File size: 38,375 Bytes
9a7ca1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b316a5
9a7ca1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a252ce
9a7ca1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b316a5
9a7ca1b
 
 
 
 
 
 
 
3b316a5
 
 
9a7ca1b
3b316a5
9a7ca1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71527d9
9a7ca1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a252ce
9a7ca1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a252ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a7ca1b
 
 
 
 
 
 
 
 
 
 
6a252ce
9a7ca1b
 
 
 
6a252ce
9a7ca1b
 
 
 
 
 
71527d9
 
 
 
9a7ca1b
71527d9
9a7ca1b
71527d9
 
 
 
 
9a7ca1b
 
71527d9
9a7ca1b
 
 
 
71527d9
 
 
9a7ca1b
 
 
 
 
 
 
 
 
 
 
6d55428
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a7ca1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d55428
 
 
 
9a7ca1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71527d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a7ca1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71527d9
9a7ca1b
bf79b8a
6d55428
9a7ca1b
 
 
 
 
 
 
 
 
6d55428
9a7ca1b
 
 
 
 
 
 
 
 
 
 
 
6d55428
9a7ca1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d55428
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a7ca1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71527d9
 
 
 
 
 
f717fb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71527d9
f717fb3
 
71527d9
 
 
 
 
6d55428
 
 
71527d9
 
 
 
 
 
 
 
 
 
6d55428
71527d9
 
 
 
 
 
 
 
 
 
 
 
6d55428
71527d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d55428
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71527d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a7ca1b
 
 
 
 
 
f717fb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a7ca1b
 
f717fb3
 
 
 
9a7ca1b
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
import torch
import numpy as np
import html
import inspect
import re
import urllib.parse as ul
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast, CLIPTextModelWithProjection
from diffusers import FlowMatchEulerDiscreteScheduler, AutoPipelineForImage2Image, FluxPipeline, FluxTransformer2DModel
from diffusers import StableDiffusion3Pipeline, AutoencoderKL, DiffusionPipeline, ImagePipelineOutput
from diffusers.image_processor import VaeImageProcessor
from diffusers.loaders import FluxLoraLoaderMixin, FromSingleFileMixin, SD3LoraLoaderMixin
from diffusers.utils import (
    USE_PEFT_BACKEND,
    is_torch_xla_available,
    logging,
    BACKENDS_MAPPING,
    is_bs4_available,
    is_ftfy_available,
    deprecate,
    replace_example_docstring,
    scale_lora_layers,
    unscale_lora_layers,
)
from diffusers.utils.torch_utils import randn_tensor
from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput
from typing import Any, Callable, Dict, List, Optional, Union
from PIL import Image
from diffusers.pipelines.flux.pipeline_flux import calculate_shift, retrieve_timesteps, FluxTransformer2DModel

from diffusers.utils import is_torch_xla_available

if is_bs4_available():
    from bs4 import BeautifulSoup

if is_ftfy_available():
    import ftfy

if is_torch_xla_available():
    import torch_xla.core.xla_model as xm

    XLA_AVAILABLE = True
else:
    XLA_AVAILABLE = False

logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

# Constants for shift calculation
BASE_SEQ_LEN = 256
MAX_SEQ_LEN = 4096
BASE_SHIFT = 0.5
MAX_SHIFT = 1.2

# Helper functions
def calculate_timestep_shift(image_seq_len: int) -> float:
    """Calculates the timestep shift (mu) based on the image sequence length."""
    m = (MAX_SHIFT - BASE_SHIFT) / (MAX_SEQ_LEN - BASE_SEQ_LEN)
    b = BASE_SHIFT - m * BASE_SEQ_LEN
    mu = image_seq_len * m + b
    return mu

def prepare_timesteps(
    scheduler: FlowMatchEulerDiscreteScheduler,
    num_inference_steps: Optional[int] = None,
    device: Optional[Union[str, torch.device]] = None,
    timesteps: Optional[List[int]] = None,
    sigmas: Optional[List[float]] = None,
    mu: Optional[float] = None,
) -> (torch.Tensor, int):
    """Prepares the timesteps for the diffusion process."""
    if timesteps is not None and sigmas is not None:
        raise ValueError("Only one of `timesteps` or `sigmas` can be passed.")

