Spaces:
Build error
Build error
artificialguybr
commited on
Commit
•
6877edc
1
Parent(s):
f5ba8ee
Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,9 @@
|
|
1 |
-
import
|
2 |
-
import stat
|
3 |
-
import uuid
|
4 |
-
import subprocess
|
5 |
import tempfile
|
6 |
-
from zipfile import ZipFile
|
7 |
import gradio as gr
|
8 |
-
import
|
|
|
|
|
9 |
from googletrans import Translator
|
10 |
from TTS.api import TTS
|
11 |
from faster_whisper import WhisperModel
|
@@ -13,66 +11,61 @@ import soundfile as sf
|
|
13 |
import numpy as np
|
14 |
import cv2
|
15 |
from huggingface_hub import HfApi
|
|
|
16 |
|
17 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
18 |
os.environ["COQUI_TOS_AGREED"] = "1"
|
19 |
api = HfApi(token=HF_TOKEN)
|
20 |
repo_id = "artificialguybr/video-dubbing"
|
21 |
|
22 |
-
#
|
23 |
-
ZipFile("ffmpeg.zip").extractall()
|
24 |
-
st = os.stat('ffmpeg')
|
25 |
-
os.chmod('ffmpeg', st.st_mode | stat.S_IEXEC)
|
26 |
-
|
27 |
-
# Whisper model initialization
|
28 |
model_size = "small"
|
29 |
model = WhisperModel(model_size, device="cpu", compute_type="int8")
|
30 |
|
31 |
def check_for_faces(video_path):
|
32 |
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
|
33 |
cap = cv2.VideoCapture(video_path)
|
34 |
-
|
35 |
while True:
|
36 |
ret, frame = cap.read()
|
37 |
if not ret:
|
38 |
break
|
39 |
-
|
40 |
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
41 |
faces = face_cascade.detectMultiScale(gray, 1.1, 4)
|
42 |
-
|
43 |
if len(faces) > 0:
|
44 |
return True
|
45 |
-
|
46 |
return False
|
47 |
|
48 |
@spaces.GPU
|
49 |
def process_video(radio, video, target_language, has_closeup_face):
|
50 |
if target_language is None:
|
51 |
return gr.Error("Please select a Target Language for Dubbing.")
|
52 |
-
|
53 |
run_uuid = uuid.uuid4().hex[:6]
|
54 |
output_filename = f"{run_uuid}_resized_video.mp4"
|
55 |
|
56 |
-
# Use
|
57 |
-
subprocess.run([
|
58 |
-
|
59 |
video_path = output_filename
|
|
|
60 |
if not os.path.exists(video_path):
|
61 |
return f"Error: {video_path} does not exist."
|
62 |
-
|
63 |
# Check video duration
|
64 |
-
video_info = subprocess.
|
65 |
-
video_duration = float(video_info
|
66 |
-
|
67 |
if video_duration > 60:
|
68 |
os.remove(video_path)
|
69 |
return gr.Error("Video duration exceeds 1 minute. Please upload a shorter video.")
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
# Audio processing
|
75 |
-
subprocess.run(['ffmpeg', '-y', '-i', f"{run_uuid}_output_audio.wav", '-af', 'lowpass=3000,highpass=100', f"{run_uuid}_output_audio_final.wav"])
|
76 |
|
77 |
print("Attempting to transcribe with Whisper...")
