File size: 9,469 Bytes
a5ffe22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1df4c01
a5ffe22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1df4c01
a5ffe22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
# flake8: noqa: E402

import sys, os
import logging
import os
import time
import numpy as np  # 假设你使用NumPy来处理音频数据
import shutil  # 用于删除文件夹和文件
from scipy.io import wavfile
import re
logging.getLogger("numba").setLevel(logging.WARNING)
logging.getLogger("markdown_it").setLevel(logging.WARNING)
logging.getLogger("urllib3").setLevel(logging.WARNING)
logging.getLogger("matplotlib").setLevel(logging.WARNING)

logging.basicConfig(
    level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s"
)

logger = logging.getLogger(__name__)

import torch
import argparse
import commons
import utils
from models import SynthesizerTrn
from text.symbols import symbols
from text import cleaned_text_to_sequence, get_bert
from text.cleaner import clean_text
import gradio as gr
import webbrowser
import numpy as np

net_g = None
device = "cuda"
curr_model_name:str = None
hps_:tuple = None
def get_text(text, language_str, hps):
    norm_text, phone, tone, word2ph = clean_text(text, language_str)
    phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)

    if hps.data.add_blank:
        phone = commons.intersperse(phone, 0)
        tone = commons.intersperse(tone, 0)
        language = commons.intersperse(language, 0)
        for i in range(len(word2ph)):
            word2ph[i] = word2ph[i] * 2
        word2ph[0] += 1
    bert = get_bert(norm_text, word2ph, language_str, device)
    del word2ph
    assert bert.shape[-1] == len(phone), phone

    if language_str == "ZH":
        bert = bert
        ja_bert = torch.zeros(768, len(phone))
    elif language_str == "JP":
        ja_bert = bert
        bert = torch.zeros(1024, len(phone))
    else:
        bert = torch.zeros(1024, len(phone))
        ja_bert = torch.zeros(768, len(phone))

    assert bert.shape[-1] == len(
        phone
    ), f"Bert seq len {bert.shape[-1]} != {len(phone)}"

    phone = torch.LongTensor(phone)
    tone = torch.LongTensor(tone)
    language = torch.LongTensor(language)
    return bert, ja_bert, phone, tone, language


def infer(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, language):
    global net_g
    bert, ja_bert, phones, tones, lang_ids = get_text(text, language, hps)
    with torch.no_grad():
        x_tst = phones.to(device).unsqueeze(0)
        tones = tones.to(device).unsqueeze(0)
        lang_ids = lang_ids.to(device).unsqueeze(0)
        bert = bert.to(device).unsqueeze(0)
        ja_bert = ja_bert.to(device).unsqueeze(0)
        x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
        #print(x_tst.type(), tones.type(), lang_ids.type(), bert.type(), ja_bert.type(), x_tst_lengths.type())
        del phones
        speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
        audio = (
            net_g.infer(
                x_tst,
                x_tst_lengths,
                speakers,
                tones,
                lang_ids,
                bert,
                ja_bert,
                sdp_ratio=sdp_ratio,
                noise_scale=noise_scale,
                noise_scale_w=noise_scale_w,
                length_scale=length_scale,
            )[0][0, 0]
            .data.cpu()
            .float()
            .numpy()
        )
        del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers
        torch.cuda.empty_cache()
        return audio
    
__LOG__ = "./generation_logs.txt"
def tts_fn(text, model_name:str, sdp_ratio, noise_scale, noise_scale_w, length_scale, language):
    global curr_model_name
    if curr_model_name != model_name:
        load_model(model_name)
    # 清空 ./infer_save 文件夹
    if os.path.exists('./infer_save'):
        shutil.rmtree('./infer_save')
    os.makedirs('./infer_save')

    slices = text.split("\n")
    slices = [slice for slice in slices if slice.strip() != ""]
    audio_list = []
    with torch.no_grad():
        with open(__LOG__,"a",encoding="UTF-8") as f:
            for slice in slices:
                assert len(slice) < 250 # 限制输入的文本长度
                audio = infer(slice, sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale, sid=list(hps_[curr_model_name].data.spk2id.keys())[0], language=language)
                audio_list.append(audio)
                
                # 创建唯一的文件名
                timestamp = str(int(time.time() * 1000))
                audio_file_path = f'./infer_save/audio_{timestamp}.wav'
                
