File size: 12,887 Bytes
3c7a160
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
# modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/model/t2s_model.py
import torch
from tqdm import tqdm

from AR.models.utils import make_pad_mask
from AR.models.utils import (
    topk_sampling,
    sample,
    logits_to_probs,
    multinomial_sample_one_no_sync,
)
from AR.modules.embedding import SinePositionalEmbedding
from AR.modules.embedding import TokenEmbedding
from AR.modules.transformer import LayerNorm
from AR.modules.transformer import TransformerEncoder
from AR.modules.transformer import TransformerEncoderLayer
from torch import nn
from torch.nn import functional as F
from torchmetrics.classification import MulticlassAccuracy

default_config = {
    "embedding_dim": 512,
    "hidden_dim": 512,
    "num_head": 8,
    "num_layers": 12,
    "num_codebook": 8,
    "p_dropout": 0.0,
    "vocab_size": 1024 + 1,
    "phoneme_vocab_size": 512,
    "EOS": 1024,
}


class Text2SemanticDecoder(nn.Module):
    def __init__(self, config, norm_first=False, top_k=3):
        super(Text2SemanticDecoder, self).__init__()
        self.model_dim = config["model"]["hidden_dim"]
        self.embedding_dim = config["model"]["embedding_dim"]
        self.num_head = config["model"]["head"]
        self.num_layers = config["model"]["n_layer"]
        self.norm_first = norm_first
        self.vocab_size = config["model"]["vocab_size"]
        self.phoneme_vocab_size = config["model"]["phoneme_vocab_size"]
        self.p_dropout = config["model"]["dropout"]
        self.EOS = config["model"]["EOS"]
        self.norm_first = norm_first
        assert self.EOS == self.vocab_size - 1
        # should be same as num of kmeans bin
        # assert self.EOS == 1024
        self.bert_proj = nn.Linear(1024, self.embedding_dim)
        self.ar_text_embedding = TokenEmbedding(
            self.embedding_dim, self.phoneme_vocab_size, self.p_dropout
        )
        self.ar_text_position = SinePositionalEmbedding(
            self.embedding_dim, dropout=0.1, scale=False, alpha=True
        )
        self.ar_audio_embedding = TokenEmbedding(
            self.embedding_dim, self.vocab_size, self.p_dropout
        )
        self.ar_audio_position = SinePositionalEmbedding(
            self.embedding_dim, dropout=0.1, scale=False, alpha=True
        )

        self.h = TransformerEncoder(
            TransformerEncoderLayer(
                d_model=self.model_dim,
                nhead=self.num_head,
                dim_feedforward=self.model_dim * 4,
                dropout=0.1,
                batch_first=True,
                norm_first=norm_first,
            ),
            num_layers=self.num_layers,
            norm=LayerNorm(self.model_dim) if norm_first else None,
        )

        self.ar_predict_layer = nn.Linear(self.model_dim, self.vocab_size, bias=False)
        self.loss_fct = nn.CrossEntropyLoss(reduction="sum")

        self.ar_accuracy_metric = MulticlassAccuracy(
            self.vocab_size,
            top_k=top_k,
            average="micro",
            multidim_average="global",
            ignore_index=self.EOS,
        )

    def forward(self, x, x_lens, y, y_lens, bert_feature):
        """
        x: phoneme_ids
        y: semantic_ids
        """
        x = self.ar_text_embedding(x)
        x = x + self.bert_proj(bert_feature.transpose(1, 2))
        x = self.ar_text_position(x)
        x_mask = make_pad_mask(x_lens)

        y_mask = make_pad_mask(y_lens)
        y_mask_int = y_mask.type(torch.int64)
        codes = y.type(torch.int64) * (1 - y_mask_int)

