File size: 31,174 Bytes
516fd45 32524cc 3c7a160 516fd45 3c7a160 32524cc 3c7a160 32524cc 3c7a160 32524cc 3c7a160 516fd45 3c7a160 516fd45 3c7a160 32524cc 3c7a160 516fd45 3c7a160 516fd45 3c7a160 516fd45 3c7a160 516fd45 3c7a160 516fd45 32524cc 516fd45 3c7a160 32524cc 516fd45 32524cc 3c7a160 32524cc 3c7a160 516fd45 3c7a160 516fd45 3c7a160 516fd45 32524cc 516fd45 32524cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 |
# modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/models/t2s_model.py
# reference: https://github.com/lifeiteng/vall-e
import os, sys
now_dir = os.getcwd()
sys.path.append(now_dir)
from typing import List
import torch
from tqdm import tqdm
from AR.models.utils import make_pad_mask
from AR.models.utils import (
topk_sampling,
sample,
logits_to_probs,
multinomial_sample_one_no_sync,
dpo_loss,
make_reject_y,
get_batch_logps
)
from AR.modules.embedding import SinePositionalEmbedding
from AR.modules.embedding import TokenEmbedding
from AR.modules.transformer import LayerNorm
from AR.modules.transformer import TransformerEncoder
from AR.modules.transformer import TransformerEncoderLayer
from torch import nn
from torch.nn import functional as F
from torchmetrics.classification import MulticlassAccuracy
default_config = {
"embedding_dim": 512,
"hidden_dim": 512,
"num_head": 8,
"num_layers": 12,
"num_codebook": 8,
"p_dropout": 0.0,
"vocab_size": 1024 + 1,
"phoneme_vocab_size": 512,
"EOS": 1024,
}
@torch.jit.script
class T2SMLP:
def __init__(self, w1, b1, w2, b2):
self.w1 = w1
self.b1 = b1
self.w2 = w2
self.b2 = b2
def forward(self, x):
x = F.relu(F.linear(x, self.w1, self.b1))
x = F.linear(x, self.w2, self.b2)
return x
@torch.jit.script
class T2SBlock:
def __init__(
self,
num_heads,
hidden_dim: int,
mlp: T2SMLP,
qkv_w,
qkv_b,
out_w,
out_b,
norm_w1,
norm_b1,
norm_eps1,
norm_w2,
norm_b2,
norm_eps2,
):
self.num_heads = num_heads
self.mlp = mlp
self.hidden_dim: int = hidden_dim
self.qkv_w = qkv_w
self.qkv_b = qkv_b
self.out_w = out_w
self.out_b = out_b
self.norm_w1 = norm_w1
self.norm_b1 = norm_b1
self.norm_eps1 = norm_eps1
self.norm_w2 = norm_w2
self.norm_b2 = norm_b2
self.norm_eps2 = norm_eps2
def process_prompt(self, x, attn_mask : torch.Tensor):
q, k, v = F.linear(x, self.qkv_w, self.qkv_b).chunk(3, dim=-1)
batch_size = q.shape[0]
q_len = q.shape[1]
kv_len = k.shape[1]
k_cache = k
v_cache = v
q = q.view(batch_size, q_len, self.num_heads, -1).transpose(1, 2)
k = k_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2)
v = v_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2)
attn = F.scaled_dot_product_attention(q, k, v, attn_mask)
attn = attn.permute(2, 0, 1, 3).reshape(batch_size*q_len, self.hidden_dim)
attn = attn.view(q_len, batch_size, self.hidden_dim).transpose(1, 0)
attn = F.linear(attn, self.out_w, self.out_b)
x = F.layer_norm(
x + attn, [self.hidden_dim], self.norm_w1, self.norm_b1, self.norm_eps1
)
x = F.layer_norm(
x + self.mlp.forward(x),
[self.hidden_dim],
self.norm_w2,
self.norm_b2,
self.norm_eps2,
)
return x, k_cache, v_cache
def decode_next_token(self, x, k_cache, v_cache):
q, k, v = F.linear(x, self.qkv_w, self.qkv_b).chunk(3, dim=-1)
k_cache = torch.cat([k_cache, k], dim=1)
v_cache = torch.cat([v_cache, v], dim=1)
