isurulkh commited on
Commit
379fe72
1 Parent(s): a4289a8

First Release

Browse files
Files changed (3) hide show
  1. .env +1 -0
  2. app.py +81 -0
  3. requirements.txt +7 -0
.env ADDED
@@ -0,0 +1 @@
 
 
1
+ GOOGLE_API_KEY=AIzaSyDz-X-hSJYnnllhZ6odQM03J7vSO6pdMYA
app.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from langchain.prompts import PromptTemplate
3
+ from langchain.chains.question_answering import load_qa_chain
4
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
5
+ from langchain.vectorstores import Chroma
6
+ from langchain_google_genai import GoogleGenerativeAIEmbeddings, ChatGoogleGenerativeAI
7
+ from dotenv import load_dotenv
8
+ import PyPDF2
9
+ import os
10
+ import io
11
+
12
+ st.title("Chat Your PDFs") # Updated title
13
+
14
+ # Load environment variables from .env file
15
+ load_dotenv()
16
+
17
+ # Retrieve API key from environment variable
18
+ google_api_key = os.getenv("GOOGLE_API_KEY")
19
+
20
+ # Check if the API key is available
21
+ if google_api_key is None:
22
+ st.warning("API key not found. Please set the google_api_key environment variable.")
23
+ st.stop()
24
+
25
+ # File Upload with user-defined name
26
+ uploaded_file = st.file_uploader("Upload a PDF file", type=["pdf"])
27
+
28
+ if uploaded_file is not None:
29
+ st.text("PDF File Uploaded Successfully!")
30
+
31
+ # PDF Processing (using PyPDF2 directly)
32
+ pdf_data = uploaded_file.read()
33
+ pdf_reader = PyPDF2.PdfReader(io.BytesIO(pdf_data))
34
+ pdf_pages = pdf_reader.pages
35
+
36
+ # Create Context
37
+ context = "\n\n".join(page.extract_text() for page in pdf_pages)
38
+
39
+ # Split Texts
40
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=200)
41
+ texts = text_splitter.split_text(context)
42
+
43
+ # Chroma Embeddings
44
+ embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
45
+ vector_index = Chroma.from_texts(texts, embeddings).as_retriever()
46
+
47
+ # Get User Question
48
+ user_question = st.text_input("Ask a Question:")
49
+
50
+ if st.button("Get Answer"):
51
+ if user_question:
52
+ # Get Relevant Documents
53
+ docs = vector_index.get_relevant_documents(user_question)
54
+
55
+ # Define Prompt Template
56
+ prompt_template = """
57
+ Answer the question as detailed as possible from the provided context,
58
+ make sure to provide all the details, if the answer is not in
59
+ provided context just say, "answer is not available in the context",
60
+ don't provide the wrong answer\n\n
61
+ Context:\n {context}?\n
62
+ Question: \n{question}\n
63
+ Answer:
64
+ """
65
+
66
+ # Create Prompt
67
+ prompt = PromptTemplate(template=prompt_template, input_variables=['context', 'question'])
68
+
69
+ # Load QA Chain
70
+ model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3, api_key=google_api_key)
71
+ chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
72
+
73
+ # Get Response
74
+ response = chain({"input_documents": docs, "question": user_question}, return_only_outputs=True)
75
+
76
+ # Display Answer
77
+ st.subheader("Answer:")
78
+ st.write(response['output_text'])
79
+
80
+ else:
81
+ st.warning("Please enter a question.")
requirements.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ langchain
2
+ google-generativeai
3
+ streamlit
4
+ langchain-google-genai
5
+ python-dotenv
6
+ chromadb
7
+ pypdf