AlekseyCalvin commited on
Commit
5815090
1 Parent(s): 76b5c95

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +242 -0
app.py ADDED
@@ -0,0 +1,242 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import json
3
+ import logging
4
+ import argparse
5
+ import torch
6
+ import os
7
+ from os import path
8
+ from PIL import Image
9
+ import numpy as np
10
+ import spaces
11
+ import copy
12
+ import random
13
+ import time
14
+ from typing import Any, Dict, List, Optional, Union
15
+ from huggingface_hub import hf_hub_download
16
+ from diffusers import DiffusionPipeline, AutoencoderTiny, AutoPipelineForImage2Image
17
+ import safetensors.torch
18
+ from safetensors.torch import load_file
19
+ from pipeline import FluxWithCFGPipeline
20
+ from transformers import CLIPModel, CLIPProcessor, CLIPConfig
21
+ import gc
22
+ import warnings
23
+
24
+ warnings.filterwarnings("ignore", category=FutureWarning)
25
+
26
+ cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
27
+ os.environ["TRANSFORMERS_CACHE"] = cache_path
28
+ os.environ["HF_HUB_CACHE"] = cache_path
29
+ os.environ["HF_HOME"] = cache_path
30
+
31
+ device = "cuda" if torch.cuda.is_available() else "cpu"
32
+
33
+ torch.backends.cuda.matmul.allow_tf32 = True
34
+
35
+ torch._inductor.config.conv_1x1_as_mm = True
36
+ torch._inductor.config.coordinate_descent_tuning = True
37
+ torch._inductor.config.epilogue_fusion = False
38
+ torch._inductor.config.coordinate_descent_check_all_directions = True
39
+
40
+ dtype = torch.bfloat16
41
+ pipe = FluxWithCFGPipeline.from_pretrained("ostris/OpenFLUX.1", torch_dtype=dtype, text_encoder_3=None, tokenizer_3=None
42
+ ).to("cuda")
43
+ pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to("cuda")
44
+
45
+ pipe.to("cuda")
46
+ clipmodel = 'norm'
47
+ if clipmodel == "long":
48
+ model_id = "zer0int/LongCLIP-GmP-ViT-L-14"
49
+ config = CLIPConfig.from_pretrained(model_id)
50
+ maxtokens = 77
51
+ if clipmodel == "norm":
52
+ model_id = "zer0int/CLIP-GmP-ViT-L-14"
53
+ config = CLIPConfig.from_pretrained(model_id)
54
+ maxtokens = 77
55
+ clip_model = CLIPModel.from_pretrained(model_id, torch_dtype=torch.bfloat16, config=config, ignore_mismatched_sizes=True).to("cuda")
56
+ clip_processor = CLIPProcessor.from_pretrained(model_id, padding="max_length", max_length=maxtokens, ignore_mismatched_sizes=True, return_tensors="pt", truncation=True)
57
+ config.text_config.max_position_embeddings = 77
58
+
59
+ pipe.tokenizer = clip_processor.tokenizer
60
+ pipe.text_encoder = clip_model.text_model
61
+ pipe.tokenizer_max_length = maxtokens
62
+ pipe.text_encoder.dtype = torch.bfloat16
63
+ torch.cuda.empty_cache()
64
+
65
+ pipe.transformer.to(memory_format=torch.channels_last)
66
+ pipe.vae.to(memory_format=torch.channels_last)
67
+
68
+ pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True)
69
+ pipe.vae.decode = torch.compile(pipe.vae.decode, mode="max-autotune", fullgraph=True)
70
+
71
+ # Load LoRAs from JSON file
72
+ with open('loras.json', 'r') as f:
73
+ loras = json.load(f)
74
+
75
+ MAX_SEED = 2**32-1
76
+
77
+ class calculateDuration:
78
+ def __init__(self, activity_name=""):
79
+ self.activity_name = activity_name
80
+
81
+ def __enter__(self):
82
+ self.start_time = time.time()
83
+ return self
84
+
85
+ def __exit__(self, exc_type, exc_value, traceback):
86
+ self.end_time = time.time()
87
+ self.elapsed_time = self.end_time - self.start_time
88
+ if self.activity_name:
89
+ print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
90
+ else:
91
+ print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
92
+
93
+
94
+ def update_selection(evt: gr.SelectData, width, height):
95