batch_size = q.shape[0]
q_len = q.shape[1]
kv_len = k_cache.shape[1]
q = q.view(batch_size, q_len, self.num_heads, -1).transpose(1, 2)
k = k_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2)
v = v_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2)
attn = F.scaled_dot_product_attention(q, k, v)
attn = attn.permute(2, 0, 1, 3).reshape(batch_size*q_len, self.hidden_dim)
attn = attn.view(q_len, batch_size, self.hidden_dim).transpose(1, 0)
attn = F.linear(attn, self.out_w, self.out_b)
x = F.layer_norm(
x + attn, [self.hidden_dim], self.norm_w1, self.norm_b1, self.norm_eps1
)
x = F.layer_norm(
x + self.mlp.forward(x),
[self.hidden_dim],
self.norm_w2,
self.norm_b2,
self.norm_eps2,
)
return x, k_cache, v_cache
@torch.jit.script
class T2STransformer:
def __init__(self, num_blocks : int, blocks: List[T2SBlock]):
self.num_blocks : int = num_blocks
self.blocks = blocks
def process_prompt(
self, x, attn_mask : torch.Tensor):
k_cache : List[torch.Tensor] = []
v_cache : List[torch.Tensor] = []
for i in range(self.num_blocks):
x, k_cache_, v_cache_ = self.blocks[i].process_prompt(x, attn_mask)
k_cache.append(k_cache_)
v_cache.append(v_cache_)
return x, k_cache, v_cache
def decode_next_token(
self, x, k_cache: List[torch.Tensor], v_cache: List[torch.Tensor]
):
for i in range(self.num_blocks):
x, k_cache[i], v_cache[i] = self.blocks[i].decode_next_token(x, k_cache[i], v_cache[i])
return x, k_cache, v_cache
class Text2SemanticDecoder(nn.Module):
def __init__(self, config, norm_first=False, top_k=3, flash_attn_enabled:bool=False):
super(Text2SemanticDecoder, self).__init__()
self.model_dim = config["model"]["hidden_dim"]
self.embedding_dim = config["model"]["embedding_dim"]
self.num_head = config["model"]["head"]
self.num_layers = config["model"]["n_layer"]
self.norm_first = norm_first
self.vocab_size = config["model"]["vocab_size"]
self.phoneme_vocab_size = config["model"]["phoneme_vocab_size"]
self.p_dropout = config["model"]["dropout"]
self.EOS = config["model"]["EOS"]
self.norm_first = norm_first
assert self.EOS == self.vocab_size - 1
# should be same as num of kmeans bin
# assert self.EOS == 1024
self.bert_proj = nn.Linear(1024, self.embedding_dim)
self.ar_text_embedding = TokenEmbedding(
self.embedding_dim, self.phoneme_vocab_size, self.p_dropout
)
self.ar_text_position = SinePositionalEmbedding(
self.embedding_dim, dropout=0.1, scale=False, alpha=True
)
self.ar_audio_embedding = TokenEmbedding(
self.embedding_dim, self.vocab_size, self.p_dropout
)
self.ar_audio_position = SinePositionalEmbedding(
self.embedding_dim, dropout=0.1, scale=False, alpha=True
)
self.h = TransformerEncoder(
TransformerEncoderLayer(
d_model=self.model_dim,
nhead=self.num_head,
dim_feedforward=self.model_dim * 4,
dropout=0.1,
batch_first=True,
norm_first=norm_first,
),
num_layers=self.num_layers,
norm=LayerNorm(self.model_dim) if norm_first else None,
)
self.ar_predict_layer = nn.Linear(self.model_dim, self.vocab_size, bias=False)
self.loss_fct = nn.CrossEntropyLoss(reduction="sum")
self.ar_accuracy_metric = MulticlassAccuracy(
self.vocab_size,
top_k=top_k,
average="micro",
multidim_average="global",
ignore_index=self.EOS,
)
self.enable_flash_attn(flash_attn_enabled)
def enable_flash_attn(self, enable:bool=True):
