Spaces:
Runtime error
Runtime error
File size: 13,609 Bytes
439340a cf91c74 439340a cf91c74 439340a cf91c74 439340a 15ca86d c380b7b a640dcc 439340a 74e5ab2 439340a cf91c74 a640dcc 439340a cf91c74 15ca86d 439340a 15ca86d 439340a cf91c74 439340a 15ca86d 439340a 15ca86d 439340a 15ca86d cf91c74 439340a 15ca86d cf91c74 439340a 15ca86d cf91c74 439340a 15ca86d a640dcc 15ca86d cf91c74 a640dcc 15ca86d cf91c74 15ca86d a640dcc cf91c74 a640dcc cf91c74 a640dcc cf91c74 a640dcc cf91c74 a640dcc cf91c74 a640dcc 15ca86d a640dcc cf91c74 15ca86d cf91c74 15ca86d cf91c74 15ca86d cf91c74 15ca86d cf91c74 15ca86d cf91c74 15ca86d cf91c74 a640dcc 439340a cf91c74 439340a cf91c74 439340a cf91c74 439340a cf91c74 439340a cf91c74 439340a cf91c74 439340a cf91c74 a640dcc cf91c74 439340a cf91c74 a640dcc cf91c74 c380b7b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 |
import gradio as gr
import requests
import os
import time
from datetime import timedelta
from openai import OpenAI
from pinecone import Pinecone
import uuid
import re
import pandas as pd
from google.cloud import storage
from elevenlabs.client import ElevenLabs, AsyncElevenLabs
from elevenlabs import play, save, Voice, stream
from pymongo.mongo_client import MongoClient
from utils import create_folders
from gcp import download_credentials
from csv import writer
import asyncio
import httpx
from dotenv import load_dotenv
load_dotenv()
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
MODEL_OPENAI = os.getenv("MODEL_OPENAI")
PINECONE_API_TOKEN = os.getenv("PINECONE_API_TOKEN")
PINECONE_ENVIRONMENT = os.getenv("PINECONE_ENV")
PINECONE_HOST = os.getenv("PINECONE_HOST")
DB_USER_NAME = os.getenv("DB_USER_NAME")
DB_PASSWORD = os.getenv("DB_PASSWORD")
API_KEY_ELEVENLABS = os.getenv("API_KEY_ELEVENLABS")
D_ID_KEY = os.getenv("D_ID_KEY")
IMG_XAVY = os.getenv("IMG_XAVY")
CREDENTIALS_GCP = os.getenv("GOOGLE_APPLICATION_CREDENTIALS")
NAME_BUCKET = os.getenv("NAME_BUCKET")
URL_AUDIO = os.getenv("URL_AUDIO")
# Chat
openai_client = OpenAI(api_key=OPENAI_API_KEY)
# Vector store
pc = Pinecone(api_key=PINECONE_API_TOKEN)
index = pc.Index(host=PINECONE_HOST)
# Database
uri = f"mongodb+srv://{DB_USER_NAME}:{DB_PASSWORD}@cluster-rob01.3fpztfw.mongodb.net/?retryWrites=true&w=majority&appName=cluster-rob01"
client = MongoClient(uri)
db = client["ChatCrunchyroll"]
collection = db["history_msg"]
def _save_history_msg():
return None
def _add_question_vectorstore(question: str, response: str):
vector_id = str(uuid.uuid4())
vector_embedding = _call_embedding(question)
vector_metadata = {
'question': question,
'text': response
}
index.upsert([(vector_id, vector_embedding, vector_metadata)])
def _update_elements(question, chatbot, output, history_messages, url_audio, url_video, df_table_times):
chatbot.append([question, output])
new_comp_audio = gr.Audio(value=str(url_audio), autoplay=False, label="Audio")
new_comp_video = gr.Video(value=str(url_video), autoplay=True, height=400, label="Video")
history_messages.append({'role': 'user', 'content': question})
history_messages.append({'role': 'assistant', 'content': output})
return chatbot, new_comp_audio, new_comp_video, df_table_times
def _query_pinecone(embedding):
results = index.query(
vector=embedding,
top_k=10,
include_metadata=True,
)
final_results = """"""
for result in results['matches']:
final_results += f"{result['metadata']['text']}\n"
return final_results
def _general_prompt(context):
with open("prompt_general.txt", "r") as file:
file_prompt = file.read().replace("\n", "")
context_prompt = file_prompt.replace('CONTEXT', context)
print(context_prompt)
print("--------------------")
return context_prompt
def _call_embedding(text: str):
response = openai_client.embeddings.create(
input=text,
model='text-embedding-ada-002'
)
return response.data[0].embedding
def _call_gpt(prompt: str, message: str):
response = openai_client.chat.completions.create(
model=MODEL_OPENAI,
temperature=0.2,
messages=[
{'role': 'system', 'content': prompt},
{'role': 'user', 'content': message}
]
)
return response.choices[0].message.content
