<!doctype html>
<html lang="en">
<head>
    <meta name="viewport" content="width=device-width" />
    <link rel="stylesheet" href="style.css" />
    <meta charset="UTF-8">
    <title>Match-TTS Onnx Benchmarks</title>
</head>
<body>
    <h1>Match-TTS Onnx Benchmarks</h1>
    

    <script src="https://cdn.jsdelivr.net/npm/onnxruntime-web/dist/ort.webgpu.min.js" ></script>
    <script type="module">
        import { MatchaTTSRaw } from "./js-esm/matcha_tts_raw.js";
        import { webWavPlay } from "./js-esm/web_wav_play.js";
        import { arpa_to_ipa } from "./js-esm/arpa_to_ipa.js";
        import { loadCmudict } from "./js-esm/cmudict_loader.js";
        import { env,textToArpa} from "./js-esm/text_to_arpa.js";

        env.allowLocalModels = true;
        env.localModelPath = "./models/";
        env.backends.onnx.logLevel = "error";
        
        let matcha_tts_raw
        let cmudict ={}
        let speaking = false
        let total_infer_time=0
        let count_infer=0
        let loaded_model_name
        let load_time
        async function main(model_name) {
          if (typeof model_name !== 'string') {//via button click
                model_name ="en001_ep6399_univ_simplify"
            }

          
            console.log(model_name)
            if (speaking){
                console.log("speaking return")
            }
            
            speaking = true
            console.log("main called")
            if(!matcha_tts_raw){
                const load_startTime = performance.now();
                matcha_tts_raw = new MatchaTTSRaw()
                console.time("load model");
                const model_path = `./models/matcha-tts/${model_name}.onnx`
                console.log(model_path)
                await matcha_tts_raw.load_model(model_path,{ executionProviders: ['webgpu','wasm'] });
                
                console.timeEnd("load model");

                load_time =   (performance.now() - load_startTime)/1000 //sec
                loaded_model_name = model_name
              
                let cmudictReady = loadCmudict(cmudict,'./dictionaries/cmudict-0.7b')
                await cmudictReady

                
                update_infer_bench1()
            }else{
                console.log("session exist skip load model")
            }
            const startTime = performance.now();
            const text =  document.getElementById('textInput').value
             console.log("### textToArpa call")
            const arpa_text = await textToArpa(cmudict,text)
            console.log("### arpa returned")
            const ipa_text = arpa_to_ipa(arpa_text).replace(/\s/g, "");
            //console.log(ipa_text)

            const spks = 0
            const speed = document.getElementById('speed').value
            const tempature = document.getElementById('temperature').value

            console.time("infer");
            const result = await matcha_tts_raw.infer(ipa_text, tempature, speed,spks);
            
            if (result!=null){
                console.timeEnd("infer");
              const endTime = performance.now();
              const infer_time = endTime-startTime
              total_infer_time+=infer_time
              count_infer += 1
              update_infer_bench2()
                webWavPlay(result)
              
               
            }
    
            speaking = false
        }
      function update_infer_bench1(){
      
      const text = `${loaded_model_name} load time ${load_time.toFixed(1)} sec`;
      document.getElementById('result1').innerText=text
      }
      
      function update_infer_bench2(){
      const avg = (total_infer_time/count_infer)/1000
      const text = `Infer Count ${count_infer} avg infer-time ${avg.toFixed(1)} sec`;
      document.getElementById('result2').innerText=text
      }
        function update_range(){
            const value = document.getElementById('spks').value
            let formattedNumber = value.toString().padStart(3, '0');
            document.getElementById('spks_label').textContent  = formattedNumber
        }
        function update_range2(){
            const value = document.getElementById('temperature').value
            //let formattedNumber = value.toString().padStart(3, '0');
            document.getElementById('tempature_label').textContent  = value//formattedNumber
        }
        function update_range3(){
            const value = document.getElementById('speed').value
            //let formattedNumber = value.toString().padStart(3, '0');
            document.getElementById('speed_label').textContent  = value//sformattedNumber
        }

        window.onload = async function(){
            //document.getElementById('textInput').onchange = main;
            document.getElementById('myButton').onclick = main;
            
            document.getElementById('temperature').onchange = update_range2
            document.getElementById('speed').onchange = update_range3
        }
        function loadModel(model_name){
          total_infer_time=0
          count_infer=0
          matcha_tts_raw=null
        main(model_name)
        }

      function create_button(label, model_name) {
      // ボタンの作成
      const button = document.createElement('button');
      button.style ="margin:4px;"
      button.textContent = label;
      
