Spaces:
Runtime error
Runtime error
Commit
·
8834eb5
1
Parent(s):
7e4d2e0
Update app.py
Browse files
app.py
CHANGED
@@ -1,17 +1,17 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import yt_dlp as youtube_dl
|
3 |
from transformers import pipeline
|
4 |
from transformers.pipelines.audio_utils import ffmpeg_read
|
5 |
-
import torch
|
6 |
|
7 |
import tempfile
|
8 |
import os
|
9 |
-
import time
|
10 |
|
11 |
MODEL_NAME = "openai/whisper-large-v3"
|
12 |
BATCH_SIZE = 8
|
13 |
FILE_LIMIT_MB = 1000
|
14 |
-
YT_LENGTH_LIMIT_S = 3600
|
15 |
|
16 |
device = 0 if torch.cuda.is_available() else "cpu"
|
17 |
|
@@ -22,12 +22,14 @@ pipe = pipeline(
|
|
22 |
device=device,
|
23 |
)
|
24 |
|
|
|
25 |
def transcribe(inputs, task):
|
26 |
if inputs is None:
|
27 |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
28 |
|
29 |
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
|
30 |
-
return
|
|
|
31 |
|
32 |
def _return_yt_html_embed(yt_url):
|
33 |
video_id = yt_url.split("?v=")[-1]
|
@@ -68,6 +70,7 @@ def download_yt_audio(yt_url, filename):
|
|
68 |
except youtube_dl.utils.ExtractorError as err:
|
69 |
raise gr.Error(str(err))
|
70 |
|
|
|
71 |
def yt_transcribe(yt_url, task, max_filesize=75.0):
|
72 |
html_embed_str = _return_yt_html_embed(yt_url)
|
73 |
|
@@ -84,10 +87,8 @@ def yt_transcribe(yt_url, task, max_filesize=75.0):
|
|
84 |
|
85 |
return html_embed_str, text
|
86 |
|
87 |
-
demo = gr.Blocks(theme="TogetherAi/Alex2")
|
88 |
|
89 |
-
demo
|
90 |
-
demo.width = 500
|
91 |
|
92 |
mf_transcribe = gr.Interface(
|
93 |
fn=transcribe,
|
@@ -96,21 +97,17 @@ mf_transcribe = gr.Interface(
|
|
96 |
gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
|
97 |
],
|
98 |
outputs="text",
|
99 |
-
layout="
|
100 |
-
theme="
|
101 |
-
title="Whisper Large V3: Audio
|
102 |
description=(
|
103 |
-
"
|
104 |
-
f"
|
105 |
-
"
|
106 |
),
|
107 |
allow_flagging="never",
|
108 |
)
|
109 |
|
110 |
-
# Ändere das Layout für den Button auf "centered" und setze die Breite des Buttons auf 200 Pixel
|
111 |
-
mf_transcribe[0].style['justify-content'] = 'center'
|
112 |
-
mf_transcribe[1].style['width'] = '200px'
|
113 |
-
|
114 |
file_transcribe = gr.Interface(
|
115 |
fn=transcribe,
|
116 |
inputs=[
|
@@ -118,21 +115,17 @@ file_transcribe = gr.Interface(
|
|
118 |
gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
|
119 |
],
|
120 |
outputs="text",
|
121 |
-
layout="
|
122 |
-
theme="
|
123 |
title="Whisper Large V3: Transcribe Audio",
|
124 |
description=(
|
125 |
-
"
|
126 |
-
f"
|
127 |
-
"
|
128 |
),
|
129 |
allow_flagging="never",
|
130 |
)
|
131 |
|
132 |
-
# Ändere das Layout für den Button auf "centered" und setze die Breite des Buttons auf 200 Pixel
|
133 |
-
file_transcribe[0].style['justify-content'] = 'center'
|
134 |
-
file_transcribe[1].style['width'] = '200px'
|
135 |
-
|
136 |
yt_transcribe = gr.Interface(
|
137 |
fn=yt_transcribe,
|
138 |
inputs=[
|
@@ -140,22 +133,18 @@ yt_transcribe = gr.Interface(
|
|
140 |
gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe")
|
141 |
],
|
142 |
outputs=["html", "text"],
|
143 |
-
layout="
|
144 |
-
theme="
|
145 |
title="Whisper Large V3: Transcribe YouTube",
|
146 |
description=(
|
147 |
-
"
|
148 |
-
f"
|
149 |
-
"
|
150 |
),
|
151 |
allow_flagging="never",
|
152 |
)
|
153 |
|
154 |
-
# Ändere das Layout für den Button auf "centered" und setze die Breite des Buttons auf 200 Pixel
|
