Spaces:
Running
Running
AlmasKanwal19
commited on
Commit
•
ababda9
1
Parent(s):
8bff4e6
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import faiss
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from pypdf import PdfReader
|
6 |
+
from transformers import AutoTokenizer, AutoModel, pipeline
|
7 |
+
from langchain.text_splitter import CharacterTextSplitter
|
8 |
+
|
9 |
+
# Load embedding and QA models
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
|
11 |
+
model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
|
12 |
+
qa_pipeline = pipeline('question-answering', model="distilbert-base-uncased-distilled-squad")
|
13 |
+
|
14 |
+
# PDF text extraction and text chunking
|
15 |
+
def extract_text_from_pdf(pdf_file):
|
16 |
+
reader = PdfReader(pdf_file)
|
17 |
+
text = ""
|
18 |
+
for page in reader.pages:
|
19 |
+
text += page.extract_text()
|
20 |
+
return text
|
21 |
+
|
22 |
+
def split_text_into_chunks(text, chunk_size=500, overlap=50):
|
23 |
+
splitter = CharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=overlap)
|
24 |
+
return splitter.split_text(text)
|
25 |
+
|
26 |
+
# Function to embed text using the embedding model
|
27 |
+
def embed_text(text):
|
28 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
29 |
+
with torch.no_grad():
|
30 |
+
embeddings = model(**inputs).last_hidden_state.mean(dim=1)
|
31 |
+
return embeddings.numpy()
|
32 |
+
|
33 |
+
# Function to create FAISS index
|
34 |
+
def create_faiss_index(embeddings):
|
35 |
+
dimension = embeddings.shape[1]
|
36 |
+
index = faiss.IndexFlatL2(dimension)
|
37 |
+
index.add(embeddings)
|
38 |
+
return index
|
39 |
+
|
40 |
+
# Function to answer questions based on retrieved context
|
41 |
+
def answer_question(question, index, chunks, top_k=3):
|
42 |
+
question_embedding = embed_text(question)
|
43 |
+
_, indices = index.search(question_embedding, top_k)
|
44 |
+
context = " ".join([chunks[i] for i in indices[0]])
|
45 |
+
result = qa_pipeline(question=question, context=context)
|
46 |
+
return result['answer']
|
47 |
+
|
48 |
+
# Streamlit app layout
|
49 |
+
st.title("PDF Question-Answering Chatbot with RAG")
|
50 |
+
st.write("Upload a PDF, and ask questions based on its content.")
|
51 |
+
|
52 |
+
# File uploader
|
53 |
+
pdf_file = st.file_uploader("Upload PDF", type="pdf")
|
54 |
+
if pdf_file is not None:
|
55 |
+
# Extract and split text from PDF
|
56 |
+
with st.spinner("Processing PDF..."):
|
57 |
+
text = extract_text_from_pdf(pdf_file)
|
58 |
+
chunks = split_text_into_chunks(text)
|
59 |
+
|
60 |
+
# Embed and index the chunks
|
61 |
+
embeddings = np.vstack([embed_text(chunk) for chunk in chunks])
|
62 |
+
index = create_faiss_index(embeddings)
|
63 |
+
|
64 |
+
st.success("PDF processed and indexed successfully!")
|
65 |
+
st.write("You can now ask questions based on the content of the PDF.")
|
66 |
+
|
67 |
+
# Input for user question
|
68 |
+
question = st.text_input("Ask a question:")
|
69 |
+
if question:
|
70 |
+
with st.spinner("Searching for the answer..."):
|
71 |
+
answer = answer_question(question, index, chunks)
|
72 |
+
st.write("**Answer:**", answer)
|