|
78 |
try:
|
@@ -83,35 +76,34 @@ def process_video(radio, video, target_language, has_closeup_face):
|
|
83 |
except RuntimeError as e:
|
84 |
print(f"RuntimeError encountered: {str(e)}")
|
85 |
if "CUDA failed with error device-side assert triggered" in str(e):
|
86 |
-
gr.Warning("Error. Space
|
87 |
api.restart_space(repo_id=repo_id)
|
88 |
-
|
89 |
language_mapping = {'English': 'en', 'Spanish': 'es', 'French': 'fr', 'German': 'de', 'Italian': 'it', 'Portuguese': 'pt', 'Polish': 'pl', 'Turkish': 'tr', 'Russian': 'ru', 'Dutch': 'nl', 'Czech': 'cs', 'Arabic': 'ar', 'Chinese (Simplified)': 'zh-cn'}
|
90 |
target_language_code = language_mapping[target_language]
|
91 |
translator = Translator()
|
92 |
translated_text = translator.translate(whisper_text, src=whisper_language, dest=target_language_code).text
|
93 |
print(translated_text)
|
94 |
-
|
95 |
tts = TTS("tts_models/multilingual/multi-dataset/xtts_v2")
|
96 |
tts.tts_to_file(translated_text, speaker_wav=f"{run_uuid}_output_audio_final.wav", file_path=f"{run_uuid}_output_synth.wav", language=target_language_code)
|
97 |
|
98 |
-
has_face = check_for_faces(video_path) if not has_closeup_face else True
|
99 |
-
|
100 |
if has_closeup_face:
|
101 |
try:
|
102 |
-
|
|
|
103 |
except subprocess.CalledProcessError as e:
|
104 |
if "Face not detected! Ensure the video contains a face in all the frames." in str(e.stderr):
|
105 |
gr.Warning("Wav2lip didn't detect a face. Please try again with the option disabled.")
|
106 |
-
subprocess.run([
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
if not os.path.exists(f"{run_uuid}_output_video.mp4"):
|
111 |
raise FileNotFoundError(f"Error: {run_uuid}_output_video.mp4 was not generated.")
|
112 |
-
|
113 |
output_video_path = f"{run_uuid}_output_video.mp4"
|
114 |
-
|
115 |
# Cleanup
|
116 |
files_to_delete = [
|
117 |
f"{run_uuid}_resized_video.mp4",
|
@@ -124,15 +116,15 @@ def process_video(radio, video, target_language, has_closeup_face):
|
|
124 |
os.remove(file)
|
125 |
except FileNotFoundError:
|
126 |
print(f"File {file} not found for deletion.")
|
127 |
-
|
128 |
return output_video_path
|
129 |
|
130 |
def swap(radio):
|
131 |
-
if
|
132 |
return gr.update(source="upload")
|
133 |
else:
|
134 |
return gr.update(source="webcam")
|
135 |
-
|
136 |
video = gr.Video()
|
137 |
radio = gr.Radio(["Upload", "Record"], value="Upload", show_label=False)
|
138 |
iface = gr.Interface(
|
@@ -142,9 +134,9 @@ iface = gr.Interface(
|
|
142 |
video,
|
143 |
gr.Dropdown(choices=["English", "Spanish", "French", "German", "Italian", "Portuguese", "Polish", "Turkish", "Russian", "Dutch", "Czech", "Arabic", "Chinese (Simplified)"], label="Target Language for Dubbing", value="Spanish"),
|
144 |
gr.Checkbox(
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
],
|
149 |
outputs=gr.Video(),
|
150 |
live=False,
|
@@ -158,14 +150,14 @@ with gr.Blocks() as demo:
|
|
158 |
radio.change(swap, inputs=[radio], outputs=video)
|
159 |
gr.Markdown("""
|
160 |
**Note:**
|
161 |
-
- Video limit is 1 minute. It will
|
162 |
- Generation may take up to 5 minutes.
|
163 |
- By using this demo you agree to the terms of the Coqui Public Model License at https://coqui.ai/cpml
|
164 |
-
- The tool uses open-source models for all models. It's
|
165 |
- Quality can be improved but would require more processing time per video. For scalability and hardware limitations, speed was chosen, not just quality.
|
166 |
- If you need more than 1 minute, duplicate the Space and change the limit on app.py.
|
167 |
- If you incorrectly mark the 'Video has a close-up face' checkbox, the dubbing may not work as expected.