if not enable:
print("Not Using Flash Attention")
self.infer_panel = self.infer_panel_batch_only
else:
self.infer_panel = self.infer_panel_batch_infer_with_flash_attn
print("Using Flash Attention")
blocks = []
for i in range(self.num_layers):
layer = self.h.layers[i]
t2smlp = T2SMLP(
layer.linear1.weight,
layer.linear1.bias,
layer.linear2.weight,
layer.linear2.bias
)
block = T2SBlock(
self.num_head,
self.model_dim,
t2smlp,
layer.self_attn.in_proj_weight,
layer.self_attn.in_proj_bias,
layer.self_attn.out_proj.weight,
layer.self_attn.out_proj.bias,
layer.norm1.weight,
layer.norm1.bias,
layer.norm1.eps,
layer.norm2.weight,
layer.norm2.bias,
layer.norm2.eps
)
blocks.append(block)
self.t2s_transformer = T2STransformer(self.num_layers, blocks)
def make_input_data(self, x, x_lens, y, y_lens, bert_feature):
x = self.ar_text_embedding(x)
x = x + self.bert_proj(bert_feature.transpose(1, 2))
x = self.ar_text_position(x)
x_mask = make_pad_mask(x_lens)
y_mask = make_pad_mask(y_lens)
y_mask_int = y_mask.type(torch.int64)
codes = y.type(torch.int64) * (1 - y_mask_int)
# Training
# AR Decoder
y, targets = self.pad_y_eos(codes, y_mask_int, eos_id=self.EOS)
x_len = x_lens.max()
y_len = y_lens.max()
y_emb = self.ar_audio_embedding(y)
y_pos = self.ar_audio_position(y_emb)
xy_padding_mask = torch.concat([x_mask, y_mask], dim=1)
ar_xy_padding_mask = xy_padding_mask
x_attn_mask = F.pad(
torch.zeros((x_len, x_len), dtype=torch.bool, device=x.device),
(0, y_len),
value=True,
)
y_attn_mask = F.pad(
torch.triu(
torch.ones(y_len, y_len, dtype=torch.bool, device=x.device),
diagonal=1,
),
(x_len, 0),
value=False,
)
xy_attn_mask = torch.concat([x_attn_mask, y_attn_mask], dim=0)
bsz, src_len = x.shape[0], x_len + y_len
_xy_padding_mask = (
ar_xy_padding_mask.view(bsz, 1, 1, src_len)
.expand(-1, self.num_head, -1, -1)
.reshape(bsz * self.num_head, 1, src_len)
)
xy_attn_mask = xy_attn_mask.logical_or(_xy_padding_mask)
new_attn_mask = torch.zeros_like(xy_attn_mask, dtype=x.dtype)
new_attn_mask.masked_fill_(xy_attn_mask, float("-inf"))
xy_attn_mask = new_attn_mask
# x 和完整的 y 一次性输入模型
xy_pos = torch.concat([x, y_pos], dim=1)
return xy_pos, xy_attn_mask, targets
def forward(self, x, x_lens, y, y_lens, bert_feature):
"""
x: phoneme_ids
y: semantic_ids
"""
reject_y, reject_y_lens = make_reject_y(y, y_lens)
xy_pos, xy_attn_mask, targets = self.make_input_data(x, x_lens, y, y_lens, bert_feature)
xy_dec, _ = self.h(
(xy_pos, None),
mask=xy_attn_mask,
)
x_len = x_lens.max()
logits = self.ar_predict_layer(xy_dec[:, x_len:])
###### DPO #############
reject_xy_pos, reject_xy_attn_mask, reject_targets = self.make_input_data(x, x_lens, reject_y, reject_y_lens, bert_feature)
reject_xy_dec, _ = self.h(
(reject_xy_pos, None),
mask=reject_xy_attn_mask,
)
x_len = x_lens.max()
reject_logits = self.ar_predict_layer(reject_xy_dec[:, x_len:])
# loss
# from feiteng: 每次 duration 越多, 梯度更新也应该更多, 所以用 sum
loss_1 = F.cross_entropy(logits.permute(0, 2, 1), targets, reduction="sum")
acc = self.ar_accuracy_metric(logits.permute(0, 2, 1).detach(), targets).item()
A_logits, R_logits = get_batch_logps(logits, reject_logits, targets, reject_targets)
loss_2, _, _ = dpo_loss(A_logits, R_logits, 0, 0, 0.2, reference_free=True)
