import torch import numpy as np import html import inspect import re import urllib.parse as ul from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast, CLIPTextModelWithProjection from diffusers import FlowMatchEulerDiscreteScheduler, AutoPipelineForImage2Image, FluxPipeline, FluxTransformer2DModel from diffusers import StableDiffusion3Pipeline, AutoencoderKL, DiffusionPipeline, ImagePipelineOutput from diffusers.image_processor import VaeImageProcessor from diffusers.loaders import FluxLoraLoaderMixin, FromSingleFileMixin, SD3LoraLoaderMixin from diffusers.utils import ( USE_PEFT_BACKEND, is_torch_xla_available, logging, BACKENDS_MAPPING, deprecate, replace_example_docstring, scale_lora_layers, unscale_lora_layers, ) from diffusers.utils.torch_utils import randn_tensor from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput from typing import Any, Callable, Dict, List, Optional, Union from PIL import Image from diffusers.pipelines.flux.pipeline_flux import calculate_shift, retrieve_timesteps, FluxTransformer2DModel from diffusers.utils import is_torch_xla_available if is_torch_xla_available(): import torch_xla.core.xla_model as xm XLA_AVAILABLE = True else: XLA_AVAILABLE = False logger = logging.get_logger(__name__) # pylint: disable=invalid-name # Constants for shift calculation BASE_SEQ_LEN = 256 MAX_SEQ_LEN = 4096 BASE_SHIFT = 0.5 MAX_SHIFT = 1.2 # Helper functions def calculate_timestep_shift(image_seq_len: int) -> float: """Calculates the timestep shift (mu) based on the image sequence length.""" m = (MAX_SHIFT - BASE_SHIFT) / (MAX_SEQ_LEN - BASE_SEQ_LEN) b = BASE_SHIFT - m * BASE_SEQ_LEN mu = image_seq_len * m + b return mu def prepare_timesteps( scheduler: FlowMatchEulerDiscreteScheduler, num_inference_steps: Optional[int] = None, device: Optional[Union[str, torch.device]] = None, timesteps: Optional[List[int]] = None, sigmas: Optional[List[float]] = None, mu: Optional[float] = None, ) -> (torch.Tensor, int): """Prepares the timesteps for the diffusion process.""" if timesteps is not None and sigmas is not None: raise ValueError("Only one of `timesteps` or `sigmas` can be passed.") if timesteps is not None: scheduler.set_timesteps(timesteps=timesteps, device=device) elif sigmas is not None: scheduler.set_timesteps(sigmas=sigmas, device=device) else: scheduler.set_timesteps(num_inference_steps, device=device, mu=mu) timesteps = scheduler.timesteps num_inference_steps = len(timesteps) return timesteps, num_inference_steps # FLUX pipeline function class FluxWithCFGPipeline(DiffusionPipeline, FluxLoraLoaderMixin, FromSingleFileMixin): def __init__( self, scheduler: FlowMatchEulerDiscreteScheduler, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, text_encoder_2: T5EncoderModel, tokenizer_2: T5TokenizerFast, transformer: FluxTransformer2DModel, ): super().__init__() self.register_modules( vae=vae, text_encoder=text_encoder, text_encoder_2=text_encoder_2, tokenizer=tokenizer, tokenizer_2=tokenizer_2, transformer=transformer, scheduler=scheduler, ) self.vae_scale_factor = ( 2 ** (len(self.vae.config.block_out_channels)) if hasattr(self, "vae") and self.vae is not None else 16 ) self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) self.tokenizer_max_length = ( self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77 ) self.default_sample_size = 64 def _get_t5_prompt_embeds( self, prompt: Union[str, List[str]] = None, num_images_per_prompt: int = 1, max_sequence_length: int = 512, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, ): device = device or self._execution_device dtype = dtype or self.text_encoder.dtype prompt = [prompt] if isinstance(prompt, str) else prompt batch_size = len(prompt) text_inputs = self.tokenizer_2( prompt, padding="max_length", max_length=max_sequence_length, truncation=True, return_length=True, return_overflowing_tokens=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1]) logger.warning( "The following part of your input was truncated because `max_sequence_length` is set to " f" {max_sequence_length} tokens: {removed_text}" ) prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0] dtype = self.text_encoder_2.dtype prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) _, seq_len, _ = prompt_embeds.shape # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) return prompt_embeds def _get_clip_prompt_embeds( self, prompt: Union[str, List[str]], num_images_per_prompt: int = 1, device: Optional[torch.device] = None, ): device = device or self._execution_device prompt = [prompt] if isinstance(prompt, str) else prompt batch_size = len(prompt) text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer_max_length, truncation=True, return_overflowing_tokens=False, return_length=False, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1]) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer_max_length} tokens: {removed_text}" ) prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False) # Use pooled output of CLIPTextModel prompt_embeds = prompt_embeds.pooler_output prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt) prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1) return prompt_embeds def encode_prompt( self, prompt: Union[str, List[str]], prompt_2: Union[str, List[str]], num_images_per_prompt: int = 1, max_sequence_length: int = 512, do_classifier_free_guidance: bool = True, device: Optional[torch.device] = None, negative_prompt: Optional[Union[str, List[str]]] = None, negative_prompt_2: Optional[Union[str, List[str]]] = None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, pooled_prompt_embeds: Optional[torch.FloatTensor] = None, negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, lora_scale: Optional[float] = None, ): device = device or self._execution_device if device is None: device = self._execution_device # set lora scale so that monkey patched LoRA # function of text encoder can correctly access it if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin): self._lora_scale = lora_scale # dynamically adjust the LoRA scale if self.text_encoder is not None and USE_PEFT_BACKEND: scale_lora_layers(self.text_encoder, lora_scale) if self.text_encoder_2 is not None and USE_PEFT_BACKEND: scale_lora_layers(self.text_encoder_2, lora_scale) prompt = [prompt] if isinstance(prompt, str) else prompt if prompt is not None: batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if prompt_embeds is None: prompt_2 = prompt_2 or prompt prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 pooled_prompt_embeds = self._get_clip_prompt_embeds( prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, ) prompt_embeds = self._get_t5_prompt_embeds( prompt=prompt_2, num_images_per_prompt=num_images_per_prompt, max_sequence_length=max_sequence_length, device=device, ) if do_classifier_free_guidance and negative_prompt_embeds is None: negative_prompt = negative_prompt or "" negative_prompt_2 = negative_prompt_2 or negative_prompt # normalize str to list negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt negative_prompt_2 = ( batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2 ) if prompt is not None and type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) negative_clip_prompt_embed = self._get_clip_prompt_embeds( prompt=negative_prompt, device=device, num_images_per_prompt=num_images_per_prompt, ) t5_negative_prompt_embed = self._get_t5_prompt_embeds( prompt=negative_prompt_2, device=device, num_images_per_prompt=num_images_per_prompt, max_sequence_length=max_sequence_length, ) negative_clip_prompt_embed = torch.nn.functional.pad( negative_clip_prompt_embed, (0, t5_negative_prompt_embed.shape[-1] - negative_clip_prompt_embed.shape[-1]), ) negative_prompt_embeds = torch.cat([negative_clip_prompt_embed, t5_negative_prompt_embed], dim=-2) negative_pooled_prompt_embeds = torch.cat( [negative_clip_prompt_embed, t5_negative_prompt_embed], dim=-1 ) if self.text_encoder is not None: if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND: # Retrieve the original scale by scaling back the LoRA layers unscale_lora_layers(self.text_encoder, lora_scale) if self.text_encoder_2 is not None: if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND: # Retrieve the original scale by scaling back the LoRA layers unscale_lora_layers(self.text_encoder_2, lora_scale) dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype) pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt, 1) pooled_prompt_embeds = pooled_prompt_embeds.view(batch_size * num_images_per_prompt, -1) negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.view(batch_size * num_images_per_prompt, -1) return prompt_embeds, pooled_prompt_embeds, text_ids, negative_prompt_embeds, negative_pooled_prompt_embeds def check_inputs( self, prompt, prompt_2, height, width, negative_prompt=None, negative_prompt_2=None, prompt_embeds=None, negative_prompt_embeds=None, pooled_prompt_embeds=None, negative_pooled_prompt_embeds=None, max_sequence_length=None, ): if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt_2 is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)): raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}") if prompt_embeds is not None and pooled_prompt_embeds is None: raise ValueError( "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." ) if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.") if max_sequence_length is not None and max_sequence_length > 512: raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}") @staticmethod def _prepare_latent_image_ids(batch_size, height, width, device, dtype): latent_image_ids = torch.zeros(height // 2, width // 2, 3) latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None] latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :] latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape latent_image_ids = latent_image_ids.reshape( latent_image_id_height * latent_image_id_width, latent_image_id_channels ) return latent_image_ids.to(device=device, dtype=dtype) @staticmethod def _pack_latents(latents, batch_size, num_channels_latents, height, width): latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2) latents = latents.permute(0, 2, 4, 1, 3, 5) latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4) return latents @staticmethod def _unpack_latents(latents, height, width, vae_scale_factor): batch_size, num_patches, channels = latents.shape height = height // vae_scale_factor width = width // vae_scale_factor latents = latents.view(batch_size, height, width, channels // 4, 2, 2) latents = latents.permute(0, 3, 1, 4, 2, 5) latents = latents.reshape(batch_size, channels // (2 * 2), height * 2, width * 2) return latents # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs def enable_vae_slicing(self): r""" Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. """ self.vae.enable_slicing() def