Spaces:
Running
on
Zero
Running
on
Zero
import numpy as np | |
import torch | |
from diffusers.pipelines.flux.pipeline_output import FluxPipeline, FluxPipelineOutput | |
from typing import List, Union, Optional, Dict, Any, Callable | |
from diffusers.pipelines.flux.pipeline_flux import calculate_shift, retrieve_timesteps | |
from diffusers.utils import is_torch_xla_available | |
if is_torch_xla_available(): | |
import torch_xla.core.xla_model as xm | |
XLA_AVAILABLE = True | |
else: | |
XLA_AVAILABLE = False | |
# TODO this is rough. Need to properly stack unconditional or make it optional | |
class FluxWithCFGPipeline(FluxPipeline): | |
def __call__( | |
self, | |
prompt: Union[str, List[str]] = None, | |
prompt_2: Optional[Union[str, List[str]]] = None, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
negative_prompt_2: Optional[Union[str, List[str]]] = None, | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
num_inference_steps: int = 28, | |
timesteps: List[int] = None, | |
guidance_scale: float = 7.0, | |
num_images_per_prompt: Optional[int] = 1, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
joint_attention_kwargs: Optional[Dict[str, Any]] = None, | |
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
max_sequence_length: int = 512, | |
): | |
height = height or self.default_sample_size * self.vae_scale_factor | |
width = width or self.default_sample_size * self.vae_scale_factor | |
# 1. Check inputs. Raise error if not correct | |
self.check_inputs( | |
prompt, | |
prompt_2, | |
height, | |
width, | |
prompt_embeds=prompt_embeds, | |
pooled_prompt_embeds=pooled_prompt_embeds, | |
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, | |
max_sequence_length=max_sequence_length, | |
) | |
self._guidance_scale = guidance_scale | |
self._joint_attention_kwargs = joint_attention_kwargs | |
self._interrupt = False | |
# 2. Define call parameters | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
device = self._execution_device | |
lora_scale = ( | |
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None | |
) | |
( | |
prompt_embeds, | |
pooled_prompt_embeds, | |
text_ids, | |
) = self.encode_prompt( | |
prompt=prompt, | |
prompt_2=prompt_2, | |
prompt_embeds=prompt_embeds, | |
pooled_prompt_embeds=pooled_prompt_embeds, | |
device=device, | |
num_images_per_prompt=num_images_per_prompt, | |
max_sequence_length=max_sequence_length, | |
lora_scale=lora_scale, | |
) | |
( | |
negative_prompt_embeds, | |
negative_pooled_prompt_embeds, | |
negative_text_ids, | |
) = self.encode_prompt( | |
prompt=negative_prompt, | |
prompt_2=negative_prompt_2, | |
prompt_embeds=negative_prompt_embeds, | |
pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
device=device, | |
num_images_per_prompt=num_images_per_prompt, | |
max_sequence_length=max_sequence_length, | |
lora_scale=lora_scale, | |
) | |
# 4. Prepare latent variables | |
num_channels_latents = self.transformer.config.in_channels // 4 | |
latents, latent_image_ids = self.prepare_latents( | |
batch_size * num_images_per_prompt, | |
num_channels_latents, | |
height, | |
width, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
latents, | |
) | |
# 5. Prepare timesteps | |
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) | |
image_seq_len = latents.shape[1] | |
mu = calculate_shift( | |
image_seq_len, | |
self.scheduler.config.base_image_seq_len, | |
self.scheduler.config.max_image_seq_len, | |
self.scheduler.config.base_shift, | |
self.scheduler.config.max_shift, | |
) | |
timesteps, num_inference_steps = retrieve_timesteps( | |
self.scheduler, | |
num_inference_steps, | |
device, | |
timesteps, | |
sigmas, | |
mu=mu, | |
) | |
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) | |
self._num_timesteps = len(timesteps) | |
# 6. Denoising loop | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
if self.interrupt: | |
continue | |
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
timestep = t.expand(latents.shape[0]).to(latents.dtype) | |
# handle guidance | |
if self.transformer.config.guidance_embeds: | |
guidance = torch.tensor([guidance_scale], device=device) | |
guidance = guidance.expand(latents.shape[0]) | |
else: | |
guidance = None | |
noise_pred_text = self.transformer( | |
hidden_states=latents, | |
timestep=timestep / 1000, | |
guidance=guidance, | |
pooled_projections=pooled_prompt_embeds, | |
encoder_hidden_states=prompt_embeds, | |
txt_ids=text_ids, | |
img_ids=latent_image_ids, | |
joint_attention_kwargs=self.joint_attention_kwargs, | |
return_dict=False, | |
)[0] | |
# todo combine these | |
noise_pred_uncond = self.transformer( | |
hidden_states=latents, | |
timestep=timestep / 1000, | |
guidance=guidance, | |
pooled_projections=negative_pooled_prompt_embeds, | |
encoder_hidden_states=negative_prompt_embeds, | |
txt_ids=negative_text_ids, | |
img_ids=latent_image_ids, | |
joint_attention_kwargs=self.joint_attention_kwargs, | |
return_dict=False, | |
)[0] | |
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents_dtype = latents.dtype | |
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] | |
if latents.dtype != latents_dtype: | |
if torch.backends.mps.is_available(): | |
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 | |
latents = latents.to(latents_dtype) | |
if callback_on_step_end is not None: | |
callback_kwargs = {} | |
for k in callback_on_step_end_tensor_inputs: | |
callback_kwargs[k] = locals()[k] | |
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
latents = callback_outputs.pop("latents", latents) | |
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
progress_bar.update() | |
if XLA_AVAILABLE: | |
xm.mark_step() | |
if output_type == "latent": | |
image = latents | |
else: | |
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) | |
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor | |
image = self.vae.decode(latents, return_dict=False)[0] | |
image = self.image_processor.postprocess(image, output_type=output_type) | |
# Offload all models | |
self.maybe_free_model_hooks() | |
if not return_dict: | |
return (image,) | |
return FluxPipelineOutput(images=image) | |