019-0339.wav|tests/data/ljspeech/wavs/LJ019-0339.npy +tests/data/ljspeech/wavs/LJ016-0422.wav|tests/data/ljspeech/wavs/LJ016-0422.npy +tests/data/ljspeech/wavs/LJ005-0147.wav|tests/data/ljspeech/wavs/LJ005-0147.npy +tests/data/ljspeech/wavs/LJ008-0217.wav|tests/data/ljspeech/wavs/LJ008-0217.npy +tests/data/ljspeech/wavs/LJ014-0036.wav|tests/data/ljspeech/wavs/LJ014-0036.npy +tests/data/ljspeech/wavs/LJ015-0067.wav|tests/data/ljspeech/wavs/LJ015-0067.npy +tests/data/ljspeech/wavs/LJ012-0087.wav|tests/data/ljspeech/wavs/LJ012-0087.npy +tests/data/ljspeech/wavs/LJ049-0002.wav|tests/data/ljspeech/wavs/LJ049-0002.npy +tests/data/ljspeech/wavs/LJ039-0003.wav|tests/data/ljspeech/wavs/LJ039-0003.npy +tests/data/ljspeech/wavs/LJ004-0173.wav|tests/data/ljspeech/wavs/LJ004-0173.npy +tests/data/ljspeech/wavs/LJ004-0168.wav|tests/data/ljspeech/wavs/LJ004-0168.npy +tests/data/ljspeech/wavs/LJ018-0377.wav|tests/data/ljspeech/wavs/LJ018-0377.npy +tests/data/ljspeech/wavs/LJ015-0134.wav|tests/data/ljspeech/wavs/LJ015-0134.npy +tests/data/ljspeech/wavs/LJ037-0252.wav|tests/data/ljspeech/wavs/LJ037-0252.npy +tests/data/ljspeech/wavs/LJ016-0180.wav|tests/data/ljspeech/wavs/LJ016-0180.npy +tests/data/ljspeech/wavs/LJ011-0124.wav|tests/data/ljspeech/wavs/LJ011-0124.npy +tests/data/ljspeech/wavs/LJ042-0007.wav|tests/data/ljspeech/wavs/LJ042-0007.npy +tests/data/ljspeech/wavs/LJ045-0107.wav|tests/data/ljspeech/wavs/LJ045-0107.npy +tests/data/ljspeech/wavs/LJ040-0052.wav|tests/data/ljspeech/wavs/LJ040-0052.npy +tests/data/ljspeech/wavs/LJ010-0235.wav|tests/data/ljspeech/wavs/LJ010-0235.npy +tests/data/ljspeech/wavs/LJ015-0282.wav|tests/data/ljspeech/wavs/LJ015-0282.npy +tests/data/ljspeech/wavs/LJ022-0200.wav|tests/data/ljspeech/wavs/LJ022-0200.npy +tests/data/ljspeech/wavs/LJ016-0018.wav|tests/data/ljspeech/wavs/LJ016-0018.npy +tests/data/ljspeech/wavs/LJ047-0248.wav|tests/data/ljspeech/wavs/LJ047-0248.npy +tests/data/ljspeech/wavs/LJ014-0213.wav|tests/data/ljspeech/wavs/LJ014-0213.npy +tests/data/ljspeech/wavs/LJ003-0187.wav|tests/data/ljspeech/wavs/LJ003-0187.npy +tests/data/ljspeech/wavs/LJ041-0089.wav|tests/data/ljspeech/wavs/LJ041-0089.npy +tests/data/ljspeech/wavs/LJ017-0056.wav|tests/data/ljspeech/wavs/LJ017-0056.npy +tests/data/ljspeech/wavs/LJ017-0149.wav|tests/data/ljspeech/wavs/LJ017-0149.npy +tests/data/ljspeech/wavs/LJ010-0143.wav|tests/data/ljspeech/wavs/LJ010-0143.npy +tests/data/ljspeech/wavs/LJ019-0306.wav|tests/data/ljspeech/wavs/LJ019-0306.npy +tests/data/ljspeech/wavs/LJ036-0043.wav|tests/data/ljspeech/wavs/LJ036-0043.npy +tests/data/ljspeech/wavs/LJ050-0006.wav|tests/data/ljspeech/wavs/LJ050-0006.npy +tests/data/ljspeech/wavs/LJ037-0253.wav|tests/data/ljspeech/wavs/LJ037-0253.npy +tests/data/ljspeech/wavs/LJ045-0186.wav|tests/data/ljspeech/wavs/LJ045-0186.npy +tests/data/ljspeech/wavs/LJ045-0188.wav|tests/data/ljspeech/wavs/LJ045-0188.npy +tests/data/ljspeech/wavs/LJ023-0107.wav|tests/data/ljspeech/wavs/LJ023-0107.npy +tests/data/ljspeech/wavs/LJ003-0292.wav|tests/data/ljspeech/wavs/LJ003-0292.npy +tests/data/ljspeech/wavs/LJ039-0219.wav|tests/data/ljspeech/wavs/LJ039-0219.npy +tests/data/ljspeech/wavs/LJ013-0150.wav|tests/data/ljspeech/wavs/LJ013-0150.npy +tests/data/ljspeech/wavs/LJ019-0129.wav|tests/data/ljspeech/wavs/LJ019-0129.npy +tests/data/ljspeech/wavs/LJ015-0308.wav|tests/data/ljspeech/wavs/LJ015-0308.npy +tests/data/ljspeech/wavs/LJ011-0211.wav|tests/data/ljspeech/wavs/LJ011-0211.npy +tests/data/ljspeech/wavs/LJ016-0238.wav|tests/data/ljspeech/wavs/LJ016-0238.npy +tests/data/ljspeech/wavs/LJ044-0233.wav|tests/data/ljspeech/wavs/LJ044-0233.npy +tests/data/ljspeech/wavs/LJ017-0174.wav|tests/data/ljspeech/wavs/LJ017-0174.npy +tests/data/ljspeech/wavs/LJ046-0121.wav|tests/data/ljspeech/wavs/LJ046-0121.npy +tests/data/ljspeech/wavs/LJ024-0030.wav|tests/data/ljspeech/wavs/LJ024-0030.npy +tests/data/ljspeech/wavs/LJ046-0071.wav|tests/data/ljspeech/wavs/LJ046-0071.npy +tests/data/ljspeech/wavs/LJ010-0159.wav|tests/data/ljspeech/wavs/LJ010-0159.npy +tests/data/ljspeech/wavs/LJ004-0065.wav|tests/data/ljspeech/wavs/LJ004-0065.npy +tests/data/ljspeech/wavs/LJ002-0314.wav|tests/data/ljspeech/wavs/LJ002-0314.npy +tests/data/ljspeech/wavs/LJ030-0026.wav|tests/data/ljspeech/wavs/LJ030-0026.npy +tests/data/ljspeech/wavs/LJ049-0044.wav|tests/data/ljspeech/wavs/LJ049-0044.npy +tests/data/ljspeech/wavs/LJ002-0227.wav|tests/data/ljspeech/wavs/LJ002-0227.npy +tests/data/ljspeech/wavs/LJ002-0167.wav|tests/data/ljspeech/wavs/LJ002-0167.npy +tests/data/ljspeech/wavs/LJ002-0316.wav|tests/data/ljspeech/wavs/LJ002-0316.npy +tests/data/ljspeech/wavs/LJ040-0034.wav|tests/data/ljspeech/wavs/LJ040-0034.npy +tests/data/ljspeech/wavs/LJ033-0193.wav|tests/data/ljspeech/wavs/LJ033-0193.npy +tests/data/ljspeech/wavs/LJ024-0070.wav|tests/data/ljspeech/wavs/LJ024-0070.npy +tests/data/ljspeech/wavs/LJ004-0064.wav|tests/data/ljspeech/wavs/LJ004-0064.npy +tests/data/ljspeech/wavs/LJ001-0120.wav|tests/data/ljspeech/wavs/LJ001-0120.npy +tests/data/ljspeech/wavs/LJ015-0246.wav|tests/data/ljspeech/wavs/LJ015-0246.npy +tests/data/ljspeech/wavs/LJ044-0128.wav|tests/data/ljspeech/wavs/LJ044-0128.npy +tests/data/ljspeech/wavs/LJ003-0335.wav|tests/data/ljspeech/wavs/LJ003-0335.npy +tests/data/ljspeech/wavs/LJ004-0133.wav|tests/data/ljspeech/wavs/LJ004-0133.npy +tests/data/ljspeech/wavs/LJ024-0036.wav|tests/data/ljspeech/wavs/LJ024-0036.npy +tests/data/ljspeech/wavs/LJ024-0035.wav|tests/data/ljspeech/wavs/LJ024-0035.npy +tests/data/ljspeech/wavs/LJ001-0058.wav|tests/data/ljspeech/wavs/LJ001-0058.npy +tests/data/ljspeech/wavs/LJ022-0136.wav|tests/data/ljspeech/wavs/LJ022-0136.npy +tests/data/ljspeech/wavs/LJ010-0271.wav|tests/data/ljspeech/wavs/LJ010-0271.npy +tests/data/ljspeech/wavs/LJ028-0341.wav|tests/data/ljspeech/wavs/LJ028-0341.npy +tests/data/ljspeech/wavs/LJ010-0168.wav|tests/data/ljspeech/wavs/LJ010-0168.npy +tests/data/ljspeech/wavs/LJ002-0106.wav|tests/data/ljspeech/wavs/LJ002-0106.npy +tests/data/ljspeech/wavs/LJ010-0154.wav|tests/data/ljspeech/wavs/LJ010-0154.npy +tests/data/ljspeech/wavs/LJ001-0147.wav|tests/data/ljspeech/wavs/LJ001-0147.npy +tests/data/ljspeech/wavs/LJ002-0176.wav|tests/data/ljspeech/wavs/LJ002-0176.npy +tests/data/ljspeech/wavs/LJ019-0279.wav|tests/data/ljspeech/wavs/LJ019-0279.npy +tests/data/ljspeech/wavs/LJ041-0040.wav|tests/data/ljspeech/wavs/LJ041-0040.npy +tests/data/ljspeech/wavs/LJ021-0163.wav|tests/data/ljspeech/wavs/LJ021-0163.npy +tests/data/ljspeech/wavs/LJ022-0066.wav|tests/data/ljspeech/wavs/LJ022-0066.npy +tests/data/ljspeech/wavs/LJ038-0291.wav|tests/data/ljspeech/wavs/LJ038-0291.npy +tests/data/ljspeech/wavs/LJ002-0146.wav|tests/data/ljspeech/wavs/LJ002-0146.npy +tests/data/ljspeech/wavs/LJ009-0252.wav|tests/data/ljspeech/wavs/LJ009-0252.npy +tests/data/ljspeech/wavs/LJ015-0127.wav|tests/data/ljspeech/wavs/LJ015-0127.npy +tests/data/ljspeech/wavs/LJ048-0195.wav|tests/data/ljspeech/wavs/LJ048-0195.npy +tests/data/ljspeech/wavs/LJ041-0082.wav|tests/data/ljspeech/wavs/LJ041-0082.npy +tests/data/ljspeech/wavs/LJ022-0059.wav|tests/data/ljspeech/wavs/LJ022-0059.npy +tests/data/ljspeech/wavs/LJ019-0004.wav|tests/data/ljspeech/wavs/LJ019-0004.npy +tests/data/ljspeech/wavs/LJ019-0272.wav|tests/data/ljspeech/wavs/LJ019-0272.npy +tests/data/ljspeech/wavs/LJ037-0163.wav|tests/data/ljspeech/wavs/LJ037-0163.npy +tests/data/ljspeech/wavs/LJ040-0169.wav|tests/data/ljspeech/wavs/LJ040-0169.npy +tests/data/ljspeech/wavs/LJ010-0139.wav|tests/data/ljspeech/wavs/LJ010-0139.npy +tests/data/ljspeech/wavs/LJ032-0129.wav|tests/data/ljspeech/wavs/LJ032-0129.npy +tests/data/ljspeech/wavs/LJ016-0026.wav|tests/data/ljspeech/wavs/LJ016-0026.npy +tests/data/ljspeech/wavs/LJ041-0020.wav|tests/data/ljspeech/wavs/LJ041-0020.npy +tests/data/ljspeech/wavs/LJ017-0029.wav|tests/data/ljspeech/wavs/LJ017-0029.npy +tests/data/ljspeech/wavs/LJ022-0046.wav|tests/data/ljspeech/wavs/LJ022-0046.npy +tests/data/ljspeech/wavs/LJ002-0152.wav|tests/data/ljspeech/wavs/LJ002-0152.npy +tests/data/ljspeech/wavs/LJ010-0036.wav|tests/data/ljspeech/wavs/LJ010-0036.npy +tests/data/ljspeech/wavs/LJ037-0105.wav|tests/data/ljspeech/wavs/LJ037-0105.npy +tests/data/ljspeech/wavs/LJ013-0251.wav|tests/data/ljspeech/wavs/LJ013-0251.npy +tests/data/ljspeech/wavs/LJ010-0096.wav|tests/data/ljspeech/wavs/LJ010-0096.npy +tests/data/ljspeech/wavs/LJ002-0175.wav|tests/data/ljspeech/wavs/LJ002-0175.npy +tests/data/ljspeech/wavs/LJ011-0244.wav|tests/data/ljspeech/wavs/LJ011-0244.npy +tests/data/ljspeech/wavs/LJ010-0098.wav|tests/data/ljspeech/wavs/LJ010-0098.npy +tests/data/ljspeech/wavs/LJ002-0242.wav|tests/data/ljspeech/wavs/LJ002-0242.npy +tests/data/ljspeech/wavs/LJ001-0086.wav|tests/data/ljspeech/wavs/LJ001-0086.npy +tests/data/ljspeech/wavs/LJ012-0085.wav|tests/data/ljspeech/wavs/LJ012-0085.npy +tests/data/ljspeech/wavs/LJ038-0190.wav|tests/data/ljspeech/wavs/LJ038-0190.npy +tests/data/ljspeech/wavs/LJ004-0215.wav|tests/data/ljspeech/wavs/LJ004-0215.npy +tests/data/ljspeech/wavs/LJ049-0019.wav|tests/data/ljspeech/wavs/LJ049-0019.npy +tests/data/ljspeech/wavs/LJ012-0041.wav|tests/data/ljspeech/wavs/LJ012-0041.npy +tests/data/ljspeech/wavs/LJ041-0054.wav|tests/data/ljspeech/wavs/LJ041-0054.npy +tests/data/ljspeech/wavs/LJ036-0087.wav|tests/data/ljspeech/wavs/LJ036-0087.npy +tests/data/ljspeech/wavs/LJ001-0148.wav|tests/data/ljspeech/wavs/LJ001-0148.npy +tests/data/ljspeech/wavs/LJ011-0285.wav|tests/data/ljspeech/wavs/LJ011-0285.npy +tests/data/ljspeech/wavs/LJ030-0028.wav|tests/data/ljspeech/wavs/LJ030-0028.npy +tests/data/ljspeech/wavs/LJ014-0146.wav|tests/data/ljspeech/wavs/LJ014-0146.npy +tests/data/ljspeech/wavs/LJ014-0190.wav|tests/data/ljspeech/wavs/LJ014-0190.npy +tests/data/ljspeech/wavs/LJ048-0199.wav|tests/data/ljspeech/wavs/LJ048-0199.npy +tests/data/ljspeech/wavs/LJ024-0088.wav|tests/data/ljspeech/wavs/LJ024-0088.npy +tests/data/ljspeech/wavs/LJ038-0017.wav|tests/data/ljspeech/wavs/LJ038-0017.npy +tests/data/ljspeech/wavs/LJ004-0180.wav|tests/data/ljspeech/wavs/LJ004-0180.npy +tests/data/ljspeech/wavs/LJ015-0123.wav|tests/data/ljspeech/wavs/LJ015-0123.npy +tests/data/ljspeech/wavs/LJ036-0066.wav|tests/data/ljspeech/wavs/LJ036-0066.npy +tests/data/ljspeech/wavs/LJ024-0093.wav|tests/data/ljspeech/wavs/LJ024-0093.npy +tests/data/ljspeech/wavs/LJ028-0049.wav|tests/data/ljspeech/wavs/LJ028-0049.npy +tests/data/ljspeech/wavs/LJ047-0128.wav|tests/data/ljspeech/wavs/LJ047-0128.npy +tests/data/ljspeech/wavs/LJ013-0110.wav|tests/data/ljspeech/wavs/LJ013-0110.npy +tests/data/ljspeech/wavs/LJ014-0154.wav|tests/data/ljspeech/wavs/LJ014-0154.npy +tests/data/ljspeech/wavs/LJ038-0027.wav|tests/data/ljspeech/wavs/LJ038-0027.npy +tests/data/ljspeech/wavs/LJ041-0128.wav|tests/data/ljspeech/wavs/LJ041-0128.npy +tests/data/ljspeech/wavs/LJ046-0096.wav|tests/data/ljspeech/wavs/LJ046-0096.npy +tests/data/ljspeech/wavs/LJ018-0098.wav|tests/data/ljspeech/wavs/LJ018-0098.npy +tests/data/ljspeech/wavs/LJ019-0037.wav|tests/data/ljspeech/wavs/LJ019-0037.npy +tests/data/ljspeech/wavs/LJ002-0042.wav|tests/data/ljspeech/wavs/LJ002-0042.npy +tests/data/ljspeech/wavs/LJ039-0065.wav|tests/data/ljspeech/wavs/LJ039-0065.npy +tests/data/ljspeech/wavs/LJ032-0139.wav|tests/data/ljspeech/wavs/LJ032-0139.npy +tests/data/ljspeech/wavs/LJ049-0015.wav|tests/data/ljspeech/wavs/LJ049-0015.npy +tests/data/ljspeech/wavs/LJ030-0112.wav|tests/data/ljspeech/wavs/LJ030-0112.npy +tests/data/ljspeech/wavs/LJ025-0058.wav|tests/data/ljspeech/wavs/LJ025-0058.npy +tests/data/ljspeech/wavs/LJ025-0057.wav|tests/data/ljspeech/wavs/LJ025-0057.npy +tests/data/ljspeech/wavs/LJ036-0211.wav|tests/data/ljspeech/wavs/LJ036-0211.npy +tests/data/ljspeech/wavs/LJ044-0035.wav|tests/data/ljspeech/wavs/LJ044-0035.npy +tests/data/ljspeech/wavs/LJ004-0056.wav|tests/data/ljspeech/wavs/LJ004-0056.npy +tests/data/ljspeech/wavs/LJ044-0019.wav|tests/data/ljspeech/wavs/LJ044-0019.npy +tests/data/ljspeech/wavs/LJ042-0232.wav|tests/data/ljspeech/wavs/LJ042-0232.npy +tests/data/ljspeech/wavs/LJ021-0146.wav|tests/data/ljspeech/wavs/LJ021-0146.npy +tests/data/ljspeech/wavs/LJ021-0152.wav|tests/data/ljspeech/wavs/LJ021-0152.npy +tests/data/ljspeech/wavs/LJ003-0349.wav|tests/data/ljspeech/wavs/LJ003-0349.npy +tests/data/ljspeech/wavs/LJ018-0336.wav|tests/data/ljspeech/wavs/LJ018-0336.npy +tests/data/ljspeech/wavs/LJ031-0172.wav|tests/data/ljspeech/wavs/LJ031-0172.npy +tests/data/ljspeech/wavs/LJ047-0030.wav|tests/data/ljspeech/wavs/LJ047-0030.npy +tests/data/ljspeech/wavs/LJ027-0046.wav|tests/data/ljspeech/wavs/LJ027-0046.npy +tests/data/ljspeech/wavs/LJ016-0314.wav|tests/data/ljspeech/wavs/LJ016-0314.npy +tests/data/ljspeech/wavs/LJ003-0275.wav|tests/data/ljspeech/wavs/LJ003-0275.npy +tests/data/ljspeech/wavs/LJ004-0004.wav|tests/data/ljspeech/wavs/LJ004-0004.npy +tests/data/ljspeech/wavs/LJ006-0142.wav|tests/data/ljspeech/wavs/LJ006-0142.npy +tests/data/ljspeech/wavs/LJ044-0232.wav|tests/data/ljspeech/wavs/LJ044-0232.npy +tests/data/ljspeech/wavs/LJ021-0112.wav|tests/data/ljspeech/wavs/LJ021-0112.npy +tests/data/ljspeech/wavs/LJ018-0111.wav|tests/data/ljspeech/wavs/LJ018-0111.npy +tests/data/ljspeech/wavs/LJ003-0160.wav|tests/data/ljspeech/wavs/LJ003-0160.npy +tests/data/ljspeech/wavs/LJ046-0215.wav|tests/data/ljspeech/wavs/LJ046-0215.npy +tests/data/ljspeech/wavs/LJ029-0088.wav|tests/data/ljspeech/wavs/LJ029-0088.npy +tests/data/ljspeech/wavs/LJ006-0242.wav|tests/data/ljspeech/wavs/LJ006-0242.npy +tests/data/ljspeech/wavs/LJ034-0006.wav|tests/data/ljspeech/wavs/LJ034-0006.npy +tests/data/ljspeech/wavs/LJ020-0103.wav|tests/data/ljspeech/wavs/LJ020-0103.npy +tests/data/ljspeech/wavs/LJ006-0273.wav|tests/data/ljspeech/wavs/LJ006-0273.npy +tests/data/ljspeech/wavs/LJ023-0013.wav|tests/data/ljspeech/wavs/LJ023-0013.npy +tests/data/ljspeech/wavs/LJ006-0114.wav|tests/data/ljspeech/wavs/LJ006-0114.npy +tests/data/ljspeech/wavs/LJ023-0044.wav|tests/data/ljspeech/wavs/LJ023-0044.npy +tests/data/ljspeech/wavs/LJ029-0018.wav|tests/data/ljspeech/wavs/LJ029-0018.npy +tests/data/ljspeech/wavs/LJ031-0230.wav|tests/data/ljspeech/wavs/LJ031-0230.npy +tests/data/ljspeech/wavs/LJ037-0069.wav|tests/data/ljspeech/wavs/LJ037-0069.npy +tests/data/ljspeech/wavs/LJ007-0165.wav|tests/data/ljspeech/wavs/LJ007-0165.npy +tests/data/ljspeech/wavs/LJ036-0078.wav|tests/data/ljspeech/wavs/LJ036-0078.npy +tests/data/ljspeech/wavs/LJ041-0155.wav|tests/data/ljspeech/wavs/LJ041-0155.npy +tests/data/ljspeech/wavs/LJ005-0038.wav|tests/data/ljspeech/wavs/LJ005-0038.npy +tests/data/ljspeech/wavs/LJ035-0038.wav|tests/data/ljspeech/wavs/LJ035-0038.npy +tests/data/ljspeech/wavs/LJ005-0040.wav|tests/data/ljspeech/wavs/LJ005-0040.npy +tests/data/ljspeech/wavs/LJ007-0144.wav|tests/data/ljspeech/wavs/LJ007-0144.npy +tests/data/ljspeech/wavs/LJ027-0114.wav|tests/data/ljspeech/wavs/LJ027-0114.npy +tests/data/ljspeech/wavs/LJ027-0042.wav|tests/data/ljspeech/wavs/LJ027-0042.npy +tests/data/ljspeech/wavs/LJ031-0150.wav|tests/data/ljspeech/wavs/LJ031-0150.npy +tests/data/ljspeech/wavs/LJ017-0117.wav|tests/data/ljspeech/wavs/LJ017-0117.npy +tests/data/ljspeech/wavs/LJ027-0107.wav|tests/data/ljspeech/wavs/LJ027-0107.npy +tests/data/ljspeech/wavs/LJ007-0075.wav|tests/data/ljspeech/wavs/LJ007-0075.npy +tests/data/ljspeech/wavs/LJ008-0103.wav|tests/data/ljspeech/wavs/LJ008-0103.npy +tests/data/ljspeech/wavs/LJ008-0292.wav|tests/data/ljspeech/wavs/LJ008-0292.npy +tests/data/ljspeech/wavs/LJ008-0053.wav|tests/data/ljspeech/wavs/LJ008-0053.npy +tests/data/ljspeech/wavs/LJ038-0115.wav|tests/data/ljspeech/wavs/LJ038-0115.npy +tests/data/ljspeech/wavs/LJ008-0250.wav|tests/data/ljspeech/wavs/LJ008-0250.npy +tests/data/ljspeech/wavs/LJ003-0081.wav|tests/data/ljspeech/wavs/LJ003-0081.npy +tests/data/ljspeech/wavs/LJ016-0264.wav|tests/data/ljspeech/wavs/LJ016-0264.npy +tests/data/ljspeech/wavs/LJ034-0122.wav|tests/data/ljspeech/wavs/LJ034-0122.npy +tests/data/ljspeech/wavs/LJ005-0043.wav|tests/data/ljspeech/wavs/LJ005-0043.npy +tests/data/ljspeech/wavs/LJ023-0061.wav|tests/data/ljspeech/wavs/LJ023-0061.npy +tests/data/ljspeech/wavs/LJ006-0110.wav|tests/data/ljspeech/wavs/LJ006-0110.npy +tests/data/ljspeech/wavs/LJ034-0213.wav|tests/data/ljspeech/wavs/LJ034-0213.npy +tests/data/ljspeech/wavs/LJ006-0020.wav|tests/data/ljspeech/wavs/LJ006-0020.npy +tests/data/ljspeech/wavs/LJ022-0024.wav|tests/data/ljspeech/wavs/LJ022-0024.npy +tests/data/ljspeech/wavs/LJ008-0275.wav|tests/data/ljspeech/wavs/LJ008-0275.npy +tests/data/ljspeech/wavs/LJ032-0008.wav|tests/data/ljspeech/wavs/LJ032-0008.npy +tests/data/ljspeech/wavs/LJ032-0203.wav|tests/data/ljspeech/wavs/LJ032-0203.npy +tests/data/ljspeech/wavs/LJ015-0006.wav|tests/data/ljspeech/wavs/LJ015-0006.npy +tests/data/ljspeech/wavs/LJ015-0001.wav|tests/data/ljspeech/wavs/LJ015-0001.npy +tests/data/ljspeech/wavs/LJ005-0203.wav|tests/data/ljspeech/wavs/LJ005-0203.npy +tests/data/ljspeech/wavs/LJ048-0035.wav|tests/data/ljspeech/wavs/LJ048-0035.npy +tests/data/ljspeech/wavs/LJ005-0187.wav|tests/data/ljspeech/wavs/LJ005-0187.npy +tests/data/ljspeech/wavs/LJ044-0043.wav|tests/data/ljspeech/wavs/LJ044-0043.npy +tests/data/ljspeech/wavs/LJ016-0251.wav|tests/data/ljspeech/wavs/LJ016-0251.npy +tests/data/ljspeech/wavs/LJ015-0255.wav|tests/data/ljspeech/wavs/LJ015-0255.npy +tests/data/ljspeech/wavs/LJ047-0004.wav|tests/data/ljspeech/wavs/LJ047-0004.npy +tests/data/ljspeech/wavs/LJ037-0056.wav|tests/data/ljspeech/wavs/LJ037-0056.npy +tests/data/ljspeech/wavs/LJ049-0089.wav|tests/data/ljspeech/wavs/LJ049-0089.npy +tests/data/ljspeech/wavs/LJ023-0076.wav|tests/data/ljspeech/wavs/LJ023-0076.npy +tests/data/ljspeech/wavs/LJ014-0105.wav|tests/data/ljspeech/wavs/LJ014-0105.npy +tests/data/ljspeech/wavs/LJ017-0223.wav|tests/data/ljspeech/wavs/LJ017-0223.npy +tests/data/ljspeech/wavs/LJ016-0250.wav|tests/data/ljspeech/wavs/LJ016-0250.npy +tests/data/ljspeech/wavs/LJ024-0137.wav|tests/data/ljspeech/wavs/LJ024-0137.npy +tests/data/ljspeech/wavs/LJ017-0274.wav|tests/data/ljspeech/wavs/LJ017-0274.npy +tests/data/ljspeech/wavs/LJ015-0013.wav|tests/data/ljspeech/wavs/LJ015-0013.npy +tests/data/ljspeech/wavs/LJ036-0093.wav|tests/data/ljspeech/wavs/LJ036-0093.npy +tests/data/ljspeech/wavs/LJ036-0215.wav|tests/data/ljspeech/wavs/LJ036-0215.npy +tests/data/ljspeech/wavs/LJ017-0135.wav|tests/data/ljspeech/wavs/LJ017-0135.npy +tests/data/ljspeech/wavs/LJ016-0164.wav|tests/data/ljspeech/wavs/LJ016-0164.npy +tests/data/ljspeech/wavs/LJ048-0213.wav|tests/data/ljspeech/wavs/LJ048-0213.npy +tests/data/ljspeech/wavs/LJ036-0183.wav|tests/data/ljspeech/wavs/LJ036-0183.npy +tests/data/ljspeech/wavs/LJ045-0187.wav|tests/data/ljspeech/wavs/LJ045-0187.npy +tests/data/ljspeech/wavs/LJ007-0240.wav|tests/data/ljspeech/wavs/LJ007-0240.npy +tests/data/ljspeech/wavs/LJ015-0289.wav|tests/data/ljspeech/wavs/LJ015-0289.npy +tests/data/ljspeech/wavs/LJ005-0117.wav|tests/data/ljspeech/wavs/LJ005-0117.npy +tests/data/ljspeech/wavs/LJ016-0131.wav|tests/data/ljspeech/wavs/LJ016-0131.npy +tests/data/ljspeech/wavs/LJ017-0043.wav|tests/data/ljspeech/wavs/LJ017-0043.npy +tests/data/ljspeech/wavs/LJ037-0044.wav|tests/data/ljspeech/wavs/LJ037-0044.npy +tests/data/ljspeech/wavs/LJ044-0018.wav|tests/data/ljspeech/wavs/LJ044-0018.npy +tests/data/ljspeech/wavs/LJ030-0027.wav|tests/data/ljspeech/wavs/LJ030-0027.npy +tests/data/ljspeech/wavs/LJ031-0022.wav|tests/data/ljspeech/wavs/LJ031-0022.npy +tests/data/ljspeech/wavs/LJ001-0040.wav|tests/data/ljspeech/wavs/LJ001-0040.npy +tests/data/ljspeech/wavs/LJ045-0247.wav|tests/data/ljspeech/wavs/LJ045-0247.npy +tests/data/ljspeech/wavs/LJ045-0205.wav|tests/data/ljspeech/wavs/LJ045-0205.npy +tests/data/ljspeech/wavs/LJ007-0174.wav|tests/data/ljspeech/wavs/LJ007-0174.npy +tests/data/ljspeech/wavs/LJ043-0015.wav|tests/data/ljspeech/wavs/LJ043-0015.npy +tests/data/ljspeech/wavs/LJ030-0068.wav|tests/data/ljspeech/wavs/LJ030-0068.npy +tests/data/ljspeech/wavs/LJ001-0009.wav|tests/data/ljspeech/wavs/LJ001-0009.npy +tests/data/ljspeech/wavs/LJ001-0117.wav|tests/data/ljspeech/wavs/LJ001-0117.npy +tests/data/ljspeech/wavs/LJ014-0220.wav|tests/data/ljspeech/wavs/LJ014-0220.npy +tests/data/ljspeech/wavs/LJ006-0120.wav|tests/data/ljspeech/wavs/LJ006-0120.npy +tests/data/ljspeech/wavs/LJ004-0141.wav|tests/data/ljspeech/wavs/LJ004-0141.npy +tests/data/ljspeech/wavs/LJ031-0007.wav|tests/data/ljspeech/wavs/LJ031-0007.npy +tests/data/ljspeech/wavs/LJ003-0175.wav|tests/data/ljspeech/wavs/LJ003-0175.npy +tests/data/ljspeech/wavs/LJ044-0228.wav|tests/data/ljspeech/wavs/LJ044-0228.npy +tests/data/ljspeech/wavs/LJ030-0233.wav|tests/data/ljspeech/wavs/LJ030-0233.npy +tests/data/ljspeech/wavs/LJ042-0099.wav|tests/data/ljspeech/wavs/LJ042-0099.npy +tests/data/ljspeech/wavs/LJ045-0233.wav|tests/data/ljspeech/wavs/LJ045-0233.npy +tests/data/ljspeech/wavs/LJ010-0305.wav|tests/data/ljspeech/wavs/LJ010-0305.npy +tests/data/ljspeech/wavs/LJ050-0039.wav|tests/data/ljspeech/wavs/LJ050-0039.npy +tests/data/ljspeech/wavs/LJ003-0238.wav|tests/data/ljspeech/wavs/LJ003-0238.npy +tests/data/ljspeech/wavs/LJ007-0039.wav|tests/data/ljspeech/wavs/LJ007-0039.npy +tests/data/ljspeech/wavs/LJ005-0257.wav|tests/data/ljspeech/wavs/LJ005-0257.npy +tests/data/ljspeech/wavs/LJ006-0160.wav|tests/data/ljspeech/wavs/LJ006-0160.npy +tests/data/ljspeech/wavs/LJ007-0200.wav|tests/data/ljspeech/wavs/LJ007-0200.npy +tests/data/ljspeech/wavs/LJ003-0029.wav|tests/data/ljspeech/wavs/LJ003-0029.npy +tests/data/ljspeech/wavs/LJ003-0346.wav|tests/data/ljspeech/wavs/LJ003-0346.npy +tests/data/ljspeech/wavs/LJ007-0121.wav|tests/data/ljspeech/wavs/LJ007-0121.npy +tests/data/ljspeech/wavs/LJ004-0060.wav|tests/data/ljspeech/wavs/LJ004-0060.npy +tests/data/ljspeech/wavs/LJ031-0223.wav|tests/data/ljspeech/wavs/LJ031-0223.npy +tests/data/ljspeech/wavs/LJ009-0300.wav|tests/data/ljspeech/wavs/LJ009-0300.npy +tests/data/ljspeech/wavs/LJ012-0078.wav|tests/data/ljspeech/wavs/LJ012-0078.npy +tests/data/ljspeech/wavs/LJ028-0424.wav|tests/data/ljspeech/wavs/LJ028-0424.npy +tests/data/ljspeech/wavs/LJ041-0008.wav|tests/data/ljspeech/wavs/LJ041-0008.npy +tests/data/ljspeech/wavs/LJ028-0417.wav|tests/data/ljspeech/wavs/LJ028-0417.npy +tests/data/ljspeech/wavs/LJ010-0287.wav|tests/data/ljspeech/wavs/LJ010-0287.npy +tests/data/ljspeech/wavs/LJ040-0123.wav|tests/data/ljspeech/wavs/LJ040-0123.npy +tests/data/ljspeech/wavs/LJ028-0303.wav|tests/data/ljspeech/wavs/LJ028-0303.npy +tests/data/ljspeech/wavs/LJ009-0119.wav|tests/data/ljspeech/wavs/LJ009-0119.npy +tests/data/ljspeech/wavs/LJ042-0025.wav|tests/data/ljspeech/wavs/LJ042-0025.npy +tests/data/ljspeech/wavs/LJ042-0097.wav|tests/data/ljspeech/wavs/LJ042-0097.npy +tests/data/ljspeech/wavs/LJ028-0143.wav|tests/data/ljspeech/wavs/LJ028-0143.npy +tests/data/ljspeech/wavs/LJ028-0288.wav|tests/data/ljspeech/wavs/LJ028-0288.npy +tests/data/ljspeech/wavs/LJ010-0058.wav|tests/data/ljspeech/wavs/LJ010-0058.npy +tests/data/ljspeech/wavs/LJ009-0037.wav|tests/data/ljspeech/wavs/LJ009-0037.npy +tests/data/ljspeech/wavs/LJ038-0254.wav|tests/data/ljspeech/wavs/LJ038-0254.npy +tests/data/ljspeech/wavs/LJ028-0189.wav|tests/data/ljspeech/wavs/LJ028-0189.npy +tests/data/ljspeech/wavs/LJ028-0306.wav|tests/data/ljspeech/wavs/LJ028-0306.npy +tests/data/ljspeech/wavs/LJ028-0471.wav|tests/data/ljspeech/wavs/LJ028-0471.npy +tests/data/ljspeech/wavs/LJ013-0004.wav|tests/data/ljspeech/wavs/LJ013-0004.npy +tests/data/ljspeech/wavs/LJ008-0248.wav|tests/data/ljspeech/wavs/LJ008-0248.npy +tests/data/ljspeech/wavs/LJ010-0086.wav|tests/data/ljspeech/wavs/LJ010-0086.npy +tests/data/ljspeech/wavs/LJ040-0240.wav|tests/data/ljspeech/wavs/LJ040-0240.npy +tests/data/ljspeech/wavs/LJ011-0145.wav|tests/data/ljspeech/wavs/LJ011-0145.npy +tests/data/ljspeech/wavs/LJ013-0010.wav|tests/data/ljspeech/wavs/LJ013-0010.npy +tests/data/ljspeech/wavs/LJ028-0237.wav|tests/data/ljspeech/wavs/LJ028-0237.npy +tests/data/ljspeech/wavs/LJ013-0114.wav|tests/data/ljspeech/wavs/LJ013-0114.npy +tests/data/ljspeech/wavs/LJ009-0043.wav|tests/data/ljspeech/wavs/LJ009-0043.npy +tests/data/ljspeech/wavs/LJ041-0121.wav|tests/data/ljspeech/wavs/LJ041-0121.npy +tests/data/ljspeech/wavs/LJ009-0280.wav|tests/data/ljspeech/wavs/LJ009-0280.npy +tests/data/ljspeech/wavs/LJ013-0075.wav|tests/data/ljspeech/wavs/LJ013-0075.npy +tests/data/ljspeech/wavs/LJ028-0451.wav|tests/data/ljspeech/wavs/LJ028-0451.npy +tests/data/ljspeech/wavs/LJ025-0042.wav|tests/data/ljspeech/wavs/LJ025-0042.npy +tests/data/ljspeech/wavs/LJ021-0007.wav|tests/data/ljspeech/wavs/LJ021-0007.npy +tests/data/ljspeech/wavs/LJ024-0067.wav|tests/data/ljspeech/wavs/LJ024-0067.npy +tests/data/ljspeech/wavs/LJ026-0123.wav|tests/data/ljspeech/wavs/LJ026-0123.npy +tests/data/ljspeech/wavs/LJ024-0107.wav|tests/data/ljspeech/wavs/LJ024-0107.npy +tests/data/ljspeech/wavs/LJ023-0003.wav|tests/data/ljspeech/wavs/LJ023-0003.npy +tests/data/ljspeech/wavs/LJ036-0060.wav|tests/data/ljspeech/wavs/LJ036-0060.npy +tests/data/ljspeech/wavs/LJ019-0088.wav|tests/data/ljspeech/wavs/LJ019-0088.npy +tests/data/ljspeech/wavs/LJ025-0154.wav|tests/data/ljspeech/wavs/LJ025-0154.npy +tests/data/ljspeech/wavs/LJ035-0045.wav|tests/data/ljspeech/wavs/LJ035-0045.npy +tests/data/ljspeech/wavs/LJ024-0092.wav|tests/data/ljspeech/wavs/LJ024-0092.npy +tests/data/ljspeech/wavs/LJ023-0091.wav|tests/data/ljspeech/wavs/LJ023-0091.npy +tests/data/ljspeech/wavs/LJ022-0167.wav|tests/data/ljspeech/wavs/LJ022-0167.npy +tests/data/ljspeech/wavs/LJ022-0025.wav|tests/data/ljspeech/wavs/LJ022-0025.npy +tests/data/ljspeech/wavs/LJ018-0230.wav|tests/data/ljspeech/wavs/LJ018-0230.npy +tests/data/ljspeech/wavs/LJ033-0046.wav|tests/data/ljspeech/wavs/LJ033-0046.npy +tests/data/ljspeech/wavs/LJ022-0153.wav|tests/data/ljspeech/wavs/LJ022-0153.npy +tests/data/ljspeech/wavs/LJ018-0076.wav|tests/data/ljspeech/wavs/LJ018-0076.npy +tests/data/ljspeech/wavs/LJ019-0291.wav|tests/data/ljspeech/wavs/LJ019-0291.npy +tests/data/ljspeech/wavs/LJ022-0129.wav|tests/data/ljspeech/wavs/LJ022-0129.npy +tests/data/ljspeech/wavs/LJ033-0041.wav|tests/data/ljspeech/wavs/LJ033-0041.npy +tests/data/ljspeech/wavs/LJ021-0038.wav|tests/data/ljspeech/wavs/LJ021-0038.npy +tests/data/ljspeech/wavs/LJ019-0202.wav|tests/data/ljspeech/wavs/LJ019-0202.npy +tests/data/ljspeech/wavs/LJ009-0014.wav|tests/data/ljspeech/wavs/LJ009-0014.npy +tests/data/ljspeech/wavs/LJ018-0147.wav|tests/data/ljspeech/wavs/LJ018-0147.npy +tests/data/ljspeech/wavs/LJ019-0033.wav|tests/data/ljspeech/wavs/LJ019-0033.npy +tests/data/ljspeech/wavs/LJ018-0135.wav|tests/data/ljspeech/wavs/LJ018-0135.npy +tests/data/ljspeech/wavs/LJ025-0036.wav|tests/data/ljspeech/wavs/LJ025-0036.npy +tests/data/ljspeech/wavs/LJ012-0109.wav|tests/data/ljspeech/wavs/LJ012-0109.npy +tests/data/ljspeech/wavs/LJ035-0169.wav|tests/data/ljspeech/wavs/LJ035-0169.npy +tests/data/ljspeech/wavs/LJ033-0120.wav|tests/data/ljspeech/wavs/LJ033-0120.npy +tests/data/ljspeech/wavs/LJ019-0357.wav|tests/data/ljspeech/wavs/LJ019-0357.npy +tests/data/ljspeech/wavs/LJ046-0008.wav|tests/data/ljspeech/wavs/LJ046-0008.npy +tests/data/ljspeech/wavs/LJ048-0275.wav|tests/data/ljspeech/wavs/LJ048-0275.npy +tests/data/ljspeech/wavs/LJ026-0117.wav|tests/data/ljspeech/wavs/LJ026-0117.npy +tests/data/ljspeech/wavs/LJ019-0195.wav|tests/data/ljspeech/wavs/LJ019-0195.npy +tests/data/ljspeech/wavs/LJ034-0137.wav|tests/data/ljspeech/wavs/LJ034-0137.npy +tests/data/ljspeech/wavs/LJ039-0006.wav|tests/data/ljspeech/wavs/LJ039-0006.npy +tests/data/ljspeech/wavs/LJ043-0055.wav|tests/data/ljspeech/wavs/LJ043-0055.npy +tests/data/ljspeech/wavs/LJ040-0116.wav|tests/data/ljspeech/wavs/LJ040-0116.npy +tests/data/ljspeech/wavs/LJ015-0103.wav|tests/data/ljspeech/wavs/LJ015-0103.npy +tests/data/ljspeech/wavs/LJ009-0290.wav|tests/data/ljspeech/wavs/LJ009-0290.npy +tests/data/ljspeech/wavs/LJ018-0286.wav|tests/data/ljspeech/wavs/LJ018-0286.npy +tests/data/ljspeech/wavs/LJ004-0161.wav|tests/data/ljspeech/wavs/LJ004-0161.npy +tests/data/ljspeech/wavs/LJ028-0041.wav|tests/data/ljspeech/wavs/LJ028-0041.npy +tests/data/ljspeech/wavs/LJ008-0176.wav|tests/data/ljspeech/wavs/LJ008-0176.npy +tests/data/ljspeech/wavs/LJ026-0154.wav|tests/data/ljspeech/wavs/LJ026-0154.npy +tests/data/ljspeech/wavs/LJ015-0089.wav|tests/data/ljspeech/wavs/LJ015-0089.npy +tests/data/ljspeech/wavs/LJ039-0010.wav|tests/data/ljspeech/wavs/LJ039-0010.npy +tests/data/ljspeech/wavs/LJ013-0228.wav|tests/data/ljspeech/wavs/LJ013-0228.npy +tests/data/ljspeech/wavs/LJ008-0202.wav|tests/data/ljspeech/wavs/LJ008-0202.npy +tests/data/ljspeech/wavs/LJ019-0093.wav|tests/data/ljspeech/wavs/LJ019-0093.npy +tests/data/ljspeech/wavs/LJ030-0048.wav|tests/data/ljspeech/wavs/LJ030-0048.npy +tests/data/ljspeech/wavs/LJ031-0047.wav|tests/data/ljspeech/wavs/LJ031-0047.npy +tests/data/ljspeech/wavs/LJ009-0142.wav|tests/data/ljspeech/wavs/LJ009-0142.npy +tests/data/ljspeech/wavs/LJ006-0215.wav|tests/data/ljspeech/wavs/LJ006-0215.npy +tests/data/ljspeech/wavs/LJ016-0227.wav|tests/data/ljspeech/wavs/LJ016-0227.npy +tests/data/ljspeech/wavs/LJ002-0233.wav|tests/data/ljspeech/wavs/LJ002-0233.npy +tests/data/ljspeech/wavs/LJ008-0205.wav|tests/data/ljspeech/wavs/LJ008-0205.npy +tests/data/ljspeech/wavs/LJ008-0037.wav|tests/data/ljspeech/wavs/LJ008-0037.npy +tests/data/ljspeech/wavs/LJ004-0138.wav|tests/data/ljspeech/wavs/LJ004-0138.npy +tests/data/ljspeech/wavs/LJ013-0234.wav|tests/data/ljspeech/wavs/LJ013-0234.npy +tests/data/ljspeech/wavs/LJ013-0227.wav|tests/data/ljspeech/wavs/LJ013-0227.npy +tests/data/ljspeech/wavs/LJ033-0058.wav|tests/data/ljspeech/wavs/LJ033-0058.npy +tests/data/ljspeech/wavs/LJ003-0074.wav|tests/data/ljspeech/wavs/LJ003-0074.npy +tests/data/ljspeech/wavs/LJ028-0357.wav|tests/data/ljspeech/wavs/LJ028-0357.npy +tests/data/ljspeech/wavs/LJ043-0038.wav|tests/data/ljspeech/wavs/LJ043-0038.npy +tests/data/ljspeech/wavs/LJ033-0038.wav|tests/data/ljspeech/wavs/LJ033-0038.npy +tests/data/ljspeech/wavs/LJ026-0018.wav|tests/data/ljspeech/wavs/LJ026-0018.npy +tests/data/ljspeech/wavs/LJ003-0018.wav|tests/data/ljspeech/wavs/LJ003-0018.npy +tests/data/ljspeech/wavs/LJ030-0106.wav|tests/data/ljspeech/wavs/LJ030-0106.npy +tests/data/ljspeech/wavs/LJ043-0051.wav|tests/data/ljspeech/wavs/LJ043-0051.npy +tests/data/ljspeech/wavs/LJ028-0169.wav|tests/data/ljspeech/wavs/LJ028-0169.npy +tests/data/ljspeech/wavs/LJ047-0005.wav|tests/data/ljspeech/wavs/LJ047-0005.npy +tests/data/ljspeech/wavs/LJ008-0091.wav|tests/data/ljspeech/wavs/LJ008-0091.npy +tests/data/ljspeech/wavs/LJ014-0157.wav|tests/data/ljspeech/wavs/LJ014-0157.npy +tests/data/ljspeech/wavs/LJ007-0201.wav|tests/data/ljspeech/wavs/LJ007-0201.npy +tests/data/ljspeech/wavs/LJ038-0278.wav|tests/data/ljspeech/wavs/LJ038-0278.npy +tests/data/ljspeech/wavs/LJ015-0156.wav|tests/data/ljspeech/wavs/LJ015-0156.npy +tests/data/ljspeech/wavs/LJ024-0025.wav|tests/data/ljspeech/wavs/LJ024-0025.npy +tests/data/ljspeech/wavs/LJ015-0284.wav|tests/data/ljspeech/wavs/LJ015-0284.npy +tests/data/ljspeech/wavs/LJ045-0118.wav|tests/data/ljspeech/wavs/LJ045-0118.npy +tests/data/ljspeech/wavs/LJ048-0111.wav|tests/data/ljspeech/wavs/LJ048-0111.npy +tests/data/ljspeech/wavs/LJ016-0128.wav|tests/data/ljspeech/wavs/LJ016-0128.npy +tests/data/ljspeech/wavs/LJ008-0105.wav|tests/data/ljspeech/wavs/LJ008-0105.npy +tests/data/ljspeech/wavs/LJ028-0022.wav|tests/data/ljspeech/wavs/LJ028-0022.npy +tests/data/ljspeech/wavs/LJ018-0298.wav|tests/data/ljspeech/wavs/LJ018-0298.npy +tests/data/ljspeech/wavs/LJ035-0185.wav|tests/data/ljspeech/wavs/LJ035-0185.npy +tests/data/ljspeech/wavs/LJ014-0015.wav|tests/data/ljspeech/wavs/LJ014-0015.npy +tests/data/ljspeech/wavs/LJ023-0087.wav|tests/data/ljspeech/wavs/LJ023-0087.npy +tests/data/ljspeech/wavs/LJ036-0013.wav|tests/data/ljspeech/wavs/LJ036-0013.npy +tests/data/ljspeech/wavs/LJ016-0108.wav|tests/data/ljspeech/wavs/LJ016-0108.npy +tests/data/ljspeech/wavs/LJ006-0308.wav|tests/data/ljspeech/wavs/LJ006-0308.npy +tests/data/ljspeech/wavs/LJ015-0041.wav|tests/data/ljspeech/wavs/LJ015-0041.npy +tests/data/ljspeech/wavs/LJ004-0015.wav|tests/data/ljspeech/wavs/LJ004-0015.npy +tests/data/ljspeech/wavs/LJ045-0100.wav|tests/data/ljspeech/wavs/LJ045-0100.npy +tests/data/ljspeech/wavs/LJ042-0246.wav|tests/data/ljspeech/wavs/LJ042-0246.npy +tests/data/ljspeech/wavs/LJ039-0232.wav|tests/data/ljspeech/wavs/LJ039-0232.npy +tests/data/ljspeech/wavs/LJ047-0149.wav|tests/data/ljspeech/wavs/LJ047-0149.npy +tests/data/ljspeech/wavs/LJ038-0186.wav|tests/data/ljspeech/wavs/LJ038-0186.npy +tests/data/ljspeech/wavs/LJ011-0204.wav|tests/data/ljspeech/wavs/LJ011-0204.npy +tests/data/ljspeech/wavs/LJ017-0064.wav|tests/data/ljspeech/wavs/LJ017-0064.npy +tests/data/ljspeech/wavs/LJ016-0070.wav|tests/data/ljspeech/wavs/LJ016-0070.npy +tests/data/ljspeech/wavs/LJ010-0195.wav|tests/data/ljspeech/wavs/LJ010-0195.npy +tests/data/ljspeech/wavs/LJ019-0122.wav|tests/data/ljspeech/wavs/LJ019-0122.npy +tests/data/ljspeech/wavs/LJ005-0088.wav|tests/data/ljspeech/wavs/LJ005-0088.npy +tests/data/ljspeech/wavs/LJ003-0347.wav|tests/data/ljspeech/wavs/LJ003-0347.npy +tests/data/ljspeech/wavs/LJ001-0032.wav|tests/data/ljspeech/wavs/LJ001-0032.npy +tests/data/ljspeech/wavs/LJ035-0057.wav|tests/data/ljspeech/wavs/LJ035-0057.npy +tests/data/ljspeech/wavs/LJ030-0044.wav|tests/data/ljspeech/wavs/LJ030-0044.npy +tests/data/ljspeech/wavs/LJ038-0019.wav|tests/data/ljspeech/wavs/LJ038-0019.npy +tests/data/ljspeech/wavs/LJ003-0214.wav|tests/data/ljspeech/wavs/LJ003-0214.npy +tests/data/ljspeech/wavs/LJ029-0003.wav|tests/data/ljspeech/wavs/LJ029-0003.npy +tests/data/ljspeech/wavs/LJ004-0247.wav|tests/data/ljspeech/wavs/LJ004-0247.npy +tests/data/ljspeech/wavs/LJ041-0021.wav|tests/data/ljspeech/wavs/LJ041-0021.npy +tests/data/ljspeech/wavs/LJ027-0057.wav|tests/data/ljspeech/wavs/LJ027-0057.npy +tests/data/ljspeech/wavs/LJ005-0002.wav|tests/data/ljspeech/wavs/LJ005-0002.npy +tests/data/ljspeech/wavs/LJ045-0146.wav|tests/data/ljspeech/wavs/LJ045-0146.npy +tests/data/ljspeech/wavs/LJ050-0012.wav|tests/data/ljspeech/wavs/LJ050-0012.npy +tests/data/ljspeech/wavs/LJ031-0202.wav|tests/data/ljspeech/wavs/LJ031-0202.npy +tests/data/ljspeech/wavs/LJ019-0092.wav|tests/data/ljspeech/wavs/LJ019-0092.npy +tests/data/ljspeech/wavs/LJ035-0092.wav|tests/data/ljspeech/wavs/LJ035-0092.npy +tests/data/ljspeech/wavs/LJ005-0010.wav|tests/data/ljspeech/wavs/LJ005-0010.npy +tests/data/ljspeech/wavs/LJ039-0157.wav|tests/data/ljspeech/wavs/LJ039-0157.npy +tests/data/ljspeech/wavs/LJ010-0290.wav|tests/data/ljspeech/wavs/LJ010-0290.npy +tests/data/ljspeech/wavs/LJ025-0162.wav|tests/data/ljspeech/wavs/LJ025-0162.npy +tests/data/ljspeech/wavs/LJ002-0330.wav|tests/data/ljspeech/wavs/LJ002-0330.npy +tests/data/ljspeech/wavs/LJ011-0184.wav|tests/data/ljspeech/wavs/LJ011-0184.npy +tests/data/ljspeech/wavs/LJ039-0180.wav|tests/data/ljspeech/wavs/LJ039-0180.npy +tests/data/ljspeech/wavs/LJ001-0024.wav|tests/data/ljspeech/wavs/LJ001-0024.npy +tests/data/ljspeech/wavs/LJ031-0014.wav|tests/data/ljspeech/wavs/LJ031-0014.npy +tests/data/ljspeech/wavs/LJ039-0196.wav|tests/data/ljspeech/wavs/LJ039-0196.npy +tests/data/ljspeech/wavs/LJ028-0216.wav|tests/data/ljspeech/wavs/LJ028-0216.npy +tests/data/ljspeech/wavs/LJ025-0092.wav|tests/data/ljspeech/wavs/LJ025-0092.npy +tests/data/ljspeech/wavs/LJ026-0128.wav|tests/data/ljspeech/wavs/LJ026-0128.npy +tests/data/ljspeech/wavs/LJ029-0210.wav|tests/data/ljspeech/wavs/LJ029-0210.npy +tests/data/ljspeech/wavs/LJ033-0074.wav|tests/data/ljspeech/wavs/LJ033-0074.npy +tests/data/ljspeech/wavs/LJ028-0278.wav|tests/data/ljspeech/wavs/LJ028-0278.npy +tests/data/ljspeech/wavs/LJ012-0283.wav|tests/data/ljspeech/wavs/LJ012-0283.npy +tests/data/ljspeech/wavs/LJ009-0052.wav|tests/data/ljspeech/wavs/LJ009-0052.npy +tests/data/ljspeech/wavs/LJ050-0036.wav|tests/data/ljspeech/wavs/LJ050-0036.npy +tests/data/ljspeech/wavs/LJ041-0011.wav|tests/data/ljspeech/wavs/LJ041-0011.npy +tests/data/ljspeech/wavs/LJ017-0238.wav|tests/data/ljspeech/wavs/LJ017-0238.npy +tests/data/ljspeech/wavs/LJ016-0335.wav|tests/data/ljspeech/wavs/LJ016-0335.npy +tests/data/ljspeech/wavs/LJ011-0255.wav|tests/data/ljspeech/wavs/LJ011-0255.npy +tests/data/ljspeech/wavs/LJ022-0009.wav|tests/data/ljspeech/wavs/LJ022-0009.npy +tests/data/ljspeech/wavs/LJ012-0217.wav|tests/data/ljspeech/wavs/LJ012-0217.npy +tests/data/ljspeech/wavs/LJ012-0165.wav|tests/data/ljspeech/wavs/LJ012-0165.npy +tests/data/ljspeech/wavs/LJ028-0485.wav|tests/data/ljspeech/wavs/LJ028-0485.npy +tests/data/ljspeech/wavs/LJ033-0108.wav|tests/data/ljspeech/wavs/LJ033-0108.npy +tests/data/ljspeech/wavs/LJ005-0029.wav|tests/data/ljspeech/wavs/LJ005-0029.npy +tests/data/ljspeech/wavs/LJ024-0136.wav|tests/data/ljspeech/wavs/LJ024-0136.npy +tests/data/ljspeech/wavs/LJ011-0013.wav|tests/data/ljspeech/wavs/LJ011-0013.npy +tests/data/ljspeech/wavs/LJ050-0074.wav|tests/data/ljspeech/wavs/LJ050-0074.npy +tests/data/ljspeech/wavs/LJ002-0077.wav|tests/data/ljspeech/wavs/LJ002-0077.npy +tests/data/ljspeech/wavs/LJ017-0121.wav|tests/data/ljspeech/wavs/LJ017-0121.npy +tests/data/ljspeech/wavs/LJ019-0102.wav|tests/data/ljspeech/wavs/LJ019-0102.npy +tests/data/ljspeech/wavs/LJ035-0141.wav|tests/data/ljspeech/wavs/LJ035-0141.npy +tests/data/ljspeech/wavs/LJ020-0057.wav|tests/data/ljspeech/wavs/LJ020-0057.npy +tests/data/ljspeech/wavs/LJ028-0196.wav|tests/data/ljspeech/wavs/LJ028-0196.npy +tests/data/ljspeech/wavs/LJ039-0015.wav|tests/data/ljspeech/wavs/LJ039-0015.npy +tests/data/ljspeech/wavs/LJ018-0158.wav|tests/data/ljspeech/wavs/LJ018-0158.npy +tests/data/ljspeech/wavs/LJ045-0069.wav|tests/data/ljspeech/wavs/LJ045-0069.npy +tests/data/ljspeech/wavs/LJ038-0106.wav|tests/data/ljspeech/wavs/LJ038-0106.npy +tests/data/ljspeech/wavs/LJ034-0012.wav|tests/data/ljspeech/wavs/LJ034-0012.npy +tests/data/ljspeech/wavs/LJ026-0084.wav|tests/data/ljspeech/wavs/LJ026-0084.npy +tests/data/ljspeech/wavs/LJ038-0104.wav|tests/data/ljspeech/wavs/LJ038-0104.npy +tests/data/ljspeech/wavs/LJ021-0148.wav|tests/data/ljspeech/wavs/LJ021-0148.npy +tests/data/ljspeech/wavs/LJ039-0123.wav|tests/data/ljspeech/wavs/LJ039-0123.npy +tests/data/ljspeech/wavs/LJ010-0272.wav|tests/data/ljspeech/wavs/LJ010-0272.npy +tests/data/ljspeech/wavs/LJ040-0019.wav|tests/data/ljspeech/wavs/LJ040-0019.npy +tests/data/ljspeech/wavs/LJ008-0082.wav|tests/data/ljspeech/wavs/LJ008-0082.npy +tests/data/ljspeech/wavs/LJ016-0415.wav|tests/data/ljspeech/wavs/LJ016-0415.npy +tests/data/ljspeech/wavs/LJ047-0100.wav|tests/data/ljspeech/wavs/LJ047-0100.npy +tests/data/ljspeech/wavs/LJ040-0041.wav|tests/data/ljspeech/wavs/LJ040-0041.npy +tests/data/ljspeech/wavs/LJ038-0062.wav|tests/data/ljspeech/wavs/LJ038-0062.npy +tests/data/ljspeech/wavs/LJ020-0026.wav|tests/data/ljspeech/wavs/LJ020-0026.npy +tests/data/ljspeech/wavs/LJ049-0208.wav|tests/data/ljspeech/wavs/LJ049-0208.npy +tests/data/ljspeech/wavs/LJ003-0285.wav|tests/data/ljspeech/wavs/LJ003-0285.npy +tests/data/ljspeech/wavs/LJ019-0369.wav|tests/data/ljspeech/wavs/LJ019-0369.npy +tests/data/ljspeech/wavs/LJ005-0236.wav|tests/data/ljspeech/wavs/LJ005-0236.npy +tests/data/ljspeech/wavs/LJ014-0210.wav|tests/data/ljspeech/wavs/LJ014-0210.npy +tests/data/ljspeech/wavs/LJ044-0056.wav|tests/data/ljspeech/wavs/LJ044-0056.npy +tests/data/ljspeech/wavs/LJ034-0058.wav|tests/data/ljspeech/wavs/LJ034-0058.npy +tests/data/ljspeech/wavs/LJ011-0114.wav|tests/data/ljspeech/wavs/LJ011-0114.npy +tests/data/ljspeech/wavs/LJ019-0185.wav|tests/data/ljspeech/wavs/LJ019-0185.npy +tests/data/ljspeech/wavs/LJ011-0193.wav|tests/data/ljspeech/wavs/LJ011-0193.npy +tests/data/ljspeech/wavs/LJ039-0240.wav|tests/data/ljspeech/wavs/LJ039-0240.npy +tests/data/ljspeech/wavs/LJ038-0029.wav|tests/data/ljspeech/wavs/LJ038-0029.npy +tests/data/ljspeech/wavs/LJ038-0091.wav|tests/data/ljspeech/wavs/LJ038-0091.npy +tests/data/ljspeech/wavs/LJ043-0094.wav|tests/data/ljspeech/wavs/LJ043-0094.npy +tests/data/ljspeech/wavs/LJ011-0085.wav|tests/data/ljspeech/wavs/LJ011-0085.npy +tests/data/ljspeech/wavs/LJ039-0185.wav|tests/data/ljspeech/wavs/LJ039-0185.npy +tests/data/ljspeech/wavs/LJ022-0081.wav|tests/data/ljspeech/wavs/LJ022-0081.npy +tests/data/ljspeech/wavs/LJ030-0010.wav|tests/data/ljspeech/wavs/LJ030-0010.npy +tests/data/ljspeech/wavs/LJ039-0023.wav|tests/data/ljspeech/wavs/LJ039-0023.npy +tests/data/ljspeech/wavs/LJ032-0124.wav|tests/data/ljspeech/wavs/LJ032-0124.npy +tests/data/ljspeech/wavs/LJ013-0261.wav|tests/data/ljspeech/wavs/LJ013-0261.npy +tests/data/ljspeech/wavs/LJ004-0073.wav|tests/data/ljspeech/wavs/LJ004-0073.npy +tests/data/ljspeech/wavs/LJ028-0323.wav|tests/data/ljspeech/wavs/LJ028-0323.npy +tests/data/ljspeech/wavs/LJ028-0153.wav|tests/data/ljspeech/wavs/LJ028-0153.npy +tests/data/ljspeech/wavs/LJ028-0473.wav|tests/data/ljspeech/wavs/LJ028-0473.npy +tests/data/ljspeech/wavs/LJ050-0171.wav|tests/data/ljspeech/wavs/LJ050-0171.npy +tests/data/ljspeech/wavs/LJ039-0131.wav|tests/data/ljspeech/wavs/LJ039-0131.npy +tests/data/ljspeech/wavs/LJ012-0031.wav|tests/data/ljspeech/wavs/LJ012-0031.npy +tests/data/ljspeech/wavs/LJ004-0216.wav|tests/data/ljspeech/wavs/LJ004-0216.npy +tests/data/ljspeech/wavs/LJ049-0013.wav|tests/data/ljspeech/wavs/LJ049-0013.npy +tests/data/ljspeech/wavs/LJ018-0367.wav|tests/data/ljspeech/wavs/LJ018-0367.npy +tests/data/ljspeech/wavs/LJ022-0055.wav|tests/data/ljspeech/wavs/LJ022-0055.npy +tests/data/ljspeech/wavs/LJ004-0135.wav|tests/data/ljspeech/wavs/LJ004-0135.npy +tests/data/ljspeech/wavs/LJ004-0074.wav|tests/data/ljspeech/wavs/LJ004-0074.npy +tests/data/ljspeech/wavs/LJ042-0200.wav|tests/data/ljspeech/wavs/LJ042-0200.npy +tests/data/ljspeech/wavs/LJ005-0170.wav|tests/data/ljspeech/wavs/LJ005-0170.npy +tests/data/ljspeech/wavs/LJ019-0046.wav|tests/data/ljspeech/wavs/LJ019-0046.npy +tests/data/ljspeech/wavs/LJ012-0158.wav|tests/data/ljspeech/wavs/LJ012-0158.npy +tests/data/ljspeech/wavs/LJ028-0334.wav|tests/data/ljspeech/wavs/LJ028-0334.npy +tests/data/ljspeech/wavs/LJ019-0089.wav|tests/data/ljspeech/wavs/LJ019-0089.npy +tests/data/ljspeech/wavs/LJ014-0204.wav|tests/data/ljspeech/wavs/LJ014-0204.npy +tests/data/ljspeech/wavs/LJ013-0104.wav|tests/data/ljspeech/wavs/LJ013-0104.npy +tests/data/ljspeech/wavs/LJ005-0157.wav|tests/data/ljspeech/wavs/LJ005-0157.npy +tests/data/ljspeech/wavs/LJ038-0239.wav|tests/data/ljspeech/wavs/LJ038-0239.npy +tests/data/ljspeech/wavs/LJ050-0172.wav|tests/data/ljspeech/wavs/LJ050-0172.npy +tests/data/ljspeech/wavs/LJ025-0153.wav|tests/data/ljspeech/wavs/LJ025-0153.npy +tests/data/ljspeech/wavs/LJ028-0491.wav|tests/data/ljspeech/wavs/LJ028-0491.npy +tests/data/ljspeech/wavs/LJ039-0160.wav|tests/data/ljspeech/wavs/LJ039-0160.npy +tests/data/ljspeech/wavs/LJ002-0016.wav|tests/data/ljspeech/wavs/LJ002-0016.npy +tests/data/ljspeech/wavs/LJ035-0179.wav|tests/data/ljspeech/wavs/LJ035-0179.npy +tests/data/ljspeech/wavs/LJ029-0160.wav|tests/data/ljspeech/wavs/LJ029-0160.npy +tests/data/ljspeech/wavs/LJ001-0186.wav|tests/data/ljspeech/wavs/LJ001-0186.npy +tests/data/ljspeech/wavs/LJ005-0018.wav|tests/data/ljspeech/wavs/LJ005-0018.npy +tests/data/ljspeech/wavs/LJ036-0051.wav|tests/data/ljspeech/wavs/LJ036-0051.npy +tests/data/ljspeech/wavs/LJ042-0156.wav|tests/data/ljspeech/wavs/LJ042-0156.npy +tests/data/ljspeech/wavs/LJ029-0030.wav|tests/data/ljspeech/wavs/LJ029-0030.npy +tests/data/ljspeech/wavs/LJ010-0028.wav|tests/data/ljspeech/wavs/LJ010-0028.npy +tests/data/ljspeech/wavs/LJ048-0120.wav|tests/data/ljspeech/wavs/LJ048-0120.npy +tests/data/ljspeech/wavs/LJ047-0249.wav|tests/data/ljspeech/wavs/LJ047-0249.npy +tests/data/ljspeech/wavs/LJ007-0087.wav|tests/data/ljspeech/wavs/LJ007-0087.npy +tests/data/ljspeech/wavs/LJ014-0054.wav|tests/data/ljspeech/wavs/LJ014-0054.npy +tests/data/ljspeech/wavs/LJ046-0201.wav|tests/data/ljspeech/wavs/LJ046-0201.npy +tests/data/ljspeech/wavs/LJ012-0103.wav|tests/data/ljspeech/wavs/LJ012-0103.npy +tests/data/ljspeech/wavs/LJ044-0057.wav|tests/data/ljspeech/wavs/LJ044-0057.npy +tests/data/ljspeech/wavs/LJ010-0049.wav|tests/data/ljspeech/wavs/LJ010-0049.npy +tests/data/ljspeech/wavs/LJ010-0048.wav|tests/data/ljspeech/wavs/LJ010-0048.npy +tests/data/ljspeech/wavs/LJ035-0077.wav|tests/data/ljspeech/wavs/LJ035-0077.npy +tests/data/ljspeech/wavs/LJ036-0062.wav|tests/data/ljspeech/wavs/LJ036-0062.npy +tests/data/ljspeech/wavs/LJ002-0297.wav|tests/data/ljspeech/wavs/LJ002-0297.npy +tests/data/ljspeech/wavs/LJ001-0176.wav|tests/data/ljspeech/wavs/LJ001-0176.npy +tests/data/ljspeech/wavs/LJ008-0119.wav|tests/data/ljspeech/wavs/LJ008-0119.npy +tests/data/ljspeech/wavs/LJ006-0072.wav|tests/data/ljspeech/wavs/LJ006-0072.npy +tests/data/ljspeech/wavs/LJ033-0143.wav|tests/data/ljspeech/wavs/LJ033-0143.npy +tests/data/ljspeech/wavs/LJ014-0075.wav|tests/data/ljspeech/wavs/LJ014-0075.npy +tests/data/ljspeech/wavs/LJ018-0243.wav|tests/data/ljspeech/wavs/LJ018-0243.npy +tests/data/ljspeech/wavs/LJ035-0210.wav|tests/data/ljspeech/wavs/LJ035-0210.npy +tests/data/ljspeech/wavs/LJ049-0087.wav|tests/data/ljspeech/wavs/LJ049-0087.npy +tests/data/ljspeech/wavs/LJ045-0219.wav|tests/data/ljspeech/wavs/LJ045-0219.npy +tests/data/ljspeech/wavs/LJ003-0006.wav|tests/data/ljspeech/wavs/LJ003-0006.npy +tests/data/ljspeech/wavs/LJ034-0004.wav|tests/data/ljspeech/wavs/LJ034-0004.npy +tests/data/ljspeech/wavs/LJ034-0181.wav|tests/data/ljspeech/wavs/LJ034-0181.npy +tests/data/ljspeech/wavs/LJ033-0009.wav|tests/data/ljspeech/wavs/LJ033-0009.npy +tests/data/ljspeech/wavs/LJ042-0131.wav|tests/data/ljspeech/wavs/LJ042-0131.npy +tests/data/ljspeech/wavs/LJ042-0130.wav|tests/data/ljspeech/wavs/LJ042-0130.npy +tests/data/ljspeech/wavs/LJ016-0185.wav|tests/data/ljspeech/wavs/LJ016-0185.npy +tests/data/ljspeech/wavs/LJ034-0152.wav|tests/data/ljspeech/wavs/LJ034-0152.npy +tests/data/ljspeech/wavs/LJ047-0167.wav|tests/data/ljspeech/wavs/LJ047-0167.npy +tests/data/ljspeech/wavs/LJ025-0111.wav|tests/data/ljspeech/wavs/LJ025-0111.npy +tests/data/ljspeech/wavs/LJ009-0120.wav|tests/data/ljspeech/wavs/LJ009-0120.npy +tests/data/ljspeech/wavs/LJ037-0072.wav|tests/data/ljspeech/wavs/LJ037-0072.npy +tests/data/ljspeech/wavs/LJ009-0276.wav|tests/data/ljspeech/wavs/LJ009-0276.npy +tests/data/ljspeech/wavs/LJ002-0269.wav|tests/data/ljspeech/wavs/LJ002-0269.npy +tests/data/ljspeech/wavs/LJ009-0266.wav|tests/data/ljspeech/wavs/LJ009-0266.npy +tests/data/ljspeech/wavs/LJ043-0153.wav|tests/data/ljspeech/wavs/LJ043-0153.npy +tests/data/ljspeech/wavs/LJ016-0411.wav|tests/data/ljspeech/wavs/LJ016-0411.npy +tests/data/ljspeech/wavs/LJ018-0229.wav|tests/data/ljspeech/wavs/LJ018-0229.npy +tests/data/ljspeech/wavs/LJ016-0171.wav|tests/data/ljspeech/wavs/LJ016-0171.npy +tests/data/ljspeech/wavs/LJ029-0035.wav|tests/data/ljspeech/wavs/LJ029-0035.npy +tests/data/ljspeech/wavs/LJ016-0054.wav|tests/data/ljspeech/wavs/LJ016-0054.npy +tests/data/ljspeech/wavs/LJ025-0003.wav|tests/data/ljspeech/wavs/LJ025-0003.npy +tests/data/ljspeech/wavs/LJ024-0046.wav|tests/data/ljspeech/wavs/LJ024-0046.npy +tests/data/ljspeech/wavs/LJ020-0084.wav|tests/data/ljspeech/wavs/LJ020-0084.npy +tests/data/ljspeech/wavs/LJ034-0211.wav|tests/data/ljspeech/wavs/LJ034-0211.npy +tests/data/ljspeech/wavs/LJ046-0049.wav|tests/data/ljspeech/wavs/LJ046-0049.npy +tests/data/ljspeech/wavs/LJ036-0143.wav|tests/data/ljspeech/wavs/LJ036-0143.npy +tests/data/ljspeech/wavs/LJ003-0027.wav|tests/data/ljspeech/wavs/LJ003-0027.npy +tests/data/ljspeech/wavs/LJ018-0161.wav|tests/data/ljspeech/wavs/LJ018-0161.npy +tests/data/ljspeech/wavs/LJ017-0010.wav|tests/data/ljspeech/wavs/LJ017-0010.npy +tests/data/ljspeech/wavs/LJ016-0430.wav|tests/data/ljspeech/wavs/LJ016-0430.npy +tests/data/ljspeech/wavs/LJ002-0134.wav|tests/data/ljspeech/wavs/LJ002-0134.npy +tests/data/ljspeech/wavs/LJ018-0194.wav|tests/data/ljspeech/wavs/LJ018-0194.npy +tests/data/ljspeech/wavs/LJ045-0197.wav|tests/data/ljspeech/wavs/LJ045-0197.npy +tests/data/ljspeech/wavs/LJ009-0172.wav|tests/data/ljspeech/wavs/LJ009-0172.npy +tests/data/ljspeech/wavs/LJ018-0170.wav|tests/data/ljspeech/wavs/LJ018-0170.npy +tests/data/ljspeech/wavs/LJ018-0085.wav|tests/data/ljspeech/wavs/LJ018-0085.npy +tests/data/ljspeech/wavs/LJ035-0019.wav|tests/data/ljspeech/wavs/LJ035-0019.npy +tests/data/ljspeech/wavs/LJ024-0115.wav|tests/data/ljspeech/wavs/LJ024-0115.npy +tests/data/ljspeech/wavs/LJ012-0277.wav|tests/data/ljspeech/wavs/LJ012-0277.npy +tests/data/ljspeech/wavs/LJ042-0205.wav|tests/data/ljspeech/wavs/LJ042-0205.npy +tests/data/ljspeech/wavs/LJ035-0128.wav|tests/data/ljspeech/wavs/LJ035-0128.npy +tests/data/ljspeech/wavs/LJ026-0099.wav|tests/data/ljspeech/wavs/LJ026-0099.npy +tests/data/ljspeech/wavs/LJ018-0041.wav|tests/data/ljspeech/wavs/LJ018-0041.npy +tests/data/ljspeech/wavs/LJ008-0245.wav|tests/data/ljspeech/wavs/LJ008-0245.npy +tests/data/ljspeech/wavs/LJ003-0130.wav|tests/data/ljspeech/wavs/LJ003-0130.npy +tests/data/ljspeech/wavs/LJ015-0171.wav|tests/data/ljspeech/wavs/LJ015-0171.npy +tests/data/ljspeech/wavs/LJ020-0047.wav|tests/data/ljspeech/wavs/LJ020-0047.npy +tests/data/ljspeech/wavs/LJ018-0078.wav|tests/data/ljspeech/wavs/LJ018-0078.npy +tests/data/ljspeech/wavs/LJ018-0266.wav|tests/data/ljspeech/wavs/LJ018-0266.npy +tests/data/ljspeech/wavs/LJ032-0165.wav|tests/data/ljspeech/wavs/LJ032-0165.npy +tests/data/ljspeech/wavs/LJ015-0272.wav|tests/data/ljspeech/wavs/LJ015-0272.npy +tests/data/ljspeech/wavs/LJ004-0238.wav|tests/data/ljspeech/wavs/LJ004-0238.npy +tests/data/ljspeech/wavs/LJ032-0004.wav|tests/data/ljspeech/wavs/LJ032-0004.npy +tests/data/ljspeech/wavs/LJ018-0038.wav|tests/data/ljspeech/wavs/LJ018-0038.npy +tests/data/ljspeech/wavs/LJ015-0160.wav|tests/data/ljspeech/wavs/LJ015-0160.npy +tests/data/ljspeech/wavs/LJ036-0091.wav|tests/data/ljspeech/wavs/LJ036-0091.npy +tests/data/ljspeech/wavs/LJ010-0093.wav|tests/data/ljspeech/wavs/LJ010-0093.npy +tests/data/ljspeech/wavs/LJ017-0221.wav|tests/data/ljspeech/wavs/LJ017-0221.npy +tests/data/ljspeech/wavs/LJ031-0217.wav|tests/data/ljspeech/wavs/LJ031-0217.npy +tests/data/ljspeech/wavs/LJ003-0150.wav|tests/data/ljspeech/wavs/LJ003-0150.npy +tests/data/ljspeech/wavs/LJ029-0068.wav|tests/data/ljspeech/wavs/LJ029-0068.npy +tests/data/ljspeech/wavs/LJ049-0094.wav|tests/data/ljspeech/wavs/LJ049-0094.npy +tests/data/ljspeech/wavs/LJ016-0282.wav|tests/data/ljspeech/wavs/LJ016-0282.npy +tests/data/ljspeech/wavs/LJ001-0075.wav|tests/data/ljspeech/wavs/LJ001-0075.npy +tests/data/ljspeech/wavs/LJ046-0058.wav|tests/data/ljspeech/wavs/LJ046-0058.npy +tests/data/ljspeech/wavs/LJ044-0080.wav|tests/data/ljspeech/wavs/LJ044-0080.npy +tests/data/ljspeech/wavs/LJ039-0021.wav|tests/data/ljspeech/wavs/LJ039-0021.npy +tests/data/ljspeech/wavs/LJ012-0065.wav|tests/data/ljspeech/wavs/LJ012-0065.npy +tests/data/ljspeech/wavs/LJ016-0443.wav|tests/data/ljspeech/wavs/LJ016-0443.npy +tests/data/ljspeech/wavs/LJ006-0118.wav|tests/data/ljspeech/wavs/LJ006-0118.npy +tests/data/ljspeech/wavs/LJ016-0316.wav|tests/data/ljspeech/wavs/LJ016-0316.npy +tests/data/ljspeech/wavs/LJ029-0144.wav|tests/data/ljspeech/wavs/LJ029-0144.npy +tests/data/ljspeech/wavs/LJ039-0218.wav|tests/data/ljspeech/wavs/LJ039-0218.npy +tests/data/ljspeech/wavs/LJ019-0097.wav|tests/data/ljspeech/wavs/LJ019-0097.npy +tests/data/ljspeech/wavs/LJ046-0248.wav|tests/data/ljspeech/wavs/LJ046-0248.npy +tests/data/ljspeech/wavs/LJ050-0194.wav|tests/data/ljspeech/wavs/LJ050-0194.npy +tests/data/ljspeech/wavs/LJ017-0059.wav|tests/data/ljspeech/wavs/LJ017-0059.npy +tests/data/ljspeech/wavs/LJ017-0166.wav|tests/data/ljspeech/wavs/LJ017-0166.npy +tests/data/ljspeech/wavs/LJ017-0270.wav|tests/data/ljspeech/wavs/LJ017-0270.npy +tests/data/ljspeech/wavs/LJ034-0053.wav|tests/data/ljspeech/wavs/LJ034-0053.npy +tests/data/ljspeech/wavs/LJ031-0161.wav|tests/data/ljspeech/wavs/LJ031-0161.npy +tests/data/ljspeech/wavs/LJ001-0168.wav|tests/data/ljspeech/wavs/LJ001-0168.npy +tests/data/ljspeech/wavs/LJ007-0166.wav|tests/data/ljspeech/wavs/LJ007-0166.npy +tests/data/ljspeech/wavs/LJ048-0214.wav|tests/data/ljspeech/wavs/LJ048-0214.npy +tests/data/ljspeech/wavs/LJ020-0052.wav|tests/data/ljspeech/wavs/LJ020-0052.npy +tests/data/ljspeech/wavs/LJ005-0095.wav|tests/data/ljspeech/wavs/LJ005-0095.npy +tests/data/ljspeech/wavs/LJ022-0007.wav|tests/data/ljspeech/wavs/LJ022-0007.npy +tests/data/ljspeech/wavs/LJ024-0049.wav|tests/data/ljspeech/wavs/LJ024-0049.npy +tests/data/ljspeech/wavs/LJ001-0121.wav|tests/data/ljspeech/wavs/LJ001-0121.npy +tests/data/ljspeech/wavs/LJ012-0044.wav|tests/data/ljspeech/wavs/LJ012-0044.npy +tests/data/ljspeech/wavs/LJ025-0158.wav|tests/data/ljspeech/wavs/LJ025-0158.npy +tests/data/ljspeech/wavs/LJ035-0146.wav|tests/data/ljspeech/wavs/LJ035-0146.npy +tests/data/ljspeech/wavs/LJ001-0065.wav|tests/data/ljspeech/wavs/LJ001-0065.npy +tests/data/ljspeech/wavs/LJ017-0075.wav|tests/data/ljspeech/wavs/LJ017-0075.npy +tests/data/ljspeech/wavs/LJ009-0023.wav|tests/data/ljspeech/wavs/LJ009-0023.npy +tests/data/ljspeech/wavs/LJ009-0195.wav|tests/data/ljspeech/wavs/LJ009-0195.npy +tests/data/ljspeech/wavs/LJ012-0043.wav|tests/data/ljspeech/wavs/LJ012-0043.npy +tests/data/ljspeech/wavs/LJ018-0143.wav|tests/data/ljspeech/wavs/LJ018-0143.npy +tests/data/ljspeech/wavs/LJ043-0022.wav|tests/data/ljspeech/wavs/LJ043-0022.npy +tests/data/ljspeech/wavs/LJ016-0008.wav|tests/data/ljspeech/wavs/LJ016-0008.npy +tests/data/ljspeech/wavs/LJ018-0141.wav|tests/data/ljspeech/wavs/LJ018-0141.npy +tests/data/ljspeech/wavs/LJ008-0010.wav|tests/data/ljspeech/wavs/LJ008-0010.npy +tests/data/ljspeech/wavs/LJ001-0049.wav|tests/data/ljspeech/wavs/LJ001-0049.npy +tests/data/ljspeech/wavs/LJ050-0260.wav|tests/data/ljspeech/wavs/LJ050-0260.npy +tests/data/ljspeech/wavs/LJ049-0054.wav|tests/data/ljspeech/wavs/LJ049-0054.npy +tests/data/ljspeech/wavs/LJ046-0169.wav|tests/data/ljspeech/wavs/LJ046-0169.npy +tests/data/ljspeech/wavs/LJ018-0179.wav|tests/data/ljspeech/wavs/LJ018-0179.npy +tests/data/ljspeech/wavs/LJ011-0224.wav|tests/data/ljspeech/wavs/LJ011-0224.npy +tests/data/ljspeech/wavs/LJ014-0252.wav|tests/data/ljspeech/wavs/LJ014-0252.npy +tests/data/ljspeech/wavs/LJ019-0052.wav|tests/data/ljspeech/wavs/LJ019-0052.npy +tests/data/ljspeech/wavs/LJ028-0287.wav|tests/data/ljspeech/wavs/LJ028-0287.npy +tests/data/ljspeech/wavs/LJ017-0231.wav|tests/data/ljspeech/wavs/LJ017-0231.npy +tests/data/ljspeech/wavs/LJ003-0051.wav|tests/data/ljspeech/wavs/LJ003-0051.npy +tests/data/ljspeech/wavs/LJ036-0158.wav|tests/data/ljspeech/wavs/LJ036-0158.npy +tests/data/ljspeech/wavs/LJ006-0180.wav|tests/data/ljspeech/wavs/LJ006-0180.npy +tests/data/ljspeech/wavs/LJ019-0287.wav|tests/data/ljspeech/wavs/LJ019-0287.npy +tests/data/ljspeech/wavs/LJ024-0105.wav|tests/data/ljspeech/wavs/LJ024-0105.npy +tests/data/ljspeech/wavs/LJ009-0157.wav|tests/data/ljspeech/wavs/LJ009-0157.npy +tests/data/ljspeech/wavs/LJ028-0409.wav|tests/data/ljspeech/wavs/LJ028-0409.npy +tests/data/ljspeech/wavs/LJ035-0132.wav|tests/data/ljspeech/wavs/LJ035-0132.npy +tests/data/ljspeech/wavs/LJ028-0435.wav|tests/data/ljspeech/wavs/LJ028-0435.npy +tests/data/ljspeech/wavs/LJ011-0032.wav|tests/data/ljspeech/wavs/LJ011-0032.npy +tests/data/ljspeech/wavs/LJ047-0215.wav|tests/data/ljspeech/wavs/LJ047-0215.npy +tests/data/ljspeech/wavs/LJ016-0016.wav|tests/data/ljspeech/wavs/LJ016-0016.npy +tests/data/ljspeech/wavs/LJ019-0060.wav|tests/data/ljspeech/wavs/LJ019-0060.npy +tests/data/ljspeech/wavs/LJ028-0293.wav|tests/data/ljspeech/wavs/LJ028-0293.npy +tests/data/ljspeech/wavs/LJ023-0105.wav|tests/data/ljspeech/wavs/LJ023-0105.npy +tests/data/ljspeech/wavs/LJ028-0513.wav|tests/data/ljspeech/wavs/LJ028-0513.npy +tests/data/ljspeech/wavs/LJ023-0072.wav|tests/data/ljspeech/wavs/LJ023-0072.npy +tests/data/ljspeech/wavs/LJ026-0003.wav|tests/data/ljspeech/wavs/LJ026-0003.npy +tests/data/ljspeech/wavs/LJ040-0189.wav|tests/data/ljspeech/wavs/LJ040-0189.npy +tests/data/ljspeech/wavs/LJ008-0101.wav|tests/data/ljspeech/wavs/LJ008-0101.npy +tests/data/ljspeech/wavs/LJ015-0147.wav|tests/data/ljspeech/wavs/LJ015-0147.npy +tests/data/ljspeech/wavs/LJ008-0032.wav|tests/data/ljspeech/wavs/LJ008-0032.npy +tests/data/ljspeech/wavs/LJ015-0033.wav|tests/data/ljspeech/wavs/LJ015-0033.npy +tests/data/ljspeech/wavs/LJ023-0117.wav|tests/data/ljspeech/wavs/LJ023-0117.npy +tests/data/ljspeech/wavs/LJ046-0210.wav|tests/data/ljspeech/wavs/LJ046-0210.npy +tests/data/ljspeech/wavs/LJ006-0136.wav|tests/data/ljspeech/wavs/LJ006-0136.npy +tests/data/ljspeech/wavs/LJ044-0167.wav|tests/data/ljspeech/wavs/LJ044-0167.npy +tests/data/ljspeech/wavs/LJ027-0154.wav|tests/data/ljspeech/wavs/LJ027-0154.npy +tests/data/ljspeech/wavs/LJ015-0025.wav|tests/data/ljspeech/wavs/LJ015-0025.npy +tests/data/ljspeech/wavs/LJ038-0052.wav|tests/data/ljspeech/wavs/LJ038-0052.npy +tests/data/ljspeech/wavs/LJ003-0199.wav|tests/data/ljspeech/wavs/LJ003-0199.npy +tests/data/ljspeech/wavs/LJ008-0027.wav|tests/data/ljspeech/wavs/LJ008-0027.npy +tests/data/ljspeech/wavs/LJ045-0222.wav|tests/data/ljspeech/wavs/LJ045-0222.npy +tests/data/ljspeech/wavs/LJ006-0255.wav|tests/data/ljspeech/wavs/LJ006-0255.npy +tests/data/ljspeech/wavs/LJ037-0217.wav|tests/data/ljspeech/wavs/LJ037-0217.npy +tests/data/ljspeech/wavs/LJ014-0076.wav|tests/data/ljspeech/wavs/LJ014-0076.npy +tests/data/ljspeech/wavs/LJ009-0125.wav|tests/data/ljspeech/wavs/LJ009-0125.npy +tests/data/ljspeech/wavs/LJ015-0187.wav|tests/data/ljspeech/wavs/LJ015-0187.npy +tests/data/ljspeech/wavs/LJ006-0239.wav|tests/data/ljspeech/wavs/LJ006-0239.npy +tests/data/ljspeech/wavs/LJ028-0068.wav|tests/data/ljspeech/wavs/LJ028-0068.npy +tests/data/ljspeech/wavs/LJ010-0180.wav|tests/data/ljspeech/wavs/LJ010-0180.npy +tests/data/ljspeech/wavs/LJ006-0003.wav|tests/data/ljspeech/wavs/LJ006-0003.npy +tests/data/ljspeech/wavs/LJ049-0109.wav|tests/data/ljspeech/wavs/LJ049-0109.npy +tests/data/ljspeech/wavs/LJ006-0283.wav|tests/data/ljspeech/wavs/LJ006-0283.npy +tests/data/ljspeech/wavs/LJ015-0237.wav|tests/data/ljspeech/wavs/LJ015-0237.npy +tests/data/ljspeech/wavs/LJ010-0100.wav|tests/data/ljspeech/wavs/LJ010-0100.npy +tests/data/ljspeech/wavs/LJ032-0180.wav|tests/data/ljspeech/wavs/LJ032-0180.npy +tests/data/ljspeech/wavs/LJ002-0320.wav|tests/data/ljspeech/wavs/LJ002-0320.npy +tests/data/ljspeech/wavs/LJ044-0171.wav|tests/data/ljspeech/wavs/LJ044-0171.npy +tests/data/ljspeech/wavs/LJ031-0154.wav|tests/data/ljspeech/wavs/LJ031-0154.npy +tests/data/ljspeech/wavs/LJ006-0008.wav|tests/data/ljspeech/wavs/LJ006-0008.npy +tests/data/ljspeech/wavs/LJ044-0207.wav|tests/data/ljspeech/wavs/LJ044-0207.npy +tests/data/ljspeech/wavs/LJ031-0180.wav|tests/data/ljspeech/wavs/LJ031-0180.npy +tests/data/ljspeech/wavs/LJ019-0003.wav|tests/data/ljspeech/wavs/LJ019-0003.npy +tests/data/ljspeech/wavs/LJ048-0176.wav|tests/data/ljspeech/wavs/LJ048-0176.npy +tests/data/ljspeech/wavs/LJ020-0020.wav|tests/data/ljspeech/wavs/LJ020-0020.npy +tests/data/ljspeech/wavs/LJ020-0011.wav|tests/data/ljspeech/wavs/LJ020-0011.npy +tests/data/ljspeech/wavs/LJ042-0129.wav|tests/data/ljspeech/wavs/LJ042-0129.npy +tests/data/ljspeech/wavs/LJ033-0022.wav|tests/data/ljspeech/wavs/LJ033-0022.npy +tests/data/ljspeech/wavs/LJ037-0058.wav|tests/data/ljspeech/wavs/LJ037-0058.npy +tests/data/ljspeech/wavs/LJ026-0064.wav|tests/data/ljspeech/wavs/LJ026-0064.npy +tests/data/ljspeech/wavs/LJ040-0238.wav|tests/data/ljspeech/wavs/LJ040-0238.npy +tests/data/ljspeech/wavs/LJ037-0073.wav|tests/data/ljspeech/wavs/LJ037-0073.npy +tests/data/ljspeech/wavs/LJ002-0154.wav|tests/data/ljspeech/wavs/LJ002-0154.npy +tests/data/ljspeech/wavs/LJ003-0171.wav|tests/data/ljspeech/wavs/LJ003-0171.npy +tests/data/ljspeech/wavs/LJ026-0112.wav|tests/data/ljspeech/wavs/LJ026-0112.npy +tests/data/ljspeech/wavs/LJ004-0140.wav|tests/data/ljspeech/wavs/LJ004-0140.npy +tests/data/ljspeech/wavs/LJ046-0226.wav|tests/data/ljspeech/wavs/LJ046-0226.npy +tests/data/ljspeech/wavs/LJ002-0219.wav|tests/data/ljspeech/wavs/LJ002-0219.npy +tests/data/ljspeech/wavs/LJ005-0194.wav|tests/data/ljspeech/wavs/LJ005-0194.npy +tests/data/ljspeech/wavs/LJ027-0105.wav|tests/data/ljspeech/wavs/LJ027-0105.npy +tests/data/ljspeech/wavs/LJ014-0329.wav|tests/data/ljspeech/wavs/LJ014-0329.npy +tests/data/ljspeech/wavs/LJ035-0110.wav|tests/data/ljspeech/wavs/LJ035-0110.npy +tests/data/ljspeech/wavs/LJ016-0258.wav|tests/data/ljspeech/wavs/LJ016-0258.npy +tests/data/ljspeech/wavs/LJ018-0060.wav|tests/data/ljspeech/wavs/LJ018-0060.npy +tests/data/ljspeech/wavs/LJ013-0107.wav|tests/data/ljspeech/wavs/LJ013-0107.npy +tests/data/ljspeech/wavs/LJ032-0211.wav|tests/data/ljspeech/wavs/LJ032-0211.npy +tests/data/ljspeech/wavs/LJ036-0009.wav|tests/data/ljspeech/wavs/LJ036-0009.npy +tests/data/ljspeech/wavs/LJ030-0054.wav|tests/data/ljspeech/wavs/LJ030-0054.npy +tests/data/ljspeech/wavs/LJ028-0159.wav|tests/data/ljspeech/wavs/LJ028-0159.npy +tests/data/ljspeech/wavs/LJ010-0313.wav|tests/data/ljspeech/wavs/LJ010-0313.npy +tests/data/ljspeech/wavs/LJ047-0063.wav|tests/data/ljspeech/wavs/LJ047-0063.npy +tests/data/ljspeech/wavs/LJ019-0281.wav|tests/data/ljspeech/wavs/LJ019-0281.npy +tests/data/ljspeech/wavs/LJ029-0171.wav|tests/data/ljspeech/wavs/LJ029-0171.npy +tests/data/ljspeech/wavs/LJ047-0233.wav|tests/data/ljspeech/wavs/LJ047-0233.npy +tests/data/ljspeech/wavs/LJ022-0158.wav|tests/data/ljspeech/wavs/LJ022-0158.npy +tests/data/ljspeech/wavs/LJ043-0127.wav|tests/data/ljspeech/wavs/LJ043-0127.npy +tests/data/ljspeech/wavs/LJ040-0046.wav|tests/data/ljspeech/wavs/LJ040-0046.npy +tests/data/ljspeech/wavs/LJ045-0244.wav|tests/data/ljspeech/wavs/LJ045-0244.npy +tests/data/ljspeech/wavs/LJ040-0137.wav|tests/data/ljspeech/wavs/LJ040-0137.npy +tests/data/ljspeech/wavs/LJ040-0218.wav|tests/data/ljspeech/wavs/LJ040-0218.npy +tests/data/ljspeech/wavs/LJ021-0205.wav|tests/data/ljspeech/wavs/LJ021-0205.npy +tests/data/ljspeech/wavs/LJ010-0102.wav|tests/data/ljspeech/wavs/LJ010-0102.npy +tests/data/ljspeech/wavs/LJ019-0313.wav|tests/data/ljspeech/wavs/LJ019-0313.npy +tests/data/ljspeech/wavs/LJ050-0129.wav|tests/data/ljspeech/wavs/LJ050-0129.npy +tests/data/ljspeech/wavs/LJ028-0140.wav|tests/data/ljspeech/wavs/LJ028-0140.npy +tests/data/ljspeech/wavs/LJ029-0146.wav|tests/data/ljspeech/wavs/LJ029-0146.npy +tests/data/ljspeech/wavs/LJ022-0141.wav|tests/data/ljspeech/wavs/LJ022-0141.npy +tests/data/ljspeech/wavs/LJ005-0163.wav|tests/data/ljspeech/wavs/LJ005-0163.npy +tests/data/ljspeech/wavs/LJ010-0197.wav|tests/data/ljspeech/wavs/LJ010-0197.npy +tests/data/ljspeech/wavs/LJ021-0125.wav|tests/data/ljspeech/wavs/LJ021-0125.npy +tests/data/ljspeech/wavs/LJ006-0218.wav|tests/data/ljspeech/wavs/LJ006-0218.npy +tests/data/ljspeech/wavs/LJ013-0252.wav|tests/data/ljspeech/wavs/LJ013-0252.npy +tests/data/ljspeech/wavs/LJ006-0052.wav|tests/data/ljspeech/wavs/LJ006-0052.npy +tests/data/ljspeech/wavs/LJ043-0181.wav|tests/data/ljspeech/wavs/LJ043-0181.npy +tests/data/ljspeech/wavs/LJ005-0180.wav|tests/data/ljspeech/wavs/LJ005-0180.npy +tests/data/ljspeech/wavs/LJ009-0163.wav|tests/data/ljspeech/wavs/LJ009-0163.npy +tests/data/ljspeech/wavs/LJ050-0020.wav|tests/data/ljspeech/wavs/LJ050-0020.npy +tests/data/ljspeech/wavs/LJ028-0150.wav|tests/data/ljspeech/wavs/LJ028-0150.npy +tests/data/ljspeech/wavs/LJ002-0145.wav|tests/data/ljspeech/wavs/LJ002-0145.npy +tests/data/ljspeech/wavs/LJ028-0421.wav|tests/data/ljspeech/wavs/LJ028-0421.npy +tests/data/ljspeech/wavs/LJ009-0277.wav|tests/data/ljspeech/wavs/LJ009-0277.npy +tests/data/ljspeech/wavs/LJ018-0236.wav|tests/data/ljspeech/wavs/LJ018-0236.npy +tests/data/ljspeech/wavs/LJ011-0019.wav|tests/data/ljspeech/wavs/LJ011-0019.npy +tests/data/ljspeech/wavs/LJ029-0195.wav|tests/data/ljspeech/wavs/LJ029-0195.npy +tests/data/ljspeech/wavs/LJ040-0192.wav|tests/data/ljspeech/wavs/LJ040-0192.npy +tests/data/ljspeech/wavs/LJ047-0014.wav|tests/data/ljspeech/wavs/LJ047-0014.npy +tests/data/ljspeech/wavs/LJ042-0054.wav|tests/data/ljspeech/wavs/LJ042-0054.npy +tests/data/ljspeech/wavs/LJ023-0138.wav|tests/data/ljspeech/wavs/LJ023-0138.npy +tests/data/ljspeech/wavs/LJ043-0160.wav|tests/data/ljspeech/wavs/LJ043-0160.npy +tests/data/ljspeech/wavs/LJ046-0048.wav|tests/data/ljspeech/wavs/LJ046-0048.npy +tests/data/ljspeech/wavs/LJ002-0265.wav|tests/data/ljspeech/wavs/LJ002-0265.npy +tests/data/ljspeech/wavs/LJ045-0208.wav|tests/data/ljspeech/wavs/LJ045-0208.npy +tests/data/ljspeech/wavs/LJ024-0009.wav|tests/data/ljspeech/wavs/LJ024-0009.npy +tests/data/ljspeech/wavs/LJ021-0150.wav|tests/data/ljspeech/wavs/LJ021-0150.npy +tests/data/ljspeech/wavs/LJ011-0117.wav|tests/data/ljspeech/wavs/LJ011-0117.npy +tests/data/ljspeech/wavs/LJ006-0124.wav|tests/data/ljspeech/wavs/LJ006-0124.npy +tests/data/ljspeech/wavs/LJ033-0194.wav|tests/data/ljspeech/wavs/LJ033-0194.npy +tests/data/ljspeech/wavs/LJ010-0022.wav|tests/data/ljspeech/wavs/LJ010-0022.npy +tests/data/ljspeech/wavs/LJ009-0093.wav|tests/data/ljspeech/wavs/LJ009-0093.npy +tests/data/ljspeech/wavs/LJ028-0379.wav|tests/data/ljspeech/wavs/LJ028-0379.npy +tests/data/ljspeech/wavs/LJ005-0270.wav|tests/data/ljspeech/wavs/LJ005-0270.npy +tests/data/ljspeech/wavs/LJ016-0084.wav|tests/data/ljspeech/wavs/LJ016-0084.npy +tests/data/ljspeech/wavs/LJ007-0211.wav|tests/data/ljspeech/wavs/LJ007-0211.npy +tests/data/ljspeech/wavs/LJ024-0014.wav|tests/data/ljspeech/wavs/LJ024-0014.npy +tests/data/ljspeech/wavs/LJ005-0238.wav|tests/data/ljspeech/wavs/LJ005-0238.npy +tests/data/ljspeech/wavs/LJ037-0128.wav|tests/data/ljspeech/wavs/LJ037-0128.npy +tests/data/ljspeech/wavs/LJ007-0023.wav|tests/data/ljspeech/wavs/LJ007-0023.npy +tests/data/ljspeech/wavs/LJ035-0120.wav|tests/data/ljspeech/wavs/LJ035-0120.npy +tests/data/ljspeech/wavs/LJ010-0308.wav|tests/data/ljspeech/wavs/LJ010-0308.npy +tests/data/ljspeech/wavs/LJ047-0207.wav|tests/data/ljspeech/wavs/LJ047-0207.npy +tests/data/ljspeech/wavs/LJ009-0094.wav|tests/data/ljspeech/wavs/LJ009-0094.npy +tests/data/ljspeech/wavs/LJ010-0189.wav|tests/data/ljspeech/wavs/LJ010-0189.npy +tests/data/ljspeech/wavs/LJ002-0326.wav|tests/data/ljspeech/wavs/LJ002-0326.npy +tests/data/ljspeech/wavs/LJ046-0187.wav|tests/data/ljspeech/wavs/LJ046-0187.npy +tests/data/ljspeech/wavs/LJ018-0087.wav|tests/data/ljspeech/wavs/LJ018-0087.npy +tests/data/ljspeech/wavs/LJ008-0016.wav|tests/data/ljspeech/wavs/LJ008-0016.npy +tests/data/ljspeech/wavs/LJ047-0031.wav|tests/data/ljspeech/wavs/LJ047-0031.npy +tests/data/ljspeech/wavs/LJ042-0159.wav|tests/data/ljspeech/wavs/LJ042-0159.npy +tests/data/ljspeech/wavs/LJ025-0011.wav|tests/data/ljspeech/wavs/LJ025-0011.npy +tests/data/ljspeech/wavs/LJ026-0139.wav|tests/data/ljspeech/wavs/LJ026-0139.npy +tests/data/ljspeech/wavs/LJ050-0070.wav|tests/data/ljspeech/wavs/LJ050-0070.npy +tests/data/ljspeech/wavs/LJ049-0042.wav|tests/data/ljspeech/wavs/LJ049-0042.npy +tests/data/ljspeech/wavs/LJ032-0072.wav|tests/data/ljspeech/wavs/LJ032-0072.npy +tests/data/ljspeech/wavs/LJ018-0118.wav|tests/data/ljspeech/wavs/LJ018-0118.npy +tests/data/ljspeech/wavs/LJ042-0187.wav|tests/data/ljspeech/wavs/LJ042-0187.npy +tests/data/ljspeech/wavs/LJ028-0057.wav|tests/data/ljspeech/wavs/LJ028-0057.npy +tests/data/ljspeech/wavs/LJ042-0181.wav|tests/data/ljspeech/wavs/LJ042-0181.npy +tests/data/ljspeech/wavs/LJ034-0184.wav|tests/data/ljspeech/wavs/LJ034-0184.npy +tests/data/ljspeech/wavs/LJ008-0043.wav|tests/data/ljspeech/wavs/LJ008-0043.npy +tests/data/ljspeech/wavs/LJ017-0176.wav|tests/data/ljspeech/wavs/LJ017-0176.npy +tests/data/ljspeech/wavs/LJ015-0121.wav|tests/data/ljspeech/wavs/LJ015-0121.npy +tests/data/ljspeech/wavs/LJ001-0012.wav|tests/data/ljspeech/wavs/LJ001-0012.npy +tests/data/ljspeech/wavs/LJ030-0209.wav|tests/data/ljspeech/wavs/LJ030-0209.npy +tests/data/ljspeech/wavs/LJ007-0143.wav|tests/data/ljspeech/wavs/LJ007-0143.npy +tests/data/ljspeech/wavs/LJ033-0103.wav|tests/data/ljspeech/wavs/LJ033-0103.npy +tests/data/ljspeech/wavs/LJ048-0239.wav|tests/data/ljspeech/wavs/LJ048-0239.npy +tests/data/ljspeech/wavs/LJ028-0036.wav|tests/data/ljspeech/wavs/LJ028-0036.npy +tests/data/ljspeech/wavs/LJ049-0034.wav|tests/data/ljspeech/wavs/LJ049-0034.npy +tests/data/ljspeech/wavs/LJ024-0041.wav|tests/data/ljspeech/wavs/LJ024-0041.npy +tests/data/ljspeech/wavs/LJ018-0035.wav|tests/data/ljspeech/wavs/LJ018-0035.npy +tests/data/ljspeech/wavs/LJ017-0026.wav|tests/data/ljspeech/wavs/LJ017-0026.npy +tests/data/ljspeech/wavs/LJ016-0266.wav|tests/data/ljspeech/wavs/LJ016-0266.npy +tests/data/ljspeech/wavs/LJ015-0244.wav|tests/data/ljspeech/wavs/LJ015-0244.npy +tests/data/ljspeech/wavs/LJ037-0225.wav|tests/data/ljspeech/wavs/LJ037-0225.npy +tests/data/ljspeech/wavs/LJ003-0099.wav|tests/data/ljspeech/wavs/LJ003-0099.npy +tests/data/ljspeech/wavs/LJ009-0173.wav|tests/data/ljspeech/wavs/LJ009-0173.npy +tests/data/ljspeech/wavs/LJ036-0201.wav|tests/data/ljspeech/wavs/LJ036-0201.npy +tests/data/ljspeech/wavs/LJ014-0001.wav|tests/data/ljspeech/wavs/LJ014-0001.npy +tests/data/ljspeech/wavs/LJ013-0001.wav|tests/data/ljspeech/wavs/LJ013-0001.npy +tests/data/ljspeech/wavs/LJ037-0242.wav|tests/data/ljspeech/wavs/LJ037-0242.npy +tests/data/ljspeech/wavs/LJ044-0185.wav|tests/data/ljspeech/wavs/LJ044-0185.npy +tests/data/ljspeech/wavs/LJ039-0112.wav|tests/data/ljspeech/wavs/LJ039-0112.npy +tests/data/ljspeech/wavs/LJ008-0149.wav|tests/data/ljspeech/wavs/LJ008-0149.npy +tests/data/ljspeech/wavs/LJ042-0045.wav|tests/data/ljspeech/wavs/LJ042-0045.npy +tests/data/ljspeech/wavs/LJ019-0333.wav|tests/data/ljspeech/wavs/LJ019-0333.npy +tests/data/ljspeech/wavs/LJ026-0093.wav|tests/data/ljspeech/wavs/LJ026-0093.npy +tests/data/ljspeech/wavs/LJ031-0011.wav|tests/data/ljspeech/wavs/LJ031-0011.npy +tests/data/ljspeech/wavs/LJ019-0007.wav|tests/data/ljspeech/wavs/LJ019-0007.npy +tests/data/ljspeech/wavs/LJ044-0090.wav|tests/data/ljspeech/wavs/LJ044-0090.npy +tests/data/ljspeech/wavs/LJ006-0270.wav|tests/data/ljspeech/wavs/LJ006-0270.npy +tests/data/ljspeech/wavs/LJ039-0114.wav|tests/data/ljspeech/wavs/LJ039-0114.npy +tests/data/ljspeech/wavs/LJ012-0262.wav|tests/data/ljspeech/wavs/LJ012-0262.npy +tests/data/ljspeech/wavs/LJ012-0061.wav|tests/data/ljspeech/wavs/LJ012-0061.npy +tests/data/ljspeech/wavs/LJ008-0267.wav|tests/data/ljspeech/wavs/LJ008-0267.npy +tests/data/ljspeech/wavs/LJ016-0382.wav|tests/data/ljspeech/wavs/LJ016-0382.npy +tests/data/ljspeech/wavs/LJ019-0367.wav|tests/data/ljspeech/wavs/LJ019-0367.npy +tests/data/ljspeech/wavs/LJ012-0004.wav|tests/data/ljspeech/wavs/LJ012-0004.npy +tests/data/ljspeech/wavs/LJ005-0064.wav|tests/data/ljspeech/wavs/LJ005-0064.npy +tests/data/ljspeech/wavs/LJ012-0180.wav|tests/data/ljspeech/wavs/LJ012-0180.npy +tests/data/ljspeech/wavs/LJ037-0017.wav|tests/data/ljspeech/wavs/LJ037-0017.npy +tests/data/ljspeech/wavs/LJ011-0198.wav|tests/data/ljspeech/wavs/LJ011-0198.npy +tests/data/ljspeech/wavs/LJ027-0086.wav|tests/data/ljspeech/wavs/LJ027-0086.npy +tests/data/ljspeech/wavs/LJ035-0155.wav|tests/data/ljspeech/wavs/LJ035-0155.npy +tests/data/ljspeech/wavs/LJ012-0102.wav|tests/data/ljspeech/wavs/LJ012-0102.npy +tests/data/ljspeech/wavs/LJ006-0155.wav|tests/data/ljspeech/wavs/LJ006-0155.npy +tests/data/ljspeech/wavs/LJ046-0095.wav|tests/data/ljspeech/wavs/LJ046-0095.npy +tests/data/ljspeech/wavs/LJ049-0138.wav|tests/data/ljspeech/wavs/LJ049-0138.npy +tests/data/ljspeech/wavs/LJ034-0210.wav|tests/data/ljspeech/wavs/LJ034-0210.npy +tests/data/ljspeech/wavs/LJ042-0089.wav|tests/data/ljspeech/wavs/LJ042-0089.npy +tests/data/ljspeech/wavs/LJ007-0092.wav|tests/data/ljspeech/wavs/LJ007-0092.npy +tests/data/ljspeech/wavs/LJ047-0134.wav|tests/data/ljspeech/wavs/LJ047-0134.npy +tests/data/ljspeech/wavs/LJ041-0105.wav|tests/data/ljspeech/wavs/LJ041-0105.npy +tests/data/ljspeech/wavs/LJ008-0106.wav|tests/data/ljspeech/wavs/LJ008-0106.npy +tests/data/ljspeech/wavs/LJ022-0172.wav|tests/data/ljspeech/wavs/LJ022-0172.npy +tests/data/ljspeech/wavs/LJ014-0150.wav|tests/data/ljspeech/wavs/LJ014-0150.npy +tests/data/ljspeech/wavs/LJ022-0188.wav|tests/data/ljspeech/wavs/LJ022-0188.npy +tests/data/ljspeech/wavs/LJ008-0083.wav|tests/data/ljspeech/wavs/LJ008-0083.npy +tests/data/ljspeech/wavs/LJ048-0144.wav|tests/data/ljspeech/wavs/LJ048-0144.npy +tests/data/ljspeech/wavs/LJ045-0040.wav|tests/data/ljspeech/wavs/LJ045-0040.npy +tests/data/ljspeech/wavs/LJ006-0289.wav|tests/data/ljspeech/wavs/LJ006-0289.npy +tests/data/ljspeech/wavs/LJ030-0087.wav|tests/data/ljspeech/wavs/LJ030-0087.npy +tests/data/ljspeech/wavs/LJ033-0089.wav|tests/data/ljspeech/wavs/LJ033-0089.npy +tests/data/ljspeech/wavs/LJ006-0258.wav|tests/data/ljspeech/wavs/LJ006-0258.npy +tests/data/ljspeech/wavs/LJ050-0091.wav|tests/data/ljspeech/wavs/LJ050-0091.npy +tests/data/ljspeech/wavs/LJ043-0099.wav|tests/data/ljspeech/wavs/LJ043-0099.npy +tests/data/ljspeech/wavs/LJ038-0171.wav|tests/data/ljspeech/wavs/LJ038-0171.npy +tests/data/ljspeech/wavs/LJ028-0289.wav|tests/data/ljspeech/wavs/LJ028-0289.npy +tests/data/ljspeech/wavs/LJ008-0300.wav|tests/data/ljspeech/wavs/LJ008-0300.npy +tests/data/ljspeech/wavs/LJ019-0399.wav|tests/data/ljspeech/wavs/LJ019-0399.npy +tests/data/ljspeech/wavs/LJ034-0166.wav|tests/data/ljspeech/wavs/LJ034-0166.npy +tests/data/ljspeech/wavs/LJ026-0040.wav|tests/data/ljspeech/wavs/LJ026-0040.npy +tests/data/ljspeech/wavs/LJ028-0111.wav|tests/data/ljspeech/wavs/LJ028-0111.npy +tests/data/ljspeech/wavs/LJ014-0268.wav|tests/data/ljspeech/wavs/LJ014-0268.npy +tests/data/ljspeech/wavs/LJ003-0260.wav|tests/data/ljspeech/wavs/LJ003-0260.npy +tests/data/ljspeech/wavs/LJ032-0133.wav|tests/data/ljspeech/wavs/LJ032-0133.npy +tests/data/ljspeech/wavs/LJ009-0063.wav|tests/data/ljspeech/wavs/LJ009-0063.npy +tests/data/ljspeech/wavs/LJ047-0212.wav|tests/data/ljspeech/wavs/LJ047-0212.npy +tests/data/ljspeech/wavs/LJ011-0180.wav|tests/data/ljspeech/wavs/LJ011-0180.npy +tests/data/ljspeech/wavs/LJ011-0142.wav|tests/data/ljspeech/wavs/LJ011-0142.npy +tests/data/ljspeech/wavs/LJ037-0205.wav|tests/data/ljspeech/wavs/LJ037-0205.npy +tests/data/ljspeech/wavs/LJ037-0201.wav|tests/data/ljspeech/wavs/LJ037-0201.npy +tests/data/ljspeech/wavs/LJ049-0113.wav|tests/data/ljspeech/wavs/LJ049-0113.npy +tests/data/ljspeech/wavs/LJ050-0055.wav|tests/data/ljspeech/wavs/LJ050-0055.npy +tests/data/ljspeech/wavs/LJ038-0139.wav|tests/data/ljspeech/wavs/LJ038-0139.npy +tests/data/ljspeech/wavs/LJ050-0028.wav|tests/data/ljspeech/wavs/LJ050-0028.npy +tests/data/ljspeech/wavs/LJ015-0241.wav|tests/data/ljspeech/wavs/LJ015-0241.npy +tests/data/ljspeech/wavs/LJ048-0208.wav|tests/data/ljspeech/wavs/LJ048-0208.npy +tests/data/ljspeech/wavs/LJ015-0059.wav|tests/data/ljspeech/wavs/LJ015-0059.npy +tests/data/ljspeech/wavs/LJ018-0356.wav|tests/data/ljspeech/wavs/LJ018-0356.npy +tests/data/ljspeech/wavs/LJ015-0112.wav|tests/data/ljspeech/wavs/LJ015-0112.npy +tests/data/ljspeech/wavs/LJ035-0202.wav|tests/data/ljspeech/wavs/LJ035-0202.npy +tests/data/ljspeech/wavs/LJ030-0108.wav|tests/data/ljspeech/wavs/LJ030-0108.npy +tests/data/ljspeech/wavs/LJ008-0240.wav|tests/data/ljspeech/wavs/LJ008-0240.npy +tests/data/ljspeech/wavs/LJ015-0118.wav|tests/data/ljspeech/wavs/LJ015-0118.npy +tests/data/ljspeech/wavs/LJ003-0105.wav|tests/data/ljspeech/wavs/LJ003-0105.npy +tests/data/ljspeech/wavs/LJ033-0098.wav|tests/data/ljspeech/wavs/LJ033-0098.npy +tests/data/ljspeech/wavs/LJ014-0328.wav|tests/data/ljspeech/wavs/LJ014-0328.npy +tests/data/ljspeech/wavs/LJ045-0051.wav|tests/data/ljspeech/wavs/LJ045-0051.npy +tests/data/ljspeech/wavs/LJ006-0190.wav|tests/data/ljspeech/wavs/LJ006-0190.npy +tests/data/ljspeech/wavs/LJ014-0170.wav|tests/data/ljspeech/wavs/LJ014-0170.npy +tests/data/ljspeech/wavs/LJ003-0179.wav|tests/data/ljspeech/wavs/LJ003-0179.npy +tests/data/ljspeech/wavs/LJ041-0083.wav|tests/data/ljspeech/wavs/LJ041-0083.npy +tests/data/ljspeech/wavs/LJ045-0101.wav|tests/data/ljspeech/wavs/LJ045-0101.npy +tests/data/ljspeech/wavs/LJ006-0217.wav|tests/data/ljspeech/wavs/LJ006-0217.npy +tests/data/ljspeech/wavs/LJ020-0019.wav|tests/data/ljspeech/wavs/LJ020-0019.npy +tests/data/ljspeech/wavs/LJ029-0027.wav|tests/data/ljspeech/wavs/LJ029-0027.npy +tests/data/ljspeech/wavs/LJ007-0219.wav|tests/data/ljspeech/wavs/LJ007-0219.npy +tests/data/ljspeech/wavs/LJ035-0184.wav|tests/data/ljspeech/wavs/LJ035-0184.npy +tests/data/ljspeech/wavs/LJ015-0207.wav|tests/data/ljspeech/wavs/LJ015-0207.npy +tests/data/ljspeech/wavs/LJ006-0172.wav|tests/data/ljspeech/wavs/LJ006-0172.npy +tests/data/ljspeech/wavs/LJ018-0054.wav|tests/data/ljspeech/wavs/LJ018-0054.npy +tests/data/ljspeech/wavs/LJ032-0245.wav|tests/data/ljspeech/wavs/LJ032-0245.npy +tests/data/ljspeech/wavs/LJ037-0187.wav|tests/data/ljspeech/wavs/LJ037-0187.npy +tests/data/ljspeech/wavs/LJ035-0183.wav|tests/data/ljspeech/wavs/LJ035-0183.npy +tests/data/ljspeech/wavs/LJ045-0016.wav|tests/data/ljspeech/wavs/LJ045-0016.npy +tests/data/ljspeech/wavs/LJ038-0180.wav|tests/data/ljspeech/wavs/LJ038-0180.npy +tests/data/ljspeech/wavs/LJ046-0173.wav|tests/data/ljspeech/wavs/LJ046-0173.npy +tests/data/ljspeech/wavs/LJ024-0054.wav|tests/data/ljspeech/wavs/LJ024-0054.npy +tests/data/ljspeech/wavs/LJ016-0351.wav|tests/data/ljspeech/wavs/LJ016-0351.npy +tests/data/ljspeech/wavs/LJ017-0184.wav|tests/data/ljspeech/wavs/LJ017-0184.npy +tests/data/ljspeech/wavs/LJ028-0116.wav|tests/data/ljspeech/wavs/LJ028-0116.npy +tests/data/ljspeech/wavs/LJ018-0137.wav|tests/data/ljspeech/wavs/LJ018-0137.npy +tests/data/ljspeech/wavs/LJ027-0115.wav|tests/data/ljspeech/wavs/LJ027-0115.npy +tests/data/ljspeech/wavs/LJ032-0176.wav|tests/data/ljspeech/wavs/LJ032-0176.npy +tests/data/ljspeech/wavs/LJ031-0036.wav|tests/data/ljspeech/wavs/LJ031-0036.npy +tests/data/ljspeech/wavs/LJ017-0041.wav|tests/data/ljspeech/wavs/LJ017-0041.npy +tests/data/ljspeech/wavs/LJ017-0188.wav|tests/data/ljspeech/wavs/LJ017-0188.npy +tests/data/ljspeech/wavs/LJ032-0215.wav|tests/data/ljspeech/wavs/LJ032-0215.npy +tests/data/ljspeech/wavs/LJ017-0047.wav|tests/data/ljspeech/wavs/LJ017-0047.npy +tests/data/ljspeech/wavs/LJ037-0102.wav|tests/data/ljspeech/wavs/LJ037-0102.npy +tests/data/ljspeech/wavs/LJ032-0208.wav|tests/data/ljspeech/wavs/LJ032-0208.npy +tests/data/ljspeech/wavs/LJ017-0196.wav|tests/data/ljspeech/wavs/LJ017-0196.npy +tests/data/ljspeech/wavs/LJ018-0050.wav|tests/data/ljspeech/wavs/LJ018-0050.npy +tests/data/ljspeech/wavs/LJ003-0023.wav|tests/data/ljspeech/wavs/LJ003-0023.npy +tests/data/ljspeech/wavs/LJ014-0091.wav|tests/data/ljspeech/wavs/LJ014-0091.npy +tests/data/ljspeech/wavs/LJ014-0152.wav|tests/data/ljspeech/wavs/LJ014-0152.npy +tests/data/ljspeech/wavs/LJ017-0162.wav|tests/data/ljspeech/wavs/LJ017-0162.npy +tests/data/ljspeech/wavs/LJ018-0096.wav|tests/data/ljspeech/wavs/LJ018-0096.npy +tests/data/ljspeech/wavs/LJ030-0200.wav|tests/data/ljspeech/wavs/LJ030-0200.npy +tests/data/ljspeech/wavs/LJ004-0029.wav|tests/data/ljspeech/wavs/LJ004-0029.npy +tests/data/ljspeech/wavs/LJ018-0185.wav|tests/data/ljspeech/wavs/LJ018-0185.npy +tests/data/ljspeech/wavs/LJ009-0213.wav|tests/data/ljspeech/wavs/LJ009-0213.npy +tests/data/ljspeech/wavs/LJ014-0023.wav|tests/data/ljspeech/wavs/LJ014-0023.npy +tests/data/ljspeech/wavs/LJ044-0022.wav|tests/data/ljspeech/wavs/LJ044-0022.npy +tests/data/ljspeech/wavs/LJ016-0206.wav|tests/data/ljspeech/wavs/LJ016-0206.npy +tests/data/ljspeech/wavs/LJ047-0006.wav|tests/data/ljspeech/wavs/LJ047-0006.npy +tests/data/ljspeech/wavs/LJ005-0287.wav|tests/data/ljspeech/wavs/LJ005-0287.npy +tests/data/ljspeech/wavs/LJ027-0135.wav|tests/data/ljspeech/wavs/LJ027-0135.npy +tests/data/ljspeech/wavs/LJ012-0046.wav|tests/data/ljspeech/wavs/LJ012-0046.npy +tests/data/ljspeech/wavs/LJ040-0232.wav|tests/data/ljspeech/wavs/LJ040-0232.npy +tests/data/ljspeech/wavs/LJ002-0307.wav|tests/data/ljspeech/wavs/LJ002-0307.npy +tests/data/ljspeech/wavs/LJ012-0070.wav|tests/data/ljspeech/wavs/LJ012-0070.npy +tests/data/ljspeech/wavs/LJ039-0045.wav|tests/data/ljspeech/wavs/LJ039-0045.npy +tests/data/ljspeech/wavs/LJ047-0007.wav|tests/data/ljspeech/wavs/LJ047-0007.npy +tests/data/ljspeech/wavs/LJ019-0077.wav|tests/data/ljspeech/wavs/LJ019-0077.npy +tests/data/ljspeech/wavs/LJ005-0021.wav|tests/data/ljspeech/wavs/LJ005-0021.npy +tests/data/ljspeech/wavs/LJ011-0268.wav|tests/data/ljspeech/wavs/LJ011-0268.npy +tests/data/ljspeech/wavs/LJ034-0075.wav|tests/data/ljspeech/wavs/LJ034-0075.npy +tests/data/ljspeech/wavs/LJ014-0013.wav|tests/data/ljspeech/wavs/LJ014-0013.npy +tests/data/ljspeech/wavs/LJ031-0112.wav|tests/data/ljspeech/wavs/LJ031-0112.npy +tests/data/ljspeech/wavs/LJ010-0029.wav|tests/data/ljspeech/wavs/LJ010-0029.npy +tests/data/ljspeech/wavs/LJ047-0171.wav|tests/data/ljspeech/wavs/LJ047-0171.npy +tests/data/ljspeech/wavs/LJ012-0029.wav|tests/data/ljspeech/wavs/LJ012-0029.npy +tests/data/ljspeech/wavs/LJ049-0197.wav|tests/data/ljspeech/wavs/LJ049-0197.npy +tests/data/ljspeech/wavs/LJ016-0061.wav|tests/data/ljspeech/wavs/LJ016-0061.npy +tests/data/ljspeech/wavs/LJ021-0104.wav|tests/data/ljspeech/wavs/LJ021-0104.npy +tests/data/ljspeech/wavs/LJ030-0167.wav|tests/data/ljspeech/wavs/LJ030-0167.npy +tests/data/ljspeech/wavs/LJ030-0015.wav|tests/data/ljspeech/wavs/LJ030-0015.npy +tests/data/ljspeech/wavs/LJ012-0080.wav|tests/data/ljspeech/wavs/LJ012-0080.npy +tests/data/ljspeech/wavs/LJ028-0383.wav|tests/data/ljspeech/wavs/LJ028-0383.npy +tests/data/ljspeech/wavs/LJ047-0159.wav|tests/data/ljspeech/wavs/LJ047-0159.npy +tests/data/ljspeech/wavs/LJ039-0211.wav|tests/data/ljspeech/wavs/LJ039-0211.npy +tests/data/ljspeech/wavs/LJ016-0124.wav|tests/data/ljspeech/wavs/LJ016-0124.npy +tests/data/ljspeech/wavs/LJ027-0130.wav|tests/data/ljspeech/wavs/LJ027-0130.npy +tests/data/ljspeech/wavs/LJ038-0229.wav|tests/data/ljspeech/wavs/LJ038-0229.npy +tests/data/ljspeech/wavs/LJ032-0021.wav|tests/data/ljspeech/wavs/LJ032-0021.npy +tests/data/ljspeech/wavs/LJ032-0049.wav|tests/data/ljspeech/wavs/LJ032-0049.npy +tests/data/ljspeech/wavs/LJ031-0137.wav|tests/data/ljspeech/wavs/LJ031-0137.npy +tests/data/ljspeech/wavs/LJ046-0117.wav|tests/data/ljspeech/wavs/LJ046-0117.npy +tests/data/ljspeech/wavs/LJ021-0175.wav|tests/data/ljspeech/wavs/LJ021-0175.npy +tests/data/ljspeech/wavs/LJ035-0160.wav|tests/data/ljspeech/wavs/LJ035-0160.npy +tests/data/ljspeech/wavs/LJ044-0165.wav|tests/data/ljspeech/wavs/LJ044-0165.npy +tests/data/ljspeech/wavs/LJ012-0150.wav|tests/data/ljspeech/wavs/LJ012-0150.npy +tests/data/ljspeech/wavs/LJ044-0182.wav|tests/data/ljspeech/wavs/LJ044-0182.npy +tests/data/ljspeech/wavs/LJ011-0067.wav|tests/data/ljspeech/wavs/LJ011-0067.npy +tests/data/ljspeech/wavs/LJ022-0079.wav|tests/data/ljspeech/wavs/LJ022-0079.npy +tests/data/ljspeech/wavs/LJ013-0155.wav|tests/data/ljspeech/wavs/LJ013-0155.npy +tests/data/ljspeech/wavs/LJ039-0090.wav|tests/data/ljspeech/wavs/LJ039-0090.npy +tests/data/ljspeech/wavs/LJ046-0172.wav|tests/data/ljspeech/wavs/LJ046-0172.npy +tests/data/ljspeech/wavs/LJ048-0181.wav|tests/data/ljspeech/wavs/LJ048-0181.npy +tests/data/ljspeech/wavs/LJ014-0004.wav|tests/data/ljspeech/wavs/LJ014-0004.npy +tests/data/ljspeech/wavs/LJ001-0025.wav|tests/data/ljspeech/wavs/LJ001-0025.npy +tests/data/ljspeech/wavs/LJ039-0037.wav|tests/data/ljspeech/wavs/LJ039-0037.npy +tests/data/ljspeech/wavs/LJ012-0169.wav|tests/data/ljspeech/wavs/LJ012-0169.npy +tests/data/ljspeech/wavs/LJ012-0206.wav|tests/data/ljspeech/wavs/LJ012-0206.npy +tests/data/ljspeech/wavs/LJ012-0257.wav|tests/data/ljspeech/wavs/LJ012-0257.npy +tests/data/ljspeech/wavs/LJ028-0226.wav|tests/data/ljspeech/wavs/LJ028-0226.npy +tests/data/ljspeech/wavs/LJ018-0394.wav|tests/data/ljspeech/wavs/LJ018-0394.npy +tests/data/ljspeech/wavs/LJ048-0115.wav|tests/data/ljspeech/wavs/LJ048-0115.npy +tests/data/ljspeech/wavs/LJ029-0150.wav|tests/data/ljspeech/wavs/LJ029-0150.npy +tests/data/ljspeech/wavs/LJ038-0258.wav|tests/data/ljspeech/wavs/LJ038-0258.npy +tests/data/ljspeech/wavs/LJ010-0314.wav|tests/data/ljspeech/wavs/LJ010-0314.npy +tests/data/ljspeech/wavs/LJ024-0138.wav|tests/data/ljspeech/wavs/LJ024-0138.npy +tests/data/ljspeech/wavs/LJ049-0222.wav|tests/data/ljspeech/wavs/LJ049-0222.npy +tests/data/ljspeech/wavs/LJ004-0230.wav|tests/data/ljspeech/wavs/LJ004-0230.npy +tests/data/ljspeech/wavs/LJ009-0244.wav|tests/data/ljspeech/wavs/LJ009-0244.npy +tests/data/ljspeech/wavs/LJ011-0084.wav|tests/data/ljspeech/wavs/LJ011-0084.npy +tests/data/ljspeech/wavs/LJ043-0124.wav|tests/data/ljspeech/wavs/LJ043-0124.npy +tests/data/ljspeech/wavs/LJ002-0270.wav|tests/data/ljspeech/wavs/LJ002-0270.npy +tests/data/ljspeech/wavs/LJ029-0089.wav|tests/data/ljspeech/wavs/LJ029-0089.npy +tests/data/ljspeech/wavs/LJ001-0092.wav|tests/data/ljspeech/wavs/LJ001-0092.npy +tests/data/ljspeech/wavs/LJ030-0154.wav|tests/data/ljspeech/wavs/LJ030-0154.npy +tests/data/ljspeech/wavs/LJ005-0039.wav|tests/data/ljspeech/wavs/LJ005-0039.npy +tests/data/ljspeech/wavs/LJ004-0030.wav|tests/data/ljspeech/wavs/LJ004-0030.npy +tests/data/ljspeech/wavs/LJ044-0079.wav|tests/data/ljspeech/wavs/LJ044-0079.npy +tests/data/ljspeech/wavs/LJ029-0093.wav|tests/data/ljspeech/wavs/LJ029-0093.npy +tests/data/ljspeech/wavs/LJ043-0045.wav|tests/data/ljspeech/wavs/LJ043-0045.npy +tests/data/ljspeech/wavs/LJ046-0055.wav|tests/data/ljspeech/wavs/LJ046-0055.npy +tests/data/ljspeech/wavs/LJ003-0319.wav|tests/data/ljspeech/wavs/LJ003-0319.npy +tests/data/ljspeech/wavs/LJ003-0143.wav|tests/data/ljspeech/wavs/LJ003-0143.npy +tests/data/ljspeech/wavs/LJ022-0143.wav|tests/data/ljspeech/wavs/LJ022-0143.npy +tests/data/ljspeech/wavs/LJ030-0079.wav|tests/data/ljspeech/wavs/LJ030-0079.npy +tests/data/ljspeech/wavs/LJ044-0059.wav|tests/data/ljspeech/wavs/LJ044-0059.npy +tests/data/ljspeech/wavs/LJ003-0226.wav|tests/data/ljspeech/wavs/LJ003-0226.npy +tests/data/ljspeech/wavs/LJ005-0161.wav|tests/data/ljspeech/wavs/LJ005-0161.npy +tests/data/ljspeech/wavs/LJ022-0173.wav|tests/data/ljspeech/wavs/LJ022-0173.npy +tests/data/ljspeech/wavs/LJ048-0008.wav|tests/data/ljspeech/wavs/LJ048-0008.npy +tests/data/ljspeech/wavs/LJ006-0049.wav|tests/data/ljspeech/wavs/LJ006-0049.npy +tests/data/ljspeech/wavs/LJ001-0055.wav|tests/data/ljspeech/wavs/LJ001-0055.npy +tests/data/ljspeech/wavs/LJ006-0275.wav|tests/data/ljspeech/wavs/LJ006-0275.npy +tests/data/ljspeech/wavs/LJ043-0025.wav|tests/data/ljspeech/wavs/LJ043-0025.npy +tests/data/ljspeech/wavs/LJ023-0038.wav|tests/data/ljspeech/wavs/LJ023-0038.npy +tests/data/ljspeech/wavs/LJ006-0131.wav|tests/data/ljspeech/wavs/LJ006-0131.npy +tests/data/ljspeech/wavs/LJ022-0027.wav|tests/data/ljspeech/wavs/LJ022-0027.npy +tests/data/ljspeech/wavs/LJ005-0222.wav|tests/data/ljspeech/wavs/LJ005-0222.npy +tests/data/ljspeech/wavs/LJ001-0060.wav|tests/data/ljspeech/wavs/LJ001-0060.npy +tests/data/ljspeech/wavs/LJ006-0196.wav|tests/data/ljspeech/wavs/LJ006-0196.npy +tests/data/ljspeech/wavs/LJ029-0184.wav|tests/data/ljspeech/wavs/LJ029-0184.npy +tests/data/ljspeech/wavs/LJ002-0310.wav|tests/data/ljspeech/wavs/LJ002-0310.npy +tests/data/ljspeech/wavs/LJ018-0224.wav|tests/data/ljspeech/wavs/LJ018-0224.npy +tests/data/ljspeech/wavs/LJ032-0025.wav|tests/data/ljspeech/wavs/LJ032-0025.npy +tests/data/ljspeech/wavs/LJ040-0171.wav|tests/data/ljspeech/wavs/LJ040-0171.npy +tests/data/ljspeech/wavs/LJ049-0058.wav|tests/data/ljspeech/wavs/LJ049-0058.npy +tests/data/ljspeech/wavs/LJ010-0185.wav|tests/data/ljspeech/wavs/LJ010-0185.npy +tests/data/ljspeech/wavs/LJ026-0131.wav|tests/data/ljspeech/wavs/LJ026-0131.npy +tests/data/ljspeech/wavs/LJ019-0215.wav|tests/data/ljspeech/wavs/LJ019-0215.npy +tests/data/ljspeech/wavs/LJ035-0091.wav|tests/data/ljspeech/wavs/LJ035-0091.npy +tests/data/ljspeech/wavs/LJ028-0402.wav|tests/data/ljspeech/wavs/LJ028-0402.npy +tests/data/ljspeech/wavs/LJ037-0074.wav|tests/data/ljspeech/wavs/LJ037-0074.npy +tests/data/ljspeech/wavs/LJ018-0190.wav|tests/data/ljspeech/wavs/LJ018-0190.npy +tests/data/ljspeech/wavs/LJ036-0028.wav|tests/data/ljspeech/wavs/LJ036-0028.npy +tests/data/ljspeech/wavs/LJ015-0180.wav|tests/data/ljspeech/wavs/LJ015-0180.npy +tests/data/ljspeech/wavs/LJ019-0228.wav|tests/data/ljspeech/wavs/LJ019-0228.npy +tests/data/ljspeech/wavs/LJ018-0183.wav|tests/data/ljspeech/wavs/LJ018-0183.npy +tests/data/ljspeech/wavs/LJ017-0050.wav|tests/data/ljspeech/wavs/LJ017-0050.npy +tests/data/ljspeech/wavs/LJ049-0073.wav|tests/data/ljspeech/wavs/LJ049-0073.npy +tests/data/ljspeech/wavs/LJ011-0133.wav|tests/data/ljspeech/wavs/LJ011-0133.npy +tests/data/ljspeech/wavs/LJ041-0010.wav|tests/data/ljspeech/wavs/LJ041-0010.npy +tests/data/ljspeech/wavs/LJ030-0250.wav|tests/data/ljspeech/wavs/LJ030-0250.npy +tests/data/ljspeech/wavs/LJ028-0377.wav|tests/data/ljspeech/wavs/LJ028-0377.npy +tests/data/ljspeech/wavs/LJ040-0051.wav|tests/data/ljspeech/wavs/LJ040-0051.npy +tests/data/ljspeech/wavs/LJ011-0169.wav|tests/data/ljspeech/wavs/LJ011-0169.npy +tests/data/ljspeech/wavs/LJ011-0203.wav|tests/data/ljspeech/wavs/LJ011-0203.npy +tests/data/ljspeech/wavs/LJ026-0005.wav|tests/data/ljspeech/wavs/LJ026-0005.npy +tests/data/ljspeech/wavs/LJ018-0172.wav|tests/data/ljspeech/wavs/LJ018-0172.npy +tests/data/ljspeech/wavs/LJ009-0263.wav|tests/data/ljspeech/wavs/LJ009-0263.npy +tests/data/ljspeech/wavs/LJ028-0411.wav|tests/data/ljspeech/wavs/LJ028-0411.npy +tests/data/ljspeech/wavs/LJ016-0285.wav|tests/data/ljspeech/wavs/LJ016-0285.npy +tests/data/ljspeech/wavs/LJ036-0174.wav|tests/data/ljspeech/wavs/LJ036-0174.npy +tests/data/ljspeech/wavs/LJ039-0181.wav|tests/data/ljspeech/wavs/LJ039-0181.npy +tests/data/ljspeech/wavs/LJ028-0382.wav|tests/data/ljspeech/wavs/LJ028-0382.npy +tests/data/ljspeech/wavs/LJ038-0120.wav|tests/data/ljspeech/wavs/LJ038-0120.npy +tests/data/ljspeech/wavs/LJ047-0153.wav|tests/data/ljspeech/wavs/LJ047-0153.npy +tests/data/ljspeech/wavs/LJ015-0223.wav|tests/data/ljspeech/wavs/LJ015-0223.npy +tests/data/ljspeech/wavs/LJ016-0079.wav|tests/data/ljspeech/wavs/LJ016-0079.npy +tests/data/ljspeech/wavs/LJ028-0124.wav|tests/data/ljspeech/wavs/LJ028-0124.npy +tests/data/ljspeech/wavs/LJ018-0104.wav|tests/data/ljspeech/wavs/LJ018-0104.npy +tests/data/ljspeech/wavs/LJ038-0246.wav|tests/data/ljspeech/wavs/LJ038-0246.npy +tests/data/ljspeech/wavs/LJ013-0030.wav|tests/data/ljspeech/wavs/LJ013-0030.npy +tests/data/ljspeech/wavs/LJ015-0206.wav|tests/data/ljspeech/wavs/LJ015-0206.npy +tests/data/ljspeech/wavs/LJ015-0078.wav|tests/data/ljspeech/wavs/LJ015-0078.npy +tests/data/ljspeech/wavs/LJ012-0279.wav|tests/data/ljspeech/wavs/LJ012-0279.npy +tests/data/ljspeech/wavs/LJ027-0163.wav|tests/data/ljspeech/wavs/LJ027-0163.npy +tests/data/ljspeech/wavs/LJ037-0192.wav|tests/data/ljspeech/wavs/LJ037-0192.npy +tests/data/ljspeech/wavs/LJ038-0210.wav|tests/data/ljspeech/wavs/LJ038-0210.npy +tests/data/ljspeech/wavs/LJ038-0087.wav|tests/data/ljspeech/wavs/LJ038-0087.npy +tests/data/ljspeech/wavs/LJ016-0106.wav|tests/data/ljspeech/wavs/LJ016-0106.npy +tests/data/ljspeech/wavs/LJ016-0036.wav|tests/data/ljspeech/wavs/LJ016-0036.npy +tests/data/ljspeech/wavs/LJ032-0126.wav|tests/data/ljspeech/wavs/LJ032-0126.npy +tests/data/ljspeech/wavs/LJ027-0147.wav|tests/data/ljspeech/wavs/LJ027-0147.npy +tests/data/ljspeech/wavs/LJ035-0191.wav|tests/data/ljspeech/wavs/LJ035-0191.npy +tests/data/ljspeech/wavs/LJ016-0170.wav|tests/data/ljspeech/wavs/LJ016-0170.npy +tests/data/ljspeech/wavs/LJ018-0347.wav|tests/data/ljspeech/wavs/LJ018-0347.npy +tests/data/ljspeech/wavs/LJ032-0173.wav|tests/data/ljspeech/wavs/LJ032-0173.npy +tests/data/ljspeech/wavs/LJ015-0072.wav|tests/data/ljspeech/wavs/LJ015-0072.npy +tests/data/ljspeech/wavs/LJ014-0090.wav|tests/data/ljspeech/wavs/LJ014-0090.npy +tests/data/ljspeech/wavs/LJ014-0092.wav|tests/data/ljspeech/wavs/LJ014-0092.npy +tests/data/ljspeech/wavs/LJ013-0165.wav|tests/data/ljspeech/wavs/LJ013-0165.npy +tests/data/ljspeech/wavs/LJ015-0250.wav|tests/data/ljspeech/wavs/LJ015-0250.npy +tests/data/ljspeech/wavs/LJ013-0179.wav|tests/data/ljspeech/wavs/LJ013-0179.npy +tests/data/ljspeech/wavs/LJ028-0017.wav|tests/data/ljspeech/wavs/LJ028-0017.npy +tests/data/ljspeech/wavs/LJ028-0093.wav|tests/data/ljspeech/wavs/LJ028-0093.npy +tests/data/ljspeech/wavs/LJ026-0063.wav|tests/data/ljspeech/wavs/LJ026-0063.npy +tests/data/ljspeech/wavs/LJ019-0021.wav|tests/data/ljspeech/wavs/LJ019-0021.npy +tests/data/ljspeech/wavs/LJ019-0388.wav|tests/data/ljspeech/wavs/LJ019-0388.npy +tests/data/ljspeech/wavs/LJ008-0020.wav|tests/data/ljspeech/wavs/LJ008-0020.npy +tests/data/ljspeech/wavs/LJ027-0013.wav|tests/data/ljspeech/wavs/LJ027-0013.npy +tests/data/ljspeech/wavs/LJ018-0276.wav|tests/data/ljspeech/wavs/LJ018-0276.npy +tests/data/ljspeech/wavs/LJ009-0140.wav|tests/data/ljspeech/wavs/LJ009-0140.npy +tests/data/ljspeech/wavs/LJ042-0192.wav|tests/data/ljspeech/wavs/LJ042-0192.npy +tests/data/ljspeech/wavs/LJ042-0128.wav|tests/data/ljspeech/wavs/LJ042-0128.npy +tests/data/ljspeech/wavs/LJ048-0034.wav|tests/data/ljspeech/wavs/LJ048-0034.npy +tests/data/ljspeech/wavs/LJ019-0329.wav|tests/data/ljspeech/wavs/LJ019-0329.npy +tests/data/ljspeech/wavs/LJ029-0033.wav|tests/data/ljspeech/wavs/LJ029-0033.npy +tests/data/ljspeech/wavs/LJ013-0127.wav|tests/data/ljspeech/wavs/LJ013-0127.npy +tests/data/ljspeech/wavs/LJ008-0047.wav|tests/data/ljspeech/wavs/LJ008-0047.npy +tests/data/ljspeech/wavs/LJ012-0290.wav|tests/data/ljspeech/wavs/LJ012-0290.npy +tests/data/ljspeech/wavs/LJ008-0021.wav|tests/data/ljspeech/wavs/LJ008-0021.npy +tests/data/ljspeech/wavs/LJ009-0066.wav|tests/data/ljspeech/wavs/LJ009-0066.npy +tests/data/ljspeech/wavs/LJ014-0070.wav|tests/data/ljspeech/wavs/LJ014-0070.npy +tests/data/ljspeech/wavs/LJ018-0007.wav|tests/data/ljspeech/wavs/LJ018-0007.npy +tests/data/ljspeech/wavs/LJ035-0193.wav|tests/data/ljspeech/wavs/LJ035-0193.npy +tests/data/ljspeech/wavs/LJ041-0192.wav|tests/data/ljspeech/wavs/LJ041-0192.npy +tests/data/ljspeech/wavs/LJ004-0136.wav|tests/data/ljspeech/wavs/LJ004-0136.npy +tests/data/ljspeech/wavs/LJ019-0128.wav|tests/data/ljspeech/wavs/LJ019-0128.npy +tests/data/ljspeech/wavs/LJ047-0059.wav|tests/data/ljspeech/wavs/LJ047-0059.npy +tests/data/ljspeech/wavs/LJ050-0060.wav|tests/data/ljspeech/wavs/LJ050-0060.npy +tests/data/ljspeech/wavs/LJ008-0214.wav|tests/data/ljspeech/wavs/LJ008-0214.npy +tests/data/ljspeech/wavs/LJ035-0172.wav|tests/data/ljspeech/wavs/LJ035-0172.npy +tests/data/ljspeech/wavs/LJ018-0289.wav|tests/data/ljspeech/wavs/LJ018-0289.npy +tests/data/ljspeech/wavs/LJ017-0242.wav|tests/data/ljspeech/wavs/LJ017-0242.npy +tests/data/ljspeech/wavs/LJ017-0257.wav|tests/data/ljspeech/wavs/LJ017-0257.npy +tests/data/ljspeech/wavs/LJ035-0034.wav|tests/data/ljspeech/wavs/LJ035-0034.npy +tests/data/ljspeech/wavs/LJ018-0296.wav|tests/data/ljspeech/wavs/LJ018-0296.npy +tests/data/ljspeech/wavs/LJ004-0163.wav|tests/data/ljspeech/wavs/LJ004-0163.npy +tests/data/ljspeech/wavs/LJ039-0012.wav|tests/data/ljspeech/wavs/LJ039-0012.npy +tests/data/ljspeech/wavs/LJ048-0079.wav|tests/data/ljspeech/wavs/LJ048-0079.npy +tests/data/ljspeech/wavs/LJ025-0065.wav|tests/data/ljspeech/wavs/LJ025-0065.npy +tests/data/ljspeech/wavs/LJ034-0170.wav|tests/data/ljspeech/wavs/LJ034-0170.npy +tests/data/ljspeech/wavs/LJ045-0157.wav|tests/data/ljspeech/wavs/LJ045-0157.npy +tests/data/ljspeech/wavs/LJ022-0094.wav|tests/data/ljspeech/wavs/LJ022-0094.npy +tests/data/ljspeech/wavs/LJ013-0049.wav|tests/data/ljspeech/wavs/LJ013-0049.npy +tests/data/ljspeech/wavs/LJ007-0150.wav|tests/data/ljspeech/wavs/LJ007-0150.npy +tests/data/ljspeech/wavs/LJ042-0112.wav|tests/data/ljspeech/wavs/LJ042-0112.npy +tests/data/ljspeech/wavs/LJ045-0062.wav|tests/data/ljspeech/wavs/LJ045-0062.npy +tests/data/ljspeech/wavs/LJ035-0152.wav|tests/data/ljspeech/wavs/LJ035-0152.npy +tests/data/ljspeech/wavs/LJ031-0225.wav|tests/data/ljspeech/wavs/LJ031-0225.npy +tests/data/ljspeech/wavs/LJ013-0246.wav|tests/data/ljspeech/wavs/LJ013-0246.npy +tests/data/ljspeech/wavs/LJ009-0078.wav|tests/data/ljspeech/wavs/LJ009-0078.npy +tests/data/ljspeech/wavs/LJ016-0075.wav|tests/data/ljspeech/wavs/LJ016-0075.npy +tests/data/ljspeech/wavs/LJ037-0121.wav|tests/data/ljspeech/wavs/LJ037-0121.npy +tests/data/ljspeech/wavs/LJ047-0228.wav|tests/data/ljspeech/wavs/LJ047-0228.npy +tests/data/ljspeech/wavs/LJ008-0057.wav|tests/data/ljspeech/wavs/LJ008-0057.npy +tests/data/ljspeech/wavs/LJ012-0017.wav|tests/data/ljspeech/wavs/LJ012-0017.npy +tests/data/ljspeech/wavs/LJ026-0056.wav|tests/data/ljspeech/wavs/LJ026-0056.npy +tests/data/ljspeech/wavs/LJ033-0083.wav|tests/data/ljspeech/wavs/LJ033-0083.npy +tests/data/ljspeech/wavs/LJ023-0132.wav|tests/data/ljspeech/wavs/LJ023-0132.npy +tests/data/ljspeech/wavs/LJ016-0136.wav|tests/data/ljspeech/wavs/LJ016-0136.npy +tests/data/ljspeech/wavs/LJ012-0035.wav|tests/data/ljspeech/wavs/LJ012-0035.npy +tests/data/ljspeech/wavs/LJ012-0267.wav|tests/data/ljspeech/wavs/LJ012-0267.npy +tests/data/ljspeech/wavs/LJ016-0038.wav|tests/data/ljspeech/wavs/LJ016-0038.npy +tests/data/ljspeech/wavs/LJ003-0270.wav|tests/data/ljspeech/wavs/LJ003-0270.npy +tests/data/ljspeech/wavs/LJ042-0214.wav|tests/data/ljspeech/wavs/LJ042-0214.npy +tests/data/ljspeech/wavs/LJ004-0240.wav|tests/data/ljspeech/wavs/LJ004-0240.npy +tests/data/ljspeech/wavs/LJ039-0162.wav|tests/data/ljspeech/wavs/LJ039-0162.npy +tests/data/ljspeech/wavs/LJ033-0043.wav|tests/data/ljspeech/wavs/LJ033-0043.npy +tests/data/ljspeech/wavs/LJ012-0181.wav|tests/data/ljspeech/wavs/LJ012-0181.npy +tests/data/ljspeech/wavs/LJ014-0315.wav|tests/data/ljspeech/wavs/LJ014-0315.npy +tests/data/ljspeech/wavs/LJ038-0078.wav|tests/data/ljspeech/wavs/LJ038-0078.npy +tests/data/ljspeech/wavs/LJ038-0222.wav|tests/data/ljspeech/wavs/LJ038-0222.npy +tests/data/ljspeech/wavs/LJ018-0002.wav|tests/data/ljspeech/wavs/LJ018-0002.npy +tests/data/ljspeech/wavs/LJ037-0216.wav|tests/data/ljspeech/wavs/LJ037-0216.npy +tests/data/ljspeech/wavs/LJ042-0162.wav|tests/data/ljspeech/wavs/LJ042-0162.npy +tests/data/ljspeech/wavs/LJ018-0014.wav|tests/data/ljspeech/wavs/LJ018-0014.npy +tests/data/ljspeech/wavs/LJ026-0074.wav|tests/data/ljspeech/wavs/LJ026-0074.npy +tests/data/ljspeech/wavs/LJ014-0203.wav|tests/data/ljspeech/wavs/LJ014-0203.npy +tests/data/ljspeech/wavs/LJ007-0225.wav|tests/data/ljspeech/wavs/LJ007-0225.npy +tests/data/ljspeech/wavs/LJ016-0037.wav|tests/data/ljspeech/wavs/LJ016-0037.npy +tests/data/ljspeech/wavs/LJ015-0199.wav|tests/data/ljspeech/wavs/LJ015-0199.npy +tests/data/ljspeech/wavs/LJ038-0053.wav|tests/data/ljspeech/wavs/LJ038-0053.npy +tests/data/ljspeech/wavs/LJ047-0037.wav|tests/data/ljspeech/wavs/LJ047-0037.npy +tests/data/ljspeech/wavs/LJ016-0178.wav|tests/data/ljspeech/wavs/LJ016-0178.npy +tests/data/ljspeech/wavs/LJ003-0253.wav|tests/data/ljspeech/wavs/LJ003-0253.npy +tests/data/ljspeech/wavs/LJ003-0258.wav|tests/data/ljspeech/wavs/LJ003-0258.npy +tests/data/ljspeech/wavs/LJ015-0314.wav|tests/data/ljspeech/wavs/LJ015-0314.npy +tests/data/ljspeech/wavs/LJ007-0043.wav|tests/data/ljspeech/wavs/LJ007-0043.npy +tests/data/ljspeech/wavs/LJ014-0161.wav|tests/data/ljspeech/wavs/LJ014-0161.npy +tests/data/ljspeech/wavs/LJ018-0259.wav|tests/data/ljspeech/wavs/LJ018-0259.npy +tests/data/ljspeech/wavs/LJ042-0169.wav|tests/data/ljspeech/wavs/LJ042-0169.npy +tests/data/ljspeech/wavs/LJ003-0257.wav|tests/data/ljspeech/wavs/LJ003-0257.npy +tests/data/ljspeech/wavs/LJ018-0257.wav|tests/data/ljspeech/wavs/LJ018-0257.npy +tests/data/ljspeech/wavs/LJ003-0206.wav|tests/data/ljspeech/wavs/LJ003-0206.npy +tests/data/ljspeech/wavs/LJ018-0036.wav|tests/data/ljspeech/wavs/LJ018-0036.npy +tests/data/ljspeech/wavs/LJ029-0059.wav|tests/data/ljspeech/wavs/LJ029-0059.npy +tests/data/ljspeech/wavs/LJ038-0038.wav|tests/data/ljspeech/wavs/LJ038-0038.npy +tests/data/ljspeech/wavs/LJ026-0073.wav|tests/data/ljspeech/wavs/LJ026-0073.npy +tests/data/ljspeech/wavs/LJ034-0187.wav|tests/data/ljspeech/wavs/LJ034-0187.npy +tests/data/ljspeech/wavs/LJ018-0270.wav|tests/data/ljspeech/wavs/LJ018-0270.npy +tests/data/ljspeech/wavs/LJ003-0304.wav|tests/data/ljspeech/wavs/LJ003-0304.npy +tests/data/ljspeech/wavs/LJ034-0111.wav|tests/data/ljspeech/wavs/LJ034-0111.npy +tests/data/ljspeech/wavs/LJ010-0068.wav|tests/data/ljspeech/wavs/LJ010-0068.npy +tests/data/ljspeech/wavs/LJ005-0201.wav|tests/data/ljspeech/wavs/LJ005-0201.npy +tests/data/ljspeech/wavs/LJ029-0181.wav|tests/data/ljspeech/wavs/LJ029-0181.npy +tests/data/ljspeech/wavs/LJ010-0173.wav|tests/data/ljspeech/wavs/LJ010-0173.npy +tests/data/ljspeech/wavs/LJ043-0117.wav|tests/data/ljspeech/wavs/LJ043-0117.npy +tests/data/ljspeech/wavs/LJ044-0037.wav|tests/data/ljspeech/wavs/LJ044-0037.npy +tests/data/ljspeech/wavs/LJ017-0216.wav|tests/data/ljspeech/wavs/LJ017-0216.npy +tests/data/ljspeech/wavs/LJ024-0080.wav|tests/data/ljspeech/wavs/LJ024-0080.npy +tests/data/ljspeech/wavs/LJ002-0112.wav|tests/data/ljspeech/wavs/LJ002-0112.npy +tests/data/ljspeech/wavs/LJ010-0220.wav|tests/data/ljspeech/wavs/LJ010-0220.npy +tests/data/ljspeech/wavs/LJ006-0184.wav|tests/data/ljspeech/wavs/LJ006-0184.npy +tests/data/ljspeech/wavs/LJ016-0440.wav|tests/data/ljspeech/wavs/LJ016-0440.npy +tests/data/ljspeech/wavs/LJ017-0024.wav|tests/data/ljspeech/wavs/LJ017-0024.npy +tests/data/ljspeech/wavs/LJ017-0219.wav|tests/data/ljspeech/wavs/LJ017-0219.npy +tests/data/ljspeech/wavs/LJ005-0230.wav|tests/data/ljspeech/wavs/LJ005-0230.npy +tests/data/ljspeech/wavs/LJ041-0033.wav|tests/data/ljspeech/wavs/LJ041-0033.npy +tests/data/ljspeech/wavs/LJ033-0071.wav|tests/data/ljspeech/wavs/LJ033-0071.npy +tests/data/ljspeech/wavs/LJ010-0077.wav|tests/data/ljspeech/wavs/LJ010-0077.npy +tests/data/ljspeech/wavs/LJ016-0332.wav|tests/data/ljspeech/wavs/LJ016-0332.npy +tests/data/ljspeech/wavs/LJ010-0209.wav|tests/data/ljspeech/wavs/LJ010-0209.npy +tests/data/ljspeech/wavs/LJ041-0193.wav|tests/data/ljspeech/wavs/LJ041-0193.npy +tests/data/ljspeech/wavs/LJ010-0103.wav|tests/data/ljspeech/wavs/LJ010-0103.npy +tests/data/ljspeech/wavs/LJ008-0293.wav|tests/data/ljspeech/wavs/LJ008-0293.npy +tests/data/ljspeech/wavs/LJ009-0082.wav|tests/data/ljspeech/wavs/LJ009-0082.npy +tests/data/ljspeech/wavs/LJ017-0106.wav|tests/data/ljspeech/wavs/LJ017-0106.npy +tests/data/ljspeech/wavs/LJ003-0020.wav|tests/data/ljspeech/wavs/LJ003-0020.npy +tests/data/ljspeech/wavs/LJ001-0145.wav|tests/data/ljspeech/wavs/LJ001-0145.npy +tests/data/ljspeech/wavs/LJ006-0205.wav|tests/data/ljspeech/wavs/LJ006-0205.npy +tests/data/ljspeech/wavs/LJ001-0149.wav|tests/data/ljspeech/wavs/LJ001-0149.npy +tests/data/ljspeech/wavs/LJ002-0067.wav|tests/data/ljspeech/wavs/LJ002-0067.npy +tests/data/ljspeech/wavs/LJ019-0178.wav|tests/data/ljspeech/wavs/LJ019-0178.npy +tests/data/ljspeech/wavs/LJ002-0120.wav|tests/data/ljspeech/wavs/LJ002-0120.npy +tests/data/ljspeech/wavs/LJ042-0050.wav|tests/data/ljspeech/wavs/LJ042-0050.npy +tests/data/ljspeech/wavs/LJ011-0099.wav|tests/data/ljspeech/wavs/LJ011-0099.npy +tests/data/ljspeech/wavs/LJ037-0045.wav|tests/data/ljspeech/wavs/LJ037-0045.npy +tests/data/ljspeech/wavs/LJ031-0116.wav|tests/data/ljspeech/wavs/LJ031-0116.npy +tests/data/ljspeech/wavs/LJ011-0081.wav|tests/data/ljspeech/wavs/LJ011-0081.npy +tests/data/ljspeech/wavs/LJ050-0040.wav|tests/data/ljspeech/wavs/LJ050-0040.npy +tests/data/ljspeech/wavs/LJ025-0095.wav|tests/data/ljspeech/wavs/LJ025-0095.npy +tests/data/ljspeech/wavs/LJ040-0212.wav|tests/data/ljspeech/wavs/LJ040-0212.npy +tests/data/ljspeech/wavs/LJ046-0165.wav|tests/data/ljspeech/wavs/LJ046-0165.npy +tests/data/ljspeech/wavs/LJ008-0309.wav|tests/data/ljspeech/wavs/LJ008-0309.npy +tests/data/ljspeech/wavs/LJ002-0262.wav|tests/data/ljspeech/wavs/LJ002-0262.npy +tests/data/ljspeech/wavs/LJ011-0144.wav|tests/data/ljspeech/wavs/LJ011-0144.npy +tests/data/ljspeech/wavs/LJ010-0274.wav|tests/data/ljspeech/wavs/LJ010-0274.npy +tests/data/ljspeech/wavs/LJ016-0260.wav|tests/data/ljspeech/wavs/LJ016-0260.npy +tests/data/ljspeech/wavs/LJ047-0164.wav|tests/data/ljspeech/wavs/LJ047-0164.npy +tests/data/ljspeech/wavs/LJ009-0270.wav|tests/data/ljspeech/wavs/LJ009-0270.npy +tests/data/ljspeech/wavs/LJ002-0224.wav|tests/data/ljspeech/wavs/LJ002-0224.npy +tests/data/ljspeech/wavs/LJ034-0168.wav|tests/data/ljspeech/wavs/LJ034-0168.npy +tests/data/ljspeech/wavs/LJ049-0191.wav|tests/data/ljspeech/wavs/LJ049-0191.npy +tests/data/ljspeech/wavs/LJ048-0251.wav|tests/data/ljspeech/wavs/LJ048-0251.npy +tests/data/ljspeech/wavs/LJ040-0223.wav|tests/data/ljspeech/wavs/LJ040-0223.npy +tests/data/ljspeech/wavs/LJ019-0134.wav|tests/data/ljspeech/wavs/LJ019-0134.npy +tests/data/ljspeech/wavs/LJ024-0037.wav|tests/data/ljspeech/wavs/LJ024-0037.npy +tests/data/ljspeech/wavs/LJ010-0239.wav|tests/data/ljspeech/wavs/LJ010-0239.npy +tests/data/ljspeech/wavs/LJ021-0012.wav|tests/data/ljspeech/wavs/LJ021-0012.npy +tests/data/ljspeech/wavs/LJ021-0009.wav|tests/data/ljspeech/wavs/LJ021-0009.npy +tests/data/ljspeech/wavs/LJ028-0268.wav|tests/data/ljspeech/wavs/LJ028-0268.npy +tests/data/ljspeech/wavs/LJ010-0033.wav|tests/data/ljspeech/wavs/LJ010-0033.npy +tests/data/ljspeech/wavs/LJ041-0166.wav|tests/data/ljspeech/wavs/LJ041-0166.npy +tests/data/ljspeech/wavs/LJ032-0274.wav|tests/data/ljspeech/wavs/LJ032-0274.npy +tests/data/ljspeech/wavs/LJ017-0035.wav|tests/data/ljspeech/wavs/LJ017-0035.npy +tests/data/ljspeech/wavs/LJ047-0179.wav|tests/data/ljspeech/wavs/LJ047-0179.npy +tests/data/ljspeech/wavs/LJ032-0241.wav|tests/data/ljspeech/wavs/LJ032-0241.npy +tests/data/ljspeech/wavs/LJ037-0125.wav|tests/data/ljspeech/wavs/LJ037-0125.npy +tests/data/ljspeech/wavs/LJ027-0175.wav|tests/data/ljspeech/wavs/LJ027-0175.npy +tests/data/ljspeech/wavs/LJ048-0036.wav|tests/data/ljspeech/wavs/LJ048-0036.npy +tests/data/ljspeech/wavs/LJ017-0112.wav|tests/data/ljspeech/wavs/LJ017-0112.npy +tests/data/ljspeech/wavs/LJ047-0182.wav|tests/data/ljspeech/wavs/LJ047-0182.npy +tests/data/ljspeech/wavs/LJ017-0181.wav|tests/data/ljspeech/wavs/LJ017-0181.npy +tests/data/ljspeech/wavs/LJ033-0173.wav|tests/data/ljspeech/wavs/LJ033-0173.npy +tests/data/ljspeech/wavs/LJ033-0172.wav|tests/data/ljspeech/wavs/LJ033-0172.npy +tests/data/ljspeech/wavs/LJ049-0043.wav|tests/data/ljspeech/wavs/LJ049-0043.npy +tests/data/ljspeech/wavs/LJ024-0018.wav|tests/data/ljspeech/wavs/LJ024-0018.npy +tests/data/ljspeech/wavs/LJ016-0217.wav|tests/data/ljspeech/wavs/LJ016-0217.npy +tests/data/ljspeech/wavs/LJ016-0139.wav|tests/data/ljspeech/wavs/LJ016-0139.npy +tests/data/ljspeech/wavs/LJ017-0204.wav|tests/data/ljspeech/wavs/LJ017-0204.npy +tests/data/ljspeech/wavs/LJ046-0051.wav|tests/data/ljspeech/wavs/LJ046-0051.npy +tests/data/ljspeech/wavs/LJ033-0187.wav|tests/data/ljspeech/wavs/LJ033-0187.npy +tests/data/ljspeech/wavs/LJ017-0157.wav|tests/data/ljspeech/wavs/LJ017-0157.npy +tests/data/ljspeech/wavs/LJ015-0280.wav|tests/data/ljspeech/wavs/LJ015-0280.npy +tests/data/ljspeech/wavs/LJ017-0207.wav|tests/data/ljspeech/wavs/LJ017-0207.npy +tests/data/ljspeech/wavs/LJ017-0205.wav|tests/data/ljspeech/wavs/LJ017-0205.npy +tests/data/ljspeech/wavs/LJ001-0178.wav|tests/data/ljspeech/wavs/LJ001-0178.npy +tests/data/ljspeech/wavs/LJ046-0171.wav|tests/data/ljspeech/wavs/LJ046-0171.npy +tests/data/ljspeech/wavs/LJ030-0214.wav|tests/data/ljspeech/wavs/LJ030-0214.npy +tests/data/ljspeech/wavs/LJ046-0001.wav|tests/data/ljspeech/wavs/LJ046-0001.npy +tests/data/ljspeech/wavs/LJ016-0096.wav|tests/data/ljspeech/wavs/LJ016-0096.npy +tests/data/ljspeech/wavs/LJ010-0304.wav|tests/data/ljspeech/wavs/LJ010-0304.npy +tests/data/ljspeech/wavs/LJ001-0022.wav|tests/data/ljspeech/wavs/LJ001-0022.npy +tests/data/ljspeech/wavs/LJ015-0221.wav|tests/data/ljspeech/wavs/LJ015-0221.npy +tests/data/ljspeech/wavs/LJ027-0152.wav|tests/data/ljspeech/wavs/LJ027-0152.npy +tests/data/ljspeech/wavs/LJ030-0142.wav|tests/data/ljspeech/wavs/LJ030-0142.npy +tests/data/ljspeech/wavs/LJ032-0160.wav|tests/data/ljspeech/wavs/LJ032-0160.npy +tests/data/ljspeech/wavs/LJ028-0370.wav|tests/data/ljspeech/wavs/LJ028-0370.npy +tests/data/ljspeech/wavs/LJ047-0032.wav|tests/data/ljspeech/wavs/LJ047-0032.npy +tests/data/ljspeech/wavs/LJ019-0240.wav|tests/data/ljspeech/wavs/LJ019-0240.npy +tests/data/ljspeech/wavs/LJ032-0185.wav|tests/data/ljspeech/wavs/LJ032-0185.npy +tests/data/ljspeech/wavs/LJ050-0167.wav|tests/data/ljspeech/wavs/LJ050-0167.npy +tests/data/ljspeech/wavs/LJ049-0063.wav|tests/data/ljspeech/wavs/LJ049-0063.npy +tests/data/ljspeech/wavs/LJ031-0040.wav|tests/data/ljspeech/wavs/LJ031-0040.npy +tests/data/ljspeech/wavs/LJ036-0026.wav|tests/data/ljspeech/wavs/LJ036-0026.npy +tests/data/ljspeech/wavs/LJ050-0271.wav|tests/data/ljspeech/wavs/LJ050-0271.npy +tests/data/ljspeech/wavs/LJ032-0174.wav|tests/data/ljspeech/wavs/LJ032-0174.npy +tests/data/ljspeech/wavs/LJ005-0206.wav|tests/data/ljspeech/wavs/LJ005-0206.npy +tests/data/ljspeech/wavs/LJ015-0283.wav|tests/data/ljspeech/wavs/LJ015-0283.npy +tests/data/ljspeech/wavs/LJ043-0166.wav|tests/data/ljspeech/wavs/LJ043-0166.npy +tests/data/ljspeech/wavs/LJ037-0016.wav|tests/data/ljspeech/wavs/LJ037-0016.npy +tests/data/ljspeech/wavs/LJ032-0236.wav|tests/data/ljspeech/wavs/LJ032-0236.npy +tests/data/ljspeech/wavs/LJ024-0039.wav|tests/data/ljspeech/wavs/LJ024-0039.npy +tests/data/ljspeech/wavs/LJ005-0259.wav|tests/data/ljspeech/wavs/LJ005-0259.npy +tests/data/ljspeech/wavs/LJ010-0248.wav|tests/data/ljspeech/wavs/LJ010-0248.npy +tests/data/ljspeech/wavs/LJ041-0006.wav|tests/data/ljspeech/wavs/LJ041-0006.npy +tests/data/ljspeech/wavs/LJ043-0165.wav|tests/data/ljspeech/wavs/LJ043-0165.npy +tests/data/ljspeech/wavs/LJ019-0192.wav|tests/data/ljspeech/wavs/LJ019-0192.npy +tests/data/ljspeech/wavs/LJ002-0284.wav|tests/data/ljspeech/wavs/LJ002-0284.npy +tests/data/ljspeech/wavs/LJ019-0152.wav|tests/data/ljspeech/wavs/LJ019-0152.npy +tests/data/ljspeech/wavs/LJ027-0171.wav|tests/data/ljspeech/wavs/LJ027-0171.npy +tests/data/ljspeech/wavs/LJ028-0396.wav|tests/data/ljspeech/wavs/LJ028-0396.npy +tests/data/ljspeech/wavs/LJ023-0047.wav|tests/data/ljspeech/wavs/LJ023-0047.npy +tests/data/ljspeech/wavs/LJ035-0107.wav|tests/data/ljspeech/wavs/LJ035-0107.npy +tests/data/ljspeech/wavs/LJ033-0118.wav|tests/data/ljspeech/wavs/LJ033-0118.npy +tests/data/ljspeech/wavs/LJ033-0005.wav|tests/data/ljspeech/wavs/LJ033-0005.npy +tests/data/ljspeech/wavs/LJ040-0110.wav|tests/data/ljspeech/wavs/LJ040-0110.npy +tests/data/ljspeech/wavs/LJ001-0019.wav|tests/data/ljspeech/wavs/LJ001-0019.npy +tests/data/ljspeech/wavs/LJ003-0046.wav|tests/data/ljspeech/wavs/LJ003-0046.npy +tests/data/ljspeech/wavs/LJ036-0006.wav|tests/data/ljspeech/wavs/LJ036-0006.npy +tests/data/ljspeech/wavs/LJ031-0109.wav|tests/data/ljspeech/wavs/LJ031-0109.npy +tests/data/ljspeech/wavs/LJ042-0083.wav|tests/data/ljspeech/wavs/LJ042-0083.npy +tests/data/ljspeech/wavs/LJ028-0423.wav|tests/data/ljspeech/wavs/LJ028-0423.npy +tests/data/ljspeech/wavs/LJ048-0140.wav|tests/data/ljspeech/wavs/LJ048-0140.npy +tests/data/ljspeech/wavs/LJ008-0029.wav|tests/data/ljspeech/wavs/LJ008-0029.npy +tests/data/ljspeech/wavs/LJ006-0244.wav|tests/data/ljspeech/wavs/LJ006-0244.npy +tests/data/ljspeech/wavs/LJ010-0273.wav|tests/data/ljspeech/wavs/LJ010-0273.npy +tests/data/ljspeech/wavs/LJ019-0382.wav|tests/data/ljspeech/wavs/LJ019-0382.npy +tests/data/ljspeech/wavs/LJ042-0042.wav|tests/data/ljspeech/wavs/LJ042-0042.npy +tests/data/ljspeech/wavs/LJ019-0262.wav|tests/data/ljspeech/wavs/LJ019-0262.npy +tests/data/ljspeech/wavs/LJ048-0171.wav|tests/data/ljspeech/wavs/LJ048-0171.npy +tests/data/ljspeech/wavs/LJ043-0116.wav|tests/data/ljspeech/wavs/LJ043-0116.npy +tests/data/ljspeech/wavs/LJ010-0312.wav|tests/data/ljspeech/wavs/LJ010-0312.npy +tests/data/ljspeech/wavs/LJ008-0129.wav|tests/data/ljspeech/wavs/LJ008-0129.npy +tests/data/ljspeech/wavs/LJ042-0067.wav|tests/data/ljspeech/wavs/LJ042-0067.npy +tests/data/ljspeech/wavs/LJ007-0206.wav|tests/data/ljspeech/wavs/LJ007-0206.npy +tests/data/ljspeech/wavs/LJ028-0307.wav|tests/data/ljspeech/wavs/LJ028-0307.npy +tests/data/ljspeech/wavs/LJ031-0219.wav|tests/data/ljspeech/wavs/LJ031-0219.npy +tests/data/ljspeech/wavs/LJ048-0252.wav|tests/data/ljspeech/wavs/LJ048-0252.npy +tests/data/ljspeech/wavs/LJ008-0109.wav|tests/data/ljspeech/wavs/LJ008-0109.npy +tests/data/ljspeech/wavs/LJ048-0138.wav|tests/data/ljspeech/wavs/LJ048-0138.npy +tests/data/ljspeech/wavs/LJ050-0168.wav|tests/data/ljspeech/wavs/LJ050-0168.npy +tests/data/ljspeech/wavs/LJ019-0251.wav|tests/data/ljspeech/wavs/LJ019-0251.npy +tests/data/ljspeech/wavs/LJ028-0431.wav|tests/data/ljspeech/wavs/LJ028-0431.npy +tests/data/ljspeech/wavs/LJ028-0308.wav|tests/data/ljspeech/wavs/LJ028-0308.npy +tests/data/ljspeech/wavs/LJ011-0017.wav|tests/data/ljspeech/wavs/LJ011-0017.npy +tests/data/ljspeech/wavs/LJ008-0164.wav|tests/data/ljspeech/wavs/LJ008-0164.npy +tests/data/ljspeech/wavs/LJ007-0041.wav|tests/data/ljspeech/wavs/LJ007-0041.npy +tests/data/ljspeech/wavs/LJ025-0112.wav|tests/data/ljspeech/wavs/LJ025-0112.npy +tests/data/ljspeech/wavs/LJ020-0076.wav|tests/data/ljspeech/wavs/LJ020-0076.npy +tests/data/ljspeech/wavs/LJ043-0101.wav|tests/data/ljspeech/wavs/LJ043-0101.npy +tests/data/ljspeech/wavs/LJ031-0061.wav|tests/data/ljspeech/wavs/LJ031-0061.npy +tests/data/ljspeech/wavs/LJ015-0073.wav|tests/data/ljspeech/wavs/LJ015-0073.npy +tests/data/ljspeech/wavs/LJ039-0203.wav|tests/data/ljspeech/wavs/LJ039-0203.npy +tests/data/ljspeech/wavs/LJ038-0225.wav|tests/data/ljspeech/wavs/LJ038-0225.npy +tests/data/ljspeech/wavs/LJ022-0150.wav|tests/data/ljspeech/wavs/LJ022-0150.npy +tests/data/ljspeech/wavs/LJ045-0089.wav|tests/data/ljspeech/wavs/LJ045-0089.npy +tests/data/ljspeech/wavs/LJ030-0095.wav|tests/data/ljspeech/wavs/LJ030-0095.npy +tests/data/ljspeech/wavs/LJ019-0087.wav|tests/data/ljspeech/wavs/LJ019-0087.npy +tests/data/ljspeech/wavs/LJ003-0235.wav|tests/data/ljspeech/wavs/LJ003-0235.npy +tests/data/ljspeech/wavs/LJ044-0198.wav|tests/data/ljspeech/wavs/LJ044-0198.npy +tests/data/ljspeech/wavs/LJ035-0194.wav|tests/data/ljspeech/wavs/LJ035-0194.npy +tests/data/ljspeech/wavs/LJ022-0166.wav|tests/data/ljspeech/wavs/LJ022-0166.npy +tests/data/ljspeech/wavs/LJ018-0382.wav|tests/data/ljspeech/wavs/LJ018-0382.npy +tests/data/ljspeech/wavs/LJ011-0219.wav|tests/data/ljspeech/wavs/LJ011-0219.npy +tests/data/ljspeech/wavs/LJ045-0116.wav|tests/data/ljspeech/wavs/LJ045-0116.npy +tests/data/ljspeech/wavs/LJ043-0120.wav|tests/data/ljspeech/wavs/LJ043-0120.npy +tests/data/ljspeech/wavs/LJ013-0157.wav|tests/data/ljspeech/wavs/LJ013-0157.npy +tests/data/ljspeech/wavs/LJ015-0095.wav|tests/data/ljspeech/wavs/LJ015-0095.npy +tests/data/ljspeech/wavs/LJ022-0133.wav|tests/data/ljspeech/wavs/LJ022-0133.npy +tests/data/ljspeech/wavs/LJ045-0053.wav|tests/data/ljspeech/wavs/LJ045-0053.npy +tests/data/ljspeech/wavs/LJ048-0183.wav|tests/data/ljspeech/wavs/LJ048-0183.npy +tests/data/ljspeech/wavs/LJ045-0054.wav|tests/data/ljspeech/wavs/LJ045-0054.npy +tests/data/ljspeech/wavs/LJ014-0269.wav|tests/data/ljspeech/wavs/LJ014-0269.npy +tests/data/ljspeech/wavs/LJ018-0397.wav|tests/data/ljspeech/wavs/LJ018-0397.npy +tests/data/ljspeech/wavs/LJ003-0245.wav|tests/data/ljspeech/wavs/LJ003-0245.npy +tests/data/ljspeech/wavs/LJ014-0273.wav|tests/data/ljspeech/wavs/LJ014-0273.npy +tests/data/ljspeech/wavs/LJ037-0269.wav|tests/data/ljspeech/wavs/LJ037-0269.npy +tests/data/ljspeech/wavs/LJ014-0126.wav|tests/data/ljspeech/wavs/LJ014-0126.npy +tests/data/ljspeech/wavs/LJ018-0387.wav|tests/data/ljspeech/wavs/LJ018-0387.npy +tests/data/ljspeech/wavs/LJ006-0088.wav|tests/data/ljspeech/wavs/LJ006-0088.npy +tests/data/ljspeech/wavs/LJ014-0042.wav|tests/data/ljspeech/wavs/LJ014-0042.npy +tests/data/ljspeech/wavs/LJ014-0007.wav|tests/data/ljspeech/wavs/LJ014-0007.npy +tests/data/ljspeech/wavs/LJ043-0072.wav|tests/data/ljspeech/wavs/LJ043-0072.npy +tests/data/ljspeech/wavs/LJ042-0247.wav|tests/data/ljspeech/wavs/LJ042-0247.npy +tests/data/ljspeech/wavs/LJ044-0145.wav|tests/data/ljspeech/wavs/LJ044-0145.npy +tests/data/ljspeech/wavs/LJ012-0151.wav|tests/data/ljspeech/wavs/LJ012-0151.npy +tests/data/ljspeech/wavs/LJ036-0124.wav|tests/data/ljspeech/wavs/LJ036-0124.npy +tests/data/ljspeech/wavs/LJ035-0008.wav|tests/data/ljspeech/wavs/LJ035-0008.npy +tests/data/ljspeech/wavs/LJ022-0043.wav|tests/data/ljspeech/wavs/LJ022-0043.npy +tests/data/ljspeech/wavs/LJ036-0119.wav|tests/data/ljspeech/wavs/LJ036-0119.npy +tests/data/ljspeech/wavs/LJ026-0051.wav|tests/data/ljspeech/wavs/LJ026-0051.npy +tests/data/ljspeech/wavs/LJ048-0065.wav|tests/data/ljspeech/wavs/LJ048-0065.npy +tests/data/ljspeech/wavs/LJ040-0072.wav|tests/data/ljspeech/wavs/LJ040-0072.npy +tests/data/ljspeech/wavs/LJ013-0123.wav|tests/data/ljspeech/wavs/LJ013-0123.npy +tests/data/ljspeech/wavs/LJ005-0032.wav|tests/data/ljspeech/wavs/LJ005-0032.npy +tests/data/ljspeech/wavs/LJ036-0019.wav|tests/data/ljspeech/wavs/LJ036-0019.npy +tests/data/ljspeech/wavs/LJ038-0073.wav|tests/data/ljspeech/wavs/LJ038-0073.npy +tests/data/ljspeech/wavs/LJ042-0188.wav|tests/data/ljspeech/wavs/LJ042-0188.npy +tests/data/ljspeech/wavs/LJ041-0004.wav|tests/data/ljspeech/wavs/LJ041-0004.npy +tests/data/ljspeech/wavs/LJ038-0270.wav|tests/data/ljspeech/wavs/LJ038-0270.npy +tests/data/ljspeech/wavs/LJ012-0226.wav|tests/data/ljspeech/wavs/LJ012-0226.npy +tests/data/ljspeech/wavs/LJ044-0002.wav|tests/data/ljspeech/wavs/LJ044-0002.npy +tests/data/ljspeech/wavs/LJ028-0242.wav|tests/data/ljspeech/wavs/LJ028-0242.npy +tests/data/ljspeech/wavs/LJ034-0013.wav|tests/data/ljspeech/wavs/LJ034-0013.npy +tests/data/ljspeech/wavs/LJ005-0022.wav|tests/data/ljspeech/wavs/LJ005-0022.npy +tests/data/ljspeech/wavs/LJ028-0245.wav|tests/data/ljspeech/wavs/LJ028-0245.npy +tests/data/ljspeech/wavs/LJ046-0105.wav|tests/data/ljspeech/wavs/LJ046-0105.npy +tests/data/ljspeech/wavs/LJ040-0021.wav|tests/data/ljspeech/wavs/LJ040-0021.npy +tests/data/ljspeech/wavs/LJ039-0221.wav|tests/data/ljspeech/wavs/LJ039-0221.npy +tests/data/ljspeech/wavs/LJ028-0247.wav|tests/data/ljspeech/wavs/LJ028-0247.npy +tests/data/ljspeech/wavs/LJ034-0180.wav|tests/data/ljspeech/wavs/LJ034-0180.npy +tests/data/ljspeech/wavs/LJ022-0124.wav|tests/data/ljspeech/wavs/LJ022-0124.npy +tests/data/ljspeech/wavs/LJ012-0108.wav|tests/data/ljspeech/wavs/LJ012-0108.npy +tests/data/ljspeech/wavs/LJ032-0196.wav|tests/data/ljspeech/wavs/LJ032-0196.npy +tests/data/ljspeech/wavs/LJ047-0016.wav|tests/data/ljspeech/wavs/LJ047-0016.npy +tests/data/ljspeech/wavs/LJ032-0123.wav|tests/data/ljspeech/wavs/LJ032-0123.npy +tests/data/ljspeech/wavs/LJ050-0094.wav|tests/data/ljspeech/wavs/LJ050-0094.npy +tests/data/ljspeech/wavs/LJ048-0057.wav|tests/data/ljspeech/wavs/LJ048-0057.npy +tests/data/ljspeech/wavs/LJ026-0028.wav|tests/data/ljspeech/wavs/LJ026-0028.npy +tests/data/ljspeech/wavs/LJ026-0081.wav|tests/data/ljspeech/wavs/LJ026-0081.npy +tests/data/ljspeech/wavs/LJ040-0180.wav|tests/data/ljspeech/wavs/LJ040-0180.npy +tests/data/ljspeech/wavs/LJ047-0245.wav|tests/data/ljspeech/wavs/LJ047-0245.npy +tests/data/ljspeech/wavs/LJ017-0191.wav|tests/data/ljspeech/wavs/LJ017-0191.npy +tests/data/ljspeech/wavs/LJ046-0087.wav|tests/data/ljspeech/wavs/LJ046-0087.npy +tests/data/ljspeech/wavs/LJ037-0046.wav|tests/data/ljspeech/wavs/LJ037-0046.npy +tests/data/ljspeech/wavs/LJ031-0004.wav|tests/data/ljspeech/wavs/LJ031-0004.npy +tests/data/ljspeech/wavs/LJ021-0169.wav|tests/data/ljspeech/wavs/LJ021-0169.npy +tests/data/ljspeech/wavs/LJ016-0414.wav|tests/data/ljspeech/wavs/LJ016-0414.npy +tests/data/ljspeech/wavs/LJ003-0341.wav|tests/data/ljspeech/wavs/LJ003-0341.npy +tests/data/ljspeech/wavs/LJ018-0059.wav|tests/data/ljspeech/wavs/LJ018-0059.npy +tests/data/ljspeech/wavs/LJ026-0107.wav|tests/data/ljspeech/wavs/LJ026-0107.npy +tests/data/ljspeech/wavs/LJ016-0040.wav|tests/data/ljspeech/wavs/LJ016-0040.npy +tests/data/ljspeech/wavs/LJ001-0164.wav|tests/data/ljspeech/wavs/LJ001-0164.npy +tests/data/ljspeech/wavs/LJ038-0249.wav|tests/data/ljspeech/wavs/LJ038-0249.npy +tests/data/ljspeech/wavs/LJ033-0141.wav|tests/data/ljspeech/wavs/LJ033-0141.npy +tests/data/ljspeech/wavs/LJ020-0059.wav|tests/data/ljspeech/wavs/LJ020-0059.npy +tests/data/ljspeech/wavs/LJ001-0071.wav|tests/data/ljspeech/wavs/LJ001-0071.npy +tests/data/ljspeech/wavs/LJ041-0140.wav|tests/data/ljspeech/wavs/LJ041-0140.npy +tests/data/ljspeech/wavs/LJ029-0097.wav|tests/data/ljspeech/wavs/LJ029-0097.npy +tests/data/ljspeech/wavs/LJ038-0227.wav|tests/data/ljspeech/wavs/LJ038-0227.npy +tests/data/ljspeech/wavs/LJ048-0245.wav|tests/data/ljspeech/wavs/LJ048-0245.npy +tests/data/ljspeech/wavs/LJ040-0100.wav|tests/data/ljspeech/wavs/LJ040-0100.npy +tests/data/ljspeech/wavs/LJ046-0239.wav|tests/data/ljspeech/wavs/LJ046-0239.npy +tests/data/ljspeech/wavs/LJ046-0119.wav|tests/data/ljspeech/wavs/LJ046-0119.npy +tests/data/ljspeech/wavs/LJ033-0127.wav|tests/data/ljspeech/wavs/LJ033-0127.npy +tests/data/ljspeech/wavs/LJ010-0111.wav|tests/data/ljspeech/wavs/LJ010-0111.npy +tests/data/ljspeech/wavs/LJ008-0187.wav|tests/data/ljspeech/wavs/LJ008-0187.npy +tests/data/ljspeech/wavs/LJ049-0174.wav|tests/data/ljspeech/wavs/LJ049-0174.npy +tests/data/ljspeech/wavs/LJ026-0008.wav|tests/data/ljspeech/wavs/LJ026-0008.npy +tests/data/ljspeech/wavs/LJ006-0144.wav|tests/data/ljspeech/wavs/LJ006-0144.npy +tests/data/ljspeech/wavs/LJ017-0262.wav|tests/data/ljspeech/wavs/LJ017-0262.npy +tests/data/ljspeech/wavs/LJ012-0296.wav|tests/data/ljspeech/wavs/LJ012-0296.npy +tests/data/ljspeech/wavs/LJ027-0021.wav|tests/data/ljspeech/wavs/LJ027-0021.npy +tests/data/ljspeech/wavs/LJ016-0103.wav|tests/data/ljspeech/wavs/LJ016-0103.npy +tests/data/ljspeech/wavs/LJ004-0083.wav|tests/data/ljspeech/wavs/LJ004-0083.npy +tests/data/ljspeech/wavs/LJ005-0091.wav|tests/data/ljspeech/wavs/LJ005-0091.npy +tests/data/ljspeech/wavs/LJ022-0040.wav|tests/data/ljspeech/wavs/LJ022-0040.npy +tests/data/ljspeech/wavs/LJ011-0206.wav|tests/data/ljspeech/wavs/LJ011-0206.npy +tests/data/ljspeech/wavs/LJ027-0033.wav|tests/data/ljspeech/wavs/LJ027-0033.npy +tests/data/ljspeech/wavs/LJ028-0266.wav|tests/data/ljspeech/wavs/LJ028-0266.npy +tests/data/ljspeech/wavs/LJ019-0248.wav|tests/data/ljspeech/wavs/LJ019-0248.npy +tests/data/ljspeech/wavs/LJ027-0045.wav|tests/data/ljspeech/wavs/LJ027-0045.npy +tests/data/ljspeech/wavs/LJ049-0017.wav|tests/data/ljspeech/wavs/LJ049-0017.npy +tests/data/ljspeech/wavs/LJ008-0163.wav|tests/data/ljspeech/wavs/LJ008-0163.npy +tests/data/ljspeech/wavs/LJ013-0065.wav|tests/data/ljspeech/wavs/LJ013-0065.npy +tests/data/ljspeech/wavs/LJ022-0013.wav|tests/data/ljspeech/wavs/LJ022-0013.npy +tests/data/ljspeech/wavs/LJ002-0169.wav|tests/data/ljspeech/wavs/LJ002-0169.npy +tests/data/ljspeech/wavs/LJ015-0009.wav|tests/data/ljspeech/wavs/LJ015-0009.npy +tests/data/ljspeech/wavs/LJ030-0078.wav|tests/data/ljspeech/wavs/LJ030-0078.npy +tests/data/ljspeech/wavs/LJ010-0006.wav|tests/data/ljspeech/wavs/LJ010-0006.npy +tests/data/ljspeech/wavs/LJ003-0224.wav|tests/data/ljspeech/wavs/LJ003-0224.npy +tests/data/ljspeech/wavs/LJ019-0168.wav|tests/data/ljspeech/wavs/LJ019-0168.npy +tests/data/ljspeech/wavs/LJ028-0276.wav|tests/data/ljspeech/wavs/LJ028-0276.npy +tests/data/ljspeech/wavs/LJ021-0203.wav|tests/data/ljspeech/wavs/LJ021-0203.npy +tests/data/ljspeech/wavs/LJ028-0279.wav|tests/data/ljspeech/wavs/LJ028-0279.npy +tests/data/ljspeech/wavs/LJ021-0073.wav|tests/data/ljspeech/wavs/LJ021-0073.npy +tests/data/ljspeech/wavs/LJ029-0206.wav|tests/data/ljspeech/wavs/LJ029-0206.npy +tests/data/ljspeech/wavs/LJ020-0060.wav|tests/data/ljspeech/wavs/LJ020-0060.npy +tests/data/ljspeech/wavs/LJ028-0064.wav|tests/data/ljspeech/wavs/LJ028-0064.npy +tests/data/ljspeech/wavs/LJ011-0216.wav|tests/data/ljspeech/wavs/LJ011-0216.npy +tests/data/ljspeech/wavs/LJ028-0037.wav|tests/data/ljspeech/wavs/LJ028-0037.npy +tests/data/ljspeech/wavs/LJ009-0031.wav|tests/data/ljspeech/wavs/LJ009-0031.npy +tests/data/ljspeech/wavs/LJ019-0362.wav|tests/data/ljspeech/wavs/LJ019-0362.npy +tests/data/ljspeech/wavs/LJ025-0090.wav|tests/data/ljspeech/wavs/LJ025-0090.npy +tests/data/ljspeech/wavs/LJ050-0064.wav|tests/data/ljspeech/wavs/LJ050-0064.npy +tests/data/ljspeech/wavs/LJ050-0083.wav|tests/data/ljspeech/wavs/LJ050-0083.npy +tests/data/ljspeech/wavs/LJ007-0163.wav|tests/data/ljspeech/wavs/LJ007-0163.npy +tests/data/ljspeech/wavs/LJ012-0084.wav|tests/data/ljspeech/wavs/LJ012-0084.npy +tests/data/ljspeech/wavs/LJ027-0025.wav|tests/data/ljspeech/wavs/LJ027-0025.npy +tests/data/ljspeech/wavs/LJ014-0305.wav|tests/data/ljspeech/wavs/LJ014-0305.npy +tests/data/ljspeech/wavs/LJ011-0147.wav|tests/data/ljspeech/wavs/LJ011-0147.npy +tests/data/ljspeech/wavs/LJ050-0090.wav|tests/data/ljspeech/wavs/LJ050-0090.npy +tests/data/ljspeech/wavs/LJ030-0213.wav|tests/data/ljspeech/wavs/LJ030-0213.npy +tests/data/ljspeech/wavs/LJ028-0347.wav|tests/data/ljspeech/wavs/LJ028-0347.npy +tests/data/ljspeech/wavs/LJ002-0098.wav|tests/data/ljspeech/wavs/LJ002-0098.npy +tests/data/ljspeech/wavs/LJ006-0064.wav|tests/data/ljspeech/wavs/LJ006-0064.npy +tests/data/ljspeech/wavs/LJ009-0091.wav|tests/data/ljspeech/wavs/LJ009-0091.npy +tests/data/ljspeech/wavs/LJ048-0172.wav|tests/data/ljspeech/wavs/LJ048-0172.npy +tests/data/ljspeech/wavs/LJ023-0129.wav|tests/data/ljspeech/wavs/LJ023-0129.npy +tests/data/ljspeech/wavs/LJ023-0082.wav|tests/data/ljspeech/wavs/LJ023-0082.npy +tests/data/ljspeech/wavs/LJ014-0182.wav|tests/data/ljspeech/wavs/LJ014-0182.npy +tests/data/ljspeech/wavs/LJ009-0046.wav|tests/data/ljspeech/wavs/LJ009-0046.npy +tests/data/ljspeech/wavs/LJ004-0088.wav|tests/data/ljspeech/wavs/LJ004-0088.npy +tests/data/ljspeech/wavs/LJ018-0297.wav|tests/data/ljspeech/wavs/LJ018-0297.npy +tests/data/ljspeech/wavs/LJ016-0265.wav|tests/data/ljspeech/wavs/LJ016-0265.npy +tests/data/ljspeech/wavs/LJ028-0335.wav|tests/data/ljspeech/wavs/LJ028-0335.npy +tests/data/ljspeech/wavs/LJ019-0381.wav|tests/data/ljspeech/wavs/LJ019-0381.npy +tests/data/ljspeech/wavs/LJ012-0076.wav|tests/data/ljspeech/wavs/LJ012-0076.npy +tests/data/ljspeech/wavs/LJ013-0242.wav|tests/data/ljspeech/wavs/LJ013-0242.npy +tests/data/ljspeech/wavs/LJ014-0245.wav|tests/data/ljspeech/wavs/LJ014-0245.npy +tests/data/ljspeech/wavs/LJ029-0067.wav|tests/data/ljspeech/wavs/LJ029-0067.npy +tests/data/ljspeech/wavs/LJ019-0345.wav|tests/data/ljspeech/wavs/LJ019-0345.npy +tests/data/ljspeech/wavs/LJ016-0241.wav|tests/data/ljspeech/wavs/LJ016-0241.npy +tests/data/ljspeech/wavs/LJ019-0278.wav|tests/data/ljspeech/wavs/LJ019-0278.npy +tests/data/ljspeech/wavs/LJ043-0047.wav|tests/data/ljspeech/wavs/LJ043-0047.npy +tests/data/ljspeech/wavs/LJ015-0120.wav|tests/data/ljspeech/wavs/LJ015-0120.npy +tests/data/ljspeech/wavs/LJ050-0272.wav|tests/data/ljspeech/wavs/LJ050-0272.npy +tests/data/ljspeech/wavs/LJ043-0109.wav|tests/data/ljspeech/wavs/LJ043-0109.npy +tests/data/ljspeech/wavs/LJ019-0297.wav|tests/data/ljspeech/wavs/LJ019-0297.npy +tests/data/ljspeech/wavs/LJ019-0266.wav|tests/data/ljspeech/wavs/LJ019-0266.npy +tests/data/ljspeech/wavs/LJ020-0005.wav|tests/data/ljspeech/wavs/LJ020-0005.npy +tests/data/ljspeech/wavs/LJ035-0037.wav|tests/data/ljspeech/wavs/LJ035-0037.npy +tests/data/ljspeech/wavs/LJ010-0190.wav|tests/data/ljspeech/wavs/LJ010-0190.npy +tests/data/ljspeech/wavs/LJ025-0128.wav|tests/data/ljspeech/wavs/LJ025-0128.npy +tests/data/ljspeech/wavs/LJ015-0247.wav|tests/data/ljspeech/wavs/LJ015-0247.npy +tests/data/ljspeech/wavs/LJ005-0181.wav|tests/data/ljspeech/wavs/LJ005-0181.npy +tests/data/ljspeech/wavs/LJ020-0021.wav|tests/data/ljspeech/wavs/LJ020-0021.npy +tests/data/ljspeech/wavs/LJ013-0028.wav|tests/data/ljspeech/wavs/LJ013-0028.npy +tests/data/ljspeech/wavs/LJ002-0221.wav|tests/data/ljspeech/wavs/LJ002-0221.npy +tests/data/ljspeech/wavs/LJ014-0291.wav|tests/data/ljspeech/wavs/LJ014-0291.npy +tests/data/ljspeech/wavs/LJ028-0136.wav|tests/data/ljspeech/wavs/LJ028-0136.npy +tests/data/ljspeech/wavs/LJ009-0133.wav|tests/data/ljspeech/wavs/LJ009-0133.npy +tests/data/ljspeech/wavs/LJ011-0276.wav|tests/data/ljspeech/wavs/LJ011-0276.npy +tests/data/ljspeech/wavs/LJ025-0131.wav|tests/data/ljspeech/wavs/LJ025-0131.npy +tests/data/ljspeech/wavs/LJ001-0042.wav|tests/data/ljspeech/wavs/LJ001-0042.npy +tests/data/ljspeech/wavs/LJ028-0186.wav|tests/data/ljspeech/wavs/LJ028-0186.npy +tests/data/ljspeech/wavs/LJ018-0389.wav|tests/data/ljspeech/wavs/LJ018-0389.npy +tests/data/ljspeech/wavs/LJ008-0140.wav|tests/data/ljspeech/wavs/LJ008-0140.npy +tests/data/ljspeech/wavs/LJ014-0167.wav|tests/data/ljspeech/wavs/LJ014-0167.npy +tests/data/ljspeech/wavs/LJ009-0215.wav|tests/data/ljspeech/wavs/LJ009-0215.npy +tests/data/ljspeech/wavs/LJ012-0232.wav|tests/data/ljspeech/wavs/LJ012-0232.npy +tests/data/ljspeech/wavs/LJ049-0228.wav|tests/data/ljspeech/wavs/LJ049-0228.npy +tests/data/ljspeech/wavs/LJ002-0024.wav|tests/data/ljspeech/wavs/LJ002-0024.npy +tests/data/ljspeech/wavs/LJ004-0090.wav|tests/data/ljspeech/wavs/LJ004-0090.npy +tests/data/ljspeech/wavs/LJ040-0104.wav|tests/data/ljspeech/wavs/LJ040-0104.npy +tests/data/ljspeech/wavs/LJ010-0174.wav|tests/data/ljspeech/wavs/LJ010-0174.npy +tests/data/ljspeech/wavs/LJ046-0086.wav|tests/data/ljspeech/wavs/LJ046-0086.npy +tests/data/ljspeech/wavs/LJ042-0149.wav|tests/data/ljspeech/wavs/LJ042-0149.npy +tests/data/ljspeech/wavs/LJ016-0235.wav|tests/data/ljspeech/wavs/LJ016-0235.npy +tests/data/ljspeech/wavs/LJ016-0224.wav|tests/data/ljspeech/wavs/LJ016-0224.npy +tests/data/ljspeech/wavs/LJ007-0157.wav|tests/data/ljspeech/wavs/LJ007-0157.npy +tests/data/ljspeech/wavs/LJ014-0266.wav|tests/data/ljspeech/wavs/LJ014-0266.npy +tests/data/ljspeech/wavs/LJ048-0270.wav|tests/data/ljspeech/wavs/LJ048-0270.npy +tests/data/ljspeech/wavs/LJ008-0045.wav|tests/data/ljspeech/wavs/LJ008-0045.npy +tests/data/ljspeech/wavs/LJ044-0200.wav|tests/data/ljspeech/wavs/LJ044-0200.npy +tests/data/ljspeech/wavs/LJ044-0103.wav|tests/data/ljspeech/wavs/LJ044-0103.npy +tests/data/ljspeech/wavs/LJ037-0064.wav|tests/data/ljspeech/wavs/LJ037-0064.npy +tests/data/ljspeech/wavs/LJ006-0140.wav|tests/data/ljspeech/wavs/LJ006-0140.npy +tests/data/ljspeech/wavs/LJ038-0101.wav|tests/data/ljspeech/wavs/LJ038-0101.npy +tests/data/ljspeech/wavs/LJ040-0160.wav|tests/data/ljspeech/wavs/LJ040-0160.npy +tests/data/ljspeech/wavs/LJ010-0177.wav|tests/data/ljspeech/wavs/LJ010-0177.npy +tests/data/ljspeech/wavs/LJ038-0137.wav|tests/data/ljspeech/wavs/LJ038-0137.npy +tests/data/ljspeech/wavs/LJ047-0138.wav|tests/data/ljspeech/wavs/LJ047-0138.npy +tests/data/ljspeech/wavs/LJ046-0080.wav|tests/data/ljspeech/wavs/LJ046-0080.npy +tests/data/ljspeech/wavs/LJ005-0168.wav|tests/data/ljspeech/wavs/LJ005-0168.npy +tests/data/ljspeech/wavs/LJ048-0277.wav|tests/data/ljspeech/wavs/LJ048-0277.npy +tests/data/ljspeech/wavs/LJ014-0192.wav|tests/data/ljspeech/wavs/LJ014-0192.npy +tests/data/ljspeech/wavs/LJ008-0076.wav|tests/data/ljspeech/wavs/LJ008-0076.npy +tests/data/ljspeech/wavs/LJ028-0399.wav|tests/data/ljspeech/wavs/LJ028-0399.npy +tests/data/ljspeech/wavs/LJ032-0121.wav|tests/data/ljspeech/wavs/LJ032-0121.npy +tests/data/ljspeech/wavs/LJ002-0071.wav|tests/data/ljspeech/wavs/LJ002-0071.npy +tests/data/ljspeech/wavs/LJ010-0133.wav|tests/data/ljspeech/wavs/LJ010-0133.npy +tests/data/ljspeech/wavs/LJ013-0070.wav|tests/data/ljspeech/wavs/LJ013-0070.npy +tests/data/ljspeech/wavs/LJ031-0221.wav|tests/data/ljspeech/wavs/LJ031-0221.npy +tests/data/ljspeech/wavs/LJ033-0077.wav|tests/data/ljspeech/wavs/LJ033-0077.npy +tests/data/ljspeech/wavs/LJ006-0001.wav|tests/data/ljspeech/wavs/LJ006-0001.npy +tests/data/ljspeech/wavs/LJ023-0078.wav|tests/data/ljspeech/wavs/LJ023-0078.npy +tests/data/ljspeech/wavs/LJ048-0028.wav|tests/data/ljspeech/wavs/LJ048-0028.npy +tests/data/ljspeech/wavs/LJ025-0104.wav|tests/data/ljspeech/wavs/LJ025-0104.npy +tests/data/ljspeech/wavs/LJ022-0198.wav|tests/data/ljspeech/wavs/LJ022-0198.npy +tests/data/ljspeech/wavs/LJ009-0202.wav|tests/data/ljspeech/wavs/LJ009-0202.npy +tests/data/ljspeech/wavs/LJ015-0092.wav|tests/data/ljspeech/wavs/LJ015-0092.npy +tests/data/ljspeech/wavs/LJ009-0136.wav|tests/data/ljspeech/wavs/LJ009-0136.npy +tests/data/ljspeech/wavs/LJ027-0134.wav|tests/data/ljspeech/wavs/LJ027-0134.npy +tests/data/ljspeech/wavs/LJ022-0088.wav|tests/data/ljspeech/wavs/LJ022-0088.npy +tests/data/ljspeech/wavs/LJ022-0177.wav|tests/data/ljspeech/wavs/LJ022-0177.npy +tests/data/ljspeech/wavs/LJ037-0268.wav|tests/data/ljspeech/wavs/LJ037-0268.npy +tests/data/ljspeech/wavs/LJ023-0126.wav|tests/data/ljspeech/wavs/LJ023-0126.npy +tests/data/ljspeech/wavs/LJ009-0101.wav|tests/data/ljspeech/wavs/LJ009-0101.npy +tests/data/ljspeech/wavs/LJ025-0172.wav|tests/data/ljspeech/wavs/LJ025-0172.npy +tests/data/ljspeech/wavs/LJ037-0258.wav|tests/data/ljspeech/wavs/LJ037-0258.npy +tests/data/ljspeech/wavs/LJ025-0073.wav|tests/data/ljspeech/wavs/LJ025-0073.npy +tests/data/ljspeech/wavs/LJ015-0239.wav|tests/data/ljspeech/wavs/LJ015-0239.npy +tests/data/ljspeech/wavs/LJ023-0064.wav|tests/data/ljspeech/wavs/LJ023-0064.npy +tests/data/ljspeech/wavs/LJ025-0142.wav|tests/data/ljspeech/wavs/LJ025-0142.npy +tests/data/ljspeech/wavs/LJ037-0234.wav|tests/data/ljspeech/wavs/LJ037-0234.npy +tests/data/ljspeech/wavs/LJ038-0005.wav|tests/data/ljspeech/wavs/LJ038-0005.npy +tests/data/ljspeech/wavs/LJ009-0072.wav|tests/data/ljspeech/wavs/LJ009-0072.npy +tests/data/ljspeech/wavs/LJ028-0101.wav|tests/data/ljspeech/wavs/LJ028-0101.npy +tests/data/ljspeech/wavs/LJ015-0197.wav|tests/data/ljspeech/wavs/LJ015-0197.npy +tests/data/ljspeech/wavs/LJ025-0149.wav|tests/data/ljspeech/wavs/LJ025-0149.npy +tests/data/ljspeech/wavs/LJ025-0029.wav|tests/data/ljspeech/wavs/LJ025-0029.npy +tests/data/ljspeech/wavs/LJ044-0235.wav|tests/data/ljspeech/wavs/LJ044-0235.npy +tests/data/ljspeech/wavs/LJ002-0278.wav|tests/data/ljspeech/wavs/LJ002-0278.npy +tests/data/ljspeech/wavs/LJ004-0043.wav|tests/data/ljspeech/wavs/LJ004-0043.npy +tests/data/ljspeech/wavs/LJ033-0109.wav|tests/data/ljspeech/wavs/LJ033-0109.npy +tests/data/ljspeech/wavs/LJ026-0114.wav|tests/data/ljspeech/wavs/LJ026-0114.npy +tests/data/ljspeech/wavs/LJ008-0196.wav|tests/data/ljspeech/wavs/LJ008-0196.npy +tests/data/ljspeech/wavs/LJ002-0137.wav|tests/data/ljspeech/wavs/LJ002-0137.npy +tests/data/ljspeech/wavs/LJ032-0192.wav|tests/data/ljspeech/wavs/LJ032-0192.npy +tests/data/ljspeech/wavs/LJ045-0017.wav|tests/data/ljspeech/wavs/LJ045-0017.npy +tests/data/ljspeech/wavs/LJ021-0190.wav|tests/data/ljspeech/wavs/LJ021-0190.npy +tests/data/ljspeech/wavs/LJ037-0189.wav|tests/data/ljspeech/wavs/LJ037-0189.npy +tests/data/ljspeech/wavs/LJ025-0080.wav|tests/data/ljspeech/wavs/LJ025-0080.npy +tests/data/ljspeech/wavs/LJ021-0137.wav|tests/data/ljspeech/wavs/LJ021-0137.npy +tests/data/ljspeech/wavs/LJ034-0214.wav|tests/data/ljspeech/wavs/LJ034-0214.npy +tests/data/ljspeech/wavs/LJ028-0110.wav|tests/data/ljspeech/wavs/LJ028-0110.npy +tests/data/ljspeech/wavs/LJ048-0210.wav|tests/data/ljspeech/wavs/LJ048-0210.npy +tests/data/ljspeech/wavs/LJ010-0050.wav|tests/data/ljspeech/wavs/LJ010-0050.npy +tests/data/ljspeech/wavs/LJ009-0087.wav|tests/data/ljspeech/wavs/LJ009-0087.npy +tests/data/ljspeech/wavs/LJ046-0029.wav|tests/data/ljspeech/wavs/LJ046-0029.npy +tests/data/ljspeech/wavs/LJ048-0020.wav|tests/data/ljspeech/wavs/LJ048-0020.npy +tests/data/ljspeech/wavs/LJ008-0305.wav|tests/data/ljspeech/wavs/LJ008-0305.npy +tests/data/ljspeech/wavs/LJ020-0045.wav|tests/data/ljspeech/wavs/LJ020-0045.npy +tests/data/ljspeech/wavs/LJ004-0003.wav|tests/data/ljspeech/wavs/LJ004-0003.npy +tests/data/ljspeech/wavs/LJ038-0057.wav|tests/data/ljspeech/wavs/LJ038-0057.npy +tests/data/ljspeech/wavs/LJ008-0145.wav|tests/data/ljspeech/wavs/LJ008-0145.npy +tests/data/ljspeech/wavs/LJ010-0066.wav|tests/data/ljspeech/wavs/LJ010-0066.npy +tests/data/ljspeech/wavs/LJ032-0152.wav|tests/data/ljspeech/wavs/LJ032-0152.npy +tests/data/ljspeech/wavs/LJ046-0203.wav|tests/data/ljspeech/wavs/LJ046-0203.npy +tests/data/ljspeech/wavs/LJ012-0088.wav|tests/data/ljspeech/wavs/LJ012-0088.npy +tests/data/ljspeech/wavs/LJ003-0060.wav|tests/data/ljspeech/wavs/LJ003-0060.npy +tests/data/ljspeech/wavs/LJ014-0339.wav|tests/data/ljspeech/wavs/LJ014-0339.npy +tests/data/ljspeech/wavs/LJ006-0062.wav|tests/data/ljspeech/wavs/LJ006-0062.npy +tests/data/ljspeech/wavs/LJ003-0059.wav|tests/data/ljspeech/wavs/LJ003-0059.npy +tests/data/ljspeech/wavs/LJ034-0218.wav|tests/data/ljspeech/wavs/LJ034-0218.npy +tests/data/ljspeech/wavs/LJ034-0190.wav|tests/data/ljspeech/wavs/LJ034-0190.npy +tests/data/ljspeech/wavs/LJ038-0030.wav|tests/data/ljspeech/wavs/LJ038-0030.npy +tests/data/ljspeech/wavs/LJ044-0140.wav|tests/data/ljspeech/wavs/LJ044-0140.npy +tests/data/ljspeech/wavs/LJ032-0246.wav|tests/data/ljspeech/wavs/LJ032-0246.npy +tests/data/ljspeech/wavs/LJ036-0154.wav|tests/data/ljspeech/wavs/LJ036-0154.npy +tests/data/ljspeech/wavs/LJ038-0281.wav|tests/data/ljspeech/wavs/LJ038-0281.npy +tests/data/ljspeech/wavs/LJ011-0245.wav|tests/data/ljspeech/wavs/LJ011-0245.npy +tests/data/ljspeech/wavs/LJ037-0029.wav|tests/data/ljspeech/wavs/LJ037-0029.npy +tests/data/ljspeech/wavs/LJ027-0016.wav|tests/data/ljspeech/wavs/LJ027-0016.npy +tests/data/ljspeech/wavs/LJ047-0029.wav|tests/data/ljspeech/wavs/LJ047-0029.npy +tests/data/ljspeech/wavs/LJ006-0193.wav|tests/data/ljspeech/wavs/LJ006-0193.npy +tests/data/ljspeech/wavs/LJ014-0080.wav|tests/data/ljspeech/wavs/LJ014-0080.npy +tests/data/ljspeech/wavs/LJ005-0263.wav|tests/data/ljspeech/wavs/LJ005-0263.npy +tests/data/ljspeech/wavs/LJ038-0037.wav|tests/data/ljspeech/wavs/LJ038-0037.npy +tests/data/ljspeech/wavs/LJ030-0033.wav|tests/data/ljspeech/wavs/LJ030-0033.npy +tests/data/ljspeech/wavs/LJ005-0109.wav|tests/data/ljspeech/wavs/LJ005-0109.npy +tests/data/ljspeech/wavs/LJ021-0078.wav|tests/data/ljspeech/wavs/LJ021-0078.npy +tests/data/ljspeech/wavs/LJ048-0162.wav|tests/data/ljspeech/wavs/LJ048-0162.npy +tests/data/ljspeech/wavs/LJ018-0057.wav|tests/data/ljspeech/wavs/LJ018-0057.npy +tests/data/ljspeech/wavs/LJ021-0087.wav|tests/data/ljspeech/wavs/LJ021-0087.npy +tests/data/ljspeech/wavs/LJ042-0221.wav|tests/data/ljspeech/wavs/LJ042-0221.npy +tests/data/ljspeech/wavs/LJ048-0121.wav|tests/data/ljspeech/wavs/LJ048-0121.npy +tests/data/ljspeech/wavs/LJ030-0128.wav|tests/data/ljspeech/wavs/LJ030-0128.npy +tests/data/ljspeech/wavs/LJ014-0121.wav|tests/data/ljspeech/wavs/LJ014-0121.npy +tests/data/ljspeech/wavs/LJ011-0051.wav|tests/data/ljspeech/wavs/LJ011-0051.npy +tests/data/ljspeech/wavs/LJ040-0219.wav|tests/data/ljspeech/wavs/LJ040-0219.npy +tests/data/ljspeech/wavs/LJ033-0053.wav|tests/data/ljspeech/wavs/LJ033-0053.npy +tests/data/ljspeech/wavs/LJ038-0272.wav|tests/data/ljspeech/wavs/LJ038-0272.npy +tests/data/ljspeech/wavs/LJ014-0128.wav|tests/data/ljspeech/wavs/LJ014-0128.npy +tests/data/ljspeech/wavs/LJ018-0204.wav|tests/data/ljspeech/wavs/LJ018-0204.npy +tests/data/ljspeech/wavs/LJ003-0158.wav|tests/data/ljspeech/wavs/LJ003-0158.npy +tests/data/ljspeech/wavs/LJ028-0230.wav|tests/data/ljspeech/wavs/LJ028-0230.npy +tests/data/ljspeech/wavs/LJ016-0320.wav|tests/data/ljspeech/wavs/LJ016-0320.npy +tests/data/ljspeech/wavs/LJ017-0147.wav|tests/data/ljspeech/wavs/LJ017-0147.npy +tests/data/ljspeech/wavs/LJ043-0079.wav|tests/data/ljspeech/wavs/LJ043-0079.npy +tests/data/ljspeech/wavs/LJ044-0066.wav|tests/data/ljspeech/wavs/LJ044-0066.npy +tests/data/ljspeech/wavs/LJ011-0241.wav|tests/data/ljspeech/wavs/LJ011-0241.npy +tests/data/ljspeech/wavs/LJ030-0206.wav|tests/data/ljspeech/wavs/LJ030-0206.npy +tests/data/ljspeech/wavs/LJ046-0147.wav|tests/data/ljspeech/wavs/LJ046-0147.npy +tests/data/ljspeech/wavs/LJ043-0039.wav|tests/data/ljspeech/wavs/LJ043-0039.npy +tests/data/ljspeech/wavs/LJ036-0089.wav|tests/data/ljspeech/wavs/LJ036-0089.npy +tests/data/ljspeech/wavs/LJ049-0060.wav|tests/data/ljspeech/wavs/LJ049-0060.npy +tests/data/ljspeech/wavs/LJ014-0337.wav|tests/data/ljspeech/wavs/LJ014-0337.npy +tests/data/ljspeech/wavs/LJ016-0077.wav|tests/data/ljspeech/wavs/LJ016-0077.npy +tests/data/ljspeech/wavs/LJ036-0085.wav|tests/data/ljspeech/wavs/LJ036-0085.npy +tests/data/ljspeech/wavs/LJ004-0153.wav|tests/data/ljspeech/wavs/LJ004-0153.npy +tests/data/ljspeech/wavs/LJ032-0222.wav|tests/data/ljspeech/wavs/LJ032-0222.npy +tests/data/ljspeech/wavs/LJ008-0212.wav|tests/data/ljspeech/wavs/LJ008-0212.npy +tests/data/ljspeech/wavs/LJ016-0442.wav|tests/data/ljspeech/wavs/LJ016-0442.npy +tests/data/ljspeech/wavs/LJ006-0158.wav|tests/data/ljspeech/wavs/LJ006-0158.npy +tests/data/ljspeech/wavs/LJ013-0257.wav|tests/data/ljspeech/wavs/LJ013-0257.npy +tests/data/ljspeech/wavs/LJ044-0077.wav|tests/data/ljspeech/wavs/LJ044-0077.npy +tests/data/ljspeech/wavs/LJ003-0314.wav|tests/data/ljspeech/wavs/LJ003-0314.npy +tests/data/ljspeech/wavs/LJ013-0066.wav|tests/data/ljspeech/wavs/LJ013-0066.npy +tests/data/ljspeech/wavs/LJ017-0108.wav|tests/data/ljspeech/wavs/LJ017-0108.npy +tests/data/ljspeech/wavs/LJ044-0092.wav|tests/data/ljspeech/wavs/LJ044-0092.npy +tests/data/ljspeech/wavs/LJ011-0037.wav|tests/data/ljspeech/wavs/LJ011-0037.npy +tests/data/ljspeech/wavs/LJ029-0045.wav|tests/data/ljspeech/wavs/LJ029-0045.npy +tests/data/ljspeech/wavs/LJ010-0054.wav|tests/data/ljspeech/wavs/LJ010-0054.npy +tests/data/ljspeech/wavs/LJ011-0009.wav|tests/data/ljspeech/wavs/LJ011-0009.npy +tests/data/ljspeech/wavs/LJ005-0079.wav|tests/data/ljspeech/wavs/LJ005-0079.npy +tests/data/ljspeech/wavs/LJ004-0170.wav|tests/data/ljspeech/wavs/LJ004-0170.npy +tests/data/ljspeech/wavs/LJ005-0108.wav|tests/data/ljspeech/wavs/LJ005-0108.npy +tests/data/ljspeech/wavs/LJ038-0234.wav|tests/data/ljspeech/wavs/LJ038-0234.npy +tests/data/ljspeech/wavs/LJ038-0299.wav|tests/data/ljspeech/wavs/LJ038-0299.npy +tests/data/ljspeech/wavs/LJ001-0180.wav|tests/data/ljspeech/wavs/LJ001-0180.npy +tests/data/ljspeech/wavs/LJ038-0166.wav|tests/data/ljspeech/wavs/LJ038-0166.npy +tests/data/ljspeech/wavs/LJ040-0193.wav|tests/data/ljspeech/wavs/LJ040-0193.npy +tests/data/ljspeech/wavs/LJ050-0227.wav|tests/data/ljspeech/wavs/LJ050-0227.npy +tests/data/ljspeech/wavs/LJ038-0082.wav|tests/data/ljspeech/wavs/LJ038-0082.npy +tests/data/ljspeech/wavs/LJ017-0122.wav|tests/data/ljspeech/wavs/LJ017-0122.npy +tests/data/ljspeech/wavs/LJ007-0001.wav|tests/data/ljspeech/wavs/LJ007-0001.npy +tests/data/ljspeech/wavs/LJ032-0200.wav|tests/data/ljspeech/wavs/LJ032-0200.npy +tests/data/ljspeech/wavs/LJ012-0143.wav|tests/data/ljspeech/wavs/LJ012-0143.npy +tests/data/ljspeech/wavs/LJ027-0169.wav|tests/data/ljspeech/wavs/LJ027-0169.npy +tests/data/ljspeech/wavs/LJ049-0227.wav|tests/data/ljspeech/wavs/LJ049-0227.npy +tests/data/ljspeech/wavs/LJ002-0229.wav|tests/data/ljspeech/wavs/LJ002-0229.npy +tests/data/ljspeech/wavs/LJ007-0077.wav|tests/data/ljspeech/wavs/LJ007-0077.npy +tests/data/ljspeech/wavs/LJ028-0056.wav|tests/data/ljspeech/wavs/LJ028-0056.npy +tests/data/ljspeech/wavs/LJ005-0130.wav|tests/data/ljspeech/wavs/LJ005-0130.npy +tests/data/ljspeech/wavs/LJ040-0036.wav|tests/data/ljspeech/wavs/LJ040-0036.npy +tests/data/ljspeech/wavs/LJ047-0008.wav|tests/data/ljspeech/wavs/LJ047-0008.npy +tests/data/ljspeech/wavs/LJ001-0101.wav|tests/data/ljspeech/wavs/LJ001-0101.npy +tests/data/ljspeech/wavs/LJ014-0336.wav|tests/data/ljspeech/wavs/LJ014-0336.npy +tests/data/ljspeech/wavs/LJ013-0057.wav|tests/data/ljspeech/wavs/LJ013-0057.npy +tests/data/ljspeech/wavs/LJ028-0015.wav|tests/data/ljspeech/wavs/LJ028-0015.npy +tests/data/ljspeech/wavs/LJ019-0351.wav|tests/data/ljspeech/wavs/LJ019-0351.npy +tests/data/ljspeech/wavs/LJ011-0072.wav|tests/data/ljspeech/wavs/LJ011-0072.npy +tests/data/ljspeech/wavs/LJ006-0185.wav|tests/data/ljspeech/wavs/LJ006-0185.npy +tests/data/ljspeech/wavs/LJ022-0068.wav|tests/data/ljspeech/wavs/LJ022-0068.npy +tests/data/ljspeech/wavs/LJ011-0010.wav|tests/data/ljspeech/wavs/LJ011-0010.npy +tests/data/ljspeech/wavs/LJ018-0071.wav|tests/data/ljspeech/wavs/LJ018-0071.npy +tests/data/ljspeech/wavs/LJ028-0194.wav|tests/data/ljspeech/wavs/LJ028-0194.npy +tests/data/ljspeech/wavs/LJ004-0108.wav|tests/data/ljspeech/wavs/LJ004-0108.npy +tests/data/ljspeech/wavs/LJ046-0111.wav|tests/data/ljspeech/wavs/LJ046-0111.npy +tests/data/ljspeech/wavs/LJ003-0255.wav|tests/data/ljspeech/wavs/LJ003-0255.npy +tests/data/ljspeech/wavs/LJ009-0214.wav|tests/data/ljspeech/wavs/LJ009-0214.npy +tests/data/ljspeech/wavs/LJ049-0230.wav|tests/data/ljspeech/wavs/LJ049-0230.npy +tests/data/ljspeech/wavs/LJ037-0005.wav|tests/data/ljspeech/wavs/LJ037-0005.npy +tests/data/ljspeech/wavs/LJ026-0143.wav|tests/data/ljspeech/wavs/LJ026-0143.npy +tests/data/ljspeech/wavs/LJ025-0066.wav|tests/data/ljspeech/wavs/LJ025-0066.npy +tests/data/ljspeech/wavs/LJ023-0135.wav|tests/data/ljspeech/wavs/LJ023-0135.npy +tests/data/ljspeech/wavs/LJ017-0019.wav|tests/data/ljspeech/wavs/LJ017-0019.npy +tests/data/ljspeech/wavs/LJ014-0055.wav|tests/data/ljspeech/wavs/LJ014-0055.npy +tests/data/ljspeech/wavs/LJ047-0083.wav|tests/data/ljspeech/wavs/LJ047-0083.npy +tests/data/ljspeech/wavs/LJ016-0157.wav|tests/data/ljspeech/wavs/LJ016-0157.npy +tests/data/ljspeech/wavs/LJ024-0043.wav|tests/data/ljspeech/wavs/LJ024-0043.npy +tests/data/ljspeech/wavs/LJ030-0247.wav|tests/data/ljspeech/wavs/LJ030-0247.npy +tests/data/ljspeech/wavs/LJ041-0191.wav|tests/data/ljspeech/wavs/LJ041-0191.npy +tests/data/ljspeech/wavs/LJ014-0064.wav|tests/data/ljspeech/wavs/LJ014-0064.npy +tests/data/ljspeech/wavs/LJ024-0079.wav|tests/data/ljspeech/wavs/LJ024-0079.npy +tests/data/ljspeech/wavs/LJ041-0062.wav|tests/data/ljspeech/wavs/LJ041-0062.npy +tests/data/ljspeech/wavs/LJ030-0060.wav|tests/data/ljspeech/wavs/LJ030-0060.npy +tests/data/ljspeech/wavs/LJ022-0032.wav|tests/data/ljspeech/wavs/LJ022-0032.npy +tests/data/ljspeech/wavs/LJ002-0214.wav|tests/data/ljspeech/wavs/LJ002-0214.npy +tests/data/ljspeech/wavs/LJ002-0258.wav|tests/data/ljspeech/wavs/LJ002-0258.npy +tests/data/ljspeech/wavs/LJ023-0100.wav|tests/data/ljspeech/wavs/LJ023-0100.npy +tests/data/ljspeech/wavs/LJ032-0271.wav|tests/data/ljspeech/wavs/LJ032-0271.npy +tests/data/ljspeech/wavs/LJ032-0272.wav|tests/data/ljspeech/wavs/LJ032-0272.npy +tests/data/ljspeech/wavs/LJ013-0229.wav|tests/data/ljspeech/wavs/LJ013-0229.npy +tests/data/ljspeech/wavs/LJ032-0242.wav|tests/data/ljspeech/wavs/LJ032-0242.npy +tests/data/ljspeech/wavs/LJ012-0215.wav|tests/data/ljspeech/wavs/LJ012-0215.npy +tests/data/ljspeech/wavs/LJ022-0015.wav|tests/data/ljspeech/wavs/LJ022-0015.npy +tests/data/ljspeech/wavs/LJ006-0237.wav|tests/data/ljspeech/wavs/LJ006-0237.npy +tests/data/ljspeech/wavs/LJ017-0240.wav|tests/data/ljspeech/wavs/LJ017-0240.npy +tests/data/ljspeech/wavs/LJ017-0055.wav|tests/data/ljspeech/wavs/LJ017-0055.npy +tests/data/ljspeech/wavs/LJ050-0010.wav|tests/data/ljspeech/wavs/LJ050-0010.npy +tests/data/ljspeech/wavs/LJ039-0055.wav|tests/data/ljspeech/wavs/LJ039-0055.npy +tests/data/ljspeech/wavs/LJ015-0227.wav|tests/data/ljspeech/wavs/LJ015-0227.npy +tests/data/ljspeech/wavs/LJ007-0031.wav|tests/data/ljspeech/wavs/LJ007-0031.npy +tests/data/ljspeech/wavs/LJ050-0141.wav|tests/data/ljspeech/wavs/LJ050-0141.npy +tests/data/ljspeech/wavs/LJ018-0317.wav|tests/data/ljspeech/wavs/LJ018-0317.npy +tests/data/ljspeech/wavs/LJ019-0230.wav|tests/data/ljspeech/wavs/LJ019-0230.npy +tests/data/ljspeech/wavs/LJ047-0192.wav|tests/data/ljspeech/wavs/LJ047-0192.npy +tests/data/ljspeech/wavs/LJ016-0313.wav|tests/data/ljspeech/wavs/LJ016-0313.npy +tests/data/ljspeech/wavs/LJ039-0155.wav|tests/data/ljspeech/wavs/LJ039-0155.npy +tests/data/ljspeech/wavs/LJ043-0132.wav|tests/data/ljspeech/wavs/LJ043-0132.npy +tests/data/ljspeech/wavs/LJ021-0143.wav|tests/data/ljspeech/wavs/LJ021-0143.npy +tests/data/ljspeech/wavs/LJ047-0090.wav|tests/data/ljspeech/wavs/LJ047-0090.npy +tests/data/ljspeech/wavs/LJ010-0215.wav|tests/data/ljspeech/wavs/LJ010-0215.npy +tests/data/ljspeech/wavs/LJ033-0027.wav|tests/data/ljspeech/wavs/LJ033-0027.npy +tests/data/ljspeech/wavs/LJ045-0064.wav|tests/data/ljspeech/wavs/LJ045-0064.npy +tests/data/ljspeech/wavs/LJ004-0069.wav|tests/data/ljspeech/wavs/LJ004-0069.npy +tests/data/ljspeech/wavs/LJ018-0246.wav|tests/data/ljspeech/wavs/LJ018-0246.npy +tests/data/ljspeech/wavs/LJ050-0105.wav|tests/data/ljspeech/wavs/LJ050-0105.npy +tests/data/ljspeech/wavs/LJ002-0018.wav|tests/data/ljspeech/wavs/LJ002-0018.npy +tests/data/ljspeech/wavs/LJ045-0138.wav|tests/data/ljspeech/wavs/LJ045-0138.npy +tests/data/ljspeech/wavs/LJ042-0113.wav|tests/data/ljspeech/wavs/LJ042-0113.npy +tests/data/ljspeech/wavs/LJ014-0206.wav|tests/data/ljspeech/wavs/LJ014-0206.npy +tests/data/ljspeech/wavs/LJ010-0194.wav|tests/data/ljspeech/wavs/LJ010-0194.npy +tests/data/ljspeech/wavs/LJ030-0117.wav|tests/data/ljspeech/wavs/LJ030-0117.npy +tests/data/ljspeech/wavs/LJ030-0092.wav|tests/data/ljspeech/wavs/LJ030-0092.npy +tests/data/ljspeech/wavs/LJ039-0057.wav|tests/data/ljspeech/wavs/LJ039-0057.npy +tests/data/ljspeech/wavs/LJ018-0305.wav|tests/data/ljspeech/wavs/LJ018-0305.npy +tests/data/ljspeech/wavs/LJ003-0125.wav|tests/data/ljspeech/wavs/LJ003-0125.npy +tests/data/ljspeech/wavs/LJ035-0126.wav|tests/data/ljspeech/wavs/LJ035-0126.npy +tests/data/ljspeech/wavs/LJ046-0100.wav|tests/data/ljspeech/wavs/LJ046-0100.npy +tests/data/ljspeech/wavs/LJ005-0090.wav|tests/data/ljspeech/wavs/LJ005-0090.npy +tests/data/ljspeech/wavs/LJ049-0023.wav|tests/data/ljspeech/wavs/LJ049-0023.npy +tests/data/ljspeech/wavs/LJ009-0238.wav|tests/data/ljspeech/wavs/LJ009-0238.npy +tests/data/ljspeech/wavs/LJ034-0136.wav|tests/data/ljspeech/wavs/LJ034-0136.npy +tests/data/ljspeech/wavs/LJ046-0229.wav|tests/data/ljspeech/wavs/LJ046-0229.npy +tests/data/ljspeech/wavs/LJ032-0073.wav|tests/data/ljspeech/wavs/LJ032-0073.npy +tests/data/ljspeech/wavs/LJ010-0296.wav|tests/data/ljspeech/wavs/LJ010-0296.npy +tests/data/ljspeech/wavs/LJ037-0246.wav|tests/data/ljspeech/wavs/LJ037-0246.npy +tests/data/ljspeech/wavs/LJ027-0050.wav|tests/data/ljspeech/wavs/LJ027-0050.npy +tests/data/ljspeech/wavs/LJ040-0222.wav|tests/data/ljspeech/wavs/LJ040-0222.npy +tests/data/ljspeech/wavs/LJ045-0156.wav|tests/data/ljspeech/wavs/LJ045-0156.npy +tests/data/ljspeech/wavs/LJ003-0148.wav|tests/data/ljspeech/wavs/LJ003-0148.npy +tests/data/ljspeech/wavs/LJ027-0035.wav|tests/data/ljspeech/wavs/LJ027-0035.npy +tests/data/ljspeech/wavs/LJ038-0119.wav|tests/data/ljspeech/wavs/LJ038-0119.npy +tests/data/ljspeech/wavs/LJ050-0018.wav|tests/data/ljspeech/wavs/LJ050-0018.npy +tests/data/ljspeech/wavs/LJ046-0120.wav|tests/data/ljspeech/wavs/LJ046-0120.npy +tests/data/ljspeech/wavs/LJ010-0245.wav|tests/data/ljspeech/wavs/LJ010-0245.npy +tests/data/ljspeech/wavs/LJ010-0025.wav|tests/data/ljspeech/wavs/LJ010-0025.npy +tests/data/ljspeech/wavs/LJ020-0094.wav|tests/data/ljspeech/wavs/LJ020-0094.npy +tests/data/ljspeech/wavs/LJ005-0177.wav|tests/data/ljspeech/wavs/LJ005-0177.npy +tests/data/ljspeech/wavs/LJ042-0164.wav|tests/data/ljspeech/wavs/LJ042-0164.npy +tests/data/ljspeech/wavs/LJ007-0175.wav|tests/data/ljspeech/wavs/LJ007-0175.npy +tests/data/ljspeech/wavs/LJ015-0018.wav|tests/data/ljspeech/wavs/LJ015-0018.npy +tests/data/ljspeech/wavs/LJ003-0303.wav|tests/data/ljspeech/wavs/LJ003-0303.npy +tests/data/ljspeech/wavs/LJ034-0176.wav|tests/data/ljspeech/wavs/LJ034-0176.npy +tests/data/ljspeech/wavs/LJ018-0264.wav|tests/data/ljspeech/wavs/LJ018-0264.npy +tests/data/ljspeech/wavs/LJ011-0258.wav|tests/data/ljspeech/wavs/LJ011-0258.npy +tests/data/ljspeech/wavs/LJ016-0417.wav|tests/data/ljspeech/wavs/LJ016-0417.npy +tests/data/ljspeech/wavs/LJ021-0066.wav|tests/data/ljspeech/wavs/LJ021-0066.npy +tests/data/ljspeech/wavs/LJ007-0138.wav|tests/data/ljspeech/wavs/LJ007-0138.npy +tests/data/ljspeech/wavs/LJ017-0093.wav|tests/data/ljspeech/wavs/LJ017-0093.npy +tests/data/ljspeech/wavs/LJ029-0060.wav|tests/data/ljspeech/wavs/LJ029-0060.npy +tests/data/ljspeech/wavs/LJ012-0287.wav|tests/data/ljspeech/wavs/LJ012-0287.npy +tests/data/ljspeech/wavs/LJ001-0097.wav|tests/data/ljspeech/wavs/LJ001-0097.npy +tests/data/ljspeech/wavs/LJ007-0187.wav|tests/data/ljspeech/wavs/LJ007-0187.npy +tests/data/ljspeech/wavs/LJ032-0003.wav|tests/data/ljspeech/wavs/LJ032-0003.npy +tests/data/ljspeech/wavs/LJ038-0153.wav|tests/data/ljspeech/wavs/LJ038-0153.npy +tests/data/ljspeech/wavs/LJ043-0005.wav|tests/data/ljspeech/wavs/LJ043-0005.npy +tests/data/ljspeech/wavs/LJ037-0184.wav|tests/data/ljspeech/wavs/LJ037-0184.npy +tests/data/ljspeech/wavs/LJ050-0065.wav|tests/data/ljspeech/wavs/LJ050-0065.npy +tests/data/ljspeech/wavs/LJ012-0247.wav|tests/data/ljspeech/wavs/LJ012-0247.npy +tests/data/ljspeech/wavs/LJ033-0029.wav|tests/data/ljspeech/wavs/LJ033-0029.npy +tests/data/ljspeech/wavs/LJ010-0232.wav|tests/data/ljspeech/wavs/LJ010-0232.npy +tests/data/ljspeech/wavs/LJ011-0115.wav|tests/data/ljspeech/wavs/LJ011-0115.npy +tests/data/ljspeech/wavs/LJ015-0007.wav|tests/data/ljspeech/wavs/LJ015-0007.npy +tests/data/ljspeech/wavs/LJ040-0009.wav|tests/data/ljspeech/wavs/LJ040-0009.npy +tests/data/ljspeech/wavs/LJ031-0201.wav|tests/data/ljspeech/wavs/LJ031-0201.npy +tests/data/ljspeech/wavs/LJ040-0140.wav|tests/data/ljspeech/wavs/LJ040-0140.npy +tests/data/ljspeech/wavs/LJ033-0035.wav|tests/data/ljspeech/wavs/LJ033-0035.npy +tests/data/ljspeech/wavs/LJ015-0011.wav|tests/data/ljspeech/wavs/LJ015-0011.npy +tests/data/ljspeech/wavs/LJ049-0091.wav|tests/data/ljspeech/wavs/LJ049-0091.npy +tests/data/ljspeech/wavs/LJ016-0041.wav|tests/data/ljspeech/wavs/LJ016-0041.npy +tests/data/ljspeech/wavs/LJ010-0002.wav|tests/data/ljspeech/wavs/LJ010-0002.npy +tests/data/ljspeech/wavs/LJ016-0379.wav|tests/data/ljspeech/wavs/LJ016-0379.npy +tests/data/ljspeech/wavs/LJ050-0138.wav|tests/data/ljspeech/wavs/LJ050-0138.npy +tests/data/ljspeech/wavs/LJ050-0022.wav|tests/data/ljspeech/wavs/LJ050-0022.npy +tests/data/ljspeech/wavs/LJ003-0336.wav|tests/data/ljspeech/wavs/LJ003-0336.npy +tests/data/ljspeech/wavs/LJ047-0055.wav|tests/data/ljspeech/wavs/LJ047-0055.npy +tests/data/ljspeech/wavs/LJ034-0024.wav|tests/data/ljspeech/wavs/LJ034-0024.npy +tests/data/ljspeech/wavs/LJ050-0191.wav|tests/data/ljspeech/wavs/LJ050-0191.npy +tests/data/ljspeech/wavs/LJ027-0082.wav|tests/data/ljspeech/wavs/LJ027-0082.npy +tests/data/ljspeech/wavs/LJ002-0054.wav|tests/data/ljspeech/wavs/LJ002-0054.npy +tests/data/ljspeech/wavs/LJ039-0190.wav|tests/data/ljspeech/wavs/LJ039-0190.npy +tests/data/ljspeech/wavs/LJ003-0136.wav|tests/data/ljspeech/wavs/LJ003-0136.npy +tests/data/ljspeech/wavs/LJ011-0185.wav|tests/data/ljspeech/wavs/LJ011-0185.npy +tests/data/ljspeech/wavs/LJ017-0237.wav|tests/data/ljspeech/wavs/LJ017-0237.npy +tests/data/ljspeech/wavs/LJ007-0177.wav|tests/data/ljspeech/wavs/LJ007-0177.npy +tests/data/ljspeech/wavs/LJ039-0053.wav|tests/data/ljspeech/wavs/LJ039-0053.npy +tests/data/ljspeech/wavs/LJ027-0097.wav|tests/data/ljspeech/wavs/LJ027-0097.npy +tests/data/ljspeech/wavs/LJ039-0107.wav|tests/data/ljspeech/wavs/LJ039-0107.npy +tests/data/ljspeech/wavs/LJ040-0091.wav|tests/data/ljspeech/wavs/LJ040-0091.npy +tests/data/ljspeech/wavs/LJ045-0130.wav|tests/data/ljspeech/wavs/LJ045-0130.npy +tests/data/ljspeech/wavs/LJ031-0157.wav|tests/data/ljspeech/wavs/LJ031-0157.npy +tests/data/ljspeech/wavs/LJ017-0070.wav|tests/data/ljspeech/wavs/LJ017-0070.npy +tests/data/ljspeech/wavs/LJ012-0034.wav|tests/data/ljspeech/wavs/LJ012-0034.npy +tests/data/ljspeech/wavs/LJ045-0082.wav|tests/data/ljspeech/wavs/LJ045-0082.npy +tests/data/ljspeech/wavs/LJ038-0036.wav|tests/data/ljspeech/wavs/LJ038-0036.npy +tests/data/ljspeech/wavs/LJ025-0037.wav|tests/data/ljspeech/wavs/LJ025-0037.npy +tests/data/ljspeech/wavs/LJ048-0188.wav|tests/data/ljspeech/wavs/LJ048-0188.npy +tests/data/ljspeech/wavs/LJ012-0189.wav|tests/data/ljspeech/wavs/LJ012-0189.npy +tests/data/ljspeech/wavs/LJ041-0177.wav|tests/data/ljspeech/wavs/LJ041-0177.npy +tests/data/ljspeech/wavs/LJ004-0246.wav|tests/data/ljspeech/wavs/LJ004-0246.npy +tests/data/ljspeech/wavs/LJ017-0131.wav|tests/data/ljspeech/wavs/LJ017-0131.npy +tests/data/ljspeech/wavs/LJ049-0186.wav|tests/data/ljspeech/wavs/LJ049-0186.npy +tests/data/ljspeech/wavs/LJ025-0169.wav|tests/data/ljspeech/wavs/LJ025-0169.npy +tests/data/ljspeech/wavs/LJ006-0181.wav|tests/data/ljspeech/wavs/LJ006-0181.npy +tests/data/ljspeech/wavs/LJ029-0172.wav|tests/data/ljspeech/wavs/LJ029-0172.npy +tests/data/ljspeech/wavs/LJ049-0199.wav|tests/data/ljspeech/wavs/LJ049-0199.npy +tests/data/ljspeech/wavs/LJ006-0200.wav|tests/data/ljspeech/wavs/LJ006-0200.npy +tests/data/ljspeech/wavs/LJ023-0093.wav|tests/data/ljspeech/wavs/LJ023-0093.npy +tests/data/ljspeech/wavs/LJ003-0025.wav|tests/data/ljspeech/wavs/LJ003-0025.npy +tests/data/ljspeech/wavs/LJ037-0171.wav|tests/data/ljspeech/wavs/LJ037-0171.npy +tests/data/ljspeech/wavs/LJ009-0147.wav|tests/data/ljspeech/wavs/LJ009-0147.npy +tests/data/ljspeech/wavs/LJ018-0192.wav|tests/data/ljspeech/wavs/LJ018-0192.npy +tests/data/ljspeech/wavs/LJ028-0387.wav|tests/data/ljspeech/wavs/LJ028-0387.npy +tests/data/ljspeech/wavs/LJ011-0161.wav|tests/data/ljspeech/wavs/LJ011-0161.npy +tests/data/ljspeech/wavs/LJ036-0111.wav|tests/data/ljspeech/wavs/LJ036-0111.npy +tests/data/ljspeech/wavs/LJ017-0044.wav|tests/data/ljspeech/wavs/LJ017-0044.npy +tests/data/ljspeech/wavs/LJ029-0020.wav|tests/data/ljspeech/wavs/LJ029-0020.npy +tests/data/ljspeech/wavs/LJ026-0108.wav|tests/data/ljspeech/wavs/LJ026-0108.npy +tests/data/ljspeech/wavs/LJ004-0098.wav|tests/data/ljspeech/wavs/LJ004-0098.npy +tests/data/ljspeech/wavs/LJ048-0099.wav|tests/data/ljspeech/wavs/LJ048-0099.npy +tests/data/ljspeech/wavs/LJ041-0113.wav|tests/data/ljspeech/wavs/LJ041-0113.npy +tests/data/ljspeech/wavs/LJ019-0275.wav|tests/data/ljspeech/wavs/LJ019-0275.npy +tests/data/ljspeech/wavs/LJ014-0271.wav|tests/data/ljspeech/wavs/LJ014-0271.npy +tests/data/ljspeech/wavs/LJ011-0041.wav|tests/data/ljspeech/wavs/LJ011-0041.npy +tests/data/ljspeech/wavs/LJ018-0068.wav|tests/data/ljspeech/wavs/LJ018-0068.npy +tests/data/ljspeech/wavs/LJ018-0164.wav|tests/data/ljspeech/wavs/LJ018-0164.npy +tests/data/ljspeech/wavs/LJ010-0317.wav|tests/data/ljspeech/wavs/LJ010-0317.npy +tests/data/ljspeech/wavs/LJ045-0033.wav|tests/data/ljspeech/wavs/LJ045-0033.npy +tests/data/ljspeech/wavs/LJ029-0140.wav|tests/data/ljspeech/wavs/LJ029-0140.npy +tests/data/ljspeech/wavs/LJ001-0010.wav|tests/data/ljspeech/wavs/LJ001-0010.npy +tests/data/ljspeech/wavs/LJ015-0178.wav|tests/data/ljspeech/wavs/LJ015-0178.npy +tests/data/ljspeech/wavs/LJ042-0207.wav|tests/data/ljspeech/wavs/LJ042-0207.npy +tests/data/ljspeech/wavs/LJ043-0105.wav|tests/data/ljspeech/wavs/LJ043-0105.npy +tests/data/ljspeech/wavs/LJ023-0057.wav|tests/data/ljspeech/wavs/LJ023-0057.npy +tests/data/ljspeech/wavs/LJ045-0039.wav|tests/data/ljspeech/wavs/LJ045-0039.npy +tests/data/ljspeech/wavs/LJ016-0093.wav|tests/data/ljspeech/wavs/LJ016-0093.npy +tests/data/ljspeech/wavs/LJ013-0254.wav|tests/data/ljspeech/wavs/LJ013-0254.npy +tests/data/ljspeech/wavs/LJ017-0039.wav|tests/data/ljspeech/wavs/LJ017-0039.npy +tests/data/ljspeech/wavs/LJ046-0078.wav|tests/data/ljspeech/wavs/LJ046-0078.npy +tests/data/ljspeech/wavs/LJ023-0111.wav|tests/data/ljspeech/wavs/LJ023-0111.npy +tests/data/ljspeech/wavs/LJ028-0006.wav|tests/data/ljspeech/wavs/LJ028-0006.npy +tests/data/ljspeech/wavs/LJ042-0202.wav|tests/data/ljspeech/wavs/LJ042-0202.npy +tests/data/ljspeech/wavs/LJ007-0237.wav|tests/data/ljspeech/wavs/LJ007-0237.npy +tests/data/ljspeech/wavs/LJ019-0374.wav|tests/data/ljspeech/wavs/LJ019-0374.npy +tests/data/ljspeech/wavs/LJ031-0139.wav|tests/data/ljspeech/wavs/LJ031-0139.npy +tests/data/ljspeech/wavs/LJ010-0299.wav|tests/data/ljspeech/wavs/LJ010-0299.npy +tests/data/ljspeech/wavs/LJ003-0062.wav|tests/data/ljspeech/wavs/LJ003-0062.npy +tests/data/ljspeech/wavs/LJ029-0121.wav|tests/data/ljspeech/wavs/LJ029-0121.npy +tests/data/ljspeech/wavs/LJ003-0328.wav|tests/data/ljspeech/wavs/LJ003-0328.npy +tests/data/ljspeech/wavs/LJ006-0117.wav|tests/data/ljspeech/wavs/LJ006-0117.npy +tests/data/ljspeech/wavs/LJ028-0244.wav|tests/data/ljspeech/wavs/LJ028-0244.npy +tests/data/ljspeech/wavs/LJ016-0188.wav|tests/data/ljspeech/wavs/LJ016-0188.npy +tests/data/ljspeech/wavs/LJ031-0195.wav|tests/data/ljspeech/wavs/LJ031-0195.npy +tests/data/ljspeech/wavs/LJ044-0132.wav|tests/data/ljspeech/wavs/LJ044-0132.npy +tests/data/ljspeech/wavs/LJ045-0087.wav|tests/data/ljspeech/wavs/LJ045-0087.npy +tests/data/ljspeech/wavs/LJ044-0199.wav|tests/data/ljspeech/wavs/LJ044-0199.npy +tests/data/ljspeech/wavs/LJ046-0162.wav|tests/data/ljspeech/wavs/LJ046-0162.npy +tests/data/ljspeech/wavs/LJ042-0035.wav|tests/data/ljspeech/wavs/LJ042-0035.npy +tests/data/ljspeech/wavs/LJ037-0101.wav|tests/data/ljspeech/wavs/LJ037-0101.npy +tests/data/ljspeech/wavs/LJ048-0244.wav|tests/data/ljspeech/wavs/LJ048-0244.npy +tests/data/ljspeech/wavs/LJ048-0010.wav|tests/data/ljspeech/wavs/LJ048-0010.npy +tests/data/ljspeech/wavs/LJ005-0033.wav|tests/data/ljspeech/wavs/LJ005-0033.npy +tests/data/ljspeech/wavs/LJ025-0078.wav|tests/data/ljspeech/wavs/LJ025-0078.npy +tests/data/ljspeech/wavs/LJ027-0123.wav|tests/data/ljspeech/wavs/LJ027-0123.npy +tests/data/ljspeech/wavs/LJ047-0224.wav|tests/data/ljspeech/wavs/LJ047-0224.npy +tests/data/ljspeech/wavs/LJ023-0075.wav|tests/data/ljspeech/wavs/LJ023-0075.npy +tests/data/ljspeech/wavs/LJ048-0268.wav|tests/data/ljspeech/wavs/LJ048-0268.npy +tests/data/ljspeech/wavs/LJ028-0309.wav|tests/data/ljspeech/wavs/LJ028-0309.npy +tests/data/ljspeech/wavs/LJ006-0084.wav|tests/data/ljspeech/wavs/LJ006-0084.npy +tests/data/ljspeech/wavs/LJ011-0201.wav|tests/data/ljspeech/wavs/LJ011-0201.npy +tests/data/ljspeech/wavs/LJ007-0212.wav|tests/data/ljspeech/wavs/LJ007-0212.npy +tests/data/ljspeech/wavs/LJ020-0031.wav|tests/data/ljspeech/wavs/LJ020-0031.npy +tests/data/ljspeech/wavs/LJ041-0015.wav|tests/data/ljspeech/wavs/LJ041-0015.npy +tests/data/ljspeech/wavs/LJ014-0014.wav|tests/data/ljspeech/wavs/LJ014-0014.npy +tests/data/ljspeech/wavs/LJ049-0160.wav|tests/data/ljspeech/wavs/LJ049-0160.npy +tests/data/ljspeech/wavs/LJ045-0078.wav|tests/data/ljspeech/wavs/LJ045-0078.npy +tests/data/ljspeech/wavs/LJ016-0277.wav|tests/data/ljspeech/wavs/LJ016-0277.npy +tests/data/ljspeech/wavs/LJ004-0225.wav|tests/data/ljspeech/wavs/LJ004-0225.npy +tests/data/ljspeech/wavs/LJ031-0159.wav|tests/data/ljspeech/wavs/LJ031-0159.npy +tests/data/ljspeech/wavs/LJ020-0043.wav|tests/data/ljspeech/wavs/LJ020-0043.npy +tests/data/ljspeech/wavs/LJ005-0152.wav|tests/data/ljspeech/wavs/LJ005-0152.npy +tests/data/ljspeech/wavs/LJ035-0139.wav|tests/data/ljspeech/wavs/LJ035-0139.npy +tests/data/ljspeech/wavs/LJ011-0293.wav|tests/data/ljspeech/wavs/LJ011-0293.npy +tests/data/ljspeech/wavs/LJ043-0089.wav|tests/data/ljspeech/wavs/LJ043-0089.npy +tests/data/ljspeech/wavs/LJ030-0156.wav|tests/data/ljspeech/wavs/LJ030-0156.npy +tests/data/ljspeech/wavs/LJ023-0119.wav|tests/data/ljspeech/wavs/LJ023-0119.npy +tests/data/ljspeech/wavs/LJ041-0061.wav|tests/data/ljspeech/wavs/LJ041-0061.npy +tests/data/ljspeech/wavs/LJ023-0120.wav|tests/data/ljspeech/wavs/LJ023-0120.npy +tests/data/ljspeech/wavs/LJ040-0008.wav|tests/data/ljspeech/wavs/LJ040-0008.npy +tests/data/ljspeech/wavs/LJ024-0131.wav|tests/data/ljspeech/wavs/LJ024-0131.npy +tests/data/ljspeech/wavs/LJ011-0128.wav|tests/data/ljspeech/wavs/LJ011-0128.npy +tests/data/ljspeech/wavs/LJ009-0059.wav|tests/data/ljspeech/wavs/LJ009-0059.npy +tests/data/ljspeech/wavs/LJ007-0134.wav|tests/data/ljspeech/wavs/LJ007-0134.npy +tests/data/ljspeech/wavs/LJ041-0035.wav|tests/data/ljspeech/wavs/LJ041-0035.npy +tests/data/ljspeech/wavs/LJ036-0198.wav|tests/data/ljspeech/wavs/LJ036-0198.npy +tests/data/ljspeech/wavs/LJ017-0067.wav|tests/data/ljspeech/wavs/LJ017-0067.npy +tests/data/ljspeech/wavs/LJ004-0174.wav|tests/data/ljspeech/wavs/LJ004-0174.npy +tests/data/ljspeech/wavs/LJ043-0090.wav|tests/data/ljspeech/wavs/LJ043-0090.npy +tests/data/ljspeech/wavs/LJ019-0013.wav|tests/data/ljspeech/wavs/LJ019-0013.npy +tests/data/ljspeech/wavs/LJ038-0240.wav|tests/data/ljspeech/wavs/LJ038-0240.npy +tests/data/ljspeech/wavs/LJ025-0043.wav|tests/data/ljspeech/wavs/LJ025-0043.npy +tests/data/ljspeech/wavs/LJ009-0068.wav|tests/data/ljspeech/wavs/LJ009-0068.npy +tests/data/ljspeech/wavs/LJ017-0161.wav|tests/data/ljspeech/wavs/LJ017-0161.npy +tests/data/ljspeech/wavs/LJ017-0023.wav|tests/data/ljspeech/wavs/LJ017-0023.npy +tests/data/ljspeech/wavs/LJ007-0119.wav|tests/data/ljspeech/wavs/LJ007-0119.npy +tests/data/ljspeech/wavs/LJ002-0271.wav|tests/data/ljspeech/wavs/LJ002-0271.npy +tests/data/ljspeech/wavs/LJ038-0251.wav|tests/data/ljspeech/wavs/LJ038-0251.npy +tests/data/ljspeech/wavs/LJ015-0139.wav|tests/data/ljspeech/wavs/LJ015-0139.npy +tests/data/ljspeech/wavs/LJ028-0516.wav|tests/data/ljspeech/wavs/LJ028-0516.npy +tests/data/ljspeech/wavs/LJ016-0300.wav|tests/data/ljspeech/wavs/LJ016-0300.npy +tests/data/ljspeech/wavs/LJ005-0159.wav|tests/data/ljspeech/wavs/LJ005-0159.npy +tests/data/ljspeech/wavs/LJ009-0212.wav|tests/data/ljspeech/wavs/LJ009-0212.npy +tests/data/ljspeech/wavs/LJ037-0207.wav|tests/data/ljspeech/wavs/LJ037-0207.npy +tests/data/ljspeech/wavs/LJ004-0162.wav|tests/data/ljspeech/wavs/LJ004-0162.npy +tests/data/ljspeech/wavs/LJ034-0044.wav|tests/data/ljspeech/wavs/LJ034-0044.npy +tests/data/ljspeech/wavs/LJ042-0077.wav|tests/data/ljspeech/wavs/LJ042-0077.npy +tests/data/ljspeech/wavs/LJ032-0163.wav|tests/data/ljspeech/wavs/LJ032-0163.npy +tests/data/ljspeech/wavs/LJ004-0110.wav|tests/data/ljspeech/wavs/LJ004-0110.npy +tests/data/ljspeech/wavs/LJ029-0188.wav|tests/data/ljspeech/wavs/LJ029-0188.npy +tests/data/ljspeech/wavs/LJ006-0167.wav|tests/data/ljspeech/wavs/LJ006-0167.npy +tests/data/ljspeech/wavs/LJ003-0052.wav|tests/data/ljspeech/wavs/LJ003-0052.npy +tests/data/ljspeech/wavs/LJ019-0358.wav|tests/data/ljspeech/wavs/LJ019-0358.npy +tests/data/ljspeech/wavs/LJ019-0221.wav|tests/data/ljspeech/wavs/LJ019-0221.npy +tests/data/ljspeech/wavs/LJ016-0401.wav|tests/data/ljspeech/wavs/LJ016-0401.npy +tests/data/ljspeech/wavs/LJ031-0168.wav|tests/data/ljspeech/wavs/LJ031-0168.npy +tests/data/ljspeech/wavs/LJ013-0084.wav|tests/data/ljspeech/wavs/LJ013-0084.npy +tests/data/ljspeech/wavs/LJ021-0018.wav|tests/data/ljspeech/wavs/LJ021-0018.npy +tests/data/ljspeech/wavs/LJ047-0140.wav|tests/data/ljspeech/wavs/LJ047-0140.npy +tests/data/ljspeech/wavs/LJ019-0254.wav|tests/data/ljspeech/wavs/LJ019-0254.npy +tests/data/ljspeech/wavs/LJ010-0211.wav|tests/data/ljspeech/wavs/LJ010-0211.npy +tests/data/ljspeech/wavs/LJ013-0085.wav|tests/data/ljspeech/wavs/LJ013-0085.npy +tests/data/ljspeech/wavs/LJ020-0100.wav|tests/data/ljspeech/wavs/LJ020-0100.npy +tests/data/ljspeech/wavs/LJ003-0094.wav|tests/data/ljspeech/wavs/LJ003-0094.npy +tests/data/ljspeech/wavs/LJ014-0222.wav|tests/data/ljspeech/wavs/LJ014-0222.npy +tests/data/ljspeech/wavs/LJ002-0334.wav|tests/data/ljspeech/wavs/LJ002-0334.npy +tests/data/ljspeech/wavs/LJ029-0079.wav|tests/data/ljspeech/wavs/LJ029-0079.npy +tests/data/ljspeech/wavs/LJ036-0063.wav|tests/data/ljspeech/wavs/LJ036-0063.npy +tests/data/ljspeech/wavs/LJ011-0054.wav|tests/data/ljspeech/wavs/LJ011-0054.npy +tests/data/ljspeech/wavs/LJ031-0227.wav|tests/data/ljspeech/wavs/LJ031-0227.npy +tests/data/ljspeech/wavs/LJ018-0033.wav|tests/data/ljspeech/wavs/LJ018-0033.npy +tests/data/ljspeech/wavs/LJ034-0174.wav|tests/data/ljspeech/wavs/LJ034-0174.npy +tests/data/ljspeech/wavs/LJ021-0107.wav|tests/data/ljspeech/wavs/LJ021-0107.npy +tests/data/ljspeech/wavs/LJ007-0049.wav|tests/data/ljspeech/wavs/LJ007-0049.npy +tests/data/ljspeech/wavs/LJ035-0096.wav|tests/data/ljspeech/wavs/LJ035-0096.npy +tests/data/ljspeech/wavs/LJ047-0151.wav|tests/data/ljspeech/wavs/LJ047-0151.npy +tests/data/ljspeech/wavs/LJ020-0079.wav|tests/data/ljspeech/wavs/LJ020-0079.npy +tests/data/ljspeech/wavs/LJ016-0019.wav|tests/data/ljspeech/wavs/LJ016-0019.npy +tests/data/ljspeech/wavs/LJ008-0050.wav|tests/data/ljspeech/wavs/LJ008-0050.npy +tests/data/ljspeech/wavs/LJ040-0071.wav|tests/data/ljspeech/wavs/LJ040-0071.npy +tests/data/ljspeech/wavs/LJ050-0093.wav|tests/data/ljspeech/wavs/LJ050-0093.npy +tests/data/ljspeech/wavs/LJ040-0075.wav|tests/data/ljspeech/wavs/LJ040-0075.npy +tests/data/ljspeech/wavs/LJ042-0235.wav|tests/data/ljspeech/wavs/LJ042-0235.npy +tests/data/ljspeech/wavs/LJ009-0304.wav|tests/data/ljspeech/wavs/LJ009-0304.npy +tests/data/ljspeech/wavs/LJ031-0069.wav|tests/data/ljspeech/wavs/LJ031-0069.npy +tests/data/ljspeech/wavs/LJ042-0195.wav|tests/data/ljspeech/wavs/LJ042-0195.npy +tests/data/ljspeech/wavs/LJ004-0105.wav|tests/data/ljspeech/wavs/LJ004-0105.npy +tests/data/ljspeech/wavs/LJ012-0273.wav|tests/data/ljspeech/wavs/LJ012-0273.npy +tests/data/ljspeech/wavs/LJ011-0023.wav|tests/data/ljspeech/wavs/LJ011-0023.npy +tests/data/ljspeech/wavs/LJ021-0188.wav|tests/data/ljspeech/wavs/LJ021-0188.npy +tests/data/ljspeech/wavs/LJ036-0125.wav|tests/data/ljspeech/wavs/LJ036-0125.npy +tests/data/ljspeech/wavs/LJ011-0172.wav|tests/data/ljspeech/wavs/LJ011-0172.npy +tests/data/ljspeech/wavs/LJ012-0119.wav|tests/data/ljspeech/wavs/LJ012-0119.npy +tests/data/ljspeech/wavs/LJ042-0023.wav|tests/data/ljspeech/wavs/LJ042-0023.npy +tests/data/ljspeech/wavs/LJ021-0132.wav|tests/data/ljspeech/wavs/LJ021-0132.npy +tests/data/ljspeech/wavs/LJ026-0091.wav|tests/data/ljspeech/wavs/LJ026-0091.npy +tests/data/ljspeech/wavs/LJ028-0217.wav|tests/data/ljspeech/wavs/LJ028-0217.npy +tests/data/ljspeech/wavs/LJ050-0103.wav|tests/data/ljspeech/wavs/LJ050-0103.npy +tests/data/ljspeech/wavs/LJ041-0158.wav|tests/data/ljspeech/wavs/LJ041-0158.npy +tests/data/ljspeech/wavs/LJ008-0049.wav|tests/data/ljspeech/wavs/LJ008-0049.npy +tests/data/ljspeech/wavs/LJ002-0058.wav|tests/data/ljspeech/wavs/LJ002-0058.npy +tests/data/ljspeech/wavs/LJ014-0289.wav|tests/data/ljspeech/wavs/LJ014-0289.npy +tests/data/ljspeech/wavs/LJ009-0007.wav|tests/data/ljspeech/wavs/LJ009-0007.npy +tests/data/ljspeech/wavs/LJ037-0183.wav|tests/data/ljspeech/wavs/LJ037-0183.npy +tests/data/ljspeech/wavs/LJ006-0126.wav|tests/data/ljspeech/wavs/LJ006-0126.npy +tests/data/ljspeech/wavs/LJ009-0019.wav|tests/data/ljspeech/wavs/LJ009-0019.npy +tests/data/ljspeech/wavs/LJ035-0064.wav|tests/data/ljspeech/wavs/LJ035-0064.npy +tests/data/ljspeech/wavs/LJ008-0023.wav|tests/data/ljspeech/wavs/LJ008-0023.npy +tests/data/ljspeech/wavs/LJ028-0165.wav|tests/data/ljspeech/wavs/LJ028-0165.npy +tests/data/ljspeech/wavs/LJ013-0009.wav|tests/data/ljspeech/wavs/LJ013-0009.npy +tests/data/ljspeech/wavs/LJ036-0200.wav|tests/data/ljspeech/wavs/LJ036-0200.npy +tests/data/ljspeech/wavs/LJ009-0167.wav|tests/data/ljspeech/wavs/LJ009-0167.npy +tests/data/ljspeech/wavs/LJ011-0064.wav|tests/data/ljspeech/wavs/LJ011-0064.npy +tests/data/ljspeech/wavs/LJ047-0237.wav|tests/data/ljspeech/wavs/LJ047-0237.npy +tests/data/ljspeech/wavs/LJ024-0081.wav|tests/data/ljspeech/wavs/LJ024-0081.npy +tests/data/ljspeech/wavs/LJ048-0254.wav|tests/data/ljspeech/wavs/LJ048-0254.npy +tests/data/ljspeech/wavs/LJ017-0235.wav|tests/data/ljspeech/wavs/LJ017-0235.npy +tests/data/ljspeech/wavs/LJ016-0107.wav|tests/data/ljspeech/wavs/LJ016-0107.npy +tests/data/ljspeech/wavs/LJ038-0034.wav|tests/data/ljspeech/wavs/LJ038-0034.npy +tests/data/ljspeech/wavs/LJ035-0153.wav|tests/data/ljspeech/wavs/LJ035-0153.npy +tests/data/ljspeech/wavs/LJ021-0126.wav|tests/data/ljspeech/wavs/LJ021-0126.npy +tests/data/ljspeech/wavs/LJ015-0219.wav|tests/data/ljspeech/wavs/LJ015-0219.npy +tests/data/ljspeech/wavs/LJ010-0242.wav|tests/data/ljspeech/wavs/LJ010-0242.npy +tests/data/ljspeech/wavs/LJ034-0124.wav|tests/data/ljspeech/wavs/LJ034-0124.npy +tests/data/ljspeech/wavs/LJ018-0219.wav|tests/data/ljspeech/wavs/LJ018-0219.npy +tests/data/ljspeech/wavs/LJ011-0287.wav|tests/data/ljspeech/wavs/LJ011-0287.npy +tests/data/ljspeech/wavs/LJ044-0064.wav|tests/data/ljspeech/wavs/LJ044-0064.npy +tests/data/ljspeech/wavs/LJ011-0045.wav|tests/data/ljspeech/wavs/LJ011-0045.npy +tests/data/ljspeech/wavs/LJ010-0087.wav|tests/data/ljspeech/wavs/LJ010-0087.npy +tests/data/ljspeech/wavs/LJ018-0241.wav|tests/data/ljspeech/wavs/LJ018-0241.npy +tests/data/ljspeech/wavs/LJ045-0199.wav|tests/data/ljspeech/wavs/LJ045-0199.npy +tests/data/ljspeech/wavs/LJ034-0126.wav|tests/data/ljspeech/wavs/LJ034-0126.npy +tests/data/ljspeech/wavs/LJ039-0216.wav|tests/data/ljspeech/wavs/LJ039-0216.npy +tests/data/ljspeech/wavs/LJ017-0151.wav|tests/data/ljspeech/wavs/LJ017-0151.npy +tests/data/ljspeech/wavs/LJ018-0177.wav|tests/data/ljspeech/wavs/LJ018-0177.npy +tests/data/ljspeech/wavs/LJ010-0083.wav|tests/data/ljspeech/wavs/LJ010-0083.npy +tests/data/ljspeech/wavs/LJ018-0208.wav|tests/data/ljspeech/wavs/LJ018-0208.npy +tests/data/ljspeech/wavs/LJ015-0226.wav|tests/data/ljspeech/wavs/LJ015-0226.npy +tests/data/ljspeech/wavs/LJ016-0165.wav|tests/data/ljspeech/wavs/LJ016-0165.npy +tests/data/ljspeech/wavs/LJ012-0113.wav|tests/data/ljspeech/wavs/LJ012-0113.npy +tests/data/ljspeech/wavs/LJ032-0103.wav|tests/data/ljspeech/wavs/LJ032-0103.npy +tests/data/ljspeech/wavs/LJ033-0206.wav|tests/data/ljspeech/wavs/LJ033-0206.npy +tests/data/ljspeech/wavs/LJ005-0256.wav|tests/data/ljspeech/wavs/LJ005-0256.npy +tests/data/ljspeech/wavs/LJ045-0022.wav|tests/data/ljspeech/wavs/LJ045-0022.npy +tests/data/ljspeech/wavs/LJ044-0108.wav|tests/data/ljspeech/wavs/LJ044-0108.npy +tests/data/ljspeech/wavs/LJ012-0040.wav|tests/data/ljspeech/wavs/LJ012-0040.npy +tests/data/ljspeech/wavs/LJ021-0144.wav|tests/data/ljspeech/wavs/LJ021-0144.npy +tests/data/ljspeech/wavs/LJ033-0175.wav|tests/data/ljspeech/wavs/LJ033-0175.npy +tests/data/ljspeech/wavs/LJ018-0308.wav|tests/data/ljspeech/wavs/LJ018-0308.npy +tests/data/ljspeech/wavs/LJ022-0161.wav|tests/data/ljspeech/wavs/LJ022-0161.npy +tests/data/ljspeech/wavs/LJ016-0221.wav|tests/data/ljspeech/wavs/LJ016-0221.npy +tests/data/ljspeech/wavs/LJ005-0005.wav|tests/data/ljspeech/wavs/LJ005-0005.npy +tests/data/ljspeech/wavs/LJ011-0077.wav|tests/data/ljspeech/wavs/LJ011-0077.npy +tests/data/ljspeech/wavs/LJ005-0278.wav|tests/data/ljspeech/wavs/LJ005-0278.npy +tests/data/ljspeech/wavs/LJ022-0003.wav|tests/data/ljspeech/wavs/LJ022-0003.npy +tests/data/ljspeech/wavs/LJ017-0063.wav|tests/data/ljspeech/wavs/LJ017-0063.npy +tests/data/ljspeech/wavs/LJ021-0110.wav|tests/data/ljspeech/wavs/LJ021-0110.npy +tests/data/ljspeech/wavs/LJ017-0264.wav|tests/data/ljspeech/wavs/LJ017-0264.npy +tests/data/ljspeech/wavs/LJ018-0277.wav|tests/data/ljspeech/wavs/LJ018-0277.npy +tests/data/ljspeech/wavs/LJ022-0130.wav|tests/data/ljspeech/wavs/LJ022-0130.npy +tests/data/ljspeech/wavs/LJ050-0221.wav|tests/data/ljspeech/wavs/LJ050-0221.npy +tests/data/ljspeech/wavs/LJ021-0075.wav|tests/data/ljspeech/wavs/LJ021-0075.npy +tests/data/ljspeech/wavs/LJ010-0218.wav|tests/data/ljspeech/wavs/LJ010-0218.npy +tests/data/ljspeech/wavs/LJ040-0146.wav|tests/data/ljspeech/wavs/LJ040-0146.npy +tests/data/ljspeech/wavs/LJ003-0155.wav|tests/data/ljspeech/wavs/LJ003-0155.npy +tests/data/ljspeech/wavs/LJ020-0048.wav|tests/data/ljspeech/wavs/LJ020-0048.npy +tests/data/ljspeech/wavs/LJ033-0159.wav|tests/data/ljspeech/wavs/LJ033-0159.npy +tests/data/ljspeech/wavs/LJ035-0109.wav|tests/data/ljspeech/wavs/LJ035-0109.npy +tests/data/ljspeech/wavs/LJ023-0027.wav|tests/data/ljspeech/wavs/LJ023-0027.npy +tests/data/ljspeech/wavs/LJ002-0333.wav|tests/data/ljspeech/wavs/LJ002-0333.npy +tests/data/ljspeech/wavs/LJ034-0135.wav|tests/data/ljspeech/wavs/LJ034-0135.npy +tests/data/ljspeech/wavs/LJ011-0111.wav|tests/data/ljspeech/wavs/LJ011-0111.npy +tests/data/ljspeech/wavs/LJ018-0020.wav|tests/data/ljspeech/wavs/LJ018-0020.npy +tests/data/ljspeech/wavs/LJ020-0101.wav|tests/data/ljspeech/wavs/LJ020-0101.npy +tests/data/ljspeech/wavs/LJ047-0057.wav|tests/data/ljspeech/wavs/LJ047-0057.npy +tests/data/ljspeech/wavs/LJ029-0011.wav|tests/data/ljspeech/wavs/LJ029-0011.npy +tests/data/ljspeech/wavs/LJ032-0189.wav|tests/data/ljspeech/wavs/LJ032-0189.npy +tests/data/ljspeech/wavs/LJ046-0110.wav|tests/data/ljspeech/wavs/LJ046-0110.npy +tests/data/ljspeech/wavs/LJ025-0109.wav|tests/data/ljspeech/wavs/LJ025-0109.npy +tests/data/ljspeech/wavs/LJ042-0172.wav|tests/data/ljspeech/wavs/LJ042-0172.npy +tests/data/ljspeech/wavs/LJ007-0126.wav|tests/data/ljspeech/wavs/LJ007-0126.npy +tests/data/ljspeech/wavs/LJ043-0095.wav|tests/data/ljspeech/wavs/LJ043-0095.npy +tests/data/ljspeech/wavs/LJ007-0197.wav|tests/data/ljspeech/wavs/LJ007-0197.npy +tests/data/ljspeech/wavs/LJ002-0197.wav|tests/data/ljspeech/wavs/LJ002-0197.npy +tests/data/ljspeech/wavs/LJ050-0125.wav|tests/data/ljspeech/wavs/LJ050-0125.npy +tests/data/ljspeech/wavs/LJ029-0104.wav|tests/data/ljspeech/wavs/LJ029-0104.npy +tests/data/ljspeech/wavs/LJ028-0352.wav|tests/data/ljspeech/wavs/LJ028-0352.npy +tests/data/ljspeech/wavs/LJ036-0187.wav|tests/data/ljspeech/wavs/LJ036-0187.npy +tests/data/ljspeech/wavs/LJ029-0152.wav|tests/data/ljspeech/wavs/LJ029-0152.npy +tests/data/ljspeech/wavs/LJ048-0042.wav|tests/data/ljspeech/wavs/LJ048-0042.npy +tests/data/ljspeech/wavs/LJ028-0442.wav|tests/data/ljspeech/wavs/LJ028-0442.npy +tests/data/ljspeech/wavs/LJ046-0019.wav|tests/data/ljspeech/wavs/LJ046-0019.npy +tests/data/ljspeech/wavs/LJ025-0156.wav|tests/data/ljspeech/wavs/LJ025-0156.npy +tests/data/ljspeech/wavs/LJ033-0100.wav|tests/data/ljspeech/wavs/LJ033-0100.npy +tests/data/ljspeech/wavs/LJ014-0164.wav|tests/data/ljspeech/wavs/LJ014-0164.npy +tests/data/ljspeech/wavs/LJ002-0170.wav|tests/data/ljspeech/wavs/LJ002-0170.npy +tests/data/ljspeech/wavs/LJ014-0321.wav|tests/data/ljspeech/wavs/LJ014-0321.npy +tests/data/ljspeech/wavs/LJ033-0010.wav|tests/data/ljspeech/wavs/LJ033-0010.npy +tests/data/ljspeech/wavs/LJ007-0222.wav|tests/data/ljspeech/wavs/LJ007-0222.npy +tests/data/ljspeech/wavs/LJ013-0091.wav|tests/data/ljspeech/wavs/LJ013-0091.npy +tests/data/ljspeech/wavs/LJ008-0270.wav|tests/data/ljspeech/wavs/LJ008-0270.npy +tests/data/ljspeech/wavs/LJ002-0255.wav|tests/data/ljspeech/wavs/LJ002-0255.npy +tests/data/ljspeech/wavs/LJ014-0249.wav|tests/data/ljspeech/wavs/LJ014-0249.npy +tests/data/ljspeech/wavs/LJ007-0098.wav|tests/data/ljspeech/wavs/LJ007-0098.npy +tests/data/ljspeech/wavs/LJ025-0139.wav|tests/data/ljspeech/wavs/LJ025-0139.npy +tests/data/ljspeech/wavs/LJ002-0149.wav|tests/data/ljspeech/wavs/LJ002-0149.npy +tests/data/ljspeech/wavs/LJ048-0077.wav|tests/data/ljspeech/wavs/LJ048-0077.npy +tests/data/ljspeech/wavs/LJ049-0153.wav|tests/data/ljspeech/wavs/LJ049-0153.npy +tests/data/ljspeech/wavs/LJ038-0071.wav|tests/data/ljspeech/wavs/LJ038-0071.npy +tests/data/ljspeech/wavs/LJ014-0312.wav|tests/data/ljspeech/wavs/LJ014-0312.npy +tests/data/ljspeech/wavs/LJ009-0021.wav|tests/data/ljspeech/wavs/LJ009-0021.npy +tests/data/ljspeech/wavs/LJ009-0097.wav|tests/data/ljspeech/wavs/LJ009-0097.npy +tests/data/ljspeech/wavs/LJ009-0006.wav|tests/data/ljspeech/wavs/LJ009-0006.npy +tests/data/ljspeech/wavs/LJ015-0193.wav|tests/data/ljspeech/wavs/LJ015-0193.npy +tests/data/ljspeech/wavs/LJ046-0154.wav|tests/data/ljspeech/wavs/LJ046-0154.npy +tests/data/ljspeech/wavs/LJ026-0052.wav|tests/data/ljspeech/wavs/LJ026-0052.npy +tests/data/ljspeech/wavs/LJ030-0146.wav|tests/data/ljspeech/wavs/LJ030-0146.npy +tests/data/ljspeech/wavs/LJ004-0124.wav|tests/data/ljspeech/wavs/LJ004-0124.npy +tests/data/ljspeech/wavs/LJ014-0283.wav|tests/data/ljspeech/wavs/LJ014-0283.npy +tests/data/ljspeech/wavs/LJ048-0083.wav|tests/data/ljspeech/wavs/LJ048-0083.npy +tests/data/ljspeech/wavs/LJ006-0087.wav|tests/data/ljspeech/wavs/LJ006-0087.npy +tests/data/ljspeech/wavs/LJ033-0137.wav|tests/data/ljspeech/wavs/LJ033-0137.npy +tests/data/ljspeech/wavs/LJ041-0141.wav|tests/data/ljspeech/wavs/LJ041-0141.npy +tests/data/ljspeech/wavs/LJ044-0180.wav|tests/data/ljspeech/wavs/LJ044-0180.npy +tests/data/ljspeech/wavs/LJ006-0099.wav|tests/data/ljspeech/wavs/LJ006-0099.npy +tests/data/ljspeech/wavs/LJ006-0246.wav|tests/data/ljspeech/wavs/LJ006-0246.npy +tests/data/ljspeech/wavs/LJ006-0264.wav|tests/data/ljspeech/wavs/LJ006-0264.npy +tests/data/ljspeech/wavs/LJ028-0092.wav|tests/data/ljspeech/wavs/LJ028-0092.npy +tests/data/ljspeech/wavs/LJ028-0009.wav|tests/data/ljspeech/wavs/LJ028-0009.npy +tests/data/ljspeech/wavs/LJ050-0270.wav|tests/data/ljspeech/wavs/LJ050-0270.npy +tests/data/ljspeech/wavs/LJ030-0043.wav|tests/data/ljspeech/wavs/LJ030-0043.npy +tests/data/ljspeech/wavs/LJ026-0087.wav|tests/data/ljspeech/wavs/LJ026-0087.npy +tests/data/ljspeech/wavs/LJ043-0152.wav|tests/data/ljspeech/wavs/LJ043-0152.npy +tests/data/ljspeech/wavs/LJ046-0075.wav|tests/data/ljspeech/wavs/LJ046-0075.npy +tests/data/ljspeech/wavs/LJ014-0300.wav|tests/data/ljspeech/wavs/LJ014-0300.npy +tests/data/ljspeech/wavs/LJ041-0106.wav|tests/data/ljspeech/wavs/LJ041-0106.npy +tests/data/ljspeech/wavs/LJ048-0101.wav|tests/data/ljspeech/wavs/LJ048-0101.npy +tests/data/ljspeech/wavs/LJ033-0170.wav|tests/data/ljspeech/wavs/LJ033-0170.npy +tests/data/ljspeech/wavs/LJ032-0253.wav|tests/data/ljspeech/wavs/LJ032-0253.npy +tests/data/ljspeech/wavs/LJ038-0102.wav|tests/data/ljspeech/wavs/LJ038-0102.npy +tests/data/ljspeech/wavs/LJ006-0113.wav|tests/data/ljspeech/wavs/LJ006-0113.npy +tests/data/ljspeech/wavs/LJ004-0026.wav|tests/data/ljspeech/wavs/LJ004-0026.npy +tests/data/ljspeech/wavs/LJ013-0047.wav|tests/data/ljspeech/wavs/LJ013-0047.npy +tests/data/ljspeech/wavs/LJ005-0041.wav|tests/data/ljspeech/wavs/LJ005-0041.npy +tests/data/ljspeech/wavs/LJ006-0065.wav|tests/data/ljspeech/wavs/LJ006-0065.npy +tests/data/ljspeech/wavs/LJ016-0142.wav|tests/data/ljspeech/wavs/LJ016-0142.npy +tests/data/ljspeech/wavs/LJ016-0163.wav|tests/data/ljspeech/wavs/LJ016-0163.npy +tests/data/ljspeech/wavs/LJ041-0197.wav|tests/data/ljspeech/wavs/LJ041-0197.npy +tests/data/ljspeech/wavs/LJ043-0062.wav|tests/data/ljspeech/wavs/LJ043-0062.npy +tests/data/ljspeech/wavs/LJ047-0132.wav|tests/data/ljspeech/wavs/LJ047-0132.npy +tests/data/ljspeech/wavs/LJ028-0096.wav|tests/data/ljspeech/wavs/LJ028-0096.npy +tests/data/ljspeech/wavs/LJ030-0193.wav|tests/data/ljspeech/wavs/LJ030-0193.npy +tests/data/ljspeech/wavs/LJ016-0111.wav|tests/data/ljspeech/wavs/LJ016-0111.npy +tests/data/ljspeech/wavs/LJ035-0043.wav|tests/data/ljspeech/wavs/LJ035-0043.npy +tests/data/ljspeech/wavs/LJ013-0230.wav|tests/data/ljspeech/wavs/LJ013-0230.npy +tests/data/ljspeech/wavs/LJ032-0134.wav|tests/data/ljspeech/wavs/LJ032-0134.npy +tests/data/ljspeech/wavs/LJ006-0301.wav|tests/data/ljspeech/wavs/LJ006-0301.npy +tests/data/ljspeech/wavs/LJ035-0055.wav|tests/data/ljspeech/wavs/LJ035-0055.npy +tests/data/ljspeech/wavs/LJ011-0164.wav|tests/data/ljspeech/wavs/LJ011-0164.npy +tests/data/ljspeech/wavs/LJ019-0365.wav|tests/data/ljspeech/wavs/LJ019-0365.npy +tests/data/ljspeech/wavs/LJ017-0164.wav|tests/data/ljspeech/wavs/LJ017-0164.npy +tests/data/ljspeech/wavs/LJ045-0094.wav|tests/data/ljspeech/wavs/LJ045-0094.npy +tests/data/ljspeech/wavs/LJ036-0148.wav|tests/data/ljspeech/wavs/LJ036-0148.npy +tests/data/ljspeech/wavs/LJ007-0026.wav|tests/data/ljspeech/wavs/LJ007-0026.npy +tests/data/ljspeech/wavs/LJ035-0041.wav|tests/data/ljspeech/wavs/LJ035-0041.npy +tests/data/ljspeech/wavs/LJ040-0162.wav|tests/data/ljspeech/wavs/LJ040-0162.npy +tests/data/ljspeech/wavs/LJ048-0103.wav|tests/data/ljspeech/wavs/LJ048-0103.npy +tests/data/ljspeech/wavs/LJ017-0118.wav|tests/data/ljspeech/wavs/LJ017-0118.npy +tests/data/ljspeech/wavs/LJ034-0216.wav|tests/data/ljspeech/wavs/LJ034-0216.npy +tests/data/ljspeech/wavs/LJ037-0122.wav|tests/data/ljspeech/wavs/LJ037-0122.npy +tests/data/ljspeech/wavs/LJ018-0279.wav|tests/data/ljspeech/wavs/LJ018-0279.npy +tests/data/ljspeech/wavs/LJ032-0206.wav|tests/data/ljspeech/wavs/LJ032-0206.npy +tests/data/ljspeech/wavs/LJ004-0187.wav|tests/data/ljspeech/wavs/LJ004-0187.npy +tests/data/ljspeech/wavs/LJ014-0048.wav|tests/data/ljspeech/wavs/LJ014-0048.npy +tests/data/ljspeech/wavs/LJ010-0146.wav|tests/data/ljspeech/wavs/LJ010-0146.npy +tests/data/ljspeech/wavs/LJ039-0042.wav|tests/data/ljspeech/wavs/LJ039-0042.npy +tests/data/ljspeech/wavs/LJ016-0168.wav|tests/data/ljspeech/wavs/LJ016-0168.npy +tests/data/ljspeech/wavs/LJ027-0099.wav|tests/data/ljspeech/wavs/LJ027-0099.npy +tests/data/ljspeech/wavs/LJ042-0057.wav|tests/data/ljspeech/wavs/LJ042-0057.npy +tests/data/ljspeech/wavs/LJ047-0024.wav|tests/data/ljspeech/wavs/LJ047-0024.npy +tests/data/ljspeech/wavs/LJ036-0099.wav|tests/data/ljspeech/wavs/LJ036-0099.npy +tests/data/ljspeech/wavs/LJ049-0200.wav|tests/data/ljspeech/wavs/LJ049-0200.npy +tests/data/ljspeech/wavs/LJ008-0200.wav|tests/data/ljspeech/wavs/LJ008-0200.npy +tests/data/ljspeech/wavs/LJ021-0020.wav|tests/data/ljspeech/wavs/LJ021-0020.npy +tests/data/ljspeech/wavs/LJ017-0080.wav|tests/data/ljspeech/wavs/LJ017-0080.npy +tests/data/ljspeech/wavs/LJ048-0189.wav|tests/data/ljspeech/wavs/LJ048-0189.npy +tests/data/ljspeech/wavs/LJ047-0143.wav|tests/data/ljspeech/wavs/LJ047-0143.npy +tests/data/ljspeech/wavs/LJ045-0031.wav|tests/data/ljspeech/wavs/LJ045-0031.npy +tests/data/ljspeech/wavs/LJ043-0049.wav|tests/data/ljspeech/wavs/LJ043-0049.npy +tests/data/ljspeech/wavs/LJ001-0172.wav|tests/data/ljspeech/wavs/LJ001-0172.npy +tests/data/ljspeech/wavs/LJ017-0127.wav|tests/data/ljspeech/wavs/LJ017-0127.npy +tests/data/ljspeech/wavs/LJ037-0165.wav|tests/data/ljspeech/wavs/LJ037-0165.npy +tests/data/ljspeech/wavs/LJ032-0080.wav|tests/data/ljspeech/wavs/LJ032-0080.npy +tests/data/ljspeech/wavs/LJ012-0106.wav|tests/data/ljspeech/wavs/LJ012-0106.npy +tests/data/ljspeech/wavs/LJ003-0329.wav|tests/data/ljspeech/wavs/LJ003-0329.npy +tests/data/ljspeech/wavs/LJ029-0071.wav|tests/data/ljspeech/wavs/LJ029-0071.npy +tests/data/ljspeech/wavs/LJ008-0194.wav|tests/data/ljspeech/wavs/LJ008-0194.npy +tests/data/ljspeech/wavs/LJ027-0167.wav|tests/data/ljspeech/wavs/LJ027-0167.npy +tests/data/ljspeech/wavs/LJ034-0167.wav|tests/data/ljspeech/wavs/LJ034-0167.npy +tests/data/ljspeech/wavs/LJ010-0032.wav|tests/data/ljspeech/wavs/LJ010-0032.npy +tests/data/ljspeech/wavs/LJ042-0019.wav|tests/data/ljspeech/wavs/LJ042-0019.npy +tests/data/ljspeech/wavs/LJ010-0070.wav|tests/data/ljspeech/wavs/LJ010-0070.npy +tests/data/ljspeech/wavs/LJ046-0146.wav|tests/data/ljspeech/wavs/LJ046-0146.npy +tests/data/ljspeech/wavs/LJ043-0103.wav|tests/data/ljspeech/wavs/LJ043-0103.npy +tests/data/ljspeech/wavs/LJ040-0057.wav|tests/data/ljspeech/wavs/LJ040-0057.npy +tests/data/ljspeech/wavs/LJ011-0249.wav|tests/data/ljspeech/wavs/LJ011-0249.npy +tests/data/ljspeech/wavs/LJ018-0221.wav|tests/data/ljspeech/wavs/LJ018-0221.npy +tests/data/ljspeech/wavs/LJ048-0160.wav|tests/data/ljspeech/wavs/LJ048-0160.npy +tests/data/ljspeech/wavs/LJ029-0133.wav|tests/data/ljspeech/wavs/LJ029-0133.npy +tests/data/ljspeech/wavs/LJ003-0193.wav|tests/data/ljspeech/wavs/LJ003-0193.npy +tests/data/ljspeech/wavs/LJ018-0131.wav|tests/data/ljspeech/wavs/LJ018-0131.npy +tests/data/ljspeech/wavs/LJ042-0223.wav|tests/data/ljspeech/wavs/LJ042-0223.npy +tests/data/ljspeech/wavs/LJ050-0096.wav|tests/data/ljspeech/wavs/LJ050-0096.npy +tests/data/ljspeech/wavs/LJ018-0146.wav|tests/data/ljspeech/wavs/LJ018-0146.npy +tests/data/ljspeech/wavs/LJ046-0209.wav|tests/data/ljspeech/wavs/LJ046-0209.npy +tests/data/ljspeech/wavs/LJ007-0003.wav|tests/data/ljspeech/wavs/LJ007-0003.npy +tests/data/ljspeech/wavs/LJ031-0140.wav|tests/data/ljspeech/wavs/LJ031-0140.npy +tests/data/ljspeech/wavs/LJ048-0122.wav|tests/data/ljspeech/wavs/LJ048-0122.npy +tests/data/ljspeech/wavs/LJ003-0096.wav|tests/data/ljspeech/wavs/LJ003-0096.npy +tests/data/ljspeech/wavs/LJ018-0029.wav|tests/data/ljspeech/wavs/LJ018-0029.npy +tests/data/ljspeech/wavs/LJ018-0152.wav|tests/data/ljspeech/wavs/LJ018-0152.npy +tests/data/ljspeech/wavs/LJ014-0138.wav|tests/data/ljspeech/wavs/LJ014-0138.npy +tests/data/ljspeech/wavs/LJ048-0070.wav|tests/data/ljspeech/wavs/LJ048-0070.npy +tests/data/ljspeech/wavs/LJ018-0345.wav|tests/data/ljspeech/wavs/LJ018-0345.npy +tests/data/ljspeech/wavs/LJ011-0071.wav|tests/data/ljspeech/wavs/LJ011-0071.npy +tests/data/ljspeech/wavs/LJ003-0185.wav|tests/data/ljspeech/wavs/LJ003-0185.npy +tests/data/ljspeech/wavs/LJ040-0043.wav|tests/data/ljspeech/wavs/LJ040-0043.npy +tests/data/ljspeech/wavs/LJ018-0026.wav|tests/data/ljspeech/wavs/LJ018-0026.npy +tests/data/ljspeech/wavs/LJ001-0115.wav|tests/data/ljspeech/wavs/LJ001-0115.npy +tests/data/ljspeech/wavs/LJ050-0189.wav|tests/data/ljspeech/wavs/LJ050-0189.npy +tests/data/ljspeech/wavs/LJ038-0173.wav|tests/data/ljspeech/wavs/LJ038-0173.npy +tests/data/ljspeech/wavs/LJ038-0172.wav|tests/data/ljspeech/wavs/LJ038-0172.npy +tests/data/ljspeech/wavs/LJ016-0194.wav|tests/data/ljspeech/wavs/LJ016-0194.npy +tests/data/ljspeech/wavs/LJ016-0324.wav|tests/data/ljspeech/wavs/LJ016-0324.npy +tests/data/ljspeech/wavs/LJ042-0157.wav|tests/data/ljspeech/wavs/LJ042-0157.npy +tests/data/ljspeech/wavs/LJ044-0160.wav|tests/data/ljspeech/wavs/LJ044-0160.npy +tests/data/ljspeech/wavs/LJ003-0293.wav|tests/data/ljspeech/wavs/LJ003-0293.npy +tests/data/ljspeech/wavs/LJ021-0156.wav|tests/data/ljspeech/wavs/LJ021-0156.npy +tests/data/ljspeech/wavs/LJ041-0129.wav|tests/data/ljspeech/wavs/LJ041-0129.npy +tests/data/ljspeech/wavs/LJ002-0189.wav|tests/data/ljspeech/wavs/LJ002-0189.npy +tests/data/ljspeech/wavs/LJ034-0045.wav|tests/data/ljspeech/wavs/LJ034-0045.npy +tests/data/ljspeech/wavs/LJ024-0110.wav|tests/data/ljspeech/wavs/LJ024-0110.npy +tests/data/ljspeech/wavs/LJ044-0044.wav|tests/data/ljspeech/wavs/LJ044-0044.npy +tests/data/ljspeech/wavs/LJ023-0015.wav|tests/data/ljspeech/wavs/LJ023-0015.npy +tests/data/ljspeech/wavs/LJ025-0027.wav|tests/data/ljspeech/wavs/LJ025-0027.npy +tests/data/ljspeech/wavs/LJ048-0174.wav|tests/data/ljspeech/wavs/LJ048-0174.npy +tests/data/ljspeech/wavs/LJ028-0358.wav|tests/data/ljspeech/wavs/LJ028-0358.npy +tests/data/ljspeech/wavs/LJ050-0261.wav|tests/data/ljspeech/wavs/LJ050-0261.npy +tests/data/ljspeech/wavs/LJ007-0180.wav|tests/data/ljspeech/wavs/LJ007-0180.npy +tests/data/ljspeech/wavs/LJ004-0200.wav|tests/data/ljspeech/wavs/LJ004-0200.npy +tests/data/ljspeech/wavs/LJ021-0120.wav|tests/data/ljspeech/wavs/LJ021-0120.npy +tests/data/ljspeech/wavs/LJ046-0160.wav|tests/data/ljspeech/wavs/LJ046-0160.npy +tests/data/ljspeech/wavs/LJ024-0117.wav|tests/data/ljspeech/wavs/LJ024-0117.npy +tests/data/ljspeech/wavs/LJ016-0231.wav|tests/data/ljspeech/wavs/LJ016-0231.npy +tests/data/ljspeech/wavs/LJ003-0251.wav|tests/data/ljspeech/wavs/LJ003-0251.npy +tests/data/ljspeech/wavs/LJ005-0266.wav|tests/data/ljspeech/wavs/LJ005-0266.npy +tests/data/ljspeech/wavs/LJ019-0018.wav|tests/data/ljspeech/wavs/LJ019-0018.npy +tests/data/ljspeech/wavs/LJ031-0233.wav|tests/data/ljspeech/wavs/LJ031-0233.npy +tests/data/ljspeech/wavs/LJ046-0094.wav|tests/data/ljspeech/wavs/LJ046-0094.npy +tests/data/ljspeech/wavs/LJ050-0066.wav|tests/data/ljspeech/wavs/LJ050-0066.npy +tests/data/ljspeech/wavs/LJ018-0362.wav|tests/data/ljspeech/wavs/LJ018-0362.npy +tests/data/ljspeech/wavs/LJ007-0013.wav|tests/data/ljspeech/wavs/LJ007-0013.npy +tests/data/ljspeech/wavs/LJ016-0237.wav|tests/data/ljspeech/wavs/LJ016-0237.npy +tests/data/ljspeech/wavs/LJ007-0028.wav|tests/data/ljspeech/wavs/LJ007-0028.npy +tests/data/ljspeech/wavs/LJ028-0351.wav|tests/data/ljspeech/wavs/LJ028-0351.npy +tests/data/ljspeech/wavs/LJ019-0150.wav|tests/data/ljspeech/wavs/LJ019-0150.npy +tests/data/ljspeech/wavs/LJ038-0025.wav|tests/data/ljspeech/wavs/LJ038-0025.npy +tests/data/ljspeech/wavs/LJ026-0121.wav|tests/data/ljspeech/wavs/LJ026-0121.npy +tests/data/ljspeech/wavs/LJ025-0081.wav|tests/data/ljspeech/wavs/LJ025-0081.npy +tests/data/ljspeech/wavs/LJ009-0178.wav|tests/data/ljspeech/wavs/LJ009-0178.npy +tests/data/ljspeech/wavs/LJ044-0212.wav|tests/data/ljspeech/wavs/LJ044-0212.npy +tests/data/ljspeech/wavs/LJ002-0296.wav|tests/data/ljspeech/wavs/LJ002-0296.npy +tests/data/ljspeech/wavs/LJ012-0211.wav|tests/data/ljspeech/wavs/LJ012-0211.npy +tests/data/ljspeech/wavs/LJ026-0015.wav|tests/data/ljspeech/wavs/LJ026-0015.npy +tests/data/ljspeech/wavs/LJ023-0006.wav|tests/data/ljspeech/wavs/LJ023-0006.npy +tests/data/ljspeech/wavs/LJ025-0076.wav|tests/data/ljspeech/wavs/LJ025-0076.npy +tests/data/ljspeech/wavs/LJ025-0150.wav|tests/data/ljspeech/wavs/LJ025-0150.npy +tests/data/ljspeech/wavs/LJ039-0066.wav|tests/data/ljspeech/wavs/LJ039-0066.npy +tests/data/ljspeech/wavs/LJ025-0075.wav|tests/data/ljspeech/wavs/LJ025-0075.npy +tests/data/ljspeech/wavs/LJ021-0191.wav|tests/data/ljspeech/wavs/LJ021-0191.npy +tests/data/ljspeech/wavs/LJ012-0230.wav|tests/data/ljspeech/wavs/LJ012-0230.npy +tests/data/ljspeech/wavs/LJ012-0260.wav|tests/data/ljspeech/wavs/LJ012-0260.npy +tests/data/ljspeech/wavs/LJ041-0009.wav|tests/data/ljspeech/wavs/LJ041-0009.npy +tests/data/ljspeech/wavs/LJ045-0230.wav|tests/data/ljspeech/wavs/LJ045-0230.npy +tests/data/ljspeech/wavs/LJ049-0168.wav|tests/data/ljspeech/wavs/LJ049-0168.npy +tests/data/ljspeech/wavs/LJ015-0277.wav|tests/data/ljspeech/wavs/LJ015-0277.npy +tests/data/ljspeech/wavs/LJ030-0100.wav|tests/data/ljspeech/wavs/LJ030-0100.npy +tests/data/ljspeech/wavs/LJ018-0274.wav|tests/data/ljspeech/wavs/LJ018-0274.npy +tests/data/ljspeech/wavs/LJ006-0035.wav|tests/data/ljspeech/wavs/LJ006-0035.npy +tests/data/ljspeech/wavs/LJ009-0084.wav|tests/data/ljspeech/wavs/LJ009-0084.npy +tests/data/ljspeech/wavs/LJ009-0297.wav|tests/data/ljspeech/wavs/LJ009-0297.npy +tests/data/ljspeech/wavs/LJ045-0240.wav|tests/data/ljspeech/wavs/LJ045-0240.npy +tests/data/ljspeech/wavs/LJ014-0260.wav|tests/data/ljspeech/wavs/LJ014-0260.npy +tests/data/ljspeech/wavs/LJ009-0118.wav|tests/data/ljspeech/wavs/LJ009-0118.npy +tests/data/ljspeech/wavs/LJ022-0012.wav|tests/data/ljspeech/wavs/LJ022-0012.npy +tests/data/ljspeech/wavs/LJ045-0220.wav|tests/data/ljspeech/wavs/LJ045-0220.npy +tests/data/ljspeech/wavs/LJ022-0047.wav|tests/data/ljspeech/wavs/LJ022-0047.npy +tests/data/ljspeech/wavs/LJ008-0279.wav|tests/data/ljspeech/wavs/LJ008-0279.npy +tests/data/ljspeech/wavs/LJ005-0141.wav|tests/data/ljspeech/wavs/LJ005-0141.npy +tests/data/ljspeech/wavs/LJ035-0163.wav|tests/data/ljspeech/wavs/LJ035-0163.npy +tests/data/ljspeech/wavs/LJ030-0110.wav|tests/data/ljspeech/wavs/LJ030-0110.npy +tests/data/ljspeech/wavs/LJ015-0094.wav|tests/data/ljspeech/wavs/LJ015-0094.npy +tests/data/ljspeech/wavs/LJ034-0087.wav|tests/data/ljspeech/wavs/LJ034-0087.npy +tests/data/ljspeech/wavs/LJ002-0063.wav|tests/data/ljspeech/wavs/LJ002-0063.npy +tests/data/ljspeech/wavs/LJ028-0281.wav|tests/data/ljspeech/wavs/LJ028-0281.npy +tests/data/ljspeech/wavs/LJ047-0187.wav|tests/data/ljspeech/wavs/LJ047-0187.npy +tests/data/ljspeech/wavs/LJ002-0230.wav|tests/data/ljspeech/wavs/LJ002-0230.npy +tests/data/ljspeech/wavs/LJ019-0219.wav|tests/data/ljspeech/wavs/LJ019-0219.npy +tests/data/ljspeech/wavs/LJ014-0168.wav|tests/data/ljspeech/wavs/LJ014-0168.npy +tests/data/ljspeech/wavs/LJ010-0142.wav|tests/data/ljspeech/wavs/LJ010-0142.npy +tests/data/ljspeech/wavs/LJ019-0181.wav|tests/data/ljspeech/wavs/LJ019-0181.npy +tests/data/ljspeech/wavs/LJ011-0122.wav|tests/data/ljspeech/wavs/LJ011-0122.npy +tests/data/ljspeech/wavs/LJ007-0239.wav|tests/data/ljspeech/wavs/LJ007-0239.npy +tests/data/ljspeech/wavs/LJ029-0086.wav|tests/data/ljspeech/wavs/LJ029-0086.npy +tests/data/ljspeech/wavs/LJ028-0262.wav|tests/data/ljspeech/wavs/LJ028-0262.npy +tests/data/ljspeech/wavs/LJ019-0246.wav|tests/data/ljspeech/wavs/LJ019-0246.npy +tests/data/ljspeech/wavs/LJ021-0200.wav|tests/data/ljspeech/wavs/LJ021-0200.npy +tests/data/ljspeech/wavs/LJ010-0156.wav|tests/data/ljspeech/wavs/LJ010-0156.npy +tests/data/ljspeech/wavs/LJ016-0184.wav|tests/data/ljspeech/wavs/LJ016-0184.npy +tests/data/ljspeech/wavs/LJ038-0021.wav|tests/data/ljspeech/wavs/LJ038-0021.npy +tests/data/ljspeech/wavs/LJ003-0211.wav|tests/data/ljspeech/wavs/LJ003-0211.npy +tests/data/ljspeech/wavs/LJ050-0243.wav|tests/data/ljspeech/wavs/LJ050-0243.npy +tests/data/ljspeech/wavs/LJ019-0222.wav|tests/data/ljspeech/wavs/LJ019-0222.npy +tests/data/ljspeech/wavs/LJ016-0190.wav|tests/data/ljspeech/wavs/LJ016-0190.npy +tests/data/ljspeech/wavs/LJ003-0101.wav|tests/data/ljspeech/wavs/LJ003-0101.npy +tests/data/ljspeech/wavs/LJ008-0011.wav|tests/data/ljspeech/wavs/LJ008-0011.npy +tests/data/ljspeech/wavs/LJ019-0208.wav|tests/data/ljspeech/wavs/LJ019-0208.npy +tests/data/ljspeech/wavs/LJ007-0232.wav|tests/data/ljspeech/wavs/LJ007-0232.npy +tests/data/ljspeech/wavs/LJ034-0092.wav|tests/data/ljspeech/wavs/LJ034-0092.npy +tests/data/ljspeech/wavs/LJ028-0295.wav|tests/data/ljspeech/wavs/LJ028-0295.npy +tests/data/ljspeech/wavs/LJ032-0022.wav|tests/data/ljspeech/wavs/LJ032-0022.npy +tests/data/ljspeech/wavs/LJ010-0284.wav|tests/data/ljspeech/wavs/LJ010-0284.npy +tests/data/ljspeech/wavs/LJ041-0032.wav|tests/data/ljspeech/wavs/LJ041-0032.npy +tests/data/ljspeech/wavs/LJ010-0241.wav|tests/data/ljspeech/wavs/LJ010-0241.npy +tests/data/ljspeech/wavs/LJ016-0397.wav|tests/data/ljspeech/wavs/LJ016-0397.npy +tests/data/ljspeech/wavs/LJ042-0139.wav|tests/data/ljspeech/wavs/LJ042-0139.npy +tests/data/ljspeech/wavs/LJ043-0175.wav|tests/data/ljspeech/wavs/LJ043-0175.npy +tests/data/ljspeech/wavs/LJ007-0189.wav|tests/data/ljspeech/wavs/LJ007-0189.npy +tests/data/ljspeech/wavs/LJ034-0046.wav|tests/data/ljspeech/wavs/LJ034-0046.npy +tests/data/ljspeech/wavs/LJ042-0146.wav|tests/data/ljspeech/wavs/LJ042-0146.npy +tests/data/ljspeech/wavs/LJ043-0092.wav|tests/data/ljspeech/wavs/LJ043-0092.npy +tests/data/ljspeech/wavs/LJ037-0036.wav|tests/data/ljspeech/wavs/LJ037-0036.npy +tests/data/ljspeech/wavs/LJ005-0140.wav|tests/data/ljspeech/wavs/LJ005-0140.npy +tests/data/ljspeech/wavs/LJ037-0060.wav|tests/data/ljspeech/wavs/LJ037-0060.npy +tests/data/ljspeech/wavs/LJ036-0108.wav|tests/data/ljspeech/wavs/LJ036-0108.npy +tests/data/ljspeech/wavs/LJ022-0080.wav|tests/data/ljspeech/wavs/LJ022-0080.npy +tests/data/ljspeech/wavs/LJ016-0011.wav|tests/data/ljspeech/wavs/LJ016-0011.npy +tests/data/ljspeech/wavs/LJ032-0256.wav|tests/data/ljspeech/wavs/LJ032-0256.npy +tests/data/ljspeech/wavs/LJ011-0076.wav|tests/data/ljspeech/wavs/LJ011-0076.npy +tests/data/ljspeech/wavs/LJ003-0278.wav|tests/data/ljspeech/wavs/LJ003-0278.npy +tests/data/ljspeech/wavs/LJ002-0041.wav|tests/data/ljspeech/wavs/LJ002-0041.npy +tests/data/ljspeech/wavs/LJ037-0092.wav|tests/data/ljspeech/wavs/LJ037-0092.npy +tests/data/ljspeech/wavs/LJ041-0108.wav|tests/data/ljspeech/wavs/LJ041-0108.npy +tests/data/ljspeech/wavs/LJ037-0042.wav|tests/data/ljspeech/wavs/LJ037-0042.npy +tests/data/ljspeech/wavs/LJ049-0093.wav|tests/data/ljspeech/wavs/LJ049-0093.npy +tests/data/ljspeech/wavs/LJ003-0144.wav|tests/data/ljspeech/wavs/LJ003-0144.npy +tests/data/ljspeech/wavs/LJ006-0154.wav|tests/data/ljspeech/wavs/LJ006-0154.npy +tests/data/ljspeech/wavs/LJ010-0176.wav|tests/data/ljspeech/wavs/LJ010-0176.npy +tests/data/ljspeech/wavs/LJ007-0162.wav|tests/data/ljspeech/wavs/LJ007-0162.npy +tests/data/ljspeech/wavs/LJ048-0169.wav|tests/data/ljspeech/wavs/LJ048-0169.npy +tests/data/ljspeech/wavs/LJ012-0241.wav|tests/data/ljspeech/wavs/LJ012-0241.npy +tests/data/ljspeech/wavs/LJ018-0371.wav|tests/data/ljspeech/wavs/LJ018-0371.npy +tests/data/ljspeech/wavs/LJ010-0280.wav|tests/data/ljspeech/wavs/LJ010-0280.npy +tests/data/ljspeech/wavs/LJ005-0073.wav|tests/data/ljspeech/wavs/LJ005-0073.npy +tests/data/ljspeech/wavs/LJ050-0222.wav|tests/data/ljspeech/wavs/LJ050-0222.npy +tests/data/ljspeech/wavs/LJ042-0224.wav|tests/data/ljspeech/wavs/LJ042-0224.npy +tests/data/ljspeech/wavs/LJ027-0004.wav|tests/data/ljspeech/wavs/LJ027-0004.npy +tests/data/ljspeech/wavs/LJ028-0390.wav|tests/data/ljspeech/wavs/LJ028-0390.npy +tests/data/ljspeech/wavs/LJ050-0063.wav|tests/data/ljspeech/wavs/LJ050-0063.npy +tests/data/ljspeech/wavs/LJ046-0176.wav|tests/data/ljspeech/wavs/LJ046-0176.npy +tests/data/ljspeech/wavs/LJ028-0365.wav|tests/data/ljspeech/wavs/LJ028-0365.npy +tests/data/ljspeech/wavs/LJ016-0010.wav|tests/data/ljspeech/wavs/LJ016-0010.npy +tests/data/ljspeech/wavs/LJ018-0398.wav|tests/data/ljspeech/wavs/LJ018-0398.npy +tests/data/ljspeech/wavs/LJ022-0049.wav|tests/data/ljspeech/wavs/LJ022-0049.npy +tests/data/ljspeech/wavs/LJ008-0295.wav|tests/data/ljspeech/wavs/LJ008-0295.npy +tests/data/ljspeech/wavs/LJ019-0268.wav|tests/data/ljspeech/wavs/LJ019-0268.npy +tests/data/ljspeech/wavs/LJ001-0087.wav|tests/data/ljspeech/wavs/LJ001-0087.npy +tests/data/ljspeech/wavs/LJ007-0083.wav|tests/data/ljspeech/wavs/LJ007-0083.npy +tests/data/ljspeech/wavs/LJ012-0007.wav|tests/data/ljspeech/wavs/LJ012-0007.npy +tests/data/ljspeech/wavs/LJ029-0094.wav|tests/data/ljspeech/wavs/LJ029-0094.npy +tests/data/ljspeech/wavs/LJ011-0166.wav|tests/data/ljspeech/wavs/LJ011-0166.npy +tests/data/ljspeech/wavs/LJ039-0177.wav|tests/data/ljspeech/wavs/LJ039-0177.npy +tests/data/ljspeech/wavs/LJ004-0084.wav|tests/data/ljspeech/wavs/LJ004-0084.npy +tests/data/ljspeech/wavs/LJ021-0031.wav|tests/data/ljspeech/wavs/LJ021-0031.npy +tests/data/ljspeech/wavs/LJ017-0232.wav|tests/data/ljspeech/wavs/LJ017-0232.npy +tests/data/ljspeech/wavs/LJ001-0105.wav|tests/data/ljspeech/wavs/LJ001-0105.npy +tests/data/ljspeech/wavs/LJ013-0022.wav|tests/data/ljspeech/wavs/LJ013-0022.npy +tests/data/ljspeech/wavs/LJ001-0183.wav|tests/data/ljspeech/wavs/LJ001-0183.npy +tests/data/ljspeech/wavs/LJ048-0132.wav|tests/data/ljspeech/wavs/LJ048-0132.npy +tests/data/ljspeech/wavs/LJ010-0040.wav|tests/data/ljspeech/wavs/LJ010-0040.npy +tests/data/ljspeech/wavs/LJ008-0155.wav|tests/data/ljspeech/wavs/LJ008-0155.npy +tests/data/ljspeech/wavs/LJ005-0281.wav|tests/data/ljspeech/wavs/LJ005-0281.npy +tests/data/ljspeech/wavs/LJ013-0143.wav|tests/data/ljspeech/wavs/LJ013-0143.npy +tests/data/ljspeech/wavs/LJ018-0311.wav|tests/data/ljspeech/wavs/LJ018-0311.npy +tests/data/ljspeech/wavs/LJ032-0234.wav|tests/data/ljspeech/wavs/LJ032-0234.npy +tests/data/ljspeech/wavs/LJ043-0034.wav|tests/data/ljspeech/wavs/LJ043-0034.npy +tests/data/ljspeech/wavs/LJ031-0038.wav|tests/data/ljspeech/wavs/LJ031-0038.npy +tests/data/ljspeech/wavs/LJ010-0045.wav|tests/data/ljspeech/wavs/LJ010-0045.npy +tests/data/ljspeech/wavs/LJ025-0005.wav|tests/data/ljspeech/wavs/LJ025-0005.npy +tests/data/ljspeech/wavs/LJ043-0140.wav|tests/data/ljspeech/wavs/LJ043-0140.npy +tests/data/ljspeech/wavs/LJ010-0003.wav|tests/data/ljspeech/wavs/LJ010-0003.npy +tests/data/ljspeech/wavs/LJ022-0178.wav|tests/data/ljspeech/wavs/LJ022-0178.npy +tests/data/ljspeech/wavs/LJ018-0197.wav|tests/data/ljspeech/wavs/LJ018-0197.npy +tests/data/ljspeech/wavs/LJ026-0129.wav|tests/data/ljspeech/wavs/LJ026-0129.npy +tests/data/ljspeech/wavs/LJ002-0138.wav|tests/data/ljspeech/wavs/LJ002-0138.npy +tests/data/ljspeech/wavs/LJ049-0105.wav|tests/data/ljspeech/wavs/LJ049-0105.npy +tests/data/ljspeech/wavs/LJ006-0249.wav|tests/data/ljspeech/wavs/LJ006-0249.npy +tests/data/ljspeech/wavs/LJ037-0161.wav|tests/data/ljspeech/wavs/LJ037-0161.npy +tests/data/ljspeech/wavs/LJ027-0101.wav|tests/data/ljspeech/wavs/LJ027-0101.npy +tests/data/ljspeech/wavs/LJ003-0267.wav|tests/data/ljspeech/wavs/LJ003-0267.npy +tests/data/ljspeech/wavs/LJ033-0016.wav|tests/data/ljspeech/wavs/LJ033-0016.npy +tests/data/ljspeech/wavs/LJ049-0214.wav|tests/data/ljspeech/wavs/LJ049-0214.npy +tests/data/ljspeech/wavs/LJ027-0122.wav|tests/data/ljspeech/wavs/LJ027-0122.npy +tests/data/ljspeech/wavs/LJ005-0262.wav|tests/data/ljspeech/wavs/LJ005-0262.npy +tests/data/ljspeech/wavs/LJ042-0024.wav|tests/data/ljspeech/wavs/LJ042-0024.npy +tests/data/ljspeech/wavs/LJ007-0085.wav|tests/data/ljspeech/wavs/LJ007-0085.npy +tests/data/ljspeech/wavs/LJ015-0031.wav|tests/data/ljspeech/wavs/LJ015-0031.npy +tests/data/ljspeech/wavs/LJ029-0137.wav|tests/data/ljspeech/wavs/LJ029-0137.npy +tests/data/ljspeech/wavs/LJ032-0193.wav|tests/data/ljspeech/wavs/LJ032-0193.npy +tests/data/ljspeech/wavs/LJ019-0340.wav|tests/data/ljspeech/wavs/LJ019-0340.npy +tests/data/ljspeech/wavs/LJ025-0099.wav|tests/data/ljspeech/wavs/LJ025-0099.npy +tests/data/ljspeech/wavs/LJ018-0095.wav|tests/data/ljspeech/wavs/LJ018-0095.npy +tests/data/ljspeech/wavs/LJ008-0319.wav|tests/data/ljspeech/wavs/LJ008-0319.npy +tests/data/ljspeech/wavs/LJ010-0060.wav|tests/data/ljspeech/wavs/LJ010-0060.npy +tests/data/ljspeech/wavs/LJ015-0238.wav|tests/data/ljspeech/wavs/LJ015-0238.npy +tests/data/ljspeech/wavs/LJ016-0112.wav|tests/data/ljspeech/wavs/LJ016-0112.npy +tests/data/ljspeech/wavs/LJ044-0139.wav|tests/data/ljspeech/wavs/LJ044-0139.npy +tests/data/ljspeech/wavs/LJ008-0093.wav|tests/data/ljspeech/wavs/LJ008-0093.npy +tests/data/ljspeech/wavs/LJ010-0020.wav|tests/data/ljspeech/wavs/LJ010-0020.npy +tests/data/ljspeech/wavs/LJ041-0181.wav|tests/data/ljspeech/wavs/LJ041-0181.npy +tests/data/ljspeech/wavs/LJ036-0032.wav|tests/data/ljspeech/wavs/LJ036-0032.npy +tests/data/ljspeech/wavs/LJ001-0099.wav|tests/data/ljspeech/wavs/LJ001-0099.npy +tests/data/ljspeech/wavs/LJ008-0268.wav|tests/data/ljspeech/wavs/LJ008-0268.npy +tests/data/ljspeech/wavs/LJ045-0126.wav|tests/data/ljspeech/wavs/LJ045-0126.npy +tests/data/ljspeech/wavs/LJ006-0293.wav|tests/data/ljspeech/wavs/LJ006-0293.npy +tests/data/ljspeech/wavs/LJ045-0123.wav|tests/data/ljspeech/wavs/LJ045-0123.npy +tests/data/ljspeech/wavs/LJ012-0278.wav|tests/data/ljspeech/wavs/LJ012-0278.npy +tests/data/ljspeech/wavs/LJ005-0274.wav|tests/data/ljspeech/wavs/LJ005-0274.npy +tests/data/ljspeech/wavs/LJ045-0127.wav|tests/data/ljspeech/wavs/LJ045-0127.npy +tests/data/ljspeech/wavs/LJ009-0137.wav|tests/data/ljspeech/wavs/LJ009-0137.npy +tests/data/ljspeech/wavs/LJ019-0324.wav|tests/data/ljspeech/wavs/LJ019-0324.npy +tests/data/ljspeech/wavs/LJ003-0230.wav|tests/data/ljspeech/wavs/LJ003-0230.npy +tests/data/ljspeech/wavs/LJ041-0073.wav|tests/data/ljspeech/wavs/LJ041-0073.npy +tests/data/ljspeech/wavs/LJ014-0156.wav|tests/data/ljspeech/wavs/LJ014-0156.npy +tests/data/ljspeech/wavs/LJ037-0218.wav|tests/data/ljspeech/wavs/LJ037-0218.npy +tests/data/ljspeech/wavs/LJ008-0081.wav|tests/data/ljspeech/wavs/LJ008-0081.npy +tests/data/ljspeech/wavs/LJ038-0008.wav|tests/data/ljspeech/wavs/LJ038-0008.npy +tests/data/ljspeech/wavs/LJ033-0165.wav|tests/data/ljspeech/wavs/LJ033-0165.npy +tests/data/ljspeech/wavs/LJ010-0104.wav|tests/data/ljspeech/wavs/LJ010-0104.npy +tests/data/ljspeech/wavs/LJ031-0158.wav|tests/data/ljspeech/wavs/LJ031-0158.npy +tests/data/ljspeech/wavs/LJ030-0131.wav|tests/data/ljspeech/wavs/LJ030-0131.npy +tests/data/ljspeech/wavs/LJ008-0113.wav|tests/data/ljspeech/wavs/LJ008-0113.npy +tests/data/ljspeech/wavs/LJ011-0060.wav|tests/data/ljspeech/wavs/LJ011-0060.npy +tests/data/ljspeech/wavs/LJ017-0155.wav|tests/data/ljspeech/wavs/LJ017-0155.npy +tests/data/ljspeech/wavs/LJ006-0054.wav|tests/data/ljspeech/wavs/LJ006-0054.npy +tests/data/ljspeech/wavs/LJ046-0020.wav|tests/data/ljspeech/wavs/LJ046-0020.npy +tests/data/ljspeech/wavs/LJ015-0109.wav|tests/data/ljspeech/wavs/LJ015-0109.npy +tests/data/ljspeech/wavs/LJ013-0166.wav|tests/data/ljspeech/wavs/LJ013-0166.npy +tests/data/ljspeech/wavs/LJ011-0238.wav|tests/data/ljspeech/wavs/LJ011-0238.npy +tests/data/ljspeech/wavs/LJ048-0123.wav|tests/data/ljspeech/wavs/LJ048-0123.npy +tests/data/ljspeech/wavs/LJ029-0085.wav|tests/data/ljspeech/wavs/LJ029-0085.npy +tests/data/ljspeech/wavs/LJ022-0107.wav|tests/data/ljspeech/wavs/LJ022-0107.npy +tests/data/ljspeech/wavs/LJ042-0177.wav|tests/data/ljspeech/wavs/LJ042-0177.npy +tests/data/ljspeech/wavs/LJ002-0235.wav|tests/data/ljspeech/wavs/LJ002-0235.npy +tests/data/ljspeech/wavs/LJ039-0106.wav|tests/data/ljspeech/wavs/LJ039-0106.npy +tests/data/ljspeech/wavs/LJ029-0177.wav|tests/data/ljspeech/wavs/LJ029-0177.npy +tests/data/ljspeech/wavs/LJ016-0359.wav|tests/data/ljspeech/wavs/LJ016-0359.npy +tests/data/ljspeech/wavs/LJ010-0311.wav|tests/data/ljspeech/wavs/LJ010-0311.npy +tests/data/ljspeech/wavs/LJ044-0189.wav|tests/data/ljspeech/wavs/LJ044-0189.npy +tests/data/ljspeech/wavs/LJ005-0164.wav|tests/data/ljspeech/wavs/LJ005-0164.npy +tests/data/ljspeech/wavs/LJ003-0202.wav|tests/data/ljspeech/wavs/LJ003-0202.npy +tests/data/ljspeech/wavs/LJ001-0159.wav|tests/data/ljspeech/wavs/LJ001-0159.npy +tests/data/ljspeech/wavs/LJ018-0396.wav|tests/data/ljspeech/wavs/LJ018-0396.npy +tests/data/ljspeech/wavs/LJ021-0094.wav|tests/data/ljspeech/wavs/LJ021-0094.npy +tests/data/ljspeech/wavs/LJ036-0023.wav|tests/data/ljspeech/wavs/LJ036-0023.npy +tests/data/ljspeech/wavs/LJ038-0167.wav|tests/data/ljspeech/wavs/LJ038-0167.npy +tests/data/ljspeech/wavs/LJ046-0022.wav|tests/data/ljspeech/wavs/LJ046-0022.npy +tests/data/ljspeech/wavs/LJ046-0002.wav|tests/data/ljspeech/wavs/LJ046-0002.npy +tests/data/ljspeech/wavs/LJ018-0247.wav|tests/data/ljspeech/wavs/LJ018-0247.npy +tests/data/ljspeech/wavs/LJ025-0088.wav|tests/data/ljspeech/wavs/LJ025-0088.npy +tests/data/ljspeech/wavs/LJ049-0217.wav|tests/data/ljspeech/wavs/LJ049-0217.npy +tests/data/ljspeech/wavs/LJ046-0243.wav|tests/data/ljspeech/wavs/LJ046-0243.npy +tests/data/ljspeech/wavs/LJ015-0116.wav|tests/data/ljspeech/wavs/LJ015-0116.npy +tests/data/ljspeech/wavs/LJ009-0045.wav|tests/data/ljspeech/wavs/LJ009-0045.npy +tests/data/ljspeech/wavs/LJ044-0085.wav|tests/data/ljspeech/wavs/LJ044-0085.npy +tests/data/ljspeech/wavs/LJ009-0209.wav|tests/data/ljspeech/wavs/LJ009-0209.npy +tests/data/ljspeech/wavs/LJ046-0232.wav|tests/data/ljspeech/wavs/LJ046-0232.npy +tests/data/ljspeech/wavs/LJ008-0079.wav|tests/data/ljspeech/wavs/LJ008-0079.npy +tests/data/ljspeech/wavs/LJ011-0050.wav|tests/data/ljspeech/wavs/LJ011-0050.npy +tests/data/ljspeech/wavs/LJ022-0163.wav|tests/data/ljspeech/wavs/LJ022-0163.npy +tests/data/ljspeech/wavs/LJ041-0163.wav|tests/data/ljspeech/wavs/LJ041-0163.npy +tests/data/ljspeech/wavs/LJ013-0088.wav|tests/data/ljspeech/wavs/LJ013-0088.npy +tests/data/ljspeech/wavs/LJ029-0062.wav|tests/data/ljspeech/wavs/LJ029-0062.npy +tests/data/ljspeech/wavs/LJ026-0067.wav|tests/data/ljspeech/wavs/LJ026-0067.npy +tests/data/ljspeech/wavs/LJ042-0225.wav|tests/data/ljspeech/wavs/LJ042-0225.npy +tests/data/ljspeech/wavs/LJ044-0049.wav|tests/data/ljspeech/wavs/LJ044-0049.npy +tests/data/ljspeech/wavs/LJ009-0274.wav|tests/data/ljspeech/wavs/LJ009-0274.npy +tests/data/ljspeech/wavs/LJ022-0189.wav|tests/data/ljspeech/wavs/LJ022-0189.npy +tests/data/ljspeech/wavs/LJ042-0060.wav|tests/data/ljspeech/wavs/LJ042-0060.npy +tests/data/ljspeech/wavs/LJ050-0253.wav|tests/data/ljspeech/wavs/LJ050-0253.npy +tests/data/ljspeech/wavs/LJ007-0052.wav|tests/data/ljspeech/wavs/LJ007-0052.npy +tests/data/ljspeech/wavs/LJ040-0176.wav|tests/data/ljspeech/wavs/LJ040-0176.npy +tests/data/ljspeech/wavs/LJ041-0048.wav|tests/data/ljspeech/wavs/LJ041-0048.npy +tests/data/ljspeech/wavs/LJ016-0349.wav|tests/data/ljspeech/wavs/LJ016-0349.npy +tests/data/ljspeech/wavs/LJ043-0061.wav|tests/data/ljspeech/wavs/LJ043-0061.npy +tests/data/ljspeech/wavs/LJ049-0032.wav|tests/data/ljspeech/wavs/LJ049-0032.npy +tests/data/ljspeech/wavs/LJ042-0055.wav|tests/data/ljspeech/wavs/LJ042-0055.npy +tests/data/ljspeech/wavs/LJ019-0356.wav|tests/data/ljspeech/wavs/LJ019-0356.npy +tests/data/ljspeech/wavs/LJ032-0168.wav|tests/data/ljspeech/wavs/LJ032-0168.npy +tests/data/ljspeech/wavs/LJ004-0198.wav|tests/data/ljspeech/wavs/LJ004-0198.npy +tests/data/ljspeech/wavs/LJ040-0063.wav|tests/data/ljspeech/wavs/LJ040-0063.npy +tests/data/ljspeech/wavs/LJ019-0353.wav|tests/data/ljspeech/wavs/LJ019-0353.npy +tests/data/ljspeech/wavs/LJ005-0294.wav|tests/data/ljspeech/wavs/LJ005-0294.npy +tests/data/ljspeech/wavs/LJ005-0234.wav|tests/data/ljspeech/wavs/LJ005-0234.npy +tests/data/ljspeech/wavs/LJ025-0061.wav|tests/data/ljspeech/wavs/LJ025-0061.npy +tests/data/ljspeech/wavs/LJ042-0171.wav|tests/data/ljspeech/wavs/LJ042-0171.npy +tests/data/ljspeech/wavs/LJ048-0207.wav|tests/data/ljspeech/wavs/LJ048-0207.npy +tests/data/ljspeech/wavs/LJ024-0032.wav|tests/data/ljspeech/wavs/LJ024-0032.npy +tests/data/ljspeech/wavs/LJ026-0069.wav|tests/data/ljspeech/wavs/LJ026-0069.npy +tests/data/ljspeech/wavs/LJ031-0207.wav|tests/data/ljspeech/wavs/LJ031-0207.npy +tests/data/ljspeech/wavs/LJ038-0168.wav|tests/data/ljspeech/wavs/LJ038-0168.npy +tests/data/ljspeech/wavs/LJ004-0190.wav|tests/data/ljspeech/wavs/LJ004-0190.npy +tests/data/ljspeech/wavs/LJ005-0216.wav|tests/data/ljspeech/wavs/LJ005-0216.npy +tests/data/ljspeech/wavs/LJ016-0017.wav|tests/data/ljspeech/wavs/LJ016-0017.npy +tests/data/ljspeech/wavs/LJ036-0162.wav|tests/data/ljspeech/wavs/LJ036-0162.npy +tests/data/ljspeech/wavs/LJ031-0021.wav|tests/data/ljspeech/wavs/LJ031-0021.npy +tests/data/ljspeech/wavs/LJ021-0116.wav|tests/data/ljspeech/wavs/LJ021-0116.npy +tests/data/ljspeech/wavs/LJ026-0039.wav|tests/data/ljspeech/wavs/LJ026-0039.npy +tests/data/ljspeech/wavs/LJ017-0071.wav|tests/data/ljspeech/wavs/LJ017-0071.npy +tests/data/ljspeech/wavs/LJ021-0035.wav|tests/data/ljspeech/wavs/LJ021-0035.npy +tests/data/ljspeech/wavs/LJ017-0103.wav|tests/data/ljspeech/wavs/LJ017-0103.npy +tests/data/ljspeech/wavs/LJ010-0119.wav|tests/data/ljspeech/wavs/LJ010-0119.npy +tests/data/ljspeech/wavs/LJ026-0094.wav|tests/data/ljspeech/wavs/LJ026-0094.npy +tests/data/ljspeech/wavs/LJ003-0056.wav|tests/data/ljspeech/wavs/LJ003-0056.npy +tests/data/ljspeech/wavs/LJ013-0016.wav|tests/data/ljspeech/wavs/LJ013-0016.npy +tests/data/ljspeech/wavs/LJ020-0054.wav|tests/data/ljspeech/wavs/LJ020-0054.npy +tests/data/ljspeech/wavs/LJ049-0056.wav|tests/data/ljspeech/wavs/LJ049-0056.npy +tests/data/ljspeech/wavs/LJ043-0028.wav|tests/data/ljspeech/wavs/LJ043-0028.npy +tests/data/ljspeech/wavs/LJ045-0091.wav|tests/data/ljspeech/wavs/LJ045-0091.npy +tests/data/ljspeech/wavs/LJ015-0020.wav|tests/data/ljspeech/wavs/LJ015-0020.npy +tests/data/ljspeech/wavs/LJ021-0069.wav|tests/data/ljspeech/wavs/LJ021-0069.npy +tests/data/ljspeech/wavs/LJ013-0068.wav|tests/data/ljspeech/wavs/LJ013-0068.npy +tests/data/ljspeech/wavs/LJ038-0096.wav|tests/data/ljspeech/wavs/LJ038-0096.npy +tests/data/ljspeech/wavs/LJ046-0245.wav|tests/data/ljspeech/wavs/LJ046-0245.npy +tests/data/ljspeech/wavs/LJ012-0071.wav|tests/data/ljspeech/wavs/LJ012-0071.npy +tests/data/ljspeech/wavs/LJ032-0181.wav|tests/data/ljspeech/wavs/LJ032-0181.npy +tests/data/ljspeech/wavs/LJ024-0125.wav|tests/data/ljspeech/wavs/LJ024-0125.npy +tests/data/ljspeech/wavs/LJ028-0003.wav|tests/data/ljspeech/wavs/LJ028-0003.npy +tests/data/ljspeech/wavs/LJ004-0164.wav|tests/data/ljspeech/wavs/LJ004-0164.npy +tests/data/ljspeech/wavs/LJ034-0208.wav|tests/data/ljspeech/wavs/LJ034-0208.npy +tests/data/ljspeech/wavs/LJ031-0031.wav|tests/data/ljspeech/wavs/LJ031-0031.npy +tests/data/ljspeech/wavs/LJ002-0294.wav|tests/data/ljspeech/wavs/LJ002-0294.npy +tests/data/ljspeech/wavs/LJ014-0294.wav|tests/data/ljspeech/wavs/LJ014-0294.npy +tests/data/ljspeech/wavs/LJ002-0108.wav|tests/data/ljspeech/wavs/LJ002-0108.npy +tests/data/ljspeech/wavs/LJ047-0150.wav|tests/data/ljspeech/wavs/LJ047-0150.npy +tests/data/ljspeech/wavs/LJ011-0278.wav|tests/data/ljspeech/wavs/LJ011-0278.npy +tests/data/ljspeech/wavs/LJ040-0154.wav|tests/data/ljspeech/wavs/LJ040-0154.npy +tests/data/ljspeech/wavs/LJ028-0392.wav|tests/data/ljspeech/wavs/LJ028-0392.npy +tests/data/ljspeech/wavs/LJ032-0108.wav|tests/data/ljspeech/wavs/LJ032-0108.npy +tests/data/ljspeech/wavs/LJ047-0186.wav|tests/data/ljspeech/wavs/LJ047-0186.npy +tests/data/ljspeech/wavs/LJ040-0031.wav|tests/data/ljspeech/wavs/LJ040-0031.npy +tests/data/ljspeech/wavs/LJ038-0112.wav|tests/data/ljspeech/wavs/LJ038-0112.npy +tests/data/ljspeech/wavs/LJ048-0092.wav|tests/data/ljspeech/wavs/LJ048-0092.npy +tests/data/ljspeech/wavs/LJ042-0092.wav|tests/data/ljspeech/wavs/LJ042-0092.npy +tests/data/ljspeech/wavs/LJ028-0395.wav|tests/data/ljspeech/wavs/LJ028-0395.npy +tests/data/ljspeech/wavs/LJ045-0154.wav|tests/data/ljspeech/wavs/LJ045-0154.npy +tests/data/ljspeech/wavs/LJ016-0247.wav|tests/data/ljspeech/wavs/LJ016-0247.npy +tests/data/ljspeech/wavs/LJ045-0049.wav|tests/data/ljspeech/wavs/LJ045-0049.npy +tests/data/ljspeech/wavs/LJ022-0045.wav|tests/data/ljspeech/wavs/LJ022-0045.npy +tests/data/ljspeech/wavs/LJ038-0267.wav|tests/data/ljspeech/wavs/LJ038-0267.npy +tests/data/ljspeech/wavs/LJ029-0191.wav|tests/data/ljspeech/wavs/LJ029-0191.npy +tests/data/ljspeech/wavs/LJ007-0161.wav|tests/data/ljspeech/wavs/LJ007-0161.npy +tests/data/ljspeech/wavs/LJ046-0206.wav|tests/data/ljspeech/wavs/LJ046-0206.npy +tests/data/ljspeech/wavs/LJ039-0094.wav|tests/data/ljspeech/wavs/LJ039-0094.npy +tests/data/ljspeech/wavs/LJ046-0070.wav|tests/data/ljspeech/wavs/LJ046-0070.npy +tests/data/ljspeech/wavs/LJ048-0179.wav|tests/data/ljspeech/wavs/LJ048-0179.npy +tests/data/ljspeech/wavs/LJ004-0051.wav|tests/data/ljspeech/wavs/LJ004-0051.npy +tests/data/ljspeech/wavs/LJ002-0283.wav|tests/data/ljspeech/wavs/LJ002-0283.npy +tests/data/ljspeech/wavs/LJ016-0239.wav|tests/data/ljspeech/wavs/LJ016-0239.npy +tests/data/ljspeech/wavs/LJ041-0013.wav|tests/data/ljspeech/wavs/LJ041-0013.npy +tests/data/ljspeech/wavs/LJ012-0137.wav|tests/data/ljspeech/wavs/LJ012-0137.npy +tests/data/ljspeech/wavs/LJ005-0197.wav|tests/data/ljspeech/wavs/LJ005-0197.npy +tests/data/ljspeech/wavs/LJ002-0220.wav|tests/data/ljspeech/wavs/LJ002-0220.npy +tests/data/ljspeech/wavs/LJ005-0186.wav|tests/data/ljspeech/wavs/LJ005-0186.npy +tests/data/ljspeech/wavs/LJ019-0147.wav|tests/data/ljspeech/wavs/LJ019-0147.npy +tests/data/ljspeech/wavs/LJ041-0101.wav|tests/data/ljspeech/wavs/LJ041-0101.npy +tests/data/ljspeech/wavs/LJ037-0244.wav|tests/data/ljspeech/wavs/LJ037-0244.npy +tests/data/ljspeech/wavs/LJ001-0034.wav|tests/data/ljspeech/wavs/LJ001-0034.npy +tests/data/ljspeech/wavs/LJ023-0020.wav|tests/data/ljspeech/wavs/LJ023-0020.npy +tests/data/ljspeech/wavs/LJ013-0184.wav|tests/data/ljspeech/wavs/LJ013-0184.npy +tests/data/ljspeech/wavs/LJ048-0112.wav|tests/data/ljspeech/wavs/LJ048-0112.npy +tests/data/ljspeech/wavs/LJ030-0049.wav|tests/data/ljspeech/wavs/LJ030-0049.npy +tests/data/ljspeech/wavs/LJ016-0172.wav|tests/data/ljspeech/wavs/LJ016-0172.npy +tests/data/ljspeech/wavs/LJ043-0053.wav|tests/data/ljspeech/wavs/LJ043-0053.npy +tests/data/ljspeech/wavs/LJ005-0070.wav|tests/data/ljspeech/wavs/LJ005-0070.npy +tests/data/ljspeech/wavs/LJ013-0152.wav|tests/data/ljspeech/wavs/LJ013-0152.npy +tests/data/ljspeech/wavs/LJ006-0022.wav|tests/data/ljspeech/wavs/LJ006-0022.npy +tests/data/ljspeech/wavs/LJ024-0059.wav|tests/data/ljspeech/wavs/LJ024-0059.npy +tests/data/ljspeech/wavs/LJ045-0041.wav|tests/data/ljspeech/wavs/LJ045-0041.npy +tests/data/ljspeech/wavs/LJ016-0396.wav|tests/data/ljspeech/wavs/LJ016-0396.npy +tests/data/ljspeech/wavs/LJ006-0010.wav|tests/data/ljspeech/wavs/LJ006-0010.npy +tests/data/ljspeech/wavs/LJ045-0005.wav|tests/data/ljspeech/wavs/LJ045-0005.npy +tests/data/ljspeech/wavs/LJ023-0113.wav|tests/data/ljspeech/wavs/LJ023-0113.npy +tests/data/ljspeech/wavs/LJ030-0084.wav|tests/data/ljspeech/wavs/LJ030-0084.npy +tests/data/ljspeech/wavs/LJ048-0124.wav|tests/data/ljspeech/wavs/LJ048-0124.npy +tests/data/ljspeech/wavs/LJ033-0062.wav|tests/data/ljspeech/wavs/LJ033-0062.npy +tests/data/ljspeech/wavs/LJ012-0198.wav|tests/data/ljspeech/wavs/LJ012-0198.npy +tests/data/ljspeech/wavs/LJ028-0296.wav|tests/data/ljspeech/wavs/LJ028-0296.npy +tests/data/ljspeech/wavs/LJ006-0292.wav|tests/data/ljspeech/wavs/LJ006-0292.npy +tests/data/ljspeech/wavs/LJ043-0067.wav|tests/data/ljspeech/wavs/LJ043-0067.npy +tests/data/ljspeech/wavs/LJ005-0065.wav|tests/data/ljspeech/wavs/LJ005-0065.npy +tests/data/ljspeech/wavs/LJ006-0025.wav|tests/data/ljspeech/wavs/LJ006-0025.npy +tests/data/ljspeech/wavs/LJ006-0038.wav|tests/data/ljspeech/wavs/LJ006-0038.npy +tests/data/ljspeech/wavs/LJ017-0037.wav|tests/data/ljspeech/wavs/LJ017-0037.npy +tests/data/ljspeech/wavs/LJ030-0059.wav|tests/data/ljspeech/wavs/LJ030-0059.npy +tests/data/ljspeech/wavs/LJ015-0205.wav|tests/data/ljspeech/wavs/LJ015-0205.npy +tests/data/ljspeech/wavs/LJ004-0147.wav|tests/data/ljspeech/wavs/LJ004-0147.npy +tests/data/ljspeech/wavs/LJ017-0230.wav|tests/data/ljspeech/wavs/LJ017-0230.npy +tests/data/ljspeech/wavs/LJ045-0178.wav|tests/data/ljspeech/wavs/LJ045-0178.npy +tests/data/ljspeech/wavs/LJ038-0086.wav|tests/data/ljspeech/wavs/LJ038-0086.npy +tests/data/ljspeech/wavs/LJ028-0355.wav|tests/data/ljspeech/wavs/LJ028-0355.npy +tests/data/ljspeech/wavs/LJ003-0048.wav|tests/data/ljspeech/wavs/LJ003-0048.npy +tests/data/ljspeech/wavs/LJ009-0002.wav|tests/data/ljspeech/wavs/LJ009-0002.npy +tests/data/ljspeech/wavs/LJ019-0189.wav|tests/data/ljspeech/wavs/LJ019-0189.npy +tests/data/ljspeech/wavs/LJ040-0183.wav|tests/data/ljspeech/wavs/LJ040-0183.npy +tests/data/ljspeech/wavs/LJ050-0206.wav|tests/data/ljspeech/wavs/LJ050-0206.npy +tests/data/ljspeech/wavs/LJ021-0209.wav|tests/data/ljspeech/wavs/LJ021-0209.npy +tests/data/ljspeech/wavs/LJ035-0072.wav|tests/data/ljspeech/wavs/LJ035-0072.npy +tests/data/ljspeech/wavs/LJ004-0059.wav|tests/data/ljspeech/wavs/LJ004-0059.npy +tests/data/ljspeech/wavs/LJ022-0038.wav|tests/data/ljspeech/wavs/LJ022-0038.npy +tests/data/ljspeech/wavs/LJ010-0056.wav|tests/data/ljspeech/wavs/LJ010-0056.npy +tests/data/ljspeech/wavs/LJ034-0078.wav|tests/data/ljspeech/wavs/LJ034-0078.npy +tests/data/ljspeech/wavs/LJ008-0153.wav|tests/data/ljspeech/wavs/LJ008-0153.npy +tests/data/ljspeech/wavs/LJ016-0220.wav|tests/data/ljspeech/wavs/LJ016-0220.npy +tests/data/ljspeech/wavs/LJ028-0061.wav|tests/data/ljspeech/wavs/LJ028-0061.npy +tests/data/ljspeech/wavs/LJ042-0088.wav|tests/data/ljspeech/wavs/LJ042-0088.npy +tests/data/ljspeech/wavs/LJ021-0151.wav|tests/data/ljspeech/wavs/LJ021-0151.npy +tests/data/ljspeech/wavs/LJ026-0062.wav|tests/data/ljspeech/wavs/LJ026-0062.npy +tests/data/ljspeech/wavs/LJ048-0055.wav|tests/data/ljspeech/wavs/LJ048-0055.npy +tests/data/ljspeech/wavs/LJ040-0120.wav|tests/data/ljspeech/wavs/LJ040-0120.npy +tests/data/ljspeech/wavs/LJ027-0177.wav|tests/data/ljspeech/wavs/LJ027-0177.npy +tests/data/ljspeech/wavs/LJ012-0258.wav|tests/data/ljspeech/wavs/LJ012-0258.npy +tests/data/ljspeech/wavs/LJ046-0054.wav|tests/data/ljspeech/wavs/LJ046-0054.npy +tests/data/ljspeech/wavs/LJ004-0072.wav|tests/data/ljspeech/wavs/LJ004-0072.npy +tests/data/ljspeech/wavs/LJ010-0175.wav|tests/data/ljspeech/wavs/LJ010-0175.npy +tests/data/ljspeech/wavs/LJ048-0192.wav|tests/data/ljspeech/wavs/LJ048-0192.npy +tests/data/ljspeech/wavs/LJ035-0023.wav|tests/data/ljspeech/wavs/LJ035-0023.npy +tests/data/ljspeech/wavs/LJ019-0370.wav|tests/data/ljspeech/wavs/LJ019-0370.npy +tests/data/ljspeech/wavs/LJ042-0123.wav|tests/data/ljspeech/wavs/LJ042-0123.npy +tests/data/ljspeech/wavs/LJ002-0325.wav|tests/data/ljspeech/wavs/LJ002-0325.npy +tests/data/ljspeech/wavs/LJ032-0015.wav|tests/data/ljspeech/wavs/LJ032-0015.npy +tests/data/ljspeech/wavs/LJ041-0202.wav|tests/data/ljspeech/wavs/LJ041-0202.npy +tests/data/ljspeech/wavs/LJ032-0221.wav|tests/data/ljspeech/wavs/LJ032-0221.npy +tests/data/ljspeech/wavs/LJ015-0002.wav|tests/data/ljspeech/wavs/LJ015-0002.npy +tests/data/ljspeech/wavs/LJ041-0130.wav|tests/data/ljspeech/wavs/LJ041-0130.npy +tests/data/ljspeech/wavs/LJ020-0085.wav|tests/data/ljspeech/wavs/LJ020-0085.npy +tests/data/ljspeech/wavs/LJ019-0074.wav|tests/data/ljspeech/wavs/LJ019-0074.npy +tests/data/ljspeech/wavs/LJ009-0012.wav|tests/data/ljspeech/wavs/LJ009-0012.npy +tests/data/ljspeech/wavs/LJ026-0132.wav|tests/data/ljspeech/wavs/LJ026-0132.npy +tests/data/ljspeech/wavs/LJ002-0222.wav|tests/data/ljspeech/wavs/LJ002-0222.npy +tests/data/ljspeech/wavs/LJ025-0115.wav|tests/data/ljspeech/wavs/LJ025-0115.npy +tests/data/ljspeech/wavs/LJ041-0023.wav|tests/data/ljspeech/wavs/LJ041-0023.npy +tests/data/ljspeech/wavs/LJ008-0219.wav|tests/data/ljspeech/wavs/LJ008-0219.npy +tests/data/ljspeech/wavs/LJ034-0157.wav|tests/data/ljspeech/wavs/LJ034-0157.npy +tests/data/ljspeech/wavs/LJ007-0096.wav|tests/data/ljspeech/wavs/LJ007-0096.npy +tests/data/ljspeech/wavs/LJ049-0119.wav|tests/data/ljspeech/wavs/LJ049-0119.npy +tests/data/ljspeech/wavs/LJ012-0173.wav|tests/data/ljspeech/wavs/LJ012-0173.npy +tests/data/ljspeech/wavs/LJ043-0076.wav|tests/data/ljspeech/wavs/LJ043-0076.npy +tests/data/ljspeech/wavs/LJ019-0040.wav|tests/data/ljspeech/wavs/LJ019-0040.npy +tests/data/ljspeech/wavs/LJ028-0452.wav|tests/data/ljspeech/wavs/LJ028-0452.npy +tests/data/ljspeech/wavs/LJ049-0026.wav|tests/data/ljspeech/wavs/LJ049-0026.npy +tests/data/ljspeech/wavs/LJ010-0279.wav|tests/data/ljspeech/wavs/LJ010-0279.npy +tests/data/ljspeech/wavs/LJ049-0092.wav|tests/data/ljspeech/wavs/LJ049-0092.npy +tests/data/ljspeech/wavs/LJ015-0042.wav|tests/data/ljspeech/wavs/LJ015-0042.npy +tests/data/ljspeech/wavs/LJ037-0166.wav|tests/data/ljspeech/wavs/LJ037-0166.npy +tests/data/ljspeech/wavs/LJ028-0445.wav|tests/data/ljspeech/wavs/LJ028-0445.npy +tests/data/ljspeech/wavs/LJ010-0024.wav|tests/data/ljspeech/wavs/LJ010-0024.npy +tests/data/ljspeech/wavs/LJ015-0043.wav|tests/data/ljspeech/wavs/LJ015-0043.npy +tests/data/ljspeech/wavs/LJ018-0081.wav|tests/data/ljspeech/wavs/LJ018-0081.npy +tests/data/ljspeech/wavs/LJ001-0132.wav|tests/data/ljspeech/wavs/LJ001-0132.npy +tests/data/ljspeech/wavs/LJ014-0199.wav|tests/data/ljspeech/wavs/LJ014-0199.npy +tests/data/ljspeech/wavs/LJ016-0014.wav|tests/data/ljspeech/wavs/LJ016-0014.npy +tests/data/ljspeech/wavs/LJ044-0220.wav|tests/data/ljspeech/wavs/LJ044-0220.npy +tests/data/ljspeech/wavs/LJ044-0106.wav|tests/data/ljspeech/wavs/LJ044-0106.npy +tests/data/ljspeech/wavs/LJ012-0197.wav|tests/data/ljspeech/wavs/LJ012-0197.npy +tests/data/ljspeech/wavs/LJ037-0230.wav|tests/data/ljspeech/wavs/LJ037-0230.npy +tests/data/ljspeech/wavs/LJ038-0156.wav|tests/data/ljspeech/wavs/LJ038-0156.npy +tests/data/ljspeech/wavs/LJ012-0239.wav|tests/data/ljspeech/wavs/LJ012-0239.npy +tests/data/ljspeech/wavs/LJ037-0070.wav|tests/data/ljspeech/wavs/LJ037-0070.npy +tests/data/ljspeech/wavs/LJ013-0115.wav|tests/data/ljspeech/wavs/LJ013-0115.npy +tests/data/ljspeech/wavs/LJ016-0305.wav|tests/data/ljspeech/wavs/LJ016-0305.npy +tests/data/ljspeech/wavs/LJ010-0253.wav|tests/data/ljspeech/wavs/LJ010-0253.npy +tests/data/ljspeech/wavs/LJ044-0109.wav|tests/data/ljspeech/wavs/LJ044-0109.npy +tests/data/ljspeech/wavs/LJ044-0121.wav|tests/data/ljspeech/wavs/LJ044-0121.npy +tests/data/ljspeech/wavs/LJ013-0135.wav|tests/data/ljspeech/wavs/LJ013-0135.npy +tests/data/ljspeech/wavs/LJ017-0014.wav|tests/data/ljspeech/wavs/LJ017-0014.npy +tests/data/ljspeech/wavs/LJ010-0265.wav|tests/data/ljspeech/wavs/LJ010-0265.npy +tests/data/ljspeech/wavs/LJ004-0009.wav|tests/data/ljspeech/wavs/LJ004-0009.npy +tests/data/ljspeech/wavs/LJ039-0212.wav|tests/data/ljspeech/wavs/LJ039-0212.npy +tests/data/ljspeech/wavs/LJ015-0047.wav|tests/data/ljspeech/wavs/LJ015-0047.npy +tests/data/ljspeech/wavs/LJ049-0143.wav|tests/data/ljspeech/wavs/LJ049-0143.npy +tests/data/ljspeech/wavs/LJ012-0204.wav|tests/data/ljspeech/wavs/LJ012-0204.npy +tests/data/ljspeech/wavs/LJ014-0024.wav|tests/data/ljspeech/wavs/LJ014-0024.npy +tests/data/ljspeech/wavs/LJ040-0185.wav|tests/data/ljspeech/wavs/LJ040-0185.npy +tests/data/ljspeech/wavs/LJ016-0386.wav|tests/data/ljspeech/wavs/LJ016-0386.npy +tests/data/ljspeech/wavs/LJ004-0197.wav|tests/data/ljspeech/wavs/LJ004-0197.npy +tests/data/ljspeech/wavs/LJ016-0113.wav|tests/data/ljspeech/wavs/LJ016-0113.npy +tests/data/ljspeech/wavs/LJ039-0197.wav|tests/data/ljspeech/wavs/LJ039-0197.npy +tests/data/ljspeech/wavs/LJ003-0330.wav|tests/data/ljspeech/wavs/LJ003-0330.npy +tests/data/ljspeech/wavs/LJ019-0034.wav|tests/data/ljspeech/wavs/LJ019-0034.npy +tests/data/ljspeech/wavs/LJ039-0220.wav|tests/data/ljspeech/wavs/LJ039-0220.npy +tests/data/ljspeech/wavs/LJ039-0195.wav|tests/data/ljspeech/wavs/LJ039-0195.npy +tests/data/ljspeech/wavs/LJ015-0229.wav|tests/data/ljspeech/wavs/LJ015-0229.npy +tests/data/ljspeech/wavs/LJ016-0361.wav|tests/data/ljspeech/wavs/LJ016-0361.npy +tests/data/ljspeech/wavs/LJ032-0212.wav|tests/data/ljspeech/wavs/LJ032-0212.npy +tests/data/ljspeech/wavs/LJ037-0134.wav|tests/data/ljspeech/wavs/LJ037-0134.npy +tests/data/ljspeech/wavs/LJ038-0206.wav|tests/data/ljspeech/wavs/LJ038-0206.npy +tests/data/ljspeech/wavs/LJ033-0093.wav|tests/data/ljspeech/wavs/LJ033-0093.npy +tests/data/ljspeech/wavs/LJ047-0026.wav|tests/data/ljspeech/wavs/LJ047-0026.npy +tests/data/ljspeech/wavs/LJ046-0253.wav|tests/data/ljspeech/wavs/LJ046-0253.npy +tests/data/ljspeech/wavs/LJ026-0035.wav|tests/data/ljspeech/wavs/LJ026-0035.npy +tests/data/ljspeech/wavs/LJ027-0011.wav|tests/data/ljspeech/wavs/LJ027-0011.npy +tests/data/ljspeech/wavs/LJ040-0191.wav|tests/data/ljspeech/wavs/LJ040-0191.npy +tests/data/ljspeech/wavs/LJ003-0133.wav|tests/data/ljspeech/wavs/LJ003-0133.npy +tests/data/ljspeech/wavs/LJ013-0098.wav|tests/data/ljspeech/wavs/LJ013-0098.npy +tests/data/ljspeech/wavs/LJ019-0140.wav|tests/data/ljspeech/wavs/LJ019-0140.npy +tests/data/ljspeech/wavs/LJ027-0019.wav|tests/data/ljspeech/wavs/LJ027-0019.npy +tests/data/ljspeech/wavs/LJ040-0114.wav|tests/data/ljspeech/wavs/LJ040-0114.npy +tests/data/ljspeech/wavs/LJ013-0103.wav|tests/data/ljspeech/wavs/LJ013-0103.npy +tests/data/ljspeech/wavs/LJ040-0202.wav|tests/data/ljspeech/wavs/LJ040-0202.npy +tests/data/ljspeech/wavs/LJ027-0078.wav|tests/data/ljspeech/wavs/LJ027-0078.npy +tests/data/ljspeech/wavs/LJ043-0136.wav|tests/data/ljspeech/wavs/LJ043-0136.npy +tests/data/ljspeech/wavs/LJ047-0048.wav|tests/data/ljspeech/wavs/LJ047-0048.npy +tests/data/ljspeech/wavs/LJ016-0143.wav|tests/data/ljspeech/wavs/LJ016-0143.npy +tests/data/ljspeech/wavs/LJ012-0063.wav|tests/data/ljspeech/wavs/LJ012-0063.npy +tests/data/ljspeech/wavs/LJ006-0050.wav|tests/data/ljspeech/wavs/LJ006-0050.npy +tests/data/ljspeech/wavs/LJ033-0014.wav|tests/data/ljspeech/wavs/LJ033-0014.npy +tests/data/ljspeech/wavs/LJ045-0235.wav|tests/data/ljspeech/wavs/LJ045-0235.npy +tests/data/ljspeech/wavs/LJ049-0148.wav|tests/data/ljspeech/wavs/LJ049-0148.npy +tests/data/ljspeech/wavs/LJ046-0036.wav|tests/data/ljspeech/wavs/LJ046-0036.npy +tests/data/ljspeech/wavs/LJ016-0370.wav|tests/data/ljspeech/wavs/LJ016-0370.npy +tests/data/ljspeech/wavs/LJ045-0080.wav|tests/data/ljspeech/wavs/LJ045-0080.npy +tests/data/ljspeech/wavs/LJ016-0419.wav|tests/data/ljspeech/wavs/LJ016-0419.npy +tests/data/ljspeech/wavs/LJ012-0016.wav|tests/data/ljspeech/wavs/LJ012-0016.npy +tests/data/ljspeech/wavs/LJ005-0015.wav|tests/data/ljspeech/wavs/LJ005-0015.npy +tests/data/ljspeech/wavs/LJ002-0195.wav|tests/data/ljspeech/wavs/LJ002-0195.npy +tests/data/ljspeech/wavs/LJ050-0237.wav|tests/data/ljspeech/wavs/LJ050-0237.npy +tests/data/ljspeech/wavs/LJ032-0159.wav|tests/data/ljspeech/wavs/LJ032-0159.npy +tests/data/ljspeech/wavs/LJ035-0168.wav|tests/data/ljspeech/wavs/LJ035-0168.npy +tests/data/ljspeech/wavs/LJ023-0010.wav|tests/data/ljspeech/wavs/LJ023-0010.npy +tests/data/ljspeech/wavs/LJ044-0034.wav|tests/data/ljspeech/wavs/LJ044-0034.npy +tests/data/ljspeech/wavs/LJ028-0239.wav|tests/data/ljspeech/wavs/LJ028-0239.npy +tests/data/ljspeech/wavs/LJ050-0233.wav|tests/data/ljspeech/wavs/LJ050-0233.npy +tests/data/ljspeech/wavs/LJ022-0056.wav|tests/data/ljspeech/wavs/LJ022-0056.npy +tests/data/ljspeech/wavs/LJ002-0097.wav|tests/data/ljspeech/wavs/LJ002-0097.npy +tests/data/ljspeech/wavs/LJ003-0112.wav|tests/data/ljspeech/wavs/LJ003-0112.npy +tests/data/ljspeech/wavs/LJ005-0283.wav|tests/data/ljspeech/wavs/LJ005-0283.npy +tests/data/ljspeech/wavs/LJ047-0243.wav|tests/data/ljspeech/wavs/LJ047-0243.npy +tests/data/ljspeech/wavs/LJ032-0127.wav|tests/data/ljspeech/wavs/LJ032-0127.npy +tests/data/ljspeech/wavs/LJ018-0343.wav|tests/data/ljspeech/wavs/LJ018-0343.npy +tests/data/ljspeech/wavs/LJ040-0174.wav|tests/data/ljspeech/wavs/LJ040-0174.npy +tests/data/ljspeech/wavs/LJ050-0136.wav|tests/data/ljspeech/wavs/LJ050-0136.npy +tests/data/ljspeech/wavs/LJ010-0261.wav|tests/data/ljspeech/wavs/LJ010-0261.npy +tests/data/ljspeech/wavs/LJ028-0349.wav|tests/data/ljspeech/wavs/LJ028-0349.npy +tests/data/ljspeech/wavs/LJ010-0030.wav|tests/data/ljspeech/wavs/LJ010-0030.npy +tests/data/ljspeech/wavs/LJ028-0102.wav|tests/data/ljspeech/wavs/LJ028-0102.npy +tests/data/ljspeech/wavs/LJ041-0036.wav|tests/data/ljspeech/wavs/LJ041-0036.npy +tests/data/ljspeech/wavs/LJ009-0050.wav|tests/data/ljspeech/wavs/LJ009-0050.npy +tests/data/ljspeech/wavs/LJ040-0182.wav|tests/data/ljspeech/wavs/LJ040-0182.npy +tests/data/ljspeech/wavs/LJ019-0153.wav|tests/data/ljspeech/wavs/LJ019-0153.npy +tests/data/ljspeech/wavs/LJ032-0060.wav|tests/data/ljspeech/wavs/LJ032-0060.npy +tests/data/ljspeech/wavs/LJ041-0014.wav|tests/data/ljspeech/wavs/LJ041-0014.npy +tests/data/ljspeech/wavs/LJ009-0206.wav|tests/data/ljspeech/wavs/LJ009-0206.npy +tests/data/ljspeech/wavs/LJ028-0282.wav|tests/data/ljspeech/wavs/LJ028-0282.npy +tests/data/ljspeech/wavs/LJ005-0273.wav|tests/data/ljspeech/wavs/LJ005-0273.npy +tests/data/ljspeech/wavs/LJ009-0239.wav|tests/data/ljspeech/wavs/LJ009-0239.npy +tests/data/ljspeech/wavs/LJ005-0286.wav|tests/data/ljspeech/wavs/LJ005-0286.npy +tests/data/ljspeech/wavs/LJ035-0105.wav|tests/data/ljspeech/wavs/LJ035-0105.npy +tests/data/ljspeech/wavs/LJ028-0360.wav|tests/data/ljspeech/wavs/LJ028-0360.npy +tests/data/ljspeech/wavs/LJ029-0057.wav|tests/data/ljspeech/wavs/LJ029-0057.npy +tests/data/ljspeech/wavs/LJ050-0149.wav|tests/data/ljspeech/wavs/LJ050-0149.npy +tests/data/ljspeech/wavs/LJ019-0179.wav|tests/data/ljspeech/wavs/LJ019-0179.npy +tests/data/ljspeech/wavs/LJ023-0059.wav|tests/data/ljspeech/wavs/LJ023-0059.npy +tests/data/ljspeech/wavs/LJ010-0136.wav|tests/data/ljspeech/wavs/LJ010-0136.npy +tests/data/ljspeech/wavs/LJ024-0011.wav|tests/data/ljspeech/wavs/LJ024-0011.npy +tests/data/ljspeech/wavs/LJ007-0065.wav|tests/data/ljspeech/wavs/LJ007-0065.npy +tests/data/ljspeech/wavs/LJ047-0225.wav|tests/data/ljspeech/wavs/LJ047-0225.npy +tests/data/ljspeech/wavs/LJ017-0265.wav|tests/data/ljspeech/wavs/LJ017-0265.npy +tests/data/ljspeech/wavs/LJ024-0096.wav|tests/data/ljspeech/wavs/LJ024-0096.npy +tests/data/ljspeech/wavs/LJ036-0150.wav|tests/data/ljspeech/wavs/LJ036-0150.npy +tests/data/ljspeech/wavs/LJ009-0171.wav|tests/data/ljspeech/wavs/LJ009-0171.npy +tests/data/ljspeech/wavs/LJ006-0171.wav|tests/data/ljspeech/wavs/LJ006-0171.npy +tests/data/ljspeech/wavs/LJ003-0204.wav|tests/data/ljspeech/wavs/LJ003-0204.npy +tests/data/ljspeech/wavs/LJ040-0028.wav|tests/data/ljspeech/wavs/LJ040-0028.npy +tests/data/ljspeech/wavs/LJ017-0247.wav|tests/data/ljspeech/wavs/LJ017-0247.npy +tests/data/ljspeech/wavs/LJ046-0140.wav|tests/data/ljspeech/wavs/LJ046-0140.npy +tests/data/ljspeech/wavs/LJ002-0259.wav|tests/data/ljspeech/wavs/LJ002-0259.npy +tests/data/ljspeech/wavs/LJ010-0151.wav|tests/data/ljspeech/wavs/LJ010-0151.npy +tests/data/ljspeech/wavs/LJ041-0076.wav|tests/data/ljspeech/wavs/LJ041-0076.npy +tests/data/ljspeech/wavs/LJ042-0176.wav|tests/data/ljspeech/wavs/LJ042-0176.npy +tests/data/ljspeech/wavs/LJ029-0159.wav|tests/data/ljspeech/wavs/LJ029-0159.npy +tests/data/ljspeech/wavs/LJ005-0083.wav|tests/data/ljspeech/wavs/LJ005-0083.npy +tests/data/ljspeech/wavs/LJ050-0180.wav|tests/data/ljspeech/wavs/LJ050-0180.npy +tests/data/ljspeech/wavs/LJ009-0122.wav|tests/data/ljspeech/wavs/LJ009-0122.npy +tests/data/ljspeech/wavs/LJ011-0058.wav|tests/data/ljspeech/wavs/LJ011-0058.npy +tests/data/ljspeech/wavs/LJ006-0277.wav|tests/data/ljspeech/wavs/LJ006-0277.npy +tests/data/ljspeech/wavs/LJ040-0016.wav|tests/data/ljspeech/wavs/LJ040-0016.npy +tests/data/ljspeech/wavs/LJ018-0046.wav|tests/data/ljspeech/wavs/LJ018-0046.npy +tests/data/ljspeech/wavs/LJ048-0278.wav|tests/data/ljspeech/wavs/LJ048-0278.npy +tests/data/ljspeech/wavs/LJ017-0248.wav|tests/data/ljspeech/wavs/LJ017-0248.npy +tests/data/ljspeech/wavs/LJ030-0144.wav|tests/data/ljspeech/wavs/LJ030-0144.npy +tests/data/ljspeech/wavs/LJ029-0038.wav|tests/data/ljspeech/wavs/LJ029-0038.npy +tests/data/ljspeech/wavs/LJ037-0228.wav|tests/data/ljspeech/wavs/LJ037-0228.npy +tests/data/ljspeech/wavs/LJ045-0201.wav|tests/data/ljspeech/wavs/LJ045-0201.npy +tests/data/ljspeech/wavs/LJ013-0217.wav|tests/data/ljspeech/wavs/LJ013-0217.npy +tests/data/ljspeech/wavs/LJ002-0062.wav|tests/data/ljspeech/wavs/LJ002-0062.npy +tests/data/ljspeech/wavs/LJ038-0248.wav|tests/data/ljspeech/wavs/LJ038-0248.npy +tests/data/ljspeech/wavs/LJ047-0068.wav|tests/data/ljspeech/wavs/LJ047-0068.npy +tests/data/ljspeech/wavs/LJ030-0238.wav|tests/data/ljspeech/wavs/LJ030-0238.npy +tests/data/ljspeech/wavs/LJ016-0080.wav|tests/data/ljspeech/wavs/LJ016-0080.npy +tests/data/ljspeech/wavs/LJ024-0061.wav|tests/data/ljspeech/wavs/LJ024-0061.npy +tests/data/ljspeech/wavs/LJ044-0177.wav|tests/data/ljspeech/wavs/LJ044-0177.npy +tests/data/ljspeech/wavs/LJ031-0008.wav|tests/data/ljspeech/wavs/LJ031-0008.npy +tests/data/ljspeech/wavs/LJ028-0470.wav|tests/data/ljspeech/wavs/LJ028-0470.npy +tests/data/ljspeech/wavs/LJ005-0285.wav|tests/data/ljspeech/wavs/LJ005-0285.npy +tests/data/ljspeech/wavs/LJ021-0004.wav|tests/data/ljspeech/wavs/LJ021-0004.npy +tests/data/ljspeech/wavs/LJ030-0008.wav|tests/data/ljspeech/wavs/LJ030-0008.npy +tests/data/ljspeech/wavs/LJ030-0121.wav|tests/data/ljspeech/wavs/LJ030-0121.npy +tests/data/ljspeech/wavs/LJ006-0006.wav|tests/data/ljspeech/wavs/LJ006-0006.npy +tests/data/ljspeech/wavs/LJ025-0009.wav|tests/data/ljspeech/wavs/LJ025-0009.npy +tests/data/ljspeech/wavs/LJ030-0219.wav|tests/data/ljspeech/wavs/LJ030-0219.npy +tests/data/ljspeech/wavs/LJ006-0235.wav|tests/data/ljspeech/wavs/LJ006-0235.npy +tests/data/ljspeech/wavs/LJ010-0055.wav|tests/data/ljspeech/wavs/LJ010-0055.npy +tests/data/ljspeech/wavs/LJ015-0196.wav|tests/data/ljspeech/wavs/LJ015-0196.npy +tests/data/ljspeech/wavs/LJ003-0234.wav|tests/data/ljspeech/wavs/LJ003-0234.npy +tests/data/ljspeech/wavs/LJ011-0156.wav|tests/data/ljspeech/wavs/LJ011-0156.npy +tests/data/ljspeech/wavs/LJ004-0233.wav|tests/data/ljspeech/wavs/LJ004-0233.npy +tests/data/ljspeech/wavs/LJ001-0018.wav|tests/data/ljspeech/wavs/LJ001-0018.npy +tests/data/ljspeech/wavs/LJ031-0077.wav|tests/data/ljspeech/wavs/LJ031-0077.npy +tests/data/ljspeech/wavs/LJ005-0093.wav|tests/data/ljspeech/wavs/LJ005-0093.npy +tests/data/ljspeech/wavs/LJ004-0139.wav|tests/data/ljspeech/wavs/LJ004-0139.npy +tests/data/ljspeech/wavs/LJ017-0129.wav|tests/data/ljspeech/wavs/LJ017-0129.npy +tests/data/ljspeech/wavs/LJ015-0292.wav|tests/data/ljspeech/wavs/LJ015-0292.npy +tests/data/ljspeech/wavs/LJ047-0076.wav|tests/data/ljspeech/wavs/LJ047-0076.npy +tests/data/ljspeech/wavs/LJ043-0057.wav|tests/data/ljspeech/wavs/LJ043-0057.npy +tests/data/ljspeech/wavs/LJ037-0224.wav|tests/data/ljspeech/wavs/LJ037-0224.npy +tests/data/ljspeech/wavs/LJ038-0149.wav|tests/data/ljspeech/wavs/LJ038-0149.npy +tests/data/ljspeech/wavs/LJ008-0156.wav|tests/data/ljspeech/wavs/LJ008-0156.npy +tests/data/ljspeech/wavs/LJ044-0168.wav|tests/data/ljspeech/wavs/LJ044-0168.npy +tests/data/ljspeech/wavs/LJ029-0037.wav|tests/data/ljspeech/wavs/LJ029-0037.npy +tests/data/ljspeech/wavs/LJ031-0212.wav|tests/data/ljspeech/wavs/LJ031-0212.npy +tests/data/ljspeech/wavs/LJ021-0072.wav|tests/data/ljspeech/wavs/LJ021-0072.npy +tests/data/ljspeech/wavs/LJ021-0207.wav|tests/data/ljspeech/wavs/LJ021-0207.npy +tests/data/ljspeech/wavs/LJ002-0095.wav|tests/data/ljspeech/wavs/LJ002-0095.npy +tests/data/ljspeech/wavs/LJ006-0086.wav|tests/data/ljspeech/wavs/LJ006-0086.npy +tests/data/ljspeech/wavs/LJ012-0164.wav|tests/data/ljspeech/wavs/LJ012-0164.npy +tests/data/ljspeech/wavs/LJ038-0264.wav|tests/data/ljspeech/wavs/LJ038-0264.npy +tests/data/ljspeech/wavs/LJ050-0003.wav|tests/data/ljspeech/wavs/LJ050-0003.npy +tests/data/ljspeech/wavs/LJ028-0368.wav|tests/data/ljspeech/wavs/LJ028-0368.npy +tests/data/ljspeech/wavs/LJ032-0175.wav|tests/data/ljspeech/wavs/LJ032-0175.npy +tests/data/ljspeech/wavs/LJ028-0519.wav|tests/data/ljspeech/wavs/LJ028-0519.npy +tests/data/ljspeech/wavs/LJ006-0191.wav|tests/data/ljspeech/wavs/LJ006-0191.npy +tests/data/ljspeech/wavs/LJ013-0262.wav|tests/data/ljspeech/wavs/LJ013-0262.npy +tests/data/ljspeech/wavs/LJ027-0104.wav|tests/data/ljspeech/wavs/LJ027-0104.npy +tests/data/ljspeech/wavs/LJ013-0037.wav|tests/data/ljspeech/wavs/LJ013-0037.npy +tests/data/ljspeech/wavs/LJ042-0076.wav|tests/data/ljspeech/wavs/LJ042-0076.npy +tests/data/ljspeech/wavs/LJ031-0226.wav|tests/data/ljspeech/wavs/LJ031-0226.npy +tests/data/ljspeech/wavs/LJ027-0142.wav|tests/data/ljspeech/wavs/LJ027-0142.npy +tests/data/ljspeech/wavs/LJ027-0178.wav|tests/data/ljspeech/wavs/LJ027-0178.npy +tests/data/ljspeech/wavs/LJ030-0195.wav|tests/data/ljspeech/wavs/LJ030-0195.npy +tests/data/ljspeech/wavs/LJ013-0248.wav|tests/data/ljspeech/wavs/LJ013-0248.npy +tests/data/ljspeech/wavs/LJ023-0004.wav|tests/data/ljspeech/wavs/LJ023-0004.npy +tests/data/ljspeech/wavs/LJ009-0218.wav|tests/data/ljspeech/wavs/LJ009-0218.npy +tests/data/ljspeech/wavs/LJ002-0335.wav|tests/data/ljspeech/wavs/LJ002-0335.npy +tests/data/ljspeech/wavs/LJ004-0049.wav|tests/data/ljspeech/wavs/LJ004-0049.npy +tests/data/ljspeech/wavs/LJ042-0190.wav|tests/data/ljspeech/wavs/LJ042-0190.npy +tests/data/ljspeech/wavs/LJ002-0186.wav|tests/data/ljspeech/wavs/LJ002-0186.npy +tests/data/ljspeech/wavs/LJ031-0134.wav|tests/data/ljspeech/wavs/LJ031-0134.npy +tests/data/ljspeech/wavs/LJ008-0041.wav|tests/data/ljspeech/wavs/LJ008-0041.npy +tests/data/ljspeech/wavs/LJ014-0243.wav|tests/data/ljspeech/wavs/LJ014-0243.npy +tests/data/ljspeech/wavs/LJ026-0017.wav|tests/data/ljspeech/wavs/LJ026-0017.npy +tests/data/ljspeech/wavs/LJ047-0120.wav|tests/data/ljspeech/wavs/LJ047-0120.npy +tests/data/ljspeech/wavs/LJ009-0048.wav|tests/data/ljspeech/wavs/LJ009-0048.npy +tests/data/ljspeech/wavs/LJ026-0142.wav|tests/data/ljspeech/wavs/LJ026-0142.npy +tests/data/ljspeech/wavs/LJ028-0362.wav|tests/data/ljspeech/wavs/LJ028-0362.npy +tests/data/ljspeech/wavs/LJ038-0133.wav|tests/data/ljspeech/wavs/LJ038-0133.npy +tests/data/ljspeech/wavs/LJ026-0078.wav|tests/data/ljspeech/wavs/LJ026-0078.npy +tests/data/ljspeech/wavs/LJ015-0093.wav|tests/data/ljspeech/wavs/LJ015-0093.npy +tests/data/ljspeech/wavs/LJ002-0056.wav|tests/data/ljspeech/wavs/LJ002-0056.npy +tests/data/ljspeech/wavs/LJ041-0131.wav|tests/data/ljspeech/wavs/LJ041-0131.npy +tests/data/ljspeech/wavs/LJ042-0138.wav|tests/data/ljspeech/wavs/LJ042-0138.npy +tests/data/ljspeech/wavs/LJ025-0155.wav|tests/data/ljspeech/wavs/LJ025-0155.npy +tests/data/ljspeech/wavs/LJ047-0065.wav|tests/data/ljspeech/wavs/LJ047-0065.npy +tests/data/ljspeech/wavs/LJ046-0123.wav|tests/data/ljspeech/wavs/LJ046-0123.npy +tests/data/ljspeech/wavs/LJ013-0105.wav|tests/data/ljspeech/wavs/LJ013-0105.npy +tests/data/ljspeech/wavs/LJ009-0024.wav|tests/data/ljspeech/wavs/LJ009-0024.npy +tests/data/ljspeech/wavs/LJ008-0211.wav|tests/data/ljspeech/wavs/LJ008-0211.npy +tests/data/ljspeech/wavs/LJ029-0198.wav|tests/data/ljspeech/wavs/LJ029-0198.npy +tests/data/ljspeech/wavs/LJ027-0094.wav|tests/data/ljspeech/wavs/LJ027-0094.npy +tests/data/ljspeech/wavs/LJ041-0143.wav|tests/data/ljspeech/wavs/LJ041-0143.npy +tests/data/ljspeech/wavs/LJ026-0079.wav|tests/data/ljspeech/wavs/LJ026-0079.npy +tests/data/ljspeech/wavs/LJ007-0089.wav|tests/data/ljspeech/wavs/LJ007-0089.npy +tests/data/ljspeech/wavs/LJ031-0152.wav|tests/data/ljspeech/wavs/LJ031-0152.npy +tests/data/ljspeech/wavs/LJ028-0320.wav|tests/data/ljspeech/wavs/LJ028-0320.npy +tests/data/ljspeech/wavs/LJ032-0265.wav|tests/data/ljspeech/wavs/LJ032-0265.npy +tests/data/ljspeech/wavs/LJ043-0154.wav|tests/data/ljspeech/wavs/LJ043-0154.npy +tests/data/ljspeech/wavs/LJ019-0016.wav|tests/data/ljspeech/wavs/LJ019-0016.npy +tests/data/ljspeech/wavs/LJ036-0022.wav|tests/data/ljspeech/wavs/LJ036-0022.npy +tests/data/ljspeech/wavs/LJ048-0287.wav|tests/data/ljspeech/wavs/LJ048-0287.npy +tests/data/ljspeech/wavs/LJ035-0204.wav|tests/data/ljspeech/wavs/LJ035-0204.npy +tests/data/ljspeech/wavs/LJ010-0114.wav|tests/data/ljspeech/wavs/LJ010-0114.npy +tests/data/ljspeech/wavs/LJ026-0024.wav|tests/data/ljspeech/wavs/LJ026-0024.npy +tests/data/ljspeech/wavs/LJ003-0055.wav|tests/data/ljspeech/wavs/LJ003-0055.npy +tests/data/ljspeech/wavs/LJ049-0189.wav|tests/data/ljspeech/wavs/LJ049-0189.npy +tests/data/ljspeech/wavs/LJ019-0051.wav|tests/data/ljspeech/wavs/LJ019-0051.npy +tests/data/ljspeech/wavs/LJ019-0289.wav|tests/data/ljspeech/wavs/LJ019-0289.npy +tests/data/ljspeech/wavs/LJ037-0109.wav|tests/data/ljspeech/wavs/LJ037-0109.npy +tests/data/ljspeech/wavs/LJ040-0073.wav|tests/data/ljspeech/wavs/LJ040-0073.npy +tests/data/ljspeech/wavs/LJ045-0067.wav|tests/data/ljspeech/wavs/LJ045-0067.npy +tests/data/ljspeech/wavs/LJ011-0061.wav|tests/data/ljspeech/wavs/LJ011-0061.npy +tests/data/ljspeech/wavs/LJ003-0078.wav|tests/data/ljspeech/wavs/LJ003-0078.npy +tests/data/ljspeech/wavs/LJ008-0269.wav|tests/data/ljspeech/wavs/LJ008-0269.npy +tests/data/ljspeech/wavs/LJ013-0265.wav|tests/data/ljspeech/wavs/LJ013-0265.npy +tests/data/ljspeech/wavs/LJ016-0208.wav|tests/data/ljspeech/wavs/LJ016-0208.npy +tests/data/ljspeech/wavs/LJ035-0060.wav|tests/data/ljspeech/wavs/LJ035-0060.npy +tests/data/ljspeech/wavs/LJ005-0058.wav|tests/data/ljspeech/wavs/LJ005-0058.npy +tests/data/ljspeech/wavs/LJ016-0099.wav|tests/data/ljspeech/wavs/LJ016-0099.npy +tests/data/ljspeech/wavs/LJ032-0218.wav|tests/data/ljspeech/wavs/LJ032-0218.npy +tests/data/ljspeech/wavs/LJ011-0274.wav|tests/data/ljspeech/wavs/LJ011-0274.npy +tests/data/ljspeech/wavs/LJ047-0163.wav|tests/data/ljspeech/wavs/LJ047-0163.npy +tests/data/ljspeech/wavs/LJ012-0054.wav|tests/data/ljspeech/wavs/LJ012-0054.npy +tests/data/ljspeech/wavs/LJ010-0310.wav|tests/data/ljspeech/wavs/LJ010-0310.npy +tests/data/ljspeech/wavs/LJ018-0025.wav|tests/data/ljspeech/wavs/LJ018-0025.npy +tests/data/ljspeech/wavs/LJ003-0180.wav|tests/data/ljspeech/wavs/LJ003-0180.npy +tests/data/ljspeech/wavs/LJ016-0283.wav|tests/data/ljspeech/wavs/LJ016-0283.npy +tests/data/ljspeech/wavs/LJ045-0168.wav|tests/data/ljspeech/wavs/LJ045-0168.npy +tests/data/ljspeech/wavs/LJ018-0181.wav|tests/data/ljspeech/wavs/LJ018-0181.npy +tests/data/ljspeech/wavs/LJ019-0323.wav|tests/data/ljspeech/wavs/LJ019-0323.npy +tests/data/ljspeech/wavs/LJ042-0079.wav|tests/data/ljspeech/wavs/LJ042-0079.npy +tests/data/ljspeech/wavs/LJ011-0095.wav|tests/data/ljspeech/wavs/LJ011-0095.npy +tests/data/ljspeech/wavs/LJ026-0055.wav|tests/data/ljspeech/wavs/LJ026-0055.npy +tests/data/ljspeech/wavs/LJ016-0375.wav|tests/data/ljspeech/wavs/LJ016-0375.npy +tests/data/ljspeech/wavs/LJ012-0022.wav|tests/data/ljspeech/wavs/LJ012-0022.npy +tests/data/ljspeech/wavs/LJ045-0050.wav|tests/data/ljspeech/wavs/LJ045-0050.npy +tests/data/ljspeech/wavs/LJ018-0381.wav|tests/data/ljspeech/wavs/LJ018-0381.npy +tests/data/ljspeech/wavs/LJ008-0117.wav|tests/data/ljspeech/wavs/LJ008-0117.npy +tests/data/ljspeech/wavs/LJ019-0142.wav|tests/data/ljspeech/wavs/LJ019-0142.npy +tests/data/ljspeech/wavs/LJ036-0137.wav|tests/data/ljspeech/wavs/LJ036-0137.npy +tests/data/ljspeech/wavs/LJ011-0290.wav|tests/data/ljspeech/wavs/LJ011-0290.npy +tests/data/ljspeech/wavs/LJ026-0071.wav|tests/data/ljspeech/wavs/LJ026-0071.npy +tests/data/ljspeech/wavs/LJ003-0243.wav|tests/data/ljspeech/wavs/LJ003-0243.npy +tests/data/ljspeech/wavs/LJ038-0090.wav|tests/data/ljspeech/wavs/LJ038-0090.npy +tests/data/ljspeech/wavs/LJ019-0116.wav|tests/data/ljspeech/wavs/LJ019-0116.npy +tests/data/ljspeech/wavs/LJ032-0135.wav|tests/data/ljspeech/wavs/LJ032-0135.npy +tests/data/ljspeech/wavs/LJ049-0223.wav|tests/data/ljspeech/wavs/LJ049-0223.npy +tests/data/ljspeech/wavs/LJ018-0352.wav|tests/data/ljspeech/wavs/LJ018-0352.npy +tests/data/ljspeech/wavs/LJ015-0063.wav|tests/data/ljspeech/wavs/LJ015-0063.npy +tests/data/ljspeech/wavs/LJ011-0121.wav|tests/data/ljspeech/wavs/LJ011-0121.npy +tests/data/ljspeech/wavs/LJ005-0092.wav|tests/data/ljspeech/wavs/LJ005-0092.npy +tests/data/ljspeech/wavs/LJ048-0283.wav|tests/data/ljspeech/wavs/LJ048-0283.npy +tests/data/ljspeech/wavs/LJ011-0181.wav|tests/data/ljspeech/wavs/LJ011-0181.npy +tests/data/ljspeech/wavs/LJ005-0254.wav|tests/data/ljspeech/wavs/LJ005-0254.npy +tests/data/ljspeech/wavs/LJ016-0418.wav|tests/data/ljspeech/wavs/LJ016-0418.npy +tests/data/ljspeech/wavs/LJ005-0189.wav|tests/data/ljspeech/wavs/LJ005-0189.npy +tests/data/ljspeech/wavs/LJ019-0107.wav|tests/data/ljspeech/wavs/LJ019-0107.npy +tests/data/ljspeech/wavs/LJ008-0116.wav|tests/data/ljspeech/wavs/LJ008-0116.npy +tests/data/ljspeech/wavs/LJ017-0110.wav|tests/data/ljspeech/wavs/LJ017-0110.npy +tests/data/ljspeech/wavs/LJ037-0081.wav|tests/data/ljspeech/wavs/LJ037-0081.npy +tests/data/ljspeech/wavs/LJ003-0227.wav|tests/data/ljspeech/wavs/LJ003-0227.npy +tests/data/ljspeech/wavs/LJ028-0028.wav|tests/data/ljspeech/wavs/LJ028-0028.npy +tests/data/ljspeech/wavs/LJ043-0122.wav|tests/data/ljspeech/wavs/LJ043-0122.npy +tests/data/ljspeech/wavs/LJ045-0102.wav|tests/data/ljspeech/wavs/LJ045-0102.npy +tests/data/ljspeech/wavs/LJ001-0077.wav|tests/data/ljspeech/wavs/LJ001-0077.npy +tests/data/ljspeech/wavs/LJ043-0063.wav|tests/data/ljspeech/wavs/LJ043-0063.npy +tests/data/ljspeech/wavs/LJ004-0220.wav|tests/data/ljspeech/wavs/LJ004-0220.npy +tests/data/ljspeech/wavs/LJ019-0058.wav|tests/data/ljspeech/wavs/LJ019-0058.npy +tests/data/ljspeech/wavs/LJ018-0283.wav|tests/data/ljspeech/wavs/LJ018-0283.npy +tests/data/ljspeech/wavs/LJ027-0119.wav|tests/data/ljspeech/wavs/LJ027-0119.npy +tests/data/ljspeech/wavs/LJ028-0157.wav|tests/data/ljspeech/wavs/LJ028-0157.npy +tests/data/ljspeech/wavs/LJ043-0017.wav|tests/data/ljspeech/wavs/LJ043-0017.npy +tests/data/ljspeech/wavs/LJ015-0037.wav|tests/data/ljspeech/wavs/LJ015-0037.npy +tests/data/ljspeech/wavs/LJ003-0145.wav|tests/data/ljspeech/wavs/LJ003-0145.npy +tests/data/ljspeech/wavs/LJ049-0061.wav|tests/data/ljspeech/wavs/LJ049-0061.npy +tests/data/ljspeech/wavs/LJ010-0236.wav|tests/data/ljspeech/wavs/LJ010-0236.npy +tests/data/ljspeech/wavs/LJ042-0103.wav|tests/data/ljspeech/wavs/LJ042-0103.npy +tests/data/ljspeech/wavs/LJ019-0096.wav|tests/data/ljspeech/wavs/LJ019-0096.npy +tests/data/ljspeech/wavs/LJ008-0235.wav|tests/data/ljspeech/wavs/LJ008-0235.npy +tests/data/ljspeech/wavs/LJ038-0202.wav|tests/data/ljspeech/wavs/LJ038-0202.npy +tests/data/ljspeech/wavs/LJ037-0075.wav|tests/data/ljspeech/wavs/LJ037-0075.npy +tests/data/ljspeech/wavs/LJ013-0218.wav|tests/data/ljspeech/wavs/LJ013-0218.npy +tests/data/ljspeech/wavs/LJ013-0194.wav|tests/data/ljspeech/wavs/LJ013-0194.npy +tests/data/ljspeech/wavs/LJ048-0216.wav|tests/data/ljspeech/wavs/LJ048-0216.npy +tests/data/ljspeech/wavs/LJ019-0106.wav|tests/data/ljspeech/wavs/LJ019-0106.npy +tests/data/ljspeech/wavs/LJ014-0118.wav|tests/data/ljspeech/wavs/LJ014-0118.npy +tests/data/ljspeech/wavs/LJ008-0289.wav|tests/data/ljspeech/wavs/LJ008-0289.npy +tests/data/ljspeech/wavs/LJ027-0055.wav|tests/data/ljspeech/wavs/LJ027-0055.npy +tests/data/ljspeech/wavs/LJ004-0070.wav|tests/data/ljspeech/wavs/LJ004-0070.npy +tests/data/ljspeech/wavs/LJ012-0275.wav|tests/data/ljspeech/wavs/LJ012-0275.npy +tests/data/ljspeech/wavs/LJ008-0166.wav|tests/data/ljspeech/wavs/LJ008-0166.npy +tests/data/ljspeech/wavs/LJ007-0005.wav|tests/data/ljspeech/wavs/LJ007-0005.npy +tests/data/ljspeech/wavs/LJ016-0253.wav|tests/data/ljspeech/wavs/LJ016-0253.npy +tests/data/ljspeech/wavs/LJ003-0151.wav|tests/data/ljspeech/wavs/LJ003-0151.npy +tests/data/ljspeech/wavs/LJ017-0076.wav|tests/data/ljspeech/wavs/LJ017-0076.npy +tests/data/ljspeech/wavs/LJ018-0267.wav|tests/data/ljspeech/wavs/LJ018-0267.npy +tests/data/ljspeech/wavs/LJ032-0062.wav|tests/data/ljspeech/wavs/LJ032-0062.npy +tests/data/ljspeech/wavs/LJ047-0136.wav|tests/data/ljspeech/wavs/LJ047-0136.npy +tests/data/ljspeech/wavs/LJ046-0217.wav|tests/data/ljspeech/wavs/LJ046-0217.npy +tests/data/ljspeech/wavs/LJ017-0011.wav|tests/data/ljspeech/wavs/LJ017-0011.npy +tests/data/ljspeech/wavs/LJ014-0049.wav|tests/data/ljspeech/wavs/LJ014-0049.npy +tests/data/ljspeech/wavs/LJ014-0180.wav|tests/data/ljspeech/wavs/LJ014-0180.npy +tests/data/ljspeech/wavs/LJ038-0114.wav|tests/data/ljspeech/wavs/LJ038-0114.npy +tests/data/ljspeech/wavs/LJ017-0052.wav|tests/data/ljspeech/wavs/LJ017-0052.npy +tests/data/ljspeech/wavs/LJ011-0093.wav|tests/data/ljspeech/wavs/LJ011-0093.npy +tests/data/ljspeech/wavs/LJ007-0238.wav|tests/data/ljspeech/wavs/LJ007-0238.npy +tests/data/ljspeech/wavs/LJ018-0299.wav|tests/data/ljspeech/wavs/LJ018-0299.npy +tests/data/ljspeech/wavs/LJ046-0098.wav|tests/data/ljspeech/wavs/LJ046-0098.npy +tests/data/ljspeech/wavs/LJ014-0200.wav|tests/data/ljspeech/wavs/LJ014-0200.npy +tests/data/ljspeech/wavs/LJ011-0135.wav|tests/data/ljspeech/wavs/LJ011-0135.npy +tests/data/ljspeech/wavs/LJ011-0240.wav|tests/data/ljspeech/wavs/LJ011-0240.npy +tests/data/ljspeech/wavs/LJ006-0233.wav|tests/data/ljspeech/wavs/LJ006-0233.npy +tests/data/ljspeech/wavs/LJ040-0092.wav|tests/data/ljspeech/wavs/LJ040-0092.npy +tests/data/ljspeech/wavs/LJ006-0226.wav|tests/data/ljspeech/wavs/LJ006-0226.npy +tests/data/ljspeech/wavs/LJ050-0057.wav|tests/data/ljspeech/wavs/LJ050-0057.npy +tests/data/ljspeech/wavs/LJ043-0024.wav|tests/data/ljspeech/wavs/LJ043-0024.npy +tests/data/ljspeech/wavs/LJ028-0366.wav|tests/data/ljspeech/wavs/LJ028-0366.npy +tests/data/ljspeech/wavs/LJ011-0139.wav|tests/data/ljspeech/wavs/LJ011-0139.npy +tests/data/ljspeech/wavs/LJ032-0117.wav|tests/data/ljspeech/wavs/LJ032-0117.npy +tests/data/ljspeech/wavs/LJ048-0066.wav|tests/data/ljspeech/wavs/LJ048-0066.npy +tests/data/ljspeech/wavs/LJ011-0119.wav|tests/data/ljspeech/wavs/LJ011-0119.npy +tests/data/ljspeech/wavs/LJ003-0212.wav|tests/data/ljspeech/wavs/LJ003-0212.npy +tests/data/ljspeech/wavs/LJ014-0012.wav|tests/data/ljspeech/wavs/LJ014-0012.npy +tests/data/ljspeech/wavs/LJ028-0264.wav|tests/data/ljspeech/wavs/LJ028-0264.npy +tests/data/ljspeech/wavs/LJ038-0224.wav|tests/data/ljspeech/wavs/LJ038-0224.npy +tests/data/ljspeech/wavs/LJ018-0022.wav|tests/data/ljspeech/wavs/LJ018-0022.npy +tests/data/ljspeech/wavs/LJ029-0056.wav|tests/data/ljspeech/wavs/LJ029-0056.npy +tests/data/ljspeech/wavs/LJ031-0169.wav|tests/data/ljspeech/wavs/LJ031-0169.npy +tests/data/ljspeech/wavs/LJ040-0163.wav|tests/data/ljspeech/wavs/LJ040-0163.npy +tests/data/ljspeech/wavs/LJ037-0137.wav|tests/data/ljspeech/wavs/LJ037-0137.npy +tests/data/ljspeech/wavs/LJ040-0107.wav|tests/data/ljspeech/wavs/LJ040-0107.npy +tests/data/ljspeech/wavs/LJ024-0060.wav|tests/data/ljspeech/wavs/LJ024-0060.npy +tests/data/ljspeech/wavs/LJ040-0127.wav|tests/data/ljspeech/wavs/LJ040-0127.npy +tests/data/ljspeech/wavs/LJ019-0235.wav|tests/data/ljspeech/wavs/LJ019-0235.npy +tests/data/ljspeech/wavs/LJ024-0103.wav|tests/data/ljspeech/wavs/LJ024-0103.npy +tests/data/ljspeech/wavs/LJ015-0267.wav|tests/data/ljspeech/wavs/LJ015-0267.npy +tests/data/ljspeech/wavs/LJ010-0150.wav|tests/data/ljspeech/wavs/LJ010-0150.npy +tests/data/ljspeech/wavs/LJ037-0235.wav|tests/data/ljspeech/wavs/LJ037-0235.npy +tests/data/ljspeech/wavs/LJ034-0070.wav|tests/data/ljspeech/wavs/LJ034-0070.npy +tests/data/ljspeech/wavs/LJ015-0260.wav|tests/data/ljspeech/wavs/LJ015-0260.npy +tests/data/ljspeech/wavs/LJ015-0251.wav|tests/data/ljspeech/wavs/LJ015-0251.npy +tests/data/ljspeech/wavs/LJ045-0224.wav|tests/data/ljspeech/wavs/LJ045-0224.npy +tests/data/ljspeech/wavs/LJ034-0065.wav|tests/data/ljspeech/wavs/LJ034-0065.npy +tests/data/ljspeech/wavs/LJ019-0376.wav|tests/data/ljspeech/wavs/LJ019-0376.npy +tests/data/ljspeech/wavs/LJ036-0069.wav|tests/data/ljspeech/wavs/LJ036-0069.npy +tests/data/ljspeech/wavs/LJ043-0179.wav|tests/data/ljspeech/wavs/LJ043-0179.npy +tests/data/ljspeech/wavs/LJ033-0180.wav|tests/data/ljspeech/wavs/LJ033-0180.npy +tests/data/ljspeech/wavs/LJ005-0007.wav|tests/data/ljspeech/wavs/LJ005-0007.npy +tests/data/ljspeech/wavs/LJ039-0089.wav|tests/data/ljspeech/wavs/LJ039-0089.npy +tests/data/ljspeech/wavs/LJ044-0196.wav|tests/data/ljspeech/wavs/LJ044-0196.npy +tests/data/ljspeech/wavs/LJ036-0058.wav|tests/data/ljspeech/wavs/LJ036-0058.npy +tests/data/ljspeech/wavs/LJ019-0301.wav|tests/data/ljspeech/wavs/LJ019-0301.npy +tests/data/ljspeech/wavs/LJ029-0064.wav|tests/data/ljspeech/wavs/LJ029-0064.npy +tests/data/ljspeech/wavs/LJ024-0139.wav|tests/data/ljspeech/wavs/LJ024-0139.npy +tests/data/ljspeech/wavs/LJ031-0197.wav|tests/data/ljspeech/wavs/LJ031-0197.npy +tests/data/ljspeech/wavs/LJ003-0100.wav|tests/data/ljspeech/wavs/LJ003-0100.npy +tests/data/ljspeech/wavs/LJ007-0107.wav|tests/data/ljspeech/wavs/LJ007-0107.npy +tests/data/ljspeech/wavs/LJ018-0013.wav|tests/data/ljspeech/wavs/LJ018-0013.npy +tests/data/ljspeech/wavs/LJ040-0210.wav|tests/data/ljspeech/wavs/LJ040-0210.npy +tests/data/ljspeech/wavs/LJ040-0216.wav|tests/data/ljspeech/wavs/LJ040-0216.npy +tests/data/ljspeech/wavs/LJ049-0098.wav|tests/data/ljspeech/wavs/LJ049-0098.npy +tests/data/ljspeech/wavs/LJ015-0088.wav|tests/data/ljspeech/wavs/LJ015-0088.npy +tests/data/ljspeech/wavs/LJ039-0076.wav|tests/data/ljspeech/wavs/LJ039-0076.npy +tests/data/ljspeech/wavs/LJ047-0158.wav|tests/data/ljspeech/wavs/LJ047-0158.npy +tests/data/ljspeech/wavs/LJ010-0097.wav|tests/data/ljspeech/wavs/LJ010-0097.npy +tests/data/ljspeech/wavs/LJ015-0125.wav|tests/data/ljspeech/wavs/LJ015-0125.npy +tests/data/ljspeech/wavs/LJ025-0168.wav|tests/data/ljspeech/wavs/LJ025-0168.npy +tests/data/ljspeech/wavs/LJ045-0020.wav|tests/data/ljspeech/wavs/LJ045-0020.npy +tests/data/ljspeech/wavs/LJ034-0164.wav|tests/data/ljspeech/wavs/LJ034-0164.npy +tests/data/ljspeech/wavs/LJ003-0111.wav|tests/data/ljspeech/wavs/LJ003-0111.npy +tests/data/ljspeech/wavs/LJ015-0153.wav|tests/data/ljspeech/wavs/LJ015-0153.npy +tests/data/ljspeech/wavs/LJ019-0159.wav|tests/data/ljspeech/wavs/LJ019-0159.npy +tests/data/ljspeech/wavs/LJ016-0089.wav|tests/data/ljspeech/wavs/LJ016-0089.npy +tests/data/ljspeech/wavs/LJ041-0096.wav|tests/data/ljspeech/wavs/LJ041-0096.npy +tests/data/ljspeech/wavs/LJ002-0291.wav|tests/data/ljspeech/wavs/LJ002-0291.npy +tests/data/ljspeech/wavs/LJ016-0074.wav|tests/data/ljspeech/wavs/LJ016-0074.npy +tests/data/ljspeech/wavs/LJ045-0004.wav|tests/data/ljspeech/wavs/LJ045-0004.npy +tests/data/ljspeech/wavs/LJ019-0385.wav|tests/data/ljspeech/wavs/LJ019-0385.npy +tests/data/ljspeech/wavs/LJ016-0225.wav|tests/data/ljspeech/wavs/LJ016-0225.npy +tests/data/ljspeech/wavs/LJ019-0177.wav|tests/data/ljspeech/wavs/LJ019-0177.npy +tests/data/ljspeech/wavs/LJ012-0012.wav|tests/data/ljspeech/wavs/LJ012-0012.npy +tests/data/ljspeech/wavs/LJ014-0008.wav|tests/data/ljspeech/wavs/LJ014-0008.npy +tests/data/ljspeech/wavs/LJ009-0292.wav|tests/data/ljspeech/wavs/LJ009-0292.npy +tests/data/ljspeech/wavs/LJ017-0016.wav|tests/data/ljspeech/wavs/LJ017-0016.npy +tests/data/ljspeech/wavs/LJ034-0128.wav|tests/data/ljspeech/wavs/LJ034-0128.npy +tests/data/ljspeech/wavs/LJ021-0080.wav|tests/data/ljspeech/wavs/LJ021-0080.npy +tests/data/ljspeech/wavs/LJ016-0118.wav|tests/data/ljspeech/wavs/LJ016-0118.npy +tests/data/ljspeech/wavs/LJ003-0015.wav|tests/data/ljspeech/wavs/LJ003-0015.npy +tests/data/ljspeech/wavs/LJ048-0246.wav|tests/data/ljspeech/wavs/LJ048-0246.npy +tests/data/ljspeech/wavs/LJ035-0004.wav|tests/data/ljspeech/wavs/LJ035-0004.npy +tests/data/ljspeech/wavs/LJ031-0189.wav|tests/data/ljspeech/wavs/LJ031-0189.npy +tests/data/ljspeech/wavs/LJ029-0124.wav|tests/data/ljspeech/wavs/LJ029-0124.npy +tests/data/ljspeech/wavs/LJ047-0080.wav|tests/data/ljspeech/wavs/LJ047-0080.npy +tests/data/ljspeech/wavs/LJ029-0083.wav|tests/data/ljspeech/wavs/LJ029-0083.npy +tests/data/ljspeech/wavs/LJ049-0122.wav|tests/data/ljspeech/wavs/LJ049-0122.npy +tests/data/ljspeech/wavs/LJ021-0196.wav|tests/data/ljspeech/wavs/LJ021-0196.npy +tests/data/ljspeech/wavs/LJ045-0112.wav|tests/data/ljspeech/wavs/LJ045-0112.npy +tests/data/ljspeech/wavs/LJ014-0173.wav|tests/data/ljspeech/wavs/LJ014-0173.npy +tests/data/ljspeech/wavs/LJ044-0151.wav|tests/data/ljspeech/wavs/LJ044-0151.npy +tests/data/ljspeech/wavs/LJ026-0141.wav|tests/data/ljspeech/wavs/LJ026-0141.npy +tests/data/ljspeech/wavs/LJ044-0007.wav|tests/data/ljspeech/wavs/LJ044-0007.npy +tests/data/ljspeech/wavs/LJ018-0045.wav|tests/data/ljspeech/wavs/LJ018-0045.npy +tests/data/ljspeech/wavs/LJ016-0132.wav|tests/data/ljspeech/wavs/LJ016-0132.npy +tests/data/ljspeech/wavs/LJ005-0012.wav|tests/data/ljspeech/wavs/LJ005-0012.npy +tests/data/ljspeech/wavs/LJ021-0194.wav|tests/data/ljspeech/wavs/LJ021-0194.npy +tests/data/ljspeech/wavs/LJ030-0045.wav|tests/data/ljspeech/wavs/LJ030-0045.npy +tests/data/ljspeech/wavs/LJ046-0143.wav|tests/data/ljspeech/wavs/LJ046-0143.npy +tests/data/ljspeech/wavs/LJ007-0080.wav|tests/data/ljspeech/wavs/LJ007-0080.npy +tests/data/ljspeech/wavs/LJ039-0124.wav|tests/data/ljspeech/wavs/LJ039-0124.npy +tests/data/ljspeech/wavs/LJ002-0257.wav|tests/data/ljspeech/wavs/LJ002-0257.npy +tests/data/ljspeech/wavs/LJ029-0209.wav|tests/data/ljspeech/wavs/LJ029-0209.npy +tests/data/ljspeech/wavs/LJ007-0059.wav|tests/data/ljspeech/wavs/LJ007-0059.npy +tests/data/ljspeech/wavs/LJ049-0170.wav|tests/data/ljspeech/wavs/LJ049-0170.npy +tests/data/ljspeech/wavs/LJ029-0145.wav|tests/data/ljspeech/wavs/LJ029-0145.npy +tests/data/ljspeech/wavs/LJ025-0118.wav|tests/data/ljspeech/wavs/LJ025-0118.npy +tests/data/ljspeech/wavs/LJ019-0186.wav|tests/data/ljspeech/wavs/LJ019-0186.npy +tests/data/ljspeech/wavs/LJ012-0083.wav|tests/data/ljspeech/wavs/LJ012-0083.npy +tests/data/ljspeech/wavs/LJ004-0193.wav|tests/data/ljspeech/wavs/LJ004-0193.npy +tests/data/ljspeech/wavs/LJ036-0107.wav|tests/data/ljspeech/wavs/LJ036-0107.npy +tests/data/ljspeech/wavs/LJ004-0231.wav|tests/data/ljspeech/wavs/LJ004-0231.npy +tests/data/ljspeech/wavs/LJ014-0123.wav|tests/data/ljspeech/wavs/LJ014-0123.npy +tests/data/ljspeech/wavs/LJ029-0211.wav|tests/data/ljspeech/wavs/LJ029-0211.npy +tests/data/ljspeech/wavs/LJ047-0079.wav|tests/data/ljspeech/wavs/LJ047-0079.npy +tests/data/ljspeech/wavs/LJ031-0013.wav|tests/data/ljspeech/wavs/LJ031-0013.npy +tests/data/ljspeech/wavs/LJ012-0018.wav|tests/data/ljspeech/wavs/LJ012-0018.npy +tests/data/ljspeech/wavs/LJ045-0026.wav|tests/data/ljspeech/wavs/LJ045-0026.npy +tests/data/ljspeech/wavs/LJ050-0250.wav|tests/data/ljspeech/wavs/LJ050-0250.npy +tests/data/ljspeech/wavs/LJ003-0005.wav|tests/data/ljspeech/wavs/LJ003-0005.npy +tests/data/ljspeech/wavs/LJ020-0003.wav|tests/data/ljspeech/wavs/LJ020-0003.npy +tests/data/ljspeech/wavs/LJ025-0159.wav|tests/data/ljspeech/wavs/LJ025-0159.npy +tests/data/ljspeech/wavs/LJ021-0081.wav|tests/data/ljspeech/wavs/LJ021-0081.npy +tests/data/ljspeech/wavs/LJ001-0021.wav|tests/data/ljspeech/wavs/LJ001-0021.npy +tests/data/ljspeech/wavs/LJ043-0030.wav|tests/data/ljspeech/wavs/LJ043-0030.npy +tests/data/ljspeech/wavs/LJ045-0202.wav|tests/data/ljspeech/wavs/LJ045-0202.npy +tests/data/ljspeech/wavs/LJ014-0045.wav|tests/data/ljspeech/wavs/LJ014-0045.npy +tests/data/ljspeech/wavs/LJ016-0076.wav|tests/data/ljspeech/wavs/LJ016-0076.npy +tests/data/ljspeech/wavs/LJ013-0256.wav|tests/data/ljspeech/wavs/LJ013-0256.npy +tests/data/ljspeech/wavs/LJ007-0030.wav|tests/data/ljspeech/wavs/LJ007-0030.npy +tests/data/ljspeech/wavs/LJ004-0130.wav|tests/data/ljspeech/wavs/LJ004-0130.npy +tests/data/ljspeech/wavs/LJ021-0082.wav|tests/data/ljspeech/wavs/LJ021-0082.npy +tests/data/ljspeech/wavs/LJ021-0160.wav|tests/data/ljspeech/wavs/LJ021-0160.npy +tests/data/ljspeech/wavs/LJ038-0022.wav|tests/data/ljspeech/wavs/LJ038-0022.npy +tests/data/ljspeech/wavs/LJ021-0155.wav|tests/data/ljspeech/wavs/LJ021-0155.npy +tests/data/ljspeech/wavs/LJ026-0080.wav|tests/data/ljspeech/wavs/LJ026-0080.npy +tests/data/ljspeech/wavs/LJ026-0025.wav|tests/data/ljspeech/wavs/LJ026-0025.npy +tests/data/ljspeech/wavs/LJ016-0117.wav|tests/data/ljspeech/wavs/LJ016-0117.npy +tests/data/ljspeech/wavs/LJ007-0032.wav|tests/data/ljspeech/wavs/LJ007-0032.npy +tests/data/ljspeech/wavs/LJ005-0013.wav|tests/data/ljspeech/wavs/LJ005-0013.npy +tests/data/ljspeech/wavs/LJ016-0243.wav|tests/data/ljspeech/wavs/LJ016-0243.npy +tests/data/ljspeech/wavs/LJ013-0244.wav|tests/data/ljspeech/wavs/LJ013-0244.npy +tests/data/ljspeech/wavs/LJ014-0084.wav|tests/data/ljspeech/wavs/LJ014-0084.npy +tests/data/ljspeech/wavs/LJ037-0169.wav|tests/data/ljspeech/wavs/LJ037-0169.npy +tests/data/ljspeech/wavs/LJ031-0088.wav|tests/data/ljspeech/wavs/LJ031-0088.npy +tests/data/ljspeech/wavs/LJ009-0286.wav|tests/data/ljspeech/wavs/LJ009-0286.npy +tests/data/ljspeech/wavs/LJ041-0135.wav|tests/data/ljspeech/wavs/LJ041-0135.npy +tests/data/ljspeech/wavs/LJ019-0229.wav|tests/data/ljspeech/wavs/LJ019-0229.npy +tests/data/ljspeech/wavs/LJ016-0306.wav|tests/data/ljspeech/wavs/LJ016-0306.npy +tests/data/ljspeech/wavs/LJ040-0093.wav|tests/data/ljspeech/wavs/LJ040-0093.npy +tests/data/ljspeech/wavs/LJ038-0100.wav|tests/data/ljspeech/wavs/LJ038-0100.npy +tests/data/ljspeech/wavs/LJ011-0262.wav|tests/data/ljspeech/wavs/LJ011-0262.npy +tests/data/ljspeech/wavs/LJ023-0081.wav|tests/data/ljspeech/wavs/LJ023-0081.npy +tests/data/ljspeech/wavs/LJ035-0190.wav|tests/data/ljspeech/wavs/LJ035-0190.npy +tests/data/ljspeech/wavs/LJ024-0087.wav|tests/data/ljspeech/wavs/LJ024-0087.npy +tests/data/ljspeech/wavs/LJ045-0043.wav|tests/data/ljspeech/wavs/LJ045-0043.npy +tests/data/ljspeech/wavs/LJ041-0200.wav|tests/data/ljspeech/wavs/LJ041-0200.npy +tests/data/ljspeech/wavs/LJ041-0087.wav|tests/data/ljspeech/wavs/LJ041-0087.npy +tests/data/ljspeech/wavs/LJ016-0303.wav|tests/data/ljspeech/wavs/LJ016-0303.npy +tests/data/ljspeech/wavs/LJ039-0163.wav|tests/data/ljspeech/wavs/LJ039-0163.npy +tests/data/ljspeech/wavs/LJ046-0149.wav|tests/data/ljspeech/wavs/LJ046-0149.npy +tests/data/ljspeech/wavs/LJ019-0011.wav|tests/data/ljspeech/wavs/LJ019-0011.npy +tests/data/ljspeech/wavs/LJ032-0105.wav|tests/data/ljspeech/wavs/LJ032-0105.npy +tests/data/ljspeech/wavs/LJ043-0087.wav|tests/data/ljspeech/wavs/LJ043-0087.npy +tests/data/ljspeech/wavs/LJ023-0068.wav|tests/data/ljspeech/wavs/LJ023-0068.npy +tests/data/ljspeech/wavs/LJ028-0195.wav|tests/data/ljspeech/wavs/LJ028-0195.npy +tests/data/ljspeech/wavs/LJ028-0304.wav|tests/data/ljspeech/wavs/LJ028-0304.npy +tests/data/ljspeech/wavs/LJ011-0291.wav|tests/data/ljspeech/wavs/LJ011-0291.npy +tests/data/ljspeech/wavs/LJ014-0257.wav|tests/data/ljspeech/wavs/LJ014-0257.npy +tests/data/ljspeech/wavs/LJ037-0262.wav|tests/data/ljspeech/wavs/LJ037-0262.npy +tests/data/ljspeech/wavs/LJ032-0084.wav|tests/data/ljspeech/wavs/LJ032-0084.npy +tests/data/ljspeech/wavs/LJ016-0302.wav|tests/data/ljspeech/wavs/LJ016-0302.npy +tests/data/ljspeech/wavs/LJ014-0318.wav|tests/data/ljspeech/wavs/LJ014-0318.npy +tests/data/ljspeech/wavs/LJ045-0121.wav|tests/data/ljspeech/wavs/LJ045-0121.npy +tests/data/ljspeech/wavs/LJ034-0007.wav|tests/data/ljspeech/wavs/LJ034-0007.npy +tests/data/ljspeech/wavs/LJ035-0127.wav|tests/data/ljspeech/wavs/LJ035-0127.npy +tests/data/ljspeech/wavs/LJ019-0293.wav|tests/data/ljspeech/wavs/LJ019-0293.npy +tests/data/ljspeech/wavs/LJ038-0054.wav|tests/data/ljspeech/wavs/LJ038-0054.npy +tests/data/ljspeech/wavs/LJ002-0158.wav|tests/data/ljspeech/wavs/LJ002-0158.npy +tests/data/ljspeech/wavs/LJ015-0181.wav|tests/data/ljspeech/wavs/LJ015-0181.npy +tests/data/ljspeech/wavs/LJ050-0235.wav|tests/data/ljspeech/wavs/LJ050-0235.npy +tests/data/ljspeech/wavs/LJ037-0053.wav|tests/data/ljspeech/wavs/LJ037-0053.npy +tests/data/ljspeech/wavs/LJ022-0157.wav|tests/data/ljspeech/wavs/LJ022-0157.npy +tests/data/ljspeech/wavs/LJ013-0111.wav|tests/data/ljspeech/wavs/LJ013-0111.npy +tests/data/ljspeech/wavs/LJ037-0260.wav|tests/data/ljspeech/wavs/LJ037-0260.npy +tests/data/ljspeech/wavs/LJ050-0231.wav|tests/data/ljspeech/wavs/LJ050-0231.npy +tests/data/ljspeech/wavs/LJ011-0232.wav|tests/data/ljspeech/wavs/LJ011-0232.npy +tests/data/ljspeech/wavs/LJ002-0103.wav|tests/data/ljspeech/wavs/LJ002-0103.npy +tests/data/ljspeech/wavs/LJ005-0171.wav|tests/data/ljspeech/wavs/LJ005-0171.npy +tests/data/ljspeech/wavs/LJ019-0234.wav|tests/data/ljspeech/wavs/LJ019-0234.npy +tests/data/ljspeech/wavs/LJ028-0353.wav|tests/data/ljspeech/wavs/LJ028-0353.npy +tests/data/ljspeech/wavs/LJ005-0289.wav|tests/data/ljspeech/wavs/LJ005-0289.npy +tests/data/ljspeech/wavs/LJ008-0177.wav|tests/data/ljspeech/wavs/LJ008-0177.npy +tests/data/ljspeech/wavs/LJ014-0303.wav|tests/data/ljspeech/wavs/LJ014-0303.npy +tests/data/ljspeech/wavs/LJ009-0193.wav|tests/data/ljspeech/wavs/LJ009-0193.npy +tests/data/ljspeech/wavs/LJ006-0096.wav|tests/data/ljspeech/wavs/LJ006-0096.npy +tests/data/ljspeech/wavs/LJ005-0054.wav|tests/data/ljspeech/wavs/LJ005-0054.npy +tests/data/ljspeech/wavs/LJ015-0185.wav|tests/data/ljspeech/wavs/LJ015-0185.npy +tests/data/ljspeech/wavs/LJ041-0098.wav|tests/data/ljspeech/wavs/LJ041-0098.npy +tests/data/ljspeech/wavs/LJ013-0019.wav|tests/data/ljspeech/wavs/LJ013-0019.npy +tests/data/ljspeech/wavs/LJ005-0042.wav|tests/data/ljspeech/wavs/LJ005-0042.npy +tests/data/ljspeech/wavs/LJ028-0463.wav|tests/data/ljspeech/wavs/LJ028-0463.npy +tests/data/ljspeech/wavs/LJ027-0118.wav|tests/data/ljspeech/wavs/LJ027-0118.npy +tests/data/ljspeech/wavs/LJ018-0331.wav|tests/data/ljspeech/wavs/LJ018-0331.npy +tests/data/ljspeech/wavs/LJ015-0263.wav|tests/data/ljspeech/wavs/LJ015-0263.npy +tests/data/ljspeech/wavs/LJ019-0104.wav|tests/data/ljspeech/wavs/LJ019-0104.npy +tests/data/ljspeech/wavs/LJ009-0112.wav|tests/data/ljspeech/wavs/LJ009-0112.npy +tests/data/ljspeech/wavs/LJ048-0233.wav|tests/data/ljspeech/wavs/LJ048-0233.npy +tests/data/ljspeech/wavs/LJ012-0242.wav|tests/data/ljspeech/wavs/LJ012-0242.npy +tests/data/ljspeech/wavs/LJ038-0238.wav|tests/data/ljspeech/wavs/LJ038-0238.npy +tests/data/ljspeech/wavs/LJ011-0177.wav|tests/data/ljspeech/wavs/LJ011-0177.npy +tests/data/ljspeech/wavs/LJ012-0008.wav|tests/data/ljspeech/wavs/LJ012-0008.npy +tests/data/ljspeech/wavs/LJ011-0283.wav|tests/data/ljspeech/wavs/LJ011-0283.npy +tests/data/ljspeech/wavs/LJ007-0210.wav|tests/data/ljspeech/wavs/LJ007-0210.npy +tests/data/ljspeech/wavs/LJ041-0148.wav|tests/data/ljspeech/wavs/LJ041-0148.npy +tests/data/ljspeech/wavs/LJ011-0230.wav|tests/data/ljspeech/wavs/LJ011-0230.npy +tests/data/ljspeech/wavs/LJ013-0094.wav|tests/data/ljspeech/wavs/LJ013-0094.npy +tests/data/ljspeech/wavs/LJ012-0058.wav|tests/data/ljspeech/wavs/LJ012-0058.npy +tests/data/ljspeech/wavs/LJ050-0185.wav|tests/data/ljspeech/wavs/LJ050-0185.npy +tests/data/ljspeech/wavs/LJ009-0208.wav|tests/data/ljspeech/wavs/LJ009-0208.npy +tests/data/ljspeech/wavs/LJ010-0160.wav|tests/data/ljspeech/wavs/LJ010-0160.npy +tests/data/ljspeech/wavs/LJ010-0127.wav|tests/data/ljspeech/wavs/LJ010-0127.npy +tests/data/ljspeech/wavs/LJ013-0264.wav|tests/data/ljspeech/wavs/LJ013-0264.npy +tests/data/ljspeech/wavs/LJ013-0080.wav|tests/data/ljspeech/wavs/LJ013-0080.npy +tests/data/ljspeech/wavs/LJ012-0157.wav|tests/data/ljspeech/wavs/LJ012-0157.npy +tests/data/ljspeech/wavs/LJ050-0128.wav|tests/data/ljspeech/wavs/LJ050-0128.npy +tests/data/ljspeech/wavs/LJ013-0054.wav|tests/data/ljspeech/wavs/LJ013-0054.npy +tests/data/ljspeech/wavs/LJ006-0248.wav|tests/data/ljspeech/wavs/LJ006-0248.npy +tests/data/ljspeech/wavs/LJ049-0179.wav|tests/data/ljspeech/wavs/LJ049-0179.npy +tests/data/ljspeech/wavs/LJ011-0048.wav|tests/data/ljspeech/wavs/LJ011-0048.npy +tests/data/ljspeech/wavs/LJ007-0167.wav|tests/data/ljspeech/wavs/LJ007-0167.npy +tests/data/ljspeech/wavs/LJ010-0225.wav|tests/data/ljspeech/wavs/LJ010-0225.npy +tests/data/ljspeech/wavs/LJ011-0159.wav|tests/data/ljspeech/wavs/LJ011-0159.npy +tests/data/ljspeech/wavs/LJ012-0276.wav|tests/data/ljspeech/wavs/LJ012-0276.npy +tests/data/ljspeech/wavs/LJ008-0066.wav|tests/data/ljspeech/wavs/LJ008-0066.npy +tests/data/ljspeech/wavs/LJ012-0156.wav|tests/data/ljspeech/wavs/LJ012-0156.npy +tests/data/ljspeech/wavs/LJ042-0180.wav|tests/data/ljspeech/wavs/LJ042-0180.npy +tests/data/ljspeech/wavs/LJ009-0190.wav|tests/data/ljspeech/wavs/LJ009-0190.npy +tests/data/ljspeech/wavs/LJ009-0064.wav|tests/data/ljspeech/wavs/LJ009-0064.npy +tests/data/ljspeech/wavs/LJ049-0182.wav|tests/data/ljspeech/wavs/LJ049-0182.npy +tests/data/ljspeech/wavs/LJ008-0054.wav|tests/data/ljspeech/wavs/LJ008-0054.npy +tests/data/ljspeech/wavs/LJ013-0116.wav|tests/data/ljspeech/wavs/LJ013-0116.npy +tests/data/ljspeech/wavs/LJ002-0014.wav|tests/data/ljspeech/wavs/LJ002-0014.npy +tests/data/ljspeech/wavs/LJ035-0192.wav|tests/data/ljspeech/wavs/LJ035-0192.npy +tests/data/ljspeech/wavs/LJ001-0038.wav|tests/data/ljspeech/wavs/LJ001-0038.npy +tests/data/ljspeech/wavs/LJ005-0146.wav|tests/data/ljspeech/wavs/LJ005-0146.npy +tests/data/ljspeech/wavs/LJ034-0088.wav|tests/data/ljspeech/wavs/LJ034-0088.npy +tests/data/ljspeech/wavs/LJ003-0054.wav|tests/data/ljspeech/wavs/LJ003-0054.npy +tests/data/ljspeech/wavs/LJ014-0196.wav|tests/data/ljspeech/wavs/LJ014-0196.npy +tests/data/ljspeech/wavs/LJ019-0199.wav|tests/data/ljspeech/wavs/LJ019-0199.npy +tests/data/ljspeech/wavs/LJ019-0138.wav|tests/data/ljspeech/wavs/LJ019-0138.npy +tests/data/ljspeech/wavs/LJ029-0111.wav|tests/data/ljspeech/wavs/LJ029-0111.npy +tests/data/ljspeech/wavs/LJ031-0041.wav|tests/data/ljspeech/wavs/LJ031-0041.npy +tests/data/ljspeech/wavs/LJ016-0223.wav|tests/data/ljspeech/wavs/LJ016-0223.npy +tests/data/ljspeech/wavs/LJ029-0050.wav|tests/data/ljspeech/wavs/LJ029-0050.npy +tests/data/ljspeech/wavs/LJ012-0056.wav|tests/data/ljspeech/wavs/LJ012-0056.npy +tests/data/ljspeech/wavs/LJ021-0021.wav|tests/data/ljspeech/wavs/LJ021-0021.npy +tests/data/ljspeech/wavs/LJ041-0169.wav|tests/data/ljspeech/wavs/LJ041-0169.npy +tests/data/ljspeech/wavs/LJ019-0029.wav|tests/data/ljspeech/wavs/LJ019-0029.npy +tests/data/ljspeech/wavs/LJ019-0285.wav|tests/data/ljspeech/wavs/LJ019-0285.npy +tests/data/ljspeech/wavs/LJ018-0370.wav|tests/data/ljspeech/wavs/LJ018-0370.npy +tests/data/ljspeech/wavs/LJ021-0093.wav|tests/data/ljspeech/wavs/LJ021-0093.npy +tests/data/ljspeech/wavs/LJ003-0146.wav|tests/data/ljspeech/wavs/LJ003-0146.npy +tests/data/ljspeech/wavs/LJ019-0386.wav|tests/data/ljspeech/wavs/LJ019-0386.npy +tests/data/ljspeech/wavs/LJ022-0105.wav|tests/data/ljspeech/wavs/LJ022-0105.npy +tests/data/ljspeech/wavs/LJ002-0006.wav|tests/data/ljspeech/wavs/LJ002-0006.npy +tests/data/ljspeech/wavs/LJ034-0189.wav|tests/data/ljspeech/wavs/LJ034-0189.npy +tests/data/ljspeech/wavs/LJ018-0342.wav|tests/data/ljspeech/wavs/LJ018-0342.npy +tests/data/ljspeech/wavs/LJ019-0127.wav|tests/data/ljspeech/wavs/LJ019-0127.npy +tests/data/ljspeech/wavs/LJ002-0017.wav|tests/data/ljspeech/wavs/LJ002-0017.npy +tests/data/ljspeech/wavs/LJ048-0137.wav|tests/data/ljspeech/wavs/LJ048-0137.npy +tests/data/ljspeech/wavs/LJ028-0453.wav|tests/data/ljspeech/wavs/LJ028-0453.npy +tests/data/ljspeech/wavs/LJ019-0260.wav|tests/data/ljspeech/wavs/LJ019-0260.npy +tests/data/ljspeech/wavs/LJ007-0046.wav|tests/data/ljspeech/wavs/LJ007-0046.npy +tests/data/ljspeech/wavs/LJ017-0201.wav|tests/data/ljspeech/wavs/LJ017-0201.npy +tests/data/ljspeech/wavs/LJ019-0335.wav|tests/data/ljspeech/wavs/LJ019-0335.npy +tests/data/ljspeech/wavs/LJ045-0007.wav|tests/data/ljspeech/wavs/LJ045-0007.npy +tests/data/ljspeech/wavs/LJ037-0162.wav|tests/data/ljspeech/wavs/LJ037-0162.npy +tests/data/ljspeech/wavs/LJ015-0023.wav|tests/data/ljspeech/wavs/LJ015-0023.npy +tests/data/ljspeech/wavs/LJ045-0074.wav|tests/data/ljspeech/wavs/LJ045-0074.npy +tests/data/ljspeech/wavs/LJ049-0053.wav|tests/data/ljspeech/wavs/LJ049-0053.npy +tests/data/ljspeech/wavs/LJ029-0165.wav|tests/data/ljspeech/wavs/LJ029-0165.npy +tests/data/ljspeech/wavs/LJ016-0156.wav|tests/data/ljspeech/wavs/LJ016-0156.npy +tests/data/ljspeech/wavs/LJ015-0248.wav|tests/data/ljspeech/wavs/LJ015-0248.npy +tests/data/ljspeech/wavs/LJ018-0211.wav|tests/data/ljspeech/wavs/LJ018-0211.npy +tests/data/ljspeech/wavs/LJ030-0042.wav|tests/data/ljspeech/wavs/LJ030-0042.npy +tests/data/ljspeech/wavs/LJ016-0147.wav|tests/data/ljspeech/wavs/LJ016-0147.npy +tests/data/ljspeech/wavs/LJ037-0035.wav|tests/data/ljspeech/wavs/LJ037-0035.npy +tests/data/ljspeech/wavs/LJ015-0195.wav|tests/data/ljspeech/wavs/LJ015-0195.npy +tests/data/ljspeech/wavs/LJ017-0267.wav|tests/data/ljspeech/wavs/LJ017-0267.npy +tests/data/ljspeech/wavs/LJ049-0035.wav|tests/data/ljspeech/wavs/LJ049-0035.npy +tests/data/ljspeech/wavs/LJ037-0136.wav|tests/data/ljspeech/wavs/LJ037-0136.npy +tests/data/ljspeech/wavs/LJ018-0034.wav|tests/data/ljspeech/wavs/LJ018-0034.npy +tests/data/ljspeech/wavs/LJ003-0218.wav|tests/data/ljspeech/wavs/LJ003-0218.npy +tests/data/ljspeech/wavs/LJ016-0210.wav|tests/data/ljspeech/wavs/LJ016-0210.npy +tests/data/ljspeech/wavs/LJ016-0427.wav|tests/data/ljspeech/wavs/LJ016-0427.npy +tests/data/ljspeech/wavs/LJ016-0340.wav|tests/data/ljspeech/wavs/LJ016-0340.npy +tests/data/ljspeech/wavs/LJ016-0121.wav|tests/data/ljspeech/wavs/LJ016-0121.npy +tests/data/ljspeech/wavs/LJ045-0077.wav|tests/data/ljspeech/wavs/LJ045-0077.npy +tests/data/ljspeech/wavs/LJ016-0053.wav|tests/data/ljspeech/wavs/LJ016-0053.npy +tests/data/ljspeech/wavs/LJ031-0143.wav|tests/data/ljspeech/wavs/LJ031-0143.npy +tests/data/ljspeech/wavs/LJ036-0054.wav|tests/data/ljspeech/wavs/LJ036-0054.npy +tests/data/ljspeech/wavs/LJ003-0210.wav|tests/data/ljspeech/wavs/LJ003-0210.npy +tests/data/ljspeech/wavs/LJ022-0122.wav|tests/data/ljspeech/wavs/LJ022-0122.npy +tests/data/ljspeech/wavs/LJ001-0106.wav|tests/data/ljspeech/wavs/LJ001-0106.npy +tests/data/ljspeech/wavs/LJ003-0244.wav|tests/data/ljspeech/wavs/LJ003-0244.npy +tests/data/ljspeech/wavs/LJ033-0119.wav|tests/data/ljspeech/wavs/LJ033-0119.npy +tests/data/ljspeech/wavs/LJ024-0053.wav|tests/data/ljspeech/wavs/LJ024-0053.npy +tests/data/ljspeech/wavs/LJ032-0033.wav|tests/data/ljspeech/wavs/LJ032-0033.npy +tests/data/ljspeech/wavs/LJ044-0195.wav|tests/data/ljspeech/wavs/LJ044-0195.npy +tests/data/ljspeech/wavs/LJ002-0201.wav|tests/data/ljspeech/wavs/LJ002-0201.npy +tests/data/ljspeech/wavs/LJ002-0188.wav|tests/data/ljspeech/wavs/LJ002-0188.npy +tests/data/ljspeech/wavs/LJ025-0054.wav|tests/data/ljspeech/wavs/LJ025-0054.npy +tests/data/ljspeech/wavs/LJ026-0163.wav|tests/data/ljspeech/wavs/LJ026-0163.npy +tests/data/ljspeech/wavs/LJ025-0126.wav|tests/data/ljspeech/wavs/LJ025-0126.npy +tests/data/ljspeech/wavs/LJ048-0231.wav|tests/data/ljspeech/wavs/LJ048-0231.npy +tests/data/ljspeech/wavs/LJ002-0304.wav|tests/data/ljspeech/wavs/LJ002-0304.npy +tests/data/ljspeech/wavs/LJ026-0146.wav|tests/data/ljspeech/wavs/LJ026-0146.npy +tests/data/ljspeech/wavs/LJ045-0237.wav|tests/data/ljspeech/wavs/LJ045-0237.npy +tests/data/ljspeech/wavs/LJ002-0256.wav|tests/data/ljspeech/wavs/LJ002-0256.npy +tests/data/ljspeech/wavs/LJ028-0210.wav|tests/data/ljspeech/wavs/LJ028-0210.npy +tests/data/ljspeech/wavs/LJ025-0069.wav|tests/data/ljspeech/wavs/LJ025-0069.npy +tests/data/ljspeech/wavs/LJ016-0021.wav|tests/data/ljspeech/wavs/LJ016-0021.npy +tests/data/ljspeech/wavs/LJ023-0109.wav|tests/data/ljspeech/wavs/LJ023-0109.npy +tests/data/ljspeech/wavs/LJ027-0015.wav|tests/data/ljspeech/wavs/LJ027-0015.npy +tests/data/ljspeech/wavs/LJ002-0144.wav|tests/data/ljspeech/wavs/LJ002-0144.npy +tests/data/ljspeech/wavs/LJ033-0207.wav|tests/data/ljspeech/wavs/LJ033-0207.npy +tests/data/ljspeech/wavs/LJ028-0083.wav|tests/data/ljspeech/wavs/LJ028-0083.npy +tests/data/ljspeech/wavs/LJ002-0121.wav|tests/data/ljspeech/wavs/LJ002-0121.npy +tests/data/ljspeech/wavs/LJ004-0118.wav|tests/data/ljspeech/wavs/LJ004-0118.npy +tests/data/ljspeech/wavs/LJ028-0391.wav|tests/data/ljspeech/wavs/LJ028-0391.npy +tests/data/ljspeech/wavs/LJ050-0254.wav|tests/data/ljspeech/wavs/LJ050-0254.npy +tests/data/ljspeech/wavs/LJ014-0067.wav|tests/data/ljspeech/wavs/LJ014-0067.npy +tests/data/ljspeech/wavs/LJ028-0248.wav|tests/data/ljspeech/wavs/LJ028-0248.npy +tests/data/ljspeech/wavs/LJ022-0193.wav|tests/data/ljspeech/wavs/LJ022-0193.npy +tests/data/ljspeech/wavs/LJ026-0027.wav|tests/data/ljspeech/wavs/LJ026-0027.npy +tests/data/ljspeech/wavs/LJ002-0099.wav|tests/data/ljspeech/wavs/LJ002-0099.npy +tests/data/ljspeech/wavs/LJ014-0034.wav|tests/data/ljspeech/wavs/LJ014-0034.npy +tests/data/ljspeech/wavs/LJ030-0006.wav|tests/data/ljspeech/wavs/LJ030-0006.npy +tests/data/ljspeech/wavs/LJ037-0085.wav|tests/data/ljspeech/wavs/LJ037-0085.npy +tests/data/ljspeech/wavs/LJ030-0062.wav|tests/data/ljspeech/wavs/LJ030-0062.npy +tests/data/ljspeech/wavs/LJ042-0063.wav|tests/data/ljspeech/wavs/LJ042-0063.npy +tests/data/ljspeech/wavs/LJ027-0173.wav|tests/data/ljspeech/wavs/LJ027-0173.npy +tests/data/ljspeech/wavs/LJ046-0144.wav|tests/data/ljspeech/wavs/LJ046-0144.npy +tests/data/ljspeech/wavs/LJ049-0038.wav|tests/data/ljspeech/wavs/LJ049-0038.npy +tests/data/ljspeech/wavs/LJ012-0048.wav|tests/data/ljspeech/wavs/LJ012-0048.npy +tests/data/ljspeech/wavs/LJ027-0156.wav|tests/data/ljspeech/wavs/LJ027-0156.npy +tests/data/ljspeech/wavs/LJ017-0082.wav|tests/data/ljspeech/wavs/LJ017-0082.npy +tests/data/ljspeech/wavs/LJ039-0139.wav|tests/data/ljspeech/wavs/LJ039-0139.npy +tests/data/ljspeech/wavs/LJ016-0073.wav|tests/data/ljspeech/wavs/LJ016-0073.npy +tests/data/ljspeech/wavs/LJ032-0077.wav|tests/data/ljspeech/wavs/LJ032-0077.npy +tests/data/ljspeech/wavs/LJ016-0189.wav|tests/data/ljspeech/wavs/LJ016-0189.npy +tests/data/ljspeech/wavs/LJ016-0261.wav|tests/data/ljspeech/wavs/LJ016-0261.npy +tests/data/ljspeech/wavs/LJ042-0108.wav|tests/data/ljspeech/wavs/LJ042-0108.npy +tests/data/ljspeech/wavs/LJ029-0203.wav|tests/data/ljspeech/wavs/LJ029-0203.npy +tests/data/ljspeech/wavs/LJ046-0077.wav|tests/data/ljspeech/wavs/LJ046-0077.npy +tests/data/ljspeech/wavs/LJ011-0153.wav|tests/data/ljspeech/wavs/LJ011-0153.npy +tests/data/ljspeech/wavs/LJ032-0252.wav|tests/data/ljspeech/wavs/LJ032-0252.npy +tests/data/ljspeech/wavs/LJ008-0133.wav|tests/data/ljspeech/wavs/LJ008-0133.npy +tests/data/ljspeech/wavs/LJ028-0149.wav|tests/data/ljspeech/wavs/LJ028-0149.npy +tests/data/ljspeech/wavs/LJ017-0241.wav|tests/data/ljspeech/wavs/LJ017-0241.npy +tests/data/ljspeech/wavs/LJ031-0073.wav|tests/data/ljspeech/wavs/LJ031-0073.npy +tests/data/ljspeech/wavs/LJ005-0097.wav|tests/data/ljspeech/wavs/LJ005-0097.npy +tests/data/ljspeech/wavs/LJ003-0229.wav|tests/data/ljspeech/wavs/LJ003-0229.npy +tests/data/ljspeech/wavs/LJ006-0094.wav|tests/data/ljspeech/wavs/LJ006-0094.npy +tests/data/ljspeech/wavs/LJ031-0110.wav|tests/data/ljspeech/wavs/LJ031-0110.npy +tests/data/ljspeech/wavs/LJ022-0183.wav|tests/data/ljspeech/wavs/LJ022-0183.npy +tests/data/ljspeech/wavs/LJ016-0405.wav|tests/data/ljspeech/wavs/LJ016-0405.npy +tests/data/ljspeech/wavs/LJ003-0308.wav|tests/data/ljspeech/wavs/LJ003-0308.npy +tests/data/ljspeech/wavs/LJ044-0095.wav|tests/data/ljspeech/wavs/LJ044-0095.npy +tests/data/ljspeech/wavs/LJ022-0083.wav|tests/data/ljspeech/wavs/LJ022-0083.npy +tests/data/ljspeech/wavs/LJ034-0038.wav|tests/data/ljspeech/wavs/LJ034-0038.npy +tests/data/ljspeech/wavs/LJ043-0138.wav|tests/data/ljspeech/wavs/LJ043-0138.npy +tests/data/ljspeech/wavs/LJ005-0243.wav|tests/data/ljspeech/wavs/LJ005-0243.npy +tests/data/ljspeech/wavs/LJ050-0179.wav|tests/data/ljspeech/wavs/LJ050-0179.npy +tests/data/ljspeech/wavs/LJ028-0321.wav|tests/data/ljspeech/wavs/LJ028-0321.npy +tests/data/ljspeech/wavs/LJ020-0016.wav|tests/data/ljspeech/wavs/LJ020-0016.npy +tests/data/ljspeech/wavs/LJ045-0065.wav|tests/data/ljspeech/wavs/LJ045-0065.npy +tests/data/ljspeech/wavs/LJ023-0033.wav|tests/data/ljspeech/wavs/LJ023-0033.npy +tests/data/ljspeech/wavs/LJ033-0163.wav|tests/data/ljspeech/wavs/LJ033-0163.npy +tests/data/ljspeech/wavs/LJ011-0210.wav|tests/data/ljspeech/wavs/LJ011-0210.npy +tests/data/ljspeech/wavs/LJ050-0263.wav|tests/data/ljspeech/wavs/LJ050-0263.npy +tests/data/ljspeech/wavs/LJ021-0099.wav|tests/data/ljspeech/wavs/LJ021-0099.npy +tests/data/ljspeech/wavs/LJ034-0096.wav|tests/data/ljspeech/wavs/LJ034-0096.npy +tests/data/ljspeech/wavs/LJ016-0218.wav|tests/data/ljspeech/wavs/LJ016-0218.npy +tests/data/ljspeech/wavs/LJ023-0036.wav|tests/data/ljspeech/wavs/LJ023-0036.npy +tests/data/ljspeech/wavs/LJ037-0176.wav|tests/data/ljspeech/wavs/LJ037-0176.npy +tests/data/ljspeech/wavs/LJ022-0138.wav|tests/data/ljspeech/wavs/LJ022-0138.npy +tests/data/ljspeech/wavs/LJ039-0223.wav|tests/data/ljspeech/wavs/LJ039-0223.npy +tests/data/ljspeech/wavs/LJ021-0055.wav|tests/data/ljspeech/wavs/LJ021-0055.npy +tests/data/ljspeech/wavs/LJ018-0239.wav|tests/data/ljspeech/wavs/LJ018-0239.npy +tests/data/ljspeech/wavs/LJ003-0076.wav|tests/data/ljspeech/wavs/LJ003-0076.npy +tests/data/ljspeech/wavs/LJ040-0228.wav|tests/data/ljspeech/wavs/LJ040-0228.npy +tests/data/ljspeech/wavs/LJ034-0066.wav|tests/data/ljspeech/wavs/LJ034-0066.npy +tests/data/ljspeech/wavs/LJ034-0037.wav|tests/data/ljspeech/wavs/LJ034-0037.npy +tests/data/ljspeech/wavs/LJ018-0074.wav|tests/data/ljspeech/wavs/LJ018-0074.npy +tests/data/ljspeech/wavs/LJ010-0099.wav|tests/data/ljspeech/wavs/LJ010-0099.npy +tests/data/ljspeech/wavs/LJ022-0052.wav|tests/data/ljspeech/wavs/LJ022-0052.npy +tests/data/ljspeech/wavs/LJ016-0374.wav|tests/data/ljspeech/wavs/LJ016-0374.npy +tests/data/ljspeech/wavs/LJ008-0040.wav|tests/data/ljspeech/wavs/LJ008-0040.npy +tests/data/ljspeech/wavs/LJ010-0061.wav|tests/data/ljspeech/wavs/LJ010-0061.npy +tests/data/ljspeech/wavs/LJ028-0198.wav|tests/data/ljspeech/wavs/LJ028-0198.npy +tests/data/ljspeech/wavs/LJ033-0004.wav|tests/data/ljspeech/wavs/LJ033-0004.npy +tests/data/ljspeech/wavs/LJ040-0112.wav|tests/data/ljspeech/wavs/LJ040-0112.npy +tests/data/ljspeech/wavs/LJ026-0088.wav|tests/data/ljspeech/wavs/LJ026-0088.npy +tests/data/ljspeech/wavs/LJ035-0069.wav|tests/data/ljspeech/wavs/LJ035-0069.npy +tests/data/ljspeech/wavs/LJ026-0053.wav|tests/data/ljspeech/wavs/LJ026-0053.npy +tests/data/ljspeech/wavs/LJ019-0236.wav|tests/data/ljspeech/wavs/LJ019-0236.npy +tests/data/ljspeech/wavs/LJ023-0012.wav|tests/data/ljspeech/wavs/LJ023-0012.npy +tests/data/ljspeech/wavs/LJ046-0196.wav|tests/data/ljspeech/wavs/LJ046-0196.npy +tests/data/ljspeech/wavs/LJ045-0114.wav|tests/data/ljspeech/wavs/LJ045-0114.npy +tests/data/ljspeech/wavs/LJ049-0146.wav|tests/data/ljspeech/wavs/LJ049-0146.npy +tests/data/ljspeech/wavs/LJ001-0166.wav|tests/data/ljspeech/wavs/LJ001-0166.npy +tests/data/ljspeech/wavs/LJ019-0332.wav|tests/data/ljspeech/wavs/LJ019-0332.npy +tests/data/ljspeech/wavs/LJ002-0210.wav|tests/data/ljspeech/wavs/LJ002-0210.npy +tests/data/ljspeech/wavs/LJ003-0102.wav|tests/data/ljspeech/wavs/LJ003-0102.npy +tests/data/ljspeech/wavs/LJ006-0060.wav|tests/data/ljspeech/wavs/LJ006-0060.npy +tests/data/ljspeech/wavs/LJ003-0013.wav|tests/data/ljspeech/wavs/LJ003-0013.npy +tests/data/ljspeech/wavs/LJ047-0202.wav|tests/data/ljspeech/wavs/LJ047-0202.npy +tests/data/ljspeech/wavs/LJ033-0019.wav|tests/data/ljspeech/wavs/LJ033-0019.npy +tests/data/ljspeech/wavs/LJ006-0046.wav|tests/data/ljspeech/wavs/LJ006-0046.npy +tests/data/ljspeech/wavs/LJ018-0244.wav|tests/data/ljspeech/wavs/LJ018-0244.npy +tests/data/ljspeech/wavs/LJ003-0103.wav|tests/data/ljspeech/wavs/LJ003-0103.npy +tests/data/ljspeech/wavs/LJ018-0123.wav|tests/data/ljspeech/wavs/LJ018-0123.npy +tests/data/ljspeech/wavs/LJ031-0151.wav|tests/data/ljspeech/wavs/LJ031-0151.npy +tests/data/ljspeech/wavs/LJ025-0017.wav|tests/data/ljspeech/wavs/LJ025-0017.npy +tests/data/ljspeech/wavs/LJ019-0094.wav|tests/data/ljspeech/wavs/LJ019-0094.npy +tests/data/ljspeech/wavs/LJ033-0116.wav|tests/data/ljspeech/wavs/LJ033-0116.npy +tests/data/ljspeech/wavs/LJ048-0014.wav|tests/data/ljspeech/wavs/LJ048-0014.npy +tests/data/ljspeech/wavs/LJ049-0029.wav|tests/data/ljspeech/wavs/LJ049-0029.npy +tests/data/ljspeech/wavs/LJ007-0129.wav|tests/data/ljspeech/wavs/LJ007-0129.npy +tests/data/ljspeech/wavs/LJ018-0155.wav|tests/data/ljspeech/wavs/LJ018-0155.npy +tests/data/ljspeech/wavs/LJ028-0129.wav|tests/data/ljspeech/wavs/LJ028-0129.npy +tests/data/ljspeech/wavs/LJ002-0217.wav|tests/data/ljspeech/wavs/LJ002-0217.npy +tests/data/ljspeech/wavs/LJ037-0247.wav|tests/data/ljspeech/wavs/LJ037-0247.npy +tests/data/ljspeech/wavs/LJ025-0106.wav|tests/data/ljspeech/wavs/LJ025-0106.npy +tests/data/ljspeech/wavs/LJ038-0152.wav|tests/data/ljspeech/wavs/LJ038-0152.npy +tests/data/ljspeech/wavs/LJ009-0061.wav|tests/data/ljspeech/wavs/LJ009-0061.npy +tests/data/ljspeech/wavs/LJ038-0276.wav|tests/data/ljspeech/wavs/LJ038-0276.npy +tests/data/ljspeech/wavs/LJ014-0086.wav|tests/data/ljspeech/wavs/LJ014-0086.npy +tests/data/ljspeech/wavs/LJ041-0100.wav|tests/data/ljspeech/wavs/LJ041-0100.npy +tests/data/ljspeech/wavs/LJ016-0404.wav|tests/data/ljspeech/wavs/LJ016-0404.npy +tests/data/ljspeech/wavs/LJ020-0023.wav|tests/data/ljspeech/wavs/LJ020-0023.npy +tests/data/ljspeech/wavs/LJ030-0123.wav|tests/data/ljspeech/wavs/LJ030-0123.npy +tests/data/ljspeech/wavs/LJ044-0201.wav|tests/data/ljspeech/wavs/LJ044-0201.npy +tests/data/ljspeech/wavs/LJ030-0155.wav|tests/data/ljspeech/wavs/LJ030-0155.npy +tests/data/ljspeech/wavs/LJ045-0063.wav|tests/data/ljspeech/wavs/LJ045-0063.npy +tests/data/ljspeech/wavs/LJ030-0215.wav|tests/data/ljspeech/wavs/LJ030-0215.npy +tests/data/ljspeech/wavs/LJ006-0221.wav|tests/data/ljspeech/wavs/LJ006-0221.npy +tests/data/ljspeech/wavs/LJ048-0114.wav|tests/data/ljspeech/wavs/LJ048-0114.npy +tests/data/ljspeech/wavs/LJ038-0020.wav|tests/data/ljspeech/wavs/LJ038-0020.npy +tests/data/ljspeech/wavs/LJ024-0094.wav|tests/data/ljspeech/wavs/LJ024-0094.npy +tests/data/ljspeech/wavs/LJ049-0127.wav|tests/data/ljspeech/wavs/LJ049-0127.npy +tests/data/ljspeech/wavs/LJ013-0144.wav|tests/data/ljspeech/wavs/LJ013-0144.npy +tests/data/ljspeech/wavs/LJ015-0276.wav|tests/data/ljspeech/wavs/LJ015-0276.npy +tests/data/ljspeech/wavs/LJ004-0007.wav|tests/data/ljspeech/wavs/LJ004-0007.npy +tests/data/ljspeech/wavs/LJ038-0064.wav|tests/data/ljspeech/wavs/LJ038-0064.npy +tests/data/ljspeech/wavs/LJ012-0188.wav|tests/data/ljspeech/wavs/LJ012-0188.npy +tests/data/ljspeech/wavs/LJ030-0124.wav|tests/data/ljspeech/wavs/LJ030-0124.npy +tests/data/ljspeech/wavs/LJ037-0004.wav|tests/data/ljspeech/wavs/LJ037-0004.npy +tests/data/ljspeech/wavs/LJ012-0293.wav|tests/data/ljspeech/wavs/LJ012-0293.npy +tests/data/ljspeech/wavs/LJ039-0108.wav|tests/data/ljspeech/wavs/LJ039-0108.npy +tests/data/ljspeech/wavs/LJ015-0028.wav|tests/data/ljspeech/wavs/LJ015-0028.npy +tests/data/ljspeech/wavs/LJ012-0135.wav|tests/data/ljspeech/wavs/LJ012-0135.npy +tests/data/ljspeech/wavs/LJ014-0021.wav|tests/data/ljspeech/wavs/LJ014-0021.npy +tests/data/ljspeech/wavs/LJ014-0185.wav|tests/data/ljspeech/wavs/LJ014-0185.npy +tests/data/ljspeech/wavs/LJ038-0126.wav|tests/data/ljspeech/wavs/LJ038-0126.npy +tests/data/ljspeech/wavs/LJ034-0114.wav|tests/data/ljspeech/wavs/LJ034-0114.npy +tests/data/ljspeech/wavs/LJ038-0303.wav|tests/data/ljspeech/wavs/LJ038-0303.npy +tests/data/ljspeech/wavs/LJ047-0218.wav|tests/data/ljspeech/wavs/LJ047-0218.npy +tests/data/ljspeech/wavs/LJ036-0126.wav|tests/data/ljspeech/wavs/LJ036-0126.npy +tests/data/ljspeech/wavs/LJ040-0032.wav|tests/data/ljspeech/wavs/LJ040-0032.npy +tests/data/ljspeech/wavs/LJ004-0055.wav|tests/data/ljspeech/wavs/LJ004-0055.npy +tests/data/ljspeech/wavs/LJ037-0021.wav|tests/data/ljspeech/wavs/LJ037-0021.npy +tests/data/ljspeech/wavs/LJ014-0187.wav|tests/data/ljspeech/wavs/LJ014-0187.npy +tests/data/ljspeech/wavs/LJ001-0068.wav|tests/data/ljspeech/wavs/LJ001-0068.npy +tests/data/ljspeech/wavs/LJ040-0024.wav|tests/data/ljspeech/wavs/LJ040-0024.npy +tests/data/ljspeech/wavs/LJ045-0083.wav|tests/data/ljspeech/wavs/LJ045-0083.npy +tests/data/ljspeech/wavs/LJ034-0049.wav|tests/data/ljspeech/wavs/LJ034-0049.npy +tests/data/ljspeech/wavs/LJ042-0213.wav|tests/data/ljspeech/wavs/LJ042-0213.npy +tests/data/ljspeech/wavs/LJ015-0162.wav|tests/data/ljspeech/wavs/LJ015-0162.npy +tests/data/ljspeech/wavs/LJ007-0158.wav|tests/data/ljspeech/wavs/LJ007-0158.npy +tests/data/ljspeech/wavs/LJ011-0105.wav|tests/data/ljspeech/wavs/LJ011-0105.npy +tests/data/ljspeech/wavs/LJ003-0068.wav|tests/data/ljspeech/wavs/LJ003-0068.npy +tests/data/ljspeech/wavs/LJ003-0057.wav|tests/data/ljspeech/wavs/LJ003-0057.npy +tests/data/ljspeech/wavs/LJ037-0031.wav|tests/data/ljspeech/wavs/LJ037-0031.npy +tests/data/ljspeech/wavs/LJ003-0016.wav|tests/data/ljspeech/wavs/LJ003-0016.npy +tests/data/ljspeech/wavs/LJ032-0067.wav|tests/data/ljspeech/wavs/LJ032-0067.npy +tests/data/ljspeech/wavs/LJ047-0211.wav|tests/data/ljspeech/wavs/LJ047-0211.npy +tests/data/ljspeech/wavs/LJ041-0025.wav|tests/data/ljspeech/wavs/LJ041-0025.npy +tests/data/ljspeech/wavs/LJ016-0343.wav|tests/data/ljspeech/wavs/LJ016-0343.npy +tests/data/ljspeech/wavs/LJ011-0235.wav|tests/data/ljspeech/wavs/LJ011-0235.npy +tests/data/ljspeech/wavs/LJ022-0111.wav|tests/data/ljspeech/wavs/LJ022-0111.npy +tests/data/ljspeech/wavs/LJ003-0269.wav|tests/data/ljspeech/wavs/LJ003-0269.npy +tests/data/ljspeech/wavs/LJ034-0091.wav|tests/data/ljspeech/wavs/LJ034-0091.npy +tests/data/ljspeech/wavs/LJ025-0055.wav|tests/data/ljspeech/wavs/LJ025-0055.npy +tests/data/ljspeech/wavs/LJ014-0278.wav|tests/data/ljspeech/wavs/LJ014-0278.npy +tests/data/ljspeech/wavs/LJ038-0282.wav|tests/data/ljspeech/wavs/LJ038-0282.npy +tests/data/ljspeech/wavs/LJ013-0083.wav|tests/data/ljspeech/wavs/LJ013-0083.npy +tests/data/ljspeech/wavs/LJ037-0261.wav|tests/data/ljspeech/wavs/LJ037-0261.npy +tests/data/ljspeech/wavs/LJ020-0041.wav|tests/data/ljspeech/wavs/LJ020-0041.npy +tests/data/ljspeech/wavs/LJ010-0200.wav|tests/data/ljspeech/wavs/LJ010-0200.npy +tests/data/ljspeech/wavs/LJ006-0269.wav|tests/data/ljspeech/wavs/LJ006-0269.npy +tests/data/ljspeech/wavs/LJ017-0154.wav|tests/data/ljspeech/wavs/LJ017-0154.npy +tests/data/ljspeech/wavs/LJ036-0164.wav|tests/data/ljspeech/wavs/LJ036-0164.npy +tests/data/ljspeech/wavs/LJ002-0140.wav|tests/data/ljspeech/wavs/LJ002-0140.npy +tests/data/ljspeech/wavs/LJ015-0264.wav|tests/data/ljspeech/wavs/LJ015-0264.npy +tests/data/ljspeech/wavs/LJ003-0313.wav|tests/data/ljspeech/wavs/LJ003-0313.npy +tests/data/ljspeech/wavs/LJ048-0039.wav|tests/data/ljspeech/wavs/LJ048-0039.npy +tests/data/ljspeech/wavs/LJ039-0008.wav|tests/data/ljspeech/wavs/LJ039-0008.npy +tests/data/ljspeech/wavs/LJ047-0232.wav|tests/data/ljspeech/wavs/LJ047-0232.npy +tests/data/ljspeech/wavs/LJ032-0244.wav|tests/data/ljspeech/wavs/LJ032-0244.npy +tests/data/ljspeech/wavs/LJ030-0098.wav|tests/data/ljspeech/wavs/LJ030-0098.npy +tests/data/ljspeech/wavs/LJ049-0159.wav|tests/data/ljspeech/wavs/LJ049-0159.npy +tests/data/ljspeech/wavs/LJ008-0031.wav|tests/data/ljspeech/wavs/LJ008-0031.npy +tests/data/ljspeech/wavs/LJ017-0091.wav|tests/data/ljspeech/wavs/LJ017-0091.npy +tests/data/ljspeech/wavs/LJ009-0181.wav|tests/data/ljspeech/wavs/LJ009-0181.npy +tests/data/ljspeech/wavs/LJ045-0191.wav|tests/data/ljspeech/wavs/LJ045-0191.npy +tests/data/ljspeech/wavs/LJ030-0139.wav|tests/data/ljspeech/wavs/LJ030-0139.npy +tests/data/ljspeech/wavs/LJ050-0071.wav|tests/data/ljspeech/wavs/LJ050-0071.npy +tests/data/ljspeech/wavs/LJ039-0238.wav|tests/data/ljspeech/wavs/LJ039-0238.npy +tests/data/ljspeech/wavs/LJ048-0265.wav|tests/data/ljspeech/wavs/LJ048-0265.npy +tests/data/ljspeech/wavs/LJ020-0078.wav|tests/data/ljspeech/wavs/LJ020-0078.npy +tests/data/ljspeech/wavs/LJ034-0035.wav|tests/data/ljspeech/wavs/LJ034-0035.npy +tests/data/ljspeech/wavs/LJ043-0019.wav|tests/data/ljspeech/wavs/LJ043-0019.npy +tests/data/ljspeech/wavs/LJ031-0029.wav|tests/data/ljspeech/wavs/LJ031-0029.npy +tests/data/ljspeech/wavs/LJ043-0171.wav|tests/data/ljspeech/wavs/LJ043-0171.npy +tests/data/ljspeech/wavs/LJ012-0123.wav|tests/data/ljspeech/wavs/LJ012-0123.npy +tests/data/ljspeech/wavs/LJ013-0121.wav|tests/data/ljspeech/wavs/LJ013-0121.npy +tests/data/ljspeech/wavs/LJ042-0015.wav|tests/data/ljspeech/wavs/LJ042-0015.npy +tests/data/ljspeech/wavs/LJ038-0219.wav|tests/data/ljspeech/wavs/LJ038-0219.npy +tests/data/ljspeech/wavs/LJ003-0277.wav|tests/data/ljspeech/wavs/LJ003-0277.npy +tests/data/ljspeech/wavs/LJ048-0031.wav|tests/data/ljspeech/wavs/LJ048-0031.npy +tests/data/ljspeech/wavs/LJ006-0203.wav|tests/data/ljspeech/wavs/LJ006-0203.npy +tests/data/ljspeech/wavs/LJ042-0047.wav|tests/data/ljspeech/wavs/LJ042-0047.npy +tests/data/ljspeech/wavs/LJ042-0061.wav|tests/data/ljspeech/wavs/LJ042-0061.npy +tests/data/ljspeech/wavs/LJ039-0143.wav|tests/data/ljspeech/wavs/LJ039-0143.npy +tests/data/ljspeech/wavs/LJ048-0209.wav|tests/data/ljspeech/wavs/LJ048-0209.npy +tests/data/ljspeech/wavs/LJ033-0094.wav|tests/data/ljspeech/wavs/LJ033-0094.npy +tests/data/ljspeech/wavs/LJ025-0157.wav|tests/data/ljspeech/wavs/LJ025-0157.npy +tests/data/ljspeech/wavs/LJ001-0116.wav|tests/data/ljspeech/wavs/LJ001-0116.npy +tests/data/ljspeech/wavs/LJ028-0179.wav|tests/data/ljspeech/wavs/LJ028-0179.npy +tests/data/ljspeech/wavs/LJ033-0073.wav|tests/data/ljspeech/wavs/LJ033-0073.npy +tests/data/ljspeech/wavs/LJ008-0126.wav|tests/data/ljspeech/wavs/LJ008-0126.npy +tests/data/ljspeech/wavs/LJ008-0174.wav|tests/data/ljspeech/wavs/LJ008-0174.npy +tests/data/ljspeech/wavs/LJ038-0060.wav|tests/data/ljspeech/wavs/LJ038-0060.npy +tests/data/ljspeech/wavs/LJ028-0011.wav|tests/data/ljspeech/wavs/LJ028-0011.npy +tests/data/ljspeech/wavs/LJ048-0085.wav|tests/data/ljspeech/wavs/LJ048-0085.npy +tests/data/ljspeech/wavs/LJ015-0287.wav|tests/data/ljspeech/wavs/LJ015-0287.npy +tests/data/ljspeech/wavs/LJ014-0010.wav|tests/data/ljspeech/wavs/LJ014-0010.npy +tests/data/ljspeech/wavs/LJ005-0009.wav|tests/data/ljspeech/wavs/LJ005-0009.npy +tests/data/ljspeech/wavs/LJ028-0120.wav|tests/data/ljspeech/wavs/LJ028-0120.npy +tests/data/ljspeech/wavs/LJ002-0211.wav|tests/data/ljspeech/wavs/LJ002-0211.npy +tests/data/ljspeech/wavs/LJ014-0026.wav|tests/data/ljspeech/wavs/LJ014-0026.npy +tests/data/ljspeech/wavs/LJ039-0119.wav|tests/data/ljspeech/wavs/LJ039-0119.npy +tests/data/ljspeech/wavs/LJ037-0159.wav|tests/data/ljspeech/wavs/LJ037-0159.npy +tests/data/ljspeech/wavs/LJ027-0018.wav|tests/data/ljspeech/wavs/LJ027-0018.npy +tests/data/ljspeech/wavs/LJ040-0102.wav|tests/data/ljspeech/wavs/LJ040-0102.npy +tests/data/ljspeech/wavs/LJ040-0124.wav|tests/data/ljspeech/wavs/LJ040-0124.npy +tests/data/ljspeech/wavs/LJ006-0300.wav|tests/data/ljspeech/wavs/LJ006-0300.npy +tests/data/ljspeech/wavs/LJ031-0188.wav|tests/data/ljspeech/wavs/LJ031-0188.npy +tests/data/ljspeech/wavs/LJ048-0143.wav|tests/data/ljspeech/wavs/LJ048-0143.npy +tests/data/ljspeech/wavs/LJ046-0178.wav|tests/data/ljspeech/wavs/LJ046-0178.npy +tests/data/ljspeech/wavs/LJ029-0112.wav|tests/data/ljspeech/wavs/LJ029-0112.npy +tests/data/ljspeech/wavs/LJ042-0161.wav|tests/data/ljspeech/wavs/LJ042-0161.npy +tests/data/ljspeech/wavs/LJ046-0083.wav|tests/data/ljspeech/wavs/LJ046-0083.npy +tests/data/ljspeech/wavs/LJ042-0230.wav|tests/data/ljspeech/wavs/LJ042-0230.npy +tests/data/ljspeech/wavs/LJ026-0089.wav|tests/data/ljspeech/wavs/LJ026-0089.npy +tests/data/ljspeech/wavs/LJ043-0075.wav|tests/data/ljspeech/wavs/LJ043-0075.npy +tests/data/ljspeech/wavs/LJ040-0165.wav|tests/data/ljspeech/wavs/LJ040-0165.npy +tests/data/ljspeech/wavs/LJ038-0117.wav|tests/data/ljspeech/wavs/LJ038-0117.npy +tests/data/ljspeech/wavs/LJ046-0174.wav|tests/data/ljspeech/wavs/LJ046-0174.npy +tests/data/ljspeech/wavs/LJ039-0033.wav|tests/data/ljspeech/wavs/LJ039-0033.npy +tests/data/ljspeech/wavs/LJ038-0191.wav|tests/data/ljspeech/wavs/LJ038-0191.npy +tests/data/ljspeech/wavs/LJ009-0291.wav|tests/data/ljspeech/wavs/LJ009-0291.npy +tests/data/ljspeech/wavs/LJ048-0142.wav|tests/data/ljspeech/wavs/LJ048-0142.npy +tests/data/ljspeech/wavs/LJ050-0156.wav|tests/data/ljspeech/wavs/LJ050-0156.npy +tests/data/ljspeech/wavs/LJ001-0158.wav|tests/data/ljspeech/wavs/LJ001-0158.npy +tests/data/ljspeech/wavs/LJ037-0087.wav|tests/data/ljspeech/wavs/LJ037-0087.npy +tests/data/ljspeech/wavs/LJ050-0100.wav|tests/data/ljspeech/wavs/LJ050-0100.npy +tests/data/ljspeech/wavs/LJ028-0254.wav|tests/data/ljspeech/wavs/LJ028-0254.npy +tests/data/ljspeech/wavs/LJ003-0117.wav|tests/data/ljspeech/wavs/LJ003-0117.npy +tests/data/ljspeech/wavs/LJ030-0164.wav|tests/data/ljspeech/wavs/LJ030-0164.npy +tests/data/ljspeech/wavs/LJ019-0151.wav|tests/data/ljspeech/wavs/LJ019-0151.npy +tests/data/ljspeech/wavs/LJ043-0060.wav|tests/data/ljspeech/wavs/LJ043-0060.npy +tests/data/ljspeech/wavs/LJ018-0214.wav|tests/data/ljspeech/wavs/LJ018-0214.npy +tests/data/ljspeech/wavs/LJ044-0221.wav|tests/data/ljspeech/wavs/LJ044-0221.npy +tests/data/ljspeech/wavs/LJ014-0306.wav|tests/data/ljspeech/wavs/LJ014-0306.npy +tests/data/ljspeech/wavs/LJ020-0098.wav|tests/data/ljspeech/wavs/LJ020-0098.npy +tests/data/ljspeech/wavs/LJ040-0166.wav|tests/data/ljspeech/wavs/LJ040-0166.npy +tests/data/ljspeech/wavs/LJ002-0192.wav|tests/data/ljspeech/wavs/LJ002-0192.npy +tests/data/ljspeech/wavs/LJ047-0053.wav|tests/data/ljspeech/wavs/LJ047-0053.npy +tests/data/ljspeech/wavs/LJ007-0082.wav|tests/data/ljspeech/wavs/LJ007-0082.npy +tests/data/ljspeech/wavs/LJ003-0053.wav|tests/data/ljspeech/wavs/LJ003-0053.npy +tests/data/ljspeech/wavs/LJ038-0262.wav|tests/data/ljspeech/wavs/LJ038-0262.npy +tests/data/ljspeech/wavs/LJ026-0082.wav|tests/data/ljspeech/wavs/LJ026-0082.npy +tests/data/ljspeech/wavs/LJ008-0182.wav|tests/data/ljspeech/wavs/LJ008-0182.npy +tests/data/ljspeech/wavs/LJ030-0243.wav|tests/data/ljspeech/wavs/LJ030-0243.npy +tests/data/ljspeech/wavs/LJ006-0077.wav|tests/data/ljspeech/wavs/LJ006-0077.npy +tests/data/ljspeech/wavs/LJ027-0074.wav|tests/data/ljspeech/wavs/LJ027-0074.npy +tests/data/ljspeech/wavs/LJ034-0156.wav|tests/data/ljspeech/wavs/LJ034-0156.npy +tests/data/ljspeech/wavs/LJ027-0053.wav|tests/data/ljspeech/wavs/LJ027-0053.npy +tests/data/ljspeech/wavs/LJ008-0087.wav|tests/data/ljspeech/wavs/LJ008-0087.npy +tests/data/ljspeech/wavs/LJ033-0066.wav|tests/data/ljspeech/wavs/LJ033-0066.npy +tests/data/ljspeech/wavs/LJ029-0130.wav|tests/data/ljspeech/wavs/LJ029-0130.npy +tests/data/ljspeech/wavs/LJ014-0020.wav|tests/data/ljspeech/wavs/LJ014-0020.npy +tests/data/ljspeech/wavs/LJ042-0022.wav|tests/data/ljspeech/wavs/LJ042-0022.npy +tests/data/ljspeech/wavs/LJ041-0157.wav|tests/data/ljspeech/wavs/LJ041-0157.npy +tests/data/ljspeech/wavs/LJ010-0026.wav|tests/data/ljspeech/wavs/LJ010-0026.npy +tests/data/ljspeech/wavs/LJ014-0029.wav|tests/data/ljspeech/wavs/LJ014-0029.npy +tests/data/ljspeech/wavs/LJ008-0239.wav|tests/data/ljspeech/wavs/LJ008-0239.npy +tests/data/ljspeech/wavs/LJ010-0076.wav|tests/data/ljspeech/wavs/LJ010-0076.npy +tests/data/ljspeech/wavs/LJ026-0032.wav|tests/data/ljspeech/wavs/LJ026-0032.npy +tests/data/ljspeech/wavs/LJ002-0135.wav|tests/data/ljspeech/wavs/LJ002-0135.npy +tests/data/ljspeech/wavs/LJ041-0012.wav|tests/data/ljspeech/wavs/LJ041-0012.npy +tests/data/ljspeech/wavs/LJ013-0207.wav|tests/data/ljspeech/wavs/LJ013-0207.npy +tests/data/ljspeech/wavs/LJ042-0048.wav|tests/data/ljspeech/wavs/LJ042-0048.npy +tests/data/ljspeech/wavs/LJ048-0227.wav|tests/data/ljspeech/wavs/LJ048-0227.npy +tests/data/ljspeech/wavs/LJ050-0032.wav|tests/data/ljspeech/wavs/LJ050-0032.npy +tests/data/ljspeech/wavs/LJ028-0218.wav|tests/data/ljspeech/wavs/LJ028-0218.npy +tests/data/ljspeech/wavs/LJ007-0194.wav|tests/data/ljspeech/wavs/LJ007-0194.npy +tests/data/ljspeech/wavs/LJ046-0181.wav|tests/data/ljspeech/wavs/LJ046-0181.npy +tests/data/ljspeech/wavs/LJ007-0214.wav|tests/data/ljspeech/wavs/LJ007-0214.npy +tests/data/ljspeech/wavs/LJ008-0154.wav|tests/data/ljspeech/wavs/LJ008-0154.npy +tests/data/ljspeech/wavs/LJ003-0128.wav|tests/data/ljspeech/wavs/LJ003-0128.npy +tests/data/ljspeech/wavs/LJ004-0185.wav|tests/data/ljspeech/wavs/LJ004-0185.npy +tests/data/ljspeech/wavs/LJ009-0169.wav|tests/data/ljspeech/wavs/LJ009-0169.npy +tests/data/ljspeech/wavs/LJ044-0192.wav|tests/data/ljspeech/wavs/LJ044-0192.npy +tests/data/ljspeech/wavs/LJ013-0188.wav|tests/data/ljspeech/wavs/LJ013-0188.npy +tests/data/ljspeech/wavs/LJ002-0313.wav|tests/data/ljspeech/wavs/LJ002-0313.npy +tests/data/ljspeech/wavs/LJ022-0092.wav|tests/data/ljspeech/wavs/LJ022-0092.npy +tests/data/ljspeech/wavs/LJ009-0089.wav|tests/data/ljspeech/wavs/LJ009-0089.npy +tests/data/ljspeech/wavs/LJ038-0295.wav|tests/data/ljspeech/wavs/LJ038-0295.npy +tests/data/ljspeech/wavs/LJ023-0018.wav|tests/data/ljspeech/wavs/LJ023-0018.npy +tests/data/ljspeech/wavs/LJ038-0143.wav|tests/data/ljspeech/wavs/LJ038-0143.npy +tests/data/ljspeech/wavs/LJ048-0004.wav|tests/data/ljspeech/wavs/LJ048-0004.npy +tests/data/ljspeech/wavs/LJ038-0182.wav|tests/data/ljspeech/wavs/LJ038-0182.npy +tests/data/ljspeech/wavs/LJ002-0276.wav|tests/data/ljspeech/wavs/LJ002-0276.npy +tests/data/ljspeech/wavs/LJ025-0024.wav|tests/data/ljspeech/wavs/LJ025-0024.npy +tests/data/ljspeech/wavs/LJ038-0169.wav|tests/data/ljspeech/wavs/LJ038-0169.npy +tests/data/ljspeech/wavs/LJ028-0354.wav|tests/data/ljspeech/wavs/LJ028-0354.npy +tests/data/ljspeech/wavs/LJ033-0106.wav|tests/data/ljspeech/wavs/LJ033-0106.npy +tests/data/ljspeech/wavs/LJ042-0125.wav|tests/data/ljspeech/wavs/LJ042-0125.npy +tests/data/ljspeech/wavs/LJ025-0135.wav|tests/data/ljspeech/wavs/LJ025-0135.npy +tests/data/ljspeech/wavs/LJ030-0190.wav|tests/data/ljspeech/wavs/LJ030-0190.npy +tests/data/ljspeech/wavs/LJ005-0291.wav|tests/data/ljspeech/wavs/LJ005-0291.npy +tests/data/ljspeech/wavs/LJ009-0158.wav|tests/data/ljspeech/wavs/LJ009-0158.npy +tests/data/ljspeech/wavs/LJ032-0110.wav|tests/data/ljspeech/wavs/LJ032-0110.npy +tests/data/ljspeech/wavs/LJ047-0071.wav|tests/data/ljspeech/wavs/LJ047-0071.npy +tests/data/ljspeech/wavs/LJ041-0093.wav|tests/data/ljspeech/wavs/LJ041-0093.npy +tests/data/ljspeech/wavs/LJ041-0095.wav|tests/data/ljspeech/wavs/LJ041-0095.npy +tests/data/ljspeech/wavs/LJ034-0027.wav|tests/data/ljspeech/wavs/LJ034-0027.npy +tests/data/ljspeech/wavs/LJ044-0197.wav|tests/data/ljspeech/wavs/LJ044-0197.npy +tests/data/ljspeech/wavs/LJ030-0186.wav|tests/data/ljspeech/wavs/LJ030-0186.npy +tests/data/ljspeech/wavs/LJ028-0148.wav|tests/data/ljspeech/wavs/LJ028-0148.npy +tests/data/ljspeech/wavs/LJ049-0118.wav|tests/data/ljspeech/wavs/LJ049-0118.npy +tests/data/ljspeech/wavs/LJ006-0033.wav|tests/data/ljspeech/wavs/LJ006-0033.npy +tests/data/ljspeech/wavs/LJ009-0111.wav|tests/data/ljspeech/wavs/LJ009-0111.npy +tests/data/ljspeech/wavs/LJ045-0012.wav|tests/data/ljspeech/wavs/LJ045-0012.npy +tests/data/ljspeech/wavs/LJ044-0130.wav|tests/data/ljspeech/wavs/LJ044-0130.npy +tests/data/ljspeech/wavs/LJ037-0104.wav|tests/data/ljspeech/wavs/LJ037-0104.npy +tests/data/ljspeech/wavs/LJ050-0217.wav|tests/data/ljspeech/wavs/LJ050-0217.npy +tests/data/ljspeech/wavs/LJ005-0138.wav|tests/data/ljspeech/wavs/LJ005-0138.npy +tests/data/ljspeech/wavs/LJ016-0249.wav|tests/data/ljspeech/wavs/LJ016-0249.npy +tests/data/ljspeech/wavs/LJ016-0052.wav|tests/data/ljspeech/wavs/LJ016-0052.npy +tests/data/ljspeech/wavs/LJ018-0127.wav|tests/data/ljspeech/wavs/LJ018-0127.npy +tests/data/ljspeech/wavs/LJ035-0170.wav|tests/data/ljspeech/wavs/LJ035-0170.npy +tests/data/ljspeech/wavs/LJ004-0014.wav|tests/data/ljspeech/wavs/LJ004-0014.npy +tests/data/ljspeech/wavs/LJ011-0281.wav|tests/data/ljspeech/wavs/LJ011-0281.npy +tests/data/ljspeech/wavs/LJ018-0120.wav|tests/data/ljspeech/wavs/LJ018-0120.npy +tests/data/ljspeech/wavs/LJ012-0003.wav|tests/data/ljspeech/wavs/LJ012-0003.npy +tests/data/ljspeech/wavs/LJ037-0256.wav|tests/data/ljspeech/wavs/LJ037-0256.npy +tests/data/ljspeech/wavs/LJ011-0026.wav|tests/data/ljspeech/wavs/LJ011-0026.npy +tests/data/ljspeech/wavs/LJ034-0095.wav|tests/data/ljspeech/wavs/LJ034-0095.npy +tests/data/ljspeech/wavs/LJ012-0265.wav|tests/data/ljspeech/wavs/LJ012-0265.npy +tests/data/ljspeech/wavs/LJ001-0109.wav|tests/data/ljspeech/wavs/LJ001-0109.npy +tests/data/ljspeech/wavs/LJ015-0054.wav|tests/data/ljspeech/wavs/LJ015-0054.npy +tests/data/ljspeech/wavs/LJ012-0229.wav|tests/data/ljspeech/wavs/LJ012-0229.npy +tests/data/ljspeech/wavs/LJ011-0270.wav|tests/data/ljspeech/wavs/LJ011-0270.npy +tests/data/ljspeech/wavs/LJ016-0380.wav|tests/data/ljspeech/wavs/LJ016-0380.npy +tests/data/ljspeech/wavs/LJ047-0189.wav|tests/data/ljspeech/wavs/LJ047-0189.npy +tests/data/ljspeech/wavs/LJ018-0265.wav|tests/data/ljspeech/wavs/LJ018-0265.npy +tests/data/ljspeech/wavs/LJ015-0218.wav|tests/data/ljspeech/wavs/LJ015-0218.npy +tests/data/ljspeech/wavs/LJ040-0011.wav|tests/data/ljspeech/wavs/LJ040-0011.npy +tests/data/ljspeech/wavs/LJ017-0189.wav|tests/data/ljspeech/wavs/LJ017-0189.npy +tests/data/ljspeech/wavs/LJ018-0288.wav|tests/data/ljspeech/wavs/LJ018-0288.npy +tests/data/ljspeech/wavs/LJ039-0209.wav|tests/data/ljspeech/wavs/LJ039-0209.npy +tests/data/ljspeech/wavs/LJ005-0082.wav|tests/data/ljspeech/wavs/LJ005-0082.npy +tests/data/ljspeech/wavs/LJ031-0107.wav|tests/data/ljspeech/wavs/LJ031-0107.npy +tests/data/ljspeech/wavs/LJ004-0166.wav|tests/data/ljspeech/wavs/LJ004-0166.npy +tests/data/ljspeech/wavs/LJ002-0055.wav|tests/data/ljspeech/wavs/LJ002-0055.npy +tests/data/ljspeech/wavs/LJ036-0094.wav|tests/data/ljspeech/wavs/LJ036-0094.npy +tests/data/ljspeech/wavs/LJ009-0161.wav|tests/data/ljspeech/wavs/LJ009-0161.npy +tests/data/ljspeech/wavs/LJ049-0067.wav|tests/data/ljspeech/wavs/LJ049-0067.npy +tests/data/ljspeech/wavs/LJ007-0199.wav|tests/data/ljspeech/wavs/LJ007-0199.npy +tests/data/ljspeech/wavs/LJ040-0050.wav|tests/data/ljspeech/wavs/LJ040-0050.npy +tests/data/ljspeech/wavs/LJ009-0150.wav|tests/data/ljspeech/wavs/LJ009-0150.npy +tests/data/ljspeech/wavs/LJ003-0156.wav|tests/data/ljspeech/wavs/LJ003-0156.npy +tests/data/ljspeech/wavs/LJ037-0155.wav|tests/data/ljspeech/wavs/LJ037-0155.npy +tests/data/ljspeech/wavs/LJ029-0199.wav|tests/data/ljspeech/wavs/LJ029-0199.npy +tests/data/ljspeech/wavs/LJ050-0121.wav|tests/data/ljspeech/wavs/LJ050-0121.npy +tests/data/ljspeech/wavs/LJ011-0087.wav|tests/data/ljspeech/wavs/LJ011-0087.npy +tests/data/ljspeech/wavs/LJ015-0145.wav|tests/data/ljspeech/wavs/LJ015-0145.npy +tests/data/ljspeech/wavs/LJ012-0052.wav|tests/data/ljspeech/wavs/LJ012-0052.npy +tests/data/ljspeech/wavs/LJ042-0212.wav|tests/data/ljspeech/wavs/LJ042-0212.npy +tests/data/ljspeech/wavs/LJ045-0103.wav|tests/data/ljspeech/wavs/LJ045-0103.npy +tests/data/ljspeech/wavs/LJ041-0070.wav|tests/data/ljspeech/wavs/LJ041-0070.npy +tests/data/ljspeech/wavs/LJ014-0201.wav|tests/data/ljspeech/wavs/LJ014-0201.npy +tests/data/ljspeech/wavs/LJ045-0068.wav|tests/data/ljspeech/wavs/LJ045-0068.npy +tests/data/ljspeech/wavs/LJ048-0236.wav|tests/data/ljspeech/wavs/LJ048-0236.npy +tests/data/ljspeech/wavs/LJ005-0264.wav|tests/data/ljspeech/wavs/LJ005-0264.npy +tests/data/ljspeech/wavs/LJ047-0011.wav|tests/data/ljspeech/wavs/LJ047-0011.npy +tests/data/ljspeech/wavs/LJ017-0202.wav|tests/data/ljspeech/wavs/LJ017-0202.npy +tests/data/ljspeech/wavs/LJ033-0125.wav|tests/data/ljspeech/wavs/LJ033-0125.npy +tests/data/ljspeech/wavs/LJ044-0047.wav|tests/data/ljspeech/wavs/LJ044-0047.npy +tests/data/ljspeech/wavs/LJ028-0330.wav|tests/data/ljspeech/wavs/LJ028-0330.npy +tests/data/ljspeech/wavs/LJ018-0031.wav|tests/data/ljspeech/wavs/LJ018-0031.npy +tests/data/ljspeech/wavs/LJ012-0142.wav|tests/data/ljspeech/wavs/LJ012-0142.npy +tests/data/ljspeech/wavs/LJ001-0070.wav|tests/data/ljspeech/wavs/LJ001-0070.npy +tests/data/ljspeech/wavs/LJ039-0070.wav|tests/data/ljspeech/wavs/LJ039-0070.npy +tests/data/ljspeech/wavs/LJ012-0233.wav|tests/data/ljspeech/wavs/LJ012-0233.npy +tests/data/ljspeech/wavs/LJ037-0110.wav|tests/data/ljspeech/wavs/LJ037-0110.npy +tests/data/ljspeech/wavs/LJ049-0158.wav|tests/data/ljspeech/wavs/LJ049-0158.npy +tests/data/ljspeech/wavs/LJ039-0079.wav|tests/data/ljspeech/wavs/LJ039-0079.npy +tests/data/ljspeech/wavs/LJ023-0045.wav|tests/data/ljspeech/wavs/LJ023-0045.npy +tests/data/ljspeech/wavs/LJ048-0234.wav|tests/data/ljspeech/wavs/LJ048-0234.npy +tests/data/ljspeech/wavs/LJ042-0085.wav|tests/data/ljspeech/wavs/LJ042-0085.npy +tests/data/ljspeech/wavs/LJ027-0089.wav|tests/data/ljspeech/wavs/LJ027-0089.npy +tests/data/ljspeech/wavs/LJ009-0079.wav|tests/data/ljspeech/wavs/LJ009-0079.npy +tests/data/ljspeech/wavs/LJ042-0142.wav|tests/data/ljspeech/wavs/LJ042-0142.npy +tests/data/ljspeech/wavs/LJ042-0058.wav|tests/data/ljspeech/wavs/LJ042-0058.npy +tests/data/ljspeech/wavs/LJ027-0065.wav|tests/data/ljspeech/wavs/LJ027-0065.npy +tests/data/ljspeech/wavs/LJ028-0012.wav|tests/data/ljspeech/wavs/LJ028-0012.npy +tests/data/ljspeech/wavs/LJ042-0021.wav|tests/data/ljspeech/wavs/LJ042-0021.npy +tests/data/ljspeech/wavs/LJ050-0212.wav|tests/data/ljspeech/wavs/LJ050-0212.npy +tests/data/ljspeech/wavs/LJ002-0104.wav|tests/data/ljspeech/wavs/LJ002-0104.npy +tests/data/ljspeech/wavs/LJ006-0085.wav|tests/data/ljspeech/wavs/LJ006-0085.npy +tests/data/ljspeech/wavs/LJ032-0164.wav|tests/data/ljspeech/wavs/LJ032-0164.npy +tests/data/ljspeech/wavs/LJ028-0070.wav|tests/data/ljspeech/wavs/LJ028-0070.npy +tests/data/ljspeech/wavs/LJ015-0126.wav|tests/data/ljspeech/wavs/LJ015-0126.npy +tests/data/ljspeech/wavs/LJ030-0090.wav|tests/data/ljspeech/wavs/LJ030-0090.npy +tests/data/ljspeech/wavs/LJ027-0108.wav|tests/data/ljspeech/wavs/LJ027-0108.npy +tests/data/ljspeech/wavs/LJ005-0295.wav|tests/data/ljspeech/wavs/LJ005-0295.npy +tests/data/ljspeech/wavs/LJ012-0082.wav|tests/data/ljspeech/wavs/LJ012-0082.npy +tests/data/ljspeech/wavs/LJ006-0070.wav|tests/data/ljspeech/wavs/LJ006-0070.npy +tests/data/ljspeech/wavs/LJ008-0128.wav|tests/data/ljspeech/wavs/LJ008-0128.npy +tests/data/ljspeech/wavs/LJ016-0029.wav|tests/data/ljspeech/wavs/LJ016-0029.npy +tests/data/ljspeech/wavs/LJ007-0022.wav|tests/data/ljspeech/wavs/LJ007-0022.npy +tests/data/ljspeech/wavs/LJ022-0126.wav|tests/data/ljspeech/wavs/LJ022-0126.npy +tests/data/ljspeech/wavs/LJ005-0298.wav|tests/data/ljspeech/wavs/LJ005-0298.npy +tests/data/ljspeech/wavs/LJ033-0212.wav|tests/data/ljspeech/wavs/LJ033-0212.npy +tests/data/ljspeech/wavs/LJ016-0101.wav|tests/data/ljspeech/wavs/LJ016-0101.npy +tests/data/ljspeech/wavs/LJ022-0023.wav|tests/data/ljspeech/wavs/LJ022-0023.npy +tests/data/ljspeech/wavs/LJ017-0032.wav|tests/data/ljspeech/wavs/LJ017-0032.npy +tests/data/ljspeech/wavs/LJ046-0107.wav|tests/data/ljspeech/wavs/LJ046-0107.npy +tests/data/ljspeech/wavs/LJ037-0077.wav|tests/data/ljspeech/wavs/LJ037-0077.npy +tests/data/ljspeech/wavs/LJ039-0172.wav|tests/data/ljspeech/wavs/LJ039-0172.npy +tests/data/ljspeech/wavs/LJ014-0219.wav|tests/data/ljspeech/wavs/LJ014-0219.npy +tests/data/ljspeech/wavs/LJ037-0039.wav|tests/data/ljspeech/wavs/LJ037-0039.npy +tests/data/ljspeech/wavs/LJ028-0114.wav|tests/data/ljspeech/wavs/LJ028-0114.npy +tests/data/ljspeech/wavs/LJ015-0309.wav|tests/data/ljspeech/wavs/LJ015-0309.npy +tests/data/ljspeech/wavs/LJ039-0167.wav|tests/data/ljspeech/wavs/LJ039-0167.npy +tests/data/ljspeech/wavs/LJ030-0236.wav|tests/data/ljspeech/wavs/LJ030-0236.npy +tests/data/ljspeech/wavs/LJ011-0239.wav|tests/data/ljspeech/wavs/LJ011-0239.npy +tests/data/ljspeech/wavs/LJ031-0066.wav|tests/data/ljspeech/wavs/LJ031-0066.npy +tests/data/ljspeech/wavs/LJ002-0072.wav|tests/data/ljspeech/wavs/LJ002-0072.npy +tests/data/ljspeech/wavs/LJ048-0023.wav|tests/data/ljspeech/wavs/LJ048-0023.npy +tests/data/ljspeech/wavs/LJ012-0013.wav|tests/data/ljspeech/wavs/LJ012-0013.npy +tests/data/ljspeech/wavs/LJ008-0265.wav|tests/data/ljspeech/wavs/LJ008-0265.npy +tests/data/ljspeech/wavs/LJ007-0014.wav|tests/data/ljspeech/wavs/LJ007-0014.npy +tests/data/ljspeech/wavs/LJ002-0190.wav|tests/data/ljspeech/wavs/LJ002-0190.npy +tests/data/ljspeech/wavs/LJ016-0294.wav|tests/data/ljspeech/wavs/LJ016-0294.npy +tests/data/ljspeech/wavs/LJ001-0089.wav|tests/data/ljspeech/wavs/LJ001-0089.npy +tests/data/ljspeech/wavs/LJ014-0073.wav|tests/data/ljspeech/wavs/LJ014-0073.npy +tests/data/ljspeech/wavs/LJ026-0026.wav|tests/data/ljspeech/wavs/LJ026-0026.npy +tests/data/ljspeech/wavs/LJ037-0040.wav|tests/data/ljspeech/wavs/LJ037-0040.npy +tests/data/ljspeech/wavs/LJ012-0010.wav|tests/data/ljspeech/wavs/LJ012-0010.npy +tests/data/ljspeech/wavs/LJ028-0238.wav|tests/data/ljspeech/wavs/LJ028-0238.npy +tests/data/ljspeech/wavs/LJ050-0192.wav|tests/data/ljspeech/wavs/LJ050-0192.npy +tests/data/ljspeech/wavs/LJ048-0022.wav|tests/data/ljspeech/wavs/LJ048-0022.npy +tests/data/ljspeech/wavs/LJ006-0138.wav|tests/data/ljspeech/wavs/LJ006-0138.npy +tests/data/ljspeech/wavs/LJ005-0199.wav|tests/data/ljspeech/wavs/LJ005-0199.npy +tests/data/ljspeech/wavs/LJ050-0218.wav|tests/data/ljspeech/wavs/LJ050-0218.npy +tests/data/ljspeech/wavs/LJ002-0064.wav|tests/data/ljspeech/wavs/LJ002-0064.npy +tests/data/ljspeech/wavs/LJ008-0249.wav|tests/data/ljspeech/wavs/LJ008-0249.npy +tests/data/ljspeech/wavs/LJ004-0184.wav|tests/data/ljspeech/wavs/LJ004-0184.npy +tests/data/ljspeech/wavs/LJ036-0004.wav|tests/data/ljspeech/wavs/LJ036-0004.npy +tests/data/ljspeech/wavs/LJ036-0044.wav|tests/data/ljspeech/wavs/LJ036-0044.npy +tests/data/ljspeech/wavs/LJ047-0144.wav|tests/data/ljspeech/wavs/LJ047-0144.npy +tests/data/ljspeech/wavs/LJ042-0197.wav|tests/data/ljspeech/wavs/LJ042-0197.npy +tests/data/ljspeech/wavs/LJ049-0225.wav|tests/data/ljspeech/wavs/LJ049-0225.npy +tests/data/ljspeech/wavs/LJ003-0159.wav|tests/data/ljspeech/wavs/LJ003-0159.npy +tests/data/ljspeech/wavs/LJ050-0119.wav|tests/data/ljspeech/wavs/LJ050-0119.npy +tests/data/ljspeech/wavs/LJ038-0108.wav|tests/data/ljspeech/wavs/LJ038-0108.npy +tests/data/ljspeech/wavs/LJ040-0139.wav|tests/data/ljspeech/wavs/LJ040-0139.npy +tests/data/ljspeech/wavs/LJ048-0157.wav|tests/data/ljspeech/wavs/LJ048-0157.npy +tests/data/ljspeech/wavs/LJ014-0275.wav|tests/data/ljspeech/wavs/LJ014-0275.npy +tests/data/ljspeech/wavs/LJ009-0018.wav|tests/data/ljspeech/wavs/LJ009-0018.npy +tests/data/ljspeech/wavs/LJ010-0137.wav|tests/data/ljspeech/wavs/LJ010-0137.npy +tests/data/ljspeech/wavs/LJ018-0099.wav|tests/data/ljspeech/wavs/LJ018-0099.npy +tests/data/ljspeech/wavs/LJ040-0119.wav|tests/data/ljspeech/wavs/LJ040-0119.npy +tests/data/ljspeech/wavs/LJ019-0322.wav|tests/data/ljspeech/wavs/LJ019-0322.npy +tests/data/ljspeech/wavs/LJ019-0065.wav|tests/data/ljspeech/wavs/LJ019-0065.npy +tests/data/ljspeech/wavs/LJ007-0113.wav|tests/data/ljspeech/wavs/LJ007-0113.npy +tests/data/ljspeech/wavs/LJ006-0044.wav|tests/data/ljspeech/wavs/LJ006-0044.npy +tests/data/ljspeech/wavs/LJ014-0307.wav|tests/data/ljspeech/wavs/LJ014-0307.npy +tests/data/ljspeech/wavs/LJ001-0150.wav|tests/data/ljspeech/wavs/LJ001-0150.npy +tests/data/ljspeech/wavs/LJ029-0047.wav|tests/data/ljspeech/wavs/LJ029-0047.npy +tests/data/ljspeech/wavs/LJ019-0397.wav|tests/data/ljspeech/wavs/LJ019-0397.npy +tests/data/ljspeech/wavs/LJ040-0054.wav|tests/data/ljspeech/wavs/LJ040-0054.npy +tests/data/ljspeech/wavs/LJ020-0088.wav|tests/data/ljspeech/wavs/LJ020-0088.npy +tests/data/ljspeech/wavs/LJ036-0056.wav|tests/data/ljspeech/wavs/LJ036-0056.npy +tests/data/ljspeech/wavs/LJ030-0178.wav|tests/data/ljspeech/wavs/LJ030-0178.npy +tests/data/ljspeech/wavs/LJ048-0264.wav|tests/data/ljspeech/wavs/LJ048-0264.npy +tests/data/ljspeech/wavs/LJ031-0182.wav|tests/data/ljspeech/wavs/LJ031-0182.npy +tests/data/ljspeech/wavs/LJ010-0249.wav|tests/data/ljspeech/wavs/LJ010-0249.npy +tests/data/ljspeech/wavs/LJ006-0183.wav|tests/data/ljspeech/wavs/LJ006-0183.npy +tests/data/ljspeech/wavs/LJ038-0237.wav|tests/data/ljspeech/wavs/LJ038-0237.npy +tests/data/ljspeech/wavs/LJ033-0042.wav|tests/data/ljspeech/wavs/LJ033-0042.npy +tests/data/ljspeech/wavs/LJ011-0035.wav|tests/data/ljspeech/wavs/LJ011-0035.npy +tests/data/ljspeech/wavs/LJ025-0098.wav|tests/data/ljspeech/wavs/LJ025-0098.npy +tests/data/ljspeech/wavs/LJ043-0151.wav|tests/data/ljspeech/wavs/LJ043-0151.npy +tests/data/ljspeech/wavs/LJ028-0311.wav|tests/data/ljspeech/wavs/LJ028-0311.npy +tests/data/ljspeech/wavs/LJ048-0224.wav|tests/data/ljspeech/wavs/LJ048-0224.npy +tests/data/ljspeech/wavs/LJ043-0006.wav|tests/data/ljspeech/wavs/LJ043-0006.npy +tests/data/ljspeech/wavs/LJ044-0181.wav|tests/data/ljspeech/wavs/LJ044-0181.npy +tests/data/ljspeech/wavs/LJ011-0034.wav|tests/data/ljspeech/wavs/LJ011-0034.npy +tests/data/ljspeech/wavs/LJ004-0122.wav|tests/data/ljspeech/wavs/LJ004-0122.npy +tests/data/ljspeech/wavs/LJ028-0314.wav|tests/data/ljspeech/wavs/LJ028-0314.npy +tests/data/ljspeech/wavs/LJ004-0018.wav|tests/data/ljspeech/wavs/LJ004-0018.npy +tests/data/ljspeech/wavs/LJ008-0297.wav|tests/data/ljspeech/wavs/LJ008-0297.npy +tests/data/ljspeech/wavs/LJ050-0127.wav|tests/data/ljspeech/wavs/LJ050-0127.npy +tests/data/ljspeech/wavs/LJ004-0076.wav|tests/data/ljspeech/wavs/LJ004-0076.npy +tests/data/ljspeech/wavs/LJ014-0239.wav|tests/data/ljspeech/wavs/LJ014-0239.npy +tests/data/ljspeech/wavs/LJ014-0292.wav|tests/data/ljspeech/wavs/LJ014-0292.npy +tests/data/ljspeech/wavs/LJ014-0046.wav|tests/data/ljspeech/wavs/LJ014-0046.npy +tests/data/ljspeech/wavs/LJ006-0197.wav|tests/data/ljspeech/wavs/LJ006-0197.npy +tests/data/ljspeech/wavs/LJ030-0134.wav|tests/data/ljspeech/wavs/LJ030-0134.npy +tests/data/ljspeech/wavs/LJ044-0157.wav|tests/data/ljspeech/wavs/LJ044-0157.npy +tests/data/ljspeech/wavs/LJ037-0062.wav|tests/data/ljspeech/wavs/LJ037-0062.npy +tests/data/ljspeech/wavs/LJ014-0094.wav|tests/data/ljspeech/wavs/LJ014-0094.npy +tests/data/ljspeech/wavs/LJ016-0319.wav|tests/data/ljspeech/wavs/LJ016-0319.npy +tests/data/ljspeech/wavs/LJ043-0098.wav|tests/data/ljspeech/wavs/LJ043-0098.npy +tests/data/ljspeech/wavs/LJ009-0116.wav|tests/data/ljspeech/wavs/LJ009-0116.npy +tests/data/ljspeech/wavs/LJ031-0084.wav|tests/data/ljspeech/wavs/LJ031-0084.npy +tests/data/ljspeech/wavs/LJ016-0338.wav|tests/data/ljspeech/wavs/LJ016-0338.npy +tests/data/ljspeech/wavs/LJ011-0218.wav|tests/data/ljspeech/wavs/LJ011-0218.npy +tests/data/ljspeech/wavs/LJ016-0263.wav|tests/data/ljspeech/wavs/LJ016-0263.npy +tests/data/ljspeech/wavs/LJ012-0196.wav|tests/data/ljspeech/wavs/LJ012-0196.npy +tests/data/ljspeech/wavs/LJ050-0145.wav|tests/data/ljspeech/wavs/LJ050-0145.npy +tests/data/ljspeech/wavs/LJ015-0051.wav|tests/data/ljspeech/wavs/LJ015-0051.npy +tests/data/ljspeech/wavs/LJ019-0133.wav|tests/data/ljspeech/wavs/LJ019-0133.npy +tests/data/ljspeech/wavs/LJ040-0145.wav|tests/data/ljspeech/wavs/LJ040-0145.npy +tests/data/ljspeech/wavs/LJ026-0098.wav|tests/data/ljspeech/wavs/LJ026-0098.npy +tests/data/ljspeech/wavs/LJ041-0183.wav|tests/data/ljspeech/wavs/LJ041-0183.npy +tests/data/ljspeech/wavs/LJ027-0092.wav|tests/data/ljspeech/wavs/LJ027-0092.npy +tests/data/ljspeech/wavs/LJ041-0174.wav|tests/data/ljspeech/wavs/LJ041-0174.npy +tests/data/ljspeech/wavs/LJ037-0091.wav|tests/data/ljspeech/wavs/LJ037-0091.npy +tests/data/ljspeech/wavs/LJ018-0326.wav|tests/data/ljspeech/wavs/LJ018-0326.npy +tests/data/ljspeech/wavs/LJ013-0041.wav|tests/data/ljspeech/wavs/LJ013-0041.npy +tests/data/ljspeech/wavs/LJ049-0176.wav|tests/data/ljspeech/wavs/LJ049-0176.npy +tests/data/ljspeech/wavs/LJ042-0038.wav|tests/data/ljspeech/wavs/LJ042-0038.npy +tests/data/ljspeech/wavs/LJ013-0260.wav|tests/data/ljspeech/wavs/LJ013-0260.npy +tests/data/ljspeech/wavs/LJ043-0002.wav|tests/data/ljspeech/wavs/LJ043-0002.npy +tests/data/ljspeech/wavs/LJ019-0112.wav|tests/data/ljspeech/wavs/LJ019-0112.npy +tests/data/ljspeech/wavs/LJ019-0031.wav|tests/data/ljspeech/wavs/LJ019-0031.npy +tests/data/ljspeech/wavs/LJ002-0086.wav|tests/data/ljspeech/wavs/LJ002-0086.npy +tests/data/ljspeech/wavs/LJ012-0060.wav|tests/data/ljspeech/wavs/LJ012-0060.npy +tests/data/ljspeech/wavs/LJ012-0146.wav|tests/data/ljspeech/wavs/LJ012-0146.npy +tests/data/ljspeech/wavs/LJ049-0134.wav|tests/data/ljspeech/wavs/LJ049-0134.npy +tests/data/ljspeech/wavs/LJ012-0104.wav|tests/data/ljspeech/wavs/LJ012-0104.npy +tests/data/ljspeech/wavs/LJ008-0064.wav|tests/data/ljspeech/wavs/LJ008-0064.npy +tests/data/ljspeech/wavs/LJ027-0160.wav|tests/data/ljspeech/wavs/LJ027-0160.npy +tests/data/ljspeech/wavs/LJ008-0072.wav|tests/data/ljspeech/wavs/LJ008-0072.npy +tests/data/ljspeech/wavs/LJ016-0240.wav|tests/data/ljspeech/wavs/LJ016-0240.npy +tests/data/ljspeech/wavs/LJ043-0163.wav|tests/data/ljspeech/wavs/LJ043-0163.npy +tests/data/ljspeech/wavs/LJ047-0197.wav|tests/data/ljspeech/wavs/LJ047-0197.npy +tests/data/ljspeech/wavs/LJ037-0145.wav|tests/data/ljspeech/wavs/LJ037-0145.npy +tests/data/ljspeech/wavs/LJ006-0128.wav|tests/data/ljspeech/wavs/LJ006-0128.npy +tests/data/ljspeech/wavs/LJ003-0312.wav|tests/data/ljspeech/wavs/LJ003-0312.npy +tests/data/ljspeech/wavs/LJ032-0162.wav|tests/data/ljspeech/wavs/LJ032-0162.npy +tests/data/ljspeech/wavs/LJ014-0334.wav|tests/data/ljspeech/wavs/LJ014-0334.npy +tests/data/ljspeech/wavs/LJ034-0106.wav|tests/data/ljspeech/wavs/LJ034-0106.npy +tests/data/ljspeech/wavs/LJ038-0158.wav|tests/data/ljspeech/wavs/LJ038-0158.npy +tests/data/ljspeech/wavs/LJ048-0131.wav|tests/data/ljspeech/wavs/LJ048-0131.npy +tests/data/ljspeech/wavs/LJ045-0214.wav|tests/data/ljspeech/wavs/LJ045-0214.npy +tests/data/ljspeech/wavs/LJ045-0095.wav|tests/data/ljspeech/wavs/LJ045-0095.npy +tests/data/ljspeech/wavs/LJ044-0223.wav|tests/data/ljspeech/wavs/LJ044-0223.npy +tests/data/ljspeech/wavs/LJ046-0141.wav|tests/data/ljspeech/wavs/LJ046-0141.npy +tests/data/ljspeech/wavs/LJ031-0103.wav|tests/data/ljspeech/wavs/LJ031-0103.npy +tests/data/ljspeech/wavs/LJ001-0023.wav|tests/data/ljspeech/wavs/LJ001-0023.npy +tests/data/ljspeech/wavs/LJ048-0102.wav|tests/data/ljspeech/wavs/LJ048-0102.npy +tests/data/ljspeech/wavs/LJ004-0244.wav|tests/data/ljspeech/wavs/LJ004-0244.npy +tests/data/ljspeech/wavs/LJ004-0209.wav|tests/data/ljspeech/wavs/LJ004-0209.npy +tests/data/ljspeech/wavs/LJ019-0377.wav|tests/data/ljspeech/wavs/LJ019-0377.npy +tests/data/ljspeech/wavs/LJ042-0002.wav|tests/data/ljspeech/wavs/LJ042-0002.npy +tests/data/ljspeech/wavs/LJ038-0095.wav|tests/data/ljspeech/wavs/LJ038-0095.npy +tests/data/ljspeech/wavs/LJ040-0134.wav|tests/data/ljspeech/wavs/LJ040-0134.npy +tests/data/ljspeech/wavs/LJ018-0028.wav|tests/data/ljspeech/wavs/LJ018-0028.npy +tests/data/ljspeech/wavs/LJ028-0404.wav|tests/data/ljspeech/wavs/LJ028-0404.npy +tests/data/ljspeech/wavs/LJ006-0212.wav|tests/data/ljspeech/wavs/LJ006-0212.npy +tests/data/ljspeech/wavs/LJ030-0163.wav|tests/data/ljspeech/wavs/LJ030-0163.npy +tests/data/ljspeech/wavs/LJ017-0031.wav|tests/data/ljspeech/wavs/LJ017-0031.npy +tests/data/ljspeech/wavs/LJ049-0103.wav|tests/data/ljspeech/wavs/LJ049-0103.npy +tests/data/ljspeech/wavs/LJ031-0049.wav|tests/data/ljspeech/wavs/LJ031-0049.npy +tests/data/ljspeech/wavs/LJ032-0258.wav|tests/data/ljspeech/wavs/LJ032-0258.npy +tests/data/ljspeech/wavs/LJ003-0215.wav|tests/data/ljspeech/wavs/LJ003-0215.npy +tests/data/ljspeech/wavs/LJ018-0017.wav|tests/data/ljspeech/wavs/LJ018-0017.npy +tests/data/ljspeech/wavs/LJ009-0241.wav|tests/data/ljspeech/wavs/LJ009-0241.npy +tests/data/ljspeech/wavs/LJ045-0106.wav|tests/data/ljspeech/wavs/LJ045-0106.npy +tests/data/ljspeech/wavs/LJ027-0041.wav|tests/data/ljspeech/wavs/LJ027-0041.npy +tests/data/ljspeech/wavs/LJ027-0083.wav|tests/data/ljspeech/wavs/LJ027-0083.npy +tests/data/ljspeech/wavs/LJ050-0198.wav|tests/data/ljspeech/wavs/LJ050-0198.npy +tests/data/ljspeech/wavs/LJ004-0087.wav|tests/data/ljspeech/wavs/LJ004-0087.npy +tests/data/ljspeech/wavs/LJ029-0157.wav|tests/data/ljspeech/wavs/LJ029-0157.npy +tests/data/ljspeech/wavs/LJ002-0107.wav|tests/data/ljspeech/wavs/LJ002-0107.npy +tests/data/ljspeech/wavs/LJ040-0205.wav|tests/data/ljspeech/wavs/LJ040-0205.npy +tests/data/ljspeech/wavs/LJ027-0072.wav|tests/data/ljspeech/wavs/LJ027-0072.npy +tests/data/ljspeech/wavs/LJ019-0361.wav|tests/data/ljspeech/wavs/LJ019-0361.npy +tests/data/ljspeech/wavs/LJ040-0126.wav|tests/data/ljspeech/wavs/LJ040-0126.npy +tests/data/ljspeech/wavs/LJ041-0017.wav|tests/data/ljspeech/wavs/LJ041-0017.npy +tests/data/ljspeech/wavs/LJ050-0120.wav|tests/data/ljspeech/wavs/LJ050-0120.npy +tests/data/ljspeech/wavs/LJ034-0198.wav|tests/data/ljspeech/wavs/LJ034-0198.npy +tests/data/ljspeech/wavs/LJ013-0092.wav|tests/data/ljspeech/wavs/LJ013-0092.npy +tests/data/ljspeech/wavs/LJ045-0203.wav|tests/data/ljspeech/wavs/LJ045-0203.npy +tests/data/ljspeech/wavs/LJ040-0010.wav|tests/data/ljspeech/wavs/LJ040-0010.npy +tests/data/ljspeech/wavs/LJ006-0019.wav|tests/data/ljspeech/wavs/LJ006-0019.npy +tests/data/ljspeech/wavs/LJ028-0466.wav|tests/data/ljspeech/wavs/LJ028-0466.npy +tests/data/ljspeech/wavs/LJ004-0227.wav|tests/data/ljspeech/wavs/LJ004-0227.npy +tests/data/ljspeech/wavs/LJ002-0085.wav|tests/data/ljspeech/wavs/LJ002-0085.npy +tests/data/ljspeech/wavs/LJ028-0426.wav|tests/data/ljspeech/wavs/LJ028-0426.npy +tests/data/ljspeech/wavs/LJ018-0260.wav|tests/data/ljspeech/wavs/LJ018-0260.npy +tests/data/ljspeech/wavs/LJ006-0204.wav|tests/data/ljspeech/wavs/LJ006-0204.npy +tests/data/ljspeech/wavs/LJ011-0170.wav|tests/data/ljspeech/wavs/LJ011-0170.npy +tests/data/ljspeech/wavs/LJ021-0138.wav|tests/data/ljspeech/wavs/LJ021-0138.npy +tests/data/ljspeech/wavs/LJ043-0172.wav|tests/data/ljspeech/wavs/LJ043-0172.npy +tests/data/ljspeech/wavs/LJ044-0136.wav|tests/data/ljspeech/wavs/LJ044-0136.npy +tests/data/ljspeech/wavs/LJ001-0100.wav|tests/data/ljspeech/wavs/LJ001-0100.npy +tests/data/ljspeech/wavs/LJ037-0173.wav|tests/data/ljspeech/wavs/LJ037-0173.npy +tests/data/ljspeech/wavs/LJ032-0007.wav|tests/data/ljspeech/wavs/LJ032-0007.npy +tests/data/ljspeech/wavs/LJ013-0119.wav|tests/data/ljspeech/wavs/LJ013-0119.npy +tests/data/ljspeech/wavs/LJ008-0238.wav|tests/data/ljspeech/wavs/LJ008-0238.npy +tests/data/ljspeech/wavs/LJ017-0206.wav|tests/data/ljspeech/wavs/LJ017-0206.npy +tests/data/ljspeech/wavs/LJ013-0117.wav|tests/data/ljspeech/wavs/LJ013-0117.npy +tests/data/ljspeech/wavs/LJ009-0237.wav|tests/data/ljspeech/wavs/LJ009-0237.npy +tests/data/ljspeech/wavs/LJ038-0012.wav|tests/data/ljspeech/wavs/LJ038-0012.npy +tests/data/ljspeech/wavs/LJ030-0138.wav|tests/data/ljspeech/wavs/LJ030-0138.npy +tests/data/ljspeech/wavs/LJ042-0150.wav|tests/data/ljspeech/wavs/LJ042-0150.npy +tests/data/ljspeech/wavs/LJ032-0141.wav|tests/data/ljspeech/wavs/LJ032-0141.npy +tests/data/ljspeech/wavs/LJ038-0215.wav|tests/data/ljspeech/wavs/LJ038-0215.npy +tests/data/ljspeech/wavs/LJ012-0127.wav|tests/data/ljspeech/wavs/LJ012-0127.npy +tests/data/ljspeech/wavs/LJ038-0244.wav|tests/data/ljspeech/wavs/LJ038-0244.npy +tests/data/ljspeech/wavs/LJ042-0084.wav|tests/data/ljspeech/wavs/LJ042-0084.npy +tests/data/ljspeech/wavs/LJ018-0039.wav|tests/data/ljspeech/wavs/LJ018-0039.npy +tests/data/ljspeech/wavs/LJ027-0149.wav|tests/data/ljspeech/wavs/LJ027-0149.npy +tests/data/ljspeech/wavs/LJ015-0269.wav|tests/data/ljspeech/wavs/LJ015-0269.npy +tests/data/ljspeech/wavs/LJ018-0338.wav|tests/data/ljspeech/wavs/LJ018-0338.npy +tests/data/ljspeech/wavs/LJ007-0155.wav|tests/data/ljspeech/wavs/LJ007-0155.npy +tests/data/ljspeech/wavs/LJ049-0086.wav|tests/data/ljspeech/wavs/LJ049-0086.npy +tests/data/ljspeech/wavs/LJ031-0163.wav|tests/data/ljspeech/wavs/LJ031-0163.npy +tests/data/ljspeech/wavs/LJ013-0096.wav|tests/data/ljspeech/wavs/LJ013-0096.npy +tests/data/ljspeech/wavs/LJ019-0072.wav|tests/data/ljspeech/wavs/LJ019-0072.npy +tests/data/ljspeech/wavs/LJ010-0059.wav|tests/data/ljspeech/wavs/LJ010-0059.npy +tests/data/ljspeech/wavs/LJ018-0089.wav|tests/data/ljspeech/wavs/LJ018-0089.npy +tests/data/ljspeech/wavs/LJ018-0333.wav|tests/data/ljspeech/wavs/LJ018-0333.npy +tests/data/ljspeech/wavs/LJ018-0372.wav|tests/data/ljspeech/wavs/LJ018-0372.npy +tests/data/ljspeech/wavs/LJ019-0156.wav|tests/data/ljspeech/wavs/LJ019-0156.npy +tests/data/ljspeech/wavs/LJ019-0114.wav|tests/data/ljspeech/wavs/LJ019-0114.npy +tests/data/ljspeech/wavs/LJ009-0232.wav|tests/data/ljspeech/wavs/LJ009-0232.npy +tests/data/ljspeech/wavs/LJ003-0315.wav|tests/data/ljspeech/wavs/LJ003-0315.npy +tests/data/ljspeech/wavs/LJ008-0282.wav|tests/data/ljspeech/wavs/LJ008-0282.npy +tests/data/ljspeech/wavs/LJ008-0124.wav|tests/data/ljspeech/wavs/LJ008-0124.npy +tests/data/ljspeech/wavs/LJ015-0080.wav|tests/data/ljspeech/wavs/LJ015-0080.npy +tests/data/ljspeech/wavs/LJ040-0113.wav|tests/data/ljspeech/wavs/LJ040-0113.npy +tests/data/ljspeech/wavs/LJ004-0171.wav|tests/data/ljspeech/wavs/LJ004-0171.npy +tests/data/ljspeech/wavs/LJ009-0230.wav|tests/data/ljspeech/wavs/LJ009-0230.npy +tests/data/ljspeech/wavs/LJ038-0306.wav|tests/data/ljspeech/wavs/LJ038-0306.npy +tests/data/ljspeech/wavs/LJ016-0226.wav|tests/data/ljspeech/wavs/LJ016-0226.npy +tests/data/ljspeech/wavs/LJ009-0179.wav|tests/data/ljspeech/wavs/LJ009-0179.npy +tests/data/ljspeech/wavs/LJ002-0268.wav|tests/data/ljspeech/wavs/LJ002-0268.npy +tests/data/ljspeech/wavs/LJ005-0225.wav|tests/data/ljspeech/wavs/LJ005-0225.npy +tests/data/ljspeech/wavs/LJ009-0176.wav|tests/data/ljspeech/wavs/LJ009-0176.npy +tests/data/ljspeech/wavs/LJ025-0166.wav|tests/data/ljspeech/wavs/LJ025-0166.npy +tests/data/ljspeech/wavs/LJ031-0018.wav|tests/data/ljspeech/wavs/LJ031-0018.npy +tests/data/ljspeech/wavs/LJ019-0121.wav|tests/data/ljspeech/wavs/LJ019-0121.npy +tests/data/ljspeech/wavs/LJ031-0017.wav|tests/data/ljspeech/wavs/LJ031-0017.npy +tests/data/ljspeech/wavs/LJ016-0445.wav|tests/data/ljspeech/wavs/LJ016-0445.npy +tests/data/ljspeech/wavs/LJ004-0155.wav|tests/data/ljspeech/wavs/LJ004-0155.npy +tests/data/ljspeech/wavs/LJ045-0185.wav|tests/data/ljspeech/wavs/LJ045-0185.npy +tests/data/ljspeech/wavs/LJ028-0507.wav|tests/data/ljspeech/wavs/LJ028-0507.npy +tests/data/ljspeech/wavs/LJ031-0145.wav|tests/data/ljspeech/wavs/LJ031-0145.npy +tests/data/ljspeech/wavs/LJ005-0113.wav|tests/data/ljspeech/wavs/LJ005-0113.npy +tests/data/ljspeech/wavs/LJ007-0054.wav|tests/data/ljspeech/wavs/LJ007-0054.npy +tests/data/ljspeech/wavs/LJ048-0229.wav|tests/data/ljspeech/wavs/LJ048-0229.npy +tests/data/ljspeech/wavs/LJ018-0090.wav|tests/data/ljspeech/wavs/LJ018-0090.npy +tests/data/ljspeech/wavs/LJ003-0274.wav|tests/data/ljspeech/wavs/LJ003-0274.npy +tests/data/ljspeech/wavs/LJ009-0257.wav|tests/data/ljspeech/wavs/LJ009-0257.npy +tests/data/ljspeech/wavs/LJ007-0116.wav|tests/data/ljspeech/wavs/LJ007-0116.npy +tests/data/ljspeech/wavs/LJ013-0061.wav|tests/data/ljspeech/wavs/LJ013-0061.npy +tests/data/ljspeech/wavs/LJ025-0015.wav|tests/data/ljspeech/wavs/LJ025-0015.npy +tests/data/ljspeech/wavs/LJ004-0102.wav|tests/data/ljspeech/wavs/LJ004-0102.npy +tests/data/ljspeech/wavs/LJ048-0130.wav|tests/data/ljspeech/wavs/LJ048-0130.npy +tests/data/ljspeech/wavs/LJ042-0206.wav|tests/data/ljspeech/wavs/LJ042-0206.npy +tests/data/ljspeech/wavs/LJ033-0114.wav|tests/data/ljspeech/wavs/LJ033-0114.npy +tests/data/ljspeech/wavs/LJ034-0099.wav|tests/data/ljspeech/wavs/LJ034-0099.npy +tests/data/ljspeech/wavs/LJ001-0066.wav|tests/data/ljspeech/wavs/LJ001-0066.npy +tests/data/ljspeech/wavs/LJ004-0183.wav|tests/data/ljspeech/wavs/LJ004-0183.npy +tests/data/ljspeech/wavs/LJ034-0177.wav|tests/data/ljspeech/wavs/LJ034-0177.npy +tests/data/ljspeech/wavs/LJ038-0293.wav|tests/data/ljspeech/wavs/LJ038-0293.npy +tests/data/ljspeech/wavs/LJ021-0123.wav|tests/data/ljspeech/wavs/LJ021-0123.npy +tests/data/ljspeech/wavs/LJ032-0064.wav|tests/data/ljspeech/wavs/LJ032-0064.npy +tests/data/ljspeech/wavs/LJ047-0184.wav|tests/data/ljspeech/wavs/LJ047-0184.npy +tests/data/ljspeech/wavs/LJ006-0165.wav|tests/data/ljspeech/wavs/LJ006-0165.npy +tests/data/ljspeech/wavs/LJ005-0051.wav|tests/data/ljspeech/wavs/LJ005-0051.npy +tests/data/ljspeech/wavs/LJ037-0245.wav|tests/data/ljspeech/wavs/LJ037-0245.npy +tests/data/ljspeech/wavs/LJ013-0153.wav|tests/data/ljspeech/wavs/LJ013-0153.npy +tests/data/ljspeech/wavs/LJ049-0066.wav|tests/data/ljspeech/wavs/LJ049-0066.npy +tests/data/ljspeech/wavs/LJ012-0005.wav|tests/data/ljspeech/wavs/LJ012-0005.npy +tests/data/ljspeech/wavs/LJ025-0032.wav|tests/data/ljspeech/wavs/LJ025-0032.npy +tests/data/ljspeech/wavs/LJ029-0015.wav|tests/data/ljspeech/wavs/LJ029-0015.npy +tests/data/ljspeech/wavs/LJ039-0017.wav|tests/data/ljspeech/wavs/LJ039-0017.npy +tests/data/ljspeech/wavs/LJ045-0164.wav|tests/data/ljspeech/wavs/LJ045-0164.npy +tests/data/ljspeech/wavs/LJ016-0402.wav|tests/data/ljspeech/wavs/LJ016-0402.npy +tests/data/ljspeech/wavs/LJ010-0112.wav|tests/data/ljspeech/wavs/LJ010-0112.npy +tests/data/ljspeech/wavs/LJ049-0125.wav|tests/data/ljspeech/wavs/LJ049-0125.npy +tests/data/ljspeech/wavs/LJ046-0220.wav|tests/data/ljspeech/wavs/LJ046-0220.npy +tests/data/ljspeech/wavs/LJ010-0145.wav|tests/data/ljspeech/wavs/LJ010-0145.npy +tests/data/ljspeech/wavs/LJ042-0217.wav|tests/data/ljspeech/wavs/LJ042-0217.npy +tests/data/ljspeech/wavs/LJ039-0059.wav|tests/data/ljspeech/wavs/LJ039-0059.npy +tests/data/ljspeech/wavs/LJ019-0348.wav|tests/data/ljspeech/wavs/LJ019-0348.npy +tests/data/ljspeech/wavs/LJ018-0380.wav|tests/data/ljspeech/wavs/LJ018-0380.npy +tests/data/ljspeech/wavs/LJ031-0093.wav|tests/data/ljspeech/wavs/LJ031-0093.npy +tests/data/ljspeech/wavs/LJ012-0182.wav|tests/data/ljspeech/wavs/LJ012-0182.npy +tests/data/ljspeech/wavs/LJ045-0246.wav|tests/data/ljspeech/wavs/LJ045-0246.npy +tests/data/ljspeech/wavs/LJ012-0183.wav|tests/data/ljspeech/wavs/LJ012-0183.npy +tests/data/ljspeech/wavs/LJ039-0234.wav|tests/data/ljspeech/wavs/LJ039-0234.npy +tests/data/ljspeech/wavs/LJ006-0032.wav|tests/data/ljspeech/wavs/LJ006-0032.npy +tests/data/ljspeech/wavs/LJ041-0161.wav|tests/data/ljspeech/wavs/LJ041-0161.npy +tests/data/ljspeech/wavs/LJ019-0346.wav|tests/data/ljspeech/wavs/LJ019-0346.npy +tests/data/ljspeech/wavs/LJ049-0096.wav|tests/data/ljspeech/wavs/LJ049-0096.npy +tests/data/ljspeech/wavs/LJ012-0209.wav|tests/data/ljspeech/wavs/LJ012-0209.npy +tests/data/ljspeech/wavs/LJ033-0169.wav|tests/data/ljspeech/wavs/LJ033-0169.npy +tests/data/ljspeech/wavs/LJ038-0023.wav|tests/data/ljspeech/wavs/LJ038-0023.npy +tests/data/ljspeech/wavs/LJ002-0030.wav|tests/data/ljspeech/wavs/LJ002-0030.npy +tests/data/ljspeech/wavs/LJ043-0026.wav|tests/data/ljspeech/wavs/LJ043-0026.npy +tests/data/ljspeech/wavs/LJ031-0123.wav|tests/data/ljspeech/wavs/LJ031-0123.npy +tests/data/ljspeech/wavs/LJ002-0031.wav|tests/data/ljspeech/wavs/LJ002-0031.npy +tests/data/ljspeech/wavs/LJ033-0045.wav|tests/data/ljspeech/wavs/LJ033-0045.npy +tests/data/ljspeech/wavs/LJ002-0028.wav|tests/data/ljspeech/wavs/LJ002-0028.npy +tests/data/ljspeech/wavs/LJ043-0011.wav|tests/data/ljspeech/wavs/LJ043-0011.npy +tests/data/ljspeech/wavs/LJ046-0069.wav|tests/data/ljspeech/wavs/LJ046-0069.npy +tests/data/ljspeech/wavs/LJ018-0176.wav|tests/data/ljspeech/wavs/LJ018-0176.npy +tests/data/ljspeech/wavs/LJ050-0099.wav|tests/data/ljspeech/wavs/LJ050-0099.npy +tests/data/ljspeech/wavs/LJ046-0081.wav|tests/data/ljspeech/wavs/LJ046-0081.npy +tests/data/ljspeech/wavs/LJ001-0162.wav|tests/data/ljspeech/wavs/LJ001-0162.npy +tests/data/ljspeech/wavs/LJ043-0008.wav|tests/data/ljspeech/wavs/LJ043-0008.npy +tests/data/ljspeech/wavs/LJ032-0137.wav|tests/data/ljspeech/wavs/LJ032-0137.npy +tests/data/ljspeech/wavs/LJ009-0022.wav|tests/data/ljspeech/wavs/LJ009-0022.npy +tests/data/ljspeech/wavs/LJ028-0192.wav|tests/data/ljspeech/wavs/LJ028-0192.npy +tests/data/ljspeech/wavs/LJ001-0184.wav|tests/data/ljspeech/wavs/LJ001-0184.npy +tests/data/ljspeech/wavs/LJ008-0044.wav|tests/data/ljspeech/wavs/LJ008-0044.npy +tests/data/ljspeech/wavs/LJ026-0036.wav|tests/data/ljspeech/wavs/LJ026-0036.npy +tests/data/ljspeech/wavs/LJ050-0104.wav|tests/data/ljspeech/wavs/LJ050-0104.npy +tests/data/ljspeech/wavs/LJ006-0148.wav|tests/data/ljspeech/wavs/LJ006-0148.npy +tests/data/ljspeech/wavs/LJ007-0019.wav|tests/data/ljspeech/wavs/LJ007-0019.npy +tests/data/ljspeech/wavs/LJ028-0419.wav|tests/data/ljspeech/wavs/LJ028-0419.npy +tests/data/ljspeech/wavs/LJ007-0135.wav|tests/data/ljspeech/wavs/LJ007-0135.npy +tests/data/ljspeech/wavs/LJ048-0163.wav|tests/data/ljspeech/wavs/LJ048-0163.npy +tests/data/ljspeech/wavs/LJ001-0133.wav|tests/data/ljspeech/wavs/LJ001-0133.npy +tests/data/ljspeech/wavs/LJ049-0121.wav|tests/data/ljspeech/wavs/LJ049-0121.npy +tests/data/ljspeech/wavs/LJ028-0302.wav|tests/data/ljspeech/wavs/LJ028-0302.npy +tests/data/ljspeech/wavs/LJ028-0312.wav|tests/data/ljspeech/wavs/LJ028-0312.npy +tests/data/ljspeech/wavs/LJ028-0437.wav|tests/data/ljspeech/wavs/LJ028-0437.npy +tests/data/ljspeech/wavs/LJ010-0067.wav|tests/data/ljspeech/wavs/LJ010-0067.npy +tests/data/ljspeech/wavs/LJ029-0012.wav|tests/data/ljspeech/wavs/LJ029-0012.npy +tests/data/ljspeech/wavs/LJ022-0170.wav|tests/data/ljspeech/wavs/LJ022-0170.npy +tests/data/ljspeech/wavs/LJ003-0031.wav|tests/data/ljspeech/wavs/LJ003-0031.npy +tests/data/ljspeech/wavs/LJ045-0211.wav|tests/data/ljspeech/wavs/LJ045-0211.npy +tests/data/ljspeech/wavs/LJ021-0061.wav|tests/data/ljspeech/wavs/LJ021-0061.npy +tests/data/ljspeech/wavs/LJ040-0221.wav|tests/data/ljspeech/wavs/LJ040-0221.npy +tests/data/ljspeech/wavs/LJ015-0302.wav|tests/data/ljspeech/wavs/LJ015-0302.npy +tests/data/ljspeech/wavs/LJ047-0238.wav|tests/data/ljspeech/wavs/LJ047-0238.npy +tests/data/ljspeech/wavs/LJ050-0042.wav|tests/data/ljspeech/wavs/LJ050-0042.npy +tests/data/ljspeech/wavs/LJ038-0007.wav|tests/data/ljspeech/wavs/LJ038-0007.npy +tests/data/ljspeech/wavs/LJ022-0190.wav|tests/data/ljspeech/wavs/LJ022-0190.npy +tests/data/ljspeech/wavs/LJ020-0081.wav|tests/data/ljspeech/wavs/LJ020-0081.npy +tests/data/ljspeech/wavs/LJ043-0182.wav|tests/data/ljspeech/wavs/LJ043-0182.npy +tests/data/ljspeech/wavs/LJ028-0235.wav|tests/data/ljspeech/wavs/LJ028-0235.npy +tests/data/ljspeech/wavs/LJ048-0151.wav|tests/data/ljspeech/wavs/LJ048-0151.npy +tests/data/ljspeech/wavs/LJ035-0013.wav|tests/data/ljspeech/wavs/LJ035-0013.npy +tests/data/ljspeech/wavs/LJ005-0237.wav|tests/data/ljspeech/wavs/LJ005-0237.npy +tests/data/ljspeech/wavs/LJ010-0062.wav|tests/data/ljspeech/wavs/LJ010-0062.npy +tests/data/ljspeech/wavs/LJ021-0206.wav|tests/data/ljspeech/wavs/LJ021-0206.npy +tests/data/ljspeech/wavs/LJ028-0173.wav|tests/data/ljspeech/wavs/LJ028-0173.npy +tests/data/ljspeech/wavs/LJ039-0126.wav|tests/data/ljspeech/wavs/LJ039-0126.npy +tests/data/ljspeech/wavs/LJ002-0305.wav|tests/data/ljspeech/wavs/LJ002-0305.npy +tests/data/ljspeech/wavs/LJ028-0329.wav|tests/data/ljspeech/wavs/LJ028-0329.npy +tests/data/ljspeech/wavs/LJ029-0044.wav|tests/data/ljspeech/wavs/LJ029-0044.npy +tests/data/ljspeech/wavs/LJ036-0109.wav|tests/data/ljspeech/wavs/LJ036-0109.npy +tests/data/ljspeech/wavs/LJ040-0184.wav|tests/data/ljspeech/wavs/LJ040-0184.npy +tests/data/ljspeech/wavs/LJ006-0219.wav|tests/data/ljspeech/wavs/LJ006-0219.npy +tests/data/ljspeech/wavs/LJ028-0482.wav|tests/data/ljspeech/wavs/LJ028-0482.npy +tests/data/ljspeech/wavs/LJ002-0329.wav|tests/data/ljspeech/wavs/LJ002-0329.npy +tests/data/ljspeech/wavs/LJ034-0186.wav|tests/data/ljspeech/wavs/LJ034-0186.npy +tests/data/ljspeech/wavs/LJ040-0195.wav|tests/data/ljspeech/wavs/LJ040-0195.npy +tests/data/ljspeech/wavs/LJ034-0209.wav|tests/data/ljspeech/wavs/LJ034-0209.npy +tests/data/ljspeech/wavs/LJ040-0042.wav|tests/data/ljspeech/wavs/LJ040-0042.npy +tests/data/ljspeech/wavs/LJ035-0186.wav|tests/data/ljspeech/wavs/LJ035-0186.npy +tests/data/ljspeech/wavs/LJ045-0128.wav|tests/data/ljspeech/wavs/LJ045-0128.npy +tests/data/ljspeech/wavs/LJ036-0040.wav|tests/data/ljspeech/wavs/LJ036-0040.npy +tests/data/ljspeech/wavs/LJ045-0046.wav|tests/data/ljspeech/wavs/LJ045-0046.npy +tests/data/ljspeech/wavs/LJ018-0169.wav|tests/data/ljspeech/wavs/LJ018-0169.npy +tests/data/ljspeech/wavs/LJ022-0058.wav|tests/data/ljspeech/wavs/LJ022-0058.npy +tests/data/ljspeech/wavs/LJ044-0141.wav|tests/data/ljspeech/wavs/LJ044-0141.npy +tests/data/ljspeech/wavs/LJ036-0037.wav|tests/data/ljspeech/wavs/LJ036-0037.npy +tests/data/ljspeech/wavs/LJ049-0203.wav|tests/data/ljspeech/wavs/LJ049-0203.npy +tests/data/ljspeech/wavs/LJ036-0055.wav|tests/data/ljspeech/wavs/LJ036-0055.npy +tests/data/ljspeech/wavs/LJ049-0005.wav|tests/data/ljspeech/wavs/LJ049-0005.npy +tests/data/ljspeech/wavs/LJ019-0187.wav|tests/data/ljspeech/wavs/LJ019-0187.npy +tests/data/ljspeech/wavs/LJ012-0284.wav|tests/data/ljspeech/wavs/LJ012-0284.npy +tests/data/ljspeech/wavs/LJ016-0234.wav|tests/data/ljspeech/wavs/LJ016-0234.npy +tests/data/ljspeech/wavs/LJ016-0216.wav|tests/data/ljspeech/wavs/LJ016-0216.npy +tests/data/ljspeech/wavs/LJ049-0070.wav|tests/data/ljspeech/wavs/LJ049-0070.npy +tests/data/ljspeech/wavs/LJ044-0116.wav|tests/data/ljspeech/wavs/LJ044-0116.npy +tests/data/ljspeech/wavs/LJ040-0004.wav|tests/data/ljspeech/wavs/LJ040-0004.npy +tests/data/ljspeech/wavs/LJ016-0373.wav|tests/data/ljspeech/wavs/LJ016-0373.npy +tests/data/ljspeech/wavs/LJ037-0131.wav|tests/data/ljspeech/wavs/LJ037-0131.npy +tests/data/ljspeech/wavs/LJ019-0226.wav|tests/data/ljspeech/wavs/LJ019-0226.npy +tests/data/ljspeech/wavs/LJ036-0128.wav|tests/data/ljspeech/wavs/LJ036-0128.npy +tests/data/ljspeech/wavs/LJ009-0166.wav|tests/data/ljspeech/wavs/LJ009-0166.npy +tests/data/ljspeech/wavs/LJ018-0341.wav|tests/data/ljspeech/wavs/LJ018-0341.npy +tests/data/ljspeech/wavs/LJ036-0101.wav|tests/data/ljspeech/wavs/LJ036-0101.npy +tests/data/ljspeech/wavs/LJ019-0211.wav|tests/data/ljspeech/wavs/LJ019-0211.npy +tests/data/ljspeech/wavs/LJ049-0020.wav|tests/data/ljspeech/wavs/LJ049-0020.npy +tests/data/ljspeech/wavs/LJ016-0311.wav|tests/data/ljspeech/wavs/LJ016-0311.npy +tests/data/ljspeech/wavs/LJ040-0141.wav|tests/data/ljspeech/wavs/LJ040-0141.npy +tests/data/ljspeech/wavs/LJ049-0082.wav|tests/data/ljspeech/wavs/LJ049-0082.npy +tests/data/ljspeech/wavs/LJ037-0167.wav|tests/data/ljspeech/wavs/LJ037-0167.npy +tests/data/ljspeech/wavs/LJ004-0152.wav|tests/data/ljspeech/wavs/LJ004-0152.npy +tests/data/ljspeech/wavs/LJ027-0027.wav|tests/data/ljspeech/wavs/LJ027-0027.npy +tests/data/ljspeech/wavs/LJ044-0214.wav|tests/data/ljspeech/wavs/LJ044-0214.npy +tests/data/ljspeech/wavs/LJ002-0285.wav|tests/data/ljspeech/wavs/LJ002-0285.npy +tests/data/ljspeech/wavs/LJ041-0180.wav|tests/data/ljspeech/wavs/LJ041-0180.npy +tests/data/ljspeech/wavs/LJ043-0137.wav|tests/data/ljspeech/wavs/LJ043-0137.npy +tests/data/ljspeech/wavs/LJ046-0240.wav|tests/data/ljspeech/wavs/LJ046-0240.npy +tests/data/ljspeech/wavs/LJ048-0043.wav|tests/data/ljspeech/wavs/LJ048-0043.npy +tests/data/ljspeech/wavs/LJ033-0140.wav|tests/data/ljspeech/wavs/LJ033-0140.npy +tests/data/ljspeech/wavs/LJ026-0157.wav|tests/data/ljspeech/wavs/LJ026-0157.npy +tests/data/ljspeech/wavs/LJ008-0280.wav|tests/data/ljspeech/wavs/LJ008-0280.npy +tests/data/ljspeech/wavs/LJ014-0323.wav|tests/data/ljspeech/wavs/LJ014-0323.npy +tests/data/ljspeech/wavs/LJ009-0042.wav|tests/data/ljspeech/wavs/LJ009-0042.npy +tests/data/ljspeech/wavs/LJ013-0131.wav|tests/data/ljspeech/wavs/LJ013-0131.npy +tests/data/ljspeech/wavs/LJ046-0013.wav|tests/data/ljspeech/wavs/LJ046-0013.npy +tests/data/ljspeech/wavs/LJ028-0035.wav|tests/data/ljspeech/wavs/LJ028-0035.npy +tests/data/ljspeech/wavs/LJ008-0181.wav|tests/data/ljspeech/wavs/LJ008-0181.npy +tests/data/ljspeech/wavs/LJ025-0125.wav|tests/data/ljspeech/wavs/LJ025-0125.npy +tests/data/ljspeech/wavs/LJ004-0106.wav|tests/data/ljspeech/wavs/LJ004-0106.npy +tests/data/ljspeech/wavs/LJ004-0086.wav|tests/data/ljspeech/wavs/LJ004-0086.npy +tests/data/ljspeech/wavs/LJ026-0086.wav|tests/data/ljspeech/wavs/LJ026-0086.npy +tests/data/ljspeech/wavs/LJ050-0016.wav|tests/data/ljspeech/wavs/LJ050-0016.npy +tests/data/ljspeech/wavs/LJ008-0090.wav|tests/data/ljspeech/wavs/LJ008-0090.npy +tests/data/ljspeech/wavs/LJ013-0058.wav|tests/data/ljspeech/wavs/LJ013-0058.npy +tests/data/ljspeech/wavs/LJ027-0174.wav|tests/data/ljspeech/wavs/LJ027-0174.npy +tests/data/ljspeech/wavs/LJ049-0145.wav|tests/data/ljspeech/wavs/LJ049-0145.npy +tests/data/ljspeech/wavs/LJ014-0018.wav|tests/data/ljspeech/wavs/LJ014-0018.npy +tests/data/ljspeech/wavs/LJ033-0152.wav|tests/data/ljspeech/wavs/LJ033-0152.npy +tests/data/ljspeech/wavs/LJ008-0165.wav|tests/data/ljspeech/wavs/LJ008-0165.npy +tests/data/ljspeech/wavs/LJ008-0225.wav|tests/data/ljspeech/wavs/LJ008-0225.npy +tests/data/ljspeech/wavs/LJ032-0262.wav|tests/data/ljspeech/wavs/LJ032-0262.npy +tests/data/ljspeech/wavs/LJ024-0031.wav|tests/data/ljspeech/wavs/LJ024-0031.npy +tests/data/ljspeech/wavs/LJ014-0313.wav|tests/data/ljspeech/wavs/LJ014-0313.npy +tests/data/ljspeech/wavs/LJ013-0147.wav|tests/data/ljspeech/wavs/LJ013-0147.npy +tests/data/ljspeech/wavs/LJ016-0278.wav|tests/data/ljspeech/wavs/LJ016-0278.npy +tests/data/ljspeech/wavs/LJ013-0056.wav|tests/data/ljspeech/wavs/LJ013-0056.npy +tests/data/ljspeech/wavs/LJ040-0014.wav|tests/data/ljspeech/wavs/LJ040-0014.npy +tests/data/ljspeech/wavs/LJ015-0055.wav|tests/data/ljspeech/wavs/LJ015-0055.npy +tests/data/ljspeech/wavs/LJ038-0070.wav|tests/data/ljspeech/wavs/LJ038-0070.npy +tests/data/ljspeech/wavs/LJ038-0274.wav|tests/data/ljspeech/wavs/LJ038-0274.npy +tests/data/ljspeech/wavs/LJ015-0090.wav|tests/data/ljspeech/wavs/LJ015-0090.npy +tests/data/ljspeech/wavs/LJ013-0223.wav|tests/data/ljspeech/wavs/LJ013-0223.npy +tests/data/ljspeech/wavs/LJ015-0074.wav|tests/data/ljspeech/wavs/LJ015-0074.npy +tests/data/ljspeech/wavs/LJ014-0309.wav|tests/data/ljspeech/wavs/LJ014-0309.npy +tests/data/ljspeech/wavs/LJ017-0180.wav|tests/data/ljspeech/wavs/LJ017-0180.npy +tests/data/ljspeech/wavs/LJ017-0049.wav|tests/data/ljspeech/wavs/LJ017-0049.npy +tests/data/ljspeech/wavs/LJ027-0106.wav|tests/data/ljspeech/wavs/LJ027-0106.npy +tests/data/ljspeech/wavs/LJ003-0298.wav|tests/data/ljspeech/wavs/LJ003-0298.npy +tests/data/ljspeech/wavs/LJ014-0109.wav|tests/data/ljspeech/wavs/LJ014-0109.npy +tests/data/ljspeech/wavs/LJ014-0057.wav|tests/data/ljspeech/wavs/LJ014-0057.npy +tests/data/ljspeech/wavs/LJ038-0059.wav|tests/data/ljspeech/wavs/LJ038-0059.npy +tests/data/ljspeech/wavs/LJ004-0071.wav|tests/data/ljspeech/wavs/LJ004-0071.npy +tests/data/ljspeech/wavs/LJ015-0017.wav|tests/data/ljspeech/wavs/LJ015-0017.npy +tests/data/ljspeech/wavs/LJ037-0079.wav|tests/data/ljspeech/wavs/LJ037-0079.npy +tests/data/ljspeech/wavs/LJ008-0243.wav|tests/data/ljspeech/wavs/LJ008-0243.npy +tests/data/ljspeech/wavs/LJ030-0189.wav|tests/data/ljspeech/wavs/LJ030-0189.npy +tests/data/ljspeech/wavs/LJ004-0159.wav|tests/data/ljspeech/wavs/LJ004-0159.npy +tests/data/ljspeech/wavs/LJ037-0099.wav|tests/data/ljspeech/wavs/LJ037-0099.npy +tests/data/ljspeech/wavs/LJ038-0265.wav|tests/data/ljspeech/wavs/LJ038-0265.npy +tests/data/ljspeech/wavs/LJ011-0187.wav|tests/data/ljspeech/wavs/LJ011-0187.npy +tests/data/ljspeech/wavs/LJ030-0076.wav|tests/data/ljspeech/wavs/LJ030-0076.npy +tests/data/ljspeech/wavs/LJ013-0039.wav|tests/data/ljspeech/wavs/LJ013-0039.npy +tests/data/ljspeech/wavs/LJ045-0239.wav|tests/data/ljspeech/wavs/LJ045-0239.npy +tests/data/ljspeech/wavs/LJ013-0233.wav|tests/data/ljspeech/wavs/LJ013-0233.npy +tests/data/ljspeech/wavs/LJ014-0282.wav|tests/data/ljspeech/wavs/LJ014-0282.npy +tests/data/ljspeech/wavs/LJ041-0079.wav|tests/data/ljspeech/wavs/LJ041-0079.npy +tests/data/ljspeech/wavs/LJ047-0021.wav|tests/data/ljspeech/wavs/LJ047-0021.npy +tests/data/ljspeech/wavs/LJ032-0019.wav|tests/data/ljspeech/wavs/LJ032-0019.npy +tests/data/ljspeech/wavs/LJ047-0073.wav|tests/data/ljspeech/wavs/LJ047-0073.npy +tests/data/ljspeech/wavs/LJ009-0149.wav|tests/data/ljspeech/wavs/LJ009-0149.npy +tests/data/ljspeech/wavs/LJ042-0248.wav|tests/data/ljspeech/wavs/LJ042-0248.npy +tests/data/ljspeech/wavs/LJ042-0236.wav|tests/data/ljspeech/wavs/LJ042-0236.npy +tests/data/ljspeech/wavs/LJ049-0173.wav|tests/data/ljspeech/wavs/LJ049-0173.npy +tests/data/ljspeech/wavs/LJ015-0208.wav|tests/data/ljspeech/wavs/LJ015-0208.npy +tests/data/ljspeech/wavs/LJ048-0088.wav|tests/data/ljspeech/wavs/LJ048-0088.npy +tests/data/ljspeech/wavs/LJ009-0159.wav|tests/data/ljspeech/wavs/LJ009-0159.npy +tests/data/ljspeech/wavs/LJ014-0267.wav|tests/data/ljspeech/wavs/LJ014-0267.npy +tests/data/ljspeech/wavs/LJ046-0234.wav|tests/data/ljspeech/wavs/LJ046-0234.npy +tests/data/ljspeech/wavs/LJ012-0205.wav|tests/data/ljspeech/wavs/LJ012-0205.npy +tests/data/ljspeech/wavs/LJ017-0249.wav|tests/data/ljspeech/wavs/LJ017-0249.npy +tests/data/ljspeech/wavs/LJ015-0304.wav|tests/data/ljspeech/wavs/LJ015-0304.npy +tests/data/ljspeech/wavs/LJ004-0019.wav|tests/data/ljspeech/wavs/LJ004-0019.npy +tests/data/ljspeech/wavs/LJ038-0002.wav|tests/data/ljspeech/wavs/LJ038-0002.npy +tests/data/ljspeech/wavs/LJ007-0018.wav|tests/data/ljspeech/wavs/LJ007-0018.npy +tests/data/ljspeech/wavs/LJ016-0031.wav|tests/data/ljspeech/wavs/LJ016-0031.npy +tests/data/ljspeech/wavs/LJ002-0299.wav|tests/data/ljspeech/wavs/LJ002-0299.npy +tests/data/ljspeech/wavs/LJ050-0247.wav|tests/data/ljspeech/wavs/LJ050-0247.npy +tests/data/ljspeech/wavs/LJ034-0002.wav|tests/data/ljspeech/wavs/LJ034-0002.npy +tests/data/ljspeech/wavs/LJ014-0276.wav|tests/data/ljspeech/wavs/LJ014-0276.npy +tests/data/ljspeech/wavs/LJ003-0021.wav|tests/data/ljspeech/wavs/LJ003-0021.npy +tests/data/ljspeech/wavs/LJ009-0229.wav|tests/data/ljspeech/wavs/LJ009-0229.npy +tests/data/ljspeech/wavs/LJ021-0198.wav|tests/data/ljspeech/wavs/LJ021-0198.npy +tests/data/ljspeech/wavs/LJ012-0086.wav|tests/data/ljspeech/wavs/LJ012-0086.npy +tests/data/ljspeech/wavs/LJ030-0120.wav|tests/data/ljspeech/wavs/LJ030-0120.npy +tests/data/ljspeech/wavs/LJ006-0192.wav|tests/data/ljspeech/wavs/LJ006-0192.npy +tests/data/ljspeech/wavs/LJ050-0008.wav|tests/data/ljspeech/wavs/LJ050-0008.npy +tests/data/ljspeech/wavs/LJ045-0150.wav|tests/data/ljspeech/wavs/LJ045-0150.npy +tests/data/ljspeech/wavs/LJ042-0049.wav|tests/data/ljspeech/wavs/LJ042-0049.npy +tests/data/ljspeech/wavs/LJ021-0166.wav|tests/data/ljspeech/wavs/LJ021-0166.npy +tests/data/ljspeech/wavs/LJ042-0013.wav|tests/data/ljspeech/wavs/LJ042-0013.npy +tests/data/ljspeech/wavs/LJ026-0061.wav|tests/data/ljspeech/wavs/LJ026-0061.npy +tests/data/ljspeech/wavs/LJ027-0170.wav|tests/data/ljspeech/wavs/LJ027-0170.npy +tests/data/ljspeech/wavs/LJ045-0110.wav|tests/data/ljspeech/wavs/LJ045-0110.npy +tests/data/ljspeech/wavs/LJ005-0126.wav|tests/data/ljspeech/wavs/LJ005-0126.npy +tests/data/ljspeech/wavs/LJ024-0101.wav|tests/data/ljspeech/wavs/LJ024-0101.npy +tests/data/ljspeech/wavs/LJ027-0095.wav|tests/data/ljspeech/wavs/LJ027-0095.npy +tests/data/ljspeech/wavs/LJ009-0026.wav|tests/data/ljspeech/wavs/LJ009-0026.npy +tests/data/ljspeech/wavs/LJ048-0182.wav|tests/data/ljspeech/wavs/LJ048-0182.npy +tests/data/ljspeech/wavs/LJ021-0006.wav|tests/data/ljspeech/wavs/LJ021-0006.npy +tests/data/ljspeech/wavs/LJ050-0256.wav|tests/data/ljspeech/wavs/LJ050-0256.npy +tests/data/ljspeech/wavs/LJ025-0039.wav|tests/data/ljspeech/wavs/LJ025-0039.npy +tests/data/ljspeech/wavs/LJ040-0117.wav|tests/data/ljspeech/wavs/LJ040-0117.npy +tests/data/ljspeech/wavs/LJ050-0013.wav|tests/data/ljspeech/wavs/LJ050-0013.npy +tests/data/ljspeech/wavs/LJ050-0175.wav|tests/data/ljspeech/wavs/LJ050-0175.npy +tests/data/ljspeech/wavs/LJ050-0043.wav|tests/data/ljspeech/wavs/LJ050-0043.npy +tests/data/ljspeech/wavs/LJ007-0133.wav|tests/data/ljspeech/wavs/LJ007-0133.npy +tests/data/ljspeech/wavs/LJ035-0138.wav|tests/data/ljspeech/wavs/LJ035-0138.npy +tests/data/ljspeech/wavs/LJ006-0068.wav|tests/data/ljspeech/wavs/LJ006-0068.npy +tests/data/ljspeech/wavs/LJ021-0024.wav|tests/data/ljspeech/wavs/LJ021-0024.npy +tests/data/ljspeech/wavs/LJ028-0223.wav|tests/data/ljspeech/wavs/LJ028-0223.npy +tests/data/ljspeech/wavs/LJ028-0100.wav|tests/data/ljspeech/wavs/LJ028-0100.npy +tests/data/ljspeech/wavs/LJ046-0065.wav|tests/data/ljspeech/wavs/LJ046-0065.npy +tests/data/ljspeech/wavs/LJ030-0249.wav|tests/data/ljspeech/wavs/LJ030-0249.npy +tests/data/ljspeech/wavs/LJ042-0109.wav|tests/data/ljspeech/wavs/LJ042-0109.npy +tests/data/ljspeech/wavs/LJ010-0243.wav|tests/data/ljspeech/wavs/LJ010-0243.npy +tests/data/ljspeech/wavs/LJ002-0312.wav|tests/data/ljspeech/wavs/LJ002-0312.npy +tests/data/ljspeech/wavs/LJ042-0098.wav|tests/data/ljspeech/wavs/LJ042-0098.npy +tests/data/ljspeech/wavs/LJ008-0185.wav|tests/data/ljspeech/wavs/LJ008-0185.npy +tests/data/ljspeech/wavs/LJ019-0383.wav|tests/data/ljspeech/wavs/LJ019-0383.npy +tests/data/ljspeech/wavs/LJ029-0052.wav|tests/data/ljspeech/wavs/LJ029-0052.npy +tests/data/ljspeech/wavs/LJ019-0244.wav|tests/data/ljspeech/wavs/LJ019-0244.npy +tests/data/ljspeech/wavs/LJ040-0161.wav|tests/data/ljspeech/wavs/LJ040-0161.npy +tests/data/ljspeech/wavs/LJ047-0019.wav|tests/data/ljspeech/wavs/LJ047-0019.npy +tests/data/ljspeech/wavs/LJ044-0024.wav|tests/data/ljspeech/wavs/LJ044-0024.npy +tests/data/ljspeech/wavs/LJ006-0073.wav|tests/data/ljspeech/wavs/LJ006-0073.npy +tests/data/ljspeech/wavs/LJ048-0286.wav|tests/data/ljspeech/wavs/LJ048-0286.npy +tests/data/ljspeech/wavs/LJ006-0082.wav|tests/data/ljspeech/wavs/LJ006-0082.npy +tests/data/ljspeech/wavs/LJ004-0016.wav|tests/data/ljspeech/wavs/LJ004-0016.npy +tests/data/ljspeech/wavs/LJ050-0132.wav|tests/data/ljspeech/wavs/LJ050-0132.npy +tests/data/ljspeech/wavs/LJ045-0139.wav|tests/data/ljspeech/wavs/LJ045-0139.npy +tests/data/ljspeech/wavs/LJ003-0097.wav|tests/data/ljspeech/wavs/LJ003-0097.npy +tests/data/ljspeech/wavs/LJ045-0142.wav|tests/data/ljspeech/wavs/LJ045-0142.npy +tests/data/ljspeech/wavs/LJ003-0186.wav|tests/data/ljspeech/wavs/LJ003-0186.npy +tests/data/ljspeech/wavs/LJ005-0211.wav|tests/data/ljspeech/wavs/LJ005-0211.npy +tests/data/ljspeech/wavs/LJ005-0100.wav|tests/data/ljspeech/wavs/LJ005-0100.npy +tests/data/ljspeech/wavs/LJ007-0079.wav|tests/data/ljspeech/wavs/LJ007-0079.npy +tests/data/ljspeech/wavs/LJ043-0065.wav|tests/data/ljspeech/wavs/LJ043-0065.npy +tests/data/ljspeech/wavs/LJ004-0222.wav|tests/data/ljspeech/wavs/LJ004-0222.npy +tests/data/ljspeech/wavs/LJ019-0144.wav|tests/data/ljspeech/wavs/LJ019-0144.npy +tests/data/ljspeech/wavs/LJ019-0190.wav|tests/data/ljspeech/wavs/LJ019-0190.npy +tests/data/ljspeech/wavs/LJ003-0283.wav|tests/data/ljspeech/wavs/LJ003-0283.npy +tests/data/ljspeech/wavs/LJ002-0132.wav|tests/data/ljspeech/wavs/LJ002-0132.npy +tests/data/ljspeech/wavs/LJ003-0132.wav|tests/data/ljspeech/wavs/LJ003-0132.npy +tests/data/ljspeech/wavs/LJ045-0055.wav|tests/data/ljspeech/wavs/LJ045-0055.npy +tests/data/ljspeech/wavs/LJ040-0157.wav|tests/data/ljspeech/wavs/LJ040-0157.npy +tests/data/ljspeech/wavs/LJ046-0033.wav|tests/data/ljspeech/wavs/LJ046-0033.npy +tests/data/ljspeech/wavs/LJ010-0214.wav|tests/data/ljspeech/wavs/LJ010-0214.npy +tests/data/ljspeech/wavs/LJ019-0120.wav|tests/data/ljspeech/wavs/LJ019-0120.npy +tests/data/ljspeech/wavs/LJ045-0075.wav|tests/data/ljspeech/wavs/LJ045-0075.npy +tests/data/ljspeech/wavs/LJ007-0114.wav|tests/data/ljspeech/wavs/LJ007-0114.npy +tests/data/ljspeech/wavs/LJ029-0164.wav|tests/data/ljspeech/wavs/LJ029-0164.npy +tests/data/ljspeech/wavs/LJ014-0308.wav|tests/data/ljspeech/wavs/LJ014-0308.npy +tests/data/ljspeech/wavs/LJ047-0072.wav|tests/data/ljspeech/wavs/LJ047-0072.npy +tests/data/ljspeech/wavs/LJ048-0133.wav|tests/data/ljspeech/wavs/LJ048-0133.npy +tests/data/ljspeech/wavs/LJ022-0057.wav|tests/data/ljspeech/wavs/LJ022-0057.npy +tests/data/ljspeech/wavs/LJ015-0266.wav|tests/data/ljspeech/wavs/LJ015-0266.npy +tests/data/ljspeech/wavs/LJ005-0067.wav|tests/data/ljspeech/wavs/LJ005-0067.npy +tests/data/ljspeech/wavs/LJ041-0086.wav|tests/data/ljspeech/wavs/LJ041-0086.npy +tests/data/ljspeech/wavs/LJ033-0131.wav|tests/data/ljspeech/wavs/LJ033-0131.npy +tests/data/ljspeech/wavs/LJ029-0042.wav|tests/data/ljspeech/wavs/LJ029-0042.npy +tests/data/ljspeech/wavs/LJ002-0060.wav|tests/data/ljspeech/wavs/LJ002-0060.npy +tests/data/ljspeech/wavs/LJ009-0259.wav|tests/data/ljspeech/wavs/LJ009-0259.npy +tests/data/ljspeech/wavs/LJ027-0145.wav|tests/data/ljspeech/wavs/LJ027-0145.npy +tests/data/ljspeech/wavs/LJ038-0233.wav|tests/data/ljspeech/wavs/LJ038-0233.npy +tests/data/ljspeech/wavs/LJ041-0046.wav|tests/data/ljspeech/wavs/LJ041-0046.npy +tests/data/ljspeech/wavs/LJ048-0167.wav|tests/data/ljspeech/wavs/LJ048-0167.npy +tests/data/ljspeech/wavs/LJ041-0168.wav|tests/data/ljspeech/wavs/LJ041-0168.npy +tests/data/ljspeech/wavs/LJ034-0072.wav|tests/data/ljspeech/wavs/LJ034-0072.npy +tests/data/ljspeech/wavs/LJ040-0198.wav|tests/data/ljspeech/wavs/LJ040-0198.npy +tests/data/ljspeech/wavs/LJ015-0115.wav|tests/data/ljspeech/wavs/LJ015-0115.npy +tests/data/ljspeech/wavs/LJ008-0258.wav|tests/data/ljspeech/wavs/LJ008-0258.npy +tests/data/ljspeech/wavs/LJ050-0163.wav|tests/data/ljspeech/wavs/LJ050-0163.npy +tests/data/ljspeech/wavs/LJ008-0257.wav|tests/data/ljspeech/wavs/LJ008-0257.npy +tests/data/ljspeech/wavs/LJ041-0016.wav|tests/data/ljspeech/wavs/LJ041-0016.npy +tests/data/ljspeech/wavs/LJ043-0044.wav|tests/data/ljspeech/wavs/LJ043-0044.npy +tests/data/ljspeech/wavs/LJ029-0139.wav|tests/data/ljspeech/wavs/LJ029-0139.npy +tests/data/ljspeech/wavs/LJ006-0040.wav|tests/data/ljspeech/wavs/LJ006-0040.npy +tests/data/ljspeech/wavs/LJ025-0035.wav|tests/data/ljspeech/wavs/LJ025-0035.npy +tests/data/ljspeech/wavs/LJ028-0490.wav|tests/data/ljspeech/wavs/LJ028-0490.npy +tests/data/ljspeech/wavs/LJ009-0187.wav|tests/data/ljspeech/wavs/LJ009-0187.npy +tests/data/ljspeech/wavs/LJ003-0119.wav|tests/data/ljspeech/wavs/LJ003-0119.npy +tests/data/ljspeech/wavs/LJ038-0048.wav|tests/data/ljspeech/wavs/LJ038-0048.npy +tests/data/ljspeech/wavs/LJ039-0146.wav|tests/data/ljspeech/wavs/LJ039-0146.npy +tests/data/ljspeech/wavs/LJ049-0163.wav|tests/data/ljspeech/wavs/LJ049-0163.npy +tests/data/ljspeech/wavs/LJ027-0110.wav|tests/data/ljspeech/wavs/LJ027-0110.npy +tests/data/ljspeech/wavs/LJ031-0133.wav|tests/data/ljspeech/wavs/LJ031-0133.npy +tests/data/ljspeech/wavs/LJ048-0211.wav|tests/data/ljspeech/wavs/LJ048-0211.npy +tests/data/ljspeech/wavs/LJ040-0178.wav|tests/data/ljspeech/wavs/LJ040-0178.npy +tests/data/ljspeech/wavs/LJ013-0149.wav|tests/data/ljspeech/wavs/LJ013-0149.npy +tests/data/ljspeech/wavs/LJ024-0016.wav|tests/data/ljspeech/wavs/LJ024-0016.npy +tests/data/ljspeech/wavs/LJ013-0136.wav|tests/data/ljspeech/wavs/LJ013-0136.npy +tests/data/ljspeech/wavs/LJ049-0144.wav|tests/data/ljspeech/wavs/LJ049-0144.npy +tests/data/ljspeech/wavs/LJ030-0007.wav|tests/data/ljspeech/wavs/LJ030-0007.npy +tests/data/ljspeech/wavs/LJ013-0192.wav|tests/data/ljspeech/wavs/LJ013-0192.npy +tests/data/ljspeech/wavs/LJ027-0088.wav|tests/data/ljspeech/wavs/LJ027-0088.npy +tests/data/ljspeech/wavs/LJ012-0030.wav|tests/data/ljspeech/wavs/LJ012-0030.npy +tests/data/ljspeech/wavs/LJ029-0153.wav|tests/data/ljspeech/wavs/LJ029-0153.npy +tests/data/ljspeech/wavs/LJ033-0059.wav|tests/data/ljspeech/wavs/LJ033-0059.npy +tests/data/ljspeech/wavs/LJ016-0248.wav|tests/data/ljspeech/wavs/LJ016-0248.npy +tests/data/ljspeech/wavs/LJ027-0128.wav|tests/data/ljspeech/wavs/LJ027-0128.npy +tests/data/ljspeech/wavs/LJ027-0024.wav|tests/data/ljspeech/wavs/LJ027-0024.npy +tests/data/ljspeech/wavs/LJ033-0061.wav|tests/data/ljspeech/wavs/LJ033-0061.npy +tests/data/ljspeech/wavs/LJ040-0005.wav|tests/data/ljspeech/wavs/LJ040-0005.npy +tests/data/ljspeech/wavs/LJ028-0450.wav|tests/data/ljspeech/wavs/LJ028-0450.npy +tests/data/ljspeech/wavs/LJ047-0107.wav|tests/data/ljspeech/wavs/LJ047-0107.npy +tests/data/ljspeech/wavs/LJ028-0233.wav|tests/data/ljspeech/wavs/LJ028-0233.npy +tests/data/ljspeech/wavs/LJ016-0246.wav|tests/data/ljspeech/wavs/LJ016-0246.npy +tests/data/ljspeech/wavs/LJ014-0060.wav|tests/data/ljspeech/wavs/LJ014-0060.npy +tests/data/ljspeech/wavs/LJ010-0125.wav|tests/data/ljspeech/wavs/LJ010-0125.npy +tests/data/ljspeech/wavs/LJ012-0132.wav|tests/data/ljspeech/wavs/LJ012-0132.npy +tests/data/ljspeech/wavs/LJ037-0098.wav|tests/data/ljspeech/wavs/LJ037-0098.npy +tests/data/ljspeech/wavs/LJ016-0288.wav|tests/data/ljspeech/wavs/LJ016-0288.npy +tests/data/ljspeech/wavs/LJ013-0036.wav|tests/data/ljspeech/wavs/LJ013-0036.npy +tests/data/ljspeech/wavs/LJ009-0075.wav|tests/data/ljspeech/wavs/LJ009-0075.npy +tests/data/ljspeech/wavs/LJ033-0052.wav|tests/data/ljspeech/wavs/LJ033-0052.npy +tests/data/ljspeech/wavs/LJ042-0184.wav|tests/data/ljspeech/wavs/LJ042-0184.npy +tests/data/ljspeech/wavs/LJ031-0080.wav|tests/data/ljspeech/wavs/LJ031-0080.npy +tests/data/ljspeech/wavs/LJ026-0162.wav|tests/data/ljspeech/wavs/LJ026-0162.npy +tests/data/ljspeech/wavs/LJ042-0087.wav|tests/data/ljspeech/wavs/LJ042-0087.npy +tests/data/ljspeech/wavs/LJ042-0245.wav|tests/data/ljspeech/wavs/LJ042-0245.npy +tests/data/ljspeech/wavs/LJ040-0089.wav|tests/data/ljspeech/wavs/LJ040-0089.npy +tests/data/ljspeech/wavs/LJ048-0116.wav|tests/data/ljspeech/wavs/LJ048-0116.npy +tests/data/ljspeech/wavs/LJ050-0098.wav|tests/data/ljspeech/wavs/LJ050-0098.npy +tests/data/ljspeech/wavs/LJ019-0158.wav|tests/data/ljspeech/wavs/LJ019-0158.npy +tests/data/ljspeech/wavs/LJ014-0208.wav|tests/data/ljspeech/wavs/LJ014-0208.npy +tests/data/ljspeech/wavs/LJ010-0229.wav|tests/data/ljspeech/wavs/LJ010-0229.npy +tests/data/ljspeech/wavs/LJ038-0150.wav|tests/data/ljspeech/wavs/LJ038-0150.npy +tests/data/ljspeech/wavs/LJ028-0394.wav|tests/data/ljspeech/wavs/LJ028-0394.npy +tests/data/ljspeech/wavs/LJ014-0195.wav|tests/data/ljspeech/wavs/LJ014-0195.npy +tests/data/ljspeech/wavs/LJ007-0204.wav|tests/data/ljspeech/wavs/LJ007-0204.npy +tests/data/ljspeech/wavs/LJ018-0100.wav|tests/data/ljspeech/wavs/LJ018-0100.npy +tests/data/ljspeech/wavs/LJ017-0213.wav|tests/data/ljspeech/wavs/LJ017-0213.npy +tests/data/ljspeech/wavs/LJ026-0138.wav|tests/data/ljspeech/wavs/LJ026-0138.npy +tests/data/ljspeech/wavs/LJ014-0114.wav|tests/data/ljspeech/wavs/LJ014-0114.npy +tests/data/ljspeech/wavs/LJ049-0221.wav|tests/data/ljspeech/wavs/LJ049-0221.npy +tests/data/ljspeech/wavs/LJ038-0160.wav|tests/data/ljspeech/wavs/LJ038-0160.npy +tests/data/ljspeech/wavs/LJ037-0180.wav|tests/data/ljspeech/wavs/LJ037-0180.npy +tests/data/ljspeech/wavs/LJ034-0197.wav|tests/data/ljspeech/wavs/LJ034-0197.npy +tests/data/ljspeech/wavs/LJ014-0085.wav|tests/data/ljspeech/wavs/LJ014-0085.npy +tests/data/ljspeech/wavs/LJ040-0087.wav|tests/data/ljspeech/wavs/LJ040-0087.npy +tests/data/ljspeech/wavs/LJ017-0169.wav|tests/data/ljspeech/wavs/LJ017-0169.npy +tests/data/ljspeech/wavs/LJ031-0079.wav|tests/data/ljspeech/wavs/LJ031-0079.npy +tests/data/ljspeech/wavs/LJ006-0306.wav|tests/data/ljspeech/wavs/LJ006-0306.npy +tests/data/ljspeech/wavs/LJ014-0212.wav|tests/data/ljspeech/wavs/LJ014-0212.npy +tests/data/ljspeech/wavs/LJ018-0009.wav|tests/data/ljspeech/wavs/LJ018-0009.npy +tests/data/ljspeech/wavs/LJ048-0289.wav|tests/data/ljspeech/wavs/LJ048-0289.npy +tests/data/ljspeech/wavs/LJ046-0204.wav|tests/data/ljspeech/wavs/LJ046-0204.npy +tests/data/ljspeech/wavs/LJ026-0059.wav|tests/data/ljspeech/wavs/LJ026-0059.npy +tests/data/ljspeech/wavs/LJ011-0002.wav|tests/data/ljspeech/wavs/LJ011-0002.npy +tests/data/ljspeech/wavs/LJ004-0082.wav|tests/data/ljspeech/wavs/LJ004-0082.npy +tests/data/ljspeech/wavs/LJ036-0153.wav|tests/data/ljspeech/wavs/LJ036-0153.npy +tests/data/ljspeech/wavs/LJ050-0050.wav|tests/data/ljspeech/wavs/LJ050-0050.npy +tests/data/ljspeech/wavs/LJ007-0147.wav|tests/data/ljspeech/wavs/LJ007-0147.npy +tests/data/ljspeech/wavs/LJ044-0209.wav|tests/data/ljspeech/wavs/LJ044-0209.npy +tests/data/ljspeech/wavs/LJ047-0227.wav|tests/data/ljspeech/wavs/LJ047-0227.npy +tests/data/ljspeech/wavs/LJ006-0296.wav|tests/data/ljspeech/wavs/LJ006-0296.npy +tests/data/ljspeech/wavs/LJ038-0142.wav|tests/data/ljspeech/wavs/LJ038-0142.npy +tests/data/ljspeech/wavs/LJ028-0397.wav|tests/data/ljspeech/wavs/LJ028-0397.npy +tests/data/ljspeech/wavs/LJ047-0191.wav|tests/data/ljspeech/wavs/LJ047-0191.npy +tests/data/ljspeech/wavs/LJ042-0140.wav|tests/data/ljspeech/wavs/LJ042-0140.npy +tests/data/ljspeech/wavs/LJ021-0053.wav|tests/data/ljspeech/wavs/LJ021-0053.npy +tests/data/ljspeech/wavs/LJ028-0414.wav|tests/data/ljspeech/wavs/LJ028-0414.npy +tests/data/ljspeech/wavs/LJ017-0069.wav|tests/data/ljspeech/wavs/LJ017-0069.npy +tests/data/ljspeech/wavs/LJ019-0049.wav|tests/data/ljspeech/wavs/LJ019-0049.npy +tests/data/ljspeech/wavs/LJ010-0198.wav|tests/data/ljspeech/wavs/LJ010-0198.npy +tests/data/ljspeech/wavs/LJ020-0053.wav|tests/data/ljspeech/wavs/LJ020-0053.npy +tests/data/ljspeech/wavs/LJ014-0179.wav|tests/data/ljspeech/wavs/LJ014-0179.npy +tests/data/ljspeech/wavs/LJ030-0114.wav|tests/data/ljspeech/wavs/LJ030-0114.npy +tests/data/ljspeech/wavs/LJ006-0276.wav|tests/data/ljspeech/wavs/LJ006-0276.npy +tests/data/ljspeech/wavs/LJ014-0217.wav|tests/data/ljspeech/wavs/LJ014-0217.npy +tests/data/ljspeech/wavs/LJ007-0106.wav|tests/data/ljspeech/wavs/LJ007-0106.npy +tests/data/ljspeech/wavs/LJ034-0175.wav|tests/data/ljspeech/wavs/LJ034-0175.npy +tests/data/ljspeech/wavs/LJ017-0096.wav|tests/data/ljspeech/wavs/LJ017-0096.npy +tests/data/ljspeech/wavs/LJ036-0018.wav|tests/data/ljspeech/wavs/LJ036-0018.npy +tests/data/ljspeech/wavs/LJ033-0033.wav|tests/data/ljspeech/wavs/LJ033-0033.npy +tests/data/ljspeech/wavs/LJ014-0113.wav|tests/data/ljspeech/wavs/LJ014-0113.npy +tests/data/ljspeech/wavs/LJ035-0134.wav|tests/data/ljspeech/wavs/LJ035-0134.npy +tests/data/ljspeech/wavs/LJ016-0432.wav|tests/data/ljspeech/wavs/LJ016-0432.npy +tests/data/ljspeech/wavs/LJ032-0216.wav|tests/data/ljspeech/wavs/LJ032-0216.npy +tests/data/ljspeech/wavs/LJ011-0130.wav|tests/data/ljspeech/wavs/LJ011-0130.npy +tests/data/ljspeech/wavs/LJ036-0205.wav|tests/data/ljspeech/wavs/LJ036-0205.npy +tests/data/ljspeech/wavs/LJ012-0032.wav|tests/data/ljspeech/wavs/LJ012-0032.npy +tests/data/ljspeech/wavs/LJ019-0137.wav|tests/data/ljspeech/wavs/LJ019-0137.npy +tests/data/ljspeech/wavs/LJ032-0140.wav|tests/data/ljspeech/wavs/LJ032-0140.npy +tests/data/ljspeech/wavs/LJ020-0037.wav|tests/data/ljspeech/wavs/LJ020-0037.npy +tests/data/ljspeech/wavs/LJ013-0238.wav|tests/data/ljspeech/wavs/LJ013-0238.npy +tests/data/ljspeech/wavs/LJ011-0125.wav|tests/data/ljspeech/wavs/LJ011-0125.npy +tests/data/ljspeech/wavs/LJ027-0060.wav|tests/data/ljspeech/wavs/LJ027-0060.npy +tests/data/ljspeech/wavs/LJ019-0217.wav|tests/data/ljspeech/wavs/LJ019-0217.npy +tests/data/ljspeech/wavs/LJ048-0051.wav|tests/data/ljspeech/wavs/LJ048-0051.npy +tests/data/ljspeech/wavs/LJ046-0052.wav|tests/data/ljspeech/wavs/LJ046-0052.npy +tests/data/ljspeech/wavs/LJ028-0161.wav|tests/data/ljspeech/wavs/LJ028-0161.npy +tests/data/ljspeech/wavs/LJ039-0121.wav|tests/data/ljspeech/wavs/LJ039-0121.npy +tests/data/ljspeech/wavs/LJ006-0287.wav|tests/data/ljspeech/wavs/LJ006-0287.npy +tests/data/ljspeech/wavs/LJ015-0081.wav|tests/data/ljspeech/wavs/LJ015-0081.npy +tests/data/ljspeech/wavs/LJ011-0209.wav|tests/data/ljspeech/wavs/LJ011-0209.npy +tests/data/ljspeech/wavs/LJ004-0144.wav|tests/data/ljspeech/wavs/LJ004-0144.npy +tests/data/ljspeech/wavs/LJ003-0072.wav|tests/data/ljspeech/wavs/LJ003-0072.npy +tests/data/ljspeech/wavs/LJ030-0201.wav|tests/data/ljspeech/wavs/LJ030-0201.npy +tests/data/ljspeech/wavs/LJ012-0179.wav|tests/data/ljspeech/wavs/LJ012-0179.npy +tests/data/ljspeech/wavs/LJ006-0209.wav|tests/data/ljspeech/wavs/LJ006-0209.npy +tests/data/ljspeech/wavs/LJ002-0082.wav|tests/data/ljspeech/wavs/LJ002-0082.npy +tests/data/ljspeech/wavs/LJ050-0113.wav|tests/data/ljspeech/wavs/LJ050-0113.npy +tests/data/ljspeech/wavs/LJ019-0263.wav|tests/data/ljspeech/wavs/LJ019-0263.npy +tests/data/ljspeech/wavs/LJ002-0084.wav|tests/data/ljspeech/wavs/LJ002-0084.npy +tests/data/ljspeech/wavs/LJ011-0062.wav|tests/data/ljspeech/wavs/LJ011-0062.npy +tests/data/ljspeech/wavs/LJ014-0052.wav|tests/data/ljspeech/wavs/LJ014-0052.npy +tests/data/ljspeech/wavs/LJ032-0254.wav|tests/data/ljspeech/wavs/LJ032-0254.npy +tests/data/ljspeech/wavs/LJ020-0049.wav|tests/data/ljspeech/wavs/LJ020-0049.npy +tests/data/ljspeech/wavs/LJ001-0017.wav|tests/data/ljspeech/wavs/LJ001-0017.npy +tests/data/ljspeech/wavs/LJ016-0090.wav|tests/data/ljspeech/wavs/LJ016-0090.npy +tests/data/ljspeech/wavs/LJ048-0109.wav|tests/data/ljspeech/wavs/LJ048-0109.npy +tests/data/ljspeech/wavs/LJ012-0124.wav|tests/data/ljspeech/wavs/LJ012-0124.npy +tests/data/ljspeech/wavs/LJ018-0084.wav|tests/data/ljspeech/wavs/LJ018-0084.npy +tests/data/ljspeech/wavs/LJ041-0145.wav|tests/data/ljspeech/wavs/LJ041-0145.npy +tests/data/ljspeech/wavs/LJ003-0237.wav|tests/data/ljspeech/wavs/LJ003-0237.npy +tests/data/ljspeech/wavs/LJ006-0125.wav|tests/data/ljspeech/wavs/LJ006-0125.npy +tests/data/ljspeech/wavs/LJ033-0204.wav|tests/data/ljspeech/wavs/LJ033-0204.npy +tests/data/ljspeech/wavs/LJ011-0083.wav|tests/data/ljspeech/wavs/LJ011-0083.npy +tests/data/ljspeech/wavs/LJ016-0114.wav|tests/data/ljspeech/wavs/LJ016-0114.npy +tests/data/ljspeech/wavs/LJ006-0116.wav|tests/data/ljspeech/wavs/LJ006-0116.npy +tests/data/ljspeech/wavs/LJ041-0120.wav|tests/data/ljspeech/wavs/LJ041-0120.npy +tests/data/ljspeech/wavs/LJ018-0027.wav|tests/data/ljspeech/wavs/LJ018-0027.npy +tests/data/ljspeech/wavs/LJ045-0097.wav|tests/data/ljspeech/wavs/LJ045-0097.npy +tests/data/ljspeech/wavs/LJ050-0140.wav|tests/data/ljspeech/wavs/LJ050-0140.npy +tests/data/ljspeech/wavs/LJ009-0183.wav|tests/data/ljspeech/wavs/LJ009-0183.npy +tests/data/ljspeech/wavs/LJ029-0123.wav|tests/data/ljspeech/wavs/LJ029-0123.npy +tests/data/ljspeech/wavs/LJ019-0162.wav|tests/data/ljspeech/wavs/LJ019-0162.npy +tests/data/ljspeech/wavs/LJ008-0232.wav|tests/data/ljspeech/wavs/LJ008-0232.npy +tests/data/ljspeech/wavs/LJ036-0163.wav|tests/data/ljspeech/wavs/LJ036-0163.npy +tests/data/ljspeech/wavs/LJ018-0093.wav|tests/data/ljspeech/wavs/LJ018-0093.npy +tests/data/ljspeech/wavs/LJ021-0202.wav|tests/data/ljspeech/wavs/LJ021-0202.npy +tests/data/ljspeech/wavs/LJ050-0021.wav|tests/data/ljspeech/wavs/LJ050-0021.npy +tests/data/ljspeech/wavs/LJ045-0231.wav|tests/data/ljspeech/wavs/LJ045-0231.npy +tests/data/ljspeech/wavs/LJ006-0104.wav|tests/data/ljspeech/wavs/LJ006-0104.npy +tests/data/ljspeech/wavs/LJ009-0104.wav|tests/data/ljspeech/wavs/LJ009-0104.npy +tests/data/ljspeech/wavs/LJ016-0035.wav|tests/data/ljspeech/wavs/LJ016-0035.npy +tests/data/ljspeech/wavs/LJ008-0097.wav|tests/data/ljspeech/wavs/LJ008-0097.npy +tests/data/ljspeech/wavs/LJ016-0045.wav|tests/data/ljspeech/wavs/LJ016-0045.npy +tests/data/ljspeech/wavs/LJ009-0196.wav|tests/data/ljspeech/wavs/LJ009-0196.npy +tests/data/ljspeech/wavs/LJ006-0228.wav|tests/data/ljspeech/wavs/LJ006-0228.npy +tests/data/ljspeech/wavs/LJ003-0265.wav|tests/data/ljspeech/wavs/LJ003-0265.npy +tests/data/ljspeech/wavs/LJ032-0205.wav|tests/data/ljspeech/wavs/LJ032-0205.npy +tests/data/ljspeech/wavs/LJ044-0124.wav|tests/data/ljspeech/wavs/LJ044-0124.npy +tests/data/ljspeech/wavs/LJ027-0133.wav|tests/data/ljspeech/wavs/LJ027-0133.npy +tests/data/ljspeech/wavs/LJ037-0019.wav|tests/data/ljspeech/wavs/LJ037-0019.npy +tests/data/ljspeech/wavs/LJ037-0198.wav|tests/data/ljspeech/wavs/LJ037-0198.npy +tests/data/ljspeech/wavs/LJ012-0140.wav|tests/data/ljspeech/wavs/LJ012-0140.npy +tests/data/ljspeech/wavs/LJ047-0170.wav|tests/data/ljspeech/wavs/LJ047-0170.npy +tests/data/ljspeech/wavs/LJ003-0082.wav|tests/data/ljspeech/wavs/LJ003-0082.npy +tests/data/ljspeech/wavs/LJ019-0372.wav|tests/data/ljspeech/wavs/LJ019-0372.npy +tests/data/ljspeech/wavs/LJ025-0084.wav|tests/data/ljspeech/wavs/LJ025-0084.npy +tests/data/ljspeech/wavs/LJ021-0185.wav|tests/data/ljspeech/wavs/LJ021-0185.npy +tests/data/ljspeech/wavs/LJ016-0410.wav|tests/data/ljspeech/wavs/LJ016-0410.npy +tests/data/ljspeech/wavs/LJ021-0197.wav|tests/data/ljspeech/wavs/LJ021-0197.npy +tests/data/ljspeech/wavs/LJ004-0204.wav|tests/data/ljspeech/wavs/LJ004-0204.npy +tests/data/ljspeech/wavs/LJ013-0021.wav|tests/data/ljspeech/wavs/LJ013-0021.npy +tests/data/ljspeech/wavs/LJ037-0212.wav|tests/data/ljspeech/wavs/LJ037-0212.npy +tests/data/ljspeech/wavs/LJ049-0074.wav|tests/data/ljspeech/wavs/LJ049-0074.npy +tests/data/ljspeech/wavs/LJ010-0009.wav|tests/data/ljspeech/wavs/LJ010-0009.npy +tests/data/ljspeech/wavs/LJ025-0062.wav|tests/data/ljspeech/wavs/LJ025-0062.npy +tests/data/ljspeech/wavs/LJ015-0216.wav|tests/data/ljspeech/wavs/LJ015-0216.npy +tests/data/ljspeech/wavs/LJ036-0039.wav|tests/data/ljspeech/wavs/LJ036-0039.npy +tests/data/ljspeech/wavs/LJ039-0100.wav|tests/data/ljspeech/wavs/LJ039-0100.npy +tests/data/ljspeech/wavs/LJ045-0207.wav|tests/data/ljspeech/wavs/LJ045-0207.npy +tests/data/ljspeech/wavs/LJ006-0146.wav|tests/data/ljspeech/wavs/LJ006-0146.npy +tests/data/ljspeech/wavs/LJ038-0016.wav|tests/data/ljspeech/wavs/LJ038-0016.npy +tests/data/ljspeech/wavs/LJ007-0168.wav|tests/data/ljspeech/wavs/LJ007-0168.npy +tests/data/ljspeech/wavs/LJ035-0082.wav|tests/data/ljspeech/wavs/LJ035-0082.npy +tests/data/ljspeech/wavs/LJ045-0009.wav|tests/data/ljspeech/wavs/LJ045-0009.npy +tests/data/ljspeech/wavs/LJ008-0173.wav|tests/data/ljspeech/wavs/LJ008-0173.npy +tests/data/ljspeech/wavs/LJ033-0087.wav|tests/data/ljspeech/wavs/LJ033-0087.npy +tests/data/ljspeech/wavs/LJ001-0173.wav|tests/data/ljspeech/wavs/LJ001-0173.npy +tests/data/ljspeech/wavs/LJ016-0433.wav|tests/data/ljspeech/wavs/LJ016-0433.npy +tests/data/ljspeech/wavs/LJ044-0230.wav|tests/data/ljspeech/wavs/LJ044-0230.npy +tests/data/ljspeech/wavs/LJ003-0301.wav|tests/data/ljspeech/wavs/LJ003-0301.npy +tests/data/ljspeech/wavs/LJ037-0116.wav|tests/data/ljspeech/wavs/LJ037-0116.npy +tests/data/ljspeech/wavs/LJ049-0165.wav|tests/data/ljspeech/wavs/LJ049-0165.npy +tests/data/ljspeech/wavs/LJ024-0127.wav|tests/data/ljspeech/wavs/LJ024-0127.npy +tests/data/ljspeech/wavs/LJ025-0170.wav|tests/data/ljspeech/wavs/LJ025-0170.npy +tests/data/ljspeech/wavs/LJ021-0090.wav|tests/data/ljspeech/wavs/LJ021-0090.npy +tests/data/ljspeech/wavs/LJ015-0130.wav|tests/data/ljspeech/wavs/LJ015-0130.npy +tests/data/ljspeech/wavs/LJ019-0068.wav|tests/data/ljspeech/wavs/LJ019-0068.npy +tests/data/ljspeech/wavs/LJ044-0231.wav|tests/data/ljspeech/wavs/LJ044-0231.npy +tests/data/ljspeech/wavs/LJ016-0198.wav|tests/data/ljspeech/wavs/LJ016-0198.npy +tests/data/ljspeech/wavs/LJ021-0130.wav|tests/data/ljspeech/wavs/LJ021-0130.npy +tests/data/ljspeech/wavs/LJ033-0130.wav|tests/data/ljspeech/wavs/LJ033-0130.npy +tests/data/ljspeech/wavs/LJ004-0006.wav|tests/data/ljspeech/wavs/LJ004-0006.npy +tests/data/ljspeech/wavs/LJ039-0087.wav|tests/data/ljspeech/wavs/LJ039-0087.npy +tests/data/ljspeech/wavs/LJ013-0204.wav|tests/data/ljspeech/wavs/LJ013-0204.npy +tests/data/ljspeech/wavs/LJ021-0043.wav|tests/data/ljspeech/wavs/LJ021-0043.npy +tests/data/ljspeech/wavs/LJ038-0116.wav|tests/data/ljspeech/wavs/LJ038-0116.npy +tests/data/ljspeech/wavs/LJ002-0277.wav|tests/data/ljspeech/wavs/LJ002-0277.npy +tests/data/ljspeech/wavs/LJ018-0199.wav|tests/data/ljspeech/wavs/LJ018-0199.npy +tests/data/ljspeech/wavs/LJ039-0074.wav|tests/data/ljspeech/wavs/LJ039-0074.npy +tests/data/ljspeech/wavs/LJ015-0230.wav|tests/data/ljspeech/wavs/LJ015-0230.npy +tests/data/ljspeech/wavs/LJ014-0141.wav|tests/data/ljspeech/wavs/LJ014-0141.npy +tests/data/ljspeech/wavs/LJ003-0325.wav|tests/data/ljspeech/wavs/LJ003-0325.npy +tests/data/ljspeech/wavs/LJ025-0136.wav|tests/data/ljspeech/wavs/LJ025-0136.npy +tests/data/ljspeech/wavs/LJ046-0194.wav|tests/data/ljspeech/wavs/LJ046-0194.npy +tests/data/ljspeech/wavs/LJ035-0206.wav|tests/data/ljspeech/wavs/LJ035-0206.npy +tests/data/ljspeech/wavs/LJ016-0215.wav|tests/data/ljspeech/wavs/LJ016-0215.npy +tests/data/ljspeech/wavs/LJ019-0056.wav|tests/data/ljspeech/wavs/LJ019-0056.npy +tests/data/ljspeech/wavs/LJ017-0144.wav|tests/data/ljspeech/wavs/LJ017-0144.npy +tests/data/ljspeech/wavs/LJ030-0251.wav|tests/data/ljspeech/wavs/LJ030-0251.npy +tests/data/ljspeech/wavs/LJ004-0142.wav|tests/data/ljspeech/wavs/LJ004-0142.npy +tests/data/ljspeech/wavs/LJ029-0175.wav|tests/data/ljspeech/wavs/LJ029-0175.npy +tests/data/ljspeech/wavs/LJ005-0167.wav|tests/data/ljspeech/wavs/LJ005-0167.npy +tests/data/ljspeech/wavs/LJ046-0167.wav|tests/data/ljspeech/wavs/LJ046-0167.npy +tests/data/ljspeech/wavs/LJ006-0139.wav|tests/data/ljspeech/wavs/LJ006-0139.npy +tests/data/ljspeech/wavs/LJ030-0016.wav|tests/data/ljspeech/wavs/LJ030-0016.npy +tests/data/ljspeech/wavs/LJ044-0028.wav|tests/data/ljspeech/wavs/LJ044-0028.npy +tests/data/ljspeech/wavs/LJ016-0255.wav|tests/data/ljspeech/wavs/LJ016-0255.npy +tests/data/ljspeech/wavs/LJ038-0093.wav|tests/data/ljspeech/wavs/LJ038-0093.npy +tests/data/ljspeech/wavs/LJ010-0106.wav|tests/data/ljspeech/wavs/LJ010-0106.npy +tests/data/ljspeech/wavs/LJ041-0109.wav|tests/data/ljspeech/wavs/LJ041-0109.npy +tests/data/ljspeech/wavs/LJ040-0097.wav|tests/data/ljspeech/wavs/LJ040-0097.npy +tests/data/ljspeech/wavs/LJ010-0246.wav|tests/data/ljspeech/wavs/LJ010-0246.npy +tests/data/ljspeech/wavs/LJ011-0053.wav|tests/data/ljspeech/wavs/LJ011-0053.npy +tests/data/ljspeech/wavs/LJ030-0081.wav|tests/data/ljspeech/wavs/LJ030-0081.npy +tests/data/ljspeech/wavs/LJ001-0128.wav|tests/data/ljspeech/wavs/LJ001-0128.npy +tests/data/ljspeech/wavs/LJ030-0135.wav|tests/data/ljspeech/wavs/LJ030-0135.npy +tests/data/ljspeech/wavs/LJ005-0235.wav|tests/data/ljspeech/wavs/LJ005-0235.npy +tests/data/ljspeech/wavs/LJ031-0075.wav|tests/data/ljspeech/wavs/LJ031-0075.npy +tests/data/ljspeech/wavs/LJ046-0043.wav|tests/data/ljspeech/wavs/LJ046-0043.npy +tests/data/ljspeech/wavs/LJ010-0282.wav|tests/data/ljspeech/wavs/LJ010-0282.npy +tests/data/ljspeech/wavs/LJ019-0259.wav|tests/data/ljspeech/wavs/LJ019-0259.npy +tests/data/ljspeech/wavs/LJ008-0169.wav|tests/data/ljspeech/wavs/LJ008-0169.npy +tests/data/ljspeech/wavs/LJ024-0047.wav|tests/data/ljspeech/wavs/LJ024-0047.npy +tests/data/ljspeech/wavs/LJ041-0075.wav|tests/data/ljspeech/wavs/LJ041-0075.npy +tests/data/ljspeech/wavs/LJ038-0253.wav|tests/data/ljspeech/wavs/LJ038-0253.npy +tests/data/ljspeech/wavs/LJ001-0124.wav|tests/data/ljspeech/wavs/LJ001-0124.npy +tests/data/ljspeech/wavs/LJ007-0220.wav|tests/data/ljspeech/wavs/LJ007-0220.npy +tests/data/ljspeech/wavs/LJ028-0271.wav|tests/data/ljspeech/wavs/LJ028-0271.npy +tests/data/ljspeech/wavs/LJ001-0085.wav|tests/data/ljspeech/wavs/LJ001-0085.npy +tests/data/ljspeech/wavs/LJ001-0088.wav|tests/data/ljspeech/wavs/LJ001-0088.npy +tests/data/ljspeech/wavs/LJ028-0376.wav|tests/data/ljspeech/wavs/LJ028-0376.npy +tests/data/ljspeech/wavs/LJ014-0124.wav|tests/data/ljspeech/wavs/LJ014-0124.npy +tests/data/ljspeech/wavs/LJ046-0180.wav|tests/data/ljspeech/wavs/LJ046-0180.npy +tests/data/ljspeech/wavs/LJ042-0081.wav|tests/data/ljspeech/wavs/LJ042-0081.npy +tests/data/ljspeech/wavs/LJ030-0153.wav|tests/data/ljspeech/wavs/LJ030-0153.npy +tests/data/ljspeech/wavs/LJ029-0049.wav|tests/data/ljspeech/wavs/LJ029-0049.npy +tests/data/ljspeech/wavs/LJ043-0108.wav|tests/data/ljspeech/wavs/LJ043-0108.npy +tests/data/ljspeech/wavs/LJ029-0076.wav|tests/data/ljspeech/wavs/LJ029-0076.npy +tests/data/ljspeech/wavs/LJ008-0095.wav|tests/data/ljspeech/wavs/LJ008-0095.npy +tests/data/ljspeech/wavs/LJ027-0153.wav|tests/data/ljspeech/wavs/LJ027-0153.npy +tests/data/ljspeech/wavs/LJ040-0081.wav|tests/data/ljspeech/wavs/LJ040-0081.npy +tests/data/ljspeech/wavs/LJ049-0188.wav|tests/data/ljspeech/wavs/LJ049-0188.npy +tests/data/ljspeech/wavs/LJ005-0248.wav|tests/data/ljspeech/wavs/LJ005-0248.npy +tests/data/ljspeech/wavs/LJ032-0151.wav|tests/data/ljspeech/wavs/LJ032-0151.npy +tests/data/ljspeech/wavs/LJ010-0075.wav|tests/data/ljspeech/wavs/LJ010-0075.npy +tests/data/ljspeech/wavs/LJ008-0089.wav|tests/data/ljspeech/wavs/LJ008-0089.npy +tests/data/ljspeech/wavs/LJ005-0056.wav|tests/data/ljspeech/wavs/LJ005-0056.npy +tests/data/ljspeech/wavs/LJ039-0213.wav|tests/data/ljspeech/wavs/LJ039-0213.npy +tests/data/ljspeech/wavs/LJ005-0245.wav|tests/data/ljspeech/wavs/LJ005-0245.npy +tests/data/ljspeech/wavs/LJ048-0165.wav|tests/data/ljspeech/wavs/LJ048-0165.npy +tests/data/ljspeech/wavs/LJ010-0289.wav|tests/data/ljspeech/wavs/LJ010-0289.npy +tests/data/ljspeech/wavs/LJ050-0084.wav|tests/data/ljspeech/wavs/LJ050-0084.npy +tests/data/ljspeech/wavs/LJ008-0075.wav|tests/data/ljspeech/wavs/LJ008-0075.npy +tests/data/ljspeech/wavs/LJ028-0458.wav|tests/data/ljspeech/wavs/LJ028-0458.npy +tests/data/ljspeech/wavs/LJ030-0176.wav|tests/data/ljspeech/wavs/LJ030-0176.npy +tests/data/ljspeech/wavs/LJ030-0204.wav|tests/data/ljspeech/wavs/LJ030-0204.npy +tests/data/ljspeech/wavs/LJ042-0222.wav|tests/data/ljspeech/wavs/LJ042-0222.npy +tests/data/ljspeech/wavs/LJ028-0227.wav|tests/data/ljspeech/wavs/LJ028-0227.npy +tests/data/ljspeech/wavs/LJ006-0216.wav|tests/data/ljspeech/wavs/LJ006-0216.npy +tests/data/ljspeech/wavs/LJ032-0113.wav|tests/data/ljspeech/wavs/LJ032-0113.npy +tests/data/ljspeech/wavs/LJ040-0122.wav|tests/data/ljspeech/wavs/LJ040-0122.npy +tests/data/ljspeech/wavs/LJ011-0215.wav|tests/data/ljspeech/wavs/LJ011-0215.npy +tests/data/ljspeech/wavs/LJ032-0153.wav|tests/data/ljspeech/wavs/LJ032-0153.npy +tests/data/ljspeech/wavs/LJ032-0177.wav|tests/data/ljspeech/wavs/LJ032-0177.npy +tests/data/ljspeech/wavs/LJ034-0056.wav|tests/data/ljspeech/wavs/LJ034-0056.npy +tests/data/ljspeech/wavs/LJ009-0011.wav|tests/data/ljspeech/wavs/LJ009-0011.npy +tests/data/ljspeech/wavs/LJ041-0084.wav|tests/data/ljspeech/wavs/LJ041-0084.npy +tests/data/ljspeech/wavs/LJ045-0042.wav|tests/data/ljspeech/wavs/LJ045-0042.npy +tests/data/ljspeech/wavs/LJ045-0140.wav|tests/data/ljspeech/wavs/LJ045-0140.npy +tests/data/ljspeech/wavs/LJ045-0028.wav|tests/data/ljspeech/wavs/LJ045-0028.npy +tests/data/ljspeech/wavs/LJ025-0052.wav|tests/data/ljspeech/wavs/LJ025-0052.npy +tests/data/ljspeech/wavs/LJ033-0155.wav|tests/data/ljspeech/wavs/LJ033-0155.npy +tests/data/ljspeech/wavs/LJ041-0160.wav|tests/data/ljspeech/wavs/LJ041-0160.npy +tests/data/ljspeech/wavs/LJ009-0180.wav|tests/data/ljspeech/wavs/LJ009-0180.npy +tests/data/ljspeech/wavs/LJ041-0125.wav|tests/data/ljspeech/wavs/LJ041-0125.npy +tests/data/ljspeech/wavs/LJ031-0149.wav|tests/data/ljspeech/wavs/LJ031-0149.npy +tests/data/ljspeech/wavs/LJ001-0027.wav|tests/data/ljspeech/wavs/LJ001-0027.npy +tests/data/ljspeech/wavs/LJ033-0144.wav|tests/data/ljspeech/wavs/LJ033-0144.npy +tests/data/ljspeech/wavs/LJ029-0105.wav|tests/data/ljspeech/wavs/LJ029-0105.npy +tests/data/ljspeech/wavs/LJ030-0038.wav|tests/data/ljspeech/wavs/LJ030-0038.npy +tests/data/ljspeech/wavs/LJ029-0149.wav|tests/data/ljspeech/wavs/LJ029-0149.npy +tests/data/ljspeech/wavs/LJ003-0294.wav|tests/data/ljspeech/wavs/LJ003-0294.npy +tests/data/ljspeech/wavs/LJ050-0024.wav|tests/data/ljspeech/wavs/LJ050-0024.npy +tests/data/ljspeech/wavs/LJ017-0143.wav|tests/data/ljspeech/wavs/LJ017-0143.npy +tests/data/ljspeech/wavs/LJ031-0118.wav|tests/data/ljspeech/wavs/LJ031-0118.npy +tests/data/ljspeech/wavs/LJ016-0043.wav|tests/data/ljspeech/wavs/LJ016-0043.npy +tests/data/ljspeech/wavs/LJ001-0142.wav|tests/data/ljspeech/wavs/LJ001-0142.npy +tests/data/ljspeech/wavs/LJ016-0425.wav|tests/data/ljspeech/wavs/LJ016-0425.npy +tests/data/ljspeech/wavs/LJ016-0047.wav|tests/data/ljspeech/wavs/LJ016-0047.npy +tests/data/ljspeech/wavs/LJ009-0130.wav|tests/data/ljspeech/wavs/LJ009-0130.npy +tests/data/ljspeech/wavs/LJ002-0292.wav|tests/data/ljspeech/wavs/LJ002-0292.npy +tests/data/ljspeech/wavs/LJ050-0009.wav|tests/data/ljspeech/wavs/LJ050-0009.npy +tests/data/ljspeech/wavs/LJ034-0192.wav|tests/data/ljspeech/wavs/LJ034-0192.npy +tests/data/ljspeech/wavs/LJ007-0090.wav|tests/data/ljspeech/wavs/LJ007-0090.npy +tests/data/ljspeech/wavs/LJ030-0175.wav|tests/data/ljspeech/wavs/LJ030-0175.npy +tests/data/ljspeech/wavs/LJ009-0227.wav|tests/data/ljspeech/wavs/LJ009-0227.npy +tests/data/ljspeech/wavs/LJ030-0145.wav|tests/data/ljspeech/wavs/LJ030-0145.npy +tests/data/ljspeech/wavs/LJ034-0150.wav|tests/data/ljspeech/wavs/LJ034-0150.npy +tests/data/ljspeech/wavs/LJ042-0238.wav|tests/data/ljspeech/wavs/LJ042-0238.npy +tests/data/ljspeech/wavs/LJ019-0205.wav|tests/data/ljspeech/wavs/LJ019-0205.npy +tests/data/ljspeech/wavs/LJ031-0039.wav|tests/data/ljspeech/wavs/LJ031-0039.npy +tests/data/ljspeech/wavs/LJ050-0087.wav|tests/data/ljspeech/wavs/LJ050-0087.npy +tests/data/ljspeech/wavs/LJ047-0214.wav|tests/data/ljspeech/wavs/LJ047-0214.npy +tests/data/ljspeech/wavs/LJ015-0235.wav|tests/data/ljspeech/wavs/LJ015-0235.npy +tests/data/ljspeech/wavs/LJ049-0045.wav|tests/data/ljspeech/wavs/LJ049-0045.npy +tests/data/ljspeech/wavs/LJ031-0015.wav|tests/data/ljspeech/wavs/LJ031-0015.npy +tests/data/ljspeech/wavs/LJ019-0075.wav|tests/data/ljspeech/wavs/LJ019-0075.npy +tests/data/ljspeech/wavs/LJ048-0259.wav|tests/data/ljspeech/wavs/LJ048-0259.npy +tests/data/ljspeech/wavs/LJ046-0150.wav|tests/data/ljspeech/wavs/LJ046-0150.npy +tests/data/ljspeech/wavs/LJ046-0211.wav|tests/data/ljspeech/wavs/LJ046-0211.npy +tests/data/ljspeech/wavs/LJ043-0009.wav|tests/data/ljspeech/wavs/LJ043-0009.npy +tests/data/ljspeech/wavs/LJ017-0140.wav|tests/data/ljspeech/wavs/LJ017-0140.npy +tests/data/ljspeech/wavs/LJ018-0047.wav|tests/data/ljspeech/wavs/LJ018-0047.npy +tests/data/ljspeech/wavs/LJ018-0065.wav|tests/data/ljspeech/wavs/LJ018-0065.npy +tests/data/ljspeech/wavs/LJ003-0116.wav|tests/data/ljspeech/wavs/LJ003-0116.npy +tests/data/ljspeech/wavs/LJ017-0004.wav|tests/data/ljspeech/wavs/LJ017-0004.npy +tests/data/ljspeech/wavs/LJ034-0120.wav|tests/data/ljspeech/wavs/LJ034-0120.npy +tests/data/ljspeech/wavs/LJ018-0102.wav|tests/data/ljspeech/wavs/LJ018-0102.npy +tests/data/ljspeech/wavs/LJ017-0269.wav|tests/data/ljspeech/wavs/LJ017-0269.npy +tests/data/ljspeech/wavs/LJ019-0223.wav|tests/data/ljspeech/wavs/LJ019-0223.npy +tests/data/ljspeech/wavs/LJ021-0173.wav|tests/data/ljspeech/wavs/LJ021-0173.npy +tests/data/ljspeech/wavs/LJ003-0250.wav|tests/data/ljspeech/wavs/LJ003-0250.npy +tests/data/ljspeech/wavs/LJ050-0242.wav|tests/data/ljspeech/wavs/LJ050-0242.npy +tests/data/ljspeech/wavs/LJ021-0113.wav|tests/data/ljspeech/wavs/LJ021-0113.npy +tests/data/ljspeech/wavs/LJ006-0101.wav|tests/data/ljspeech/wavs/LJ006-0101.npy +tests/data/ljspeech/wavs/LJ017-0268.wav|tests/data/ljspeech/wavs/LJ017-0268.npy +tests/data/ljspeech/wavs/LJ007-0038.wav|tests/data/ljspeech/wavs/LJ007-0038.npy +tests/data/ljspeech/wavs/LJ031-0090.wav|tests/data/ljspeech/wavs/LJ031-0090.npy +tests/data/ljspeech/wavs/LJ044-0183.wav|tests/data/ljspeech/wavs/LJ044-0183.npy +tests/data/ljspeech/wavs/LJ038-0211.wav|tests/data/ljspeech/wavs/LJ038-0211.npy +tests/data/ljspeech/wavs/LJ026-0090.wav|tests/data/ljspeech/wavs/LJ026-0090.npy +tests/data/ljspeech/wavs/LJ040-0144.wav|tests/data/ljspeech/wavs/LJ040-0144.npy +tests/data/ljspeech/wavs/LJ011-0070.wav|tests/data/ljspeech/wavs/LJ011-0070.npy +tests/data/ljspeech/wavs/LJ008-0048.wav|tests/data/ljspeech/wavs/LJ008-0048.npy +tests/data/ljspeech/wavs/LJ050-0169.wav|tests/data/ljspeech/wavs/LJ050-0169.npy +tests/data/ljspeech/wavs/LJ046-0102.wav|tests/data/ljspeech/wavs/LJ046-0102.npy +tests/data/ljspeech/wavs/LJ032-0078.wav|tests/data/ljspeech/wavs/LJ032-0078.npy +tests/data/ljspeech/wavs/LJ046-0089.wav|tests/data/ljspeech/wavs/LJ046-0089.npy +tests/data/ljspeech/wavs/LJ044-0137.wav|tests/data/ljspeech/wavs/LJ044-0137.npy +tests/data/ljspeech/wavs/LJ049-0155.wav|tests/data/ljspeech/wavs/LJ049-0155.npy +tests/data/ljspeech/wavs/LJ049-0104.wav|tests/data/ljspeech/wavs/LJ049-0104.npy +tests/data/ljspeech/wavs/LJ050-0259.wav|tests/data/ljspeech/wavs/LJ050-0259.npy +tests/data/ljspeech/wavs/LJ003-0181.wav|tests/data/ljspeech/wavs/LJ003-0181.npy +tests/data/ljspeech/wavs/LJ014-0162.wav|tests/data/ljspeech/wavs/LJ014-0162.npy +tests/data/ljspeech/wavs/LJ032-0071.wav|tests/data/ljspeech/wavs/LJ032-0071.npy +tests/data/ljspeech/wavs/LJ015-0057.wav|tests/data/ljspeech/wavs/LJ015-0057.npy +tests/data/ljspeech/wavs/LJ010-0244.wav|tests/data/ljspeech/wavs/LJ010-0244.npy +tests/data/ljspeech/wavs/LJ011-0199.wav|tests/data/ljspeech/wavs/LJ011-0199.npy +tests/data/ljspeech/wavs/LJ010-0082.wav|tests/data/ljspeech/wavs/LJ010-0082.npy +tests/data/ljspeech/wavs/LJ013-0071.wav|tests/data/ljspeech/wavs/LJ013-0071.npy +tests/data/ljspeech/wavs/LJ005-0219.wav|tests/data/ljspeech/wavs/LJ005-0219.npy +tests/data/ljspeech/wavs/LJ031-0228.wav|tests/data/ljspeech/wavs/LJ031-0228.npy +tests/data/ljspeech/wavs/LJ010-0212.wav|tests/data/ljspeech/wavs/LJ010-0212.npy +tests/data/ljspeech/wavs/LJ011-0195.wav|tests/data/ljspeech/wavs/LJ011-0195.npy +tests/data/ljspeech/wavs/LJ028-0459.wav|tests/data/ljspeech/wavs/LJ028-0459.npy +tests/data/ljspeech/wavs/LJ021-0124.wav|tests/data/ljspeech/wavs/LJ021-0124.npy +tests/data/ljspeech/wavs/LJ049-0195.wav|tests/data/ljspeech/wavs/LJ049-0195.npy +tests/data/ljspeech/wavs/LJ047-0200.wav|tests/data/ljspeech/wavs/LJ047-0200.npy +tests/data/ljspeech/wavs/LJ009-0255.wav|tests/data/ljspeech/wavs/LJ009-0255.npy +tests/data/ljspeech/wavs/LJ012-0256.wav|tests/data/ljspeech/wavs/LJ012-0256.npy +tests/data/ljspeech/wavs/LJ032-0063.wav|tests/data/ljspeech/wavs/LJ032-0063.npy +tests/data/ljspeech/wavs/LJ032-0238.wav|tests/data/ljspeech/wavs/LJ032-0238.npy +tests/data/ljspeech/wavs/LJ007-0231.wav|tests/data/ljspeech/wavs/LJ007-0231.npy +tests/data/ljspeech/wavs/LJ026-0149.wav|tests/data/ljspeech/wavs/LJ026-0149.npy +tests/data/ljspeech/wavs/LJ027-0139.wav|tests/data/ljspeech/wavs/LJ027-0139.npy +tests/data/ljspeech/wavs/LJ044-0238.wav|tests/data/ljspeech/wavs/LJ044-0238.npy +tests/data/ljspeech/wavs/LJ011-0078.wav|tests/data/ljspeech/wavs/LJ011-0078.npy +tests/data/ljspeech/wavs/LJ005-0003.wav|tests/data/ljspeech/wavs/LJ005-0003.npy +tests/data/ljspeech/wavs/LJ044-0110.wav|tests/data/ljspeech/wavs/LJ044-0110.npy +tests/data/ljspeech/wavs/LJ005-0048.wav|tests/data/ljspeech/wavs/LJ005-0048.npy +tests/data/ljspeech/wavs/LJ007-0195.wav|tests/data/ljspeech/wavs/LJ007-0195.npy +tests/data/ljspeech/wavs/LJ005-0030.wav|tests/data/ljspeech/wavs/LJ005-0030.npy +tests/data/ljspeech/wavs/LJ004-0250.wav|tests/data/ljspeech/wavs/LJ004-0250.npy +tests/data/ljspeech/wavs/LJ017-0208.wav|tests/data/ljspeech/wavs/LJ017-0208.npy +tests/data/ljspeech/wavs/LJ049-0166.wav|tests/data/ljspeech/wavs/LJ049-0166.npy +tests/data/ljspeech/wavs/LJ048-0059.wav|tests/data/ljspeech/wavs/LJ048-0059.npy +tests/data/ljspeech/wavs/LJ029-0034.wav|tests/data/ljspeech/wavs/LJ029-0034.npy +tests/data/ljspeech/wavs/LJ014-0059.wav|tests/data/ljspeech/wavs/LJ014-0059.npy +tests/data/ljspeech/wavs/LJ026-0147.wav|tests/data/ljspeech/wavs/LJ026-0147.npy +tests/data/ljspeech/wavs/LJ028-0130.wav|tests/data/ljspeech/wavs/LJ028-0130.npy +tests/data/ljspeech/wavs/LJ038-0176.wav|tests/data/ljspeech/wavs/LJ038-0176.npy +tests/data/ljspeech/wavs/LJ025-0151.wav|tests/data/ljspeech/wavs/LJ025-0151.npy +tests/data/ljspeech/wavs/LJ011-0106.wav|tests/data/ljspeech/wavs/LJ011-0106.npy +tests/data/ljspeech/wavs/LJ036-0141.wav|tests/data/ljspeech/wavs/LJ036-0141.npy +tests/data/ljspeech/wavs/LJ034-0123.wav|tests/data/ljspeech/wavs/LJ034-0123.npy +tests/data/ljspeech/wavs/LJ050-0158.wav|tests/data/ljspeech/wavs/LJ050-0158.npy +tests/data/ljspeech/wavs/LJ033-0085.wav|tests/data/ljspeech/wavs/LJ033-0085.npy +tests/data/ljspeech/wavs/LJ005-0272.wav|tests/data/ljspeech/wavs/LJ005-0272.npy +tests/data/ljspeech/wavs/LJ011-0046.wav|tests/data/ljspeech/wavs/LJ011-0046.npy +tests/data/ljspeech/wavs/LJ014-0120.wav|tests/data/ljspeech/wavs/LJ014-0120.npy +tests/data/ljspeech/wavs/LJ018-0030.wav|tests/data/ljspeech/wavs/LJ018-0030.npy +tests/data/ljspeech/wavs/LJ012-0099.wav|tests/data/ljspeech/wavs/LJ012-0099.npy +tests/data/ljspeech/wavs/LJ044-0147.wav|tests/data/ljspeech/wavs/LJ044-0147.npy +tests/data/ljspeech/wavs/LJ035-0158.wav|tests/data/ljspeech/wavs/LJ035-0158.npy +tests/data/ljspeech/wavs/LJ019-0026.wav|tests/data/ljspeech/wavs/LJ019-0026.npy +tests/data/ljspeech/wavs/LJ039-0083.wav|tests/data/ljspeech/wavs/LJ039-0083.npy +tests/data/ljspeech/wavs/LJ019-0053.wav|tests/data/ljspeech/wavs/LJ019-0053.npy +tests/data/ljspeech/wavs/LJ047-0123.wav|tests/data/ljspeech/wavs/LJ047-0123.npy +tests/data/ljspeech/wavs/LJ018-0325.wav|tests/data/ljspeech/wavs/LJ018-0325.npy +tests/data/ljspeech/wavs/LJ028-0292.wav|tests/data/ljspeech/wavs/LJ028-0292.npy +tests/data/ljspeech/wavs/LJ048-0084.wav|tests/data/ljspeech/wavs/LJ048-0084.npy +tests/data/ljspeech/wavs/LJ048-0198.wav|tests/data/ljspeech/wavs/LJ048-0198.npy +tests/data/ljspeech/wavs/LJ028-0408.wav|tests/data/ljspeech/wavs/LJ028-0408.npy +tests/data/ljspeech/wavs/LJ045-0144.wav|tests/data/ljspeech/wavs/LJ045-0144.npy +tests/data/ljspeech/wavs/LJ013-0221.wav|tests/data/ljspeech/wavs/LJ013-0221.npy +tests/data/ljspeech/wavs/LJ012-0286.wav|tests/data/ljspeech/wavs/LJ012-0286.npy +tests/data/ljspeech/wavs/LJ039-0043.wav|tests/data/ljspeech/wavs/LJ039-0043.npy +tests/data/ljspeech/wavs/LJ032-0170.wav|tests/data/ljspeech/wavs/LJ032-0170.npy +tests/data/ljspeech/wavs/LJ035-0130.wav|tests/data/ljspeech/wavs/LJ035-0130.npy +tests/data/ljspeech/wavs/LJ046-0047.wav|tests/data/ljspeech/wavs/LJ046-0047.npy +tests/data/ljspeech/wavs/LJ019-0224.wav|tests/data/ljspeech/wavs/LJ019-0224.npy +tests/data/ljspeech/wavs/LJ031-0002.wav|tests/data/ljspeech/wavs/LJ031-0002.npy +tests/data/ljspeech/wavs/LJ005-0080.wav|tests/data/ljspeech/wavs/LJ005-0080.npy +tests/data/ljspeech/wavs/LJ042-0211.wav|tests/data/ljspeech/wavs/LJ042-0211.npy +tests/data/ljspeech/wavs/LJ047-0122.wav|tests/data/ljspeech/wavs/LJ047-0122.npy +tests/data/ljspeech/wavs/LJ020-0082.wav|tests/data/ljspeech/wavs/LJ020-0082.npy +tests/data/ljspeech/wavs/LJ020-0099.wav|tests/data/ljspeech/wavs/LJ020-0099.npy +tests/data/ljspeech/wavs/LJ007-0132.wav|tests/data/ljspeech/wavs/LJ007-0132.npy +tests/data/ljspeech/wavs/LJ035-0113.wav|tests/data/ljspeech/wavs/LJ035-0113.npy +tests/data/ljspeech/wavs/LJ019-0393.wav|tests/data/ljspeech/wavs/LJ019-0393.npy +tests/data/ljspeech/wavs/LJ007-0056.wav|tests/data/ljspeech/wavs/LJ007-0056.npy +tests/data/ljspeech/wavs/LJ039-0210.wav|tests/data/ljspeech/wavs/LJ039-0210.npy +tests/data/ljspeech/wavs/LJ007-0137.wav|tests/data/ljspeech/wavs/LJ007-0137.npy +tests/data/ljspeech/wavs/LJ006-0223.wav|tests/data/ljspeech/wavs/LJ006-0223.npy +tests/data/ljspeech/wavs/LJ033-0096.wav|tests/data/ljspeech/wavs/LJ033-0096.npy +tests/data/ljspeech/wavs/LJ003-0337.wav|tests/data/ljspeech/wavs/LJ003-0337.npy +tests/data/ljspeech/wavs/LJ025-0016.wav|tests/data/ljspeech/wavs/LJ025-0016.npy +tests/data/ljspeech/wavs/LJ009-0117.wav|tests/data/ljspeech/wavs/LJ009-0117.npy +tests/data/ljspeech/wavs/LJ004-0128.wav|tests/data/ljspeech/wavs/LJ004-0128.npy +tests/data/ljspeech/wavs/LJ037-0233.wav|tests/data/ljspeech/wavs/LJ037-0233.npy +tests/data/ljspeech/wavs/LJ040-0187.wav|tests/data/ljspeech/wavs/LJ040-0187.npy +tests/data/ljspeech/wavs/LJ029-0101.wav|tests/data/ljspeech/wavs/LJ029-0101.npy +tests/data/ljspeech/wavs/LJ015-0268.wav|tests/data/ljspeech/wavs/LJ015-0268.npy +tests/data/ljspeech/wavs/LJ029-0055.wav|tests/data/ljspeech/wavs/LJ029-0055.npy +tests/data/ljspeech/wavs/LJ025-0102.wav|tests/data/ljspeech/wavs/LJ025-0102.npy +tests/data/ljspeech/wavs/LJ025-0060.wav|tests/data/ljspeech/wavs/LJ025-0060.npy +tests/data/ljspeech/wavs/LJ006-0028.wav|tests/data/ljspeech/wavs/LJ006-0028.npy +tests/data/ljspeech/wavs/LJ037-0067.wav|tests/data/ljspeech/wavs/LJ037-0067.npy +tests/data/ljspeech/wavs/LJ037-0223.wav|tests/data/ljspeech/wavs/LJ037-0223.npy +tests/data/ljspeech/wavs/LJ015-0045.wav|tests/data/ljspeech/wavs/LJ015-0045.npy +tests/data/ljspeech/wavs/LJ016-0013.wav|tests/data/ljspeech/wavs/LJ016-0013.npy +tests/data/ljspeech/wavs/LJ010-0012.wav|tests/data/ljspeech/wavs/LJ010-0012.npy +tests/data/ljspeech/wavs/LJ014-0296.wav|tests/data/ljspeech/wavs/LJ014-0296.npy +tests/data/ljspeech/wavs/LJ029-0161.wav|tests/data/ljspeech/wavs/LJ029-0161.npy +tests/data/ljspeech/wavs/LJ016-0175.wav|tests/data/ljspeech/wavs/LJ016-0175.npy +tests/data/ljspeech/wavs/LJ026-0012.wav|tests/data/ljspeech/wavs/LJ026-0012.npy +tests/data/ljspeech/wavs/LJ005-0239.wav|tests/data/ljspeech/wavs/LJ005-0239.npy +tests/data/ljspeech/wavs/LJ046-0026.wav|tests/data/ljspeech/wavs/LJ046-0026.npy +tests/data/ljspeech/wavs/LJ044-0218.wav|tests/data/ljspeech/wavs/LJ044-0218.npy +tests/data/ljspeech/wavs/LJ009-0233.wav|tests/data/ljspeech/wavs/LJ009-0233.npy +tests/data/ljspeech/wavs/LJ002-0133.wav|tests/data/ljspeech/wavs/LJ002-0133.npy +tests/data/ljspeech/wavs/LJ025-0020.wav|tests/data/ljspeech/wavs/LJ025-0020.npy +tests/data/ljspeech/wavs/LJ004-0058.wav|tests/data/ljspeech/wavs/LJ004-0058.npy +tests/data/ljspeech/wavs/LJ009-0253.wav|tests/data/ljspeech/wavs/LJ009-0253.npy +tests/data/ljspeech/wavs/LJ009-0143.wav|tests/data/ljspeech/wavs/LJ009-0143.npy +tests/data/ljspeech/wavs/LJ050-0015.wav|tests/data/ljspeech/wavs/LJ050-0015.npy +tests/data/ljspeech/wavs/LJ034-0103.wav|tests/data/ljspeech/wavs/LJ034-0103.npy +tests/data/ljspeech/wavs/LJ028-0412.wav|tests/data/ljspeech/wavs/LJ028-0412.npy +tests/data/ljspeech/wavs/LJ045-0088.wav|tests/data/ljspeech/wavs/LJ045-0088.npy +tests/data/ljspeech/wavs/LJ044-0204.wav|tests/data/ljspeech/wavs/LJ044-0204.npy +tests/data/ljspeech/wavs/LJ044-0119.wav|tests/data/ljspeech/wavs/LJ044-0119.npy +tests/data/ljspeech/wavs/LJ017-0013.wav|tests/data/ljspeech/wavs/LJ017-0013.npy +tests/data/ljspeech/wavs/LJ008-0098.wav|tests/data/ljspeech/wavs/LJ008-0098.npy +tests/data/ljspeech/wavs/LJ042-0044.wav|tests/data/ljspeech/wavs/LJ042-0044.npy +tests/data/ljspeech/wavs/LJ029-0016.wav|tests/data/ljspeech/wavs/LJ029-0016.npy +tests/data/ljspeech/wavs/LJ049-0116.wav|tests/data/ljspeech/wavs/LJ049-0116.npy +tests/data/ljspeech/wavs/LJ002-0046.wav|tests/data/ljspeech/wavs/LJ002-0046.npy +tests/data/ljspeech/wavs/LJ016-0421.wav|tests/data/ljspeech/wavs/LJ016-0421.npy +tests/data/ljspeech/wavs/LJ025-0129.wav|tests/data/ljspeech/wavs/LJ025-0129.npy +tests/data/ljspeech/wavs/LJ037-0011.wav|tests/data/ljspeech/wavs/LJ037-0011.npy +tests/data/ljspeech/wavs/LJ026-0044.wav|tests/data/ljspeech/wavs/LJ026-0044.npy +tests/data/ljspeech/wavs/LJ014-0232.wav|tests/data/ljspeech/wavs/LJ014-0232.npy +tests/data/ljspeech/wavs/LJ033-0190.wav|tests/data/ljspeech/wavs/LJ033-0190.npy +tests/data/ljspeech/wavs/LJ008-0316.wav|tests/data/ljspeech/wavs/LJ008-0316.npy +tests/data/ljspeech/wavs/LJ037-0025.wav|tests/data/ljspeech/wavs/LJ037-0025.npy +tests/data/ljspeech/wavs/LJ037-0059.wav|tests/data/ljspeech/wavs/LJ037-0059.npy +tests/data/ljspeech/wavs/LJ041-0170.wav|tests/data/ljspeech/wavs/LJ041-0170.npy +tests/data/ljspeech/wavs/LJ032-0034.wav|tests/data/ljspeech/wavs/LJ032-0034.npy +tests/data/ljspeech/wavs/LJ016-0259.wav|tests/data/ljspeech/wavs/LJ016-0259.npy +tests/data/ljspeech/wavs/LJ006-0071.wav|tests/data/ljspeech/wavs/LJ006-0071.npy +tests/data/ljspeech/wavs/LJ033-0195.wav|tests/data/ljspeech/wavs/LJ033-0195.npy +tests/data/ljspeech/wavs/LJ008-0183.wav|tests/data/ljspeech/wavs/LJ008-0183.npy +tests/data/ljspeech/wavs/LJ008-0160.wav|tests/data/ljspeech/wavs/LJ008-0160.npy +tests/data/ljspeech/wavs/LJ029-0212.wav|tests/data/ljspeech/wavs/LJ029-0212.npy +tests/data/ljspeech/wavs/LJ048-0062.wav|tests/data/ljspeech/wavs/LJ048-0062.npy +tests/data/ljspeech/wavs/LJ014-0169.wav|tests/data/ljspeech/wavs/LJ014-0169.npy +tests/data/ljspeech/wavs/LJ033-0078.wav|tests/data/ljspeech/wavs/LJ033-0078.npy +tests/data/ljspeech/wavs/LJ048-0222.wav|tests/data/ljspeech/wavs/LJ048-0222.npy +tests/data/ljspeech/wavs/LJ011-0094.wav|tests/data/ljspeech/wavs/LJ011-0094.npy +tests/data/ljspeech/wavs/LJ004-0038.wav|tests/data/ljspeech/wavs/LJ004-0038.npy +tests/data/ljspeech/wavs/LJ045-0052.wav|tests/data/ljspeech/wavs/LJ045-0052.npy +tests/data/ljspeech/wavs/LJ045-0057.wav|tests/data/ljspeech/wavs/LJ045-0057.npy +tests/data/ljspeech/wavs/LJ041-0114.wav|tests/data/ljspeech/wavs/LJ041-0114.npy +tests/data/ljspeech/wavs/LJ025-0152.wav|tests/data/ljspeech/wavs/LJ025-0152.npy +tests/data/ljspeech/wavs/LJ020-0061.wav|tests/data/ljspeech/wavs/LJ020-0061.npy +tests/data/ljspeech/wavs/LJ047-0110.wav|tests/data/ljspeech/wavs/LJ047-0110.npy +tests/data/ljspeech/wavs/LJ032-0076.wav|tests/data/ljspeech/wavs/LJ032-0076.npy +tests/data/ljspeech/wavs/LJ037-0174.wav|tests/data/ljspeech/wavs/LJ037-0174.npy +tests/data/ljspeech/wavs/LJ048-0256.wav|tests/data/ljspeech/wavs/LJ048-0256.npy +tests/data/ljspeech/wavs/LJ022-0104.wav|tests/data/ljspeech/wavs/LJ022-0104.npy +tests/data/ljspeech/wavs/LJ030-0198.wav|tests/data/ljspeech/wavs/LJ030-0198.npy +tests/data/ljspeech/wavs/LJ041-0078.wav|tests/data/ljspeech/wavs/LJ041-0078.npy +tests/data/ljspeech/wavs/LJ011-0272.wav|tests/data/ljspeech/wavs/LJ011-0272.npy +tests/data/ljspeech/wavs/LJ006-0004.wav|tests/data/ljspeech/wavs/LJ006-0004.npy +tests/data/ljspeech/wavs/LJ005-0293.wav|tests/data/ljspeech/wavs/LJ005-0293.npy +tests/data/ljspeech/wavs/LJ032-0101.wav|tests/data/ljspeech/wavs/LJ032-0101.npy +tests/data/ljspeech/wavs/LJ008-0303.wav|tests/data/ljspeech/wavs/LJ008-0303.npy +tests/data/ljspeech/wavs/LJ008-0302.wav|tests/data/ljspeech/wavs/LJ008-0302.npy +tests/data/ljspeech/wavs/LJ009-0226.wav|tests/data/ljspeech/wavs/LJ009-0226.npy +tests/data/ljspeech/wavs/LJ001-0127.wav|tests/data/ljspeech/wavs/LJ001-0127.npy +tests/data/ljspeech/wavs/LJ009-0220.wav|tests/data/ljspeech/wavs/LJ009-0220.npy +tests/data/ljspeech/wavs/LJ003-0262.wav|tests/data/ljspeech/wavs/LJ003-0262.npy +tests/data/ljspeech/wavs/LJ016-0299.wav|tests/data/ljspeech/wavs/LJ016-0299.npy +tests/data/ljspeech/wavs/LJ028-0145.wav|tests/data/ljspeech/wavs/LJ028-0145.npy +tests/data/ljspeech/wavs/LJ028-0332.wav|tests/data/ljspeech/wavs/LJ028-0332.npy +tests/data/ljspeech/wavs/LJ022-0162.wav|tests/data/ljspeech/wavs/LJ022-0162.npy +tests/data/ljspeech/wavs/LJ048-0164.wav|tests/data/ljspeech/wavs/LJ048-0164.npy +tests/data/ljspeech/wavs/LJ038-0140.wav|tests/data/ljspeech/wavs/LJ038-0140.npy +tests/data/ljspeech/wavs/LJ016-0295.wav|tests/data/ljspeech/wavs/LJ016-0295.npy +tests/data/ljspeech/wavs/LJ001-0076.wav|tests/data/ljspeech/wavs/LJ001-0076.npy +tests/data/ljspeech/wavs/LJ007-0243.wav|tests/data/ljspeech/wavs/LJ007-0243.npy +tests/data/ljspeech/wavs/LJ044-0029.wav|tests/data/ljspeech/wavs/LJ044-0029.npy +tests/data/ljspeech/wavs/LJ044-0054.wav|tests/data/ljspeech/wavs/LJ044-0054.npy +tests/data/ljspeech/wavs/LJ011-0006.wav|tests/data/ljspeech/wavs/LJ011-0006.npy +tests/data/ljspeech/wavs/LJ006-0299.wav|tests/data/ljspeech/wavs/LJ006-0299.npy +tests/data/ljspeech/wavs/LJ046-0214.wav|tests/data/ljspeech/wavs/LJ046-0214.npy +tests/data/ljspeech/wavs/LJ018-0005.wav|tests/data/ljspeech/wavs/LJ018-0005.npy +tests/data/ljspeech/wavs/LJ050-0188.wav|tests/data/ljspeech/wavs/LJ050-0188.npy +tests/data/ljspeech/wavs/LJ036-0110.wav|tests/data/ljspeech/wavs/LJ036-0110.npy +tests/data/ljspeech/wavs/LJ018-0275.wav|tests/data/ljspeech/wavs/LJ018-0275.npy +tests/data/ljspeech/wavs/LJ005-0124.wav|tests/data/ljspeech/wavs/LJ005-0124.npy +tests/data/ljspeech/wavs/LJ016-0119.wav|tests/data/ljspeech/wavs/LJ016-0119.npy +tests/data/ljspeech/wavs/LJ003-0168.wav|tests/data/ljspeech/wavs/LJ003-0168.npy +tests/data/ljspeech/wavs/LJ045-0036.wav|tests/data/ljspeech/wavs/LJ045-0036.npy +tests/data/ljspeech/wavs/LJ019-0024.wav|tests/data/ljspeech/wavs/LJ019-0024.npy +tests/data/ljspeech/wavs/LJ007-0011.wav|tests/data/ljspeech/wavs/LJ007-0011.npy +tests/data/ljspeech/wavs/LJ040-0095.wav|tests/data/ljspeech/wavs/LJ040-0095.npy +tests/data/ljspeech/wavs/LJ039-0136.wav|tests/data/ljspeech/wavs/LJ039-0136.npy +tests/data/ljspeech/wavs/LJ010-0122.wav|tests/data/ljspeech/wavs/LJ010-0122.npy +tests/data/ljspeech/wavs/LJ011-0088.wav|tests/data/ljspeech/wavs/LJ011-0088.npy +tests/data/ljspeech/wavs/LJ037-0263.wav|tests/data/ljspeech/wavs/LJ037-0263.npy +tests/data/ljspeech/wavs/LJ014-0019.wav|tests/data/ljspeech/wavs/LJ014-0019.npy +tests/data/ljspeech/wavs/LJ007-0184.wav|tests/data/ljspeech/wavs/LJ007-0184.npy +tests/data/ljspeech/wavs/LJ005-0255.wav|tests/data/ljspeech/wavs/LJ005-0255.npy +tests/data/ljspeech/wavs/LJ007-0093.wav|tests/data/ljspeech/wavs/LJ007-0093.npy +tests/data/ljspeech/wavs/LJ035-0201.wav|tests/data/ljspeech/wavs/LJ035-0201.npy +tests/data/ljspeech/wavs/LJ015-0082.wav|tests/data/ljspeech/wavs/LJ015-0082.npy +tests/data/ljspeech/wavs/LJ010-0126.wav|tests/data/ljspeech/wavs/LJ010-0126.npy +tests/data/ljspeech/wavs/LJ005-0246.wav|tests/data/ljspeech/wavs/LJ005-0246.npy +tests/data/ljspeech/wavs/LJ037-0243.wav|tests/data/ljspeech/wavs/LJ037-0243.npy +tests/data/ljspeech/wavs/LJ015-0168.wav|tests/data/ljspeech/wavs/LJ015-0168.npy +tests/data/ljspeech/wavs/LJ007-0017.wav|tests/data/ljspeech/wavs/LJ007-0017.npy +tests/data/ljspeech/wavs/LJ044-0068.wav|tests/data/ljspeech/wavs/LJ044-0068.npy +tests/data/ljspeech/wavs/LJ011-0080.wav|tests/data/ljspeech/wavs/LJ011-0080.npy +tests/data/ljspeech/wavs/LJ005-0027.wav|tests/data/ljspeech/wavs/LJ005-0027.npy +tests/data/ljspeech/wavs/LJ044-0100.wav|tests/data/ljspeech/wavs/LJ044-0100.npy +tests/data/ljspeech/wavs/LJ012-0051.wav|tests/data/ljspeech/wavs/LJ012-0051.npy +tests/data/ljspeech/wavs/LJ046-0250.wav|tests/data/ljspeech/wavs/LJ046-0250.npy +tests/data/ljspeech/wavs/LJ011-0066.wav|tests/data/ljspeech/wavs/LJ011-0066.npy +tests/data/ljspeech/wavs/LJ049-0181.wav|tests/data/ljspeech/wavs/LJ049-0181.npy +tests/data/ljspeech/wavs/LJ011-0248.wav|tests/data/ljspeech/wavs/LJ011-0248.npy +tests/data/ljspeech/wavs/LJ012-0050.wav|tests/data/ljspeech/wavs/LJ012-0050.npy +tests/data/ljspeech/wavs/LJ050-0183.wav|tests/data/ljspeech/wavs/LJ050-0183.npy +tests/data/ljspeech/wavs/LJ007-0101.wav|tests/data/ljspeech/wavs/LJ007-0101.npy +tests/data/ljspeech/wavs/LJ032-0095.wav|tests/data/ljspeech/wavs/LJ032-0095.npy +tests/data/ljspeech/wavs/LJ018-0139.wav|tests/data/ljspeech/wavs/LJ018-0139.npy +tests/data/ljspeech/wavs/LJ046-0072.wav|tests/data/ljspeech/wavs/LJ046-0072.npy +tests/data/ljspeech/wavs/LJ019-0242.wav|tests/data/ljspeech/wavs/LJ019-0242.npy +tests/data/ljspeech/wavs/LJ005-0023.wav|tests/data/ljspeech/wavs/LJ005-0023.npy +tests/data/ljspeech/wavs/LJ049-0215.wav|tests/data/ljspeech/wavs/LJ049-0215.npy +tests/data/ljspeech/wavs/LJ004-0236.wav|tests/data/ljspeech/wavs/LJ004-0236.npy +tests/data/ljspeech/wavs/LJ040-0003.wav|tests/data/ljspeech/wavs/LJ040-0003.npy +tests/data/ljspeech/wavs/LJ014-0044.wav|tests/data/ljspeech/wavs/LJ014-0044.npy +tests/data/ljspeech/wavs/LJ042-0078.wav|tests/data/ljspeech/wavs/LJ042-0078.npy +tests/data/ljspeech/wavs/LJ039-0132.wav|tests/data/ljspeech/wavs/LJ039-0132.npy +tests/data/ljspeech/wavs/LJ039-0101.wav|tests/data/ljspeech/wavs/LJ039-0101.npy +tests/data/ljspeech/wavs/LJ011-0151.wav|tests/data/ljspeech/wavs/LJ011-0151.npy +tests/data/ljspeech/wavs/LJ035-0090.wav|tests/data/ljspeech/wavs/LJ035-0090.npy +tests/data/ljspeech/wavs/LJ012-0244.wav|tests/data/ljspeech/wavs/LJ012-0244.npy +tests/data/ljspeech/wavs/LJ028-0236.wav|tests/data/ljspeech/wavs/LJ028-0236.npy +tests/data/ljspeech/wavs/LJ006-0115.wav|tests/data/ljspeech/wavs/LJ006-0115.npy +tests/data/ljspeech/wavs/LJ032-0178.wav|tests/data/ljspeech/wavs/LJ032-0178.npy +tests/data/ljspeech/wavs/LJ002-0059.wav|tests/data/ljspeech/wavs/LJ002-0059.npy +tests/data/ljspeech/wavs/LJ013-0196.wav|tests/data/ljspeech/wavs/LJ013-0196.npy +tests/data/ljspeech/wavs/LJ005-0251.wav|tests/data/ljspeech/wavs/LJ005-0251.npy +tests/data/ljspeech/wavs/LJ031-0167.wav|tests/data/ljspeech/wavs/LJ031-0167.npy +tests/data/ljspeech/wavs/LJ006-0157.wav|tests/data/ljspeech/wavs/LJ006-0157.npy +tests/data/ljspeech/wavs/LJ029-0023.wav|tests/data/ljspeech/wavs/LJ029-0023.npy +tests/data/ljspeech/wavs/LJ047-0012.wav|tests/data/ljspeech/wavs/LJ047-0012.npy +tests/data/ljspeech/wavs/LJ047-0088.wav|tests/data/ljspeech/wavs/LJ047-0088.npy +tests/data/ljspeech/wavs/LJ043-0042.wav|tests/data/ljspeech/wavs/LJ043-0042.npy +tests/data/ljspeech/wavs/LJ011-0031.wav|tests/data/ljspeech/wavs/LJ011-0031.npy +tests/data/ljspeech/wavs/LJ007-0117.wav|tests/data/ljspeech/wavs/LJ007-0117.npy +tests/data/ljspeech/wavs/LJ007-0109.wav|tests/data/ljspeech/wavs/LJ007-0109.npy +tests/data/ljspeech/wavs/LJ040-0204.wav|tests/data/ljspeech/wavs/LJ040-0204.npy +tests/data/ljspeech/wavs/LJ050-0176.wav|tests/data/ljspeech/wavs/LJ050-0176.npy +tests/data/ljspeech/wavs/LJ031-0032.wav|tests/data/ljspeech/wavs/LJ031-0032.npy +tests/data/ljspeech/wavs/LJ013-0100.wav|tests/data/ljspeech/wavs/LJ013-0100.npy +tests/data/ljspeech/wavs/LJ028-0444.wav|tests/data/ljspeech/wavs/LJ028-0444.npy +tests/data/ljspeech/wavs/LJ043-0033.wav|tests/data/ljspeech/wavs/LJ043-0033.npy +tests/data/ljspeech/wavs/LJ048-0081.wav|tests/data/ljspeech/wavs/LJ048-0081.npy +tests/data/ljspeech/wavs/LJ008-0284.wav|tests/data/ljspeech/wavs/LJ008-0284.npy +tests/data/ljspeech/wavs/LJ006-0149.wav|tests/data/ljspeech/wavs/LJ006-0149.npy +tests/data/ljspeech/wavs/LJ040-0168.wav|tests/data/ljspeech/wavs/LJ040-0168.npy +tests/data/ljspeech/wavs/LJ006-0279.wav|tests/data/ljspeech/wavs/LJ006-0279.npy +tests/data/ljspeech/wavs/LJ042-0153.wav|tests/data/ljspeech/wavs/LJ042-0153.npy +tests/data/ljspeech/wavs/LJ008-0171.wav|tests/data/ljspeech/wavs/LJ008-0171.npy +tests/data/ljspeech/wavs/LJ010-0010.wav|tests/data/ljspeech/wavs/LJ010-0010.npy +tests/data/ljspeech/wavs/LJ030-0125.wav|tests/data/ljspeech/wavs/LJ030-0125.npy +tests/data/ljspeech/wavs/LJ030-0013.wav|tests/data/ljspeech/wavs/LJ030-0013.npy +tests/data/ljspeech/wavs/LJ008-0121.wav|tests/data/ljspeech/wavs/LJ008-0121.npy +tests/data/ljspeech/wavs/LJ008-0056.wav|tests/data/ljspeech/wavs/LJ008-0056.npy +tests/data/ljspeech/wavs/LJ007-0234.wav|tests/data/ljspeech/wavs/LJ007-0234.npy +tests/data/ljspeech/wavs/LJ050-0276.wav|tests/data/ljspeech/wavs/LJ050-0276.npy +tests/data/ljspeech/wavs/LJ043-0027.wav|tests/data/ljspeech/wavs/LJ043-0027.npy +tests/data/ljspeech/wavs/LJ010-0254.wav|tests/data/ljspeech/wavs/LJ010-0254.npy +tests/data/ljspeech/wavs/LJ014-0320.wav|tests/data/ljspeech/wavs/LJ014-0320.npy +tests/data/ljspeech/wavs/LJ043-0145.wav|tests/data/ljspeech/wavs/LJ043-0145.npy +tests/data/ljspeech/wavs/LJ045-0122.wav|tests/data/ljspeech/wavs/LJ045-0122.npy +tests/data/ljspeech/wavs/LJ016-0244.wav|tests/data/ljspeech/wavs/LJ016-0244.npy +tests/data/ljspeech/wavs/LJ033-0179.wav|tests/data/ljspeech/wavs/LJ033-0179.npy +tests/data/ljspeech/wavs/LJ004-0022.wav|tests/data/ljspeech/wavs/LJ004-0022.npy +tests/data/ljspeech/wavs/LJ041-0092.wav|tests/data/ljspeech/wavs/LJ041-0092.npy +tests/data/ljspeech/wavs/LJ041-0107.wav|tests/data/ljspeech/wavs/LJ041-0107.npy +tests/data/ljspeech/wavs/LJ004-0048.wav|tests/data/ljspeech/wavs/LJ004-0048.npy +tests/data/ljspeech/wavs/LJ041-0179.wav|tests/data/ljspeech/wavs/LJ041-0179.npy +tests/data/ljspeech/wavs/LJ018-0324.wav|tests/data/ljspeech/wavs/LJ018-0324.npy +tests/data/ljspeech/wavs/LJ025-0147.wav|tests/data/ljspeech/wavs/LJ025-0147.npy +tests/data/ljspeech/wavs/LJ004-0041.wav|tests/data/ljspeech/wavs/LJ004-0041.npy +tests/data/ljspeech/wavs/LJ046-0184.wav|tests/data/ljspeech/wavs/LJ046-0184.npy +tests/data/ljspeech/wavs/LJ016-0309.wav|tests/data/ljspeech/wavs/LJ016-0309.npy +tests/data/ljspeech/wavs/LJ027-0116.wav|tests/data/ljspeech/wavs/LJ027-0116.npy +tests/data/ljspeech/wavs/LJ031-0144.wav|tests/data/ljspeech/wavs/LJ031-0144.npy +tests/data/ljspeech/wavs/LJ014-0255.wav|tests/data/ljspeech/wavs/LJ014-0255.npy +tests/data/ljspeech/wavs/LJ016-0196.wav|tests/data/ljspeech/wavs/LJ016-0196.npy +tests/data/ljspeech/wavs/LJ036-0041.wav|tests/data/ljspeech/wavs/LJ036-0041.npy +tests/data/ljspeech/wavs/LJ016-0271.wav|tests/data/ljspeech/wavs/LJ016-0271.npy +tests/data/ljspeech/wavs/LJ038-0004.wav|tests/data/ljspeech/wavs/LJ038-0004.npy +tests/data/ljspeech/wavs/LJ015-0249.wav|tests/data/ljspeech/wavs/LJ015-0249.npy +tests/data/ljspeech/wavs/LJ003-0338.wav|tests/data/ljspeech/wavs/LJ003-0338.npy +tests/data/ljspeech/wavs/LJ041-0146.wav|tests/data/ljspeech/wavs/LJ041-0146.npy +tests/data/ljspeech/wavs/LJ002-0218.wav|tests/data/ljspeech/wavs/LJ002-0218.npy +tests/data/ljspeech/wavs/LJ003-0163.wav|tests/data/ljspeech/wavs/LJ003-0163.npy +tests/data/ljspeech/wavs/LJ003-0333.wav|tests/data/ljspeech/wavs/LJ003-0333.npy +tests/data/ljspeech/wavs/LJ045-0070.wav|tests/data/ljspeech/wavs/LJ045-0070.npy +tests/data/ljspeech/wavs/LJ047-0067.wav|tests/data/ljspeech/wavs/LJ047-0067.npy +tests/data/ljspeech/wavs/LJ016-0123.wav|tests/data/ljspeech/wavs/LJ016-0123.npy +tests/data/ljspeech/wavs/LJ016-0322.wav|tests/data/ljspeech/wavs/LJ016-0322.npy +tests/data/ljspeech/wavs/LJ035-0084.wav|tests/data/ljspeech/wavs/LJ035-0084.npy +tests/data/ljspeech/wavs/LJ026-0077.wav|tests/data/ljspeech/wavs/LJ026-0077.npy +tests/data/ljspeech/wavs/LJ002-0308.wav|tests/data/ljspeech/wavs/LJ002-0308.npy +tests/data/ljspeech/wavs/LJ035-0145.wav|tests/data/ljspeech/wavs/LJ035-0145.npy +tests/data/ljspeech/wavs/LJ044-0193.wav|tests/data/ljspeech/wavs/LJ044-0193.npy +tests/data/ljspeech/wavs/LJ014-0211.wav|tests/data/ljspeech/wavs/LJ014-0211.npy +tests/data/ljspeech/wavs/LJ003-0026.wav|tests/data/ljspeech/wavs/LJ003-0026.npy +tests/data/ljspeech/wavs/LJ046-0045.wav|tests/data/ljspeech/wavs/LJ046-0045.npy +tests/data/ljspeech/wavs/LJ019-0391.wav|tests/data/ljspeech/wavs/LJ019-0391.npy +tests/data/ljspeech/wavs/LJ027-0008.wav|tests/data/ljspeech/wavs/LJ027-0008.npy +tests/data/ljspeech/wavs/LJ042-0018.wav|tests/data/ljspeech/wavs/LJ042-0018.npy +tests/data/ljspeech/wavs/LJ027-0070.wav|tests/data/ljspeech/wavs/LJ027-0070.npy +tests/data/ljspeech/wavs/LJ016-0391.wav|tests/data/ljspeech/wavs/LJ016-0391.npy +tests/data/ljspeech/wavs/LJ034-0069.wav|tests/data/ljspeech/wavs/LJ034-0069.npy +tests/data/ljspeech/wavs/LJ019-0398.wav|tests/data/ljspeech/wavs/LJ019-0398.npy +tests/data/ljspeech/wavs/LJ002-0168.wav|tests/data/ljspeech/wavs/LJ002-0168.npy +tests/data/ljspeech/wavs/LJ016-0344.wav|tests/data/ljspeech/wavs/LJ016-0344.npy +tests/data/ljspeech/wavs/LJ049-0140.wav|tests/data/ljspeech/wavs/LJ049-0140.npy +tests/data/ljspeech/wavs/LJ003-0239.wav|tests/data/ljspeech/wavs/LJ003-0239.npy +tests/data/ljspeech/wavs/LJ014-0171.wav|tests/data/ljspeech/wavs/LJ014-0171.npy +tests/data/ljspeech/wavs/LJ035-0122.wav|tests/data/ljspeech/wavs/LJ035-0122.npy +tests/data/ljspeech/wavs/LJ038-0242.wav|tests/data/ljspeech/wavs/LJ038-0242.npy +tests/data/ljspeech/wavs/LJ035-0111.wav|tests/data/ljspeech/wavs/LJ035-0111.npy +tests/data/ljspeech/wavs/LJ014-0016.wav|tests/data/ljspeech/wavs/LJ014-0016.npy +tests/data/ljspeech/wavs/LJ016-0408.wav|tests/data/ljspeech/wavs/LJ016-0408.npy +tests/data/ljspeech/wavs/LJ019-0163.wav|tests/data/ljspeech/wavs/LJ019-0163.npy +tests/data/ljspeech/wavs/LJ013-0214.wav|tests/data/ljspeech/wavs/LJ013-0214.npy +tests/data/ljspeech/wavs/LJ014-0246.wav|tests/data/ljspeech/wavs/LJ014-0246.npy +tests/data/ljspeech/wavs/LJ014-0106.wav|tests/data/ljspeech/wavs/LJ014-0106.npy +tests/data/ljspeech/wavs/LJ002-0185.wav|tests/data/ljspeech/wavs/LJ002-0185.npy +tests/data/ljspeech/wavs/LJ017-0085.wav|tests/data/ljspeech/wavs/LJ017-0085.npy +tests/data/ljspeech/wavs/LJ035-0123.wav|tests/data/ljspeech/wavs/LJ035-0123.npy +tests/data/ljspeech/wavs/LJ042-0135.wav|tests/data/ljspeech/wavs/LJ042-0135.npy +tests/data/ljspeech/wavs/LJ035-0086.wav|tests/data/ljspeech/wavs/LJ035-0086.npy +tests/data/ljspeech/wavs/LJ031-0078.wav|tests/data/ljspeech/wavs/LJ031-0078.npy +tests/data/ljspeech/wavs/LJ045-0183.wav|tests/data/ljspeech/wavs/LJ045-0183.npy +tests/data/ljspeech/wavs/LJ015-0132.wav|tests/data/ljspeech/wavs/LJ015-0132.npy +tests/data/ljspeech/wavs/LJ035-0207.wav|tests/data/ljspeech/wavs/LJ035-0207.npy +tests/data/ljspeech/wavs/LJ003-0069.wav|tests/data/ljspeech/wavs/LJ003-0069.npy +tests/data/ljspeech/wavs/LJ047-0145.wav|tests/data/ljspeech/wavs/LJ047-0145.npy +tests/data/ljspeech/wavs/LJ019-0170.wav|tests/data/ljspeech/wavs/LJ019-0170.npy +tests/data/ljspeech/wavs/LJ034-0162.wav|tests/data/ljspeech/wavs/LJ034-0162.npy +tests/data/ljspeech/wavs/LJ047-0242.wav|tests/data/ljspeech/wavs/LJ047-0242.npy +tests/data/ljspeech/wavs/LJ018-0235.wav|tests/data/ljspeech/wavs/LJ018-0235.npy +tests/data/ljspeech/wavs/LJ006-0130.wav|tests/data/ljspeech/wavs/LJ006-0130.npy +tests/data/ljspeech/wavs/LJ041-0088.wav|tests/data/ljspeech/wavs/LJ041-0088.npy +tests/data/ljspeech/wavs/LJ048-0118.wav|tests/data/ljspeech/wavs/LJ048-0118.npy +tests/data/ljspeech/wavs/LJ008-0184.wav|tests/data/ljspeech/wavs/LJ008-0184.npy +tests/data/ljspeech/wavs/LJ019-0086.wav|tests/data/ljspeech/wavs/LJ019-0086.npy +tests/data/ljspeech/wavs/LJ048-0126.wav|tests/data/ljspeech/wavs/LJ048-0126.npy +tests/data/ljspeech/wavs/LJ041-0124.wav|tests/data/ljspeech/wavs/LJ041-0124.npy +tests/data/ljspeech/wavs/LJ020-0077.wav|tests/data/ljspeech/wavs/LJ020-0077.npy +tests/data/ljspeech/wavs/LJ047-0034.wav|tests/data/ljspeech/wavs/LJ047-0034.npy +tests/data/ljspeech/wavs/LJ003-0169.wav|tests/data/ljspeech/wavs/LJ003-0169.npy +tests/data/ljspeech/wavs/LJ013-0139.wav|tests/data/ljspeech/wavs/LJ013-0139.npy +tests/data/ljspeech/wavs/LJ007-0084.wav|tests/data/ljspeech/wavs/LJ007-0084.npy +tests/data/ljspeech/wavs/LJ030-0096.wav|tests/data/ljspeech/wavs/LJ030-0096.npy +tests/data/ljspeech/wavs/LJ018-0234.wav|tests/data/ljspeech/wavs/LJ018-0234.npy +tests/data/ljspeech/wavs/LJ001-0005.wav|tests/data/ljspeech/wavs/LJ001-0005.npy +tests/data/ljspeech/wavs/LJ030-0217.wav|tests/data/ljspeech/wavs/LJ030-0217.npy +tests/data/ljspeech/wavs/LJ048-0153.wav|tests/data/ljspeech/wavs/LJ048-0153.npy +tests/data/ljspeech/wavs/LJ016-0371.wav|tests/data/ljspeech/wavs/LJ016-0371.npy +tests/data/ljspeech/wavs/LJ022-0020.wav|tests/data/ljspeech/wavs/LJ022-0020.npy +tests/data/ljspeech/wavs/LJ006-0274.wav|tests/data/ljspeech/wavs/LJ006-0274.npy +tests/data/ljspeech/wavs/LJ045-0227.wav|tests/data/ljspeech/wavs/LJ045-0227.npy +tests/data/ljspeech/wavs/LJ040-0053.wav|tests/data/ljspeech/wavs/LJ040-0053.npy +tests/data/ljspeech/wavs/LJ016-0329.wav|tests/data/ljspeech/wavs/LJ016-0329.npy +tests/data/ljspeech/wavs/LJ044-0162.wav|tests/data/ljspeech/wavs/LJ044-0162.npy +tests/data/ljspeech/wavs/LJ044-0088.wav|tests/data/ljspeech/wavs/LJ044-0088.npy +tests/data/ljspeech/wavs/LJ011-0096.wav|tests/data/ljspeech/wavs/LJ011-0096.npy +tests/data/ljspeech/wavs/LJ039-0226.wav|tests/data/ljspeech/wavs/LJ039-0226.npy +tests/data/ljspeech/wavs/LJ001-0171.wav|tests/data/ljspeech/wavs/LJ001-0171.npy +tests/data/ljspeech/wavs/LJ002-0181.wav|tests/data/ljspeech/wavs/LJ002-0181.npy +tests/data/ljspeech/wavs/LJ012-0115.wav|tests/data/ljspeech/wavs/LJ012-0115.npy +tests/data/ljspeech/wavs/LJ005-0046.wav|tests/data/ljspeech/wavs/LJ005-0046.npy +tests/data/ljspeech/wavs/LJ004-0085.wav|tests/data/ljspeech/wavs/LJ004-0085.npy +tests/data/ljspeech/wavs/LJ004-0093.wav|tests/data/ljspeech/wavs/LJ004-0093.npy +tests/data/ljspeech/wavs/LJ022-0127.wav|tests/data/ljspeech/wavs/LJ022-0127.npy +tests/data/ljspeech/wavs/LJ009-0155.wav|tests/data/ljspeech/wavs/LJ009-0155.npy +tests/data/ljspeech/wavs/LJ032-0184.wav|tests/data/ljspeech/wavs/LJ032-0184.npy +tests/data/ljspeech/wavs/LJ038-0214.wav|tests/data/ljspeech/wavs/LJ038-0214.npy +tests/data/ljspeech/wavs/LJ049-0147.wav|tests/data/ljspeech/wavs/LJ049-0147.npy +tests/data/ljspeech/wavs/LJ048-0018.wav|tests/data/ljspeech/wavs/LJ048-0018.npy +tests/data/ljspeech/wavs/LJ006-0015.wav|tests/data/ljspeech/wavs/LJ006-0015.npy +tests/data/ljspeech/wavs/LJ004-0037.wav|tests/data/ljspeech/wavs/LJ004-0037.npy +tests/data/ljspeech/wavs/LJ012-0066.wav|tests/data/ljspeech/wavs/LJ012-0066.npy +tests/data/ljspeech/wavs/LJ025-0119.wav|tests/data/ljspeech/wavs/LJ025-0119.npy +tests/data/ljspeech/wavs/LJ031-0178.wav|tests/data/ljspeech/wavs/LJ031-0178.npy +tests/data/ljspeech/wavs/LJ013-0145.wav|tests/data/ljspeech/wavs/LJ013-0145.npy +tests/data/ljspeech/wavs/LJ014-0103.wav|tests/data/ljspeech/wavs/LJ014-0103.npy +tests/data/ljspeech/wavs/LJ014-0326.wav|tests/data/ljspeech/wavs/LJ014-0326.npy +tests/data/ljspeech/wavs/LJ026-0100.wav|tests/data/ljspeech/wavs/LJ026-0100.npy +tests/data/ljspeech/wavs/LJ014-0149.wav|tests/data/ljspeech/wavs/LJ014-0149.npy +tests/data/ljspeech/wavs/LJ016-0356.wav|tests/data/ljspeech/wavs/LJ016-0356.npy +tests/data/ljspeech/wavs/LJ025-0071.wav|tests/data/ljspeech/wavs/LJ025-0071.npy +tests/data/ljspeech/wavs/LJ002-0318.wav|tests/data/ljspeech/wavs/LJ002-0318.npy +tests/data/ljspeech/wavs/LJ049-0129.wav|tests/data/ljspeech/wavs/LJ049-0129.npy +tests/data/ljspeech/wavs/LJ041-0019.wav|tests/data/ljspeech/wavs/LJ041-0019.npy +tests/data/ljspeech/wavs/LJ044-0005.wav|tests/data/ljspeech/wavs/LJ044-0005.npy +tests/data/ljspeech/wavs/LJ040-0056.wav|tests/data/ljspeech/wavs/LJ040-0056.npy +tests/data/ljspeech/wavs/LJ046-0207.wav|tests/data/ljspeech/wavs/LJ046-0207.npy +tests/data/ljspeech/wavs/LJ047-0044.wav|tests/data/ljspeech/wavs/LJ047-0044.npy +tests/data/ljspeech/wavs/LJ017-0078.wav|tests/data/ljspeech/wavs/LJ017-0078.npy +tests/data/ljspeech/wavs/LJ050-0082.wav|tests/data/ljspeech/wavs/LJ050-0082.npy +tests/data/ljspeech/wavs/LJ019-0207.wav|tests/data/ljspeech/wavs/LJ019-0207.npy +tests/data/ljspeech/wavs/LJ016-0137.wav|tests/data/ljspeech/wavs/LJ016-0137.npy +tests/data/ljspeech/wavs/LJ007-0183.wav|tests/data/ljspeech/wavs/LJ007-0183.npy +tests/data/ljspeech/wavs/LJ016-0094.wav|tests/data/ljspeech/wavs/LJ016-0094.npy +tests/data/ljspeech/wavs/LJ009-0298.wav|tests/data/ljspeech/wavs/LJ009-0298.npy +tests/data/ljspeech/wavs/LJ049-0123.wav|tests/data/ljspeech/wavs/LJ049-0123.npy +tests/data/ljspeech/wavs/LJ016-0199.wav|tests/data/ljspeech/wavs/LJ016-0199.npy +tests/data/ljspeech/wavs/LJ009-0186.wav|tests/data/ljspeech/wavs/LJ009-0186.npy +tests/data/ljspeech/wavs/LJ030-0018.wav|tests/data/ljspeech/wavs/LJ030-0018.npy +tests/data/ljspeech/wavs/LJ041-0059.wav|tests/data/ljspeech/wavs/LJ041-0059.npy +tests/data/ljspeech/wavs/LJ047-0013.wav|tests/data/ljspeech/wavs/LJ047-0013.npy +tests/data/ljspeech/wavs/LJ025-0103.wav|tests/data/ljspeech/wavs/LJ025-0103.npy +tests/data/ljspeech/wavs/LJ016-0360.wav|tests/data/ljspeech/wavs/LJ016-0360.npy +tests/data/ljspeech/wavs/LJ016-0057.wav|tests/data/ljspeech/wavs/LJ016-0057.npy +tests/data/ljspeech/wavs/LJ010-0043.wav|tests/data/ljspeech/wavs/LJ010-0043.npy +tests/data/ljspeech/wavs/LJ040-0055.wav|tests/data/ljspeech/wavs/LJ040-0055.npy +tests/data/ljspeech/wavs/LJ028-0448.wav|tests/data/ljspeech/wavs/LJ028-0448.npy +tests/data/ljspeech/wavs/LJ007-0074.wav|tests/data/ljspeech/wavs/LJ007-0074.npy +tests/data/ljspeech/wavs/LJ003-0095.wav|tests/data/ljspeech/wavs/LJ003-0095.npy +tests/data/ljspeech/wavs/LJ050-0278.wav|tests/data/ljspeech/wavs/LJ050-0278.npy +tests/data/ljspeech/wavs/LJ028-0505.wav|tests/data/ljspeech/wavs/LJ028-0505.npy +tests/data/ljspeech/wavs/LJ032-0228.wav|tests/data/ljspeech/wavs/LJ032-0228.npy +tests/data/ljspeech/wavs/LJ022-0174.wav|tests/data/ljspeech/wavs/LJ022-0174.npy +tests/data/ljspeech/wavs/LJ049-0030.wav|tests/data/ljspeech/wavs/LJ049-0030.npy +tests/data/ljspeech/wavs/LJ042-0166.wav|tests/data/ljspeech/wavs/LJ042-0166.npy +tests/data/ljspeech/wavs/LJ044-0025.wav|tests/data/ljspeech/wavs/LJ044-0025.npy +tests/data/ljspeech/wavs/LJ034-0098.wav|tests/data/ljspeech/wavs/LJ034-0098.npy +tests/data/ljspeech/wavs/LJ035-0147.wav|tests/data/ljspeech/wavs/LJ035-0147.npy +tests/data/ljspeech/wavs/LJ018-0251.wav|tests/data/ljspeech/wavs/LJ018-0251.npy +tests/data/ljspeech/wavs/LJ028-0326.wav|tests/data/ljspeech/wavs/LJ028-0326.npy +tests/data/ljspeech/wavs/LJ043-0123.wav|tests/data/ljspeech/wavs/LJ043-0123.npy +tests/data/ljspeech/wavs/LJ035-0046.wav|tests/data/ljspeech/wavs/LJ035-0046.npy +tests/data/ljspeech/wavs/LJ030-0072.wav|tests/data/ljspeech/wavs/LJ030-0072.npy +tests/data/ljspeech/wavs/LJ014-0066.wav|tests/data/ljspeech/wavs/LJ014-0066.npy +tests/data/ljspeech/wavs/LJ004-0226.wav|tests/data/ljspeech/wavs/LJ004-0226.npy +tests/data/ljspeech/wavs/LJ043-0059.wav|tests/data/ljspeech/wavs/LJ043-0059.npy +tests/data/ljspeech/wavs/LJ026-0060.wav|tests/data/ljspeech/wavs/LJ026-0060.npy +tests/data/ljspeech/wavs/LJ030-0024.wav|tests/data/ljspeech/wavs/LJ030-0024.npy +tests/data/ljspeech/wavs/LJ035-0195.wav|tests/data/ljspeech/wavs/LJ035-0195.npy +tests/data/ljspeech/wavs/LJ012-0028.wav|tests/data/ljspeech/wavs/LJ012-0028.npy +tests/data/ljspeech/wavs/LJ033-0202.wav|tests/data/ljspeech/wavs/LJ033-0202.npy +tests/data/ljspeech/wavs/LJ028-0427.wav|tests/data/ljspeech/wavs/LJ028-0427.npy +tests/data/ljspeech/wavs/LJ007-0190.wav|tests/data/ljspeech/wavs/LJ007-0190.npy +tests/data/ljspeech/wavs/LJ041-0171.wav|tests/data/ljspeech/wavs/LJ041-0171.npy +tests/data/ljspeech/wavs/LJ042-0216.wav|tests/data/ljspeech/wavs/LJ042-0216.npy +tests/data/ljspeech/wavs/LJ017-0134.wav|tests/data/ljspeech/wavs/LJ017-0134.npy +tests/data/ljspeech/wavs/LJ012-0107.wav|tests/data/ljspeech/wavs/LJ012-0107.npy +tests/data/ljspeech/wavs/LJ007-0216.wav|tests/data/ljspeech/wavs/LJ007-0216.npy +tests/data/ljspeech/wavs/LJ013-0151.wav|tests/data/ljspeech/wavs/LJ013-0151.npy +tests/data/ljspeech/wavs/LJ034-0064.wav|tests/data/ljspeech/wavs/LJ034-0064.npy +tests/data/ljspeech/wavs/LJ020-0035.wav|tests/data/ljspeech/wavs/LJ020-0035.npy +tests/data/ljspeech/wavs/LJ006-0013.wav|tests/data/ljspeech/wavs/LJ006-0013.npy +tests/data/ljspeech/wavs/LJ011-0277.wav|tests/data/ljspeech/wavs/LJ011-0277.npy +tests/data/ljspeech/wavs/LJ020-0022.wav|tests/data/ljspeech/wavs/LJ020-0022.npy +tests/data/ljspeech/wavs/LJ013-0176.wav|tests/data/ljspeech/wavs/LJ013-0176.npy +tests/data/ljspeech/wavs/LJ039-0038.wav|tests/data/ljspeech/wavs/LJ039-0038.npy +tests/data/ljspeech/wavs/LJ050-0223.wav|tests/data/ljspeech/wavs/LJ050-0223.npy +tests/data/ljspeech/wavs/LJ019-0284.wav|tests/data/ljspeech/wavs/LJ019-0284.npy +tests/data/ljspeech/wavs/LJ044-0135.wav|tests/data/ljspeech/wavs/LJ044-0135.npy +tests/data/ljspeech/wavs/LJ019-0099.wav|tests/data/ljspeech/wavs/LJ019-0099.npy +tests/data/ljspeech/wavs/LJ038-0075.wav|tests/data/ljspeech/wavs/LJ038-0075.npy +tests/data/ljspeech/wavs/LJ028-0269.wav|tests/data/ljspeech/wavs/LJ028-0269.npy +tests/data/ljspeech/wavs/LJ044-0133.wav|tests/data/ljspeech/wavs/LJ044-0133.npy +tests/data/ljspeech/wavs/LJ003-0173.wav|tests/data/ljspeech/wavs/LJ003-0173.npy +tests/data/ljspeech/wavs/LJ008-0178.wav|tests/data/ljspeech/wavs/LJ008-0178.npy +tests/data/ljspeech/wavs/LJ048-0030.wav|tests/data/ljspeech/wavs/LJ048-0030.npy +tests/data/ljspeech/wavs/LJ033-0070.wav|tests/data/ljspeech/wavs/LJ033-0070.npy +tests/data/ljspeech/wavs/LJ010-0187.wav|tests/data/ljspeech/wavs/LJ010-0187.npy +tests/data/ljspeech/wavs/LJ025-0176.wav|tests/data/ljspeech/wavs/LJ025-0176.npy +tests/data/ljspeech/wavs/LJ032-0055.wav|tests/data/ljspeech/wavs/LJ032-0055.npy +tests/data/ljspeech/wavs/LJ033-0056.wav|tests/data/ljspeech/wavs/LJ033-0056.npy +tests/data/ljspeech/wavs/LJ028-0079.wav|tests/data/ljspeech/wavs/LJ028-0079.npy +tests/data/ljspeech/wavs/LJ045-0099.wav|tests/data/ljspeech/wavs/LJ045-0099.npy +tests/data/ljspeech/wavs/LJ003-0045.wav|tests/data/ljspeech/wavs/LJ003-0045.npy +tests/data/ljspeech/wavs/LJ010-0181.wav|tests/data/ljspeech/wavs/LJ010-0181.npy +tests/data/ljspeech/wavs/LJ001-0057.wav|tests/data/ljspeech/wavs/LJ001-0057.npy +tests/data/ljspeech/wavs/LJ003-0331.wav|tests/data/ljspeech/wavs/LJ003-0331.npy +tests/data/ljspeech/wavs/LJ028-0232.wav|tests/data/ljspeech/wavs/LJ028-0232.npy +tests/data/ljspeech/wavs/LJ029-0197.wav|tests/data/ljspeech/wavs/LJ029-0197.npy +tests/data/ljspeech/wavs/LJ003-0088.wav|tests/data/ljspeech/wavs/LJ003-0088.npy +tests/data/ljspeech/wavs/LJ038-0256.wav|tests/data/ljspeech/wavs/LJ038-0256.npy +tests/data/ljspeech/wavs/LJ008-0229.wav|tests/data/ljspeech/wavs/LJ008-0229.npy +tests/data/ljspeech/wavs/LJ010-0090.wav|tests/data/ljspeech/wavs/LJ010-0090.npy +tests/data/ljspeech/wavs/LJ029-0120.wav|tests/data/ljspeech/wavs/LJ029-0120.npy +tests/data/ljspeech/wavs/LJ041-0123.wav|tests/data/ljspeech/wavs/LJ041-0123.npy +tests/data/ljspeech/wavs/LJ045-0228.wav|tests/data/ljspeech/wavs/LJ045-0228.npy +tests/data/ljspeech/wavs/LJ037-0266.wav|tests/data/ljspeech/wavs/LJ037-0266.npy +tests/data/ljspeech/wavs/LJ009-0203.wav|tests/data/ljspeech/wavs/LJ009-0203.npy +tests/data/ljspeech/wavs/LJ007-0078.wav|tests/data/ljspeech/wavs/LJ007-0078.npy +tests/data/ljspeech/wavs/LJ036-0159.wav|tests/data/ljspeech/wavs/LJ036-0159.npy +tests/data/ljspeech/wavs/LJ014-0132.wav|tests/data/ljspeech/wavs/LJ014-0132.npy +tests/data/ljspeech/wavs/LJ028-0416.wav|tests/data/ljspeech/wavs/LJ028-0416.npy +tests/data/ljspeech/wavs/LJ025-0127.wav|tests/data/ljspeech/wavs/LJ025-0127.npy +tests/data/ljspeech/wavs/LJ005-0240.wav|tests/data/ljspeech/wavs/LJ005-0240.npy +tests/data/ljspeech/wavs/LJ012-0133.wav|tests/data/ljspeech/wavs/LJ012-0133.npy +tests/data/ljspeech/wavs/LJ049-0079.wav|tests/data/ljspeech/wavs/LJ049-0079.npy +tests/data/ljspeech/wavs/LJ029-0205.wav|tests/data/ljspeech/wavs/LJ029-0205.npy +tests/data/ljspeech/wavs/LJ005-0253.wav|tests/data/ljspeech/wavs/LJ005-0253.npy +tests/data/ljspeech/wavs/LJ022-0063.wav|tests/data/ljspeech/wavs/LJ022-0063.npy +tests/data/ljspeech/wavs/LJ035-0131.wav|tests/data/ljspeech/wavs/LJ035-0131.npy +tests/data/ljspeech/wavs/LJ002-0321.wav|tests/data/ljspeech/wavs/LJ002-0321.npy +tests/data/ljspeech/wavs/LJ014-0218.wav|tests/data/ljspeech/wavs/LJ014-0218.npy +tests/data/ljspeech/wavs/LJ019-0154.wav|tests/data/ljspeech/wavs/LJ019-0154.npy +tests/data/ljspeech/wavs/LJ049-0193.wav|tests/data/ljspeech/wavs/LJ049-0193.npy +tests/data/ljspeech/wavs/LJ028-0122.wav|tests/data/ljspeech/wavs/LJ028-0122.npy +tests/data/ljspeech/wavs/LJ014-0175.wav|tests/data/ljspeech/wavs/LJ014-0175.npy +tests/data/ljspeech/wavs/LJ002-0301.wav|tests/data/ljspeech/wavs/LJ002-0301.npy +tests/data/ljspeech/wavs/LJ002-0003.wav|tests/data/ljspeech/wavs/LJ002-0003.npy +tests/data/ljspeech/wavs/LJ003-0217.wav|tests/data/ljspeech/wavs/LJ003-0217.npy +tests/data/ljspeech/wavs/LJ006-0134.wav|tests/data/ljspeech/wavs/LJ006-0134.npy +tests/data/ljspeech/wavs/LJ029-0200.wav|tests/data/ljspeech/wavs/LJ029-0200.npy +tests/data/ljspeech/wavs/LJ032-0187.wav|tests/data/ljspeech/wavs/LJ032-0187.npy +tests/data/ljspeech/wavs/LJ040-0143.wav|tests/data/ljspeech/wavs/LJ040-0143.npy +tests/data/ljspeech/wavs/LJ019-0069.wav|tests/data/ljspeech/wavs/LJ019-0069.npy +tests/data/ljspeech/wavs/LJ038-0285.wav|tests/data/ljspeech/wavs/LJ038-0285.npy +tests/data/ljspeech/wavs/LJ028-0487.wav|tests/data/ljspeech/wavs/LJ028-0487.npy +tests/data/ljspeech/wavs/LJ029-0082.wav|tests/data/ljspeech/wavs/LJ029-0082.npy +tests/data/ljspeech/wavs/LJ014-0327.wav|tests/data/ljspeech/wavs/LJ014-0327.npy +tests/data/ljspeech/wavs/LJ028-0405.wav|tests/data/ljspeech/wavs/LJ028-0405.npy +tests/data/ljspeech/wavs/LJ019-0043.wav|tests/data/ljspeech/wavs/LJ019-0043.npy +tests/data/ljspeech/wavs/LJ002-0243.wav|tests/data/ljspeech/wavs/LJ002-0243.npy +tests/data/ljspeech/wavs/LJ026-0158.wav|tests/data/ljspeech/wavs/LJ026-0158.npy +tests/data/ljspeech/wavs/LJ043-0078.wav|tests/data/ljspeech/wavs/LJ043-0078.npy +tests/data/ljspeech/wavs/LJ026-0135.wav|tests/data/ljspeech/wavs/LJ026-0135.npy +tests/data/ljspeech/wavs/LJ048-0003.wav|tests/data/ljspeech/wavs/LJ048-0003.npy +tests/data/ljspeech/wavs/LJ018-0302.wav|tests/data/ljspeech/wavs/LJ018-0302.npy +tests/data/ljspeech/wavs/LJ018-0376.wav|tests/data/ljspeech/wavs/LJ018-0376.npy +tests/data/ljspeech/wavs/LJ005-0061.wav|tests/data/ljspeech/wavs/LJ005-0061.npy +tests/data/ljspeech/wavs/LJ040-0018.wav|tests/data/ljspeech/wavs/LJ040-0018.npy +tests/data/ljspeech/wavs/LJ019-0264.wav|tests/data/ljspeech/wavs/LJ019-0264.npy +tests/data/ljspeech/wavs/LJ048-0148.wav|tests/data/ljspeech/wavs/LJ048-0148.npy +tests/data/ljspeech/wavs/LJ030-0254.wav|tests/data/ljspeech/wavs/LJ030-0254.npy +tests/data/ljspeech/wavs/LJ042-0106.wav|tests/data/ljspeech/wavs/LJ042-0106.npy +tests/data/ljspeech/wavs/LJ043-0126.wav|tests/data/ljspeech/wavs/LJ043-0126.npy +tests/data/ljspeech/wavs/LJ017-0244.wav|tests/data/ljspeech/wavs/LJ017-0244.npy +tests/data/ljspeech/wavs/LJ004-0100.wav|tests/data/ljspeech/wavs/LJ004-0100.npy +tests/data/ljspeech/wavs/LJ013-0199.wav|tests/data/ljspeech/wavs/LJ013-0199.npy +tests/data/ljspeech/wavs/LJ044-0087.wav|tests/data/ljspeech/wavs/LJ044-0087.npy +tests/data/ljspeech/wavs/LJ010-0300.wav|tests/data/ljspeech/wavs/LJ010-0300.npy +tests/data/ljspeech/wavs/LJ021-0115.wav|tests/data/ljspeech/wavs/LJ021-0115.npy +tests/data/ljspeech/wavs/LJ005-0143.wav|tests/data/ljspeech/wavs/LJ005-0143.npy +tests/data/ljspeech/wavs/LJ030-0239.wav|tests/data/ljspeech/wavs/LJ030-0239.npy +tests/data/ljspeech/wavs/LJ005-0125.wav|tests/data/ljspeech/wavs/LJ005-0125.npy +tests/data/ljspeech/wavs/LJ008-0272.wav|tests/data/ljspeech/wavs/LJ008-0272.npy +tests/data/ljspeech/wavs/LJ011-0178.wav|tests/data/ljspeech/wavs/LJ011-0178.npy +tests/data/ljspeech/wavs/LJ018-0320.wav|tests/data/ljspeech/wavs/LJ018-0320.npy +tests/data/ljspeech/wavs/LJ045-0038.wav|tests/data/ljspeech/wavs/LJ045-0038.npy +tests/data/ljspeech/wavs/LJ011-0143.wav|tests/data/ljspeech/wavs/LJ011-0143.npy +tests/data/ljspeech/wavs/LJ018-0348.wav|tests/data/ljspeech/wavs/LJ018-0348.npy +tests/data/ljspeech/wavs/LJ050-0187.wav|tests/data/ljspeech/wavs/LJ050-0187.npy +tests/data/ljspeech/wavs/LJ018-0215.wav|tests/data/ljspeech/wavs/LJ018-0215.npy +tests/data/ljspeech/wavs/LJ009-0153.wav|tests/data/ljspeech/wavs/LJ009-0153.npy +tests/data/ljspeech/wavs/LJ038-0208.wav|tests/data/ljspeech/wavs/LJ038-0208.npy +tests/data/ljspeech/wavs/LJ041-0199.wav|tests/data/ljspeech/wavs/LJ041-0199.npy +tests/data/ljspeech/wavs/LJ002-0021.wav|tests/data/ljspeech/wavs/LJ002-0021.npy +tests/data/ljspeech/wavs/LJ029-0186.wav|tests/data/ljspeech/wavs/LJ029-0186.npy +tests/data/ljspeech/wavs/LJ010-0073.wav|tests/data/ljspeech/wavs/LJ010-0073.npy +tests/data/ljspeech/wavs/LJ046-0042.wav|tests/data/ljspeech/wavs/LJ046-0042.npy +tests/data/ljspeech/wavs/LJ007-0226.wav|tests/data/ljspeech/wavs/LJ007-0226.npy +tests/data/ljspeech/wavs/LJ010-0227.wav|tests/data/ljspeech/wavs/LJ010-0227.npy +tests/data/ljspeech/wavs/LJ045-0090.wav|tests/data/ljspeech/wavs/LJ045-0090.npy +tests/data/ljspeech/wavs/LJ048-0266.wav|tests/data/ljspeech/wavs/LJ048-0266.npy +tests/data/ljspeech/wavs/LJ016-0307.wav|tests/data/ljspeech/wavs/LJ016-0307.npy +tests/data/ljspeech/wavs/LJ042-0204.wav|tests/data/ljspeech/wavs/LJ042-0204.npy +tests/data/ljspeech/wavs/LJ033-0181.wav|tests/data/ljspeech/wavs/LJ033-0181.npy +tests/data/ljspeech/wavs/LJ047-0165.wav|tests/data/ljspeech/wavs/LJ047-0165.npy +tests/data/ljspeech/wavs/LJ039-0122.wav|tests/data/ljspeech/wavs/LJ039-0122.npy +tests/data/ljspeech/wavs/LJ044-0210.wav|tests/data/ljspeech/wavs/LJ044-0210.npy +tests/data/ljspeech/wavs/LJ016-0145.wav|tests/data/ljspeech/wavs/LJ016-0145.npy +tests/data/ljspeech/wavs/LJ046-0213.wav|tests/data/ljspeech/wavs/LJ046-0213.npy +tests/data/ljspeech/wavs/LJ008-0299.wav|tests/data/ljspeech/wavs/LJ008-0299.npy +tests/data/ljspeech/wavs/LJ049-0110.wav|tests/data/ljspeech/wavs/LJ049-0110.npy +tests/data/ljspeech/wavs/LJ011-0163.wav|tests/data/ljspeech/wavs/LJ011-0163.npy +tests/data/ljspeech/wavs/LJ042-0194.wav|tests/data/ljspeech/wavs/LJ042-0194.npy +tests/data/ljspeech/wavs/LJ048-0106.wav|tests/data/ljspeech/wavs/LJ048-0106.npy +tests/data/ljspeech/wavs/LJ035-0049.wav|tests/data/ljspeech/wavs/LJ035-0049.npy +tests/data/ljspeech/wavs/LJ008-0204.wav|tests/data/ljspeech/wavs/LJ008-0204.npy +tests/data/ljspeech/wavs/LJ005-0118.wav|tests/data/ljspeech/wavs/LJ005-0118.npy +tests/data/ljspeech/wavs/LJ014-0340.wav|tests/data/ljspeech/wavs/LJ014-0340.npy +tests/data/ljspeech/wavs/LJ015-0236.wav|tests/data/ljspeech/wavs/LJ015-0236.npy +tests/data/ljspeech/wavs/LJ049-0201.wav|tests/data/ljspeech/wavs/LJ049-0201.npy +tests/data/ljspeech/wavs/LJ048-0071.wav|tests/data/ljspeech/wavs/LJ048-0071.npy +tests/data/ljspeech/wavs/LJ028-0105.wav|tests/data/ljspeech/wavs/LJ028-0105.npy +tests/data/ljspeech/wavs/LJ033-0128.wav|tests/data/ljspeech/wavs/LJ033-0128.npy +tests/data/ljspeech/wavs/LJ029-0014.wav|tests/data/ljspeech/wavs/LJ029-0014.npy +tests/data/ljspeech/wavs/LJ044-0127.wav|tests/data/ljspeech/wavs/LJ044-0127.npy +tests/data/ljspeech/wavs/LJ046-0236.wav|tests/data/ljspeech/wavs/LJ046-0236.npy +tests/data/ljspeech/wavs/LJ012-0072.wav|tests/data/ljspeech/wavs/LJ012-0072.npy +tests/data/ljspeech/wavs/LJ029-0166.wav|tests/data/ljspeech/wavs/LJ029-0166.npy +tests/data/ljspeech/wavs/LJ034-0142.wav|tests/data/ljspeech/wavs/LJ034-0142.npy +tests/data/ljspeech/wavs/LJ019-0379.wav|tests/data/ljspeech/wavs/LJ019-0379.npy +tests/data/ljspeech/wavs/LJ027-0009.wav|tests/data/ljspeech/wavs/LJ027-0009.npy +tests/data/ljspeech/wavs/LJ040-0152.wav|tests/data/ljspeech/wavs/LJ040-0152.npy +tests/data/ljspeech/wavs/LJ040-0188.wav|tests/data/ljspeech/wavs/LJ040-0188.npy +tests/data/ljspeech/wavs/LJ047-0241.wav|tests/data/ljspeech/wavs/LJ047-0241.npy +tests/data/ljspeech/wavs/LJ029-0108.wav|tests/data/ljspeech/wavs/LJ029-0108.npy +tests/data/ljspeech/wavs/LJ050-0190.wav|tests/data/ljspeech/wavs/LJ050-0190.npy +tests/data/ljspeech/wavs/LJ012-0067.wav|tests/data/ljspeech/wavs/LJ012-0067.npy +tests/data/ljspeech/wavs/LJ016-0365.wav|tests/data/ljspeech/wavs/LJ016-0365.npy +tests/data/ljspeech/wavs/LJ040-0059.wav|tests/data/ljspeech/wavs/LJ040-0059.npy +tests/data/ljspeech/wavs/LJ014-0198.wav|tests/data/ljspeech/wavs/LJ014-0198.npy +tests/data/ljspeech/wavs/LJ020-0058.wav|tests/data/ljspeech/wavs/LJ020-0058.npy +tests/data/ljspeech/wavs/LJ003-0291.wav|tests/data/ljspeech/wavs/LJ003-0291.npy +tests/data/ljspeech/wavs/LJ031-0129.wav|tests/data/ljspeech/wavs/LJ031-0129.npy +tests/data/ljspeech/wavs/LJ012-0145.wav|tests/data/ljspeech/wavs/LJ012-0145.npy +tests/data/ljspeech/wavs/LJ046-0044.wav|tests/data/ljspeech/wavs/LJ046-0044.npy +tests/data/ljspeech/wavs/LJ045-0059.wav|tests/data/ljspeech/wavs/LJ045-0059.npy +tests/data/ljspeech/wavs/LJ043-0058.wav|tests/data/ljspeech/wavs/LJ043-0058.npy +tests/data/ljspeech/wavs/LJ028-0108.wav|tests/data/ljspeech/wavs/LJ028-0108.npy +tests/data/ljspeech/wavs/LJ047-0204.wav|tests/data/ljspeech/wavs/LJ047-0204.npy +tests/data/ljspeech/wavs/LJ044-0219.wav|tests/data/ljspeech/wavs/LJ044-0219.npy +tests/data/ljspeech/wavs/LJ042-0183.wav|tests/data/ljspeech/wavs/LJ042-0183.npy +tests/data/ljspeech/wavs/LJ019-0375.wav|tests/data/ljspeech/wavs/LJ019-0375.npy +tests/data/ljspeech/wavs/LJ004-0046.wav|tests/data/ljspeech/wavs/LJ004-0046.npy +tests/data/ljspeech/wavs/LJ013-0029.wav|tests/data/ljspeech/wavs/LJ013-0029.npy +tests/data/ljspeech/wavs/LJ013-0063.wav|tests/data/ljspeech/wavs/LJ013-0063.npy +tests/data/ljspeech/wavs/LJ006-0063.wav|tests/data/ljspeech/wavs/LJ006-0063.npy +tests/data/ljspeech/wavs/LJ025-0146.wav|tests/data/ljspeech/wavs/LJ025-0146.npy +tests/data/ljspeech/wavs/LJ045-0248.wav|tests/data/ljspeech/wavs/LJ045-0248.npy +tests/data/ljspeech/wavs/LJ017-0057.wav|tests/data/ljspeech/wavs/LJ017-0057.npy +tests/data/ljspeech/wavs/LJ031-0053.wav|tests/data/ljspeech/wavs/LJ031-0053.npy +tests/data/ljspeech/wavs/LJ003-0317.wav|tests/data/ljspeech/wavs/LJ003-0317.npy +tests/data/ljspeech/wavs/LJ049-0152.wav|tests/data/ljspeech/wavs/LJ049-0152.npy +tests/data/ljspeech/wavs/LJ019-0085.wav|tests/data/ljspeech/wavs/LJ019-0085.npy +tests/data/ljspeech/wavs/LJ014-0027.wav|tests/data/ljspeech/wavs/LJ014-0027.npy +tests/data/ljspeech/wavs/LJ025-0165.wav|tests/data/ljspeech/wavs/LJ025-0165.npy +tests/data/ljspeech/wavs/LJ019-0070.wav|tests/data/ljspeech/wavs/LJ019-0070.npy +tests/data/ljspeech/wavs/LJ002-0066.wav|tests/data/ljspeech/wavs/LJ002-0066.npy +tests/data/ljspeech/wavs/LJ041-0049.wav|tests/data/ljspeech/wavs/LJ041-0049.npy +tests/data/ljspeech/wavs/LJ015-0064.wav|tests/data/ljspeech/wavs/LJ015-0064.npy +tests/data/ljspeech/wavs/LJ006-0294.wav|tests/data/ljspeech/wavs/LJ006-0294.npy +tests/data/ljspeech/wavs/LJ046-0228.wav|tests/data/ljspeech/wavs/LJ046-0228.npy +tests/data/ljspeech/wavs/LJ005-0268.wav|tests/data/ljspeech/wavs/LJ005-0268.npy +tests/data/ljspeech/wavs/LJ030-0030.wav|tests/data/ljspeech/wavs/LJ030-0030.npy +tests/data/ljspeech/wavs/LJ006-0254.wav|tests/data/ljspeech/wavs/LJ006-0254.npy +tests/data/ljspeech/wavs/LJ011-0200.wav|tests/data/ljspeech/wavs/LJ011-0200.npy +tests/data/ljspeech/wavs/LJ029-0114.wav|tests/data/ljspeech/wavs/LJ029-0114.npy +tests/data/ljspeech/wavs/LJ010-0291.wav|tests/data/ljspeech/wavs/LJ010-0291.npy +tests/data/ljspeech/wavs/LJ041-0152.wav|tests/data/ljspeech/wavs/LJ041-0152.npy +tests/data/ljspeech/wavs/LJ035-0026.wav|tests/data/ljspeech/wavs/LJ035-0026.npy +tests/data/ljspeech/wavs/LJ012-0170.wav|tests/data/ljspeech/wavs/LJ012-0170.npy +tests/data/ljspeech/wavs/LJ011-0222.wav|tests/data/ljspeech/wavs/LJ011-0222.npy +tests/data/ljspeech/wavs/LJ034-0182.wav|tests/data/ljspeech/wavs/LJ034-0182.npy +tests/data/ljspeech/wavs/LJ003-0219.wav|tests/data/ljspeech/wavs/LJ003-0219.npy +tests/data/ljspeech/wavs/LJ006-0090.wav|tests/data/ljspeech/wavs/LJ006-0090.npy +tests/data/ljspeech/wavs/LJ035-0117.wav|tests/data/ljspeech/wavs/LJ035-0117.npy +tests/data/ljspeech/wavs/LJ013-0167.wav|tests/data/ljspeech/wavs/LJ013-0167.npy +tests/data/ljspeech/wavs/LJ033-0208.wav|tests/data/ljspeech/wavs/LJ033-0208.npy +tests/data/ljspeech/wavs/LJ026-0160.wav|tests/data/ljspeech/wavs/LJ026-0160.npy +tests/data/ljspeech/wavs/LJ045-0135.wav|tests/data/ljspeech/wavs/LJ045-0135.npy +tests/data/ljspeech/wavs/LJ044-0173.wav|tests/data/ljspeech/wavs/LJ044-0173.npy +tests/data/ljspeech/wavs/LJ038-0161.wav|tests/data/ljspeech/wavs/LJ038-0161.npy +tests/data/ljspeech/wavs/LJ048-0269.wav|tests/data/ljspeech/wavs/LJ048-0269.npy +tests/data/ljspeech/wavs/LJ047-0043.wav|tests/data/ljspeech/wavs/LJ047-0043.npy +tests/data/ljspeech/wavs/LJ030-0055.wav|tests/data/ljspeech/wavs/LJ030-0055.npy +tests/data/ljspeech/wavs/LJ043-0048.wav|tests/data/ljspeech/wavs/LJ043-0048.npy +tests/data/ljspeech/wavs/LJ008-0209.wav|tests/data/ljspeech/wavs/LJ008-0209.npy +tests/data/ljspeech/wavs/LJ031-0220.wav|tests/data/ljspeech/wavs/LJ031-0220.npy +tests/data/ljspeech/wavs/LJ016-0023.wav|tests/data/ljspeech/wavs/LJ016-0023.npy +tests/data/ljspeech/wavs/LJ003-0290.wav|tests/data/ljspeech/wavs/LJ003-0290.npy +tests/data/ljspeech/wavs/LJ018-0303.wav|tests/data/ljspeech/wavs/LJ018-0303.npy +tests/data/ljspeech/wavs/LJ042-0026.wav|tests/data/ljspeech/wavs/LJ042-0026.npy +tests/data/ljspeech/wavs/LJ042-0105.wav|tests/data/ljspeech/wavs/LJ042-0105.npy +tests/data/ljspeech/wavs/LJ009-0247.wav|tests/data/ljspeech/wavs/LJ009-0247.npy +tests/data/ljspeech/wavs/LJ017-0137.wav|tests/data/ljspeech/wavs/LJ017-0137.npy +tests/data/ljspeech/wavs/LJ015-0299.wav|tests/data/ljspeech/wavs/LJ015-0299.npy +tests/data/ljspeech/wavs/LJ030-0104.wav|tests/data/ljspeech/wavs/LJ030-0104.npy +tests/data/ljspeech/wavs/LJ048-0250.wav|tests/data/ljspeech/wavs/LJ048-0250.npy +tests/data/ljspeech/wavs/LJ022-0175.wav|tests/data/ljspeech/wavs/LJ022-0175.npy +tests/data/ljspeech/wavs/LJ009-0016.wav|tests/data/ljspeech/wavs/LJ009-0016.npy +tests/data/ljspeech/wavs/LJ004-0245.wav|tests/data/ljspeech/wavs/LJ004-0245.npy +tests/data/ljspeech/wavs/LJ017-0098.wav|tests/data/ljspeech/wavs/LJ017-0098.npy +tests/data/ljspeech/wavs/LJ050-0245.wav|tests/data/ljspeech/wavs/LJ050-0245.npy +tests/data/ljspeech/wavs/LJ002-0207.wav|tests/data/ljspeech/wavs/LJ002-0207.npy +tests/data/ljspeech/wavs/LJ043-0066.wav|tests/data/ljspeech/wavs/LJ043-0066.npy +tests/data/ljspeech/wavs/LJ018-0186.wav|tests/data/ljspeech/wavs/LJ018-0186.npy +tests/data/ljspeech/wavs/LJ015-0245.wav|tests/data/ljspeech/wavs/LJ015-0245.npy +tests/data/ljspeech/wavs/LJ019-0041.wav|tests/data/ljspeech/wavs/LJ019-0041.npy +tests/data/ljspeech/wavs/LJ018-0307.wav|tests/data/ljspeech/wavs/LJ018-0307.npy +tests/data/ljspeech/wavs/LJ021-0101.wav|tests/data/ljspeech/wavs/LJ021-0101.npy +tests/data/ljspeech/wavs/LJ031-0204.wav|tests/data/ljspeech/wavs/LJ031-0204.npy +tests/data/ljspeech/wavs/LJ031-0057.wav|tests/data/ljspeech/wavs/LJ031-0057.npy +tests/data/ljspeech/wavs/LJ032-0083.wav|tests/data/ljspeech/wavs/LJ032-0083.npy +tests/data/ljspeech/wavs/LJ028-0174.wav|tests/data/ljspeech/wavs/LJ028-0174.npy +tests/data/ljspeech/wavs/LJ019-0167.wav|tests/data/ljspeech/wavs/LJ019-0167.npy +tests/data/ljspeech/wavs/LJ019-0019.wav|tests/data/ljspeech/wavs/LJ019-0019.npy +tests/data/ljspeech/wavs/LJ034-0100.wav|tests/data/ljspeech/wavs/LJ034-0100.npy +tests/data/ljspeech/wavs/LJ019-0025.wav|tests/data/ljspeech/wavs/LJ019-0025.npy +tests/data/ljspeech/wavs/LJ030-0034.wav|tests/data/ljspeech/wavs/LJ030-0034.npy +tests/data/ljspeech/wavs/LJ034-0085.wav|tests/data/ljspeech/wavs/LJ034-0085.npy +tests/data/ljspeech/wavs/LJ050-0061.wav|tests/data/ljspeech/wavs/LJ050-0061.npy +tests/data/ljspeech/wavs/LJ019-0201.wav|tests/data/ljspeech/wavs/LJ019-0201.npy +tests/data/ljspeech/wavs/LJ014-0331.wav|tests/data/ljspeech/wavs/LJ014-0331.npy +tests/data/ljspeech/wavs/LJ017-0079.wav|tests/data/ljspeech/wavs/LJ017-0079.npy +tests/data/ljspeech/wavs/LJ014-0006.wav|tests/data/ljspeech/wavs/LJ014-0006.npy +tests/data/ljspeech/wavs/LJ019-0027.wav|tests/data/ljspeech/wavs/LJ019-0027.npy +tests/data/ljspeech/wavs/LJ046-0218.wav|tests/data/ljspeech/wavs/LJ046-0218.npy +tests/data/ljspeech/wavs/LJ030-0021.wav|tests/data/ljspeech/wavs/LJ030-0021.npy +tests/data/ljspeech/wavs/LJ040-0026.wav|tests/data/ljspeech/wavs/LJ040-0026.npy +tests/data/ljspeech/wavs/LJ033-0136.wav|tests/data/ljspeech/wavs/LJ033-0136.npy +tests/data/ljspeech/wavs/LJ032-0249.wav|tests/data/ljspeech/wavs/LJ032-0249.npy +tests/data/ljspeech/wavs/LJ015-0087.wav|tests/data/ljspeech/wavs/LJ015-0087.npy +tests/data/ljspeech/wavs/LJ038-0204.wav|tests/data/ljspeech/wavs/LJ038-0204.npy +tests/data/ljspeech/wavs/LJ016-0406.wav|tests/data/ljspeech/wavs/LJ016-0406.npy +tests/data/ljspeech/wavs/LJ019-0350.wav|tests/data/ljspeech/wavs/LJ019-0350.npy +tests/data/ljspeech/wavs/LJ009-0145.wav|tests/data/ljspeech/wavs/LJ009-0145.npy +tests/data/ljspeech/wavs/LJ022-0119.wav|tests/data/ljspeech/wavs/LJ022-0119.npy +tests/data/ljspeech/wavs/LJ019-0125.wav|tests/data/ljspeech/wavs/LJ019-0125.npy +tests/data/ljspeech/wavs/LJ007-0118.wav|tests/data/ljspeech/wavs/LJ007-0118.npy +tests/data/ljspeech/wavs/LJ048-0105.wav|tests/data/ljspeech/wavs/LJ048-0105.npy +tests/data/ljspeech/wavs/LJ015-0096.wav|tests/data/ljspeech/wavs/LJ015-0096.npy +tests/data/ljspeech/wavs/LJ034-0032.wav|tests/data/ljspeech/wavs/LJ034-0032.npy +tests/data/ljspeech/wavs/LJ005-0011.wav|tests/data/ljspeech/wavs/LJ005-0011.npy +tests/data/ljspeech/wavs/LJ041-0031.wav|tests/data/ljspeech/wavs/LJ041-0031.npy +tests/data/ljspeech/wavs/LJ046-0090.wav|tests/data/ljspeech/wavs/LJ046-0090.npy +tests/data/ljspeech/wavs/LJ026-0014.wav|tests/data/ljspeech/wavs/LJ026-0014.npy +tests/data/ljspeech/wavs/LJ012-0023.wav|tests/data/ljspeech/wavs/LJ012-0023.npy +tests/data/ljspeech/wavs/LJ007-0034.wav|tests/data/ljspeech/wavs/LJ007-0034.npy +tests/data/ljspeech/wavs/LJ044-0009.wav|tests/data/ljspeech/wavs/LJ044-0009.npy +tests/data/ljspeech/wavs/LJ022-0004.wav|tests/data/ljspeech/wavs/LJ022-0004.npy +tests/data/ljspeech/wavs/LJ049-0136.wav|tests/data/ljspeech/wavs/LJ049-0136.npy +tests/data/ljspeech/wavs/LJ050-0151.wav|tests/data/ljspeech/wavs/LJ050-0151.npy +tests/data/ljspeech/wavs/LJ003-0316.wav|tests/data/ljspeech/wavs/LJ003-0316.npy +tests/data/ljspeech/wavs/LJ042-0227.wav|tests/data/ljspeech/wavs/LJ042-0227.npy +tests/data/ljspeech/wavs/LJ050-0139.wav|tests/data/ljspeech/wavs/LJ050-0139.npy +tests/data/ljspeech/wavs/LJ006-0057.wav|tests/data/ljspeech/wavs/LJ006-0057.npy +tests/data/ljspeech/wavs/LJ042-0046.wav|tests/data/ljspeech/wavs/LJ042-0046.npy +tests/data/ljspeech/wavs/LJ004-0013.wav|tests/data/ljspeech/wavs/LJ004-0013.npy +tests/data/ljspeech/wavs/LJ007-0050.wav|tests/data/ljspeech/wavs/LJ007-0050.npy +tests/data/ljspeech/wavs/LJ007-0094.wav|tests/data/ljspeech/wavs/LJ007-0094.npy +tests/data/ljspeech/wavs/LJ039-0077.wav|tests/data/ljspeech/wavs/LJ039-0077.npy +tests/data/ljspeech/wavs/LJ009-0225.wav|tests/data/ljspeech/wavs/LJ009-0225.npy +tests/data/ljspeech/wavs/LJ042-0122.wav|tests/data/ljspeech/wavs/LJ042-0122.npy +tests/data/ljspeech/wavs/LJ048-0175.wav|tests/data/ljspeech/wavs/LJ048-0175.npy +tests/data/ljspeech/wavs/LJ006-0252.wav|tests/data/ljspeech/wavs/LJ006-0252.npy +tests/data/ljspeech/wavs/LJ006-0224.wav|tests/data/ljspeech/wavs/LJ006-0224.npy +tests/data/ljspeech/wavs/LJ039-0235.wav|tests/data/ljspeech/wavs/LJ039-0235.npy +tests/data/ljspeech/wavs/LJ028-0388.wav|tests/data/ljspeech/wavs/LJ028-0388.npy +tests/data/ljspeech/wavs/LJ020-0074.wav|tests/data/ljspeech/wavs/LJ020-0074.npy +tests/data/ljspeech/wavs/LJ002-0209.wav|tests/data/ljspeech/wavs/LJ002-0209.npy +tests/data/ljspeech/wavs/LJ007-0029.wav|tests/data/ljspeech/wavs/LJ007-0029.npy +tests/data/ljspeech/wavs/LJ047-0108.wav|tests/data/ljspeech/wavs/LJ047-0108.npy +tests/data/ljspeech/wavs/LJ008-0051.wav|tests/data/ljspeech/wavs/LJ008-0051.npy +tests/data/ljspeech/wavs/LJ029-0028.wav|tests/data/ljspeech/wavs/LJ029-0028.npy +tests/data/ljspeech/wavs/LJ046-0199.wav|tests/data/ljspeech/wavs/LJ046-0199.npy +tests/data/ljspeech/wavs/LJ041-0196.wav|tests/data/ljspeech/wavs/LJ041-0196.npy +tests/data/ljspeech/wavs/LJ044-0149.wav|tests/data/ljspeech/wavs/LJ044-0149.npy +tests/data/ljspeech/wavs/LJ035-0047.wav|tests/data/ljspeech/wavs/LJ035-0047.npy +tests/data/ljspeech/wavs/LJ012-0074.wav|tests/data/ljspeech/wavs/LJ012-0074.npy +tests/data/ljspeech/wavs/LJ002-0074.wav|tests/data/ljspeech/wavs/LJ002-0074.npy +tests/data/ljspeech/wavs/LJ045-0023.wav|tests/data/ljspeech/wavs/LJ045-0023.npy +tests/data/ljspeech/wavs/LJ002-0079.wav|tests/data/ljspeech/wavs/LJ002-0079.npy +tests/data/ljspeech/wavs/LJ011-0131.wav|tests/data/ljspeech/wavs/LJ011-0131.npy +tests/data/ljspeech/wavs/LJ020-0024.wav|tests/data/ljspeech/wavs/LJ020-0024.npy +tests/data/ljspeech/wavs/LJ036-0131.wav|tests/data/ljspeech/wavs/LJ036-0131.npy +tests/data/ljspeech/wavs/LJ046-0039.wav|tests/data/ljspeech/wavs/LJ046-0039.npy +tests/data/ljspeech/wavs/LJ001-0169.wav|tests/data/ljspeech/wavs/LJ001-0169.npy +tests/data/ljspeech/wavs/LJ003-0167.wav|tests/data/ljspeech/wavs/LJ003-0167.npy +tests/data/ljspeech/wavs/LJ028-0219.wav|tests/data/ljspeech/wavs/LJ028-0219.npy +tests/data/ljspeech/wavs/LJ050-0252.wav|tests/data/ljspeech/wavs/LJ050-0252.npy +tests/data/ljspeech/wavs/LJ044-0097.wav|tests/data/ljspeech/wavs/LJ044-0097.npy +tests/data/ljspeech/wavs/LJ049-0033.wav|tests/data/ljspeech/wavs/LJ049-0033.npy +tests/data/ljspeech/wavs/LJ044-0206.wav|tests/data/ljspeech/wavs/LJ044-0206.npy +tests/data/ljspeech/wavs/LJ035-0016.wav|tests/data/ljspeech/wavs/LJ035-0016.npy +tests/data/ljspeech/wavs/LJ017-0246.wav|tests/data/ljspeech/wavs/LJ017-0246.npy +tests/data/ljspeech/wavs/LJ034-0207.wav|tests/data/ljspeech/wavs/LJ034-0207.npy +tests/data/ljspeech/wavs/LJ027-0034.wav|tests/data/ljspeech/wavs/LJ027-0034.npy +tests/data/ljspeech/wavs/LJ047-0178.wav|tests/data/ljspeech/wavs/LJ047-0178.npy +tests/data/ljspeech/wavs/LJ044-0104.wav|tests/data/ljspeech/wavs/LJ044-0104.npy +tests/data/ljspeech/wavs/LJ010-0109.wav|tests/data/ljspeech/wavs/LJ010-0109.npy +tests/data/ljspeech/wavs/LJ012-0200.wav|tests/data/ljspeech/wavs/LJ012-0200.npy +tests/data/ljspeech/wavs/LJ048-0184.wav|tests/data/ljspeech/wavs/LJ048-0184.npy +tests/data/ljspeech/wavs/LJ001-0154.wav|tests/data/ljspeech/wavs/LJ001-0154.npy +tests/data/ljspeech/wavs/LJ011-0212.wav|tests/data/ljspeech/wavs/LJ011-0212.npy +tests/data/ljspeech/wavs/LJ019-0139.wav|tests/data/ljspeech/wavs/LJ019-0139.npy +tests/data/ljspeech/wavs/LJ017-0099.wav|tests/data/ljspeech/wavs/LJ017-0099.npy +tests/data/ljspeech/wavs/LJ037-0084.wav|tests/data/ljspeech/wavs/LJ037-0084.npy +tests/data/ljspeech/wavs/LJ048-0017.wav|tests/data/ljspeech/wavs/LJ048-0017.npy +tests/data/ljspeech/wavs/LJ004-0066.wav|tests/data/ljspeech/wavs/LJ004-0066.npy +tests/data/ljspeech/wavs/LJ034-0023.wav|tests/data/ljspeech/wavs/LJ034-0023.npy +tests/data/ljspeech/wavs/LJ027-0143.wav|tests/data/ljspeech/wavs/LJ027-0143.npy +tests/data/ljspeech/wavs/LJ050-0001.wav|tests/data/ljspeech/wavs/LJ050-0001.npy +tests/data/ljspeech/wavs/LJ005-0098.wav|tests/data/ljspeech/wavs/LJ005-0098.npy +tests/data/ljspeech/wavs/LJ009-0295.wav|tests/data/ljspeech/wavs/LJ009-0295.npy +tests/data/ljspeech/wavs/LJ013-0133.wav|tests/data/ljspeech/wavs/LJ013-0133.npy +tests/data/ljspeech/wavs/LJ037-0147.wav|tests/data/ljspeech/wavs/LJ037-0147.npy +tests/data/ljspeech/wavs/LJ028-0324.wav|tests/data/ljspeech/wavs/LJ028-0324.npy +tests/data/ljspeech/wavs/LJ047-0152.wav|tests/data/ljspeech/wavs/LJ047-0152.npy +tests/data/ljspeech/wavs/LJ048-0186.wav|tests/data/ljspeech/wavs/LJ048-0186.npy +tests/data/ljspeech/wavs/LJ049-0022.wav|tests/data/ljspeech/wavs/LJ049-0022.npy +tests/data/ljspeech/wavs/LJ005-0006.wav|tests/data/ljspeech/wavs/LJ005-0006.npy +tests/data/ljspeech/wavs/LJ012-0100.wav|tests/data/ljspeech/wavs/LJ012-0100.npy +tests/data/ljspeech/wavs/LJ014-0129.wav|tests/data/ljspeech/wavs/LJ014-0129.npy +tests/data/ljspeech/wavs/LJ012-0270.wav|tests/data/ljspeech/wavs/LJ012-0270.npy +tests/data/ljspeech/wavs/LJ018-0112.wav|tests/data/ljspeech/wavs/LJ018-0112.npy +tests/data/ljspeech/wavs/LJ012-0238.wav|tests/data/ljspeech/wavs/LJ012-0238.npy +tests/data/ljspeech/wavs/LJ018-0107.wav|tests/data/ljspeech/wavs/LJ018-0107.npy +tests/data/ljspeech/wavs/LJ005-0052.wav|tests/data/ljspeech/wavs/LJ005-0052.npy +tests/data/ljspeech/wavs/LJ013-0086.wav|tests/data/ljspeech/wavs/LJ013-0086.npy +tests/data/ljspeech/wavs/LJ015-0039.wav|tests/data/ljspeech/wavs/LJ015-0039.npy +tests/data/ljspeech/wavs/LJ003-0085.wav|tests/data/ljspeech/wavs/LJ003-0085.npy +tests/data/ljspeech/wavs/LJ020-0046.wav|tests/data/ljspeech/wavs/LJ020-0046.npy +tests/data/ljspeech/wavs/LJ037-0107.wav|tests/data/ljspeech/wavs/LJ037-0107.npy +tests/data/ljspeech/wavs/LJ006-0093.wav|tests/data/ljspeech/wavs/LJ006-0093.npy +tests/data/ljspeech/wavs/LJ049-0108.wav|tests/data/ljspeech/wavs/LJ049-0108.npy +tests/data/ljspeech/wavs/LJ010-0247.wav|tests/data/ljspeech/wavs/LJ010-0247.npy +tests/data/ljspeech/wavs/LJ049-0150.wav|tests/data/ljspeech/wavs/LJ049-0150.npy +tests/data/ljspeech/wavs/LJ043-0168.wav|tests/data/ljspeech/wavs/LJ043-0168.npy +tests/data/ljspeech/wavs/LJ033-0111.wav|tests/data/ljspeech/wavs/LJ033-0111.npy +tests/data/ljspeech/wavs/LJ029-0126.wav|tests/data/ljspeech/wavs/LJ029-0126.npy +tests/data/ljspeech/wavs/LJ040-0150.wav|tests/data/ljspeech/wavs/LJ040-0150.npy +tests/data/ljspeech/wavs/LJ011-0108.wav|tests/data/ljspeech/wavs/LJ011-0108.npy +tests/data/ljspeech/wavs/LJ029-0022.wav|tests/data/ljspeech/wavs/LJ029-0022.npy +tests/data/ljspeech/wavs/LJ038-0081.wav|tests/data/ljspeech/wavs/LJ038-0081.npy +tests/data/ljspeech/wavs/LJ038-0288.wav|tests/data/ljspeech/wavs/LJ038-0288.npy +tests/data/ljspeech/wavs/LJ029-0069.wav|tests/data/ljspeech/wavs/LJ029-0069.npy +tests/data/ljspeech/wavs/LJ019-0241.wav|tests/data/ljspeech/wavs/LJ019-0241.npy +tests/data/ljspeech/wavs/LJ047-0181.wav|tests/data/ljspeech/wavs/LJ047-0181.npy +tests/data/ljspeech/wavs/LJ047-0050.wav|tests/data/ljspeech/wavs/LJ047-0050.npy +tests/data/ljspeech/wavs/LJ012-0064.wav|tests/data/ljspeech/wavs/LJ012-0064.npy +tests/data/ljspeech/wavs/LJ016-0353.wav|tests/data/ljspeech/wavs/LJ016-0353.npy +tests/data/ljspeech/wavs/LJ048-0155.wav|tests/data/ljspeech/wavs/LJ048-0155.npy +tests/data/ljspeech/wavs/LJ007-0104.wav|tests/data/ljspeech/wavs/LJ007-0104.npy +tests/data/ljspeech/wavs/LJ015-0104.wav|tests/data/ljspeech/wavs/LJ015-0104.npy +tests/data/ljspeech/wavs/LJ040-0035.wav|tests/data/ljspeech/wavs/LJ040-0035.npy +tests/data/ljspeech/wavs/LJ008-0094.wav|tests/data/ljspeech/wavs/LJ008-0094.npy +tests/data/ljspeech/wavs/LJ006-0095.wav|tests/data/ljspeech/wavs/LJ006-0095.npy +tests/data/ljspeech/wavs/LJ015-0166.wav|tests/data/ljspeech/wavs/LJ015-0166.npy +tests/data/ljspeech/wavs/LJ007-0072.wav|tests/data/ljspeech/wavs/LJ007-0072.npy +tests/data/ljspeech/wavs/LJ013-0118.wav|tests/data/ljspeech/wavs/LJ013-0118.npy +tests/data/ljspeech/wavs/LJ030-0031.wav|tests/data/ljspeech/wavs/LJ030-0031.npy +tests/data/ljspeech/wavs/LJ016-0357.wav|tests/data/ljspeech/wavs/LJ016-0357.npy +tests/data/ljspeech/wavs/LJ030-0234.wav|tests/data/ljspeech/wavs/LJ030-0234.npy +tests/data/ljspeech/wavs/LJ050-0086.wav|tests/data/ljspeech/wavs/LJ050-0086.npy +tests/data/ljspeech/wavs/LJ008-0286.wav|tests/data/ljspeech/wavs/LJ008-0286.npy +tests/data/ljspeech/wavs/LJ008-0158.wav|tests/data/ljspeech/wavs/LJ008-0158.npy +tests/data/ljspeech/wavs/LJ016-0214.wav|tests/data/ljspeech/wavs/LJ016-0214.npy +tests/data/ljspeech/wavs/LJ007-0010.wav|tests/data/ljspeech/wavs/LJ007-0010.npy +tests/data/ljspeech/wavs/LJ006-0282.wav|tests/data/ljspeech/wavs/LJ006-0282.npy +tests/data/ljspeech/wavs/LJ047-0156.wav|tests/data/ljspeech/wavs/LJ047-0156.npy +tests/data/ljspeech/wavs/LJ030-0157.wav|tests/data/ljspeech/wavs/LJ030-0157.npy +tests/data/ljspeech/wavs/LJ044-0211.wav|tests/data/ljspeech/wavs/LJ044-0211.npy +tests/data/ljspeech/wavs/LJ041-0051.wav|tests/data/ljspeech/wavs/LJ041-0051.npy +tests/data/ljspeech/wavs/LJ007-0140.wav|tests/data/ljspeech/wavs/LJ007-0140.npy +tests/data/ljspeech/wavs/LJ042-0233.wav|tests/data/ljspeech/wavs/LJ042-0233.npy +tests/data/ljspeech/wavs/LJ042-0136.wav|tests/data/ljspeech/wavs/LJ042-0136.npy +tests/data/ljspeech/wavs/LJ041-0115.wav|tests/data/ljspeech/wavs/LJ041-0115.npy +tests/data/ljspeech/wavs/LJ009-0114.wav|tests/data/ljspeech/wavs/LJ009-0114.npy +tests/data/ljspeech/wavs/LJ007-0185.wav|tests/data/ljspeech/wavs/LJ007-0185.npy +tests/data/ljspeech/wavs/LJ005-0242.wav|tests/data/ljspeech/wavs/LJ005-0242.npy +tests/data/ljspeech/wavs/LJ005-0214.wav|tests/data/ljspeech/wavs/LJ005-0214.npy +tests/data/ljspeech/wavs/LJ004-0235.wav|tests/data/ljspeech/wavs/LJ004-0235.npy +tests/data/ljspeech/wavs/LJ008-0039.wav|tests/data/ljspeech/wavs/LJ008-0039.npy +tests/data/ljspeech/wavs/LJ047-0018.wav|tests/data/ljspeech/wavs/LJ047-0018.npy +tests/data/ljspeech/wavs/LJ003-0040.wav|tests/data/ljspeech/wavs/LJ003-0040.npy +tests/data/ljspeech/wavs/LJ046-0219.wav|tests/data/ljspeech/wavs/LJ046-0219.npy +tests/data/ljspeech/wavs/LJ050-0275.wav|tests/data/ljspeech/wavs/LJ050-0275.npy +tests/data/ljspeech/wavs/LJ006-0017.wav|tests/data/ljspeech/wavs/LJ006-0017.npy +tests/data/ljspeech/wavs/LJ006-0027.wav|tests/data/ljspeech/wavs/LJ006-0027.npy +tests/data/ljspeech/wavs/LJ007-0235.wav|tests/data/ljspeech/wavs/LJ007-0235.npy +tests/data/ljspeech/wavs/LJ005-0233.wav|tests/data/ljspeech/wavs/LJ005-0233.npy +tests/data/ljspeech/wavs/LJ004-0121.wav|tests/data/ljspeech/wavs/LJ004-0121.npy +tests/data/ljspeech/wavs/LJ005-0063.wav|tests/data/ljspeech/wavs/LJ005-0063.npy +tests/data/ljspeech/wavs/LJ035-0067.wav|tests/data/ljspeech/wavs/LJ035-0067.npy +tests/data/ljspeech/wavs/LJ007-0045.wav|tests/data/ljspeech/wavs/LJ007-0045.npy +tests/data/ljspeech/wavs/LJ012-0117.wav|tests/data/ljspeech/wavs/LJ012-0117.npy +tests/data/ljspeech/wavs/LJ042-0178.wav|tests/data/ljspeech/wavs/LJ042-0178.npy +tests/data/ljspeech/wavs/LJ005-0192.wav|tests/data/ljspeech/wavs/LJ005-0192.npy +tests/data/ljspeech/wavs/LJ008-0264.wav|tests/data/ljspeech/wavs/LJ008-0264.npy +tests/data/ljspeech/wavs/LJ003-0233.wav|tests/data/ljspeech/wavs/LJ003-0233.npy +tests/data/ljspeech/wavs/LJ004-0036.wav|tests/data/ljspeech/wavs/LJ004-0036.npy +tests/data/ljspeech/wavs/LJ009-0131.wav|tests/data/ljspeech/wavs/LJ009-0131.npy +tests/data/ljspeech/wavs/LJ050-0226.wav|tests/data/ljspeech/wavs/LJ050-0226.npy +tests/data/ljspeech/wavs/LJ002-0196.wav|tests/data/ljspeech/wavs/LJ002-0196.npy +tests/data/ljspeech/wavs/LJ001-0096.wav|tests/data/ljspeech/wavs/LJ001-0096.npy +tests/data/ljspeech/wavs/LJ016-0436.wav|tests/data/ljspeech/wavs/LJ016-0436.npy +tests/data/ljspeech/wavs/LJ004-0005.wav|tests/data/ljspeech/wavs/LJ004-0005.npy +tests/data/ljspeech/wavs/LJ016-0228.wav|tests/data/ljspeech/wavs/LJ016-0228.npy +tests/data/ljspeech/wavs/LJ049-0011.wav|tests/data/ljspeech/wavs/LJ049-0011.npy +tests/data/ljspeech/wavs/LJ031-0016.wav|tests/data/ljspeech/wavs/LJ031-0016.npy +tests/data/ljspeech/wavs/LJ018-0032.wav|tests/data/ljspeech/wavs/LJ018-0032.npy +tests/data/ljspeech/wavs/LJ031-0063.wav|tests/data/ljspeech/wavs/LJ031-0063.npy +tests/data/ljspeech/wavs/LJ016-0377.wav|tests/data/ljspeech/wavs/LJ016-0377.npy +tests/data/ljspeech/wavs/LJ016-0134.wav|tests/data/ljspeech/wavs/LJ016-0134.npy +tests/data/ljspeech/wavs/LJ014-0058.wav|tests/data/ljspeech/wavs/LJ014-0058.npy +tests/data/ljspeech/wavs/LJ001-0059.wav|tests/data/ljspeech/wavs/LJ001-0059.npy +tests/data/ljspeech/wavs/LJ016-0399.wav|tests/data/ljspeech/wavs/LJ016-0399.npy +tests/data/ljspeech/wavs/LJ032-0125.wav|tests/data/ljspeech/wavs/LJ032-0125.npy +tests/data/ljspeech/wavs/LJ032-0065.wav|tests/data/ljspeech/wavs/LJ032-0065.npy +tests/data/ljspeech/wavs/LJ013-0038.wav|tests/data/ljspeech/wavs/LJ013-0038.npy +tests/data/ljspeech/wavs/LJ002-0328.wav|tests/data/ljspeech/wavs/LJ002-0328.npy +tests/data/ljspeech/wavs/LJ017-0084.wav|tests/data/ljspeech/wavs/LJ017-0084.npy +tests/data/ljspeech/wavs/LJ016-0272.wav|tests/data/ljspeech/wavs/LJ016-0272.npy +tests/data/ljspeech/wavs/LJ047-0231.wav|tests/data/ljspeech/wavs/LJ047-0231.npy +tests/data/ljspeech/wavs/LJ014-0287.wav|tests/data/ljspeech/wavs/LJ014-0287.npy +tests/data/ljspeech/wavs/LJ049-0149.wav|tests/data/ljspeech/wavs/LJ049-0149.npy +tests/data/ljspeech/wavs/LJ016-0384.wav|tests/data/ljspeech/wavs/LJ016-0384.npy +tests/data/ljspeech/wavs/LJ012-0195.wav|tests/data/ljspeech/wavs/LJ012-0195.npy +tests/data/ljspeech/wavs/LJ014-0089.wav|tests/data/ljspeech/wavs/LJ014-0089.npy +tests/data/ljspeech/wavs/LJ016-0028.wav|tests/data/ljspeech/wavs/LJ016-0028.npy +tests/data/ljspeech/wavs/LJ031-0108.wav|tests/data/ljspeech/wavs/LJ031-0108.npy +tests/data/ljspeech/wavs/LJ017-0233.wav|tests/data/ljspeech/wavs/LJ017-0233.npy +tests/data/ljspeech/wavs/LJ013-0067.wav|tests/data/ljspeech/wavs/LJ013-0067.npy +tests/data/ljspeech/wavs/LJ014-0100.wav|tests/data/ljspeech/wavs/LJ014-0100.npy +tests/data/ljspeech/wavs/LJ042-0154.wav|tests/data/ljspeech/wavs/LJ042-0154.npy +tests/data/ljspeech/wavs/LJ011-0260.wav|tests/data/ljspeech/wavs/LJ011-0260.npy +tests/data/ljspeech/wavs/LJ011-0065.wav|tests/data/ljspeech/wavs/LJ011-0065.npy +tests/data/ljspeech/wavs/LJ045-0166.wav|tests/data/ljspeech/wavs/LJ045-0166.npy +tests/data/ljspeech/wavs/LJ006-0284.wav|tests/data/ljspeech/wavs/LJ006-0284.npy +tests/data/ljspeech/wavs/LJ037-0080.wav|tests/data/ljspeech/wavs/LJ037-0080.npy +tests/data/ljspeech/wavs/LJ019-0354.wav|tests/data/ljspeech/wavs/LJ019-0354.npy +tests/data/ljspeech/wavs/LJ007-0145.wav|tests/data/ljspeech/wavs/LJ007-0145.npy +tests/data/ljspeech/wavs/LJ034-0199.wav|tests/data/ljspeech/wavs/LJ034-0199.npy +tests/data/ljspeech/wavs/LJ038-0294.wav|tests/data/ljspeech/wavs/LJ038-0294.npy +tests/data/ljspeech/wavs/LJ015-0170.wav|tests/data/ljspeech/wavs/LJ015-0170.npy +tests/data/ljspeech/wavs/LJ001-0001.wav|tests/data/ljspeech/wavs/LJ001-0001.npy +tests/data/ljspeech/wavs/LJ041-0194.wav|tests/data/ljspeech/wavs/LJ041-0194.npy +tests/data/ljspeech/wavs/LJ007-0062.wav|tests/data/ljspeech/wavs/LJ007-0062.npy +tests/data/ljspeech/wavs/LJ029-0043.wav|tests/data/ljspeech/wavs/LJ029-0043.npy +tests/data/ljspeech/wavs/LJ043-0102.wav|tests/data/ljspeech/wavs/LJ043-0102.npy +tests/data/ljspeech/wavs/LJ033-0198.wav|tests/data/ljspeech/wavs/LJ033-0198.npy +tests/data/ljspeech/wavs/LJ006-0271.wav|tests/data/ljspeech/wavs/LJ006-0271.npy +tests/data/ljspeech/wavs/LJ046-0074.wav|tests/data/ljspeech/wavs/LJ046-0074.npy +tests/data/ljspeech/wavs/LJ019-0256.wav|tests/data/ljspeech/wavs/LJ019-0256.npy +tests/data/ljspeech/wavs/LJ019-0364.wav|tests/data/ljspeech/wavs/LJ019-0364.npy +tests/data/ljspeech/wavs/LJ014-0079.wav|tests/data/ljspeech/wavs/LJ014-0079.npy +tests/data/ljspeech/wavs/LJ029-0189.wav|tests/data/ljspeech/wavs/LJ029-0189.npy +tests/data/ljspeech/wavs/LJ034-0140.wav|tests/data/ljspeech/wavs/LJ034-0140.npy +tests/data/ljspeech/wavs/LJ009-0055.wav|tests/data/ljspeech/wavs/LJ009-0055.npy +tests/data/ljspeech/wavs/LJ008-0012.wav|tests/data/ljspeech/wavs/LJ008-0012.npy +tests/data/ljspeech/wavs/LJ016-0015.wav|tests/data/ljspeech/wavs/LJ016-0015.npy +tests/data/ljspeech/wavs/LJ014-0002.wav|tests/data/ljspeech/wavs/LJ014-0002.npy +tests/data/ljspeech/wavs/LJ009-0240.wav|tests/data/ljspeech/wavs/LJ009-0240.npy +tests/data/ljspeech/wavs/LJ010-0183.wav|tests/data/ljspeech/wavs/LJ010-0183.npy +tests/data/ljspeech/wavs/LJ020-0107.wav|tests/data/ljspeech/wavs/LJ020-0107.npy +tests/data/ljspeech/wavs/LJ007-0016.wav|tests/data/ljspeech/wavs/LJ007-0016.npy +tests/data/ljspeech/wavs/LJ045-0086.wav|tests/data/ljspeech/wavs/LJ045-0086.npy +tests/data/ljspeech/wavs/LJ031-0199.wav|tests/data/ljspeech/wavs/LJ031-0199.npy +tests/data/ljspeech/wavs/LJ041-0189.wav|tests/data/ljspeech/wavs/LJ041-0189.npy +tests/data/ljspeech/wavs/LJ046-0246.wav|tests/data/ljspeech/wavs/LJ046-0246.npy +tests/data/ljspeech/wavs/LJ018-0091.wav|tests/data/ljspeech/wavs/LJ018-0091.npy +tests/data/ljspeech/wavs/LJ017-0002.wav|tests/data/ljspeech/wavs/LJ017-0002.npy +tests/data/ljspeech/wavs/LJ035-0176.wav|tests/data/ljspeech/wavs/LJ035-0176.npy +tests/data/ljspeech/wavs/LJ044-0155.wav|tests/data/ljspeech/wavs/LJ044-0155.npy +tests/data/ljspeech/wavs/LJ046-0252.wav|tests/data/ljspeech/wavs/LJ046-0252.npy +tests/data/ljspeech/wavs/LJ016-0065.wav|tests/data/ljspeech/wavs/LJ016-0065.npy +tests/data/ljspeech/wavs/LJ016-0067.wav|tests/data/ljspeech/wavs/LJ016-0067.npy +tests/data/ljspeech/wavs/LJ041-0165.wav|tests/data/ljspeech/wavs/LJ041-0165.npy +tests/data/ljspeech/wavs/LJ038-0232.wav|tests/data/ljspeech/wavs/LJ038-0232.npy +tests/data/ljspeech/wavs/LJ006-0151.wav|tests/data/ljspeech/wavs/LJ006-0151.npy +tests/data/ljspeech/wavs/LJ017-0139.wav|tests/data/ljspeech/wavs/LJ017-0139.npy +tests/data/ljspeech/wavs/LJ008-0130.wav|tests/data/ljspeech/wavs/LJ008-0130.npy +tests/data/ljspeech/wavs/LJ029-0147.wav|tests/data/ljspeech/wavs/LJ029-0147.npy +tests/data/ljspeech/wavs/LJ014-0097.wav|tests/data/ljspeech/wavs/LJ014-0097.npy +tests/data/ljspeech/wavs/LJ032-0131.wav|tests/data/ljspeech/wavs/LJ032-0131.npy +tests/data/ljspeech/wavs/LJ038-0080.wav|tests/data/ljspeech/wavs/LJ038-0080.npy +tests/data/ljspeech/wavs/LJ041-0144.wav|tests/data/ljspeech/wavs/LJ041-0144.npy +tests/data/ljspeech/wavs/LJ040-0133.wav|tests/data/ljspeech/wavs/LJ040-0133.npy +tests/data/ljspeech/wavs/LJ035-0094.wav|tests/data/ljspeech/wavs/LJ035-0094.npy +tests/data/ljspeech/wavs/LJ019-0237.wav|tests/data/ljspeech/wavs/LJ019-0237.npy +tests/data/ljspeech/wavs/LJ032-0275.wav|tests/data/ljspeech/wavs/LJ032-0275.npy +tests/data/ljspeech/wavs/LJ048-0255.wav|tests/data/ljspeech/wavs/LJ048-0255.npy +tests/data/ljspeech/wavs/LJ006-0256.wav|tests/data/ljspeech/wavs/LJ006-0256.npy +tests/data/ljspeech/wavs/LJ040-0170.wav|tests/data/ljspeech/wavs/LJ040-0170.npy +tests/data/ljspeech/wavs/LJ029-0106.wav|tests/data/ljspeech/wavs/LJ029-0106.npy +tests/data/ljspeech/wavs/LJ016-0423.wav|tests/data/ljspeech/wavs/LJ016-0423.npy +tests/data/ljspeech/wavs/LJ005-0227.wav|tests/data/ljspeech/wavs/LJ005-0227.npy +tests/data/ljspeech/wavs/LJ038-0018.wav|tests/data/ljspeech/wavs/LJ038-0018.npy +tests/data/ljspeech/wavs/LJ035-0040.wav|tests/data/ljspeech/wavs/LJ035-0040.npy +tests/data/ljspeech/wavs/LJ028-0133.wav|tests/data/ljspeech/wavs/LJ028-0133.npy +tests/data/ljspeech/wavs/LJ029-0040.wav|tests/data/ljspeech/wavs/LJ029-0040.npy +tests/data/ljspeech/wavs/LJ028-0214.wav|tests/data/ljspeech/wavs/LJ028-0214.npy +tests/data/ljspeech/wavs/LJ007-0172.wav|tests/data/ljspeech/wavs/LJ007-0172.npy +tests/data/ljspeech/wavs/LJ012-0116.wav|tests/data/ljspeech/wavs/LJ012-0116.npy +tests/data/ljspeech/wavs/LJ035-0075.wav|tests/data/ljspeech/wavs/LJ035-0075.npy +tests/data/ljspeech/wavs/LJ047-0173.wav|tests/data/ljspeech/wavs/LJ047-0173.npy +tests/data/ljspeech/wavs/LJ041-0126.wav|tests/data/ljspeech/wavs/LJ041-0126.npy +tests/data/ljspeech/wavs/LJ019-0044.wav|tests/data/ljspeech/wavs/LJ019-0044.npy +tests/data/ljspeech/wavs/LJ050-0111.wav|tests/data/ljspeech/wavs/LJ050-0111.npy +tests/data/ljspeech/wavs/LJ050-0267.wav|tests/data/ljspeech/wavs/LJ050-0267.npy +tests/data/ljspeech/wavs/LJ005-0127.wav|tests/data/ljspeech/wavs/LJ005-0127.npy +tests/data/ljspeech/wavs/LJ011-0007.wav|tests/data/ljspeech/wavs/LJ011-0007.npy +tests/data/ljspeech/wavs/LJ016-0394.wav|tests/data/ljspeech/wavs/LJ016-0394.npy +tests/data/ljspeech/wavs/LJ033-0081.wav|tests/data/ljspeech/wavs/LJ033-0081.npy +tests/data/ljspeech/wavs/LJ011-0025.wav|tests/data/ljspeech/wavs/LJ011-0025.npy +tests/data/ljspeech/wavs/LJ049-0207.wav|tests/data/ljspeech/wavs/LJ049-0207.npy +tests/data/ljspeech/wavs/LJ031-0101.wav|tests/data/ljspeech/wavs/LJ031-0101.npy +tests/data/ljspeech/wavs/LJ002-0295.wav|tests/data/ljspeech/wavs/LJ002-0295.npy +tests/data/ljspeech/wavs/LJ009-0056.wav|tests/data/ljspeech/wavs/LJ009-0056.npy +tests/data/ljspeech/wavs/LJ045-0243.wav|tests/data/ljspeech/wavs/LJ045-0243.npy +tests/data/ljspeech/wavs/LJ005-0165.wav|tests/data/ljspeech/wavs/LJ005-0165.npy +tests/data/ljspeech/wavs/LJ012-0225.wav|tests/data/ljspeech/wavs/LJ012-0225.npy +tests/data/ljspeech/wavs/LJ028-0345.wav|tests/data/ljspeech/wavs/LJ028-0345.npy +tests/data/ljspeech/wavs/LJ003-0221.wav|tests/data/ljspeech/wavs/LJ003-0221.npy +tests/data/ljspeech/wavs/LJ015-0201.wav|tests/data/ljspeech/wavs/LJ015-0201.npy +tests/data/ljspeech/wavs/LJ029-0119.wav|tests/data/ljspeech/wavs/LJ029-0119.npy +tests/data/ljspeech/wavs/LJ012-0094.wav|tests/data/ljspeech/wavs/LJ012-0094.npy +tests/data/ljspeech/wavs/LJ008-0034.wav|tests/data/ljspeech/wavs/LJ008-0034.npy +tests/data/ljspeech/wavs/LJ011-0292.wav|tests/data/ljspeech/wavs/LJ011-0292.npy +tests/data/ljspeech/wavs/LJ041-0134.wav|tests/data/ljspeech/wavs/LJ041-0134.npy +tests/data/ljspeech/wavs/LJ041-0185.wav|tests/data/ljspeech/wavs/LJ041-0185.npy +tests/data/ljspeech/wavs/LJ041-0182.wav|tests/data/ljspeech/wavs/LJ041-0182.npy +tests/data/ljspeech/wavs/LJ006-0177.wav|tests/data/ljspeech/wavs/LJ006-0177.npy +tests/data/ljspeech/wavs/LJ018-0272.wav|tests/data/ljspeech/wavs/LJ018-0272.npy +tests/data/ljspeech/wavs/LJ043-0118.wav|tests/data/ljspeech/wavs/LJ043-0118.npy +tests/data/ljspeech/wavs/LJ045-0226.wav|tests/data/ljspeech/wavs/LJ045-0226.npy +tests/data/ljspeech/wavs/LJ036-0071.wav|tests/data/ljspeech/wavs/LJ036-0071.npy +tests/data/ljspeech/wavs/LJ046-0064.wav|tests/data/ljspeech/wavs/LJ046-0064.npy +tests/data/ljspeech/wavs/LJ029-0081.wav|tests/data/ljspeech/wavs/LJ029-0081.npy +tests/data/ljspeech/wavs/LJ045-0048.wav|tests/data/ljspeech/wavs/LJ045-0048.npy +tests/data/ljspeech/wavs/LJ028-0203.wav|tests/data/ljspeech/wavs/LJ028-0203.npy +tests/data/ljspeech/wavs/LJ007-0153.wav|tests/data/ljspeech/wavs/LJ007-0153.npy +tests/data/ljspeech/wavs/LJ036-0135.wav|tests/data/ljspeech/wavs/LJ036-0135.npy +tests/data/ljspeech/wavs/LJ009-0029.wav|tests/data/ljspeech/wavs/LJ009-0029.npy +tests/data/ljspeech/wavs/LJ028-0253.wav|tests/data/ljspeech/wavs/LJ028-0253.npy +tests/data/ljspeech/wavs/LJ031-0165.wav|tests/data/ljspeech/wavs/LJ031-0165.npy +tests/data/ljspeech/wavs/LJ032-0070.wav|tests/data/ljspeech/wavs/LJ032-0070.npy +tests/data/ljspeech/wavs/LJ049-0220.wav|tests/data/ljspeech/wavs/LJ049-0220.npy +tests/data/ljspeech/wavs/LJ038-0040.wav|tests/data/ljspeech/wavs/LJ038-0040.npy +tests/data/ljspeech/wavs/LJ049-0072.wav|tests/data/ljspeech/wavs/LJ049-0072.npy +tests/data/ljspeech/wavs/LJ006-0011.wav|tests/data/ljspeech/wavs/LJ006-0011.npy +tests/data/ljspeech/wavs/LJ038-0107.wav|tests/data/ljspeech/wavs/LJ038-0107.npy +tests/data/ljspeech/wavs/LJ048-0201.wav|tests/data/ljspeech/wavs/LJ048-0201.npy +tests/data/ljspeech/wavs/LJ028-0033.wav|tests/data/ljspeech/wavs/LJ028-0033.npy +tests/data/ljspeech/wavs/LJ003-0124.wav|tests/data/ljspeech/wavs/LJ003-0124.npy +tests/data/ljspeech/wavs/LJ032-0227.wav|tests/data/ljspeech/wavs/LJ032-0227.npy +tests/data/ljspeech/wavs/LJ049-0196.wav|tests/data/ljspeech/wavs/LJ049-0196.npy +tests/data/ljspeech/wavs/LJ006-0135.wav|tests/data/ljspeech/wavs/LJ006-0135.npy +tests/data/ljspeech/wavs/LJ012-0121.wav|tests/data/ljspeech/wavs/LJ012-0121.npy +tests/data/ljspeech/wavs/LJ028-0073.wav|tests/data/ljspeech/wavs/LJ028-0073.npy +tests/data/ljspeech/wavs/LJ017-0028.wav|tests/data/ljspeech/wavs/LJ017-0028.npy +tests/data/ljspeech/wavs/LJ048-0090.wav|tests/data/ljspeech/wavs/LJ048-0090.npy +tests/data/ljspeech/wavs/LJ026-0038.wav|tests/data/ljspeech/wavs/LJ026-0038.npy +tests/data/ljspeech/wavs/LJ032-0251.wav|tests/data/ljspeech/wavs/LJ032-0251.npy +tests/data/ljspeech/wavs/LJ034-0172.wav|tests/data/ljspeech/wavs/LJ034-0172.npy +tests/data/ljspeech/wavs/LJ007-0067.wav|tests/data/ljspeech/wavs/LJ007-0067.npy +tests/data/ljspeech/wavs/LJ002-0337.wav|tests/data/ljspeech/wavs/LJ002-0337.npy +tests/data/ljspeech/wavs/LJ011-0089.wav|tests/data/ljspeech/wavs/LJ011-0089.npy +tests/data/ljspeech/wavs/LJ012-0160.wav|tests/data/ljspeech/wavs/LJ012-0160.npy +tests/data/ljspeech/wavs/LJ037-0013.wav|tests/data/ljspeech/wavs/LJ037-0013.npy +tests/data/ljspeech/wavs/LJ048-0037.wav|tests/data/ljspeech/wavs/LJ048-0037.npy +tests/data/ljspeech/wavs/LJ029-0095.wav|tests/data/ljspeech/wavs/LJ029-0095.npy +tests/data/ljspeech/wavs/LJ019-0169.wav|tests/data/ljspeech/wavs/LJ019-0169.npy +tests/data/ljspeech/wavs/LJ008-0078.wav|tests/data/ljspeech/wavs/LJ008-0078.npy +tests/data/ljspeech/wavs/LJ047-0102.wav|tests/data/ljspeech/wavs/LJ047-0102.npy +tests/data/ljspeech/wavs/LJ037-0249.wav|tests/data/ljspeech/wavs/LJ037-0249.npy +tests/data/ljspeech/wavs/LJ040-0230.wav|tests/data/ljspeech/wavs/LJ040-0230.npy +tests/data/ljspeech/wavs/LJ008-0063.wav|tests/data/ljspeech/wavs/LJ008-0063.npy +tests/data/ljspeech/wavs/LJ007-0227.wav|tests/data/ljspeech/wavs/LJ007-0227.npy +tests/data/ljspeech/wavs/LJ014-0258.wav|tests/data/ljspeech/wavs/LJ014-0258.npy +tests/data/ljspeech/wavs/LJ034-0034.wav|tests/data/ljspeech/wavs/LJ034-0034.npy +tests/data/ljspeech/wavs/LJ020-0040.wav|tests/data/ljspeech/wavs/LJ020-0040.npy +tests/data/ljspeech/wavs/LJ047-0175.wav|tests/data/ljspeech/wavs/LJ047-0175.npy +tests/data/ljspeech/wavs/LJ046-0225.wav|tests/data/ljspeech/wavs/LJ046-0225.npy +tests/data/ljspeech/wavs/LJ038-0066.wav|tests/data/ljspeech/wavs/LJ038-0066.npy +tests/data/ljspeech/wavs/LJ038-0047.wav|tests/data/ljspeech/wavs/LJ038-0047.npy +tests/data/ljspeech/wavs/LJ037-0170.wav|tests/data/ljspeech/wavs/LJ037-0170.npy +tests/data/ljspeech/wavs/LJ048-0005.wav|tests/data/ljspeech/wavs/LJ048-0005.npy +tests/data/ljspeech/wavs/LJ038-0298.wav|tests/data/ljspeech/wavs/LJ038-0298.npy +tests/data/ljspeech/wavs/LJ008-0242.wav|tests/data/ljspeech/wavs/LJ008-0242.npy +tests/data/ljspeech/wavs/LJ029-0087.wav|tests/data/ljspeech/wavs/LJ029-0087.npy +tests/data/ljspeech/wavs/LJ034-0194.wav|tests/data/ljspeech/wavs/LJ034-0194.npy +tests/data/ljspeech/wavs/LJ008-0277.wav|tests/data/ljspeech/wavs/LJ008-0277.npy +tests/data/ljspeech/wavs/LJ012-0110.wav|tests/data/ljspeech/wavs/LJ012-0110.npy +tests/data/ljspeech/wavs/LJ030-0014.wav|tests/data/ljspeech/wavs/LJ030-0014.npy +tests/data/ljspeech/wavs/LJ048-0178.wav|tests/data/ljspeech/wavs/LJ048-0178.npy +tests/data/ljspeech/wavs/LJ041-0151.wav|tests/data/ljspeech/wavs/LJ041-0151.npy +tests/data/ljspeech/wavs/LJ045-0104.wav|tests/data/ljspeech/wavs/LJ045-0104.npy +tests/data/ljspeech/wavs/LJ036-0046.wav|tests/data/ljspeech/wavs/LJ036-0046.npy +tests/data/ljspeech/wavs/LJ044-0153.wav|tests/data/ljspeech/wavs/LJ044-0153.npy +tests/data/ljspeech/wavs/LJ043-0147.wav|tests/data/ljspeech/wavs/LJ043-0147.npy +tests/data/ljspeech/wavs/LJ043-0177.wav|tests/data/ljspeech/wavs/LJ043-0177.npy +tests/data/ljspeech/wavs/LJ004-0242.wav|tests/data/ljspeech/wavs/LJ004-0242.npy +tests/data/ljspeech/wavs/LJ029-0142.wav|tests/data/ljspeech/wavs/LJ029-0142.npy +tests/data/ljspeech/wavs/LJ003-0011.wav|tests/data/ljspeech/wavs/LJ003-0011.npy +tests/data/ljspeech/wavs/LJ005-0047.wav|tests/data/ljspeech/wavs/LJ005-0047.npy +tests/data/ljspeech/wavs/LJ048-0168.wav|tests/data/ljspeech/wavs/LJ048-0168.npy +tests/data/ljspeech/wavs/LJ044-0041.wav|tests/data/ljspeech/wavs/LJ044-0041.npy +tests/data/ljspeech/wavs/LJ048-0273.wav|tests/data/ljspeech/wavs/LJ048-0273.npy +tests/data/ljspeech/wavs/LJ048-0187.wav|tests/data/ljspeech/wavs/LJ048-0187.npy +tests/data/ljspeech/wavs/LJ005-0128.wav|tests/data/ljspeech/wavs/LJ005-0128.npy +tests/data/ljspeech/wavs/LJ048-0063.wav|tests/data/ljspeech/wavs/LJ048-0063.npy +tests/data/ljspeech/wavs/LJ019-0373.wav|tests/data/ljspeech/wavs/LJ019-0373.npy +tests/data/ljspeech/wavs/LJ037-0139.wav|tests/data/ljspeech/wavs/LJ037-0139.npy +tests/data/ljspeech/wavs/LJ005-0055.wav|tests/data/ljspeech/wavs/LJ005-0055.npy +tests/data/ljspeech/wavs/LJ031-0019.wav|tests/data/ljspeech/wavs/LJ031-0019.npy +tests/data/ljspeech/wavs/LJ050-0229.wav|tests/data/ljspeech/wavs/LJ050-0229.npy +tests/data/ljspeech/wavs/LJ048-0110.wav|tests/data/ljspeech/wavs/LJ048-0110.npy +tests/data/ljspeech/wavs/LJ042-0030.wav|tests/data/ljspeech/wavs/LJ042-0030.npy +tests/data/ljspeech/wavs/LJ002-0322.wav|tests/data/ljspeech/wavs/LJ002-0322.npy +tests/data/ljspeech/wavs/LJ019-0255.wav|tests/data/ljspeech/wavs/LJ019-0255.npy +tests/data/ljspeech/wavs/LJ046-0066.wav|tests/data/ljspeech/wavs/LJ046-0066.npy +tests/data/ljspeech/wavs/LJ018-0313.wav|tests/data/ljspeech/wavs/LJ018-0313.npy +tests/data/ljspeech/wavs/LJ041-0058.wav|tests/data/ljspeech/wavs/LJ041-0058.npy +tests/data/ljspeech/wavs/LJ028-0243.wav|tests/data/ljspeech/wavs/LJ028-0243.npy +tests/data/ljspeech/wavs/LJ028-0489.wav|tests/data/ljspeech/wavs/LJ028-0489.npy +tests/data/ljspeech/wavs/LJ029-0061.wav|tests/data/ljspeech/wavs/LJ029-0061.npy +tests/data/ljspeech/wavs/LJ003-0008.wav|tests/data/ljspeech/wavs/LJ003-0008.npy +tests/data/ljspeech/wavs/LJ050-0234.wav|tests/data/ljspeech/wavs/LJ050-0234.npy +tests/data/ljspeech/wavs/LJ026-0043.wav|tests/data/ljspeech/wavs/LJ026-0043.npy +tests/data/ljspeech/wavs/LJ016-0390.wav|tests/data/ljspeech/wavs/LJ016-0390.npy +tests/data/ljspeech/wavs/LJ034-0074.wav|tests/data/ljspeech/wavs/LJ034-0074.npy +tests/data/ljspeech/wavs/LJ031-0205.wav|tests/data/ljspeech/wavs/LJ031-0205.npy +tests/data/ljspeech/wavs/LJ046-0222.wav|tests/data/ljspeech/wavs/LJ046-0222.npy +tests/data/ljspeech/wavs/LJ044-0118.wav|tests/data/ljspeech/wavs/LJ044-0118.npy +tests/data/ljspeech/wavs/LJ016-0435.wav|tests/data/ljspeech/wavs/LJ016-0435.npy +tests/data/ljspeech/wavs/LJ041-0072.wav|tests/data/ljspeech/wavs/LJ041-0072.npy +tests/data/ljspeech/wavs/LJ035-0076.wav|tests/data/ljspeech/wavs/LJ035-0076.npy +tests/data/ljspeech/wavs/LJ006-0048.wav|tests/data/ljspeech/wavs/LJ006-0048.npy +tests/data/ljspeech/wavs/LJ014-0096.wav|tests/data/ljspeech/wavs/LJ014-0096.npy +tests/data/ljspeech/wavs/LJ012-0101.wav|tests/data/ljspeech/wavs/LJ012-0101.npy +tests/data/ljspeech/wavs/LJ028-0027.wav|tests/data/ljspeech/wavs/LJ028-0027.npy +tests/data/ljspeech/wavs/LJ006-0058.wav|tests/data/ljspeech/wavs/LJ006-0058.npy +tests/data/ljspeech/wavs/LJ035-0020.wav|tests/data/ljspeech/wavs/LJ035-0020.npy +tests/data/ljspeech/wavs/LJ034-0059.wav|tests/data/ljspeech/wavs/LJ034-0059.npy +tests/data/ljspeech/wavs/LJ001-0003.wav|tests/data/ljspeech/wavs/LJ001-0003.npy +tests/data/ljspeech/wavs/LJ040-0199.wav|tests/data/ljspeech/wavs/LJ040-0199.npy +tests/data/ljspeech/wavs/LJ011-0043.wav|tests/data/ljspeech/wavs/LJ011-0043.npy +tests/data/ljspeech/wavs/LJ004-0224.wav|tests/data/ljspeech/wavs/LJ004-0224.npy +tests/data/ljspeech/wavs/LJ049-0205.wav|tests/data/ljspeech/wavs/LJ049-0205.npy +tests/data/ljspeech/wavs/LJ006-0231.wav|tests/data/ljspeech/wavs/LJ006-0231.npy +tests/data/ljspeech/wavs/LJ045-0148.wav|tests/data/ljspeech/wavs/LJ045-0148.npy +tests/data/ljspeech/wavs/LJ012-0091.wav|tests/data/ljspeech/wavs/LJ012-0091.npy +tests/data/ljspeech/wavs/LJ002-0027.wav|tests/data/ljspeech/wavs/LJ002-0027.npy +tests/data/ljspeech/wavs/LJ048-0072.wav|tests/data/ljspeech/wavs/LJ048-0072.npy +tests/data/ljspeech/wavs/LJ006-0199.wav|tests/data/ljspeech/wavs/LJ006-0199.npy +tests/data/ljspeech/wavs/LJ019-0300.wav|tests/data/ljspeech/wavs/LJ019-0300.npy +tests/data/ljspeech/wavs/LJ018-0044.wav|tests/data/ljspeech/wavs/LJ018-0044.npy +tests/data/ljspeech/wavs/LJ047-0106.wav|tests/data/ljspeech/wavs/LJ047-0106.npy +tests/data/ljspeech/wavs/LJ045-0182.wav|tests/data/ljspeech/wavs/LJ045-0182.npy +tests/data/ljspeech/wavs/LJ012-0095.wav|tests/data/ljspeech/wavs/LJ012-0095.npy +tests/data/ljspeech/wavs/LJ031-0056.wav|tests/data/ljspeech/wavs/LJ031-0056.npy +tests/data/ljspeech/wavs/LJ007-0063.wav|tests/data/ljspeech/wavs/LJ007-0063.npy +tests/data/ljspeech/wavs/LJ048-0011.wav|tests/data/ljspeech/wavs/LJ048-0011.npy +tests/data/ljspeech/wavs/LJ028-0284.wav|tests/data/ljspeech/wavs/LJ028-0284.npy +tests/data/ljspeech/wavs/LJ004-0234.wav|tests/data/ljspeech/wavs/LJ004-0234.npy +tests/data/ljspeech/wavs/LJ041-0030.wav|tests/data/ljspeech/wavs/LJ041-0030.npy +tests/data/ljspeech/wavs/LJ039-0127.wav|tests/data/ljspeech/wavs/LJ039-0127.npy +tests/data/ljspeech/wavs/LJ039-0096.wav|tests/data/ljspeech/wavs/LJ039-0096.npy +tests/data/ljspeech/wavs/LJ032-0032.wav|tests/data/ljspeech/wavs/LJ032-0032.npy +tests/data/ljspeech/wavs/LJ012-0234.wav|tests/data/ljspeech/wavs/LJ012-0234.npy +tests/data/ljspeech/wavs/LJ016-0105.wav|tests/data/ljspeech/wavs/LJ016-0105.npy +tests/data/ljspeech/wavs/LJ031-0071.wav|tests/data/ljspeech/wavs/LJ031-0071.npy +tests/data/ljspeech/wavs/LJ007-0125.wav|tests/data/ljspeech/wavs/LJ007-0125.npy +tests/data/ljspeech/wavs/LJ017-0120.wav|tests/data/ljspeech/wavs/LJ017-0120.npy +tests/data/ljspeech/wavs/LJ050-0277.wav|tests/data/ljspeech/wavs/LJ050-0277.npy +tests/data/ljspeech/wavs/LJ012-0187.wav|tests/data/ljspeech/wavs/LJ012-0187.npy +tests/data/ljspeech/wavs/LJ038-0275.wav|tests/data/ljspeech/wavs/LJ038-0275.npy +tests/data/ljspeech/wavs/LJ018-0292.wav|tests/data/ljspeech/wavs/LJ018-0292.npy +tests/data/ljspeech/wavs/LJ016-0042.wav|tests/data/ljspeech/wavs/LJ016-0042.npy +tests/data/ljspeech/wavs/LJ008-0042.wav|tests/data/ljspeech/wavs/LJ008-0042.npy +tests/data/ljspeech/wavs/LJ040-0023.wav|tests/data/ljspeech/wavs/LJ040-0023.npy +tests/data/ljspeech/wavs/LJ033-0134.wav|tests/data/ljspeech/wavs/LJ033-0134.npy +tests/data/ljspeech/wavs/LJ033-0044.wav|tests/data/ljspeech/wavs/LJ033-0044.npy +tests/data/ljspeech/wavs/LJ019-0172.wav|tests/data/ljspeech/wavs/LJ019-0172.npy +tests/data/ljspeech/wavs/LJ047-0125.wav|tests/data/ljspeech/wavs/LJ047-0125.npy +tests/data/ljspeech/wavs/LJ003-0286.wav|tests/data/ljspeech/wavs/LJ003-0286.npy +tests/data/ljspeech/wavs/LJ038-0109.wav|tests/data/ljspeech/wavs/LJ038-0109.npy +tests/data/ljspeech/wavs/LJ003-0033.wav|tests/data/ljspeech/wavs/LJ003-0033.npy +tests/data/ljspeech/wavs/LJ012-0272.wav|tests/data/ljspeech/wavs/LJ012-0272.npy +tests/data/ljspeech/wavs/LJ029-0058.wav|tests/data/ljspeech/wavs/LJ029-0058.npy +tests/data/ljspeech/wavs/LJ028-0283.wav|tests/data/ljspeech/wavs/LJ028-0283.npy +tests/data/ljspeech/wavs/LJ041-0037.wav|tests/data/ljspeech/wavs/LJ041-0037.npy +tests/data/ljspeech/wavs/LJ039-0024.wav|tests/data/ljspeech/wavs/LJ039-0024.npy +tests/data/ljspeech/wavs/LJ038-0125.wav|tests/data/ljspeech/wavs/LJ038-0125.npy +tests/data/ljspeech/wavs/LJ033-0157.wav|tests/data/ljspeech/wavs/LJ033-0157.npy +tests/data/ljspeech/wavs/LJ043-0188.wav|tests/data/ljspeech/wavs/LJ043-0188.npy +tests/data/ljspeech/wavs/LJ043-0185.wav|tests/data/ljspeech/wavs/LJ043-0185.npy +tests/data/ljspeech/wavs/LJ040-0125.wav|tests/data/ljspeech/wavs/LJ040-0125.npy +tests/data/ljspeech/wavs/LJ037-0119.wav|tests/data/ljspeech/wavs/LJ037-0119.npy +tests/data/ljspeech/wavs/LJ041-0090.wav|tests/data/ljspeech/wavs/LJ041-0090.npy +tests/data/ljspeech/wavs/LJ036-0133.wav|tests/data/ljspeech/wavs/LJ036-0133.npy +tests/data/ljspeech/wavs/LJ007-0152.wav|tests/data/ljspeech/wavs/LJ007-0152.npy +tests/data/ljspeech/wavs/LJ037-0123.wav|tests/data/ljspeech/wavs/LJ037-0123.npy +tests/data/ljspeech/wavs/LJ044-0191.wav|tests/data/ljspeech/wavs/LJ044-0191.npy +tests/data/ljspeech/wavs/LJ009-0009.wav|tests/data/ljspeech/wavs/LJ009-0009.npy +tests/data/ljspeech/wavs/LJ044-0093.wav|tests/data/ljspeech/wavs/LJ044-0093.npy +tests/data/ljspeech/wavs/LJ007-0058.wav|tests/data/ljspeech/wavs/LJ007-0058.npy +tests/data/ljspeech/wavs/LJ011-0189.wav|tests/data/ljspeech/wavs/LJ011-0189.npy +tests/data/ljspeech/wavs/LJ004-0062.wav|tests/data/ljspeech/wavs/LJ004-0062.npy +tests/data/ljspeech/wavs/LJ032-0225.wav|tests/data/ljspeech/wavs/LJ032-0225.npy +tests/data/ljspeech/wavs/LJ001-0152.wav|tests/data/ljspeech/wavs/LJ001-0152.npy +tests/data/ljspeech/wavs/LJ006-0243.wav|tests/data/ljspeech/wavs/LJ006-0243.npy +tests/data/ljspeech/wavs/LJ013-0077.wav|tests/data/ljspeech/wavs/LJ013-0077.npy +tests/data/ljspeech/wavs/LJ041-0139.wav|tests/data/ljspeech/wavs/LJ041-0139.npy +tests/data/ljspeech/wavs/LJ010-0053.wav|tests/data/ljspeech/wavs/LJ010-0053.npy +tests/data/ljspeech/wavs/LJ005-0205.wav|tests/data/ljspeech/wavs/LJ005-0205.npy +tests/data/ljspeech/wavs/LJ014-0333.wav|tests/data/ljspeech/wavs/LJ014-0333.npy +tests/data/ljspeech/wavs/LJ038-0230.wav|tests/data/ljspeech/wavs/LJ038-0230.npy +tests/data/ljspeech/wavs/LJ003-0263.wav|tests/data/ljspeech/wavs/LJ003-0263.npy +tests/data/ljspeech/wavs/LJ011-0149.wav|tests/data/ljspeech/wavs/LJ011-0149.npy +tests/data/ljspeech/wavs/LJ009-0030.wav|tests/data/ljspeech/wavs/LJ009-0030.npy +tests/data/ljspeech/wavs/LJ019-0183.wav|tests/data/ljspeech/wavs/LJ019-0183.npy +tests/data/ljspeech/wavs/LJ031-0054.wav|tests/data/ljspeech/wavs/LJ031-0054.npy +tests/data/ljspeech/wavs/LJ019-0136.wav|tests/data/ljspeech/wavs/LJ019-0136.npy +tests/data/ljspeech/wavs/LJ025-0114.wav|tests/data/ljspeech/wavs/LJ025-0114.npy +tests/data/ljspeech/wavs/LJ005-0122.wav|tests/data/ljspeech/wavs/LJ005-0122.npy +tests/data/ljspeech/wavs/LJ033-0123.wav|tests/data/ljspeech/wavs/LJ033-0123.npy +tests/data/ljspeech/wavs/LJ029-0009.wav|tests/data/ljspeech/wavs/LJ029-0009.npy +tests/data/ljspeech/wavs/LJ029-0109.wav|tests/data/ljspeech/wavs/LJ029-0109.npy +tests/data/ljspeech/wavs/LJ037-0041.wav|tests/data/ljspeech/wavs/LJ037-0041.npy +tests/data/ljspeech/wavs/LJ031-0148.wav|tests/data/ljspeech/wavs/LJ031-0148.npy +tests/data/ljspeech/wavs/LJ049-0177.wav|tests/data/ljspeech/wavs/LJ049-0177.npy +tests/data/ljspeech/wavs/LJ040-0006.wav|tests/data/ljspeech/wavs/LJ040-0006.npy +tests/data/ljspeech/wavs/LJ049-0041.wav|tests/data/ljspeech/wavs/LJ049-0041.npy +tests/data/ljspeech/wavs/LJ049-0102.wav|tests/data/ljspeech/wavs/LJ049-0102.npy +tests/data/ljspeech/wavs/LJ012-0125.wav|tests/data/ljspeech/wavs/LJ012-0125.npy +tests/data/ljspeech/wavs/LJ047-0162.wav|tests/data/ljspeech/wavs/LJ047-0162.npy +tests/data/ljspeech/wavs/LJ007-0207.wav|tests/data/ljspeech/wavs/LJ007-0207.npy +tests/data/ljspeech/wavs/LJ033-0115.wav|tests/data/ljspeech/wavs/LJ033-0115.npy +tests/data/ljspeech/wavs/LJ041-0187.wav|tests/data/ljspeech/wavs/LJ041-0187.npy +tests/data/ljspeech/wavs/LJ011-0092.wav|tests/data/ljspeech/wavs/LJ011-0092.npy +tests/data/ljspeech/wavs/LJ034-0145.wav|tests/data/ljspeech/wavs/LJ034-0145.npy +tests/data/ljspeech/wavs/LJ031-0028.wav|tests/data/ljspeech/wavs/LJ031-0028.npy +tests/data/ljspeech/wavs/LJ030-0089.wav|tests/data/ljspeech/wavs/LJ030-0089.npy +tests/data/ljspeech/wavs/LJ019-0047.wav|tests/data/ljspeech/wavs/LJ019-0047.npy +tests/data/ljspeech/wavs/LJ019-0023.wav|tests/data/ljspeech/wavs/LJ019-0023.npy +tests/data/ljspeech/wavs/LJ028-0106.wav|tests/data/ljspeech/wavs/LJ028-0106.npy +tests/data/ljspeech/wavs/LJ028-0511.wav|tests/data/ljspeech/wavs/LJ028-0511.npy +tests/data/ljspeech/wavs/LJ035-0015.wav|tests/data/ljspeech/wavs/LJ035-0015.npy +tests/data/ljspeech/wavs/LJ017-0077.wav|tests/data/ljspeech/wavs/LJ017-0077.npy +tests/data/ljspeech/wavs/LJ032-0182.wav|tests/data/ljspeech/wavs/LJ032-0182.npy +tests/data/ljspeech/wavs/LJ031-0091.wav|tests/data/ljspeech/wavs/LJ031-0091.npy +tests/data/ljspeech/wavs/LJ049-0211.wav|tests/data/ljspeech/wavs/LJ049-0211.npy +tests/data/ljspeech/wavs/LJ029-0173.wav|tests/data/ljspeech/wavs/LJ029-0173.npy +tests/data/ljspeech/wavs/LJ045-0162.wav|tests/data/ljspeech/wavs/LJ045-0162.npy +tests/data/ljspeech/wavs/LJ043-0162.wav|tests/data/ljspeech/wavs/LJ043-0162.npy +tests/data/ljspeech/wavs/LJ048-0219.wav|tests/data/ljspeech/wavs/LJ048-0219.npy +tests/data/ljspeech/wavs/LJ017-0128.wav|tests/data/ljspeech/wavs/LJ017-0128.npy +tests/data/ljspeech/wavs/LJ031-0076.wav|tests/data/ljspeech/wavs/LJ031-0076.npy +tests/data/ljspeech/wavs/LJ009-0008.wav|tests/data/ljspeech/wavs/LJ009-0008.npy +tests/data/ljspeech/wavs/LJ045-0200.wav|tests/data/ljspeech/wavs/LJ045-0200.npy +tests/data/ljspeech/wavs/LJ006-0091.wav|tests/data/ljspeech/wavs/LJ006-0091.npy +tests/data/ljspeech/wavs/LJ037-0088.wav|tests/data/ljspeech/wavs/LJ037-0088.npy +tests/data/ljspeech/wavs/LJ045-0229.wav|tests/data/ljspeech/wavs/LJ045-0229.npy +tests/data/ljspeech/wavs/LJ007-0037.wav|tests/data/ljspeech/wavs/LJ007-0037.npy +tests/data/ljspeech/wavs/LJ009-0152.wav|tests/data/ljspeech/wavs/LJ009-0152.npy +tests/data/ljspeech/wavs/LJ037-0199.wav|tests/data/ljspeech/wavs/LJ037-0199.npy +tests/data/ljspeech/wavs/LJ049-0106.wav|tests/data/ljspeech/wavs/LJ049-0106.npy +tests/data/ljspeech/wavs/LJ041-0068.wav|tests/data/ljspeech/wavs/LJ041-0068.npy +tests/data/ljspeech/wavs/LJ034-0203.wav|tests/data/ljspeech/wavs/LJ034-0203.npy +tests/data/ljspeech/wavs/LJ002-0068.wav|tests/data/ljspeech/wavs/LJ002-0068.npy +tests/data/ljspeech/wavs/LJ005-0271.wav|tests/data/ljspeech/wavs/LJ005-0271.npy +tests/data/ljspeech/wavs/LJ010-0005.wav|tests/data/ljspeech/wavs/LJ010-0005.npy +tests/data/ljspeech/wavs/LJ005-0131.wav|tests/data/ljspeech/wavs/LJ005-0131.npy +tests/data/ljspeech/wavs/LJ036-0140.wav|tests/data/ljspeech/wavs/LJ036-0140.npy +tests/data/ljspeech/wavs/LJ035-0022.wav|tests/data/ljspeech/wavs/LJ035-0022.npy +tests/data/ljspeech/wavs/LJ014-0077.wav|tests/data/ljspeech/wavs/LJ014-0077.npy +tests/data/ljspeech/wavs/LJ050-0031.wav|tests/data/ljspeech/wavs/LJ050-0031.npy +tests/data/ljspeech/wavs/LJ013-0236.wav|tests/data/ljspeech/wavs/LJ013-0236.npy +tests/data/ljspeech/wavs/LJ034-0094.wav|tests/data/ljspeech/wavs/LJ034-0094.npy +tests/data/ljspeech/wavs/LJ002-0251.wav|tests/data/ljspeech/wavs/LJ002-0251.npy +tests/data/ljspeech/wavs/LJ005-0229.wav|tests/data/ljspeech/wavs/LJ005-0229.npy +tests/data/ljspeech/wavs/LJ005-0066.wav|tests/data/ljspeech/wavs/LJ005-0066.npy +tests/data/ljspeech/wavs/LJ005-0062.wav|tests/data/ljspeech/wavs/LJ005-0062.npy +tests/data/ljspeech/wavs/LJ049-0137.wav|tests/data/ljspeech/wavs/LJ049-0137.npy +tests/data/ljspeech/wavs/LJ007-0131.wav|tests/data/ljspeech/wavs/LJ007-0131.npy +tests/data/ljspeech/wavs/LJ039-0049.wav|tests/data/ljspeech/wavs/LJ039-0049.npy +tests/data/ljspeech/wavs/LJ037-0033.wav|tests/data/ljspeech/wavs/LJ037-0033.npy +tests/data/ljspeech/wavs/LJ004-0047.wav|tests/data/ljspeech/wavs/LJ004-0047.npy +tests/data/ljspeech/wavs/LJ007-0007.wav|tests/data/ljspeech/wavs/LJ007-0007.npy +tests/data/ljspeech/wavs/LJ043-0069.wav|tests/data/ljspeech/wavs/LJ043-0069.npy +tests/data/ljspeech/wavs/LJ005-0296.wav|tests/data/ljspeech/wavs/LJ005-0296.npy +tests/data/ljspeech/wavs/LJ016-0056.wav|tests/data/ljspeech/wavs/LJ016-0056.npy +tests/data/ljspeech/wavs/LJ019-0165.wav|tests/data/ljspeech/wavs/LJ019-0165.npy +tests/data/ljspeech/wavs/LJ016-0439.wav|tests/data/ljspeech/wavs/LJ016-0439.npy +tests/data/ljspeech/wavs/LJ045-0218.wav|tests/data/ljspeech/wavs/LJ045-0218.npy +tests/data/ljspeech/wavs/LJ032-0114.wav|tests/data/ljspeech/wavs/LJ032-0114.npy +tests/data/ljspeech/wavs/LJ048-0087.wav|tests/data/ljspeech/wavs/LJ048-0087.npy +tests/data/ljspeech/wavs/LJ041-0042.wav|tests/data/ljspeech/wavs/LJ041-0042.npy +tests/data/ljspeech/wavs/LJ032-0150.wav|tests/data/ljspeech/wavs/LJ032-0150.npy +tests/data/ljspeech/wavs/LJ048-0204.wav|tests/data/ljspeech/wavs/LJ048-0204.npy +tests/data/ljspeech/wavs/LJ049-0164.wav|tests/data/ljspeech/wavs/LJ049-0164.npy +tests/data/ljspeech/wavs/LJ006-0076.wav|tests/data/ljspeech/wavs/LJ006-0076.npy +tests/data/ljspeech/wavs/LJ050-0268.wav|tests/data/ljspeech/wavs/LJ050-0268.npy +tests/data/ljspeech/wavs/LJ048-0276.wav|tests/data/ljspeech/wavs/LJ048-0276.npy +tests/data/ljspeech/wavs/LJ019-0359.wav|tests/data/ljspeech/wavs/LJ019-0359.npy +tests/data/ljspeech/wavs/LJ035-0099.wav|tests/data/ljspeech/wavs/LJ035-0099.npy +tests/data/ljspeech/wavs/LJ006-0297.wav|tests/data/ljspeech/wavs/LJ006-0297.npy +tests/data/ljspeech/wavs/LJ013-0209.wav|tests/data/ljspeech/wavs/LJ013-0209.npy +tests/data/ljspeech/wavs/LJ045-0013.wav|tests/data/ljspeech/wavs/LJ045-0013.npy +tests/data/ljspeech/wavs/LJ009-0188.wav|tests/data/ljspeech/wavs/LJ009-0188.npy +tests/data/ljspeech/wavs/LJ045-0174.wav|tests/data/ljspeech/wavs/LJ045-0174.npy +tests/data/ljspeech/wavs/LJ003-0189.wav|tests/data/ljspeech/wavs/LJ003-0189.npy +tests/data/ljspeech/wavs/LJ031-0085.wav|tests/data/ljspeech/wavs/LJ031-0085.npy +tests/data/ljspeech/wavs/LJ031-0030.wav|tests/data/ljspeech/wavs/LJ031-0030.npy +tests/data/ljspeech/wavs/LJ032-0183.wav|tests/data/ljspeech/wavs/LJ032-0183.npy +tests/data/ljspeech/wavs/LJ034-0118.wav|tests/data/ljspeech/wavs/LJ034-0118.npy +tests/data/ljspeech/wavs/LJ006-0119.wav|tests/data/ljspeech/wavs/LJ006-0119.npy +tests/data/ljspeech/wavs/LJ031-0179.wav|tests/data/ljspeech/wavs/LJ031-0179.npy +tests/data/ljspeech/wavs/LJ004-0050.wav|tests/data/ljspeech/wavs/LJ004-0050.npy +tests/data/ljspeech/wavs/LJ011-0127.wav|tests/data/ljspeech/wavs/LJ011-0127.npy +tests/data/ljspeech/wavs/LJ047-0180.wav|tests/data/ljspeech/wavs/LJ047-0180.npy +tests/data/ljspeech/wavs/LJ005-0050.wav|tests/data/ljspeech/wavs/LJ005-0050.npy +tests/data/ljspeech/wavs/LJ019-0212.wav|tests/data/ljspeech/wavs/LJ019-0212.npy +tests/data/ljspeech/wavs/LJ018-0364.wav|tests/data/ljspeech/wavs/LJ018-0364.npy +tests/data/ljspeech/wavs/LJ047-0124.wav|tests/data/ljspeech/wavs/LJ047-0124.npy +tests/data/ljspeech/wavs/LJ049-0114.wav|tests/data/ljspeech/wavs/LJ049-0114.npy +tests/data/ljspeech/wavs/LJ013-0174.wav|tests/data/ljspeech/wavs/LJ013-0174.npy +tests/data/ljspeech/wavs/LJ048-0197.wav|tests/data/ljspeech/wavs/LJ048-0197.npy +tests/data/ljspeech/wavs/LJ039-0183.wav|tests/data/ljspeech/wavs/LJ039-0183.npy +tests/data/ljspeech/wavs/LJ005-0026.wav|tests/data/ljspeech/wavs/LJ005-0026.npy +tests/data/ljspeech/wavs/LJ030-0115.wav|tests/data/ljspeech/wavs/LJ030-0115.npy +tests/data/ljspeech/wavs/LJ032-0068.wav|tests/data/ljspeech/wavs/LJ032-0068.npy +tests/data/ljspeech/wavs/LJ032-0048.wav|tests/data/ljspeech/wavs/LJ032-0048.npy +tests/data/ljspeech/wavs/LJ006-0245.wav|tests/data/ljspeech/wavs/LJ006-0245.npy +tests/data/ljspeech/wavs/LJ019-0042.wav|tests/data/ljspeech/wavs/LJ019-0042.npy +tests/data/ljspeech/wavs/LJ006-0137.wav|tests/data/ljspeech/wavs/LJ006-0137.npy +tests/data/ljspeech/wavs/LJ034-0060.wav|tests/data/ljspeech/wavs/LJ034-0060.npy +tests/data/ljspeech/wavs/LJ016-0364.wav|tests/data/ljspeech/wavs/LJ016-0364.npy +tests/data/ljspeech/wavs/LJ041-0175.wav|tests/data/ljspeech/wavs/LJ041-0175.npy +tests/data/ljspeech/wavs/LJ019-0238.wav|tests/data/ljspeech/wavs/LJ019-0238.npy +tests/data/ljspeech/wavs/LJ049-0027.wav|tests/data/ljspeech/wavs/LJ049-0027.npy +tests/data/ljspeech/wavs/LJ019-0082.wav|tests/data/ljspeech/wavs/LJ019-0082.npy +tests/data/ljspeech/wavs/LJ049-0084.wav|tests/data/ljspeech/wavs/LJ049-0084.npy +tests/data/ljspeech/wavs/LJ043-0184.wav|tests/data/ljspeech/wavs/LJ043-0184.npy +tests/data/ljspeech/wavs/LJ019-0299.wav|tests/data/ljspeech/wavs/LJ019-0299.npy +tests/data/ljspeech/wavs/LJ043-0174.wav|tests/data/ljspeech/wavs/LJ043-0174.npy +tests/data/ljspeech/wavs/LJ035-0208.wav|tests/data/ljspeech/wavs/LJ035-0208.npy +tests/data/ljspeech/wavs/LJ006-0098.wav|tests/data/ljspeech/wavs/LJ006-0098.npy +tests/data/ljspeech/wavs/LJ026-0010.wav|tests/data/ljspeech/wavs/LJ026-0010.npy +tests/data/ljspeech/wavs/LJ050-0173.wav|tests/data/ljspeech/wavs/LJ050-0173.npy +tests/data/ljspeech/wavs/LJ050-0153.wav|tests/data/ljspeech/wavs/LJ050-0153.npy +tests/data/ljspeech/wavs/LJ031-0050.wav|tests/data/ljspeech/wavs/LJ031-0050.npy +tests/data/ljspeech/wavs/LJ048-0125.wav|tests/data/ljspeech/wavs/LJ048-0125.npy +tests/data/ljspeech/wavs/LJ017-0007.wav|tests/data/ljspeech/wavs/LJ017-0007.npy +tests/data/ljspeech/wavs/LJ037-0083.wav|tests/data/ljspeech/wavs/LJ037-0083.npy +tests/data/ljspeech/wavs/LJ031-0095.wav|tests/data/ljspeech/wavs/LJ031-0095.npy +tests/data/ljspeech/wavs/LJ037-0156.wav|tests/data/ljspeech/wavs/LJ037-0156.npy +tests/data/ljspeech/wavs/LJ047-0213.wav|tests/data/ljspeech/wavs/LJ047-0213.npy +tests/data/ljspeech/wavs/LJ043-0170.wav|tests/data/ljspeech/wavs/LJ043-0170.npy +tests/data/ljspeech/wavs/LJ048-0185.wav|tests/data/ljspeech/wavs/LJ048-0185.npy +tests/data/ljspeech/wavs/LJ049-0192.wav|tests/data/ljspeech/wavs/LJ049-0192.npy +tests/data/ljspeech/wavs/LJ009-0251.wav|tests/data/ljspeech/wavs/LJ009-0251.npy +tests/data/ljspeech/wavs/LJ006-0195.wav|tests/data/ljspeech/wavs/LJ006-0195.npy +tests/data/ljspeech/wavs/LJ006-0067.wav|tests/data/ljspeech/wavs/LJ006-0067.npy +tests/data/ljspeech/wavs/LJ048-0262.wav|tests/data/ljspeech/wavs/LJ048-0262.npy +tests/data/ljspeech/wavs/LJ034-0040.wav|tests/data/ljspeech/wavs/LJ034-0040.npy +tests/data/ljspeech/wavs/LJ019-0250.wav|tests/data/ljspeech/wavs/LJ019-0250.npy +tests/data/ljspeech/wavs/LJ014-0133.wav|tests/data/ljspeech/wavs/LJ014-0133.npy +tests/data/ljspeech/wavs/LJ006-0043.wav|tests/data/ljspeech/wavs/LJ006-0043.npy +tests/data/ljspeech/wavs/LJ029-0168.wav|tests/data/ljspeech/wavs/LJ029-0168.npy +tests/data/ljspeech/wavs/LJ039-0026.wav|tests/data/ljspeech/wavs/LJ039-0026.npy +tests/data/ljspeech/wavs/LJ045-0194.wav|tests/data/ljspeech/wavs/LJ045-0194.npy +tests/data/ljspeech/wavs/LJ038-0263.wav|tests/data/ljspeech/wavs/LJ038-0263.npy +tests/data/ljspeech/wavs/LJ034-0005.wav|tests/data/ljspeech/wavs/LJ034-0005.npy +tests/data/ljspeech/wavs/LJ030-0221.wav|tests/data/ljspeech/wavs/LJ030-0221.npy +tests/data/ljspeech/wavs/LJ032-0102.wav|tests/data/ljspeech/wavs/LJ032-0102.npy +tests/data/ljspeech/wavs/LJ033-0167.wav|tests/data/ljspeech/wavs/LJ033-0167.npy +tests/data/ljspeech/wavs/LJ031-0111.wav|tests/data/ljspeech/wavs/LJ031-0111.npy +tests/data/ljspeech/wavs/LJ029-0073.wav|tests/data/ljspeech/wavs/LJ029-0073.npy +tests/data/ljspeech/wavs/LJ008-0301.wav|tests/data/ljspeech/wavs/LJ008-0301.npy +tests/data/ljspeech/wavs/LJ041-0034.wav|tests/data/ljspeech/wavs/LJ041-0034.npy +tests/data/ljspeech/wavs/LJ045-0165.wav|tests/data/ljspeech/wavs/LJ045-0165.npy +tests/data/ljspeech/wavs/LJ032-0148.wav|tests/data/ljspeech/wavs/LJ032-0148.npy +tests/data/ljspeech/wavs/LJ029-0098.wav|tests/data/ljspeech/wavs/LJ029-0098.npy +tests/data/ljspeech/wavs/LJ050-0265.wav|tests/data/ljspeech/wavs/LJ050-0265.npy +tests/data/ljspeech/wavs/LJ048-0149.wav|tests/data/ljspeech/wavs/LJ048-0149.npy +tests/data/ljspeech/wavs/LJ005-0111.wav|tests/data/ljspeech/wavs/LJ005-0111.npy +tests/data/ljspeech/wavs/LJ007-0192.wav|tests/data/ljspeech/wavs/LJ007-0192.npy +tests/data/ljspeech/wavs/LJ006-0290.wav|tests/data/ljspeech/wavs/LJ006-0290.npy +tests/data/ljspeech/wavs/LJ039-0208.wav|tests/data/ljspeech/wavs/LJ039-0208.npy +tests/data/ljspeech/wavs/LJ037-0024.wav|tests/data/ljspeech/wavs/LJ037-0024.npy +tests/data/ljspeech/wavs/LJ006-0170.wav|tests/data/ljspeech/wavs/LJ006-0170.npy +tests/data/ljspeech/wavs/LJ012-0155.wav|tests/data/ljspeech/wavs/LJ012-0155.npy +tests/data/ljspeech/wavs/LJ030-0132.wav|tests/data/ljspeech/wavs/LJ030-0132.npy +tests/data/ljspeech/wavs/LJ040-0225.wav|tests/data/ljspeech/wavs/LJ040-0225.npy +tests/data/ljspeech/wavs/LJ011-0101.wav|tests/data/ljspeech/wavs/LJ011-0101.npy +tests/data/ljspeech/wavs/LJ047-0169.wav|tests/data/ljspeech/wavs/LJ047-0169.npy +tests/data/ljspeech/wavs/LJ007-0102.wav|tests/data/ljspeech/wavs/LJ007-0102.npy +tests/data/ljspeech/wavs/LJ048-0202.wav|tests/data/ljspeech/wavs/LJ048-0202.npy +tests/data/ljspeech/wavs/LJ009-0053.wav|tests/data/ljspeech/wavs/LJ009-0053.npy +tests/data/ljspeech/wavs/LJ016-0130.wav|tests/data/ljspeech/wavs/LJ016-0130.npy +tests/data/ljspeech/wavs/LJ046-0031.wav|tests/data/ljspeech/wavs/LJ046-0031.npy +tests/data/ljspeech/wavs/LJ035-0032.wav|tests/data/ljspeech/wavs/LJ035-0032.npy +tests/data/ljspeech/wavs/LJ048-0177.wav|tests/data/ljspeech/wavs/LJ048-0177.npy +tests/data/ljspeech/wavs/LJ029-0029.wav|tests/data/ljspeech/wavs/LJ029-0029.npy +tests/data/ljspeech/wavs/LJ005-0265.wav|tests/data/ljspeech/wavs/LJ005-0265.npy +tests/data/ljspeech/wavs/LJ046-0025.wav|tests/data/ljspeech/wavs/LJ046-0025.npy +tests/data/ljspeech/wavs/LJ007-0036.wav|tests/data/ljspeech/wavs/LJ007-0036.npy +tests/data/ljspeech/wavs/LJ050-0196.wav|tests/data/ljspeech/wavs/LJ050-0196.npy +tests/data/ljspeech/wavs/LJ012-0224.wav|tests/data/ljspeech/wavs/LJ012-0224.npy +tests/data/ljspeech/wavs/LJ035-0101.wav|tests/data/ljspeech/wavs/LJ035-0101.npy +tests/data/ljspeech/wavs/LJ039-0189.wav|tests/data/ljspeech/wavs/LJ039-0189.npy +tests/data/ljspeech/wavs/LJ036-0138.wav|tests/data/ljspeech/wavs/LJ036-0138.npy +tests/data/ljspeech/wavs/LJ034-0191.wav|tests/data/ljspeech/wavs/LJ034-0191.npy +tests/data/ljspeech/wavs/LJ048-0019.wav|tests/data/ljspeech/wavs/LJ048-0019.npy +tests/data/ljspeech/wavs/LJ011-0042.wav|tests/data/ljspeech/wavs/LJ011-0042.npy +tests/data/ljspeech/wavs/LJ034-0154.wav|tests/data/ljspeech/wavs/LJ034-0154.npy +tests/data/ljspeech/wavs/LJ007-0160.wav|tests/data/ljspeech/wavs/LJ007-0160.npy +tests/data/ljspeech/wavs/LJ047-0093.wav|tests/data/ljspeech/wavs/LJ047-0093.npy +tests/data/ljspeech/wavs/LJ045-0093.wav|tests/data/ljspeech/wavs/LJ045-0093.npy +tests/data/ljspeech/wavs/LJ027-0138.wav|tests/data/ljspeech/wavs/LJ027-0138.npy +tests/data/ljspeech/wavs/LJ037-0140.wav|tests/data/ljspeech/wavs/LJ037-0140.npy +tests/data/ljspeech/wavs/LJ046-0015.wav|tests/data/ljspeech/wavs/LJ046-0015.npy +tests/data/ljspeech/wavs/LJ045-0085.wav|tests/data/ljspeech/wavs/LJ045-0085.npy +tests/data/ljspeech/wavs/LJ050-0165.wav|tests/data/ljspeech/wavs/LJ050-0165.npy +tests/data/ljspeech/wavs/LJ019-0337.wav|tests/data/ljspeech/wavs/LJ019-0337.npy +tests/data/ljspeech/wavs/LJ050-0161.wav|tests/data/ljspeech/wavs/LJ050-0161.npy +tests/data/ljspeech/wavs/LJ006-0030.wav|tests/data/ljspeech/wavs/LJ006-0030.npy +tests/data/ljspeech/wavs/LJ050-0076.wav|tests/data/ljspeech/wavs/LJ050-0076.npy +tests/data/ljspeech/wavs/LJ011-0029.wav|tests/data/ljspeech/wavs/LJ011-0029.npy +tests/data/ljspeech/wavs/LJ007-0061.wav|tests/data/ljspeech/wavs/LJ007-0061.npy +tests/data/ljspeech/wavs/LJ041-0027.wav|tests/data/ljspeech/wavs/LJ041-0027.npy +tests/data/ljspeech/wavs/LJ030-0130.wav|tests/data/ljspeech/wavs/LJ030-0130.npy +tests/data/ljspeech/wavs/LJ029-0202.wav|tests/data/ljspeech/wavs/LJ029-0202.npy +tests/data/ljspeech/wavs/LJ050-0044.wav|tests/data/ljspeech/wavs/LJ050-0044.npy +tests/data/ljspeech/wavs/LJ032-0012.wav|tests/data/ljspeech/wavs/LJ032-0012.npy +tests/data/ljspeech/wavs/LJ036-0157.wav|tests/data/ljspeech/wavs/LJ036-0157.npy +tests/data/ljspeech/wavs/LJ008-0263.wav|tests/data/ljspeech/wavs/LJ008-0263.npy +tests/data/ljspeech/wavs/LJ009-0083.wav|tests/data/ljspeech/wavs/LJ009-0083.npy +tests/data/ljspeech/wavs/LJ019-0203.wav|tests/data/ljspeech/wavs/LJ019-0203.npy +tests/data/ljspeech/wavs/LJ028-0318.wav|tests/data/ljspeech/wavs/LJ028-0318.npy +tests/data/ljspeech/wavs/LJ005-0223.wav|tests/data/ljspeech/wavs/LJ005-0223.npy +tests/data/ljspeech/wavs/LJ004-0232.wav|tests/data/ljspeech/wavs/LJ004-0232.npy +tests/data/ljspeech/wavs/LJ012-0147.wav|tests/data/ljspeech/wavs/LJ012-0147.npy +tests/data/ljspeech/wavs/LJ006-0026.wav|tests/data/ljspeech/wavs/LJ006-0026.npy +tests/data/ljspeech/wavs/LJ049-0083.wav|tests/data/ljspeech/wavs/LJ049-0083.npy +tests/data/ljspeech/wavs/LJ042-0219.wav|tests/data/ljspeech/wavs/LJ042-0219.npy +tests/data/ljspeech/wavs/LJ044-0123.wav|tests/data/ljspeech/wavs/LJ044-0123.npy +tests/data/ljspeech/wavs/LJ006-0247.wav|tests/data/ljspeech/wavs/LJ006-0247.npy +tests/data/ljspeech/wavs/LJ047-0209.wav|tests/data/ljspeech/wavs/LJ047-0209.npy +tests/data/ljspeech/wavs/LJ037-0037.wav|tests/data/ljspeech/wavs/LJ037-0037.npy +tests/data/ljspeech/wavs/LJ020-0002.wav|tests/data/ljspeech/wavs/LJ020-0002.npy +tests/data/ljspeech/wavs/LJ048-0027.wav|tests/data/ljspeech/wavs/LJ048-0027.npy +tests/data/ljspeech/wavs/LJ007-0151.wav|tests/data/ljspeech/wavs/LJ007-0151.npy +tests/data/ljspeech/wavs/LJ044-0098.wav|tests/data/ljspeech/wavs/LJ044-0098.npy +tests/data/ljspeech/wavs/LJ047-0230.wav|tests/data/ljspeech/wavs/LJ047-0230.npy +tests/data/ljspeech/wavs/LJ029-0075.wav|tests/data/ljspeech/wavs/LJ029-0075.npy +tests/data/ljspeech/wavs/LJ039-0128.wav|tests/data/ljspeech/wavs/LJ039-0128.npy +tests/data/ljspeech/wavs/LJ047-0114.wav|tests/data/ljspeech/wavs/LJ047-0114.npy +tests/data/ljspeech/wavs/LJ031-0114.wav|tests/data/ljspeech/wavs/LJ031-0114.npy +tests/data/ljspeech/wavs/LJ027-0127.wav|tests/data/ljspeech/wavs/LJ027-0127.npy +tests/data/ljspeech/wavs/LJ011-0154.wav|tests/data/ljspeech/wavs/LJ011-0154.npy +tests/data/ljspeech/wavs/LJ005-0299.wav|tests/data/ljspeech/wavs/LJ005-0299.npy +tests/data/ljspeech/wavs/LJ031-0099.wav|tests/data/ljspeech/wavs/LJ031-0099.npy +tests/data/ljspeech/wavs/LJ002-0110.wav|tests/data/ljspeech/wavs/LJ002-0110.npy +tests/data/ljspeech/wavs/LJ007-0060.wav|tests/data/ljspeech/wavs/LJ007-0060.npy +tests/data/ljspeech/wavs/LJ031-0141.wav|tests/data/ljspeech/wavs/LJ031-0141.npy +tests/data/ljspeech/wavs/LJ001-0014.wav|tests/data/ljspeech/wavs/LJ001-0014.npy +tests/data/ljspeech/wavs/LJ035-0035.wav|tests/data/ljspeech/wavs/LJ035-0035.npy +tests/data/ljspeech/wavs/LJ034-0125.wav|tests/data/ljspeech/wavs/LJ034-0125.npy +tests/data/ljspeech/wavs/LJ032-0235.wav|tests/data/ljspeech/wavs/LJ032-0235.npy +tests/data/ljspeech/wavs/LJ018-0306.wav|tests/data/ljspeech/wavs/LJ018-0306.npy +tests/data/ljspeech/wavs/LJ009-0129.wav|tests/data/ljspeech/wavs/LJ009-0129.npy +tests/data/ljspeech/wavs/LJ001-0015.wav|tests/data/ljspeech/wavs/LJ001-0015.npy +tests/data/ljspeech/wavs/LJ007-0128.wav|tests/data/ljspeech/wavs/LJ007-0128.npy +tests/data/ljspeech/wavs/LJ038-0200.wav|tests/data/ljspeech/wavs/LJ038-0200.npy +tests/data/ljspeech/wavs/LJ032-0209.wav|tests/data/ljspeech/wavs/LJ032-0209.npy +tests/data/ljspeech/wavs/LJ041-0038.wav|tests/data/ljspeech/wavs/LJ041-0038.npy +tests/data/ljspeech/wavs/LJ046-0241.wav|tests/data/ljspeech/wavs/LJ046-0241.npy +tests/data/ljspeech/wavs/LJ047-0220.wav|tests/data/ljspeech/wavs/LJ047-0220.npy +tests/data/ljspeech/wavs/LJ034-0158.wav|tests/data/ljspeech/wavs/LJ034-0158.npy +tests/data/ljspeech/wavs/LJ045-0044.wav|tests/data/ljspeech/wavs/LJ045-0044.npy +tests/data/ljspeech/wavs/LJ045-0169.wav|tests/data/ljspeech/wavs/LJ045-0169.npy +tests/data/ljspeech/wavs/LJ007-0154.wav|tests/data/ljspeech/wavs/LJ007-0154.npy +tests/data/ljspeech/wavs/LJ044-0114.wav|tests/data/ljspeech/wavs/LJ044-0114.npy +tests/data/ljspeech/wavs/LJ030-0085.wav|tests/data/ljspeech/wavs/LJ030-0085.npy +tests/data/ljspeech/wavs/LJ048-0129.wav|tests/data/ljspeech/wavs/LJ048-0129.npy +tests/data/ljspeech/wavs/LJ041-0077.wav|tests/data/ljspeech/wavs/LJ041-0077.npy +tests/data/ljspeech/wavs/LJ045-0113.wav|tests/data/ljspeech/wavs/LJ045-0113.npy +tests/data/ljspeech/wavs/LJ049-0009.wav|tests/data/ljspeech/wavs/LJ049-0009.npy +tests/data/ljspeech/wavs/LJ007-0148.wav|tests/data/ljspeech/wavs/LJ007-0148.npy +tests/data/ljspeech/wavs/LJ033-0132.wav|tests/data/ljspeech/wavs/LJ033-0132.npy +tests/data/ljspeech/wavs/LJ049-0076.wav|tests/data/ljspeech/wavs/LJ049-0076.npy +tests/data/ljspeech/wavs/LJ041-0127.wav|tests/data/ljspeech/wavs/LJ041-0127.npy +tests/data/ljspeech/wavs/LJ019-0193.wav|tests/data/ljspeech/wavs/LJ019-0193.npy +tests/data/ljspeech/wavs/LJ007-0173.wav|tests/data/ljspeech/wavs/LJ007-0173.npy +tests/data/ljspeech/wavs/LJ038-0014.wav|tests/data/ljspeech/wavs/LJ038-0014.npy +tests/data/ljspeech/wavs/LJ049-0141.wav|tests/data/ljspeech/wavs/LJ049-0141.npy +tests/data/ljspeech/wavs/LJ003-0007.wav|tests/data/ljspeech/wavs/LJ003-0007.npy +tests/data/ljspeech/wavs/LJ002-0280.wav|tests/data/ljspeech/wavs/LJ002-0280.npy +tests/data/ljspeech/wavs/LJ032-0230.wav|tests/data/ljspeech/wavs/LJ032-0230.npy +tests/data/ljspeech/wavs/LJ007-0110.wav|tests/data/ljspeech/wavs/LJ007-0110.npy +tests/data/ljspeech/wavs/LJ046-0027.wav|tests/data/ljspeech/wavs/LJ046-0027.npy +tests/data/ljspeech/wavs/LJ007-0020.wav|tests/data/ljspeech/wavs/LJ007-0020.npy +tests/data/ljspeech/wavs/LJ048-0205.wav|tests/data/ljspeech/wavs/LJ048-0205.npy +tests/data/ljspeech/wavs/LJ007-0044.wav|tests/data/ljspeech/wavs/LJ007-0044.npy +tests/data/ljspeech/wavs/LJ010-0117.wav|tests/data/ljspeech/wavs/LJ010-0117.npy +tests/data/ljspeech/wavs/LJ038-0217.wav|tests/data/ljspeech/wavs/LJ038-0217.npy +tests/data/ljspeech/wavs/LJ031-0135.wav|tests/data/ljspeech/wavs/LJ031-0135.npy +tests/data/ljspeech/wavs/LJ007-0178.wav|tests/data/ljspeech/wavs/LJ007-0178.npy +tests/data/ljspeech/wavs/LJ035-0042.wav|tests/data/ljspeech/wavs/LJ035-0042.npy +tests/data/ljspeech/wavs/LJ033-0092.wav|tests/data/ljspeech/wavs/LJ033-0092.npy +tests/data/ljspeech/wavs/LJ041-0159.wav|tests/data/ljspeech/wavs/LJ041-0159.npy +tests/data/ljspeech/wavs/LJ035-0062.wav|tests/data/ljspeech/wavs/LJ035-0062.npy +tests/data/ljspeech/wavs/LJ034-0028.wav|tests/data/ljspeech/wavs/LJ034-0028.npy +tests/data/ljspeech/wavs/LJ034-0178.wav|tests/data/ljspeech/wavs/LJ034-0178.npy +tests/data/ljspeech/wavs/LJ029-0017.wav|tests/data/ljspeech/wavs/LJ029-0017.npy +tests/data/ljspeech/wavs/LJ005-0173.wav|tests/data/ljspeech/wavs/LJ005-0173.npy +tests/data/ljspeech/wavs/LJ007-0229.wav|tests/data/ljspeech/wavs/LJ007-0229.npy +tests/data/ljspeech/wavs/LJ020-0062.wav|tests/data/ljspeech/wavs/LJ020-0062.npy +tests/data/ljspeech/wavs/LJ030-0082.wav|tests/data/ljspeech/wavs/LJ030-0082.npy +tests/data/ljspeech/wavs/LJ036-0001.wav|tests/data/ljspeech/wavs/LJ036-0001.npy +tests/data/ljspeech/wavs/LJ045-0001.wav|tests/data/ljspeech/wavs/LJ045-0001.npy +tests/data/ljspeech/wavs/LJ006-0002.wav|tests/data/ljspeech/wavs/LJ006-0002.npy +tests/data/ljspeech/wavs/LJ048-0001.wav|tests/data/ljspeech/wavs/LJ048-0001.npy +tests/data/ljspeech/wavs/LJ034-0212.wav|tests/data/ljspeech/wavs/LJ034-0212.npy +tests/data/ljspeech/wavs/LJ029-0179.wav|tests/data/ljspeech/wavs/LJ029-0179.npy +tests/data/ljspeech/wavs/LJ034-0026.wav|tests/data/ljspeech/wavs/LJ034-0026.npy +tests/data/ljspeech/wavs/LJ007-0097.wav|tests/data/ljspeech/wavs/LJ007-0097.npy +tests/data/ljspeech/wavs/LJ025-0167.wav|tests/data/ljspeech/wavs/LJ025-0167.npy +tests/data/ljspeech/wavs/LJ007-0076.wav|tests/data/ljspeech/wavs/LJ007-0076.npy +tests/data/ljspeech/wavs/LJ018-0052.wav|tests/data/ljspeech/wavs/LJ018-0052.npy +tests/data/ljspeech/wavs/LJ032-0202.wav|tests/data/ljspeech/wavs/LJ032-0202.npy +tests/data/ljspeech/wavs/LJ050-0160.wav|tests/data/ljspeech/wavs/LJ050-0160.npy +tests/data/ljspeech/wavs/LJ037-0150.wav|tests/data/ljspeech/wavs/LJ037-0150.npy +tests/data/ljspeech/wavs/LJ007-0223.wav|tests/data/ljspeech/wavs/LJ007-0223.npy +tests/data/ljspeech/wavs/LJ007-0051.wav|tests/data/ljspeech/wavs/LJ007-0051.npy +tests/data/ljspeech/wavs/LJ050-0228.wav|tests/data/ljspeech/wavs/LJ050-0228.npy +tests/data/ljspeech/wavs/LJ038-0189.wav|tests/data/ljspeech/wavs/LJ038-0189.npy +tests/data/ljspeech/wavs/LJ037-0160.wav|tests/data/ljspeech/wavs/LJ037-0160.npy +tests/data/ljspeech/wavs/LJ048-0025.wav|tests/data/ljspeech/wavs/LJ048-0025.npy +tests/data/ljspeech/wavs/LJ007-0070.wav|tests/data/ljspeech/wavs/LJ007-0070.npy +tests/data/ljspeech/wavs/LJ038-0050.wav|tests/data/ljspeech/wavs/LJ038-0050.npy +tests/data/ljspeech/wavs/LJ032-0001.wav|tests/data/ljspeech/wavs/LJ032-0001.npy +tests/data/ljspeech/wavs/LJ037-0001.wav|tests/data/ljspeech/wavs/LJ037-0001.npy +tests/data/ljspeech/wavs/LJ041-0001.wav|tests/data/ljspeech/wavs/LJ041-0001.npy +tests/data/ljspeech/wavs/LJ030-0001.wav|tests/data/ljspeech/wavs/LJ030-0001.npy +tests/data/ljspeech/wavs/LJ029-0001.wav|tests/data/ljspeech/wavs/LJ029-0001.npy +tests/data/ljspeech/wavs/LJ047-0001.wav|tests/data/ljspeech/wavs/LJ047-0001.npy +tests/data/ljspeech/wavs/LJ033-0001.wav|tests/data/ljspeech/wavs/LJ033-0001.npy +tests/data/ljspeech/wavs/LJ035-0001.wav|tests/data/ljspeech/wavs/LJ035-0001.npy +tests/data/ljspeech/wavs/LJ040-0001.wav|tests/data/ljspeech/wavs/LJ040-0001.npy diff --git a/TTS/tests/data/ljspeech/speakers.json b/TTS/tests/data/ljspeech/speakers.json new file mode 100644 index 0000000000000000000000000000000000000000..461435c2a1ffa3f6c9e2cd219bab58c6ee0c59cd --- /dev/null +++ b/TTS/tests/data/ljspeech/speakers.json @@ -0,0 +1,2612 @@ +{ + "#wavs/LJ001-0001": { + "name": "ljspeech-0", + "embedding": [ + 0.05539746582508087, + 0.08493061363697052, + -0.010013150051236153, + 0.04369359463453293, + -0.05871078372001648, + 0.07792330533266068, + -0.12001194059848785, + 0.09205509722232819, + -0.053687505424022675, + 0.13110113143920898, + -0.0672345906496048, + 0.09076011180877686, + -0.012022187933325768, + -0.1773194968700409, + -0.03690509498119354, + 0.052139587700366974, + -0.06511855870485306, + -0.014169753529131413, + -0.0788075178861618, + -0.022713735699653625, + 0.026002388447523117, + 0.04142642393708229, + 0.06633599102497101, + -0.040966324508190155, + 0.05216488242149353, + 0.043708473443984985, + 0.008947450667619705, + 0.043884553015232086, + 0.015242422930896282, + -0.07271697372198105, + -0.03943272680044174, + 0.11445401608943939, + -0.01976911909878254, + -0.001584329642355442, + 0.03226276487112045, + -0.002877067308872938, + 0.006218053866177797, + -0.09210439026355743, + -0.023884698748588562, + 0.019102394580841064, + -0.023189997300505638, + 0.07678322494029999, + 0.04511963576078415, + -0.028598245233297348, + 0.02654365450143814, + -0.026303084567189217, + -0.036059144884347916, + -0.04994352161884308, + -0.10899694263935089, + 0.16808779537677765, + 0.0568464957177639, + 0.017774248495697975, + -0.0766686350107193, + -0.08056356757879257, + 0.11318203061819077, + -0.0009237118065357208, + -0.11983267217874527, + -0.04011853411793709, + 0.06481920927762985, + 0.18528658151626587, + -0.020618144422769547, + 0.0030966848134994507, + 0.030582068488001823, + 0.11048240959644318, + 0.026203282177448273, + 0.08886025100946426, + 0.0776662528514862, + 0.08468905836343765, + 0.02009391225874424, + 0.053141623735427856, + 0.04102938249707222, + 0.059041380882263184, + -0.006237464025616646, + -0.018360337242484093, + 0.015418153256177902, + -0.03559226542711258, + -0.05805520713329315, + -0.00861218199133873, + -0.021234268322587013, + -0.025556275621056557, + -0.012332704849541187, + -0.009777471423149109, + 0.03721384331583977, + 0.010376224294304848, + -0.05210898444056511, + 0.035450324416160583, + 0.0026437342166900635, + -0.03329150378704071, + 0.07028764486312866, + 0.03101171739399433, + 0.003101848065853119, + 0.029428653419017792, + -0.03445912152528763, + -0.11992329359054565, + -0.006469260435551405, + 0.02472860924899578, + -0.0021879260893911123, + 0.06576769798994064, + 0.04159736633300781, + -0.044104330241680145, + 0.10868340730667114, + 0.06065361574292183, + -0.00814537052065134, + 0.029497724026441574, + -0.0820949599146843, + 0.09694784879684448, + 0.10299994796514511, + 0.007466038689017296, + 0.0573151595890522, + -0.04003140702843666, + 0.0748046338558197, + 0.07954449951648712, + -0.14061805605888367, + -0.07225356996059418, + 0.030713198706507683, + -0.01169175747781992, + 0.015277700498700142, + 0.101996049284935, + 0.0023796744644641876, + 0.013835912570357323, + 0.08836984634399414, + -0.08798637241125107, + -0.053786784410476685, + -0.025867177173495293, + 0.07090725004673004, + -0.05228910967707634, + 0.024839768186211586, + 0.0543626993894577, + -0.048099253326654434, + -0.01027676835656166, + 0.04654526337981224, + -0.0034045036882162094, + 0.003895972855389118, + 0.04250902682542801, + -0.05232023075222969, + 0.06287448853254318, + -0.04146592691540718, + -0.0022073618602007627, + 0.07169511169195175, + 0.057035692036151886, + 0.04202979430556297, + -0.01752091944217682, + -0.03615778684616089, + -0.07597745209932327, + 0.0076013305224478245, + 0.03388708084821701, + 0.06191568076610565, + -0.01607775315642357, + 0.004401837941259146, + -0.06070601940155029, + -0.07674850523471832, + 0.059249889105558395, + -0.02222420647740364, + 0.10215721279382706, + -0.000883960397914052, + 0.010600706562399864, + 0.09869417548179626, + 0.011313805356621742, + -0.01187396701425314, + -0.04851905256509781, + -0.020747501403093338, + 0.043711841106414795, + 0.04022590070962906, + -0.06653523445129395, + -0.04014153778553009, + 0.012923783622682095, + 0.0024894566740840673, + -0.03801071271300316, + 0.017412755638360977, + 0.03090047463774681, + 0.021060986444354057, + 0.04588426649570465, + -0.061013057827949524, + 0.022323710843920708, + -0.0921829417347908, + -0.009262383915483952, + -0.0024641728959977627, + -0.04311069846153259, + -0.02953970432281494, + 0.11183556914329529, + 0.041883185505867004, + 0.01362229697406292, + -0.009713159874081612, + -0.07398185133934021, + -0.03448636084794998, + 0.06774093955755234, + 0.06281304359436035, + 0.005423923954367638, + 0.04070146754384041, + 0.04723779857158661, + 0.0025808606296777725, + 0.04067641496658325, + 0.0840836763381958, + 0.0662192553281784, + 6.253225728869438e-05, + -0.03287994861602783, + -0.07941965758800507, + 0.09294897317886353, + 0.08651109039783478, + -0.09662938117980957, + -0.08838298916816711, + -0.05120178312063217, + -0.06626439094543457, + 0.04893879592418671, + -0.017820902168750763, + -0.007398976478725672, + 0.02896031364798546, + -0.025766948238015175, + -0.10214102268218994, + -0.10014186799526215, + 0.1211889386177063, + -0.0510331466794014, + -0.02461140602827072, + -0.06880723685026169, + 0.02751768007874489, + 0.07350686937570572, + 0.038249749690294266, + -0.009252945892512798, + 0.013650302775204182, + 0.04884907230734825, + -0.08785197138786316, + 0.003136417828500271, + 0.05015810579061508, + -0.00904669426381588, + -0.10715165734291077, + 0.026881497353315353, + -0.07288249582052231, + 0.08610662072896957, + -0.06228051334619522, + 0.1673828363418579, + 0.006395484320819378, + -0.0426831915974617, + -0.08067314326763153, + 0.06747708469629288, + -0.049200400710105896, + 0.0475490465760231, + 0.05716557055711746, + 0.060844384133815765, + 0.04086177423596382, + -0.08346255123615265, + 0.0869344025850296, + 0.019769223406910896, + -0.020300764590501785, + -0.0708683505654335, + -0.030514180660247803, + -0.027429744601249695, + 0.021853724494576454, + -0.012019682675600052, + -0.0613793209195137, + 0.009929075837135315, + 0.0261012464761734, + -0.018161576241254807, + 0.07936893403530121, + 0.12791746854782104, + 0.08958099782466888, + -0.09469571709632874 + ] + }, + "#wavs/LJ001-0002": { + "name": "ljspeech-1", + "embedding": [ + 0.05539746582508087, + 0.08493061363697052, + -0.010013150051236153, + 0.04369359463453293, + -0.05871078372001648, + 0.07792330533266068, + -0.12001194059848785, + 0.09205509722232819, + -0.053687505424022675, + 0.13110113143920898, + -0.0672345906496048, + 0.09076011180877686, + -0.012022187933325768, + -0.1773194968700409, + -0.03690509498119354, + 0.052139587700366974, + -0.06511855870485306, + -0.014169753529131413, + -0.0788075178861618, + -0.022713735699653625, + 0.026002388447523117, + 0.04142642393708229, + 0.06633599102497101, + -0.040966324508190155, + 0.05216488242149353, + 0.043708473443984985, + 0.008947450667619705, + 0.043884553015232086, + 0.015242422930896282, + -0.07271697372198105, + -0.03943272680044174, + 0.11445401608943939, + -0.01976911909878254, + -0.001584329642355442, + 0.03226276487112045, + -0.002877067308872938, + 0.006218053866177797, + -0.09210439026355743, + -0.023884698748588562, + 0.019102394580841064, + -0.023189997300505638, + 0.07678322494029999, + 0.04511963576078415, + -0.028598245233297348, + 0.02654365450143814, + -0.026303084567189217, + -0.036059144884347916, + -0.04994352161884308, + -0.10899694263935089, + 0.16808779537677765, + 0.0568464957177639, + 0.017774248495697975, + -0.0766686350107193, + -0.08056356757879257, + 0.11318203061819077, + -0.0009237118065357208, + -0.11983267217874527, + -0.04011853411793709, + 0.06481920927762985, + 0.18528658151626587, + -0.020618144422769547, + 0.0030966848134994507, + 0.030582068488001823, + 0.11048240959644318, + 0.026203282177448273, + 0.08886025100946426, + 0.0776662528514862, + 0.08468905836343765, + 0.02009391225874424, + 0.053141623735427856, + 0.04102938249707222, + 0.059041380882263184, + -0.006237464025616646, + -0.018360337242484093, + 0.015418153256177902, + -0.03559226542711258, + -0.05805520713329315, + -0.00861218199133873, + -0.021234268322587013, + -0.025556275621056557, + -0.012332704849541187, + -0.009777471423149109, + 0.03721384331583977, + 0.010376224294304848, + -0.05210898444056511, + 0.035450324416160583, + 0.0026437342166900635, + -0.03329150378704071, + 0.07028764486312866, + 0.03101171739399433, + 0.003101848065853119, + 0.029428653419017792, + -0.03445912152528763, + -0.11992329359054565, + -0.006469260435551405, + 0.02472860924899578, + -0.0021879260893911123, + 0.06576769798994064, + 0.04159736633300781, + -0.044104330241680145, + 0.10868340730667114, + 0.06065361574292183, + -0.00814537052065134, + 0.029497724026441574, + -0.0820949599146843, + 0.09694784879684448, + 0.10299994796514511, + 0.007466038689017296, + 0.0573151595890522, + -0.04003140702843666, + 0.0748046338558197, + 0.07954449951648712, + -0.14061805605888367, + -0.07225356996059418, + 0.030713198706507683, + -0.01169175747781992, + 0.015277700498700142, + 0.101996049284935, + 0.0023796744644641876, + 0.013835912570357323, + 0.08836984634399414, + -0.08798637241125107, + -0.053786784410476685, + -0.025867177173495293, + 0.07090725004673004, + -0.05228910967707634, + 0.024839768186211586, + 0.0543626993894577, + -0.048099253326654434, + -0.01027676835656166, + 0.04654526337981224, + -0.0034045036882162094, + 0.003895972855389118, + 0.04250902682542801, + -0.05232023075222969, + 0.06287448853254318, + -0.04146592691540718, + -0.0022073618602007627, + 0.07169511169195175, + 0.057035692036151886, + 0.04202979430556297, + -0.01752091944217682, + -0.03615778684616089, + -0.07597745209932327, + 0.0076013305224478245, + 0.03388708084821701, + 0.06191568076610565, + -0.01607775315642357, + 0.004401837941259146, + -0.06070601940155029, + -0.07674850523471832, + 0.059249889105558395, + -0.02222420647740364, + 0.10215721279382706, + -0.000883960397914052, + 0.010600706562399864, + 0.09869417548179626, + 0.011313805356621742, + -0.01187396701425314, + -0.04851905256509781, + -0.020747501403093338, + 0.043711841106414795, + 0.04022590070962906, + -0.06653523445129395, + -0.04014153778553009, + 0.012923783622682095, + 0.0024894566740840673, + -0.03801071271300316, + 0.017412755638360977, + 0.03090047463774681, + 0.021060986444354057, + 0.04588426649570465, + -0.061013057827949524, + 0.022323710843920708, + -0.0921829417347908, + -0.009262383915483952, + -0.0024641728959977627, + -0.04311069846153259, + -0.02953970432281494, + 0.11183556914329529, + 0.041883185505867004, + 0.01362229697406292, + -0.009713159874081612, + -0.07398185133934021, + -0.03448636084794998, + 0.06774093955755234, + 0.06281304359436035, + 0.005423923954367638, + 0.04070146754384041, + 0.04723779857158661, + 0.0025808606296777725, + 0.04067641496658325, + 0.0840836763381958, + 0.0662192553281784, + 6.253225728869438e-05, + -0.03287994861602783, + -0.07941965758800507, + 0.09294897317886353, + 0.08651109039783478, + -0.09662938117980957, + -0.08838298916816711, + -0.05120178312063217, + -0.06626439094543457, + 0.04893879592418671, + -0.017820902168750763, + -0.007398976478725672, + 0.02896031364798546, + -0.025766948238015175, + -0.10214102268218994, + -0.10014186799526215, + 0.1211889386177063, + -0.0510331466794014, + -0.02461140602827072, + -0.06880723685026169, + 0.02751768007874489, + 0.07350686937570572, + 0.038249749690294266, + -0.009252945892512798, + 0.013650302775204182, + 0.04884907230734825, + -0.08785197138786316, + 0.003136417828500271, + 0.05015810579061508, + -0.00904669426381588, + -0.10715165734291077, + 0.026881497353315353, + -0.07288249582052231, + 0.08610662072896957, + -0.06228051334619522, + 0.1673828363418579, + 0.006395484320819378, + -0.0426831915974617, + -0.08067314326763153, + 0.06747708469629288, + -0.049200400710105896, + 0.0475490465760231, + 0.05716557055711746, + 0.060844384133815765, + 0.04086177423596382, + -0.08346255123615265, + 0.0869344025850296, + 0.019769223406910896, + -0.020300764590501785, + -0.0708683505654335, + -0.030514180660247803, + -0.027429744601249695, + 0.021853724494576454, + -0.012019682675600052, + -0.0613793209195137, + 0.009929075837135315, + 0.0261012464761734, + -0.018161576241254807, + 0.07936893403530121, + 0.12791746854782104, + 0.08958099782466888, + -0.09469571709632874 + ] + }, + "#wavs/LJ001-0003": { + "name": "ljspeech-2", + "embedding": [ + 0.05539746582508087, + 0.08493061363697052, + -0.010013150051236153, + 0.04369359463453293, + -0.05871078372001648, + 0.07792330533266068, + -0.12001194059848785, + 0.09205509722232819, + -0.053687505424022675, + 0.13110113143920898, + -0.0672345906496048, + 0.09076011180877686, + -0.012022187933325768, + -0.1773194968700409, + -0.03690509498119354, + 0.052139587700366974, + -0.06511855870485306, + -0.014169753529131413, + -0.0788075178861618, + -0.022713735699653625, + 0.026002388447523117, + 0.04142642393708229, + 0.06633599102497101, + -0.040966324508190155, + 0.05216488242149353, + 0.043708473443984985, + 0.008947450667619705, + 0.043884553015232086, + 0.015242422930896282, + -0.07271697372198105, + -0.03943272680044174, + 0.11445401608943939, + -0.01976911909878254, + -0.001584329642355442, + 0.03226276487112045, + -0.002877067308872938, + 0.006218053866177797, + -0.09210439026355743, + -0.023884698748588562, + 0.019102394580841064, + -0.023189997300505638, + 0.07678322494029999, + 0.04511963576078415, + -0.028598245233297348, + 0.02654365450143814, + -0.026303084567189217, + -0.036059144884347916, + -0.04994352161884308, + -0.10899694263935089, + 0.16808779537677765, + 0.0568464957177639, + 0.017774248495697975, + -0.0766686350107193, + -0.08056356757879257, + 0.11318203061819077, + -0.0009237118065357208, + -0.11983267217874527, + -0.04011853411793709, + 0.06481920927762985, + 0.18528658151626587, + -0.020618144422769547, + 0.0030966848134994507, + 0.030582068488001823, + 0.11048240959644318, + 0.026203282177448273, + 0.08886025100946426, + 0.0776662528514862, + 0.08468905836343765, + 0.02009391225874424, + 0.053141623735427856, + 0.04102938249707222, + 0.059041380882263184, + -0.006237464025616646, + -0.018360337242484093, + 0.015418153256177902, + -0.03559226542711258, + -0.05805520713329315, + -0.00861218199133873, + -0.021234268322587013, + -0.025556275621056557, + -0.012332704849541187, + -0.009777471423149109, + 0.03721384331583977, + 0.010376224294304848, + -0.05210898444056511, + 0.035450324416160583, + 0.0026437342166900635, + -0.03329150378704071, + 0.07028764486312866, + 0.03101171739399433, + 0.003101848065853119, + 0.029428653419017792, + -0.03445912152528763, + -0.11992329359054565, + -0.006469260435551405, + 0.02472860924899578, + -0.0021879260893911123, + 0.06576769798994064, + 0.04159736633300781, + -0.044104330241680145, + 0.10868340730667114, + 0.06065361574292183, + -0.00814537052065134, + 0.029497724026441574, + -0.0820949599146843, + 0.09694784879684448, + 0.10299994796514511, + 0.007466038689017296, + 0.0573151595890522, + -0.04003140702843666, + 0.0748046338558197, + 0.07954449951648712, + -0.14061805605888367, + -0.07225356996059418, + 0.030713198706507683, + -0.01169175747781992, + 0.015277700498700142, + 0.101996049284935, + 0.0023796744644641876, + 0.013835912570357323, + 0.08836984634399414, + -0.08798637241125107, + -0.053786784410476685, + -0.025867177173495293, + 0.07090725004673004, + -0.05228910967707634, + 0.024839768186211586, + 0.0543626993894577, + -0.048099253326654434, + -0.01027676835656166, + 0.04654526337981224, + -0.0034045036882162094, + 0.003895972855389118, + 0.04250902682542801, + -0.05232023075222969, + 0.06287448853254318, + -0.04146592691540718, + -0.0022073618602007627, + 0.07169511169195175, + 0.057035692036151886, + 0.04202979430556297, + -0.01752091944217682, + -0.03615778684616089, + -0.07597745209932327, + 0.0076013305224478245, + 0.03388708084821701, + 0.06191568076610565, + -0.01607775315642357, + 0.004401837941259146, + -0.06070601940155029, + -0.07674850523471832, + 0.059249889105558395, + -0.02222420647740364, + 0.10215721279382706, + -0.000883960397914052, + 0.010600706562399864, + 0.09869417548179626, + 0.011313805356621742, + -0.01187396701425314, + -0.04851905256509781, + -0.020747501403093338, + 0.043711841106414795, + 0.04022590070962906, + -0.06653523445129395, + -0.04014153778553009, + 0.012923783622682095, + 0.0024894566740840673, + -0.03801071271300316, + 0.017412755638360977, + 0.03090047463774681, + 0.021060986444354057, + 0.04588426649570465, + -0.061013057827949524, + 0.022323710843920708, + -0.0921829417347908, + -0.009262383915483952, + -0.0024641728959977627, + -0.04311069846153259, + -0.02953970432281494, + 0.11183556914329529, + 0.041883185505867004, + 0.01362229697406292, + -0.009713159874081612, + -0.07398185133934021, + -0.03448636084794998, + 0.06774093955755234, + 0.06281304359436035, + 0.005423923954367638, + 0.04070146754384041, + 0.04723779857158661, + 0.0025808606296777725, + 0.04067641496658325, + 0.0840836763381958, + 0.0662192553281784, + 6.253225728869438e-05, + -0.03287994861602783, + -0.07941965758800507, + 0.09294897317886353, + 0.08651109039783478, + -0.09662938117980957, + -0.08838298916816711, + -0.05120178312063217, + -0.06626439094543457, + 0.04893879592418671, + -0.017820902168750763, + -0.007398976478725672, + 0.02896031364798546, + -0.025766948238015175, + -0.10214102268218994, + -0.10014186799526215, + 0.1211889386177063, + -0.0510331466794014, + -0.02461140602827072, + -0.06880723685026169, + 0.02751768007874489, + 0.07350686937570572, + 0.038249749690294266, + -0.009252945892512798, + 0.013650302775204182, + 0.04884907230734825, + -0.08785197138786316, + 0.003136417828500271, + 0.05015810579061508, + -0.00904669426381588, + -0.10715165734291077, + 0.026881497353315353, + -0.07288249582052231, + 0.08610662072896957, + -0.06228051334619522, + 0.1673828363418579, + 0.006395484320819378, + -0.0426831915974617, + -0.08067314326763153, + 0.06747708469629288, + -0.049200400710105896, + 0.0475490465760231, + 0.05716557055711746, + 0.060844384133815765, + 0.04086177423596382, + -0.08346255123615265, + 0.0869344025850296, + 0.019769223406910896, + -0.020300764590501785, + -0.0708683505654335, + -0.030514180660247803, + -0.027429744601249695, + 0.021853724494576454, + -0.012019682675600052, + -0.0613793209195137, + 0.009929075837135315, + 0.0261012464761734, + -0.018161576241254807, + 0.07936893403530121, + 0.12791746854782104, + 0.08958099782466888, + -0.09469571709632874 + ] + }, + "#wavs/LJ001-0004": { + "name": "ljspeech-3", + "embedding": [ + 0.05539746582508087, + 0.08493061363697052, + -0.010013150051236153, + 0.04369359463453293, + -0.05871078372001648, + 0.07792330533266068, + -0.12001194059848785, + 0.09205509722232819, + -0.053687505424022675, + 0.13110113143920898, + -0.0672345906496048, + 0.09076011180877686, + -0.012022187933325768, + -0.1773194968700409, + -0.03690509498119354, + 0.052139587700366974, + -0.06511855870485306, + -0.014169753529131413, + -0.0788075178861618, + -0.022713735699653625, + 0.026002388447523117, + 0.04142642393708229, + 0.06633599102497101, + -0.040966324508190155, + 0.05216488242149353, + 0.043708473443984985, + 0.008947450667619705, + 0.043884553015232086, + 0.015242422930896282, + -0.07271697372198105, + -0.03943272680044174, + 0.11445401608943939, + -0.01976911909878254, + -0.001584329642355442, + 0.03226276487112045, + -0.002877067308872938, + 0.006218053866177797, + -0.09210439026355743, + -0.023884698748588562, + 0.019102394580841064, + -0.023189997300505638, + 0.07678322494029999, + 0.04511963576078415, + -0.028598245233297348, + 0.02654365450143814, + -0.026303084567189217, + -0.036059144884347916, + -0.04994352161884308, + -0.10899694263935089, + 0.16808779537677765, + 0.0568464957177639, + 0.017774248495697975, + -0.0766686350107193, + -0.08056356757879257, + 0.11318203061819077, + -0.0009237118065357208, + -0.11983267217874527, + -0.04011853411793709, + 0.06481920927762985, + 0.18528658151626587, + -0.020618144422769547, + 0.0030966848134994507, + 0.030582068488001823, + 0.11048240959644318, + 0.026203282177448273, + 0.08886025100946426, + 0.0776662528514862, + 0.08468905836343765, + 0.02009391225874424, + 0.053141623735427856, + 0.04102938249707222, + 0.059041380882263184, + -0.006237464025616646, + -0.018360337242484093, + 0.015418153256177902, + -0.03559226542711258, + -0.05805520713329315, + -0.00861218199133873, + -0.021234268322587013, + -0.025556275621056557, + -0.012332704849541187, + -0.009777471423149109, + 0.03721384331583977, + 0.010376224294304848, + -0.05210898444056511, + 0.035450324416160583, + 0.0026437342166900635, + -0.03329150378704071, + 0.07028764486312866, + 0.03101171739399433, + 0.003101848065853119, + 0.029428653419017792, + -0.03445912152528763, + -0.11992329359054565, + -0.006469260435551405, + 0.02472860924899578, + -0.0021879260893911123, + 0.06576769798994064, + 0.04159736633300781, + -0.044104330241680145, + 0.10868340730667114, + 0.06065361574292183, + -0.00814537052065134, + 0.029497724026441574, + -0.0820949599146843, + 0.09694784879684448, + 0.10299994796514511, + 0.007466038689017296, + 0.0573151595890522, + -0.04003140702843666, + 0.0748046338558197, + 0.07954449951648712, + -0.14061805605888367, + -0.07225356996059418, + 0.030713198706507683, + -0.01169175747781992, + 0.015277700498700142, + 0.101996049284935, + 0.0023796744644641876, + 0.013835912570357323, + 0.08836984634399414, + -0.08798637241125107, + -0.053786784410476685, + -0.025867177173495293, + 0.07090725004673004, + -0.05228910967707634, + 0.024839768186211586, + 0.0543626993894577, + -0.048099253326654434, + -0.01027676835656166, + 0.04654526337981224, + -0.0034045036882162094, + 0.003895972855389118, + 0.04250902682542801, + -0.05232023075222969, + 0.06287448853254318, + -0.04146592691540718, + -0.0022073618602007627, + 0.07169511169195175, + 0.057035692036151886, + 0.04202979430556297, + -0.01752091944217682, + -0.03615778684616089, + -0.07597745209932327, + 0.0076013305224478245, + 0.03388708084821701, + 0.06191568076610565, + -0.01607775315642357, + 0.004401837941259146, + -0.06070601940155029, + -0.07674850523471832, + 0.059249889105558395, + -0.02222420647740364, + 0.10215721279382706, + -0.000883960397914052, + 0.010600706562399864, + 0.09869417548179626, + 0.011313805356621742, + -0.01187396701425314, + -0.04851905256509781, + -0.020747501403093338, + 0.043711841106414795, + 0.04022590070962906, + -0.06653523445129395, + -0.04014153778553009, + 0.012923783622682095, + 0.0024894566740840673, + -0.03801071271300316, + 0.017412755638360977, + 0.03090047463774681, + 0.021060986444354057, + 0.04588426649570465, + -0.061013057827949524, + 0.022323710843920708, + -0.0921829417347908, + -0.009262383915483952, + -0.0024641728959977627, + -0.04311069846153259, + -0.02953970432281494, + 0.11183556914329529, + 0.041883185505867004, + 0.01362229697406292, + -0.009713159874081612, + -0.07398185133934021, + -0.03448636084794998, + 0.06774093955755234, + 0.06281304359436035, + 0.005423923954367638, + 0.04070146754384041, + 0.04723779857158661, + 0.0025808606296777725, + 0.04067641496658325, + 0.0840836763381958, + 0.0662192553281784, + 6.253225728869438e-05, + -0.03287994861602783, + -0.07941965758800507, + 0.09294897317886353, + 0.08651109039783478, + -0.09662938117980957, + -0.08838298916816711, + -0.05120178312063217, + -0.06626439094543457, + 0.04893879592418671, + -0.017820902168750763, + -0.007398976478725672, + 0.02896031364798546, + -0.025766948238015175, + -0.10214102268218994, + -0.10014186799526215, + 0.1211889386177063, + -0.0510331466794014, + -0.02461140602827072, + -0.06880723685026169, + 0.02751768007874489, + 0.07350686937570572, + 0.038249749690294266, + -0.009252945892512798, + 0.013650302775204182, + 0.04884907230734825, + -0.08785197138786316, + 0.003136417828500271, + 0.05015810579061508, + -0.00904669426381588, + -0.10715165734291077, + 0.026881497353315353, + -0.07288249582052231, + 0.08610662072896957, + -0.06228051334619522, + 0.1673828363418579, + 0.006395484320819378, + -0.0426831915974617, + -0.08067314326763153, + 0.06747708469629288, + -0.049200400710105896, + 0.0475490465760231, + 0.05716557055711746, + 0.060844384133815765, + 0.04086177423596382, + -0.08346255123615265, + 0.0869344025850296, + 0.019769223406910896, + -0.020300764590501785, + -0.0708683505654335, + -0.030514180660247803, + -0.027429744601249695, + 0.021853724494576454, + -0.012019682675600052, + -0.0613793209195137, + 0.009929075837135315, + 0.0261012464761734, + -0.018161576241254807, + 0.07936893403530121, + 0.12791746854782104, + 0.08958099782466888, + -0.09469571709632874 + ] + }, + "#wavs/LJ001-0005": { + "name": "ljspeech-4", + "embedding": [ + 0.05539746582508087, + 0.08493061363697052, + -0.010013150051236153, + 0.04369359463453293, + -0.05871078372001648, + 0.07792330533266068, + -0.12001194059848785, + 0.09205509722232819, + -0.053687505424022675, + 0.13110113143920898, + -0.0672345906496048, + 0.09076011180877686, + -0.012022187933325768, + -0.1773194968700409, + -0.03690509498119354, + 0.052139587700366974, + -0.06511855870485306, + -0.014169753529131413, + -0.0788075178861618, + -0.022713735699653625, + 0.026002388447523117, + 0.04142642393708229, + 0.06633599102497101, + -0.040966324508190155, + 0.05216488242149353, + 0.043708473443984985, + 0.008947450667619705, + 0.043884553015232086, + 0.015242422930896282, + -0.07271697372198105, + -0.03943272680044174, + 0.11445401608943939, + -0.01976911909878254, + -0.001584329642355442, + 0.03226276487112045, + -0.002877067308872938, + 0.006218053866177797, + -0.09210439026355743, + -0.023884698748588562, + 0.019102394580841064, + -0.023189997300505638, + 0.07678322494029999, + 0.04511963576078415, + -0.028598245233297348, + 0.02654365450143814, + -0.026303084567189217, + -0.036059144884347916, + -0.04994352161884308, + -0.10899694263935089, + 0.16808779537677765, + 0.0568464957177639, + 0.017774248495697975, + -0.0766686350107193, + -0.08056356757879257, + 0.11318203061819077, + -0.0009237118065357208, + -0.11983267217874527, + -0.04011853411793709, + 0.06481920927762985, + 0.18528658151626587, + -0.020618144422769547, + 0.0030966848134994507, + 0.030582068488001823, + 0.11048240959644318, + 0.026203282177448273, + 0.08886025100946426, + 0.0776662528514862, + 0.08468905836343765, + 0.02009391225874424, + 0.053141623735427856, + 0.04102938249707222, + 0.059041380882263184, + -0.006237464025616646, + -0.018360337242484093, + 0.015418153256177902, + -0.03559226542711258, + -0.05805520713329315, + -0.00861218199133873, + -0.021234268322587013, + -0.025556275621056557, + -0.012332704849541187, + -0.009777471423149109, + 0.03721384331583977, + 0.010376224294304848, + -0.05210898444056511, + 0.035450324416160583, + 0.0026437342166900635, + -0.03329150378704071, + 0.07028764486312866, + 0.03101171739399433, + 0.003101848065853119, + 0.029428653419017792, + -0.03445912152528763, + -0.11992329359054565, + -0.006469260435551405, + 0.02472860924899578, + -0.0021879260893911123, + 0.06576769798994064, + 0.04159736633300781, + -0.044104330241680145, + 0.10868340730667114, + 0.06065361574292183, + -0.00814537052065134, + 0.029497724026441574, + -0.0820949599146843, + 0.09694784879684448, + 0.10299994796514511, + 0.007466038689017296, + 0.0573151595890522, + -0.04003140702843666, + 0.0748046338558197, + 0.07954449951648712, + -0.14061805605888367, + -0.07225356996059418, + 0.030713198706507683, + -0.01169175747781992, + 0.015277700498700142, + 0.101996049284935, + 0.0023796744644641876, + 0.013835912570357323, + 0.08836984634399414, + -0.08798637241125107, + -0.053786784410476685, + -0.025867177173495293, + 0.07090725004673004, + -0.05228910967707634, + 0.024839768186211586, + 0.0543626993894577, + -0.048099253326654434, + -0.01027676835656166, + 0.04654526337981224, + -0.0034045036882162094, + 0.003895972855389118, + 0.04250902682542801, + -0.05232023075222969, + 0.06287448853254318, + -0.04146592691540718, + -0.0022073618602007627, + 0.07169511169195175, + 0.057035692036151886, + 0.04202979430556297, + -0.01752091944217682, + -0.03615778684616089, + -0.07597745209932327, + 0.0076013305224478245, + 0.03388708084821701, + 0.06191568076610565, + -0.01607775315642357, + 0.004401837941259146, + -0.06070601940155029, + -0.07674850523471832, + 0.059249889105558395, + -0.02222420647740364, + 0.10215721279382706, + -0.000883960397914052, + 0.010600706562399864, + 0.09869417548179626, + 0.011313805356621742, + -0.01187396701425314, + -0.04851905256509781, + -0.020747501403093338, + 0.043711841106414795, + 0.04022590070962906, + -0.06653523445129395, + -0.04014153778553009, + 0.012923783622682095, + 0.0024894566740840673, + -0.03801071271300316, + 0.017412755638360977, + 0.03090047463774681, + 0.021060986444354057, + 0.04588426649570465, + -0.061013057827949524, + 0.022323710843920708, + -0.0921829417347908, + -0.009262383915483952, + -0.0024641728959977627, + -0.04311069846153259, + -0.02953970432281494, + 0.11183556914329529, + 0.041883185505867004, + 0.01362229697406292, + -0.009713159874081612, + -0.07398185133934021, + -0.03448636084794998, + 0.06774093955755234, + 0.06281304359436035, + 0.005423923954367638, + 0.04070146754384041, + 0.04723779857158661, + 0.0025808606296777725, + 0.04067641496658325, + 0.0840836763381958, + 0.0662192553281784, + 6.253225728869438e-05, + -0.03287994861602783, + -0.07941965758800507, + 0.09294897317886353, + 0.08651109039783478, + -0.09662938117980957, + -0.08838298916816711, + -0.05120178312063217, + -0.06626439094543457, + 0.04893879592418671, + -0.017820902168750763, + -0.007398976478725672, + 0.02896031364798546, + -0.025766948238015175, + -0.10214102268218994, + -0.10014186799526215, + 0.1211889386177063, + -0.0510331466794014, + -0.02461140602827072, + -0.06880723685026169, + 0.02751768007874489, + 0.07350686937570572, + 0.038249749690294266, + -0.009252945892512798, + 0.013650302775204182, + 0.04884907230734825, + -0.08785197138786316, + 0.003136417828500271, + 0.05015810579061508, + -0.00904669426381588, + -0.10715165734291077, + 0.026881497353315353, + -0.07288249582052231, + 0.08610662072896957, + -0.06228051334619522, + 0.1673828363418579, + 0.006395484320819378, + -0.0426831915974617, + -0.08067314326763153, + 0.06747708469629288, + -0.049200400710105896, + 0.0475490465760231, + 0.05716557055711746, + 0.060844384133815765, + 0.04086177423596382, + -0.08346255123615265, + 0.0869344025850296, + 0.019769223406910896, + -0.020300764590501785, + -0.0708683505654335, + -0.030514180660247803, + -0.027429744601249695, + 0.021853724494576454, + -0.012019682675600052, + -0.0613793209195137, + 0.009929075837135315, + 0.0261012464761734, + -0.018161576241254807, + 0.07936893403530121, + 0.12791746854782104, + 0.08958099782466888, + -0.09469571709632874 + ] + }, + "#wavs/LJ001-0006": { + "name": "ljspeech-5", + "embedding": [ + 0.05539746582508087, + 0.08493061363697052, + -0.010013150051236153, + 0.04369359463453293, + -0.05871078372001648, + 0.07792330533266068, + -0.12001194059848785, + 0.09205509722232819, + -0.053687505424022675, + 0.13110113143920898, + -0.0672345906496048, + 0.09076011180877686, + -0.012022187933325768, + -0.1773194968700409, + -0.03690509498119354, + 0.052139587700366974, + -0.06511855870485306, + -0.014169753529131413, + -0.0788075178861618, + -0.022713735699653625, + 0.026002388447523117, + 0.04142642393708229, + 0.06633599102497101, + -0.040966324508190155, + 0.05216488242149353, + 0.043708473443984985, + 0.008947450667619705, + 0.043884553015232086, + 0.015242422930896282, + -0.07271697372198105, + -0.03943272680044174, + 0.11445401608943939, + -0.01976911909878254, + -0.001584329642355442, + 0.03226276487112045, + -0.002877067308872938, + 0.006218053866177797, + -0.09210439026355743, + -0.023884698748588562, + 0.019102394580841064, + -0.023189997300505638, + 0.07678322494029999, + 0.04511963576078415, + -0.028598245233297348, + 0.02654365450143814, + -0.026303084567189217, + -0.036059144884347916, + -0.04994352161884308, + -0.10899694263935089, + 0.16808779537677765, + 0.0568464957177639, + 0.017774248495697975, + -0.0766686350107193, + -0.08056356757879257, + 0.11318203061819077, + -0.0009237118065357208, + -0.11983267217874527, + -0.04011853411793709, + 0.06481920927762985, + 0.18528658151626587, + -0.020618144422769547, + 0.0030966848134994507, + 0.030582068488001823, + 0.11048240959644318, + 0.026203282177448273, + 0.08886025100946426, + 0.0776662528514862, + 0.08468905836343765, + 0.02009391225874424, + 0.053141623735427856, + 0.04102938249707222, + 0.059041380882263184, + -0.006237464025616646, + -0.018360337242484093, + 0.015418153256177902, + -0.03559226542711258, + -0.05805520713329315, + -0.00861218199133873, + -0.021234268322587013, + -0.025556275621056557, + -0.012332704849541187, + -0.009777471423149109, + 0.03721384331583977, + 0.010376224294304848, + -0.05210898444056511, + 0.035450324416160583, + 0.0026437342166900635, + -0.03329150378704071, + 0.07028764486312866, + 0.03101171739399433, + 0.003101848065853119, + 0.029428653419017792, + -0.03445912152528763, + -0.11992329359054565, + -0.006469260435551405, + 0.02472860924899578, + -0.0021879260893911123, + 0.06576769798994064, + 0.04159736633300781, + -0.044104330241680145, + 0.10868340730667114, + 0.06065361574292183, + -0.00814537052065134, + 0.029497724026441574, + -0.0820949599146843, + 0.09694784879684448, + 0.10299994796514511, + 0.007466038689017296, + 0.0573151595890522, + -0.04003140702843666, + 0.0748046338558197, + 0.07954449951648712, + -0.14061805605888367, + -0.07225356996059418, + 0.030713198706507683, + -0.01169175747781992, + 0.015277700498700142, + 0.101996049284935, + 0.0023796744644641876, + 0.013835912570357323, + 0.08836984634399414, + -0.08798637241125107, + -0.053786784410476685, + -0.025867177173495293, + 0.07090725004673004, + -0.05228910967707634, + 0.024839768186211586, + 0.0543626993894577, + -0.048099253326654434, + -0.01027676835656166, + 0.04654526337981224, + -0.0034045036882162094, + 0.003895972855389118, + 0.04250902682542801, + -0.05232023075222969, + 0.06287448853254318, + -0.04146592691540718, + -0.0022073618602007627, + 0.07169511169195175, + 0.057035692036151886, + 0.04202979430556297, + -0.01752091944217682, + -0.03615778684616089, + -0.07597745209932327, + 0.0076013305224478245, + 0.03388708084821701, + 0.06191568076610565, + -0.01607775315642357, + 0.004401837941259146, + -0.06070601940155029, + -0.07674850523471832, + 0.059249889105558395, + -0.02222420647740364, + 0.10215721279382706, + -0.000883960397914052, + 0.010600706562399864, + 0.09869417548179626, + 0.011313805356621742, + -0.01187396701425314, + -0.04851905256509781, + -0.020747501403093338, + 0.043711841106414795, + 0.04022590070962906, + -0.06653523445129395, + -0.04014153778553009, + 0.012923783622682095, + 0.0024894566740840673, + -0.03801071271300316, + 0.017412755638360977, + 0.03090047463774681, + 0.021060986444354057, + 0.04588426649570465, + -0.061013057827949524, + 0.022323710843920708, + -0.0921829417347908, + -0.009262383915483952, + -0.0024641728959977627, + -0.04311069846153259, + -0.02953970432281494, + 0.11183556914329529, + 0.041883185505867004, + 0.01362229697406292, + -0.009713159874081612, + -0.07398185133934021, + -0.03448636084794998, + 0.06774093955755234, + 0.06281304359436035, + 0.005423923954367638, + 0.04070146754384041, + 0.04723779857158661, + 0.0025808606296777725, + 0.04067641496658325, + 0.0840836763381958, + 0.0662192553281784, + 6.253225728869438e-05, + -0.03287994861602783, + -0.07941965758800507, + 0.09294897317886353, + 0.08651109039783478, + -0.09662938117980957, + -0.08838298916816711, + -0.05120178312063217, + -0.06626439094543457, + 0.04893879592418671, + -0.017820902168750763, + -0.007398976478725672, + 0.02896031364798546, + -0.025766948238015175, + -0.10214102268218994, + -0.10014186799526215, + 0.1211889386177063, + -0.0510331466794014, + -0.02461140602827072, + -0.06880723685026169, + 0.02751768007874489, + 0.07350686937570572, + 0.038249749690294266, + -0.009252945892512798, + 0.013650302775204182, + 0.04884907230734825, + -0.08785197138786316, + 0.003136417828500271, + 0.05015810579061508, + -0.00904669426381588, + -0.10715165734291077, + 0.026881497353315353, + -0.07288249582052231, + 0.08610662072896957, + -0.06228051334619522, + 0.1673828363418579, + 0.006395484320819378, + -0.0426831915974617, + -0.08067314326763153, + 0.06747708469629288, + -0.049200400710105896, + 0.0475490465760231, + 0.05716557055711746, + 0.060844384133815765, + 0.04086177423596382, + -0.08346255123615265, + 0.0869344025850296, + 0.019769223406910896, + -0.020300764590501785, + -0.0708683505654335, + -0.030514180660247803, + -0.027429744601249695, + 0.021853724494576454, + -0.012019682675600052, + -0.0613793209195137, + 0.009929075837135315, + 0.0261012464761734, + -0.018161576241254807, + 0.07936893403530121, + 0.12791746854782104, + 0.08958099782466888, + -0.09469571709632874 + ] + }, + "#wavs/LJ001-0007": { + "name": "ljspeech-6", + "embedding": [ + 0.05539746582508087, + 0.08493061363697052, + -0.010013150051236153, + 0.04369359463453293, + -0.05871078372001648, + 0.07792330533266068, + -0.12001194059848785, + 0.09205509722232819, + -0.053687505424022675, + 0.13110113143920898, + -0.0672345906496048, + 0.09076011180877686, + -0.012022187933325768, + -0.1773194968700409, + -0.03690509498119354, + 0.052139587700366974, + -0.06511855870485306, + -0.014169753529131413, + -0.0788075178861618, + -0.022713735699653625, + 0.026002388447523117, + 0.04142642393708229, + 0.06633599102497101, + -0.040966324508190155, + 0.05216488242149353, + 0.043708473443984985, + 0.008947450667619705, + 0.043884553015232086, + 0.015242422930896282, + -0.07271697372198105, + -0.03943272680044174, + 0.11445401608943939, + -0.01976911909878254, + -0.001584329642355442, + 0.03226276487112045, + -0.002877067308872938, + 0.006218053866177797, + -0.09210439026355743, + -0.023884698748588562, + 0.019102394580841064, + -0.023189997300505638, + 0.07678322494029999, + 0.04511963576078415, + -0.028598245233297348, + 0.02654365450143814, + -0.026303084567189217, + -0.036059144884347916, + -0.04994352161884308, + -0.10899694263935089, + 0.16808779537677765, + 0.0568464957177639, + 0.017774248495697975, + -0.0766686350107193, + -0.08056356757879257, + 0.11318203061819077, + -0.0009237118065357208, + -0.11983267217874527, + -0.04011853411793709, + 0.06481920927762985, + 0.18528658151626587, + -0.020618144422769547, + 0.0030966848134994507, + 0.030582068488001823, + 0.11048240959644318, + 0.026203282177448273, + 0.08886025100946426, + 0.0776662528514862, + 0.08468905836343765, + 0.02009391225874424, + 0.053141623735427856, + 0.04102938249707222, + 0.059041380882263184, + -0.006237464025616646, + -0.018360337242484093, + 0.015418153256177902, + -0.03559226542711258, + -0.05805520713329315, + -0.00861218199133873, + -0.021234268322587013, + -0.025556275621056557, + -0.012332704849541187, + -0.009777471423149109, + 0.03721384331583977, + 0.010376224294304848, + -0.05210898444056511, + 0.035450324416160583, + 0.0026437342166900635, + -0.03329150378704071, + 0.07028764486312866, + 0.03101171739399433, + 0.003101848065853119, + 0.029428653419017792, + -0.03445912152528763, + -0.11992329359054565, + -0.006469260435551405, + 0.02472860924899578, + -0.0021879260893911123, + 0.06576769798994064, + 0.04159736633300781, + -0.044104330241680145, + 0.10868340730667114, + 0.06065361574292183, + -0.00814537052065134, + 0.029497724026441574, + -0.0820949599146843, + 0.09694784879684448, + 0.10299994796514511, + 0.007466038689017296, + 0.0573151595890522, + -0.04003140702843666, + 0.0748046338558197, + 0.07954449951648712, + -0.14061805605888367, + -0.07225356996059418, + 0.030713198706507683, + -0.01169175747781992, + 0.015277700498700142, + 0.101996049284935, + 0.0023796744644641876, + 0.013835912570357323, + 0.08836984634399414, + -0.08798637241125107, + -0.053786784410476685, + -0.025867177173495293, + 0.07090725004673004, + -0.05228910967707634, + 0.024839768186211586, + 0.0543626993894577, + -0.048099253326654434, + -0.01027676835656166, + 0.04654526337981224, + -0.0034045036882162094, + 0.003895972855389118, + 0.04250902682542801, + -0.05232023075222969, + 0.06287448853254318, + -0.04146592691540718, + -0.0022073618602007627, + 0.07169511169195175, + 0.057035692036151886, + 0.04202979430556297, + -0.01752091944217682, + -0.03615778684616089, + -0.07597745209932327, + 0.0076013305224478245, + 0.03388708084821701, + 0.06191568076610565, + -0.01607775315642357, + 0.004401837941259146, + -0.06070601940155029, + -0.07674850523471832, + 0.059249889105558395, + -0.02222420647740364, + 0.10215721279382706, + -0.000883960397914052, + 0.010600706562399864, + 0.09869417548179626, + 0.011313805356621742, + -0.01187396701425314, + -0.04851905256509781, + -0.020747501403093338, + 0.043711841106414795, + 0.04022590070962906, + -0.06653523445129395, + -0.04014153778553009, + 0.012923783622682095, + 0.0024894566740840673, + -0.03801071271300316, + 0.017412755638360977, + 0.03090047463774681, + 0.021060986444354057, + 0.04588426649570465, + -0.061013057827949524, + 0.022323710843920708, + -0.0921829417347908, + -0.009262383915483952, + -0.0024641728959977627, + -0.04311069846153259, + -0.02953970432281494, + 0.11183556914329529, + 0.041883185505867004, + 0.01362229697406292, + -0.009713159874081612, + -0.07398185133934021, + -0.03448636084794998, + 0.06774093955755234, + 0.06281304359436035, + 0.005423923954367638, + 0.04070146754384041, + 0.04723779857158661, + 0.0025808606296777725, + 0.04067641496658325, + 0.0840836763381958, + 0.0662192553281784, + 6.253225728869438e-05, + -0.03287994861602783, + -0.07941965758800507, + 0.09294897317886353, + 0.08651109039783478, + -0.09662938117980957, + -0.08838298916816711, + -0.05120178312063217, + -0.06626439094543457, + 0.04893879592418671, + -0.017820902168750763, + -0.007398976478725672, + 0.02896031364798546, + -0.025766948238015175, + -0.10214102268218994, + -0.10014186799526215, + 0.1211889386177063, + -0.0510331466794014, + -0.02461140602827072, + -0.06880723685026169, + 0.02751768007874489, + 0.07350686937570572, + 0.038249749690294266, + -0.009252945892512798, + 0.013650302775204182, + 0.04884907230734825, + -0.08785197138786316, + 0.003136417828500271, + 0.05015810579061508, + -0.00904669426381588, + -0.10715165734291077, + 0.026881497353315353, + -0.07288249582052231, + 0.08610662072896957, + -0.06228051334619522, + 0.1673828363418579, + 0.006395484320819378, + -0.0426831915974617, + -0.08067314326763153, + 0.06747708469629288, + -0.049200400710105896, + 0.0475490465760231, + 0.05716557055711746, + 0.060844384133815765, + 0.04086177423596382, + -0.08346255123615265, + 0.0869344025850296, + 0.019769223406910896, + -0.020300764590501785, + -0.0708683505654335, + -0.030514180660247803, + -0.027429744601249695, + 0.021853724494576454, + -0.012019682675600052, + -0.0613793209195137, + 0.009929075837135315, + 0.0261012464761734, + -0.018161576241254807, + 0.07936893403530121, + 0.12791746854782104, + 0.08958099782466888, + -0.09469571709632874 + ] + }, + "#wavs/LJ001-0008": { + "name": "ljspeech-7", + "embedding": [ + 0.05539746582508087, + 0.08493061363697052, + -0.010013150051236153, + 0.04369359463453293, + -0.05871078372001648, + 0.07792330533266068, + -0.12001194059848785, + 0.09205509722232819, + -0.053687505424022675, + 0.13110113143920898, + -0.0672345906496048, + 0.09076011180877686, + -0.012022187933325768, + -0.1773194968700409, + -0.03690509498119354, + 0.052139587700366974, + -0.06511855870485306, + -0.014169753529131413, + -0.0788075178861618, + -0.022713735699653625, + 0.026002388447523117, + 0.04142642393708229, + 0.06633599102497101, + -0.040966324508190155, + 0.05216488242149353, + 0.043708473443984985, + 0.008947450667619705, + 0.043884553015232086, + 0.015242422930896282, + -0.07271697372198105, + -0.03943272680044174, + 0.11445401608943939, + -0.01976911909878254, + -0.001584329642355442, + 0.03226276487112045, + -0.002877067308872938, + 0.006218053866177797, + -0.09210439026355743, + -0.023884698748588562, + 0.019102394580841064, + -0.023189997300505638, + 0.07678322494029999, + 0.04511963576078415, + -0.028598245233297348, + 0.02654365450143814, + -0.026303084567189217, + -0.036059144884347916, + -0.04994352161884308, + -0.10899694263935089, + 0.16808779537677765, + 0.0568464957177639, + 0.017774248495697975, + -0.0766686350107193, + -0.08056356757879257, + 0.11318203061819077, + -0.0009237118065357208, + -0.11983267217874527, + -0.04011853411793709, + 0.06481920927762985, + 0.18528658151626587, + -0.020618144422769547, + 0.0030966848134994507, + 0.030582068488001823, + 0.11048240959644318, + 0.026203282177448273, + 0.08886025100946426, + 0.0776662528514862, + 0.08468905836343765, + 0.02009391225874424, + 0.053141623735427856, + 0.04102938249707222, + 0.059041380882263184, + -0.006237464025616646, + -0.018360337242484093, + 0.015418153256177902, + -0.03559226542711258, + -0.05805520713329315, + -0.00861218199133873, + -0.021234268322587013, + -0.025556275621056557, + -0.012332704849541187, + -0.009777471423149109, + 0.03721384331583977, + 0.010376224294304848, + -0.05210898444056511, + 0.035450324416160583, + 0.0026437342166900635, + -0.03329150378704071, + 0.07028764486312866, + 0.03101171739399433, + 0.003101848065853119, + 0.029428653419017792, + -0.03445912152528763, + -0.11992329359054565, + -0.006469260435551405, + 0.02472860924899578, + -0.0021879260893911123, + 0.06576769798994064, + 0.04159736633300781, + -0.044104330241680145, + 0.10868340730667114, + 0.06065361574292183, + -0.00814537052065134, + 0.029497724026441574, + -0.0820949599146843, + 0.09694784879684448, + 0.10299994796514511, + 0.007466038689017296, + 0.0573151595890522, + -0.04003140702843666, + 0.0748046338558197, + 0.07954449951648712, + -0.14061805605888367, + -0.07225356996059418, + 0.030713198706507683, + -0.01169175747781992, + 0.015277700498700142, + 0.101996049284935, + 0.0023796744644641876, + 0.013835912570357323, + 0.08836984634399414, + -0.08798637241125107, + -0.053786784410476685, + -0.025867177173495293, + 0.07090725004673004, + -0.05228910967707634, + 0.024839768186211586, + 0.0543626993894577, + -0.048099253326654434, + -0.01027676835656166, + 0.04654526337981224, + -0.0034045036882162094, + 0.003895972855389118, + 0.04250902682542801, + -0.05232023075222969, + 0.06287448853254318, + -0.04146592691540718, + -0.0022073618602007627, + 0.07169511169195175, + 0.057035692036151886, + 0.04202979430556297, + -0.01752091944217682, + -0.03615778684616089, + -0.07597745209932327, + 0.0076013305224478245, + 0.03388708084821701, + 0.06191568076610565, + -0.01607775315642357, + 0.004401837941259146, + -0.06070601940155029, + -0.07674850523471832, + 0.059249889105558395, + -0.02222420647740364, + 0.10215721279382706, + -0.000883960397914052, + 0.010600706562399864, + 0.09869417548179626, + 0.011313805356621742, + -0.01187396701425314, + -0.04851905256509781, + -0.020747501403093338, + 0.043711841106414795, + 0.04022590070962906, + -0.06653523445129395, + -0.04014153778553009, + 0.012923783622682095, + 0.0024894566740840673, + -0.03801071271300316, + 0.017412755638360977, + 0.03090047463774681, + 0.021060986444354057, + 0.04588426649570465, + -0.061013057827949524, + 0.022323710843920708, + -0.0921829417347908, + -0.009262383915483952, + -0.0024641728959977627, + -0.04311069846153259, + -0.02953970432281494, + 0.11183556914329529, + 0.041883185505867004, + 0.01362229697406292, + -0.009713159874081612, + -0.07398185133934021, + -0.03448636084794998, + 0.06774093955755234, + 0.06281304359436035, + 0.005423923954367638, + 0.04070146754384041, + 0.04723779857158661, + 0.0025808606296777725, + 0.04067641496658325, + 0.0840836763381958, + 0.0662192553281784, + 6.253225728869438e-05, + -0.03287994861602783, + -0.07941965758800507, + 0.09294897317886353, + 0.08651109039783478, + -0.09662938117980957, + -0.08838298916816711, + -0.05120178312063217, + -0.06626439094543457, + 0.04893879592418671, + -0.017820902168750763, + -0.007398976478725672, + 0.02896031364798546, + -0.025766948238015175, + -0.10214102268218994, + -0.10014186799526215, + 0.1211889386177063, + -0.0510331466794014, + -0.02461140602827072, + -0.06880723685026169, + 0.02751768007874489, + 0.07350686937570572, + 0.038249749690294266, + -0.009252945892512798, + 0.013650302775204182, + 0.04884907230734825, + -0.08785197138786316, + 0.003136417828500271, + 0.05015810579061508, + -0.00904669426381588, + -0.10715165734291077, + 0.026881497353315353, + -0.07288249582052231, + 0.08610662072896957, + -0.06228051334619522, + 0.1673828363418579, + 0.006395484320819378, + -0.0426831915974617, + -0.08067314326763153, + 0.06747708469629288, + -0.049200400710105896, + 0.0475490465760231, + 0.05716557055711746, + 0.060844384133815765, + 0.04086177423596382, + -0.08346255123615265, + 0.0869344025850296, + 0.019769223406910896, + -0.020300764590501785, + -0.0708683505654335, + -0.030514180660247803, + -0.027429744601249695, + 0.021853724494576454, + -0.012019682675600052, + -0.0613793209195137, + 0.009929075837135315, + 0.0261012464761734, + -0.018161576241254807, + 0.07936893403530121, + 0.12791746854782104, + 0.08958099782466888, + -0.09469571709632874 + ] + }, + "#wavs/LJ001-0009": { + "name": "ljspeech-8", + "embedding": [ + 0.05539746582508087, + 0.08493061363697052, + -0.010013150051236153, + 0.04369359463453293, + -0.05871078372001648, + 0.07792330533266068, + -0.12001194059848785, + 0.09205509722232819, + -0.053687505424022675, + 0.13110113143920898, + -0.0672345906496048, + 0.09076011180877686, + -0.012022187933325768, + -0.1773194968700409, + -0.03690509498119354, + 0.052139587700366974, + -0.06511855870485306, + -0.014169753529131413, + -0.0788075178861618, + -0.022713735699653625, + 0.026002388447523117, + 0.04142642393708229, + 0.06633599102497101, + -0.040966324508190155, + 0.05216488242149353, + 0.043708473443984985, + 0.008947450667619705, + 0.043884553015232086, + 0.015242422930896282, + -0.07271697372198105, + -0.03943272680044174, + 0.11445401608943939, + -0.01976911909878254, + -0.001584329642355442, + 0.03226276487112045, + -0.002877067308872938, + 0.006218053866177797, + -0.09210439026355743, + -0.023884698748588562, + 0.019102394580841064, + -0.023189997300505638, + 0.07678322494029999, + 0.04511963576078415, + -0.028598245233297348, + 0.02654365450143814, + -0.026303084567189217, + -0.036059144884347916, + -0.04994352161884308, + -0.10899694263935089, + 0.16808779537677765, + 0.0568464957177639, + 0.017774248495697975, + -0.0766686350107193, + -0.08056356757879257, + 0.11318203061819077, + -0.0009237118065357208, + -0.11983267217874527, + -0.04011853411793709, + 0.06481920927762985, + 0.18528658151626587, + -0.020618144422769547, + 0.0030966848134994507, + 0.030582068488001823, + 0.11048240959644318, + 0.026203282177448273, + 0.08886025100946426, + 0.0776662528514862, + 0.08468905836343765, + 0.02009391225874424, + 0.053141623735427856, + 0.04102938249707222, + 0.059041380882263184, + -0.006237464025616646, + -0.018360337242484093, + 0.015418153256177902, + -0.03559226542711258, + -0.05805520713329315, + -0.00861218199133873, + -0.021234268322587013, + -0.025556275621056557, + -0.012332704849541187, + -0.009777471423149109, + 0.03721384331583977, + 0.010376224294304848, + -0.05210898444056511, + 0.035450324416160583, + 0.0026437342166900635, + -0.03329150378704071, + 0.07028764486312866, + 0.03101171739399433, + 0.003101848065853119, + 0.029428653419017792, + -0.03445912152528763, + -0.11992329359054565, + -0.006469260435551405, + 0.02472860924899578, + -0.0021879260893911123, + 0.06576769798994064, + 0.04159736633300781, + -0.044104330241680145, + 0.10868340730667114, + 0.06065361574292183, + -0.00814537052065134, + 0.029497724026441574, + -0.0820949599146843, + 0.09694784879684448, + 0.10299994796514511, + 0.007466038689017296, + 0.0573151595890522, + -0.04003140702843666, + 0.0748046338558197, + 0.07954449951648712, + -0.14061805605888367, + -0.07225356996059418, + 0.030713198706507683, + -0.01169175747781992, + 0.015277700498700142, + 0.101996049284935, + 0.0023796744644641876, + 0.013835912570357323, + 0.08836984634399414, + -0.08798637241125107, + -0.053786784410476685, + -0.025867177173495293, + 0.07090725004673004, + -0.05228910967707634, + 0.024839768186211586, + 0.0543626993894577, + -0.048099253326654434, + -0.01027676835656166, + 0.04654526337981224, + -0.0034045036882162094, + 0.003895972855389118, + 0.04250902682542801, + -0.05232023075222969, + 0.06287448853254318, + -0.04146592691540718, + -0.0022073618602007627, + 0.07169511169195175, + 0.057035692036151886, + 0.04202979430556297, + -0.01752091944217682, + -0.03615778684616089, + -0.07597745209932327, + 0.0076013305224478245, + 0.03388708084821701, + 0.06191568076610565, + -0.01607775315642357, + 0.004401837941259146, + -0.06070601940155029, + -0.07674850523471832, + 0.059249889105558395, + -0.02222420647740364, + 0.10215721279382706, + -0.000883960397914052, + 0.010600706562399864, + 0.09869417548179626, + 0.011313805356621742, + -0.01187396701425314, + -0.04851905256509781, + -0.020747501403093338, + 0.043711841106414795, + 0.04022590070962906, + -0.06653523445129395, + -0.04014153778553009, + 0.012923783622682095, + 0.0024894566740840673, + -0.03801071271300316, + 0.017412755638360977, + 0.03090047463774681, + 0.021060986444354057, + 0.04588426649570465, + -0.061013057827949524, + 0.022323710843920708, + -0.0921829417347908, + -0.009262383915483952, + -0.0024641728959977627, + -0.04311069846153259, + -0.02953970432281494, + 0.11183556914329529, + 0.041883185505867004, + 0.01362229697406292, + -0.009713159874081612, + -0.07398185133934021, + -0.03448636084794998, + 0.06774093955755234, + 0.06281304359436035, + 0.005423923954367638, + 0.04070146754384041, + 0.04723779857158661, + 0.0025808606296777725, + 0.04067641496658325, + 0.0840836763381958, + 0.0662192553281784, + 6.253225728869438e-05, + -0.03287994861602783, + -0.07941965758800507, + 0.09294897317886353, + 0.08651109039783478, + -0.09662938117980957, + -0.08838298916816711, + -0.05120178312063217, + -0.06626439094543457, + 0.04893879592418671, + -0.017820902168750763, + -0.007398976478725672, + 0.02896031364798546, + -0.025766948238015175, + -0.10214102268218994, + -0.10014186799526215, + 0.1211889386177063, + -0.0510331466794014, + -0.02461140602827072, + -0.06880723685026169, + 0.02751768007874489, + 0.07350686937570572, + 0.038249749690294266, + -0.009252945892512798, + 0.013650302775204182, + 0.04884907230734825, + -0.08785197138786316, + 0.003136417828500271, + 0.05015810579061508, + -0.00904669426381588, + -0.10715165734291077, + 0.026881497353315353, + -0.07288249582052231, + 0.08610662072896957, + -0.06228051334619522, + 0.1673828363418579, + 0.006395484320819378, + -0.0426831915974617, + -0.08067314326763153, + 0.06747708469629288, + -0.049200400710105896, + 0.0475490465760231, + 0.05716557055711746, + 0.060844384133815765, + 0.04086177423596382, + -0.08346255123615265, + 0.0869344025850296, + 0.019769223406910896, + -0.020300764590501785, + -0.0708683505654335, + -0.030514180660247803, + -0.027429744601249695, + 0.021853724494576454, + -0.012019682675600052, + -0.0613793209195137, + 0.009929075837135315, + 0.0261012464761734, + -0.018161576241254807, + 0.07936893403530121, + 0.12791746854782104, + 0.08958099782466888, + -0.09469571709632874 + ] + }, + "#wavs/LJ001-0010": { + "name": "ljspeech-9", + "embedding": [ + 0.05539746582508087, + 0.08493061363697052, + -0.010013150051236153, + 0.04369359463453293, + -0.05871078372001648, + 0.07792330533266068, + -0.12001194059848785, + 0.09205509722232819, + -0.053687505424022675, + 0.13110113143920898, + -0.0672345906496048, + 0.09076011180877686, + -0.012022187933325768, + -0.1773194968700409, + -0.03690509498119354, + 0.052139587700366974, + -0.06511855870485306, + -0.014169753529131413, + -0.0788075178861618, + -0.022713735699653625, + 0.026002388447523117, + 0.04142642393708229, + 0.06633599102497101, + -0.040966324508190155, + 0.05216488242149353, + 0.043708473443984985, + 0.008947450667619705, + 0.043884553015232086, + 0.015242422930896282, + -0.07271697372198105, + -0.03943272680044174, + 0.11445401608943939, + -0.01976911909878254, + -0.001584329642355442, + 0.03226276487112045, + -0.002877067308872938, + 0.006218053866177797, + -0.09210439026355743, + -0.023884698748588562, + 0.019102394580841064, + -0.023189997300505638, + 0.07678322494029999, + 0.04511963576078415, + -0.028598245233297348, + 0.02654365450143814, + -0.026303084567189217, + -0.036059144884347916, + -0.04994352161884308, + -0.10899694263935089, + 0.16808779537677765, + 0.0568464957177639, + 0.017774248495697975, + -0.0766686350107193, + -0.08056356757879257, + 0.11318203061819077, + -0.0009237118065357208, + -0.11983267217874527, + -0.04011853411793709, + 0.06481920927762985, + 0.18528658151626587, + -0.020618144422769547, + 0.0030966848134994507, + 0.030582068488001823, + 0.11048240959644318, + 0.026203282177448273, + 0.08886025100946426, + 0.0776662528514862, + 0.08468905836343765, + 0.02009391225874424, + 0.053141623735427856, + 0.04102938249707222, + 0.059041380882263184, + -0.006237464025616646, + -0.018360337242484093, + 0.015418153256177902, + -0.03559226542711258, + -0.05805520713329315, + -0.00861218199133873, + -0.021234268322587013, + -0.025556275621056557, + -0.012332704849541187, + -0.009777471423149109, + 0.03721384331583977, + 0.010376224294304848, + -0.05210898444056511, + 0.035450324416160583, + 0.0026437342166900635, + -0.03329150378704071, + 0.07028764486312866, + 0.03101171739399433, + 0.003101848065853119, + 0.029428653419017792, + -0.03445912152528763, + -0.11992329359054565, + -0.006469260435551405, + 0.02472860924899578, + -0.0021879260893911123, + 0.06576769798994064, + 0.04159736633300781, + -0.044104330241680145, + 0.10868340730667114, + 0.06065361574292183, + -0.00814537052065134, + 0.029497724026441574, + -0.0820949599146843, + 0.09694784879684448, + 0.10299994796514511, + 0.007466038689017296, + 0.0573151595890522, + -0.04003140702843666, + 0.0748046338558197, + 0.07954449951648712, + -0.14061805605888367, + -0.07225356996059418, + 0.030713198706507683, + -0.01169175747781992, + 0.015277700498700142, + 0.101996049284935, + 0.0023796744644641876, + 0.013835912570357323, + 0.08836984634399414, + -0.08798637241125107, + -0.053786784410476685, + -0.025867177173495293, + 0.07090725004673004, + -0.05228910967707634, + 0.024839768186211586, + 0.0543626993894577, + -0.048099253326654434, + -0.01027676835656166, + 0.04654526337981224, + -0.0034045036882162094, + 0.003895972855389118, + 0.04250902682542801, + -0.05232023075222969, + 0.06287448853254318, + -0.04146592691540718, + -0.0022073618602007627, + 0.07169511169195175, + 0.057035692036151886, + 0.04202979430556297, + -0.01752091944217682, + -0.03615778684616089, + -0.07597745209932327, + 0.0076013305224478245, + 0.03388708084821701, + 0.06191568076610565, + -0.01607775315642357, + 0.004401837941259146, + -0.06070601940155029, + -0.07674850523471832, + 0.059249889105558395, + -0.02222420647740364, + 0.10215721279382706, + -0.000883960397914052, + 0.010600706562399864, + 0.09869417548179626, + 0.011313805356621742, + -0.01187396701425314, + -0.04851905256509781, + -0.020747501403093338, + 0.043711841106414795, + 0.04022590070962906, + -0.06653523445129395, + -0.04014153778553009, + 0.012923783622682095, + 0.0024894566740840673, + -0.03801071271300316, + 0.017412755638360977, + 0.03090047463774681, + 0.021060986444354057, + 0.04588426649570465, + -0.061013057827949524, + 0.022323710843920708, + -0.0921829417347908, + -0.009262383915483952, + -0.0024641728959977627, + -0.04311069846153259, + -0.02953970432281494, + 0.11183556914329529, + 0.041883185505867004, + 0.01362229697406292, + -0.009713159874081612, + -0.07398185133934021, + -0.03448636084794998, + 0.06774093955755234, + 0.06281304359436035, + 0.005423923954367638, + 0.04070146754384041, + 0.04723779857158661, + 0.0025808606296777725, + 0.04067641496658325, + 0.0840836763381958, + 0.0662192553281784, + 6.253225728869438e-05, + -0.03287994861602783, + -0.07941965758800507, + 0.09294897317886353, + 0.08651109039783478, + -0.09662938117980957, + -0.08838298916816711, + -0.05120178312063217, + -0.06626439094543457, + 0.04893879592418671, + -0.017820902168750763, + -0.007398976478725672, + 0.02896031364798546, + -0.025766948238015175, + -0.10214102268218994, + -0.10014186799526215, + 0.1211889386177063, + -0.0510331466794014, + -0.02461140602827072, + -0.06880723685026169, + 0.02751768007874489, + 0.07350686937570572, + 0.038249749690294266, + -0.009252945892512798, + 0.013650302775204182, + 0.04884907230734825, + -0.08785197138786316, + 0.003136417828500271, + 0.05015810579061508, + -0.00904669426381588, + -0.10715165734291077, + 0.026881497353315353, + -0.07288249582052231, + 0.08610662072896957, + -0.06228051334619522, + 0.1673828363418579, + 0.006395484320819378, + -0.0426831915974617, + -0.08067314326763153, + 0.06747708469629288, + -0.049200400710105896, + 0.0475490465760231, + 0.05716557055711746, + 0.060844384133815765, + 0.04086177423596382, + -0.08346255123615265, + 0.0869344025850296, + 0.019769223406910896, + -0.020300764590501785, + -0.0708683505654335, + -0.030514180660247803, + -0.027429744601249695, + 0.021853724494576454, + -0.012019682675600052, + -0.0613793209195137, + 0.009929075837135315, + 0.0261012464761734, + -0.018161576241254807, + 0.07936893403530121, + 0.12791746854782104, + 0.08958099782466888, + -0.09469571709632874 + ] + } +} diff --git a/TTS/tests/data/ljspeech/wavs/LJ001-0001.npy b/TTS/tests/data/ljspeech/wavs/LJ001-0001.npy new file mode 100644 index 0000000000000000000000000000000000000000..e86cb27855486e9467134f05ea21efb427ad222d --- /dev/null +++ b/TTS/tests/data/ljspeech/wavs/LJ001-0001.npy @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:070a2e370e4338b331fffee561cc236adecf077869c6bde9acd69ef8bfef7986 +size 474888 diff --git a/TTS/tests/data/ljspeech/wavs/LJ001-0001.wav b/TTS/tests/data/ljspeech/wavs/LJ001-0001.wav new file mode 100644 index 0000000000000000000000000000000000000000..a274be89422809113adc336e624afeb255cdc67a Binary files /dev/null and b/TTS/tests/data/ljspeech/wavs/LJ001-0001.wav differ diff --git a/TTS/tests/data/ljspeech/wavs/LJ001-0002.npy b/TTS/tests/data/ljspeech/wavs/LJ001-0002.npy new file mode 100644 index 0000000000000000000000000000000000000000..8fd8829d3d7894e5b1a529364bcf3c87295c3611 --- /dev/null +++ b/TTS/tests/data/ljspeech/wavs/LJ001-0002.npy @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:42c36e568a8b57b77289cd157a9e7ae2c27cf955dd6a7da64ba3478c9c0d2334 +size 18920 diff --git a/TTS/tests/data/ljspeech/wavs/LJ001-0002.wav b/TTS/tests/data/ljspeech/wavs/LJ001-0002.wav new file mode 100644 index 0000000000000000000000000000000000000000..b1a0ed110ab9763dab7428f6273d696fecb4205d Binary files /dev/null and b/TTS/tests/data/ljspeech/wavs/LJ001-0002.wav differ diff --git a/TTS/tests/data/ljspeech/wavs/LJ001-0003.npy b/TTS/tests/data/ljspeech/wavs/LJ001-0003.npy new file mode 100644 index 0000000000000000000000000000000000000000..52dc61f37288196aad89f404017d2b2827ffe961 --- /dev/null +++ b/TTS/tests/data/ljspeech/wavs/LJ001-0003.npy @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:3629fc7aa5e0933858240fde841d61874cb601f5c2a6e756eaad03d5ded44083 +size 475460 diff --git a/TTS/tests/data/ljspeech/wavs/LJ001-0003.wav b/TTS/tests/data/ljspeech/wavs/LJ001-0003.wav new file mode 100644 index 0000000000000000000000000000000000000000..3329ddb448ed3bfff911bb90110defcc72e14bc2 Binary files /dev/null and b/TTS/tests/data/ljspeech/wavs/LJ001-0003.wav differ diff --git a/TTS/tests/data/ljspeech/wavs/LJ001-0004.npy b/TTS/tests/data/ljspeech/wavs/LJ001-0004.npy new file mode 100644 index 0000000000000000000000000000000000000000..e96bc5d66be61a705d28aafd3a587c91f8e004f2 --- /dev/null +++ b/TTS/tests/data/ljspeech/wavs/LJ001-0004.npy @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:3b59336c125906c331b7a319ee5b57f95f0bfefe13aed330b1d399766b3927f2 +size 137720 diff --git a/TTS/tests/data/ljspeech/wavs/LJ001-0004.wav b/TTS/tests/data/ljspeech/wavs/LJ001-0004.wav new file mode 100644 index 0000000000000000000000000000000000000000..ead8a0e3a6e7b05c116d910e5875b900a2050f9f Binary files /dev/null and b/TTS/tests/data/ljspeech/wavs/LJ001-0004.wav differ diff --git a/TTS/tests/data/ljspeech/wavs/LJ001-0005.npy b/TTS/tests/data/ljspeech/wavs/LJ001-0005.npy new file mode 100644 index 0000000000000000000000000000000000000000..3a3244a3bfa0f20d2be183aed5bc656be8fc7ad1 --- /dev/null +++ b/TTS/tests/data/ljspeech/wavs/LJ001-0005.npy @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:d0dc904c41f7e9a357d538d8d3a453d8890255f37c4c433828e57439cc7130f6 +size 365356 diff --git a/TTS/tests/data/ljspeech/wavs/LJ001-0005.wav b/TTS/tests/data/ljspeech/wavs/LJ001-0005.wav new file mode 100644 index 0000000000000000000000000000000000000000..640f708c13ffd653794455aa0730ed6c143f2fc9 Binary files /dev/null and b/TTS/tests/data/ljspeech/wavs/LJ001-0005.wav differ diff --git a/TTS/tests/data/ljspeech/wavs/LJ001-0006.npy b/TTS/tests/data/ljspeech/wavs/LJ001-0006.npy new file mode 100644 index 0000000000000000000000000000000000000000..d8066965966018d3678cb1ec47d584cc5cfb9ee3 --- /dev/null +++ b/TTS/tests/data/ljspeech/wavs/LJ001-0006.npy @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:9877b39550773704dcbe20ba0b3c3b227ec0cbbfdcd66202d1821cace4ac2d30 +size 138720 diff --git a/TTS/tests/data/ljspeech/wavs/LJ001-0006.wav b/TTS/tests/data/ljspeech/wavs/LJ001-0006.wav new file mode 100644 index 0000000000000000000000000000000000000000..15cffd544f2203ba85040fa21710f42d33187547 Binary files /dev/null and b/TTS/tests/data/ljspeech/wavs/LJ001-0006.wav differ diff --git a/TTS/tests/data/ljspeech/wavs/LJ001-0007.npy b/TTS/tests/data/ljspeech/wavs/LJ001-0007.npy new file mode 100644 index 0000000000000000000000000000000000000000..256c011e7b5706f9f9cd08acfcd7f4b1545891f8 --- /dev/null +++ b/TTS/tests/data/ljspeech/wavs/LJ001-0007.npy @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:61511787cf80a867fca160cb26b1ed604d7a49f19e9d0242e896d1794fe2d7e5 +size 331788 diff --git a/TTS/tests/data/ljspeech/wavs/LJ001-0007.wav b/TTS/tests/data/ljspeech/wavs/LJ001-0007.wav new file mode 100644 index 0000000000000000000000000000000000000000..0d33e4501e5e8d3479c4900f7fddae2ceacebb45 Binary files /dev/null and b/TTS/tests/data/ljspeech/wavs/LJ001-0007.wav differ diff --git a/TTS/tests/data/ljspeech/wavs/LJ001-0008.npy b/TTS/tests/data/ljspeech/wavs/LJ001-0008.npy new file mode 100644 index 0000000000000000000000000000000000000000..ce66ce70d757498ec0509bb008e87cb361c6bfce --- /dev/null +++ b/TTS/tests/data/ljspeech/wavs/LJ001-0008.npy @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:da63312469c7aee26a2f30bf6d51e55091d4291954ef63a0bef1c800dfd1aee0 +size 12288 diff --git a/TTS/tests/data/ljspeech/wavs/LJ001-0008.wav b/TTS/tests/data/ljspeech/wavs/LJ001-0008.wav new file mode 100644 index 0000000000000000000000000000000000000000..a1871dd8f907a04939949573d79a8312639f942c Binary files /dev/null and b/TTS/tests/data/ljspeech/wavs/LJ001-0008.wav differ diff --git a/TTS/tests/data/ljspeech/wavs/LJ001-0009.npy b/TTS/tests/data/ljspeech/wavs/LJ001-0009.npy new file mode 100644 index 0000000000000000000000000000000000000000..f03e9f46e1a1b2b789bd45e3a8f6e345ca7be054 --- /dev/null +++ b/TTS/tests/data/ljspeech/wavs/LJ001-0009.npy @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c642cc9208a5491ac34fd1a35fcc5ab8acccfe264667ee2e265b87420701ec65 +size 264920 diff --git a/TTS/tests/data/ljspeech/wavs/LJ001-0009.wav b/TTS/tests/data/ljspeech/wavs/LJ001-0009.wav new file mode 100644 index 0000000000000000000000000000000000000000..b534f1b9db8b3baa4958ee39e445a7a1ed24f008 Binary files /dev/null and b/TTS/tests/data/ljspeech/wavs/LJ001-0009.wav differ diff --git a/TTS/tests/data/ljspeech/wavs/LJ001-0010.npy b/TTS/tests/data/ljspeech/wavs/LJ001-0010.npy new file mode 100644 index 0000000000000000000000000000000000000000..914a8eef226b5b6ba32237fc27a3a7d1865d7da9 --- /dev/null +++ b/TTS/tests/data/ljspeech/wavs/LJ001-0010.npy @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:960003ef32931ea6f6d854a9a0ef7c7f3feae8676f1125cb7c2f820283e4cadd +size 339712 diff --git a/TTS/tests/data/ljspeech/wavs/LJ001-0010.wav b/TTS/tests/data/ljspeech/wavs/LJ001-0010.wav new file mode 100644 index 0000000000000000000000000000000000000000..01a2e68829a506063f8ed8b090a4516a02107a62 Binary files /dev/null and b/TTS/tests/data/ljspeech/wavs/LJ001-0010.wav differ diff --git a/TTS/tests/data/ljspeech/wavs/LJ001-0011.npy b/TTS/tests/data/ljspeech/wavs/LJ001-0011.npy new file mode 100644 index 0000000000000000000000000000000000000000..9d7f6accf4f577192f1bc2f9acba4097e23335c0 --- /dev/null +++ b/TTS/tests/data/ljspeech/wavs/LJ001-0011.npy @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:9d42639bca71945249b78b9a8c90803c52f764205b2495214f8f6d725e1cc5f0 +size 103844 diff --git a/TTS/tests/data/ljspeech/wavs/LJ001-0011.wav b/TTS/tests/data/ljspeech/wavs/LJ001-0011.wav new file mode 100644 index 0000000000000000000000000000000000000000..5ec8ce7e59694563b85fa34c590acd421008cff0 Binary files /dev/null and b/TTS/tests/data/ljspeech/wavs/LJ001-0011.wav differ diff --git a/TTS/tests/data/ljspeech/wavs/LJ001-0012.npy b/TTS/tests/data/ljspeech/wavs/LJ001-0012.npy new file mode 100644 index 0000000000000000000000000000000000000000..23951b397e170fa7d9d90edbaf3f2d4b941b2787 --- /dev/null +++ b/TTS/tests/data/ljspeech/wavs/LJ001-0012.npy @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:0e6f6630d850f0a249f345f628649f0b0226becbe3cfa5f76fa67b531a628840 +size 286160 diff --git a/TTS/tests/data/ljspeech/wavs/LJ001-0012.wav b/TTS/tests/data/ljspeech/wavs/LJ001-0012.wav new file mode 100644 index 0000000000000000000000000000000000000000..6262db4bbfeb15ba298184ab0b7c7bf323f472df Binary files /dev/null and b/TTS/tests/data/ljspeech/wavs/LJ001-0012.wav differ diff --git a/TTS/tests/data/ljspeech/wavs/LJ001-0013.npy b/TTS/tests/data/ljspeech/wavs/LJ001-0013.npy new file mode 100644 index 0000000000000000000000000000000000000000..9942e121f74ec271b79a5a52a2edb7e8ae9647bf --- /dev/null +++ b/TTS/tests/data/ljspeech/wavs/LJ001-0013.npy @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5665c5702bf7df27fb5030310d3cf13461fc62d1affc0c08950bc7198975e204 +size 35488 diff --git a/TTS/tests/data/ljspeech/wavs/LJ001-0013.wav b/TTS/tests/data/ljspeech/wavs/LJ001-0013.wav new file mode 100644 index 0000000000000000000000000000000000000000..72eca1af1a396821c0814e3ff39e9d5752ba5b59 Binary files /dev/null and b/TTS/tests/data/ljspeech/wavs/LJ001-0013.wav differ diff --git a/TTS/tests/data/ljspeech/wavs/LJ001-0014.npy b/TTS/tests/data/ljspeech/wavs/LJ001-0014.npy new file mode 100644 index 0000000000000000000000000000000000000000..74611b8f947b694f740cfe6de2dc33ec043cd77d --- /dev/null +++ b/TTS/tests/data/ljspeech/wavs/LJ001-0014.npy @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:bcec0d3679393290fc1a350a96e4876840fe6be81784c60b5a488447e0dbb67c +size 519968 diff --git a/TTS/tests/data/ljspeech/wavs/LJ001-0014.wav b/TTS/tests/data/ljspeech/wavs/LJ001-0014.wav new file mode 100644 index 0000000000000000000000000000000000000000..997d31d58c24547de8b78efdfdf503cae0a7e6b7 Binary files /dev/null and b/TTS/tests/data/ljspeech/wavs/LJ001-0014.wav differ diff --git a/TTS/tests/data/ljspeech/wavs/LJ001-0015.npy b/TTS/tests/data/ljspeech/wavs/LJ001-0015.npy new file mode 100644 index 0000000000000000000000000000000000000000..5b0583ab0be3ab4acd3c875d75af025bdb369ef6 --- /dev/null +++ b/TTS/tests/data/ljspeech/wavs/LJ001-0015.npy @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:fd175d2fd5b75c5982ab2302fe936746660be9eb0634e08444fe166b345a8182 +size 470176 diff --git a/TTS/tests/data/ljspeech/wavs/LJ001-0015.wav b/TTS/tests/data/ljspeech/wavs/LJ001-0015.wav new file mode 100644 index 0000000000000000000000000000000000000000..c63eb5347a06ef49c39b42911d38bec5cfd58d57 Binary files /dev/null and b/TTS/tests/data/ljspeech/wavs/LJ001-0015.wav differ diff --git a/TTS/tests/data/ljspeech/wavs/LJ001-0016.npy b/TTS/tests/data/ljspeech/wavs/LJ001-0016.npy new file mode 100644 index 0000000000000000000000000000000000000000..b1e6cb23c766bae5fe72f8c1c0e0c0019c6255d4 --- /dev/null +++ b/TTS/tests/data/ljspeech/wavs/LJ001-0016.npy @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f7846187988bcdd4802df2f41a86f5fd9b4db7aa5f72c6728856afb930813640 +size 130304 diff --git a/TTS/tests/data/ljspeech/wavs/LJ001-0016.wav b/TTS/tests/data/ljspeech/wavs/LJ001-0016.wav new file mode 100644 index 0000000000000000000000000000000000000000..639b70c1bae56e32cb06db7c196af533108ffa39 Binary files /dev/null and b/TTS/tests/data/ljspeech/wavs/LJ001-0016.wav differ diff --git a/TTS/tests/data/ljspeech/wavs/LJ001-0017.npy b/TTS/tests/data/ljspeech/wavs/LJ001-0017.npy new file mode 100644 index 0000000000000000000000000000000000000000..0a65672ef7f448dcf8ebb55b9155356700f9dc29 --- /dev/null +++ b/TTS/tests/data/ljspeech/wavs/LJ001-0017.npy @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:26601b716c26c2e10762cfd5354bfa6e105bece2db368ac811bcc2b2f3d730a7 +size 287156 diff --git a/TTS/tests/data/ljspeech/wavs/LJ001-0017.wav b/TTS/tests/data/ljspeech/wavs/LJ001-0017.wav new file mode 100644 index 0000000000000000000000000000000000000000..3a347aa4af624fb942e8ce1a438c76b278604b08 Binary files /dev/null and b/TTS/tests/data/ljspeech/wavs/LJ001-0017.wav differ diff --git a/TTS/tests/data/ljspeech/wavs/LJ001-0018.npy b/TTS/tests/data/ljspeech/wavs/LJ001-0018.npy new file mode 100644 index 0000000000000000000000000000000000000000..25d103f9396a63d5d50be59c1b29a8c37aa23cb1 --- /dev/null +++ b/TTS/tests/data/ljspeech/wavs/LJ001-0018.npy @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:322ef39a44dd8b4a1e4cf817862b46741b3eca20d0122966648a395c5a02fb8d +size 290764 diff --git a/TTS/tests/data/ljspeech/wavs/LJ001-0018.wav b/TTS/tests/data/ljspeech/wavs/LJ001-0018.wav new file mode 100644 index 0000000000000000000000000000000000000000..911158a08c2b1a38142fe3f8c4b7b75fec2ec726 Binary files /dev/null and b/TTS/tests/data/ljspeech/wavs/LJ001-0018.wav differ diff --git a/TTS/tests/data/ljspeech/wavs/LJ001-0019.npy b/TTS/tests/data/ljspeech/wavs/LJ001-0019.npy new file mode 100644 index 0000000000000000000000000000000000000000..54cae852154923d3c368c48b88dcea0cb0965cce --- /dev/null +++ b/TTS/tests/data/ljspeech/wavs/LJ001-0019.npy @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:51b631a97817dc8b2381eecd7b1e3d576b810013e6d13c1b483f4e987fff33de +size 222732 diff --git a/TTS/tests/data/ljspeech/wavs/LJ001-0019.wav b/TTS/tests/data/ljspeech/wavs/LJ001-0019.wav new file mode 100644 index 0000000000000000000000000000000000000000..cfd8c7e2337acd245168161b846f62a515bfd023 Binary files /dev/null and b/TTS/tests/data/ljspeech/wavs/LJ001-0019.wav differ diff --git a/TTS/tests/data/ljspeech/wavs/LJ001-0020.npy b/TTS/tests/data/ljspeech/wavs/LJ001-0020.npy new file mode 100644 index 0000000000000000000000000000000000000000..7297d03f85aa3f2d09beaca84824b617de924c02 --- /dev/null +++ b/TTS/tests/data/ljspeech/wavs/LJ001-0020.npy @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:6c0f2b346e4f5f638f67f412ee749aa7251b97037f7b994cce9a28f36ccab987 +size 94764 diff --git a/TTS/tests/data/ljspeech/wavs/LJ001-0020.wav b/TTS/tests/data/ljspeech/wavs/LJ001-0020.wav new file mode 100644 index 0000000000000000000000000000000000000000..f342d46ba30826f43c02c1b9e25d57950446a970 Binary files /dev/null and b/TTS/tests/data/ljspeech/wavs/LJ001-0020.wav differ diff --git a/TTS/tests/data/ljspeech/wavs/LJ001-0021.npy b/TTS/tests/data/ljspeech/wavs/LJ001-0021.npy new file mode 100644 index 0000000000000000000000000000000000000000..db08db9353011f12291eabae31f80420bff14157 --- /dev/null +++ b/TTS/tests/data/ljspeech/wavs/LJ001-0021.npy @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:751163d61e2760691c516f3e6ccb403d93113090f26300b3bcceb37bb0cc4cd3 +size 361248 diff --git a/TTS/tests/data/ljspeech/wavs/LJ001-0021.wav b/TTS/tests/data/ljspeech/wavs/LJ001-0021.wav new file mode 100644 index 0000000000000000000000000000000000000000..066b71c6bfd30186c1aabe5561f0d4b7c4a8b648 Binary files /dev/null and b/TTS/tests/data/ljspeech/wavs/LJ001-0021.wav differ diff --git a/TTS/tests/data/ljspeech/wavs/LJ001-0022.npy b/TTS/tests/data/ljspeech/wavs/LJ001-0022.npy new file mode 100644 index 0000000000000000000000000000000000000000..0a4bbb0b6bfa6b62d44062ea6f478c588c4095c2 --- /dev/null +++ b/TTS/tests/data/ljspeech/wavs/LJ001-0022.npy @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:8f0ab17a10dddf31f65aa1ee32295aa24ba5ed5a84846876caab05fd355bf2a3 +size 242528 diff --git a/TTS/tests/data/ljspeech/wavs/LJ001-0022.wav b/TTS/tests/data/ljspeech/wavs/LJ001-0022.wav new file mode 100644 index 0000000000000000000000000000000000000000..c00a587af8a1073c19de3c1a4d6f7b8bd6fde74a Binary files /dev/null and b/TTS/tests/data/ljspeech/wavs/LJ001-0022.wav differ diff --git a/TTS/tests/data/ljspeech/wavs/LJ001-0023.npy b/TTS/tests/data/ljspeech/wavs/LJ001-0023.npy new file mode 100644 index 0000000000000000000000000000000000000000..93b443ad19f429e4e2e643098a2b46783f8644e1 --- /dev/null +++ b/TTS/tests/data/ljspeech/wavs/LJ001-0023.npy @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:9bee5c39b0a7b4bdeb92dd66966f412e5f0a74c1b61e7aed26c1338d50eccc61 +size 374744 diff --git a/TTS/tests/data/ljspeech/wavs/LJ001-0023.wav b/TTS/tests/data/ljspeech/wavs/LJ001-0023.wav new file mode 100644 index 0000000000000000000000000000000000000000..aaa274d0ef33befe007ace594e080ea7c02b3da2 Binary files /dev/null and b/TTS/tests/data/ljspeech/wavs/LJ001-0023.wav differ diff --git a/TTS/tests/data/ljspeech/wavs/LJ001-0024.npy b/TTS/tests/data/ljspeech/wavs/LJ001-0024.npy new file mode 100644 index 0000000000000000000000000000000000000000..6cb7c8236573e7dcf677ae94fd2f33735e54c03b --- /dev/null +++ b/TTS/tests/data/ljspeech/wavs/LJ001-0024.npy @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:560f6e537f98a3693aaea3130fe9b7cba4d7f838784b4a23863872dd959cf02c +size 318728 diff --git a/TTS/tests/data/ljspeech/wavs/LJ001-0024.wav b/TTS/tests/data/ljspeech/wavs/LJ001-0024.wav new file mode 100644 index 0000000000000000000000000000000000000000..14e7a3c137dd4e5b778ac45fd897f29b3adc73fa Binary files /dev/null and b/TTS/tests/data/ljspeech/wavs/LJ001-0024.wav differ diff --git a/TTS/tests/data/ljspeech/wavs/LJ001-0025.npy b/TTS/tests/data/ljspeech/wavs/LJ001-0025.npy new file mode 100644 index 0000000000000000000000000000000000000000..7c47b76ccc00371f832d3c05d8700aa0e47e2da3 --- /dev/null +++ b/TTS/tests/data/ljspeech/wavs/LJ001-0025.npy @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ddc56be2af40ee99df08060acc9389bdce6c18aa9dd510676a858ee7b7865236 +size 317120 diff --git a/TTS/tests/data/ljspeech/wavs/LJ001-0025.wav b/TTS/tests/data/ljspeech/wavs/LJ001-0025.wav new file mode 100644 index 0000000000000000000000000000000000000000..6e11513ab18d8909ac12ede4006af32765321fe3 Binary files /dev/null and b/TTS/tests/data/ljspeech/wavs/LJ001-0025.wav differ diff --git a/TTS/tests/data/ljspeech/wavs/LJ001-0026.npy b/TTS/tests/data/ljspeech/wavs/LJ001-0026.npy new file mode 100644 index 0000000000000000000000000000000000000000..33e1e4cf0e0961d3fd91a4d56d8d28b56c9a3139 --- /dev/null +++ b/TTS/tests/data/ljspeech/wavs/LJ001-0026.npy @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ac908660dbc8bd14af7072a7e6d3461427b130651e8676ffd930533f99d7d204 +size 167488 diff --git a/TTS/tests/data/ljspeech/wavs/LJ001-0026.wav b/TTS/tests/data/ljspeech/wavs/LJ001-0026.wav new file mode 100644 index 0000000000000000000000000000000000000000..7efbb2988af2e1af142e0dbb98dda68851acb96c Binary files /dev/null and b/TTS/tests/data/ljspeech/wavs/LJ001-0026.wav differ diff --git a/TTS/tests/data/ljspeech/wavs/LJ001-0027.npy b/TTS/tests/data/ljspeech/wavs/LJ001-0027.npy new file mode 100644 index 0000000000000000000000000000000000000000..9a166a83c897e72375a437dfb613144c0d325a71 --- /dev/null +++ b/TTS/tests/data/ljspeech/wavs/LJ001-0027.npy @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:e4c6efe1cbac8a01c903cb714729f3f84e211fdc4d7933b67bc37e27b890e72a +size 441156 diff --git a/TTS/tests/data/ljspeech/wavs/LJ001-0027.wav b/TTS/tests/data/ljspeech/wavs/LJ001-0027.wav new file mode 100644 index 0000000000000000000000000000000000000000..5d86776a4dd406fee2cfb07f87ddf09431f075a0 Binary files /dev/null and b/TTS/tests/data/ljspeech/wavs/LJ001-0027.wav differ diff --git a/TTS/tests/data/ljspeech/wavs/LJ001-0028.npy b/TTS/tests/data/ljspeech/wavs/LJ001-0028.npy new file mode 100644 index 0000000000000000000000000000000000000000..29c4fd32f1dbd37f1f7f260e281307cdfc9ad80a --- /dev/null +++ b/TTS/tests/data/ljspeech/wavs/LJ001-0028.npy @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:594d24a53ccbeb23e17c094b5014b6071662bb5e9b686a8dfb30e907615f0d30 +size 134504 diff --git a/TTS/tests/data/ljspeech/wavs/LJ001-0028.wav b/TTS/tests/data/ljspeech/wavs/LJ001-0028.wav new file mode 100644 index 0000000000000000000000000000000000000000..fbd0d7783ca74b384c0ee06cbd2c28a5c8e0e34d Binary files /dev/null and b/TTS/tests/data/ljspeech/wavs/LJ001-0028.wav differ diff --git a/TTS/tests/data/ljspeech/wavs/LJ001-0029.npy b/TTS/tests/data/ljspeech/wavs/LJ001-0029.npy new file mode 100644 index 0000000000000000000000000000000000000000..1914016e6028d46dc43c66b081cacf4dc77a78a8 --- /dev/null +++ b/TTS/tests/data/ljspeech/wavs/LJ001-0029.npy @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f1ac5a26fb9f8fbebc4d5e1e74f06180ce38df0945705bfc1f0d907fdef9c621 +size 126260 diff --git a/TTS/tests/data/ljspeech/wavs/LJ001-0029.wav b/TTS/tests/data/ljspeech/wavs/LJ001-0029.wav new file mode 100644 index 0000000000000000000000000000000000000000..d23c35c918aba1d0c9b59d837edb6168a8550706 Binary files /dev/null and b/TTS/tests/data/ljspeech/wavs/LJ001-0029.wav differ diff --git a/TTS/tests/data/ljspeech/wavs/LJ001-0030.npy b/TTS/tests/data/ljspeech/wavs/LJ001-0030.npy new file mode 100644 index 0000000000000000000000000000000000000000..a5ce595e205827d678cda715502a6e44545be871 --- /dev/null +++ b/TTS/tests/data/ljspeech/wavs/LJ001-0030.npy @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:80a0175cb17055f79df005cf5cb019c96697d861aebe33982ebac5942b5aa909 +size 223472 diff --git a/TTS/tests/data/ljspeech/wavs/LJ001-0030.wav b/TTS/tests/data/ljspeech/wavs/LJ001-0030.wav new file mode 100644 index 0000000000000000000000000000000000000000..44b15c5ad554fabfa240f74557f4064b998e6840 Binary files /dev/null and b/TTS/tests/data/ljspeech/wavs/LJ001-0030.wav differ diff --git a/TTS/tests/data/ljspeech/wavs/LJ001-0031.npy b/TTS/tests/data/ljspeech/wavs/LJ001-0031.npy new file mode 100644 index 0000000000000000000000000000000000000000..6bdfd096f6a3ea24c9dce52958c00539c8b39349 --- /dev/null +++ b/TTS/tests/data/ljspeech/wavs/LJ001-0031.npy @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:7980886675c20b776c5032b7c482def93da5c07cf5c5e0159fd4ccc72aebfcba +size 267428 diff --git a/TTS/tests/data/ljspeech/wavs/LJ001-0031.wav b/TTS/tests/data/ljspeech/wavs/LJ001-0031.wav new file mode 100644 index 0000000000000000000000000000000000000000..c342b1a5259fe0e2a03dda763df7855d5b1ce86b Binary files /dev/null and b/TTS/tests/data/ljspeech/wavs/LJ001-0031.wav differ diff --git a/TTS/tests/data/ljspeech/wavs/LJ001-0032.npy b/TTS/tests/data/ljspeech/wavs/LJ001-0032.npy new file mode 100644 index 0000000000000000000000000000000000000000..6038ab27d26075d875ff675c7afaa0224fbd41f7 --- /dev/null +++ b/TTS/tests/data/ljspeech/wavs/LJ001-0032.npy @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:acfb037e68528ad69761f00a0a199830a54b4b96b156b7e6b86fdda0ee14a748 +size 248192 diff --git a/TTS/tests/data/ljspeech/wavs/LJ001-0032.wav b/TTS/tests/data/ljspeech/wavs/LJ001-0032.wav new file mode 100644 index 0000000000000000000000000000000000000000..41dfbe14e96347f90b942a4d2612e199a8ae8467 Binary files /dev/null and b/TTS/tests/data/ljspeech/wavs/LJ001-0032.wav differ diff --git a/TTS/tests/data_tests/__init__.py b/TTS/tests/data_tests/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/TTS/tests/data_tests/test_dataset_formatters.py b/TTS/tests/data_tests/test_dataset_formatters.py new file mode 100644 index 0000000000000000000000000000000000000000..30fb79a8e4f64fbefbd6c19427f38d3003409733 --- /dev/null +++ b/TTS/tests/data_tests/test_dataset_formatters.py @@ -0,0 +1,17 @@ +import os +import unittest + +from tests import get_tests_input_path +from TTS.tts.datasets.formatters import common_voice + + +class TestTTSFormatters(unittest.TestCase): + def test_common_voice_preprocessor(self): # pylint: disable=no-self-use + root_path = get_tests_input_path() + meta_file = "common_voice.tsv" + items = common_voice(root_path, meta_file) + assert items[0]["text"] == "The applicants are invited for coffee and visa is given immediately." + assert items[0]["audio_file"] == os.path.join(get_tests_input_path(), "clips", "common_voice_en_20005954.wav") + + assert items[-1]["text"] == "Competition for limited resources has also resulted in some local conflicts." + assert items[-1]["audio_file"] == os.path.join(get_tests_input_path(), "clips", "common_voice_en_19737074.wav") diff --git a/TTS/tests/data_tests/test_loader.py b/TTS/tests/data_tests/test_loader.py new file mode 100644 index 0000000000000000000000000000000000000000..cbd98fc0c5cd27344699a5166bf67998d44886ae --- /dev/null +++ b/TTS/tests/data_tests/test_loader.py @@ -0,0 +1,242 @@ +import os +import shutil +import unittest + +import numpy as np +import torch +from torch.utils.data import DataLoader + +from tests import get_tests_data_path, get_tests_output_path +from TTS.tts.configs.shared_configs import BaseDatasetConfig, BaseTTSConfig +from TTS.tts.datasets import TTSDataset, load_tts_samples +from TTS.tts.utils.text.tokenizer import TTSTokenizer +from TTS.utils.audio import AudioProcessor + +# pylint: disable=unused-variable + +OUTPATH = os.path.join(get_tests_output_path(), "loader_tests/") +os.makedirs(OUTPATH, exist_ok=True) + +# create a dummy config for testing data loaders. +c = BaseTTSConfig(text_cleaner="english_cleaners", num_loader_workers=0, batch_size=2, use_noise_augment=False) +c.r = 5 +c.data_path = os.path.join(get_tests_data_path(), "ljspeech/") +ok_ljspeech = os.path.exists(c.data_path) + +dataset_config = BaseDatasetConfig( + formatter="ljspeech_test", # ljspeech_test to multi-speaker + meta_file_train="metadata.csv", + meta_file_val=None, + path=c.data_path, + language="en", +) + +DATA_EXIST = True +if not os.path.exists(c.data_path): + DATA_EXIST = False + +print(" > Dynamic data loader test: {}".format(DATA_EXIST)) + + +class TestTTSDataset(unittest.TestCase): + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + self.max_loader_iter = 4 + self.ap = AudioProcessor(**c.audio) + + def _create_dataloader(self, batch_size, r, bgs, start_by_longest=False): + # load dataset + meta_data_train, meta_data_eval = load_tts_samples(dataset_config, eval_split=True, eval_split_size=0.2) + items = meta_data_train + meta_data_eval + + tokenizer, _ = TTSTokenizer.init_from_config(c) + dataset = TTSDataset( + outputs_per_step=r, + compute_linear_spec=True, + return_wav=True, + tokenizer=tokenizer, + ap=self.ap, + samples=items, + batch_group_size=bgs, + min_text_len=c.min_text_len, + max_text_len=c.max_text_len, + min_audio_len=c.min_audio_len, + max_audio_len=c.max_audio_len, + start_by_longest=start_by_longest, + ) + dataloader = DataLoader( + dataset, + batch_size=batch_size, + shuffle=False, + collate_fn=dataset.collate_fn, + drop_last=True, + num_workers=c.num_loader_workers, + ) + return dataloader, dataset + + def test_loader(self): + if ok_ljspeech: + dataloader, dataset = self._create_dataloader(1, 1, 0) + + for i, data in enumerate(dataloader): + if i == self.max_loader_iter: + break + text_input = data["token_id"] + _ = data["token_id_lengths"] + speaker_name = data["speaker_names"] + linear_input = data["linear"] + mel_input = data["mel"] + mel_lengths = data["mel_lengths"] + _ = data["stop_targets"] + _ = data["item_idxs"] + wavs = data["waveform"] + + neg_values = text_input[text_input < 0] + check_count = len(neg_values) + + # check basic conditions + self.assertEqual(check_count, 0) + self.assertEqual(linear_input.shape[0], mel_input.shape[0], c.batch_size) + self.assertEqual(linear_input.shape[2], self.ap.fft_size // 2 + 1) + self.assertEqual(mel_input.shape[2], c.audio["num_mels"]) + self.assertEqual(wavs.shape[1], mel_input.shape[1] * c.audio.hop_length) + self.assertIsInstance(speaker_name[0], str) + + # make sure that the computed mels and the waveform match and correctly computed + mel_new = self.ap.melspectrogram(wavs[0].squeeze().numpy()) + # remove padding in mel-spectrogram + mel_dataloader = mel_input[0].T.numpy()[:, : mel_lengths[0]] + # guarantee that both mel-spectrograms have the same size and that we will remove waveform padding + mel_new = mel_new[:, : mel_lengths[0]] + ignore_seg = -(1 + c.audio.win_length // c.audio.hop_length) + mel_diff = (mel_new[:, : mel_input.shape[1]] - mel_input[0].T.numpy())[:, 0:ignore_seg] + self.assertLess(abs(mel_diff.sum()), 1e-5) + + # check normalization ranges + if self.ap.symmetric_norm: + self.assertLessEqual(mel_input.max(), self.ap.max_norm) + self.assertGreaterEqual( + mel_input.min(), -self.ap.max_norm # pylint: disable=invalid-unary-operand-type + ) + self.assertLess(mel_input.min(), 0) + else: + self.assertLessEqual(mel_input.max(), self.ap.max_norm) + self.assertGreaterEqual(mel_input.min(), 0) + + def test_batch_group_shuffle(self): + if ok_ljspeech: + dataloader, dataset = self._create_dataloader(2, c.r, 16) + last_length = 0 + frames = dataset.samples + for i, data in enumerate(dataloader): + if i == self.max_loader_iter: + break + mel_lengths = data["mel_lengths"] + avg_length = mel_lengths.numpy().mean() + dataloader.dataset.preprocess_samples() + is_items_reordered = False + for idx, item in enumerate(dataloader.dataset.samples): + if item != frames[idx]: + is_items_reordered = True + break + self.assertGreaterEqual(avg_length, last_length) + self.assertTrue(is_items_reordered) + + def test_start_by_longest(self): + """Test start_by_longest option. + + Ther first item of the fist batch must be longer than all the other items. + """ + if ok_ljspeech: + dataloader, _ = self._create_dataloader(2, c.r, 0, True) + dataloader.dataset.preprocess_samples() + for i, data in enumerate(dataloader): + if i == self.max_loader_iter: + break + mel_lengths = data["mel_lengths"] + if i == 0: + max_len = mel_lengths[0] + print(mel_lengths) + self.assertTrue(all(max_len >= mel_lengths)) + + def test_padding_and_spectrograms(self): + def check_conditions(idx, linear_input, mel_input, stop_target, mel_lengths): + self.assertNotEqual(linear_input[idx, -1].sum(), 0) # check padding + self.assertNotEqual(linear_input[idx, -2].sum(), 0) + self.assertNotEqual(mel_input[idx, -1].sum(), 0) + self.assertNotEqual(mel_input[idx, -2].sum(), 0) + self.assertEqual(stop_target[idx, -1], 1) + self.assertEqual(stop_target[idx, -2], 0) + self.assertEqual(stop_target[idx].sum(), 1) + self.assertEqual(len(mel_lengths.shape), 1) + self.assertEqual(mel_lengths[idx], linear_input[idx].shape[0]) + self.assertEqual(mel_lengths[idx], mel_input[idx].shape[0]) + + if ok_ljspeech: + dataloader, _ = self._create_dataloader(1, 1, 0) + + for i, data in enumerate(dataloader): + if i == self.max_loader_iter: + break + linear_input = data["linear"] + mel_input = data["mel"] + mel_lengths = data["mel_lengths"] + stop_target = data["stop_targets"] + item_idx = data["item_idxs"] + + # check mel_spec consistency + wav = np.asarray(self.ap.load_wav(item_idx[0]), dtype=np.float32) + mel = self.ap.melspectrogram(wav).astype("float32") + mel = torch.FloatTensor(mel).contiguous() + mel_dl = mel_input[0] + # NOTE: Below needs to check == 0 but due to an unknown reason + # there is a slight difference between two matrices. + # TODO: Check this assert cond more in detail. + self.assertLess(abs(mel.T - mel_dl).max(), 1e-5) + + # check mel-spec correctness + mel_spec = mel_input[0].cpu().numpy() + wav = self.ap.inv_melspectrogram(mel_spec.T) + self.ap.save_wav(wav, OUTPATH + "/mel_inv_dataloader.wav") + shutil.copy(item_idx[0], OUTPATH + "/mel_target_dataloader.wav") + + # check linear-spec + linear_spec = linear_input[0].cpu().numpy() + wav = self.ap.inv_spectrogram(linear_spec.T) + self.ap.save_wav(wav, OUTPATH + "/linear_inv_dataloader.wav") + shutil.copy(item_idx[0], OUTPATH + "/linear_target_dataloader.wav") + + # check the outputs + check_conditions(0, linear_input, mel_input, stop_target, mel_lengths) + + # Test for batch size 2 + dataloader, _ = self._create_dataloader(2, 1, 0) + + for i, data in enumerate(dataloader): + if i == self.max_loader_iter: + break + linear_input = data["linear"] + mel_input = data["mel"] + mel_lengths = data["mel_lengths"] + stop_target = data["stop_targets"] + item_idx = data["item_idxs"] + + # set id to the longest sequence in the batch + if mel_lengths[0] > mel_lengths[1]: + idx = 0 + else: + idx = 1 + + # check the longer item in the batch + check_conditions(idx, linear_input, mel_input, stop_target, mel_lengths) + + # check the other item in the batch + self.assertEqual(linear_input[1 - idx, -1].sum(), 0) + self.assertEqual(mel_input[1 - idx, -1].sum(), 0) + self.assertEqual(stop_target[1, mel_lengths[1] - 1], 1) + self.assertEqual(stop_target[1, mel_lengths[1] :].sum(), stop_target.shape[1] - mel_lengths[1]) + self.assertEqual(len(mel_lengths.shape), 1) + + # check batch zero-frame conditions (zero-frame disabled) + # assert (linear_input * stop_target.unsqueeze(2)).sum() == 0 + # assert (mel_input * stop_target.unsqueeze(2)).sum() == 0 diff --git a/TTS/tests/data_tests/test_samplers.py b/TTS/tests/data_tests/test_samplers.py new file mode 100644 index 0000000000000000000000000000000000000000..0975d5edcb12f32e2cdc4ae99730ad9144cac303 --- /dev/null +++ b/TTS/tests/data_tests/test_samplers.py @@ -0,0 +1,192 @@ +import functools +import random +import unittest + +import torch + +from TTS.config.shared_configs import BaseDatasetConfig +from TTS.tts.datasets import load_tts_samples +from TTS.tts.utils.data import get_length_balancer_weights +from TTS.tts.utils.languages import get_language_balancer_weights +from TTS.tts.utils.speakers import get_speaker_balancer_weights +from TTS.utils.samplers import BucketBatchSampler, PerfectBatchSampler + +# Fixing random state to avoid random fails +torch.manual_seed(0) + +dataset_config_en = BaseDatasetConfig( + formatter="ljspeech", + meta_file_train="metadata.csv", + meta_file_val="metadata.csv", + path="tests/data/ljspeech", + language="en", +) + +dataset_config_pt = BaseDatasetConfig( + formatter="ljspeech", + meta_file_train="metadata.csv", + meta_file_val="metadata.csv", + path="tests/data/ljspeech", + language="pt-br", +) + +# Adding the EN samples twice to create a language unbalanced dataset +train_samples, eval_samples = load_tts_samples( + [dataset_config_en, dataset_config_en, dataset_config_pt], eval_split=True +) + +# gerenate a speaker unbalanced dataset +for i, sample in enumerate(train_samples): + if i < 5: + sample["speaker_name"] = "ljspeech-0" + else: + sample["speaker_name"] = "ljspeech-1" + + +def is_balanced(lang_1, lang_2): + return 0.85 < lang_1 / lang_2 < 1.2 + + +class TestSamplers(unittest.TestCase): + def test_language_random_sampler(self): # pylint: disable=no-self-use + random_sampler = torch.utils.data.RandomSampler(train_samples) + ids = functools.reduce(lambda a, b: a + b, [list(random_sampler) for i in range(100)]) + en, pt = 0, 0 + for index in ids: + if train_samples[index]["language"] == "en": + en += 1 + else: + pt += 1 + + assert not is_balanced(en, pt), "Random sampler is supposed to be unbalanced" + + def test_language_weighted_random_sampler(self): # pylint: disable=no-self-use + weighted_sampler = torch.utils.data.sampler.WeightedRandomSampler( + get_language_balancer_weights(train_samples), len(train_samples) + ) + ids = functools.reduce(lambda a, b: a + b, [list(weighted_sampler) for i in range(100)]) + en, pt = 0, 0 + for index in ids: + if train_samples[index]["language"] == "en": + en += 1 + else: + pt += 1 + + assert is_balanced(en, pt), "Language Weighted sampler is supposed to be balanced" + + def test_speaker_weighted_random_sampler(self): # pylint: disable=no-self-use + weighted_sampler = torch.utils.data.sampler.WeightedRandomSampler( + get_speaker_balancer_weights(train_samples), len(train_samples) + ) + ids = functools.reduce(lambda a, b: a + b, [list(weighted_sampler) for i in range(100)]) + spk1, spk2 = 0, 0 + for index in ids: + if train_samples[index]["speaker_name"] == "ljspeech-0": + spk1 += 1 + else: + spk2 += 1 + + assert is_balanced(spk1, spk2), "Speaker Weighted sampler is supposed to be balanced" + + def test_perfect_sampler(self): # pylint: disable=no-self-use + classes = set() + for item in train_samples: + classes.add(item["speaker_name"]) + + sampler = PerfectBatchSampler( + train_samples, + classes, + batch_size=2 * 3, # total batch size + num_classes_in_batch=2, + label_key="speaker_name", + shuffle=False, + drop_last=True, + ) + batchs = functools.reduce(lambda a, b: a + b, [list(sampler) for i in range(100)]) + for batch in batchs: + spk1, spk2 = 0, 0 + # for in each batch + for index in batch: + if train_samples[index]["speaker_name"] == "ljspeech-0": + spk1 += 1 + else: + spk2 += 1 + assert spk1 == spk2, "PerfectBatchSampler is supposed to be perfectly balanced" + + def test_perfect_sampler_shuffle(self): # pylint: disable=no-self-use + classes = set() + for item in train_samples: + classes.add(item["speaker_name"]) + + sampler = PerfectBatchSampler( + train_samples, + classes, + batch_size=2 * 3, # total batch size + num_classes_in_batch=2, + label_key="speaker_name", + shuffle=True, + drop_last=False, + ) + batchs = functools.reduce(lambda a, b: a + b, [list(sampler) for i in range(100)]) + for batch in batchs: + spk1, spk2 = 0, 0 + # for in each batch + for index in batch: + if train_samples[index]["speaker_name"] == "ljspeech-0": + spk1 += 1 + else: + spk2 += 1 + assert spk1 == spk2, "PerfectBatchSampler is supposed to be perfectly balanced" + + def test_length_weighted_random_sampler(self): # pylint: disable=no-self-use + for _ in range(1000): + # gerenate a lenght unbalanced dataset with random max/min audio lenght + min_audio = random.randrange(1, 22050) + max_audio = random.randrange(44100, 220500) + for idx, item in enumerate(train_samples): + # increase the diversity of durations + random_increase = random.randrange(100, 1000) + if idx < 5: + item["audio_length"] = min_audio + random_increase + else: + item["audio_length"] = max_audio + random_increase + + weighted_sampler = torch.utils.data.sampler.WeightedRandomSampler( + get_length_balancer_weights(train_samples, num_buckets=2), len(train_samples) + ) + ids = functools.reduce(lambda a, b: a + b, [list(weighted_sampler) for i in range(100)]) + len1, len2 = 0, 0 + for index in ids: + if train_samples[index]["audio_length"] < max_audio: + len1 += 1 + else: + len2 += 1 + assert is_balanced(len1, len2), "Length Weighted sampler is supposed to be balanced" + + def test_bucket_batch_sampler(self): + bucket_size_multiplier = 2 + sampler = range(len(train_samples)) + sampler = BucketBatchSampler( + sampler, + data=train_samples, + batch_size=7, + drop_last=True, + sort_key=lambda x: len(x["text"]), + bucket_size_multiplier=bucket_size_multiplier, + ) + + # check if the samples are sorted by text lenght whuile bucketing + min_text_len_in_bucket = 0 + bucket_items = [] + for batch_idx, batch in enumerate(list(sampler)): + if (batch_idx + 1) % bucket_size_multiplier == 0: + for bucket_item in bucket_items: + self.assertLessEqual(min_text_len_in_bucket, len(train_samples[bucket_item]["text"])) + min_text_len_in_bucket = len(train_samples[bucket_item]["text"]) + min_text_len_in_bucket = 0 + bucket_items = [] + else: + bucket_items += batch + + # check sampler length + self.assertEqual(len(sampler), len(train_samples) // 7) diff --git a/TTS/tests/inference_tests/__init__.py b/TTS/tests/inference_tests/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/TTS/tests/inference_tests/test_synthesize.py b/TTS/tests/inference_tests/test_synthesize.py new file mode 100644 index 0000000000000000000000000000000000000000..28a4088c964acd01df70837d0d5ee00523526f03 --- /dev/null +++ b/TTS/tests/inference_tests/test_synthesize.py @@ -0,0 +1,20 @@ +import os + +from tests import get_tests_output_path, run_cli + + +def test_synthesize(): + """Test synthesize.py with diffent arguments.""" + output_path = os.path.join(get_tests_output_path(), "output.wav") + run_cli("tts --list_models") + + # single speaker model + run_cli(f'tts --text "This is an example." --out_path "{output_path}"') + run_cli( + "tts --model_name tts_models/en/ljspeech/glow-tts " f'--text "This is an example." --out_path "{output_path}"' + ) + run_cli( + "tts --model_name tts_models/en/ljspeech/glow-tts " + "--vocoder_name vocoder_models/en/ljspeech/multiband-melgan " + f'--text "This is an example." --out_path "{output_path}"' + ) diff --git a/TTS/tests/inference_tests/test_synthesizer.py b/TTS/tests/inference_tests/test_synthesizer.py new file mode 100644 index 0000000000000000000000000000000000000000..40e830178c20493f5b1a6c670a9aeb1d2ce8992f --- /dev/null +++ b/TTS/tests/inference_tests/test_synthesizer.py @@ -0,0 +1,78 @@ +import os +import unittest + +from tests import get_tests_input_path +from TTS.config import load_config +from TTS.tts.models import setup_model +from TTS.utils.io import save_checkpoint +from TTS.utils.synthesizer import Synthesizer + + +class SynthesizerTest(unittest.TestCase): + # pylint: disable=R0201 + def _create_random_model(self): + # pylint: disable=global-statement + config = load_config(os.path.join(get_tests_input_path(), "dummy_model_config.json")) + model = setup_model(config) + output_path = os.path.join(get_tests_input_path()) + save_checkpoint(config, model, None, None, 10, 1, output_path) + + def test_in_out(self): + self._create_random_model() + tts_root_path = get_tests_input_path() + tts_checkpoint = os.path.join(tts_root_path, "checkpoint_10.pth") + tts_config = os.path.join(tts_root_path, "dummy_model_config.json") + synthesizer = Synthesizer(tts_checkpoint, tts_config, None, None) + synthesizer.tts("Better this test works!!") + + def test_split_into_sentences(self): + """Check demo server sentences split as expected""" + print("\n > Testing demo server sentence splitting") + # pylint: disable=attribute-defined-outside-init, protected-access + self.seg = Synthesizer._get_segmenter("en") + sis = Synthesizer.split_into_sentences + assert sis(self, "Hello. Two sentences") == ["Hello.", "Two sentences"] + assert sis(self, "He went to meet the adviser from Scott, Waltman & Co. next morning.") == [ + "He went to meet the adviser from Scott, Waltman & Co. next morning." + ] + assert sis(self, "Let's run it past Sarah and co. They'll want to see this.") == [ + "Let's run it past Sarah and co.", + "They'll want to see this.", + ] + assert sis(self, "Where is Bobby Jr.'s rabbit?") == ["Where is Bobby Jr.'s rabbit?"] + assert sis(self, "Please inform the U.K. authorities right away.") == [ + "Please inform the U.K. authorities right away." + ] + assert sis(self, "Were David and co. at the event?") == ["Were David and co. at the event?"] + assert sis(self, "paging dr. green, please come to theatre four immediately.") == [ + "paging dr. green, please come to theatre four immediately." + ] + assert sis(self, "The email format is Firstname.Lastname@example.com. I think you reversed them.") == [ + "The email format is Firstname.Lastname@example.com.", + "I think you reversed them.", + ] + assert sis( + self, + "The demo site is: https://top100.example.com/subsection/latestnews.html. Please send us your feedback.", + ) == [ + "The demo site is: https://top100.example.com/subsection/latestnews.html.", + "Please send us your feedback.", + ] + assert sis(self, "Scowling at him, 'You are not done yet!' she yelled.") == [ + "Scowling at him, 'You are not done yet!' she yelled." + ] # with the final lowercase "she" we see it's all one sentence + assert sis(self, "Hey!! So good to see you.") == ["Hey!!", "So good to see you."] + assert sis(self, "He went to Yahoo! but I don't know the division.") == [ + "He went to Yahoo! but I don't know the division." + ] + assert sis(self, "If you can't remember a quote, โ€œat least make up a memorable one that's plausible...