Spaces:
Running
on
Zero
Running
on
Zero
AlekseyCalvin
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -17,6 +17,7 @@ from diffusers import DiffusionPipeline, FluxTransformer2DModel, FluxPipeline, A
|
|
17 |
import safetensors.torch
|
18 |
from safetensors.torch import load_file
|
19 |
from custom_pipeline import FluxWithCFGPipeline
|
|
|
20 |
import gc
|
21 |
|
22 |
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
|
@@ -29,12 +30,27 @@ torch.backends.cuda.matmul.allow_tf32 = True
|
|
29 |
dtype = torch.float16
|
30 |
pipe = FluxWithCFGPipeline.from_pretrained(
|
31 |
"ostris/OpenFLUX.1", torch_dtype=dtype
|
32 |
-
)
|
33 |
-
|
34 |
-
|
35 |
-
pipe.set_adapters("fast")
|
36 |
-
pipe.fuse_lora(adapter_names=["fast"], lora_scale=1.0)
|
37 |
pipe.to("cuda")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
torch.cuda.empty_cache()
|
39 |
|
40 |
# Load LoRAs from JSON file
|
@@ -119,9 +135,13 @@ def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, wid
|
|
119 |
# Load LoRA weights
|
120 |
with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"):
|
121 |
if "weights" in selected_lora:
|
122 |
-
pipe.load_lora_weights(lora_path, weight_name=selected_lora["weights"])
|
|
|
|
|
123 |
else:
|
124 |
-
pipe.load_lora_weights(lora_path)
|
|
|
|
|
125 |
|
126 |
# Set random seed for reproducibility
|
127 |
with calculateDuration("Randomizing seed"):
|
@@ -134,6 +154,10 @@ def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, wid
|
|
134 |
return image, seed
|
135 |
|
136 |
run_lora.zerogpu = True
|
|
|
|
|
|
|
|
|
137 |
|
138 |
css = '''
|
139 |
#gen_btn{height: 100%}
|
@@ -180,8 +204,8 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css) as app:
|
|
180 |
with gr.Accordion("Advanced Settings", open=True):
|
181 |
with gr.Column():
|
182 |
with gr.Row():
|
183 |
-
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=
|
184 |
-
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=
|
185 |
|
186 |
with gr.Row():
|
187 |
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=768)
|
|
|
17 |
import safetensors.torch
|
18 |
from safetensors.torch import load_file
|
19 |
from custom_pipeline import FluxWithCFGPipeline
|
20 |
+
from transformers import CLIPModel, CLIPProcessor, CLIPConfig
|
21 |
import gc
|
22 |
|
23 |
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
|
|
|
30 |
dtype = torch.float16
|
31 |
pipe = FluxWithCFGPipeline.from_pretrained(
|
32 |
"ostris/OpenFLUX.1", torch_dtype=dtype
|
33 |
+
).to("cuda")
|
34 |
+
pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to("cuda")
|
35 |
+
|
|
|
|
|
36 |
pipe.to("cuda")
|
37 |
+
clipmodel = 'norm'
|
38 |
+
if clipmodel == "long":
|
39 |
+
model_id = "zer0int/LongCLIP-GmP-ViT-L-14"
|
40 |
+
config = CLIPConfig.from_pretrained(model_id)
|
41 |
+
maxtokens = 77
|
42 |
+
if clipmodel == "norm":
|
43 |
+
model_id = "zer0int/CLIP-GmP-ViT-L-14"
|
44 |
+
config = CLIPConfig.from_pretrained(model_id)
|
45 |
+
maxtokens = 77
|
46 |
+
clip_model = CLIPModel.from_pretrained(model_id, torch_dtype=torch.bfloat16, config=config, ignore_mismatched_sizes=True).to("cuda")
|
47 |
+
clip_processor = CLIPProcessor.from_pretrained(model_id, padding="max_length", max_length=maxtokens, ignore_mismatched_sizes=True, return_tensors="pt", truncation=True)
|
48 |
+
config.text_config.max_position_embeddings = 77
|
49 |
+
|
50 |
+
pipe.tokenizer = clip_processor.tokenizer
|
51 |
+
pipe.text_encoder = clip_model.text_model
|
52 |
+
pipe.tokenizer_max_length = maxtokens
|
53 |
+
pipe.text_encoder.dtype = torch.bfloat16
|
54 |
torch.cuda.empty_cache()
|
55 |
|
56 |
# Load LoRAs from JSON file
|
|
|
135 |
# Load LoRA weights
|
136 |
with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"):
|
137 |
if "weights" in selected_lora:
|
138 |
+
pipe.load_lora_weights(lora_path, weight_name=selected_lora["weights"], adapter_name="choice")
|
139 |
+
pipe.load_lora_weights("ostris/OpenFLUX.1", weight_name="openflux1-v0.1.0-fast-lora.safetensors", adapter_name="fast")
|
140 |
+
pipe.set_adapters(["fast", "choice"], adapter_weights=[1.0, lora_scale])
|
141 |
else:
|
142 |
+
pipe.load_lora_weights(lora_path, adapter_name="choice")
|
143 |
+
pipe.load_lora_weights("ostris/OpenFLUX.1", weight_name="openflux1-v0.1.0-fast-lora.safetensors", adapter_name="fast")
|
144 |
+
pipe.set_adapters(["fast", "choice"], adapter_weights=[1.0, lora_scale])
|
145 |
|
146 |
# Set random seed for reproducibility
|
147 |
with calculateDuration("Randomizing seed"):
|
|
|
154 |
return image, seed
|
155 |
|
156 |
run_lora.zerogpu = True
|
157 |
+
#pipe.load_lora_weights("ostris/OpenFLUX.1", weight_name="openflux1-v0.1.0-fast-lora.safetensors", adapter_name="fast")
|
158 |
+
#pipe.set_adapters("fast")
|
159 |
+
#pipe.set_adapters(["fast", "toy"], adapter_weights=[0.5, 1.0])
|
160 |
+
#pipe.fuse_lora(adapter_names=["fast"], lora_scale=1.0)
|
161 |
|
162 |
css = '''
|
163 |
#gen_btn{height: 100%}
|
|
|
204 |
with gr.Accordion("Advanced Settings", open=True):
|
205 |
with gr.Column():
|
206 |
with gr.Row():
|
207 |
+
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.0)
|
208 |
+
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=10)
|
209 |
|
210 |
with gr.Row():
|
211 |
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=768)
|