Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,103 Bytes
e82212c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
# -*- coding: utf-8 -*-
import os
inp_text = os.environ.get("inp_text")
inp_wav_dir = os.environ.get("inp_wav_dir")
exp_name = os.environ.get("exp_name")
i_part = os.environ.get("i_part")
all_parts = os.environ.get("all_parts")
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ.get("_CUDA_VISIBLE_DEVICES")
opt_dir = os.environ.get("opt_dir")
bert_pretrained_dir = os.environ.get("bert_pretrained_dir")
import torch
is_half = eval(os.environ.get("is_half", "True")) and torch.cuda.is_available()
import sys, numpy as np, traceback, pdb
import os.path
from glob import glob
from tqdm import tqdm
from text.cleaner import clean_text
from transformers import AutoModelForMaskedLM, AutoTokenizer
import numpy as np
# inp_text=sys.argv[1]
# inp_wav_dir=sys.argv[2]
# exp_name=sys.argv[3]
# i_part=sys.argv[4]
# all_parts=sys.argv[5]
# os.environ["CUDA_VISIBLE_DEVICES"]=sys.argv[6]#i_gpu
# opt_dir="/data/docker/liujing04/gpt-vits/fine_tune_dataset/%s"%exp_name
# bert_pretrained_dir="/data/docker/liujing04/bert-vits2/Bert-VITS2-master20231106/bert/chinese-roberta-wwm-ext-large"
from time import time as ttime
import shutil
def my_save(fea,path):#####fix issue: torch.save doesn't support chinese path
dir=os.path.dirname(path)
name=os.path.basename(path)
# tmp_path="%s/%s%s.pth"%(dir,ttime(),i_part)
tmp_path="%s%s.pth"%(ttime(),i_part)
torch.save(fea,tmp_path)
shutil.move(tmp_path,"%s/%s"%(dir,name))
txt_path = "%s/2-name2text-%s.txt" % (opt_dir, i_part)
if os.path.exists(txt_path) == False:
bert_dir = "%s/3-bert" % (opt_dir)
os.makedirs(opt_dir, exist_ok=True)
os.makedirs(bert_dir, exist_ok=True)
if torch.cuda.is_available():
device = "cuda:0"
# elif torch.backends.mps.is_available():
# device = "mps"
else:
device = "cpu"
tokenizer = AutoTokenizer.from_pretrained(bert_pretrained_dir)
bert_model = AutoModelForMaskedLM.from_pretrained(bert_pretrained_dir)
if is_half == True:
bert_model = bert_model.half().to(device)
else:
bert_model = bert_model.to(device)
def get_bert_feature(text, word2ph):
with torch.no_grad():
inputs = tokenizer(text, return_tensors="pt")
for i in inputs:
inputs[i] = inputs[i].to(device)
res = bert_model(**inputs, output_hidden_states=True)
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
assert len(word2ph) == len(text)
phone_level_feature = []
for i in range(len(word2ph)):
repeat_feature = res[i].repeat(word2ph[i], 1)
phone_level_feature.append(repeat_feature)
phone_level_feature = torch.cat(phone_level_feature, dim=0)
return phone_level_feature.T
def process(data, res):
for name, text, lan in data:
try:
name = os.path.basename(name)
print(name)
phones, word2ph, norm_text = clean_text(
text.replace("%", "-").replace("¥", ","), lan
)
path_bert = "%s/%s.pt" % (bert_dir, name)
if os.path.exists(path_bert) == False and lan == "zh":
bert_feature = get_bert_feature(norm_text, word2ph)
assert bert_feature.shape[-1] == len(phones)
# torch.save(bert_feature, path_bert)
my_save(bert_feature, path_bert)
phones = " ".join(phones)
# res.append([name,phones])
res.append([name, phones, word2ph, norm_text])
except:
print(name, text, traceback.format_exc())
todo = []
res = []
with open(inp_text, "r", encoding="utf8") as f:
lines = f.read().strip("\n").split("\n")
language_v1_to_language_v2 = {
"ZH": "zh",
"zh": "zh",
"JP": "ja",
"jp": "ja",
"JA": "ja",
"ja": "ja",
"EN": "en",
"en": "en",
"En": "en",
"KO": "ko",
"Ko": "ko",
"ko": "ko",
"yue": "yue",
"YUE": "yue",
"Yue": "yue",
}
for line in lines[int(i_part) :: int(all_parts)]:
try:
wav_name, spk_name, language, text = line.split("|")
# todo.append([name,text,"zh"])
if language in language_v1_to_language_v2.keys():
todo.append(
[wav_name, text, language_v1_to_language_v2.get(language, language)]
)
else:
print(f"\033[33m[Waring] The {language = } of {wav_name} is not supported for training.\033[0m")
except:
print(line, traceback.format_exc())
process(todo, res)
opt = []
for name, phones, word2ph, norm_text in res:
opt.append("%s\t%s\t%s\t%s" % (name, phones, word2ph, norm_text))
with open(txt_path, "w", encoding="utf8") as f:
f.write("\n".join(opt) + "\n")
|