|
168 |
""")
|
169 |
|
170 |
-
demo.queue()
|
171 |
-
demo.launch()
|
|
|
1 |
+
import spaces
|
|
|
|
|
|
|
2 |
import tempfile
|
|
|
3 |
import gradio as gr
|
4 |
+
import subprocess
|
5 |
+
import os, stat
|
6 |
+
import uuid
|
7 |
from googletrans import Translator
|
8 |
from TTS.api import TTS
|
9 |
from faster_whisper import WhisperModel
|
|
|
11 |
import numpy as np
|
12 |
import cv2
|
13 |
from huggingface_hub import HfApi
|
14 |
+
import shlex
|
15 |
|
16 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
17 |
os.environ["COQUI_TOS_AGREED"] = "1"
|
18 |
api = HfApi(token=HF_TOKEN)
|
19 |
repo_id = "artificialguybr/video-dubbing"
|
20 |
|
21 |
+
# Whisper
|
|
|
|
|
|
|
|
|
|
|
22 |
model_size = "small"
|
23 |
model = WhisperModel(model_size, device="cpu", compute_type="int8")
|
24 |
|
25 |
def check_for_faces(video_path):
|
26 |
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
|
27 |
cap = cv2.VideoCapture(video_path)
|
28 |
+
|
29 |
while True:
|
30 |
ret, frame = cap.read()
|
31 |
if not ret:
|
32 |
break
|
33 |
+
|
34 |
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
35 |
faces = face_cascade.detectMultiScale(gray, 1.1, 4)
|
36 |
+
|
37 |
if len(faces) > 0:
|
38 |
return True
|
39 |
+
|
40 |
return False
|
41 |
|
42 |
@spaces.GPU
|
43 |
def process_video(radio, video, target_language, has_closeup_face):
|
44 |
if target_language is None:
|
45 |
return gr.Error("Please select a Target Language for Dubbing.")
|
46 |
+
|
47 |
run_uuid = uuid.uuid4().hex[:6]
|
48 |
output_filename = f"{run_uuid}_resized_video.mp4"
|
49 |
|
50 |
+
# Use subprocess for ffmpeg operations
|
51 |
+
subprocess.run(["ffmpeg", "-i", video, "-vf", "scale=-2:720", output_filename])
|
52 |
+
|
53 |
video_path = output_filename
|
54 |
+
|
55 |
if not os.path.exists(video_path):
|
56 |
return f"Error: {video_path} does not exist."
|
57 |
+
|
58 |
# Check video duration
|
59 |
+
video_info = subprocess.check_output(["ffprobe", "-v", "error", "-show_entries", "format=duration", "-of", "default=noprint_wrappers=1:nokey=1", video_path])
|
60 |
+
video_duration = float(video_info)
|
61 |
+
|
62 |
if video_duration > 60:
|
63 |
os.remove(video_path)
|
64 |
return gr.Error("Video duration exceeds 1 minute. Please upload a shorter video.")
|
65 |
+
|
66 |
+
subprocess.run(["ffmpeg", "-i", video_path, "-acodec", "pcm_s24le", "-ar", "48000", "-map", "a", f"{run_uuid}_output_audio.wav"])
|
67 |
+
|
68 |
+
subprocess.run(["ffmpeg", "-y", "-i", f"{run_uuid}_output_audio.wav", "-af", "lowpass=3000,highpass=100", f"{run_uuid}_output_audio_final.wav"])
|
|
|
|
|
69 |
|
70 |
print("Attempting to transcribe with Whisper...")
|
71 |
try:
|
|
|
76 |
except RuntimeError as e:
|
77 |
print(f"RuntimeError encountered: {str(e)}")
|
78 |
if "CUDA failed with error device-side assert triggered" in str(e):
|
79 |
+
gr.Warning("Error. Space need to restart. Please retry in a minute")
|
80 |
api.restart_space(repo_id=repo_id)
|
81 |
+
|
82 |
language_mapping = {'English': 'en', 'Spanish': 'es', 'French': 'fr', 'German': 'de', 'Italian': 'it', 'Portuguese': 'pt', 'Polish': 'pl', 'Turkish': 'tr', 'Russian': 'ru', 'Dutch': 'nl', 'Czech': 'cs', 'Arabic': 'ar', 'Chinese (Simplified)': 'zh-cn'}
|
83 |
target_language_code = language_mapping[target_language]
|
84 |
translator = Translator()
|
85 |
translated_text = translator.translate(whisper_text, src=whisper_language, dest=target_language_code).text
|
86 |
print(translated_text)
|
87 |
+
|
88 |
tts = TTS("tts_models/multilingual/multi-dataset/xtts_v2")
|
89 |
tts.tts_to_file(translated_text, speaker_wav=f"{run_uuid}_output_audio_final.wav", file_path=f"{run_uuid}_output_synth.wav", language=target_language_code)
|
90 |
|
|
|
|
|
91 |
if has_closeup_face:
|
92 |
try:
|
93 |
+
cmd = f"python Wav2Lip/inference.py --checkpoint_path 'Wav2Lip/checkpoints/wav2lip_gan.pth' --face {shlex.quote(video_path)} --audio '{run_uuid}_output_synth.wav' --pads 0 15 0 0 --resize_factor 1 --nosmooth --outfile '{run_uuid}_output_video.mp4'"
|
94 |
+
subprocess.run(cmd, shell=True, check=True)
|
95 |
except subprocess.CalledProcessError as e:
|
96 |
if "Face not detected! Ensure the video contains a face in all the frames." in str(e.stderr):
|
97 |
gr.Warning("Wav2lip didn't detect a face. Please try again with the option disabled.")
