Spaces:
Sleeping
Sleeping
File size: 13,834 Bytes
119e4cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
import os
import json
import requests
import gradio as gr
import threading
import time
import PyPDF2
import chromadb
import shutil
from pydantic import BaseModel, Field
from typing import Dict
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_huggingface import HuggingFaceEmbeddings
API_KEY = os.getenv("mistral")
BASE_URL = "https://api.together.xyz"
# Store user inputs
user_inputs = {
"organization": "",
"rules_l1": "",
"rules_l2": "",
"rules_l3": "",
}
# Function to classify query
def classify_query(query: str) -> Dict:
if not all(user_inputs.values()):
raise ValueError("Please fill all input fields first.")
messages = [
{"role": "system", "content": f"""You are a Customer Query Classification Agent for {user_inputs["organization"]}.
What is considered Level 1 Query (Requires no account info just provided documents by the admin is enough to answer):
{user_inputs["rules_l1"]}
What is considered Level 2 Query (Requires account info and provided documents by the admin is enough to answer):
{user_inputs["rules_l2"]}
What is considered as Level 3 Query (Immediate Escalation to Human Customer Service Agents):
{user_inputs["rules_l3"]}
Classify the following customer query and provide the output in JSON format:
```json
{{
"title": "title of the query in under 10 words",
"level": "1 or 2 or 3"
}}
```"""},
{"role": "user", "content": query}
]
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {API_KEY}"
}
data = {
"model": "mistralai/Mixtral-8x7B-Instruct-v0.1",
"messages": messages,
"temperature": 0.7,
"response_format": {
"type": "json_object",
"schema": {
"type": "object",
"properties": {
"title": {"type": "string"},
"level": {"type": "integer"}
},
"required": ["title", "level"]
}
}
}
response = requests.post(f"{BASE_URL}/chat/completions", headers=headers, json=data)
response.raise_for_status()
classification_result = response.json().get('choices')[0].get('message').get('content')
return classification_result
# Function to convert PDF to text
def pdf_to_text(file_path):
pdf_file = open(file_path, 'rb')
pdf_reader = PyPDF2.PdfReader(pdf_file)
text = ""
for page_num in range(len(pdf_reader.pages)):
text += pdf_reader.pages[page_num].extract_text()
pdf_file.close()
return text
# Function to handle file upload and save embeddings to ChromaDB
def handle_file_upload(files, collection_name):
if not collection_name:
return "Please provide a collection name."
os.makedirs('chabot_pdfs', exist_ok=True)
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
embeddings = HuggingFaceEmbeddings(model_name="thenlper/gte-small")
# Initialize Chroma DB client
client = chromadb.PersistentClient(path="./db")
try:
collection = client.create_collection(name=collection_name)
except ValueError as e:
return f"Error creating collection: {str(e)}. Please try a different collection name."
for file in files:
file_name = os.path.basename(file.name)
file_path = os.path.join('chabot_pdfs', file_name)
shutil.copy(file.name, file_path) # Copy the file instead of saving
text = pdf_to_text(file_path)
chunks = text_splitter.split_text(text)
documents_list = []
embeddings_list = []
ids_list = []
for i, chunk in enumerate(chunks):
vector = embeddings.embed_query(chunk)
documents_list.append(chunk)
embeddings_list.append(vector)
ids_list.append(f"{file_name}_{i}")
collection.add(
embeddings=embeddings_list,
documents=documents_list,
ids=ids_list
)
return "Files uploaded and processed successfully."
# Function to search vector database
def search_vector_database(query, collection_name):
if not collection_name:
return "Please provide a collection name."
embeddings = HuggingFaceEmbeddings(model_name="thenlper/gte-small")
client = chromadb.PersistentClient(path="./db")
try:
collection = client.get_collection(name=collection_name)
except ValueError as e:
return f"Error accessing collection: {str(e)}. Make sure the collection name is correct."
query_vector = embeddings.embed_query(query)
results = collection.query(query_embeddings=[query_vector], n_results=2, include=["documents"])
return "\n\n".join("\n".join(result) for result in results["documents"])
# New function to handle login
def handle_login(username, password):
