File size: 11,226 Bytes
1b58573 b1ae84d 1b58573 b1ae84d 5c69e57 1b58573 5c69e57 b1ae84d 5c69e57 7f20010 b1ae84d 1b58573 5c69e57 e610dd6 8246815 5c69e57 f56e0f7 b1ae84d 1b58573 5c69e57 1b58573 b1ae84d 9ee88e4 b1ae84d 1b58573 5c69e57 b1ae84d 5c69e57 1b58573 5c69e57 1b58573 9ee88e4 5c69e57 9ee88e4 5c69e57 9ee88e4 5c69e57 9ee88e4 5c69e57 9ee88e4 5c69e57 b1ae84d 5c69e57 1b58573 038b1de 5c69e57 b1ae84d 5c69e57 b1ae84d 5c69e57 1b58573 5c69e57 1b58573 5c69e57 9ee88e4 5c69e57 1b58573 5c69e57 9ee88e4 5c69e57 f6dbb10 5c69e57 1b58573 5c69e57 e610dd6 8246815 5c69e57 2375aa3 5c69e57 2375aa3 5c69e57 1b58573 b1ae84d 1b58573 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 |
import argparse
import os
import gradio as gr
import huggingface_hub
import numpy as np
import onnxruntime as rt
import pandas as pd
from PIL import Image
TITLE = "WaifuDiffusion Tagger"
DESCRIPTION = """
Demo for the WaifuDiffusion tagger models
Example image by [ほし☆☆☆](https://www.pixiv.net/en/users/43565085)
"""
# Dataset v3 series of models:
SWINV2_MODEL_DSV3_REPO = "SmilingWolf/wd-swinv2-tagger-v3"
CONV_MODEL_DSV3_REPO = "SmilingWolf/wd-convnext-tagger-v3"
VIT_MODEL_DSV3_REPO = "SmilingWolf/wd-vit-tagger-v3"
VIT_LARGE_MODEL_DSV3_REPO = "SmilingWolf/wd-vit-large-tagger-v3"
EVA02_LARGE_MODEL_DSV3_REPO = "SmilingWolf/wd-eva02-large-tagger-v3"
# Dataset v2 series of models:
MOAT_MODEL_DSV2_REPO = "SmilingWolf/wd-v1-4-moat-tagger-v2"
SWIN_MODEL_DSV2_REPO = "SmilingWolf/wd-v1-4-swinv2-tagger-v2"
CONV_MODEL_DSV2_REPO = "SmilingWolf/wd-v1-4-convnext-tagger-v2"
CONV2_MODEL_DSV2_REPO = "SmilingWolf/wd-v1-4-convnextv2-tagger-v2"
VIT_MODEL_DSV2_REPO = "SmilingWolf/wd-v1-4-vit-tagger-v2"
# Files to download from the repos
MODEL_FILENAME = "model.onnx"
LABEL_FILENAME = "selected_tags.csv"
# https://github.com/toriato/stable-diffusion-webui-wd14-tagger/blob/a9eacb1eff904552d3012babfa28b57e1d3e295c/tagger/ui.py#L368
kaomojis = [
"0_0",
"(o)_(o)",
"+_+",
"+_-",
"._.",
"<o>_<o>",
"<|>_<|>",
"=_=",
">_<",
"3_3",
"6_9",
">_o",
"@_@",
"^_^",
"o_o",
"u_u",
"x_x",
"|_|",
"||_||",
]
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument("--score-slider-step", type=float, default=0.05)
parser.add_argument("--score-general-threshold", type=float, default=0.35)
parser.add_argument("--score-character-threshold", type=float, default=0.85)
parser.add_argument("--share", action="store_true")
return parser.parse_args()
def load_labels(dataframe) -> list[str]:
name_series = dataframe["name"]
name_series = name_series.map(
lambda x: x.replace("_", " ") if x not in kaomojis else x
)
tag_names = name_series.tolist()
rating_indexes = list(np.where(dataframe["category"] == 9)[0])
general_indexes = list(np.where(dataframe["category"] == 0)[0])
character_indexes = list(np.where(dataframe["category"] == 4)[0])
return tag_names, rating_indexes, general_indexes, character_indexes
def mcut_threshold(probs):
"""
Maximum Cut Thresholding (MCut)
Largeron, C., Moulin, C., & Gery, M. (2012). MCut: A Thresholding Strategy
for Multi-label Classification. In 11th International Symposium, IDA 2012
(pp. 172-183).
