import streamlit as st import google.generativeai as genai from dotenv import load_dotenv import os # Load environment variables load_dotenv() # Configure Google Generative AI with API key api_key = os.getenv("GENERATIVEAI_API_KEY") genai.configure(api_key=api_key) # Initialize the session state to store chat history if 'messages' not in st.session_state: st.session_state['messages'] = [] # Global variable to maintain chat session chat = None # Generation configuration and safety settings generation_config = { "temperature": 0.9, "top_p": 0.5, "top_k": 5, "max_output_tokens": 1000, } safety_settings = [ { "category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_MEDIUM_AND_ABOVE" }, { "category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_MEDIUM_AND_ABOVE" }, { "category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "BLOCK_MEDIUM_AND_ABOVE" }, { "category": "HARM_CATEGORY_DANGEROUS_CONTENT", "threshold": "BLOCK_MEDIUM_AND_ABOVE" }, ] # Function to handle text summary requests def text_summary(text, isNew=False): global chat if isNew or chat is None: # Start a new chat session model = genai.GenerativeModel( model_name="gemini-pro", generation_config=generation_config, safety_settings=safety_settings ) chat = model.start_chat() chat.send_message(""" Act as a financial advisor and generate financial summaries in a structured and tabular format. Follow these guidelines strictly: - Start each section with a clear title in tags. - For key metrics, use a table with two columns: one for the metric name and one for its value. - Use bullet points only for listing risks and growth prospects. - Ensure each section is clearly separated with line breaks. - Do not use bold or italic formatting (, *), except for the specified HTML tags. """) # Send message and return response response = chat.send_message(text) return response.text # Layout for chatbot UI st.title("Financial Summary Chatbot") # Adding custom CSS for scrollable chat output st.markdown(""" """, unsafe_allow_html=True) # Chat history container (This is where the conversation will appear) chat_container = st.container() # Function to display the chat history in a scrollable container def display_chat(): with chat_container: st.markdown('
', unsafe_allow_html=True) # Loop through session messages and display them for message in st.session_state['messages']: if message['role'] == 'user': st.write(f"**You:** {message['content']}") else: st.write(f"**Bot:** {message['content']}") st.markdown('
', unsafe_allow_html=True) # Input container (This will stay at the bottom) input_container = st.container() # Fixed input area at the bottom using the input container with input_container: st.markdown('
', unsafe_allow_html=True) is_new_session = st.checkbox("Start new session", value=False) user_input = st.text_area("Type your message here:", height=100) send_button = st.button("Send") # If user presses 'Send' if send_button and user_input: # Store the user's input st.session_state['messages'].append({"role": "user", "content": user_input}) # Call the text_summary function to get the bot's response bot_response = text_summary(user_input, is_new_session) # Store the bot's response st.session_state['messages'].append({"role": "bot", "content": bot_response}) # Clear the input text area user_input = "" st.markdown('
', unsafe_allow_html=True) # Display the chat history display_chat()