disable_vae_slicing(self): r""" Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to computing decoding in one step. """ self.vae.disable_slicing() def enable_vae_tiling(self): r""" Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow processing larger images. """ self.vae.enable_tiling() def disable_vae_tiling(self): r""" Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to computing decoding in one step. """ self.vae.disable_tiling() def prepare_latents( self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None, ): height = 2 * (int(height) // self.vae_scale_factor) width = 2 * (int(width) // self.vae_scale_factor) shape = (batch_size, num_channels_latents, height, width) if latents is not None: latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype) return latents.to(device=device, dtype=dtype), latent_image_ids if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width) latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype) return latents, latent_image_ids @property def guidance_scale(self): return self._guidance_scale @property def do_classifier_free_guidance(self): return self._guidance_scale > 1 @property def joint_attention_kwargs(self): return self._joint_attention_kwargs @property def num_timesteps(self): return self._num_timesteps @property def interrupt(self): return self._interrupt @torch.no_grad() @torch.inference_mode() def __call__( self, prompt: Union[str, List[str]] = None, prompt_2: Optional[Union[str, List[str]]] = None, height: Optional[int] = None, width: Optional[int] = None, negative_prompt: Optional[Union[str, List[str]]] = None, negative_prompt_2: Optional[Union[str, List[str]]] = None, num_inference_steps: int = 8, timesteps: List[int] = None, eta: Optional[float] = 0.0, guidance_scale: float = 3.5, device: Optional[int] = None, num_images_per_prompt: Optional[int] = 1, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, prompt_embeds: Optional[torch.FloatTensor] = None, pooled_prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, joint_attention_kwargs: Optional[Dict[str, Any]] = None, max_sequence_length: int = 300, **kwargs, ): height = height or self.default_sample_size * self.vae_scale_factor width = width or self.default_sample_size * self.vae_scale_factor # 1. Check inputs self.check_inputs( prompt, prompt_2, height, width, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, max_sequence_length=max_sequence_length, ) self._guidance_scale = guidance_scale self._joint_attention_kwargs = joint_attention_kwargs self._interrupt = False do_classifier_free_guidance = guidance_scale > 1.0 # 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") lora_scale = ( self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None ) ( prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, ) = self.encode_prompt( prompt=prompt, prompt_2=prompt_2, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, do_classifier_free_guidance=self.do_classifier_free_guidance, prompt_embeds=prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, device=device, num_images_per_prompt=num_images_per_prompt, max_sequence_length=max_sequence_length, lora_scale=lora_scale, ) if self.do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0) # 4. Prepare latent variables num_channels_latents = self.transformer.config.in_channels // 4 latents, latent_image_ids = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, negative_prompt_embeds.dtype, device, generator, latents, ) # 5. Prepare timesteps sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) image_seq_len = latents.shape[1] mu = calculate_timestep_shift(image_seq_len) timesteps, num_inference_steps = prepare_timesteps( self.scheduler, num_inference_steps, device, timesteps, sigmas, mu=mu, ) self._num_timesteps = len(timesteps) # 6. Denoising loop with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): if self.interrupt: continue latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents timestep = t.expand(latent_model_input.shape[0]).to(latents.dtype) if self.transformer.config.guidance_embeds: guidance = torch.tensor([guidance_scale], device=device) guidance = guidance.expand(latents.shape[0]) else: guidance = None noise_pred = self.transformer( hidden_states=latent_model_input, timestep=timestep / 1000, guidance=guidance, pooled_projections=pooled_prompt_embeds, encoder_hidden_states=prompt_embeds, txt_ids=text_ids, img_ids=latent_image_ids, joint_attention_kwargs=self.joint_attention_kwargs, return_dict=False, )[0] if self.do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents_dtype = latents.dtype latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] if latents.dtype != latents_dtype: if torch.backends.mps.is_available(): # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 latents = latents.to(latents_dtype) # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() # Final image return self._decode_latents_to_image(latents, height, width, output_type) self.maybe_free_model_hooks() torch.cuda.empty_cache() def _decode_latents_to_image(self, latents, height, width, output_type, vae=None): """Decodes the given latents into an image.""" vae = vae or self.vae latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) latents = (latents / vae.config.scaling_factor) + vae.config.shift_factor image = vae.decode(latents, return_dict=False)[0] return self.image_processor.postprocess(image, output_type=output_type)[0]