Akjava's picture
init
97a93cd
raw
history blame
5.65 kB
import spaces
import gradio as gr
import numpy as np
import pandas as pd
import time
css="""
#col-left {
margin: 0 auto;
max-width: 640px;
}
#col-right {
margin: 0 auto;
max-width: 640px;
}
.grid-container {
display: flex;
align-items: center;
justify-content: center;
gap:10px
}
.image {
width: 128px;
height: 128px;
object-fit: cover;
}
.text {
font-size: 16px;
}
"""
emotion_columns = ['admiration', 'amusement', 'anger', 'annoyance', 'approval',
'caring', 'confusion', 'curiosity', 'desire', 'disappointment',
'disapproval', 'disgust', 'embarrassment', 'excitement', 'fear',
'gratitude', 'grief', 'joy', 'love', 'nervousness', 'optimism',
'pride', 'realization', 'relief', 'remorse', 'sadness', 'surprise','neutral']
def load_text(text_path: str) -> str:
with open(text_path, 'r', encoding='utf-8') as f:
text = f.read()
return text
def select_checkbox(name):
if name =="All":
return gr.CheckboxGroup(value=emotion_columns)
elif name =="None":
return []
elif name =="Positive":
return ["admiration","amusement","approval","caring","curiosity","desire","excitement","gratitude","joy","love","optimism","pride","relief"]
elif name =="Negative":
return ["anger","annoyance","disappointment","disapproval","disgust","fear","grief","embarrassment","remorse","sadness"]
else:
return ["confusion","nervousness","neutral","realization","surprise"]
def process_datas(checked_emotions,mode="filter",max_data=100,skip_data=0):
checked_emotions = sorted(checked_emotions)
df = pd.read_parquet("hf://datasets/google-research-datasets/go_emotions/raw/train-00000-of-00001.parquet")
def filter_emotions(emotions):
unchecked = emotion_columns.copy()
condition_checked = np.all(df[emotions] == 1, axis=1)
for emotion in checked_emotions:
unchecked.remove(emotion)
condition_unchecked = np.all(df[unchecked] == 0, axis=1)
filtered_df = df[condition_checked & condition_unchecked]
return filtered_df
def df_to_text(df):
df = df.iloc[skip_data:]
if len(filtered_df) == 0:
return ""
texts=(df.head(max_data)[['text']].to_string(index=False,max_colwidth=None))
trimmed_texts = [line.strip() for line in texts.split('\n')[1:] if line.strip()]
return "\n".join(trimmed_texts)
if mode == "filter":
filtered_df = filter_emotions(checked_emotions)
count = (len(filtered_df))
trimmed_texts = df_to_text(filtered_df)
last_count = min(count,(skip_data+max_data))
label = f"{skip_data+1} - {last_count} of {count}"
label_texts = [f"[{emotion}]" for emotion in checked_emotions]
output_text = "+".join(label_texts)+"\n"+trimmed_texts
output_label = label
else:
max_data = max(1,int(max_data/len(checked_emotions)))
text_arrays = []
for emotion in checked_emotions:
text_arrays.append(f"[{emotion}]")
filtered_df = filter_emotions([emotion])
trimmed_texts = df_to_text(filtered_df)
text_arrays.append(trimmed_texts)
text_arrays.append("\n")
print(text_arrays)
output_text = "\n".join(text_arrays)
output_label = f"{len(checked_emotions)} x {max_data}"
return output_text,output_label,",".join(checked_emotions)
with gr.Blocks(css=css, elem_id="demo-container") as demo:
with gr.Column():
gr.HTML(load_text("demo_header.html"))
gr.HTML(load_text("demo_tools.html"))
with gr.Row():
with gr.Column():
with gr.Row(equal_height=True):
mode_group = gr.Radio(choices=["filter","list"],label="Mode",value="filter")
selection_name = gr.Dropdown(label="Select",choices=["All","None","Positive","Negative","Neutral"],value="All")
selection_btn= gr.Button("Update Selection")
checkbox_group = gr.CheckboxGroup(choices=emotion_columns,label="Emotions",value=["love"])
btn= gr.Button("View Data",variant="primary")
with gr.Row():
max_data = gr.Slider(
label="Max Data",
minimum=0,
maximum=540,
step=10,
value=50,info="returning large data is heavy action,if you need more copy the space")
skip_data = gr.Slider(
label="Skip Data",
minimum=0,
maximum=100000,
step=1,
value=0)
with gr.Column():
with gr.Row():
data_size = gr.Textbox(label="Data Count",scale=1)
checked_size = gr.Textbox(label="Checked",scale=2)
text_out = gr.TextArea(label="Output", elem_id="output-text")
btn.click(fn=process_datas, inputs=[checkbox_group,mode_group,max_data,skip_data], outputs =[text_out,data_size,checked_size], api_name='infer')
selection_btn.click(fn=select_checkbox,inputs=[selection_name],outputs=[checkbox_group])
gr.Examples(
examples=[
],
inputs=[],
)
gr.HTML(
gr.HTML(load_text("demo_footer.html"))
)
if __name__ == "__main__":
demo.launch()