HTD_HTR / builder.py
AlhitawiMohammed22's picture
Create Builder Script
ff135d3
# Copyright (C) 2021, Mindee.
# This program is licensed under the Apache License version 2.
# See LICENSE or go to <https://www.apache.org/licenses/LICENSE-2.0.txt> for full license details.
from typing import Any, Dict, List, Tuple
import pandas as pd
import numpy as np
from scipy.cluster.hierarchy import fclusterdata
from doctr.utils.geometry import estimate_page_angle, resolve_enclosing_bbox, resolve_enclosing_rbbox, rotate_boxes
from doctr.utils.repr import NestedObject
__all__ = ['DocumentBuilder']
class DocumentBuilder(NestedObject):
"""Implements a document builder
Args:
resolve_lines: whether words should be automatically grouped into lines
resolve_blocks: whether lines should be automatically grouped into blocks
paragraph_break: relative length of the minimum space separating paragraphs
export_as_straight_boxes: if True, force straight boxes in the export (fit a rectangle
box to all rotated boxes). Else, keep the boxes format unchanged, no matter what it is.
"""
def __init__(
self,
resolve_lines: bool = True,
resolve_blocks: bool = True,
paragraph_break: float = 0.035,
export_as_straight_boxes: bool = False,
) -> None:
self.resolve_lines = resolve_lines
self.resolve_blocks = resolve_blocks
self.paragraph_break = paragraph_break
self.export_as_straight_boxes = export_as_straight_boxes
@staticmethod
def _sort_boxes(boxes: np.ndarray) -> np.ndarray:
"""Sort bounding boxes from top to bottom, left to right
Args:
boxes: bounding boxes of shape (N, 4) or (N, 4, 2) (in case of rotated bbox)
Returns:
tuple: indices of ordered boxes of shape (N,), boxes
If straight boxes are passed tpo the function, boxes are unchanged
else: boxes returned are straight boxes fitted to the straightened rotated boxes
so that we fit the lines afterwards to the straigthened page
"""
if boxes.ndim == 3:
boxes = rotate_boxes(
loc_preds=boxes,
angle=-estimate_page_angle(boxes),
orig_shape=(1024, 1024),
min_angle=5.,
)
boxes = np.concatenate((boxes.min(1), boxes.max(1)), -1)
return (boxes[:, 0] + 2 * boxes[:, 3] / np.median(boxes[:, 3] - boxes[:, 1])).argsort(), boxes
def _resolve_sub_lines(self, boxes: np.ndarray, word_idcs: List[int]) -> List[List[int]]:
"""Split a line in sub_lines
Args:
boxes: bounding boxes of shape (N, 4)
word_idcs: list of indexes for the words of the line
Returns:
A list of (sub-)lines computed from the original line (words)
"""
lines = []
# Sort words horizontally
word_idcs = [word_idcs[idx]
for idx in boxes[word_idcs, 0].argsort().tolist()]
# Eventually split line horizontally
if len(word_idcs) < 2:
lines.append(word_idcs)
else:
sub_line = [word_idcs[0]]
for i in word_idcs[1:]:
horiz_break = True
prev_box = boxes[sub_line[-1]]
# Compute distance between boxes
dist = boxes[i, 0] - prev_box[2]
# If distance between boxes is lower than paragraph break, same sub-line
if dist < self.paragraph_break:
horiz_break = False
if horiz_break:
lines.append(sub_line)
sub_line = []
sub_line.append(i)
lines.append(sub_line)
return lines
def _resolve_lines(self, boxes: np.ndarray) -> List[List[int]]:
"""Order boxes to group them in lines
Args:
boxes: bounding boxes of shape (N, 4) or (N, 4, 2) in case of rotated bbox
Returns:
nested list of box indices
"""
# Sort boxes, and straighten the boxes if they are rotated
idxs, boxes = self._sort_boxes(boxes)
# Compute median for boxes heights
y_med = np.median(boxes[:, 3] - boxes[:, 1])
lines = []
words = [idxs[0]] # Assign the top-left word to the first line
# Define a mean y-center for the line
y_center_sum = boxes[idxs[0]][[1, 3]].mean()
for idx in idxs[1:]:
vert_break = True
# Compute y_dist
y_dist = abs(boxes[idx][[1, 3]].mean() - y_center_sum / len(words))
# If y-center of the box is close enough to mean y-center of the line, same line
if y_dist < y_med / 2:
vert_break = False
if vert_break:
# Compute sub-lines (horizontal split)
lines.extend(self._resolve_sub_lines(boxes, words))
words = []
y_center_sum = 0
words.append(idx)
y_center_sum += boxes[idx][[1, 3]].mean()
# Use the remaining words to form the last(s) line(s)
if len(words) > 0:
# Compute sub-lines (horizontal split)
lines.extend(self._resolve_sub_lines(boxes, words))
return lines
@staticmethod
def _resolve_blocks(boxes: np.ndarray, lines: List[List[int]]) -> List[List[List[int]]]:
"""Order lines to group them in blocks
Args:
boxes: bounding boxes of shape (N, 4) or (N, 4, 2)
lines: list of lines, each line is a list of idx
Returns:
nested list of box indices
"""
