Spaces:
Running
Running
File size: 13,983 Bytes
e82212c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
# This implementation is inspired from
# https://github.com/lucidrains/vector-quantize-pytorch
# which is released under MIT License. Hereafter, the original license:
# MIT License
#
# Copyright (c) 2020 Phil Wang
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
"""Core vector quantization implementation."""
import typing as tp
from einops import rearrange, repeat
import torch
from torch import nn
import torch.nn.functional as F
from tqdm import tqdm
def default(val: tp.Any, d: tp.Any) -> tp.Any:
return val if val is not None else d
def ema_inplace(moving_avg, new, decay: float):
moving_avg.data.mul_(decay).add_(new, alpha=(1 - decay))
def laplace_smoothing(x, n_categories: int, epsilon: float = 1e-5):
return (x + epsilon) / (x.sum() + n_categories * epsilon)
def uniform_init(*shape: int):
t = torch.empty(shape)
nn.init.kaiming_uniform_(t)
return t
def sample_vectors(samples, num: int):
num_samples, device = samples.shape[0], samples.device
if num_samples >= num:
indices = torch.randperm(num_samples, device=device)[:num]
else:
indices = torch.randint(0, num_samples, (num,), device=device)
return samples[indices]
def kmeans(samples, num_clusters: int, num_iters: int = 10):
dim, dtype = samples.shape[-1], samples.dtype
max_kmeans_samples = 500
samples = samples[:max_kmeans_samples, :]
means = sample_vectors(samples, num_clusters)
print("kmeans start ... ")
for _ in tqdm(range(num_iters)):
diffs = rearrange(samples, "n d -> n () d") - rearrange(means, "c d -> () c d")
dists = -(diffs**2).sum(dim=-1)
buckets = dists.max(dim=-1).indices
bins = torch.bincount(buckets, minlength=num_clusters)
zero_mask = bins == 0
bins_min_clamped = bins.masked_fill(zero_mask, 1)
new_means = buckets.new_zeros(num_clusters, dim, dtype=dtype)
new_means.scatter_add_(0, repeat(buckets, "n -> n d", d=dim), samples)
new_means = new_means / bins_min_clamped[..., None]
means = torch.where(zero_mask[..., None], means, new_means)
return means, bins
class EuclideanCodebook(nn.Module):
"""Codebook with Euclidean distance.
Args:
dim (int): Dimension.
codebook_size (int): Codebook size.
kmeans_init (bool): Whether to use k-means to initialize the codebooks.
If set to true, run the k-means algorithm on the first training batch and use
the learned centroids as initialization.
kmeans_iters (int): Number of iterations used for k-means algorithm at initialization.
decay (float): Decay for exponential moving average over the codebooks.
epsilon (float): Epsilon value for numerical stability.
threshold_ema_dead_code (int): Threshold for dead code expiration. Replace any codes
that have an exponential moving average cluster size less than the specified threshold with
randomly selected vector from the current batch.
"""
def __init__(
self,
dim: int,
codebook_size: int,
kmeans_init: int = False,
kmeans_iters: int = 10,
decay: float = 0.99,
epsilon: float = 1e-5,
threshold_ema_dead_code: int = 2,
):
super().__init__()
self.decay = decay
init_fn: tp.Union[tp.Callable[..., torch.Tensor], tp.Any] = (
uniform_init if not kmeans_init else torch.zeros
)
embed = init_fn(codebook_size, dim)
self.codebook_size = codebook_size
self.kmeans_iters = kmeans_iters
self.epsilon = epsilon
self.threshold_ema_dead_code = threshold_ema_dead_code
self.register_buffer("inited", torch.Tensor([not kmeans_init]))
self.register_buffer("cluster_size", torch.zeros(codebook_size))
self.register_buffer("embed", embed)
self.register_buffer("embed_avg", embed.clone())
@torch.jit.ignore
def init_embed_(self, data):
if self.inited:
return
embed, cluster_size = kmeans(data, self.codebook_size, self.kmeans_iters)
self.embed.data.copy_(embed)
self.embed_avg.data.copy_(embed.clone())
self.cluster_size.data.copy_(cluster_size)
self.inited.data.copy_(torch.Tensor([True]))
# Make sure all buffers across workers are in sync after initialization
# broadcast_tensors(self.buffers())
def replace_(self, samples, mask):
modified_codebook = torch.where(
mask[..., None], sample_vectors(samples, self.codebook_size), self.embed
)
self.embed.data.copy_(modified_codebook)
def expire_codes_(self, batch_samples):
if self.threshold_ema_dead_code == 0:
return
expired_codes = self.cluster_size < self.threshold_ema_dead_code
if not torch.any(expired_codes):
return
batch_samples = rearrange(batch_samples, "... d -> (...) d")
self.replace_(batch_samples, mask=expired_codes)
# broadcast_tensors(self.buffers())
def preprocess(self, x):
x = rearrange(x, "... d -> (...) d")
return x
def quantize(self, x):
embed = self.embed.t()
dist = -(
x.pow(2).sum(1, keepdim=True)
- 2 * x @ embed
+ embed.pow(2).sum(0, keepdim=True)
)
embed_ind = dist.max(dim=-1).indices
return embed_ind
def postprocess_emb(self, embed_ind, shape):
return embed_ind.view(*shape[:-1])
def dequantize(self, embed_ind):
quantize = F.embedding(embed_ind, self.embed)
return quantize
def encode(self, x):
shape = x.shape
# pre-process
x = self.preprocess(x)
# quantize
embed_ind = self.quantize(x)
# post-process
embed_ind = self.postprocess_emb(embed_ind, shape)
return embed_ind
def decode(self, embed_ind):
quantize = self.dequantize(embed_ind)
return quantize
def forward(self, x):
shape, dtype = x.shape, x.dtype
x = self.preprocess(x)
self.init_embed_(x)
embed_ind = self.quantize(x)
embed_onehot = F.one_hot(embed_ind, self.codebook_size).type(dtype)
embed_ind = self.postprocess_emb(embed_ind, shape)
quantize = self.dequantize(embed_ind)
if self.training:
