|
import os |
|
import cv2 |
|
import gradio as gr |
|
import torch |
|
from basicsr.archs.srvgg_arch import SRVGGNetCompact |
|
from gfpgan.utils import GFPGANer |
|
from realesrgan.utils import RealESRGANer |
|
from zeroscratches import EraseScratches |
|
|
|
os.system("pip freeze") |
|
|
|
os.system("pip freeze") |
|
|
|
if not os.path.exists('realesr-general-x4v3.pth'): |
|
os.system("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P .") |
|
if not os.path.exists('GFPGANv1.2.pth'): |
|
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.2.pth -P .") |
|
if not os.path.exists('GFPGANv1.3.pth'): |
|
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth -P .") |
|
if not os.path.exists('GFPGANv1.4.pth'): |
|
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P .") |
|
|
|
|
|
torch.hub.download_url_to_file( |
|
'https://thumbs.dreamstime.com/b/tower-bridge-traditional-red-bus-black-white-colors-view-to-tower-bridge-london-black-white-colors-108478942.jpg', |
|
'a1.jpg') |
|
torch.hub.download_url_to_file( |
|
'https://media.istockphoto.com/id/523514029/photo/london-skyline-b-w.jpg?s=612x612&w=0&k=20&c=kJS1BAtfqYeUDaORupj0sBPc1hpzJhBUUqEFfRnHzZ0=', |
|
'a2.jpg') |
|
torch.hub.download_url_to_file( |
|
'https://i.guim.co.uk/img/media/06f614065ed82ca0e917b149a32493c791619854/0_0_3648_2789/master/3648.jpg?width=700&quality=85&auto=format&fit=max&s=05764b507c18a38590090d987c8b6202', |
|
'a3.jpg') |
|
torch.hub.download_url_to_file( |
|
'https://i.pinimg.com/736x/46/96/9e/46969eb94aec2437323464804d27706d--victorian-london-victorian-era.jpg', |
|
'a4.jpg') |
|
|
|
|
|
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu') |
|
model_path = 'realesr-general-x4v3.pth' |
|
half = True if torch.cuda.is_available() else False |
|
upsampler = RealESRGANer(scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half) |
|
|
|
os.makedirs('output', exist_ok=True) |
|
|
|
|
|
|
|
def enhance_image(img, version, scale): |
|
|
|
print(img, version, scale) |
|
try: |
|
extension = os.path.splitext(os.path.basename(str(img)))[1] |
|
img = cv2.imread(img, cv2.IMREAD_UNCHANGED) |
|
if len(img.shape) == 3 and img.shape[2] == 4: |
|
img_mode = 'RGBA' |
|
elif len(img.shape) == 2: |
|
img_mode = None |
|
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) |
|
else: |
|
img_mode = None |
|
|
|
h, w = img.shape[0:2] |
|
if h < 300: |
|
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4) |
|
|
|
if version == 'M1': |
|
face_enhancer = GFPGANer( |
|
model_path='GFPGANv1.2.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler) |
|
elif version == 'M2': |
|
face_enhancer = GFPGANer( |
|
model_path='GFPGANv1.3.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler) |
|
elif version == 'M3': |
|
face_enhancer = GFPGANer( |
|
model_path='GFPGANv1.4.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler) |
|
elif version == 'RestoreFormer': |
|
face_enhancer = GFPGANer( |
|
model_path='RestoreFormer.pth', upscale=2, arch='RestoreFormer', channel_multiplier=2, bg_upsampler=upsampler) |
|
elif version == 'CodeFormer': |
|
face_enhancer = GFPGANer( |
|
model_path='CodeFormer.pth', upscale=2, arch='CodeFormer', channel_multiplier=2, bg_upsampler=upsampler) |
|
elif version == 'RealESR-General-x4v3': |
|
face_enhancer = GFPGANer( |
|
model_path='realesr-general-x4v3.pth', upscale=2, arch='realesr-general', channel_multiplier=2, bg_upsampler=upsampler) |
|
|
|
try: |
|
|
|
_, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True) |
|
except RuntimeError as error: |
|
print('Error', error) |
|
|
|
try: |
|
if scale != 2: |
|
interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4 |
|
h, w = img.shape[0:2] |
|
output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation) |
|
except Exception as error: |
|
print('wrong scale input.', error) |
|
if img_mode == 'RGBA': |
|
extension = 'png' |
|
else: |
|
extension = 'jpg' |
|
save_path = f'output/out.{extension}' |
|
cv2.imwrite(save_path, output) |
|
|
|
output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB) |
|
return output, save_path |
|
except Exception as error: |
|
print('global exception', error) |
|
return None, None |
|
|
|
|
|
def remove_scratches(img): |
|
scratch_remover = EraseScratches() |
|
img_without_scratches = scratch_remover.erase(img) |
|
return img_without_scratches |
|
|
|
|
|
|
|
import tempfile |
|
|
|
|
|
def process_image(img): |
|
try: |
|
|
|
temp_dir = tempfile.mkdtemp() |
|
|
|
|
|
unique_filename = 'temp_image.jpg' |
|
temp_file_path = os.path.join(temp_dir, unique_filename) |
|
|
|
|
|
img_without_scratches = remove_scratches(img) |
|
|
|
|
|
cv2.imwrite(temp_file_path, cv2.cvtColor(img_without_scratches, cv2.COLOR_BGR2RGB)) |
|
|
|
|
|
enhanced_img, save_path = enhance_image(temp_file_path, version='M2', scale=2) |
|
|
|
|
|
enhanced_img_rgb = cv2.cvtColor(enhanced_img, cv2.COLOR_BGR2RGB) |
|
|
|
|
|
os.remove(temp_file_path) |
|
os.rmdir(temp_dir) |
|
|
|
|
|
return enhanced_img, save_path |
|
except Exception as e: |
|
print('Error processing image:', e) |
|
return None, None |
|
|
|
|
|
title = "<span style='color: black; text-decoration: underline;'>AiAi Photo Restoration - Fix and Repair Your Old, Damaged, and Scratched Images</span>" |
|
|
|
description = r""" |
|
Gradio demo for <a href='https://aiconvert.online/restore-and-repair-old-photos/' style='color: blue; text-decoration: none;'>Photorevive AI</a> at <a href='https://aiconvert.online' style='color: crimson; text-decoration: none;'>aiconvert.online</a> |
|
|
|
""" |
|
article = r""" |
|
|
|
""" |
|
demo = gr.Interface( |
|
process_image, [ |
|
gr.Image(type="pil", label="Input"), |
|
], [ |
|
gr.Image(type="numpy", label="Result Image"), |
|
gr.File(label="Download the output image") |
|
], |
|
theme="syddharth/gray-minimal", |
|
title=title, |
|
description=description, |
|
article=article) |
|
|
|
demo.queue().launch() |
|
|
|
|
|
|