File size: 12,493 Bytes
439340a
cf91c74
439340a
cf91c74
 
439340a
 
 
cf91c74
 
 
 
 
439340a
15ca86d
 
c380b7b
439340a
 
 
74e5ab2
439340a
 
 
 
 
 
 
 
 
 
cf91c74
 
 
 
 
 
 
 
 
439340a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf91c74
15ca86d
 
 
439340a
15ca86d
 
439340a
cf91c74
439340a
 
 
15ca86d
 
 
 
 
 
 
 
 
439340a
 
 
 
 
15ca86d
 
 
 
 
 
439340a
 
 
 
 
15ca86d
 
 
 
cf91c74
439340a
 
 
 
15ca86d
 
 
 
 
 
 
 
cf91c74
439340a
 
 
 
15ca86d
 
 
 
 
 
 
cf91c74
439340a
 
 
 
15ca86d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf91c74
 
 
 
 
 
 
 
 
 
15ca86d
 
 
 
cf91c74
15ca86d
cf91c74
15ca86d
 
 
cf91c74
15ca86d
 
 
 
 
cf91c74
15ca86d
cf91c74
15ca86d
 
 
 
cf91c74
15ca86d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf91c74
 
 
 
 
15ca86d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf91c74
15ca86d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf91c74
15ca86d
 
cf91c74
15ca86d
 
 
 
 
cf91c74
15ca86d
 
cf91c74
15ca86d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf91c74
 
 
 
 
439340a
 
 
cf91c74
439340a
 
 
cf91c74
439340a
cf91c74
 
 
 
439340a
cf91c74
 
 
 
439340a
cf91c74
 
 
 
439340a
cf91c74
 
 
 
 
 
 
439340a
 
 
 
cf91c74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
439340a
 
cf91c74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c380b7b
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
import gradio as gr
import requests
import os
import time
from datetime import timedelta
from openai import OpenAI
from pinecone import Pinecone
import uuid
import re
import pandas as pd
from google.cloud import storage
from elevenlabs.client import ElevenLabs, AsyncElevenLabs
from elevenlabs import play, save, Voice, stream
from pymongo.mongo_client import MongoClient
from utils import create_folders
from gcp import download_credentials
from csv import writer
from dotenv import load_dotenv
load_dotenv()


OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
MODEL_OPENAI = os.getenv("MODEL_OPENAI")

PINECONE_API_TOKEN = os.getenv("PINECONE_API_TOKEN")
PINECONE_ENVIRONMENT = os.getenv("PINECONE_ENV")
PINECONE_HOST = os.getenv("PINECONE_HOST")

DB_USER_NAME = os.getenv("DB_USER_NAME")
DB_PASSWORD = os.getenv("DB_PASSWORD")

API_KEY_ELEVENLABS = os.getenv("API_KEY_ELEVENLABS")

D_ID_KEY = os.getenv("D_ID_KEY")

IMG_XAVY = os.getenv("IMG_XAVY")

CREDENTIALS_GCP = os.getenv("GOOGLE_APPLICATION_CREDENTIALS")
NAME_BUCKET = os.getenv("NAME_BUCKET")


# Chat
openai_client = OpenAI(api_key=OPENAI_API_KEY)

# Vector store
pc = Pinecone(api_key=PINECONE_API_TOKEN)
index = pc.Index(host=PINECONE_HOST)

# Database
uri = f"mongodb+srv://{DB_USER_NAME}:{DB_PASSWORD}@cluster-rob01.3fpztfw.mongodb.net/?retryWrites=true&w=majority&appName=cluster-rob01"
client = MongoClient(uri)
db = client["ChatCrunchyroll"]
collection = db["history_msg"]


def _save_history_msg():

    return None


def _add_question_vectorstore(question: str, response: str):
    vector_id = str(uuid.uuid4())
    vector_embedding = _call_embedding(question)
    vector_metadata = {
        'question': question,
        'text': response
    }
    index.upsert([(vector_id, vector_embedding, vector_metadata)])


def _update_elements(question, chatbot, output, history_messages, url_audio, url_video, df_table_times):
    chatbot.append([question, output])
    new_comp_audio = gr.Audio(value=str(url_audio), autoplay=False, label="Audio")
    new_comp_video = gr.Video(value=str(url_video), autoplay=True, height=400, label="Video")

    history_messages.append({'role': 'user', 'content': question})
    history_messages.append({'role': 'assistant', 'content': output})

    return chatbot, new_comp_audio, new_comp_video, df_table_times


def _query_pinecone(embedding):
    results = index.query(
                    vector=embedding,
                    top_k=10,
                    include_metadata=True,
                )

