|
import torch |
|
from torch.utils.data import DataLoader |
|
import numpy as np |
|
from tqdm import tqdm |
|
from transformers import SpeechT5HifiGan |
|
from datasets import load_dataset |
|
from tqdm import tqdm |
|
import soundfile as sf |
|
import librosa |
|
|
|
dataset = load_dataset('pourmand1376/asr-farsi-youtube-chunked-10-seconds', split = "test") |
|
|
|
|
|
import librosa |
|
from datasets import load_dataset, Audio |
|
|
|
def resample_audio(example): |
|
|
|
y_resampled = librosa.resample(example["audio"]["array"], orig_sr=example["audio"]["sampling_rate"], target_sr=16000) |
|
|
|
|
|
example["audio"]["array"] = y_resampled |
|
example["audio"]["sampling_rate"] = 16000 |
|
|
|
return example |
|
|
|
|
|
dataset = dataset.select(range(1000)) |
|
dataset = dataset.map(resample_audio) |
|
|
|
|
|
import torch |
|
from torch.utils.data import DataLoader |
|
import numpy as np |
|
from tqdm import tqdm |
|
from transformers import SpeechT5HifiGan |
|
from datasets import load_dataset |
|
from tqdm import tqdm |
|
import soundfile as sf |
|
import librosa |
|
|
|
|
|
|
|
def set_seed(seed): |
|
torch.manual_seed(seed) |
|
if torch.cuda.is_available(): |
|
torch.cuda.manual_seed_all(seed) |
|
|
|
set_seed(1) |
|
|
|
from transformers import AutoProcessor, AutoModelForTextToSpectrogram |
|
|
|
processor = AutoProcessor.from_pretrained("Alidr79/speecht5_v3_youtube") |
|
model = AutoModelForTextToSpectrogram.from_pretrained("Alidr79/speecht5_v3_youtube") |
|
|
|
|
|
from speechbrain.inference.classifiers import EncoderClassifier |
|
import os |
|
|
|
spk_model_name = "speechbrain/spkrec-xvect-voxceleb" |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
speaker_model = EncoderClassifier.from_hparams( |
|
source=spk_model_name, |
|
run_opts={"device": device}, |
|
savedir=os.path.join("/tmp", spk_model_name), |
|
) |
|
|
|
|
|
def create_speaker_embedding(waveform): |
|
with torch.no_grad(): |
|
speaker_embeddings = speaker_model.encode_batch(torch.tensor(waveform)) |
|
speaker_embeddings = torch.nn.functional.normalize(speaker_embeddings, dim=2) |
|
speaker_embeddings = speaker_embeddings.squeeze().cpu().numpy() |
|
return speaker_embeddings |
|
|
|
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") |
|
|
|
from PersianG2p import Persian_g2p_converter |
|
from scipy.io import wavfile |
|
import soundfile as sf |
|
|
|
|
|
PersianG2Pconverter = Persian_g2p_converter(use_large = True) |
|
|
|
import noisereduce as nr |
|
|
|
def denoise_audio(audio, sr): |
|
|
|
denoised_audio = nr.reduce_noise(y=audio, sr=sr) |
|
return denoised_audio |
|
|
|
|
|
import noisereduce as nr |
|
from pydub import AudioSegment |
|
def match_target_amplitude(sound, target_dBFS): |
|
change_in_dBFS = target_dBFS - sound.dBFS |
|
return sound.apply_gain(change_in_dBFS) |
|
|
|
import librosa |
|
def tts_fn(slider_value, input_text): |
|
audio_embedding = dataset[slider_value]['audio']['array'] |
|
sample_rate_embedding = dataset[slider_value]['audio']['sampling_rate'] |
|
if sample_rate_embedding != 16000: |
|
audio_embedding = librosa.resample(audio_embedding, orig_sr=sample_rate_embedding, target_sr=16_000) |
|
|
|
|
|
with torch.no_grad(): |
|
speaker_embedding = create_speaker_embedding(audio_embedding) |
|
speaker_embedding = torch.tensor(speaker_embedding).unsqueeze(0) |
|
|
|
phonemes = PersianG2Pconverter.transliterate(input_text, tidy = False, secret = True) |
|
|
|
|
|
|
|
|
|
text = phonemes |
|
|
|
print("sentence:", input_text) |
|
print("sentence phonemes:", text) |
|
|
|
with torch.no_grad(): |
|
inputs = processor(text = text, return_tensors="pt") |
|
|
|
with torch.no_grad(): |
|
spectrogram = model.generate_speech(inputs["input_ids"], speaker_embedding, minlenratio = 2, maxlenratio = 4, threshold = 0.3) |
|
|
|
with torch.no_grad(): |
|
speech = vocoder(spectrogram) |
|
|
|
speech = speech.numpy().reshape(-1) |
|
speech_denoised = denoise_audio(speech, 16000) |
|
sf.write("in_speech.wav", speech_denoised, 16000) |
|
|
|
sound = AudioSegment.from_wav("in_speech.wav", "wav") |
|
normalized_sound = match_target_amplitude(sound, -20.0) |
|
normalized_sound.export("out_sound.wav", format="wav") |
|
|
|
sample_rate_out, audio_out = wavfile.read("out_sound.wav") |
|
|
|
assert sample_rate_out == 16_000 |
|
|
|
return 16000, (audio_out.reshape(-1)).astype(np.int16) |
|
|
|
|
|
def master_fn(slider_value, input_text): |
|
if "." not in input_text: |
|
input_text += '.' |
|
|
|
all_speech = [] |
|
for sentence in input_text.split("."): |
|
sampling_rate_response, audio_chunk_response = tts_fn(slider_value, sentence) |
|
all_speech.append(audio_chunk_response) |
|
|
|
audio_response = np.concatenate(all_speech) |
|
return sampling_rate_response, audio_response |
|
|
|
import gradio as gr |
|
|
|
slider = gr.Slider( |
|
minimum=0, |
|
maximum=(len(dataset)-1), |
|
value=600, |
|
step=1, |
|
label="Select a speaker(Good examples : 600, 604, 910, 7, 13)" |
|
) |
|
|
|
|
|
text_input = gr.Textbox( |
|
label="Enter some text", |
|
placeholder="Type something here..." |
|
) |
|
|
|
|
|
demo = gr.Interface( |
|
fn = master_fn, |
|
inputs=[slider, text_input], |
|
outputs = "audio" |
|
) |
|
|
|
demo.launch() |