loss = loss_1 + loss_2
return loss, acc
def forward_old(self, x, x_lens, y, y_lens, bert_feature):
"""
x: phoneme_ids
y: semantic_ids
"""
x = self.ar_text_embedding(x)
x = x + self.bert_proj(bert_feature.transpose(1, 2))
x = self.ar_text_position(x)
x_mask = make_pad_mask(x_lens)
y_mask = make_pad_mask(y_lens)
y_mask_int = y_mask.type(torch.int64)
codes = y.type(torch.int64) * (1 - y_mask_int)
# Training
# AR Decoder
y, targets = self.pad_y_eos(codes, y_mask_int, eos_id=self.EOS)
x_len = x_lens.max()
y_len = y_lens.max()
y_emb = self.ar_audio_embedding(y)
y_pos = self.ar_audio_position(y_emb)
xy_padding_mask = torch.concat([x_mask, y_mask], dim=1)
ar_xy_padding_mask = xy_padding_mask
x_attn_mask = F.pad(
torch.zeros((x_len, x_len), dtype=torch.bool, device=x.device),
(0, y_len),
value=True,
)
y_attn_mask = F.pad(
torch.triu(
torch.ones(y_len, y_len, dtype=torch.bool, device=x.device),
diagonal=1,
),
(x_len, 0),
value=False,
)
xy_attn_mask = torch.concat([x_attn_mask, y_attn_mask], dim=0)
bsz, src_len = x.shape[0], x_len + y_len
_xy_padding_mask = (
ar_xy_padding_mask.view(bsz, 1, 1, src_len)
.expand(-1, self.num_head, -1, -1)
.reshape(bsz * self.num_head, 1, src_len)
)
xy_attn_mask = xy_attn_mask.logical_or(_xy_padding_mask)
new_attn_mask = torch.zeros_like(xy_attn_mask, dtype=x.dtype)
new_attn_mask.masked_fill_(xy_attn_mask, float("-inf"))
xy_attn_mask = new_attn_mask
# x 和完整的 y 一次性输入模型
xy_pos = torch.concat([x, y_pos], dim=1)
xy_dec, _ = self.h(
(xy_pos, None),
mask=xy_attn_mask,
)
logits = self.ar_predict_layer(xy_dec[:, x_len:]).permute(0, 2, 1)
# loss
# from feiteng: 每次 duration 越多, 梯度更新也应该更多, 所以用 sum
loss = F.cross_entropy(logits, targets, reduction="sum")
acc = self.ar_accuracy_metric(logits.detach(), targets).item()
return loss, acc
# 需要看下这个函数和 forward 的区别以及没有 semantic 的时候 prompts 输入什么
def infer(
self,
x,
x_lens,
prompts,
bert_feature,
top_k: int = -100,
early_stop_num: int = -1,
temperature: float = 1.0,
):
x = self.ar_text_embedding(x)
x = x + self.bert_proj(bert_feature.transpose(1, 2))
x = self.ar_text_position(x)
# AR Decoder
y = prompts
prefix_len = y.shape[1]
x_len = x.shape[1]
x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool)
stop = False
for _ in tqdm(range(1500)):
y_emb = self.ar_audio_embedding(y)
y_pos = self.ar_audio_position(y_emb)
# x 和逐渐增长的 y 一起输入给模型
xy_pos = torch.concat([x, y_pos], dim=1)
y_len = y.shape[1]
x_attn_mask_pad = F.pad(
x_attn_mask,
(0, y_len),
value=True,
)
y_attn_mask = F.pad(
torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
(x_len, 0),
value=False,
)
xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0).to(
y.device
)
xy_dec, _ = self.h(
(xy_pos, None),
mask=xy_attn_mask,
)
logits = self.ar_predict_layer(xy_dec[:, -1])
samples = topk_sampling(
logits, top_k=top_k, top_p=1.0, temperature=temperature
)
if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
print("use early stop num:", early_stop_num)
stop = True
if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS:
# print(torch.argmax(logits, dim=-1)[0] == self.EOS, samples[0, 0] == self.EOS)
stop = True
if stop:
if prompts.shape[1] == y.shape[1]:
y = torch.concat([y, torch.zeros_like(samples)], dim=1)
print("bad zero prediction")
