Spaces:
Runtime error
Runtime error
File size: 7,341 Bytes
5d345b1 13dabab 5d345b1 78a814f 5d345b1 78a814f 5d345b1 78a814f 5d345b1 13dabab 5d345b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
import os
import pinecone
import gradio as gr
from openai import OpenAI
from typing import Callable
import google.generativeai as genai
from huggingface_hub import hf_hub_download
def download_prompt(name_prompt: str) -> str:
"""
Downloads prompt from HuggingFace Hub
:param name_prompt: name of the file
:return: text of the file
"""
hf_hub_download(
repo_id=os.environ.get('DATA'), repo_type='dataset', filename=f"{name_prompt}.txt",
token=os.environ.get('HUB_TOKEN'), local_dir="prompts"
)
with open(f'prompts/{name_prompt}.txt', mode='r', encoding='utf-8') as infile:
prompt = infile.read()
return prompt
def start_chat(model: str) -> tuple[gr.helpers, gr.helpers, gr.helpers, gr.helpers]:
"""
Shows the chatbot interface and hides the selection of the model.
Returns gradio helpers (gr.update())
:param model: name of the model to use
:return: visible=False, visible=True, visible=True, value=selected_model
"""
no_visible = gr.update(visible=False)
visible = gr.update(visible=True)
title = gr.update(value=f"# {model}")
return no_visible, visible, visible, title
def restart_chat() -> tuple[gr.helpers, gr.helpers, gr.helpers, list, str]:
"""
Shows the selection of the model, hides the chatbot interface and restarts the chatbot.
Returns gradio helpers (gr.update())
:return: visible=True, visible=False, visible=False, empty list, empty string
"""
no_visible = gr.update(visible=False)
visible = gr.update(visible=True)
return visible, no_visible, no_visible, [], ""
def get_answer(chatbot: list[tuple[str, str]], message: str, model: str) -> tuple[list[tuple[str, str]], str]:
"""
Calls the model and returns the answer
:param chatbot: message history
:param message: user input
:param model: name of the model
:return: chatbot answer
"""
# Setup which function will be called (depends on the model)
call_model = COMPANIES[model]['calling']
# Get standalone question
standalone_question = _get_standalone_question(chatbot, message, call_model)
# Get context
context = _get_context(standalone_question)
# Get answer from the Chatbot
prompt = PROMPT_GENERAL.replace('CONTEXT', context)
answer = call_model(prompt, chatbot, message)
# Add the new answer to the history
chatbot.append((message, answer))
return chatbot, ""
def _get_standalone_question(
chat_history: list[tuple[str, str]], message: str, call_model: Callable[[str, list, str], str]
) -> str:
"""
To get a better context a standalone question is obtained for each question
:param chat_history: message history
:param message: user input
:param call_model: name of the model
:return: standalone phrase
"""
# Format the message history like: Human: blablablá \nAssistant: blablablá
history = ''
for i, (user, bot) in enumerate(chat_history):
if i == 0:
history += f'Assistant: {bot}\n'
else:
history += f'Human: {user}\n'
history += f'Assistant: {bot}\n'
# Add history and question to the prompt
prompt = PROMPT_STANDALONE.replace('HISTORY', history)
question = f'Follow-up message: {message}'
return call_model(prompt, [], question)
def _get_embedding(text: str) -> list[float]:
"""
:param text: input text
:return: embedding
"""
response = OPENAI_CLIENT.embeddings.create(
input=text,
model='text-embedding-ada-002'
)
return response.data[0].embedding
def _get_context(question: str) -> str:
"""
Get the 10 nearest vectors to the given input
:param question: standalone question
:return: formatted context with the nearest vectors
"""
result = INDEX.query(
vector=_get_embedding(question),
top_k=10,
include_metadata=True,
namespace=f'{CLIENT}-context'
)['matches']
context = ''
for r in result:
context += r['metadata']['Text'] + '\n\n'
return context
def _call_openai(prompt: str, chat_history: list[tuple[str, str]], question: str) -> str:
"""
Calls ChatGPT 4
:param prompt: prompt with the context or the question (in the case of the standalone one)
:param chat_history: history of the conversation
:param question: user input
:return: chatbot answer
"""
# Format the message history to the one used by OpenAI
msg_history = [{'role': 'system', 'content': prompt}]
for i, (user, bot) in enumerate(chat_history):
msg_history.append({'role': 'user', 'content': user})
msg_history.append({'role': 'assistant', 'content': bot})
msg_history.append({'role': 'user', 'content': question})
# Call ChatGPT 4
response = OPENAI_CLIENT.chat.completions.create(
model='gpt-4-turbo-preview',
temperature=0.5,
messages=msg_history
)
return response.choices[0].message.content
def _call_google(prompt: str, chat_history: list[tuple[str, str]], question: str) -> str:
"""
Calls Gemini
:param prompt: prompt with the context or the question (in the case of the standalone one)
:param chat_history: history of the conversation
:param question: user input
:return: chatbot answer
"""
# Format the message history to the one used by Google
history = [
{'role': 'user', 'parts': [prompt]},
{'role': 'model', 'parts': ['Excelente! Estoy super lista para ayudarte en lo que necesites']}
]
for i, (user, bot) in enumerate(chat_history):
history.append({'role': 'user', 'parts': [user]})
history.append({'role': 'model', 'parts': [bot]})
convo = GEMINI.start_chat(history=history)
# Call Gemini
convo.send_message(question)
return convo.last.text
# ----------------------------------------- Setup constants and models ------------------------------------------------
OPENAI_CLIENT = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
genai.configure(api_key=os.getenv("GEMINI_API_KEY"))
pinecone.init(api_key=os.getenv('PINECONE_API_KEY'), environment=os.getenv("PINECONE_ENVIRONMENT"))
INDEX = pinecone.Index(os.getenv('PINECONE_INDEX'))
CLIENT = os.getenv('CLIENT')
# Setup Gemini
generation_config = {
"temperature": 0.9,
"top_p": 1,
"top_k": 1,
"max_output_tokens": 2048,
}
safety_settings = [
{
"category": "HARM_CATEGORY_HARASSMENT",
"threshold": "BLOCK_MEDIUM_AND_ABOVE"
},
{
"category": "HARM_CATEGORY_HATE_SPEECH",
"threshold": "BLOCK_MEDIUM_AND_ABOVE"
},
{
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
"threshold": "BLOCK_ONLY_HIGH"
},
{
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
"threshold": "BLOCK_MEDIUM_AND_ABOVE"
},
]
GEMINI = genai.GenerativeModel(
model_name="gemini-1.0-pro", generation_config=generation_config, safety_settings=safety_settings
)
# Download and open prompts from HuggingFace Hub
os.makedirs('prompts', exist_ok=True)
PROMPT_STANDALONE = download_prompt('standalone')
PROMPT_GENERAL = download_prompt('general')
# Constants used in the app
COMPANIES = {
'Model G': {'calling': _call_google, 'real name': 'Gemini'},
'Model C': {'calling': _call_openai, 'real name': 'ChatGPT 4'},
}
MODELS = list(COMPANIES.keys())
|