File size: 7,216 Bytes
fe3d5c9
 
 
 
 
afc2587
fe3d5c9
e6a496c
aa04d75
fe3d5c9
e6a496c
fe3d5c9
aa04d75
 
 
 
 
 
 
37276fb
 
 
 
 
 
 
 
 
fe3d5c9
 
e6a496c
fe3d5c9
e6a496c
fe3d5c9
e6a496c
fe3d5c9
 
afc2587
fe3d5c9
 
 
 
 
afc2587
7ddc5f5
afc2587
 
fe3d5c9
afc2587
fe3d5c9
 
 
 
afc2587
 
 
 
e6a496c
 
 
fe3d5c9
afc2587
 
 
 
e6a496c
afc2587
 
fe3d5c9
e6a496c
fe3d5c9
aa04d75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe3d5c9
 
 
 
aa04d75
580a5c5
 
 
 
 
 
 
 
 
 
 
 
 
e6a496c
fe3d5c9
 
aa04d75
580a5c5
 
 
 
 
 
 
 
 
 
 
 
 
e6a496c
fe3d5c9
37276fb
 
 
aa04d75
37276fb
aa04d75
37276fb
 
 
 
aa04d75
fe3d5c9
 
 
 
37276fb
7ddc5f5
 
 
37276fb
 
 
 
 
 
 
 
7ddc5f5
 
 
 
 
 
e6a496c
37276fb
aa04d75
7ddc5f5
aa04d75
e6a496c
 
7ddc5f5
 
 
e6a496c
 
 
 
7ddc5f5
aa04d75
 
7ddc5f5
fe3d5c9
7ddc5f5
 
fe3d5c9
 
 
 
 
 
 
7ddc5f5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import streamlit as st
from urllib.request import urlopen, Request
from bs4 import BeautifulSoup
import pandas as pd
import plotly.express as px
from dateutil import parser
import datetime
import requests
from transformers import pipeline

st.set_page_config(page_title="Stock News Sentiment Analyzer", layout="wide")

# Initialize FinBERT pipeline
@st.cache_resource
def load_model():
    return pipeline("text-classification", model="ProsusAI/finbert")

finbert = load_model()

def verify_link(url, timeout=10, retries=3):
    for _ in range(retries):
        try:
            response = requests.head(url, timeout=timeout, allow_redirects=True)
            if 200 <= response.status_code < 300:
                return True
        except requests.RequestException:
            continue
    return False

def get_news(ticker):
    finviz_url = 'https://finviz.com/quote.ashx?t='
    url = finviz_url + ticker
    req = Request(url=url, headers={'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:20.0) Gecko/20100101 Firefox/20.0'}) 
    response = urlopen(req)    
    html = BeautifulSoup(response, 'html.parser')
    news_table = html.find(id='news-table')
    return news_table

def parse_news(news_table):
    parsed_news = []
    
    for x in news_table.findAll('tr'):
        try:
            text = x.a.get_text()
            link = x.a['href']
            date_scrape = x.td.text.strip().split()
            
            if len(date_scrape) == 1:
                date = datetime.datetime.today().strftime('%Y-%m-%d')
                time = date_scrape[0]
            else:
                date = date_scrape[0]
                time = date_scrape[1]

            datetime_str = f"{date} {time}"
            datetime_parsed = parser.parse(datetime_str)

            is_valid = verify_link(link)
            
            parsed_news.append([datetime_parsed, text, link, is_valid])
            
        except Exception as e:
            print("Error parsing news:", e)
            continue
    
    columns = ['datetime', 'headline', 'link', 'is_valid']
    parsed_news_df = pd.DataFrame(parsed_news, columns=columns)
    
    return parsed_news_df

def score_news(parsed_news_df):
    # Get FinBERT predictions
    predictions = finbert(parsed_news_df['headline'].tolist())
    
    # Convert predictions to sentiment scores
    sentiment_scores = []
    for pred in predictions:
        label = pred['label']
        score = pred['score']
        
        # Convert to -1 to 1 scale
        if label == 'positive':
            sentiment_score = score
        elif label == 'negative':
            sentiment_score = -score
        else:  # neutral
            sentiment_score = 0
            
        sentiment_scores.append({
            'sentiment_score': sentiment_score,
            'label': label,
            'confidence': score
        })
    