# Resolve enclosing boxes of lines
if boxes.ndim == 3:
box_lines = np.asarray([
resolve_enclosing_rbbox(
[tuple(boxes[idx, :, :]) for idx in line])
for line in lines # type: ignore[misc]
])
else:
_box_lines = [
resolve_enclosing_bbox([
# type: ignore[misc]
(tuple(boxes[idx, :2]), tuple(boxes[idx, 2:])) for idx in line
])
for line in lines
]
box_lines = np.asarray([(x1, y1, x2, y2)
for ((x1, y1), (x2, y2)) in _box_lines])
# Compute geometrical features of lines to clusterize
# Clusterizing only with box centers yield to poor results for complex documents
if boxes.ndim == 3:
box_features = np.stack(
(
(box_lines[:, 0, 0] + box_lines[:, 0, 1]) / 2,
(box_lines[:, 0, 0] + box_lines[:, 2, 0]) / 2,
(box_lines[:, 0, 0] + box_lines[:, 2, 1]) / 2,
(box_lines[:, 0, 1] + box_lines[:, 2, 1]) / 2,
(box_lines[:, 0, 1] + box_lines[:, 2, 0]) / 2,
(box_lines[:, 2, 0] + box_lines[:, 2, 1]) / 2,
), axis=-1
)
else:
box_features = np.stack(
(
(box_lines[:, 0] + box_lines[:, 3]) / 2,
(box_lines[:, 1] + box_lines[:, 2]) / 2,
(box_lines[:, 0] + box_lines[:, 2]) / 2,
(box_lines[:, 1] + box_lines[:, 3]) / 2,
box_lines[:, 0],
box_lines[:, 1],
), axis=-1
)
# Compute clusters
clusters = fclusterdata(
box_features, t=0.1, depth=4, criterion='distance', metric='euclidean')
_blocks: Dict[int, List[int]] = {}
# Form clusters
for line_idx, cluster_idx in enumerate(clusters):
if cluster_idx in _blocks.keys():
_blocks[cluster_idx].append(line_idx)
else:
_blocks[cluster_idx] = [line_idx]
# Retrieve word-box level to return a fully nested structure
blocks = [[lines[idx] for idx in block] for block in _blocks.values()]
return blocks
def _build_blocks(self, boxes: np.ndarray, word_preds: List[Tuple[str, float]], page_shapes: List[Tuple[int, int]]) -> Any:
"""Gather independent words in structured blocks
Args:
boxes: bounding boxes of all detected words of the page, of shape (N, 5) or (N, 4, 2)
word_preds: list of all detected words of the page, of shape N
Returns:
list of block elements
"""
if boxes.shape[0] != len(word_preds):
raise ValueError(
f"Incompatible argument lengths: {boxes.shape[0]}, {len(word_preds)}")
if boxes.shape[0] == 0:
return []
# Decide whether we try to form lines
_boxes = boxes
if self.resolve_lines:
lines = self._resolve_lines(
_boxes if _boxes.ndim == 3 else _boxes[:, :4])
# Decide whether we try to form blocks
if self.resolve_blocks and len(lines) > 1:
_blocks = self._resolve_blocks(
_boxes if _boxes.ndim == 3 else _boxes[:, :4], lines)
else:
_blocks = [lines]
else:
# Sort bounding boxes, one line for all boxes, one block for the line
lines = [self._sort_boxes(
_boxes if _boxes.ndim == 3 else _boxes[:, :4])[0]]
_blocks = [lines]
rows = []
for block_idx, lines in enumerate(_blocks):
for line_idx, line in enumerate(lines):
for i,idx in enumerate(line):
h, w = page_shapes
row = (
block_idx, line_idx, i, word_preds[idx],
int(round(boxes[idx, 0]*w)
), int(round(boxes[idx, 1]*h)),
int(round(boxes[idx, 2]*w)
), int(round(boxes[idx, 3]*h)),
int(round(boxes[idx, 4]*100))
)
rows.append(row)
return rows
def extra_repr(self) -> str:
return (f"resolve_lines={self.resolve_lines}, resolve_blocks={self.resolve_blocks}, "
f"paragraph_break={self.paragraph_break}, "
f"export_as_straight_boxes={self.export_as_straight_boxes}")
def __call__(
self,
boxes: List[np.ndarray],
text_preds: List[List[Tuple[str, float]]],
page_shapes: List[Tuple[int, int]]
) -> pd.DataFrame:
"""Re-arrange detected words into structured blocks
Args:
boxes: list of N elements, where each element represents the localization predictions, of shape (*, 5)
or (*, 6) for all words for a given page
text_preds: list of N elements, where each element is the list of all word prediction (text + confidence)
page_shape: shape of each page, of size N
Returns:
document object
"""
if len(boxes) != len(text_preds) or len(boxes) != len(page_shapes):
raise ValueError(
"All arguments are expected to be lists of the same size")
if self.export_as_straight_boxes and len(boxes) > 0:
# If boxes are already straight OK, else fit a bounding rect
if boxes[0].ndim == 3:
straight_boxes = []
# Iterate over pages
for p_boxes in boxes:
# Iterate over boxes of the pages
straight_boxes.append(np.concatenate(
(p_boxes.min(1), p_boxes.max(1)), 1))
boxes = straight_boxes
_pages = [
pd.DataFrame.from_records(self._build_blocks(page_boxes, word_preds, shape), columns=[
"block_num", "line_num", "word_num" ,"word", "xmin", "ymin", "xmax", "ymax", "confidence_score"
])
for _idx, shape, page_boxes, word_preds in zip(range(len(boxes)), page_shapes, boxes, text_preds)
]
return _pages