print(f"T2S Decoding EOS [{prefix_len} -> {y.shape[1]}]")
break
# 本次生成的 semantic_ids 和之前的 y 构成新的 y
# print(samples.shape)#[1,1]#第一个1是bs
# import os
# os._exit(2333)
y = torch.concat([y, samples], dim=1)
return y
def pad_y_eos(self, y, y_mask_int, eos_id):
targets = F.pad(y, (0, 1), value=0) + eos_id * F.pad(
y_mask_int, (0, 1), value=1
)
# 错位
return targets[:, :-1], targets[:, 1:]
def infer_panel_batch_infer_with_flash_attn(
self,
x, #####全部文本token
x_lens,
prompts, ####参考音频token
bert_feature,
top_k: int = -100,
top_p: int = 100,
early_stop_num: int = -1,
temperature: float = 1.0,
):
bert_feature = self.bert_proj(bert_feature.transpose(1, 2))
x = self.ar_text_embedding(x)
x = x + bert_feature
x = self.ar_text_position(x)
# AR Decoder
y = prompts
x_len = x.shape[1]
x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool)
stop = False
# print(1111111,self.num_layers)
k_cache = None
v_cache = None
################### first step ##########################
if y is not None:
y_emb = self.ar_audio_embedding(y)
y_len = y_emb.shape[1]
prefix_len = y.shape[1]
y_pos = self.ar_audio_position(y_emb)
xy_pos = torch.concat([x, y_pos], dim=1)
ref_free = False
else:
y_emb = None
y_len = 0
prefix_len = 0
y_pos = None
xy_pos = x
y = torch.zeros(x.shape[0], 0, dtype=torch.int, device=x.device)
ref_free = True
##### create mask #####
bsz = x.shape[0]
src_len = x_len + y_len
y_lens = torch.LongTensor([y_len]*bsz).to(x.device)
y_mask = make_pad_mask(y_lens)
x_mask = make_pad_mask(x_lens)
# (bsz, x_len + y_len)
xy_padding_mask = torch.concat([x_mask, y_mask], dim=1)
x_mask = F.pad(
x_attn_mask,
(0, y_len), ###xx的纯0扩展到xx纯0+xy纯1,(x,x+y)
value=True,
)
y_mask = F.pad( ###yy的右上1扩展到左边xy的0,(y,x+y)
torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
(x_len, 0),
value=False,
)
xy_mask = torch.concat([x_mask, y_mask], dim=0).view(1 , src_len, src_len).expand(bsz, -1, -1).to(x.device)
# xy_mask = torch.triu(torch.ones(src_len, src_len, dtype=torch.bool, device=x.device), diagonal=1)
xy_padding_mask = xy_padding_mask.view(bsz, 1, src_len).expand(-1, src_len, src_len)
xy_attn_mask = xy_mask.logical_or(xy_padding_mask)
xy_attn_mask = xy_attn_mask.unsqueeze(1).expand(-1, self.num_head, -1, -1)
new_attn_mask = torch.zeros_like(xy_attn_mask, dtype=x.dtype)
xy_attn_mask = new_attn_mask.masked_fill(xy_attn_mask, float("-inf"))
###### decode #####
y_list = [None]*y.shape[0]
batch_idx_map = list(range(y.shape[0]))
idx_list = [None]*y.shape[0]
for idx in tqdm(range(1500)):
if idx == 0:
xy_dec, k_cache, v_cache = self.t2s_transformer.process_prompt(xy_pos, xy_attn_mask)
else:
xy_dec, k_cache, v_cache = self.t2s_transformer.decode_next_token(xy_pos, k_cache, v_cache)
logits = self.ar_predict_layer(
xy_dec[:, -1]
)
if idx == 0:
xy_attn_mask = None
logits = logits[:, :-1]
samples = sample(
logits, y, top_k=top_k, top_p=top_p, repetition_penalty=1.35, temperature=temperature
)[0]
y = torch.concat([y, samples], dim=1)
####### 移除batch中已经生成完毕的序列,进一步优化计算量
reserved_idx_of_batch_for_y = None
if (self.EOS in samples[:, 0]) or \
(self.EOS in torch.argmax(logits, dim=-1)): ###如果生成到EOS,则停止
l = samples[:, 0]==self.EOS
removed_idx_of_batch_for_y = torch.where(l==True)[0].tolist()
reserved_idx_of_batch_for_y = torch.where(l==False)[0]