# This is a simple example. In a real application, you'd want to use secure authentication methods.
if username == "admin" and password == "password":
return """
"NeoBank": {
"user_id": "NB782940",
"user_name": "john_doe123",
"full_name": "John Doe",
"email": "john.doe@example.com",
"balance": 2875.43,
"transactions": [
{"date": "2024-06-20", "description": "Coffee Shop", "amount": -4.50},
{"date": "2024-06-19", "description": "Grocery Store", "amount": -85.22},
{"date": "2024-06-18", "description": "Salary Deposit", "amount": 2500.00}
]
},
"CryptoInvest": {
"user_id": "CI549217",
"user_name": "crypto_enthusiast",
"full_name": "Alice Johnson",
"email": "alice.johnson@example.com",
"portfolio": {
"BTC": {"amount": 0.025, "value": 7500.00},
"ETH": {"amount": 1.2, "value": 2100.00},
"SOL": {"amount": 5.8, "value": 450.50}
},
"transactions": [
{"date": "2024-06-22", "description": "Bought ETH", "amount": -500.00},
{"date": "2024-06-20", "description": "Sold BTC", "amount": 1200.00}
]
},
"RoboAdvisor": {
"user_id": "RA385712",
"user_name": "jane_smith",
"full_name": "Jane Smith",
"email": "jane.smith@example.com",
"risk_tolerance": "moderate",
"portfolio_value": 15800.75,
"allocations": {
"stocks": 0.60,
"bonds": 0.30,
"real_estate": 0.10
},
"recent_activity": [
{"date": "2024-06-21", "description": "Dividends received", "amount": 32.50},
{"date": "2024-06-15", "description": "Portfolio rebalanced" }
]
},
"PeerLend": {
"user_id": "PL916350",
"user_name": "bob_williams",
"full_name": "Bob Williams",
"email": "bob.williams@example.com",
"account_type": "borrower",
"loan_amount": 5000.00,
"interest_rate": 7.8,
"monthly_payment": 150.30,
"payment_history": [
{"date": "2024-06-22", "status": "paid"},
{"date": "2024-05-22", "status": "paid"},
{"date": "2024-04-22", "status": "paid"}
]
},
"InsureTech": {
"user_id": "IT264805",
"user_name": "eva_brown4",
"full_name": "Eva Brown",
"email": "eva.brown@example.com",
"policy_type": "auto",
"coverage_details": {
"liability": "50/100/50",
"collision": "500 deductible",
"comprehensive": "100 deductible"
},
"premium": 85.50,
"next_payment": "2024-07-10",
"claims": []
}
"""
else:
return "Invalid username or password"
# Gradio interface
def gradio_interface():
with gr.Blocks(theme='gl198976/The-Rounded') as interface:
gr.Markdown("# Admin Dashboard🧖🏻♀️")
with gr.Tab("Query Classifier Agent"):
with gr.Row():
with gr.Column():
organization_input = gr.Textbox(label="Organization Name")
rules_l1_input = gr.Textbox(label="Rules for Level 1 Query", lines=5)
rules_l2_input = gr.Textbox(label="Rules for Level 2 Query", lines=5)
rules_l3_input = gr.Textbox(label="Rules for Level 3 Query", lines=5)
submit_btn = gr.Button("Submit Rules")
with gr.Column():
query_input = gr.Textbox(label="Customer Query")
classification_output = gr.Textbox(label="Classification Result")
classify_btn = gr.Button("Classify Query")
api_details = gr.Markdown("""
### API Endpoint Details
- **URL:** `http://0.0.0.0:7860/classify`
- **Method:** POST
- **Request Body:** JSON with a single key `query`
- **Example Usage:**
```python
from gradio_client import Client
client = Client("http://0.0.0.0:7860/")
result = client.predict(
"Hello!!", # str in 'Customer Query' Textbox component
api_name="/classify_and_display"
)
print(result)
```
""")
submit_btn.click(lambda org, r1, r2, r3: (
setattr(user_inputs, "organization", org),
setattr(user_inputs, "rules_l1", r1),
setattr(user_inputs, "rules_l2", r2),
setattr(user_inputs, "rules_l3", r3)
), inputs=[organization_input, rules_l1_input, rules_l2_input, rules_l3_input])
classify_btn.click(classify_query, inputs=[query_input], outputs=[classification_output])
with gr.Tab("Organization Documentation Agent"):
gr.Markdown("""
### Warning
If you encounter an error when uploading files, try changing the collection name and upload again.
Each collection name must be unique.
""")
with gr.Row():
with gr.Column():
collection_name_input = gr.Textbox(label="Collection Name", placeholder="Enter a unique name for this collection")
file_upload = gr.Files(file_types=[".pdf"], label="Upload PDFs")
upload_btn = gr.Button("Upload and Process Files")
upload_status = gr.Textbox(label="Upload Status", interactive=False)
with gr.Column():
search_query_input = gr.Textbox(label="Search Query")
search_output = gr.Textbox(label="Search Results", lines=10)
search_btn = gr.Button("Search")
api_details = gr.Markdown("""
### API Endpoint Details
- **URL:** `http://0.0.0.0:7860/search_vector_database`
- **Method:** POST
- **Example Usage:**
```python
from gradio_client import Client
client = Client("http://0.0.0.0:7860/")
result = client.predict(
"search query", # str in 'Search Query' Textbox component
"name of collection given in ui", # str in 'Collection Name' Textbox component
api_name="/search_vector_database"
)
print(result)
```
""")
upload_btn.click(handle_file_upload, inputs=[file_upload, collection_name_input], outputs=[upload_status])
search_btn.click(search_vector_database, inputs=[search_query_input, collection_name_input], outputs=[search_output])
with gr.Tab("Account Information"):
with gr.Row():
with gr.Column():
username_input = gr.Textbox(label="Username")
password_input = gr.Textbox(label="Password", type="password")
login_btn = gr.Button("Login")
with gr.Column():
account_info_output = gr.Textbox(label="Account Info", lines=20)
api_details = gr.Markdown("""
### API Endpoint Details
- **URL:** `http://0.0.0.0:7860/handle_login`
- **Method:** POST
- **Example Usage:**
```python
from gradio_client import Client
client = Client("http://0.0.0.0:7860/")
result = client.predict(
"admin", # str in 'Username' Textbox component
"password", # str in 'Password' Textbox component
api_name="/handle_login"
)
print(result)
```
""")
login_btn.click(handle_login, inputs=[username_input, password_input], outputs=[account_info_output])
interface.launch(server_name="0.0.0.0", server_port=7860)
if __name__ == "__main__":
gradio_interface()
|