Alidr79's picture
Update app.py
227db2b verified
import torch
from torch.utils.data import DataLoader
import numpy as np
from tqdm import tqdm
from transformers import SpeechT5HifiGan
from datasets import load_dataset
from tqdm import tqdm
import soundfile as sf
import librosa
import random
dataset = load_dataset('pourmand1376/asr-farsi-youtube-chunked-10-seconds', split = "test")
import librosa
from datasets import load_dataset, Audio
def resample_audio(example):
# Resample to 16 kHz
y_resampled = librosa.resample(example["audio"]["array"], orig_sr=example["audio"]["sampling_rate"], target_sr=16000)
# Update the example with the resampled audio and new sample rate
example["audio"]["array"] = y_resampled
example["audio"]["sampling_rate"] = 16000
return example
dataset = dataset.select(range(1000))
dataset = dataset.map(resample_audio)
import torch
from torch.utils.data import DataLoader
import numpy as np
from tqdm import tqdm
from transformers import SpeechT5HifiGan
from datasets import load_dataset
from tqdm import tqdm
import soundfile as sf
import librosa
def set_seed(seed):
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
torch.backends.cudnn.benchmark = False
set_seed(1)
# Load model directly
from transformers import AutoProcessor, AutoModelForTextToSpectrogram
processor = AutoProcessor.from_pretrained("Alidr79/speecht5_v3_youtube")
model = AutoModelForTextToSpectrogram.from_pretrained("Alidr79/speecht5_v3_youtube")
from speechbrain.inference.classifiers import EncoderClassifier
import os
spk_model_name = "speechbrain/spkrec-xvect-voxceleb"
device = "cuda" if torch.cuda.is_available() else "cpu"
speaker_model = EncoderClassifier.from_hparams(
source=spk_model_name,
run_opts={"device": device},
savedir=os.path.join("/tmp", spk_model_name),
)
def create_speaker_embedding(waveform):
with torch.no_grad():
speaker_embeddings = speaker_model.encode_batch(torch.tensor(waveform))
speaker_embeddings = torch.nn.functional.normalize(speaker_embeddings, dim=2)
speaker_embeddings = speaker_embeddings.squeeze().cpu().numpy()
return speaker_embeddings
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
from PersianG2p import Persian_g2p_converter
from scipy.io import wavfile
import soundfile as sf
PersianG2Pconverter = Persian_g2p_converter(use_large = True)
import noisereduce as nr
def denoise_audio(audio, sr):
# Perform noise reduction
denoised_audio = nr.reduce_noise(y=audio, sr=sr)
return denoised_audio
import noisereduce as nr
from pydub import AudioSegment
def match_target_amplitude(sound, target_dBFS):
change_in_dBFS = target_dBFS - sound.dBFS
return sound.apply_gain(change_in_dBFS)
import librosa
def tts_fn(slider_value, input_text):
audio_embedding = dataset[slider_value]['audio']['array']
sample_rate_embedding = dataset[slider_value]['audio']['sampling_rate']
if sample_rate_embedding != 16000:
audio_embedding = librosa.resample(audio_embedding, orig_sr=sample_rate_embedding, target_sr=16_000)
with torch.no_grad():
speaker_embedding = create_speaker_embedding(audio_embedding)
speaker_embedding = torch.tensor(speaker_embedding).unsqueeze(0)
phonemes = PersianG2Pconverter.transliterate(input_text, tidy = False, secret = True)
# text = "</s>"
# for i in phonemes.replace(' .', '').split(" "):
# text += i + " <pad> "
text = phonemes
print("sentence:", input_text)
print("sentence phonemes:", text)
with torch.no_grad():
inputs = processor(text = text, return_tensors="pt")
with torch.no_grad():
spectrogram = model.generate_speech(inputs["input_ids"], speaker_embedding, minlenratio = 2, maxlenratio = 4, threshold = 0.3)
with torch.no_grad():
speech = vocoder(spectrogram)
speech = speech.numpy().reshape(-1)
speech_denoised = denoise_audio(speech, 16000)
sf.write("in_speech.wav", speech_denoised, 16000)
sound = AudioSegment.from_wav("in_speech.wav", "wav")
normalized_sound = match_target_amplitude(sound, -20.0)
normalized_sound.export("out_sound.wav", format="wav")
sample_rate_out, audio_out = wavfile.read("out_sound.wav")
assert sample_rate_out == 16_000
return 16000, (audio_out.reshape(-1)).astype(np.int16)
def master_fn(slider_value, input_text):
if "." not in input_text:
input_text += '.'
print(f"speaker_id = {slider_value}")
all_speech = []
for sentence in input_text.split("."):
if sentence != '' and sentence != ' ' and sentence != '\n':
sampling_rate_response, audio_chunk_response = tts_fn(slider_value, sentence)
all_speech.append(audio_chunk_response)
audio_response = np.concatenate(all_speech)
return sampling_rate_response, audio_response
import gradio as gr
slider = gr.Slider(
minimum=0,
maximum=(len(dataset)-1),
value=600,
step=1,
label="Select a speaker(Good examples : 600, 604, 910, 7, 13)"
)
# Create the text input component
text_input = gr.Textbox(
label="Enter some text",
placeholder="Type something here..."
)
demo = gr.Interface(
fn = master_fn,
inputs=[slider, text_input], # List of inputs
outputs = "audio"
)
demo.launch()