# batch_indexs = torch.tensor(batch_idx_map, device=y.device)[removed_idx_of_batch_for_y]
for i in removed_idx_of_batch_for_y:
batch_index = batch_idx_map[i]
idx_list[batch_index] = idx - 1
y_list[batch_index] = y[i, :-1]
batch_idx_map = [batch_idx_map[i] for i in reserved_idx_of_batch_for_y.tolist()]
# 只保留batch中未生成完毕的序列
if reserved_idx_of_batch_for_y is not None:
# index = torch.LongTensor(batch_idx_map).to(y.device)
y = torch.index_select(y, dim=0, index=reserved_idx_of_batch_for_y)
if k_cache is not None :
for i in range(len(k_cache)):
k_cache[i] = torch.index_select(k_cache[i], dim=0, index=reserved_idx_of_batch_for_y)
v_cache[i] = torch.index_select(v_cache[i], dim=0, index=reserved_idx_of_batch_for_y)
if (early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num) or idx==1499:
print("use early stop num:", early_stop_num)
stop = True
for i, batch_index in enumerate(batch_idx_map):
batch_index = batch_idx_map[i]
idx_list[batch_index] = idx
y_list[batch_index] = y[i, :-1]
if not (None in idx_list):
stop = True
if stop:
if y.shape[1]==0:
y = torch.concat([y, torch.zeros_like(samples)], dim=1)
print("bad zero prediction")
print(f"T2S Decoding EOS [{prefix_len} -> {y.shape[1]}]")
break
####################### update next step ###################################
y_emb = self.ar_audio_embedding(y[:, -1:])
xy_pos = y_emb * self.ar_audio_position.x_scale + self.ar_audio_position.alpha * self.ar_audio_position.pe[:, y_len + idx].to( dtype= y_emb.dtype,device=y_emb.device)
if (None in idx_list):
for i in range(x.shape[0]):
if idx_list[i] is None:
idx_list[i] = 1500-1 ###如果没有生成到EOS,就用最大长度代替
if ref_free:
return y_list, [0]*x.shape[0]
return y_list, idx_list
def infer_panel_batch_only(
self,
x, #####全部文本token
x_lens,
prompts, ####参考音频token
bert_feature,
top_k: int = -100,
top_p: int = 100,
early_stop_num: int = -1,
temperature: float = 1.0,
):
x = self.ar_text_embedding(x)
x = x + self.bert_proj(bert_feature.transpose(1, 2))
x = self.ar_text_position(x)
# AR Decoder
y = prompts
x_len = x.shape[1]
x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool)
stop = False
# print(1111111,self.num_layers)
cache = {
"all_stage": self.num_layers,
"k": [None] * self.num_layers, ###根据配置自己手写
"v": [None] * self.num_layers,
# "xy_pos":None,##y_pos位置编码每次都不一样的没法缓存,每次都要重新拼xy_pos.主要还是写法原因,其实是可以历史统一一样的,但也没啥计算量就不管了
"y_emb": None, ##只需要对最新的samples求emb,再拼历史的就行
# "logits":None,###原版就已经只对结尾求再拼接了,不用管
# "xy_dec":None,###不需要,本来只需要最后一个做logits
"first_infer": 1,
"stage": 0,
}
################### first step ##########################
if y is not None:
y_emb = self.ar_audio_embedding(y)
y_len = y_emb.shape[1]
prefix_len = y.shape[1]
y_pos = self.ar_audio_position(y_emb)
xy_pos = torch.concat([x, y_pos], dim=1)
cache["y_emb"] = y_emb
ref_free = False
else:
y_emb = None
y_len = 0
prefix_len = 0
y_pos = None
xy_pos = x
y = torch.zeros(x.shape[0], 0, dtype=torch.int, device=x.device)
ref_free = True
x_attn_mask_pad = F.pad(
x_attn_mask,
(0, y_len), ###xx的纯0扩展到xx纯0+xy纯1,(x,x+y)
value=True,
)
y_attn_mask = F.pad( ###yy的右上1扩展到左边xy的0,(y,x+y)
torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
(x_len, 0),
value=False,
)
xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0).to(
