import streamlit as st from urllib.request import urlopen, Request from bs4 import BeautifulSoup import pandas as pd import plotly.express as px from dateutil import parser import datetime import requests from transformers import pipeline st.set_page_config(page_title="Stock News Sentiment Analyzer", layout="wide") # Initialize FinBERT pipeline @st.cache_resource def load_model(): return pipeline("text-classification", model="ProsusAI/finbert") finbert = load_model() def verify_link(url, timeout=10, retries=3): for _ in range(retries): try: response = requests.head(url, timeout=timeout, allow_redirects=True) if 200 <= response.status_code < 300: return True except requests.RequestException: continue return False def get_news(ticker): finviz_url = 'https://finviz.com/quote.ashx?t=' url = finviz_url + ticker req = Request(url=url, headers={'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:20.0) Gecko/20100101 Firefox/20.0'}) response = urlopen(req) html = BeautifulSoup(response, 'html.parser') news_table = html.find(id='news-table') return news_table def parse_news(news_table): parsed_news = [] for x in news_table.findAll('tr'): try: text = x.a.get_text() link = x.a['href'] date_scrape = x.td.text.strip().split() if len(date_scrape) == 1: date = datetime.datetime.today().strftime('%Y-%m-%d') time = date_scrape[0] else: date = date_scrape[0] time = date_scrape[1] datetime_str = f"{date} {time}" datetime_parsed = parser.parse(datetime_str) is_valid = verify_link(link) parsed_news.append([datetime_parsed, text, link, is_valid]) except Exception as e: print("Error parsing news:", e) continue columns = ['datetime', 'headline', 'link', 'is_valid'] parsed_news_df = pd.DataFrame(parsed_news, columns=columns) return parsed_news_df def score_news(parsed_news_df): # Get FinBERT predictions predictions = finbert(parsed_news_df['headline'].tolist()) # Convert predictions to sentiment scores sentiment_scores = [] for pred in predictions: label = pred['label'] score = pred['score'] # Convert to -1 to 1 scale if label == 'positive': sentiment_score = score elif label == 'negative': sentiment_score = -score else: # neutral sentiment_score = 0 sentiment_scores.append({ 'sentiment_score': sentiment_score, 'label': label, 'confidence': score }) # Convert to DataFrame scores_df = pd.DataFrame(sentiment_scores) # Join with original news DataFrame parsed_and_scored_news = parsed_news_df.join(scores_df) parsed_and_scored_news = parsed_and_scored_news.set_index('datetime') return parsed_and_scored_news def plot_hourly_sentiment(parsed_and_scored_news, ticker): mean_scores = parsed_and_scored_news['sentiment_score'].resample('h').mean() fig = px.bar(mean_scores, x=mean_scores.index, y='sentiment_score', title=f'{ticker} Hourly Sentiment Scores', color='sentiment_score', color_continuous_scale=['red', 'yellow', 'green'], range_color=[-1, 1]) fig.update_layout(coloraxis_colorbar=dict( title="Sentiment", tickvals=[-1, 0, 1], ticktext=["Negative", "Neutral", "Positive"], )) return fig def plot_daily_sentiment(parsed_and_scored_news, ticker): mean_scores = parsed_and_scored_news['sentiment_score'].resample('D').mean() fig = px.bar(mean_scores, x=mean_scores.index, y='sentiment_score', title=f'{ticker} Daily Sentiment Scores', color='sentiment_score', color_continuous_scale=['red', 'yellow', 'green'], range_color=[-1, 1]) fig.update_layout(coloraxis_colorbar=dict( title="Sentiment", tickvals=[-1, 0, 1], ticktext=["Negative", "Neutral", "Positive"], )) return fig def get_recommendation(sentiment_scores): avg_sentiment = sentiment_scores['sentiment_score'].mean() if avg_sentiment >= 0.3: return f"Positive sentiment (Score: {avg_sentiment:.2f}). The recent news suggests a favorable outlook for this stock. Consider buying or holding if you already own it." elif avg_sentiment <= -0.3: return f"Negative sentiment (Score: {avg_sentiment:.2f}). The recent news suggests caution. Consider selling or avoiding this stock for now." else: return f"Neutral sentiment (Score: {avg_sentiment:.2f}). The recent news doesn't show a strong bias. Consider holding if you own the stock, or watch for more definitive trends before making a decision." st.header("Stock News Sentiment Analyzer (FinBERT)") ticker = st.text_input('Enter Stock Ticker', '').upper() try: st.subheader(f"Sentiment Analysis and Recommendation for {ticker} Stock") news_table = get_news(ticker) parsed_news_df = parse_news(news_table) parsed_and_scored_news = score_news(parsed_news_df) # Generate and display recommendation recommendation = get_recommendation(parsed_and_scored_news) st.write(recommendation) # Display a disclaimer st.warning("Disclaimer: This recommendation is based solely on recent news sentiment and should not be considered as financial advice. Always do your own research and consult with a qualified financial advisor before making investment decisions.") fig_hourly = plot_hourly_sentiment(parsed_and_scored_news, ticker) fig_daily = plot_daily_sentiment(parsed_and_scored_news, ticker) st.plotly_chart(fig_hourly) st.plotly_chart(fig_daily) description = f""" The above charts average the sentiment scores of {ticker} stock hourly and daily. The table below shows recent headlines with their sentiment scores and classifications. The news headlines are obtained from the FinViz website. Sentiments are analyzed using the ProsusAI/finbert model, which is specifically trained for financial text. Links have been verified for validity. """ st.write(description) parsed_and_scored_news['link'] = parsed_and_scored_news.apply( lambda row: f'{"Valid" if row["is_valid"] else "Invalid"} Link', axis=1 ) display_df = parsed_and_scored_news.drop(columns=['is_valid']) st.write(display_df.to_html(escape=False), unsafe_allow_html=True) except Exception as e: print(str(e)) st.write("Enter a correct stock ticker, e.g. 'AAPL' above and hit Enter.") hide_streamlit_style = """ """ st.markdown(hide_streamlit_style, unsafe_allow_html=True)