Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PIL import Image
|
3 |
+
import tensorflow as tf
|
4 |
+
from tensorflow.keras.preprocessing.image import img_to_array
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
path_to_model = ""
|
8 |
+
|
9 |
+
# Load the trained model
|
10 |
+
model = tf.keras.models.load_model(path_to_model)
|
11 |
+
|
12 |
+
# Set the default height and width of the uploaded image
|
13 |
+
IMG_HEIGHT = 180
|
14 |
+
IMG_WIDTH = 180
|
15 |
+
|
16 |
+
# Define a function to preprocess the image
|
17 |
+
def preprocess_image(image):
|
18 |
+
# Resize the image to the expected input size of the model
|
19 |
+
img = image.resize((IMG_HEIGHT, IMG_WIDTH))
|
20 |
+
# Convert the image to a numpy array
|
21 |
+
img_array = img_to_array(img)
|
22 |
+
# Normalize the pixel values
|
23 |
+
img_array = img_array / 255.0
|
24 |
+
# Reshape the image array to match the input shape of the model
|
25 |
+
img_array = np.reshape(img_array, (1, IMG_HEIGHT, IMG_WIDTH, 3))
|
26 |
+
return img_array
|
27 |
+
|
28 |
+
# Create the Streamlit app
|
29 |
+
def main():
|
30 |
+
# Set the title and a brief description
|
31 |
+
st.title('Pneumonia Classification')
|
32 |
+
st.write('This app classifies an uploaded chest X-ray image as normal or pneumonia using a trained deep learning model.')
|
33 |
+
|
34 |
+
# Add an image upload option
|
35 |
+
uploaded_image = st.file_uploader('Upload an image', type=['jpg', 'jpeg', 'png'])
|
36 |
+
|
37 |
+
# If an image has been uploaded, display it and make a prediction
|
38 |
+
if uploaded_image is not None:
|
39 |
+
# Display the uploaded image
|
40 |
+
image = Image.open(uploaded_image)
|
41 |
+
st.image(image, caption='Uploaded Image', use_column_width=True)
|
42 |
+
|
43 |
+
# Preprocess the image for the model
|
44 |
+
input_image = preprocess_image(image)
|
45 |
+
|
46 |
+
# Make a prediction using the model
|
47 |
+
prediction = model.predict(input_image)
|
48 |
+
|
49 |
+
# Display the prediction
|
50 |
+
if prediction[0][0] > prediction[0][1]:
|
51 |
+
st.write('Prediction: Normal')
|
52 |
+
else:
|
53 |
+
st.write('Prediction: Pneumonia')
|
54 |
+
|
55 |
+
if __name__ == '__main__':
|
56 |
+
main()
|