import os from trainer import Trainer, TrainerArgs from TTS.config.shared_configs import BaseDatasetConfig from TTS.tts.datasets import load_tts_samples from TTS.tts.layers.xtts.trainer.gpt_trainer import GPTArgs, GPTTrainer, GPTTrainerConfig, XttsAudioConfig from TTS.utils.manage import ModelManager # Logging parameters RUN_NAME = "GPT_XTTS_LJSpeech_FT" PROJECT_NAME = "XTTS_trainer" DASHBOARD_LOGGER = "tensorboard" LOGGER_URI = None # Set here the path that the checkpoints will be saved. Default: ./run/training/ OUT_PATH = os.path.join(os.path.dirname(os.path.abspath(__file__)), "run", "training") # Training Parameters OPTIMIZER_WD_ONLY_ON_WEIGHTS = True # for multi-gpu training please make it False START_WITH_EVAL = True # if True it will star with evaluation BATCH_SIZE = 3 # set here the batch size GRAD_ACUMM_STEPS = 84 # set here the grad accumulation steps # Note: we recommend that BATCH_SIZE * GRAD_ACUMM_STEPS need to be at least 252 for more efficient training. You can increase/decrease BATCH_SIZE but then set GRAD_ACUMM_STEPS accordingly. # Define here the dataset that you want to use for the fine-tuning on. config_dataset = BaseDatasetConfig( formatter="ljspeech", dataset_name="ljspeech", path="/raid/datasets/LJSpeech-1.1_24khz/", meta_file_train="/raid/datasets/LJSpeech-1.1_24khz/metadata.csv", language="en", ) # Add here the configs of the datasets DATASETS_CONFIG_LIST = [config_dataset] # Define the path where XTTS v1.1.1 files will be downloaded CHECKPOINTS_OUT_PATH = os.path.join(OUT_PATH, "XTTS_v1.1_original_model_files/") os.makedirs(CHECKPOINTS_OUT_PATH, exist_ok=True) # DVAE files DVAE_CHECKPOINT_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v1/v1.1.2/dvae.pth" MEL_NORM_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v1/v1.1.2/mel_stats.pth" # Set the path to the downloaded files DVAE_CHECKPOINT = os.path.join(CHECKPOINTS_OUT_PATH, DVAE_CHECKPOINT_LINK.split("/")[-1]) MEL_NORM_FILE = os.path.join(CHECKPOINTS_OUT_PATH, MEL_NORM_LINK.split("/")[-1]) # download DVAE files if needed if not os.path.isfile(DVAE_CHECKPOINT) or not os.path.isfile(MEL_NORM_FILE): print(" > Downloading DVAE files!") ModelManager._download_model_files([MEL_NORM_LINK, DVAE_CHECKPOINT_LINK], CHECKPOINTS_OUT_PATH, progress_bar=True) # Download XTTS v1.1 checkpoint if needed TOKENIZER_FILE_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v1/v1.1.2/vocab.json" XTTS_CHECKPOINT_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v1/v1.1.2/model.pth" # XTTS transfer learning parameters: You we need to provide the paths of XTTS model checkpoint that you want to do the fine tuning. TOKENIZER_FILE = os.path.join(CHECKPOINTS_OUT_PATH, TOKENIZER_FILE_LINK.split("/")[-1]) # vocab.json file XTTS_CHECKPOINT = os.path.join(CHECKPOINTS_OUT_PATH, XTTS_CHECKPOINT_LINK.split("/")[-1]) # model.pth file # download XTTS v1.1 files if needed if not os.path.isfile(TOKENIZER_FILE) or not os.path.isfile(XTTS_CHECKPOINT): print(" > Downloading XTTS v1.1 files!") ModelManager._download_model_files( [TOKENIZER_FILE_LINK, XTTS_CHECKPOINT_LINK], CHECKPOINTS_OUT_PATH, progress_bar=True ) # Training sentences generations SPEAKER_REFERENCE = [ "./tests/data/ljspeech/wavs/LJ001-0002.wav" # speaker reference to be used in training test sentences ] LANGUAGE = config_dataset.language def main(): # init args and config model_args = GPTArgs( max_conditioning_length=132300, # 6 secs min_conditioning_length=66150, # 3 secs debug_loading_failures=False, max_wav_length=255995, # ~11.6 seconds max_text_length=200, mel_norm_file=MEL_NORM_FILE, dvae_checkpoint=DVAE_CHECKPOINT, # tokenizer_file="/raid/datasets/xtts_models/vocab.json", # vocab path of the model that you want to fine-tune # xtts_checkpoint="https://huggingface.co/coqui/XTTS-v1/resolve/hifigan/model.pth", xtts_checkpoint=XTTS_CHECKPOINT, # checkpoint path of the model that you want to fine-tune tokenizer_file=TOKENIZER_FILE, gpt_num_audio_tokens=8194, gpt_start_audio_token=8192, gpt_stop_audio_token=8193, ) # define audio config audio_config = XttsAudioConfig(sample_rate=22050, dvae_sample_rate=22050, output_sample_rate=24000) # training parameters config config = GPTTrainerConfig( output_path=OUT_PATH, model_args=model_args, run_name=RUN_NAME, project_name=PROJECT_NAME, run_description=""" GPT XTTS training """, dashboard_logger=DASHBOARD_LOGGER, logger_uri=LOGGER_URI, audio=audio_config, batch_size=BATCH_SIZE, batch_group_size=48, eval_batch_size=BATCH_SIZE, num_loader_workers=8, eval_split_max_size=256, print_step=50, plot_step=100, log_model_step=1000, save_step=10000, save_n_checkpoints=1, save_checkpoints=True, # target_loss="loss", print_eval=False, # Optimizer values like tortoise, pytorch implementation with modifications to not apply WD to non-weight parameters. optimizer="AdamW", optimizer_wd_only_on_weights=OPTIMIZER_WD_ONLY_ON_WEIGHTS, optimizer_params={"betas": [0.9, 0.96], "eps": 1e-8, "weight_decay": 1e-2}, lr=5e-06, # learning rate lr_scheduler="MultiStepLR", # it was adjusted accordly for the new step scheme lr_scheduler_params={"milestones": [50000 * 18, 150000 * 18, 300000 * 18], "gamma": 0.5, "last_epoch": -1}, test_sentences=[ { "text": "It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent.", "speaker_wav": SPEAKER_REFERENCE, "language": LANGUAGE, }, { "text": "This cake is great. It's so delicious and moist.", "speaker_wav": SPEAKER_REFERENCE, "language": LANGUAGE, }, ], ) # init the model from config model = GPTTrainer.init_from_config(config) # load training samples train_samples, eval_samples = load_tts_samples( DATASETS_CONFIG_LIST, eval_split=True, eval_split_max_size=config.eval_split_max_size, eval_split_size=config.eval_split_size, ) # init the trainer and 🚀 trainer = Trainer( TrainerArgs( restore_path=None, # xtts checkpoint is restored via xtts_checkpoint key so no need of restore it using Trainer restore_path parameter skip_train_epoch=False, start_with_eval=START_WITH_EVAL, grad_accum_steps=GRAD_ACUMM_STEPS, ), config, output_path=OUT_PATH, model=model, train_samples=train_samples, eval_samples=eval_samples, ) trainer.fit() if __name__ == "__main__": main()