File size: 1,899 Bytes
3c8c0e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
import sys
import pandas as pd
from src.exception import CustomException
from src.utils import load_object
class PredictPipeline:
def __init__(self) -> None:
pass
def predict(self, features):
try:
model_path = "artifacts/model.pkl"
preprocessor_path = "artifacts/preprocessor.pkl"
model = load_object(file_path=model_path)
preprocessor = load_object(file_path=preprocessor_path)
data_scaled = preprocessor.transform(features)
predictions = model.predict(data_scaled)
return predictions
except Exception as e:
raise CustomException(e, sys)
class CustomData:
def __init__(
self,
gender: str,
race_ethnicity: str,
parental_level_of_education,
lunch: str,
test_preparation_course: str,
reading_score: int,
writing_score: int,
) -> None:
self.gender = gender
self.race_ethnicity = race_ethnicity
self.parental_level_of_education = parental_level_of_education
self.lunch = lunch
self.test_preparation_course = test_preparation_course
self.reading_score = reading_score
self.writing_score = writing_score
def get_data_as_dataframe(self):
try:
custom_data_input_dict = {
"gender": [self.gender],
"race_ethnicity": [self.race_ethnicity],
"parental_level_of_education": [self.parental_level_of_education],
"lunch": [self.lunch],
"test_preparation_course": [self.test_preparation_course],
"reading_score": [self.reading_score],
"writing_score": [self.writing_score],
}
return pd.DataFrame(custom_data_input_dict)
except Exception as e:
raise CustomException(e, sys)
|