Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import MarianMTModel, MarianTokenizer, GPT2LMHeadModel, GPT2Tokenizer, AutoTokenizer, AutoModelForSequenceClassification | |
import torch | |
# Translation | |
def translate(text, target_language): | |
language_codes = { | |
"Spanish": "es", | |
"French (European)": "fr", | |
"French (Canadian)": "fr", | |
"Italian": "it", | |
"Ukrainian": "uk", | |
"Portuguese (Brazilian)": "pt_BR", | |
"Portuguese (European)": "pt", | |
"Russian": "ru", | |
"Chinese": "zh", | |
"Dutch": "nl", | |
"German": "de", | |
"Arabic": "ar", | |
"Hebrew": "he", | |
"Greek": "el" | |
} | |
# Text Generation | |
def generate_text(prompt): | |
text_gen = pipeline("text-generation", model="gpt2") | |
generated_text = text_gen(prompt, max_length=max_length, do_sample=True)[0]["generated_text"] | |
return generated_text | |
# Text Classification | |
def classify_text(text): | |
classifier = pipeline("zero-shot-classification") | |
result = classifier(text, labels.split(',')) | |
scores = result["scores"] | |
predictions = result["labels"] | |
sorted_predictions = [pred for _, pred in sorted(zip(scores, predictions), reverse=True)] | |
return sorted_predictions | |
# Sentiment Analysis | |
def sentiment_analysis(text): | |
model_name = "distilbert-base-uncased-finetuned-sst-2-english" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
inputs = tokenizer(text, return_tensors="pt") | |
outputs = model(**inputs) | |
sentiment_scores = torch.softmax(outputs.logits, dim=1) | |
sentiment = "positive" if sentiment_scores[0, 1] > sentiment_scores[0, 0] else "negative" | |
return sentiment | |
language_options = [ | |
"Spanish", "French (European)", "French (Canadian)", "Italian", "Ukrainian", | |
"Portuguese (Brazilian)", "Portuguese (European)", "Russian", "Chinese", | |
"Dutch", "German", "Arabic", "Hebrew", "Greek" | |
] | |
iface = gr.Interface( | |
[translate, generate_text, classify_text, sentiment_analysis], | |
inputs=[ | |
gr.inputs.Textbox(lines=5, label="Enter text to translate:"), | |
gr.inputs.Dropdown(choices=language_options, label="Target Language"), | |
gr.inputs.Textbox(lines=5, label="Enter text for text generation:"), | |
gr.inputs.Textbox(lines=5, label="Enter text for text classification:"), | |
gr.inputs.Textbox(lines=5, label="Enter text for sentiment analysis:"), | |
], | |
outputs=[ | |
gr.outputs.Textbox(label="Translated Text"), | |
gr.outputs.Textbox(label="Generated Text"), | |
gr.outputs.Textbox(label="Classification Result"), | |
gr.outputs.Textbox(label="Sentiment Result"), | |
], | |
) | |
iface.launch() | |