    if timesteps is not None:
        scheduler.set_timesteps(timesteps=timesteps, device=device)
    elif sigmas is not None:
        scheduler.set_timesteps(sigmas=sigmas, device=device)
    else:
        scheduler.set_timesteps(num_inference_steps, device=device, mu=mu)

    timesteps = scheduler.timesteps
    num_inference_steps = len(timesteps)
    return timesteps, num_inference_steps

# FLUX pipeline function
class FluxWithCFGPipeline(DiffusionPipeline, FluxLoraLoaderMixin, FromSingleFileMixin):
    def __init__(
        self,
        scheduler: FlowMatchEulerDiscreteScheduler,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        tokenizer: CLIPTokenizer,
        text_encoder_2: T5EncoderModel,
        tokenizer_2: T5TokenizerFast,
        transformer: FluxTransformer2DModel,
    ):
        super().__init__()

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            text_encoder_2=text_encoder_2,
            tokenizer=tokenizer,
            tokenizer_2=tokenizer_2,
            transformer=transformer,
            scheduler=scheduler,
        )
        self.vae_scale_factor = (
            2 ** (len(self.vae.config.block_out_channels)) if hasattr(self, "vae") and self.vae is not None else 16
        )
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
        self.tokenizer_max_length = (
            self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
        )
        self.default_sample_size = 64

    def _get_t5_prompt_embeds(
        self,
        prompt: Union[str, List[str]] = None,
        num_images_per_prompt: int = 1,
        max_sequence_length: int = 512,
        device: Optional[torch.device] = None,
        dtype: Optional[torch.dtype] = None,
    ):
        device = device or self._execution_device
        dtype = dtype or self.text_encoder.dtype

        prompt = [prompt] if isinstance(prompt, str) else prompt
        batch_size = len(prompt)

        text_inputs = self.tokenizer_2(
            prompt,
            padding="max_length",
            max_length=max_sequence_length,
            truncation=True,
            return_length=True,
            return_overflowing_tokens=True,
            return_tensors="pt",
        )
        text_input_ids = text_inputs.input_ids
        untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids

        if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
            removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
            logger.warning(
                "The following part of your input was truncated because `max_sequence_length` is set to "
                f" {max_sequence_length} tokens: {removed_text}"
            )

        prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0]

        dtype = self.text_encoder_2.dtype
        prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)

        _, seq_len, _ = prompt_embeds.shape

        # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
        prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

        return prompt_embeds

    def _get_clip_prompt_embeds(
        self,
        prompt: Union[str, List[str]],
        num_images_per_prompt: int = 1,
        device: Optional[torch.device] = None,
    ):
        device = device or self._execution_device

        prompt = [prompt] if isinstance(prompt, str) else prompt
        batch_size = len(prompt)

        text_inputs = self.tokenizer(
            prompt,
            padding="max_length",
            max_length=self.tokenizer_max_length,
            truncation=True,
            return_overflowing_tokens=False,
            return_length=False,
            return_tensors="pt",
        )

        text_input_ids = text_inputs.input_ids
        untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
        if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
            removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
            logger.warning(
                "The following part of your input was truncated because CLIP can only handle sequences up to"
                f" {self.tokenizer_max_length} tokens: {removed_text}"
            )
        prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False)
        pooled_prompt_embeds = prompt_embeds[0]

        # Use pooled output of CLIPTextModel
        prompt_embeds = prompt_embeds.pooler_output
        prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)

