Spaces:
Running
on
Zero
Running
on
Zero
AlekseyCalvin
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -13,13 +13,15 @@ import random
|
|
13 |
import time
|
14 |
from typing import Any, Dict, List, Optional, Union
|
15 |
from huggingface_hub import hf_hub_download
|
16 |
-
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoPipelineForImage2Image
|
17 |
import safetensors.torch
|
18 |
from safetensors.torch import load_file
|
19 |
from pipeline import FluxWithCFGPipeline
|
20 |
from transformers import CLIPModel, CLIPProcessor, CLIPConfig
|
21 |
import gc
|
22 |
import warnings
|
|
|
|
|
23 |
|
24 |
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
|
25 |
os.environ["TRANSFORMERS_CACHE"] = cache_path
|
@@ -35,10 +37,12 @@ with open('loras.json', 'r') as f:
|
|
35 |
loras = json.load(f)
|
36 |
|
37 |
dtype = torch.bfloat16
|
38 |
-
|
39 |
-
).to("cuda")
|
|
|
40 |
pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to("cuda")
|
41 |
|
|
|
42 |
pipe.to("cuda")
|
43 |
clipmodel = 'norm'
|
44 |
if clipmodel == "long":
|
@@ -48,11 +52,10 @@ if clipmodel == "long":
|
|
48 |
if clipmodel == "norm":
|
49 |
model_id = "zer0int/CLIP-GmP-ViT-L-14"
|
50 |
config = CLIPConfig.from_pretrained(model_id)
|
51 |
-
maxtokens =
|
52 |
-
clip_model = CLIPModel.from_pretrained(model_id, torch_dtype=torch.bfloat16, config=config, ignore_mismatched_sizes=
|
53 |
-
clip_processor = CLIPProcessor.from_pretrained(model_id, padding="max_length", max_length=maxtokens, ignore_mismatched_sizes=
|
54 |
-
|
55 |
-
|
56 |
pipe.tokenizer = clip_processor.tokenizer
|
57 |
pipe.text_encoder = clip_model.text_model
|
58 |
pipe.tokenizer_max_length = maxtokens
|
|
|
13 |
import time
|
14 |
from typing import Any, Dict, List, Optional, Union
|
15 |
from huggingface_hub import hf_hub_download
|
16 |
+
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoPipelineForImage2Image, ConfigMixin
|
17 |
import safetensors.torch
|
18 |
from safetensors.torch import load_file
|
19 |
from pipeline import FluxWithCFGPipeline
|
20 |
from transformers import CLIPModel, CLIPProcessor, CLIPConfig
|
21 |
import gc
|
22 |
import warnings
|
23 |
+
import safetensors.torch
|
24 |
+
|
25 |
|
26 |
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
|
27 |
os.environ["TRANSFORMERS_CACHE"] = cache_path
|
|
|
37 |
loras = json.load(f)
|
38 |
|
39 |
dtype = torch.bfloat16
|
40 |
+
|
41 |
+
pipe = FluxWithCFGPipeline.from_pretrained("ostris/OpenFLUX.1", torch_dtype=dtype).to("cuda")
|
42 |
+
|
43 |
pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to("cuda")
|
44 |
|
45 |
+
|
46 |
pipe.to("cuda")
|
47 |
clipmodel = 'norm'
|
48 |
if clipmodel == "long":
|
|
|
52 |
if clipmodel == "norm":
|
53 |
model_id = "zer0int/CLIP-GmP-ViT-L-14"
|
54 |
config = CLIPConfig.from_pretrained(model_id)
|
55 |
+
maxtokens = 512
|
56 |
+
clip_model = CLIPModel.from_pretrained(model_id, torch_dtype=torch.bfloat16, config=config, ignore_mismatched_sizes=False).to("cuda")
|
57 |
+
clip_processor = CLIPProcessor.from_pretrained(model_id, padding="max_length", max_length=maxtokens, ignore_mismatched_sizes=False, return_tensors="pt", truncation=True)
|
58 |
+
pipe.transformer=(FluxTransformer2DModel.from_pretrained("ostris/OpenFLUX.1", num_single_layers=0, chunk_size=0)
|
|
|
59 |
pipe.tokenizer = clip_processor.tokenizer
|
60 |
pipe.text_encoder = clip_model.text_model
|
61 |
pipe.tokenizer_max_length = maxtokens
|