def _call_gpt_standalone(prompt: str):
response = openai_client.chat.completions.create(
model=MODEL_OPENAI,
temperature=0.2,
messages=[
{'role': 'system', 'content': prompt},
]
)
return response.choices[0].message.content
def _get_standalone_question(question, history_messages):
with open("prompt_standalone_message.txt", "r") as file:
file_prompt_standalone = file.read().replace("\n", "")
history = ''
for i, msg in enumerate(history_messages):
try:
if i == 0:
continue # Omit the prompt
if i % 2 == 0:
history += f'user: {msg["content"]}\n'
else:
history += f'assistant: {msg["content"]}\n'
except Exception as e:
print(e)
prompt_standalone = file_prompt_standalone.replace('HISTORY', history).replace('QUESTION', question)
print(prompt_standalone)
print("------------------")
standalone_msg_q = _call_gpt_standalone(prompt_standalone)
print(standalone_msg_q)
print("------------------")
return standalone_msg_q
def _create_clean_message(text: str):
clean_answer = re.sub(r'http[s]?://\S+', 'el siguiente link', text)
return clean_answer
async def _create_audio(clean_text: str, option_audio: str):
download_credentials()
create_folders()
STORAGE_CLIENT = storage.Client.from_service_account_json(CREDENTIALS_GCP)
unique_id = str(uuid.uuid4())
signed_url_audio = "None"
if option_audio == "Elevenlabs":
# Create audio file with elevenlabs
client_elevenlabs = ElevenLabs(api_key=API_KEY_ELEVENLABS)
voice_custom = Voice(voice_id = "ZQe5CZNOzWyzPSCn5a3c")
audio = client_elevenlabs.generate(
text=clean_text,
voice=voice_custom,
model="eleven_multilingual_v2"
)
source_audio_file_name = f'./audios/file_audio_{unique_id}.wav'
try:
save(audio, source_audio_file_name)
except Exception as e:
print(e)
# Save audio and get url of gcp
destination_blob_name_audio = unique_id + '.wav'
bucket = STORAGE_CLIENT.bucket(NAME_BUCKET)
blob = bucket.blob(destination_blob_name_audio)
try:
blob.upload_from_filename(source_audio_file_name)
except Exception as e:
print(e)
try:
url_expiration = timedelta(minutes=15)
signed_url_audio = blob.generate_signed_url(expiration=url_expiration)
except Exception as e:
print(e)
elif option_audio == "XTTS":
params = {'text': clean_text, 'language': 'es'}
headers = {'accept': 'application/json'}
# Makes a request to the instance with the audio api
async with httpx.AsyncClient() as client:
try:
response = await client.get(URL_AUDIO, params=params, headers=headers, timeout=120)
except Exception as e:
print(f'There is a problem with the audio. Check that instance. ERROR: {e}')
# Check if everything was successful
if response.status_code == 200:
r = response.json()
signed_url_audio = r['link_audio']
else:
print(f'There is a problem with the audio. Check that instance. ERROR: {response.status_code}')
return signed_url_audio, unique_id
def _create_video(link_audio: str, unique_id: str):
download_credentials()
create_folders()
STORAGE_CLIENT = storage.Client.from_service_account_json(CREDENTIALS_GCP)
bucket = STORAGE_CLIENT.bucket(NAME_BUCKET)
# Create video talk with file audio created by elevenlabs api
url_did = "https://api.d-id.com/talks"
payload = {
"script": {
"type": "audio",
"provider": {
"type": "microsoft",
"voice_id": "en-US-JennyNeural"
},
"ssml": "false",
"audio_url": link_audio
},
"config": {
"fluent": "false",
"pad_audio": "0.0",
"stitch": True
},
"source_url": IMG_XAVY
}
headers = {
"accept": "application/json",
"content-type": "application/json",
"authorization": f"Basic {D_ID_KEY}"
}
request_create_talk = requests.post(url_did, json=payload, headers=headers)
resp_create_talk = request_create_talk.json()
talk_id = "None"
try:
talk_id = resp_create_talk['id']
except Exception as e:
print(e)
# Get url of video file
url_get_talk_id = f"https://api.d-id.com/talks/{talk_id}"
while True:
request_video_url = requests.get(url_get_talk_id, headers=headers)
resp_video_url = request_video_url.json()
if resp_video_url['status'] == 'done':
break
# Sleep until the video is ready
time.sleep(0.5)
result_url_video = resp_video_url['result_url']
# Saves the video into a file to later upload it to the GCP
source_video_file_name = f'./videos/video_final_{unique_id}.mp4'
