Spaces:
Restarting
Restarting
File size: 9,611 Bytes
516fd45 3c7a160 516fd45 3c7a160 32524cc 3c7a160 32524cc 3c7a160 32524cc 3c7a160 32524cc 3c7a160 32524cc 3c7a160 32524cc 3c7a160 516fd45 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
# modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/models/utils.py
# reference: https://github.com/lifeiteng/vall-e
import torch
import torch.nn.functional as F
from typing import Tuple
def sequence_mask(length, max_length=None):
if max_length is None:
max_length = length.max()
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
return x.unsqueeze(0) < length.unsqueeze(1)
def make_pad_mask(lengths: torch.Tensor, max_len: int = 0) -> torch.Tensor:
"""
Args:
lengths:
A 1-D tensor containing sentence lengths.
max_len:
The length of masks.
Returns:
Return a 2-D bool tensor, where masked positions
are filled with `True` and non-masked positions are
filled with `False`.
#>>> lengths = torch.tensor([1, 3, 2, 5])
#>>> make_pad_mask(lengths)
tensor([[False, True, True, True, True],
[False, False, False, True, True],
[False, False, True, True, True],
[False, False, False, False, False]])
"""
assert lengths.ndim == 1, lengths.ndim
max_len = max(max_len, lengths.max())
n = lengths.size(0)
seq_range = torch.arange(0, max_len, device=lengths.device)
expaned_lengths = seq_range.unsqueeze(0).expand(n, max_len)
return expaned_lengths >= lengths.unsqueeze(-1)
# https://github.com/microsoft/unilm/blob/master/xtune/src/transformers/modeling_utils.py
def top_k_top_p_filtering(
logits, top_k=0, top_p=1.0, filter_value=-float("Inf"), min_tokens_to_keep=1
):
"""Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
Args:
logits: logits distribution shape (batch size, vocabulary size)
if top_k > 0: keep only top k tokens with highest probability (top-k filtering).
if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
Make sure we keep at least min_tokens_to_keep per batch example in the output
From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
"""
if top_k > 0:
top_k = min(max(top_k, min_tokens_to_keep), logits.size(-1)) # Safety check
# Remove all tokens with a probability less than the last token of the top-k
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
logits[indices_to_remove] = filter_value
if top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
# Remove tokens with cumulative probability above the threshold (token with 0 are kept)
sorted_indices_to_remove = cumulative_probs > top_p
if min_tokens_to_keep > 1:
# Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below)
sorted_indices_to_remove[..., :min_tokens_to_keep] = 0
# Shift the indices to the right to keep also the first token above the threshold
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
# scatter sorted tensors to original indexing
indices_to_remove = sorted_indices_to_remove.scatter(
1, sorted_indices, sorted_indices_to_remove
)
logits[indices_to_remove] = filter_value
return logits
def topk_sampling(logits, top_k=10, top_p=1.0, temperature=1.0):
# temperature: (`optional`) float
# The value used to module the next token probabilities. Must be strictly positive. Default to 1.0.
# top_k: (`optional`) int
# The number of highest probability vocabulary tokens to keep for top-k-filtering. Between 1 and infinity. Default to 50.
# top_p: (`optional`) float
# The cumulative probability of parameter highest probability vocabulary tokens to keep for nucleus sampling. Must be between 0 and 1. Default to 1.