\"") == [ + "If you can't remember a quote, โ€œat least make up a memorable one that's plausible...\"" + ] + assert sis(self, "The address is not google.com.") == ["The address is not google.com."] + assert sis(self, "1.) The first item 2.) The second item") == ["1.) The first item", "2.) The second item"] + assert sis(self, "1) The first item 2) The second item") == ["1) The first item", "2) The second item"] + assert sis(self, "a. The first item b. The second item c. The third list item") == [ + "a. The first item", + "b. The second item", + "c. The third list item", + ] diff --git a/TTS/tests/inputs/common_voice.tsv b/TTS/tests/inputs/common_voice.tsv new file mode 100644 index 0000000000000000000000000000000000000000..39fc4190acff0267c220895db29c49eb2a2903a3 --- /dev/null +++ b/TTS/tests/inputs/common_voice.tsv @@ -0,0 +1,6 @@ +client_id path sentence up_votes down_votes age gender accent locale segment +95324d489b122a800b840e0b0d068f7363a1a6c2cd2e7365672cc7033e38deaa794bd59edcf8196aa35c9791652b9085ac3839a98bb50ebab4a1e8538a94846b common_voice_en_20005954.mp3 The applicants are invited for coffee and visa is given immediately. 3 0 en +95324d489b122a800b840e0b0d068f7363a1a6c2cd2e7365672cc7033e38deaa794bd59edcf8196aa35c9791652b9085ac3839a98bb50ebab4a1e8538a94846b common_voice_en_20005955.mp3 Developmental robotics is related to, but differs from, evolutionary robotics. 2 0 en +95324d489b122a800b840e0b0d068f7363a1a6c2cd2e7365672cc7033e38deaa794bd59edcf8196aa35c9791652b9085ac3839a98bb50ebab4a1e8538a94846b common_voice_en_20005956.mp3 The musical was originally directed and choreographed by Alan Lund. 2 0 en +954a4181ae9fba89d1b1570f2ae148b3ee18ee2311de978e698f598db859f830d93d35574596d713518e8c96cdae01fce7a08c60c2e0a22bcf01e020924440a6 common_voice_en_19737073.mp3 He graduated from Columbia High School, in Brown County, South Dakota. 2 0 en +954a4181ae9fba89d1b1570f2ae148b3ee18ee2311de978e698f598db859f830d93d35574596d713518e8c96cdae01fce7a08c60c2e0a22bcf01e020924440a6 common_voice_en_19737074.mp3 Competition for limited resources has also resulted in some local conflicts. 2 0 en diff --git a/TTS/tests/inputs/dummy_model_config.json b/TTS/tests/inputs/dummy_model_config.json new file mode 100644 index 0000000000000000000000000000000000000000..6504aebc78b0776db9f09ff183c1773978a3099d --- /dev/null +++ b/TTS/tests/inputs/dummy_model_config.json @@ -0,0 +1,102 @@ +{ + "run_name": "mozilla-no-loc-fattn-stopnet-sigmoid-loss_masking", + "run_description": "using forward attention, with original prenet, loss masking,separate stopnet, sigmoid. Compare this with 4817. Pytorch DPP", + + "audio":{ + // Audio processing parameters + "num_mels": 80, // size of the mel spec frame. + "fft_size": 1024, // number of stft frequency levels. Size of the linear spectogram frame. + "sample_rate": 22050, // DATASET-RELATED: wav sample-rate. If different than the original data, it is resampled. + "hop_length": 256, + "win_length": 1024, + "preemphasis": 0.98, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis. + "min_level_db": -100, // normalization range + "ref_level_db": 20, // reference level db, theoretically 20db is the sound of air. + "power": 1.5, // value to sharpen wav signals after GL algorithm. + "griffin_lim_iters": 60,// #griffin-lim iterations. 30-60 is a good range. Larger the value, slower the generation. + // Normalization parameters + "signal_norm": true, // normalize the spec values in range [0, 1] + "symmetric_norm": false, // move normalization to range [-1, 1] + "max_norm": 1, // scale normalization to range [-max_norm, max_norm] or [0, max_norm] + "clip_norm": true, // clip normalized values into the range. + "mel_fmin": 0.0, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!! + "mel_fmax": 8000.0, // maximum freq level for mel-spec. Tune for dataset!! + "do_trim_silence": true // enable trimming of slience of audio as you load it. LJspeech (false), TWEB (false), Nancy (true) + }, + + "distributed":{ + "backend": "nccl", + "url": "tcp:\/\/localhost:54321" + }, + + "reinit_layers": [], + + "model": "Tacotron2", // one of the model in models/ + "grad_clip": 1, // upper limit for gradients for clipping. + "epochs": 1000, // total number of epochs to train. + "lr": 0.0001, // Initial learning rate. If Noam decay is active, maximum learning rate. + "lr_decay": false, // if true, Noam learning rate decaying is applied through training. + "warmup_steps": 4000, // Noam decay steps to increase the learning rate from 0 to "lr" + "windowing": false, // Enables attention windowing. Used only in eval mode. + "memory_size": 5, // ONLY TACOTRON - memory queue size used to queue network predictions to feed autoregressive connection. Useful if r < 5. + "attention_norm": "sigmoid", // softmax or sigmoid. Suggested to use softmax for Tacotron2 and sigmoid for Tacotron. + "prenet_type": "original", // ONLY TACOTRON2 - "original" or "bn". + "prenet_dropout": true, // ONLY TACOTRON2 - enable/disable dropout at prenet. + "use_forward_attn": true, // ONLY TACOTRON2 - if it uses forward attention. In general, it aligns faster. + "forward_attn_mask": false, + "attention_type": "original", + "attention_heads": 5, + "bidirectional_decoder": false, + "transition_agent": false, // ONLY TACOTRON2 - enable/disable transition agent of forward attention. + "location_attn": false, // ONLY TACOTRON2 - enable_disable location sensitive attention. It is enabled for TACOTRON by default. + "loss_masking": true, // enable / disable loss masking against the sequence padding. + "enable_eos_bos_chars": false, // enable/disable beginning of sentence and end of sentence chars. + "stopnet": true, // Train stopnet predicting the end of synthesis. + "separate_stopnet": true, // Train stopnet seperately if 'stopnet==true'. It prevents stopnet loss to influence the rest of the model. It causes a better model, but it trains SLOWER. + "tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging. + "use_gst": false, + "double_decoder_consistency": true, // use DDC explained here https://erogol.com/solving-attention-problems-of-tts-models-with-double-decoder-consistency-draft/ + "ddc_r": 7, // reduction rate for coarse decoder. + + "batch_size": 32, // Batch size for training. Lower values than 32 might cause hard to learn attention. + "eval_batch_size":16, + "r": 1, // Number of frames to predict for step. + "wd": 0.000001, // Weight decay weight. + "checkpoint": true, // If true, it saves checkpoints per "save_step" + "save_step": 1000, // Number of training steps expected to save traning stats and checkpoints. + "print_step": 10, // Number of steps to log traning on console. + "batch_group_size": 0, //Number of batches to shuffle after bucketing. + + "run_eval": true, + "test_delay_epochs": 5, //Until attention is aligned, testing only wastes computation time. + "test_sentences_file": null, // set a file to load sentences to be used for testing. If it is null then we use default english sentences. + "data_path": "/media/erogol/data_ssd/Data/Mozilla/", // DATASET-RELATED: can overwritten from command argument + "meta_file_train": "metadata_train.txt", // DATASET-RELATED: metafile for training dataloader. + "meta_file_val": "metadata_val.txt", // DATASET-RELATED: metafile for evaluation dataloader. + "dataset": "mozilla", // DATASET-RELATED: one of mozilla_voice_tts.dataset.preprocessors depending on your target dataset. Use "tts_cache" for pre-computed dataset by extract_features.py + "min_seq_len": 0, // DATASET-RELATED: minimum text length to use in training + "max_seq_len": 150, // DATASET-RELATED: maximum text length + "output_path": "../keep/", // DATASET-RELATED: output path for all training outputs. + "num_loader_workers": 4, // number of training data loader processes. Don't set it too big. 4-8 are good values. + "num_val_loader_workers": 4, // number of evaluation data loader processes. + "phoneme_cache_path": "mozilla_us_phonemes", // phoneme computation is slow, therefore, it caches results in the given folder. + "use_phonemes": false, // use phonemes instead of raw characters. It is suggested for better pronounciation. + "phoneme_language": "en-us", // depending on your target language, pick one from https://github.com/bootphon/phonemizer#languages + "text_cleaner": "phoneme_cleaners", + "use_speaker_embedding": false, // whether to use additional embeddings for separate speakers + + // MULTI-SPEAKER and GST + "use_speaker_embedding": false, // use speaker embedding to enable multi-speaker learning. + "gst": { // gst parameter if gst is enabled + "gst_style_input": null, // Condition the style input either on a + // -> wave file [path to wave] or + // -> dictionary using the style tokens {'token1': 'value', 'token2': 'value'} example {"0": 0.15, "1": 0.15, "5": -0.15} + // with the dictionary being len(dict) <= len(gst_style_tokens). + "gst_use_speaker_embedding": true, // if true pass speaker embedding in attention input GST. + "gst_embedding_dim": 512, + "gst_num_heads": 4, + "gst_style_tokens": 10 + } +} + + diff --git a/TTS/tests/inputs/example_1.wav b/TTS/tests/inputs/example_1.wav new file mode 100644 index 0000000000000000000000000000000000000000..b1a0ed110ab9763dab7428f6273d696fecb4205d Binary files /dev/null and b/TTS/tests/inputs/example_1.wav differ diff --git a/TTS/tests/inputs/language_ids.json b/TTS/tests/inputs/language_ids.json new file mode 100644 index 0000000000000000000000000000000000000000..27bb15206f1b06db9f2f14451caa7f5f43bdb7f1 --- /dev/null +++ b/TTS/tests/inputs/language_ids.json @@ -0,0 +1,5 @@ +{ + "en": 0, + "fr-fr": 1, + "pt-br": 2 +} \ No newline at end of file diff --git a/TTS/tests/inputs/scale_stats.npy b/TTS/tests/inputs/scale_stats.npy new file mode 100644 index 0000000000000000000000000000000000000000..74be37553ee6204095a6f791ebe10f8f10140fba --- /dev/null +++ b/TTS/tests/inputs/scale_stats.npy @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:66e84c8c947d3cdead90cc37710c7b426562e2520e59500bc8e53c435152506c +size 10479 diff --git a/TTS/tests/inputs/server_config.json b/TTS/tests/inputs/server_config.json new file mode 100644 index 0000000000000000000000000000000000000000..f0a922836adbebc2b488c218f0969c707bb7d4ed --- /dev/null +++ b/TTS/tests/inputs/server_config.json @@ -0,0 +1,14 @@ +{ + "tts_checkpoint":"checkpoint_10.pth", // tts checkpoint file + "tts_config":"dummy_model_config.json", // tts config.json file + "tts_speakers": null, // json file listing speaker ids. null if no speaker embedding. + "wavernn_lib_path": null, // Rootpath to wavernn project folder to be imported. If this is null, model uses GL for speech synthesis. + "wavernn_file": null, // wavernn checkpoint file name + "wavernn_config": null, // wavernn config file + "vocoder_config":null, + "vocoder_checkpoint": null, + "is_wavernn_batched":true, + "port": 5002, + "use_cuda": false, + "debug": true +} diff --git a/TTS/tests/inputs/test_align_tts.json b/TTS/tests/inputs/test_align_tts.json new file mode 100644 index 0000000000000000000000000000000000000000..3f928c7e922fd3abb431880ae65db73b22f04974 --- /dev/null +++ b/TTS/tests/inputs/test_align_tts.json @@ -0,0 +1,158 @@ +{ + "model": "align_tts", + "run_name": "test_sample_dataset_run", + "run_description": "sample dataset test run", + + // AUDIO PARAMETERS + "audio":{ + // stft parameters + "fft_size": 1024, // number of stft frequency levels. Size of the linear spectogram frame. + "win_length": 1024, // stft window length in ms. + "hop_length": 256, // stft window hop-lengh in ms. + "frame_length_ms": null, // stft window length in ms.If null, 'win_length' is used. + "frame_shift_ms": null, // stft window hop-lengh in ms. If null, 'hop_length' is used. + + // Audio processing parameters + "sample_rate": 22050, // DATASET-RELATED: wav sample-rate. + "preemphasis": 0.0, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis. + "ref_level_db": 20, // reference level db, theoretically 20db is the sound of air. + + // Silence trimming + "do_trim_silence": true,// enable trimming of slience of audio as you load it. LJspeech (true), TWEB (false), Nancy (true) + "trim_db": 60, // threshold for timming silence. Set this according to your dataset. + + // Griffin-Lim + "power": 1.5, // value to sharpen wav signals after GL algorithm. + "griffin_lim_iters": 60,// #griffin-lim iterations. 30-60 is a good range. Larger the value, slower the generation. + + // MelSpectrogram parameters + "num_mels": 80, // size of the mel spec frame. + "mel_fmin": 50.0, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!! + "mel_fmax": 7600.0, // maximum freq level for mel-spec. Tune for dataset!! + "spec_gain": 1, + + // Normalization parameters + "signal_norm": true, // normalize spec values. Mean-Var normalization if 'stats_path' is defined otherwise range normalization defined by the other params. + "min_level_db": -100, // lower bound for normalization + "symmetric_norm": true, // move normalization to range [-1, 1] + "max_norm": 4.0, // scale normalization to range [-max_norm, max_norm] or [0, max_norm] + "clip_norm": true, // clip normalized values into the range. + "stats_path": null // DO NOT USE WITH MULTI_SPEAKER MODEL. scaler stats file computed by 'compute_statistics.py'. If it is defined, mean-std based notmalization is used and other normalization params are ignored + }, + + // VOCABULARY PARAMETERS + // if custom character set is not defined, + // default set in symbols.py is used + // "characters":{ + // "pad": "_", + // "eos": "&", + // "bos": "*", + // "characters": "ABCDEFGHIJKLMNOPQRSTUVWXYZร‡รƒร€รร‚รŠร‰รร“ร”ร•รšร›abcdefghijklmnopqrstuvwxyzรงรฃร รกรขรชรฉรญรณรดรตรบรป!(),-.:;? ", + // "punctuations":"!'(),-.:;? ", + // "phonemes":"iyษจส‰ษฏuษชสสŠeรธษ˜ษ™ษตษคoษ›ล“ษœษžสŒษ”รฆษaษถษ‘ษ’แตปส˜ษ“ว€ษ—วƒส„ว‚ษ วส›pbtdสˆษ–cษŸkษกqษขส”ษดล‹ษฒษณnษฑmส™rส€โฑฑษพษฝษธฮฒfvฮธรฐszสƒส’ส‚สรงสxษฃฯ‡สฤงส•hษฆษฌษฎส‹ษนษปjษฐlษญสŽสŸหˆหŒหห‘สwษฅสœสขสกษ•ส‘ษบษงษšหžษซ'ฬƒ' " + // }, + + "add_blank": false, // if true add a new token after each token of the sentence. This increases the size of the input sequence, but has considerably improved the prosody of the GlowTTS model. + + // DISTRIBUTED TRAINING + "distributed":{ + "backend": "nccl", + "url": "tcp:\/\/localhost:54321" + }, + + "reinit_layers": [], // give a list of layer names to restore from the given checkpoint. If not defined, it reloads all heuristically matching layers. + + // MODEL PARAMETERS + "positional_encoding": true, + "hidden_channels": 256, + "hidden_channels_dp": 256, + "encoder_type": "fftransformer", + "encoder_params":{ + "hidden_channels_ffn": 1024 , + "num_heads": 2, + "num_layers": 6, + "dropout_p": 0.1 + }, + "decoder_type": "fftransformer", + "decoder_params":{ + "hidden_channels_ffn": 1024 , + "num_heads": 2, + "num_layers": 6, + "dropout_p": 0.1 + }, + + + // TRAINING + "batch_size":2, // Batch size for training. Lower values than 32 might cause hard to learn attention. It is overwritten by 'gradual_training'. + "eval_batch_size":1, + "r": 1, // Number of decoder frames to predict per iteration. Set the initial values if gradual training is enabled. + "loss_masking": true, // enable / disable loss masking against the sequence padding. + "phase_start_steps": null, + + + // LOSS PARAMETERS + "ssim_alpha": 1, + "spec_loss_alpha": 1, + "dur_loss_alpha": 1, + "mdn_alpha": 1, + + // VALIDATION + "run_eval": true, + "test_delay_epochs": -1, //Until attention is aligned, testing only wastes computation time. + "test_sentences_file": null, // set a file to load sentences to be used for testing. If it is null then we use default english sentences. + + // OPTIMIZER + "noam_schedule": true, // use noam warmup and lr schedule. + "grad_clip": 1.0, // upper limit for gradients for clipping. + "epochs": 1, // total number of epochs to train. + "lr": 0.002, // Initial learning rate. If Noam decay is active, maximum learning rate. + "warmup_steps": 4000, // Noam decay steps to increase the learning rate from 0 to "lr" + + // TENSORBOARD and LOGGING + "print_step": 1, // Number of steps to log training on console. + "tb_plot_step": 100, // Number of steps to plot TB training figures. + "print_eval": false, // If True, it prints intermediate loss values in evalulation. + "save_step": 5000, // Number of training steps expected to save traninpg stats and checkpoints. + "checkpoint": true, // If true, it saves checkpoints per "save_step" + "keep_all_best": true, // If true, keeps all best_models after keep_after steps + "keep_after": 10000, // Global step after which to keep best models if keep_all_best is true + "tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.:set n + "mixed_precision": false, + + // DATA LOADING + "text_cleaner": "english_cleaners", + "enable_eos_bos_chars": false, // enable/disable beginning of sentence and end of sentence chars. + "num_loader_workers": 0, // number of training data loader processes. Don't set it too big. 4-8 are good values. + "num_eval_loader_workers": 0, // number of evaluation data loader processes. + "batch_group_size": 0, //Number of batches to shuffle after bucketing. + "min_seq_len": 2, // DATASET-RELATED: minimum text length to use in training + "max_seq_len": 300, // DATASET-RELATED: maximum text length + "compute_f0": false, // compute f0 values in data-loader + "compute_input_seq_cache": false, // if true, text sequences are computed before starting training. If phonemes are enabled, they are also computed at this stage. + + // PATHS + "output_path": "tests/train_outputs/", + + // PHONEMES + "phoneme_cache_path": "tests/train_outputs/phoneme_cache/", // phoneme computation is slow, therefore, it caches results in the given folder. + "use_phonemes": false, // use phonemes instead of raw characters. It is suggested for better pronoun[ciation. + "phoneme_language": "en-us", // depending on your target language, pick one from https://github.com/bootphon/phonemizer#languages + + // MULTI-SPEAKER and GST + "use_speaker_embedding": false, // use speaker embedding to enable multi-speaker learning. + "use_d_vector_file": false, // if true, forces the model to use external embedding per sample instead of nn.embeddings, that is, it supports external embeddings such as those used at: https://arxiv.org/abs /1806.04558 + "d_vector_file": "/home/erogol/Data/libritts/speakers.json", // if not null and use_d_vector_file is true, it is used to load a specific embedding file and thus uses these embeddings instead of nn.embeddings, that is, it supports external embeddings such as those used at: https://arxiv.org/abs /1806.04558 + + + // DATASETS + "datasets": // List of datasets. They all merged and they get different speaker_ids. + [ + { + "formatter": "ljspeech", + "path": "tests/data/ljspeech/", + "meta_file_train": "metadata.csv", + "meta_file_val": "metadata.csv", + "meta_file_attn_mask": null + } + ] +} \ No newline at end of file diff --git a/TTS/tests/inputs/test_config.json b/TTS/tests/inputs/test_config.json new file mode 100644 index 0000000000000000000000000000000000000000..8f8810d17f1a3871c50fa5cd0ba093096a9b4d04 --- /dev/null +++ b/TTS/tests/inputs/test_config.json @@ -0,0 +1,69 @@ + { + "audio":{ + "audio_processor": "audio", + "num_mels": 80, + "fft_size": 1024, + "sample_rate": 22050, + "frame_length_ms": null, + "frame_shift_ms": null, + "hop_length": 256, + "win_length": 1024, + "preemphasis": 0.97, + "min_level_db": -100, + "ref_level_db": 20, + "power": 1.5, + "griffin_lim_iters": 30, + "signal_norm": true, + "symmetric_norm": true, + "clip_norm": true, + "max_norm": 4, + "mel_fmin": 0, + "mel_fmax": 8000, + "do_trim_silence": false, + "spec_gain": 20 + }, + + "characters":{ + "pad": "_", + "eos": "~", + "bos": "^", + "characters": "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz!'(),-.:;? ", + "punctuations":"!'(),-.:;? ", + "phonemes":"iyษจส‰ษฏuษชสสŠeรธษ˜ษ™ษตษคoษ›ล“ษœษžสŒษ”รฆษaษถษ‘ษ’แตปส˜ษ“ว€ษ—วƒส„ว‚ษ วส›pbtdสˆษ–cษŸkษกqษขส”ษดล‹ษฒษณnษฑmส™rส€โฑฑษพษฝษธฮฒfvฮธรฐszสƒส’ส‚สรงสxษฃฯ‡สฤงส•hษฆษฌษฎส‹ษนษปjษฐlษญสŽสŸหˆหŒหห‘สwษฅสœสขสกษ•ส‘ษบษงษšหžษซสฒ" + }, + + "hidden_size": 128, + "embedding_size": 256, + "text_cleaner": "english_cleaners", + + "epochs": 2000, + "lr": 0.003, + "lr_patience": 5, + "lr_decay": 0.5, + "batch_size": 2, + "r": 5, + "mk": 1.0, + "num_loader_workers": 0, + "memory_size": 5, + + "save_step": 200, + "data_path": "tests/data/ljspeech/", + "output_path": "result", + "min_seq_len": 0, + "max_seq_len": 300, + "log_dir": "tests/outputs/", + + + "use_speaker_embedding": false, + "use_gst": true, + "gst": { + "gst_style_input": null, + + + + "gst_use_speaker_embedding": true, + "gst_embedding_dim": 512, + "gst_num_heads": 4, + "gst_num_style_tokens": 10 + } +} diff --git a/TTS/tests/inputs/test_glow_tts.json b/TTS/tests/inputs/test_glow_tts.json new file mode 100644 index 0000000000000000000000000000000000000000..8c0ab864b71a1672a4bd520707224fcce3b72be3 --- /dev/null +++ b/TTS/tests/inputs/test_glow_tts.json @@ -0,0 +1,149 @@ +{ + "model": "glow_tts", + "run_name": "glow-tts-gatedconv", + "run_description": "glow-tts model training with gated conv.", + + // AUDIO PARAMETERS + "audio":{ + "fft_size": 1024, // number of stft frequency levels. Size of the linear spectogram frame. + "win_length": 1024, // stft window length in ms. + "hop_length": 256, // stft window hop-lengh in ms. + "frame_length_ms": null, // stft window length in ms.If null, 'win_length' is used. + "frame_shift_ms": null, // stft window hop-lengh in ms. If null, 'hop_length' is used. + + // Audio processing parameters + "sample_rate": 22050, // DATASET-RELATED: wav sample-rate. If different than the original data, it is resampled. + "preemphasis": 0.0, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis. + "ref_level_db": 0, // reference level db, theoretically 20db is the sound of air. + + // Griffin-Lim + "power": 1.1, // value to sharpen wav signals after GL algorithm. + "griffin_lim_iters": 60,// #griffin-lim iterations. 30-60 is a good range. Larger the value, slower the generation. + + // Silence trimming + "do_trim_silence": true,// enable trimming of slience of audio as you load it. LJspeech (false), TWEB (false), Nancy (true) + "trim_db": 60, // threshold for timming silence. Set this according to your dataset. + + // MelSpectrogram parameters + "num_mels": 80, // size of the mel spec frame. + "mel_fmin": 50.0, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!! + "mel_fmax": 7600.0, // maximum freq level for mel-spec. Tune for dataset!! + "spec_gain": 1.0, // scaler value appplied after log transform of spectrogram. + + // Normalization parameters + "signal_norm": true, // normalize spec values. Mean-Var normalization if 'stats_path' is defined otherwise range normalization defined by the other params. + "min_level_db": -100, // lower bound for normalization + "symmetric_norm": true, // move normalization to range [-1, 1] + "max_norm": 1.0, // scale normalization to range [-max_norm, max_norm] or [0, max_norm] + "clip_norm": true, // clip normalized values into the range. + "stats_path": null // DO NOT USE WITH MULTI_SPEAKER MODEL. scaler stats file computed by 'compute_statistics.py'. If it is defined, mean-std based notmalization is used and other normalization params are ignored + }, + + // VOCABULARY PARAMETERS + // if custom character set is not defined, + // default set in symbols.py is used + // "characters":{ + // "pad": "_", + // "eos": "~", + // "bos": "^", + // "characters": "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz!'(),-.:;? ", + // "punctuations":"!'(),-.:;? ", + // "phonemes":"iyษจส‰ษฏuษชสสŠeรธษ˜ษ™ษตษคoษ›ล“ษœษžสŒษ”รฆษaษถษ‘ษ’แตปส˜ษ“ว€ษ—วƒส„ว‚ษ วส›pbtdสˆษ–cษŸkษกqษขส”ษดล‹ษฒษณnษฑmส™rส€โฑฑษพษฝษธฮฒfvฮธรฐszสƒส’ส‚สรงสxษฃฯ‡สฤงส•hษฆษฌษฎส‹ษนษปjษฐlษญสŽสŸหˆหŒหห‘สwษฅสœสขสกษ•ส‘ษบษงษšหžษซ" + // }, + + "add_blank": false, // if true add a new token after each token of the sentence. This increases the size of the input sequence, but has considerably improved the prosody of the GlowTTS model. + + // DISTRIBUTED TRAINING + "mixed_precision": false, + "distributed":{ + "backend": "nccl", + "url": "tcp:\/\/localhost:54323" + }, + + "reinit_layers": [], // give a list of layer names to restore from the given checkpoint. If not defined, it reloads all heuristically matching layers. + + // MODEL PARAMETERS + "use_mas": false, // use Monotonic Alignment Search if true. Otherwise use pre-computed attention alignments. + + // TRAINING + "batch_size": 8, // Batch size for training. Lower values than 32 might cause hard to learn attention. It is overwritten by 'gradual_training'. + "eval_batch_size": 8, + "r": 1, // Number of decoder frames to predict per iteration. Set the initial values if gradual training is enabled. + "loss_masking": true, // enable / disable loss masking against the sequence padding. + "data_dep_init_iter": 1, + + // VALIDATION + "run_eval": true, + "test_delay_epochs": 0, //Until attention is aligned, testing only wastes computation time. + "test_sentences_file": null, // set a file to load sentences to be used for testing. If it is null then we use default english sentences. + + // OPTIMIZER + "noam_schedule": true, // use noam warmup and lr schedule. + "grad_clip": 5.0, // upper limit for gradients for clipping. + "epochs": 1, // total number of epochs to train. + "lr": 1e-3, // Initial learning rate. If Noam decay is active, maximum learning rate. + "wd": 0.000001, // Weight decay weight. + "warmup_steps": 4000, // Noam decay steps to increase the learning rate from 0 to "lr" + "seq_len_norm": false, // Normalize eash sample loss with its length to alleviate imbalanced datasets. Use it if your dataset is small or has skewed distribution of sequence lengths. + + "hidden_channels_encoder": 192, + "hidden_channels_decoder": 192, + "hidden_channels_duration_predictor": 256, + "use_encoder_prenet": true, + "encoder_type": "rel_pos_transformer", + "encoder_params": { + "kernel_size":3, + "dropout_p": 0.1, + "num_layers": 6, + "num_heads": 2, + "hidden_channels_ffn": 768, + "input_length": null + }, + + // TENSORBOARD and LOGGING + "print_step": 25, // Number of steps to log training on console. + "tb_plot_step": 100, // Number of steps to plot TB training figures. + "print_eval": false, // If True, it prints intermediate loss values in evalulation. + "save_step": 5000, // Number of training steps expected to save traninpg stats and checkpoints. + "checkpoint": true, // If true, it saves checkpoints per "save_step" + "keep_all_best": true, // If true, keeps all best_models after keep_after steps + "keep_after": 10000, // Global step after which to keep best models if keep_all_best is true + "tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging. + "apex_amp_level": null, + + // DATA LOADING + "text_cleaner": "phoneme_cleaners", + "enable_eos_bos_chars": false, // enable/disable beginning of sentence and end of sentence chars. + "num_loader_workers": 0, // number of training data loader processes. Don't set it too big. 4-8 are good values. + "num_eval_loader_workers": 0, // number of evaluation data loader processes. + "batch_group_size": 0, //Number of batches to shuffle after bucketing. + "min_seq_len": 3, // DATASET-RELATED: minimum text length to use in training + "max_seq_len": 500, // DATASET-RELATED: maximum text length + "compute_f0": false, // compute f0 values in data-loader + "compute_input_seq_cache": true, + "use_noise_augment": true, + + // PATHS + "output_path": "tests/train_outputs/", + + // PHONEMES + "phoneme_cache_path": "tests/outputs/phoneme_cache/", // phoneme computation is slow, therefore, it caches results in the given folder. + "use_phonemes": false, // use phonemes instead of raw characters. It is suggested for better pronounciation. + "phoneme_language": "en-us", // depending on your target language, pick one from https://github.com/bootphon/phonemizer#languages + + // MULTI-SPEAKER and GST + "use_d_vector_file": false, + "d_vector_file": null, + "use_speaker_embedding": false, // use speaker embedding to enable multi-speaker learning. + + // DATASETS + "datasets": // List of datasets. They all merged and they get different speaker_ids. + [ + { + "formatter": "ljspeech", + "path": "tests/data/ljspeech/", + "meta_file_train": "metadata.csv", + "meta_file_val": "metadata.csv" + } + ] +} diff --git a/TTS/tests/inputs/test_speaker_encoder_config.json b/TTS/tests/inputs/test_speaker_encoder_config.json new file mode 100644 index 0000000000000000000000000000000000000000..bfcc17ab0e6390bdd00830f2a8c0ffc7e6f14032 --- /dev/null +++ b/TTS/tests/inputs/test_speaker_encoder_config.json @@ -0,0 +1,61 @@ + +{ + "model": "speaker_encoder", + "run_name": "test_speaker_encoder", + "run_description": "test speaker encoder.", + "audio":{ + // Audio processing parameters + "num_mels": 40, // size of the mel spec frame. + "fft_size": 400, // number of stft frequency levels. Size of the linear spectogram frame. + "sample_rate": 16000, // DATASET-RELATED: wav sample-rate. If different than the original data, it is resampled. + "win_length": 400, // stft window length in ms. + "hop_length": 160, // stft window hop-lengh in ms. + "frame_length_ms": null, // stft window length in ms.If null, 'win_length' is used. + "frame_shift_ms": null, // stft window hop-lengh in ms. If null, 'hop_length' is used. + "preemphasis": 0.98, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis. + "min_level_db": -100, // normalization range + "ref_level_db": 20, // reference level db, theoretically 20db is the sound of air. + "power": 1.5, // value to sharpen wav signals after GL algorithm. + "griffin_lim_iters": 60,// #griffin-lim iterations. 30-60 is a good range. Larger the value, slower the generation. + // Normalization parameters + "signal_norm": true, // normalize the spec values in range [0, 1] + "symmetric_norm": true, // move normalization to range [-1, 1] + "max_norm": 4.0, // scale normalization to range [-max_norm, max_norm] or [0, max_norm] + "clip_norm": true, // clip normalized values into the range. + "mel_fmin": 0.0, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!! + "mel_fmax": 8000.0, // maximum freq level for mel-spec. Tune for dataset!! + "do_trim_silence": true, // enable trimming of slience of audio as you load it. LJspeech (false), TWEB (false), Nancy (true) + "trim_db": 60 // threshold for timming silence. Set this according to your dataset. + }, + "reinit_layers": [], + "loss": "angleproto", // "ge2e" to use Generalized End-to-End loss and "angleproto" to use Angular Prototypical loss (new SOTA) + "grad_clip": 3.0, // upper limit for gradients for clipping. + "epochs": 1000, // total number of epochs to train. + "lr": 0.0001, // Initial learning rate. If Noam decay is active, maximum learning rate. + "lr_decay": false, // if true, Noam learning rate decaying is applied through training. + "warmup_steps": 4000, // Noam decay steps to increase the learning rate from 0 to "lr" + "tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging. + "steps_plot_stats": 10, // number of steps to plot embeddings. + "num_classes_in_batch": 64, // Batch size for training. Lower values than 32 might cause hard to learn attention. It is overwritten by 'gradual_training'. + "num_utter_per_class": 10, // + "num_loader_workers": 8, // number of training data loader processes. Don't set it too big. 4-8 are good values. + "wd": 0.000001, // Weight decay weight. + "checkpoint": true, // If true, it saves checkpoints per "save_step" + "save_step": 1000, // Number of training steps expected to save traning stats and checkpoints. + "print_step": 20, // Number of steps to log traning on console. + "batch_size": 32, + "output_path": "", // DATASET-RELATED: output path for all training outputs. + "model_params": { + "model_name": "lstm", + "input_dim": 40, + "proj_dim": 256, + "lstm_dim": 768, + "num_lstm_layers": 3, + "use_lstm_with_projection": true + }, + "storage": { + "sample_from_storage_p": 0.66, // the probability with which we'll sample from the DataSet in-memory storage + "storage_size": 15 // the size of the in-memory storage with respect to a single batch + }, + "datasets":null +} \ No newline at end of file diff --git a/TTS/tests/inputs/test_speedy_speech.json b/TTS/tests/inputs/test_speedy_speech.json new file mode 100644 index 0000000000000000000000000000000000000000..4a7eea5ded0ce2e89a13882864ab9dea226239fd --- /dev/null +++ b/TTS/tests/inputs/test_speedy_speech.json @@ -0,0 +1,155 @@ +{ + "model": "speedy_speech", + "run_name": "test_sample_dataset_run", + "run_description": "sample dataset test run", + + // AUDIO PARAMETERS + "audio":{ + // stft parameters + "fft_size": 1024, // number of stft frequency levels. Size of the linear spectogram frame. + "win_length": 1024, // stft window length in ms. + "hop_length": 256, // stft window hop-lengh in ms. + "frame_length_ms": null, // stft window length in ms.If null, 'win_length' is used. + "frame_shift_ms": null, // stft window hop-lengh in ms. If null, 'hop_length' is used. + + // Audio processing parameters + "sample_rate": 22050, // DATASET-RELATED: wav sample-rate. + "preemphasis": 0.0, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis. + "ref_level_db": 20, // reference level db, theoretically 20db is the sound of air. + + // Silence trimming + "do_trim_silence": true,// enable trimming of slience of audio as you load it. LJspeech (true), TWEB (false), Nancy (true) + "trim_db": 60, // threshold for timming silence. Set this according to your dataset. + + // Griffin-Lim + "power": 1.5, // value to sharpen wav signals after GL algorithm. + "griffin_lim_iters": 60,// #griffin-lim iterations. 30-60 is a good range. Larger the value, slower the generation. + + // MelSpectrogram parameters + "num_mels": 80, // size of the mel spec frame. + "mel_fmin": 50.0, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!! + "mel_fmax": 7600.0, // maximum freq level for mel-spec. Tune for dataset!! + "spec_gain": 1, + + // Normalization parameters + "signal_norm": true, // normalize spec values. Mean-Var normalization if 'stats_path' is defined otherwise range normalization defined by the other params. + "min_level_db": -100, // lower bound for normalization + "symmetric_norm": true, // move normalization to range [-1, 1] + "max_norm": 4.0, // scale normalization to range [-max_norm, max_norm] or [0, max_norm] + "clip_norm": true, // clip normalized values into the range. + "stats_path": null // DO NOT USE WITH MULTI_SPEAKER MODEL. scaler stats file computed by 'compute_statistics.py'. If it is defined, mean-std based notmalization is used and other normalization params are ignored + }, + + // VOCABULARY PARAMETERS + // if custom character set is not defined, + // default set in symbols.py is used + // "characters":{ + // "pad": "_", + // "eos": "&", + // "bos": "*", + // "characters": "ABCDEFGHIJKLMNOPQRSTUVWXYZร‡รƒร€รร‚รŠร‰รร“ร”ร•รšร›abcdefghijklmnopqrstuvwxyzรงรฃร รกรขรชรฉรญรณรดรตรบรป!(),-.:;? ", + // "punctuations":"!'(),-.:;? ", + // "phonemes":"iyษจส‰ษฏuษชสสŠeรธษ˜ษ™ษตษคoษ›ล“ษœษžสŒษ”รฆษaษถษ‘ษ’แตปส˜ษ“ว€ษ—วƒส„ว‚ษ วส›pbtdสˆษ–cษŸkษกqษขส”ษดล‹ษฒษณnษฑmส™rส€โฑฑษพษฝษธฮฒfvฮธรฐszสƒส’ส‚สรงสxษฃฯ‡สฤงส•hษฆษฌษฎส‹ษนษปjษฐlษญสŽสŸหˆหŒหห‘สwษฅสœสขสกษ•ส‘ษบษงษšหžษซ'ฬƒ' " + // }, + + "add_blank": false, // if true add a new token after each token of the sentence. This increases the size of the input sequence, but has considerably improved the prosody of the GlowTTS model. + + // DISTRIBUTED TRAINING + "distributed":{ + "backend": "nccl", + "url": "tcp:\/\/localhost:54321" + }, + + "reinit_layers": [], // give a list of layer names to restore from the given checkpoint. If not defined, it reloads all heuristically matching layers. + + // MODEL PARAMETERS + "positional_encoding": true, + "hidden_channels": 128, + "encoder_type": "residual_conv_bn", + "encoder_type": "residual_conv_bn", + "encoder_params":{ + "kernel_size": 4, + "dilations": [1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1], + "num_conv_blocks": 2, + "num_res_blocks": 13 + }, + "decoder_type": "residual_conv_bn", + "decoder_params":{ + "kernel_size": 4, + "dilations": [1, 2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8, 1], + "num_conv_blocks": 2, + "num_res_blocks": 17 + }, + + + // TRAINING + "batch_size":64, // Batch size for training. Lower values than 32 might cause hard to learn attention. It is overwritten by 'gradual_training'. + "eval_batch_size":32, + "r": 1, // Number of decoder frames to predict per iteration. Set the initial values if gradual training is enabled. + "loss_masking": true, // enable / disable loss masking against the sequence padding. + + // LOSS PARAMETERS + "ssim_alpha": 1, + "l1_alpha": 1, + "huber_alpha": 1, + + // VALIDATION + "run_eval": true, + "test_delay_epochs": -1, //Until attention is aligned, testing only wastes computation time. + "test_sentences_file": null, // set a file to load sentences to be used for testing. If it is null then we use default english sentences. + + // OPTIMIZER + "noam_schedule": true, // use noam warmup and lr schedule. + "grad_clip": 1.0, // upper limit for gradients for clipping. + "epochs": 1, // total number of epochs to train. + "lr": 0.002, // Initial learning rate. If Noam decay is active, maximum learning rate. + "warmup_steps": 4000, // Noam decay steps to increase the learning rate from 0 to "lr" + + // TENSORBOARD and LOGGING + "print_step": 1, // Number of steps to log training on console. + "tb_plot_step": 100, // Number of steps to plot TB training figures. + "print_eval": false, // If True, it prints intermediate loss values in evalulation. + "save_step": 5000, // Number of training steps expected to save traninpg stats and checkpoints. + "checkpoint": true, // If true, it saves checkpoints per "save_step" + "keep_all_best": true, // If true, keeps all best_models after keep_after steps + "keep_after": 10000, // Global step after which to keep best models if keep_all_best is true + "tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.:set n + "mixed_precision": false, + + // DATA LOADING + "text_cleaner": "english_cleaners", + "enable_eos_bos_chars": false, // enable/disable beginning of sentence and end of sentence chars. + "num_loader_workers": 0, // number of training data loader processes. Don't set it too big. 4-8 are good values. + "num_eval_loader_workers": 0, // number of evaluation data loader processes. + "batch_group_size": 0, //Number of batches to shuffle after bucketing. + "min_seq_len": 2, // DATASET-RELATED: minimum text length to use in training + "max_seq_len": 300, // DATASET-RELATED: maximum text length + "compute_f0": false, // compute f0 values in data-loader + "compute_input_seq_cache": false, // if true, text sequences are computed before starting training. If phonemes are enabled, they are also computed at this stage. + + // PATHS + "output_path": "tests/train_outputs/", + + // PHONEMES + "phoneme_cache_path": "tests/train_outputs/phoneme_cache/", // phoneme computation is slow, therefore, it caches results in the given folder. + "use_phonemes": false, // use phonemes instead of raw characters. It is suggested for better pronoun[ciation. + "phoneme_language": "en-us", // depending on your target language, pick one from https://github.com/bootphon/phonemizer#languages + + // MULTI-SPEAKER and GST + "use_speaker_embedding": false, // use speaker embedding to enable multi-speaker learning. + "use_d_vector_file": false, // if true, forces the model to use external embedding per sample instead of nn.embeddings, that is, it supports external embeddings such as those used at: https://arxiv.org/abs /1806.04558 + "d_vector_file": "/home/erogol/Data/libritts/speakers.json", // if not null and use_d_vector_file is true, it is used to load a specific embedding file and thus uses these embeddings instead of nn.embeddings, that is, it supports external embeddings such as those used at: https://arxiv.org/abs /1806.04558 + + + // DATASETS + "datasets": // List of datasets. They all merged and they get different speaker_ids. + [ + { + "formatter": "ljspeech", + "path": "tests/data/ljspeech/", + "meta_file_train": "metadata.csv", + "meta_file_val": "metadata.csv", + "meta_file_attn_mask": "tests/data/ljspeech/metadata_attn_mask.txt" + } + ] +} \ No newline at end of file diff --git a/TTS/tests/inputs/test_tacotron2_config.json b/TTS/tests/inputs/test_tacotron2_config.json new file mode 100644 index 0000000000000000000000000000000000000000..30e5fa7a3754bc4ec5e11e46d18254134ea465bb --- /dev/null +++ b/TTS/tests/inputs/test_tacotron2_config.json @@ -0,0 +1,176 @@ +{ + "model": "Tacotron2", + "run_name": "test_sample_dataset_run", + "run_description": "sample dataset test run", + + // AUDIO PARAMETERS + "audio":{ + // stft parameters + "fft_size": 1024, // number of stft frequency levels. Size of the linear spectogram frame. + "win_length": 1024, // stft window length in ms. + "hop_length": 256, // stft window hop-lengh in ms. + "frame_length_ms": null, // stft window length in ms.If null, 'win_length' is used. + "frame_shift_ms": null, // stft window hop-lengh in ms. If null, 'hop_length' is used. + + // Audio processing parameters + "sample_rate": 22050, // DATASET-RELATED: wav sample-rate. + "preemphasis": 0.0, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis. + "ref_level_db": 20, // reference level db, theoretically 20db is the sound of air. + + // Silence trimming + "do_trim_silence": true,// enable trimming of slience of audio as you load it. LJspeech (true), TWEB (false), Nancy (true) + "trim_db": 60, // threshold for timming silence. Set this according to your dataset. + + // Griffin-Lim + "power": 1.5, // value to sharpen wav signals after GL algorithm. + "griffin_lim_iters": 60,// #griffin-lim iterations. 30-60 is a good range. Larger the value, slower the generation. + + // MelSpectrogram parameters + "num_mels": 80, // size of the mel spec frame. + "mel_fmin": 0.0, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!! + "mel_fmax": 8000.0, // maximum freq level for mel-spec. Tune for dataset!! + "spec_gain": 20.0, + + // Normalization parameters + "signal_norm": true, // normalize spec values. Mean-Var normalization if 'stats_path' is defined otherwise range normalization defined by the other params. + "min_level_db": -100, // lower bound for normalization + "symmetric_norm": true, // move normalization to range [-1, 1] + "max_norm": 4.0, // scale normalization to range [-max_norm, max_norm] or [0, max_norm] + "clip_norm": true, // clip normalized values into the range. + "stats_path": null // DO NOT USE WITH MULTI_SPEAKER MODEL. scaler stats file computed by 'compute_statistics.py'. If it is defined, mean-std based notmalization is used and other normalization params are ignored + }, + + // VOCABULARY PARAMETERS + // if custom character set is not defined, + // default set in symbols.py is used + // "characters":{ + // "pad": "_", + // "eos": "~", + // "bos": "^", + // "characters": "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz!'(),-.:;? ", + // "punctuations":"!'(),-.:;? ", + // "phonemes":"iyษจส‰ษฏuษชสสŠeรธษ˜ษ™ษตษคoษ›ล“ษœษžสŒษ”รฆษaษถษ‘ษ’แตปส˜ษ“ว€ษ—วƒส„ว‚ษ วส›pbtdสˆษ–cษŸkษกqษขส”ษดล‹ษฒษณnษฑmส™rส€โฑฑษพษฝษธฮฒfvฮธรฐszสƒส’ส‚สรงสxษฃฯ‡สฤงส•hษฆษฌษฎส‹ษนษปjษฐlษญสŽสŸหˆหŒหห‘สwษฅสœสขสกษ•ส‘ษบษงษšหžษซ" + // }, + + // DISTRIBUTED TRAINING + "distributed":{ + "backend": "nccl", + "url": "tcp:\/\/localhost:54321" + }, + + "reinit_layers": [], // give a list of layer names to restore from the given checkpoint. If not defined, it reloads all heuristically matching layers. + + // TRAINING + "batch_size": 8, // Batch size for training. Lower values than 32 might cause hard to learn attention. It is overwritten by 'gradual_training'. + "eval_batch_size": 8, + "r": 7, // Number of decoder frames to predict per iteration. Set the initial values if gradual training is enabled. + "gradual_training": [[0, 7, 4], [1, 5, 2]], //set gradual training steps [first_step, r, batch_size]. If it is null, gradual training is disabled. For Tacotron, you might need to reduce the 'batch_size' as you proceeed. + "loss_masking": true, // enable / disable loss masking against the sequence padding. + "ga_alpha": 10.0, // weight for guided attention loss. If > 0, guided attention is enabled. + "mixed_precision": false, + + // VALIDATION + "run_eval": true, + "test_delay_epochs": 0, //Until attention is aligned, testing only wastes computation time. + "test_sentences_file": null, // set a file to load sentences to be used for testing. If it is null then we use default english sentences. + + // LOSS SETTINGS + "loss_masking": true, // enable / disable loss masking against the sequence padding. + "decoder_loss_alpha": 0.5, // original decoder loss weight. If > 0, it is enabled + "postnet_loss_alpha": 0.25, // original postnet loss weight. If > 0, it is enabled + "postnet_diff_spec_alpha": 0.25, // differential spectral loss weight. If > 0, it is enabled + "decoder_diff_spec_alpha": 0.25, // differential spectral loss weight. If > 0, it is enabled + "decoder_ssim_alpha": 0.5, // decoder ssim loss weight. If > 0, it is enabled + "postnet_ssim_alpha": 0.25, // postnet ssim loss weight. If > 0, it is enabled + "ga_alpha": 5.0, // weight for guided attention loss. If > 0, guided attention is enabled. + "stopnet_pos_weight": 15.0, // pos class weight for stopnet loss since there are way more negative samples than positive samples. + + // OPTIMIZER + "noam_schedule": false, // use noam warmup and lr schedule. + "grad_clip": 1.0, // upper limit for gradients for clipping. + "epochs": 1, // total number of epochs to train. + "lr": 0.0001, // Initial learning rate. If Noam decay is active, maximum learning rate. + "wd": 0.000001, // Weight decay weight. + "warmup_steps": 4000, // Noam decay steps to increase the learning rate from 0 to "lr" + "seq_len_norm": false, // Normalize eash sample loss with its length to alleviate imbalanced datasets. Use it if your dataset is small or has skewed distribution of sequence lengths. + + // TACOTRON PRENET + "memory_size": -1, // ONLY TACOTRON - size of the memory queue used fro storing last decoder predictions for auto-regression. If < 0, memory queue is disabled and decoder only uses the last prediction frame. + "prenet_type": "bn", // "original" or "bn". + "prenet_dropout": false, // enable/disable dropout at prenet. + + // TACOTRON ATTENTION + "attention_type": "original", // 'original' , 'graves', 'dynamic_convolution' + "attention_heads": 4, // number of attention heads (only for 'graves') + "attention_norm": "sigmoid", // softmax or sigmoid. + "windowing": false, // Enables attention windowing. Used only in eval mode. + "use_forward_attn": false, // if it uses forward attention. In general, it aligns faster. + "forward_attn_mask": false, // Additional masking forcing monotonicity only in eval mode. + "transition_agent": false, // enable/disable transition agent of forward attention. + "location_attn": true, // enable_disable location sensitive attention. It is enabled for TACOTRON by default. + "bidirectional_decoder": false, // use https://arxiv.org/abs/1907.09006. Use it, if attention does not work well with your dataset. + "double_decoder_consistency": true, // use DDC explained here https://erogol.com/solving-attention-problems-of-tts-models-with-double-decoder-consistency-draft/ + "ddc_r": 7, // reduction rate for coarse decoder. + + // STOPNET + "stopnet": true, // Train stopnet predicting the end of synthesis. + "separate_stopnet": true, // Train stopnet seperately if 'stopnet==true'. It prevents stopnet loss to influence the rest of the model. It causes a better model, but it trains SLOWER. + + // TENSORBOARD and LOGGING + "print_step": 1, // Number of steps to log training on console. + "tb_plot_step": 100, // Number of steps to plot TB training figures. + "print_eval": false, // If True, it prints intermediate loss values in evalulation. + "save_step": 10000, // Number of training steps expected to save traninpg stats and checkpoints. + "checkpoint": true, // If true, it saves checkpoints per "save_step" + "keep_all_best": true, // If true, keeps all best_models after keep_after steps + "keep_after": 10000, // Global step after which to keep best models if keep_all_best is true + "tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging. + + // DATA LOADING + "text_cleaner": "phoneme_cleaners", + "enable_eos_bos_chars": false, // enable/disable beginning of sentence and end of sentence chars. + "num_loader_workers": 0, // number of training data loader processes. Don't set it too big. 4-8 are good values. + "num_eval_loader_workers": 0, // number of evaluation data loader processes. + "batch_group_size": 0, //Number of batches to shuffle after bucketing. + "min_seq_len": 6, // DATASET-RELATED: minimum text length to use in training + "max_seq_len": 153, // DATASET-RELATED: maximum text length + "compute_input_seq_cache": true, + + // PATHS + "output_path": "tests/train_outputs/", + + // PHONEMES + "phoneme_cache_path": "tests/train_outputs/phoneme_cache/", // phoneme computation is slow, therefore, it caches results in the given folder. + "use_phonemes": false, // use phonemes instead of raw characters. It is suggested for better pronounciation. + "phoneme_language": "en-us", // depending on your target language, pick one from https://github.com/bootphon/phonemizer#languages + + // MULTI-SPEAKER and GST + "use_d_vector_file": false, + "d_vector_file": null, + "use_speaker_embedding": false, // use speaker embedding to enable multi-speaker learning. + "use_gst": true, // use global style tokens + "gst": { // gst parameter if gst is enabled + "gst_style_input": null, // Condition the style input either on a + // -> wave file [path to wave] or + // -> dictionary using the style tokens {'token1': 'value', 'token2': 'value'} example {"0": 0.15, "1": 0.15, "5": -0.15} + // with the dictionary being len(dict) == len(gst_num_style_tokens). + "gst_use_speaker_embedding": true, // if true pass speaker embedding in attention input GST. + "gst_embedding_dim": 512, + "gst_num_heads": 4, + "gst_num_style_tokens": 10 + }, + + // DATASETS + "train_portion": 0.1, // dataset portion used for training. It is mainly for internal experiments. + "eval_portion": 0.1, // dataset portion used for training. It is mainly for internal experiments. + "datasets": // List of datasets. They all merged and they get different speaker_ids. + [ + { + "formatter": "ljspeech", + "path": "tests/data/ljspeech/", + "meta_file_train": "metadata.csv", + "meta_file_val": "metadata.csv" + } + ] + +} diff --git a/TTS/tests/inputs/test_tacotron_bd_config.json b/TTS/tests/inputs/test_tacotron_bd_config.json new file mode 100644 index 0000000000000000000000000000000000000000..6239d40b391dba096c0dbf4e428f360adaf4ef4b --- /dev/null +++ b/TTS/tests/inputs/test_tacotron_bd_config.json @@ -0,0 +1,176 @@ +{ + "model": "Tacotron", + "run_name": "test_sample_dataset_run", + "run_description": "sample dataset test run", + + // AUDIO PARAMETERS + "audio":{ + // stft parameters + "fft_size": 1024, // number of stft frequency levels. Size of the linear spectogram frame. + "win_length": 1024, // stft window length in ms. + "hop_length": 256, // stft window hop-lengh in ms. + "frame_length_ms": null, // stft window length in ms.If null, 'win_length' is used. + "frame_shift_ms": null, // stft window hop-lengh in ms. If null, 'hop_length' is used. + + // Audio processing parameters + "sample_rate": 22050, // DATASET-RELATED: wav sample-rate. + "preemphasis": 0.0, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis. + "ref_level_db": 20, // reference level db, theoretically 20db is the sound of air. + + // Silence trimming + "do_trim_silence": true,// enable trimming of slience of audio as you load it. LJspeech (true), TWEB (false), Nancy (true) + "trim_db": 60, // threshold for timming silence. Set this according to your dataset. + + // Griffin-Lim + "power": 1.5, // value to sharpen wav signals after GL algorithm. + "griffin_lim_iters": 60,// #griffin-lim iterations. 30-60 is a good range. Larger the value, slower the generation. + + // MelSpectrogram parameters + "num_mels": 80, // size of the mel spec frame. + "mel_fmin": 0.0, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!! + "mel_fmax": 8000.0, // maximum freq level for mel-spec. Tune for dataset!! + "spec_gain": 20.0, + + // Normalization parameters + "signal_norm": true, // normalize spec values. Mean-Var normalization if 'stats_path' is defined otherwise range normalization defined by the other params. + "min_level_db": -100, // lower bound for normalization + "symmetric_norm": true, // move normalization to range [-1, 1] + "max_norm": 4.0, // scale normalization to range [-max_norm, max_norm] or [0, max_norm] + "clip_norm": true, // clip normalized values into the range. + "stats_path": null // DO NOT USE WITH MULTI_SPEAKER MODEL. scaler stats file computed by 'compute_statistics.py'. If it is defined, mean-std based notmalization is used and other normalization params are ignored + }, + + // VOCABULARY PARAMETERS + // if custom character set is not defined, + // default set in symbols.py is used + // "characters":{ + // "pad": "_", + // "eos": "~", + // "bos": "^", + // "characters": "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz!'(),-.:;? ", + // "punctuations":"!'(),-.:;? ", + // "phonemes":"iyษจส‰ษฏuษชสสŠeรธษ˜ษ™ษตษคoษ›ล“ษœษžสŒษ”รฆษaษถษ‘ษ’แตปส˜ษ“ว€ษ—วƒส„ว‚ษ วส›pbtdสˆษ–cษŸkษกqษขส”ษดล‹ษฒษณnษฑmส™rส€โฑฑษพษฝษธฮฒfvฮธรฐszสƒส’ส‚สรงสxษฃฯ‡สฤงส•hษฆษฌษฎส‹ษนษปjษฐlษญสŽสŸหˆหŒหห‘สwษฅสœสขสกษ•ส‘ษบษงษšหžษซ" + // }, + + // DISTRIBUTED TRAINING + "distributed":{ + "backend": "nccl", + "url": "tcp:\/\/localhost:54321" + }, + + "reinit_layers": [], // give a list of layer names to restore from the given checkpoint. If not defined, it reloads all heuristically matching layers. + + // TRAINING + "batch_size": 1, // Batch size for training. Lower values than 32 might cause hard to learn attention. It is overwritten by 'gradual_training'. + "eval_batch_size":1, + "r": 7, // Number of decoder frames to predict per iteration. Set the initial values if gradual training is enabled. + "gradual_training": [[0, 7, 4]], //set gradual training steps [first_step, r, batch_size]. If it is null, gradual training is disabled. For Tacotron, you might need to reduce the 'batch_size' as you proceeed. + "loss_masking": true, // enable / disable loss masking against the sequence padding. + "ga_alpha": 10.0, // weight for guided attention loss. If > 0, guided attention is enabled. + "mixed_precision": false, + + // VALIDATION + "run_eval": true, + "test_delay_epochs": 0, //Until attention is aligned, testing only wastes computation time. + "test_sentences_file": null, // set a file to load sentences to be used for testing. If it is null then we use default english sentences. + + // LOSS SETTINGS + "loss_masking": true, // enable / disable loss masking against the sequence padding. + "decoder_loss_alpha": 0.5, // original decoder loss weight. If > 0, it is enabled + "postnet_loss_alpha": 0.25, // original postnet loss weight. If > 0, it is enabled + "postnet_diff_spec_alpha": 0.25, // differential spectral loss weight. If > 0, it is enabled + "decoder_diff_spec_alpha": 0.25, // differential spectral loss weight. If > 0, it is enabled + "decoder_ssim_alpha": 0.5, // decoder ssim loss weight. If > 0, it is enabled + "postnet_ssim_alpha": 0.25, // postnet ssim loss weight. If > 0, it is enabled + "ga_alpha": 5.0, // weight for guided attention loss. If > 0, guided attention is enabled. + "stopnet_pos_weight": 15.0, // pos class weight for stopnet loss since there are way more negative samples than positive samples. + + // OPTIMIZER + "noam_schedule": false, // use noam warmup and lr schedule. + "grad_clip": 1.0, // upper limit for gradients for clipping. + "epochs": 1, // total number of epochs to train. + "lr": 0.0001, // Initial learning rate. If Noam decay is active, maximum learning rate. + "wd": 0.000001, // Weight decay weight. + "warmup_steps": 4000, // Noam decay steps to increase the learning rate from 0 to "lr" + "seq_len_norm": false, // Normalize eash sample loss with its length to alleviate imbalanced datasets. Use it if your dataset is small or has skewed distribution of sequence lengths. + + // TACOTRON PRENET + "memory_size": -1, // ONLY TACOTRON - size of the memory queue used fro storing last decoder predictions for auto-regression. If < 0, memory queue is disabled and decoder only uses the last prediction frame. + "prenet_type": "bn", // "original" or "bn". + "prenet_dropout": false, // enable/disable dropout at prenet. + + // TACOTRON ATTENTION + "attention_type": "original", // 'original' , 'graves', 'dynamic_convolution' + "attention_heads": 4, // number of attention heads (only for 'graves') + "attention_norm": "sigmoid", // softmax or sigmoid. + "windowing": false, // Enables attention windowing. Used only in eval mode. + "use_forward_attn": false, // if it uses forward attention. In general, it aligns faster. + "forward_attn_mask": false, // Additional masking forcing monotonicity only in eval mode. + "transition_agent": false, // enable/disable transition agent of forward attention. + "location_attn": true, // enable_disable location sensitive attention. It is enabled for TACOTRON by default. + "bidirectional_decoder": true, // use https://arxiv.org/abs/1907.09006. Use it, if attention does not work well with your dataset. + "double_decoder_consistency": false, // use DDC explained here https://erogol.com/solving-attention-problems-of-tts-models-with-double-decoder-consistency-draft/ + "ddc_r": 7, // reduction rate for coarse decoder. + + // STOPNET + "stopnet": true, // Train stopnet predicting the end of synthesis. + "separate_stopnet": true, // Train stopnet seperately if 'stopnet==true'. It prevents stopnet loss to influence the rest of the model. It causes a better model, but it trains SLOWER. + + // TENSORBOARD and LOGGING + "print_step": 1, // Number of steps to log training on console. + "tb_plot_step": 100, // Number of steps to plot TB training figures. + "print_eval": false, // If True, it prints intermediate loss values in evalulation. + "save_step": 10000, // Number of training steps expected to save traninpg stats and checkpoints. + "checkpoint": true, // If true, it saves checkpoints per "save_step" + "keep_all_best": true, // If true, keeps all best_models after keep_after steps + "keep_after": 10000, // Global step after which to keep best models if keep_all_best is true + "tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging. + + // DATA LOADING + "text_cleaner": "phoneme_cleaners", + "enable_eos_bos_chars": false, // enable/disable beginning of sentence and end of sentence chars. + "num_loader_workers": 0, // number of training data loader processes. Don't set it too big. 4-8 are good values. + "num_eval_loader_workers": 0, // number of evaluation data loader processes. + "batch_group_size": 0, //Number of batches to shuffle after bucketing. + "min_seq_len": 6, // DATASET-RELATED: minimum text length to use in training + "max_seq_len": 153, // DATASET-RELATED: maximum text length + "compute_input_seq_cache": true, + + // PATHS + "output_path": "tests/train_outputs/", + + // PHONEMES + "phoneme_cache_path": "tests/train_outputs/phoneme_cache/", // phoneme computation is slow, therefore, it caches results in the given folder. + "use_phonemes": false, // use phonemes instead of raw characters. It is suggested for better pronounciation. + "phoneme_language": "en-us", // depending on your target language, pick one from https://github.com/bootphon/phonemizer#languages + + // MULTI-SPEAKER and GST + "use_d_vector_file": false, + "d_vector_file": null, + "use_speaker_embedding": false, // use speaker embedding to enable multi-speaker learning. + "use_gst": true, // use global style tokens + "gst": { // gst parameter if gst is enabled + "gst_style_input": null, // Condition the style input either on a + // -> wave file [path to wave] or + // -> dictionary using the style tokens {'token1': 'value', 'token2': 'value'} example {"0": 0.15, "1": 0.15, "5": -0.15} + // with the dictionary being len(dict) == len(gst_style_tokens). + "gst_use_speaker_embedding": true, // if true pass speaker embedding in attention input GST. + "gst_embedding_dim": 512, + "gst_num_heads": 4, + "gst_style_tokens": 10 + }, + + // DATASETS + "train_portion": 0.1, // dataset portion used for training. It is mainly for internal experiments. + "eval_portion": 0.1, // dataset portion used for training. It is mainly for internal experiments. + "datasets": // List of datasets. They all merged and they get different speaker_ids. + [ + { + "formatter": "ljspeech", + "path": "tests/data/ljspeech/", + "meta_file_train": "metadata.csv", + "meta_file_val": "metadata.csv" + } + ] + +} diff --git a/TTS/tests/inputs/test_tacotron_config.json b/TTS/tests/inputs/test_tacotron_config.json new file mode 100644 index 0000000000000000000000000000000000000000..70d66cb0ece567bdd688f61390dbc7826cd69e3c --- /dev/null +++ b/TTS/tests/inputs/test_tacotron_config.json @@ -0,0 +1,176 @@ +{ + "model": "Tacotron", + "run_name": "test_sample_dataset_run", + "run_description": "sample dataset test run", + + // AUDIO PARAMETERS + "audio":{ + // stft parameters + "fft_size": 1024, // number of stft frequency levels. Size of the linear spectogram frame. + "win_length": 1024, // stft window length in ms. + "hop_length": 256, // stft window hop-lengh in ms. + "frame_length_ms": null, // stft window length in ms.If null, 'win_length' is used. + "frame_shift_ms": null, // stft window hop-lengh in ms. If null, 'hop_length' is used. + + // Audio processing parameters + "sample_rate": 22050, // DATASET-RELATED: wav sample-rate. + "preemphasis": 0.0, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis. + "ref_level_db": 20, // reference level db, theoretically 20db is the sound of air. + + // Silence trimming + "do_trim_silence": true,// enable trimming of slience of audio as you load it. LJspeech (true), TWEB (false), Nancy (true) + "trim_db": 60, // threshold for timming silence. Set this according to your dataset. + + // Griffin-Lim + "power": 1.5, // value to sharpen wav signals after GL algorithm. + "griffin_lim_iters": 60,// #griffin-lim iterations. 30-60 is a good range. Larger the value, slower the generation. + + // MelSpectrogram parameters + "num_mels": 80, // size of the mel spec frame. + "mel_fmin": 0.0, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!! + "mel_fmax": 8000.0, // maximum freq level for mel-spec. Tune for dataset!! + "spec_gain": 20.0, + + // Normalization parameters + "signal_norm": true, // normalize spec values. Mean-Var normalization if 'stats_path' is defined otherwise range normalization defined by the other params. + "min_level_db": -100, // lower bound for normalization + "symmetric_norm": true, // move normalization to range [-1, 1] + "max_norm": 4.0, // scale normalization to range [-max_norm, max_norm] or [0, max_norm] + "clip_norm": true, // clip normalized values into the range. + "stats_path": null // DO NOT USE WITH MULTI_SPEAKER MODEL. scaler stats file computed by 'compute_statistics.py'. If it is defined, mean-std based notmalization is used and other normalization params are ignored + }, + + // VOCABULARY PARAMETERS + // if custom character set is not defined, + // default set in symbols.py is used + // "characters":{ + // "pad": "_", + // "eos": "~", + // "bos": "^", + // "characters": "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz!'(),-.:;? ", + // "punctuations":"!'(),-.:;? ", + // "phonemes":"iyษจส‰ษฏuษชสสŠeรธษ˜ษ™ษตษคoษ›ล“ษœษžสŒษ”รฆษaษถษ‘ษ’แตปส˜ษ“ว€ษ—วƒส„ว‚ษ วส›pbtdสˆษ–cษŸkษกqษขส”ษดล‹ษฒษณnษฑmส™rส€โฑฑษพษฝษธฮฒfvฮธรฐszสƒส’ส‚สรงสxษฃฯ‡สฤงส•hษฆษฌษฎส‹ษนษปjษฐlษญสŽสŸหˆหŒหห‘สwษฅสœสขสกษ•ส‘ษบษงษšหžษซ" + // }, + + // DISTRIBUTED TRAINING + "distributed":{ + "backend": "nccl", + "url": "tcp:\/\/localhost:54321" + }, + + "reinit_layers": [], // give a list of layer names to restore from the given checkpoint. If not defined, it reloads all heuristically matching layers. + + // TRAINING + "batch_size": 8, // Batch size for training. Lower values than 32 might cause hard to learn attention. It is overwritten by 'gradual_training'. + "eval_batch_size": 8, + "r": 7, // Number of decoder frames to predict per iteration. Set the initial values if gradual training is enabled. + "gradual_training": [[0, 7, 4], [1, 5, 2]], //set gradual training steps [first_step, r, batch_size]. If it is null, gradual training is disabled. For Tacotron, you might need to reduce the 'batch_size' as you proceeed. + "loss_masking": true, // enable / disable loss masking against the sequence padding. + "ga_alpha": 10.0, // weight for guided attention loss. If > 0, guided attention is enabled. + "mixed_precision": false, + + // VALIDATION + "run_eval": true, + "test_delay_epochs": 0, //Until attention is aligned, testing only wastes computation time. + "test_sentences_file": null, // set a file to load sentences to be used for testing. If it is null then we use default english sentences. + + // LOSS SETTINGS + "loss_masking": true, // enable / disable loss masking against the sequence padding. + "decoder_loss_alpha": 0.5, // original decoder loss weight. If > 0, it is enabled + "postnet_loss_alpha": 0.25, // original postnet loss weight. If > 0, it is enabled + "postnet_diff_spec_alpha": 0.25, // differential spectral loss weight. If > 0, it is enabled + "decoder_diff_spec_alpha": 0.25, // differential spectral loss weight. If > 0, it is enabled + "decoder_ssim_alpha": 0.5, // decoder ssim loss weight. If > 0, it is enabled + "postnet_ssim_alpha": 0.25, // postnet ssim loss weight. If > 0, it is enabled + "ga_alpha": 5.0, // weight for guided attention loss. If > 0, guided attention is enabled. + "stopnet_pos_weight": 15.0, // pos class weight for stopnet loss since there are way more negative samples than positive samples. + + // OPTIMIZER + "noam_schedule": false, // use noam warmup and lr schedule. + "grad_clip": 1.0, // upper limit for gradients for clipping. + "epochs": 1, // total number of epochs to train. + "lr": 0.0001, // Initial learning rate. If Noam decay is active, maximum learning rate. + "wd": 0.000001, // Weight decay weight. + "warmup_steps": 4000, // Noam decay steps to increase the learning rate from 0 to "lr" + "seq_len_norm": false, // Normalize eash sample loss with its length to alleviate imbalanced datasets. Use it if your dataset is small or has skewed distribution of sequence lengths. + + // TACOTRON PRENET + "memory_size": -1, // ONLY TACOTRON - size of the memory queue used fro storing last decoder predictions for auto-regression. If < 0, memory queue is disabled and decoder only uses the last prediction frame. + "prenet_type": "bn", // "original" or "bn". + "prenet_dropout": false, // enable/disable dropout at prenet. + + // TACOTRON ATTENTION + "attention_type": "original", // 'original' , 'graves', 'dynamic_convolution' + "attention_heads": 4, // number of attention heads (only for 'graves') + "attention_norm": "sigmoid", // softmax or sigmoid. + "windowing": false, // Enables attention windowing. Used only in eval mode. + "use_forward_attn": false, // if it uses forward attention. In general, it aligns faster. + "forward_attn_mask": false, // Additional masking forcing monotonicity only in eval mode. + "transition_agent": false, // enable/disable transition agent of forward attention. + "location_attn": true, // enable_disable location sensitive attention. It is enabled for TACOTRON by default. + "bidirectional_decoder": false, // use https://arxiv.org/abs/1907.09006. Use it, if attention does not work well with your dataset. + "double_decoder_consistency": true, // use DDC explained here https://erogol.com/solving-attention-problems-of-tts-models-with-double-decoder-consistency-draft/ + "ddc_r": 7, // reduction rate for coarse decoder. + + // STOPNET + "stopnet": true, // Train stopnet predicting the end of synthesis. + "separate_stopnet": true, // Train stopnet seperately if 'stopnet==true'. It prevents stopnet loss to influence the rest of the model. It causes a better model, but it trains SLOWER. + + // TENSORBOARD and LOGGING + "print_step": 1, // Number of steps to log training on console. + "tb_plot_step": 100, // Number of steps to plot TB training figures. + "print_eval": false, // If True, it prints intermediate loss values in evalulation. + "save_step": 10000, // Number of training steps expected to save traninpg stats and checkpoints. + "checkpoint": true, // If true, it saves checkpoints per "save_step" + "keep_all_best": true, // If true, keeps all best_models after keep_after steps + "keep_after": 10000, // Global step after which to keep best models if keep_all_best is true + "tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging. + + // DATA LOADING + "text_cleaner": "phoneme_cleaners", + "enable_eos_bos_chars": false, // enable/disable beginning of sentence and end of sentence chars. + "num_loader_workers": 0, // number of training data loader processes. Don't set it too big. 4-8 are good values. + "num_eval_loader_workers": 0, // number of evaluation data loader processes. + "batch_group_size": 0, //Number of batches to shuffle after bucketing. + "min_seq_len": 6, // DATASET-RELATED: minimum text length to use in training + "max_seq_len": 153, // DATASET-RELATED: maximum text length + "compute_input_seq_cache": true, + + // PATHS + "output_path": "tests/train_outputs/", + + // PHONEMES + "phoneme_cache_path": "tests/train_outputs/phoneme_cache/", // phoneme computation is slow, therefore, it caches results in the given folder. + "use_phonemes": false, // use phonemes instead of raw characters. It is suggested for better pronounciation. + "phoneme_language": "en-us", // depending on your target language, pick one from https://github.com/bootphon/phonemizer#languages + + // MULTI-SPEAKER and GST + "use_d_vector_file": false, + "d_vector_file": null, + "use_speaker_embedding": false, // use speaker embedding to enable multi-speaker learning. + "use_gst": true, // use global style tokens + "gst": { // gst parameter if gst is enabled + "gst_style_input": null, // Condition the style input either on a + // -> wave file [path to wave] or + // -> dictionary using the style tokens {'token1': 'value', 'token2': 'value'} example {"0": 0.15, "1": 0.15, "5": -0.15} + // with the dictionary being len(dict) == len(gst_style_tokens). + "gst_use_speaker_embedding": true, // if true pass speaker embedding in attention input GST. + "gst_embedding_dim": 512, + "gst_num_heads": 4, + "gst_style_tokens": 10 + }, + + // DATASETS + "train_portion": 0.1, // dataset portion used for training. It is mainly for internal experiments. + "eval_portion": 0.1, // dataset portion used for training. It is mainly for internal experiments. + "datasets": // List of datasets. They all merged and they get different speaker_ids. + [ + { + "formatter": "ljspeech", + "path": "tests/data/ljspeech/", + "meta_file_train": "metadata.csv", + "meta_file_val": "metadata.csv" + } + ] + +} diff --git a/TTS/tests/inputs/test_vocoder_audio_config.json b/TTS/tests/inputs/test_vocoder_audio_config.json new file mode 100644 index 0000000000000000000000000000000000000000..08acc48cd34296c4549931ce440fda8d1882ba66 --- /dev/null +++ b/TTS/tests/inputs/test_vocoder_audio_config.json @@ -0,0 +1,24 @@ +{ + "audio":{ + "num_mels": 80, // size of the mel spec frame. + "num_freq": 513, // number of stft frequency levels. Size of the linear spectogram frame. + "sample_rate": 22050, // wav sample-rate. If different than the original data, it is resampled. + "frame_length_ms": null, // stft window length in ms. + "frame_shift_ms": null, // stft window hop-lengh in ms. + "hop_length": 256, + "win_length": 1024, + "preemphasis": 0.97, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis. + "min_level_db": -100, // normalization range + "ref_level_db": 20, // reference level db, theoretically 20db is the sound of air. + "power": 1.5, // value to sharpen wav signals after GL algorithm. + "griffin_lim_iters": 30,// #griffin-lim iterations. 30-60 is a good range. Larger the value, slower the generation. + "signal_norm": true, // normalize the spec values in range [0, 1] + "symmetric_norm": true, // move normalization to range [-1, 1] + "clip_norm": true, // clip normalized values into the range. + "max_norm": 4, // scale normalization to range [-max_norm, max_norm] or [0, max_norm] + "mel_fmin": 0, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!! + "mel_fmax": 8000, // maximum freq level for mel-spec. Tune for dataset!! + "do_trim_silence": false + } +} + diff --git a/TTS/tests/inputs/test_vocoder_multiband_melgan_config.json b/TTS/tests/inputs/test_vocoder_multiband_melgan_config.json new file mode 100644 index 0000000000000000000000000000000000000000..82afc977271c20d46b3a4d5e67cca52a21b98d7e --- /dev/null +++ b/TTS/tests/inputs/test_vocoder_multiband_melgan_config.json @@ -0,0 +1,166 @@ +{ + "run_name": "multiband-melgan", + "run_description": "multiband melgan mean-var scaling", + + // AUDIO PARAMETERS + "audio":{ + "fft_size": 1024, // number of stft frequency levels. Size of the linear spectogram frame. + "win_length": 1024, // stft window length in ms. + "hop_length": 256, // stft window hop-lengh in ms. + "frame_length_ms": null, // stft window length in ms.If null, 'win_length' is used. + "frame_shift_ms": null, // stft window hop-lengh in ms. If null, 'hop_length' is used. + + // Audio processing parameters + "sample_rate": 22050, // DATASET-RELATED: wav sample-rate. If different than the original data, it is resampled. + "preemphasis": 0.0, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis. + "ref_level_db": 20, // reference level db, theoretically 20db is the sound of air. + "log_func": "np.log10", + "do_sound_norm": true, + + // Silence trimming + "do_trim_silence": false,// enable trimming of slience of audio as you load it. LJspeech (false), TWEB (false), Nancy (true) + "trim_db": 60, // threshold for timming silence. Set this according to your dataset. + + // MelSpectrogram parameters + "num_mels": 80, // size of the mel spec frame. + "mel_fmin": 50.0, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!! + "mel_fmax": 7600.0, // maximum freq level for mel-spec. Tune for dataset!! + "spec_gain": 1.0, // scaler value appplied after log transform of spectrogram. + + // Normalization parameters + "signal_norm": true, // normalize spec values. Mean-Var normalization if 'stats_path' is defined otherwise range normalization defined by the other params. + "min_level_db": -100, // lower bound for normalization + "symmetric_norm": true, // move normalization to range [-1, 1] + "max_norm": 4.0, // scale normalization to range [-max_norm, max_norm] or [0, max_norm] + "clip_norm": true, // clip normalized values into the range. + "stats_path": null + }, + + // DISTRIBUTED TRAINING + // "distributed":{ + // "backend": "nccl", + // "url": "tcp:\/\/localhost:54321" + // }, + + // MODEL PARAMETERS + "use_pqmf": true, + + // LOSS PARAMETERS + "use_stft_loss": true, + "use_subband_stft_loss": true, + "use_mse_gan_loss": true, + "use_hinge_gan_loss": false, + "use_feat_match_loss": false, // use only with melgan discriminators + "use_l1_spec_loss": true, + + // loss weights + "stft_loss_weight": 0.5, + "subband_stft_loss_weight": 0.5, + "mse_G_loss_weight": 2.5, + "hinge_G_loss_weight": 2.5, + "feat_match_loss_weight": 25, + "l1_spec_loss_weight": 2.5, + + // multiscale stft loss parameters + "stft_loss_params": { + "n_ffts": [1024, 2048, 512], + "hop_lengths": [120, 240, 50], + "win_lengths": [600, 1200, 240] + }, + + // subband multiscale stft loss parameters + "subband_stft_loss_params":{ + "n_ffts": [384, 683, 171], + "hop_lengths": [30, 60, 10], + "win_lengths": [150, 300, 60] + }, + + "l1_spec_loss_params": { + "use_mel": true, + "sample_rate": 22050, + "n_fft": 1024, + "hop_length": 256, + "win_length": 1024, + "n_mels": 80, + "mel_fmin": 0.0, + "mel_fmax": null + }, + + "target_loss": "G_avg_loss", // loss value to pick the best model to save after each epoch + + // DISCRIMINATOR + "discriminator_model": "melgan_multiscale_discriminator", + "discriminator_model_params":{ + "base_channels": 16, + "max_channels":512, + "downsample_factors":[4, 4, 4] + }, + "steps_to_start_discriminator": 200000, // steps required to start GAN trainining.1 + + // GENERATOR + "generator_model": "multiband_melgan_generator", + "generator_model_params": { + "upsample_factors":[8, 4, 2], + "num_res_blocks": 4 + }, + + // DATASET + "data_path": "tests/data/ljspeech/wavs/", + "feature_path": null, + "seq_len": 16384, + "pad_short": 2000, + "conv_pad": 0, + "use_noise_augment": false, + "use_cache": true, + + "reinit_layers": [], // give a list of layer names to restore from the given checkpoint. If not defined, it reloads all heuristically matching layers. + + // TRAINING + "batch_size": 4, // Batch size for training. Lower values than 32 might cause hard to learn attention. It is overwritten by 'gradual_training'. + + // VALIDATION + "run_eval": true, + "test_delay_epochs": 10, //Until attention is aligned, testing only wastes computation time. + "test_sentences_file": null, // set a file to load sentences to be used for testing. If it is null then we use default english sentences. + + // OPTIMIZER + "epochs": 1, // total number of epochs to train. + "wd": 0.0, // Weight decay weight. + "gen_clip_grad": -1, // Generator gradient clipping threshold. Apply gradient clipping if > 0 + "disc_clip_grad": -1, // Discriminator gradient clipping threshold. + "optimizer": "AdamW", + "optimizer_params":{ + "betas": [0.8, 0.99], + "weight_decay": 0.0 + }, + "lr_scheduler_gen": "MultiStepLR", // one of the schedulers from https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate + "lr_scheduler_gen_params": { + "gamma": 0.5, + "milestones": [100000, 200000, 300000, 400000, 500000, 600000] + }, + "lr_scheduler_disc": "MultiStepLR", // one of the schedulers from https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate + "lr_scheduler_disc_params": { + "gamma": 0.5, + "milestones": [100000, 200000, 300000, 400000, 500000, 600000] + }, + "lr_gen": 1e-4, // Initial learning rate. If Noam decay is active, maximum learning rate. + "lr_disc": 1e-4, + + // TENSORBOARD and LOGGING + "print_step": 1, // Number of steps to log traning on console. + "print_eval": false, // If True, it prints loss values for each step in eval run. + "save_step": 25000, // Number of training steps expected to plot training stats on TB and save model checkpoints. + "checkpoint": true, // If true, it saves checkpoints per "save_step" + "keep_all_best": true, // If true, keeps all best_models after keep_after steps + "keep_after": 10000, // Global step after which to keep best models if keep_all_best is true + "tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging. + + // DATA LOADING + "num_loader_workers": 0, // number of training data loader processes. Don't set it too big. 4-8 are good values. + "num_eval_loader_workers": 0, // number of evaluation data loader processes. + "eval_split_size": 10, + + // PATHS + "output_path": "tests/train_outputs/" +} + diff --git a/TTS/tests/inputs/test_vocoder_wavegrad.json b/TTS/tests/inputs/test_vocoder_wavegrad.json new file mode 100644 index 0000000000000000000000000000000000000000..6378c07a6dee8d9d52e0f1341b0105b3ed119abe --- /dev/null +++ b/TTS/tests/inputs/test_vocoder_wavegrad.json @@ -0,0 +1,116 @@ +{ + "run_name": "wavegrad-ljspeech", + "run_description": "wavegrad ljspeech", + + "audio":{ + "fft_size": 1024, // number of stft frequency levels. Size of the linear spectogram frame. + "win_length": 1024, // stft window length in ms. + "hop_length": 256, // stft window hop-lengh in ms. + "frame_length_ms": null, // stft window length in ms.If null, 'win_length' is used. + "frame_shift_ms": null, // stft window hop-lengh in ms. If null, 'hop_length' is used. + + // Audio processing parameters + "sample_rate": 22050, // DATASET-RELATED: wav sample-rate. If different than the original data, it is resampled. + "preemphasis": 0.0, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis. + "ref_level_db": 0, // reference level db, theoretically 20db is the sound of air. + + // Silence trimming + "do_trim_silence": true,// enable trimming of slience of audio as you load it. LJspeech (false), TWEB (false), Nancy (true) + "trim_db": 60, // threshold for timming silence. Set this according to your dataset. + + // MelSpectrogram parameters + "num_mels": 80, // size of the mel spec frame. + "mel_fmin": 50.0, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!! + "mel_fmax": 7600.0, // maximum freq level for mel-spec. Tune for dataset!! + "spec_gain": 1.0, // scaler value appplied after log transform of spectrogram. + + // Normalization parameters + "signal_norm": true, // normalize spec values. Mean-Var normalization if 'stats_path' is defined otherwise range normalization defined by the other params. + "min_level_db": -100, // lower bound for normalization + "symmetric_norm": true, // move normalization to range [-1, 1] + "max_norm": 4.0, // scale normalization to range [-max_norm, max_norm] or [0, max_norm] + "clip_norm": true, // clip normalized values into the range. + "stats_path": null // DO NOT USE WITH MULTI_SPEAKER MODEL. scaler stats file computed by 'compute_statistics.py'. If it is defined, mean-std based notmalization is used and other normalization params are ignored + }, + + // DISTRIBUTED TRAINING + "mixed_precision": false, + "distributed":{ + "backend": "nccl", + "url": "tcp:\/\/localhost:54322" + }, + + "target_loss": "avg_wavegrad_loss", // loss value to pick the best model to save after each epoch + + // MODEL PARAMETERS + "generator_model": "wavegrad", + "model_params":{ + "y_conv_channels":32, + "x_conv_channels":768, + "ublock_out_channels": [512, 512, 256, 128, 128], + "dblock_out_channels": [128, 128, 256, 512], + "upsample_factors": [4, 4, 4, 2, 2], + "upsample_dilations": [ + [1, 2, 1, 2], + [1, 2, 1, 2], + [1, 2, 4, 8], + [1, 2, 4, 8], + [1, 2, 4, 8]], + "use_weight_norm": true + }, + + // DATASET + "data_path": "tests/data/ljspeech/wavs/", // root data path. It finds all wav files recursively from there. + "feature_path": null, // if you use precomputed features + "seq_len": 6144, // 24 * hop_length + "pad_short": 0, // additional padding for short wavs + "conv_pad": 0, // additional padding against convolutions applied to spectrograms + "use_noise_augment": false, // add noise to the audio signal for augmentation + "use_cache": true, // use in memory cache to keep the computed features. This might cause OOM. + + "reinit_layers": [], // give a list of layer names to restore from the given checkpoint. If not defined, it reloads all heuristically matching layers. + + // TRAINING + "batch_size": 1, // Batch size for training. + "train_noise_schedule":{ + "min_val": 1e-6, + "max_val": 1e-2, + "num_steps": 1000 + }, + "test_noise_schedule":{ + "min_val": 1e-6, + "max_val": 1e-2, + "num_steps": 2 + }, + + // VALIDATION + "run_eval": true, // enable/disable evaluation run + + // OPTIMIZER + "epochs": 1, // total number of epochs to train. + "grad_clip": 1.0, // Generator gradient clipping threshold. Apply gradient clipping if > 0 + "lr_scheduler": "MultiStepLR", // one of the schedulers from https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate + "lr_scheduler_params": { + "gamma": 0.5, + "milestones": [100000, 200000, 300000, 400000, 500000, 600000] + }, + "lr": 1e-4, // Initial learning rate. If Noam decay is active, maximum learning rate. + + // TENSORBOARD and LOGGING + "print_step": 250, // Number of steps to log traning on console. + "print_eval": false, // If True, it prints loss values for each step in eval run. + "save_step": 10000, // Number of training steps expected to plot training stats on TB and save model checkpoints. + "checkpoint": true, // If true, it saves checkpoints per "save_step" + "keep_all_best": true, // If true, keeps all best_models after keep_after steps + "keep_after": 10000, // Global step after which to keep best models if keep_all_best is true + "tb_model_param_stats": true, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging. + + // DATA LOADING + "num_loader_workers": 0, // number of training data loader processes. Don't set it too big. 4-8 are good values. + "num_eval_loader_workers": 0, // number of evaluation data loader processes. + "eval_split_size": 4, + + // PATHS + "output_path": "tests/train_outputs/" +} + diff --git a/TTS/tests/inputs/test_vocoder_wavernn_config.json b/TTS/tests/inputs/test_vocoder_wavernn_config.json new file mode 100644 index 0000000000000000000000000000000000000000..ee4e5f8e42b3f07e0a6ab3b131988a0d6cd15475 --- /dev/null +++ b/TTS/tests/inputs/test_vocoder_wavernn_config.json @@ -0,0 +1,112 @@ +{ + "run_name": "wavernn_test", + "run_description": "wavernn_test training", + + // AUDIO PARAMETERS + "audio":{ + "fft_size": 1024, // number of stft frequency levels. Size of the linear spectogram frame. + "win_length": 1024, // stft window length in ms. + "hop_length": 256, // stft window hop-lengh in ms. + "frame_length_ms": null, // stft window length in ms.If null, 'win_length' is used. + "frame_shift_ms": null, // stft window hop-lengh in ms. If null, 'hop_length' is used. + + // Audio processing parameters + "sample_rate": 22050, // DATASET-RELATED: wav sample-rate. If different than the original data, it is resampled. + "preemphasis": 0.0, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis. + "ref_level_db": 0, // reference level db, theoretically 20db is the sound of air. + + // Silence trimming + "do_trim_silence": true,// enable trimming of slience of audio as you load it. LJspeech (false), TWEB (false), Nancy (true) + "trim_db": 60, // threshold for timming silence. Set this according to your dataset. + + // MelSpectrogram parameters + "num_mels": 80, // size of the mel spec frame. + "mel_fmin": 0.0, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!! + "mel_fmax": 8000.0, // maximum freq level for mel-spec. Tune for dataset!! + "spec_gain": 20.0, // scaler value appplied after log transform of spectrogram. + + // Normalization parameters + "signal_norm": true, // normalize spec values. Mean-Var normalization if 'stats_path' is defined otherwise range normalization defined by the other params. + "min_level_db": -100, // lower bound for normalization + "symmetric_norm": true, // move normalization to range [-1, 1] + "max_norm": 4.0, // scale normalization to range [-max_norm, max_norm] or [0, max_norm] + "clip_norm": true, // clip normalized values into the range. + "stats_path": null // DO NOT USE WITH MULTI_SPEAKER MODEL. scaler stats file computed by 'compute_statistics.py'. If it is defined, mean-std based notmalization is used and other normalization params are ignored + }, + + // Generating / Synthesizing + "batched": true, + "target_samples": 11000, // target number of samples to be generated in each batch entry + "overlap_samples": 550, // number of samples for crossfading between batches + + // DISTRIBUTED TRAINING + // "distributed":{ + // "backend": "nccl", + // "url": "tcp:\/\/localhost:54321" + // }, + + // MODEL PARAMETERS + "use_aux_net": true, + "use_upsample_net": true, + "upsample_factors": [4, 8, 8], // this needs to correctly factorise hop_length + "seq_len": 1280, // has to be devideable by hop_length + "mode": "mold", // mold [string], gauss [string], bits [int] + "mulaw": false, // apply mulaw if mode is bits + "padding": 2, // pad the input for resnet to see wider input length + + // GENERATOR - for backward compatibility + "generator_model": "Wavernn", + + // DATASET + //"use_gta": true, // use computed gta features from the tts model + "data_path": "tests/data/ljspeech/wavs/", // path containing training wav files + "feature_path": null, // path containing computed features from wav files if null compute them + + // MODEL PARAMETERS + "wavernn_model_params": { + "rnn_dims": 512, + "fc_dims": 512, + "compute_dims": 128, + "res_out_dims": 128, + "num_res_blocks": 10, + "use_aux_net": true, + "use_upsample_net": true, + "upsample_factors": [4, 8, 8] // this needs to correctly factorise hop_length + }, + "mixed_precision": false, + + // TRAINING + "batch_size": 4, // Batch size for training. Lower values than 32 might cause hard to learn attention. + "epochs": 1, // total number of epochs to train. + + // VALIDATION + "run_eval": true, + "test_every_epochs": 10, // Test after set number of epochs (Test every 20 epochs for example) + + // OPTIMIZER + "grad_clip": 4, // apply gradient clipping if > 0 + "lr_scheduler": "MultiStepLR", // one of the schedulers from https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate + "lr_scheduler_params": { + "gamma": 0.5, + "milestones": [200000, 400000, 600000] + }, + "lr": 1e-4, // initial learning rate + + // TENSORBOARD and LOGGING + "print_step": 25, // Number of steps to log traning on console. + "print_eval": false, // If True, it prints loss values for each step in eval run. + "save_step": 25000, // Number of training steps expected to plot training stats on TB and save model checkpoints. + "checkpoint": true, // If true, it saves checkpoints per "save_step" + "keep_all_best": true, // If true, keeps all best_models after keep_after steps + "keep_after": 10000, // Global step after which to keep best models if keep_all_best is true + "tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging. + + // DATA LOADING + "num_loader_workers": 0, // number of training data loader processes. Don't set it too big. 4-8 are good values. + "num_eval_loader_workers": 0, // number of evaluation data loader processes. + "eval_split_size": 10, // number of samples for testing + + // PATHS + "output_path": "tests/train_outputs/" +} + diff --git a/TTS/tests/text_tests/__init__.py b/TTS/tests/text_tests/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/TTS/tests/text_tests/test_belarusian_phonemizer.py b/TTS/tests/text_tests/test_belarusian_phonemizer.py new file mode 100644 index 0000000000000000000000000000000000000000..76ba4667143c99904c964132556d3b1a94c6b65f --- /dev/null +++ b/TTS/tests/text_tests/test_belarusian_phonemizer.py @@ -0,0 +1,30 @@ +import os +import unittest +import warnings + +from TTS.tts.utils.text.belarusian.phonemizer import belarusian_text_to_phonemes + +_TEST_CASES = """ +ะคะฐะฝะตั‚ั‹ั‡ะฝั‹ ะบะฐะฝะฒะตั€ั‚ะฐั€/fanสฒษ›หˆtษจtอกส‚nษจ kanหˆvสฒษ›rtar +ะ“ัั‚ะฐะบ ะผั‹ ะฟั€ะฐั†ะฐะฒะฐะปั–/หˆษฃษ›tak หˆmษจ pratอกsaหˆvalสฒi +""" + + +class TestText(unittest.TestCase): + def test_belarusian_text_to_phonemes(self): + try: + os.environ["BEL_FANETYKA_JAR"] + except KeyError: + warnings.warn( + "You need to define 'BEL_FANETYKA_JAR' environment variable as path to the fanetyka.jar file to test Belarusian phonemizer", + Warning, + ) + return + + for line in _TEST_CASES.strip().split("\n"): + text, phonemes = line.split("/") + self.assertEqual(belarusian_text_to_phonemes(text), phonemes) + + +if __name__ == "__main__": + unittest.main() diff --git a/TTS/tests/text_tests/test_characters.py b/TTS/tests/text_tests/test_characters.py new file mode 100644 index 0000000000000000000000000000000000000000..8f40656ad7ae0c862835e00c627224bab7b5d35c --- /dev/null +++ b/TTS/tests/text_tests/test_characters.py @@ -0,0 +1,174 @@ +import unittest + +from TTS.tts.utils.text.characters import BaseCharacters, BaseVocabulary, Graphemes, IPAPhonemes + +# pylint: disable=protected-access + + +class BaseVocabularyTest(unittest.TestCase): + def setUp(self): + self.phonemes = IPAPhonemes() + self.base_vocab = BaseVocabulary( + vocab=self.phonemes._vocab, + pad=self.phonemes.pad, + blank=self.phonemes.blank, + bos=self.phonemes.bos, + eos=self.phonemes.eos, + ) + self.empty_vocab = BaseVocabulary({}) + + def test_pad_id(self): + self.assertEqual(self.empty_vocab.pad_id, 0) + self.assertEqual(self.base_vocab.pad_id, self.phonemes.pad_id) + + def test_blank_id(self): + self.assertEqual(self.empty_vocab.blank_id, 0) + self.assertEqual(self.base_vocab.blank_id, self.phonemes.blank_id) + + def test_vocab(self): + self.assertEqual(self.empty_vocab.vocab, {}) + self.assertEqual(self.base_vocab.vocab, self.phonemes._vocab) + + # def test_init_from_config(self): + # ... + + def test_num_chars(self): + self.assertEqual(self.empty_vocab.num_chars, 0) + self.assertEqual(self.base_vocab.num_chars, self.phonemes.num_chars) + + def test_char_to_id(self): + try: + self.empty_vocab.char_to_id("a") + raise Exception("Should have raised KeyError") + except: + pass + for k in self.phonemes.vocab: + self.assertEqual(self.base_vocab.char_to_id(k), self.phonemes.char_to_id(k)) + + def test_id_to_char(self): + try: + self.empty_vocab.id_to_char(0) + raise Exception("Should have raised KeyError") + except: + pass + for k in self.phonemes.vocab: + v = self.phonemes.char_to_id(k) + self.assertEqual(self.base_vocab.id_to_char(v), self.phonemes.id_to_char(v)) + + +class BaseCharacterTest(unittest.TestCase): + def setUp(self): + self.characters_empty = BaseCharacters("", "", pad="", eos="", bos="", blank="", is_unique=True, is_sorted=True) + + def test_default_character_sets(self): # pylint: disable=no-self-use + """Test initiation of default character sets""" + _ = IPAPhonemes() + _ = Graphemes() + + def test_unique(self): + """Test if the unique option works""" + self.characters_empty.characters = "abcc" + self.characters_empty.punctuations = ".,;:!? " + self.characters_empty.pad = "[PAD]" + self.characters_empty.eos = "[EOS]" + self.characters_empty.bos = "[BOS]" + self.characters_empty.blank = "[BLANK]" + + self.assertEqual( + self.characters_empty.num_chars, + len(["[PAD]", "[EOS]", "[BOS]", "[BLANK]", "a", "b", "c", ".", ",", ";", ":", "!", "?", " "]), + ) + + def test_unique_sorted(self): + """Test if the unique and sorted option works""" + self.characters_empty.characters = "cba" + self.characters_empty.punctuations = ".,;:!? " + self.characters_empty.pad = "[PAD]" + self.characters_empty.eos = "[EOS]" + self.characters_empty.bos = "[BOS]" + self.characters_empty.blank = "[BLANK]" + + self.assertEqual( + self.characters_empty.num_chars, + len(["[PAD]", "[EOS]", "[BOS]", "[BLANK]", "a", "b", "c", ".", ",", ";", ":", "!", "?", " "]), + ) + + def test_setters_getters(self): + """Test the class setters behaves as expected""" + self.characters_empty.characters = "abc" + self.assertEqual(self.characters_empty._characters, "abc") + self.assertEqual(self.characters_empty.vocab, ["a", "b", "c"]) + + self.characters_empty.punctuations = ".,;:!? " + self.assertEqual(self.characters_empty._punctuations, ".,;:!? ") + self.assertEqual(self.characters_empty.vocab, ["a", "b", "c", ".", ",", ";", ":", "!", "?", " "]) + + self.characters_empty.pad = "[PAD]" + self.assertEqual(self.characters_empty._pad, "[PAD]") + self.assertEqual(self.characters_empty.vocab, ["[PAD]", "a", "b", "c", ".", ",", ";", ":", "!", "?", " "]) + + self.characters_empty.eos = "[EOS]" + self.assertEqual(self.characters_empty._eos, "[EOS]") + self.assertEqual( + self.characters_empty.vocab, ["[PAD]", "[EOS]", "a", "b", "c", ".", ",", ";", ":", "!", "?", " "] + ) + + self.characters_empty.bos = "[BOS]" + self.assertEqual(self.characters_empty._bos, "[BOS]") + self.assertEqual( + self.characters_empty.vocab, ["[PAD]", "[EOS]", "[BOS]", "a", "b", "c", ".", ",", ";", ":", "!", "?", " "] + ) + + self.characters_empty.blank = "[BLANK]" + self.assertEqual(self.characters_empty._blank, "[BLANK]") + self.assertEqual( + self.characters_empty.vocab, + ["[PAD]", "[EOS]", "[BOS]", "[BLANK]", "a", "b", "c", ".", ",", ";", ":", "!", "?", " "], + ) + self.assertEqual( + self.characters_empty.num_chars, + len(["[PAD]", "[EOS]", "[BOS]", "[BLANK]", "a", "b", "c", ".", ",", ";", ":", "!", "?", " "]), + ) + + self.characters_empty.print_log() + + def test_char_lookup(self): + """Test char to ID and ID to char conversion""" + self.characters_empty.characters = "abc" + self.characters_empty.punctuations = ".,;:!? " + self.characters_empty.pad = "[PAD]" + self.characters_empty.eos = "[EOS]" + self.characters_empty.bos = "[BOS]" + self.characters_empty.blank = "[BLANK]" + + # char to ID + self.assertEqual(self.characters_empty.char_to_id("[PAD]"), 0) + self.assertEqual(self.characters_empty.char_to_id("[EOS]"), 1) + self.assertEqual(self.characters_empty.char_to_id("[BOS]"), 2) + self.assertEqual(self.characters_empty.char_to_id("[BLANK]"), 3) + self.assertEqual(self.characters_empty.char_to_id("a"), 4) + self.assertEqual(self.characters_empty.char_to_id("b"), 5) + self.assertEqual(self.characters_empty.char_to_id("c"), 6) + self.assertEqual(self.characters_empty.char_to_id("."), 7) + self.assertEqual(self.characters_empty.char_to_id(","), 8) + self.assertEqual(self.characters_empty.char_to_id(";"), 9) + self.assertEqual(self.characters_empty.char_to_id(":"), 10) + self.assertEqual(self.characters_empty.char_to_id("!"), 11) + self.assertEqual(self.characters_empty.char_to_id("?"), 12) + self.assertEqual(self.characters_empty.char_to_id(" "), 13) + + # ID to char + self.assertEqual(self.characters_empty.id_to_char(0), "[PAD]") + self.assertEqual(self.characters_empty.id_to_char(1), "[EOS]") + self.assertEqual(self.characters_empty.id_to_char(2), "[BOS]") + self.assertEqual(self.characters_empty.id_to_char(3), "[BLANK]") + self.assertEqual(self.characters_empty.id_to_char(4), "a") + self.assertEqual(self.characters_empty.id_to_char(5), "b") + self.assertEqual(self.characters_empty.id_to_char(6), "c") + self.assertEqual(self.characters_empty.id_to_char(7), ".") + self.assertEqual(self.characters_empty.id_to_char(8), ",") + self.assertEqual(self.characters_empty.id_to_char(9), ";") + self.assertEqual(self.characters_empty.id_to_char(10), ":") + self.assertEqual(self.characters_empty.id_to_char(11), "!") + self.assertEqual(self.characters_empty.id_to_char(12), "?") + self.assertEqual(self.characters_empty.id_to_char(13), " ") diff --git a/TTS/tests/text_tests/test_japanese_phonemizer.py b/TTS/tests/text_tests/test_japanese_phonemizer.py new file mode 100644 index 0000000000000000000000000000000000000000..423b79b9ce5d5d7e7ddb20317b48fa711fad8f92 --- /dev/null +++ b/TTS/tests/text_tests/test_japanese_phonemizer.py @@ -0,0 +1,26 @@ +import unittest + +from TTS.tts.utils.text.japanese.phonemizer import japanese_text_to_phonemes + +_TEST_CASES = """ +ใฉใกใ‚‰ใซ่กŒใใพใ™ใ‹๏ผŸ/dochiraniikimasuka? +ไปŠๆ—ฅใฏๆธฉๆณ‰ใซใ€่กŒใใพใ™ใ€‚/kyo:waoNseNni,ikimasu. +ใ€ŒAใ€ใ‹ใ‚‰ใ€ŒZใ€ใพใงใงใ™ใ€‚/e:karazeqtomadedesu. +ใใ†ใงใ™ใญ๏ผ/so:desune! +ใ‚ฏใ‚ธใƒฉใฏๅ“บไนณ้กžใงใ™ใ€‚/kujirawahonyu:ruidesu. +ใƒดใ‚ฃใƒ‡ใ‚ฃใ‚ชใ‚’่ฆ‹ใพใ™ใ€‚/bidioomimasu. +ไปŠๆ—ฅใฏ๏ผ˜ๆœˆ22ๆ—ฅใงใ™/kyo:wahachigatsuniju:ninichidesu +xyzใจฮฑฮฒฮณ/eqkusuwaizeqtotoarufabe:tagaNma +ๅ€คๆฎตใฏ$12.34ใงใ™/nedaNwaju:niteNsaNyoNdorudesu +""" + + +class TestText(unittest.TestCase): + def test_japanese_text_to_phonemes(self): + for line in _TEST_CASES.strip().split("\n"): + text, phone = line.split("/") + self.assertEqual(japanese_text_to_phonemes(text), phone) + + +if __name__ == "__main__": + unittest.main() diff --git a/TTS/tests/text_tests/test_korean_phonemizer.py b/TTS/tests/text_tests/test_korean_phonemizer.py new file mode 100644 index 0000000000000000000000000000000000000000..7d651d1d693a5675e688741b0cb2ee22f14d70d6 --- /dev/null +++ b/TTS/tests/text_tests/test_korean_phonemizer.py @@ -0,0 +1,31 @@ +import unittest + +from TTS.tts.utils.text.korean.phonemizer import korean_text_to_phonemes + +_TEST_CASES = """ +ํฌ์ƒ์€ ์—ด์‹ฌํžˆ ํ•œ ์•„์ด์—๊ฒŒ๋งŒ ์ฃผ์–ด์ง€๊ธฐ ๋•Œ๋ฌธ์— ํฌ์ƒ์ธ ๊ฒƒ์ž…๋‹ˆ๋‹ค./แ„‘แ…ฉแ„‰แ…กแ†ผแ„‹แ…ณ แ„‚แ…งแ†ฏแ„‰แ…ตแ†ทแ„’แ…ต แ„’แ…ก แ„‚แ…กแ„‹แ…ตแ„‹แ…ฆแ„€แ…ฆแ„†แ…กแ†ซ แ„Œแ…ฎแ„‹แ…ฅแ„Œแ…ตแ„€แ…ต แ„„แ…ขแ„†แ…ฎแ„‚แ…ฆ แ„‘แ…ฉแ„‰แ…กแ†ผแ„‹แ…ตแ†ซ แ„€แ…ฅแ„‰แ…ตแ†ทแ„‚แ…ตแ„ƒแ…ก. +์˜ค๋Š˜์€ 8์›” 31์ผ ์ž…๋‹ˆ๋‹ค./แ„‹แ…ฉแ„‚แ…ณแ„…แ…ณแ†ซ แ„‘แ…กแ„…แ…ฏแ†ฏ แ„‰แ…กแ†ทแ„‰แ…ตแ„‡แ…ตแ„…แ…ต แ„…แ…ตแ†ทแ„‚แ…ตแ„ƒแ…ก. +์นœ๊ตฌ 100๋ช… ๋งŒ๋“ค๊ธฐ๊ฐ€ ๋ชฉํ‘œ์ž…๋‹ˆ๋‹ค./แ„Žแ…ตแ†ซแ„€แ…ฎ แ„‡แ…ขแ†ผแ„†แ…งแ†ผ แ„†แ…กแ†ซแ„ƒแ…ณแ†ฏแ„€แ…ตแ„€แ…ก แ„†แ…ฉแ†จแ„‘แ…ญแ„‹แ…ตแ†ทแ„‚แ…ตแ„ƒแ…ก. +A๋ถ€ํ„ฐ Z๊นŒ์ง€ ์ž…๋‹ˆ๋‹ค./แ„‹แ…ฆแ„‹แ…ตแ„‡แ…ฎแ„แ…ฅ แ„Œแ…ฆแ„แ…ณแ„แ…กแ„Œแ…ต แ„‹แ…ตแ†ทแ„‚แ…ตแ„ƒแ…ก. +์ด๊ฒŒ ์ œ ๋งˆ์Œ์ด์—์š”./แ„‹แ…ตแ„€แ…ฆ แ„Œแ…ฆ แ„†แ…กแ„‹แ…ณแ„†แ…ตแ„‹แ…ฆแ„‹แ…ญ. +""" +_TEST_CASES_EN = """ +์ด์ œ์•ผ ์ด์ชฝ์„ ๋ณด๋Š”๊ตฌ๋‚˜./IJeYa IJjoGeul BoNeunGuNa. +ํฌ๊ณ  ๋ง›์žˆ๋Š” cake๋ฅผ ๋ถ€ํƒํ•ด์š”./KeuGo MaSinNeun KeIKeuLeul BuTaKaeYo. +์ „๋ถ€ ๊ฑฐ์ง“๋ง์ด์•ผ./JeonBu GeoJinMaLiYa. +์ข‹์€ ๋…ธ๋ž˜๋ฅผ ์ฐพ์•˜์–ด์š”./JoEun NoLaeLeul ChaJaSseoYo. +""" + + +class TestText(unittest.TestCase): + def test_korean_text_to_phonemes(self): + for line in _TEST_CASES.strip().split("\n"): + text, phone = line.split("/") + self.assertEqual(korean_text_to_phonemes(text), phone) + for line in _TEST_CASES_EN.strip().split("\n"): + text, phone = line.split("/") + self.assertEqual(korean_text_to_phonemes(text, character="english"), phone) + + +if __name__ == "__main__": + unittest.main() diff --git a/TTS/tests/text_tests/test_phonemizer.py b/TTS/tests/text_tests/test_phonemizer.py new file mode 100644 index 0000000000000000000000000000000000000000..8810554421957d47dd2f07440719ac57178b26c3 --- /dev/null +++ b/TTS/tests/text_tests/test_phonemizer.py @@ -0,0 +1,295 @@ +import unittest + +from packaging.version import Version + +from TTS.tts.utils.text.phonemizers import ESpeak, Gruut, JA_JP_Phonemizer, ZH_CN_Phonemizer +from TTS.tts.utils.text.phonemizers.bangla_phonemizer import BN_Phonemizer +from TTS.tts.utils.text.phonemizers.multi_phonemizer import MultiPhonemizer + +EXAMPLE_TEXTs = [ + "Recent research at Harvard has shown meditating", + "for as little as 8 weeks can actually increase, the grey matter", + "in the parts of the brain responsible", + "for emotional regulation and learning!", +] + + +EXPECTED_ESPEAK_PHONEMES = [ + "ษน|หˆiห|s|ษ™|n|t ษน|ษช|s|หˆษœห|tสƒ รฆ|t h|หˆษ‘หษน|v|ษš|d h|ษ|z สƒ|หˆoสŠ|n m|หˆษ›|d|ษช|t|หŒeษช|ษพ|ษช|ล‹", + "f|ษ”ห|ษน รฆ|z l|หˆษช|ษพ|ษ™l รฆ|z หˆeษช|t w|หˆiห|k|s k|รฆ|n หˆรฆ|k|tสƒ|uห|ษ™l|i| หˆษช|n|k|ษน|iห|s, รฐ|ษ™ ษก|ษน|หˆeษช m|หˆรฆ|ษพ|ษš", + "ษช|n|รฐ|ษ™ p|หˆษ‘หษน|t|s สŒ|v|รฐ|ษ™ b|ษน|หˆeษช|n ษน|ษช|s|p|หˆษ‘ห|n|s|ษ™|b|ษ™l", + "f|ษ”ห|ษน ษช|m|หˆoสŠ|สƒ|ษ™|n|ษ™l ษน|หŒษ›|ษก|j|uห|l|หˆeษช|สƒ|ษ™|n|| รฆ|n|d l|หˆษœห|n|ษช|ล‹!", +] + + +EXPECTED_ESPEAK_v1_48_15_PHONEMES = [ + "ษน|หˆiห|s|ษ™|n|t ษน|ษช|s|หˆษœห|tสƒ รฆ|t h|หˆษ‘หษน|v|ษš|d h|ษ|z สƒ|หˆoสŠ|n m|หˆษ›|d|แตป|t|หŒeษช|ษพ|ษช|ล‹", + "f|ษ”ห|ษน รฆ|z l|หˆษช|ษพ|ษ™l รฆ|z หˆeษช|t w|หˆiห|k|s k|รฆ|n หˆรฆ|k|tสƒ|uห|ษ™l|i| หˆษช|n|k|ษน|iห|s, รฐ|ษ™ ษก|ษน|หˆeษช m|หˆรฆ|ษพ|ษš", + "ษช|n|รฐ|ษ™ p|หˆษ‘หษน|t|s สŒ|v|รฐ|ษ™ b|ษน|หˆeษช|n ษน|ษช|s|p|หˆษ‘ห|n|s|ษ™|b|ษ™l", + "f|ษ”ห|ษน ษช|m|หˆoสŠ|สƒ|ษ™|n|ษ™l ษน|หŒษ›|ษก|j|uห|l|หˆeษช|สƒ|ษ™|n|| รฆ|n|d l|หˆษœห|n|ษช|ล‹!", +] + + +EXPECTED_ESPEAKNG_PHONEMES = [ + "ษน|หˆiห|s|ษ™|n|t ษน|แตป|s|หˆษœห|tสƒ รฆ|t h|หˆษ‘หษน|v|ษš|d h|ษ|z สƒ|หˆoสŠ|n m|หˆษ›|d|แตป|t|หŒeษช|ษพ|ษช|ล‹", + "f|ษ”ห|ษน รฆ|z l|หˆษช|ษพ|ษ™l รฆ|z หˆeษช|t w|หˆiห|k|s k|รฆ|n หˆรฆ|k|tสƒ|uห|ษ™l|i| หˆษช|ล‹|k|ษน|iห|s, รฐ|ษ™ ษก|ษน|หˆeษช m|หˆรฆ|ษพ|ษš", + "ษช|n|รฐ|ษ™ p|หˆษ‘หษน|t|s สŒ|v|รฐ|ษ™ b|ษน|หˆeษช|n ษน|แตป|s|p|หˆษ‘ห|n|s|แตป|b|ษ™l", + "f|ษ”ห|ษน ษช|m|หˆoสŠ|สƒ|ษ™|n|ษ™l ษน|หŒษ›|ษก|j|สŠ|l|หˆeษช|สƒ|ษ™|n|| รฆ|n|d l|หˆษœห|n|ษช|ล‹!", +] + + +class TestEspeakPhonemizer(unittest.TestCase): + def setUp(self): + self.phonemizer = ESpeak(language="en-us", backend="espeak") + + if Version(self.phonemizer.backend_version) >= Version("1.48.15"): + target_phonemes = EXPECTED_ESPEAK_v1_48_15_PHONEMES + else: + target_phonemes = EXPECTED_ESPEAK_PHONEMES + + for text, ph in zip(EXAMPLE_TEXTs, target_phonemes): + phonemes = self.phonemizer.phonemize(text) + self.assertEqual(phonemes, ph) + + # multiple punctuations + text = "Be a voice, not an! echo?" + gt = "biห ษ vหˆษ”ษชs, nหˆษ‘หt ษn! หˆษ›koสŠ?" + if Version(self.phonemizer.backend_version) >= Version("1.48.15"): + gt = "biห ษ vหˆษ”ษชs, nหˆษ‘หt รฆn! หˆษ›koสŠ?" + output = self.phonemizer.phonemize(text, separator="|") + output = output.replace("|", "") + self.assertEqual(output, gt) + + # not ending with punctuation + text = "Be a voice, not an! echo" + gt = "biห ษ vหˆษ”ษชs, nหˆษ‘หt ษn! หˆษ›koสŠ" + if Version(self.phonemizer.backend_version) >= Version("1.48.15"): + gt = "biห ษ vหˆษ”ษชs, nหˆษ‘หt รฆn! หˆษ›koสŠ" + output = self.phonemizer.phonemize(text, separator="") + self.assertEqual(output, gt) + + # extra space after the sentence + text = "Be a voice, not an! echo. " + gt = "biห ษ vหˆษ”ษชs, nหˆษ‘หt ษn! หˆษ›koสŠ." + if Version(self.phonemizer.backend_version) >= Version("1.48.15"): + gt = "biห ษ vหˆษ”ษชs, nหˆษ‘หt รฆn! หˆษ›koสŠ." + output = self.phonemizer.phonemize(text, separator="") + self.assertEqual(output, gt) + + def test_name(self): + self.assertEqual(self.phonemizer.name(), "espeak") + + def test_get_supported_languages(self): + self.assertIsInstance(self.phonemizer.supported_languages(), dict) + + def test_get_version(self): + self.assertIsInstance(self.phonemizer.version(), str) + + def test_is_available(self): + self.assertTrue(self.phonemizer.is_available()) + + +class TestEspeakNgPhonemizer(unittest.TestCase): + def setUp(self): + self.phonemizer = ESpeak(language="en-us", backend="espeak-ng") + + for text, ph in zip(EXAMPLE_TEXTs, EXPECTED_ESPEAKNG_PHONEMES): + phonemes = self.phonemizer.phonemize(text) + self.assertEqual(phonemes, ph) + + # multiple punctuations + text = "Be a voice, not an! echo?" + gt = "biห ษ vหˆษ”ษชs, nหˆษ‘หt รฆn! หˆษ›koสŠ?" + output = self.phonemizer.phonemize(text, separator="|") + output = output.replace("|", "") + self.assertEqual(output, gt) + + # not ending with punctuation + text = "Be a voice, not an! echo" + gt = "biห ษ vหˆษ”ษชs, nหˆษ‘หt รฆn! หˆษ›koสŠ" + output = self.phonemizer.phonemize(text, separator="") + self.assertEqual(output, gt) + + # extra space after the sentence + text = "Be a voice, not an! echo. " + gt = "biห ษ vหˆษ”ษชs, nหˆษ‘หt รฆn! หˆษ›koสŠ." + output = self.phonemizer.phonemize(text, separator="") + self.assertEqual(output, gt) + + def test_name(self): + self.assertEqual(self.phonemizer.name(), "espeak") + + def test_get_supported_languages(self): + self.assertIsInstance(self.phonemizer.supported_languages(), dict) + + def test_get_version(self): + self.assertIsInstance(self.phonemizer.version(), str) + + def test_is_available(self): + self.assertTrue(self.phonemizer.is_available()) + + +class TestGruutPhonemizer(unittest.TestCase): + def setUp(self): + self.phonemizer = Gruut(language="en-us", use_espeak_phonemes=True, keep_stress=False) + self.EXPECTED_PHONEMES = [ + "ษน|i|ห|s|ษ™|n|t| ษน|แตป|s|ษœ|ห|t|สƒ| รฆ|ษพ| h|ษ‘|ห|ษน|v|ษš|d| h|ษ|z| สƒ|o|สŠ|n| m|ษ›|d|แตป|t|e|ษช|ษพ|ษช|ล‹", + "f|ษ”|ห|ษน| รฆ|z| l|ษช|ษพ|ษ™|l| รฆ|z| e|ษช|t| w|i|ห|k|s| k|รฆ|ล‹| รฆ|k|t|สƒ|u|ห|ษ™|l|i| ษช|ล‹|k|ษน|i|ห|s, รฐ|ษ™| ษก|ษน|e|ษช| m|รฆ|ษพ|ษš", + "ษช|n| รฐ|ษ™| p|ษ‘|ห|ษน|t|s| สŒ|v| รฐ|ษ™| b|ษน|e|ษช|n| ษน|แตป|s|p|ษ‘|ห|n|s|แตป|b|ษ™|l", + "f|ษ”|ห|ษน| ษช|m|o|สŠ|สƒ|ษ™|n|ษ™|l| ษน|ษ›|ษก|j|สŠ|l|e|ษช|สƒ|ษ™|n| รฆ|n|d| l|ษœ|ห|n|ษช|ล‹!", + ] + + def test_phonemize(self): + for text, ph in zip(EXAMPLE_TEXTs, self.EXPECTED_PHONEMES): + phonemes = self.phonemizer.phonemize(text, separator="|") + self.assertEqual(phonemes, ph) + + # multiple punctuations + text = "Be a voice, not an! echo?" + gt = "biห ษ vษ”ษชs, nษ‘หt ษn! ษ›koสŠ?" + output = self.phonemizer.phonemize(text, separator="|") + output = output.replace("|", "") + self.assertEqual(output, gt) + + # not ending with punctuation + text = "Be a voice, not an! echo" + gt = "biห ษ vษ”ษชs, nษ‘หt ษn! ษ›koสŠ" + output = self.phonemizer.phonemize(text, separator="") + self.assertEqual(output, gt) + + # extra space after the sentence + text = "Be a voice, not an! echo. " + gt = "biห ษ vษ”ษชs, nษ‘หt ษn! ษ›koสŠ." + output = self.phonemizer.phonemize(text, separator="") + self.assertEqual(output, gt) + + def test_name(self): + self.assertEqual(self.phonemizer.name(), "gruut") + + def test_get_supported_languages(self): + self.assertIsInstance(self.phonemizer.supported_languages(), list) + + def test_get_version(self): + self.assertIsInstance(self.phonemizer.version(), str) + + def test_is_available(self): + self.assertTrue(self.phonemizer.is_available()) + + +class TestJA_JPPhonemizer(unittest.TestCase): + def setUp(self): + self.phonemizer = JA_JP_Phonemizer() + self._TEST_CASES = """ + ใฉใกใ‚‰ใซ่กŒใใพใ™ใ‹๏ผŸ/dochiraniikimasuka? + ไปŠๆ—ฅใฏๆธฉๆณ‰ใซใ€่กŒใใพใ™ใ€‚/kyo:waoNseNni,ikimasu. + ใ€ŒAใ€ใ‹ใ‚‰ใ€ŒZใ€ใพใงใงใ™ใ€‚/e:karazeqtomadedesu. + ใใ†ใงใ™ใญ๏ผ/so:desune! + ใ‚ฏใ‚ธใƒฉใฏๅ“บไนณ้กžใงใ™ใ€‚/kujirawahonyu:ruidesu. + ใƒดใ‚ฃใƒ‡ใ‚ฃใ‚ชใ‚’่ฆ‹ใพใ™ใ€‚/bidioomimasu. + ไปŠๆ—ฅใฏ๏ผ˜ๆœˆ22ๆ—ฅใงใ™/kyo:wahachigatsuniju:ninichidesu + xyzใจฮฑฮฒฮณ/eqkusuwaizeqtotoarufabe:tagaNma + ๅ€คๆฎตใฏ$12.34ใงใ™/nedaNwaju:niteNsaNyoNdorudesu + """ + + def test_phonemize(self): + for line in self._TEST_CASES.strip().split("\n"): + text, phone = line.split("/") + self.assertEqual(self.phonemizer.phonemize(text, separator=""), phone) + + def test_name(self): + self.assertEqual(self.phonemizer.name(), "ja_jp_phonemizer") + + def test_get_supported_languages(self): + self.assertIsInstance(self.phonemizer.supported_languages(), dict) + + def test_get_version(self): + self.assertIsInstance(self.phonemizer.version(), str) + + def test_is_available(self): + self.assertTrue(self.phonemizer.is_available()) + + +class TestZH_CN_Phonemizer(unittest.TestCase): + def setUp(self): + self.phonemizer = ZH_CN_Phonemizer() + self._TEST_CASES = "" + + def test_phonemize(self): + # TODO: implement ZH phonemizer tests + pass + + def test_name(self): + self.assertEqual(self.phonemizer.name(), "zh_cn_phonemizer") + + def test_get_supported_languages(self): + self.assertIsInstance(self.phonemizer.supported_languages(), dict) + + def test_get_version(self): + self.assertIsInstance(self.phonemizer.version(), str) + + def test_is_available(self): + self.assertTrue(self.phonemizer.is_available()) + + +class TestBN_Phonemizer(unittest.TestCase): + def setUp(self): + self.phonemizer = BN_Phonemizer() + self._TEST_CASES = "เฆฐเฆพเฆธเง‚เฆฒเงเฆฒเงเฆฒเฆพเฆน เฆธเฆพเฆฒเงเฆฒเฆพเฆฒเงเฆฒเฆพเฆนเง เฆ†เฆฒเฆพเฆ‡เฆนเฆฟ เฆ“เงŸเฆพ เฆธเฆพเฆฒเงเฆฒเฆพเฆฎ เฆถเฆฟเฆ•เงเฆทเฆพ เฆฆเฆฟเงŸเง‡เฆ›เง‡เฆจ เฆฏเง‡, เฆ•เง‡เฆ‰ เฆฏเฆฆเฆฟ เฆ•เง‹เฆจ เฆ–เฆพเฆฐเฆพเฆช เฆ•เฆฟเฆ›เงเฆฐ เฆธเฆฎเงเฆฎเงเฆ–เง€เฆจ เฆนเงŸ, เฆคเฆ–เฆจเฆ“ เฆฏเง‡เฆจ" + self._EXPECTED = "เฆฐเฆพเฆธเง‚เฆฒเงเฆฒเงเฆฒเฆพเฆน เฆธเฆพเฆฒเงเฆฒเฆพเฆฒเงเฆฒเฆพเฆนเง เฆ†เฆฒเฆพเฆ‡เฆนเฆฟ เฆ“เงŸเฆพ เฆธเฆพเฆฒเงเฆฒเฆพเฆฎ เฆถเฆฟเฆ•เงเฆทเฆพ เฆฆเฆฟเงŸเง‡เฆ›เง‡เฆจ เฆฏเง‡ เฆ•เง‡เฆ‰ เฆฏเฆฆเฆฟ เฆ•เง‹เฆจ เฆ–เฆพเฆฐเฆพเฆช เฆ•เฆฟเฆ›เงเฆฐ เฆธเฆฎเงเฆฎเงเฆ–เง€เฆจ เฆนเงŸ เฆคเฆ–เฆจเฆ“ เฆฏเง‡เฆจเฅค" + + def test_phonemize(self): + self.assertEqual(self.phonemizer.phonemize(self._TEST_CASES, separator=""), self._EXPECTED) + + def test_name(self): + self.assertEqual(self.phonemizer.name(), "bn_phonemizer") + + def test_get_supported_languages(self): + self.assertIsInstance(self.phonemizer.supported_languages(), dict) + + def test_get_version(self): + self.assertIsInstance(self.phonemizer.version(), str) + + def test_is_available(self): + self.assertTrue(self.phonemizer.is_available()) + + +class TestMultiPhonemizer(unittest.TestCase): + def setUp(self): + self.phonemizer = MultiPhonemizer({"tr": "espeak", "en-us": "", "de": "gruut", "zh-cn": ""}) + + def test_phonemize(self): + # Enlish espeak + text = "Be a voice, not an! echo?" + gt = "biห ษ vหˆษ”ษชs, nหˆษ‘หt รฆn! หˆษ›koสŠ?" + output = self.phonemizer.phonemize(text, separator="|", language="en-us") + output = output.replace("|", "") + self.assertEqual(output, gt) + + # German gruut + text = "Hallo, das ist ein Deutches Beipiel!" + gt = "haloห, das ษชst aeหn dษ”ษ”สฬฏtรงษ™s bษ™ส”iหpiหl!" + output = self.phonemizer.phonemize(text, separator="|", language="de") + output = output.replace("|", "") + self.assertEqual(output, gt) + + def test_phonemizer_initialization(self): + # test with unsupported language + with self.assertRaises(ValueError): + MultiPhonemizer({"tr": "espeak", "xx": ""}) + + # test with unsupported phonemizer + with self.assertRaises(ValueError): + MultiPhonemizer({"tr": "espeak", "fr": "xx"}) + + def test_sub_phonemizers(self): + for lang in self.phonemizer.lang_to_phonemizer_name.keys(): + self.assertEqual(lang, self.phonemizer.lang_to_phonemizer[lang].language) + self.assertEqual( + self.phonemizer.lang_to_phonemizer_name[lang], self.phonemizer.lang_to_phonemizer[lang].name() + ) + + def test_name(self): + self.assertEqual(self.phonemizer.name(), "multi-phonemizer") + + def test_get_supported_languages(self): + self.assertIsInstance(self.phonemizer.supported_languages(), list) diff --git a/TTS/tests/text_tests/test_punctuation.py b/TTS/tests/text_tests/test_punctuation.py new file mode 100644 index 0000000000000000000000000000000000000000..141c10e48f814b3843bea25d7456189716647ce0 --- /dev/null +++ b/TTS/tests/text_tests/test_punctuation.py @@ -0,0 +1,33 @@ +import unittest + +from TTS.tts.utils.text.punctuation import _DEF_PUNCS, Punctuation + + +class PunctuationTest(unittest.TestCase): + def setUp(self): + self.punctuation = Punctuation() + self.test_texts = [ + ("This, is my text ... to be striped !! from text?", "This is my text to be striped from text"), + ("This, is my text ... to be striped !! from text", "This is my text to be striped from text"), + ("This, is my text ... to be striped from text?", "This is my text to be striped from text"), + ("This, is my text to be striped from text", "This is my text to be striped from text"), + ] + + def test_get_set_puncs(self): + self.punctuation.puncs = "-=" + self.assertEqual(self.punctuation.puncs, "-=") + + self.punctuation.puncs = _DEF_PUNCS + self.assertEqual(self.punctuation.puncs, _DEF_PUNCS) + + def test_strip_punc(self): + for text, gt in self.test_texts: + text_striped = self.punctuation.strip(text) + self.assertEqual(text_striped, gt) + + def test_strip_restore(self): + for text, gt in self.test_texts: + text_striped, puncs_map = self.punctuation.strip_to_restore(text) + text_restored = self.punctuation.restore(text_striped, puncs_map) + self.assertEqual(" ".join(text_striped), gt) + self.assertEqual(text_restored[0], text) diff --git a/TTS/tests/text_tests/test_text_cleaners.py b/TTS/tests/text_tests/test_text_cleaners.py new file mode 100644 index 0000000000000000000000000000000000000000..fcfa71e77dde8daa6002aa71a56e4f8ca96a51a7 --- /dev/null +++ b/TTS/tests/text_tests/test_text_cleaners.py @@ -0,0 +1,21 @@ +#!