        # duplicate text embeddings for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt)
        prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
        
        pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt, 1)
        pooled_prompt_embeds = pooled_prompt_embeds.view(batch_size * num_images_per_prompt, -1)

        return prompt_embeds, pooled_prompt_embeds

    def encode_prompt(
        self,
        prompt: Union[str, List[str]],
        prompt_2: Union[str, List[str]],
        device: Optional[torch.device] = None,
        num_images_per_prompt: int = 1,
        do_classifier_free_guidance: bool = True,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        negative_prompt_2: Optional[Union[str, List[str]]] = None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
        negative_prompt_2_embed: Optional[torch.Tensor] = None,
        pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_pooled_prompt_2_embed: Optional[torch.FloatTensor] = None,
        negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
        max_sequence_length: int = 512,
        lora_scale: Optional[float] = None,
    ): 
        device = device or self._execution_device

        if device is None:
            device = self._execution_device

        # set lora scale so that monkey patched LoRA
        # function of text encoder can correctly access it
        if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
            self._lora_scale = lora_scale

            # dynamically adjust the LoRA scale
            if self.text_encoder is not None and USE_PEFT_BACKEND:
                scale_lora_layers(self.text_encoder, lora_scale)
            if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
                scale_lora_layers(self.text_encoder_2, lora_scale)

        prompt = [prompt] if isinstance(prompt, str) else prompt

        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]
            
        if prompt_embeds is None:
            prompt_2 = prompt_2 or prompt
            prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2

            # We only use the pooled prompt output from the CLIPTextModel
            pooled_prompt_embeds = self._get_clip_prompt_embeds(
                prompt=prompt,
                device=device,
                num_images_per_prompt=num_images_per_prompt,
            )
            prompt_embeds = self._get_t5_prompt_embeds(
                prompt=prompt_2,
                num_images_per_prompt=num_images_per_prompt,
                max_sequence_length=max_sequence_length,
                device=device,
            )
            prompt_2_embed, pooled_prompt_2_embed = self._get_clip_prompt_embeds(
                prompt=prompt_2,
                device=device,
                num_images_per_prompt=num_images_per_prompt,
            )
            clip_prompt_embeds = torch.cat([prompt_embed, prompt_2_embed], dim=-1)

            t5_prompt_embed = self._get_t5_prompt_embeds(
                prompt=prompt_3,
                num_images_per_prompt=num_images_per_prompt,
                max_sequence_length=max_sequence_length,
                device=device,
            )

            clip_prompt_embeds = torch.nn.functional.pad(
                clip_prompt_embeds, (0, t5_prompt_embed.shape[-1] - clip_prompt_embeds.shape[-1])
            )

            prompt_embeds = torch.cat([clip_prompt_embeds, t5_prompt_embed], dim=-2)
            pooled_prompt_embeds = torch.cat([pooled_prompt_embed, pooled_prompt_2_embed], dim=-1)

        if do_classifier_free_guidance and negative_prompt_embeds is None:
            negative_prompt = negative_prompt or ""
            negative_prompt_2 = negative_prompt_2 or negative_prompt

            # normalize str to list
            negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
            negative_prompt_2 = (
                batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
            )

            if prompt is not None and type(prompt) is not type(negative_prompt):
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )

        negative_prompt_embed, negative_pooled_prompt_embed = self._get_clip_prompt_embeds(
            negative_prompt,
            device=device,
            num_images_per_prompt=num_images_per_prompt,
            )
        negative_clip_prompt_embeds = torch.cat([negative_prompt_embed, negative_prompt_2_embed], dim=-1)

        t5_negative_prompt_embed = self._get_t5_prompt_embeds(
            prompt=negative_prompt_2,
            num_images_per_prompt=num_images_per_prompt,
            max_sequence_length=max_sequence_length,
            device=device,
            )

        negative_clip_prompt_embeds = torch.nn.functional.pad(
                negative_clip_prompt_embeds,
                (0, t5_negative_prompt_embed.shape[-1] - negative_clip_prompt_embeds.shape[-1]),
            )

        negative_prompt_embeds = torch.cat([negative_clip_prompt_embeds, t5_negative_prompt_embed], dim=-2)
        negative_pooled_prompt_embeds = torch.cat(
            [negative_pooled_prompt_embed, negative_pooled_prompt_2_embed], dim=-1
            )

        if self.text_encoder is not None:
            if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
                # Retrieve the original scale by scaling back the LoRA layers
                unscale_lora_layers(self.text_encoder, lora_scale)

        dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype
        text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)

        return prompt_embeds, pooled_prompt_embeds, text_ids, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds

    def check_inputs(
        self,
        prompt,
        prompt_2,
        height,
        width,
        negative_prompt=None,
        negative_prompt_2=None,
        prompt_embeds=None,
        negative_prompt_embeds=None,
        pooled_prompt_embeds=None,
        negative_pooled_prompt_embeds=None,
        max_sequence_length=None,
    ):
        if height % 8 != 0 or width % 8 != 0:
            raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")