155 |
-
yt_transcribe[0].style['justify-content'] = 'center'
|
156 |
-
yt_transcribe[1].style['width'] = '200px'
|
157 |
-
|
158 |
with demo:
|
159 |
gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])
|
160 |
|
161 |
-
demo.launch(enable_queue=True)
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
import gradio as gr
|
4 |
import yt_dlp as youtube_dl
|
5 |
from transformers import pipeline
|
6 |
from transformers.pipelines.audio_utils import ffmpeg_read
|
|
|
7 |
|
8 |
import tempfile
|
9 |
import os
|
|
|
10 |
|
11 |
MODEL_NAME = "openai/whisper-large-v3"
|
12 |
BATCH_SIZE = 8
|
13 |
FILE_LIMIT_MB = 1000
|
14 |
+
YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files
|
15 |
|
16 |
device = 0 if torch.cuda.is_available() else "cpu"
|
17 |
|
|
|
22 |
device=device,
|
23 |
)
|
24 |
|
25 |
+
|
26 |
def transcribe(inputs, task):
|
27 |
if inputs is None:
|
28 |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
29 |
|
30 |
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
|
31 |
+
return text
|
32 |
+
|
33 |
|
34 |
def _return_yt_html_embed(yt_url):
|
35 |
video_id = yt_url.split("?v=")[-1]
|
|
|
70 |
except youtube_dl.utils.ExtractorError as err:
|
71 |
raise gr.Error(str(err))
|
72 |
|
73 |
+
|
74 |
def yt_transcribe(yt_url, task, max_filesize=75.0):
|
75 |
html_embed_str = _return_yt_html_embed(yt_url)
|
76 |
|
|
|
87 |
|
88 |
return html_embed_str, text
|
89 |
|
|
|
90 |
|
91 |
+
demo = gr.Blocks()
|
|
|
92 |
|
93 |
mf_transcribe = gr.Interface(
|
94 |
fn=transcribe,
|
|
|
97 |
gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
|
98 |
],
|
99 |
outputs="text",
|
100 |
+
layout="horizontal",
|
101 |
+
theme="TogetherAI/Alex2 ",
|
102 |
+
title="Whisper Large V3: Transcribe Audio",
|
103 |
description=(
|
104 |
+
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
|
105 |
+
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
|
106 |
+
" of arbitrary length."
|
107 |
),
|
108 |
allow_flagging="never",
|
109 |
)
|
110 |
|
|
|
|
|
|
|
|
|
111 |
file_transcribe = gr.Interface(
|
112 |
fn=transcribe,
|
113 |
inputs=[
|
|
|
115 |
gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
|
116 |
],
|
117 |
outputs="text",
|
118 |
+
layout="horizontal",
|
119 |
+
theme="TogetherAI/Alex2",
|
120 |
title="Whisper Large V3: Transcribe Audio",
|
121 |
description=(
|
122 |
+
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
|
123 |
+
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
|
124 |
+
" of arbitrary length."
|
125 |
),
|
126 |
allow_flagging="never",
|
127 |
)
|
128 |
|
|
|
|
|
|
|
|
|
129 |
yt_transcribe = gr.Interface(
|
130 |
fn=yt_transcribe,
|
131 |
inputs=[
|
|
|
133 |
gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe")
|
134 |
],
|
135 |
outputs=["html", "text"],
|
136 |
+
layout="horizontal",
|
137 |
+
theme="TogetherAI/Alex2",
|
138 |
title="Whisper Large V3: Transcribe YouTube",
|
139 |
description=(
|
140 |
+
"Transcribe long-form YouTube videos with the click of a button! Demo uses the checkpoint"
|
141 |
+
f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe video files of"
|
142 |
+
" arbitrary length."
|
143 |
),
|
144 |
allow_flagging="never",
|
145 |
)
|
146 |
|
|
|
|
|
|
|
|
|
147 |
with demo:
|
148 |
gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])
|
149 |
|
150 |
+
demo.launch(enable_queue=True)
|