# We do the expiry of code at that point as buffers are in sync
# and all the workers will take the same decision.
self.expire_codes_(x)
ema_inplace(self.cluster_size, embed_onehot.sum(0), self.decay)
embed_sum = x.t() @ embed_onehot
ema_inplace(self.embed_avg, embed_sum.t(), self.decay)
cluster_size = (
laplace_smoothing(self.cluster_size, self.codebook_size, self.epsilon)
* self.cluster_size.sum()
)
embed_normalized = self.embed_avg / cluster_size.unsqueeze(1)
self.embed.data.copy_(embed_normalized)
return quantize, embed_ind
class VectorQuantization(nn.Module):
"""Vector quantization implementation.
Currently supports only euclidean distance.
Args:
dim (int): Dimension
codebook_size (int): Codebook size
codebook_dim (int): Codebook dimension. If not defined, uses the specified dimension in dim.
decay (float): Decay for exponential moving average over the codebooks.
epsilon (float): Epsilon value for numerical stability.
kmeans_init (bool): Whether to use kmeans to initialize the codebooks.
kmeans_iters (int): Number of iterations used for kmeans initialization.
threshold_ema_dead_code (int): Threshold for dead code expiration. Replace any codes
that have an exponential moving average cluster size less than the specified threshold with
randomly selected vector from the current batch.
commitment_weight (float): Weight for commitment loss.
"""
def __init__(
self,
dim: int,
codebook_size: int,
codebook_dim: tp.Optional[int] = None,
decay: float = 0.99,
epsilon: float = 1e-5,
kmeans_init: bool = True,
kmeans_iters: int = 50,
threshold_ema_dead_code: int = 2,
commitment_weight: float = 1.0,
):
super().__init__()
_codebook_dim: int = default(codebook_dim, dim)
requires_projection = _codebook_dim != dim
self.project_in = (
nn.Linear(dim, _codebook_dim) if requires_projection else nn.Identity()
)
self.project_out = (
nn.Linear(_codebook_dim, dim) if requires_projection else nn.Identity()
)
self.epsilon = epsilon
self.commitment_weight = commitment_weight
self._codebook = EuclideanCodebook(
dim=_codebook_dim,
codebook_size=codebook_size,
kmeans_init=kmeans_init,
kmeans_iters=kmeans_iters,
decay=decay,
epsilon=epsilon,
threshold_ema_dead_code=threshold_ema_dead_code,
)
self.codebook_size = codebook_size
@property
def codebook(self):
return self._codebook.embed
def encode(self, x):
x = rearrange(x, "b d n -> b n d")
x = self.project_in(x)
embed_in = self._codebook.encode(x)
return embed_in
def decode(self, embed_ind):
quantize = self._codebook.decode(embed_ind)
quantize = self.project_out(quantize)
quantize = rearrange(quantize, "b n d -> b d n")
return quantize
def forward(self, x):
device = x.device
x = rearrange(x, "b d n -> b n d")
x = self.project_in(x)
quantize, embed_ind = self._codebook(x)
if self.training:
quantize = x + (quantize - x).detach()
loss = torch.tensor([0.0], device=device, requires_grad=self.training)
if self.training:
if self.commitment_weight > 0:
commit_loss = F.mse_loss(quantize.detach(), x)
loss = loss + commit_loss * self.commitment_weight
quantize = self.project_out(quantize)
quantize = rearrange(quantize, "b n d -> b d n")
return quantize, embed_ind, loss
class ResidualVectorQuantization(nn.Module):
"""Residual vector quantization implementation.
Follows Algorithm 1. in https://arxiv.org/pdf/2107.03312.pdf
"""
def __init__(self, *, num_quantizers, **kwargs):
super().__init__()
self.layers = nn.ModuleList(
[VectorQuantization(**kwargs) for _ in range(num_quantizers)]
)
def forward(
self, x, n_q: tp.Optional[int] = None, layers: tp.Optional[list] = None
):
quantized_out = 0.0
residual = x
all_losses = []
all_indices = []
out_quantized = []
n_q = n_q or len(self.layers)
for i, layer in enumerate(self.layers[:n_q]):
quantized, indices, loss = layer(residual)
residual = residual - quantized
quantized_out = quantized_out + quantized
all_indices.append(indices)
all_losses.append(loss)
if layers and i in layers:
out_quantized.append(quantized)
out_losses, out_indices = map(torch.stack, (all_losses, all_indices))
return quantized_out, out_indices, out_losses, out_quantized
def encode(
self, x: torch.Tensor, n_q: tp.Optional[int] = None, st: tp.Optional[int] = None
) -> torch.Tensor:
residual = x
all_indices = []
n_q = n_q or len(self.layers)
st = st or 0
for layer in self.layers[st:n_q]:
indices = layer.encode(residual)
quantized = layer.decode(indices)
residual = residual - quantized
all_indices.append(indices)
out_indices = torch.stack(all_indices)
return out_indices
def decode(self, q_indices: torch.Tensor, st: int = 0) -> torch.Tensor:
quantized_out = torch.tensor(0.0, device=q_indices.device)
for i, indices in enumerate(q_indices):
layer = self.layers[st + i]
quantized = layer.decode(indices)
quantized_out = quantized_out + quantized
return quantized_out
|