"""
sorted_probs = probs[probs.argsort()[::-1]]
difs = sorted_probs[:-1] - sorted_probs[1:]
t = difs.argmax()
thresh = (sorted_probs[t] + sorted_probs[t + 1]) / 2
return thresh
class Predictor:
def __init__(self):
self.model_target_size = None
self.last_loaded_repo = None
def download_model(self, model_repo):
csv_path = huggingface_hub.hf_hub_download(
model_repo,
LABEL_FILENAME,
)
model_path = huggingface_hub.hf_hub_download(
model_repo,
MODEL_FILENAME,
)
return csv_path, model_path
def load_model(self, model_repo):
if model_repo == self.last_loaded_repo:
return
csv_path, model_path = self.download_model(model_repo)
tags_df = pd.read_csv(csv_path)
sep_tags = load_labels(tags_df)
self.tag_names = sep_tags[0]
self.rating_indexes = sep_tags[1]
self.general_indexes = sep_tags[2]
self.character_indexes = sep_tags[3]
model = rt.InferenceSession(model_path)
_, height, width, _ = model.get_inputs()[0].shape
self.model_target_size = height
self.last_loaded_repo = model_repo
self.model = model
def prepare_image(self, image):
target_size = self.model_target_size
canvas = Image.new("RGBA", image.size, (255, 255, 255))
canvas.alpha_composite(image)
image = canvas.convert("RGB")
# Pad image to square
image_shape = image.size
max_dim = max(image_shape)
pad_left = (max_dim - image_shape[0]) // 2
pad_top = (max_dim - image_shape[1]) // 2
padded_image = Image.new("RGB", (max_dim, max_dim), (255, 255, 255))
padded_image.paste(image, (pad_left, pad_top))
# Resize
if max_dim != target_size:
padded_image = padded_image.resize(
(target_size, target_size),
Image.BICUBIC,
)
# Convert to numpy array
image_array = np.asarray(padded_image, dtype=np.float32)
# Convert PIL-native RGB to BGR
image_array = image_array[:, :, ::-1]
return np.expand_dims(image_array, axis=0)
def predict(
self,
image,
model_repo,
general_thresh,
general_mcut_enabled,
character_thresh,
character_mcut_enabled,
):
self.load_model(model_repo)
image = self.prepare_image(image)
input_name = self.model.get_inputs()[0].name
label_name = self.model.get_outputs()[0].name
preds = self.model.run([label_name], {input_name: image})[0]
labels = list(zip(self.tag_names, preds[0].astype(float)))
# First 4 labels are actually ratings: pick one with argmax
ratings_names = [labels[i] for i in self.rating_indexes]
rating = dict(ratings_names)
# Then we have general tags: pick any where prediction confidence > threshold
general_names = [labels[i] for i in self.general_indexes]
if general_mcut_enabled:
general_probs = np.array([x[1] for x in general_names])
general_thresh = mcut_threshold(general_probs)
general_res = [x for x in general_names if x[1] > general_thresh]
general_res = dict(general_res)
# Everything else is characters: pick any where prediction confidence > threshold
character_names = [labels[i] for i in self.character_indexes]
if character_mcut_enabled:
character_probs = np.array([x[1] for x in character_names])
character_thresh = mcut_threshold(character_probs)
character_thresh = max(0.15, character_thresh)
character_res = [x for x in character_names if x[1] > character_thresh]
character_res = dict(character_res)
sorted_general_strings = sorted(
general_res.items(),
key=lambda x: x[1],
reverse=True,
)
sorted_general_strings = [x[0] for x in sorted_general_strings]
sorted_general_strings = (
", ".join(sorted_general_strings).replace("(", "\(").replace(")", "\)")
)
return sorted_general_strings, rating, character_res, general_res
def main():
args = parse_args()
predictor = Predictor()
dropdown_list = [
SWINV2_MODEL_DSV3_REPO,
CONV_MODEL_DSV3_REPO,
VIT_MODEL_DSV3_REPO,
VIT_LARGE_MODEL_DSV3_REPO,
EVA02_LARGE_MODEL_DSV3_REPO,
MOAT_MODEL_DSV2_REPO,
SWIN_MODEL_DSV2_REPO,
CONV_MODEL_DSV2_REPO,
CONV2_MODEL_DSV2_REPO,
VIT_MODEL_DSV2_REPO,
]
with gr.Blocks(title=TITLE) as demo:
with gr.Column():
gr.Markdown(
value=f"<h1 style='text-align: center; margin-bottom: 1rem'>{TITLE}</h1>"
)
gr.Markdown(value=DESCRIPTION)
with gr.Row():
with gr.Column(variant="panel"):
image = gr.Image(type="pil", image_mode="RGBA", label="Input")
model_repo = gr.Dropdown(
dropdown_list,
value=SWINV2_MODEL_DSV3_REPO,
label="Model",
)
with gr.Row():
general_thresh = gr.Slider(
0,
1,
step=args.score_slider_step,
value=args.score_general_threshold,
label="General Tags Threshold",
scale=3,
)
general_mcut_enabled = gr.Checkbox(
value=False,
label="Use MCut threshold",
scale=1,
)
with gr.Row():
character_thresh = gr.Slider(
0,
1,
step=args.score_slider_step,
value=args.score_character_threshold,
label="Character Tags Threshold",
scale=3,
)
character_mcut_enabled = gr.Checkbox(
value=False,
label="Use MCut threshold",
scale=1,
)
with gr.Row():
clear = gr.ClearButton(
components=[
image,
model_repo,
general_thresh,
general_mcut_enabled,
character_thresh,
character_mcut_enabled,
],
variant="secondary",
size="lg",
)
submit = gr.Button(value="Submit", variant="primary", size="lg")
with gr.Column(variant="panel"):
sorted_general_strings = gr.Textbox(label="Output (string)")
rating = gr.Label(label="Rating")
character_res = gr.Label(label="Output (characters)")
general_res = gr.Label(label="Output (tags)")
clear.add(
[
sorted_general_strings,
rating,
character_res,
general_res,
]
)
submit.click(
predictor.predict,
inputs=[
image,
model_repo,
general_thresh,
general_mcut_enabled,
character_thresh,
character_mcut_enabled,
],
outputs=[sorted_general_strings, rating, character_res, general_res],
)
gr.Examples(
[["power.jpg", SWINV2_MODEL_DSV3_REPO, 0.35, False, 0.85, False]],
inputs=[
image,
model_repo,
general_thresh,
general_mcut_enabled,
character_thresh,
character_mcut_enabled,
],
)
demo.queue(max_size=10)
demo.launch()
if __name__ == "__main__":
main()
|