File size: 7,487 Bytes
7b80802
 
 
 
 
 
 
 
9182215
7b80802
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7047a3f
 
7b80802
 
 
 
 
 
 
 
 
 
 
 
1edc7c3
7b80802
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import os
import cv2
import gradio as gr
import torch
from basicsr.archs.srvgg_arch import SRVGGNetCompact
from gfpgan.utils import GFPGANer
from realesrgan.utils import RealESRGANer
from zeroscratches import EraseScratches

os.system("pip freeze")

os.system("pip freeze")
# download weights
if not os.path.exists('realesr-general-x4v3.pth'):
    os.system("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P .")
if not os.path.exists('GFPGANv1.2.pth'):
    os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.2.pth -P .")
if not os.path.exists('GFPGANv1.3.pth'):
    os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth -P .")
if not os.path.exists('GFPGANv1.4.pth'):
    os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P .")


torch.hub.download_url_to_file(
    'https://thumbs.dreamstime.com/b/tower-bridge-traditional-red-bus-black-white-colors-view-to-tower-bridge-london-black-white-colors-108478942.jpg',
    'a1.jpg')
torch.hub.download_url_to_file(
    'https://media.istockphoto.com/id/523514029/photo/london-skyline-b-w.jpg?s=612x612&w=0&k=20&c=kJS1BAtfqYeUDaORupj0sBPc1hpzJhBUUqEFfRnHzZ0=',
    'a2.jpg')
torch.hub.download_url_to_file(
    'https://i.guim.co.uk/img/media/06f614065ed82ca0e917b149a32493c791619854/0_0_3648_2789/master/3648.jpg?width=700&quality=85&auto=format&fit=max&s=05764b507c18a38590090d987c8b6202',
    'a3.jpg')
torch.hub.download_url_to_file(
    'https://i.pinimg.com/736x/46/96/9e/46969eb94aec2437323464804d27706d--victorian-london-victorian-era.jpg',
    'a4.jpg')

# background enhancer with RealESRGAN
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
model_path = 'realesr-general-x4v3.pth'
half = True if torch.cuda.is_available() else False
upsampler = RealESRGANer(scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half)

os.makedirs('output', exist_ok=True)


# def inference(img, version, scale, weight):
def enhance_image(img, version, scale):
    # weight /= 100
    print(img, version, scale)
    try:
        extension = os.path.splitext(os.path.basename(str(img)))[1]
        img = cv2.imread(img, cv2.IMREAD_UNCHANGED)
        if len(img.shape) == 3 and img.shape[2] == 4:
            img_mode = 'RGBA'
        elif len(img.shape) == 2:  # for gray inputs
            img_mode = None
            img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
        else:
            img_mode = None

        h, w = img.shape[0:2]
        if h < 300:
            img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)

        if version == 'M1':
            face_enhancer = GFPGANer(
            model_path='GFPGANv1.2.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
        elif version == 'M2':
            face_enhancer = GFPGANer(
            model_path='GFPGANv1.3.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
        elif version == 'M3':
            face_enhancer = GFPGANer(
            model_path='GFPGANv1.4.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
        elif version == 'RestoreFormer':
            face_enhancer = GFPGANer(
            model_path='RestoreFormer.pth', upscale=2, arch='RestoreFormer', channel_multiplier=2, bg_upsampler=upsampler)
        elif version == 'CodeFormer':
             face_enhancer = GFPGANer(
             model_path='CodeFormer.pth', upscale=2, arch='CodeFormer', channel_multiplier=2, bg_upsampler=upsampler)
        elif version == 'RealESR-General-x4v3':
             face_enhancer = GFPGANer(
             model_path='realesr-general-x4v3.pth', upscale=2, arch='realesr-general', channel_multiplier=2, bg_upsampler=upsampler)

        try:
            # _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True, weight=weight)
            _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
        except RuntimeError as error:
            print('Error', error)

        try:
            if scale != 2:
                interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4
                h, w = img.shape[0:2]
                output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation)
        except Exception as error:
            print('wrong scale input.', error)
        if img_mode == 'RGBA':  # RGBA images should be saved in png format
            extension = 'png'
        else:
            extension = 'jpg'
        save_path = f'output/out.{extension}'
        cv2.imwrite(save_path, output)

        output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
        return output, save_path
    except Exception as error:
        print('global exception', error)
        return None, None

# Function to remove scratches from an image
def remove_scratches(img):
    scratch_remover = EraseScratches()
    img_without_scratches = scratch_remover.erase(img)
    return img_without_scratches



import tempfile

# Function for performing operations sequentially
def process_image(img):
    try:
        # Create a unique temporary directory for each request
        temp_dir = tempfile.mkdtemp()

        # Generate a unique filename for the temporary file
        unique_filename = 'temp_image.jpg'
        temp_file_path = os.path.join(temp_dir, unique_filename)

        # Remove scratches from the input image
        img_without_scratches = remove_scratches(img)

        # Save the image without scratches to the temporary file
        cv2.imwrite(temp_file_path, cv2.cvtColor(img_without_scratches, cv2.COLOR_BGR2RGB))

        # Enhance the image using the saved file path
        enhanced_img, save_path = enhance_image(temp_file_path, version='M2', scale=2)

        # Convert the enhanced image to RGB format
        enhanced_img_rgb = cv2.cvtColor(enhanced_img, cv2.COLOR_BGR2RGB)

        # Delete the temporary file and directory
        os.remove(temp_file_path)
        os.rmdir(temp_dir)

        # Return the enhanced image in RGB format and the path where it's saved
        return enhanced_img, save_path
    except Exception as e:
        print('Error processing image:', e)
        return None, None

# Gradio interface
title = "<span style='color: black; text-decoration: underline;'>Ai</span> <span style='color: black; text-decoration: underline;'>Photo</span> <span style='color: black; text-decoration: underline;'>Restoration</span> - <span style='color: black; text-decoration: underline;'>Fix</span> and <span style='color: black; text-decoration: underline;'>Repair</span> Your <span style='color: black; text-decoration: underline;'>Old,</span> <span style='color: black; text-decoration: underline;'>Damaged,</span> and <span style='color: black; text-decoration: underline;'>Scratched</span> <span style='color: black; text-decoration: underline;'>Images</span>"

description = r"""
"""
article = r"""

"""
demo = gr.Interface(
    process_image, [
        gr.Image(type="pil", label="Input"),
    ], [
        gr.Image(type="numpy", label="Result Image"), 
        gr.File(label="Download the output image")
    ],
    theme="syddharth/gray-minimal",
    title=title,
    description=description,
    article=article)

demo.queue().launch()