        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt_2 is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
        elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
            raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")

        if prompt_embeds is not None and pooled_prompt_embeds is None:
            raise ValueError(
                "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
            )
        if negative_prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )
        elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )
        if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
            raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.")

        if max_sequence_length is not None and max_sequence_length > 512:
            raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
            
    @staticmethod
    def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
        latent_image_ids = torch.zeros(height // 2, width // 2, 3)
        latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None]
        latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :]

        latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape

        latent_image_ids = latent_image_ids.reshape(
            latent_image_id_height * latent_image_id_width, latent_image_id_channels
        )

        return latent_image_ids.to(device=device, dtype=dtype)

    @staticmethod
    def _pack_latents(latents, batch_size, num_channels_latents, height, width):
        latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
        latents = latents.permute(0, 2, 4, 1, 3, 5)
        latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)

        return latents

    @staticmethod
    def _unpack_latents(latents, height, width, vae_scale_factor):
        batch_size, num_patches, channels = latents.shape

        height = height // vae_scale_factor
        width = width // vae_scale_factor

        latents = latents.view(batch_size, height, width, channels // 4, 2, 2)
        latents = latents.permute(0, 3, 1, 4, 2, 5)

        latents = latents.reshape(batch_size, channels // (2 * 2), height * 2, width * 2)

        return latents
    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    def enable_vae_slicing(self):
        r"""
        Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
        compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
        """
        self.vae.enable_slicing()

    def disable_vae_slicing(self):
        r"""
        Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
        computing decoding in one step.
        """
        self.vae.disable_slicing()

    def enable_vae_tiling(self):
        r"""
        Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
        compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
        processing larger images.
        """
        self.vae.enable_tiling()

    def disable_vae_tiling(self):
        r"""
        Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
        computing decoding in one step.
        """
        self.vae.disable_tiling()

    def prepare_latents(
        self,
        batch_size,
        num_channels_latents,
        height,
        width,
        dtype,
        device,
        generator,
        latents=None,
    ):
        height = 2 * (int(height) // self.vae_scale_factor)
        width = 2 * (int(width) // self.vae_scale_factor)

        shape = (batch_size, num_channels_latents, height, width)

        if latents is not None:
            latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype)
            return latents.to(device=device, dtype=dtype), latent_image_ids

        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
        latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)

        latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype)

        return latents, latent_image_ids

    @property
    def guidance_scale(self):
        return self._guidance_scale

    @property
    def do_classifier_free_guidance(self):
        return self._guidance_scale > 1

    @property
    def joint_attention_kwargs(self):
        return self._joint_attention_kwargs

    @property
    def num_timesteps(self):
        return self._num_timesteps

    @property
    def interrupt(self):
        return self._interrupt
        
    @torch.no_grad()
    @torch.inference_mode()
    def generate_images(
        self,
        prompt: Union[str, List[str]] = None,
        prompt_2: Optional[Union[str, List[str]]] = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        negative_prompt_2: Optional[Union[str, List[str]]] = None,
        num_inference_steps: int = 8,
        timesteps: List[int] = None,
        eta: Optional[float] = 0.0,
        guidance_scale: float = 3.5,
        num_images_per_prompt: Optional[int] = 1,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.FloatTensor] = None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        joint_attention_kwargs: Optional[Dict[str, Any]] = None,
        max_sequence_length: int = 300,
        **kwargs,
    ):
        height = height or self.default_sample_size * self.vae_scale_factor
        width = width or self.default_sample_size * self.vae_scale_factor
        