/usr/bin/env python3 + +from TTS.tts.utils.text.cleaners import english_cleaners, phoneme_cleaners + + +def test_time() -> None: + assert english_cleaners("It's 11:00") == "it's eleven a m" + assert english_cleaners("It's 9:01") == "it's nine oh one a m" + assert english_cleaners("It's 16:00") == "it's four p m" + assert english_cleaners("It's 00:00 am") == "it's twelve a m" + + +def test_currency() -> None: + assert phoneme_cleaners("It's $10.50") == "It's ten dollars fifty cents" + assert phoneme_cleaners("ยฃ1.1") == "one pound sterling one penny" + assert phoneme_cleaners("ยฅ1") == "one yen" + + +def test_expand_numbers() -> None: + assert phoneme_cleaners("-1") == "minus one" + assert phoneme_cleaners("1") == "one" diff --git a/TTS/tests/text_tests/test_tokenizer.py b/TTS/tests/text_tests/test_tokenizer.py new file mode 100644 index 0000000000000000000000000000000000000000..dfa213d9d527e21de2e19f5c069bcd247954dd99 --- /dev/null +++ b/TTS/tests/text_tests/test_tokenizer.py @@ -0,0 +1,101 @@ +import unittest +from dataclasses import dataclass, field + +from coqpit import Coqpit + +from TTS.tts.utils.text.characters import Graphemes, IPAPhonemes, _blank, _bos, _eos, _pad, _phonemes, _punctuations +from TTS.tts.utils.text.phonemizers import ESpeak +from TTS.tts.utils.text.tokenizer import TTSTokenizer + + +class TestTTSTokenizer(unittest.TestCase): + def setUp(self): + self.tokenizer = TTSTokenizer(use_phonemes=False, characters=Graphemes()) + + self.ph = ESpeak("tr", backend="espeak") + self.tokenizer_ph = TTSTokenizer(use_phonemes=True, characters=IPAPhonemes(), phonemizer=self.ph) + + def test_encode_decode_graphemes(self): + text = "This is, a test." + ids = self.tokenizer.encode(text) + test_hat = self.tokenizer.decode(ids) + self.assertEqual(text, test_hat) + self.assertEqual(len(ids), len(text)) + + def test_text_to_ids_phonemes(self): + # TODO: note sure how to extend to cover all the languages and phonemizer. + text = "Bu bir ร–rnek." + text_ph = self.ph.phonemize(text, separator="") + ids = self.tokenizer_ph.text_to_ids(text) + test_hat = self.tokenizer_ph.ids_to_text(ids) + self.assertEqual(text_ph, test_hat) + + def test_text_to_ids_phonemes_punctuation(self): + text = "..." + text_ph = self.ph.phonemize(text, separator="") + ids = self.tokenizer_ph.text_to_ids(text) + test_hat = self.tokenizer_ph.ids_to_text(ids) + self.assertEqual(text_ph, test_hat) + + def test_text_to_ids_phonemes_with_eos_bos(self): + text = "Bu bir ร–rnek." + self.tokenizer_ph.use_eos_bos = True + text_ph = IPAPhonemes().bos + self.ph.phonemize(text, separator="") + IPAPhonemes().eos + ids = self.tokenizer_ph.text_to_ids(text) + test_hat = self.tokenizer_ph.ids_to_text(ids) + self.assertEqual(text_ph, test_hat) + + def test_text_to_ids_phonemes_with_eos_bos_and_blank(self): + text = "Bu bir ร–rnek." + self.tokenizer_ph.use_eos_bos = True + self.tokenizer_ph.add_blank = True + text_ph = "bสŠ bษชr ล“rnหˆษ›c." + ids = self.tokenizer_ph.text_to_ids(text) + text_hat = self.tokenizer_ph.ids_to_text(ids) + self.assertEqual(text_ph, text_hat) + + def test_print_logs(self): + self.tokenizer.print_logs() + self.tokenizer_ph.print_logs() + + def test_not_found_characters(self): + self.ph = ESpeak("en-us") + tokenizer_local = TTSTokenizer(use_phonemes=True, characters=IPAPhonemes(), phonemizer=self.ph) + self.assertEqual(len(self.tokenizer.not_found_characters), 0) + text = "Yolk of one egg beaten light" + ids = tokenizer_local.text_to_ids(text) + text_hat = tokenizer_local.ids_to_text(ids) + self.assertEqual(tokenizer_local.not_found_characters, ["ฬฉ"]) + self.assertEqual(text_hat, "jหˆoสŠk สŒv wหˆสŒn หˆษ›ษก bหˆiหส”n lหˆaษชt") + + def test_init_from_config(self): + @dataclass + class Characters(Coqpit): + characters_class: str = None + characters: str = _phonemes + punctuations: str = _punctuations + pad: str = _pad + eos: str = _eos + bos: str = _bos + blank: str = _blank + is_unique: bool = True + is_sorted: bool = True + + @dataclass + class TokenizerConfig(Coqpit): + enable_eos_bos_chars: bool = True + use_phonemes: bool = True + add_blank: bool = False + characters: str = field(default_factory=Characters) + phonemizer: str = "espeak" + phoneme_language: str = "tr" + text_cleaner: str = "phoneme_cleaners" + characters = field(default_factory=Characters) + + tokenizer_ph, _ = TTSTokenizer.init_from_config(TokenizerConfig()) + tokenizer_ph.phonemizer.backend = "espeak" + text = "Bu bir ร–rnek." + text_ph = "" + self.ph.phonemize(text, separator="") + "" + ids = tokenizer_ph.text_to_ids(text) + test_hat = tokenizer_ph.ids_to_text(ids) + self.assertEqual(text_ph, test_hat) diff --git a/TTS/tests/tts_tests/__init__.py b/TTS/tests/tts_tests/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/TTS/tests/tts_tests/test_helpers.py b/TTS/tests/tts_tests/test_helpers.py new file mode 100644 index 0000000000000000000000000000000000000000..23bb440a0af77b443e847b1c80620887bef485bb --- /dev/null +++ b/TTS/tests/tts_tests/test_helpers.py @@ -0,0 +1,88 @@ +import torch as T + +from TTS.tts.utils.helpers import average_over_durations, generate_path, rand_segments, segment, sequence_mask + + +def average_over_durations_test(): # pylint: disable=no-self-use + pitch = T.rand(1, 1, 128) + + durations = T.randint(1, 5, (1, 21)) + coeff = 128.0 / durations.sum() + durations = T.floor(durations * coeff) + diff = 128.0 - durations.sum() + durations[0, -1] += diff + durations = durations.long() + + pitch_avg = average_over_durations(pitch, durations) + + index = 0 + for idx, dur in enumerate(durations[0]): + assert abs(pitch_avg[0, 0, idx] - pitch[0, 0, index : index + dur.item()].mean()) < 1e-5 + index += dur + + +def seqeunce_mask_test(): + lengths = T.randint(10, 15, (8,)) + mask = sequence_mask(lengths) + for i in range(8): + l = lengths[i].item() + assert mask[i, :l].sum() == l + assert mask[i, l:].sum() == 0 + + +def segment_test(): + x = T.range(0, 11) + x = x.repeat(8, 1).unsqueeze(1) + segment_ids = T.randint(0, 7, (8,)) + + segments = segment(x, segment_ids, segment_size=4) + for idx, start_indx in enumerate(segment_ids): + assert x[idx, :, start_indx : start_indx + 4].sum() == segments[idx, :, :].sum() + + try: + segments = segment(x, segment_ids, segment_size=10) + raise Exception("Should have failed") + except: + pass + + segments = segment(x, segment_ids, segment_size=10, pad_short=True) + for idx, start_indx in enumerate(segment_ids): + assert x[idx, :, start_indx : start_indx + 10].sum() == segments[idx, :, :].sum() + + +def rand_segments_test(): + x = T.rand(2, 3, 4) + x_lens = T.randint(3, 4, (2,)) + segments, seg_idxs = rand_segments(x, x_lens, segment_size=3) + assert segments.shape == (2, 3, 3) + assert all(seg_idxs >= 0), seg_idxs + try: + segments, _ = rand_segments(x, x_lens, segment_size=5) + raise Exception("Should have failed") + except: + pass + x_lens_back = x_lens.clone() + segments, seg_idxs = rand_segments(x, x_lens.clone(), segment_size=5, pad_short=True, let_short_samples=True) + assert segments.shape == (2, 3, 5) + assert all(seg_idxs >= 0), seg_idxs + assert all(x_lens_back == x_lens) + + +def generate_path_test(): + durations = T.randint(1, 4, (10, 21)) + x_length = T.randint(18, 22, (10,)) + x_mask = sequence_mask(x_length).unsqueeze(1).long() + durations = durations * x_mask.squeeze(1) + y_length = durations.sum(1) + y_mask = sequence_mask(y_length).unsqueeze(1).long() + attn_mask = (T.unsqueeze(x_mask, -1) * T.unsqueeze(y_mask, 2)).squeeze(1).long() + print(attn_mask.shape) + path = generate_path(durations, attn_mask) + assert path.shape == (10, 21, durations.sum(1).max().item()) + for b in range(durations.shape[0]): + current_idx = 0 + for t in range(durations.shape[1]): + assert all(path[b, t, current_idx : current_idx + durations[b, t].item()] == 1.0) + assert all(path[b, t, :current_idx] == 0.0) + assert all(path[b, t, current_idx + durations[b, t].item() :] == 0.0) + current_idx += durations[b, t].item() diff --git a/TTS/tests/tts_tests/test_losses.py b/TTS/tests/tts_tests/test_losses.py new file mode 100644 index 0000000000000000000000000000000000000000..522b7bb17ca59ee62d2b1de7245a3eab91339417 --- /dev/null +++ b/TTS/tests/tts_tests/test_losses.py @@ -0,0 +1,239 @@ +import unittest + +import torch as T + +from TTS.tts.layers.losses import BCELossMasked, L1LossMasked, MSELossMasked, SSIMLoss +from TTS.tts.utils.helpers import sequence_mask + + +class L1LossMaskedTests(unittest.TestCase): + def test_in_out(self): # pylint: disable=no-self-use + # test input == target + layer = L1LossMasked(seq_len_norm=False) + dummy_input = T.ones(4, 8, 128).float() + dummy_target = T.ones(4, 8, 128).float() + dummy_length = (T.ones(4) * 8).long() + output = layer(dummy_input, dummy_target, dummy_length) + assert output.item() == 0.0 + + # test input != target + dummy_input = T.ones(4, 8, 128).float() + dummy_target = T.zeros(4, 8, 128).float() + dummy_length = (T.ones(4) * 8).long() + output = layer(dummy_input, dummy_target, dummy_length) + assert output.item() == 1.0, "1.0 vs {}".format(output.item()) + + # test if padded values of input makes any difference + dummy_input = T.ones(4, 8, 128).float() + dummy_target = T.zeros(4, 8, 128).float() + dummy_length = (T.arange(5, 9)).long() + mask = ((sequence_mask(dummy_length).float() - 1.0) * 100.0).unsqueeze(2) + output = layer(dummy_input + mask, dummy_target, dummy_length) + assert output.item() == 1.0, "1.0 vs {}".format(output.item()) + + dummy_input = T.rand(4, 8, 128).float() + dummy_target = dummy_input.detach() + dummy_length = (T.arange(5, 9)).long() + mask = ((sequence_mask(dummy_length).float() - 1.0) * 100.0).unsqueeze(2) + output = layer(dummy_input + mask, dummy_target, dummy_length) + assert output.item() == 0, "0 vs {}".format(output.item()) + + # seq_len_norm = True + # test input == target + layer = L1LossMasked(seq_len_norm=True) + dummy_input = T.ones(4, 8, 128).float() + dummy_target = T.ones(4, 8, 128).float() + dummy_length = (T.ones(4) * 8).long() + output = layer(dummy_input, dummy_target, dummy_length) + assert output.item() == 0.0 + + # test input != target + dummy_input = T.ones(4, 8, 128).float() + dummy_target = T.zeros(4, 8, 128).float() + dummy_length = (T.ones(4) * 8).long() + output = layer(dummy_input, dummy_target, dummy_length) + assert output.item() == 1.0, "1.0 vs {}".format(output.item()) + + # test if padded values of input makes any difference + dummy_input = T.ones(4, 8, 128).float() + dummy_target = T.zeros(4, 8, 128).float() + dummy_length = (T.arange(5, 9)).long() + mask = ((sequence_mask(dummy_length).float() - 1.0) * 100.0).unsqueeze(2) + output = layer(dummy_input + mask, dummy_target, dummy_length) + assert abs(output.item() - 1.0) < 1e-5, "1.0 vs {}".format(output.item()) + + dummy_input = T.rand(4, 8, 128).float() + dummy_target = dummy_input.detach() + dummy_length = (T.arange(5, 9)).long() + mask = ((sequence_mask(dummy_length).float() - 1.0) * 100.0).unsqueeze(2) + output = layer(dummy_input + mask, dummy_target, dummy_length) + assert output.item() == 0, "0 vs {}".format(output.item()) + + +class MSELossMaskedTests(unittest.TestCase): + def test_in_out(self): # pylint: disable=no-self-use + # test input == target + layer = MSELossMasked(seq_len_norm=False) + dummy_input = T.ones(4, 8, 128).float() + dummy_target = T.ones(4, 8, 128).float() + dummy_length = (T.ones(4) * 8).long() + output = layer(dummy_input, dummy_target, dummy_length) + assert output.item() == 0.0 + + # test input != target + dummy_input = T.ones(4, 8, 128).float() + dummy_target = T.zeros(4, 8, 128).float() + dummy_length = (T.ones(4) * 8).long() + output = layer(dummy_input, dummy_target, dummy_length) + assert output.item() == 1.0, "1.0 vs {}".format(output.item()) + + # test if padded values of input makes any difference + dummy_input = T.ones(4, 8, 128).float() + dummy_target = T.zeros(4, 8, 128).float() + dummy_length = (T.arange(5, 9)).long() + mask = ((sequence_mask(dummy_length).float() - 1.0) * 100.0).unsqueeze(2) + output = layer(dummy_input + mask, dummy_target, dummy_length) + assert output.item() == 1.0, "1.0 vs {}".format(output.item()) + + dummy_input = T.rand(4, 8, 128).float() + dummy_target = dummy_input.detach() + dummy_length = (T.arange(5, 9)).long() + mask = ((sequence_mask(dummy_length).float() - 1.0) * 100.0).unsqueeze(2) + output = layer(dummy_input + mask, dummy_target, dummy_length) + assert output.item() == 0, "0 vs {}".format(output.item()) + + # seq_len_norm = True + # test input == target + layer = MSELossMasked(seq_len_norm=True) + dummy_input = T.ones(4, 8, 128).float() + dummy_target = T.ones(4, 8, 128).float() + dummy_length = (T.ones(4) * 8).long() + output = layer(dummy_input, dummy_target, dummy_length) + assert output.item() == 0.0 + + # test input != target + dummy_input = T.ones(4, 8, 128).float() + dummy_target = T.zeros(4, 8, 128).float() + dummy_length = (T.ones(4) * 8).long() + output = layer(dummy_input, dummy_target, dummy_length) + assert output.item() == 1.0, "1.0 vs {}".format(output.item()) + + # test if padded values of input makes any difference + dummy_input = T.ones(4, 8, 128).float() + dummy_target = T.zeros(4, 8, 128).float() + dummy_length = (T.arange(5, 9)).long() + mask = ((sequence_mask(dummy_length).float() - 1.0) * 100.0).unsqueeze(2) + output = layer(dummy_input + mask, dummy_target, dummy_length) + assert abs(output.item() - 1.0) < 1e-5, "1.0 vs {}".format(output.item()) + + dummy_input = T.rand(4, 8, 128).float() + dummy_target = dummy_input.detach() + dummy_length = (T.arange(5, 9)).long() + mask = ((sequence_mask(dummy_length).float() - 1.0) * 100.0).unsqueeze(2) + output = layer(dummy_input + mask, dummy_target, dummy_length) + assert output.item() == 0, "0 vs {}".format(output.item()) + + +class SSIMLossTests(unittest.TestCase): + def test_in_out(self): # pylint: disable=no-self-use + # test input == target + layer = SSIMLoss() + dummy_input = T.ones(4, 57, 128).float() + dummy_target = T.ones(4, 57, 128).float() + dummy_length = (T.ones(4) * 8).long() + output = layer(dummy_input, dummy_target, dummy_length) + assert output.item() == 0.0 + + # test input != target + dummy_input = T.arange(0, 4 * 57 * 128) + dummy_input = dummy_input.reshape(4, 57, 128).float() + dummy_target = T.arange(-4 * 57 * 128, 0) + dummy_target = dummy_target.reshape(4, 57, 128).float() + dummy_target = -dummy_target + + dummy_length = (T.ones(4) * 58).long() + output = layer(dummy_input, dummy_target, dummy_length) + assert output.item() >= 1.0, "0 vs {}".format(output.item()) + + # test if padded values of input makes any difference + dummy_input = T.ones(4, 57, 128).float() + dummy_target = T.zeros(4, 57, 128).float() + dummy_length = (T.arange(54, 58)).long() + mask = ((sequence_mask(dummy_length).float() - 1.0) * 100.0).unsqueeze(2) + output = layer(dummy_input + mask, dummy_target, dummy_length) + assert output.item() == 0.0 + + dummy_input = T.rand(4, 57, 128).float() + dummy_target = dummy_input.detach() + dummy_length = (T.arange(54, 58)).long() + mask = ((sequence_mask(dummy_length).float() - 1.0) * 100.0).unsqueeze(2) + output = layer(dummy_input + mask, dummy_target, dummy_length) + assert output.item() == 0, "0 vs {}".format(output.item()) + + # seq_len_norm = True + # test input == target + layer = L1LossMasked(seq_len_norm=True) + dummy_input = T.ones(4, 57, 128).float() + dummy_target = T.ones(4, 57, 128).float() + dummy_length = (T.ones(4) * 8).long() + output = layer(dummy_input, dummy_target, dummy_length) + assert output.item() == 0.0 + + # test input != target + dummy_input = T.ones(4, 57, 128).float() + dummy_target = T.zeros(4, 57, 128).float() + dummy_length = (T.ones(4) * 8).long() + output = layer(dummy_input, dummy_target, dummy_length) + assert output.item() == 1.0, "1.0 vs {}".format(output.item()) + + # test if padded values of input makes any difference + dummy_input = T.ones(4, 57, 128).float() + dummy_target = T.zeros(4, 57, 128).float() + dummy_length = (T.arange(54, 58)).long() + mask = ((sequence_mask(dummy_length).float() - 1.0) * 100.0).unsqueeze(2) + output = layer(dummy_input + mask, dummy_target, dummy_length) + assert abs(output.item() - 1.0) < 1e-5, "1.0 vs {}".format(output.item()) + + dummy_input = T.rand(4, 57, 128).float() + dummy_target = dummy_input.detach() + dummy_length = (T.arange(54, 58)).long() + mask = ((sequence_mask(dummy_length).float() - 1.0) * 100.0).unsqueeze(2) + output = layer(dummy_input + mask, dummy_target, dummy_length) + assert output.item() == 0, "0 vs {}".format(output.item()) + + +class BCELossTest(unittest.TestCase): + def test_in_out(self): # pylint: disable=no-self-use + layer = BCELossMasked(pos_weight=5.0) + + length = T.tensor([95]) + target = ( + 1.0 - sequence_mask(length - 1, 100).float() + ) # [0, 0, .... 1, 1] where the first 1 is the last mel frame + true_x = target * 200 - 100 # creates logits of [-100, -100, ... 100, 100] corresponding to target + zero_x = T.zeros(target.shape) - 100.0 # simulate logits if it never stops decoding + early_x = -200.0 * sequence_mask(length - 3, 100).float() + 100.0 # simulate logits on early stopping + late_x = -200.0 * sequence_mask(length + 1, 100).float() + 100.0 # simulate logits on late stopping + + loss = layer(true_x, target, length) + self.assertEqual(loss.item(), 0.0) + + loss = layer(early_x, target, length) + self.assertAlmostEqual(loss.item(), 2.1053, places=4) + + loss = layer(late_x, target, length) + self.assertAlmostEqual(loss.item(), 5.2632, places=4) + + loss = layer(zero_x, target, length) + self.assertAlmostEqual(loss.item(), 5.2632, places=4) + + # pos_weight should be < 1 to penalize early stopping + layer = BCELossMasked(pos_weight=0.2) + loss = layer(true_x, target, length) + self.assertEqual(loss.item(), 0.0) + + # when pos_weight < 1 overweight the early stopping loss + + loss_early = layer(early_x, target, length) + loss_late = layer(late_x, target, length) + self.assertGreater(loss_early.item(), loss_late.item()) diff --git a/TTS/tests/tts_tests/test_neuralhmm_tts_train.py b/TTS/tests/tts_tests/test_neuralhmm_tts_train.py new file mode 100644 index 0000000000000000000000000000000000000000..25d9aa8148aff95a75aad823eb8d7bff13f09e12 --- /dev/null +++ b/TTS/tests/tts_tests/test_neuralhmm_tts_train.py @@ -0,0 +1,92 @@ +import glob +import json +import os +import shutil + +import torch +from trainer import get_last_checkpoint + +from tests import get_device_id, get_tests_output_path, run_cli +from TTS.tts.configs.neuralhmm_tts_config import NeuralhmmTTSConfig + +config_path = os.path.join(get_tests_output_path(), "test_model_config.json") +output_path = os.path.join(get_tests_output_path(), "train_outputs") +parameter_path = os.path.join(get_tests_output_path(), "lj_parameters.pt") + +torch.save({"mean": -5.5138, "std": 2.0636, "init_transition_prob": 0.3212}, parameter_path) + +config = NeuralhmmTTSConfig( + batch_size=3, + eval_batch_size=3, + num_loader_workers=0, + num_eval_loader_workers=0, + text_cleaner="phoneme_cleaners", + use_phonemes=True, + phoneme_language="en-us", + phoneme_cache_path=os.path.join(get_tests_output_path(), "train_outputs/phoneme_cache/"), + run_eval=True, + test_delay_epochs=-1, + mel_statistics_parameter_path=parameter_path, + epochs=1, + print_step=1, + test_sentences=[ + "Be a voice, not an echo.", + ], + print_eval=True, + max_sampling_time=50, +) +config.audio.do_trim_silence = True +config.audio.trim_db = 60 +config.save_json(config_path) + + +# train the model for one epoch when mel parameters exists +command_train = ( + f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --config_path {config_path} " + f"--coqpit.output_path {output_path} " + "--coqpit.datasets.0.formatter ljspeech " + "--coqpit.datasets.0.meta_file_train metadata.csv " + "--coqpit.datasets.0.meta_file_val metadata.csv " + "--coqpit.datasets.0.path tests/data/ljspeech " + "--coqpit.test_delay_epochs 0 " +) +run_cli(command_train) + + +# train the model for one epoch when mel parameters have to be computed from the dataset +if os.path.exists(parameter_path): + os.remove(parameter_path) +command_train = ( + f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --config_path {config_path} " + f"--coqpit.output_path {output_path} " + "--coqpit.datasets.0.formatter ljspeech " + "--coqpit.datasets.0.meta_file_train metadata.csv " + "--coqpit.datasets.0.meta_file_val metadata.csv " + "--coqpit.datasets.0.path tests/data/ljspeech " + "--coqpit.test_delay_epochs 0 " +) +run_cli(command_train) + +# Find latest folder +continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime) + +# Inference using TTS API +continue_config_path = os.path.join(continue_path, "config.json") +continue_restore_path, _ = get_last_checkpoint(continue_path) +out_wav_path = os.path.join(get_tests_output_path(), "output.wav") + +# Check integrity of the config +with open(continue_config_path, "r", encoding="utf-8") as f: + config_loaded = json.load(f) +assert config_loaded["characters"] is not None +assert config_loaded["output_path"] in continue_path +assert config_loaded["test_delay_epochs"] == 0 + +# Load the model and run inference +inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}" +run_cli(inference_command) + +# restore the model and continue training for one more epoch +command_train = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --continue_path {continue_path} " +run_cli(command_train) +shutil.rmtree(continue_path) diff --git a/TTS/tests/tts_tests/test_overflow.py b/TTS/tests/tts_tests/test_overflow.py new file mode 100644 index 0000000000000000000000000000000000000000..01c447198f1bc0ebd4f330299d3387c9911fd344 --- /dev/null +++ b/TTS/tests/tts_tests/test_overflow.py @@ -0,0 +1,399 @@ +import os +import random +import unittest +from copy import deepcopy + +import torch + +from tests import get_tests_output_path +from TTS.tts.configs.overflow_config import OverflowConfig +from TTS.tts.layers.overflow.common_layers import Encoder, Outputnet, OverflowUtils +from TTS.tts.layers.overflow.decoder import Decoder +from TTS.tts.layers.overflow.neural_hmm import EmissionModel, NeuralHMM, TransitionModel +from TTS.tts.models.overflow import Overflow +from TTS.tts.utils.helpers import sequence_mask +from TTS.utils.audio import AudioProcessor + +# pylint: disable=unused-variable + +torch.manual_seed(1) +use_cuda = torch.cuda.is_available() +device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") + +config_global = OverflowConfig(num_chars=24) +ap = AudioProcessor.init_from_config(config_global) + +config_path = os.path.join(get_tests_output_path(), "test_model_config.json") +output_path = os.path.join(get_tests_output_path(), "train_outputs") +parameter_path = os.path.join(get_tests_output_path(), "lj_parameters.pt") + +torch.save({"mean": -5.5138, "std": 2.0636, "init_transition_prob": 0.3212}, parameter_path) + + +def _create_inputs(batch_size=8): + max_len_t, max_len_m = random.randint(25, 50), random.randint(50, 80) + input_dummy = torch.randint(0, 24, (batch_size, max_len_t)).long().to(device) + input_lengths = torch.randint(20, max_len_t, (batch_size,)).long().to(device).sort(descending=True)[0] + input_lengths[0] = max_len_t + input_dummy = input_dummy * sequence_mask(input_lengths) + mel_spec = torch.randn(batch_size, max_len_m, config_global.audio["num_mels"]).to(device) + mel_lengths = torch.randint(40, max_len_m, (batch_size,)).long().to(device).sort(descending=True)[0] + mel_lengths[0] = max_len_m + mel_spec = mel_spec * sequence_mask(mel_lengths).unsqueeze(2) + return input_dummy, input_lengths, mel_spec, mel_lengths + + +def get_model(config=None): + if config is None: + config = config_global + config.mel_statistics_parameter_path = parameter_path + model = Overflow(config) + model = model.to(device) + return model + + +def reset_all_weights(model): + """ + refs: + - https://discuss.pytorch.org/t/how-to-re-set-alll-parameters-in-a-network/20819/6 + - https://stackoverflow.com/questions/63627997/reset-parameters-of-a-neural-network-in-pytorch + - https://pytorch.org/docs/stable/generated/torch.nn.Module.html + """ + + @torch.no_grad() + def weight_reset(m): + # - check if the current module has reset_parameters & if it's callabed called it on m + reset_parameters = getattr(m, "reset_parameters", None) + if callable(reset_parameters): + m.reset_parameters() + + # Applies fn recursively to every submodule see: https://pytorch.org/docs/stable/generated/torch.nn.Module.html + model.apply(fn=weight_reset) + + +class TestOverflow(unittest.TestCase): + def test_forward(self): + model = get_model() + input_dummy, input_lengths, mel_spec, mel_lengths = _create_inputs() + outputs = model(input_dummy, input_lengths, mel_spec, mel_lengths) + self.assertEqual(outputs["log_probs"].shape, (input_dummy.shape[0],)) + self.assertEqual(model.state_per_phone * max(input_lengths), outputs["alignments"].shape[2]) + + def test_inference(self): + model = get_model() + input_dummy, input_lengths, mel_spec, mel_lengths = _create_inputs() + output_dict = model.inference(input_dummy) + self.assertEqual(output_dict["model_outputs"].shape[2], config_global.out_channels) + + def test_init_from_config(self): + config = deepcopy(config_global) + config.mel_statistics_parameter_path = parameter_path + config.prenet_dim = 256 + model = Overflow.init_from_config(config_global) + self.assertEqual(model.prenet_dim, config.prenet_dim) + + +class TestOverflowEncoder(unittest.TestCase): + @staticmethod + def get_encoder(state_per_phone): + config = deepcopy(config_global) + config.state_per_phone = state_per_phone + config.num_chars = 24 + return Encoder(config.num_chars, config.state_per_phone, config.prenet_dim, config.encoder_n_convolutions).to( + device + ) + + def test_forward_with_state_per_phone_multiplication(self): + for s_p_p in [1, 2, 3]: + input_dummy, input_lengths, _, _ = _create_inputs() + model = self.get_encoder(s_p_p) + x, x_len = model(input_dummy, input_lengths) + self.assertEqual(x.shape[1], input_dummy.shape[1] * s_p_p) + + def test_inference_with_state_per_phone_multiplication(self): + for s_p_p in [1, 2, 3]: + input_dummy, input_lengths, _, _ = _create_inputs() + model = self.get_encoder(s_p_p) + x, x_len = model.inference(input_dummy, input_lengths) + self.assertEqual(x.shape[1], input_dummy.shape[1] * s_p_p) + + +class TestOverflowUtils(unittest.TestCase): + def test_logsumexp(self): + a = torch.randn(10) # random numbers + self.assertTrue(torch.eq(torch.logsumexp(a, dim=0), OverflowUtils.logsumexp(a, dim=0)).all()) + + a = torch.zeros(10) # all zeros + self.assertTrue(torch.eq(torch.logsumexp(a, dim=0), OverflowUtils.logsumexp(a, dim=0)).all()) + + a = torch.ones(10) # all ones + self.assertTrue(torch.eq(torch.logsumexp(a, dim=0), OverflowUtils.logsumexp(a, dim=0)).all()) + + +class TestOverflowDecoder(unittest.TestCase): + @staticmethod + def _get_decoder(num_flow_blocks_dec=None, hidden_channels_dec=None, reset_weights=True): + config = deepcopy(config_global) + config.num_flow_blocks_dec = ( + num_flow_blocks_dec if num_flow_blocks_dec is not None else config.num_flow_blocks_dec + ) + config.hidden_channels_dec = ( + hidden_channels_dec if hidden_channels_dec is not None else config.hidden_channels_dec + ) + config.dropout_p_dec = 0.0 # turn off dropout to check invertibility + decoder = Decoder( + config.out_channels, + config.hidden_channels_dec, + config.kernel_size_dec, + config.dilation_rate, + config.num_flow_blocks_dec, + config.num_block_layers, + config.dropout_p_dec, + config.num_splits, + config.num_squeeze, + config.sigmoid_scale, + config.c_in_channels, + ).to(device) + if reset_weights: + reset_all_weights(decoder) + return decoder + + def test_decoder_forward_backward(self): + for num_flow_blocks_dec in [8, None]: + for hidden_channels_dec in [100, None]: + decoder = self._get_decoder(num_flow_blocks_dec, hidden_channels_dec) + _, _, mel_spec, mel_lengths = _create_inputs() + z, z_len, _ = decoder(mel_spec.transpose(1, 2), mel_lengths) + mel_spec_, mel_lengths_, _ = decoder(z, z_len, reverse=True) + mask = sequence_mask(z_len).unsqueeze(1) + mel_spec = mel_spec[:, : z.shape[2], :].transpose(1, 2) * mask + z = z * mask + self.assertTrue( + torch.isclose(mel_spec, mel_spec_, atol=1e-2).all(), + f"num_flow_blocks_dec={num_flow_blocks_dec}, hidden_channels_dec={hidden_channels_dec}", + ) + + +class TestNeuralHMM(unittest.TestCase): + @staticmethod + def _get_neural_hmm(deterministic_transition=None): + config = deepcopy(config_global) + neural_hmm = NeuralHMM( + config.out_channels, + config.ar_order, + config.deterministic_transition if deterministic_transition is None else deterministic_transition, + config.encoder_in_out_features, + config.prenet_type, + config.prenet_dim, + config.prenet_n_layers, + config.prenet_dropout, + config.prenet_dropout_at_inference, + config.memory_rnn_dim, + config.outputnet_size, + config.flat_start_params, + config.std_floor, + ).to(device) + return neural_hmm + + @staticmethod + def _get_emission_model(): + return EmissionModel().to(device) + + @staticmethod + def _get_transition_model(): + return TransitionModel().to(device) + + @staticmethod + def _get_embedded_input(): + input_dummy, input_lengths, mel_spec, mel_lengths = _create_inputs() + input_dummy = torch.nn.Embedding(config_global.num_chars, config_global.encoder_in_out_features).to(device)( + input_dummy + ) + return input_dummy, input_lengths, mel_spec, mel_lengths + + def test_neural_hmm_forward(self): + input_dummy, input_lengths, mel_spec, mel_lengths = self._get_embedded_input() + neural_hmm = self._get_neural_hmm() + log_prob, log_alpha_scaled, transition_matrix, means = neural_hmm( + input_dummy, input_lengths, mel_spec.transpose(1, 2), mel_lengths + ) + self.assertEqual(log_prob.shape, (input_dummy.shape[0],)) + self.assertEqual(log_alpha_scaled.shape, transition_matrix.shape) + + def test_mask_lengths(self): + input_dummy, input_lengths, mel_spec, mel_lengths = self._get_embedded_input() + neural_hmm = self._get_neural_hmm() + log_prob, log_alpha_scaled, transition_matrix, means = neural_hmm( + input_dummy, input_lengths, mel_spec.transpose(1, 2), mel_lengths + ) + log_c = torch.randn(mel_spec.shape[0], mel_spec.shape[1], device=device) + log_c, log_alpha_scaled = neural_hmm._mask_lengths( # pylint: disable=protected-access + mel_lengths, log_c, log_alpha_scaled + ) + assertions = [] + for i in range(mel_spec.shape[0]): + assertions.append(log_c[i, mel_lengths[i] :].sum() == 0.0) + self.assertTrue(all(assertions), "Incorrect masking") + assertions = [] + for i in range(mel_spec.shape[0]): + assertions.append(log_alpha_scaled[i, mel_lengths[i] :, : input_lengths[i]].sum() == 0.0) + self.assertTrue(all(assertions), "Incorrect masking") + + def test_process_ar_timestep(self): + model = self._get_neural_hmm() + input_dummy, input_lengths, mel_spec, mel_lengths = self._get_embedded_input() + + h_post_prenet, c_post_prenet = model._init_lstm_states( # pylint: disable=protected-access + input_dummy.shape[0], config_global.memory_rnn_dim, mel_spec + ) + h_post_prenet, c_post_prenet = model._process_ar_timestep( # pylint: disable=protected-access + 1, + mel_spec, + h_post_prenet, + c_post_prenet, + ) + + self.assertEqual(h_post_prenet.shape, (input_dummy.shape[0], config_global.memory_rnn_dim)) + self.assertEqual(c_post_prenet.shape, (input_dummy.shape[0], config_global.memory_rnn_dim)) + + def test_add_go_token(self): + model = self._get_neural_hmm() + input_dummy, input_lengths, mel_spec, mel_lengths = self._get_embedded_input() + + out = model._add_go_token(mel_spec) # pylint: disable=protected-access + self.assertEqual(out.shape, mel_spec.shape) + self.assertTrue((out[:, 1:] == mel_spec[:, :-1]).all(), "Go token not appended properly") + + def test_forward_algorithm_variables(self): + model = self._get_neural_hmm() + input_dummy, input_lengths, mel_spec, mel_lengths = self._get_embedded_input() + + ( + log_c, + log_alpha_scaled, + transition_matrix, + _, + ) = model._initialize_forward_algorithm_variables( # pylint: disable=protected-access + mel_spec, input_dummy.shape[1] * config_global.state_per_phone + ) + + self.assertEqual(log_c.shape, (mel_spec.shape[0], mel_spec.shape[1])) + self.assertEqual( + log_alpha_scaled.shape, + ( + mel_spec.shape[0], + mel_spec.shape[1], + input_dummy.shape[1] * config_global.state_per_phone, + ), + ) + self.assertEqual( + transition_matrix.shape, + (mel_spec.shape[0], mel_spec.shape[1], input_dummy.shape[1] * config_global.state_per_phone), + ) + + def test_get_absorption_state_scaling_factor(self): + model = self._get_neural_hmm() + input_dummy, input_lengths, mel_spec, mel_lengths = self._get_embedded_input() + input_lengths = input_lengths * config_global.state_per_phone + ( + log_c, + log_alpha_scaled, + transition_matrix, + _, + ) = model._initialize_forward_algorithm_variables( # pylint: disable=protected-access + mel_spec, input_dummy.shape[1] * config_global.state_per_phone + ) + log_alpha_scaled = torch.rand_like(log_alpha_scaled).clamp(1e-3) + transition_matrix = torch.randn_like(transition_matrix).sigmoid().log() + sum_final_log_c = model.get_absorption_state_scaling_factor( + mel_lengths, log_alpha_scaled, input_lengths, transition_matrix + ) + + text_mask = ~sequence_mask(input_lengths) + transition_prob_mask = ~model.get_mask_for_last_item(input_lengths, device=input_lengths.device) + + outputs = [] + + for i in range(input_dummy.shape[0]): + last_log_alpha_scaled = log_alpha_scaled[i, mel_lengths[i] - 1].masked_fill(text_mask[i], -float("inf")) + log_last_transition_probability = OverflowUtils.log_clamped( + torch.sigmoid(transition_matrix[i, mel_lengths[i] - 1]) + ).masked_fill(transition_prob_mask[i], -float("inf")) + outputs.append(last_log_alpha_scaled + log_last_transition_probability) + + sum_final_log_c_computed = torch.logsumexp(torch.stack(outputs), dim=1) + + self.assertTrue(torch.isclose(sum_final_log_c_computed, sum_final_log_c).all()) + + def test_inference(self): + model = self._get_neural_hmm() + input_dummy, input_lengths, mel_spec, mel_lengths = self._get_embedded_input() + for temp in [0.334, 0.667, 1.0]: + outputs = model.inference( + input_dummy, input_lengths, temp, config_global.max_sampling_time, config_global.duration_threshold + ) + self.assertEqual(outputs["hmm_outputs"].shape[-1], outputs["input_parameters"][0][0][0].shape[-1]) + self.assertEqual( + outputs["output_parameters"][0][0][0].shape[-1], outputs["input_parameters"][0][0][0].shape[-1] + ) + self.assertEqual(len(outputs["alignments"]), input_dummy.shape[0]) + + def test_emission_model(self): + model = self._get_emission_model() + input_dummy, input_lengths, mel_spec, mel_lengths = self._get_embedded_input() + x_t = torch.randn(input_dummy.shape[0], config_global.out_channels).to(device) + means = torch.randn(input_dummy.shape[0], input_dummy.shape[1], config_global.out_channels).to(device) + std = torch.rand_like(means).to(device).clamp_(1e-3) # std should be positive + out = model(x_t, means, std, input_lengths) + self.assertEqual(out.shape, (input_dummy.shape[0], input_dummy.shape[1])) + + # testing sampling + for temp in [0, 0.334, 0.667]: + out = model.sample(means, std, 0) + self.assertEqual(out.shape, means.shape) + if temp == 0: + self.assertTrue(torch.isclose(out, means).all()) + + def test_transition_model(self): + model = self._get_transition_model() + input_dummy, input_lengths, mel_spec, mel_lengths = self._get_embedded_input() + prev_t_log_scaled_alph = torch.randn(input_dummy.shape[0], input_lengths.max()).to(device) + transition_vector = torch.randn(input_lengths.max()).to(device) + out = model(prev_t_log_scaled_alph, transition_vector, input_lengths) + self.assertEqual(out.shape, (input_dummy.shape[0], input_lengths.max())) + + +class TestOverflowOutputNet(unittest.TestCase): + @staticmethod + def _get_outputnet(): + config = deepcopy(config_global) + outputnet = Outputnet( + config.encoder_in_out_features, + config.memory_rnn_dim, + config.out_channels, + config.outputnet_size, + config.flat_start_params, + config.std_floor, + ).to(device) + return outputnet + + @staticmethod + def _get_embedded_input(): + input_dummy, input_lengths, mel_spec, mel_lengths = _create_inputs() + input_dummy = torch.nn.Embedding(config_global.num_chars, config_global.encoder_in_out_features).to(device)( + input_dummy + ) + one_timestep_frame = torch.randn(input_dummy.shape[0], config_global.memory_rnn_dim).to(device) + return input_dummy, one_timestep_frame + + def test_outputnet_forward_with_flat_start(self): + model = self._get_outputnet() + input_dummy, one_timestep_frame = self._get_embedded_input() + mean, std, transition_vector = model(one_timestep_frame, input_dummy) + self.assertTrue(torch.isclose(mean, torch.tensor(model.flat_start_params["mean"] * 1.0)).all()) + self.assertTrue(torch.isclose(std, torch.tensor(model.flat_start_params["std"] * 1.0)).all()) + self.assertTrue( + torch.isclose( + transition_vector.sigmoid(), torch.tensor(model.flat_start_params["transition_p"] * 1.0) + ).all() + ) diff --git a/TTS/tests/tts_tests/test_overflow_train.py b/TTS/tests/tts_tests/test_overflow_train.py new file mode 100644 index 0000000000000000000000000000000000000000..86fa60af72b7cda704aa6e1618793f2d52d463af --- /dev/null +++ b/TTS/tests/tts_tests/test_overflow_train.py @@ -0,0 +1,92 @@ +import glob +import json +import os +import shutil + +import torch +from trainer import get_last_checkpoint + +from tests import get_device_id, get_tests_output_path, run_cli +from TTS.tts.configs.overflow_config import OverflowConfig + +config_path = os.path.join(get_tests_output_path(), "test_model_config.json") +output_path = os.path.join(get_tests_output_path(), "train_outputs") +parameter_path = os.path.join(get_tests_output_path(), "lj_parameters.pt") + +torch.save({"mean": -5.5138, "std": 2.0636, "init_transition_prob": 0.3212}, parameter_path) + +config = OverflowConfig( + batch_size=3, + eval_batch_size=3, + num_loader_workers=0, + num_eval_loader_workers=0, + text_cleaner="phoneme_cleaners", + use_phonemes=True, + phoneme_language="en-us", + phoneme_cache_path=os.path.join(get_tests_output_path(), "train_outputs/phoneme_cache/"), + run_eval=True, + test_delay_epochs=-1, + mel_statistics_parameter_path=parameter_path, + epochs=1, + print_step=1, + test_sentences=[ + "Be a voice, not an echo.", + ], + print_eval=True, + max_sampling_time=50, +) +config.audio.do_trim_silence = True +config.audio.trim_db = 60 +config.save_json(config_path) + + +# train the model for one epoch when mel parameters exists +command_train = ( + f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --config_path {config_path} " + f"--coqpit.output_path {output_path} " + "--coqpit.datasets.0.formatter ljspeech " + "--coqpit.datasets.0.meta_file_train metadata.csv " + "--coqpit.datasets.0.meta_file_val metadata.csv " + "--coqpit.datasets.0.path tests/data/ljspeech " + "--coqpit.test_delay_epochs 0 " +) +run_cli(command_train) + + +# train the model for one epoch when mel parameters have to be computed from the dataset +if os.path.exists(parameter_path): + os.remove(parameter_path) +command_train = ( + f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --config_path {config_path} " + f"--coqpit.output_path {output_path} " + "--coqpit.datasets.0.formatter ljspeech " + "--coqpit.datasets.0.meta_file_train metadata.csv " + "--coqpit.datasets.0.meta_file_val metadata.csv " + "--coqpit.datasets.0.path tests/data/ljspeech " + "--coqpit.test_delay_epochs 0 " +) +run_cli(command_train) + +# Find latest folder +continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime) + +# Inference using TTS API +continue_config_path = os.path.join(continue_path, "config.json") +continue_restore_path, _ = get_last_checkpoint(continue_path) +out_wav_path = os.path.join(get_tests_output_path(), "output.wav") + +# Check integrity of the config +with open(continue_config_path, "r", encoding="utf-8") as f: + config_loaded = json.load(f) +assert config_loaded["characters"] is not None +assert config_loaded["output_path"] in continue_path +assert config_loaded["test_delay_epochs"] == 0 + +# Load the model and run inference +inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}" +run_cli(inference_command) + +# restore the model and continue training for one more epoch +command_train = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --continue_path {continue_path} " +run_cli(command_train) +shutil.rmtree(continue_path) diff --git a/TTS/tests/tts_tests/test_speedy_speech_train.py b/TTS/tests/tts_tests/test_speedy_speech_train.py new file mode 100644 index 0000000000000000000000000000000000000000..530781ef887d17a290b65810d0f3c5760217c920 --- /dev/null +++ b/TTS/tests/tts_tests/test_speedy_speech_train.py @@ -0,0 +1,72 @@ +import glob +import json +import os +import shutil + +from trainer import get_last_checkpoint + +from tests import get_device_id, get_tests_output_path, run_cli +from TTS.tts.configs.speedy_speech_config import SpeedySpeechConfig + +config_path = os.path.join(get_tests_output_path(), "test_speedy_speech_config.json") +output_path = os.path.join(get_tests_output_path(), "train_outputs") + + +config = SpeedySpeechConfig( + batch_size=8, + eval_batch_size=8, + num_loader_workers=0, + num_eval_loader_workers=0, + text_cleaner="english_cleaners", + use_phonemes=True, + phoneme_language="en-us", + phoneme_cache_path="tests/data/ljspeech/phoneme_cache/", + run_eval=True, + test_delay_epochs=-1, + epochs=1, + print_step=1, + print_eval=True, + test_sentences=[ + "Be a voice, not an echo.", + ], +) +config.audio.do_trim_silence = True +config.audio.trim_db = 60 +config.save_json(config_path) + +# train the model for one epoch +command_train = ( + f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --config_path {config_path} " + f"--coqpit.output_path {output_path} " + "--coqpit.datasets.0.formatter ljspeech " + "--coqpit.datasets.0.meta_file_train metadata.csv " + "--coqpit.datasets.0.meta_file_val metadata.csv " + "--coqpit.datasets.0.path tests/data/ljspeech " + "--coqpit.datasets.0.meta_file_attn_mask tests/data/ljspeech/metadata_attn_mask.txt " + "--coqpit.test_delay_epochs 0" +) +run_cli(command_train) + +# Find latest folder +continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime) + +# Inference using TTS API +continue_config_path = os.path.join(continue_path, "config.json") +continue_restore_path, _ = get_last_checkpoint(continue_path) +out_wav_path = os.path.join(get_tests_output_path(), "output.wav") + +# Check integrity of the config +with open(continue_config_path, "r", encoding="utf-8") as f: + config_loaded = json.load(f) +assert config_loaded["characters"] is not None +assert config_loaded["output_path"] in continue_path +assert config_loaded["test_delay_epochs"] == 0 + +# Load the model and run inference +inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example for it.' --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}" +run_cli(inference_command) + +# restore the model and continue training for one more epoch +command_train = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --continue_path {continue_path} " +run_cli(command_train) +shutil.rmtree(continue_path) diff --git a/TTS/tests/tts_tests/test_tacotron2_d-vectors_train.py b/TTS/tests/tts_tests/test_tacotron2_d-vectors_train.py new file mode 100644 index 0000000000000000000000000000000000000000..99ba4349c48fcc10a352459d9d5d5f64c0b7a4de --- /dev/null +++ b/TTS/tests/tts_tests/test_tacotron2_d-vectors_train.py @@ -0,0 +1,79 @@ +import glob +import json +import os +import shutil + +from trainer import get_last_checkpoint + +from tests import get_device_id, get_tests_output_path, run_cli +from TTS.tts.configs.tacotron2_config import Tacotron2Config + +config_path = os.path.join(get_tests_output_path(), "test_model_config.json") +output_path = os.path.join(get_tests_output_path(), "train_outputs") + +config = Tacotron2Config( + r=5, + batch_size=8, + eval_batch_size=8, + num_loader_workers=0, + num_eval_loader_workers=0, + text_cleaner="english_cleaners", + use_phonemes=False, + phoneme_language="en-us", + phoneme_cache_path=os.path.join(get_tests_output_path(), "train_outputs/phoneme_cache/"), + run_eval=True, + test_delay_epochs=-1, + epochs=1, + print_step=1, + print_eval=True, + use_speaker_embedding=False, + use_d_vector_file=True, + test_sentences=[ + "Be a voice, not an echo.", + ], + d_vector_file="tests/data/ljspeech/speakers.json", + d_vector_dim=256, + max_decoder_steps=50, +) + +config.audio.do_trim_silence = True +config.audio.trim_db = 60 +config.save_json(config_path) + +# train the model for one epoch +command_train = ( + f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --config_path {config_path} " + f"--coqpit.output_path {output_path} " + "--coqpit.datasets.0.formatter ljspeech_test " + "--coqpit.datasets.0.meta_file_train metadata.csv " + "--coqpit.datasets.0.meta_file_val metadata.csv " + "--coqpit.datasets.0.path tests/data/ljspeech " + "--coqpit.test_delay_epochs 0 " +) +run_cli(command_train) + +# Find latest folder +continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime) + +# Inference using TTS API +continue_config_path = os.path.join(continue_path, "config.json") +continue_restore_path, _ = get_last_checkpoint(continue_path) +out_wav_path = os.path.join(get_tests_output_path(), "output.wav") +speaker_id = "ljspeech-1" +continue_speakers_path = config.d_vector_file + +# Check integrity of the config +with open(continue_config_path, "r", encoding="utf-8") as f: + config_loaded = json.load(f) +assert config_loaded["characters"] is not None +assert config_loaded["output_path"] in continue_path +assert config_loaded["test_delay_epochs"] == 0 + +# Load the model and run inference +inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --speaker_idx {speaker_id} --speakers_file_path {continue_speakers_path} --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}" +run_cli(inference_command) + +# restore the model and continue training for one more epoch +command_train = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --continue_path {continue_path} " +run_cli(command_train) +shutil.rmtree(continue_path) diff --git a/TTS/tests/tts_tests/test_tacotron2_model.py b/TTS/tests/tts_tests/test_tacotron2_model.py new file mode 100644 index 0000000000000000000000000000000000000000..b1bdeb9fd16536efe22c64f2309c46b7bae44e22 --- /dev/null +++ b/TTS/tests/tts_tests/test_tacotron2_model.py @@ -0,0 +1,390 @@ +import copy +import os +import unittest + +import torch +from torch import nn, optim + +from tests import get_tests_input_path +from TTS.tts.configs.shared_configs import CapacitronVAEConfig, GSTConfig +from TTS.tts.configs.tacotron2_config import Tacotron2Config +from TTS.tts.layers.losses import MSELossMasked +from TTS.tts.models.tacotron2 import Tacotron2 +from TTS.utils.audio import AudioProcessor + +# pylint: disable=unused-variable + +torch.manual_seed(1) +use_cuda = torch.cuda.is_available() +device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") + +config_global = Tacotron2Config(num_chars=32, num_speakers=5, out_channels=80, decoder_output_dim=80) + +ap = AudioProcessor(**config_global.audio) +WAV_FILE = os.path.join(get_tests_input_path(), "example_1.wav") + + +class TacotronTrainTest(unittest.TestCase): + """Test vanilla Tacotron2 model.""" + + def test_train_step(self): # pylint: disable=no-self-use + config = config_global.copy() + config.use_speaker_embedding = False + config.num_speakers = 1 + + input_dummy = torch.randint(0, 24, (8, 128)).long().to(device) + input_lengths = torch.randint(100, 128, (8,)).long().to(device) + input_lengths = torch.sort(input_lengths, descending=True)[0] + mel_spec = torch.rand(8, 30, config.audio["num_mels"]).to(device) + mel_postnet_spec = torch.rand(8, 30, config.audio["num_mels"]).to(device) + mel_lengths = torch.randint(20, 30, (8,)).long().to(device) + mel_lengths[0] = 30 + stop_targets = torch.zeros(8, 30, 1).float().to(device) + + for idx in mel_lengths: + stop_targets[:, int(idx.item()) :, 0] = 1.0 + + stop_targets = stop_targets.view(input_dummy.shape[0], stop_targets.size(1) // config.r, -1) + stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze() + + criterion = MSELossMasked(seq_len_norm=False).to(device) + criterion_st = nn.BCEWithLogitsLoss().to(device) + model = Tacotron2(config).to(device) + model.train() + model_ref = copy.deepcopy(model) + count = 0 + for param, param_ref in zip(model.parameters(), model_ref.parameters()): + assert (param - param_ref).sum() == 0, param + count += 1 + optimizer = optim.Adam(model.parameters(), lr=config.lr) + for i in range(5): + outputs = model.forward(input_dummy, input_lengths, mel_spec, mel_lengths) + assert torch.sigmoid(outputs["stop_tokens"]).data.max() <= 1.0 + assert torch.sigmoid(outputs["stop_tokens"]).data.min() >= 0.0 + optimizer.zero_grad() + loss = criterion(outputs["decoder_outputs"], mel_spec, mel_lengths) + stop_loss = criterion_st(outputs["stop_tokens"], stop_targets) + loss = loss + criterion(outputs["model_outputs"], mel_postnet_spec, mel_lengths) + stop_loss + loss.backward() + optimizer.step() + # check parameter changes + count = 0 + for param, param_ref in zip(model.parameters(), model_ref.parameters()): + # ignore pre-higway layer since it works conditional + # if count not in [145, 59]: + assert (param != param_ref).any(), "param {} with shape {} not updated!! \n{}\n{}".format( + count, param.shape, param, param_ref + ) + count += 1 + + +class MultiSpeakerTacotronTrainTest(unittest.TestCase): + """Test multi-speaker Tacotron2 with speaker embedding layer""" + + @staticmethod + def test_train_step(): + config = config_global.copy() + config.use_speaker_embedding = True + config.num_speakers = 5 + + input_dummy = torch.randint(0, 24, (8, 128)).long().to(device) + input_lengths = torch.randint(100, 128, (8,)).long().to(device) + input_lengths = torch.sort(input_lengths, descending=True)[0] + mel_spec = torch.rand(8, 30, config.audio["num_mels"]).to(device) + mel_postnet_spec = torch.rand(8, 30, config.audio["num_mels"]).to(device) + mel_lengths = torch.randint(20, 30, (8,)).long().to(device) + mel_lengths[0] = 30 + stop_targets = torch.zeros(8, 30, 1).float().to(device) + speaker_ids = torch.randint(0, 5, (8,)).long().to(device) + + for idx in mel_lengths: + stop_targets[:, int(idx.item()) :, 0] = 1.0 + + stop_targets = stop_targets.view(input_dummy.shape[0], stop_targets.size(1) // config.r, -1) + stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze() + + criterion = MSELossMasked(seq_len_norm=False).to(device) + criterion_st = nn.BCEWithLogitsLoss().to(device) + config.d_vector_dim = 55 + model = Tacotron2(config).to(device) + model.train() + model_ref = copy.deepcopy(model) + count = 0 + for param, param_ref in zip(model.parameters(), model_ref.parameters()): + assert (param - param_ref).sum() == 0, param + count += 1 + optimizer = optim.Adam(model.parameters(), lr=config.lr) + for _ in range(5): + outputs = model.forward( + input_dummy, input_lengths, mel_spec, mel_lengths, aux_input={"speaker_ids": speaker_ids} + ) + assert torch.sigmoid(outputs["stop_tokens"]).data.max() <= 1.0 + assert torch.sigmoid(outputs["stop_tokens"]).data.min() >= 0.0 + optimizer.zero_grad() + loss = criterion(outputs["decoder_outputs"], mel_spec, mel_lengths) + stop_loss = criterion_st(outputs["stop_tokens"], stop_targets) + loss = loss + criterion(outputs["model_outputs"], mel_postnet_spec, mel_lengths) + stop_loss + loss.backward() + optimizer.step() + # check parameter changes + count = 0 + for param, param_ref in zip(model.parameters(), model_ref.parameters()): + # ignore pre-higway layer since it works conditional + # if count not in [145, 59]: + assert (param != param_ref).any(), "param {} with shape {} not updated!! \n{}\n{}".format( + count, param.shape, param, param_ref + ) + count += 1 + + +class TacotronGSTTrainTest(unittest.TestCase): + """Test multi-speaker Tacotron2 with Global Style Token and Speaker Embedding""" + + # pylint: disable=no-self-use + def test_train_step(self): + # with random gst mel style + config = config_global.copy() + config.use_speaker_embedding = True + config.num_speakers = 10 + config.use_gst = True + config.gst = GSTConfig() + + input_dummy = torch.randint(0, 24, (8, 128)).long().to(device) + input_lengths = torch.randint(100, 128, (8,)).long().to(device) + input_lengths = torch.sort(input_lengths, descending=True)[0] + mel_spec = torch.rand(8, 30, config.audio["num_mels"]).to(device) + mel_postnet_spec = torch.rand(8, 30, config.audio["num_mels"]).to(device) + mel_lengths = torch.randint(20, 30, (8,)).long().to(device) + mel_lengths[0] = 30 + stop_targets = torch.zeros(8, 30, 1).float().to(device) + speaker_ids = torch.randint(0, 5, (8,)).long().to(device) + + for idx in mel_lengths: + stop_targets[:, int(idx.item()) :, 0] = 1.0 + + stop_targets = stop_targets.view(input_dummy.shape[0], stop_targets.size(1) // config.r, -1) + stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze() + + criterion = MSELossMasked(seq_len_norm=False).to(device) + criterion_st = nn.BCEWithLogitsLoss().to(device) + config.use_gst = True + config.gst = GSTConfig() + model = Tacotron2(config).to(device) + model.train() + model_ref = copy.deepcopy(model) + count = 0 + for param, param_ref in zip(model.parameters(), model_ref.parameters()): + assert (param - param_ref).sum() == 0, param + count += 1 + optimizer = optim.Adam(model.parameters(), lr=config.lr) + for i in range(10): + outputs = model.forward( + input_dummy, input_lengths, mel_spec, mel_lengths, aux_input={"speaker_ids": speaker_ids} + ) + assert torch.sigmoid(outputs["stop_tokens"]).data.max() <= 1.0 + assert torch.sigmoid(outputs["stop_tokens"]).data.min() >= 0.0 + optimizer.zero_grad() + loss = criterion(outputs["decoder_outputs"], mel_spec, mel_lengths) + stop_loss = criterion_st(outputs["stop_tokens"], stop_targets) + loss = loss + criterion(outputs["model_outputs"], mel_postnet_spec, mel_lengths) + stop_loss + loss.backward() + optimizer.step() + # check parameter changes + count = 0 + for name_param, param_ref in zip(model.named_parameters(), model_ref.parameters()): + # ignore pre-higway layer since it works conditional + # if count not in [145, 59]: + name, param = name_param + if name == "gst_layer.encoder.recurrence.weight_hh_l0": + # print(param.grad) + continue + assert (param != param_ref).any(), "param {} {} with shape {} not updated!! \n{}\n{}".format( + name, count, param.shape, param, param_ref + ) + count += 1 + + # with file gst style + mel_spec = ( + torch.FloatTensor(ap.melspectrogram(ap.load_wav(WAV_FILE)))[:, :30].unsqueeze(0).transpose(1, 2).to(device) + ) + mel_spec = mel_spec.repeat(8, 1, 1) + input_dummy = torch.randint(0, 24, (8, 128)).long().to(device) + input_lengths = torch.randint(100, 128, (8,)).long().to(device) + input_lengths = torch.sort(input_lengths, descending=True)[0] + mel_postnet_spec = torch.rand(8, 30, config.audio["num_mels"]).to(device) + mel_lengths = torch.randint(20, 30, (8,)).long().to(device) + mel_lengths[0] = 30 + stop_targets = torch.zeros(8, 30, 1).float().to(device) + speaker_ids = torch.randint(0, 5, (8,)).long().to(device) + + for idx in mel_lengths: + stop_targets[:, int(idx.item()) :, 0] = 1.0 + + stop_targets = stop_targets.view(input_dummy.shape[0], stop_targets.size(1) // config.r, -1) + stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze() + + criterion = MSELossMasked(seq_len_norm=False).to(device) + criterion_st = nn.BCEWithLogitsLoss().to(device) + model = Tacotron2(config).to(device) + model.train() + model_ref = copy.deepcopy(model) + count = 0 + for param, param_ref in zip(model.parameters(), model_ref.parameters()): + assert (param - param_ref).sum() == 0, param + count += 1 + optimizer = optim.Adam(model.parameters(), lr=config.lr) + for i in range(10): + outputs = model.forward( + input_dummy, input_lengths, mel_spec, mel_lengths, aux_input={"speaker_ids": speaker_ids} + ) + assert torch.sigmoid(outputs["stop_tokens"]).data.max() <= 1.0 + assert torch.sigmoid(outputs["stop_tokens"]).data.min() >= 0.0 + optimizer.zero_grad() + loss = criterion(outputs["decoder_outputs"], mel_spec, mel_lengths) + stop_loss = criterion_st(outputs["stop_tokens"], stop_targets) + loss = loss + criterion(outputs["model_outputs"], mel_postnet_spec, mel_lengths) + stop_loss + loss.backward() + optimizer.step() + # check parameter changes + count = 0 + for name_param, param_ref in zip(model.named_parameters(), model_ref.parameters()): + # ignore pre-higway layer since it works conditional + # if count not in [145, 59]: + name, param = name_param + if name == "gst_layer.encoder.recurrence.weight_hh_l0": + # print(param.grad) + continue + assert (param != param_ref).any(), "param {} {} with shape {} not updated!! \n{}\n{}".format( + name, count, param.shape, param, param_ref + ) + count += 1 + + +class TacotronCapacitronTrainTest(unittest.TestCase): + @staticmethod + def test_train_step(): + config = Tacotron2Config( + num_chars=32, + num_speakers=10, + use_speaker_embedding=True, + out_channels=80, + decoder_output_dim=80, + use_capacitron_vae=True, + capacitron_vae=CapacitronVAEConfig(), + optimizer="CapacitronOptimizer", + optimizer_params={ + "RAdam": {"betas": [0.9, 0.998], "weight_decay": 1e-6}, + "SGD": {"lr": 1e-5, "momentum": 0.9}, + }, + ) + + batch = dict({}) + batch["text_input"] = torch.randint(0, 24, (8, 128)).long().to(device) + batch["text_lengths"] = torch.randint(100, 129, (8,)).long().to(device) + batch["text_lengths"] = torch.sort(batch["text_lengths"], descending=True)[0] + batch["text_lengths"][0] = 128 + batch["mel_input"] = torch.rand(8, 120, config.audio["num_mels"]).to(device) + batch["mel_lengths"] = torch.randint(20, 120, (8,)).long().to(device) + batch["mel_lengths"] = torch.sort(batch["mel_lengths"], descending=True)[0] + batch["mel_lengths"][0] = 120 + batch["stop_targets"] = torch.zeros(8, 120, 1).float().to(device) + batch["stop_target_lengths"] = torch.randint(0, 120, (8,)).to(device) + batch["speaker_ids"] = torch.randint(0, 5, (8,)).long().to(device) + batch["d_vectors"] = None + + for idx in batch["mel_lengths"]: + batch["stop_targets"][:, int(idx.item()) :, 0] = 1.0 + + batch["stop_targets"] = batch["stop_targets"].view( + batch["text_input"].shape[0], batch["stop_targets"].size(1) // config.r, -1 + ) + batch["stop_targets"] = (batch["stop_targets"].sum(2) > 0.0).unsqueeze(2).float().squeeze() + + model = Tacotron2(config).to(device) + criterion = model.get_criterion().to(device) + optimizer = model.get_optimizer() + + model.train() + model_ref = copy.deepcopy(model) + count = 0 + for param, param_ref in zip(model.parameters(), model_ref.parameters()): + assert (param - param_ref).sum() == 0, param + count += 1 + for _ in range(10): + _, loss_dict = model.train_step(batch, criterion) + optimizer.zero_grad() + loss_dict["capacitron_vae_beta_loss"].backward() + optimizer.first_step() + loss_dict["loss"].backward() + optimizer.step() + # check parameter changes + count = 0 + for param, param_ref in zip(model.parameters(), model_ref.parameters()): + # ignore pre-higway layer since it works conditional + assert (param != param_ref).any(), "param {} with shape {} not updated!! \n{}\n{}".format( + count, param.shape, param, param_ref + ) + count += 1 + + +class SCGSTMultiSpeakeTacotronTrainTest(unittest.TestCase): + """Test multi-speaker Tacotron2 with Global Style Tokens and d-vector inputs.""" + + @staticmethod + def test_train_step(): + config = config_global.copy() + config.use_d_vector_file = True + + config.use_gst = True + config.gst = GSTConfig() + + input_dummy = torch.randint(0, 24, (8, 128)).long().to(device) + input_lengths = torch.randint(100, 128, (8,)).long().to(device) + input_lengths = torch.sort(input_lengths, descending=True)[0] + mel_spec = torch.rand(8, 30, config.audio["num_mels"]).to(device) + mel_postnet_spec = torch.rand(8, 30, config.audio["num_mels"]).to(device) + mel_lengths = torch.randint(20, 30, (8,)).long().to(device) + mel_lengths[0] = 30 + stop_targets = torch.zeros(8, 30, 1).float().to(device) + speaker_embeddings = torch.rand(8, 55).to(device) + + for idx in mel_lengths: + stop_targets[:, int(idx.item()) :, 0] = 1.0 + + stop_targets = stop_targets.view(input_dummy.shape[0], stop_targets.size(1) // config.r, -1) + stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze() + criterion = MSELossMasked(seq_len_norm=False).to(device) + criterion_st = nn.BCEWithLogitsLoss().to(device) + config.d_vector_dim = 55 + model = Tacotron2(config).to(device) + model.train() + model_ref = copy.deepcopy(model) + count = 0 + for param, param_ref in zip(model.parameters(), model_ref.parameters()): + assert (param - param_ref).sum() == 0, param + count += 1 + optimizer = optim.Adam(model.parameters(), lr=config.lr) + for i in range(5): + outputs = model.forward( + input_dummy, input_lengths, mel_spec, mel_lengths, aux_input={"d_vectors": speaker_embeddings} + ) + assert torch.sigmoid(outputs["stop_tokens"]).data.max() <= 1.0 + assert torch.sigmoid(outputs["stop_tokens"]).data.min() >= 0.0 + optimizer.zero_grad() + loss = criterion(outputs["decoder_outputs"], mel_spec, mel_lengths) + stop_loss = criterion_st(outputs["stop_tokens"], stop_targets) + loss = loss + criterion(outputs["model_outputs"], mel_postnet_spec, mel_lengths) + stop_loss + loss.backward() + optimizer.step() + # check parameter changes + count = 0 + for name_param, param_ref in zip(model.named_parameters(), model_ref.parameters()): + # ignore pre-higway layer since it works conditional + # if count not in [145, 59]: + name, param = name_param + if name == "gst_layer.encoder.recurrence.weight_hh_l0": + continue + assert (param != param_ref).any(), "param {} with shape {} not updated!! \n{}\n{}".format( + count, param.shape, param, param_ref + ) + count += 1 diff --git a/TTS/tests/tts_tests/test_tacotron2_speaker_emb_train.py b/TTS/tests/tts_tests/test_tacotron2_speaker_emb_train.py new file mode 100644 index 0000000000000000000000000000000000000000..5f1bc3fd50bc3dfeabf4c4834d7492b11717dc43 --- /dev/null +++ b/TTS/tests/tts_tests/test_tacotron2_speaker_emb_train.py @@ -0,0 +1,77 @@ +import glob +import json +import os +import shutil + +from trainer import get_last_checkpoint + +from tests import get_device_id, get_tests_output_path, run_cli +from TTS.tts.configs.tacotron2_config import Tacotron2Config + +config_path = os.path.join(get_tests_output_path(), "test_model_config.json") +output_path = os.path.join(get_tests_output_path(), "train_outputs") + +config = Tacotron2Config( + r=5, + batch_size=8, + eval_batch_size=8, + num_loader_workers=0, + num_eval_loader_workers=0, + text_cleaner="english_cleaners", + use_phonemes=False, + phoneme_language="en-us", + phoneme_cache_path=os.path.join(get_tests_output_path(), "train_outputs/phoneme_cache/"), + run_eval=True, + test_delay_epochs=-1, + epochs=1, + print_step=1, + print_eval=True, + test_sentences=[ + "Be a voice, not an echo.", + ], + use_speaker_embedding=True, + num_speakers=4, + max_decoder_steps=50, +) + +config.audio.do_trim_silence = True +config.audio.trim_db = 60 +config.save_json(config_path) + +# train the model for one epoch +command_train = ( + f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --config_path {config_path} " + f"--coqpit.output_path {output_path} " + "--coqpit.datasets.0.formatter ljspeech_test " + "--coqpit.datasets.0.meta_file_train metadata.csv " + "--coqpit.datasets.0.meta_file_val metadata.csv " + "--coqpit.datasets.0.path tests/data/ljspeech " + "--coqpit.test_delay_epochs 0 " +) +run_cli(command_train) + +# Find latest folder +continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime) + +# Inference using TTS API +continue_config_path = os.path.join(continue_path, "config.json") +continue_restore_path, _ = get_last_checkpoint(continue_path) +out_wav_path = os.path.join(get_tests_output_path(), "output.wav") +speaker_id = "ljspeech-1" +continue_speakers_path = os.path.join(continue_path, "speakers.json") + +# Check integrity of the config +with open(continue_config_path, "r", encoding="utf-8") as f: + config_loaded = json.load(f) +assert config_loaded["characters"] is not None +assert config_loaded["output_path"] in continue_path +assert config_loaded["test_delay_epochs"] == 0 + +# Load the model and run inference +inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --speaker_idx {speaker_id} --speakers_file_path {continue_speakers_path} --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}" +run_cli(inference_command) + +# restore the model and continue training for one more epoch +command_train = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --continue_path {continue_path} " +run_cli(command_train) +shutil.rmtree(continue_path) diff --git a/TTS/tests/tts_tests/test_tacotron2_train.py b/TTS/tests/tts_tests/test_tacotron2_train.py new file mode 100644 index 0000000000000000000000000000000000000000..40107070e1f19fbb8cf4e259b6a232c6d892357e --- /dev/null +++ b/TTS/tests/tts_tests/test_tacotron2_train.py @@ -0,0 +1,72 @@ +import glob +import json +import os +import shutil + +from trainer import get_last_checkpoint + +from tests import get_device_id, get_tests_output_path, run_cli +from TTS.tts.configs.tacotron2_config import Tacotron2Config + +config_path = os.path.join(get_tests_output_path(), "test_model_config.json") +output_path = os.path.join(get_tests_output_path(), "train_outputs") + +config = Tacotron2Config( + r=5, + batch_size=8, + eval_batch_size=8, + num_loader_workers=0, + num_eval_loader_workers=0, + text_cleaner="english_cleaners", + use_phonemes=False, + phoneme_language="en-us", + phoneme_cache_path=os.path.join(get_tests_output_path(), "train_outputs/phoneme_cache/"), + run_eval=True, + test_delay_epochs=-1, + epochs=1, + print_step=1, + test_sentences=[ + "Be a voice, not an echo.", + ], + print_eval=True, + max_decoder_steps=50, +) +config.audio.do_trim_silence = True +config.audio.trim_db = 60 +config.save_json(config_path) + +# train the model for one epoch +command_train = ( + f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --config_path {config_path} " + f"--coqpit.output_path {output_path} " + "--coqpit.datasets.0.formatter ljspeech " + "--coqpit.datasets.0.meta_file_train metadata.csv " + "--coqpit.datasets.0.meta_file_val metadata.csv " + "--coqpit.datasets.0.path tests/data/ljspeech " + "--coqpit.test_delay_epochs 0 " +) +run_cli(command_train) + +# Find latest folder +continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime) + +# Inference using TTS API +continue_config_path = os.path.join(continue_path, "config.json") +continue_restore_path, _ = get_last_checkpoint(continue_path) +out_wav_path = os.path.join(get_tests_output_path(), "output.wav") + +# Check integrity of the config +with open(continue_config_path, "r", encoding="utf-8") as f: + config_loaded = json.load(f) +assert config_loaded["characters"] is not None +assert config_loaded["output_path"] in continue_path +assert config_loaded["test_delay_epochs"] == 0 + +# Load the model and run inference +inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}" +run_cli(inference_command) + +# restore the model and continue training for one more epoch +command_train = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --continue_path {continue_path} " +run_cli(command_train) +shutil.rmtree(continue_path) diff --git a/TTS/tests/tts_tests/test_tacotron_layers.py b/TTS/tests/tts_tests/test_tacotron_layers.py new file mode 100644 index 0000000000000000000000000000000000000000..43e72417c200493c6392b3acb131a43738dad2bd --- /dev/null +++ b/TTS/tests/tts_tests/test_tacotron_layers.py @@ -0,0 +1,85 @@ +import unittest + +import torch as T + +from TTS.tts.layers.tacotron.tacotron import CBHG, Decoder, Encoder, Prenet + +# pylint: disable=unused-variable + + +class PrenetTests(unittest.TestCase): + def test_in_out(self): # pylint: disable=no-self-use + layer = Prenet(128, out_features=[256, 128]) + dummy_input = T.rand(4, 128) + + print(layer) + output = layer(dummy_input) + assert output.shape[0] == 4 + assert output.shape[1] == 128 + + +class CBHGTests(unittest.TestCase): + def test_in_out(self): + # pylint: disable=attribute-defined-outside-init + layer = self.cbhg = CBHG( + 128, + K=8, + conv_bank_features=80, + conv_projections=[160, 128], + highway_features=80, + gru_features=80, + num_highways=4, + ) + # B x D x T + dummy_input = T.rand(4, 128, 8) + + print(layer) + output = layer(dummy_input) + assert output.shape[0] == 4 + assert output.shape[1] == 8 + assert output.shape[2] == 160 + + +class DecoderTests(unittest.TestCase): + @staticmethod + def test_in_out(): + layer = Decoder( + in_channels=256, + frame_channels=80, + r=2, + memory_size=4, + attn_windowing=False, + attn_norm="sigmoid", + attn_K=5, + attn_type="original", + prenet_type="original", + prenet_dropout=True, + forward_attn=True, + trans_agent=True, + forward_attn_mask=True, + location_attn=True, + separate_stopnet=True, + max_decoder_steps=50, + ) + dummy_input = T.rand(4, 8, 256) + dummy_memory = T.rand(4, 2, 80) + + output, alignment, stop_tokens = layer(dummy_input, dummy_memory, mask=None) + + assert output.shape[0] == 4 + assert output.shape[1] == 80, "size not {}".format(output.shape[1]) + assert output.shape[2] == 2, "size not {}".format(output.shape[2]) + assert stop_tokens.shape[0] == 4 + + +class EncoderTests(unittest.TestCase): + def test_in_out(self): # pylint: disable=no-self-use + layer = Encoder(128) + dummy_input = T.rand(4, 8, 128) + + print(layer) + output = layer(dummy_input) + print(output.shape) + assert output.shape[0] == 4 + assert output.shape[1] == 8 + assert output.shape[2] == 256 # 128 * 2 BiRNN diff --git a/TTS/tests/tts_tests/test_tacotron_model.py b/TTS/tests/tts_tests/test_tacotron_model.py new file mode 100644 index 0000000000000000000000000000000000000000..906ec3d09f47ec4221aebc9f29eec41c3ecd6971 --- /dev/null +++ b/TTS/tests/tts_tests/test_tacotron_model.py @@ -0,0 +1,376 @@ +import copy +import os +import unittest + +import torch +from torch import nn, optim + +from tests import get_tests_input_path +from TTS.tts.configs.shared_configs import CapacitronVAEConfig, GSTConfig +from TTS.tts.configs.tacotron_config import TacotronConfig +from TTS.tts.layers.losses import L1LossMasked +from TTS.tts.models.tacotron import Tacotron +from TTS.utils.audio import AudioProcessor + +# pylint: disable=unused-variable + +torch.manual_seed(1) +use_cuda = torch.cuda.is_available() +device = torch.device("cuda" if use_cuda else "cpu") + +config_global = TacotronConfig(num_chars=32, num_speakers=5, out_channels=513, decoder_output_dim=80) + +ap = AudioProcessor(**config_global.audio) +WAV_FILE = os.path.join(get_tests_input_path(), "example_1.wav") + + +def count_parameters(model): + r"""Count number of trainable parameters in a network""" + return sum(p.numel() for p in model.parameters() if p.requires_grad) + + +class TacotronTrainTest(unittest.TestCase): + @staticmethod + def test_train_step(): + config = config_global.copy() + config.use_speaker_embedding = False + config.num_speakers = 1 + + input_dummy = torch.randint(0, 24, (8, 128)).long().to(device) + input_lengths = torch.randint(100, 129, (8,)).long().to(device) + input_lengths[-1] = 128 + mel_spec = torch.rand(8, 30, config.audio["num_mels"]).to(device) + linear_spec = torch.rand(8, 30, config.audio["fft_size"] // 2 + 1).to(device) + mel_lengths = torch.randint(20, 30, (8,)).long().to(device) + mel_lengths[-1] = mel_spec.size(1) + stop_targets = torch.zeros(8, 30, 1).float().to(device) + + for idx in mel_lengths: + stop_targets[:, int(idx.item()) :, 0] = 1.0 + + stop_targets = stop_targets.view(input_dummy.shape[0], stop_targets.size(1) // config.r, -1) + stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze() + + criterion = L1LossMasked(seq_len_norm=False).to(device) + criterion_st = nn.BCEWithLogitsLoss().to(device) + model = Tacotron(config).to(device) # FIXME: missing num_speakers parameter to Tacotron ctor + model.train() + print(" > Num parameters for Tacotron model:%s" % (count_parameters(model))) + model_ref = copy.deepcopy(model) + count = 0 + for param, param_ref in zip(model.parameters(), model_ref.parameters()): + assert (param - param_ref).sum() == 0, param + count += 1 + optimizer = optim.Adam(model.parameters(), lr=config.lr) + for _ in range(5): + outputs = model.forward(input_dummy, input_lengths, mel_spec, mel_lengths) + optimizer.zero_grad() + loss = criterion(outputs["decoder_outputs"], mel_spec, mel_lengths) + stop_loss = criterion_st(outputs["stop_tokens"], stop_targets) + loss = loss + criterion(outputs["model_outputs"], linear_spec, mel_lengths) + stop_loss + loss.backward() + optimizer.step() + # check parameter changes + count = 0 + for param, param_ref in zip(model.parameters(), model_ref.parameters()): + # ignore pre-higway layer since it works conditional + # if count not in [145, 59]: + assert (param != param_ref).any(), "param {} with shape {} not updated!! \n{}\n{}".format( + count, param.shape, param, param_ref + ) + count += 1 + + +class MultiSpeakeTacotronTrainTest(unittest.TestCase): + @staticmethod + def test_train_step(): + config = config_global.copy() + config.use_speaker_embedding = True + config.num_speakers = 5 + + input_dummy = torch.randint(0, 24, (8, 128)).long().to(device) + input_lengths = torch.randint(100, 129, (8,)).long().to(device) + input_lengths[-1] = 128 + mel_spec = torch.rand(8, 30, config.audio["num_mels"]).to(device) + linear_spec = torch.rand(8, 30, config.audio["fft_size"] // 2 + 1).to(device) + mel_lengths = torch.randint(20, 30, (8,)).long().to(device) + mel_lengths[-1] = mel_spec.size(1) + stop_targets = torch.zeros(8, 30, 1).float().to(device) + speaker_ids = torch.randint(0, 5, (8,)).long().to(device) + + for idx in mel_lengths: + stop_targets[:, int(idx.item()) :, 0] = 1.0 + + stop_targets = stop_targets.view(input_dummy.shape[0], stop_targets.size(1) // config.r, -1) + stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze() + + criterion = L1LossMasked(seq_len_norm=False).to(device) + criterion_st = nn.BCEWithLogitsLoss().to(device) + config.d_vector_dim = 55 + model = Tacotron(config).to(device) # FIXME: missing num_speakers parameter to Tacotron ctor + model.train() + print(" > Num parameters for Tacotron model:%s" % (count_parameters(model))) + model_ref = copy.deepcopy(model) + count = 0 + for param, param_ref in zip(model.parameters(), model_ref.parameters()): + assert (param - param_ref).sum() == 0, param + count += 1 + optimizer = optim.Adam(model.parameters(), lr=config.lr) + for _ in range(5): + outputs = model.forward( + input_dummy, input_lengths, mel_spec, mel_lengths, aux_input={"speaker_ids": speaker_ids} + ) + optimizer.zero_grad() + loss = criterion(outputs["decoder_outputs"], mel_spec, mel_lengths) + stop_loss = criterion_st(outputs["stop_tokens"], stop_targets) + loss = loss + criterion(outputs["model_outputs"], linear_spec, mel_lengths) + stop_loss + loss.backward() + optimizer.step() + # check parameter changes + count = 0 + for param, param_ref in zip(model.parameters(), model_ref.parameters()): + # ignore pre-higway layer since it works conditional + # if count not in [145, 59]: + assert (param != param_ref).any(), "param {} with shape {} not updated!! \n{}\n{}".format( + count, param.shape, param, param_ref + ) + count += 1 + + +class TacotronGSTTrainTest(unittest.TestCase): + @staticmethod + def test_train_step(): + config = config_global.copy() + config.use_speaker_embedding = True + config.num_speakers = 10 + config.use_gst = True + config.gst = GSTConfig() + # with random gst mel style + input_dummy = torch.randint(0, 24, (8, 128)).long().to(device) + input_lengths = torch.randint(100, 129, (8,)).long().to(device) + input_lengths[-1] = 128 + mel_spec = torch.rand(8, 120, config.audio["num_mels"]).to(device) + linear_spec = torch.rand(8, 120, config.audio["fft_size"] // 2 + 1).to(device) + mel_lengths = torch.randint(20, 120, (8,)).long().to(device) + mel_lengths[-1] = 120 + stop_targets = torch.zeros(8, 120, 1).float().to(device) + speaker_ids = torch.randint(0, 5, (8,)).long().to(device) + + for idx in mel_lengths: + stop_targets[:, int(idx.item()) :, 0] = 1.0 + + stop_targets = stop_targets.view(input_dummy.shape[0], stop_targets.size(1) // config.r, -1) + stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze() + + criterion = L1LossMasked(seq_len_norm=False).to(device) + criterion_st = nn.BCEWithLogitsLoss().to(device) + config.use_gst = True + config.gst = GSTConfig() + model = Tacotron(config).to(device) # FIXME: missing num_speakers parameter to Tacotron ctor + model.train() + # print(model) + print(" > Num parameters for Tacotron GST model:%s" % (count_parameters(model))) + model_ref = copy.deepcopy(model) + count = 0 + for param, param_ref in zip(model.parameters(), model_ref.parameters()): + assert (param - param_ref).sum() == 0, param + count += 1 + optimizer = optim.Adam(model.parameters(), lr=config.lr) + for _ in range(10): + outputs = model.forward( + input_dummy, input_lengths, mel_spec, mel_lengths, aux_input={"speaker_ids": speaker_ids} + ) + optimizer.zero_grad() + loss = criterion(outputs["decoder_outputs"], mel_spec, mel_lengths) + stop_loss = criterion_st(outputs["stop_tokens"], stop_targets) + loss = loss + criterion(outputs["model_outputs"], linear_spec, mel_lengths) + stop_loss + loss.backward() + optimizer.step() + # check parameter changes + count = 0 + for param, param_ref in zip(model.parameters(), model_ref.parameters()): + # ignore pre-higway layer since it works conditional + assert (param != param_ref).any(), "param {} with shape {} not updated!! \n{}\n{}".format( + count, param.shape, param, param_ref + ) + count += 1 + + # with file gst style + mel_spec = ( + torch.FloatTensor(ap.melspectrogram(ap.load_wav(WAV_FILE)))[:, :120].unsqueeze(0).transpose(1, 2).to(device) + ) + mel_spec = mel_spec.repeat(8, 1, 1) + + input_dummy = torch.randint(0, 24, (8, 128)).long().to(device) + input_lengths = torch.randint(100, 129, (8,)).long().to(device) + input_lengths[-1] = 128 + linear_spec = torch.rand(8, mel_spec.size(1), config.audio["fft_size"] // 2 + 1).to(device) + mel_lengths = torch.randint(20, mel_spec.size(1), (8,)).long().to(device) + mel_lengths[-1] = mel_spec.size(1) + stop_targets = torch.zeros(8, mel_spec.size(1), 1).float().to(device) + speaker_ids = torch.randint(0, 5, (8,)).long().to(device) + + for idx in mel_lengths: + stop_targets[:, int(idx.item()) :, 0] = 1.0 + + stop_targets = stop_targets.view(input_dummy.shape[0], stop_targets.size(1) // config.r, -1) + stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze() + + criterion = L1LossMasked(seq_len_norm=False).to(device) + criterion_st = nn.BCEWithLogitsLoss().to(device) + model = Tacotron(config).to(device) # FIXME: missing num_speakers parameter to Tacotron ctor + model.train() + # print(model) + print(" > Num parameters for Tacotron GST model:%s" % (count_parameters(model))) + model_ref = copy.deepcopy(model) + count = 0 + for param, param_ref in zip(model.parameters(), model_ref.parameters()): + assert (param - param_ref).sum() == 0, param + count += 1 + optimizer = optim.Adam(model.parameters(), lr=config.lr) + for _ in range(10): + outputs = model.forward( + input_dummy, input_lengths, mel_spec, mel_lengths, aux_input={"speaker_ids": speaker_ids} + ) + optimizer.zero_grad() + loss = criterion(outputs["decoder_outputs"], mel_spec, mel_lengths) + stop_loss = criterion_st(outputs["stop_tokens"], stop_targets) + loss = loss + criterion(outputs["model_outputs"], linear_spec, mel_lengths) + stop_loss + loss.backward() + optimizer.step() + # check parameter changes + count = 0 + for param, param_ref in zip(model.parameters(), model_ref.parameters()): + # ignore pre-higway layer since it works conditional + assert (param != param_ref).any(), "param {} with shape {} not updated!! \n{}\n{}".format( + count, param.shape, param, param_ref + ) + count += 1 + + +class TacotronCapacitronTrainTest(unittest.TestCase): + @staticmethod + def test_train_step(): + config = TacotronConfig( + num_chars=32, + num_speakers=10, + use_speaker_embedding=True, + out_channels=513, + decoder_output_dim=80, + use_capacitron_vae=True, + capacitron_vae=CapacitronVAEConfig(), + optimizer="CapacitronOptimizer", + optimizer_params={ + "RAdam": {"betas": [0.9, 0.998], "weight_decay": 1e-6}, + "SGD": {"lr": 1e-5, "momentum": 0.9}, + }, + ) + + batch = dict({}) + batch["text_input"] = torch.randint(0, 24, (8, 128)).long().to(device) + batch["text_lengths"] = torch.randint(100, 129, (8,)).long().to(device) + batch["text_lengths"] = torch.sort(batch["text_lengths"], descending=True)[0] + batch["text_lengths"][0] = 128 + batch["linear_input"] = torch.rand(8, 120, config.audio["fft_size"] // 2 + 1).to(device) + batch["mel_input"] = torch.rand(8, 120, config.audio["num_mels"]).to(device) + batch["mel_lengths"] = torch.randint(20, 120, (8,)).long().to(device) + batch["mel_lengths"] = torch.sort(batch["mel_lengths"], descending=True)[0] + batch["mel_lengths"][0] = 120 + batch["stop_targets"] = torch.zeros(8, 120, 1).float().to(device) + batch["stop_target_lengths"] = torch.randint(0, 120, (8,)).to(device) + batch["speaker_ids"] = torch.randint(0, 5, (8,)).long().to(device) + batch["d_vectors"] = None + + for idx in batch["mel_lengths"]: + batch["stop_targets"][:, int(idx.item()) :, 0] = 1.0 + + batch["stop_targets"] = batch["stop_targets"].view( + batch["text_input"].shape[0], batch["stop_targets"].size(1) // config.r, -1 + ) + batch["stop_targets"] = (batch["stop_targets"].sum(2) > 0.0).unsqueeze(2).float().squeeze() + model = Tacotron(config).to(device) + criterion = model.get_criterion() + optimizer = model.get_optimizer() + model.train() + print(" > Num parameters for Tacotron with Capacitron VAE model:%s" % (count_parameters(model))) + model_ref = copy.deepcopy(model) + count = 0 + for param, param_ref in zip(model.parameters(), model_ref.parameters()): + assert (param - param_ref).sum() == 0, param + count += 1 + for _ in range(10): + _, loss_dict = model.train_step(batch, criterion) + optimizer.zero_grad() + loss_dict["capacitron_vae_beta_loss"].backward() + optimizer.first_step() + loss_dict["loss"].backward() + optimizer.step() + # check parameter changes + count = 0 + for param, param_ref in zip(model.parameters(), model_ref.parameters()): + # ignore pre-higway layer since it works conditional + assert (param != param_ref).any(), "param {} with shape {} not updated!! \n{}\n{}".format( + count, param.shape, param, param_ref + ) + count += 1 + + +class SCGSTMultiSpeakeTacotronTrainTest(unittest.TestCase): + @staticmethod + def test_train_step(): + config = config_global.copy() + config.use_d_vector_file = True + + config.use_gst = True + config.gst = GSTConfig() + + input_dummy = torch.randint(0, 24, (8, 128)).long().to(device) + input_lengths = torch.randint(100, 129, (8,)).long().to(device) + input_lengths[-1] = 128 + mel_spec = torch.rand(8, 30, config.audio["num_mels"]).to(device) + linear_spec = torch.rand(8, 30, config.audio["fft_size"] // 2 + 1).to(device) + mel_lengths = torch.randint(20, 30, (8,)).long().to(device) + mel_lengths[-1] = mel_spec.size(1) + stop_targets = torch.zeros(8, 30, 1).float().to(device) + speaker_embeddings = torch.rand(8, 55).to(device) + + for idx in mel_lengths: + stop_targets[:, int(idx.item()) :, 0] = 1.0 + + stop_targets = stop_targets.view(input_dummy.shape[0], stop_targets.size(1) // config.r, -1) + stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze() + + criterion = L1LossMasked(seq_len_norm=False).to(device) + criterion_st = nn.BCEWithLogitsLoss().to(device) + config.d_vector_dim = 55 + model = Tacotron(config).to(device) # FIXME: missing num_speakers parameter to Tacotron ctor + model.train() + print(" > Num parameters for Tacotron model:%s" % (count_parameters(model))) + model_ref = copy.deepcopy(model) + count = 0 + for param, param_ref in zip(model.parameters(), model_ref.parameters()): + assert (param - param_ref).sum() == 0, param + count += 1 + optimizer = optim.Adam(model.parameters(), lr=config.lr) + for _ in range(5): + outputs = model.forward( + input_dummy, input_lengths, mel_spec, mel_lengths, aux_input={"d_vectors": speaker_embeddings} + ) + optimizer.zero_grad() + loss = criterion(outputs["decoder_outputs"], mel_spec, mel_lengths) + stop_loss = criterion_st(outputs["stop_tokens"], stop_targets) + loss = loss + criterion(outputs["model_outputs"], linear_spec, mel_lengths) + stop_loss + loss.backward() + optimizer.step() + # check parameter changes + count = 0 + for name_param, param_ref in zip(model.named_parameters(), model_ref.parameters()): + # ignore pre-higway layer since it works conditional + # if count not in [145, 59]: + name, param = name_param + if name == "gst_layer.encoder.recurrence.weight_hh_l0": + continue + assert (param != param_ref).any(), "param {} with shape {} not updated!! \n{}\n{}".format( + count, param.shape, param, param_ref + ) + count += 1 diff --git a/TTS/tests/tts_tests/test_tacotron_train.py b/TTS/tests/tts_tests/test_tacotron_train.py new file mode 100644 index 0000000000000000000000000000000000000000..f7751931ae77cedd2ed38f12fcfb7b6ed92f9aa2 --- /dev/null +++ b/TTS/tests/tts_tests/test_tacotron_train.py @@ -0,0 +1,64 @@ +import glob +import os +import shutil + +from trainer import get_last_checkpoint + +from tests import get_device_id, get_tests_output_path, run_cli +from TTS.tts.configs.tacotron_config import TacotronConfig + +config_path = os.path.join(get_tests_output_path(), "test_model_config.json") +output_path = os.path.join(get_tests_output_path(), "train_outputs") + + +config = TacotronConfig( + batch_size=8, + eval_batch_size=8, + num_loader_workers=0, + num_eval_loader_workers=0, + text_cleaner="english_cleaners", + use_phonemes=False, + phoneme_language="en-us", + phoneme_cache_path=os.path.join(get_tests_output_path(), "train_outputs/phoneme_cache/"), + run_eval=True, + test_delay_epochs=-1, + epochs=1, + print_step=1, + test_sentences=[ + "Be a voice, not an echo.", + ], + print_eval=True, + r=5, + max_decoder_steps=50, +) +config.audio.do_trim_silence = True +config.audio.trim_db = 60 +config.save_json(config_path) + +# train the model for one epoch +command_train = ( + f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --config_path {config_path} " + f"--coqpit.output_path {output_path} " + "--coqpit.datasets.0.formatter ljspeech " + "--coqpit.datasets.0.meta_file_train metadata.csv " + "--coqpit.datasets.0.meta_file_val metadata.csv " + "--coqpit.datasets.0.path tests/data/ljspeech " + "--coqpit.test_delay_epochs 0" +) +run_cli(command_train) + +# Find latest folder +continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime) + +# Inference using TTS API +continue_config_path = os.path.join(continue_path, "config.json") +continue_restore_path, _ = get_last_checkpoint(continue_path) +out_wav_path = os.path.join(get_tests_output_path(), "output.wav") + +inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}" +run_cli(inference_command) + +# restore the model and continue training for one more epoch +command_train = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --continue_path {continue_path} " +run_cli(command_train) +shutil.rmtree(continue_path) diff --git a/TTS/tests/tts_tests/test_vits.py b/TTS/tests/tts_tests/test_vits.py new file mode 100644 index 0000000000000000000000000000000000000000..fca99556199efb79a9c65378c40faebdb2cf51b6 --- /dev/null +++ b/TTS/tests/tts_tests/test_vits.py @@ -0,0 +1,595 @@ +import copy +import os +import unittest + +import torch +from trainer.logging.tensorboard_logger import TensorboardLogger + +from tests import assertHasAttr, assertHasNotAttr, get_tests_data_path, get_tests_input_path, get_tests_output_path +from TTS.config import load_config +from TTS.encoder.utils.generic_utils import setup_encoder_model +from TTS.tts.configs.vits_config import VitsConfig +from TTS.tts.models.vits import ( + Vits, + VitsArgs, + VitsAudioConfig, + amp_to_db, + db_to_amp, + load_audio, + spec_to_mel, + wav_to_mel, + wav_to_spec, +) +from TTS.tts.utils.speakers import SpeakerManager + +LANG_FILE = os.path.join(get_tests_input_path(), "language_ids.json") +SPEAKER_ENCODER_CONFIG = os.path.join(get_tests_input_path(), "test_speaker_encoder_config.json") +WAV_FILE = os.path.join(get_tests_input_path(), "example_1.wav") + + +torch.manual_seed(1) +use_cuda = torch.cuda.is_available() +device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") + + +# pylint: disable=no-self-use +class TestVits(unittest.TestCase): + def test_load_audio(self): + wav, sr = load_audio(WAV_FILE) + self.assertEqual(wav.shape, (1, 41885)) + self.assertEqual(sr, 22050) + + spec = wav_to_spec(wav, n_fft=1024, hop_length=512, win_length=1024, center=False) + mel = wav_to_mel( + wav, + n_fft=1024, + num_mels=80, + sample_rate=sr, + hop_length=512, + win_length=1024, + fmin=0, + fmax=8000, + center=False, + ) + mel2 = spec_to_mel(spec, n_fft=1024, num_mels=80, sample_rate=sr, fmin=0, fmax=8000) + + self.assertEqual((mel - mel2).abs().max(), 0) + self.assertEqual(spec.shape[0], mel.shape[0]) + self.assertEqual(spec.shape[2], mel.shape[2]) + + spec_db = amp_to_db(spec) + spec_amp = db_to_amp(spec_db) + + self.assertAlmostEqual((spec - spec_amp).abs().max(), 0, delta=1e-4) + + def test_dataset(self): + """TODO:""" + ... + + def test_init_multispeaker(self): + num_speakers = 10 + args = VitsArgs(num_speakers=num_speakers, use_speaker_embedding=True) + model = Vits(args) + assertHasAttr(self, model, "emb_g") + + args = VitsArgs(num_speakers=0, use_speaker_embedding=True) + model = Vits(args) + assertHasNotAttr(self, model, "emb_g") + + args = VitsArgs(num_speakers=10, use_speaker_embedding=False) + model = Vits(args) + assertHasNotAttr(self, model, "emb_g") + + args = VitsArgs(d_vector_dim=101, use_d_vector_file=True) + model = Vits(args) + self.assertEqual(model.embedded_speaker_dim, 101) + + def test_init_multilingual(self): + args = VitsArgs(language_ids_file=None, use_language_embedding=False) + model = Vits(args) + self.assertEqual(model.language_manager, None) + self.assertEqual(model.embedded_language_dim, 0) + assertHasNotAttr(self, model, "emb_l") + + args = VitsArgs(language_ids_file=LANG_FILE) + model = Vits(args) + self.assertNotEqual(model.language_manager, None) + self.assertEqual(model.embedded_language_dim, 0) + assertHasNotAttr(self, model, "emb_l") + + args = VitsArgs(language_ids_file=LANG_FILE, use_language_embedding=True) + model = Vits(args) + self.assertNotEqual(model.language_manager, None) + self.assertEqual(model.embedded_language_dim, args.embedded_language_dim) + assertHasAttr(self, model, "emb_l") + + args = VitsArgs(language_ids_file=LANG_FILE, use_language_embedding=True, embedded_language_dim=102) + model = Vits(args) + self.assertNotEqual(model.language_manager, None) + self.assertEqual(model.embedded_language_dim, args.embedded_language_dim) + assertHasAttr(self, model, "emb_l") + + def test_get_aux_input(self): + aux_input = {"speaker_ids": None, "style_wav": None, "d_vectors": None, "language_ids": None} + args = VitsArgs() + model = Vits(args) + aux_out = model.get_aux_input(aux_input) + + speaker_id = torch.randint(10, (1,)) + language_id = torch.randint(10, (1,)) + d_vector = torch.rand(1, 128) + aux_input = {"speaker_ids": speaker_id, "style_wav": None, "d_vectors": d_vector, "language_ids": language_id} + aux_out = model.get_aux_input(aux_input) + self.assertEqual(aux_out["speaker_ids"].shape, speaker_id.shape) + self.assertEqual(aux_out["language_ids"].shape, language_id.shape) + self.assertEqual(aux_out["d_vectors"].shape, d_vector.unsqueeze(0).transpose(2, 1).shape) + + def test_voice_conversion(self): + num_speakers = 10 + spec_len = 101 + spec_effective_len = 50 + + args = VitsArgs(num_speakers=num_speakers, use_speaker_embedding=True) + model = Vits(args) + + ref_inp = torch.randn(1, 513, spec_len) + ref_inp_len = torch.randint(1, spec_effective_len, (1,)) + ref_spk_id = torch.randint(1, num_speakers, (1,)).item() + tgt_spk_id = torch.randint(1, num_speakers, (1,)).item() + o_hat, y_mask, (z, z_p, z_hat) = model.voice_conversion(ref_inp, ref_inp_len, ref_spk_id, tgt_spk_id) + + self.assertEqual(o_hat.shape, (1, 1, spec_len * 256)) + self.assertEqual(y_mask.shape, (1, 1, spec_len)) + self.assertEqual(y_mask.sum(), ref_inp_len[0]) + self.assertEqual(z.shape, (1, args.hidden_channels, spec_len)) + self.assertEqual(z_p.shape, (1, args.hidden_channels, spec_len)) + self.assertEqual(z_hat.shape, (1, args.hidden_channels, spec_len)) + + def _create_inputs(self, config, batch_size=2): + input_dummy = torch.randint(0, 24, (batch_size, 128)).long().to(device) + input_lengths = torch.randint(100, 129, (batch_size,)).long().to(device) + input_lengths[-1] = 128 + spec = torch.rand(batch_size, config.audio["fft_size"] // 2 + 1, 30).to(device) + mel = torch.rand(batch_size, config.audio["num_mels"], 30).to(device) + spec_lengths = torch.randint(20, 30, (batch_size,)).long().to(device) + spec_lengths[-1] = spec.size(2) + waveform = torch.rand(batch_size, 1, spec.size(2) * config.audio["hop_length"]).to(device) + return input_dummy, input_lengths, mel, spec, spec_lengths, waveform + + def _check_forward_outputs(self, config, output_dict, encoder_config=None, batch_size=2): + self.assertEqual( + output_dict["model_outputs"].shape[2], config.model_args.spec_segment_size * config.audio["hop_length"] + ) + self.assertEqual(output_dict["alignments"].shape, (batch_size, 128, 30)) + self.assertEqual(output_dict["alignments"].max(), 1) + self.assertEqual(output_dict["alignments"].min(), 0) + self.assertEqual(output_dict["z"].shape, (batch_size, config.model_args.hidden_channels, 30)) + self.assertEqual(output_dict["z_p"].shape, (batch_size, config.model_args.hidden_channels, 30)) + self.assertEqual(output_dict["m_p"].shape, (batch_size, config.model_args.hidden_channels, 30)) + self.assertEqual(output_dict["logs_p"].shape, (batch_size, config.model_args.hidden_channels, 30)) + self.assertEqual(output_dict["m_q"].shape, (batch_size, config.model_args.hidden_channels, 30)) + self.assertEqual(output_dict["logs_q"].shape, (batch_size, config.model_args.hidden_channels, 30)) + self.assertEqual( + output_dict["waveform_seg"].shape[2], config.model_args.spec_segment_size * config.audio["hop_length"] + ) + if encoder_config: + self.assertEqual(output_dict["gt_spk_emb"].shape, (batch_size, encoder_config.model_params["proj_dim"])) + self.assertEqual(output_dict["syn_spk_emb"].shape, (batch_size, encoder_config.model_params["proj_dim"])) + else: + self.assertEqual(output_dict["gt_spk_emb"], None) + self.assertEqual(output_dict["syn_spk_emb"], None) + + def test_forward(self): + num_speakers = 0 + config = VitsConfig(num_speakers=num_speakers, use_speaker_embedding=True) + config.model_args.spec_segment_size = 10 + input_dummy, input_lengths, _, spec, spec_lengths, waveform = self._create_inputs(config) + model = Vits(config).to(device) + output_dict = model.forward(input_dummy, input_lengths, spec, spec_lengths, waveform) + self._check_forward_outputs(config, output_dict) + + def test_multispeaker_forward(self): + num_speakers = 10 + + config = VitsConfig(num_speakers=num_speakers, use_speaker_embedding=True) + config.model_args.spec_segment_size = 10 + + input_dummy, input_lengths, _, spec, spec_lengths, waveform = self._create_inputs(config) + speaker_ids = torch.randint(0, num_speakers, (8,)).long().to(device) + + model = Vits(config).to(device) + output_dict = model.forward( + input_dummy, input_lengths, spec, spec_lengths, waveform, aux_input={"speaker_ids": speaker_ids} + ) + self._check_forward_outputs(config, output_dict) + + def test_d_vector_forward(self): + batch_size = 2 + args = VitsArgs( + spec_segment_size=10, + num_chars=32, + use_d_vector_file=True, + d_vector_dim=256, + d_vector_file=[os.path.join(get_tests_data_path(), "dummy_speakers.json")], + ) + config = VitsConfig(model_args=args) + model = Vits.init_from_config(config, verbose=False).to(device) + model.train() + input_dummy, input_lengths, _, spec, spec_lengths, waveform = self._create_inputs(config, batch_size=batch_size) + d_vectors = torch.randn(batch_size, 256).to(device) + output_dict = model.forward( + input_dummy, input_lengths, spec, spec_lengths, waveform, aux_input={"d_vectors": d_vectors} + ) + self._check_forward_outputs(config, output_dict) + + def test_multilingual_forward(self): + num_speakers = 10 + num_langs = 3 + batch_size = 2 + + args = VitsArgs(language_ids_file=LANG_FILE, use_language_embedding=True, spec_segment_size=10) + config = VitsConfig(num_speakers=num_speakers, use_speaker_embedding=True, model_args=args) + + input_dummy, input_lengths, _, spec, spec_lengths, waveform = self._create_inputs(config, batch_size=batch_size) + speaker_ids = torch.randint(0, num_speakers, (batch_size,)).long().to(device) + lang_ids = torch.randint(0, num_langs, (batch_size,)).long().to(device) + + model = Vits(config).to(device) + output_dict = model.forward( + input_dummy, + input_lengths, + spec, + spec_lengths, + waveform, + aux_input={"speaker_ids": speaker_ids, "language_ids": lang_ids}, + ) + self._check_forward_outputs(config, output_dict) + + def test_secl_forward(self): + num_speakers = 10 + num_langs = 3 + batch_size = 2 + + speaker_encoder_config = load_config(SPEAKER_ENCODER_CONFIG) + speaker_encoder_config.model_params["use_torch_spec"] = True + speaker_encoder = setup_encoder_model(speaker_encoder_config).to(device) + speaker_manager = SpeakerManager() + speaker_manager.encoder = speaker_encoder + + args = VitsArgs( + language_ids_file=LANG_FILE, + use_language_embedding=True, + spec_segment_size=10, + use_speaker_encoder_as_loss=True, + ) + config = VitsConfig(num_speakers=num_speakers, use_speaker_embedding=True, model_args=args) + config.audio.sample_rate = 16000 + + input_dummy, input_lengths, _, spec, spec_lengths, waveform = self._create_inputs(config, batch_size=batch_size) + speaker_ids = torch.randint(0, num_speakers, (batch_size,)).long().to(device) + lang_ids = torch.randint(0, num_langs, (batch_size,)).long().to(device) + + model = Vits(config, speaker_manager=speaker_manager).to(device) + output_dict = model.forward( + input_dummy, + input_lengths, + spec, + spec_lengths, + waveform, + aux_input={"speaker_ids": speaker_ids, "language_ids": lang_ids}, + ) + self._check_forward_outputs(config, output_dict, speaker_encoder_config) + + def _check_inference_outputs(self, config, outputs, input_dummy, batch_size=1): + feat_len = outputs["z"].shape[2] + self.assertEqual(outputs["model_outputs"].shape[:2], (batch_size, 1)) # we don't know the channel dimension + self.assertEqual(outputs["alignments"].shape, (batch_size, input_dummy.shape[1], feat_len)) + self.assertEqual(outputs["z"].shape, (batch_size, config.model_args.hidden_channels, feat_len)) + self.assertEqual(outputs["z_p"].shape, (batch_size, config.model_args.hidden_channels, feat_len)) + self.assertEqual(outputs["m_p"].shape, (batch_size, config.model_args.hidden_channels, feat_len)) + self.assertEqual(outputs["logs_p"].shape, (batch_size, config.model_args.hidden_channels, feat_len)) + + def test_inference(self): + num_speakers = 0 + config = VitsConfig(num_speakers=num_speakers, use_speaker_embedding=True) + model = Vits(config).to(device) + + batch_size = 1 + input_dummy, *_ = self._create_inputs(config, batch_size=batch_size) + outputs = model.inference(input_dummy) + self._check_inference_outputs(config, outputs, input_dummy, batch_size=batch_size) + + batch_size = 2 + input_dummy, input_lengths, *_ = self._create_inputs(config, batch_size=batch_size) + outputs = model.inference(input_dummy, aux_input={"x_lengths": input_lengths}) + self._check_inference_outputs(config, outputs, input_dummy, batch_size=batch_size) + + def test_multispeaker_inference(self): + num_speakers = 10 + config = VitsConfig(num_speakers=num_speakers, use_speaker_embedding=True) + model = Vits(config).to(device) + + batch_size = 1 + input_dummy, *_ = self._create_inputs(config, batch_size=batch_size) + speaker_ids = torch.randint(0, num_speakers, (batch_size,)).long().to(device) + outputs = model.inference(input_dummy, {"speaker_ids": speaker_ids}) + self._check_inference_outputs(config, outputs, input_dummy, batch_size=batch_size) + + batch_size = 2 + input_dummy, input_lengths, *_ = self._create_inputs(config, batch_size=batch_size) + speaker_ids = torch.randint(0, num_speakers, (batch_size,)).long().to(device) + outputs = model.inference(input_dummy, {"x_lengths": input_lengths, "speaker_ids": speaker_ids}) + self._check_inference_outputs(config, outputs, input_dummy, batch_size=batch_size) + + def test_multilingual_inference(self): + num_speakers = 10 + num_langs = 3 + args = VitsArgs(language_ids_file=LANG_FILE, use_language_embedding=True, spec_segment_size=10) + config = VitsConfig(num_speakers=num_speakers, use_speaker_embedding=True, model_args=args) + model = Vits(config).to(device) + + input_dummy = torch.randint(0, 24, (1, 128)).long().to(device) + speaker_ids = torch.randint(0, num_speakers, (1,)).long().to(device) + lang_ids = torch.randint(0, num_langs, (1,)).long().to(device) + _ = model.inference(input_dummy, {"speaker_ids": speaker_ids, "language_ids": lang_ids}) + + batch_size = 1 + input_dummy, *_ = self._create_inputs(config, batch_size=batch_size) + speaker_ids = torch.randint(0, num_speakers, (batch_size,)).long().to(device) + lang_ids = torch.randint(0, num_langs, (batch_size,)).long().to(device) + outputs = model.inference(input_dummy, {"speaker_ids": speaker_ids, "language_ids": lang_ids}) + self._check_inference_outputs(config, outputs, input_dummy, batch_size=batch_size) + + batch_size = 2 + input_dummy, input_lengths, *_ = self._create_inputs(config, batch_size=batch_size) + speaker_ids = torch.randint(0, num_speakers, (batch_size,)).long().to(device) + lang_ids = torch.randint(0, num_langs, (batch_size,)).long().to(device) + outputs = model.inference( + input_dummy, {"x_lengths": input_lengths, "speaker_ids": speaker_ids, "language_ids": lang_ids} + ) + self._check_inference_outputs(config, outputs, input_dummy, batch_size=batch_size) + + def test_d_vector_inference(self): + args = VitsArgs( + spec_segment_size=10, + num_chars=32, + use_d_vector_file=True, + d_vector_dim=256, + d_vector_file=[os.path.join(get_tests_data_path(), "dummy_speakers.json")], + ) + config = VitsConfig(model_args=args) + model = Vits.init_from_config(config, verbose=False).to(device) + model.eval() + # batch size = 1 + input_dummy = torch.randint(0, 24, (1, 128)).long().to(device) + d_vectors = torch.randn(1, 256).to(device) + outputs = model.inference(input_dummy, aux_input={"d_vectors": d_vectors}) + self._check_inference_outputs(config, outputs, input_dummy) + # batch size = 2 + input_dummy, input_lengths, *_ = self._create_inputs(config) + d_vectors = torch.randn(2, 256).to(device) + outputs = model.inference(input_dummy, aux_input={"x_lengths": input_lengths, "d_vectors": d_vectors}) + self._check_inference_outputs(config, outputs, input_dummy, batch_size=2) + + @staticmethod + def _check_parameter_changes(model, model_ref): + count = 0 + for item1, item2 in zip(model.named_parameters(), model_ref.named_parameters()): + name = item1[0] + param = item1[1] + param_ref = item2[1] + assert (param != param_ref).any(), "param {} with shape {} not updated!! \n{}\n{}".format( + name, param.shape, param, param_ref + ) + count = count + 1 + + def _create_batch(self, config, batch_size): + input_dummy, input_lengths, mel, spec, mel_lengths, _ = self._create_inputs(config, batch_size) + batch = {} + batch["tokens"] = input_dummy + batch["token_lens"] = input_lengths + batch["spec_lens"] = mel_lengths + batch["mel_lens"] = mel_lengths + batch["spec"] = spec + batch["mel"] = mel + batch["waveform"] = torch.rand(batch_size, 1, config.audio["sample_rate"] * 10).to(device) + batch["d_vectors"] = None + batch["speaker_ids"] = None + batch["language_ids"] = None + return batch + + def test_train_step(self): + # setup the model + with torch.autograd.set_detect_anomaly(True): + config = VitsConfig(model_args=VitsArgs(num_chars=32, spec_segment_size=10)) + model = Vits(config).to(device) + model.train() + # model to train + optimizers = model.get_optimizer() + criterions = model.get_criterion() + criterions = [criterions[0].to(device), criterions[1].to(device)] + # reference model to compare model weights + model_ref = Vits(config).to(device) + # # pass the state to ref model + model_ref.load_state_dict(copy.deepcopy(model.state_dict())) + count = 0 + for param, param_ref in zip(model.parameters(), model_ref.parameters()): + assert (param - param_ref).sum() == 0, param + count = count + 1 + for _ in range(5): + batch = self._create_batch(config, 2) + for idx in [0, 1]: + outputs, loss_dict = model.train_step(batch, criterions, idx) + self.assertFalse(not outputs) + self.assertFalse(not loss_dict) + loss_dict["loss"].backward() + optimizers[idx].step() + optimizers[idx].zero_grad() + + # check parameter changes + self._check_parameter_changes(model, model_ref) + + def test_train_step_upsampling(self): + """Upsampling by the decoder upsampling layers""" + # setup the model + with torch.autograd.set_detect_anomaly(True): + audio_config = VitsAudioConfig(sample_rate=22050) + model_args = VitsArgs( + num_chars=32, + spec_segment_size=10, + encoder_sample_rate=11025, + interpolate_z=False, + upsample_rates_decoder=[8, 8, 4, 2], + ) + config = VitsConfig(model_args=model_args, audio=audio_config) + model = Vits(config).to(device) + model.train() + # model to train + optimizers = model.get_optimizer() + criterions = model.get_criterion() + criterions = [criterions[0].to(device), criterions[1].to(device)] + # reference model to compare model weights + model_ref = Vits(config).to(device) + # # pass the state to ref model + model_ref.load_state_dict(copy.deepcopy(model.state_dict())) + count = 0 + for param, param_ref in zip(model.parameters(), model_ref.parameters()): + assert (param - param_ref).sum() == 0, param + count = count + 1 + for _ in range(5): + batch = self._create_batch(config, 2) + for idx in [0, 1]: + outputs, loss_dict = model.train_step(batch, criterions, idx) + self.assertFalse(not outputs) + self.assertFalse(not loss_dict) + loss_dict["loss"].backward() + optimizers[idx].step() + optimizers[idx].zero_grad() + + # check parameter changes + self._check_parameter_changes(model, model_ref) + + def test_train_step_upsampling_interpolation(self): + """Upsampling by interpolation""" + # setup the model + with torch.autograd.set_detect_anomaly(True): + audio_config = VitsAudioConfig(sample_rate=22050) + model_args = VitsArgs( + num_chars=32, + spec_segment_size=10, + encoder_sample_rate=11025, + interpolate_z=True, + upsample_rates_decoder=[8, 8, 2, 2], + ) + config = VitsConfig(model_args=model_args, audio=audio_config) + model = Vits(config).to(device) + model.train() + # model to train + optimizers = model.get_optimizer() + criterions = model.get_criterion() + criterions = [criterions[0].to(device), criterions[1].to(device)] + # reference model to compare model weights + model_ref = Vits(config).to(device) + # # pass the state to ref model + model_ref.load_state_dict(copy.deepcopy(model.state_dict())) + count = 0 + for param, param_ref in zip(model.parameters(), model_ref.parameters()): + assert (param - param_ref).sum() == 0, param + count = count + 1 + for _ in range(5): + batch = self._create_batch(config, 2) + for idx in [0, 1]: + outputs, loss_dict = model.train_step(batch, criterions, idx) + self.assertFalse(not outputs) + self.assertFalse(not loss_dict) + loss_dict["loss"].backward() + optimizers[idx].step() + optimizers[idx].zero_grad() + + # check parameter changes + self._check_parameter_changes(model, model_ref) + + def test_train_eval_log(self): + batch_size = 2 + config = VitsConfig(model_args=VitsArgs(num_chars=32, spec_segment_size=10)) + model = Vits.init_from_config(config, verbose=False).to(device) + model.run_data_dep_init = False + model.train() + batch = self._create_batch(config, batch_size) + logger = TensorboardLogger( + log_dir=os.path.join(get_tests_output_path(), "dummy_vits_logs"), model_name="vits_test_train_log" + ) + criterion = model.get_criterion() + criterion = [criterion[0].to(device), criterion[1].to(device)] + outputs = [None] * 2 + outputs[0], _ = model.train_step(batch, criterion, 0) + outputs[1], _ = model.train_step(batch, criterion, 1) + model.train_log(batch, outputs, logger, None, 1) + + model.eval_log(batch, outputs, logger, None, 1) + logger.finish() + + def test_test_run(self): + config = VitsConfig(model_args=VitsArgs(num_chars=32)) + model = Vits.init_from_config(config, verbose=False).to(device) + model.run_data_dep_init = False + model.eval() + test_figures, test_audios = model.test_run(None) + self.assertTrue(test_figures is not None) + self.assertTrue(test_audios is not None) + + def test_load_checkpoint(self): + chkp_path = os.path.join(get_tests_output_path(), "dummy_glow_tts_checkpoint.pth") + config = VitsConfig(VitsArgs(num_chars=32)) + model = Vits.init_from_config(config, verbose=False).to(device) + chkp = {} + chkp["model"] = model.state_dict() + torch.save(chkp, chkp_path) + model.load_checkpoint(config, chkp_path) + self.assertTrue(model.training) + model.load_checkpoint(config, chkp_path, eval=True) + self.assertFalse(model.training) + + def test_get_criterion(self): + config = VitsConfig(VitsArgs(num_chars=32)) + model = Vits.init_from_config(config, verbose=False).to(device) + criterion = model.get_criterion() + self.assertTrue(criterion is not None) + + def test_init_from_config(self): + config = VitsConfig(model_args=VitsArgs(num_chars=32)) + model = Vits.init_from_config(config, verbose=False).to(device) + + config = VitsConfig(model_args=VitsArgs(num_chars=32, num_speakers=2)) + model = Vits.init_from_config(config, verbose=False).to(device) + self.assertTrue(not hasattr(model, "emb_g")) + + config = VitsConfig(model_args=VitsArgs(num_chars=32, num_speakers=2, use_speaker_embedding=True)) + model = Vits.init_from_config(config, verbose=False).to(device) + self.assertEqual(model.num_speakers, 2) + self.assertTrue(hasattr(model, "emb_g")) + + config = VitsConfig( + model_args=VitsArgs( + num_chars=32, + num_speakers=2, + use_speaker_embedding=True, + speakers_file=os.path.join(get_tests_data_path(), "ljspeech", "speakers.json"), + ) + ) + model = Vits.init_from_config(config, verbose=False).to(device) + self.assertEqual(model.num_speakers, 10) + self.assertTrue(hasattr(model, "emb_g")) + + config = VitsConfig( + model_args=VitsArgs( + num_chars=32, + use_d_vector_file=True, + d_vector_dim=256, + d_vector_file=[os.path.join(get_tests_data_path(), "dummy_speakers.json")], + ) + ) + model = Vits.init_from_config(config, verbose=False).to(device) + self.assertTrue(model.num_speakers == 1) + self.assertTrue(not hasattr(model, "emb_g")) + self.assertTrue(model.embedded_speaker_dim == config.d_vector_dim) diff --git a/TTS/tests/tts_tests/test_vits_d-vectors_train.py b/TTS/tests/tts_tests/test_vits_d-vectors_train.py new file mode 100644 index 0000000000000000000000000000000000000000..741bda91e91c9c98ead928589fd3030ed9bb030d --- /dev/null +++ b/TTS/tests/tts_tests/test_vits_d-vectors_train.py @@ -0,0 +1,61 @@ +import glob +import os +import shutil + +from tests import get_device_id, get_tests_output_path, run_cli +from TTS.tts.configs.vits_config import VitsConfig + +config_path = os.path.join(get_tests_output_path(), "test_model_config.json") +output_path = os.path.join(get_tests_output_path(), "train_outputs") + + +config = VitsConfig( + batch_size=2, + eval_batch_size=2, + num_loader_workers=0, + num_eval_loader_workers=0, + text_cleaner="english_cleaners", + use_phonemes=True, + phoneme_language="en-us", + phoneme_cache_path="tests/data/ljspeech/phoneme_cache/", + run_eval=True, + test_delay_epochs=-1, + epochs=1, + print_step=1, + print_eval=True, + test_sentences=[ + ["Be a voice, not an echo.", "ljspeech-0"], + ], +) +# set audio config +config.audio.do_trim_silence = True +config.audio.trim_db = 60 + +# active multispeaker d-vec mode +config.model_args.use_d_vector_file = True +config.model_args.d_vector_file = ["tests/data/ljspeech/speakers.json"] +config.model_args.d_vector_dim = 256 + + +config.save_json(config_path) + +# train the model for one epoch +command_train = ( + f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --config_path {config_path} " + f"--coqpit.output_path {output_path} " + "--coqpit.datasets.0.formatter ljspeech " + "--coqpit.datasets.0.meta_file_train metadata.csv " + "--coqpit.datasets.0.meta_file_val metadata.csv " + "--coqpit.datasets.0.path tests/data/ljspeech " + "--coqpit.datasets.0.meta_file_attn_mask tests/data/ljspeech/metadata_attn_mask.txt " + "--coqpit.test_delay_epochs 0" +) +run_cli(command_train) + +# Find latest folder +continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime) + +# restore the model and continue training for one more epoch +command_train = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --continue_path {continue_path} " +run_cli(command_train) +shutil.rmtree(continue_path) diff --git a/TTS/tests/tts_tests/test_vits_multilingual_speaker_emb_train.py b/TTS/tests/tts_tests/test_vits_multilingual_speaker_emb_train.py new file mode 100644 index 0000000000000000000000000000000000000000..71597ef32fef6aa3ef5b3877ee2065aed6cf95cc --- /dev/null +++ b/TTS/tests/tts_tests/test_vits_multilingual_speaker_emb_train.py @@ -0,0 +1,110 @@ +import glob +import json +import os +import shutil + +from trainer import get_last_checkpoint + +from tests import get_device_id, get_tests_output_path, run_cli +from TTS.config.shared_configs import BaseDatasetConfig +from TTS.tts.configs.vits_config import