        # Training
        # AR Decoder
        y, targets = self.pad_y_eos(codes, y_mask_int, eos_id=self.EOS)
        x_len = x_lens.max()
        y_len = y_lens.max()
        y_emb = self.ar_audio_embedding(y)
        y_pos = self.ar_audio_position(y_emb)

        xy_padding_mask = torch.concat([x_mask, y_mask], dim=1)
        ar_xy_padding_mask = xy_padding_mask

        x_attn_mask = F.pad(
            torch.zeros((x_len, x_len), dtype=torch.bool, device=x.device),
            (0, y_len),
            value=True,
        )
        y_attn_mask = F.pad(
            torch.triu(
                torch.ones(y_len, y_len, dtype=torch.bool, device=x.device),
                diagonal=1,
            ),
            (x_len, 0),
            value=False,
        )
        xy_attn_mask = torch.concat([x_attn_mask, y_attn_mask], dim=0)
        bsz, src_len = x.shape[0], x_len + y_len
        _xy_padding_mask = (
            ar_xy_padding_mask.view(bsz, 1, 1, src_len)
            .expand(-1, self.num_head, -1, -1)
            .reshape(bsz * self.num_head, 1, src_len)
        )
        xy_attn_mask = xy_attn_mask.logical_or(_xy_padding_mask)
        new_attn_mask = torch.zeros_like(xy_attn_mask, dtype=x.dtype)
        new_attn_mask.masked_fill_(xy_attn_mask, float("-inf"))
        xy_attn_mask = new_attn_mask
        # x 和完整的 y 一次性输入模型
        xy_pos = torch.concat([x, y_pos], dim=1)
        xy_dec, _ = self.h(
            (xy_pos, None),
            mask=xy_attn_mask,
        )
        logits = self.ar_predict_layer(xy_dec[:, x_len:]).permute(0, 2, 1)
        # loss
        # from feiteng: 每次 duration 越多, 梯度更新也应该更多, 所以用 sum
        loss = F.cross_entropy(logits, targets, reduction="sum")
        acc = self.ar_accuracy_metric(logits.detach(), targets).item()
        return loss, acc

    # 需要看下这个函数和 forward 的区别以及没有 semantic 的时候 prompts 输入什么
    def infer(
        self,
        x,
        x_lens,
        prompts,
        bert_feature,
        top_k: int = -100,
        early_stop_num: int = -1,
        temperature: float = 1.0,
    ):
        x = self.ar_text_embedding(x)
        x = x + self.bert_proj(bert_feature.transpose(1, 2))
        x = self.ar_text_position(x)

        # AR Decoder
        y = prompts
        prefix_len = y.shape[1]
        x_len = x.shape[1]
        x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool)
        stop = False
        for _ in tqdm(range(1500)):
            y_emb = self.ar_audio_embedding(y)
            y_pos = self.ar_audio_position(y_emb)
            # x 和逐渐增长的 y 一起输入给模型
            xy_pos = torch.concat([x, y_pos], dim=1)
            y_len = y.shape[1]
            x_attn_mask_pad = F.pad(
                x_attn_mask,
                (0, y_len),
                value=True,
            )
            y_attn_mask = F.pad(
                torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
                (x_len, 0),
                value=False,
            )
            xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0).to(
                y.device
            )

            xy_dec, _ = self.h(
                (xy_pos, None),
                mask=xy_attn_mask,
            )
            logits = self.ar_predict_layer(xy_dec[:, -1])
            samples = topk_sampling(
                logits, top_k=top_k, top_p=1.0, temperature=temperature
            )

            if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
                print("use early stop num:", early_stop_num)
                stop = True

            if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS:
                # print(torch.argmax(logits, dim=-1)[0] == self.EOS, samples[0, 0] == self.EOS)
                stop = True
            if stop:
                if prompts.shape[1] == y.shape[1]:
                    y = torch.concat([y, torch.zeros_like(samples)], dim=1)
                    print("bad zero prediction")
                print(f"T2S Decoding EOS [{prefix_len} -> {y.shape[1]}]")
                break
            # 本次生成的 semantic_ids 和之前的 y 构成新的 y
            # print(samples.shape)#[1,1]#第一个1是bs
            # import os
            # os._exit(2333)
            y = torch.concat([y, samples], dim=1)
        return y

    def pad_y_eos(self, y, y_mask_int, eos_id):
        targets = F.pad(y, (0, 1), value=0) + eos_id * F.pad(
            y_mask_int, (0, 1), value=1
        )
        # 错位
        return targets[:, :-1], targets[:, 1:]

    def infer_panel(
        self,
        x,  #####全部文本token
        x_lens,
        prompts,  ####参考音频token
        bert_feature,
        top_k: int = -100,
        early_stop_num: int = -1,
        temperature: float = 1.0,
    ):
        x = self.ar_text_embedding(x)
        x = x + self.bert_proj(bert_feature.transpose(1, 2))
        x = self.ar_text_position(x)