      // クリックイベントハンドラの設定
      button.onclick = function() {
        loadModel(model_name);
      };
      return button
      }

      
      document.getElementById('buttons').appendChild(create_button("ljspeech","ljspeech_sim"))
      document.getElementById('buttons').appendChild(create_button("ljspeech-quantized","ljspeech_sim_q8"))
      document.getElementById('buttons').appendChild(create_button("vctk","vctk_univ_simplify"))
      document.getElementById('buttons').appendChild(create_button("vctk-quantized","vctk_univ_simplify_q8"))
      document.getElementById('buttons').appendChild(create_button("en001","en001_ep6399_univ_simplify"))
      document.getElementById('buttons').appendChild(create_button("en001-quantized","en001_ep6399_univ_simplify_q8"))
      document.getElementById('buttons').appendChild(document.createElement('br'))
      document.getElementById('buttons').appendChild(create_button("en001-t2-step01","en001_6399_T2_step01"))
      document.getElementById('buttons').appendChild(create_button("en001-t2-step05","en001_6399_T2_step05"))
      document.getElementById('buttons').appendChild(create_button("en001-t2-step10","en001_6399_T2_step10"))
      //document.getElementById('buttons').appendChild(create_button("en001-t2-step20","en001_6399_T2_step20"))
      document.getElementById('buttons').appendChild(document.createElement('br'))
      document.getElementById('buttons').appendChild(create_button("en001-univ-step01","en001_6399_univ_step01"))
      document.getElementById('buttons').appendChild(create_button("en001-univ-step05","en001_6399_univ_step05"))
      document.getElementById('buttons').appendChild(create_button("en001-univ-step10","en001_6399_univ_step10"))
      //document.getElementById('buttons').appendChild(create_button("en001-univ-step20","en001_6399_univ_step20"))
      
      

      
    </script>
<div id="result1">Click button to load a model</div>
  
 <div id="buttons"></div>
<br>
    <div id="result2">en001-T2 and en001-univ are experimental</div>
  <br><br>
    <input type="text" id="textInput"  value ="Hello Huggingface." placeholder="Enter some text here...">
    
    <button id="myButton">Text To Speak</button><br>
    

    <label for ="temperature" style="width: 110px;display: inline-block;">Temperature</label>
    <input type="range" id="temperature"  min="0" max="1.0" value="0.5" step="0.1"/>
    <label for ="temperature" id="tempature_label">0.5</label><br>

    <label for ="speed" style="width: 110px;display: inline-block;">Speed</label>
    <input type="range" id="speed"  min="0.1" max="2.0" value="1.0" step="0.1"/>
    <label for ="speed" id="speed_label">1.0</label>
    <br>
    <br>

  <div>almost load time 15 sec,short text TTS time 2 sec(my 2070super-gpu)</div><br>
  <div>Quantized version is too slow and exist just for Github Page 100MB limitation so far</div><br>
  <div>Multispeaker(vctk) is little bit slow than singlespeaker.default timesteps is 5(smallest 1 is   300msec fast,but audio become low quality)</div>
  <br>
    <div id="footer">
    <b>Spaces</b><br>
     <a href="https://huggingface.co/spaces/Akjava/matcha-tts_vctk-onnx" style="font-size: 9px" target="link">Match-TTS VCTK-ONNX</a> | 
     <a href="https://huggingface.co/spaces/Akjava/matcha-tts-onnx-benchmarks" style="font-size: 9px" target="link">Match-TTS ONNX-Benchmark</a> | 
      <br><br>
    <b>Credits</b><br>
    <a href="https://github.com/akjava/Matcha-TTS-Japanese" style="font-size: 9px" target="link">Matcha-TTS-Japanese</a> | 
    <a href = "http://www.udialogue.org/download/cstr-vctk-corpus.html" style="font-size: 9px"  target="link">CSTR VCTK Corpus</a> |
    <a href = "https://github.com/cmusphinx/cmudict" style="font-size: 9px"  target="link">CMUDict</a> |
    <a href = "https://huggingface.co/docs/transformers.js/index" style="font-size: 9px"  target="link">Transformer.js</a> |
    <a href = "https://huggingface.co/cisco-ai/mini-bart-g2p" style="font-size: 9px"  target="link">mini-bart-g2p</a> |
    <a href = "https://onnxruntime.ai/docs/get-started/with-javascript/web.html" style="font-size: 9px"  target="link">ONNXRuntime-Web</a> |
    <a href = "https://github.com/akjava/English-To-IPA-Collections" style="font-size: 9px"  target="link">English-To-IPA-Collections</a> |
    <a href ="https://huggingface.co/papers/2309.03199" style="font-size: 9px"  target="link">Matcha-TTS Paper</a>
    </div>
    
    
    
</body>
</html>