VitsConfig + +config_path = os.path.join(get_tests_output_path(), "test_model_config.json") +output_path = os.path.join(get_tests_output_path(), "train_outputs") + + +dataset_config_en = BaseDatasetConfig( + formatter="ljspeech", + meta_file_train="metadata.csv", + meta_file_val="metadata.csv", + path="tests/data/ljspeech", + language="en", +) + +dataset_config_pt = BaseDatasetConfig( + formatter="ljspeech", + meta_file_train="metadata.csv", + meta_file_val="metadata.csv", + path="tests/data/ljspeech", + language="pt-br", +) + +config = VitsConfig( + batch_size=2, + eval_batch_size=2, + num_loader_workers=0, + num_eval_loader_workers=0, + text_cleaner="english_cleaners", + use_phonemes=True, + phoneme_language="en-us", + phoneme_cache_path="tests/data/ljspeech/phoneme_cache/", + run_eval=True, + test_delay_epochs=-1, + epochs=1, + print_step=1, + print_eval=True, + test_sentences=[ + ["Be a voice, not an echo.", "ljspeech", None, "en"], + ["Be a voice, not an echo.", "ljspeech", None, "pt-br"], + ], + datasets=[dataset_config_en, dataset_config_pt], +) +# set audio config +config.audio.do_trim_silence = True +config.audio.trim_db = 60 + +# active multilingual mode +config.model_args.use_language_embedding = True +config.use_language_embedding = True +# active multispeaker mode +config.model_args.use_speaker_embedding = True +config.use_speaker_embedding = True + +# deactivate multispeaker d-vec mode +config.model_args.use_d_vector_file = False +config.use_d_vector_file = False + +# duration predictor +config.model_args.use_sdp = False +config.use_sdp = False + +# active language sampler +config.use_language_weighted_sampler = True + +config.save_json(config_path) + +# train the model for one epoch +command_train = ( + f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --config_path {config_path} " + f"--coqpit.output_path {output_path} " + "--coqpit.test_delay_epochs 0" +) +run_cli(command_train) + +# Find latest folder +continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime) + +# Inference using TTS API +continue_config_path = os.path.join(continue_path, "config.json") +continue_restore_path, _ = get_last_checkpoint(continue_path) +out_wav_path = os.path.join(get_tests_output_path(), "output.wav") +speaker_id = "ljspeech" +languae_id = "en" +continue_speakers_path = os.path.join(continue_path, "speakers.json") +continue_languages_path = os.path.join(continue_path, "language_ids.json") + +# Check integrity of the config +with open(continue_config_path, "r", encoding="utf-8") as f: + config_loaded = json.load(f) +assert config_loaded["characters"] is not None +assert config_loaded["output_path"] in continue_path +assert config_loaded["test_delay_epochs"] == 0 + +# Load the model and run inference +inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --speaker_idx {speaker_id} --speakers_file_path {continue_speakers_path} --language_ids_file_path {continue_languages_path} --language_idx {languae_id} --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}" +run_cli(inference_command) + +# restore the model and continue training for one more epoch +command_train = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --continue_path {continue_path} " +run_cli(command_train) +shutil.rmtree(continue_path) diff --git a/TTS/tests/tts_tests/test_vits_multilingual_train-d_vectors.py b/TTS/tests/tts_tests/test_vits_multilingual_train-d_vectors.py new file mode 100644 index 0000000000000000000000000000000000000000..fd58db534af914849f30ca821436f3aaabceabb8 --- /dev/null +++ b/TTS/tests/tts_tests/test_vits_multilingual_train-d_vectors.py @@ -0,0 +1,117 @@ +import glob +import json +import os +import shutil + +from trainer import get_last_checkpoint + +from tests import get_device_id, get_tests_output_path, run_cli +from TTS.config.shared_configs import BaseDatasetConfig +from TTS.tts.configs.vits_config import VitsConfig + +config_path = os.path.join(get_tests_output_path(), "test_model_config.json") +output_path = os.path.join(get_tests_output_path(), "train_outputs") + + +dataset_config_en = BaseDatasetConfig( + formatter="ljspeech_test", + meta_file_train="metadata.csv", + meta_file_val="metadata.csv", + path="tests/data/ljspeech", + language="en", +) + +dataset_config_pt = BaseDatasetConfig( + formatter="ljspeech_test", + meta_file_train="metadata.csv", + meta_file_val="metadata.csv", + path="tests/data/ljspeech", + language="pt-br", +) + +config = VitsConfig( + batch_size=2, + eval_batch_size=2, + num_loader_workers=0, + num_eval_loader_workers=0, + text_cleaner="multilingual_cleaners", + use_phonemes=False, + phoneme_cache_path="tests/data/ljspeech/phoneme_cache/", + run_eval=True, + test_delay_epochs=-1, + epochs=1, + print_step=1, + print_eval=True, + test_sentences=[ + ["Be a voice, not an echo.", "ljspeech-0", None, "en"], + ["Be a voice, not an echo.", "ljspeech-1", None, "pt-br"], + ], + datasets=[dataset_config_en, dataset_config_en, dataset_config_en, dataset_config_pt], +) +# set audio config +config.audio.do_trim_silence = True +config.audio.trim_db = 60 + +# active multilingual mode +config.model_args.use_language_embedding = True +config.use_language_embedding = True + +# deactivate multispeaker mode +config.model_args.use_speaker_embedding = False +config.use_speaker_embedding = False + +# active multispeaker d-vec mode +config.model_args.use_d_vector_file = True +config.use_d_vector_file = True +config.model_args.d_vector_file = ["tests/data/ljspeech/speakers.json"] +config.d_vector_file = ["tests/data/ljspeech/speakers.json"] +config.model_args.d_vector_dim = 256 +config.d_vector_dim = 256 + +# duration predictor +config.model_args.use_sdp = True +config.use_sdp = True + +# activate language and speaker samplers +config.use_language_weighted_sampler = True +config.language_weighted_sampler_alpha = 10 +config.use_speaker_weighted_sampler = True +config.speaker_weighted_sampler_alpha = 5 + +config.save_json(config_path) + +# train the model for one epoch +command_train = ( + f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --config_path {config_path} " + f"--coqpit.output_path {output_path} " + "--coqpit.test_delay_epochs 0" +) +run_cli(command_train) + +# Find latest folder +continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime) + +# Inference using TTS API +continue_config_path = os.path.join(continue_path, "config.json") +continue_restore_path, _ = get_last_checkpoint(continue_path) +out_wav_path = os.path.join(get_tests_output_path(), "output.wav") +speaker_id = "ljspeech-1" +languae_id = "en" +continue_speakers_path = config.d_vector_file +continue_languages_path = os.path.join(continue_path, "language_ids.json") + +# Check integrity of the config +with open(continue_config_path, "r", encoding="utf-8") as f: + config_loaded = json.load(f) +assert config_loaded["characters"] is not None +assert config_loaded["output_path"] in continue_path +assert config_loaded["test_delay_epochs"] == 0 + +# Load the model and run inference +inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --speaker_idx {speaker_id} --speakers_file_path {continue_speakers_path} --language_ids_file_path {continue_languages_path} --language_idx {languae_id} --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}" +run_cli(inference_command) + +# restore the model and continue training for one more epoch +command_train = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --continue_path {continue_path} " +run_cli(command_train) +shutil.rmtree(continue_path) diff --git a/TTS/tests/tts_tests/test_vits_speaker_emb_train.py b/TTS/tests/tts_tests/test_vits_speaker_emb_train.py new file mode 100644 index 0000000000000000000000000000000000000000..b7fe197cfef7f2154cd2563e096d9be4f531524d --- /dev/null +++ b/TTS/tests/tts_tests/test_vits_speaker_emb_train.py @@ -0,0 +1,83 @@ +import glob +import json +import os +import shutil + +from trainer import get_last_checkpoint + +from tests import get_device_id, get_tests_output_path, run_cli +from TTS.tts.configs.vits_config import VitsConfig + +config_path = os.path.join(get_tests_output_path(), "test_model_config.json") +output_path = os.path.join(get_tests_output_path(), "train_outputs") + + +config = VitsConfig( + batch_size=2, + eval_batch_size=2, + num_loader_workers=0, + num_eval_loader_workers=0, + text_cleaner="english_cleaners", + use_phonemes=True, + phoneme_language="en-us", + phoneme_cache_path="tests/data/ljspeech/phoneme_cache/", + run_eval=True, + test_delay_epochs=-1, + epochs=1, + print_step=1, + print_eval=True, + test_sentences=[ + ["Be a voice, not an echo.", "ljspeech-1"], + ], +) +# set audio config +config.audio.do_trim_silence = True +config.audio.trim_db = 60 + +# active multispeaker d-vec mode +config.model_args.use_speaker_embedding = True +config.model_args.use_d_vector_file = False +config.model_args.d_vector_file = None +config.model_args.d_vector_dim = 256 + + +config.save_json(config_path) + +# train the model for one epoch +command_train = ( + f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --config_path {config_path} " + f"--coqpit.output_path {output_path} " + "--coqpit.datasets.0.formatter ljspeech_test " + "--coqpit.datasets.0.meta_file_train metadata.csv " + "--coqpit.datasets.0.meta_file_val metadata.csv " + "--coqpit.datasets.0.path tests/data/ljspeech " + "--coqpit.datasets.0.meta_file_attn_mask tests/data/ljspeech/metadata_attn_mask.txt " + "--coqpit.test_delay_epochs 0" +) +run_cli(command_train) + +# Find latest folder +continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime) + +# Inference using TTS API +continue_config_path = os.path.join(continue_path, "config.json") +continue_restore_path, _ = get_last_checkpoint(continue_path) +out_wav_path = os.path.join(get_tests_output_path(), "output.wav") +speaker_id = "ljspeech-1" +continue_speakers_path = os.path.join(continue_path, "speakers.json") + +# Check integrity of the config +with open(continue_config_path, "r", encoding="utf-8") as f: + config_loaded = json.load(f) +assert config_loaded["characters"] is not None +assert config_loaded["output_path"] in continue_path +assert config_loaded["test_delay_epochs"] == 0 + +# Load the model and run inference +inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --speaker_idx {speaker_id} --speakers_file_path {continue_speakers_path} --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}" +run_cli(inference_command) + +# restore the model and continue training for one more epoch +command_train = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --continue_path {continue_path} " +run_cli(command_train) +shutil.rmtree(continue_path) diff --git a/TTS/tests/tts_tests/test_vits_train.py b/TTS/tests/tts_tests/test_vits_train.py new file mode 100644 index 0000000000000000000000000000000000000000..ea5dc02405ab1450d905f95a39ebea65dd72c4a4 --- /dev/null +++ b/TTS/tests/tts_tests/test_vits_train.py @@ -0,0 +1,72 @@ +import glob +import json +import os +import shutil + +from trainer import get_last_checkpoint + +from tests import get_device_id, get_tests_output_path, run_cli +from TTS.tts.configs.vits_config import VitsConfig + +config_path = os.path.join(get_tests_output_path(), "test_model_config.json") +output_path = os.path.join(get_tests_output_path(), "train_outputs") + + +config = VitsConfig( + batch_size=2, + eval_batch_size=2, + num_loader_workers=0, + num_eval_loader_workers=0, + text_cleaner="english_cleaners", + use_phonemes=True, + phoneme_language="en-us", + phoneme_cache_path="tests/data/ljspeech/phoneme_cache/", + run_eval=True, + test_delay_epochs=-1, + epochs=1, + print_step=1, + print_eval=True, + test_sentences=[ + ["Be a voice, not an echo."], + ], +) +config.audio.do_trim_silence = True +config.audio.trim_db = 60 +config.save_json(config_path) + +# train the model for one epoch +command_train = ( + f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --config_path {config_path} " + f"--coqpit.output_path {output_path} " + "--coqpit.datasets.0.formatter ljspeech " + "--coqpit.datasets.0.meta_file_train metadata.csv " + "--coqpit.datasets.0.meta_file_val metadata.csv " + "--coqpit.datasets.0.path tests/data/ljspeech " + "--coqpit.datasets.0.meta_file_attn_mask tests/data/ljspeech/metadata_attn_mask.txt " + "--coqpit.test_delay_epochs 0" +) +run_cli(command_train) + +# Find latest folder +continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime) + +# Inference using TTS API +continue_config_path = os.path.join(continue_path, "config.json") +continue_restore_path, _ = get_last_checkpoint(continue_path) +out_wav_path = os.path.join(get_tests_output_path(), "output.wav") + +# Check integrity of the config +with open(continue_config_path, "r", encoding="utf-8") as f: + config_loaded = json.load(f) +assert config_loaded["characters"] is not None +assert config_loaded["output_path"] in continue_path +assert config_loaded["test_delay_epochs"] == 0 + +# Load the model and run inference +inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}" +run_cli(inference_command) + +# restore the model and continue training for one more epoch +command_train = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --continue_path {continue_path} " +run_cli(command_train) +shutil.rmtree(continue_path) diff --git a/TTS/tests/tts_tests2/__init__.py b/TTS/tests/tts_tests2/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/TTS/tests/tts_tests2/test_align_tts_train.py b/TTS/tests/tts_tests2/test_align_tts_train.py new file mode 100644 index 0000000000000000000000000000000000000000..9b0b730df4995072239077a2dfd76ca2b5094497 --- /dev/null +++ b/TTS/tests/tts_tests2/test_align_tts_train.py @@ -0,0 +1,72 @@ +import glob +import json +import os +import shutil + +from trainer import get_last_checkpoint + +from tests import get_device_id, get_tests_output_path, run_cli +from TTS.tts.configs.align_tts_config import AlignTTSConfig + +config_path = os.path.join(get_tests_output_path(), "test_model_config.json") +output_path = os.path.join(get_tests_output_path(), "train_outputs") + + +config = AlignTTSConfig( + batch_size=8, + eval_batch_size=8, + num_loader_workers=0, + num_eval_loader_workers=0, + text_cleaner="english_cleaners", + use_phonemes=False, + phoneme_language="en-us", + phoneme_cache_path=os.path.join(get_tests_output_path(), "train_outputs/phoneme_cache/"), + run_eval=True, + test_delay_epochs=-1, + epochs=1, + print_step=1, + print_eval=True, + test_sentences=[ + "Be a voice, not an echo.", + ], +) + +config.audio.do_trim_silence = True +config.audio.trim_db = 60 +config.save_json(config_path) + +# train the model for one epoch +command_train = ( + f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --config_path {config_path} " + f"--coqpit.output_path {output_path} " + "--coqpit.datasets.0.formatter ljspeech " + "--coqpit.datasets.0.meta_file_train metadata.csv " + "--coqpit.datasets.0.meta_file_val metadata.csv " + "--coqpit.datasets.0.path tests/data/ljspeech " + "--coqpit.test_delay_epochs 0 " +) +run_cli(command_train) + +# Find latest folder +continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime) + +# Inference using TTS API +continue_config_path = os.path.join(continue_path, "config.json") +continue_restore_path, _ = get_last_checkpoint(continue_path) +out_wav_path = os.path.join(get_tests_output_path(), "output.wav") + +# Check integrity of the config +with open(continue_config_path, "r", encoding="utf-8") as f: + config_loaded = json.load(f) +assert config_loaded["characters"] is not None +assert config_loaded["output_path"] in continue_path +assert config_loaded["test_delay_epochs"] == 0 + +# Load the model and run inference +inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}" +run_cli(inference_command) + +# restore the model and continue training for one more epoch +command_train = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --continue_path {continue_path} " +run_cli(command_train) +shutil.rmtree(continue_path) diff --git a/TTS/tests/tts_tests2/test_delightful_tts_d-vectors_train.py b/TTS/tests/tts_tests2/test_delightful_tts_d-vectors_train.py new file mode 100644 index 0000000000000000000000000000000000000000..8fc4ea7e9b518cd6754ec70c59bc0ed7a6503908 --- /dev/null +++ b/TTS/tests/tts_tests2/test_delightful_tts_d-vectors_train.py @@ -0,0 +1,100 @@ +import glob +import json +import os +import shutil + +from trainer import get_last_checkpoint + +from tests import get_device_id, get_tests_output_path, run_cli +from TTS.tts.configs.delightful_tts_config import DelightfulTtsAudioConfig, DelightfulTTSConfig +from TTS.tts.models.delightful_tts import DelightfulTtsArgs, VocoderConfig + +config_path = os.path.join(get_tests_output_path(), "test_model_config.json") +output_path = os.path.join(get_tests_output_path(), "train_outputs") + + +audio_config = DelightfulTtsAudioConfig() +model_args = DelightfulTtsArgs( + use_speaker_embedding=False, d_vector_dim=256, use_d_vector_file=True, speaker_embedding_channels=256 +) + +vocoder_config = VocoderConfig() + +config = DelightfulTTSConfig( + model_args=model_args, + audio=audio_config, + vocoder=vocoder_config, + batch_size=2, + eval_batch_size=8, + compute_f0=True, + run_eval=True, + test_delay_epochs=-1, + text_cleaner="english_cleaners", + use_phonemes=True, + phoneme_language="en-us", + phoneme_cache_path="tests/data/ljspeech/phoneme_cache/", + f0_cache_path="tests/data/ljspeech/f0_cache_delightful/", ## delightful f0 cache is incompatible with other models + epochs=1, + print_step=1, + print_eval=True, + binary_align_loss_alpha=0.0, + use_attn_priors=False, + test_sentences=[ + ["Be a voice, not an echo.", "ljspeech-0"], + ], + output_path=output_path, + use_speaker_embedding=False, + use_d_vector_file=True, + d_vector_file="tests/data/ljspeech/speakers.json", + d_vector_dim=256, + speaker_embedding_channels=256, +) + +# active multispeaker d-vec mode +config.model_args.use_speaker_embedding = False +config.model_args.use_d_vector_file = True +config.model_args.d_vector_file = "tests/data/ljspeech/speakers.json" +config.model_args.d_vector_dim = 256 + + +config.save_json(config_path) + +command_train = ( + f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --config_path {config_path} " + f"--coqpit.output_path {output_path} " + "--coqpit.datasets.0.formatter ljspeech " + "--coqpit.datasets.0.meta_file_train metadata.csv " + "--coqpit.datasets.0.meta_file_val metadata.csv " + "--coqpit.datasets.0.path tests/data/ljspeech " + "--coqpit.datasets.0.meta_file_attn_mask tests/data/ljspeech/metadata_attn_mask.txt " + "--coqpit.test_delay_epochs 0" +) + +run_cli(command_train) + +# Find latest folder +continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime) + +# Inference using TTS API +continue_config_path = os.path.join(continue_path, "config.json") +continue_restore_path, _ = get_last_checkpoint(continue_path) +speaker_id = "ljspeech-1" +continue_speakers_path = config.d_vector_file + +out_wav_path = os.path.join(get_tests_output_path(), "output.wav") +# Check integrity of the config +with open(continue_config_path, "r", encoding="utf-8") as f: + config_loaded = json.load(f) +assert config_loaded["characters"] is not None +assert config_loaded["output_path"] in continue_path +assert config_loaded["test_delay_epochs"] == 0 + +# Load the model and run inference +inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --speaker_idx {speaker_id} --config_path {continue_config_path} --speakers_file_path {continue_speakers_path} --model_path {continue_restore_path} --out_path {out_wav_path}" +run_cli(inference_command) + +# restore the model and continue training for one more epoch +command_train = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --continue_path {continue_path} " +run_cli(command_train) +shutil.rmtree(continue_path) +shutil.rmtree("tests/data/ljspeech/f0_cache_delightful/") diff --git a/TTS/tests/tts_tests2/test_delightful_tts_emb_spk.py b/TTS/tests/tts_tests2/test_delightful_tts_emb_spk.py new file mode 100644 index 0000000000000000000000000000000000000000..6fb70c5f613fe28c693121383b90867a4ae10069 --- /dev/null +++ b/TTS/tests/tts_tests2/test_delightful_tts_emb_spk.py @@ -0,0 +1,94 @@ +import glob +import json +import os +import shutil + +from trainer import get_last_checkpoint + +from tests import get_device_id, get_tests_output_path, run_cli +from TTS.tts.configs.delightful_tts_config import DelightfulTtsAudioConfig, DelightfulTTSConfig +from TTS.tts.models.delightful_tts import DelightfulTtsArgs, VocoderConfig + +config_path = os.path.join(get_tests_output_path(), "test_model_config.json") +output_path = os.path.join(get_tests_output_path(), "train_outputs") + + +audio_config = DelightfulTtsAudioConfig() +model_args = DelightfulTtsArgs(use_speaker_embedding=False) + +vocoder_config = VocoderConfig() + +config = DelightfulTTSConfig( + model_args=model_args, + audio=audio_config, + vocoder=vocoder_config, + batch_size=2, + eval_batch_size=8, + compute_f0=True, + run_eval=True, + test_delay_epochs=-1, + text_cleaner="english_cleaners", + use_phonemes=True, + phoneme_language="en-us", + phoneme_cache_path="tests/data/ljspeech/phoneme_cache/", + f0_cache_path="tests/data/ljspeech/f0_cache_delightful/", ## delightful f0 cache is incompatible with other models + epochs=1, + print_step=1, + print_eval=True, + binary_align_loss_alpha=0.0, + use_attn_priors=False, + test_sentences=[ + ["Be a voice, not an echo.", "ljspeech"], + ], + output_path=output_path, + num_speakers=4, + use_speaker_embedding=True, +) + +# active multispeaker d-vec mode +config.model_args.use_speaker_embedding = True +config.model_args.use_d_vector_file = False +config.model_args.d_vector_file = None +config.model_args.d_vector_dim = 256 + + +config.save_json(config_path) + +command_train = ( + f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --config_path {config_path} " + f"--coqpit.output_path {output_path} " + "--coqpit.datasets.0.formatter ljspeech " + "--coqpit.datasets.0.dataset_name ljspeech " + "--coqpit.datasets.0.meta_file_train metadata.csv " + "--coqpit.datasets.0.meta_file_val metadata.csv " + "--coqpit.datasets.0.path tests/data/ljspeech " + "--coqpit.datasets.0.meta_file_attn_mask tests/data/ljspeech/metadata_attn_mask.txt " + "--coqpit.test_delay_epochs 0" +) + +run_cli(command_train) + +# Find latest folder +continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime) + +# Inference using TTS API +continue_config_path = os.path.join(continue_path, "config.json") +continue_restore_path, _ = get_last_checkpoint(continue_path) +out_wav_path = os.path.join(get_tests_output_path(), "output.wav") +speaker_id = "ljspeech" +# Check integrity of the config +with open(continue_config_path, "r", encoding="utf-8") as f: + config_loaded = json.load(f) +assert config_loaded["characters"] is not None +assert config_loaded["output_path"] in continue_path +assert config_loaded["test_delay_epochs"] == 0 + +# Load the model and run inference +inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --speaker_idx {speaker_id} --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}" +run_cli(inference_command) + +# restore the model and continue training for one more epoch +command_train = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --continue_path {continue_path} " +run_cli(command_train) +shutil.rmtree(continue_path) +shutil.rmtree("tests/data/ljspeech/f0_cache_delightful/") diff --git a/TTS/tests/tts_tests2/test_delightful_tts_layers.py b/TTS/tests/tts_tests2/test_delightful_tts_layers.py new file mode 100644 index 0000000000000000000000000000000000000000..073bb1eb5a1f1f82eeb6afaad2ef3069e0d728ca --- /dev/null +++ b/TTS/tests/tts_tests2/test_delightful_tts_layers.py @@ -0,0 +1,91 @@ +import torch + +from TTS.tts.configs.delightful_tts_config import DelightfulTTSConfig +from TTS.tts.layers.delightful_tts.acoustic_model import AcousticModel +from TTS.tts.models.delightful_tts import DelightfulTtsArgs, VocoderConfig +from TTS.tts.utils.helpers import rand_segments +from TTS.tts.utils.text.tokenizer import TTSTokenizer +from TTS.vocoder.models.hifigan_generator import HifiganGenerator + +device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") + +args = DelightfulTtsArgs() +v_args = VocoderConfig() + + +config = DelightfulTTSConfig( + model_args=args, + # compute_f0=True, + # f0_cache_path=os.path.join(output_path, "f0_cache"), + text_cleaner="english_cleaners", + use_phonemes=True, + phoneme_language="en-us", + # phoneme_cache_path=os.path.join(output_path, "phoneme_cache"), +) + +tokenizer, config = TTSTokenizer.init_from_config(config) + + +def test_acoustic_model(): + dummy_tokens = torch.rand((1, 41)).long().to(device) + dummy_text_lens = torch.tensor([41]).to(device) + dummy_spec = torch.rand((1, 100, 207)).to(device) + dummy_spec_lens = torch.tensor([207]).to(device) + dummy_pitch = torch.rand((1, 1, 207)).long().to(device) + dummy_energy = torch.rand((1, 1, 207)).long().to(device) + + args.out_channels = 100 + args.num_mels = 100 + + acoustic_model = AcousticModel(args=args, tokenizer=tokenizer, speaker_manager=None).to(device) + + output = acoustic_model( + tokens=dummy_tokens, + src_lens=dummy_text_lens, + mel_lens=dummy_spec_lens, + mels=dummy_spec, + pitches=dummy_pitch, + energies=dummy_energy, + attn_priors=None, + d_vectors=None, + speaker_idx=None, + ) + assert list(output["model_outputs"].shape) == [1, 207, 100] + output["model_outputs"].sum().backward() + + +def test_hifi_decoder(): + dummy_input = torch.rand((1, 207, 100)).to(device) + dummy_text_lens = torch.tensor([41]).to(device) + dummy_spec = torch.rand((1, 100, 207)).to(device) + dummy_spec_lens = torch.tensor([207]).to(device) + dummy_pitch = torch.rand((1, 1, 207)).long().to(device) + dummy_energy = torch.rand((1, 1, 207)).long().to(device) + + waveform_decoder = HifiganGenerator( + 100, + 1, + v_args.resblock_type_decoder, + v_args.resblock_dilation_sizes_decoder, + v_args.resblock_kernel_sizes_decoder, + v_args.upsample_kernel_sizes_decoder, + v_args.upsample_initial_channel_decoder, + v_args.upsample_rates_decoder, + inference_padding=0, + cond_channels=0, + conv_pre_weight_norm=False, + conv_post_weight_norm=False, + conv_post_bias=False, + ).to(device) + + vocoder_input_slices, slice_ids = rand_segments( # pylint: disable=unused-variable + x=dummy_input.transpose(1, 2), + x_lengths=dummy_spec_lens, + segment_size=32, + let_short_samples=True, + pad_short=True, + ) + + outputs = waveform_decoder(x=vocoder_input_slices.detach()) + assert list(outputs.shape) == [1, 1, 8192] + outputs.sum().backward() diff --git a/TTS/tests/tts_tests2/test_delightful_tts_train.py b/TTS/tests/tts_tests2/test_delightful_tts_train.py new file mode 100644 index 0000000000000000000000000000000000000000..a917d776570c5d2077890a7bfaf624f69f6d48f6 --- /dev/null +++ b/TTS/tests/tts_tests2/test_delightful_tts_train.py @@ -0,0 +1,97 @@ +import glob +import json +import os +import shutil + +from trainer import get_last_checkpoint + +from tests import get_device_id, get_tests_output_path, run_cli +from TTS.config.shared_configs import BaseAudioConfig +from TTS.tts.configs.delightful_tts_config import DelightfulTTSConfig +from TTS.tts.models.delightful_tts import DelightfulTtsArgs, DelightfulTtsAudioConfig, VocoderConfig + +config_path = os.path.join(get_tests_output_path(), "test_model_config.json") +output_path = os.path.join(get_tests_output_path(), "train_outputs") + +audio_config = BaseAudioConfig( + sample_rate=22050, + do_trim_silence=True, + trim_db=60.0, + signal_norm=False, + mel_fmin=0.0, + mel_fmax=8000, + spec_gain=1.0, + log_func="np.log", + ref_level_db=20, + preemphasis=0.0, +) + +audio_config = DelightfulTtsAudioConfig() +model_args = DelightfulTtsArgs() + +vocoder_config = VocoderConfig() + + +config = DelightfulTTSConfig( + audio=audio_config, + batch_size=2, + eval_batch_size=8, + num_loader_workers=0, + num_eval_loader_workers=0, + text_cleaner="english_cleaners", + use_phonemes=True, + phoneme_language="en-us", + phoneme_cache_path="tests/data/ljspeech/phoneme_cache/", + f0_cache_path="tests/data/ljspeech/f0_cache_delightful/", ## delightful f0 cache is incompatible with other models + run_eval=True, + test_delay_epochs=-1, + binary_align_loss_alpha=0.0, + epochs=1, + print_step=1, + use_attn_priors=False, + print_eval=True, + test_sentences=[ + ["Be a voice, not an echo."], + ], + use_speaker_embedding=False, +) +config.save_json(config_path) + +# train the model for one epoch +command_train = ( + f"CUDA_VISIBLE_DEVICES='{'cpu'}' python TTS/bin/train_tts.py --config_path {config_path} " + f"--coqpit.output_path {output_path} " + "--coqpit.datasets.0.formatter ljspeech " + "--coqpit.datasets.0.meta_file_train metadata.csv " + "--coqpit.datasets.0.meta_file_val metadata.csv " + "--coqpit.datasets.0.path tests/data/ljspeech " + "--coqpit.datasets.0.meta_file_attn_mask tests/data/ljspeech/metadata_attn_mask.txt " + "--coqpit.test_delay_epochs -1" +) + +run_cli(command_train) + +# Find latest folder +continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime) + +# Inference using TTS API +continue_config_path = os.path.join(continue_path, "config.json") +continue_restore_path, _ = get_last_checkpoint(continue_path) +out_wav_path = os.path.join(get_tests_output_path(), "output.wav") + +# Check integrity of the config +with open(continue_config_path, "r", encoding="utf-8") as f: + config_loaded = json.load(f) +assert config_loaded["characters"] is not None +assert config_loaded["output_path"] in continue_path +assert config_loaded["test_delay_epochs"] == -1 + +# Load the model and run inference +inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}" +run_cli(inference_command) + +# restore the model and continue training for one more epoch +command_train = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --continue_path {continue_path} " +run_cli(command_train) +shutil.rmtree(continue_path) +shutil.rmtree("tests/data/ljspeech/f0_cache_delightful/") diff --git a/TTS/tests/tts_tests2/test_fast_pitch_speaker_emb_train.py b/TTS/tests/tts_tests2/test_fast_pitch_speaker_emb_train.py new file mode 100644 index 0000000000000000000000000000000000000000..7f79bfcab29531fa7b3f158a42f5b2f1975469c3 --- /dev/null +++ b/TTS/tests/tts_tests2/test_fast_pitch_speaker_emb_train.py @@ -0,0 +1,92 @@ +import glob +import json +import os +import shutil + +from trainer import get_last_checkpoint + +from tests import get_device_id, get_tests_output_path, run_cli +from TTS.config.shared_configs import BaseAudioConfig +from TTS.tts.configs.fast_pitch_config import FastPitchConfig + +config_path = os.path.join(get_tests_output_path(), "fast_pitch_speaker_emb_config.json") +output_path = os.path.join(get_tests_output_path(), "train_outputs") + +audio_config = BaseAudioConfig( + sample_rate=22050, + do_trim_silence=True, + trim_db=60.0, + signal_norm=False, + mel_fmin=0.0, + mel_fmax=8000, + spec_gain=1.0, + log_func="np.log", + ref_level_db=20, + preemphasis=0.0, +) + +config = FastPitchConfig( + audio=audio_config, + batch_size=8, + eval_batch_size=8, + num_loader_workers=0, + num_eval_loader_workers=0, + text_cleaner="english_cleaners", + use_phonemes=True, + phoneme_language="en-us", + phoneme_cache_path="tests/data/ljspeech/phoneme_cache/", + f0_cache_path="tests/data/ljspeech/f0_cache/", + run_eval=True, + test_delay_epochs=-1, + epochs=1, + print_step=1, + print_eval=True, + use_speaker_embedding=True, + test_sentences=[ + "Be a voice, not an echo.", + ], +) +config.audio.do_trim_silence = True +config.use_speaker_embedding = True +config.model_args.use_speaker_embedding = True +config.audio.trim_db = 60 +config.save_json(config_path) + +# train the model for one epoch +command_train = ( + f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --config_path {config_path} " + f"--coqpit.output_path {output_path} " + "--coqpit.datasets.0.formatter ljspeech_test " + "--coqpit.datasets.0.meta_file_train metadata.csv " + "--coqpit.datasets.0.meta_file_val metadata.csv " + "--coqpit.datasets.0.path tests/data/ljspeech " + "--coqpit.datasets.0.meta_file_attn_mask tests/data/ljspeech/metadata_attn_mask.txt " + "--coqpit.test_delay_epochs 0" +) +run_cli(command_train) + +# Find latest folder +continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime) + +# Inference using TTS API +continue_config_path = os.path.join(continue_path, "config.json") +continue_restore_path, _ = get_last_checkpoint(continue_path) +out_wav_path = os.path.join(get_tests_output_path(), "output.wav") +speaker_id = "ljspeech-1" +continue_speakers_path = os.path.join(continue_path, "speakers.json") + +# Check integrity of the config +with open(continue_config_path, "r", encoding="utf-8") as f: + config_loaded = json.load(f) +assert config_loaded["characters"] is not None +assert config_loaded["output_path"] in continue_path +assert config_loaded["test_delay_epochs"] == 0 + +# Load the model and run inference +inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --speaker_idx {speaker_id} --speakers_file_path {continue_speakers_path} --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}" +run_cli(inference_command) + +# restore the model and continue training for one more epoch +command_train = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --continue_path {continue_path} " +run_cli(command_train) +shutil.rmtree(continue_path) diff --git a/TTS/tests/tts_tests2/test_fast_pitch_train.py b/TTS/tests/tts_tests2/test_fast_pitch_train.py new file mode 100644 index 0000000000000000000000000000000000000000..a525715b53826157a96d45dd4b204644836e0114 --- /dev/null +++ b/TTS/tests/tts_tests2/test_fast_pitch_train.py @@ -0,0 +1,91 @@ +import glob +import json +import os +import shutil + +from trainer import get_last_checkpoint + +from tests import get_device_id, get_tests_output_path, run_cli +from TTS.config.shared_configs import BaseAudioConfig +from TTS.tts.configs.fast_pitch_config import FastPitchConfig + +config_path = os.path.join(get_tests_output_path(), "test_model_config.json") +output_path = os.path.join(get_tests_output_path(), "train_outputs") + +audio_config = BaseAudioConfig( + sample_rate=22050, + do_trim_silence=True, + trim_db=60.0, + signal_norm=False, + mel_fmin=0.0, + mel_fmax=8000, + spec_gain=1.0, + log_func="np.log", + ref_level_db=20, + preemphasis=0.0, +) + +config = FastPitchConfig( + audio=audio_config, + batch_size=8, + eval_batch_size=8, + num_loader_workers=0, + num_eval_loader_workers=0, + text_cleaner="english_cleaners", + use_phonemes=True, + phoneme_language="en-us", + phoneme_cache_path="tests/data/ljspeech/phoneme_cache/", + f0_cache_path="tests/data/ljspeech/f0_cache/", + run_eval=True, + test_delay_epochs=-1, + epochs=1, + print_step=1, + print_eval=True, + test_sentences=[ + "Be a voice, not an echo.", + ], + use_speaker_embedding=False, +) +config.audio.do_trim_silence = True +config.use_speaker_embedding = False +config.model_args.use_speaker_embedding = False +config.audio.trim_db = 60 +config.save_json(config_path) + +# train the model for one epoch +command_train = ( + f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --config_path {config_path} " + f"--coqpit.output_path {output_path} " + "--coqpit.datasets.0.formatter ljspeech " + "--coqpit.datasets.0.meta_file_train metadata.csv " + "--coqpit.datasets.0.meta_file_val metadata.csv " + "--coqpit.datasets.0.path tests/data/ljspeech " + "--coqpit.datasets.0.meta_file_attn_mask tests/data/ljspeech/metadata_attn_mask.txt " + "--coqpit.test_delay_epochs 0" +) + +run_cli(command_train) + +# Find latest folder +continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime) + +# Inference using TTS API +continue_config_path = os.path.join(continue_path, "config.json") +continue_restore_path, _ = get_last_checkpoint(continue_path) +out_wav_path = os.path.join(get_tests_output_path(), "output.wav") + +# Check integrity of the config +with open(continue_config_path, "r", encoding="utf-8") as f: + config_loaded = json.load(f) +assert config_loaded["characters"] is not None +assert config_loaded["output_path"] in continue_path +assert config_loaded["test_delay_epochs"] == 0 + +# Load the model and run inference +inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}" +run_cli(inference_command) + +# restore the model and continue training for one more epoch +command_train = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --continue_path {continue_path} " +run_cli(command_train) +shutil.rmtree(continue_path) diff --git a/TTS/tests/tts_tests2/test_fastspeech_2_speaker_emb_train.py b/TTS/tests/tts_tests2/test_fastspeech_2_speaker_emb_train.py new file mode 100644 index 0000000000000000000000000000000000000000..35bda597d532455bc21422d35bce9732f47de0c1 --- /dev/null +++ b/TTS/tests/tts_tests2/test_fastspeech_2_speaker_emb_train.py @@ -0,0 +1,95 @@ +import glob +import json +import os +import shutil + +from trainer import get_last_checkpoint + +from tests import get_device_id, get_tests_output_path, run_cli +from TTS.config.shared_configs import BaseAudioConfig +from TTS.tts.configs.fastspeech2_config import Fastspeech2Config + +config_path = os.path.join(get_tests_output_path(), "fast_pitch_speaker_emb_config.json") +output_path = os.path.join(get_tests_output_path(), "train_outputs") + +audio_config = BaseAudioConfig( + sample_rate=22050, + do_trim_silence=True, + trim_db=60.0, + signal_norm=False, + mel_fmin=0.0, + mel_fmax=8000, + spec_gain=1.0, + log_func="np.log", + ref_level_db=20, + preemphasis=0.0, +) + +config = Fastspeech2Config( + audio=audio_config, + batch_size=8, + eval_batch_size=8, + num_loader_workers=0, + num_eval_loader_workers=0, + text_cleaner="english_cleaners", + use_phonemes=True, + phoneme_language="en-us", + phoneme_cache_path="tests/data/ljspeech/phoneme_cache/", + f0_cache_path="tests/data/ljspeech/f0_cache/", + compute_f0=True, + compute_energy=True, + energy_cache_path="tests/data/ljspeech/energy_cache/", + run_eval=True, + test_delay_epochs=-1, + epochs=1, + print_step=1, + print_eval=True, + use_speaker_embedding=True, + test_sentences=[ + "Be a voice, not an echo.", + ], +) +config.audio.do_trim_silence = True +config.use_speaker_embedding = True +config.model_args.use_speaker_embedding = True +config.audio.trim_db = 60 +config.save_json(config_path) + +# train the model for one epoch +command_train = ( + f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --config_path {config_path} " + f"--coqpit.output_path {output_path} " + "--coqpit.datasets.0.formatter ljspeech_test " + "--coqpit.datasets.0.meta_file_train metadata.csv " + "--coqpit.datasets.0.meta_file_val metadata.csv " + "--coqpit.datasets.0.path tests/data/ljspeech " + "--coqpit.datasets.0.meta_file_attn_mask tests/data/ljspeech/metadata_attn_mask.txt " + "--coqpit.test_delay_epochs 0" +) +run_cli(command_train) + +# Find latest folder +continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime) + +# Inference using TTS API +continue_config_path = os.path.join(continue_path, "config.json") +continue_restore_path, _ = get_last_checkpoint(continue_path) +out_wav_path = os.path.join(get_tests_output_path(), "output.wav") +speaker_id = "ljspeech-1" +continue_speakers_path = os.path.join(continue_path, "speakers.json") + +# Check integrity of the config +with open(continue_config_path, "r", encoding="utf-8") as f: + config_loaded = json.load(f) +assert config_loaded["characters"] is not None +assert config_loaded["output_path"] in continue_path +assert config_loaded["test_delay_epochs"] == 0 + +# Load the model and run inference +inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --speaker_idx {speaker_id} --speakers_file_path {continue_speakers_path} --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}" +run_cli(inference_command) + +# restore the model and continue training for one more epoch +command_train = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --continue_path {continue_path} " +run_cli(command_train) +shutil.rmtree(continue_path) diff --git a/TTS/tests/tts_tests2/test_fastspeech_2_train.py b/TTS/tests/tts_tests2/test_fastspeech_2_train.py new file mode 100644 index 0000000000000000000000000000000000000000..dd4b07d240939413edbb6c4f6d818a856628c8a8 --- /dev/null +++ b/TTS/tests/tts_tests2/test_fastspeech_2_train.py @@ -0,0 +1,94 @@ +import glob +import json +import os +import shutil + +from trainer import get_last_checkpoint + +from tests import get_device_id, get_tests_output_path, run_cli +from TTS.config.shared_configs import BaseAudioConfig +from TTS.tts.configs.fastspeech2_config import Fastspeech2Config + +config_path = os.path.join(get_tests_output_path(), "test_model_config.json") +output_path = os.path.join(get_tests_output_path(), "train_outputs") + +audio_config = BaseAudioConfig( + sample_rate=22050, + do_trim_silence=True, + trim_db=60.0, + signal_norm=False, + mel_fmin=0.0, + mel_fmax=8000, + spec_gain=1.0, + log_func="np.log", + ref_level_db=20, + preemphasis=0.0, +) + +config = Fastspeech2Config( + audio=audio_config, + batch_size=8, + eval_batch_size=8, + num_loader_workers=0, + num_eval_loader_workers=0, + text_cleaner="english_cleaners", + use_phonemes=True, + phoneme_language="en-us", + phoneme_cache_path="tests/data/ljspeech/phoneme_cache/", + f0_cache_path="tests/data/ljspeech/f0_cache/", + compute_f0=True, + compute_energy=True, + energy_cache_path="tests/data/ljspeech/energy_cache/", + run_eval=True, + test_delay_epochs=-1, + epochs=1, + print_step=1, + print_eval=True, + test_sentences=[ + "Be a voice, not an echo.", + ], + use_speaker_embedding=False, +) +config.audio.do_trim_silence = True +config.use_speaker_embedding = False +config.model_args.use_speaker_embedding = False +config.audio.trim_db = 60 +config.save_json(config_path) + +# train the model for one epoch +command_train = ( + f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --config_path {config_path} " + f"--coqpit.output_path {output_path} " + "--coqpit.datasets.0.formatter ljspeech " + "--coqpit.datasets.0.meta_file_train metadata.csv " + "--coqpit.datasets.0.meta_file_val metadata.csv " + "--coqpit.datasets.0.path tests/data/ljspeech " + "--coqpit.datasets.0.meta_file_attn_mask tests/data/ljspeech/metadata_attn_mask.txt " + "--coqpit.test_delay_epochs 0" +) + +run_cli(command_train) + +# Find latest folder +continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime) + +# Inference using TTS API +continue_config_path = os.path.join(continue_path, "config.json") +continue_restore_path, _ = get_last_checkpoint(continue_path) +out_wav_path = os.path.join(get_tests_output_path(), "output.wav") + +# Check integrity of the config +with open(continue_config_path, "r", encoding="utf-8") as f: + config_loaded = json.load(f) +assert config_loaded["characters"] is not None +assert config_loaded["output_path"] in continue_path +assert config_loaded["test_delay_epochs"] == 0 + +# Load the model and run inference +inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}" +run_cli(inference_command) + +# restore the model and continue training for one more epoch +command_train = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --continue_path {continue_path} " +run_cli(command_train) +shutil.rmtree(continue_path) diff --git a/TTS/tests/tts_tests2/test_feed_forward_layers.py b/TTS/tests/tts_tests2/test_feed_forward_layers.py new file mode 100644 index 0000000000000000000000000000000000000000..6b26b88f382a1876fd197b632c9bd2b4aca1e06f --- /dev/null +++ b/TTS/tests/tts_tests2/test_feed_forward_layers.py @@ -0,0 +1,107 @@ +import torch + +from TTS.tts.layers.feed_forward.decoder import Decoder +from TTS.tts.layers.feed_forward.encoder import Encoder +from TTS.tts.utils.helpers import sequence_mask + +device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") + + +def test_encoder(): + input_dummy = torch.rand(8, 14, 37).to(device) + input_lengths = torch.randint(31, 37, (8,)).long().to(device) + input_lengths[-1] = 37 + input_mask = torch.unsqueeze(sequence_mask(input_lengths, input_dummy.size(2)), 1).to(device) + # relative positional transformer encoder + layer = Encoder( + out_channels=11, + in_hidden_channels=14, + encoder_type="relative_position_transformer", + encoder_params={ + "hidden_channels_ffn": 768, + "num_heads": 2, + "kernel_size": 3, + "dropout_p": 0.1, + "num_layers": 6, + "rel_attn_window_size": 4, + "input_length": None, + }, + ).to(device) + output = layer(input_dummy, input_mask) + assert list(output.shape) == [8, 11, 37] + # residual conv bn encoder + layer = Encoder( + out_channels=11, + in_hidden_channels=14, + encoder_type="residual_conv_bn", + encoder_params={"kernel_size": 4, "dilations": 4 * [1, 2, 4] + [1], "num_conv_blocks": 2, "num_res_blocks": 13}, + ).to(device) + output = layer(input_dummy, input_mask) + assert list(output.shape) == [8, 11, 37] + # FFTransformer encoder + layer = Encoder( + out_channels=14, + in_hidden_channels=14, + encoder_type="fftransformer", + encoder_params={"hidden_channels_ffn": 31, "num_heads": 2, "num_layers": 2, "dropout_p": 0.1}, + ).to(device) + output = layer(input_dummy, input_mask) + assert list(output.shape) == [8, 14, 37] + + +def test_decoder(): + input_dummy = torch.rand(8, 128, 37).to(device) + input_lengths = torch.randint(31, 37, (8,)).long().to(device) + input_lengths[-1] = 37 + + input_mask = torch.unsqueeze(sequence_mask(input_lengths, input_dummy.size(2)), 1).to(device) + # residual bn conv decoder + layer = Decoder(out_channels=11, in_hidden_channels=128).to(device) + output = layer(input_dummy, input_mask) + assert list(output.shape) == [8, 11, 37] + # transformer decoder + layer = Decoder( + out_channels=11, + in_hidden_channels=128, + decoder_type="relative_position_transformer", + decoder_params={ + "hidden_channels_ffn": 128, + "num_heads": 2, + "kernel_size": 3, + "dropout_p": 0.1, + "num_layers": 8, + "rel_attn_window_size": 4, + "input_length": None, + }, + ).to(device) + output = layer(input_dummy, input_mask) + assert list(output.shape) == [8, 11, 37] + # wavenet decoder + layer = Decoder( + out_channels=11, + in_hidden_channels=128, + decoder_type="wavenet", + decoder_params={ + "num_blocks": 12, + "hidden_channels": 192, + "kernel_size": 5, + "dilation_rate": 1, + "num_layers": 4, + "dropout_p": 0.05, + }, + ).to(device) + output = layer(input_dummy, input_mask) + # FFTransformer decoder + layer = Decoder( + out_channels=11, + in_hidden_channels=128, + decoder_type="fftransformer", + decoder_params={ + "hidden_channels_ffn": 31, + "num_heads": 2, + "dropout_p": 0.1, + "num_layers": 2, + }, + ).to(device) + output = layer(input_dummy, input_mask) + assert list(output.shape) == [8, 11, 37] diff --git a/TTS/tests/tts_tests2/test_forward_tts.py b/TTS/tests/tts_tests2/test_forward_tts.py new file mode 100644 index 0000000000000000000000000000000000000000..cec0f211c85c70b17f289e37368638911b911742 --- /dev/null +++ b/TTS/tests/tts_tests2/test_forward_tts.py @@ -0,0 +1,147 @@ +import torch as T + +from TTS.tts.models.forward_tts import ForwardTTS, ForwardTTSArgs +from TTS.tts.utils.helpers import sequence_mask + +# pylint: disable=unused-variable + + +def expand_encoder_outputs_test(): + model = ForwardTTS(ForwardTTSArgs(num_chars=10)) + + inputs = T.rand(2, 5, 57) + durations = T.randint(1, 4, (2, 57)) + + x_mask = T.ones(2, 1, 57) + y_mask = T.ones(2, 1, durations.sum(1).max()) + + expanded, _ = model.expand_encoder_outputs(inputs, durations, x_mask, y_mask) + + for b in range(durations.shape[0]): + index = 0 + for idx, dur in enumerate(durations[b]): + diff = ( + expanded[b, :, index : index + dur.item()] + - inputs[b, :, idx].repeat(dur.item()).view(expanded[b, :, index : index + dur.item()].shape) + ).sum() + assert abs(diff) < 1e-6, diff + index += dur + + +def model_input_output_test(): + """Assert the output shapes of the model in different modes""" + + # VANILLA MODEL + model = ForwardTTS(ForwardTTSArgs(num_chars=10, use_pitch=False, use_aligner=False)) + + x = T.randint(0, 10, (2, 21)) + x_lengths = T.randint(10, 22, (2,)) + x_lengths[-1] = 21 + x_mask = sequence_mask(x_lengths).unsqueeze(1).long() + durations = T.randint(1, 4, (2, 21)) + durations = durations * x_mask.squeeze(1) + y_lengths = durations.sum(1) + y_mask = sequence_mask(y_lengths).unsqueeze(1).long() + + outputs = model.forward(x, x_lengths, y_lengths, dr=durations) + + assert outputs["model_outputs"].shape == (2, durations.sum(1).max(), 80) + assert outputs["durations_log"].shape == (2, 21) + assert outputs["durations"].shape == (2, 21) + assert outputs["alignments"].shape == (2, durations.sum(1).max(), 21) + assert (outputs["x_mask"] - x_mask).sum() == 0.0 + assert (outputs["y_mask"] - y_mask).sum() == 0.0 + + assert outputs["alignment_soft"] is None + assert outputs["alignment_mas"] is None + assert outputs["alignment_logprob"] is None + assert outputs["o_alignment_dur"] is None + assert outputs["pitch_avg"] is None + assert outputs["pitch_avg_gt"] is None + + # USE PITCH + model = ForwardTTS(ForwardTTSArgs(num_chars=10, use_pitch=True, use_aligner=False)) + + x = T.randint(0, 10, (2, 21)) + x_lengths = T.randint(10, 22, (2,)) + x_lengths[-1] = 21 + x_mask = sequence_mask(x_lengths).unsqueeze(1).long() + durations = T.randint(1, 4, (2, 21)) + durations = durations * x_mask.squeeze(1) + y_lengths = durations.sum(1) + y_mask = sequence_mask(y_lengths).unsqueeze(1).long() + pitch = T.rand(2, 1, y_lengths.max()) + + outputs = model.forward(x, x_lengths, y_lengths, dr=durations, pitch=pitch) + + assert outputs["model_outputs"].shape == (2, durations.sum(1).max(), 80) + assert outputs["durations_log"].shape == (2, 21) + assert outputs["durations"].shape == (2, 21) + assert outputs["alignments"].shape == (2, durations.sum(1).max(), 21) + assert (outputs["x_mask"] - x_mask).sum() == 0.0 + assert (outputs["y_mask"] - y_mask).sum() == 0.0 + assert outputs["pitch_avg"].shape == (2, 1, 21) + assert outputs["pitch_avg_gt"].shape == (2, 1, 21) + + assert outputs["alignment_soft"] is None + assert outputs["alignment_mas"] is None + assert outputs["alignment_logprob"] is None + assert outputs["o_alignment_dur"] is None + + # USE ALIGNER NETWORK + model = ForwardTTS(ForwardTTSArgs(num_chars=10, use_pitch=False, use_aligner=True)) + + x = T.randint(0, 10, (2, 21)) + x_lengths = T.randint(10, 22, (2,)) + x_lengths[-1] = 21 + x_mask = sequence_mask(x_lengths).unsqueeze(1).long() + durations = T.randint(1, 4, (2, 21)) + durations = durations * x_mask.squeeze(1) + y_lengths = durations.sum(1) + y_mask = sequence_mask(y_lengths).unsqueeze(1).long() + y = T.rand(2, y_lengths.max(), 80) + + outputs = model.forward(x, x_lengths, y_lengths, dr=durations, y=y) + + assert outputs["model_outputs"].shape == (2, durations.sum(1).max(), 80) + assert outputs["durations_log"].shape == (2, 21) + assert outputs["durations"].shape == (2, 21) + assert outputs["alignments"].shape == (2, durations.sum(1).max(), 21) + assert (outputs["x_mask"] - x_mask).sum() == 0.0 + assert (outputs["y_mask"] - y_mask).sum() == 0.0 + assert outputs["alignment_soft"].shape == (2, durations.sum(1).max(), 21) + assert outputs["alignment_mas"].shape == (2, durations.sum(1).max(), 21) + assert outputs["alignment_logprob"].shape == (2, 1, durations.sum(1).max(), 21) + assert outputs["o_alignment_dur"].shape == (2, 21) + + assert outputs["pitch_avg"] is None + assert outputs["pitch_avg_gt"] is None + + # USE ALIGNER NETWORK AND PITCH + model = ForwardTTS(ForwardTTSArgs(num_chars=10, use_pitch=True, use_aligner=True)) + + x = T.randint(0, 10, (2, 21)) + x_lengths = T.randint(10, 22, (2,)) + x_lengths[-1] = 21 + x_mask = sequence_mask(x_lengths).unsqueeze(1).long() + durations = T.randint(1, 4, (2, 21)) + durations = durations * x_mask.squeeze(1) + y_lengths = durations.sum(1) + y_mask = sequence_mask(y_lengths).unsqueeze(1).long() + y = T.rand(2, y_lengths.max(), 80) + pitch = T.rand(2, 1, y_lengths.max()) + + outputs = model.forward(x, x_lengths, y_lengths, dr=durations, pitch=pitch, y=y) + + assert outputs["model_outputs"].shape == (2, durations.sum(1).max(), 80) + assert outputs["durations_log"].shape == (2, 21) + assert outputs["durations"].shape == (2, 21) + assert outputs["alignments"].shape == (2, durations.sum(1).max(), 21) + assert (outputs["x_mask"] - x_mask).sum() == 0.0 + assert (outputs["y_mask"] - y_mask).sum() == 0.0 + assert outputs["alignment_soft"].shape == (2, durations.sum(1).max(), 21) + assert outputs["alignment_mas"].shape == (2, durations.sum(1).max(), 21) + assert outputs["alignment_logprob"].shape == (2, 1, durations.sum(1).max(), 21) + assert outputs["o_alignment_dur"].shape == (2, 21) + assert outputs["pitch_avg"].shape == (2, 1, 21) + assert outputs["pitch_avg_gt"].shape == (2, 1, 21) diff --git a/TTS/tests/tts_tests2/test_glow_tts.py b/TTS/tests/tts_tests2/test_glow_tts.py new file mode 100644 index 0000000000000000000000000000000000000000..2a723f105f56e25fee096831719f78155180ee89 --- /dev/null +++ b/TTS/tests/tts_tests2/test_glow_tts.py @@ -0,0 +1,378 @@ +import copy +import os +import unittest + +import torch +from torch import optim +from trainer.logging.tensorboard_logger import TensorboardLogger + +from tests import get_tests_data_path, get_tests_input_path, get_tests_output_path +from TTS.tts.configs.glow_tts_config import GlowTTSConfig +from TTS.tts.layers.losses import GlowTTSLoss +from TTS.tts.models.glow_tts import GlowTTS +from TTS.tts.utils.speakers import SpeakerManager +from TTS.utils.audio import AudioProcessor + +# pylint: disable=unused-variable + +torch.manual_seed(1) +use_cuda = torch.cuda.is_available() +device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") + +c = GlowTTSConfig() + +ap = AudioProcessor(**c.audio) +WAV_FILE = os.path.join(get_tests_input_path(), "example_1.wav") +BATCH_SIZE = 3 + + +def count_parameters(model): + r"""Count number of trainable parameters in a network""" + return sum(p.numel() for p in model.parameters() if p.requires_grad) + + +class TestGlowTTS(unittest.TestCase): + @staticmethod + def _create_inputs(batch_size=8): + input_dummy = torch.randint(0, 24, (batch_size, 128)).long().to(device) + input_lengths = torch.randint(100, 129, (batch_size,)).long().to(device) + input_lengths[-1] = 128 + mel_spec = torch.rand(batch_size, 30, c.audio["num_mels"]).to(device) + mel_lengths = torch.randint(20, 30, (batch_size,)).long().to(device) + speaker_ids = torch.randint(0, 5, (batch_size,)).long().to(device) + return input_dummy, input_lengths, mel_spec, mel_lengths, speaker_ids + + @staticmethod + def _check_parameter_changes(model, model_ref): + count = 0 + for param, param_ref in zip(model.parameters(), model_ref.parameters()): + assert (param != param_ref).any(), "param {} with shape {} not updated!! \n{}\n{}".format( + count, param.shape, param, param_ref + ) + count += 1 + + def test_init_multispeaker(self): + config = GlowTTSConfig(num_chars=32) + model = GlowTTS(config) + # speaker embedding with default speaker_embedding_dim + config.use_speaker_embedding = True + config.num_speakers = 5 + config.d_vector_dim = None + model.init_multispeaker(config) + self.assertEqual(model.c_in_channels, model.hidden_channels_enc) + # use external speaker embeddings with speaker_embedding_dim = 301 + config = GlowTTSConfig(num_chars=32) + config.use_d_vector_file = True + config.d_vector_dim = 301 + model = GlowTTS(config) + model.init_multispeaker(config) + self.assertEqual(model.c_in_channels, 301) + # use speaker embedddings by the provided speaker_manager + config = GlowTTSConfig(num_chars=32) + config.use_speaker_embedding = True + config.speakers_file = os.path.join(get_tests_data_path(), "ljspeech", "speakers.json") + speaker_manager = SpeakerManager.init_from_config(config) + model = GlowTTS(config) + model.speaker_manager = speaker_manager + model.init_multispeaker(config) + self.assertEqual(model.c_in_channels, model.hidden_channels_enc) + self.assertEqual(model.num_speakers, speaker_manager.num_speakers) + # use external speaker embeddings by the provided speaker_manager + config = GlowTTSConfig(num_chars=32) + config.use_d_vector_file = True + config.d_vector_dim = 256 + config.d_vector_file = os.path.join(get_tests_data_path(), "dummy_speakers.json") + speaker_manager = SpeakerManager.init_from_config(config) + model = GlowTTS(config) + model.speaker_manager = speaker_manager + model.init_multispeaker(config) + self.assertEqual(model.c_in_channels, speaker_manager.embedding_dim) + self.assertEqual(model.num_speakers, speaker_manager.num_speakers) + + def test_unlock_act_norm_layers(self): + config = GlowTTSConfig(num_chars=32) + model = GlowTTS(config).to(device) + model.unlock_act_norm_layers() + for f in model.decoder.flows: + if getattr(f, "set_ddi", False): + self.assertFalse(f.initialized) + + def test_lock_act_norm_layers(self): + config = GlowTTSConfig(num_chars=32) + model = GlowTTS(config).to(device) + model.lock_act_norm_layers() + for f in model.decoder.flows: + if getattr(f, "set_ddi", False): + self.assertTrue(f.initialized) + + def _test_forward(self, batch_size): + input_dummy, input_lengths, mel_spec, mel_lengths, speaker_ids = self._create_inputs(batch_size) + # create model + config = GlowTTSConfig(num_chars=32) + model = GlowTTS(config).to(device) + model.train() + print(" > Num parameters for GlowTTS model:%s" % (count_parameters(model))) + # inference encoder and decoder with MAS + y = model.forward(input_dummy, input_lengths, mel_spec, mel_lengths) + self.assertEqual(y["z"].shape, mel_spec.shape) + self.assertEqual(y["logdet"].shape, torch.Size([batch_size])) + self.assertEqual(y["y_mean"].shape, mel_spec.shape) + self.assertEqual(y["y_log_scale"].shape, mel_spec.shape) + self.assertEqual(y["alignments"].shape, mel_spec.shape[:2] + (input_dummy.shape[1],)) + self.assertEqual(y["durations_log"].shape, input_dummy.shape + (1,)) + self.assertEqual(y["total_durations_log"].shape, input_dummy.shape + (1,)) + + def test_forward(self): + self._test_forward(1) + self._test_forward(3) + + def _test_forward_with_d_vector(self, batch_size): + input_dummy, input_lengths, mel_spec, mel_lengths, speaker_ids = self._create_inputs(batch_size) + d_vector = torch.rand(batch_size, 256).to(device) + # create model + config = GlowTTSConfig( + num_chars=32, + use_d_vector_file=True, + d_vector_dim=256, + d_vector_file=os.path.join(get_tests_data_path(), "dummy_speakers.json"), + ) + model = GlowTTS.init_from_config(config, verbose=False).to(device) + model.train() + print(" > Num parameters for GlowTTS model:%s" % (count_parameters(model))) + # inference encoder and decoder with MAS + y = model.forward(input_dummy, input_lengths, mel_spec, mel_lengths, {"d_vectors": d_vector}) + self.assertEqual(y["z"].shape, mel_spec.shape) + self.assertEqual(y["logdet"].shape, torch.Size([batch_size])) + self.assertEqual(y["y_mean"].shape, mel_spec.shape) + self.assertEqual(y["y_log_scale"].shape, mel_spec.shape) + self.assertEqual(y["alignments"].shape, mel_spec.shape[:2] + (input_dummy.shape[1],)) + self.assertEqual(y["durations_log"].shape, input_dummy.shape + (1,)) + self.assertEqual(y["total_durations_log"].shape, input_dummy.shape + (1,)) + + def test_forward_with_d_vector(self): + self._test_forward_with_d_vector(1) + self._test_forward_with_d_vector(3) + + def _test_forward_with_speaker_id(self, batch_size): + input_dummy, input_lengths, mel_spec, mel_lengths, speaker_ids = self._create_inputs(batch_size) + speaker_ids = torch.randint(0, 24, (batch_size,)).long().to(device) + # create model + config = GlowTTSConfig( + num_chars=32, + use_speaker_embedding=True, + num_speakers=24, + ) + model = GlowTTS.init_from_config(config, verbose=False).to(device) + model.train() + print(" > Num parameters for GlowTTS model:%s" % (count_parameters(model))) + # inference encoder and decoder with MAS + y = model.forward(input_dummy, input_lengths, mel_spec, mel_lengths, {"speaker_ids": speaker_ids}) + self.assertEqual(y["z"].shape, mel_spec.shape) + self.assertEqual(y["logdet"].shape, torch.Size([batch_size])) + self.assertEqual(y["y_mean"].shape, mel_spec.shape) + self.assertEqual(y["y_log_scale"].shape, mel_spec.shape) + self.assertEqual(y["alignments"].shape, mel_spec.shape[:2] + (input_dummy.shape[1],)) + self.assertEqual(y["durations_log"].shape, input_dummy.shape + (1,)) + self.assertEqual(y["total_durations_log"].shape, input_dummy.shape + (1,)) + + def test_forward_with_speaker_id(self): + self._test_forward_with_speaker_id(1) + self._test_forward_with_speaker_id(3) + + def _assert_inference_outputs(self, outputs, input_dummy, mel_spec): + output_shape = outputs["model_outputs"].shape + self.assertEqual(outputs["model_outputs"].shape[::2], mel_spec.shape[::2]) + self.assertEqual(outputs["logdet"], None) + self.assertEqual(outputs["y_mean"].shape, output_shape) + self.assertEqual(outputs["y_log_scale"].shape, output_shape) + self.assertEqual(outputs["alignments"].shape, output_shape[:2] + (input_dummy.shape[1],)) + self.assertEqual(outputs["durations_log"].shape, input_dummy.shape + (1,)) + self.assertEqual(outputs["total_durations_log"].shape, input_dummy.shape + (1,)) + + def _test_inference(self, batch_size): + input_dummy, input_lengths, mel_spec, mel_lengths, speaker_ids = self._create_inputs(batch_size) + config = GlowTTSConfig(num_chars=32) + model = GlowTTS(config).to(device) + model.eval() + outputs = model.inference(input_dummy, {"x_lengths": input_lengths}) + self._assert_inference_outputs(outputs, input_dummy, mel_spec) + + def test_inference(self): + self._test_inference(1) + self._test_inference(3) + + def _test_inference_with_d_vector(self, batch_size): + input_dummy, input_lengths, mel_spec, mel_lengths, speaker_ids = self._create_inputs(batch_size) + d_vector = torch.rand(batch_size, 256).to(device) + config = GlowTTSConfig( + num_chars=32, + use_d_vector_file=True, + d_vector_dim=256, + d_vector_file=os.path.join(get_tests_data_path(), "dummy_speakers.json"), + ) + model = GlowTTS.init_from_config(config, verbose=False).to(device) + model.eval() + outputs = model.inference(input_dummy, {"x_lengths": input_lengths, "d_vectors": d_vector}) + self._assert_inference_outputs(outputs, input_dummy, mel_spec) + + def test_inference_with_d_vector(self): + self._test_inference_with_d_vector(1) + self._test_inference_with_d_vector(3) + + def _test_inference_with_speaker_ids(self, batch_size): + input_dummy, input_lengths, mel_spec, mel_lengths, speaker_ids = self._create_inputs(batch_size) + speaker_ids = torch.randint(0, 24, (batch_size,)).long().to(device) + # create model + config = GlowTTSConfig( + num_chars=32, + use_speaker_embedding=True, + num_speakers=24, + ) + model = GlowTTS.init_from_config(config, verbose=False).to(device) + outputs = model.inference(input_dummy, {"x_lengths": input_lengths, "speaker_ids": speaker_ids}) + self._assert_inference_outputs(outputs, input_dummy, mel_spec) + + def test_inference_with_speaker_ids(self): + self._test_inference_with_speaker_ids(1) + self._test_inference_with_speaker_ids(3) + + def _test_inference_with_MAS(self, batch_size): + input_dummy, input_lengths, mel_spec, mel_lengths, speaker_ids = self._create_inputs(batch_size) + # create model + config = GlowTTSConfig(num_chars=32) + model = GlowTTS(config).to(device) + model.eval() + # inference encoder and decoder with MAS + y = model.inference_with_MAS(input_dummy, input_lengths, mel_spec, mel_lengths) + y2 = model.decoder_inference(mel_spec, mel_lengths) + assert ( + y2["model_outputs"].shape == y["model_outputs"].shape + ), "Difference between the shapes of the glowTTS inference with MAS ({}) and the inference using only the decoder ({}) !!".format( + y["model_outputs"].shape, y2["model_outputs"].shape + ) + + def test_inference_with_MAS(self): + self._test_inference_with_MAS(1) + self._test_inference_with_MAS(3) + + def test_train_step(self): + batch_size = BATCH_SIZE + input_dummy, input_lengths, mel_spec, mel_lengths, speaker_ids = self._create_inputs(batch_size) + criterion = GlowTTSLoss() + # model to train + config = GlowTTSConfig(num_chars=32) + model = GlowTTS(config).to(device) + # reference model to compare model weights + model_ref = GlowTTS(config).to(device) + model.train() + print(" > Num parameters for GlowTTS model:%s" % (count_parameters(model))) + # pass the state to ref model + model_ref.load_state_dict(copy.deepcopy(model.state_dict())) + count = 0 + for param, param_ref in zip(model.parameters(), model_ref.parameters()): + assert (param - param_ref).sum() == 0, param + count += 1 + optimizer = optim.Adam(model.parameters(), lr=0.001) + for _ in range(5): + optimizer.zero_grad() + outputs = model.forward(input_dummy, input_lengths, mel_spec, mel_lengths, None) + loss_dict = criterion( + outputs["z"], + outputs["y_mean"], + outputs["y_log_scale"], + outputs["logdet"], + mel_lengths, + outputs["durations_log"], + outputs["total_durations_log"], + input_lengths, + ) + loss = loss_dict["loss"] + loss.backward() + optimizer.step() + # check parameter changes + self._check_parameter_changes(model, model_ref) + + def test_train_eval_log(self): + batch_size = BATCH_SIZE + input_dummy, input_lengths, mel_spec, mel_lengths, _ = self._create_inputs(batch_size) + batch = {} + batch["text_input"] = input_dummy + batch["text_lengths"] = input_lengths + batch["mel_lengths"] = mel_lengths + batch["mel_input"] = mel_spec + batch["d_vectors"] = None + batch["speaker_ids"] = None + config = GlowTTSConfig(num_chars=32) + model = GlowTTS.init_from_config(config, verbose=False).to(device) + model.run_data_dep_init = False + model.train() + logger = TensorboardLogger( + log_dir=os.path.join(get_tests_output_path(), "dummy_glow_tts_logs"), model_name="glow_tts_test_train_log" + ) + criterion = model.get_criterion() + outputs, _ = model.train_step(batch, criterion) + model.train_log(batch, outputs, logger, None, 1) + model.eval_log(batch, outputs, logger, None, 1) + logger.finish() + + def test_test_run(self): + config = GlowTTSConfig(num_chars=32) + model = GlowTTS.init_from_config(config, verbose=False).to(device) + model.run_data_dep_init = False + model.eval() + test_figures, test_audios = model.test_run(None) + self.assertTrue(test_figures is not None) + self.assertTrue(test_audios is not None) + + def test_load_checkpoint(self): + chkp_path = os.path.join(get_tests_output_path(), "dummy_glow_tts_checkpoint.pth") + config = GlowTTSConfig(num_chars=32) + model = GlowTTS.init_from_config(config, verbose=False).to(device) + chkp = {} + chkp["model"] = model.state_dict() + torch.save(chkp, chkp_path) + model.load_checkpoint(config, chkp_path) + self.assertTrue(model.training) + model.load_checkpoint(config, chkp_path, eval=True) + self.assertFalse(model.training) + + def test_get_criterion(self): + config = GlowTTSConfig(num_chars=32) + model = GlowTTS.init_from_config(config, verbose=False).to(device) + criterion = model.get_criterion() + self.assertTrue(criterion is not None) + + def test_init_from_config(self): + config = GlowTTSConfig(num_chars=32) + model = GlowTTS.init_from_config(config, verbose=False).to(device) + + config = GlowTTSConfig(num_chars=32, num_speakers=2) + model = GlowTTS.init_from_config(config, verbose=False).to(device) + self.assertTrue(model.num_speakers == 2) + self.assertTrue(not hasattr(model, "emb_g")) + + config = GlowTTSConfig(num_chars=32, num_speakers=2, use_speaker_embedding=True) + model = GlowTTS.init_from_config(config, verbose=False).to(device) + self.assertTrue(model.num_speakers == 2) + self.assertTrue(hasattr(model, "emb_g")) + + config = GlowTTSConfig( + num_chars=32, + num_speakers=2, + use_speaker_embedding=True, + speakers_file=os.path.join(get_tests_data_path(), "ljspeech", "speakers.json"), + ) + model = GlowTTS.init_from_config(config, verbose=False).to(device) + self.assertTrue(model.num_speakers == 10) + self.assertTrue(hasattr(model, "emb_g")) + + config = GlowTTSConfig( + num_chars=32, + use_d_vector_file=True, + d_vector_dim=256, + d_vector_file=os.path.join(get_tests_data_path(), "dummy_speakers.json"), + ) + model = GlowTTS.init_from_config(config, verbose=False).to(device) + self.assertTrue(model.num_speakers == 1) + self.assertTrue(not hasattr(model, "emb_g")) + self.assertTrue(model.c_in_channels == config.d_vector_dim) diff --git a/TTS/tests/tts_tests2/test_glow_tts_d-vectors_train.py b/TTS/tests/tts_tests2/test_glow_tts_d-vectors_train.py new file mode 100644 index 0000000000000000000000000000000000000000..f1cfd4368f9a0658e6b94ad9fc9697ba75f30fed --- /dev/null +++ b/TTS/tests/tts_tests2/test_glow_tts_d-vectors_train.py @@ -0,0 +1,79 @@ +import glob +import json +import os +import shutil + +from trainer import get_last_checkpoint + +from tests import get_device_id, get_tests_output_path, run_cli +from TTS.tts.configs.glow_tts_config import GlowTTSConfig + +config_path = os.path.join(get_tests_output_path(), "test_model_config.json") +output_path = os.path.join(get_tests_output_path(), "train_outputs") + + +config = GlowTTSConfig( + batch_size=2, + eval_batch_size=8, + num_loader_workers=0, + num_eval_loader_workers=0, + text_cleaner="english_cleaners", + use_phonemes=True, + phoneme_language="en-us", + phoneme_cache_path="tests/data/ljspeech/phoneme_cache/", + run_eval=True, + test_delay_epochs=-1, + epochs=1, + print_step=1, + print_eval=True, + test_sentences=[ + "Be a voice, not an echo.", + ], + data_dep_init_steps=1.0, + use_speaker_embedding=False, + use_d_vector_file=True, + d_vector_file="tests/data/ljspeech/speakers.json", + d_vector_dim=256, +) +config.audio.do_trim_silence = True +config.audio.trim_db = 60 +config.save_json(config_path) + +# train the model for one epoch +command_train = ( + f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --config_path {config_path} " + f"--coqpit.output_path {output_path} " + "--coqpit.datasets.0.formatter ljspeech_test " + "--coqpit.datasets.0.meta_file_train metadata.csv " + "--coqpit.datasets.0.meta_file_val metadata.csv " + "--coqpit.datasets.0.path tests/data/ljspeech " + "--coqpit.datasets.0.meta_file_attn_mask tests/data/ljspeech/metadata_attn_mask.txt " + "--coqpit.test_delay_epochs 0" +) +run_cli(command_train) + +# Find latest folder +continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime) + +# Inference using TTS API +continue_config_path = os.path.join(continue_path, "config.json") +continue_restore_path, _ = get_last_checkpoint(continue_path) +out_wav_path = os.path.join(get_tests_output_path(), "output.wav") +speaker_id = "ljspeech-1" +continue_speakers_path = config.d_vector_file + +# Check integrity of the config +with open(continue_config_path, "r", encoding="utf-8") as f: + config_loaded = json.load(f) +assert config_loaded["characters"] is not None +assert config_loaded["output_path"] in continue_path +assert config_loaded["test_delay_epochs"] == 0 + +# Load the model and run inference +inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --speaker_idx {speaker_id} --speakers_file_path {continue_speakers_path} --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}" +run_cli(inference_command) + +# restore the model and continue training for one more epoch +command_train = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --continue_path {continue_path} " +run_cli(command_train) +shutil.rmtree(continue_path) diff --git a/TTS/tests/tts_tests2/test_glow_tts_speaker_emb_train.py b/TTS/tests/tts_tests2/test_glow_tts_speaker_emb_train.py new file mode 100644 index 0000000000000000000000000000000000000000..b1eb6237a48ccec10eea03c6e81773f34af7275d --- /dev/null +++ b/TTS/tests/tts_tests2/test_glow_tts_speaker_emb_train.py @@ -0,0 +1,76 @@ +import glob +import json +import os +import shutil + +from trainer import get_last_checkpoint + +from tests import get_device_id, get_tests_output_path, run_cli +from TTS.tts.configs.glow_tts_config import GlowTTSConfig + +config_path = os.path.join(get_tests_output_path(), "test_model_config.json") +output_path = os.path.join(get_tests_output_path(), "train_outputs") + + +config = GlowTTSConfig( + batch_size=2, + eval_batch_size=8, + num_loader_workers=0, + num_eval_loader_workers=0, + text_cleaner="english_cleaners", + use_phonemes=True, + phoneme_language="en-us", + phoneme_cache_path="tests/data/ljspeech/phoneme_cache/", + run_eval=True, + test_delay_epochs=-1, + epochs=1, + print_step=1, + print_eval=True, + test_sentences=[ + "Be a voice, not an echo.", + ], + data_dep_init_steps=1.0, + use_speaker_embedding=True, +) +config.audio.do_trim_silence = True +config.audio.trim_db = 60 +config.save_json(config_path) + +# train the model for one epoch +command_train = ( + f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --config_path {config_path} " + f"--coqpit.output_path {output_path} " + "--coqpit.datasets.0.formatter ljspeech_test " + "--coqpit.datasets.0.meta_file_train metadata.csv " + "--coqpit.datasets.0.meta_file_val metadata.csv " + "--coqpit.datasets.0.path tests/data/ljspeech " + "--coqpit.datasets.0.meta_file_attn_mask tests/data/ljspeech/metadata_attn_mask.txt " + "--coqpit.test_delay_epochs 0" +) +run_cli(command_train) + +# Find latest folder +continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime) + +# Inference using TTS API +continue_config_path = os.path.join(continue_path, "config.json") +continue_restore_path, _ = get_last_checkpoint(continue_path) +out_wav_path = os.path.join(get_tests_output_path(), "output.wav") +speaker_id = "ljspeech-1" +continue_speakers_path = os.path.join(continue_path, "speakers.json") + +# Check integrity of the config +with open(continue_config_path, "r", encoding="utf-8") as f: + config_loaded = json.load(f) +assert config_loaded["characters"] is not None +assert config_loaded["output_path"] in continue_path +assert config_loaded["test_delay_epochs"] == 0 + +# Load the model and run inference +inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --speaker_idx {speaker_id} --speakers_file_path {continue_speakers_path} --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}" +run_cli(inference_command) + +# restore the model and continue training for one more epoch +command_train = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --continue_path {continue_path} " +run_cli(command_train) +shutil.rmtree(continue_path) diff --git a/TTS/tests/tts_tests2/test_glow_tts_train.py b/TTS/tests/tts_tests2/test_glow_tts_train.py new file mode 100644 index 0000000000000000000000000000000000000000..0a8e226b65edf1da6ed477422d579c420ecdf74d --- /dev/null +++ b/TTS/tests/tts_tests2/test_glow_tts_train.py @@ -0,0 +1,73 @@ +import glob +import json +import os +import shutil + +from trainer import get_last_checkpoint + +from tests import get_device_id, get_tests_output_path, run_cli +from TTS.tts.configs.glow_tts_config import GlowTTSConfig + +config_path = os.path.join(get_tests_output_path(), "test_model_config.json") +output_path = os.path.join(get_tests_output_path(), "train_outputs") + + +config = GlowTTSConfig( + batch_size=2, + eval_batch_size=8, + num_loader_workers=0, + num_eval_loader_workers=0, + text_cleaner="english_cleaners", + use_phonemes=True, + phoneme_language="en-us", + phoneme_cache_path="tests/data/ljspeech/phoneme_cache/", + run_eval=True, + test_delay_epochs=-1, + epochs=1, + print_step=1, + print_eval=True, + test_sentences=[ + "Be a voice, not an echo.", + ], + data_dep_init_steps=1.0, +) +config.audio.do_trim_silence = True +config.audio.trim_db = 60 +config.save_json(config_path) + +# train the model for one epoch +command_train = ( + f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --config_path {config_path} " + f"--coqpit.output_path {output_path} " + "--coqpit.datasets.0.formatter ljspeech " + "--coqpit.datasets.0.meta_file_train metadata.csv " + "--coqpit.datasets.0.meta_file_val metadata.csv " + "--coqpit.datasets.0.path tests/data/ljspeech " + "--coqpit.datasets.0.meta_file_attn_mask tests/data/ljspeech/metadata_attn_mask.txt " + "--coqpit.test_delay_epochs 0" +) +run_cli(command_train) + +# Find latest folder +continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime) + +# Inference using TTS API +continue_config_path = os.path.join(continue_path, "config.json") +continue_restore_path, _ = get_last_checkpoint(continue_path) +out_wav_path = os.path.join(get_tests_output_path(), "output.wav") + +# Check integrity of the config +with open(continue_config_path, "r", encoding="utf-8") as f: + config_loaded = json.load(f) +assert config_loaded["characters"] is not None +assert config_loaded["output_path"] in continue_path +assert config_loaded["test_delay_epochs"] == 0 + +# Load the model and run inference +inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}" +run_cli(inference_command) + +# restore the model and continue training for one more epoch +command_train = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --continue_path {continue_path} " +run_cli(command_train) +shutil.rmtree(continue_path) diff --git a/TTS/tests/vc_tests/__init__.py b/TTS/tests/vc_tests/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/TTS/tests/vc_tests/test_freevc.py b/TTS/tests/vc_tests/test_freevc.py new file mode 100644 index 0000000000000000000000000000000000000000..a4a4f72679843a3340518c66077afbdb41ae1f28 --- /dev/null +++ b/TTS/tests/vc_tests/test_freevc.py @@ -0,0 +1,135 @@ +import os +import unittest + +import torch + +from tests import get_tests_input_path +from TTS.vc.configs.freevc_config import FreeVCConfig +from TTS.vc.models.freevc import FreeVC + +# pylint: disable=unused-variable +# pylint: disable=no-self-use + +torch.manual_seed(1) +use_cuda = torch.cuda.is_available() +device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") + +c = FreeVCConfig() + +WAV_FILE = os.path.join(get_tests_input_path(), "example_1.wav") +BATCH_SIZE = 3 + + +def count_parameters(model): + r"""Count number of trainable parameters in a network""" + return sum(p.numel() for p in model.parameters() if p.requires_grad) + + +class TestFreeVC(unittest.TestCase): + def _create_inputs(self, config, batch_size=2): + input_dummy = torch.rand(batch_size, 30 * config.audio["hop_length"]).to(device) + input_lengths = torch.randint(100, 30 * config.audio["hop_length"], (batch_size,)).long().to(device) + input_lengths[-1] = 30 * config.audio["hop_length"] + spec = torch.rand(batch_size, 30, config.audio["filter_length"] // 2 + 1).to(device) + mel = torch.rand(batch_size, 30, config.audio["n_mel_channels"]).to(device) + spec_lengths = torch.randint(20, 30, (batch_size,)).long().to(device) + spec_lengths[-1] = spec.size(2) + waveform = torch.rand(batch_size, spec.size(2) * config.audio["hop_length"]).to(device) + return input_dummy, input_lengths, mel, spec, spec_lengths, waveform + + @staticmethod + def _create_inputs_inference(): + source_wav = torch.rand(16000) + target_wav = torch.rand(16000) + return source_wav, target_wav + + @staticmethod + def _check_parameter_changes(model, model_ref): + count = 0 + for param, param_ref in zip(model.parameters(), model_ref.parameters()): + assert (param != param_ref).any(), "param {} with shape {} not updated!! \n{}\n{}".format( + count, param.shape, param, param_ref + ) + count += 1 + + def test_methods(self): + config = FreeVCConfig() + model = FreeVC(config).to(device) + model.load_pretrained_speaker_encoder() + model.init_multispeaker(config) + wavlm_feats = model.extract_wavlm_features(torch.rand(1, 16000)) + assert wavlm_feats.shape == (1, 1024, 49), wavlm_feats.shape + + def test_load_audio(self): + config = FreeVCConfig() + model = FreeVC(config).to(device) + wav = model.load_audio(WAV_FILE) + wav2 = model.load_audio(wav) + assert all(torch.isclose(wav, wav2)) + + def _test_forward(self, batch_size): + # create model + config = FreeVCConfig() + model = FreeVC(config).to(device) + model.train() + print(" > Num parameters for FreeVC model:%s" % (count_parameters(model))) + + _, _, mel, spec, spec_lengths, waveform = self._create_inputs(config, batch_size) + + wavlm_vec = model.extract_wavlm_features(waveform) + wavlm_vec_lengths = torch.ones(batch_size, dtype=torch.long) + + y = model.forward(wavlm_vec, spec, None, mel, spec_lengths, wavlm_vec_lengths) + # TODO: assert with training implementation + + def test_forward(self): + self._test_forward(1) + self._test_forward(3) + + def _test_inference(self, batch_size): + config = FreeVCConfig() + model = FreeVC(config).to(device) + model.eval() + + _, _, mel, _, _, waveform = self._create_inputs(config, batch_size) + + wavlm_vec = model.extract_wavlm_features(waveform) + wavlm_vec_lengths = torch.ones(batch_size, dtype=torch.long) + + output_wav = model.inference(wavlm_vec, None, mel, wavlm_vec_lengths) + assert ( + output_wav.shape[-1] // config.audio.hop_length == wavlm_vec.shape[-1] + ), f"{output_wav.shape[-1] // config.audio.hop_length} != {wavlm_vec.shape}" + + def test_inference(self): + self._test_inference(1) + self._test_inference(3) + + def test_voice_conversion(self): + config = FreeVCConfig() + model = FreeVC(config).to(device) + model.eval() + + source_wav, target_wav = self._create_inputs_inference() + output_wav = model.voice_conversion(source_wav, target_wav) + assert ( + output_wav.shape[0] + config.audio.hop_length == source_wav.shape[0] + ), f"{output_wav.shape} != {source_wav.shape}" + + def test_train_step(self): + ... + + def test_train_eval_log(self): + ... + + def test_test_run(self): + ... + + def test_load_checkpoint(self): + ... + + def test_get_criterion(self): + ... + + def test_init_from_config(self): + ... diff --git a/TTS/tests/vocoder_tests/__init__.py b/TTS/tests/vocoder_tests/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/TTS/tests/vocoder_tests/test_fullband_melgan_train.py b/TTS/tests/vocoder_tests/test_fullband_melgan_train.py new file mode 100644 index 0000000000000000000000000000000000000000..9d4e193382eb5b1638e70a53fa17a33796870339 --- /dev/null +++ b/TTS/tests/vocoder_tests/test_fullband_melgan_train.py @@ -0,0 +1,43 @@ +import glob +import os +import shutil + +from tests import get_device_id, get_tests_output_path, run_cli +from TTS.vocoder.configs import FullbandMelganConfig + +config_path = os.path.join(get_tests_output_path(), "test_vocoder_config.json") +output_path = os.path.join(get_tests_output_path(), "train_outputs") + +config = FullbandMelganConfig( + batch_size=8, + eval_batch_size=8, + num_loader_workers=0, + num_eval_loader_workers=0, + run_eval=True, + test_delay_epochs=-1, + epochs=1, + seq_len=8192, + eval_split_size=1, + print_step=1, + print_eval=True, + data_path="tests/data/ljspeech", + discriminator_model_params={"base_channels": 16, "max_channels": 64, "downsample_factors": [4, 4, 4]}, + output_path=output_path, +) +config.audio.do_trim_silence = True +config.audio.trim_db = 60 +config.save_json(config_path) + +# train the model for one epoch +command_train = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_vocoder.py --config_path {config_path} " +run_cli(command_train) + +# Find latest folder +continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime) + +# restore the model and continue training for one more epoch +command_train = ( + f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_vocoder.py --continue_path {continue_path} " +) +run_cli(command_train) +shutil.rmtree(continue_path) diff --git a/TTS/tests/vocoder_tests/test_hifigan_train.py b/TTS/tests/vocoder_tests/test_hifigan_train.py new file mode 100644 index 0000000000000000000000000000000000000000..c506fb48dca4dd71eb439489e0af5275b565a8a1 --- /dev/null +++ b/TTS/tests/vocoder_tests/test_hifigan_train.py @@ -0,0 +1,43 @@ +import glob +import os +import shutil + +from tests import get_device_id, get_tests_output_path, run_cli +from TTS.vocoder.configs import HifiganConfig + +config_path = os.path.join(get_tests_output_path(), "test_vocoder_config.json") +output_path = os.path.join(get_tests_output_path(), "train_outputs") + + +config = HifiganConfig( + batch_size=8, + eval_batch_size=8, + num_loader_workers=0, + num_eval_loader_workers=0, + run_eval=True, + test_delay_epochs=-1, + epochs=1, + seq_len=1024, + eval_split_size=1, + print_step=1, + print_eval=True, + data_path="tests/data/ljspeech", + output_path=output_path, +) +config.audio.do_trim_silence = True +config.audio.trim_db = 60 +config.save_json(config_path) + +# train the model for one epoch +command_train = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_vocoder.py --config_path {config_path} " +run_cli(command_train) + +# Find latest folder +continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime) + +# restore the model and continue training for one more epoch +command_train = ( + f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_vocoder.py --continue_path {continue_path} " +) +run_cli(command_train) +shutil.rmtree(continue_path) diff --git a/TTS/tests/vocoder_tests/test_melgan_train.py b/TTS/tests/vocoder_tests/test_melgan_train.py new file mode 100644 index 0000000000000000000000000000000000000000..6ef9cd495b022f8d01d4c2ed6cd2667e1b1894ce --- /dev/null +++ b/TTS/tests/vocoder_tests/test_melgan_train.py @@ -0,0 +1,43 @@ +import glob +import os +import shutil + +from tests import get_device_id, get_tests_output_path, run_cli +from TTS.vocoder.configs import MelganConfig + +config_path = os.path.join(get_tests_output_path(), "test_vocoder_config.json") +output_path = os.path.join(get_tests_output_path(), "train_outputs") + +config = MelganConfig( + batch_size=4, + eval_batch_size=4, + num_loader_workers=0, + num_eval_loader_workers=0, + run_eval=True, + test_delay_epochs=-1, + epochs=1, + seq_len=2048, + eval_split_size=1, + print_step=1, + discriminator_model_params={"base_channels": 16, "max_channels": 64, "downsample_factors": [4, 4, 4]}, + print_eval=True, + data_path="tests/data/ljspeech", + output_path=output_path, +) +config.audio.do_trim_silence = True +config.audio.trim_db = 60 +config.save_json(config_path) + +# train the model for one epoch +command_train = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_vocoder.py --config_path {config_path} " +run_cli(command_train) + +# Find latest folder +continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime) + +# restore the model and continue training for one more epoch +command_train = ( + f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_vocoder.py --continue_path {continue_path} " +) +run_cli(command_train) +shutil.rmtree(continue_path) diff --git a/TTS/tests/vocoder_tests/test_multiband_melgan_train.py b/TTS/tests/vocoder_tests/test_multiband_melgan_train.py new file mode 100644 index 0000000000000000000000000000000000000000..8002760706d1687fb7cb5e33107cc84add71a51a --- /dev/null +++ b/TTS/tests/vocoder_tests/test_multiband_melgan_train.py @@ -0,0 +1,44 @@ +import glob +import os +import shutil + +from tests import get_device_id, get_tests_output_path, run_cli +from TTS.vocoder.configs import MultibandMelganConfig + +config_path = os.path.join(get_tests_output_path(), "test_vocoder_config.json") +output_path = os.path.join(get_tests_output_path(), "train_outputs") + +config = MultibandMelganConfig( + batch_size=8, + eval_batch_size=8, + num_loader_workers=0, + num_eval_loader_workers=0, + run_eval=True, + test_delay_epochs=-1, + epochs=1, + seq_len=8192, + eval_split_size=1, + print_step=1, + print_eval=True, + steps_to_start_discriminator=1, + data_path="tests/data/ljspeech", + discriminator_model_params={"base_channels": 16, "max_channels": 64, "downsample_factors": [4, 4, 4]}, + output_path=output_path, +) +config.audio.do_trim_silence = True +config.audio.trim_db = 60 +config.save_json(config_path) + +# train the model for one epoch +command_train = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_vocoder.py --config_path {config_path} " +run_cli(command_train) + +# Find latest folder +continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime) + +# restore the model and continue training for one more epoch +command_train = ( + f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_vocoder.py --continue_path {continue_path} " +) +run_cli(command_train) +shutil.rmtree(continue_path) diff --git a/TTS/tests/vocoder_tests/test_parallel_wavegan_train.py b/TTS/tests/vocoder_tests/test_parallel_wavegan_train.py new file mode 100644 index 0000000000000000000000000000000000000000..a126befe2e24cb67500bc6ee5b7450acfee5369b --- /dev/null +++ b/TTS/tests/vocoder_tests/test_parallel_wavegan_train.py @@ -0,0 +1,42 @@ +import glob +import os +import shutil + +from tests import get_device_id, get_tests_output_path, run_cli +from TTS.vocoder.configs import ParallelWaveganConfig + +config_path = os.path.join(get_tests_output_path(), "test_vocoder_config.json") +output_path = os.path.join(get_tests_output_path(), "train_outputs") + +config = ParallelWaveganConfig( + batch_size=4, + eval_batch_size=4, + num_loader_workers=0, + num_eval_loader_workers=0, + run_eval=True, + test_delay_epochs=-1, + epochs=1, + seq_len=2048, + eval_split_size=1, + print_step=1, + print_eval=True, + data_path="tests/data/ljspeech", + output_path=output_path, +) +config.audio.do_trim_silence = True +config.audio.trim_db = 60 +config.save_json(config_path) + +# train the model for one epoch +command_train = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_vocoder.py --config_path {config_path} " +run_cli(command_train) + +# Find latest folder +continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime) + +# restore the model and continue training for one more epoch +command_train = ( + f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_vocoder.py --continue_path {continue_path} " +) +run_cli(command_train) +shutil.rmtree(continue_path) diff --git a/TTS/tests/vocoder_tests/test_vocoder_gan_datasets.py b/TTS/tests/vocoder_tests/test_vocoder_gan_datasets.py new file mode 100644 index 0000000000000000000000000000000000000000..c39d70e94c5b9f55f6261c3987db38df65ea136f --- /dev/null +++ b/TTS/tests/vocoder_tests/test_vocoder_gan_datasets.py @@ -0,0 +1,109 @@ +import os + +import numpy as np +from torch.utils.data import DataLoader + +from tests import get_tests_output_path, get_tests_path +from TTS.utils.audio import AudioProcessor +from TTS.vocoder.configs import BaseGANVocoderConfig +from TTS.vocoder.datasets.gan_dataset import GANDataset +from TTS.vocoder.datasets.preprocess import load_wav_data + +file_path = os.path.dirname(os.path.realpath(__file__)) +OUTPATH = os.path.join(get_tests_output_path(), "loader_tests/") +os.makedirs(OUTPATH, exist_ok=True) + +C = BaseGANVocoderConfig() + +test_data_path = os.path.join(get_tests_path(), "data/ljspeech/") +ok_ljspeech = os.path.exists(test_data_path) + + +def gan_dataset_case( + batch_size, seq_len, hop_len, conv_pad, return_pairs, return_segments, use_noise_augment, use_cache, num_workers +): + """Run dataloader with given parameters and check conditions""" + ap = AudioProcessor(**C.audio) + _, train_items = load_wav_data(test_data_path, 10) + dataset = GANDataset( + ap, + train_items, + seq_len=seq_len, + hop_len=hop_len, + pad_short=2000, + conv_pad=conv_pad, + return_pairs=return_pairs, + return_segments=return_segments, + use_noise_augment=use_noise_augment, + use_cache=use_cache, + ) + loader = DataLoader( + dataset=dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers, pin_memory=True, drop_last=True + ) + + max_iter = 10 + count_iter = 0 + + def check_item(feat, wav): + """Pass a single pair of features and waveform""" + feat = feat.numpy() + wav = wav.numpy() + expected_feat_shape = (batch_size, ap.num_mels, seq_len // hop_len + conv_pad * 2) + + # check shapes + assert np.all(feat.shape == expected_feat_shape), f" [!] {feat.shape} vs {expected_feat_shape}" + assert (feat.shape[2] - conv_pad * 2) * hop_len == wav.shape[2] + + # check feature vs audio match + if not use_noise_augment: + for idx in range(batch_size): + audio = wav[idx].squeeze() + feat = feat[idx] + mel = ap.melspectrogram(audio) + # the first 2 and the last 2 frames are skipped due to the padding + # differences in stft + max_diff = abs((feat - mel[:, : feat.shape[-1]])[:, 2:-2]).max() + assert max_diff <= 1e-6, f" [!] {max_diff}" + + # return random segments or return the whole audio + if return_segments: + if return_pairs: + for item1, item2 in loader: + feat1, wav1 = item1 + feat2, wav2 = item2 + check_item(feat1, wav1) + check_item(feat2, wav2) + count_iter += 1 + else: + for item1 in loader: + feat1, wav1 = item1 + check_item(feat1, wav1) + count_iter += 1 + else: + for item in loader: + feat, wav = item + expected_feat_shape = (batch_size, ap.num_mels, (wav.shape[-1] // hop_len) + (conv_pad * 2)) + assert np.all(feat.shape == expected_feat_shape), f" [!] {feat.shape} vs {expected_feat_shape}" + assert (feat.shape[2] - conv_pad * 2) * hop_len == wav.shape[2] + count_iter += 1 + if count_iter == max_iter: + break + + +def test_parametrized_gan_dataset(): + """test dataloader with different parameters""" + params = [ + [32, C.audio["hop_length"] * 10, C.audio["hop_length"], 0, True, True, False, True, 0], + [32, C.audio["hop_length"] * 10, C.audio["hop_length"], 0, True, True, False, True, 4], + [1, C.audio["hop_length"] * 10, C.audio["hop_length"], 0, True, True, True, True, 0], + [1, C.audio["hop_length"], C.audio["hop_length"], 0, True, True, True, True, 0], + [1, C.audio["hop_length"] * 10, C.audio["hop_length"], 2, True, True, True, True, 0], + [1, C.audio["hop_length"] * 10, C.audio["hop_length"], 0, True, False, True, True, 0], + [1, C.audio["hop_length"] * 10, C.audio["hop_length"], 0, True, True, False, True, 0], + [1, C.audio["hop_length"] * 10, C.audio["hop_length"], 0, False, True, True, False, 0], + [1, C.audio["hop_length"] * 10, C.audio["hop_length"], 0, True, False, False, False, 0], + [1, C.audio["hop_length"] * 10, C.audio["hop_length"], 0, True, False, False, False, 0], + ] + for param in params: + print(param) + gan_dataset_case(*param) diff --git a/TTS/tests/vocoder_tests/test_vocoder_losses.py b/TTS/tests/vocoder_tests/test_vocoder_losses.py new file mode 100644 index 0000000000000000000000000000000000000000..2a35aa2e3717ee7332e1a3926736971c3c97a090 --- /dev/null +++ b/TTS/tests/vocoder_tests/test_vocoder_losses.py @@ -0,0 +1,92 @@ +import os + +import torch + +from tests import get_tests_input_path, get_tests_output_path, get_tests_path +from TTS.config import BaseAudioConfig +from TTS.utils.audio import AudioProcessor +from TTS.vocoder.layers.losses import MelganFeatureLoss, MultiScaleSTFTLoss, STFTLoss, TorchSTFT + +TESTS_PATH = get_tests_path() + +OUT_PATH = os.path.join(get_tests_output_path(), "audio_tests") +os.makedirs(OUT_PATH, exist_ok=True) + +WAV_FILE = os.path.join(get_tests_input_path(), "example_1.wav") + +ap = AudioProcessor(**BaseAudioConfig().to_dict()) + + +def test_torch_stft(): + torch_stft = TorchSTFT(ap.fft_size, ap.hop_length, ap.win_length) + # librosa stft + wav = ap.load_wav(WAV_FILE) + M_librosa = abs(ap._stft(wav)) # pylint: disable=protected-access + # torch stft + wav = torch.from_numpy(wav[None, :]).float() + M_torch = torch_stft(wav) + # check the difference b/w librosa and torch outputs + assert (M_librosa - M_torch[0].data.numpy()).max() < 1e-5 + + +def test_stft_loss(): + stft_loss = STFTLoss(ap.fft_size, ap.hop_length, ap.win_length) + wav = ap.load_wav(WAV_FILE) + wav = torch.from_numpy(wav[None, :]).float() + loss_m, loss_sc = stft_loss(wav, wav) + assert loss_m + loss_sc == 0 + loss_m, loss_sc = stft_loss(wav, torch.rand_like(wav)) + assert loss_sc < 1.0 + assert loss_m + loss_sc > 0 + + +def test_multiscale_stft_loss(): + stft_loss = MultiScaleSTFTLoss( + [ap.fft_size // 2, ap.fft_size, ap.fft_size * 2], + [ap.hop_length // 2, ap.hop_length, ap.hop_length * 2], + [ap.win_length // 2, ap.win_length, ap.win_length * 2], + ) + wav = ap.load_wav(WAV_FILE) + wav = torch.from_numpy(wav[None, :]).float() + loss_m, loss_sc = stft_loss(wav, wav) + assert loss_m + loss_sc == 0 + loss_m, loss_sc = stft_loss(wav, torch.rand_like(wav)) + assert loss_sc < 1.0 + assert loss_m + loss_sc > 0 + + +def test_melgan_feature_loss(): + feats_real = [] + feats_fake = [] + + # if all the features are different. + for _ in range(5): # different scales + scale_feats_real = [] + scale_feats_fake = [] + for _ in range(4): # different layers + scale_feats_real.append(torch.rand([3, 5, 7])) + scale_feats_fake.append(torch.rand([3, 5, 7])) + feats_real.append(scale_feats_real) + feats_fake.append(scale_feats_fake) + + loss_func = MelganFeatureLoss() + loss = loss_func(feats_fake, feats_real) + assert loss.item() <= 1.0 + + feats_real = [] + feats_fake = [] + + # if all the features are the same + for _ in range(5): # different scales + scale_feats_real = [] + scale_feats_fake = [] + for _ in range(4): # different layers + tensor = torch.rand([3, 5, 7]) + scale_feats_real.append(tensor) + scale_feats_fake.append(tensor) + feats_real.append(scale_feats_real) + feats_fake.append(scale_feats_fake) + + loss_func = MelganFeatureLoss() + loss = loss_func(feats_fake, feats_real) + assert loss.item() == 0 diff --git a/TTS/tests/vocoder_tests/test_vocoder_melgan_discriminator.py b/TTS/tests/vocoder_tests/test_vocoder_melgan_discriminator.py new file mode 100644 index 0000000000000000000000000000000000000000..a4564b5654255ff9cab6ee082b9c74e38d20b2c3 --- /dev/null +++ b/TTS/tests/vocoder_tests/test_vocoder_melgan_discriminator.py @@ -0,0 +1,26 @@ +import numpy as np +import torch + +from TTS.vocoder.models.melgan_discriminator import MelganDiscriminator +from TTS.vocoder.models.melgan_multiscale_discriminator import MelganMultiscaleDiscriminator + + +def test_melgan_discriminator(): + model = MelganDiscriminator() + print(model) + dummy_input = torch.rand((4, 1, 256 * 10)) + output, _ = model(dummy_input) + assert np.all(output.shape == (4, 1, 10)) + + +def test_melgan_multi_scale_discriminator(): + model = MelganMultiscaleDiscriminator() + print(model) + dummy_input = torch.rand((4, 1, 256 * 16)) + scores, feats = model(dummy_input) + assert len(scores) == 3 + assert len(scores) == len(feats) + assert np.all(scores[0].shape == (4, 1, 64)) + assert np.all(feats[0][0].shape == (4, 16, 4096)) + assert np.all(feats[0][1].shape == (4, 64, 1024)) + assert np.all(feats[0][2].shape == (4, 256, 256)) diff --git a/TTS/tests/vocoder_tests/test_vocoder_melgan_generator.py b/TTS/tests/vocoder_tests/test_vocoder_melgan_generator.py new file mode 100644 index 0000000000000000000000000000000000000000..f4958de427ece20296adbcec54441455de997518 --- /dev/null +++ b/TTS/tests/vocoder_tests/test_vocoder_melgan_generator.py @@ -0,0 +1,14 @@ +import numpy as np +import torch + +from TTS.vocoder.models.melgan_generator import MelganGenerator + + +def test_melgan_generator(): + model = MelganGenerator() + print(model) + dummy_input = torch.rand((4, 80, 64)) + output = model(dummy_input) + assert np.all(output.shape == (4, 1, 64 * 256)) + output = model.inference(dummy_input) + assert np.all(output.shape == (4, 1, (64 + 4) * 256)) diff --git a/TTS/tests/vocoder_tests/test_vocoder_parallel_wavegan_discriminator.py b/TTS/tests/vocoder_tests/test_vocoder_parallel_wavegan_discriminator.py new file mode 100644 index 0000000000000000000000000000000000000000..d4eca0d1374fb5cabf111cb52cf249969392bad4 --- /dev/null +++ b/TTS/tests/vocoder_tests/test_vocoder_parallel_wavegan_discriminator.py @@ -0,0 +1,46 @@ +import numpy as np +import torch + +from TTS.vocoder.models.parallel_wavegan_discriminator import ( + ParallelWaveganDiscriminator, + ResidualParallelWaveganDiscriminator, +) + + +def test_pwgan_disciminator(): + model = ParallelWaveganDiscriminator( + in_channels=1, + out_channels=1, + kernel_size=3, + num_layers=10, + conv_channels=64, + dilation_factor=1, + nonlinear_activation="LeakyReLU", + nonlinear_activation_params={"negative_slope": 0.2}, + bias=True, + ) + dummy_x = torch.rand((4, 1, 64 * 256)) + output = model(dummy_x) + assert np.all(output.shape == (4, 1, 64 * 256)) + model.remove_weight_norm() + + +def test_redisual_pwgan_disciminator(): + model = ResidualParallelWaveganDiscriminator( + in_channels=1, + out_channels=1, + kernel_size=3, + num_layers=30, + stacks=3, + res_channels=64, + gate_channels=128, + skip_channels=64, + dropout=0.0, + bias=True, + nonlinear_activation="LeakyReLU", + nonlinear_activation_params={"negative_slope": 0.2}, + ) + dummy_x = torch.rand((4, 1, 64 * 256)) + output = model(dummy_x) + assert np.all(output.shape == (4, 1, 64 * 256)) + model.remove_weight_norm() diff --git a/TTS/tests/vocoder_tests/test_vocoder_parallel_wavegan_generator.py b/TTS/tests/vocoder_tests/test_vocoder_parallel_wavegan_generator.py new file mode 100644 index 0000000000000000000000000000000000000000..21f6f08fd6b10e5ad9fe36e452f46d488cad3503 --- /dev/null +++ b/TTS/tests/vocoder_tests/test_vocoder_parallel_wavegan_generator.py @@ -0,0 +1,28 @@ +import numpy as np +import torch + +from TTS.vocoder.models.parallel_wavegan_generator import ParallelWaveganGenerator + + +def test_pwgan_generator(): + model = ParallelWaveganGenerator( + in_channels=1, + out_channels=1, + kernel_size=3, + num_res_blocks=30, + stacks=3, + res_channels=64, + gate_channels=128, + skip_channels=64, + aux_channels=80, + dropout=0.0, + bias=True, + use_weight_norm=True, + upsample_factors=[4, 4, 4, 4], + ) + dummy_c = torch.rand((2, 80, 5)) + output = model(dummy_c) + assert np.all(output.shape == (2, 1, 5 * 256)), output.shape + model.remove_weight_norm() + output = model.inference(dummy_c) + assert np.all(output.shape == (2, 1, (5 + 4) * 256)) diff --git a/TTS/tests/vocoder_tests/test_vocoder_pqmf.py b/TTS/tests/vocoder_tests/test_vocoder_pqmf.py new file mode 100644 index 0000000000000000000000000000000000000000..afe8d1dc8f8bf462cb3f030d3d8f113ed547c7d9 --- /dev/null +++ b/TTS/tests/vocoder_tests/test_vocoder_pqmf.py @@ -0,0 +1,26 @@ +import os + +import soundfile as sf +import torch +from librosa.core import load + +from tests import get_tests_input_path, get_tests_output_path, get_tests_path +from TTS.vocoder.layers.pqmf import PQMF + +TESTS_PATH = get_tests_path() +WAV_FILE = os.path.join(get_tests_input_path(), "example_1.wav") + + +def test_pqmf(): + w, sr = load(WAV_FILE) + + layer = PQMF(N=4, taps=62, cutoff=0.15, beta=9.0) + w, sr = load(WAV_FILE) + w2 = torch.from_numpy(w[None, None, :]) + b2 = layer.analysis(w2) + w2_ = layer.synthesis(b2) + + print(w2_.max()) + print(w2_.min()) + print(w2_.mean()) + sf.write(os.path.join(get_tests_output_path(), "pqmf_output.wav"), w2_.flatten().detach(), sr) diff --git a/TTS/tests/vocoder_tests/test_vocoder_rwd.py b/TTS/tests/vocoder_tests/test_vocoder_rwd.py new file mode 100644 index 0000000000000000000000000000000000000000..371ad9e41e584c41564dbcd7b9ff9548c61aac75 --- /dev/null +++ b/TTS/tests/vocoder_tests/test_vocoder_rwd.py @@ -0,0 +1,19 @@ +import numpy as np +import torch + +from TTS.vocoder.models.random_window_discriminator import RandomWindowDiscriminator + + +def test_rwd(): + layer = RandomWindowDiscriminator( + cond_channels=80, + window_sizes=(512, 1024, 2048, 4096, 8192), + cond_disc_downsample_factors=[(8, 4, 2, 2, 2), (8, 4, 2, 2), (8, 4, 2), (8, 4), (4, 2, 2)], + hop_length=256, + ) + x = torch.rand([4, 1, 22050]) + c = torch.rand([4, 80, 22050 // 256]) + + scores, _ = layer(x, c) + assert len(scores) == 10 + assert np.all(scores[0].shape == (4, 1, 1)) diff --git a/TTS/tests/vocoder_tests/test_vocoder_wavernn.py b/TTS/tests/vocoder_tests/test_vocoder_wavernn.py new file mode 100644 index 0000000000000000000000000000000000000000..966ea3dd00c1f745afbde4f26e9097f355e651a2 --- /dev/null +++ b/TTS/tests/vocoder_tests/test_vocoder_wavernn.py @@ -0,0 +1,51 @@ +import random + +import numpy as np +import torch + +from TTS.vocoder.configs import WavernnConfig +from TTS.vocoder.models.wavernn import Wavernn, WavernnArgs + + +def test_wavernn(): + config = WavernnConfig() + config.model_args = WavernnArgs( + rnn_dims=512, + fc_dims=512, + mode="mold", + mulaw=False, + pad=2, + use_aux_net=True, + use_upsample_net=True, + upsample_factors=[4, 8, 8], + feat_dims=80, + compute_dims=128, + res_out_dims=128, + num_res_blocks=10, + ) + config.audio.hop_length = 256 + config.audio.sample_rate = 2048 + + dummy_x = torch.rand((2, 1280)) + dummy_m = torch.rand((2, 80, 9)) + y_size = random.randrange(20, 60) + dummy_y = torch.rand((80, y_size)) + + # mode: mold + model = Wavernn(config) + output = model(dummy_x, dummy_m) + assert np.all(output.shape == (2, 1280, 30)), output.shape + + # mode: gauss + config.model_args.mode = "gauss" + model = Wavernn(config) + output = model(dummy_x, dummy_m) + assert np.all(output.shape == (2, 1280, 2)), output.shape + + # mode: quantized + config.model_args.mode = 4 + model = Wavernn(config) + output = model(dummy_x, dummy_m) + assert np.all(output.shape == (2, 1280, 2**4)), output.shape + output = model.inference(dummy_y, True, 5500, 550) + assert np.all(output.shape == (256 * (y_size - 1),)) diff --git a/TTS/tests/vocoder_tests/test_vocoder_wavernn_datasets.py b/TTS/tests/vocoder_tests/test_vocoder_wavernn_datasets.py new file mode 100644 index 0000000000000000000000000000000000000000..503b4e2483b447a01b0cb4abb02bc6cf34c80b90 --- /dev/null +++ b/TTS/tests/vocoder_tests/test_vocoder_wavernn_datasets.py @@ -0,0 +1,84 @@ +import os +import shutil + +import numpy as np +from torch.utils.data import DataLoader + +from tests import get_tests_output_path, get_tests_path +from TTS.utils.audio import AudioProcessor +from TTS.vocoder.configs import WavernnConfig +from TTS.vocoder.datasets.preprocess import load_wav_feat_data, preprocess_wav_files +from TTS.vocoder.datasets.wavernn_dataset import WaveRNNDataset + +file_path = os.path.dirname(os.path.realpath(__file__)) +OUTPATH = os.path.join(get_tests_output_path(), "loader_tests/") +os.makedirs(OUTPATH, exist_ok=True) + +C = WavernnConfig() + +test_data_path = os.path.join(get_tests_path(), "data/ljspeech/") +test_mel_feat_path = os.path.join(test_data_path, "mel") +test_quant_feat_path = os.path.join(test_data_path, "quant") +ok_ljspeech = os.path.exists(test_data_path) + + +def wavernn_dataset_case(batch_size, seq_len, hop_len, pad, mode, mulaw, num_workers): + """run dataloader with given parameters and check conditions""" + ap = AudioProcessor(**C.audio) + + C.batch_size = batch_size + C.mode = mode + C.seq_len = seq_len + C.data_path = test_data_path + + preprocess_wav_files(test_data_path, C, ap) + _, train_items = load_wav_feat_data(test_data_path, test_mel_feat_path, 5) + + dataset = WaveRNNDataset( + ap=ap, items=train_items, seq_len=seq_len, hop_len=hop_len, pad=pad, mode=mode, mulaw=mulaw + ) + # sampler = DistributedSampler(dataset) if num_gpus > 1 else None + loader = DataLoader( + dataset, + shuffle=True, + collate_fn=dataset.collate, + batch_size=batch_size, + num_workers=num_workers, + pin_memory=True, + ) + + max_iter = 10 + count_iter = 0 + + try: + for data in loader: + x_input, mels, _ = data + expected_feat_shape = (ap.num_mels, (x_input.shape[-1] // hop_len) + (pad * 2)) + assert np.all(mels.shape[1:] == expected_feat_shape), f" [!] {mels.shape} vs {expected_feat_shape}" + + assert (mels.shape[2] - pad * 2) * hop_len == x_input.shape[1] + count_iter += 1 + if count_iter == max_iter: + break + # except AssertionError: + # shutil.rmtree(test_mel_feat_path) + # shutil.rmtree(test_quant_feat_path) + finally: + shutil.rmtree(test_mel_feat_path) + shutil.rmtree(test_quant_feat_path) + + +def test_parametrized_wavernn_dataset(): + """test dataloader with different parameters""" + params = [ + [16, C.audio["hop_length"] * 10, C.audio["hop_length"], 2, 10, True, 0], + [16, C.audio["hop_length"] * 10, C.audio["hop_length"], 2, "mold", False, 4], + [1, C.audio["hop_length"] * 10, C.audio["hop_length"], 2, 9, False, 0], + [1, C.audio["hop_length"], C.audio["hop_length"], 2, 10, True, 0], + [1, C.audio["hop_length"], C.audio["hop_length"], 2, "mold", False, 0], + [1, C.audio["hop_length"] * 5, C.audio["hop_length"], 4, 10, False, 2], + [1, C.audio["hop_length"] * 5, C.audio["hop_length"], 2, "mold", False, 0], + ] + for param in params: + print(param) + wavernn_dataset_case(*param) diff --git a/TTS/tests/vocoder_tests/test_wavegrad.py b/TTS/tests/vocoder_tests/test_wavegrad.py new file mode 100644 index 0000000000000000000000000000000000000000..43b5f08042f1139e536aae2d57cd85675dce49e7 --- /dev/null +++ b/TTS/tests/vocoder_tests/test_wavegrad.py @@ -0,0 +1,59 @@ +import unittest + +import numpy as np +import torch +from torch import optim + +from TTS.vocoder.configs import WavegradConfig +from TTS.vocoder.models.wavegrad import Wavegrad, WavegradArgs + +# pylint: disable=unused-variable + +torch.manual_seed(1) +use_cuda = torch.cuda.is_available() +device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") + + +class WavegradTrainTest(unittest.TestCase): + def test_train_step(self): # pylint: disable=no-self-use + """Test if all layers are updated in a basic training cycle""" + input_dummy = torch.rand(8, 1, 20 * 300).to(device) + mel_spec = torch.rand(8, 80, 20).to(device) + + criterion = torch.nn.L1Loss().to(device) + args = WavegradArgs( + in_channels=80, + out_channels=1, + upsample_factors=[5, 5, 3, 2, 2], + upsample_dilations=[[1, 2, 1, 2], [1, 2, 1, 2], [1, 2, 4, 8], [1, 2, 4, 8], [1, 2, 4, 8]], + ) + config = WavegradConfig(model_params=args) + model = Wavegrad(config) + + model_ref = Wavegrad(config) + model.train() + model.to(device) + betas = np.linspace(1e-6, 1e-2, 1000) + model.compute_noise_level(betas) + model_ref.load_state_dict(model.state_dict()) + model_ref.to(device) + count = 0 + for param, param_ref in zip(model.parameters(), model_ref.parameters()): + assert (param - param_ref).sum() == 0, param + count += 1 + optimizer = optim.Adam(model.parameters(), lr=0.001) + for i in range(5): + y_hat = model.forward(input_dummy, mel_spec, torch.rand(8).to(device)) + optimizer.zero_grad() + loss = criterion(y_hat, input_dummy) + loss.backward() + optimizer.step() + # check parameter changes + count = 0 + for param, param_ref in zip(model.parameters(), model_ref.parameters()): + # ignore pre-higway layer since it works conditional + # if count not in [145, 59]: + assert (param != param_ref).any(), "param {} with shape {} not updated!! \n{}\n{}".format( + count, param.shape, param, param_ref + ) + count += 1 diff --git a/TTS/tests/vocoder_tests/test_wavegrad_layers.py b/TTS/tests/vocoder_tests/test_wavegrad_layers.py new file mode 100644 index 0000000000000000000000000000000000000000..a0b021dcf649bddd9aad940cb399cac1ca884e58 --- /dev/null +++ b/TTS/tests/vocoder_tests/test_wavegrad_layers.py @@ -0,0 +1,95 @@ +import torch + +from TTS.vocoder.configs import WavegradConfig +from TTS.vocoder.layers.wavegrad import DBlock, FiLM, PositionalEncoding, UBlock +from TTS.vocoder.models.wavegrad import Wavegrad, WavegradArgs + + +def test_positional_encoding(): + layer = PositionalEncoding(50) + inp = torch.rand(32, 50, 100) + nl = torch.rand(32) + o = layer(inp, nl) + + assert o.shape[0] == 32 + assert o.shape[1] == 50 + assert o.shape[2] == 100 + assert isinstance(o, torch.FloatTensor) + + +def test_film(): + layer = FiLM(50, 76) + inp = torch.rand(32, 50, 100) + nl = torch.rand(32) + shift, scale = layer(inp, nl) + + assert shift.shape[0] == 32 + assert shift.shape[1] == 76 + assert shift.shape[2] == 100 + assert isinstance(shift, torch.FloatTensor) + + assert scale.shape[0] == 32 + assert scale.shape[1] == 76 + assert scale.shape[2] == 100 + assert isinstance(scale, torch.FloatTensor) + + layer.apply_weight_norm() + layer.remove_weight_norm() + + +def test_ublock(): + inp1 = torch.rand(32, 50, 100) + inp2 = torch.rand(32, 50, 50) + nl = torch.rand(32) + + layer_film = FiLM(50, 100) + layer = UBlock(50, 100, 2, [1, 2, 4, 8]) + + scale, shift = layer_film(inp1, nl) + o = layer(inp2, shift, scale) + + assert o.shape[0] == 32 + assert o.shape[1] == 100 + assert o.shape[2] == 100 + assert isinstance(o, torch.FloatTensor) + + layer.apply_weight_norm() + layer.remove_weight_norm() + + +def test_dblock(): + inp = torch.rand(32, 50, 130) + layer = DBlock(50, 100, 2) + o = layer(inp) + + assert o.shape[0] == 32 + assert o.shape[1] == 100 + assert o.shape[2] == 65 + assert isinstance(o, torch.FloatTensor) + + layer.apply_weight_norm() + layer.remove_weight_norm() + + +def test_wavegrad_forward(): + x = torch.rand(32, 1, 20 * 300) + c = torch.rand(32, 80, 20) + noise_scale = torch.rand(32) + + args = WavegradArgs( + in_channels=80, + out_channels=1, + upsample_factors=[5, 5, 3, 2, 2], + upsample_dilations=[[1, 2, 1, 2], [1, 2, 1, 2], [1, 2, 4, 8], [1, 2, 4, 8], [1, 2, 4, 8]], + ) + config = WavegradConfig(model_params=args) + model = Wavegrad(config) + o = model.forward(x, c, noise_scale) + + assert o.shape[0] == 32 + assert o.shape[1] == 1 + assert o.shape[2] == 20 * 300 + assert isinstance(o, torch.FloatTensor) + + model.apply_weight_norm() + model.remove_weight_norm() diff --git a/TTS/tests/vocoder_tests/test_wavegrad_train.py b/TTS/tests/vocoder_tests/test_wavegrad_train.py new file mode 100644 index 0000000000000000000000000000000000000000..fe56ee783f36b89879af78e58316b19ff0e23f54 --- /dev/null +++ b/TTS/tests/vocoder_tests/test_wavegrad_train.py @@ -0,0 +1,43 @@ +import glob +import os +import shutil + +from tests import get_device_id, get_tests_output_path, run_cli +from TTS.vocoder.configs import WavegradConfig + +config_path = os.path.join(get_tests_output_path(), "test_vocoder_config.json") +output_path = os.path.join(get_tests_output_path(), "train_outputs") + +config = WavegradConfig( + batch_size=8, + eval_batch_size=8, + num_loader_workers=0, + num_eval_loader_workers=0, + run_eval=True, + test_delay_epochs=-1, + epochs=1, + seq_len=8192, + eval_split_size=1, + print_step=1, + print_eval=True, + data_path="tests/data/ljspeech", + output_path=output_path, + test_noise_schedule={"min_val": 1e-6, "max_val": 1e-2, "num_steps": 2}, +) +config.audio.do_trim_silence = True +config.audio.trim_db = 60 +config.save_json(config_path) + +# train the model for one epoch +command_train = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_vocoder.py --config_path {config_path} " +run_cli(command_train) + +# Find latest folder +continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime) + +# restore the model and continue training for one more epoch +command_train = ( + f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_vocoder.py --continue_path {continue_path} " +) +run_cli(command_train) +shutil.rmtree(continue_path) diff --git a/TTS/tests/vocoder_tests/test_wavernn_train.py b/TTS/tests/vocoder_tests/test_wavernn_train.py new file mode 100644 index 0000000000000000000000000000000000000000..337e24259f0ffa39d4d77b57749988b64763c2f1 --- /dev/null +++ b/TTS/tests/vocoder_tests/test_wavernn_train.py @@ -0,0 +1,45 @@ +import glob +import os +import shutil + +from tests import get_device_id, get_tests_output_path, run_cli +from TTS.vocoder.configs import WavernnConfig +from TTS.vocoder.models.wavernn import WavernnArgs + +config_path = os.path.join(get_tests_output_path(), "test_vocoder_config.json") +output_path = os.path.join(get_tests_output_path(), "train_outputs") + + +config = WavernnConfig( + model_args=WavernnArgs(), + batch_size=8, + eval_batch_size=8, + num_loader_workers=0, + num_eval_loader_workers=0, + run_eval=True, + test_delay_epochs=-1, + epochs=1, + seq_len=256, # for shorter test time + eval_split_size=1, + print_step=1, + print_eval=True, + data_path="tests/data/ljspeech", + output_path=output_path, +) +config.audio.do_trim_silence = True +config.audio.trim_db = 60 +config.save_json(config_path) + +# train the model for one epoch +command_train = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_vocoder.py --config_path {config_path} " +run_cli(command_train) + +# Find latest folder +continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime) + +# restore the model and continue training for one more epoch +command_train = ( + f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_vocoder.py --continue_path {continue_path} " +) +run_cli(command_train) +shutil.rmtree(continue_path) diff --git a/TTS/tests/zoo_tests/__init__.py b/TTS/tests/zoo_tests/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/TTS/tests/zoo_tests/test_models.py b/TTS/tests/zoo_tests/test_models.py new file mode 100644 index 0000000000000000000000000000000000000000..b7945d6e82ceb0f816da80affcb1a2de1a9f480e --- /dev/null +++ b/TTS/tests/zoo_tests/test_models.py @@ -0,0 +1,116 @@ +#!/usr/bin/env python3` +import glob +import os +import shutil + +from tests import get_tests_data_path, get_tests_output_path, run_cli +from TTS.tts.utils.languages import LanguageManager +from TTS.tts.utils.speakers import SpeakerManager +from TTS.utils.generic_utils import get_user_data_dir +from TTS.utils.manage import ModelManager + +MODELS_WITH_SEP_TESTS = ["bark", "xtts"] + + +def run_models(offset=0, step=1): + """Check if all the models are downloadable and tts models run correctly.""" + print(" > Run synthesizer with all the models.") + output_path = os.path.join(get_tests_output_path(), "output.wav") + manager = ModelManager(output_prefix=get_tests_output_path(), progress_bar=False) + model_names = [name for name in manager.list_models() if name in MODELS_WITH_SEP_TESTS] + for model_name in model_names[offset::step]: + print(f"\n > Run - {model_name}") + model_path, _, _ = manager.download_model(model_name) + if "tts_models" in model_name: + local_download_dir = os.path.dirname(model_path) + # download and run the model + speaker_files = glob.glob(local_download_dir + "/speaker*") + language_files = glob.glob(local_download_dir + "/language*") + language_id = "" + if len(speaker_files) > 0: + # multi-speaker model + if "speaker_ids" in speaker_files[0]: + speaker_manager = SpeakerManager(speaker_id_file_path=speaker_files[0]) + elif "speakers" in speaker_files[0]: + speaker_manager = SpeakerManager(d_vectors_file_path=speaker_files[0]) + + # multi-lingual model - Assuming multi-lingual models are also multi-speaker + if len(language_files) > 0 and "language_ids" in language_files[0]: + language_manager = LanguageManager(language_ids_file_path=language_files[0]) + language_id = language_manager.language_names[0] + + speaker_id = list(speaker_manager.name_to_id.keys())[0] + run_cli( + f"tts --model_name {model_name} " + f'--text "This is an example." --out_path "{output_path}" --speaker_idx "{speaker_id}" --language_idx "{language_id}" --progress_bar False' + ) + else: + # single-speaker model + run_cli( + f"tts --model_name {model_name} " + f'--text "This is an example." --out_path "{output_path}" --progress_bar False' + ) + # remove downloaded models + shutil.rmtree(local_download_dir) + shutil.rmtree(get_user_data_dir("tts")) + elif "voice_conversion_models" in model_name: + speaker_wav = os.path.join(get_tests_data_path(), "ljspeech", "wavs", "LJ001-0001.wav") + reference_wav = os.path.join(get_tests_data_path(), "ljspeech", "wavs", "LJ001-0032.wav") + run_cli( + f"tts --model_name {model_name} " + f'--out_path "{output_path}" --source_wav "{speaker_wav}" --target_wav "{reference_wav}" --progress_bar False' + ) + else: + # only download the model + manager.download_model(model_name) + print(f" | > OK: {model_name}") + + +def test_xtts(): + output_path = os.path.join(get_tests_output_path(), "output.wav") + speaker_wav = os.path.join(get_tests_data_path(), "ljspeech", "wavs", "LJ001-0001.wav") + run_cli( + "yes | " + f"tts --model_name tts_models/multilingual/multi-dataset/xtts_v1 " + f'--text "This is an example." --out_path "{output_path}" --progress_bar False --use_cuda True ' + f'--speaker_wav "{speaker_wav}" --language_idx "en"' + ) + + +def test_bark(): + """Bark is too big to run on github actions. We need to test it locally""" + output_path = os.path.join(get_tests_output_path(), "output.wav") + run_cli( + f" tts --model_name tts_models/multilingual/multi-dataset/bark " + f'--text "This is an example." --out_path "{output_path}" --progress_bar False --use_cuda True' + ) + + +def test_voice_conversion(): + print(" > Run voice conversion inference using YourTTS model.") + model_name = "tts_models/multilingual/multi-dataset/your_tts" + language_id = "en" + speaker_wav = os.path.join(get_tests_data_path(), "ljspeech", "wavs", "LJ001-0001.wav") + reference_wav = os.path.join(get_tests_data_path(), "ljspeech", "wavs", "LJ001-0032.wav") + output_path = os.path.join(get_tests_output_path(), "output.wav") + run_cli( + f"tts --model_name {model_name}" + f" --out_path {output_path} --speaker_wav {speaker_wav} --reference_wav {reference_wav} --language_idx {language_id} --progress_bar False" + ) + + +""" +These are used to split tests into different actions on Github. +""" + + +def test_models_offset_0_step_3(): + run_models(offset=0, step=3) + + +def test_models_offset_1_step_3(): + run_models(offset=1, step=3) + + +def test_models_offset_2_step_3(): + run_models(offset=2, step=3)