import torch import streamlit as st from transformers import RobertaTokenizer, RobertaForSequenceClassification import re import string def tokenize_sentences(sentence): encoded_dict = tokenizer.encode_plus( sentence, add_special_tokens=True, max_length=128, padding='max_length', truncation=True, return_attention_mask=True, return_tensors='pt' ) return torch.cat([encoded_dict['input_ids']], dim=0), torch.cat([encoded_dict['attention_mask']], dim=0) def preprocess_query(query): query = str(query).lower() query = query.strip() query=query.translate(str.maketrans("", "", string.punctuation)) return query def predict_category(sentence, threshold): input_ids, attention_mask = tokenize_sentences(sentence) with torch.no_grad(): outputs = categories_model(input_ids, attention_mask=attention_mask) logits = outputs.logits predicted_categories = torch.sigmoid(logits).squeeze().tolist() results = dict() for label, prediction in zip(LABEL_COLUMNS_CATEGORIES, predicted_categories): if prediction < threshold: continue precentage = round(float(prediction) * 100, 2) results[label] = precentage return results # Load tokenizer and model BERT_MODEL_NAME_FOR_CATEGORIES_CLASSIFICATION = 'roberta-large' tokenizer = RobertaTokenizer.from_pretrained(BERT_MODEL_NAME_FOR_CATEGORIES_CLASSIFICATION, do_lower_case=True) LABEL_COLUMNS_CATEGORIES = ['AMBIENCE', 'DRINK', 'FOOD', 'GENERAL', 'RESTAURANT', 'SERVICE', 'STAFF'] categories_model = RobertaForSequenceClassification.from_pretrained(BERT_MODEL_NAME_FOR_CATEGORIES_CLASSIFICATION, num_labels=len(LABEL_COLUMNS_CATEGORIES)) categories_model.load_state_dict(torch.load('./Categories_Classification_Model_updated.pth',map_location=torch.device('cpu') )) categories_model.eval() # Streamlit App st.title("Review/Sentence Classification") st.write("Multilable/Multiclass Sentence classification under 7 Defined Categories. ") sentence = st.text_input("Enter a sentence:") threshold = st.slider("Threshold", min_value=0.0, max_value=1.0, step=0.01, value=0.5) if sentence: processed_sentence = preprocess_query(sentence) results = predict_category(processed_sentence, threshold) if len(results) > 0: st.write("Predicted Aspects:") table_data = [["Category", "Probability"]] for category, percentage in results.items(): table_data.append([category, f"{percentage}%"]) st.table(table_data) else: st.write("No Categories above the threshold.")