    final_results = """"""
    for result in results['matches']:
        final_results += f"{result['metadata']['text']}\n"

    return final_results


def _general_prompt(context):
    with open("prompt_general.txt", "r") as file:
        file_prompt = file.read().replace("\n", "")
    
    context_prompt = file_prompt.replace('CONTEXT', context)
    print(context_prompt)
    print("--------------------")

    return context_prompt


def _call_embedding(text: str):
    response = openai_client.embeddings.create(
        input=text,
        model='text-embedding-ada-002'
    )

    return response.data[0].embedding


def _call_gpt(prompt: str, message: str):
    response = openai_client.chat.completions.create(
        model=MODEL_OPENAI,
        temperature=0.2,
        messages=[
            {'role': 'system', 'content': prompt},
            {'role': 'user', 'content': message}
        ]
    )
        
    return response.choices[0].message.content


def _call_gpt_standalone(prompt: str):
    response = openai_client.chat.completions.create(
        model=MODEL_OPENAI,
        temperature=0.2,
        messages=[
            {'role': 'system', 'content': prompt},
        ]
    )

    return response.choices[0].message.content


def _get_standalone_question(question, history_messages):
    with open("prompt_standalone_message.txt", "r") as file:
        file_prompt_standalone = file.read().replace("\n", "")

    history = ''
    for i, msg in enumerate(history_messages):
        try:
            if i == 0:
                continue  # Omit the prompt
            if i % 2 == 0:
                history += f'user: {msg["content"]}\n'
            else:
                history += f'assistant: {msg["content"]}\n'
        except Exception as e:
            print(e)
    
    prompt_standalone = file_prompt_standalone.replace('HISTORY', history).replace('QUESTION', question)
    standalone_msg_q = _call_gpt_standalone(prompt_standalone)
    print(standalone_msg_q)
    print("------------------")

    return standalone_msg_q


def _create_clean_message(text: str):
    clean_answer = re.sub(r'http[s]?://\S+', 'el siguiente link', text)
    return clean_answer


def _create_audio(clean_text: str):
    download_credentials()
    create_folders()
    
    STORAGE_CLIENT = storage.Client.from_service_account_json(CREDENTIALS_GCP)

    unique_id = str(uuid.uuid4())

    # Create audio file
    client_elevenlabs = ElevenLabs(api_key=API_KEY_ELEVENLABS)
    voice_custom = Voice(voice_id = "ZQe5CZNOzWyzPSCn5a3c")

    audio = client_elevenlabs.generate(
        text=clean_text,
        voice=voice_custom,
        model="eleven_multilingual_v2"
    )

    source_audio_file_name = f'./audios/file_audio_{unique_id}.wav'

    try:
        save(audio, source_audio_file_name)
    except Exception as e:
        print(e)

    # Save audio and get url of gcp
    destination_blob_name_audio = unique_id + '.wav'
    
    bucket = STORAGE_CLIENT.bucket(NAME_BUCKET)
    blob = bucket.blob(destination_blob_name_audio)
    try:
        blob.upload_from_filename(source_audio_file_name)
    except Exception as e:
        print(e)

    signed_url_audio = "None"
    try:
        url_expiration = timedelta(minutes=15)
        signed_url_audio = blob.generate_signed_url(expiration=url_expiration)
    except Exception as e:
        print(e)

    return signed_url_audio, unique_id


def _create_video(link_audio: str, unique_id: str):
    download_credentials()
    create_folders()
    
    STORAGE_CLIENT = storage.Client.from_service_account_json(CREDENTIALS_GCP)
    bucket = STORAGE_CLIENT.bucket(NAME_BUCKET)

    # Create video talk with file audio created by elevenlabs api
    url_did = "https://api.d-id.com/talks"

    payload = {
        "script": {
            "type": "audio",
            "provider": {
                "type": "microsoft",
                "voice_id": "en-US-JennyNeural"
            },
            "ssml": "false",
            "audio_url": link_audio
        },
        "config": {
            "fluent": "false",
            "pad_audio": "0.0",
            "stitch": True
        },
        "source_url": IMG_XAVY
    }
    headers = {
        "accept": "application/json",
        "content-type": "application/json",
        "authorization": f"Basic {D_ID_KEY}"
    }

    request_create_talk = requests.post(url_did, json=payload, headers=headers)
    resp_create_talk = request_create_talk.json()

    talk_id = "None"
    try:
        talk_id = resp_create_talk['id']
    except Exception as e:
        print(e)