        # AR Decoder
        y = prompts
        prefix_len = y.shape[1]
        x_len = x.shape[1]
        x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool)
        stop = False
        # print(1111111,self.num_layers)
        cache = {
            "all_stage": self.num_layers,
            "k": [None] * self.num_layers,  ###根据配置自己手写
            "v": [None] * self.num_layers,
            # "xy_pos":None,##y_pos位置编码每次都不一样的没法缓存,每次都要重新拼xy_pos.主要还是写法原因,其实是可以历史统一一样的,但也没啥计算量就不管了
            "y_emb": None,  ##只需要对最新的samples求emb,再拼历史的就行
            # "logits":None,###原版就已经只对结尾求再拼接了,不用管
            # "xy_dec":None,###不需要,本来只需要最后一个做logits
            "first_infer": 1,
            "stage": 0,
        }
        for idx in tqdm(range(1500)):
            if cache["first_infer"] == 1:
                y_emb = self.ar_audio_embedding(y)
            else:
                y_emb = torch.cat(
                    [cache["y_emb"], self.ar_audio_embedding(y[:, -1:])], 1
                )
            cache["y_emb"] = y_emb
            y_pos = self.ar_audio_position(y_emb)
            # x 和逐渐增长的 y 一起输入给模型
            if cache["first_infer"] == 1:
                xy_pos = torch.concat([x, y_pos], dim=1)
            else:
                xy_pos = y_pos[:, -1:]
            y_len = y_pos.shape[1]
            ###以下3个不做缓存
            if cache["first_infer"] == 1:
                x_attn_mask_pad = F.pad(
                    x_attn_mask,
                    (0, y_len),  ###xx的纯0扩展到xx纯0+xy纯1,(x,x+y)
                    value=True,
                )
                y_attn_mask = F.pad(  ###yy的右上1扩展到左边xy的0,(y,x+y)
                    torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
                    (x_len, 0),
                    value=False,
                )
                xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0).to(
                    y.device
                )
            else:
                ###最右边一列(是错的)
                # xy_attn_mask=torch.ones((1, x_len+y_len), dtype=torch.bool,device=xy_pos.device)
                # xy_attn_mask[:,-1]=False
                ###最下面一行(是对的)
                xy_attn_mask = torch.zeros(
                    (1, x_len + y_len), dtype=torch.bool, device=xy_pos.device
                )
            # pdb.set_trace()
            ###缓存重头戏
            # print(1111,xy_pos.shape,xy_attn_mask.shape,x_len,y_len)
            xy_dec, _ = self.h((xy_pos, None), mask=xy_attn_mask, cache=cache)
            logits = self.ar_predict_layer(
                xy_dec[:, -1]
            )  ##不用改,如果用了cache的默认就是只有一帧,取最后一帧一样的
            # samples = topk_sampling(logits, top_k=top_k, top_p=1.0, temperature=temperature)
            if(idx==0):###第一次跑不能EOS否则没有了
                logits = logits[:, :-1]  ###刨除1024终止符号的概率
            samples = sample(
                logits[0], y, top_k=top_k, top_p=1.0, repetition_penalty=1.35
            )[0].unsqueeze(0)
            if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
                print("use early stop num:", early_stop_num)
                stop = True

            if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS:
                # print(torch.argmax(logits, dim=-1)[0] == self.EOS, samples[0, 0] == self.EOS)
                stop = True
            if stop:
                if prompts.shape[1] == y.shape[1]:
                    y = torch.concat([y, torch.zeros_like(samples)], dim=1)
                    print("bad zero prediction")
                print(f"T2S Decoding EOS [{prefix_len} -> {y.shape[1]}]")
                break
            # 本次生成的 semantic_ids 和之前的 y 构成新的 y
            # print(samples.shape)#[1,1]#第一个1是bs
            y = torch.concat([y, samples], dim=1)
            cache["first_infer"] = 0
        return y, idx