                # 保存音频数据到.wav文件
                wavfile.write(audio_file_path, hps.data.sampling_rate, audio)
                
                silence = np.zeros(int(hps.data.sampling_rate/2), dtype=np.int16)  # 生成半秒的静音
                audio_list.append(silence)  # 将静音添加到列表中
                
                f.write(f"{slice} | {curr_model_name}\n")
                print(f"{slice} | {curr_model_name}")

    audio_concat = np.concatenate(audio_list)
    return "Success", (hps.data.sampling_rate, audio_concat)


def load_model(model_name:str):
    global net_g,curr_model_name,hps_,hps
    assert os.path.exists(os.path.join("logs",model_name))
    curr_model_name = model_name
    hps = hps_[curr_model_name]
    all_files = os.listdir(os.path.join("logs",model_name))
    hps = utils.get_hparams_from_file(os.path.join("logs",model_name,"config.json"))
    net_g = SynthesizerTrn(
        len(symbols),
        hps.data.filter_length // 2 + 1,
        hps.train.segment_size // hps.data.hop_length,
        n_speakers=hps.data.n_speakers,
        **hps.model,
    ).to(device)
    _ = net_g.eval()
    #获取G_最大的模型:
    g_files = [f for f in all_files if f.startswith('G_') and f.endswith('.pth')]

    # 提取文件名中的数字,并找到最大的数字
    max_num = -1
    max_file = None
    for f in g_files:
        num = int(re.search(r'G_(\d+).pth', f).group(1))
        if num > max_num:
            max_num = num
            max_file = f

    # 加载对应的模型
    if max_file:
        file_path = os.path.join('./logs/',model_name, max_file)
        _ = utils.load_checkpoint(file_path, net_g, None, skip_optimizer=True)
    else:
        print("没有找到合适的文件")

if __name__ == "__main__":


    models = os.listdir("./logs")
    hps_ = {}
    for i in models:
        hps_[i] = utils.get_hparams_from_file(os.path.join("./logs", i, "config.json"))
    curr_model_name = models[0]
    hps = hps_[curr_model_name]

    # speaker_ids = hps.data.spk2id
    # speakers = list(speaker_ids.keys())
    device = (
        "cuda:0"
        if torch.cuda.is_available()
        else (
            "mps"
            if sys.platform == "darwin" and torch.backends.mps.is_available()
            else "cpu"
        )
    )
    net_g = SynthesizerTrn(
        len(symbols),
        hps.data.filter_length // 2 + 1,
        hps.train.segment_size // hps.data.hop_length,
        n_speakers=hps.data.n_speakers,
        **hps.model,
    ).to(device)
    _ = net_g.eval()

    languages = ["JP"]
    with gr.Blocks() as app:
        with gr.Tab(label="umamusume"):
            with gr.Row():
                with gr.Column():
                    text = gr.TextArea(
                        label="Text",
                        placeholder="Input Text Here",
                        value="はりきっていこう!",
                    )
                    speaker = gr.Dropdown(
                        choices=models, value=models[0], label="Models"
                    )
                    with gr.Accordion("Settings",open=False):
                        sdp_ratio = gr.Slider(
                            minimum=0, maximum=1, value=0.2, step=0.1, label="SDP Ratio"
                        )
                        noise_scale = gr.Slider(
                            minimum=0.1, maximum=2, value=0.6, step=0.1, label="Noise Scale"
                        )
                        noise_scale_w = gr.Slider(
                            minimum=0.1, maximum=2, value=0.8, step=0.1, label="Noise Scale W"
                        )
                        length_scale = gr.Slider(
                            minimum=0.1, maximum=2, value=1, step=0.1, label="Length Scale"
                        )
                    language = gr.Dropdown(
                        choices=languages, value=languages[0], label="Language"
                    )
                    btn = gr.Button("Generate!", variant="primary")
                with gr.Column():
                    text_output = gr.Textbox(label="Message")
                    audio_output = gr.Audio(label="Output Audio")
                    gr.Markdown("# 赛马娘 Bert-VITS2 语音合成\n"
                        "Project page:[GitHub](https://github.com/fishaudio/Bert-VITS2)\n"
                        "- Still Updating...\n"
                        "- We found that model trained with only 1 speaker may generate better audio than multi-speaker model.\n")

            btn.click(
                tts_fn,
                inputs=[
                    text,
                    speaker,
                    sdp_ratio,
                    noise_scale,
                    noise_scale_w,
                    length_scale,
                    language,
                ],
                outputs=[text_output, audio_output],
            )
    app.launch(server_name="0.0.0.0")