Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,007 Bytes
e82212c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Credits
This code is modified from https://github.com/GitYCC/g2pW
"""
import os
import re
def wordize_and_map(text: str):
words = []
index_map_from_text_to_word = []
index_map_from_word_to_text = []
while len(text) > 0:
match_space = re.match(r'^ +', text)
if match_space:
space_str = match_space.group(0)
index_map_from_text_to_word += [None] * len(space_str)
text = text[len(space_str):]
continue
match_en = re.match(r'^[a-zA-Z0-9]+', text)
if match_en:
en_word = match_en.group(0)
word_start_pos = len(index_map_from_text_to_word)
word_end_pos = word_start_pos + len(en_word)
index_map_from_word_to_text.append((word_start_pos, word_end_pos))
index_map_from_text_to_word += [len(words)] * len(en_word)
words.append(en_word)
text = text[len(en_word):]
else:
word_start_pos = len(index_map_from_text_to_word)
word_end_pos = word_start_pos + 1
index_map_from_word_to_text.append((word_start_pos, word_end_pos))
index_map_from_text_to_word += [len(words)]
words.append(text[0])
text = text[1:]
return words, index_map_from_text_to_word, index_map_from_word_to_text
def tokenize_and_map(tokenizer, text: str):
words, text2word, word2text = wordize_and_map(text=text)
tokens = []
index_map_from_token_to_text = []
for word, (word_start, word_end) in zip(words, word2text):
word_tokens = tokenizer.tokenize(word)
if len(word_tokens) == 0 or word_tokens == ['[UNK]']:
index_map_from_token_to_text.append((word_start, word_end))
tokens.append('[UNK]')
else:
current_word_start = word_start
for word_token in word_tokens:
word_token_len = len(re.sub(r'^##', '', word_token))
index_map_from_token_to_text.append(
(current_word_start, current_word_start + word_token_len))
current_word_start = current_word_start + word_token_len
tokens.append(word_token)
index_map_from_text_to_token = text2word
for i, (token_start, token_end) in enumerate(index_map_from_token_to_text):
for token_pos in range(token_start, token_end):
index_map_from_text_to_token[token_pos] = i
return tokens, index_map_from_text_to_token, index_map_from_token_to_text
def _load_config(config_path: os.PathLike):
import importlib.util
spec = importlib.util.spec_from_file_location('__init__', config_path)
config = importlib.util.module_from_spec(spec)
spec.loader.exec_module(config)
return config
default_config_dict = {
'manual_seed': 1313,
'model_source': 'bert-base-chinese',
'window_size': 32,
'num_workers': 2,
'use_mask': True,
'use_char_phoneme': False,
'use_conditional': True,
'param_conditional': {
'affect_location': 'softmax',
'bias': True,
'char-linear': True,
'pos-linear': False,
'char+pos-second': True,
'char+pos-second_lowrank': False,
'lowrank_size': 0,
'char+pos-second_fm': False,
'fm_size': 0,
'fix_mode': None,
'count_json': 'train.count.json'
},
'lr': 5e-5,
'val_interval': 200,
'num_iter': 10000,
'use_focal': False,
'param_focal': {
'alpha': 0.0,
'gamma': 0.7
},
'use_pos': True,
'param_pos ': {
'weight': 0.1,
'pos_joint_training': True,
'train_pos_path': 'train.pos',
'valid_pos_path': 'dev.pos',
'test_pos_path': 'test.pos'
}
}
def load_config(config_path: os.PathLike, use_default: bool=False):
config = _load_config(config_path)
if use_default:
for attr, val in default_config_dict.items():
if not hasattr(config, attr):
setattr(config, attr, val)
elif isinstance(val, dict):
d = getattr(config, attr)
for dict_k, dict_v in val.items():
if dict_k not in d:
d[dict_k] = dict_v
return config
|