File size: 9,165 Bytes
d51e88d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "import gradio as gr\n",
    "import requests\n",
    "import json"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "outputs": [],
   "source": [
    "def list_to_dict(data):\n",
    "    results = {}\n",
    "\n",
    "    for i in range(len(data)):\n",
    "        # Access the i-th dictionary in the list using an integer index\n",
    "        d = data[i]\n",
    "        # Assign the value of the 'label' key to the 'score' value in the results dictionary\n",
    "        results[d['label']] = d['score']\n",
    "\n",
    "    # The results dictionary will now contain the label-score pairs from the data list\n",
    "    return results"
   ],
   "metadata": {
    "collapsed": false
   }
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "outputs": [],
   "source": [
    "\n",
    "\n",
    "API_URL = \"https://api-inference.huggingface.co/models/nateraw/food\"\n",
    "headers = {\"Authorization\": \"Bearer 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\"}\n",
    "\n",
    "def query(filename):\n",
    "    with open(filename, \"rb\") as f:\n",
    "        data = f.read()\n",
    "    response = requests.request(\"POST\", API_URL, headers=headers, data=data)\n",
    "    output = json.loads(response.content.decode(\"utf-8\"))\n",
    "    return list_to_dict(output),json.dumps(output, indent=2, sort_keys=True)"
   ],
   "metadata": {
    "collapsed": false
   }
  },
  {
   "cell_type": "code",
   "execution_count": 27,
   "outputs": [],
   "source": [
    "def get_nutrition_info(food_name):\n",
    "    #Make request to Nutritionix API\n",
    "    response = requests.get(\n",
    "        \"https://trackapi.nutritionix.com/v2/search/instant\",\n",
    "        params={\"query\": food_name},\n",
    "        headers={\n",
    "            \"x-app-id\": \"63a710ef\",\n",
    "            \"x-app-key\": \"3ddc7e3feda88e1cf6dd355fb26cb261\"\n",
    "        }\n",
    "    )\n",
    "    #Parse response and return relevant information\n",
    "    data = response.json()\n",
    "    response = data[\"branded\"][0][\"photo\"][\"thumb\"]\n",
    "\n",
    "    # Open the image using PIL\n",
    "\n",
    "    return {\n",
    "        \"food_name\": data[\"branded\"][0][\"food_name\"],\n",
    "        \"calories\": data[\"branded\"][0][\"nf_calories\"],\n",
    "        \"serving_size\": data[\"branded\"][0][\"serving_qty\"],\n",
    "        \"serving_unit\": data[\"branded\"][0][\"serving_unit\"],\n",
    "        #\"images\": data[\"branded\"][0][\"photo\"]\n",
    "    },response"
   ],
   "metadata": {
    "collapsed": false
   }
  },
  {
   "cell_type": "code",
   "execution_count": 28,
   "outputs": [
    {
     "data": {
      "text/plain": "({'food_name': 'Hamburger',\n  'calories': 340,\n  'serving_size': 1,\n  'serving_unit': 'sandwich'},\n 'https://d2eawub7utcl6.cloudfront.net/images/nix-apple-grey.png')"
     },
     "execution_count": 28,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "get_nutrition_info(\"Hamburger\")"
   ],
   "metadata": {
    "collapsed": false
   }
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "outputs": [],
   "source": [],
   "metadata": {
    "collapsed": false
   }
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "outputs": [],
   "source": [],
   "metadata": {
    "collapsed": false
   }
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Running on local URL:  http://127.0.0.1:7869\n",
      "Running on public URL: https://f7f1e48778aede65.gradio.app\n",
      "\n",
      "This share link expires in 72 hours. For free permanent hosting and GPU upgrades (NEW!), check out Spaces: https://huggingface.co/spaces\n"
     ]
    },
    {
     "data": {
      "text/plain": "<IPython.core.display.HTML object>",
      "text/html": "<div><iframe src=\"https://f7f1e48778aede65.gradio.app\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "with gr.Blocks() as demo:\n",
    "    gr.Markdown(\"Food-Classification-Calorie-Estimation and Volume-Estimation\")\n",
    "    with gr.Tab(\"Food Classification\"):\n",