+ selected_lora = loras[evt.index]
96
+ new_placeholder = f"Type a prompt for {selected_lora['title']}"
97
+ lora_repo = selected_lora["repo"]
98
+ updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨"
99
+ if "aspect" in selected_lora:
100
+ if selected_lora["aspect"] == "portrait":
101
+ width = 768
102
+ height = 1024
103
+ elif selected_lora["aspect"] == "landscape":
104
+ width = 1024
105
+ height = 768
106
+ return (
107
+ gr.update(placeholder=new_placeholder),
108
+ updated_text,
109
+ evt.index,
110
+ width,
111
+ height,
112
+ )
113
+
114
+ @spaces.GPU(duration=70)
115
+ def generate_image(prompt, negative_prompt, width, height, steps, seed, lora_scale=1.0, cfg_scale=3.5):
116
+ pipe.to("cuda")
117
+ generator = torch.Generator(device="cuda").manual_seed(seed)
118
+
119
+ with calculateDuration("Generating image"):
120
+ # Generate image
121
+ image = pipe(
122
+ prompt=f"{prompt}",
123
+ negative_prompt=negative_prompt,
124
+ num_inference_steps=steps,
125
+ guidance_scale=cfg_scale,
126
+ width=width,
127
+ height=height,
128
+ generator=generator,
129
+ joint_attention_kwargs={"scale": lora_scale},
130
+ ).images[0]
131
+ return image
132
+
133
+ def run_lora(prompt, negative_prompt, lora_scale, cfg_scale, steps, selected_lora, seed, width, height):
134
+ if negative_prompt == "":
135
+ negative_prompt = None
136
+ if selected_index is None:
137
+ raise gr.Error("Select a LoRA adapter square before proceeding.")
138
+
139
+ lora_path = selected_lora["repo"]
140
+
141
+ # Load LoRA weights
142
+ with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"):
143
+ if "weights" in selected_lora:
144
+ pipe.load_lora_weights(lora_path, weight_name=selected_lora["weights"], adapter_name=selected_lora["repo"], lora_scale=[1.0], adapter_weights=lora_scale)
145
+ else:
146
+ pipe.load_lora_weights(lora_path, adapter_name=selected_lora["repo"], lora_scale=[1.0], adapter_weights=["scale"])
147
+ # Load LoRA weights
148
+ # with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"):
149
+ # if "weights" in selected_lora:
150
+ # pipe.load_lora_weights("ostris/OpenFLUX.1", weight_name="openflux1-v0.1.0-fast-lora.safetensors", adapter_name="soon", adapter_weights=[1.0], lora_scale=[1.0])
151
+ # pipe.load_lora_weights(lora_path, weight_name=selected_lora["weights"], adapter_name=selected_lora["repo"], lora_scale=[1.0])
152
+ # pipe.set_adapters(["fast", selected_lora["repo"]], adapter_weights=[1.0, 1.0])
153
+ # else:
154
+ # pipe.load_lora_weights("ostris/OpenFLUX.1", weight_name="openflux1-v0.1.0-fast-lora.safetensors", adapter_name="soon", adapter_weights=[1.0], lora_scale=[1.0])
155
+ # pipe.load_lora_weights(lora_path, adapter_name=selected_lora["repo"], lora_scale=[1.0])
156
+ # pipe.set_adapters(["fast", selected_lora["repo"]], adapter_weights=[1.0, 1.0])
157
+
158
+ image = generate_image(prompt, width, height, steps, negative_prompt, seed, lora_scale, cfg_scale)
159
+ pipe.to("cpu")
160
+ pipe.unload_lora_weights()
161
+ return image, seed
162
+
163
+ run_lora.zerogpu = True
164
+ #pipe.load_lora_weights("ostris/OpenFLUX.1", weight_name="openflux1-v0.1.0-fast-lora.safetensors", adapter_name="fast")
165
+ #pipe.set_adapters("fast")
166
+ #pipe.set_adapters(["fast", "toy"], adapter_weights=[0.5, 1.0])
167
+ #pipe.fuse_lora(adapter_names=["fast"], lora_scale=1.0)
168
+
169
+ css = '''
170
+ #gen_btn{height: 100%}
171
+ #title{text-align: center}
172
+ #title h1{font-size: 3em; display:inline-flex; align-items:center}
173
+ #title img{width: 100px; margin-right: 0.5em}
174
+ #gallery .grid-wrap{height: 10vh}
175
+ '''
176
+ with gr.Blocks(theme=gr.themes.Soft(), css=css) as app:
177
+ title = gr.HTML(
