import re import string import nltk from fastapi import FastAPI, HTTPException from pydantic import BaseModel from typing import Optional from transformers import pipeline from pyngrok import ngrok import nest_asyncio from fastapi.responses import RedirectResponse # Download NLTK resources nltk.download('punkt') nltk.download('wordnet') # Initialize FastAPI app app = FastAPI() # Text preprocessing functions def remove_urls(text): return re.sub(r'http[s]?://\S+', '', text) def remove_punctuation(text): regular_punct = string.punctuation return re.sub(r'['+regular_punct+']', '', text) def lower_case(text): return text.lower() def lemmatize(text): wordnet_lemmatizer = nltk.WordNetLemmatizer() tokens = nltk.word_tokenize(text) return ' '.join([wordnet_lemmatizer.lemmatize(w) for w in tokens]) # Model loading lyx_pipe = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base") # Input data model class TextInput(BaseModel): text: str # Welcome endpoint @app.get('/') async def welcome(): # Redirect to the Swagger UI page return RedirectResponse(url="/docs") # Sentiment analysis endpoint @app.post('/analyze/') async def Predict_Sentiment(text_input: TextInput): text = text_input.text # Text preprocessing text = remove_urls(text) text = remove_punctuation(text) text = lower_case(text) text = lemmatize(text) # Perform sentiment analysis try: return lyx_pipe(text) except Exception as e: raise HTTPException(status_code=500, detail=str(e)) # Run the FastAPI app using Uvicorn if __name__ == "__main__": # Create ngrok tunnel ngrok_tunnel = ngrok.connect(7860) print('Public URL:', ngrok_tunnel.public_url) # Allow nested asyncio calls nest_asyncio.apply() # Run the FastAPI app with Uvicorn import uvicorn uvicorn.run(app, port=7860)