    # Get url of video file
    url_get_talk_id = f"https://api.d-id.com/talks/{talk_id}"

    
    while True:
        request_video_url = requests.get(url_get_talk_id, headers=headers)
        resp_video_url = request_video_url.json()

        if resp_video_url['status'] == 'done':
            break
        # Sleep until the video is ready
        time.sleep(0.5)

    result_url_video = resp_video_url['result_url']

    # Saves the video into a file to later upload it to the GCP
    source_video_file_name = f'./videos/video_final_{unique_id}.mp4'
    request_video = requests.get(result_url_video)
    if request_video.status_code == 200:
        with open(source_video_file_name, 'wb') as outfile:
            outfile.write(request_video.content)

    # Save video file to the GCP
    destination_blob_name_video = unique_id + '.mp4'

    # Configure bucket
    blob = bucket.blob(destination_blob_name_video)
    try:
        blob.upload_from_filename(source_video_file_name)
    except Exception as e:
        print(e)

    signed_url_video = "None"
    try:
        url_expiration_video = timedelta(minutes=15)
        signed_url_video = blob.generate_signed_url(expiration=url_expiration_video)
    except Exception as e:
        print(e)

    return signed_url_video


def get_answer(question: str, chatbot: list[tuple[str, str]], history_messages, comp_audio, comp_video, df_table):
    """
    Gets the answer of the chatbot
    """

    if len(chatbot) == 8:
        message_output = 'Un placer haberte ayudado, hasta luego!'
    else:
        start_get_standalone_question = time.time()
        standalone_msg_q = _get_standalone_question(question, history_messages) # create standalone question or message
        end_get_standalone_question = time.time()
        time_get_standalone_question = end_get_standalone_question - start_get_standalone_question

        start_call_embedding = time.time()
        output_embedding = _call_embedding(standalone_msg_q) # create embedding of standalone question or message
        end_call_embedding = time.time()
        time_call_embedding = end_call_embedding - start_call_embedding

        start_query_pinecone = time.time()
        best_results = _query_pinecone(output_embedding) # get nearest embeddings
        end_query_pinecone = time.time()
        time_query_pinecone = end_query_pinecone - start_query_pinecone

        start_general_prompt = time.time()
        final_context_prompt = _general_prompt(best_results) # create context/general prompt
        end_general_prompt = time.time()
        time_general_prompt = end_general_prompt - start_general_prompt

        start_call_gpt = time.time()
        message_output = _call_gpt(final_context_prompt, question) # final response (to user)
        end_call_gpt = time.time()
        time_call_gpt = end_call_gpt - start_call_gpt

    if "Respuesta:" in message_output:
        message_output.replace("Respuesta:", "")

    start_create_clean_message = time.time()
    processed_message = _create_clean_message(message_output) # clean message output
    end_create_clean_message = time.time()
    time_create_clean_message = end_create_clean_message - start_create_clean_message
    
    start_create_audio = time.time()
    url_audio, unique_id = _create_audio(processed_message) # create audio with elevenlabs
    end_create_audio = time.time()
    time_create_audio = end_create_audio - start_create_audio

    start_create_video = time.time()
    url_video = _create_video(url_audio, unique_id) # create video with d-id no streaming
    end_create_video = time.time()
    time_create_video = end_create_video - start_create_video

    final_time = time_get_standalone_question + time_call_embedding + time_query_pinecone + time_general_prompt
    final_time += (time_call_gpt + time_create_clean_message + time_create_audio + time_create_video)

    df_table = pd.DataFrame(df_table)
    df_table.loc[len(df_table.index)] = [question,
                                         message_output,
                                         time_get_standalone_question,
                                         time_call_embedding,
                                         time_query_pinecone,
                                         time_general_prompt,
                                         time_call_gpt,
                                         time_create_clean_message,
                                         time_create_audio,
                                         time_create_video,
                                         final_time]

    new_df_table = gr.DataFrame(df_table, interactive=False, visible=True)

    print(history_messages)

    return _update_elements(question, chatbot, message_output, history_messages, url_audio, url_video, new_df_table)


def init_greeting(chatbot, history_messages):
    if len(chatbot) == 0:
        greeting = ('Hola 👋, soy Roll, tu asistente de recomendación de series y películas animadas en Crunchyroll. ¿En qué puedo ayudarte hoy?')
        history_messages.append({'role': 'assistant', 'content': greeting})
        chatbot.append([None, greeting])

    return chatbot, history_messages


def export_dataframe(df):
    final_df = pd.DataFrame(df)
    final_df = final_df.iloc[1:]
    final_df.to_csv("./csv_times/csv_times.csv", index=False, encoding='utf-8')
    
    return gr.File(value="./csv_times/csv_times.csv", visible=True)