Spaces:
Sleeping
Sleeping
import streamlit as st | |
import google.generativeai as genai | |
from dotenv import load_dotenv | |
import os | |
# Load environment variables | |
load_dotenv() | |
# Configure Google Generative AI with API key | |
api_key = os.getenv("GOOGLE_API_KEY") | |
genai.configure(api_key=api_key) | |
# Initialize the session state to store chat history | |
if 'messages' not in st.session_state: | |
st.session_state['messages'] = [] | |
# Global variable to maintain chat session | |
chat = None | |
# Generation configuration and safety settings | |
generation_config = { | |
"temperature": 0.9, | |
"top_p": 0.5, | |
"top_k": 5, | |
"max_output_tokens": 1000, | |
} | |
safety_settings = [ | |
{ | |
"category": "HARM_CATEGORY_HARASSMENT", | |
"threshold": "BLOCK_MEDIUM_AND_ABOVE" | |
}, | |
{ | |
"category": "HARM_CATEGORY_HATE_SPEECH", | |
"threshold": "BLOCK_MEDIUM_AND_ABOVE" | |
}, | |
{ | |
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", | |
"threshold": "BLOCK_MEDIUM_AND_ABOVE" | |
}, | |
{ | |
"category": "HARM_CATEGORY_DANGEROUS_CONTENT", | |
"threshold": "BLOCK_MEDIUM_AND_ABOVE" | |
}, | |
] | |
# Function to handle text summary requests | |
def text_summary(text, isNew=False): | |
global chat | |
if isNew or chat is None: # Start a new chat session | |
model = genai.GenerativeModel( | |
model_name="gemini-pro", | |
generation_config=generation_config, | |
safety_settings=safety_settings | |
) | |
chat = model.start_chat() | |
chat.send_message(""" | |
Act as a financial advisor and generate financial summaries in a structured and tabular format. Follow these guidelines strictly: | |
- Start each section with a clear title in <strong> tags. | |
- For key metrics, use a table with two columns: one for the metric name and one for its value. | |
- Use bullet points only for listing risks and growth prospects. | |
- Ensure each section is clearly separated with line breaks. | |
- Do not use bold or italic formatting (, *), except for the specified HTML tags. | |
""") | |
# Send message and return response | |
response = chat.send_message(text) | |
return response.text | |
# Layout for chatbot UI | |
st.title("Financial Summary Chatbot") | |
# Chat history container (This is where the conversation will appear) | |
chat_container = st.container() | |
# Input container (This will stay at the bottom) | |
input_container = st.container() | |
# Function to display the chat history | |
def display_chat(): | |
with chat_container: | |
# Loop through session messages and display them | |
for message in st.session_state['messages']: | |
if message['role'] == 'user': | |
st.write(f"**You:** {message['content']}") | |
else: | |
st.write(f"**Bot:** {message['content']}") | |
# Fixed input area at the bottom using the input container | |
with input_container: | |
is_new_session = st.checkbox("Start new session", value=False) | |
user_input = st.text_area("Type your message here:", height=100) | |
send_button = st.button("Send") | |
# If user presses 'Send' | |
if send_button and user_input: | |
# Store the user's input | |
st.session_state['messages'].append({"role": "user", "content": user_input}) | |
# Call the text_summary function to get the bot's response | |
bot_response = text_summary(user_input, is_new_session) | |
# Store the bot's response | |
st.session_state['messages'].append({"role": "bot", "content": bot_response}) | |
# Clear the input text area | |
user_input = "" | |
# Display the chat history | |
display_chat() | |