Spaces:
Runtime error
Runtime error
from data.base_dataset import BaseDataset, get_transform | |
from data.image_folder import make_dataset | |
from PIL import Image | |
class SingleDataset(BaseDataset): | |
"""This dataset class can load a set of images specified by the path --dataroot /path/to/data. | |
It can be used for generating CycleGAN results only for one side with the model option '-model test'. | |
""" | |
def __init__(self, opt): | |
"""Initialize this dataset class. | |
Parameters: | |
opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions | |
""" | |
BaseDataset.__init__(self, opt) | |
self.A_paths = sorted(make_dataset(opt.dataroot, opt.max_dataset_size)) | |
input_nc = self.opt.output_nc if self.opt.direction == 'BtoA' else self.opt.input_nc | |
self.transform = get_transform(opt, grayscale=(input_nc == 1)) | |
def __getitem__(self, index): | |
"""Return a data point and its metadata information. | |
Parameters: | |
index - - a random integer for data indexing | |
Returns a dictionary that contains A and A_paths | |
A(tensor) - - an image in one domain | |
A_paths(str) - - the path of the image | |
""" | |
A_path = self.A_paths[index] | |
A_img = Image.open(A_path).convert('RGB') | |
A = self.transform(A_img) | |
return {'A': A, 'A_paths': A_path} | |
def __len__(self): | |
"""Return the total number of images in the dataset.""" | |
return len(self.A_paths) | |