|
98 |
+
subprocess.run(["ffmpeg", "-i", video_path, "-i", f"{run_uuid}_output_synth.wav", "-c:v", "copy", "-c:a", "aac", "-strict", "experimental", "-map", "0:v:0", "-map", "1:a:0", f"{run_uuid}_output_video.mp4"])
|
99 |
+
else:
|
100 |
+
subprocess.run(["ffmpeg", "-i", video_path, "-i", f"{run_uuid}_output_synth.wav", "-c:v", "copy", "-c:a", "aac", "-strict", "experimental", "-map", "0:v:0", "-map", "1:a:0", f"{run_uuid}_output_video.mp4"])
|
101 |
+
|
102 |
if not os.path.exists(f"{run_uuid}_output_video.mp4"):
|
103 |
raise FileNotFoundError(f"Error: {run_uuid}_output_video.mp4 was not generated.")
|
104 |
+
|
105 |
output_video_path = f"{run_uuid}_output_video.mp4"
|
106 |
+
|
107 |
# Cleanup
|
108 |
files_to_delete = [
|
109 |
f"{run_uuid}_resized_video.mp4",
|
|
|
116 |
os.remove(file)
|
117 |
except FileNotFoundError:
|
118 |
print(f"File {file} not found for deletion.")
|
119 |
+
|
120 |
return output_video_path
|
121 |
|
122 |
def swap(radio):
|
123 |
+
if(radio == "Upload"):
|
124 |
return gr.update(source="upload")
|
125 |
else:
|
126 |
return gr.update(source="webcam")
|
127 |
+
|
128 |
video = gr.Video()
|
129 |
radio = gr.Radio(["Upload", "Record"], value="Upload", show_label=False)
|
130 |
iface = gr.Interface(
|
|
|
134 |
video,
|
135 |
gr.Dropdown(choices=["English", "Spanish", "French", "German", "Italian", "Portuguese", "Polish", "Turkish", "Russian", "Dutch", "Czech", "Arabic", "Chinese (Simplified)"], label="Target Language for Dubbing", value="Spanish"),
|
136 |
gr.Checkbox(
|
137 |
+
label="Video has a close-up face. Use Wav2lip.",
|
138 |
+
value=False,
|
139 |
+
info="Say if video have close-up face. For Wav2lip. Will not work if checked wrongly.")
|
140 |
],
|
141 |
outputs=gr.Video(),
|
142 |
live=False,
|
|
|
150 |
radio.change(swap, inputs=[radio], outputs=video)
|
151 |
gr.Markdown("""
|
152 |
**Note:**
|
153 |
+
- Video limit is 1 minute. It will dubbing all people using just one voice.
|
154 |
- Generation may take up to 5 minutes.
|
155 |
- By using this demo you agree to the terms of the Coqui Public Model License at https://coqui.ai/cpml
|
156 |
+
- The tool uses open-source models for all models. It's an alpha version.
|
157 |
- Quality can be improved but would require more processing time per video. For scalability and hardware limitations, speed was chosen, not just quality.
|
158 |
- If you need more than 1 minute, duplicate the Space and change the limit on app.py.
|
159 |
- If you incorrectly mark the 'Video has a close-up face' checkbox, the dubbing may not work as expected.
|
160 |
""")
|
161 |
|
162 |
+
demo.queue(concurrency_count=1, max_size=15)
|
163 |
+
demo.launch()
|