x.device
)
y_list = [None]*y.shape[0]
batch_idx_map = list(range(y.shape[0]))
idx_list = [None]*y.shape[0]
for idx in tqdm(range(1500)):
xy_dec, _ = self.h((xy_pos, None), mask=xy_attn_mask, cache=cache)
logits = self.ar_predict_layer(
xy_dec[:, -1]
) ##不用改,如果用了cache的默认就是只有一帧,取最后一帧一样的
# samples = topk_sampling(logits, top_k=top_k, top_p=1.0, temperature=temperature)
if(idx==0):###第一次跑不能EOS否则没有了
logits = logits[:, :-1] ###刨除1024终止符号的概率
samples = sample(
logits, y, top_k=top_k, top_p=top_p, repetition_penalty=1.35, temperature=temperature
)[0]
# 本次生成的 semantic_ids 和之前的 y 构成新的 y
# print(samples.shape)#[1,1]#第一个1是bs
y = torch.concat([y, samples], dim=1)
# 移除已经生成完毕的序列
reserved_idx_of_batch_for_y = None
if (self.EOS in torch.argmax(logits, dim=-1)) or \
(self.EOS in samples[:, 0]): ###如果生成到EOS,则停止
l = samples[:, 0]==self.EOS
removed_idx_of_batch_for_y = torch.where(l==True)[0].tolist()
reserved_idx_of_batch_for_y = torch.where(l==False)[0]
# batch_indexs = torch.tensor(batch_idx_map, device=y.device)[removed_idx_of_batch_for_y]
for i in removed_idx_of_batch_for_y:
batch_index = batch_idx_map[i]
idx_list[batch_index] = idx - 1
y_list[batch_index] = y[i, :-1]
batch_idx_map = [batch_idx_map[i] for i in reserved_idx_of_batch_for_y.tolist()]
# 只保留未生成完毕的序列
if reserved_idx_of_batch_for_y is not None:
# index = torch.LongTensor(batch_idx_map).to(y.device)
y = torch.index_select(y, dim=0, index=reserved_idx_of_batch_for_y)
if cache["y_emb"] is not None:
cache["y_emb"] = torch.index_select(cache["y_emb"], dim=0, index=reserved_idx_of_batch_for_y)
if cache["k"] is not None:
for i in range(self.num_layers):
# 因为kv转置了,所以batch dim是1
cache["k"][i] = torch.index_select(cache["k"][i], dim=1, index=reserved_idx_of_batch_for_y)
cache["v"][i] = torch.index_select(cache["v"][i], dim=1, index=reserved_idx_of_batch_for_y)
if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
print("use early stop num:", early_stop_num)
stop = True
if not (None in idx_list):
# print(torch.argmax(logits, dim=-1)[0] == self.EOS, samples[0, 0] == self.EOS)
stop = True
if stop:
# if prompts.shape[1] == y.shape[1]:
# y = torch.concat([y, torch.zeros_like(samples)], dim=1)
# print("bad zero prediction")
if y.shape[1]==0:
y = torch.concat([y, torch.zeros_like(samples)], dim=1)
print("bad zero prediction")
print(f"T2S Decoding EOS [{prefix_len} -> {y.shape[1]}]")
break
####################### update next step ###################################
cache["first_infer"] = 0
if cache["y_emb"] is not None:
y_emb = torch.cat(
[cache["y_emb"], self.ar_audio_embedding(y[:, -1:])], dim = 1
)
cache["y_emb"] = y_emb
y_pos = self.ar_audio_position(y_emb)
xy_pos = y_pos[:, -1:]
else:
y_emb = self.ar_audio_embedding(y[:, -1:])
cache["y_emb"] = y_emb
y_pos = self.ar_audio_position(y_emb)
xy_pos = y_pos
y_len = y_pos.shape[1]
###最右边一列(是错的)
# xy_attn_mask=torch.ones((1, x_len+y_len), dtype=torch.bool,device=xy_pos.device)
# xy_attn_mask[:,-1]=False
###最下面一行(是对的)
xy_attn_mask = torch.zeros(
(1, x_len + y_len), dtype=torch.bool, device=xy_pos.device
)
if (None in idx_list):
for i in range(x.shape[0]):
if idx_list[i] is None:
idx_list[i] = 1500-1 ###如果没有生成到EOS,就用最大长度代替
if ref_free:
return y_list, [0]*x.shape[0]
return y_list, idx_list |