Ali-Maq commited on
Commit
79fcc34
β€’
1 Parent(s): b743900

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +92 -0
app.py ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import gradio as gr
3
+ import requests
4
+ import json
5
+
6
+ def list_to_dict(data):
7
+ results = {}
8
+
9
+ for i in range(len(data)):
10
+ # Access the i-th dictionary in the list using an integer index
11
+ d = data[i]
12
+ # Assign the value of the 'label' key to the 'score' value in the results dictionary
13
+ results[d['label']] = d['score']
14
+
15
+ # The results dictionary will now contain the label-score pairs from the data list
16
+ return results
17
+
18
+ API_URL = "https://api-inference.huggingface.co/models/nateraw/food"
19
+ headers = {"Authorization": "Bearer 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"}
20
+
21
+ def query(filename):
22
+ with open(filename, "rb") as f:
23
+ data = f.read()
24
+ response = requests.request("POST", API_URL, headers=headers, data=data)
25
+ output = json.loads(response.content.decode("utf-8"))
26
+ return list_to_dict(output),json.dumps(output, indent=2, sort_keys=True)
27
+
28
+ def get_nutrition_info(food_name):
29
+ #Make request to Nutritionix API
30
+ response = requests.get(
31
+ "https://trackapi.nutritionix.com/v2/search/instant",
32
+ params={"query": food_name},
33
+ headers={
34
+ "x-app-id": "63a710ef",
35
+ "x-app-key": "3ddc7e3feda88e1cf6dd355fb26cb261"
36
+ }
37
+ )
38
+ #Parse response and return relevant information
39
+ data = response.json()
40
+ response = data["branded"][0]["photo"]["thumb"]
41
+
42
+ # Open the image using PIL
43
+
44
+ return {
45
+ "food_name": data["branded"][0]["food_name"],
46
+ "calories": data["branded"][0]["nf_calories"],
47
+ "serving_size": data["branded"][0]["serving_qty"],
48
+ "serving_unit": data["branded"][0]["serving_unit"],
49
+ #"images": data["branded"][0]["photo"]
50
+ },response
51
+
52
+
53
+ with gr.Blocks() as demo:
54
+ gr.Markdown("Food-Classification-Calorie-Estimation and Volume-Estimation")
55
+ with gr.Tab("Food Classification"):
56
+ text_input = gr.Image(type="filepath")
57
+ text_output = [gr.Label(num_top_classes=6),
58
+ gr.Textbox()
59
+ ]
60
+ text_button = gr.Button("Food Classification")
61
+ with gr.Tab("Food Calorie Estimation"):
62
+ image_input = gr.Textbox(label="Please enter the name of the Food you want to get calorie")
63
+ image_output = [gr.Textbox(),
64
+ gr.Image(type="filepath")
65
+ ]
66
+ image_button = gr.Button("Estimate Calories!")
67
+ with gr.Tab("Volume Estimation"):
68
+ _image_input = gr.Textbox(label="Please enter the name of the Food you want to get calorie")
69
+ _image_output = [gr.Textbox(),
70
+ gr.Image()
71
+ ]
72
+ _image_button = gr.Button("Volume Calculation")
73
+ with gr.Tab("Future Works"):
74
+ gr.Markdown("Future work on Food Classification")
75
+ gr.Markdown(
76
+ "Currently the Model is trained on food-101 Dataset, which has 100 classes, In the future iteration of the project we would like to train the model on UNIMIB Dataset with 256 Food Classes")
77
+ gr.Markdown("Future work on Volume Estimation")
78
+ gr.Markdown(
79
+ "The volume model has been trained on Apple AR Toolkit and thus can be executred only on Apple devices ie a iOS platform, In futur we would like to train the volume model such that it is Platform independent")
80
+ gr.Markdown("Future work on Calorie Estimation")
81
+ gr.Markdown(
82
+ "The Calorie Estimation currently relies on Nutritionix API , In Future Iteration we would like to build our own Custom Database of Major Food Product across New York Restaurent")
83
+ gr.Markdown("https://github.com/Ali-Maq/Food-Classification-Volume-Estimation-and-Calorie-Estimation/blob/main/README.md")
84
+
85
+ text_button.click(query, inputs=text_input, outputs=text_output)
86
+ image_button.click(get_nutrition_info, inputs=image_input, outputs=image_output)
87
+ _image_button.click(get_nutrition_info, inputs=_image_input, outputs=_image_output)
88
+ with gr.Accordion("Open for More!"):
89
+ gr.Markdown("🍎 Designed and built by Ali Under the Guidance of Professor Dennis Shasha")
90
+ gr.Markdown("Contact me at ali.quidwai@nyu.edu 😊")
91
+
92
+ demo.launch(share=True, debug=True)