        # 1. Check inputs
        self.check_inputs(
            prompt,
            prompt_2,
            height,
            width,
            negative_prompt=negative_prompt,
            negative_prompt_2=negative_prompt_2,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            pooled_prompt_embeds=pooled_prompt_embeds,
            negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
            max_sequence_length=max_sequence_length,
        )

        self._guidance_scale = guidance_scale
        self._joint_attention_kwargs = joint_attention_kwargs
        self._interrupt = False

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        device = self._execution_device

        do_classifier_free_guidance = guidance_scale > 1.0

        lora_scale = (
            self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
        )
        (
            prompt_embeds,
            negative_prompt_embeds,
            pooled_prompt_embeds,
            negative_pooled_prompt_embeds,
        ) = self.encode_prompt(
            prompt=prompt,
            prompt_2=prompt_2,
            negative_prompt=negative_prompt,
            negative_prompt_2=negative_prompt_2,
            do_classifier_free_guidance=self.do_classifier_free_guidance,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            pooled_prompt_embeds=pooled_prompt_embeds,
            negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
            device=device,
            num_images_per_prompt=num_images_per_prompt,
            max_sequence_length=max_sequence_length,
            lora_scale=lora_scale,
        )

        if self.do_classifier_free_guidance:
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
            pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0)

        # 4. Prepare latent variables
        num_channels_latents = self.transformer.config.in_channels // 4
        latents, latent_image_ids = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            prompt_embeds.dtype,
            negative_prompt_embeds.dtype,
            device,
            generator,
            latents,
        )
        
        # 5. Prepare timesteps
        sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
        image_seq_len = latents.shape[1]
        mu = calculate_timestep_shift(image_seq_len)
        timesteps, num_inference_steps = prepare_timesteps(
            self.scheduler,
            num_inference_steps,
            device,
            timesteps,
            sigmas,
            mu=mu,
        )
        self._num_timesteps = len(timesteps)

        # Handle guidance
        guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float16).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None

        # 6. Denoising loop
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                if self.interrupt:
                    continue

                latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents

                timestep = t.expand(latent_model_input.shape[0]).to(latents.dtype)
                
                if self.transformer.config.guidance_embeds:
                    guidance = torch.tensor([guidance_scale], device=device)
                    guidance = guidance.expand(latents.shape[0])
                else:
                    guidance = None

                noise_pred = self.transformer(
                    hidden_states=latent_model_input,
                    timestep=timestep / 1000,
                    guidance=guidance,
                    pooled_projections=pooled_prompt_embeds,
                    encoder_hidden_states=prompt_embeds,
                    txt_ids=text_ids,
                    img_ids=latent_image_ids,
                    joint_attention_kwargs=self.joint_attention_kwargs,
                    return_dict=False,
                )[0]
                
                noise_pred_uncond = self.transformer(
                    hidden_states=latents,
                    timestep=timestep / 1000,
                    guidance=guidance,
                    pooled_projections=negative_pooled_prompt_embeds,
                    encoder_hidden_states=negative_prompt_embeds,
                    img_ids=latent_image_ids,
                    joint_attention_kwargs=self.joint_attention_kwargs,
                    return_dict=False,
                  )[0]

                if self.do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
           
                # compute the previous noisy sample x_t -> x_t-1
                latents_dtype = latents.dtype
                latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]

                if latents.dtype != latents_dtype:
                    if torch.backends.mps.is_available():
                        # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
                        latents = latents.to(latents_dtype)

            # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()

        # Final image
        return self._decode_latents_to_image(latents, height, width, output_type)
        self.maybe_free_model_hooks()
        torch.cuda.empty_cache()

    @torch.no_grad()
    @torch.inference_mode()
    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
        prompt_2: Optional[Union[str, List[str]]] = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        negative_prompt_2: Optional[Union[str, List[str]]] = None,
        num_inference_steps: int = 8,
        timesteps: List[int] = None,
        eta: Optional[float] = 0.0,
        guidance_scale: float = 3.5,
        num_images_per_prompt: Optional[int] = 1,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.FloatTensor] = None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        joint_attention_kwargs: Optional[Dict[str, Any]] = None,
        max_sequence_length: int = 300,
        **kwargs,
    ):
        height = height or self.default_sample_size * self.vae_scale_factor
        width = width or self.default_sample_size * self.vae_scale_factor
        
