Spaces:
Sleeping
Sleeping
from typing import Tuple | |
import logging | |
import spacy | |
from presidio_analyzer import RecognizerRegistry | |
from presidio_analyzer.nlp_engine import NlpEngine, NlpEngineProvider | |
from transformers_class import TransformerRecognizer | |
logger = logging.getLogger("presidio-streamlit") | |
def create_nlp_engine_with_spacy( | |
model_path: str, | |
) -> Tuple[NlpEngine, RecognizerRegistry]: | |
""" | |
Instantiate an NlpEngine with a spaCy model | |
:param model_path: spaCy model path. | |
""" | |
if not spacy.util.is_package(model_path): | |
spacy.cli.download(model_path) | |
nlp_configuration = { | |
"nlp_engine_name": "spacy", | |
"models": [{"lang_code": model_path.split('_')[0], "model_name": model_path}], | |
} | |
nlp_engine = NlpEngineProvider(nlp_configuration=nlp_configuration).create_engine() | |
registry = RecognizerRegistry() | |
# registry.load_predefined_recognizers() | |
registry.load_predefined_recognizers(nlp_engine=nlp_engine, languages=["fr", "en"]) | |
registry.add_recognizers_from_yaml("recognizers.yaml") | |
return nlp_engine, registry | |
def create_nlp_engine_with_transformers( | |
model_path: str, | |
) -> Tuple[NlpEngine, RecognizerRegistry]: | |
""" | |
Instantiate an NlpEngine with a TransformersRecognizer and a small spaCy model. | |
The TransformersRecognizer would return results from Transformers models, the spaCy model | |
would return NlpArtifacts such as POS and lemmas. | |
:param model_path: HuggingFace model path. | |
""" | |
# if not spacy.util.is_package("en_core_web_sm"): | |
# spacy.cli.download("en_core_web_sm") | |
# # Using a small spaCy model + a HF NER model | |
# transformers_recognizer = TransformersRecognizer(model_path=model_path) | |
# | |
# if model_path == "StanfordAIMI/stanford-deidentifier-base": | |
# transformers_recognizer.load_transformer(**STANFORD_COFIGURATION) | |
# elif model_path == "obi/deid_roberta_i2b2": | |
# transformers_recognizer.load_transformer(**BERT_DEID_CONFIGURATION) | |
# else: | |
# print(f"Warning: Model has no configuration, loading default.") | |
# transformers_recognizer.load_transformer(**BERT_DEID_CONFIGURATION) | |
# Use small spaCy model, no need for both spacy and HF models | |
# The transformers model is used here as a recognizer, not as an NlpEngine | |
if not spacy.util.is_package(model_path): | |
spacy.cli.download(model_path) | |
nlp_configuration = { | |
"nlp_engine_name": "spacy", | |
"models": [{"lang_code": model_path.split('_')[0], "model_name": model_path}], | |
} | |
nlp_engine = NlpEngineProvider(nlp_configuration=nlp_configuration).create_engine() | |
registry = RecognizerRegistry() | |
registry = load_predefined_recognizers(registry) | |
mapping_labels = {"PER": "PERSON", 'LOC': 'LOCATION'} | |
model_name = "AliaeAI/camembert_anonymizer_production_v2" # "Jean-Baptiste/camembert-ner" , "AliaeAI/camembert_anonymizer_production" | |
transformers_recognizer = TransformerRecognizer(model_name, mapping_labels) | |
registry.add_recognizer(transformers_recognizer) | |
registry.remove_recognizer("SpacyRecognizer") | |
return nlp_engine, registry | |
from presidio_analyzer.predefined_recognizers import PhoneRecognizer, EmailRecognizer, CreditCardRecognizer, CryptoRecognizer, DateRecognizer, IpRecognizer, IbanRecognizer, UrlRecognizer | |
import phonenumbers | |
def load_predefined_recognizers(registry, lang='fr'): | |
# phone number | |
phone_recognizer_fr = PhoneRecognizer(supported_language=lang, supported_regions=phonenumbers.SUPPORTED_REGIONS,context=['téléphone']) | |
registry.add_recognizer(phone_recognizer_fr) | |
email_recognizer_fr = EmailRecognizer(supported_language=lang, context=["email", "mail", "e-mail"]) | |
registry.add_recognizer(email_recognizer_fr) | |
# credit card | |
creditcard_recognizer_fr = CreditCardRecognizer(supported_language=lang,context=["crédit", "carte", "carte de crédit"]) | |
registry.add_recognizer(creditcard_recognizer_fr) | |
# crypto | |
crypto_recognizer_fr = CryptoRecognizer(supported_language=lang, context=["crypto"]) | |
registry.add_recognizer(crypto_recognizer_fr) | |
# date time | |
date_recognizer_fr = DateRecognizer(supported_language=lang, context=["mois", "date", "jour", "année"]) | |
registry.add_recognizer(date_recognizer_fr) | |
# ip address | |
ip_recognizer_fr = IpRecognizer(supported_language=lang, context=["IP", "ip"]) | |
registry.add_recognizer(ip_recognizer_fr) | |
# iban | |
iban_recognizer_fr = IbanRecognizer(supported_language=lang, context = ["IBAN", "iban", "bancaire", "compte"]) | |
registry.add_recognizer(iban_recognizer_fr) | |
# URL | |
url_recognizer_fr = UrlRecognizer(supported_language=lang, context = ["site", "web"]) | |
registry.add_recognizer(url_recognizer_fr) | |
# load from yaml | |
registry.add_recognizers_from_yaml("recognizers.yaml") | |
return registry | |