request_video = requests.get(result_url_video)
if request_video.status_code == 200:
with open(source_video_file_name, 'wb') as outfile:
outfile.write(request_video.content)
# Save video file to the GCP
destination_blob_name_video = unique_id + '.mp4'
# Configure bucket
blob = bucket.blob(destination_blob_name_video)
try:
blob.upload_from_filename(source_video_file_name)
except Exception as e:
print(e)
signed_url_video = "None"
try:
url_expiration_video = timedelta(minutes=15)
signed_url_video = blob.generate_signed_url(expiration=url_expiration_video)
except Exception as e:
print(e)
return signed_url_video
def get_answer(question: str, chatbot: list[tuple[str, str]], history_messages, comp_audio, comp_video, df_table, option_audio):
"""
Gets the answer of the chatbot
"""
if len(chatbot) == 8:
message_output = 'Un placer haberte ayudado, hasta luego!'
else:
start_get_standalone_question = time.time()
standalone_msg_q = _get_standalone_question(question, history_messages) # create standalone question or message
end_get_standalone_question = time.time()
time_get_standalone_question = end_get_standalone_question - start_get_standalone_question
start_call_embedding = time.time()
output_embedding = _call_embedding(standalone_msg_q) # create embedding of standalone question or message
end_call_embedding = time.time()
time_call_embedding = end_call_embedding - start_call_embedding
start_query_pinecone = time.time()
best_results = _query_pinecone(output_embedding) # get nearest embeddings
end_query_pinecone = time.time()
time_query_pinecone = end_query_pinecone - start_query_pinecone
start_general_prompt = time.time()
final_context_prompt = _general_prompt(best_results) # create context/general prompt
end_general_prompt = time.time()
time_general_prompt = end_general_prompt - start_general_prompt
start_call_gpt = time.time()
message_output = _call_gpt(final_context_prompt, question) # final response (to user)
end_call_gpt = time.time()
time_call_gpt = end_call_gpt - start_call_gpt
if "Respuesta:" in message_output:
message_output.replace("Respuesta:", "")
start_create_clean_message = time.time()
processed_message = _create_clean_message(message_output) # clean message output
end_create_clean_message = time.time()
time_create_clean_message = end_create_clean_message - start_create_clean_message
start_create_audio = time.time()
url_audio, unique_id = asyncio.run(_create_audio(processed_message, option_audio)) # create audio
end_create_audio = time.time()
time_create_audio = end_create_audio - start_create_audio
start_create_video = time.time()
url_video = _create_video(url_audio, unique_id) # create video with d-id no streaming
end_create_video = time.time()
time_create_video = end_create_video - start_create_video
final_time = time_get_standalone_question + time_call_embedding + time_query_pinecone + time_general_prompt
final_time += (time_call_gpt + time_create_clean_message + time_create_audio + time_create_video)
df_table = pd.DataFrame(df_table)
df_table.loc[len(df_table.index)] = [question,
message_output,
time_get_standalone_question,
time_call_embedding,
time_query_pinecone,
time_general_prompt,
time_call_gpt,
time_create_clean_message,
time_create_audio,
time_create_video,
final_time]
new_df_table = gr.DataFrame(df_table, interactive=False, visible=True)
print(history_messages)
return _update_elements(question, chatbot, message_output, history_messages, url_audio, url_video, new_df_table)
def init_greeting(chatbot, history_messages):
if len(chatbot) == 0:
greeting = ('Hola 👋, soy tu asistente de recomendación de series y películas animadas en Crunchyroll. ¿En qué puedo ayudarte hoy?')
history_messages.append({'role': 'assistant', 'content': greeting})
chatbot.append([None, greeting])
return chatbot, history_messages
def export_dataframe(df):
final_df = pd.DataFrame(df)
final_df = final_df.iloc[1:]
final_df.to_csv("./csv_times/csv_times.csv", index=False, encoding='utf-8')
return gr.File(value="./csv_times/csv_times.csv", visible=True)
|