        # 1. Check inputs
        self.check_inputs(
            prompt,
            prompt_2,
            height,
            width,
            negative_prompt=negative_prompt,
            negative_prompt_2=negative_prompt_2,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            pooled_prompt_embeds=pooled_prompt_embeds,
            negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
            max_sequence_length=max_sequence_length,
        )

        self._guidance_scale = guidance_scale
        self._joint_attention_kwargs = joint_attention_kwargs
        self._interrupt = False

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        device = self._execution_device

        do_classifier_free_guidance = guidance_scale > 1.0

        lora_scale = (
            self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
        )
        (
            prompt_embeds,
            negative_prompt_embeds,
            pooled_prompt_embeds,
            negative_pooled_prompt_embeds,
        ) = self.encode_prompt(
            prompt=prompt,
            prompt_2=prompt_2,
            negative_prompt=negative_prompt,
            negative_prompt_2=negative_prompt_2,
            do_classifier_free_guidance=self.do_classifier_free_guidance,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            pooled_prompt_embeds=pooled_prompt_embeds,
            negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
            device=device,
            num_images_per_prompt=num_images_per_prompt,
            max_sequence_length=max_sequence_length,
            lora_scale=lora_scale,
        )

        if self.do_classifier_free_guidance:
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
            pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0)

        # 4. Prepare latent variables
        num_channels_latents = self.transformer.config.in_channels // 4
        latents, latent_image_ids = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            prompt_embeds.dtype,
            negative_prompt_embeds.dtype,
            device,
            generator,
            latents,
        )
        
        # 5. Prepare timesteps
        sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
        image_seq_len = latents.shape[1]
        mu = calculate_timestep_shift(image_seq_len)
        timesteps, num_inference_steps = prepare_timesteps(
            self.scheduler,
            num_inference_steps,
            device,
            timesteps,
            sigmas,
            mu=mu,
        )
        self._num_timesteps = len(timesteps)

        # Handle guidance
        guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float16).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None

        # 6. Denoising loop
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                if self.interrupt:
                    continue

                latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents

                timestep = t.expand(latent_model_input.shape[0]).to(latents.dtype)
                
                if self.transformer.config.guidance_embeds:
                    guidance = torch.tensor([guidance_scale], device=device)
                    guidance = guidance.expand(latents.shape[0])
                else:
                    guidance = None

                noise_pred = self.transformer(
                    hidden_states=latent_model_input,
                    timestep=timestep / 1000,
                    guidance=guidance,
                    pooled_projections=pooled_prompt_embeds,
                    encoder_hidden_states=prompt_embeds,
                    txt_ids=text_ids,
                    img_ids=latent_image_ids,
                    joint_attention_kwargs=self.joint_attention_kwargs,
                    return_dict=False,
                )[0]
                
                noise_pred_uncond = self.transformer(
                    hidden_states=latents,
                    timestep=timestep / 1000,
                    guidance=guidance,
                    pooled_projections=negative_pooled_prompt_embeds,
                    encoder_hidden_states=negative_prompt_embeds,
                    img_ids=latent_image_ids,
                    joint_attention_kwargs=self.joint_attention_kwargs,
                    return_dict=False,
                  )[0]

                if self.do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
           
                # compute the previous noisy sample x_t -> x_t-1
                latents_dtype = latents.dtype
                latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]

                if latents.dtype != latents_dtype:
                    if torch.backends.mps.is_available():
                        # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
                        latents = latents.to(latents_dtype)

            # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()

        # Final image
        return self._decode_latents_to_image(latents, height, width, output_type)
        self.maybe_free_model_hooks()
        torch.cuda.empty_cache()

    def _decode_latents_to_image(self, latents, height, width, output_type, vae=None):
        """Decodes the given latents into an image."""
        vae = vae or self.vae
        latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
        latents = (latents / vae.config.scaling_factor) + vae.config.shift_factor
        image = vae.decode(latents, return_dict=False)[0]
        return self.image_processor.postprocess(image, output_type=output_type)[0]