178
+ """<h1><img src="https://huggingface.co/AlekseyCalvin/HSTklimbimOPENfluxLora/resolve/main/acs62iv.png" alt="LoRA">OpenFlux LoRAsoon®</h1>""",
179
+ elem_id="title",
180
+ )
181
+ # Info blob stating what the app is running
182
+ info_blob = gr.HTML(
183
+ """<div id="info_blob"> SOON®'s curated LoRa Gallery & Art Manufactory Space.|Runs on Ostris' OpenFLUX.1 model + fast-gen LoRA & Zer0int's fine-tuned CLIP-GmP-ViT-L-14*! (*'normal' 77 tokens)| Largely stocked w/our trained LoRAs: Historic Color, Silver Age Poets, Sots Art, more!|</div>"""
184
+ )
185
+
186
+ # Info blob stating what the app is running
187
+ info_blob = gr.HTML(
188
+ """<div id="info_blob"> *Auto-planting of prompts with a choice LoRA trigger errors out in this space over flaws yet unclear. In its stead, we pose numbered LoRA-box rows & a matched token cheat-sheet: ungainly & free. So, prephrase your prompts w/: 1-2. HST style autochrome |3. RCA style Communist poster |4. SOTS art |5. HST Austin Osman Spare style |6. Vladimir Mayakovsky |7-8. Marina Tsvetaeva Tsvetaeva_02.CR2 |9. Anna Akhmatova |10. Osip Mandelshtam |11-12. Alexander Blok |13. Blok_02.CR2 |14. LEN Lenin |15. Leon Trotsky |16. Rosa Fluxemburg |17. HST Peterhof photo |18-19. HST |20. HST portrait |21. HST |22. HST 80s Perestroika-era Soviet photo |23-30. HST |31. How2Draw a__ |32. propaganda poster |33. TOK hybrid photo of__ with cartoon of__ |34. 2004 IMG_1099.CR2 photo |35. unexpected photo of |36. flmft |37. 80s yearbook photo |38. TOK portra |39. pficonics |40. retrofuturism |41. wh3r3sw4ld0 |42. amateur photo |43. crisp |44-45. IMG_1099.CR2 |46. FilmFotos |47. ff-collage |48. HST |49-50. AOS |51. cover </div>"""
189
+ )
190
+ selected_index = gr.State(None)
191
+ with gr.Row():
192
+ with gr.Column(scale=3):
193
+ prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Select LoRa/Style & type prompt! What do you want to see?")
194
+ with gr.Row():
195
+ with gr.Column(scale=3):
196
+ negative_prompt = gr.Textbox(label="Negative Prompt", lines=1, placeholder="List unwanted conditions, open-fluxedly!")
197
+ with gr.Column(scale=1, elem_id="gen_column"):
198
+ generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
199
+ with gr.Row():
200
+ with gr.Column(scale=3):
201
+ selected_info = gr.Markdown("")
202
+ gallery = gr.Gallery(
203
+ [(item["image"], item["title"]) for item in loras],
204
+ label="LoRA Inventory",
205
+ allow_preview=False,
206
+ columns=3,
207
+ elem_id="gallery"
208
+ )
209
+
210
+ with gr.Column(scale=4):
211
+ result = gr.Image(label="Generated Image")
212
+
213
+ with gr.Row():
214
+ with gr.Accordion("Advanced Settings", open=True):
215
+ with gr.Column():
216
+ with gr.Row():
217
+ cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3)
218
+ steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=20)
219
+
220
+ with gr.Row():
221
+ width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
222
+ height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
223
+
224
+ with gr.Row():
225
+ seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
226
+ lora_scale = gr.Slider(label="LoRA Scale", minimum=0.2, maximum=2.0, step=0.01, value=1.0)
227
+
228
+ gallery.select(
229
+ update_selection,
230
+ inputs=[width, height],
231
+ outputs=[prompt, selected_info, selected_index, width, height]
232
+ )
233
+
234
+ gr.on(
235
+ triggers=[generate_button.click, prompt.submit],
236
+ fn=run_lora,
237
+ inputs=[prompt, seed, width, height, steps, negative_prompt, lora_scale, cfg_scale, selected_index],
238
+ outputs=[result, seed]
239
+ )
240
+
241
+ app.queue(default_concurrency_limit=None).launch(show_error=True)
242
+ app.launch()