    # Convert to DataFrame
    scores_df = pd.DataFrame(sentiment_scores)
    
    # Join with original news DataFrame
    parsed_and_scored_news = parsed_news_df.join(scores_df)
    parsed_and_scored_news = parsed_and_scored_news.set_index('datetime')
    
    return parsed_and_scored_news

def plot_hourly_sentiment(parsed_and_scored_news, ticker):
    mean_scores = parsed_and_scored_news['sentiment_score'].resample('h').mean()
    
    fig = px.bar(mean_scores, x=mean_scores.index, y='sentiment_score', 
                 title=f'{ticker} Hourly Sentiment Scores',
                 color='sentiment_score',
                 color_continuous_scale=['red', 'yellow', 'green'],
                 range_color=[-1, 1])
    
    fig.update_layout(coloraxis_colorbar=dict(
        title="Sentiment",
        tickvals=[-1, 0, 1],
        ticktext=["Negative", "Neutral", "Positive"],
    ))
    
    return fig

def plot_daily_sentiment(parsed_and_scored_news, ticker):
    mean_scores = parsed_and_scored_news['sentiment_score'].resample('D').mean()
    
    fig = px.bar(mean_scores, x=mean_scores.index, y='sentiment_score', 
                 title=f'{ticker} Daily Sentiment Scores',
                 color='sentiment_score',
                 color_continuous_scale=['red', 'yellow', 'green'],
                 range_color=[-1, 1])
    
    fig.update_layout(coloraxis_colorbar=dict(
        title="Sentiment",
        tickvals=[-1, 0, 1],
        ticktext=["Negative", "Neutral", "Positive"],
    ))
    
    return fig

def get_recommendation(sentiment_scores):
    avg_sentiment = sentiment_scores['sentiment_score'].mean()
    
    if avg_sentiment >= 0.3:
        return f"Positive sentiment (Score: {avg_sentiment:.2f}). The recent news suggests a favorable outlook for this stock. Consider buying or holding if you already own it."
    elif avg_sentiment <= -0.3:
        return f"Negative sentiment (Score: {avg_sentiment:.2f}). The recent news suggests caution. Consider selling or avoiding this stock for now."
    else:
        return f"Neutral sentiment (Score: {avg_sentiment:.2f}). The recent news doesn't show a strong bias. Consider holding if you own the stock, or watch for more definitive trends before making a decision."

st.header("Stock News Sentiment Analyzer (FinBERT)")

ticker = st.text_input('Enter Stock Ticker', '').upper()

try:
    st.subheader(f"Sentiment Analysis and Recommendation for {ticker} Stock")
    news_table = get_news(ticker)
    parsed_news_df = parse_news(news_table)
    parsed_and_scored_news = score_news(parsed_news_df)
    
    # Generate and display recommendation
    recommendation = get_recommendation(parsed_and_scored_news)
    st.write(recommendation)
    
    # Display a disclaimer
    st.warning("Disclaimer: This recommendation is based solely on recent news sentiment and should not be considered as financial advice. Always do your own research and consult with a qualified financial advisor before making investment decisions.")
    
    fig_hourly = plot_hourly_sentiment(parsed_and_scored_news, ticker)
    fig_daily = plot_daily_sentiment(parsed_and_scored_news, ticker) 
     
    st.plotly_chart(fig_hourly)
    st.plotly_chart(fig_daily)

    description = f"""
        The above charts average the sentiment scores of {ticker} stock hourly and daily.
        The table below shows recent headlines with their sentiment scores and classifications.
        The news headlines are obtained from the FinViz website.
        Sentiments are analyzed using the ProsusAI/finbert model, which is specifically trained for financial text.
        Links have been verified for validity.
        """
        
    st.write(description)     
    
    parsed_and_scored_news['link'] = parsed_and_scored_news.apply(
        lambda row: f'<a href="{row["link"]}" target="_blank">{"Valid" if row["is_valid"] else "Invalid"} Link</a>', 
        axis=1
    )
    
    display_df = parsed_and_scored_news.drop(columns=['is_valid'])
    st.write(display_df.to_html(escape=False), unsafe_allow_html=True)
    
except Exception as e:
    print(str(e))
    st.write("Enter a correct stock ticker, e.g. 'AAPL' above and hit Enter.")    

hide_streamlit_style = """
<style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
</style>
"""
st.markdown(hide_streamlit_style, unsafe_allow_html=True)