|
|
|
|
|
import os
|
|
|
|
inp_text = os.environ.get("inp_text")
|
|
inp_wav_dir = os.environ.get("inp_wav_dir")
|
|
exp_name = os.environ.get("exp_name")
|
|
i_part = os.environ.get("i_part")
|
|
all_parts = os.environ.get("all_parts")
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ.get("_CUDA_VISIBLE_DEVICES")
|
|
opt_dir = os.environ.get("opt_dir")
|
|
bert_pretrained_dir = os.environ.get("bert_pretrained_dir")
|
|
is_half = eval(os.environ.get("is_half", "True"))
|
|
import sys, numpy as np, traceback, pdb
|
|
import os.path
|
|
from glob import glob
|
|
from tqdm import tqdm
|
|
from text.cleaner import clean_text
|
|
import torch
|
|
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
|
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from time import time as ttime
|
|
import shutil
|
|
|
|
|
|
def my_save(fea, path):
|
|
dir = os.path.dirname(path)
|
|
name = os.path.basename(path)
|
|
tmp_path = "%s/%s%s.pth" % (dir, ttime(), i_part)
|
|
torch.save(fea, tmp_path)
|
|
shutil.move(tmp_path, "%s/%s" % (dir, name))
|
|
|
|
|
|
|
|
txt_path = "%s/2-name2text-%s.txt" % (opt_dir, i_part)
|
|
if os.path.exists(txt_path) == False:
|
|
bert_dir = "%s/3-bert" % (opt_dir)
|
|
os.makedirs(opt_dir, exist_ok=True)
|
|
os.makedirs(bert_dir, exist_ok=True)
|
|
if torch.cuda.is_available():
|
|
device = "cuda:0"
|
|
elif torch.backends.mps.is_available():
|
|
device = "mps"
|
|
else:
|
|
device = "cpu"
|
|
tokenizer = AutoTokenizer.from_pretrained(bert_pretrained_dir)
|
|
bert_model = AutoModelForMaskedLM.from_pretrained(bert_pretrained_dir)
|
|
if is_half == True:
|
|
bert_model = bert_model.half().to(device)
|
|
else:
|
|
bert_model = bert_model.to(device)
|
|
|
|
def get_bert_feature(text, word2ph):
|
|
with torch.no_grad():
|
|
inputs = tokenizer(text, return_tensors="pt")
|
|
for i in inputs:
|
|
inputs[i] = inputs[i].to(device)
|
|
res = bert_model(**inputs, output_hidden_states=True)
|
|
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
|
|
|
|
assert len(word2ph) == len(text)
|
|
phone_level_feature = []
|
|
for i in range(len(word2ph)):
|
|
repeat_feature = res[i].repeat(word2ph[i], 1)
|
|
phone_level_feature.append(repeat_feature)
|
|
|
|
phone_level_feature = torch.cat(phone_level_feature, dim=0)
|
|
|
|
return phone_level_feature.T
|
|
|
|
def process(data, res):
|
|
for name, text, lan in data:
|
|
try:
|
|
name = os.path.basename(name)
|
|
phones, word2ph, norm_text = clean_text(
|
|
text.replace("%", "-").replace("οΏ₯", ","), lan
|
|
)
|
|
path_bert = "%s/%s.pt" % (bert_dir, name)
|
|
if os.path.exists(path_bert) == False and lan == "zh":
|
|
bert_feature = get_bert_feature(norm_text, word2ph)
|
|
assert bert_feature.shape[-1] == len(phones)
|
|
|
|
my_save(bert_feature, path_bert)
|
|
phones = " ".join(phones)
|
|
|
|
res.append([name, phones, word2ph, norm_text])
|
|
except:
|
|
print(name, text, traceback.format_exc())
|
|
|
|
todo = []
|
|
res = []
|
|
with open(inp_text, "r", encoding="utf8") as f:
|
|
lines = f.read().strip("\n").split("\n")
|
|
|
|
language_v1_to_language_v2 = {
|
|
"ZH": "zh",
|
|
"zh": "zh",
|
|
"JP": "ja",
|
|
"jp": "ja",
|
|
"JA": "ja",
|
|
"ja": "ja",
|
|
"EN": "en",
|
|
"en": "en",
|
|
"En": "en",
|
|
}
|
|
for line in lines[int(i_part) :: int(all_parts)]:
|
|
try:
|
|
wav_name, spk_name, language, text = line.split("|")
|
|
|
|
todo.append(
|
|
[wav_name, text, language_v1_to_language_v2.get(language, language)]
|
|
)
|
|
except:
|
|
print(line, traceback.format_exc())
|
|
|
|
process(todo, res)
|
|
opt = []
|
|
for name, phones, word2ph, norm_text in res:
|
|
opt.append("%s\t%s\t%s\t%s" % (name, phones, word2ph, norm_text))
|
|
with open(txt_path, "w", encoding="utf8") as f:
|
|
f.write("\n".join(opt) + "\n")
|
|
|