# Temperature (higher temperature => more likely to sample low probability tokens)
if temperature != 1.0:
logits = logits / temperature
# Top-p/top-k filtering
logits = top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p)
# Sample
token = torch.multinomial(F.softmax(logits, dim=-1), num_samples=1)
return token
from typing import Optional, Tuple
def multinomial_sample_one_no_sync(
probs_sort,
): # Does multinomial sampling without a cuda synchronization
q = torch.empty_like(probs_sort).exponential_(1)
return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int)
def logits_to_probs(
logits,
previous_tokens: Optional[torch.Tensor] = None,
temperature: float = 1.0,
top_k: Optional[int] = None,
top_p: Optional[int] = None,
repetition_penalty: float = 1.0,
):
# if previous_tokens is not None:
# previous_tokens = previous_tokens.squeeze()
# print(logits.shape,previous_tokens.shape)
# pdb.set_trace()
if previous_tokens is not None and repetition_penalty != 1.0:
previous_tokens = previous_tokens.long()
score = torch.gather(logits, dim=1, index=previous_tokens)
score = torch.where(
score < 0, score * repetition_penalty, score / repetition_penalty
)
logits.scatter_(dim=1, index=previous_tokens, src=score)
if top_p is not None and top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cum_probs = torch.cumsum(
torch.nn.functional.softmax(sorted_logits, dim=-1), dim=-1
)
sorted_indices_to_remove = cum_probs > top_p
sorted_indices_to_remove[:, 0] = False # keep at least one option
indices_to_remove = sorted_indices_to_remove.scatter(
dim=1, index=sorted_indices, src=sorted_indices_to_remove
)
logits = logits.masked_fill(indices_to_remove, -float("Inf"))
logits = logits / max(temperature, 1e-5)
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
pivot = v[: , -1].unsqueeze(-1)
logits = torch.where(logits < pivot, -float("Inf"), logits)
probs = torch.nn.functional.softmax(logits, dim=-1)
return probs
def sample(
logits,
previous_tokens: Optional[torch.Tensor] = None,
**sampling_kwargs,
) -> Tuple[torch.Tensor, torch.Tensor]:
probs = logits_to_probs(
logits=logits, previous_tokens=previous_tokens, **sampling_kwargs
)
idx_next = multinomial_sample_one_no_sync(probs)
return idx_next, probs
def dpo_loss(policy_chosen_logps: torch.FloatTensor,
policy_rejected_logps: torch.FloatTensor,
reference_chosen_logps: torch.FloatTensor,
reference_rejected_logps: torch.FloatTensor,
beta: float,
reference_free: bool = False) -> Tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]:
pi_logratios = policy_chosen_logps - policy_rejected_logps
ref_logratios = reference_chosen_logps - reference_rejected_logps
if reference_free:
ref_logratios = 0
logits = pi_logratios - ref_logratios
losses = -F.logsigmoid(beta * logits)
chosen_rewards = beta * (policy_chosen_logps - reference_chosen_logps).detach()
rejected_rewards = beta * (policy_rejected_logps - reference_rejected_logps).detach()
return losses.mean(), chosen_rewards, rejected_rewards
def get_batch_logps(logits_target: torch.FloatTensor, logits_reject: torch.FloatTensor, labels_target: torch.LongTensor, labels_reject: torch.LongTensor, average_log_prob: bool = False) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
# dummy token; we'll ignore the losses on these tokens later
per_token_logps_target = torch.gather(logits_target.log_softmax(-1), dim=2, index=labels_target.unsqueeze(2)).squeeze(2)
per_token_logps_reject = torch.gather(logits_reject.log_softmax(-1), dim=2, index=labels_reject.unsqueeze(2)).squeeze(2)
return per_token_logps_target.sum(-1), per_token_logps_reject.sum(-1)
def make_reject_y(y_o, y_lens):
def repeat_P(y):
range_idx, _ = torch.randint(0, len(y), size=(2,)).sort()
pre = y[:range_idx[0]]
shf = y[range_idx[1]:]
range_text = y[range_idx[0]:range_idx[1]]
new_y = torch.cat([pre, range_text, range_text, shf])
return new_y
def lost_P(y):
range_idx, _ = torch.randint(0, len(y), size=(2,)).sort()
pre = y[:range_idx[0]]
shf = y[range_idx[1]:]
range_text = y[range_idx[0]:range_idx[1]]
new_y = torch.cat([pre, shf])
return new_y
bs = len(y_lens)
reject_y = []
reject_y_lens = []
for b in range(bs):
process_item_idx = torch.randint(0, 1, size=(1, ))[0]
if process_item_idx == 0:
new_y = repeat_P(y_o[b])
reject_y.append(new_y)
reject_y_lens.append(len(new_y))
elif process_item_idx==1:
new_y = lost_P(y_o[b])
reject_y.append(new_y)
reject_y_lens.append(len(new_y))
max_length = max(reject_y_lens)
for b in range(bs):
pad_length = max_length - reject_y_lens[b]
reject_y[b] = torch.cat([reject_y[b], torch.zeros(pad_length, dtype=y_o.dtype, device=y_o.device)], dim=0)
reject_y = torch.stack(reject_y, dim = 0)
reject_y_lens = torch.tensor(reject_y_lens, device=y_lens.device)
return reject_y, reject_y_lens
|