    "        text_input = gr.Image(type=\"filepath\")\n",
    "        text_output = [gr.Label(num_top_classes=6),\n",
    "                       gr.Textbox()\n",
    "                       ]\n",
    "        text_button = gr.Button(\"Food Classification\")\n",
    "    with gr.Tab(\"Food Calorie Estimation\"):\n",
    "        image_input = gr.Textbox(label=\"Please enter the name of the Food you want to get calorie\")\n",
    "        image_output = [gr.Textbox(),\n",
    "                        gr.Image(type=\"filepath\")\n",
    "                        ]\n",
    "        image_button = gr.Button(\"Estimate Calories!\")\n",
    "    with gr.Tab(\"Volume Estimation\"):\n",
    "        _image_input = gr.Textbox(label=\"Please enter the name of the Food you want to get calorie\")\n",
    "        _image_output = [gr.Textbox(),\n",
    "                         gr.Image()\n",
    "                         ]\n",
    "        _image_button = gr.Button(\"Volume Calculation\")\n",
    "    with gr.Tab(\"Future Works\"):\n",
    "        gr.Markdown(\"Future work on Food Classification\")\n",
    "        gr.Markdown(\n",
    "            \"Currently the Model is trained on food-101 Dataset, which has 100 classes, In the future iteration of the project we would like to train the model on UNIMIB Dataset with 256 Food Classes\")\n",
    "        gr.Markdown(\"Future work on Volume Estimation\")\n",
    "        gr.Markdown(\n",
    "        \"The volume model has been trained on Apple AR Toolkit and thus can be executred only on Apple devices ie a iOS platform, In futur we would like to train the volume model such that it is Platform independent\")\n",
    "        gr.Markdown(\"Future work on Calorie Estimation\")\n",
    "        gr.Markdown(\n",
    "    \"The Calorie Estimation currently relies on Nutritionix API , In Future Iteration we would like to build our own Custom Database of Major Food Product across New York Restaurent\")\n",
    "        gr.Markdown(\"https://github.com/Ali-Maq/Food-Classification-Volume-Estimation-and-Calorie-Estimation/blob/main/README.md\")\n",
    "\n",
    "    text_button.click(query, inputs=text_input, outputs=text_output)\n",
    "    image_button.click(get_nutrition_info, inputs=image_input, outputs=image_output)\n",
    "    _image_button.click(get_nutrition_info, inputs=_image_input, outputs=_image_output)\n",
    "    with gr.Accordion(\"Open for More!\"):\n",
    "        gr.Markdown(\"🍎 Designed and built by Ali Under the Guidance of Professor Dennis Shasha\")\n",
    "        gr.Markdown(\"Contact me at ali.quidwai@nyu.edu 😊\")\n",
    "\n",
    "demo.launch(share=True, debug=True)"
   ],
   "metadata": {
    "collapsed": false,
    "pycharm": {
     "is_executing": true
    }
   }
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "import gradio as gr\n",
    "\n",
    "def flip_text(x):\n",
    "    return x[::-1]\n",
    "\n",
    "def flip_image(x):\n",
    "    return np.fliplr(x)\n",
    "\n",
    "with gr.Blocks() as demo:\n",
    "    gr.Markdown(\"Flip text or image files using this demo.\")\n",
    "    with gr.Tab(\"Flip Text\"):\n",
    "        text_input = gr.Textbox()\n",
    "        text_output = gr.Textbox()\n",
    "        text_button = gr.Button(\"Flip\")\n",
    "    with gr.Tab(\"Flip Image\"):\n",
    "        with gr.Row():\n",
    "            image_input = gr.Image()\n",
    "            image_output = gr.Image()\n",
    "        image_button = gr.Button(\"Flip\")\n",
    "\n",
    "    with gr.Accordion(\"Open for More!\"):\n",
    "        gr.Markdown(\"Look at me...\")\n",
    "\n",
    "    text_button.click(get_nutrition_info, inputs=text_input, outputs=text_output)\n",
    "    image_button.click(query, inputs=image_input, outputs=image_output)\n",
    "\n",
    "demo.launch()"
   ],
   "metadata": {
    "collapsed": false,
    "pycharm": {
     "is_executing": true
    }
   }
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "outputs": [],
   "source": [],
   "metadata": {
    "collapsed": false
   }
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.6"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}